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1. Einleitung   

 
1.1. Herkunft, Struktur und Funktion von Mitochondrien 

Mitochondrien sind Organellen, die aus zwei Membranen und vier Subkompartimenten, der 

äußeren Membran, dem Intermembranraum, der inneren Membran und der Matrix, bestehen. Der 

evolutionäre Ursprung dieser Organellen wird von der Endosymbiontentheorie beschrieben und 

lässt sich auf ein frei lebendes aerobes α-Proteobakterium zurückführen (Gray et al., 1999). Dies 

konnte durch Analyse mitochondrialer DNA (mtDNA), ihrer Gene und deren Expressionsmuster 

gezeigt werden. Mitochondrien weisen noch immer typisch prokaryotische Eigenschaften auf 

(Gray et al., 1999). Wie Prokaryoten besitzen Mitochondrien größtenteils ein ringförmiges 

Chromosom sowie 70S Ribosomen. Heutige eukaryotische Zellen sind also durch  die 

Endosymbiose aerober Eubakterien und einer anaeroben Vorläuferzelle der Eukaryoten 

entstanden. Im Laufe der Evolution und der Anpassung an die Endosymbiose gingen einige Gene 

verloren. Der Großteil der Gene, die mitochondriale Proteine kodieren, wurde aber in den 

Zellkern transferiert. Auf dem mitochondrialen Genom ist nur noch etwa 1% der Proteine kodiert. 

Dies entspricht in Saccharomyces cerevisiae 8 Proteinen und in H. sapiens 13 Proteinen. Dadurch 

wurden Mitochondrien von ihrer Wirtszelle abhängig und können nicht mehr als autonomer 

Organismus existieren. Andererseits sind Mitochondrien im Laufe der Evolution essenzielle 

Bestandteile der eukaryotischen Zelle geworden, die eine Vielzahl wichtiger Aufgaben erfüllen. 

Mitochondrien sind der Ort der Energiegewinnung für die Zelle. In ihnen finden die 

oxidative Phosphorylierung, wobei ATP gebildet wird, der Citrat-Zyklus, sowie die β-Oxidation 

statt. Außerdem erfüllen Mitochondrien viele andere Aufgaben, zu denen die Synthese von 

Aminosäuren, Lipiden, Häm und vieler Coenzyme gehören. Eine essenzielle Aufgabe von 

Mitochondrien ist die Assemblierung von Eisen-Schwefel-Clustern (Lill und Kispal, 2000; 

Mühlenhoff und Lill, 2000). 

Neben wichtigen Aufgaben, die das Überleben der Zelle sichern, spielen Mitochondrien 

auch eine wichtige Rolle bei der Apoptose, dem programmierten Zelltod, welcher sich durch die 

Freisetzung von Cytochrom c, dem Apoptose Induzierenden Faktor (AIF) und anderer Proteine 

auszeichnet (Jiang und Wang, 2004). Ebenso spielen sie eine wichtige Rolle beim Altern des 

Organismus (Trifunovic et al., 2004) und bei der Ca2+ Homöostase (Gunter et al., 2004). Eine neu 

entdeckte Funktion von Mitochondrien ist die Beteiligung an der angeborenen Immunantwort auf 
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virale Infektionen. Diese Funktion übernimmt das Protein MAVS (mitochondriales antivirales 

Signaling), welches die Bildung von Interferon α und Interferon β stimuliert (Seth et al., 2005). 

Defekte in mitochondrialen Genen können zu schwerwiegenden Erbkrankheiten führen. So kann 

eine Mutation des Gens OPA1, welches ein dem Dynamin ähnliches Protein exprimiert, eine 

autosomal dominante optische Atrophie (ADOA) auslösen (Alexander et al., 2000). Eine 

Mutation im Gen FRDA, welches das Protein Frataxin kodiert, führt zu einer Störung der 

Biogenese von Eisen-Schwefel-Clustern und löst das Friedreich-Syndrom, eine 

neurodegenerative Krankheit, aus (Puccio und Koenig, 2000).  

Neuere Studien konnten Hinweise darauf finden, dass Mitochondrien auch an 

neurodegenerativen Krankheiten wie Alzheimer und Parkinson beteiligt sind. In an Alzheimer 

erkrankten Nervenzellen ist das Amyloidvorstufenprotein (APP) in Mitochondrien anzutreffen. 

Dort verstopft es die Importporen des  TOM- und des TIM23-Komplexes. Dies hat zur Folge, 

dass der Import von Untereinheiten der Atmungskette stark beeinträchtigt ist (Lin und Beal, 

2006). Mutationen in den mitochondrialen Proteinen Dj1, Pink1 und Omi/Htra2 können bei 

Parkinsonpatienten beobachtet werden. Diese Mutationen haben mitochondriale Dysfunktionen 

und oxidativen Stress zur Folge und führen zum Zelltod (Abou-Sleiman et al., 2006). 

In der eukaryotischen Zelle bilden Mitochondrien dynamische Strukturen, die sich 

bewegen, sich teilen und fusionieren können. Diese Eigenschaften sind eine wichtige Anpassung 

an die Energiebedürfnisse der Zelle und stellen sicher, dass bei einer Zellteilung die Tochterzelle 

mit ausreichend Mitochondrien versorgt wird (Reichert und Neupert, 2002; Yoon und McNiven, 

2001). Mitochondrien können nicht de novo gebildet werden und entstehen also nur durch 

Teilung bestehender Mitochondrien. 

  

1.2. Biogenese von Mitochondrien 

Etwa 99% der mitochondrialen Proteine werden im Zellkern kodiert, an cytosolischen 

Ribosomen synthetisiert und in das richtige Subkompartiment der Organelle importiert (Holroyd 

und Erdmann, 2001; Jensen und Dunn, 2002; Koehler et al., 1999; Neupert, 1997; Pfanner und 

Geissler, 2001; Robinson et al., 2001; Schnell und Hebert, 2003; Soll und Schleiff, 2004). Um die 

Proteine an ihren Zielort zu bringen, sind mehrere Proteine, die auch Komplexe bilden, nötig. 
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1.2.1. Übersicht über den Proteinimport in Mitochondrien 

Der Transport kernkodierter Proteine in Mitochondrien verläuft über 

Translokationsmaschinen, welche in den Membranen der Mitochondrien lokalisiert sind (siehe 

Abb. 1). Vorstufenproteine werden zunächst durch einen Proteinkomplex, der aus Rezeptoren 

und einer Pore besteht, der Translokase der mitochondrialen Außenmembran (TOM) erkannt 

(Abe et al., 2000; Bolliger et al., 1995; Brix et al., 1997; Söllner et al., 1992). Durch die 

Importpore werden die Vorstufenproteine zumindest teilweise entfaltet transportiert, da sie nicht 

in der Lage sind, in gefaltetem Zustand die Importkanäle zu passieren (Eilers und Schatz, 1986; 

Wiedemann et al., 2001). 
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Nachdem der TOM-Komplex passiert ist, gibt es eine Trennung der Importwege, die durch 

individuelle oder multiple Elemente der Primärstruktur des Vorstufenproteins bestimmt werden 

(Jensen und Johnson, 2001; Endo et al., 2003; Koehler, 2004; Rehling et al., 2004; Wiedemann et 

al., 2004; Dolezal et al., 2006; Neupert und Herrmann, 2007). Proteine mit einer β-Barrel-

Struktur werden vom TOM-Komplex zum TOB-Komplex (topogenesis of mitochondrial outer 

membrane β-barrel proteins), der auch SAM-Komplex (sorting und assembly machinery) heißt, 

weitergeleitet. Dieser inseriert die β-Barrel-Vorstufenproteine in die äußere Membran (Kozjak et 

al., 2003; Paschen et al., 2003; Wiedemann et al., 2003). Proteine, die in oder durch die innere 

Membran transportiert werden, werden vom TOM-Komplex an den TIM22- oder TIM23-

Komplex geleitet, die jeweils eine andere Substratspezifität besitzen. Der TIM22-Komplex sorgt 

für eine spannungsabhängige Insertion multitopischer Proteine, wie z. B. Tim23, Tim17 und die 

Carrier-Proteinfamilie in die Innenmembran. Der TIM23 Komplex sorgt für die Translokation 

von Vorläuferproteinen mit einem Matrixlokalisationssignal (Paschen und Neupert, 2001). Der 

Export von mitochondrial oder nukleär kodierten Proteinen aus der Matrix in die Innenmembran 

erfolgt durch eine weitere Translokase der Innenmembran, dem OXA1-Komplex (Hell et al., 

2001). Kleine Proteine mit konservierten Cysteinresten, die im Intermembranraum lokalisiert 

sind, gelangen durch die Importpore des TOM-Komplexes und werden auf der trans-Seite des 

Komplexes durch das MIA-ERV Disulfidbrücken-Transfer-System über Disulfidbrücken 

gebunden (Lutz et al., 2003). Dort erhalten sie auch ihre korrekte Faltung (Mesecke et al., 2005) 

 

1.2.2. Interaktion cytosolischer Chaperone mit Vorstufenproteinen 

Die meisten mitochondrialen Proteine werden cytosolisch synthetisiert und dann durch das 

Cytosol mit Hilfe von Chaperonen an die Mitochondrien geleitet. Die Aufgabe der Chaperone ist 

es dabei, die Vorstufenproteine vor Aggregation und Fehlfaltung zu bewahren. Eine Klasse dieser 

Chaperone stellen die 70 kDa schweren Hitzeschockproteine (Hsp70) dar, welche in 

Abhängigkeit von ATP frisch synthetisierte Vorstufenproteine in einer importkompetenten 

Konformation halten. Jedoch ist Hsp70 auch am Transport von Vorstufenproteinen in andere 

Zellkompartimente, zu denen der Zellkern und das Endoplasmatische Retikulum (ER) gehören, 

beteiligt und damit nicht spezifisch für Mitochondrien (Mihara und Omura, 1996). Das Protein 

Ydj1 (auch Mas5), ein Homolog zu DnaJ aus E. coli und Hsp40 aus Hefe, spielt eine wichtige 

Rolle für den Import von Vorstufenproteinen in Mitochondrien, indem es hilft, Komplexe aus 

einem Vorstufenprotein und Hsp70 an die mitochondriale Außenembran zu geleiten (Caplan et 
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al, 1991; Caplan et al., 1992; Atencio et al., 1992). Am Transport mitochondrialer 

Vorstufenproteine ist in Säugerzellen ein weiteres Hitzeschockprotein, Hsp90, beteiligt (Young et 

al., 2003). Ein weiteres Chaperon, das beim Transport mitochondrialer Vorstufenproteine eine 

Rolle spielt, ist der Faktor MSF (mitochondrial import stimulating factor). Er erkennt 

Vorstufenproteine, unabhängig davon, ob sie eine abspaltbare Präsequenz oder nicht besitzen. 

Die ATPase-Aktivität dieses Chaperons wird durch Bindung an Vorstufenproteine induziert 

(Mihara und Omura, 1996).  

 

1.2.3. Cotranslationaler oder posttranslationaler Import? 

Die Frage, ob der Import von Vorstufenproteinen in Mitochondrien in vivo co- oder 

posttranslational abläuft, ist noch nicht eindeutig geklärt. Für beide Wege gibt es Daten, die sie 

unterstützen. Sowohl in vivo als auch in vitro konnten in Hefe unter bestimmten Bedingungen 

cytosolische Ribosomen gefunden werden, die mit Mitochondrien assoziiert waren. Zusammen 

mit biochemischen Daten wurde dies als Beweis für eine cotranslationale Translokation von 

Polypeptidketten in Mitochondrien angesehen (Fujiki und Verner, 1991; Fujiki und Verner, 1993; 

Verner, 1993). Wenn die Translationsgeschwindigkeit durch die Zugabe von Cycloheximid 

verlangsamt wird, kann an der Oberfläche von Mitochondrien eine Anhäufung von Ribosomen 

beobachtet werden. Daraus kann man folgern, dass an die Ribosomen gebundene 

Vorstufenproteine an der Mitochondrienoberfläche angereichert sind (Kellems et al., 1975). 

Daher scheinen die relativen Kinetiken von Translation und Translokation die Anreicherung von 

Polysomen mit mitochondrialen Vorstufenproteinen an der Oberfläche der Mitochondrien zu 

bestimmen (Beddoe und Lithgow, 2002). Mehrere Beobachtungen stützen die Vorstellung, dass 

es zumindest bei einigen Proteinen einen cotranslationalen Import geben könnte. Hierbei könnte 

die Lokalisation der mRNA in der Nähe von Mitochondrien eine wichtige Rolle bei der 

Biogenese von Mitochondrien spielen (Knox et al., 1998; Marc et al., 2002; Stein et al., 1994). 

Andererseits gibt es eine beträchtliche Anzahl an Beweisen für den posttranslationalen 

Import. So können viele Vorstufenproteine in einem zellfreien System synthetisiert und 

anschließend posttranslational in isolierte Mitochondrien importiert werden (Harmey et al., 1977; 

Neupert, 1997). Ein weiterer Beweis ist, dass mRNAs für importierte mitochondriale Proteine 

sowohl in freien als auch in an Mitochondrien gebundenen Polysomen gefunden werden können 

(Suissa und Schatz, 1982). Außerdem gibt es Proteine, die ihre Zielsequenz am C-Terminus 

haben und daher komplett synthetisiert werden müssen, bevor sie zu ihrem Zielort gelangen 
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(Borgese et al., 2003; Fölsch et al., 1998; Suissa and Schatz, 1982). Zusammenfassend kann man 

sagen, dass die Translation und der Import mitochondrialer Vorstufenproteine größtenteils nicht 

gekoppelt sind und der Großteil des Imports posttranslational abläuft. 

 

1.2.4. Mitochondriale Signalsequenzen 

Im Cytosol synthetisierte mitochondriale Vorstufenproteine enthalten die Information, die 

nötig und ausreichend ist, um an die Mitochondrien geleitet zu werden. Meist liegt diese 

Information als abspaltbare Sequenz am N-Terminus vor und wird Präsequenz genannt. Diese 

besteht aus 10 bis 80 Aminosäureresten, die zum Großteil positiv geladen, hydrophob oder 

hydroxyliert sind (von Heijne et al., 1989). Eine Fusion dieser Präsequenzen an Proteine, die 

nicht mitochondrial lokalisiert sind, führt zum spezifischen Import des Fusionsproteins in 

Mitochondrien (Horwich et al., 1985; Hurt et al., 1984). In Membranen oder membranähnlicher 

Umgebung bilden Präsequenzen amphipathische α-Helices mit einer positiv geladenen und einer 

hydrophoben Seite (Abe et al., 2000; Epand et al., 1986; Roise et al., 1986; Roise et al., 1988). Es 

wurde angenommen, dass die positiven Ladungen und die amphipathische Struktur der 

Präsequenz die Erkennung des Proteins durch Rezeptoren begünstigt. Jedoch konnten neuere 

Arbeiten zeigen, dass unterschiedliche Oberflächen einer Präsequenz von verschiedenen 

Rezeptoren des TOM-Komplexes erkannt werden können. Dabei werden der hydrophobe Teil 

von Tom20 und der positiv geladene Teil von Tom22 erkannt (Abe et al., 2000; Brix et al., 

1999). In den meisten Fällen werden die Präsequenzen nach dem Import in die Matrix durch die 

mitochondriale Prozessierungspeptidase (MPP) geschnitten (Braun et al., 1992). Einige 

Matrixproteine, zu denen beispielsweise Rhodanese, 3-oxo-CoA-Thiolase und Chaperonin 10 

gehören, enthalten eine N-terminale Signalsequenz, die nicht abgespalten wird. Dabei sind diese 

Sequenzen den Signalsequenzen, die abgespaltenen werden sehr ähnlich (Hammen et al., 1996; 

Jarvis et al., 1995; Waltner und Weiner, 1995). Die DNA-Helikase Hmi1 hat, im Gegensatz zu 

den meisten Matrixproteinen, ihre Signalsequenz am C-Terminus. Dies führt dazu, dass dieses 

Protein mit dem C-Terminus zuerst in die Matrix transportiert wird. Anschließend wird das 

Signalpeptid abgespalten (Lee et al., 1999).  

Viele Proteine, die an den Membranen und im Intermembranraum lokalisiert sind, enthalten 

eine interne Signalsequenz aus einer Transmembrandomäne und einem darauf folgenden positiv 

geladenem Segment, welches zu einem spezifischen Arrest des Vorstufenproteins in der 

entsprechenden Membran führt (Gärtner et al., 1995; Glick et al., 1992a; McBride et al., 1992). 
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Einige Proteine der inneren Membran, z.B. Cytochrom c1, und des Intermembranraumes, z.B. 

Cytochrom b2, werden über eine  zweigeteilte Signalsequenz sortiert, welche aus einer 

Matrixsignalsequenz am N-Terminus und einer darauf folgenden hydrophoben Sequenz und 

anschließenden positiv geladenen Resten besteht. Die Signalsequenz wird an der Oberfläche der 

inneren Membran durch die heterodimere Innenmembranpeptidase, bestehend aus Imp1 und 

Imp2, prozessiert (Glick et al., 1992b). 

Das Innenmembranprotein BCS1 besitzt zusätzlich noch eine dritte Domäne als Teil seiner 

Signalsequenz, welche hauptsächlich durch die Importrezeptoren auf der Oberfläche erkannt 

werden. Nach dem Transport des Vorstufenproteins in einer Schleifenstruktur durch den TOM-

Komplex werden für die Sortierung in die Innenmembran alle drei Elemente der Signalsequenz 

benötigt. (Fölsch et al., 1996; Stan et al., 2003). 

Es existieren zwei Möglichkeiten zur Translokation von Vorstufenproteinen in die 

Innenmembran. Ein Modell, das Stop-Transfer-Modell, besagt, dass Proteine während des 

Imports in der Innenmembran arretiert werden. Das andere Modell besagt, dass Proteine zunächst 

in die Matrix importiert werden und dann in die innere Membran geleitet werden (Fölsch et al., 

1996; Hartl et al., 1987).   

Metabolitentransporter der inneren Membran enthalten keine abspaltbare Signalsequenz, 

sondern drei bis sechs interne Signalsequenzen, die über die gesamte Länge des Präproteins 

verteilt sind (Endres et al., 1999; Pfanner und Neupert, 1987; Smagula und Douglas, 1988). 

Andere Membranproteine, wie die Komponenten der Translokase der inneren Membran, z.B. 

Tim23, Tim17 und Tim22, enthalten ebenfalls mehrere interne Sortierungssignale wie 

hydrophobe Segmente und positiv geladene Schleifen (Davis et al., 2000; Káldi et al., 1998; 

Paschen und Neupert, 2001). 

Die Signalsequenzen der Proteine der Außenmembran werden im Kapitel Signalsequenzen 

mitochondrialer Außenmembranproteine detailliert diskutiert (siehe 1.3.2.). 

 

1.2.5. Die Translokase der äußeren Membran (TOM-Komplex) 

Der TOM-Komplex ist die Translokase der Außenmembran und für den Import nahezu 

aller mitochondrialer Proteine zuständig. Er erkennt Vorstufenproteine im Cytosol, erleichtert die 

Freisetzung cytosolischer Faktoren, die an Vorstufenproteinen binden, entfaltet cytosolische 

Proteindomänen und transferiert die Polypeptide durch die Poren der Außenmembran. Der TOM-

Komplex wurde in verschiedenen Organismen untersucht, wobei die meisten Studien in den 
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Pilzen Neurospora crassa und Saccharomyces cerevisiae durchgeführt wurden. In diesen beiden 

Organismen konnten nur geringfügige Unterschiede festgestellt werden. Auch in Tieren und 

Pflanzen sind Struktur und Funktion vergleichbar (Hoogenraad et al., 2002; Braun et al., 1999; 

Mori et al., 1998). 

Der  Multiproteinkomplex hat eine molekulare Masse von etwa 490 bis 600 kDa (Ahting et 

al., 1999; Künkele et al., 1998) und besteht aus sieben Untereinheiten: Tom70, Tom40, Tom22, 

Tom20, Tom7, Tom6 und Tom5 (Neupert, 1997; Pfanner und Geissler, 2001). Tom20, Tom22 

und Tom70 verfügen über Domänen, die in das Cytosol ragen und sind die Hauptrezeptoren des 

Komplexes (Hines et al., 1990; Hines und Schatz, 1993; Kiebler et al., 1993; Moczko et al., 1992; 

Söllner et al., 1989). Die beiden Rezeptoren Tom20 und Tom70 sind über Tom22 lose mit dem 

TOM-Kernkomplex, bestehend aus Tom40, Tom22, Tom7, Tom6 und Tom5, assoziiert. Der 

TOM-Kernkomplex wird auch als generelle Import-/Insertionspore (GIP) bezeichnet (Ahting et 

al., 1999; Dekker et al., 1998; Künkele et al., 1998). Tom20 und Tom22 sind an der 

Translokation der meisten Vorstufenproteine, vor allem derer mit N-terminaler Signalsequenz, 

beteiligt  (Harkness et al., 1994; Lithgow et al., 1995). Tom20 ist aber auch in der Lage, Proteine 

ohne Signalsequenz zu erkennen, wie die Außenmembranproteine Porin (Schleiff et al., 1999), 

Tom40 (Rapaport und Neupert, 1999) und die Cytochrom c Häm-Lyase (Diekert et al., 1999). 

Mitochondriale Vorstufenproteine mit interner Signalsequenz, wie die Familie der 

Metabolitentransporter binden an Tom70 (Brix et al., 1999; Schlossmann et al., 1994).  

Die Rezeptoren Tom20 und Tom70 unterscheiden sich zwar in ihrer Substratspezifität, 

überlappen aber in ihrer Funktion und können sich teilweise ersetzen. Dies wird auch dadurch 

deutlich, dass die gleichzeitige Deletion beider  Rezeptoren letal ist (Ramage et al., 1993), die 

Deletion eines der beiden Rezeptoren jedoch nicht. Tom70 tendiert dazu, Dimere zu bilden. 

Dabei spielt die Transmembrandomäne eine wichtige Rolle (Millar und Shore, 1994; Söllner et 

al., 1992). Tom20 und Tom70 besitzen beide ein Motiv aus 34 Aminosäuren, welches 

Tetratricopeptid-  Wiederholung (TPR) genannt wird. Während Tom20 eine TPR-Domäne besitzt 

(Haucke et al., 1996), besitzt Tom70 elf dieser Domänen (Wu und Sha, 2006; Chan et al., 2006). 

Dieses Motiv befindet sich  in den cytosolischen Domänen der beiden Rezeptoren und dient 

sowohl der Protein-Protein-Interaktion mit Vorstufenproteinen als auch der Interaktion mit 

cytosolischen Chaperonen (Haucke et al., 1996; Young et al., 2003). In S. cerevisiae interagiert 

Tom70 mit Hsp70. In Säugern sind Tom70-abhängige Vorstufenproteine mit Hsp70 und Hsp90 

assoziiert und bilden einen Multichaperonkomplex. Die Bindung erfolgt dabei über eine 
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spezialisierte TPR-Domäne des Rezeptors (Young et al., 2003). Tom20 interagiert in Säugern mit 

den TPR-Motiven des Arylhydrocarbonrezeptor-interagierenden Proteins (AIP) und könnte 

ähnlich wie Tom70 mit präproteinbindenden Chaperonen interagieren (Yano et al., 2003). 

Ein weiterer Rezeptor, der nur in S. cerevisiae vorkommt, ist Tom71. Tom71 und Tom70 

besitzen  53% Sequenzidentität und 70% Ähnlichkeit zueinander und könnten möglicherweise 

durch Genduplikation entsanden sein. Das könnte erklären, dass Tom71 nur in Hefe gefunden 

werden kann. Sie besitzen aber nicht dieselben Funktionen. Tom71 wird nur in geringen Mengen 

exprimiert und ist mit dem TOM-Komplex lose assoziiert. Die Deletion von Tom71 beeinflusst 

den Import Tom70-abhängiger Vorstufenproteine nur minimal, unabhängig davon, ob Tom70 

vorhanden ist oder nicht. Bis heute ist die Funktion von Tom71 noch weitestgehend unklar 

(Schlossmann et al., 1996). 

Nach dem Binden der Vorstufenproteine an Tom20 oder Tom70 werden sie zur GIP 

transferiert. Dabei spielt Tom22 eine entscheidende Rolle. Die cytosolische Domäne von Tom22 

kann mit der hydrophilen Seite der Präsequenzen interagieren und dient als weiterer Rezeptor 

(Brix et al., 1997). Tom22 ist ein integraler Bestandteil der GIP (van Wilpe et al., 1999) und sorgt 

für die Insertion der Polypeptidkette in den TOM-Kanal (Dietmeier et al., 1997). 

Der TOM-Kanal ist aus mehreren Tom40-Molekülen aufgebaut, die möglicherweise 

Dimere als Grundstruktur bilden (Rapaport et al., 1998). Tom40 ist eine essenzielle Tom-

Komponente und durchspannt die Außenmembran mit mehreren β-Faltblättern, die eine β-

Barrelstruktur ausbilden (Hill et al., 1998; Künkele et al., 1998). Aufgereinigtes Tom40 konnte in 

Liposomen rekonstituiert werden, in denen es alleine in der Lage war, einen kationenselektiven 

spannungsgesteuerten Kanal, ähnlich dem des TOM-Komplexes zu bilden (Ahting et al., 2001; 

Hill et al., 1998; Stan et al., 2000). Pro GIP sind ungefähr sechs Kopien von Tom40 vorhanden. 

Mit Hilfe elektronenmikroskopischer Analysen konnte ermittelt werden, dass der GIP-Komplex 

aus zwei bis drei Kanälen besteht (Ahting et al., 1999; Künkele et al., 1998; Model et al., 2002). 

Ein Kanal besitzt einen Porendurchmesser von etwa 22 Å (Hill et al., 1998; Schwartz und 

Matouschek, 1999). Diese Größe reicht aus, um bis zu zwei α-helikale Segmente hindurch zu 

lassen. Gefaltete Domänen können jedoch nicht durch die Pore gelangen. 

Die Translokation von Vorstufenproteinen ist unabhängig von ATP und benötigt auch nicht 

das Membranpotential über die Innenmembran, aber die treibende Kraft dafür ist noch 

weitgehend unbekannt. Die „Binding-chain“-Hypothese ist ein Erklärungsversuch dafür. Dabei 

binden Vorstufenproteine mit Präsequenz an Bindestellen mit steigender Affinität, wobei zuerst 
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eine Interaktion mit der cytosolischen cis-Bindungsstelle des TOM-Komplexes, gebildet von den 

cytosolischen Domänen von Tom20 und Tom22, erfolgt. Der Transport der Präsequenz zur 

Innenseite der Außenembran führt zu einer Bindung an die trans-Bindungsstelle, die aus Tom40, 

der C-terminalen Domäne von Tom22 und Tom7 besteht (Bolliger et al., 1995; Endo und Kohda, 

2002; Esaki et al., 2004; Meisinger et al., 2001; Moczko et al., 1997; Rapaport et al., 1998a; 

Schatz, 1997). Die Affinität für eine Bindung ist an der trans-Bindungsstelle höher als an der cis-

Bindungsstelle (Mayer et al., 1995b; Rapaport et al., 1998; Stan et al., 2000), wofür ionische und 

hydrophobe Wechselwirkungen wichtig sind. An der trans-Bindungsstelle übernimmt dann der 

TIM23-Komplex die gebundenen Vorstufenproteine (Endo et al., 2003). 

 Die Funktion der kleinen Tom-Komponenten ist nur teilweise verstanden. Tom5 ist eng 

mit Tom40 assoziiert und könnte eine Verbindung zwischen den Importrezeptoren und der GIP 

darstellen. Das Protein ist für die Insertion von Polypeptiden in die Translokationspore wichtig. 

Mehrere teils widersprüchliche Studien konnten die Funktionen von Tom5 weiter entschlüsseln. 

Es wird angenommen, dass Tom5 ein Rezeptor ist, der die Präproteine von Tom22 übernimmt 

(Dietmeier et al., 1997). Jedoch reicht für die Funktion von Tom5 die C-terminale Ankerdomäne 

alleine aus und kann den Deletionsphänotyp komplementieren (Habib et al., 2003; Horie et al., 

2003). Eine neuere Studie zeigt, dass die Deletion von Tom5 in N. crassa keinen 

Wachstumsphänotyp und keine Veränderung des Proteinimports nach sich zieht (Schmitt et al, 

2005). Außerdem wird Tom5 in S. cerevisiae und in N. crassa bei höheren Temperaturen für die 

Stabilität des TOM-Komplexes benötigt.  Diese Daten sprechen dafür, dass Tom5 eher eine 

strukturelle Rolle als die eines Rezeptors übernimmt (Schmitt et al., 2005). Tom6 und Tom7 sind 

wahrscheinlich an der Regulation der Assemblierung und Disassemblierung von 

Rezeptorproteinen mit der GIP beteiligt (Dekker et al., 1998; Honlinger et al., 1996). Beide 

Proteine wurden in N. crassa in der Nähe von Tom40 gefunden. Tom6 bildet dabei 

wahrscheinlich die Verbindung zwischen Tom40 und Tom22 (Dembowski et al., 2001). Tom7 

erleichtert die Dissoziation der Translokase, so dass ein kontinuierlicher Austausch von Tom-

Proteinen möglich ist (Dekker et al., 1998; Honlinger et al., 1996). 

Zusammenfassend kann man sagen, dass die Translokation von Vorstufenproteinen über 

sequenzielle Interaktionen mit verschiedenen Untereinheiten des TOM-Komplexes, die die 

Proteine mit zunehmender Affinität binden, abläuft. Anschließend bleiben die Proteine entweder 

im Intermembranraum oder werden von den Translokasen der inneren Membran (TIMs) 

übernommen. 
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1.2.6. Die Translokase der inneren Membran (TIM23 Translokase ) 

Nach der Translokation über den TOM-Komplex interagieren Proteine mit Präsequenz mit 

der TIM23 Translokase (Bauer et al., 1996; Dekker et al., 1997). 

Der TIM23-Komplex  besteht aus Untereinheiten, die einen Kanal durch die Innenmembran 

bilden (Membransektor) und aus Untereinheiten, die die Translokation durch die Innenmembran 

in die Matrix durchführen und auch als Importmotor (auch Präsequenztranslokase assoziierter 

Motor, PAM) bezeichnet werden (Neupert und Herrmann, 2007). Die Translokase besteht aus 

den zwei phylogenetisch verwandten Membranproteinen Tim17 und Tim23, die von den sechs 

größtenteils hydrophilen Proteinen Tim50, Tim44, Tim16 (Pam16), Tim14 (Pam18), Tim21 und 

Pam17 umgeben sind (Rehling et al., 2004). 

Die erste Tim-Komponente, die mit einem Präprotein, das vom TOM-Komplex kommt, 

interagiert, ist Tim50. Es verfügt über eine große Domäne im Intermembranraum, die an Tim23 

bindet. Proteine mit Präsequenz assoziieren nach dem Eintritt in den Intermembranraum mit 

Tim50, das sie dann zur TIM23 Translokase weiterleitet (Geissler et al., 2002; Mokranjac et al., 

2003a; Yamamoto et al., 2002). Die Komponente Tim21 interagiert mit der Intermembranraum-

Domäne von Tom22, welches auf eine Interaktion der beiden Komplexe schließen lässt 

(Chacinska et al., 2005; Mokranjac et al., 2005a). Der Kern des TIM23-Komplexes besteht aus 

äquimolaren Anteilen von Tim23 und Tim17. Beide Proteine sind essenziell und besitzen eine 

phylogenetisch verwandte Membrandomäne aus vier Transmembrandomänen (Emtage und 

Jensen, 1993; Kübrich et al., 1994; Maarse et al., 1994). Zusätzlich besitzt Tim23 am N-

Terminus eine Domäne aus etwa 100 Aminosäuren, die in zwei Teile unterteilt werden kann. Der 

N-terminale Teil (Aminosäuren 1-49) ist in der Außenmembran verankert und kann so den 

Transfer von Vorstufenproteinen vom TOM-Komplex zur TIM23-Translokase erleichtern und 

somit die Effizienz des Proteinimports erhöhen (Donzeau et al., 2000). Der zweite Teil der 

Domäne (Aminosäuren 50-100) enthält eine coiled-coil-Domäne, die eine wichtige Rolle für die 

Dimerisierung von Tim23 und für die Substratbindung spielt (Bauer et al., 1996; Geissler et al., 

2002; Yamamoto et al., 2002). Biochemische Untersuchungen zeigen, dass Tim17 und Tim23 

mit transportierten Vorstufenproteinen in engem Kontakt stehen (Kübrich et al., 1994; Ryan und 

Jensen, 1993). Es wird angenommen, dass die Intermembranraumdomäne von Tim23 als 

Rezeptor für Präsequenzen dient und die integralen Membrandomänen von Tim23 einen 

Translokationskanal für Vorstufenproteine bilden. Dies kann an aufgereinigtem rekombinanten 

Tim23 beobachtet werden, da es einen spannungsgesteuerten Kanal, der für Präsequenzen 

 11



          Einleitung
   

spezifisch ist, mit einem Durchmesser von etwa 13-24 Å bildet (Truscott et al., 2001). Die 

Funktion von Tim17 ist noch nicht aufgeklärt. Tim17 besitzt am N-Terminus eine kurze Domäne, 

die in den Intermembranraum ragt und zwei negative Ladungen besitzt, die für die Rolle von 

Tim17 sehr wichtig sind (Meier et al., 2004).   

Die Tim23-Pore wird über das Membranpotential (∆ψ) reguliert (Truscott et al., 2001), 

welches als Triebkraft für den Transport der Präsequenzen durch die Pore in der Innenmembran 

dient (Martin et al., 1991; Truscott et al., 2001; Krayl et al., 2007). Für die komplette 

Translokation von Vorstufenproteinen ist auch noch eine zweite treibende Kraft notwendig. 

Dabei handelt es sich um den ATP-abhängigen Importmotor aus den Komponenten Tim14 und 

Tim17 (van der Laan et al., 2005), den beiden peripher assoziierten Komponenten Tim16 und 

Tim44, dem mitochondrialen Hitzeschockprotein mtHsp70 und dem Co-Chaperon Mge1, einem 

Nukleotidaustauschfaktor im Reaktionszyklus von mtHsp70 (Mayer, 2004). Das hydrophile 

Matrixprotein Tim44 dient als Verankerung von mtHsp70, so dass dessen ATPase-Domäne an 

der Austrittsseite des Importkanals zu liegen kommt. Mitochondriales Hsp70 wird zur 

Translokation des Vorstufenproteins in die Matrix benötigt und verbraucht dabei ATP. Die 

ATPase-Aktivität von mtHsp70 wird durch das J-Protein Tim14 stimuliert. Dadurch sorgt Tim14 

für eine effiziente Bindung von mtHsp70 an Präproteine (Mokranjac et al., 2003b; Truscott et al., 

2003). 

 In S. cerevisiae konnte ein Homolog zu Tim14, Mdj2, identifiziert werden, welches 

ebenfalls eine Komponente des Importmotors ist und zumindest in vitro die ATPase-Aktivität 

von mtHsp70 im gleichen Maße wie Tim14 stimuliert (Mokranjac et al., 2005b). Bei Mdj2 

könnte es sich, wie im Fall von Tom71, ebenfalls um eine Genduplikation handeln. 

Für die Rolle von mtHsp70 beim Proteinimport werden zwei Modelle diskutiert, nämlich 

das „Brownian Ratchet“- und das Translokationsmotor-Modell. Das Brownian Ratchet Modell 

besagt, dass die Polypeptidkette eines Vorstufenproteins im Translokationskanal aufgrund der 

Brownschen Bewegung oszilliert. Nach einer Einwärtsoszillation in die Matrix kann mtHsp70 

passiv einen Teil der Polypeptidkette einfangen. Mehrmalige Wiederholungen dieses Vorgangs 

würden dann dazu führen, dass das Vorstufenprotein vollständig importiert wird (Neupert und 

Brunner, 2002). Das Translokationsmotor-Modell hingegen besagt, dass an Tim44 gebundenes 

mtHsp70 mit dem Vorstufenprotein interagiert, wobei bei mtHsp70 Konformationsänderungen 

durch die Bindung von ATP auftreten, die eine mechanische Kraft erzeugen, welche das Protein 

in die Matrix zieht (Matouschek et al., 2000). Für beide Modelle konnten experimentelle und 

 12



          Einleitung
   

theoretische Beweise gefunden werden. Mit dem Brownian Ratchet Modell können jedoch einige 

Beobachtungen besser erklärt werden, weshalb angenommen wird, dass es eher zutrifft. 

Außerdem wird eine Beteiligung des Membranpotentials als treibende Kraft für den Import 

diskutiert (Geissler et al., 2001; Okamoto et al., 2002; Shariff et al., 2004; D’Silva et al., 2005; 

Sato et al., 2005; Krayl et al., 2007). In beiden Modellen bindet mtHsp70 ATP-abhängig über 

Tim44 an die Innenmembran und fördert die Translokation von Präproteinen in die Matrix.  

Es existieren zwei Modelle für die Translokation von Vorstufenproteinen in die Matrix und 

den Einbau von Vorstufenproteinen in die innere Membran. Das erste Modell geht davon aus, 

dass der TIM23-Komplex in zwei Formen vorliegt. Eine Form besteht aus dem Membransektor 

und dem Importmotor, die andere Form nur aus dem Membransektor. In der ersten Form ist 

Tim21 nicht im TIM23-Komplex anwesend. Diese Form dient wahrscheinlich der Translokation 

von Vorstufenproteinen in die Matrix. In der zweiten Form assoziiert Tim21 mit dem Komplex 

und der Importmotor dissoziiert und dient wahrscheinlich der Insertion von Proteinen in die 

Innenmembran (Chacinska et al., 2005). Das zweite Modell geht davon aus, dass es nur eine 

Form des TIM23-Komplexes gibt, die beide Aufgaben übernimmt. Proteine, die in der 

Innenmembran lokalisiert sind, besitzen ein Sortierungssignal, das nach der Erkennung durch die 

Pore zu ihrer lateralen Öffnung führt. Dadurch wird die Transmembrandomäne in der inneren 

Membran verankert (Popov-Čeleketić et al., 2008). 

Nach dem Import eines Vorstufenproteins in die Matrix wird die Präsequenz des Proteins in 

den meisten Fällen durch die mitochondriale Prozessierungsprotease (MPP) proteolytisch 

abgespalten (Gakh et al., 2002). Anschließend wird das Protein in seine native Konformation 

gefaltet, wofür beispielsweise das Chaperon mtHsp70, das Chaperonin Hsp60 und die Peptidyl-

Prolyl cis/trans-Isomerase zur Verfügung stehen (Cheng et al., 1989; Ostermann et al., 1989). 

 

1.2.7. Die Carrier-Translokase der inneren Membran (TIM22 Translokase) 

Die zweite Translokase in der mitochondrialen Innenmembran, TIM22, inseriert 

membranpotenzialabhängig Innenmembranproteine mit mehreren hydrophoben Segmenten wie 

Tim23, Tim17 und Tim22 und alle Carrier-Proteine (Kerscher et al., 1997; Kerscher et al., 2000; 

Koehler et al., 2000; Sirrenberg et al., 1996). Diese Proteine besitzen wenig charakterisierte 

Signalsequenzen. Vorstufenproteine werden im Intermembranraum von den kleinen löslichen 

Tim-Proteinen erkannt. Der 70 kDa große und essenzielle Komplex aus Tim9 und Tim10 wird 

für den Transport von Carrier-Vorstufenproteinen benötigt und der 70 kDa große Tim8-Tim13-
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Komplex interagiert mit Tim23-Vorstufenproteinen (Bauer et al., 2000), welches aber auch, im 

Falle von N. crassa, ein Substrat des Tim9-Tim10-Komplexes ist (Vasiljev et al., 2004). Die 

kleinen Tim-Proteine im Intermembranraum verhindern, ähnlich wie Chaperone, die Aggregation 

importierter Vorstufenproteine und leiten die Vorstufenproteine zum TIM22-Komplex weiter. 

Beim Transfer von β-Barrel Vorstufenproteinen vom TOM- zum TOB-Komplex übernehmen sie 

eine ähnliche Rolle. Der TIM22-Komplex besteht aus peripheren und in die Membran 

integrierten Untereinheiten. Zu den peripheren Proteinen gehört der 70 kDa große Komplex aus 

Tim9, Tim10 und Tim12, einer Verbindung zwischen den löslichen membranintegrierten TIM22-

Untereinheiten im Intermembranraum (Koehler et al., 1998; Leuenberger et al., 1999; Sirrenberg 

et al., 1998), sowie aus Tim8 und Tim13. Zu den in die Membran integrierten Proteinen zählen 

die drei Proteine Tim18, das essenzielle Tim22 und Tim54. Tim22 ist die zentrale Komponente 

der 300 kDa großen TIM22-Translokase (Sirrenberg et al., 1996) und bildet den Insertionskanal. 

Durch elektronenmikroskopische Analysen des TIM22-Komplexes konnte eine Doppelpore mit 

einem Durchmesser von 16 Å erkannt werden (Rehling et al., 2003). Tim54 ist ein nicht 

essenzielles Membranprotein mit einer großen Domäne im Intermembranraum (Kerscher et al., 

1997) und könnte möglicherweise Vorstufenproteine oder andere Translokasekomponenten 

binden. Das ebenfalls nicht essenzielle Tim18 ist wahrscheinlich für die Stabilität, bzw. die 

Assemblierung des TIM22-komplexes wichtig (Kerscher et al., 2000; Koehler et al., 2000). 

 

1.2.8. Die OXA1 Translokase  

Die OXA1 Translokase in der mitochondrialen Innenmembran ist ein homooligomerer 

Proteinkomplex, der für die Insertion mehrerer Innenmembranproteine, die sowohl mitochondrial 

als auch kernkodiert sein können, verantwortlich ist (He und Fox, 1997; Hell et al., 2001; 

Nargang et al., 2002). Kernkodierte Proteine werden nach ihrem Import in die Matrix durch Oxa1 

über einen Exportschritt in die Innenmembran integriert (Hell et al., 1998). Beispiele für solche 

Proteine sind die mitochondrial kodierte Untereinheit 2 des Cytochrom-Oxidasekomplexes 

(Cox2) und das kernkodierte Oxa1. Oxa1 durchspannt die Innenmembran fünfmal und besitzt 

eine C-terminale α-helikale Domäne, die in die Matrix ragt (Herrmann et al., 1997) und 

mitochondriale Ribosomen binden kann. Auf diese Weise könnte eine kotranslationale 

Integration von Membranproteinen ermöglicht werden (Jia et al., 2003; Szyrach et al., 2003). 

Oxa1 ist ein Mitglied der stark konservierten Oxa1/YidC/Alb3-Proteinfamilie, die sowohl in 

Prokaryoten als auch in Eukaryoten vorkommt (Kuhn et al., 2003). Das prokaryotiosche YidC ist 
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ein integrales Membranprotein, das in der an das Cytosol angrenzenden Membran von Bakterien 

vorkommt. Alb3 (Albino3) ist ein integrales Membranprotein des Thylakoidmembransystems in 

Chloroplasten und ist wichtig für die Insertion von Proteinen in die Thylakoidmembran (Kuhn et 

al., 2003). 

 

1.2.9. Der Erv1/Mia40 Importweg 

Der mitochondriale Intermembranraum beherbergt eine große Anzahl kleiner Proteine mit 

einer molekularen Masse von 8 bis 22 kDa. Diese gelangen durch den TOM-Kanal und werden 

dann im Intermembranraum in ihre aktive Konformation gefaltet. Die Erkennung und Faltung 

wird vom Erv1/Mia40 Disulfidbrücken-Transfer-System durchgeführt. Die zentrale Komponente, 

Mia40, besitzt eine sehr konservierte C-terminale Domäne mit einem Motiv aus sechs Cysteinen 

(CPC-CX9C-CX9C), das drei intramolekulare Disulfidbrücken ausbildet (Chacinska et al., 2004; 

Hofmann et al., 2005; Naoe et al., 2004; Terziyska et al., 2005). Nur in Pilzen besitzt Mia40 am 

N-Terminus eine hydrophobe Transmembrandomäne, die nicht essenziell ist. Erv1 ist eine 

Sulfhydryloxidase aus einer N-terminalen Domäne mit einem CXXC-Motiv und der C-

terminalen FAD-Bindedomäne mit demselben Motiv (Coppock und Thorpe, 2006; Hofhaus et 

al., 2003). Alle Substrate besitzen ebenfalls stark konservierte Cysteinreste mit einem 

Zwillingsmotiv aus CX3C oder CX9C (Gabriel et al., 2007, Herrmann et al. 2005; Terziyska et 

al., 2007). Die Substrate von Mia40/Erv1 sind klein genug, um durch den TOM-Komplex in 

beide Richtungen zu diffundieren. Dies kann durch die Bildung von Disulfidbrücken verhindert 

werden (Lutz et al., 2003). Nachdem die kleinen Substratproteine in den Intermembranraum 

gelangt sind, interagieren sie mit oxidiertem Mia40 und bilden dabei intermolekulare 

Disulfidbrücken aus. Anschließend werden die Substratproteine oxidativ gefaltet, indem 

schrittweise die Disulfidbrücken im Substratmolekül verändert werden, und es entstehen ein 

fertig gefaltetes Intermembranprotein und  oxidiertes Mia40. Mia40 wird dann durch Erv1 

reduziert und steht für einen weiteren Importzyklus zur Verfügung. Auf diese Weise bilden 

Mia40 und Erv1 ein Disulfidbrücken-Transfer-System, das kleine Proteine durch oxidative 

Faltung im Intermembranraum hält (Mesecke et al., 2005). Außerdem sind auch andere Proteine 

an diesem Prozess beteiligt, wie zum Beispiel Hot13, das die Assemblierung und die Aktivität 

der kleinen Tim-Proteine beeinflusst (Curran et al., 2004). Oxidiertes Erv1 wird durch die 

Elektronenübertragung von Cytochrom c wieder reduziert (Allen et al., 2005). 
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1.3. Biogenese mitochondrialer Außenmembranproteine 

 

1.3.1. Topologien mitochondrialer Außenmembranproteine 

 

 

 

Cytosol  

 

 
Außenmembran 

 

 
Zwei TMD N-terminal C-terminal β-Barrel 

  verankert verankert  
     • Tom20 • Fzo1 • Tom5,6,7 • Porin 

 • Tom70 • Tom22 • Tom40 
• OM45 • Bcl2, Bcl-xL • Mdm10  
• Mcr1 • Fis1 • Tob55  • VAMP-1B  

  

Abb.2. Topologien mitochondrialer Außenmembranprotine 

 

In der mitochondrialen Außenmembran ist eine Vielzahl an Proteinen beherbergt, die an 

vielen Prozessen beteiligt sind. Unter den Proteinen befinden sich Porine, Proteine der 

Proteintranslokation, Enzyme der Lipid-Biosynthese und anderer Prozesse und Proteine, die an 

der Ausbildung der Mitochondrialen Morphologie beteiligt sind. In höheren Organismen gibt es 

zusätzlich Proteine, die an der Apoptose und der Immunantwort beteiligt sind. Anhand ihrer 

Topologie können diese Proteine in verschiedene Klassen eingeteilt werden (Abb. 2). Eine 

Proteinklasse, zu der Tom20, Tom70, OM45 und die Außenmembranform von Mcr1 gehören, 

besitzt am N-Terminus eine Transmembrandomäne. Der Großteil des Proteins ist cytosolisch 

lokalisiert. Sie werden auch Signal-Anker-Proteine genannt. 

Proteine, die eine Transmembrandomäne am C-Terminus besitzen und bei denen der 

Großteil des Proteins in das Cytosol ragt, werden als Proteine mit C-terminalem Anker (CTA-

Proteine) bezeichnet. Zu dieser Proteinklasse zählen beispielsweise Fis1, Tom5 und Bcl-2. 
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Das Protein Fzo1, welches ein Teil der Fusionsmaschinerie ist, besitzt zwei 

Transmembrandomänen, mit denen es die Außenmembran durchspannt. Der Großteil des 

Proteins ist cytosolisch lokalisiert und eine kleine Schleife befindet sich im Intermembranraum. 

Außerdem gibt es Proteine, die mindestens drei Transmembrandomänen besitzen, wie Ugo1, das 

auch ein Teil der Fusionsmaschinerie ist. 

Eine weitere Proteinklasse sind β-Barrelproteine, die über mehrere antiparralele β-Stränge, 

die β-Barrelstruktur, in die Außenmembran inseriert sind. Sie bestehen aus acht bis 22 β-

Strängen aus acht bis elf Aminosäuren, die ausreichen, um eine Membran zu durchspannen 

(Paschen 2004, Rapaport, 2003). 

 

1.3.2. Signalsequenzen mitochondrialer Außenmembranproteine 

In β-Barrel Proteinen, wie Porin und Tom40 liegen interne Importsignale vor, die über 

mehrere Regionen im gesamten Protein verteilt sind. Die Deletion des N-, bzw. des C-Terminus 

in N. crassa führt zu keiner Veränderung der Lokalisation des Proteins (Rapaport und Neupert, 

1999). Die richtige Lokalisation wird bei β-Barrelproteinen wahrscheinlich durch strukturelle 

Erkennungselemente sichergestellt (Rapaport, 2003). 

Signal-Anker Proteine tragen diesen Namen, da die Transmembrandomäne und ihre 

flankierenden Sequenzen sowohl als Signalsequenz als auch als Membrananker funktionieren. 

Aus dieser Proteinklasse wurden die Signalsequenzen von Tom20 und Tom70 aus S.cerevisiae 

detailliert untersucht. Die Signalsequenz besteht aus den Aminosäuren 10 bis 29, die die 

Transmembrandomäne enthalten, und den Aminosäuren 1 bis 9, die ein hydrophiles, positiv 

geladenes Segment bilden (Shore et al., 1995; Waizenegger et al., 2003). Die positiv geladene N-

terminale Region  kooperiert mit der Transmembrandomäne, um die Gesamtinsertionsrate des 

Proteins zu erhöhen (McBride et al., 1992). Die Analyse der Signal-Anker-Sequenz von Säuger-

Tom20 zeigte, dass für die Lokalisation an Mitochondrien eine moderate Hydrophobizität der 

Transmembrandomäne, die wichtigste Eigenschaft für mitochondriale Lokalisation, und eine 

positive Nettoladung innerhalb von fünf Aminosäuren in der C-terminal flankierenden Region 

benötigt werden (Kanaji et al., 2000). Außerdem ist es möglich, die Transmembrandomänen von 

Signal-Anker Proteinen auszutauschen. Dies lässt den Schluss zu, dass sie für die Funktion des 

jeweiligen Proteins nur eine untergeordnete Rolle spielen, aber für die Lokalisation eine 

entscheidende Rolle, obwohl keine Sequenzhomologie besteht (Waizenegger et al., 2003). 
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CTA-Proteine besitzen, wie Signal-Anker-Proteine, keine Sequenzhomologie in ihrer für 

die Lokalisation wichtigen Region am C-Terminus des Proteins. Sie werden in 1.3.4. näher 

beschrieben.   

 

1.3.3. Biogenese von β-Barrel Membranproteinen 

In eukaryotischen Zellen findet man β-Barrel-Proteine nur in den Außenmembranen von 

Chloroplasten und Mitochondrien (Gabriel et al., 2001; Rapaport, 2003; Schleiff et al., 2003) und 

in Prokaryoten nur in der Außenmembran von gram-negativen Bakterien (Tamm et al., 2001; 

Wimley, 2003). 

Mitochondriale β-Barrel Proteine werden zunächst von den Rezeptoren Tom20 und Tom70 

erkannt und über den TOM-Komplex in den Intermembranraum transferiert (Krimmer et al., 

2001; Model et al., 2001; Rapaport, 2002; Rapaport und Neupert, 1999; Schleiff et al., 1999). 

Dort interagieren sie mit den kleinen Tim-Komponenten (Hoppins und Nargang, 2004; 

Wiedemann et al., 2004b) und gelangen zum TOB-Komplex. Die Hauptkomponente des TOB-

Komplexes (auch SAM-Komplex) ist das essenzielle Tob55 (SAM50) (Gentle et al., 2004; 

Kozjak et al., 2003; Paschen et al., 2003). Tob55 besteht aus einer β-Barrel-Domäne im C-

Terminus und einer N-terminalen Domäne mit POTRA-Wiederholungen (Polypeptidtransport 

assoziierte Domäne), die zur Erkennung der β-Barrel Vorstufenproteine dient (Habib et al., 

2007). Die zweite essenzielle Komponente  des TOB-Komplexes ist Tob38 (Sam35,Tom38) 

(Ishikawa et al., 2004; Milenkovic et al.,2004). Das Protein ist peripher mit der Außenseite der 

Außenmembran assoziiert. Das Fehlen von Tob38 hat bei der Insertion von β-Barrel Proteinen 

einen vergleichbaren Effekt wie das Fehlen von Tob55 (Ishikawa et al., 2004; Waizenegger et al., 

2004; Milenkovic et al., 2004). Obwohl keine große Sequenzähnlichkeit besteht, hat es eine 

ähnliche Aufgabe wie Metaxin-2 in Säugern, in denen es an der Biogenese von β-Barrel 

Proteinen beteiligt ist (Kozjak-Pavlovic et al., 2007; Milenkovic et al., 2004; Waizenegger et al., 

2004). Die dritte Komponente ist das nicht essenzielle Mas37 (Sam37,Tom37) (Gratzer et al., 

1995). Mas37∆-Stämme besitzen einen verminderten Import von β-Barrel Proteinen und 

Wachstumsdefekte bei erhöhten Temperaturen. Ähnlich wie Tob38 ist Mas37 peripher mit der 

cytosolischen Seite der Außenmembran assoziiert (Gratzer et al., 1995; Wiedemann et al., 2003). 

Es besitzt Sequenzhomologie zu Metaxin-1 in Säugern (Armstrong et al., 1997) und ist wichtig 

für die Biogenese von β-Barrel Proteinen (Kozjak-Pavlovic et al., 2007).  
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1.3.4. Biogenese von Proteinen mit C-terminalem Anker (CTA-Proteine) 

Ähnlich wie Signal-Anker Proteine besitzen CTA-Proteine eine einzige 

Transmembrandomäne, die sich am C-Terminus befindet, während der N-terminale Teil des 

Proteins im Cytosol lokalisiert ist (Borgese et al., 2007; Wattenberg und Lithgow, 2001). Wie bei 

Signal-Anker Proteinen ist das Transmembransegment leicht hydrophob und seine Umgebung 

positiv geladen. Für die mitochondriale Lokalisation werden mehrere positive Aminosäurereste 

benötigt, die die Transmembrandomäne flankieren (Abb. 3). Dies wird deutlich beim Vergleich 

der beiden zur Bcl-2-Familie gehörenden Proteine Bcl-2 und Bcl-xL. Bcl-xL erfüllt diese 

Voraussetzungen und ist somit ausschließlich an den Mitochondrien lokalisiert. Bcl-2 besitzt in 

der flankierenden Region um die Transmembrandomäne nur eine basische Aminosäure auf jeder 

Seite. Dies führt dazu, dass das Protein in vielen Membranen der Zelle zu finden ist (Kaufmann 

et al., 2003). Einige CTA-Proteine, wie Cytochrom b5 und VAMP1 sind sowohl an 

Mitochondrien als auch am Endoplasmatischen Reticulum (ER) lokalisiert. Dies kommt dadurch 

zustande, dass es zwei Isoformen dieser Proteine in der Zelle gibt, die sich durch die Länge der 

Transmembrandomäne und in der Ladung in den flankierenden Regionen unterscheiden. Für die 

mitochondriale Lokalisation ist neben der Ladung auch eine relativ kurze Transmembrandomäne 

erforderlich (Borgese et al., 2003; Isenmann et al., 1998). Innerhalb der Transmembrandomäne 

können einzelne Aminosäuren ebenfalls eine wichtige Rolle für die Lokalisation spielen. In der 

Transmembrandomäne von Tom5, Tom6, Tom7 und Tom22 existiert ein konserviertes Prolin, 

das im Falle von Tom7 wichtig für eine effiziente Insertion in die Außenmembran ist (Allen et 

al., 2002). 

 

++                                 ++               

  

 
Abb. 3. Aufbau eines mitochondrialen Proteins mit C-terminalem Anker 

 

CTA-Proteine übernehmen in der Zelle  eine Vielzahl an Funktionen und können in allen 

Membranen der Zelle gefunden werden. Alle CTA-Proteine werden im Cytosol synthetisiert und 

TM 
Cytosolischer Bereich 

N                                                     C        
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gelangen posttranslational über einen weitestgehend unbekannten Mechanismus zu ihrer 

Zielmembran. 

In der mitochondrialen Außenmembran befinden sich verschiedene Verteter dieser 

Proteinklasse (siehe Abb. 2). Dazu gehören Fis1, ein Protein, das an der Teilung von 

Mitochondrien beteiligt ist (Mozdy et al., 2000), die drei kleinen Untereinheiten des  TOM-

Komplexes, Tom5, Tom6 und Tom7 (Allen et al., 2002; Beilharz et al., 2003), 

Apoptoseregulatoren der Bcl-2-Familie (Cory und Adams, 2002), die mitochondriale Form von 

Cytochrom b5 (D’Arrigo et al., 1993), das Synaptojanin bindende Protein OMP25 (Nemoto und 

de Camilli, 1999), eine Splice-Variante des Vesikelassoziierten Membranproteins, VAMP-1B 

(Isenmann et al., 1998) und die GTPase Gem1, die an der Regulation der mitochondrialen 

Morphologie beteiligt ist (Wolff et al., 1999; Fransson et al., 2003). Kürzlich konnte ein weiteres 

Mitglied dieser Gruppe identifiziert werden und wurde MAVS (mitochondriales antivirales 

Signaling) genannt. Dabei handelt es sich um das erste mitochondriale Protein, das direkt am 

angeborenen Immunsystem beteiligt ist (Seth et al., 2005) Für einige dieser Proteine konnte 

gezeigt werden, dass ihre CTA-Domäne für eine mitochondriale Lokalisation ausreicht (Allen et 

al., 2002; Beilharz et al., 2003; Dembowski et al., 2001; Egan et al., 1999; Nguyen et al., 1993). 

Wie bereits in 1.3.2. beschrieben, liegt die Information für ihre Lokalisation nicht als konservierte 

Sequenz in ihrer C-Terminalen Region, sondern als strukturelle Eigenschaften in dieser Region 

vor. Diese Informationen bestehen aus einem relativ kurzen Transmembransegment mit 

moderater Hydrophobizität, welches von positiven Ladungen flankiert wird. Diese Eigenschaften 

können von Protein zu Protein variieren (Borgese et al., 2007; Rapaport, 2003). 

Während die stukturellen Eigenschaften, die es den CTA-Proteinen ermöglichen, in die 

mitochondriale Außenmembran integriert zu werden, weitestgehend bekannt sind, sind die 

Mechanismen, wie diese Proteine an der mitochondrialen Oberfläche erkannt und in die 

Membran integriert werden, noch wenig charakterisiert. Der Frage, ob CTA-Proteine für die 

Insertion in die mitochondriale Außenmembran Rezeptoren, externe Energie oder Chaperone 

benötigen, wurde in verschiedenen Studien teilweise mit widersprüchlichen Ergebnissen 

nachgegangen. Für die Lokalisation von VAMP-1B sind Oberflächenrezeptoren nötig (Lan et al., 

2000). Der Import von humanem Bcl-2 in Hefemitochondrien scheint ebenfalls rezeptorabhängig 

zu sein (Motz et al., 2002). Eine neuere Studie kam jedoch zu dem Schluss, dass die Lokalisation 

von CTA-Proteinen in der mitochondrialen Außenmembran in Säugerzellen unabhängig von den 

proteasesensitiven Rezeptoren des TOM-Komplexes ist (Setoguchi et al., 2006). 
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Im ER ist die Situation ähnlich widersprüchlich. Einige Proteine scheinen unabhängig von 

ER-Proteinen zu inserieren (Brambillasca et al., 2006), andere jedoch scheinen für eine korrekte 

Insertion das SRP (Signalerkennungspartikel) und das Translocon des ER zu benötigen (Abell et 

al., 2003; Abell et al., 2004). Allerdings konnten hier schon einige Beobachtungen gemacht 

werden, die die Integration und den Transport von CTA-Proteinen in die ER-Membran betreffen. 

Mit Hilfe von Cytochrom b5 wurde gezeigt, dass zumindest ein Teil der CTA-Proteine keine 

Komponenten des cotranslationalen Translokationsapparates benötigen und dass die Erhöhung 

des Cholesterinanteils in der Membran eine reduzierte Membraninsertion bewirkt (Brambillasca 

et al., 2005). Im Cytosol konnte das Protein TRC40/Asna-1 identifiziert werden, welches an neu 

synthetisierte CTA-Proteine bindet und sie zur ER-Membran bringt. Das Fehlen von 

funktionellem TRC/Asna-1 hatte zur Folge, dass die Membraninsertion vieler CTA-Proteine, vor 

allem derer mit stärker hydrophober Transmembrandomäne, stark reduziert war (Stefanovic und 

Hedge, 2007). 

Eine mögliche Ursache dieser widersprüchlichen Ergebnisse ist das Fehlen einer 

spezifischen in vitro Methode, die in der Lage ist, zu unterscheiden, ob Vorstufenproteine 

spezifisch in die Membran inseriert sind oder unspezifisch über hydrophobe Wechselwirkungen 

der Proteine mit der Membran (Borgese et al., 2003). 

 

1.4. Zielsetzung dieser Arbeit 

Ziel dieser Arbeit war die Untersuchung des Insertionsmechanismus von CTA-Proteinen in 

die mitochondriale Außenmembran anhand des Modellproteins Fis1. Zum einen musste eine 

Methode entwickelt werden, mit der es möglich ist, eine spezifische Insertion des Modellproteins 

in der mitochondrialen Außenmembran festzustellen. Anschließend sollte mit dieser Methode 

untersucht werden, welche Faktoren in der mitochondrialen Außenmembran für eine spezifische 

Insertion von CTA-Proteinen benötigt werden. 
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2. Material und Methoden   
2.1. Molekularbiologische Methoden 

Die molekularbiologischen Methoden wurden weitgehend, wie in Sambrook et al. 

beschrieben, durchgeführt (Sambrook et al. 1989). 

 

2.1.1. Isolierung von Plasmid-DNA aus E. coli  

2.1.1.1. DNA-Präparation im kleinen Maßstab (Mini-Präparation) 

Die Plasmid-DNA-Isolierung aus E. coli wurde nach Birnboim et al. durchgeführt 

(Birnboim et al., 1979). Bakterien aus einer 2 ml Über-Nacht-Kultur in LBAmp (Luria-Bertani-

Medium: 10 g/l Bactotrypton, 5 g/l Bacto-Hefe-Extrakt, 10 g/l NaCl; supplementiert mit 100 

mg/l Ampicillin) wurden für 30 s in einer Tischzentrifuge zentrifugiert. Das Zellpellet wurde 

in 300 µl E1-Puffer (50 mM Tris-HCl, 10 mM EDTA, 100 mg/l RNaseA) resuspendiert und 

die Zellen wurden anschließend durch Zugabe von 300 µl E2-Puffer (0,2 M NaOH, 1% (w/v) 

SDS) 5 min bei Raumtemperatur (RT) lysiert. Anschließend wurde die Lösung durch Zugabe 

von 300 µl E3-Puffer (3,1 M KOAc, 2,5 M HAc) neutralisiert. Nach einem 

Zentrifugationsschritt (16100xg, 10 min, RT) wurde der Überstand, der die Plasmid-DNA 

enthielt, in neue Reaktionsgefäße überführt und die DNA durch Zugabe von 600 µl 

Isopropanol gefällt. Die ausgefällte DNA wurde abzentrifugiert (16100xg, 10 min, RT), mit 

70 % (v/v) kaltem Ethanol gewaschen, erneut zentrifugiert (16100xg, 10 min, RT), 10 min bei 

RT getrocknet und schließlich in 30 µl H2O resuspendiert. 

 

2.1.1.2. DNA-Präparation im großen Maßstab (Midi-Präparation) 

Große Mengen Plasmid-DNA (bis zu 0,5 mg) wurden mit Hilfe des Pure 

Yield™Plasmid Midi-Prep Kits (Stratagene) isoliert. Bakterien aus einer 50 ml Über-Nacht-

Kultur in LBAmp  wurden zentrifugiert (5000xg, 10 min, RT). Das Zellpellet wurde in 3 ml Cell 

Resuspension Solution resuspendiert und anschließend wurden die Zellen durch Zugabe von 3 

ml Cell Lysis Solution 5 min bei RT lysiert. Anschließend wurde die Lösung durch Zugabe 

von 4 ml Neutralization Solution neutralisiert. Nach einer Zentrifugation (15000xg, 10 min, 

RT) wurde der Überstand, der die Plasmid-DNA enthielt, auf mitgelieferte Silica-Säulen 

gegeben und  durch Washen mit 5 ml Endotoxin Removal Wash und 20 ml Column Wash  

Solution gereinigt. Anschließend wurde die DNA durch Zentrifugation (2000xg, 5 min, RT) 

mit 70°C heißem Wasser eluiert. 
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2.1.2. Amplifikation von DNA-Fragmenten mittels Polymerase-Kettenreaktion (PCR) 

Mittels Polymerase-Kettenreaktion (PCR) wurden DNA-Fragmente exponentiell in 

einem Thermocycler (Primus 25/96, MWG-Biotech) amplifiziert. Dabei wurde der DNA 

Doppelstrang durch Erhitzen auf 95°C für 5 min zunächst denaturiert. Dann wurden dreißig 

Zyklen durchlaufen, die aus Denaturieren (1 min 95°C), Anlagerung der Primer (1 min bei 

5°C unter Tm) sowie DNA-Synthese (1 min pro Kilobase (kb) bei 72°C) bestanden. Die DNA-

Synthese wurde durch eine 10 minütige Inkubation bei 72°C vervollständigt. Die 

Anlagerungstemperatur Tm der Primer wurde nach der „4+2“-Regel abgeschätzt (Tm = 2°C pro 

A/T + 4°C pro G/C). Es wurde der GLtaq-Kit der Firma GL BioTech verwendet. Ein 

Reaktionsansatz von 100 µl enthielt 7,5 U GLtaq DNA-Polymerase, 1,5 U Pfu DNA-

Polymerase, 200 µM der Desoxynucleosid-5´-triphosphate sowie 100 pmol der Primer in dem 

vom Hersteller mitgelieferten Puffer. Als Matrize wurden 100 ng Plasmid-DNA verwendet. 

Amplifizierte DNA-Fragmente wurden mittels präparativer Agarose-Gelelektrophorese (siehe 

2.1.4.1.) gereinigt. 

 

2.1.3. Modifikation von DNA durch Enzyme 

2.1.3.1. Restriktionsverdau von DNA  

Die durchgeführten Restriktionsverdaue dienten unterschiedlichen Zwecken. Zum einen 

wurden die durch Mini-Präparation isolierten Plasmide mit Hilfe einer Restriktionslängen-

Analyse überprüft. Andererseits wurden DNA-Fragmente, die durch PCR amplifiziert 

wurden, geschnitten, um sie anschließend in Vektoren zu ligieren (siehe 2.1.3.3). Die 

Restriktionsverdaue wurden mit spezifischen Restriktionsendonukleasen (New England 

Biolabs) durchgeführt, wobei 3 U Enzym pro µg DNA eingesetzt wurden. Die Verdaue 

wurden bei der für die Enzyme optimalen Temperatur in den vom Hersteller mitgelieferten 

Puffern für 1-2 h inkubiert. Anschließend wurde die DNA über ein präparatives Agarosegel 

aufgereinigt. 

 

2.1.3.2. Dephosphorylierung von DNA-Fragmenten 

Mit Hilfe der alkalischen Phosphatase (SAP, New England Biolabs) wurden die 

Phosphatreste an den 3’ Enden der Vektor-DNA dephosphoryliert, um eine Religation des 

Vektors ohne DNA-Fragment zu verhindern. Von der DNA wurden 10 µg in 50 µl SAP-

Puffer mit 1 U Enzym für 1 h bei 37°C inkubiert. Anschließend wurde die Reaktion durch 

Inkubation für 20 min bei 65°C gestoppt. 
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2.1.3.3. Ligation   

Linearisierte Vektor-DNA (50-200 ng) und ein fünffacher molarer Überschuss der 

DNA-Fragmente wurden in einer 15 µl-Reaktion bestehend aus Ligationspuffer (50 mM Tris-

HCl, 10 mM MgCl2, 1 mM DTT, 1 mM ATP, 5% (w/v) PEG 8000, pH 8,5) und 1 U T4-

Ligase gemischt und über Nacht bei 14°C oder für 2 h bei RT inkubiert und 1 µl dieses 

Ansatzes wurde für die Transformation in E. coli Zellen benutzt. 

 

2.1.4. Reinigung und Analyse von DNA  

2.1.4.1. Gelelektrophorese von DNA 

DNA-Fragmente wurden elektrophoretisch nach ihrer Größe in horizontalen 

Agarosegelen (0.8-3% (w/v)) getrennt. Die Proben wurden mit 10x Auftragspuffer (60% (v/v) 

Glycerol, 0,5% (w/v) Bromphenolblau, 0,5% (w/v) Xylencyanol) gemischt und auf die Gele 

geladen. Die Elektrophorese wurde in TAE-Puffer (40 mM Tris-Acetat, 20 mM 

Natriumacetat, 1 mM EDTA, pH 7,5) bei einer von der Gelgröße abhängigen Spannung von 

50-160 V durchgeführt. Den Agarosegelen wurde  0,5 µg/ml Ethidiumbromid zugesetzt, um 

die DNA unter UV-Licht sichtbar zu machen. Als Größenmarker wurden die 1 kb bzw. die 

100 Basenpaar (bp) DNA-Leiter von New England Biolabs verwendet. 

 

2.1.4.2. Elution von DNA aus Agarosegelen  

DNA-Fragmente wurden mit einem sauberen Skalpell aus dem Gel ausgeschnitten und 

die DNA wurde mit Hilfe des Wizard SV Gel and PCR Clean-Up System-Kits (Stratagene) 

isoliert. Dazu wurde das Gelfragment gewogen und mit 10 µl Membrane Binding Solution pro 

10 mg Gelstück versetzt und für 10 min bei 65°C geschüttelt, bis die Agarose geschmolzen 

war. Die Lösung wurde auf die mitgelieferten Silica-Säulen gegeben, 1 min bei RT inkubiert 

und zentrifugiert (16100xg, 1 min, RT). Das Eluat wurde verworfen und die gebundene DNA 

wurde mit 700 µl Membrane Wash Solution gewaschen und und zentrifugiert (16100xg, 1 

min, RT). Das Eluat wurde wieder verworfen und die DNA wurde mit 500 µl Membrane 

Wash Solution gewaschen und erneut zentrifugiert (16100xg, 5 min, RT). Anschließend 

wurde die Säule ohne Flüssigkeit erneut zentrifugiert (16100xg, 1 min, RT). Im letzten Schritt 

wurde die DNA mit 50 µl Wasser durch Zentrifugation (2000xg, 5 min, RT) von der Säule 

eluiert. 
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2.1.4.3. Konzentrationsbestimmung von DNA  

Die DNA-Konzentration wurde mit Hilfe der Absorption der DNA-Lösung bei 260 nm 

bestimmt. Eine optische Dichte (OD) von 1,0 entspricht einer Konzentration von 50 µg/ml 

doppelsträngiger DNA, 33 µg/ml einzelsträngiger DNA und 40 µg/ml RNA, bzw. 20 µg/ml 

Oligonukleotide. 

 

2.1.5. Einführung von Punktmutationen  

Zur Einführung von Punktmutationen in eine DNA-Sequenz wurde der QuikChange® 

Site-Directed Mutagenesis Kit von Stratagene verwendet. Zunächst wurden zwei 

komplementäre Oligonukleotide synthetisiert, die die gewünschte Mutation enthielten und 

von nicht modifizierten Nukleotidsequenzen flankiert wurden. Anschließend wurde das 

Plasmid mit dem gewünschten Gen, in welches die Punktmutation eingeführt werden sollte, 

amplifiziert. Hierfür wurden 5 µl 10-fach Reaktionspuffer, 20 ng doppelsträngige 

DNAMatrize, 125 ng Oligonukleotid I, 125 ng Oligonukleotid II, 1 µl dNTP-Mix und 1 µl 

PfuTurbo DNA-Polymerase (2,5 U/µl) mit ddH2O auf 50 µl aufgefüllt. Dann wurde der DNA-

Doppelstrang durch Erhitzen auf 95°C für 30 s zunächst denaturiert bevor 16 Zyklen, welche 

aus Denaturieren (30 s bei 95°C), Anlagerung der Primer (1 min bei 55°C) und DNA-

Synthese (2 min/kb Plasmidlänge bei 68°C) durchlaufen wurden, bestanden. Danach wurde 

die methylierte, nichtmutierte, Ausgangs-DNA-Matrize durch Zugabe von 1 µl Dpn I 

(10U/µl) und Inkubation bei 37°C für 1 h verdaut. Die zirkuläre, doppelsträngige DNA wurde 

anschließend in XL1-Blue „Superkompetente Zellen“ (Stratagene) transformiert. Dazu wurde 

ein 50 µl Aliquot der Zellen auf Eis aufgetaut, mit 1 µl DNA versetzt und für 30 min auf Eis 

inkubiert. Der Transformationsansatz wurde danach für 45 s auf 42°C erhitzt und dann 2 min 

auf Eis abgekühlt. Anschließend wurden 0,5 ml LB-Medium zugegeben und die 

Zellsuspension für 1 h bei 37°C und 160 Upm inkubiert.  Schließlich wurden die Zellen auf 

eine LBAmp-Kulturplatte (LB mit 2% (w/v) Agar und 100 mg/l Ampicillin) ausgestrichen. Die 

Kulturplatte wurde bei 37°C üN inkubiert. 

 

2.1.6. Präparation und Transformation von E. coli mittels Elektroporation 

2.1.6.1 Präparation kompetenter Zellen 

Eine kleine Kultur, 10 ml LBAmp wurde mit einer Kolonie eines E. coli Stammes (MH-1 

oder XL-1 Blue) angeimpft und über Nacht bei 37°C unter Schütteln kultiviert. Am nächsten 

Tag wurden 500 ml flüssiges LBAmp Medium mit der Übernachtkultur angeimpft und so lange 

unter Schütteln kultiviert, bis sie die logarithmische Wachstumsphase (OD600 ~ 0,5) 
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erreichten. Anschließend wurden sie für 30 min auf Eis inkubiert, durch Zentrifugation (4400 

xg, 5 min, 4ºC) geerntet und nacheinander mit 500 ml, 250 ml und 50 ml 10% (v/v) Glycerol 

gewaschen. Die kompetenten Zellen wurden schließlich in 500 µl 10% (v/v) Glycerol 

resuspendiert, aliquotiert und bei -80°C gelagert. 
 

2.1.6.2. Transformation von E. coli Zellen  durch Elektroporation 

Zur Elektroporation der elektrokompetenten E. coli Zellen wurde der „Gene Pulser“ 

(BioRad) verwendet. Die elektrokompetenten E. coli Zellen (40 µl) wurden mit 1 µl des 

Ligationsansatzes für 30 s auf Eis inkubiert und anschließend in eine eiskalte 0,2 cm breite 

Elektroporationsküvette überführt. Die DNA wurde durch einen Strompuls (2,5 kV, 400 Ω, 25 

µF, Zeitkonstante 8-9 ms) in die Zellen transformiert. Die Zellsuspension wurde anschließend 

sofort mit 1 ml LB-Medium versetzt und 30-60 min bei 37°C unter Schütteln inkubiert. Die 

Zellen wurden pelletiert und 850 µl des Überstandes verworfen. Danach wurden sie im 

Restvolumen resuspendiert und auf einer LBAmp Platte ausplattiert. Die Platte wurde über 

Nacht bei 37°C inkubiert. 

 

2.1.7. Verwendete Plasmide   

 

Tab.1. Plasmide 

Plasmid Referenz 

pGEM4 Promega 

pGEM4-Porin   (Mayer et al., 1993) 

pGEM4-Fis1 Diese Arbeit 

pGEM4-Fis1 CS Habib, 2006 Doktorarbeit 

pGEM4-Fis1S147C Habib, 2006 Doktorarbeit 

pGEM4-Fis1-TMC Diese Arbeit 

pGEM4-Fis1-TMCQ4 Diese Arbeit 

pGEM4-Tom5 Habib, 2006 Doktorarbeit 

pGEM4-Tom6 Habib, 2006 Doktorarbeit 

pGEM4-Tom7 Habib, 2006 Doktorarbeit 

pGEM4-Tom70(1-38)Tom20 (Waizenegger et al., 2003) 

pGEM4-pSu9(1-69)DHFR (Pfanner et al., 1987) 

pGEM4-F1β (Kassenbrock et al., 1993) 

pYX132-Fis1-TMC Diese Arbeit 

 26



       Material und Methoden  

pYX132-Fis1-TMCQ4 Diese Arbeit 

pYX132-EGFP-Fis1-TMC (129-155) Diese Arbeit 

pHS12-DsRed (Bevis und Glick, 2002) 

 

2.1.8. Klonierungsstrategien 

pGEM4-Fis1-TMCQ4 

Die DNA-Sequenz von Fis-TMC wurde durch PCR, in welcher Arg151, Lys153, Arg154 und 

Arg155 durch Glutaminreste ersetzt wurden, amplifiziert. Dafür wurden folgende Primer 

verwendet. 

Name des Primers Schnittstellen Primersequenz 

5'EcoRI Fis1 EcoRI 5’-AAA GAA TTC ATG ACC AAA GTA 

GAT TTT TGG-3’ 

3' HindIII Fis1-TMCQ4 
 

HindIII 5’-TTT AAG CTT TCA CTG TTG CTG GTT 

TTG TAA GAA GAA ACA AGC CAC G-3’ 

 

pYX132-EGFP-Fis1-TMC (129-155) 

Die ersten Schritte der Klonierung wurden zunächst im Vektor pGEM4 durchgeführt. In die 

DNA-Sequenz von Fis1 wurde zunächst eine SacI-Schnittstelle mit Hilfe des QuikChange® 

Site-Directed Mutagenesis Kits inseriert und anschließend wurde eine mit PCR amplifizerte 

EGFP-Sequenz vor die Reste 129-155 mit Hilfe des Restriktionsenzyms SacI gesetzt. Das nun 

erhaltene Fusionsprotein wurde dann mit Hilfe der Restriktionsenzyme EcoRI und HindIII in 

pYX132 kloniert. 

Name des Primers Schnittstellen Primersequenz 

5'Fis1 TM SacI 
 

SacI 5’-GAG GAT AAG ATC CAG AAG GAA 

GAG CTC AAG GGT GTT GTC GTC G-3’ 

3'Fis1 TM SacI SacI 5’-CGA CGA CAA  CAC CCT TGA GCT 

CTT CCT TCT GGA TCT TAT CCT C-3’ 

5'SacI EcoRI EGFP SacI, EcoRI 5’-AAA GAG CTC GAA TTC ATG AGT 

AAA GGA GAA GAA CTT TTC-3’ 

3' SacI EGFP SacI 5’-AAA GAGCTC TTT GTA TAG TTC ATC 

CAT GCC ATG TG-3’ 
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2.2. Methoden der Hefegenetik   

2.2.1. Verwendete Hefestämme   

Tab. 2. Hefestämme 

Stamm Genotyp Referenz 

D273-10B Wildtyp Deutsche Stammsammlung 

für Mikroorganismen 

YTJB4 MATa ura3 leu2 his4 lys2 (Haucke et al., 1995) 

YTJB64 YTJB4, tom20::LEU2 (Lithgow et al., 1994) 

BY4743 MATa/α his3/his3 leu2/leu2 
ura3/ura3 

(Brachmann et al., 1998) 

∆tom6 BY4743, tom6::kanMX4 Huntsville, AL (USA) 

YPH499 MATa ade2-101 his3-∆200 
leu2-∆1trp1-∆63 ura3-52 
lys2-801 

(Sikorski et al., 1989) 

∆mas37 YPH499, mas37::HIS3 (Habib et al., 2005) 

∆tom5  YPH501, tom5::HIS3 (Dietmeier et al., 1997) 

∆tom7  YPH499, tom7::HIS3 (Dietmeier et al., 1997) 

∆mim1 YPH499, mim1::HIS3 (Waizenegger et al., 2005) 

ADM551 MATa ura3-52 leu2∆1 
trp1∆63 his3∆200 

(Mozdy et al.,2000) 

ADM552 MATa ura3-52 leu2∆1 
trp1∆63 his3∆200 

(Mozdy et al.,2000) 

KKY3   MATa his3- ∆200 leu2-3,112 
ade2-101 suc2- ∆9 trp1-
∆901 ura3-52 tom40::HIS3 
(pRS316-TOM40) 

(Kassenbrock et al., 1993) 

KKY3.2 KKY3 (pRS314-tom40-2) (Kassenbrock et al., 1993) 

KKY3.3 KKY3 (pRS314-tom40-3) (Kassenbrock et al., 1993) 

KKY3.4 KKY3 (pRS314-tom40-4) (Kassenbrock et al., 1993) 

 

 

2.2.2. Kultivierung von S. cerevisiae   

Hefezellen wurden auf YPD oder Lactatmedium bei 30°C und temperatursensitive 

Mutanten wurden bei 24°C kultiviert. Flüssigkulturen wurden in Erlenmeyerkolben bei 140 

Upm in Schüttlern inkubiert. Zum Animpfen wurden Zellen direkt aus einem Glycerol-Stock 

(15%(v/v)), welcher bei -80°C gelagert wurde, oder eine Hefekolonie von einer Agarplatte 

verwendet. Zur Selektion von Hefestämmen mit bestimmten Markergenen wurde SD-, SGal- 

oder SLac-Medium, welches Markersubstanzen entsprechend den gewünschten 
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Selektionsbedingungen enthielt, verwendet. Atmungsdefiziente Hefestämme, die nicht in der 

Lage waren, auf Laktatmedium zu wachsen, wurden in YPGal oder YPD kultiviert.Die 

Selektion gegen das Wildtyp (WT)-URA3-Allel erfolgte auf 5-Fluor-Orotsäure (5-FOA) 

Medium (SD-Medium mit 0,1% (w/v) 5-Fluor-Orotsäure und 50 mg/l Uracil) (Boeke et al., 

1987). 

Für die Präparation von Mitochondrien wurden entsprechende Hefestämme etwa drei 

Tage in steigenden Volumina kultiviert. Dabei wurde darauf geachtet, dass die OD600 einen 

Wert von 1,2 nicht überschritt. Zur Depletion essenzieller Proteine wurde der Hefestamm, der 

das essenzielle Gen unter der Kontrolle des GAL10 Promotors enthielt, zunächst etwa 2 Tage 

in Galaktosehaltigem Medium angezogen. Anschließend wurden die Zellen abzentrifugiert 

und mit sterilem Wasser gewaschen. Das Zellpellet wurde dann in Glukose-haltigem Medium 

resuspendiert und für eine definierte Zeit kultiviert. 

 

Laktat-Medium: 3 g Hefeextrakt, 1 g KH2PO4, 1 g NH4Cl,  

 0,5 g CaCl2 x 2 H2O, 0,5 g NaCl, 1,1 g MgSO4 x 6 H2O,  

 0,3 ml 1% FeCl3, 22 ml 90% Milchsäure, H2O dest. ad 1 l, pH 5,5 mit 

10 M KOH einstellen; in der Regel mit 0,1% Glukose oder 0,1% 

Galaktose supplementiert 

 

YP-Medium:  10 g Hefeextrakt, 20 g Bacto-Pepton, H2O dest. ad 900 ml,  

nach dem Autoklavieren: + 100 ml 20% Galaktose (YPGal) oder + 100   

ml 20% Glukose (YPD) oder + 100 ml 30% Glycerol (YPG) 

 

S-Medium:  1,7 g Yeast Nitrogen Base ohne Aminosäurereste und 

Ammoniumsulfat, 5 g Ammoniumsulfat, H2O dest. ad 900 ml,  

nach dem Autoklavieren: Zugabe von 100 ml 20% Galaktose (SGal) 

oder 100 ml 20% Glukose (SD) oder 100 ml 30% Glycerol (SG). Von 

den Stammlösungen der Markersubstanzen wurden unter 

Berücksichtigung der zu selektierenden Auxotrophiemarker 2 ml 

Tryptophan und Histidin, bzw. 3 ml Leucin und Lysin (Stammlösungen 

10 g/l), sowie je 10 ml Adenin- und Uracil-Lösung (Stammlösung 2 g/l) 

pro Liter Medium zugesetzt. 

Zur Herstellung entsprechender Platten wurde dem Medium 2% (w/v) Agar vor dem 

Autoklavieren zugesetzt. 
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2.2.3. Test des Wachstumsphänotyps von S. cerevisiae („Tüpfeltest“) 

Hefestämme wurden in Medium bis zu einer OD600 von 0,5-1,0 kultiviert. Danach 

wurde folgende Verdünnungsreihe in H2O angesetzt: 1; 1:10; 1:100; 1:1000; 1:10000 OD600. 

Pro Verdünnung wurden 5 µl auf die gewünschten Agarplatten aufgetragen. Diese wurden bei 

der zu untersuchenden Temperatur 2-7 Tage inkubiert. 

 

2.2.4. Transformation von S. cerevisiae  

Die Hefestämme wurden mit Lithiumacetat nach dem Protokoll von Gietz transformiert 

(Gietz et al., 1992). Hefezellen wurden über Nacht in 50 ml YPD oder SD-Medium mit 

entsprechenden Markersubstanzen bei 30°C kultiviert. Am nächsten morgen wurden die 

Zellen in 50 ml auf eine OD600 von 0,15 verdünnt und erneut geschüttelt, bis sie eine OD600 

von 0,5 erreicht hatten. Anschließend wurden sie durch Zentrifugation geerntet (3000xg, 5 

min, RT), mit 25 ml sterilem Wasser gewaschen und erneut geerntet. Das Zellpellet wurde in 

1 ml 100 mM Lithiumacetat resuspendiert und in ein Eppendorf Reaktionsgefäß überführt. 

Nach erneuter Zentrifugation wurden die Zellen in 400 µl 100 mM Lithiumacetat 

resuspendiert und entsprechend der Transformationsanzahl in 50 µl Portionen auf mehrere 

Eppendorf Reaktionsgefäße verteilt. Nach erneuter Zentrifugation wurde der Überstand 

verworfen und das Zellpellet wurde mit 240 µl 50% (w/v) PEG 3350, 36 µl 1 M 

Lithiumacetat, 5 µl beschallter, denaturierter Lachs-Spermien-DNA (10 mg/ml) und 50 µl 

DNA (0,1-10 µg Plasmid-DNA oder 25 µl PCR-Produkt+25 µl ddH2O) in dieser Reihenfolge 

versetzt und stark gemischt. Anschließend wurden die Zellen für 30 min bei 30°C inkubiert 

und 20-25 min bei 42°C ein Hitzeschock verabreicht. Die Zellen wurden dann durch 

Zentrifugation (4500xg, 15 s, RT) pelletiert, in 800 µl YPD-Medium resuspendiert und 2-3 h 

bei 30°C inkubiert. Nach erneutem Ernten wurde das Pellet in 150 µl sterilem Wasser 

resuspendiert und auf dem entsprechenden Selektivmedium ausplattiert. 

 

2.2.5. Isolierung chromosomaler DNA aus S. cerevisiae   

Hefe-DNA wurde nach dem Protokoll von Rose (Rose et al., 1990) präpariert. 

Hefezellen aus einer stationären 50 ml YPD-Kultur wurden für 5 min bei 3000xg bei RT 

geerntet, in 1 ml Zymolyase-Lösung (100 µg/ml Zymolyase, 1 M Sorbitol, 100 mM EDTA) 

resuspendiert und 1 h bei 37°C inkubiert. Anschließend wurden die Zellen  in 1 ml Lysepuffer 

A (50 mM Tris-HCl, 20 mM EDTA, 1% (w/v) SDS, pH 7,5) für 30 min bei 65°C inkubiert 

und 400 µl 5 M Kaliumacetat zugesetzt. Die Probe wurde 1 h auf Eis inkubiert und die 

Zellbruchstücke wurden dann durch Zentrifugation (20000xg, 15 min, 4°C) abgetrennt. Aus 
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dem Überstand  wurde die DNA durch Zugabe  eines gleichen Volumens Isopropanol gefällt. 

Die DNA wurde mit 70% (v/v) Ethanol gewaschen, zentrifugiert, getrocknet und in 100 µl 

TE-Puffer (10 mM Tris-HCl, 1 mM EDTA, pH 8,0) resuspendiert. 

 

2.3. Biochemische Methoden  

 

2.3.1. Synthese mitochondrialer Vorstufenproteine in vitro   

Die in vitro Synthese wurde mit dem Vektor pGEM4 (Promega) durchgeführt, in 

welchen das zu exprimierende Gen unter Kontrolle des SP6 Promotors kloniert wurde. Die 

Translation wurde in Gegenwart von [35S]Methionin durchgeführt. 

In vitro Transkription 

Die in vitro-Transkription wurde in modifizierter Form nach Melton durchgeführt (Melton et 

al., 1984). Ein Transkriptionsansatz (100 µl) enthielt 20 µl 5x Transkriptionspuffer (200 mM 

Tris-HCl, 50 mM NaCl, 30 mM MgCl2, 10 mM Spermidin, pH 7,5), 10 µl 0,1 M Dithiotreitol 

(DTT), 4 µl RNasin (40 U/µl), 20 µl NTPs (jeweils 10 mM), 5,2 µl m7G(5’)ppp(5’)G, 3 µl 

SP6 RNA-Polymerase, 27 µl H2O und 10 µl Plasmid-DNA. Der Ansatz wurde für 1 h bei 

37°C inkubiert und anschließend mit 10 µl 10 M LiCl und 300 µl Ethanol versetzt und für 30 

min bei -20°C inkubiert. Die RNA wurde pelletiert (36700xg, 20 min, 4°C), mit 70% (v/v) 

Ethanol gewaschen und erneut zentrifugiert (36700xg, 20 min, 4°C). Das RNA-Pellet wurde 

10 min bei RT getrocknet, in 100 µl H2O mit 1 µl Rnasin resuspendiert und bei -80°C 

gelagert. 

In vitro Translation 

Die in vitro-Translation wurde nach Pelham durchgeführt (Pelham et al., 1976). Ein 

Translationsmix (148,5 µl) enthielt 100 µl Kaninchen-Retikulozytenlysat (Promega), 40 U 

Rnasin, 3,5 µl Aminosäuremix (alle proteinogenen Aminosäuren außer Methionin, 1 mM), 12 

µl [35S]Methionin (10 mCi/ml), 7 µl 15 mM Magnesiumacetat und 25 µl RNA. Der Ansatz 

wurde für 1 h bei 30°C inkubiert und der Einbau radioaktiven Methionins wurde durch 

Zugabe von 12 µl 58 mM nicht radioaktiv markierten Methionins gestoppt. Ribosomen und 

andere aggregierten Proteine wurden nach Zugabe von 24 µl 1,5 M Saccharose durch 

Zentrifugation (125000xg, 30 min, 4°C) entfernt. Der Überstand wurde aliquotiert, in 

flüssigem Stickstoff eingefroren und bei -80°C aufbewahrt. 
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TNT gekoppelte Transkription/Translation 

In diesem System können Transkription und Translation gekoppelt abalufen. Ein TNT Ansatz 

(50 µl) enthielt 25 µl TNT Kaninchen-Retikulozytenlysat (Promega), 2 µl TNT 

Reaktionspuffer, 1 µl TNT SP6 RNA-Polymerase, 1 µl Aminosäuremix, 2 µl [35S]Methionin 

(10 mCi/ml), 1 µl RNasin (40 U/µl) und 2 µl DNA (0,5 µg/µl). Der Ansatz wurde 90 min bei 

30°C inkubiert. Anschließend wurden Ribosomen und aggregierte Proteine durch 

Zentrifugation (125000xg, 30 min, 4°C) entfernt. Der Überstand wurde aliquotiert, in 

flüssigem Stickstoff eingefroren und bei -80°C gelagert. 

 

2.3.2. SDS-Polyacrylamid-Gelelektrophorese  

Proteine wurden nach ihrer Größe durch vertikale, diskontinuierliche SDS 

Polyacrylamid-Gelelektrophorese aufgetrennt (Laemmli, 1970). Es wurden zwei 

Elektrophoresesysteme mit unterschiedlicher Größe benutzt. Große Gele bestanden aus 

Bodengel (1 x 15 x 0,1 cm), Trenngel (9 x 15 x 0,1 cm) und Sammelgel (2 x 15 x 0,1 cm). 

Das zweite Elektrophoresesystem für kleinere Gele von der Firma Bio-Rad (Mini-PROETAN 

II) bestand aus Sammelgel (1,5 x 7,2 x 0,1 cm) und Trenngel (5,5 x 7,2 x 0,1 cm). Die 

Acrylamidkonzentration im Trenngel richtete sich nach der Größe der zu trennenden Proteine.  

 

Bodengel:    20% (w/v) Acrylamid, 0,4% (w/v) Bisacrylamid, 

375 mM Tris-HCl, pH 8,8, 0,1% (w/v) SDS, 

0,05% (w/v) Ammoniumperoxodisulfat (APS), 

0,25% (v/v) N,N,N',N'-Tetramethylendiamin (TEMED) 

 

Trenngel:    8-16% (w/v) Acrylamid, 0,16-0,33% (w/v) Bisacrylamid, 

380 mM Tris-HCl, pH 8,8, 0,1% (w/v) SDS, 

0,05% (w/v) APS, 0,05% (v/v) TEMED 

 

Sammelgel:    5% (w/v) Acrylamid, 0,1% (w/v) Bisacrylamid, 

60 mM Tris-HCl, pH 6,8, 0,1% (w/v) SDS, 

0,05% (w/v) APS, 0,1% (v/v) TEMED 

 

Elektrophoresepuffer:  50 mM Tris-HCl, pH 8,3, 384 mM Glycin, 

0,1% (w/v) SDS 
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Die Proben wurden in Laemmli-Puffer (60 mM Tris-HCl, pH 6,8, 2% (w/v) SDS, 10% (v/v) 

Glycerol, 0,02% (w/v) Bromphenolblau, 5% (v/v) β-Mercaptoethanol) gelöst und für 3 min 

auf 95°C erhitzt. Große Gele liefen konstant bei 30 mA für ca. 2 h, kleine Gele liefen bei 25 

mA für ca. 45 min. Im Anschluss an die Elektrophorese wurden die Proteine entweder mit 

Coomassie gefärbt (siehe 2.3.4) oder auf eine Nitrozellulose-Membran transferiert (siehe 

2.3.5). Um den Transfer zu überprüfen und die Markerproteine sichtbar zu machen, wurden 

Nitrozellulose-Membranen reversibel mit einer Ponceau S Lösung (2% (w/v) Ponceau S in 

3% (w/v) Trichloressigsäure (TCA)) angefärbt. 

 
2.3.3. High Tris-Harnstoff SDS-PAGE  

High Tris-Harnstoff SDS-PAGE wurde zur Analys kleiner Proteine unter 15 Kilodalton 

(kDa) und zur Unterscheidung von Fis1 (17 kDa), welches entweder unmarkiert oder mit 

IASD (siehe Abkürzungen) markiert war (17,6 kDa), zu unterscheiden. Die Elektrophorese 

wurde je nach Zweck bei 25 mA für 2 h 40 min bis 4 h 45 min durchgeführt. 

 

Trenngel:   20% (w/v) Acrylamid, 0,25% (w/v) Bisacrylamid, 

6 M Harnstoff, 0,1% (w/v) SDS, 

0,75 M Tris-HCl, pH 8,8, 0,05% (w/v) APS, 

0,25% (v/v) TEMED 

 

Sammelgel:    5% (w/v) Acrylamid, 0,07% (w/v) Bisacrylamid, 

6 M Harnstoff, 125 mM Tris-HCl, pH 6,8, 

0,1% (w/v) SDS, 0,05% (w/v) APS, 

0,25% (v/v) TEMED 

 

Elektrophoresepuffer:  50 mM Tris-HCl, pH 8,0, 200 mM Glycin, 

0,1% (w/v) SDS 

 

2.3.4. Coomassie-Färbung von Gelen   

Das Boden- und das Sammelgel wurden nach beendeter SDS-PAGE entfernt und das 

Trenngel wurde zur Färbung der Proteine für 30 min in einem Färbebad mit 0,1% (w/v) 

Coomassie Brillant Blau R-250, 40% (v/v) Methanol, 10% (v/v) Essigsäure, 50% (v/v) H2O) 

inkubiert. Anschließend wurde das Gel im Entfärbebad (30% (v/v) Methanol, 10% (v/v) 

Essigsäure, 60% (v/v) H2O) so lange entfärbt, bis auf klarem Hintergrund die blauen 

Proteinbanden sichtbar waren. 
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2.3.5. Transfer elektrophoretisch aufgetrennter Proteine auf Nitrozellulose-Membranen  

Die mittels SDS-PAGE aufgetrennten Proteine wurden elektrophoretisch auf eine 

Nitrozellulose-Membran transferiert (Kyshe-Anderson, 1984; Towbin et al., 1979).  

Nitrozellulose-Membranen wurden vor dem elektrophoretischen Transfer in Blotpuffer (20 

mM Tris (pH nicht eingestellt), 150 mM Glycin,20% (v/v) Methanol, 0,02% (w/v) SDS) 

gegeben. Die Membran wurde zuerst auf zwei vorher mit Blotpuffer getränkte Whatman 

3MM Filterpapiere, welche auf der Graphitelektrode (Anode) platziert worden waren, gelegt. 

Darauf wurden das Trenngel und zwei weitere mit Blotpuffer getränkte Whatman 3MM 

Filterpapiere gelegt, bevor die zweite Graphitelektrode (Kathode) darauf platziert wurde. Der 

Transfer wurde mit 1,5 mA/cm2 für 1,5 h durchgeführt. Dies entsprach bei den hier benutzten 

Gelen mit einer Größe von ca. 15 x 9 cm einer Stromstärke von 200 mA. 

 
2.3.6. Autoradiographie 

Radioaktiv markierte Proteine wurden nach elektroporetischer Trennung mitels SDS-

PAGE auf eine Nitrozellulose-Membran transferiert und mit Hilfe von Röntgenfilmen 

(BioMax MR, Kodak) sichtbar gemacht, indem der Film auf die Blotmembran aufgelegt 

wurde und nach entsprechender Inkubationsdauer entwickelt wurde (Gevamatic 60, Agfa-

Gevaert). Alternativ wurden auf die Membranen mit radioaktiv markierten Proteinen 

Phosphorimaging-Platten gelegt und nach der gewünschten Expositionszeit die Intensität der 

Banden durch Verwendung eines Phosphorimagers (Fuji Bas3000, Aida Image Analyzer 3.4.3 

software) quantifiziert. 

 

2.3.7. Bestimmung der Proteinkonzentration   

Proteinkonzentrationen wurden nach der Methode von Bradford bestimmt (Bradford, 

1976). Dazu wurden Proteinlösungen (1-10 µl) mit 1 ml  des 1:5 verdünnten Bradford 

Reagenz (BioRad) gemischt und für 10 min bei RT inkubiert. Anschließend wurde bei 595 

nm die Absorption gemessen und mit Hilfe einer Eichkurve die Konzentration bestimmt. Die 

Eichkurve war zuvor mit definierten Mengen des Proteins IgG erstellt worden. 

 

2.3.8. Fällung von Proteinen mit Trichloressigsäure (TCA)  

Aus wässrigen lösungen wurden Proteine durch Zugabe von TCA in einer 

Endkonzentration von 12% (w/v) ausgefällt. Die denaturierten Proteine wurden nach 10 min 

Inkubation auf Eis durch Zentrifugation (36700xg, 20 min, 4°C) sedimentiert. Das Pellet 

wurde dann in -20°C kaltem Aceton gewaschen, 5 min bei RT getrocknet und in Laemmli-

Puffer aufgenommen. 
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2.3.9. Fällung von Proteinen mit Ammoniumsulfat   

Zur Fällung wässriger Proteinlösungen wurden diese bei 4°C mit 2 Volumina gesättigter 

Ammoniumsulfatlösung gemischt und für 30 min auf Eis inkubiert und zentrifugiert 

(36700xg, 10 min, 4°C), die Überstände verworfen und die Pellets im gewünschten Puffer 

resuspendiert. Für die Herstellung der gesättigten Ammoniumsulfatlösung wurden 76,7 g 

Ammoniumsulfat in 100 mM Tris-HCl, pH 7,0, gelöst. Anschließend wurde die Lösung auf 

4°C abgekühlt, damit sich Ammoniumsulfatkristalle bilden konnten. 

 

2.3.10. Herstellung von Lipidvesikeln aus Phospholipiden 

Zur Herstellung von Lipidvesikeln wurden Phospholipide (Avanti Polar Lipids) und 

Ergosterol (Fluka) im gewünschten Verhältnis gemischt. Um die Vesikel besser detektieren 

zu können, enthielten die Mischungen als Mengenkontrolle 2 mol% Fluorescein-

Phosphatidylethanolamin (Sigma). Die organischen Lösungsmittel wurden für 3 h im Dunkeln 

unter Stickstoffatmosphäre und einem Luftdruck von 95 mbar  in einem Rotationsverdampfer 

(CVC2000, Vacuubrand) entfernt. Anschließend wurden die Lipide in Liposomenpuffer (20 

mM HEPES-NaOH pH 7,4, 100 mM NaCl) in einer Konzentration von 10 mg/ml 

resuspendiert. Die Suspension wurde zehn Mal durch eine Polycarbonatfilter mit einem 

Porendurchmesser von 400 nm (Avestin) in einem Extruder (Avestin) gedrückt, um fertige 

Lipidvesikel zu erhalten. 

Die Verteilung der fluoreszierenden Lipidvesikel wurde mit Hilfe von Fluorescein, 

welches an Phosphatidylethanolamin gebunden war, mit einem Fluorimeter (Fluorolog, 

Horiba Jobin Yvon) bestimmt. Dazu wurde eine Suspension von Lipivesikeln durch Licht der 

Wellenlänge λ = 480 nm angeregt und die Intensität der Fluoreszenz bei λ = 521 nm 

gemessen. Die Daten wurden dann mit Microsoft Excel ausgewertet. 

 

2.4. Methoden der Zellbiologie 

2.4.1. Gewinnung von Gesamtzellprotein aus Hefe   

Hefezellen wurden zur Gewinngung von Gesamtzellprotein alkalisch aufgeschlossen. 

Dazu wurden die Zellen (1 OD600 geerntet, in 400 µl H2O resuspendiert und mit 75 µl einer 

Mischung aus 1,85 M NaOH, 9,2% (v/v) Ethanol und 7,7% (v/v) β-Mercaptoethanol versetzt. 

Anschließend wurde die Probe für 10 min bei RT geschüttelt, um die Zellen aufzuschließen. 

Die Proteine wurden durch Zugabe von 600 µl 50% (w/v) TCA gefällt und in 40 µl Laemmli-

Puffer gelöst und mitels SDS-PAGE analysiert. 
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2.4.2. Isolierung von Rohmitochondrien aus S. cerevisiae  

Hefezellen (10 OD) wurden durch Zentrifugation (3000xg, 5 min, RT) geerntet, mit 25 

ml H2O gewaschen, in SEM-Puffer (250 mM Saccharose, 1 mM EDTA, 10 mM MOPS-

KOH, pH 7,2) mit 1 mM PMSF resuspendiert und mit 300 mg Glaskügelchen (Durchmesser 

0,3mm) versetzt. Die Proben wurden jeweils viermal für 30 s gevortext und nach jedem 

Vortexschritt für 30 s auf Eis gekühlt. Durch einen Zentrifugationsschritt (1000xg, 3 min, 

4°C) wurden Zellbruchstücke sedimentiert. Der Überstand wurde in ein neues Eppendorf 

Reaktionsgefäß überführt und erneut zentrifugiert (10000xg, 10 min, 4°C). Das Pellet, 

welches die Mitochondrien enthielt, wurde in 30 µl Laemmli-Puffer resuspendiert, 10 min bei 

RT geschüttelt und mittels SDS-PAGE analysiert. 

 

2.4.3. Isolierung von Mitochondrien  

2.4.3.1. Isolierung von Mitochondrien aus S. cerevisiae  

Die Isolierung von Mitochondrien aus Hefezellen erfolgte im Wesentlichen nach Daum 

(Daum et al., 1982). Hefezellen wurden bis zu einer OD600 von 0,8-1,5 kultiviert, durch 

Zentrifugation (4400xg, 5 min, RT) sedimentiert und mit H2O gewaschen. Danach wurde das 

Feuchtgewicht der Zellen bestimmt und diese wurden in einer Konzentration von 0,5 g/ml in 

DTT-Puffer (100 mM Tris-H2SO4, 10 mM DTT, pH 9,4) resuspendiert. Diese Zellsuspension 

wurde dann unter Schütteln  für  15 min bei 30°C inkubiert und anschließend wurden die 

Zellen reisoliert. Die Zellen wurden mit 200 ml 1,2 M Sorbitol gewaschen und zum 

enzymatischen Aufschluss der Zellwände in einer Konzentration von 0,15 g/ml inZymolyase-

Puffer (3 mg Zymolyase pro g Feuchtgewicht, 1,2 M Sorbitol, 20 mM Kaliumphosphat, pH 

7,4) aufgenommen. Die Zellsuspension wurde unter Schütteln für 30-60 min bei 30°C 

inkubiert und die Sphäroblastenbildung wurde durch osmotische Lyse verfolgt. Hierzu 

wurden 50 µl der Zellsuspension mit 2 ml H2O oder 2 ml 1,2 M Sorbitol gemischt. Wenn die 

OD600 des Wassergemisches 10-20% der OD600 des Sorbitolgemisches betrug, war die 

Sphäroblastenbildung beendet. 

Die folgenden Schritte wurden auf Eis, bzw. bei 4°C unter Verwendung gekühlter 

Geräte durchgeführt. Die gewonnenen Sphäroblasten wurden durch Zentrifugation (3000xg, 5 

min, 4°C) reisoliert und in Homogenisierungspuffer (0,6 M Sorbitol, 0,2% (w/v) 

fettsäurefreies BSA, 1 mM PMSF, 10 mM Tris-HCl, pH 7,4) in einer Konzentration von 0,15 

g/ml resuspendiert und mit einem Dounce-Homogenisator durch zehn Stöße geöffnet. Durch 

zweimaliges Zentrifugieren (2000xg, 5 min, 4°C) wurden Zelltrümmer und ungeöffnete 

Zellen abgetrennt. Die Mitochondrien wurden durch Zentrifugation (17400xg, 12 min, 4°C) 

 36



       Material und Methoden  

sedimentiert, in 10 ml SEM-Puffer aufgenommen, erneut von ganzen Zellen und 

Zelltrümmern gereinigt (2000xg, 5 min, 4°C) und reisoliert (17400xg, 12 min, 4°C). 

Abschließend wurden die Mitochondrien in einem kleinen Volumen SEM-Puffer 

aufgenommen, eine Proteinkonzentration von 10 mg/ml eingestellt und in kleinen Portionen 

in flüssigem Stickstoff eingefroren und bei -80°C gelagert. 

 

2.4.3.2. Isolierung von Mitochondrien aus N. crassa 

Die Isolierung von Mitochondrien aus N. crassa erfolgte nach Sebald (Sebald et al., 

1979). Zur Isolierung wurden Hyphen einer Über-Nacht Kultur (50 ml bis 8 l) durch 

Absaugen in einer Nutsche isoliert, gewogen und in einen Mörser überführt. Alle folgenden 

Schritte erfolgten auf Eis mit gekühlten Puffern und Geräten. Die Zellen wurden mit 

Quarzsand und SEM-Puffer (je 1 ml pro 1 g Hyphen) versetzt und durch Reiben mit einem 

Pistill aufgebrochen. Danach wurde zweimal dieselbe Menge SEM-Puffer mit 5 mM PMSF 

zugegeben und jeweils für 1 min gemischt. Durch zwei Zentrifugationen wurde zunächst der 

Sand abgetrennt (je 2000xg; 10 min; 4°C). Durch Zentrifugation (30000xg; 12 min; 4°C) 

wurden die Mitochondrien aus dem Überstand isoliert, in SEM-Puffer aufgenommen und eine 

Proteinbestimmung durchgeführt. 

 

2.4.4. Subfraktionierung von Hefezellen  

Die Subfraktionierung von Hefezellen wurde mit leichten Modifikationen wie von 

Meisinger beschrieben (Meisinger et al., 2000) durchgeführt. Es wurde wie unter 2.4.3.1. 

vorgegangen, jedoch enthielt der Homogenisationspuffer nur 0,2% (w/v) BSA. Nach der 

Sedimentation der Mitochondrien wurde der Überstand zur Gewinnung von Microsomen und 

Cytosol verwendet. Hierzu wurde der Überstand zentrifugiert (100000xg, 1 h, 4°C). Das 

Pellet enthielt die Microsomen, die in SEM-Puffer resuspendiert wurden. Im Überstand 

befanden sich die cytosolischen Faktoren. Beide Fraktionen wurden in kleinen Portionen 

inflüssigem Stickstoff eingefroren und bei -80°C gelagert. 

Die Mitochondrienfraktion wurde über einen Saccharose-Gradienten weiter gereinigt. 

Der Gradient wurde aus den Stufen 15, 23, 32 und 60% (w/v) Saccharose in 10 mM MOPS-

KOH, 1 mM EDTA, 1 mM PMSF, pH 7,2 gebildet. Die Mitochondrien wurden in einer 

Konzentration von 5 mg/ml in SEM-Puffer auf den Gradienten geladen und zentrifugiert 

(134000xg, 1h, 2°C). Die gereinigten Mitochondrien befanden sich in einer Bande zwischen 

32 und 60% Saccharose. Sie wurden mit zwei Volumina SEM-Puffer verdünnt und 

sedimentiert (17400xg, 12 min, 2°C). Anschließend wurden die Mitochondrien in einem 
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kleinen Volumen SEM-Puffer aufgenommen, eine Proteinkonzentration von 10 mg/ml 

eingestellt und in kleinen Portionen in flüssigem Stickstoff eingefroren und bei -80°C 

gelagert. 

 

2.4.5. In vitro Proteinimport in Mitochondrien und Lipidvesikel 

Zu importierende Vorstufenproteine wurden in vitro in Retikulozytenlysat in Gegenwart 

von [35S] Methionin synthetisiert. Die Importreaktionen wurden entweder in F5-Puffer (0,03-

3% (w/v) BSA, 250 mM Saccharose, 80 mM KCl, 5 mM MgCl2, 2 mM ATP, 2 mM NADH, 

100 µg/ml Kreatinkinase, 5 mM Kreatinphosphat, 10 mM MOPS-KOH, pH 7,2) oder SI-

Puffer (0,03-3% (w/v) BSA, 0,6 M Sorbitol, 80 mM KCl, 10 mM MgOAc, 2 mM KH2PO4, 

2,5 mM EDTA, 2,5 mM MnCl2, 2 mM ATP, 2 mM NADH, 100 µg/ml Kreatinkinase, 5 mM 

Kreatinphosphat, 50 mM HEPES-KOH, pH 7,2) durchgefürt. Die Vorstufenproteine wurden 

bei verschiedenen Temperaturen für unterschiedliche Zeitpunkte importiert. In einigen Fällen 

wurden vor oder nach der Importreaktion Proteasen verwendet. Zur Entfernung cytosolischer 

Domänen von Importrezeptoren vor dem Import wurden Mitochondrien für 15 min mit 100 

µg/ml Trypsin auf Eis inkubiert. Anschließend wurde die Reaktion durch Zugabe eines 

dreßigfachen Massenüberschusses an Sojabohnen-Trypsininhibitor (STI) gestoppt und der 

darauf folgende Import wurde standardmäßig durchgeführt. Die Proteasebehandlung von 

Mitochondrien oder Lipidvesikeln unter isotonischen Bedingungen nach dem Import diente 

dem Abbau nicht importierter Vorstufenproteinen, welche nach der Importreaktion an der 

Außenmembran hafteten oder nur partiell importiert worden waren. Nach dem Import wurden 

als Proteasen entweder Proteinase K (PK) oder Trypsin in den jeweils angegebenen 

Konzentrationen verwendet und die Behandlung wurde für 15 min auf Eis durchgeführt. 

Durch Zugabe von 1 mM PMSF im Falle von PK oder STI im Falle von Trypsin und 

anschließender Inkubation für 5 min auf Eis wurden die Proteaseverdaue gestoppt. 

Zur Blockierung des TOM-Kanals während einer Importreaktion wurden 11 µg des  

Proteins pSu9(1-69)-DHFR zu 50 µg Mitochondrien zugegeben. Dieses Protein ist ein 

Fusiuonsprotein, welches aus der mitochondrialen Matrix-Signalsequenz der Untereinheit 9 

der F0-ATPase aus N. Crassa und Dihydrofolat-Reduktase (DHFR) der Maus besteht. Nach 

der Importreaktion wurden Mitochondrien (13200xg, 10 min, 4°C) und Lipidvesikel 

(186000xg, 1 h, 4°C) sedimentiert und in Laemmli-Puffer lysiert. Importierte und gebundene 

Proteine wurden mittels SDS-PAGE und Autoradiographie analysiert. 
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2.4.6. In vitro Proteinimport in Mitochondrien, Microsomen und Lipidvesikel mit 

anschließender IASD-Markierung 

Die Importreaktion wurde wie unter 2.4.5. beschrieben, durchgeführt, aber es wurde 

nach Beendigung der Reaktion keine Proteasebehandlung vorgenommen. Mitochondrien 

(13200xg, 10 min, 4°C), Microsomen und Lipidvesikel (186000xg, 1 h, 4°C) wurden 

sedimentiert und in Labeling Puffer (250 mM Saccharose, 10 mM Hepes, pH 7,4, 2 mM 

EDTA, 4M Harnstoff, 1 mM DTT) resuspendiert und für 5-20 min bei verschiedenen 

Temperaturen inkubiert. Die Reaktion wurde durch Zugabe von DTT in einer 

Endkonzentration von 250 mM gestoppt. Anschließend wurden Mitochondrien (13200xg, 10 

min, 4°C), Microsomen und Lipidvesikel (18600xg, 1 h, 4°C) sedimentiert, mit 600 µl SH-

Puffer (250 mM Saccharose, 10 mM Hepes, pH 7,4, 2 mM EDTA) resuspendiert und erneut 

sedimentiert. Das Pellet wurde in Laemli-Puffer lysiert und die Proteine wurden mittels SDS-

PAGE auf High-Tris Harnstoffgelen analysiert. 

Mitochondrien, Microsomen und Lipidvesikel, wurden teilweise vor der Markierung mit 

IASD in Labeling Puffer mit 1% Triton-X-100 solubilisiert und nach Zugabe von IASD wie 

nicht solubilisierte Mitochondrien markiert. Nach Beendigung der Markierungsreaktion 

wurden die Proteine mit TCA gefällt, in Laemli-Puffer lysiert und mittels SDS-PAGE auf 

High-Tris Harnstoffgelen analysiert. 

 

2.4.7. Erzeugung von Mitoplasten durch hypotones Schwellen  

Mitochondrien in SI-Puffer wurden in einem Verhältnis von 1:10 in 20 mM HEPES-

KOH, pH 7,2 verdünnt und für 30 min auf Eis inkubiert. Die Mitoplasten wurden sedimentiert 

(13200xg, 10 min, 4°C) und mittels SDS-PAGE analysiert. Durch Immunodekoration (siehe 

2.5.1.) von löslichen Intermembranraumproteinen wurde die Effizienz der Mitoplastenbildung 

überprüft. 

 

2.4.8. Carbonatextraktion   

Durch Carbonatextraktion ist es möglich, lösliche und peripher mit der Membran 

assoziierte Proteine von integralen Membranproteinen zu trennen (Fujiki et al., 1982). 

Sedimentierte Mitochondrien wurden in einem Puffer aus 10 mM HEPES-KOH und 100 mM 

Na2CO3, pH 11,5 resuspendiert und für 30 min auf Eis inkubiert. Die integralen 

Membranproteine wurden anschließend zentrifugiert (125000xg, 30 min, 4°C) und in 

Laemmli-Puffer resuspendiert. Der Überstand mit den löslichen und peripher assoziierten 

Proteinen wurde mit TCA gefällt und in Laemmli-Puffer gelöst. 
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Durch Kombination von alkalischer Extraktion und anschließender Flotations-

Gradientenzentrifugation ist es möglich, die herkömmliche Carbonatextraktion zu verbessern. 

Hierbei sammeln sich integrale Membranproteine mit den Lipiden im oberen Bereich des 

Gradienten. Aggregierte Proteine und Proteine, die nicht in der Membran integriert waren, 

sind im unteren Bereich des Gradienten zu finden. Proben (100 µl) wurden mit 166 µl 2,4 M 

Saccharose, 0,1 M Na2CO3 und 100 µl SEM, 0,1 M Na2CO3 überschichtet und zentrifugiert 

(485000xg, 2h, 4°C). Dann wurden vom Gradienten von oben zunächst 250 µl und zweimal 

150 µl abgenommen. Die Fraktionen wurden mit 20 mM HEPES-KOH, pH 7,4 auf 600 µl 

aufgefüllt, mit TCA gefällt und in Laemmli-Puffer aufgenommen.   

 

2.4.9. Mikroskopie  

Um die Lokalisation von GFP-Fusionsproteinen und die Morphologie von 

Mitochondrien zu untersuchen, wurden zwei Methoden der Mikroskopie verwendet. Zum 

Einsatz kamen ein Fluoreszenzmikroskop und ein Konfokalmikroskop. 

 

2.4.9.1 Fluoreszenzmikroskop 

Hefezellen, die entweder ein GFP-Fusionsprotein oder an den Mitochondrien 

lokalisiertes RFP exprimierten, wurden bis zu einer Dichte OD600 von 0,5 in entsprechendem 

Selektionsmedium kultiviert. Bei Färbung der Mitochondrien mit Mitotracker (Stratagene) 

wurden Hefezellen ebenfalls bis zu einer Dichte OD600 von 0,5 in entsprechendem 

Selektionsmedium kultiviert, sedimentiert (3000xg, 5 min, RT) und in neuem 

Selektionsmedium mit 1 mM Mitotracker für 30 min bei 30°C geschüttelt. Anschließend 

wurden die Zellen wieder sedimentiert (3000xg, 5 min, RT), in Wasser gewaschen und in 

wenig Wasser resuspendiert. Für die mikroskopische Analyse wurden 100 µl Zellsuspension 

durch Zugabe von 0,5% (w/v) Low Melting Point Agarose auf einem Objektträger fixiert. Die 

Aufnahmen wurden an einem Axioplan Mikroskop mit einem Plan-Neofluar 100x/1,30 Öl-

Objektiv (Carl Zeiss GmbH, Jena) unter Verwendung einer 100 W Quecksilber-Lampe 

gemacht. Für die Analyse von GFP wurde Filtersatz Nr. 09 verwendet (Anregung: 450-490 

nm, Emission: > 515 nm), für RFP und Mitotracker Filtersatz Nr. 15 (Anregung: 534-558 nm, 

Emission > 590 nm) (Heim et al., 1996). Die Bilder wurden mit einer SPOT-gekühlten 

Digitalkamera (Diagnostics Instruments, Sterling Nights, MI) aufgenommen und mit der 

MetaMorph Imaging Software (Universal Imaging Corporation, West Chester, PA) 

prozessiert. 
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2.4.9.2. Konfokalmikroskop 

Hier wurden Serien optischer Sektioen von Hefezellen mit einem Confocal Laser 

Scanning Mikroskop (TCS SP1, Leica Microsystems) erstellt. Die Hefezellen wurden wie in 

2.4.9.1. präpariert. RFP wurde mit einem Krypton-Laser bei 568 nm angeregt. Der 

Emissionsbereich lag zwischen 575 nm und 625 nm. Die einzelnen in Graustufen erhaltenen 

Bilder der Sektionen wurden mit Hilfe des Programms LCSLite (Leica Microsystems) 

übereinandergelagert und jeder Kanal des RGB-Bildes erhielt eine Falschfarbe.  

 

2.5. Immunologische Methoden  

 

2.5.1. Immunologischer Nachweis von Proteinen auf Nitrozellulose- oder PVDF-

Membranen (Western Blot) 

Auf Nitrozellulose transferierte Proteine wurden durch Immunodekoration mit 

spezifischen Antikörpern nachgewiesen. Zunächst wurde die Membran nach dem 

Proteintransfer für 1 h in TBS (154 mM NaCl, 10 mM Tris-HCl, pH 7,5) mit 5 % (w/v) 

Magermilchpulver geschwenkt, um unspezifische Bindungsstellen abzusättigen. 

Anschließend wurde die Blockierlösung entfernt und der Primärantikörper für 1-2 h bei RT 

oder über Nacht bei 4°C zugegeben. Der Primärantikörper wurde in Abhängigkeit von seinem 

Titer 1:50 bis 1:10000 in TBS mit 5% (w/v) Magermilchpulver verdünnt. Dann wurden die 

Membranen 10 min in TBS, 10 min in TBS mit 0,05% (v/v) Triton-X-100 und 10 min in TBS 

gewaschen. Um gebundene Erstantikörper nachzuweisen, wurden als Sekundärantikörper 

gegen Immunoglobin G von Kaninchen gerichtete Antikörper aus der Ziege verwendet, 

welche mit Meerrettich-Peroxidase gekoppelt waren. Diese wurden im Verhältnis 1:10000 in 

TBS mit 5% (w/v) Magermilchpulver verdünnt und die Membran wurde mit dieser Lösung 

für 1 h bei RT inkubiert. Danach wurden die Membranen auf dieselbe Weise wie nach der 

Inkubation mit dem Primärantikörper gewaschen und die Peroxidase mit einem 

Detektionssystem nachgewiesen, das auf Chemilumineszenz basiert. Dazu wurden die 

Membranen mit der Lumineszenzlösung inkubiert und die Signale auf Röntgenfilm 

nachgewiesen. Durch Mischen gleicher Volumina von Lösung 1 und Lösung 2 wurde die 

Lumineszenzlösung hergestellt. 

 

Lösung1: 3 ml 1M Tris-HCl, pH 8,5, 300 µl Luminol (440 mg/10 ml DMSO), 133 µl 

p-Kumarinsäure (150 mg/10 ml DMSO), H2O ad 30 ml 

Lösung2:  3 ml 1M Tris-HCl, pH 8,5, 18 µl H2O2 (30%), H2O ad 30 ml 
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Die Lösungen waren in einem lichtgeschützten Gefäß für etwa eine Woche stabil. 

 

2.5.2. Coimmunfällung   

Zunächst wurden für die Coimmunfällung Antikörper an Protein A-Sepharose CL-4B 

(PAS) gekoppelt. Hierzu wurden 30 µl PAS zweimal mit TBS und anschließend mit 

Lysepuffer B (50 mM NaH2PO4, 100 mM NaCl, 10% (v/v) Glycerol, 1 mM PMSF, 1% (w/v) 

Digitonin, pH 8,0) gewaschen. Danach wurden 30 µl Antiserum mit der äquilibrierten PAS 

für mindestens 1 h im Überkopfschüttler bei 4°C inkubiert. Dann wurden die PAS dreimal 

Lysepuffer B gewaschen. 

Mitochondrien wurden auf eine Proteinkonzentration von 1 mg/ml in Lysepuffer B im 

Überkopfschüttler solubilisiert. Unlösliches Material wurde abgetrennt (36700xg, 20 min, 

2°C) und der Überstand wurde zu den Antikörpern gegeben, welche an die PAS gebunden 

worden waren. Nach einer Inkubation von 1 h bei 4°C im Überkopfschüttler wurde die PAS 

mit den gebundenen Immunkomplexen viermal mit Lysepuffer B mit 0,05% (w/v) Digitonin 

gewaschen. Nach den Waschschritten wurden die Immunkomplexe in Laemmli-Puffer ohne 

β-Mercaptoethanol und mit 0,05% (v/v) H2O2 dissoziiert und für 5 min bei 37°C inkubiert. 

Die Proteine wurden durch SDS-PAGE und Immunodekoration analysiert. 
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3. Ergebnisse 
 

3.1. Die Transmembrandomäne  von Proteinen mit C-terminalem Anker reicht für die 

Lokalisation in der Außenmembran aus 

Frühere Versuche konnten zeigen, dass für die Lokalisation von Fis1 an der mitochondrialen 

Außenmembran die Transmembrandomäne benötigt wird (Mozdy et al., 2000). Um die Frage 

zu klären, ob die Transmembrandomäne von Proteinen mit C-terminalem Anker (CTA-

Proteine) für eine Lokalisation von Fis1 an der mitochondrialen Außenmembran ausreichend 

ist, wurde ein Fusionsprotein aus GFP und den Aminosäuren 129-155 von Fis1 am C-

terminalen Ende von GFP konstruiert (siehe Abb. 4). Dieses Konstrukt wurde in Hefe 

transformiert und exprimiert. Mit Hilfe von subzellulärer Fraktionierung und Western Blot 

konnte das Fusionsprotein, ebenso wie das Markerprotein Tom20, in der  mitochondrialen 

Fraktion gefunden werden, während das ER-Protein Erv2 und der cytosolische Marker Bmh1 

nicht in der mitochondrialen Fraktion zu sehen waren.  Dieses Ergebnis stimmt mit Mozdy et 

al. überein und lässt den Schluss zu, dass die Transmembrandomäne von Fis1 für die korrekte 

Lokalisation an der mitochondrialen Außenmembran ausreicht.    
A 
 
 
 
B 
 

 

 

 

 

 

 

 

 

 

 

 
 

Abb. 4. Die Transmembrandomäne von Fis1 ist ausreichend für die Lokalisation an 
Mitochondrien. A. Schematische Darstelung des Fusionsproteins aus GFP und der 
Transmembrandomäne von Fis1. B. Mitochondrien (M) wurden über einen 
Saccharosegradienten aus Wildtypzellen oder aus Hefezellen, die den Vektor pYX132 mit 
GFP-Fis1(TM) enthielten, aufgereinigt. Die postmitochondriale Fraktion wurde dann durch 
differenzielle Zentrifugation in die Fraktionen ER und Cytosol (C) weiter aufgetrennt. Die 
Proteine wurden mit Hilfe von SDS-PAGE und Immunodekoration analysiert. Es wurden 
Antikörper gegen GFP, den mitochondrialen Marker Tom20, den ER-Marker Erv2 und den 
cytosolischen Marker Bmh1 verwendet. 
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3.2. Entwicklung einer spezifischen Methode zur Analyse der Membraninsertion von 

Proteinen mit C-terminalem Anker 

Um die Integration von CTA-Proteinen in die mitochondriale Außenmembran zu 

untersuchen, ist eine Methode erforderlich, die erlaubt, zu unterscheiden, ob das Protein auch 

spezifisch in die Membran integriert wurde. In früheren Studien zur Insertion von CTA-

Proteinen wurden bisher sehr gegensätzliche Ergebnisse beobachtet (siehe 1.3.4). Dieses 

Problem kann darauf beruhen, dass es bisher keine verlässliche Methode gab, um die Insertion 

zu kontrollieren. Die Klasse der CTA-Proteine besitzt nur wenige Aminosäurereste, die in den 

Intermembranraum hineinragen. Ein proteolytischer Verdau der Proteine durch von außen 

zugegebene Proteasen würde zu geschützten Proteinfragmenten mit einer Größe von nur 2-3 

kDa führen, welche zu klein sind, um sie mittels SDS-PAGE zu sehen. 

Um dieses Problem zu lösen, wurde eine Methode entwickelt, die auf der Modifikation 

von Cysteinresten in Fis1 beruht. Zur Cysteinmodifikation wurde das sulfhydrylreaktive 

Reagenz IASD (4-Acetamido-4’-[(iodoacetyl)amino]stilben-2,2’-disulfonsäure) verwendet, 

welches nicht in der Lage ist, durch Membranen zu gelangen (Struktur siehe Abb. 5).  

 
Abb. 5. Struktur von IASD 

 

Diese Modifikation ermöglicht es, eine Insertion von Fis1 in die mitochondriale 

Außenmembran zu beobachten, weil Cysteine in der Transmembrandomäne nicht modifiziert 

werden können. Aufgrund des Molekulargewichtes von 624 Da kann man mit IASD 

markiertes Fis1 von nicht markiertem Fis1 durch ein verändertes Laufverhalten des Proteins 

bei SDS-PAGE unterscheiden. Somit können in die Membran integrierte Proteine von 

solchen, die mit der Membran nur assoziiert sind, unterschieden werden, da diese mit IASD 

modifiziert werden können. Mit dieser Methode wurden bereits die Topologien der 

Außenmembranproteine Bcl-2 und α-Hämolysin analysiert (Krishnasastry et al., 1994; Kim et 

al., 2004). Dieser Vorgang ist in Abbildung 6 schematisch dargestellt. 
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Abb. 6. Schematische Darstellung der Markierung von Fis1 mit IASD. Durch Zugabe von 
Proteasen würde ein geschütztes Fragment von 2-3 kDa entstehen, welches zu klein für die 
Analyse mittels SDS-PAGE ist. Ist Fis1 in die Membran integriert, kann IASD das Cystein in 
der Transmembrandomäne nicht binden.  

  
Um diese Methode anwenden zu können, durfte Fis1 insgesamt nur ein Cystein 

enthalten, welches sich in der Transmembrandomäne befinden muss. Dafür mussten in der 

cytosolischen Domäne von Fis1 die beiden Cysteinreste (Cys79, Cys87) zu Serinresten 

mutiert werden. Dabei entstand ein Fis1 ohne Cysteinreste (Fis1-CS, siehe Abb. 6). Dies 

wurde auch mit einem Fis1 durchgeführt, welches bereits in der Transmembrandomäne an 

Position 147 einen Aminosäureaustausch von Serin gegen Cystein enthielt (Habib, 2003). 

Dieses Konstrukt wurde Fis1-TMC genannt (siehe Abb. 7). 

 

 

 

 
Abb. 7. Schematische Darstellung der verwendeten Fis1 Varianten.  
Die Sequenzen der C-terminalen Domänen sind dargestellt. Aus der cytosolischen Domäne 
sind nur relevante Aminosäurereste dargestellt. Die Transmembrandomäne ist jeweils 
unterstrichen. 

 

Um zu testen, ob die Fis1-Variante Fis1-TMC in vivo in die Außenmembran von 

Mitochondrien integriert werden kann und die Funktion von unverändertem Fis1 besitzt, 

wurde ein funktioneller Komplementationstest verwendet (Habib et al., 2003). Hierfür wurde 

ein Hefestamm mit einer Deletion von FIS1 verwendet. Diese führt dazu, dass die Teilung der 

Mitochondrien nicht mehr möglich ist und somit zu einer veränderten Morphologie (Mozdy et 

al., 2000). Die Fähigkeit, diesen Morphologiephänotyp zu komplementieren, kann somit als 

Kriterium für korrekte Insertion und Funktion in der Außenmembran dienen. Fis1-TMC 

wurde mit einem Hefeexpressionsvektor in der Deletionsmutante exprimiert und diese wurde 

auf ihren Phänotyp untersucht. In Abbildung 8 ist dargestellt, dass Fis1-TMC in der Lage ist, 

den Deletionsphänotyp zu komplementieren und funktionell ist. 
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Abb. 8. Fis1-TMC kann die Morphologie des fis1∆ Phänotyps komplementieren. Zellen 
der angegebenen Stämme wurden mit in den Mitochondrien lokalisiertem RFP transformiert 
und mit Fluoreszenmikroskopie (links) und Phasenkontrastmikroskopie (rechts) analysiert. 

 

Im nächsten Schritt wurde geprüft, ob die Membraninsertion mit Hilfe der IASD-

Markierung beobachtet werden kann. Dazu wurden Mitochondrien aus fis1∆ Zellen, die Fis1-

TMC einem Plasmid exprimierten, isoliert und mit IASD behandelt. In Abbildung 9A ist zu 

sehen, dass der größte Teil der Fis1-Moleküle vor der Modifizierung durch IASD geschützt 

war. Nach Solubilisierung der Mitochondrien mit dem Detergenz Triton X-100 (Tx-100) 

wurde der Schutz durch die Membran aufgehoben und somit das gesamte Fis1 markiert. 

Danach wurden isolierte Mitochondrien mit radioaktiv markierten Vorstufenproteinen von 

Fis1 und Fis1-TMC inkubiert. Diese wurden mit alkalischer Lösung behandelt, um lösliche 

Proteine zu entfernen und anschließend mit IASD behandelt. Sowohl Fis1 als auch Fis1-TMC 

blieben in der Membranfraktion und radioaktiv markiertes Fis1-TMC verhielt sich wie 

endogenes Fis1-TMC (Abb. 9B), wobei der Großteil des Proteins unmodifiziert blieb, wenn 

kein Triton X-100 hinzugegeben wurde. Bei Wildtyp Fis1 konnte kein Unterschied 

festgestellt werden, wenn Triton X-100 zugegeben wurde, da hier beide Cysteine in der 

cytosolischen Domäne vorliegen und somit immer frei zugänglich waren (Abb. 9B). Um 

auszuschließen, dass das Cystein im Intermembranraum liegt und so bei beschädigter 

Außenmembran zugänglich für IASD sein könnte, wurden Mitochondrien mit radioaktiven 

Vorstufenproteinen inkubiert, danach die Außenmembran durch osmotischen Schock 

aufgebrochen und die Fis1-Proteine mit IASD markiert. Hier ist ebenfalls zu sehen, dass der 
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Großteil von Fis1-TMC vor der Modifikation mit IASD geschützt blieb, wenn kein Triton X-

100 hinzugegeben wurde (siehe Abb.9C). 

 
A 
 
 
 
 
 
 
B 
 
 
 
 
 
C 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Abb. 9. Fis1-TMC ist vor der Modifikation durch IASD geschützt, wenn es in der 
Außenmembran integriert ist. A. Endogenes Fis1-TMC kann nicht von IASD modifiziert 
werden. Die angegebenen Mengen von Mitochondrien aus dem Hefestamm fis1∆, der mit 
Fis1-TMC transformiert war, wurden mit IASD in An- bzw. Abwesenheit von Triton X-100 
inkubiert. Die Proteine wurden mittels SDS-PAGE analysiert, auf eine 
Nitrocellulosemembran transferiert und mit Antikörper gegen Fis1 dekoriert. B. Radioaktiv 
markiertes Fis1-TMC kann nicht von IASD in Carbonat gefällten Membranen markiert 
werden. Wildtyp Mitochondrien  wurden mit radioaktiv markiertem Fis1, bzw. Fis1-TMC für 
30 min bei 25°C inkubiert. Anschließend wurden die Membranen durch Carbonatextraktion 
isoliert und in Importpuffer oder Markierungspuffer resuspendiert und, wo angegeben, mit 
IASD und Triton X-100 behandelt. Die Proteine wurden mittels SDS-PAGE und 
Autoradiographie analysiert. C. Radioaktiv markiertes Fis1-TMC kann nicht von IASD in 
Mitochondrien und Mitoplasten markiert werden. Wildtyp Mitochondrien  wurden mit 
radioaktiv markiertem Fis1, bzw. Fis1-TMC für 30 min bei 25°C inkubiert. Anschließend 
wurden die Mitochondrien isoliert und, wo angegeben durch osmotischen Schock die 
Außenmembran geöffnet und in Importpuffer oder Markierungspuffer resuspendiert und, wo 
angegeben, mit IASD und Triton X-100 behandelt. Die Proteine wurden mittels SDS-PAGE 
und Autoradiographie analysiert. 

 

Um sicher zu stellen, dass das Verhalten von markiertem Fis1-TMC darauf beruht, dass 

es in die Membran inseriert ist und nicht von aggregiertem Protein stammt, wurden nun 

verschiedene Kontrollen durchgeführt. Dazu wurden Mitochondrien, die mit radioaktiv 

markiertem Fis1-TMC inkubiert worden waren, mit IASD modifiziert, und dann wurden die 

Mitochondrien mit Hilfe von Saccharosegradienten analysiert. Membranen und Proteine, die 
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in Membranen integriert sind, befinden sich im Gradienten im oberen Bereich. Aggregierte 

und lösliche Proteine befinden sich im unteren Bereich. Die von IASD nicht modifizierten 

Fis1-Moleküle konnten in denselben Fraktionen wie Tom20, das als Markerprotein für die 

Außenmembran diente, gefunden werden. Fis1-TMC, das mit Triton X-100 behandelt wurde, 

verhielt sich wie mitochondriales Hsp70, das als lösliches Markerprotein fungierte (Abb.10). 

 
Abb. 10. Durch IASD unmodifiziertes Fis1-TMC aggregiert nicht.  
Wildtyp-Mitochondrien wurden mit radioaktiv markiertem Fis1-TMC für 30 Minuten bei 
25°C inkubiert. Die Mitochondrien wurden durch Zentrifugation reisoliert,  in Markierungs-
puffer resuspendiert und, wo angegeben, mit IASD und Triton X-100 inkubiert. 
Anschließend wurden alle drei Proben in zwei Hälften aufgeteilt. Eine Hälfte wurde 
reisoliert und in  Ladepuffer gelöst. Die andere Hälfte wurde in 0,1 M Na2CO3 
resuspendiert. Nach einer 30 minütigen Inkubation auf Eis wurden die Proben durch 
Flotationsgradientenzentrifugation analysiert. Membranen befinden sich am Ende der 
Zentrifugation oben. Lösliche und aggregierte Proteine unten. Die Proteine wurden mittels 
SDS-PAGE analysiert, auf eine Nitrocellulosemembran transferiert und mit den 
angegebenen Antikörpern dekoriert. O, obere Fraktion; M, mittlere Fraktion; U, untere 
Fraktion 

 
Als nächstes wurde radioaktiv markiertes Fis1-TMC als Kontrolle verwendet, bei dem  

die Arginine am C-Terminus durch Glutamine ersetzt worden waren (Fis1-TMC-4Q) (Abb.6). 

Diese Variante des Proteins kann aufgrund der fehlenden positiveen Ladungen nicht in 

Mitochondrien inserieren und ist nicht funktionell (Habib et al., 2003). In Abbildung 11 ist zu 

sehen, dass der größte Teil von Fis1-TMC-4Q mit IASD modifiziert werden konnte. Dies 

lässt den Schluss zu, dass die Transmembrandomäne dieser Fis1 Variante nicht richtig in die 

Membran integriert werden konnte. Da beide Fis1 Varianten dieselbe Transmembrandomäne 

besitzen, zeigt dieses Experiment, dass ein Schutz vor der Modifizierung durch IASD auf der 

richtigen Integration in die Membran und nicht auf einer unspezifischen Interaktion der 

hydrophoben Transmembrandomänen beruht. 
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Abb. 11. Eine insertionsdefiziente Variante von Fis1 kann nicht vor der Markierung mit 
IASD geschützt werden. Wildtyp Mitochondrien wurden für 30 Minuten entweder mit 
radioaktiv markiertem Fis1-TMC oder Fis1-TMC-4Q inkubiert und danach, wie in Abb. 9 
beschrieben, behandelt.  
 

 

Um sicherzustellen, dass die Modifikation von Fis1-TMC ausschließlich an seinem 

einzigen Cystein stattfindet, wurden radioaktiv markiertes Fis1-TMC und eine Fis1 Variante 

ohne Cysteine (Fis1-CS, siehe Abb. 7) mit IASD modifiziert. In Abbildung 12 ist zu 

erkennen, dass die Modifikation nur in Fis1-TMC auftritt und somit cysteinspezifisch ist. 

 

 

 

 

 

 

 
Abb. 12. Cysteinspezifische Modifikation von Fis1-TMC. Radioaktiv markierte Proteine 
von Fis1-CS und Fis1-TMC wurden in Markierungspuffer mit IASD und, wo angegeben, 
Triton X-100 für 20 Minuten bei 25°C inkubiert und danach, wie in Abb. 9 beschrieben, 
behandelt. Der Stern markiert eine Hämoglobinbande. Hämoglobin kommt in 
Retikulozytenlysat in großen Mengen vor. 

 
 

3.3. Die Insertion von Fis1 ist unabhängig von den Importrezeptoren Tom20 und Tom70 

Tom20 und Tom70 sind die beiden Hauptrezeptoren des TOM-Komplexes und für den 

Import der meisten mitochondrialen Proteine zuständig. Daher stellte sich die Frage, ob die 

beiden Rezeptoren für die Insertion von CTA-Proteinen benötigt werden. Dies sollte nun mit 

der in 3.2. neu entwickelten in vitro Methode sollte untersucht werden. Zunächst wurden 

Mitochondrien vor der Inkubation mit radioaktiv markiertem Fis1-TMC mit der Protease 

Trypsin behandelt. Dadurch wurden alle nach außen stehenden Bereiche der 

Oberflächenrezeptoren der Außenmembran proteolytisch verdaut. Die Integration von Fis1-

TMC erfolgte sowohl in Mitochondrien ohne Trypsinbehandlung als auch in Mitochondrien 
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mit Trypsinbehandlung mit derselben Effizienz. Dies lässt den Schluss zu, dass die 

Entfernung der Oberflächenrezeptoren durch Trypsin keinen Einfluss auf das 

Insertionsverhalten von Fis1 besitzt. Die Membranintegration des β-Barrelproteins Porin, 

welches Importrezeptoren benötigt (Krimmer et al., 2001), war in Trypsin behandelten 

Mitochondrien stark reduziert (Abb. 13). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Abb. 13. Die Insertion von Fis1 ist unabhängig von Importrezeptoren. Radioaktiv 
markiertes Fis1-TMC wurde mit intakten und trypsinbehandelten Mitochondrien inkubiert 
und anschließend mit IASD behandelt. Die mitochondrialen Proteine wurden mittels SDS-
PAGE getrennt, auf eine Membran geblottet und mittels Autoradiographie und 
Immunodekoration analysiert. Die benutzten Antikörper waren gegen die Rezeptoren Tom20 
und Tom70, sowie gegen das in der Membran liegende Tom40, bei dem durch die 
Trypsinbehandlung ein kleines Fragment abgespalten wurde, gerichtet. Unten: Porin wurde 
für die angegebenen Zeitpunkte in Mitochondrien inkubiert und anschließend mit 100 µg/ml 
Proteinase K inkubiert, um nicht inseriertes Protein zu entfernen. Die Insertion von Fis1 
wurde aus der Bande berechnet, die vor der Modifikation durch IASD geschützt war. Um die 
Effizienz zu messen, wurde die vor IASD-Markierung geschützte Bande der nicht mit Trypsin 
behandelten Mitochondrien auf 100% gesetzt. 

 
Im nächsten Schritt wurden Mitochondrien verwendet, die aus Stämmen mit einer 

Deletion von Tom20 oder Tom70 stammten. Diese wurden mit radioaktiv markiertem Fis1-

TMC inkubiert und anschließend wurde die Menge des inserierten Proteins analysiert. Wie 

nach der Trypsinbehandlung (Abb. 13) konnte hier weder bei tom70∆- noch bei tom20∆-

Mitochondrien ein verändertes Insertionsverhalten von Fis1 festgestellt werden (Abb. 14A 

und B). Die Analyse der Importkinetik in diesen Mitochondrien für 1, 5 oder 20 Minuten 
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ergab, dass die Insertion von Fis1 ein sehr schneller Vorgang ist. Selbst bei einer 

Importtemeratur von 0°C konnte für keinen der drei Zeitpunkte ein signifikanter Unterschied 

bei der Insertionskinetik festgestellt werden (Abb. 14C). 

 

A 
 
     
 
 
 
 
 
 
 
 
 
 
 
 
                 

B  

 
 

 
 
 
 
 
 
 

 
Abb. 14. Die Insertion von Fis1 ist unabhängig von den Rezeptoren Tom20 und Tom70.  
A. Radioaktiv markiertes Fis1-TMC wurde mit Wildtyp Mitochondrien oder Mitochondrien, 
denen entweder Tom20 oder Tom70 fehlte, inkubiert und wie in Abb. 8B und 8C beschrieben 
weiterbehandelt. B. Radioaktiv markiertes Fis1-TMC wurde bei 0°C für die angegebenen 
Zeiten mit Wildtyp Mitochondrien oder Mitochondrien, denen entweder Tom20 oder Tom70 
fehlte, inkubiert und wie in Abb. 9 beschrieben weiterbehandelt. Die Banden wurden 
quantifiziert und die Intensitäten der Banden, die dem unmodifizierten Protein entsprechen, 
wurden als Maß für die Proteininsertion verwendet. Die Proteinmenge, die nach 20 Minuten 
der ersten Inkubation in Mitochondrien aus dem Wildtypstamm inserierte, wurde auf 100% 
gesetzt. 

 

Andere CTA-Proteine wie die kleinen Untereinheiten des TOM-Komplexes, Tom5, 

Tom6 und Tom7, wurden ebenfalls über einen Mechanismus in die Außenmembran integriert, 

der die TOM-Rezeptoren nicht benötigt (Abb. 15). Diese Daten lassen den Schluss zu, dass 

  51



   Ergebnisse   

die Importrezeptoren Tom20 und Tom70 bei der Insertion von CTA-Proteinen in die 

Außenmembran keine oder nur eine untergeordnete Rolle spielen. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Abb. 15. Die Insertion von Tom5, Tom6 und Tom7 ist unabhängig von den Rezeptoren 
Tom20 und Tom70. Radioaktiv markierte Vorstufenproteine wurden mit Mitochondrien, die 
vor dem Import mit Trypsin behandelt wurden (oben), mit tom20∆ Mitochondrien (Mitte) 
oder mit tom70∆ Mitochondrien inkubiert. Die Membranen wurden mittels 
Carbonatextraktion isoliert. Die Proteine wurden mittels SDS-PAGE getrennt und mittels 
Autoradiographie analysiert. 

 

3.4. Die bekannten Importkomponenten der Außenmembran werden nicht für die 

Insertion von Fis1 benötigt 

Vor ihrer Insertion in die Außenmembran werden β-Barrel Proteine durch die 

Importpore des TOM Komplexes transportiert (Paschen et al., 2005; Wiedemann et al., 2006).  

Es stellte sich nun die Frage, ob der Import von Fis1 in die Außenmembran auf eine ähnliche 

Weise abläuft und die Importpore, die vom TOM-Kernkomplex gebildet wird, benötigt wird. 

Dafür wurden Mitochondrien zunächst mit einem Überschuss des rekombinanten 

Vorläuferproteins pSu9(1-69)-DHFR, welches eine Präsequenz für die Lokalisation in der 

mitochondrialen Matrix enthält, inkubiert. Hier konnte ebenfalls keine Veränderung der 

Insertion von Fis1-TMC beobachtet werden. Der Import des β-Barrel-Proteins Porin war 

jedoch unter diesen Bedingungen, wie erwartet, stark beeinträchtigt (Krimmer et al., 2001) 

(Abb. 16A). Die Behandlung mit pSu9(1-69)-DHFR hatte auch keinen Einfluss auf die 
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kleinen Untereinheiten des TOM-Komplexes. In N. crassa konnte unter diesen Bedingungen 

bei Tom6 und Tom7 eine Reduktion der Assemblierung in den TOM-Komplex festgestellt 

werden (Dembowski et al., 2001). Dies lässt den Schluss zu, dass das Verstopfen der 

Importpore die Assemblierung der kleinen Tom-Komponenten beeinflusst, nicht aber ihre 

Integration in die Außenmembran. 
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Abb. 16. Fis1 und die kleinen Tom-Untereinheiten werden unabhängig von der 
Importpore in die Außenmembran inserert. A. Radioaktiv markiertes Fis1-TMC wurde mit 
isolierten Mitochondrien in An-, bzw. Abwesenheit eines Überschusses des Vorläuferproteins 
pSu9(1-69)-DHFR inkubiert und anschließend wie in Abb. 9 behandelt. Mitochondrien, die 
mit Porin inkubiert wurden, wurden nach dem Import mit Proteinase K behandelt. B. 
Radioaktive Vorstufenproteine wurden mit wie unter A behandelten Mitochondrien inkubiert 
und wie in Abb. 15 weiterbehandelt. 

 

Als nächstes wurde getestet, ob eine Mutation der Hauptkomponente des TOM-

Komplexes, Tom40, einen Einfluss auf die Integrationsfähigkeit von Fis1-TMC hat. Dazu 

wurden radioaktiv markierte Vorstufenproteine mit Mitochondrien inkubiert, die die Mutation 

tom40-2, tom40-3 oder tom40-4 enthielten. Diese Mutationen führen nach einem Hitzeschock 

zu einem Verlust der Funktion von Tom40. Hier konnte sowohl für Fis1-TMC als auch für die 
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kleinen Untereinheiten des TOM-Komplexes dieselbe Insertionseffizienz in Mitochondrien 

mit Wildtyp-Tom40 und einer Mutation in Tom40 festgestellt werden (Abb.17). 
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Abb. 17. Die Insertion von Fis1 und den kleinen Tom-Untereinheiten ist unabhängig von 
Tom40. A. Radioaktiv markiertes Fis1-TMC wurde mit Wildtyp Mitochondrien oder mit 
Mitochondrien, die ein temperatursensitives Allel von Tom40 (tom40-2, tom40-3, tom40-4) 
enthielten, inkubiert. Die weitere Behandlung ist in Abb. 9 beschrieben. B. Radioaktive 
Vorstufenproteine wurden mit wie unter A behandelten Mitochondrien inkubiert und wie in 
Abb. 15 weiterbehandelt. 

 
Auch in Mitochondrien aus Deletionsmutanten der Tom-Komponenten (Tom5, Tom6, 

Tom7) konnte nach Inkubation sowohl mit radioaktiv markiertem Fis1-TMC als auch mit den 

kleinen Tom-Untereinheiten kein Unterschied im Insertionsverhalten festgestellt werden 

(siehe Abb. 18). 
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Abb.18. Fis1 und die kleinen Tom-Untereinheiten sind unabhängig von den kleinen 
Tom-Komponenten Tom5, Tom6 und Tom7. A. Radioaktiv markiertes Fis1-TMC wurde 
mit Wildtyp Mitochondrien oder mit Mitochondrien, denen Tom5, Tom6 oder Tom7 fehlte, 
inkubiert. Die weitere Behandlung ist in Abb. 9 beschrieben. B. Radioaktive 
Vorstufenproteine wurden mit denselben Mitochondrien wie in A inkubiert und wie in Abb. 
15 weiterbehandelt. 

 
Im Gegensatz zum Verhalten von Fis1 oder den kleinen Tom-Komponenten ist der 

Import desVorstufenproteins pSu9-(1-69)-DHFR, welches eine Präsequenz enthält, in tom6∆- 

und tom40-3-Mitochondrien reduziert (Abb. 19). 
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Abb. 19. Der Import von pSu9-DHFR ist in tom40-3- und tom6∆-Mitochondrien 
reduziert. Radioaktiv markiertes pSu9-DHFR wurde mit den entsprechenden Mitochondrien 
für die angegebenen Zeitpunkte inkubiert. Die Bande die der maturierten Form (m) entspricht, 
wurde quantifiziert. Dabei wurde die Menge an Vorstufenprotein, die nach 20 Minuten in 
Kontrollmitochondrien, wobei jeder mutierte Stamm einen unterschiedlichen parentalen 
Wildtypstamm besitzt, importiert wurde auf 100% gesetzt. Das Vorstufenprotein von pSu9-
DHFR ist mit p gekennzeichnet. 

 

Die Mutationen in Tom40 und den kleinen Tom-Untereinheiten beeinflussten die 

Integration von Fis1 auch dann nicht, wenn die Kinetik der Insertion bei 0°C analysiert 

wurde.  Diese Daten sprechen dafür, dass die Insertion von CTA-Proteinen vom TOM-

Komplex unabhängig ist. Im Gegensatz dazu ist die Insertion des Signal-Anker Proteins 

Tom20 von Tom40 abhängig, um seine korrekte Topologie zu erhalten (Ahting et al., 2005). 

Der TOB-Komplex (z.T. auch SAM-Komplex genannt) besteht aus den Kompnenten 

Tob55, Tob38 und Mas37 und sorgt für die Membranintegration von β-Barrel Proteinen in die 

Außenmembran nachdem sie durch den TOM-Komplex in den Intermembranraum geleitet 

wurden (Paschen et al., 2005; Pfanner et al., 2004). Es stellte sich die Frage, ob dieser 

Komplex eine Rolle bei der Insertion von CTA-Proteinen spielt. Weder die Deletion von 

Mas37 noch die Herunterregulierung der Expression der essenziellen Proteine Tob55 oder 

Tob38 führten zu einer Veränderung des Insertionsverhaltens von Fis1-TMC und der kleinen 

Tom-Untereinheiten. Dies ist in Abbildung 20 am Beispiel von mas37∆ dargestellt Abb. 20 

und nicht gezeigte Daten). Vor allem die Ergebnisse mit mas37∆ stimmen mit neuesten 

Berichten überein, in denen gezeigt werden konnte, dass Mas37 für die Assemblierung der 

kleinen Tom-Komponenten benötigt wird, nicht aber für deren Insertion (Stojanowski et al., 

2007). 
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Abb. 20. Fis1 und die kleinen Tom-Untereinheiten werden TOB-unabhängig integriert. 
A. Radioaktiv markiertes Fis1-TMC wurde mit Wildtyp Mitochondrien oder mit 
Mitochondrien, denen Mas37 (mas37∆) fehlte, inkubiert. Die weitere Behandlung ist in Abb. 
9 beschrieben. B. Radioaktive Vorstufenproteine wurden mit denselben Mitochondrien wie in 
A inkubiert und wie in Abb. 15 weiterbehandelt. 

 
Die Menge an exprimiertem Fis1 in den Mitochondrien in den hier analysierten 

Mutationen des TOM- und des TOB-Komplexes war im Vergleich zu Wildtypmitochondrien 

sehr ähnlich (nicht abgebildet). Zusammenfasend ist festzustellen, dass keines der hier 

untersuchten Proteine essenziell für die Insertion von CTA-Proteinen ist. In Abbildung 21 ist 

dies anhand der Insertion von Fis1-TMC in die verschiedenen Mutanten dargestellt.  

 

 

 

  

 

 

 

 

Abb. 21. Die Insertion von Fis1 ist unabhängig von den bekannten Importkomponenten. 
Fis1-TMC wurde mit den angegebenen Mitochondrien, die die entsprechende Mutation 
aufwiesen und ihren korrespondierenden Wildtyp, inkubiert und anschließend wie in Abb. 9 
behandelt. Für jeden Stamm wurden mindestens drei Experimente durchgeführt. Die Banden, 
die dem integrierten Protein entsprachen, d.h. unmodifiziertes Protein in Gegenwart von 
IASD, wurden quantifiziert. Die Menge des integrierten Proteins in den einzelnen Stämmen 
wurde mit dem korrespondierenden Wildtyp, der auf 100% gesetzt wurde, verglichen. Die 
Fehlerbalken entsprechen der Standardabweichung.  
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3.5. Fis1 kann in Lipidvesikel mit niedriger Ergosterolkonzentration integriert werden 

Fis1-TMC konnte in die mitochondriale Außenmembran aller hier untersuchten 

Mutanten und ihres korrespondierenden Wildtyps mit derselben Effizienz inserieren. Dadurch 

kam die Frage auf, ob Fis1-TMC auch in der Lage sein könnte, in Lipidvesikel zu inserieren, 

die frei von Proteinen waren. Dafür wurden zunächst Lipidvesikel hergestellt, die die 

Lipidzusammensetzung der mitochondrialen Außenmembran  nachahmten (De Kroon et al., 

1999).  Die Lipidzusammensetzung wurde nach einer früheren Publikation abgeschätzt und 

für die Herstellung der Lipidvesikel verwendet (Gaigg et al., 1995). Die Lipidvesikel 

bestanden aus Phosphatidylcholin (46 mol%), Phosphatidylethanolamin (35 mol%), 

Phosphatidylinosotol (13 mol%), Cardiolipin (4 mol%) und Ergosterol (2 mol%). 

Anschließend wurde getestet, mit welcher Effizienz  Fis1-TMC in der Lage ist, im Vergleich 

zu Wildtyp Mitochondrien, in die Lipidvesikel zu inserieren. Dazu wurden Vorstufenproteine 

von Fis1-TMC mit Mitochondrien und Lipidvesikeln für unterschiedliche Zeitpunkte 

inkubiert. In Abbildung 22 ist zu erkennen, dass Fis1-TMC mit einer ähnlichen 

Insertionseffizienz in der Lage ist, in Vesikel eingebaut zu werden. Außerdem verhält sich 

Fis1-TMC in Mitochondrien und Lipidvesikeln auch bei kurzer Inkubation (1 min, 5min) 

ähnlich.  

 
Abb. 22. Fis1 kann in Lipidvesikel und Mitochondrien mit einer ähnlichen Effizienz 
inserieren. Radioaktiv markiertes Fis1-TMC wurde mit Mitochondrien (50 µg) oder einer 
äquivalenten Menge an Lipidvesikeln (33 µg) inkubiert und anschließend wie in Abb. 9 
behandelt. 

 

Von allen subzellulären Membranen, die an das Cytosol angrenzen, weist die 

mitochondriale Außenmembran den niedrigsten Gehalt an Ergosterol auf. Das Verhältnis von 

Ergosterol zu Phospholipid liegt hier bei 0,02/1 mol/mol (Zinser et al., 1991; Schneiter et al., 

1999). Außerdem ist bekannt, dass der Cholesteringehalt für die Insertion von Cytochrom b5 

wichtig ist (Brambillasca et al., 2005).  Aus diesem Grund stellte sich die Frage, ob ein 

niedriges Ergosterolverhältnis ein Teil des Mechanismus sein könnte, der die spezifische 

Lokalisation von mitochondrialen CTA-Proteinen sichert. Um dies zu testen, wurden 

Lipidvesikel mit unterschiedlichem Ergosterolgehalt hergestellt. Die verwendeten Vesikel 
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enthielten wie in Abbildung 22 2 mol%, welches dem Gehalt in der mitochondrialen 

Außenmembran entspricht, 10 oder 20 mol% Ergosterol. Das Verhältnis der anderen Lipide in 

der Membran wurde dabei konstant gehalten. Mit diesen Vesikeln wurde dann getestet, mit 

welcher Effizienz die Insertion von Fis1-TMC stattfinden kann. In Abbildung 22 ist zu 

erkennen, dass die Menge des inserierten Fis1-TMC mit steigendem Ergosterolgehalt stark 

abnimmt. Bei einer Erhöhung des Ergosterolgehaltes auf 10 mol% werden nur noch 56% der 

Fis1 Proteine im Vergleich zu Vesikeln mit 2 mol% Ergosterol in die Membran intergiert. Bei 

einer weiteren Erhöhung des Ergosterolgehaltes auf 20 mol% waren es nur noch 41% (Abb. 

23) 

 

 

 
 

 

 

 

 
 

Abb. 23. Ein erhöhter Ergosterolgehalt reduziert die Insertionseffizienz von Fis1 in 
Lipidvesikelmembranen. Radioaktiv markiertes Fis1-TMC wurde mit Lipidvesikeln mit 
mitochondrialer Lipidzusammensetzung mit den angegebenen Ergosterolkonzentrationen 
inkubiert und anschließend wie in Abb. 9 behandelt. 

 

Außerdem stellte sich die Frage, ob andere Phospholipide einen ähnlichen Einfluss auf 

die Insertionsfähigkeit von Fis1-TMC haben. Dafür wurden Lipidvesikel aus Phospholipiden 

(Avanti Polar Lipids) von E.coli hergestellt, welchen ebenfalls unterschiedliche 

Ergosterolmengen beigemischt wurden. Hier konnte, wie bei den Lipidvesikeln mit 

mitochondrialer Zusammensetzung, beobachtet werden, dass Fis1-TMC in Lipidvesikel mit 

niedriger Ergosterolkonzentration mit einer ähnlichen Effizienz inseriert wie in 

Mitochondrien. Diese Effizienz nimmt jedoch bei steigendem Ergosterolgehalt ebenfalls stark 

ab (siehe Abb. 24). Dies lässt den Schluss zu, dass hauptsächlich der niedrige 

Ergosterolgehalt in der Membran für die Insertionseffizienz von Fis1 verantwortlich ist. 
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Abb. 24. Der Ergosterolgehalt in der Membran reduziert die Effizienz der Fis1 
Insertion. Radioaktiv markiertes Fis1-TMC wurde mit Lipidvesikeln aus polaren E. coli 
Phospholipiden mit den angegebenen Ergosterolkonzentrationen inkubiert und anschließend 
wie in Abb. 9 behandelt. 

 

Als Kontrolle wurde eine Variante von Tom20 mit den Lipidvesikeln aus Abb. 22 

inkubiert. Diese Variante besitzt eine N-terminale Verlängerung aus den ersten 38 

Aminosäuren von N. crassa Tom70 (Tom20ext). Durch diese Verlängerung ist es möglich 

eine Insertion von Tom20 in die Membran durch einen proteolytischen Verdau nach der 

Importreaktion zu beobachten. Mit diesem Vorstufenprotein konnte bereits beobachtet 

werden, dass der TOM-Komplex für die Insertion von Tom20 benötigt wird und dass Tom20 

nur in geringen Mengen in Lipivesikel inseriert (Ahting et al., 2005). Tom20 war an 

Mitochondrien und Lipidvesikel gebunden, konnte aber nur in Mitochondrien integriert 

werden (Abb. 25). Dies lässt den Schluss zu, dass nicht alle Außenmembranproteine in der 

Lage sind, in Lipidvesikel zu inserieren und dass Fis1 in Lipidvesikel mit niedrigem 

Ergosterolgehalt inserieren kann. 

 

 

 

 

 

 

 

 

 
Abb. 25. Tom20ext kann nicht in Lipidvesikel inserieren. Radioaktiv markiertes Tom20ext 
wurde für 20 Minuten bei 25°C entweder mit Mitochondrien oder mit einer äquivalenten 
Menge Lipidvesikeln mit entsprechendem Ergosterolgehalt inkubiert. Anschließend wurden 
die Proben geteilt, so dass zwei gleich große Proben entstanden. Eine Hälfte wurde in 
Auftragspuffer gelöst, die andere mit 500 µg/ml Proteinase K behandelt und dann in 
Auftragspuffer gelöst. Das spezifische Insertionsfragment ist mit einem Pfeil gekennzeichnet. 
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Die bisherigen Experimente mit Lipidvesikeln wurden nicht unter kompetitiven 

Bedingungen durchgeführt und es wäre zu erwarten, dass der hydrophobe Teil von Fis1 in der 

Lage sein sollte, in vitro in  jede Membran mit der richtigen Lipidzusammensetzung zu 

inserieren. Da die Insertionskinetik zu schnell ist, um mit der hier angewandten Methode 

gemessen werden zu können, ist es nicht möglich, die Insertionskinetik in Mitochondrien und 

Lipidvesikel zu vergleichen. Aus diesem Grund sollte festgestellt werden, in welche Membran 

Fis1 bevorzugt inseriert, wenn sowohl Mitochondrien als auch Lipidvesikel im selben 

Reaktionsgemisch vorliegen. Diese Bedingungen simulieren die in vivo Situation besser, in 

der CTA-Proteine eine Integration in das falsche Zellkompartiment verhindern sollten und 

spezifisch in ihr Zielkompartiment inserieren. Um die Insertion von Fis1-TMC sowohl in 

Mitochondrien als auch in Lipidvesikeln getrennt analysieren zu können, mussten diese durch 

differenzielle Zentrifugation getrennt werden. Die Verteilung der Lipidvesikel wurde mit 

Hilfe von 2 mol% Fluorescein-Phosphatidylethanolamin in den Lipidvesikeln, die ansonsten 

dieselbe Lipidzusammensetzung besaßen, verfolgt. Durch das fluoreszierende  Phospholipid 

konnte die Fluoreszenz jeder einzelnen Fraktion gemessen werden. Nach der Trennung von 

Mitochondrien und Phospholipiden konnten 8-12% der Gesamtfluoreszenz in der 

mitochondrialen Fraktion gefunden werden. Etwa 90%  der Fluoreszenz konnte in der 

Fraktion mit den Lipidvesikeln gemessen werden. Auf diese Weise kann ausgeschlossen 

werden, dass die mitochondriale Fraktion mit aggregierten Liposomen signifikant 

kontaminiert war. Die Ergebnisse der Fluoreszenzmessungen sind an einem Beispiel in 

Abbildung 26 dargestellt. 
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Abb.26. Fluoreszenzmessungen der Fraktionen. Die Fluoreszenz der Proben wurde vor und 
nach der differenziellen Zentrifugation mit Hilfe des Fluoreszenzspektrums von Fluorescein-
Phosphatidylethanolamin gemessen. Fluorescein wird bei einer Wellenlänge von 480 nm 
(Absorptionsmaximum) angeregt und besitzt sein Emissionsmaximum bei 521 nm. 
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In diesen Kompetitionsexperimenten konnte ein Großteil der Fis1-Moleküle in die 

Mitochondrien inserieren. Fis1 konnte aber auch in Lipidvesikel inserieren. Hier zeigte sich, 

dass ein erhöhter Ergosterolgehalt die Fähigkeit der Vesikel mit den Mitochondrien, um Fis1-

Moleküle zu konkurrieren, stark reduzierte (Abb. 27). Diese Ergebnisse lassen den Schluss 

zu, dass Ergosterol die Insertion von Fis1-TMC in Lipidvesikel inhibiert. 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
Abb. 27. Ein erhöhter Ergosterolgehalt inhibiert die Insertion von Fis1-TMC in 
Lipidvesikel. Radioaktiv markiertes Vorstufenprotein von Fis1-TMC wurde mit einem 
Gemisch aus Mitochondrien (50 µg Protein) und 33 µg Lipidvesikeln mit entsprechendem 
Ergosterolanteil inkubiert und wie in Abb. 9 beschrieben, mit IASD behandelt. Mitochondrien 
und Lipidvesikel wurden durch differenzielle Zentrifugation getrennt und die Proteine durch 
SDS-PAGE getrennt. Die Banden wurden quantifiziert und die Intensität des von IASD nicht 
modifizierten Proteins wurde als Maß für die Insertion des Proteins in die Membran 
genommen. Die Proteinmenge, die in die Mitochondrien inserierte, wurde für jedes Gemisch 
auf 100% gesetzt. 

 

Mitochondrien von N.crassa enthalten in ihrer Außenmembran einen Ergosterolgehalt, 

der bei etwa 30% und damit weit über dem von Hefe liegt (Hallermayer und Neupert, 1974). 

Deshalb wurden isolierte Mitochondrien aus Hefe und N. crassa mit Fis1-TMC inkubiert. Die 

Fähigkeit von Fis1-TMC, in Mitochondrien von N. crassa zu inserieren, war reduziert. In 

N.crassa Mitochondrien inserierten nur etwa 60% des Fis1 im Vergleich zu Hefe (Abb. 28). 

 

 
 

Abb.28. Die Insertion von Fis1-TMC ist in N. crassa-Mitochondrien stark beeinträchtigt. 
Radioaktiv markiertes Fis1-TMC wurde mit Hefemitochondrien oder mit Mitochondrien aus, 
N. crassa inkubiert. Die weitere Behandlung ist in Abb. 9 beschrieben. 
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3.6. Insertion von Fis1-TMC-4Q in Lipidvesikeln und Microsomen 

 

Im nächsten Schritt wurde die Membraninsertion einer Fis1-Variante mit vier 

Ladungsaustauschen in der C-terminalen Region (Fis1-TMC-4Q) untersucht (Abb. 7). Diese 

Variante ist sowohl in vitro (Abb. 11) als auch in vivo (Habib et al., 2003) nicht in der Lage, 

in die Außenmembran integriert zu werden. Es stellte sich die Frage, ob diese 

Ladungsvariante in Lipidvesikel inserieren kann. Für den Fall, dass eine Insertion stattfindet, 

würde sich daraus die Frage ergeben, wie Mitochondrien zwischen den beiden Konstrukten 

unterscheiden können. Zuerst wurden Fis1-TMC und Fis1-TMC-4Q mit Lipidvesikeln 

inkubiert, die die mitochondriale Lipidzusammensetzung hatten. Im Gegensatz zu Fis1-TMC 

war Fis1-TMC-4Q nicht in der Lage, in Lipidvesikel zu inserieren (Abb. 29A). Um nun zu 

testen, wie spezifisch das verwendete in vitro System ist, wurden Fis1-TMC und Fis1-TMC-

4Q mit Microsomen aus Hundepankreas (Promega) inkubiert. Fis1-TMC-4Q war in der Lage, 

in Microsomen integriert zu werden (Abb. 29B). Fis1-TMC konnte ebenfalls in Microsomen 

mit einer ähnlichen Effizienz eingebaut werden. Dieses Ergebnisse stimmen mit einem 

früheren Bericht überein, in dem gezeigt werden konnte, dass eine Variante von Cytochrom 

b5, die in vivo an den Mitochondrien lokalisiert ist, in vitro sehr effizient in Microsomen 

integriert werden kann (Borgese et al., 2001). Zusammenfassend kann man sagen, dass Fis1-

TMC-4Q aufgrund seiner veränderten Ladungen im C-Terminus weder in Mitochondrien 

noch in Lipidvesikel inserieren kann. Daraus kann man schließen, dass die Mitochondrien 

nicht zwischen den beiden Ladungsvarianten unterscheiden, sondern dass das die Ladungen in 

der Nähe der Transmembrandomäne für die Insertion verantwortlich sind. 
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Abb. 29. Eine Ladungsvariante von Fis1 kann in Microsomen aber nicht in Lipidvesikel 
integriert werden. A. Radioaktiv markiertes Fis1-TMC-4Q wurde für 20 Minuten bei 25°C 
entweder mit Mitochondrien (50 µg Protein) oder Lipidvesikeln (33 µg) inkubiert und wie in 
Abb. 9 weiterbehandelt. B. Radioaktiv markierte Vorstufenproteine von Fis1-TMC und Fis1-
TMC-4Q wurden für 20 Minuten bei 25°C mit 50 µg Mitochondrien oder Microsomen 
inkubiert und wie in Abb. 9 weiterbehandelt. 
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4. Diskussion 

 
Proteine mit C-terminalem Anker (CTA-Proteine) erfüllen in der Zelle wichtige 

Funktionen an ihren spezifischen Organellen, die für das Leben, bzw. den Tod der Zelle 

verantwortlich sind. Sie sind mit ihrem C-terminalen Segment in der Membran verankert, 

während der Großteil des Proteins im Cytosol lokalisiert ist. Beispiele dieser Proteinklasse 

sind Fis1, das an der Teilung von Mitochondrien beteiligt ist, die kleinen Untereinheiten den 

TOM-Komplexes, Tom5, Tom6 und Tom7, sowie, bei höheren Eukaryoten die Apoptose 

regulierenden Proteine der Bcl-2-Familie und antivirales Signalling. 

 

4.1. Die Transmembrandomäne enthält die Information für die mitochondriale 

Lokalisation 

Für die Lokalisation  von CTA-Proteinen in der mitochondrialen Außenmembran 

konnte bereits gezeigt werden, dass die Transmembrandomäne von positiven Ladungen 

flankiert sein muss und dass eine Änderung dieser Ladungen zu einer veränderten 

Lokalisation in der Zelle führt (Habib et al., 2003). Hier sollte geklärt werden, ob die 

Transmembrandomäne alleine in der Lage ist, für die mitochondriale Lokalisation zu sorgen. 

Dies konnte mit Hilfe eines Fusionsproteins aus GFP und der Transmembrandomäne von Fis1 

aus Hefe gezeigt werden, welches, wie Fis1, an den Mitochondrien lokalisiert war. Für 

humanes Fis1 konnte ebenfalls nachgewiesen werden, dass das Fehlen der N-terminalen 

Domäne keinen Einfluss auf die Lokalisation hat (Yoon et al., 2003). Außerdem konnte 

gezeigt werden, dass die cytosolische Domäne alleine nicht in der Lage war, zu den 

Mitochondrien zu gelangen (Mozdy et al., 2000). Zusammenfassend kann man sagen, dass die 

Information für die Lokaliastion in der Transmembrandomäne liegt und keine weiteren 

Bereiche dafür notwendig sind. 

 

4.2. Entwicklung einer spezifischen Methode für die Beobachtung der Insertion in die 

Membran 

Nun sollte der Import von CTA-Proteinen in die mitochondriale Außenmembran näher 

charakterisiert werden, wobei der Importmechanismus und die daran beteiligten 

Komponenten von Interesse waren. Bisher war die Untersuchung dieser Frage nur begrenzt 

möglich, da der Einbau von Vorstufenproteinen in die Außenembran nicht zuverlässig 

analysiert werden konnte. Ein proteolytischer Verdau von Vorstufenproteinen mit einer 

Protease nach Beendigung der Importreaktion würde hier zu sehr kleinen Proteinfragmenten 
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führen, die später durch SDS-PAGE nicht mehr zu beobachten wären. Mit der in bisherigen 

Studien verwendeten Methode der Carbonatextraktion ist es nicht möglich, zwischen 

unspezifischer Bindung des hydrophoben Vorstufenproteins und physiologischer 

Membranintegration zu unterscheiden (Borgese et al., 2003). Um dieses Problem zu lösen, 

wurde eine spezifische und zuverlässige Methode entwickelt, um die Membranintegration zu 

verfolgen. Diese Methode beruht darauf, dass das CTA-Protein Fis1, welches als 

Modellprotein verwendet wurde, in der Transmembrandomäne ein Cystein enthält, das bei 

spezifischer Membranintegration nicht durch das sulfhydrylreaktive Reagenz IASD, welches 

Membranen nicht passieren kann, modifiziert werden kann. Bei einer unspezifischen 

Membranbindung von Fis1 ist das Cystein für IASD zugänglich und kann modifiziert werden. 

Durch die Modifikation hat nicht integriertes Fis1 ein höheres Molekulargewicht und kann 

durch SDS-PAGE von spezifisch integriertem Fis1 unterschieden werden. Mit Hilfe dieser 

Methode konnte kürzlich die TOM-unabhängige Insertion von Mcr1 in die Außenmembran 

von Mitochondrien beobachtet werden (Meineke et al., 2008).  

 

4.3. Die Insertion von Proteinen mit C-terminalem Anker ist unabhängig von den 

bekannten Transkokationskomplexen der Außenmembran 

Die meisten bisherigen Studien über mitochondriale CTA-Proteine wurden mit 

Untereinheiten des TOM-Komplexes als Modellproteine durchgeführt. Daher ist es nicht 

überraschend, dass die richtige Topologie und die Assemblierung dieser Proteine TOM-

Komplex-abhängig ist (Dembowski et al., 2001). Aus diesem Grund fiel die Wahl des 

Modellproteins auf Fis1, da es keine Untereinheit des TOM-Komplexes ist. 

Mit dieser Methode wurde gezeigt, dass die Importrezeptoren Tom20 und Tom70 nicht 

nötig für den korrekten Membraneinbau von Fis1 sind. In einer früheren Studie konnte jedoch 

beobachtet werden, dass der Importrezeptor Tom20 an der Insertion des  CTA-Proteins Bcl-2 

in Hefemitochondrien beteiligt ist (Motz et al., 2002). Es ist unklar, ob diese Beobachtung 

durch das verwendete Modellprotein kommt, oder daher, dass ein  heterologes System 

verwendet wurde. Im Gegensatz zum Signal-Anker Protein Tom20 (Ahting et al., 2005), das 

seine Transmembrandomäne, die ebenfalls von positiven Ladungen flankiert ist, am N-

Terminus hat, war die Insertion von Fis1 nicht durch eine Mutation in Tom40 beeinflusst. 

Außerdem wurden auch keine weiteren Kompnenten des TOM-Komplexes benötigt. Diese 

Ergebnisse entsprechen denen einer Studie, in der eine TOM-unabhängige Insertion mehrerer 

CTA-Proteine in Säugermitochondrien beobachtet werden konnte (Setoguchi et al., 2006). 

Setoguchi et al. benutzten Säugerzellen als Modellzellen, in denen man mit RNAi einen 
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knockdown des entsprechenden Gens erreicht. Dies schließt aber nicht aus, dass noch 

minimale Mengen der Importkomponenten vorhanden sein könnten, die für die Integration 

von CTA-Proteinen ausreichen. In dieser Arbeit konnte die Insertion von CTA-Proteinen an 

Hefemitochondrien beobachtet werden, welche den Vorteil besitzen, dass man 

Deletionsmutanten erzeugen kann. Auf diese Weise kann man sicherstellen, dass das 

entsprechende Gen  nicht mehr exprimiert werden kann. Es wurde in diesen Experimenten 

eine sehr schnelle und temperaturunabhängige Insertionskinetik festgestellt. Setoguchi et al. 

konnten mit ihrer Methode eine langsamere und temperaturabhängigere Insertion beobachten. 

Dieser Unterschied könnte durch die Verwendung der verschiedenen experimentellen 

Systeme entstanden sein. In dem hier verwendeten System wurden radioaktiv markierte 

Vorstufenproteine mit einer verdünnten Lösung, die Mitochondrien enthielt, gemischt. 

Dadurch hatten die Vorstufenproteine direkten Zugang zur mitochondrialen Außenmembran. 

Durch die Verwendung semi-intakter Zellen bei Setoguchi et al., zu denen die 

Vorstufenproteine gegeben wurden, mussten diese durch das sehr dichte Cytosol erst zu den 

Mitochondrien gelangen, wodurch sich das veränderte Verhalten erklären lässt. Diese 

Ergebnisse lassen den Schluss zu, dass die spezifische Insertion von CTA-Proteinen in 

Mitochondrien nicht auf spezifischen Interaktionen mit den Komponenten des TOM-

Komplexes beruht. 

Anschließend stellte sich die Frage, ob die Komponenten des TOB-Komplexes einen 

Einfluss auf die Insertion von CTA-Proteinen haben könnten. Es konnte für den TOB-

Komplex demonstriert werden, dass er an der Biogenese α-helikaler Untereinheiten des 

TOM-Komplexes beteiligt ist. Dies trifft auch auf die kleinen Untereinheiten zu, die CTA-

Proteine sind. Allerdings ist nur die Assemblierung in den TOM-Komplex und nicht die 

Insertion in die Membran betroffen (Stojanowski et al., 2007). In dieser Arbeit konnte sowohl 

für die kleinen Untereinheiten des TOM-Komplexes als auch für Fis1 festgestellt werden, 

dass die Insertion in die mitochondriale Außenmembran vom TOB-Komplex unabhängig 

verläuft. Somit sind für eine spezifische Insertion von CTA-Proteinen weder Interaktionen mit 

Komponenten des TOM-Komplexes noch mit den Komponenten des TOB-Komplexes nötig. 

Dies bedeutet, dass die spezifische Insertion eher von anderen Faktoren abhängig ist. 

 

4.4. Ein niedriger Ergosterolgehalt der Membran ist die Voraussetzung für die 

Membraninsertion 

Einer der Faktoren, die die Spezifität der Membranintegration beeinflussen, könnte die 

Lipidzusammensetzung der Außenmembran sein. Der Gehalt an Ergosterol in der 
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mitochondrialen Außenmembran von Hefe ist der niedrigste in allen Membranen, die Kontakt 

zum Cytosol haben. Das molare Verhältnis von Ergosterol zu Phospholipid beträgt 0,01 bis 

0,02 in dieser Membran (Schneiter et al., 1999; Zinser et al., 1991), während das Verhältnis in 

ER oder Plasmamembran bei 0,18, bzw. 0,46 liegt (Schneiter et al., 1999). Der Frage, ob der 

Ergosterolgehalt einen Einfluss auf das Insertionsverhalten von Fis1 hat, wurde mit Hilfe von 

Lipidvesikeln, die unterschiedlichen Ergosterolgehalt hatten, nachgegeangen. Zunächst 

konnte beobachtet werden, dass Fis1 sehr effizient in Lipidvesikel mit mitochondrialer 

Lipidzusammensetzung inserieren kann. Eine Erhöhung des Ergosterolgehaltes führte zu einer 

starken Reduzierung von Fis1. Daraus folgt der Schluss, dass der niedrige Ergosterolgehalt 

und die daraus resultierende erhöhte Fluidität der Außenmembran dazu beitragen, dass 

mitochondriale CTA-Proteine spezifisch in die Außenmembran eingebaut werden können. 

Der niedrige Sterolgehalt kann eine schnellere Insertion in die Membran erleichtern und 

dadurch der mitochondrialen Außenembran einen kinetischen Vorteil gegenüber den anderen 

Membranen in der Zelle verleihen. Dieser Schluss wird auch durch die Beobachtung 

unterstützt, dass die Insertion von Vorstufenproteinen von Hefe-Fis1 in isolierten 

Mitochondrien aus N. crassa stark reduziert war. Die Außenmembran dieser Mitochondrien 

enthält einen viel höheren Anteil an Ergosterol im Vergleich zur mitochondrialen 

Außenmembran von Hefe (Hallermayer und Neupert, 1974). Ein kleiner Teil von Fis1-

Molekülen konnte in neueren Studien auch in der Membran von Peroxisomen gefunden 

werden (Kobayashi et al., 2007; Koch et al., 2005). Peroxisomen besitzen, wie 

Mitochondrien, einen niedrigen Ergosterolgehalt mit einem molaren Verhältnis von 0,03 im 

Vergleich zu Phospholipiden (Schneiter et al., 1999). Dies unterstützt die Theorie, dass die 

Insertion von Fis1 durch einen niedrigen Ergosterolgehalt gefördert wird. Für CTA-Proteine 

mit Lokalisation im ER wurde vorgeschlagen, dass der relativ niedrige Ergosterolgehalt im 

Vergleich zu den Membranen des Sekretionsweges die Lokalisation unterstützt (Brambillasca 

et al., 2005). Die Insertion mitochondrialer CTA-Proteine benötigt sogar einen noch 

niedrigeren Ergosterolgehalt. Somit scheint die definierte Lipidzusammensetzung von jeder 

subzellulären Membran ein entscheidender Faktor bei der Aufrechterhaltung des 

proteomischen Profils der Organellenmembran zu sein. Ein weiteres Indiz, dass die 

Lipidzusammensetzung der Membran Einfluss auf Membranproteine hat, ist die 

Innenmembran von Mitochondrien, in der das Lipid Cardiolipin an der Stabilisierung und 

Organisation von Proteinkomplexen beteiligt ist (McKenzie et al., 2006; Zhang et al., 2005). 

Die Frage, ob Ergosterol in vivo einen ähnlichen Effekt auf die Insertion von CTA-Proteinen 

hat, wurde an den Mutanten erg6∆, erg24∆ und erg28∆ untersucht. Diese Mutanten besitzen 
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Defekte im Ergosterolsyntheseweg und haben einen Einfluss auf die mitochondriale 

Morphologie, die der von fis1∆ ähnelt (Altmann und Westermann, 2005). Es konnte zwar eine 

Reduktion von Fis1 an den Mitochondrien festgestellt werden, aber gleichzeitig waren auch 

andere mitochondriale Proteine (OM45, Porin, Tim23, Tim50 und Tom40) teilweise reduziert 

(Daten nicht gezeigt). Dies kann dadurch zustande kommen, dass durch das Fehlen von 

Ergosterol auch der Import und die Assemblierung anderer mitochondrialer Proteine stark 

beeinflusst werden, da durch die veränderte Lipidzusammensetzung ähnlich wie beim Fehlen 

von Cardiolipin in der Innenmembran (McKenzie et al., 2006; Zhang et al., 2005), die 

Stabilisierung und Organisation von Proteinkomplexen in der Membran gestört sein kann. 

Durch den Einfluss der Lipidzusammensetzung auf das Insertionsverhalten von CTA-

Proteinen ist es möglich, dass Lipide eine Rolle bei der Biogenese von Organellen und dort 

vor allem der Proteintranslokation spielen. 

Es stellt sich also die Frage, wie Fis1 in vivo an seinen richtigen Bestimmungsort 

gelangt. Fis1 war jedoch auch in der Lage, in vitro in Microsomen integriert zu werden. Diese 

Beobachtung unterstützt die Idee, dass die ER-Membran, solange keine konkurrierenden 

Organellen vorhanden sind, fähig ist, CTA-Proteine zu integrieren, die eigentlich in anderen 

Membranen lokalisiert sind (Borgese et al., 2007). Eine mögliche Erklärung dafür könnte 

sein, dass die Spezifität von CTA-Proteinen für die richtige Membran, die eine falsche 

Insertion verhindern sollte, auf kinetischen Faktoren beruht, die die irreversible Integration in 

das richtige Kompartiment beschleunigen. Bei diesen Faktoren könnte es sich um noch nicht 

identifizierte Proteine handeln, die die Insertion von Fis1 in die Membran durch Einfangen 

des Fis1-Vorstufenproteins verstärken. Eine andere Möglichkeit ist, dass die Außenmembran 

Lipiddomänen oder andere strukturelle Elemente enthält, die die Insertion von Fis1 

erleichtern und/oder die intgrierten Proteine stabilisieren. Diese Stabilisierung, die in 

Lipidvesikeln nicht vorkommt, wird wahrscheinlich nicht für die Membranintegration selbst 

benötigt, aber sie könnte das Gleichgewicht zwischen Vorstufen-Fis1 und vollkommen 

inseriertem Fis1 auf die zuletzt genannte Seite verschieben.   

 

4.5 Mögliche Mechanismen der Membraninsertion 

Eine große Frage bei der Topogenese von CTA-Proteinen ist, ob der Transport vom 

Cytosol zur richtigen Zielmembran und die darauf folgende Integration in die Membran von 

cytosolischen Proteinen und/oder Proteinen in der Zielmembran unterstützt werden. Für CTA-

Proteine, die im ER lokalisiert sind, gibt es darüber sich widersprechende Berichte (Borgese 

et al., 2003; High und Abell, 2004). Während für das Protein Syb2 die Beteiligung der Sec-
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Maschinerie vermutet wird (Abell et al., 2003), wird für Cytochrom b5 ein Mechanismus, der 

unabhängig von anderen Proteinen ist, vorgeschlagen (Brambillasca et al., 2005). Eine 

mögliche Lösung für dieses Problem ist die Vorstellung, dass CTA-Proteine verschiedenen 

Wegen abhängig von der Hydrophobizität ihrer Transembransegmente folgen (High und 

Abell, 2004). Proteine mit niedriger Hydrophobizität in dieser Region können ohne Hilfe 

eines anderen Faktors zu ihrem Zielort gelangen, während solche mit einem stärker 

hydrophoben Transmembransegment die Hilfe zusätzlicher Proteine benötigen (Brambillasca 

et al., 2006). Diese Idee wird durch die kürzliche Entdeckung des cytosolischen Proteins 

Asna1/TRC40, welches mit einer Untergruppe von CTA-Proteinen interagiert und ihren 

Transport zum ER erleichtert, unterstützt (Stefanovic und Hedge, 2007). TRC40 war jedoch 

nicht an der Insertion von Proteinen wie Cytochrom b5 beteiligt, die ohne Unterstützung in 

die Membran inserieren können. Ein weiteres Beispiel für die Beteiligung cytosolischer 

Proteine ist das am ER lokalisierte CTA-Protein Sec61β, dessen Insertion vom Chaperon 

Hsp70 und seinem Co-Chaperon Hsp40 erleichtert wird (Abell et al., 2007). Bis jetzt konnte 

noch kein Protein identifiziert werden, das die Biogenese mitochondrialer CTA-Proteine 

erleichtert. Es ist aber nicht ausgeschlossen, dass solche Faktoren CTA-Proteine zu den 

Mitochondrien bringen. Daraus ergeben sich für die Insertion von CTA-Proteinen in die 

mitochondriale Außenmembran drei Möglichkeiten (Abb. 30). Die erste Möglichkeit ist die, 

dass im Cytosol synthetisierte Vorstufenproteine in der Außenmembran von einem bisher 

noch nicht identifizierten Protein in der Außenmembran erkannt und eingebaut werden. In 

Hefe konnte etwa 85% des Proteoms der mitochondrialen Außenmembran identifiziert 

werden (Zahedi et al., 2006). Dabei handelt es sich um etwas mehr als 100 Proteine, von 

denen zum größten Teil ihre Funktion schon bekannt ist.  Daher besteht noch die Möglichkeit, 

dass ein solcher Rezeptor existiert und noch nicht identifiziert ist. Es stellt sich allerdings die 

Frage, ob CTA-Proteine für Ihre Insertion in die Mitochondriale Außenmembran einen 

Rezeptor benötigen, da Versuche mit proteasebehandelten Mitochondrien und Lipidvesikeln 

zeigten, dass die Insertion auch in diesen Fällen mit unveränderter Effizienz ablief. Daher ist 

die Wahrscheinlichkeit eines Rezeptorproteins in der Membran als eher niedrig 

einzuschätzen. Die zweite Möglichkeit ist, dass Vorstufenproteine ohne Hilfe von anderen 

Proteinen in die Membran inserieren können. Die dritte Möglichkeit beinhaltet einen 

cytosolischen Faktor, der die Vorstufenproteine bindet und zur mitochondrialen 

Außenmembran bringt, wo dann die Insertion des Vorstufenproteins stattfindet, welche mit 

oder ohne Hilfe eines weiteren Faktors ablaufen könnte. Die Daten, die in dieser Arbeit 

gewonnen wurden, deuten darauf hin, dass  zumindest für die Insertion von CTA-Proteinen 
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die  richtige Lipidzusammensetzung ausreicht und der TOM-Komplex nicht an der Insertion 

beteiligt ist. 

 
Abb. 30. Mögliche Mechanismen der Insertion von CTA-Proteinen in die mitochondriale 
Außenmembran. 1) CTA-Proteine werden von einem bisher unbekannten Rezeptor in der 
mitochondrialen Außenmembran erkannt und integriert. 2) CTA-Proteine können ohne Hilfe 
von anderen Proteinen in die Außenmembran inserieren. 3) CTA-Proteine werden von einem 
oder mehreren cytosolischen Faktoren gebunden und zur Außenmembran gebracht, wo sie 
mit, bzw. ohne Hilfe eines Rezeptors inserieren können. Der TOM-Komplex ist an keinem der 
möglichen Mechanismen beteiligt. Die positiven Ladungen in dieser Abbildung repräsentieren 
alle die Transmembrandomäne flankierenden positiven Ladungen. 

 

Bei den kleinen Untereinheiten des TOM-Komplexes konnte ebenfalls beobachtet 

werden, dass zumindest die Insertion in die mitochondriale Außenmembran wie bei Fis1 

unabhängig von den bekannten Importkomponenten abläuft. Dies lässt es wahrscheinlicher 

werden, dass die Insertion in die mitochondriale Außenmembran sowohl von Fis1 als auch 

von den kleinen Untereinheiten des TOM-Komplexes zumindest teilweise über denselben 

Mechanismus ablaufen. Der Unterschied von Fis1 zu den kleinen TOM-Komponenten ist, 

dass diese für ihre Assemblierung in den TOM-Komplex und ihre Funktion auf andere 

Faktoren, wie die Assemblierung in den TOM-Komplex (Model et al., 2001), oder die Hilfe 

von Mas37 (Stojanowski et al., 2007),  angewiesen sind. Für die Außenmembranvariante des 

Signal-Anker Proteins Mcr1 konnte ebenfalls beobachtet werden, dass es TOM-unabhängig in 

die Außenmembran inserieren kann (Meineke et al., 2008). Der Unterschied von CTA- und 
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Signal-Anker Proteinen besteht darin, dass sich die Transmembrandomäne am N-, bzw. C-

Terminus befindet. Abgesehen von diesem Unterschied sind die Transmembrandomänen sehr 

ähnlich aufgebaut. Beide besitzen ein kurzes Transmembransegment und sind von positiven 

Ladungen flankiert. Daher kann es auch möglich sein, dass diese sehr ähnlichen 

Informationen in der Transmembranregion dazu beitragen, dass beide Proteinklassen einen 

ähnlichen Mechanismus zur Membraninsertion benutzen. 

Zusammenfassend lassen die Ergebnisse dieser Arbeit den Schluss zu, dass Fis1 über 

einen neuen Weg in die mitochondriale Außenmembran integriert wird, der keine der 

bekannten Importkomponenten der Außenmembran benutzt und dass die richtige 

Lipidzusammensetzung der Außenmembran die Insertion erleichtert. 
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5. Zusammenfassung 
 

Im Rahmen dieser Arbeit wurde die Biogenese von Proteinen mit C-terminalem Anker 

in der mitochondrialen Außenmembran untersucht. Diese Proteine bestehen aus einem 

Transmembransegment am C-Terminus und einer hydrophilen cytosolischen Domäne. CTA-

Proteine mit mitochondrialer Lokalisation übernehmen eine Reihe wichtiger Aufgaben. Sie 

stabilisieren den TOM-Komplex, modulieren die mitochondriale Morphologie und regulieren 

in höheren Eukaryoten die  Apoptose und das antivirale Signalling. Trotz ihrer Bedeutung für 

viele zelluläre Prozesse ist der Mechanismus, über den sie erkannt und in die mitochondriale  

Außenmembran eingebaut werden, weitestgehend unbekannt. Einer der Gründe, warum dieser 

Mechanismus wenig charakterisiert ist, ist das Fehlen einer spezifischen Methode für die 

Kontrolle der Membranintegration.  

Um diesen Mechanismus zu verstehen, wurde deshalb in dieser Arbeit eine spezifische 

Methode entwickelt, mit der man die Insertion von Fis1 verfolgen kann. Das Modellprotein 

Fis1 ist ein Bestandteil der mitochondrialen Außenmembran und vermittelt die Teilung von 

Mitochondrien. Eine korrekte Insertion konnte mit Hilfe des sulfhydrylspezifischen Reagenz 

4-Acetamido-4’-[(iodoacetyl)amino]stilben-2,2’-disulfonsäure (IASD) und einer Fis1-

Variante mit einem einzigen Cysteinrest im Transmembransegment beobachtet werden. Mit 

dieser Methode konnte gezeigt werden, dass weder in vivo noch in vitro die Deletion der 

Importrezeptoren Tom20 und Tom70 die Insertion von Fis1 beeinflussten. Ferner 

beeinträchtigten Mutationen, bzw. Deletionen des TOM-Kernkomplexes die Insertion von 

Fis1 nicht. Auch die Komponenten des TOB-Komplexes spielen beim Membraneinbau keine 

Rolle. 

Außerdem wurde nachgewiesen, dass Fis1 in die Membran von Lipidvesikeln integriert. Die 

Außenmembran von Mitochondrien besitzt den niedrigsten Ergosterolgehalt aller Membranen 

in der Zelle, die an das Cytosol angrenzen. In Einklang hiermit war die Membraninsertion in 

Lipidvesikel mit erhöhtem Ergosterolgehalt signifikant reduziert 

 Die Ergebnisse dieser Arbeit legen die Schlussfolgerung nahe, dass keine der bekannten 

Importkomponenten an der Membranintegration von Fis1 beteiligt sind. Es kann aber nicht 

ausgeschlossen werden, dass noch nicht identifizierte cytosolische Faktoren, die Fis1 zu den 

Mitochondrien bringen, an diesem Mechanismus beteiligt sein könnten. Außerdem könnte ein 

bisher unbekanntes Protein, das in der mitochondrialen Außenmembran lokalisiert ist, die 

Insertion von Fis1 vermitteln. Die Ergebnisse dieser Arbeit zeigen deutlich, dass Fis1 über 

einen bisher unbekannten Mechanismus in die mitochondriale Außenmembran integriert wird. 
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Die Bedeutung der spezifischen Lipidzusammensetzung der Membran für diesen Prozess lässt 

den Lipiden eine neue Rolle für die Biogenese mitochondrialer Proteine zukommen. 
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7. Abkürzungen 
 

 

α     Anti 

Abb.     Abbildung 

a. E.     arbiträre Einheiten 

AIF    Apoptose-induzierender Faktor 

AIP     Arylhydrokarbon-Rezeptor-interagierendes Protein 

Alb3     Albino3 

Amp    Ampicillin 

APS     Ammoniumperoxodisulfat 

ATP     Adenosin-5'-triphosphat 

bp     Basenpaare 

BSA     Rinderserumalbumin 

C     Chaperon 

C-     Carboxy- 

COX     Cytochrom Oxidase 

∆    Deletion des entsprechenden Gens 

DHFR     Dihydrofolat-Reduktase 

DMSO    Dimethylsulfoxid 

DNA     Desoxyribonucleinsäure 

DTT     Dithiothreitol 

∆Ψ    Membranpotentzial 

E. coli     Escherichia coli 

EDTA     Ethylendiamin-tetraacetat 

ER     endoplasmatisches Retikulum 

5-FOA    5-Fluor-Orotsäure 

GFP     grünfluoreszierendes Protein 

GIP    generelle Import-/Insertionspore 

HA     Hämagglutinin 

HEPES    N-2-Hydroxyethylpiperazino-N'-2-ethansulfonsäure 

H.s.     Homo sapiens 

Hsp     Hitzeschockprotein 
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IASD (4-Acetamido-4´-[(iodoacetyl)amino]stilben-2,2´-

disulfonsäure) 

IgG     Immunglobulin G 

IM     mitochondriale Innenmembran 

IMP     Innenmembranpeptidase 

IMR     mitochondrialer Intermembranraum 

IPTG     Isopropyl-β,D-thio-galactopyranosid 

kb     Kilobase 

kDa     Kilodalton 

LB     Luria Bertani 

Mim     Mitochondrialer Import 

MOPS    3-(N-Morpholino)-ethansulfonsäure 

MPP     mitochondriale Prozessierungspeptidase 

MSF     mitochondrialen Import stimulierender Faktor 

mt    mitochondrial 

N-     Amino- 

N.c.     Neurospora crassa 

N. crassa    Neurospora crassa 

OD     optische Dichte 

ORF     offenes Leseraster 

PAGE     Polyacrylamid-Gelelektrophorese 

PAS     Protein A-Sepharose 

PCR     Polymerase-Kettenreaktion 

PE     Phosphatidylethanolamin 

PEG     Polyethylenglykol 

PI     Präimmunserum 

PK     Proteinase K 

PMSF     Phenylmethylsulfonylfluorid 

RFP    rot fluoreszierendes Protein 

RNA     Ribonukleinsäure 

RT     Raumtemperatur 

S     Svedberg 

Sam     Protein des SAM-Komplexes 

SAM     sorting and assembly machinery 
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S.c.     Saccharomyces cerevisiae 

S.     cerevisiae Saccharomyces cerevisiae 

SDS     Natrium-dodecylsulfat 

STI     Sojabohnen-Trypsininhibitor 

Su9     Untereinheit 9 der Fo-Untereinheit der F1Fo-ATPase 

TBS     Tris-gepufferte Kochsalzlösung 

TCA     Trichloressigsäure 

TEMED    N,N,N',N'-Tetramethylendiamin 

Tim     Protein des TIM-Komplexes 

TIM  Translokationskomplex der mitochondrialen 

Innenmembran 

TMD     Transmembrandomäne 

Tob     Protein des TOB-Komplexes 

TOB  Topogenese von mitochondrialen Außenmembran-β-

Barrel- Proteinen (topogenesis of mitochondrial outer 

membrane β-barrel proteins) 

Tom     Protein des TOM-Komplexes 

TOM  Translokationskomplex der mitochondrialen 

Außenmembran 

TPR     tetratricopeptide repeat 

U     enzymatische Einheiten (units) 

üN     über Nacht 

Upm     Umdrehungen pro Minute 

UTR     untranslated region 

v/v     Volumen pro Volumen 

VDAC    voltage-dependent anion-selective channel 

w/v     Gewicht pro Volumen 

WT     Wildtyp 
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