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1 Introduction 
 
Development of glomerulosclerotic alterations is a common feature of various chronic 

kidney diseases leading to a progressive loss of functioning kidney parenchyma and 

finally resulting in terminal renal failure (Klahr et al. 1988). Manifold mechanisms 

involved in the pathogenesis of distinct aspects of glomerulosclerotic lesions have 

been studied in a large variety of different chronic kidney diseases in humans, as well 

as in diverse experimental animal models. Virtually independent of the respective 

aetiology of the underlying disease, the earliest stages of these different disease 

entities are characterized by common morphological and functional alterations of the 

glomeruli. These consist of development of glomerular hypertrophy and subsequent 

appearance of micro-albuminuria, both identified as key determinants of the 

progression of disease (Fogo and Ichikawa 1991, Remuzzi 1995, Wiggins 2007). 

Various studies have focussed on the characterization of disease specific properties, 

allowing for definition and segregation of single disease entities on the molecular 

level, which is seen as a prerequisite for identification of pathogenetic mechanisms, 

potential disease markers, new therapeutic targets and the development of 

individually adjusted therapies (Schmid et al. 2006). To achieve these goals, 

additional functional insights into the individual disease processes, as well as into 

common aspects of the pathophysiology of chronic kidney diseases on the 

glomerular level are required. Nephrology has greatly benefited from recent technical 

improvements in generation (Takemoto et al. 2002) and preservation of sample 

materials derived from human renal biopsies or from kidney tissues of experimental 

animal models. Modern research methods as transcript profiling or proteomic 

analysis are now applicable even on samples of isolated kidney glomeruli and 

represent valuable and promising approaches to study the pathogenetic mechanisms 

of glomerular gene expression regulation and alterations of the glomerular proteome 

in chronic renal diseases  (Kretzler et al. 2002, Sitek et al. 2006, Yasuda et al. 2006). 

The present study was performed within the framework of the superordinated project 

“Cluster growth and differentiation - molecular pathogenesis of glomerulosclerosis in 

transgenic mouse models” of the graduate college “Functional genomics in veterinary 

medicine” (grk 1029), supported by the Deutsche Forschungsgemeinschaft, DFG.  
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The overriding hypothesis to be tested was, if the common patterns of morphological 

and functional glomerular alterations in the early stages of different chronic kidney 

diseases would also find a reflection in common glomerular gene or protein 

expression profiles. Therefore, both differential transcript profiling (present study) and 

proteomic analyses (Diss. med.vet., Block 2008, grk1029) were performed on 

samples of isolated kidney glomeruli of transgenic animals and their associated non-

transgenic wild-type littermate control animals of two different transgenic mouse 

models of nephropathy. In order to ensure the comparability of data generated from 

glomerular samples derived from these different models, investigations were 

performed in two stringently defined early stages of comparable glomerular 

alteration: glomerular hypertrophy and onset of micro-albuminuria. Differential 

glomerular gene expression profiles from these stages of glomerular alteration were 

identified by microarray analysis in each investigated mouse model and compared to 

each other. The purpose of the present study was to identify transcripts displaying a 

congeneric differential expression in the respective stages of investigation in both 

mouse models. These common glomerular gene expression profiles are presumably 

independent of the different genetic backgrounds of the investigated animal models 

and of the identities of the different transgenes expressed in these models. The 

generated datasets provide the basis for further detailed studies of altered glomerular 

gene expression profiles related to distinct parameters of glomerular morphology and 

function in the single animal models, as well as evaluation of common molecular 

mechanisms implicated in the pathogenesis of glomerulosclerotic lesions, disease 

pathways and the regulatory networks underlying differential gene expression.   
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2 Scientific background 
 
2.1 Importance of chronic kidney diseases (CKD) 
The world's disease profile is changing, and chronic diseases now account for the 

majority of global morbidity and mortality (Atkins 2005). Supported by changed 

lifestyles, chronic kidney diseases are emerging as a major health problem 

worldwide, not only within the developed, but also increasingly within the emerging 

world (Atkins 2005, Fogo 2006). Following the US National Kidney Foundation, 
chronic kidney diseases are generally defined through either appearance of 

albuminuria or proteinuria, or a loss of kidney function, distinguished by a decline of 

the glomerular filtration rate of more than 40%, or the diagnosis of structural kidney 

alterations persisting for more than three months. Virtually independent of the initial 

insult, a common character of the various different disease entities, which are 

summarized under the term of chronic kidney diseases, is their tendency towards 

progression to end stage renal disease (ESRD), defined as the need for dialysis, 

receipt of a renal transplant, or death from chronic kidney failure (Remuzzi et al. 

2006, White et al. 2005). Recent studies revealed the tremendous dimensions of 

CKD and end stage renal disease. Assuming continuation of previous trends in 

ESRD incidence and prevalence, alone in the US, the numbers of patients suffering 

from ESRD will raise from 382,000 in the year 2000 to over 700,000 in 2015, while 

the number of incident ESRD patients per year is expected to increase by 44% to 

136,166 with more than 100,000  ESRD deaths annually (Gilbertson et al. 2005). 

Worldwide, chronic kidney disease (CKD) is increasing at an annual growth rate of 

8% (Alebiosu and Ayodele 2005). While success of therapeutic treatment is often 

limited, the increasing number of patients with CKD or kidney failure requiring 

replacement therapy is burdening public health care systems with immense costs, 

consuming a significant proportion of health care budgets (Eknoyan et al. 2004, 

Schieppati and Remuzzi 2005). Separate from the economic magnitude of the 

problem, CKD has a significant impact on life expectancy and quality of life of 

affected patients and also comprises an increased risk for subsequent diseases 

(Tarnow et al. 2000, Young et al. 2003). Concerning the reasons identified to be 

responsible for the development of CKD, it is evident that a major cause of these 

diseases are glomerular disorders (Johnstone and Holzman 2006).  
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Data from the United States Renal Data Systems (USRDS) show, that 56% of 

incident patients with ESRD have glomerular diseases secondary to diabetic 

nephropathy, primary glomerulonephritis, vasculitis, or AIDS nephropathy (USRDS 

2004). In most Western countries, diabetic nephropathy (DN) has become the single 

most common condition found in patients with CKD leading to ESRD (Alebiosu and 

Ayodele 2005, Mitka 2005, Wolf and Ziyadeh 2007). DN manifests as a clinical 

syndrome that is composed of albuminuria, progressively declining GFR, and 

increased risk for cardiovascular disease (Tarnow et al. 2000, Young et al. 2003). 

While the worldwide prevalence of diabetes mellitus is steadily increasing and 

estimated to reach 4.4% in 2030 (Wild et al. 2004), 20 to 40% of all diabetic patients 

are prone to develop kidney failure, suggesting also significant genetic influences on 

risk for development of DN (Krolewski 1999, Seaquist et al. 1989, USRDS 2004). 

 

2.1.2 Common pathological features of CKD 
The slow and persistent progressive loss of kidney function is characteristic for the 

chronological sequence in development of chronic renal failure. Apart from 

classifications according to etiological or morphological aspects of different chronic 

progressive nephropathies into distinct disease entities, and regardless of the 

underlying cause, chronic kidney diseases are commonly characterized by a 

progressive loss of functioning kidney nephrons. Histological, this is commonly 

marked by development of glomerulosclerosis, tubular atrophy and interstitial fibrosis, 

a progressive scarring that ultimately affects all structures of the kidney and finally 

leads to ESRD (Fogo and Ichikawa 1989, Fogo 1999, Mauer et al. 1992). In that 

context, it is most remarkable that the tendency of a once established chronic renal 

insufficiency to progression towards ESRD is not only independent of the respective 

nature of the initiating nephropathy, but also not necessarily depending on the 

persistence of that initial insult (Baldwin 1982, Brenner et al. 1982, el Nahas 1989, 

Klahr et al. 1988, Olson and Heptinstall 1988). The activation of unspecific 

mechanisms leading to a progressive loss of functioning kidney parenchyma is 

considered to be only dependent of the severity of the initial damage. Terminal renal 

failure is then the result of a vicious circle maintained by these mechanisms (Baldwin 

1982, Brenner et al. 1982, Fogo and Ichikawa 1989, Hostetter et al. 1981, Ichikawa 

et al. 1991, Shimamura and Morrison 1975). Using different animal models, the 

pathomechanisms implicated in the progression of diverse chronic renal diseases 

have been studied in great detail through the last decades.  
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Throughout the different postulated hypotheses concerning the nature of the initiating 

events, which had been subject of intense discussions, the central common 

pathogenetic role of glomerulosclerotic alterations for the progression of chronic 

nephropathies has clearly emerged (Klahr et al. 1988):  development of progressive 

glomerulosclerotic alterations results in loss of functioning nephrons and thereby 

leads to damage and progressive destruction of the remaining nephrons, finally 

resulting in terminal renal failure. Within the majority of the diverse chronic kidney 

diseases, the first alterations are detectable in the renal glomeruli. It is remarkable 

that all glomerular diseases implicated in the development of CKD, share the 

common features of proteinuria and effacement of podocyte foot processes 

(Johnstone and Holzman 2006). Glomerulosclerotic alterations as a consequence of 

podocyte damage are considered to play a key role in the progression of chronic 

kidney diseases to terminal renal failure (Klahr et al. 1988, Kriz 2002, Kriz et al. 1994, 

Mauer et al. 1992, Zoja et al. 2006). Therefore, the following sections will focus on 

the development of progressive glomerulosclerotic kidney alterations and their 

proposed implication in the progression of chronic renal disease to ESRD. 

 

2.2 Glomerulosclerosis 
Originally the term „glomerulosclerosis“ was embossed by Kimmelstiel and Wilson  in 

1936, who employed it to describe the morphological alterations of glomeruli they 

found in kidney sections of patients with diabetes mellitus (Kimmelstiel and Wilson 

1936). Since then, several authors provided different definitions of 

glomerulosclerosis, due to various aspects of the polymorphic occurrence of 

glomerular lesions and their respective properties (Churg and Sobin 1982, Fries et al. 

1989, Romen 1976, Rumpelt and Thoenes 1974, Shimamura and Morrison 1975, 

van Goor et al. 1991). However, today it has generally become accepted to use the 

term glomerulusclerosis to designate the complexity of glomerular alterations 

associated with obliteration of glomerular capillaries, which typically affect single 

glomeruli to a variable extent. Due to the advance of (progressive) glomerulosclerotic 

alterations, these alterations comprise glomerular capillary lesions, glomerular 

extracapillary and exsudative lesions and extraglomerular lesions.  
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These lesions include increases of extracellular mesangial matrix (referred to as 

mesangial sclerosis), mesangial hypercellularity, collapse of glomerular capillary 

lumina, hyalinosis and synechial attachments of the glomerular tuft to the capsule of 

Bowman (Floege et al. 1992, Grone et al. 1989, Olson et al. 1985, Rennke and Klein 

1989, Shimamura and Morrison 1975). In addition, the thickening of the glomerular 

basement membrane is a typical finding in diabetic glomerulopathy (Chavers et al. 

1989). Nevertheless, “glomerulosclerosis” is a pathological diagnosis, which is based 

on morphological criteria of glomerular alterations. As glomerulosclerosis occurs in 

various different disease entities, it is not pathognomonic and therefore does not 

refer to the aetiology or pathogenesis of the lesions (Romen 1976, Schwartz and 

Lewis 1985). Histopathologically, denotation of glomerular lesions enunciates the 

extent to which single or different glomeruli are affected by the respective 

glomerulosclerotic alterations (Churg and Sobin 1982). “Diffuse glomerulosclerosis” 

refers to an affection of more than 80% of investigated glomeruli; otherwise it is 

termed “focal”. “Global” and “segmental” describe complete or partial extensions of 

sclerotic lesions of single glomeruli, respectively. The literature provides a 

comprehensive documentation of glomerulosclerotic kidney alterations in humans 

and in experimental animal models. As glomerulosclerosis occurs in a variety of 

glomerular diseases, the spectrum of glomerulosclerotic disorders is traditionally 

classified into primary and secondary sclerosing glomerulopathies, depending on the 

recognition of the underlying disease. In human disease, the clinical entity of the so-

called primary or idiopathic “focal and segmental glomerulosclerosis” (FSGS), is an 

important cause for an idiopathic nephrotic syndrome and represents the group of 

primary glomeruloscleroses (Habib 1973, Waldherr and Derks 1989). In FSGS, 

sclerosis involves some, but not all glomeruli (focal) and affects a portion, but not the 

entire glomerular tuft (segmental). The sclerotic process is defined by glomerular 

capillary collapse with increase in mesangial matrix (Fogo 2001). The term 

“secondary glomerulosclerosis” summarizes the by far more frequent 

glomerulosclerotic lesions appearing in the context of a large number of diseases of 

different aetiologies (Goldszer et al. 1984, Rennke and Klein 1989). A further 

subdivision of secondary glomeruloscleroses is performed due to either their 

preferential focal or diffuse appearance, or in accordance to a primarily renal, or 

systemic character of the underlying disease.  
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Concerning the primarily renal diseases that may lead to development of diffuse 

glomerulosclerosis, inflammatory glomerular diseases as diffuse glomerulonephritis 

are to mention (Klahr et al. 1988). Among the group of systemic diseases which have 

been associated with the development of progressive glomerulosclerosis of diffuse 

character, vascular and hereditary diseases, systemic autoimmunopathies and 

metabolic disorders are the most important (Rennke and Klein 1989). The by far 

single most common disease in humans that is prone to development of 

glomerulosclerotic alterations is diabetic nephropathy. In nephrology great emphasis 

is attributed to the study of the pathogenesis of glomerulosclerosis and the 

mechanisms which might induce its development. Among the various distinct lesions 

that can be observed in affected glomeruli, glomerular hypertrophy is the common 

property preceeding the development of any further damage that might lead to 

albuminuria and later to extended alterations (Ichikawa et al. 1991, Seyer-Hansen et 

al. 1980, Steffes et al. 1978).  

 

2.3 Pathogenesis of progressive glomerulosclerosis 
 
2.3.1 Glomerular hypertrophy 
There is general agreement that a common pathomechanism exists, which 

determines the progredient loss of functioning nephrons by progressive 

glomerulosclerosis in CKD. However, concerning the nature of the initiating event 

responsible for the induction of development of glomerulosclerotic lesions, different 

pathogenetic concepts exist. The process is characterized by a self-perpetuating 

vicious cycle, which passes on the glomerulosclerotic damage from once lost and/or 

damaged nephrons to the remaining (Ichikawa et al. 1991, Kriz and LeHir 2005). In 

these nephrons, compensatory mechanisms are induced, which increase their 

vulnerability to any further challenge and thereby result in development of further 

glomerulosclerotic alterations. Thus the process proceeds, affecting a steadily 

increasing number of yet undamaged nephrons, finally resulting in ESRD. The 

search after the determinant pathomechanism resulted in postulation of different key 

concepts, from which glomerular hyperfunction (Brenner 1983), glomerular 

hypertrophy (Fogo and Ichikawa 1989) and disturbance of the glomerular 

permselectivity (Remuzzi and Bertani 1990) are the most appreciated. In the early 

eighties of the last century, Brenner and co-workers studied the pathophysiology of 

renal adaptation to nephron loss in the rat (Brenner 1983).  
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Using micropuncture techniques, as well as morphological investigations, they found 

that after removal of renal mass in a rat model of subtotal nephrectomy, arteriolar 

resistance lowered and plasma flow increased in remnant glomeruli (Hostetter et al. 

1981), leading to more filtrate formed per nephron. They reasoned, that adaptive 

glomerular hyperperfusion and hyperfiltration in the remnant glomeruli represented 

the responsible factors for initiation of self destructive processes leading to 

development of glomerulosclerosis and progression of chronical renal failure 

(Brenner 1983). Later they amended their initial hypothesis and found increased 

pressures in the glomerular capillaries to be the determinant key mediator (Anderson 

et al. 1985, Lafferty and Brenner 1990). The hypothesis of glomerular hyperfiltration 

and hypertension then was able to explain the progression of chronic renal failure as 

a consequence of capacity overload in glomeruli due to renal ablation, primary renal 

disease, diabetes mellitus (Zatz et al. 1985) and aging, resulting in development of 

glomerulosclerotic alterations. The importance of hemodynamic factors in the 

pathogenesis of glomerulosclerotic kidney lesions was supported by experiments, in 

which pharmacological reduction of glomerular hypertension reduced the dimensions 

of development of glomerulosclerosis and decelerated the progression of chronic 

renal failure (Anderson et al. 1985, Anderson et al. 1986).  However, at the end of the 

eighties, the universal validity of this „hyperfiltration“-hypothesis was criticized, as it 

could not explain all observed differences of development of glomerulosclerotic 

alterations and chronic renal failure in different animal models. The studies in the 

model of the subtotal nephrectomized rat performed by Yoshida and colleges 

included serial measurements of intraglomerular pressures by micropuncture of 

single nephrons and morphological investigations of these glomeruli (Fogo et al. 

1988, Yoshida et al. 1988). They found, that either glomerulosclerotic lesions did not 

preferentially develop in glomeruli which displayed the uppermost increase of 

capillary pressures after subtotal nephrectomy, and that there was no detectable 

positive correlation between the magnitude of early glomerular capillary pressure and 

the severity of glomerulosclerosis in these glomeruli. Thus, they concluded that 

hypertension would be a rather minor contributor to the development of 

glomerulosclerotic alterations and therefore other factors than hemodynamic 

changes would predominantly promote glomerular sclerosis (Yoshida et al. 1988). In 

further experiments, they were able to demonstrate a direct linkage between an 

increase in size of glomeruli and the severity of subsequently developing 

glomerulosclerotic alterations.  
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They reasoned that glomerulosclerosis is caused by glomerular hypertrophy and not 

by increased pressures in glomerular capillaries, and that glomerular hypertrophy 

itself is dependent on an effective loss of functioning kidney parenchyma (Yoshida et 

al. 1989). The term „glomerular hypertrophy“ refers to not only an overall increase of 

size or volume of the glomerular tuft due to an increase of the volume of glomerular 

cells and/or extracellular matrix, but also to a hyperplasia of mesangial and 

endothelial cells. Whereas the numbers of glomerular mesangial and endothelial 

cells increase in hypertrophied glomeruli, podocytes only display hypertrophy while 

their numbers per glomerulus remain unchanged (Wanke et al. 2001, Wiggins et al. 

2005). The increase of the volume of the glomerular tuft, appearing during 

physiological growth is almost exclusively related to an increase of length of the 

glomerular capillaries (Schwartz and Bidani 1993), whereas pathological glomerular 

hypertrophy is also marked by an increase of the diameter of the glomerular 

capillaries (Amann et al. 1993, Lax et al. 1992, Osterby and Gundersen 1975, 

Schwartz and Bidani 1993), which is considered to be an additional determinant 

factor of development of glomerulosclerosis (Daniels and Hostetter 1990, Olson and 

Heptinstall 1988). Glomerular hypertrophy, as well as the numbers of glomerular cells 

can be estimated in kidney sections, using different means of stereological 

investigation (Hirose et al. 1982, Nyengaard 1999, Sanden et al. 2003, Sterio 1984, 

Weibel 1979, Weibel 1980, Weibel and Gomez 1962). Additionally, the availability of 

markers enables the identification of single glomerular cell types in these sections 

(Pavenstadt et al. 2003, Sanden et al. 2003). In 1989, Fogo and Ichikawa phrased 

their " hypertrophy" hypothesis (refer to figure 2.1), that has at its central proposition 

the loss of a critical number of nephrons through an initial insult leading to 

compensational, growth factor mediated glomerular hypertrophy, which is a 

determinant for the development of glomerulosclerosis and therefore for the 

progression of kidney damage (Fogo and Ichikawa 1989, Fogo and Ichikawa 1991, 

Ichikawa et al. 1991). The consequences of glomerular enlargement itself then lead 

to glomerulosclerosis. The distinct, invariable association, as well as the 

pathogenetic relevance of glomerular hypertrophy for the development of 

glomerulosclerosis, independent of alterations of systemic or glomerular pressures, 

has been shown by several authors in various animal experimental studies, as well 

as in investigations of human disease (Daniels and Hostetter 1990, Doi et al. 1990, 

Fogo and Ichikawa 1991, Fogo 2000, Fries et al. 1989, Klahr et al. 1988, Olson 1992 

(a), Olson 1992 (b), Olson and Heptinstall 1988, Wanke et al. 1991).  
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The " hypertrophy" hypothesis  is also congruent with studies of pharmacological or 

dietary intervention, as these do not only evolve anti-hypertensive effects, but also 

were shown to influence compensatory glomerular growth (Amann et al. 1993, 

Dworkin et al. 1993, O'Donnell et al. 1990, Yoshida et al. 1989). More than being just 

a result of compensatory mechanisms arising in the remnant glomeruli of a kidney 

that has been affected by a loss of a critical number of functioning nephrons by an 

initial result, glomerular hypertrophy also provides a possible explanation for the 

initiation and progression of chronic kidney diseases, that appear without a prior loss 

of nephrons. Such diseases include diabetes mellitus associated nephropathy (DN) 

and primary focal and segmental glomerulosclerosis (Fogo and Ichikawa 1989). In 

diabetes of man, as well as in experimental rat models of streptozotozin (STZ) 

induced diabetes, the first obvious kidney associated changes after onset of diabetes 

are renal and glomerular hypertrophy (Mogensen et al. 1983). In this context, the 

development of renal hypertrophy is seen more as a prerequisite than a 

consequence of renal hyperfunction (Cortes et al. 1987). Using morphometric 

analysis, glomerular hypertrophy can be detected in kidney sections of diabetic 

human patients as early as within one week after manifestation of diabetes (Osterby 

and Gundersen 1975), and in animal experimental models of the rat within 4 days 

after application of STZ, a commonly used method to induce diabetes mellitus (DM) 

in rats and mice (Cortes et al. 1987, Seyer-Hansen et al. 1980). The reason 

responsible for development of glomerular hypertrophy itself yet remains unclear. As 

underlying hemodynamic changes became improbable, increased effects and/or 

activities of both local and circulating growth factors were supposed (Fogo and 

Ichikawa 1989), either as a consequence of loss of functioning nephrons due to a 

previous insult, or, as an effect of aberration of regulation of glomerular growth in 

diseases that appear without prior loss of functioning kidney parenchyma (e.g. 

diabetic glomerulosclerosis or primary focal segmental glomerulosclerosis, FSGS). 

The potential to affect renal and glomerular growth processes has been documented 

for several hormones and local growth factors.  Especially the effects of members of 

the growth hormone system, including insulin like growth factors (IGF) and IGF- 

binding proteins, which partially mediate growth hormone actions but also exhibit  

systemic, para- and autocrine effects independent of GH, have been investigated in 

detail (Bellush et al. 2000, Fisch 2004, Gowri et al. 2003, Hammerman 1989, Moerth 

et al. 2007).  
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As well, the high recurrence rate of FSGS in kidney transplant recipients suggests 

that such patients might have a circulating factor that alters glomerular capillary 

permeability. This factor has been partially identified as a protein (Sharma et al. 

1999), whose removal by plasmapheresis decreases proteinuria (Carraro et al. 2004, 

Garcia et al. 2006). However, due to the various possible interactions of different 

factors under different circumstances of kidney disease, a single circulating or local 

factor responsible for the development of glomerular hypertrophy in chronic kidney 

disease has not yet been identified. Direct consequences of glomerular hypertrophy 

include the development of podocyte damage and successional impairment of the 

glomerular filtration process (Kriz et al. 1994, Wanke et al. 2001), which trigger the 

development of glomerulosclerosis as explicated in the following section. 

 
 
 
 

 
 
 
 
Figure 2.1: Proposed concept of glomerular hypertrophy caused by growth promoters acting on intact 

glomeruli being the central pathogenetic mechanism underlying the self perpetuating vicious cycle of 

progressive destruction of glomerular architecture in chronic renal disease.  

From Fogo A, Ichikawa I: Semin Nephrol 1989; 9:329-342. 
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2.3.2 Podocyte function and the importance of podocyte damage for the 
development of glomerulosclerosis 
The efficiency of glomerular filtration is a fundamental prerequisite for physiological 

kidney function. Structurally, the glomerular filter is composed of three parts: a layer 

of endothelial cells separated by large fenestrations of 50–100 nm, the glomerular 

basement membrane (GBM) that is about 300 nm thick (human kidney glomeruli), 

and the podocyte slit diaphragm spanning roughly 40 nm between interdigitating 

tertiary foot processes of adjacent podocytes that cover the GBM (Deen et al. 2001, 

Madsen and Tisher 1996).  The function of mesangial glomerular cells, which provide 

structural support to the glomerulus, as well as an efficient interaction of all structural 

components of the glomerular filtration barrier is essential for the physiological 

filtration process. Next to physical interactions, also paracrine cross talks between 

podocytes, mesangial and endothelial cells have been identified to play crucial roles 

for development and maintenance of the glomerular filtration barrier (Eremina et al. 

2007, Eremina et al. 2006). The glomerular filter has a remarkable and well 

described selectivity for macromolecules based on both charge and size (D'Amico 

and Bazzi 2003, Deen et al. 2001, Haraldsson and Sorensson 2004, Tryggvason and 

Wartiovaara 2005). Under physiological conditions, it provides free permeability for 

water and small solutes, whereas proteins like serum albumin or larger molecules are 

efficiently retained. Smaller proteins are partially filtered before passing into the 

primary ultra-filtrate, where they can be reabsorbed in the proximal tubules. 

Podocytes are crucially involved in establishing the specific permeability properties of 

the glomerular filter. The by far most selective part of the glomerular filter, 

responsible for the ultimate size selectivity of the filtration process for proteins and 

about 50% of its hydraulic resistance, is represented by the slit diaphragm, a highly 

specialized gap junction between interdigitating foot processes of neighboured 

podocytes (Pavenstadt et al. 2003, Shankland 2006). Studies concerning the 

structure of the slit diaphragm (slit membrane) have significantly increased the 

understanding of the molecular physiology of the filtration process (Karnovsky and 

Ainsworth 1972, Wartiovaara et al. 2004), as well as the implication of podocyte 

damage in the development of proteinuria  in various kidney diseases (Holzman et al. 

1999, Kestila et al. 1998, Pavenstadt et al. 2003, Ruotsalainen et al. 1999, 

Shankland 2006).  
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The slit membrane is composed of extracellular domains of podocyte derived nephrin 

molecules, regularly arranged in a unique “zipper-like” structure, forming a molecular 

sieve with pores slightly smaller than albumin (Wartiovaara et al. 2004). Podocytes 

themselves are unique, highly differentiated epithelial cells with a complex 

cytoarchitecture (Pavenstadt et al. 2003). Next to their function in the process of 

glomerular filtration, where they provide a size and charge barrier to proteins, they 

also are responsible for the maintenance of the capillary loop shape and the 

counteraction to the intraglomerular pressure, as well as for the synthesis and 

maintenance of the glomerular basement membrane (Shankland 2006) and therefore 

play a central role in development and maintenance of normal glomerular structure 

and function. The structural integrity of the foot process is crucial for establishing 

stability between the cell-cell and the cell-matrix contact of podocytes. This unique 

challenge has resulted in the development of a specialized cytoskeletal organization 

of podocyte foot processes (Pavenstadt et al. 2003). The primary function of the foot 

process cytoskeleton is the coupling of the slit membrane complex with the podocyte-

GBM contacts in their close proximity. The cytoskeleton of the major processes also 

has to maintain contact with the metabolic machinery of the podocyte cell body to 

allow vesicular transport along the process. Because the glomerular capillary wall 

undergoes cyclic distensions with each heart beat, a combination of mechanical 

strength and flexibility is also required. The cytoskeleton therefore has to serve static 

and dynamic functions. Foot processes contain all elements required to generate a 

tensile strength to oppose the distensible forces of the capillary wall (Drenckhahn 

and Franke 1988, Kriz et al. 1995, Kriz et al. 1994). Podocytes also share common 

properties with neurons (Kobayashi et al. 2004, Kobayashi and Mundel 1998, 

Rastaldi et al. 2006, Rastaldi et al. 2003) and exert indirect influence on endothelial 

and mesangial cells by excretion of signalling molecules exhibiting paracrine actions 

(e.g. vascular endothelial growth factor), which are required for their function and 

integrity (Eremina et al. 2006, Eremina et al. 2003, Pavenstadt et al. 2003). To fulfil 

all these highly specialized functions, podocytes express a variety of different unique 

proteins with very complex patterns of interaction and architecture (Pavenstadt et al. 

2003, Shankland 2006). Due to this high grade of differentiation, their capacity for cell 

division and replacement is extremely limited, except for few glomerular diseases in 

humans (Barisoni et al. 1999, Griffin et al. 2003, Kriz 2002, Mundel and Shankland 

2002, Nagata et al. 1998, Pavenstadt et al. 2003, Valeri et al. 1996).  
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During development and progression of glomerular hypertrophy, podocytes gradually 

fail to functionally adapt to the increased size of the glomerulus. Whereas numbers of 

mesangial and endothelial cells per glomerulus increase during development of 

glomerular hypertrophy (refer to 2.3.1), the number of cells displaying a podocytic 

phenotype remains unchanged, reflecting the inability of these highly differentiated 

cells to undergo functional proliferation, leading to a relative depletion of podocyte in 

the respective glomeruli. Exposed to the challenge to maintain their functions under 

the circumstances of increasing areas of glomerular basement membrane to cover, 

podocytes are unable to maintain their normal cell shape but change in appearance 

in a fairly stereotyped manner (Kerjaschki 2001, Kriz et al. 1999, Kriz et al. 1996, 

Wanke et al. 2001, Wiggins 2007). The early stages of this characteristic sequence 

of structural alterations include cell hypertrophy and foot process effacement. 

Biochemically, hypertrophy is defined as an increase in the cell’s protein to DNA 

ratio, accompanied by increased cell volume, but not number (Shankland 2006). 

Both, analyses of human biopsies, as well as studies in animal models show that 

podocytes can undergo significant hypertrophy but to a limited extent (Bhathena 

2003, Chen et al. 2006, Gross et al. 2004, Wiggins et al. 2005). Thus, podocyte 

hypertrophy initially seems to be adaptive, representing the attempt of a cell that is 

relatively incapable of proliferating, to cover the underlying GBM. However, with time, 

it is likely that podocyte hypertrophy becomes maladaptive. In a model system, as 

podocytes continue to enlarge, they express different proteins reflecting this 

‘adaptation’ stage and subsequently a ‘decompensation’ stage before becoming lost 

from the glomeruli (Wiggins et al. 2005). Foot process effacement is a consequence 

of retraction, widening, and shortening of the processes of each podocyte, finally 

resulting in a reduction of the frequency of filtration slits (Drumond et al. 1994). These 

uniform phenotypical changes represent a stereotypical reaction of podocytes to 

injury or damage and can be observed throughout a large variety of different 

glomerular diseases (Shankland 2006, Shirato et al. 1996). Later stages of podocyte 

damage include cell body attenuation and pseudocyst formation. Finally, detachment 

of podocytes from the GBM leads to severe proteinuria, glomerular hyalinosis, 

formation of synechial adhesions between the glomerular tuft and the capsule of 

Bowman and collapse of glomerular capillaries (Pavenstadt et al. 2003, Shankland 

2006, Wanke et al. 2001).  
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This characteristic  sequence of anatomic events resulting from podocyte injury has 

been comprehensively described in multiple animal model systems (Kretzler et al. 

1994, Kriz 2002, Wanke et al. 2001): Podocyte damage leads to appearance of 

denuded areas of GBM, which is followed by formation of adhesion to Bowman’s 

capsule (synechia formation), focal segmental glomerulosclerosis, and global 

glomerulosclerosis associated with misdirected filtration into the interstitial 

compartment contributing to interstitial injury and fibrosis. Herein, the loss of the 

separation between the tuft and Bowman's capsule in affected glomeruli by formation 

of cell bridges between the glomerular and the parietal basement membranes by 

proliferating parietal epithelial cells and/or altered podocytes (Moeller et al. 2004), or 

by misdirected filtration represents a crucial event for the further development of 

glomerulosclerosis and the possible progression towards ESRD. A primary 

glomerular injury is transferred onto the tubulointerstitium, either by direct 

encroachment of extracapillary lesions, or by protein leakage into tubular urine, 

resulting in injury to the tubule and the interstitium (Kriz and LeHir 2005). The loss of 

nephrons then leads  to compensatory mechanisms in the remaining nephrons (e.g. 

glomerular hypertrophy), which increase their vulnerability to any further challenge 

and may again cause further podocyte damage. An additional further possible 

mechanism would be that tubulointerstitial inflammation and fibrosis, caused by 

misdirected filtration, account for the further deterioration of renal function (Remuzzi 

1995). Thus, podocyte injury, due to glomerular hypertrophy or other factors, as well 

as the consequences of impaired podocyte function, depletion or loss of podocytes 

are seen as the central initial pathogenetic features in the development and the 

progression of glomerulosclerotic kidney alterations, including DN (Hayden et al. 

2005, Lemley 2003, Pagtalunan et al. 1997, Steffes et al. 2001, White et al. 2002, 

Wolf et al. 2005). They provide a possible explanation for the development of 

proteinuria (Shankland 2006), as well as for the development of the various 

histological features of glomerulosclerosis and their progression (Wanke et al. 2001). 

The key role of podocyte dysfunction, injury and loss from the glomerulus, as 

initiators of processes that lead to the development and self perpetuating progression 

of glomerulosclerotic alterations, is also increasingly supported by various 

experimental animal models (Asanuma and Mundel 2003, Kretzler et al. 1994, Kriz 

2002, Mundel and Shankland 2002, Wanke et al. 2001, Wharram et al. 2005), 

including rat models of regulated podocyte depletion (Kim et al. 2001, Wharram et al. 

2005).  
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Recent studies also indicate that serum proteins which pass the glomerular filter into 

the Bowmans’ space as a consequence of podocyte damage, may exhibit toxic 

effects on other podocytes of the same glomerulus. Thus, the leakage of those 

proteins into the Bowmans space is not only a result, but may also be a cause of 

podocyte damage (Ichikawa et al. 2005). All these findings have led to the 

postulation of the “podocyte depletion hypothesis” for glomerulosclerosis that has as 

its central tenet the concept that a failure of podocytes to cover the available GBM 

filtration surface area results in denuded areas of GBM, which in turn triggers 

glomerulosclerosis (Wiggins 2007). If progressive podocyte depletion is allowed to 

occur over time, then this will inevitably be associated with progressive 

glomerulosclerosis leading to progressive loss of renal function culminating in ESRD 

(Kriz 1996, Wiggins 2007). This hypothesis also considers other mechanisms than 

glomerular hypertrophy to be the initial cause of development of podocyte damage, 

including direct podocyte loss because of necrosis, apoptosis, or detachment and by 

a switch of the podocyte phenotype to one which cannot maintain normal glomerular 

structure and function (Wiggins 2007).  

 

2.3.3 Proteinuria 
Generally, serum proteins of the size of albumin and larger are efficiently excluded 

from glomerular filtration. Smaller proteins that pass the intact glomerular filter are 

reabsorbed in different parts of the renal tubular system. In humans, the common 

definition of proteinuria is a urinary protein excretion exceeding 150 mg/day (adults) 

(Bergstein 1999). In human urine samples, protein concentrations can be detected 

very easily, using so called dip stick tests as a routinely used diagnostic method, 

even though the measurement has a rather semi-quantitative character and detects 

predominantly albumin (Bergstein 1999). As mice are commonly used as animal 

models in nephrological research, the use of dip stick tests to determine albumin 

concentrations in urine samples of murine origin is probably inaccurate, if not totally 

condemned to fail (Breyer et al. 2005), as adult mice, predominantly male animals, 

physiologically display significant urine concentrations of small proteins, so-called 

major urinary proteins (MUPs) (Beynon and Hurst 2004, Finlayson et al. 1965, 

Shahan et al. 1987). MUPs are liver synthesized pheromone-binding proteins, which 

are physiologically excreted in the urine and play complex roles in chemosensory 

signalling among rodents (Cavaggioni and Mucignat-Caretta 2000).  
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The inaccuracy of the dipstick proteinuria test in mouse urine may be a consequence 

of sensitivity of the assay to these abundant major urinary proteins. In mouse urine, 

albuminuria is detected using gel-electrophoresis (Doi et al. 1990, Yamada et al. 

1994) or other specific methods, such as Enzyme- Linked Immunosorbent Assay 

(ELISA). SDS-PAGE (sodium dodecyl sulphate-polyacrylamide gel electrophoresis) 

provides an excellent diagnostic aid for early detection of nephropathy. Characteristic 

protein profiles, detected by SDS-PAGE based urine protein analyses, allow for 

separation of different origins of proteins appearing in the urine (Oser and Boesken 

1993). If urine samples collected over 24-hours are not available, urinary protein 

excretion can also be estimated semiquantitatively by measuring the ratio of urinary 

protein (ELISA) to creatinine concentrations in spot urine samples (Abitbol et al. 

1990, Doi et al. 1990). Persistent proteinuria can be the first sign of kidney disease 

and commonly results from disorders associated with increased glomerular 

permeability or tubular disorders. Traditionally, evaluation of the molecular size of 

proteins occurring in the urine is used to draw conclusions concerning their origin and 

the supposable localization of kidney damage. If postrenal serum or blood 

contamination can be excluded, large proteins prove a glomerulopathy. The 

appearance of urine proteins with molecular weights of 68 – 350 kDa, termed 

unselective glomerular proteinuria, is linked to an (additional to podocyte damage) 

affection of the glomerular basement membrane or the mesangium and is regarded 

to reflect an established kidney damage (Bergstein 1999, Oser and Boesken 1993, 

Stierle et al. 1990). Small proteins reflect tubular or interstitial injury, resulting in 

insufficient reabsorption of microproteins. Depending on the grade of alteration, an 

incomplete micro-proteinuria (40-70 kDa) or a complete micro-proteinuria (10-70 

kDa) can occur. Tubular proteinuria can be observed in patients with interstitial 

nephritis, rejected kidney transplants and others. Many nephropathies damage both, 

glomeruli and tubules and therefore mixed types of glomerular and tubular proteinuria 

can be found (Marshall and Williams 1998). According to the size selectivity of the 

different layers of the  glomerular filtration barrier, alterations selectively affecting the 

glomerular filtration barrier first result in occurrence of proteins of 68-150 kDa 

(transferrin, albumin, dimeric albumin), termed selective glomerular proteinuria 

(Bergstein 1999, Stierle et al. 1990). The first clinically detectable signature of 

damage of the glomerular filtration barrier, with or without loss of renal function owing 

to glomerulosclerosis, is the appearance of low, yet abnormal levels of albumin in the 

urine, referred to as microalbuminuria.  
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However, a causative linkage of appearance of microalbuminuria with the 

morphological equivalent of early podocyte damage, foot process effacement, is still 

subject of discussion (Shankland 2006, Shumway and Gambert 2002). Irrespective 

the reasons of its origin, the degree of proteinuria was found to correlate with the 

progression of glomerulosclerosis and tubulointerstitial fibrosis and was shown to 

predict the progression and the expected outcome (Remuzzi et al. 2002, Risdon et 

al. 1968, Wolf and Ziyadeh 2007) in diabetic and nondiabetic renal disease (Iseki et 

al. 2004, Peterson et al. 1995). Next to that predictive value of proteinuria as a renal 

risk factor, it was shown that reduction of urinary protein levels by various 

medications and a low-protein diet limits renal function decline towards ESRD in 

human and in various animal models (Gaspari et al. 1995, Ikoma et al. 1991, Lewis 

et al. 1993, Marinides et al. 1990, Maschio et al. 1996, Remuzzi et al. 1999, Remuzzi 

et al. 2002, Remuzzi et al. 2006). These findings strongly support the thesis, that 

proteinuria itself is not only a symptom, but also has a central pathogenetic 

importance for the progression of CKD. Development of glomerulosclerosis and 

tubulointerstitial lesions are seen as the consequences of disturbed glomerular 

filtration (Remuzzi 1995, Remuzzi et al. 2006, Remuzzi and Bertani 1990). Due to the 

development of podocyte damage, an accelerated plasma protein leakage across the 

GBM into Bowman’ space and the mesangium participates in the initiation 

glomerulosclerosis (Wolf and Ziyadeh 2007). Proliferation of mesangial cells and 

increased synthesis of extracellular mesangial matrix are seen to result from a 

“protein overload” of the mesangium. Urinary proteins may exhibit intrinsic renal 

toxicity and contribute to the progression of renal damage by induction 

proinflammatory and profibrogenic injury in tubular cells which can facilitate the 

development of interstitial inflammation and fibrosis, leading to tubular atrophy 

(Benigni et al. 2004, Bertani et al. 1986, Eddy 1989, Eddy and Michael 1988, 

Remuzzi 1995, Remuzzi et al. 2006, Wolf and Ziyadeh 2007). Also, recent findings 

suggest toxic effects of plasma proteins on the function of podocytes (refer to 2.3.2) 

and are currently thought to play a key role in the perpetuation and progression of 

glomerulosclerotic lesions (Abbate et al. 2002, Ichikawa et al. 2005).  

 
 
 
 
 



 - 19 -  

2.4.1 Animal models of glomerulosclerosis 
In nephrological research, great efforts have been employed to generate suitable 

animal models of nephropathy displaying patterns of glomerulosclerotic alterations 

comparable to those found in the various forms of CKD of humans. Traditionally, 

predominantly rats have been used as conventional animal models to study the 

pathogenesis of glomerulosclerotic lesions and the progression of chronic 

nephropathies. Due to its “comfortable” size, this species evolved as an ideal 

experimental model for appliance of different in vivo manipulations, like direct 

micropuncture of single glomeruli or performance of repeated kidney biopsies from 

the same animal. As performance of experimental techniques steadily improved, and 

since the introduction of transgenic technologies lead to a revolution of new 

possibilities to study the effects and implications of various genetic modifications on 

glomerular disease in models of defined genetic backgrounds, also a large number of 

relevant mouse models has been established in experimental nephrology (Breyer et 

al. 2005, Fogo 2003). Due to the respective mode of introduction of nephropathy, 

different groups of animal models of glomerulosclerosis can be distinguished: animal 

models that do spontaneously develop glomerulosclerotic alterations, conventional 

experimental models and models established via gene transfer (Anders and 

Schlondorff 2000, Wanke 1996). Spontaneous development of glomerulosclerotic 

kidney lesions has been described for various rat strains. The “obese-Zucker” rat for 

example, develops progressive glomerulosclerosis in association with obesity and 

hyperlipidaemia (Kasiske et al. 1985). Other rat models, used to study 

glomerulosclerotic alterations, develop nephropathy in the context of hypertension, 

partially inducible by administration of a high salt diet (Chen et al. 1993, Raij et al. 

1984). In the group of conventional models, nephropathy is induced by 

pharmacological induction, experimental manipulation as chirurgical intervention, or 

by combinations of different approaches, including enforcement of development of 

glomerular lesions by additional dietary interventions. Pharmacological induction of a 

biphasic nephrotic syndrome in the rat uses the nephrotoxic effects of puromycin-

aminonucleoside or adriamycin (Bertani et al. 1986, Diamond and Karnovsky 1986, 

Glasser et al. 1977, Grond et al. 1984). Application of STZ is commonly used to 

induce diabetes mellitus (DM) in rats and mice. As STZ exhibits cytotoxity not only on 

pancreatic beta-cells, multiple low-dose STZ injections have been established to 

induce diabetes.  
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However, apart from few exceptions (Nakagawa et al. 2007, Zhao et al. 2006), 

reports of renal failure resulting from diabetes in mice or rats are lacking (Breyer et 

al. 2005) and only a minority of mouse strains (e.g., KK, KK-Ay) develop evidence of 

arteriolar hyalinosis, mesangial proliferation or  glomerulosclerosis, mirroring the 

strong impact of genetic background on the susceptibility to development of DN 

(Camerini-Davalos et al. 1968, Gurley et al. 2006, Liao et al. 2003, Reddi et al. 1977, 

Reddi et al. 1990, Reddi et al. 1988, Suto et al. 1998). Various models based on 

surgical intervention have been studied and established in nephrology. One principle 

of induction of nephropathy is the removal of a “critical mass” of kidney tissue. Most 

commonly, the so-called remnant kidney model is used, in which more than 50% (75-

90%) of renal tissue is removed, using different surgical techniques (Heptinstall 1992, 

Lafferty and Brenner 1990). After an initial stage of acute renal failure, surviving 

animals proceed to develop compensational hypertrophy of the remaining kidney 

tissue, followed by the stages of chronic and finally terminal renal failure, 

characterized by proteinuria, progressive glomerulosclerosis, tubulo-interstitial and 

possibly vascular alterations (Kleinknecht et al. 1988, Koletsky and Goodsitt 1960, 

Romen 1976). Yet, the difficulties to standardize the experimental conditions (Elema 

et al. 1988, Gretz et al. 1988, Ritz et al. 1978) have led to a controversial discussion 

concerning the validity of these models (Schwartz et al. 1987). Transgenic mice 

account for a great part of the most relevant animal models used in nephrological 

research. In these models, expression of a transgene is the causative principle 

responsible for the development of nephropathy. Growth hormone-transgenic mice 

represent a well characterized model of progressive glomerulosclerosis (Doi et al. 

1990, Doi et al. 1988, Wanke 1996, Wanke et al. 1993, Wanke et al. 2001). 

Transgenic mice expressing a dominant negative glucose dependent insulinotropic 

polypeptide receptor represent a novel model of diabetic nephropathy (Herbach 

2002, Herbach et al. 2003, Schairer 2006). Studies in transgenic mouse models have 

contributed to improve the understanding of single factors that exacerbate glomerular 

disease, as well in DN (Breyer et al. 2005, Yamamoto et al. 2001). The availability of 

murine embryonic stem cells has provided the ability to disrupt the expression and 

function of specific preselected genes (Babinet 2000, Bronson and Smithies 1994, 

Mansouri 2001).  
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Today, generation of mice with specific gene knockouts and even podocyte specific 

gene knockouts, or podocyte specific transgene expression resulting in development 

glomerular alterations, represent promising approaches towards an improved 

understanding of the detailed molecular mechanisms implicated in the single aspects 

of pathogenesis of CKD (El-Aouni et al. 2006, Ichikawa et al. 2005, Moeller et al. 

2004, Pavenstadt et al. 2003, Shankland 2006, Wharram et al. 2005). 

 

2.4.2 GIPRdn-transgenic mice: a novel mouse model of diabetes mellitus 
GIP (glucose-dependent insulinotropic polypeptide, gastric inhibitory polypeptide) is a 

so-called incretin hormone, released from endocrine cells of the small intestine after 

food intake. As part of the enteroinsular axis (Creutzfeldt 1979), GIP promotes its 

endocrine effects on insulin secretion upon nutritient ingestion via binding to its 

receptor (GIPR) expressed on the surface of pancreatic beta-cells (Usdin et al. 

1993). Via different domains in its third intracellular loop, the GIP receptor is coupled 

to a heterodimeric G-protein (Mayo et al. 2003), through which predominantly 

intracellular cAMP (cyclic adenosine monophosphate) production is stimulated upon 

ligand binding (Tseng and Zhang 1998). This leads to increased intracellular Ca++ 

concentrations, that trigger the exocytosis of insulin (Habener 1993, Kieffer and 

Habener 1999, Lu et al. 1993). Next to the enhancement of  glucose-mediated insulin 

secretion,  GIP produces multiple physiological effects, including stimulation of insulin 

gene transcription in pancreatic beta-cells (Creutzfeldt and Nauck 1992, Fehmann et 

al. 1995), as well as mitogenic and antiapoptotic effects on beta-cells (Trumper et al. 

2001, Trumper et al. 2000).  

Transgenic mice expressing a dominant negative glucose dependent insulinotropic 

polypeptide receptor (GIPRdn) under the control of the rat pro-insulin gene promoter 

in pancreatic beta-cells were created by Volz in 1997 (Volz 1997). The aim was to 

generate a mutated GIP receptor that shows unchanged binding affinities to GIP but 

is unable to induce signal transduction. Elimination of induction of further intracellular 

signal transduction according to an unaltered ligand binding is a functional 

characteristic of a dominant negative receptor. Sequences of cDNA, encoding for the 

third intracellular loop of the human GIP receptor, which is essential for the 

downstream intracellular signal transduction, were mutated through insertion of a 

point mutation (position 1018-1020), resulting in an altered amino acid sequence at 

position 340 of the protein (Ala→Glu) and deletion of 24 base pairs (position 955-

978), resulting in a deletion of eight amino acids (position 319-326).  
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In cell culture experiments, using CHL (Chinese hamster lung) cells stably 

transfected with the mutated GIP receptor, binding affinities to GIP remained 

unchanged, whereas the induction of signal transduction upon binding of GIP to the 

mutated receptor was eliminated, as no increase of intracellular cAMP levels was 

detectable. It is important to point out, that GIPRdn-transgenic mice still co-express 

the endogenous GIP receptor. Recent clinical and pathomorphological 

characterisations of GIPRdn-transgenic mice by Herbach et al. revealed the 

phenotypic consequences of the expression of the mutated GIP receptor (Herbach 

2002, Herbach et al. 2005, Herbach et al. 2003). GIPRdn-transgenic mice develop an 

absolute insulin deficiency, resulting in a severe diabetic phenotype, characterized by 

hyperglycaemia and glucosuria, starting as early as from day 14 to 21 on, as well as 

hypoinsulinaemia, hyperphagia, polydipsia and polyuria. After onset of diabetes, both 

fasting and postprandial serum glucose levels were found to be significantly higher 

and insulin values significantly decreased in GIPRdn-transgenic animals compared to 

their non-transgenic littermate controls. Quantitative stereological studies of 

pancreatic islets and their endocrine cell types revealed a significant reduction of the 

total islet and total beta-cell volume of transgenic mice, as well as a disturbed islet 

neogenesis. The respective average life spans of GIPRdn-transgenic mice were 

drastically reduced compared to non transgenic animals. Additionally to these 

findings, GIPRdn-transgenic mice also develop kidney lesions in succession of 

diabetes mellitus, characterized by renal and glomerular hypertrophy and onset of 

albuminuria (Herbach 2002, Herbach et al. 2003, Schairer 2006). These renal 

alterations are marked by typical glomerular lesions like mesangial expansion, 

attended by accumulation of mesangial matrix, hyalinosis and, indicating podocyte 

damage, formation of synechiae between the glomerular tuft and the capsule of 

Bowman. In advanced stages, the glomerular alterations were accompanied by focal 

atrophy of tubuli, focal interstitial fibrosis and signs of proteinuria. Development, 

dimensions and histological patterns of glomerular/kidney alterations detected in 

GIPRdn-transgenic mice show similarities to early diabetes associated kidney lesions 

of humans, thus making GIPRdn-transgenic mice an promising animal model of early 

diabetic nephropathy (Herbach 2002, Herbach et al. 2003, Schairer 2006). 
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2.4.3 Growth hormone (GH)-transgenic mice 
Mice expressing the human growth hormone (hGH) gene were among the first of 

transgenic animals (Palmiter et al. 1982). Since then, several strains of transgenic 

mice overexpressing different heterologous GH genes under the transcriptional 

control of various regulatory elements have been developed (Brem et al. 1989). The 

PEPCKbGH-transgenic mice investigated in the present study, overexpress the 

bovine growth hormone (bGH) under the transcriptional control of the rat 

phosphoenolpyruvate-carboxykinase (PEPCK) gene promoter in the liver and 

kidneys (McGrane et al. 1988). Using in situ hybridisation for analysis of the cellular 

distribution of transgene expression in the kidneys, bGH mRNA expression could be 

detected in tubular epithelia of the renal cortex, but not in glomeruli (Ehrlein 1993). In 

non-transgenic adult mice, secretion of endogenous growth hormone from the 

pituitary gland follows a gender specific, pulsatile pattern of ultradian rhythm with 

average plasma concentrations ranging from 10 ng/ml in male to 16 ng/ml in female 

animals (MacLeod et al. 1991). In PEPCKbGH-transgenic mice however, both 

genders display permanently high serum levels of bovine GH, with average 

concentrations above 1,200 ng/ml (Wolf et al. 1993). The phenotypical, clinical and 

pathomorphological changes associated with the expression of heterologous GH-

transgenes in GH-transgenic mice have been studied intensively. The most obvious 

phenotypic effect is the development of a markedly stimulated overall body growth, 

starting from three weeks of age onwards and increased body weights, which are 

almost doubled in adult animals versus wild-type controls (Wanke et al. 1992). Apart 

from visceromegaly and disproportionate skeletal gigantism, GH-transgenic mice 

exhibit a wide variety of pathomorphological alterations of organs, including 

characteristic sequences of liver changes (Wanke et al. 1996) and sex dependent 

alterations of skin growth (Wanke et al. 1999). Furthermore, GH-transgenic mice 

develop a spectrum of typical kidney lesions, which reproducibly occur in an age 

dependent manner and finally lead to end stage kidney disease with terminal renal 

failure (Wolf and Wanke 1997), which is the primary cause for the shortened life span 

of these animals (Wolf et al. 1993). Detailed studies revealed a characteristic 

sequence of kidney alterations in GH-transgenic mice, concordant with the 

postulated pathogenetic principle of evolution of glomerulosclerotic lesions in these 

animals resulting from podocyte damage (Wanke 1996, Wanke et al. 2001).  
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The earliest detectable alteration of kidney morphology in GH-transgenic mice is the 

hypertrophy of glomeruli, assessed by quantitative stereological investigations (Doi et 

al. 1990, Wanke et al. 1992). Glomerular hypertrophy in these animals is 

overproportional both in relation to both kidney and body weight (Wanke et al. 1991) 

and progresses with the age of animals. Progression of glomerular hypertrophy in 

GH-transgenic mice is associated with the development of glomerulosclerotic lesions, 

including mesangial extracellular matrix expansion due to an increased extracellular 

matrix synthesis and a decreased extracellular matrix degradation (Jacot et al. 1996), 

as well as proliferation of both endothelial and mesangial glomerular cells, whereas 

the number of podocytes per glomerulus remains unchanged. In the early stages, 

podocytes display typical lesions as hypertrophy and foot process effacement 

(Wanke et al. 2001), which are associated with onset of albuminuria. As the process 

of glomerular hypertrophy progresses, podocytes display severe maladaptive lesions, 

including detachment of podocytes from the glomerular basement membrane. The 

resultant denudation of the glomerular basement membrane is associated with 

severe proteinuria, glomerular hyalinosis, formation of cellular synechiae and 

collapse of glomerular capillaries, subsequently leading to glomerular obsolescence 

with consecutive atrophy of the adjacent tubule and development of interstitial fibrosis 

(Wanke et al. 2001). Atrophy of nephrons, interstitial fibrosis and tubulocystic 

alterations are the characteristic histological findings in the terminal stages of renal 

lesions, while remnant glomeruli demonstrate diffuse-segmental or focal-global 

sclerosis and/or hyalinosis (Brem et al. 1989, Wanke et al. 1991). Therefore, GH-

transgenic mice represent an established, valuable and well characterized model for 

studying the pathogenesis of glomerulosclerosis and the mechanisms involved in the 

progression of chronic renal failure (Wanke and Wolf 1996). Furthermore, although 

GH-transgenic mice are not diabetic, the glomerular lesions, developing in response 

to high levels of circulating GH in these mice, mimic those observed in human 

diabetes mellitus (Doi et al. 1988). 
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2.5.1 Transcript profiling analysis in nephrology 
As the quantity of available efficient therapeutic agents for treatment of CKD is still 

very limited, the understanding of the molecular mechanisms involved in the 

pathogenesis and progression of glomerular lesions in CKD is seen as a prerequisite 

for identification of potential new therapeutic targets, molecular diagnostic markers 

and development of individually adjusted therapies (Schmid et al. 2006, Yasuda et al. 

2006). Therefore, additional functional insights into the individual disease processes, 

as well as into common aspects of  the pathophysiology of CKD on the glomerular 

level are required, regarding the revelation of both common and disease specific 

pathogenetic key mechanisms and disease pathways (Yasuda et al. 2006). Due to 

the various possible and partially yet unknown mechanisms of interactions between 

different glomerular cells, as well as the impact of other local and systemic factors 

involved in the pathogenesis of glomerular lesions in CKD, experimental data derived 

from cell culture experiments is not fully capable to reflect the in vivo situation. 

Especially cultured podocytes display extensive differences in phenotype and 

function compared to podocytes under the glomerular microenvironment in the 

kidney (Pavenstadt et al. 2003). Therefore, only renal tissue can provide critical 

information on the disease processes, which are not available by non-tissue-based 

approaches. In human medicine, currently histological examination of renal biopsies 

provides the key information for the diagnosis and effective therapeutic management 

of progressive renal disease. However, the present histology-based analysis yields 

mainly descriptive diagnostic categories and gives limited prognostic information 

(Madaio 1990). The development of molecular biological tools for performance of 

gene expression analyses has opened new windows to evaluate the pathophysiology 

of CKD in human patients or in animal models of nephropathy, even if only limited 

amounts of sample materials, as kidney biopsies or samples of isolated glomeruli are 

available. Several techniques have been developed, including nonamplifying 

methods of mRNA expression analysis as Northern blotting and in-situ hybridization 

(ISH), as well as methods that include amplification of mRNA transcripts based on 

polymerase chain reaction (PCR) and enable for investigation of minimal amounts of 

sample material. Finally, introduction of novel mRNA expression-profiling 

technologies, such as microarray analyses have offered the possibility to 

simultaneously profile the whole transcriptome of a species.  
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Combination of different methods of transcript profiling analyses and confirmation of 

results by histology, immunohistochemistry as well as additional cell culture and 

animal experimental approaches then provide the opportunity to test and confirm the 

biological significance of obtained data. Northern blotting has been the standard in 

quantitative gene expression analysis. As this technique requires a considerable 

amount of RNA and can analyze only a single transcript per hybridization, it is 

suitable for in vivo or in vitro experiments, where larger amounts of sample material 

are available (Yasuda et al. 2006). ISH is an effective technique for localizing specific 

mRNA expression in cells and tissues, but a time-consuming process and it has an 

only limited ability to quantitate expression levels or compare multiple transcripts. 

However, this technology has successfully been applied on biopsy materials to 

demonstrate the significant role of for example inflammatory cytokines, growth 

factors, extracellular matrix metabolism and specific transcription factors in diabetic 

nephropathy (Suzuki et al. 1997, Suzuki et al. 1995, Toyoda et al. 2004). Compared 

to non-amplifying methods of mRNA expression analysis, PCR is a powerful tool for 

detecting the mRNA expression of multiple genes in a small amount of sample RNA. 
Quantitative real-time PCR enables the exact quantification of a target mRNA in a 

given sample (Gibson et al. 1996, Heid et al. 1996). The study of transcriptomics, 

also called genome-wide expression profiling, examines the expression levels of all 

mRNAs in a given cell population and is therefore a global way of looking at gene 

expression patterns, used to improve the understanding of genes and pathways 

involved in biological processes. The transcriptome itself is defined as the set of all 

messenger RNA (mRNA) transcripts, present in one, or a population of cells at any 

one time. It is therefore reflecting the genes that are being actively expressed in a 

given organism, tissue, or in a particular cell type at any given time. Conversely to 

the genome, which is, at least to its most extent, roughly fixed for a given cell line, the 

transcriptome varies considerably under different circumstances due to different 

patterns of gene expression and is therefore extremely dynamic. Today, the human, 

as well as the genomes of the species most commonly used in animal experimental 

studies are fully sequenced. Together with recent advances in genome-wide profiling 

techniques, this allows for a comprehensive analysis of renal disease-associated 

transcriptional programs in both human disease, as well as in animal experimental 

models (Alcorta et al. 2000, Kretzler et al. 2002).  
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Evaluation of gene expression patterns in renal specimens, with oligonucleotide DNA 

array and quantitative real-time reverse transcription (RT) PCR techniques provides 

novel insights into both physiological and pathogenetic mechanisms of gene 

expression regulation and serves as a starting point for novel molecular diagnostic 

tools in nephrology (Yasuda et al. 2006).  

 

2.5.2 Real-time polymerase chain reaction (real-time PCR) 
Real-time quantitative polymerase chain reaction is a technique, used to 

simultaneously quantify and amplify a specific sequence (target) of a given DNA 

molecule. For the purpose of evaluation of expression levels of mRNA transcripts by 

real-time PCR, total RNA is isolated from the sample material, reverse transcribed 

into cDNA and then investigated in the real-time PCR reaction. The real-time PCR 

procedure follows the general pattern of the polymerase chain reaction, but the DNA 

is quantified during each round of amplification. This quantification can be performed 

by measurement of all double stranded DNA (Morrison et al. 1998), or as indirect 

quantization of only the target sequence (Arya et al. 2005). Using fluorescent reporter 

probes is considered to be the most accurate and most reliable of the various 

methods that can be applied for quantification of PCR products (Ding and Cantor 

2004). The so-called TaqMan® PCR method employs a probe technology that 

exploits the 5'-3' nuclease activity of the Taq (thermus aquaticus) DNA Polymerase 

(Holland et al. 1991) to allow direct detection of PCR product by the release of a 

fluorescent reporter during the PCR (Arya et al. 2005). The probe consists of an 

oligonucleotide with a 5'–reporter dye and a 3'–quencher dye covalently linked to the 

probe. When the probe is intact, the proximity of the reporter dye to the quencher dye 

results in suppression of the reporter fluorescence, primarily by Förster-type energy 

transfer through space (Cardullo et al. 1988, Förster 1948, Lakowicz 1983). During 

PCR, if the target of interest is present, the probe specifically anneals between the 

forward and reverse primer sites. The 5'–3' nucleolytic activity of the Taq DNA 

Polymerase cleaves the hybridized probe between the reporter and the quencher, 

whereas free probe is not digested. The probe is then displaced from the target, and 

polymerization of the strand continues. This process occurs in every cycle and does 

not interfere with the exponential accumulation of product. The separation of the 

reporter dye from the quencher dye is a direct consequence of specific target 

amplification during PCR and results in an increase of fluorescence of the reporter. 

This increase in fluorescence is measured.  
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Quantification of the target sequence can then either be performed as an absolute 

quantification, using standard dilutions of known concentrations of plasmid cDNA of 

the target sequence, or as relative quantification by relating the signal intensity 

measured in a given sample to that of an internal or external reference (Cohen and 

Kretzler 2003). For that purpose, expression levels of the molecule of interest (target) 

are related to the amount of mRNA analyzed, using reference RNAs (so-called 

housekeeping transcripts) with assumed stable, comparable and indifferent 

expression levels in the different samples to be compared (Cohen and Kretzler 

2003). Frequently used housekeepers are for example 18S rRNA, beta-actin, 

Cyclophyllin or Gapdh (glyceraldehyde-3-phosphate dehydrogenase). The choice of 

an internal reference is critical, as regulation of these “housekeepers” will confound 

the expression ratio with the mRNA of interest. Therefore, if the reference gene 

expression in a particular sample has not previously been characterized, the 

evaluation of several housekeepers in parallel will reduce the danger of confounding 

studies by reference gene regulation (Cohen and Kretzler 2003). Because real-time 

PCR provides an accurate, reproducible and sensitive determination of mRNA 

expression levels, it has become the standard among all PCR-based gene 

expression analysis techniques. Recent advances in RNA preservation techniques 

have facilitated the implementation of expression studies using small amounts of 

kidney tissue processed for generation of sample materials, such as isolated 

glomeruli. Apart from detection of differences in abundance of special transcripts in 

different samples, real-time PCR also provides an exceptional good method for 

performance of confirmation studies on results obtained by microarray experiments 

(Schmid et al. 2004). Additionally, real-time PCR can be performed to identify 

infecting pathogens (Schmid et al. 2005) and profile the cellular composition of the 

specimen, as it contains multiple intrinsic and immigrating cell types with different 

expression signatures (Cohen et al. 2005). Furthermore, application of real-time PCR 

allows for performance of so-called “in-silico microdissection” (Schmid et al. 2003). 

Evaluation of gene expression regulation of a specific intrinsic renal cell type is 

confounded by simultaneously detected expression signals derived from other cell 

types in the sample. Even after microdissection of the glomerular compartment, 

different cell types, including mesangial cells, podocytes and glomerular endothelial 

cells can contribute to the expression signal.  
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Therefore, the use of a housekeeping reference gene that is exclusively expressed in 

a distinct glomerular cell type and not differentially expressed under circumstances of 

nephropathy, as for example synaptopodin as a podocyte-specific transcript, allows 

for evaluation of other podocyte specific transcripts that do undergo differential 

expression in renal disease (Schmid et al. 2003). A remaining limitation of real-time 

RT-PCR studies is the still limited number of mRNAs to be assayed in parallel, even 

if the latest technologies, so called low density arrays or microfluidic cards, allow for 

simultaneous performance of up to 384  parallel  real-time PCR reactions with only 

minimal amounts of sample cDNA (Goulter et al. 2006, Steg et al. 2006). 

 

2.5.3 Microarray analysis 
High-throughput techniques based on DNA microarray technology can profile the 

whole transcriptome of a tissue and therefore provide a practical and economical tool 

for studying the gene expression of a multitude of genes in parallel (Schena et al. 

1995). The underlying principle of DNA microarray technology is based on detection 

of hybridisation of labeled cDNAs (targets, which are obtained through extraction of 

mRNAs of a respective sample, followed by reverse transcription and optional 

amplification steps) to DNA probes of known sequence and position (array) on a chip 

surface, allowing for determination of the identities and abundances of the 

complementary target sequences. In the literature there exist at least two confusing 

nomenclature systems for referring to hybridization partners. According to the 

nomenclature recommended by B. Phimister of Nature Genetics, a "probe" is the 

tethered nucleic acid with known sequence, whereas a "target" is the free nucleic 

acid sample whose identity and abundance is being detected (Phimister 1999).  

Performance of transcript profiling analysis, using oligonucleotide DNA microarray 

technology, allows for detection of genome-wide differences in the expression level 

of genes, meaning both identification and detection of differences in the abundance 

of nearly all mRNA transcripts present in the cells of these samples at a given point 

of time. An oligonucleotide cDNA microarray is an array of oligonucleotide (20~80-

mer oligos) probes, chemically synthesized at specific locations (in situ = on-chip) on 

a coated quartz surface.   
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An alternative method of fabrication of gene arrays by high density in-situ synthesis 

of oligonucleotides by photolithography and combinatorial chemistry on wavers 

provides the basis for commercial available microarray technology and was 

developed by Steve Fodor and colleges  at Affymetrix® Inc., USA (Pease et al. 1994), 

which sells its products under the GeneChip® trademark. Affymetrix’s GeneChip® 

methodology is limited to hybridization with single samples, and depends on the 

inclusion of quality control probe sets to allow intra-array data normalization and 

inter-array data comparability by complex statistical models (Bottinger et al. 2003). 

Affymetrix’s GeneChips® use so-called probe sets, containing multiple short 

oligonucleotide DNA sequences (probes) of each 25 bases, derived from different 

regions of a single target transcript. The precise location where each probe is 

synthesized is called a feature. One feature is composed of a large number of 

identical oligonucleotide probes. In modern Affymetrix’s GeneChips®, the feature size 

is 11 µm and up to 1.6 millions of features are contained on one array. A probe set 

consists of eleven pairs of oligonucleotide probes (=22 different oligonucleotide 

probes). The individual probes of a probe set are located close to the 3' end of the 

respective mRNA sequence. Each pair consists of a perfect match (PM) 

oligonucleotide (complementary to the target sequence of interest), that provides 

measurable fluorescence when target sequences binds to it and a mismatch (MM) 

oligonucleotide, identical to its PM counterpart except for one mismatch base 

inserted at its central position. The paired mismatch probe serves as an internal 

control for its perfect match partner. False or contaminating fluorescence, for 

example derived from non-specific cross hybridizations, can efficiently be quantified 

and subtracted from a gene expression measurement. The difference in detected 

hybridization signals between the PM and MM partners, as well as their intensity 

ratios serve as indicators of specific target abundance, allowing for consistent 

discrimination between signal and background noise and for generation of accurate 

data sets (Affymetrix Manual). The availability of sequence descriptions and 

annotations of all probes present on the Affymetrix arrays also allows for approaches 

of analyses of microarray raw data different from the original “probe-set” approach by 

Affymetrix© (e.g. ChipInspector 1.2, Genomatix). Sequences of all probes are blasted 

against the entire mouse genome, thereby using the latest sequences information 

available to identify the transcripts, represented through the respective probes on the 

array. Following image acquisition and quality controls of scanned chips, generated 

microarray raw data are normalized to allow for inter- and intra-array comparability. 
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For his purpose, Affymetrix’s GeneChips® include a set of maintenance genes 

(normalization controls) to facilitate the normalization and scaling of array 

experiments prior to performing data comparisons. Expression levels of individual 

probe sets detected in the respective samples of an experiment are then compared. 

“Differentially expressed transcripts or probe sets” are then functionally annotated 

and further bioinformatical analyses are performed for revelation of their biological 

function, using software tools for pathway mapping analysis and generation of 

functional networks. To avoid misleading and confusing nomenclatures, it is 

important to point out clearly, that the described approaches of analysis of microarray 

data are designed for detection and identification of “differentially expressed 

transcripts”, not “genes”. Under optimal conditions, the cDNA samples hybridized to 

the probes on the surface of the respective arrays, would be regarded to represent 

the entire population of all mature mRNA-transcripts, present in all cells of the 

original sample material (e.g. glomerulus isolates) at the respective time point of 

investigation. Thus, the performance of a microarray experiment is basically capable 

of providing information concerning both identity and abundance (the frequency of 

occurrence) of each single transcript, detectable in the respective sample material. 

The term “differentially expressed or regulated transcript” is used for denomination of 

a single mRNA species whose abundance was experimentally found to be 

significantly altered in samples of one investigated group, relative to its abundance 

detected in samples of another group in the experiment, but does not automatically 

also refer to any regulatory processes of differential gene expression. The terms 

“differentially expressed transcript” and “differentially expressed gene” should 

actually not be used synonymously, since transcription of one single gene might 

result in the presence of more than a single species of mRNA-transcripts (e. g. by 

different post-transcriptional modifications of the primary transcript). However, a 

synonymous denomination of an identified transcript with a detected differential 

abundance in investigated samples in a given experiment and its corresponding gene 

is commonly performed.  

In nephrology, early studies using DNA array technology were able to describe the 

basal expression profiles of whole renal tissues in normal human kidney (Yano et al. 

2000) and in an animal model of diabetic nephropathy (Wada et al. 2001). However, 

the number of genes on the membrane-based high-density cDNA arrays was still 

very limited and critical questions concerning probe design and array quantification 

remained.  
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Later experiments benefited from matured technology and comprehensive gene 

expression analyses could be performed in various acute renal failure animal models, 

such as ischemia-reperfusion, unilateral ureter obstruction, and adriamycin-induced 

nephropathy, using whole renal tissue (Higgins et al. 2003, Kieran et al. 2003, Sadlier 

et al. 2004, Yoshida et al. 2002). Interestingly, a comparison of the gene expression 

signatures of these murine renal failure models was able to identify a shared 

transcriptome of 49 differentially expressed genes. Three renal disease-associated 

genes found in mice were also differentially expressed in human kidney biopsies, and 

correlated with renal disease stage and/or disease progression. These cross-species 

expression signatures are consistent with an evolutionarily conserved response of 

renal tissue, irrespective of the initial renal insult (Yasuda et al. 2005). In 2004, 

Susztak and colleges (Susztak et al. 2004) performed microarray analysis on 

samples of whole kidney tissues from different mouse models of diabetic 

nephropathy with comparable levels of hyperglycemia and albuminuria but different  

degrees of glomerular mesangial matrix expansion, which is considered to be a 

valuable indicator for the development of end stage renal disease in humans 

(Caramori et al. 2000). Comparison of the renal expression profiles of these different 

models allowed for the identification of a couple of genes whose differential 

expression was associated with specific steps of diabetic glomerulopathy, regardless 

of the investigated mouse model, the type of diabetes, its experimental induction as 

well as the presence or absence of obesity. In human nephrology, the use of 

oligonucleotide microarray based approaches on total kidney tissue has led to 

identification of novel diagnostic and prognostic parameters in patients with diverse 

renal diseases or renal transplants (Akalin et al. 2001, Sarwal et al. 2003, Takahashi 

et al. 2001). Expression array studies of renal disease can also facilitate the 

prediction of the disease course over time by definition of disease specific marker 

profiles that allow for the segregation of patients with a rather progressive or a stable 

disease course (Henger et al. 2004). The feasibility of such gene expression-based 

disease categorization in human renal biopsy samples was supported by clinical 

follow-up investigations, which revealed a stringent correlation between the 

respective expression fingerprint and the progression of renal disease. Besides 

molecular diagnostics or identification of candidates of potential therapeutic targets, 

gene expression profiling can also identify activated molecular pathways in the 

development of chronic renal diseases.  
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To gain insight into the molecular programs activated in diabetic nephropathy, for 

example, genome-wide gene expression profiling was performed in a disease stage-

specific manner, using tubulo-interstitial compartments of human renal biopsies. 

Pathway mapping of the genes activated in DN was consistent with nuclear factor 

(NF)-κβ pathway activation, and allowed the identification of the promoter models 

enriched in DN-regulated genes (Schmid et al. 2006). Similar approaches also led to 

the identification of yet unknown members of the glomerular slit membrane (Cohen et 

al. 2006). In summary, the present cDNA array technology provides a powerful tool to 

analyze expression profiles from minimal amounts of renal tissue. This is seen as a 

prerequisite to identify the molecular processes involved in the pathogenesis of 

progressive chronic kidney diseases of various origins (Yasuda et al. 2006). 
However, in comparison to experiments on the respective animal models, 

comprehensive gene expression analyses in human native renal biopsy materials are 

still limited. These experiments principally suffer from the high degree of 

heterogeneity within the samples in the investigated cohorts of human patients and 

the restricted availability of sufficient amounts of sample materials for performance of 

different experiments on the same sample materials.  

 

2.6 Methods of glomerulus isolation 

As the early stages in development of chronic renal diseases characterized by 

glomerulosclerotic lesions begin at the renal glomerulus, a predominant interest of 

nephrological research focuses on the revelation of the molecular mechanisms 

implicated in the development of glomerular damage. As mentioned above, 

performance of transcript profiling analyses is applied to reveal such molecular 

mechanisms associated with, or causative for the development of glomerulosclerotic 

lesions on the transcriptional level. As glomeruli constitute only < 5% of the total renal 

cortex (Artacho-Perula et al. 1993, Nyengaard and Bendtsen 1992, Wanke 1996), 
the use of homogenates of total kidney tissue results in a low representation of 

glomerular cells in the sample material. Due to the high sensitivity of the analytical 

methods applied for performance of transcript profiling analyses, the interpretation of 

data obtained from investigation of total or cortical kidney tissue always inherits the 

danger of nonobservance of signals actually derived from glomerular cells, as those 

signals become overlaid by stronger signals derived from other kidney cell types.   
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Furthermore, it is nearly impossible to address the origin of a detected signal to a 

distinct single type of cells, except for single transcripts with known cell type specific 

patterns of expression.  Resulting from the inability of glomerular cells to retain their 

differentiated features in cell culture, investigations of cultured glomerular cells are 

not capable to reflect the complexity of circumstances of developing glomerular 

damage in vivo (Pavenstadt et al. 2003). In order to overcome these problems, 

various different methods for the isolation of glomeruli from kidney tissue of different 

species were developed, allowing for performance of investigations on the glomerular 

level. Primarily three different methodological principles of glomerulus isolation are 

distinguished: Microdissection techniques (Peten et al. 1992), differential sieving 

techniques (Krakower and Greenspon 1951, Misra 1972, Spiro 1967, Striker and 

Striker 1985), including those combined with differential density gradient 

centrifugation (Norgaard 1976) and magnetic isolation of glomeruli from kidneys 

perfused with magnetic particles (Baelde et al. 1990, Baelde et al. 1994, Gauthier 

and Mannik 1988, Takemoto et al. 2002). Dependent on the investigated species, 

type and extend of scheduled analyses and the availability of kidney tissue, these 

methods differ with respect to the expectable yield and purity of glomerulus isolates 

and thus their suitability for performance of gene expression analyses. The 

availability of samples of human kidney tissue is generally limited. Therefore, 

appliance of glomerulus isolation methods on human kidney tissue is usually 

restricted to needle biopsies, using microdissection techniques. Using needle 

holders, glomeruli are manually microdissected directly from the biopsy under a 

stereo microscope, stored in RNA stabilization reagent and then processed for real-

time RT-PCR or microarray analysis (Cohen and Kretzler 2002). The method is 

capable to provide maximal yields of isolated glomeruli from a limited given amount 

of kidney tissue and has also successfully been applied for generation of samples of 

isolated mouse glomeruli for microarray analyses (Zheng et al. 2004). Amounts of 

RNA, sufficient for performance of gene expression analysis can even be gathered 

from glomerular tissue isolated from formaldehyde-fixed archival kidney tissue, 

paraffin-embedded tissue or cryosections, by using laser microbeam microdissection 

techniques (Cohen et al. 2002, Fries et al. 2003): under a microscope, glomeruli are 

individually laser-beam microdissected and subsequently collected from the section, 

thereby avoiding contamination of glomerular sample material by parietal epithelial 

cells.  
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Laser-capture microdissection combined with linear amplification can detect 

transcription profiles down to the single cell level, but also carries the significant risk 

of (systematic) sampling errors (Kamme et al. 2003). A major limitation of most 

microdissection techniques for glomerulus isolation is the relatively low number of 

glomeruli and the corresponding amounts of mRNA that can be harvested, limiting 

the potential extent of subsequent analyses performed on these samples. Graded 

differential sieving is the most commonly applied technique for glomerulus isolation, if 

larger amounts of kidney tissues are available. After an optional Collagenase 

digestion, the cortical kidney tissue is pressed through a series of screens of 

decreasing pore sizes under addition of buffer. Thereby glomeruli are separated from 

the surrounding adjectant interstitial and tubular tissues and finally collected from the 

sieve with the pore size slightly smaller than their average diameter. Various 

modifications of the sieving principle for glomerulus isolation from different species 

for performance of diverse investigational approaches, including performance of 

cDNA microarray analyses have been described (Baelde et al. 2004, Higgins et al. 

2004, Makino et al. 2006, Wehbi et al. 2001). However, different from other species it 

is difficult to generate glomerulus isolates of high purities from murine kidneys by 

using simple sieving techniques, as mouse glomeruli and tubules display similar 

diameters. As mice are widely used as animal models in nephrological research, 

performance of different analyses on isolated mouse glomeruli of one animal, or the 

applicability of investigational methods demanding for large amounts of sample 

materials requires suitable methods for the isolation of intact glomeruli within 

acceptable time and under defined temperature conditions. Performance of magnetic 

isolation of murine glomeruli from kidneys perfused with iron oxide, yielded high 

numbers of isolated glomeruli (Gauthier and Mannik 1988). Yet, the efficiency of this 

method, concerning the purity of glomerulus isolates was rather limited, although 

high quality  RNA could be isolated from the generated samples (Baelde et al. 1994). 

In 2002, Takemoto et al. described a method for large scale isolation of murine 

glomeruli from kidneys perfused with spherical superparamagnetic beads. Mice are 

perfused with a suspension of magnetic beads (nominal diameter 4.5 µm) through 

the heart. These magnetic beads embolize the glomerular capillaries. After 

Collagenase treatment of the kidney tissue, glomeruli containing beads are isolated 

in a strong magnetic field.  
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The method allows for fast isolation of virtually all glomeruli present in a mouse 

kidney (approx. 12,000 per kidney) (Bonvalet et al. 1977) and provides glomerulus 

isolates of high purities (97%), suitable for performance of transcript profiling and 

gene expression analyses (Kiritoshi et al. 2003, Takemoto et al. 2006), as well as for 

performance of 2D DIGE (two dimensional difference in gel electrophoresis) 

proteomic analyses, where comparably large amounts of protein are required (Barati 

et al. 2007, Block et al. 2006, Sitek et al. 2006). The principle of the method is 

illustrated in figure 2.2. Magnetic isolation of kidney glomeruli, using magnetic beads 

is currently the only available method providing glomerulus isolates from murine 

kidney tissue that meets the requirements of a wide range of different investigational 

approaches. The method itself can be modified, due to the demands of the 

respective analyses to be performed (Cui et al. 2005), and be it just to remove 

glomeruli from the remaining kidney tissue (Rouschop et al. 2006). Modifications of 

the original protocol were also applied in the present study, as the experimental 

design of the two studies performed in the framework of the superordinated project 

(refer to chapter 1) scheduled the performance of each transcript profiling analyses 

and proteomic analyses on samples of isolated glomeruli derived from identical 

animals. For customization of these demands, extended pilot experiments have been 

performed (refer to chapter 4.2.1) and described previously (Blutke et al. 2005).  
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Figure 2.2: Principle of magnetic isolation of glomeruli. 
In A, a scheme of a spherical superparamagnetic bead (nominal diameter 4.5 µm) is shown. B: Mice 

are perfused with 40 ml of a suspension of magnetic beads through the left heart ventricle. C: In the 

kidneys, the perfused magnetic beads embolize the glomerular capillaries. D: After perfusion, the 

kidneys are removed, decapsulated and minced into ~1mm³ pieces. E: The tissue is then digested 

with Collagenase A (1mg/ml) at 37°C for 30 minutes. F: Under addition of buffer, the digested tissue is 

pressed through a 100 µm cell strainer, using a flattened pestle. G: Glomeruli containing magnetic 

beads are isolated from the cell suspension in the field of a strong permanent magnet. 
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3. Research design and methods 
 
3.1 Experimental design  
To address the question, if common characteristic patterns of morphological and 

functional glomerular alterations, displayed by both GIPRdn- or bGH-transgenic mice 

(refer to chapters 2.4.2 and 2.4.3), would also find a reflection in detectable common 

glomerular gene expression profiles, differential transcript profiling analyses were 

performed on samples of isolated kidney glomeruli, generated from male GIPRdn- or 

bGH-transgenic animals, as well as from their corresponding non-transgenic 

littermate controls (figure 3.1). The investigated animal models are bred on different 

genetic backgrounds (chapter 3.2.1) and in both models different mechanisms are 

responsible for the development of renal alterations (diabetes mellitus vs. 

overexpression of the GH-transgene). In the context of the present study, the term 

“group” refers to either GIPRdn-, or bGH-transgenic (tg) animals and their 

corresponding non-transgenic wild-type littermate controls (wt), respectively the 

sample materials generated from these animals. Sample materials were generated 

from pairs of animals of the respective groups and also analyzed pairwise. As a 

matter of principle, a pair of animals consisted of a transgenic animal and an 

associated non-transgenic wild-type littermate control (tg/wt-pairs). If the numbers of 

male transgenic and non-transgenic animals in a respective litter allowed for more 

than a single possible combination, assignment of transgenic animals and associated 

littermate controls to tg/wt-pairs was performed by lot. For generation of sample 

materials, both animals of a respective tg/wt-pair were sacrificed at the same day of 

age. Sample materials of two cohorts of animals were generated: samples of isolated 

glomeruli of animals of the “Array Cohort” were investigated by performance of 

microarray experiments. For performance of real-time PCR confirmation experiments, 

samples of an additional second independent cohort, termed “Independent Control 

Cohort” were generated. Investigations were performed in two defined early stages of 

comparable glomerular alteration, displayed by transgenic animals of both models: 

First, the stage of glomerular hypertrophy (stage I) and second, the stage of 

glomerular hypertrophy with onset of micro-albuminuria (stage II). Stringent criteria 

for assignment of animals to either the first, or the second stage of investigation were 

defined in order to ensure the comparability of the respective stages in both groups, 

which was considered to be a crucial prerequisite for meaningful interpretation of 

analysis results. Assignment to the stages of investigation was performed in 
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dependency on the degree of glomerular alteration that was detected in the 

transgenic animal in comparison to its associated wild-type littermate control. In pairs 

of animals assigned to stage I and II of the Array Cohort, the transgenic mouse was 

required to display an increase of the mean glomerular volume of at least 40%, 

compared to its associated control animal. For that purpose, the mean glomerular 

volume was determined by methods of quantitative stereology, using histological 

samples of cortical kidney tissue. Since this approach implicated the necessity of 

accession of kidney tissue of both partners of a respective pair of animals 

distinguished for assignment to stage I, sacrifice of both mice and glomerulus 

isolation from their kidneys had to be performed prior to determination of the mean 

glomerular volumes. In addition to the criterion of glomerular hypertrophy for 

investigation in stage I, it was required, that neither the transgenic mouse, nor the 

associated wild-type control displayed albuminuria, verified by recurrent performance 

of sodium dodecyl sulphate polyacrylamide gel electrophoresis-based urine protein 

analysis (figure 4.7). In pairs of animals assigned to stage II, the transgenic mouse 

was required to display glomerular hypertrophy, as well as the onset of persistent 

albuminuria, whereas the corresponding wild-type mouse was not allowed to show 

any positive result of albuminuria (figure 4.7). Only sample materials derived from 

animals that did actually meet the criteria for investigation in the respective stages of 

glomerular alteration were used for further analyses. After performance of glomerulus 

isolation from the respective pairs of animals, total RNA was extracted from the 

glomerulus isolates and routinely processed for microarray analysis, using standard 

methods. Array data were analyzed to identify transcripts of differentially expressed 

genes (tg vs. wt) in the respective groups and stages of investigation. Then 

commonly differentially expressed genes (intersections of congeneric differentially 

expressed genes in both groups in comparable stages) were identified, representing 

common patterns of glomerular gene expression profiles in comparable early stages 

of glomerular alteration, presumably independent of the different expressed 

transgenes or genetic backgrounds of both different animal models. For revelation of 

their biological function in the context of molecular pathogenesis of glomerular 

hypertrophy and albuminuria, bioinformatical analyses were performed. Results from 

microarray experiments were confirmed, using quantitative real-time PCR.  

Additionally, sample materials were generated for performance of 

immunohistochemistry and in situ hybridisation in further studies to demonstrate the 

cellular distribution of selected proteins and/or transcripts in the glomerulus.  
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Figure 3.1 (page 40): Experimental design. Numbers given in brackets refer to the respective sub-

chapters in „Research design and methods“. Transcript profiling analyses were performed, using 

sample materials of isolated kidney glomeruli from male heterozygous GIPRdn- and bGH-transgenic 

(tg) mice and their respective male non-transgenic wild-type littermate controls (wt) in comparable 

stages of renal alteration (stage I and stage II). Sample materials generated from 5 pairs of animals 

(each consisting of a transgenic mouse and a corresponding control mouse) of each group (GIPRdn-
group and bGH-group), stage and cohort, that met the respective criteria for assignment to a certain 

stage of investigation were analyzed.  

 
 
3.2 Animals 
 
3.2.1 Breeding, animal husbandry and numbers of mice used for analyses  
Transgenic mice, expressing a dominant negative glucose-dependent insulinotropic 

polypeptide receptor (GIPRdn) under the transcriptional control of the rat insulin gene 

promoter were generated as previously described (Herbach 2002, Herbach et al. 

2005, Volz 1997) and maintained on the genetic background of the CD1 outbred 

stock. Transgenic mice overexpressing bovine growth hormone (bGH) under the 

transcriptional control of the rat phosphoenolpyruvate carboxykinase (PEPCK) gene 

promoter (McGrane et al. 1988) and their associated controls were maintained on the 

genetic background of the NMRI outbred stock (Wolf et al. 1993). In both groups of 

animals, male hemizygous transgenic animals were mated to female wild-type mice 

(Charles River Laboratories, Germany) of the respective genetic background (CD1, 

NMRI respectively). From the offspring, wt/tg-littermate pairs of male animals were 

selected for further investigations (refer to chapter 3.1). The breeding regimes are 

illustrated in figure 3.2.   
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Figure 3.2: Breeding regimes. In both investigated groups of animals (GIPRdn-group and bGH-

group), male hemizygous transgenic (tg) animals were mated to wild-type (wt) female mice of the 

respective genetic backgrounds (CD1, NMRI respectively).  

 

At an age of three weeks, animals were weaned, separated according to gender, 

marked by piercing the ears, and tail tip biopsies for genotype analyses were taken. 

The animals were maintained under standard (non-barrier) conditions (21 ± 1°C, 55 ± 

3% relative humidity; 12/12-hours light/dark cycle) and fed standard rodent chow 

(Altromin C1324, Germany) and tap water ad libitum. All animal experiments were 

performed in accordance with institutionally approved and current animal care 

guidelines. The total number of animals investigated in each stage of nephropathy 

(stage I and stage II) was 20 (GIPRdn-group and bGH-group: each 5 GIPRdn-

transgenic and 5 non-transgenic littermate controls). Samples of isolated glomeruli of 

these 40 mice (Array Cohort) were analyzed in the microarray experiments. For 

validation of the results of the array-experiments by real-time PCR, an additional 

second cohort of samples (Independent Control Cohort) of at least same size was 

generated, applying similar, but less stringent criteria for assignment of the 

transgenic animals to the respective stages of investigation (stage I: detection of 

glomerular hypertrophy and absence of albuminuria; stage II: detection of onset of 

albuminuria). In the Independent Control Cohort also age-matched non-littermate 

controls were paired to transgenic animals for analyses. The total number of animals 

investigated in the Independent Control Cohort was n = 50 (tables 3.1 and 3.2). 
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Numbers of animals in investigated cohorts 

Array Cohort Independent Control Cohort 
GIPRdn-group bGH-group GIPRdn-group bGH-group Stage 
wt tg wt tg wt tg wt tg 

Stage I 
stage of glomerular 
hypertrophy 

 
5 

 
5 

 
5 

 
5 

      
      5              5 

 (4 lmp) 

    
     5           5 

(4 lmp) 

Stage II 
stage of glomerular 
hypertrophy with 
onset of albuminuria 

 
5 

 
5 

 
5 

 
5 

      
      7              7 

 (5 lmp) 

 
8           8 
(5 lmp) 

       
 
Table 3.1. Numbers of animals in investigated cohorts. All mice were of male gender; tg: 

transgenic animals; wt: non-transgenic wild-type controls. All animals investigated in the Array Cohort 

were littermate pairs. Numbers of littermate pairs (lmp) investigated in the Independent Control Cohort 

are indicated. A total number of 90 animals were investigated in both cohorts.  
 

Array Cohort Independent Control Cohort Table 3.2 
GIPRdn-group bGH-group GIPRdn-group bGH-group 
S I S II S I S II S I S II S I S II Analysis wt tg wt tg wt tg wt tg wt tg wt tg wt tg wt tg 

Genotyping + + + + + + + + + + + + + + + + 
Detection of 
glucosuria + + + +     + + + +     

Measurement of 
urine creatinine 
concentration 

+ + + + + + + + + + + + + + + + 

Urine protein 
analysis (SDS-PAGE) + + + + + + + + + + + + + + + + 

Albumin ELISA + + + + + + + +   + +   + 
(4) 

+ 
(4) 

Body weight + + + + + + + + + + + + + + + + 
Kidney weight + + + + + + + + + + + + + + + + 
Relative kidney 

weight + + + + + + + + + + + + + + + + 

Glomerulus isolation + + + + + + + + + + + + + + + + 
Kidney histology 

(LM) + + + + + + + + + + + + + + + + 

Kidney histology 
(TEM) + + + + + + + +         

Determination of the 
mean glomerular 

volume 
+ + + + + + + + + +   + +   

Estimation of 
numbers of 

glomerular cells     
+ + + + + + + +         

Measurement  
of the FSF   + +   + +         

Measurement of the   
GBM-thickness   + +   + +         

Microarray analysis + + + + + + + +         
Real-time PCR 

analysis 
+ 

(4) 
+ 

(4) + + + + + + + + + + + + + + 

Generation of samples for performance of Immunohistochemistry (IHC) and in situ hybridisation (ISH) 
in further studies. 
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Table 3.2 (page 43): Performed analyses of single parameters.  
If not stated otherwise (as indicated in brackets), in each group (GIPRdn-group and bGH-group) and 

stage (S) of investigation, a scheduled number of at least 5 transgenic animals and 5 corresponding 

non-transgenic wild-type controls (Array Cohort: tg/wt-littermate pairs of identical age; Independent 

Control Cohort: tg/wt-littermate pairs of identical age and age matched tg/wt-pairs) was investigated. 

“+” indicates the analysis of the respective parameter. tg: transgenic animals; wt: non-transgenic wild-

type controls; LM: light microscopy; TEM: transmission electron microscopy; FSF: glomerular filtration 

slit frequency; GBM: glomerular basement membrane.  

 
3.2.2 Identification of transgenic mice by PCR 
Transgenic mice were identified by polymerase chain reaction as previously 

described (Herbach et al. 2005, Hoeflich et al. 2001), using DNA extracted from tail 

tips, according to standard protocols. 

 

3.2.2.1 Primers 
For the detection of GIPRdn-transgenic mice, oligonucleotide primers with the 

following sequence were used: 

-5'- ACA GNN TCT NAG GGG CAG ACG NCG GG-3' sense (Tra1) 

-5'- CCA GCA GNC NTA CAT ATC GAA GG-3' antisense (Tra3) 

(Synthese, Ludwig-Maximilians-University, Munich, Germany) 

These primers bind to the human cDNA of the mutated GIP receptor and also to the 

endogenous murine GIP receptor. The primers were chosen from areas where the 

known DNA sequence of the human, rat, mouse and hamster GIP receptor is highly 

conserved. Wherever the sequence varies in these animals, oligonucleotide 

synthesis was performed to allow all nucleotides ("N" in primer sequence) to integrate 

(Herbach et al. 2005, Volz 1997). The mutated human GIP receptor and the 

endogenous murine receptor can be distinguished in the PCR by their number of 

base pairs. The PCR product of the murine GIP receptor contains about 500 base 

pairs, whereas the PCR-product of the mutated human GIP receptors consists of 

about 140 base pairs. For the detection of bGH-transgenic mice, oligonucleotide 

primers (Synthese, Ludwig-Maximilians-University, Munich, Germany) with the 

following sequence were used: 

-5’- GGG ACA GAG ATA CTC CAT CC –3’ sense (bGH # 1)  

-5’- ATG CGA AGC AGC TCC AAG TC -3’ antisense (bGH # 2)  

The PCR-product of the bGH-transgene consists of 343 base pairs (~pos. 1379-1722 

of the bGH-transgene) (Hoeflich et al. 2001). 
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3.2.2.2 DNA isolation 

At weaning of mice, tail tip biopsies were taken and stored at -20°C until assayed.  

For DNA extraction, a tail tip of approximately 0.5 cm length was incubated in 400ul 

Mastermix over night in a heating block (Biometra TB1 Thermoblock, Whatman, 

Germany) at 55°C. Thereafter, undigested components were separated by 

centrifugation for two minutes at 15,000 rpm (Sigma 1K15, Sigma, Germany). The 

supernatant was poured into another tube (Eppendorf safe lock tube, Eppendorf AG, 

Germany) and 400µl isopropanol (Roth, Germany) were added to precipitate DNA. 

The DNA pellet was washed twice with 900µl 70% ethanol (Roth, Germany), the 

liquid phase was discarded and the DNA pellet was dried at room temperature. DNA 

was suspended in 100 – 200µl 1xTE buffer, according to the size of the pellet when 

dried. To make sure that the DNA was dissolved completely it was stored at 4°C for 

at least 24 h before proceeding with the PCR. 

 

Mastermix  
Cutting buffer 375 µl 
SDS 20% (Sodiumdodecylsulfate Ultra Pure, Roth, Germany) 20 µl
Proteinase K (20mg/ml) (Boehringer Ingelheim, Germany) 5 µl 
 
Proteinase K                                                                                                 
20 mg/ml were dissolved in aqua bidest., aliquoted and stored at –20°C. 

 

 
Cutting buffer                                                                                              
1 M Tris-HCl (pH 7.5, Roth, Germany)                                                          2.5 ml 
0.5 M EDTA (pH 8.0, Sigma, Germany)                                                        5.0 ml  
5 M NaCl (Roth, Germany)                                                                            1.0 ml  
1 M DTT (Roth, Germany) 250µl
Spermidine (500mg/ml, Sigma, Germany) 127 µl
Aqua bidest ad 50ml
Storage at 4°C  
 
TE-buffer                                                                                                       

 

10 mM Tris-HCl (pH 8.0, Roth, Germany)                                                      
1 mM EDTA  
Storage at 4°C.  
 
3.2.2.3 Polymerase chain reaction (PCR) 
One µl of the suspended DNA was mixed with 19µl of the Master Mix in PCR-

analysis cups (Kisker, Germany). DNA and components of the Mastermix were kept 

on ice during the procedure. The Taq DNA polymerase was stored at -20°C until it 

was added to the Mastermix.  (Taq DNA polymerase and Mastermix reagents were 

from the Taq PCR Master Mix Kit (Qiagen, Germany).  



 - 46 -  

Until further use, the PCR samples were stored at either 4°C (short-term) or at -20°C 

(long-term). DNA of a transgenic mouse was used as positive control, DNA of a wild-

type mouse was used as negative control and H2O served as quality (no template) 

control. The PCR was run in a Biometra® Uno II Thermocycler (Biometra, Germany), 

programmed as described: 

 

 

 
 
3.2.2.4 Gel electrophoresis 
DNA fragments were separated by size via electrophoresis in a TAE agarose (1.5%) 

gel (1.5 g agarose (Gibco BRL, Germany)/100 ml 1xTAE buffer), containing 9 µl/l 

ethidiumbromide (0.1%, Merck, Germany), casted in a Easy Cast® gel chamber 

(PeqLab, Germany) and filled with 1x TAE running buffer. The TAE running buffer 

also contained 9 µl/l ethidiumbromide (0.1%).  Ethidiumbromide binds to double 

stranded DNA by interpolation between the base pairs and fluorescence may be 

seen when irradiated in the UV part of the spectrum. DNA samples were coloured 

with 4 µl of 6x loading dye (MBI Fermentas, Germany). At the beginning of each 

sample well row, 12 µl PUC Mix Marker #8 (MBI Fermentas, Germany) were placed 

in order to allow estimation of amplified fragment size. The remaining wells were 

filled with 24 µl of the samples.  

Mastermix (GIPRdn- PCR) PCR-conditions (GIPRdn- PCR) 
      

Aqua bidest.              3.65 µl denaturation 94 °C   4 min  
Q-solution   4.00 ul denaturation 94 °C   1 min  
10 x buffer   2.00 µl annealing 60 °C   1 min 39 x 
MgCI2   1.25 µl extension 72 °C   2 min  
dNTP’s  (1mM)   4.00 µl final extension 72 °C 10 min  
sense primer        (Tra 1: 10 pM)    2.00 µl    
antisense primer  (Tra 3: 10 pM)    2.00 µl    
Taq Polymerase        0.10 µl    
template  1.00 µl    

Mastermix (bGH- PCR)      PCR-conditions (bGH- PCR) 
      

Aqua bidest.              5.65 ul denaturation 94 °C   4 min  
Q-solution  4.00 ul denaturation 94 °C   1 min  
10 x buffer     2.00 µl annealing 60 °C   1 min 34 x 
MgCI2  1.25 µl extension 72 °C   1 min  
dNTP’s  (1mM)  4.00 µl final extension 72 °C 10 min  
sense primer        (bGH#1: 2 µM)   1.00 µl    
antisense primer  (bGH#2: 2 µM)   1.00 µl    
Taq Polymerase        0.10 µl    
template  1.00 µl    
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Then electrophoresis was run for approximately 45 minutes at 90 V with an output of 

approximately 200 mA (Biorad Power PAC 300, Biorad, USA). Subsequently, the 

amplified products were visualized (Eagle Eye II, Stratagene, Germany) under UV 

light (306 nm) and a digital picture was taken to document the result (figure 3.3). 

 
 

 
Figure 3.3: Genotyping by PCR. A: PCR-result of GIPRdn-transgenic (tg) and non-transgenic wild-

type control mice (wt). Samples of wild-type animals show a PCR-product of 500 base pairs 

(endogenous GIP receptor, lanes 1-5). Transgenic animals exhibit a DNA-fragment of 140 base pairs 

(mutated GIP-receptor, GIPRdn, lanes 6-10). B: PCR-result of bGH-transgenic (tg) and non-transgenic 

wild-type control mice (wt). Samples of wild-type animals show no PCR-product (lanes 1-5). 

Transgenic animals exhibit a DNA-fragment of 343 base pairs (lanes 6-10). PCR-results for a 

“housekeeping gene” are not shown in this figure. M: Fragment size marker (pUC Mix Marker #8, 

Fermentas, USA). Visible marker-bands indicate fragment sizes of 1118, 881, 692, 489, 404, 331, 

242, 190 and 147 base pairs from top to bottom. Ø: spacing lane. H2O: no template control. 

50x TAE stock solution  
Tris base (Roth, Germany) 121 g 
glacial acetic acid (Sigma, Germany) 28.55 ml 
EDTA, 0.5 M, pH 8.0 (Sigma, Germany)   50 ml 
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1x TAE-buffer                                                                                                                
10 ml 50x TAE-buffer ad 500 ml distilled water 
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3.3 Urine analysis 
 

3.3.1 Definition of stages, time points and intervals of investigation 
According to the experimental design of this study, transgenic animals of both groups 

(GIPRdn and bGH) were investigated either in the stage of glomerular hypertrophy 

without albuminuria (stage I) or in the stage of onset of albuminuria (stage II). We 

defined the stage of onset of albuminuria (stage II) as that point of time, at which the 

transgenic animals first displayed albuminuria twice within 48 hours after a first 

negative result, verified by Sodium dodecyl sulphate polyacrylamide gel 

electrophoresis (SDS-PAGE) analysis. Glomeruli from these animals and their 

corresponding non-transgenic littermate controls were then isolated 24 hours after 

the second positive result. Transgenic animals to be investigated in stage I, as well 

as the corresponding controls of both stages were required to show two negative 

results for albuminuria within 72 hours prior to dissection. Urine samples were 

collected weekly (GIPRdn- transgenic mice and corresponding controls), or in 48-hour 

intervals (bGH- transgenic mice and corresponding controls) and every 48 hours 

after a first positive result. The schedules of time points and intervals of investigation 

of urine samples and time points of dissections are illustrated in figure 3.4. In order to 

exclude potential differences in urine protein excretion over the day, spot urine 

samples were taken constantly between 4 and 5 pm. by the same investigator. The 

urine samples were immediately frozen and stored at -80°C until assayed. Usually, 

spontaneous urine could be obtained. If this was not the case, samples were taken 

by carefully squeezing the bladder with two fingers. SDS-PAGE analyses, Western-

blot analyses and quantification of urine albumin concentrations by Enzyme-linked 

Immunosorbent Assay (ELISA) were performed using aliquots of identical urine 

samples.  
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Figure 3.4: Intervals of urine sample collection. Screening for onset or absence of albuminuria by 

SDS-PAGE. Urine samples (US) of transgenic mice (tg) and their corresponding non-transgenic wild-

type littermate controls (wt) were collected in weekly intervals (GIPRdn-group), respectively every 48 

hours (bGH-group). Animals to be investigated in stage I (stage of glomerular hypertrophy without 

albuminuria), as well as wt-animals of stage II (stage of onset of albuminuria) were required to show 

two negative results for albuminuria within 72 hours prior to dissection (S). Stage II was defined as 

that point of time, at which the transgenic animals first displayed albuminuria twice (1st +, 2nd +) within 

48 hours, following to a first negative result (US -). Pairs of animals in stage II were sacrificed 24 

hours after the second positive result of the respective transgenic animal.  
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3.3.2 Detection of glucosuria in GIPRdn-transgenic mice 
The diabetic phenotype of GIPRdn -transgenic mice was reconfirmed by detection of 

glucosuria in urine samples, using the Ratiomed EASY Screen Glucose® sticks 

(Megro, Germany). Spot urine samples were recurrently taken from GIPRdn-

transgenic mice, as well as from their non-transgenic wild-type littermate controls 

from day 21 on (time point of weaning) and investigated, until glucosuria was 

detected in samples of GIPRdn-transgenic mice.   

 
 
3.3.3 Urine protein analysis 
 
3.3.3.1 Detection of absence or onset of albuminuria (SDS-PAGE) 
Urine creatinine concentration was measured, using an automated analyzer 

technique (Hitachi, Merck, Germany). Urine samples were then standardized by 

dilution with reducing sample buffer to constant creatinine concentrations. As GIPRdn-

transgenic animals display massive hyposthenuria and polyuria, their urine samples, 

as well as those of their corresponding control animals were diluted to a creatinine 

content of 1.5 mg/dl for silver staining, whereas urine samples derived from animals 

of the bGH-group were diluted to 3 mg creatinine/dl for Coomassie staining. A mouse 

albumin standard (1 mg/ml; Biotrend, Germany) was diluted 1:50 (= 20ng/µl) for silver 

staining or 1:25 (= 40 ng/µl) for Coomassie staining with reducing sample buffer. Both 

samples and mouse albumin standards were subsequently denaturated at 96°C for 

10 minutes in a heating block (Biometra, Goettingen, Germany). A 12% separating 

SDS-polyacrylamide gel was casted in a Mini-Protean III gel-casting chamber 

(Biorad, Germany), overlayed with distilled water and allowed to polymerise for 45 

minutes. After polymerisation, a 5% stacking SDS-polyacrylamide gel was casted 

onto the 12% SDS gel; a comb for forming sample wells was immediately placed in 

the still fluid stacking gel. The stacking gel was allowed to polymerise for 45 minutes. 

The comb was removed then and the gel was placed into an electrophoresis cell 

(Protean III, Biorad, Germany), which was then filled with running buffer to the top of 

the inside cell. A volume of each 10 µl of the samples, molecular weight standards, 

(Broad Range (Biorad, Germany) for Coomassie stained gels, Precision Plus (Biorad, 

Germany) for silver stained gels) and the mouse albumin standards (Biotrend, 

Germany) were then run on  12% SDS-PAGE gels at 200 V for 50 minutes (Biorad 

Power PAC 300, Biorad, USA).  
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Subsequently, the gel was removed from the glass frame and either silver staining, or 

Coomassie blue staining was performed. Silver staining was performed due to a 

standard protocol (given in chapter 9.1). For Coomassie staining, the gel was at first 

stained with the Coomassie blue staining solution for 30 min and destained in the 

Coomassie destaining solution for approximately 1.5 hours until clearing of the gel 

background. In silver- and Coomassie stained gels, all clearly visible gel bands were 

registered, gels were scanned for documentation (OfficeJet G55, Hewlett Packard, 

Germany) and then dryed according to the manufacturer’s protocol, using the 

DryEaseTM Mini-Gel Drying System (Novex, Germany) for long term storage (drying 

of SDS-PAGE gels is described in the appendix). For detection of albuminuria, the 

intensities of gel bands of approximately 69 kDa in the SDS-PAGE, reflecting murine 

albumine, were compared between samples of transgenic animals and those of the 

corresponding wt-animals and the murine albumin standard on the same gel. In order 

to demonstrate the comparability of detected results of SDS-PAGE urine protein 

analyses, using a silver staining of gels (GIPRdn-group), and respective results of 

Coomassie blue stained gels (bGH-group), urine samples of pairs of animals that had 

finally been selected for further investigations in the respective stages of analysis 

were analyzed a second time, now using the silver staining method for all gels. 

Materials used for performance of SDS-PAGE analyses are indicated below. 

  

Tris/HCL 0.5 M pH 6.8 
Tris base (Roth, Germany) 6.075 g 
ad 100 ml distilled water 
 
Sample buffer 
Distilled water 1 ml
Tris/HCl 0.5 M pH 6.8 0.25 ml
Glycerol (Merck, Germany) 0.2 ml
SDS 10 % (Sigma, Germany)  0.4 ml
Bromphenol blue 0.05 % (Sigma, Germany)  0.125 ml

Reducing sample buffer 
Sample buffer    475 µl
ß mercapto-ethanol (Sigma, Germany) 25 µl
 
Tris/HCL 0.5 M pH 8.8 
Tris base (Roth, Germany) 18.5  g 
ad 100 ml distilled water 
adjust pH with 1N HCl (Merck, Germany) 
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SDS-12% polyacrylamide gel 
Distilled water 3.5 ml
Tris / HCI 1.5 M, pH 8.8 2.5 ml
SDS 10 % (Sigma, Germany) 100 µl
Acrylamide 30% (Roth, Germany) 4.0 ml
Ammonium persulfate 10 % (Biorad, Germany) 50 µl
Tetraethylethylenediamine (TEMED) (Roth, Germany) 5 µl
 
5% SDS-polyacrylamide stacking gel 

 

Distilled water 6.1 ml
Tris/HCI 0.5 M, pH 6.8 2.5 ml
SDS 10 % (Sigma, Germany) 100 µl
Acrylamide 30% (Roth, Germany) 1.3 ml
Ammonium persulfate 10 % (Biorad, Germany) 50 µl
Tetraethylethylenediamine (TEMED) (Roth, Germany) 10 µl
 
Running buffer (stock solution) 

 

Tris base (Roth, Germany) 30.3 g
Glycine (Merck, Germany) 144 g
ad 1 l distilled water 
 
Running buffer (ready to use) 

 

Stock solution 40 ml
SDS 10 % (Sigma, Germany) 4 ml
ad 400 ml distilled water 
 
Coomassie staining solution 

 

Coomassie brilliant blue G250 (Merck, Germany) 625 mg
100 % acetic acid (AppliChem, Germany) 12.5 ml
100 % ethanol (Roth, Germany) 125 ml
ad 250 ml distilled water  
 
Coomassie destaining staining solution 

 

100 % acetic acid (AppliChem, Germany) 17.5 ml
100 % ethanol (Roth, Germany) 12.5 ml
ad 250 ml distilled water 
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3.3.3.2 Western-blot analysis 
In order to confirm that a lane of approximatively 69 kDa in the SDS-PAGE reflects 

albumin, Western-blot analyses were performed. Urine samples of two GIPRdn-

transgenic animals, two bGH-transgenic animals (assigned to stage II) and their 

corresponding controls were analyzed according to a standard Western blot protocol. 

A 12% SDS-polyacrylamide gel was run as described above. After electrophoresis, 

gels were placed on a pre-wetted nitrocellulose membrane (Schleicher & Schüll, 

Germany) between three layers of absorbent paper imbibed with buffer, and fiber 

pads each side, and the Sandwich was set in the gel holder cassette. Two cassettes 

were placed into the electrode module, which was then inserted in the buffer lank 

along with a frozen cooling unit (Mini Trans-Blot Cell, Biorad, Germany). After filling 

the tank with Towbin buffer, the transfer was run over night at 30 Volt (Biorad Power 

PAC 300, Biorad, USA). The next day, the membranes were dyed with ponceau S 

solution (Sigma, Germany) to confirm blotting was achieved. After washing in Tris-

buffered saline (TBS, pH 8.3), blocking was performed in 1% bovine serum albumin 

(BSA, Sigma, Germany) for one hour to avoid non-specific binding of the antibody 

probe to the membrane. Then incubation with rabbit anti-mouse albumin antibody 

probe (Biotrend, Germany; 1:300 in TBS-Tween and 1% BSA) was performed for 

three hours. The membrane was then incubated with horseradish peroxidase 

conjugated goat anti-rabbit antibody (DAKO Diagnostika, Germany, 1:1000 in TBS-

Tween and 1% BSA) for one hour. After washing three times in TBS-Tween for ten 

minutes, immunoreactivity was visualized using 3, 3' diaminobenzidine tetra 

hydrochloride dihydrate (Biotrend, Germany) as chromogen. Then the membranes 

were scanned and stored in a cassette. The following materials were used for 

performance of Western-blot experiments: 

 

Towbin buffer (storage at 4°C)  
Tris base (Roth, Germany) 3.03 g
Glycine (Merck, Germany) 14.4 g
Distilled water 800 ml
Methanol (Roth, Germany) 200 ml
 
Tris buffered saline (TBS) 10x stock solution (storage at 4°C) 

 

Tris base (Roth, Germany) 60.6 g
Sodium Chloride  (AppliChem, Germany) 87.6 g
ad 1 l distilled water 
adjust to pH 7.4 using 1N HCI (Merck, Germany) 
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1x TBS-buffer 
100 ml 10x TBS ad 1000 ml Aqua bidest. 
 
TBS-Tween 
1x TBS with 0.05% Tween 20 (Roth, Germany) 

 

 
DAB (3,3' diaminobenzidine tetrahydrochloride dihydrate) 

 

DAB (Biotrend, Germany) 5 ml
Tris/HCI 50 mM pH 7.3   25 ml
Hydrogen peroxide 30 % (Roth, Germany) 10  µl
 
Tris/HCL 0.05 M pH 7.3 
Tris base (Roth, Germany) 1.85  g 
ad 100 ml distilled water 
adjust pH with 1N HCl (Merck, Germany) 
 
3.3.3.3 Determination of urine albumin concentrations by ELISA        
For determination of urine albumin concentrations, spot urine samples of GIPRdn-

transgenic and bGH-transgenic animals and their associated non-transgenic wild-

type controls of both cohorts (Array Cohort and Independent Control Cohort) of both 

investigated stages of glomerular alteration, taken 24 hours prior to sacrifice of mice 

were examined. These were the same urine samples that had previously been 

analyzed by performance of SDS-PAGE based urine protein analyses. The creatinine 

concentrations in these samples were measured, using an automated analyzer 

technique (Hitachi, Merck, Germany). The numbers of investigated urine samples are 

indicated in table 3.3.  

 

Group/stage genotype lmp 
 wt 

 
tg 

 
AC ICC 

 

GIPRdn stage I 
 

5 
 

5 
 

5 
 

- 
GIPRdn stage II 11 11 5 6 
 

bGH stage I 
 

5 
 

5 
 

5 
 

- 
bGH stage II 9 9 5 4 
     
     

 

Urine albumin concentrations were determined, using the mouse albumin ELISA-kit 

Bethyl E90-134 (Bethyl, USA), according to the manufacturer’s protocol. All steps 

were performed at room temperature. Coating and blocking of plates was performed 

according to the manufacturer’s recommendations: 1µl (1 mg/ml) of goat anti-mouse 

albumin capture antibody (A90-134A) was diluted to 100 µl coating buffer for each 

well to be coated.  

Table 3.3. Numbers of investigated urine 
samples for determination of urine albumin 
concentrations by ELISA. wt: non-transgenic 

wild-type controls; tg: transgenic animals. 

Numbers of investigated littermate pairs (lmp) of 

animals in the Array Cohort (AC) and the 

Independent Control Cohort (ICC) are indicated.  
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The coated plate (Nunc C bottom Immunoplate 96 well, Nunc A/S, Denmark) was 

incubated for 60 minutes. After incubation, the capture antibody solution was 

aspirated from each well. Each well was then filled with wash solution, which then 

was removed by aspiration. These washing steps were repeated for a total of 3 

washes. 200 µl of blocking (postcoat) solution were then added to each well and the 

plate was incubated for 30 minutes. After incubation, the blocking (postcoat) solution 

was removed and each well was washed for three times as described above. The 

murine albumin standard (Calibrator) dilutions were prepared due to manufacturer’s 

recommendations (range: 7.8 - 500 ng/ml). Standards were diluted in sample diluent 

as described in chapter 9.3. The urine samples were diluted with sample diluent, 

based on the expected concentration of the analytes to fall within the concentration 

range of the standards. The proper dilution of urine specimens ranged from 1:50-

1:6000 (GIPRdn-tg: 1:50 - 1:1.600, associated controls: 1:300 - 1:600; bGH-tg: 1:300 - 

1:6.000, associated controls: 1:300 - 1:1.500), as shown by a pilot study. Standards, 

samples, blanks and controls were analyzed in duplicates. Each 100 µl of standards 

or samples were transferred to the assigned wells. The plate was then incubated for 

60 minutes. After incubation, samples and standards were removed and each well 

was washed 5 times as described above. The HRP conjugate (goat anti-mouse 

albumin-HRP conjugate, 1 mg/ml) was diluted in conjugate diluent 1:100,000. 100 µl 

of diluted HRP conjugate were transferred to each well and the plate was then 

incubated for 60 minutes. After incubation, the free HRP conjugate was removed and 

each well was washed for 5 times. Subsequently, bound HRP antibody conjugate 

was detected through a chromogenic reaction. The substrate solution (TMB/H2O2, 

Kirkegaard and Perry, USA) was prepared by mixing equal volumes of the two-

substrate reagents, provided by the manufacturer. 100 µl of substrate solution were 

added to each well and incubated for seven minutes. The TMB reaction was stopped 

by adding 100 µl of 1 M H3PO4 (Roth, Germany) to each well. The color intensity was 

measured by determining the absorbance at 450 nm using a computer-assisted 

(Magellan, Tecan AG, Germany) microplate reader (Sunrise, Tecan AG, Germany). 

For calculation of results, the duplicate readings from each standard, control and 

sample were averaged. The zero reading was subtracted from each averaged value 

above. A standard curve was generated for each set of samples (Magellan, Tecan 

AG, Germany). The values of the specimen wells were in the linear segment of the 

calibration curve.  
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For each group and stage of investigation, the albumin/creatinine ratios were 

calculated by dividing the measured albumin concentration of a urine sample by its 

corresponding creatinine concentration. Materials used for performance of ELISA-

analyses are indicated below. 

 

Coating buffer 
0.05 M Carbonate-bicarbonate (Sigma, Germany) 
adjust to pH 9.6 
 
Wash solution 
50 mM Tris (Roth, Germany) 
0.14 M NaCl (AppliChem, Germany) 
0.05% Tween 20 (Roth, Germany) 
adjust to pH 8.0 
 
Blocking (postcoat) solution 
50 mM Tris (Roth, Germany) 
0.14 M NaCl (AppliChem, Germany) 
1% Bovine serum albumin in Tris buffered saline (Sigma Chemical, Germany) 
adjust to pH 8.0 
 
Sample/conjugate diluent 
50 mM Tris (Roth, Germany) 
0.14 M NaCl (AppliChem, Germany) 
1% Bovine serum albumin in Tris buffered saline (Sigma Chemical, Germany) 
0.05% Tween 20 (Roth, Germany) 
adjust to pH 8.0 
 
 
3.4.1 Generation of sample materials and acquisition of additional data 

According to the results of the SDS-PAGE urine protein analyses, mice were 

dissected at defined time points (3.3.1). Both, the transgenic mouse and its 

associated wild-type littermate control animal of a tg/wt-pair were dissected at the 

same day. Samples of isolated kidney glomeruli were generated for performance of 

transcript profiling analyses. As well, samples of kidney tissue were generated for 

further morphological investigations. In order to exclude potential differences in 

patterns of glomerular gene expression profiles over the day, dissections were 

always performed between 8 and 11 am. For every single tg/wt-pair of animals, the 

order of dissection of the respective transgenic mouse and its associated control 

animal was decided strictly random by drawing lots. 
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3.4.2 Kidney perfusion and glomerulus isolation 
All mice were weighed prior to sacrifice. Body weight was determined to the nearest 

0.1 g, using a precision scale (Kern KB 5000-1, Kern & Sohn GmbH, Germany). Mice 

were anesthetized by intraperitoneal injection of ketamine (Ketanest®, 80 mg/kg, 

Bayer, Germany) and xylacine (8 mg/kg, Rompun®, Bayer, Germany). Approximately 

8 x 107 (200 µl) Dnabeads ® M-450 Epoxy (Dynal Invitrogen Corporation, Germany) 

were blocked according to the manufacturers instructions, diluted in 40 ml of 38°C 

warm phosphate buffered saline (PBS, pH 7.4; composition indicated below) and 

perfused through the left heart ventricle. Dynabeads are made of an iron-containing 

monodisperse polymer and exhibit magnetic properties within a magnetic field 

(Kemshead, 1985, Magnetic separation techniques). Their surface is smooth with a 

coated polymer shell that reduces the direct damage to the tissues and protects from 

toxic exposure to iron when they are perfused. As perfusion technique had pointed 

out to be the most important prerequisite for the method’s success, a self-developed 

perfusion device (German utility patent no. DE 202006001542 U1) was used for 

performance of perfusion (figure 3.5), which allows for uncomplicated perfusion of 

nearly all glomeruli in the adult mouse kidney with sufficient numbers of magnetic 

beads under adjustable pressure conditions, thereby minimizing common problems 

of conventional perfusion techniques (refer to chapter 4.2.1) (Blutke et al. 2005). An 

incision in the inferior vena cava, cranial of the diaphragm provided outflow of the 

perfusate. Perfusion was performed using a perfusion pressure of 70 mm Hg. After 

perfusion, the kidneys were removed, decapsulated and weight to the nearest 0.1 mg 

(BP 61 S, Sartorius AG, Germany). For histology and quantitative stereology, IHC 

and TEM, a sagittal slice of approximatively 1 mm thickness was carefully cut from 

the middle of each kidney, using a scalpel blade, as illustrated in figure 3.6. 

 

 
 
 
 

Phosphate-buffered saline (PBS) 
potassium dihydrogen phosphate (AppliChem, Germany) 0.25 g
sodium chloride (AppliChem, Germany) 8.0 g 
di-sodium hydrogen phosphate dihydrate (AppliChem,Germany) 1.46 g
ad 1 l distilled water, adjust to pH 7.4  
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Figure 3.5: Device used for perfusion (A) and perfusion technique (B). A: As the entire perfusion 

volume is located directly above the perfusion canulla inside the perfusion reservoir (50 ml Falcon ® 

tube), no dead stock volumes remain inside the system after perfusion and precipitation of beads or 

formation of air bubbles inside the perfusate are reduced to a minimum. Perfusion can be performed 

under adjustable pressure conditions. B: Perfusion was performed, using a pressure of 70 mm Hg. An 

incision in the vena cava caudalis (indicated) provided outflow of the perfusate.  
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Figure 3.6. Tissue sampling for histology, electron 
microscopy, immunohistochemistry and in situ 
hybridisation. A: After perfusion kidneys were 

decapsulated and weighed. B: A slice of approximately 

1 mm thickness was cut from the middle of each 

kidney. Glomeruli were isolated from the remaining 

tissue. C: 1 slice was cut into halves. D: 2 cortical 

samples for electron microscopy (1 mm3) were taken 

from 1 ½ kidney slices, fixed in 6.25 % glutaraldehyde 

(GA) and embedded in Epon. A half slice of kidney 

tissue was fixed in 4 % paraformaldehyde (PA) and 

embedded in paraffin for immunohistochemistry (IHC) 

and in situ hybridisation (ISH). 1 ½ slices of kidney 

tissue were fixed in 4 % paraformaldehyde (PA) and 

embedded in glycolmethacrylate and methyl-

methacrylate (GMA/MMA) for histology and and 

quantitative stereological analyses. 

4 % PFA 
GMA/MMA 

Morphometry 

4 % PFA 
Paraffin 
IHC/ISH 

6.25 % GA 
Epon 
TEM   
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The remaining kidney tissue designated for glomerulus isolation was cut into small 

pieces of approximately 1 mm3 and digested with Collagenase A (Roche, Germany) 

in Hanks’ balanced salt solution (Invitrogen, Germany) (1 mg collagenase A/ml 

HBSS), inside a round-bottomed 2 ml tube (Eppendorf safe lock tube, Eppendorf AG, 

Germany) at 37°C for 30 minutes with gentle agitation (Biometra TB1 Thermoblock, 

Whatman, Germany). The digested tissue was gently pressed through a 100-µm cell 

strainer (Falcon, Germany), using a flattened pestle and the cell strainer was then 

washed with 7 ml of 4°C phosphate buffered saline (PBS, pH 7.4). The cell 

suspension was then transferred into a 12 ml tube (Techno Plastic Products AG, 

Switzerland) and placed into the magnetic field of a strong permanent magnet (BD I 

MagnetTM Cell Separation Magnet, BD Biosciences, Germany) for 5 minutes. The 

buffer, containing the non-glomerular kidney-tissues was then removed by careful 

aspiration and examined for absence of glomeruli, using a photomacroscope (Stemi 

DV4, Zeiss, Germany) as illustrated in figure 3.7. Isolated glomeruli containing 

Dynabeads were resuspended in 7 ml of 4°C PBS and filtered through a new 100-µm 

cell strainer without pressing. The cell strainer was washed with 5 ml of 4°C PBS. 

Magnetic isolation of glomeruli containing Dynabeads and washing steps were 

repeated for two times (figure 3.7). 



 - 60 -  

 
 
Figure 3.7: Magnetic isolation of glomeruli: Washing steps.                              
A: During exposure time at the magnet, glomeruli containing magnetic beads are drawn to the cup‘s 

wall.  B: The buffer, containing the non-glomerular tissues, is removed by aspiration. C: Examination 

of the removed buffer for absence of glomeruli, using a photomacroscope. D-F: After removal of the 

buffer, the cup is removed from the magnet and new buffer is added. G: Wash (of second isolation 

cycle in this instance): predominantly pieces of tubular tissues [native, 32x]. 

 
 
Isolated glomeruli were then suspended in 10 ml of 4°C PBS and from this volume an 

aliquot of 1.5 ml, determined for transcript profiling analysis, was transferred into a 

1.5 ml Eppendorf-tube and placed at the magnet for 3 minutes. After removal of the 

buffer, the isolated glomeruli were suspended in 4 ml of 4°C RNA-later® RNA 

stabilization reagent (Ambion, Germany) and transferred into a sterile glass platter. 

From this suspension all identifiable glomeruli (an average number of 1000 per 

animal), were counted and simultaneously picked under a photomacroscope 

(magnification: 32x), using a fine-tipped (Micro gel-loader tips 1-200 µl, Peske, 

Germany) pipette (figures 3.8 and 3.9).  
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The isolated glomeruli were then concentrated in a volume of 30 µl RNA-later®, using 

an autoclavable 50 µm mini cell strainer (figures 3.8 and 3.10), developed for this 

application (Blutke et al. 2005). This device consists of a piece of mesh, derived from 

a 50 µm cell strainer (BD, Germany), that is attached to a corpus (derived from a 

1000 µl pipette tip) by a plastic ring (also derived from a 1000 µl pipette tip) and fixed 

with super-glue (UHU GmbH & Co. KG, Germany). Prior to use it was treated with 10 

% SDS (Sigma, Germany) for two minutes, then washed with distilled water (RNAse-

free quality) for 10 minutes and put into a 2 ml round-bottomed Eppendorf-cup and 

autoclaved. For concentration of isolated glomeruli suspended in RNA-later®, the 

sample was transferred into the 50 µm mini cell strainer, the isolated intact glomeruli 

were thereby filtered and remained inside the mini cell strainer, while the RNA-later® 

flow through the sieve. The flow-through was then examined under a 

photomacroscope at x 32 factor of magnification, to ensure that no isolated glomeruli 

passed the filter. The 50 µm mini cell strainer, containing the isolated glomeruli, was 

then put into the 2 ml round-bottomed Eppendorf-tube, 30 µl of fresh RNA-later® 

were added and stored at -20°C until further treatment (figure 3.8).  

 

 
 
 
Figure 3.8: Isolation of glomeruli for transcript profiling analysis and concentration of isolated 
glomeruli in RNA-later®. A-C: Isolated glomeruli, enriched by magnetic isolation (A) were transferred 

into RNA-later® (B) and picked under a photomacroscope, using a fine tipped pipette (C). D: Each 

1000 glomeruli per sample were concentrated in 30 µl RNA-later®, using a 50 µm mini cell strainer 

and stored at -20 °C.  

B A D C 
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Figure 3.10: Scheme of the 50 µm mini cell strainer. 
 

 

Quantity and purity (%) of generated glomerulus isolates was estimated by counting 

the numbers of clearly identifiable isolated glomeruli, as well as the numbers of 

pieces of non-glomerular tissues in a representative number of aliquots of the 

respective glomerulus isolates under a photomacroscope at a 32x magnification. The 

appearance of glomerular losses in the washes was estimated in an analogous 

manner. During the procedure, kidney tissues were kept at 4°C except for the 

collagenase digestion at 37°C.  
 
 
 
 
 
 
 
 

50 µm mini cell strainer 

~1000 isolated glomeruli 

50 µm sieve 

    wall of 2 ml cup 

2 ml cup 

wall of 50 µm mini cell strainer 

30 µl RNA-later® storage at – 20°C 

Figure 3.9: Picking of isolated glomeruli in RNA-later®. 

Asterisk marks the opening of the pipette tip; arrow indicates 

a glomerulus [native, 40x].   
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3.4.3 Tissue preparation for histology and electron microscopy  
 
3.4.3.1 Plastic histology 

For histology and morphometric analysis 1 ½ slices of kidney tissue of each animal 

were fixed by immersion in 4% paraformaldehyde (VWR international, Germany) in 

phosphate buffered saline (PBS pH 7.4) for 24 hours at 8°C and then routinely 

processed for plastic embedding in a Citadel 1000 (Shandon, Germany), as indicated 

below. In order to avoid distortions, the kidney slices were fixed with a piece of foam-

rubber sponge (Bio Optica, Italy) in the tissue-embedding capsules (Engelbrecht, 

Germany). Embedding in glycolmethacrylate and methylmethacrylate (GMA/MMA) 

was performed as previously described (Hermanns et al. 1981). Kidney slices were 

immersed in a hydroxymethylmethacrylate (Fluka Chemie, Germany) / 

methylmethacrylate (Riedel de Haën, Germany) solution at 4°C on a shaker for 18 

hours. The kidney slices were then shifted into “solution A”, composed of 

benzoylperoxide (338 mg; Merck, Germany), methylmethacrylate (20 ml), 

hydroxymethylmethacrylate (60 ml), ethyleneglycol monobutylether (16 ml; Merck, 

Germany) and polyethylene glycol 400 (2 ml; Merck, Germany). After immersion at 

4°C on a shaker for four hours, the kidney slices were placed in plastic cups and 

embedded using 60 µl of dimethylanilin (Merck, Germany) in 40 ml of “solution 1” as 

starter for polymerisation. Embedding cups were immediately placed into a water 

bath (4°C) and polymerisation took place at 4°C over night. Sections of 

approximately 1.5 µm thickness were cut using a Microm HM 360 rotary microtome 

(Microm, Germany), dried on a heating plate (OTS 40, Meditel, Germany) and stored 

in an incubator (Memmert, Germany) at 64°C over night before staining. Sections 

were stained with PAS (Periodic Acid Schiff stain) and H&E (Hematoxilin & Eosin), as 

indicated below.  

 

4% paraformaldehyde in PBS (pH 7.2)  
PBS, pH 7.4 1000 ml
paraformaldehyde (Serva, Germany) 40 g 
adjust to pH 7.2 with 1 n NaOH (Roth, Germany) 
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Processing of paraformaldehyde fixed tissue for plastic histology: 
 

Chemical Time
Rinsing solution 3 hours
Ethyl alcohol 30 %  
(Bundesmonopolverwaltung für Branntwein, Germany) 2 x 1 hour

Ethyl alcohol 56 % 2 x 1 hour
Ethyl alcohol 70 % 2 x 1 hour
Ethyl alcohol 96 % 2 hours
Ethyl alcohol 96 % 2 x 3 hours
 
HE staining of plastic sections    

Reagents Time
Mayer's Hemalaun (AppliChem, Germany) 20 min
running tap water 10 min
1% HCI-ethyl alcohol (Roth, Germany) 10 sec
running tap water 10 min
heating plate 5 min
Eosin-Phloxin (Merck, Germany) 
Aqua dest. 

20 min
2 x 2 min

heating plate 5 min
Xylol (SAV LP, Germany) 2 min
Covering with glass coverslips (Menzel GmbH & Co KG, Germany),  
using Histofluid® (Superior, Germany). 
 
PAS staining of plastic sections 
 

Reagents Time
Periodic acid 1% (AppliChem, Germany) 15 minutes
Aqua dest. 3 x 3 sec
Schiffs reagent (Merck, Germany) 30 – 60 min
running tap water 30 minutes
dry  
Mayer's Hemalaun (AppliChem, Germany) 35 minutes
running tap water 10 minutes
1% HCI-ethyl alcohol (Roth, Germany) 1 sec
running tap water 10 minutes
dry 
Covering with glass coverslips (Menzel GmbH & Co KG, Germany),  
using Histofluid® (Superior, Germany) 
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3.4.3.2 Tissue preparation for transmission electron microscopy (TEM) 
For transmission electron microscopy (including quantitative stereological analysis) 

two cubes (1mm3) of cortical kidney tissue from each animal were fixed by immersion 

in 6.25% glutaraldehyde (Serva, Germany) in PBS (pH 7.4) at 8°C for 48 hours, 

postfixed in 1% osmiumtetroxide (OsO4, Merck, Germany), dehydrated and 

embedded in Epon (syn. “glycid ether 100”, Serva, Germany) according to standard 

procedures: The samples were washed for 3 hours in Sörensen phosphate buffer at 

room temperature, postfixed in 1% osmium tetroxide (Caulfield 1957) for 2 hours at 

4°C, and washed in Sörensen phosphate buffer three times for 2 min at room 

temperature. Subsequently, the specimens were dehydrated through a series of 

acetone (Roth, Germany) solutions at 4°C. Then they were infiltrated with a 100% 

acetone/Epon mixture for 1 hour, and twice with pure Epon for 30 min, each, at room 

temperature. Then, the Epon infiltrated samples were embedded in Epon-embedding 

mixture in dried gelatin capsules (Plano, Germany). Polymerization took place at 

60°C for approximately 48 hours. Epon blocks were trimmed with a TM60 Reichert-

Jung milling machine (Leica, Germany) and 0.5 µm semi-thin sections were obtained 

with a Reichert-Jung "Ultracut E" (Leica, Germany). Sections were then stained with 

Azur II/Safranin, as indicated below. The following materials were used for Epon 

histology: 

 

Sörensen phosphate buffer 0.067 M, pH 7.4  
Solution I 80.8 ml
Solution II   19.2 ml
adjust to pH 7.4 
 
Solution I 
potassium dihydrogen phosphate (Roth, Germany)                  9.08 g
ad 1 l distilled water 
 
Solution II 
di-sodium hydrogen phosphate dihydrate (Roth, Germany)   11.88 g
ad 1 l distilled water 
 
veronal acetate buffer, pH 7.6 
sodium veronal  (barbitone sodium, Merck, Germany)   2.95 g
sodium acetate (Merck, Germany)                                                     
1.94 g 
ad 100 ml distilled water 
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Osmium tetroxide, 1% 
osmium tetroxide, 2% (Merck, Germany) 5.0 ml
veronal acetate buffer, pH 7.6 2.0 ml
hydrogen chloride 0.1 M (Merck, Germany) 2.0 ml
distilled water 1.0 ml
Saccharose (Merck, Germany) 0.45 g
 
Solution A 
glycid ether 100 (Serva, Germany)                 62 ml
2-dodecenyl succinicacid anhydride (Serva, Germany)    100 ml
 
Solution B 

 

glycid ether 100 (Serva, Germany) 100 ml

methylnadic anhydride (Serva, Germany) 89 ml
 
Epon-embedding mixture 

 

solution A 3.5 ml
solution B                                                                                              6.5 ml
para-dimethyl aminomethyl phenol (Serva, Germany)                       0.15 ml
 
 
Azur II/Safranin staining protocol for semithin sections 
 
Azur II solution                                                                                                
Disodium tetraborate (Merck 6306, Germany) 1.0 g
Aqua dest.  100 ml
Azur II (Merck 9211, Germany) 1.0 g
37% Formaldehyde (Roth, Germany) 250 µl
 
Dissolve borate in aqua dest., then add Azur II and stir for approximately two hours 
before adding formaldehyde. Filter prior to use. 
 
Safranin O solution 
Disodium tetraborate (Merck 6306, Germany) 1.0 g
Aqua dest.  100 ml
Safranin O (Chroma 1B 463, Germany) 1.0 g
Saccharose  (Merck, Germany) 40.0 g
37% Formaldehyde (Roth, Germany) 250 µl
 
Dissolve borate in aqua dest., then add Safranin and saccharose. Stir for 

approximately two hours before adding formaldehyde. Filter prior to use.Stain 

sections in Azur II solution for 15-20 seconds at 55°C on a heating plate (Meditel, 

Germany) and rinse with distilled water. Dry. Then stain sections for 15-20 seconds 

at 55°C on a heating plate (Meditel, Germany) and rinse with distilled water. Dry. 

Cover sections with glass coverslips (Menzel GmbH & Co KG, Germany) using 

Histofluid® (Superior, Germany). 
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3.5.1 Estimation of the mean glomerular volume 
The mean glomerular volume was estimated, using a model-based method, as 

previously described in detail (Hirose et al. 1982, Wanke 1996, Weibel and Gomez 

1962). In this model-based stereological approach, the glomeruli were considered as 

rotation ellipsoids. The mean glomerular area was obtained from planimetric 

measurements of glomerular profile areas. In the calculation, a shape coefficient and 

a size distribution coefficient were considered. The results were corrected for 

embedding shrinkage. The values for the shape and size distribution coefficient as 

well as for the shrinkage correction factor for plastic embedded murine renal tissue 

were taken from Wanke (1996). Morphometric evaluation was carried out on a 

Videoplan® image analysis system (Zeiss-Kontron, Germany) coupled to a light 

microscope (Orhoplan; Leitz, Germany) via a color video camera (CCTV WV-

CD132E; Matsushita, Japan). Images of PAS stained GMA/MMA sections were 

displayed on a color monitor at a 400x final magnification. The profiles of all glomeruli 

present in the sections of one animal (mean 123± 25) were measured planimetrically 

by circling their contours with a cursor on the digitizing tablet of the image analysis 

system after calibration with an object micrometer (Zeiss, Germany). The mean 

glomerular volume was calculated using equation 1 (Hirose et al. 1982, Wanke 

1996).  

 
 
The stereologically estimated mean glomerular volume was calculated as the product 

of the  mean glomerular area to the power of 1.5 and the shape coefficient (ß=1.40), 

divided by the size distribution coefficient (k=1.04) (Weibel 1980). Results were 

corrected for embedding shrinkage, using the linear tissue shrinkage correction factor 

(fs = 0.91) for murine kidney tissue embedded in GMA/MMA (Wanke 1996), using 

equationx2. 

(glom)(s) v̂ = ß 
k

1.5
a (glom) 

. 

(glom)(s) v̂ 

ß 
k 
a 

(glom) 

 : stereologically estimated mean glomerular volume    
  (referring to GMA/MMA embedded tissue) 

: shape coefficient 

: size coefficient 

: arithmetic mean of areas of glomerular profiles

▬ 

▬ 

equation 1 
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3.5.2 Estimation of numbers of glomerular cells 

The number of cells per glomerulus was estimated by applying the physical disector 

principle. The disector is a three dimensional stereologic probe, which allows 

unbiased and assumption free counting and sizing of particles (Sterio 1984). The 

physical disector, which consists of a pair of physical section planes separated by a 

known distance was used to estimate the numerical density of glomerular cells (C), 

subdivided into the respective glomerular cell types of podocytes (P) as well as 

mesangial (M) and endothelial (E) cells. In each case eight serial semithin sections 

(nominal thickness 0.5µm) of the Epon-embedded samples of cortical kidney tissue 

were cut with an Ultracut E microtome (Leica, Germany), mounted on glass slides 

and stained with Azur II/Safranin. Photographs of complete profiles of identical 

glomeruli, present in the centre of two semithin sections (reference section and look-

up section; disector height:1.5µm), were taken at a magnification of x 630 using a 

Leica DFC 320 camera (Leica, Germany)  connected to a microscope (Orthoplan, 

Leitz, Germany). At the beginning of each set, an object micrometer (Zeiss, 

Germany) was photographed under the same conditions for calibration. Prints of all 

pictures were made at a constant setting of the enlarger. Prints of pictures of 6 pairs 

of glomerular profiles from each animal (n=40) were analyzed. In these prints, the 

area of the glomerular cross-sections was measured using a Videoplan® image 

analysis system (Zeiss-Kontron, Germany). The areas of the glomerular profiles were 

measured planimetrically by circling their contours with a cursor on the digitizing 

tablet of the image analysis system after calibration. All nuclei of glomerular cells 

(subdivided into podocytes (P), endothelial (E) and mesangial (M) cells) sampled in 

the reference section, which were not present in the look-up section, were counted 

(Q-
(C), Q-

(P), Q-
(E), Q-

(M)). The process of counting was then repeated by interchanging 

the roles of the reference and look-up section, thereby increasing the efficiency by a 

factor of two. Figures 3.11 and 3.12 illustrate the work-flow and the principle of 

counting of nuclei of glomerular cells for application of the disector method. 
 

(glom) v = 

(glom) v̂  : stereologically estimated mean glomerular volume (prior to embedding) 

: linear tissue shrinkage correction factor for murine kidney tissue                
  embedded in GMA/MMA 

(glom)(s) v̂ / fs
3 

fs 

equation 2 
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Figure 3.11: Stereological estimation of numbers of cells per glomerulus (disector principle). 
Schematic work-flow. A: Two semithin sections of known distance (reference and look-up section; 

disector height h = 1.5 µm) with profiles of identical glomeruli. B: The total areas of cross sections of 

these identical glomeruli in the reference and look-up section are measured and used as disector 

area, i.e. no subsampling with an unbiased counting frame is performed. C: Counting of Q- in 

photographies of these glomerular profiles.  
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Figure 3.12: Stereological estimation of numbers of cells per glomerulus (disector principle). 
Example for counting of Q-. Detail enlargements of a reference section (A) and a corresponding 

look-up section (B) from the periphery of an identical glomerulus of a NMRI wild-type mouse are 

shown. Disector height: 1.5 µm; semithin section (Epon); Azur II/Safranin staining; magnification: 

630x; U: urinary space; Cap.: glomerular capillary; P: podocyte nucleus present in the reference 

section (arrow), which is absent in the look-up section. Nuclei present in both sections are indicated by 

identical symbols (♠,♣,♦). 

 

Since a reliable differentiation of endothelial vs. mesangial nuclei would require 

electron microscopic pictures of high magnifications and since the subdivision of 

glomerular cell types into podocytes and non-podocyte glomerular cells was of main 

interest, the sum of endothelial and mesagial nuclei (Q-
 (E+M)) was used for further 

calculations. On the average, a number of 66 ±19 nuclei (Q-) was counted per 

individuum. To determine the disector height, the nominal thickness of the sections 

was controlled, using a resectioning technique. Four sections, which were not used 

for sampling, were selected from different section series and vertically reembedded 

in Epon. In electron microscopic pictures (TEM, 32.000x), the thickness of sections 

was obtained by two-point distance measurement on a Videoplan® image analysis 

system after calibration. The measured mean thickness of the sections was 0.47 ± 

0.02µm. A value of 0.5 µm was taken for calculations. The numerical density of 

glomerular cells was calculated using equation 3 (Sterio 1984). 
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Cap. 
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Since calculation of numerical densities of glomerular cells is influenced by tissue 

shrinkage due to the embedding procedure, results were corrected for embedding 

shrinkage, using the linear tissue shrinkage correction factor (fs = 0.95) for murine 

kidney tissue embedded in Epon  (equation 4). The number of the respective cell 

types per glomerulus was calculated as the product of their numerical volume density 

and the mean glomerular volume (equationx5) (Wanke 1996, Weibel 1979).  

 

 
 

 
 

= 

: stereologically estimated numerical density of glomerular cells                 
  (corrected for embedding shrinkage), all glomerular cell types, Y=C;    
  Podocytes, Y=P; endothelial and mesangial cells, Y=E+M 

: linear tissue shrinkage correction factor for murine kidney tissue  
  embedded in Epon 

N̂ V(Y/glom) 

N̂ V(Y/glom) 

fs
3 . 

fs 

N̂ V(Y/glom)(s) 

= 

: stereologically estimated number of cells per glomerulus                               
  (all glomerular cell types, Y=C; Podocytes, Y=P;  
  endothelial and mesangial cells, Y=E+M 

: stereologically estimated mean glomerular volume

N̂ (Y,glom) 

N̂ (Y,glom) 

. N̂ V(Y/glom) (glom) v ˆ

(glom) v ˆ

= 
i=1 

a(glom)i . 

: number of nuclei counted in disector i

: distance between the primary and the reference section (disector height) 

: number of disectors analyzed per case

N̂ V(C/glom)(s) 

Q (C)i ∑ 
n 

N̂ V(C/glom)(s) 

Q (C) 

a(glom)i 

h 

h 
i=1 
∑ 
n 

n 
: area of the glomerular cross section i 

 : stereologically estimated numerical density of all cells (nuclei) C   
  (= podocytes, mesangial and endothelial cells) in the glomerulus  
  (referring to embedded tissue) 

equation 4 

equation 3 

equation 5 
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3.5.3 Determination of the filtration slit frequency (FSF) 
The filtration slit frequency (FSF) was determined using ultrathin sections of the 

identical samples used for estimation of the number of glomerular cells. Azur 

II/Safranin blue-stained sections of Epon embedded samples were surveyed, to 

locate patent glomeruli entirely within the block. Ultrastructural analysis was 

performed on six (5-7) glomerular profiles for each animal of both groups (GIPRdn-

transgenic, bGH-transgenic, as well as the corresponding controls; each n=5) of 

stage II (stage of onset of albuminuria).  Ultrathin sections (60 to 70 mm) of the 

glomeruli were cut with an Ultracut E microtome (Leica, Germany) mounted on 

uncoated copper grids (SSI, Science Services, Germany) and routinely contrasted 

with uranyl-acetate (Serva, Germany) and lead citrate (Serva, Germany) prior to 

examination (Reynolds 1963). Transmission electron microscopy (TEM) was 

performed using a Zeiss EM 10 electron microscope (Zeiss, Germany). Six to eight 

images of peripheral capillary loops from each of the glomerular profiles were 

photographed at 8000x magnification in a predetermined manner by whole turns of 

the stage handle (for details refer to chapter 9.1). For calibration, photographs of a 

standard cross-grating grid (S 107, TAAB; USA) with 2,160 lines/mm were taken with 

every set. For evaluation of the FSF, photographs were developed to a final print 

magnification of 22,500x. The FSF (n(FS)/mm) was determined by counting the total 

number of epithelial filtration slits (figure 3.13) and dividing that value by the total 

length of the peripheral capillary wall at the epithelial interface (Jani et al. 2002, 

Remuzzi et al. 1995). The length of the peripheral capillary wall was measured using 

a Videoplan® image analysis system (Zeiss-Kontron, Germany). On the average 

1,117±215 filtration slits were counted (range 689-1570) per animal. 

 

 
 
Figure 3.13: Determination of filtration slit frequency (TEM, 8000x). The number of filtration slits 

(twelve in this instance) per measured length of the peripheral capillary wall at the epithelial interface 

is determined.  

FP 

GBM E 

P U FS 

500 nm 

P: podocyte 
FP: foot process 
FS: filtration slit 
GBM: glomerular basement membrane 
E: endothelial cell 
U: urinary space

       measured length of the peripheral capillary wall at the epithelial interface  
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3.5.4 Determination of the true harmonic mean thickness (Th) of the glomerular 
basement membrane (GBM) 
In samples of animals assigned to stage II, the glomerular basement membrane 

(GBM) thickness was determined by the orthogonal intercept method (Dische 1992, 

Hirose et al. 1982, Jensen et al. 1979, Ramage et al. 2002). Pictures of transmission 

electron microscopic photographs, which had previously been examined for 

determination of the FSF, were developed to a final print magnification of 45,000x, 

covered by a transparent 2.5 x 2.5 cm grid. The shortest distance between the 

endothelial cytoplasmatic membrane and the outer lining of the lamina rara externa 

underneath the cytoplasmatic membrane of the epithelial foot processes was 

measured where gridlines transected the endothelial surface of the GBM. 

Measurements were made using a transparent logarithmic ruler provided by Ewald 

Freitag (Institute of Thermodynamics, TU Munich), generated according to the 

description by Ramage et al. (2002). In this ruler, 0.75 is used as a multiplier of the 

harmonic (inverse) value for each division, with calibration undertaken, when no 

measured areas of the GBM lay within the initial division (marked A on figure 3.14). 

Figure 3.15 demonstrates the use of the transparent ruler for measurement of the 

GBM thickness. The exact dimensions of the ruler (chapter 9.5.1), as well as a work 

example (chapter 9.5.2) are shown in the appendix. The apparent harmonic mean 

thickness was calculated, from which the true harmonic mean thickness (Th) was 

estimated. 

 

 
 

8/3 π (= 0.8488) is used as correction factor for oblique sectioning, M represents the 

final print magnification factor. On average 215 ± 42 intercepts per animal (range: 

117-289) were measured.  

 

 
 
 

Apparent harmonic mean thickness (l h), mm 

= 
∑(Midpoints x N° of Observations) 

∑(N° of Observations) Th = 
8 

3 π 
106 

Magnification (M) 
x x lh l h 

Harmonic mean thickness (Th), nm 
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Figure 3.14: Logarithmic ruler. "A" denotes the initial division in which no measurements of the 

glomerular basement membrane (GBM) can be contained. Numbers 1 through 11 are classes of ruler 

into which measurements are placed (according to Ramage et al. 2002).  

 

 

 

 
 
Figure 3.15: Determination of the true harmonic mean thickness (Th) of the GBM. Measurements 

are performed using prints of electron microscopic photographs. E: Endothelial cell. GBM: Glomerular 

basement membrane. FP: Podocyte foot process. 1: Gridline (transparent 2.5 x 2.5 cm grid), 

transecting the endothelial surface of the GBM. 2: Measurement of the shortest distance between the 

attachment of the endothelial cytoplasmatic membrane to the outer lining of the lamina rara externa 

underneath the cytoplasmatic membrane of the epithelial foot process, using a transparent logarithmic 

ruler. The ruler is laid over the electron micrograph and the GBM-width is read off at right angles in 

terms of ”classes“ (class 6 in this instance). 
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3.6 Microarray analyses of samples of isolated glomeruli  
 
3.6.1 Work-flow of microarray analysis   
Microarray analysis was performed on 40 samples of isolated glomeruli of the “array-

Cohort” (AC) (= each 5 samples derived from GIPRdn-, respectively bGH-transgenic 

animals and 5 samples of the corresponding non transgenic wild-type littermate 

controls per stage of investigation), each consisting of approximately 1000 purified 

glomeruli, concentrated in RNA-later® RNA stabilization reagent. The basic work-flow 

of the array experiment is illustrated in figure 3.16. First, total RNA was extracted 

from the glomerular samples (chapter 3.6.2), yield, purity and quality of isolated RNA 

were controlled using a microfluid electrophoresis technology (chapter 3.6.3). 

Identical amounts of high quality RNA were then reverse transcribed into cDNA, 

amplified, fragmented and labelled with biotin (chapter 3.6.4). After target preparation 

for GeneChip® Analysis, each sample was hybridised to a GeneChip® Mouse 

Genome 430 2.0 Array (Affymetrix, USA). Then the arrays were washed, 

subsequently stained with phycoerythrin-conjugated streptavidin (SAPE) and washed 

again. The fluorescent intensity emitted by the labelled targets was measured by an 

Affymetrix GeneChip Scanner. Scanned hybridization images were translated into 

so-called “.CEL files” (Affymetrix© Microarray Suite version 5.0.1). Each .CEL-file 

contains the average signal intensity of all pixels of every single feature of probes on 

an Affymetrix © GeneChip Array.  After scanning of the chips the efficiency of 

hybridisation, as well as the quality of hybridized targets was evaluated. For 

identification of differentially expressed transcrips in samples derived from transgenic 

animals, compared to those of the respective control cohort, .CEL file data were 

analyzed using the Genomatix® ChipInspector® 1.2 software (Genomatix®, Germany) 

(chapter 3.7.2). Measurements of RNA (respectively cDNA) quantity and quality, 

RNA amplification and biotin labelling for preparation of cDNA for gene expression 

analysis and the array experiments (target preparation, hybridisation and scan of 

chips) were performed by the University of Michigan Comprehensive Cancer Center 

(UMCCC) Affymetrix and Microarray Core Facility, Cancer Centre, University of 

Michigan, Ann Arbor, Michigan, USA, according to the manufacturer’s instructions, as 

described in the respective protocols. 
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Figure 3.16: Workflow of microarray experiment. A: Total RNA was isolated from each sample of 

isolated glomeruli. Quality and quantity of total RNA were controlled (C). B: From the total RNA, 

mRNA was reverse transcribed (RT) into cDNA, amplificated, fragmented and biotynilated (-B) C: 

Again, quantity and integrity of cDNA and fragmented cDNA were controlled D: The fragmented and 

biotynilated cDNA was hybridized to Affymetrix© Mouse GeneChip© Arrays. E, F: Hybridisation results 

were statistically analyzed in order to identify differentially expressed transcripts. Bioinformatical 

analysis was performed, using software tools as BiblioSphere© (Genomatix©) and Ingenuity Pathway 

analysis©. 
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3.6.2 RNA preparation  
Total RNA was isolated from the glomerular samples (each ~1000 isolated glomeruli 

per sample/animal) using a commercially available silica-gel based isolation protocol 

(RNeasy Mini Kit, Qiagen, USA) including an on-column DNAse digestion. 

Additionally, two samples of total RNA lysates were generated from freshly dissected 

snap frozen (liquid nitrogen) cortical kidney tissue of a male wild-type mouse as a 

“total renal cortex control” to glomerular samples. For RNA-isolation, a modified 

version of the “RNeasy Mini Protocol for isolation of total RNA from animal tissues” 

was used. All steps were performed at room temperature (20-25°C). In order to avoid 

losses of sample material during the first steps of the RNA-isolation process, 

disruption and homogenisation of glomeruli was performed inside the 2ml cup 

containing the 50 µm mini cell strainer with approximately 1000 isolated glomeruli, 

concentrated  in 30 µl RNA-later® RNA stabilization reagent. Therefore 350 µl of 

buffer RLT were added and incubated for 30 minutes on a shaker (Thermomixer R, 

Eppendorf, USA) running at maximum speed. Afterwards 350 µl of 70% ethanol were 

added to the lysate and mixed by pipetting. The sample was then applied to an 

RNeasy mini spin column placed in a 2 ml collection tube; the tube was closed gently 

and centrifuged for 30 sec at ≥8000 x g (Sigma 1 K 15, Sigma, Germany). The flow-

through was discarded. 350 µl Buffer RW1 were pipetted into RNeasy mini spin 

column and centrifuged for 30 sec at ≥8000 x g. The flow-through was discarded. For 

the on-column DNAse digestion, the RNase-free DNase set (Qiagen, USA) was 

used. DNAse I stock solution was prepared by adding 550 µl of RNAse-free water to 

the solid DNAse I (1500 Kunitz units) and gentle mixing.  Per sample 80 µl of DNase 

I incubation mix were prepared by adding 10 µl of DNAse I stock solution to 70 µl 

buffer RDD and gentle mixing. The DNase I incubation mix was pipetted directly onto 

the RNeasy silica gel membrane and placed on the benchtop for 15 minutes. Then 

350 µl Buffer RW1 were pipetted into RNeasy mini spin column and centrifuged for 

30 sec at ≥8000 x g. The flow-through and the collection tube were discarded. The 

RNeasy mini spin column was transferred into a new 2 ml collection tube. 500 µl 

buffer RPE were added onto the RNeasy mini spin column; the tube was closed 

gently and centrifuged for 30 sec at ≥8000 x g to wash the column. The flow-through 

was discarded. Another 500 µl buffer RPE were added onto the RNeasy mini spin 

column; the tube was closed gently and centrifuged for 2 minutes at ≥8000 x g to dry 

the RNeasy silica gel membrane. The flow-through and the collection tube were 

discarded.  
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The RNeasy mini spin column was placed into a new 2 ml collection tube and 

centrifuged for 1 minute at full speed. The flow-through and the collection tube were 

discarded. For elution of total RNA, the RNeasy mini spin column was then placed 

into a 1.5 ml collection tube, 40 µl of RNAse-free water were pipetted directly onto 

the RNeasy silica gel membrane.  The tube was closed gently, placed on the 

benchtop for 1 minute and then centrifuged for 1 minute at ≥8000 x g to elute the 

RNA. To increase the RNA yield, the elution step was repeated by adding the first 

eluate directly onto the RNeasy silica gel membrane.  The tube was closed gently, 

placed on the benchtop for 2 minutes, and then centrifuged for 2 minutes at ≥8000 x 

g. Afterwards the RNA was immediately stored at -80°C until further investigation. 

Additionally to the Kits contents the following reagents and equipments are used: 

14.3 M beta-mercaptoethanol (beta-ME, Sigma Aldrich, USA), RNAse-free pipette 

tips, sterile (Fisher Scientific, USA), Ethanol 96-100% (Sigma Aldrich, USA), and 

Ethanol 70%. 

 
3.6.3 Determination of quantity and quality of isolated total RNA by microfluid 
electrophoresis 
For determination of RNA quantity and quality, an aliquot (1 µl) of each of the 

respective RNA-samples was diluted (1:1-1:5) with RNAse-free water (Qiagen, USA). 

Until investigation specimens were stored at -80°C. RNA quantity and quality was 

controlled by microfluid electrophoresis using the RNA 6000 Pico LabChip® (Agilent 

Technologies, USA) on a 2100 Bioanalyzer (Agilent Technologies, USA), according 

to the manufactorer’s instructions. The Agilent Bioanalyzer system performs 

electrophoretic separation of total RNA by means of a microfluidic system (Mueller et 

al. 2000). It utilizes a network of microfluid electrophoresis channels and wells that 

are etched onto polymer chips (figure 3.17). Sample components are 

electrophoretically separated and each of their absorbances at 260 nm (and 280 nm) 

at a certain time is detected by a spectrophotometer. Readings are translated into 

gel-like images (bands) and electropherograms (peaks), as illustrated in figure 3.18.  

 

Figure 3.17: Mcrofluid electrophoresis chip  

(RNA 6000 Pico LabChip®, Agilent Technologies, USA)  
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Figure 3.18: Principle of measurement of RNA quality and quantity by microfluid 
electrophoresis (RNA 6000 Pico LabChip® on a 2100 Bioanalyzer, Agilent Technologies, USA)   
A: The sample moves through the microchannels from the sample well. 

B: The sample is injected into the separation channel. 

C: Sample components are electrophoretically separated. 

D: Components are detected by their fluorescence.  

E: Graphical output of results: measured values are translated into gel-like images (bands) and 

electropherograms (peaks). Example shows results of total RNA measurement of a sample of isolated 

RNA from a glomerulus isolate of a bGH-transgenic animal. The high quality of RNA is confirmed by 

circumscribed ribosomal peaks in the electrophoresis read-out, with no additional signals below the 

ribosomal bands and no shift to shorter fragments. 

 
3.6.4 Preparation of amplified, biotin-labeled cDNA from total RNA 
Amplified, biotin-labelled cDNA for gene expression analysis was prepared from each 

75 ng of glomerular total RNA in 5 µl of RNase-free water (Qiagen, USA) per sample, 

using the Ovation™ Biotin-RNA Amplification and Labeling System (NuGen Inc., 

USA), according to the manufacturers instructions. A schematic description of the 

single steps of the procedure is illustrated in chapter 9.6. Amplified cDNA was 

purified using DyeEx columns (QIAGEN, USA). The amplified SPIA™ cDNA product 

was purified prior to fragmentation and biotin-labeling, using the NucleoSpin® Extract 

Kit (Clontech Laboratories, USA), according to the manufacturer’s instructions. cDNA 

product yield and purity was measured, using the Agilent 2100 Bioanalyzer® and 

RNA 6000 Nano LabChip® (Agilent Technologies, USA). For quality control of the 

amplified, fragmented cDNA product, ~100 ng of each sample of 

fragmented/biotinylated cDNA were analyzed on an RNA 6000 Nano LabChip® 

(Agilent Technologies, USA). The fragmented, biotin labeled product was used 

immediately after preparation.  

RNA Concentration:       21.876 pg/µl 
rRNA Ratio [28S/18S]:    1.8 

A B C D E
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3.6.5.1 DNA microarray experiments  
DNA microarray experiments (hybridization, washing and scanning of arrays) were 

performed by the UMCCC (University of Michigan Comprehensive Cancer Center, 

Affymetrix and Microarray Core Facility, Cancer Centre, University of Michigan, Ann 

Arbor, Michigan, USA), using the GeneChip® Mouse Genome 430 2.0 Array 

(Affymetrix, USA; see figure 3.16 in chapter 3.6.1). The Affymetrix pan genomic 

mouse arrays, used in the experiments of the present study contain probes, covering 

the entire transcribed mouse genome on a single array. The array area of a Mouse 

Genome 430 2.0 Array GeneChip® is ~1.6 cm2 in size. It contains 1.6 millions of 

features, each with a size of eleven µm in diameter. 45,000 probe sets are present 

on this chip, used to analyze the expression level of over 39,000 transcripts and 

variants from over 34,000 well characterized mouse genes. The probe sets were 

selected from sequences derived from multiple databases in the public domain 

(GenBank®, dbEST, and RefSeq). The sequence clusters were created from the 

UniGene database (June 2002) and then refined by analysis and comparison with 

the publicly available draft assembly of the mouse genome from the Whitehead 

Institute Center for Genome Research (MSCG, April 2002). All experiments were 

performed, using arrays of the identical production lot number. 10 µg of prepared 

target cDNA were hybridized to each array. Hybridization, washing and scanning of 

chips were performed according to the Affymetrix GeneChip® Expression Analysis 

Technical Manual (revision 4). 

 
3.6.5.2 Quality controls of microarrays and cluster analyses                                                        
Each processed microarray was controlled for any material or technical defects. 

Before normalization and for verification of the quality of each experiment itself, a 

“density plot” and a “degradation plot” were generated (Affymetrix© Microarray Suite 

version 5.0.1). The Density plot (refer to chapter 4.3.2.1) is used to visualize 

differences in the distribution of the arrays. It shows the density of the probe match 

intensity for each chip (each line corresponds to an individual array). These should 

be positively skewed (long right tail) and similar to each other in a sample set. The 

RNA digestion plot (refer to chapter 4.3.2.1) was generated by calculating and 

plotting the array-wide mean intensities of ordered probe match probe sets, where 

the position 0 corresponds to the most 5’ probe and position 10 the most 3’ probe. In 

a RNA sample degradation of mRNAs by RNAses preferably starts at the 5' site of 

large mRNA molecules of high abundance.  
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Thus, the described processing of a single, partially degraded mRNA will result in a 

lower number of biotinylated cDNA fragments derived from the 5’ region than from 

the 3' region. Array hybridization of these cDNAs will then result in the detection of 

lower hybridization signal intensities at features containing probes complementary to 

cDNA fragments representing the 5' regions of the target molecule. Cluster 

dendrograms and the principal component analysis (PCA) plot were generated after 

normalisation of .CEL files data. Normalization of .CEL files was performed using the 

RMAExpress (Robust Multichip Average) software (Irizarry et al. 2003). For 

identification of expressed glomerular genes, a “cut-off value” was defined, using the 

expression values of internal Affymetrix control probe sets. All probe sets that 

displayed expression values below this cut-off in all samples were discarded. These 

data were then used for generation of Cluster dendrograms, the PCA plot, as well as 

for performance of the Monte Carlo simulations (refer to chapter 3.7.4). Principal 

component analysis (refer to chapter 4.3.2.2) is commonly used as a cluster tool in 

microarray research. It is designed to capture the variance in a dataset in terms of 

principle components. Samples are expected to cluster into treatment groups and/or 

sample source. Unbiased cluster dendrograms, using Ward’s minimum variance 

were generated from expression data of each 45101 genes (refer to chapter 4.3.2.2), 

using the RACE analysis tools (Remote Analysis Computation for gene Expression 

data, DNA Array Facility, Faculté de biologie et de medicine, Lausanne, Switzerland). 

 

 
3.7 Statistical analysis of microarray data 
 
3.7.1 Nomenclature of “differentially expressed transcripts” and “genes” 
In the present study, the terms “differentially abundant transcript” and “differentially 

expressed transcript” are used synonymously for description of each single transcript 

that is displaying a statistically significant difference of its measured relative 

abundance in the respective groups of samples that were compared to each other (tg 

vs. wt).  Each of these differentially expressed transcripts is identifiable through a 

unique accession number. The number of single transcripts found to be differentially 

expressed in the performed experiments partially reached the limits of capacity for 

performance of calculations.  
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To reduce the intricacy of generated datasets, all differentially expressed transcripts 

derived from a common single gene, were summarized together and assigned to the 

identifier (Entrez Gene ID) of that respective gene (table 4.7, chapter 4.3.3.1). None 

of the different differentially expressed transcripts derived from a common single 

gene displayed a different direction of regulation in the compared groups of the 

experiment. The indicated numbers of “differentially and commonly differentially 

expressed genes” in figure 4.17 (chapter 4.3.3) refer to the numbers of gene-IDs of 

single genes, whose respective transcripts displayed a differential expression of 

congeneric direction in the experiment. So far the term “(commonly) differentially 

expressed gene” is used to describe the entirety of all transcripts of a single gene 

that displayed a congeneric differential abundance in the investigated samples. 

 

3.7.2 Identification of differentially expressed transcripts (tg vs. wt)  
Transcripts, displaying a statistically significant differential abundance in the samples 

derived from transgenic animals (tg), compared to the corresponding samples 

derived from non transgenic wild-type littermate controls (wt) were identified in both 

groups (GIPRdn and bGH) in each stage of investigation (stage I and stage II), using 

the ChipInspector 1.2 software (Genomatix©, Germany) for statistical analysis  of the 

microarray .CEL file data. This approach uses the availability of all probe sequences 

descriptions and annotations, including PM probes as well as MM probes present on 

the Affymetrix arrays for an analysis of microarray raw data different from the original 

“probe-set” approach by Affymetrix©. The microarray raw data of each single group 

and stage of investigation (stage I: GIPRdn-tg vs. -wt; stage I: bGH-tg vs. -wt; stage II: 

GIPRdn-tg vs. -wt and stage II: bGH-tg vs. -wt) were uploaded into the software and 

subsequently analyzed. For data analysis, ChipInspector evaluates expression levels 

of single probes derived from Affymetrix CEL-files. Previous annotations of the single 

oligonucleotide probes by Affymetrix were disregarded, together with the grouping of 

the probes in probe sets. Probes were assigned correctly to transcripts by mapping 

the sequence of each single probe against the current genome annotation of the 

target organism (mus musculus) (National Center for Biotechnology Information 

[NCBI]) and against ElDorado, Genomatix®' database of transcripts. Only probes that 

met quality criteria such as uniqueness in the genome, mismatch proof and other 

criteria were used for the analysis. For the Affymetrix GeneChip® Mouse Genome 

430 2.0 Array, 426,824 probes, representing 90,827 annotated transcripts, fulfil these 

quality criteria.  
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Statistical analysis was carried out after calculating the base 2 logarithm of the fold-

changes (ratios of the single probe signals) between corresponding probes in 

samples derived from transgenic mice and their associated wt-controls in the 

respective groups and stages of investigation. For normalization, a linear total-

intensity normalization algorithm was used. Significant probes were discovered by a 

standard single sided permutation T-test analysis with false discovery rate (FDR) 

calculation, performed at the single probe level, using the significance analysis of 

microarray (SAM) algorithm (Tusher et al. 2001). The probes determined to be 

significantly regulated in the experiment were subsequently matched with the 

transcripts that they describe and the coverage of regulated probes was calculated 

for each of these transcripts. As default value, three significant probes were reqiured 

to detect a transcript as being significantly regulated in the experiment. Analyses 

were performed, applying settings of analysis parameters as specified in table 3.4. 

An FDR of < 0.049% was chosen in the statistical analysis. The respective statistics 

curves (shown in figure 4.16, chapter 4.3.3.1) display the results of the performed 

statistical analyses as a plot of the observed expression ratio over an artificial 

background based on randomized expression ratios (expected ratio) for each perfect 

match probe. The diagonal line passing through the origin represents observed ratio 

= expected ratio; two more lines represent observed ratio = expected ratio + Delta (+) 

and observed ratio = expected ratio + Delta (-). Delta (+/-) are threshold values; the 

change in the expression of a single probe (feature) is considered significant if 

observed ratio > expected ratio + Delta (+) (up-regulated features), or, if observed 

ratio < expected ratio + Delta (-) (down-regulated features). The FDR is estimated for 

a given delta by dividing the average number of features that are called significant in 

the background data (falsely called features) by the number of significant features 

resulting from the experimental assignment. Delta values were adjusted manually in 

order to adjust the FDR. The lists of regulated features (or transcripts) including the 

respective (mean) expression ratio logs were then saved in a MS Excel format for 

further calculations and for export in pathway mapping softwares. Congeneric 

differentially expressed transcripts of a single gene were assigned to their 

corresponding Entrez gene ID.  
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Table 3.4:  Significance analysis of microarray data: settings of analysis parameters 
 
 
3.7.3 Identification of commonly differentially expressed genes 

 

3.7.3.1 Identification of commonly differentially expressed genes in the single 
stages of investigation  
In both stages of investigation (stage I and stage II) the lists of differentially 

expressed transcripts (summarized under their respective Entrez gene ID, = genes; 

see above) between samples derived from transgenic and their corresponding wt-

control mice of the GIPRdn-group and the bGH-group were compared for 

identification of commonly differentially expressed genes, as illustrated in figure 4.17. 

Therefore, the respective lists of differentially expressed genes and their mean 

expression ratio logs were compared (MS Excel) and genes displaying a congeneric 

differential expression in both groups (identical annotation and direction of regulation) 

of one stage (intrastadial comparison: differentially expressed genes GIPRdn stage I 

vs. bGH stage I and differentially expressed genes GIPRdn stage II vs. bGH stage II) 

were identified. The mean expression ratio logs for these commonly differentially 

expressed genes were calculated as the artithmetic mean of the respective mean 

expression ratio logs that the commonly differentially expressed genes displayed in 

the respective groups (wt vs. tg). Functional annotation of these genes was 

performed on a computer, using the publicly available NCBI database (National 

Center for Biotechnology Information), the BiblioSphere Pathway Edition software 

(Genomatix®, Germany) and the Ingenuity Pathways Analysis 5.0 software (IPA, 

Ingenuity® Systems, USA). 

Group 

Settings of analysis parameters 
GIPRdn 
stage I 

tg vs. wt 

bGH 
stage I 

tg vs. wt 

GIPRdn 
stage II 

tg vs. wt 

bGH 
stage II  

tg vs. wt 

 
chosen Delta value for up-regulation 

 
1.685 

 

 
1.637 

 

 
1,698 

 

 
2.239 

False Discovery Rate (up-regulation) 
 

< 0.049% < 0.049% < 0.049% < 0.049% 

chosen Delta value for down-regulation 
 

-1.622 -1.551 -1.710 -2.228 

False Discovery Rate (down-regulation) < 0.049%
 

< 0.049%
 

< 0.049% < 0.049% 
 

Treatment/Control pairing; number of unique single probes: 35081; random seed: 2359 
 



 - 85 -  

 

3.7.3.2 Identification of commonly differentially expressed genes in both stages 
of investigation  
Genes that displayed a congeneric differential expression in all groups and stages 

(inter- and intrastadial comparison: [commonly differentially expressed genes in the 

GIPRdn- and bGH-group of stage I] vs. [commonly differentially expressed genes in 

GIPRdn- and bGH-group of stage II]) and their corresponding mean expression ratio 

logs were identified in an analogous manner (figure 4.17).  

 
3.7.4 Estimation of statistical enrichment of the numbers of commonly 
differentially expressed genes by Monte Carlo simulation 
In order to estimate if the numbers of commonly differentially expressed genes 

resulting from the comparison of differentially expressed transcripts (tg vs. wt) in the 

respective groups and stages of investigation, displayed a significant statistical 

enrichment between these groups, a mathematical method of statistical sampling 

called “Monte Carlo simulation” was performed (Robert and Casella 2004). This 

statistical approach is applied to estimate the likelihood with that a certain number of 

identical values can be found within two independent and different sized lists of 

values, under purely randomly conditions. Thus, this approach does not regard any 

of the molecular functions of the respective transcripts/genes, nor their potential 

biological significance. Here, performance of Monte Carlo simulations basically 

provides the information, if a given number of commonly differentially expressed 

genes, derived from the comparison of two different sized groups of differentially 

expressed genes  is likely to be just the result of coincidence or not. The numbers of 

differentially expressed glomerular genes (tg vs. wt) were both detected using the 

identical settings of parameters in the significance analysis of microarray data. Thus, 

the numbers of differentially expressed genes (each distinctively identifiable by its 

corresponding EntrezGene ID) in these two different groups both derive from the total 

number of expressed glomerular genes in the respective samples, which was 

determined to be approximately 26,000 (after normalisation, averagely 26,000 probe-

sets on the arrays displayed detected hybridisation signal intensities above the cut-

off threshold). The program, which was especially designed for the application of 

Monte Carlo simulations in this study, was programmed by Timothy Wiggin, Dept. of 

Neurology, University of Michigan, Ann Arbor, USA.  
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The program each generates a number of unique random numbers, equal to the 

number of observed differentially expressed genes in both groups to be compared, 

ranging from 1 to 26,000 and compares these numbers to each other. The number of 

identical unique random numbers found present in both groups of random numbers is 

detected by the program and saved. This operation is repeated for 10,000 times. The 

arithmetic mean, as well as the standard deviation of these 10,000 values is then 

calculated. The average number of identical unique random numbers found present 

in both groups, as well as the standard deviation of values can be regarded as the 

result to be expected under purely randomly conditions, displaying a normal 

distribution of single values. The probability of observing a distinct single value 

(observed number of commonly differentially expressed genes) within this distribution 

is calculated, using a Z-Test (left-tailed statistical test for population mean; MS Excel 

function “Normdist-true”). This probability is indicated by a p-value. P-values < 0.05 

were considered statistically significant. Monte Carlo simulations were performed for 

the estimation of probabilities of observing the respective numbers of commonly 

differentially expressed genes in stage I and II, as well as the numbers of commonly 

differentially expressed genes resulting from the interstadial comparison. A 

calculation example illustrating the performance of the Monte Carlo is provided in the 

appendix (chapter 9.8).  

 

3.8 Cluster analyses 
Common differential gene expression profiles of wt-/tg-pairs of animals were 

clustered using a euclidian distance metric hierarchical clustering software tool 

(MultiExperiment Viewer 4.0 software). Average linkage clustering (Eisen et al. 1998) 

was performed to cluster the samples and the expression ratios of commonly 

differentially expressed transcripts in both stages of investigation. 

 
3.9.1 Confirmation of array data by quantitative real-time PCR  
To confirm the common differential expression of selected transcripts detected in the 

array experiment, real-time PCR was performed on cDNA samples obtained through 

reverse transcription of total RNA of samples of glomerulus isolates from animals of 

the Array Cohort and the Independent Control Cohort. Numbers of animals/samples 

investigated in the real-time PCR confirmation experiments are indicated in table 3.5.  
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Numbers of samples investigated in the real-time PCR confirmation experiments 

 

Array cohort 
 

 

Independent control cohort 
 Group / stage 

wt tg wt tg littermate pairs  
      

GIPRdn stage I 4 4 5 5 4 
GIPRdn stage II 5 5 7 7 5 
      

bGH stage I 5 5 5 5 4 
bGH stage II 5 5 8 8 5 
      

 
Table 3.5: tg: transgenic animal; wt: corresponding non-transgenic wild-type control. The numbers of 

littermate pairs in the Independent Control Cohort are indicated. 

 
3.9.2 Reverse transcription of RNA into cDNA 
Approximately 100 ng (where available) of each sample of total RNA were reverse 

transcribed (RT+) in a 40 µl volume, containing 8 µl first strand buffer (5x), 2 µl 100 

mM DTT (both Invitrogen, USA), 0.8 µl 25 mM dNTP (Amersham Pharmacia, USA), 

1 µl ribonuclease inhibitor (RNasin, Promega, USA), 0.5 µl linear acrylamid (15 

µg/ml; Ambion, USA), 0.43 µl random hexamers (Hexanucleotide Mix, 10x conc., 

Roche, USA) and 0.86 µl reverse transcriptase (Superscript, 200 U/µl, Invitrogen, 

USA) for 1 hour at 42 °C. Resulting cDNAs (RT+) were then diluted 1:10 in TRIS-

EDTA buffer [10 mM Tris-HCl, 1 mM EDTA, pH 8.0]. For genomic DNA-

contamination control (RT-), the same reaction was applied, using 10 ng of total 

RNA, but without addition of reverse transcriptase. All samples were stored at -20°C 

until further investigation. 

 

3.9.3 Performance of real-time PCR  
Real time PCR was performed on a 7900HT Fast Real-Time PCR System with Fast 

96-Well Block Module TaqMan ABI 7900 Sequence Detection System® (Applied 

Biosystems, USA) and SDS Software v2.2.2.  Expression of 5 selected transcripts 

was analyzed, using predesigned gene-specific TaqMan Gene Expression Assays 

(Applied Biosystems, USA), as summarized in table 3.6. Each assay consists of two 

unlabeled PCR primers (final concentration of 900 nM each) and a TaqMan MGB 

(minor groove binder) probe (final concentration of 250 nM) with a reporter dye (6-

FAM, 6-carboxy-fluorescein) linked to the 5´ end and a nonfluorescent quencher 

(NFQ) at the 3´ end of the probe. Detection of specific amplification of target cDNA is 

achieved by using probes that cross exon-exon junctions of the respective target 
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sequences and therefore will not detect genomic DNA. Using non fluorescent 

quenchers reduces background noise signals and allows for a more accurate 

measurement of reporter dye contributions. The use of MGB probes 

(dihydropyrroloindole-tripeptides conjugated to the probe), allows for the design of 

shorter probes, as MGBs increase the melting temperature without increasing probe 

length (Afonina et al. 1997, Kutyavin et al. 1997).  

For each sample and run, 2 µl of the suspended cDNA (RT+, diluted 1:10 in TE 

buffer) were mixed with 10 µl of the TaqMan Fast Universal PCR Master Mix (2x), No 

AmpErase® UNG  (which contains the hot-start AmpliTaq Gold® DNA Polymerase 

system, deoxyribonucleotides, MgCl2, and buffers; Applied Biosystems, USA; storage 

at 4-8°C), 7 µl of H2O and 1 µl of the respective TaqMan Gene Expression Assay 

(storage at -20°C). Each 10 µl were transferred into two wells of an ABI PRISM 96-

well optical reaction plate (Applied Biosystems, USA). Components were kept on ice 

during the procedure. Samples consisting of destilled H2O served as negative 

controls; samples, in which destilled H2O was used instead of the cDNA template 

served as no template controls (NTC). Next to Cyclophyllin A, also 18S rRNA and 

Gapdh served as housekeeping (internal reference) transcripts. The probe of the 

predesigned gene-specific TaqMan Gene Expression Assay for detection of 18S 

rRNA expression (accession number: X03205) was labeled with VIC® reporter dye 

and TAMRA (6-carboxy-tetramethylrhodamine) quencher dye. Single primers and 

FAM-labelled probes (AppliedBiosystems, USA) were used for real-time PCR 

detection of Gapdh expression (accession number: M32599). As these primers do 

not cross exon-exon junctions of the Gapdh target sequence, the genomic DNA-

contamination control (RT-) samples were run in parallel with the cDNA (RT+) 

samples and the no template controls. For each sample and run, 2 µl of the 

suspended cDNA (RT+) or the respective genomic DNA-contamination control (RT-) 

were mixed with 10 µl of the TaqMan Fast Universal PCR Master Mix (2x), 6.4 µl of 

H2O, 0.4 µl probe and each 0.6 µl of the forward and the reverse primer (each 10 pM) 

and transferred into two wells of the optical reaction plate as described above. 

To confirm the effectiveness of tissue separation in investigated glomerulus isolates, 

real-time PCR was performed for detection of nephron specific gene expression 

patterns, using Wilm’s tumor antigen 1, a marker for podocytes. The WT-1/Gapdh 

ratios of glomerular specimens (Cohen et al. 2002, Cohen and Kretzler 2003) and 

samples of total cortical kidney tissue were compared to confirm the enrichment of 

podocytes in samples of isolated glomeruli.  



 - 89 -  

 
Table 3.6: TaqMan real-time PCR Gene Expression Assays (GEA, Applied Biosystems, USA). 

 

All measurements were performed in duplicates. If possible, all samples belonging to 

the respective groups to be compared (wt vs. tg) were run on identical plates. The 

reaction plates were covered with ABI PRISM optical adhesive covers (Applied 

Biosystems, USA) and centrifuged for 5 seconds at 1000 rpm (Kendro® SORVALL® 

Legend™ T EASYset™, USA). Prepared plates were then inserted into the Fast 96-

Well Block Module of the real-time PCR instrument and runs were performed in the 

fast mode: after an initial hold of 20 seconds at 95°C, the samples were cycled 40 

times at 95°C for 1 sec and 60°C for 20 sec. Negative controls, no template controls 

and genomic DNA-contamination controls (RT-) were negative in all runs. For 

comparison of expression levels, relative quantification of results was performed, 

using the ΔCT method (Cohen and Kretzler 2003). For all runs to be compared, 

identical threshold lines were manually set in the exponential phase of the 

amplification. For each sample, the expression abundance of each target transcript, 

relative to the expression of the housekeeping transcript was calculated: The mean 

CT (= threshold cycle) was calculated from the duplicate measurements of each 

sample, both for the target transcript, as well as for the housekeeping transcript. By 

subtraction of the mean CT value of the target transcript from the mean CT value of 

the housekeeping transcript of the respective sample, the respective ΔCT value was 

calculated as: ΔCT = mean CT (housekeeping transcript) - mean CT (target transcript). 

Assuming a comparable amplification efficiency of the primers of the housekeeping 

and target sequences, copies of the individual target transcript were defined as 

2meanΔCT copies of housekeeper transcripts. For the respective groups, the means of 

2meanΔCT values of all samples were calculated and compared (tg vs. wt), using a two 

sided paired Student’s t-test.  

 

Assay ID 
 

 

Gene Symbol 
 

Gene Name 
 

 

Mm00445880_m1 
 

Fabp4 
 

Fatty acid binding protein 4, adipocyte 
Mm00514455_m1 Ctsh Cathepsin H 
Mm00446214_m1 Msr1 Macrophage scavenger receptor 1 
Mm00436454_m1 Cx3cl1 Chemokine (C-X3-C motif) ligand 1 
Mm01277159_m1 Cd44 CD44 antigen 
Custom TaqMan® 
GEA 

WT1 Wilm’s Tumor 1 (acession N°: M55512) 

Custom TaqMan® 
GEA 
 

PPIA Cyclophyllin A (acession N°: NM_008907) 
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For confirmation of common differential expression of transcripts (detected in the 

array experiments) in samples derived from transgenic animals of all investigated 

stages and groups, real-time PCR experiments were performed as match pairs 

analyses, by simultaneously comparing all samples of transgenic animals with their 

associated controls (refer to chapter 4.3.6). A calculation example is given in the 

appendix (chapter 9.7).  

 

3.10 Bioinformatical analyses 
Bioinformatical analyses were performed in order to gain advanced inside views into 

the biological and molecular functions, cellular distributions and potential interactions 

of glomerular transcripts/genes (their deduced proteins, respectively) that displayed a 

detected congeneric common differential abundance between samples of transgenic 

animals and their corresponding controls in both investigated groups in stage I or in 

stage II, as well as in both stages. Functional annotation of these genes and 

bioinformatical analyses were performed, using the publicly available NCBI database 

(National Center for Biotechnology Information), the BiblioSphere Pathway Edition 

software (Genomatix®, Germany) and the Ingenuity Pathways Analysis 5.0 software 

(IPA, Ingenuity® Systems, USA), as well as by searching publicly available literature 

databases (pubmed, NCBI) and EST (expressed sequence tag) expression profile 

(NCBI) databases. These analyses were performed with particular regard to any 

documented association of these genes and gene products to processes and 

pathways involved in development or appearance of nephropathies or 

glomerulopathies. 

 

3.11 Statistical analysis and data presentation 
As an essential feature of the experimental design of the present study, sample 

materials were generated from pairs of animals and also analyzed pairwise. In the 

respective groups and stages of investigation, means of values were compared (tg 

vs. wt) by a two-tailed paired Student’s t-test (MS Excel, Microsoft®, USA). P values < 

0.05 were considered significant. Throughout the study, data are presented as 

means and standard error of means (SEM) or standard deviations (SD), as indicated. 

For statistical analysis of microarray data refer to chapter 3.7.2. Presented data-

charts were generated, using the GraphPad Prism 3.0 software (GraphPad Software 

Inc., USA).  
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4. Results 
 

4.1 Characterisation of investigated stages of nephropathy 
 
4.1.1 Age of animals 
According to the experimental design of the present study, tg/wt pairs of animals 

were assigned to the investigated stages of glomerular alteration, according to either 

an significant increase of the mean glomerular volume (stage I), or the detection of 

onset of albuminuria (stage II) of the respective transgenic animal. Thus, a pair of 

animals dissected at one point of time each consisted of one transgenic animal and 

its corresponding non transgenic littermate control (wt) of identical age. The average 

ages of animals of the respective groups and stages of both cohorts of investigation 

were almost identical (see table 4.1). The ages of GIPRdn-transgenic animals at the 

time point of onset of albuminuria displayed a greater variance compared to bGH-

transgenic mice.  

 

Table 4.1: Age of GIPRdn-transgenic and bGH-transgenic mice and their respective 

controls in stage I and stage II.  

 
 

age [d] at day of sacrifice 
 

       
 

Group/stage 

 

       n 

 

mean 

 

SD 

 

min 

 

max 

 AC ICC AC ICC AC ICC AC ICC AC ICC 
          
          

GIPRdn stage I 10 10 78   74 1   3 77 71 80  80 
GIPRdn stage II 10 14 112 111 37 32 70 67 155 151 
          

bGH stage I 10 10 27   28 2   3 25 27 29  33 
bGH stage II 10 16 32   35 2   2 30 32 35  38 
           

 
AC: Array Cohort; ICC: Independent Control Cohort; n: numbers of animals investigated; SD: standard 
deviation. 
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4.1.2 Body weight 
In both cohorts of investigation, the mean body weight of GIPRdn-transgenic animals 

compared to their respective controls, measured at the day of dissection, was 

decreased in both investigated stages, reaching statistical significance in stage II. 

bGH-transgenic animals in stage I did show a tendency to an increase of body weight 

compared to their respective controls. These differences were more pronounced in 

stage II, yet did not reach statistical significance (table 4.2). 

 

Table 4.2: Body weight of GIPRdn-transgenic and bGH-transgenic mice and their 

respective controls in stage I and stage II. 

 
 

Body weight [g] at day of sacrifice 
 

     
          

group/stage        genotype n mean SD significance
 AC ICC AC ICC AC ICC AC ICC 
         

          

wt 5 5 37.6 35.0 3.2 2.4 GIPRdn stage I  tg 5 5 34.6 29.4 4.1 3.4 ns ** 
          

wt 5 7 38.0 38.9 2.0 6.6 GIPRdn stage II  tg 5 7 33.0 31.6 1.1 4.2 * * 
       

wt 5 5 20.4 18.9 3.7 4.5 bGH stage I  tg 5 5 21.6 25.1 1.3 6.3 ns * 
          

wt 5 8 25.8 27.3 1.7 3.4 bGH stage II  tg 5 8 29.2 29.5 2.4 6.0 ns ns 
          

 
AC: Array Cohort; ICC: Independent Control Cohort; tg: transgenic animals; wt: corresponding non-
transgenic wild-type controls. n: numbers of animals investigated; SD: standard deviation; comparison 
(tg vs. wt) of groups per stage; level of significance: ns = not significant; * p < 0.05; ** p < 0.01. 
 
 
 
4.1.3 Kidney weights and relative kidney weights 
Both kidney weights and relative kidney weights (% of body weight) of GIPRdn-

transgenic animals were significantly increased in both stages of investigation (AC). 

In the independent control cohort (ICC) the increase of kidney weights of GIPRdn-

transgenic animals assigned to stage II curtly failed to reach statistical significance in 

comparison to their associated controls, due to a high standard deviation of values. 

Kidney weights of bGH-transgenic animals were slightly increased vs. controls. 

These differences were statistically not significant (table 4.3). 
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Table 4.3: Kidney weights and relative kidney weights of GIPRdn-transgenic and 

bGH-transgenic mice and their respective controls in stage I and stage II.  

 
 

kidney weight 1 [mg] 
 

        
          

group/stage          genotype n mean SD significance 
 AC ICC AC ICC AC ICC AC ICC 
         
         

wt 5 5 672 609 87 62 GIPRdn stage I  tg 5 5 819 721 103 83 ** * 
          

wt 5 7 656 640 81 207 GIPRdn stage II  tg 5 7 855 808 66 120 ** ns 
         

wt 5 5 340 314 53 67 bGH stage I  tg 5 5 361 401 5 171 ns ns 
          

bGH stage II  wt 5 8 436 477 53 80 
 tg 5 8 485 487 48 134 ns ns 
          
 

relative kidney weight 2 [%] 
 

        
          

group/stage          genotype n mean SD significance 
 AC ICC AC ICC AC ICC AC ICC 
         
 
 

         

wt 5 5 1.8 1.7 0.1 0.2 GIPRdn stage I  tg 5 5 2.4 2.5 0.2 0.2 ** ** 
          

wt 5 7 1.7 1.6 0.2 0.3 GIPRdn stage II  tg 5 7 2.6 2.5 0.2 0.3 ** ** 
        

wt 5 5 1.7 1.7 0.2 0.1 bGH stage I  tg 5 5 1.7 1.6 0.1 0.2 ns ns 
          

wt 5 8 1.7 1.7 0.1 0.2 bGH stage II  tg 5 8 1.7 1.6 0.2 0.2 ns ns 
          
 

1 sum of weight of both kidneys; 2 sum of weight of both kidneys in % of body weight; AC: Array 

Cohort; ICC: Independent Control Cohort; tg: transgenic animals; wt: corresponding non-transgenic 

wild-type controls; n: numbers of animals investigated; SD: standard deviation; comparison (tg vs. wt) 
of groups per stage; level of significance: ns = not significant; * p < 0.05; ** p < 0.01. 
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4.1.4 Glomerular histology  
Glomerular morphology was evaluated by light microscopy, using the same PAS-

stained histological sections that were used for determination of the mean glomerular 

volume. In all investigated animals, glomeruli displayed a mature phenotype. 

Irrespective of stage or group affiliation, the areas of cross sections of a considerable 

fraction of glomeruli of transgenic mice appeared to exceed those of non-transgenic 

animals (figure 4.1). Concerning conspicuous alterations of glomerular morphology 

detected in glomeruli of transgenic mice, these frequently showed mesangial 

expansion and hypercellularity, as well as mild mesangial matrix accumulation, 

occurring in a predominantly focal pattern with a higher frequency in transgenic 

animals assigned to stage II. Manifest glomerulosclerotic lesions including hyalinosis, 

capillary obliteration and synechia formation were exquisitely rare and only observed 

in single glomeruli of bGH-transgenic animals of stage II. Tubulo-interstitial lesions, 

such as atrophy of tubuli, interstitial fibrosis and signs of proteinuria were not 

detected in any of the investigated sections. Performance of transmission electron 

microscopy (TEM) confirmed the preservation of the structural elements of the 

glomerular filtration barrier after perfusion with magnetic beads, as no morphological 

alterations of podocytes, podocyte foot processes or of the endothelium were 

observed in the investigated samples. However, in samples derived from transgenic 

animals, the thickness of the glomerular basement membrane (GBM) seemed to be 

slightly increased compared to the associated non-transgenic controls (figure 4.1). 
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Figure 4.1 (page 94): Glomerular histology. Stage I: stage of glomerular hypertrophy; stage II: 
glomerular hypertrophy with onset of albuminuria; tg: transgenic animal; wt: corresponding non-

transgenic littermate control. A: Light microscopy of representative cross sections at approximately the 

glomerular equator (PAS, 250x). The area of glomerular sections is increased in transgenic animals. 

Arrows mark magnetic beads inside the glomerular capillaries. B: Representative electron microscopic 

pictures of peripheral glomerular capillary loops (TEM, 45,000x). The thickness of the glomerular 

basement membrane seems to be increased in transgenic animals.  

 

 
4.1.5 Morphometric analysis and quantitative stereology 
 
4.1.5.1 Mean glomerular volume  
In the Array Cohort, the mean glomerular volume of GIPRdn- transgenic and bGH-

transgenic animals was significantly increased compared to their corresponding non-

transgenic littermate controls in both investigated stages of nephropathy. In stage I, 

the mean glomerular volume of GIPRdn-transgenic animals was increased by 45% on 

the average and by 58% in the bGH-transgenic animals compared to their respective 

controls. In stage II, the mean glomerular volumes of GIPRdn-transgenic animals 

displayed an enlargement of 59% on the average and of 63% in bGH-transgenic 

animals compared to their respective corresponding controls. In the Independent 

Control Cohort, the mean glomerular volume was estimated in samples assigned to 

stage I (n=5 wt, 5 tg) of investigation and was also significantly increased in 

transgenic animals in both groups. In the Independent Control Cohort, the mean 

glomerular volume of GIPRdn-transgenic animals was increased by 10% on the 

average and by 67% in the bGH-transgenic animals compared to their respective 

controls. Data of animals of the Array Cohort are presented in figure 4.2.  

In the investigated samples of the Array Cohort, the mean glomerular volume-to-body 

weight-ratio (v(glom)/body weight) and the mean glomerular volume-to-kidney weight-

ratio (v(glom)/kidney weight), were significantly increased in all transgenic animals 

(GIPRdn-transgenic mice and bGH-transgenic mice) vs. their associated controls in 

both investigated stages, indicating an overproportional glomerular growth in the 

transgenic mice of both groups and stages (table 4.4). 
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Mean glomerular volume, 
 

 
 
Figure 4.2: Mean glomerular volume (Array Cohort). A: GIPRdn-transgenic animals and 

corresponding controls; B: bGH-transgenic animals and corresponding controls. Stage I: glomerular 

hypertrophy; stage II: onset of albuminuria; tg: transgenic animals; wt: corresponding non-transgenic 

wild-type littermate controls. In both stages of investigation, transgenic mice of both groups displayed 

a significant increase of their mean glomerular volumes. Data are presented as means ± SEM; level of 

significance (tg vs. wt): ** = p < 0.01 and *** = p < 0.001 vs. control animals; n = 5 transgenic mice and 

5 associated non-transgenic littermate controls per group and stage.  

 
Table 4.4: Stereology of the kidney in GIPRdn–transgenic and bGH-transgenic mice 

and their respective controls in stage I and stage II (Array Cohort): 

Mean glomerular volume/body weight; Mean glomerular volume/kidney weight. 

 

 
tg: transgenic animals; wt: corresponding non-transgenic wild-type controls; n = 5 transgenic mice and 

5 associated non-transgenic littermate controls per group and stage. SD: standard deviation; 
comparison (tg vs. wt) of groups per stage; level of significance: ns = not significant; * p < 0.05; ** p < 

0.01; *** p < 0.001. 

 
 

v(glom)/body weight 
[103 µm3/g] 

 

 

v(glom)/kidney weight 
[103 µm3/g] 

 
 

Group/stage    genotype 
 

 

mean
 

 

SD 
 

 

significance 
 

 

mean  SD 

 

significance 
 

     

wt 8.6 0.51 0.49 0.05 GIPRdn stage I tg 13.7 0.86 *** 0.58 0.06 ** 
        

wt 7.9 1.27 0.46 0.05 GIPRdn stage II tg 14.4 1.34 *** 0.56 0.08 ** 
       

wt 11.0 1.21 0.66 0.05 bGH stage I tg 16.1 2.22 ** 0.96 0.13 * 
        

wt 9.5 2.73 0.56 0.15 bGH stage II tg 13.6 3.06 *** 0.82 0.19 ** 
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4.1.5.2 Numerical density of glomerular cells     
In both GIPRdn-transgenic animals, as well as in bGH-transgenic animals of both 

investigated stages of glomerular alteration, the estimated numerical density of 

glomerular cells was reduced compared to their respective controls, reaching 

statistical significance in the bGH-groups. The estimated numerical density of 

podocytes was significantly reduced in transgenic animals of all groups and stages, 

except for GIPRdn-transgenic mice of stage II (table 4.5). 

 
 
Table 4.5: Numerical density of glomerular cells in GIPRdn-transgenic and bGH-

transgenic mice and their respective controls in stage I and stage II (Array Cohort). 

 
 

Group/stage  genotype     

          SD 
 

significance 
  C P E+M  C P E+M C P E+M 
            

wt 670 202 453 114 45 75 GIPRdn stage I tg 643 148 506 35 16 22 ns * ns 
            

wt 803 224 575 81 31 64 GIPRdn stage II tg 631 144 487 128 56 90 ns ns ns 

            
wt 1104 350 755 107 26 112 bGH stage I tg 890 223 666 148 52 107 * *** ns 

            

wt 924 281 636 90 29 70 bGH stage II tg 759 184 574 89 42 57 
         

** * * 
 

Y = C: glomerular cells; Y = P: podocytes; Y = E + M: endothelial and mesangial cells; tg: transgenic 

animals; wt: corresponding non-transgenic wild-type controls; n = 5 transgenic mice and 5 associated 

non-transgenic littermate controls per group and stage. SD: standard deviation; comparison (tg vs. wt) 
of groups per stage; level of significance: ns = not significant; * p < 0.05; ** p < 0.01; *** p < 0.001 

 
 
 
 
 
 
 
 
 
 
 

 

N̂ V(Y/glom) [103/mm3] 
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4.1.5.3 Number of cells per glomerulus 

In both groups (GIPRdn -group and bGH-group) and stages of nephropathy, the 

estimated number of endothelial and mesangial cells per glomerulus, was 

significantly increased in transgenic animals vs. their respective controls, while the 

number of podocytes per glomerulus remained almost unchanged (figure 4.3). 

 

 

 

 
 
 
 
Figure 4.3: Number of cells per glomerulus.  
A, C: GIPRdn-transgenic animals and associated controls; B, D: bGH-transgenic animals and 

corresponding controls. Stage I: glomerular hypertrophy; stage II: onset of albuminuria; tg: transgenic 

animals; wt: corresponding non-transgenic littermate controls. n = 5 transgenic mice and 5 associated 

non-transgenic littermate controls per group and stage. Glomerular cell types: C: glomerular cells; P: 

podocytes; E+M: endothelial and mesangial cells. Data are presented as means ± SEM; level of 

significance (tg vs. wt): * p < 0.05; ** p < 0.01; *** p < 0.001. 

 

 
 
 
 

* 

** ** 

GIPRdn stage II 

 GIPRdn stage I  bGH stage I 

bGH stage II 

0

100

200

300

400

0

100

200

300

400

0

100

200

300

400
* 

wt tg wt tg wt tg 

* 

0

100

200

300

400

wt tg wt tg wt tg 

** * 

B 

D 

C P E+M 

C P E+M 
nu

m
be

r
of

 c
el

ls
pe

r 
gl

om
er

ul
us

nu
m

be
r

of
 c

el
ls

pe
r 

gl
om

er
ul

us
C 

wt tg wt tg wt tg 

wt tg wt tg wt tg 

A 

C 

P E+M 

C P E+M 

nu
m

be
r

of
 c

el
ls

pe
r 

gl
om

er
ul

us
nu

m
be

r
of

 c
el

ls
pe

r 
gl

om
er

ul
us



 - 99 -  

4.1.5.4 Filtration slit frequency (FSF) 
The FSF [FS/mm GBM], determined in peripheral glomerular capillary loops of 

transgenic animals (Array Cohort) did not show a statistical significant difference to 

the FSF of the corresponding non-transgenic littermate controls (GIPRdn: -tg: 2550 ± 

147 and -wt: 2587 ± 338; bGH: -tg: 2739 ± 175 and -wt: 2803 ± 103) in stage II 

(figure 4.4). 

 
 

 
4.1.5.5 Thickness of the glomerular basement membrane (GBM) 
The true harmonic mean thickness (Th) of the glomerular basement membrane of 

peripheral glomerular capillary loops of transgenic animals (GIPRdn-tg: 156 nm ± 31 

and bGH-tg: 126 nm ± 5), compared to their respective controls (GIPRdn-wt: 137 nm 

±  28 and bGH-wt: 108 nm ± 10) in stage II was slightly but significantly increased 

(figure 4.5). 

 

 
Figure 4.5: True harmonic mean thickness of the glomerular basement membrane (GBM).   
Stage II: stage of onset of albuminuria; tg: transgenic animals; wt: corresponding non-transgenic 

littermate controls.  n = 5 transgenic mice and 5 associated non-transgenic littermate controls per 

group. Data are presented as means ± SEM; level of significance (tg vs. wt): ** p < 0.01. The GBM-

thickness was increased by 13.9% in GIPRdn-transgenic animals and by 16.2% in bGH-transgenic 

animals, compared to their respective controls. 
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4.1.6 Results of urine analyses 

 
4.1.6.1 Detection of glucosuria in GIPRdn -transgenic mice 
The diabetic phenotype of GIPRdn -transgenic mice was reconfirmed by detection of 

glucosuria in spot urine samples. GIPRdn -transgenic mice displayed glucosuria as 

early as from day 21 on. At the time point of sacrifice, all GIPRdn -transgenic mice 

displayed glucosuria, whereas glucosuria was not detected in any of the control 

animals.  

 
4.1.6.2 Urine creatinine concentrations 
As a consequence of the polyuria and hyposthenuria observed in these animals, 
GIPRdn-transgenic mice of both investigated cohorts (Array Cohort and Independent 

Control Cohort) displayed significantly lower urine-creatinine concentrations in spot 

urine samples taken 24 hours prior to dissection compared to their controls in all 

investigated stages. In stage I, also bGH-transgenic animals exhibited significantly 

decreased urine-creatinine concentrations in spot urine samples taken 24 hours prior 

to dissection compared to their controls (table 4.6). 

 
 
Table 4.6: Urine-creatinine concentrations 
 

 

Urine-creatinine [mg/dl] 
     

Group/stage                 genotype 
 

 

n 
 

mean 
 

SD 
 

significance 
 

      

wt 5 26,7 7,1 GIPRdn stage I tg 5 1,6 0,8 ** 
      

wt 11 41,6 13,5 GIPRdn stage II tg 11 2,6 1,3 *** 
      

wt 5 23,3 6,1 bGH stage I tg 5 16,4 5,9 * 
      

wt 9 42,1 14,1 bGH stage II tg 9 15,8 10,0 ns 
      

 

Stage I: glomerular hypertrophy; stage II: stage of onset of albuminuria; tg: transgenic animals; wt: 
corresponding non-transgenic littermate controls; n: numbers of animals investigated (Array Cohort 

and Independent Control Cohort); SD: standard deviation; level of significance (tg vs. wt): ns = not 

significant; * p < 0.05; ** p < 0.01; *** p < 0.001. 
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4.1.6.3 Urine protein excretion patterns (SDS-PAGE) 
As scheduled by the study’s experimental design, transgenic animals as well as their 

corresponding non transgenic littermate controls of both investigated cohorts (Array 

Cohort and Independent Control Cohort), assigned to stage I did not show evidence 

of albuminuria in the SDS-PAGES at any point of time (figure 4.6, A to F). All 

transgenic animals assigned to stage II exhibited selective glomerular proteinuria 24 

hours prior to dissection (figure 4.6, C and D): bands of approximately 69 kDa, which 

meets the size of murine albumin, were detected by SDS-PAGE. Excretion of 

proteins larger than 37 kDa was not detectable in the urine samples of controls 

(figures 4.6 and 4.7). Bands in the region of approximately 18 kDa reflect major 

urinary proteins (MUPs), which appear in the murine urine under physiological 

conditions particularly in male mice.  Compared to their control animals, all 

investigated bGH-transgenic mice exhibited a marked decrease of these MUPs 

(figure 4.7). In transgenic animals the onset of albuminuria was detected by recurrent 

SDS-PAGE analysis of urine samples taken in defined intervals. Transgenic animals 

displayed albuminuria twice within 48 hours prior to dissection, after a first negative 

result (figure 4.6 E and F). The comparability of results of SDS-PAGE urine protein 

analyses, using a silver staining of gels (GIPRdn-group), and respective results of 

Coomassie blue stained gels (bGH-group), was confirmed. Results of Coomassie 

blue stained gels of urine samples of albuminuric (stage II) and non-albuminuric 

bGH-transgenic mice (stage I), as well as their associated control animals were 

comparable with the results of silver stained SDS-PAGE gels of the same samples 

(figure 4.7). 
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Figure 4.6: Detection of albuminuria. 12 % SDS-PAGE, silver staining. M: Molecular weight  marker 

(Precision Plus, Biorad, Germany): visible marker-bands indicate the molecular weights of 

recombinant protein standards of 100, 75, 50 and 37 kDa from top to bottom; alb: murine albumin 

standard (400 ng/lane) at approximately 69 kDa; tg: transgenic animal; wt: wild-type littermate control; 

Ø: spacing lane (H2O, negative control); dS: day of sacrifice. A, C, E: GIPRdn-transgenic mice and 

corresponding wild-type controls (urine diluted to 1.5 mg/dl [creatinine]). B, D, F: bGH-transgenic mice 

and corresponding wild-type controls (urine diluted to 3.0 mg/dl [creatinine]). A, B: Stage I (glomerular 

hypertrophy, 1 day prior to sacrifice). None of the transgenic animals is displaying albuminuria. C, D: 

Stage II (onset of albuminuria, 1 day prior to sacrifice): all transgenic animals exhibit albuminuria. E, F: 

time course of onset of albuminuria (stage II). Transgenic animals displayed albuminuria twice within 

48 hours prior to dissection, after a first negative result. E: urine samples of a GIPRdn-transgenic 

animal and the corresponding wild-type control were taken 7, 3 and 1 days prior to dissection (dS-7, 

dS-3, dS-1). F: Urine samples of a bGH-transgenic animal and the corresponding wild-type control 

were taken 5, 3 and 1 days prior to dissection (dS-5, dS-3, dS-1).  

wt 

D: bGH stage II: onset of albuminuria

E: GIPRdn : time course of onset of albuminuria 

tg wt tg wt 

M tg alb tg tg tg wt wt wt wt wt M tg alb tg tg tg wt wt wt 

M tg alb tg tg tg wt wt wt wt M tg alb tg tg tg wt wt wt wt 
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A:  GIPRdn stage I: glomerular hypertrophy  B:  bGH  stage I: glomerular hypertrophy 

F: bGH: time course of onset of albuminuria 

C:  GIPRdn stage II: onset of albuminuria 
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Figure 4.7: Comparability of SDS-PAGE urine protein analysis results of coomassie blue and 
silver stained gels. Urine samples of a bGH-transgenic animal and the corresponding wild-type 

control were taken 5, 3 and 1 days prior to dissection (dS -5, dS -3, dS -1). Urine samples were diluted 

to a creatinine concentration of 3 mg/dl. 12 % SDS-PAGE gels. A: Coomassie staining. B: Silver 

stained SDS-PAGE gel of the same samples. M: Molecular weight marker; alb: murine albumin 

standard (400 ng/lane) at approximately 69 kDa (arrows). A: visible marker-bands (Broad range, 

Biorad, Germany) indicate the molecular weights of recombinant protein standards of 97, 66, 45, 31, 

and 14.5 kDa from top to bottom (the marker lane in A was superimposed for purpose of illustration); 

in B: visible marker-bands (Precision Plus, Biorad, Germany) indicate the molecular weights of 

recombinant protein standards of 100, 75, 50, 37, 25 and 10 kDa from top to bottom.  
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4.1.6.4 Western blot analysis 

The presence of albuminuria (as detected in SDS-PAGE-based urine protein 

analyses) in GIPRdn-transgenic and bGH-transgenic animals investigated in stage II 

was confirmed by detection of albumin bands of approximately 69 kDA (murine 

albumin) in Western-blot analysis (figure 4.8). 

 

 

 
 
 
Figure 4.8: Detection of murine albumin in spot urine samples of two bGH-transgenic (tg) and 
two GIPRdn-transgenic animals and their corresponding wild-type (wt) littermate controls by 
Western blot. At this point of time (one day prior to sacrifice), transgenic animals displayed 

albuminuria for 48 hours (stage II: stage of onset of albuminuria). alb: mouse albumin standard (400 

ng); the positions (75 kDa & 50 kDa) of the molecular weight standard are indicated. Arrow marks 

albumin bands of approximately 69 kDa. 

 
 

 

4.1.6.5 Quantification of urine albumin concentrations by ELISA 
In stage II, both GIPRdn- and bGH-transgenic animals displayed a significant increase 

of urine albumin/creatinine ratios compared to their associated controls, whereas in 

stage I, the urine albumin/creatinine ratios of transgenic and wild-type animals did not 

differ significantly (figure 4.9).  
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Figure 4.9: Urine albumin/creatinine ratios. Stage I: stage of glomerular hypertrophy; stage II: 
stage of glomerular hypertrophy with onset of albuminuria; tg: transgenic animals; wt: corresponding 

non-transgenic wild-type littermate controls. A: albumin/creatinine ratios were significantly increased in 

GIPRdn-transgenic mice of stage II, but not in stage I. B: albumin/creatinine ratios were also 

significantly increased in bGH-transgenic mice of stage II, but not in stage I. Numbers of animals 

investigated: n = 5 transgenic animals and 5 corresponding controls per group in stage I; n = 11 

transgenic animals and 11 corresponding controls for the GIPRdn-group of stage II; n = 9 transgenic 

animals and 9 corresponding controls for the bGH-group in stage II. Data are presented as means ± 

SEM; level of significance: ** = p < 0.01, and *** = p < 0.001 vs. control animals. 

 
 
4.2 Magnetic large scale isolation of kidney glomeruli 
 

4.2.1 Pilot experiments  
The perfusion technique pointed out to be the most important prerequisite for the 

method’s success. Common problems using conventional perfusion devices (gauge 

needle, tube, syringe) were inadjustability and fluctuations of the perfusion pressure, 

as well as precipitation of magnetic beads, formation of air bubbles and perfusate 

remaining inside the system used for perfusion. This led to a variable number of 

glomeruli not being perfused with beads and thereby being inaccessible for magnetic 

isolation (Blutke et al. 2005). Those problems could be avoided, using a self 

developed perfusion device (Blutke 2006) (figure 3.5, chapter 3.4.2), which allows 

uncomplicated perfusion of nearly all glomeruli in the adult mouse kidney with 

sufficient numbers of beads under adjustable and steady pressure conditions (Blutke 

et al. 2005). Irrespective of age or genetic background of mice, optimal perfusion 

results were obtained, using magnetic beads of 4-5 µm diameter (e.g. Dynabeads ® 

M-450 Epoxy, Dynal, Germany) at a perfusion pressure of 70 mm Hg (figure  4.11 B).  
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Higher perfusion pressures led to glomerular damage, like dilation of glomerular 

capillaries (figure 4.10 B). Using beads (beadMAG-55, Chemicell, Germany) of 

smaller diameter (1µm) provided large amounts of isolated glomeruli, as large 

numbers of beads accumulated inside the glomeruli (figure 4.10 A), but also in low 

purities of glomerulus isolates, since these small beads accumulated in peritubular 

vessels as well. Variation in diameters of magnetic beads of a nominal diameter of 

4.5 µm (as observed in SIMAG-Oxiran/20 beads, Chemicell, Germany) proved to be 

a further possible problem, partially causing obstruction of preglomerular vessles by 

large beads (figures 4.10 C and D). The necessity of concentration of isolated 

glomeruli in a small volume of RNA stabilization reagent (RNA-later®, Ambion, 

Germany) for further sample treatment (isolation of total RNA for transcript profiling 

analyses) led to the development of a device for concentration of glomerulus isolates 

by sieving. Due to the high density of RNA-later®, centrifugation was ineffective to 

concentrate the isolated glomeruli into an appropriate volume of RNA-later® after 

isolation, irrespective of centrifugation time or speed. Furthermore, isolated glomeruli, 

especially those diluted in RNA-later®, showed strong adhesive properties towards 

nearly all kinds of surfaces, favoring losses of glomeruli during the further treatment 

of the samples. These problems could be minimized by the use of a 50 µm mini cell 

strainer (refer to figure 3.10 in chapter 3.4.2) for removal of surplus RNA-later® and 

further sample processings of isolated glomeruli. 

 
 
Figure 4.10: Perfusion outcome under varying circumctances. A: Glomerulus, perfused with 

beads of 1 µm diameter (beadMAG-55, Chemicell, Germany). Note the accumulation of large numbers 

of beads inside the glomerular capillaries [native, 40x]. B: Perfusion with a pressure 120 mm Hg 

(Dynabeads M-450 Epoxy, Dynal, Germany): dilation of glomerular capillaries [HE staining, 250x]. C, 
D: Variation in magnetic bead diameter. C: Isolated glomerulus, perfused with beads of a nominal 

diameter of 4.5 µm (SIMAG-Oxiran/20, Chemicell, Germany). Note (arrow) the variation of bead 

diameter [native, 40x]. D: Section from the contralateral kidney from C. The variation in magnetic bead 

diameter partially caused obstruction of preglomerular vessels by large beads [PAS staining, 250x].   
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4.2.2 Quantity and purity of generated glomerulus isolates 
Using the developed final protocol (refer to chapter 3.4.2) for large scale glomerulus 

isolation from kidneys perfused with magnetic beads (Dynabeads ® M-450 Epoxy, 

Dynal, Germany), an average of ~ 6000 glomeruli per kidney of about 95 % purity 

were harvested within ~90 minutes. The Collagenase digestion and gentle filtration 

steps efficiently detached the morphologically intact glomeruli from surrounding 

tissues. Capillaries of isolated glomeruli were embolized with 10-15 magnetic beads 

on the average. The glomeruli displayed an intact structure and shape. The 

maintenance of glomerular morphology was also confirmed by electron microscopic 

examination of perfused glomeruli (figure 4.11). Glomerulus isolates designated for 

RNA-isolation for transcript profiling analysis each consisted of about 1000 isolated 

glomeruli (range 940-1200) and displayed a purity of nearly 100% (absence of non 

glomerular tissues in the isolate), as these glomeruli were picked under visual control 

(refer to chapter 3.4.2). About 80% to 95% of these glomeruli were lacking the 

Bowman’s capsule; some of them had part of the afferent and/or efferent arterioles 

still attached, as verified in preliminary experiments by visual inspection of a 

representative number of glomerulus isolates. Concerning the percentual share of 

encapsulated glomeruli, there were no differences between glomerulus isolates 

derived from transgenic and non-transgenic animals. Isolation time, calculated from 

the animal’s death to the transfer of isolated glomeruli into RNA-later®, was 75 

minutes on the average. The effectiveness of tissue separation in investigated 

glomerulus isolates was also confirmed by real-time PCR for detection of nephron 

specific gene expression patterns, using Wilm’s tumor antigen 1, a marker for 

glomerular podocytes (Cohen and Kretzler 2003). The WT-1/Gapdh ratio was 362x 

higher in the glomerular specimens compared to total kidney cortex samples.  
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Figure 4.11: Perfusion with spherical superparamagnetic beads: Embolization of glomerular 
capillaries. A-E: Mice were perfused with 40 ml of a suspension of approximately 8 x 107 magnetic 

beads (Dynabeads® M-450 Epoxy, Dynal, Invitrogen Corporation, Germany; nominal diameter 4.5 µm) 
through the left heart ventricle, using a perfusion pressure of 70 mm Hg. A: Isolated glomeruli [native, 

32x, arrow marks magnetic bead]. B: Section of perfused kidney displaying an optimal perfusion 

result: glomeruli are uniformly perfused with sufficient numbers of magnetic beads (indicated by 

arrow); perfusion pressure 70 mm Hg [GMA/MMA, HE staining, 250x].C: Isolated glomerulus [native, 

40x, arrow marks magnetic bead]. D: Semithin section of isolated glomerulus [Epon, Azur II/Safranin 

blue staining, 630x, arrow marks magnetic bead]. E: Magnetic bead inside a glomerular capillary 

[TEM, 8000x, asterisk marks magnetic bead]. 
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4.3 Results of transcript profiling analyses 
 
4.3.1.1 Quantities and quality of total glomerular RNA 
Quality and quantity of total RNA, extracted from the glomerulus isolates, was 

controlled for each sample by microfluid electrophoresis (Agilent Technologies, 

USA). The high quality of RNA was confirmed by circumscribed ribosomal peaks in 

the electrophoresis read-out, with no additional signals below the ribosomal bands 

and no shift to shorter fragments (figure 3.18 E in chapter 3.6.3). On the average an 

amount of ~780 ± 356 ng (range: 196 - 1456 ng) total RNA was isolated from 

approximately 1000 isolated glomeruli (range 940 -1200) per sample in the Array 

Cohort. The average concentration of total RNA in these samples was 19.5 ± 8.9 

ng/µl (range: 4.9 - 36.4 ng/µl). Concerning the average yields of total RNA extracted 

from comparable numbers of isolated glomeruli of transgenic animals vs. their 

corresponding controls, no significant difference was detected, independent of stage- 

or group-affiliations of the respective sample materials. Interestingly, the average 

amounts of total RNA isolated from glomerular samples concordantly displayed a 

strong dependency on genetic backgrounds of mice. Amounts of total RNA extracted 

from glomerulus isolates of mice of CD1 background (GIPRdn-group) were averagely 

about 50% of the respective yields attained in samples of mice of NMRI background 

(bGH-group).  

 

4.3.1.2 Quality of target cDNA  
Using microfluid electrophoresis (Agilent Technologies, USA), the high quality of all 

amplified, as well as all fragmented/biotinylated cDNA products (n = 40) distinguished 

for hybridisation on the arrays for gene expression analysis was also confirmed 

(figure 4.12). 

 
Figure 4.12: Quality of target cDNA. Graphical output of measurement of quantity and quality of 

amplified (A) and fragmented/ biotinylated (B) cDNA products of an identical sample (bGH-transgenic 

animal assigned to stage II).  

B A 
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4.3.2.1 Control of quality and comparability of microarray data 
The good overall quality and comparability of array data of the different samples 

investigated in the experiment was confirmed by evaluation of “density“- and 

“degradation”-plots (Microarray Suite version 5.0.1 software, Affymetrix, USA). All 

arrays of the experiment showed similar and comparable patterns of density 

distributions of overall hybridisation intensities, as well as comparable degrees of 

only weak degradation of target cDNA (figure 4.13). 

 

 
 
 
Figure 4.13: Control of quality and comparability of unprocessed microarray data. A: Density 
plot. B: Degradation plot. Plots were generated from microarray data of all samples in the array 

experiment (n = 40). Data from each microarray are represented by a different curve. A: Density plot. 
This plot shows the density of the probe intensities to visualize differences in the distributions of the 

arrays. All curves are congruently positively skewed (long right tail), displaying comparable and similar 

shapes and slopes. This indicates an optimal comparability of data for differential analyses. B: 
Degradation plot. For each array and within each probe-set, perfect match probes were arranged by 

their proximity to the 5' end of a respective gene. The plot shows the average intensity of the probes, 

classified by this order (as a function of 5'-3' position of probes). The slope of each lines’ trend 

indicates potential RNA degradation of the sample material hybridized to the array. The vertical axis is 

shifted and scaled to highlight the trends of the lines. All curves are roughly parallel and display 

comparable low slopes, indicating comparable degrees of only minimal degradation of all samples. 
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4.3.2.2 Cluster analysis of normalized microarray data  
The Principle Component Analysis plot (PCA plot, figure 4.14) and the Cluster 

dendrograms (figure 4.15) illustrate the overall similarity, as well as common 

differences of detected patterns of hybridisation intensities in normalized microarray 

data of the different subgroups of samples in the array experiment. In the PCA plot, 

the patterns of hybridisation intensities detected in samples derived from isolated 

glomeruli displayed a considerable difference compared to those detected in samples 

derived from RNA lysates from two samples of total cortical kidney tissue (controls, 

figure 4.14). Interestingly, glomerular samples always completely clustered into 

groups of common genetic backgrounds (bGH-group: NMRI background and GIPRdn-

group: CD1 background), rather than into groups of wild-type and transgenic animals 

or common stages of glomerular alteration. Only samples derived from the bGH-

group assigned to stage II clustered into distinct groups of wild-type and transgenic 

animals (figures 4.14 and 4.15). 

 
 

Figure 4.14: PCA plot of normalized microarray data of all samples of the experiment. Note the 

clear separation between glomerular samples and those derived from total RNA lysates of cortical 

kidney tissue. Glomerular samples completely clustered into distinct groups of common genetic 

backgrounds (NMRI and CD1).  
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Figure 4.15: Cluster dendrograms. Unbiased cluster dendrograms (Ward’s minimum variance) 

generated from expression data of each 45101 genes per investigated array.) A: All glomerular 

samples (stages I & II); B: Glomerular samples assigned to stage I; C: Glomerular samples assigned 

to stage II. Glomerular samples always completely clustered into groups of common genetic 

backgrounds. Only samples of the bGH-group assigned to stage II clustered into distinct groups of 

wild-type and transgenic animals (C,*). 
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4.3.3.1 Identification of differentially expressed genes in the single groups and 
stages of investigation (stage I: GIPRdn: tg vs. wt; stage I:  bGH: tg vs. wt; stage 
II: GIPRdn: tg vs. wt and stage II:  bGH: tg vs. wt) 
Using the ChipInspector 1.2 software with applied settings of analysis parameters 

(FDR ≤ 0.049 %) as mentioned above (refer to chapter 3.7.2) for performance of 

statistical analysis of microarray data (figure 4.16), transcripts that displayed a 

statistical significant differential expression in the respective samples to be compared 

with each other (5 samples of transgenic animals and 5 samples of their associated 

wild-type controls per group and stage) were identified. Congeneric differentially 

expressed transcripts of a single gene were assigned to their common corresponding 

Entrez Gene ID. The respective numbers of differentially expressed transcripts and 

corresponding genes are given in table 4.7 and indicated in figure 4.17.  
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Figure 4.16: Statistics curves from significance analysis of microarray data: Identification of 

differentially (level of significance: FDR < 0.049 %) expressed transcripts in glomerular samples (each 

5 samples of transgenic animals vs. 5 samples of their associated wild-type littermate controls per 

group and stage). A: GIPRdn-group of stage I. B: bGH-group of stage I. C: GIPRdn-group of stage II.  

D: bGH-group of stage II. For interpretation of the statistics curves refer to chapter 3.7.2. 
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Table 4.7: Numbers of differentially (FDR < 0.049%) expressed glomerular 

transcripts and corresponding genes in the single groups and stages of investigation.  
 

  
 

Number of corresponding genes 

Group Stage 

 

Number of 
differentially 
expressed 
transcripts 

 

 

total 
number 

 

 

increased 
expression 

 

 

decreased 
expression 

 
      

stage I 1946 531 302 229 
GIPRdn: tg vs. wt stage II 5922 1422 609 957 
      

stage I  5065 1566 986 436 
bGH: tg vs. wt stage II 17643 4300 2059 2241 
      

 
 
4.3.3.2 Commonly differentially expressed genes in stage I  
(intrastadial comparison:  [GIPRdn stage I, tg vs. wt] vs. [bGH stage I, tg vs. wt]) 
In the defined stage of glomerular hypertrophy before onset of albuminuria (stage I), 

a number of 86 genes was found to be commonly differentially expressed in both 

investigated groups (GIPRdn-group and bGH-group, see figure 4.17). These 86 genes 

independently displayed a congeneric direction of differential expression, observed 

both in the patterns of differential glomerular gene expression between GIPRdn-

transgenic vs. their associated wild-type animals, as well as in those of glomerular 

samples derived from bGH-transgenic vs. their corresponding wild-type animals. The 

commonly differentially expressed genes in stage I are listed in the appendix (chapter 

9.1), indicating their Entrez Gene IDs, official gene symbols and names (NCBI 

annotations), as well as their mean expression ratio logs (calculated as arithmetic 

means of expression ratio log values with identical algebraic signs of the respective 

differentially expressed genes in the single groups of stage I of investigation). 

 
4.3.3.3 Commonly differentially expressed genes in stage II  
(intrastadial comparison: [GIPRdn stage II, tg vs. wt] vs. [bGH stage II, tg vs. wt]) 
Analogous to the approach mentioned above, a number of 469 genes was found to 

be independently congeneric commonly differentially expressed in both investigated 

groups (GIPRdn-group and bGH-group) in the defined stage of glomerular 

hypertrophy with onset of albuminuria (figure 4.17). These genes are as well listed in 

the appendix (chapter 9.2).  
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4.3.3.4 Commonly differentially expressed genes in both stages of 
investigation (inter- and intrastadial comparison: [stage I: GIPRdn vs. bGH] vs. 
[stage II: GIPRdn vs. bGH])  
A number of 21 genes were identified, that independently displayed a congeneric 

common differential expression in glomerular samples of both GIPRdn- and bGH-

transgenic animals in both investigated stages (stage I and stage II) of glomerular 

alteration (refer to figure 4.17). These genes are listed in table 4.8, indicating their 

Entrez Gene IDs, official gene symbols and names (NCBI annotations). The 

indicated mean expression ratio logs (*) were calculated as arithmetic means of 

expression ratio log values with identical algebraic signs of the respective commonly 

differentially expressed genes of stage I and stage II. 

 
Table 4.8: Commonly differentially expressed genes in all stages and groups of 

investigation. 

 

 

 

 

 

 

Entrez Gene ID 
 

 

official symbol 
 

 

official full name 
 

 

mean ratio log (*)
 

 
    

12260 C1qb complement component 1, q 
subcomponent, beta polypeptide 

0.90 

11770 Fabp4 fatty acid binding protein 4, adipocyte 0.86 
114332 Xlkd1 extra cellular link domain-containing 1 0.84 
60361 Ms4a4b membrane-spanning 4-domains, 

subfamily A, member 4B 
0.68 

14129 Fcgr1 Fc receptor, IgG, high affinity I 0.60 
21956 Tnnt2 troponin T2, cardiac 0.57 
12505 Cd44 CD44 antigen 0.55 
20312 Cx3cl1 chemokine (C-X3-C motif) ligand 1 0.52 
68922 Dnaic1 dynein, axonemal, intermediate chain 1 0.51 
12983 Csf2rb1 colony stimulating factor 2 receptor, beta 

1, low-affinity (granulocyte-macrophage) 
0.50 

545486 2810484G07Rik RIKEN cDNA 2810484G07 gene:   
similar to beta tubulin 1, class VI 

0.50 

20288 Msr1 macrophage scavenger receptor 1 0.47 
14702 Gng2 guanine nucleotide binding protein        

(G protein), gamma 2 subunit 
0.46 

70598 Filip1  filamin A interacting protein 1 0.46 
13058 Cybb cytochrome b-245, beta polypeptide 0.46 
70065 1700030G11Rik RIKEN cDNA 1700030G11 gene 0.44 
17916 Myo1f myosin IF 043 
101160 AI838057 expressed sequence AI838057 -0.60 
13036 Ctsh cathepsin H -0.63 
223473 Npal2 NIPA-like domain containing 2 -0.63 
234564 AU018778 expressed sequence AU018778 -1.11 
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Figure 4.17: Experimental design and numbers of (commonly) differentially expressed genes. 
Differentially expressed glomerular transcripts (tg vs. wt) were identified in the single stages of 

investigation in both groups (GIPRdn-group and bGH-group) and assigned to their corresponding 

genes. Their numbers are indicated as “differentially expressed genes”. “Commonly differentially 

expressed genes”, representing the intersections of congeneric differentially expressed genes in both 

groups in comparable stages) were identified (numbers in bolt), as well as genes that displayed a 
congeneric common differential expression in all investigated groups and stages (21). 
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4.3.4 Estimation of statistical enrichment of commonly differentially expressed 
genes by Monte Carlo simulation 

The results of performed Monte Carlo simulations indicate a significant enrichment of 

numbers of commonly differentially expressed genes within the respective groups 

and stages of investigation compared to each other. In table 4.9, the settings and 

results of Monte Carlo simulations are summarized. 
 

 

Settings and results of Monte Carlo simulations 
 

 
Monte Carlo simulation of random 
conditions (10,000 simulations per 

comparision) 
 Comparison 

Settings of Monte 
Carlo simulations 

Results of Monte Carlo 
simulations 

stage group 

(1) Range 
of source 
of random 
numbers 

 

(2) N° of 
random 
numbers 
derived 
from (1) 

 

Mean of 
expected 
random 
overlaps (5)

Standard 
deviation of 
randomly 
expected 
overlaps  

observed 
overlap (6) 

Statistical comparison 
of expected and 

observed results (7) 

GIPRdn 1-26,000 531  
I 

bGH 1-26,000 1422 
32.36 5.42 86 *** 

GIPRdn 1-26,000 1566  
II 

bGH 1-26,000 4300 
285.78 14.77 469 *** 

 

GIPRdn stage I
+ bGH stage I 

 

1-26,000 86 (3) 
 
 

I & II 
  

GIPRdn stage II
+ bGH stage II 

 

1-26,000 469 (4) 

1.746 1.29 
 

21 
 

*** 

 
 
Table 4.9: Settings and results of Monte Carlo Simulations 
(1) representing the number of totally expressed glomerular genes 
(2) representing the number of differentially expressed glomerular genes (tg vs.wt) 
(3) representing the number of commonly differentially expressed genes in stage I 
(4) representing the number of commonly differentially expressed genes in stage II 
(5) arithmetic mean of the expected number of commonly differentially expressed genes  under random     

   conditions(overlaps of 10,000 random simulations) 
 (6) representing the experimentally observed numbers of commonly differentially  

    expressed genes in the respective intra- and/or interstadial comparisions 
(7) level of significance: ***: p ≤ 0.001 
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4.3.5 Cluster analyses of common differential expression profiles 
Common differential expression profiles of transcripts, detected in glomerular 

samples derived from tg/wt-pairs of animals assigned to either the first or the second 

stage of investigation, did not cluster into distinct groups of common genetic 

backgrounds (figure 4.18). As well, performance of cluster analysis of differential 

expression profiles of glomerular transcripts that displayed a congeneric common 

differential expression in all stages and groups of investigation did not allow for 

separation of distinct subgroups of sample origin (figure 4.19).  

 

Figure 4.18: Cluster analysis of expression profiles of commonly differentially expressed transcripts in 

glomerular samples of wt-/tg- pairs of animals of both groups (bGH-group and GIPRdn-group) in stage 

I (A) and stage II (B) of investigation. Common differential gene expression profiles were clustered 

using an Euclidian distance metric hierarchical clustering software tool (MultiExperiment Viewer 4.0). 

Average linkage clustering was performed to cluster both transcripts and samples. Each raw 

represents the differential expression profile of one transcript and each column represents the 

differential expression profile of one pair of animals (wt-/tg). Red squares: transcripts with over-

represented abundance in the respective sample of the transgenic animal. Green squares: transcripts 

with under-represented abundance in the respective sample of the transgenic animal. In both stages 

of investigation samples did not cluster into distinct groups of common genetic backgrounds. 
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Figure 4.19: Cluster analysis (MultiExperiment Viewer 4.0) of differential expression profiles of 

commonly differentially expressed transcripts in all stages (stage I and stage II) and groups (bGH-

group and GIPRdn-group) of investigation.  Average linkage clustering was performed to cluster both 

transcripts and samples. Each raw represents the differential expression profile of one transcript and 

each column represents the differential expression profile of one pair of animals (wt-/tg). Red squares: 

transcripts with over-represented abundance in the respective sample of the transgenic animal. Green 

squares: transcripts with under-represented abundance in the respective sample of the transgenic 

animal. The samples did not cluster into distinct groups of common genetic backgrounds. The names 

of the 21 commonly differentially regulated genes are indicated by their gene symbols. 
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4.3.6 Confirmation of array data by real time polymerase chain reaction  
The relative expression abundances of five of the 21 genes, that were identified to be 

commonly differentially expressed in glomerular samples of GIPRdn-transgenic and 

bGH-transgenic mice (vs. their corresponding non-transgenic wild-type littermate 

controls) in all investigated stages in the array experiments, were analyzed by 

performance of quantitative real time PCR, using processed samples of glomerular 

RNA derived from animals of the Array Cohort and the Independent Control Cohort. 

Expression levels of three “housekeeping transcripts” (18S rRNA, Gapdh and 

Cyclophyllin A), were used for calculation of relative expression differences of the 

respective targets in pairs of samples derived from transgenic animals vs. their 

associated controls. In the array experiments neither 18S rRNA, nor Gapdh- or 

Cyclophyllin-mRNA displayed a differential expression in investigated glomerular 

samples of transgenic mice (vs. controls). Concerning their suitability to serve as 

reliable “housekeeping genes” for relative quantification of expression abundances of 

the respective target sequences in real-time PCR experiments, Gapdh and 

Cyclophyllin concordantly displayed comparable results throughout all investigated 

samples, whereas glomerular 18S rRNA expressions were found to be relatively 

heterogeneous. Finally, Cyclophyllin was used as housekeeping transcript in all real-

time PCR confirmations of microarray data in the present study. Transcripts coding 

for FABP4 (fatty acid binding protein 4, adipocyte), MSR1 (macrophage scavenger 

receptor 1), CX3CL1 (Fractalkine) and the CD44 antigen displayed a significant (FDR 

< 0.049%) increased expression in the array experiments, whereas Ctsh (cathepsin 

H) mRNA displayed a decreased expression abundance in glomerular samples of 

transgenic animals, independent of their different stage- or group-affiliations. The 

statistically significant congeneric common differential expression of these 5 

transcripts was confirmed by real-time PCR (figures 4.20, 4.21 and 4.22). According 

to the common pattern of differential expression of these transcripts, real-time PCR 

experiments were performed as “matched-pairs” analyses, by simultaneously 

comparing all samples of transgenic animals with their corresponding non-transgenic 

controls (figures 4.21 and 4.22).  
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Figure 4.20: Confirmation of array data by real-time PCR: Cx3cl1 (Fractalkine). The applied mode 

of confirmation of array data by real-time PCR is illustrated. Cyclophyllin served as housekeeping 

transcript. In the array experiment, Cx3cl1 mRNAs displayed a common differential expression in 

glomerular samples derived from GIPRdn-transgenic and bGH-transgenic mice (tg vs. wt) in both 

stages of investigation in the Array Cohort. In A, the result of real-time PCR confirmation for 

differential expression of Cx3cl1 is shown for each single stage and group of the Array Cohort (n = 

each 4 samples of GIPRdn-transgenic animals and their associated controls in stage I; n = each 5 

samples of GIPRdn-transgenic or bGH-transgenic animals and their associated controls for all other 

investigated stages), using the same samples of total glomerular RNA analyzed in the array 

experiments. As Cx3cl1 commonly displayed a significant differential expression between all samples 

derived from transgenic animals vs. their associated controls in the array experiment, all samples of 

transgenic animals and all samples derived from their respective controls in the Array Cohort were 

each merged  for performance of a “matched pairs” analysis (B). In C and D, the respective results of 

real-time PCR confirmation for differential expression of Cx3cl1 in the samples of the Independent 

Control Cohort are shown (n = each 5 samples of GIPRdn-transgenic, respectively bGH-transgenic 

animals and their associated controls in stage I; n = each 7 samples of GIPRdn-transgenic animals and 

their associated controls in stage II; n = each 8 samples of bGH-transgenic animals and their 

associated controls in stage II). Data are presented as means ± SEM; level of significance: *: p < 0.05; 

**: p < 0.01 and ***: p < 0.001 vs. controls. 
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Figure 4.21: Confirmation of array data by real-time PCR: Cx3cl1 (Fractalkine). Detected 

expression abundances of Cx1cl3 were each related to the expression abundance of Cyclophyllin 

(housekeeping transcript), detected in the same sample. In A, the result of real-time PCR confirmation 

for differential expression of Cx3cl1 is shown for each single stage and group of all animals 

investigated in the Array Cohort and the Independent Control Cohort. B: Each all samples of 

transgenic (tg) animals and all samples of their respective non-transgenic wild-type controls (wt) of 

the Array Cohort and the Independent Control Cohort were merged for performance of “matched 

pairs” real-time PCR analysis, confirming the statistically significant differential expression of Cx3cl1. n 

= 44 samples of transgenic animals (tg) and 44 samples of their respective non-transgenic controls 

(wt). Data are presented as means ± SEM; level of significance: *: p < 0.05; **: p < 0.01 and ***: p < 

0.001 vs. controls.  
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Figure 4.22: Confirmation of array data by real-time PCR.  Congeneric common differential 

expression of selected transcrips, detected in samples of total glomerular RNA of transgenic animals 

of all groups and stages investigated in the array experiment was confirmed by real-time PCR 

(“matched pairs” analyses, using samples of total glomerular RNA of animals of the Array Cohort and 

the Independent Control Cohort). Numbers of samples investigated were each n = 44 samples of 

transgenic animals (tg) and 44 samples of their respective non-transgenic controls (wt), except for 

Cd44: n = 42 samples of transgenic animals and 42 samples of their respective non-transgenic 

controls. Expression abundances of the respective target-transcripts were each related to the 

expression abundance of Cyclophyllin (housekeeping transcript), detected in the same sample. 

Increased expression abundances of macrophage scavenger receptor 1 mRNA (Msr1, A), CD44 

antigen mRNA (Cd44, C) and fatty acid binding protein 4 mRNA (Fabp4, D) were confirmed, as well 

as the decreased expression abundance of cathepsin H mRNA (Ctsh, B). Data are presented as 

means ± SEM; level of significance: **: p < 0.01 and ***: p < 0.001 vs. controls.  
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4.3.7 Bioinformatical analysis 

 
4.3.7.1 Molecular functions of gene products of commonly differentially 
expressed genes in the single stages of investigation 
From 86 commonly differentially expressed genes in stage I, 53 could be associated 

with a known function of their respective gene product. In stage II, 315 from 469 

commonly differentially regulated genes were functionally annotated. The diagrams 

in figure 4.23 and 4.24 illustrate the percentual proportions of the respective 

molecular functions and subcellular locations of annotated commonly differentially 

expressed genes (their corresponding proteins, respectively) in stage I and in stage 

II. 

 

 
 
Figure 4.23: Molecular function (A) and subcellular location (B) of commonly differentially 
expressed genes (their corresponding gene products, respectively) in stage I. Functional 

annotation of genes was performed, using the Ingenuity Pathways Analysis 5.0 software.  
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Figure 4.24: Molecular function (A) and subcellular location (B) of commonly differentially 
expressed genes (their corresponding gene products, respectively) in stage II. Functional 

annotation of genes was performed, using the Ingenuity Pathways Analysis 5.0 software.  
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4.3.7.2 Molecular functions and subcellular distributions of gene products of 
commonly differentially expressed genes in all stages and groups of 
investigation 

From 21 commonly differentially expressed genes in stage I and II, 14 could be 

associated with a known function of their respective gene product. The diagrams in 

figure 4.25 illustrate the proportions of the respective molecular functions and 

subcellular locations of these annotated commonly differentially expressed genes 

(their corresponding proteins, respecctively) in stage I and II, as well as their 

numbers and identities. 
 

Figure 4.25: Molecular functions (A) and subcellular locations (B) of commonly 
differentially expressed genes (their corresponding gene products, respectively) in all 
stages and groups of investigation. The numbers and identities of the respective genes/gene 

products are indicated. 
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4.3.7.3 Identification of known interactions of single gene products 
corresponding to commonly differentially expressed genes in all stages and 
groups of investigation 
Interactions of single gene products with known functions, corresponding to 

commonly differentially expressed genes in all stages and groups of investigation, 

which have been described in the literature, were identified, using the BiblioSphere® 

software. Co-citations of nine of these respective genes or their products, at least on 

the level of abstracts, were used to generate an interaction network (figure 4.26) of 

these genes (their corresponding gene products, respectively). 

 
 

 
 
Figure 4.26: Literature based interaction network (BiblioSphere®) of gene products with known 
function generated from the dataset of commonly differentially expressed genes in all stages 
and groups of investigation. Gene symbols are indicated.  Red colour corresponds to a detected 

increased abundance of transcripts of the respective genes at the given level of statistical significance 

(FDR < 0.049%) in glomerular samples derived from transgenic animals, whereas blue colour 

indicates “down-regulation” (Ctsh). Connections of gene nodes indicate co-citations of the respective 

genes/gene products in the literature, at least on the level of abstracts. 
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5. Discussion 

 
5.1 General aspects 
The present study addressed the question if common patterns of morphological and 

functional glomerular alterations, such as glomerular hypertrophy and consecutive 

development of albuminuria, which represent pathogenetically relevant common 

characteristic features of early stages of glomerulosclerotic alterations in various 

progressive kidney diseases (Fogo and Ichikawa 1991, Klahr et al. 1988, Remuzzi 

1995, Wiggins 2007), would also find a reflection in detectable common glomerular 

gene expression profiles. Therefore differential gene expression profiles of samples 

of isolated kidney glomeruli from two different, well established transgenic mouse 

models of nephropathy of different genetic backgrounds were identified by 

performance of microarray analyses. As diabetic nephropathy represents the most 

common disease in humans that is prone to development of CKD leading to ESRD 

(Alebiosu and Ayodele 2005, Mitka 2005, Wolf and Ziyadeh 2007) and development 

of progressive glomerulosclerosis is common to most of the different entities of CKD 

(Fogo and Ichikawa 1989, Fogo 1999, Mauer et al. 1992), experiments were 

performed in a mouse model of diabetes mellitus associated nephropathy, GIPRdn-

transgenic mice (Herbach 2002, Herbach et al. 2005, Herbach et al. 2003, Schairer 

2006, Volz 1997) and in bGH-transgenic mice, a non-diabetic model of progressive 

glomerulosclerosis (Doi et al. 1990, Doi et al. 1988, Wanke 1996, Wanke et al. 1993, 

Wanke et al. 2001). According to comparable extents of morphological and functional 

glomerular alterations of the respective transgenic animals, pairs of male transgenic 

mice and their corresponding non-transgenic littermate controls of both experimental 

models were investigated in two early stages of glomerular alteration. These stages 

were defined as the stage of glomerular hypertrophy (stage I) and the stage of 

glomerular hypertrophy with onset of albuminuria (stage II). In each investigated 

model and stage, transcripts that were differentially expressed in glomerular samples 

of transgenic animals vs. their corresponding controls were identified. Then 

commonly differentially expressed transcripts, representing the intersections of 

congeneric differentially expressed transcripts in both investigated models in 

comparable stages of glomerular alteration were identified. The respective numbers 

of genes corresponding to these commonly differentially expressed transcripts were 

found to be significantly enriched between the investigated models of nephropathy.  
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Thus, the identified common patterns of glomerular gene expression profiles in early 

comparable stages of glomerular alteration can be considered to be independent of 

the different mechanisms (diabetes mellitus vs. elevated systemic levels of GH 

resulting from overexpression of the bGH-transgene) that are responsible for 

development of glomerular damage in the respective mouse models, as well as 

independent of their different genetic backgrounds. A number of 21 genes displayed 

a congeneric common differential expression in glomerular samples of both GIPRdn-

transgenic and bGH-transgenic mice in both investigated stages of glomerular 

alteration, representing a shared gene expression profile of glomerular hypertrophy 

and beginning albuminuria. Finally, the common differential expression of five 

(Cx3cl1, Ctsh, Fabp4, Cd44 and Msr1) of these 21 genes was confirmed by 

performance of real-time PCR. 

 

5.2 Experimental design  
Standardization of the investigated biological models, as well as characterization and 

definition of investigated sample materials are most important issues in the 

experimental design of a transcript profiling experiment. Identification of differential 

gene expression profiles related to processes of biological significance and 

meaningful interpretation of obtained microarray data strongly depend on the 

comparability of investigated sample materials, regarding their origin, mode of 

generation, processing and quality. Effects of unintended and/or artificial differences 

concerning these sample characteristics, will probably appear as systematic 

differences in the detected gene expression profiles but might not be recognized as 

those and therefore lead to misinterpretations of generated datasets. Therefore, 

great emphasis was laid on identical treatment of animals and application of stringent 

criteria on the definition of the respective stages of glomerular alteration, as well as 

on standardized methods of generation of sample materials of highest qualities. This 

was considered to be an important prerequisite for assurance of the comparability of 

the investigated stages of nephropathy in the different animal models, as well as for a 

meaningful interpretation and linkage of obtained analysis data to distinct 

morphological and functional glomerular alterations.  
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Due to the fact that glomeruli represent only a small percentage of the kidney cortex 

volume (Artacho-Perula et al. 1993, Nyengaard and Bendtsen 1992, Wanke 1996), 

the interpretation of gene expression data from investigations of total kidney tissue 

always inherits the danger of nonobservance of signals actually derived from 

glomerular cells, as those signals become overlaid by stronger signals derived from 

other kidney cell types (Cohen and Kretzler 2003). To overcome these difficulties, 

transcript profiling analyses were performed on samples of isolated glomeruli. This 

strategy allows for a reliable linkage of obtained analysis results to cells of the 

glomerular compartment (Cohen and Kretzler 2003) and has successfully been 

applied in several studies of human disease, as well as in various animal 

experimental models of nephropathy (Baelde et al. 2004, Cohen and Kretzler 2002, 

Higgins et al. 2004, Makino et al. 2006). 

The time points of development of the distinct investigated stages of glomerular 

alteration (glomerular hypertrophy and glomerular hypertrophy with onset of 

albuminuria) display considerable individual variances in GIPRdn-transgenic animals 

(Herbach 2002, Schairer 2006).  Thus, the identification of shared glomerular gene 

expression profiles linked to these defined early stages of glomerular alterations 

excluded the possibility of performance of investigation of groups of animals of 

identical ages. Therefore, assignment of littermate pairs of transgenic animals and 

their associated non-transgenic wild-type controls of both investigated mouse models 

to either the stage of glomerular hypertrophy or the stage of onset of albuminuria was 

exclusively performed according to the detected degree of the increase of the mean 

glomerular volume or the onset of albuminuria in the transgenic mouse vs. its 

corresponding control. Both parameters, glomerular hypertrophy and onset of 

albuminuria, were determined using adequate methods of quantitative stereology 

(Hirose et al. 1982, Sanden et al. 2003, Sterio 1984, Weibel 1979, Weibel 1980, 

Weibel and Gomez 1962), and SDS-PAGE and ELISA-based approaches of urine 

protein analysis, respectively (Doi et al. 1990, Yamada et al. 1994). Although the 

generation of the required numbers of samples demanded for performance of 

comprehensive morphological and functional investigations in a large number of 

animals, these efforts allowed for generation of well defined comparable sample 

materials of isolated glomeruli for performance of transcript profiling analyses.  
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5.3 Quality of glomerulus isolates 

The experimental design of the superordinated project of the present study 

scheduled the generation of samples of glomerulus isolates from each animal in 

quantities and qualities allowing for performance of both transcript profiling and 

proteomic analyses (refer to chapter 1). Currently, the only available method for 

glomerulus isolation from murine kidney tissue, capable to generate glomerulus 

isolates in sufficient quantities and purities for performance of these analyses, is 

based on perfusion of kidneys with spherical paramagnetic beads and subsequent 

isolation of glomeruli in a strong magnetic field (Barati et al. 2007, Sitek et al. 2006, 

Takemoto et al. 2002). In the present study, the protocol of the original method was 

individually modified to meet the respective demands of the different intended 

analytical procedures under standardized conditions (Blutke et al. 2005). These 

modifications included the development of a perfusion device (Blutke 2006), allowing 

for performance of perfusions under defined pressure conditions, and a “mini-cell 

strainer” for concentration of isolated glomeruli in an adequate volume of RNA 

stabilization reagent (Blutke et al. 2005). The final protocol reproducibly allowed for 

fast (~75 minutes) isolation of maximal numbers (~6000) of intact glomeruli under 

defined temperature conditions. Consistent with the original study (Takemoto et al. 

2002), no signs of morphological damage of glomerular structures, as a potential 

consequence of perfusion with magnetic beads or Collagenase treatment of kidney 

tissue were observed.   

Transcript profiling analyses can successfully be performed on samples consisting of 

only minimal numbers (~ one dozen) of isolated glomeruli (Cohen and Kretzler 2003) 

for example derived from biopsies, or even on single glomerular cells (Schroppel et 

al. 1998). However, these approaches principally suffer from the low amount of 

available glomerular RNA, which is limiting the number of possible experiments to be 

performed on these samples (Yasuda et al. 2006). These approaches also inherit the 

danger of occurrence of systematic sampling errors due to examination of limited 

numbers of glomeruli derived from only a few locations of the renal cortex (Cohen 

and Kretzler 2003). Therefore it remains questionable, if transcriptomic data obtained 

from examination of such low numbers of glomeruli is actually capable to provide a 

representative snapshot mirroring common alterations of gene expression profiles of 

the majority of glomeruli present in early stages of chronic kidney disease.  
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In order to provide samples of sufficient quantities of isolated glomeruli in comparable 

and highest qualities for performance of transcript profiling analyses, at least 1000 

isolated glomeruli per sample were individually picked from a defined aliquot of the 

total isolate. To avoid systematic sampling errors due to preferential selection of e.g. 

large glomeruli, all identifiable glomeruli present in a respective aliquot were 

gathered. The purity of each sample was examined by visual inspection and further 

analyses were only applied on glomerular samples of highest purities (~ 98-100%). 

Yet it is important to mention that about 5% to 20% of isolated glomeruli were not 

lacking the Bowman’s capsule and some of them had part of the afferent and/or 

efferent arterioles still attached. A higher degree of  absence of non glomerular 

tissues in glomerulus isolates can only be achieved by performance of 

microdissection techniques, which were not applicable in the present study, as they 

provide only small numbers of glomeruli (Cohen and Kretzler 2002). The 

effectiveness of tissue separation in investigated glomerulus isolates was also 

confirmed by real-time PCR analysis of nephron specific gene expression patterns as 

Wilms’ tumor antigen 1, a marker for glomerular epithelial cells. The Wt-1/Gapdh 

ratio was considerably higher (362x) in the glomerular specimens compared to 

samples of total cortical kidney tissue, which stands in accordance with findings of 

other studies (Cohen et al. 2002). The high and comparable quality of all samples of 

total RNA extracted from glomerulus isolates was confirmed by microfluid 

electrophoresis.  

An interesting finding was that the average amounts of total RNA isolated from 

glomerular samples of mice of CD1 background (GIPRdn-group) were averagely only 

about 50% of the respective yields attained in samples of mice of NMRI background 

(bGH-group). Next to a dependency on the genetic background of investigated 

animal models, another plausible explanation for that finding might lie in young age of 

the animals investigated in the bGH-group. This might be responsible for a stronger 

transcriptional activity in the still growing glomeruli of these animals and therefore a 

higher content of RNA. Although the glomeruli of transgenic animals were 

significantly larger than those of their associated control mice, the attained yields of 

total RNA, isolated from glomerular samples of transgenic animals vs. their 

associated controls did not display explicit differences in each of the investigated 

models of nephropathy.  
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5.4 Morphological and functional investigations 
 
5.4.1 Histology 
The histological findings confirmed that the detected glomerular lesions of GIPRdn- 

and bGH-transgenic animals in both stages of investigation represented very early 

stages of development of glomerulosclerotic alterations (mesangial expansion and 

hypercellularity, as well as mild mesangial matrix accumulation), as intended by the 

experimental design of the study.  

 

5.4.2 Glomerular hypertrophy and numbers of cells per glomerulus  

For estimation of the mean glomerular volumes of transgenic mice and their 

associated non-transgenic controls, GMA/MMA embedded kidney sections were 

investigated, using a well established, fast model-based stereological approach, in 

which glomeruli are considered as rotation ellipsoids (Hirose et al. 1982, Wanke 

1996, Weibel and Gomez 1962). Compared to assumption free methods of 

determination of the mean glomerular volume (Cavalieri and disektor methods), the 

applied Weibel-Gomez approach does not systematically overestimate the obtained 

values (Pesce 1998). The number of glomerular profiles investigated in each case 

was sufficient (Hirose et al. 1982, Lane et al. 1992) for generation of robust data and 

reliably allowed for identification of glomerular hypertrophy in the respective samples 

of investigated animals. Irrespective of their affiliation to one of the investigated 

animal models or stages of glomerular alteration, transgenic animals investigated in 

the microarray experiments displayed significant glomerular hypertrophy compared to 

their associated controls. This was marked by a significant increase of at least 40% 

of the mean glomerular volumes, as well as by an overproportional increase of 

glomerular size in relation to both body or kidney weight. So far, the present findings 

concerning development of glomerular hypertrophy in GH-transgenic mice are 

consistent with those of previous studies (Doi et al. 1990, Fisch 2004, Wanke 1996). 

However, most of these studies were performed on animals of elder age or in models 

overexpressing different GH-fusion transgenes and thus, the detected absolute 

values of the estimated mean glomerular volumes in these experiments were partially 

larger than the respective ones measured in the present study. In mice, 

approximately 80% of glomeruli continue to form and differentiate after birth, a 

process completed by two weeks post partum (Gilbert et al. 1987, Yuan et al. 1999).  
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In mice, the mean glomerular volume physiologically increases continuously up to 7 

weeks of age and remains stable thereafter (Doi et al. 1990). In GH-transgenic mice, 

a significant increase of the mean glomerular volume can already be detected in the 

juvenile kidney as early as at 4 weeks of age (Doi et al. 1990). In all samples of GH-

transgenic mice and their corresponding control animals investigated in the present 

study, glomeruli displayed a mature phenotype. For these reasons, there was no 

evidence that the young age of mice investigated in the bGH-groups of the present 

study might exhibit a distorting unconsidered influence on interpretation of the gene 

expression profiles assessed by analysis of samples of isolated glomeruli derived 

from these animals. The development of glomerular hypertrophy, as a characteristic 

feature of diabetic nephropathy (Cortes et al. 1987, Mogensen et al. 1983, Osterby 

and Gundersen 1975, Seyer-Hansen et al. 1980), was also observed in the diabetic 

GIPRdn-transgenic animals in both investigated stages of nephropathy. In male 

GIPRdn-transgenic animals, development of absolute (mean v(glom)) and relative 

glomerular hypertrophy (mean glomerular volume to body weight or kidney weight 

ratios) has been reported to occur between nine and twenty weeks of age (Schairer 

2006), which is in line with the findings in the present study. Mirroring the progressive 

character of development of glomerular hypertrophy in both animal models, the 

observed differences of the mean glomerular volumes of transgenic animals 

compared to their associated controls increased on the average from 45% in GIPRdn-

transgenic animals and  58% in bGH-transgenic animals investigated in stage one, to 

59% and 63%, respectively in stage two. Development of glomerular hypertrophy is 

not only characterized by an increase of the glomerular volume, due to an increase of 

the volume of glomerular cells and extracellular matrix, or growth of glomerular 

capillaries, but also by increasing numbers of cells per glomerulus (Wanke 1996, 

Wiggins et al. 2005). Therefore, quantitative stereological analyses were performed 

to estimate the total numbers of cells per glomerulus. The respective numbers of 

cells of distinct glomerular cell types per glomerulus were determined, to allow for a 

further distinct definition of the degree of glomerular alterations. For estimation of the 

numbers of glomerular cells in semithin sections of cortical kidney tissue, the so-

called “disector” method was applied (Sterio 1984). The disector method is generally 

accepted to be one of the most accurate and reliable approaches (Gundersen 1986) 

among the various methods  that can be applied for determination of glomerular cell 

numbers (Sanden et al. 2003).  
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As a 3-dimensional stereological probe, it allows unbiased and assumption free 

counting and sizing of particles (Sterio 1984). Reliable results of determined volume 

densities of different cell types can already be obtained from counting a number of 

about 50 particles per case (Gundersen 1986). In the present study the differentiation 

of distinct glomerular cell types was restricted to distinction between podocytes and 

non-podocytic (mesangial and endothelial) glomerular cells. Since a reliable 

differentiation of endothelial vs. mesangial cells/nuclei by evaluation of electron 

microscopic photographs was not in the scope of interest, investigations were 

performed on the level of light microscopy, accepting the potential risk of accidental 

non-identification of podocytes localized in the centre of the glomerular tuft, which is 

rather marginal, as podocytes of rodent glomeruli tend to congregate on the 

periphery of the glomerular tuft (Sanden et al. 2003). In both investigated groups and 

stages of nephropathy, the estimated number of endothelial and mesangial cells per 

glomerulus was significantly increased in transgenic animals vs. their respective 

controls, while the number of podocytes per glomerulus remained almost unchanged. 

These findings are characteristic for development of glomerular hypertrophy and 

have been described to occur in various chronic kidney diseases of man and animal 

experimental models (Kretzler et al. 1994, Wanke et al. 2001, Wiggins et al. 2005, 

Wiggins 2007). They also stand in line with the postulated pathogenetic mechanisms 

for development of glomerulosclerotic lesions and the progression of chronic kidney 

disease (Kretzler et al. 1994, Kriz 1996, Kriz et al. 1994, Shankland 2006, Wanke et 

al. 2001), which consider the inability of podocytes to functionally adapt to the 

circumstances of developing glomerular hypertrophy to be the determinant key 

mechanism triggering glomerulosclerosis. Concerning the estimated numbers of the 

respective glomerular cells per glomerulus in bGH-transgenic mice, the relative 

differences between transgenic mice and their corresponding control animals are 

confirmed by similar findings of other studies (Wanke 1996), whereas the respective 

values of these numbers detected in the present study were slightly smaller than in 

other studies. A supposable explanation for these differences lies in the investigation 

of GH-transgenic mice overexpressing a different GH-fusion transgene (MTbGH), as 

well as of animals of different ages (Wanke 1996). Concerning the numbers of 

glomerular cells in GIPRdn-transgenic mice, the present study was the first to 

examine this parameter. 
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5.4.3 Thickness of the glomerular basement membrane 
The increase of the thickness of the peripheral glomerular basement membrane 

(GBM) is a characteristic early histopathological finding in human diabetic 

nephropathy (Chavers et al. 1989, Mauer et al. 1984). GBM-thickening has also been 

reported in several but not all diabetic mouse models (Carlson et al. 1997, Fujimoto 

et al. 2003, Hammad et al. 2003, Hong et al. 2001). Possible mechanisms for the 

thickening of the GBM could be an increased matrix synthesis (Van Vliet et al. 2001) 

or decreased degradation, deposition of circulating proteins in the GBM (Kerjaschki 

et al. 1987), or alterations in GBM assembly (Velling et al. 2002). In this context, also 

podocytes are considered to play a crucial role for GBM dynamics and maintenance 

in health and disease (Martin et al. 1998, Pavenstadt et al. 2003). The findings 

concerning the increased true harmonic mean thickness of the peripheral GBM of the 

diabetic GIPRdn-transgenic animals investigated in stage II of the present study would 

therefore stand in line with the results of several other studies.  Although the detected 

increase in GBM thickness in GIPRdn-transgenic animals did reach statistical 

significance, the absolute average increase yet comprised of only 19 nm or 

approximately 14%, whereas other studies in human diabetic nephropathy or in 

animal models of podocyte damage associated with increasing GBM thicknesses 

report of increases of GBM thickness exceeding 20 % (Drummond and Mauer 2002, 

El-Aouni et al. 2006). Current investigations in GIPRdn-transgenic mice with 

progressed renal alterations will provide additional results concerning the increase of 

GBM-thickness in this animal model. In GH-transgenic animals, increases of the 

glomerular basement membrane thickness have not been detected so far (Wanke 

1996). However, in these studies a different method was applied for determination of 

the GBM-thickness (Osawa et al. 1966), investigated animals were of elder age  and 

overexpressed another GH-fusion-transgene than the PEPCKbGH-transgenic 

animals investigated in the present study.  
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5.4.4 Filtration slit frequency 
The filtration slit frequency, determined in peripheral glomerular capillary loops of 

transgenic animals of both investigated animal models did not show a significant 

difference to the FSF of the corresponding non-transgenic littermate controls in the 

stage of onset of albuminuria. Decreased filtration slit frequencies, preceeding 

proteinuria have been reported in various observations of human disease, as well as 

in animal experiments  (Inokuchi et al. 1996, Shirato 2002). The spatial frequency of 

filtration slits is considered to be a very important determinant of the overall hydraulic 

permeability, in keeping with observations in several glomerular diseases in humans. 

Reductions in filtration slit frequency reflect broadening and "effacement" of the 

epithelial foot processes, a uniform finding in virtually all humans with the nephrotic 

syndrome, regardless of its aetiology (Drumond et al. 1994). However, there are also 

reports of human chronic kidney disease as diabetic nephropathy and results from 

animal experiments, where albuminuria occurred without a change in the frequencies 

of glomerular filtration slits (Benigni et al. 2004, El-Aouni et al. 2006, Kalluri 2006). 

Several divergent opinions exist concerning a causative linkage of appearance of 

microalbuminuria and the morphological equivalents of podocyte damage, which 

comprise foot process effacement, detectable alterations of the filtration slits, or the 

FSF (Inokuchi et al. 1996, Seefeldt et al. 1981, Shankland 2006, Shirato 2002, 

Shumway and Gambert 2002). For determination of the FSF in the present study, a 

relatively large number of filtration slits (1100) was counted per animal. However, it 

also has to be taken into consideration that investigations were performed in a very 

early stage of glomerular alteration. In developing glomerulosclerosis, early 

alterations typically affect different glomeruli in the diseased kidney to different 

extents. Therefore, the detection of onset of albuminuria does not require a damage 

of the glomerular filtration barrier in all glomeruli. Thus, it is obvious that the detection 

of an unaltered FSF does not exclude a reduction of this parameter in the glomeruli 

that are affected by a severe impairment of the filtration barriers function and 

therefore responsible for the detected onset of albuminuria. Thus, an unaltered FSF 

in the stage of onset of albuminuria actually supports the intended investigation of 

transgenic animals at the earliest time point at which persistent albuminuria was 

detectable. 
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5.4.5 Urine analyses 

Occurrence of albuminuria as a consequence of developing glomerulopathy 

impairing the function of the glomerular filtration barrier, has been documented 

extensively in several studies for both GIPRdn- and bGH-transgenic mice (Doi et al. 

1990, Fisch 2004, Herbach 2002, Schairer 2006, Wanke 1996). Thus, in the present 

study the comprehensive SDS-PAGE analyses of urine protein excretion patterns 

were performed as a screening method to allow for an accurate definition of a distinct 

stage of functional glomerular alteration (onset of albuminuria in transgenic animals 

assigned to stage II and absence of albuminuria in stage I). Assignment of pairs of 

transgenic animals and their corresponding non-transgenic controls to the respective 

stages of investigation was performed in accordance to the results of these analyses. 

The suitability of SDS-PAGE analyses of urine samples for detection of albuminuria 

and urine protein profiles has been demonstrated in various studies (Doi et al. 1990, 

Fisch 2004, Herbach 2002, Oser and Boesken 1993, Schairer 2006, Wanke 1996, 

Yamada et al. 1994). Urine creatinine concentrations of GIPRdn-transgenic mice were 

drastically reduced compared to those of their corresponding controls (by 94% in 

stage I and stage II). This is a characteristic finding in the transgenic animals of this 

model of diabetes mellitus, displaying massive polyuria and hyposthenuria (Herbach 

2002, Schairer 2006). Consistent with other findings (Herbach et al. 2005), all GIPRdn 

-transgenic mice displayed glucosuria as early as from day 21 onwards. The reduced 

creatinine concentrations detected in urine samples of PEPCKbGH-transgenic 

animals (30% in stage I and 62% in stage II vs. controls) are in line with the results of 

previous studies (Fisch 2004). To allow for a comparison of albumin band intensities 

detected in SDS-PAGE gels of samples derived from transgenic mice and their 

associated non-transgenic control animals, urine samples were each diluted to 

identical urine creatinine concentrations. Urine samples of GH-transgenic animals 

and their associated controls were diluted to a creatinine concentration of 3 mg/dl for 

performance of Coomassie blue staining of SDS-PAGE gels, whereas the low 

creatinine concentrations in urine samples of GIPRdn-transgenic animals only allowed 

for a dilution to a creatinine concentration of 1.5 mg/dl and required for performance 

of a silver staining of SDS-PAGE gels. The comparability of results of SDS-PAGE 

urine protein analyses, using a silver staining method of gels and respective results 

of Coomassie blue stained gels was confirmed.  
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As staining intensities of bands of identical amounts of albumin may vary from one 

SDS-PAGE gel to another, urine samples of transgenic mice and their associated 

controls were run on identical gels and comparisons of albumin band intensities 

between these samples were also exclusively performed in identical gels. Closely 

defined intervals of recurrent SDS-PAGE analyses of spot urine samples of both 

transgenic animals and their associated non-transgenic controls allowed for an 

accurate determination of the time point of onset of albuminuria in transgenic mice, 

as well as for confirmation of absence of albuminuria in urine samples of non-

transgenic control animals. In order to eliminate the risk of detection of transient 

albuminuria, both positive and negative results were confirmed by a second 

congeneric result, detected in an independent urine sample taken from the same 

animal after 24 hours.   

Transgenic animals assigned to stage I, as well as all non-transgenic mice of both 

investigated experimental models in both stages of glomerular alteration did not 

display albuminuria in the SDS-PAGE gels at any point of time. Transgenic animals 

of both investigated groups assigned to stage II displayed albuminuria twice within 48 

hours prior to dissection, after a first negative result. Western-blot experiments 

confirmed the presence of albuminuria detected by SDS-PAGE based urine protein 

analyses. GIPRdn-transgenic mice reached the stage of onset of albuminuria between 

70 to 155 days (average: 112 ± 37 d) of age. This frame of time, as well as the quite 

broad variance of ages is consistent with previous findings (Herbach 2002, Schairer 

2006), and suggests strong impacts of individual, dietary and yet unknown influences 

on the time point of development of albuminuria in GIPRdn-transgenic mice. 

Compared to the later onset of albuminuria in GIPRdn-transgenic mice, the respective 

findings in SDS-PAGE analyses of urine samples of bGH-transgenic mice 

demonstrate an early and reproducible onset of albuminuria (average: 32 ± 2 d), 

which is characteristic for the accelerated progression of development of renal 

alterations in this animal model (Doi et al. 1990, Wanke 1996). As well, the patterns 

of urine protein profiles detected in SDS-PAGE gels of bGH-transgenic mice accord 

with previous findings (Fisch 2004, Wanke 1996). Urine of bGH-transgenic mice 

displayed reduced concentrations of major urinary proteins (MUPs), which is a 

characteristic finding in male GH-transgenic mice (Wanke 1996). Normal MUP 

synthesis requires a pulsatile GH secretion, whereas constant high GH levels cause 

a reduction in hepatic synthesis of MUPs (Johnson et al. 1995, Norstedt and Palmiter 

1984).  
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Although performance of SDS-PAGE analysis of urine samples allows for a sensitive 

detection of presence of albuminuria, this method has only a qualitative or at most 

semi-quantitative character. To confirm the presence (or absence, respectively) of 

albuminuria of animals investigated in the present study, urine albumin 

concentrations were additionally quantified by ELISA as a second independent 

methodological approach, using the same urine samples. 

Since diabetic GIPRdn-transgenic animals display massive hyposthenuria and 

polyuria, urine albumin concentrations, measured in spot urine samples of these 

mice cannot be compared directly to albumin concentrations measured in urine 

samples of wild-type animals. Comparisons of the absolute urine albumin excretions 

per day of transgenic animals vs. their corresponding non-transgenic wild-type 

controls would require the collection of 24-hours urine samples, which was not 

conformable with the experimental design of the study. Therefore, spot urine 

albumin/creatinine ratios were used for comparison of the respective urine samples 

of transgenic vs. control mice (Abitbol et al. 1990, Doi et al. 1990, Fisch 2004). In 

both investigated murine models of nephropathy, the measured urinary 

albumin/creatinine-ratios were significantly elevated in samples of transgenic animals 

assigned to stage II, whereas those of transgenic mice investigated in stage I did not 

display a significant difference to their corresponding non-transgenic controls. These 

findings confirmed the results of the SDS-PAGE based screenings and agree with 

the results of previous studies (Fisch 2004). However, results of the ELISA 

experiments indicated a beginning tendency towards increased urine 

albumin/creatinine ratios in urine samples of GIPRdn-transgenic animals assigned to 

stage I, which was not evident in the SDS-PAGE based screenings. In summary, 

nearly all applicable approaches for a comprehensive definition of the functional 

parameter of onset of albuminuria were applied in order to characterize the 

investigated stage of nephropathy in both different animal models. Regarding this 

parameter, the sophisticated schedules, as well as the results of the different 

performed analyses represent a reliable basis for the comparability of the 

investigated stage of functional glomerular alteration in both animal models of 

nephropathy.  
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5.4.6 Ages of animals and further parameters 
Following the strategy for performance of investigations in defined comparable 

stages of glomerular alteration, exclusively characterized by distinct morphological 

and functional aspects, resulted in the basic necessity of investigation of subgroups, 

compiled of animals of different and variable ages. Further parameters, as body 

weight, kidney weight and relative kidney weight (%) were examined to provide an 

additional characterization of the investigated stages of renal alteration, but were not 

employed as criteria for assignment to these respective stages. Development of 

glomerular lesions in growth hormone transgenic mice is characterized by an early 

onset and stable progression of the morphological and functional lesions of glomeruli 

that were employed as determinants of stage assignment in the present study (Doi et 

al. 1990, Wanke et al. 2001). These alterations occur reproducibly in an age 

dependent manner (Wanke et al. 1996, Wanke et al. 2001). Thus, bGH-transgenic 

mice were of relative young age when they reached the respective early stages of 

glomerular hypertrophy (27 ± 2 d) and onset of albuminuria (32 ± 2 d), which were 

separated by only five days of age in average. As well, the ages of animals of the 

bGH-group assigned to a respective stage of investigation did not display a great 

variance. GIPRdn-transgenic mice, however, typically display a slower progression in 

development of glomerular lesions and the time points of ages at which comparable 

degrees of these lesions can be detected in those animals display considerable 

individual differences (Schairer 2006). These conditions are considered to be 

responsible for the advanced ages, the greater variability of ages of GIPRdn-

transgenic mice assigned to a respective stage of investigation and the greater 

chronological separation of stage I (78 ± 1 d) and stage II (112 ± 37 d). In GH-

transgenic mice, the onset of growth promoting effects resulting from overexpression 

of the GH-transgene starts from three weeks of age onwards (Wanke et al. 1992). 

Stimulation of body and kidney growth is a characteristic finding in transgenic mice 

with high systemic GH-levels (Wanke et al. 1996). The differences of body weights, 

kidney weights and relative kidney weights of GH-transgenic mice investigated in the 

present study slightly failed to reach statistical significance in comparison to their 

associated non-transgenic control animals. However, in slightly elder ages, 

development of significant renal hypertrophy is a characteristic finding in GH-

transgenic mice (Wanke et al. 1993). The respective findings in the investigated 

GIPRdn-transgenic animals stand in line with previous findings (Schairer 2006).  
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Both kidney weights and relative kidney weights of GIPRdn-transgenic animals were 

significantly increased in both stages of investigation. These findings indicate that in 

the different investigated animal models, the different growth promoting mechanisms 

that lead to development of glomerular and renal hypertrophy might exhibit their 

effects on different compartments of the renal cortex at different points of time, 

respectively, that  different subunit structures of the kidney may respond differently to 

a particular growth stimulus (Doi et al. 1990). As also observed in other studies 

(Fisch 2004), in growth hormone-transgenic mice these effects apparently resulted in 

detection of increased glomerular growth prior to a measurable effect of induction of  

growth processes in the other compartments of the kidney. However, the finding that 

GIPRdn-transgenic animals displayed increased relative kidney weights (kidney 

weight to body weight ratio) in the investigated stage of glomerular hypertrophy does 

not implicate that the development of renal hypertrophy does preceede the 

development of glomerular hypertrophy in this animal model. 

 
5.5 Transcript profiling analyses 
 
5.5.1 Microarray analyses: Patterns of glomerular gene expression  
Recurrent controls of quality and quantity of total RNA lysates extracted from the 

glomerulus isolates, as well as of the deduced target preparations generated for 

hybridization to the microarrays confirmed the comparable and high quality of 

investigated samples. Successful performance of the microarray experiments was 

verified by control of the distribution of the detected hybridization signal intensities on 

each single array.  All 40 arrays of the experiment showed similar and comparable 

patterns of density distributions of overall hybridisation intensities, as well as 

comparable degrees of only weakest degradation of target cDNA. Analysis of PCA 

(principle component analysis) plots, illustrating the similarity of detected patterns of 

gene expression of the different subgroups of samples investigated in the micro-array 

experiments, confirmed the effectiveness of tissue separation of samples of 

glomerulus isolates. Here, samples derived from isolated glomeruli displayed an 

impressive difference compared to those of two investigated samples of total cortical 

kidney tissue, indicating strong differences in the gene-expression profiles of total 

cortical kidney tissue and preparations of pure glomerulus isolates.  
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Interestingly, Cluster dendrograms and PCA plots also showed that glomerular 

samples always completely clustered into groups of common genetic backgrounds, 

rather than into distinct groups of transgenic and non-transgenic control animals or 

common stages of glomerular alteration. Only samples derived from the bGH-group 

assigned to stage II completely clustered into distinct groups of transgenic and non-

transgenic control animals. Concerning the investigated animal models and early 

stages of glomerular alteration, this indicates a stronger influence of the respective 

genetic background of animals on the detected patterns of gene-expression in 

glomerular samples, than that, caused by differences of transgenic animals and non-

transgenic controls or different stages of comparable degrees of glomerular 

alteration. These findings exactly corresponded to the expected results and 

confirmed the scheduled mode of comparisons, based on the a priori experimental 

group design of two different transgenic mouse models of nephropathy with different 

genetic backgrounds: a strong influence of the genetic background on the detected 

differences of glomerular gene expression profiles in the different investigated animal 

models, a comparably weaker genotype-dependent influence on samples derived 

from transgenic and non-transgenic animals of identical genetic backgrounds, as well 

as an increasing difference of patterns of glomerular gene expression in transgenic 

and non-transgenic animals according to the degree of glomerular alteration and 

progression of disease. These results also indicate that within each of the 

investigated animal models a significant impact of other processes than those 

actually related to development of glomerular hypertrophy or onset of albuminuria 

became present in detected differences of glomerular gene expression profiles in 

transgenic animals vs. their associated non-transgenic controls. Similar conclusions 

were drawn from results of independent studies and have been reported previously 

(Susztak et al. 2004). The relatively small, yet significant differences of patterns of 

glomerular gene-expression profiles in transgenic and control animals might be 

explainable through the patterns of development of glomerulosclerotic kidney lesions. 

At a given point of time, different glomeruli in the kidney display different degrees of 

alteration. In the investigated early stages of alteration, only a comparably small 

number of glomeruli exhibits distinct lesions, whereas the number of damaged 

glomeruli is steadily increasing during the further progressive development of disease 

(Schairer 2006, Wanke 1996).  
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This situation was mirrored by increased differences of the overall similarities of 

glomerular gene-expression profiles of transgenic animals vs. their corresponding 

non-transgenic controls in the second investigated stage of glomerular alteration.  

 
5.5.2 Microarray analyses: Differential glomerular gene expression profiles 
For statistical analysis of microarray data, a sensitive method was applied 

(ChipInspector, Genomatix), that presents an advanced approach for identification of 

differentially regulated transcripts using Affymetrix ® Gene Chip data, avoiding 

potentially occurring pitfalls resulting from data analysis following  the original “probe-

set” approach. This approach has also been successfully applied in previous studies 

(Gehrig et al. 2007). Statistical analysis was then carried out, using an accredited 

method of statistical testing (Tusher et al. 2001). A stringent level of statistical 

significance (FDR < 0.049%) was applied in the analysis, which resulted in detection 

of numbers of differentially expressed glomerular genes in transgenic vs. control 

animals in the respective investigated models and stages of nephropathy, allowing 

for comprehensive further analyses. In a microarray experiment, the numbers of 

detected differentially expressed genes (tg vs. wt) predominantly depend on the 

applied level of significance in the statistical analysis of microarray data, as well as 

on the specific properties of investigated sample materials and methodological 

aspects of analyses. Thus, direct comparisons of the numbers of differentially 

expressed genes detected in the present study with results of other studies can not 

be performed. However, an interesting finding is that, although almost identical 

settings of statistical analysis parameters were applied, the numbers of differentially 

expressed glomerular genes in GH-transgenic mice (stage I: 1566, stage II: 4300, vs. 

wt) robustly exceeded those detected in GIPRdn-transgenic mice (stage I: 513, stage 

II: 1422, vs. wt). These differences might be related to generally stronger effects of 

systemically elevated GH-levels on differential glomerular gene expression profiles in 

GH-transgenic mice, as well as to the comparably fast development of glomerular 

lesions in young mice of this model of progressive glomerulosclerosis. In both animal 

models, the numbers of differentially expressed glomerular genes in transgenic mice 

(vs. non-transgenic controls) in the second stage of investigation were consistently 

exceeding the respective numbers of differentially expressed genes in the earlier first 

stage of glomerular hypertrophy. This observation presumably reflects an increased 

transcriptional activity in glomerular cells of transgenic animals accompanying the 

progression of development of glomerular alterations.  
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As well, the detected differences in the relative abundance (expression ratios) of the 

majority of transcripts that displayed a congeneric differential abundance in both 

stages of investigation in the respective animal models (tg vs. wt) were increasing 

from stage I to stage II, possibly indicating both a differential expression of these 

transcripts in a growing number of glomerular cells and/or their persistent and 

increasing differential expression in single cells during progression of 

glomerulopathy. 

 

5.5.3 Microarray analyses: Common differential gene expression profiles 
Within the number of transcripts displaying a significant differential abundance in 

glomerular samples of transgenic vs. control animals of one investigated model and 

stage, there will be some whose differential expression is actually related to 

development of glomerular hypertrophy or onset of albuminuria. However, there will 

also be a presumably large number of transcripts, whose differential expression is 

assumed to result from other factors, which specifically alter glomerular gene 

expression profiles in the different investigated mouse models of nephropathy. In 

GIPRdn-transgenic mice, these factors result from the systemic effects associated 

with the diabetic phenotype of these animals. In GH-transgenic mice, the systemic 

effects of permanently elevated GH-levels (Wolf and Wanke 1997) are responsible 

for the induction of processes leading to alterations of glomerular gene expression 

profiles. Therefore, the applied mode of comparison of differentially expressed 

glomerular genes in the different investigated mouse models and well defined distinct 

stages of glomerular alteration should allow for a significant reduction of the numbers 

of differentially expressed genes, which are not related to the interested features of 

glomerular hypertrophy or onset of albuminuria. It therefore should as well allow for 

identification of relevant genes, whose common differential expression abundance in 

both GIPRdn- and GH-transgenic animals is assumable independent of the genetic 

background or the identity of expressed transgenes.  

The observed overlaps of numbers of congeneric commonly differentially expressed 

genes between the different groups in a respective stage of investigation appear to 

be rather small at first sight (stage I: 86 commonly differentially expressed genes; 

stage II: 469 commonly differentially expressed genes.) However, for several of the 

reasons mentioned above, this is a typical finding when comparing transcript profiles 

of comparable sample materials derived from different animal models (Susztak et al. 

2004).  
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In both stages of investigation, the significant enrichment of detected numbers of 

commonly differentially expressed glomerular genes between the different models of 

nephropathy was confirmed by performance of sophisticated statistical tests (Monte 

Carlo simulations). As well, the number (21) of genes that displayed a congeneric 

common differential expression in both stages and models was found to be 

significantly enriched. The successful identification of glomerular genes, whose 

common congeneric patterns of differential expression can be supposed to be 

actually related to common molecular processes of development of early stages 

glomerular alteration, independent of genetic backgrounds or effects of different 

expressed transgenes, was also confirmed by the results of performed cluster 

analyses. Differential expression profiles of commonly differentially expressed 

transcripts in the single stages of investigation (stage I or stage II), did not cluster into 

distinct groups of common genetic backgrounds, whereas the overall glomerular 

gene expression profiles of the different investigated models did. As well, cluster 

analyses of differential expression profiles of transcripts that displayed a congeneric 

common differential expression in all investigated stages and models of nephropathy 

did not allow for a separation into distinct subgroups according to common genetic 

backgrounds or stage affiliations. 

 
5.5.4 Confirmation of array data by real-time PCR 
The glomerular 18S rRNA expressions were found to be too heterogeneous for use 

as internal references (“housekeeping transcripts”) in the real-time PCR experiments. 

This finding is consistent with the experiences of other real-time PCR experiments 

performed on samples of isolated glomeruli of different species under diverse 

disease conditions (Prof. Dr. M. Kretzler, personal communication). Evaluation of 

expression abundances of transcripts coding for GAPDH (glyceraldehyde-3-

phosphate dehydrogenase), an enzyme involved in glycolyse metabolism, as an 

internal reference  in real-time PCR experiments performed on samples derived from 

diabetic animals is not recommended (Schmid et al. 2003). Therefore, cyclophyllin 

was finally used as housekeeping transcript in all real-time PCR confirmations of 

microarray data in the present study. The common congeneric differential 

expressions of five selected genes (including both “up” and “down-regulated” ones), 

which had been identified in the microarray experiments, were confirmed by 

performance of real-time PCR as an independent method of gene expression 

profiling analysis.  
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In these experiments, the same samples investigated in the array experiment, as well 

as samples of the Independent Control Cohort were examined. In order to eliminate 

potential systematic biases resulting from the performed mode of assignment of 

tg/wt-pairs of mice to certain stages of glomerular alterations, in the Independent 

Control Cohort, less stringent criteria for assignment of transgenic mice and their 

corresponding non-transgenic control animals to the respective stages of 

investigation were applied.  The results of the real-time PCR analyses generally 

stood in accordance with those of the generated array data and confirmed their 

reliability. As the genes, whose differential expression was examined by real-time 

PCR, displayed a common congeneric differential expression in glomerular samples 

of transgenic animals in both investigated models and stages in the microarray 

experiments, real-time PCR experiments were performed both in each the single 

stages and models of the analysis, as well as “matched pairs”-analyses. In these 

analyses, all samples of transgenic animals were then simultaneously compared to 

those of their associated non-transgenic controls, irrespective of their affiliation to a 

respective model or stage of investigation. In summary, the investigational strategies 

applied according to the experimental design of the present study, the different 

performed analyses and their respective results are considered to provide a reliable 

basis for detection of shared glomerular gene expression profiles, associated with 

defined stages of glomerular alteration in different animal experimental models of 

nephropathy. 

 

5.5.5 Relative depletion of podocytic RNA in samples of hypertrophied 
glomeruli: A potential pitfall of interpretation of glomerular gene expression 
profiles  
Finally, a special aspect of potentially problematic interpretation of gene expression 

data from samples of isolated glomeruli has to be addressed. Although investigations 

were performed on glomerulus isolates of highest purities and almost identical 

quantities, the lower abundance of podocytes in relation to the total number of 

glomerular cells in samples of transgenic animals might inherit the danger of 

nonobservance or of misinterpretation of signals derived from “differentially 

expressed” transcripts of podocytic origin.  
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As demonstrated by the results of the performed stereological examinations, the 

absolute number of podocytes per glomerulus did not differ between specimens 

derived from transgenic animals and their associated control mice, whereas the 

numbers of mesangial and endothelial cells per glomerulus typically increased 

significantly during development of glomerular hypertrophy in transgenic animals.  

For performance of transcript profiling analysis, total RNA was isolated from 

glomerulus isolates, each consisting of nearly identical numbers of approximately 

1000 isolated glomeruli both in samples of transgenic and control mice. Thus, the 

resulting RNA isolates derived from glomerulus isolates of transgenic animals 

contained the RNA of a number of podocytes comparable to that present in the 

samples of control mice. However, in glomerular samples of transgenic animals the 

amount of total RNA isolated from other glomerular cell types than podocytes derived 

from a significant larger number of cells than in the respective non-transgenic 

animals. If one assumes that there were neither general differences concerning the 

effectiveness of RNA isolation from glomerulus isolates derived from transgenic and 

non-transgenic animals, nor individual differences in the effectiveness of RNA 

isolation from different glomerular cell types, then the abundances of podocyte 

derived RNAs within the different samples of either transgenic mice or control 

animals should be comparable. However, these assumptions cannot be taken for 

granted, as the attained yields of total RNA, isolated from glomerular samples of 

transgenic animals vs. their associated controls did not display explicit significant 

differences in the investigated mouse models of nephropathy. As expression profiles 

have necessarily to be identified by investigation and comparison of samples of 

approximately identical amounts of total RNA of both wild-type and transgenic 

animals, this might potentially lead to an artificial under-representation of transcripts 

of podocytic origin. The effects of this circumstance might then theoretically result in 

either a nonobservance of “upregulated” podocytic transcripts, or the 

misinterpretation of a detected “down-regulation” of a respective podocyte derived 

transcript, whose abundance per podocyte might actually not be altered. These 

eventual circumstances would predominantly impair the detection and interpretation 

of expression levels of transcripts exclusively derived from podocytes. Apart from a 

potential nonobservance of “upregulated” podocytic transcripts, problems concerning 

the interpretability or reliability of expression levels of podocyte-specific transcripts 

affect only those with a detected lower abundance in glomerular samples of 

transgenic animals.  
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Using the available data sets, none of the various different factors that potentially 

might exhibit an influence on the described situation can directly be examined. Thus, 

the problem can neither be addressed itself, nor a reliable statement can be made if 

it actually is present.  As well, the problem has yet not been described. Strategies as 

“ in silico- microdissection” (Schmid et al. 2003), which use podocyte specific 

“housekeeping” transcripts for evaluation of regulated expression levels of other 

podocyte specific transcripts by real-time PCR can only partially address the 

problem, as the application of this approach requires reliable knowledge that the 

respective target transcript is actually exclusively expressed in podocytes. If any, this 

can only be confirmed by performance of in situ hybridization or comparable 

methods. Therefore this strategy should be applied in studies that focus on 

investigation of distinct podocyte-specific transcripts and their potential involvement 

in podocyte function or in pathways implicated in development of podocyte damage. 

In a holistic approach as in the present study, a comprehensive consideration of all of 

these conditions currently can not be regarded. In the follow up studies however, the 

problem will have to be addressed at least by identification of the patterns of cellular 

and sub-cellular distribution of expression of single transcripts of interest in the 

glomerular compartment.  

 

5.6.1 Bioinformatical analyses 
Performance of bioinformatical analyses on the known functions of the 21 genes, that 

displayed a congeneric common differential expression in all samples of GIPRdn-

transgenic and GH-transgenic animals in both investigated stages of glomerular 

alteration revealed a number of genes (their corresponding gene products, 

respectively), that had already been described to be involved in development of 

several forms of glomerulopathies, as well as of some that had yet not been subject 

of investigations in this context. Gene products with known involvement in 

development of glomerulopathy comprise those with a known function of e. g. cell 

adhesion molecules (CD44), cytokines (Fractalkine) and mediators of events of 

inflammatory character (C1QB, FCGR1) or regulators of extracellular matrix turnover 

(CTSH).  
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The Gene Ontologies of the products of commonly differentially expressed 

glomerular genes that have yet not been extensively described in the context of 

development of glomerular lesions assign them to functional categories of cell 

adhesion molecules (XLKD1, MSR1), proteins related to an altered metabolism of 

lipids (MSR1, FABP4, TGH2), as well as some which are known or supposed to be 

constituents of the cytoskeleton (MYO1F, TNNT2, RIKEN cDNA 2810484G07 gene) 

or involved the regulation of the function of the cytoskeleton (FILIP1, DNAI1) and 

other mechanisms of intracellular signal transduction (GNG2). 

In the following sections, the supposed involvement of 18 of these different gene 

products in appearance of glomerulopathies and their potential interactions are 

addressed, according to their affiliation to distinct mechanisms of known or supposed 

pathogenetic significance. These mechanisms include alterations of molecular 

pathways involved in lipid metabolism, oxidative stress, cytokine and chemokine 

signalling pathways, regulation of extracellular matrix turnover, cell-matrix adhesions, 

cytoskeletal functions, G-protein coupled signal transduction and immunological 

events (Gomez-Guerrero et al. 2005, Pavenstadt et al. 2003, Schlondorff 1993). 

 
5.6.2 Commonly differentially expressed genes involved in lipid metabolism  
In the present study, performance of micro-array experiments indicated an elevated 

expression of transcripts coding for MSR1 and FABP4 and a decreased expression 

of the Expressed sequence AU018778 in glomerular samples of GIPRdn-transgenic 

and bGH-transgenic mice. For Msr1 and Fabp4, this was additionally confirmed by 

performance of real-time PCR, also in independent sample materials of isolated 

glomeruli. Therefore, the results of these experiments strongly indicate a differential 

expression of the Msr1 and the FABP4 gene in glomerular cells during development 

of glomerular hypertrophy and beginning albuminuria in the investigated mouse 

models of nephropathy.  

MSR1, FABP4 and TGH-2 (triacylglycerol hydrolase 2, the protein corresponding to 

the Expressed sequence AU018778) participate in molecular pathways linked to lipid 

metabolism. Alterations of the lipid metabolism as hyperlipidaemias are thought to 

play a role in the progression of various renal diseases, including diabetes mellitus 

(Schlondorff 1993).  
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The macrophage scavenger receptor 1 (MSR1, also known as class A macrophage 

scavenger receptor or CD204) was originally identified as a transmembrane receptor 

on macrophages that binds and internalizes modified lipoproteins (Fukuda et al. 

1986, Goldstein et al. 1979). MSR1 has also been shown to be expressed on 

microglia and perivascular macrophages in the brain (mato cells) (Tomokiyo et al. 

2002). Macrophage scavenger receptors mediate the binding, internalization, and 

processing of a wide range of negatively charged macromolecules (Doi et al. 1993, 

Emi et al. 1993, Platt and Gordon 2001). MSR1 mediated adhesion might play an 

important role in macrophage retention, specifically at sites of tissue injury. Several 

components of the extracellular matrix, including modified types of collagen and 

certain proteoglycans, present at sites of inflammation, have been identified as 

adhesion substrates for MSR1 (el Khoury et al. 1994, Gowen et al. 2000, Gowen et 

al. 2001, Santiago-Garcia et al. 2003).  

Recent studies suggest, that (human) mesangial glomerular cells may also express 

an inducible class A macrophage scavenger receptor, by which cells can acquire 

lipids as LDL and convert to foam cells in developing glomerulosclerosis (Ruan et al. 

1999). Other studies indicate potential common patterns of transcriptional regulation 

of Msr1 expression with other genes (gene products) of the commonly differentially 

expressed genes in stage I and II of this study.  

An interesting finding is the observation, that advanced glycation end products, as 

glycated albumin, a powerful contributor to diabetic angiopathy and atherosclerosis in 

patients with diabetes mellitus (Sakaguchi et al. 1998), induces the expression of 

both CD44 and macrophage scavenger receptors on monocytes. Furthermore, CD44 

crosslinking and/or glycated albumin enhances the uptake of oxidized-low density 

lipoprotein in monocytes, which in turn enhances foam cell transformation (Kishikawa 

et al. 2006). For these reasons it appears most likely that the increased expression 

abundances of glomerular transcripts coding for MSR1 in GIPRdn-transgenic and 

bGH-transgenic mice actually represent a common consequence of different factors 

that contribute to the development of glomerular alteration in diabetic and non 

diabetic nephropathy. Moreover, the known functions of MSR1 expressed on 

mesangial glomerular cells as well suggest a pathogenetically significant role of 

MSR1 during development of early glomerular alterations. 

 

 



 - 152 -  

Fatty acid binding proteins (FABPs) are a family of small, cytoplasmatic carrier 

proteins. They bind long-chain fatty acids and other hydrophobic ligands such as 

eicosanoids and retinoids (Chmurzynska 2006, Hotamisligil et al. 1996), provide their 

solubility and intracellular trafficking (Coe and Bernlohr 1998, Zimmerman and 

Veerkamp 2002). They facilitate fatty acid uptake, the transfer of fatty acids between 

extra- and intracellular membranes (Weisiger 2002) and their metabolism. Some 

members of the fatty acid binding protein family are also believed to transport 

lipophilic molecules from outer cell membrane to certain intracellular receptors such 

as peroxisome proliferator-activated receptors (PPARs) (Tan et al. 2002). In 

nephrology, FABPs (predominantly liver-type fatty acid binding protein, which is 

expressed in  human proximal tubules and appears in the urine of patients with CKD) 

are seen as  useful clinical biomarkers to predict and monitor the progression of 

chronic glomerular diseases (Kamijo-Ikemori et al. 2006, Kamijo et al. 2004, Kamijo 

et al. 2006). As well, they are employed as  diagnostic indicators for segregation of 

different entities of  glomerular abnormalities (Nakamura et al. 2006).  

FABP4 is also known as A-FABP or AP2. It  is primarily expressed in adipocytes and 

macrophages (Baxa et al. 1989), acts on metabolic and inflammatory pathways and 

plays an important role in obesity and glucose metabolism. Although the role of 

FABP4 in development of CKD or especially the development of glomerular 

alterations has yet not been subject of extended studies, there are several findings 

indicating a potential involvement of FABP4 in this context. Expression of 

macrophage FABP4 is induced on Toll-like receptor (TLR) activation (Kazemi et al. 

2005). Several processes of pathogenetic importance in developing glomerulopathies 

(e. g. mesangial cell proliferation) have been identified to be mediated by activation 

of TLR (Chow et al. 2005). Activation of macrophages by TLR ligands increases low-

density lipoprotein (LDL) uptake and cholesterol content, leading to foam cell 

formation (Funk et al. 1993, Oiknine and Aviram 1992), which has been shown to be 

involved in development of glomerulosclerosis (Abrass 2006). Expression of the 

Fabp4 gene is enhanced in macrophage cell lines treated with low levels of oxidized 

LDL, HDL, or PPAR-gamma agonists (Cabrero et al. 2003, Fu et al. 2000, Han et al. 

2002) and was shown to be likely to be regulated through peroxisome proliferator-

responsive elements (PPREs) located in Fabp4 gene promoter region (Fu et al. 

2006).  

 

 



 - 153 -  

Activation of PPAR-gamma dependent pathways has been shown to be associated 

with regulation of glomerular cell proliferation, hypertrophy and mesangial matrix 

expansion during development of glomerulosclerosis (Izzedine et al. 2005, Ma et al. 

2001) and treatment with PPAR-gamma agonists has shown beneficial effects in 

several studies on diverse forms of glomerular diseases, including diabetic 

nephropathy (Guan and Breyer 2001, Isshiki et al. 2000, Kanjanabuch et al. 2007, 

Okada et al. 2006, Yang et al. 2006). These findings strongly support the assumption 

that the enhanced glomerular Fabp4 expressions in GIPRdn-transgenic and bGH-

transgenic mice are actually a consequence of specific transcriptional programs, 

commonly activated during development of early stages of glomerulosclerotic 

alterations.  Furthermore, overexpression of the FABP4 gene in macrophage foam 

cells was shown to enhance the accumulations of cholesterol and triglycerides, 

probably due to an increased expression of MSR1 (Fu et al. 2006). Deficiency of 

FABP4 enhances PPAR-gamma activity, which is leading to an enhanced uptake of 

modified low density lipoprotein in macrophages. In parallel, FABP4 deficient 

macrophages display reduced NF-kappa ß activity, resulting in suppression of 

inflammatory function and impaired production of inflammatory cytokines (Makowski 

et al. 2001, Makowski et al. 2005).  

Activation of NF-kappa ß pathways and elevated expression of cytokines in the 

kidney have been shown to be important features in the development of diabetic 

nephropathy (Cohen et al. 2006, Mezzano et al. 2004, Sakai et al. 2005, Schrijvers et 

al. 2004). Therefore, FABP4 and MSR1 can be supposed to regulate central 

molecular pathways to coordinate lipid trafficking and inflammatory activity in 

glomerular cells.  

Another of the 21 identified commonly differentially expressed glomerular genes of 

the present study with a known participation in lipid metabolism is the unannotated 

gene corresponding to the Expressed sequence AU018778. Recently the protein 

encoded by this gene was identified and tentatively designated as triacylglycerol 

hydrolase 2 (TGH-2) (Okazaki et al. 2006), due to its remarkable structural 

resemblance to TGH-1 (Lehner and Vance 1999, Lehner and Verger 1997). Both 

TGH-1 and TGH-2 are members of the carboxylesterase family and involved in 

molecular mechanisms that mediate lipolysis.  
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Therefore, both the elevated common differential glomerular expressions of Msr1 and 

Fabp4 in GIPRdn-transgenic and bGH-transgenic mice, as well as the decreased 

glomerular abundances of transcripts coding for TGH-2 could be regarded to reflect 

concordant alterations of the glomerular lipid metabolism. So far, TGH-2 has not 

been described in the context of nephropathy. 

Although the precise effects of MSR1, FABP4 and TGH2 during development of 

glomerular hypertrophy are not known, the common differential expression of 

transcripts of these genes in glomerular cells might indicate a potential pathogenetic 

significance of their gene products and of the molecular pathways they participate in. 

Further inside views will be gained by detection of the cellular distribution of 

expression patterns of these transcripts within the glomerular compartment. As 

mesangial glomerular cells possess a number of macrophage-like characteristics 

(Gomez-Guerrero et al. 2005), these studies will also have to address the important 

question, if the detected differential expression of glomerular transcripts coding for 

MSR1, FABP4 and TGH-2 in the investigated early stages of glomerular alterations 

of GIPRdn-transgenic and bGH-transgenic mice can actually be related to intrinsic 

glomerular cells (e. g. mesangial cells and resident macrophages), or derives from 

other types of cells (leucocytes) infiltrating the glomerulus. 

 
5.6.3 Commonly differentially expressed genes involved in oxidative stress 
In the present study, transcripts coding for the cytochrome b-245 beta polypeptide 

(CYBB) were identified to be commonly differentially expressed in glomerular 

samples of transgenic animals of both investigated animal models and stages of 

glomerular alteration. As part of the NADPH oxidase system, CYBB displays 

oxidoreductase activity and is involved in production of reactive oxygen species 

(ROS) as superoxide radicals, oxygen radicals, hydrogen peroxide, hydroxyl radicals, 

and lipid hydroperoxides. Several reports have evaluated the direct and indirect 

damaging effects of reactive oxygen species (ROS) on renal structural integrity 

(Gomez-Guerrero et al. 2005, Gwinner and Grone 2000) in different kidney diseases. 

Enhanced generation of ROS has been detected in several human and experimental 

glomerular diseases (Binder et al. 1999, Gaertner et al. 2002, Gwinner and Grone 

2000, Neale et al. 1993, Pavenstadt et al. 2003, Ricardo et al. 1994, Shah 1988), 

leading to oxidatively modified proteins in podocytes, mesangial cells, and basement 

membranes (Grone et al. 1997).  
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ROS may also alter collagen structures, which facilitates GBM degradation and leads 

to activation of proteinases or complement components (Gomez-Guerrero et al. 

2005). Excess oxidized LDL are supposed to act as cytotoxic agents on mesangial, 

epithelial, and endothelial cells, thereby contributing to a vicious cycle of cell damage 

and sclerosis (Schlondorff 1993). Recent evidences implicate ROS as signaling 

molecules (Budisavljevic et al. 2003, Suzuki et al. 1997), through which oxidative 

stress can also cause glomerular injury by regulation of intracellular signaling 

cascades in mitogenic pathways (Budisavljevic et al. 2003). In inflammatory 

glomerular diseases, there is also evidence of ROS activation also by immune 

complexes (IC) in mesangial cells, which includes release of O2
- and H2O2 (Gomez-

Guerrero et al. 1993, Satriano et al. 1997, Satriano et al. 1993, Sedor et al. 1987, 

Suzuki et al. 2003) as well as NADPH-dependent oxidase and superoxide dismutase 

(SOD) activation (Satriano et al. 1993, Stephanz et al. 1996). Finally, ROS are also 

known to mediate several processes that lead to podocyte damage (Pavenstadt et al. 

2003). Podocytes seem to be not only the target but also the source of ROS in 

different forms of nephropathy (Binder et al. 1999, Greiber et al. 2002, Ricardo et al. 

1994, Shankland 2006, Vega-Warner et al. 2004).  

In podocytes, ROS itself changes several signaling cascades, which then may 

maintain podocyte injury by mechanisms distinct from ROS and might also modulate 

cellular properties of glomerular endothelial cells or immune cells in a paracrine 

fashion through release of podocyte derived signaling molecules. For example, it was 

shown that exogenous ROS causes a marked increase in the induction of 

granulocyte macrophage colony-stimulating factor (GM-CSF) mRNA as well as GM-

CSF protein release in cultured differentiated mouse podocytes (refer to chapter 

5.6.4), which in vivo might modulate cellular properties of glomerular endothelial cells 

in a paracrine fashion (Greiber et al. 2002). Although the involvement of molecular 

processes related to oxidative stress in development of glomerular damage is 

generally accepted, a causative participation of elevated expression levels of 

transcripts coding for cytochrome b-245 beta polypeptide in processes leading to 

glomerular hypertrophy and subsequent albuminuria can not be concluded from the 

available data.  
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5.6.4 Commonly differentially expressed genes involved in cytokine and 
chemokine signaling pathways 

In the present study, several transcripts of genes with a described known or 

supposed affiliation to cytokine and chemokine signaling pathways displayed a 

congeneric common differential expression in the investigated glomerular samples of 

transgenic animals of GIPRdn- and bGH-transgenic animals in early stages of 

glomerular alteration, e. g. the Colony stimulating factor 2 receptor beta (CSF2RB) 

and the Chemokine (CX3C motif) ligand 1 (CX3CL1, also known as Fractalkine).  

Cytokine and chemokine signaling pathways are considered to be involved in several 

aspects of development of renal lesions through a broad variety of different chronic 

kidney diseases (Gomez-Guerrero et al. 2005, Kamanna et al. 1996, Pavenstadt et 

al. 2003). Many studies have described the glomerular expression of various 

chemokines and cytokines in CKD (e.g. monocyte chemoattractant protein 1, 

RANTES, macrophage inflammatory protein 1α, cytokine-induced neutrophil 

chemoattractant and fractalkine), as reviewed in Gomez-Guerrero et al. (2005). In 

inflammatory glomerular disease, chemokines and pro-inflammatory cytokines, which 

can be locally secreted, play important roles in recruitment of leukocytes toward the 

site of tissue injury (Rovin and Phan 1998, Segerer et al. 2000, Wenzel and Abboud 

1995) and participate in leukocyte adhesion to vascular endothelium and 

transendothelial migration (Anders et al. 2003, Segerer et al. 2000).  

Next to induction of chemokine release by mesangial cells through pro-inflammatory 

stimuli as tumor necrosis factor alpha (TNF-alpha) (Anders et al. 2003, Schwarz et al. 

1997, Segerer et al. 2000, Wolf et al. 1993, Wu et al. 1995) or oxidized LDL (Segerer 

et al. 2000), release and production of chemokines and adhesion molecules can also 

be triggered by  generation of ROS (Anders et al. 2003, Satriano et al. 1997, Satriano 

et al. 1993, Schlondorff 1995, Wolf et al. 1993). Mesangial cell-leukocyte interaction 

is supposed to be mediated by receptor-mediated adhesion molecule pathways 

(Gauer et al. 1997, Wuthrich 1992), as well as through mechanisms, promoted by 

chemoattractants and cytokines, such as granulocyte macrophage-colony-stimulating 

factor (GM-CSF) (Brady et al. 1992, Gauer et al. 1997) or TNF-alpha (Adler and 

Brady 1999, Brady et al. 1992, Denton et al. 1991, Gauer et al. 1997, Satriano et al. 

1997).  

The granulocyte macrophage colony-stimulating factor receptor (CSFR) is a 

transmembrane receptor for GM-CSF. GM-CSF is a cytokine secreted by 

macrophages, T cells, mast cells, endothelial cells and fibroblasts.  
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As well, glomerular cells as mesangial cells and podocytes differentially express and 

produce GM-CSF (Greiber et al. 2002) according to manifold stimuli (Schlondorff and 

Mori 1990), mediated by several factors with known pathogenetic importance in 

development of glomerulosclerosis. In the context of inflammatory and other 

glomerular diseases, the GM-CSF pathways are involved in cellular processes as 

proliferation, differentiation and growth of mononuclear phagocytes and the functions 

of glomerular mesangial cells (Pavenstadt et al. 2003, Gomez-Guerrero et al. 2005, 

Kamanna, et al. 1996). Next to the mentioned (refer to chapter 5.6.3) induction of 

GM-CSF mRNA and GM-CSF protein release in podocytes by ROS (Greiber et al. 

2002), for example also LDL (Pai et al. 1995), or proinflammatory cytokines such as 

TNF-alpha  were shown to induce CSF production by mesangial cells, which then 

regulates the differentiation of monocytes into macrophages and proliferation within 

the mesangium (Kamanna et al. 1996). Next to leucocytes, CSFR is also expressed 

on the cell surface of mesangial glomerular cells (Mori et al. 1990). The increased 

glomerular expression abundances of CSF2RB mRNA in GIPRdn-transgenic and 

bGH-transgenic mice might therefore as well be involved in growth processes of 

mesangial and other glomerular cells during development of glomerular hypertrophy. 

CX3CL1 (Fractalkine) is a small cytokine, which is the only known member of the 

CX3C chemokine family (Bazan et al. 1997, Pan et al. 1997). The fractalkine 

molecule can exist in two forms, as membrane-anchored or as a soluble 

glycoprotein. Soluble fractalkine potently chemoattracts T cells and monocytes, while 

the cell-bound chemokine promotes strong adhesion of leukocytes to the surface of 

activated endothelial cells, where it is primarily expressed (Bazan et al. 1997). 

Therefore, Cx3CL1 can function both as a chemoattractant and as an adhesion 

molecule for cells expressing its receptor, CX3CR1 (Haskell et al. 1999, Imai et al. 

1997). By interacting with CX3CR1, fractalkine elicits its adhesive and migratory 

functions (Imai et al. 1997). It appears  likely, that CX3CR1 functions predominantly 

as an adhesion molecule, functioning in the processes of firm adhesion and 

extravasation of leukocytes from the circulation (Segerer et al. 2002). Expression of 

CX3CR1 and migration towards CX3CL1 has been demonstrated for a wide variety 

of cells, including monocytes and macrophages, as well as other types of leucocytes, 

neurons and microglia (Fong et al. 1998, Foussat et al. 2000, Harrison et al. 1998, 

Imai et al. 1997, Tong et al. 2000). Upon stimulation, Fractalkine (CX3CL1) is also 

expressed by mesangial cells in vitro (Anders et al. 2003, Segerer et al. 2000).  
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In vivo expression of fractalkine was demonstrated in human glomeruli, tubular 

epithelial cells and peritubular capillaries in settings of acute crescentic 

glomerulonephritis or acute renal allograft rejection accompanied by prominent 

parenchymal infiltration by mononuclear leukocytes, but not in normal kidneys or in 

biopsies of patients with non-inflammatory diseases such as minimal change disease 

(Cockwell et al. 2002). Complementary to these findings, other studies showed that 

(human) leukocytes bear the appropriate fractalkine receptor in similar disease 

settings (Segerer et al. 2002). Glomerular production of fractalkine in mesangial cells 

was also detected in an animal model of glomerulonephritis (Chen et al. 2003). The 

expression of fractalkine in mesangial cells is increased by factors as for example 

TNF-alpha, a process which is least in partially mediated via the Nfk-ß signalling 

pathway (Chen et al. 2003). In response to inflammatory cytokines, mesangial cells 

do also express fractalkine recognizing  chemokine receptors, such as CXCR1 

(Segerer et al. 2006), indicating that intrinsic renal cells are also targets for the 

chemokines, secreted during the initial phase of injury (Banas et al. 2002, 

Romagnani et al. 1999). In fact, CX3CR1 is expressed on both interstitial, and in the 

two most common groups of glomerular infiltrating leukocytes in inflammatory kidney 

diseases, T cells and macrophages (Imai et al. 1997).  Experimental data in animal 

models suggest an important role of the chemokine-receptor pair of CX3CL1-

CX3CR1 in various inflammatory glomerular diseases and make it an attractive target 

for therapeutic interventions (Cook et al. 2001, Feng et al. 1999, Jung et al. 2000, 

Robinson et al. 2000). There is growing evidence that inflammatory processes 

participate also in development of diabetic nephropathy, as inflammatory cells are 

observed at every stage of this disease (Galkina and Ley 2006). Renal tissue 

macrophages, T cells, and neutrophils produce various reactive oxygen species, 

proinflammatory cytokines, metalloproteinases, and growth factors, which modulate 

the local response and increase inflammation within the diabetic kidney (Bending et 

al. 1988, Furuta et al. 1993, Gomez-Guerrero et al. 2005, Moriya et al. 2004). Within 

this context,  chemokines as Fractalkine are supposed to be crucially involved in 

leukocyte migration in diabetic nephropathy (Galkina and Ley 2006). Glomerular-

produced chemokines have been implicated not only to induce recruitment of 

inflammatory cells, but also to alter functions of resident glomerular cells. Expression 

of several functional active chemokine receptors, including CXCR1 have been 

detected in human differentiated podocytes.  
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Ligands of these chemokine receptors increase the intracellular calcium 

concentration and stimulate the generation of superoxide anion in podocytes, 

suggesting that activation of these receptors may be involved in the pathogenesis of 

podocyte injury (Huber et al. 2002). It also has been demonstrated that podocytes 

are able to produce ligands for the CXCR1/CXCR2 receptor, so that the CXCR1 

receptor in podocytes may be activated in an autocrine fashion (Huber et al. 2002).  

With regard to the known mesangial expression patterns of Fractalkine, it appears 

likely that the elevated expression of glomerular transcripts coding for Fraktalkine 

might also be pathogenetically involved in the, in first instance non-inflammatory, 

development of early stages of glomerular lesions in both GIPRdn- and bGH-

transgenic mice. 

 
5.6.5 Commonly differentially expressed genes involved in extracellular matrix 
turnover 
A common pathological feature of progressive glomerulosclerosis leading to renal 

insufficiency is an accumulation of extracellular glomerular matrix proteins, 

predominantly collagens of type IV and V, laminin, fibronectin, and proteoglycans 

(Mene et al. 1989, Schlondorff 1987). This prominent histological abnormality is 

present in nearly all types of chronic, progressive glomerular disease (Kashgarian 

and Sterzel 1992). Mesangial matrix accumulation leading to glomerulosclerosis is 

seen as a consequence of an imbalance between matrix production and degradation. 

This (in)-balance is apparently influenced by the activity of glomerular proteinases as 

cathepsins, which are involved in the degradation of these extracellular matrix 

components. Inter alia, cathepsins are expressed in glomerular cells (Teschner et al. 

1992) tubular (Schaefer et al. 1996) and juxtaglomerular cells (Matsuba et al. 1989) 

of the kidney. They are crucially involved in remodeling processes of the extracellular 

matrix (ECM) in physiological nephrogenesis (Vattimo Mde and Santos 2005) as well 

as in the development of chronic renal diseases (Huang et al. 1992, Schaefer et al. 

1996, Schaefer et al. 1992, Teschner et al. 1992). Next to their function in glomerular 

extracellular matrix turnover, recent findings also demonstrated the participation of 

Cathepsins (Cathepsin L) in the development of podocyte damage in several 

proteinuric kidney diseases, including diabetic nephropathy (Sever et al. 2007). The 

same study also identified the proteolytic activity of cytoplasmatic Cathepsin L in 

podocytes to be an important mediator of development of podocyte foot process 

effacement and proteinuria in an experimental mouse model.  
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The cysteine proteinase Catepsin H plays an important role in proteolytic processes. 

Reduced glomerular Cathepsin H expression levels and activities were demonstrated 

by several studies in animal models of glomerulosclerosis, probably representing a 

common pathogenetic mechanism leading to extracellular matrix accumulation 

(Huang et al. 1992, Schaefer et al. 1996, Schaefer et al. 1992, Teschner et al. 1992). 

Thus, these findings are congruent to the detected decreased glomerular expression 

of transcripts coding for Catepsin H in GIPRdn-transgenic and bGH-transgenic mice in 

both investigated stages of glomerular alteration of the present study. 

 

5.6.6 Commonly differentially expressed genes involved in mediation of cell-
matrix contacts  
In the present study, a congeneric common elevated expression of two genes coding 

for the CD44 molecule and the lymphatic vessel endothelial hyaluronan receptor 1 

(LYVE1, syn. extra cellular link domain-containing 1, XLKD1; cell surface retention 

sequence binding protein-1, CRSBP1) was independently detected in glomerular 

samples of all investigated GIPRdn- and bGH-transgenic animals in both stages of 

early glomerular alteration. The known molecular functions of CD44 and LYVE1 

associate these gene products to molecular pathways which, inter alia, participate in 

mediation of cell-matrix contacts and are involved in cellular processes of movement 

and adhesion.  

Both CD44 and LYVE-1 act as receptors for hyaluronic acid (HA), an ubiquitous 

extracellular matrix molecule (Laurent and Fraser 1992) with proinflammatory, 

angiogenic, and cell-migratory functions (Lee and Spicer 2000, Savani et al. 2001). 

HA has been described to be involved in several processes linked to the 

development of diverse glomerular lesions observed in a variety of different chronic 

kidney diseases, including diabetic nephropathy (Dunlop and Muggli 2002, Hallgren 

et al. 1987, Johnsson et al. 1996, Mahadevan et al. 1995, Nishikawa et al. 1993, 

Turney et al. 1991, Wuthrich 1999). Unlike other matrix components, hyaluronan 

(HA) is turned over rapidly. HA is cleaved into fragments of low and intermediate 

molecular weight by specific hyaluronidases (Wuthrich 1999), or via the action of 

reactive oxygen species (Li et al. 1997). Different HA degradation products have 

biological functions distinct from those of the native high-molecular-weight polymer 

(Noble 2002).  
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High-molecular-weight HA polymers are known to possess anti-inflammatory and 

anti-fibrotic functions (Yevdokimova 2006), whereas many of the reported effects of 

hyaluronan at a number of inflammatory sites are seen as a consequence of 

inflammatory modification of hyaluronan to forms of lower molecular mass (Li et al. 

1997). Expansion of the glomerular mesangial matrix and proliferation of mesangial 

cells is a feature of several forms of human and experimental glomerulopathy, 

including that seen in diabetes. High-glucose conditions lead to thrombospondin-1 

mediated activation of transforming growth factor beta 1 (TGFβ1) in mesangial 

glomerular cells, which triggers the accumulation of matrix proteins and increased 

synthesis of HA of high molecular weight (Crawford et al. 1998, Hugo 2003, 

Yevdokimova et al. 2001, Yevdokimova 2006). This is seen as an important 

regulative molecular mechanism in diabetic nephropathy. However, it remains 

unclear, whether the phenomenon of increased generation of HA in mesangial cells 

provides a promotional, passive or defensive function. The dysregulation of the 

metabolism of glycosaminoglycan and protein components of extracellular matrix 

(ECM) is also a typical feature of diabetic complications. High glucose-induced 

enrichment of ECM with hyaluronan not only affects tissue structural integrity, but 

influences cell metabolic response due to the variety of effects depending on the HA 

polymer molecular weight. HA fragments of lower molecular weight (LMW) 

accumulate during inflammatory processes and induce the expression of 

inflammatory genes in macrophages, resulting in production of proinflammatory 

cytokines, chemokines and adhesion molecules. These processes are likely to be 

mediated by CD44 binding to the LMW-HA fragments (McKee et al. 1996). Increased 

HA synthesis was described within the glomeruli of diabetic rat kidney (Mahadevan et 

al. 1995). HA-enriched mesangial extracellular matrix stimulates monocyte and 

macrophage adhesion (Wang and Hascall 2004), formally promoting the 

inflammatory response and progression of diabetic nephropathy (Yevdokimova 

2006). Recent studies have also reported of increased hyaluronan production in 

diabetes-related arterial sclerosis, diabetic nephropathy (Chajara et al. 2000, 

Heickendorff et al. 1994, Jones et al. 2001) and diabetic microangiopathy (Mine et al. 

2006).  

The protein encoded by the Cd44 gene is an integral cell-surface membrane 

glycoprotein, involved in cell to cell and cell to matrix interactions and adhesions, 

including inflammatory cell recruitment and cell activation (Aruffo et al. 1990, Borland 

et al. 1998, DeGrendele et al. 1996, Hodge-Dufour et al. 1997, McKee et al. 1996). 
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The genomic structure of Cd44 is remarkably complex and transcripts of this gene 

can undergo alternative splicing that results in many functionally distinct isoforms 

(Borland et al. 1998, Gunthert 1993, Screaton et al. 1992), mirroring the structural 

and functional diversity of CD44. Under physiological conditions, inter alia, CD44 is 

expressed in the (rat) kidney by medullary tubules, some distal tubules and thick 

ascending limbs of Henle, dendritic-like cells around Bowman's capsule, some 

interstitial cells and occasionally within the glomerular compartment (Nikolic-Paterson 

et al. 1996). Other studies found constitutive CD44  expression in normal kidney 

tissue by resident glomerular macrophages and parietal epithelial cells (Jun et al. 

1997). The adhesion mediated by the binding of CD44 to HA is relatively weak in 

comparison to other cell adhesion mechanisms, such as those involving integrins for 

example. This has led to the suggestion that CD44 does not have a primary role in 

promoting attachments that strongly anchor cells to the matrix. Instead, it may 

facilitate transient associations that allow for the activation of intracellular cascades 

involved in processes required for cell activities such cell proliferation or migration 

(Savani et al. 2001). CD44 is also discussed to be involved in the presentation of 

cytokines/growth factors to other cell types (e. g. leucocytes), which then results in 

their adhesion (Borland et al. 1998). The CD44-variant CD44v3 for example is 

capable of binding growth factors and presents these factors to their high-affinity 

receptors (Bennett et al. 1995, Jackson et al. 1995). Interestingly, HA fragments 

accumulate in the absence of CD44 at the site of injury (Teder et al. 2002), 

suggesting a role for CD44 in the clearance of HA.   

An increased expression of CD44 was detected in several studies investigating in 

diverse chronic kidney diseases. Early glomerular influx of CD44+ macrophages and 

de novo CD44 expression by proliferating mesangial cells was found in a rat model of 

glomerulonephritis (Nikolic-Paterson et al. 1996). As the CD44 expression was 

restricted to the transient period of mesangial cell proliferation, a functional 

interaction between the CD44/hyaluronan receptor-ligand pair during mesangial cell 

proliferation was suggested (Nikolic-Paterson et al. 1996). As mentioned, 

development of glomerular hypertrophy is as well characterized by proliferation of 

mesangial cells. Therefore, although the investigations in the present study were not 

performed in glomerulonephritis models of nephropathy, an involvement of increased 

glomerular Cd44 expression, as observed in glomerular samples of GIPRdn-

transgenic and bGH-transgenic mice, in the development glomerular hypertrophy 

could probably be suggested as well.  
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In another study on an experimental rat model of glomerulonephritis, hyaluronan 

deposition in areas of fibrosis, such as glomerular crescents, was accompanied by 

the presence of many CD44+ infiltrating monocytes and lymphocytes, which adhered 

to activated endothelium and displayed high levels of CD44, expressed on their 

surface (Jun et al. 1997). It was concluded that CD44 is constitutively expressed in 

the normal kidney and is dramatically up-regulated in glomerulonephritis, suggesting 

a possible role for the CD44-hyaluronan interaction in leucocyte recruitment and 

development of fibrosis during the induction and progression of disease (Jun et al. 

1997). Next to HA, also other constituents of the mesangial extracellular matrix as 

fibronectin and collagens, matrix metalloproteinases (MMPs) and osteopontin have 

been identified as binding ligands for different CD44 variants (Bennett et al. 1995, 

Jalkanen and Jalkanen 1992, Noiri et al. 1999, Ophascharoensuk et al. 1999, Weber 

et al. 1996, Yang et al. 1994). CD44 was also shown to be directly involved in 

modulation of molecular pathways as of transforming growth factor-ß1 (Yu and 

Stamenkovic 2000), hepatocyte growth factor (Rouschop et al. 2004), MMPs and 

tissue inhibitors of MMP (TIMP) (Duymelinck et al. 2000, Oda et al. 2001), which are 

important determinants of progression of chronic renal diseases.  

LYVE-1, a CD44 homologue transmembrane receptor binds to both soluble and 

immobilized hyaluronan (Banerji et al. 1999) with greater specificity than CD44 and is 

also involved in the uptake of hyaluronan by lymphatic endothelial cells. LYVE-1 was 

considered to be the first HA receptor present on lymph vessels but completely 

absent from blood vessels (Jackson et al. 2001).  

Next to its expression in lymphatic vessels (Prevo et al. 2001), it also appears in 

normal hepatic blood sinusoidal endothelial cells in mice and humans, suggesting 

that LYVE-1 has functions beyond the lymph vascular system (Mouta Carreira et al. 

2001). This suggestion is supported by the finding that CRSBP-1, a membrane 

glycoprotein that was found to be identical to LYVE-1 , can mediate cell-surface 

retention of secreted growth factors containing CRS motifs such as platelet derived 

growth factor-B and is suggested to  play a role in autocrine regulation of cell growth 

mediated by growth regulators containing CRS motifs (Huang et al. 2003). 

Expression of LYVE-1 in glomerular cells has not been reported so far.  
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However, due to the similarity of LYVE-1 to CD44 and due to the steadily growing 

numbers of identified ligands for different CD44 variants (Bennett et al. 1995, 

Jalkanen and Jalkanen 1992, Weber et al. 1996, Yang et al. 1994) it is supposable, 

that there might be more further functions and ligands for CD44 and LYVE-1, than 

the ones yet described.  

Due to these manifold cross-links of yet described CD44 functions with other well 

known mechanisms that contribute to development of glomerular alterations in 

various chronic kidney diseases and in experimental models of nephropathy, a 

potential pathogenetically relevant involvement of CD44, and probably of LYVE1, in 

the development of the investigated early stages of glomerular alterations might also 

be assumed for GIPRdn-transgenic and bGH-transgenic mice. As the development of 

glomerular hypertrophy and subsequent albuminuria in the investigated murine 

nephropathy models is not accompanied by a noticeable appearance of inflammatory 

cells infiltrating the glomerulus, the detection of the cellular origin of glomerular Cd44 

and Xlkd1 gene expression will provide further inside views into their assumed 

pathogenetical significance. 

 

5.6.7 Commonly differentially expressed genes involved in cytoskeletal 
functions 
Cytoskeletal reorganization is fundamental for cell shape change, signalling, 

locomotion, and many other important dynamic cellular processes and plays an 

important role in development of glomerulosclerotic lesions due to podocyte damage 

(Pavenstadt et al. 2003, Shankland 2006). In the present study performance of 

microarray experiments on samples of isolated glomeruli of GIPRdn- and bGH-

transgenic mice identified an elevated common congeneric expression of several 

glomerular transcripts of genes, whose related proteins have a known function as 

structural components of the cytoskeleton (Myo1f, Tnnt2, cDNA 2810484G07 gene) 

or act as regulators of the organization of cytoskleletal components (Filip1, Dnai1). 

Filamin A interacting protein 1 (FILIP1) is crucially involved in the regulation and 

control of function and cellular content of Filamin A, as it induces its degradation 

(Nagano et al. 2002). Filamin A, is a widely expressed actin-binding protein that 

regulates the reorganization of the actin cytoskeleton.  
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Cytoskeletal reorganization is fundamental for cell shape change, signaling, and 

many other important dynamic cellular processes, which are known to be altered in 

development of glomerulosclerotic lesions due to podocyte damage (Pavenstadt et 

al. 2003, Shankland 2006). Filamin A is known to interact with various proteins, 

including integrins (Loo et al. 1998), transmembrane receptor complexes (Awata et 

al. 2001, Hjalm et al. 2001, Lin et al. 2001) and signal transduction molecules (Scott 

et al. 2006, Stossel et al. 2001). It crosslinks actin filaments into orthogonal networks 

in the cortical cytoplasm and participates in the anchoring of membrane proteins for 

the actin cytoskeleton. Filamin provides a scaffold for small GTPases that regulate 

cytoskeletal organization and are crucially involved in signaling mechanisms that  

target the cytoskeleton in development of podocyte damage (Kobayashi et al. 2004, 

Shirato et al. 1996, Togawa et al. 1999). Filamin also interacts directly with caveolin 

(Gorlin et al. 1990, Stahlhut and van Deurs 2000), a protein component of caveolae, 

plasma membrane microdomains containing receptors and associated signalling 

molecules as G proteins and calcium receptors that are thought to serve as cellular 

“message centres” (Schlegel et al. 1998). Finally, Filamin is involved in protein 

trafficking and contributes to localization and cycling of proteins in the cell (Li et al. 

2000, Liu et al. 1997). Most of the Filamin associated signaling pathways are at least 

partially known to play key roles in the pathogenesis of podocyte and mesangial cell 

damage during development of glomerular lesions in various chronic kidney diseases 

(Gomez-Guerrero et al. 2005, Pavenstadt et al. 2003). The Filamin A interacting 

protein 1 (FILIP1) is crucially involved in the regulation, the control of function and the 

cellular content of Filamin A, as it induces its degradation (Nagano et al. 2002). 

Therefore, a pathogenetically important participation of FilaminA/FILIP1 in the 

development of the early investigated stages of glomerulosclerotic alterations in 

GIPRdn-transgenic and bGH-transgenic mice might as well be assumed.  

Further identified “cytoskeleton-associated transcripts” that displayed an elevated 

common differential expression across all investigated glomerular samples of 

GIPRdn- and bGH-transgenic mice were coding for the intermediate polypeptide of 

axonemal dynein, Myosin 1F, Troponin T type 2 (cardiac) and the gene product of 

the RIKEN cDNA 2810484G07 (similar to beta tubulin 1, class VI) -gene.  
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The respective proteins have known functions as structural components of the 

cytoskeleton and participate in cellular functions as adhesion, cell-matrix contacts, 

motility (Kim et al. 2006), calcium signaling pathways, mitosis, cytokinesis, vesicular 

transport and maintenance of the structure of podocyte foot processes (Kobayashi et 

al. 2001).  

Dyneins are involved in cellular processes of ciliary beating, intracellular transport, 

organelle transport, mitosis and cell polarization. Based on both functional and 

structural criteria, dyneins fall into two major classes, cytoplasmic and axonemal 

dyneins. Dynein isoformspecific intermediate chains are found in some axonemal 

dyneins as well as in cytoplasmic dynein (Hook and Vallee 2006). Dyneins are 

crucially involved in the development, maintenance and modulation of the podocyte 

cytoskeleton and foot process architecture. Therefore, they play important roles in 

both physiological podocyte function, as well as in the pathogenesis of podocyte 

damage during development of glomerular lesions (Kobayashi et al. 2004, Kobayashi 

and Mundel 1998).  

Actin-associated motor proteins like myosin allow for isometric or isotonic contraction 

of the bundles in muscle and non-muscle cells (Gordon et al. 2000). The Myo1f-gene 

is widely expressed in adult mouse tissues (Crozet et al. 1997), predominantly in the 

mammalian immune system. Also non-muscle cells as myofibroblasts express many 

homologues of sarcomeric proteins. Myofibroblasts are cells of mesenchymal origin 

that are characterized by a fibroblastic appearance with some ultrastructural features 

of muscle cells. Glomerular mesangial cells are myofibroblasts (Johnson et al. 1992), 

that contract and relax in response to vasoactive agents (Badr et al. 1989, 

Schlondorff 1987, Schlondorff et al. 1984). Their contractile properties are thought to 

control the rate of glomerular filtration by changing capillary surface area. They play a 

key role in processes leading to development of glomerular alterations (Skalli and 

Gabbiani 1988), as they are involved in the generation of mediators of inflammation, 

synthesis of cytokines, production and breakdown of basement membranes, as  well 

as uptake of macromolecules (Abboud 1991, Elema et al. 1976, Martin et al. 1989, 

Ohyama et al. 1990).  
The Troponin T type 2 (cardiac) protein encoded by the Tnnt2 gene is the 

tropomyosin-binding subunit of the troponin complex, which is located on the thin 

filament of striated muscles and regulates muscle contraction in response to 

alterations in intracellular calcium ion concentration.  
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Cardiac troponin T is a very sensitive and specific marker of myocardial damage 

(Bozbas et al. 2006)  However, in the absence of a major clinically evident cardiac 

injury, troponins are found to be elevated in several clinical conditions, including 

ESRD (Dierkes et al. 2000, Donaldson and Cove-Smith 2001).  

Finally, also transcripts corresponding to the RIKEN cDNA 2810484G07 gene 

(similar to beta tubulin 1, class VI) displayed an increased common differential 

expression in the investigated glomerulus isolates of GIPRdn-transgenic and bGH-

transgenic mice in both stages of glomerular alteration. Beta-tubulins are constituents 

of microtubules, structural cellular components which are involved in processes as e. 

g. mitosis, cytokinesis, and vesicular transport. In glomerular cells, they are essential 

for an intact structure of major podocyte processes, since they connect the cell body 

with the GBM-anchored actin network in foot processes (Kobayashi et al. 2001).  

Taken together, although they have yet not been described in this particular context, 

the deduced proteins of the Myo1f, Tnnt2 and the RIKEN cDNA 2810484G07 -gene 

might be supposed to be important for physiological glomerular function. Their 

detected common differential glomerular expression in GIPRdn-transgenic and bGH-

transgenic mice might therefore reflect important changes of the cytoskeletal 

architecture of glomerular cells during development of glomerular hypertrophy.  

 

5.6.8 Commonly differentially expressed genes involved in G-protein 
dependent signaling processes 
Transcripts coding for GNG2, a subunit of a heterotrimeric G-protein protein, 

commonly displayed increased differential expressions in the investigated glomerular 

samples of all transgenic mice in the present study. The biological function of 

heterotrimeric G-protein proteins is to act as signal transducers in G-protein coupled 

receptor signaling pathways. G-protein signaling participates in cellular processes as 

mitogenesis, chemotaxis, migration, aggregation, proliferation, formation, 

endocytosis, formation of focal adhesions adhesion and actin stress fibers and 

rearrangement of the actin cytoskeleton. Moreover, G-protein protein dependent 

signaling processes are involved in regulation of several downstream pathways, 

which are considered to play important roles in podocyte (Pavenstadt et al. 2003) 

and mesangial cell damage (Gomez-Guerrero et al. 2005) during development of 

glomerulosclerosis.  
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GTP-binding proteins have been identified to be involved in the mediation of several 

effects (Schlondorff et al. 1989) of the various known factors  

(Ruiz-Ortega et al. 2001) involved in regulation of mesangial cell growth, proliferation, 

hypertrophy and increased synthesis and accumulation of extracellular matrix 

proteins and are therefore considered to be important molecules for maintenance of 

glomerular function and mediation of a variety of processes participating in 

development of glomerular lesions. Since an affection of single specific molecular 

pathways in this context can not be concluded directly from detection of elevated 

glomerular expression of transcripts coding for GNG2, it remains speculative, if the 

observed common differential expression of the Gng2 gene reflects a 

pathogenetically important process in development of glomerular hypertrophy, or 

mirrors just epiphenomenous changes of the glomerular transcription profiles.   

 
5.6.9 Commonly differentially expressed genes involved in immunological 
events 
In the microarray experiments of the present study, a congeneric common elevated 

expression of transcripts coding for the beta polypeptide of the complement 

subcomponent 1 Q, (C1QB) and the high affinity Fc gamma (IgG) receptor 1 

(FCGR1) was detected in glomerular samples of all investigated GIPRdn- and bGH-

transgenic animals in both stages of early glomerular alteration.  

The known molecular functions of C1QB and FCGR1 associate these gene products 

to processes of immunological and inflammatory character. It has been widely 

accepted that immune reactions are centrally involved in the development of 

glomerular disease (Gomez-Guerrero et al. 2005). In this context, the involvement of 

the complement system and the importance of immune complex (IC) 

formation/localization to the mesangium in the pathogenesis of kidney diseases have 

been studied intensively. C1QB is a constituent of the first component of the serum 

complement system, C1. The C1q complex is potentially multivalent for attachment to 

the complement fixation sites of immunoglobulin. C1QB is expressed in a large 

variety of tissues, including the kidney and neuronal cells (Rozovsky et al. 1994, 

Spielman et al. 2002). FCGR1 is a type of integral membrane glycoprotein that binds 

monomeric IgG-type antibodies with high affinity. Fc receptors are most important for 

inducing phagocytosis of opsonized antigens (Hulett and Hogarth 1998). FCGR1 is 

predominantly found on macrophages and monocytes.  
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In glomerulonephritis, deposition of ICs and complement activation in the glomerulus 

has been regarded to be responsible for the initiation of glomerular injury, although 

cell-mediated immunity also plays an essential role in initiation and perpetuation of 

glomerular inflammation (Radeke and Resch 1992). IC-mediated injury is seen in a 

large number of different nephropathies, such as idiopathic membranous and 

membranoproliferative glomerulonephritis, IgA nephropathy, postinfectious 

glomerulonephritis, and other disease entities (Ambrus and Sridhar 1997). The initial 

phase of immune-mediated glomerular inflammation depends on the interaction of 

ICs with specific Fc receptors and/or complement receptors in infiltrating leukocytes 

and resident mesangial cells (MC), the ability of immune complexes to activate the 

complement system and on local inflammatory processes (Gomez-Guerrero et al. 

2005). IC-bound activated C1Q has the potential to interact with cellular C1Q-

receptors (C1Q-R) (Anders et al. 2003), which are expressed by monocytes, 

macrophages, polymorphonuclear cells, lymphocytes, endothelial cells, MC (van den 

Dobbelsteen et al. 1993) and podocytes (Anders et al. 2003, Brady et al. 1992, 

Denton et al. 1991, Nolasco et al. 1987, van den Dobbelsteen et al. 1993). Several 

studies also confirmed the expression of functional Fc gamma receptors also on 

glomerular mesangial cells (Neuwirth et al. 1988, Santiago et al. 1991, Schlondorff 

and Mori 1990, van den Dobbelsteen et al. 1993). The expression of Fc receptors for 

IgG on MC was found to be influenced by several factors with known implication in 

the pathogenesis of glomerular disease, including GM-CSF and complement C1q 

(Daha 2000, Santiago et al. 1991, Schlondorff and Mori 1990, Singhal et al. 1990, 

van den Dobbelsteen et al. 1996). Further studies indicated cooperative effects 

between Fc gamma receptors and C1Q-receptors on MC in the recognition of 

immune complexes (van den Dobbelsteen et al. 1993). After an initial activation 

through IC and complement, mesangial cells express or release numerous 

biologically active molecules, most of which are mediators of inflammation, leading to 

amplification of the injury (Tarzi and Cook 2003, Veis 1993). Binding and uptake of 

IgG-containing IC, or soluble aggregates by mesangial cells triggers the release of a 

wide array of mediators involved in inflammation (Chen et al. 1994, Gomez-Chiarri et 

al. 1993, Gomez-Guerrero et al. 1994, Leung et al. 2003, Matsumoto and Hatano 

1991, Radeke and Resch 1992), proliferation (Gomez-Guerrero et al. 1994), 

migration and matrix production (Lai et al. 2003, Lopez-Armada et al. 1996, Wang et 

al. 2004).  
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Deficiency of C1q has been associated with auto-immune disease and 

glomerulonephritis in humans, as well as in studies of experimental animal models 

(Hannema et al. 1984), indicating a protective effect of C1Q from immune-mediated 

glomerular injury and development of glomerulosclerotic kidney lesions (Robson et 

al. 2001, Turnberg et al. 2006). There is also increasing evidence from in vivo and in 

vitro studies, that the complement system is important in mediating renal injury in 

proteinuric diseases and that complement activation is a crucial step in the 

development of complement-mediated podocyte injury in various, predominantly 

inflammatory nephropathies (Gomez-Guerrero et al. 2005, Pavenstadt et al. 2003). 

The precise mechanisms by which complement activation causes podocyte damage 

and proteinuria are unclear. Although podocytes seem to be resistant to cell lysis by 

C5b-9, C5b-9 induces podocytes to produce reactive oxygen radicals. This, as well 

as other mechanisms induced by complement-mediated glomerular injury (McMillan 

et al. 1996, Shankland et al. 1996) leads to an alteration of the properties of the 

glomerular filtration barrier and overproduction of matrix (Kerjaschki and Neale 1996, 

Shankland et al. 1996).  

As the investigated forms of nephropathies developing in GIPRdn- and bGH-

transgenic mice are in first instance of non-inflammatory character and not 

associated with any observed appearance of immune complexes, a significant 

pathogenetic participation of the detected elevated glomerular expression 

abundances of Fcgr1 and C1qb in the development of early stages of 

glomerulosclerotic alteration in these models of nephropathy has to be doubted. As 

approximatively 2% of all mesangial cells are Fc receptor expressing phagocytes 

(Venkatachalam and Kriz 1992), the increased differential glomerular expression of 

these genes might probably result from the presence of increased numbers of 

mesangial cells in hypertrophied glomeruli. 

 

5.7 Conclusions and future prospects 
The results of the present study demonstrate that the development of characteristic 

early comparable stages of glomerular alterations in completely different transgenic 

mouse models of nephropathy is characterized by shared expression signatures of 

glomerular genes. Appliance of a sophisticated experimental design and stringent 

parameters for characterization of the investigated stages of morphological and 

functional glomerular alteration allowed for their identification.  
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The data generated in the present study provide a basis for detailed further 

investigations in the single investigated animal models, as well as in the identified 

shared glomerular expression profiles of both experimental models. The 

bioinformatical analyses indicate a participation both of molecules with an already 

known pathogenetic significance in development of glomerular damage, as CD44 or 

Fraktalkine, but also a potential involvement of gene products which have yet not 

been subject of comprehensive investigations in this context (e.g. FABP4, MSR1, 

TGH2, LYVE1). Further studies will focus on the participation of single of these 

molecules in the pathogenesis of glomerular hypertrophy and/or onset of 

albuminuria. The questions to be addressed in the next analyses concern the cellular 

origin of commonly differentially expressed glomerular genes on the RNA and protein 

level in order to evaluate the contribution of single glomerular cell types (podocytes, 

mesangial cells, endothelial cells and resident or immigrated cells of the immune 

system) to the altered glomerular expression profiles.  

These further studies will help to reveal the relevance of these shared expression 

signatures for our understanding of the molecular pathogenesis of early stages of 

progressive glomerulopathies, potential mechanisms of intraglomerular 

communication of different glomerular cell types, as well as the potential use of single 

identified transcripts or corresponding proteins as diagnostic markers or therapeutic 

targets. Additional investigations will identify causative (common) molecular 

mechanisms and pathways that trigger the development of early glomerular lesions 

in chronic kidney diseases of the investigated animal models, their potential 

involvement in the pathogenesis of human renal disease, as well as the regulatory 

networks that underlie the detected patterns of differential glomerular gene 

expression.  
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6. Summary  
Development of glomerulosclerotic alterations is a common pathological feature of 

various progressive kidney diseases. The earliest stages of these different disease 

entities are characterized by common morphological and functional alterations of the 

glomeruli, such as glomerular hypertrophy and consecutive development of 

albuminuria. The present study addressed the question, if such common patterns of 

morphological and functional glomerular alterations would also find a reflection in 

common glomerular gene expression profiles. Therefore differential gene expression 

profiles of samples of isolated kidney glomeruli from two different transgenic mouse 

models of nephropathy were identified. Microarray experiments were performed in 

two defined comparable early stages of glomerular alteration. Investigated transgenic 

murine models of nephropathy consisted of a novel model of diabetes mellitus, 

transgenic mice expressing a dominant negative glucose-dependent insulinotropic 

polypeptide receptor (GIPRdn), bred on the genetic background of the CD1 outbred 

stock; and growth hormone-transgenic mice (bGH), bred on a NMRI background. 

Transgenic animals of both models develop glomerular hypertrophy and micro-

albuminuria. Pairs of male transgenic mice and their corresponding non-transgenic 

littermate control animals were investigated in two early comparable stages of 

glomerular alteration. These stages were defined as the stage of glomerular 

hypertrophy (stage I), characterized by a significant increase (40 – 60%) of the mean 

glomerular volume of the transgenic animals compared to the respective controls; 

and as stage II, the stage of onset of albuminuria. Transgenic animals assigned to 

stage II also had to display a significant increase of their mean glomerular volumes, 

as well as an onset of albuminuria, determined by repeated SDS-PAGE based urine 

analyses of urine samples taken on consecutive time points. Albuminuria was verified 

by Western blot and ELISA experiments. At both stages transgenic mice displayed a 

significant increase in numbers of mesangial and endothelial cells per glomerulus, 

determined by quantitative stereology, while numbers of podocytes per glomerulus 

remained almost unchanged. Glomerulus isolation was performed according to a 

modified magnetic isolation procedure, using spherical superparamagnetic beads for 

perfusion.  

Total RNA of high quality was extracted from glomerulus isolates and processed for 

Affymetrix® GeneChip microarray analysis according to standard procedures. In each 

group (GIPRdn and bGH) and stage (I & II), transcripts that displayed a significant 

differential abundance (False discovery rate < 0.049%) between transgenic animals 
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and their corresponding controls were identified and assigned to their respective 

genes. Commonly differentially expressed genes, representing the intersections of 

congeneric differentially expressed genes in both groups in comparable stages of 

glomerular alteration, were identified. The numbers of these commonly differentially 

expressed genes were found to be significantly enriched compared to random data 

sets. Transcripts of 21 genes were congeneric differentially expressed in all groups 

and stages. Differential expression of 5 of these transcripts (coding for Cx3cl1, Ctsh, 

Fabp4, Cd44 and Msr1) was confirmed by real-time PCR. RNA of sample materials 

that had previously been investigated in the array experiment, as well as RNA 

samples of an independent control cohort of same size, was evaluated.  

Irrespective of type of transgene or genetic background of the different investigated 

animal models, common patterns of glomerular gene expression profiles in early 

stages of glomerular alteration were identified. Within these common expression 

profiles, genes/transcripts with already known involvement in development of 

glomerular lesions, as well as some that have not yet been described in this context 

were identified. The gene products with known involvement in development of 

nephropathy comprise those with Gene ontology functions assigned to cell adhesion 

molecules, cytokines and mediators of inflammation and regulators of extracellular 

matrix turnover. Functional catagories assigned to novel gene products in the context 

of glomerular alterations include cell adhesion molecules, lipid metabolism, 

cytoskeletal dynamics and intracellular signal transduction.  

These datasets provide the basis for further studies, with the aim to integrate these 

shared expression signatures in our understanding of the molecular pathogenesis of 

early stages of progressive glomerulopathies to define therapeutic targets. A 

potential clinical application could be in their suitability as early diagnostic markers of 

glomerular damage. 
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7. Zusammenfassung 

Progressive glomerulosklerotische Alterationen treten bei Mensch und Tier als 

gemeinsames histopathologisches Erscheinungsbild bei diversen systemischen 

Grunderkrankungen sowie verschiedensten Nephropathien mit Tendenz zur 

Entwicklung eines terminalen Nierenversagens auf. Glomeruläre Hypertrophie und 

konsekutiv einsetzende Mikroalbuminurie sind charakteristische frühstadiale 

glomeruläre Alterationsformen, welchen im Rahmen der Entwicklung der 

progressiven Glomerulosklerose eine entscheidende pathogenetische Relevanz 

zugesprochen wird.  

Ziel der vorliegenden Arbeit war es aufzuklären, ob die in verschiedenen 

Nephropathiemodellen uniform auftretenden Alterationsstadien der 1.) glomerulären 

Hypertrophie und 2.) glomerulären Hypertrophie mit Mikroalbuminurie eine 

Entsprechung in gemeinsamen glomerulären Genexpressionsprofilen finden würden. 

Zu diesem Zwecke wurden in den beiden Alterationsstadien Microarray-basierte 

Genexpressionsanalysen an Proben isolierter Glomerula von männlichen transgenen 

Tieren und nicht-transgenen Kontrolltieren zweier muriner Nephropathiemodelle 

durchgeführt. Bei diesen Nephropathiemodellen handelte es sich zum einen um 

Wachstumshormon-transgene Mäuse (NMRI Hintergrund), welche das bovine 

Wachstumshormongen unter der transkriptionellen Kontrolle des Promotors des 

Phosphoenolpyruvat-carboxykinasegens der Ratte exprimieren. Sie repräsentieren 

ein gut charakterisiertes Modell zum Studium der progressiven Glomerulosklerose. 

Als zweites Modell dienten diabetische transgene Mäuse (CD1 Hintergrund), welche 

einen dominant negativen Glucose-dependent Insulinotropic Polypeptide Receptor 

(GIPRdn) unter der transkriptionellen Kontrolle des Insulingenpromotors der Ratte in 

den pankreatischen ß-Zellen exprimieren. Diese Tiere stellen ein Modell für Diabetes 

mellitus-assoziierte Nierenveränderungen dar. 

Die untersuchten Stadien der glomerulären Hypertrophie und der einsetzenden 

Mikroalbuminurie wurden durch jeweils vergleichbare Grade  morphologischer und 

funktioneller glomerulärer Veränderungen der transgenen Individuen eines jeden 

Tiermodelles definiert. Als Bedingung für die Untersuchung im Stadium der 

glomerulären Hypertrophie wurde eine mittels quantitativ stereologischer 

Untersuchungen objektiv erfasste signifikante Zunahme (40 – 60%) des mittleren 

glomerulären Volumens der transgenen Tiere gegenüber dem der nicht-transgenen 

Kontrolltiere festgelegt.  
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Im zweiten Untersuchungsstadium hatten die transgenen Tiere beider untersuchter 

Modelle neben bestehender glomerulärer Hypertrophie zusätzlich das Merkmal einer 

einsetzenden, nicht transienten Mikroalbuminurie aufzuweisen. Hierzu wurden in 

definierten Zeitabständen gewonnene Spontanurinproben sämtlicher Tiere durch 

SDS-PAGE basierte Urinproteinanalysen untersucht. Die Mikroalbuminurie wurden 

durch Western-blot- sowie ELISA- Analysen bestätigt.  

Im Vergleich zu nicht-transgenen Kontrolltieren war die mittels quantitativer 

Stereologie bestimmte durchschnittliche Gesamtzellzahl pro Glomerulum bei 

transgenen Tieren beider Modelle in beiden untersuchten Stadien erhöht. Diese für 

die Entwicklung der glomerulären Hypertrophie charakteristische Veränderung war 

durch eine Erhöhung der Anzahl der endothelialen und mesangialen glomerulären 

Zellen pro Glomerulum  gekennzeichnet, wohingegen die Anzahl der Podozyten 

unverändert blieb.  

Zur Gewinnung von  Glomerulumisolaten, welche den qualitativen und quantitativen 

Anforderungen einer umfassenden Genexpressionsanalyse genügen, wurde ein in 

umfangreichen Vorversuchen modifiziertes und optimiertes Protokoll einer jüngst 

entwickelten Methode der magnetischen Isolation von murinen Glomerula 

angewandt. Aus den generierten Glomerulumisolaten extrahierte, qualitativ 

hochwertige RNA wurde unter Anwendung von Standardmethoden prozessiert und 

auf Affymetrix GeneChip® Arrays hybridisiert. Die statistische Auswertung der 

Arraydaten erfolgte unter Festlegung eines stringenten Signifikanzniveaus (false 

discovery rate < 0,049%).  

Transkripte, welche in den glomerulären Proben von transgenen und nicht-

transgenen Tieren eines Tiermodelles und Alterationssstadiums in signifikant 

differentieller Abundanz vorlagen wurden identifiziert und den ihnen entsprechenden 

Genen zugeordnet. In beiden untersuchten Stadien konnten signifkant angereicherte 

Schnittmengen der Anzahlen von in beiden Tiermodellen gleichartig differentiell 

exprimierten Genen identifiziert werden. Ferner wurden in den untersuchten 

Glomerulumisolaten beider Nephropathiemodelle Transkripte von 21 Genen 

identifiziert, welche in beiden Untersuchungsstadien gemeinsam differentiell 

abundant vorlagen. Diese repräsentieren somit ein gemeinsames glomeruläres 

Expressionsprofil der Entwicklung glomerulärer Hypertrophie und des Einsetzens der 

Mikroalbuminurie.  
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Zur Verifikation der Ergebnisse der Arrayanalysen wurde die glomeruläre Expression 

von fünf ausgewählten, in beiden Untersuchungsstadien gemeinsam differentiell 

exprimierten Genen (CD44, Fractalkine, Fatty acid binding protein 4, Macrophage 

scavenger receptor 1, Cathepsin H) durch quantitative real-time PCR untersucht. Die 

gemeinsame differentielle glomeruläre Expression dieser Gene konnte sowohl in 

dem im Array-Experiment untersuchten Material als auch in Proben einer 

unabhängigen Kontrollkohorte gleichen Probenumfanges bestätigt werden. 

Einige der im Rahmen der vorliegenden Studie identifizierten 21 gemeinsam 

differentiell glomerulär exprimierten Gene beziehungsweise ihre Genprodukte sind 

bereits im Zusammenhang mit verschiedenen Nephropathieformen beschrieben 

worden.  Sie besitzen bekannte Funktionen als Zytokine, Zelladhäsionsmoleküle, 

zytoskelettale Elemente und als Matrixproteinasen. Die  bislang nicht im Kontext von 

Glomerulopathien beschriebenen Gene kodieren für weitere Zelladhäsionsmoleküle 

sowie für Proteine mit Funktionen im Lipidstoffwechsel, der intrazellulären 

Signaltransduktion oder der Regulation der Organisation des Zytoskelettes. Ihre 

potenzielle pathogenetische Relevanz im Hinblick auf die Entwicklung der 

glomerulären Alterationen der untersuchten Tiermodelle sowie ihre Bedeutung im 

Rahmen chronischer Nierenerkrankungen des Menschen wird Gegenstand 

weiterführender Studien sein.  

Die Ergebnisse der vorliegenden Arbeit zeigen, dass vergleichbare, in 

verschiedenartigen Nephropathiemodellen auftretende frühe morphologische und 

funktionelle Stadien glomerulärer Alterationen auf molekularer Ebene durch 

gemeinsame differentielle glomeruläre Genexpressionsprofile gekennzeichnet sind. 

Die erzielten Resultate stellen somit die Grundlage für die weitere Aufklärung der an 

der Entwicklung frühstadialer glomerulärer Alterationen beteiligten molekularen 

Mechanismen sowie die Identifizierung regulativer Schlüsselmoleküle, potenzieller 

Marker und therapeutischer Angriffspunkte dar. 

 

 

.  
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9. Appendix  
 
9.1 Protocol for silver staining of SDS-PAGE gels 
 
Silver stain for SDS-PAGE gels 
 

1.) Fixation solution 
 

60 minutes
     99.6 % Ethanol (Roth, Germany) 500 ml
     Glacial acetic acid (Sigma, Germany) 120 ml
     37% Formaldehyde (Roth, Germany) 0.5 ml
     ad 1000 ml distilled water 
 
 

2.) Washing in 50 % Ethanol 
 

3 x 20 minutes
 

3.) Pre-treatment 
 

1 minute
     Sodium thiosulphate (Merck, Germany) 0.05 g
     ad 50 ml distilled water 
 
 

4.) Washing in distilled water 
 

3 x 20 seconds
 

5.) Impregnation 
 

20 minutes
     Silver nitrate (Roth, Germany) 0.05 g
     37% Formaldehyde (Roth, Germany) 35 µl
     ad 50 ml distilled water 
 
 

6.) Washing in distilled water 
 

2x 20 seconds
 

7.) Develop 
 

until bands become visible
     Sodium carbonate (Roth, Germany) 3 g
     Sodium thiosulphate (Merck, Germany) 0.2 mg
     37% Formaldehyde (Roth, Germany) 50 µl
     ad 1000 ml distilled water 
 
 

8.) Washing in distilled water 
 

20 seconds
 

9.) Stop solution  
0.1 M EDTA (Sigma, Germany) 
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9.2 Drying of SDS-PAGE gels 
The DryEaseTM Mini-Gel Drying System (DryEase Mini-Gel Dryer Frame,  DryEase 

Mini-Gel Drying Base, DryEase Mini Cellophane and Gel-Dry Drying Solution; Novex, 

Germany) was used for drying polyacrylamid gels. Stained gels were washed in 

distilled water 3 times for 2 minutes and then equilibrated in Gel-dry Solution for 15-

20 minutes on a rotary shaker (Heidolph, Germany). Rough edges of the gel were 

cutt off, using a razor blade. 2 pieces of cellophane were pre-wetted in Gel-Drying 

Solution for 15-20 seconds. A DryEase gel drying frame was placed on the gel dryer 

base and covered with one cellophane piece. The gel was placed in the centre of the 

cellophane sheet; no air was to be trapped between the gel and the cellophane 

sheet. The gel was covered with a second layer of pre-wetted cellophane. No air was 

to be trapped between gel and the cellophane sheets. Wrinkles were removed with a 

gloved hand. The remaining frame was aligned so that its corner pins fit into the 

holes on the bottom frame. Plastic clamps were pushed onto the four edges of the 

frame. The assembly was to stand upright on a benchtop. Gels were dried for 12-36 

hours; drafts were avoided. The gel/cellophane sandwich was removed and excess 

cellophane was trimmed off. Dried gels were pressed between pages of a book for 

approximately 2 days and then stored in a cassette.  

 
 
9.3 Preparation of murine albumin standard dilutions (range: 7.8 - 500 ng/ml) 
for quantification of urine albumin concentrations by ELISA (mouse albumin 
ELISA-kit Bethyl E90-134, Bethyl, USA) 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

step ng/ml Calibrator sample diluent
0 10,000 2 µl 9 ml
1 500 0.5 ml from step 0 9.5 ml
2 250 1 ml from step 1 1 ml
3 125 1 ml from step 2 1 ml
4 62.5 1 ml from step 3 1 ml
5 31.25 1 ml from step 4 1 ml
6 15.625 1 ml from step 5 1 ml
7 7.8 1 ml from step 6 1 ml
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9.4 Pattern of photography of glomerular peripheral capillary loops (TEM) 
 
 

 
 
Figure 9.1. Systematic pattern of photography of glomerular peripheral capillary loops in transmission 

electron microscopy (TEM) for determination of the filtration slit frequency (FSF) and estimation of the 

thickness of the glomerular basement membrane (GBM). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2 x ½  turns of stage handle 

area of view at respective 
factor of magnification 

photo 

Pattern of photography of glomerular 
peripheral capillary loops (TEM) 
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9.5.1 Dimensions of the logarithmic ruler for measurement of the thickness of 
the glomerular basement membrane  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dimensions of Ruler 
(Divisions Equidistant on Log Reciprocal Scale) 

Class A  2.0000    0.5000                0.4375 
Class 1  2.6667    0.3750        0.3281 
Class 2  3.5556    0.2813        0.2461 
Class 3  4.7407    0.2109        0.1846 
Class 4  6.3210    0.1582        0.1384 
Class 5  8.4280    0.1187        0.1038 
Class 6 11.2373    0.0890        0.0779 
Class 7 14.9831    0.0667        0.0584 
Class 8 19.9774    0.0501        0.0438 
Class 9 26.6366    0.0375        0.0328 
Class 10 35.5155    0.0282        0.0246 
Class 11 47.3539    0.0211        0.0211 

Class Lower Limit, 
mm            

1 / Lower Limit, 
mm

Midpoint, 
mm

Class A: the initial division in which no measurements of the 
glomerular basement membrane (GBM) can be contained.  
Class 1 – 11: classes of ruler into which measurements are placed.  
Lower Limit: begin of next (upper) class of ruler, measured from the 
origin of the ruler.  
Midpoint of Class n:                                                                                 
((1/Lower Limit of Class n) + (1/Lower Limit of Class n+1))/2 
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9.5.2 Example for calculation of the true harmonic mean thickness (Th) of the 
GBM 
This example was performed using a  pocket calculator. For regular use, a suitably 

programmed computer “spreadsheet” (e.g. Microsoft®-EXCEL) is more convenient.  

 

 
 

 
 
 
 
 
 
 
 

   
   20.9 cm    (first calibration print, first plane)                       
                  20.8 cm    (first calibration print, 90 ° to first plane) 
     

10 divisions of cross  
grating, measured in 
magnified print, cm 

mean 10 divisions = (20.9 cm + 20.8 cm) / 2 = 20.85 cm                                              
factor of final magnification = 20.85 cm / 0.000462963 cm = 45000    
M = 45000  

Calibration:       
cross grating : 2160 divisions/ mm       
1 cm = 10 mm = 10000 µm = 10.000.000 nm      
1 division of cross grating = 1 mm / 2160 divisions per mm = 462.962963 nm    
10 divisions of cross grating = 4629.63 nm = 0.000462963 cm                                    
factor of magnification = measured 10 divisions of cross grating in magnified print in cm/0.000462963 cm 

    196  20.2586     170 Sum of 
Column 

00.0211 x 0 0.0211000.0211 x 0 0.0211  0 Class 
00.0246 x 0 0.0246000.0246 x 00.0246  0 Class 
00.0328 x 0 0.0328000.0328 x 0 0.0328  0 Class 9 

0.04380.0438 x 1 0.043810.04380.0438 x 10.0438  1 Class 8 
0.17520.0584 x 3 0.058430.11680.0584 x 2 0.0584  2 Class 7 
1.71300.0779 x 22 0.0779221.16800.0779 x 150.0779 15 Class 6 
8.20180.1038 x 79 0.1038797.16360.1038 x 69 0.1038 69 Class 5 
11.3510.1384 x 82 0.13848210.6580.1384 x 770.1384 77 Class 4 
1.29200.1846 x 7 0.184671.10740.1846 x 60.1846  6 Class 3 
0.49220.2461 x2 0.2461200.2461 x 0 0.2461  0 Class 2 

00.3281 x 0 0.3281000.3281 x 00.3281  0 Class 1 
00.4375 x 0 0.437500 0.4375 x 0 0.4375  0 Class A 

Glomerulus 1 Glomerulus 2 
N° of  

Observations Midpoints Midpoints 
Midpoints  x N° of 

Observations
Midpoints  x N° of 

Observations

Glomerulus 1 Glomerulus 2 

M 
Th1. nm 

l h. mm 
M 
Th2. nm 

l h. mm 

158.3 
45000 
8.3915 

158.9 
45000 
8.4232 

Mean Th.=(Th1+Th2)/2=(158.3+158.9)/2 =158.6 nm 

Example 

N° of  
Observations

23.2691 
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9.6 Preparation of amplified, biotin-labeled cDNA from total RNA for gene 
expression analysis by Affymetrix GeneChip® arrays, using the Ovation™ 
Biotin-RNA Amplification and Labeling System (NuGEN Technologies, Inc., 
USA) 
Generation of first strand cDNA: First strand cDNA is prepared from total RNA 

using a unique first strand DNA/RNA chimeric primer and reverse transcriptase. The 

primer has a DNA portion that hybridizes to the 5′ portion of the poly A sequence. 

The resulting cDNA/mRNA hybrid molecule contains a unique RNA sequence at the 

5′ end of the cDNA strand. Generation of a DNA/RNA heteroduplex double strand 
cDNA: Fragmentation of the mRNA within the cDNA/mRNA complex creates priming 

sites for DNA polymerase to synthesize a second strand, which includes DNA 

complementary to the 5′ unique sequence from the first strand chimeric primer. The 

result is a double stranded cDNA with a unique DNA/RNA heteroduplex at one end. 

SPIA™ amplification: SPIA™ amplification is a linear isothermal DNA amplification 

process developed by NuGEN™ (NuGen Inc., USA). It uses a SPIA™ DNA/RNA 

chimeric primer, DNA polymerase and RNase H in a homogeneous isothermal assay 

that provides highly efficient amplification of DNA sequences. RNase H is used to 

degrade RNA in the DNA/RNA heteroduplex at the 5′ end of the first cDNA strand. 

This results in the exposure of a DNA sequence that is available for binding a second 

SPIA™ DNA/RNA chimeric primer. DNA polymerase then initiates replication at the 

3′ end of the primer, displacing the existing forward strand. The RNA portion at the 5′ 

end of the newly synthesized strand is again removed by RNase H, exposing part of 

the unique priming site for initiation of the next round of cDNA synthesis. The process 

of SPIA™ DNA/RNA primer binding, DNA replication, strand displacement and RNA 

cleavage is repeated, resulting in rapid accumulation of cDNA with sequence 

complementary to the original mRNA. The size of the majority of the products 

produced by the Ribo-SPIA™ amplification process is between 200 bases and 2.0 

Kb. cDNA fragmentation and biotin labeling: A proprietary two-step process is 

used to fragment and biotin label the single-stranded cDNA generated during the 

amplification process. The first step is an enzymatic fragmentation that produces 

product mostly below 250 bases with an average length ranging from 50-100 bases. 

The fragmented product is then labeled with biotin. 

The procedure is schematically illustrated below. 
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RNA Amplification and Biotin labeling Processes 

First strand synthesis Elapsed time 

total RNA 

first strand primer 

mRNA cDNA duplex 
1.5 hours 

reverse transcriptase 

0.75 hours 

DNA polymerase 

double stranded cDNA 
Second strand synthesis 

SPIATM isothermal linear amplification RNAse H 

SPIATM primer DNA polymerase 

RNAse H 

SPIATM primer DNA polymerase 

1.25 hours 

cDNA Fragmentation and labeling fragmentation 

biotynilation 

fragmented,       
biotin-labeled cDNA 

1.0 hours 
RNA 
cDNA 

3'
5'

5'
3'

5'

5'
3' 5'

5'
3' 5'

3'

5'
3'

3'

5'

5'
3'

3'
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3' 5'
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b
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b
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9.7 Principle of relative quantification of real-time PCR results using the ΔCT 

method (Example) 
 

Figure 9.2 
 

 
 
 
 
 

5 10 15 20 25 30 35 40

ΔRn 

treshold 

no template controls 

PCR cycle number 

a

b

c

d
e

"housekeeper" 

5 10 15 20 25 30 35 40

ΔRn 

treshold 

no template controls 

PCR cycle number 

 "target" 
a 

b 

c 

d 
e 

A B 

CT (sample 1) = 15 
CT (sample 2) = 20 

CT (sample 1) = 19 
CT (sample 2) = 21 

Calculation of the mean CT from each of the duplicate measurements of each sample for 
housekeeping- and target-sequences; e.g. for sample 1 (wt) and sample 2 (tg) 

Calculation of Δ CT for each sample, e.g. for sample 1 (wt) and sample 2 (tg) 
Δ CT (sample 1) = CT (housekeeper) - CT (housekeeper) = 15 - 19 = - 4            
Δ CT (sample 2) = CT (housekeeper) - CT (housekeeper) = 20 - 21 = - 1 

Calculation of 2Δ CT for each sample, e.g. for sample 1 (wt) and sample 2 (tg) 
     2Δ CT (sample 1) = 2 -4 =  0.0625              

2Δ CT (sample 2) = 2 -1 =  0.5  

Real-time PCR results  for housekeeping- and target-sequences in 8 samples (4 wt and 4 tg) 

a: plateau phase, b: linear phase, c: exponential (geometric) phase, d: background, e: baseline; 
identical threshold lines were manually set in the exponential phase of the amplification.    

Group-wise comparison of 
2Δ CT values (wt vs. tg) 

tg-group 
2Δ CT (sample 2) =  0.5    
2Δ CT (sample 4) =  0.6  
2Δ CT (sample 6) =  0.4  
2Δ CT (sample 8) =  0.7  

0

0,1
0,2

0,3

0,4

0,5
0,6

0,7

0,8

1 2
wt tg 

2Δ
CT ** 

-samples of groups to be compared (wt vs. tg) are run on identical plates- 

C D 

E 

F 

G H 

ΔRn 

PCR cycle number 
5 10 15 20 25 30 35 40

sample 1 
sample 2 treshold 

no template controls 

"housekeeper" 

5 10 15 20 25 30 35 40

ΔRn 

PCR cycle number 

sample 1
sample 2 treshold 

no template controls 

"target" 

wt-group 
2Δ CT (sample 1) =  0.0625        
2Δ CT (sample 3) =  0.0800  
2Δ CT (sample 5) =  0.0552  
2Δ CT (sample 7) =  0.0652  

2∆CT 

mean = 0,0663 
SD = 0.0102 

 

mean = 0,5500
SD = 0.1290 

 

Principle of relative quantification of real-time PCR results using the ΔCT method  
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Figure 9.2 (page 223): The ΔCT method for relative quantification of real-time PCR results is 

demonstrated, using the following (fictitious) example: Expression abundances of a specific target 

transcript in each 4 RNA samples of two groups (wt and tg), relative to the respective expression of a 

reference transcript in each sample (housekeeping transcript) are compared. Through reverse 

transcription of RNA, cDNA samples were obtained. Real-time PCR was performed each for 

quantitation of the target-, as well as for the housekeeping-transcript, running all samples of the 

respective groups to be compared on the identical plate. The respective measurements were 

performed in duplicates, no template controls served as negative references. A, B: Amplification plots 

of both real-time PCR runs. Data exhibit the “typical “ amplification curves (a-e). ∆Rn is the difference 

between the normalized reporter fluorescence in the sample and in the no template control (NTC) 

wells. The software generated amplification plot result view displays a plot of ∆Rn as a function of 

cycle number. The CT (= threshold cycle) is the calculated fractional cycle number at which the PCR 

product crosses the threshold of detection. The Threshold line is the level of detection at which a 

reaction reaches a fluorescent intensity above background (d). Identical threshold lines were manually 

set in the exponential phase (c) of the amplification. C, D: The mean CT from each of the duplicate 

measurements of each sample for housekeeping-(C) and target-sequences (D) is calculated, as 

demonstrated for sample 1 (wt) and sample 2 (tg).E: ΔCT value is calculated by subtraction of the 

mean CT value of the target transcript from that of the housekeeping gene of the sample. F, G: The 2 
mean ΔCT-value is calculated for each sample in the respective groups. Means and standard deviation 

(SD) of these values are calculated for each group and compared, using a two sided Students t-test. 

H: graphical presentation of the result of comparison (means and SD; **, p<0.01). 
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9.8 Estimation of statistical enrichment of numbers of commonly differentially 
expressed genes by performance of Monte Carlo Simulation 
 
 
 
 

 
 
 
 
 
 

glomerulus isolation,  
RNA-extraction,  

microarray-analysis 

GIPRdn x CD1 bGH x NMRI

expressed glomerular genes 
(à 26,000)        

numbers of 
differentially            

regulated genes        
wt vs. tg 

620 commonly congeneric differentially 
regulated genes GIPRdn vs. bGH 

wt tg wt tg 

 

comparison of  
expressed glomerular genes        

wt vs. tg 

Experimentally observed situation Expected situation by computized 
simulation of purely randomly conditions 

(10,000 simulations) 

 26000 unique numbers           
(1 – 26000) represent the 
numbers and ID‘s of all 

expressed glomerular genes        

generation of (n) unique 
random numbers in each 
group, each ranging from    

1-26000  

2600 5200 n=2600 n=5200 

comparison of ID's of differentially      
regulated genes and the respective 
direction of regulation (up- or down-

regulation) 

comparison of ID's (value) of 
the respective random 

numbers generated for each 
group 

X = number of unique random numbers 
(values = ID‘s), found in both groups of 

random numbers in one of 10,000 random 
simulations. Arithmetic mean and standard 
deviation of these numbers are calculated. 

26000 26000 

group 1 group 2 

x

0

0,005

0,01

0,015

0,02

0,025

450 500 550 600 650 700

fn(ϰ)

standard deviation 
 ϭ = 20.00 

0.0 

0.005 

0.025 

0.02 

0.015 

0.01 

number of common random numbers  
in 10,000 simulations 

Distribution of numbers of common random numbers 
in 10,000 simulations 

expected value (µ = 570.74) 

observed value    
ϰ = 620 

Assuming purely randomly conditions, 
the population of numbers of commonly 
differentially regulated genes in this 
example displays a normal distribution 
of values with an average of µ=570.74 
(=expected value) and a standard 
deviation of ϭ=20.00. The statistical 
probability of observing a number of 
620 commonly differentially regulated 
genes (experimentally identified 
number  = observed value ϰ) within this 
population is calculated and indicated 
by a p-value and a z-score. 

p = 1 - f (ϰ; µ; Ϭ) =  0.0069    

z = x - µ
Ϭz = x - µ
Ϭ

z =   2.463 
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Figure 9.3 (page 225): Illustration of application of a Monte Carlo simulation for estimation of 

statistical enrichment of numbers of commonly differentially regulated genes in two independent and 

different sized groups of differentially regulated genes (2600 and 5200, respectively). In the given 

example, the application of a Monte Carlo simulation confirms, that the experimentally detected 

number of 620 commonly differentially regulated genes is very unlikely (p= 0.0069) to be just a result 

of coincidence. The randomly expected number of commonly differentially regulated genes (570.74), 

and the normal distribution of these values in the given example was estimated by 10,000 random 

trials, using the numbers indicated (representing the total numbers of expressed glomerular genes and 

differentially regulated genes). 
 
 
9.9.1 Commonly differentially expressed genes in stage I (GIPRdn vs. bGH) 
 

Table 9.1 (pages 226-229) : Commonly differentially expressed genes in stage I: 

[GIPRdn stage I, wt vs. tg] vs. [bGH stage I, wt vs. tg]. Genes displaying a statistically 

significant (FDR ≤0.045 %) increase or decrease in signal changes relative to 

controls were identified in both groups of stage I (wt vs. tg), using the ChipInspector 

1.2 software, Genomatix®, Germany. A number of 86 genes displayed a congeneric 

differential expression in both groups of stage I.  (*) The indicated mean expression 

ratio logs were calculated as arithmetic means of expression ratio log values (with 

identical algebraic signs) of the respective differentially expressed genes in the single 

groups (GIPRdn-group and bGH-group) of stage I of investigation. 
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Commonly differentially  expressed  genes in stage I (GIPRdn vs. bGH) 
 

 

Entrez Gene ID 
 

 

official symbol 
 

 

official full name 
 

 

mean ratio log (*)
 

 

 
225642 

 
Grp 

 
gastrin releasing peptide 

 
1.38 

23792 Adam23 a disintegrin and metallopeptidase 
domain 23 zinc finger and BTB domain 

0.94 

235320 Zbtb16 containing 16 0.87 
114332 Xlkd1 extra cellular link domain-containing 1 0.85 
11770 Fabp4 fatty acid binding protein 4, adipocyte 0.67 
56760 Clec1b C-type lectin domain family 1, member b 0.65 
106068 Slc45a4 solute carrier family 45, member 4 0.65 
12260 C1qb complement component 1, q subcomponent, beta 

polypeptide 
0.64 

60361 Ms4a4b membrane-spanning 4-domains, subfamily A, 
member 4B 

0.59 

68922 Dnaic1 dynein, axonemal, intermediate chain 1 0.58 
65973 Asph aspartate-beta-hydroxylase 0.58 
12167 Bmpr1b bone morphogenetic protein receptor, type 1B 0.56 
72817 2810484G07Rik RIKEN cDNA 2810484G07 gene 0.53 
21384 Tbx15 T-box 15 0.53 
20312 Cx3cl1 chemokine (C-X3-C motif) ligand 1 0.53 
20887 Sult1a1 sulfotransferase family 1A, phenol-preferring, 

member 1 
0.52 

16589 Uhmk1 U2AF homology motif (UHM) kinase 1 0.51 
70598 Filip1 filamin A interacting protein 1 0.50 
12983 Csf2rb1 colony stimulating factor 2 receptor, beta 1, low-

affinity (granulocyte-macrophage) 
0.49 

268481 Krt222 keratin 222 0.49 
21956 Tnnt2 troponin T2, cardiac 0.49 
29809 Rabgap1l RAB GTPase activating protein 1-like 0.48 
58860 Adamdec1 ADAM-like, decysin 1 0.48 
20288 Msr1 macrophage scavenger receptor 1 0.46 
216233 Socs2 suppressor of cytokine signaling 2 0.46 
12505 Cd44 CD44 antigen 0.46 
70065 1700030G11Rik RIKEN cDNA 1700030G11 gene 0.46 
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Commonly differentially  expressed  genes in stage I (continued) 
 

Entrez Gene ID 
 

 

official symbol 
 

 

official full name 
 

 

mean ratio log (*)
 

 

 
14406 

 
Gabrg2 

 
gamma-aminobutyric acid (GABA-A) receptor, 
subunit gamma 2 

 
0.45 

74446 4933425K02Rik RIKEN cDNA 4933425K02 gene 0.44 
14129 Fcgr1 Fc receptor, IgG, high affinity I 0.44 
18676 Phf2 PHD finger protein 2 0.44 
13058 Cybb cytochrome b-245, beta polypeptide 0.44 
57754 Cend1 cell cycle exit and neuronal differentiation 1 0.43 
212937 BC027057 cDNA sequence BC027057 0.43 
56619 Clec4e C-type lectin domain family 4, member e 0.43 
11519 Add2 adducin 2 (beta) 0.43 
110876 Scn2a1 sodium channel, voltage-gated, type II, alpha 1 0.43 
17916 Myo1f myosin IF 0.43 
80890 Trim2 neural activity-related ring finger protein; tripartite 

motif protein TRIM2 
0.42 

20728 Spic Spi-C transcription factor (Spi-1/PU.1 related) 0.42 
70806 D19Ertd652e DNA segment, Chr 19, ERATO Doi 652, expressed 0.42 
20975 Synj2 synaptojanin 2 0.41 
14702 Gng2 guanine nucleotide binding protein (G protein), 

gamma 2 subunit 
0.41 

13175 Dcamkl1 double cortin and calcium/calmodulin-dependent 
protein kinase-like 1 

0.41 

14025 Bcl11a B-cell CLL/lymphoma 11A (zinc finger protein) 0.41 
216543 Cep68 centrosomal protein 68 0.41 
75458 Cklf chemokine-like factor 0.41 
72832 Crtac1 cartilage acidic protein 1 0.40 
56809 Gmeb1 glucocorticoid modulatory element binding protein 

1 
0.40 

12936 Pcdha4 protocadherin alpha 4; cadherin-related neuronal 
receptor 1 

0.40 

17203 Mc5r melanocortin 5 receptor 0.40 
27214 Dbf4 DBF4 homolog (S. cerevisiae) 0.39 
18575 Pde1c phosphodiesterase 1C 0.39 
52570 Ccdc69 coiled-coil domain containing 69 0.39 
268281 Shprh SNF2 histone linker PHD RING helicase 0.39 
101488 Slco2b1 solute carrier organic anion transporter family, 

member 2b1 
0.38 

20970 Sdc3 syndecan 3 0.38 
320799 Zhx3 zinc fingers and homeoboxes 3 0.37 
16508 Kcnd2 potassium voltage-gated channel, Shal-related 

family, member 2 
0.33 

77252 9430038I01Rik RIKEN cDNA 9430038I01 gene 0.33 
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Commonly differentially  expressed  genes in stage I (continued) 
 

Entrez Gene ID 
 

 

official symbol 
 

 

official full name 
 

 

mean ratio log (*)
 

 

 
216558 

 
Ugp2 

 
UDP-glucose pyrophosphorylase 2 

 
-0.34 

68642 2810441K11Rik RIKEN cDNA 2810441K11 gene -0.40 
18645 Pfn2 profilin 2 -0.41 
193116 Slu7 SLU7 splicing factor homolog (S. cerevisiae) -0.42 
75619 Fastkd2 FAST kinase domains 2 -0.44 
26419 Mapk8 mitogen activated protein kinase 8 -0.47 
320271 A930041I02Rik RIKEN cDNA A930041I02 gene -0.48 
22359 Vldlr very low density lipoprotein receptor -0.53 
13649 Egfr epidermal growth factor receptor -0.53 
103503 BB001228 expressed sequence BB001228 -0.54 
66970 Ssbp2 single-stranded DNA binding protein 2 -0.54 
13036 Ctsh cathepsin H -0.54 
101160 AI838057 expressed sequence AI838057 -0.54 
54722 Dfna5h deafness, autosomal dominant 5 homolog (human) -0.56 
18109 Mycn v-myc myelocytomatosis viral related oncogene, 

neuroblastoma derived (avian) 
-0.57 

58998 Pvrl3 poliovirus receptor-related 3 -0.57 
223473 Npal2 NIPA-like domain containing 2 -0.60 
21817 Tgm2 transglutaminase 2, C polypeptide -0.60 
103784 AI553587 expressed sequence AI553587 -0.60 
71306 Mfap3l microfibrillar-associated protein 3-like -0.66 
11936 Fxyd2 FXYD domain-containing ion transport regulator 2 -0.67 
67389 C1qdc2 C1q domain containing 2 -0.68 
234564 AU018778 expressed sequence AU018778 -0.78 
210463 BC026439 cDNA sequence BC026439 -0.82 
74087 Slc7a13 solute carrier family 7, (cationic amino acid 

transporter, y+ system) member 13 
-1.00 
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9.9.2 Commonly differentially expressed genes in stage II (GIPRdn vs. bGH) 
 

Table 9.2 (page 230-241): Commonly differentially expressed genes in stage II: 

[GIPRdn stage II, wt vs. tg] vs. [bGH stage II, wt vs. tg]. Genes displaying a 

statistically significant (FDR ≤0.045 %) increase or decrease in signal changes 

relative to controls were identified in both groups of stage II (wt vs. tg), using the 

ChipInspector 1.2 software, Genomatix®, Germany. A number of 86 genes displayed 

a congeneric differential expression in both groups of stage II.  (*) The indicated mean 

expression ratio logs were calculated as arithmetic means of expression ratio log 

values (with identical algebraic signs) of the respective differentially expressed genes 

in the single groups (GIPRdn-group and bGH-group) of stage II of investigation. 

 
 
 
 

Commonly differentially expressed genes in stage II (GIPRdn vs. bGH) 
 

 

Entrez Gene ID 
 

 

official symbol 
 

 

official full name 
 

 

mean ratio log (*)
 

 

 
73230 

 
Bmper 

 
BMP-binding endothelial regulator 

 
1.35 

12260 C1qb complement component 1, q subcomponent, beta 
polypeptide 

1.16 

74499 Sost sclerostin 1.15 
107765 Ankrd1 ankyrin repeat domain 1 (cardiac muscle) 1.09 
192188 Stab2 stabilin 2 1.09 
78709 Spink8 serine peptidase inhibitor, Kazal type 8 1.07 
11770 Fabp4 fatty acid binding protein 4, adipocyte 1.06 
100689 Spon2 spondin 2, extracellular matrix protein 1.04 
320012 B930023M13Rik RIKEN cDNA B930023M13 gene 1.00 
68453 Gpihbp1 GPI-anchored HDL-binding protein 1 1.00 
22341 Vegfc vascular endothelial growth factor C 0.97 
16854 Lgals3 lectin, galactose binding, soluble 3 0.97 
21825 Thbs1 thrombospondin 1 0.97 
13040 Ctss cathepsin S 0.95 
11602 Angpt4 angiopoietin 4 0.93 
18436 P2rx1 purinergic receptor P2X, ligand-gated ion channel, 1 0.93 
12772 Ccr2 chemokine (C-C motif) receptor 2 0.91 
20715 Serpina3g serine (or cysteine) peptidase inhibitor, clade A, 

member 3G 
0.91 

15370 Nr4a1 nuclear receptor subfamily 4, group A, member 1 0.88 
14955 H19 H19 fetal liver mRNA 0.86 
268859 A2bp1 ataxin 2 binding protein 1 0.85 
73149 Clec4a3 C-type lectin domain family 4, member a3 0.84 
17384 Mmp10 matrix metallopeptidase 10 0.83 
13924 Ptprv protein tyrosine phosphatase, receptor type, V 0.83 
114332 Xlkd1 extra cellular link domain-containing 1 0.83 
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Commonly differentially expressed genes in stage II (continued) 
 

 

Entrez Gene ID 
 

 

official symbol 
 

 

official full name 
 

 

mean ratio log (*)
 

 

 
381413 

 
Gpr176 

 
G protein-coupled receptor 176 

 
0.78 

246256 Fcgr3a Fc fragment of IgG, low affinity IIIa, receptor 0.78 
60361 Ms4a4b membrane-spanning 4-domains, subfamily A, 

member 4B 
0.77 

14289 Fpr-rs2 formyl peptide receptor, related sequence 2 0.77 
17476 Mpeg1 macrophage expressed gene 1 0.77 
14599 Gh growth hormone 0.76 
14961 H2-Ab1 histocompatibility 2, class II antigen A, beta 1 0.76 
14129 Fcgr1 Fc receptor, IgG, high affinity I 0.76 
14573 Gdnf glial cell line derived neurotrophic factor 0.74 
110595 Timp4 tissue inhibitor of metalloproteinase 4 0.73 
103511 BB146404 expressed sequence BB146404 0.73 
20339 Sele selectin, endothelial cell 0.73 
22177 Tyrobp TYRO protein tyrosine kinase binding protein 0,68 
11601 Angpt2 angiopoietin 2 0.67 
16852 Lgals1 lectin, galactose binding, soluble 1 0,67 
17084 Ly86 lymphocyte antigen 86 0,67 
66873 1200009O22Rik RIKEN cDNA 1200009O22 gene 0.66 
14825 Cxcl1 chemokine (C-X-C motif) ligand 1 0.66 
14696 Gnb4 guanine nucleotide binding protein, beta 4 0.65 
18106 Cd244 CD244 natural killer cell receptor 2B4 0.65 
12505 Cd44 CD44 antigen 0.64 
21956 Tnnt2 troponin T2, cardiac 0.64 
54392 Ncapg on-SMC condensin I complex, subunit G 0.64 
226652 Arhgap30  Rho GTPase activating protein 30 0.64 
14127 Fcer1g Fc receptor, IgE, high affinity I, gamma polypeptide 0.64 
56191 Tro trophinin 0.64 
227929 Pscdbp pleckstrin homology, Sec7 and coiled-coil domains, 

binding protein 
0.64 

16792 Laptm5 lysosomal-associated protein transmembrane 5 0.63 
213002 Ifitm6  interferon induced transmembrane protein 6 0.62 
52614 Emr4 EGF-like module containing, mucin-like, hormone 

receptor-like sequence 4 
0.,61 

245527 Eda2r ectodysplasin A2 isoform receptor 0.61 
23796 Agtrl1 angiotensin receptor-like 1 0.60 
56050 Cyp39a1 cytochrome P450, family 39, subfamily a, polypeptide 

1 
0.60 

16007 Cyr61 cysteine rich protein 61 0.60 
109050 6530418L21Rik RIKEN cDNA 6530418L21 gene 0.60 
69638 2310040A07Rik RIKEN cDNA 2310040A07 gene 0.60 
12319 Car8 carbonic anhydrase 8 0,60 
246707 Emilin2 elastin microfibril interfacer 2 0.59 
52276 Cdca8 cell division cycle associated 8 0.59 
12721 Coro1a coronin, actin binding protein 1A 0.59 
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Commonly differentially expressed genes in stage II (continued) 
 

 

Entrez Gene ID 
 

 

official symbol 
 

 

official full name 
 

 

mean ratio log (*)
 

 

 
12316 

 
Aspm 

 
asp (abnormal spindle)-like, microcephaly associated 
(Drosophila) 

 
0.59 

18845 Plxna2 plexin A2 0.59 
13733 Emr1 EGF-like module containing, mucin-like, hormone 

receptor-like sequence 1 
0.58 

59126 Nek6 NIMA (never in mitosis gene a)-related expressed 
kinase 6 

0.58 

70695 3830408D24Rik RIKEN cDNA 3830408D24 gene 0.57 
12579 Cdkn2b cyclin-dependent kinase inhibitor 2B (p15, inhibits 

CDK4) 
0.57 

224840 Treml4  triggering receptor expressed on myeloid cells-like 4 0.57 
22778 Zfpn1a1 zinc finger protein, subfamily 1A, 1 (Ikaros) 0.56 
15162 Hck hemopoietic cell kinase 0,56 
13038 Ctsk cathepsin K 0,56 
223650 Eppk1  epiplakin 1 0,56 
66102 Cxcl16 chemokine (C-X-C motif) ligand 16 0,55 
21809 Tgfb3 transforming growth factor, beta 3 0.55 
69810 Clec4b1 C-type lectin domain family 4, member b1 0.55 
66857 1100001H23Rik RIKEN cDNA 1100001H23 gene 0.55 
13803 Enc1 ectodermal-neural cortex 1 0.55 
414087 A330068G13Rik RIKEN cDNA A330068G13 gene 0.55 
192187 Stab1 stabilin 1 0.55 
13800 Enah enabled homolog (Drosophila) 0.54 
17133 Maff v-maf musculoaponeurotic fibrosarcoma oncogene 

family, protein F (avian) 
0.54 

12759 Clu clusterin 0.54 
15213 Hey1 hairy/enhancer-of-split related with YRPW motif 1 0.54 
104885 Tmem179  transmembrane protein 179 0.54 
21898 Tlr4 toll-like receptor 4 0.53 
27405 Abcg3  ATP-binding cassette, sub-family G (WHITE), 

member 3 
0.53 

66929 Asf1b   ASF1 anti-silencing function 1 homolog B (S. 
cerevisiae) 

0.53 

236604 4933439C20Rik RIKEN cDNA 4933439C20 gene 0.53 
15077 Hist2h3c1 histone 2, H3c1 0.53 
12571 Cdk6 cyclin-dependent kinase 6 0.53 
58801 Pmaip1 phorbol-12-myristate-13-acetate-induced protein 1 0.53 
17130 Smad6 MAD homolog 6 (Drosophila) 0.53 
20312 Cx3cl1 chemokine (C-X3-C motif) ligand 1 0.52 
19076 Prim2  DNA primase, p58 subunit 0.52 
12983 Csf2rb1 colony stimulating factor 2 receptor, beta 1, low-

affinity (granulocyte-macrophage) 
0.51 

432868 - hypothetical gene supported by AK052160 0.51 
104759 Pld4  phospholipase D family, member 4 0.51 
20305 Ccl6 chemokine (C-C motif) ligand 6 0.51 
78887 Sfi1 Sfi1 homolog, spindle assembly associated (yeast) 0.51 
72925 March1 membrane-associated ring finger (C3HC4) 1 0.51 
14702 Gng2 guanine nucleotide binding protein (G protein), 

gamma 2 subunit 
0.51 

74782 Glt8d2 glycosyltransferase 8 domain containing 2 0.51 
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Commonly differentially expressed genes in stage II (continued) 
 

 

Entrez Gene ID 
 

 

official symbol 
 

 

official full name 
 

 

mean ratio log (*)
 

 

 
94045 

 
P2rx5 

 
purinergic receptor P2X, ligand-gated ion channel, 5 

 
0.50 

14230 Fkbp10 FK506 binding protein 10 0.50 
104009 Qscn6 quiescin Q6 0.50 
21938 Tnfrsf1b tumor necrosis factor receptor superfamily, member 

1b 
0.50 

17035 Lxn latexin 050 
74748 Slamf8 SLAM family member 8 0.50 
229521 Syt11 synaptotagmin XI 0.50 
67849 Cdca5  cell division cycle associated 5 0.50 
74041 4632434I11Rik RIKEN cDNA 4632434I11 gene 0.49 
71086 4933412E12Rik RIKEN cDNA 4933412E12 gene 0.48 
474332 Dnm3os  dynamin 3, opposite strand 0.48 
101351 A130022J15Rik RIKEN cDNA A130022J15 gene 0.48 
26931 Ppp2r5c  protein phosphatase 2, regulatory subunit B (B56), 

gamma isoform 
0.48 

13058 Cybb cytochrome b-245, beta polypeptide 0.48 
12394 Runx1 runt related transcription factor 1 0.47 
22793 Zyx zyxin 0.47 
14191 Fgr Gardner-Rasheed feline sarcoma viral (Fgr) 

oncogene homolog 
0.47 

14086 Fscn1 fascin homolog 1, actin bundling protein 
(Strongylocentrotus purpuratus) 

0.47 

20454 St3gal5 ST3 beta-galactoside alpha-2,3-sialyltransferase 5 0.47 
104732 4930427A07Rik RIKEN cDNA 4930427A07 gene 0.47 
20288 Msr1 macrophage scavenger receptor 1 0.47 
52187 Rragd  Ras-related GTP binding D 0.47 
17158 Man2a1 mannosidase 2, alpha 1 0.47 
20965 Syn2 synapsin II 0.47 
26943 Serinc3 serine incorporator 3 0.46 
74013 Rftn2  raftlin family member 2 0.46 
72817 2810484G07Rik RIKEN cDNA 2810484G07 gene 0.46 
67468 Mmd  monocyte to macrophage differentiation-associated 0.46 
12929 Crkl v-crk sarcoma virus CT10 oncogene homolog (avian)-

like 
0.46 

226421 5430435G22Rik RIKEN cDNA 5430435G22 gene 0.46 
110611 Hdlbp high density lipoprotein (HDL) binding protein 0.46 
268390 1110064P04Rik RIKEN cDNA 1110064P04 gene 0.45 
66686 Dcbld1 discoidin, CUB and LCCL domain containing 1 0.45 
18718 Pip5k2a phosphatidylinositol-4-phosphate 5-kinase, type II, 

alpha 
0.45 

68922 Dnaic1 dynein, axonemal, intermediate chain 1 0.45 
66468 2810433K01Rik RIKEN cDNA 2810433K01 gene 0.45 
19252 Dusp1 dual specificity phosphatase 1 0.45 
56318 Acpp acid phosphatase, prostate 0.44 
217303 Cd300a CD300A antigen 0.44 
18590 Pdgfa platelet derived growth factor, alpha 0.44 
94346 Tmem40 transmembrane protein 40 0.44 
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Commonly differentially expressed genes in stage II (continued) 
 

 

Entrez Gene ID 
 

 

official symbol 
 

 

official full name 
 

 

mean ratio log (*)
 

 

 
140497 

 
Cd300d 

 
Cd300D antigen 

 
0.44 

12506 Cd48 CD48 antigen 0.44 
17916 Myo1f myosin IF 0.44 
12223 Btc betacellulin, epidermal growth factor family member 0.43 
110920 Stch stress 70 protein chaperone, microsome-associated, 

human homolog 
0.43 

105855 Nckap1l  NCK associated protein 1 like 0.43 
22061 Trp63 transformation related protein 63 0.43 
211187 Lrtm2  leucine-rich repeats and transmembrane domains 2 0.43 
245386 6430550H21Rik RIKEN cDNA 6430550H21 gene 0.43 
57357 Srd5a2l steroid 5 alpha-reductase 2-like 0.43 
70065 1700030G11Rik RIKEN cDNA 1700030G11 gene 0.42 
231633 Tmem119   transmembrane protein 119 0.42 
108099 Prkag2 protein kinase, AMP-activated, gamma 2 non-

catalytic subunit 
0.42 

12267 C3ar1 complement component 3a receptor 1 0.42 
78832 2700078E11Rik RIKEN cDNA 2700078E11 gene 0.42 
76788 2410127E18Rik RIKEN cDNA 2410127E18 gene 0.42 
14594 Ggta1 glycoprotein galactosyltransferase alpha 1, 3 0.42 
22589 Atrx alpha thalassemia/mental retardation syndrome X-

linked homolog (human) 
0.42 

70598 Filip1   filamin A interacting protein 1 0.42 
72333 Palld palladin, cytoskeletal associated protein 0.42 
72080  2010317E24Rik RIKEN cDNA 2010317E24 gene 0.42 
103220 Gnn Grp94 neighboring nucleotidase variant 4 0.41 
73635 1700113I22Rik RIKEN cDNA 1700113I22 gene 0.41 
170749 Mtmr4 myotubularin related protein 4 0.41 
12978 Csf1r colony stimulating factor 1 receptor 0.41 
20344 Selp selectin, platelet 0.41 
277010 Marveld1  MARVEL (membrane-associating) domain containing 

1 
0.40 

14131 Fcgr3 Fc receptor, IgG, low affinity III 0.40 
72795 Ttc19 tetratricopeptide repeat domain 19 0.40 
217169 Tns4  tensin 4 0.40 
14257 Flt4 FMS-like tyrosine kinase 4 0.40 
70829 Ccdc93 coiled-coil domain containing 93 0.40 
329739 B430201A12Rik RIKEN cDNA B430201A12 gene 0.40 
73130 Tmed5  transmembrane emp24 protein transport domain 

containing 5 
0.40 

15902 Id2 inhibitor of DNA binding 2 0.40 
71085 Arhgap19   Rho GTPase activating protein 19 0.40 
109019  5830411E10Rik RIKEN cDNA 5830411E10 gene 0.39 
52855 Lair1 leukocyte-associated Ig-like receptor 1 0.39 
171504 Apob48r apolipoprotein B48 receptor 0.38 
17921 Myo7a myosin VIIa 0.38 
23984 Pde10a phosphodiesterase 10A 0.38 
228602 4930402H24Rik RIKEN cDNA 4930402H24 gene 0.38 
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Commonly differentially expressed genes in stage II (continued) 
 

 

Entrez Gene ID 
 

 

official symbol 
 

 

official full name 
 

 

mean ratio log (*)
 

 

 
20776 

 
Tmie  

 
 transmembrane inner ear 

 
0.38 

18008 Nes nestin 0.37 
14219 Ctgf connective tissue growth factor 0.37 
14293 Fpr1 formyl peptide receptor 1 0.37 
239273 Abcc4 ATP-binding cassette, sub-family C (CFTR/MRP), 

member 4 
0.35 

68048 Isg20l1 interferon stimulated exonuclease gene 20-like 1 0.34 
17210 Mcl1 myeloid cell leukemia sequence 1 0.34 
77593 Usp45 ubiquitin specific petidase 45 0.34 
20375 Sfpi1 SFFV proviral integration 1 0.34 
108958 5730472N09Rik RIKEN cDNA 5730472N09 gene 0.34 
11520 Adfp adipose differentiation related protein 0.33 
109346 Ankrd39  ankyrin repeat domain 39 0.33 
18640 Pfkfb2 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 

2 
0.32 

78829 Tsc22d4 TSC22 domain family 4 0.32 
76813 Armc6  armadillo repeat containing 6 0.29 
55944 Eif3s7 eukaryotic translation initiation factor 3, subunit 7 

(zeta) 
-0.27 

56484 Foxo3a forkhead box O3a -0.28 
21841 Tia1 cytotoxic granule-associated RNA binding protein 1 -0.31 
68904 Abhd13  abhydrolase domain containing 13 -0.31 
69499 Tsr2 TSR2, 20S rRNA accumulation, homolog (S. 

cerevisiae) 
-0.31 

56424 Stub1   STIP1 homology and U-Box containing protein 1 -0.31 
211401 Mtss1 metastasis suppressor 1 -0.32 
77605 H2afv  H2A histone family, member V -0.32 
94178 Mcoln1 mucolipin 1 -0.32 
67393 Cxxc5 CXXC finger 5 -0.32 
217732 2310044G17Rik RIKEN cDNA 2310044G17 gene -0.32 
233908 Fus fusion, derived from t(12;16) malignant liposarcoma 

(human) 
-0.33 

104263 Jmjd1a jumonji domain containing 1A -0.33 
16553 Kif13a kinesin family member 13A -0.33 
68077 Gltscr2 glioma tumor suppressor candidate region gene 2 -0.33 
11564 Adsl adenylosuccinate lyase -0.33 
445007 Nup85 nucleoporin 85 -0.33 
19357 Rad21 RAD21 homolog (S. pombe) -0.33 
74682 Wdr35 WD repeat domain 35 -0.33 
231279 Guf1 GUF1 GTPase homolog (S. cerevisiae) -0.33 
16601 Klf9 Kruppel-like factor 9 -0.33 
224902 Safb2 scaffold attachment factor B2 -0.34 
77626 Smpd4  sphingomyelin phosphodiesterase 4 -0.34 
56031 Ppie peptidylprolyl isomerase E (cyclophilin E) -0.34 
76155 6330509M23Rik RIKEN cDNA 6330509M23 gene -0.34 
71713 Cdc40)  cell division cycle 40 homolog (yeast) -0.34 
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Commonly differentially expressed genes in stage II (continued) 
 

 

Entrez Gene ID 
 

 

official symbol 
 

 

official full name 
 

 

mean ratio log (*)
 

 

 
26554 

 
Cul3 

 
cullin 3 

 
-0.34 

28019 Ing4 inhibitor of growth family, member 4 -0.34 
22232 Slc35a2 solute carrier family 35 (UDP-galactose transporter), 

member 2 
-0.34 

228866 F730014I05Rik RIKEN cDNA F730014I05 gene -0.35 
75560 Ep400 E1A binding protein p400 -0.35 
121021 Cspg4 chondroitin sulfate proteoglycan 4 -0.35 
50794 Klf13 Kruppel-like factor 13 -0.35 
20658 Son  Son cell proliferation protein -0.35 
27528 D0H4S114 DNA segment, human D4S114 -0.35 
66870 Serbp1 Serpine1 mRNA binding protein 1 -0.35 
93681 Zfp192 zinc finger protein 192 -0.35 
76917 2810417J12Rik RIKEN cDNA 2810417J12 gene -0.35 
19687 Recc1 replication factor C 1 -0.36 
64009 Syne1 synaptic nuclear envelope 1 -0.36 
408063 LOC432868 hypothetical gene supported by AK052160 -0.36 
107932 Chd4 chromodomain helicase DNA binding protein 4 -0.36 
18744 Pja1 praja1, RING-H2 motif containing -0.36 
230908 Tardbp TAR DNA binding protein -0.37 
20361 Sema7a sema domain, immunoglobulin domain (Ig), and GPI 

membrane anchor, (semaphorin) 7A 
-0.38 

67623 Tm7sf3 transmembrane 7 superfamily member 3 -0.38 
14571 Gpd2 glycerol phosphate dehydrogenase 2, mitochondrial -0.38 
93834 Peli2 pellino 2 -0.38 
21888 Tle4 transducin-like enhancer of split 4, homolog of 

Drosophila E(spl) 
-0.38 

239364 Tspyl5 testis-specific protein, Y-encoded-like 5 -0.38 
57431 Dnajc4 DnaJ (Hsp40) homolog, subfamily C, member 4 -0.38 
78656 Brd8 bromodomain containing 8 -0.38 
56809 Gmeb1 glucocorticoid modulatory element binding protein 1 -0.39 
18230 Nxn nucleoredoxin -0.39 
195018 Zzef1  zinc finger, ZZ-type with EF hand domain 1 -0.39 
109979 Art3  ADP-ribosyltransferase 3 -0.39 
67705 1810058I24Rik RIKEN cDNA 1810058I24 gene -0.39 
71807 Tars2   threonyl-tRNA synthetase 2, mitochondrial (putative) -0.39 
66892 Eif4e3 eukaryotic translation initiation factor 4E member 3 -0.39 
18029 Nfic nuclear factor I/C -0.39 
432442 Akap7  A kinase (PRKA) anchor protein 7 -0.40 
68490 Zfp579 zinc finger protein 579 -0.40 
68346 Sirt5  sirtuin 5 (silent mating type information regulation 2 

homolog) 5 (S. cerevisiae) 
-0.40 

67463 1200014M14Rik RIKEN cDNA 1200014M14 gene -0.40 
110784 Nr3c2 nuclear receptor subfamily 3, group C, member 2 -0.40 
103135 Usp52  ubiquitin specific peptidase 52 -0.40 
21833 Thra thyroid hormone receptor alpha -0.40 
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mean ratio log (*)
 

 

 
68070 

 
Pdzd2  

 
PDZ domain containing 2 

 
-0.40 

72508 Rps6kb1 ribosomal protein S6 kinase, polypeptide 1 -0.40 
72061 2010111I01Rik RIKEN cDNA 2010111I01 gene -0.41 
12803 Cntf ciliary neurotrophic factor -0.41 
12040 Bckdhb  branched chain ketoacid dehydrogenase E1, beta 

polypeptide 
-0.41 

22289 Utx ubiquitously transcribed tetratricopeptide repeat gene, 
X chromosome 

-0.41 

53605 Nap1l1 nucleosome assembly protein 1-like 1 -0.41 
17984 Ndn necdin -0.41 
27223 Trp53bp1 transformation related protein 53 binding protein 1 -0.41 
77492 8030456M14Rik RIKEN cDNA 8030456M14 gene -0.41 
16987 Lss lanosterol synthase -0.41 
108100 Baiap2 brain-specific angiogenesis inhibitor 1-associated 

protein 2 
-0.42 

71891 Cdadc1 cytidine and dCMP deaminase domain containing 1 -0.42 
19934 Rpl22 ribosomal protein L22 -0.42 
73181 Nfatc4 nuclear factor of activated T-cells, cytoplasmic, 

calcineurin-dependent 4 
-0.42 

12484 Cd24a CD24a antigen -0.42 
26365 Ceacam1 CEA-related cell adhesion molecule 1 -0.42 
11877 Arvcf armadillo repeat gene deleted in velo-cardio-facial 

syndrome 
-0,42 

103406 9130206N08Rik RIKEN cDNA 9130206N08 gene -0.42 
77853 Msl2l1 male-specific lethal 2-like 1 (Drosophila) -0.43 
19317 Qk quaking -0.43 
319190 Hist2h2be   histone cluster 2, H2be -0.43 
209497 Tmem164  transmembrane protein 164 -0.43 
70757 Ptplb protein tyrosine phosphatase-like (proline instead of 

catalytic arginine), member b 
-0.43 

68617 1110012J17Rik RIKEN cDNA 1110012J17 gene -0,.43 
14609 Gja1 gap junction membrane channel protein alpha 1 -0.43 
20844 Stam signal transducing adaptor molecule (SH3 domain 

and ITAM motif) 1 
-0.43 

234725 Zfp612   zinc finger protein 612 -0.43 
381217 Gm967   gene model 967, (NCBI) -0.43 
107351 Ankrd15 ankyrin repeat domain 15 -0.43 
57915 Tbc1d1 TBC1 domain family, member 1 -0.43 
22682 Zfand5  zinc finger, AN1-type domain 5 -0.44 
16468 Jarid2 jumonji, AT rich interactive domain 2 -0.44 
23966 Odz4 odd Oz/ten-m homolog 4 (Drosophila) -0.44 
233806  8430420C20Rik RIKEN cDNA 8430420C20 gene -0.44 
19277 Ptpro protein tyrosine phosphatase, receptor type, O -0.44 
229055 Zbtb10 zinc finger and BTB domain containing 10 -0.44 
622434  4631416L12Rik RIKEN cDNA 4631416L12 gene -0.45 
100273 Osbpl9  oxysterol binding protein-like 9 -0.45 
235493 BC031353 cDNA sequence BC031353 -0.45 
319934 Sbf2 SET binding factor 2 -0.45 
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mean ratio log (*)
 

 

 
67197 

 
Zcrb1 

 
zinc finger CCHC-type and RNA binding motif 1 

 
-0.46 

67733 Itgb3bp  integrin beta 3 binding protein (beta3-endonexin) -0.46 
54613 St3gal6 ST3 beta-galactoside alpha-2,3-sialyltransferase 6 -0.46 
245474 Dkc1 dyskeratosis congenita 1, dyskerin homolog (human) -0.46 
224088 Atp13a3 ATPase type 13A3 -0.46 
22781 Ikzf4   IKAROS family zinc finger -0.46 
104184 Blmh bleomycin hydrolase -0.46 
20668 Sox13 SRY-box containing gene 13 -0.46 
12874 Cpd carboxypeptidase D -0.47 
74760 Rab3il1  RAB3A interacting protein (rabin3)-like 1 -0,47 
13082 Cyp26a1 cytochrome P450, family 26, subfamily a, polypeptide 

1 
-0,47 

109135 Plekha5 pleckstrin homology domain containing, family A 
member 5 

-0.47 

66625 5730406M06Rik RIKEN cDNA 5730406M06  gene -0.47 
77465 C030027H14Rik RIKEN cDNA C030027H14 gene -0.47 
233878 Sez6l2  seizure related 6 homolog like 2 -0.47 
52428 Rhpn2 rhophilin, Rho GTPase binding protein 2 -0.48 
18578 Pde4b phosphodiesterase 4B, cAMP specific -0.48 
21944 Tnfsf12 tumor necrosis factor (ligand) superfamily, member 

12 
-0.48 

208650 Cblb Casitas B-lineage lymphoma b -0.48 
94187 Zfp423 zinc finger protein 423 -0.48 
235582 6230410P16Rik RIKEN cDNA 6230410P16 gene -0.48 
59028 Rcl1 RNA terminal phosphate cyclase-like 1 -0.49 
18799 Plcd1 phospholipase C, delta 1 -0.49 
20495 Slc12a1 solute carrier family 12, member 1 -0.49 
12593 Cdyl   chromodomain protein, Y chromosome-like -0.49 
14611 Gja3 gap junction membrane channel protein alpha 3 -0.49 
20259 Scin scinderin -0.49 
68979 Nol11 nucleolar protein 11 -0.50 
11443 Chrnb1 cholinergic receptor, nicotinic, beta polypeptide 1 

(muscle) 
-0.50 

231440 9130213B05Rik RIKEN cDNA 9130213B0 gene -0.50 
13360 Dhcr7 7-dehydrocholesterol reductase -0.50 
56217 Mpp5 membrane protein, palmitoylated 5 (MAGUK p55 

subfamily member 5) 
-0.50 

20681 Sox8 SRY-box containing gene 8 -0.50 
213480 OTTMUSG00000015049 predicted gene, OTTMUSG00000015049 -0.51 
380912 Zfp395 zinc finger protein 395 -0.51 
353310 Zfp703 zinc finger protein 703 -0.51 
26360 Angptl2 angiopoietin-like 2 -0.51 
67332 Snrpd3 small nuclear ribonucleoprotein D3 -0.52 
103142 Rdh9  retinol dehydrogenase 9 -0,52 
13555 E2f1 E2F transcription factor 1 -0.52 
67101 2310039H08Rik RIKEN cDNA 2310039H08 gene -0.52 
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16656 

 
Hivep3 

 
human immunodeficiency virus type I enhancer 
binding protein 3 

 
-0.52 

230259 E130308A19Rik RIKEN cDNA E130308A19 gene -0.52 
72810 2810455D13Rik RIKEN cDNA 2810455D13 gene -0.53 
67198 2810022L02Rik RIKEN cDNA 2810022L02 gene -0.53 
74492 5430433E21Rik RIKEN cDNA 5430433E21 gene -0.53 
407821 Znrf3  zinc and ring finger 3 -0.53 
232798 Leng8  leukocyte receptor cluster (LRC) member 8 -0.54 
19737 Rgs5 regulator of G-protein signaling 5 -0.54 
20677 Sox4 SRY-box containing gene 4 -0.55 
50781 Dkk3 dickkopf homolog 3 (Xenopus laevis) -0.55 
13134 Dach1 dachshund 1 (Drosophila) -0.55 
20620 Plk2 polo-like kinase 2 (Drosophila) -0.55 
13717 Eln elastin -0.55 
18654 Pgf placental growth factor -0.56 
50770 Atp11a ATPase, class VI, type 11A -0.56 
12843 Col1a2 procollagen, type I, alpha 2 -0.56 
70267 2010109K09Rik RIKEN cDNA 2010109K09 gene -0.56 
381339 Tmem182 transmembrane protein 182 -0.56 
18166 Npy1r neuropeptide Y receptor Y1 -0.57 
60345 Nrip2 nuclear receptor interacting protein 2 -0.57 
14402 Gabrb3 gamma-aminobutyric acid (GABA-A) receptor, 

subunit beta 3 
-0.57 

72842 2810488G03Rik RIKEN cDNA 2810488G03 gene -0.57 
11551 Adra2a adrenergic receptor, alpha 2a -0.58 
13611 Edg6 endothelial differentiation, G-protein-coupled receptor 

6 
-0.58 

330267 Thsd7a thrombospondin, type I, domain containing 7A -0.58 
19736 Rgs4 regulator of G-protein signaling 4 -0.58 
16658 Mafb v-maf musculoaponeurotic fibrosarcoma oncogene 

family, protein B (avian) 
-0.58 

74842 4833419G08Rik RIKEN cDNA 4833419G08 gene -0.59 
12006 Axin2 axin2 -0.59 
13645 Egf epidermal growth factor -0.59 
69852 Tcf23   transcription factor 23 -0.60 
18004 Nek1 NIMA (never in mitosis gene a)-related expressed 

kinase 1 
-0.60 

22418 Wnt5a wingless-related MMTV integration site 5A -0.60 
71151 Exod1  exonuclease domain containing 1 -0.60 
70673 Prdm16 PR domain containing 16 -0.60 
11899 Astn1 astrotactin 1 -0.61 
70727 Rasgef1a  RasGEF domain family, member 1A -0.61 
329385 C130021I20Rik RIKEN cDNA C130021I20 gene -0.61 
22673 Zfp185  zinc finger protein 185 -0.62 
66222 Serpinb1a serine (or cysteine) peptidase inhibitor, clade B, 

member 1a 
-0.62 

74182 Prei4 preimplantation protein 4 -0.62 
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Commonly differentially expressed genes in stage II (continued) 
 

 

Entrez Gene ID 
 

 

official symbol 
 

 

official full name 
 

 

mean ratio log (*)
 

 

 
66425 

 
Pcp4l1 

 
Purkinje cell protein 4-like 1 

 
-0.62 

14563 Gdf5 growth differentiation factor 5 -0.62 
16497 Kcnab1 potassium voltage-gated channel, shaker-related 

subfamily, beta member 1 
-0.62 

218038 Amph amphiphysin -0.63 
20745 Spock1 sparc/osteonectin, cwcv and kazal-like domains 

proteoglycan 1 
-0.63 

78892 Crispld2  cysteine-rich secretory protein LCCL domain 
containing 2 

-0.64 

17288 Mep1b meprin 1 beta -0.64 
320840 Negr1  neuronal growth regulator 1 -0.65 
68713 Ifitm1 interferon induced transmembrane protein 1 -0.65 
75400 Defb29  defensin beta 29 -0.65 
240725 Sulf1 sulfatase 1 -0.66 
18546 Pcp4 Purkinje cell protein 4 -0.66 
11997 Akr1b7 aldo-keto reductase family 1, member B7 -0.66 
101160 AI838057 expressed sequence AI838057 -0.66 
70784 Rasl12 RAS-like, family 12 -0.66 
223473 Npal2   NIPA-like domain containing 2 -0.67 
15229 Foxd1 forkhead box D1 -0.67 
72361 2210023G05Rik RIKEN cDNA 2210023G05 gene -0,67 
217265 Abca5  ATP-binding cassette, sub-family A (ABC1), member 

5 
-0.67 

12522 Cd83 CD83 antigen -0.68 
16716 Ky kyphoscoliosis peptidase -0.68 
224997 Dlgap1 discs, large (Drosophila) homolog-associated protein 

1 
-0.68 

12351 Car4 carbonic anhydrase 4 -0,69 
69908 Rab3b RAB3B, member RAS oncogene family -0.69 
74644 4930426D05Rik RIKEN cDNA 4930426D05 gene -0.70 
235135 Tmem45b  transmembrane protein 45b -0.70 
276829 D130058I21Rik RIKEN cDNA D130058I21 gene -0.71 
74333 4122401K19Rik RIKEN cDNA 4122401K19 gene -0.71 
13036 Ctsh cathepsin H -0.71 
170772 Glcci1 glucocorticoid induced transcript 1 -0.72 
237858 Tusc5 tumor suppressor candidate 5 -0.72 
69849 2010007H06Rik RIKEN cDNA 2010007H06 gene -0.72 
108073 Grm7 glutamate receptor, metabotropic 7 -0.74 
22042 Tfrc transferrin receptor -0.76 
15478 Hs3st3a1 heparan sulfate (glucosamine) 3-O-sulfotransferase 

3A1 
-0.77 

83408 Gimap3 GTPase, IMAP family member 3 -0.79 
17967 Ncam1 neural cell adhesion molecule 1 -0.81 
320158 Zmat4 zinc finger, matrin type 4 -0.82 
18552 Pcsk5 proprotein convertase subtilisin/kexin type 5 -0.82 
212539 Gm266  gene model 266, (NCBI) -0.82 
22242 Umod uromodulin -0.84 
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Commonly differentially expressed genes in stage II (continued) 
 

 

Entrez Gene ID 
 

 

official symbol 
 

 

official full name 
 

 

mean ratio log (*)
 

 

 
110310 

 
Krt2-7 

 
keratin complex 2, basic, gene 7 

 
-0.85 

59095 Fxyd6 FXYD domain-containing ion transport regulator 6 -0.88 
18205 Ntf3 neurotrophin 3 -0.89 
654812 Angptl7 angiopoietin-like 7 -0.89 
66696 4631426E05Rik RIKEN cDNA 4631426E05 gene -0.90 
12425 Cckar cholecystokinin A receptor -0.90 
15483 Hsd11b1 hydroxysteroid 11-beta dehydrogenase 1 -0.90 
16069 Igj immunoglobulin joining chain -0.90 
96938 R74740 expressed sequence R74740 -0.94 
20216 Acsm3  acyl-CoA synthetase medium-chain family member 3 -1.01 
20272 Scn7a sodium channel, voltage-gated, type VII, alpha -1.03 
56808 Cacna2d2 calcium channel, voltage-dependent, alpha 2/delta 

subunit 2 
-1.07 

21743 Inmt indolethylamine N-methyltransferase -1.12 
19217 Ptger2 prostaglandin E receptor 2 (subtype EP2) -1.20 
14181 Fgfbp1 fibroblast growth factor binding protein 1 -1.31 
277753 Cyp4a12 cytochrome P450, family 4, subfamily a, polypeptide 

12 
-1.33 

28248 Slco1a1 solute carrier organic anion transporter family, 
member 1a1 

-1.37 

234564 AU018778 expressed sequence AU018778 -1.43 
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