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Abstract ix

Summary

The purpose of this work is to investigate how phenomenologically successful constructions
in the field of high energy physics can be embedded into a fundamental theory, and what
we can learn from this procedure. In fact, the synergy of an effective and a fundamental
approach might be very fruitful. On the one hand, it poses several theoretical challenges
to potential candidates for a fundamental theory, which might be ruled out or restricted
in their generality. On the other hand, this mutual interplay can inspire new experiments
and observations or suggest correlations which are invisible from an effective point of view.

Our starting point is that string theory is entitled to be a valid candidate for a fundamental
theory by a series of properties such as the fact that it is a consistent, UV-finite, anomaly-
free quantum theory and it describes, in appropriate limits, quantum field theory and
general relativity, hence providing a unified description of the four known forces. Within
string theory, we choose to work in the framework of type IIB flux compactifications where
the issue of moduli stabilization can be successfully addressed. On the phenomenological
side, we focus on particle physics and cosmology, and in particular on the MSSM and the
mechanism of inflation, respectively.

We construct and study two different models of inflation in string theory. These are models
of brane inflation, i.e. models where the primordial exponential expansion of the universe
is driven by a scalar field representing the position of a D3-brane (a 3 + 1-dimensional
dynamical object) in a compact space. We show explicitly that, allowing for fine tuning,
a prolonged stage of slow-roll inflation can be achieved during which perturbations are
generated in good agreement with the CMB data. In addition, we give an example of
the fruitful synergy we mentioned above. One of our two models, namely inflation at the
tip, might induce also DBI inflation which produces peculiar features in the spectrum of
density perturbations that might be looked for using CMB data.

On the particle physics side, we consider a model, the large volume scenario (LVS), which,
among other things, provides a rationale for a low scale susy-breaking. We perform some
checks on the consistency of LVS as a string theory model. To this end, we formulate
an educated guess for the form of string loop corrections. We then show that physical
predictions such as the soft susy-breaking terms are actually surprisingly robust against
the inclusion of these corrections.
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1 Introduction and conclusions

To motivate string theory phenomenology, which is the subject of the present work, one
could start from two different perspectives. The first is incarnated by Plato, the person
on the left part of figure 1.1. From this perspective, one should start introducing and
discussing the “theory of Forms”, which in the present context is to be identified with
string theory1. In a second step, one should descend to our “world of phenomena”, which
is populated not by the Forms themselves, but by their shadows, which in the present
discussion should be identified with the physical phenomena. The second perspective is
incarnated by Aristotle2, depicted on the right part of figure 1.1. Now, the starting point
are experiments and observations, from which one should collect a series of empirical facts.
Then, one should try to construct a simple and elegant explanation to account for these
facts. The explanation might have some implications which can in principle be tested.
A successful and logically consistent explanation might eventually be promoted to the
status of predictive theory.

We are going to embrace both perspectives. First, we are going to discover the remarkable
properties of string theory, which promoted it to a very active research field. Second we
are going to take a bird’s-eye view on some outstanding open phenomenological issues in
high energy physics.

Let us start with Plato’s perspective. Since the early seventies, the intense efforts dedi-
cated to the formulation and study of string theory have been crowned by several major
developments. The fact that string theory is a quantum theory which provides a consistent
UV completion of general relativity has played a key role in qualifying it as a candidate
for a fundamental theory. All four known fundamental forces can be described within
a unique theory, which, in a certain limit, reduces to quantum field theory and general
relativity. In string theory, situations outside the regime of validity of these theories can
in principle be investigated. Before we come to those ideas and constructions that will
play a major role in this work, in passing we would like to mention, without any pretense
of completeness, some significant theoretical breakthroughs.

The string theory description of systems dominated by gravity, notably black holes, en-
codes information about the microstates of the system. Remarkably, the resulting micro-

1As the reader will notice, in this introduction we do not give references to the literature, mainly because
this is meant to be an invitation to the present work accompanied by a general discussion of some
important ideas in the context of high energy physics.

2The cultivated reader might remember that Aristotle was Plato’s student. By no means this should be
interpreted as a hint to prefer one approach to the other.



2 1. Introduction and conclusions

Figure 1.1: The figure [1] depicts Plato (left) and Aristotle (right). The former gestures to the
heavens, representing his belief in the (theory of) Forms, whilst the latter gestures to the earth,
representing his belief in empirical knowledge, obtained through experiments and observations.

scopic entropy correctly matches the expected macroscopic entropy obtained from quan-
tum field theory and general relativity considerations. This extraordinary feature has
strengthened the belief that we can learn a big deal about quantum properties of gravity
from the study of black holes in string theory. This has in fact become an active research
field and a promising direction to understand the structure of and the basic principle be-
hind quantum gravity. On the other hand, the descent is still very long, from the “world
of Forms” where string theory black holes live to the “world of phenomena“ where their
shadows, i.e. the astrophysical black holes can be observed.

Another celebrated breakthrough is the AdS/CFT correspondence, i.e. the idea that a
theory of gravity is dual to a gauge theory (in lower dimensions). Just listing the many
contexts in which AdS/CFT has been employed would take us already too far from our
main focus. Hence we restrict ourselves to comment on the application of AdS/CFT
to the description of strongly coupled gauge theories, which does make its way through
to phenomenology. The quark-gluon plasma is a state of matter where, except for the
dual gravitational description provided by the correspondence, no other analytic tool is
available. Notice that this connection from string theory to phenomenology is deeply
different from the one we will consider in the rest of the present work. AdS/CFT is
used as a technical tool to perform calculations in the quark-gluon plasma, for which a
consistent UV finite theory, namely QCD, is already available, but it is not manageable
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to get analytical control.

We now come to the main focus of this work, string cosmology and string particle phe-
nomenology. Let us begin discussing the former. String theory is in principle suitable to
describe the physics of the very early universe, even when the spacetime curvature was so
large as to exceed the regime of validity of general relativity. Models have been proposed,
which try to address the problem of the initial singularity of the big bang, such as pre-big
bang theories, bouncing cosmologies, and so on. Unfortunately, a large part of our knowl-
edge of string theory is based on the perturbative approach and it is therefore hard to
handle high curvature and high energy regimes where the perturbative expansion breaks
down. This is why the straightest path to phenomenology passes through phenomena
which can be described by perturbative string theory and at the same time are relevant
to understand cosmological observations. A prominent example, which will in fact occupy
us for a large part of this work, is cosmological inflation (see chapter 3).

In string theory, gauge theories are automatically built-in. Unfortunately, the low energy
effective action is not characterized by one particular gauge theory, instead a host of
different gauge theories arise by expanding around the many existing vacua. This situation
has justified the idea of a landscape of vacua, whose consequence is that string theory may
lead to many different effective physical laws. The presence of a landscape obliges us to
face the following alternative: either we are contented by finding at least one vacuum
that describes our universe and we renounce to explain why this has been chosen among
others or we resort to statistical methods (and possibly invoke anthropic principles) and
try to estimate the probability with which the features we observe occur in the landscape.
In this work we follow the first approach, i.e. we search the landscape for a model that
describes our world even at the cost of making some non-generic assumptions and/or
restricting ourselves to particular regions of it. The suspicious reader might object that
this pretty much resembles the effective field theory approach, in the sense that some
(maybe many) quantities have to be determined by experiment and can not be predicted a
priori. Nevertheless, a considerable potential advantage with respect to effective theories
is that certain low energy features might be correlated by the higher energy physics,
i.e. due to consistency requirements of string theory.

Let us sidesteps from the left to the right part of figure 1.1 and switch to Aristotle’s
perspective. We should start by considering remarkable empirical facts. We restrict
ourselves to the domain of high energy physics, and to those facts which are still elusive
to an explanation in terms of well established theories such as the Standard Model and
general relativity. The last century has witnessed the birth of quantum field theory and its
extraordinary success, incarnated by the Standard Model, in describing particle physics
experiments. Two parts of the Standard Model where most questions are still open are
the neutrino and the Higgs sectors. The former is a young sector in the sense that it is
only in the last decade that we have collected convincing evidence that neutrinos possess
masses which are not accounted for in the Standard Model. The latter is as old as the
Standard Model itself, and it is expected it will be the arena of important improvements,
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driven by the incoming LHC experiments. In addition, several features of the Standard
Model are particularly ad hoc, which is considered a hint that a new paradigm in particle
physics might become necessary, even very soon, at energies comparable to those of LHC
experiments.

Among the many extensions of the Standard Model, a popular one is the minimal super-
symmetric Standard Model (MSSM) which introduces a new spacetime symmetry relat-
ing bosons with fermions. Together with nice features such as gauge coupling unification
(suggesting the idea of a great unified theory), stabilization of the weak scale (hierarchy
problem) and possible dark matter candidates, the MSSM introduces a host of new pa-
rameters which are a priori undetermined. It would be desirable to find a fundamental
theory where the origin of these parameters is explained and possibly some correlations
are imposed by consistency. This is possible in string theory and we will see an explicit
example in chapter 6, where we calculate, in a particular model know as the large volume
scenario (LVS), some of the soft supersymmetry breaking terms (constituting most of the
MSSM parameters).

In addition to particle physics experiments, also cosmological and astrophysical observa-
tions provide data relevant for high energy physics. The last decade has been as quiet and
quiescent for experimental particle physics as it has been fruitful and exciting for obser-
vational cosmology (see chapter 3). Several evidences have been accumulated in favor of
the so called Λ cold dark matter model (ΛCDM), consisting of a flat universe with critical
total energy density, of which 72% behaves as dark energy, 23% as dark matter and the
remaining 4% as baryonic matter. This picture implies that we lack an understanding for
most of the energy of the universe. Even more interestingly from the high energy point
of view, in the last decade the WMAP data about the cosmic microwave background
radiation (CMB for short) have become available, which enormously improve the date of
the COBE experiment.

The existence of the CMB supports the big bang theory but also makes more acute the
initial condition problems that afflict it. A very popular possibility to improve on these
issues is to assume a period of exponential inflation in the early universe (see chapter 3).
Unexpectedly and remarkably, inflation provides a natural and elegant mechanism to seed
the inhomogeneities which are eventually responsible for the formation of the large scale
structures we observe in the universe. The success of inflation raises some fundamental
questions such as for example what is responsible for the exponential expansion and how
does the inflationary phase connect with the hot big bang. It would be desirable to
address these and other questions concerning inflation in the framework of a fundamental
theory. This constitutes one of the main motivations of the present paper; in particular
in chapters 4 and 5 we will construct and study models of inflation in string theory.

We conclude here our discussion of the motivations for and the perspectives on string
theory phenomenology. We continue with an overview of the state of the art of construct-
ing cosmological and particle physics models in string theory. This is obviously a vast
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subject, and in fact we will make a selection of models and ideas relevant for the rest of
the paper. The following overview should serve as a map to help the reader’s orientation
when we will present and discuss the various parts and results of this work.

For many years, most efforts devoted to embed the Standard Model in string theory
concentrated on the heterotic models. More recently, considerable progress has been
made in type II theories. On the type IIA side, intersecting D6-branes are the most
popular setup, where each stack hosts a factor of the Standard Model gauge group. In
type IIB, related to type IIA by T-duality, the Standard Model could be constructed on
magnetized D7 branes. Given that string theory possesses a target-space supersymmetric
description, the supersymmetric extension of the standard model, i.e. the MSSM, can
naturally be allocated. One of the key questions in this type of models is which mechanism
is responsible for the susy-breaking. In particular, the relevant quantities which are
directly connected to experiments are the soft susy-breaking terms. Later in this work
we will encounter several mechanisms to break supersymmetry in type IIB constructions.
One is an anti D3-branes which, in a background with imaginary self-dual fluxes, breaks
the residual N=1 supersymmetry. The susy-breaking is somehow explicit, in the sense
that, in addition to F- and D-terms, another non-supersymmetric contribution to the
potential is present. We will consider this possibility in the cosmological context, where
our focus will be more on the vacuum energy than on low energy particle spectra. Another
possibility is spontaneous susy-breaking, i.e. when F- and D-terms do not satisfy the susy-
conditions in a particular vacuum. A model, known as large volume scenario (LVS), where
this mechanism is at work will be presented in chapter 6, where we will calculate some
of the soft susy-breaking terms. An interesting feature of LVS is that it can provide a
rationale for a low scale susy-breaking.

On the string cosmology side, we restrict our overview to inflationary models, which will
be the focus of chapters 4 and 5. A simple, popular and phenomenologically successful
effective model to induce a primordial exponential expansion consists of a single scalar
field with a relatively flat potential. Generically, the procedure of compactifying to lower
dimensions produces massless scalar fields, which correspond to the deformations of the
compact manifold. These massless fields, usually called moduli, are clearly troublesome
for particle phenomenology because no massless scalar has ever been observed, and actu-
ally quite strong bounds are available on the long-range force that moduli would induce
(sometimes called fifth force). On the other hand moduli are a blessing for cosmology
because they might be responsible for a stage of inflation. A strategy to reconcile string
theory with low energy physics is flux compactification. In this approach, the dimensional
reduction is performed in the presence of fluxes threading various cycles of the compact
space. In the resulting lower-dimensional effective action, the moduli3 acquire a mass
because the deformations which they correspond to are constrained by the fluxes. Given

3Strictly speaking, once they become massive, they should not be called moduli anymore. We will
nevertheless continue using this terminology, to avoid cumbersome expressions like ”the would be
moduli in the fluxless case“.
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this picture, the inflationary phase might result from the evolution of the moduli towards
their minima.

We will restrict our considerations to type IIB, because flux compactifications and the
stabilization of all the moduli4 are best understood there. For a typical compactification
we expect O(100) moduli corresponding to volumes and shapes of the Calabi-Yau cycles.
In addition to these closed string moduli, there might also be open string moduli corre-
sponding to the positions of D-branes in the compact space. The generic expectation is
therefore a complicated multi-field dynamics which presents obvious obstacles to both an
analytical and numerical approach. A way to sidestep this technical difficulty, is to make
some non-generic assumptions, e.g. that one of the moduli is much lighter than all the
others and therefore, after the latter have reached their minima, the former is the only
dynamical field. The inflationary analysis reduces to the study of the effective single-field
potential for the candidate inflaton. Both closed and open string moduli might play the
role of the inflaton, but in this work we consider only the second possibility. Open string
inflation, commonly known as brane inflation, in type IIB is typically (but not necessar-
ily) driven by the position modulus in the compact space of a spacetime-filling D3-brane.
In this setup, several phenomenological and theoretical questions related to inflation can
be addressed, such as which perturbations are produced, how the inflaton couples to the
Standard Model sector, how reheating takes place, whether there are other observable
consequences like cosmic strings, and so on.

Now that we have briefly reviewed some approaches to embed inflation and the (MS)SM
into string theory, we are ready to discuss the achievements of the present work and to
put them into the context. After introducing string theory in chapter 2, with particu-
lar focus on type IIB phenomenological constructions, and after describing inflation in
chapter 3, we dedicate chapters 4 and 5 to a thorough study of two models of brane in-
flation. The goal is to construct, in a controlled flux compactification, a model where the
potential felt by the D3-brane is suitable for inflation. In chapter 4 we consider a warped
conifold as local approximation to the Calabi-Yau manifold; at the tip of the conifold
an anti D3-brane is located, which attracts the D3-brane, uplifts the vacuum energy to
positive values, and breaks supersymmetry. The attractive brane-anti brane force, thank
to the warping, would be of the slow-roll type. Unfortunately, the D3-brane also feels
other forces which originates from the gravitational backreaction. The stabilization of the
closed string moduli induces a large mass for the inflaton and prevents slow-roll inflation.
We investigate the possibility of cancelling this effect using threshold corrections to the
non-perturbative superpotential. We show that, with an appropriate fine tuning of the
parameters, a potential with a flat inflection point (see figure 4.1) arises, which induces a
prolonged stage of inflation.

In chapter 5, we construct a different model, that we call inflation at the tip, where no anti
D3-brane is present and the motion of the D3-brane takes place along the tip of a warped
deformed conifold. This is the first model of brane inflation where the inflaton potential

4Possibly also recurring to non-perturbative effects, as we will see in section 2.6
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is generated exclusively by moduli stabilization effects (once threshold corrections are
taken into account). We argue that this, as opposed to brane-anti brane inflation, is
in fact the most natural case. We show that inflation at the tip can drive slow-roll
inflation, provided that some fine tuning is performed, and it can produce perturbations
in excellent agreement with CMB data. Another interesting feature of this model is that
the DBI regime (see section 5.5.3) can easily be achieved. We argue that in certain cases,
a prolonged stage of inflation can be achieved together with perturbations of the DBI
type, i.e. which possess features experimentally distinguishable from the slow-roll case.
In addition, inflation at the tip poses a theoretical challenge regarding the mechanism
of reheating. Summarizing, we have found two phenomenologically successful models of
brane inflation and we have described their respective features. On the other hand, in
the analysis producing the above results, we have neglected several corrections, of stringy
and/or quantum field theory origin, the reason being that they are mostly unknown. To
improve on this issue and increase the control we have on phenomenological models, we
dedicate chapter 6 to the study of the role of quantum corrections.

For this study, we decided to leave the realm of string cosmology and enter the area of
string particle phenomenology. In fact, we consider one of the aforementioned approaches
to embed the MSSM into string theory. To be more precise, we investigate a particular
type IIB setup, known as the large volume scenario (LVS), where all moduli can be fixed
and some of them to hierarchically large values. The vacuum which is obtained breaks
supersymmetry and has several interesting phenomenological properties. One example is
a low susy-breaking scale, whose low value has a geometrical origin. We perform a series
of checks on the self-consistency of this model as a string theory model as opposed to
a supergravity model. We discover that, although some corrections, neglected in LVS,
a priori seemed dangerous, a detailed investigation reveals that they only induce small
quantitative changes. In particular, we calculate the effects of string loop corrections to
gaugino masses (and comment on other soft terms); we verify that the tree level result
is actually very robust and gets only slightly modified by the corrections. Our is just a
modest step, because a part from string loop corrections, several other effects are also
potentially dangerous (see later). Nevertheless, our results are encouraging and should
stimulate further efforts to try to assess the consistency of phenomenological scenarios as
bone fide string constructions.
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2 Type IIB flux compactifications

The purpose of this chapter is to review the main steps that lead from the Nambu-
Goto action to phenomenologically interesting string theory models. The review will
favor deepness to wideness in the sense that we focus our attention on the ideas and
constructions that play a crucial role in type IIB flux compactifications and mention only
shortly alternative setups.

We start with the world-sheet formulation of string theory and describe its dual target-
space interpretation. We then consider the massless spectrum and stress that it contains
graviton-like excitations. After briefly mentioning the various types of string theories and
how they could be unified by M-theory, we concentrate on type IIB. We describe the mass-
less spectrum and the 10-dimensional low energy effective action both for closed strings
and, after introducing D-branes, for open strings. We explain the idea of flux compact-
ification and review which 4-dimensional effective action follows. Finally we show how
all moduli can be fixed in a vacuum that breaks supersymmetry and have a cosmological
constant which is tunable, at least in principle.

We do not review how one can try to embed the Standard Model in this construction.
Useless to say that this is a formidable task; fortunately for most of the issues we will be
interested in, we will not need to be very detailed about it. This is because both inflation
(chapters 4 and 5) and supersymmetry breaking (chapter 6) are supposed to take place in
a different sector from that of the SM. The assumption, that has to be carefully verified,
is that the SM sector provides quantitative but not qualitative corrections to dynamics
of these sectors. Once this dynamics is established for the isolated sector, the next step
is to investigate how it manifests itself in the visible SM sector.

A last preliminary comment about the goal of the present work is in order. As we
discussed in the introduction, several hints seem to indicate that string theory has a
very large number of vacua, each one describing very different low energy physics. Our
goal is to look for those vacua whose phenomenology can describe our world. This justifies
several assumptions we will make, which are non-generic but valid in some regions of the
landscape. The issue of how one particular vacuum is selected is different in nature and
will not be addressed here.
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2.1 Superstring theory in a nutshell

In this section we review the basic steps to obtain the spectum of superstring theories;
we stress that string theory provides an ultraviolet-finite completion of general relativity
(GR) and that a graviton-like excitation appears in the closed string spectrum.

Our starting point is a two-dimensional supersymmetric field theory determined by the
action

S =
1

4π

∫
dσdτ

(
1

α′
∂αX

µ∂αXµ − iψ
µ
ρα∂αψµ

)
, (2.1)

where σ and τ are real coordinates that parameterize a two dimensional Riemann surface,
possibly with boundary, called the string world-sheet. The 2×2 matrices ρα with α = 0, 1
are the two-dimensional gamma matrices. Xµ with µ = 0, . . . , D − 1 are D real scalar
fields on the two-dimensional world-sheet, ψµ are the supersymmetric partners of Xµ,
i.e. they are world-sheet fermions obtained by acting with a supersymmetric generator on
the Xµ bosonic operators1. Finally, α′ is a parameter of the theory, sometimes referred
to as Regge slope, with the dimension of a length squared.

It turns out that the quantum theory obtained quantizing this action has an anomaly
(of the Weyl invariance) that makes it inconsistent in all but D = 10 dimensions2. From
now on we focus on this number of target-space dimensions, usually called the critical
dimension.

The action (2.1) has an SO(1, 9) global (internal from the world-sheet point of view)
symmetry. This observation leads to an interesting interpretation of the action (2.1):
the fields Xµ give the embedding of the two-dimensional world-sheet in a 10-dimensional
target space as depicted in figure 2.1. In other words, the action (2.1) describes the prop-
agation of a 1-dimensional extended object (the string) in the 10-dimensional spacetime.
The fields ψµ describe additional degrees of freedom of the string beyond the geometrical
oscillations described by Xµ. As it is common for non-linear sigma models, of which string
theory is an example, we can think of the system described by (2.1) from two equivalent
points of view: as a two-dimensional field theory on the world-sheet or as a theory of
strings propagating in a 10-dimensional spacetime.

The first striking feature on which we want to comment and which gives one of the
strongest motivations to study string theory is that the action (2.1) describes, among

1In two dimensions we can perform both Majorana and Weyl projections at the same time; a Majorana
spinor has two real components, that in an appropriate basis are right and left handed spinors,
respectively.

2This comment refers to quantization around a constant dilaton background. Another background can
lead to different values of D for which the Weyl anomaly is absent. In fact exact solutions exist,
but they describe a spacetime physics where the laws of nature vary strongly in space and time in
contradiction with observations (e.g. the equivalence principle).
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Figure 2.1: The bosonic coordinates Xµ describe the embedding of the world-sheet in the 10-
dimensional target-space. The world-sheet coordinate τ describes the evolution of the shape of
the string as it moves in the target-space. It can be thought of as a time-like coordinate. This
figure is taken from [2].

other things, the dynamics of gravitons in the target space. Let us briefly see how this
comes about. As we said we look at the fields Xµ(τ, σ) as the embedding of a string in
the 10−dimensional target-space. Following our intuition, we expect that the degrees of
freedom of such an object are oscillations plus the motion of the center of mass of the
string. Which oscillations are allowed depends crucially on the boundary conditions that
we impose, i.e. if the string is open or closed. From the world-sheet point of view this
means that we have to decide if the world-sheet has a boundary, corresponding to the
end points of an open string, or periodic boundary corresponding to the case of a closed
string.

In analogy with the string of a violin, complicated oscillation of a string can be decomposed
in Fourier modes. The more irregular the shape of the string during its oscillations is,
the higher Fourier modes are excited. Each mode has an associated energy, that could be
e.g. obtained by looking at the Hamiltonian of the system.

The periodic boundary conditions that describe a closed string allow for the existence of
right- and left-handed modes moving independently along the string. The independence of
these two sectors plays a crucial role in the construction of different string theories. On the
other hand the open string boundary condition relates left- and right-moving oscillations
so that effectively an open string has only half of the oscillation modes of a closed string.
The Majorana spinor ψµ has two independent components in the closed string case. In
an appropriate basis they describe right- and left-moving degrees of freedom and we will
refer to them as ψµ+ and ψµ−, respectively.

It is very useful to think of the effective action, i.e. the action describing the degrees
of freedom which are relevant for the system under consideration. Relevant in our case
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means light because in reasonable physical situations the degrees of freedom that can be
excited are those whose energy is not much larger than the typical energy available to the
system. This motivates us to look at the lowest energy oscillations.

The process of quantization that leads to the spectrum of string theory can be found
in standard textbooks [2, 3, 4, 5, 6]. We will not review it here but just mention those
steps which are relevant for the present work. We concentrate on closed strings because
there we will find a graviton-like excitation. Before we Fourier expand and subsequently
quantize the fields {Xµ, ψµ} we need to explicitly specify the boundary conditions. For
Xµ this is easily done imposing periodic boundary conditions Xµ(τ, 0) = Xµ(τ, l) where
l is the length of the closed string. On the other hand, for the right-moving world-sheet
fermionic field ψµ+, two choices are allowed:

Ramond (R) : ψµ+(τ, 0) = +ψµ+(τ, l) (2.2)

Neveu Schwarz (NS) : ψµ+(τ, 0) = −ψµ+(τ, l) (2.3)

and the same for ψµ−. The quantization process in the NS sector leads to a ground state
that is a singlet under the target space Lorenz symmetry, i.e. a scalar. On the other hand,
the R choice leads to a degenerate vacuum state. It can be seen that the set of vacua in
the R sector forms a representation of the target-space gamma matrices, leading to the
interpretation of it as a target-space fermionic state.

The independence of right and left moving sector is valid also for the choice of boundary
conditions. Therefore, we have four possibilities for {ψµ+, ψ

µ
−} that we will denote with

NS-NS, R-R, NS-R and R-NS sectors3. Remember that in the R sector there are fermionic
states while in the NS sector there are bosonic states. We deduce from this that a closed
string has two bosonic sectors, R-R and NS-NS, and two fermionic sectors, R-NS and
NS-R.

It will be useful to specify another property of the string states, i.e. their world-sheet
fermionic number. This is defined mod 2 and it is equal to +1 if the state is obtained
acting with an odd number of world-sheet fermionic operators on the vacuum, while it is
equal to −1 otherwise. The states in each sector4 together with their world-sheet fermionic
number are resumed in figure 2.2.

The spin 2 tensor state, i.e. the (2) = 35 in figure 2.2, in the NS-NS sector is the sought-
for graviton-like excitation. It can be seen, (e.g. calculating its vertex operator) that this
oscillation couples to the spacetime energy momentum tensor of the {Xµ, ψµ} system
exactly as required by general relativity. This is a key feature of string theory because
gravity is automatically included in the quantized theory. Another way to see this is
to calculate the β-functions for the couplings on the world-sheet. The requirement of

3This is not the case for an open string because as we said before, the right and left moving excitations
are not independent. Hence an open string has just two sectors: R and NS.

4We neglect the NS sector with a negative world-sheet fermionic number, which contains a tachyon,
because it is projected out by the GSO projection, as we will see later.
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Figure 2.2: The massless spectrum of the various closed string sectors. Table taken from [4].

conformality, i.e. β = 0, is equivalent to the Einstein’s Equations (EE’s) in the target-
space. Even more strikingly the theory has no ultraviolet divergences that typically plague
many attempts to directly quantize general relativity.

The fact that string theory provides an ultraviolet completion of general relativity will
be very important for the present work when we will study inflation. In section 3, after
reviewing the idea of inflation, we will argue that the successes of this mechanism raise
to several fundamental questions that due to their nature can be addressed only in the
context of a fundamental theory. As inflation is a gravitational effect, it is essential that
the candidate fundamental theory includes gravity. String theory is up to now the most
developed quantum theory that contains gravity; it is therefore natural to see what can
we learn from trying to embed inflation in string theory.

2.2 How many string theories are there?

In this section, we review the possible consistent string theories and comment on the
conjecture that they are different limits of a unique theory called M-theory. The focus of
the present work is on a particular “corner” of M-theory: type IIB.

Even restricting ourselves to just closed strings, not all the sectors that we found in the
last chapter can be put together to form a consistent string theory. In fact it turns out that
fundamental features like modular invariance, closure of the operator product expansions,
locality, the absence of tachyons and target space supersymmetry require to truncate the
spectrum of table 2.2. In the Ramond-Neveu Schwarz approach that we sketched in the
last section, this is achieved performing the Gliozzi-Scherk-Olive projection (GSO)5. This
consists in keeping only those states with a definite world-sheet fermion number. It comes

5Another popular approach where target-space supersymmetry is explicit from the beginning was de-
veloped by Green and Schwarz [5]
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out that there are two possible choices defining two different (but as we will see related)
string theories

type IIB (−1)FL = (−1)FR = +1 (2.4)

type IIA (−1)FL = +1 , (−1)FR =

{
−1 R
+1 NS

, (2.5)

where FL and FR are the world-sheet fermion number operators in the left- and right-
moving sector, respectively. The “II” refers to the fact that these closed string theories
have two gravitinos in the massless spectrum, i.e. they have N=2 supersymmetries in
10-dimensions. In the present work we concentrate on type IIB string theory; a detailed
description of this theory is postponed to the next section.

For completeness, we mention that, a part from type IIA and IIB, there are other three
consistent string theories. One of them is obtained by adding to the above closed string
spectrum also open strings and performing the truncation. This theory is called type
I, where “I” refers to the fact that it has N=1 supersymmetry in 10-dimensions. For
open strings there are two choices of boundary conditions for the world-sheet bosonic
coordinates as opposed to the unique choice of periodic boundary conditions in the closed
string case. One can impose Dirichlet or Neumann boundary conditions corresponding to
the case when an end of the string is free to move or is kept fixed at a certain point6.

Another string theory is the bosonic string theory where fermions are absent; this theory
has a tachyon (a particle with negative mass) which makes it unstable. One can interpret
this instability as the fact that we have quantized the theory around a background which
was a maximum instead of a minimum. This idea led to the conjecture that, following
the condensation of the tachyon, eventually a stable minimum will be reached. Although
this can hardly be checked using the first quantized approach to string theory that we
describe in this chapter, a certain amount of evidence that supports this conjecture has
been obtained by a second quantized approach to string theory called string field theory.

Finally, two further consistent string theories called SO(32) and E8 ×E8 heterotic string
theory, respectively, are obtained treating differently the right- and the left-moving sector
of the closed string. One sector is analogous to the superstring while the other is analogous
to the bosonic string.

Interestingly, it has been realized that the five superstring theories (type IIA, IIB, I and
heterotic SO(32) and E8 × E8) are related by a series of dualities. This has led to the
conjecture that they are only different limits of the same theory which has been called
M-theory. Although considerable efforts have been devoted to construct such a unique
theory we are still missing an explicit formulation. What we can do is to start studying
the various corners of M-theory, as depicted in figure 2.3. In the present work we will
focus on the type IIB corner because, as we will see, issues like moduli stabilization are
much more developed in this framework than in others.

6In section 2.4, we will see that open string are attached, in the case of Dirichlet conditions, to dynamical,
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Figure 2.3: The M-theory cartoon: the 5 known superstring theories and d = 11, N = 1 sugra
are conjectured to be different limits of the same unique theory. Figure taken from [7].

2.3 Type IIB

In this section we write down and discuss the 10-dimensional low energy effective action
for the massless spectrum of type IIB superstring theory.

As we said, one of the five consistent string theories is type IIB, which is obtained by
quantizing the action (2.1) keeping only closed strings and performing the GSO projection
described in (2.4). Looking at the single closed string spectrum, we discover that the first
excited state beyond the massless ones has a mass of order ms = (α′)−1/2. We will refere
to ms as the string scale.

If the typical energy available to the system under investigation is much smaller than ms,
then we are allowed to integrate out all heavier modes and concentrate on the massless
spectrum. This will be our working assumption both in the context of particle physics and
of cosmological inflation. We will see in the next chapter that if the scalar perturbations
observed in the cosmic microwave background radiation (CMB) are originated by oscilla-
tions of the inflaton, then observations bound the scale of inflation to be lower than about
1016 GeV. Of course the phenomenologically interesting energy scale for particle physics
is much lower. It will therefore suffice for us to assume that ms is much higher than 1016

GeV to legitimate the use of just the massless spectrum of string theory throughout the
present work.

non-perturbative objects called D-branes.
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The massless spectum of type IIB is obtained adding up the following sectors of table 2.2:

IIB : (NS+, NS+) (R+, NS+) (NS+, R+) (R+, R+) . (2.6)

Summing all the states together we get the massless spectrum

IIB : [0]2 + [2]2 + [4]+ + (2) + 8′2 + 562 , (2.7)

where the square brackets denote an antisymmetric tensor, the round brackets a symmetric
one and the label + indicates that only half of the degrees of freedom of the 4-form are
independent. In the spectrum we find: the 0-, 2- and 4- form fields C0, C2 and C4 know as
the RR forms, the symmetric 2-tensor which behaves as a graviton and the suffix s refers
to the string frame, the real scalar φ called dilaton and the 2-form in the NS-NS sector
referred to as the B-field (or Kalb-Ramond field). The fermionic part of the action can
be obtained acting with the supersymmetry charges. The fermionic states consist of two
gravitinos with the same chirality and two Weyl fermions in the fundamental spinorial
representation of SO(8).

The low energy effective action for these degrees of freedom is a 10-dimensional N=2
supergravity theory know as IIB sugra7. The bosonic part of the action is given by

SIIB = SNS + SR + SCS (2.8)

SNS =
1

2κ2
10

∫
d10x

√
−gs e−2φ

(
Rs + 4∂φ∂φ− 1

2
|H3|2

)
, (2.9)

SR = − 1

4κ2
10

∫
d10x

√
−gs

(
|F1|2 + |F̃3|2 +

1

2
|F̃5|2

)
, (2.10)

SCS = − 1

4κ2
10

∫
C4 ∧ F3 ∧H3 , (2.11)

where

F̃3 ≡ F3 − C0 ∧H3 , (2.12)

F̃5 ≡ F5 +
1

2
B2 ∧ F3 −

1

2
C2 ∧H3 , (2.13)

and κ10 is the 10-dimensional Newton constant.

A difficulty worth mentioning is associated with the 5-form F̃5. The IIB spectrum (2.7)
requires that F̃5 is self-dual, i.e. F̃5 = ∗F̃5

8. Therefore upon 10-dimensional integration

7In fact there are only two sugra theories in 10-dimensions with N=2. The other one is IIA sugra
that can be obtained starting with 11-dimensions which is unique if we want to avoid particles with
spin higher than two. Then, dimensional reduction to 10-dimensions leads to IIA sugra. One of
the differences is that while in IIB the two sets of supercharges have the same chirality, in IIA the
chiralities are opposite.

8The Hodge dual of a p-form in D-dimensions, usually indicated with a star, is a (D− p)-form obtained
contracting all the indices of the p-form with the totally antisymmetric Levi-Civita tensor ε.
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|F̃5|2 = F̃5∧∗F̃5 = 0 and this term in the Lagrangian is identically zero. For all situations
considered in the present work, this issue can be simply solved considering F̃5 a normal
5-form and imposing the self-duality condition only after the equations of motion are
derived9.

There is a useful field redefinition that makes the SL(2,R) symmetry of the effective
action explicit and takes us to the Einstein frame10. Let us define

S ≡ e−φ + iC0 , G3 ≡ F3 − SH3 , gMN ≡ gsMNe
−φ/2 . (2.14)

Then the action becomes

SIIB =
1

2κ2
10

∫
d10x

√
−g

{
R− ∂MS∂

MS

2(ImS)2
− G3 ·G3

12ImS
− |F̃5|2

4 · 5!

}

+
1

8iκ2
10

∫
C4 ∧G3 ∧G3

ImS
, (2.15)

which is invariant under SL(2,R) transformations acting as

S −→ aS + b

cS + d
, G3 −→

G3

cS + d
, (2.16)

and leaving F̃5 and g invariant.

2.4 D-branes

In this section we introduce D-branes and their effective action. This is an important in-
gredient for the string inflationary models that we will construct in chapter 4 and 5 because
our inflaton candidate will be an open string mode, i.e. a D-brane excitation. Recently,
the action describing these excitations has been intensively studied in the framework of
cosmology and it will be at the center of the analysis of sections 5.5.3 and 5.6.

In type IIB there are other dynamical objects, non-perturbative in nature, that we have
not yet discussed. They are extended objects charged under the RR fields known as
Dirichlet-branes or D-branes for short. The name is justified by the fact that D-branes
can be seen as the objects where the ends of open strings are attached; as for the violin
string, the Dirichlet boundary condition

δXµ(τ, 0) = 0 , (2.17)

9Self-dual forms can exist only in d-dimensions with d = 2 mod 4 (with Minkowski metric) because in
these cases ∗2 = +1. In d = 0 mod 4, in particular in the interesting 4-dimensional case, ∗2 = −1
and therefore one can impose the imaginary self-duality condition: Fd/2 = ±iFd/2. The situation is
exchanged if we have a Euclidean instead of Minkowski metric. We will encounter this in the next
section where we will make use of imaginary self-dual 3-forms in a Euclidean 6-dimensional space.

10Actually only the SL(2,Z) part of this group is a symmetry of the whole type IIB string theory.
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implies that the end of the string is fixed in the µ direction. As in type IIB we have RR
0-, 2- and 4- forms plus their Hodge duals, we expect 2-, 4-, 6-, 8- and 10-dimensional
extended objects carrying the respective RR charge. It is customary to refer to D-branes
using the number of spatial dimensions (the time dimension is implicit); therefore in type
IIB we will have stable D1-, D3-, D5-, D7- and D9-branes11.

The small oscillations of D-branes are described by open strings attached to them. The
action governing the dynamics of a single Dp-brane is, at leading order in the α′ expansion,

S = SDBI + SCS , (2.18)

SDBI = −Tp
∫
dξp+1e−φ

√
−det (Gab +Bab + 2πα′Fab) , (2.19)

SCS = iTp

∫
Σp+1

e2πα
′F2+B2 ∧

∑
q

Cq , (2.20)

where Σp+1 denotes the world volume of the Dp-brane. The first term is known as the
Dirac Born Infeld (DBI) action. Tp is the tension of the Dp-brane given by

Tp = (2π)−pα′(−1−p)/2 . (2.21)

Gab and Bab are the metric and B-field induced on Σp+1; Fab is the field strength of the
gauge field living on the brane. The DBI action arises after quantizing the action for
the open strings ending on the brane; the excitations parallel to the brane give a world
volume gauge theory while the perpendicular excitations describe the deformation of the
world volume itself. Notice that, for B = F = 0, SDBI reduces to the geometrical action.

The second term is the Cern Simons action. The exponential has to be understood in
its power law expansion and q runs over all the RR q-forms. Clearly there are just a
finite number of non-vanishing terms. For F = B = 0 the only one is the integral of
Cp+1 over the p+1-world volume of the Dp-brane. This term proves the above statement
that D-branes carry RR charges. In the presence of world volume fluxes, i.e. F 6= 0, the
D-brane can carry also lower RR charges.

2.5 Flux compactifications

In this section, after motivating the study of flux compactifications we give an explicit
example, known as the GKP setup [8], in the framework of type IIB. We describe the 10-
dimensional theory around a non-trivial flux background and its low energy 4-dimensional
effective action.
11Actually D9-branes, being spacetime-filling, require O9-planes due to tadpole cancellation. O-planes

are non-dynamical, negative tension objects in string theory defined by the fixed points of an orientifold
projection which is the gauging of a world-sheet, parity-reversal operation, possibly combined with
some other symmetry. Close to an O-plane, which in the case of an O9-plane means everywhere in
the spacetime, the physics is described by type I string theory.
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Our starting point is the action 2.15 plus other terms that might arise in presence of local-
ized sources like D-branes or O-planes (non-dynamical, negative-tension objects discussed
in the footnote 11). This is a 10-dimensional theory while all experiments performed un-
til now indicate that we are living in a 4-dimensional world. On the other hand, it is
possible that a higher dimensional theory looks lower dimensional below a certain energy
scale. This is an old idea [9, 10] that dates back to Kaluza and Klein (KK); if the extra-
dimensions are compact and smaller than a certain length Λ−1, then by the Heisenberg
indetermination principle we need energies higher that Λ to probe them.

We will follow this idea and assume that six of the nine space dimensions are very small.
We take the typical extra-dimension length to be m−1

KK where mKK is the Kaluza-Klein
energy scale. After KK dimensional reduction we will obtain a 4-dimensional effective
field theory which is valid at energies much lower than mKK .

It has been soon realized that performing the KK reduction starting with a trivial back-
ground in 10-dimensions leads to a bunch of massless scalar fields in the 4-dimensional
effective theory called moduli. These fields would transmit long range interactions, similar
to gravity, which have not yet been observed in nature. In fact dedicated experiments,
e.g. testing the equivalence principle, have put stringent bounds on a possible “fifth force”
[11, 12].

A way out is to look at non-trivial 10-dimensional vacua where some or all the bosonic
fields have a non-vanishing expectation value. In particular one can consider a background
where some p-form field strength appearing in the action (2.15) has a non-vanishing inte-
gral, called flux, around some p-cycle Σ. If the cycle is topologically non-trivial then the
flux can not be continuously/classically unwound. This procedure is known, in the string
theory context, as flux compactification; in the present work we will adopt this method
to obtain, starting from type IIB in 10-dimensions a phenomenologically interesting 4-
dimensional theory.

2.5.1 The GKP setup

In this subsection, we will review the type IIB flux compactification setup proposed by
Giddings, Kachru and Polchinski (GKP) in [8]. We make an ansatz for the 10-dimensional
metric as a warped metric

ds2
10 = e2A(y)ηµνdx

µdxν + e−2A(y)g̃mndy
mdyn , (2.22)

where we use ym to parameterize the 6-dimensional internal manifold, the capital indices
M,N, . . . are running from 0 to 9, the Greek ones µ, ν, . . . from 0 to 3 and the Latin ones
m,n, . . . from 4 to 9. The factor eA(y) can depend only on the internal coordinates (4 to
9 directions) if we do not want to break Poincaré invariance. For the same reason, the
5-form should be of the type

F̃5 = (1 + ∗) dα ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3 , (2.23)
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for some arbitrary function α of the internal coordinates, which makes explicit its self-
duality. The Einstein’s equations (EE’s) are straightforwardly obtained calculating the
Riemann tensor from the ansatz (2.22) and the energy momentum tensor from (2.15) and
(2.18). Tracing the EE’s we obtain a useful constraint

∇̃2e4A = e2A
GmnpG

mnp

12ImS
+ e−6A

[
∂mα∂mα+ ∂me

4A∂me4A
]
+
κ2

10

2
e2A(Tmm − T µµ )loc . (2.24)

The Bianchi identity, or equivalently the equation of motion, for the F̃5 form is

dF̃5 = H3 ∧ F3 + 2κ2
10T3ρ3 , (2.25)

where T3 is the D3-brane tension and ρ3 is the 6-dimensional D3-charge density, e.g. a
delta function for spacetime-filling D3-branes. The integral of (2.25) gives the D3-charge
tadpole cancellation condition

1

2κ2
10T3

∫
H3 ∧ F3 +Qloc = 0 . (2.26)

In the presence of D3-branes, D7-branes and O3-planes the Bianchi identity plus the EE’s
determine the solution.

• The 3-form flux G3 has to be imaginary self-dual:

∗6 G3 = iG3 . (2.27)

• The warp factor is determined by the 5-form F̃5

e4A = α . (2.28)

The dilaton is sourced by the D7-charge and obeys the equation

∇̃2S =
(∇̃S)2

iImS
− 4κ2

10(ImS)2

√
−g

δSD7

δS
. (2.29)

Let us now discuss supersymmetry. The KK-reduction over a Calabi-Yau threefold with
non-trivial holonomy reduces the number of supersymmetry charges by a factor 1/4, from
N=2 in 10-dimensions to N=2 in 4-dimensions. If an orientifold projection, i.e. the gauging
of a world-sheet parity-reversal operation, is performed, another half of the supersymme-
tries is broken leaving an N=1 sugra theory in 4-dimensions. Imaginary self-dual 3-form
fluxes can be of the (2,1) or (0,3) type. The former preserve N=1 supersymmetry while
the latter would completely break it.

The N=1 sugra in 4-dimensions is determined by specifying a Kähler potential, a su-
perpotential and a gauge kinetic function [13, 14]. As our focus is on moduli which are
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gauge neutral we will concentrate on the first two ingredients. Moduli produced by the
KK reduction over a Calabi-Yau manifold are of two types, Kähler moduli and complex
structure moduli. The former specify the sizes of compact submanifolds while the latter
determine the shape of the Calabi-Yau manifold.

The 4-dimensional Kähler potential comes out to be

κ2
4K = −2 lnV − ln[S + S)]− ln

(
−i
∫

Ω ∧ Ω

)
, (2.30)

where V is the volume of the Calabi-Yau manifold written in terms of the Kähler moduli
and Ω is the holomorphic (3,0) form that depends on the complex structure moduli. κ2

4

is the 4-dimensional gravitational constant expressed in terms of Newton constant as
κ2

4 = 8πGN . The superpotential takes the form suggested by Gukov, Vafa and Witten
(GVW) [15]

W =

∫
Ω ∧G3 , (2.31)

and is independent of the Kähler moduli. The resulting N = 1, d = 4 scalar potential is

VF = eκ
2
4K
(
GIJDJWDIW − 3κ2

4|W |2
)

(2.32)

where we use GJI to denote the Kähler metric obtained from the second derivative of

(2.30) and GIJ is its inverse. This potential can in principle fix the complex structure
moduli and the dilaton [16, 17]. On the other hand the peculiar form of K in (2.30)
and the fact that W in (2.31) is independent of the Kähler moduli leads to the so called
no-scale structure (reviewed in appendix D.3), i.e. the fact that the Kähler moduli are
completely flat directions.

2.6 Towards de Sitter vacua in string theory

As we saw in the last section, in the GKP setup, we can stabilize the complex structure
moduli and the dilaton using fluxes. In addition, it is possible to have a non-trivial
warp factor that has many interesting phenomenological applications as in the Randall-
Sundrum models [18, 19]. On the other hand, we saw that the no-scale structure implies
that the Kähler moduli are still massless at tree level. This property is not expected to
hold at quantum level because there is no symmetry preventing perturbative and non-
perturbative corrections to lift these directions.

The effects of corrections in a simple setup were investigated by Kachru, Kallosh, Linde
and Trived (KKLT) in [20]. The Kähler potential is corrected both perturbatively and
non-perturbatively. The superpotential on the contrary is protected by non-renormalizations
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theorems [13] and is corrected only non-perturbatively. There are several effects which
are known to produce non-perturbative corrections to the superpotential. Of particular
interest in the type IIB setup of GKP are Euclidean D3-branes (that we refer to as E3-
instantons), and gaugino condensation on a stack of D7-branes. The former can induce
new terms in the superpotential only when they wrap particular 4-cycles; the necessary
and sufficient conditions on the cycles for this to happen were found by Witten in [21]
in the fluxless case while the case with fluxes is more involved. In the following, we will
simply assume that these conditions are met for certain cycles Σi.

The superpotential then takes the form

W = W0 +Wnp = W0 +
∑
i

Ai e
− 2π

n
Ti , (2.33)

where n = 1 in the case of E3-instantons or n = #D7 in the case of gaugino condensation;
with W0 we indicate the GVW part of the superpotential 2.31 which does not depend on
the Kähler moduli; Ti are complexified Kähler moduli whose real part is the volume of the
four cycle Σi wrapped by the E3-instanton or by the spacetime-filling stack of D7-branes.
Finally, the prefactor Ai depends in general on complex structure moduli, the dilaton and
open string moduli when they are present. We postpone a more detailed discussion of Ai
to section 4.2 and 5.3.

Wnp clearly breaks the no-scale structure (see appendix D.3) so that a potential for the
Kähler moduli Ti is generated. For a generic Calabi-Yau manifold and a generic choice of
fluxes, the moduli potential in the 4-dimensional effective action is a quite complicated
function of O(100) variables. A brute force approach to find the minima of this potential
is feasible only in some simple models; we will, on the other hand, adopt an alternative
strategy, first proposed in [20].

When the masses of the complex structure moduli and the dilaton generated by the fluxes
are hierarchically larger than the masses of the Kähler moduli, it is possible to perform a
two step procedure [20]: first, one stabilizes the complex structure moduli and the dilaton
using fluxes and ignoring Wnp; second, one integrates them out and studies the potential
for the Kähler moduli in presence of Wnp. If there is a hierarchical separation between the
two sets of moduli, the second step can not drastically change the stabilization achieved
in the first step.

The two step procedure is not always legitimate (e.g. see [22]), but there are for sure
several interesting cases in which it is perfectly allowed [23]. The large volume scenario
(LVS), that we will study in chapter 6, is an example where there is a generic argument
for the existence of a hierarchy between the moduli masses. In that setup, the Kähler
moduli masses have a different scaling with the volume compared to the masses of the
complex structures and the dilaton; the volume is then stabilized at an exponentially large
value which ensures that the hierarchy between the two sets of moduli can be obtained
parametrically.
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Figure 2.4: The AdS minimum is uplifted to a dS (or Minkowski) one; supersymmetry is broken
and the minimum is metastable. Figure taken from [24].

In the sequel, we will therefore follow [20] and assume that the dilaton and the complex
structures have been stabilized by fluxes and integrated out. The 4-dimensional N=1
scalar potential (2.32) then becomes

V = eκ
2
4K
(
GJIDJWDIW − 3κ2

4|W |2
)
, (2.34)

where I, J run over the Kähler moduli only. For simplicity now we consider the case of
a single Kähler modulus, the overall volume, which in terms of Hodge numbers means
h1,1 = 1. This is a technical assumption; if h1,1 > 1, a potential is generically induced for
all those Ti for which a non-perturbative term in W is present. The minimization of such
a potential is clearly technically more involved.

The Kähler potential (2.30) in our case becomes

κ2
4K = −2 ln(V) = −3 ln(T + T ) = −3 ln(2τ) , (2.35)

where T = τ + ib, and b is the axion that complexifies the overall volume Kähler modulus
(see appendix D.3). Using the superpotential (2.33), we find

V =
aAe−aτ

2τ 2

(
1

3
τaAe−aτ +W0 + Ae−aτ

)
, (2.36)

where the axion b has already been minimized. The potential is the lowest curve of figure
2.4. The minimum is AdS and supersymmetric

DW = 0 −→ W0 = −Ae−aτ
(

1 +
2

3
aτcr

)
, (2.37)

Vmin = −3eKW 2 = −a
2A2e−2aτcr

6τcr
, (2.38)
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where τcr is the value of the volume at the minimum. We can trust the supergravity
approximation of string theory when the volume is large in string units. By (2.37) this
implies that |W0|, i.e. the value of the GVW superpotential after we integrate out the
complex structure moduli and the dilaton, has to be much smaller than one. Typical
values would for example be A = 1, a = 0.1, W0 = 10−4 and τcr ∼ 110. Although |W0| is
typically of order one, given the huge number of possible flux configurations that we can
choose, it is reasonable to expect that there will be some with W0 � 1.

To make contact with phenomenology there is still an important ingredient missing. For
applications both to cosmology (chapter 4 and 5) and particle physics (chapter 6) we need
a de Sitter or Minkowski vacuum. The idea [20] is to consider an uplifting mechanism
that shifts up the AdS vacuum. Supersymmetry preserving vacua can only be AdS or
Minkowski, therefore the uplifting will also break supersymmetry.

KKLT proposed an explicit construction to obtain an uplifting that introduces a para-
metrically small supersymmetry breaking. Suppose that in the compact manifold there
is somewhere a warped throat (reviewed in appendix A) stabilized by imaginary self-dual
fluxes as in GKP (section 2.5.1). Then any spacetime-filling D3-brane will preserve the
same supersymmetries as the background; this BPS condition implies that the D3-brane
will not feel any potential. On the other hand, an anti-D3-brane preserves a different set
of supersymmetries than the background. This will break supersymmetry by an amount
proportional to the anti-D3-tension T3. Contrary to the D3-brane, the anti-D3-brane feels
a non-trivial potential that pulls it towards the region of strong warping where its ten-
sion is redshifted. In the case of a warped throat, the anti D3 falls down the throat and
stabilizes at the tip. Now the supersymmetry breaking term induced by the anti D3 is
proportional to the warped tension. A direct calculation [25] leads to a term in the scalar
potential

Vup = κ2
4

2h4
0T3

g4
sτ

2
≡ D

4τ 2
, (2.39)

where h4
0 is the warp factor at the tip of the warped throat. Such a term induces a

parametrically small susy-breaking in the sense that by an appropriate choice of fluxes
the warp factor at the tip h0 and therefore Vup can be made arbitrarily small.

On the other hand, one can also require that (2.39) uplifts the AdS minimum to a dS or
a Minkowski one. This is possible only for certain values of D (which can in principle
be obtained by a judicious choice of fluxes) and the amount of susy-breaking is no more
arbitrary. Figure 2.4 shows how the AdS minimum can be uplifted but not destroyed. By
fine tuning D one can actually obtain any value of the cosmological constant12.

12The choice of fluxes that determine h0 and therefore D are only discrete by charge quantization. On the
other hand if many fluxes can be switched on, as it is the case for a generic Calabi-Yau manifold, then
D and therefore the cosmological constant can be fine tuned with a precision that scales exponentially
with the number of fluxes. This issue was first addressed in the seminal paper [26] by Bousso and
Polchinski; we refer the reader to it for further details.
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To summarize, we have found a vacuum in which all the moduli are stabilized, where su-
persymmetry is broken and there is a positive, in principle tunable cosmological constant.
Although this vacuum is only metastable in the sense that it can tunnel to a decompacti-
fied Minkowski vacuum, its life-time can be made much larger than the age of the universe
rendering this issue phenomenologically irrelevant.

The KKLT setup will be our starting point for more sophisticated constructions in chap-
ters 4, 5 and 6. Further comments on the stability of this construction under quantum
corrections will be given at the beginning of chapter 6.



26 2. Type IIB flux compactifications



3 Inflation in string theory

The purpose of this chapter is to motivate the attempt to embed inflation in string
theory. We start with a review of a series of recent cosmological observations that has
changed, sometimes drastically, our picture of the universe. In particular, we review
the results of measurements of the cosmic microwave background radiation (CMB for
short). Interpreting these and other observations in the framework of general relativity
has consolidated our knowledge about the big bang theory. Even more interestingly, from
the point of view of high energy physics, the CMB has provided us with a precious tool
to test speculations about the very early universe such as inflation.

We review and motivate the idea of inflation which is the most developed paradigm to
understand the dynamics of the very early universe. Although inflation is a particularly
simple mechanism and can explain astonishingly well all CMB measurements until now,
it is still a speculation and more data are needed to establish it. Given this there has
been a certain interest in constructing and developing alternatives to inflation. This is
surely a very interesting research direction, for example because it is usually dangerous to
interpret the data within a single paradigm. Nevertheless no alternative is, up to now, as
developed and successful as inflation, which is why in the present work we have focused
our attention on it.

We will give details about a particular class of single-field inflationary models (slow-roll
models) which is both particularly simple and phenomenologically successful. We show
how the CMB observables are related to the inflationary parameters. Having established
inflation as an effective description we undertake the task of embedding it into full fledged
string theory models. This task will occupy us in chapter 4 and 5. Here we review some
of the attempts present in the literature. We conclude the chapter with a discussion.

3.1 Observations

In this section we discuss some of the recent developments in observational cosmology
with particular emphasis on the CMB measurements that provide precious information
on the physics of the very early universe.

The last decade has been an extremely exciting and successful time for observational
cosmology. Towards the end of the 90’ several evidences were accumulated in favor of
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Figure 3.1: The three axes indicate the fraction of the critical energy density constituted by
matter, dark energy and curvature, respectively. The left figure shows that the ΛCDM model is
the one consistent with CMB measurements, cluster surveys and supernovae data. Figure taken
from [27].

the so called Λ cold dark matter model (ΛCDM), where Λ indicates the cosmological
constant. This simple model is consistent with a variety of different observations at
different scales such as supernovae, galaxy rotation curves, cosmic microwave background
radiation (CMB) and galaxy (cluster) surveys. An upshot of the observational results is
given in figure 3.1. All data are compatible with a flat universe with critical total energy
density, of which 72% behaves as dark energy, 23% as dark matter and the remaining 5%
as baryonic matter. If the ΛCDM model correctly describes our world then we do not
understand most of the energy of the universe.

Cosmological observations not only have astonishing implications for the present state of
the universe but can teach us also a big deal about its evolution. In particular, CMB
measurements [28, 29, 30] give us a snapshot of the universe at the time when photons
decoupled and the universe became transparent, i.e. about 105 years after the big bang.
From this snapshot we can read out, among other things, the small perturbations that
have lead to the formation of the large scale structures we observe.

The discovery of an extremely homogeneous microwave radiation at a temperature of
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about 2.7 Kelvin by Penzias and Wilson [31] provided a strong evidence in favor of the
big bang model. Thirty years later the COBE experiment was able to detect the very
small inhomogeneities in the CMB and estimated their intensity as one part in 10−5 [28].
What we see today in the sky within an angle of about 1 degree (multipoles l < 200)
corresponds to the size of the Hubble horizon at the moment of recombination, 105 years
after the big bang when the CMB was released. Hence we can divide inhomogeneities
in large-scale (l < 200), which, because of causality, did not evolve so much after the
primordial generation, and small-scale (l > 200) which are sensitive to all the physical
processes inside the Hubble horizon. The former give us direct information about the
universe much before recombination.

Precise data about the shape of the inhomogeneities have been collected by the WMAP
experiment [29], which is still running and recently published the five-year data [30]. We
briefly review some of the features of the CMB spectrum which are relevant for inflationary
models and refer the reader to modern textbooks for further information [32, 33].

The CMB inhomogeneities can be decomposed into scalar, tensor and vector perturba-
tions. Only the former have been detected; they appear to be Gaussian and adiabatic1.
Their amplitude was first measured by COBE and can be expressed in terms of the
power spectrum of the curvature perturbations PR. The measured value is approxima-
tively PR ∼ 2 · 10−9. The spectrum is very close to but not exactly scale invariant. The
departure from scale invariance is parameterized in terms of the scalar spectral tilt ns,
defined such that PR ∝ kns−1. The WMAP five-year value is ns = 0.96± 0.014 for negli-
gible tensor modes (see figure 3.2, where r is the ratio of the amplitude of tensor to scalar
perturbations defined in (3.14)). As we will see, inflation provides a natural explanation
for the smallness of ns − 1.

Vector perturbations are not expected to be present because they decay very fast. Tensor
perturbations have not yet been observed and the current upper bound is r < 0.2 (at 2-σ)
[30]. Up to now the most developed and successful theoretical mechanism to understand
the origin of the CMB perturbations is inflation, and we will review it in the next section.

3.2 Inflation

In this section we introduce the idea of inflation; for simplicity we focus on the single
scalar field case. We describe the successes and the shortcomings of this mechanism.

General relativity (GR), governed by Einstein’s Equations (EE’s), is an extremely suc-
cessful theory of gravity and it has passed all experimental tests up to now. Cosmological
observations are interpreted in the framework of GR and provide us with a quite robust
picture of most of the history of the universe. Unfortunately, the sharpness of the picture

1The search for non-Gaussianity is an active and promising research field. For a review see [34].
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Figure 3.2: The five-year WMAP results in the r − ns plane, where r is the tensor to scalar
ratio and ns the scalar spectral tilt.

decreases exponentially as we approach the beginning of time. On scales much higher than
100 GeV we do not even know which are the laws governing nature. Nevertheless, a series
of problems with the standard big bang scenario led to the proposal [35, 36, 37, 38, 39]
that some time between the Planck time and the electroweak epoch there has been a
period of quasi exponential expansion of the universe. This phenomenon is known as
inflation. Among the problems solved by inflation we have the flatness, the horizon and
the monopole problems [32]. The former two are initial condition problems and they can
be summarized saying that if the standard big bang scenario is extrapolated back to the
beginning of time, then the initial values of the energy density and the curvature have to
be extremely fine tuned.

Inflation can address these difficulties: if inflation starts, after a few Hubble times, the
universe becomes very homogeneous, isotropic and flat. Hence we are allowed to consider
a Friedmann Robertson Laimetre Walker ansatz for the metric of the form

ds2 = dt2 − a2(t)δijdx
idxj , (3.1)

where a(t) is the t-dependent scale factor. Formally, inflation means ä > 0, where the
dots denote time derivatives. The EE’s for the ansatz (3.1) reduce to the Friedmann
equations :

3M2
PlH

2 = ρ , M2
Plä = −1

6
a(ρ+ 3p) , (3.2)

where H ≡ ȧ/a and we assumed that, whatever the matter content is, we can describe
it using the hydrodynamical approximation with ρ being the energy density and p the
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pressure. It is clear from the second equation in (3.2) that inflation requires negative
pressure: p < −ρ/3.

There are several ways this can be achieved. One of the simplest and most widely studied
possibilities is to assume that a canonically normalized scalar field φ with a potential
V (φ) is the dominant source of energy. Then the equation of motion, energy density and
pressure, in the case of a homogeneous φ, are given by

φ̈+ 3φ̇H = −V ′ , ρ =
1

2
φ̇2 + V , p =

1

2
φ̇2 − V . (3.3)

When the potential energy is much larger than the kinetic one, the field’s equation of
state became p = −ρ, which mimics a cosmological constant. If V was really constant,
i.e. φ-independent, the universe would be a de Sitter (dS) space with a ∝ eHt. This
would surely solve the initial condition problems but would also produce a totally empty
universe. If eventually we want to make contact with the standard big bang scenario,
inflation has to end and a thermal bath of Standard Model particles has to be produced
hotter than some TeV. This implies that φ should roll down V (φ) and eventually settle
in a minimum with a negligible cosmological constant. Oscillations around the minimum
will then quantum mechanically decay, reheating the universe.

The duration of inflation is conveniently quantified in terms of the logarithmic growth of
the scale factor

Ne ≡ ln
a(tf )

a(ti)
, (3.4)

where ti and tf denote the time when inflation starts and ends, respectively, and Ne is
the number of e-foldings. For inflation to solve the initial condition problems we need
Ne & 60. For such a huge expansion to take place the scalar field has to roll slowly down
the potential. A class of models where this can be achieved and the dynamics of the
system is particularly simple are the slow-roll models that will be described in the next
section.

A comment about the initial conditions is in order. For inflation to satisfactory solve the
initial condition problems, one has to show that inflation itself can happen for generic
initial conditions. Several efforts were performed in the early days of inflation to address
this issue and they are reviewed in [40]. One of the issues is that the scalar field has
to start far away from the minimum to ensure enough e-foldings. This led Linde [41] to
study a class of potentials, where generic initial conditions lead to a prolonged stage of
inflation; these are known as chaotic inflation models. Another problem is that inflation
itself can actually start only in a relatively homogeneous and flat universe.

Addressing these and similar issues in cosmology require a measure. Unfortunately, a
generically accepted measure for cosmology is not available and attempts to construct it
often raise very deep issues in theoretical physics such as the arrow of time, the interpre-
tation of quantum mechanics and the role of entropy in a theory of gravity just to mention
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Figure 3.3: This is a cartoon of the generation of how the inflaton quantum fluctuations can
generate the perturbations that we observe in the CMB. The figure is taken from [34].

a few. The state of the art is that it is largely acknowledged that inflation dramatically
improves the initial condition problems (let aside the fact that it is a successfully predic-
tive theory) but a better understanding of the pre-inflationary phase is needed to declare
full success.

What has strongly increased the trust that inflation might be the right description of what
happened in the early universe is the fact that, beyond improving the initial conditions
problem for which it was proposed, this mechanism is extremely and unexpectedly suc-
cessful in explaining the inhomogeneities that we observe in the CMB. The idea (see figure
3.3) is that the quantum fluctuations of the inflaton are stretched by the quasi exponential
expansion. When their wave length is larger than the Hubble horizon they become frozen.
After inflation is over, the universe enters a radiation and subsequently matter dominated
phase during which the perturbations reenter the Hubble horizon. These inhomogeneities
leave their imprint in the photons emitted at the end of recombination, who freely stream
across the universe and arrive on the earth today in the form of the CMB.

3.2.1 Slow-roll models

In this section we show how to relate the CMB parameters to the inflationary physics and
describe the constraints that arise for the various models. We will just state the results,
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referring to the textbooks [32, 33] for the derivation. In addition, we will concentrate on
slow-roll models, a particular class of models which are easy to analyze and consistent with
observations. In the next section and in section 5.5.3 we will comment on alternatives.

A flat potential ensures that the field slowly rolls down and inflation lasts for a long time.
Consider the following slow-roll conditions

ε ≡ 2M2
Pl

(
H ′

H

)2

' M2
Pl

2

(
V ′

V

)2

� 1 , (3.5)

η ≡ 2M2
Pl

H ′′

H
'M2

Pl

V ′′

V
� 1 , (3.6)

where the approximations are valid up to higher order terms in the slow-roll parameters
themselves. When these two conditions are fulfilled, the kinetic term in ρ and the acceler-
ations in (3.3) are negligible (slow-roll trajectory) and the equations simplify considerably.
It can also be shown that, for slow-roll potentials, the slow-roll trajectory is an attractor
in the field space, i.e. starting with arbitrary (homogeneous) φ0 and φ̇0 the system reaches
it within a few Hubble times. For slow-roll inflation the number of e-foldings is given by

Ne = ln
a(tf )

a(ti)
=

∫ tf

ti

H dt '
∫ φi

φf

dφ√
2ε
. (3.7)

and can be quite large2 because ε� 1.

The scalar perturbations produced during slow-roll inflation are extremely close to Gaus-
sianity which is in agreement with observations. For Gaussian perturbations, any n-point
function with odd n is identically zero. This is the reason why the three-point (and higher
odd) correlation function is a good tool to test the presence of non-Gaussianities. The
detection of a non vanishing three-point function would rule out the simplest models,
i.e. single-field slow-roll inflation. Although several tests have been performed, until now
there is no convincing evidence of the presence of non-Gaussianities in the CMB spectrum.
For further details we refer to the review [34].

The two important parameters describing scalar perturbations are the power spectrum
PR(k) of the comoving curvature perturbations R and its spectral tilt ns. They are given
in terms of the slow-roll parameters as

PR(k) =
H2

2πφ̇
' 1

24π2M4
Pl

V

ε
, (3.8)

ns − 1 ≡ d lnPR
d ln k

' −6ε+ 2η . (3.9)

2Of course one has to take into account as well the range of variation of the inflaton φf − φi. This is
also controlled by the slow-roll conditions (3.5), which tell us how fast the potential changes.
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As we said, observations require3 PR(kpivot) ∼ 2 · 10−9 for a certain pivot scale kpivot '
7.5a0H0 (the subscript 0 refers to the present value). This implies that

V 1/4

ε1/4
' 0.027MPl ' 6.6× 1016GeV , (3.10)

where V and ε have to be evaluated at the time when the relevant scales for the CMB
exit the horizon. The number of e-foldings N(k) of inflation remaining when the scale k
exits the Hubble horizon can be obtained from [33]

N(k) = 62− ln
k

a0H0

− ln
1016GeV

V
1/4
k

+ ln
V

1/4
k

V
1/4
end

− 1

3
ln
V

1/4
end

ρ
1/4
reh

, (3.11)

where the suffices “end” and “reh” refer to the end of inflation and recombination, re-
spectively. Usually, the logarithmic terms are not expected to be too large, so one can
say that the CMB perturbations exit the horizon about 60 e-foldings prior the end of
inflation4.

As ε � 1, the constraint (3.10) puts an upper bound on the scale of inflation (the
energy density about 60 e-foldings before the end of inflation). For large field models
(|φi− φf | �MPl) typically ε . O(10−2); hence inflation happens around the GUT scale.
For small field models (|φi − φf | . MPl) ε can be smaller by many orders of magnitude
then the scale of inflation can be much lower (see e.g. section 5.5.2). Equation (3.9)
incorporates a very successful prediction of slow-roll inflation: the spectrum is almost
scale invariant. In actuality, WMAP five-years measured ns = 0.96± 0.014 [30].

The analogous two parameters describing the tensor modes are

PT =
2

MPl

(
H

2π

)2

, (3.12)

nT ≡ d lnPT
d ln k

' −2ε . (3.13)

Notice that nT is defined differently from ns. PT does not depend on the slow-roll pa-
rameters because the tensor modes are generated exclusively by the perturbations of the
metric (scalar perturbations can not generate tensor modes). The amplitude of tensor
with respect to scalar modes is parameterized by the tensor to scalar ratio

r ≡ PT
PR

' 12ε , (3.14)

where PT and PR are approximated by their k-averaged scale-invariant value. Tensor
modes have not yet been observed; the WMAP five-year upper bound is r ≤ 0.2 [30]. A

3This condition is sometimes expressed in terms of δ2
H ≡ PR4/25 ' (1.9× 10−5)2.

4Of course there are cases in which some of the logarithmic terms should be taken into account. We
will see an example in section 5.5.2
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detection of tensor modes would be a more direct evidence of the existence of gravitational
waves (which have already been observed indirectly in the Hulse-Taylor binary system
[42, 43]). In addition, in combination with the constraint (3.10), it would determine the
scale of inflation.

3.3 String theory models of inflation

The success of the mechanism of inflation described in the last sections naturally raises a
series of fundamental questions such as:

• Which field plays the role of the inflaton?

• Where does the inflaton potential come from?

• How does the inflaton couple to the Standard Model fields?

These and similar questions can be addressed only in the context of a fundamental theory.
In this perspective inflation can be a bridge from very high-energy (everything in between
collider energies and MPl) physics to observations. As we said in chapter 2, string theory
provides a consistent UV completion of GR and it is therefore a valid candidate for a
fundamental theory. In this section we will briefly review and catalog a series of attempts
to embed inflation into string theory. For reviews see [44, 45, 46, 47, 48].

String models of inflation can be divided in two classes: open and closed string models,
depending on wether the inflaton candidate is an open string mode (e.g. the position of a
D-brane) or a closed string mode (e.g. the size of the compact manifold), respectively.

3.3.1 Open string models

In type IIB with D-branes the physics in the regions close to the brane is described by
type I superstring theory, i.e. the massless spectrum contains open string excitations. The
effective action in 10-dimensions for a D-brane is the DBI action (2.18). To preserve Lorenz
invariance, the D-brane has to be spacetime-filling, i.e. it should extend in the (3+1) large
dimensions and wrap an arbitrary cycle in the six compact dimensions. The parameters
describing the embedding in the compact dimensions produce scalar fields in the effective
4-dimensional theory. The easiest case to consider is a spacetime-filling D3-brane which
is point-like in the compact directions. In 4-dimensions there are therefore 6 real scalar
fields Y (t, x) describing the position of the D3-brane. The effective 4-dimensional action
for these fields is obtained from the DBI action of section 2.4.
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In [49] it was proposed that one or more of these scalars could play the role of the inflaton.
Since then, constructing and studying models of brane inflation has been a very active
research area. The two important ingredients for the dynamics of a scalar field are the
kinetic term and the potential.

For concreteness and simplicity let us consider the case of a D3-brane. Its kinetic term
in the DBI action can be expanded5 in a power series of (∂Y )2. For small velocities6 the
higher terms are negligible and we are left with a canonical kinetic term. In the presence
of a potential for the D3-brane satisfying the conditions (3.5), we reproduce then a slow-
roll model. This was a widespread approximation to study brane inflation until recently,
when it has been shown [50, 51] that the whole DBI action as well leads to very interesting
phenomenological features. DBI inflation is an example of a model with non-canonical
kinetic term (but without higher derivatives) which had already been considered in the
past [52, 53]. An interesting new feature is that string theory provides a high-energy
justification for the choice of a particular effective action.

The inflaton potential can be generated applying some forces to the D3-brane. One
possibility is the mutual Coulomb plus gravitational attraction between the D3 and an
anti D3-brane. This setup has the attractive feature that when the distance between the
branes is of order the string length, a tachyon develops and the branes annihilate. This
process provides a natural graceful exit from inflation and an interesting mechanism for
reheating; we will further comment on this in section 5.1. Unfortunately, the brane-anti-
brane potential is typically too steep to drive slow-roll inflation. A possible resolution of
this problem will be described in chapters 4 and 5, where two models of brane inflation
are explicitly studied.

Alternatively to the attraction from an anti brane, another possibility is that some fluxes
induce a potential for the D3-brane. This was studied e.g. in the D3/D7 brane models
[54, 55] where the fluxes are on the world volume of the D7-brane. Again this setup
provides a mechanism for a graceful exit and in addition cosmic (fundamental [56]) strings
can be produced. Also non-perturbative effects can create a potential for the D3-brane
[57] and we will thoroughly study a model of this type in chapter 5.

3.3.2 Closed string models

In this class of models the inflaton candidate is a closed string excitation. In type IIB
closed string massless moduli are always present if we compactify on a fluxless compact
manifold. An example is the volume of a Calabi-Yau manifold, often referred to as the
universal Kähler modulus or breathing mode. As we saw in section 2.5 it is possible
to stabilize the moduli introducing fluxes (and non-perturbative effects as in the KKLT

5For a more detailed discussion and an example see section 5.5.3
6The interesting background for cosmology is the homogeneous one Y (t, x) ' Y (t), therefore we can

neglect spatial derivatives
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setup). Now the idea is that if the potential generated is flat enough, before reaching the
minimum a period of inflation will be induced.

The mechanism of graceful exit and reheating in this class of models is the standard one:
once the minimum is reached the expansion stops, the inhomogeneities of the inflaton
then grow, condense and finally decay into Standard Model particles.

An example in this class is Kähler moduli inflation [58] where the inflaton is the volume
of some 4-cycle of the Calabi-Yau manifold. This is realized in the large volume scenario
(LVS) that we will review in chapter 6. In other models, e.g. the racetrack models [59,
60, 61], the inflaton is the axion complexifying the Kähler modulus and the potential
is generated by non-perturbative effects. Another proposal involving axions is N-flation
[62] where a large number of them realize the assisted inflation mechanism [63] (further
comments will be given in section 5.5).

3.4 Discussion

Let us finally comment on some features common to string inflationary models and discuss
what we can learn from string cosmology.

The presence of many moduli in the 4-dimensional effective action is a very common
feature in flux compactifications. Closed string moduli arise from complex structure and
Kähler deformations of the compact space. For a typical Calabi-Yau manifold there are
O(100) independent deformations. If D-branes are present, there will be additional open
string moduli in 4-dimensions. Assuming that a stage of inflation is realized, the most
natural expectation is a multifield inflationary dynamics, where many or all of the moduli
evolve at the same time. Useless to say that this introduces enormous technical difficulties.

It is therefore a widespread technical assumption that it is possible to take just one
dynamical field and keep all others at their stabilized values. This is a good assumption
when e.g. one of the moduli is much lighter than all the others. The hierarchy guaranties
that the heavy moduli relax quite fast to their minima while the inflaton candidate is just
at the beginning of its inflationary trajectory. Already in the single-field case, embedding
inflation into string theory is a hard task; therefore, we will not attempt here to look at
more complicated situations. Apart from their simplicity, another motivation to focus our
attention on single-field models is that they can successfully reproduce observations. A
typical feature of multifield models, that distinguishes them from single-field ones, is that
part of the perturbations are isocurvature as opposed to adiabatic [32, 33]. Up to now,
CMB measurements are consistent with exclusively adiabatic perturbations.

Let us go back to the single-field case. As we reviewed in section 3.2.1, for slow-roll models
all the relevant observables are determined by the two slow-roll parameters. In this sense
the slow-roll approximation erases much of the information about the high energy physics
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responsible for inflation. Therefore, constructing a consistent model of slow-roll inflation
in string theory does not provide an indication that string theory correctly describes the
laws of nature. On the other hand discovering when and how inflation can take place
in the framework of string theory gives us a useful tool to find regions of the landscape
suitable to describe our universe. Also, slow-roll inflation is one of the simplest possible
cases and it is natural to start with it and see which obstacles we are confronted with
by the consistency of string theory. Once we learn how to overcome these obstacles,
e.g. moduli stabilization or the η−problem, we can consider more complicated models.

An even more exciting possibility is that string theory will guide us to non-slow-roll
models with distinctive signatures. An example is DBI inflation [50, 51] that we will
review in section 5.5.3. The presence of higher order derivative terms typically induces
large non-Gaussianities and makes the model in principle falsifiable.

Every phenomenological application of string theory, e.g. to cosmology (see chapter 4 and
5) or particle physics (section 6), is based on an effective action and it is therefore limited
by the validity of the action itself. For example we look at the massless spectrum neglect-
ing α′ excitations and we disregard the whole KK tower. Also, almost every analysis is
performed at classical level neglecting loop corrections. The effects that all these correc-
tions can induce in the tree level approximated analysis should be carefully considered.
This is what we will do in section 6 for the soft terms produced by the LVS scenario. In
the string inflationary literature, loop and α′ corrections are often neglected. The philos-
ophy is that they can be considered in a second step, once a successful tree-level model
has been found. This will be our attitude in chapters 4 and 5. Eventually, one would like
to ensure that none of the possible corrections spoils the phenomenological successes of
the model. In this regard, we are still at the beginning of the path that leads to a bona
fide string theory model of inflation.
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The material presented in this chapter is mainly based on [64]. We investigate the possi-
bility, for a concrete type IIB flux compactification setup, to obtain a phenomenologically
successful model of brane inflation. We consider a D3-brane moving in a warped (de-
formed) conifold. The potential for this mobile D3-brane is generated by the attraction
of an anti D3-brane at the tip of the conifold plus the effects induced by the stabilization
of closed string moduli. We study the motion along the radial direction of the warped
conifold. We show that, for fine tuned values of the parameters, this dynamics induces a
prolonged stage of inflation and generates the correct CMB perturbations.

One of the purposes of this case study is to understand how the consistency of string
theory constrains or obstructs the explicit construction of an inflationary model. Beyond
constructing a successful model of slow-roll inflation1, we will learn some generic facts
about the dynamics of a D3-brane in the KKLT setup (reviewed in section 2.6). The
study in this chapter will provide several motivations to consider alternative models of
brane inflation. This will be widely discussed in chapter 5 where we propose and analyze
a model of inflation at the tip of the conifold, where no anti D3-branes are present and
the motion takes place in the angular directions.

The structure of this chapter is as follows: in section 4.1 we briefly review the state of the
art about brane inflation and explain which improvements are provided by the present
work; in section 4.2 we describe the structure of the effective superpotential and its
relation to the D7-brane embedding. Section 4.3 explains the type IIB setup and reviews
the η-problem for brane inflation, which forms a main issue in this chapter; the effective
potential for the Kähler and open string moduli in the warped conifold background is
obtained. In section 4.4 we perform the minimization of the potential in all but the radial
directions for a generic D7-brane embedding. In section 5 we apply these formulae to
two particular cases: the Ouyang and the Kuperstein embeddings. Only the latter, in
a fine tuned case, gives rise to a prolonged stage of inflation. In section 4.6 we analyze
how the stringy parameters determine the cosmological evolution and how they control
when inflation takes place. A series of technical details are discussed in appendix B. In
appendix B.5 we summarize the various forces acting on the D3- and anti D3-brane and
comment on their relative importance.

1Up to perturbative corrections that we do not take into account here. We postpone the discussion to
chapter 6
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4.1 Preliminaries

One of the key steps to obtain a viable inflation scenario in string theory is to stabilize
all massless moduli, except for the inflaton. As we reviewed in section 2.5 and 2.6, in the
framework of type IIB flux compactifications, it is possible in principle to fix all closed
string moduli.

If D-branes are present, an additional open string moduli sector is included. An interesting
possibility (that we reviewed in 3.3) is to investigate if one of the open string moduli can
play the role of the inflaton. If we have a pair of brane-anti brane, the Coulomb (plus
gravitational) attraction could in principle drive inflation, where the distance between the
branes would corresponds to the inflaton. For spacetime-filling D3-branes, this distance
is just the separation along the compact directions. Clearly the distance between two
points can not be larger than the size of the manifold itself. This geometrical bound
on the range of variation of the inflaton prevents a prolonged stage of inflation. A way
out was proposed in [65] (KKLMMT): if the branes are located in a region with strong
warping, their reciprocal Coulomb attraction gets redshifted, the potential becomes flatter
and inflation can last much longer.

Now, one has to ensure that no other forces spoil the achieved flatness of the Coulomb
potential. Unfortunately, the stabilization of the Kähler moduli induces a force on the
D3-brane. This is due to a non-trivial interplay between the volume and the D3-brane
position. Once the Kähler moduli (among which the volume) are stabilized, the inflaton
is endowed with a large mass. As a result, the second slow-roll parameter (3.5) turns out
to be too large, η & 2/3, showing the break-down of slow-roll inflation [65].

The idea of exactly canceling this moduli stabilization effect by fine tuning some other
effect has received a certain amount of attention [57, 64, 66, 67, 68]. In this chapter, based
on [64, 57], we show two ways in which this can be achieved: one is by using the uplifting
term to cancel the inflaton mass and will be discussed in section 4.7; the other is by means
of threshold corrections to the non-perturbative superpotential. We will concentrate on
the second possibility and construct explicitly a model where slow-roll inflation can take
place.

Recently, threshold corrections to the non-perturbative superpotential Wnp, introduced
in section 2.6, became available for the warped conifold background [69] (previously such
effects had been calculated in [70] for toroidal orientifolds). This means, as we will
describe in detail in section 4.2, that we know how the prefactor A in (2.33) depends
on D3-brane open string moduli. We would like to use this effect to cancel the large
mass induced by moduli stabilization (an example of the so called η-problem that will
be review in 4.3). Unfortunately, this is not quite possible because the term we want to
cancel is proportional2 to φ2 while threshold corrections arising from two large classes of

2Here we consider the D3-brane falling into the throat but still being far away from the tip. This allows
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Figure 4.1: The plots display the inflaton potential V (φ) for the Kuperstein embedding for two
different values of the uplifting parameter β = 1.21 (left), β = 1.4 (right). The left plot shows
that via fine tuning an inflection point suitable for inflation can be obtained.

D7-embedding functions g(w) (ACR [71, 72] and Kuperstein embeddings [73]) give rise
only to terms proportional to φ and to integer powers of φ3/2; as we will see, this can be
traced back to the holomorphicity of these supersymmetric embeddings. This is crucial
because terms with a different φ dependence can cancel only locally in a small φ interval,
rather than globally. Outside this small interval the inflaton potential is not of the slow-
roll type. In fact in general, the potential possesses a maximum and a minimum plus an
inflection point in between, as shown in the right part of figure 4.1. With suitable fine-
tuning, displayed in the left figure, it can be arranged that the maximum and minimum
coincide with the inflection point, the potential hill at small φ disappears, and the potential
becomes flat enough for slow-roll inflation.

We then study the cosmological evolution induced by the inflaton potential V (φ). In the
fine tuned case in the left part of figure 4.1, a slow-roll inflation phase takes place (in
particular η ' 0), but this happens only in a small region around the inflection point,
where η = 0 because the potential switches from concave to convex. We investigate when
it is possible for the D3-brane to fall all the way into the throat and when the inflaton
gets stuck somewhere in the throat. This is relevant both in the fine-tuned and in the
more general case in which a maximum and a minimum are present. In fact, if one wants
to end inflation with D3- anti D3-brane annihilation, the D3-brane has to go all the way
down to the tip (φ ∼ 0). If it gets stuck somewhere before, inflation lasts forever and the

us to approximate the deformed conifold with the singular conifold. Close to the tip, the effects of
the deformation become relevant; we study this situation in appendix B.4. The result is that, close to
the tip, the moduli stabilization produces a term proportional to φ3 which could be, contrary to the
φ2 term for the singular conifold, cancelled by threshold corrections, at least in principle. Anyways,
the cancellation can be achieved only for a short range of values of φ which is qualitatively analogous
to the singular conifold situation. This is why we do not pursue this direction of investigation any
further.
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universe becomes large and empty.

4.2 The superpotential

In this section, we continue the discussion of section 2.6 about the 4-dimensional super-
potential generated by the dimensional reduction of type IIB flux compactifications. We
will in particular focus on the non-perturbative corrections and their dependence on the
open string moduli.

The GVW flux superpotential W0 [15, 74], introduced in section 2.5.1, can fix the dilaton
and the complex structure moduli. The Kähler moduli, on the other hand, are stabilized
by non-perturbative effects [20] as we have seen in section 2.6. These effects break the
no scale structure because of their explicit Kähler moduli dependence. Non-perturbative
corrections to W , denoted by Wnp, can be generated either by Euclidean brane instantons,
E3-instantons in our case, or by gaugino condensation on a stack of D7-branes. In the
following we concentrate for concreteness on the latter possibility, but the result will be
valid also for the former.

Suppose that a stack of n D7-branes wraps a divisor Σ defined by the zeros of a holomor-
phic function3 g(w). Gaugino condensation can generate a non perturbative term Wnp in
the N = 1 superpotential in addition to the GVW term W0 [15]:

W = W0 +Wnp = W0 + Ae−aT , (4.1)

where a = 2π/n with n being the number of D7-branes (or n = 1 for the Euclidean D3-
brane case). The prefactor A appearing in Wnp depends in principle on the open string
moduli, the complex structure moduli and the dilaton. In [76, 77], Ganor argued that A
has to depend on the open string moduli, that we indicate generically with w here, in such
a way that it vanishes when the D3-brane is on Σ. In [70], A has been computed in the
case of toroidal orientifolds. In [75, 69], it was shown how to generalize the calculation to
curved space using the Green function method; this method allows one to determine only
the dependence on the open string moduli. For the singular conifold and Y (p,q) cones the
result [69] is

A = A0 g(z)
1/n , (4.2)

where A0 depends just on the complex structure moduli and the dilaton. Following KKLT
[20], we will assume that these moduli have been stabilized by fluxes at a scale hierarchi-
cally higher than the scale of inflation (although this might not be the generic case, we
are focussing our investigation on a corner of the landscape where this assumption holds).

3We use g instead of f as in [66, 69, 75, 64, 68] to avoid confusion with the DBI parameter, e.g. in
(5.45).
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We are then allowed to integrate them out and focus on the dynamics of inflation; in the
rest of the paper we will therefore treat A0 as a constant. The consistency of (4.2) with
Ganor’s argument led to the conjecture that (4.2) is valid for a generic compactification
[69].

From a different perspective, another argument in favor of (4.2) was formulated in [78]
using the results of [79]. The idea of the argument is that, from the 10-dimensional point
of view, the presence of non-perturbative corrections to the 4-dimensional superpotential
means that the 10-dimensional Einstein equations do not require anymore an ordinary
complex structure but a generalized complex structure [78]. The latter determines then a
non-trivial superpotential for the D3-brane (that is vanishing in the warped Calabi-Yau
case). Using the potential of [79] and Ganor’s argument [76, 77], one can obtain (4.2).

In addition, to simplify the analysis, we assume that the cycle Σ is the only one up to
continuous deformations. This means that we choose to work in a compactification with a
single Kähler modulus. We denote its complexified field by T = τ + ib. With an adequate
shift of the axion b = ImT , A0 in (4.2) can be taken to be real. The total superpotential
is

W = W0 + A(w)e−aT = W0 + A0g(w)1/ne−aT . (4.3)

In this and the next chapter we will investigate the dynamics inside a warped conifold. In
this region, the embedding of Σ into the Calabi-Yau manifold is well approximated by an
embedding into a (non-compact) conifold. There are two large classes of such embeddings
on which we will focus our attention. The first one, found by Arean et al. in [71], contains
the ACR embeddings that can be written in terms of the {wi} coordinates of the conifold
(see appendix A) as

g(w) ≡ 1−
∏4

i=1w
pi

i

µP
= 0 , (4.4)

where pi ∈ Z, P ≡
∑4

i=1 pi, and µ ∈ C are (constant) parameters. The simplest choice
pi = δ1,i reproduces the Ouyang embedding [72] which we will consider for the detailed
study of section 4.5.1. The pi have to be integers by holomorphicity4. The second family
of supersymmetric embeddings was found by Kuperstein in [73]. This is conveniently
written in terms of other conifold coordinates that we denote by {zi} (see appendix A).
The Kuperstein embeddings are given, up to SO(4) permutations, by

g(z) = g̃
(
z2
2 + z2

3

)
− z1 = g̃(z23)− z1 , (4.5)

where g̃(z23) is a holomorphic function of its argument z23 ≡ z2
2 + z2

3 . The {zi} are
linear combinations of the {wi} (see appendix A), so again only integer powers of {wi}
(equivalently {zi}) are allowed by holomorphicity. This will play a crucial role in the
following.

4In the Ouyang case, the integer p1 = P can be interpreted as the number of times the D7-branes are
wrapped around the 4-cycle.
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4.3 Warped Brane inflation

In this section, we review the η-problem arising for D3-brane inflation in a warped throat
driven by brane-anti brane attraction, first pointed out in [65]. Then we add threshold
corrections to the analysis and obtain the F-term potential that we will study in the next
section.

4.3.1 The η-problem from volume stabilization

It was pointed out in [65], that the strongest force felt by the D3-brane comes from the
mixing of open string moduli with the overall volume, once the latter is stabilized à la
KKLT. To see how this comes about, let us briefly review the result of section 2.6. Upon
reducing the 10-dimensional type IIB over the warped metric background

ds2
10 = h−1/2ds2

4 + h1/2ds6 , (4.6)

where h is the warp factor5, in the presence of imaginary self-dual fluxes and orientifold
planes, we obtain a 4-dimensional, N = 1 supergravity theory. The F-term potential for
the Kähler moduli plus the anti D3-brane uplifting term were found to be

VdS = VAdS + Vup (4.7)

=
aA0e

−aτ

2τ 2

(
1

3
τaA0e

−aτ + A0e
−aτ +W0

)
+

D

4τ 2
cr

.

The values of W0 (the GVW potential introduced in section 2.5.1) and D (proportional
to h−1

0 , the warp factor at the tip of the throat) depend on the fluxes which stabilize the
complex structure moduli and the dilaton. Given the large freedom in the choice of fluxes,
we will treat these quantities effectively as tunable constants. It is useful to re-express
{W0, D} in terms of two other quantities {τ0, β} as

W0 = −A0e
−aτ0

(
1 +

2

3
τ0a

)
, (4.8)

D = β
2

3
τ0 a

2|A0|2e−2aτ0 . (4.9)

The parameters {τ0, β} have the following meaning: τ0 is the KKLT minimum, i.e. the
value of τ in the AdS minimum obtain with D = 0 (see section 2.6). Adding the uplifting
(D 6= 0), the minimum of (4.7) is shifted to τ = τcr which is very close to τ0 (see appendix
B.1.1); in fact τcr − τ0 ≡ ∆ � τ0. Hence, τ0 is an estimate of the position of the actual
minimum and if it is chosen to be large enough we can neglect α′ corrections (see section

5Notice that we have changed the notation with respect to (2.22) to facilitate the comparison with the
literature on brane inflation.
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6.2). As regards β, it parameterizes the uplifting in such a way that a Minkowski vacuum
corresponds to β ' 1 + 2∆/τ0, i.e. a value slightly larger than 1 while for β & 1 + 2∆/τ0
we have a dS vacuum.

Now let us add a D3-brane to the picture. The F-term potential (cf. (2.34)) is then

VF = eκ
2
4K
(
GIJDJWDIW − 3κ2

4|W |2
)
, (4.10)

where the indices I, J run over the complex Kähler modulus T and the complex coordi-
nates w = wi with i = 1, 2, 3 describing the position of the D3-brane (see appendix A).
The superpotential is the one in (4.3) but for this subsection we neglect the threshold
corrections, i.e. we treat A as a constant. Notice that this implies Wi = 0. In the next
subsection we will consider a generic A(w) and see which form the F-term potential takes
in that case.

As concerns the Kähler potential, it is still equal to−2 lnV as in (2.30) but now the volume
gets shifted by a w-dependent quantity, i.e. it acquires a dependence on the position of
the D3-brane. In [80] it was proposed that, for a single Kähler modulus (determining the
overall volume) the Kähler potential is

κ2
4K = −2log(V) = −3log[T + T − γk(w,w)] ≡ −3logU , (4.11)

where γ = κ2
4τcrT3/3 is a constant (see appendix B.1 of [68]). The function k(w,w) is the

Kähler potential of the Calabi-Yau manifold evaluated at the position w of the D3-brane.
The metric of a compact Calabi-Yau threefold is not known, but as long as we are intersted
in the dynamics inside a warped throat, we can approximate it with the conifold metric.
Actually we have in mind a warped deformed conifold but for the regions far away from
the tip of the cone the metrics coincide. In chapter 5 we will study the dynamics at the
tip and we will use the full deformed conifold metric. The singular conifold has a Kähler
potential k(w,w) = r2, where r is the radial direction of the conifold (see appendix A for
more details). We study the motion of the brane along this radial direction, and r will be
our inflaton candidate.

The F-term (4.10) calculated with the Kähler potential (4.11) and the superpotential (4.3)
with constant A can be minimized in all directions but r. We then rewrite V (r) in terms
of a canonically normalized field φ = r

√
T3, the result is

VdS =
M4

Pl

(φ2 − 6M2
Pl)

2

(
9D

τ 2
cr

− 6|A0|2a2e−2aτcr

τcr

)
≡ 3H2 36M6

Pl

(φ2 − 6M2
Pl)

2
, (4.12)

where we have introduced the Hubble parameter H for φ = 0 (and used the slow-roll
approximation to neglect φ̇2). The fields r and φ have dimension of a length and a mass,
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respectively, while τ has been normalized to be dimensionless. The slow-roll parameter η
is then

ηKLMT = M2
Pl

V ′′
dS

VdS

= M2
Pl

[
3H2 144(6M2

Pl + 5φ2)

(φ2 − 6M2
Pl)

4

] [
3H2 36

(φ2 − 6M2
Pl)

2

]−1

=
4(6M2

Pl + 5φ2)

(φ2 − 6M2
Pl)

2
M2

Pl . (4.13)

From its definition, φ is positive and smaller than
√

6MPl. At this value in fact, the
volume V in (4.11) becomes zero (assuming that the Kähler modulus T has reached its
minimum T + T = 2τcr) and the shifted Kähler potential becomes singular. Therefore
ηKLMT is always bigger than 2/3 (the conformal value attained for φ = 0 [65]) and slow-roll
inflation never takes place without threshold corrections.

4.3.2 F-term potential for the conifold

In this subsection we repeat the calculation of the last subsection but now taking into
account the threshold corrections to the non-perturbative superpotential discussed in 4.2,
i.e. we allow for a generic A(w).

The Kähler potential is again the one in (4.11); the resulting F-term potential for a generic
W takes the form (cf. [66])

VF = VKKLT + ∆V (4.14)

VKKLT =
κ2

4

3U2

[
(T + T )|WT |2 − 3(WWT + c.c.)

]
(4.15)

∆V =
κ2

4

3U2

[
3

2

(
W T

∑
i

wiWi + c.c.

)
+

1

γ
kiW Wi

]
, (4.16)

where WT ≡ ∂TW , Wi ≡ ∂iW . Note that all terms of the type KiWWKi cancel out
precisely. VF would vanish if the superpotential W were independent of T and wi because
of the no-scale structure. But it is not and it is not. Indeed, using the superpotential in
equation (4.3), where the non-perturbative term depends on both T and wi, one finds

VKKLT =
κ2

4

3U2

[[
(T + T )a2 + 6a

]
|A|2e−a(T+T ) + 3a(W 0Ae

−aT + c.c.)
]

(4.17)

∆V =
κ2

4

3U2

[
−3

2
a
(
A
∑
i

wiAi + c.c.
)

+
1

γ
kiAAi

]
e−a(T+T ) , (4.18)

where Ai ≡ ∂iA. The separation into two terms is due to the fact that ∆V is non-vanishing
only when A is a non-trivial function of the wi. In the last subsection, where we assumed
that A is a constant, ∆V was absent. Note also that VKKLT is not the same as VAdS in
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(4.7) of last subsection. It differs in two ways: first, in VKKLT there is also a dependence
on the angular moduli through the non-constant A(wi); second, due to the backreaction
of the mobile D3-brane the volume modulus has become U = 2τ −γr2 rather than simply
2τ and has acquired a dependence on the D3-brane radial position.

Since we want to find out whether warped D3-brane inflation is possible in this setting
we need to be in a de Sitter space. We therefore add, as we did in the last subsection, an
uplifting term

Vup =
D

U2
(4.19)

to VF . This term can be induced e.g. by the warped anti D3 tension [20]; this is not
essential for our purposes and other upliftings, such as D-term or F-term upliftings [81,
82, 83] can be used as well; they could also differ in the U scaling. For concreteness,
in this chapter we focus on the uplifting (4.19) while in section 4.7 we will comment on
alternative choices. Notice that, due to the backreaction of the mobile D3-brane, the U
(defined in (4.11)) in the denominator of (4.19) depends on the D3-brane radial position
r. The uplifting breaks supersymmetry and lifts the vacuum to a dS one.

4.4 Critical points of the potential

Our eventual goal is to identify the inflaton with the mobile D3-brane radial position r
and to study whether its potential

V = VKKLT + Vup + ∆V , (4.20)

can lead to viable inflation. To this end, we have to ensure that there is no steep runaway
in some other directions in the moduli space. Therefore we analyze the stabilization of
all moduli besides r, which comprise the volume modulus τ , its axionic partner b and the
angular moduli θ1, θ2, φ1, φ2, ψ. As we want to restrict ourselves to the case of single-field
inflation, we have to require that the D3-brane motion does not modify considerably the
stabilization of the other fields. A convenient regime to consider is

|g(r)|1/n − 1 � 1 , (4.21)

so that the critical value of the volume modulus τcr changes only slightly during the
inflationary dynamics (see (4.30) and the related discussion). Although the dependence
of τcr on φ is mild (so that during the inflaton motion the minimization of τ is only slightly
corrected), it is crucial to determine the shape of the effective potential for the inflaton
V (φ) (see also [68, 67]). In figure 4.2, we compare the effective potential V (τfix, φ) for
some fixed values τfix of τ , with the correct effective potential V (τcr(φ), φ). The sections
at constant τ = τfix of the potential differ even qualitatively from the correct effective
potential V (τcr(φ), φ). In the following we will assume that (4.21) is satisfied.
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Figure 4.2: On the left: the dependence of the potential on φ and τ near the minimum. The
black thick line is the value of τcr one would take neglecting the uplifting term (using just 4.27).
Clearly if one is interested to inflation dynamics, neglect Vup is inconsistent. On the right: the
black thin lines are the potential evaluated for different but φ independent τcr. The red thick
one is obtained plotting V (φ, τcr(φ)). Again one clearly sees that it is inconsistent to study
inflation just in the φ direction for fixed τcr

4.4.1 Axion stabilization

It is easiest to start the moduli stabilization analysis with the axion field b. One observes
that it makes its appearance only in the second term of VKKLT

3a(W 0Ae
−a(τ+ib) + c.c.) = 3a|W0A|e−aτ (e−i(ab−α) + ei(ab−α))

= 6a|W0A|e−aτ cos(ab− α) , (4.22)

where α denotes the phase of W 0A. This term acquires its minimum when

bc =
1

a
[α+ (2p− 1)π] , p ∈ Z , (4.23)

and there it turns into minus its absolute value. This fixes the axion and implies for the
KKLT part of the potential

VKKLT =
κ2

4

3U2

[
2a (aτ + 3) |A|2e−2aτ − 6a|W0A|e−aτ

]
. (4.24)

4.4.2 Volume stabilization

This section is devoted to the minimization of the volume τ , which is more involved than
for the axion. The reason is that, as r is our inflaton candidate, it is particularly important
to determine the r dependence of the critical value τc(r) of the modulus τ .
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The criticality condition, ∂τV = 0, which determines τc can be expressed as

(aUc + 2)(VKKLT + ∆V ) + 2Vup =
κ2

4a
2

3Uc
|A|e−aτc

(
|A|e−aτc − 3|W0|

)
, (4.25)

where Uc ≡ 2τc−γr2. If ∆V , Vup and the mobile D3-brane were absent, such that U → 2τ ,
the criticality condition would give the original KKLT result [20]

VKKLT,0 = −κ
2
4a

2A2
0e
−2aτ0

6τ0
, (4.26)

with the KKLT critical volume τc → τ0 defined by

W0 = −A0e
−aτ0

(
2

3
aτ0 + 1

)
, (4.27)

where the fixed axion value (4.23) has been used. Once Vup and the mobile D3-brane are
added, the critical volume τc is moved away from τ0

τ0
Vup, D3−→ τc . (4.28)

Notice that τc depends on D and r while τ0 does not. We define

∆(D, r) = τc(W0, D, r)− τ0 . (4.29)

In what follows, we will use the parameters {β, τ0} instead of {D,W0}. We gave the
definition in (4.8). As we said, the condition that Vup uplifts the AdS minimum to dS
is now easily expressed by the requirement β & 1 + 2∆/τ0 (which is very close to, but
not exactly one). In the rest of the paper we assume that this condition is fulfilled and
therefore the minimum is dS.

Note that the full r and β dependence of τc is contained in ∆. To calculate ∆ we expand
the criticality condition (4.25) in ∆/τ0 and use aτ0 � 1 to simplify the result. We obtain

∂τV = 0 : a∆(2|g|1/n − 1) = β
aτ0
|g|−1/n − (1− |g|1/n) , (4.30)

where we keep the leading term and first subleading corrections in 1/τ0 and ∆/τ0 of
(4.25). This equation determines explicitly the r dependence of ∆, which arises due to
the r dependence of g. Importantly from (4.30), taking into account (4.21) and that
aτ0 � 1, we can verify that ∆ � τ0 ∼ τcr.

Without the D3-brane one would have g = 1 and thus ∆ = β/a2τ0 which in turn reduces
to zero in the absence of the uplifting (β = 0) in agreement with the expectations. The
consistency of our expansion is verified:

∆

τ0
= O

(
1

τ 2
0

,
|g|1/n − 1

τ0

)
� 1 . (4.31)

Note that in general ∆ depends, via the embedding g, also on the angular variables
θ1, θ2, φ1, φ2, ψ whose stabilization we are analyzing next.
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4.4.3 Angular moduli stabilization

For sake of brevity, let us denote the angular moduli

θ1, θ2, φ1, φ2, ψ (4.32)

as ϑα, α = 1, . . . , 5 and abbreviate ∂α ≡ ∂ϑα . The criticality condition for the angular
moduli, ∂αV = ∂αVF = 0, does not involve Vup which is independent of ϑα. The full
angular criticality condition thus reads

2
(
(2a2τc + 6a)|A| − 6a|W0|eaτc

)
∂α|A|

=
3

2
a∂α

(
A
∑
i

wiAi + c.c.
)
− 1

γ
∂α
(
kiAAi

)
, (4.33)

where the lhs of the equality stems from VKKLT while the rhs originates from ∆V .

As we did in the previous section, we replace τc by τ0 +∆ and expand in ∆/τ0 � 1. Using
(4.27) to evaluate the lhs of (4.33), one can see that the rhs of the criticality condition is
suppressed by a factor 1/τ0 and thus does not contribute at leading order. One finds

τ0(2− |g|1/n)∂α|A| = 0 . (4.34)

at leading order in 1/τ0 and ∆/τ0. In view of (4.21) and (4.2), the values of the angular
open string moduli that extremize the scalar potential are solutions of

∂αV = 0 : ∂α|g| = 0 . (4.35)

These five equations will generically fix all five angular moduli unless the embedding
allows for isometries. However, isometries are incompatible with the bulk Calabi-Yau
compactification and hence should be broken. For a detailed discussion of this issue see
[75].

The fixing of the angular moduli can now be shown to lead to

∆V =
κ2

4|A0|2

12n2γ
|g|−2+2/n∂r|g| (−8πγr|g|+ ∂r|g|)

e−2aτc

U2
c

. (4.36)

Besides this, the other two contributions to the potential become

VKKLT =
2κ2

4a|A0|2

3
|g|1/n

(
|g|1/n(aτc + 3)− (2aτ0 + 3)ea∆

)e−2aτc

U2
c

, (4.37)

Vup =
D

U2
c

, (4.38)

where we have used (4.27) to eliminate |W0|. We have thus achieved a stabilization of all
moduli, except for r, the candidate inflaton. The dependence of the full potential on r
comes from the r dependences of τc(r), ∆(r) and g(r).
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4.4.4 Potential with fixed moduli

We will now study in this section the potential in the large τ0 regime for a generic em-
bedding g. For this we expand the potential in ∆/τ0 and 1/τ0 and obtain at leading
order

VKKLT = VKKLT,0|g|1/n(2− |g|1/n)
[
1 +

γr2

τ0

]
(4.39)

∆V =
VKKLT,0

32π2γτ0
|g|−2+2/n∂r|g|

[
8πγr|g| − ∂r|g|

]
Vup =

D

4τ 2
0

[
1 +

γr2

τ0
− 2∆

τ0

]
.

In the expression for VKKLT there are also two terms proportional to 1 − |g|1/n at order
O(1/τ0). Using (4.21), a posteriori justified in (4.30), we have omitted these terms. We
see that Vup appears suppressed compared to VKKLT and ∆V by an additional factor 1/τ0
(after using (4.27) and (4.8)).

Notice that in (4.39) we neglect the Coulomb (plus gravitational) attraction between
the D3- and the anti D3-brane. As we explained in section 4.1, the reason is that the
Coulomb attraction is very weak because of the warping. This was in fact the proposal
of KKLMMT [65] to get slow-roll brane inflation. As we discussed in section 4.3, there
are also effects coming from the F-term potential, which on the contrary is generically
steep (ηKLMT ≥ 2/3). Our effort is to make the F-term (4.39) slow-roll flat; once this is
achieved, then we can add the Coulomb potential as well and study the resulting slow-roll
inflation. Actually, motivated by this hierarchy of importance, we go even further: in
chapter 5 we exclude any anti D3-brane to begin with, and just study the F-term, which
is anyways always present.

Two assumptions are implicit in this result. The first is that τ reaches its φ-dependent
minimum (given by (4.30)) instantaneously during the inflaton motion. In other words,
the system evolves along the τcr(φ) trajectory in the {τ, φ} plane. For this assumption
to be satisfied, the τ direction should always be much steeper than the φ direction which
is actually the case here(see also the adiabatic approximation of [68]). The second as-
sumption is more subtle and regards the angular directions. We are assuming that the
initial conditions of inflation are such that these directions start at their minima. For the
Ouyang and Kuperstein embedding that we consider in the next section, the minimum
in the angular directions does not depend on the radial position. Therefore if, at the
beginning of inflation, the system is at an angular minimum, it will stay there forever.
This ad hoc assumption about the initial conditions is ubiquitous in the string inflation-
ary literature. Anyways, it is more a technical than a conceptual issue: if the angular
directions are steeper than the radial one, then even if they are excited at the beginning,
they will relax in a short time; if they are flatter or comparably steep, then they should
be included in the inflationary analysis which would become multi-field in nature. In
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the latter case one is obliged to rely on numerical methods loosing the intuition that the
analytical single-field approach usually gives.

4.5 Explicit examples: Ouyang vs Kuperstein embedding

In this section we study two explicit supersymmetric D7-brane embeddings for the coni-
fold. They have been discovered by Ouyang in [72] and by Kuperstein in [73]. We will find
that for the Ouyang embedding ∆V vanishes at the minimum of the angular directions,
where θ1 = θ2 = 0. This was first noticed in [66]. As a result ψ̃, defined by

ψ̃ =
1

2
(ψ − φ1 − φ2) , (4.40)

remains unfixed. For the Kuperstein embedding, on the other hand, ∆V does not vanish
at the minimum of the angular directions and can modify ηKKLT ' 2/3 (see also [68, 67]).
It is worth noticing that, in the Ouyang case, if the maxima in the angular directions
are inserted in ∆V then the resulting effective potential V (φ) is exactly the same as in
the Kuperstein case. Of course this radial trajectory (that we will analyze in section 4.6)
is physically interesting only in the Kuperstein case, where it is stable in the angular
directions (an exhaustive analysis of this issue, with a detailed calculation has been given
in [68]).

4.5.1 Ouyang embedding

The Ouyang embedding [72] is defined by the zeros of

g(w1) = 1− w1

µ
. (4.41)

Using (A.6), one derives

|g|2 = 1− 2
r3/2

|µ|
sin

θ1

2
sin

θ2

2
cos ψ̃ +

r3

|µ|2
sin2 θ1

2
sin2 θ2

2
. (4.42)

We will take µ to be real and positive, as a possible phase can be absorbed in a shift of
ψ̃. The two directions perpendicular to ψ̃ = const. are exactly flat at this point. They
will eventually get a mass but their explicit value does not affect the effective potential
for the inflaton.

The system of equations fixing the angles, ∂α|g| = 0, turns into

θ1 : − r3/2

µ
cos θ1

2
sin θ2

2
cos ψ̃ + r3

µ2 sin θ1
2

cos θ1
2

sin2 θ2
2

= 0 (4.43)

θ2 : − r3/2

µ
sin θ1

2
cos θ2

2
cos ψ̃ + r3

µ2 sin2 θ1
2

sin θ2
2

cos θ2
2

= 0 (4.44)

φ1, φ2, ψ : r3/2

µ
sin θ1

2
sin θ2

2
sin ψ̃ = 0 . (4.45)
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This system has two kinds of solutions (angular critical points)

θ1 = θ2 = π , ψ̃ = 0, π (4.46)

θ1 = θ2 = 0 and ψ̃ unfixed. (4.47)

A detailed study [66] (see also [68]) of the Hessian matrix shows that the solution corre-
sponding to a minimum is θ1 = θ2 = 0. Here we notice that the other angular direction
ψ̃ is not flat when θi 6= 0. Once we evaluate the potential, however, at θ1 = θ2 = 0, no
dependence on ψ̃ remains. The actual value of ψ̃ does not affect the following result. In
fact, we get

A = A0g
1/n = A0 ,

∆V = 0 , (4.48)

so that the potential is exactly VKKLT,0, leading to η ' 2/3. In this case no fine tuning
is possible [66]. The other extremum, θ1 = θ2 = π, corresponds to a maximum. In this

case ψ̃ is fixed (see (4.46)) but not the two perpendicular directions in {φ1, φ2, ψ} space.
If one substitutes these angular values (corresponding to a maximum), one obtains

A = A0g
1/n = A0

(
1 +

r3/2

µ

)1/n

' A0

(
1 +

r3/2

µn

)
, (4.49)

∆V =
κ2

4|A|2e−2aτ

n2R2

[
2πr3/2

√
2µ+ r3/2

+
r

γ(
√

2µ+ r3/2)2

]
, (4.50)

where in the last step we have used (4.21), that translates into r3/2 � µ here and implies
that the D3-brane is located further down in the throat than the D7-brane (which extends

down to r
3/2
D7 = µ). As we will see in the next section (see also [68]), the effective potential

V (φ) that one obtains using this maximum (unstable in the angular directions) is exactly
the same as the one for the Kuperstein embedding (4.52), where now the angular directions
are at a minimum.

4.5.2 Kuperstein embedding

The simplest Kuperstein embedding [73] (that we will also consider in the chapter 5)
is obtain from (4.5) with the choice g̃(z23) = µ. To facilitate the comparison with the
Ouyang case, we factorize out from the Kuperstein embedding a factor µ and absorb it
into the definition of A0. Explicitly, we use the embedding

g(z) = 1− z1

µ
, (4.51)

where now we parameterize the conifold with alternative coordinates {zi} (the relation to
{wi} is given in (A.3)). This embedding has no directions along which ∆V = 0 [68, 67].
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Two trajectories extremize the potential in the angular directions: z1 = ±r3/2/
√

2, but
only the one with the negative sign is actually a minimum. The correction to the potential
then becomes [68, 67]:

∆V =
κ2

4|A|2e−2aτ

n2R2

[
−2πRe

z1

µ− z1

+
r

γ|µ− z1|2

(
1− |z1|2

2r3

)]
=

κ2
4|A|2e−2aτ

n2R2

[
2πr3/2

√
2µ+ r3/2

+
r

γ(
√

2µ+ r3/2)2

]
, (4.52)

which is exactly the same as in the Ouyang case after choosing the (in that case unstable)
trajectory w1 = −r3/2. The fact that the minus sign corresponds to the stable trajectory
(z1 = −r3/2/

√
2) is crucial for the fine tuning of η. Indeed it determines that the correction

to ηKKLT ' 2/3 comes with a minus and a cancellation is possible.

The potential we have written still depends on τ . To obtain the effective potential for
the inflaton we have to extremize the potential with respect to τ , i.e. use (4.30). The
minimization of the volume can straightforwardly be carried out numerically. For an
analytical estimate we will use (see appendix B.1)

τc = τ0 +
β

a2τ0
+
r3/2

anµ
+ . . . , (4.53)

where the dots stand for terms suppressed by higher powers in r3/2/µ or 1/τ0. We use
this expression for the r-dependent critical value of τ to transform the potential V (τ, r)
into a potential for a single field V (r) = V (τc(r), r). This implicitly assumes that the
dynamics in the τ direction is much faster than in the r direction such that the evolution
of the system is well approximated by the trajectory τc(r) in the (τ, r) space. Eventually,
the effective potential has to be expressed in terms of the canonically normalized field φ.

4.6 Inflation

In the previous sections we calculated the potential for the radial position r of the D3-
brane in the throat, once all other moduli have reached their minimum6. In this chapter
we investigate if the potential we have obtained can provide phenomenologically viable
inflation.

The first step is to rewrite the potential in terms of a canonically normalized field (to
which we will refer in the following as the inflaton)

φ =
√
TD3 r , (4.54)

6In section 4.5.2, we have not been specific about the moduli coming from the angular position of the
D3-brane. As we said at the end of section 4.4.4, we assume that we start in a configuration where
these moduli are already at their repective minima, from which values they do not move anymore.
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where we notice that r has the dimension of a length while φ of a mass, as it should be for
a canonically normalized scalar in 4-dimensions. We remember that τ0 is dimensionless
and measures the four cycle volume in units of l4s = (α′)2.

As we have seen in section 4.3, VKKLT,0 depends on the inflaton as7

VKKLT,0 = 3H2 36M6
Pl

(φ2 − 6M2
Pl)

2
' 3H2M2

Pl +H2φ2 + . . . (4.55)

for small φ. This prevents slow roll as

η = M2
Pl

V ′′

V
&

2

3
. (4.56)

If we want to have a flat potential, we need another term in the potential of the same
size but opposite sign that we can fine tune to cancel with the 2/3. The new terms in the
potential, coming from the dependence of the non-perturbative superpotential on φ as in
(4.39), are proportional to |g|1/n or to φ|g|1/n. The known supersymmetric embeddings all
depend on integer powers of wi ∝ zi ∝ φ3/2. This, in particular, implies that there is no
term, in the small φ expansion, that can exactly cancel the φ2 from VKKLT,0. The absence
of fractional power embeddings, i.e. g ∝ wpi with p non-integer, might be traced back to
the holomorphicity of g(wi) (see also [67, 68]); it seems therefore hard to circumvent this
problem.

Also, all those embeddings for which g ∝ 1 + wpi with p > 1 vanish much faster than
VKKLT,0 for φ → 0 and do not help to flatten the potential. From this observation, it
follows that embeddings of the ACR family [71] with p > 1 are not helpful to cancel the
ηKKLMMT ' 2/3, at least for small φ. Further study is needed to see if there is a region
where φ is large enough so that the effects of higher ACR embeddings become relevant
and at the same time, where that region is still well described by the conifold geometry
(i.e. before the cut of the conifold and the gluing to the Calabi-Yau manifold become
relevant).

Two embeddings that produce corrections to the scalar potential proportional to φ and
φ3/2 (as opposed to φp with p > 2) are the Ouyang (which is in the ACR family as
well but with p = 1) and the Kuperstein embedding. For the former, once the angular
minimization is performed, the corrections to the scalar potential vanish [66]. For the
latter this is not the case and the potential is indeed modified as in (4.52) [67, 68].
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Figure 4.3: The plot shows the potential V (φ) (red) and the slow-roll parameters η(φ) (blue)
and ε(φ) (black). The latter is so small that it can hardly be distinguished from the φ axis.
Next to the tip of the throat the potential has generically a maximum and a minimum. For φ
large enough the potential grows like φ2 and η is of order one (or bigger). But for φ → 0 the
curvature of the potential changes at the inflection point and η switches sign (and eventually
diverges at φ = 0).

4.6.1 The effective inflaton potential

Considering the region deep inside the throat, we expand the potential for small r (φ)
keeping terms up to r2 (φ2); higher terms can not cancel the ηKKLT ' 2/3 from VKKLT,0
anyway. The result is

VdS ≡ VKKLT + Vup (4.57)

= V
(0)
dS + V

(3/2)
dS

r3/2

µn
+ V

(2)
dS

γr2

τcr
+ . . . ,

∆V = ∆V (1)r + ∆V (3/2) r
3/2

µn
+ . . . .

As shown in appendix B.2, V
(3/2)
dS + ∆V (3/2) < 0, so that the coefficient of r3/2 is always

negative. In terms of the canonically normalized field φ, we want to study the effective

7We would like to stress again that this result is valid for the singular conifold which, far away from the
tip, is a good approximation of the deformed conifold. In appendix B.4, we study the region close to
the tip and find that the moduli stabilization procedure produces a term proportional to φ3 instead
of φ2.
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Lagrangian

L = −1

2
∂µφ∂

µφ−
(
Λ + C1φ− C3/2φ

3/2 + C2φ
2
)
, (4.58)

where we have approximated the DBI kinetic term with the canonical one. A comment
about this approximation is in order. As long as the kinetic energy of the inflaton φ̇2

is small compared with the warped D3-brane tension, the higher terms in the expansion
of the square root in the DBI action (2.18) are negligible (see subsection 5.5.3) and the
canonical kinetic term gives a good approximation. In the present setup this condition is
easily satisfied because inflation takes place in the middle of the throat where the warping
is much weaker than at the tip. In chapter 5 we will study a model of inflation where the
brane moves along the tip of a warped throat. In this model the effects of the DBI kinetic
term become quickly relevant and we will thoroughly consider them in section 5.5.3.

The value of the cosmological constant term Λ depends on several effective parameters.
The stringy parameters are the 3-form fluxes in the conifold, which determine the stabi-
lization of the complex structure and the dilaton. The problem of how the cosmological
constant arises from string theory and which is its most probable value, is outside the
scope of the present work (see e.g. the seminal paper [26]). In the following, we will
simply consider Λ as a free parameter. The coefficients C1, C3/2 and C2 are such that the
potential always has a maximum and a minimum (see appendix B.3); an extremal case
is when these coincide and one gets a flat inflection point. In figure B.1 we show how
varying β (the uplifting parameter), the discriminant (see appendix B.3) can vanishes so
that maximum and minimum coincide as in the left part of figure 4.1.

In figure 4.3, we plot η together with the potential V (φ). The slow-roll parameter η
is small only in a narrow interval around a certain value φη=0 which is where V ′′ (and
therefore η) vanishes. For φ > φη=0, η becomes of order one or bigger and is determined
by VKKLT. For φ < φη=0, η is instead determined by the correction ∆V , it is negative
and diverges as φ → 0 (but the potential can not be trusted all the way down to φ = 0
because of the deformation of the conifold at r3/2 = ε where the anti D3-brane sits and
Coulomb and tachyon potentials become relevant). We want to stress that to get η = 0
for some value of φ does not require any fine tuning. In fact η is positive for large φ and
negative for small φ, so that for continuity it has to pass through zero.

A generic initial condition would be to start somewhere in the Calabi-Yau manifold and
fall inside the throat. We therefore start at some φin and slide down towards smaller φ.
Qualitatively an important question is if one can reach the tip or if the D3-brane gets
stuck somewhere before. Quantitatively a preliminary question is if one can get enough
e-foldings and an almost scale invariant spectrum.
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4.6.2 Inflation through an inflection point

As we show in appendix B.3, the effective potential always has a maximum and a mini-
mum. These coincide for a particular value of the uplifting β giving rise to a flat inflection
point at some φ. The critical β can be estimated analytically from the zero of (B.21). In
this section we comment on this fine tuned case (see also [68, 67] for an analysis of this
potential). A crucial point is that around φ the Coulomb potential (that we have argued
could be neglected in the precedent discussion) has to be taken into account.

For example consider a (φ−φ)3 +Λ potential, where the interesting case for us is Λ � φ3.
The first derivative at the inflection point φ = φ is strictly vanishing. As a consequence
the slow-roll attractor describes an inflaton that slows down exponentially and never
reaches the inflection point. There are two effects that regularize this divergence: one are
corrections to the strict slow-roll regime, such as an initial non-slow roll φ̇. This could
allow to pass the inflection point in a finite time. A second effect (which co-exists with the
first) are the subleading terms that we neglected in the potential; they can have a non-
vanishing first derivative at the inflection point. An example is the generally subleading
Coulomb potential, that becomes important around φ (where the potential is otherwise
flat). Linearly approximating VD3D3 one gets a potential (φ− φ) + (φ− φ)3 + Λ. In this
case, the inflection point is always reached and overshot.

The number of e-foldings Ne that results from the inflationary dynamics is therefore
controlled by the value of the first derivative of the potential at φ, V ′(φ). Varying V ′(φ)
continuously, from positive to negative values, corresponds to a change of Ne from just a
few to infinity. An analytical estimate (neglecting for the moment corrections to slow roll)
gives Ne ∝ 1/V ′(φ) for positive V ′(φ); for negative V ′(φ) a minimum of V is formed and
the issue of overshooting and slow-roll corrections becomes important. In any case, it is
clear that an arbitrary large amount of inflation can be obtained by the potential we have
calculated, provided that one can fine tune the string theory parameters to obtain a small
V ′(φ). Taking into account the effects of the DBI action can only increase the number of
e-foldings. In the next two sections we will go beyond the slow roll approximation and
address the question, when does the D3-brane reach the tip and when does it get stuck
somewhere in the middle?

A final comment is in order. In the present model the shape of the potential is determined
by the F-term, while the Coulomb potential gives only relatively small corrections. These
corrections are relevant only in the fine tuned case of a flat inflection point. Even in
this case, the Coulomb potential dominates only around the inflection point where the
force exerted by the F-term is vanishing. We want to contrast this situation with another
expectation which is often found in the phenomenological brane inflationary literature
(see e.g. [84, 85, 86]). One could have wished to find a way to completely get rid of the
F-term effects and have an inflationary model based on a Coulomb potential of the type

V ∼ V0

(
1− 1

φ4

)
, (4.59)
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which have been widely studied (see e.g. [87, 84, 85, 86]). The result of the present inves-
tigation is that this is even harder to achieve that expected. For the class of embeddings
we studied, not even fine tuning allows us to cancel the F-term effects. We consider this
as an indication that in a generic model of brane inflation, the Coulomb attraction is
superfluous because the inflaton potential is determined by the F-term potential. This
observation is a strong motivation for the model we will propose in chapter 5.

4.6.3 Damped oscillatory phase

In this and the next section we study the problem of overshooting. We make the following
simplifying assumptions: we consider a homogeneous and isotropic universe so that the
4-dimensional Einstein equations reduce to the Friedmann equations (3.2); furthermore
we assume that all fields have been stabilized except for the inflation; finally we neglect
effects of the DBI action and approximate it by a canonical kinetic term as discussed
around (4.58).

Let us start considering the following potential

V = Λ +
1

2
m2(φ− φmin)

2 . (4.60)

The first Friedmann equation gives

H2 =
1

3M2
Pl

[
Λ +

1

2
m2(φ− φmin)

2 +
1

2
φ̇2

]
' Λ

3M2
Pl

. (4.61)

Therefore, the equation of motion can be approximated as

φ̈+

√
3Λ

MPl

φ̇+m2(φ− φmin) = 0 , (4.62)

where Λ � m2(φ − φmin)
2 can be achieved with an appropriate choice of Λ and m; the

consistency of neglecting φ̇2 in (4.61) will be checked at the end.

The equation of motion is the one for a harmonic oscillator with friction. There are three
types of solutions:

• Underdamped: M2
Plm

2 > 3Λ/4; this is the only case where the field actually oscil-
lates around the minimum. The amplitude is exponentially decreasing with a typical
time

√
3Λ/2MPl. If the field starts at φi at t = 0 with φ̇i = 0, we can estimate the

speed when it passes the first time through the minimum at t = tmin as

φ̇min = φ0e
−
√

3Λtmin/2MPl

[√
3Λ

MPl

− 2m2MPl√
3Λ

]
cos(tminω) , (4.63)

where ω2 = m2 − 3Λ/4M2
Pl, and φ0 ≡ φi − φmin is the distance from the starting

point to the minimum (see figure 4.4).
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Figure 4.4: The figure summarises our overshoot analysis. The continuos line is the actual
potential, the darker dashed line refers to the discussion of the damped oscillatory phase and
the lighter dashed line refers to the uphill phase.

• Critically damped and overdamped: M2
Plm

2 6 3Λ/4. There are no oscillations and
the field takes an infinite amount of time to reach the minimum (where φ̇ = 0).

The underdamping condition can be rewritten in terms of the slow-roll parameter η as
M2

Plm
2/Λ = η(φmin) > 3/4. A rough estimate gives |φ̇min| ∼ ηφ0

√
3Λ/MPl. Therefore

neglecting the kinetic term in the Friedmann equation (4.61) and using H2 ' Λ/3M2
Pl is

legitimate as long as η2φ2
i �M2

Pl.

We want to apply this analysis to our potential (4.58) in the case this exhibits a minimum
at φ = φmin. This could be the case for example if string theory does not allow for an
arbitrary fine tuning of the effective parameters C1, C3/2 and C2. Around φmin, the
potential can be approximated it with a harmonic oscillator V ' V ′′(φ − φmin)

2/2 (see
figure 4.4). We conclude that if η(φmin) < 3/4 the inflaton reaches the minimum φmin

only asymptotically in infinite time. There is no graceful exit from inflation as there
is no brane annihilation nor (damped) oscillations. The exponential expansion (with
cosmological constant V (φmin)) continues forever. On the contrary, if η(φmin) > 3/4, at
the minimum φ̇min 6= 0 and there is the possibility to climb up the maximum, overshoot it
and reach the tip of the throat where annihilation with the anti D3-brane will take place.
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4.6.4 Uphill inflation

In this section we study what happens when the inflaton rolls uphill. We will use our
results to address the issue of overshooting a possible hill in the potential (see e.g. figure
4.1). Obviously the field will roll just for a short distance ∆φ which depends on the initial
speed φ̇(0) that we take from the beginning to be φ̇min. Let us study the simple potential

V = Λ + cφ , (4.64)

where c is the positive slope. Under the simplifying assumption Λ � cφ, the solution to
the equation of motion is

φ(t)− φ(0) = ∆φ = −cMPl√
3Λ

t+

(
φ̇minMPl√

3Λ
+
cM2

Pl

3Λ

)(
1− e−

√
3Λt/MPl

)
. (4.65)

The term linear in t describes the constant speed rolling down that eventually dominates
over the exponentially decreasing term. If the field starts with a positive φ̇min, it will
climb up the hill for a distance

∆φ ' φ̇minMPl√
3Λ

− cM2
Pl

3Λ

[
1 + log

(√
3Λφ̇min

cMPl

)]
, (4.66)

in a time

∆t ' MPl√
3Λ

log

(
1 +

√
3Λφ̇min

cMPl

)
(4.67)

before it stops and starts rolling down again. The number of e-foldings therefore is
generically short unless the slope is exponentially small (if instead φ̇min is very large, then
H is no more well approximated by a constant).

We would like to emphasize that an uphill motion is never slow roll. Even if ε ' 0 = η,
when moving uphill φ̈ is always very large (the motion is hampered both by the slope
and by the Hubble friction) and can not be neglected. In fact the equation of motion is
genuinely of second order and the uphill phase depends critically on the initial condition
φ̇0. On the other hand, the downhill slow-roll motion is an attractor and the solution
eventually reaches it independently of φ̇min (of course if the potential is of the slow-roll
type).

We now have all the ingredients to address the question whether the inflaton will overshoot
the maximum. We describe the part of the potential before the minimum φ > φmin with
the damped oscillator of section 4.6.3 (see figure 4.4). The key result is (4.63), the speed
of the inflaton φ̇min when it reaches φmin. We then describe the uphill phase between
maximum and minimum as a straight line. The estimate may seem very rough, so let
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us comment on it: if we take the steepness of our straight line (c in (4.64)) to be the
maximum steepness reached by the potential V (φ) between φmax and φmin then we have
an upper bound. We show in the following that overshooting is possible in this extremel
case; we conclude therefore that this is true also for the less steep non-straight uphill
phase in the potential V (φ).

We use the result (4.63) as initial condition in (4.66). One can see that the time tmin in
(4.63) is always smaller than

√
3Λ/2M2

Pl so that, to get an order of magnitude estimate,
we can neglect the exponential in that formula. Neglecting also numerical factors we take

φ̇min ∼ φ0η
√

3Λ/MPl , (4.68)

where φ0 was the distance from the minimum of the initial position in the damped oscil-
latory phase of section 4.6.3. Substituting it into (4.66), we obtain

∆φ ∼ φ̇minMPl√
3Λ

∼ φ0η , (4.69)

where we have used cM2
Pl/3Λ � 1 which is generic for our potential. We conclude that

overshooting can happen, with η & 1 and a comfortably natural choice φ0 & ∆φ (also
an initial φ̇ 6= 0 at the beginning of the underdamped oscillatory phase will help to
overshoot). Typically, one does not obtain a large number of e-foldings, see (4.67). We
have to remember though that (4.67) is valid just when the uphill path is a straight line,
in our case instead there is maximum, where the slope vanishes.

As an aside we comment on the intriguing correlation between a small cosmological con-
stant and the underdamped oscillatory regime. A graceful exit from inflation typically
requires that the inflaton reaches a minimum and starts oscillating and decaying (brane
inflation is an interesting exception). In section 4.6.3 we have seen that the underdamped
regime, leading to oscillation around the minimum, requires η & 1. Equivalently, it re-
quires that the cosmological constant Λ is smaller than the inflaton mass m. Consider now
an inflaton protected by some symmetry that therefore acquires an extremely small mass
only from nonperturbative effects. Then an anthropic selection principle would apply: all
universes with Λ & m2M2

Pl would not have a graceful exit from inflation and would hence
be empty.

Summarizing, if the inflaton potential is just m2φ2, then anthropic arguments lead to
an upper bound for the cosmological constant of order Λ . m2M2

Pl. An extremely small
inflaton mass might then explain the presence of a comparably small cosmological constant
which may be responsible for today’s measured cosmic accelerated expansion.

It would be interesting to study the features of a potential like (4.58). A preliminary
observation is that, if an uphill phase is present, a largely non scale-invariant spectrum is
produced. The spectral index during the uphill motion is given by

ns − 1 ≡ d log δφ
d log k

' − φ̇

H2
− 1

H
∂t

(
log

φ̇

H2

)
, (4.70)
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where the quantities on the right side have to be calculated at the time of horizon crossing.
After some massage and using the Friedmann equations we obtain

ns − 1 ' 4 +
c

Hφ̇
− φ̇

H2
+

Ḣ

H2
. (4.71)

The various terms do not cancel as it happens in the slow-roll regime; the reason can
be traced back to the fact that φ̈ is not small in this case. Per se, the absence of scale-
invariance is not a problem if the perturbations produced during the uphill phase are not
those responsible for the CMB inhomogeneities, e.g. if the uphill phase takes place before
or after 60 e-foldings prior to the end of inflation. These issues certainly deserve further
study.

4.7 Nice upliftings

In the present chapter we have explicitly constructed a model where the interplay between
moduli stabilization effects and threeshold corrections can produce a flat enough potential
suitable for inflation. As we mentioned in section 4.1, there is another possibility to cure
the η-problem of subsection 4.3, i.e. use the inflaton dependence of the uplifting term to
cancel the inflaton mass. We will not study in full details this alternative but we will
explain the main idea and propose how it could be realized explicitly.

The setup of this section is therefore different from the one in the rest of the chapter.
We will use a simplified notation which makes it easier to capture the features of the
mechanism we are proposing. We consider a generalization of the KKLMMT model [65]
reviewed in section 4.3 where the uplifting (4.19) has an a priori generic scaling b. We
show that for a certain class of upliftings it is possible, allowing for fine tuning, to cancel
the large mass of the inflaton that makes η large and prevents slow-roll inflation.

Consider the potential

V (φ) = −|VF |
U2

+
D̃

U b
, (4.72)

where8 U = 1 − φ2/(6M2
Pl), the uplifting has a general U dependence (and therefore

inflaton dependence) parameterized by b and VKKLT is similar to the KKLT [20] potential
(2.36) but we have factorized out the inflaton dependence. Up to an overall factor

V (φ) = − 1

U2
+
D

U b
. (4.73)

8Note that this definition is different from the one we used before in the rest of the chapter. The volume
modulus τ has already been stabilized. Here the quantities VKKLT , D and U differ from the ones in
the rest of this chapter just by some factor that is unimportant for the discussion in this appendix.
Also remember that the φ2 term in U comes from the Kähler potential of the deformed conifold k
that, far away from the tip, is k = r2 as in the singular case. See appendix B.4 for more details.
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Expanding for small φ we get

V (φ) ' −1 +D +

(
−1

3
+

1

6
Db

)
φ2

M2
Pl

+ . . . . (4.74)

It is clear that the mass term for the inflaton can be made vanishing with an appropriate
choice of the uplifting. The requirement is Db = 2. The condition for a de Sitter vacuum
is D & 1 (up to terms of order φ2). An uplifting with b < 2 allows to cancel at the same
time the inflaton mass and uplift the AdS vacuum to a de Sitter one. In this minimal
setup it is amusing to see that the cosmological constant is related to the mass of the
inflaton. With respect to KKLMMT (see e.g. [84]), this reduces by one the number of
string parameters that we need to fix by experiment. If, e.g. b is very close to 2 but
strictly smaller, then a small cosmological constant is equivalent to a small inflaton mass.

Unfortunately there is no well understood uplifting mechanism with b < 2. An anti D3-
brane gives an uplifting that scales as U−3. This generalizes for a Dp-brane wrapping a
p− 3 cycle to U

p−15
4 [88]. If the cycle wrapped by the Dp-brane is at the tip of a warped

throat, then the warp factor gives an additional U factor. In KKLT for example, the anti
D3-brane produces an uplifting term U−2 as in (2.39). It would be intersting to study the
configuration in which, e.g. a D5-brane wraps a nonvanishing two cycle at the tip of the
throat9 leading to b = 3/2.

4.7.1 Nice downliftings

In this section, we propose a variation on the theme of nice upliftings that we call nice
downliftings. The advantage with respect to the nice upliftings is that with this mechanism
we do not need any uplifting with b < 2. The price to pay is that now we require at least
two uplifting terms, and one of them has to be negative. Consider the following potential

V (φ) = − 1

U2
+
D1

U b1
− D2

U b2
(4.75)

= D1 −D2 − 1 +

(
−1

3
+

1

6
D1b1 −

1

6
D2b2

)
φ2 + . . . . (4.76)

where D1, D2 > 0 and we neglect irrelevant factors. Then, to cancel the inflaton mass
one has to require

m2
φ = 0 ⇒ D1 =

2 +D2b2
b1

V > 0 ⇒ D1 > D2 + 1 . (4.77)

9it is not necessary that it is a topologically non-trivial cycle but it could also be a metastable configu-
ration, e.g. [89, 25].
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A simple example is b1 = 2, b2 = 3, then by fine tuning D1 = 1 + D23/2, the inflaton
mass becomes zero. It would be intersting to construct an explicit model that produces
such “downliftings”. Once we fine tune the parameters such that the quadratic term in
φ becomes small, the quartic term has to be taken into account in the analysis. This
term is not independent of the mass term and the overall potential is phenomenologically
interesting.

We conclude this section with a remark: the nice uplifting scenario overcomes the η-
problem of section 4.3 by allowing for fine tuning. This is not the most satisfactory
solution because one wishes inflation was a generic prediction of the fundamental theory
and not just an unprobable accident. Nevertheless, it would be interesting to study this
kind of models to be able to explicitly quantify the required fine tuning. A naive, a priori
(i.e. not based on any explicit setup) estimate of the required fine tuning might come out
to be wrong in some explicit cases. An example is exactly what we have studied in the
present chapter: a priori, it seemed quite reasonable to expect that it is possible to cancel
the inflaton mass using the threshold corrections to the nonperturbative superpotential.
But we have shown that[64, 66, 68], for two large classes of supersymmetric D7-brane
embeddings, this is not possible for a wide range of inflaton values10.

4.8 A summary on radial brane inflation

Motivated by possible cosmological applications, we have studied the potential felt by a
D3-brane in a warped conifold in the presence of a supersymmetrically embedded D7-
brane and an anti D3-brane sitting at the tip of the cone. The potential contains three
terms: VKKLT, an uplifting term Vup, and ∆V , the latter arising when threshold correc-
tions to the nonperturbative superpotential are taken into account. We have provided
general formulae for the extremization of this potential in the angular and Kähler mod-
ulus directions. Once those moduli settle down at their minimum, we are left with an
effective potential V (φ) for the canonically normalized radial D3-brane coordinate φ.

We have studied the possibility to flatten V (φ) by fine-tuning, such that slow-roll D-
brane inflation can be embedded into a type IIB string-theory compactification with all
the moduli fixed except the inflaton candidate. We have carried out a detailed analysis
for two specific classes of supersymmetric D7-brane embeddings. In the throat (for small
φ), ∆V has a linear term in φ and otherwise depends on φ only via integer powers of φ3/2,
whereas VKKLT and Vup contain terms proportional to φ2. This means that the potential
can be made flat only for a small range of φ. Allowing for fine tuning, a flat inflection
point can be generated. In this case the D3-brane dynamics sustains a prolonged stage
of slow-roll inflation.

10It might of course be that other, not yet studied embeddings are suitable for the purpose.
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As we do not exactly know how much fine tuning in the effective parameters can be
achieved by varying the discrete string theory parameters, we have also considered the
issue of when, for a generic (non fine tuned) shape of the potential, the D3-brane can fall
all the way down into the throat where it annihilates with the anti D3-brane.

The analysis of this chapter has taught us an important lesson that will motivate the con-
struction of the model in the next chapter. The Coulomb attraction, which was supposed
to drive brane inflation, is generically overwhelmed by the stronger forces generated from
the F-term potential. Even in fine tuned cases, where the potential presents a flat region
around an inflection point, one needs to take into account, at the same time, the Coulomb
and the F-term potential. This means that the analyzes based on the simple brane-anti
brane potential have to be reviewed if the brane system is embedded into a bona fide
string compactification.

More importantly, we have learnt that a brane inflationary model driven by the Coulomb
potential is even more difficult to construct than expected. This is because it is very hard
to get rid of the strong moduli stabilization effects that generically dominate the dynamics
of the inflating D3-brane. Therefore, it seems to be more natural that brane inflation,
when it takes place, is driven by the omnipresent moduli stabilization force, which makes
the presence of the anti brane superfluous. This is the idea we pursue in the next chapter
where we construct a phenomenologically successful model of brane inflation without any
anti D3-brane.

A comment on possible further corrections is in order. Quantum corrections, from loop or
α′ effects, are generically subleading in the KKLT stabilization scenario, the reason being
a very small W0 (see section 6.2). But the force exerted by the effective potential V (φ) on
the inflaton is hierarchically weaker than the one responsible for the stabilization of the
closed string moduli (that is why we can talk about an effective V (r) in the first place).
Therefore, we expect that that quantum corrections will have sizable effects on warped
brane inflation scenarios analyzed here. This issue could be addressed along the lines of
[90, 91, 92]. We will not do this in the present work. On the other hand, in chapter 6 we
pursue a very similar goal, i.e. investigate the effects of quantum corrections with respect
to the tree level analysis, for a particle physics model instead of for an inflationary one.



5 Angular brane inflation

The material presented in this chapter is mainly based on [57]. We introduce and study a
new model of brane inflation based on the motion of a (spacetime-filling) D3-brane on the
tip of a warped deformed conifold looking for inflationary trajectories. Figure 5.1 gives a
cartoon of the model.

The chapter is organized as follows. In section 5.1 we give some motivations to investigate
such a model and confront it with the model of the last chapter. After describing in section
5.2 the general features of inflation at the tip, in section 5.3 we set the stage and calculate
the scalar potential for a generic D7 embedding. In section 5.4 we specify the embedding
and find an explicit potential; we discuss the stabilization of the other moduli (Kähler
modulus and radial displacement) and introduce the uplifting. The final result of this first
part is the potential appearing in (5.19). This is the starting point for the inflationary
analysis of section 5.5; we consider both the slow-roll and the DBI regimes. In section 5.6
we generalize our analysis of DBI inflation, we present a no go result and describe how
to evade it. Finally, we give a summary of angular brane inflation. We collect several
technical details in the appendix C.

5.1 Motivations

In this section we want to critically discuss several features of the brane inflation model
considered in the last chapter to see what can be improved and how. Eventually we will
propose (and study in the rest of the present chapter) a new model of brane inflation [57]
that we will call, for reasons that will become obvious, inflation at the tip. Our starting
point is again the idea that inflation could be driven by a scalar field representing the
position of a spacetime-filling D3-brane [49] in the compact manifold; our considerations
will be restricted to the framework of type IIB flux compactifications reviewed in chapter
2.

In the radial model of the last chapter, one of the key elements is an anti D3-brane which
sits at the tip of a warped throat. It plays a threefold role: it produces a Coulomb
term in the inflaton potential, it annihilates with the inflating D3-brane providing a
reheating mechanism1 and, finally, it breaks supersymmetry and can provide an effective

1Actually the tachyon condensation driving the annihilation process might as well be responsible for
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4-dimensional de Sitter (or Minkowski) space. Let us separately analyze these issues and
emphasize the available alternatives.

1. Without an anti D3-brane, a different mechanism from brane annihilation has to be
responsible for reheating. Although we do not address this issue here, we would like
to make a few remarks. One of the original motivations for brane inflation [49] was
to obtain an efficient reheating mechanism; the interesting feature of brane brane
collision (contrary to annihilation) is that after the collision the kinetic energy of the
relative motion is almost entirely transferred into modes living on the newly created
stack of branes and the creation of bulk (Kaluza Klein) modes is negligible. The
process of brane collision has been carefully studied in [93, 94] and this expectation
has been confirmed. On the other hand, a thorough phenomenological analysis of
this reheating mechanism has not yet been performed. It would be very interesting
to have a quantitative estimate of the efficiency of this reheating process. In this
chapter we propose a model, inflation at the tip, where a possibility for the end of
inflation is precisely the collision of several D3-branes (in the common minimum
of the potential); the above reheating mechanism (to which we will refer as “brane
trapping”) would hence be naturally embedded.

2. In addition to the original anti D3-brane at the tip of a warped throat [20], sev-
eral other mechanisms have been proposed to break supersymmetry and uplift the
effective 4-dimensional AdS vacuum to a dS one. We will therefore try to keep
our analysis as general as possible, without specifying the uplifting mechanism. We
will find at the end that some constraints on the scaling of the uplifting are indeed
present.

In the model described in the last chapter, (and in most models based on [65]), the D3-
brane motion takes place along the radial direction of a warped conifold. We have seen
in the discussion of the η-problem (in section 4.3) that the radial position is typically a
direction too steep for slow-roll inflation. The reason is that the radial position turns out
to be a conformally coupled scalar in the 4-dimensional effective action. This motivates
the study of the angular motion2. In [75] for example, the possibility of slow-roll inflation
for a pair of a D3-brane and an anti D3-brane at the tip, i.e. separated only in the angular
directions, was considered. The authors found a negative result that a posteriori can be
understood as follows. The brane-anti brane separation is bounded from above by the
size of the tip that is extremely small. The Coulomb potential becomes very steep for
small brane separation which makes slow-roll inflation impossible. When the potential is

graceful exit from inflation. This is very model dependent. E.g. in the setup analyzed in [85, 86], it
was found that the CMB data prefer the end of inflation due to the failure of the slow-roll conditions
rather than due to tachyon condensation.

2Works who studied inflation driven by an exclusively angular motion of branes are [89, 25, 75], who
found a negative result. In [95, 96, 97, 98] and [99, 100, 101, 102], the cosmological implications of a
combined angular and radial motion were considered.
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induced exclusively by moduli stabilization it depends crucially on the compactification
(and it is not “universal” as the Coulomb potential) and can therefore be made flat with
an appropriate choice of the parameters (if and when this requires fine tuning will be
discussed further in the chapter).

A final point on which we want to comment is the DBI action. For the phenomenological
study of the model in the last section, we approximated the DBI kinetic term with a
canonically normalized one. This is a good approximation as long as the speed of the
inflaton and/or the warping are not too large. If inflation takes place close to the tip of
a warped deformed conifold the warping is much larger than in the middle of the throat,
which is the region interesting for the radial brane inflation model of chapter 4. Hence,
for inflation at the tip, the DBI kinetic term can more easily become relevant and the
interesting effects of DBI inflation can be obtained.

The idea of DBI inflation [50, 51] is that, although the inflaton potential is not flat (in
the slow-roll sense), inflation can nevertheless last long enough because the DBI kinetic
term is very different from the canonical one (when the warping and/or the speed of the
inflaton are large) and it imposes an upper bound on the inflaton speed. The DBI kinetic
term is determined by the warp factor that, for the warped conifold, is a function of the
radial position. If the motion takes place along the angular directions, at constant radius,
as in inflation at the tip, the warp factor is constant. In a certain sense, this gives the
simplest DBI kinetic term possible, which makes the inflationary analysis particularly
easy. In fact, in section 5.5.3, we will study analytically a DBI model with a potential
like in Natural Inflation [103, 104]. This will lead to the interesting observation that the
phenomenological constraint that the axion decay constant has to take superplanckian
values is relaxed in presence of a DBI kinetic term.

5.2 Inflation at the tip

In the rest of the chapter we will see how all the issues we have mentioned in the last
section can be addressed in a new interesting way. In particular we propose a study a
specific model that we will call inflation at the tip.

This model (schematically depicted in figure 5.1) consists of a spacetime-filling D3-brane
moving along the tip of a warped deformed conifold which is an S3. The potential depends
on three scalar fields (the three angles of S3) and the overall volume. It is generated by the
F-term which is determined by the supersymmetric embedding of a stack of spacetime-
filling D7-branes. The choice of a particularly symmetric D7-brane embedding gives rise
to a very simple scalar potential. In different regions of the parameter space this potential
induces different cosmological evolutions. For example, we will show in subsection 5.4.1
that a quite general choice of parameters leads to the Natural Inflation potential; in some
fine tuned regions one can also obtain some kind of hilltop potential. Given the simplicity
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Figure 5.1: A cartoon of inflation at the tip, where we zoom in close to the tip of the warped
throat: the simplest model has just one D3-brane and a very symmetric D7-brane embedding.

of the potentials we find, we do not need to rely on numerical methods for the inflationary
analysis and also for the DBI inflation important results can be obtained analytically.

First we look for slow-roll inflation, i.e. we neglect the DBI corrections to the canonical
kinetic term. We find that, fine tuning stringy parameters, the potential can be made flat
enough. Phenomenologically, this corresponds to a model of the hilltop type [105, 106],
with ns ' 0.94, negligible tensor modes and an adjustable scale of inflation Λ1/4 ∼ d×10−3

where d is given in (5.29) and is generically subplanckian. In light of our discussion in
chapter 3, we conclude that inflation at the tip is a successful inflationary model.

We look as well at the DBI regime but we can not find a totally successful model in the
simplest setup. In fact, we show in section 5.5.3 that DBI inflation can produce the right
perturbations (with interesting non-Gaussianity signature) but not enough e-foldings.
Then we argue that, considering more generic embeddings (as depicted in figure 5.7), one
can obtain a viable inflationary model in which DBI and slow-roll phases alternate. For
example the perturbations can be produced in the DBI regime, while the rest of the 60
observable e-foldings take place in the slow-roll regime. We leave a detailed study of these
DBI–slow-roll alternating models for future work.
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5.3 F-term potential for a D3-brane at the tip

In this and the next section we start our study of the inflation at the tip introduced in
the last section. We calculate the potential for a single D3-brane moving along the tip
of a warped deformed conifold [107] (reviewed in appendix A) in the framework of type
IIB flux compactifications (introduced in chapter 2). In this section we set the stage and
obtain the general result (5.10) for the potential. In section 5.4 we consider a simple
embedding and obtain the more explicit result (5.19).

Our starting point is similar to the one of chapter 4. We consider type IIB string theory
compactified on a Calabi-Yau threefold; following [20] (reviewed in section 2.6), we assume
that the complex structure moduli and the dilaton have been stabilized by fluxes [8] at
a scale hierarchically higher than the scale of inflation. We again make the simplifying
assumption that there is only one Kähler modulus T . The N = 1 supergravity scalar
potential was given in (4.10) and the Kähler potential K [80] in (4.11).

We assume that a warped throat [107] is present such that, deep inside it, k is well
approximated by the Kähler potential of the deformed conifold. In the last chapter we
considered the region of the throat far away from the tip, where the deformed conifold
asymptotes the singular conifold. On the other hand, we will now focus on the tip and
hence we can not ignore the deformation anymore (see appendix A).

The conifold is defined by3 the following hypersurface in C4

4∑
A=1

(zA)2 = ε2 , (5.1)

and its tip by

4∑
A=1

|zA|2 = ε2 . (5.2)

Putting these equations together and writing them in terms of zA = xA + iyA, with
A = 1, . . . , 4, one finds that the tip is an S3 embedded in a real slicing of the zA complex
coordinates

tip :
4∑

A=1

x2
A = ε2 , yA = 0 . (5.3)

Close to the tip, the Kähler potential of the deformed conifold takes the form [108, 75]

k(z, z) = k0 + cε−2/3

(
4∑

A=1

|zA|2 − ε2

)
, (5.4)

3Note that here we use another set of coordinates for the conifold as compared to the one used in chapter
4. The relation is given in (A.3) of appendix A.
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where c = 21/6

31/3 ' 0.77. Hence, at the tip k(z, z) is just a constant; this implies that

U = T + T − γk0 does not depend on the position of the D3-brane on the tip. This is a
crucial difference with respect to radial brane inflation models (as the one of chapter 4)
because in that case k ∝ r2 ∝ φ2 (or k ∝ r3 ∝ φ3 for the region close to the tip) and this is
the origin of the η-problem of section 4.3. In other words, contrary to the radial position,
the angular position does not correspond to a conformally coupled scalar in 4-dimensions.

Only three of the four zA are independent and should express the fourth of them as a
function of the other coordinates. After doing this, one can verify [75] that at the tip k
is stationary in all directions, i.e. ∂zAk = 0. Thanks to this property, the Kähler metric
and its inverse [66], evaluated at the tip, take a simple block diagonal form:

GIJ =
3

κ2U2

(
1 −γk

−γki Uγki + γ2kik

)
=

3

U2κ2

(
1 0
0 Uγki

)
(5.5)

GIJ =
κ2U

3

(
U + γklk

lhkh klk
lj

kılkl γ−1kıj

)
=
κ2U

3

(
U 0
0 γ−1kıj

)
, (5.6)

where i and j run on three of the four zA. Choosing z1, z2, z3 as independent coordinates
and z2

4 = ε2 −
∑3

i=1 z
2
i , from (5.4) we obtain

ki = c
ε2/3

(
δi +

zizj

|z4|2

)
−→ ki = c

ε2/3

(
δi +

xixj

ε2−
P
x2

h

)
at the tip

kıj = ε2/3

c

(
δıj − zizjP

|zA|2

)
−→ kıj = ε2/3

c

(
δıj − xixj

ε2

)
,

where on the right side we used that zA = zA = xA, at the tip.

The superpotential, in light of the discussion of section 4.2, is given in (4.3):

W = W0 + A0 g(z)
1/n e−aT , (5.7)

where, as before, W0 and A0 are (after integrating out the dilaton and the complex
structure moduli) treated as constants and g(z) is the embedding function defining the
cycle Σ where the physics responsible for the non-perturbative corrections lives.

The F-term potential (4.10) for K given in (4.11), using (5.5) and (5.6), takes the form

VF =
κ2

4

3U2

[
U |W,T |2 − 3(WW,T + c.c.) +

1

γ
kijW ,iW,j

]
. (5.8)

For the superpotential in (4.3), this becomes

VF =
κ2

4

3U2

[ (
Ua2 + 6a

)
|A|2e−a(T+T ) + 3a(W0Ae

−aT + c.c.) (5.9)

+
1

γ
kıjA,ıA,je

−a(T+T )

]
.
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The minimization of the axion works as in subsection 4.4.1 (see e.g. [64]), leading to the
final result

VF = VKKLT + ∆V

=
κ2

42a|A|e−aτ

U2

(
1

6
aU |A|e−aτ + |A|e−aτ − |W0|

)
(5.10)

+
κ2

4e
−2aτ

3U2γ
kıjA,ıA,j .

We would like to stress that this form of the potential is valid only for the D3-brane at the
tip, where the Kähler metric (5.6) is block diagonal. In this case the potential depends
on the variables τ, x1, x2, x3. For a generic position, e.g. in the middle of the throat, the
expression would be much more complicated. In [75], the supersymmetric vacua of this
potential were studied solving DIW = 0 for two classes of embeddings. Depending on the
choice of the embedding, the set of supersymmetric vacua can be either empty, a point,
one- or two-dimensional.

The symmetries of the problem give us an important insight. With Wnp set to zero,
the F-term potential for a D3-brane is constant because of the no-scale structure. Non-
perturbative corrections break the no-scale structure and induce a non-trivial potential
for the D3-brane. On the other hand, as long as we ignore threshold corrections, i.e. we
consider A as a constant in (4.3), the angular directions at the tip (where k = k0) are still
flat directions. In other words, the the F-term potential enjoys an SO(4) symmetry acting
on the coordinates zA = xA, i.e. the isometry group of S3. Threshold corrections to the
non-perturbative break this symmetry via the embedding function g(z). An appropriate
choice of g(z) can lead to a very symmetric and simple potential V . In the next section we
provide an explicit example of this where g(z) breaks SO(4) to SO(3) and the potential
V depends on the D3-brane position zA = xA only via a single real field φ. In section 5.6
we comment on the implications of a generic g(z).

5.4 Kuperstein embeddings

We now calculate the potential in (5.10) for a class of particularly symmetric embeddings.
We also review the result of the radial stabilization (performed in appendix C.2) that
guaranties that the D3-brane at the tip is at a local minimum in the radial direction. Our
final result is (5.19) (valid for large volume and when ε/µ � 1, i.e. when the D7-branes
are not too close to the tip), which will be the starting point for the inflationary analysis
of section 5.5.

As we already said, the tip of the deformed conifold is an S3 which can be described as the
real slicing of the zA coordinates plus the constraint (5.3). The SO(4) symmetry of S3,
acting naturally on x1, x2, x3, x4, is broken once a certain embedding function g (defining
the divisor Σ where the stack of D7-branes is wrapped) is chosen.
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Figure 5.2: The figure describes the geometrical meaning of the parameters µ, i.e. the distance
of the stack of D7-branes to the tip, and ε, i.e. the size of the tip.

We have already introduced, in section 4.5, two families of supersymmetric D7 embed-
dings. Here we concentrate on the Kuperstein embeddings [73] defined in (4.5). For
a generic g̃(x) these embeddings preserve an SO(2) subgroup of the SO(4) symmetry,
corresponding to rotations in the z2 − z3 plane.

For this family of embeddings, the first term in the potential, VKKLT is easily calculated
substituting A = A0g(x)

1/n in (5.10). For the term ∆V , a straightforward calculation
using (5.7) leads to

∆V =
κ2

4|A(x)|2e−2aτε2/3

3cn2U2γ|g̃ − x1|2
·
[
1− x2

1

ε2
+ 4x23 g̃

′2
(
1− x23

ε2

)
+ 4g̃′

x23x1

ε2

]
, (5.11)

where the prime indicates derivative with respect to z23.

5.4.1 A simple case

For certain choices of g̃, the potential can exhibit very flat regions (e.g. flat inflection
points); the difficulty is that multi-field inflaton analysis is in general required. In section
5.6 we will further comment on a generic g̃, but a thorough analysis is left for future
investigation. On the contrary in the following, we will study a particular symmetric
embedding that leads to single-field inflation. As we did in section 4.5.2, here we focus
again on the simplest case when g̃(z23) = µ in (4.5) and, without lost of generality, we
take µ to be real and positive. Again, by rescaling A0 (by a factor µ1/n), we can take
the Kuperstein embedding as in (4.51). An advantage of this choice is explained by the
following consideration. As depicted in figure 5.2, the parameter µ denotes the deepest
radius reached by the stack of D7-branes rD7 = µ2/3. We are interested in the case where
the D7-branes do not reach close to the tip, such that ε/µ � 1 is a good expansion
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parameter. With the rescaled embedding (4.51), we have then A(z) = A0 + O(ε/µ),
i.e. the threshold corrections give rise to terms in Wnp suppressed by ε/µ.

Written out explicitly, the non-perturbative superpotential is

Wnp = A(z)e−aT = A0

(
1− z1

µ

)1/n

e−aT . (5.12)

As g(z) = g(z1), the SO(4) symmetry of the potential is broken to SO(3) that acts
naturally on z2, z3, z4. Using (5.12), the potential (5.10) becomes

VKKLT =
κ2

42ae
−aτ

U2

[
1

6
aU |A(x1)|2e−aτ + |A(x1)|2e−aτ − |W0A(x1)|

]
(5.13)

∆V =
κ2

4e
−2aτ

3U2γ
k11A(x1),1A(x1),1 (5.14)

=
κ2

4|A(x1)|2e−2aτ

3cn2µ2U2γ
ε2/3

(
1− x2

1

ε2

)(
1− x1

µ

)−2

,

and depends only on two real variables, τ and x1. Thanks to the SO(3) symmetry, two
of the three independent coordinates xi with i = 1, 2, 3 are flat directions of the scalar
potential, i.e. x2 and x3. Some effects, such as for example corrections from the bulk4,
will eventually stabilize these directions. In the inflationary analysis of section 5.5 we
will therefore assume that the D3-brane starts and stays at a minimum in the x2 and
x3 directions and moves only along x1. This technical assumption is almost ubiquitous
in the brane inflation literature. We used it as well in chapter 4 to neglect the angular
directions and focus on the radial motion. The effects of these “flat” directions can be
investigated in a second step, once a successful model of inflation is found.

In principle, the kinetic term Ki∂zi∂zj mixes all the zi’s. For our case, a more convenient
parameterization of the S3 is

z1 = x1 = ε cosφ , z2 = x2 = ε cosφ sinψ sin θ ,
z3 = x3 = ε sinφ sinψ sin θ , z4 = x4 = ε cos θ sinψ ,

where φ runs from 0 to π. This choice leads to the diagonal metric

ds2 = cε4/3
[
dφ2 + sin2 φ(dθ2 + sin2 θdψ2)

]
. (5.15)

In these new coordinates, the potential in (5.13) and (5.14) is just a function of τ and φ
and the kinetic term is diagonal.

4Notice that, as argued in [75], bulk effects are in general subleading with respect to the potential we
are considering here. They are important only when the potential has a completely flat direction, as
it is the case for the x2 and x3 directions.
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We write now the potential in these new coordinates. We expand VKKLT and ∆V for
ε/µ� 1:

VKKLT ' 2κ2
4|A0|ae−aτ

U2

(
1

6
|A0|aUe−aτ + |A0|e−aτ − |W0|

)
+

2κ2
4ε|A0|ae−aτ

U2nµ

(
1

3
|A0|aUe−aτ + 2|A0|e−aτ − |W0|

)
cosφ+ . . .

∆V ' κ2
4|A0|2e−2aτε2/3

3cn2µ2U2γ
sin2 φ+ . . . , (5.16)

We know from section 2.6, that the first term in (5.16), gives rise to an AdS minimum [20]
(that can be trusted for small W0) and that the other terms are suppressed with respect
to the first by a factor ε/(nµ) and ε2/3/(nµ)2, respectively. Hence if we want to have
inflation we need an uplifting. In chapter 4, we chose for concreteness an anti D3-brane
at the tip of the warped throat. As we mentioned, this is not the only possibility.

There are several alternatives in the literature, that can be divided into two groups: D-
term [81, 109, 110, 111, 112, 113, 114, 115, 116] or F-term upliftings [82, 117, 118, 119, 120,
121, 122, 123, 124, 125, 126, 83]. To keep our analysis general, following our discussion in
section 5.1, we will assume in the sequel that a term

Vup =
D

U b
(5.17)

is present, without specifying its origin. For the moment D and b are arbitrary positive
numbers (the former has the dimension of an energy density, the latter is dimensionless).
This is analogous to what we did when we discussed nice upliftings in section 4.7.

For inflation at the tip, we will see in section 5.4.2 and in appendix C.2 that the concrete
value of b is very important to ensure the radial stability of the D-brane, i.e. that the
D-brane at the tip is at a local minimum in the radial direction. In addition, D has to
be such that the cosmological constant at the end of inflation is very small (see section
2.6). Notice that Vup does not depend on the D3-brane position at the tip, contrary to
the radial brane inflation case where the radial dependence of Vup can even be used to
flatten the potential as we saw in section 4.7.

Putting all the ingredients together, the scalar potential takes the form

V (τ, φ) = Vup + VKKLT + ∆V

' Λ(τ) +B(τ) cosφ+ C(τ) sin2 φ+ . . . , (5.18)

where Λ, B and C are positive, with the dimension of a (mass)4 and can be obtained
comparing (5.18) with (5.16); the subleading terms are suppressed at least by a factor
ε/µ. The potential (5.18) depends on two real variables τ and φ, but the former gets a
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much larger mass than the latter and we can integrate it out. As we show in appendix
C.1, the minimum τcr(φ) in the τ direction has a very mild dependence on φ. In fact,
calculating V (τcr(φ), φ) this dependence produces terms of the same order as those that
we have neglected in (5.18). We are therefore allowed to substitute τ ' τcr in Λ, B and
C and study the single-field potential

V (φ) ' Λ +B cosφ+ C sin2 φ+ . . . . (5.19)

Notice that this is very different from the radial brane inflation case. There we showed
that the inflaton dependence of τcr has to be taken into account correctly; in fact, it
changes even qualitatively the shape of the inflaton potential, as can be seen in figure
4.2). The reason for this difference is that the Kähler potential depends on the radial
position (see e.g. (B.23) and (B.24)) but not on the angular position at the tip (see (5.4)).

It is important now to determine the relative size of the three coefficients above. To do
this we need to know the value of τcr. Analogously to chapter 4 (see also appendix C.1),
a useful reparameterization of D and W0 is

W0 = −A0e
−aτ0

[
1 +

1

3
a(2τ0 − k0)

]
, (5.20)

D = β
1

3
|A0|2a2e−2aτ0(2τ0 − k0)

b−1 . (5.21)

Then, at leading order, the minimum of the volume is (compare with (4.30) and (B.12)
in the radial brane inflation case)

τcr(φ) ' τ0 +
b

2

β

a2τ0
+

ε

aµn
cosφ+

ε2/3

2ca3n2µ2τ0γ
sin2 φ + . . . (5.22)

Substituting W0, D and τcr into Λ, B and C obtained from (5.16), and neglecting terms
subleading in the ε/µ and large volume expansion, we are left with

Λ ' κ2
4|A0|2a2e−2aτ0

6τ0

[
(β − 1)− b2β2

4(aτ0)2
+ . . .

]
(5.23)

B ' κ2
4|A0|2ae−2aτ0ε

6nµτ 2
0

[
(bβ − 3) +

bβ(14− 3bβ)

4aτ0
+ . . .

]
(5.24)

C ' κ2
4|A0|2e−2aτ0ε2/3

12cn2µ2γτ 2
0

+ . . . . (5.25)

We will see in the following that we want to take β so that the cosmological constant after
inflation is negligible. This implies (β − 1) = O(τ−2

0 ). Then, from the above equations,
it is clear that some subtleties arise in the case b = 3 because then the factor (bβ − 3)
introduces an additional suppression that is not taken into account by the ε/µ and large
volume expansion. On the other hand, b = 3 is quite interesting because explicit uplifting
mechanisms exist with this scaling [81, 109, 110, 111, 112, 113, 114, 115, 116, 82, 117,
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118, 119, 120, 121, 122, 123, 124, 125, 126, 83]. A part from the anti D3-brane at the
tip of a warped throat that scales with b = 2, we are not aware of any other explicit
model with b 6= 3; such scaling could be interpreted5 as if the physics responsible for the
susy-breaking were localized on a Dp-brane with p 6= 3. In this case the uplifting would
naively scale as U (p−15)/4. Other considerations about the role of the uplifting are given
in the next section, in section 4.7 and in appendix C.2.

In the following we will separately discuss the case b = 3 and b 6= 3. Let us compare B and
C to know which is the leading φ-dependent term. The result follows straightforwardly
from (5.24) and (5.25) remembering that (β − 1) = O(τ−2

0 ):

C � B ⇐⇒
{

(ancγµ)ε1/3 � 4
15
aτ0 for b = 3

(ancγµ)ε1/3 � 1 for b 6= 3 ,
(5.26)

i.e. in the above regimes C is negligible and V in (5.19) takes the form of the Natural
Inflation potential [103, 104]. We will see in the next section that in this regime slow-roll
inflation is impossible6. In section 5.5.3 we will study the DBI regime for the Natural
Inflation potential. On the other hand, there is an interesting case in which C is non-
negligible, i.e. the fine tuned case where C = B/2. As we will see in section 5.5.1, with
this choice the scalar potential supports slow-roll inflation. The fine tuning is achieved
when the inequality in (5.26) is fulfilled (in the case b = 3 or b 6= 3 respectively), modulo
a factor one half.

In what follows we estimate (ancγµ)3. This will tell us how generic the Natural Inflation
regime B � C (defined in (5.26)) is. In addition we will learn whether there is any
obstruction from the string theory point of view to achieve the fine tuning B = 2C.

From the definition of a, it follows an = 2π. The quantity µ2/3 indicates the small-
est radial value rµ reached by the stack of D7-branes (see figure 5.2). To be able to
trust the threshold corrections to the non-perturbative superpotential (4.2), rµ has to be
well inside the warped conifold. In the spirit of [127], the conifold geometry ceases to
be a good description of the compact manifold roughly when the warping h in the 10-
dimensional metric (4.6) becomes of order one. When the KS solution [107] is embedded
in a compact Calabi-Yau as in GKP [8], we get for the warp factor h(r) ' (R/r) where
R4 ≡ (27π/4)gsNα

′2. Hence an upper bound on µ is

µ < R3/2 =

(
27π

4
gsN

)3/8

. (5.27)

The parameter γ (defined in (4.11)) can be obtained by comparing the sugra with the
DBI action. The result is γ = τ0T3/(3M

2
Pl) [68]. Expressing it in string units we get

5We thank L. McAllister for suggesting this interpretation [88]. For some further comments, see section
4.7.

6As it will become clear in section 5.5.1 Natural Inflation can not be achieved because the axion decay
constant (that appears when we consider a canonically normalized kinetic term, see (5.29)) is always
small in Planck units
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γ = (2π)4gs/(6
√
τ0), where we have used7 V6 ∼ τ

3/2
0 . Putting all the ingredients together

we obtain

(aγµn)3 ∼ 1011 g
3
s(gsN)9/8

τ
3/2
0

(α′)−3/4 . (5.28)

For the choice of parameters {gs = 0.1, N = 104, τ0 = 100}, we get (anγcµ)3 ' 3 × 108.
In view of the conditions in (5.26), e.g. for b = 3, a value ε� 6× 10−8 allows to neglect
C in the potential. This value of ε corresponds to a warp factor at the tip h0 ∼ 2× 1019.
For such a moderately warped throat, we are therefore left with the Natural Inflation
potential [103, 104]. For fine tuned values of ε saturating this bound, the potential is
plotted in figure 5.4 and will be analyzed in section 5.5.2.

5.4.2 Radial stability

Until now we have calculated the dependence of the potential on the position of the D3-
brane at the tip. Before using this result to produce a stage of inflation, we have to check
that the radial direction r is not tachyonic, i.e. that if the D3-brane starts at the tip, it
will stay there. We leave the details of the calculation to the appendix C.2; here we state
and comment on the results.

We consider separately the case C � B, that, as we will see, can lead to DBI inflation, and
the case B = 2C that, allowing for fine tuning, leads to a phenomenologically successful
slow-roll inflation. The radial stability is determined by the sign of ∂rV evaluated at the
tip r = ε2/3.

From the fact that the k in (5.4) depends on r and from the discussion of section 4.7, it is
easy to envisage that the uplifting will play an important role in the radial minimization.
This is confirmed by the explicit calculation. In both cases C � B and 2C ' B, the
tip is a local minimum in the radial direction if the volume scaling b of the uplifting is
larger than or equal to 3. On the other hand, for b < 3 the radial stability depends on the
angular position. In this case, in some regions of the tip the radial derivative is positive,
in some others negative. To avoid this complication, in the following we just consider the
case in which an uplifting with b ≥ 3 is performed.

5.5 Inflationary analysis

For the inflationary analysis, it is easier to work with a canonically normalized inflaton
field:

φcan = ε2/3
√
T3cφ ≡ dφ . (5.29)

7We make this choice for the sake of simplicity; it is straightforward to generalize this estimate to the
case in which the volume of the Calabi-Yau manifold is larger than the volume of the conifold.
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Now the potential can be written in the form

V (φ) = Λ +B cos
φ

d
+ C sin2 φ

d
, (5.30)

where, to keep the notation simple, here and in the following we use again φ to indicate
φcan; Λ, B and C were defined in (5.23), (5.24) and (5.25). For the inflationary analysis,
we can think of Λ, B and C as some constants with the dimension of an energy density
that are determined in terms of stringy parameters.

If we want to be left with a vanishing or very small cosmological constant after inflation,
i.e. when φ ' πd, then we have to choose the uplifting in (5.30) such that Λ − B = 0.
Using (5.23) and (5.24), we can solve this equation for β. The solution can be expanded
in ε/µ and for large volume; the leading term is determined by Λ = 0 +O(ε/µ) because
B is suppressed by a factor ε/µ with respect to Λ. Hence, a zero consmological constant
requires β = 1 +O(ε/µ, 1/(aσ0)

2), i.e. β very close to one . Using Λ = B, the potential
becomes

V (φ) = Λ
(
1 + cos φ

d

)
+ C sin2 φ

d
, (5.31)

where 0 ≤ φ/d ≤ π. There are two interesting regimes to analyze: Λ � C and 2C ' Λ.
In the first case the potential reduces to the Natural Inflation potential [103, 104]

V (φ) = Λ

(
1 + cos

φ

d

)
. (5.32)

Originally this potential was derived for an axionic field, in which case the parameter d
is the axion decay constant; we sometimes borrow this terminology.

Notice that both in the regime Λ = B � C and Λ = B ' 2C our expansion in (5.16) is
still valid. The terms we neglected in the expansion of VKKLT and ∆V are suppressed by
a factor ε/µ. These subleading terms can become important close to the minimum of the
potential φ ' πd, where our leading order potential (5.31) approaches zero. Anyways,
when the D3-brane reaches that region, inflation is already over, therefore we do not
expect these corrections to have any influence on our analysis.

The potential (5.31) is the starting point for the phenomenological analysis of this section.
The kinetic term for φ (see (5.45)) comes from the DBI action (2.18). We will therefore
divide our analysis into two parts: first, we investigate in section 5.5.1 and 5.5.2 the
slow-roll regime in which the DBI kinetic term reduces to the canonical one, as we did
in chapter 4. Second, in section 5.5.3 we investigate the relativistic regime in which the
DBI action is responsible for a behavior very different from the slow-roll case.

The search for slow roll is in turn divided into two parts: first in section 5.5.1 we consider
(5.31) in the regime Λ � C which reduces to the Natural Inflation potential (5.32).
A thorough analysis of this potential with a canonical kinetic term has already been
performed in [103, 104]; we review the constraints on the only two parameters Λ and
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d imposed by the comparison with WMAP3 data (see figure (5.3)). Expressing Λ and
d in terms of stringy parameters we show that our model of Natural Inflation can not
fulfil the constraints. Basically, this is due to the impossibility of obtaining a large axion
decay constant in the string theory model. This fact is true also if one tries to use the
assisted inflation mechanism [63] considering the collective motion of many D3-branes
at the tip. These difficulties are similar to those found in the case of axionic N-flation
[128, 129, 130, 62, 46, 131].

The second part of the slow-roll analysis is in section 5.5.2, where we show that the
potential (5.31) in the fine tuned regime Λ ' 2C becomes very flat close to the top (see
figure 5.4). With this fine tuning, we can have a phenomenologically successful slow-roll
inflation with ns ' 0.94, negligible tensor modes and the scale of inflation (Λ)1/4 ∼
d× 10−3.

In section (5.5.3) we come to the DBI analysis. In this case the regime 2C ' Λ does not
possess additional interesting features. Therefore we limit our analysis to the potential
(5.32). As can be seen from the action in (5.45), the DBI kinetic term introduces a new
parameter: f (in string theory it is given by the warp factor times the D3-brane tension).
An interesting result is that with a DBI kinetic term, contrary to what happens with
a canonical one, the CMB data do not require a superplanckian value for d anymore.
This feature might be relevant for the task of embedding a phenomenologically successful
Natural Inflation into string theory.

The embedding of DBI Natural Inflation in string theory that we proposed in the last
section can not satisfy the phenomenological bounds on Λ, a and f . In section 5.6, we
prove that this is actually true for any potential at the tip provided that it satisfies the DBI
conditions (5.51) and (5.52) during the whole duration of inflation. The reason is that, if
the motion is exclusively relativistic (DBI regime), then inflation at the tip can not last
more than a few e-foldings, which is not enough to solve the initial condition problems of
section 3.2. This no-go result rules out a large class of potentials and gives us an important
criterion to look for a successful model: the potential needs to have, at least somewhere,
flat regions where instead of the DBI conditions, the slow-roll conditions are fulfilled.
For inflation at the tip, this kind of alternating potentials might arise, e.g. considering a
general Kuperstein embedding, i.e. a general g̃ in (4.5).

5.5.1 Slow-roll Natural Inflation

In this section we consider the inflaton action8

S = −
∫
d4x

√
−g
[
1

2
∂µφ∂µφ+ Λ

(
1 + cos

φ

d

)]
, (5.33)

8Notice that we are using the (−,+,+,+) convention for the metric.
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Figure 5.3: WMAP3 data and the predictions of natural inflation are shown in the ns−r plane.
The figure is taken from [103].

which is the one felt by a D3-brane moving at the tip of a warped deformed conifold
when a stack of D7-branes wraps a 4-cycle defined by the supersymmetric Kuperstein
embedding (4.5) with constant g̃ = µ and the volume is fixed à la KKLT. This form is
valid at leading order in the large volume and ε/µ expansion (i.e. when the D7-branes are
not too close to the tip). Also we are in the (large) region of the parameter space where
we can neglect the C term in (5.31). The effects of this term will be considered in the
next section.

The potential (5.33) was already studied in [103, 104]. The model successfully reproduces
WMAP3 data [29] if9 Λ ∼ mGUT and d > 0.7

√
8πMpl ' 3.5Mpl, as summarized in

figure 5.3. In this section we show that in the string model it is not possible to have a
superplanckian d. Hence, as regards slow-roll inflation, our model, in the regime Λ � C,
is not phenomenologically successful.

For d�MPl the natural inflation approximates the φ2 chaotic inflation; in fact the CMB
perturbations are produced close to φ ' πd where the two potentials are indistinguishable.
For d < MPl on the other hand, inflation has to start very close to the top of the potential
to get enough e-foldings. The problem is that at the top one has |η| ∼ (MPl/d)

2 & 1,
i.e. the slow-roll conditions are not satisfied. In the next section we will see how this
problem can be cured in a different regime (2C ' Λ) from the one considered in this
section (C � Λ) and allowing for fine tuning.

9As it is common in the string cosmology literature, we indicate with MPl the reduced Planck mass:
8πGN = M−2

Pl . To compare it with the Planck mass one has to multiply the latter with
√

8π ' 5.01.
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We now show that in the regime of validity of our stringy model, the constraint d & 3.5MPl

can not be satisfied. d = ε2/3
√
T3c appears because we work with a canonically normalized

inflaton field and it was introduced in (5.29). The assisted inflation idea [63] was used
for the first time in string brane inflation in [132] (for assisted axionic string inflation see
[128, 129, 130, 62, 46, 131]); it can also be naturally embedded in the present model of
inflation at the tip. In fact, if ND3 D3-branes are present at the tip, d gets multiplied by
a factor

√
ND3, which goes in the right direction to reproduce the CMB data. The details

of how to obtain this result are left to the appendix C.3.

We now look for a set of stringy parameters that lead to
√
ND3d > 3.5Mpl. Several

constraints are imposed by consistency. One comes from considering the backreaction of
the ND3 D3-branes on the deformed conifold geometry. For the warped deformed conifold
to be a solution of Einstein’s equations, the following 3-form fluxes have to be present

1

(2π)2α′

∫
A

F3 = M ,
1

(2π)2α′

∫
B

H3 = −K . (5.34)

This solution possesses K times M D3-brane charge. As long as the number ND3 of
D3-branes responsible for inflation is much smaller than the background D3 charge KM ,
we can neglect their backreaction on the geometry at leading order.

The requirement d
√
ND3 > 3.5Mpl leads to

ND3 > 15.8 ε−4/3
M2

pl

T3

. (5.35)

The D3-brane tension is as usual given by

T3 =
1

(2π)3gsα′2
. (5.36)

Here we have to consider the effect of the warping, i.e. that the string scale at the tip of
the throat is Msa0 with a0 = ε2/3/(gsMα′)1/2 the warp factor at the tip. Therefore we
have

at the tip:
T3

M4
pl

=
(2π)11g3

s

4V 2
6

a4
0 =

(2π)11gs
4V 2

6 M
2

ε8/3

α′2
. (5.37)

The volume (in string units) can be written as the sum of the warped conifold volume10

plus the rest of the Calabi-Yau manifold, thus an obvious lower bound is [89, 25]

V6 > Vconifold '
(

2π

3

)3(
27π

4
gsMK

)(3/2)

. (5.38)

10The conifold is non-compact, therefore its volume is infinite. What we mean here is the volume of the
warped conifold once this is cut at a radius r ∼ R, where the warp factor becomes of order one and
the conifold does not approximate the geometry of the Calabi-Yau anymore, in the spirit of [127]
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Substituting this and (5.37) into (5.35) one obtains

ND3 > K3/2(gsM)5/2α
′3

ε4
18 . (5.39)

For the supergravity approximation to be valid, the radius of the tip has to be large in
string units, therefore (gsM)1/2 � 1. Even in the most favorable case of very shallow
throats, a superplanckian value of d requires ND3 � KM which makes it inconsistent to
neglect the backreaction.

Even if one could take into account the backreaction of the inflating D3-branes, we expect
that the situation would not improve much. To see this, suppose that ND3 �MK; then
the AdS radius scales as R4 ∼ ND3 and the volume of the conifold as V6 ∼ N

3/2
D3 , which

gives a parametric dependence similar to the one in (5.38). Again it seems to be impossible
to fulfil (5.35), i.e. to get d of order one or larger. This difficulty is very similar to the one
found in axionic natural assisted inflation [128, 129, 130, 62, 46, 131], where no controllable
string compactification has been found with d > MPl.

5.5.2 Slow-roll hilltop inflation

In this section we consider the potential (5.31) for a single D3-brane at the tip, in the
regime in which C is non-negligible. We find that it is possible to fine tune the string
parameters such that the potential at the top becomes very flat. This hilltop model
[105, 106] gives rise to a prolonged stage of inflation and is perfectly compatible with
WMAP3.

Let us expand the potential close to the top where φ� d. The result is

V ' 2Λ +
1

2d2
(2C − Λ)φ2 +

1

24d4
(Λ− 8C)φ4 +O

(
φ6

d6

)
. (5.40)

For a generic C ∼ Λ the slow roll parameter η (defined in (3.5) together with ε ) is
nowhere small as we mentioned in the last section. But if we fine tune C = Λ/2, close
enough to the top of the potential we have ε � η � 1. In terms of stringy parameters,
this fine tuning can be achieved, e.g. in the case b = 3, varying the fluxes such that
ε = (2πµγc)−34aτ0/15 (that we estimated in (5.26)). Notice that this can be achieved
independently of the fine tuning of the cosmological constant, i.e. Λ = B, that is obtained
varying the uplifting, i.e. β.

As the cancellation 2C − Λ becomes more and more precise, the potential at the top
becomes flatter and flatter as can be seen from figure 5.4. For simplicity, in the following
we study the case in which the cancellation is precise enough to neglect the mass term11,

11The case in which C ∼ Λ/2 and both the quadratic and quartic terms are of the same order could also
be considered, see for example [133].
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Figure 5.4: On the left: a cartoon of the hilltop inflation model. On the right: we show explicitly
how the fine tuning works. The potential (5.31) is plotted for C/Λ = {0.5, 0.4, 0.3, 0.2, 0.1, 0}.
The thick line corresponds to C = Λ/2, i.e. a perfect cancellation of the mass term in (5.40).
The lowest (blue) line corresponds to C = 0, i.e. the natural inflation potential (5.32).

such that the potential is well approximated by

V ' 2Λ

(
1− 1

16d4
φ4

)
. (5.41)

The COBE normalization (3.10) imposes the constraint Λ1/4 ∼ d × 10−3 [33]. As we
discussed in the last section, typically in our string theory model d < MPl; this implies that
the scale of inflation can at most be somewhat smaller than the GUT scale. The number
of e-foldings Ne before the end of inflation when the scales of the CMB perturbations left
the Hubble horizon is given by (3.11) [33]. In our case, the most relevant term is the one
including the scale of inflation, which, for hilltop models, can be quite low. We therefore
have

Ne ' 60− ln
1016 Gev

V 1/4
' 58.4 + ln

d

MPl

. (5.42)

For example, d ∼ 2 × 10−4MPl gives Ne ' 50. For the potential12 (5.41) η ' 2/(3Ne)
and, as it is typical for small field models, ε� η. Therefore we have a prediction for the
scalar spectral index ns ' 1 + 2η ∼ 0.94 in good agreement with WMAP3 [29].

To summarize, our model of inflation at the tip gives the potential in (5.41) provided
that13 we can fine tune the warp factor at the tip with enough precision to make the mass
term negligible. Then the potential (5.41) gives predictions in good agreement with the

12Generically for a potential V ∼ 1− µφp with p ≥ 3 we have η = −(p− 1)/[(p− 2)Ne] [33]
13The problem of fine tuning the uplifting to get the right cosmological constant is somehow a different

problem from the one of embedding inflation in string theory and we do not address it here.
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experiment if Λ ∼ d4 × 10−12. In a numerical investigation we found explicit values that
can satisfy this requirement. We conclude that, allowing for fine tuning, inflation at the
tip can provide a phenomenologically-viable prolonged stage of slow-roll inflation.

5.5.3 DBI Natural Inflation

In the last two sections (and in chapter 4), we looked for slow-roll inflation and we were
therefore allowed to approximate the kinetic term of the D3-brane with a canonical one.
In this section, we investigate the possibility of obtaining successful DBI inflation, i.e. with
a potential that is too steep to fulfil the slow-roll conditions.

For the angular position of spacetime-filling D3-brane, the kinetic term in the DBI action
(2.18) becomes

S = −
∫
d4x
√
−g
(
f−1
√

1 + f∂µφ∂µφ− f−1
)
, (5.43)

where f = h/T3 is the warped D3-brane tension. When f∂µφ∂µφ� 1 this reduces to the
canonical kinetic term (plus a constant term), as we have assumed in the last two sections.
When, on the contrary, f∂µφ∂µφ ∼ 1 all the higher terms in the Taylor expansion of the
square root become relevant. Now the kinetic term behaves very differently from the
canonical case; e.g. there is an upper limit φ̇2 < f−1, where, having inflation in mind,
we assume homogeneity. In analogy with the usual notation of special relativity, a useful
parameter to quantify how close we are to the maximal allowed speed is14

γ =
1√

1− fφ̇2

, (5.44)

which diverges for φ̇2 < f−1.

In sections 5.3 and 5.4 we have seen that the D3-brane feels a non-trivial potential along
the tip. Therefore the effective action we want to study is

S = −
∫
d4x
√
−g
(
f−1
√

1 + f∂µφ∂µφ+ V (φ)− f−1
)

(5.45)

where V (φ) is the potential in (5.31).

A comment about f is in order. As we stressed in 5.1, the warp factor f (or h equivalently)
is constant everywhere at the tip because it depends only on the radial position. The
actual value is determined by the complex structure moduli and the dilaton which in turn
are stabilized by fluxes. Hence, for the inflationary analysis we will treat f as a constant

14Clearly γ here has nothing to do with the one in section (5.3), e.g. in (4.11). As we separate the
inflationary from the string theory analysis, we hope no confusion will arise.
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with the dimension of a (mass)−4. Notice that this is a new and interesting feature
of inflation at the tip. The other string theory DBI models considered until now were
concerned with the radial motion in which case f ∝ r−4 is strongly inflaton dependent.
Choosing the angular position as inflaton candidate has the advantage of considerably
simplifying the DBI analysis.

In this section we concentrate on the regime in which the C term in (5.31) is very small
and can be neglected leaving the Natural Inflation potential in (5.32). As argued in section
5.4.1, this is quite a natural situation. Anyways, as we will see in the next section, as
long as we are interested just in DBI inflation, the precise shape of the potential is not
important.

The effective action (5.45) has three parameters: d, f and Λ. We focus on the regime
d� MPl, which is what happens generically in string theory. We study how these three
parameters are constrained by WMAP3 data. The result is that the phenomenological
constraint for DBI inflation can not be fulfilled in the string theory model. In section 5.6
we generalize this negative result to any potential provided that it is nowhere slow-roll
flat. As we describe in 5.6.1, what would work is a potential that alternates slow-roll flat
regions with steep ones. To obtain such a potential in our model of inflation at the tip,
we should consider more generic embeddings than the simple one with constant g̃ that
leads to the potential (5.31).

En passant we obtain an interesting result: as we reviewed in section 5.5.1, the consistency
with CMB data requires that the axion decay constant d of Natural inflation with a
canonical kinetic term takes superplanckian values. We will see that in the presence of a
DBI kinetic term, this constraint is relaxed and a viable (DBI) inflationary model occurs
for d as small as 0.04MPl

15.

DBI in a nutshell

The idea of DBI inflation [50, 51] is that, for a D-brane moving in a warped space, the
maximal allowed speed can be considerably smaller than the speed of light. This allows to
obtain inflation even when the inflaton potential is not as flat as required by the standard
slow-roll conditions. In the following we collect the relevant steps for a DBI inflation
analysis, and refer the reader to the original papers [50, 51] for further discussions.

Given the action (5.45), the energy density ρ and pressure p in the perfect fluid approxi-

15This statement refers to the effective action (5.45) per se, without the need to specify its high energy
origin. On the other hand, if we try to obtain (5.45) from string theory, we can not arbitrarily vary
the parameters and in fact, as we said, a successful DBI Natural Inflation can not be realized in our
string theory model.
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mation are

ρ =
γ

f
+ (V − f−1) , (5.46)

p = − 1

fγ
− V + f−1 . (5.47)

Using the Hamilton-Jacobi formalism, where φ plays the role of the time variable, the
equivalents of the Friedmann equation and of the equation of motion for φ are

φ̇ = − 2H ′√
M−4

Pl + 4fH ′2

, (5.48)

H2 =
ρ

3M2
Pl

. (5.49)

Defining

εDBI =
2M2

Pl

γ

(
H ′

H

)2

, (5.50)

we have that inflation lasts as long as εDBI < 1. In analogy with the slow-roll case, we
have two DBI conditions [50, 51]

V 3/2

|V ′|MPl

√
3f � 1 ⇒ H2 ' V

3M2
Pl

, (5.51)

V
′2

3V
fM2

Pl � 1 ⇒ γ � 1 . (5.52)

They guarantee that the energy density is dominated by the potential term and that the
motion is relativistic respectively.

DBI Natural Inflation

In this section we study the DBI regime of a brane moving along the tip under the Natural
Inflation potential (5.32). We are in the (large) region of parameter space where the term
C in (5.31) is very small and can be neglected. We will find that this model of exclusively
DBI inflation at the tip can not give enough e-foldings. As we will see in section 5.6, this
is true for any potential provided that it does not possess any slow-roll region.

For the Natural Inflation potential (5.32), as long as the conditions (5.51) and (5.52) are
fullfilled, we have

H =

√
Λ(1 + cos φ

d
)

√
3MPl

. (5.53)
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Figure 5.5: On the left: γ is plotted for the Natural Inflation potential; it grows monotonically
from 1 to (2fΛ/3)1/2MPl/d. On the right: the plot shows that the DBI condition (5.51) (darker
line) and (5.52) (lighter line) for the Natural Inflation potential (5.32) with d � MPl are satisfied
everywhere except for the two extremal regions, φ ' 0 and φ ' dπ.

Using (5.48) we can easily obtain φ̇. The number of e-foldings (defined in (3.4)) is then
given by

Ne =

∫ tf

ti

Hdt =

∫ φf

φi

H

φ̇
dφ . (5.54)

where the suffixes i and f refer to the beginning and the end of inflation.

Close to the top of the potential the inflaton moves non-relativistically (as found also
in [134]). This regime is uninteresting for us because, as we said, in that region η ∼
−(MPl/d)

2 which for small d/MPl gives a very red spectrum. Therefore we look16 fur-
ther away from the top where the motion becomes relativistic17. As we mentioned, the
importance of relativistic effects can be estimated evaluating γ. Substituting the solution
(5.48) for φ̇ in the definition (5.44), we get

γ =
1√

1− fφ̇2

=
MPl

d
√

3

√
fΛ(1− cos

φ

d
) + 3d2 , (5.55)

that is plotted in the left part of figure (5.5). γ grows monotonically from one (non-
relativistic motion) to MPl

√
fΛ/d.

To avoid unobserved large non-Gaussianities in the CMB, the perturbations have to be
produced when γ . 22 [50, 51]. This happens close to the top (but far enough to be in

16Here we do not address the problem of initial conditions for the inflaton. Recently in [135] it has
been suggested that in the case of DBI inflation this problem can be much less dramatic than for the
canonical case.

17We stress that the term “relativistic” does not refer to GR effects. It is only used in analogy with
special relativity, where, like for a DBI field, there is an upper bound for the speed.
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the DBI regime) of the potential where we can expand in φ/d

γ ' MPlφ√
6d2

√
fΛ ⇒ φCMB

d
.
φ(γ = 22)

d
' 22

√
6

d

MPl

√
fΛ

. (5.56)

Inflation ends when εDBI & 1, or equivalently when the condition (5.51) is no longer
fulfilled and the kinetic energy becomes comparable to the potential energy. From figure
5.5 we see that εDBI becomes of order one for φ→ πd. Expanding around φ = πd we get

V 3/2

|V ′|MPl

√
3f = −

d
√
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which leads to the following analytical estimate (accurate for large d
√

Λf/MPl) for φf√
3Λf

(φf − πd)2

2
√

2MPld
= 1 ⇒ φf = πd

[
1− 23/4

√
MPl

π
√
d(3fΛ)1/4

]
. (5.57)

Now that we know where the perturbations have to be produced, i.e. φ = φCMB, and where
inflation ends, i.e. φ = φf , we can impose that the number of e-foldings18 in between is
approximatively 60. From (5.54)

60 = Ne =

∫ φf

φCMB

H

φ̇
dφ ∼ d

MPl

√
fΛ . (5.58)

A consistency check is that the expansions we used in (5.56) and (5.57) are accurate for
small d/MPl if we require Ne ∼ d

√
fΛ/MPl ∼ 60.

The COBE normalization for the amplitude of the scalar perturbations gives us the con-
straint

2× 10−9 ' PR =
H4f

4π2
⇒ Λ

√
f ' M2

Pl

2000
. (5.59)

The tensor modes are negligible: ∆φ ∼ πd < MPl. An upper bound is obtained estimating
r at φ(γ = 20)/MPl ' (d/MPl)

2 (cf. (5.56))

r ≤ 16ε

γ

∣∣∣∣
φ(γ=20)

' 12

fΛ
. (5.60)

Summarizing, we can use the COBE normalization and the requirement of 60 e-foldings
to express two of the three parameters of the model in terms of the third one:

{d, f,Λ} −→
{
d, f =

722 1010

d4
, Λ =

d2M2
Pl

122108

}
. (5.61)

18As we already mentioned around (3.11), the number of e-foldings NCMB before the end of inflation
when the CMB perturbations are produced can be different from 60 by some 30%, e.g. depending on
the reheating temperature, etc. . . . For concreteness we take NCMB = 60, but another choice would
not alter the conclusions of our analysis.
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Figure 5.6: The scalar spectral index ns and γ are plotted for three different values d =
0.12, 0.08, 0.04. The scale on the horizontal axis refers to ns, while γ is plotted in a logarithmic
scale, where the maximum is γ = 22. For d < 0.04 the requirements ns = 0.958 ± 0.016 and
γ < 22 can not be satisfied at the same time.

A constraint on d comes from the spectral index of the scalar perturbations ns. The
analytical expression for ns is not so illuminating; we plot ns in figure 5.5.3 for various
values of d. After imposing a precise value for the scalar spectral index, e.g. ns = 0.958,
γ just depends on d; hence detecting some non-Gaussianities would determine d and
completely fix the parameters of the model. As it is clear from figure 5.5.3, the two
constraints ns = 0.958 ± 0.016 and γ < 22 lead to a lower bound on d. This can be
estimated numerically as d > 0.04MPl.

Thus one of the effects of the DBI kinetic term is to relax the bound d > 3.5MPl obtained
in [103] to d > 0.04MPl. This means that, provided one can arbitrarily choose Λ and f ,
superplanckian values of d are not required anymore19.

To finish this section we want to address the question whether it is possible to reproduce
CMB data within the inflation at the tip model, i.e. if the consistency of string theory
allows one to find stringy parameters that lead to the values in (5.61). The answer
is negative: this embedding of DBI inflation in string theory is not phenomenologically
viable. The reason is the following. From our discussion in section 5.5.1, we know that
generically d < MPl; from (5.58) it is clear that if we want to get 60 e-foldings we need
fΛ � 1. As we show in detail in the next section, this implies that the energy density
during inflation is bigger than the warped string scale and our supergravity approximation
is inconsistent. As we will discuss in section 5.6.1 this problem can be overcome if one
considers potentials that possesses both slow-roll flat regions and other regions where the
DBI conditions (5.51) and (5.52) are satisfied.

19We would like to stress that this statement is meant from an effective action point of view. In a
concrete (e.g. string theory) model one should carefully consider the setup: the subplanckian (effective)
parameter d might arise from a superplanckian string parameter redshifted by the large warping.
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5.6 A no-go result and how to evade it

In this section we derive a no-go result for string theory DBI inflation along the tip,
i.e. with constant warp factor. As for every no-go result the key point are the assumptions
so let us clearly state them:

1. First, we assume that the D3-brane motion takes place along the angular direction
at the tip of a deformed conifold. This is in contrast to the most studied case
of chapter 4 where the D3-brane moves along the radial direction. Some of the
motivations that led us to this choice are: the large mass generated by moduli
stabilization (reviewed in section 4.3) affects the radial but not the angular brane
inflation20; the warp factor f varies in the radial direction but does not depend on
the angular position and it is therefore a constant on the tip21. Finally, we notice
that the field range for the angular motion at the tip is smaller than for the radial
motion22.

2. Second, we assume that the inflaton motion is exclusively relativistic from the mo-
ment when the CMB perturbations are produced all the way until the end of infla-
tion. In formulae

V
′2

3V
fM2

Pl � 1 ⇒ γ � 1 .

This condition selects a class of potentials or equivalently a class of D7-embeddings
g(z) leading to these potentials. As we show in the following, potentials in this class
do not give enough e-foldings of inflation at the tip. It is this assumption that we
will relax in the next section where we will provide a simple example of a potential
that possesses both DBI and slow-roll regions. We will argue that such potentials
are promising candidates for a successful model of D-brane inflation.

The argument is now based on the impossibility to obtain enough e-foldings under these
two assumptions. Consider

Ne =

∫
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∫
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3
, (5.62)

20This does not mean that angular slow-roll inflation is automatic. Whether the slow-roll conditions are
satisfied depends on the details of the potential (5.13)

21An inflaton independent f was already considered in [134, 136] but there it was obtained as an approx-
imation of the radial motion of a D3-brane close to the tip of the deformed conifold where the AdS
solution is not valid anymore.

22In view of the discussions in [137, 138], this implies that in these models only negligible tensor pertur-
bations can be produced during slow-roll inflation.
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Figure 5.7: Different possibilities for inflation at the tip: on the left we draw the “threefold”
D7 embedding in the warped throat; after gluing to a compact Calabi-Yau manifold the three
4-cycles are just parts of a single globally defined 4-cycle. On the right a possible generalization
is depicted where instead of the simplest Kuperstein embedding, one considers a less symmetric
one for the D7-branes.

where φ̇ and H come from (5.48) and (5.49), respectively, and we have used assumption 2
to neglect the “slow-roll contribution” V 2/V

′2 to Ne (see e.g. (3.7)). To trust our effective
action description of string theory we have to require that the energy density during
inflation is much smaller than the redshifted string scale: Vmax �M4

s /h. The parameter
f in (5.45) can be written in terms of stringy parameters as h/T3. Hence{

Vmax �M4
s /h
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= (2π)3gsh
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⇒
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3
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√
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The field variation ∆φ during inflation is smaller than πd. As we argued at the end of
section 5.5.1, generically d � MPl and therefore ∆φ/MPl < 1. In addition, we always
assume gs � 1. Putting these bounds together we conclude that it is impossible to have
more than a few e-foldings from exclusively DBI inflation at the tip.

5.6.1 Slow-roll–DBI alternation from generic embeddings

A way to get around this negative result is to relax assumption 2, i.e. that during the
whole 60 e-foldings of the observable inflation the motion is relativistic. Then in certain
regions of the tip the potential can be of the slow-roll type and there the motion becomes
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non-relativistic; the “slow-roll term” V 2/V
′2 can give a large contribution to Ne in (5.62)

increasing the number of e-foldings.

For a generic Kuperstein embedding defined by an arbitrary holomorphic function g̃,
the potential was given in (5.11). The fact that Kuperstein embeddings preserve an
SO(2) symmetry implies that V depends only on three real coordinates τ, x1 and x23

(up to SO(4) permutations). The volume can be fixed à la KKLT and we have to study
V (τ0(x1, x23), x1, x23).

As a result of our discussion, we should look for functions g̃(z23) such that the resulting
scalar potential is of the slow-roll type somewhere on the tip. This can give us enough
e-foldings avoiding the no-go theorem of the last section. Depending on the explicit form
of g̃, the CMB perturbations could be produced during a DBI or a slow-roll phase. We
leave a deeper investigation of this promising model for the future. Here we comment on
an alternative possibility.

Consider the embedding

g(z) = 1− z3
1

µ
, (5.63)

where for simplicity we take µ to be real. In a non-compact conifold, (5.63) defines three
disconnected 4-cycles, each one described by the embedding z1 = ei2πj/3µ1/3 for j = 0, 1, 2,
respectively. If a stack of D7-branes is wrapped around each 4-cycle the configuration is
supersymmetric because all the three stacks respect the same supersymmetries as the
background. We then suppose that it is possible to “cut” the conifold and “glue” it to a
compact Calabi-Yau manifold; in addition, we ask that these three 4-cycles become part
of a single 4-cycle. These are strong assumptions and we do not have anything to say
about the hard problem of showing that the above construction can be actually realized.
Here we would just like to present an interesting feature of this configuration.

In the global compact picture, there is just one stack of D7-branes that wraps a single
4-cycle. Gaugino condensation on these D7’s can give rise to a superpotential that, for a
D3-brane inside the throat, is well approximated by

W = W0 + A0

(
1− z3

1

µ

)1/n

e−aT . (5.64)

The same expansion as discussed in section 5.4 leads to an effective potential of the form

V ' Λ

(
1 + cos3 φ

d

)
, (5.65)

that we plot in figure (5.8). The potential presents a flat inflection point where first and
second derivatives vanish and slow-roll inflation can take place.
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Figure 5.8: The thick (blue) line is the potential in (5.65). The two thin lines are the two
DBI conditions (5.51) and (5.52) plotted in logarithmic scale. When they approach zero the
DBI conditions are not satisfied anymore and the relativistic inflation regime ends. Around the
inflection point first and second derivative of the potential are very small and slow-roll (non
relativistic) inflation can take place. We highlight with different colors the DBI and slow-roll
phases.

We already found the inflection point potential in chapter 4. The discussion of its cosmo-
logical implications is analogous. If the first derivative at the inflection point is strictly
vanishing, then the inflaton reaches it only in an infinite time and inflation lasts forever.
There are two possibilities to regularize this divergence: as discussed in section 4.6.2 (see
[64]), the initial speed of the inflaton (or equivalently corrections to the strict slow-roll
regime) might allow it to pass the inflection point in a finite time. A second competing
effect is given by the subleading terms that we neglected in the potential; they can have a
non-vanishing first derivative at the inflection point. If this first derivative has the right
sign, the total number of e-foldings is finite, otherwise a local minimum is formed as in
figure 4.1.

The CMB perturbations in this model can be produced either in the DBI or in the slow-roll
phase. In the first case, the analysis is very similar to the one we performed in section 5.5.3.
The slow-roll phase would then only provide enough e-foldings and would not have other
observable consequences. In the second case, inflation takes place mainly in the slow-roll
regime, except for the last few unobservable e-foldings of DBI phase (on the right hand
side of figure (5.8)). The analysis is then very similar to other cases of inflection point
inflation in the literature [64, 68, 139, 140]. The phenomenological predictions are very
sensitive to the parameters, e.g. to those determining the first derivative of the potential
at the inflection point.

Summarizing, inflation at the tip is a promising candidate for a phenomenologically suc-
cessful embedding of DBI inflation in string theory. The right perturbations can easily be
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produced; to obtain enough e-foldings it is required that, in some region, the potential is
slow-roll flat. Above, we have given a (semi) explicit example, but we expect that many
others can be found studying more generic D7-embeddings (e.g. with a generic g̃ in (4.5)).

5.7 A summary on angular brane inflation

In this chapter we have proposed and studied a model of D3-brane inflation that takes
place along the angular directions of a warped conifold and where no anti D3-branes are
needed. A D3-brane moves on the tip of a warped deformed conifold [107] embedded in
a compact Calabi-Yau manifold, which is an S3 (see figure 5.1). The potential comes
from the F-term where the threshold corrections to the non-perturbative superpotential
are taken into account. Inflation at the tip is an explicit example of how several issues of
brane inflation can be addressed in a way different from the standard radial case that we
studied in chapter 4.

We have looked for inflationary trajectories, considering two classes:

1. Slow-roll inflation: it is possible to achieve but only allowing for fine tuning.
In a small region of the stringy parameter space (where Λ ' 2C) the inflaton
potential becomes very flat on the top (see figure 5.4). This is a kind of hilltop
model [105, 106], i.e. of the form

V ' Λ− 1

2
m2φ2 − λφ4 . (5.66)

The negative squared mass of the inflaton can be made small by fine tuning, and we
obtain a string theory model of slow-roll inflation in perfect agreement with CMB
data (see chapter 3 and section 5.5.2). When the mass term m2φ2 is negligible with
respect to the λφ4 term, the model predicts ns ' 0.94, negligible tensor modes and
the scale of inflation (Λ)1/4 ∼ d× 10−3, where d was defined in (5.29).

2. DBI inflation: as the inflaton corresponds to the position of a D3-brane, the
kinetic term comes from the DBI action. This can allow inflation to take place
even with a steep potential [50, 51]. We investigated this possibility and discovered
that, although perturbations compatible with CMB data can be produced, the DBI
regime can never lead to more than a few e-foldings. We argued that more general
embeddings than the one we studied here (Kuperstein embedding [73] with constang
g̃) can possess flat regions that would increase the number of e-foldings and lead to
a successful model. We leave a more detailed study of this interesting possibility for
future investigation.

During the study of both radial (chapter 4) and angular (present chapter) inflation, we
have neglected perturbative quantum corrections. These can arise in different ways: there
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are α′ corrections, suppressed by powers of the string scale Ms = (α′)−1/2, which are
induced by the higher oscillation modes of the string that we have ignored by looking
at the massless spectrum (see chapter 2). There are field theory and/or string loop
corrections suppressed by the appropriated coupling. There is the tower of KK modes
and the effects due to the large warping. For a completely successful string inflation
model, all these effects have to be carefully taken into account. This is a formidable
challenge and we are still far from that goal.

On the other hand it is very important to check the consistency of our effective description,
to know if string theory and/or quantum corrections can change the qualitative features
of a certain model. This is why we will dedicate the next chapter to this issue. We will
consider an explicit model and carefully analyze the effects of several types of corrections.
On the other hand, we will abandon the subject of string cosmology and switch to string
particle phenomenology. Particle physics is the other wide field of research, where by
general considerations (see chapter 1) string theory can be applied most usefully. We
postpone a further discussion to the next chapter.

Finally, in the following we list some interesting directions for future research

• The case of a generic embedding (with a generic g̃ in (4.5) or those discussed in [72])
has to be studied in detail looking for an explicit working model. A criteria to keep
in mind in this search follows from our no go result in section (5.6): a successful
model needs to have a potential with at least one slow-roll flat region.

• The absence of an anti D3-brane makes the mechanism of graceful exit and reheating
in the present model very different from the standard brane-anti brane inflation
model. A mechanism naturally embedded in the model is the D-brane trapping
(which was one of the motivations of the original proposal of brane inflation [49]). In
[93] it was shown that in the collision of branes, the kinetic energy can be transferred
to the gauge fields living on the newly created stack. This would create a thermal
bath in the world volume of the branes that could evolve into our universe. It would
be interesting to investigate quantitatively the phenomenological viability of this
idea.

• It would be desirable to develop a gauge dual description of the brane inflation at
the tip proposed in this paper, a work in this direction is [141] (see also [142]).
Although there the origin of the potential is different, the authors provide a gauge
theory description of the radial motion of a brane in a resolved warped deformed
conifold.
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6 On soft terms from large volume
compactifications

As we have seen in chapter 2, the KKLT strategy [8, 20] for producing stabilized string
vacua of type IIB, can serve as a starting point for phenomenological constructions. In
chapters 4 and 5 for example, we have studied two models of brane inflation in this setup.
Here we will focus on a generalization of the KKLT setup, known as the “large vol-
ume scenario” (LVS for short, we introduce it in section 6.2.3), where many phenomeno-
logical issues have been addressed, such as for example soft supersymmetry breaking
[143, 144, 145], the QCD axion [146, 147], neutrino masses [148], first attempts at LHC
phenomenology [149], and where also some closed string inflationary models have been
constructed [58, 150, 151, 152].

Although tantalizing, the models discussed in the aforementioned papers as well as the
inflationary models of chapters 4 and 5 raise many questions. It remains an open prob-
lem to construct complete KKLT models in string theory, as opposed to supergravity.
Problems one faces include things like the description of RR fluxes in string theory,
showing that the necessary nonperturbative effects actually can and do appear in a way
consistent with other contributions to the potential (for progress in this direction, see
[61, 153, 154, 23, 155, 156, 157, 158, 159, 160, 161, 162, 114, 163, 164, 165, 166]), and
verifying that one can uplift to a Minkowski or deSitter vacuum without ruining stabiliza-
tion [22, 167, 168, 161, 125]. These issues become possibly even more important in some
extensions of KKLT and in particular in LVS [169, 143], where corrections to the tree-level
supergravity effective action (computed in [170]) play a significant role, and where the
compactification volume can be stabilized as large as 1015 in string units. In LVS, since
string corrections play a crucial role, striving for actual string constructions seems quite
important. In the end, the restrictiveness this entails may greatly improve predictivity,
or kill the models completely as string compactifications.

In this chapter, we will not improve on the consistency of KKLT or LVS in general,
but rather assume the existence of LVS models in string theory, and then perform self-
consistency checks. This is a modest step on the way towards reconciling phenomeno-
logically promising scenarios with underlying string models. We will see that although
a priori the situation looks very bleak, and one might have hastily concluded that even
our modest consistency check would put very strong constraints on LVS, things are more
interesting. It turns out that LVS jumps through every hoop we present it with, and
instead of broad qualitative changes, we find only small quantitative changes.
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The structure of this chapter is as follows: we start in section 6.1 with some preliminaries;
in section 6.2 we critically review the KKLT construction of section 2.6 and introduce the
LVS; in section 6.3 we argue which kind of loop corrections we expect in LVS and compute
their effects on the potential in an explicit example. In section 6.4 we compute the gaugino
masses in LVS and comment on other susy-breaking terms. In section 6.5 we extend our
discussion of string loop corrections to other classes of Calabi-Yau manifolds. We conclude
in section 6.6 with a discussion of further corrections and a summary. A series of technical
details are left to appendix D.

6.1 Preliminaries

The main difference between KKLT and LVS is that LVS includes a specific string α′ cor-
rection ∆Kα′ in the Kähler potential K of the 4-dimensional N = 1 effective supergravity.
Naturally, the 4-dimensional string effective action also contains other string corrections.
Here, we will focus on gs corrections due to sources (D-branes and O-planes). For some
N = 1 and N = 2 toroidal orientifolds, these corrections were computed in [171] (see also
[172]; for a comprehensive introduction to orientifolds, see [173]). Compared to the α′

correction ∆Kα′ considered in LVS, the gs corrections to the Kähler potential ∆Kgs will
scale as (

∆Kα′ : ∆Kgs

)
∼
(
O(α′3) : O(g2

sα
′2)
)

(string frame) . (6.1)

By naive dimensional analysis, one would expect that in a 1/V expansion, where V is the
overall volume in the Einstein frame, (6.1) implies

∆Kα′ ∼ O(g−3/2
s V−1) , ∆Kgs ∼ O(gsV−2/3) (Einstein frame) . (6.2)

If, contrary to what we assumed in chapter 4 and 5, there is more than one Kähler modulus
various combinations of Kähler moduli may appear in ∆Kgs in (6.2), and a priori this
could lead to even weaker suppression in 1/V than that shown. However, we will argue
that (6.2) is actually correct as far as the suppression factors in the 1/V expansion go.
Nevertheless, even the suppression displayed in (6.2) seems to be a challenge for LVS, if
indeed V ∼ 1015. For V this large, ∆Kgs would dominate ∆Kα′ , since we do not expect the
string coupling gs to be stabilized extremely small. On the other hand, if we are interested
in the effects gs corrections may have on the existence of the large volume minima, the
relevant quantity to look at is the scalar potential V , rather than the Kähler potential K.
It turns out that certain cancellations in the expression for the scalar potential leave us
with leading correction terms to V that scale as

∆Vα′ ∼ O(g−1/2
s V−3) , ∆Vgs ∼ O(gsV−3) . (6.3)

This is already much better news for LVS. However, restoring numerical factors in (6.3),
and with gs typically not stabilized extremely small, it would seem that ∆Kgs could still
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have a significant effect both on stabilization and on the resultant phenomenology (like
soft supersymmetry breaking terms, which also depend on the Kähler potential). We will
see that although this is indeed so in principle, in practice the models we consider are
surprisingly robust against the inclusion of ∆Kgs . The clearest example of this is the
calculation of gaugino masses in section 6.4. The result is that for the “11169 model”
(analyzed in [144]), the correction to the gaugino masses due to ∆Kgs is negligible. Thus,
for the most part, LVS survives our onslaught unscathed.

We consider this a sign that scenarios such as LVS deserve to be taken seriously as goals
to be studied in detail in string theory, even as the caveats above (that apply to any
KKLT-like setup) serve to remind us that there is much work left to be done to really
understand phenomenologically viable stabilized flux compactifications in string theory.

6.2 Review

Let us begin by critically reviewing the KKLT setup we introduced in section 2.6. Then
we generalize it by introducing the large volume scenarios. For reasons that will become
clear and as opposed to chapter 4 and 5, we want now to allow for more than a single
Kähler modulus.

6.2.1 Back to KKLT

The KKLT setup [8, 20], that we introduced in section 2.6, is a warped type IIB flux
compactification on a Calabi-Yau (or more generally, F-theory) orientifold, with all moduli
stabilized. In this chapter, we will neglect warping1.

In the 4-dimensionalN = 1 effective supergravity, the Kähler potential and superpotential
(see the end of section 2.5.1) read

K = −ln(S + S)− 2 ln(V) +Kcs(u, u) ,

W = Wtree +Wnp = W (S, u) +
∑
i

Ai(S, u)e
−aiTi , (6.4)

where the volume V is a function of the Kähler moduli Ti = τi + ibi whose real parts
are 4-cycle volumes and whose imaginary parts are axions bi, arising from the integral
of the RR 4-form over the corresponding 4-cycles; u denotes generically all the complex
structure moduli. In particular, the volume V depends on the Ti only through the real
parts τi,

V = V(Ti + T i) = V(τi) , (6.5)

1Warping, on the contrary, was a crucial ingredient in the cosmological applications of chapter 4 and
5). For progress towards taking warping into account in phenomenological contexts, see [174, 175].
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and Ai in the nonperturbative superpotential Wnp a priori depends on the complexified
dilaton S and the complex structure moduli u (notice that, contrary to the previous
chapters, we do not consider any open string sector). After stabilization of S and u
(demanding the supersymmetry conditions DuW = 0 = DSW ), we have

K = −ln(S + S)− 2 ln(V) +Kcs(u, u) ,

W = Wtree +Wnp = W0 +
∑
i

Aie
−aiTi . (6.6)

Contrary to the previous chapters, we keep the dependence on the complexified dilaton S
and the complex structure moduli u in the Kähler potential for now. Before we neglected
this dependence since the Kähler metric obtained from (6.6) is block diagonal in the
various moduli sectors (see also appendix D.6). In this chapter we will eventually take
into account corrections that break this diagonal structure; then the inverse of the Kähler
metric appearing in the F-term potential

V = eK
(
GJIDJWDIW − 3|W |2

)
(6.7)

will include some S and u dependence2. The scalar potential V has a supersymmetric
AdS minimum (see e.g. figure 2.4) at a radius that is barely large enough to make the use
of a large-radius effective supergravity self-consistent, typically τ ∼ 100 (recall that τ has
units of (length)4).3 In addition, to obtain a supersymmetric minimum at all, one needs to
tune the flux superpotential W0 to values exponentially small in aτ , see e.g. (2.37). That
is, the stabilization only works for a small parameter range. This is easy to understand,
since we are balancing a nonperturbative term against a tree-level term. Let us briefly
digress on the reasons for and implications of this balancing.

6.2.2 Consistency of KKLT

In the previous section we only considered the lowest-order supergravity effective action.
As was already noted in the original KKLT paper, α′ corrections and gs corrections (string
loops) that appear in addition to the tree-level effective action could in principle affect
stabilization. Oftentimes, the logic of string effective actions is that if one such correction
matters, they all do, so no reliable physics can be learned from considering the first few
corrections. If this is true, one can only consider regimes in which all corrections are sup-
pressed. This is not necessarily so if some symmetry prevents the tree-level contribution to
the effective action from appearing, so that the first correction (be it α′ or gs) constitutes
lowest order. This indeed happens for type IIB flux compactifications. As we saw section

2Anyways, we still assume that u and S are stabilized by fluxes at an higher scale, therefore in (6.7),
the indeces I and J run only over the Kähler moduli.

3As we have already seen, e.g. in section 2.6, this minimum then has to be uplifted to dS or Minkowski
by an additional contribution to the potential.
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2.5.1 and explicitely in (4.3.2), given the tree level Kähler potential (6.6), if we were to
set Wnp = 0, the remaining K and W in (6.6) produce a no-scale potential, i.e. the scalar
potential for the Kähler moduli then vanishes [176]. In KKLT, this no-scale structure is
only broken by the nonperturbative contribution to the superpotential Wnp. Since each
term in Wnp is exponentially suppressed in some Kähler modulus, the resulting terms in
the potential are also exponentially suppressed. For instance, for the simpler example of
a single modulus τ , the potential (after already fixing the axionic partner as in section
4.4.1) reads

V

eK
=

[
4|A|2aτe−aτ

(
1

3
aτ + 1

)
− 4aτ |AW0|

]
e−aτ , (6.8)

meaning that even for moderate values of the Kähler modulus τ , all these terms are nu-
merically very small. Corrections in α′ and gs, however, are expected to go as powers of
Kähler moduli τ , so will dominate the scalar potential for most of parameter space. In
particular, it was argued in [169, 143] that only for very small values of W0 can perturba-
tive corrections to the Kähler potential be neglected. It was the insight of [169] that even
if W0 is O(1) (which is more generic than the tiny value for W0 required in KKLT), there
can still be a competition between the perturbative and nonperturbative corrections to
the potential in regions of the Kähler cone where large hierarchies between the Kähler
moduli are present. We now review this scenario.

6.2.3 Large volume scenario (LVS)

As was shown in [170], the no-scale structure (and factorization of moduli space) is broken
by perturbative α′ corrections to the Kähler potential, such as

K = −ln(2S1)− 2 ln(V + 1
2
ξS

3/2
1 ) +Kcs(u, u) , (6.9)

where4 ξ = −ζ(3)χ/2(2π)3 and S1 = ReS. For large volume V , we see that the pertur-
bative correction goes as a power in the volume,

− 2 ln(V + 1
2
ξS

3/2
1 ) = −2 lnV − ξS

3/2
1

V
+ . . . , (6.10)

which by the discussion in the previous subsection will dominate in the scalar potential
if all Kähler moduli are even moderately large. Using the superpotential

W = W0 +Wnp = W0 +
∑
i

Aie
−aiTi , (6.11)

the scalar potential has the structure

V = Vnp1 + Vnp2 + V3 (6.12)

= eK
{
Gi∂W np∂iWnp +

[
GiK (W 0 +W np)∂iWnp + c.c.

]
+
(
GiKKi − 3

)
|W |2

}
.

4Here ξ differs by a factor (2π)−3 from [170] because we use the string length ls = 2π
√

α′.
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For concrete calculations we will use the model based on the hypersurface of degree 18 in
P

4
[1,1,1,6,9] (see [177, 61, 178] for background information on its topology. Some comments

about generalizations to other models with arbitrary numbers of Kähler moduli are given
in appendix D.1.2). The defining equation is

z18
1 + z18

2 + z18
3 + z3

4 + z2
5 − 18ψz1z2z3z4z5 − 3φz6

1z
6
2z

6
3 = 0 (6.13)

and it has the Hodge numbers h1,1 = 2 and h2,1 = 272 (only two of the complex structure
moduli ψ and φ have been made explicit in (6.13); moreover, not all of the 272 survive
orientifolding). We denote the two Kähler moduli by Tb = τb + ibb and Ts = τs + ibs,
where τb and τs are the volumes of 4-cycles, and the subscripts “b” and “s” are chosen
in anticipation of the fact that one of the Kähler moduli (τb) will be stabilized big, and
the other one (τs) will be stabilized small. An interesting property of this model is that
it allows expressing the 2-cycle volumes ti explicitly as functions of the 4-cycle volumes
τj, so that the total volume of the manifold can be written directly in terms of 4-cycle
volumes, yielding

V =
1

9
√

2

(
τ

3/2
b − τ 3/2

s

)
, (6.14)

τb =
(ts + 6tb)

2

2
, τs =

t2s
2
.

Following [143], we are interested in minima of the potential with the peculiar property
that one Kähler modulus τb ∼ V2/3 is stabilized large and the rest are relatively small
(but still large compared to the string scale),

aτs ∼ lnV ∼ 3

2
ln τb (6.15)

in the case at hand. Thus, we expand the potential around large volume, treating e−aτs as
being of the same order as V−1. In the end one has to check that the resulting potential
indeed leads to a minimum consistent with the exponential hierarchy aτs ∼ lnV , so that
the procedure is self-consistent. Applying this strategy, the scalar potential at leading
order in 1/V becomes5

VO(1/V3) =

(
12
√

2|A|2a2√τse−2aτs

VS1

− 2a|AW0|τse−aτs
V2S1

+ ξ
3|W0|2

√
S1

8V3

)
eKcs . (6.16)

From here one can see the existence of the large volume minima rather generally. By
the Dine-Seiberg argument [179], the scalar potential goes to zero asymptotically in every

5Here we have already stabilized the axion bs, i.e. solved ∂V/∂bs = 0, which produces the minus sign
in the second term; this is also true with many small moduli τi. See appendix D.1.2 for details.
Also note that solving DuW = 0 = DSW causes the values of u and S at the minimum to depend
on the Kähler moduli. However, this dependence arises either from the nonperturbative terms in
the superpotential or from the α′-correction to the Kähler potential. Thus it would only modify the
potential at subleading order in the 1/V expansion.
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direction. Along the direction (6.15), for large volume the leading term in (6.16) is

V ∼ Vnp2 ∝ − lnV
V3

, (6.17)

which is negative, so the potential V approaches zero from below. For moderately small
values of the volume, V is positive (this is guaranteed if the Euler number χ is nega-
tive, hence ξ positive), so in between there is a minimum. This minimum is typically
nonsupersymmetric, and because we are no longer balancing a tree-level versus a non-
perturbative term, we can find minima at large volume — hence the name large volume
scenario (LVS).6 To be precise, in flux compactifications we move in parameter space by
the choice of discrete fluxes, but since V is exponentially sensitive to parameters like S1,
large volume minima appear easy to achieve also by small changes in flux parameters.
If we allow for very small values of W0 (so that KKLT minima exist at all), the above
minimum can coexist with the KKLT minimum [180, 143]. Here, we will allow W0 to take
generic values of order one.

The astute reader will have noticed that this argument for the existence of the LVS
minimum is “one dimensional”, as it only takes into account the behavior of the potential
along the direction (6.15). One must of course check minimization with respect to all
Kähler moduli. In [169] a plausibility argument to this effect was given, and the existence
of the minimum was explicitly checked in the case of the P4

[1,1,1,6,9] model by explicitly

minimizing the potential (6.16) with respect to the Kähler moduli. In doing so, it is
convenient to trade the two independent variables {τb,τs} for {V ,τs} so that ∂τsV = 0, as
then the last term in (6.16) is independent of τs (this will be different when we include
loop corrections). Extremizing with respect to τs, and defining

X ≡ Ae−aτs , (6.18)

one obtains a quadratic equation for X,

0 =
∂V

∂τs
=

(
− 6

√
2a2

√
τsS1V

(4aτs − 1)X2 +
2a|W0|
S1V2

(aτs − 1)X

)
eKcs . (6.19)

In (6.18), we chose A to be real as a potential phase can be absorbed into a shift of the
axion b and disappears after minimization with respect to b (see section D.1.2 and 4.4.1).
Two comments are in order. The quadratic equation (6.19) has just one meaningful
solution (X = 0 corresponds to τs = ∞). Moreover, when expanding (6.19) in 1/(aτs),
the leading terms arise from derivatives of the exponential.

Formula (6.19) is an implicit equation determining τs. However, one can easily solve (6.19)
for X and obtains

X = Ae−aτs =

√
2|W0|

24aV
√
τs

(
1− 3

4aτs

)
+ O

(
1

(aτs)2

)
. (6.20)

6By “tree-level” we intend “tree-level supergravity”, i.e. for the purposes of this chapter we call both α′

and gs corrections “quantum corrections”.
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The hierarchy (6.15) is obvious in this solution, rendering the procedure self-consistent.
One also notices that reasonably large values of τs (e.g. 35) are not difficult to obtain,
if V is stabilized large enough; for example, simply set a ∼ 1, A ∼ 1, W0 ∼ 1. We
fill in the numerical details, following [169], in appendix D.1.1 (including some further
observations).

6.3 String loop corrections to LVS

As already emphasized, the α′ correction proportional to ξ is only one among many cor-
rections in the string effective action. We now consider the effect of string loop corrections
on this scenario and what the regime of validity is for including or neglecting those cor-
rections. Volume stabilization with string loop corrections but without nonperturbative
effects was considered in [91].

To be precise, the corrections considered in [91] were those of [171], that were computed
for toroidal N = 1 and N = 2 orientifolds. Here, we would need the analogous corrections
for smooth Calabi-Yau orientifolds. Needless to say, these are not known. Faced with the
fact that the string coupling gs is stabilized at a finite (and typically not terribly small)
value, we propose that attempting to estimate the corrections based on experience with
the toroidal case is better than arbitrarily discarding them. As we will see, if our estimates
are correct, typically the loop corrections can be neglected, though there may at least be
some regions of parameter space where they must be taken into account (see figure 6.4).
(In section 6.5, we will briefly consider “cousins” of LVS where they can not be neglected
anywhere in parameter space.) Improvement on our guesswork would of course be very
desirable.

6.3.1 From toroidal orientifolds to Calabi-Yau manifolds

We would like to make an educated guess for the possible form of one-loop corrections in a
general Calabi-Yau orientifold. All we can hope to guess is the scaling of these corrections
with the Kähler moduli T and the dilaton S. The dependence on other moduli, like the
complex structure moduli u, can not be determined by the following arguments (even in
the toroidal orientifolds this dependence was quite complicated).

In order to generalize the results of [171] to the case of smooth Calabi-Yau manifolds, we
should first review them and in particular remind ourselves where the various corrections
come from in the case of toroidal orientifolds. There, the Kähler potential looks as follows
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(we will explain the notation as we go along):

K = −ln(2S1)− 2 ln(V) +Kcs(u, u)−
ξS

3/2
1

V
(6.21)

+
3∑
i=1

EKi (u, u)

4τiS1

+
3∑

i6=j 6=k

EWk (u, u)

4τiτj
.

There are two kinds of corrections. One comes from the exchange of Kaluza-Klein (KK)
modes between D7-branes (or O7-planes) and D3-branes (or O3-planes, both localized in
the internal space), which are usually needed for tadpole cancellation, cf. fig. 6.1. This

ts

D3

tb

a

b

Figure 6.1: The loop correction EK comes from the exchange of closed strings, or equivalently
an open-string one-loop diagram, between the D3-brane and D7-branes (or O7-planes) wrapped
on either the small 4-cycle τs (as in a) or the large 4-cycle τb (as in b). The exchanged closed
strings carry Kaluza-Klein momentum.

leads to the first kind of corrections in (6.21), proportional to EKi where the superscript
(K) reminds us that these terms originate from KK modes. In the toroidal orientifold case,
this type of correction is suppressed by the dilaton and a single Kähler modulus τi, related
to the volume of the 4-cycle wrapped by the D7-branes (or O7-planes, respectively).7 We
expect an analog of these terms to arise more generally, given that they originate from
the exchange of KK states which are present in all compactifications.

The second type of correction comes from the exchange of winding strings between in-
tersecting stacks of D7-branes (or between intersecting D7-branes and O7-planes). The
exchanged strings are wound around non-contractible 1-cycles within the intersection lo-
cus of the D7-branes (and O7-planes, respectively), cf. fig. 6.2. This leads to the second
kind of correction in (6.21) proportional to EWi . The superscript (W ) reminds us that

7We should mention that there was no additional correction of this kind coming from KK exchange
between (parallel) D7-branes in [171] (actually that paper considered the T-dual version with D5-
branes, but here we directly translate the result to the D7-brane language). This was due to the
fact that in [171] the D7-brane scalars were set to zero. In general we would also expect a correction
coming from parallel (or more generally, non-intersecting) D7-branes by exchange of KK-states. These
should scale in the same way with the Kähler moduli as those arising from the KK exchange between
D3- and D7-branes.
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ts

tb

Figure 6.2: The loop correction EW comes from the exchange of winding strings on the inter-
section between the small 4-cycle τs and the large 4-cycle τb. If this intersection is empty, there
are no terms with EW .

these terms arise from the exchange of winding strings. In toroidal orientifolds, this type
of correction is suppressed by the two Kähler moduli measuring the volumes of the 4-
cycles wrapped by the D7-branes (and O7-planes). One might a priori think that this
kind of correction does not generalize easily to a smooth Calabi-Yau which has vanishing
first Betti number (and therefore at most torsional 1-cycles). However, the exchanged
winding strings are, from the open string point of view, Dirichlet strings with their end-
points stuck on the D7-branes. Thus, the topological condition is on the cycle over which
the two D7-brane stacks (or one D7-brane stack and an O7-plane) intersect, as in figure
6.3. Thus, it depends on the topology of specific cycles within cycles whether winding
open strings exist in a given model.8

Given the expressions in [171] and the subset reproduced in (6.21) above, it is tempting
to conjecture that some terms at one loop might be suppressed only by powers of single
Kähler moduli like the τi (and the dilaton):

Calabi-Yau: ∆Kgs
?
=

E
S1τi

(6.22)

for some function E of the complex structure and open string moduli. If this were the case,
the one-loop corrections would typically dominate the α′ correction in (6.21) (which is
suppressed by the overall volume V) in the Kähler potential, if there are large hierarchies
among the Kähler moduli. However, one should keep in mind that toroidal orientifolds
are rather special in that they have very simple intersection numbers. In particular, the
overall volume can be written as V ∼ τiti, where there is no summation over i implied.
Thus, it is not obvious whether a generalization to the case of a general Calabi-Yau really
contains terms suppressed by single Kähler moduli instead of the overall volume. Even
though we can not exclude the presence of such terms, we deem it more likely that the

8The toroidal orientifold case seems to be a bit degenerate. Two stacks of D7-branes intersect along
a 2-cycle with the topology of P1. However, there are point-like curvature singularities along the P1

at the orbifold point and strings winding around these singular points can not be contracted without
crossing the singularities. This seems to allow for stability of winding strings (at least classically).
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C

A

no D−brane no D−brane
B

Figure 6.3: A D7-brane is wrapped on a 4-cycle A, which intersects the 4-cycle B on a 2-cycle
C. For Dirichlet strings, the relevant topological condition (the existence of nontrivial 1-cycles)
is on the intersection locus C, not on cycle B or on the whole Calabi-Yau. In other words,
without the D-brane, the string on cycle C could have been unwound by sliding it along cycle
B (as shown in the figure). With the D-brane, the string on cycle C is stuck.

scaling of one-loop corrections to the Kähler potential is not (6.22) but

Calabi-Yau: ∆Kgs
!∼
∑

KKm
−2
KK

S1V
∼
∑

a

ga
K(t, S1)EKa
S1V

and

∑
Wm−2

W

V
∼
∑

q

gq
W(t, S1)EWq

V
, (6.23)

where the sums run over KK and winding states, respectively. Also, EK and EW are again
unknown functions of the complex structure and open string moduli, t stands for the
2-cycle volumes (in the Einstein frame; see appendix D.3.1) and the functions gK(t, S1)
and gW(t, S1) determine the scaling of the KK and winding mode masses with the Kähler
moduli and the dilaton.9 As we review in appendix D.5, in the toroidal orientifold case
the suppression by the overall volume arises naturally through the Weyl rescaling to the
4-dimensional Einstein frame.

Starting with the ansatz (6.23) for smooth Calabi-Yau manifolds, the known form (6.22)
for toroidal orientifolds follows simply by substituting gK, gW and the intersection numbers
for the toroidal orientifold case. In particular, gK ∼ ti for the 2-cycle transverse to the
relevant D7-brane, while gW ∼ t−1

i for the 2-cycle along which the two D7-branes intersect.

9In rewriting the sums over KK and winding states in terms of the functions g and E , we assume that
the dependence of the corresponding spectra on the complex structure and Kähler moduli factorizes.
In the known examples of toroidal orientifolds (with or without world-volume fluxes), this is always
the case, cf. [181]. Moreover, in general there can appear several contributions (denoted by a and q)
depending on which tower of KK or winding states are exchanged in a given process. We will see
explicit examples of this in the following.
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Then, the first of the terms in (6.23) reduces to EKi /(S1τi) for toroidal orientifolds, the
second to EWi /(τjτk) with j 6= i 6= k, cf (6.50). Our strategy in the following chapters
will therefore be to assume a scaling like (6.23) for the 1-loop corrections to the Kähler
potential for general Calabi-Yau spaces.

As already mentioned, the dependence on the complex structure and open string moduli
can not be inferred by analogy to the orientifold case. We parameterize our ignorance by
keeping the expressions E in (6.23) as unknown functions of the corresponding moduli.
Then we investigate the consequences of the one-loop terms, depending on the size of
these unknown functions at the minimum of the potential for the complex structure and
open string moduli. Some further comments on the form of ∆Kgs will appear in section
6.5.2.

6.3.2 LVS with loop corrections

Thus, allowing for string loop corrections of the form (6.23) in (6.9), and expanding the
α′ correction as in (6.10), we can write

K = −ln(2S1)− 2 ln(V) +Kcs(u, u)−
ξ̃S

3/2
1

V
+
∑

a

ga
KEKa
S1V

+
∑

q

gq
WEWq
V

,

W = W0 +
∑
i

Aie
−aiTi , (6.24)

where as explained in the previous section, we have not specified the explicit form of the
loop corrections E , that are allowed to be functions of u (and in general of the open string
moduli, that we neglect in our analysis, assuming that they can be stabilized by fluxes).
The Kähler potential for the complex structure moduli Kcs(u, u) is left unspecified in
(6.24), indeed we will not need its explicit form. For consistency, we have also included
loop corrections to the α′ correction.10 This changes ξ to ξ̃, which is a small change; for
S1 = 10, numerically ξ̃ ≈ 1.02 ξ.

Neglecting fluxes, the functions ga
K and gq

W are proportional and inversely proportional
to some 2-cycle volume, respectively. (We will come back to corrections from fluxes in
appendix D.4.) When using a particular basis of 2-cycles (with volumes ti as in appendix
D.3.1), the 2-cycle volume appearing in ga

K or gq
W might be given by a linear combination

ta =
∑

i citi of the basis cycles ti (and similarly for tq). Depending on which 2-cycle is
the relevant one, this linear combination might or might not contain the large 2-cycle
tb ∼ V1/3, which always exists in LVS. If it is present in the linear combination, one can
neglect the contribution of the small 2-cycles to leading order in a large volume expansion

10We remind the reader that the α′ correction arises from the R4 term in 10 dimensions whose coefficient
receives corrections at 1-loop (and from D-instantons). The 1-loop correction amounts to a shift of
the prefactor from ξ to ξ̃ = ξ

(
1 + π2

3ζ(3)S2
1

)
, see for instance [182] for a review.
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and obtains possible terms proportional to EKb S−1
1 V−2/3 or EWb V−4/3, where the subscript

b refers to the large 4-cycle τb.

Before getting into the details, it is hard to resist trying to anticipate what might happen.
For those terms that are more suppressed in volume than the ξ̃ term (e.g EWb ), one would
expect the loop corrections to have little effect on stabilization. They could still represent
a small but interesting correction to physical quantities in LVS. For those that are less
suppressed in volume than the ξ̃ term (e.g. EKb ), one would expect the loop correction
to have a huge effect on stabilization, and severely constrain the allowed values for the
complex structure moduli and the dilaton in LVS (in particular, constrain them to a region
in moduli space where the function EKb takes very small values). We will find, however,
that this expectation is sometimes too naive. For example, there can be cancellations in
the scalar potential that are not obvious from just looking at the Kähler potential.

Let us now get into more detail on what happens in the LVS model with loop corrections.

6.3.3 The P
4
[1,1,1,6,9] model

We would now like to specify the general form of the Kähler- and superpotential (6.24) to
the case of the P4

[1,1,1,6,9] model. In this space, the divisors that produce nonperturbative

superpotentials when D7- (or D3-) branes are wrapped around them do not intersect, as
reviewed for instance in [178]. Therefore, we do not expect any correction of the EW type
in this model (for the generalization to models where there are such intersections, see
appendix D.4). Moreover, we neglect flux corrections to the KK mass spectrum in the
main text. It is shown in appendix D.4 that, for small fluxes, this correctly captures all
the qualitative features we are interested in, and it leads to much clearer formulas. Thus,
we now consider the scalar potential resulting from

K = −ln(2S1)− 2 ln(V) +Kcs(u, u)−
ξ̃S

3/2
1

V
+

√
τbEKb
S1V

+

√
τsEKs
S1V

,

W = W0 + Ae−aTs . (6.25)

As τb is very large the corresponding non-perturbative term in the superpotential of (6.24)
can be neglected, which allowed us to simplify the notation by setting As = A and as = a.

The general structure of the scalar potential was already given in (6.12). The three
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contributions at leading order (O(V−3)) in the large volume expansion are

Vnp1 = eKcs
24a2|A|2τ 3/2

s e−2aτs

V∆
, (6.26)

Vnp2 = −eKcs
2a|AW0|τse−aτs

S1V2

[
1 +

6EKs
∆

]
, (6.27)

V3 =
3eKcs |W0|2

8V3

[
S

1/2
1 ξ̃ +

4(EKs )2√τs
S2

1∆

]
, (6.28)

where the axion has already been minimized for, as discussed in section D.1.2, and

∆ ≡
√

2S1τs − 3EKs . (6.29)

The leading α′-correction is the ξ̃ term in V3 above. We now see that it scales with
the volume and the string coupling gs = 1/S1 as claimed in the Introduction, in (6.3).
Also the volume dependence of the loop correction (EKs term) in V3 is as announced in
(6.3). The gs factors seem to differ from (6.3); we see g2

s , g
2
s and g3

s for Vnp1, Vnp2 and V3,
respectively. This is because the gs dependence advertised in (6.3) arises in models where,
unlike in P

4
[1,1,1,6,9], the EW correction is present as well, cf. appendix D.4.11 It is also

worth mentioning that the loop correction proportional to EKs modifies Vnp1 and Vnp2 at
leading order in the V-expansion. whereas the α′ correction does not; it only appears in
V3. This is so even though both corrections are equally suppressed in the Kähler potential
(i.e. ∼ V−1). The reason for this can be traced back to the fact that the loop-correction
explicitly depends on τs and not only on the overall volume, cf. the discussion in appendix
D.3.4 and D.3.5.

As anticipated, EKb and its first derivatives appear only at the next order, O(V−10/3):

V10/3 = 2
61/3|W0|2eKcs

S3
1V10/3

[
(EKb )2 +

3

4
∂αEKb ∂αEKb Kαα

cs

]
, (6.30)

where ∂α = ∂/∂uα and ∂α = ∂/∂uα and α enumerates the complex structure moduli.
For EKb = EKs = 0, the potential terms at leading order coincide with the original case
discussed in (D.1), cf. appendix D.1.1. The singularity from zeros of the denominator is
an artifact of the expansion as discussed in appendix D.2. The range of validity is limited
to the range in moduli space where the denominator ∆ does not become too small. It
is also apparent that the loop terms are subleading in a large τs, large S1 expansion.
However, depending on the relative values of the parameters {EKs , τs, S1}, a truncation to
the first terms in such an expansion may or may not be valid. We perform a numerical
comparison of the two contributions to V3 in figure 6.4.

11There, it is shown that including the effect of fluxes on the KK spectrum might also produce this
behavior.
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Figure 6.4: The top surface is the α′ correction, the second is the gs correction, and the “red
carpet” is 10/∆ (we used the values A = 1,W0 = 1, a = 2π/8). We see that for most of the
parameter range, the α′ correction dominates, and only for large EKs , with the string coupling
gs = 1/S1 not too small, do the contributions become comparable.

We can understand the volume dependence of the terms (6.26)-(6.30) as follows. The
common prefactor eK gives an overall suppression τ−3

b ' V−2. The quantum corrections
obey the rule that a term proportional to 1/τλb in K appears in V3 at order 1/τλ+3

b (where
the +3 comes from the overall eK factor) for all values of λ except for λ = 1. When it
does appear, it is generated by the term (KiKi − 3) and breaks the no-scale structure.
For λ = 1 there is a cancellation at leading order, so it appears only at order 1/τ 2+3

b (see
appendix D.3.3 and D.3.4). This rule can explicitly be verified in our calculation: the α′

and the EKs corrections are suppressed by 1/τ
3/2
b in K, and therefore they appear with the

suppression 1/τ
9/2
b in V3. On the other hand, for the EKb term a cancellation takes place

to leading order (λ = 1). It appears neither in Vnp1 nor in Vnp2 at leading order (which
can be understood more generally, cf. appendix D.3.5). Thus, it only appears subleading
in the potential, at O(V−10/3).12

We now proceed to minimize the potential (6.26)-(6.28), using the same strategy as in
the case without loop corrections, cf. section 6.2.3 and appendix D.1.1. The equations
∂VV = 0 = ∂τsV are of course more complicated now, but it is easy to solve them
numerically. Doing so we find that the volume V and the small 4-cycle volume τs, viewed

12This cancellation for λ = 1 was already noticed in [91], albeit in the case without nonperturbative
superpotential. In [183] it was argued that this cancellation can be understood from a field redefinition
argument combined with the no-scale structure of the tree-level Kähler potential. That argument holds
for the case of a single Kähler modulus T with tree-level Kähler potential −3 ln(T + T ) and under
the assumption that the coefficient of the loop correction to the Kähler potential ∼ (T + T )−1 is
independent of the complex structure moduli and the dilaton. Here, these assumptions do not hold,
but we showed that the term ∼ (Tb + T b)−1 in the Kähler potential nevertheless only appears at
subleading order in the potential in LVS, cf. (6.26)-(6.30).
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as functions of S1 and EKs , are well fit by linear functions when restricted to a sufficiently
limited range in parameter space. For example,

range: S1 = [8, 11], EKs = [20, 40]

log10 V = 1.720S1 − 0.1208 EKs − 3.437 , (6.31)

τs = 5.000S1 − 0.3581 EKs − 8.638 .

The fits are quite good; the error is no greater than ±0.3 for τs and ±0.1 for log10 V in
this range, for an {S1, EKs } grid of 402 points.

From (6.31) we see an interesting difference to the case without loop corrections. The
value of τs at the minimum depends on the complex structure moduli u, through EKs .
This is in contrast to the case without loop corrections, where the value of τs is only
determined by the value of the Euler number ξ and the dilaton S1, cf. (D.2) below. It is
analogous to the perturbative stabilization in [91] where the volume at the minimum of
the potential also depends on u.

The result (6.26)-(6.28) was derived in a particular model, but we expect the appearance
of loop corrections in V to be more general. This opens up the possibility that in principle,
one might obtain large volume minima even for manifolds of vanishing (or even positive)
Euler number, where LVS is not applicable, as LVS-style stabilization only holds for
one sign of ξ. In practice it might be difficult to get large enough values for the 1-loop
corrections to stabilize τs at a value sufficiently bigger than the string scale. This deserves
further study.

We also note that the special structure of (6.28) and (6.30), i.e. the appearance of Es only
in (6.28) and of Eb only in (6.30), offers additional flexibility in tuning the relative size of
these terms in a purely perturbative stabilization of the Kähler moduli along the lines of
[90, 91]. Also this point deserves further study.

6.4 Gaugino masses

Now that we know how the stabilization of the (Kähler) moduli is modified by loop correc-
tions, it is natural to extend our analysis to the soft supersymmetry breaking Lagrangian
(For a review see for instance [184, 185].) In LVS, supersymmetry breaking is mostly due
to F -terms: Fs 6= 0, Fb 6= 0. These determine the soft supersymmetry breaking terms
which can be present in the low energy effective action without spoiling the hierarchy
between the electroweak and the Planck scale,

Leff = LMSSM + Lsoft . (6.32)

The soft Lagrangian contains gaugino masses M , scalar masses m, further scalar bilinear
terms B and trilinear terms A. (For explicit expressions, see the aforementioned reviews,
or e.g. [144].)
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Let us start considering gaugino masses. In [144] it was shown that in LVS, gaugino
masses Ma are generically suppressed with respect to the gravitino mass m3/2:

|Ma| '
m3/2

ln(1/m3/2)

[
1 +O

(
1

ln(1/m3/2)

)]
(6.33)

(we use units in which MPl = 1). This suppression results from a cancellation of the
leading order F -term contribution to gaugino masses. We briefly review this calculation.
Given the F -terms

F I = eK/2GJIDJW , (6.34)

gaugino masses are given by [184]

Ma =
1

2

1

Refa

∑
I

F I∂Ifa , (6.35)

where fa are the gauge kinetic functions and a labels the different gauge group factors. In
LVS the Standard Model (SM) gauge groups arise from D7-branes wrapped around small
4-cycles. We do not try to go into the details of how to embed the SM concretely, but
we mention that different gauge group factors might arise from brane stacks wrapping
the same 4-cycle if world volume fluxes are present on the branes. In that case the gauge
kinetic functions are given by13

fa =
Ta
4π

+ ha(F)S + f (1)
a (u) , (6.36)

where ha depends on the world volume fluxes and we also included a possible 1-loop
correction to the gauge kinetic function which depends on the complex structure (and
possibly open string) moduli. If several gauge groups arise from branes wrapped around
the same cycle, the same Kähler modulus T would appear in all of them. From (6.36)
it is clear why the D7-branes of the SM have to wrap small 4-cycles, because otherwise
the gauge coupling would come out too small (unless there is an unnatural cancellation
between the different contributions to fa).

As is also apparent from (6.36), the gauge kinetic function in general depends not only
on the Kähler moduli but also on the dilaton and the complex structure. Thus, according
to (6.35) we need to know F u, F S and F i for the small Kähler moduli.14 From the
definition (6.34), it is clear that F u and F S might be non-vanishing even though we

assume DuW = 0 = DSW , provided the inverse metric GJI contains mixed components
between Kähler moduli on the one hand and complex structure moduli and dilaton on

13We use the “phenomenology” normalization of the gauge generators, in the language of [186]; that
explains the relative factor of 4π in (6.36).

14With a slight abuse of notation, we denote the F -terms of the Kähler moduli by the index i, but the
F -terms of the other moduli are identified by the symbol for the corresponding modulus, like FS .
This is to avoid introducing too many indices.
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the other hand. Without loop corrections (i.e. considering only the leading α′ correction)
there is no mixing between the Kähler and complex structure moduli, and one finds

F u = 0 , F S ∼ O(V−2) and F i ∼ O(V−1) (without loop corrections) . (6.37)

Thus, at leading order in the large volume expansion, the sum in (6.35) only runs over the
Kähler moduli. Moreover, taking into account the linear dependence of the gauge kinetic
functions (6.36) on the (small) Kähler moduli, the sum effectively only involves a single
term, i.e.

Ma =
1

8π

1

Refa
F a +O(V−2) , (6.38)

where F a is the F-term of the (small) Kähler modulus appearing in fa.

As a concrete example we consider again the P4
[1,1,1,6,9] model with only one small Kähler

modulus τs. The corresponding F-term is given by

F s = eK/2
(
Gss∂sW + (GssKs +GbsKb)W

)
= 2τse

K/2W 0

((
1− 3

4aτs

)
− 1 +O((aτs)

−2)

)
+O(V−2) , (6.39)

where we used (6.20) and (D.6) for the first term and (D.9) for the second.

Now the leading order cancellation is obvious in (6.39). Determining the gaugino masses
requires dividing by Refs, cf. (6.35). In order to further evaluate this, [144, 145] assumed
that the dilute flux approximation fs = (4π)−1Ts is valid, i.e. they neglected the contri-
butions from world-volume fluxes and one-loop terms compared to the tree-level term.
This puts some constraints on the allowed discrete flux values determining hs. We want
to stress that the cancellation appearing in (6.39) is independent of this approximation.
We are mainly interested in the fate of this cancellation when including loop corrections,
and do not have anything to add concerning phenomenological constraints that may arise
from imposing the dilute flux approximation. Using it, the gaugino masses simplify to

|Ms| =

∣∣∣∣F s

2τs

∣∣∣∣ = eK/2|W0|
(

3

4aτs
+O((aτs)

−2)

)
(6.40)

∼
m3/2

ln(1/m3/2)

[
1 +O

(
1

ln(1/m3/2)

)]
,

which is the announced result. In (6.40) we used

m3/2 ∼ |W0|/V and aτs ∼ ln(V/|W0|) , (6.41)

where the second relation holds in LVS due to (6.20).
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6.4.1 Including loop corrections

The previous section was a review of the results found in [144]. Now we ask what changes
if one considers the loop corrected Kähler potential (6.25). A priori, as (6.40) results
from a leading order cancellation, one might wonder whether loop corrections might spoil
this small hierarchy between the gaugino and gravitino masses. To address this concern
we start by observing that the gaugino masses are still determined by the F-terms of
the small Kähler moduli (in the large volume limit). More precisely, the scaling of the
F-terms (6.37) now becomes

F u = O(V−2), F S ∼ O(V−2) and F i ∼ O(V−1) (with loop corrections) , (6.42)

i.e. F u no longer vanishes, but it is just as suppressed as F S.

We again focus on the P4
[1,1,1,6,9] model and ask how (6.39) is modified by loop corrections.

Amongst other things, we need to generalize equation (6.20) to include loop corrections,
since we need it to calculate the first term in (6.39). Thus, we need to extremize the
potential again with respect to τs by setting

∂τsV =

{
−

12
√
τsa

2

V∆2

[(
4aτs − 1

)
∆ + 6EKs

]
X2

+
2a|W0|
V2S1∆2

[(
aτs − 1

)(
∆2 − 18(EKs )2

)
+ 6

√
2aS1τ

2
s EKs

]
X (6.43)

− 3|W0|2(EKs )2

4S2
1V3∆

√
τs

}
eKcs

to zero. Obviously, X = 0 is no longer a solution. Instead, there are now two non-trivial
solutions, one of which goes to zero in the limit EKs → 0. This solution corresponds to a
maximum of the potential, so it is of no use to us here. We can expand the other solution
for large aτs, as in the case without loop corrections, yielding

X = Ae−aτs =

√
2|W0|

24aV
√
τs

(
1− 3

4aτs

(
1− 2

√
2aEKs
S1

))
+O

(
1

(aτs)2

)
. (6.44)

Another ingredient we need is the quantity GısKı, in order to evaluate the second term
in (6.39). Using equation (D.10) we obtain

GısKı = −2τs

(
1 +

6EKs
∆

)
+ . . .

= −2τs −
6
√

2EKs
S1

− 18(EKs )2

S2
1τs

− 27
√

2(EKs )3

τ 2
sS

3
1

+O
(

1

τ 3
s

)
+ . . . , (6.45)

where the ellipsis represents terms that are more suppressed in V−1.



118 6. On soft terms from large volume compactifications

Now we see from (6.44), (6.45) and (D.10) that at leading order in an expansion in aτs, the
quantities relevant to evaluate (6.39) are not affected by the loop corrections. Thus, the
leading order cancellation in the gaugino masses survives the inclusion of loop effects.15

At first glance, though, equations (6.44), (6.45) and (D.10) seem to suggest a correction to
the subleading term, that could potentially give a significant contribution to the gaugino
masses after the leading-order cancellation, cf. (6.39).

In the actual calculation, this contribution drops out. Putting all the ingredients together
(and employing the dilute flux approximation again), the gaugino mass turns out to be

|Ms| =

∣∣∣∣F s

2τs

∣∣∣∣ = 3eK/2|W0|

∣∣∣∣∣ 1

4aτs
+

1

16a2τ 2
s

+
S1 − 12

√
2aEKs

64S1a3τ 3
s

+ . . .

∣∣∣∣∣
∼

m3/2

ln(1/m3/2)

[
1 +O

(
1

ln(1/m3/2)

)]
. (6.46)

The result of [144] is therefore very robust. Unexpectedly, the correction to (6.40) due to
EKs only appears at sub-sub-leading order in the 1/ ln(1/m3/2) expansion.

6.4.2 Other soft terms

In [145] all other soft terms were calculated for LVS. The main result (see p. 15 of [145])
is that roughly speaking, all the soft parameters are determined by F s and by the power
with which the chiral matter metrics scale with τs. As we saw in the previous section, F s

gets modified by loop corrections only at sub-sub-leading order in a 1/τs expansion (see
(6.46)). Therefore, the calculation of all the soft terms in [145] appears to be quite robust
against including loop effects.

One of the key assumptions in [145] is that all the Yukawa couplings Y are already present
in perturbation theory, i.e. they have the schematic form Y = Y pert(u) + Y np(e−T ). This
requirement featured prominently already in the derivation of the volume dependence of
the chiral matter metrics in [187] by scaling arguments. In [145] the same schematic form
is essential for simplifying the trilinear soft terms A. In general these terms receive a
contribution of the schematic form

F T∂T logY = F T ∂T (Y pert(u) + Y np(e−T ))

Y pert(u) + Y np(e−T )
∼ O(e−T )

O(T 0) +O(e−T )
, (6.47)

which is exponentially suppressed if and only if Y pert(u) is non-vanishing. However, in
many examples the Yukawa couplings are actually only generated nonperturbatively, see

15One might argue that this result was to be expected, because the main assumption of [144] is that
the stabilization is due to nonperturbative effects, i.e. the dominant effect in ∂τs

V should arise from
the nonperturbative superpotential. However, in view of (6.43), it is no longer obvious that the
nonperturbative terms dominate when loop corrections are included.
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for instance the discussion in [188], and [189] for some examples. This poses a constraint
on the way the Standard Model is realized in LVS, if one wants to ensure flavor universality
of the soft breaking terms as advertised in [145].

One more comment about the important issue of flavor universality. In [145], section 3.4.,
it was argued that in LVS, approximate flavor universality is a natural consequence of the
zeroth-order factorization of Kähler and complex structure moduli spaces. We provide
some more details on the factorized approximation in appendix D.6.

6.5 LVS for other classes of Calabi-Yau manifolds?

In section 6.3.3 and 6.4 we saw that the 1-loop corrections to the moduli Kähler potential
only have relatively small effects on the large volume scenario based on the P

4
[1,1,1,6,9]

model of [169]. In this chapter, we would like to ask the question how generic the “Swiss
cheese” form is for a Calabi-Yau manifold and if there are other models in which the
one-loop corrections discussed above might become more important. This is indeed to be
expected if the Calabi-Yau under consideration has a fibered structure, as we explain in
the following. If gs corrections do dominate α′ corrections, they could ruin the volume
expansion of LVS.

6.5.1 Abundance of “Swiss cheese” Calabi-Yau manifolds

In the LVS examples discussed in [143] the volume in terms of the Kähler moduli takes
the “Swiss cheese” form

V =
(
τb +

∑
aiτi

)3/2

−
(∑

biτi

)3/2

− . . .−
(∑

ciτi

)3/2

, (6.48)

where the coefficients ai, ..., ci are only non-vanishing for the small Kähler moduli. The
LVS limit consists in scaling the overall volume of the Calabi-Yau more or less isotropically
while having small holes inside the manifold. The τ ’s are linear combinations of ∂tiV ,
where now V is considered as a (cubic) function of the 2-cycle volumes ti. For the effective
field theory analysis to be valid one should not only demand that the 4-cycle volumes τi
are large compared to the string scale, but also that the 2-cycle volumes ti are large. In
the cases discussed in [143], the linear combinations ∂tiV are indeed such that one can
have one of them exponentially large and the others small (but still sufficiently larger than
the string scale), without taking any of the ti to be exponentially small. This is obvious
for the P4

[1,1,1,6,9] example where the 2-cycle volume tb only appears in the definition of one

of the τ ’s, cf. (6.14), but it is also true for the second example of [143], cf. their formulas
(84).
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However, the F18 model of [61] does not seem to allow its volume to be written in the
form (6.48) with one Kähler modulus τb that can become large while keeping all the others
small (again, demanding that the ti stay larger than 1 in string units). Thus, it is an
interesting question how generic or non-generic the “Swiss cheese” Calabi-Yau manifolds
are. We do not attempt to give a general answer; instead, we turn to two examples in
which the form of the volume differs from (6.48).

6.5.2 Toroidal orientifolds

The reason loop corrections may be more important in toroidal orientifolds than in com-
pactifications on “Swiss cheese” Calabi-Yau manifolds is the following. As we already
discussed in section 6.3.1, the conjectured form of 1-loop corrections (6.23) simplifies in
the case of toroidal orientifolds, because they have very special and simple intersection
numbers. More concretely, using the definition τi = ∂tiV , together with the special form of
the intersection numbers in the toroidal case, i.e. V = t1t2t3, the volume can alternatively
be expressed as

V =
√
τ1τ2τ3 = tiτi (no summation; i = 1, 2 or 3) . (6.49)

Thus, formula (6.23) simplifies and the 1-loop corrections proportional to EKi are only
suppressed by single Kähler moduli instead of by the overall volume. Also the terms pro-
portional to EWi can be rewritten in the toroidal orientifold case and the Kähler potential
takes the form (for the T 6/(Z2 × Z2) example)

K = −ln(2S1)− 2 ln(V) +Kcs(u, u)−
ξS

3/2
1

V
(6.50)

+
3∑
i=1

EKi (u, u)

4τiS1

+
3∑

i6=j 6=k

EWk (u, u)

4τiτj
,

where the functions E are non-holomorphic Eisenstein series in this case [171]. It is easy to
see that the origin of this simplification is the fact that there is just a single non-vanishing
intersection number in the toroidal orientifold case and all Kähler moduli appear linearly
in the cubic expression for the volume.

The difference of the toroidal orientifold to the “Swiss cheese” case of LVS can also be seen
in the different forms of the functional dependence of the volume on the Kähler moduli.
In the toroidal orientifold case one has the relations

∂t1V = t2t3 , ∂t2V = t1t3 , ∂t3V = t1t2 , (6.51)

so that two of them will always become large if one takes one of the ti to be large and
demands that the other two stay larger than 1. This also holds for any linear combinations
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of them. The difference is also obvious from the fact that the 2-cycle volume tb that is
responsible for τb becoming large in the LVS examples of [143] always appears cubically in
the volume. This is related to the fact that the term (τb+

∑
aiτi) should be the square of

a linear combination of the ti, in order for (6.48) to be expressible as a cubic polynomial
in the ti. In contrast, any (untwisted) 2-cycle volume in the toroidal orientifold case only
appears linearly in the cubic volume polynomial.

To illustrate the effect of terms in the Kähler potential that are suppressed only by single
Kähler moduli instead of the overall volume, we take the Kähler potential (6.50) and
expand V3 in the region of the Kähler cone where τ1 = τ2 = τb � τ3 = τs (as we explained
above, at least two of the Kähler moduli have to become large simultaneously, if one wants
to avoid any of the 2-cycle volumes becoming very small). This leads to (for simplicity
setting all ui = u, all EKi = EK and all EWi = EW ):

V3 =
|W0|2eKcs

2S1V2

{[
(EK)2 + 1

2
(∂uuKcs)

−1∂uEK∂uEK

8τ 2
sS

2
1

+O
(

1

τ 3
s

)]

+
1

τb

[
3 ξ̃ S

3/2
1

4
√
τs

+
EW

τs
+

(EK)2 + (∂uuKcs)
−1∂uEK∂uEK

4S2
1τs

+O
(

1

τ
3/2
s

)]

+O
(

1

τ 2
b

)}
. (6.52)

Obviously, the leading term in the large τb expansion now comes from the loop correction
and not from the α′ term (which term really dominates depends on the values of S1 and
u as well, of course). Thus, an expansion of the potential as in LVS, cf. (6.16), would not
be realized in this case, even if one found a way to lift enough zero modes by fluxes for τs
to appear in a nonperturbative superpotential.

This toy example was meant to show that for a consistent large volume expansion in
models with large hierarchies in the Kähler moduli, it is important to make sure that
there are no correction terms in the Kähler potential (from loop or α′-corrections) that
are suppressed only by some of the small Kähler moduli. We should stress again that also
terms suppressed by the large volume can be dangerous if the suppression is less than for
the α′ term, i.e. if it is τ−λb with λ < 3/2. The only exception to this rule is the case λ = 1
as we showed above (and as is shown more generally in appendices D.3.4 and D.3.5). In
this respect it would be important to know if the conjecture (6.25) really bears out. If it
turns out that the actual form of the 1-loop corrections also contains terms like

∆Kgs
?
=
tλ1
b t

λ2
i EKi
S1V

, (6.53)

with λ1 + λ2 = 1 but 0 < λ1 6= 1 or 0, such a 1-loop correction would spoil the large
volume expansion performed in (6.16).16

16In principle, one would also need an argument that no such terms arise at higher loop order, which
would, however, have to be further suppressed in the dilaton S1.
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6.5.3 Fibered Calabi-Yau manifolds

The feature of orientifolds that all Kähler moduli appear linearly in the cubic expression
for the volume shows that a similar simplification can occur in the case of (K3) fibered
Calabi-Yau manifolds, which also have the property that one Kähler modulus (the one
corresponding to the volume of the base) only appears linearly in the cubic expression for
the volume. This takes the form

V = tbηijtitj + dijktitjtk , (6.54)

where ηij are the intersection numbers of the (K3) fiber, and neither they nor the triple
intersection numbers dijk contain the index b, which is chosen to denote “base”, but it
is also suggestively the same index as the one we used for the large Kähler modulus in
the P4

[1,1,1,6,9] model. Two-parameter examples of this type appear in e.g. [190, 177]. In
a region of the Kähler moduli space where the base tb is rather large but all the other
ti stay relatively small, the volume is approximately V = tbηijtitj. Thus, if the Kähler
potential has a 1-loop correction ∼ EKb tb/V , it could be approximated in this region by

EKb tb
V

∼ EKb
τf

+O
(
t−1
b

)
, (6.55)

where τf = ηijtitj is the volume of the (K3) fiber (which is small compared to t2b).
Obviously, this would lead to a correction to the Kähler potential that is only suppressed
by a single (small) 4-cycle volume, similar to the toroidal orientifold example we discussed
in the last section.

We should note that this limit (large base and small fiber for (K3) fibered Calabi-Yau
manifolds), is quite different from the one performed in the usual LVS of [169], even
though both cases involve hierarchical limits of the Kähler moduli. As explained in
section 6.5.1, the LVS limit consists in scaling the overall volume of the Calabi-Yau more
or less isotropically while keeping holes in the bulk of the manifold small. In contrast, the
limit of large base and small fiber is anisotropic. At the moment we have nothing to add
about whether such anisotropic configurations with all moduli stabilized actually exist.
We merely wanted to point out that if they do exist, that would be an example of smooth
Calabi-Yau compactifications where the gs corrections we consider dominate over the α′

corrections considered in the large volume limit, as in the toroidal orientifold case.

6.6 Further corrections

In [143], further α′ corrections to the string effective action beyond the one in (6.9) were
considered. In the case of bulk α′ corrections (i.e. those already present in type IIB
bulk theory without D-branes, arising from sphere level) scaling arguments were given
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as to why they are suppressed in the large volume limit. Although that discussion was
surprisingly powerful in its simplicity, we do not consider it completely conclusive, if large
hierarchies between the Kähler moduli exist. After all, dimensional analysis alone does
not guarantee that the other α′-corrections are always suppressed by additional powers in
the overall volume, instead of powers of some of the small Kähler moduli. Moreover, in
addition to the bulk α′ corrections that appear at order O(α′3), in the models of interest
for LVS further α′-corrections arise on the worldvolume of D-branes and O-planes, cf.
[191, 192, 193, 194, 195, 196, 197, 198]. These corrections begin already at order O(α′)
and scaling arguments of the kind used for the bulk corrections do not seem to be sufficient
to neglect them.

Indeed, there are correction terms involving two powers of the Riemann tensor which do
modify the effective D3-brane charge and tension, if the D7-branes are wrapped over 4-
cycles with non-vanishing Euler number. These terms were already taken into account in
[8]. However, there are further contributions to the DBI action at the same order in α′, like
F 2

3R or F 4
3 , where F3 stands for the RR 3-form field strength, R for the Riemann tensor

and we left index contractions unspecified. If the D7-branes do not break supersymmetry
and remain BPS, it seems unlikely that these terms could contribute to the potential for
the closed string moduli, i.e. induce some effective D3-brane tension. The reason is that
there does not seem to be a corresponding term in the Chern-Simons action that could
lead to the necessary modification of the effective D3-brane charge at the same time. This
could be checked in more detail.

In general, we think that the question of additional corrections to the moduli (Kähler)
potential deserves further attention. Here we only outlined some steps in that direction.

6.7 A summary on string compactifications

In this chapter, we have investigated whether string loop corrections may impact a) sta-
bilization in the large volume compactification scenario (LVS), and b) the phenomenology
of those scenarios, as manifested in the soft supersymmetry breaking terms. The result
is that for the specific class of compactification manifolds considered in LVS, so-called
“Swiss cheese” Calabi-Yau manifolds, changes are minuscule. Only if the loop corrections
become abnormally large (in the toroidal orientifold case, this can happen if the complex
structure is stabilized very large) do they affect LVS. For other classes of manifolds, the
corrections may be important. We hasten to add that the detailed expressions for the loop
corrections in LVS remain unknown; we have merely tried to infer their scaling with the
Kähler moduli from experience in the toroidal orientifold limit. We think it is important
to attempt to address this issue, as the string coupling is stabilized at a nonzero value, so
the corrections can not be turned off.

We also stress the (to some readers obvious) fact that there remain a host of issues that
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must ultimately be dealt with if one wishes to claim that these are “string compactifica-
tions”.

• We can not be sure that fluxes do not alter the corrections, since backgrounds with
RR and NSNS fluxes are not well understood in string perturbation theory.

• Additional corrections may appear (see section 6.6) that could be equally threaten-
ing to LVS as the loop corrections, or worse.

• In [171] only the corrections to the Kähler potential coming from N = 2 sectors
were determined and we based our generalization on those results. However, there
might be interesting corrections coming from the N = 1 sectors as well.

• It has not yet been shown that a local Standard Model-like construction can be
embedded in the simplest examples like the P4

[1,1,1,6,9] model. If more general models
turn out to be needed, one needs to reconsider whether the requisite nonperturbative
superpotentials are generated.

• We have largely ignored open string moduli, under the proviso that they are stabi-
lized heavy, as are the dilaton and complex structure moduli.

• The coefficient A(S, u) in the nonperturbative superpotential is generally assumed
to be of order 1. It is not known how generic this is.

• All string computations we have discussed were performed in a supersymmetric
context. In LVS supersymmetry is broken already before uplift, in the AdS mini-
mum. Supersymmetry breaking directly in string theory is not very well understood
[173, 199].

Faced with all these caveats, a pessimist might be inclined to give up. We think we have
shown that it is worth considering these issues in detail. Sometimes, an effect one would
have thought to be devastating turns out to be as gentle as a summer breeze.



A The conifold

In this appendix we describe the singular and the deformed conifold. The purpose is to
provide the formulae which are needed in the main text, and in particular in chapter 4
and 5. We follow [108, 200] and we refer to these papers for further details.

A.1 The singular conifold

The singular conifold is a non-compact Calabi-Yau threefold. In can be defined as a
hypersurface in C

4. Two sets of complex projective coordinates are particularly useful:
one set is denoted by wA, with A = 1, 2, 3, 4; the conifold is then defined by the equation

w1w2 − w3w4 = 0 . (A.1)

A second set is denoted by zA, for which the defining equation is

4∑
A=1

(zA)2 = 0 . (A.2)

The two sets of coordinates are linearly related by

z1 =
1

2
(w1 + w2) , z2 =

1

i2
(w1 − w2) ,

z3 =
1

2
(w3 − w4) , z4 =

1

i2
(w3 + w4) , (A.3)

We can also use 6 real coordinates to parameterize the conifold. The metric is then given
by

ds2
6 = dr2 + r2ds2

T 1,1 , (A.4)

ds2
T 1,1 =

1

9

(
dψ +

2∑
i=1

cos θi dφi

)2

+
1

6

2∑
i=1

(
dθ2

i + sin2 θi dφ
2
i

)
. (A.5)

This makes explicit that the singular conifold has a radial direction r and a base pa-
rameterized by 5 angular direction φ1, φ2, θ1, θ2 and ψ. The base is T 1,1, i.e. the coset
space (SU(2)A × SU(2)B)/U(1)R and it is topologically equivalent to S3 × S2, as can be
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seen from the pictorial representation in figure A.1. The complex wA coordinates can be
expressed in terms of the real coordinates as

w1 = r3/2e
i
2
(ψ−φ1−φ2) sin

θ1

2
sin

θ2

2
, (A.6)

w2 = r3/2e
i
2
(ψ+φ1+φ2) cos

θ1

2
cos

θ2

2
, (A.7)

w3 = r3/2e
i
2
(ψ+φ1−φ2) cos

θ1

2
sin

θ2

2
, (A.8)

w4 = r3/2e
i
2
(ψ−φ1+φ2) sin

θ1

2
cos

θ2

2
. (A.9)

As for all Calabi-Yau manifolds, the conifold’s metric is given by the second derivative of
a Kähler potential. For the wA coordinates this is

k(wi, w̄i) = r2 =

(
4∑
i=1

|wi|2
)2/3

. (A.10)

To obtain the metric one of the four coordinates {w1, w2, w3, w4}, has to be expressed in
terms of the other using the defining equation (A.1). If, e.g. we chose to keep {w2, w3, w4}
and express w1 as a function of them, the inverse metric (appearing in (4.16)) is given by

k̄,i ≡ (ki,̄)
−1 (A.11)

=
3

2
r

{
δij +

wiw̄j
2r3

− 1

r3

 |w1|2
|w4|2

|w3|2


+
|w1|2

2r3

[
δ1i(δ1j − 1)

w̄i
w̄j

+ δ1j(δ1i − 1)
wi
wj

]}

=
3

2r2

 r3 − |w1|2 + 1
2
|w2|2 w3

w2
(|w2|2 + 2|w4|)2 w4

w2
(|w2|2 + 2|w3|)2

w̄3

w̄2
(|w2|2 + 2|w4|)2 r3 − |w4|2 + 1

2
|w3|2 w4w̄3

w̄4

w̄2
(|w2|2 + 2|w3|)2 w3w̄4 r3 − |w3|2 + 1

2
|w4|2

 ,

where i and j run from 1 to 3.

A.2 The deformed conifold

In this appendix we review some useful facts about the deformed conifold. At the end we
will obtain an expression for ∂rz1 at the tip, which is what we need to check the radial
stability in appendix C.2. We restrict ourselves to the zA coordinates.
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Figure A.1: The deformed, resolved and singular conifold are depicted. Figure taken from [108].

The deformed conifold is defined by the following hypersurface in C4

4∑
A=1

(zA)2 = ε2 , (A.12)

where ε is a complex parameter. When ε = 0, (A.12) reduces to (A.2), i.e. the singular
conifold. In terms of the matrix W = 1√

2
(ziσi+ iz4), where σi are the Pauli matrices, this

expression can be written as

detW = −ε
2

2
. (A.13)

A radial coordinate can be defined by

4∑
A=1

|zA|2 = tr
(
WW †) = r3 . (A.14)

A generic solution to (A.12) can be written as

W = L1Z0L
†
2 , (A.15)

where L1 , L2 are SU(2) matrices that can be parameterized using Euler angles

Lj =

(
cos

θj

2
ei(ψj+φj)/2 − sin

θj

2
e−i(ψj−φj)/2

sin
θj

2
ei(ψj−φj)/2 cos

θj

2
e−i(ψj+φj)/2

)
(A.16)

and

Z0 =

(
0 a
b 0

)
, (A.17)

a =
1

2

(√
r3 + ε2 +

√
r3 − ε2

)
, b =

ε2

2a
. (A.18)
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For r3/2 > ε, one of the six angles {φi, ψi, θi}, i = 1, 2, is redundant. We can fix the
gauge imposing ψ2 = 0; we obtain the following real parameterization of the complex
coordinates zA

z1 =
1√
2

(
a cos

θ1

2
cos

θ2

2
ei(ψ1+φ1+φ2)/2 − b sin

θ1

2
sin

θ2

2
e−i(ψ1−φ1−φ2)/2

−a sin
θ1

2
sin

θ2

2
ei(ψ1−φ1−φ2)/2 + b cos

θ1

2
cos

θ2

2
e−i(ψ1+φ1+φ2)/2

)
,

z2 =
i√
2

(
a cos

θ1

2
cos

θ2

2
ei(ψ1+φ1+φ2)/2 − b sin

θ1

2
sin

θ2

2
e−i(ψ1−φ1−φ2)/2

+a sin
θ1

2
sin

θ2

2
ei(ψ1−φ1−φ2)/2 − b cos

θ1

2
cos

θ2

2
e−i(ψ1+φ1+φ2)/2

)
,

z3 = − 1√
2

(
a cos

θ1

2
sin

θ2

2
ei(ψ1+φ1−φ2)/2 + b sin

θ1

2
cos

θ2

2
e−i(ψ1−φ1+φ2)/2

−a sin
θ1

2
cos

θ2

2
ei(ψ1−φ1+φ2)/2 − b cos

θ1

2
sin

θ2

2
e−i(ψ1+φ1−φ2)/2

)
,

z4 =
i√
2

(
−a sin

θ1

2
cos

θ2

2
ei(ψ1−φ1+φ2)/2 − b cos

θ1

2
sin

θ2

2
e−i(ψ1+φ1−φ2)/2

a cos
θ1

2
sin

θ2

2
ei(ψ1+φ1−φ2)/2 + b sin

θ1

2
cos

θ2

2
e−i(ψ1−φ1+φ2)/2

)
.

(A.19)

The singular conifold, i.e. ε = 0, is just the special case a = r3/2 , b = 0. Now we want
to calculate the derivative of z1 with respect to r evaluated at the tip r = ε2/3. At
the tip, three of the six Euler angles are redundant, a possible choice of the gauge is
θ2 = ψ2 = φ2 = 0. The result is then

lim
r→ε2/3

Im
∂z1

∂r
=

√
6

4

cos θ1
2

sin ψ1+φ1

2
ε2/3

√
r − ε2/3

+O(1) ,

lim
r→ε2/3

Re
∂z1

∂r
=

3

4
ε1/3 cos

θ1

2
cos

ψ1 + φ1

2
+O

(
r − ε2/3

)
(A.20)

=
3

4
ε1/3E(θ1, φ1, ψ1) +O

(
r − ε2/3

)
,

where in the last line we have introduced the function |E(θ1, φ1, ψ1)| < 1 for further
reference. We see that the imaginary part of the derivative is singular but the real part
has a finite non vanishing value.



B Technical details on radial brane
inflation

In the following appendices we deal with a series of technical details related to the radial
brane inflation model constructed in chapter 4. Appendix B.1 analyzes the dependence of
the stabilized volume modulus τc on the uplifting and on the inflaton. Appendix B.2 shows
that the coefficient of the φ3/2 term in the inflaton potential (4.58), for the Kuperstein
embedding, is non-positive. This feature determines the general structure of the potential
which is derived in Appendix B.3.

B.1 Dependence of τcr on the uplifting and the inflaton

In this appendix, we discuss the minimization of the volume in the model of chapter 4.
In particular we derive its dependence on the uplifting parameter and on the inflaton. As
explained in section 4.4.2 and shown graphically in figure 4.2, the latter dependence is
crucial for a correct inflationary analysis.

The N=1, 4-dimensional F-term potential

VAdS =
aA0e

−aτ

2τ 2

(
1

3
τaA0e

−aτ +W0 + A0e
−aτ
)
, (B.1)

resulting from the choice

K = −3log(T + T ) , (B.2)

W = W0 + A0 e
−aT , (B.3)

has a well known [20] AdS minimum τ0 (see section 2.6 and figure 2.4), solution of the
transcendental equation

τ0 = −3

2

A0 +W0 e
aτ0

aA0

, (B.4)

where W0 is a negative real number. The aim of this appendix is to calculate how this
minimum changes when an uplifting and a D3-brane are present as in the brane inflation
model of chapter 4.
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B.1.1 On τcr and the uplifting

For concreteness, we look at an uplifting generated by the warped tension of an anti
D3-brane. In the type IIB setup with imaginary self-dual fluxes of section 2.5.1 [8], an
anti D3-brane feels a potential that pulls it to regions with strong warping. If a warped
throat is present, the anti D3-brane will stabilize at its tip. Supersymmetry is broken and
the effective scalar potential receives a contribution proportional to the redshifted anti
D3-brane tension that we schematically indicate as

Vup =
D

4τ 2
. (B.5)

The AdS minimum τ = τ0 in (B.4) is shifted and uplifted. We call the new minimum τup
and define the shift ∆β ≡ τup− τ0, induced by the uplifting term. It is useful to trade the
parameter D for another parameter β, rewriting it as

D = β
2

3
τ0a

2A2
0e
−2aτ0 . (B.6)

The condition that Vup uplifts the AdS minimum to dS is now easily expressed by the
requirement β & 1+2∆/τ0 (which is very close to, but not exactly one). In what follows,
we make the hypothesis that this condition is fulfilled and therefore the minimum is dS.
The equation ∂τ (VAdS + Vup) = 0 is equivalent to

τup = − 1

4aA0

(
7A0 + 3W0e

aτup −
√

(A0 − 3W0eaτup)2 − 96Deaτup/a
)
. (B.7)

As it was the case for (B.4), this is a transcendental equation and has to be solved
numerically. To get some analytical control, we use the following trick. We substitute D
and W0 in (B.7) using (B.6) and (B.4). Then we solve the resulting equation for ∆ in
terms of τ0 and the others parameters. This can be done expanding ea∆ ' 1+a∆ so that
the equation is no more transcendental. At the end of the day the only transcendental
equation that we have to solve numerically is B.4, and we have an analytical expression
for ∆.

The expression for ∆ is a little bit long, so we write its expansion in 1/aτ0, this is

∆β '
β

a2τ0
+
β(4β − 5)

2a3τ 2
0

+ . . . , (B.8)

in very good agreement with the numerical calculation. We notice that this is equivalent
to an expansion inD/(aW 2

0 ) of (B.7); in fact from (B.6) one sees thatD is suppressed with
respect to W 2

0 by a factor 1/τ0. This expansion would give the transcendental equation

τup = −3

2

A0 +W0e
aτup

aA0

− 12De2aτup

a2A0(A0 − 3W0eaτup)
+ . . . . (B.9)
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B.1.2 On τcr and the inflaton

In this section we take into account also a dynamical D3-brane and calculate its effect on
the minimum of the potential in the τ direction that we call τcr. The potential is given in
(4.39). We expand ∂τV = 0 for small r (again this is an r2/τ or an r3/2/(µn) expansion).
Solving for τcr one gets

τcr(D, r) = τcr(r = 0) + τ (1)
cr r + τ (3/2)

cr r3/2 + . . .

= τcr(r = 0) +
9(A0 + 3W0e

aτcr)

8a2µ2n2γ(A0 − 3W0eaτcr)
r

−3(A2
0 + 2A2

0W0e
aτcr + 3W 2

0 e
2aτcr)

2aA0µn(A0 − 3W0eaτcr)
r3/2 + . . . (B.10)

where τcr(r = 0) is the one in (B.9) and in τ
(1)
cr and τ

(3/2)
cr we have neglected terms

suppressed by a factor of order D/W 2
0 (see (B.6)). As we did in the last section we

substitute D and W0 in (B.7) using (B.6) and (B.4). Then we solve for ∆r = τcr− τcr(r =
0). The result is

∆r =
r3/2

aµn
+ . . . (B.11)

To summarize, we have estimated analytically the dependence of the minimum on the
uplifting and on the D3-brane position; this is given, at leading order, by

τcr = τ0 + ∆β + ∆r

' τ0 +
β

a2τ0
+
r3/2

aµn
+ . . . (B.12)

B.2 Sign of r3/2 term

In this appendix we show that the expansion of the scalar potential has a negative term
at order r3/2. This term determines the negative curvature of the potential for small r. In
fact in (4.57) there is also a term proportional to r, but of course it does not contribute
to the curvature.

The explicit values of V
(3/2)
dS and ∆V (3/2) are

V
(3/2)
dS = − [3aA2

0e
−2aτ0(aτcr + 6) +D + 18A0aW0e

−aτ0 ]

18aµnτ 3
0

, (B.13)

∆V (3/2) = −A
2
0ae

−2aτ0

4µnτ 2
0

. (B.14)
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Figure B.1: The plot shows the discriminant (B.21) as a function of β (without performing
the ∆/τ0 expansion). When the discriminant is zero minimum and maximum of the potential
coincide and we get a inflection point.

To see that V (3/2) = V
(3/2)
dS + ∆V (3/2) < 0 we substitute (B.6) and (B.4) in (B.13) and

expand in τup − τ0 = ∆β. This gives

V
(3/2)
dS ' A2

0ae
−2aτ0(3− 2β)

6µnτ 2
0

+ . . . (B.15)

Therefore

V
(3/2)
dS

∆V (3/2)
' −4(3− 2β)

6
& −1/2 , (B.16)

for β & 1. We are thus left with

V (3/2) = −A
2
0ae

−2aτ0

12τ 2
0µn

(4β − 3) < 0 , (B.17)

in agreement with (B.19).

B.3 Maximum and minimum of V (φ)

In this section, we show that in the case of the Kuperstein embedding, the effective
potential (4.58) (where we neglect the Coulomb term because it is subleadin as discussed
in section 4.4.4) in the r (or equivalently φ) direction has always a maximum and a
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minimum (in the extreme case they coincide). Our starting point is

V (φ) =
A2

0a
2e−2aτ0

6τ0
(β − 1) + φ

9A2
0e
−2aτ0M2

Pl

16T
3/2
D3 τ

3/2
0 µ2n2

−φ3/2 A2
0ae

−2aτ0

12τ
5/4
0 T

3/4
D3 µn

(4β − 3) +
φ2

3M2
Pl

A2
0a

2e−2aτ0

6τ0
(β − 1) , (B.18)

which is the potential 4.58 with

Λ =
3

M2
Pl

C2 =
A2

0a
2e−2aτ0

6τ0
(β − 1) ,

C1 =
9A2

0e
−2aτ0M2

Pl

16T
3/2
D3 τ

3/2
0 µ2n2

,

C3/2 =
A2

0ae
−2aτ0

12τ
5/4
0 T

3/4
D3 µn

(4β − 3) . (B.19)

(B.20)

The first derivative of the potential is a quadratic polynom in
√
φ. There are two extrema

(a maximum and a minimum) when the discriminant is positive, i.e. 9C3/2− 32C1C2 > 0.
Explicitly (see figure B.1)

9C3/2 − 32C1C2 =
A2

0a
2e−2aτ0

64τ
5/2
0 T

3/2
D3 µ

2n2
(4β − 5)2 . (B.21)

This quantity is always positive so that V (φ) will always have a minimum and a maximum.
Also it is evident that for a precise value of β the discriminant becomes zero. This indicates
that maximum and minimum coincide, in other words there is a flat inflection point. We
have plotted the discriminant (without expanding it) in figure B.1. This confirms the
result of our leading order calculation.

B.4 Radial brane inflation close to the tip

In chapter 4, we have considered the possibility to cancel the large inflaton mass term
using the threshold corrections to the non perturbative superpotential. As reviewed in
section 4.3, large mass for the inflaton is induced by the mixing of the radial position
of the D3-brane and the Kähler moduli. This comes about if one considers the scalar
potential

V (τ, φ) ' VKKLT + Vup (B.22)

' 2κ2
4A0ae

−aτ

U(r)2

{
A0e

−aτ − |W0|+

+
1

6

[
T + T + γ

(
kik

ijkj − k
)]
A0ae

−aτ

}
+

D

U(r)2
.
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Far away from the tip but still inside the throat, where the deformed conifold geometry
is well described by the singular conifold metric, we have (see appendix A)

k(z, z) =

(
4∑

A=1

|zA|2
)2/3

= r2 ⇒ kik
ijkj = k = r2

U = 2τ − γk(z, z) = 2τ − γr2 . (B.23)

Expanding (B.22) in r2 � τ one obtains a term r2 that induces a slow-roll parameter
η of order one and prevents radial slow-roll inflation. The result of the investigation of
chapter 4 (based on [64], but see also [68, 66]) is that this mass term can not be cancelled
for a large range of the radial position because the threshold corrections to W produce
only terms1 like r, r3/2, r3, r9/2 . . . .

Here we notice that the situation is different if one consider the motion of the D3-brane
close to the tip of the deformed conifold. There the deformed conifold Kähler potential
is well approximated by

k(z, z) = k̃0 +
4∑

A=1

|zA|2 ≡ k̃0 + r3 ⇒ kik
ijkj = 0 ,

U = 2τ − γk(z, z) = 2τ − γ
(
k̃0 + r3

)
, (B.24)

for some constant k̃0. Substituting this in (B.22) and expanding in r3 � τ , we see that
near the tip the moduli stabilization induces a cubic term and not a quadratic one as it
is the case away from the tip.

Therefore, a cancellation between the threshold corrections to the nonperturbative su-
perpotential and the term induced by the moduli stabilization is in principle possible.
This cancellation would happen only close to the tip where the approximated form of
the Kähler potential (B.24) is valid, hence it interests only a short range of the radial
position. Hence again, even allowing for fine tuning, one can flatten the potential only in
a small region, analogously to the case considered in chapter 4.

B.5 Forces on D3- and anti D3-branes.

In this appendix we enumerate the contributions to the potential for an anti D3- and a
D3-brane (a sketch is given in table B.1 below) and comment on their relative importance.

To summarize: the anti D3-brane is led to the tip (r ' 0) by the interaction with the
background; there its angular position is determined by the bulk and moduli stabilization
effects. The motion of the D3-brane is governed by moduli stabilization effects (breaking
of the no-scale structure). Finally the Coulomb attractive potential is generically very
suppressed (a4

0) and plays a role only in very fine tuned or symmetric circumstances.

1Or no terms at all, depending on the particular embedding chosen.
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Background effects. We consider the action

SD3/D3 = −TD3

∫
d4x
√
−gΦ±, (B.25)

where Φ is defined in term of the warp factor and of the 5 form field strength of C4 as

Φ± ≡ e4A ± α. (B.26)

In the GKP setup [8] reviewed in subsection 2.5.1, we found that the equations of mo-
tion require α = e4A. Hence a D3-brane doesn’t feel any force (it is BPS with respect
to the background). On the contrary, an anti D3-brane tends to fall to the bottom of
the (deformed) conifold (small warp factor) to minimize SD3. As (B.25) has no angular
dependence, the anti D3-brane at the tip enjoys a translational S3 symmetry (that will be
broken by bulk effects as we will discuss). The leading contribution of (B.25) to the poten-
tial is the warped anti D3-brane tension which can be used [20] to break supersymmetry
and uplift an AdS vacuum to a dS one.

Bulk effects. To have a compact manifold at a certain radius the conifold has to be cut
and glued to a compact Calabi-Yau manifold. Then other “bulk” effects for the anti D3-
brane arise. They break all the residual symmetry of the conifold as Calabi-Yau manifolds
have no continuous symmetry. In [201] the warp factor dependence of bulk effects has
been calculated via AdS/CFT. The result is that a mass for the anti D3-brane is induced
of order

m2
bulk ∼ (gsMα′)−1a3.29

0 , (B.27)

where M is the flux quantum number of the Ramond-Ramond F3-form over the 3-cycle A
of the throat. Bulk effects would lead the anti D3-brane to a particular angular position
in the S3 at the tip. No such effects are present for the D3-brane, again because of its
BPS nature with respect to the background. This raises the suspicion that the tip might
be an interesting place for inflation with a D3-brane. We dedicate chapter 5 to verify this
suspicion.

Moduli stabilization effects. To stabilize the Kähler moduli, one has to break the no-
scale structure. Once this is done and the moduli are stabilized (e.g. à la KKLT) a mass
for the D3-brane moduli is generated because of their non-trivial mixing with the Kähler
moduli[80]. The potential generated gives rise to the η-problem we reviewed in section
4.3.

As regards the anti D3-brane, these effects have been investigated in [75]. They are
relevant at the tip of the throat because the background force, coming from (B.25), does
not have an angular dependence. The potential generated by the stabilization of the
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Source D3 D3

Bulk background m2
bulk ∼ (gsMα′)−1a3.29

0 no effect (BPS)
Throat background V ∼ 2TD3h(wD3) no effect (BPS)

leads D3 quickly to the tip
Coulomb +VDD −VDD
Tachyon develops at r2 = O(α′) develops at r2 = O(α′)
Moduli stabilization only known at the tip VKKLT + Vup + ∆V

Table B.1: Contributions to the potential for an anti D3 and a D3 brane.

moduli has the same minima for the D3-brane and for the anti D3-brane at the tip. The
equations for the minimum for a D3- and an anti D3-brane differ by a term vanishing at
the tip, therefore away from it, the respective minima will be generically different.

This effect together with the bulk effect (B.27), select some vacua in the angular direction
at the tip. The relative importance of bulk and stabilization effects depends on the
parameters. Comparing the mass from the lhs of (4.33)) with (B.27)) for the case of the

Ouyang (or the simplest Kuperstein) embedding, expanding in r
3/2
0 /µ� 1, one gets

r
3/2
0

µn
� a1.29

0 , (B.28)

where r0 indicates the tip of the deformed conifold. As follows from (4.21)), the lhs of
(B.28)) has to be much smaller than one to allow to integrate out the stabilized volume
and use the remaining effective potential for inflation. Indeed r0 and a0 are related by
a0 ∼ r0/

√
gsM , so that the condition to satisfy is

gsM � (µn)3/2

r
1/3
0

. (B.29)

Although it is possible to fulfil the inequality, this could require a very large flux number
M , as gs � 1 and µn� 1.

Coulomb potential. The Coulomb potential, written in term of canonically normalized
fields, is

VD3D3 ' −
4π2φ4

0

N

(
1− 1

N

φ4
0

φ4

)
. (B.30)

where N = KM is the product of the fluxes on the three cycles of the conifold (see the
discussion around (5.34)). This potential can be obtained considering the backreaction of
a D3-brane on the metric (B.25) and keeping the leading order term.



C Technical details on angular brane
inflation

In this series of appendices we collect some technical details about the inflation at the
tip model. In appendix C.1 we discuss the minimization of the overall volume (Kähler
modulus). In appendix C.2 we check the stability of the radial direction for a D3-brane
at the tip; in this regard, we stress the role played by the uplifting term. Finally, in
appendix C.3, we generalize the form of the Kähler potential and the superpotential in
the presence of many D3-branes.

C.1 Minimization of τ

In this section, we minimize the potential (5.13) along the volume direction. This is, for
inflation at the tip, the anologous of what we did in appendix B.1 for the radial brane
inflation model. The critical volume τcr is a function of the inflaton (the position of the
D3-brane at the tip). Contrary to the radial brane inflation case, here this dependence can
safely be neglected if we are interested in the leading order single-field effective inflaton
potential (see (C.5)). The KKLT minimum for τ [20] is shifted both by the uplifting and
by the presence of the D3-brane. Here we provide an analytical estimate along the lines
of appendix B.1 (based on [64]). We call τ0 the minimum of the KKLT potential with

W0 = −A0e
−aτ0

[
1 +

1

3
a(2τ0 − k0)

]
. (C.1)

With τcr we denote the actual minimum of (5.13) and with ∆ the shift due to the uplifting
and the D3-brane: ∆ = τcr − τ0. We parameterize the uplifting as

Vup =
D

U b
= β

|A0|2a2e−2aτ0(2τ0 − k0)
b−1

3U b
, (C.2)

where β & 1 gives a de Sitter space. We substitute these expressions for W0 and D into
the potential (5.13) and take the derivative with respect to τ . We substitute τ = τ0 + ∆
in V ′ = 0 and solve for ∆. At leading order the result is given by

∆ =
b

2

β

a2τ0
− ε

aµn
cosφ+

ε2/3

2ca3n2µ2τ0γ
sin2 φ (C.3)



138 C. Technical details on angular brane inflation

In the particular case b = 2, the shift due to the uplifting reproduces the result of appendix
B.1 [64, 68] and the first of the two φ dependent terms in (C.3) is analogous to the
dependence on the radial motion in (B.11). We define τup ≡ τ0 + bβ/(2a2τ0), which
would be the minimum of the volume in the presence of an uplifting term but without
the D3-brane. Finally the critical value of the Kähler modulus is

τcr(φ) ' τup −
ε

aµn
cosφ+

ε2/3

2ca3n2µ2τ0γ
sin2 φ . (C.4)

We use this result to prove that the dependence of τcr on φ is mild in the sense that it
produces in the effective potential V (τcr(φ), φ) only subleading terms. We substitute W0

from (C.1), D from (C.2) and τcr from (C.4) into V (τcr(φ), φ) − V (τup, φ). We keep the
leading terms in the ε/µ and large volume expansion, the result is

V (τcr(φ), φ)− V (τup, φ) ' |A0|2ε5/3e−2aτ0

6cn3µ3τ 2
0 γ

cosφ sin2 φ+

−|A0|2a2ε2e−2aτ0

6n2µ2τ0
cos2 φ+ . . . ,

Comparing these term with those in (5.23),(5.24) and (5.25), we see that they are sub-
leading in ε/µ or in the large volume expansion. We conclude therefore that at leading
order V (τcr(φ), φ) ' V (τup, φ), i.e. we are allowed to neglect the φ dependence of τcr.
This justify the use of (5.16) or (5.18) as leading order potential.

We stress again that this result is very different from the radial brane inflation model.
There we showed that the inflaton dependence of τcr changes even qualitatively the shape
of the inflaton potential, as can be seen in figure 4.2). This different behaviour can be
traced back to the Kähler potential, which depends on the radial position (see e.g. (B.23)
and (B.24)) but not on the angular position at the tip (see (5.4)).

C.2 Radial stability

In this appendix we analyze the radial stability for a D3-brane at the tip of a deformed
conifold. We want to find the condition to satisfy

∂

∂r
V (z) |r=ε2/3> 0 . (C.5)

The potential (5.10), as we already discussed, is valid only at the tip. Actually, in (5.6)
there are some other terms, coming from the off-diagonal elements of the Kähler metric
(5.6) or the additional term in K 1̄1, that are zero at the tip, but whose r derivative might
be non-vanishing. The additional term in K 1̄1 has two factors, kl̄ and kh, that vanish
at the tip, therefore also the r derivative vanishes there. Only the off diagonal elements
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of the Kähler metric (5.6) contributes and we call these additional terms Voff for “off
diagonal”.

The scalar potential depends on the radial position of the D3-brane r via the Kähler
potential in (4.11) and via the non-perturbative superpotential Wnp. We decompose ∂rV
in four terms, the first three coming from (5.10) and the last one from Voff :

1. All terms in (5.10) coming from the r dependence in U(r). Using the explicit metric
of the deformed conifold near the tip we have

U = 2τ − γk(z, z̄) (C.6)

' 2τ − γ
c

ε2/3

(
k0 +

4∑
A=1

|zA|2
)

= 2τ − γ
c

ε2/3

(
k0 + r3

)
.

We will indicate this contribution as

Vr1 ≡
∂U

∂r

∂

∂U
(Vup + VKKLT + ∆V ) . (C.7)

2. All terms in (5.10) coming from ∂r∆V where we neglect the terms coming form
∂rU(r) that appear already in Vr1. We will indicate this contribution as

Vr2 ≡
∂

∂r
∆V (U = 2τ − γk0) . (C.8)

3. All the remaining terms from (5.10), i.e. those coming from ∂rA(z) in VKKLT . We
will indicate this contribution as

Vr3 ≡
∂A(z)

∂r

∂

∂A(z)
VKKLT . (C.9)

4. Finally the term ∂rVoff evaluated at the tip. It comes from the off-diagonal terms

eκ
2
4K
(
K T̄ iDTWDiW + c.c.

)
. (C.10)

To get a non vanishing contribution the r derivative has to hit the kl inK
T̄ i, therefore

Vr4 ≡ 2
κ2

4

3U2
WiDTWk l̄i

∂

∂r
kl̄ . (C.11)

Let us start with Vr1. Using (5.13),(5.14) and (5.17) it is straightforward to obtain a long
expression for Vr1. To estimate it, we use the parameterization (C.2) and (C.1) for D and
W0. Then we substitute the minimum for the volume estimated in (C.4), i.e. τ ' τup.
Finally we look at the leading terms in the ε/µ and large volume expansion; the result is

Vr1 '
κ2

4|A0|2a2γce−2aτ0ε2/3

4τ 2
0

[
(bβ − 3) +

bβ

aτ0
+

ε4/3

cn2µ2a2τ0
+ . . .

]
. (C.12)
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To calculate Vr2, we substitute in (5.14) the embedding (5.12) and U = 2τ − γk0. Then
using the chain rule (and the fact that for constant U , ∂x2∆V = ∂x3∆V = ∂x4∆V = 0)
we can write

Vr2 =
∂x1

∂r

∂

∂x1

∆V ' 3

4
ε1/3E

∂

∂x1

∆V , (C.13)

where we used the result (A.20) of appendix A.2; remember that −1 < E(φ1, θ1, ψ) < 1.
Following the same steps as for Vr1, we can estimate ∆Vx1 ; the result is

Vr2 ' −
|A0|2e−2aτ0E cosφ

8µ2n2γcτ 2
0

+ . . . (C.14)

For Vr3 we obtain

Vr3 =
∂x1

∂r

∂A(x1)

∂x1

∂

∂A(x1)
VKKLT

=
|A|2ae−2aτ0ε1/3

8µnτ 2
0

E

[
(bβ − 3) +

bβ(14− 3bβ)

4aτ0
+ . . .

]
. (C.15)

Finally we come to Vr4. Using again the chain rule (it is not necessary to distinguish ∂zi

from ∂z̄i
because they appear symmetrically in k(z, z̄) and at the tip they are both equal

to xi) we obtain

Vr4 = 2
κ2

4DTW

3U2
Wik

l̄i∂zj
∂r

∂

∂zj
kl̄ = 2

κ2
4DTW

3U2

∂zj
∂r

δijWj

= 2
κ2

4DTW

3U2

∂z1

∂r

A(x1)e
−aτ

n(µ− x1)

' 2

3
4Eε1/3A0e

−aτ0

nµ

βbA0e
−aτ0

3(2τ0)3
=
|A|2ae−aτ0ε1/3

8µnτ 2
0

E
bβ

2aτ0
,

from which it is transparent that Vr4 is of the same order as the subleading term of Vr3
in (C.15).

We want now to compare these four contributions to understand which is the leading one
and in which regime. An interesting case to consider is b = 3, because explicit uplifting
mechanisms exist with this scaling. We are not aware of any explicit model with b > 3
but it would be intersting to investigate this possibility, e.g. in the framework of F-
term uplifting. Other consideration about the role of the uplifting term can be found in
appendix 4.7. As we argued in the main text, we will be intersted in β ' 1 such that
the cosmological constant after inflation is negligibly small. Then a subtlety arises when
b = 3 and β ' 1, because the leading term of both Vr1 and Vr3 receives and additional
suppression by the coefficient (bβ − 3), which is not taken into account by the ε/µ and
large volume expansion. We need therefore to estimate (β − 1).
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C.2.1 Radial stability in the C � B regime (DBI inflation)

Consider the expression for Λ in (5.23). If we want the cosmological constant to be
negligibly small after inflation, then we need (β − 1) to be of order (aτ0)

−2, so that the
leading term cancel the next to leading one. This tells us that in the case b = 3, the
(bβ − 3) term in Vr1 and Vr3 becomes subleading with respect to the next to leading one
which is suppressed by just a relative (aτ0)

−1 factor. We are now ready to compare the
three contributions:

Vr1 � Vr3, Vr4 ⇐⇒ (2πγcµ)ε1/3 � 1

Vr1 � Vr2 ⇐⇒
{

(2πγcµ)ε1/3 � 1 for b 6= 3
(2πγcµ)ε1/3 � √

aτ0 for b = 3

where we have substituted an = 2π.

We remind the reader that in section 5.4.1 we obtained the conditions

C � B ⇐⇒
{

(2πγcµ)ε1/3 � 1 for b 6= 3
(2πγcµ)ε1/3 � 4

15
aτ0 for b = 3

It follows that in the regime C � B, which is the one we consider in section 5.5.1 and
5.5.3, Vr1 is always the leading contribution. From (C.12) we see that the derivative in the
radial direction is positive, i.e. a D3-brane at the tip will not move in the radial direction,
as long as b ≥ 3.

C.2.2 Radial stability in the 2C = B regime (slow-roll hilltop
inflation)

The regime C = B/2 requires a separate discussion. As we saw in section 5.5.2, with this
fine tuning, slow-roll hilltop inflation can take place.

Let us start with the case b = 3. As discussed in section 5.5.1, to allow for slow-roll
inflation at the top of the potential we need to fine tune the parameters such that 2C =
B = Λ, which from (C.14) and (C.15) implies

2C = B ⇐⇒ (2πµcγ)ε1/3 =
4

15
aτ0 . (C.16)

Using this new constraint the condition (C.16) for the radial stability becomes:

0 < Vr1 + Vr2 + Vr3 + Vr4 =
|A|2e−2aτ0

40µ2cn2γτ 2
0

[
32aτ0

15
+ E(7− 5 cosφ)

]
. (C.17)

Using the fact that |E| < 1, one obtains that the above inequality is satisfied for aτ0 > 5.6
and an arbitrary value of the angular coordinates. To neglect higher instanton contribu-
tions to the non-perturbative superpotential we have to require aτcr ∼ aτ0 � 1. Therefore,
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we conclude that in the case 2C = B and b = 3 the D3-brane at the tip is (meta)stable
in the radial direction.

Let us now consider the case b > 3, then

B = 2C ⇐⇒ (2πcµγ)ε1/3 = 1 . (C.18)

Using this constraint and taking for concreteness b = 4, the condition (C.16) for the radial
stability becomes:

0 < Vr1 + Vr2 + Vr3 + Vr4 =
1

8µ2cn2γτ 2
0

[2 + E(1− cosφ)] . (C.19)

The inequality is fulfilled by any value of the angular coordinates, except for the case
E = −1 and φ = π which saturates it. Anyway in the case we are considering B = 2C,
(slow-roll) inflation takes place next to the top of the potential, where (1− cosφ) is very
small and therefore the inequality is confortably satisfied.

C.3 From one to many

In this appendix we obtain the Kähler potential and the non-perturbative superpotential
when ND3 D3-branes are present.

C.3.1 Kähler potential

It was proposed in [80] that in presence of a D3-brane, the Kähler potential should be
modified to

κ2
4K = −3log[T + T̄ − γk(z, z̄)], (C.20)

where γ is a the constant describing the strength of gravitational backreaction, essentially
proportional to GN (Newton constant) times the tension of the D3-brane T3 and k(z, z̄) is
the Kähler potential of the Calabi Yau evaluated at the position z of the D3-brane. Two
arguments were given to support this proposal. The first is based on the observation that
the D3-brane in the presence of three form fluxes is BPS and does not feel any force. In
addition, its inclusion should not spoil the no-scale structure. This leads to the natural
guess (C.20) with an arbitrary function k(z, z̄), for which one can easily check that the
F-term potential vanishes, leaving T and z as flat directions.

The second argument consists in noticing that the kinetic term deduced from the su-
pergravity approximation should reproduce, at leading order, the DBI action for the
D3-brane. The 10-dimensional metric can be written as

ds2 = h−1/2(Y )e−6ugµνdx
µdxν + h1/2(Y )e2ug̃ijdY

idY j, (C.21)
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so that we have singled out the breathing mode of the compact manifold e2u with respect
to a fiducial metric g̃ij. The expansion of the DBI action for small velocities gives

SDBI ' −T3

∫
d4x
√
ge−4u∂µz

i∂µzj g̃ij. (C.22)

To obtain this action from the second derivative of the Kähler potential as supergravity
dictates, one is led to the identification of the breathing mode with the Kähler volume
modulus plus the X dependent shift [80, 65]:

e4u = T + T̄ −
(

T3

3M2
Pl

)
k(z, z̄). (C.23)

To generalize to the case of ND3 D3-branes it seems natural to use the same two criteria
as above. A natural and simple guess is therefore

κ2
4K = −3log

[
T + T̄ −

(
T3

3M2
Pl

) ND3∑
s=1

k(zs, z̄s)

]
, (C.24)

where the index s enumerates the D3-branes, located at zs. This Kähler potential again
respects the no-scale structure. Also, after neglecting terms of order e−8u, it gives a
kinetic term that is the sum of ND3 independent copies of the action (C.22); this is what
we expect, given that the D3-branes are mutually BPS. This property is important for the
assisted inflation mechanism that requires the various inflatons to be weakly interacting.

C.3.2 Superpotential

In [69] the dependence of the non-perturbative superpotential on the D3-brane position
was calculated in the background of a warped throat. In the case of an E3-instanton or a
stack of D7-branes with gaugino condensation, wrapping a divisor Σ of the Calabi Yau,
this superpotential is proportional to

Wnp ∝ e−T3 V w
Σ /n, (C.25)

where V w
Σ is the warped volume of the divisor Σ (the label w is to remind that the full

metric, including the warp factor has to be use) ; n is 1 for E3-brane and ND7 for gaugino
condensation on a stack of ND7 branes. As in the main text, we indicate with g the
holomorphic function whose zeros define the divisor Σ.

It was argued in [76] that Wnp has to depend on the D3-brane moduli. The argument
consists in noticing that Wnp(z, z̄) is the product of two factors, respectively a section
of the line bundle and inverse line bundle defined by the divisor Σ. Then a theorem
guarantees that it has to vanish on (a surface homotopic to) the divisor Σ.
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The explicit dependence was first calculated in [70] for some toroidal orientifolds via a
one loop open string calculation. In [69] the tree level closed string dual was considered.
In the following we review the method of [69] and generalize the result to the case of ND3

D3-branes. The idea is that a D3-brane backreacts on the metric, in particular changing
the warp factor. This in turn changes the volume V w

Σ in (C.25). Schematically

h(Y ) = h0(Y ) + δh(Y, z) , (C.26)

where Y is the point where the warping is evaluated, and z is the D3-brane position.
Integrating over the divisor Σ we obtain

V w
Σ = (V w

Σ )0 + δV w
Σ (X) (C.27)

=

∫
Σ

d4Y
√
gind(z, Y )[h0(Y ) + δh(z;Y )] = ṼΣh0(T + T̄ ) + < ξ(z),

where we have made explicit that the corrected volume is still the real part of a holomor-
phic function. V w

Σ is in fact proportional to the real part of the gauge kinetic function
that supersymmetry dictates to be holomorphic. Finally

Wnp ∝ exp

(
−T3ξ(X)

n

)
exp

(
−T3VΣh0T

n

)
≡ A(X)e−aT . (C.28)

The advantage of this closed string approach is that δh is directly calculated from the
Laplace equation

−∇2
Y δh(X, Y ) = κ10ρm , (C.29)

using the Green’s function method. Here ρm is the all inclusive energy density.

Solving the Laplace equation for δh and integrating over a divisor defined by the zeros
of the holomorphic function g, one obtains the dependence of the superpotential on the
position X of a single D3-branes [69]

Wnp = A(z)e−aT = A0g(z)
1/ne−aT , (C.30)

where A0 might depend on the dilaton and the complex structure moduli. To generalize
to ND3 D3-branes at positions zs one has to solve the Laplace equation

−∇2
Y δh(zs;Y ) = 2T3κ

2
10

[
ND3∑
s=1

δ(6)(zs − Y )√
g(Y )

− ρbg(Y )

]

= 2T3κ
2
10

[
ND3∑
s=1

δ(6)(zs − Y )√
g(Y )

−N
δ(z0 − Y )√

g(Y )

]
, (C.31)

where z0 is a reference point (for example the tip of the cone). With this specific choice
of ρbg we get rid of a logarithmic divergence in δV w

Σ . This leads to an interpretation of
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δh(X;Y ) as the variation of the warp factor h when the D3-branes are moved from X0

to Xs.

Given the linearity of the Laplace equation the solution for (C.31) is just a sum over Xs of
the solution of the single D3-brane problem. Once δh(X;Y ) is integrated over the divisor
Σ and exponentiated, we obtain the superpotential

Wnp = A(X)e−aT = A0

ND3∏
s=1

f(Xs)
1/ne−aT . (C.32)

We notice that the superpotential (C.32) reproduces what we would expect from Ganor’s
argument [76]: Wnp vanishes if any of the D3-branes hits the divisor Σ.
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D Technical details on soft terms from
LVS

In the following series of appendices, we have collected several calculations whose results
have been used in chapter 6. We start in appendix D.1.2 and D.1.1 where we give some
details about the LVS for P4

[1,1,1,6,9] and the generalization to many Kähler moduli; in ap-
pendix D.2 we calculate the inverse Kähler metric for the loop corrected Kähler potential
(6.25); in appendix D.3 we start reviewing the no-scale structure both in type IIA and
IIB and continue considering corrections that break this structure; in appendix D.4 we
discuss how fluxes would change the discussion in chapter 6; in appendix D.5 we review
the orientifold calculation of the loop correction performed in [171]; finally in appendix
D.6 we discuss the factorized approximation.

D.1 Some details on LVS

In this appendix we collect some details on the minimization of the potential in LVS,
mainly reviewing the results of [169, 146], but filling in some details. The minimization
with respect to the axions (i.e. the imaginary parts of the Kähler moduli) is performed
for an arbitrary number of Kähler moduli, while for the minimization of the real parts,
we restrict to the example of the hypersurface in P4

[1,1,1,6,9] discussed throughout the main
text.

D.1.1 LVS for P4
[1,1,1,6,9]

Here we give some more numerical details on large-volume stabilization in the P4
[1,1,1,6,9]

orientifold. The relevant features of this Calabi-Yau have been described in section 6.2.3.
The leading terms of the scalar potential are

V e−Kcs =
λ
√
τe−2aτ

V
− µ

V2
τe−aτ +

ν

V3
, (D.1)

where we use τ = τs and V as the independent variables and for the expansion we have in
mind the limit (6.15). The minimum of this potential under the assumption that aτ � 1
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is given by

τ =

(
4νλ

µ2

)2/3

,

V =
µ

2λ

(
4νλ

µ2

)1/3

eaτ . (D.2)

In the P4
[1,1,1,6,9] orientifold the coefficients λ, µ and ν can be calculated explicitly, yielding

λ =
12
√

2a2|A|2

S1

, µ =
2a|AW0|

S1

and ν = ξ
3

8

√
S1|W0|2 . (D.3)

We notice that the value of τ at the minimum is determined only by the Euler number
τ ∝ χ2/3 and the value of the dilaton S1 at its minimum. An example of a set of possible
parameters (using a = 2π/10, A = 1, S1 = 10 and W0 = 10) is

ξ = − ζ(3)χ

2(2π)3
' 1.31 −→ ν ' 155 ,

λ ' 0.67 , µ =
4π

10
. (D.4)

There is an unknown overall factor eKcs that does not change the shape of the potential
and so leaves the position of the minima unchanged. For the parameters given in equation
(D.4), the minimum is at τ ' 41.1 and V ' 9.96 · 1011. These values come from equation
(D.2) which is just approximated using the assumption aτ � 1. This solution has the
shortcoming that, if one is interested in the value of the potential at the minimum, after
substitution of (D.2) into (D.1), one finds V = 0. If instead one solves the exact equation
for the minimum of the potential numerically, the result is V ' −6.6 · 10−37 at the point
τ ' 41.7 and V ' 1.38 1012. From this one checks that, apart from the shortcoming that
V = 0, the approximate solution gives the position of the minimum with a good precision.

D.1.2 Many Kähler moduli

The simple picture of P4
[1,1,1,6,9], gets slightly more involved in models with more than two

Kähler moduli, but some general statements can still be made. For a single small Kähler
modulus, among the leading contributions to the potential only the one from Vnp2 is axion
dependent, while the leading terms in V3 and Vnp1 are axion independent. For several
small Kähler moduli, all three terms are axion dependent. However, the argument that
the leading term in Vnp2 only receives a sign change due to axion stabilization generalizes
(and holds also for the regular KKLT scenario with relatively small volume, see e.g. [146],
section 3.2).
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Indeed, with the superpotential (6.11) one obtains

Vnp1 = eK Gi
[
aiaj|AiAj|e−aiτi−ajτj cos(−aibi + ajbj + βi − βj)

]
,

Vnp2 = −2eK aiG
kiKk

[
|AiW0|e−aiτi cos(−aibi + βi − βW0)

+|AiAj|e−aiτi−ajτj cos(−aibi + ajbj + βi − βj)
]
, (D.5)

V3 = eK (GklKkKl − 3)
[
|W0|2 + 2 |W0Ai|e−aiτi cos(−aibi + βi − βW0)

+|AiAj|e−aiτi−ajτj cos(−aibi + ajbj + βi − βj)
]
,

where Ai = |Ai|eiβi , W0 = |W0|eiβW0 and a sum over repeated indices is understood
throughout. As the only dependence on the axions is in form of cosines, one can easily
see that this potential has a minimum for

aibi = −βW0 + βi + niπ , ni ∈ 2Z+ 1 . (D.6)

We notice that the minimum of the bi depends on the (already fixed) complex structure
moduli, but it is independent of the Kähler moduli.

In the regime (6.15) the scalar potential again contains three terms at leading order,

Vnp1 ∼ 2eKcs
aiaj|AiAj|e−aiτi−ajτjM l

jM
k
i (−VVlk + VlVk)

S1V2
+ . . . ,

Vnp2 ∼ −2eKcs
ai|AiW0|e−aiτiτi

S1V2
+ . . . , (D.7)

V3 ∼ eKcs
3ξS

1/2
1

8V3
|W0|2 + . . . ,

where the sum over i and j effectively only picks up terms from the small moduli because
of the exponential suppression of Vnp1 and Vnp2. Moreover, for Vnp1 we used the form
(D.34) for the inverse of the moduli metric with respect to the basis (D.28). The Kähler
moduli appearing in the nonperturbative superpotential are linear combinations of these,
which we account for by a basis-changing matrix Mk

i , i.e.

Ti = Mk
i T̃k , (D.8)

where T̃k are the fields defined in (D.28) and Ti are the Kähler moduli appearing in the
nonperturbative superpotential. (Another way of saying this is that the real parts of Ti
measure the volumes of a basis of divisors that have the right properties to contribute to
the nonperturbative superpotential.) In the second term we used

GkiKk = −2τi + . . . = −2 ReTi + . . . . (D.9)
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In the basis (D.28), this would follow straightforwardly from (D.32), (D.34) and the
relations (D.25), but it holds equally well after a change of basis, because both sides of
(D.9) transform linearly under a change of basis (D.8).

Note finally that the ellipsis in (D.7) and (D.9) stand for subleading corrections in the
large volume limit (assuming also (6.15)).

D.2 Loop corrected inverse Kähler metric for P4
[1,1,1,6,9]

We now have a closer look at the inverse metric from the Kähler potential in equation
(6.25). We invert the 4× 4 matrix and focus on the four terms that appear in the scalar
potential for the Kähler moduli,

Gbb =
4

3
τ 2
b +O (τb) ,

Gbs = Gsb = 4τbτs

(
1 +

6EKs
∆

)
+O

(
τ 0
b

)
, (D.10)

Gss =
8

3
τ

3/2
b

√
τs

√
2S1τs
∆

+O
(
τ

1/2
b

)
,

where we have performed an expansion in τb ' V2/3 and the quantity ∆ was introduced in
(6.29). We notice that only Gbb is not corrected at leading order. The apparent divergence
from zeros of the denominator ∆ is an artifact of the expansion. In fact, the determinant
of the (entire) Kähler metric behaves as

detG ∼ Aτ
−7/2
b +Bτ

−9/2
b + . . . (D.11)

for some expressions1 A and B, which depend on the moduli τs, u and S1. In particular,
one finds A ∼ ∆, but B does not vanish at a zero of ∆. Thus, in general the expansion in
large τb picks up the factor A, which is responsible for the apparent divergence in (D.10).
However, this is fictitious because when ∆ = 0, the next term proportional to B is non-
vanishing and the determinant stays away from zero. Indeed, we do not expect to find
any zero of the determinant in the range of validity of the parameters.

If EKs � (S1τs), one can further expand (D.10) with respect to EKs /(S1τs), yielding

Gbb =
4

3
τ 2
b +O (τb) ,

Gbs = Gsb = 4τbτs

(
1 +

3
√

2EKs
S1τs

+O
((EKs )2

S2
1τ

2
s

))
,

Gss =
8

3
τ

3/2
b

√
τs

(
1 +

3EKs√
2S1τs

+O
((EKs )2

S2
1τ

2
s

))
.

(D.12)

1This A has nothing to do with the A in Wnp.
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Depending on the values of the moduli (τs and S1), this expansion may or may not be
useful. In general, only the expansion in τb makes sense and one has to deal with the full
expressions (D.10). That is what we did in section 6.3.3.

D.3 No-scale Kähler potential in type II string theory

In this appendix we review why compactification of type IIA and type IIB theory on
general Calabi-Yau manifolds, or orientifolds thereof, lead to no-scale (F-term) potentials
if

i) the superpotential does not depend on the Kähler moduli (D.13)

and if

ii) one uses the tree-level form of the Kähler potential. (D.14)

(Of course, in LVS neither i) nor ii) holds, but one can think of jointly imposing i) and
ii) as a zeroth-order approximation, that we will successively move away from in later
subsections of this appendix.)

If the moduli spaces of Kähler and complex structure moduli factorize (see appendix D.6
for more details on this), and under assumption i), the F-term potential takes the form

V = eK
(
GIJDIWDJW − 3|W |2

)
(D.15)

= eK
(
GabDaWDbW + (GıjKıKj − 3)|W |2

)
. (D.16)

The indices a and b run over the complex structure moduli and the dilaton, i, j over the
Kähler moduli and I and J refer to all moduli.

The condition for a no-scale potential (V = 0 for the Kähler moduli) is then

GıjKıKj = 3 , (D.17)

and we will verify in turn that this is fulfilled in both type IIA and type IIB Calabi-Yau
compactifications, if one uses the tree-level Kähler potential, as in assumption ii). In that
case, the moduli spaces of Kähler and complex structure moduli do factorize exactly.

D.3.1 No-scale structure in type IIA

The tree level Kähler potential for the Kähler moduli is

K = − ln

[
1

48
dijk(σ + σ)i(σ + σ)j(σ + σ)k

]
= − ln

[
1

6
dijktitjtk

]
= − ln(V) , (D.18)
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where dijk are the intersection numbers of the Calabi-Yau,

dijk =

∫
CY

ωi ∧ ωj ∧ ωk , (D.19)

and

σi = ti + ici (D.20)

are the complexified Kähler moduli whose real parts ti represent the volumes of 2-cycles
and whose imaginary parts originate from the expansion of the NSNS 2-form. Using the
Kähler form

J = tiωi (D.21)

of the Calabi-Yau, it is useful to introduce the notation

V =
1

6

∫
J ∧ J ∧ J =

1

6
dijktitjtk ,

Vi =
1

2

∫
ωi ∧ J ∧ J =

1

2
dijktjtk ,

Vij =

∫
ωi ∧ ωj ∧ J = dijktk . (D.22)

Note that here the index i does not denote a derivative with respect to the Kähler variables
(in contrast to subscripts on the Kähler potential K). Instead, one has the relations
Vi = 2∂σi

V and Vij = 4∂σi
∂σ
V . It is straightforward to calculate

Ki = − Vi
2V

= Kı Gi = Ki = −1

4

(
Vij
V
− ViVj

V2

)
. (D.23)

Then one can show that the inverse Kähler metric is

Gi = −4VjiV + 2tjti . (D.24)

To verify this, one has to use

V ijVj =
1

2
ti , Vijtj = 2Vi , Viti = 3V . (D.25)

Putting everything together, one arrives at

GıjKıKj =
[
−4V ijV + 2titj

] 1

4

Vi
V
Vj
V

= 3 , (D.26)

i.e. (D.17) is fulfilled under assumption (D.14).
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D.3.2 No-scale structure in type IIB

In the type IIB case, the tree-level Kähler potential for the Kähler moduli is

K = −2 ln

[
1

6
dijktitjtk

]
= −2 ln(V) . (D.27)

The difference to the IIA case is that, even if K in (D.27) is expressed in terms of the
2-cycle volumes ti, the real parts of the good Kähler moduli2, T̃i, are now the 4-cycle
volumes τ̃i (the imaginary parts, on the other hand, arise from the RR 4-form). The
relation between them depends on the particular Calabi-Yau:

Re T̃i = τ̃i =
1

2
dijktjtk = Vi , (D.28)

which can not be inverted in general. In order to calculate Ki = ∂T̃i
K we note that

∂ti = (∂tiT̃j)∂T̃j
+ (∂tiT̃ )∂T̃ 

= Vij
(
∂T̃j

+ ∂
T̃ 

)
. (D.29)

If acting on a function F that only depends on T̃+T̃ , as is the case for K, (D.29) simplifies
to

∂tiF (T̃ + T̃ ) = 2Vij∂T̃j
F (T̃ + T̃ ) , (D.30)

where on the left hand side T̃ is understood as a function of t. Alternatively, one has

∂T̃i
F (T̃ + T̃ ) =

1

2
V ij∂tjF (T̃ + T̃ ) = ∂

T̃ ı
F (T̃ + T̃ ) . (D.31)

Using this, one can calculate

Ki = − 2

V
∂T̃i
V = −V

ijVj
V

= − ti
2V

= Kı , (D.32)

where in the last step we used (D.25). In the same way one can calculate

Gi =
1

4

(
−V

ij

V
+

1

2

titj
V2

)
. (D.33)

Using this formula one can check that the inverse Kähler metric is given by

Gıj = 4 (−VVij + ViVj) . (D.34)

Putting everything together, no-scale structure holds also for type IIB:

GıjKıKj = (−VVij + ViVj)
ti
V
tj
V

= 3 , (D.35)

again under the assumption (D.14).

2Note that the Kähler moduli appearing in the non-perturbative superpotentials in the examples of [61]
are related to the ones in (D.28) by a linear field redefinition. However, this does not play any role in
verifying the no-scale structure at leading order, as (D.35) below is invariant under field redefinitions.
We chose to make the distinction clear by using tildes for the Kähler moduli defined by (D.28).
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D.3.3 Cancellation with just the volume modulus

Now we relax assumption (D.14). For simplicity, let us first consider the Kähler potential

K = −3 ln(T + T ) +
Ξ

(T + T )λ
, (D.36)

which corresponds to the case of a single Kähler modulus and the complex structure
moduli and the dilaton are neglected. A generic quantum correction was added to the
tree level term, which could be an α′ or a loop correction, depending on the value of λ.
Focusing on V3, i.e.

V3

eK |W |2
= GiKKi − 3 , (D.37)

one calculates

V3

eK |W |2
=

(3(2τ)λ + ξλ)2

3(2τ)2λ + Ξ(2τ)λλ(λ+ 1)
− 3

= 3− 3 +
(λ− λ2)Ξ

(2τ)λ
+

Ξ2λ4

3(2τ)2λ
+O

(
1

τ 3λ

)
. (D.38)

This simplified calculation gives an intuition of why the EKb -term does not appear in V3

of (6.28) whereas the α′- and EKs -terms contribute. When the exponent of the quantum
correction is exactly 1, there is a cancellation at leading order in the scalar potential
(compare also the discussion in footnote 12). Note that since we focused on V3 in this
subsection, it did not matter whether assumption (D.13) holds or not.

D.3.4 Cancellation with many Kähler moduli

We would now like to see how the previous result is changed when we have an arbitrary
number of moduli. We do not make any assumption on the dependence of the volume
on the Kähler moduli (“Swiss cheese” or fibered manifolds are special cases). Due to
its relevance for LVS, we consider a single correction to the Kähler potential which only
depends on the large Kähler modulus Tb (an example would be the α′-correction or the
loop term proportional to EKb , considering the moduli other than the Kähler moduli as
fixed; this is allowed at leading order in a τb-expansion, as we argue in appendix D.6).
Thus, we take the Kähler potential to be of the form

K = K(0) + δK = −2ln(V) + δK(Tb, T b) ≡ −2ln(V) +
Ξb

(Tb + T b)λ
. (D.39)

Again focusing on V3, we obtain

V3

eK |W |2
= GiKKi − 3 = (Gi

0 + δGi)
[
K

(0)
 + δK

] [
K

(0)
i + δKi

]
− 3 ,

(D.40)
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where δKi ≡ ∂Ti
δK and Gi

0 is the inverse metric of appendix D.3.2; finally δGi is the
modification of the inverse metric coming from considering the modified Kähler potential
(D.39). Explicitly one has

Gi = (G0
i + δKi)

−1 ' Gi
0 −Gh

0 δKhkG
ki
0 + . . . ,

δKi = − λΞb
(2τb)λ+1

δib , δKi =
(λ2 + λ) Ξb
(2τb)λ+2

δibδb . (D.41)

We now put everything together and use the results of appendix D.3.2 and formula (D.9)
(which, for the unperturbed metric and Kähler potential, is an exact equality) to arrive
at

V3

eK |W |2
=

[
Gi

0K
(0)
 K

(0)
i − 3

]
+ 2

[
Gi

0K
(0)
 δKi

]
−
(
Gk

0 δKkhG
hi
0

)
K

(0)
 K

(0)
i + . . .

= 0 +
4λΞb

(2τb)λ+1
τb −

4(λ2 + λ)Ξb
(2τb)λ+2

τbτb + . . .

=
(λ− λ2)Ξb

(2τb)λ
+ . . . . (D.42)

We notice that the term 1/τλb vanishes exactly for λ = 1, independently of the explicit
form of the volume in terms of the Kähler moduli. In particular, the loop correction
proportional to EKb experiences a cancellation at leading order in V3 (and it is not difficult
to see that the subleading order is suppressed by τ−2λ

b ). Therefore, the loop correction
is subleading in the potential compared to the α′ correction, even though it is leading in
the Kähler potential. Next, we would like to extend this analysis to the other parts of the
potential, i.e. Vnp1 and Vnp2.

D.3.5 Perturbative corrections to Vnp1 and Vnp2

We now introduce the nonpertubative superpotential into the game, i.e. relax assumption
(D.13), and look at the other terms of the scalar potential, Vnp1 and Vnp2 (see eq. (6.12)).
For this, we restrict to the P4

[1,1,1,6,9] model again. The contribution Vnp1 is proportional

to GssW ,sW,s. From (D.10) we see that no EKb appears at leading order. This can
be understood as follows. Consider the Kähler potential (D.39) where now V is the
volume of P4

[1,1,1,6,9], given in (6.14). Then the scaling with the large Kähler modulus τb is
schematically given by

Gss ' Gss
0 −Gsb

0 δKbbG
bs
0 + . . .

∼ τ
3/2
b + τ 2

b

Ξb

τλ+2
b

∼ τ
3/2
b +

Ξb
τλb

+ . . . , (D.43)
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which shows that any loop correction to the Kähler potential of the form Ξ/τλb leads to
a subleading contribution to Vnp1 in the large volume expansion. As usual, the ellipsis
stands for terms that are even more subleading in the τb expansion.

To understand the EKs correction to Gss we need to consider

K = −2 ln(V) + δ̃K(T, T ) ≡ −2 ln(V) +
Ξb g(Ts, T s)

(Tb + T b)λ
(D.44)

for some function g(Ts, T s) of the small Kähler modulus and we assume λ ≥ 3/2 in the
following. Then, again very schematically, the scaling behavior is given by3

Gss ' Gss
0 −Gsi

0 δ̃KiG
s
0 + . . .

∼ τ
3/2
b + Ξb (τb, τ

3/2
b )

(
τ−λ−2
b τ−λ−1

b

τ−λ−1
b τ−λb

)(
τb
τ

3/2
b

)
+ . . . (D.45)

∼ τ
3/2
b + τ−λb + τ

−λ+3/2
b + τ−λ+3

b + . . . .

One sees that λ = 3/2 indeed contributes at the same order as Gss
0 . This is confirmed by

the dependence of Gss in (D.10) on EKs through ∆, cf. (6.29).

We now consider Vnp2. This is proportional to GsK. Again we start by considering a
correction to the Kähler potential whose only dependence on the Kähler moduli is via τb,
as in (D.39). Schematically, we find

GsK ' (Gs
0 −Gb

0 δKbbG
bs
0 )
[
K

(0)
 + δK

]
+ . . .

∼ τs +
Gsb

0 Ξb

τλ+1
b

+ . . . ∼ τ 0
b +

Ξb
τλb

+ . . . . (D.46)

This result is confirmed by the absence of EKb in the leading term of Vnp2. A calculation
very similar to the one in (D.45) shows, however, that Vnp2 is modified by a correction to
the Kähler potential of the form (D.44) for λ = 3/2. It is straightforward to generalize
this analysis to a more general form of the “Swiss cheese” volume, with more than one
small Kähler modulus.

D.4 KK spectrum with fluxes

In this section we would like to develop some intuition on how the analysis of sections
6.3.3 and 6.4 might change in the presence of fluxes. We will restrict the discussion to
one possible effect of the fluxes, namely their influence on the KK spectrum. It is not

3For λ = 3/2 we can still use the expansion of the inverse metric (D.41), because the correction term
would also be further suppressed e.g. in the dilaton.
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known explicitly how closed string fluxes, which are present in LVS, would change the
mass spectrum. We will consider a toy example, using an analogy to the correction arising
from world volume fluxes (cf. [181]), in order to get a feeling for what kind of effects one
might expect. In particular, for the purposes of this appendix we assume a modified KK
mass spectrum of the form

m2
KK ∼

1

tstr

(
1 + F 2

t2str

) =

√
S1

t
(
1 + F 2S1

t2

) , (D.47)

where F represents any of the fluxes that may be present, and in the second equality the
factors of S1 appeared when expressing the 2-cycle volumes in Einstein frame as compared
to the string frame (t ∼ e−Φ/2tstr). Note that expanding (D.47) for large values of t would
lead to a correction ∆m2 ∼ F 2/t3, whose scaling with the flux and with t is reminiscent
of the moduli masses induced by closed string 3-form flux [202, 203]. In that case, the
suppression would be by the overall volume (which would lead to only mild effects in
LVS), but in (D.47) we allow for a suppression by single 2-cycle volumes (which might be
the small 2-cycle in the P4

[1,1,1,6,9] model).

Substituting (D.47) in (6.23), we now consider the scalar potential resulting from

K = −ln(2S1)− 2 ln(V) +Kcs(u, u)−
ξ̃S

3/2
1

V
+

√
τbEKb
S1V

+

√
τsEKs
S1V

(
1 +

F 2S1

τs

)
,

W = W0 + Ae−aTs . (D.48)

We have not included any flux correction to the term proportional to EKb because we
expect such corrections to be subleading in a large volume expansion.4 Note that the
F -dependent correction term we did include is of the same form as the winding string
correction ∼ EWs , when one neglects any potential flux corrections to the winding string
spectrum, cf. (6.24) (remember that gsW would just be proportional to 1/

√
τs without

fluxes). Thus, by considering (D.48) we implicitly also analyze in the following the effect
of corrections from winding strings (recall from section 6.3.3 that this correction is not
present in the P4

[1,1,1,6,9] model, but may be present in general).

We now give the generalization of (6.26)-(6.28) when using the modified Kähler potential
(D.48). The three contributions at leading order (O(V−3)) in the large volume expansion

4Even though we think it is unlikely, we can not exclude that the correction to KK masses that scale like
t−1
b without fluxes is only suppressed by F 2/τs instead of F 2/τb. In that case, one would have to redo

the analysis of appendix D.3.5, using (D.44) with λ = 1. This would prohibit the use of the expansion
(D.41), because in the large volume limit the leading contribution to Gss would arise from the loop
correction (it would scale as τ−1

b as opposed to the scaling of the tree level contribution ∼ τ
−3/2
b ). In

that case the leading terms in Vnp1 and Vnp2 would be suppressed compared to V3 and only arise at
order V−10/3, thus invalidating the volume expansion of LVS.
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are

Vnp1 = eKcs
24a2|A|2τ 3/2

s e−2aτs

V∆
, (D.49)

Vnp2 = −eKcs
2a|AW0|τse−aτs

S1V2

[
1 +

6EKs
∆

(
1− 2

F 2S1

τs

)]
, (D.50)

V3 =
3eKcs |W0|2

8V3

[
S

1/2
1 ξ̃ + (D.51)

+

√
τs

(
4(EKs )2 − 8(EKs )2F 2S1τ

−1
s (1 + F 2S1τ

−1
s )− 8

√
2

3
F 2S2

1EKs
)

S2
1∆

]
,

where the axion has already been minimized for, as discussed in section D.1.2, and now
∆ is generalized to

∆ ≡
√

2S1τs − 3EKs
(

1− 3
F 2S1

τs

)
. (D.52)

Plots for F = 1 and F = 3 are given in fig. D.1, and they look quite similar to the plot
without flux, fig. 6.4. Qualitatively, the conclusion is the same; only for nongeneric values
of the gs corrections do they compete with the α′ correction. Note, however, that the
amount of fine-tuning seems to depend on the value of the flux, cf. fig. D.1. The same
is true for the dependence of the values of V and τs at the minimum on S1 and EKs . For
F = 3, for instance, this dependence becomes more complicated than what we found in
(6.31). For the parameter range shown in fig. D.1, the values of τs and V in the minimum
vary in the ranges τs ∈ [14.6, 46.3] and log10 V ∈ [3.7, 15.5], where the smallest value for
both of them is reached in the corner where the two corrections become comparable.

Also the cancellation that we found for the gaugino masses survives the inclusion of the
flux factor in (D.48). The correction still only appears at sub-sub-leading order in an
expansion in ln(1/m3/2) and we find (again using the dilute flux approximation for the
prefactor (Ref)−1):

|Ms| =

∣∣∣∣F s

2τs

∣∣∣∣ = 3eK/2|W0|

∣∣∣∣∣ 1

4aτs
+

1

16a2τ 2
s

+
S1 − 12

√
2a(1− 2F 2S1τ

−1
s )EKs

64S1a3τ 3
s

+ . . .

∣∣∣∣∣
∼

m3/2

ln(1/m3/2)

[
1 +O

(
1

ln(1/m3/2)

)]
. (D.53)

This concludes our brief study of the direct effects of fluxes on the loop corrections.
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Figure D.1: Similarly to figure 6.4, the top surface is the α′ correction, the second is the gs

correction (with F = 1 in the left graph and F = 3 in the right), and the “red carpet” is 10/∆,
with ∆ from (D.52), using the same values as in fig. 6.4. The result is qualitatively the same as
before. Note, however, that the range for EKs differs. For larger values of F one does not need
to fine-tune EKs as much in order for the two corrections to become of similar order.

D.5 The orientifold calculation

In the main text, we are interested in how ∆Kgs , the one-loop correction to the Kähler
potential, scales with the Kähler moduli Ti. Our argument in section 6.3.1 is based on
the known result for ∆Kgs in the case of N = 2 supersymmetric K3×T 2 orientifolds and
N = 1 supersymmetric T 6/ZN (or T 6/(Z2 × Z2)) orientifolds, from [171] (see also [70]).
Here we review this computation for the case of K3 × T 2, and take this opportunity to
adapt it to our case of D3-branes and D7-branes from the beginning. (One can also obtain
them by T-duality on the final D9/D5 results of [171], e.g. as in the appendix of [204],
but as we shall see, the direct computation is enlightening in its own right.) We will leave
out details that are essentially identical to [171], and only emphasize the differences.

As shown in [171] using “Kähler adapted” vertex operators, the easiest way to compute
∆Kgs is by considering the 2-point function of the complex structure modulus u of T 2,
with vanishing Wilson line moduli, i.e.

〈VuVu〉 = −
∑
σ

4g2
cα

′−4

(u− u)2
〈V (0,0)

ZZ V
(0,0)

ZZ
〉σ . (D.54)

Here, we use the notation of [171],

V (0,0)
u = −gcα′−2 2

u− u
V

(0,0)
ZZ ,

V
(0,0)
u = gcα

′−2 2

u− u
V

(0,0)

ZZ
(D.55)
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and

V
(0,0)
ZZ = − 2

α′

∫
Σ

d2z
[
i∂Z +

1

2
α′(p · ψ)Ψ

][
i∂Z +

1

2
α′(p · ψ̃)Ψ̃

]
eipX ,

V
(0,0)

ZZ
= − 2

α′

∫
Σ

d2z
[
i∂Z +

1

2
α′(p · ψ)Ψ

][
i∂Z +

1

2
α′(p · ψ̃)Ψ̃

]
eipX . (D.56)

As in [171], and [205] before that, we find these complex worldsheet variables particularly
convenient:

Z =

√√
Gstr

2u2

(X4 + uX5) , Z =

√√
Gstr

2u2

(X4 + uX5) ,

Ψ =

√√
Gstr

2u2

(ψ4 + uψ5) , Ψ =

√√
Gstr

2u2

(ψ4 + uψ5) , (D.57)

where
√
Gstr is the volume of T 2 measured in string frame. The 2-point function (D.54)

can be expanded for small momenta, p1 · p2 � 1, and we obtain

〈V (0,0)
ZZ V

(0,0)

ZZ
〉σ = −V4

(p1 · p2)
√
Gstr

−1

16(4π2α′)2

∫ ∞

0

dt

t4

∫
Fσ

d2ν1d
2ν2

×
∑
k=0,1

∑
n=(n,m)T

tr

[
e−πn

TG−1
strnt

−1
∑

αβ
even

ϑ[α
β
](0, τ)

η3(τ)
γσ,kZ int

σ,k[
α
β
]

×
[
〈∂Z(ν1)∂Z(ν2)〉σ〈Ψ(ν1)Ψ(ν2)〉α,βσ 〈ψ(ν1)ψ(ν2)〉α,βσ (D.58)

+〈∂Z(ν1)∂Z(ν2)〉σ〈Ψ(ν1)Ψ̃(ν2)〉α,βσ 〈ψ(ν1)ψ̃(ν2)〉α,βσ + c.c.
]]

+O((p1 · p2)
2) .

For the details we refer to [171]. The main difference to the corresponding formula (C.3)
in [171] is the appearance of the inverse metric G−1

str in the exponent arising from the zero
mode sum, and in the prefactor. This is due to the fact that the D3 and D7 branes are
localized along the T 2, and so the closed string channel involves a Kaluza-Klein momentum
sum instead of a winding sum. The sum over bosonic zero modes has been made explicit,
since there is also an implicit dependence on m,n in the bosonic correlators: this arises
from the classical piece in the split into zero modes and fluctuations. That is, Z(ν) =
Zclass(ν) + Zqu(ν), where the classical part is given by

Zclass =
√
α′

√√
Gstr

2u2

(
n+mu

)
Re(ν) c̃σ , c̃σ =

{
1 for K
2 for A ,M . (D.59)

These zero modes have the right periodicity under Re(ν) → Re(ν) + π (for A,M) or
Re(ν) → Re(ν) + 2π (for K), i.e. X4 → X4 + 2πn

√
α′ and X5 → X5 + 2πm

√
α′. In

contrast to [171] they involve the real part of ν. The reason is again that in the D3/D7
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case the branes are localized along T 2 and thus the winding appears in the open string
channel as opposed to the closed string channel (as was the case for D9/D5 branes).

The sum over spin structures is performed using Riemann identities. This leaves the
correlators of the bosonic fields as the only piece that depends on the positions νi of the
vertex operators. The νi integral can then be evaluated. As the zero modes (D.59) involve
the real part of ν in the case of D3/D7-branes, in contrast to the D9/D5-case studied in
[171], the zero mode contribution in the Z-correlators drops out. The quantum part is
evaluated using the method of images on the worldsheet [206, 207, 172]. To evaluate the
KK sum in (D.58), it is useful to regularize the integral over t by a UV cutoff Λ. With
this we obtain ∫ ∞

1/(eσΛ2)

dt

t4

∑
n=(n,m)T

′

[
π3c2σtα

′e−πn
TG−1

strnt
−1

]

=
1

2
π3α′c2σe

2
σΛ

4 + πα′c2σ
√
Gstr

2
E2(0, u) + . . . , (D.60)

where the prime at the sum indicates that the (n,m) = (0, 0) term is left out, and cσ,
eσ are constants whose precise values will not be important in the following (but can be
found in [171]). Terms that go to zero in the limit Λ →∞ have been dropped, as indicated
by the ellipsis. The nonholomorphic Eisenstein series E2(0, u) is the s = 2 special case of

Es(0, u) =
∑

n=(n,m)T

′ us2
|n+mu|2s

. (D.61)

The terms involving the UV cutoff Λ drop out after summing over all diagrams, due to
tadpole cancellation. We have then reduced (D.58) to

〈V (0,0)
ZZ V

(0,0)

ZZ
〉σ = −(p1 · p2)α

′ V4

(4π2α′)2

c2σπ
√
Gstr

8

∑
k

tr
[
E2(0, u)γσ,kQσ,k

]
+O((p1 · p2)

2) . (D.62)

The quantities Qσ,k come from the sum over spin structures and are defined in [171].
Introducing the notation

E2(0, u) =
∑
σ

c2σ
∑
k=0,1

tr
[
E2(0, u)γσ,kQσ,k

]
, (D.63)

we end up with (neglecting some irrelevant factors of gc, α
′, terms subleading in the low-

energy expansion, and constants of order 1)

〈VuVu〉 ∼ −i(p1 · p2)
V4

(4π2α′)2

√
Gstr

(u− u)2
E2(0, u) . (D.64)
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To read off the one-loop correction to the kinetic term of u we need to perform a Weyl
rescaling to the Einstein frame. In the one-loop term (D.64) this just leads to

Weyl rescaling: × e2Φ

Vstr
, (D.65)

where

Vstr = Vstr
K3

√
Gstr (D.66)

is the overall volume in string frame. The Kähler potential can then be read off from the
kinetic term by use of the identity

∂u∂uE2(0, u) = − 2

(u− u)2
E2(0, u) , (D.67)

producing the final result

∆Kgs ∼
√
Gstre

Φ

Vstr(S + S)
E2(0, u) , (D.68)

where
√
Gstre

Φ/Vstr is to be interpreted as a function of the Kähler variables. In the
K3 × T 2 orientifold case, using (D.66), this is just proportional to eΦ/Vstr

K3 ∼ (T + T )−1

(with Re T the volume of K3 measured in Einstein frame), giving a result T-dual to
[171] (note that we switched the real and imaginary parts in the definition of T and S as
compared to [171], to conform with the rest of this work). As we argue in section 6.3.1, in
general the dependence on the Kähler moduli will be more complicated than this, because
there is no analog to the relation (D.66). It is still clear that the inverse suppression in
the overall volume will appear as in (D.68), given that it is a direct consequence of the
Weyl rescaling.

D.6 Factorized approximation

As mentioned in section 6.4.2, it is an important issue to what extent the moduli spaces of
Kähler and complex structure moduli factorize. In this appendix, we give further details
on the factorized approximation.

A common starting point in the analysis of the potential arising in type IIB theory with
3-form fluxes is to assume that all complex structure moduli uα and the dilaton S are
stabilized by demanding

DuαW = 0 = DSW . (D.69)

In this case the F-term potential for the moduli (6.7) reduces to

V = eK
(
GiDWDiW − 3|W |2

)
, (D.70)
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where as in the main text, the indices i and j refer only to the Kähler moduli and thus run
from 1 to h1,1. Note that even though the complex structure moduli and the dilaton are
assumed to be stabilized by (D.69), the inverse metricGi is part of the inverse of the whole
moduli space metric. More precisely, if we denote the Kähler moduli by Ti, as before, and
all other moduli (i.e. the complex structure moduli and the dilaton) collectively as Za,
the moduli space metric is given by

GIJ ∼
(
Ki Kib

Ka Kab

)
. (D.71)

We denote the inverse of this (whole) metric by GJI . In general

Gi 6= (Ki)
−1 . (D.72)

Equality only holds if Gib = 0, i.e. if the moduli space of the Kähler moduli is factorized
from the rest, as it is the case without loop and α′ corrections.

In this appendix, we would like to investigate at which order in a large volume expansion
the two matrices in (D.72) start to deviate from each other. For this analysis we assume
a volume of the “Swiss cheese” form as in (6.48) and a Kähler potential of the form
(6.24) (without taking possible effects of fluxes on the KK and winding mode spectra
into account as was done in appendix D.4; thus, ga

K ∼ ta and gq
K ∼ t−1

q for some 2-cycle
volumes). To avoid cumbersome notation we will indicate all the small moduli collectively
as τs. We then use the formula(

A B
C D

)−1

=

(
A−1(1 +BP−1CA−1) −A−1BP−1

−P−1CA−1 P−1

)
, (D.73)

where P is the Schur complement of A, defined as

P = D − CA−1B . (D.74)

In our case P is the Schur complement of Ki. From (6.24) we read off that

GIJ ∼


τ−2
b τβb τ−2

b τ−2
b

τβb τ
−3/2
b τ

−3/2
b τ

−3/2
b

τ−2
b τ

−3/2
b τ 0

b τ−1
b

τ−2
b τ

−3/2
b τ−1

b τ 0
b

 , (D.75)

where we only indicate the τb dependence and the indices run over I, J = {Tb, Ts, u, S}.
Here β = −2 for those τi with a nonvanishing ai in (6.48) (so β has an implicit index i),
otherwise β = −5/2 (which is in particular the value in the P[1,1,1,6,9] case). We decompose
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GIJ as in (D.73)

A ∼

(
τ−2
b τβb
τβb τ

−3/2
b

)
, A−1 ∼

(
τ 2
b τ

7/2+β
b

τ
7/2+β
b τ

3/2
b

)
,

B = CT ∼
(

τ−2
b τ−2

b

τ
−3/2
b τ

−3/2
b

)
, D ∼

(
τ 0
b τ−1

b

τ−1
b τ 0

b

)
,

P ∼
(

τ 0
b τ−1

b

τ−1
b τ 0

b

)
, P−1 ∼

(
τ 0
b τ−1

b

τ−1
b τ 0

b

)
. (D.76)

Using (D.73) one easily obtains the scaling of the inverse:

GJI ∼


τ 2
b τ

7/2+β
b τ 0

b τ 0
b

τ
7/2+β
b τ

3/2
b τ 0

b τ 0
b

τ 0
b τ 0

b τ 0
b τ−1

b

τ 0
b τ 0

b τ−1
b τ 0

b

 . (D.77)

Now, from (D.73), Gi receives two contributions. The first is Ki, that would be the only
term in the case of a factorized metric; the second is K−1

h KhbP
−1

ab
KalK

−1

il
, that breaks

factorization. Let us compare their τb scaling:

Gi = A−1 + A−1BP−1CA−1 (D.78)

∼

(
τ 2
b τ

7/2+β
b

τ
7/2+β
b τ

3/2
b

)
+

(
τ 0
b τ 0

b

τ 0
b τ 0

b

)
.

Thus the corrections coming from non-vanishing off-diagonal metric elements in (D.71) set

in with a suppression by τ−2
b , τ

−7/2−β
b and τ

−3/2
b in Gbb, Gbs and Gss, respectively. In the

explicit example based on P[1,1,1,6,9], β = −5/2, and we checked this result by comparing
to the subleading terms in (D.10).

D.6.1 Factorized approximation of the scalar potential

What we are really interested in is not the (inverse) metric itself, but the scalar potential,
to which we now turn. For the nonperturbative terms Vnp1 and Vnp2, the suppression of the
off-diagonal terms in (D.78) is inherited by the scalar potential, as they are proportional
to GssW ,sW,s and GsK, respectively. For V3 things are not as simple, due to the no-scale
structure at leading order. Let us neglect for a moment all the quantum corrections, then
the no-scale structure implies

[
GıjKıKj − 3

]
no−scale

∼ (τ−1
b , τβ+1

b )

(
τ 2
b τ

7/2+β
b

τ
7/2+β
b τ

3/2
b

)(
τ−1
b

τβ+1
b

)
− 3

∼ τ 0
b + τ

2β+7/2
b = 0 . (D.79)
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The two terms have to vanish independently. Now let us add corrections that break
no-scale structure. Because of the cancellation described in appendix D.3.3, the leading
contribution can be seen to come at order τ

−3/2
b (from the α′, EKs and EWs corrections).

On the other hand, the off-diagonal terms appear at order

[
GıjKıKj

]
off−diagonal

∼ (τ−1
b , τβ+1

b )

(
τ 0
b τ 0

b

τ 0
b τ 0

b

)(
τ−1
b

τβ+1
b

)
∼ τ−2

b + τβb + τ 2β+2
b

∼ τ−2
b + . . . , (D.80)

for both β = −2 and β = −5/2. Therefore, the off-diagonal terms of the moduli space

metric appear in the scalar potential with a suppression of at least τ
−1/2
b (as is confirmed

by the explicit example of section 6.3.3, cf. formulas (6.26)-(6.30)). The suppression can
be even stronger if some corrections are absent and the leading term in (D.80) vanishes.

To summarize: if one is only interested in the leading term of the scalar potential in the
large volume (i.e. large τb) expansion, then one can use the factorized approximation, i.e.

Gi = Ki +O
(
τ 0
b

)
. (D.81)

This provides a useful tool to simplify the calculations.



166 D. Technical details on soft terms from LVS

Symbols Used in the Paper

Var. Mass dim. Description Definition

MPl 1 reduced Planck mass MPl ≡ (8πGN)−1/2

κ2
4 -2 κ2

4 = M−2
Pl = 8πGN

zA -3/2 complex conifold coordinates
∑

A z
2
A = 0

xA -3/2 xA = <zA
yA -3/2 yA = =zA
z23 -3/2 z23 ≡ z2

2 + z2
3

x23 -3/2 x23 ≡ x2
2 + x2

3

ε -3/2 conifold deformation parameter
∑

i z
2
i = ε

µ -3/2 embedding parameter g(z1) = (1− z1/µ)
r -1 radial coordinate on the conifold r3 =

∑
i |zi|2

K 2 moduli Kähler potential κ2K = −3 logU
k -2 conifold Kähler potential
W 3 superpotential (4.3)
W0 3 GVW-flux superpotential W0 =

∫
G ∧ Ω

Wnp 3 non-perturbative superpotential Wnp = A(zi)e
−aT

A0 3 prefactor of Wnp A0 = A(zi = 0)
VF 4 F-term potential (2.34)
V (φ) 4 inflaton potential (4.58), (5.31)
Vup 4 uplifting term (5.17)
β 0 uplifting parameter (4.8), (5.21)
Λ 4 cosmological constant (4.58) (5.23)
B 4 term in the potential (5.24)
C 4 term in the potential (5.25)
U 0 argument of Kähler potential U = T + T̄ − γk
γ 2 in sec. 5.3 and 5.4: factor in K γ ≡ τ0T3/(3M

2
Pl)

γ 0 in sec. 5.5 and 5.6: inflaton Lorenz factor γ ≡ (1− fφ̇2)−1/2

T3 4 D3-brane tension (α′)−2(2π)−3g−1
s

T 0 complex Kähler modulus
τ 0 real part of T 2τ = T + T̄
g(z) 0 embedding equation A(zi) ∝ (g(z))1/n

g̃ 0 Kuperstein embedding’s function g(z) = g̃(z23)− z1

d 1 canonical normalization prefactor ε2/3
√
T3c

c 0 numerical factor in k 21/6/31/3 ' 0.77
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Var. Mass dim. Description Definition

V 0 volume of the Calabi-Yau manifold (D.18), (D.27)
τb 0 big 4-cycle volume of P4

[1,1,1,6,9] (6.14)

τs 0 small 4-cycle volume of P4
[1,1,1,6,9] (6.14)

S 0 axio-dilaton S ≡ e−φ + iC0

u 0 complex structure moduli
m3/2 1 gravitino mass
Ma 1 gaugino mass (6.35)
fa 0 gauge kinetic function (6.36)
n 0 number of D7-branes
ND3 0 number of D3-branes at the tip
Ne 0 number of e-foldings (3.7)
a 0 parameter in Wnp a ≡ 2π/n
h 0 warp factor (4.6)
f -4 appears in the DBI action f = h/T3, (5.43)
η 0 slow roll parameter M−2

Pl V
′′/V

ε 0 slow roll parameter M−2
Pl (V

′/V )2
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