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  Introduction 

1. Introduction 
 

1.1. Stress Response in Bacteria 

 

Prokaryotes consist of a single cell that is responsible for all vital requirements. This 

fascinating and effective principle of minimal organization has lead to enormous interest for 

biological, biochemical and medical studies. As a result of the limited cell size, bacteria are 

forced to accurately manage the production of only essential and needed cellular 

components. Additionally, useless or damaged elements require a rapid degradation to 

prevent crowding of the cellular space. The evolutionary consequence is that bacteria have 

adapted to sense and react to various external stress signals such as repellent compounds, 

chemicals, toxins, high cell density as well as cold and heat shock with often sophisticated 

response reactions. 

Essential for all responses is at first place the recognition of and the sensibility for existing 

stress. As unfavourable stress signals mostly lead to accumulation of cellular damaged 

compounds, monitoring of malfunctions is an important mechanism of sensing stress. Once 

stress is recognized, the signal has to be processed and transferred to appropriate signal 

transduction pathways to activate the desired fast response in order to restore cellular 

integrity. This can be accomplished by repair mechanisms or de novo biosynthesis of 

damaged compounds. Injuries that are beyond repair have to be properly removed by the 

action of proteases or nucleases. 

Bacteria are primarily equipped with two different possibilities of signal transduction 

pathways. (1) Two component systems, can sense signals with specialized receptors (sensor 

kinases) and transduce binding of a signal to a response regulator which is usually a 

transcription factor that in turn activates genexpression (Mizuno, 1997; Mizuno, 1998; Nixon 

et al., 1986). (2) A broader response to a stress signal is achieved by the activation of the 

so-called alternative sigma factors. These are normally inactive and only activated in 

situations where the expression of a subset of genes is required.  
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Figure 1. RNA polymerase and sigma factors. Schematic illustration of the RNA polymerase core (dark 
green) and its assembly with a sigma factor (light green) forming the transcriptionally active holoenzyme. The 
holoenzyme is able to bind to distinct promoters (orange) on the DNA (grey). Seven sigma factors from E. coli 
are listed on the right. 

 

 

The prokaryotic RNA polymerase consist of 5 core subunits (α2ββ'ω) that only forms the 

transcriptionally active holoenzyme in complex with the sigma subunit which directs the RNA 

polymerase to the distinct promoters (Figure 1). The existence of more than one sigma 

factor gives an organism the possibility to change the expression of a set of genes in special 

situations. A correlation can be observed in the number of sigma factors and the 

environmental complexity or variability of an organism’s habitat (Rhodius et al., 2006). For 

example Mycoplasma (Fraser et al., 1995; Himmelreich et al., 1996) an obligate intracellular 

pathogen has only a single sigma factor, whereas Streptomyces coelicolor has over 60 sigma 

factors available for specific adaptation functions needed for its complex developmental life 

style (Hutchings et al., 2004). 

In Escherichia coli, seven sigma factors are known that can assemble with the RNA 

polymerase. Whereas the general σ

 
70 is responsible for transcription of the housekeeping 

genes and as such needed under normal growth conditions, six additionally alternative sigma 

factors exist (Figure 1). The best characterized alternative sigma factor is σ32 that mediates 

the heat shock response (Grossman et al., 1984; Landick et al., 1984; Yura et al., 1984). At 

elevated temperatures, proteins involved in folding and degradation of proteins are up-

regulated. These are commonly termed as heat shock proteins (HSPs) and are 

transcriptionally controlled by σ32 (Bardwell and Craig, 1987; Bardwell et al., 1986; Bukau, 

1993). Regulation of σ32 is based on chaperones (DnaK/J) that bind to the sigma factor for 

inactivation under steady-state conditions (Straus et al., 1987; Young and Hartl, 2003). 

Accumulation of misfolded proteins in the cytoplasm during heat shock need refolding by 

4 



  Introduction 

chaperones which results in an increased free pool of active σ32 (Bukau, 1993; Straus et al., 

1990). 

Another member of the alternative sigma factors is the σE that governs the extracytoplasmic 

stress response in E. coli. Here, the scenario for activation is more delicate, as the signal is 

sensed in extracytoplasmic regions whereas the sigma factor itself is located in the 

cytoplasm. This requires a signaltransduction cascade via the inner membrane. 

 

 

1.2. Overview of Extracytoplasmic Stress in E. coli 
 

1.2.1. Envelope of Gram-Negative Bacteria 

 
Figure 2.  Envelope of Gram-negative bacteria. The envelope of Gram-negative bacteria comprises the 
inner and the outer membrane and the periplasmic space in between. The inner membrane is a bilayer of 
phospholipids whereas the outer membrane is composed of an inner layer of phospholipids and an outer layer 
of lipopolysaccharides. The peptidoglycan, located in the periplasm, confers rigidity to the envelope and is 
attached by lipoproteins to the outer membrane (illustration from Narita et al., 2004). 

 

 

The hallmark of Gram-negative bacteria is the organization of the extracytoplasmic regions 

or the envelope, consisting of an inner and an outer membrane that are separated by the 

periplasmic space (Figure 2). The inner membrane is made up of a bilayer of phospholipids 

and contains membrane proteins and anchored lipoproteins. In contrast, the outer 

membrane exhibits a more asymmetric character, as its inner leaflet consists of 

phospholipids but its outer leaflet is mainly composed of lipopolysaccharides (LPS) (Kamio 
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and Nikaido, 1976). Generally proteins of the outer membrane are integral β-barrel forming 

outer membrane proteins (OMPs) and anchored lipoproteins. Up to 50% of the total mass of 

the outer membrane consists of OMPs (Nikaido, 1996) which include porins, channel-forming 

proteins and outer membrane receptors (Seltmann and Holst, 2002). Due to the high 

amount of channel forming proteins, the outer membrane has a porous character. 

The periplasm is a highly viscous compartment with a protein mobility 100-fold lower than in 

the cytoplasm (Brass et al., 1986). This gel like matrix embeds the peptidoglycan which is a 

rigid layer forming a sacculus composed of polysaccharides, cross-linked by peptides, and is 

important for maintaining the bacterial shape (Weidel and Pelzer, 1964). The periplasm 

moreover differs from the cytoplasm in being devoid of ATP (Raivio and Silhavy, 2001). 

Furthermore, it exhibits an oxidizing milieu and therefore contains enzymes that catalyze 

disulfide bond formations (Nakamoto and Bardwell, 2004). 

 

 

1.2.2. Extracytoplasmic Stress Response Pathways in E. coli 
 

Quality control in the periplasm is crucial for the cell, as periplasmic and membrane proteins 

are synthesized in the cytoplasm and cross the inner membrane mostly as unfolded 

precursors (reviewed by Driessen et al., 1998; Müller et al., 2001). Additionally, the 

periplasm is only separated from the surrounding, often changing environment by the porous 

outer membrane. This is especially important for bacteria during infection, where they 

become target of the host immune defense system. Therefore, folding must be assisted and 

controlled to prevent that harmful environmental alterations impair the folding status and 

proper function of membrane and periplasmic proteins.  

Monitoring of incorrectly folded proteins and assurance of intact membrane integrity is an 

essential function of the extracytoplasmic stress response pathways. These pathways share a 

common functional feature; the stress signal sensed in the periplasm is conducted via the 

inner membrane to the cytoplasm where the expression of a set of genes is arranged to 

minimize the defects caused by the unfavorable external condition. In E. coli two main and 

well characterized signaling pathways are known to respond to stress signals sensed in the 

envelope (Duguay and Silhavy, 2004; Raivio, 2005; Raivio and Silhavy, 2001). One of them 

(CpxAR) is a two component system whereas the second one acts via the alternative sigma 

factor σE.  

Although these pathways correspond to unique signals and activate unique target genes they 

share some overlapping functions (Connolly et al. 1997; Raivio and Silhavy, 1999). 
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1.2.2.1. CpxAR Stress Response Pathway 
 

 
Figure 3. CpxAR two component system. The periplasmic domain of CpxA is suggested to sense stress 
signals and thereby triggers autophosphorylation of its cytoplasmic domain. The phosphate group is transferred 
to the response regulator CpxR, which is enabled to bind to specific sites on the DNA to activate transcription of 
the regulon. CpxP, a periplasmic protein negatively regulates CpxA kinase activity (illustration from Rowley et 
al., 2006). 

 

 

As depicted in Figure 3, the CpxAR envelope stress response, composed of the CpxA sensor 

histidine kinase (Albin et al., 1986) and the CpxR response regulator (Dong et al., 1993), is 

mainly induced by stress events that result in protein misfolding. For example accumulation 

of pili subunits in the periplasm was shown to induce the CpxAR system which reflects its 

role in monitoring and altering the production of pili (Hung et al., 2001; Nevesinjac and 

Raivio, 2005; McEwen and Silverman, 1980; reviewed by Rowley et al., 2006). Besides this, 

the outer membrane lipoprotein NlpE specifically induces the pathway which is proposed to 

be caused by adhesion to surfaces (Otto and Silhavy, 2002; Snyder et al., 1995; Gupta et al., 

1995). 

Activation of CpxA leads to autophosphorylation and phosphotransfer to the aspartyl of 

CpxR, which then induces transcription of genes needed in the envelope (Raivio and Silhavy, 

1999). Genes activated by phosphorylated CpxR include the periplasmic chaperone DegP 

(Danese et al., 1995), which is also a target of the σE stress response (see below), peptidyl-

prolyl-isomerases PpiA and PpiD (Dartigalongue and Raina, 1998; Pogliano et al., 1997) and 

disulfide oxidase DsbA (Danese and Silhavy, 1997).  
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A periplasmic adaptor protein, CpxP (Danese and Silhavy, 1998) was suggested to have a 

role in fine tuning the system (Buelow and Raivio, 2005; Isaac et al., 2005). CpxP, normally 

down-regulates CpxA activity and is suggested to bind to unfolded proteins which results in 

enhanced activity of CpxA (Buelow and Raivio, 2005; DiGiuseppe and Silhavy, 2003). The 

CpxAR pathway is likely to be important for pathogenesis by means of monitoring adhesion 

to surfaces and for promoting biofilm formation (reviewed by Raivio, 2005). 

 

 

1.2.2.2. σE Stress Response Pathway 
 
 

 
Figure 4. Overview of σE regulation. The left part of the scheme, illustrates the off state of key players of 
the σE response under normal cell growth. The σE is captured by its anti-sigma factor RseA. The two 
transmembrane proteases DegS and RseP are inactive. Stress induces misfolding or misassembly of OMPs 
(outer membrane proteins) leading to exposure of their C-termini which activate DegS (see right part). DegS 
cleaves RseA in the periplasmic region (1) which enables RseP to process RseA within the membrane spanning 
domain (2). Cytoplasmic proteases like ClpXP remove the cytoplasmic part of RseA from σE (3).This results in 
free σE to activate the RNA polymerase for transcription of a subset of genes (a selection of them are listed in 
the box), leading to restoration of the envelope integrity. Locations of the outer membrane (OM) and inner 
membrane (IM) are specified. 

 

 

The alternative sigma factor σE is the only essential sigma factor besides the house keeping 

σ70 (De Las Penas et al., 1997a). It is characterized by being autoregulated and co-

transcribed in one polycistronic operon together with its anti-sigma factor RseA, as well as 
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with the genes encoding for RseB and RseC (De Las Penas et al., 1997b; Missiakas et al., 

1997). 

In the inactive state, σE is captured by the cytoplasmic domain of RseA and thereby 

prevented from complexation with RNA polymerase (Campbell et al., 2003; De Las Penas et 

al., 1997b; Missiakas et al., 1997). σE activation is governed by a subsequent degradation of 

RseA that is performed by two PDZ-domain containing, inner membrane-bound proteases 

(DegS and RseP) (Alba et al., 2002; Ades et al., 1999). After cleavage of the periplasmic 

domain of RseA by DegS (Waller and Sauer, 1996; Ades et al., 1999), the intramembrane 

protease RseP (Dartigalongue et al., 2001a; Kanehara et al., 2002) releases the cytoplasmic 

domain that still sequesters σE (Alba et al., 2002; Campbell et al., 2003; Dartigalongue et al., 

2001a; Kanehara et al., 2002). Finally, cytoplasmic proteases like ClpXP remove RseA and 

liberate σE for RNA polymerase activation (Flynn et al., 2004; Chaba et al., 2007). A 

schematic overview is given in Figure 4. 
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1.3. Key-Players of the σE Stress Response Pathway 

 

1.3.1. RseA, the anti-Sigma Factor 

 
 

Figure 5. Features of RseA and structures of cytoplasmic regions of RseA. (A) Schematic 
representation of RseA depicts important regions of RseA from E. coli. The cytoplasmic part of RseA, drawn in 
orange, includes binding sites for σE and SspB. RseP cleaves RseA within the transmembrane domain (grey), 
whereas DegS cleaves in the periplasmic domain (white) of RseA. This domain confers interaction to RseB (red) 
and contains two stretches that have a high content of glutamines (blue). N- and C-termini are indicated. (B) 
Crystal structure of SspB (purple) with residues 73-95 of RseA (orange) (PDB-entry 1yfn; Levchenko et al., 
2005). SspB is required for delivery of RseA to the ClpXP protease (Flynn et al., 2004; Hersch et al., 2004). (C) 
Crystal structure of the cytoplasmic part of RseA (orange) with σE (green and yellow; PDB-entry 1or7; Campbell 
et al., 2003). A cartoon explaining domain organization is given on the right (from Campbell et al., 2003). 

 

 

1
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The anti-sigma factor RseA is a monotopic integral inner membrane protein of 216 amino 

acids with a molecular weight of 24 kDa. RseA comprises one transmembrane helix (101-

118), a periplasmic domain of 88 residues with two poly-Q stretches and an N-terminal 

cytoplasmic domain of 100 residues (Figure 5A). The cytoplasmic part directly mediates the 

interaction to σE, which results in inactivation of σE (De Las Penas et al., 1997b; Missiakas et 

al., 1997).  

X-ray structural analysis of the N-terminal 90 residues in complex with σE (Figure 5C) 

demonstrated that RseA sterically inhibits formation of the RNA polymerase holoenzyme 

(Campbell et al., 2003). As only the N-terminal 66 residues of RseA participated in σE 

RseB
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216

σE
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A 
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B C 
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binding, it is suggested that flexible parts (67-90) could serve as targets for the cytoplasmic 

proteases like ClpXP (Figure 5B) (Alba et al., 2002; Campbell et al., 2003; Flynn et al., 2004). 

The transmembrane region spans residues 101-118 and includes the cleavage site for RseP 

(Ala108-Cys109). The periplasmic domain of RseA is involved in interaction to the 

periplasmic protein RseB and contains the DegS cleavage site (Ser149-Leu150). 

 

 

1.3.2. DegS, a Stress Sensor and Site-1-Protease 
 

 
Figure 6. Crystal structure of DegS. (A) Trimeric DegS (PDB-entry 1te0) protease in top view with the 
protease and PDZ-domains colored in red and blue, respectively. (B) Side view of the surface of DegS including 
modelled membrane helices with different monomers colored in blue, red and orange (illustration from Zeth, 
2004). 

 

 

A BBB AA 

DegS is an essential inner membrane anchored serine protease, homologous to the family of 

HtrA proteases (Alba et al., 2001; Bass et al., 1996; Pallen and Wren, 1997; Waller and 

Sauer, 1996). Under normal conditions DegS is inactivated by its PDZ domain which shields 

the active site of the protease domain (Figure 6) (Wilken et al., 2004; Zeth, 2004). In the 

activation process of σE, DegS adopts the function of a site-1 protease, meaning that DegS 

initiates the proteolytic cascade of RseA degradation which is followed by the action of a 

site-2 protease, RseP. Both proteases, DegS and RseP, possess a PDZ domain, a known 

module for mediating protein protein interactions and frequently found in signalling proteins 

(Cho et al., 1992; Kim et al., 1995; Woods and Bryant, 1993). They are reported to 

recognize either short C-terminal peptide motifs or internal sequences that structurally mimic 

a terminus (reviewed by Harris and Lim, 2001). Activation of DegS was demonstrated to rely 

on the accumulation of misfolded OMPs. Further investigations showed that DegS specifically 

recognizes peptides ending with OMP-like C-terminal sequences like YYF or YQF that can act 
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as activators (Walsh et al., 2003). These OMP C-termini are proposed to be only accessible in 

improperly folded OMPs as they are normally embedded in the native β-barrel structure. 

DegS cleaves RseA in the periplasmic domain between Ser149 and Leu150. By a not clearly 

understood mechanism RseA1-149 is subsequently a substrate of the zinc metalloprotease 

RseP.  

 

 

1.3.3. RseP, a Site-2-Protease 
 
 

 
Figure 7. Topology of RseP. RseP is predicted to have four transmembrane regions, one large periplasmic 
domain including a PDZ domain and two cytoplasmic located domains. The zinc-binding motif (HEXXH motif) 
and a C-terminal LGD motif are located at membrane-cytoplasmic boudaries. Both termini face the periplasm 
(abstracted and modified from (Koide et al., 2007). 

 

 

N C

Periplasm

Cytoplasm

HEXXH LGD

TM1 TM2 TM3 TM4

PDZ

IM

N C

Periplasm

Cytoplasm

HEXXH LGD

TM1 TM2 TM3 TM4

PDZ

IM

RseP, formerly known as YaeL, is an essential inner membrane spanning protein with four 

transmembrane helices, one periplasmic PDZ domain and two active site motifs located at 

membrane-cytoplasmic boundary regions (Koide et al., 2007; Alba et al., 2002; 

Dartigalongue et al., 2001a; Kanehara et al., 2001; Kanehara et al., 2002). A topologic 

model of RseP is illustrated in Figure 7 (Kanehara et al., 2001; Koide et al., 2007). RseP is 

homologous to S2P (Dartigalongue et al., 2001a), a mammalian site-2-protease that 

mediates activation of SREBP (sterol regulator element binding protein) located in the 

endoplasmic reticulum (Brown et al., 2000). Like S2P, RseP belongs to a special group of 

proteases that can perform regulated intramembrane proteolysis (RIP) which means 

degradation of targets within the membrane (Akiyama et al., 2004). 

For regulation of RseP, three factors are discussed to be important: (1) RseP requires a 

DegS-processed RseA substrate. (2) Two Gln-rich regions in the periplasmic domain of RseA 
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seem to play a regulatory role, as deletion of these resulted in uncontrolled activation of 

RseP (Kanehara et al., 2003). (3) The periplasmic protein RseB is proposed to negatively 

influence RseP activity (Ades et al., 1999).  

 

 

1.3.4. RseB, a Negative Regulator of σE 

 

RseB (rse for regulator of σE), a periplasmic protein, binds to the periplasmic domain of RseA 

and was shown to exert a negative effect on σE activity (Missiakas et al., 1997). RseB is 

widely conserved among bacteria and reported to be responsible for a controlled progress in 

the RseA degradation pathway (Grigorova et al., 2004). By interaction with the periplasmic 

domain of the anti-sigma factor RseA (De Las Penas et al., 1997b; Missiakas et al., 1997), 

RseB reduces the efficiency of RseP to cleave RseA presumably either by RseP inhibition or 

RseA stabilization (Ades et al., 1999; Grigorova et al., 2004). In the absence of RseB, σE 

activity raises 2 - 2.3 fold (De Las Penas et al., 1997b; Missiakas et al., 1997), whereas 

overproduction of RseB results in 30-40% decrease of σE activity (Missiakas et al., 1997).  

RseB is described to act as a sensor for periplasmic stress (Ruiz and Silhavy, 2005). In this 

functional model, RseB binding to RseA competes with binding to a stress signal, and RseB 

could be titrated away from RseA (Collinet et al., 2000; De Las Penas et al., 1997b; 

Grigorova et al., 2004). A displacement of RseB was shown to enable RseP to cleave RseA 

(Ades et al., 1999) independent on the action of the site-1 protease DegS. Besides this, σE 

activity was observed to be inducible in a DegS independent manner, which led to the 

hypothesis, that RseB is involved in a different way to modulate σE activity (Grigorova et al., 

2004). 
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1.4. Signals that Activate the σE Regulon 
 
Once σE is activated, it guides the RNA polymerase to specific promoters on the DNA. About 

100 genes were identified to be part of the σE-regulon (Alba and Gross, 2004; Dartigalongue 

et al., 2001b; Duguay and Silhavy, 2004; Rezuchova et al., 2003; Rhodius et al., 2006) 

including those that encode for periplasmic chaperones like fkpA or degP (Erickson and 

Gross, 1989; Lipinska et al., 1988; Raina et al., 1995) and genes whose products are 

involved in the biogenesis and assembly of the outer membrane components (skp, yfiO, 

bacA, lpxABD) (Dartigalongue et al., 2001b; Onufryk et al., 2005; Rhodius et al., 2006). The 

expressed proteins can manage the restoration of the membrane integrity, which is the 

general task of the σE stress response. 

The σE is activated by signals as heat or ethanol that cause a general damage in the 

envelope by protein misfolding (Erickson et al., 1987; Rouviere et al., 1995). Furthermore, as 

for the CpxAR or cytoplasmic heat shock response, all events that affect protein misfolding 

are potent inducers. For example, mutants missing periplasmic folding agents like FkpA, PpiD 

and SurA show elevated σE activity (Raina et al., 1995; Dartigalongue and Raina, 1998). 

Besides this, conditions that result in overproduction of OMPs were reported to turn on the 

σE response as well (Mecsas et al., 1993). Additionally, mutation or deletion of genes, coding 

for proteins involved in OMP biogenesis, similarly induces σE (Missiakas et al., 1996b; Raina 

et al., 1995; Rouviere and Gross, 1996). The underlying molecular mechanism is, as 

described above, the specific activation of DegS by sensing OMP C-termini that are only 

accessible in not properly folded or unassembled OMPs (Rouviere and Gross, 1996; Missiakas 

et al., 1996a). Finally, also modified lipopolysaccharides (LPS) were found to induce the σE 

response by an unknown mechanism (Tam and Missiakas, 2005). 

First hints that RseB could be titrated away and may act as a sensor for σE induction came 

from experiments with a mutant of maltose-binding protein (MalE or MBP) (reviewed by 

Shuman and Panagiotidis, 1993). Expression of the MalE mutant, malE31, results in 

accumulation of MalE31 in periplasmic aggregates, which was shown to induce the σE 

activity. In these aggregates, RseB was found to be co-localized, which led to the suggestion 

that RseB may bind to unfolded proteins other than OMPs (Collinet et al., 2000; Grigorova et 

al., 2004).  
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1.5. Conceptual Formulation 

 

The σE activation of extracytoplasmic stress response is regulated by a successive 

degradation of its anti-sigma factor RseA. Two inner membrane bound proteases execute 

degradation in a highly regulated manner. The periplasmic protein RseB is believed to exert 

a modulatory role in this pathway, but open questions remain to be solved. It is yet unclear 

how RseB can modulate the stability of RseA and how RseB is able to influence the cleavage 

efficiency of RseP. In the most popular model for RseB function, RseB is thought to be 

titrated away from RseA by a stress signal. Neither the nature of the putative signal nor the 

mechanism for this hypothesis is known to date.  

In order to gain insight in the precise function of RseB, the task of this thesis is to solve the 

molecular structure by X-ray crystallography. Crystallographic and supporting biochemical 

data should enlighten the mode of RseB action and may help to identify postulated signals 

which could be sensed by RseB. 
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2. Results 
 

2.1. X-ray Structural Analysis of RseB 

 

2.1.1. Cloning and Purification of RseB 

 

To produce RseB for crystallization trials, initially full length RseB from E. coli was subjected 

to over-expression. However, expression of RseB in the periplasm did not yield appropriate 

amounts for crystallization. For cytoplasmic expression, the N-terminal signal sequence was 

deleted and an N-terminally truncated version of RseB with a His-tag at the C-terminus was 

cloned as described in Materials and Methods (Figure 8).  

 

A BB

 
Figure 8. Illustration of C-terminally His-tagged RseB and its purification. (A) C-terminally His-tagged 
(blue) RseB from E. coli missing the signal sequence (SS). The methionine needed for initiation of translation is 
colored in red. Positions of the N-terminus (NT) and C-terminus (CT) are indicated. (B) Final purification step of 
RseB-CT-His using anion exchange chromatography. Samples of the load (L) and the flow though (FT) of the 
MonoQ experiment were analyzed by SDS-PAGE together with a molecular weight marker (M). The purity of 
RseB-CT-His of the flow through was verified by mass spectroscopy. 

 

 

Initial tests revealed that expression in the cytoplasm gave acceptable amounts of the 

protein. The purification was performed via a two-step procedure (for details see Materials 

and Methods). Affinity chromatography using Ni-chelating material was done in a first 

purification step. Final purification of C-terminally His-tagged RseB (for simplicity called 

RseB) was achieved by anion exchange chromatography as shown in Figure 8. Purified 

protein was concentrated to 5 mg/ml.  
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2.1.2. Crystallization and Data Collection of RseB 
 
 

 
 
 

Figure 9. Crystals of RseB. (A) Tetragonal crystal of RseB from E. coli with dimensions of 0.25 x 0.25 x 0.05 
mm crystallized in space group P4212 (crystal form I). (B) Crystals of RseB in orthorhombic space group C2221 
with dimensions of 0.2 x 0.8 x 0.02 mm (crystal form II). 

 

 

A BA B

Conditions for crystallization of RseB were screened by the hanging drop vapour diffusion 

method, as described in Material and Methods. The commercially available crystal screens 

(Hampton Research), applied to the protein (at low protein concentrations, 1 mg/ml), yielded 

mainly two different crystal forms under a few conditions. The composition of the crystal was 

analyzed by N-terminal sequencing, which showed that the crystals indeed contain the RseB 

protein. 

Small tetragonal crystals (form I) appeared after two weeks incubation at 291 K. These 

conditions were further refined using additive screens. Crystals grew in a solution containing 

2.4 M sodium malonate pH 7 and 0.3 M dimethylethylammonium propane sulfonate to final 

dimensions of 0.25 x 0.25 x 0.05 mm (Figure 9A). Orthorhombic crystals (form II) were 

obtained from a solution containing 0.2 M magnesium chloride hexahydrate, 0.1 M Tris-HCl 

pH 8.5, 25% (w/v) polyethylene glycol 3350 and 10 mM L-cysteine after 3 weeks. These 

crystals grew in clusters and had a sickle shaped appearance (Figure 9B). To prepare 

orthorhombic crystals for synchrotron data collection, single sickles were mounted to avoid 

overlapping crystal lattices interfering with data processing. 
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Figure 10. Diffraction image of tetragonal crystal. Diffraction image recorded on a mar225 CCD detector 
at PXII-X10SA (SLS) showing diffraction of the tetragonal crystal to 2.8 Å resolution. 

 

 

Data collection statistics of all datasets collected are summarized in Table 1. Tetragonal 

crystals belong to space group P4212 with a = 164.3 Å, c = 81.5 Å, α = 90° and diffracted to 

2.8 Å resolution (Figure 10) with an Rmeas of 8.7% and I/σ (I) of 18.8. Orthorhombic crystals 

diffracted to 2.4 Å resolution and belong to space group C2221 with a = 98.6 Å, b = 200.7 Å, 

c =109.7 Å, α = 90°, with Rmeas of 11.1% and I/σ (I) of 12.64.  
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Table 1. Data collection and refinement statistics. 
 

 

 Native  Derivative 

 
Crystal form 

I 

Crystal form 

II 
Pt1b Pt2b Pt3b Pt4b

Data collection       

Space group P4212 C2221 P4212 P4212 P4212 P4212 

a (Å) 

b (Å) 

c (Å) 

164.3  

164.3 

81.5 

98.6  

200.7 

109.7 

164.8 

164.8 

82.2 

164.2  

164.2 

81.9 

165.0  

165.0 

81.8 

165.0  

165.0 

82.0 

Beamline 
PXII-X10SA 

(SLS) 

ID23-1  

(ESRF) 

ID14-4  

(ESRF) 

ID14-4  

(ESRF) 

ID14-4  

(ESRF) 

ID14-4  

(ESRF) 

Detector 
mar225  

CCD 

Q315 ADSC 

CCD 

Q315 ADSC 

CCD 

Q315 ADSC 

CCD 

Q315 ADSC 

CCD 

Q315 ADSC 

CCD 

Resolution (Å)*
20 – 2.8  

(2.9 – 2.8) 

20 – 2.4 

 (2.5 – 2.4) 

50 – 3.3  

(3.5 – 3.3) 

50 – 4  

(4.2 – 4.0) 

50 – 4.0  

(4.2 – 4.0) 

50 – 3.6  

(3.8 – 3.6) 

Wavelength (Å) 0.9790 0.9762 1.07195 1.07195 1.07195 1.00883 

Osc. Angle (°) 1 0.5 1 1 1 1 

Unique reflections* 28941 (4291) 40893 (4373) 32733 (4856) 18066 (2746) 27396 (4046) 24846 (3831) 

Completeness (%)* 97.9 (92.8) 95.2 (89.4) 97.3 (91.1) 92.8 (96.6) 75.1 (69.6) 96.3 (93.0) 

Redundancy* 12.4 (12.0) 3.7 (3.8) 7.4 (7.1) 3.7 (3.8) 1.6 (1.5) 3.8 (3.7) 

Average I/σ (I)* 18.8 (2.4) 12.6 (2.4) 11.3 (2.5) 9.4 (3.9) 4.7 (1.6) 8.4 (3.0) 

Rmeas
 a (%)* 8.7 (50.9) 11.1 (57.7) 16.9 (88.7) 14.2 (42.9) 20.3 (67.4) 16.8 (54.1) 

Refinement       

Resolution (Å) 20 – 2.8 19.9 – 2.4     

Monomers in AU 2 3     

Protein residues 614 1011     

Water molecules 44 194     

Heteromolecules 2 4     

Rcryst (%) 21.7 22.8     

Rfree (%) 25.8 27.8     

RMSD Bonds (Å) 0.011 0.011     

RMSD Angles (°) 1.69 1.41     

Ramachandran plot     

most favoured 443 (88.8%) 641 (90.2%)     

additionally allowed 53 (10.6%) 64 (9.0%)     

generously allowed 2 (0.4%) 3 (0.4%)     

disallowed 1 (0.2%) 3 (0.4%)     

 

*Values in parentheses correspond to the highest resolution shell 
aRmeas (Diederichs and Karplus, 1997) 
bPt1: K2Pt(SCN)6, Pt2, Pt4: [Pt2I2(H2NCH2CH2NH2)2](NO3)2, Pt3: K2PtCl4 
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2.1.3. Phasing and Model Building 

 

2.1.3.1. Phasing of Data from P4212 Crystals by MIR 
 

Multiple isomorphous replacement (MIR) is besides multi wavelength anomalous diffraction 

(MAD) a common method for determination of initial phases of completely new structures 

(Terwilliger and Berendzen, 1999). Numerous heavy atom containing compounds must 

typically be screened before one (or more) is found that binds specifically without damaging 

the crystal or disrupting the crystal lattice. 

For structure solution, phases from heavy atom soaked crystals were obtained. 12 different 

platinum salts and five different mercury salts, each in two to four varying concentrations 

were tested for yielding anomalous signals in the soaked crystals. The best isomorphous 

phases resulted from datasets of RseB type I crystals soaked in reservoir solution containing 

0.5 mM K2PtCl4, K2Pt(SCN)6 or [Pt2I2(H2NCH2CH2NH2)2](NO3)2 with the derivative data 

collected at the Pt-edge. From the analysis of heavy atom site occupancies, it became 

obvious that two monomers (P1 and P2) of the protein build up the asymmetric unit 

(Matthews coefficient of 4, 69.3% solvent content, (Matthews, 1968)). Phases were 

determined at 3.2 Å using the program SOLVE (Terwilliger and Berendzen, 1999) and 

improved by the program RESOLVE (Terwilliger, 2000).  

 

 

2.1.3.2. Manual Model Building of RseB from Data of P4212 Crystals 
 

An automatic RESOLVE generated model was not helpful as it did not show continuous 

features and in addition only very few parts had been placed in the initial electron density 

(Terwilliger, 2002a; Terwilliger, 2002b). Therefore, it was a challenging task to manually 

build the model of RseB. Severe difficulties in tracing the electron density were encountered 

because of bad quality especially in less structured areas as loop regions. Initially, pre-built 

α-helices and β-strands were placed into prominent parts of the electron density. With the 

help of secondary structure predictions, these parts were connected using the programs O 

and Coot (Jones et al., 1991; Emsley and Cowtan, 2004). 

All regions with connected electron density were interpreted with poly-alanine stretches. 

However, the docking of the amino acid sequence proved to be a delicate problem, due to 
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several gaps in the model as well as missing side chain density. A comparison of initial 

electron density and final density is given in Figure 11. 

 
Figure 11. Densities of P4212 data. Initial density is shown on the left, whereas the final density is depicted 
on the right. The corresponding part of the final model of RseB (Asn35-Ser49) is represented as sticks in red.  

 

 

2.1.3.3. Phasing of Data from C2221 Crystals by MR 
 

Crystals of the orthorhombic form II diffracted to a resolution of 2.4 Å. They contain three 

monomers (C1, C2 and C3) in the asymmetric unit at a solvent content of 53.1% (Matthews, 

1968). The structure was solved by molecular replacement (MR) in MOLREP (Vagin and 

Teplyakov, 1997), using the first 200 residues of the tetragonal model. After manual 

placement of the remaining part of the model, the structure could be refined to 2.4 Å. 

Improvement of the electron density was done with RESOLVE prime-and-switch phasing to 

minimize the model bias (Terwilliger, 2000; Terwilliger, 2004). 
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2.1.3.4. Quality of the Final Models of RseB 
 

BBBA B

 

 

Su

22

pl

st

90

re

an

re

 

T

Pr

2v
AAA
Residues in most favored regions [A,B,L] 
Residues in additionally allowed regions [a,b,l,p] 
Residues in generously allowed regions [~a,~b,~c,~d] 
Residues in disallowed regions 
 
Number of non-glycine and non-proline residues 
 
Number of end-residues (excl. Gly and Pro) 
 
Number of glycine residues (shown as triangles) 
Number of proline residues 
 
Total number of residues 

443
53
2
1

499

8

27
34

568

88.8%
10.6%
0.4%
0.2%

100.0%

Figure 12. Ramachandran plot. The final models were
validate the quality of the model. The Ramachandran p
orthorhombic (B) crystals have a good stereochemistry a
regions. 

bsequent cycles of refinement resulted in an 

.8% (Rfree of 27.8%) for tetragonal and orthor

ot analysis depicts the distribution of the 

ructures and gives a good estimate for the qua

.0% of all residues are in most favoured re

sidues belong to disallowed regions in P4212 

d B). Although RseB, crystallized in the orth

solution, our structure pictures are based on P

he coordinates for RseB (tetragonal and ortho

otein Data Bank (Berman et al., 2000; Berns

42 and 2v43, respectively. 

22 
 
Residues in most favored regions [A,B,L] 
Residues in additionally allowed regions [a,b,l,p] 
Residues in generously allowed regions [~a,~b,~c,~d] 
Residues in disallowed regions 
 
Number of non-glycine and non-proline residues 
 
Number of end-residues (excl. Gly and Pro) 
 
Number of glycine residues (shown as triangles) 
Number of proline residues 
 
Total number of residues 

641 
65 
3 
3 
 

712 
 

19 
 

42 
45 

 
818 

90.0%
9.1%
0.4%
0.4%

100.0%

 analyzed with PROCHECK (Laskowski et al., 1993) to 
lot showed that the models of tetragonal (A) and 
s most of the residues are within the most favoured 

Rcryst of 21.7% (Rfree of 25.8%) and Rcryst of 

hombic crystals, respectively. Ramachandran 

stereochemistry of peptide bonds in the 

lity of the model. In both models 88.8% and 

gions whereas only 0.2% and 0.4% of all 

and C2221 models, respectively (Figure 12A 

orhombic space group diffracted to higher 

1 (unless otherwise stated). 

rhombic forms) have been deposited in the 

tein et al., 1977) under accession numbers 



  Results 

 

2.2. Structure of RseB 
 
2.2.1. Overall Structure of RseB 
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The RseB monomer has an approximate dimension of 60 Å x 46 Å x 30 Å and consists of two 

domains: one large domain (RseB-D1) and one small domain (RseB-D2). It is composed 

mainly of β-stands arranged in two anti-parallel β-sheets (Figure 13A and B). The N-terminal 

D1 domain includes residues Ala23 to Lys203 with an initial long N-terminal helix that is 

followed by an 11-stranded anti-parallel β-sheet, forming an unclosed β-barrel (strand order: 

β7β8β9β10β11-β1β2β3β4β5β6 see also Figure 16A). Notably, the unclosed β-barrel is composed of 

two sheets (β7-β11 and β1-β6) connected by an internal loop-helix structure (residues Asn103 

to Tyr125) with two small helices (α2 and α3) that links the two parts from the one (β6) to 

the other side (β7). Both β-sheets show also sequence homology and can be overlaid with a 

root mean square deviation (RMSD) value of 2.3 Å for the first five β-strands (data not 

shown). The inner surface of the unclosed barrel has an overall hydrophobic character. The 

N-terminal helix (α1) is amphipathic with the hydrophobic residues facing the barrel interior. 

Helix α4 evolves from the inner side of the open barrel and extends to a long loop (residues 

Ala204 to Ser221) connecting RseB-D1 and D2. 

 

The second domain (RseB-D2) spans residues Trp222 to Phe317 (see also Figure 15A) and 

harbours a six-stranded anti-parallel β-sheet with the strand order β13β14β15β18β17β16 and 

terminates with the C-terminal helix α5. The two small strands β12 and β19 are attached on 

the large β-sheet via hydrophobic interactions. Trp222 on β12 seems to be a key residue in 

fixing the preceding connecting loop to the beta sheet of the small domain, as it contacts 

Glu250 and Arg252 of β15. In analogy to domain D1, this β-sheet is as well an assembly of 

two separated half sheets (β13-β15 and β18-β16), but is less bent than the unclosed barrel 

domain.  

 

 

2.2.2. Structural Variability 

 

To evaluate the structural variability of RseB five independent monomers that occurred in the 

two space groups (monomers P1, P2, C1, C2 and C3) were compared. Figure 14A illustrates 

superpositions of the RseB-D1 and RseB-D2 domains separately, which were taken for 

calculation of RMSD values (with P1 as a reference). The superposition of RseB-D2 (Figure 

14A), left) shows that all RseB-D2 domains were apparently identical (RMSD for P1/P2 is 

0.18 Å; P1/C2 is 0.49 Å), while for D1 (Figure 4(a), right) minor changes were observed 

(RMSD for P1/P2 0.50 Å and P1/C1 0.88 Å). Structural variations are mainly found in the 

loop region of β5 and β6 and in the loop preceding α4 which is positioned outside of the 
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unclosed barrel. As there is no significant rearrangement or conformational change, such 

deviations are rather in a range reflecting the flexible character of this region and/or 

resulting from differences in crystal packing.  

However, when superimposing the independently built monomers composing the asymmetric 

unit of the P4212 and C2221 cells, higher positional discrepancies could be observed (RMSD 

vary between 0.5 Å for P1/P2 to 1.4 Å for P1/C1), that are mostly distributed to one side of 

the protein. These structural variations can be explained by varying angles of inclination (up 

to 5 Å) between the two domains in different monomers (Figure 14B). Further investigations 

revealed that the small domains in P4212 monomers are more down tilted than in C2221 

monomers. This suggests that the relative positions of domains are intrinsically flexible which 

might be of biological relevance. The loop connecting RseB-D1 and RseB-D2 could only be 

traced by electron density in monomer P1 which reflects its flexible character facilitating 

movements of the two domains. These observations are further underlined by B-factor 

distributions which show high values in these flexible areas (parts of the small domain, α4, 

connecting loop and part of the internal loop of RseB-D1) (Figure 14C). 
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2.2.3. Structural Comparison 

 

2.2.3.1. Comparison of the Small Domain with Structural Homologs 
 

A structural similarity search, performed with coordinates of the D2 domain using the DALI 

server (Holm and Sander, 1995), indicates that the closest structural homologue is TM1622 

(PDB-entry 1vr8, Z-score 7.3, sequence identity 6%), a GTP-binding protein from 

Thermotoga maritima (Xu et al., 2006). The structural similarity of TM1622 and RseB-D2 is 

due to a similar backbone twist of the β-sheet and the position of the C-terminal helix 

(Figure 15C). However, the β-sheet of the thermophilic protein is sandwiched by two 

additional helices, one on each side and equipped with an extra β-strand (Figure 15B). 

TM1622 and RseB-D2 share only five residues, just three of them are conserved among 

other RseB homologs (Tyr254, Val265 and Gly280) and seem to play a basic and important 

role in structural maintenance. 
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  Results 

2.2.3.2. Comparison of the Large Domain with Structural Homologs  
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Figure 17. Topology of RseB-D1 and its structural homologs Topology of RseB-D1 (A), LolA (B), LolB 
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2.2.4. Interface of the Large and the Small Domain of RseB 
 

Figure 18. Interface between RseB-D1 and RseB-D2. RseB-D1 (red) and RseB-D2 (green) domains of 
interact via a highly conserved interface. On RseB-D1, residues involved in interface formation are placed in the 
extended loops β8/β9 and β10/β11 (except two tyrosines in loop α3/β7). On RseB-D2, all loops pointing to the 
large domain participate in interdomain contacts. A loop in RseB-D2 between β14 and β15 bearing four invariant 
residues (Asp256, Gly257, Leu258 and Phe259) interacts with Thr117 of the internal loop of RseB-D1. Another 
residue (Asp256) of the invariant loop interacts with Tyr125, Tyr126 and Arg153 to stabilize interdomain 
contacts and to fix it to the barrel wall. Dimethylethylammonium propane sulfonate (NDS1) was present in the 
crystallization buffer and was found to bind to Arg175 and Arg278. 

 

 

D2

As depicted in Figure 18, the highly conserved interface (889 Å2) between the RseB-D1 and 

the RseB-D2 domain is formed by ten residues on the large domain (Thr117, Tyr125, 

Tyr126, Asp150, Thr152, Arg153, Tyr154, Asp174, Arg175 and Glu181) and nine residues on 

the small domain (Gln229, Asp256, Gly257, Leu258, Arg278, Arg281, Leu300, Gln303 and 

Tyr304). Residues of RseB-D1 are mostly located on loops connecting β8 and β9, β10 and β11, 

as well as β7 and α3 (Figure 18). On domain RseB-D2 all four loops pointing towards RseB-D1 

are involved in interface stabilization. They mediate attachment to the unclosed barrel wall of 

RseB-D1, more precisely, to loops connecting β8 and β9, β10 and β11. Furthermore, a highly 

conserved loop of RseB-D2 of invariant residues (Asp256, Gly257, Leu258 and Phe259, see 

also alignment in Figure 13C) promotes interaction to a loop of RseB-D1 which fills the 

unclosed barrel. 

D1

D2

D1
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2.2.5. Conserved Patches on the Surface of RseB 
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2.2.6. Oligomeric Assemblies of RseB in the Crystal Lattice 

 

For investigation of putative oligomeric forms of RseB, the crystal lattice was analyzed for all 

possible contacts between monomers of RseB. The crystal lattice is a regular arrangement of 

molecules that is stabilized by intermolecular contacts. Two different contact types can be 

distinguished (Janin, 1997; Janin and Rodier, 1995). First, there are crystal contacts that are 

characterized by only a few interactions and a small interface area. Those contacts mostly 

evolve during the crystallization process to mediate periodic protein-protein contacts. 

Second, there are crystal contacts with larger interaction surfaces that involve a set of often 

conserved residues (Valdar and Thornton, 2001). Such contacts are generally real oligomeric 

interfaces in terms of biological relevance.  

 

 

2.2.6.1. Large Oligomeric Assemblies in the Crystal 

 
Figure 20. Large oligomeric assemblies in the crystal. Octameric and hexameric ring structures can be 
found in the tetragonal (P4212) and orthorhombic (C2221) crystal form of RseB, respectively. For both crystal 
forms, the asymmetric unit is depicted which comprises two or three RseB molecules. The number of dimers 
necessary for ring formation is specified on the right. Monomers A and B are colored in red and blue, 
respectively. Monomer C of the orthorhombic asymmetric unit is colored in green. Three different contact types 
can be distinguished – an open (I), a close (II) and a semi-close contact (III). 
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The analysis of the tetragonal crystal lattice revealed large octameric rings as metastructure 

(Figure 20). The octamer forms a pore with a diameter of 53 Å and has a size of 
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approximately 150 Å in diagonal axis and a width of 128 Å. An oligomer like this would have 

a molecular weight of 270 kDa. It is composed of four asymmetric units and is a four-fold 

symmetric object. 

In crystal form II, three monomers compose the asymmetric unit which then assembles to a 

hexameric ring. The hexameric ring has a pore of approximately 38 Å and an overall 

dimension of 130 x 108 Å. A hexameric assembly of RseB would have a molecular weight of 

205 kDa. It is composed of two asymmetric units and has a two-fold symmetry (Figure 20). 

 

In order to analyze to biologic relevance of these oligomeric rings, the protein contacts were 

analyzed in both the hexameric and the octameric assemblies (Figure 20).  

Two predominant contacts were observed, termed ‘open’ and ‘close’ according to their 

respective dimer architecture. Whereas both domains, RseB-D1 and RseB-D2, contribute to 

dimer formation of the closed type, only RseB-D1 (large domain) is involved in the open 

form (Figure 20). The octameric ring can be formed upon an assembly of four open as well 

as four closed dimers and can be as such regarded as a tetramer of dimers. 

The hexameric ring can be assembled by three open dimers but not by three closed dimers. 

The three fold symmetry is hampered by a unique contact which is formed by a small 

interface area with just a small number of residues involved. This type of contact was termed 

semi-close, as it resembles the closed contact but is less extended and only mediated by the 

small domain of RseB. The occurrence of different contacts and the possibilities for 

constitution to octamers and hexamers is explained in Figure 20. 
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2.2.6.2. Contacts in the Crystal 
 

Three different types of contacts were observed in the crystal lattice. To elucidate the 

biological relevance, the contacts were analyzed according to interface area, number of 

observed contacts, degree of conservation of residues involved and relative abundance in the 

two crystal forms. 
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Figure 21. Open contact of crystal form I. On the left, D1 and D2 indicate the positions of the large and 
small domains of the two monomers P1 (red) and P2 (blue) of RseB. On the right, close-up view of the 
dimerization interfaces. In the open dimer residues Ile48, Ile50, Val55, Gln75, Met76, Asp77, Gly78, Arg80, 
Arg135, Ala137, Asp138, Arg184, Ile186 are involved; (bold for highly conserved and italic for conserved). 
Residues Ile48, Ile50, Val55 and Ile186 form a small hydrophobic core. Names of secondary elements are 
indicated. In orthorhombic crystal lattice the open contact is conserved. 

 

 

The open contact observed in both crystal lattices is mediated only by residues of the large 

domain of RseB. As shown in Figure 21, this interface is stabilized by 20 hydrogen bonds and 

four salt bridges in the tetragonal crystal. The interface area covers 874 Å2, representing 6% 

of the total accessible surface area and includes a small hydrophobic core. 13 residues were 

found to be involved in interchain contacts, with four residues being highly and additional 

four residues being conserved (see also Table 2). This high level of conservation is an 

indication for biological relevance. 

The residues of the large domain contributing to open dimer formation are predominantly 

located on the extended loops linking β3 to β4 (Gln75, Arg80, Met76, Asp77 and Gly78) and 
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β7 to β8 (Ala137, Asp138 and Arg135). Residues additionally involved in the open contact are 

found on β11, β2 and β1 forming a small hydrophobic core. 

 

The analysis of the open contact in the orthorhombic crystal revealed this contact as 

conserved in all monomers (see Table 3). 

 

 

The Close Contact 
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Figure 22. Close contact of crystal form I. In the close dimer residues Gln53, Arg81, Glu94, Arg267, 
Pro270, Ser271, Ser272, Thr279, Arg281, Arg282, Asn291 and Glu293 are involved. Residues Leu240, Pro242, 
Ile249, Leu277, Val284 and Val297 form a hydrophobic core (depicted as lines, for clarity not specified; bold 
for highly conserved and italic for conserved). Names of secondary elements are indicated. In orthorhombic 
crystal lattice, the closed contact is not conserved due to an increased distance between the two small domains. 

 

 

The close contact of the tetragonal crystal is mediated by residues of the large as well as of 

the small domain. As illustrated in Figure 22, contact stabilization is governed by 12 

hydrogen bonds and 7 salt bridges. Besides, a relatively large hydrophobic area is buried 

upon dimerization, yielding a large interface area of 2083 Å2 (14.3% of total surface area). 

Although this size suggests biological relevance, the bond forming residues are not well 

conserved (only one residue is highly and another is conserved, see also Table 2). A higher 

degree of conservation is found in the hydrophobic core that includes two highly conserved 

residues and one residue with lower conservation. 

 

When investigating the closed contact in crystal form II, high differences concerning bond-

forming residues were encountered. Here, the stabilization of the interface is mediated by 

solely one salt bridge and without any additional hydrogen bond (Table 3). These findings 

suggest that the closed contact is of high flexibility which is in contrast to the open dimer. 
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Furthermore, nearby loops could not be built due to bad electron density, which is also an 

implication for enhanced flexibility. The reason for this could be that the closed dimer 

interface is stabilized mainly by hydrophobic interactions. A superposition of the C2/C3 dimer 

and P1/P2 dimer explains the observed differences in both crystal forms: the distance of the 

small domains of C2/C3 was found to be 0.5-0.7 Å larger than observed for the tetragonal 

interfaces.  

 

Table 2 lists bond forming residues observed in the two interfaces of crystal form I. 

 

 
Table 2. Overview of bond-forming residues stabilizing the open and the close contacta. 
 

 open   close  

P2 distance (Å) P1 P2 distance (Å) P1 

Val 55B O 2.78 Arg 184A NH1 Gln 53B NE2 3.61 Ser 272A O 

Val 55B O 2.87 Arg 184A NH2 Arg 81B NH2 3.05 Asp 290A O 

Gln 75B O 3.17 Arg 135A NH1 Arg 81B NH1 2.43 Asn 291A OD1 

Gln 75B O 2.37 Arg 135A NH2 Arg 81B NE 3.09 Asn 291A OD1 

Met 76B O 3.47 Arg 135A NH1 Glu 94B OE1 2.41 Asn 291A ND2 

Met 76B O 2.73 Asp 138A N Arg 267B NH1 2.79 GluA 94 OE2 

Met 76B O 3.19 Ala 137A N Arg 267B NH2 3.06 Arg 81A NH2 

Asp 77B OD1 2.90 Ala 137A N Pro 270B O 2.96 Gln 53A NE2 

Asp 77B OD2 3.30 Arg 184A NH1 Ser 271B O 3.12 Thr 279A OG1 

Gly 78B N 2.66 Arg 135A O Thr 279B OG1 3.13 Ser 271A O 

Gly 78B O 2.97 Arg 135A NE Arg 281B N 3.13 Ser 271A OG 

Pro 79B O 3.33 Arg 135A NH2 Arg 282B NH1 3.02 Glu 293A OE2 

Arg 80B NH1 3.08 Asp 138A OD1 Arg 282B NH2 3.22 Glu 293A OE1 

Arg 135B NE 3.13 Gly 78A O Arg 282B NH2 3.27 Glu 293A OE2 

Arg 135B NH2 2.37 Gln 75A O Arg 282B NH2 3.40 Ser 272A OG 

Arg 135B NH2 3.28 Met 76A O Asn 291B ND2 2.70 Glu 94A OE2 

Arg 135B O 3.14 Gly 78A N Glu 293 OE1 3.00 Arg 282A NH2 

Ala 137B N 3.02 Asp 77A OD1 Glu 293 OE1 3.42 Arg 81A NE 

Ala 137B N 3.51 Met 76A O Glu 293 OE2 2.76 Arg 282A NH1 

Asp 138B N 3.09 Met 76A O    

Asp 138B OD1 3.21 Arg 80A NH1  

 

 

 

  

Arg 184B NH1 2.77 Val 55A O   

Arg 184B NH2 3.10 Val 55A O   

Arg 184B NH2 3.21 Asp 77A OD2   

 
aShown are observed contacts in the tetragonal crystals from open and close dimer. Hydrogen bonds (black), 
salt bridges (red) with highly conserved residues bold and conserved italic. The open contact is conserved in the 
orthorhombic crystal lattice, whereas for the open contact only a single contact was found (green). 
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The Semi-Close Contact 
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Figure 23. Semi-close contact of crystal form II. The semi-closed contact, unique for orthorhombic crystal 
lattice, is only stabilized by two unconserved residues Thr273 and Glu275. Names of secondary elements and 
positions of the large (D1) and small (D2) domains are indicated. Monomer A and monomer A’ of an adjacent 
unit cell are colored in red and pink, respectively. 

 

 

From the overall arrangement, the semi-closed contact is similar to the closed contact, but 

less compact. It is stabilized by only two non-conserved residues of the small domain of 

RseB which are involved in making four hydrogen bonds (Figure 23). With a very small 

interface area of 335 Å2, this contact is probably not stable in free solution. 

As the hexamer demands the semi-closed contact, further analysis of oligomeric states of 

RseB were intended to elucidate whether the hexamer and as such the semi-close contact 

has biological function. 

 

A summary of analyzed interfaces in both crystal forms is given in Table 3.  

 
 

Table 3. Contacts of observed interfaces in crystal forms I and II.a

 
 open close semi-close 

Crystal form P4212 C2221 C2221 P4212 C2221 C2221

Monomers P1/P2 C3/C3* C1/C2 P1/P2* C2/C3* C1/C1* 

Area [Å²] 874.5 867.9 882.6 2083.0 1503.7 353.1 

H-bonds 20 21 23 12 0 4 

Salt-bridges 4 3 2 7 1 0 

 conserved flexible small 

D1

D2

 
aListed are interface area and number of involved hydrogen bonds and salt bridges that stabilize the interface. 
The open contact that is mediated only by the large domain is more conserved than the closed contact. The 
interface area of the closed contact is more extended as the interface of the open contact, but is less 
conserved. In C2221 only one salt bridge could be found in the closed form. Another contact, called semi-
closed, found exclusively in the orthorhombic crystal has a very small interfacial area and only two residues 
were found to contribute to stabilizing contact formation. The asterix marks monomers of a crystallographic 
neighbor. 
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2.2.6.3. Co-Crystallization of RseB with Detergent 

he large domain of RseB is structurally similar to proteins which are capable of binding 

Figure 24. RseB crystallized with dodecyl maltoside (DDM). (A) Part of the electron density from RseB 
co-crystallized with DDM with monomer A and B drawn as yellow and orange sticks. (B) Illustration of two 

 

his crystal, termed crystal form III, had an architecture as crystal form II and no obvious 

 property to accommodate 

 

T

lipophilic compounds. With respect of this functional background of homologous proteins, 

crystals with bound lipids or detergents were tried to obtain. One crystal, grown in 0.1 M 

Tris-HCl pH 8, 0.2 M magnesium chloride, 25% (w/v) polyethylene glycol 3350 and 0.5% 

dodecyl maltoside (DDM), was of orthorhombic space group C2221 (a = 98.3 Å, b = 207.6 Å, 

c = 110.4 Å and α = 90°) and diffracted to 2.75 Å. It was solved by molecular replacement 

with the model of crystal form II. The structure was refined until the quality of the model 

allowed to trace additional density. 

 

A B CA B C

 

assymtetric units, containing each three monomers of RseB (colored in green, blue and red). (C) Closed dimer 
of crystal form III shows the embedment of two molecules of DDM and one glycerol in its interface. In (B) and 
(C) DDM is colored in cyan and yellow, whereas glycerol is depicted in orange. 

 

T

conformational variations were observed. However, as shown in Figure 24, additional 

density, which evolves from two molecules of DDM in the asymmetric unit, were detected. 

Surprisingly, these hydrophobic compounds were not located in the unclosed barrel of the 

large domains, but between the interfaces of the close contacts. 

This indicates that the close dimeric assembly might have the

hydrophobic compounds in between the small domains. 
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2.3. Biochemical Analysis of RseB 

 

A set of experiments were performed to explore the precise function of RseB. Four main 

questions were posed: (1) which oligomeric states exist in solution; (2) which is/are the 

biological relevant oligomer(s) that interact with RseA; (3) do observed contacts play a role 

in oligomerization and (4) what is the function of the small and the large domain of RseB? 

 

 

2.3.1. Oligomeric State of RseB in Solution 

 

Previous reports described RseB to behave as a monomeric protein (Missiakas et al., 1997). 

To test the oligomeric state of RseB used for crystallization, a sample of purified RseB was 

analyzed by size exclusion chromatography. 
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Figure 25. Size exclusion chromatography and chemical cross-linking of R
the size exclusion experiment with corresponding fractions analyzed by SDS-PA
corresponds to the sample loaded onto the column. RseB elutes in two peaks (Pea
ml) of apparent molecular weights of ~220 kDa and 65 kDa, respectively. (B)
analyzed by SDS-PAGE together with non cross-linked sample (S) for comparison. 
formation of an additional faster migrating band due to intramolecular cross-link. 
dimers (1), trimers (2), tetramers (3) and pentamers (4) were observed. The molec
standard (M) are indicated. 

 

 

Figure 25A illustrates the elution profile of RseB and shows that 

peaks. The presence of two peaks implies that RseB can exist in

forms. With the use of molecular weight standards the apparent m
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oligomers were determined. The peak at lower elution volumes (peak I) corresponds to an 

apparent molecular weight of approximately ~220 kDa. Peak II has an apparent molecular 

weight of 65 kDa. With a molecular weight of 34 kDa, peak I is likely to include RseB in a 

hexameric or larger oligomeric assemblies (6 x 34 = 204), whereas peak II is formed of 

dimeric specimen of RseB (2 x 34 = 68). Thus, RseB is unlikely to be a monomeric protein, 

but rather exists as a dimer and in higher oligomeric assemblies. 

To further characterize the oligomeric properties, cross-linking experiments using 

 an additional faster-migrating band, possibly due to intramolecular 

imers in solution and has the potential to self 

glutaraldehyde were performed. Glutaraldehyde is a bifunctional agent that is commonly 

used for cross-linking proteins and for tissue fixation. The reaction is based on the formation 

of Schiff bases and results in inter- and intramolecular cross-links of proteins. Mainly free 

amino groups especially that of lysines (Bowes and Cater, 1968), but also tyrosines and 

histidines have been shown to react with glutaraldehyde (Habeeb and Hiramoto, 1968). For 

comparison, samples of cross-linked and non-cross-linked RseB were analyzed by SDS-Page, 

as shown in Figure 25B. 

Cross-linked RseB runs as

cross-linking of the small (RseB-D2) and the large domain (RseB-D1). The oligomeric forms 

observed correspond to a dimer (68 kDa), trimer (102 kDa), tetramer (136 kDa) and 

pentamer (170 kDa). The dimer is the most prominent oligomer. Interestingly no hexameric 

or octameric specimen could be detected. 

These results indicate that RseB forms d

associate into higher oligomeric structures. 
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2.3.1.1. Analytical Ultracentrifugation of RseB 
 

 
 

Figure 26. Sedimentation coefficient distribution of RseB. Illustration of sedimentation coefficient 
distribution of analytical centrifugation experiments with RseB concentrations of 2.6 µM (top), 9.6 µM (middle) 
and 26.6 µM (bottom). In all concentrations, oligomers with S-values of ~4.7 S and 8.6 S were found. 
Formation of oligomer with higher S-values is dependent on the protein concentration. 
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Analytical ultracentrifugation (AUC) was performed to analyze the oligomeric behaviour of 

RseB in more detail. Initial sedimentation velocity experiments with RseB showed that the 

RseB solution is heterogenic. This heterogeneity was due to the presence of two different 

oligomeric states of RseB with sedimentation coefficients of approximately 4.7 S and 8.6 S.  

The formation of two discrete peaks in sedimentation velocity experiments suggests that the 

interconversion to the two oligomeric species is not changing rapidly.  

In all tested concentrations of RseB two oligomeric types were existent. However, when 

comparing the sedimentation coefficient distributions from different concentrations varying 
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ratios of the oligomeric forms were observed (Figure 26). At low concentration 

predominantly smaller oligomers was present, whereas at the highest protein concentration 

assemblies with higher sedimentation coefficient were prevalent. This suggests that the 

formation of larger oligomer is favoured at enhanced protein concentration.  

At a concentration of 9.6 µM RseB, almost equal amounts of the two oligomeric forms were 

present, indicating that the KD for an equilibrium mixture of the smaller oligomer and higher 

oligomer is at similar concentrations. The peak with 4.7 S is likely to include the dimeric 

specimen. The oligomer with higher sedimentation coefficient was not analyzed for molecular 

weight estimations yet. To sum up in line with size exclusion experiments, RseB seems to 

exist as a dimer in solution and higher multimerization occurs at elevated concentrations. 

 

 

2.3.1.2. Small Angle X-ray Scattering (SAXS) of RseB 
 
 
 
 
 
 A A B

7
P(r)
 
Figure 27. SAXS analysis of RseB. Small angle X-ray 
oligomeric states in a solution of RseB at a concentration 
of experimental data (black) and calculated pattern of diffe
lattice. The curve of the best fit is given in red. (B) Electr
and calculated for different oligomeric forms. SAXS data su
of dimeric, hexameric and octameric assemblies. 
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oligomeric species wasn’t successful. The best fit was achieved with a mixture of 0.6% open 

dimer, 38% octamer and 56% hexamer. This indicates that most of RseB at a concentration 

of 5 mg/ml is assembled to large oligomers of hexameric and octameric nature. 

 

Similar results were obtained by the electron pair distribution plots of RseB. The resulting 

p(r) function, illustrated in Figure 27B, indicates that RseB in solution has a maximum 

diameter of 145 Å.  

The theoretical calculated curves from pdb files of an open and a closed dimeric assembly 

revealed to be very similar to each other but different from the experimental curve. Both 

have a calculated single peak at 35 Å and a maximal diameter of only 100 Å; hence, being 

about one third too small. This suggests that the dimer is not the prominent oligomeric form 

of RseB in solution under these conditions. 

The maximal diameter of the octameric ring (150 Å) is similar to the observed maximal 

diameter (145 Å). This indicates that the octameric assembly observed in the tetragonal 

crystal lattice is likely to occur also in solution under the tested protein concentration. 

However, when comparing the curve progression of the experimental data and the 

theoretical data for octameric species, differences were observed. 

The hexamer has a maximal diameter of 125 Å. As the plot derived from hexameric model 

shows most similarity in overall curvature, it is likely that a mixture of hexameric and 

octameric assemblies of RseB is present in solution. Moreover, as the experimental curve has 

a peak similar to the calculated functions of the dimer models it is to suggest that at least 

some dimeric specimen had been present in the sample. 

 

In sum, these experiments indicate that (1) the octameric ring is likely to occur in solution as 

its calculated curve and the experimental curve have similar maximal diameter, (2) the 

hexamer is a predominant assembly in solution and (3) a rather small portion of dimers exist 

in solution in the tested condition (5 mg/ml).  
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2.3.1.3. Electron Microscopy of RseB 
 
 

 
Figure 28. Negatively stained electron micrographs of RseB. (A) Electron micrographs, showing fields 
of negatively stained molecules of RseB. Large oligomeric assemblies with ring-like structures are visualized. 
Part of (A) indicated by a square is enlarged in (B). A scale bar is given in (B).  

 

 

20 nm

A B

20 nm

A B

As there were indications from AUC, SAXS and gel filtration experiments for the existence of 

higher oligomeric states of RseB in solution, it is to be asked whether observed hexameric or 

octameric assemblies could be visualized in electron micrographs. For this, fractions from 

peak I of gel filtration studies (Chapter 2.3.1.) were analyzed by electron microscopy 

methods. 

Pictures obtained from negatively stained electron micrographs show the presence of ring-

like structures (Figure 28A and B). The approximate size of observed particles was estimated 

to vary between 126 and 146 Å with pore dimensions of 30 to 40 Å. This implies that RseB is 

able to form high oligomeric assemblies similar to those that were observed in the crystal 

lattice and were predicted by size-sensitive methods. Whether these observed rings are 

octameric or hexameric assemblies or both is not clear to date. 
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2.3.2. Interaction of RseB and RseA-PP 

 

Previous findings from literature report on a direct interaction of RseB and the periplasmic 

domain of the anti-sigma factor RseA (De Las Penas et al., 1997b; Missiakas et al., 1997). In 

order to elucidate more clearly the binding behavior of RseA and RseB, the periplasmic 

domain of the monotopic transmembrane anti-sigma factor (RseA-PP) was cloned, expressed 

and purified and a peptide was synthesized including a region of RseA of predicted helical 

structure.  

 

 

2.3.2.1. Cloning, Purification and Biochemical Analysis of RseA-PP 
 
 

DegSSspB RseP Poly-QA BDegSSspB RseP Poly-QA BB A 
Figure 29. Features of the anti-sigma factor RseA and cloning and purification o
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cleavage site was included in cloning (green). The red bar indicates the region that was
synthesis. (B) Purified periplasmic domain of RseA (RseA-PP) is loaded in lane A, ma
standard in lane M. 
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numerous important features (Figure 29A). The N-terminal cytoplasmic 

interaction site of σE as well as a binding site for SspB that is required fo

ClpXP protease (Campbell et al., 2003; Flynn et al., 2004; Levchenko

cleaves RseA within the membrane spanning helix, whereas DegS c

periplasmic domain (Ades et al., 1999; Alba et al., 2002; Alba et al.,

2003). Besides the cleavage site of DegS, this domain also contains

stretches that are believed to be important for a regulated degradation. 
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As RseB is known to bind the periplasmic domain of RseA, the periplasmic part of RseA 

(RseA-PP: residues 124-216, Figure 29 A and B) was cloned, expressed and purified as 

described in Materials and Methods. 
 
 

A OD280 [AU]OD280 [AU]A BA 
0

0.1

0.2

0.3

0.4

1 1.2 1.4 1.6 1.8 2

RseA-PP (16 kDa)

L 8     9    10    11    12   13    14    15

Elutionvolume [ml]

0

0.1

0.2

0.3

0.4

1 1.2 1.4 1.6 1.8 2

RseA-PP (16 kDa)

L 8     9    10    11    12   13    14    15

Elutionvolume [ml]

 
 

Figure 30. Size exclusion chromatography and chemical cross-linking of R
of the size exclusion experiment of RseA-PP (peak 1.66 ml) with corresponding frac
is shown in (A). L corresponds to the load used for this experiment. (B) Cross-link
by SDS-PAGE together with non-cross-linked sample (S). RseA-PP is not able to pro
The molecular weights of the protein standard (M) are indicated. 

 

 

Size exclusion experiments were performed for initial charact
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tryptophans, the absorption properties are rather low. 
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that RseA-PP behaves as a monomeric protein. 
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2.3.2.2. Direct Interaction of Dimeric RseB and RseA-PP 
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To further investigate the interaction of RseB and RseA-PP, both proteins were subjected to 

size exclusion chromatography. The elution profile of both proteins was analyzed before (see 

also Figures 25A and 30A). As depicted in Figure 31C, application of both proteins yielded 

co-elution of RseA-PP in Peak II of RseB but not in peak I, suggesting that RseA-PP only 

interacts with dimeric RseB. Additionally, peak II was shifted to lower elution volumes in the 

presence of RseA-PP. This indicates that all dimeric RseB is complexed with RseA-PP which 

suggests a strong binding between the two proteins.  

 

These findings were further supported by cross-linking studies. When cross-linking both 

proteins, four additional bands were observed that correspond to complexes of RseB and 

RseA-PP (Figure 31B, lane 5). The two prominent bands correspond to RseB monomer/RseA-

PP monomer (Figure 31B, lane 5, band 1) and RseB dimer/RseA-PP dimer interaction (Figure 

31B, lane 5, band 4), indicating an interaction of the proteins in a 1:1 stoichiometry. 

Interestingly, all RseB-only cross-links (Figure 31B, lane 2) were missing in the presence of 

RseA-PP. 
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2.3.2.3. RseB Binds RseA162-186 
 
 

 
Figure 32. Synthetic RseA peptide. The protein sequence of the periplasmic domain of RseA of E. coli is 
shown in the first row, including N- and C-terminal residue numbers. RseA from Haemophilus influenzae has 
40% homology and was chosen as a representative for evaluating the conserved residues that are colored in 
red. The result of secondary structure prediction (PredictProtein, Rost et al., 2004) is shown below with 
predicted sheet regions (E) and helical regions (H). As the periplasmic domain of RseA harbours relatively few 
structured regions, the only long stretch with predicted secondary structure is suggested to bind RseB. Residues 
162 to 186 were therefore chosen for generation of a synthetic peptide which was used for binding studies with 
RseB. The distribution of acidic (red) and basic (blue) amino acids is indicated. 

 

 

SQQPETPVFNTLPM VSLG PSEATANNGQQ QVQ RRINAMLQDYELQRRLHSEQLQFE
SNLPETPVLQTLPF VSYN PSKDTLTS--- QLE RRIGAMLQNYELQRRMHSDAL---

EQ DYELQ

To locate the interaction site of RseB on RseA, the periplasmic part of the anti-sigma factor 

was examined with secondary structure prediction tools. As shown in Figure 32, just a few 

stretches of the periplasmic domain of RseA were predicted to be structured. 

One of these comprises the cleavage site of DegS which is located between Ser151 and 

Leu152. Besides this, a region of highly conserved residues (162-186) was observed, which 

is predicted to form a long helix. Moreover, this stretch includes one of the poly-Gln regions 

which are suggested to be important for regulated degradation of RseA. As this helix is 

speculated to be the interaction site for RseB, a peptide was synthesized, comprising 

residues 162-186 (RseA162-186), and was used to test for a specific binding to RseB. 

 

rsea_ecoli  SET MGKASP V Q EQR QAQTQQAAVQVPGIQTLGTQSQ
rsea_haein  NDA NNAVQE A D KKS ----------------------
PROF_sec              EEE          EE             HHHHHHHHHHHHHHHHHHHHHHHH                EE 

QQQQVQ RRRINAMLQ RRL

216124

162 186

rsea_ecoli  SET MGKASP V Q EQR QAQTQQAAVQVPGIQTLGTQSQ
rsea_haein  NDA NNAVQE A D KKS ----------------------
PROF_sec              EEE          EE             HHHHHHHHHHHHHHHHHHHHHHHH                EE 

QQQQVQ RRRINAMLQ RRL

SQQPETPVFNTLPM VSLG PSEATANNGQQ QVQ RRINAMLQDYELQRRLHSEQLQFE
SNLPETPVLQTLPF VSYN PSKDTLTS--- QLE RRIGAMLQNYELQRRMHSDAL---

EQ DYELQ

216124

162 186
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Figure 33. Binding of RseA162-186 to RseB. The peptide RseA162-186 was tested for specific interaction to 
RseB. For this, RseA162-186 was applied to a Ni-chelating column with (B) or without (A) His-tagged RseB. The 
eluate was analyzed by HPLC/ESI-MS to verify the existence of the peptide. (C) The peptide mass (3277.7 Da) 
could only be detected by mass analysis when RseB was present which indicates that RseB was able to fish 
RseA162-186.  

 

 

RseA162-186 was found to specifically bind to a Ni-NTA column only in the presence of C-

terminally His-tagged RseB. The elution of the peptide was confirmed by HPLC/ESI-MS 

analysis, as illustrated in Figure 33. This indicates that RseA162-186 is sufficient for interaction 

to RseB and that the long helix of RseA is likely to be the interaction site for RseB. 
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2.3.3. Biochemical Properties of the Large and Small  

  Domains of RseB 

 

The structure of RseB presented above revealed that the protein consists of two domains D1 

and D2. These two domains were cloned, expressed and purified separately for biochemical 

analysis (see Materials and Methods). Both domains were analyzed by size exclusion 

techniques and cross-linking experiments for investigation of their oligomeric behaviour. 

Furthermore, the experiments were repeated in the presence of RseA-PP to identify the 

domain(s) interacting with the anti-sigma factor RseA. 

 

 

2.3.3.1. Cloning and Purification of the Large and Small Domain of RseB 

 

A 231 318231 318
Figure 34. RseB small (RseB-D2) and large domain (RseB-D1) constructs and purification. (A) 
Schematic representation of the large (residues 23-209, red) and the small domain (residues 212-318, green) of 
RseB in comparison to full length RseB. Additional sequences like the His-tag (blue) and a thrombin cleavage 
site (green) are indicated. (B) Last step of purification of RseB-D1 and RseB-D2. Sample containing the protein 
of interest was loaded (L) on an anion exchange chromatographic column. Both proteins appeared in the flow 
through (FT) with high purity. Molecular weights are indicated (M). Structures of the large (red) and the small 
(green) domains are illustrated. 
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For designing the fragments suitable for expression of the large and the small domains, the 

structure of full length RseB was analyzed to define optimal domain boarders. The large and 

the small domains are connected by a flexible long loop. To obtain the domains separately, 

the flexible loop was omitted for enhanced stability of the domains. The large domain 

includes residues 23 to 209, whereas residues 212 to 318 were chosen for the small domain 

(Figure 34A). The appropriate fragments were cloned, expressed and purified as described in 

Materials and Methods (Figure 34B). 

 

 

2.3.3.2. Large Domain of RseB Forms Multiple Oligomers 
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Although RseA-PP and RseB-D1 was found to cross-link in faintly visible bands (Figure 35B, 

lane 3), size exclusion experiments revealed no specific interaction of RseA-PP and RseB-D1 

(Figure 35A, bottom). Only a small portion of RseA-PP was shifted to very low elution 

volumes, but most RseA-PP remained to elute as a monomeric specimen. These results 

suggest that RseA-PP and RseB-D1 do not interact specifically. 

 

 

2.3.3.3. Small Domain of RseB Interacts with RseA-PP 
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  Discussion 

3. Discussion 
 

3.1. RseB Binding Site on RseA 

 

RseB interaction with RseA is reported to exert an inhibitory effect on RseP cleavage 

efficiency and thus negatively regulates the σE activity. Two models are proposed for this 

inhibition: (1) RseB sterically restricts RseP from cleaving RseA; (2) RseB has a stabilizing 

effect on RseA. Both models refer to the fact that RseB interacts with the periplasmic domain 

of RseA. 
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Figure 37. RseB binding site on RseA. Results obtained from binding studies of RseB and a synthetic 
peptide of RseA revealed that residues 162-186 comprise the putative binding site for RseB (upper red bar). 
Comparing these results with recently published data (Cezairliyan and Sauer, 2007; Kim et al., 2007) the 
minimal RseB binding region is suggested to be a predicted helix spanning residues 169-185 (bottom red bar). 
Sequence details of RseB binding site is given below, with acidic and basic residues shown in blue and red, 
respectively and with the putative minimal binding site in bold. 

 

 

Results described in Chapter 2.3.2. confirm the interaction of the periplasmic part of RseA to 

RseB, as reported in literature (De Las Penas et al., 1997b; Missiakas et al., 1997). 

Secondary structure predictions revealed that most of the periplasmic part of RseA is not 

well structured (see Chapter 2.3.2.3.). One of the few structured regions was chosen for 

peptide synthesis (residues 162-186). The binding of RseA162-186 to RseB could encircle the 

interaction site on RseA. This part of RseA, constituted by several highly conserved charged 

residues (Glu168, Arg170, Arg171, Arg172, Glu181 and Arg185) is likely to form a long helix. 

Dynamic interaction between RseB and RseA could occur through the formation of charged 

interfaces as reported for protein-protein interactions (Cherfils et al., 1991; Novotny and 

Sharp, 1992; Warshel and Russel, 1984; Xu et al., 1997).  
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During the preparation of this thesis two publications on RseB were released that both are in 

accordance with these results. In one contribution, residues 160 to 189 of RseA were found 

to be sufficient for binding to RseB (Cezairliyan and Sauer, 2007), in the other a fragment of 

residues 169 to 186 with Arg172 and Arg185 as the key residues were stated to promote 

binding to RseB (Kim et al., 2007). Both results are consistent with observed data and 

suggest that the region 169 to 185 of RseA, forming a putative helix, comprises the minimal 

interaction site for RseB. 

 

 

3.2. RseA Binding Site on the small domain of RseB 

 

X-ray structural analysis revealed that RseB is a two-domain protein (see Chapter 2.2.1.). 

Experiments analyzing individual domains for RseA interaction indicate that only the small 

domain (RseB-D2) specifically interacts with the periplasmic part of RseA (see Chapters 

2.3.3.2. and 2.3.3.3.) and propose that binding to RseA is a function of the small domain of 

RseB. This suggestion is in full agreement with unpublished results of C. Gross, stated in a 

recent paper (Kim et al., 2007), where residues 245 to 250 of the small domain of RseB are 

believed to mediate interaction to RseA. By analysis of conserved patches on the surface of 

RseB (see Chapter 2.2.5.), two putative interaction sites (patch 3 and 4) were identified on 

the small domain (Figure 38 and also Figure 19).  
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Analysis of the position of residues 245 to 250 in the structure, revealed that this area is 

mostly surface exposed and in close proximity to patch 4. Patch 4 is constituted of six highly 

conserved residues including two charged amino acids (Trp222, Arg238, Glu250, Val265, 

Ile294 and Phe214) and is located on the top of the small domain forming a small groove for 

putative binding of the RseA helix (RseA169-185). Binding of RseA to this region of RseB would 

be consistent with the suggestion that the RseA-RseB interaction is governed mainly by ionic 

interactions as discussed in Chapter 3.1. 

 

 

3.3. Function of the Large Domain of RseB 

 

Crystallographic studies demonstrate that the large domain of RseB (RseB-D1) is structurally 

remarkably similar to lipid binding proteins (see Chapter 2.2.3.2.). Two structural 

homologues were shown to be LolA and LolB. Both proteins are involved in the targeting 

process of outer membrane lipoproteins and are as RseB located in the periplasm of E. coli. 

Lipoprotein precursors are translocated by the Sec apparatus across the inner membrane 

(Sugai and Wu, 1992), where the attachment of the lipid moiety takes place (Sankaran and 

Wu, 1994). Lipoproteins, destined for the outer membrane, cross the periplasm in complex 

with LolA which is thought to protect the lipophilic part of the lipoprotein from the aqueous 

medium. LolB, a lipoprotein by itself, accepts and anchors the delivered lipoprotein into the 

outer membrane (Narita et al., 2004; Tokuda and Matsuyama, 2004). 

Another structural homologue turned out to be LppX from Mycobacterium tuberculosis. LppX 

has a role in transporting a for this species specific lipid, phthiocerol dimycocerosate (DIM), 

which is important for bacterial virulence and assumed to influence the cell envelope 

permeability (Camacho et al., 2001; Daffe and Laneelle, 1988). 

 

All structural homologs share a deep hydrophobic pocket that is formed by an unclosed 

barrel. For investigating the degree of similarity and as such the possibility for RseB-D1 to 

adopt similar functions, the unclosed barrels of all four proteins were examined in more 

detail. 
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Due to the high structural similarity of RseB-D1 and LolA, the most likely function of the 

large domain of RseB might be the binding of lipoproteins.  

To deduce the property of RseB-D1 to accommodate lipophilic compounds, hydrophobic 

residues of the unclosed barrel were analyzed for their degree of conservation (Figure 40A). 

Within RseB homologs, seven aromatic residues are conserved, five of which were invariant 

in the sequence alignment (Tyr43, Tyr60, Tyr92, Tyr126 and Tyr156), and two of which 

were exchanged by other aromatic residues (Phe47 and Phe183) (for alignment see Figure 

13C). Eleven additional aliphatic residues surrounding the barrel show conservation as well, 

but to a minor extent compared to the aromatic residues. Hydrophobic residues of the N-

terminal helix are also well conserved and form the bottom of the putative binding site of a 

lipophilic ligand. This accumulation of highly conserved residues inside the RseB cavity 

supports a possible function of RseB-D1 in binding lipophilic compounds. 
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Phe119, Tyr156 and Tyr126 in RseB respectively, Figure 40B). Mutation of two residues 

resulted in an enhanced periplasmic accumulation of LolA-lipoprotein complexes, either by 

increased affinity for lipoproteins or by impaired transfer to LolB (Watanabe et al., 2006). 

Thus, these residues seem to be directly involved in lipoprotein binding. Structural similarities 

are also observed for the N-terminal helix and the internal loop. (1) Three hydrophobic 

residues of α1 facing the hydrophobic cavity match positions in LolA (Leu6, Leu10 and Val13 

in LolA to Leu31, Met34 and Leu41 in RseB). (2) A proline of the internal loop in RseB 

(Pro112) is equally positioned in LolA (Pro89) (as well in LolB (Pro110) (Figure 41)). This 

loop, filling the unclosed barrel, was proposed to function as a lid for LolA and LolB opening 

and closing the binding site for lipophilic compounds. A similar function could be envisioned 

for the internal loop of RseB (lid RseB: Gly104-Asp118). Observed high B-factor values in this 

part of the protein are consistent with this hypothesis as they indicate flexibility as expected 

from a lid (see Chapter 2.2.2. and Figure 14C).  
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To sum up, it seems that the large domain adopts similar properties as LolA. Thus, it is to 

assume that the large domain is able to bind lipophilic tails of lipoproteins. The putative 

binding site is highly conserved in the hydrophobic cavity as well as on the surface, which 

could provide an entry site for a lipoprotein (patch 2, see Chapter 2.2.5.).  

 

 

3.3.1. Lipoproteins as Signals for RseB? 

 

In the classical periplasmic stress response scenario, initiation of the signal cascade is 

dependent on DegS to act as a site-1 protease after being activated by unfolded OMPs. 

When DegS cleaves the C-terminal part of RseA (including bound RseB), RseP is enabled to 

function as a site-2 protease. Previous reports proposed that besides DegS, also RseB acts as 

a sensor for periplasmic stress. RseB is believed to either stabilize RseA or inhibit RseP by 

binding to RseA. In literature, it is speculated that RseB might be titrated away by an 

unknown signal, which results in direct RseP activation.  

The fold of the large domain as an unclosed barrel suggests binding of lipophilic compounds. 

From our structural data, lipophilic compounds like lipids or LPS can thus not be excluded 

from being bound by RseB. However, structural comparisons of RseB, LolA and LolB suggest 

that RseB should be able to bind lipoproteins.  

Lipoproteins are periplasmic proteins that have three acyl chains covalently attached to their 

N-terminal cysteine (Sankaran and Wu, 1994). By this, they can either be inserted in the 

inner or the outer membrane. Outer membrane lipoproteins that have to cross the periplasm 

are loaded onto LolA by the ABC transporter LolCDE located in the inner membrane (Narita 

et al., 2002; Yakushi et al., 2000). Complexed by LolA, ensures shielding of the lipoproteins’ 

acyl chains from the aqueous surrounding. LolA delivers the lipoprotein to LolB that is 

involved in the insertion process of the lipoproteins into the outer membrane (Matsuyama et 

al., 1997; Taniguchi et al., 2005).  

In a stressful situation, the envelope suffers from the unfavorable environment. This can 

affect the membrane integrity and can cause any protein to aggregate and to turn 

nonfunctional. If periplasmic stress affects a part of the lipoprotein targeting mechanism, the 

pathway might be ineffective or disabled. This or damaged membrane integrity could result 

in accumulation of mistargeted outer membrane lipoproteins to the inner membrane or the 

periplasmic space.  
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Lpp, also known as the Braun’s lipoprotein, with approximately 7.5 x 105 per cell is one of 

the most abundant proteins of E. coli (Braun et al., 1970; Inouye et al., 1972). It is essential 

for fixation of the mureinsacculus to the outer membrane by a covalent linkage which 

confers enhanced rigidity to the bacterial cell wall (Braun and Rehn, 1969; Yakushi et al., 

1997). A mislocation to the inner membrane was reported to be lethal for the cell as the 

murein sacculus was shown to be covalently misattached to the inner membrane (Yakushi et 

al., 1997). Therefore, the periplasmic stress response would gain functionality when besides 

being sensitive for misfolded OMPs (via DegS as a sensor), mislocation of the most abundant 

lipoprotein could be sensed as well (via RseB as a sensor). As OMPs do, also mislocalized 

lipoproteins could indicate the existence of stress in the envelope. 

 

 

Figure 42. Expression profile of σE regulated genes. σE regulated genes identified in comparing rpoE 
overexpressed versus wild-type transcription. Red denotes induced; green denotes repressed genes. Only eight 
genes were shown to be repressed by σE, including the gene coding for the most abundant lipoprotein Lpp, 
marked by a green arrow (illustration modified from Rhodius et al., 2006). 
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Recently, the expression profile of members of the σE regulon was analyzed and 100 genes 

were reported to be regulated by σE (Rhodius et al., 2006). Whereas the transcription of all 

genes belonging to this regulon was found to be induced by σE, only eight genes were found 

to be repressed (Figure 42). These eight genes include tsx and four omp genes that encode 

the most prominent β-barrel proteins of the outer membrane, as well as lpp encoding the 

most abundant lipoprotein in E. coli. One protein family (OMPs) acts as an activation signal 

for DegS when not properly folded. Thus, down-regulation of omp genes prevents from 

further accumulation of unassembled OMPs (Johansen et al., 2006; Rhodius et al., 2006). 

The transcription of lpp might be down-regulated for similar reasons. Under stressful 

conditions, Lpp is presumably not properly inserted into the outer membrane and 

accumulates in the periplasm and thereby could be sensed by RseB. Mislocalization of Lpp 

could be a result of damaged membrane integrity or of defective targeting via LolB and LolA. 

In contrast to small lipophilic compounds, lipoproteins should not be able to form a micellar-

like state if unassembled and should expose their lipophilic tails to the environment. 

Moreover, six liproteins (YfiO, NlpB, YraP, YgfL, YeaY and YfeY) are part of the σE regulon 

and upregulated when σE is activated upon stress (Onufryk et al., 2005). Three of them 

(YfiO, NlpB and YfgL) are involved in the assembly of OMPs and therefore required for 

restoring the outer membrane integrity (Malinverni et al., 2006). As under stressful situations 

these six lipoproteins seem to be needed, the shutdown of Lpp enables the Lol proteins to 

focus on the targeting of the lipoproteins demanded. 

 

 

3.3.2. Model for RseB Binding to RseA and Lipoprotein 

 

The structure of RseB revealed that the interface of the large and the small domain is 

composed of highly conserved residues. Most striking is a loop (β14-β15) from the small 

domain that consists of four invariant residues (see Chapter 2.2.4.). To draw conclusions 

about the function of this loop, the interface was inspected in detail. The loop is in very close 

proximity to the internal loop (lid) of the large domain. In fact, an interaction was observed 

between Thr117, located on the lid of RseB-D1 and the highly conserved loop of RseB-D2. It 

seems as this loop is positioned to push the lid (with α2 and α3) into the unclosed barrel, 

occupying the potential binding site (Figure 43). Arg43, essential for fixing the lid in LolA 

(Taniguchi et al., 2005), is conserved in RseB (Arg64, located in RseB-D1); however, not 
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involved in crucial contacts. It can be deduced that lid fixation in RseB is rather mediated by 

the invariant loop of RseB-D2 than by Arg64. 
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Besides well documented cis-trans isomerization of prolines (Dugave and Demange, 2003) as 

rate-limiting steps during protein folding (Brandts et al., 1975), other functions are assigned 

to prolines residues as well. For example, the neurotransmitter-gated ion channel (5-HT3) is 

suggested to open its pore upon ligand binding by a cis-trans isomerization of a highly 

conserved proline, which links ligand binding on one domain to conformational 

rearrangements in the other domain (Lummis, 2005).  

Structural data of RseB suggest that only a minimal rearrangement of the lid releases steric 

restriction from the putative binding site of a lipophilic compound. A key residue in such a 

conformational change might be the proline, acting as a hinge to open and close the lid. 

Binding of a ligand to RseB-D1 could thus cause a structural rearrangement of the lid which 

is subsequently transduced to RseB-D2 by the invariant loop. This could in turn trigger a 

structural change in RseB-D2 which releases interaction of RseA and RseB-D2. This would be 

in accordance with the proposed function of RseB, which is the withdrawal from RseA by 

stress signals. 

These findings lead to a hypothetic model of RseB sensing function, abstracted in Figure 44A 

and B. 
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3.4. Oligomeric Forms of RseB 

 

In biochemical experiments including size exclusion chromatography, cross-linking, analytical 

ultracentrifugation (AUC) and small angle X-ray scattering (SAXS), RseB was determined to 

exist in different oligomeric forms. In gel filtration experiments RseB eluted in two separated 

peaks with apparent molecular weights of 65 and ~220 kDa (Chapter 2.3.1.). AUC data 

similarly revealed the co-existence of RseB dimer and higher oligomer. This equilibrium was 

shown to be dependent on the concentration of the protein (Chapter 2.3.1.1.). In SAXS 

experiments the experimental curve of RseB solution revealed to be different from 

theoretical electron pair distributions of oligomers found in the crystal (Chapter 2.3.1.2.). 

Preliminary fitting of the functions suggests that RseB in solution contains a mixture of 

different oligomeric forms, including dimeric, hexameric and octameric assemblies. In the 

crystal lattice hexameric and octameric rings were observed that can be constituted by three 

different forms of interfaces (Chapter 2.2.6.). Furthermore electron micrographs clearly 

visualized the existence of ring-like assemblies similar to those observed in the crystal 

lattices (Chapter 2.3.1.3.).  

 

To sum up, in contrast to previous reports that suggested RseB to be monomeric (Missiakas 

et al., 1997), none of our experiments revealed RseB to be monomeric. It is rather to 

suggest that RseB is able to exist in dimeric and higher oligomeric assemblies.  

 

 

3.4.1. Possible Role of the RseB Dimers 

 

Data presented above demonstrated the existence of RseB dimers in solution. Furthermore, 

binding studies with the periplasmic domain of RseA revealed that the dimeric form of RseB, 

but not the higher oligomeric forms, interacts with RseA (Chapter 2.3.2.2.). This agrees with 

data, published recently (Cezairliyan and Sauer, 2007). Thus, dimeric RseB seems to be the 

active form binding the anti-sigma factor, which raises the question how such a dimeric 

assembly of RseB capable to bind RseA could look like. Three dimeric interfaces (close, open, 

semi-close; Chapter 2.2.6.2.) were found in the structure.  
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Open Dimer Semi-close Dimer Close Dimer

Stable in free form +

Interaction to RseA + 

+

+ -

-

-

Open Dimer Semi-close Dimer Close Dimer

Stable in free form +

Interaction to RseA + 

+

+ -

-

-
 

Figure 45. Overview of possible dimeric assemblies of RseB. Three dimeric assemblies of RseB were 
observed in the crystal lattice. The open and the close dimer are assumed to be stable in free form, whereas a 
dimer assembled by the semi-closed contact is very unlikely to exist in free form. The putative RseA-binding 
region is marked by a yellow circle. In the close dimer the RseA-binding region is not accessible, whereas it is 
accessible in the open and the semi-close dimer. Conclusions from cross-linking experiments suggest that the 
semi-close contact could be stabilized upon RseA-binding. The close dimer is able to enclose two detergent 
molecules. 

 

 

The open contact is the only dimer that can be used to construct both crystal lattices. This 

dimeric assembly is stabilized by a conserved interface of medium size and involves mainly 

the same residues in both crystal lattice forms. It is mediated only by residues from the large 

domain. In gel filtration and cross-linking analysis of isolated large domains this domain was 

shown to build up multiple oligomers (Chapter 2.3.3.2.). This suggested that the open dimer 

has the propensity to exist in solution.  

To elucidate the ability of the open dimer to interact with RseA, structural and biochemical 

data were evaluated. Cross-linking experiments revealed that RseB-only dimers were totally 

missing in the presence of RseA (see Chapter 2.3.2.2.). If the open dimer would be the 

dimer to interact with RseA, at least some cross-linked RseB dimers should have been 

formed in this experiment. Furthermore, cross-linked products were observed with molecular 

weights corresponding to one RseB in complex with two RseA. If RseA binds to the top 

portion of the small domain of RseB (as concluded in Chapter 3.2) it is not possible to form a 

specific cross-link with these stoichiometries. This suggests that although the open dimer 

should be stable in solution and even when it is the most abundant dimer found in the 

crystals, it is unlikely that it represents the RseA interacting conformation (Figure 45). 

 

The semi-closed contact is only present in one crystal form and totally missing in the other. 

The interface is of very small size and only stabilized by 4 hydrogen bonds. These 

observations imply that the semi-closed dimer is not favored in solution.  

However, this dimer could gain stability when bound to RseA. Indeed, the Kim group 

postulates that the RseA-helix is bound in a groove formed between the small domain of one 
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RseB and the large domain of the other RseB in the semi-closed dimer (Figure 45) (Kim et 

al., 2007). These clefts seem to be large enough to each accommodate one helix of 16 Å 

widths representing the conserved RseA helix. This arrangement would be consistent with 

cross-linking studies (Chapter 2.3.2.2.). Here, the interaction between the RseB dimer is very 

small which probably didn’t result in formation of cross-linked products. Furthermore, cross-

links of RseB/2 RseA as well as 2 RseB/RseA are possible. 

Nevertheless, such an interaction would only be in accordance with biochemical results, if 

the interaction to RseA is mainly stabilized by the small domain of RseB as only the small 

ntact which is mediated mainly 

y residues of the small domain and some residues of the large domain. It was shown to be 

 molecules like dodecyl maltoside (crystal form III, C2221, see Chapter 2.2.6.3.). 

 residues (patch 3, 

 

domain was observed to directly interact with RseA. Additionally it has to be mentioned, that 

the interface of the semi-closed dimer is not well conserved. 

 

The third interface observed in the structure is the closed co

b

of flexible nature, as the number of residues, involved in stabilizing the contact, was highly 

variable in both crystal forms (see Chapter 2.2.6.2.). This was observed to be the result 

varying angles of inclination of the large and the small domains (see Chapter 2.2.2.). The 

small domains of crystal from II (C2221) were shown to be less tilted than in crystal form I 

(P4212) monomers, leading to an increased interdomain distance of the small domains in the 

close contacts. This flexible character could enable the closed dimer to accommodate 

ligands.  

In fact the close dimer was found to bury a large hydrophobic interface, able to bind two 

detergent

Similar results were obtained from the Kim group, as they crystallized RseB in the presence 

of octyl glycoside (OG) (Kim et al., 2007), with one molecule of OG bound in the interface 

between the close dimer at similar position as observed for DDM. Both closed dimers 

including detergent molecules can be overlaid with an RMSD of 0.69 Å, suggesting these 

structures to be very similar (Figure 46A). As RseB was independently crystallized twice with 

detergent molecules, it is to speculate that the observed enclosure of detergent molecules 

(Figure 46B) might represent a binding site for hydrophobic substances. 

Although the bond-forming residues of the closed contact are less conserved than observed 

for the open contact, the buried area comprises conserved hydrophobic

Figure 19B), that could be the main determinants in mediating this dimeric interaction. 

However, as indicated from cross-linking studies of isolated small domains, the small domain 

alone seems to be impaired to multimerize. Thus, a stable close contact demands the large 

domain and/or an additional compound like hydrophobic detergents. 
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state as this conformation allows embedment of further acyl chains in the interface of the 

small domains. 

Keeping in mind that the crystal did not contain any RseA, the RseB dimer interacting with 

RseA could be different from those dimeric forms observed in the crystal. For a clear 

determination of dimeric assemblies of RseB, mutational studies are a promising task in the 

ossible Role of the Large Oligomeric Forms of RseB 

ata imply that RseB is able to form large oligomers. This is in full agreement with results 

f  two 

eaks in size exclusion chromatography. However, results from the Kim group are not 

hem occurs in solution. A summary of observed large 

ers. 

Hexamer Octamer Experimental Data 

near future. 

 

 

3.4.2. P

 

D

obtained rom Cezairliyan and Sauer (2007), where RseB was also found to elute in

p

consistent, as RseB is reported to only exist as a dimer, although the same type of column 

was used (Kim et al., 2007).  

Several attempts were done to analyze the hexameric and octameric rings observed in the 

structure for likeliness to occur in solution. However, it was difficult to clearly distinguish 

whether both or only one of t

oligomeric forms and their characteristics is given in Table 4. 

 

 
Table 4. Characteristics and experimental data of RseB hexamers and octam

 

 

MW (kDa) 205 270  

Symmetry 2-fold 4-fold  

verall dimensions (Å) 

pore diameter (Å) 38 53  

al overall dimension (Å) 145 

o 125 x 108 145 x 150  

SAXS maxim  + 

EM approximate diameter (Å) 126-146 

Å) 30-40 

Gel filtration peak I (kDa) ± ± 220 

+ + 

EM pore diameter ( +  

 

 

SAXS analysis revealed that oligomeric form with a maximal meter similar to meric 

ssemblies are existent in solution (Chapter 2.3.1.2.). These data are consistent with SAXS 

ata published recently (Kim et al., 2007). Comparing distance distribution functions of RseB 

s dia  octa

a

d
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from experimental data, clearly reveal, that RseB behaved similar in both experiments 

(Figure 47A and B). The only difference in data is that the maximal diameter from the Kim 

experiment is ~ 25 Å larger. However, the authors propose that the semi-close dimer is the 

most probable oligomeric from to exist in solution, as they state, that its calculated function 

is most similar to experimental function (Figure 47B). This is in contrast to observations that 

octameric and hexameric functions mostly agree with experimental curve progression (Figure 

47A). 
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electron micrographs and the crystal lattice is unlikely to be a coincidence. Hence, it is 

reasonable to assume, that the ring-like assemblies of RseB are not an artifact. The only 

c assemblies or only 

to other compounds. The hexamer was shown, as stated above, to 

e able to enclose in its closed contact hydrophobic ligands, and might thereby be stabilized. 

rm I is more compact, it is unlikely to represent a lipoprotein bound form and it its 

e association constant was estimated to 

e 9.6 µM (Chapter 2.3.1.2.). Recent suggestion that the higher oligomeric states of RseB 

mation of microenvironments due to highly decreased 

protein mobility (Brass et al., 1986). As a result, a spatial restricted area could contain higher 

experiment not supporting this idea is the missing detection of hexameric or octameric cross-

links, which could have been an effect of the resolution limit of the gel. 

Moreover it is unclear whether both the hexameric and the octameric rings coexist at all. In 

size exclusion experiments only two peaks – one peak containing dimeric, the other higher 

oligomeric specimen – were detectable. Similarly AUC experiments just gave two oligomeric 

specimens. Therefore, it has to be asked if both of the large oligomeri

one of them is existent.  

 

Biochemical experiments could demonstrate that the higher oligomeric states are RseB 

conformations that do not bind to RseA. Therefore hexamers or octamers might represent 

free RseB or RseB bound 

b

Therefore, it is possible that the hexameric state is favored when lipophilic compounds are 

bound.  

The octamer is stabilized by open and closed contacts. Here, the closed contact seems to be 

more compact which could render the octamer to be a stable form in solution. Like the 

hexamer, also the octamer was not shown to interact with RseA-PP. As the closed contact of 

crystal fo

tempting to speculate that it represents the completely unbound form. Therefore, a role for 

the octameric state could be to prevent RseB interaction with lipophilic ligands in an RseA-

unbound state by hiding all potential binding-sites. 

 

All experiments performed to explore oligomeric states of RseB were done in the absence of 

additional molecules. In AUC it was shown that the number of higher oligomeric form 

increases with enhanced protein concentration. Th

b

are a result of protein aging could be shown to be incorrect (Cezairliyan and Sauer, 2007), 

as higher oligomerization occurred at a critical protein concentration and is thus rather a 

function of the protein concentration. 

The intracellular concentration of RseB is believed to be rather low. As all experiments were 

performed at higher concentrations one should consider whether the higher oligomeric forms 

are of physiological relevance. However, it is known that the special character of the 

bacterial periplasm can lead to the for
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RseB concentration in some cases. E.g. when DegS cleaves off the domain of RseA with 

bound RseB, an enhanced free pool of RseB could be generated; which similarly can be 

envisioned during expression of RseB.  
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Figure 48. Model for oligomeric states of RseB. A possible equilibrium state is shown which is infl
nding partners of RseB to shift the equilibrium towards favored conformations. This equilibri

ed to be changed by high concentrations of RseB (indicated in blue) favoring larger olig
assemblies (hexamers: RseB6 and octamers RseB8). The open dimer of RseB (RseB2

O), as well as the oc
8) are likely to be stable in unbound form. The closed form of RseB (RseB2

C) is presumably favo
teins, binding to the large domain as well as to the interface of two small domains. This could also 

to a stabilization of the hexameric state (L2x/RseB6). The semi-closed dimer (RseB2
SC) is unlikely to be st

orm, but could be stabilized by binding to two RseA. 

 

ure 48, a model for the interplay of all potential oligomeric states of RseB is abstrac

s oligomeric states might exist in solution. The relative distributions is changed

nced by the concentration of binding partners like RseA and lipoproteins. 
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4. Summary 
 

An elegant network of signal transduction has evolved in the bacterial cell envelope to 

respond to environmental stress. The σE stress response pathway is initiated by sensing 

unfavourable and harmful changes in the periplasm. The stress signal is transmitted by a 

controlled three-step proteolysis (DegS – RseP – ClpXP) of the transmembrane anti-sigma 

factor RseA that leads to the activation of the alternative sigma factor σE. The periplasmic 

protein RseB exerts a crucial role in modulating the stability of RseA. It is speculated that an 

unknown signal titrates RseB away from RseA, leading to activation of σE.  

 

RseB from Escherichia coli has been crystallized and crystal structures were determined at 

2.4 Å and at 2.8 Å resolution. The structure of cytoplasmic expressed RseB revealed that it 

consists of two domains; an N-terminal large and a C-terminal small domain. The large 

domain resembles an unclosed β-barrel that is structurally remarkably similar to a protein 

family (LolA, LolB) capable of binding the lipid anchor of lipoproteins. Detailed structural 

comparison of RseB and LolA led to the hypothesis that RseB might be a sensor for 

mislocalized lipoproteins. The small C-terminal domain, connected to the large domain by a 

partially unstructured loop, was identified to mediate interaction with RseA. A peptide 

comprised of a putative helix of RseA was shown to constitute the binding site for RseB.  

 

Structural investigations showed that the interface of the large and the small domain is 

stabilized by highly conserved residues. This interface is proposed to have a role in linking a 

signal-binding event in the large domain to the small domain, which subsequently 

destabilizes RseA interaction with RseB, hence making RseA prone for degradation. 

 

Several experiments determined that RseB exists as a dimer and as higher oligomers 

(hexameric or octameric ring-like assemblies) in solution. The equilibrium of oligomers was 

shown to be dependent on the protein concentration. Biochemical data revealed that RseA 

interacts only with dimeric RseB, suggesting dimeric RseB to be the active conformation. As 

the crystal structure provided different modes of dimeric assemblies (via open, close, semi-

close interfaces), biochemical data in combination with structural data were explored for 

putative functions of the observed dimers. The most abundant open dimer is suggested to 

be stable in solution, whereas the close and semi-close dimers may be favoured in the 

presence of lipoproteins and RseA, respectively. The precise role of the hexameric and 
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octameric rings, unable to interact with RseA, is not clearly understood but will be a 

challenging task for further evaluation. 

 

Structure based results presented in this thesis indicate a new role of RseB in acting as a 

sensor for periplasmic stress: it detects mislocalized lipoproteins in the periplasm and 

propagates the signal to induce σE-response. 
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5. Materials and Methods 
 

5.1. Material 

 

5.1.1. Bacterial Strains 

 

For all cloning and plasmid maintenance purposes, Escherichia coli strain DH5α (Gibco BRL) 

was used. For high level expression of protein, BL21(DE3) (Stratagene), BL21-gold(DE3)  

(Stratagene) or BL21-star(DE3) (Invitrogen) was used.  

 

DH5α (Gibco BRL) 

F , endA1, glnV44, thi-1, recA1  gyrA96, deoR, nupG  Φ80dlacZ∆M15 ∆(lacZYA-argF)U169, 

hsdR17(rK

- , , , 

- -

- -  

- -

-, mK+), λ-

 

BL21(DE3) (Stratagene) 

F , ompT, hsdSB(rB mB-), dcm+, galλ(DE3) 

 

BL21-gold(DE3) (Stratagene)  

F , ompT, hsdSB(rB mB-), dcm+, galλ(DE3) Tetr endA Hte

 

BL21-star(DE3) (Invitrogen) one shot chemical competent cells 

F , ompT, hsdSB(rB mB-) gal dcm rne131 (DE3)  

 

 

5.1.2. Chemicals 

 
Table 5. Chemicals. 

 
Chemical  Distributor 
 
Acryl amide  Biorad 

Protogel  National Diagnostics 

Agarose  Seakem 

Bromphenyl blue   Serva 

Coomassie Brilliant Blue R-250  Serva 
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IPTG   Gerbu 

Gel filtration Calibration Kit LWM  Amersham Biosciences 

Sodium dodecylsulfate   Carl Roth GmbH 

Polyethyleneglycol 3350  Fluka 

Molecular Weight Standard M6  Pharmacia 

Prestained Molecular Weight Marker  New England Biolabs 

PageRuler unstained Protein ladder Fermentas 

Ni-NTA Nickel Chelating Material  Amersham Biosciences 

Ni-NTA superflow  Qiagen  

Ethidium bromide   Boehringer 

Deoxyribonuceotides (dNTPs)   Pharamcia 

DNA-Ladder  New England Biolabs 

Glutaraldehyde  Sigma 

ABI BigDye 3.1   Applied Biosystems  

PCR Mastermix  Roche 

 

 

 

5.1.3. Enzymes and Proteins 

 
Table 6. Enzymes and Proteins. 

 
Name  Distributor 
 
Pfu DNA polymerase  Promega 

ExpandTM polymerase   Boehringer 

Taq polymerase   Promega 

DNA ligase (T4)  New England Biolabs 

Restriction Enzymes  New England Biolabs 

Ribonuclease A Sigma 

Shrimp alkaline phosphatase (SAP) Roche 

Antarctic phosphatase  New England Biolabs 

Factor Xa Qiagen 

 

 
 
 
 

75 



  Material and Methods 

 
5.1.4. Plasmids 

 
Table 7. Plasmids. 
 
Name  Resistence  Origin/Remark 
 
pET22b AmpR Novagen 

Expression of C-terminally His6-tagged 
proteins 

  
pET16b AmpR Novagen 

Expression of N-terminally His10-tagged 
proteins, tag cleavable with Factor Xa 
protease 

 
pET15b AmpR Novagen 

Expression of N-terminally His6-tagged 
proteins, tag cleavable with thrombin 
protease 

 
pET22-rseb AmpR RSEB gene amplified from genomic DNA of E. 

coli was cloned via NdeI/XhoI sites (M. 
Grininger, unpublished) 

 
pET22-rsea AmpR RSEA gene amplified from genomic DNA of E. 

coli was cloned via NdeI/XhoI sites (M. 
Grininger, unpublished) 

 
pET22-rseb-ss AmpR this work 
  Cloned from pET22-rseb using primers rseB-

SS and rseB-CT. PCR product was digested 
with NdeI and XhoI and ligated into pET22b 

 
pET15-rseb-d1 AmpR this work 
  Cloned from pET22-rseb-ss using primers 

rseB-SS and rseB-D1rev. PCR product was 
digested with NdeI and XhoI and ligated into 
pET15b 

 
pET15-rseb-d2 AmpR this work 
  Cloned from pET22-rseb-ss using primers 

rseB-D2forw and rseB-CT. PCR product was 
digested with NdeI and XhoI and ligated into 
pET15b 

 
pET16-rsea-PP AmpR this work 
  Cloned from pET22-rseb using primers rseA-

PPforw and rseA-PPrev. PCR product was 
digested with NdeI and XhoI and ligated into 
pET16b 
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5.1.5. Oligonucleotides 
 
All oligonucleotides were purchased from Metabion, purification grade ‘desalted’. 

   
rseB-SS GCG CGC ATA TGG CCA CTC CCG CGT CCG  
rseB-CT CGC GGC CAC GAG TCA TTG CGC TGC CCC GAA C  
rseB-D1rev CGC GCC TCG CGT CAA ACA GAA AGC AAC GGC GGC AA  
rseB-D2forw GCG CGC ATA TGG AAA AAG CTA AAT TCA GCT GGA CGC 
rseA-PPforw GCG CGC ATA TGT CTG AAA CGT CCC AGC AGC CC 
rseA-PPrev CGC GCC TCG AGT TAC TGC GAT TGC GTT CCT AAA GTT TGA ATT C 
 

 

5.1.6. Instruments and Devices 
 

5.1.6.1. Centrifuges 
 

Eppendorf Centrifuge 5417R with rotor F 45-30-11; Beckman Avanti J-25 centrifuge with 

rotor JA-25.50; Beckman Avanti J-20XP centrifuge with rotors JA-25.50 and JLA-8.1000; 

Sigma 4K15 swing-out rotor; Hettich Rotixa/KS centrifuge with rotor 5094-684 and Beckman 

Optima LE-80K ultracentrifuge with rotors 45Ti and 60Ti. 

 

 

5.1.6.2. Devices for X-ray Data Collection 
 

X-ray structural data were recorded at the Swiss Light Source (SLS, Zürich) and at the 

European Synchrotron Radiation Facility (ESRF, Grenoble). 

 

 

5.1.6.3. Software 
 
All figures illustrating structural work were prepared with PYMOL (www.pymol.org). Other 

figures were created in Corel Draw or Power Point. Protein sequence alignment was done 

using ClustalW (Thompson et al., 1994); for DNA sequences, Bioedit was used. Secondary 

structure predictions were performed with PredictProtein (Rost et al., 2004). 
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5.1.6.4. Consumables 
 
Table 8. Consumables. 
 
 
Consumable Distributor 
 
Crystallization material Hampton Research 

Centrifugal filter devices Millipore Amicon 

Cellulose membrane dialysis tubing Biorad 

NuPAGE Gel System Invitrogen 

Concentrator, Centrifugal filter device Millipore Amicon 

QIAquick PCR Purification Kit  Qiagen 

QIAquick Gel Extraction Kit   Qiagen 

QIAprep Spin Miniprep Kit  Qiagen 

 

 

5.1.6.5. Additional Instruments and Devices 
 
Table 9. Additional instruments and devices. 
 
 
Instrument/Device Distributor 
 
Agarose Gel Electrophoresis System manufactured in house 

DNA Thermal Cycler Perkin Elmer 

DNA Sequencer ABI Prism 377 Applied Biosystems 

Shaking incubator Multitron AJ20 Infors-HT AG 

French Pressure Cell Press Polytec GmbH, Aminco SLM Instruments 

Spectrophotometer, ND-1000 NanoDrop Technologies Inc. 

UV-VIS spectrometer, Ultrospec II LKB Biochrom 

Gene Pulser Biorad 

Hg-High Pressure Lamp Leica 

Multiple Gel Caster manufactured in house 

Power Supply EPS 300 (SDS-PAGE, blot) Pharmacia 

Power Supply (agarose gel-electrophoresis) Carl Roth GmbH 

Gel-Electrophoresis System SE215 Mighty Small II Hoefer/Pharmacia Biotech 

XCell SureLock Electrophoresis Cell (Novex Minin-Cell) Invitrogen 

Pre-Cast Gel NuPAGE Bis-Tris Invitrogen 

Varioklav H + P Labortechnik 

Gene Amp 5700 Sequence Detection System   Applied Biosystems 

Optical Power Meter HT-90       Hi-Top 
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5.1.7. Media and Stock Solutions 

 

5.1.7.1. E. coli Media 
 

Media used for growth of E. coli cells were autoclaved at 120 °C (2 bar) for 20 min. 

Antibiotics, used for selection, were added at a temperature of 60 °C. Agar plates were 

prepared using LB-medium enriched with 15 g bacto-agar per liter. 

 

LB-Medium 1% (w/v) bacto tryptone 

  0.5% (w/v) bacto-yeast extract 

 1% (w/v) NaCl (171 mM) 

 pH 7.0, adjusted with NaOH  

 

TB-medium (Terrific broth medium): 1.2% (w/v) bacto tryptone  

 2.4% (w/v) bacto-yeast extract 

 0.4% (w/v) glycerol 

 pH 7.5, adjusted with 100 mM KH2PO4/K2HPO4-buffer 

 
 

5.1.7.2. Stock Solutions 
 

Ampicillin  

100 g/l (0.25 M); sterile filtered; 1000-fold stock 

 

IPTG (isopropyl-ß-D-thiogalactopyranoside) 

238 g/l (1 M); sterile filtered; 1000-fold stock 
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5.2. Methods 

 

5.2.1. Molecular Biological Methods 

 

5.2.1.1. Polymerase Chain Reaction 
 

For DNA amplification Pfu polymerase was used. The reaction was mixed on ice to prevent 

the generation of unspecific products. Optimal temperature conditions of the standard 

protocol were adjusted for individual primers.  

 

Standard Mix: Primer 1 (10 µM)  1 µl 

 Primer 2 (10 µM) 1 µl 

 dNTPs (25 mM each) 1 µl 

 10 x buffer 5 µl 

 DMSO 2.5 µl 

 Pfu Polymerase 0.75 µl 

 

Standard protocol:  

 

Initial denaturation 95 °C 4 min 

Denaturation 95 °C 1 min 

30 cyclesAnnealing 55 °C 1 min 

Elongation 72 °C 1.5 min 

Final Elongation 72 °C 7 min 
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5.2.1.2. Digestion of DNA 
 

For digestion of DNA, restriction enzymes belonging to type II endonucleases were used in 

appropriate buffers. The standard protocol was as follows: 

 

0.5 – 1 µg DNA 

50 – 100 µg BSA (if required) 

10 U restriction enzyme 

ad 20 µl reaction buffer 

 

The reaction was incubated for 1 h at 37 °C and analyzed by agarose gelelectrophoresis. 

 

 

5.2.1.3. Dephosphorylation of linear DNA Fragments 
 

To prevent religation of vectors in the ligation process, linearized vectors were treated with 

phosphatases which catalyze the removal of 5’ phosphate groups from DNA. 28 µl DNA 

extracted from preparative gels was incubated with 3 µl shrimp alkaline phosphatase (SAP) 

or antarctic phosphatase in corresponding buffer in a total volume of 40 µl. After 1 hour of 

incubation at 37 °C, SAP was inactivated by incubation at 60 °C for 20 minutes. Reactions 

containing antartic phosphatase were incubated at 37 °C for 30 minutes. Heat inactivation of 

antartic phosphatase was achieved by incubation at 65 °C for 5 minutes. 

 

 

5.2.1.4. DNA Ligation 
 

For ligation of linearized vector and PCR-derived inserts with compatible cohesive ends T4 

DNA ligase was used. The ratio of the linearized vector and insert was approximately 1:3. In 

a typical reaction 1 U of T4 ligase and 100 ng of linearized vector was mixed in a total 

volume of 10 µl and incubated either at room temperature for 2 h or over night. 
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5.2.1.5. DNA Sequencing 
 

DNA sequencing was performed with the chain-termination method using fluorescence 

labeled 2’, 3’-dideoxy nucleotides. The sequencing reaction was composed of 100-500 ng 

DNA, 2 µl primer (20 pmol), 3 µl ABI Prism BigDye-kit (BigDye Terminator Cycle Sequencing 

Ready Reaction Kit, Perkin Elmer Applied Biosystems), 2 µl betaine and was added to a final 

volume of 15 µl with H2Obidest. The reaction was cycled using the following program: 

 

Initial denaturation 95 °C 1 min 

Denaturation 95 °C 30 sec 

30 cyclesAnnealing 50 °C 20 sec 

Elongation 60 °C 4 min 

Final Elongation 60 °C 7 min 

 

Purification of the PCR samples was achieved with Micro-Spin G-50 columns (Pharmacia) 

according to the manufacturer’s protocol. Amplified products were analyzed in an ABI Prism 

377 DNA sequencer. 

  

 

5.2.1.6. DNA Electrophoresis 
 

For analytical and preparative separations of DNA agarose DNA electrophoresis was used. 

The gels were prepared in dissolving 0.8 – 1.2% agarose and 0.5 µg/ml ethidium bromide in 

TBE buffer (1 M Tris-HCl, 0.83 M boric acid, 10 mM EDTA). The gel was placed in a gel tank 

and covered with TBE buffer. DNA samples were mixed with loading buffer (0.2% (w/v) 

bromphenol blue, 30% glycerol) and loaded onto the gel. Gels were run at 5 V/cm until 

optimal separation was achieved. The DNA was visualized by transillumination with 

ultraviolet light and sizes were estimated by application of a DNA ladder as a size standard. 

For isolation, DNA was excised from preparative gels and purified using the QIAquick gel 

extraction kit protocol as recommended by the manufacturer. 
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5.2.1.7. Cultivation of E. coli 
 

For all cloning and plasmid maintenance purposes, E. coli were cultivated in 5 ml or 35 ml LB 

medium at 37 °C at 250 rpm. For high level expression of protein an E. coli overnight culture 

of 35 ml LB-medium was inoculated in 3 l of TB-medium and grown at 20 – 37 °C at 180 

rpm.  

 

 

5.2.1.8. Preparation and Transformation of electro-competent E. coli 
 

For preparation of electro-competent E. coli cells, a fresh overnight culture was diluted 100-

fold in LB medium and grown at 37 °C at 250 rpm for 3 to 4 hours to a final density of OD600 

of 0.6 to 0.8. The culture was chilled to 0 °C and cells were harvested by centrifugation at 

400 rpm for 20 min at 4 °C. Cell pellets were successively washed with 1, 0.5 and 0.25 l of a 

sterile 10% glycerol solution. After the final centrifugation step, the cell pellet was 

resuspended in 700 µl of 10% glycerol and portioned into 50 µl aliquots. These aliquots were 

frozen in liquid nitrogen and stored at -80 °C. 

For transformation, aliquots were thawed on ice and mixed with 2 µl of ligation product or 

0.5 µl of plasmid DNA. The cells were transferred to cold electroporation cuvettes (0.2 mm 

gap widths, BioRad) and placed into BioRad Gene Pulser System (25 µF, 1.5 kV, 800 Ω) and 

subjected to electroporation. Cells were regenerated in 2 ml LB medium at 37 °C for 60 min 

and plated on LB agar plates containing the appropriated antibiotic for selection of 

transformands. 

 

 

5.2.1.9. Transformation of chemo-competent E. coli 
 

For chemical transformation of DNA into purchased E. coli cells (Gibco BRL, Invitrogen), 2 µl 

DNA was mixed with 50 µl competent cells and incubated on ice for 30 min. Cells were 

subjected to heat shock for 40 sec using a water bath warmed to 42 °C and subsequently 

placed on ice for 2 min. For regeneration, cells were mixed with 1 ml warm LB medium and 

incubated at 37 °C for one hour. Selection of transformands was achieved by plating the 

cells onto selective LB agar plates. 
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5.2.1.10. Isolation of Plasmid DNA from E. coli 
 

For plasmid DNA isolated single colonies were picked from LB agar plates and inoculated in 5 

ml LB medium containing the desired antibiotic for selection. Cells were grown overnight and 

harvested by centrifugation at 5000 g for 5 min. The plasmid purification was performed with 

the QIAprep Miniprep (Qiagen) protocol as recommended by the manufacturer. 

 

 

5.2.1.11. Determination of DNA Concentration 
 

The concentration of DNA was estimated by comparing DNA of interest with DNA of known 

concentration after agarose gel electrophoresis. Moreover for more accurate determination 

of the DNA concentration, a solution of DNA was analyzed for its absorption at 260 and 280 

nm using quartz cuvettes. At a wavelength of 260 nm and a path length of 1 cm, an OD260 

value of 1 corresponds to a concentration of 50 µg/ml of double stranded DNA. A pure 

solution of double stranded DNA has an OD260/OD280 ratio of 1.8. 
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5.2.2. Protein Biochemical Methods 
 

5.2.2.1. SDS Polyacrylamide Gel Electrophoresis 
 

SDS polyacrylamide gel electrophoresis was performed using a discontinuous buffer system 

under denaturating conditions. Gels with 13 or 17 % acrylamide (see below) were prepared 

in an in-house manufactured multiple gel caster. Solutions of the running gel and the 

stacking gel (see below) were poured between two glass plates separated by spacers. A well 

forming comb was inserted into the stacking gel. The polymerized gels were placed in a 

Mighty Small II apparatus (Amersham Biosciences) and covered with running buffer (see 

below). Protein samples to be separated on the gel were mixed with SDS sample buffer and 

heated for 10 min at 95 °C. Protein samples and protein molecular weight marker were 

loaded onto the gel and were separated using electrophoresis power supply (EPS 300, 

Pharmacia) at 180-200 V for one hour. For visualization of the protein bands, the gel was 

stained in staining solution (glacial acetic acid : methanol : water ratio of 10 : 45 : 45 and 

0.1% Coomassie) for 2 hours and destained by incubation in destaining solution (glacial 

acetic acid : methanol : water ratio of 10 : 45 : 45). 

 

4-fold running buffer: 4-fold stacking buffer:  

0.5 M Tris-HCl, pH 8.8 1.5 M Tris-HCl, pH 6.8 

0.5 mM EDTA 0.5 mM EDTA 

0.4% (w/v) SDS 0.4% (w/v) SDS 

 

SDS running gel: 13% 17% 

30% Protogel  32.5 ml 42.5 ml 

4-fold running buffer 18.75 ml 18.75 ml 

10% Ammoniumpersulfate 250 µl 250 µl 

TEMED 50 µl 50 µl 

H2Obid. 23.75 ml 13.75 ml 

 

SDS stacking gel:  

30% Protogel  13.1 ml  

4-fold running buffer 13.1 ml  

10% Ammoniumpersulfate 250 µl  

TEMED 50 µl  

H2Obid. 26.25 ml  
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5-fold SDS sample buffer: 

0.5 M Tris-HCl, pH 6.8 

10% Glycerol 

2.3% (w/v) SDS 

5% DTT 

0.1% bromphenyl blue 

 

Alternatively, pre-cast Bis-Tris NuPAGE gels were used according to the protocol of the 

manufacturer (Invitrogen). 

 

 

5.2.2.2. Cloning and Purification of C-terminally His6-tagged RseB 
 

The signal sequence is important for proteins that are destined for secretion or that have to 

be transported across the inner membrane to reach their final destination like the 

membranes or the periplasmic space. After translocation via the SecY/E complex, signal 

peptidase I cleaves off the signal sequence (Breyton et al., 2002; Mitra et al., 2005; van den 

Berg et al., 2004) reviewed by (Driessen et al., 1998; Müller et al., 2001). As periplasmic 

expressed RseB was insufficient in amount, the signal sequence was deleted for purification 

from the cytoplasm.  

 

The gene encoding the N-terminally truncated version of RseB missing the first 22 residues 

was amplified by PCR from a plasmid with full length RSEB (pET22-rseb, M. Grininger, 

unpublished results) using the primers rseb-SS (5’ CGGGCATATGTCATTAGTGACAGGTAGCC 

3’) and rseB_C-term (5’ CGCGGCCACGAGTCATTGCGCTGCCCCGAAC 3’) and subcloned into 

the pET-22b(+) vector (Novagen). The recombinant plasmid (pET22-rseb-ss) was 

transformed into E. coli strain BL21(DE3) (Stratagene) and cells were selected on agar plates 

containing 100 µg/ml ampicillin. Single colonies were chosen for further inoculation first in 

Luria Bertani and later cultivated in terrific broth medium with 100 µg/ml ampicillin. Bacteria 

were grown at 37 °C to an OD600 of 0.7 and subsequently cooled to 20 °C for expression. 

Expression was induced by addition of 0.5 mM isopropyl β-D-thiogalactopyranoside (IPTG) 

and cells were allowed to grow for 4 hours. Cells of a 9-liter culture were harvested and 

resuspended in buffer A containing 20 mM Tris-HCl pH 7.4, 300 mM NaCl, 5 mM imidazole 

and 10% (v/v) glycerol and broken by french press. The solution was centrifuged at 40000 g 

86 



  Material and Methods 

for 1 h at 4 °C to remove insoluble material and unbroken cells. The supernatant was batch-

incubated by end-over-end-rotation with Ni-NTA-matrix (Ni-NTA Fastflow, Amersham 

Biosciences) for 30 min at room temperature. The matrix was extensively washed with buffer 

A and unspecific binders were eluted with a stepwise gradient of buffer A containing 10 mM, 

15 mM, 20 mM and 32 mM imidazole. RseB was then eluted with buffer A containing 500 

mM imidazole. The eluate was dialysed against buffer B (20 mM Tris-HCl pH 7 and 10% 

(v/v) glycerol, centrifuged at 40000 g for 30 minutes and applied to anion exchange 

chromatography (MonoQ HR5/5, Amersham Biosciences) using buffer B. Pure RseB protein 

appeared in the flowthrough and was concentrated to 1 or 5 mg/ml for crystallization trials. 

 

 

5.2.2.3. Cloning and Purification of RseA-PP 
 

The gene coding for the periplasmic domain of RseA (RseA-PP, residues 124-216) was 

amplified by PCR from a plasmid with full length RSEA (pET22-rsea, M. Grininger, 

unpublished results) using primers rseA-PPforw 

(GCGCGCATATGTCTGAAACGTCCCAGCAGCCC) and rseA-PPrev 

(CGCGCCTCGAGTTACTGCGATTGCGTTCCTAAAGTTTGAATTC) and subcloned into pET-16b(+) 

vector (Novagen). The recombinant plasmid (pET-16-rsea-PP) was transformed into E. coli 

strain BL21-gold(DE3) (Stratagene) and cells were selected on agar plates containing 100 

µg/ml ampicillin. For N-terminally His10-tagged RseA-PP, bacteria were grown at 37 °C to an 

OD600 of 0.7 and subsequently cooled to 20 °C for expression. Expression was induced by 

addition of 0.5 mM isopropyl β-D-thiogalactopyranoside (IPTG) and cells were allowed to 

grow for 4 hours. Cells of a 9-liter culture were harvested and resuspended in buffer A 

containing 20 mM Tris-HCl pH 8, 300 mM NaCl and 5 mM imidazole and disrupted by french

press. The solution was centrifuged at 40000 g for 1 h at 4 °C to remove insoluble material 

and unbroken cells. The supernatant was batch-incubated by end-over-end-rotation with 

pre-equilibrated Ni-NTA-matrix (Ni-NTA Superflow, Qiagen) for 1 h at room temperature. The 

matrix was extensively washed with buffer A and unspecific binders were removed with 

buffer A containing 20 mM imidazole. For elution, a gradient from 20 mM to 500 mM 

imidazole in buffer A was applied using the ÄKTA system (Amersham Biosciences). For RseA-

PP, fractions containing RseA-PP were pooled and dialysed against buffer C (20 mM Tris-HCl, 

pH 8) and applied to anion exchange chromatography (MonoQ HR5/5, Amersham 

Biosciences). A gradient using buffer C with 750 mM NaCl was applied and fractions 

containing pure RseA-PP were collected, concentrated to 10 mg/ml and stored at -80 °C. 
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5.2.2.4. Cloning and Purification of RseB-D1 and RseB-D2 
 

pET22-rseb-ss (see Chapter 5.2.2.2.) was used as a template for cloning the large domain 

(RseB-D1, residues 23-209) and the small domain (RseB-D2, residues 212-318) of RseB. 

Primers used for subcloning into pET-15b(+) vector (Novagen) were rseb_SS (5’ 

GCGCGCATATGGCCACTCCCGCGTCCG 3’) and rseb-D1_rev (5’ 

CGCGCCTCGCGTCAAACAGAAAGCAACGGCGGCAA 3’) for RseB-D1 as well as  

rseb-D2_forw (5’ GCGCGCATATGGAAAAAGCTAAATTCAGCTGGACGC 3’) and rseB_C-term (5’ 

CGCGGCCACGAGTCATTGCGCTGCCCCGAAC 3’) (Metabion) for RseB-D2. The recombinant 

plasmids (pET15-rseb-d1 and pET15-rseb-d2) were transformed into E. coli strain BL21-

star(DE3) (Invitrogen) and cells were selected on agar plates containing 100 µg/ml 

ampicillin. Single colonies were chosen for inoculation in Luria Bertani and further for 

cultivation in terrific broth medium with 100 µg/ml ampicillin. For N-terminally His6-tagged 

RseB-D1/D2 bacteria were grown at 37 °C to an OD600 of 0.7 and subsequently cooled to 20 

°C for expression. Expression was induced by addition of 0.5 mM isopropyl β-D-

thiogalactopyranoside (IPTG) and cells were allowed to grow for 4 hours. Cells of a 9-liter 

culture were harvested and resuspended in buffer A containing 20 mM Tris-HCl pH 8, 300 

mM NaCl and 5 mM imidazole and disrupted by french press. The solution was centrifuged at 

40000 g for 1 h at 4 °C to remove insoluble material and unbroken cells. The supernatant 

was batch-incubated by end-over-end-rotation with pre-equilibrated Ni-NTA-matrix (Ni-NTA 

Superflow, Qiagen) for 1 h at room temperature. The matrix was extensively washed with 

buffer A and unspecific binders were removed with buffer A containing 20 mM imidazole. For 

elution, a gradient from 20 mM to 500 mM imidazole in buffer A was applied using the ÄKTA 

system (Amersham Biosciences). Fractions containing the protein of interest were collected 

and dialysed against buffer B (20 mM Tris-HCl pH 7), centrifuged at 40000 g for 30 minutes 

and applied to anion exchange chromatography (MonoQ HR5/5, Amersham Biosciences) 

using buffer B. Pure proteins appeared in the flow-through and were concentrated to 4 

mg/ml and stored at -80 °C. 
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5.2.2.5. Determination of Protein Concentration 
 

The concentration of proteins was determined by spectroscopic methods. The absorption of 

a protein solution was measured at 280 nm using UV-VIS spectrometer (Ultrospec II, LKB 

Biochrom) or spectrophotometer (ND-1000, NanoDrop Technologies Inc.). The concentration 

of the protein concentration was calculated in respect to the theoretical extinction coefficient 

of the tyrosines and tryptophans of the protein sequence. 

 

 

5.2.2.6. N-terminal Sequencing of Proteins 
 

Purified proteins and crystals were N-terminally sequenced by the Edman degradation, 

performed by an in-house service department.  

 

 

5.2.2.7. Size Exclusion Chromatography 
 

Size exclusion experiments were performed on the SMART system with a Superdex 200 

PC3.2/30 column (Amersham Biosciences). Gel filtration was performed according to the 

protocol of the manufacturer. The column was equilibrated with 20 mM Tris-HCl pH 7, 150 

mM NaCl. Proteins were loaded at concentrations of 4 mg/ml. The flow was 40 µl/min and 

fractions of 80 µl (injection at 200 µl) were collected and analyzed by SDS-PAGE. The 

column was calibrated with proteins of definite mass (LMW calibration kit, Amersham 

Biosciences). 

 

 

5.2.2.8. Cross-Linking Proteins 
 

For cross-linking, proteins were dialysed from Tris-HCl buffer to PBS buffer (137 mM NaCl, 

2.68 mM KCl, 4.3 mM Na2HPO4, and 1.47 mM KH2PO4) to avoid quenching of the reaction 

with amines (Tris). The cross-linking reaction was carried out in a total volume of 100 µl with 

10 µl of glutaraldehyde (0.25%) and protein concentrations of 0.4 mg/ml. Reactions were 
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incubated at 30 °C and samples were taken after 10 and 20 minutes for analysis by SDS-

PAGE (4-12% NuPAGE Bis-Tris Gel, Invitrogen). Non cross-linked samples of each protein 

were taken for comparison. The hetero-oligomeric nature of cross-linked products was 

verified by mass analysis. 

 

 

5.2.2.9. Binding Studies of RseA and RseB using Ni-chelating material 
 

For analyzing the binding properties of RseB-His6 to RseA-PP-His10, RseA-PP was subjected to 

Factor Xa treatment to remove the His-tag. This was done by incubating 1,8 mg of RseA-PP-

His10 in 20 mM Tris pH 8, 100 mM NaCl and 2 mM CaCl2 with 20 Units of Factor Xa for 3 

hours at 23 °C. For removal of intact RseA-PP-His10 (including His-tag), the reaction was 

batch incubated with Ni-NTA und cleaved RseA-PP, unable to bind the column was enriched 

in the supernatant. Cleaved RseA-PP (RseA-PP∆His) was incubated with RseB-His6 for 15 

minutes and batch incubated with Ni-NTA for 15 minutes. For removal of Factor Xa protease 

and unbound proteins, Ni-NTA was extensively washed with buffer A (25 mM imidazole, 20 

mM Tris-HCl pH 7.4, 300 mM NaCl and 10% glycerol). Buffer A containing 500 mM imidazole 

was used for elution of specifically bound proteins. Samples were analyzed by SDS-PAGE. 

 

 

5.2.2.10. Binding of RseB to RseA-Peptide 
 

RseA162-186 was synthesized by an in-house service department. For investigating the binding 

property of RseB to synthetic RseA162-186, RseB was immobilized (75 µl of 5 mg/ml in buffer: 

20 mM Tris pH 8, 100 mM NaCl) on a Ni-chelating column. 20 µl of RseA-Peptide (10 mg/ml) 

was loaded on a column with or without preimmobilized RseB and incubated for 1 h. After 

extensively washing of the column with buffer A, RseB was eluted with buffer A containing 

100 mM EDTA. Samples of eluate A (with RseB) and eluate B (without RseB) were analyzed 

by ESI-MS to verify specific binding of RseA-Peptide to RseB. 
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5.2.2.11. High Performance Liquid Chromatography/Mass Spectrometry 
 

High Performance Liquid Chromatography/Mass Spectrometry (HPLC/MS) was used for 

identification of binding properties of RseA-Peptide to RseB. For gradient elution, the HPLC 

(Agilent 1100, DAD, 210 nm) was programmed as follows: 

 

solvent A: 0.05% (v/v) TFA in water 

solvent B: 0.05% (v/v) TFA in acetonitrile 

 

equilibration at 5% solvent B 

linear gradient: 0 min, 5% solvent B; 15 min: 90% solvent B 

 

The peptide and the proteins were detected as protonated molecules in the positive 

electrospray ionization (ESI) mode (microTOF LC, Bruker Daltonics) as they elute from the 

Symmetry300 C4 (Waters) reversed-phase columns during the acetonitril/water gradient. 

Mass analysis for peptide and protein was done separately at m/z-windows of 2000-5000 

(ion source 4900 V, orifice 10 V) and 32000-37000 (ion source 5000V, orifice 30 V), 

respectively. 

 

 

5.2.2.12. Analytical Ultracentrifugation (AUC) 
 

Analytical ultracentrifugation (AUC) experiments were performed in an Optima XLI analytical 

ultracentrifuge (Beckman) using rotor of An-60 type with EPON centrepieces of 1.2 cm path 

length. Three different concentrations (2.6 µM, 9.6 µM and 26.6 µM) of RseB dialysed in 

20mM Tris, pH 7.4 were tested in sedimentation velocity experiments. The experiment was 

performed at 38000 rpm for 6h and sedimentation curves were recorded by absorbance of 

278 nm at 20°C. Data from sedimentation process were processed with SEDFIT (Schuck, 

2000) to calculate the sedimentation coefficients. 
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5.2.3. Structure Based Methods 

 

5.2.3.1. Small Angle X-ray Scattering (SAXS) 
 

Small angle X-ray scattering allows determining the state of proteins in solutions at low 

resolution. Scattering pattern were collected by Gregor Witte and Sophia Hartung (Prof. 

Hopfner, Gene Center, Munich) from a RseB solution with a concentration of 5 mg/ml 

prepared in 20mM Tris pH 7, 10% Glycerol. As a control and for subtraction of the 

background a buffer sample was used. Small angle X-ray scattering data were collected at 

the X33 beamline (EMBL/DESY, Hamburg). Raw data were processed with PRIMUS (Konarev, 

2003), gyration radii were determined with GUINIER and fourier transformation was 

performed with GNOM (Svergun, 1992). Similarly theoretical data of different dimeric and 

hexameric assemblies of RseB were generated and compared to the experimental curves 

(CRYSOL (Svergun, 1995)). 

 

 

5.2.3.2. Negative Staining Electron Microscopy  
 

Protein for electron microscopy was prepared by Reinhard Albrecht (Max Planck Institute of 

Developmental Biology, Tübingen) as follows: Purified RseB a concentration of 7.6 mg/ml 

was loaded on a size exclusion column (Superose 6 10/30). Gelfiltration was performed at a 

flow of 0.1 ml/min using a running buffer, containing 25 mM Tris pH 7.9 and 150 mM NaCl. 

RseB eluted in two peaks, containing different oligomeric species. Higher molucular weight 

fractions of peak I were pooled and used for electron microscopic analysis which was 

performed by Heinz Schwarz (Max Planck Institute of Developmental Biology, Tübingen). 

Protein was absorbed on freshly glow-discharged carbon-coated Pioloform support film 

mounted on grids and access liquid was removed by a filter paper. To remove buffer salts, 

grids were washed with H2O and negatively stained with 1% aqueous uranyl acetate. 

Samples were analyzed at a primary magnification of 52 000x in a Philips CM10 transmission 

electron microscope at 60 kV acceleration voltage using a 30 µm objective aperture. EM 

negatives of 8.3 x 10,2 cm size (MACO EMS Film, Hans Mahn & Co, Stapelfeld/Hamburg) 

were scanned on Epson Pro 1600 at 2400 dpi with a pixel size of 2.04 Å (resulting in 50 MB 

image size). 
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5.2.3.3. Crystallization, Data Collection and Refinement 
 

RseB used for crystallization trials was concentrated to 1 or 5 mg/ml. Crystallizations were 

performed by hanging drop vapour diffusion method against commercially available crystal 

screens from Hampton Research using 1.2 µl protein and 0.6 µl reservoir solutions. Drops 

were equilibrated against 500 µl reservoir solution and incubated at 18 °C. 

Tetragonal crystals (form I) grew in a solution (1 mg/ml RseB) containing 2.4 M sodium 

malonate pH 7 and 0.3 M dimethylethylammonium propane sulfonate to final dimensions of 

0.25 x 0.25 x 0.05 mm. Orthorhombic crystals (form II) were obtained from a solution 

containing 0.2 M magnesium chloride hexahydrate, 0.1 M Tris-HCl pH 8.5, 25% (w/v) 

polyethylene glycol 3350 and 10 mM L-cysteine after 3 weeks.  

Tetragonal crystals belong to space group P4212 with a=164.3 Å, c= 81.5 Å, α=90° and 

diffracted to 2.8 Å resolution with an Rmeas of 8.7% and I/σ (I) of 18.8. Orthorhombic crystals 

diffracted to 2.4 Å resolution and belong to space group C2221 with a=98.6 Å, b=200.7 Å, 

c=109.7 Å, α=90°, with Rmeas of 11.1% and I/σ (I) of 12.64 (Table 1). 

Prior to data collection RseB and derivative crystals were directly frozen in liquid nitrogen. 

Data were collected at beamline ID23-EH1 of the synchrotron radiation source ESRF 

(European Synchrotron Radiation Facility, Grenoble, France) and beamline PXII-X10SA at the 

SLS (Swiss Light Source, Villigen, Switzerland) at 100 K (see Table 1). Diffraction patterns 

were recorded on 225 mm MARCCD (PXII-X10SA) and ADSC Q315 detector (ID23-EH1). 

Diffraction intensities were integrated using XDS, and scaled and merged using XSCALE 

(Kabsch, 1988).  

Derivative crystals were prepared using commercially available Pt-salts (Hampton Research). 

The best isomorphous phases resulted from labelling RseB tetragonal crystals soaked in 

reservoir solution containing 0.5 mM K2PtCl4, 0.5 mM K2Pt(SCN)6 or 0.5 mM 

[Pt2I2(H2NCH2CH2NH2)2](NO3)2 with the derivative data collected at the Pt-edge. The heavy-

atom substructure was identified and the structure was phased using the program package 

SOLVE/RESOLVE. Phases were determined at 3.2 Å using the program SOLVE (Terwilliger 

and Berendzen, 1999) and improved by solvent flattening using RESOLVE (Terwilliger, 2000). 

Manual model building based on the RESOLVE density and initial manual refinements of pdb 

files were done with COOT (Emsley and Cowtan, 2004) and O (Jones et al., 1991). The 

model of the native dataset was finally refined to 2.8 Å resolution using REFMAC5 

(Murshudov et al., 1997). The structure of the orthorhombic crystal form was solved by 

molecular replacement using the first 200 residues of the tetragonal model and the program 
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MOLREP (Vagin and Teplyakov, 1997). After solvent flattening with RESOLVE, manual 

placement of the smaller domain into the solvent-flattened density was performed and we 

refined the structure to 2.4 Å resolution.  

Tetragonal crystals contain two monomers (P1 and P2) per asymmetric unit (Matthews 

coefficient of 4, 69.3% solvent content). Orthorhombic crystals contain three monomers (C1, 

C2 and C3) per asymmetric unit at a solvent content of 53.1%.32 The Ramachandran plot 

shows that the structure has a good stereochemistry as 88.8% and 90.2% of all residues 

correspond to the core region in P1, P2 and C1, C2, C3, respectively (PROCHECK (Laskowski 

et al., 1993)).  

In the structure presented, the N-terminal methionine residue and the eight C-terminal 

residues, including the His6-tag, are missing. Additionally, four residues of the connecting 

loop (residues 212–215) were omitted, due to the poor quality of electron density in this 

region. As other monomers had more missing regions (P2, 94–99 and 209–218; C1, 208–221 

and 234–251; C2, 208–220 and 241–246; C3, 192–195 and 204–219), structure graphs are 

all based on P1 (unless stated otherwise).  

Figures were prepared using PyMOL (www.pymol.org), surface areas were calculated using 

AREAMOL (Lee and Richards, 1971), structural superpositions and RMSD calculations were 

done with CaspR (Claude et al., 2004). 
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7. Abbreviations 
 
 

Å Angstrom 

Amp ampicillin 

ATP adenosine triphosphate 

AU asymmtric unit 

AUC analytical ultracentrifugation 

bp base pairs 

BSA bovine serum albumine 

CL cross-link 

c(s) sedimentation coefficient distribution 

CT C-terminus 

D1 large domain of RseB 

D2 small domain of RseB 

DDM dodecyl maltoside 

DIM phthiocerol dimycocerosates 

DMSO dimethylsulfoxide 

DNA deoxyribonucleic acid 

dNTP deoxyribonucleoside triphosphate 

DTT dithiothreitol 

E. col Escherichia colii  

EDTA ethylenediaminetetra acetate 

EM electron microscopy 

e.g. for example 

ESI Electrospray ionization 

ESRF European synchrotron radiation facility 

FT flow through 

GTP guanosine triphosphate 

h hour 

HPLC High Performance Liquid Chromatography 

IPTG isopropyl β-D-thiogalactopyranoside 

IM inner membrane 

kDa kilodalton 

LB Luria Bertani broth 

LPS lipopolysaccharide 

MBP maltose binding protein 

MIR multiple isomorphous replacement 

MR molecular replacement 

MS mass spectrometry 

MW molecular weight 

NDS1 dimethylethylammoniumpropane sulfonate 

No. Number 

NT N-terminus 

OD optical density 

OG octyl glycoside 

OM outer membrane 

OMP outer membrane protein 

PAGE polyacrylamide gel electrophoresis 

PCR polymerase chain reaction 

PDB protein data bank 

Peg polyethylene glycol 

PegMME polyethylene glycol monomethylether 

poly-Q poly-glutamines 

p(r) electron pair distribution 

RIP regulated intramembrane proteolysis 

RMSD root mean square deviation 

RNA ribonucleic acid 

rpm rounds per minute 

RT room temperature 

Rse regulator sigmaE 

RseA-PP periplasmic domain of RseA 

RseB-D1 large domain of RseB 

RseB-D2 small domain of RseB 

σ sigma factor 

σE sigma factor for extracytoplasmic stress 

S Svedberg 

S2P site-2-protease 

SAXS small angle X-ray scattering 

SDS sodium dodecyl sulfate 

SLS swiss light source 

SREBP sterol regulator element binding protein 

SS signal sequence 

TB terrific broth 

TFA trifluoroacetic acid 

Tris tris (hydroxymethyl) aminoethanee 

UV ultraviolet 

V voltage 
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