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1. INTRODUCTION 
 
1.1 ENDOSYMBIOSIS AND PLASTOME-GENOME CO-EVOLUTION 
The evolution of eukaryotes, which consist of cells with nuclei, presumably from the 

prokaryotic domain, is considered to be one of the most profound changes in the 

evolutionary history of organisms. In an attempt to describe the way in which this gap 

was bridged, scientists have proposed the serial endosymbiosis theory (Sachs 1882; 

Schimper 1885; Altmann 1890; Mereschowsky 1905; Margulis 1971a, b; Herrmann 

1997; Martin et al. 2001; Kutschera and Niklas 2005). The term "endosymbiosis" 

specifies the relationship in which one organism lives within another (symbiont within 

host) in a mutually beneficial relationship. The endosymbiosis theory states that the 

evolution of eukaryotes from prokaryotes involved the symbiotic union of several 

previously independent ancestors. According to that theory, these ancestors included 

a host cell, presumably an archaebacterium (Brown and Dolittle; Martin and Müller 

1998; Lopez-Garcia and Moreira 1999; Martin and Russel 2003), an ancestor of 

mitochondria, most likely an α-proteobacterium (Biagini et al. 1993; Andersson and 

Kurland 1999; Rotte et al. 2000; Martin et al. 2001; Embley et al. 2003), and an 

ancestor of chloroplasts, most likely a cyanobacterium (Cozens and Walker 1987; 

Nelson 1992). As the integrated progenitors then became more interdependent, an 

obligatory symbiosis evolved (Margulis 1993). The endoymbiosis of a eukaryotic cell, 

already including a mitochondrial progenitor, with a photosynthesis competent 

cyanobaterium, lead to the kingdom of plants (McFadden 1999). 

 
The organelles, nucleus/cytosol and mitochondria in animals and fungi and 

nucleus/cytosol, mitochondria and plastids in plants, form a compartmentalized 

genetic system that has to be regulated in its entirety in time, quantity and spatially 

(Herrmann 1997; Herrmann and Westhoff 2001). Since mitochondria and plastids 

today possess only rudimentary genomes because they have lost a large fraction of 

their genes many of which by transfer to the nucleus (Herrmann 1997; Martin and 

Herrmann 1998; Martin 2003), much of the nuclear coding potential, in the order of 

20 – 30%, is required for their management (Herrmann 1997; Leister 2003, 2005). 

The post-endocytobiotic rearrangements of the genetic potentials of partner cells 

were accompanied by fundamental changes in expression signals in the entire 
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system at almost all regulatory levels (dePamphilis et al. 1997; Herrmann 1997; van 

der Kooij et al. 2000; Herrmann et al. 2003; Leister 2005). The genetic mechanisms 

like lateral gene transfer, gene duplication, genome reduction, gene elimination and 

mutations in combination with natural selection have been involved in evolution and 

speciation processes of plants (Darwin and Wallace 1858; Mayr 1988, 1991; 

Herrmann 1997; Martin and Herrmann 1998; Herrmann and Westhoff 2001; Henze 

and Martin 2001; Herrmann et al. 2003; Huang et al. 2003; Martin 2003; Timmis et al. 

2004). With regulatory dominance developed by the nucleus with time the organellar 

genomes lost their independency, i.e. mutations in one of the subgenomes can 

already have serious effects on the entire system (Herrmann and Possingham 

1980a; Hedtke et al. 1999; Whitney et al. 1999; Rodermel 2001; Lam et al. 2001). 

 
This fact explains why the individual organelles are related to each other in 

dependence. Any change in one of the organellar genomes leads inevitably to an 

evolutionary pressure and makes co-evolution of the individual organelles 

indispensable. Genome arrangements are thus of vital importance of the enduring 

genetical diversification and speciation processes (Herrmann 1997; Margulis and 

Sagan 2002). This becomes apparent in interspecific nuclear-plastid cybrids or 

hybrids. These plastome-genome exchanges between two different species often 

lead to serious disturbances (incompatibilities) that are a result of the missing co-

evolution of organelles (Renner 1934; Stubbe 1959, 1989; Schmitz-Linneweber et al. 

2002, 2005; Herrmann et al. 2003) (see more detail in Chapter 1.2.4). A broad range 

of these incompatible phenotypes is visible in different plastome-genome 

combinations within the genus Oenothera. 

 

1.2 THE MODEL GENUS OENOTHERA 
The plant model genus Oenothera has an outstanding genetic tradition (summarized 

in Lehmann 1922; Cleland 1972; Harte 1994). A comprehensive taxonomy, 

cytogenetics, ecology and formal genetics are available (Cleland 1972; Harte 1994; 

Dietrich et al. 1997), which was developed over more than a century. An unique 

combination of genetic features and the occurrence of unsaturated fatty acids (γ-

linolenic acid, Omega-6) (Kies 1989; Horrobin 1990; Mol et al. 2001; Shimizu and 

Nakano 2003; Fieldsend 2007) and secondary metabolites (Taniguchi et al. 2002) 
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illustrate a special role of the genus Oenothera for a variety of biological, medical and 

pharmaceutical questions.  

 

1.2.1  ECOLOGY, GEOGRAPHY AND A SHORT HISTORY OF RESEARCH ON 
OENOTHERA  

The genus Oenothera is indigeneous in North and South America. The largest variety 

of species is found in Mexico and the Northern part of Middle America. Today, more 

than 300 genetically analyzed strains are known in subsection Oenothera (Cleland 

1972; Steiner and Stubbe 1984, 1986; Stubbe and Diers 1985; Wasmund and 

Stubbe 1986; Wasmund 1990; Schumacher et al. 1992; Schumacher and Steiner 

1993), which is one of the five subsections of the genus (Dietrich et al. 1997). In their 

presumable original region of distribution, Oenothera species are found in different 

habitats, varying from deserts to disturbed places and from plains to mountains. 

Oenothera species grow wild in Europe as well, in bare, abandoned places, along 

stony riverbanks, the sides of canals, roads and railroad tracks. Evening primroses 

are assumed to have invaded to European continent after 1500 A.D. (Harte 1994). 

The first species mentioned as cultivars in gardens of continental Europe was 

Oenothera syrticola Bart. (syn. Oe. muricata AUT.) in 1633 and short time afterwards 

a pre-form of the today well-known Oe. biennis L. was described. The latter is not 

only a long-established member of the European flora but is found meanwhile in 

nearly all other continents. Thus, this genus successfully distributed nearly all over 

the globe, with a remarkably ability of adaptation to new environmental conditions, 

whereby the genus can be ranked among cosmopolitan plants.  

 

Section Oenothera belongs to the plant family of Onagraceae, which is divided into 

14 sections (Oenothera, Kleinia, Emeria, etc.), all together including 119 species. The 

section of interest in the present work is Oenothera, further divided into five 

subsections, (Eu-)Oenothera (13 species), Munzia (45 species), Raimannia (11 

species), Emersonia (four species) and Nutantigemma (three species) (Dietrich 1977; 

Stubbe and Raven 1979; Dietrich und Wagner 1988; Dietrich et al. 1997). Subject of 

analysis for my thesis is the subsection (Eu-)Oenothera. 
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Hugo Marie de Vries (1848-1935). At the end of the 19th century it 

was the Dutch scientist Hugo de Vries, professor of botany at the 

University of Amsterdam, who established the genus Oenothera as 

a model organism in experimental botany. Since that time, the 

genus is of interest not only in taxonomy but especially in genetics. 

Hugo de Vries rediscovered the Mendelian rules with this plant 

genus (de Vries 1900a, b), although today the genus Oenothera is considered as an 

example for non-Mendelian nuclear and organelle inheritance, too. Also, he 

proclaimed the mutation theory by observations made on Oenothera lamarckiana de 

Vries (de Vries 1901 - 1903). After this starting, a few scientists switched their 

interest to Oenothera. Further fundamental discoveries like the genetic independence 

of plastids (Renner 1934) and the first description of polyploidy (Lutz 1907) were also 

made on Oenothera. Otto Renner (1883 - 1960) formulated his theory of genome and 

chromosome complexes (Renner complexes: entire haploid genomes, which are 

inherited as single units) and provided first clues to solve particular problems of 

inheritance in Oenothera species (Renner 1914; 1917a, b, c; 1918a, b; 1919a, b). An 

example is provided by the non-Mendelian phenomenon of twin hybrids in some F1 

generations (de Vries 1900c; 1907; 1913; Andrews 1910; Honing 1911) (Fig. 1-1). 

 

1.2.2  GENERAL GENETICS OF OENOTHERA 

An extensive knowledge about genetics in Oenothera was collected during the past 

century. Thus, today Oenothera is an example for genetic features, which in their 

combination is unique in this genus. These features are biparental transmission of 

plastids (e.g. Hagemann 2004), permanent translocation heterozygosity (PTH, syn. 

complex heterozygosity) (Stubbe 1960; Cleland 1972; Harte 1994; Holsinger and 

Ellstrand 1984; Stubbe 1989; Levin 2002; Golczyk et al. 2005), reciprocal 

translocations of chromosome arms (Blakeslee and Cleland 1930; Cleland and 

Blakeslee 1931; Cleland 1972; Harte 1994), a general interfertility of species, fertility 

of plastome-genome hybrids (Stubbe 1959; Cleland 1972; Harte 1994) and hybrid 

variegation (Kirk and Tilney-Bassett 1978). They allow the sexual exchange of 

plastids, individual (or more) chromosomes and entire genomes (Renner complexes) 

between species. 
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Fig. 1-1: „Twin hybrids“ were recognized with F1 generations in some Oenothera crossing 
experiments. In this example, complex 1 (blue) from the female parental line is a pure egg cell 
complex (♀), while complex 2 (yellow) from female parental line can exist in both, egg cell (♀) and 
pollen (♂). Such a species is called “half-heterogamous”. Oenothera biennis strain suaveolens Grado 
(Galbicans ♀ • Gflavens ♀♂) is an example for such a situation. Complex 1 (red) from the male parental 
line is a pure egg cell complex (♀) while complex 2 (green) from male parental line is a pure pollen 
complex (♂). This situation is present in permanent translocation heterozygous Oenothera species 
[e.g. Oenothera villosa subsp. villosa strain bauri (laxans ♀ • undans ♂)], called “heterogamous 
species”. Crossing of these two species results in two different phenotypes (so called twin hybrids) in 
F1, contrary to Mendel´s First Rule. 
 
The special genetical phenomenon of permanent translocation heterozygosity in 

genus Oenothera directed attention especially to the nucleus and its chromosomes. 

The phenomenon of reciprocal translocations of chromosome arms, in turn, reaches 

an endpoint in the specific system known as stable translocation heterozygosity ( 14 

= a ring-formation consisting of all 14 chromosomes, syn. terminal heterozygotes). It 

describes a distinct structural feature of chromosomes that usually rest on two crucial 

prerequisites, i.e. that chromatin translocations involve entire chromosome arms and 

that they are reciprocal (breaking points at the centromeres). This system represents 

the ultimate situations in linkage disequilibrium (Futuyma 1979, Úbeda and Haig 

2004; 2005). In such plants each haploid complement of seven chromosomes is 

connected through reciprocal translocations, making nearly the entire genome 

behave as a single coupling group. A major feature of this evolutionary pattern is 

related to restriction in recombination (Cleland 1972; Raven 1979; Harte 1994). 

Entire haploid genomes are designated as Renner complexes and entitled with 

names such as hjohansen, htuscaloosa or Galbicans. The genetic mechanisms that 

control the formation of the permanent translocation heterozygosity system were 

discovered and largely worked out by Otto Renner (see Cleland 1972). An 

♀ ♂ ♀ ♀ ♂ 

X F0 

F1 

complex 1 from female parental line 

complex 2 from female parental line 

complex 1 from male parental line 

complex 2 from male parental line 
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enumeration of single chromosome arms was essential as a consequence of different 

genome combinations resulting from reciprocal translocations. In addition to 

translocations, the system operates with balanced, genetically controlled lethals, in 

which homozygosity of non-allelic recessive lethal genes results in mortality, either 

sporophytic or gametophytic, when the parent plant is autogamous (Fig. 1-2). This 

system prevents the formation of the homozygous combinations or, as in many 

permanent translocation heterozygous species, renders the young embryos with 

homozygous complexes lethal (Muller 1917), and stabilizes the heterozygous state of 

species. 

 

      ♂        A            B  ♂          A      B 
 ♀ ♀  
 
 A        A 
 

 B        B 
 

Fig. 1-2: Diagram to show the effect of balanced lethals. At the left, one complex is inactivated by 
one gametophytic lethal, the other complex by the other lethal. At the right, zygotes that receive the 
same zygotic lethal from both parents fail to develop (modified from Cleland 1972).  
 

Nowadays it is known that approximately a quarter of the angiosperm species studied 

transmit plastids biparently (Corriveau and Corriveau 1988; Harris and Ingram 1991; 

Hagemann 1992; Zhang et al. 2003). First indications for biparental transmission of 

plastids in Oenothera appeared with fertilization studies. These studies showed that 

not only the pollen tube, containing many leucoplasts, but also generative cells 

contain plastids (Meyer and Stubbe 1974), which in most cases introduces 

considerable cytoplasm into the zygote (Ishikawa 1918). These results, in 

combination with observations of different phenotypes of reciprocal crosses (Renner 

1924), lead to two conclusions: First, in Oenothera plastids can be inherited from 

both parents. Second, different classes of plastids exist in different lineages of the 

genus, which react differently in association with various genome combinations. Only 

few leucoplasts (around 15) are transmitted via the pollen (Meyer and Stubbe 1974), 

while egg cells possess approximately twice as many plastids (around 30). The 

AA AB 

AB BB 

AA AB 

AB BB 
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different plastid types, present in the zygote, segregate during development into 

different cells, and segmental or periclinal chimeras develop (hybrid variegation). In 

the next generation of this plant the division rate of different plastid types determine 

which plastome will dominate (determined division rate of different plastome types in 

Oenothera: I>III~II>V>IV) (Schötz 1954, 1974, 1975; Chiu et al. 1988; Chiu and 

Sears 1993). The existing Renner complexes determine the behavior of the nuclear 

genome, according to the structure present during meiosis (permanent translocation 

heterozygous structure or the formation of bivalents).  
 

Permanent translocation heterozygosity has been important in the evolution of the 

genus Oenothera. The genera of tribe Onagrae possess chromosomes with highly 

pycnotic, condensed proximal regions that are flanked by less densely contracted 

distal segments. The characteristic metacentric chromosomes (Kurabayashi et al. 

1962; Cleland 1972; Raven 1979) show ring-formation in meiosis (Cleland 1972; 

Holsinger and Ellstrand 1984; Stubbe 1989; Harte 1994; Levin 2002; Golczyk 2005) 

as a result of reciprocal arm translocations. In addition to terminal (complete) 

translocation heterozygotes ( 14), there also exist naturally occurring partial 

translocation heterozygotic (at least one free bivalent can be formed during meiosis), 

and bivalent forming species. The occurrence of terminal translocation 

heterozygosity, the property of a genome in meiosis to distribute its maternal and 

paternal chromosome sets to resulting gametes without notable mixing, in 

combination with biparental transmission of plastids allows the exchange of plastids 

and haploid chromosome sets between Oenothera species (Fig. 1-3). This often 

leads to serious developmental disturbances (Stubbe 1989; Herrmann et al. 2003; 

Levin 2003). A special well-known case of such an interacting malfunction is known 

as Dobzhansky-Muller incompatibilities, which can probably be applied to various 

cases of the Oenothera model, too (Bateson 1909; Dobzhansky 1937; Muller 1942; 

Greiner et al. 2008a) (see Chapter 1.2.4). This way, three haploid nuclear genomes 

(A, B and C) in homozygous (AA, BB, CC) or heterozygous (AB, BC, AC) 

constitution, associated with five basic, genetically distinguishable plastomes (I - V) 

were identified (Stubbe 1959, 1960, 1989) (Fig. 1-4). The plastomes were recently 

sequenced (Greiner et al. 2008b). 
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Fig. 1-3: Crossing scheme of an exchange of plastids without changing the nuclear background. 
Crossed pictures of gametes represent lethality because of gametophytic lethal factors.  
Chromosomes ordered in a “zig-zag” confirmation represent ring formation during meiosis (complex- 
heterozygosity).  
 

1.2.3  DOBZHANSKY-MULLER-INCOMPATIBILITIES (DMI) 
Currently, no other comparable material is available which allows an exchange of 

plastids and nuclei just by simple crossings. In Oenothera, all possible 30 plastome-

genome combinations can exist and were either made by crossings or occur naturally 

in nature (Stubbe 1959, 1960, 1989). An exchange of plastids and nuclei, even 

between closely related species, often leads to serious developmental disturbances 

(Stubbe 1989; Herrmann et al. 2003; Levin 2003) (Fig. 1-4). Generally plastome-

genome-incompatibilities (PGI) can cause hybrid sterility, hybrid inviability (hybrid 

weakness) and hybrid breakdown (Levin 2003; Stebbins 1950; Stubbe 1989; Yao 

and Cohen 2000; Greiner et al. 2008a). Incompatibilities reflect disharmonic 

interactions of cellular genomes resulting from a different co-evolution of gene 

complexes in distant species (Dobzhansky 1970; Hermann et al. 2003; Levin 2003; 

Rand et al. 2004; Schmitz-Linneweber et al. 2005). Obviously, an exchange of the 
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observed than in the predominantly studied hybrid sterility. The availability of the 

entire sequences for the five genetically distinguishable plastome types from 

Oenothera (Greiner et al. 2008b) allowed for the first time a bioinformatical 

comparative analysis to deduce determinants causing incompatibility (Greiner et al. 

2008c). This way, one gene involved, a “plastome factor” of a “Dobzhansky-Muller 

gene pair”, has been identified, that could be corroborated by biochemical and 

biophysical approaches. The corresponding nuclear gene (“nucleus factor”) can 

either be identified by mapping approaches, by gel shift approaches, or by 

information already available from other plants about interacting partner genes (e.g. 

of complexes) of the previously identified “plastome factor”. With mild PGIs good 

chances exist to pinpoint primary effects of speciation. 

 

1.2.4  MEIOSIS RESEARCH IN OENOTHERA 

In earlier Oenothera research, i.e. during the first three quarters of the 20th century, 

analysis of Oenothera meiosis suffered from methodical limitations of cytological 

resolution and phenotypic observations. Theoretically, two possibilities existed how 

chromosomes of permanent translocation heterozygotic Oenothera species behave 

during meiosis. It was proposed that chromosome arms either fit together just at their 

telomeric parts, forming a “ring” or that entire arms pair and form a “star” (Fig. 1-6) 

(Stubbe 1980; Harte 1994). The latter version was finally excluded because of 

assumed sterical problems caused by centromere ordering and because no such 

structure could be observed cytologically. In the following years, a “run” on 

chromosomal formulas began and all possible chromosome configurations were 

  

 
 
Fig. 1-6: Graphic of a suspected „star“ confirmation 
of chromosomes in meiotic state metaphase I (stable 
translocation heterozygosity; 14). Such a 
chromosome arrangement was excluded because of 
sterical problems caused by centromere ordering. 
Maternal (black) and paternal (white) chromosomes 
are ordered in an alternate way and in truth connected 
at the telomeres [ring-formation (see Fig. 1-7)] (Stubbe 
1980). 
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found (Table 1-1), either in naturally occurring Oenothera species or in hybrids 

generated by appropriate crosses. On the basis of cytological investigations of 

chromosome configurations of hybrids, chromosome formulas were postulated, 

taking the chromosome formula of Oenothera elata subsp. hookeri de Vries as a 

standard (hhookeri = 1•2  3•4  5•6  7•8  9•10  11•12  13•14). For instance, the arms of 

chromosomes 1•2  and 3•4 can display three different segmental arrangements, also 

1•4  3•2  and 1•3  2•4. Since all 14 chromosome arms are involved in this process, 91 

arm combinations in individual chromosomes are possible [ ௡!
௞! ሺ௡ି௞ሻ!

ൌ  ൫௡
௞൯; n = 

objects, k = selected objects (without attention of a particular order and without 

“putting back”)]. All these combinations have been found, but do not appear or prevail 

with equal frequency, e.g. chromosome 1•2 occurs frequently, but 1•3 is rare. 

 
Table 1-1: Possible chromosome configurations in 

homozygous/heterozygous plants with 2n = 14 
14 

10, 4 
8, 6 

6, 4, 4 
12, 1 pair 

8, 4, 1 pair 
6, 6, 1 pair 

4, 4, 4, 1 pair 
10, 2 pairs 

6, 4, 2 pairs 
8, 3 pairs 

4, 4, 3 pairs 
6, 4 pairs 
4, 5 pairs 
7 pairs 

All possible chromosome configurations were observed in either natural 
occurring Oenothera species or hybrids (Cleland 1972).  

 

Rates of recombination events, observed with just a few phenotypical markers 

(summarized and listed in Cleland 1972), were nearly impossible to be determined in 

the entire dimension because of special genetical attributes: First, appearance of 

balanced lethals within some Oenothera species; second, appearance of megaspore
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Fig 1-7a-c) Records of meiotic rings in 
the genus Oenothera. Fig. I-7a) a ring of all 
14 chromosomes observable in permanent 
translocation heterozygotes (e.g. Oe. biennis 
strain suaveolens Grado). Fig. I-7b) a ring of 
12 chromosomes and one free bivalent (1 
and 2) observable in partial translocation 
heterozygotes (e.g .in a hybrid consisting of 
the Renner complexes Stalbicans and 
htuscaloosa); Fig. I-7c) one ring of six (5-10), 
one ring of four (11-14) and two free 
bivalents (1-2 and 3-4) observable in hybrids 
with adequate chromosomal formulas (e.g. 
in a hybrid consisting of the Renner 
complexes hpingens and hjohansen). 

 
and embryo sac competition of Renner complexes (Harte 1994; Renner 1921a); third, 

appearance of pollen tube competition of Renner complexes (Renner 1917a); fourth, 

a limited number of available phenotypical markers. All this can lead to deviations 

from typical Mendelian segregation, e.g. to altered, atypical segregation ratios 

(Cleland 1972). A further complication arises, since genes often appear to be 

differently linked in different hybrids, depending upon the chromosome configurations 

present. It is relevant to mention that homologous recombination is expected to be 

substantially reduced and limited to telomeric regions in translocation heterozygous 

hybrids, because bivalent formation is lacking (Stubbe 1989; Levin 2002). Despite 

their sequence diversity (Lamb et al. 2007), plant telomeres are not known to 

possess genes. The crossovers that occur in telomeric regions of evening primrose 

are therefore neutral in that they do not generate genetic diversity. The situation in 

naturally occurring, bivalent forming Oenothera species is unclear. Segregation of 

a) b) 

c) 

1 

2 
1 2 

3 4 

5 
6 

7 

8 
9 

10 
11 

12 

13 
14 

3 

14 12, 1 pr. 

4 

5 
6 

1 

2 

7 8 9 
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14 
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some phenotypic markers has been observed and, consequently, the homologous 

recombination machinery is present in Oenothera, in translocation heterozygotes and 

in bivalent formers. 

 

1.3 HOMOLOGOUS RECOMBINATION AND EVOLUTION OF SEX 
It is important to understand how homologous recombination works, last not least 

because of its perspectives for plant genome engineering. The ability to modify plant 

chromosomes through homologous recombination (gene targeting) has been a long 

idea and goal of plant biology (e.g. reviewed by Reiss 2003), but the mechanisms are 

not yet fully understood. 

 

Rates of recombination events generally depend on the degree of homology between 

pairing chromosomes. Crossing-over events are, in most cases, essential for 

mapping markers (exception: HAPPY mapping; Thangavelu et al. 2003). During the 

past decades genetic maps were generated from a number of materials using inter- 

or intraspecific crosses. In these cases, the degree of polymorphism between the 

parental lines ranged up to 60.7% (Tan et al. 2001). In the meiosis of yeast, one of 

the best studied organisms, efficient recombination even occurs between 1 kb blocks 

of perfect homology embedded in non-homologous regions (Haber et al. 1991). 

Thus, for homologous recombination small homologous segments on chromosomes 

appear to be sufficient to enable crossing-over events. 

 

Although the molecular processes and advantages of recombination are not yet fully 

understood, studies in yeast and other organisms have led to the Double-Strand 

Break Repair (DSBR) model (Szostak et al. 1983; Sun et al. 1989). It involves a 

single pathway of DNA intermediates that produces both crossovers (COs) and non-

crossovers (NCOs). Statistical and experimental evidence suggests that Arabidopsis 

thaliana, like the budding yeast Saccharomyces cerevisiae and humans, has two 

recombination pathways: one that exhibits crossover interference (CO prevents 

additional COs from occurring nearby) and another that does not (Copenhaver et al. 

2002; de los Santos et al. 2003; Housworth and Stahl 2003; Malkova et al. 2004). 

This is in contrast to organisms such as Caenorhabditis elegans and Drosophila 

melanogaster, in which all COs are thought to be subject to interference (Zhao et al. 
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1995; Meneely et al. 2002), or to fission yeast Saccharomyces pombe, in which all 

COs are subject to an interference-insensitive pathway (Kohli and Bahler 1994). In 

the organisms studied to date with both interfering and non-interfering COs, the 

majority of events are thought to be generated by the primary, interference-sensitive 

pathway.  

 

Meanwhile, various components and intermediates are known, especially from yeast 

(Smith and Nicolas 1998; Keeney 2001), but more and more homologues could be 

identified in Arabidopsis (e.g. reviewed by Mézard et al. 2007). These components 

were also assigned to different steps in the procedure of homologous recombination, 

as there are, for instance, condensation/decondensation of chromatin, DSB 

formation, end processing, strand invasion and many genes involved in interfering 

crossover pathway, non-interfering crossover pathway or non-crossover pathway.  

 

Homologous recombination is an event occurring in most species with sexual 

reproduction. During evolution, sex is thought to have been developed from an 

asexual ancestor. But why? A substantial number of observations and tests were 

performed to approach the evolution and sense of sex (e.g. Stebbins 1950; Maynard-

Smith 1978; Rice 2002; Nielsen 2006). A useful basic approach to tackle that 

question was to compare asexual with sexual reproduction. Sexual reproduction has 

often been related to sexual recombination, without taking note of permanent 

translocation heterozygous species. The most popular advantage of sexual 

recombination is faster adaptation to changing environments compared to asexual 

reproduction (Fisher-Muller model; Fischer 1930; Muller 1932). It further allows 

natural Darwinian selection to propagate more efficiently (Rice and Chippindale 2001; 

Nielsen 2006; Paland and Lynch 2006). However, also other hypotheses have been 

favored. (1) Ecological theories, e.g. the pathogen ratchet theory, defined as the 

reduction of similarity of resistance loci between parents and offspring (Rice 1983) 

and (2) genetic theories, e.g. mutational load, defined as the reduction in fitness of a 

population due to an accumulation of deleterious mutations (Muller´s ratchet) (Muller 

1964; Kimura and Maruyama 1966; Kondrashov 1984, 1988; Moran 1996; Rice 

1998, 2002; Race et al. 1999; Keightley and Eyre-Walker 2000, Hillis 2007). But 

opinions about the individual points diverge. For instance, it has been reported that 
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new alleles are of benefit only if they accumulate in a prescribed order. Only asexual 

reproduction allows some overlap of successive allele replacements (Kondrashov 

and Kondrashov 2001). Furthermore, it was shown that in species with short 

generation times, sex is not maintained by its capacity to purge the genome of 

deleterious mutations (Keightley and Eyre-Walker 2000). Thus, the question upon the 

advantage of sex remains, particularly with regard to the disadvantage of the “two-

fold” cost of producing males (“two-fold” cost of meiosis) (Maynard-Smith 1978; Rice 

2002; Nielsen 2006). Parthenogenetically reproducing females arising in a sexual 

population should have a twofold fitness advantage because, on average, they 

provide twice as many gene copies to the next generation. But parthenogenesis does 

not play a dominant role in nature. If sexually reproducing individuals do not have an 

immediate selective advantage in otherwise asexual populations, it is difficult to 

imagine how populations can ever evolve from asexual to sexual reproduction. 

Asexual lineages are found among most of the major plant and animal groups 

(Stebbins 1950; White 1978). Persistance over geological time, that is for million(s) of 

years (Maynard-Smith 1978; White 1978), means by definition not to be an 

evolutionary dead-end, as individuals without homologous recombination are usually 

seen. The bdelloid rotifers (Welsh and Meselson 2000), some small vertebrates 

(Judson and Nomark 1996; Butlin et al. 1998) and permanent translocation 

heterozygous species do not confirm this idea, whereby the question about the sense 

of sex remains unresolved and cannot be justified apparently just by homologous 

recombination. 

 

1.4  GOALS OF THE PROJECT 
In this work I established and utilized Amplified Fragment Length Polymorphism 

(AFLP) analyses for four basic goals: (1) to establish genomic markers to generate 

first comprehensive linkage maps for two genomes (A and B) of the genus 

Oenothera; (2) to clarify the situation in bivalent forming Oenothera species 

concerning their behavior during meiosis; (3) to evaluate both, intra- and interspecific, 

diversity (phylogenetic relationship) with AFLP data; (4) to provide molecular 

biological evidence of restriction of homologous recombination to telomeric regions in 

constructed translocation heterozygous hybrids, generated to exchange sexually 

plastids or entire genomes.  
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The linkage maps were used to identify chromosomes responsible for the virescent 

incompatibility between the genotype AA and the plastome type III. In addition, this 

possible Dobzhansky-Muller incompatibility should be characterized by using 

bioinformatical, molecular biological and biochemical methods in order to narrow 

down the possible “plastome-factor” of the Dobzhansky-Muller gene pair. 

 

Plant breeding and crossing programs within the genus Oenothera requires up to 

now knowledge of the characteristics of different Renner complexes and their 

genetics to be able to exchange plastids and individual or more chromosomes. To 

simplify and to improve such crossing programs, a marker system was established to 

distinguish different complexes as well as different plastome types. The PCR based 

markers should provide a general molecular basis for working with the genus. 

 

Finally, DAPI based fluorescent in situ hybridization techniques with chromosome 

arm specific probes should be established in cooperation with Dr. Hieronim Golczyk 

(Jagiellonian University, Krakow, Poland). This approach provided substantial 

progress in determing chromosome arm combinations, which are a result of relatively 

frequently occurring reciprocal translocation events that lead to variations of 

chromosome formulas within Oenothera species. 
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2. MATERIAL & METHODS 
 

 
2.1 MATERIAL 
 
2.1.1 CHEMICALS 
Chemicals which are not listed were purchased either from Roth (Karlsruhe), Merck 

(Darmstadt), New England Biolabs (Beverly, USA), Roche (Mannheim) or Sigma 

Chemical Company (Munich). The chemicals used were of p.a. quality unless 

otherwise is mentioned. 

 

Reagents      Manufacturer 
 
AccuGelTM 40% w/v (29:1)    National Diagnostics, Atlanta, USA 
Agarose      Biozym, Oldendorf or Bio&Sell, Nürnberg  
Ammoniumpersulfate (APS)    Ambresco, Solon, USA 
Ampicilline      Boehringer, Mannheim 
ATP       Roche, Mannheim 
Bacto-Tryptone (Bacteriological Peptone)  Amersham Biosciences, Uppsala, Schweden 
Biotin (syn. Vit. B7,Vit. H, Coenzym R)   Roche, Mannheim 
Biotin-Nick Translation Mix    Roche, Mannheim 
Bovine Serumalbumin (BSA)    New England Biolabs, Beverly, USA 
4’,6-Diamidino 2-phenyindole (DAPI)    Sigma-Aldrich, Munich 
Digoxigenin-11-dUTP     Roche, Mannheim 
DIG-Nick Translation Mix    Roche, Mannheim 
deionised Formamide     Serva, Heidelberg 
FITC-conjugated sheep anti-digoxigenin  Roche, Mannheim 
Fluorescein (FITC) AffiniPure Donkey Anti-Sheep IgG Jackson Immunoresearch, Suffolk, UK 
Karmin acetic acid     Merck, Darmstadt 
Long Ranger ® Gel Solution    Cambrex Bioscience, Rockland, USA 
Salmon Sperm DNA (blocking DNA)   Roche, Mannheim 
Streptavidin-Alexa Fluor® 488    Invitrogen, Karlsruhe 
Tetramethylrhodamine-5-dUTP    Roche, Mannheim 
Tween 20      AppliChem, Darmstadt 
Rhodamine (TRITC)     Roche, Mannheim 
ROX Standard GeneScan®-500 ROXTM   Applied Biosystems, Foster City, USA 
TRITC-sheep anti-digoxigenin    Boehringer, Mannheim 
Tween 20      AppliChem, Damstadt 
Vectashield® mounting medium H-1000   Vector Laboratories, Grünberg 
Yeast RNA      Ambion, Austin, USA 
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2.1.2 MOLECULAR BIOLOGICAL “KITS” 
 
Molecular biological “kits” Manufacturer 
 
DNeasy Plant Mini Kit Qiagen, Hilden 
Thermo SequenaseTM Dyenamic Direct Sequencing Kit  Amersham Biosciences, Uppsala, Schweden 
Fluorescent Antibody Enhancer Set for DIG Detection Roche, Mannheim 
DIG-Nick translation Mix Roche, Mannheim 
QIAGEN Plasmid Mini Kit Qiagen, Hilden 
QIAquick PCR Purification Kit Qiagen, Hilden  
Ultrafree-DA Centrifugal Filter Device Millipore, Eschborn 

 

2.1.3 ENZYMES 
 
Enzymes      Manufacturer 
 
Restriction enzymes:      
AluI, ApeKI, BamHI, BclI, BseRI , BsrI, BsuRI (HaeIII) New England Biolabs, Beverly, USA, 
DdeI, EarI, EcoRI, HhaI, HindIII, HpyCH4III, MseI,  
NaeI, NotI, PflFI, PstI, RsaI, SacI, TaqI, XhoI 
       
Cellulase (from Aspergillus nigra)   Fluka, Sigma-Aldrich, Buchs, Suisse 
Cellulase Onozuka R-10 (from Trichoderma viride) Serva, Heidelberg 
Calf intestinal alkaline phosphatase (CIAP)  New England Biolabs, Beverly, USA 
Pectinase (from Aspergillus niger)   Sigma-Aldrich, Buchs, Suisse  
Pepsin       Merck, Darmstadt 
Phusion™ High-Fidelity DNA Polymerases   Finnzymes, Espoo, Finland 
RNase A      Roche, Mannheim 
T4 DNA Ligase      Qiagen, Hilden 
Taq DNAPolymerase     Qiagen, Hilden 
 

2.1.4 UNMODIFIED OLIGONUCLEOTIDES  
 
Name      Sequence 
 
SP6 Pro     5´-ATT TAG GTG ACA CTA TAG AAT-3´ 
T7 Pro      5´-TAA TAC GAC TCA CTA TAG GG-3´ 
M40for      5´-ACC GTC TCC TCC AAG CAC TGC-3´ 
M40rev      5´-TCA GCC CTT TGT CCG AAG TCG-3´ 
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2.1.5 UNMODIFIED OLIGONUCLEOTIDES AND ADAPTORS (AFLP) 
All nucleotides listed below were obtained from MWG-Biotech (Ebersberg, Germany). 

 
Name      Sequence 
 
MseI adaptor 1     5’–CCC AGT CAC GAC GTT GTA AAA CG–3’ 
MseI adaptor 2     5’–AGC GGA TAA CAA TTT CAC ACA GG–3’ 
MseI+C        5´–GAT GAG TCC TGA GTA AC–3´ 
MseI+CAA     5´–GAT GAG TCC TGA GTA ACA A–3´ 
MseI+CAC      5´–GAT GAG TCC TGA GTA ACA C–3´ 
MseI+CAG     5´–GAT GAG TCC TGA GTA ACA G–3´ 
MseI+CAT     5´–GAT GAG TCC TGA GTA ACA T–3´ 
MseI+CCA     5´–GAT GAG TCC TGA GTA ACC A–3´ 
MseI+CCC     5´–GAT GAG TCC TGA GTA ACC C–3´ 
MseI+CCG      5´–GAT GAG TCC TGA GTA ACC G–3´ 
MseI+CCT     5´–GAT GAG TCC TGA GTA ACC T–3´ 
MseI+CGA      5´–GAT GAG TCC TGA GTA ACG A–3´ 
MseI+CGC     5´–GAT GAG TCC TGA GTA ACG C–3´ 
MseI+CGG      5´–GAT GAG TCC TGA GTA ACG G–3´ 
MseI+CGT      5´–GAT GAG TCC TGA GTA ACG T–3´ 
MseI+CTA      5´–GAT GAG TCC TGA GTA ACT A–3´ 
MseI+CTC      5´–GAT GAG TCC TGA GTA ACT C–3´ 
MseI+CTG      5´–GAT GAG TCC TGA GTA ACT G–3´ 
MseI+CTT      5´–GAT GAG TCC TGA GTA ACT T–3´ 
MseI+GAA     5´–GAT GAG TCC TGA GTA AGA A-3´ 
SacI Adapter1      5´–CTC GTA GAC TGC GTA CAA GCT–3´ 
SacI Adapter2      5´–TGT ACG CAG TCT AC–3´ 
SacI+G      5´–GAC TGC GTA CAA GCT CG–3´ 
SacI+C      5´–GAC TGC GTA CAA GCT CC–3´ 
 

AFLP-„primer“ (SacI-X(X) and MseI-C(XX)) generally consist of three parts: a core-

sequence (CORE), the enzyme specific sequence (ENZ) and a selective extension 

sequence (EXT) (Zabeau and Vos 1993). 

 

························CORE··························ENZ············EXT 
SacI  5´-GAC TGC GTA CA          A GCT C   NN N-3´ 
MseI  5´-GAT GAG TCC TGA G  TA A           NN N-3´ 
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2.1.6  FLUORESCENT DYE LABELED OLIGONUCLEOTIDES (AFLP ANALYSIS) 
 
Name      Sequence 
 
SacI +GG 5´-FAM (6-FAM)    5´–GAC TGC GTA CAA GCT CGG–3´ 
SacI +GA 5´-FAM (6-FAM)    5´–GAC TGC GTA CAA GCT CGA–3´ 
SacI +CA 5´-FAM (6-FAM)   5´–GAC TGC GTA CAA GCT CCA–3´ 
SacI +CC 5´FAM (6-FAM)   5´–GAC TGC GTA CAA GCT CCC–3´ 
SacI +GC 5´-Joe     5´–GAC TGC GTA CAA GCT CGC–3´ 
SacI +GT 5´-Joe     5´–GAC TGC GTA CAA GCT CGT–3´ 
SacI +CG 5´-Joe    5´–GAC TGC GTA CAA GCT CCG–3´ 
SacI +CT 5´-Joe    5´–GAC TGC GTA CAA GCT CCT–3´ 

 

2.1.7 PLANT MATERIAL 
 
Strain   Genome/ Renner complex(es) Configuration 
   Plastome    in meiosis    
 

Oenothera elata subsp. elata 
  
chapultepec  AA-I  hchapultepec 7 prs. 
cholula  AA-I  hcholula  7 prs. 
puebla  AA-I  hpuebla  7 prs. 
toluca  AA-I  htoluca  7 prs. 
 
 

Oenothera elata subsp. hookeri  
 
franciscana de Vries AA-I  hfranciscana d.V. 7 prs. 
franciscana E. & S. AA-I  hfranciscana E.S. 7 prs. 
hookeri de Vries AA-I  hhookeri d.V.  7 prs. 
johansen  AA-I  hjohansen   7 prs. 
johansen  AA-IIIlam hjohansen   7 prs. 
 
 
Oenothera villosa subsp. villosa  
 
bauri  AA-I  laxans (A) • undans (A)  14 
 
  
Oenothera biennis  
 
biennis de Vries AB-II dValbicans (A) • dVrubens (B) 8, 6  
biennis München AB-II biMalbicans (A) • biMrubens (B) 8, 6 
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Strain   Genome/ Renner complex(es)                Configuration 
   Plastome            in meiosis    
 
Oenothera biennis  
 
purpurata  AA-II hpurpurata   7 prs. 
suaveolens Grado AB-II Galbicans (A) • Gflavens (B)  14 
suaveolens Standard AB-II Stdalbicans (A) • Stdflavens (B)  12, 1 pr. 
chicaginensis Colmar BA-III Colexcellens (B) • Colpunctulans (A) 12, 1 pr. 
 
 
Oenothera nuda  
 
nuda  AB-II glabrans (A) • calvans (B)  14 
 
 
Oen. biennis x Oen. glazioviana  
 
conferta  AB-II convelans (A) • aemulans (B)  12, 1 pr. 
 
 
Oenothera glazioviana  
 
rr-lamarckiana Sweden AB-IIIlam r-Svelans (A) • r-Sgaudens (B)  12, 1 pr. 
coronifera  AB-III quaerans (A) • paravelans (B)  12, 1 pr. 
blandina  AA-II hblandina (levans)   7 prs. 
deserens  A/B-III hdeserens    7 prs. 
decipiens  A/B-III hdeserens    7 prs. 
 
 

Oenothera grandiflora 
  
bellamy A  BB-III hbellamy A    7 prs. 
BABA castleberry A-4 BABA-III hBA castleberry A-4    7 prs.  
BABA chastang 7 BABA-III hBA chastang 7     7 prs. 
stockton 1  BB-III hstockton 1     7 prs. 
tuscaloosa  BB-IIItusc htuscaloosa     7 prs. 
tuscaloosa  BB-IIIlam htuscaloosa     7 prs. 
 
 
Oenothera nutans  
 
elkins II  B1B2-III α elkins (B1) • β elkins (B2)     14 
horsehead II  B1B2-III α horsehead II (B1) • β horsehead II (B2) 14 
marienville III  B1B2-III α marienville III (B1) • β marienville III (B2) 14 
mitchell  B1B2-III α mitchell (B1) • β mitchell (B2)    14
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Strain   Genome/ Renner complex(es)              Configuration 
   Plastome             in meiosis 
 
Oenothera oakesiana  
 
ammophila Standard AC-IV amrigens (A) • percurvans (C)     12, 1 pr. 
 
 
Oenothera parviflora 
 
atrovirens  BC-IV pingens (B) • flectens (C)    14 
silesiaca  BC-IV subpingens (B)  • subcurvans (C)  14 
st. stephen  BC-IV α st. stephen (B) • β st. stephen (C)  N/A 
 
 
Oenothera argillicola 
 
douthat 1  CC-V hdouthat 1       7 prs. 
williamsville  CC-V hwilliamsville       7 prs. 
wilson creek 1  CC-V hwilson creek 1       7 prs. 
 
 
For a detailed taxonomy see Dietrich 1977 and Dietrich et al. 1997. 

 

Furthermore, 244 F2 plants from the cross Oenothera grandiflora strain tuscaloosa 

with plastome III of Oenothera glazioviana strain lamarckiana Sweden (BB-IIIlam) and 

Oenothera elata subsp. hookeri strain johansen also with plastome III from the same 

plant (AA-IIIlam) and 40 F2 plants from the cross Oenothera elata subsp. elata strain 

cholula with plastome Icho (AA-Icho) and Oenothera elata subsp. elata strain puebla 

with plastome Ipue (AA-Ipue) were used to generate linkage maps. The crossing 

partners had the same chromosomal formulas to ensure homozygous hybridization. 

All strains used were inbred lines, which were selfed for more than 10 generations. 

 

2.1.8 MOLECULAR WEIGHT STANDARDS 
λ-DNA was used as molecular weight standard for agarose gel electrophoresis of 

DNA fragments. The phage DNA was digested with restriction enzymes EcoRI and 

HindIII. Defined sizes of fragments were obtained: 21,226, 5,148, 4,973, 4,268, 

3,530, 2,027, 1,904, 1,584, 1,375, 947, 831, 564 and 125 bp. 
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In addition, the 2-log ladder (0,1 – 1 kb) (New England Biolabs, Beverly, USA) was 

used as molecular weight standard for agarose gel electrophoresis of some DNA 

fragments. This digested DNA included fragments ranging from 100 bp to 10 kb. 

Nineteen bands were obtained: 10,002 (40 ng), 8,001 (40 ng), 6,001 (48 ng), 5,001 

(40 ng), 4,001 (32 ng), 3,001 (120 ng), 2,017 (40 ng), 1,517 (57 ng), 1,200 (45 ng), 

1,000 (122 ng), 900 (34 ng), 800 (31 ng), 700 (27 ng), 600 (23), 517 (124 ng), 500 

(124 ng), 400 (49 ng), 300 (37 ng), 200 (32 ng), 100 (61 ng) bp. 

 

GeneScan®-500 ROXTM Size Standard (Applied Biosystems, Foster City, USA) was 

used as internal lane size standard for gel electrophoresis of AFLP samples. The 

following sizes of fragments were used for the analysis: 500, 490, 450, 400, 350, 

300, 200, 160, 150, 139, 100, 75, 50 and 35 bp. 

 

2.1.9 MEDIA USED  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

SOC medium 

Bactotryptone 2 g 

Yeast extract 0.55 g 

1 M NaCl 1 ml 

1 M KCl 1 ml 

H2Oultrapur 97 ml 

pH 7.0 adjusted with HCl or NaOH 

dissolve and autoclave 

1 M MgCl2; 1 M MgSO4 1 ml 

2 M Glucose 1 ml 

The medium was finally filtered through a 0.2 µm filter unit. 
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LB/Ampicillin plates (1 litre) 

Bactotryptone 10 g 

Yeast extract 5 g 

NaCl 10 g 

Bacto-agar 15 g 

add H2O to 1 litre and autoclave. The bottle was cooled down until it is to room temperature. Then 1 

ml 1000x Ampicllin (100 mg/ml stock) was added, mixed well and poured onto sterile plates. 

  

2.1.10 LABORATORY EQUIPMENT 
 
Centrifuges 

Sigma-202 MK with rotor 12045  

Sigma 4K15 with rotor 12130-H  

Beckman centrifuge AvantiTM J-25 with Rotor JS-13.1  

 

PCR-machine  
PCR-Express, Thermal Cycler (Hybaid, England) 

 

Pulse amplitude modulated fluorometer 
PAM 101/103 (Walz Mess- und Regeltechnik, Effeltrich, Germany) 

 

Semi-dry blotting apparatus 
Peqlab (Erlangen, Germany) 

 

Hamamatsu ORCA monochromatic CCD camera (Herrsching, Germany) attached 

to a Zeiss Axioplan epifluorescence microscope (Göttingen, Germany). 
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2.1.11 VECTORS 
The two vectors shown in Figs. 2-1 and 2-2 were used: 

 

 
Fig. 2-1:  pBluescript II KS+ vector (Stratagene, Heidelberg, Germany) was used for unspecific >10 

kb DNA fragment cloning. 

 

 
 pGem®-T Easy Vector sequence reference points:  
 T7 RNA polymerase transcription initiation site 1 

 multiple cloning site 10-128

 SP6 RNA polymerase promoter (-17 to +3) 139-158

 SP6 RNA polymerase transcription initiation site 141 

 pUC/M13 Reverse Sequencing Primer binding site 176-197

 lacZ start codon  180

 lac operator  200-216

 β-lactamase coding region  1337-2197

 phage f1 region  2380-2835

 lac operon sequences 2836-2996, 166-395 

 pUC/M13 Forward Sequencing Primer binding site 2949-2972 

 T7 RNA polymerase promoter (-17 to +3)  2999-3 

 
Fig. 2-2:  pGem®-T Easy Vector (Promega, Mannheim, Germany) was used for the cloning of PCR products.  
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2.1.12 BACTERIAL STRAINS 
MAX Efficiency® DH5αTM Competent Cells of E. coli (Invitrogen, Carlsbad, California, 

USA) 

 

2.1.13 SOFTWARE 
• ABI Prism Collection (Applied Biosystems, Foster City, California, USA) 

• Adobe Photoshop (San Jose, California, USA) 

• Bioedit (Ibis Therapeutics, Carlsbad, California, USA) 

• Clustal W2 (EBI, Cambridge, UK) (Chenna et al. 2003) 

• GeneScan (Applied Biosystems, Foster City, California, USA) 

• Genotyper (Applied Biosystems, Foster City, California, USA) 

• JoinMap 3.0 (Kyazma B.V., Wageningen, Netherlands) 

• Microsoft Access Database (Microsoft, Redmond, WA, USA) 

• Microsoft Excel (Microsoft, Redmond, WA, USA) 

• Microsoft Word (Microsoft, Redmond, WA, USA) 

• Sequence Analysis (ABI) (Applied Biosystems, Foster City, California, USA) 

• SNP2CAPS (Plant Bioinformatical Portal, Gatersleben, Deutschland) (Thiel et al. 

2004) 

• Sputnik (http://sputnik.btk.fi/) 

 
 
2.2 METHODS 
 
2.2.1 NUCLEIC ACID ANALYSIS 
 
2.2.1.1 DNA ANALYSIS 
 
2.2.1.1.1 ISOLATION OF TOTAL DNA 
Oenothera produces high amounts of tannins and mucilage (Zinsmeister et al. 1965, 

1970), which provide the major obstacle to DNA extraction from Oenothera. It was 

therefore necessary to avoid the co-precipitation of polysaccharides with DNA. The 

presence of these polysaccharides prevents complete redissolution of DNA. 

Furthermore, polysaccharides prevent enzyme activities, thus inhibiting processes 



Material & Methods 

 
- 28 - 

 

such as cutting with restriction enzymes, PCR or in vitro labeling (Barnwell et al. 

1998). It has been proposed to use hydrolytic enzymes (Rether et al. 1993) or ion-

exchange resins (Guillemaut and Maréchal-Drouard 1992; Maréchal-Drouard and 

Guillemaut 1995) to remove polysaccharides from nucleic acid solutions.  

 

The genomic DNA was extracted from plants growing either in a greenhouse or on a 

field. DNeasy Plant Mini Kit in combination with a 96-well ball mill (Qiagen, Hilden, 

Germany) allows an efficient large-scale DNA isolation procedure for Oenothera 

tissue. The standard protocol was slightly modified: 50 - 100 mg fresh leaf material 

was disrupted in 2 ml reaction tubes in the presence of 400 μl of buffer AP1, 4 μl 

RNase A (100 mg/ml), 4 μl 10% PVP (polyvinyl pyrrolidone) and 0.4 µl 1 M sodium 1-

ascorbic acid, using a Mixer Mill MM 300 (Qiagen, Hilden, Germany) (2 times 2 min 

at 30 Hz). The samples were subsequently incubated for 10 min at 65°C to lyse the 

cells. During incubation, the samples were mixed 2 - 3 times by inverting the tube. 

The homogenized leaf material was centrifuged (1 - 2 min at 4,000 x g). 130 µl of 

buffer AP2 was added to the lysate, mixed, and incubated for 5 min on ice to 

precipitate detergent, proteins and polysaccharides, followed by another 

centrifugation step (5 min at 20,000 x g). This step is crucial to DNA isolation of leaf 

material from Oenothera plants. Oenothera generates highly viscous lysates and 

large amounts of precipitates during this step. This can result in shearing DNA in the 

following step. Satisfactory results were obtained, because the majority of 

precipitates were removed by this centrifugation step. The supernatant was pipetted 

into the QIAshredder Mini spin column that was placed in a 2 ml collection tube, and 

centrifuged for 2 min at 20,000 x g. The column removes most of the remaining 

precipitate and cell debris but still a rest passed through and formed a pellet in the 

collection tube. The flow-through fraction was carefully placed in a new 2 ml 

collection tube without disturbing the cell-debris pellet. 1.5 volumes of buffer AP3/E 

was added to the lysate and mixed immediately by pipetting. The mixture was 

transferred into the DNeasy Mini spin column (a silica-based membrane) that was 

placed in a 2 ml collection tube and centrifuged for 1 min at ≥ 6,000 x g. The flow-

through was discarded and the column was placed into a new 2 ml collection tube. 

500 µl of buffer AW was added and centrifuged for 1 min ≥ 6,000 x g. This step was 

repeated twice, followed by another centrifugation step (2 min at 20,000 x g) to dry 
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the membrane and remove the complete ethanol that is the essential element in 

buffer AW. The column was transferred to a 1.5 ml tube and 30 - 50 µl of buffer AE 

were directly pipetted onto the DNeasy membrane. After an incubation (5 min at 

room temperature), the column was centrifuged (1 min 6,000 x g) to elute DNA. All 

columns and buffers used were components from DNeasy Plant Mini Kit (Qiagen, 

Hilden, Germany). DNA concentration and quality was estimated by 

spectrophotometry and ethidium bromide stained agarose gel electrophoresis. 

 

2.2.1.1.2 PCR PRODUCT PURIFICATION 
PCR products were purified using either “QiaQuick Purification Kit” according to 

manufacturer´s manual or by standard precipitation via Na-acetate (pH 5.2) and 

100% EtOH.  

 

2.2.1.1.3 PLASMID TRANSFORMATION 
50 - 100 µl MAX Efficiency® DH5α Competent Cells (Invitrogen, Karlsruhe, 

Germany) (Bethesda Research Laboratories 1986) were carefully unfrozen on ice. 

The required volume of DNA (vector) from the ligation reaction was added and the 

suspension gently mixed with a pipette. Subsequently to an incubation period for 30 

min on ice, cells were exposed to a heat shock (40 - 50 sec at exactly 42°C in a 

water bath) followed by an incubation for 5 min on ice again. 0.2 – 0.4 ml of SOC 

medium (Sambroock and Russell 1989) were added and the suspension was shaken 

at 225 rpm at 37°C for 1 h. 50 µl of the cells were plated on LB medium (Bertani 

1951) plates with ampicillin and incubated for 14 – 18 h at 37°C 

 

2.2.1.1.4 PLASMID ISOLATION 
Plasmids were isolated using the “Qiagen Plasmid Mini Kit” according to the 

manufacturer´s protocol. 
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2.2.1.2 AUTOMATED SEQUENCING ON THE ABI PRISM 377 DNA 
SEQUENCER 

 

Table 2-1: Pipetting scheme of sequencing gels 

H2Obidest 22.8 ml 

Urea 18 g 

10x TBE 6 ml 

Accugel 29:1 40% 5.33 ml 

APS (15%) 300 µl 

TEMED 20 µl 

 

The dideoxy sequencing method (Sanger et al. 1977) was applied for automated 

sequencing using the ABI PRISM 377 DNA sequencer. The DNA was labeled with 

“Thermo SequenaseTM Dyenamic Direct sequencing kits”. The following conditions 

were used: 1 cycle of 95°C denaturation for 2 min; 99 cycles at 95°C (10 sec), 49 - 

55°C (5 sec), and 1 cycle 60°C (4 min). The samples were cleaned up by ethanol 

precipitation to remove unincorporated fluorescent. The pellet was resuspended in 4 

µl loading buffer (80% formamide, 10 mg/ml Dextran Blue and 5 mM EDTA), followed 

by a denaturation step at 80°C for 2 min. After denaturation the sample can be stored 

at 4°C. The sequencing gel was prepared as described in Table 2-1. The sequence 

run was performed using 48 cm glass plates, 0.2 mm spacers and a 36 well comb. 

Settings for electrophoresis conditions were 2.5 kV, 45°C and 11 h using 1x TBE 

electrophoresis buffer (89 mM Tris, 89 mM boric acid and 2 mM EDTA, pH 8.3). 

 

2.2.2 PROTEIN ANALYSIS 
 
2.2.2.1 MEMBRANE PROTEIN ISOLATION  
The entire procedure was performed at 4°C. Four g fresh Oenothera leaf material 

were homogenized in 25 ml isolation buffer (2 mM EDTA, 1 mM MgCl2, 1 mM MnCl2, 

50 mM HEPES-KOH (pH 7.6), 330 mM sorbitol, 10 mM NaF and 2 – 5 mM L-

ascorbic acid) in a mixer. The homogenized material was filtered piece by piece 

through 2 layers of Miracloth (Calbiochem, Darmstadt, Germany) respectively, and 
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centrifuged (4°C, up to 3,000 g). The supernatant containing soluble proteins was 

discarded and the pellet was washed 5 - 8 times with isolation buffer. The washing 

step was repeated until the supernatant was not viscous anymore. The pellet 

containing membrane proteins was then resuspended in minimum volume of sample 

buffer (100 mM Na2CO3, 10% (w/v) sucrose and 50 mM DTT). 

 

2.2.2.2 TOTAL PROTEIN ISOLATION 
Fresh Oenothera material (young leaves) was ground in liquid nitrogen. The powder 

was then resuspended in approximately 6 ml isolation buffer (see Chapter 2.2.2.1), 

until the suspension is not viscous anymore. The homogenized material was filtered 

through 2 layers of Miracloth (Calbiochem, Darmstadt, Germany) and centrifuged for 

10 min at 15.600 g. The supernatant containing soluble proteins was transferred to 

another collection tube and incubated for 10 - 15 min at 80°C in a heating block. The 

samples were placed on ice and a tip of a spatula ascorbic acid was added.  

 

2.2.2.3 CHLOROPHYLL ABSORPTION MEASUREMENTS  
Chlorophyll concentrations were measured according to Arnon (Mackinney 1941; 

Arnon 1949) applying the formula:  

 

(A
645 nm 

x 20.2) + (A
663 nm 

x 8.02) 
                         μg chlorophyll/ml = 

1000 
 
One µl protein suspension (thylakoids or total proteins) was diluted with 999 µl 80% 

acetone. 

 

2.2.2.4 SEPARATION OF PROTEINS WITH SDS PAGE 
A stacking gel of 8% acrylamide and a separating gel of 15% acrylamide were used 

to separate proteins by SDS polyacrylamide gel electrophoresis. Protein samples 

were mixed with the adequate volume loading buffer (4x) (0.25 M Tris-HCl, pH 6.8, 

8% (w/v) SDS, 40% (w/v) glycerol, 20% (v/v) β-mercaptoethanol and 0.016% (w/v) 

Bromophenol Blue), and loaded onto gels after denaturation for 1 - 2 min at 80°C. 
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2.2.2.5 SEMI-DRY ELECTROBLOTTING 
A semi-dry blotting apparatus was used to transfer proteins from SDS gels onto 

PVDF membranes (Amersham, Freiburg, Germany). The method was performed 

according to Khyse-Andersen (1984) with minor modifications. Three layers of thick 

filter papers soaked in cathode buffer (40 mM aminocaproic acid, 0.01% SDS) were 

placed onto the cathode pole, followed by the polyacrylamide gel. The PVDF 

membrane was preincubated in 100% methanol and placed on top of the gel. Two 

layers of filter papers soaked in anode buffer II (25 mM Tris, 20% methanol, pH 10.4) 

and three layers of filter papers soaked in anode buffer I (300 mM Tris, 20% 

methanol, pH 10.4) completed the blot. The blot was run at 0.8 mM/cm2 for 2 h. 

 

2.2.2.6 IMMUNODETECTION OF PROTEINS BY WESTERN BLOT ANALYSIS 

Membranes were blocked for 1 h at room temperature or overnight at 4°C by 

incubation in blocking solution (20 mM Tris/HCl, pH 7.4, 137 mM NaCl, 0.75% (v/v) 

Tween, 5% (w/v) skimmed milk) to prevent unspecific binding of the primary antibody. 

After washing in TBS-T (20 mM Tris/HCl (pH 7.4), 137 mM NaCl, 0.75% (v/v) Tween) 

for 15 min, the membrane was incubated for at least 1 h at room temperature or 

overnight at 4°C in antisera diluted to the desired concentration. The first antibody 

was removed by washing the membrane with TBS-T for 2x 15 min. Anti-rabbit 

antibodies were diluted in blocking solution and then incubated with the membrane 

for 1 h or overnight at 4°C. The secondary antibody was diluted 1:10,000. Finally, the 

membrane was washed 4x with TBS-T for 10 min, and detected directly after the final 

washing step. For visualizing the signal, an enhanced chemiluminiscence detection 

system (Amersham, Freiburg, Germany) was used. Equal volumes of development 

solution 1 (100 mM Tris-HCl, pH 8.5, 1% (w/v) luminal, 0.44% (w/v) coomaric acid) 

and 2 (Tris-HCl, pH 8.5, 0.018% (v/v) H2O2) were mixed and spread onto the 

membrane. After an incubation time of at least 1 min, the membrane was exposed to 

an X-ray film (Hypofilm, Amersham, Freiburg, Germany) for varying periods. 

 

2.2.3 AMPLIFIED FRAGMENT LENGTH POLYMORPHISM (AFLP) 
AFLP DNA fingerprinting (Vos et al. 1995) is a well established molecular marker 

technique (basic scheme see Fig 2-3), with wide applications including population 
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genetics (Belaj et al. 2003; Woodhead et al. 2005; Barluenga et al. 2006), 

reconstruction of shallow phylogenies (Kardolus et al. 1998; Després et al. 2003; 

Perrie et al. 2003), population assignment (Campbell et al. 2003), linkage mapping 

(e.g. van Eck et al. 1995; Alonso-Blanco et al. 1998; Yang et al. 2000; Saliba-

Colombani et al. 2000; Tan et al. 2001; Hayashi et al. 2001; Peters et al. 2001; 

Rauwolf et al. 2008a), parentage analyses (Gerber et al. 2000), measuring genetic 

diversity (Mariette et al. 2002; Nybom 2004), identifying hybrids (Goldman et al. 

2004) and cultivars (McGregor et al. 2000), and single-locus sequence-characterized 

amplified region (SCAR) marker development (McLenachan et al. 2000; Brugmans et 

al. 2003; Nicod and Largiadèr 2003; Shirasawa et al. 2004; Bussell et al. 2005). The 

method is based on amplification of restriction fragments of genomic DNA by 

polymerase chain reactions (PCR) (Mullis et al. 1986).  

 

DNA fingerprinting techniques rest always on one of two strategies: 

 
 ●  Hybridization based method (classical method): 

In this case genomic DNA becomes digested by restriction 

endonucleases, followed by separation of the resulting fragments by gel 

electrophoresis. For example, it is possible to detect fragment length 

polymorphisms (RFLPs) via Southern hybridization by introducing 

radioactively labeled nucleic acid probes which correspond to variable 

regions. 

 
 ● PCR based method: 

DNA sequences are amplified in vitro, using specific or unspecific starter 

oligonucleotides and a thermostable polymerase. The amplified products 

become either separated via gel electrophoresis or are visualized via 

coloration using labeled starter oligonucleotides.  

 
AFLP is a combination of both strategies. It contains 3 steps, including as well 

digestion of DNA via restriction endonucleases as amplifications of the resulting 

fragments: 
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 ● Digestion of DNA and simultaneous ligation of adapter molecules to 

restriction sides (AFLP I); 

 
 ● Amplification of a subset of the resulting fragments (selective “pre-

amplification”) (AFLP II); 

 
 ● Highly selective amplification of “pre-amplified” fragments (AFLP III). 

 

Table 2-2:  Comparison of different “fingerprinting” techniques  

Methods Advantages Disadvantages 

RFLP • good replicability 

• requirement of large amounts of DNA 

• necessity of labeled probes 

• low number of bands 

RAPD 

• amplification via PCR 

• bands detectable without labeled   
  probes 

• unsatisfactory replicability 

• relatively low number of bands 

AFLP 
• good replicability 

• high number of bands 
 

  

2.2.3.1 PLANT MATERIAL USED FOR AFLP ANALYSIS 
The naturally occurring species Oenothera elata subsp. hookeri strain johansen with 

plastome Ijoh (AA-Ijoh), Oenothera grandiflora strain tuscaloosa with plastome IIItusc 

(BB-IIItusc), Oenothera elata subsp. elata strain cholula with plastome Icho (AA-Icho) 

and Oenothera elata subsp. elata strain puebla with plastome Ipue (AA-Ipue) were used 

for crosses and to judge the genetic diversity by AFLP genotyping. The incompatible 

(virescent) combination Oenothera elata subsp. hookeri strain johansen with 

plastome IIIlam (AA-IIIlam) from the partial translocation heterozygote Oenothera 

glazioviana strain lamarckiana Sweden was generated by combining the hjohansen-

complex (AA-Ijoh) exclusively with complexes forming complete translocation 

heterozygous hybrids (  14) to exchange the plastids (Ijoh to IIIlam) (see Fig. 3-1). All 

plants used were selfed over many generations to reach a high degree of 

homozygosity and to avoid the appearance of multiple allelism. Oenothera grandiflora 

strain tuscaloosa plants (BB-IIItusc) were pollinated with Oenothera elata subsp. 
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hookeri strain johansen plants (AA-IIIlam), both with the same chromosomal formula 

1•2 3•4 5•6 7•10 9•8 11•12 13•14, and the resulting F1 was selfed for generation of 

a F2 mapping population (244 F2-plants). A second F2 mapping population was 

generated with Oenothera elata subsp. elata strain cholula (AA-Icho) as maternal 

parent in an intraspecific cross with Oenothera elata subsp. elata strain puebla (AA-

Ipue) as paternal part (40 F2-plants), again both with the same chromosomal formula 

1•4 3•2 5•9 7•10 6•8 11•12 13•14. Identical chromosomal formulas are essential to 

ensure homozygous hybridization. Plants were either grown under green house 

conditions or on the field. 

 

2.2.3.2 AFLP REACTION I (DIGESTION AND LIGATION) 
The first reaction contains the digestion of the DNA by using two different restriction 

endonucleases. One enzyme cuts rarely (SacI = “6-base-cutter”) and the other one 

frequently (MseI = “4-base-cutter”). The ligation of adapter molecules takes place 

simultaneously. The adapters are compatible to restriction sites, generated by the 

restriction endonucleases SacI and MseI. 

 

The first AFLP reaction contained 50 to 500 ng DNA, 20 nmol ATP, 2.5 U MseI, 5 U 

SacI, 1x NEB-1 buffer, 15 µg BSA, 1.2 Weiss U T4 DNA ligase, 50 pmol per MseI 

adapter and 5 pmol per SacI adapter. The reaction batch was prepared in a 1.5 ml 

collection tube in a total volume of 20 µl and incubated in 37°C for 3 h, followed by a 

10-fold dilution with TE0.1 buffer (20 mM Tris-HCl, 0.1 mM EDTA, pH 8.0). The 

samples were stored at -20°C. 

 

2.2.3.3 AFLP REACTION II (SELECTIVE “PRE-AMPLIFICATION”) 
AFLP reaction II contains the amplification of a part of the restriction fragments 

(AFLP I) using specified starter oligonucleotides, in our case so-called +1-primers 

(SacI+1 and MseI+1). The oligonucleotides used are complementary to respective 

adapter molecules and contain an additional nucleotide at their 3´ end. The additional 

nucleotide determines the fragments which are amplified in the PCR reaction. 
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In AFLP reaction II 0.5 U Qiagen Taq polymerase, 4 µl diluted AFLP reaction I, 

MseI+1 primer (MseIC or MseIG) and SacI+1 primer (SacIG or SacIC) were used 

with standard PCR conditions. The following PCR program was used: 2 min at 72°C 

cycle was followed by 20 sec at 94°C, 30 sec at 56°C, 2 min 72°C cycle. The second 

cycle was repeated 20 times, followed by a 30 min 60°C cycle. The resulting PCR 

product was diluted 10-fold with TE0.1 buffer (pH 8.0). The samples were stored at      

-20°C. 

 

2.2.3.4 AFLP REACTION III (SELECTIVE AMPLIFICATION) 
 

 

 

 

 

 

 

 

 

 

AFLP reaction III was used to reduce the number of amplified fragments in a way that 

it is possible to separate the resulting amplified fragments in a polyacrylamide 

sequencing gel. A further reduction of the number of fragments was achieved via 

starter oligonucleotides with additional selective nucleotides at their 3´ ends (SacI+2 

and MseI+3 primers). Here, the first selective nucleotide corresponds to the selective 

nucleotide used in AFLP reaction II. The optimum number of detectable fragments 

range between 50 and 200. To visualize the resulting fragments one fluorescent 

labeled primer has to be used (in Oenothera SacI+2 primers were labeled). In our 

case, SacI+2 primers were 5´ labeled with either 6-FAM (blue) or Joe (green). 

 

In AFLP reaction III, 0.5 U Qiagen Taq polymerase, 4 µl diluted AFLP reaction II, 

0.25 µM MseI+3 primer (Tables 2-2 – 2-4) and 0.1 µM SacI+2 (Tables 2-4 – 2-6) 

were used with the same PCR conditions as the AFLP II reaction. The following PCR 

program was used: a 2 min cycle at 94°C was followed by 20 sec at 94°C, 30 sec at 

Table 2-3: Pipetting scheme of AFLP gels 

Long Ranger® gel solution (acylamide) 3 ml 

10x TBE 3 ml 

Urea 10.8 g 

H2Obidest 15.6 ml 

10% APS 150 µl 

TEMED 21 µl 
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66°C – 1°C each cycle, 2 min at 72°C cycle. The second cycle was repeated 10 

times. The next steps was a cycle of 20 sec at 94°C, 30 sec at 56°C, 2 min at 72°C, 

repeated 20 times, followed by a 30 min cycle at 60°C. 

 

2.2.3.5 INTEGRATION OF CO-DOMINANT MARKERS INTO AFLP MAPS 
ESTs were chosen to generate PCR based markers. Primers were designed and 

used for amplification, sequencing and comparison of genomic DNA from A and B 

genotypes (Mráček et al. 2006). 75 out of 98 selected primer pairs successfully 

amplified from genome A and B, respectively, demonstrating a close relationship 

between the two species (Greiner 2008). PCR based markers, designated M02, M07, 

M08,  M28, M38, M39, M40, M41, M43, M46, M47, M50, M58, M59, M74, M75, M86, 

M88, M95, M97 and M98 were detected as described (Mráček et al. 2006; Greiner 

2008) and used for genotyping the F2 population of the parental lines AA-IIIlam and 

BB-IIIlam (detail information about markers see Table 3-5). Five of these co-dominant 

markers, namely M07, M08, M28, M74 and M95, were used for segregation analysis 

of the F2 population (BB-IIIlam x AA-IIIlam). The others were used for segregation 

analysis of a set of 40 plants being part of the 244 F2 plants (BB-IIIlam x AA-IIIlam).  

 

2.2.3.6 DNA FINGERPRINT FRAGMENT DETECTION 
AFLP reaction III products were mixed with an equal volume (1 µl) formamide dye 

(80% formamide; 10 mg/ml Dextran Blue; 5 mM EDTA) and 0.15 µl GENESCAN-500 

ROX internal lane standard (Applied Biosystems, Foster City, USA). Mixtures were 

denatured at 90°C for 2 min and subsequently kept at 4°C prior loading. To derive a 

DNA fingerprint, fragments were separated on a 5% denaturing polyacrylamide gel 

(Fig. 2-3) on an ABI Prism 377 DNA automated sequencer (Applied Biosystems, 

Foster City, USA). The gel was prepared by using Long Ranger gel solution (50% 

stock solution) (Cambrex, Rockland, USA). The gel finally contained 5% acrylamide, 

6.0 M urea, 89 mM Tris, 89 mM boric acid and 2 mM EDTA. To 30 ml of gel solution 

150 µl of 10% APS and 21 µl TEMED were added. Electrophoresis conditions were 

the following 2.5 kV, 51°C, 4 h using 1x TBE as buffer. Parental genotypes were run 

in the outer lanes on a subset of gels for each primer combination. The MATRIX file 

was generated with the dyes 6-FAM, ROX, NED and Joe. Gel images were captured  
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Tables 2-4, 2-5 and 2-6: List of primer combinations used for AFLP analyses.  

Table 2-4 

primer combinations MseI 
CAA 

MseI 
CAC 

MseI 
CAG 

MseI 
CAT 

MseI 
CCA 

MseI 
CCC 

MseI 
CCG 

MseI 
CCT 

MseI 
CGA 

MseI 
CGC 

MseI 
CGG 

MseI 
CGT 

MseI 
CTA 

MseI 
CTC 

MseI 
CTG 

MseI 
CTT 

SacI GA - FAM sm385 sm267 sm387 sm388 sm389 sm390 sm265 sm392 sm298 sm264 sm297 sm299 sm300 sm266 sm303 sm301 
SacI GC - Joe sm401 sm271 sm403 sm404 sm405 sm406 sm269 sm408 sm284 sm268 sm283 sm285 sm286 sm288 sm289 sm287 
SacI GG - FAM sm417 sm263 sm419 sm420 sm421 sm422 sm261 sm424 sm291 sm260 sm290 sm292 sm293 sm295 sm296 sm294 
SacI GT - Joe sm433 sn275 sm435 sm436 sm437 sm438 sm273 sm440 sm277 sm272 sm276 sm278 sm279 sm281 sm282 sm280 

 
Table 2-5 

primer combinations MseI 
CAA 

MseI 
CAC 

MseI 
CAG 

MseI 
CAT 

MseI 
CCA 

MseI 
CCC 

MseI 
CCG 

MseI 
CCT 

MseI 
CGA 

MseI 
CGC 

MseI 
CGG 

MseI 
CGT 

MseI 
CTA 

MseI 
CTC 

MseI 
CTG 

MseI 
CTT 

SacI CA - FAM sm441 sm442 sm443 sm444 sm445 sm446 sm447 sm448 sm449 sm450 sm451 sm452 sm453 sm454 sm455 sm456 
SacI CT - Joe sm457 sm458 sm459 sm460 sm461 sm462 sm463 sm464 sm465 sm466 sm467 sm468 sm469 sm470 sm471 sm472 
SacI CC - FAM sm473 sm474 sm475 sm476 sm477 sm478 sm479 sm480 sm481 sm482 sm483 sm484 sm485 sm486 sm487 sm488 
SacI CG - Joe sm489 sm490 sm491 sm492 sm493 sm494 sm495 sm496 sm497 sm498 sm499 sm500 sm501 sm502 sm503 sm504 

 
Table 2-6 

primer combinations MseI 
GAA 

MseI 
GGA 

MseI 
GCA 

MseI 
GTA 

SacI CA - FAM sm505 sm506 sm507 sm508 
SacI CT - Joe sm521 sm522 sm523 sm524 
SacI CC - FAM sm537 sm538 sm539 sm540 
SacI CG - Joe sm553 sn554 sm555 sm556 

Primer combinations are designated with sm (restriction enzymes SacI and MseI used for AFLP analysis) and a number. Primers are designated by using name of restriction 
enzyme (in this case it stands for the sequence of the adaptor) and the added selective nucleotides. Table 2-4: MseICXX and SacIGX primers were used; Table 2-5: MseICXX and 
SacICX primers were used; Table 2-6: MseIGXX and SacICX primers were used; All primer combinations used for AFLP analysis in this work are marked in orange.
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Fig. 2-3: Examples of AFLP gel images with three different dyes: ROX (red-size standard), 6-FAM 
(blue), Joe (green). (a) Gel image of parental analysis using different primer combinations, visible in 
clearly distinguishable lane patterns; (b) Gel-image of a F2 generation analysis by two different 
primer combinations (blue and green); 

Fig. 2-4: Example of a genotyping analysis with the Genotyper program. The first chromatograph 
represents a plant from a F2 generation and the last two belong to parental individuals. The sm286 
primer combination was used in this example. 

a) b) 
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by the GeneScan software (Applied Biosystems, Foster City, USA) (Fig. 2-4). The 

primer combinations were abbreviated in a matrix manner. The nomenclature for 

primer combinations and AFLP markers were used as described in Peters et al. 

(2001). The first two letters are initials of restriction enzymes, the next three numbers 

are unique IDs for primer combinations (e.g. sm263) (see Tables 2-4 – 2-6) and the 

last numbers indicate marker sizes in bp (e.g. sm279_102.0). Amplified fragments 

were visualized by fluorescence laser scanning. 

 

2.2.3.7 COMPUTER ANALYSIS OF AFLP DATA 
The GeneScan analysis software and Genotyper were used to capture genotyping 

and inheritance data for each polymorphic marker. Polymorphic bands were selected 

with 0.5 base tolerances. The data were stored in the Microsoft Access database. As 

statistically significant evidence of linkage a minimum LOD score threshold of 3.0 

was used between at least one pair of markers in one linkage group. Segregation 

data were imported into JoinMap version 3.0 (Stam 1993) for initial grouping of 

markers. In a second step the most probable order of markers in each linkage group 

was determined using the Kosambi mapping function (Ott 1991). The chosen LOD is 

sufficiently selective to discriminate between true linkage and experimental noise. 

 

2.2.4 A PCR-BASED NUCLEUS MARKER SYSTEM TO DISTINGUISH BETWEEN 
RENNER COMPLEXES 

The M40 SSLP marker, derived from EST cluster C_1231-11-B04 from Oenothera 

elata subsp. hookeri strain hookeri de Vries encodes a chloroplast located 

sedoheptulose-bisphosphatase (Mráček et al. 2006). This marker showed a length 

polymorphism of 117 bp between hjohansen (A genotype) and htuscaloosa (B 

genotype) (Mráček et al. 2006). Different Renner complexes were investigated by 

using the M40 SSLP marker. The resulting PCR products were separated by 

electrophoresis on 2 – 2.5% agarose gels. PCR products in which a single band was 

detected were purified. In some permanent translocation heterozygotic species two 

bands, one for each Renner complex, were detected. The single bands were carefully 

excised from the agarose gel and the DNA extracted by using “Ultrafree-DA 

Centrifugal Filter Device”. The resulting product was precipitated and dissolved in 15
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 5´ GAG  CTC  N N TTA A 3´       recognition sites 
 
 3´ CTC GAG  N N AAT T 5´ 
 
  digestion SacI and MseI 

 
   C N N  T 
 
  TC  GAG  N N  AAT 
 

 ligation  SacI adapter           AG CT and 

    MseI adapter TA 
 
 
 AG CTC N N TTA 

 TC GAG N N AAT 

 
  
 “pre-amplification”  SacI primer +G 

  (AFLP reaction II)  MseI primer +C 

 

 SacI primer 5´ G 

   AG CTC N N TTA  

   TC GAG N N AAT 

     C  5´ MseI primer  

 

  AFLP reaction III  SacI primer +GN and MseI primer +CNN 

 
 SacI primer 5´ GN 

  AG CTC G G TTA 
  TC GAG C C AAT 

      NNC  5´ MseI primer 

 

 
  AG CTC GN  NNG TTA 

  TC GAG CN  NNC AAT 

 
           ABI sequencer 
 
      denaturing polyacrylamide gel electrophoresis 
 
Fig. 2-5:  Basic scheme of AFLP reactions used for AFLP analysis in Oenothera. 
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µl EB-buffer (component of “QiaQuick PCR Purification Kit”) or H2Obidest using the 

protocol described in Chapter 2.2.1.1.2. PCR product cloning (ligation, 

transformation) was performed with the “pGEM®-T easy Vector systems” (see 

Chapter 2.2.1.1.3). Colonies were picked, the bacteria resuspended in liquid 

LB/ampicillin medium in incubation tubes and incubated for 14 – 18 h at 37°C. 

Plasmid isolation was performed according to Chapter 2.2.1.1.4. The correctness of 

the inserted DNA fragment (size) was checked by PCR using primers “SP6 Pro” and 

“T7 Pro”. The plasmids were prepared for sequencing (see Chapter 2.2.1.2). All kits 

were used according to manufacturer´s protocol.  

 

2.2.5 CHROMOSOME ARM SPECIFIC LABELING BY MEANS OF 
FLUORESCENCE IN SITU HYBRIDIZATION  

 
2.2.5.1 ISOLATION OF ≥10 KB CLONES OF OENOTHERA 

Total DNA was isolated from Oenothera elata subsp. hookeri strain johansen as 

described in Chapter 2.2.1.1.1, digested with NotI (“8-base cutter”) in 1x NEB3 buffer 

and 100 µg/ml BSA at 37°C for 3 - 4 h. DNA fragments were separated on a 1% low 

melting agarose gel by electrophoresis. Fragments ≥10 kb were extracted from the 

gel, using the 10 kb band of the 2-log ladder as size marker. Recovery of DNA from 

low melting agarose was performed according to Sambrook and Russell (1989). To 

check that the “correct bands” were removed, the extracted DNA was run on an 

agarose gel. 

 

The vector pBluescript II KS+ was digested with NotI in 1x NEB3 buffer and 100 

µg/ml BSA at 37°C for 3 – 4 h, followed by a CIAP treatment to dephosphorylate the 

restriction sites to prevent religation of the vector. A phenol/chloroform precipitation, 

followed by an EtOH/3M Na-acetate (20+1) precipitation was performed to purify the 

vector. Ligation of ≥10 kb DNA fragments and the restricted vector was performed as 

follows: (molar ratio of insert / vector) x amount of vector (insert: 10 kb, vector: 2,961 

kb), T4 DNA ligase, T4 DNA ligase buffer, vector and DNA probe were mixed and 

incubated overnight at 14°C. Transformation was performed as described in Chapter 

2.2.1.1.3. Colonies were picked and placed in liquid LB/ampicillin medium in tubes 

and incubated for 14 – 18 h at 37°C. A part of the grown colonies was mixed with an 
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equal volume of glycerol and stored in -70°C. Plasmid isolation was performed with 

the rest of the bacterial suspension as described in Chapter 2.2.1.1.4. To test the 

correctness of the insert, the isolated plasmid was digested using NotI again. Sizes of 

resulting fragments (~3.0 kb for the vector, ≥10 kb for the insert) were visualized by 

agarose gel electrophoresis (Fig. 3-19). 

 

2.2.5.2 PREPARATION OF “METAPHASE” CHROMOSOMES FROM 
MITOTICALLY ACTIVE MERISTEMATIC TISSUE FROM SEEDLINGS 

 
The cytological part was mainly done in the cytological laboratory of Dr. Hieronim 

Golczyk in Krakow (Poland). One to three day-old seedlings (Oenothera elata subsp. 

hookeri strain johansen) were stored in fixative (ethanol : glacial acetic acid 3:1) for 2 

– 3 days at -20°C. The fixative was then replaced by 70% EtOH for storage. Before 

use, fixed root tips were washed 6x in H2Obidest for 3 min respectively and viewed 

under a binocular. Root tips with visible meristematic tissue (white top) were 

preselected, separated from the rest of the seedling and soaked in citrate buffer (0.1 

M citric acid, 0.1 M sodium citrate, pH 6.0) for 30 min. Citrate buffer was changed 

every 7 – 10 min. Seedlings were treated with the enzyme mixture (40% pectinase, 

40% cellulase (from Aspergillus niger), 2% Cellulase Onozuka R-10) for 2½ - 3 h at 

37°C. Subsequently, meristems were checked again using a binocular.The enzyme 

mixture was removed and root tips were washed carefully 8 – 12x in citrate buffer. 

For staining the meristem, seedlings were covered with karmin acetic acid and 

incubated for 1½ - 2 h at room temperature. Karmin acetic acid was replaced by 45% 

acetic acid and microscopic slides were prepared. One to two seedlings was 

positioned in a drop of 45% acetic acid. Red colored meristematic tissue was 

separated from the other tissue using a binocular. Cover slips were used to cover the 

meristems and to squash the preparation. All preparations were examined under 

phase contrast and those containing well-spread mitotic metaphase chromosomes 

were chosen for FISH analysis. Slides were rapidly frozen in liquid nitrogen and 

stored in -20°C after removing the cover slips. 
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2.2.5.3 DIGESTION OF CYTOPLASM BY PEPSIN TREATMENT 
 

Pepsin Solution 

Stock solution 1 mg/ml 0.01 M HCl 

 

Microscopic slides were unfrozen before the chromosomes were treated with 100 µl 

0.01 M HCl for 2 – 5 min at room temperature. HCl was removed without completely 

drying the slides, and 100 µl of a 1:10 dilution of pepsin stock solution was pipetted 

onto the chromosomes. The slides were placed in a humidity chamber and incubated 

for 30 min at 37°C. Pepsin was removed by washing with H2Obidest. Slides were 

positioned in an incubation chamber, filled with H2Obidest for 3 – 5 min at room 

temperature. Afterwards, the slides were dehydrated by incubation with 70% EtOH 

followed by another incubation step with 100% EtOH for 5 min at room temperature, 

respectively. The preparations were checked by DAPI treatment. 

 

2.2.5.4 LABELING OF PROBES BY NICK TRANSLATION 
DNA polymerase I possesses three activities, a 5´→3´ DNA polymerase activity, a 

5´→3´ exonuclease activity and a 3´→5´ exonuclease activity. The nick translation 

method (Rigby et al. 1977) is based on the ability of DNase I to introduce randomly 

distributed nicks into DNA at low enzyme concentrations in the presence of MgCl2. 

This polymerase can sequentially replace the removed nucleotides with isotope- or 

hapten-labeled deoxyribonucleoside triphosphates. This way, unlabeled DNA can be 

converted into labeled DNA. 

 

A “DIG-Nick Translation Mix” was used to perform nick translation reactions. DIG-

Nick translation mix contains digoxygenin-11-dUTP that will be inserted into the 

sequence. The reaction was performed according to manufacturer´s protocol. One µg 

DNA template (≥10 kb clone) was used for the reaction. Probes were checked by 

agarose gel electrophoresis. 

 
Nick-translation products were purified with 1/10 Vol 3 M NaAc (pH 5.2) and 2.5x 

100% EtOH (-20°C), incubated for 20 min at -20°C and a centrifugation step (18,800 
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g, 30 – 60 min, 4°C). The supernatant was discarded and the pellet washed twice 

with 70% EtOH (18.800 g, 5 – 10 min, 4°C). The pellet was dissolved in 10 µl EB 

buffer (component of “QiaQuick PCR Purification Kit”). 

 

2.2.5.5 FLUORESCENCE IN SITU HYBRIDIZATION 
 

Formaldehyde (1.1%) 

10x PBS 5 ml 

37% Formaldehyde 1.5 ml 

H2Obidest 43.5 ml 

 

The method essentially as described in Hasterok et al. (2002) was used. 

Chromosome preparations were covered with 100 µl of RNAse A solution and 

incubated in humidity chamber for 1 h at 37°C. Afterwards, the slides were washed 

3x with 2x SSC (0.3 M NaCl, 0.03 M sodium citrate, pH 7.0) for 5 min at room 

temperature. After removing SSC, the slides were incubated with 1.1% formaldehyde 

at room temperature for 10 min and washed again 3x with 2x SSC for 5 min. A 

dehydration step followed, for which slides were placed in incubation chambers filled 

with 70% EtOH, 90% EtOH and 100% EtOH, respectively, for 3 min each at room 

temperature. Subsequently, the slides were air-dried for 20 – 60 min. The critical step 

in this procedure is the following denaturation step of the chromosomes prepared. 

Therefore slides were positioned for exactly 5 min in a 75°C preheated incubation 

chamber filled with 70% formamide (in 2x SSC). Immediately after this step the slides 

were dehydrated again by incubation in icecold (4°C) 70% EtOH, 90% EtOH and 

100% EtOH respectively, for 5 min. The slides were then air-dried for at least 20 min 

to remove all ethanol. The hybridization mixture used was (Table 2-7).  

 

The hybridization mix was denatured for 4 min at 83°C and then incubated for 4 min 

at 4°C. The microscopic slides were shortly preheated at 40 – 45°C on a heating 

plate. 38 µl of the hybridization mix were placed on the chromosome preparations 

and incubated in a humidity chamber for 16 – 24 h at 42°C. The slides were then
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Table 2-7:  Pipetting scheme of the hybridization mixture for FISH analysis 

100% deionized formamide 50% 

50% (w/v) Dextran Sulfate 10% 

20x SSC 2x 

Blocking DNA (sonicated Salmon Sperm DNA) 25 – 100 x probe 

H2Obidest add to 40 µl 

Probe (DIG labeled) 75 – 200 ng 

total volume 40 µl 

 

washed twice in 2x SSC for 2 min, twice in 20% (v/v) formamide (in 0.1x SSC) for 5 

min and three washing steps with 2x SSC for 3 min, all at 42°C. The slides were 

incubated again 3x in 2x SSC for 3 min at room temperature. Immunodetection was 

performed with the “Fluorescent Antibody Enhancer Set for DIG Detection” according 

to the manufacturer´s protocol: The slides were washed in 1x PBS (0.13 M NaCl, 7 

mM Na2HPO4, 3 mM NaH2HPO4, pH 7.4) and 1 ml 1x blocking solution was pipetted 

onto the slides, followed by an incubation for 30 min at 20 - 25°C. After blocking the 

slides were drained on a Whatman paper. 50 µl of anti-DIG solution (monoclonal 

antibody) was pipetted onto the slides and then incubated for 60 min at 37°C in a 

humidity chamber. They were then rinsed 3x briefly at 37°C in 2x SSC. Afterwards, 

50 µl of anti-mouse-Ig-DIG solution (second antibody) was added and specimens 

were incubated for 60 min at 37°C in a humidity chamber, followed by three washing 

steps with 2x SSC for 1 min at 37°C. Then 50 µl of anti-DIG-fluorescein solution was 

pipetted onto the specimens and incubated for 60 min at 37°C in a humidity chamber. 

Finally, the slides were washed thoroughly 3 – 4x for 5 min at 37°C in 2x SSC and 

stained with DAPI. The signals were detected with a fluorescence microscope 

(Hamamatsu ORCA monochromatic CCD camera attached to a Zeiss Axioplan 

epifluorescence microscope). 
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2.2.6 PULSE AMPLITUDE-MODULATED FLUOROMETER MEASUREMENTS 
 

2.2.6.1 CHLOROPHYLL A FLUORESCENCE ANALYSIS 
Chlorophyll a fluorescence was measured in vivo on single leaves, using a PAM 

101/103 fluorometer and a personal computer using the Wincontrol version 1.72 

software for chlorophyll a fluorescence data collection as described (Schreiber et al. 

1986, Varotto et al. 2000). Plants grown under identical conditions were used. The 

following settings were used: measure light intensity 6 (= 28 µE), gain 5 and damping 

1 ms. Actinic light intensity was set to 6 (= 70 µE) and saturating pulses to 4 (= 4.000 

µE/m2s light intensity) with 1 sec duration. The saturation pulses were applied to 

determine the maximum fluorescence in the dark (FM) and the ratio (FM – F0)/FM = 

FV/FM. The quenching parameters qP (photochemical quenching = (FM´ - FS)/(FM´ - 

F0)), qN (non-photochemical quenching = (FM – FM´)/FM´) and ΦPSII (quantum yield = 

(FM´ - FS)/FM´ were estimated in the steady state as described in Meurer et al. (1996).  

Under conditions of actinic light a stable level FS was reached. 

 

2.2.6.2 LIGHT-INDUCED CHANGES OF THE P700 REDOX STATE 
Redox changes of P700 were measured by monitoring the absorbance changes at 

830 nm with the PAM 101/103 chlorophyll fluorometer connected to a Dual 

Wavelength ED_P700DW emitter-detector unit (Schreiber et al. 1988). The same 

settings as in chlorophyll a measurements (Chapter 2.2.6.1) were used with the 

following additional parameter: Actinic red light intensity was set to 6 (= 76 µE). 
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3. RESULTS 
 
3.1 ESTABLISHMENT AND PERFORMANCE OF AFLP ANALYSES 
 
3.1.1 GENERATION OF THE INCOMPATIBLE AA-IIILAM AND COMPATIBLE BB-

IIILAM AS CROSSING PARTNERS  
The basic features of the genetics of Oenothera, i.e. biparental transmission of 

plastids, self-fertile hybrids and translocation heterozygosity, combined with a rich 

resource of lines collected over about a century and for the most parts now 

maintained at the University in Munich allow to combine haploid genomes 

(complexes) from different species and to equip the resulting hybrids with 

chloroplasts of interest. The haploid complexes can subsequently be separated again 

by crosses, to generate the original parent plant containing the chloroplast foreign to 

the species (Fig. 1-3). This is possible because homologous recombination in the 

genus is suppressed and entire haploid chromosome sets in permanent translocation 

heterozygous species are inherited (Cleland 1972; Stubbe 1989; Harte 1994).     

 
The naturally occurring, bivalent forming Oenothera elata subsp. hookeri strain 

johansen (A = haplotype johansen) and Oenothera grandiflora strain tuscaloosa (B = 

haplotype tuscaloosa) both with the chromosomal formula 1•2 3•4 5•6 7•10 9•8 

11•12 13•14 were chosen as parental lines to generate a first genetic map within the 

genus Oenothera. Both were equipped with plastome III from Oenothera glazioviana 

strain lamarckiana Sweden. The artificial incompatible plastome-genome combination 

AA-IIIlam (virescent phenotype) was a gift of Prof. Wilfried Stubbe, who established 

this line in 1983 and propagated it by continuous selfing. Its history of origin is shown 

in Fig 3-1. Therefore the complex hjohansen (A) was exclusively combined with other 

complexes forming permanent translocation heterozygous hybrids ( 14). The same 

is valid for BB-IIIlam. Both were subsequently selfed over many generations to reach 

>99.99% homozygosity.  

 

To check the purity of AA-IIIlam, the final inbred line was compared with the naturally 

occurring Oenothera elata subsp. hookeri strain johansen with plastome Ijoh (AA-Ijoh)
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Table 3-1: Primer combinations used for the comparative AFLP analysis of AA-Ijoh and AA-IIIlam. 
 

 

Primer combinations are designated with sm (restriction enzymes SacI and MseI used for AFLP analysis) and a number. 
Primers are designated using the names of restriction enzymes (in this case it stands for the sequence of the adaptor) and the 
added nucleotides. Primer combinations marked in orange were used for analysis of Oe. elata subsp. hookeri strain johansen 
with plastome Ijoh (AA-Ijoh) and artificial Oe. elata subsp. hookeri strain johansen with plastome IIIlam (AA-IIIlam). 

 

Table 3-2: Results of the comparative AFLP analysis of AA-Ijoh and AA-IIIlam. 
 
 
 
 
 
 
 
 

The total number of bands was counted. All bands detected in AA-Ijoh were also present in AA-IIIlam. In AA-IIIlam a single band 
was detected, which was not present in AA-Ijoh. It was detected with primer combination sm279 (marked in yellow). So, just one 
band of a total of 711 (0.14%) in AA-IIIlam is a band arisen from the linkages with the Renner complex Galbicans (from Oe. 
biennis strain suaveolens Grado = Galbicans • Gflavens) while exchanging the plastome (see Fig. 3-1). 
 

primer 
combinations 

MseI 
CAA 

MseI 
CAC 

MseI 
CAG 

MseI 
CAT 

MseI 
CCA 

MseI 
CCC 

MseI 
CCG 

MseI 
CCT 

MseI 
CGA 

MseI 
CGC 

MseI 
CGG 

MseI 
CGT 

MseI 
CTA 

MseI 
CTC 

MseI 
CTG 

MseI 
CTT 

SacI GA - FAM sm385 sm267 sm387 sm388 sm389 sm390 sm265 sm392 sm298 sm264 sm297 sm299 sm300 sm266 sm303 sm301

SacI GC - Joe sm401 sm271 sm403 sm404 sm405 sm406 sm269 sm408 sm284 sm268 sm283 sm285 sm286 sm288 sm289 sm287

SacI GG - FAM sm417 sm263 sm419 sm420 sm421 sm422 sm261 sm424 sm291 sm260 sm290 sm292 sm293 sm295 sm296 sm294

SacI GT - Joe sm433 sn275 sm435 sm436 sm437 sm438 sm273 sm440 sm277 sm272 sm276 sm278 sm279 sm281 sm282 sm280

primer combinations total bands AA-Ijoh total bands AA-IIIlam polymorphic bands between AA-Ijoh 
and AA-IIIlam 

sm261 75 75 0 
sm263 78 78 0 
sm267 108 108 0 
sm276 49 49 0 
sm279 47 48 1 
sm280 80 80 0 
sm281 54 54 0 
sm285 65 65 0 
sm290 66 66 0 
sm299 88 88 0 
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by AFLP marker analysis. Ten primer combinations designated as sm261, sm263, 

sm267, sm279, sm280, sm281, sm285, sm290, sm299 were analyzed in both 

materials (Table 3-1). Just a single polymorphic band of a total band number of 711 

(710 in AA-Ijoh) was detected (Table 3-2). These data proof for the first time by 

molecular analysis that homologous recombination was probably dramatically 

reduced throughout crossing experiments via stable translocation heterozygous 

hybrids, although in the chosen example the johansen complex was four times 

combined with another complex during the crossing program (Fig. 3-1). Most 

probably, the limited homologous recombination events were restricted to telomeric 

regions, otherwise a much higher degree of contamination from other genomes 

would have been expected.   

 

3.1.2 DEVELOPMENT OF AFLP MARKERS 
First, polymorphic markers between the two designated parental lines Oenothera 

elata subsp. hookeri strain johansen (AA-IIIlam) and Oenothera grandiflora strain 

tuscaloosa (BB-IIIlam) were generated by AFLP analysis. For this purpose, 120 primer 

combinations were analyzed. In toto, 10,245 bands were detected. 4,075 of them 

(33.96 polymorphic bands per primer combination on average) were polymorphic 

between the two lines, whereas both shared 6,170. This way, 39.78% polymorphism 

between the two lines was determined (Table 3-3a). Sizes of markers detected 

ranged between 45 to 500 bp, with an average of 242 bp. There was considerable 

variation in the number of bands produced with different primer sets. Those primer 

combinations that generated the largest number of polymorphic markers were 

selected for further analysis (Tables 3-4a-c).   
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Tables 3-3a and 3-3b: Statistics of the linkage maps and analyses of genetic diversities. 

 
Table 3-3b 

coupling group 
1 

coupling group 
2 

coupling group 
3 

coupling group 
4 

coupling group 
5 

coupling group 
6 

coupling group 
7 

number of markers detected    
(hjohansen) 134 131 116 127 91 109 114 

number of markers detected    
(htuscaloosa) 142 134 100 113 94 115 125 

number of markers detected    
(hcholula) 4 3 1 2 1 4 2 

number of markers detected    
(hpuebla) 3 3 1 2 3 1 1 

total genetic distance  
detected (in cM)             

(hjohansen and htuscaloosa)
10 20 14 12 18 7 2 

total genetic distance  
detected (in cM)             

(hcholula and hpuebla) 
1 1 0 0 0 0 0 

segregation ratio detected of 
single coupling groups in F2  

[hjohansen (A) and 
htuscaloosa (B)] 

AA:AB:BB      
1 : 4,5 : 3,5 

AA:AB:BB      
1 : 2,3 : 1,5 

AA:AB:BB      
1,5 : 2,5 : 1 

AA:AB:BB      
1 : 2,3 : 1 

AA:AB:BB      
1,2 : 2,3 : 1 

AA:AB:BB      
1 : 3,2 : 2,7 

AA:AB:BB      
1 : 2,5 : 1,2 

segregation ratio detected of 
single coupling groups in F2  
[hcholula (A) and hpuebla 

(A´)] 

AA:AA´:A´A´    
1,1 : 2,4 : 1 

AA:AA´:A´A´    
1,6 : 4 : 1 

AA:AA´:A´A´    
1 : 3,7 : 1 

AA:AA´:A´A´    
1 : 2,2 : 1,3 

AA:AA´:A´A´    
1,9 : 2,4 : 1 

AA:AA´:A´A´    
1 : 1,3 : 1,3 

AA:AA´:A´A´    
1 : 2,6 : 1,4 

Table 3-3a 
number of 

investigated primer 
combinations 

total detected 
polymorphic 

bands 

average number of 
polymorphic bands per 

primer combination 

detected 
shared bands 

number of total bands 
(shared bands + 

polymorphic bands) 

percentage of 
polymorphism

hjohansen  (AA-IIIlam)       
and                     

htuscaloosa (BB-IIItusc) 
120 4,075 33.96 6,170 10,245 39.78% 

hcholula (AA-Icho)          
and                     

hpuebla (AA-Ipue) 
14 120 8.57 1,100 1,220 10.91% 
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Table 3-4a (1-3):  Primer combinations used for AFLP analysis to generate the first genetic maps of the hjohansen (A) and htuscaloosa (B) 
complex. 

 
 
 
 
 
 

Primer combinations were designated with sm (restriction enzymes SacI and MseI used for AFLP analysis) and a number. Primers were designated with name of restriction 
enzyme (in this case it stands for the sequence of the adaptor) and the added nucleotides. 3-4a (1) MseICXX and SacIGX primers were used; 3-4a (2) MseICXX and SacICX 
primers were used; 3-4a (3) MseIGXX and SacICX primers were used. All primer combinations used for AFLP analysis of Oe. elata subsp. hookeri elata strain johansen with 
plastome IIIlam (AA-IIIlam) and Oe. grandiflora strain tuscaloosa with plastome IIItusc (BB-IIItusc) are marked in orange. Primer combinations marked in red gave no satisfactory results. 

Table 3-4a (1) 

primer combinations MseI 
CAA 

MseI 
CAC 

MseI 
CAG 

MseI 
CAT 

MseI 
CCA 

MseI 
CCC 

MseI 
CCG 

MseI 
CCT 

MseI 
CGA 

MseI 
CGC 

MseI 
CGG 

MseI 
CGT 

MseI 
CTA 

MseI 
CTC 

MseI 
CTG 

MseI 
CTT 

SacI GA - FAM sm385 sm267 sm387 sm388 sm389 sm390 sm265 sm392 sm298 sm264 sm297 sm299 sm300 sm266 sm303 sm301 

SacI GC - Joe sm401 sm271 sm403 sm404 sm405 sm406 sm269 sm408 sm284 sm268 sm283 sm285 sm286 sm288 sm289 sm287 

SacI GG - FAM sm417 sm263 sm419 sm420 sm421 sm422 sm261 sm424 sm291 sm260 sm290 sm292 sm293 sm295 sm296 sm294 

SacI GT - Joe sm433 sn275 sm435 sm436 sm437 sm438 sm273 sm440 sm277 sm272 sm276 sm278 sm279 sm281 sm282 sm280 

Table 3-4a (2) 

primer combinations MseI 
CAA 

MseI 
CAC 

MseI 
CAG 

MseI 
CAT 

MseI 
CCA 

MseI 
CCC 

MseI 
CCG 

MseI 
CCT 

MseI 
CGA 

MseI 
CGC 

MseI 
CGG 

MseI 
CGT 

MseI 
CTA 

MseI 
CTC 

MseI 
CTG 

MseI 
CTT 

SacI CA - FAM sm441 sm442 sm443 sm444 sm445 sm446 sm447 sm448 sm449 sm450 sm451 sm452 sm453 sm454 sm455 sm456 

SacI CT - Joe sm457 sm458 sm459 sm460 sm461 sm462 sm463 sm464 sm465 sm466 sm467 sm468 sm469 sm470 sm471 sm472 

SacI CC - FAM sm473 sm474 sm475 sm476 sm477 sm478 sm479 sm480 sm481 sm482 sm483 sm484 sm485 sm486 sm487 sm488 

SacI CG - Joe sm489 sm490 sm491 sm492 sm493 sm494 sm495 sm496 sm497 sm498 sm499 sm500 sm501 sm502 sm503 sm504 

Table 3-4a (3) 

primer combinations MseI 
GAA 

MseI 
GGA 

MseI 
GCA 

MseI 
GTA 

SacI CA - FAM sm505 sm506 sm507 sm508 

SacI CT - Joe sm521 sm522 sm523 sm524 

SacI CC - FAM sm537 sm538 sm539 sm540 

SacI CG - Joe sm553 sn554 sm555 sm556 
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Table 3-4b (1-3):  All bands detected in hjohansen (A) and htuscaloosa (B). 

 

 
 
 
 
 
 
 

The number of total bands (AA-IIIlam + polymorphic bands from BB-IIItusc or BB-IIItusc + polymorphic bands from AA-IIIlam) was counted. The number of bands ranged from 30 
(sm268) to 156 (sm385).  An average of 85.38 total bands per primer combination was detected. 
 
 

Table 3-4b (1) 
total bands (AA-IIIlam and 
BB-IIItusc) 

MseI 
CAA 

MseI 
CAC 

MseI 
CAG 

MseI 
CAT 

MseI 
CCA 

MseI 
CCC 

MseI 
CCG 

MseI 
CCT 

MseI 
CGA 

MseI 
CGC 

MseI 
CGG 

MseI 
CGT 

MseI 
CTA 

MseI 
CTC 

MseI 
CTG 

MseI 
CTT 

SacI GA - FAM 156 152 - 142 - 136 121 - - 69 105 115 106 140 117 - 

SacI GC - Joe 76 53 53 50 39 58 45 55 41 30 58 81 60 51 56 87 

SacI GG - FAM 119 100 71 98 88 81 99 - 56 51 81 - 118 77 69 94 

SacI GT - Joe 54 - 61 - 73 76 40 72 55 51 69 40 68 71 60 113 

Table 3-4b (2) 
total bands (AA-IIIlam and 
BB-IIItusc) 

MseI 
CAA 

MseI 
CAC 

MseI 
CAG 

MseI 
CAT 

MseI 
CCA 

MseI 
CCC 

MseI 
CCG 

MseI 
CCT 

MseI 
CGA 

MseI 
CGC 

MseI 
CGG 

MseI 
CGT 

MseI 
CTA 

MseI 
CTC 

MseI 
CTG 

MseI 
CTT 

SacI CA - FAM 148 94 113 115 105 93 91 104 90 47 81 62 123 105 98 113 

SacI CT - Joe 121 104 113 110 101 102 85 98 123 41 62 46 84 84 76 117 

SacI CC - FAM - 64 - 98 75 110 85 101 69 67 81 91 89 83 75 64 

SacI CG - Joe 91 91 113 123 123 96 109 122 63 64 78 72 75 99 91 56 

Table 3-4b (3) 
total bands (AA-IIIlam and 
BB-IIItusc) 

MseI 
GAA 

MseI 
GGA 

MseI 
GCA 

MseI 
GTA 

SacI CA - FAM 
SacI CT - Joe 99 

SacI CC - FAM 60 

SacI CG - Joe 62 
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Table 3-4c (1-3):  Polymorphic bands detected between the complexes hjohansen (A) and htuscaloosa (B). 

 

 
 
 
 
 
 
 

Polymorphic bands between AA-IIIlam (hjohansen • hjohansen with plastome IIIlam) and BB-IIItusc (htuscaloosa • htuscaloosa with plastome IIIlam) were counted. Between 7 (sm405) 
and 79 (sm267) (average 33.96) polymorphic bands per primer combination were detected. Primer combinations marked in black were used for the generation of the “basic 
maps” (244 F2 plants, see Chapter 3.1.3). Primer combinations marked in black and blue were used for the generation of the “extension maps” (40 F2 plants, see Chapter 3.1.6) 
of hjohansen (A) and htuscaloosa (B). 
 

Table 3-4c (1) 
polymorphic bands (AA-IIIlam 
and BB-IIItusc) 

MseI 
CAA 

MseI 
CAC 

MseI 
CAG 

MseI 
CAT 

MseI 
CCA 

MseI 
CCC 

MseI 
CCG 

MseI 
CCT 

MseI 
CGA 

MseI 
CGC 

MseI 
CGG 

MseI 
CGT 

MseI 
CTA 

MseI 
CTC 

MseI 
CTG 

MseI 
CTT 

SacI GA - FAM 47 79 - 29 - 50 27 - - 19 48 49 20 32 33 - 

SacI GC - Joe 28 8 13 8 7 17 12 16 15 8 20 25 31 14 12 19 

SacI GG - FAM 35 43 8 30 35 35 39 - 18 27 35 - 38 22 24 20 

SacI GT - Joe 16 - 19 - 34 29 15 20 26 20 37 11 40 34 26 60 

Table 3-4c (2) 
polymorphic bands (AA-IIIlam 
and BB-IIItusc) 

MseI 
CAA 

MseI 
CAC 

MseI 
CAG 

MseI 
CAT 

MseI 
CCA 

MseI 
CCC 

MseI 
CCG 

MseI 
CCT 

MseI 
CGA 

MseI 
CGC 

MseI 
CGG 

MseI 
CGT 

MseI 
CTA 

MseI 
CTC 

MseI 
CTG 

MseI 
CTT 

SacI CA - FAM 53 34 69 31 35 63 46 41 41 15 44 28 40 65 33 69 

SacI CT – Joe 18 38 50 57 22 47 41 23 26 14 11 28 35 19 24 63 

SacI CC - FAM - 43 - 52 33 72 21 38 35 25 47 63 61 56 27 13 

SacI CG – Joe 54 43 50 46 76 42 18 29 40 36 30 34 43 26 54 15 

Table 3-4c (3) 
polymorphic bands (AA-
IIIlam and BB-IIItusc) 

MseI 
GAA 

MseI 
GGA 

MseI 
GCA 

MseI 
GTA 

SacI CA - FAM 
SacI CT - Joe 68 

SacI CC - FAM 33 

SacI CG - Joe 47 
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3.1.3 GENERATION OF THE FIRST AFLP MAPS (BASIC MAPS) 
A F1 population was generated using BB-IIIlam (htuscaloosa • htuscaloosa with 

plastome IIIlam) (Fig. 3-2b) as maternal parent plant in the interspecific cross with 

incompatible AA-IIIlam plants (hjohansen • hjohansen with plastome IIIlam) (Fig. 3-2a). 

Both materials possess the same chromosomal formula to ensure homozygous 

hybridization. The F1 generation possesses the plastome-genome combination AB-

IIIlam and is fully compatible and uniform (green) according to Stubbe (1989). F1 

plants were selfed and 244 F2 plants were used to generate a first genetic map 

(basic map). On this occasion bivalent forming was checked cytologically to prove the 

correctness of the chromosomal formulas (Fig. 3-3). Green and different kinds of 

incompatible F2 plants were observed (Fig. 3-4). The segregation ratio of 

incompatible plants in F2 could not be reliably determined because of a large 

variation of incompatible phenotypes (Fig. 3-4) and because of changing ratios 

during the first weeks of development, due to lethality and/or the different periodical 

appearance of incompatible phenotypes (most only 8 – 10 days after the 

germination) (Schötz 1958). At least two loci, possably three, cause the 

incompatibility in the plastome-genome combination AA-IIIlam. Ten primer 

combinations of the 120 previously analyzed, designated sm261, sm263, sm267, 

sm276, sm279, sm280, sm281, sm285, sm290 and sm299 were applied to F2 plants 

(Table 3-4c (1)). Only the best polymorphic bands of these primer combinations, 

fulfilling the criteria (1) indisputably detectable bands, and (2) a gapless dataset in F2 

plants, were used (222 of 441).   

 

 

 
 
 
 
 
 
 
 
 
Fig. 3-2: Phenotype of parental plants used for mapping approaches. (a) Incompatible 
phenotype (virescent) of AA-IIIlam plants. (b) Compatible green phenotype of BB-IIIlam 
plants.  

a) b) 
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The few markers which displayed recombination, showed more or less the same 

Mendelian or “disturbed” segregation ratios as the whole chromosomes, they are 

located on. 

 

  

 

            

       

 
 
Fig. 3-4:  Different phenotypes observed in the F2 generation of the cross BB-IIIlam x AA-IIIlam. (a) 
Compatible (left) and incompatible (right) approximately two-week-old F2 seedlings after germination. 
(b) Different strengths of incompatible phenotypes observed in the F2 generation of the cross BB-IIIlam 
x AA-IIIlam. 

a) 

b) 
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3.1.4 INTEGRATION OF THE TWO BASIC MAPS 
Because of lack of homologous recombination between the two haploid chromosome 

sets, compatible coupling groups of the two maps were assigned. Thus, dominant, 

not recombining AFLP markers can be handled as co-dominant markers. The 

flanking markers of the respective chromosomes were compared with highest 

probability. This allows an integration of the two linkage maps (Fig. 3-6). A merged 

linkage map, consisting of 222 dominant AFLP markers, was generated. These 

markers were again located on seven coupling groups, corresponding to the seven 

chromosomes, and covered a total length of 83 cM using the Kosambi function (Ott 

1991). Furthermore, two loci, evidently involved in causing AA-III incompatibility, 

were mapped on coupling group 4 and on coupling group 7, respectively (Fig. 3-6). 

Detail informations about the AFLP markers assigned to integrated genetic map are 

listed in the Appendix. 

 

3.1.5 INTEGRATION OF CO-DOMINANT MARKERS INTO AFLP MAPS 
Unfortunately, dominant AFLP markers cannot be used to detect allelic variation. 

This was one of the reasons for generating an Oenothera EST library (Mráček et al. 

2006). The information obtained was used to develop the first co-dominant markers 

for evening primroses (Greiner 2008). Twenty-two co-dominant markers, designated 

M02, M07, M08, M19, M28, M38, M39, M40, M41, M43, M46, M47, M50, M58, M59, 

M74, M75, M86, M88, M95, M97, M98, were used for segregation analysis of 

selected 40 individuals of the 244 F2 plants (“expansion maps”, see Chapter 3.1.6, 

Fig. 3-8) with AFLP analysis. Five co-dominant markers, namely M07, M08, M28, 

M74 and M95, were then used for segregation analysis of the 244 plants (Table 3-5). 

The co-dominant markers mapped did not show differences compared to dominant 

AFLP markers. So, most of the markers did not show homologous recombination and 

were thus located in the cluster of dominant AFLP markers (Fig. 3-6 and Fig. 3-8). 

Only three out of the 22 co-dominant markers, designated M38, M40 and M98, 

showed homologous recombination (13.6%), comparable to the ratio detected with 

dominant markers (7.53%; see Chapter 3.1.6) considering the smaller number of co-

dominant markers.  
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Table 3-5: PCR based co-dominant markers detected between the Renner complexes hjohansen (above) and htuscaloosa 
(below) (see also Mráček et al. 2006 and Greiner 2008). 

 M41 
 EU447219 
 EU447220 

no no 1 CAPS 
(EarI) 

267 
267 

161, 106 
267 

M41for 
M41rev

acaccctcttatcaccaatggc 
tctccacgagagtgtccgtgg 

C_1234-11-
B07 At2g45290 transketolase, putative, chlo-

roplast 

 M43 
 EU447221 
 EU447222 

no no 11 CAPS 
(BsuRI) 

275 
275 

206, 47, 22 
118, 88, 47, 22 

M43for 
M43rev

accacattcctcaaagctccg 
cggaagcaagaagctctttgg 

S_1221-11-
A06 At3g63140 mRNA binding protein 

precursor – like, chloroplast 

 M46 
 EU447225 
 EU447226 

no no 6 CAPS 
(XhoI) 

194 
194 

108, 86 
194 

M46for 
M46rev

aaatggcgtccatggcgctta 
cttgggactcaagctcggcag 

S_1491-13-
D02 At5g12860 2-oxoglutarate/malate translo-

cator-like protein, chloroplast 

 M47 
 EU447227 
 EU447228 

no no 1 CAPS 
(TaqI) 

257 
257 

257 
175, 82 

M47for 
M47rev

tgggtgggattgccctacgtg 
gcgacaaccttaaccatgtcg 

S_1494-13-
D05 At1g42970 glyceraldehyde-3-phosphate 

dehydrogenase B, chloroplast 

 M50 
 EU447231 
 EU447232 

no no 3 CAPS 
(HhaI) 

225 
225 

225 
148, 77 

M50for 
M50rev

ctgctccaccacaatggctgc 
accaacgaaccgtctagccag 

C_1598-14-
D12 At2g40100 

photosystem II chlorophyll 
a/b-binding protein (Lhcb), 
chloroplast 

 M58 
 EU447237 
 EU447238 

yes 11 bp 15 CAPS 
(BsrI) 

533 
544 

424, 109 
280, 155, 109 

M58for 
M58rev

gatccggaggatggaagtcct 
ctgaactgccacggctgttgg 

S_2302-22-
H10 At4g02510 protein import component 

Toc159-like, chloroplast 

marker accession 
number intron SSLP 

no. 
SNPs 

marker type 
(enzyme) 

predicted 
PCR 

products 
in  [bp]1) 

predicted 
restriction 
fragments 

[bp]1) 
primer 

    primer sequence  
           (5’-to-3’) 

EST/cluster 
accession 

closest 
Arabidopsis 
homologue 

(blastX) 

protein function and 
localization in Arabidopsis 

M022) 
EU483117 
EU483119 

no no 2 CAPS 
(ApeKI) 

288 
288 

250, 38 
186, 64, 38 

M02for 
M02rev

tggccatggcgacacaagcctc 
cctcaacctgagccttacggag 

C_4044-89-
F11 At1g03130 

photosystem I reaction centre 
subunit (PsaD2), putative, 
chloroplast 

M072) 
EU483125 
EU483127 

no no 2 CAPS 
(PstI) 

356 
356 

356 
299, 57 

M07for 
M07rev

accatacccatatacccagtgc 
tcaagcggcttcggtgcatctc 

S_4170-90-
H07 At5g64380 fructose-bisphosphatase-like 

protein, mitochondrium 

M082) 
EU483129 
EU483131 

no no 2 CAPS 
(BsuRI) 

282 
282 

247, 35 
173, 74, 35 

M08for 
M08rev

ctcagccaggaggacctcaagc 
gaggtgggtatcgacctcgtcg 

S_3501-84-
D07 At2g01290 ribose 5-phosphate iso-

merase, localization un-known 

M19 
EU447207 
EU447208 

no no 1 
CAPS 
(PflMI) 

396 
396 

208, 188 
396 

M19for 
M19rev

aatcctaatggctgcctctaca 
cacactgcctcaccgaact 

C_2501-25-
D11 At1g29920 chlorophyll a/b-binding protein 

– like, chloroplast 

M28 
EU447211 
EU447212 

no no 1 CAPS 
(BsuRI) 

278 
278 

182, 39, 30, 27 
212, 39, 27 

M28for 
M28rev

ggctccgacatccttgtggag 
gcgactaaggggacgctatcg S_56-4-B10 At3g48560 acetolactate synthase, chloro-

plast 

M38 
EU447215 
EU447216 

no no 2 CAPS 
(BsuRI) 

213 
213 

156, 44, 13 
200, 13 

M38for 
M38rev

ggcaaagctatggccactctc 
gtccgaccaagcagcgacgtt 

S_1191-10-
F12 At2g37220 RNA-binding protein (Cp29), 

chloroplast 

M39 
EU447217 
EU447218 

yes no 2 CAPS 
(BclI) 

680 
680 

374, 262, 44 
374, 306 

M39for 
M39rev

ccaaagtggtatcgcggtgtc 
ggaaccagtacgtagtacgttgc

S_1214-10-
H11 At3g63410 MPBQ/MSBQ 

methyltransferase, chloroplast 

M40 
EU432390 
EU432401 

yes 117 bp N/A SSLP 
583 
500 

N/A M40for 
M40rev

accgtctcctccaagcactgc 
tcagccctttgtccgaagtcg 

C_1231-11-
B04 At3g55800 sedoheptulose-

bisphosphatase, chloroplast 
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marker accession 
number intron SSLP 

no. 
SNPs

marker 
type 

(enzyme) 

predicted 
PCR 

products 
in  [bp]1) 

predicted 
restriction 

fragments [bp]1)
primer 

    primer sequence  
           (5’-to-3’) 

EST/cluster 
accession 

closest 
Arabidopsis 
homologue 

(blastX) 

protein function and 
localization in Arabidopsis 

M59 
EU447239 
EU447240 

yes 4 bp 51 CAPS 
(RsaI) 

703 
699 

322, 199, 178, 4 
517, 178, 4 

M59for 
M59rev 

tgctctccgccacaatgtccg 
caaaccctctggtggccacac 

C_2346-23-
D11 At1g67090 

ribulose bisphosphate carboxy-
lase, small subunit (RuBisCO), 
chloroplast 

M74 
EU447243 
EU447244 

no no 3 CAPS 
(HhaI) 

250 
250 

208, 40, 2 
104, 54, 50, 40, 2 

M74for 
M74rev 

aatggcggctctccagcagac 
tggtttcgagagtaccgttgg 

C_3913-88-
C06 At4g09650 ATP synthase delta subunit 

(AtpD), chloroplast 

M75 
EU447245 
EU447246 

no no 1 CAPS 
(AluI) 

149 
149 

120, 29 
64, 56, 29 

M75for 
M75rev 

gtctgttatatcgagtgctgggac 
cctgatcagccatgcatctgag 

C_4066-89-
H09 At4g14690 chlorophyll a-b binding family 

protein (Elip2), chloroplast 

M86 
EU447249 
EU447250 

no no 4 CAPS 
(DdeI) 

208 
208 

84, 66, 45, 13 
150, 58 

M86for 
M86rev 

tccctcatttctctacctccagag 
accagccatagcaacgacgcc 

C_4643-96-
G12 At2g21170 triosephosphate isomerase, 

chloroplast 

M88 
EU447251 
EU447252 

no no 1 CAPS 
(DdeI) 

176 
176 

176 
152, 24 

M88for 
N88rev 

accacagtctccgcagtaact 
tgttgagcccaatccgaggtc 

C_4753-98-
B06 At5g50250 RNA binding protein (rbp31), 

chloroplast 

M95 
EU447253 
EU447254 

yes no 2 CAPS 
(HhaI) 

315 
315 

299, 16 
252, 47, 16 

M95for 
M95rev 

tcggactcagcaatggcgctc 
tggtggctgtctgtgctcgaa 

C_5102-112-
A10 At5g54190 NADPH:protochlorophyllide 

oxidoreductase A, chloroplast 

M972) 
EU483132 
EU483134 

no 18 bp 23 CAPS 
(ApeKI) 

357 
375 

246, 71, 29, 11 
346, 29 

M97for 
M97rev 

atgaaagcacaaggagtcctc 
cgagaatgaagctgcctaaga 

S_1348-12-
C09 At5g47560 malate/fumarate transporter, 

tonoplast 

M982) 
EU483136 
EU483138 

no 11 bp 24 CAPS 
(PflFI) 

459 
470 

231, 184, 44 
426, 44 

M98for 
M98rev 

aagccgagatcatcctgcaatgg 
aggcaaaataaaacggggatacagc 

C_1202-10-
G11 At2g06520 PsbX (photosystem II subunit 

X), chloroplast 

 
1) Not each PCR-product was fully sequenced; length in bps was derived from the postion of the primer in the EST sequence used as template.  
2) Polymorphisms first published in Mráček et al. (2006), confirmed, converted to CAPS, annotated and submitted to GenBank in this study.
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3.1.6 EXPANSION OF THE AFLP MAPS (EXPANSION MAPS) 
Expansions of the basic maps were performed to increase the number of markers per 

chromosome substantially. For this, the number of F2 plants was reduced to 40, 

selected to be able to distinguish unequivocally between single coupling groups. A 

selection of F2 plants was possible because the genetic constitution of each 

individual chromosome was known from all F2 plants as a consequence of lack of 

homologous recombination. A further 35 primer combinations, implying 1,515 

polymorphic markers, of which 1,384 could be mapped, were tested. So, a genetic 

map of the A genome, consisting of 800 markers, covering a total length of 135 cM 

and a genetic map of the B genome, consisting of 806 markers, covering a total 

length of 165 cM were calculated (Fig. 3-8). 121 (7.53%) out of 1,606 AFLP markers 

showed homologous recombination. These are exclusively located at telomeric 

regions. Even a single recombination event of one of the clustering markers would 

have lead to two bulks. Such splits of a cluster into two bulks could not be observed 

indicating complete suppression of homologous recombination along the major part 

of the chromosomes. 92.47% of all AFLP markers showed no homologous 

recombination. Thus, the largest part of the genetic information of chromosomes 

remains genetically stable over next generations. 

 

3.1.7 GENERATION OF A SECOND LINKAGE MAP USING A CROSS OF 
SUBSPECIES 

It is known that homologous recombination is dependent on the degree of 

polymorphism (Haber et al. 1991). In the interspecific cross htuscaloosa x hjohansen 

chosen, 39.78% polymorphism was detected between the two genomes, comparable 

to other species used for mapping approaches. For instance, the Arabidopsis 

lineages Ler/Col differed in 30.4%, Cvi/Ler in 34.4% and Cvi/Col in 33.7% of the 

bands (Alonso-Blanco et al. 1998). To exclude that the degree of divergence 

between hjohansen (A genome) and htuscaloosa (B genome) causes the lack of 

homologous recombination, a second linkage analysis was generated and studied 

using an intraspecific cross with a high genomic similarity of the crossing partners. 

The two lineages Oenothera elata subsp. elata strain cholula (AA-Icho) and Oenothera 

elata subsp. elata strain puebla (AA-Ipue) were used, both originating from the same 

habitat in Mexico. To ensure again homozygous hybridization, both plants possess 
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the same chromosomal formula 1•4 3•2 5•9 7•10, 6•8 11•12 13•14. Fourteen primer 

combinations (Table 3-6) were tested at parental lines. A total band number of 1,100 

was detected of which 120 (8.57 per primer combination) were polymorphic (10.91%) 

(Table 3-3), consistent with a close relationship. In contrast, the degree of 

polymorphism detected between the complexes hjohansen and htuscaloosa was 

39.78%. Three primer combinations, designated as sm299, sm390 and sm406 were 

tested on 40 F2 plants. 31 markers were detected and coupling groups were 

calculated. Only two markers showed homologous recombination (6.45%), whereas 

the rest of the markers remained coupled (Fig. 3-9). This observation leaves no doubt 

that homologous recombination is almost completely repressed in all Oenothera 

species, regardless of whether they are translocation heterozygotes or homozygotes. 

Thus, this work describes the first case of sexual reproduction with homologous 

recombination exclusively limited to telomeric regions in a natural occurring bivalent 

forming species.  

 

3.2 CYTOLOGICAL ANALYSIS OF THE MEIOTIC PROPHASE 
The mapping approaches in bivalent forming Oenothera species revealed a lack of 

homologous recombination at centromeric and of large parts of the pericentromeric  

regions, which can extend close to telomeres. Up to now, recombination limited to 

telomeric parts of chromosomes were only known from translocation heterozygotic 

species as a result of a special ring order of the chromosomes during meiosis. 

Homologous recombination takes place during meiotic prophase I. Premeiotic and 

meiotic phases, particularly the different phases of prophase I (leptotene, zygotene, 

pachytene, diplotene and diakinesis), were checked cytologically with Dr. Hieronim 

Golczyk (Jagiellonian University, Krakow, Poland) and investigated for irregularities 

(Rauwolf et al. 2008a; Golczyk et al. 2008). A large fraction of chromatin showed an 

untypical, higher-order chromatin organization, notably condensation, before 

chromosomes enter the meiotic bouquet (Fig. 3-10). The overall degree of chromatin 

condensation at leptotene was high and the process seems to be fast, since much 

difference between the chromosome pairs could be observed.  
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Table 3-6a:  Primer combinations tested at hpuebla and hcholula genomes. 
 
 
 
 
 
 
 

Primer combinations were designated with sm (restriction enzymes SacI and MseI used for AFLP analysis) and a number. 
Primers were designated by the name of restriction enzyme (in this case it stands for the sequence of the adaptor) and the 
added nucleotides. Primer combinations used for AFLP analysis of Oe. elata subsp. elata strain cholula with plastome Icho (AA-
Icho) and Oe. elata subsp. elata strain puebla with plastome Ipue (AA-Ipue) are marked in orange. 
 

Table 3-6b:  Total bands detected in hcholula and hpuebla. 
 
 
 
 
 
 
 

Total bands (AA-Icho + polymorphic bands from AA-Ipue or AA-Ipue + polymorphic bands from AA-Icho) were counted. The number 
of bands ranged from 21 (sm285) to 148 (sm385).  An average of 78.57 total bands per primer combination was found. 

 
 
 
 
 
 
 
 

primer 
combinations 

MseI 
CAA 

MseI 
CAC 

MseI 
CAG 

MseI 
CAT 

MseI 
CCA 

MseI 
CCC 

MseI 
CCG 

MseI 
CCT 

MseI 
CGA 

MseI 
CGC 

MseI 
CGG 

MseI 
CGT 

MseI 
CTA 

MseI 
CTC 

MseI 
CTG 

MseI 
CTT 

SacI GA - FAM sm385 sm267 sm387 sm388 sm389 sm390 sm265 sm392 sm298 sm264 sm297 sm299 sm300 sm266 sm303 sm301

SacI GC - Joe sm401 sm271 sm403 sm404 sm405 sm406 sm269 sm408 sm284 sm268 sm283 sm285 sm286 sm288 sm289 sm287

SacI GG - FAM sm417 sm263 sm419 sm420 sm421 sm422 sm261 sm424 sm291 sm260 sm290 sm292 sm293 sm295 sm296 sm294

SacI GT - Joe sm433 sn275 sm435 sm436 sm437 sm438 sm273 sm440 sm277 sm272 sm276 sm278 sm279 sm281 sm282 sm280

total bands MseI 
CAA 

MseI 
CAC 

MseI 
CAG 

MseI 
CAT 

MseI 
CCA 

MseI 
CCC 

MseI 
CCG 

MseI 
CCT 

MseI 
CGA 

MseI 
CGC 

MseI 
CGG 

MseI 
CGT 

MseI 
CTA 

MseI 
CTC 

MseI 
CTG 

MseI 
CTT 

SacI GA - FAM 148 125 117 50 68 

SacI GC - Joe 81 54 54 21 44 37 

SacI GG - FAM 114 93 98 

SacI GT - Joe 
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Table 3-6c:  Polymorphic bands detected between the complexes hcholula and hpuebla. 

 
 
 
 
 
 
 
 

Polymorphic bands between AA-Icho and AA-Ipue were counted. A range between one (sm286) and 16 (sm283) with an average 
of 8.57 polymorphic bands per primer combination was detected. Primer combinations marked in blue were used for linkage 
analysis of markers of AA-Icho and AA-Ipue. 
 
 
 
 
 

polymorphic 
bands 

MseI 
CAA 

MseI 
CAC 

MseI 
CAG 

MseI 
CAT 

MseI 
CCA 

MseI 
CCC 

MseI 
CCG 

MseI 
CCT 

MseI 
CGA 

MseI 
CGC 

MseI 
CGG 

MseI 
CGT 

MseI 
CTA 

MseI 
CTC 

MseI 
CTG 

MseI 
CTT 

SacI GA - FAM 13 9 18 3 10 

SacI GC - Joe 6 11 16 3 1 3 

SacI GG - FAM 8 10 9 

SacI GT - Joe 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Coupling Group 1 Coupling Group 2 Coupling Group 3 Coupling Group 4 

Coupling Group 5 Coupling Group 6 

Coupling Group 7 

Fig. 3-9: Integrated map of Oe. elata subsp. elata strain cholula Icho and Oe. elata subsp. elata strain puebla Ipue. 
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Fig. 3-10  Cytological analysis of premeiotic and meiotic phases. (a) 
Premeiotic nuclei with fourteen chromocenters (pericentromeric 
chromosome regions); (b) Rabl configuration at zygotene (Rabl 1885), 
arrow marked in yellow - relaxed distal chromosome segments, arrow 
marked in red - pericentromere pole. (c) Early diakinesis showed less 
condensed distal chromosome segments in the seven bivalents. (d) 
Chromosomes segregated regulary at late anaphase I. 

 

3.3 A PCR-BASED MARKER SYSTEM TO DISTINGUISH BETWEEN RENNER 
COMPLEXES AND PLASTOME TYPES 

30 different basic plastome-genome combinations are possible in the genus 

Oenothera (Fig. 1-4), not incuding the subgenomes and subplastomes, for which the 

numbers are unknown. So far, phenotypical markers were used to differentiate 

between basic nuclear and basic plastome types including plastome mutants 

(Cleland 1972; Stubbe and Herrmann 1982; Stubbe 1989; Dietrich et al. 1997). Some 

molecular markers were described for a limited number of strains (Mráček 2005; 

Larson et al., 2008). 

 

3.3.1 MARKER SYSTEM TO DISTINGUISH BETWEEN RENNER COMPLEXES 
The SSLP M40 marker (Table 3-5), derived from the EST cluster C_1231-11-B04 of 

Oe. elata subsp. hookeri strain hookeri de Vries (Mráček et al. 2006), was considered 

a) b) 

c) d) 
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Table 3-7:  Classification into groups of the different M40 alleles  
 

M40 allele Renner complex* SSLP [bp] CAPS [bp] CAPS [bp] CAPS [bp]  accession number 
      (MboI)     (MpsI)     (SpeI) 
 
  

Galbicans, Stalbicans, hhookeri de Vries,     EU432376, EU432377, EU432382, 
 A1  hfranciscana de Vries, hpurpurata, hblandina   474 210, 170, 67, 27 319, 155 249, 126, 99 EU432379, EU432383, EU432378, 
   amrigens, hfranciscana E. & S., laxans     EU432384, EU432380, EU432382 
 
 
 A2 hchapultepec, hcholula, hpuebla,    579    285, 200, 67, 27 431, 148 352, 135, 92 EU432385, EU432386, EU432387,  
  htoluca, undans     EU432388, EU432389 
 
 
 A3 hjohansen, r-svelans   583 349, 207, 27 428, 155 352, 132, 99 EU432390, EU432391 
 
 
 B1 hdecipiens, hdeserens, r-Sgaudens   470 207, 169, 67, 27 315, 155  371, 99 EU432392, EU432393, EU432394 
 
 
 B2 hbellamy A, hBA castleberry A-4, hBA chastang 7,   499 226, 179, 67, 27 325, 174 364, 135 EU432395, EU432396, EU432397,  
  Gflavens, h stockton 1     EU432398, EU432399 
 
 
 B3 Stflavens   500 227, 179, 67, 27 325, 175 365, 135 EU432400 
 
 
 B4  htuscaloosa   500 227, 179, 67, 27 325, 175 365, 135 EU432401 
 
 
 C1  hdouthat 1, hwilliamsville, hwilson creek 1   496 243, 159, 67, 27 496 364, 132 EU432402, EU432403, EU432404
  
 
SSLP and restriction endonuclease patterns are shown to distinguish between the different Renner complexes. 

*corresponding Oenothera strains and species are listed in Chapter 2.1.7  
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complex tuscaloosa, the band of 470 bp must have been amplified from the r-
Sgaudens complex. This way, the bands of the translocation heterozygotic strains 

ammophila (amrigens • percurvans), bauri (laxans • undans), suaveolens Grado 

(Galbicans • Gflavens) and suaveolens Standard (Stalbicans • Stflavens) were assigned 

as well. 

 

The sequences of the different marker regions are deposited in GenBank (Table 3-7). 

In all investigated Renner complexes two introns were found with the marker allele 

M40, containing microsatellites of different lengths and thus resulting in eight different 

SSLP in the 29 investigated Renner complexes. Furthermore, for all three basic 

nuclear genome types (A, B and C) at least one specific SSLP was detected that was 

converted into a CAPS marker (Table 3-7). 

 

3.3.2 A MARKER TO DISTINGUISH BETWEEN PLASTOMES AND 
SUBPLASTOMES 

In addition to the marker system, with which distinction between Renner complexes is 

possible, it was desirable to establish a system to differentiate also between different 

plastomes and even subplastomes. Therefore, the plastidic rrn16-trnIGAU spacer 

region was investigated in 41 Oenothera strains (Rauwolf et al. 2008b; Greiner 

2008), using the primers 16S SEQ (+) and trnI PCR (+). Sequences of the PCR 

products uncovered a BamHI restriction polymorphism (Table 3-8). A high degree of 

polymorphism in this region was already described in Hornung et al. (1996) and 

Sears et al. (1996). The marker alleles rrn16-trnIGAU I1 and rrn16-trnIGAU I2, detected 

in the strains chapultepec, cholula, puebla or toluca, can not be discerned via BamHI, 

but via a BsmBI digest (I1: 619 bp, 261 bp and I2: 870 bp). This work was performed 

in collaboration with Stephan Greiner (Greiner 2008). 

 

Naturally occurring species were investigated to reflect both, the phylogenetic 

relationship and the basic plastomes. Different alleles of the investigated spacer 

region were detected in different strains, carrying the basic plastome type I (I1 – I5) 

(Table 3-8). In contrast to results obtained from different subplastomes of plastome I, 

in different species carrying the basic plastome type IV no variation among 

subplastomes was detected in the rrn16-trnIGAU spacer region. This was more or less 
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Table 3-8: BamHI restriction and SSLP pattern of the rrn16-trnIGAU spacer region in Oenothera plastomes and subplastomes used in 
this study* (see also Greiner 2008). 

 

*corresponding Oenothera strains and species are listed in Chapter 2.1.7  

rrn16-trnIGAU 
allel 

strain species 
plastome 

type 
SSLP 
[bp] 

 CAPS [bp] 

 (BamHI) 
accession number 

I1 chapultepec Oe. elata subsp. elata I 880 322, 229, 220, 109 EU262892 

I2 cholula, puebla, toluca Oe. elata subsp. elata I 870 322, 220, 218, 110 EU262893, EU282392, EU282393 

I3 franciscana de Vries, franciscana E.& S., johansen Oe. elata subsp. hookeri I 1058 322, 224, 220, 182, 110 EU282394, EU282395, EU262894, 

I4 hookeri de Vries Oe. elata subsp. hookeri I 876 322, 247, 197, 110 EU262895 

I5 bauri Oe. villosa subsp. villosa I 891 322, 262, 197, 110 EU262896 

II/III1 
biennis München, castleberry B-8, conferta, 

purpurata, suaveolens Fünfkirchen, suaveolens 
Grado, suaveolens Standard 

Oe. biennis, Oe. grandiflora, 
Oe. biennis x Oe. 

glazioviana 
II or III 977 322, 257, 216, 182 

EU282396, EU282397, EU282398, 
EU282399, EU282400, EU262897, 
EU282401 

II/III2 coronifera, nuda Oe. biennis, Oe. glazioviana II 981 322, 257, 220, 182 EU282402, EU262898 

II/III3 
bellamy A, biennis de Vries, chastang 7, 

chicaginensis Colmar, horsesheads 2, marienville 3, 
stockton 1 

Oe. biennis, Oe. grandiflora, 
Oe. nutans II or III 963 322, 318, 182, 141 

EU282404, EU262899, EU282405, 
EU282403, EU282406, EU282407, 
EU282408 

II/III4 mitchell Oe. nutans III 980 335, 322, 182, 141 EU262900 

II/III5 castleberry A-4 Oe. grandiflora III 845 341, 322, 182 EU262901 

II/III6 elkins 2 Oe. nutans III 940 322, 295, 182, 141 EU262902 

II/III7 lawrenceville 3 Oe. biennis II 781 322, 318, 141 EU262903 

II/III8 tuscaloosa Oe. grandiflora III 1009 364, 322, 182, 141 EU262904 

II/III9 
blandina, decipiens, deserens, rr-lamarckiana 

Sweden Oe. glazioviana III 617 322, 295 EU282409, EU282410, EU282411, 
EU262905 

IV1 ammophila, atrovirens, silesiaca, st. stephen Oe. oakesiana, Oe. 
parviflora IV 961 322, 236, 221, 182 EU282415, EU262906, EU282412, 

EU282413 

V1 douthat 1 Oe. argillicola V 1101 322, 236, 221, 182, 140 EU262907 

V2 williamsville, wilson creek 1 Oe. argillicola V 1102 322, 236, 221, 182, 141 EU282414, EU262908 
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also the case in plants carrying subplastomes of basic plastome type V (V1 and V2), 

in which just one single base pair was polymorphic (Table 3-8). The situation is 

different for alleles originating from subplastomes of type II or type III, naturally 

occurring in Oe. biennis, Oe. glazioviana, Oe. grandiflora and Oe. nutans. These two 

plastome types were the only ones, which did not allow distinction with rrn16-trnIGAU 

spacer region (Table 3-8). All alleles detected in plastome II were also found in some 

species carrying genetically plastome III and vice versa, indicating gene flow 

between the four species (discussed in Greiner 2008). 

 

3.4 CHARACTERISATION OF THE INCOMPATIBILITY IN AA-III 
Plants of the genus Oenothera possessing the plastome-genome combination AA-III 

show a virescent phenotype (Fig. 3-2a in Chapter 3.1.3). The leaves become 

bleached in the center but remain green at the tips, edges, and veins (Schötz 1958; 

Glick and Sears 1994). The green apical half of the cotyledons as well as the partially 

green areas at the leaves are however sufficient, to reduce plant growth. This 

artificial plastome-genome combination is periodically incompatible. Developmental 

disturbances are only visible 8 – 10 days after germination and end dependent on the 

outside conditions, on average if the plants reach the “11 or 12 leaf state”, after 10 – 

12 weeks (Schötz 1958). Afterwards, AA-III plants become normal green. In the 

chosen experiment, the plants used possessed the nuclear background hjohansen • 
hjohansen (AA) combined with the plastome III from the strain lamarckiana Sweden 

(IIIlam). The establishment of the hybrid can be followed in Fig. 3-1 in Chapter 3.1.1. 

In the F2 leaf material used for mapping approaches of this incompatibility (see 

Chapter 3.1.3), a single F2 plant showing a strong incompatible phenotype looked 

like a revertant, since it became greenish around the rib (Fig. 3-12). Regeneration of 

the green tissue by tissue culture failed. Thus, further investigations with this leaf 

material was not possible.  
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Table 3-9a: Intergenic differences detected in plastome III compared to 
plastomes I, II and IV 

                 intergenic region insertion 
[number of bps] 

deletions 
[number of bps] 

directly upstream (5´ end) of atpB/E operon  13 
trnGUCC / trnSGCU  66 
trnQUUG / accD >100  
psaJ / rpl33 51  
rrn16 / trnIGAU >150  

 
Table 3-9b: Genic differences detected in plastome III compared to the 
plastomes I, II and IV 

Gene exchange of 
amino acids position [AS] 

insertion(s) 
 [amino acids or 

bps] 
atpA  506. and 507. KV 
clpP1  24. D 
clpP1 Q (R) → K 144.  
clpP1 A (-) → E 212.  
ndhA R → G 16.  
ndhE A → T 75.  
rps3 R → T 70.  
rps8 H → P 65.  
rps8 N → S 68.  
rps18  starting from 89. RFKRSQSTV 
ycf4 
(photosystem I assembly protein) 

N → S 47. 
 

ycf5 
(cytochrome c biogenesis protein) 

K → N 95. 
 

rpoC2 T → S 275.  
petD Intron   12 bps 
accD many differences 
ycf1 many differences 
ycf2 many differences 

 
Abbreviations (symbols) used for amino acids in Table 3-9: 

A = alanine (nonpolar, neutral amino acid) 
E = glutamic acid (polar, acidic amino acid) 
D = aspartic acid (polar, acid amino acid) 
F = phenylalanine (nonpolar, neutral amino acid) 
G = glycine (nonpolar, neutral amino acid) 
H = histidine (polar, weakly basic amino acid) 
K = lysine (polar, basic amino acid) 
N = asparagine (polar, neutral amino acid) 
P = proline (nonpolar, neutral amino acid) 
Q = glutamine (polar, neutral amino acid) 
R = arginine (polar, strongly basic amino acid) 
S = serine (polar, neutral amino acid) 
T = threonine (polar, neutral amino acid) 
V = valine (nonpolar, neutral amino acid)
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of their high degree of divergence in different plant taxa. Ycf1, ycf2 and the highly 

variable accD N-terminus were also excluded from the analysis. The ycf1 and ycf2 

genes are only moderately conserved in plastid genomes in general, and accD is 

highly polymorphic in its N-terminal region as in the reference plastomes (Greiner et 

al. 2008b, c).  

 

 Fig. 3-13   
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Fig. 3-13  continued 
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Fig. 3-13  continued 
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Fig. 3-13  Alignments of protein sequences, in which plastome III differs from plastomes I, II and IV 
in Oenothera (marked with a red arrow). Genes were compared with known amino acid sequences 
from other plant taxa to detect conserved protein sequence regions (except clpP1, see Text).  
 

3.4.2 SPECTROSCOPIC ANALYSES OF INCOMPATIBLE AA-IIILAM PLANTS 
It has been reported that thylakoids from plastome types I, II, III and IV were 

functionally competent in performing electron transport reactions in a AA nuclear 

background. In a former analysis of the incompatible AA-III combination a lower PSII 

activity was observed in contrast to an unchanged PSI activity (Glick and Sears 

1994). To verify this observation PAM measurements of PSI and PSII were 

performed. 

 
In order to measure PSI activity, light-induced changes of the P700 redox state were 

recorded by absorbance changes at 830 nm (Fig. 3-14). Furthermore, as an 

indication for the potential capacity of PSII, the ratio of variable fluorescence to 
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maximum fluorescence (FV/FM) was measured by the application of saturating light 

pulses (Fig. 3-15). FV/FM was found to be moderately but significantly reduced in 

incompatible AA-III material compared to compatible AA-I plants. Further parameters 

[non-photochemical (NPQ) and photochemical quenching (qP)] were measured from 

different stages of plant development (Table 3-10). These parameters indicate a 

higher NPQ and a slower transportation of the electrons in AA-III compared to AA-I. 

High NPQ can be due to a high proton gradient across the thylakoid membrane, as a 

result of malfunction of the ATP synthase or due to a metabolic effect involving ATP 

synthase activity. The slow transport of the electrons could be caused by deficiencies 

in the “downstream cascade” of the electron transport chain, e.g. in the cytochrome 

complex or in photosystem I. PAM measurements revealed pleiotropic effects and 

did not show distinct defects in one of the complexes of the thylakoid membrane 

during the first ~12 weeks of development in AA-III plants. PSI measurements did not 

show significant differences. 

 

 

Fig. 3-14  The P700 oxidized state of compatible AA-I and incompatible AA-III leaves 
exposed to 76 µE actinic red light was recorded. Significant absorbance changes were 
recorded after switching off actinic light in both, indicating that PSI was oxidized. Application of 
FR light oxidized PSI in both compatible and incompatible leaves. Subsequent saturating light 
pulses on the FR background light transiently reduced PSI completely in both, compatible and 
incompatible leaves again (see Chapter 2.2.6.2). No significant differences were observed in 
P700 measurements. Abbreviations: AL = actininic light; FR = far red light; squiggled arrows 
symbolize saturating light pulses. 
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Table 3-10: Chlorophyll a fluorescence parameters for different 
developmental stages of compatible AA-I and incompatible AA-III plastome-
genome combinations 
 FV/FM

* qP** NPQ*** 

AA-I  0,823 ± 0,009 0,925 ± 0,094 0,306 ± 0,048 
AA-III (4 weeks old leaf) 0,787 ± 0,010 0,800 ± 0,078 1,000 ± 0,101 
AA-III (8 weeks old leaf) 0,791 ± 0,008 0,827 ± 0,083 0,826 ± 0,089 
AA-III (12 weeks old leaf 0,803 ± 0,004 0,894 ± 0,091 0,373 ± 0,081 
AA-III (16 weeks old leaf) 0,826 ± 0,010 0,946 ± 0,101 0,250 ± 0,051 

*Fv / FM provides an estimate of PSII maximum efficiency within dark-adapted material. 
**qP indicates quenching according to photochemistry. 
***NPQ indicates quenching according to heat dissipation (ΔpH), state transition, and/or photoinhibition. 
 

 

Fig. 3-15 Studies on photosystem II yield. Chlorophyll a fluorescence induction kinetics of 
compatible AA-I and incompatible AA-III leaves. Fluorescence induction traces induced by 
saturating white-light pulses showed the maximal fluorescence raise during the light pulse (FM). 
Dark-adapted leaves were exposed to consecutive saturating light pulses during application of 
continuous actinic light (see Chapter 2.2.6.1). During first 12 weeks of development in AA-III 
plants an increased non-photochemical quenching and a slower oxidation of QB because of 
deficiencies in the “downstream cascade” of photosystem II of electrontransport chain was 
noted. Abbreviations: AL = actininic light; flashes symbolize saturating light pulses. 
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3.4.3 PROTEIN ANALYSIS OF INCOMPATIBLE PLASTOME-GENOME 
COMBINATIONS 

Total membrane proteins were isolated from different artificial incompatible plastome-

genome combinations (AA-III, AB-I, BB-IV) and from naturally occurring compatible 

compartmental hybrids (AA-I, AB-II, AB-III, BB-III, BC-IV), separated via gel-

electrophoresis followed by silver staining. In the incompatible plastome-genome 

combination AA-III one additional high molecular band was detected. This band was 

not reproducible and thus is thought to represent an artifact. Furthermore, no absent 

or additional band was detected in artificial incompatible plants (Fig. 3-16). 

Furthermore, soluble proteins were checked in the same way from artificial 

incompatible plastome-genome combination AA-III and from green AA-I (Fig. 3-17). 

No significant differences were noted in either total membrane proteins or soluble 

proteins.  
 

(1) Oenothera elata subsp. hookeri strain johansen (AA-I) 

(2) Oenothera elata subsp. hookeri strain johansen (AA-III) 

(3) hjohansen • htuscaloosa (AB-I) 

(4) Oenothera biennis strain suaveolens Grado (AB-II) 

(5) Oenothera glazioviana strain rr-lamarckiana Sweden (AB-III) 

(6) Oenothera grandiflora strain tuscaloosa (BB-III) 

(7) Oenothera grandiflora strain tuscaloosa (BB-IV) 

(8) Oenothera parviflora strain atrovirens (BC-IV) 

 

   
 

Fig. 3-16  Total membrane proteins in different compatible (marked in green) and artificial 
incompatible (marked in yellow) plastome-genome combinations 
 

 

(1) Oenothera elata subsp. hookeri strain johansen (AA-I) 

(2) Oenothera elata subsp. hookeri strain johansen (AA-III) 

 
 
 
 
 
 

Fig. 3-17  Total soluble proteins in the compatible (AA-I; marked in green) and artificial incompatible 
(AA-III; marked in yellow) plastome-genome combinations 

1     2 

  1      2     3     4     5      6    7     8 
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Different genes for distinct subunits of the different supramolecular complexes in the 

thylakoid membrane and clpP1 were also checked at the protein level by Western 

analysis (PsaF, PsbB, AtpA, and ClpP1). PsaF showed no difference at the protein 

level between the compatible AA-I and the incompatible AA-III, but an additional 

band was observed in AA-III plants, which was slightly smaller than the “normal” 

band of PsaF (Fig. 3-18). This band was also observed in a protein analysis in the 

incompatible plastome-genome combination AB-I (Greiner et al. 2008c). It can be 

assumed that PsaF is processed by ClpP protease, because in the incompatible AB-

I, a large deletion of 148 bps between psbB operon and clpP1 5´ region, containing 

two putative psbB promoters and one putative and confirmed clpP1 promoter, was 

detected as most probable factor responsible for AB-I incompatibility. ClpP1 protein 

levels were increased in AA-III plants. Levels of PsbB (CP47) and AtpA (ATP 

synthase α subunit) were comparable in AA-I and AA-III (Fig. 3-18). 

 
 AA-I       AA-III 

 
 PsaF 

 
 PsbB 

     
 AtpA 

 
 ClpP1 

 

Fig. 3-18 Protein levels detected by Western analysis. 
No difference in protein level of the subunit psaF of 
photosystem I was detected, but an additional band, 
which was slightly smaller, could be observed. No 
difference in protein level was detected for psbB and 
atpA. ClpP1 showed increased protein level in 
incompatible AA-III.  

 

3.5 CHROMOSOME ARM DETECTION BY FLUORESCENT IN SITU 
HYBRIDIZATION (FISH) 

DNA fragments of ≥10 kb were isolated from Oenothera elata subsp. hookeri strain 

johansen leaf material (see Chapter 2.2.5.1) (Fig. 3-19). A method to isolate 

metaphase chromosomes from mitotically active meristematic tissue from Oenothera 
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seedlings free of overlaying cytoplasm was established (see Chapter 2.2.5.2) (Fig. 3-

20). The DNA fragments were used as probes to perform FISH approaches. With two 

of the probes used chromosome arm specific signals were obtained but the 

frequencies of occurrence of the signals were still low (Figs. 3-21 and 3-22). 

Altogether, signals were obtained only in approximately every fifth preparation of 

metaphase chromosomes. Nevertheless, the approach appears to be promising to 

identify chromosome arms that are particularly important in Oenothera genetics.  

 
         
 
  kb 
 
          10 
  8 
   6 
  5 
  4 
  3 

 
  2 

  
Fig. 3-19  Agarose gel of ≥10 kb clones. Size 
standard (2-log ladder) is placed at the left. The 
bands at 3 kb size are pBlueScript II KS+ vector 
bands. Fragments ≥10 kb reflect DNA from 
Oenothera. 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3-20 Cytoplasm-free metaphase 
chromosomes prepared from mitotically active 
meristematic tissue from Oenothera seedlings.  
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4. DISCUSSION 
 

4.1 FIRST MOLECULAR EVIDENCE FOR BASIC ASPECTS IN OENOTHERA 
GENETICS 

 
4.1.1 BRIEF REVIEW ON FORMER WORK AND IDEAS CONCERNING 

OENOTHERA GENETICS 
Oenothera species have been explored since more than a century. During this period 

several hundred species and lineages were collected and analyzed. In subsection 

Oenothera, next to three different genotypes (A, B and C), which occur in either 

homozygous (AA, BB or CC) or heterozygous (AB, AC or BC) combinations, five 

basic, genetically distinguishable plastome types (I – V), were detected. The latter 

were all sequenced and molecularly analyzed recently (Greiner et al. 2008b, c). 

Various experimental approaches were also established, notably protoplast and 

tissue culture, nuclear transformation (Stubbe and Herrmann 1982; Kuchuk et al. 

1998; Mehra-Palta et al. 1998), and an EST library (Mráček et al. 2006). 

 

In evening primroses, reciprocal translocations of entire chromosome arms lead to 

different chromosome formulas with consequences in meiosis. Permanent 

translocation heterozygosity is a phenomenon resulting as one of its consequence. In 

terminal translocation heterozygous species, plants consist of two different 

complexes and each of the parental chromosomes differ in its chromosome arm 

combination. Due to a lack of homologous recombination, ring-formation of these 

chromosomes during diakinesis is thought to restrict an exchange of genetic 

information, except in telomeric regions (Stubbe 1989; Levin 2002). This situation is 

not found in all Oenothera species. Various species were found, containing two 

identical complexes (haplo-complexes) resulting in normal bivalent formation during 

meiosis. Cytological methods as well as a limited number of phenotypic markers 

were used to examine homologous recombination events, with focus on permanent 

translocation heterozygotes and a few bivalent forming Oenotheras. In both 

materials, altered, atypical Mendelian segregation ratios of phenotypic markers were 

detected, but the number of phenotypic markers per complex available was 

extremely low (Cleland 1972). Disturbed Mendelian segregation ratios can be 
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particularly strong in reciprocal heterozygotes because of different loci conferring 

distinct viabilities, as could occur with genomic imprinting (Úbeda and Haig 2004; 

2005). The mean fitness in such stable heterozygotes may be higher. In this case, 

mean fitness is maximized by complete, but opposite, drive of the sexes (complexes) 

(Úbeda and Haig 2004).  In addition, in different bivalent forming Oenothera species 

special phenomena such as pollen tube competition (Renner 1917a), embryo sac 

competition (Renner 1921a; Harte 1994) and/or balanced lethals (gametophytic 

and/or sporophytic lethal factors) (Renner 1914, 1946; Shull 1923; Gerhard 1929; 

Langendorf 1930; Krumholz 1930), influence segregation ratios of markers 

significantly and are thought to be widespread within the genus. Also, the 

segregation ratios are not constant. The frequency of crossing over is often 

increased in hybrids as compared to the parental lines, but tends to decrease in later 

generations derived from these hybrids (Renner 1942). Because of these findings, 

meaningful statements about homologous recombination events in Oenothera are 

difficult or even impossible at present. Providing molecular evidence of suppressed 

homologous recombination in permanent translocation heterozygous Oenothera 

species and the clarification of meiotic affairs in bivalent forming Oenothera species 

were therefore primary goals of this work. Therefore, a modern molecular tool, AFLP 

analysis, was established and performed with appropriately selected lineages of the 

genus Oenothera. 

 

4.1.2 AFLP ANALYSES AS A MOLECULAR TOOL TO EVALUATE 
SEGREGATION RATIOS IN TRANSLOCATION HETEROZYGOUS 
HYBRIDS FROM OENOTHERA 

AFLP analyses provide possibilities for a wide range of applications including studies 

of genetic diversity (Mariette et al. 2002; Nybom 2004; Meudt and Clarke 2007). In 

the genus Oenothera, new combinations of chromosome complexes with foreign 

plastomes can be generated just by simple crossing experiments which is one of 

several special features possible with that material. For this, a distinct complex has to 

be combined with appropriate complexes to result in terminal translocation 

heterozygous hybrids ( 14). In this work, the haplo-complex hjohansen (AA-Ijoh) was 

equipped with the foreign plastome type III from Oenothera glazioviana strain rr-

lamarckiana Sweden (IIIlam), by combining the complex four times with the complex 
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Galbicans 
 hjohansen  /1•2   14•13   8•9   4•3   6•5   7•10   11•12    \ 
 Galbicans   \    2•14   13•8   9•4   3•6   5•7   10•11   12•1/ 
 

Fig. 4-1 The configuration of a ring ( ) of 14 
chromosomes, formed by the Renner complexes 
hjohansen and Galbicans, can be predicted by the 
chromosome formulas of the respective complexes.  

 
Galbicans (Fig. 3-1). Both complexes form a ring of all 14 chromosomes during 

diakinesis (Fig. 4-1). The Galbicans (A) complex is the egg cell complex of the 

terminal translocation heterozygote Oenothera biennis strain suaveolens Grado [AB 

genotype; A = Galbicans (♀); B = flavens (♀♂)]. Oenothera biennis strain suaveolens 

Grado was collected in Europe; Oenothera elata subsp. hookeri strain johansen 

originated in California (USA). So, there is only a limited relationship of the two 

complexes, which normally results in a pronounced divergence of both 

haplogenomes. At least an increased divergence between the two complexes 
hjohansen and Galbicans can be provided by comparison with the divergence 

between the complexes hcholula and hpuebla (10.91%; 8.57 polymorphic 

bands/primer combination) which were derived from the same habitat in Mexico. 

AFLP analyses were used to monitor genetic diversity (“degree of contamination”) 

between AA-Ijoh and AA-IIIlam, and thus to reveal the segregation ratio between the 

two complexes (hjohansen and Galbicans) involved in the crossing experiments. Ten 

primer combinations tested (a total of 711 bands) revealed just one single band that 

was polymorphic between the naturally occurring AA-Ijoh and the artificially made AA-

IIIlam (0.14%). The data corroborate and extend Oenothera genetics, postulating that 

in ring forming hybrids ( 14) single Renner complexes, i.e. entire haploid genomes, 

behave as a single coupling group, otherwise a much higher degree of contamination 

from other genomes, used as crossing partners, would have been expected. Free 

segregation of chromosomes is suppressed by the meiotic ring and if homologous 

recombination occurs, it is a rare event, most probably restricted to telomeric ends 

(Cleland 1972). This is the first molecular evidence corroborating postulations from 

classical Oenothera genetics for permanent translocation heterozygotes.  
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4.1.3 FIRST AFLP LINKAGE MAPS OF OENOTHERA, USING NATURALLY 
OCCURRING BIVALENT FORMERS 

AFLP markers and co-dominant markers were used to calculate linkage maps of 

different genotypes of Oenothera. Linkage analyses identified seven coupling groups 

in the interspecific cross BB-IIIlam x AA-IIIlam (htuscaloosa x hjohansen) and in the 

intraspecific cross AA-Icho x AA-Ipue (hcholula x hpuebla). This corresponds to the 

cytologically defined chromosome number observed in all Oenothera species 

investigated so far. Both F1 generations formed bivalents during meiosis. It is one of 

the striking findings of this work that a single cluster comprising ~90% of markers 

was detected for each chromosome. The clustered markers displayed not a single 

homologous recombination in more than 300 meioses investigated. A single 

homologous recombination event would suffice to split the bulk of markers into two. 

No single chromosome was found which would show more than one marker cluster, 

indicating that homologous recombination is completely absent, disregarding 

telomeric parts.  

 

In permanent translocation heterozygous Oenothera lines, the lack of homologous 

recombination was explained by chromosome configurations (ring) present during 

meiosis (Stubbe 1989; Levin 2002). Such material is thought to derive from bivalent 

forming Oenothera plants after reciprocal arm translocation events. Another striking 

finding of this study is that the loss or reduction of homologous recombination is not 

exclusively restricted to ring-formation during meiosis. Thus, the strong limitation of 

homologous recombination is probably not a result of reciprocal translocation events, 

but seems to be immanent in the material and may have been evolved before. This 

implies new views on the evolutionary history of the genus and the evolution of 

permanent translocation heterozygosity in general. 

 

Clustered markers result in small sizes of linkage maps expressed in centi Morgan 

(cM). Compared with the sizes detected in Lotus japonicus (Gifu B-129 487.3 cM; 

Miyakojima MG-20 481.6 cM) (Hayashi et al. 2001) or Arabidopsis thaliana (Ler/Col 

427 cM; Ler/Cvi 475 cM) (Alonso-Blanco et al. 1998) the A genome of hjohansen and 

B-genome of htuscaloosa provided basic maps of 135 and 165 cM. These results do 

not imply that the Oenothera genome is approximately three times smaller than that 
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of Arabidopsis. Indeed, the Arabidopsis thaliana genome is at least four times smaller 

compared to that of evening primroses (Ingle et al. 1975; Sliwinska and Thiem 2007) 

(database: http://data.kew.org/cvalues/introduction.html). Distances in Oenothera 

differ in the sizes of single coupling groups: in AA-IIIlam from 3 cM (coupling group 1A) 

to 39 cM (coupling group 4A) (Fig. 3-5a), in BB-IIIlam from 0 cM (coupling groups 1A, 

3A, 7A) to 23 cM (coupling group 2A) (Fig. 3-5b). Such small sizes reflect disturbed 

segregation of markers. Thus, in bivalent forming Oenothera hybrids, suppression of 

homologous recombination along with disturbed segregation of about 90% of the 

markers was detected. This is the first case of sexual inheritance described with 

homologous recombination limited to telomeric regions described from a bivalent 

forming species. 

  

4.2 POSSIBLE REASONS FOR SUPPRESSION OF HOMOLOGOUS 
RECOMBINATION 

Generally, homologous recombination decreases depending on the degree of 

polymorphism between genomes (Haber et al. 1991). Our analyses indicate 39.78% 

divergence between AA-IIIlam and BB-IIIlam and 10.91% between AA-Icho and AA-Ipue 

(Table 3-3a). This is comparable to linkage analyses of other plant taxa (e.g. Alonso-

Blanco et al. 1998). Particularly with regard to the low diversity between AA-Icho and 

AA-Ipue it can be excluded that the loss of homologous recombination is caused due 

to high sequence divergence of the genomes investigated.    

 

Meiotic exchanges are generally not distributed randomly along the length of 

eukaryotic chromosomes. Regional variation in recombination frequency has usually 

been observed, with certain regions having high levels of recombination (hotspots) 

and others having low levels (coldspots) (Koren et al. 2002). A dramatic repression of 

exchange is found near centromeres and some telomeres (Mather 1936, 1939; 

Alonso-Blanco et al. 1998; Qi et al. 1998). The repression of homologous 

recombination adjacent to the centromere is assumed to be caused by large blocks 

of heterochromatin present at that region (Willard 1990; Murphy and Karpen 1995). 

This is quite obvious for example for the Drosophila X chromosome, in which the 

centric heterochromatin, comprising half of the cytogenetic length of the 

chromosome, barely contributes to its genetic length (Mather 1939; Roberts 1965). A 
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similar centromere-associated repression of recombination was also found for 

autosomes of Drosophila (Beadle 1932; Painter 1935; Thompson 1963). 

Furthermore, it was described that in regions around translocation breakpoints 

homologous recombination is also repressed (Hayashi et al. 2001), most probably 

due to sequence divergence. Reciprocal translocations of entire chromosome arms 

are one of the basic genetic characteristics of the genus Oenothera. Due to the fact 

that only one single cluster of markers was detected on each chromosome, the 

translocation breakpoints of chromosome arms is supposed to be at 

heterochromatin-rich centromeric regions. However, it seems to be rather unlikely 

that especially the reciprocal breakpoints of chromosome arms inhibit recombination 

of around 90% of the markers assigned. It is also conceivable that various 

successive translocations on a chromosome are responsible for the loss of 

homologous recombination. This latter idea can also be excluded because of the 

relatively low degree of polymorphism detected between the plant species used. With 

the occurrence of successive translocations along the length of a chromosome 

(~90% of a chromosome), if they differ between the crossing partners, high 

divergence between species is expected. Furthermore, recombination is generally 

assumed to take place during the meiotic prophase. Therefore, cytological studies of 

meiotic stages were performed to investigate possible structural reasons for the 

suppression of homologous recombination.  

 

4.3 AN UNEVEN CHROMOSOME CONDENSATION DURING PROPHASE I IN 
OENOTHERA 

Cytological analysis revealed for both parental species and the F1 hybrid seven 

bivalents at diakinesis with two end-chiasmata per bivalent (Fig. 3-3) and a regular 

meiotic segregation at late anaphase I (Fig. 3-10d). The fourteen chromocenters in 

premeiotic nuclei most probably represent pericentromeric chromosome segments 

(Fig. 3-10a). In contrast to an expected step-wise contraction from leptotene to 

pachytene (Zickler and Kleckner 1998; 1999), uneven chromosome condensation 

takes place very early during meiosis in Oenothera: Chromosomes form large and 

strongly condensed proximal segments and two diffuse, relaxed distal regions 

already at leptotene (Fig. 3-10b, c). A similar chromosome behavior was observed for 

the mitotic prophase in Oenothera (Kurabayashi et al. 1962). The chromocenters, 
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seen at early leptotene, were larger than those in the premeiotic interphase and had 

chromosome-like appearance. This suggests that quite a large fraction of chromatin 

has an untypical, higher-order organisation as a result of precocious condensation 

already before zygotene pairing (formation of the meiotic bouquet).  A mechanism 

restricting recombination may act in the form of an interplay between centromere-

driven chromatin condensation and telomere-led synapsis. The dynamics of 

chromatin allocycly, a term referring to differences in the coiling behavior shown by 

chromosomal segments (pericentric heterochromatin) or whole chromosomes, in 

Oenothera can be related to the restriction of meiotic recombination. The 

chromosomes pair in a group at one pole in a highly polarized Rabl-configuration 

before zygotene (Fig. 3-10b) and remain clustered until early diplotene (Golczyk et al. 

2008). Generally, a lack of open pericentromeric chromatin configuration was 

observed during whole meiosis, being a likely factor of preventing initiation of meiotic 

recombination throughout large chromosome portions (McKee and Handel 1993). 

Especially topoisomerase II is known to be involved in chromosome condensation 

(Hartsuiker et al. 1998). It is of high interest, whether this enzyme is involved in 

Oenothera cytology, because also investigations of chromosomes in different plant 

tissues revealed an untypical, not regular condensation of autosomes, comparable to 

the human barr body. In nearly all tissues investigated, except in metabolic active 

tapetum cells and root hair cells, large blocks of chromocenters were found (Dr. 

Hieronim Golczyk, personal communication). In order to clarify the particular features 

of Oenothera meiosis, dynamics and character of meiotic condensation and pairing 

need to be characterized more precisely at the ultrastructural level. 

 

4.4 REPRODUCTION IN OENOTHERA AS PARTHENOGENESIS-LIKE FORM 
OF INHERITANCE 

Sexual reproduction with negligible homologous recombination at telomeric regions is 

presumably present in all Oenothera species. In complete translocation heterozygous 

species chromosomes separate as a set without intermixing, giving rise to a progeny 

identical to the parental lines, whereas in bivalent forming Oenothera entire 

chromosomes freely segregate but often underly embryo sac or pollen tube 

competition. The production of genetically identical offspring (clones) was up to now 

a phenomenon just known from species reproducing by apomixis, differing only in the 
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form of reproduction (Oenothera: sexual; apomixis: unisexual). Species obeying this 

pattern are designated as true breeding species. Bivalent forming Oenotheras, in 

which genotype mixing is limited to free segregation of entire chromosomes, can be 

regarded as a preform. Parthenogenesis is defined as an unisexual reproduction, 

developing its offspring from unfertilized egg cells. Two basic forms of 

parthenogenesis are distinguishable: (1) parthenogenesis with meiosis [arrhenotoky, 

thelytoky (automixis)] or (2) parthenogenesis without meiosis (developing directly out 

of diploid germ line cells) (apomixis) (Oliver 1971, Slobodchikoff and Daly 1971). 

According to present knowledge, parthenogenesis is regarded as difficult or 

impossible in higher mammals and marsupials, in contrast for instance to plant 

species. The reason for this is the so-called imprinting (Kono 2006). Genomic 

imprinting is a principle of inheritance, independent of classical Mendelian 

inheritance: genes involved in the genomic imprinting are actively or inactively 

inherited, i.e. they receive a parental, genomic imprinting depending on their parental 

origin. This inheritance scheme does not obey Mendelian rules. Imprinting is based 

on additional epigenetic modifications of the DNA, which are established in addition 

to the genetic code in the germ cells. By this pattern, one of the two parental alleles 

of the imprinted genes is active and the other one inactive. Although Oenothera 

reproduction appears in a sexual way with male and female gametes, genetic 

imprinting is not excluded. Thus, the mechanism of inheritance in Oenothera 

(terminal translocation heterozygosity) can be handled as parthenogenesis-like 

(apomixis-like) inheritance, in which genomic imprinting is a possible cause. 

 

4.5 THE SENSE OF SEX AND HOMOLOGOUS RECOMBINATION 
The sense of sex and homologous recombination is an unresolved question. There 

are a number of reasons why sex might be disadvantageous. Females pay the full 

cost of reproduction in contrast to males, but provide only half of the genes to 

sexually produced offspring. In asexually reproducing females a complete set of their 

genes is transmitted at the same energetic cost per offspring. This fact is called ´two-

fold´ cost of sex (e.g. Maynard-Smith 1978; Rice 2002; Nielsen 2006; Agrawal 2006). 

The success of asexual lineages is shown by the frequently outnumbering of their 

sexual progenitors, the persistence for thousands of generations and the 

geographical distributions that frequently far exceed those of their sexual progenitors 
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(Stebbins 1950; Maynard-Smith 1978; Rice 2002). Therefore, it is obvious that 

recombination frequently provides a long-term, rather than an immediate, advantage 

(Rice 2002; Agrawal 2006). Furthermore, sex may be expensive because of the 

costs of searching for mates and of engaging in mating (Agrawal 2006). Also, while 

selection is expected to make appropriate allele combinations disproportionately 

common, genetic mixing tends to break down this excess of favorable allele 

combinations, generating unfavorable combinations in the process (negative 

epistasis) (Agrawal 2006). But also the opposite case can be assumed that sexual 

recombination speeds up the rate of adaptive evolution, because it could allow 

beneficial mutations to be combined in the same individual (positive epistasis) 

(Agrawal 2006). Many species, in particular plant species, are capable of both, 

sexual and asexual reproduction (Stebbins 1950; White 1978; Agrawal 2006). 

Obviously, sexual processes are not essential for reproduction. Nevertheless, the 

trend in evolution goes clearly in the direction to sexual inheritance, a phenomenon 

which because of its disadvantages and lack of proven advantages compared to 

asexual inheritance is often described as the paradox of sex.  

 

It is highly relevant to mention that even within some obligately sexual species, the 

extent of sex is reduced by suppression of recombination in some individuals, e.g. in 

male Drosophila melanogaster (Wurglics and Becker 1993; Agrawal 2006), 

demonstrating the possibility of sexual reproduction without genetic mixing. From a 

genetics perspective, sex is synonymous with homologous recombination (Lamb et 

al. 2007). The best known advantage of sexual recombination is faster adaptation to 

changing environment. The evolutionary driving force and ´source´ of evolution and 

adaptation are mutations (Dobzhansky 1937; Stebbins 1950; Cavalier-Smith 2002). 

To adapt to changed evolutionary pressure beneficial mutations have to evolve and 

to be fixed in one individual. Homologous recombination could on the one hand be 

advantageous in bringing the beneficial mutations together. On the other hand, it can 

be disadvantageous as coupled beneficial mutations can also be separated again by 

crossing-over events. The chance for the latter increases with the number of 

beneficial mutations needed to adapt. It was also reported that new alleles are only 

beneficial if they accumulate in a prescribed order (Kondrashov 1984). This may also 

be relevant for adaptation. Only asexual or sexual reproducing organisms which do 
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not mix their genetic information allow some overlap of successive allele 

replacements.   

 

The general consequence from the ability of homologous recombination is a high 

genetic variability within a population. The maintenance of this system can be based 

on at least three facts: (1) maintenance of the flexibility for adaptation with 

environmental changes, (2) distribution of accumulated harmful (primarily 

deleterious) mutations within the entire population for increasing individual fitness 

(Muller´s ratchet, mutational load), or (3) protection, for instance, against pathogens 

(pathogen ratchet theory). All three aspects are important for the survival of 

organisms. Different organisms can differ in managing these points, as it has to be 

the case in the genus Oenothera. 

 

4.6 THE OENOTHERA SYSTEM AND ITS CONSEQUENCES FOR ADAPTATION 
TO CHANGING ENVIRONMENT 

Oenothera is a highly successful, cosmopolit plant (Dietrich et al. 1997, Punt et al. 

2003). It originated in the North American continent and invaded Europe after 1500 

A.D. (Harte 1994). This implied the ability of fast adaptation to changed environment. 

Oenothera adapted and ´conquered´ almost all continents and is even able to adapt 

to environments with extreme conditions, as it is, for instance, the case in Chernobyl 

(Boubriak et al. 2008). The ability to adapt to such areas is an indication for the fact 

that the plant developed special adaptive survival mechanisms, which may include 

an effective DNA repair system.  

 

Bioinformatical analysis of plastome sequences dates the evolutionary distances for 

the five distinct Oenothera plastomes to approximately one million years ago (Greiner 

et al. 2008b). During this time, distinct changes in one of the organellar genome lead 

inevitably to a high pressure in the others. This form of fast adaptation is visible in the 

genus, represented in incompatible artificial plastome-genome combinations (Fig. 1-

4). Incompatibilities are result of missing co-evolved (co-adapted) cellular 

subgenomes that occurred in natural parental combinations.  
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Lack of exchange of genetic material between two homologous DNA fragments 

stabilizes genetic information encoded on individual chromosomes. Nevertheless, 

genetic information foreign to a species can be established in a different way in the 

Oenothera system, due to interfertility of its species. More or less entire 

chromosomes can be replaced by another one in bivalent forming Oenothera 

species, whereas in permanent translocation heterozygotes even entire haploid 

chromosome sets can be exchanged. Manifestation of a beneficial chromosome 

foreign to a species in a bivalent forming Oenothera hybrid can be supported by 

embryo sac or pollen tube competition that significantly increases the chances of 

  

 
Fig. 4-2: Schemes of adaptation by manifestation of beneficial chromosomes in (a) bivalent forming 
and (b) permanent translocation heterozygote Oenothera. (a) Chromosomes carrying beneficial 
mutations are in colour (yellow or blue). Beneficial chromosomes in F1 (red arrow) underly 
theoretically an advantage in fitness while developing in the embryo sac (embryo sac competition) 
and/or pollen tube (pollen tube competition). This leads to a non-Mendelian segregation of the 
beneficial chromosomes concerned in F2, in which the better adapted chromosomes arise with higher 
frequency. (b) Beneficial mutations on chromosomes are symbolized in red. In F1 the egg cell 
complex (yellow) from the female parental plant and the pollen complex (green) from the male 
parental plant are combined. Each of the Renner complexes carries beneficial mutations (red), which, 
because of the Oenothera genetics (gametophytic and/or sporophytic lethal factors), become already 
fixed in the following generations. This way, an entire beneficial haploid chromosome set will be fixed 
in permanent translocation heterozygote and the co-evolved, “harmonious” complex is fixed as a 
whole. 
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such a manifestation because of its advantage in fitness. This form of new 

combination of chromosomes by introducing one or more foreign beneficial 

chromosomes into a stable (not recombining) genetic system leads to a “steady 

improvement of the chromosome set” and hence also to an effective form of 

adaptation (Fig. 4-2a). In permanent translocation heterozygous Oenothera species 

even an entire Renner complex carrying beneficial mutations can be inherited. The 

co-evolved genes, encoded on the Renner complex, thus will be fixed as a whole and 

the “harmonious gene pool” of one complex will not be separated (Fig. 4-2b).  

 

The genetic behavior of permanent translocation heterozygosity occurs with 

variations in many plant families, e.g. in Campanulaceae, Commelinaceae, 

Clusiaceae, Iridaceae, Paeoniaceae, Papaveraceae (Holsinger and Ellstrand 1984; 

Raven 1979), Asteraceae (Hunziker et al. 2002), Euphorbiaceae (Szweykowski 

1965), Fabaceae (Ashraf and Bassett 1986), Poaceae (Castellarin et al. 1993), 

Alliaceae, Liliaceae, Salicaceae, Hypericaceae, Rosaceae, Solanaceae and 

Alismataceae (Darlington 1937; Stebbins 1950). Furthermore, translocation 

heterozygosity was described from various animal taxa, too (e.g. Henricson and 

Bäckström 1964; Grützner et al. 2004), demonstrating that this phenomenon is 

neither rare nor an exception. 

 

Finally, Oenothera is able to adapt relatively fast to different environmental conditions 

even without essential homologous recombination. In addition, it is assumed that 

Oenothera possesses a specific, effective DNA repair system because of its ability to 

grow on strongly mutagenic territories (Boubriak et al. 2008), which possibly can 

compensate the accumulation of deleterious mutations (mutational load). 

 

As mentioned above, a high genetic variability can also be of advantage in an 

increased protection against pathogens. In this respect, no explicit investigations 

were performed with Oenothera, but neither in field-grown nor in greenhouse-grown 

material an increased infestation of parasits was observed. In nature, Oenothera 

occurs regularly, but only rarely cumulated at one location. Thus, a spatial barrier is 

given for pathogens to attack an entire population. A general statement about 
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resistence against pathogens is difficult to make, but all observations available did 

not show a conspicuous liability against pathogens.  

 

4.7 THE PLASTOME-GENOME INCOMPATIBLE (PGI) AA-III HYBRID AS A 
POSSIBLE EXAMPLE FOR A DOBZHANSKY-MULLER INCOMPATIBILITY 
(DMI) 

Oenothera genetics allows the exchange of plastids and nuclei by simple crossings. 

Distinct plastome-genome combinations lead to incompatible phenotypes (Fig. 1-4), 

which reflect a special case of the DMI. Disturbances caused by interspecific 

organelle exchanges usually affect a multitude of ontogenetic processes. Most 

conspicuously are lesions of the photosynthetic apparatus (hybrid bleaching, hybrid 

variegation) and of the generative phase that can be impaired at various 

gametophytic and/or sporophytic stages, such as pollen and/or ovule development 

(summarized in Harte 1994). These serious developmental disturbances are caused 

by co-evolution of cellular subgenomes (see Chapter 1.2.3). The PGIs described for 

the Oenothera system are based on one (or more) gene pair(s), of which one 

element is located in the nucleus (“nucleus-encoded factor”), the other one in the 

plastid (“plastid-encoded factor”). Such a Dobzhansky-Muller gene pair has not yet 

been described. This is quite surprising since in the order of 25 - 30% of the nuclear 

coding capacity is required for the management of the organelles (Herrmann 1997). 

Therefore, such a plastome-genome interacting DMI gene pair is very likely because 

of the co-evolution of the organellar genomes. By combining plastome sequence 

information and bioinformatic approaches with formal genetic data and molecular, 

biochemical and biophysical analysis, regions on the plastid chromosomes can be 

unveiled that are potential candidates for plastome-encoded determinants of 

interspecific PGI (Greiner et al. 2008c). Mapping approaches can in principle be used 

to identify the nuclear determinants, but not in non-recombining species, as 

Oenothera. In evening primroses, mapping approaches can be used for assigning 

the nuclear determinants to respective chromosomes or to determine the number of 

coupling groups involved. We have started to characterize and narrow down potential 

candidates that are responsible for the plastome-genome incompatibility AA-III. 
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The lack of homologous recombination allows a fast determination of the coupling 

groups involved. A small number of F2 plants, around 20, is already sufficient to 

determine the chromosome(s) the sought gene is located on. An accurate mapping 

of the gene is not possible at present, unless a mutant line can be found or 

generated, allowing homologous recombination. If it is true that the irregular 

condensation of the chromosomes causes suppression of homologous 

recombination during meiosis, a possible approach would be to generate RNAi lines 

to inactivate a gene that is necessary for condensation. Such a mutant was already 

described, e.g. for Arabidopsis. Chromatin assembly factor 1 (CAF-1), a 

heterotrimeric complex consisting of three subunits (p150/p60/p48), is known to play 

a role for reconstitution of S-phase chromatin. A fas1-4 mutant (defective in p150 

subunit of the CAF-1 complex) of Arabidopsis showed, in addition to reduced 

heterochromatin, a more open confirmation of euchromatin, a reason why 

homologous recombination is dramatically increased in that line (Kirik et al. 2006). 

Another classical approach is to perform a mutagenesis approach followed by a 

screen for a recombining Oenothera individual, to establish a T-DNA insertion line or 

to perform ´happy mapping´ (Dear and Cook 1992). 

 

4.7.1 DETERMINATION OF COUPLING GROUPS INVOLVED IN THE PGI AA-III 
BY A MAPPING APPROACH 

In a mapping approach a cross of compatible BB-III and incompatible AA-III 

(virescent) plants was used. In F2 different incompatible phenotypes were observed 

(Fig. 3-4), indicating that the co-evolution reflected is complex and that at least two 

nuclear loci are involved. Exact segregation ratios of incompatible plants in F2 could 

not be determined because of varying patterns of incompatible plants during the first 

days of development (Schötz 1958). In addition, the development of the incompatible 

phenotypes depends on environmental factors. As a consequence of lacking 

homologous recombination, entire chromosomes of each single plant can be 

assigned to its genotype, AA, AB or BB. Comparison of genotypes between 

compatible and incompatible F2 plants revealed two coupling groups, chromosome 4 

and 7, to be unequivocally involved in causing the AA-III incompatibility. Furthermore, 

the analysis revealed that these two loci interact. A BB genotype on one of the two 

chromosomes involved is able to reverse the incompatible phenotype. This can have 
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two reasons, (1) a gene duplication in the Oenothera history or (2) a further gene 

compensates the effect of the other.  

 

Furthermore, an additional nuclear factor, or a special combination of chromosomal 

genotypes has to be involved in causing the AA-III incompatibility, because in four 

incompatible plants the AA genotype was detected neither on chromosome 4 nor on 

chromosome 7. The multiplicity of phenotypes could not be reconciled with special 

combinations of chromosomal genotypes, probably due to a phenotypical 

dependency on environmental conditions. 

 

4.7.2 NARROWING DOWN THE IDENTITY OF THE PLASTID-ENCODED 
FACTOR OF THE PGI AA-III 

The five basic plastome sequences (I – V) (Greiner et al. 2008b) can be used to 

decipher the potential plastid-encoded determinant of AA-III plants by bioinformatical 

sequence comparisons. Since the nuclear background AA is incompatible with 

plastome type III, showing a virescent phenotype, plastome type III must differ in at 

least one region in the sequence from the other four. Plastome V was excluded in 

analysis because AA-V (as well as AB-V and BB-V), in which fertility and 

morphogenesis are severly affected (Stubbe 1963; Stubbe et al. 1978), may be 

caused by (1) multiple Dobzhansky-Muller plastid-nuclear gene pairs, or (2) different 

PGIs. Both would result in a severe phenotype and thus should not be considered in 

the comparison of plastome sequences. The weak incompatibility caused by 

plastome IV in an AA background differs from that caused by plastome III. In 

addition, a special combination of complexes with the genotype A is known for 

plastome IV (Galbicans • undans combined with IVatro; Stubbe 1960), which can 

reverse the incompatibility with plastome IV but not that of AA-III, indicating that most 

probable a single locus within this plastome, different from that of AA-III, causes the 

chlorina phenotype. The revertant observed in AA-III (Fig. 3-12) indicates a single 

plastid-encoded factor to be responsible for incompatibility in AA-III plants. An 

influence of more than one region within the plastome can thus be regarded as 

improbable. Furthermore, our mapping approaches revealed more than one nuclear 

locus to be involved in the AA-III phenotype (see in Chapter 3.1.4, Fig.3-6). That 

makes parallel “backmutations” in nuclear genes unlikely and indicates the potential 
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plastid-encoded factor to be “backmutated” in the revertant. In Oenothera, a nuclear 

gene, the so-called pm-factor (plastome mutator), was described that causes a 

higher mutation frequency in plastomes (Epp 1973; Epp et al. 1987; Sears and 

Sokalski 1991; Stoike and Sears 1998). This factor could be used, for instance, in 

further crossing experiments to generate AA-III plants, containing this factor and 

search for another AA-III revertant. 

 

The genic differences, leading to an exchange in amino acid sequence, were 

compared as well as large deletions or insertions in non-coding sequences. Plastome 

III specific genic differences were found in the genes atpA, clpP1, ndhA, ndhE, rps3, 

rps8, rps18, ycf1, ycf2, ycf4, ycf5, rpoC2 and accD (Table 3-10a, Fig. 3-13), large 

intergenic differences between trnGUUC/trnSGCU, trnQUUG/accD, psaJ/rpl33, 

rrn16/trnIGAU, and directly before atpB/E operon (Table 3-10b). All differences 

involving the NADPH complex (ndhA and ndhE) can be disregarded, because knock-

out mutants of individual NDH subunits in tobacco lack a conspicuous phenotype 

(Burrows et al. 1998; Kofer et al. 1998). In addition, sequence polymorphisms 

between other plastomes, e.g. of types I and II, can be disregarded too. A 

contribution of these regions to PGI is unlikely, since plastomes I and II remain fully 

compatible in an AA background (Fig. 1-4). This excludes the genes accD, ycf1 and 

ycf2 and the intergenic region trnQUUG/accD. In rpoC2, a threonin-to-serine amino 

acid exchange is found in the plastome III sequence. The two amino acids share 

attributes (small, polar, neutral). An effect of such an amino acid exchange is quite 

unlikely, and supported by former macroarray analysis of AA-III plants (Mráček et al. 

2006), which did not indicate a general malfunction of transcript profiles. 

 

Frameshifts in genes are also possible candidates causing incompatibility. A point 

mutation causes an alternative stop codon in atpA, leading to a length polymorphism 

of two amino acids in plastome III (Fig. 3-13) that can be detected by Western 

analysis (Herrmann et al. 1980b). Multiple base pair indels lead to a different stop 

codon in rps18. Plastome IV has most of the same indels in rps18, but differs by an 

unchanged stop-codon. In contrast to plastome III the last ten amino acids were 

unchanged in plastome IV. This part is highly conserved in other Oenothera 

plastomes but it is polymorphic between the different organisms used for alignment 
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comparison (Fig. 3-13). Although an involvement of rps genes in the AA-III 

incompatibility is not very likely, rps genes could not be rigorously excluded as 

potential candidates causing PGI. The virescent phenotype disappears after 10 - 12 

weeks indicating a development-dependent malfunction. In the first weeks, plants 

elongate fastly and significantly increase number and size of their leaves. During this 

developmental stage many proteins need to be synthesized, which are required for 

structures, e.g. of the thylakoid membrane system. It is conceivable that the 

temporally affected development is due to an impaired functionality of the ribosomal 

complex in AA-III plants compared to the others. To verify this, it would be useful to 

compare polysomes of incompatible AA-III with compatible AA-I plants.  

 

All differences detected in the cytochrome complex (ycf5 and petD intron) or the ATP 

synthase (atpA, 13 base pair deletion directly upstream of atpB/E operon) are 

essential and can not be excluded, because PAM measurements revealed on one 

hand high non-photochemical quenching in incompatible AA-III, possibly due to a 

high proton gradient across the thylakoid membrane that can be due to an ATP 

synthase malfunction. On the other hand, problems could arise as well in the 

“downstream electron cascade” to reoxidize QB that would influence assembling of 

functional complexes following photosystem II, the cytochrome complex and 

photosystem I. The photosystem II phenotype observed could also be caused by 

metabolic defects. In photosystem I, PAM measurements indicate no significant 

differences between compatible AA-I and incompatible AA-III plants. Furthermore, 

Western analyses revealed an increased ClpP1 protein level in AA-III plants. ClpP1 

encodes a plastid determinant of the 350 kDa Clp complex (plastid protease), 

consisting of a multitude of subunits (different types of ClpP, ClpP-like (ClpR), ClpS, 

ClpD) (e.g. Sokolenko et al. 1998; Sokolenko et al. 2002; Koussevitzky et al. 2006; 

Adam et al. 2006, Sjögren et al. 2006). At present, information about specific targets 

of the Clp complex is not available. Western analyses disclose an additional PsaF 

band that was already observed in incompatible AB-I plants, in which a 148 bp 

deletion of the divergent promoter containing (NEP and PEP promoters) intergenic 

region between psbB operon and clpP1 in plastome type I is considered to cause the 

incompatibility (Greiner et al. 2008c). So, it is conceivable that PsaF is a potential 

target of the Clp complex. This suggests that ClpP1 is also a probable factor 
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responsible for the incompatibility in AA-III plants. This suggestion is supported by an 

observed virescent phenotype in the clpR1 mutant line in Arabidopsis thaliana, which 

is very similar to the phenotype observed in AA-III plants (Koussevitzky et al. 2006). 

To summarize, bioinformatical analyses could narrow down potential candidates 

responsible for the incompatibility in AA-III plants. Further biochemical and 

biophysical approaches are necessary to settle the molecular basis of AA-III 

incompatibility.  

 

4.8 BENEFIT AND APPLICATION OF CO-DOMINANT MARKERS IN 
OENOTHERA BREEDING 

Oenothera plants contain two genome complexes, which can be haplo-complexes or 

Renner complexes. In Oenothera breeding strategies, e.g for assembling plastome-

genome incompatible plants, genome restructuring or for commercial Oenothera 

breeding (Fieldsend 2007), complexes were newly combined and progenies often 

have to be selected for desired plastome-genome combination. Using the few 

phenotypic markers, a trained eye and experience for the most of the selections is 

required (Dietrich et al. 1997). The characteristics for different genotypes were 

described in Dietrich et al. (1997). Heterozygotes (AB, AC and BC) in most cases 

show a phenotype, which is intermediate between the characterstics of both 

genomes. In most cases, these are not clearly distinguishable during the first weeks 

of development and become visible only in adult stage. Thus, molecular co-dominant 

markers are of high interest in Oenothera breeding but were not available up to now 

(Mráček et al. 2006; Larson et al. 2008). 

 

In order to solve this problem and to make the Onagracean material accessible for 

straightforward breeding and mapping approaches, a PCR marker system was 

developed for genomes and plastomes, to distinguish the most important complexes 

(marker allele M40; Table 3-8; see Chapter 3.3.1) and the most important basic 

plastomes and their subplastomes (marker allele rrn16-trnIGAU; Table 3-9; see 

Chapter 3.3.2) (Rauwolf et al. 2008b; Greiner 2008). This way, immediate genetic 

access to a variety of lineages was provided. Up to now, basic and subplastome 

types could only be distinguished by time-consuming RFLP analyses (Herrmann et 

al. 1980b; Gordon 1981, 1982; Chapman et al. 1999) or the time-consuming usage of 
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bleached plastome mutants (Stubbe 1959; Stubbe 1989). The number of crosses can 

now be significantly reduced using the plastome marker allele, which allows 

monitoring of plastome types by a single PCR.  

 

It is likely that most of the co-dominant molecular markers designed can be applied to 

the majority of complexes (Rauwolf et al. 2008b; Mráček et al. 2006; Greiner 2008). 

Therefore, it will be possible to merge the classical map and the molecular map 

presented in this work by segregation analyses of an appropriate cross. In a pilot 

study with the nuclear marker M58 it was possible to correlate chromosome 9·8 with 

linkage group 7 (Rauwolf et al. 2008b; Greiner 2008). Furthermore, with appropriate 

lines co-dominant markers can be used to define individual chromosome arms which 

is a crucial step in Oenothera breeding. The highly diverging M40 marker, in turn, can 

be applied to distinguish between individual complexes and can be used to monitor 

basic genotypes in ring forming hybrids and a large number of distinct haplo-

complexes. Screening of splitting generations with different complexes at the 

seedling stage by a single PCR is the major benefit of this marker. This is a 

significant relief in working with annual herbs in general. In summary, the markers 

described represent a significant progress in Oenothera genetics. They allow a 

precise and easy molecular identification of plastomes, Renner complexes, single 

chromosomes and chromosome arms by PCR in crossing programs. They will also 

have an impact on commercial Oenothera breeding. 

 

4.9 COMMERCIAL INTEREST IN OENOTHERA 

Oenothera has become an interesting material for industry with the discovery of 

essential unsaturated fatty acids in this genus, used as food supplies and in medical 

application (Horrobin 1990; Morse and Clough 2006). Consequently, commercial 

cultivars as well as attempts for genetic manipulation and breeding do exist (de 

Gyves et al. 2004; Fieldsend 2007). In human health, a balance between Omega-6 

and Omega-3 fatty acids is vital (1:1 to 4:1). Gamma-linoleic acid (GLA) belongs to 

the Omega-6 family and appears in relatively high amounts in seeds of Oenothera 

species (“evening primrose oil”). The human body needs GLA to produce 

prostaglandins, a type of hormone-like substance (Horrobin et al. 1984a). 

Prostaglandins are believed to be involved in many processes, including in the 
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regulation of the immune system. An imbalance between Omega-6 and Omega-3 

fatty acids contributes to the development of long-term diseases. Various research 

data suggest that GLA may be useful for diabetes (Keen et al. 1993), eye disease 

(Brown et al. 1998), chronical fatigue syndrome (CFS) (Behan et al. 1990; Theander 

et al. 2002), osteoporosis (Kruger and Horrobin 1997; Kruger et al. 1998), alcoholism 

(Horrobin 1984b; Horrobin 1987; Corbett et al. 1991), menopausal symptoms 

(Chenoy et al. 1994), premenstrual symptoms (Horrobin 1983; Horrobin and Brush 

1983; Khoo et al. 1990; Budeiri et al. 1996; Bendich 2000), (atopic) eczema (Schalin-

Karrila et al. 1987; Morse et al. 1989; Fiocchi et al. 1994; Worm and Henz 2000; 

Yoon et al. 2002), allergies (Wakai et al. 2001), rheumatoid arthritis (Joe and Hart 

1993; Belch and Hill 2000; Leventhal et al. 1993; Calder and Zurier 2001, Darlington 

and Stone 2001), attention deficit/hyperactivity disorder (Arnold et al. 1989), cancer 

(Davies et al. 1999, Kenny et al. 2000, Menendez et al. 2001), migraine (Wagner and 

Nootbaar-Wagner 1997), weight loss (Garcia et al. 1986), high blood pressure and 

heart disease (Frenoux et al. 2001), ulcers (al-Sabanah 1997), Raynaud´s syndrome 

(Belch et al. 1985), epilepsy (Puri 2007), multiple sclerosis (Cunnane et al. 1989) and 

HIV infections (Mpanju et al. 1997). Because of the possible broad field of 

applications, research in the genus Oenothera is important and marker systems will 

provide important progress in its breeding. 

 

4.10 FISH AS TOOL TO DETECT CHROMOSOME ARM COMBINATIONS 
PRESENT IN OENOTHERA 

Chromosomes in Oenothera lineages differ in their chromosome arm combinations 

which are the result of frequently observed reciprocal translocation events. Thus, the 

genetic behavior of unanalyzed Oenothera lineages in plant breeding or simple 

crossing experiments is generally unknown. In the past, all complexes used, egg cell 

complexes and pollen complexes, were analyzed separately by means of crossing 

experiments, based on combination with complexes with known chromosome 

configurations (listed in Cleland 1972) and following cytological analyses of 

chromosome patterns during meiosis (Cleland 1972). The relatively long generation 

time of Oenothera (annual herb) already implies that this approach is time-consuming 

and requires experienced personnel.  
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Fluorescent in situ hybridization (FISH) using chromosome arm specific probes 

solves and fastens this procedure and represents a complementary approach to arm-

specific marker technology. Because of this significant relief, the implementation of 

this method to Oenothera research could again be a substantiated improvement in 

the history of this genus. The first data achieved were promising since chromosome 

arm specific signals could be obtained (Figs. 3-21 and 3-22). Still, the results were 

limited to a small number of metaphase chromosomes. In order to fully exclude the 

possibility of artifacts improvement of this method needs to be established to 

reproduce the signals with a higher frequency. As soon as this will have been 

managed, it is an easy to assign the probe to the appropriate chromosome arm by 

means of simple mapping. In addition, Oenothera chromosomes could be 

characterized by C-banding or karyotyping that both were also began in cooperation 

with Dr. Hieronim Golczyk (Krakow, Poland). C-banding, a selective chromosome 

stain with Giemsa that presents heterochromatic regions, is of especial interest in 

view of the lack of homologous recombination and chromosome condensation in 

evening primroses.  
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6. Summary 
 

Research on the genus Oenothera (evening primroses) exists since more than a 

century. A large variety of species and lineages were collected and analyzed during 

this period which differed substantially in their genetical behavior due to terminal or 

partial translocation heterozygosity; bivalent forming strains exist as well. 

Translocation heterozygosity, biparental transmission of plastids, fertility of hybrids 

and a general interfertility of species allow sexual exchanges of plastids, of individual 

or more chromosomes and of entire genomes. The exchange of plastids or of entire 

genomes requires lines with a combination of two chromosome complexes which 

form a ring ( 14) of alternating parental chromosomes in meiosis. Such 

heterozygous plants are considered to inherit entire haploid chromosome sets 

without intermixing, except of a negligible degree at telomeres. Interpecific plastome-

genome combinations, in turn, result in incompatible phenotypes which reflect a lack 

of co-evolution between newly combined organelles, presumably due to gene-pairs, 

as described by the Dobzhansky-Muller model. Up to date, research on evening 

primroses, notably homologous recombination and organelle exchanges between 

species was performed exclusively with cytological methods and/or phenotypical 

markers, but quite often segregation analyses resulted in only altered, atypical 

Mendelian segregation ratios. 

  

The aim of this thesis was to develop molecular strategies for the classical genetic 

model Oenothera, notably to establish molecular marker technologies for genome 

and plastome and to investigate homologous recombination events in bivalent 

forming and translocation heterozygous species (AFLP technology combined with co-

dominant markers). The AFLP technology was employed to (i) generate first linkage 

maps for the A and B genomes in subsection Oenothera using bivalent forming 

species and (ii) to verify a lack of homologous recombination in translocation 

heterozygotes. Remarkably, homologous recombination events were strictly limited to 

telomeric regions, not only in translocation heterozygous, but also in bivalent forming 

species. (iii) Cytological investigations of meiotic prophases uncovered an untypical, 

higher-order organization, predominantely condensation, of all chromosomes during 

meiosis as a most probable and general reason for the lack of homologous 
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recombination in Oenothera. (iv) Although species without homologous 

recombination are generally seen as evolutionary dead-ends, the role of the 

cosmopolit Oenothera as an exception in this case is being discussed referring to the 

sense of sex that is generally considered as synonymous to homologous 

recombination from a genetic perspective. (v) In parallel, marker systems were 

generated for both, nuclear genomes (marker allele M40) and (sub-)plastomes 

(marker allele rrn16-trnIGAU). (vi) General application of nuclear markers requires 

knowledge of chromosomal formulas of complexes. Up to now, determinations of 

floating chromosomal formulas in Oenothera species, reflecting diverse reciprocal 

translocations of entire chromosome arms, were time-consuming. To speed up this 

procedure significantly, a fluorescent in situ hybridization (FISH) technique with 

chromosome arm-specific probes was developed with promising perspective. (vii) 

Potential candidate genes in the plastome, causing the virescent phenotype of AA-III, 

were narrowed down by comparative molecular biological, biochemical and 

bioinformatical analyses of all five basic distinguishable plastome sequences (I – V). 

(viii) An AFLP mapping approach, in turn, revealed two coupling groups, 4 and 7, that 

are involved in the AA-III incompatibility. These two coupling groups must interact 

since a BB genotype in one of the groups is able to reverse the incompatible 

phenotype. 
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7. APPENDIX:  
 
7.1 DETAIL INFORMATION ABOUT AFLP MARKERS ASSIGNED IN 

INTERGRATED GENETIC MAP 
 
Coupling Group 1 (integrated genetic map)      
Locus Position a h b X2 Signif. Classes LOD 

sm281_453.6 0.000 27 126 88  31.4 ******* [a:h:b] 54.85 

sm299_103.7 7.331 27 128 86  29.8 ******* [a:h:b] 87.76 

sm299_179.8 8.155 27 124 93  35.8 ******* [a:h:b] 96.74 

sm261_118.4 8.358 27 125 92  34.8 ******* [a:h:b] 99.14 

sm263_328.9 8.358 27 125 92  34.8 ******* [a:h:b] 99.14 

sm280_378.9 8.358 27 125 92  34.8 ******* [a:h:b] 99.14 

sm263_395.7 8.358 27 125 92  34.8 ******* [a:h:b] 99.14 

sm281_116.8 8.358 27 125 92  34.8 ******* [a:h:b] 99.14 

sm290_52.2 8.358 27 125 92  34.8 ******* [a:h:b] 99.14 

sm285_416.7 8.358 27 125 92  34.8 ******* [a:h:b] 99.14 

sm285_216.3 8.358 27 125 92  34.8 ******* [a:h:b]  99.14 

sm276_394.3 8.358 27 125 92  34.8 ******* [a:h:b] 99.14 

am280_377.9 8.358 27 125 92  34.8 ******* [a:h:b] 99.14 

sm276_90.8 8.358 27 125 92  34.8 ******* [a:h:b] 99.14 

sm281_193.2 8.358 27 125 92  34.8 ******* [a:h:b] 99.14 

sm280_441.5 8.358 27 125 92  34.8 ******* [a:h:b] 99.14 

sm279_120.0 8.358 27 125 92  34.8 ******* [a:h:b] 99.14 

sm276_216.8 8.358 27 125 92  34.8 ******* [a:h:b] 99.14 

sm280_221.5 8.358 27 125 92  34.8 ******* [a:h:b] 99.14 

sm279_412.8 8.358 27 125 92  34.8 ******* [a:h:b] 99.14 

sm267_372.8 8.358 27 125 92  34.8 ******* [a:h:b] 99.14 

sm263_43.9 8.358 27 125 92  34.8 ******* [a:h:b] 99.14 

sm263_367.1 8.358 27 125 92  34.8 ******* [a:h:b] 99.14 

sm279_341.8 8.358 27 125 92  34.8 ******* [a:h:b] 99.14 

sm299_345.6 8.358 27 125 92  34.8 ******* [a:h:b] 99.14 

sm299_271.4 8.358 27 125 92  34.8 ******* [a:h:b] 99.14 

sm281_312.3 8.358 27 125 92  34.8 ******* [a:h:b] 99.14 

sm263_397.0 8.358 27 125 92  34.8 ******* [a:h:b] 99.14 

sm263_321.7 8.358 27 125 92  34.8 ******* [a:h:b] 99.14 

sm285_375.7 8.358 27 125 92  34.8 ******* [a:h:b] 99.14 

sm276_334.2 8.358 27 125 92  34.8 ******* [a:h:b] 99.14 

sm285_73.4 8.358 27 125 92  34.8 ******* [a:h:b] 99.14 

sm290_129.0 8.358 27 125 92  34.8 ******* [a:h:b] 99.14 

sm285_220.9 8.358 27 125 92  34.8 ******* [a:h:b] 99.14 

sm267_344.5 8.358 27 125 92  34.8 ******* [a:h:b] 99.14 
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continued  

Locus Position a h b X2 Signif. Classes LOD 
sm261_134.5 8.358 27 125 92  34.8 ******* [a:h:b] 99.14 

sm276_426.2 8.358 27 125 92  34.8 ******* [a:h:b] 99.14 

sm279_137.9 8.358 27 125 92  34.8 ******* [a:h:b] 99.14 

sm290_391.7 8.358 27 125 92  34.8 ******* [a:h:b] 99.14 

sm280_116.5 8.358 27 125 92  34.8 ******* [a:h:b] 99.14 

sm279_170.5 8.358 27 125 92  34.8 ******* [a:h:b] 99.14   
sm290_390.5 8.358 27 125 92  34.8 ******* [a:h:b] 99.14 

sm276_89.8 8.358 27 125 92  34.8 ******* [a:h:b] 99.14 

sm263_493.7 8.358 27 125 92  34.8 ******* [a:h:b] 99.14 

am261_246.8 9.182 27 125 92  34.8 ******* [a:h:b] 90.50 

sm263_67.5 9.593 27 125 92  34.8 ******* [a:h:b] 87.25 

 

Coupling Group 2 (integrated genetic map) 
Locus Position a h b X2 Signif. Classes LOD 

sm263_92.7 0.000 50 118 75 5.3 * [a:h:b] 47.75  

sm261_91.5 6.270 52 118 73 3.8 - [a:h:b] 42.87 

sm276_104.5 8.736 51 117 75 5.1 * [a:h:b] 95.02 

sm263_233.5 10.121 51 119 74 4.5 - [a:h:b] 108.17 

sm261_325.3 10.322 51 119 74 4.5 * [a:h:b] 108.37 

sm263_283.7 10.322 51 119 74 4.5 * [a:h:b] 108.37 

sm267_267.5 10.322 51 119 74 4.5 * [a:h:b] 108.37 

sm263_130.4 10.322 51 119 74 4.5 * [a:h:b] 108.37 

sm299_212.8 10.322 51 119 74 4.5 * [a:h:b] 108.37 

sm281_235.2 10.322 51 119 74 4.5 * [a:h:b] 108.37 

sm279_54.3 10.322 51 119 74 4.5 * [a:h:b] 108.37 

sm261_431.2 10.322 51 119 74 4.5 * [a:h:b] 108.37 

sm263_279.4 10.322 51 119 74 4.5 * [a:h:b] 108.37 

sm261_70.0 10.322 51 119 74 4.5 * [a:h:b] 108.37 

sm267_57.2 10.322 51 119 74 4.5 * [a:h:b] 108.37 

sm267_171.8 10.322 51 119 74 4.5 * [a:h:b] 108.37 

sm267_122.7 10.322 51 119 74 4.5 * [a:h:b] 108.37 

sm279_167.5 10.322 51 119 74 4.5 * [a:h:b] 108.37 

sm280_140.2 10.322 51 119 74 4.5 * [a:h:b] 108.37 

sm290_432.7 10.322 51 119 74 4.5 * [a:h:b] 108.37 

sm280_53.5 10.322 51 118 75 5.0 * [a:h:b] 108.37 

sm279_199.1 10.322 51 118 75 5.0 * [a:h:b] 108.37 

sm279_102.0 10.322 51 118 75 5.0 * [a:h:b] 108.37 

sm280_141.6 10.322 51 118 75 5.0 * [a:h:b] 108.37 

sm276_461.8 10.322 51 118 75 5.0 * [a:h:b] 108.37 

sm279_79.1 10.322 51 118 75 5.0 * [a:h:b] 108.37 

sm280_125.1 10.322 51 118 75 5.0 * [a:h:b] 108.37 
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continued  

Locus Position a h b X2 Signif. Classes LOD 
sm276_415.2 10.322 51 118 75 5.0 * [a:h:b] 108.37 

sm280_115.2 10.322 51 118 75 5.0 * [a:h:b]  108.37 

sm281_282.1 10.322 51 118 75 5.0 * [a:h:b] 108.37 

sm299_255.3 10.322 51 118 75 5.0 * [a:h:b] 108.37 

sm280_78.7 11.553 51 118 75 5.0 * [a:h:b] 97.35 

sm261_89.5 12.836 54 113 74 4.3 - [a:h:b] 89.51 

sm267_73.5 19.776 51 120 70 3.0 - [a:h:b] 30.99 

 
Coupling Group 3 (integrated genetic map) 
Locus Position a h b X2 Signif. Classes LOD 

sm261_143.0 0.000 71 157 16 44.9 ******* [a:h:b] 65.38 

sm280_304.2 6.802 71 124 49 4.0 - [a:h:b] 106.73 

sm280_372.8 6.802 71 124 49 4.0 - [a:h:b] 106.73 

sm290_285.9 6.802 71 124 49 4.0 - [a:h:b] 106.73 

sm276_212.3 6.802 71 124 49 4.0 - [a:h:b] 106.73 

sm279_77.0 6.802 71 124 49 4.0 - [a:h:b] 106.73 

sm280_42.1 6.802 71 124 49 4.0 - [a:h:b] 106.73 

sm279_385.5 6.802 71 124 49 4.0 - [a:h:b] 106.73 

sm281_150.4 6.802 71 124 49 4.0 - [a:h:b] 106.73 

sm290_346.1 6.802 71 124 49 4.0 - [a:h:b] 106.73 

sm261_315.1 6.802 71 124 49 4.0 - [a:h:b] 106.73 

sm281_60.8 6.802 71 124 49 4.0 - [a:h:b] 106.73 

sm279_163.9 6.802 71 124 49 4.0 - [a:h:b] 106.73 

sm279_369.0 6.802 71 124 49 4.0 - [a:h:b] 106.73 

sm280_390.9 6.802 71 124 49 4.0 - [a:h:b] 106.73 

sm281_174.7 6.802 71 124 49 4.0 - [a:h:b] 106.73 

sm267_251.4 6.802 71 124 49 4.0 - [a:h:b] 106.73 

sm279_383.6 6.802 71 124 49 4.0 - [a:h:b] 106.73 

sm279_175.4 6.802 71 124 49 4.0 - [a:h:b] 106.73 

sm279_151.6 6.802 71 124 49 4.0 - [a:h:b] 106.73 

sm276_452.1 6.802 71 124 49 4.0 - [a:h:b] 106.73 

sm267_58.5 6.802 71 124 49 4.0 - [a:h:b] 106.73 

sm267_146.6 6.802 71 124 49 4.0 - [a:h:b] 106.73 

sm267_101.0 6.802 71 124 49 4.0 - [a:h:b] 106.73 

sm290_179.4 6.802 71 124 49 4.0 - [a:h:b] 106.73 

sm299_96.4 6.802 71 124 49 4.0 - [a:h:b] 106.73 

sm261_389.1 6.802 71 124 49 4.0 - [a:h:b] 106.73 

sm285_377.7 6.802 71 124 49 4.0 - [a:h:b] 106.73 

sm276_174.6 6.802 71 124 49 4.0 - [a:h:b] 106.73 

sm263_239.4 6.802 71 124 49 4.0 - [a:h:b] 106.73 

sm267_39.5 7.606 71 128 45 6.1 ** [a:h:b] 99.00 
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continued  
Locus Position a h b X2 Signif. Classes LOD 
sm276_272.8 13.640 71 157 16 44.9 ******* [a:h:b] 65.38 

 

Coupling Group 4 (integrated genetic map) 
Locus Position a h b X2 Signif. Classes LOD 

sm263_192.6 0.000 56 134 54 2.4 - [a:h:b] 73.01 

sm263_117.9 4.754 57 126 61 0.4 - [a:h:b] 98.71 

sm261_223.4 5.525 57 126 61 0.4 - [a:h:b] 106.93 

sm299_121.2 5.525 57 126 61 0.4 - [a:h:b] 106.93 

sm267_240.0 5.525 57 126 61 0.4 - [a:h:b] 106.93 

sm263_196.2 5.525 57 126 61 0.4 - [a:h:b] 106.93 

sm281_133.1 5.525 57 126 61 0.4 - [a:h:b] 106.93 

sm276_388.8 5.525 57 126 61 0.4 - [a:h:b] 106.93 

sm261_478.7 5.525 57 126 61 0.4 - [a:h:b] 106.93 

sm267_225.7 5.525 57 126 61 0.4 - [a:h:b] 106.93 

sm281_166.9 5.525 57 126 61 0.4 - [a:h:b] 106.93 

sm285_370.0 5.525 57 126 61 0.4 - [a:h:b] 106.93 

sm285_371.1 5.525 57 126 61 0.4 - [a:h:b] 106.93 

sm299_61.0 5.525 57 126 61 0.4 - [a:h:b] 106.93 

sm299_478.1 5.525 57 126 61 0.4 - [a:h:b] 106.93 

sm299_206.2 5.525 57 126 61 0.4 - [a:h:b] 106.93 

sm299_220.8 5.525 57 126 61 0.4 - [a:h:b] 106.93 

sm261_349.6 5.525 57 126 61 0.4 - [a:h:b] 106.93 

sm280_478.9 5.525 57 126 61 0.4 - [a:h:b] 106.93 

sm261_49.1 5.525 57 126 61 0.4 - [a:h:b] 106.93 

sm299_481.9 5.525 57 126 61 0.4 - [a:h:b] 106.93 

sm263_88.0 5.525 57 126 61 0.4 - [a:h:b] 106.93 

sm290_341.2 5.525 57 126 61 0.4 - [a:h:b] 106.93 

sm263_351.6 5.525 57 126 61 0.4 - [a:h:b] 106.93 

sm276_422.3 5.525 57 126 61 0.4 - [a:h:b] 106.93 

sm276_196.0 5.525 57 126 61 0.4 - [a:h:b] 106.93 

sm290_108.5 5.525 57 126 61 0.4 - [a:h:b] 106.93 

sm281_88.1 5.525 57 126 61 0.4 - [a:h:b] 106.93 

sm263_200.2 5.525 57 126 61 0.4 - [a:h:b] 106.93 

sm281_441.0 5.525 57 126 61 0.4 - [a:h:b] 106.93 

sm285_474.6 5.525 57 126 61 0.4 - [a:h:b] 106.93 

sm290_105.5 5.698 57 126 60 0.4 - [a:h:b] 106.93 

sm279_143.7 6.723 57 126 61 0.4 - [a:h:b] 95.58 

sm279_211.1 6.955 57 121 64 0.4 - [a:h:b] 98.01 

sm280_89.9 11.794 57 125 60 0.3 - [a:h:b] 73.10 
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continued  

Coupling Group 5 (integrated genetic map) 
Locus Position a h b X2 Signif. Classes LOD 
sm267_184.9 0.000 65 125 53 1.4 - [a:h:b] 65.19 

sm263_97.4 7.113 69 121 54 1.9 - [a:h:b] 89.88 

sm281_433.6 9.244 66 124 54 1.3 - [a:h:b] 107.35 

sm267_42.6 9.244 66 124 54 1.3 - [a:h:b] 107.35 

sm263_263.2 9.244 66 124 54 1.3 - [a:h:b] 107.35 

sm290_214.9 9.244 66 124 54 1.3 - [a:h:b] 107.35 

sm280_47.2 9.244 66 124 54 1.3 - [a:h:b] 107.35 

sm263_332.8 9.244 66 124 54 1.3 - [a:h:b] 107.35 

sm290_246.2 9.244 66 124 54 1.3 - [a:h:b] 107.35 

sm290_301.1 9.244 66 124 54 1.3 - [a:h:b] 107.35 

sm267_103.3 9.244 66 124 54 1.3 - [a:h:b] 107.35 

sm267_174.3 9.244 66 124 54 1.3 - [a:h:b] 107.35 

sm279_390.5 9.244 66 124 54 1.3 - [a:h:b] 107.35 

sm280_43.1 9.244 66 124 54 1.3 - [a:h:b] 107.35 

sm281_131.0 9.244 66 124 54 1.3 - [a:h:b] 107.35 

sm285_447.9 9.244 66 124 54 1.3 - [a:h:b] 107.35 

sm267_159.3 9.244 66 124 54 1.3 - [a:h:b] 107.35 

sm276_424.5 9.244 66 124 54 1.3 - [a:h:b] 107.35 

sm285_170.0 9.244 66 124 54 1.3 - [a:h:b] 107.35 

sm290_166.4 9.244 66 124 54 1.3 - [a:h:b] 107.35 

sm290_210.0 9.244 66 124 54 1.3 - [a:h:b] 107.35 

sm280_154.0 9.244 66 124 54 1.3 - [a:h:b] 107.35 

sm280_262.3 12.512 65 117 60 0.5 - [a:h:b] 85.10 

sm267_286.0 17.906 65 128 51 2.2 - [a:h:b] 63.82 

 
Coupling Group 6 (integrated genetic map) 
Locus Position a h b X2 Signif. Classes LOD 
sm280_193.2 0.000 26 122 96 40.2 ******* [a:h:b] 90.28 

sm263_55.5 1.866 35 113 96 31.8 ******* [a:h:b] 104.23 

sm280_224.3 1.866 35 113 96 31.8 ******* [a:h:b] 104.23 

sm299_228.7 1.866 35 113 96 31.8 ******* [a:h:b] 104.23 

sm280_317.0 1.866 35 113 96 31.8 ******* [a:h:b] 104.23 

sm279_328.0 1.866 35 113 96 31.8 ******* [a:h:b] 104.23 

sm263_60.6 1.866 35 113 96 31.8 ******* [a:h:b] 104.23 

sm299_71.5 1.866 35 113 96 31.8 ******* [a:h:b] 104.23 

sm263_184.6 1.866 35 113 96 31.8 ******* [a:h:b] 104.23 

sm263_185.6 1.866 35 113 96 31.8 ******* [a:h:b] 104.23 

sm261_458.7 1.866 35 113 96 31.8 ******* [a:h:b] 104.23 

sm261_128.8 1.866 35 113 96 31.8 ******* [a:h:b] 104.23 

sm261_176.1 1.866 35 113 96 31.8 ******* [a:h:b] 104.23 
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continued  

Locus Position a h b X2 Signif. Classes LOD 
sm276_289.1 1.866 35 113 96 31.8 ******* [a:h:b] 104.23 

sm261_184.7 1.866 35 113 96 31.8 ******* [a:h:b] 104.23 

sm285_79.8 1.866 35 112 96 32.1 ******* [a:h:b] 104.23 

sm267_61.4 1.866 35 112 96 32.1 ******* [a:h:b] 104.23 

sm299_70.5 1.866 35 112 96 32.1 ******* [a:h:b] 104.23 

sm279_156.6 1.866 35 112 96 32.1 ******* [a:h:b] 104.23 

sm267_341.7 1.866 35 112 96 32.1 ******* [a:h:b] 104.23 

sm267_230.0 1.866 35 112 96 32.1 ******* [a:h:b] 104.23 

sm299_277.6 1.866 35 112 96 32.1 ******* [a:h:b] 104.23 

sm263_99.8 1.866 35 112 96 32.1 ******* [a:h:b] 104.23 

sm281_432.2 7.002 35 117 88 23.6 ******* [a:h:b] 70.00 

 

Coupling Group 7 (integrated genetic map) 
Locus Position a h b X2 Signif. Classes LOD 

sm285_106.9 0.000 52 135 56 3.1 - [a:h:b] 93.00 

sm276_40.8 1.207 52 132 60 2.2 - [a:h:b] 104.73 

sm279_274.9 1.207 52 132 60 2.2 - [a:h:b] 104.73 

sm267_79.2 1.207 52 132 60 2.2 - [a:h:b] 104.73 

sm299_197.8 1.207 52 132 60 2.2 - [a:h:b] 104.73 

sm285_74.3 1.207 52 132 60 2.2 - [a:h:b] 104.73 

sm285_336.1 1.207 52 132 60 2.2 - [a:h:b] 104.73 

sm299_164.4 1.207 52 132 60 2.2 - [a:h:b] 104.73 

sm299_311.3 1.207 52 132 60 2.2 - [a:h:b] 104.73 

sm263_337.9 1.207 52 132 60 2.2 - [a:h:b] 104.73 

sm280_439.7 1.207 52 132 60 2.2 - [a:h:b] 104.73 

sm281_355.6 1.207 52 132 60 2.2 - [a:h:b] 104.73 

sm267_97.8 1.207 52 132 60 2.2 - [a:h:b] 104.73 

sm276_262.0 1.207 52 132 60 2.2 - [a:h:b] 104.73 

sm276_84.6 1.207 52 132 60 2.2 - [a:h:b] 104.73 

sm280_252.8 1.207 52 132 60 2.2 - [a:h:b] 104.73 

sm280_59.5 1.207 52 132 60 2.2 - [a:h:b] 104.73 

sm285_334.0 1.207 52 132 60 2.2 - [a:h:b] 104.73 

sm290_270.4 1.207 52 132 60 2.2 - [a:h:b] 104.73 

sm280_129.8 1.207 52 132 60 2.2 - [a:h:b] 104.73 

sm290_66.6 1.207 52 132 60 2.2 - [a:h:b] 104.73 

sm279_290.9 1.207 52 132 60 2.2 - [a:h:b] 104.73 

sm263_296.1 1.207 52 132 60 2.2 - [a:h:b] 104.73 

sm263_288.0 1.207 52 132 60 2.2 - [a:h:b] 104.73 

sm290_394.7 1.207 52 132 60 2.2 - [a:h:b] 104.73 

sm281_220.1 1.207 52 132 60 2.2 - [a:h:b] 104.73 

sm285_365.2 2.211 52 136 54 3.8 - [a:h:b] 94.55 
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