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1. EINLEITUNG 
 

1.1 Kopf-Hals-Karzinome 
 

1.1.1 Epidemiologie 
 

Im Jahr 1998 erkrankten in Deutschland nach den Inzidenzdaten des Saarländischen 

Krebsregisters ca. 347.000 Menschen an Krebs. Es ergab sich eine alters-

standardisierte Inzidenz von 389 pro 100.000 Männern und 301 pro 100.000 Frauen.  

Kopf-Hals-Karzinome der Männer machten einen Anteil von 6,3 % aller jährlichen 

Krebsneuerkrankungen aus. Sie nahmen damit in der Häufigkeitsverteilung der 

Malignome zusammen mit dem Harnblasen-Karzinom die vierte Stelle hinter dem 

Prostata-, Lungen- und kolorektalen Karzinom ein. Im Hinblick auf die zeitliche 

Entwicklung kann man einen 3-fachen Anstieg der Mortalität in den letzten 20 Jahren 

erkennen. Dieser Anstieg konnte bei keiner anderen Krebserkrankung beobachtet 

werden. Die rohe Mortalitätsrate von Kopf-Hals-Karzinomen, die sich aus der jährlichen 

Anzahl der Todesfälle bezogen auf 100.000 der Bevölkerung ergibt, betrug unter den 

Männern 12,3. Bezüglich der Verteilung der Tumorlokalisationen im Kopf-Hals-Bereich 

war bei Männern mit 27 % am häufigsten der Larynx betroffen, gefolgt von Oropharynx, 

Mundhöhle und Hypopharynx. Der Altersmittelwert bei Diagnosestellung lag bei 58 

Jahren. 

Für Frauen ergab sich bei den Kopf-Hals-Karzinomen ein Anteil an der 

Neuerkrankungsrate von 2,1 %. Die rohe Mortalitätsrate betrug 3,2. Als häufigster 

Tumor im Kopf-Hals-Bereich wurde bei Frauen das Oropharynxkarzinom festgestellt. 

Der Altersmittelwert bei Diagnosestellung war 62 Jahre (Schlesinger-Raab et al., 

2003). 

 

1.1.2 Exogene Risikofaktoren  
 

Als bedeutendste Risikofaktoren für Kopf-Hals-Karzinome sind Tabakrauch und 

übermäßiger Alkoholkonsum anerkannt. Beide Faktoren sind schätzungsweise für drei 

Viertel aller oralen und pharyngealen Karzinome verantwortlich. Durch Konsum beider 

Genussmittel besteht ein multiplikativ erhöhtes Risiko für Kopf-Hals-Karzinome (Blot et 

al., 1988). Eine Analyse des tabakassoziierten Krebsrisikos für unterschiedliche 

Tumorlokalisationen ergab die höchsten Risikowerte für das Mundhöhlen- und 

Larynxkarzinom. Das alkoholassoziierte Krebsrisiko lag bei Karzinomen im Oropharynx 

und Larynx am höchsten (Maier et al., 1990). 
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Die beim Abrauchen von Tabak entstehenden Verbrennungsprodukte werden eingeteilt 

in Hauptstromrauch, der durch Mundinhalation während eines Zuges aufgenommen 

wird, und in Nebenstromrauch, der sich beim Verglimmen des Tabaks während der 

Zugpausen bildet. Die Gasphase des Hauptstromes besteht hauptsächlich aus 

Stickstoff, Sauerstoff, Kohlendioxid und Kohlenmonoxid, die Partikelphase enthält als 

Hauptkomponenten Nicotiana-Alkaloide wie Nikotin. Als wichtigste Karzinogene des 

Tabakrauches gelten Polyzyklische aromatische Kohlenwasserstoffe wie 

Benzo[a]pyren, N-Nitrosamine wie N’-Nitrosonornikotin (NNN) und 4-

(Methylnitrosamino)-1-(3-pyridyl)-1-butanon (NNK), Aldehyde, aromatische Amine und 

Benzol (Hoffmann D. und Wynder El, 1994). Jedoch scheint auch das Alkaloid Nikotin 

selbst zur Tumorinitiation und Karzinogenese beizutragen (Kleinsasser et al., 2006; 

Sassen et al., 2005; Semmler et al., 2006). Um die lebenslang gerauchte Mengen an 

Zigaretten abzuschätzen, werden Packungsjahre (packyear) berechnet. Dabei 

entspricht ein packyear 20 Zigaretten pro Tag über ein Jahr.  

Der genaue Pathomechanismus der alkoholassoziierten Karzinogenese ist noch nicht 

endgültig geklärt. Alkohol scheint lokal eine physikochemische Veränderung der 

Zellmembranen im oberen Aerodigestivtrakt zu bewirken und dadurch die Aufnahme 

von Karzinogenen oder Prokarzinogenen zu erleichtern. Außerdem fungiert er als 

Solvens, was die Penetration karzinogener Substanzen steigert (Seitz und 

Simanowski, 1988). Eine genotoxische Wirkung ist für Azetaldehyd, dem 

Hauptmetaboliten von Ethanol nachgewiesen. Von der International Agency for 

Research on Cancer IARC wurde Azetaldehyd als 2b Karzinogen eingestuft, d.h. als 

möglicherweise karzinogen (International Agency for Research on Cancer, 1999). 

Boffetta und Hashibe geben eine Übersicht über die karzinogenen Effeke ausgelöst 

durch Alkoholkonsum. Auch eine vermehrte Produktion von reaktiven 

Sauerstoffradikalen durch Alkohol spielt wohl bei der Tumorentstehung eine Rolle. 

Genpolymorphismen von DNA-Reparaturgenen und von alkoholmetabolisierenden 

Enzymen scheinen die Alkoholeffekte zu beeinflussen (Boffetta und Hashibe, 2006).  

Daneben gilt die Exposition gegenüber Schadstoffen in Umwelt und Beruf als 

Risikofaktor. Zu diesen, auch Xenobiotika genannten Fremdstoffen zählen unter 

anderem Asbestfeinstaub, Glasfaserstaub, Senfgas, Säuredämpfe, polyzyklische 

aromatische Kohlenwasserstoffe, Benzindämpfe, Zementstaub, Holzstaub, Kühl-

schmierstoffe, Eisen, Zement, Steinkohle- und Teerprodukte, sowie Farben, Lacke und 

Lösungsmittel (Maier et al., 1997; Maier und Tisch, 1999). Als besonders gefährdete 

Berufsgruppen für die Entstehung von Mundhöhlen- und Pharynxkarzinomen werden 

Beschäftigte im Baugewerbe, Maler und Lackierer, Arbeiter in metallverarbeitenden 

Berufen, in der Papierindustrie und in der Gummiindustrie angesehen. Die Gefährdung 
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in der Textilindustrie und in holzverarbeitenden Betrieben wird diskutiert (Riechelmann, 

2002).  

Ein weiterer Einflussfaktor sind die Ernährungsgewohnheiten. In einer Fall-

Kontrollstudie zwischen 1995 und 2002 wurde der Einfluss von Ernährungsfaktoren auf 

das Risiko von Mundhöhlen- und Pharynxkarzinomen untersucht. Ein niedriger 

Konsum an frischen Früchten und Gemüse und gleichzeitig eine hohe Aufnahme von 

Risikonahrungsmitteln wie Fleisch, gekochtem Gemüse und Kartoffeln ging mit einem 

erhöhten Tumorrisiko einher (De Stefani et al., 2005). Eine obst- und gemüsereiche 

Ernährung reduzierte signifikant das Risiko für Oropharynxkarzinome bei Rauchern 

(Kreimer et al., 2005).  

Schließlich scheinen virale Infektionen eine Rolle bei der Tumorentstehung zu spielen. 

Humane Papillomaviren (HPV) konnten im Kopf-Hals-Bereich vor allem bei 

Karzinomen der Lippen, aber auch im Mundbereich und Larynx nachgewiesen werden 

und haben somit wohl Anteil an der multifaktoriellen Karzinogenese im oberen 

Aerodigestivtrakt (Atula et al., 1997). Dabei wurde in 84 % der HPV positiven Tumoren 

HPV 16 gefunden (Syrjanen, 2005). Die Rolle des Epstein-Barr Virus (EBV) in Bezug 

auf Nasopharynxkarzinome ist noch nicht eindeutig geklärt. Während Atula et al. 1997 

keine Assoziation fand (Atula et al., 1997), wurde das von EBV abgeleitete LMP-1 Gen 

in 96 % der Nasopharynxkarzinome nachgewiesen (Tsang et al., 2003). 

 

1.1.3 Endogene Risikofaktoren 
 

Neben der exogenen Schadstoffbelastung bestimmt die individuelle Empfindlichkeit 

(Suszeptibilität) das Risiko, an einem Tumor im Kopf-Hals-Bereich zu erkranken. Die 

Suzeptibilität wird von verschiedenen genetischen Faktoren beeinflußt, wie der 

Empfindlichkeit gegenüber Mutagenen (Mutagensensitivität), der DNA-Reparatur-

kapazität und genetischen bzw. enzymatischen Polymorphismen (Ho et al., 2007; Hsu 

et al., 1991; Schmezer et al., 2001). 

Die Mutagensensitvität beschreibt die individuelle Empfindlichkeit gegenüber DNA-

schädigenden Auswirkungen von Fremdstoffen. Cloos et al. brachte sie als endogenen 

Risikomarker mit der Entstehung von Kopf-Hals-Karzinomen in Verbindung. An 

kultivierten Lymphozyten wurde die Rate an Bleomycin induzierten Chromatidbrüchen 

als Parameter der Mutagensensitivität untersucht (Cloos et al., 1996). Der 

Zusammenhang zwischen familiärer Tumorbelastung und Bleomycin induzierter 

Mutagensensitivität wurde an Patienten mit Tumoren im oberen Aerodigestivtrakt 

getestet. Dabei wurden Patienten ab einem Chromosomenbruch pro Zelle als 

mutagensensitive Individuen klassifiziert (Bondy et al., 1993).  
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Im Zusammenhang mit der individuellen Suszeptibilität wurde die DNA-

Reparaturkapazität (DRC) an Lymphozyten von Patienten mit kleinzelligem 

Lungenkarzinom bestimmt. Als Nachweismethode diente der Comet Assay (Schmezer 

et al., 2001). Die DNA-Reparaturkapazität beschreibt die Fähigkeit in einem 

vorgegebenen Zeitintervall DNA-Schäden zu reparieren.  

Auch Polymorphismen in Karzinogen-metabolisierenden Genen, DNA-Reparaturgenen 

und Zell-Zyklus-Kontroll-Genen beeinflussen die Suszeptibilität. Die Genvariationen 

haben unterschiedliche Aktivitäten von Enzymen bzw. eine unterschiedliche 

Proteinexpression zur Folge. Polymorphismen von Karzinogen-metabolisierenden 

Enzymen, die den Phasen I bzw. II der Biotransformation angehören, wurden 

beispielsweise für das Cytochrom P 450–System (Hong und Yang, 1997), für die 

Alkoholdehydrogenasen ADH1C und ADH3, die am Metabolismus von Ethanol zu 

Azetaldehyd beteiligt sind (Coutelle et al., 1997; Homann et al., 2005), sowie für die 

Gluthation-S-Transferasen GSTM1, GSTP1 und GSTT1 identifiziert (Hashibe et al., 

2003). Ho et al. gibt eine Übersicht über die Assoziation zwischen Karzinomen im 

oberen Aerodigestivtrakt und verschiedenen Karzinogen-metabolisierenden Enzymen 

(Ho et al., 2007). Daneben konnte eine unterschiedliche Genexpression der 

Reparaturenzyme XRCC1, XPD, und ERCC1 mit einem erhöhten Risiko für Kopf-Hals-

Karzinome in Verbindung gebracht werden (Sturgis et al., 1999; Sturgis et al., 2002). 

Variationen in Genen der Zell-Zyklus-Kontrolle konnten für p 53 und Cyklin D1 

nachgewiesen werden (McWilliams et al., 2000; Nishimoto et al., 2004).  
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1.2 Zusammenhang zwischen DNA-Schädigung und 
Reparatur 

 

Schäden in der Erbsubstanz können entweder endogen entstehen, häufig indem 

reaktive Sauerstoffspezies als Nebenprodukte des Zellstoffwechsels oxidative DNA-

Schäden verursachen, oder exogen durch Einwirkung genomschädigender 

Substanzen. Diese Karzinogene wirken entweder direkt genotoxisch ohne 

metabolische Aktivierung oder indirekt genotoxisch, indem sie vom Organismus 

metabolisiert und aktiviert werden. 

Bei den induzierten DNA-Schäden handelt es sich um Einzel- oder 

Doppelstrangbrüche, Basenmodifikationen, Deletionen, DNA–DNA, Inter- und Intra-

strang Crosslinks sowie DNA-Protein Crosslinks (Moustacchi, 2000).  

Moustacchi gibt einen Überblick über die verschiedenen Reparatursysteme der Zelle. 

Um die schadhaften Veränderungen der DNA zu beseitigen, verfügt die Zelle über 

verschiedene Reparatursysteme, die dafür sorgen, die Basenpaarungen der DNA 

konstant zu halten. Mit der Basen-Exzisions-Reparatur werden fehlerhafte Basen nach 

Erkennen durch DNA-Glycasen ausgetauscht. Außerdem können DNA-Strangbrüche 

repariert werden. Durch Veränderung der helikalen Struktur identifiziert die Nukleotid-

Exzisions-Reparatur mit Hilfe der Erkennungsproteine XPC, XPA und RPA DNA-

Addukte, die beispielsweise durch polyzyklische aromatische Kohlenwasserstoffe oder 

UV-Licht verursacht werden. Bei Patienten mit Xeroderma pigmentosum liegt ein 

Defekt im XPA-Gen der Nukleotid-Exzisions-Reparatur vor, so dass eine erhöhte 

Sensitivität gegenüber Sonnenlicht und Addukt induzierenden Chemikalien besteht. 

Die Mismatch-Reparatur dient der Eliminierung falsch gepaarter Nukleotide. An deren 

Erkennung sind die Proteine MSH2 und MSH6 beteiligt (Goode et al., 2002; 

Moustacchi, 2000).  

Bei Versagen dieser Reparaturmechanismen können Proteine der Zellzykluskontrolle 

den Zellzyklus stoppen oder Apoptose, also den programmierten Zelltod einleiten. 

Auch eine genomische Instabilität kann die Folge sein, welche die Bildung von 

Mutationen begünstigt. 
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1.3 Karzinogenese  
 

Laut dem Mehrstufenmodell der Karzinogenese verläuft die maligne Entartung einer 

gesunden Zelle in mehreren Stufen. Bei der Initiation wird durch chemische und 

physikalische Noxen sowie onkogene Viren eine Mutation in einer Zelle ausgelöst und 

ein irreversibler DNA-Schaden verursacht. Die bis zu 20 Jahre dauernde Latenzphase 

beschreibt den Zeitraum zwischen dem Einfluß einer Noxe und der Tumor-

manifestation. In der Promotionsphase kommt es zu einem zellschädigenden Prozess, 

der die Latenzzeit bis zur Tumorprogression verkürzt. Dabei wird durch bestimmte 

Noxen (Promotoren), die ohne vorherige Initiation keine Entartung der Zelle 

hervorrufen würden, eine Steigerung der Zellproliferation eingeleitet. Kofaktoren 

(Kokarzinogene) können den Verlauf beschleunigen. Im Stadium der Progression 

kommt es zur irreversiblen Proliferation veränderter Zellklone, zur Karzinomentstehung 

(vgl. Abbildung 1) . 

Auslöser für die maligne Transformation einer Zelle sind zwei oder mehr Mutationen in 

Proto-Onkogenen bzw. Tumorsuppressorgenen. Proto-Onkogene kodieren Proteine, 

die das Zellwachstum und die Zelldifferenzierung fördern. Mutationen dieser Gene 

können eine übermäßige Aktivität wachstumsstimulierender Proteine bewirken, wobei 

die Proto-Onkogene zu Onkogenen aktiviert werden. Tumorsuppressorgene kodieren 

Proteine, die das Zellwachstum unterdrücken. Durch Mutationen können diese Gene 

inaktiviert werden und die Zelle verliert wachstumshemmende Proteine. Unkon-

trolliertes Zellwachstum ist die Folge.  
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Abbildung 1: Mehrstufenmodell der Karzinogenese  

Darstellung der Karzinogenesestufen bei zu Grunde liegender chemischer Karzinogenese: Bei

der Initiation reagiert ein primäres oder nach metabolischer Aktivierung ein ultimales

Karzinogen mit der DNA. Es kann die Inaktivierung des Karzinogens erfolgen oder, falls

bereits ein DNA-Schaden vorliegt, die Reparatur oder Apoptose eingeleitet werden. Bei

Versagen dieser Mechanismen kommt es zur Fixierung des Schadens. In der Phase der

Promotion kann durch den Einfluß von Promotoren eine initiierte Zelle einen präneoplastischen

Herd oder ein Carcinoma in situ bilden. Bei der Progression entsteht ein infiltrierendes und

destruierendes Karzinom. Es kommt zur Metastasierung (Neumann, 1992).  
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1.4 Benzo[a]pyren-7,8-dihydrodiol-9,10-epoxid (BPDE) als 
Vertreter der polyzyklischen aromatischen Kohlenwasser-
stoffe (PAH) 

  

Polyzyklische aromatische Kohlenwasserstoffe (PAH) sind organische Verbindungen 

mit zwei miteinander verbundenen, annellierten Benzolringen. Sie bilden ein 

kondensiertes Ringsystem. Die Leitsubstanz der polyzyklischen aromatischen Kohlen-

wasserstoffe (PAH) ist Benzo[a]pyren (BaP), das im Körper zu Benzo[a]pyren-7,8-

dihydrodiol-9,10-epoxid (BPDE) metabolisiert wird. 

PAH entstehen durch unvollständige Verbrennung organischen Materials. Sie kommen 

in Kokereien (Popp et al., 1997), in der Eisen- und Stahlindustrie, im Steinkohleteer, in 

Bitumen (Maier et al., 1994) und in Dieselabgasen vor (Ono-Ogasawara und Smith, 

2004). Außerdem können sie bei Waldbränden entstehen (Gabos et al., 2001). Auch 

beim Grillen und Rösten von Nahrungsmitteln können sich PAH bilden (Lijinsky, 1991). 

Beim Verbrennen von Zigarettentabak sind hauptsächlich in der Partikelphase PAH 

nachweisbar. An Staub- und Rußpartikel, sowie an Pollen gebunden werden PAH in 

der Luft verteilt. Durch Inhalation PAH-belasteter Einatemluft und die Aufnahme 

kontaminierter Lebensmittel gelangen sie in den oberen Aerodigestivtrakt des 

Menschen. Dort entfalten sie ihre karzinogene Wirkung. Von der International Agency 

for Research on Cancer (IARC) wurde Benzo[a]pyren als Karzinogen 2A eingestuft, 

also als „wahrscheinlich“ krebserregend (International Agency for Research on Cancer, 

1983; Smith et al., 2001). 

In experimentellen Studien konnten durch Exposition gegenüber PAH Tumore bei 

Versuchstieren induziert werden. An Nagern wurden durch BaP Tumore an Haut, 

Kehlkopf und Lunge und Magen verursacht (Hoffmann D. und Wynder El, 1994; 

Sharma et al., 1997). Bei in vitro-Versuchen an menschlichen Lymphozytenkulturen 

wurden durch BPDE Chromosomenaberrationen ausgelöst (Wei et al., 1996), in 

Mucosazellen des oberen Aerodigestivtraktes wurden durch Benzo[a]pyren 

Einzelstrangbrüche induziert, insbesondere bei Zellspender mit hohem Alkoholkonsum 

(Harréus et al., 1999). 

Bevor die PAH im Körper ihre karzinogene Wirkung entfalten, werden sie 

hauptsächlich durch Enzyme des Cytochrom P 450-Systems metabolisiert und dadurch 

aktiviert. Dies entspricht der Phase I der Biotransformation. Das Benzo[a]pyren wird 

durch Monoxidasen und durch Epoxidhydratasen zum reaktiven Epoxid oxidiert, dem 

BPDE (vgl. Abbildung 2). Dieses reagiert mit der DNA; Adduktbildung und 

Strangbrüche sowie eine inkomplette Exzisionsreparatur sind die Folge. 
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Abbildung 2: Metabolismus von Benzo[a]pyren, der Leitsubstanz der PAH 
Metabolisierung und Aktivierung des Prokarzinogens Benzo[a]pyren in das ultimale 

Karzinogen BPDE; Inaktivierung durch eine UDP-Glucurunosyltransferase (UGT) in 

Benzo[a]pyrenglukuronid und Benzo[a]pyrendiglukoronid. 
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1.5 Pflanzliche Phenole als zytoprotektive Substanzen 
 

Regelmäßige Aufnahme von Obst und Gemüse mit der Nahrung schützt vor 

chronischen Erkrankungen und reduziert unter anderem das Risiko für die Entwicklung 

von Tumoren, kardiovaskulären Erkrankungen, Schlaganfall, Diabetes und Morbus 

Alzheimer (Liu, 2003). Ein protektiver Effekt von obst- und gemüsereicher Ernährung 

konnte für Tumoren von Lunge, Mundhöhle, Pharynx, Oesophagus, Magen, Pankreas, 

Colon, Mamma, Zervix, Endometrium, Ovar und für Leukämie in epidemiologischen 

Studien festgestellt werden (Block et al., 1992; Steinmetz und Potter, 1996). Als 

Ursache für die tumorprotektive Wirkung dieser Pflanzenstoffe werden neben der 

antioxidativen Wirkung eine Inhibition der Zellproliferation, der Expression von 

Onkogenen, der Signaltransduktionswege sowie eine Enzyminhibition von Phase I 

Enzymen und damit Minderung der Aktivierung von Karzinogenen diskutiert. Außerdem 

scheinen eine Induktion der Zelldifferenzierung, der Expression von 

Tumorsuppressorgenen, der Apoptose sowie eine Enzyminduktion von Phase II 

Enzymen und damit Steigerung der Detoxifikation eine Rolle zu spielen. Auch eine 

Modulation des Immunsystems und ein Schutz  vor DNA-Bindung sind vermutlich für 

die tumorprotektiven Eigenschaften der Phenolen verantwortlich (Liu, 2004).  

Eine Untergruppe dieser Phytochemicals sind pflanzliche Phenole, die aus einem oder 

mehreren aromatischen Ringen mit einer oder mehreren gebundenen Hydroxylgruppen 

bestehen. Diese Pflanzenphenole werden eingeteilt in phenolische Säuren, 

Flavonoide, Stilbene, Coumarine und Tannine (Liu, 2004). Die in dieser Arbeit 

untersuchten zytoprotektiven Pflanzenphenole gehören der Gruppe der Flavonoide 

bzw. Tannine an. Eine Übersicht der Stoffgruppen ist in Abbildung 3 bzw. 4 dargestellt. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 Flavonoide 

 

Flavonole 
 

Flavonone Flavanole Flavanone Anthocyanidine Isoflavonoide 

Abbildung 3: Übersicht über die Stoffgruppe der Flavonoide 
Flavonole, Flavonone, Flavanole (Catechine), Flavanone, Anthocyandine

und Isoflavonoide als Untergruppen der Flavonoide (Liu, 2004). 
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1.5.1 (+)-Catechin als Vertreter der Flavonoide 
 

Mit einem Anteil von zwei Dritteln aller mit der Nahrung aufgenommener Phenole und 

mehr als 4000 identifizierten Einzelstoffen, stellen die Flavonoide die größte Gruppe 

der Pflanzenphenole dar. Ihr Name leitet sich von ihrer gelben Farbe ab (lat. flavus - 

gelb). Sie bestehen grundsätzlich aus zwei aromatischen Ringen A und B, und einem 

heterozyklischen Ring C (vgl. Abbildung 5). An Hand von Unterschieden in der 

Grundstruktur des C-Ringes werden die Flavonoide eingeteilt in Flavonole (z.B. 

Quercetin, Kämpferol), Flavone (z.B. Luteolin, Apigenin), Flavanole (z.B. Catechine), 

Flavanone (z.B. Naringenin), Anthocyanidine und Isoflavonoide (z.B. Genistein). 

 

 

 

 

 

 

In der Natur kommen die Flavonoide als Konjugate in veresterter oder glykosylierter 

Form vor. Eine Ausnahme bilden hier Flavanole, die in freier Form als Aglykone 

vorliegen. Flavonoide sind in Pflanzen vor allem in den Außenschichten zu finden und 

dienen den Pflanzen als Antioxidantien, Fraßschutz, Farb- und Lockstoff. Die tägliche 

Flavonoidaufnahme des Menschen wird auf wenige Hundert Milligramm bis 650 mg/d 

geschätzt (Hollman und Katan, 1999; Liu, 2004). Im Körper erfolgt jedoch eine 

Abbildung 5: Grundstruktur der Flavonoide 
Zwei aromatische Ringe A und B, und ein

heterozyklischer C-Ring als Grundstruktur (Liu,

2004).

Abbildung 4: Übersicht über die Stoffgruppe der Tannine 
Unterteilung in hydrolysierbare und kondensierte Tannine. Hydrolysiebare

Tannine werden in Gallotannine, wie z.B. das chinesische Tannin

(Tanninsäure), und Ellagitannine, wie z.B. Corilagin, differenziert.

Kondensierte Tannine werden in Proanthocyanidine differenziert. 

 Tannine 

 

Hydrolysierbare 
Tannine 

 

Kondensierte 
Tannine 

 

Gallotannine 
z.B.  

chinesisches 
Tannin 

Ellagitannine 
z.B.  

Corilagin 

Proantho-
cyanidine 
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Metabolisierung der Polyphenole, wobei glukuronidierte und sulfatierte Konjugate mit 

oder ohne Methylierung entstehen. Die maximalen Polyphenolkonzentrationen im 

Plasma nach dem Verzehr von polyphenolhaltigen Lebensmitteln liegt im Bereich von 

0,1-10 µmol/l (Kroon et al., 2004). Die Plasmakonzentrationen speziell von Flavanolen 

überschreiten selten 1 µmol/l, da nur eine geringe Resorption und rasche Elimination 

stattfindet (Manach et al., 2004). Im Körper wirken sie unter anderem tumorprotektiv, 

antioxidativ, entzündungshemmend, gerinnungshemmend, lipidsenkend, hypotensiv, 

antidiabetogen. Jedoch besteht bei manchen Flavonoiden in hohen Konzentrationen 

auch eine toxische Wirkung (Mennen et al., 2005). 

(+)-Catechin zählt zusammen mit (–)-Epicatechin (EC), (–)-Epicatechin Gallat (ECG), 

(–)-Epigallocatechin (EGC) und (–)-Epigallocatechin Gallat (EGCG) zu den Flavanolen 

bzw. Catechinen. Abbildung 6 gibt die Strukturformeln der Catechine wieder.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(+)-Catechin findet sich vor allem in Äpfeln, Aprikosen, Süßkirschen, Weintrauben, 

Nektarinen, Pflaumen, Erdbeeren, außerdem in Bohnen, in dunkler Schokolade und in 

Rotwein. Auch in grünem und schwarzem Tee ist (+)-Catechin enthalten, aber der 

Hauptcatechingehalt wird durch EC, ECG, EGC und EGCG bestimmt (Arts et al., 

2000a; Arts et al., 2000b).  

Abbildung 6: Catechin-Strukturformeln (Flavanole) 
(Scalbert und Williamson, 2000) 

(EC) (ECG) 

  (EGC)     (EGCG) 

(+)-Catechin 
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In tierexperimentellen Versuchen konnte durch Catechine aus grünem Tee die Inzidenz 

von Mutagen induzierten Tumoren vermindert werden. Crespy und Williamson geben 

einen Überblick über Catechinwirkungen an Tiermodellen. Unter anderem konnte die 

Inzidenz von oralen Tumoren reduziert werden, die durch 7,12-

Dimethylbenz[a]anthracen hervorgerufen wurden. Auch Magentumoren durch Methyl-

N’-nitro-N-nitrosoguanidin (MNNG) und 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanon 

induzierte Lungentumore konnten vermindert werden. Eine Reduktion von 

Lebertumoren konnte erzielt werden, wenn Diethylnitrosamin als genotoxische 

Substanz eingesetzt wurde (Crespy und Williamson, 2004). Bei in vitro-Versuchen an 

humanen Hepatomazelllinien Hep G2 konnten Benzo[a]pyren und BPDE induzierte 

DNA-Strangbrüche durch Catechin vermindert werden (Dauer et al., 2003).  

 

1.5.2 Tanninsäure (Chinesisches Tannin) als Vertreter der Tannine 
 

Zu den pflanzlichen Phenolen gehören auch die als Gerbstoffe bekannten Tannine. 

Gerbstoffe sind pflanzliche Substanzen, die in der Lage sind, Tierhaut in Leder zu 

verwandeln. Aufgrund vieler Hydroxyl- und anderer funktioneller Gruppen können sie 

Querverbindungen mit Proteinen und Makromolekülen eingehen und Präzipitate, d.h. 

Niederschläge bilden. Alle Tannine weisen ein Molekulargewicht zwischen 500 und 

3000 D auf.  

Man unterscheidet hydrolysierbare von kondensierten Tanninen. Hydrolysierbare 

Tannine enthalten einen Kern aus polyhydriertem Alkohol, z.B. Glucose, und 

Hydroxylgruppen, die entweder mit Gallic acid verestert sind (Gallotannine) oder mit 

Hexahydroxy diphenic acid (Ellagitannine). Zu den Gallotanninen zählen 

beispielsweise Chinesisches Tannin (Tanninsäure), Türkisches Tannin und Hamamelis 

Tannin (vgl. Abbildung 7). Ein Vertreter der Ellagitannine ist das Corilagin. 

Kondensierte Tannine sind als Flavanolderivate mit Catechinen verwandt. Sie werden 

als Proanthocyanidine bezeichnet. 

 

 

 

 

 

 

 

 

 

Abbildung 7: Strukturformel des 
hydrolysierbaren Tannines Tanninsäure
Tanninsäure als Vertreter der Gallotannine 

(Labieniec und Gabryelak, 2005). 

Tanninsäure 
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Tannine kommen unter anderem in Hirse, Gerste, Erbsen, Bohnen, Äpfeln, Bananen, 

Brombeeren, Trauben, Pfirsichen, Birnen, Pflaumen, Erdbeeren, Himbeeren und in 

Kakao vor. Auch in Tee und Wein sind sie enthalten. Die tägliche Tanninaufnahme des 

Menschen wird auf 1 g/d geschätzt. Zu den Effekten, die Tannine im Organismus 

hervorrufen, werden unter anderem adstringierende, mutagene, antimutagene, 

antioxidative, antimikrobielle, blutgerinnungsfördernde, blutdrucksenkende, 

lipidsenkende und immunmodulatorische Wirkungen diskutiert (Chung et al., 1998; 

Sanyal et al., 1997). Tannin besitzt also einerseits antimutagene Eigenschaften und 

wirkt protektiv gegenüber genotoxischen Schäden. Andererseits kann Tannin in hohen 

Konzentrationen selbst genotoxische Schäden induzieren. 

Im Salmonella Assay konnte die antimutagene Aktivität von Tanninsäure gegenüber 

polyzyklischen aromatischen Kohlenwasserstoffen (Huang et al., 1985), N-Nitroso-

Verbindungen wie MNNG (Gichner et al., 1987) und Nitropyrenen (Kuo et al., 1992) 

nachgewiesen werden. Das hydrolysierbare Hamamelis Tannin zeigte im Comet Assay 

an Hepatomazellinien Hep G2 eine antigenotoxische Wirkung gegenüber Benzo-

[a]pyren und BPDE (Dauer et al., 2003). Jedoch konnten auch genotoxische Effekte 

von Tannin anhand von DNA-Migrationen im Comet Assay nachgewiesen werden 

(Dauer et al., 2003; Wu et al., 2004). Als Ursache für genotoxische Effekte wurde eine 

mögliche prooxidative Wirkung von Tanninsäure durch Bildung von Hydroxylradikalen 

diskutiert (Khan et al., 2000). 
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1.6 Mikrogelelektrophorese (Comet Assay) 
 

Die Einzelzell-Mikrogelelektrophorese (Comet Assay) wurde 1984 von Østling und 

Johanson entwickelt, um das Migrationsverhalten von Einzelzellen nach Bestrahlung 

zu untersuchen (Ostling und Johanson, 1984). Diese ursprünglich neutrale Version der 

Mikrogelelektrophorese wurde später modifiziert und im alkalischen Milieu bei pH > 13 

durchgeführt. Dies ermöglichte den Nachweis von Einzelstrangbrüchen, alkalilabilen 

Stellen, DNA-Crosslinks und inkompletten Exzisionsreparaturstellen (Singh et al., 

1988; Tice et al., 2000).  

Mit der alkalischen Mikrogelelektrophorese (Comet Assay) können durch 

Fremdstoffinkubationen ausgelöste DNA-Schäden quantifiziert werden. Durch das 

alkalische Milieu wird die DNA zunächst denaturiert. In der anschließenden 

Elektrophorese erfolgt eine Wanderung von DNA-Fragmenten im elektrischen Feld. 

Dabei ist die Wanderungsstrecke umso größer, je stärker die DNA fragmentiert ist. 

Fluoreszenzmikroskopisch zeigt sich ein kometenähnliches Verteilungsmuster mit 

weitgehend intakter DNA im Kometenkopf und fragmentierter DNA im Kometenschweif. 

Zur Quantifizierung dient das Olive Tail Moment, das Produkt aus DNA-Wanderungs-

strecke und relativer Fluoreszenzdichte im Kometenschweif (Olive und Banath, 1993). 

Der Comet Assay findet unter anderem Anwendung in der Genotoxizitätstestung neuer 

Chemikalien, in der Darstellung von Umweltbelastung mit bestimmten Genotoxinen, im 

Biomonitoring und in der Messung von DNA-Schäden und Reparatur (Collins, 2004).  

 

1.7 Einsatz von Miniorgankulturen 
 

Basierend auf der Technik von Steinsvåg (Steinsvåg et al., 1991) entwickelte 

Kleinsasser et al. das Modell der Miniorgankulturen an humaner nasaler Mukosa weiter 

und kombinierte es zur Analyse der DNA-Schäden mit dem Comet Assay. Wiederholte 

Expositionen der Kulturen gegenüber Nitrosoverbindungen, Natriumdichromat, 

Phtalaten und BPDE ermöglichten die Beurteilung von kumulativen Toxizitäten 

(Kleinsasser et al., 2001a; Kleinsasser et al., 2004). Auch zur Untersuchung von 

Reparaturvorgängen ist ein solches Modell geeignet (Resau et al., 1987). Durch die 

Kultivierung im Epithelverband und die bestehenden metabolischen Eigenschaften 

imitiert dieses in vitro-Verfahren die in vivo Bedingungen besser als ein 

Einzelzellmodell. Jedoch sind die genauen metabolischen Vorgänge der 

Miniorgankulturen noch größtenteils unklar. 
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1.8 Aufgabenstellung 
 

Die Karzinogenese im Kopf-Hals-Bereich wird von endogenen und exogenen 

Risikofaktoren beeinflußt. Vor allem die individuelle Mutagensensitivität und DNA-

Reparaturkapazität scheinen als endogene Risikomarker von Bedeutung und 

bestimmen die individuelle Empfindlichkeit (Suszeptibilität), an einem Malignom im 

oberen Aerodigestivtrakt zu erkranken. Daneben existieren jedoch auch Substanzen, 

die protektiv wirken und die DNA vor genotoxischen Einflüssen schützen (Dauer et al., 

2003; Masuda et al., 2001). Diese Stoffe zu identifizieren und deren Wirksamkeit zu 

bewerten, ist für chemopräventive und chemotherapeutische Ansätze von großer 

Bedeutung. 

  

In der vorliegenden Arbeit wurde an oropharyngealen Epithelzellen von Patienten mit 

Oropharynxkarzinom bzw. von tumorfreien Personen die Mutagensensitivität 

gegenüber BPDE, die DNA-Reparatur nach genotoxischer Schädigung mit BPDE 

sowie die DNA-Reparaturkapazität der beiden Kollektive untersucht und verglichen. 

Dabei standen folgende Fragen im Vordergrund: 

o Wie ist die genotoxische Wirkung des Tabakkarzinogens BPDE (9 µM) auf die 

DNA oropharyngealer Schleimhautzellen von tumorfreien Personen bzw. 

Patienten mit Oropharynxkarzinom, und bestehen Unterschiede in der 

Mutagensensitivität?  

o In welchem Umfang können die induzierten DNA-Schäden an Epithelzellen von 

Kontrollpersonen bzw. Tumorpatienten in vorgegebenen Zeitintervallen von 15 

bzw. 30 Minuten repariert werden, und können Unterschiede im Reparatur-

verhalten zwischen beiden Spendergruppen nachgewiesen werden? 

 

Außerdem wurde die protektive Wirkung der Pflanzenphenole (+)-Catechin und 

Tanninsäure gegenüber BPDE induzierten DNA-Schäden an oropharyngealen 

Miniorganen nachgewiesen. Folgende Fragestellungen wurden untersucht: 

o Wie wirken die Pflanzenphenole (+)-Catechin bzw. Tanninsäure in zwei 

gewählten Konzentrationen (1 und 5 µM) auf oropharyngeale Miniorgane?  

o Bestehen protektive Effekte von (+)-Catechin bzw. Tanninsäure in zwei 

Konzentrationen gegenüber BPDE induzierten DNA-Schäden, und gibt es 

Unterschiede in der Wirkung beider Stoffe? 

 

Als Methode zum Nachweis von DNA-Schäden, zur Bestimmung der 

Mutagensensitivität und der DNA-Reparaturkapazitäten wurde in dieser Arbeit die 

alkalische Mikrogelelektrophorese (Comet Assay) gewählt. 
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2. PATIENTENGUT, MATERIAL UND METHODEN 
 

2.1 Patientengut 
 

Das für die Versuchsreihen verwendete Schleimhautgewebe wurde im Rahmen von 

operativen Eingriffen gewonnen. Die Operationen wurden in der Klinik und Poliklinik für 

Hals-Nasen-Ohrenheilkunde der LMU München durchgeführt. Durch die Biopsie-

gewinnung entstand kein zusätzliches Risiko. Nur Gewebe, welches operationsbedingt 

entfernt wurde, fand in der vorliegenden Arbeit Verwendung. Als Spender wurden nur 

Patienten ausgewählt, bei denen keine chronischen Infektions- oder 

Systemerkrankungen vorlagen. Die Patienten wurden über die Probenentnahme und 

ihre wissenschaftliche Verwendung schriftlich und mündlich aufgeklärt und gaben ihr 

schriftliches Einverständnis. Die Studie wurde gemäß den Richtlinien der 

Ethikkommission der LMU-München durchgeführt (Ethikantrag, Projekt Nr. 221/04). 

Die Biopsate wurden in physiologischer Kochsalzlösung gekühlt aufbewahrt und 

schnellstmöglich in das Labor Klinisch Experimentelle Onkologie der HNO-Klinik der 

LMU München transportiert.  

 

2.1.1 Zellspender für die Versuchsreihen an Einzelzellen   
 

Als Kontrollpersonen für die Versuchsreihen an Einzelzellen dienten 17 männliche 

Patienten zwischen 28 und 61 Jahren, bei denen chronisch rezidivierende 

Gaumenmandelentzündungen oder Vergrößerungen der Tonsillen vorlagen, und eine 

Entfernung der Mandeln klinisch indiziert war. Aus dem erhaltenen Operationspräparat 

wurde anhängende Gaumenbogenschleimhaut reseziert. Das Durchschnittsalter dieser 

Personengruppe betrug 42,9 Jahre, der Altersmedian 38,5 Jahre. 

Für das Kollektiv der Tumorpatienten wurden 15 Männer zwischen 39 und 67 Jahren 

mit der Diagnose Oropharynx-, Zungengrund- oder Tonsillenkarzinom ausgewählt. Bei 

der operativen Tumorresektion konnte aus dem resezierten Gewebe tumorferne 

Oropharynxschleimhaut gewonnen werden. Das Durchschnittsalter dieser Patienten-

gruppe betrug 57,2 Jahre, der Altersmedian 53,5 Jahre. 

Bei allen Spendern wurde eine Anamnese erhoben mit besonderem Augenmerk auf 

Rauchen, Alkoholkonsum und beruflich bedingte Exposition gegenüber Fremdstoffen, 

um Vorbelastungen der Schleimhäute bewerten zu können (siehe Anhang 7.1). 
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2.1.2 Zellspender für die Versuchsreihen an Miniorgankulturen 
 

Als Spender von Oropharynxschleimhaut für die Anzüchtung von Miniorgankulturen 

dienten zehn Patienten zwischen 16 und 66 Jahren, bei denen eine Tonsillektomie 

oder Uvulaentfernung durchgeführt werden musste. Es waren neun Männer und eine 

Frau darunter vertreten. Das Durchschnittsalter dieser Personen lag bei 34,9 Jahren, 

der Altersmedian bei 33,5 Jahren. 

Für das Erstellen von Dosis-Wirkungskurven der getesteten Polyphenole wurden 

Miniorgane aus nasalen Epithelien kultiviert. Die Schleimhaut hierfür stammte von 6 

Patienten, die infolge einer Hyperplasie der Concha nasalis inferior, also der unteren 

Nasenmuschel, unter einer behinderten Nasenatmung litten und sich deswegen einer 

Conchotomie unterziehen mussten.  
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2.2 Methodenspezifisches Labormaterial und Geräte 
 

2.2.1 Chemikalien, Medien, Enzyme und Testsubstanzen 
 

 

 

 

 

 

 

Chemikalien 
 

Hersteller 
 

Agar Noble 

Dimethylsulfoxid (DMSO) 

Ethidiumbromid 

Ethylendiamintetraessigsäure-di-Natriumsalz 

(Na2-EDTA) 

Low-Melting Agarose, Sea Plaque GTG 

Natriumchlorid (NaCl) 

Natriumhydroxid Plätzchen (NaOH) 

Normal Melting Agarose, Seakem LE 

N-Laurosylsarcosin Natrium Salz 

Triton X-100 

Trishydroxymethylaminomethan (Trisma-Base) 

Trypanblau 0,4 % 

 

DIFCO, Detroit, USA 

Merck, Darmstadt 

Sigma, Steinheim 

Serva, Heidelberg 

 

FMC-Bioproducts, Rockland, USA 

Sigma, Steinheim 

Merck, Darmstadt 

FMC-Bioproducts, Rockland, USA 

Sigma, Steinheim 

Sigma, Steinheim 

Merck, Darmstadt 

Gibco Lifetechnologies, Eggenstein 
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Medien und Zusätze 
 

Hersteller 
 

Airway Epithelial Cell Basal Medium 

Aminosäuren, nicht essentiell 

Amphotericin B 

DMEM-Medium 

Fetales Kälberserum (FCS) 

HEPES (N-2-Hydoxyethylpiperazin-N’-2- 

  Ethansulfonsäure) 

MEM-Joklik (ohne L-Glutamine und NaHCO3) 

Penicillin-Streptomycin-Lösung 

Phosphate buffered saline (PBS, ohne Calcium, 

  Magnesium und Natriumbicarbonat) 

Supplement Pack 

 

Promocell, Heidelberg 

Gibco BRL Lifetechnologies, Eggenstein 

Gibco BRL Lifetechnologies, Eggenstein 

Gibco BRL Lifetechnologies, Eggenstein 

Gibco BRL Lifetechnologies, Eggenstein 

Gibco BRL Lifetechnologies, Eggenstein 

 

Linaris, Bettingen am Main 

Sigma, Steinheim 

Gibco BRL Lifetechnologies, Eggenstein 

 

Promocell, Heidelberg 

 

Enzyme 
 

Hersteller 
 

Hyaluronidase aus Schafshoden 

Kollagenase P aus Clostridium histolyticum 

Protease aus Streptomyces griseus 

 

Roche Diagnostics, Mannheim 

Roche Diagnostics, Mannheim 

Sigma, Steinheim 

 

Testsubstanzen 
 

Hersteller 
 

Benzo[a]pyren-7,8-dihydrodiol-9,10-epoxid (BPDE) 

(+)-Catechin 

Tanninsäure (Chinesisches Tannin) 

 

Midwest Research Institute, Kansas 

Roth, Karlsruhe 

Roth, Karlsruhe 
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2.2.2 Lösungen 
 

 

MEM-Joklik 
 

10,98   g    Pulvermedium Joklik-MEM, ohne Glutamine, ohne NaHCO3 

 2         g    NaHCO3 

10       ml   Penicillin-Streptomycin-Lösung 

Ad 1 l Aqua bidest, pH-Wert 7,20-7,25, sterilfiltrieren und portionsweise lagern 

 

Enzymlösung zur Zellisolierung 
 

50     mg    Protease 

10     mg    Hyaluronidase 

10     mg    Kollagenase P 

In 10 ml Joklik oder BEGM lösen, sterilfiltrieren und bis zur Verwendung im Wasserbad  

aufbewahren 
 

Agarherstellung für Miniorgankulturen 
 

0,45    g    Agarpulver (Agar Noble) 

mit 30 ml Aqua bidest. mischen, in der Mikrowelle erhitzen und sterilisieren  

 

DMEM-Medium Herstellung 
 

9,99    g    DMEM-Pulver  

1,96    g    HEPES-Pulver 

In 500 ml Aqua bidest. lösen, pH-Einstellung auf 7,2, Sterilfiltration, Abfüllen in 250 ml Portionen 
 

Gießen von DMEM-Agarplatten 
 

 30    ml    DMEM 

   6    ml    FCS 

 75     µl    nicht essentielle Aminosäuren 

120    µl    Amphotericin B  

240    µl    Penicillin-Streptomycin-Lösung  

in einem sterilen Gefäß vermischen; 

 30    ml   Agar Noble in der Mikrowelle erhitzen, mit supplementiertem Medium versetzen und 24-

Well-Platten mit 250 µl beschichten 
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Bronchial Epithelial Growth Medium (BEGM) 
 

Zu 500 ml Airway Epithelial Cell Basal Medium 

Supplement Pack: BPE, Epidermal Growth Factor, Insulin, Hydrocortison Epinephrin, 

Trijodthyronin, Transferrin, Retinoic Acid 

Unter sterilen Bedingungen zugeben, mischen, bei 4 °C aufbewahren 

 

Agarose 
 

0,5 %ige    Low-Melting-Agarose 

0,7 %ige    Normal-Melting-Agarose 

Unter kurzem Erhitzen in der Mikrowelle mit PBS lösen und bis zur weiteren Verwendung im 

Wasserbad (37 °C) aufbewahren 
 

Lysestammlösung 
 

146,4    g    NaCl (2,5 M) 

    1,2    g    Trizma-Base (10 mM) 

  37,2    g    NA2-EDTA (100 mM) 

  10       g    N-Lauroylsarcosinnatriumsalz (1%) 

Ad 1 l Aqua bidest., pH-Wert auf 10 einstellen 

 

Lysepuffer 
 

     1     ml   Triton-X 

   10     ml   DMSO 

   89     ml   Lysestammlösung 

 

Elektrophoresepuffer 
 

   24       g    NaOH-Plätzchen (300 mM) 

    0,744 g    Na2-EDTA (1 mM) 

Ad 2 l Aqua bidest. 

 

Neutralisationspuffer (400 mM) 
 

  48,5    g    Trizma-Base in  

1 l Aqua bidest. lösen, pH-Wert auf 7,5 einstellen, bei Raumtemperatur lagern 

 

Ethidiumbromid-Färbelösung 
 

0,2  mg/ml Ethidiumbromid in Aqua bidest. (Stammlösung) bei 4 °C lichtgeschützt aufbewahren, 

1:10 mit Aqua bidest. verdünnen (Färbelösung) und sterilfiltrieren  
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2.2.3 Verbrauchsmaterial 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Verbrauchsmaterial 
 

Hersteller 
 

Deckgläser zum Mikroskopieren (24 x 70 mm) 

Glasdicke 0,08-0,12 mm 

Einmalspritzen (5 ml, 10 ml) 

Einwegfiltriereinheiten, steril 0,22 µm Filter Unit, 

MillexR-GV, MillexR-GS 

Microtiterplatte Cellstar, mit Abdeckplatte und 96 

Vertiefungen 

24-Multiwellplatte 

Objektträgerkasten aus Polysterol für 50 

Objektträger (76 x 26) 

Objektträger zum Mikroskopieren (76 x 26 mm),  

je 5 mm seitlich mattiert 

Pipettenspitzen steril 

Reaktionsgefäß 1,5 ml 

Röhrchen mit Schraubverschluß (13 ml) 

Röhrchen mit Schraubverschluß (50 ml) 

Stabpipetten (2, 10, 25 ml) 

 

Langenbrinck, Emmendingen 

 

Becton, Dickinson, Heidelberg 

Millipore, Eschborn 

 

Greiner, Frickenhausen 

 

Falcon, Lincoln Park, New Yersey, USA 

GLW, Würzburg 

 

Langenbrinck, Emmendingen 

 

Eppendorf, Hamburg 

Eppendorf, Hamburg 

Sarstedt, Nümbrecht 

Greiner, Frickenhausen 

Greiner, Frickenhausen 
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2.2.4 Technische Geräte 
 

 

 

 

 

 

 

 

 

 

 

 

 

Geräte 
 

Hersteller 
 

Analysenwaage Voyager 

Auswertung/Datenspeicherung: 

   Programm Komet 3.1. 

   Datenspeicherung 

Brutschrank 37 °C, 5 % CO2, 100 %  

Luftfeuchtigkeit  

Elektrophoresenetzgerät E865 

Horizontale Elektrophoresekammer (237 x 180 mm) 

Kühlschrank (+4 °C) und Gefrierschrank 

Magnetrührer Combimag RCT 

Mikroskop: 

   Standardmikroskop 

   Fluoreszenzmikroskop DMLB, Filtersystem N2.1, 

   Grünanregung BP 516-560, RKP 580 LP 580, 

   Objektive 40x/0,5, 10x/0,22, 4x/0,1 

Mikrowelle MWS 2819 

pH-Meter 766 Calimatic 

Schüttelwasserbad 1083 

Schüttler Vortex Genie 2 

Sterilbank, Herasafe 

Waage 1419 

Zellzählkammer nach Neubauer 

Zentrifuge Varifuge 3,0RS und 3,0R 

 

Ohaus, Gießen 

 

Kinetic Imaging 

Microsoft Excel 

Heraeus, Hanau 

 

Renner, Darmstadt 

Renner, Darmstadt 

Bosch, Stuttgart 

IKA, Staufen 

 

Zeiss, Oberkochen 

Leica, Heerbrugg, Schweiz 

 

 

Bauknecht, Schondorf 

Knick, Berlin 

GFL, Burgwedel 

Scientific Industries, Bohemia, NY, USA 

Heraeus, Hanau 

Sartorius, Gießen 

Marienfeld 

Heraeus, Hanau 
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2.3 Einzelzellinkubation 
 

2.3.1 Gewinnung von Einzelzellen 
 

Zunächst wurden blutige und bindegewebige Anteile vom Biopsat entfernt und 

Schleimhautstreifen mit einem sterilen Skalpell in 1 mm³ große Stücke zerkleinert. Um 

nun die Einzelzellen aus dem Epithelverband herauszulösen, wurden die 

Mukosafragmente in einer steril filtrierten Enzymlösung inkubiert, bestehend aus 5 

mg/ml Protease aus Streptomyces griseus, 1 mg/ml Hyaluronidase aus Schafshoden, 

und 1 mg/ml Kollagenase P aus Clostridium histolyticum in 10 ml Joklik-Medium (60 

min, Schüttelwasserbad: Frequenz 140 U/min, bei 37°C) (Pool-Zobel et al., 1994). Ab 

diesem Zeitpunkt wurden alle Versuchsschritte im Rotlicht durchgeführt, um 

zusätzliche Schäden der DNA durch UV-Licht zu vermeiden. Die erhaltene 

Zellsuspension wurde durch einen zweilagigen Gazestreifen in ein 50 ml-

Zentrifugenröhrchen filtriert, das verwendete Becherglas mit 1000 µl Joklikmedium 

gespült und auch diese Suspension zugegeben. Anschließend erfolgte eine 

zehnminütige Zentrifugation (400 U/min, 24°C, mit Bremse). Nun konnte der Überstand 

dekantiert und das Zellpellet in 1 ml Joklik resuspendiert werden. 

 

2.3.2 Zellzahlbestimmung und Vitalitätstest 
 

Mit dem Trypanblau-Ausschlusstest (Phillips H.J., 1973) wurden Zellzahl und Vitalität 

bestimmt, indem 50 µl der Zellsuspension in 50 µl der Trypanblau-Färbelösung 

aufgenommen und ein Tropfen auf eine Neubauer-Zählkammer aufgetragen wurde. 

Vitale Zellen mit intakter Zellmembran stellten sich im Lichtmikroskop bei 400-facher 

Vergrößerung farblos dar, während sich avitale Zellen mit geschädigter Zellmembran 

blau anfärbten. Es wurden zunächst alle Epithelzellen in 16 Kleinquadraten der 

Zählkammer ausgezählt. Eine entsprechende Menge Joklik-Medium wurde zur 

Zellsuspension gegeben, um Aliquots zwischen 50.000 und 100.000 pro 100 µl zu 

erhalten. Anschließend wurde aus dem Prozentsatz vitaler Zellen zur Gesamtzellzahl 

die Vitalität in % bestimmt. 
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2.3.3 Schadstoffinkubation und DNA-Reparatur 
 

Die Fremdstoffinkubation wurde mit dem Lösungsmittel Dimethylsulfoxid (DMSO) als 

Negativkontrolle und mit 9 µM Benzo[a]pyren-7,8-dihydrodiol-9,10-epoxid (BPDE) als 

Ausgangsschädigung bzw. zur Bestimmung der Mutagensenitivität durchgeführt. Die 

verwendete Konzentration von BPDE basierte auf Dosiswirkungskurven aus dem 

Labor und auf Literaturangaben (Harréus et al., 1999). Wie in mehreren anderen 

Studien zur Darstellung der Reparaturkapazität wurden Reparaturzeiten von 15 und 30 

Minuten gewählt (Kleinsasser et al., 2005; Schmezer et al., 2001). Für die 

Negativkontrolle, die Ausgangsschädigung und die beiden Reparaturzeiten von 15 und 

30 min wurden jeweils drei Ansätze angelegt. Zwei Ansätze dienten der 

Genotoxizitätsbestimmung und einer wurde für einen Vitalitätstest bereitgestellt, um 

mögliche zytotoxische Effekte durch BPDE nachzuweisen. Insgesamt kam man auf 12 

Ansätze (vgl. Abbildung 8). 

Auf einer 96-Multiwellplatte wurden jeweils 100 µl der Zellsuspension mit 10 µl des 

Teststoffs eine Stunde lang im Schüttelwasserbad bei 37 °C inkubiert. Im Anschluß 

überführte man einen Teil dieser Ansätze in 12 ml-Zentrifugenröhrchen und spülte 

jedes Well mit 100 µl Joklikmedium. Es wurde für 5 min bei 24 °C und 400 U/min 

zentrifugiert und der Überstand vorsichtig vom Rand abpipettiert. Nach erneuter 

Zugabe von Joklikmedium wurde auf gleicher Stufe zentrifugiert und der Überstand 

verworfen. Die Zellpellets der Negativkontrolle und der Ausgangsschädigung konnten 

gleich für die alkalische Mikrogelelektrophorese (Comet Assay) auf Objektträger 

gebracht werden. 

Die Ansätze, die für die Reparaturzeiten 15 und 30 min vorgesehen waren, wurden 

nochmals einem Waschschritt unterzogen, um ein anhaltendes Einwirken von BPDE 

auf die Zellen während der folgenden Inkubation zu vermeiden. Die 

Zentrifugenröhrchen wurden für die jeweilige Reparaturdauer bei 4 °C lichtgeschützt 

aufbewahrt. Nach der abschließenden Zentrifugation stellte man auch diese Zellen für 

den Comet Assay bereit (vgl. Abbildung 8). 
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Abbildung 8: Ablaufdiagramm der Einzelzellinkubationen 
Nach Erstellen von jeweils drei Ansätzen für Negativkontrolle, Ausgangsschädigung und 

Reparaturen von 15 min bzw. 30 min, erfolgte bei 37 °C eine einstündige Inkubation der Zellen 

mit DMSO für die Negativkontrolle, oder mit BPDE für die anderen Ansätze. Die Ansätze der 

Negativkontrolle und Ausgangsschädigung wurden anschließend für den Comet Assay auf 

Objektträger aufgetragen oder standen für einen Vitalitätstest bereit. Mit den Reparaturansätzen 

wurde nach 15 bzw. 30 min Reparaturzeit bei 4 °C wie oben beschrieben verfahren. 
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2.4 Miniorgankulturen 
 

Die Untersuchungen zur protektiven Wirkung der Polyphenole (+)-Catechin und 

Tanninsäure wurden an Miniorgankulturen vorgenommen, die erstmals von Steinsvåg 

(Steinsvåg et al., 1991) beschrieben und von Kleinsasser für den Einsatz an 

Schleimhautzellen der Nase modifiziert wurde (Kleinsasser et al., 2004). 

 

2.4.1 Schleimhautpräparation  
 

Für die Gewinnung von Miniorgankulturen musste unter sterilen Bedingungen 

gearbeitet werden. Es wurde sowohl oropharyngeales als auch nasales Gewebe 

kultiviert. Das Resektat wurde von Bindegewebe und blutigen Anteilen befreit und die 

Mucosa sorgfältig in Gewebestücke von 1 mm Kantenlänge geschnitten. Anschließend 

erfolgten drei Waschschritte in Phosphate Bufferd Saline-Medium. Jeweils zwei bis drei 

Fragmente wurden auf zuvor agarbeschichtete 24-Multiwellplatten übertragen und in 

250 µl Bronchial Epithelial Cell Growth Medium (BEGM) angezüchtet, das mit Bovine 

Pituitary Extract, Epidermal Growth Factor, Insulin, Hydrocortison, Epinephrin, 

Trijodthyronin, Transferrin und Retinoic Acid versetzt war. Zweieinhalb 24-

Multiwellplatten wurden auf diese Weise für eine Versuchsreihe angelegt. 

Für die Kultivierung waren die 24-Wellplatten wie folgt vorbereitet worden: Eine Lösung 

aus 1,5 % Agar Noble in Dulbeccos’s Modified Eagle Medium (DMEM) war mit 10% 

fetalem Kälberserum (FCS), nicht essentiellen Aminosäuren und den Antibiotika 

Streptomycin, Amphotericin B und Fungizin versetzt worden. Mit dieser Lösung waren 

die Platten beschichtet und bis zum Gebrauch lichtgeschützt bei 4 °C aufbewahrt 

worden. 

 

2.4.2 Kultivierung von Miniorganen 
 

Bis zum Entstehen von fertigen Miniorganen aus Oropharynxgewebe bedurfte es einer 

drei- bis vierwöchigen Inkubation im Brutschrank bei 37 °C, 5 % CO2 und 100 % 

Luftfeuchtigkeit. Die Kulturdauer von nasalem Epithel betrug hingegen nur sieben 

Tage. Nach dieser Zeitspanne konnte mit einem Mikroskop eine ausreichende 

Epithelialisierung erkannt werden (Abbildung 9). Jeden zweiten Tag wurde ein 

Austausch des BEGM-Mediums vorgenommen und einmal wöchentlich ein 

Plattenwechsel, um eine ausreichende Versorgung mit Nährstoffen und einen Schutz 

vor Infektionen zu gewähren. 
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2.4.3 Fremdstoffexposition der kultivierten Schleimhautzellen 
 

Nach drei bis vier Wochen standen die Miniorgane für die weiteren Experimente bereit. 

Als Teststoffe zur DNA-Protektion wurden (+)-Catechin und Tanninsäure 

(Chinesisches Tannin) in Konzentrationen von 1 µM und 5 µM verwendet. Die 

Konzentrationen basierten auf zuvor erstellten Dosis-Wirkungskurven an nasalen 

Miniorganen und auf Publikationen (Dauer et al., 2003; Wu et al., 2004). Als 

Negativkontrolle und als Lösungsmittel für die Substanzen diente DMSO. Die 

abschließende Schädigung der Kulturen erfolgte mit BPDE (9 µM).  

Die Fremdstoffexposition erfolgte in zwei Schritten. Zunächst wurden die Miniorgane 

von jeweils zwei Reihen der 24-Multiwellplatten mit 25 µl der Testsubstanzen (+)-

Catechin bzw. Tanninsäure in 250 µl BEGM inkubiert (60 min, 37 °C im 

Schüttelwasserbad). Nach der ersten Inkubationsphase wurden die Überstände 

abpipettiert und die Testsubstanzen zweimal mit 250 µl BEGM ausgewaschen.  

Im zweiten Schritt wurde pro Testsubstanz und Konzentration auf die Miniorgane einer 

Reihe der 24-Multiwellplatte zusätzlich 25 µl BPDE aufgetragen. Die Kulturen wurden 

unter gleichen Bedingungen für eine Stunde inkubiert und wieder mit BEGM 

gewaschen. 

Das Inkubationsschema ist in Abbildung 10 dargestellt. 

  

 

 

 

 

Abbildung 9: 
Vollständig epithelialisiertes Miniorgan 

aus nasaler Schleimhaut (a) mit 

durchgängigem Flimmerepithel nach 

siebentägiger Kultivierung (b).  

100fache bzw. 400fache Vergrößerung. 
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Abbildung 10: Darstellung der Teststoffinkubationen der Miniorgane 
In der ersten Inkubationsphase: Einstündige Exposition der Miniorgane von jeweils 2 Reihen   

(= 12 Wells) gegenüber (+)-Catechin 1 µM (Ca 1 µM), (+)-Catechin 5 µM (Ca 5 µM), 

Tanninsäure 1 µM (Ta 1 µM) oder Tanninsäure 5 µM (Ta 5 µM). Anschließendes Auswaschen 

der Teststoffe.   

In der zweiten Inkubationsphase: Für die Negativkontrolle einstündige Exposition der Kulturen 

gegenüber DMSO. Für die Schädigung einstündige Inkubation der Miniorgane mit BPDE. 

Jeweils eine Reihe (= 6 Wells) pro Teststoff und Konzentration wurde zusätzlich mit BPDE 

inkubiert. Anschließendes Auswaschen der Teststoffe. 
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2.4.4 Einzelzellisolierung aus Miniorgankulturen 
 

Die Zellseparation aus dem Epithelverband wurde durch Inkubation in einem in BEGM 

gelösten Enzymmix erzielt (vgl. 2.2.1). Dazu wurden die Miniorgane aus jeweils zwei 

Wells in ein Eppendorf-Gefäß, versehen mit 600 µl der Enzymlösung, überführt. Für 45 

Minuten inkubierte man die Gefäße im Schüttelwasserbad bei 37 °C. Bei allen weiteren 

Schritten wurde im Rotlicht gearbeitet, die Pipettiervorgänge fanden auf Eis statt. Nach 

kurzem Rütteln auf dem Minishaker konnte das überschüssige Bindegewebe mit einer 

sterilen Kanüle aus der Zellsuspension entfernt werden. Zur Neutralisation wurde 

jeweils 600 µl FCS hinzugefügt, für zehn Minuten bei 800 U/min und 4 °C zentrifugiert 

und 1 ml Überstand vorsichtig vom Rand abpipettiert. Anschließend gab man 1 ml 

gekühltes PBS hinzu, zentrifugierte erneut und verwarf den Überstand. Dieser Vorgang 

wurde zweimal wiederholt. Das Zellpellet wurde nun entweder für die 

Mikrogelelektrophorese bereitgestellt oder für die Vitalitätstestung verwendet (vgl. 

Abbildung 11). 
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Abbildung 11: Zellseparation der Miniorgane 
Die Miniorgane einer Reihe (= 6 Wells) wurden in

drei Eppendorf-Gefäße überführt und mittels

Enzymmix in Einzelzellen isoliert. Nach den

folgenden Neutralisations- und Waschschritten

wurden die Zellen aus zwei Eppendorf-Gefäßen

auf Objektträger aufgetragen und standen für die

Mikrogelelektrophorese bereit. Mit den Zellen

aus dem dritten Gefäß wurde ein Vitalitätstest

durchgeführt. 
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2.5 Alkalische Mikrogelelektrophorese (Comet Assay) 
 

Um durch die Fremdstoffe induzierte DNA-Schäden erkennen und quantifizieren zu 

können, wurde die alkalische Mikrogelelektrophorese (Comet Assay) angeschlossen. 

 

2.5.1 Präparation der Objektträger 
 

Um eine optimale Haftung der Zellen zu erzielen, wurde auf nummerierte und an den 

Längsseiten mattierte Objektträger eine erste Agaroseschicht aus 85 µl einer 0,5 % 

Normal Melting Agarose aufgebracht, die in PBS gelöst und in der Mikrowelle erhitzt 

wurde. Anschließend wurden Deckgläser aufgelegt. Darunter verteilte sich die Agarose 

gleichmäßig und die Objektträger wurden für 2 Tage getrocknet. Kurz vor dem weiteren 

Gebrauch wurden die Deckgläser wieder entfernt. 

 

2.5.2 Zellfixierung und Lyse 
 

Zur Fixierung der Zellen für die Mikrogelelektrophorese wurde das Zellpellet in 75 µl 

0,7 % Low Melting Agarose resuspendiert und auf die vorpräparierten Objektträger 

aufgetragen. Nach dem Aushärten auf einer mit Eis gekühlten Metallplatte wurden 

nochmals 85 µl 0,7 % Low Melting Agarose aufgebracht.  

Die Objektträger wurden für mindestens eine Stunde lichtgeschützt bei 4 °C in einer 

alkalischen Lyselösung bestehend aus 1 ml Triton X-100, 10 ml DMSO und 89 ml 

Lysestammlösung aufbewahrt. Dies diente der Auflösung der Zell- und 

Kernmembranen und damit der DNA-Freilegung. 

 

2.5.3 Elektrophorese und Fluoreszenzfärbung 
 

Für die elektrophoretische DNA-Auftrennung wurden die Objektträger anodenwärts in 

eine horizontal ausgerichtete und mit Eiswasser gekühlte Elektrophoresekammer 

geschichtet. Diese wurde mit 4 °C kaltem Elektrophoresepuffer aufgefüllt Zur 

Denaturierung und Entspiralisierung der DNA wurde eine Wartezeit von 20 Minuten 

eingehalten, bevor eine 20-minütige Elektrophorese bei 25 V und 300 mA 

angeschlossen wurde. Nach Wanderung der DNA-Fragmente im elektrischen Feld 

wurden die Objektträger auf Färbebrücken gelegt und dreimal mit Neutralisationspuffer 

gespült.  

Zum Anfärben der DNA wurde eine 1:10 Verdünnung einer Ethidiumbromid-

Stammlösung angesetzt und diese steril filtriert. 75 µl dieses Fluoreszenzfarbstoffes 

wurden schließlich auf jeden Objektträger aufgetragen und Deckgläser aufgelegt. Bis 

zur Auswertung wurden sie lichtgeschützt bei 4 °C gelagert und feucht gehalten. 
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2.6 Digitale Auswertung 
 

Zur Analyse der DNA-Migration wurde mit einem Fluoreszenzmikroskop und der 

Software Komet 3.1. (Kinetic Imaging, Liverpool, Großbritannien) gearbeitet. Abhängig 

vom Schädigungsgrad zeigte sich ein unterschiedliches Migrationsverhalten. Dabei 

ließen sich Zellen, deren DNA durch die Fremdstoffbehandlung nicht geschädigt und 

somit bei der Elektrophorese nicht aufgetrennt wurde, im Mikroskop als 

Punktstrukturen erkennen (vgl. Abbildung 12). Zellen mit einer hohen Rate induzierter 

Strangbrüche und einer stärkeren Wanderung im elektrischen Feld stellten sich als 

sogenannte Kometen dar. Den Kopf dieser Kometen bildete die vorwiegend 

ungeschädigte DNA. Der Schweif bestand aus fragmentierten Anteilen (vgl. Abbildung 

13).  

 

 

 
 

 

 

 
 

 

 

 

 

Abbildung 12: 
Schleimhautzelle ohne genotoxische
Einflüsse.  
Fluoreszenzmikroskopische Darstellung in

400-facher Vergrößerung  

Abbildung 13: 
Schleimhautzelle mit DNA-Schädigung:
Darstellung eines Kometen 
Fluoreszenzmikroskopische Darstellung in

400-facher Vergrößerung 
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Zur quantitativen Analyse der DNA-Schädigung wurde das Olive-Tail-Moment (OTM) 

als Maß herangezogen (Olive und Banath, 1993). Dieses ergibt sich aus dem Produkt 

der mittleren DNA-Wanderungsstrecke und der relativen Dichte im Kometenschweif 

(Quotient aus der DNA im Kometenschweif und der Gesamt-DNA). Pro Substanz bzw. 

Kontrolle wurden 80 Zellen auf jeweils zwei Objektträgern analysiert.  

Zur Bestimmung der DNA-Reparaturkapazitäten (DRC15 bzw. DRC30) wurden die 

Ergebnisse nach 15 Minuten bzw. 30 Minuten in ein Verhältnis zur Ausgangs-

schädigung gesetzt: 

 

 
  

DRC15/30  =   

 

 

Zur Speicherung der Daten kam das Programm Microsoft Excel zum Einsatz (vgl. 

Abbildung 14). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Abbildung 14:  
Digitale Bildanalyse eines „Kometen“:
Software Komet 3.1. 

100 - ( 100 x OTM nach 15 / 30 min Reparatur) 
 
 

OTM nach Ausgangsschädigung durch BPDE 
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2.7 Ergebnisdarstellung und statistische Analyse 
 

Mit dem Datenanalyseprogramm SPSS 13.0 wurden zur graphischen Darstellung der 

Ergebnisse Boxplots erstellt. Dabei steht der mittlere Querstreifen im Kasten für den 

Median. Die Hälfte aller Werte liegt darüber bzw. darunter. Als untere Begrenzung des 

Kastens findet sich das 1. Quartil wieder. 25 Prozent aller Werte sind kleiner als dieses 

Quartil. Die obere Begrenzung des Kastens wird durch das 3. Quartil gebildet. Es wird 

von 25 Prozent aller Werte überschritten. Der geringste Wert wird durch die untere 

umgekehrte T-Linie, der Höchste durch die obere T-Linie in der Graphik vermerkt. 

Dabei finden weder Extrem- noch Ausreißerwerte Berücksichtigung. Mehr als drei 

Boxlängen außerhalb liegende Extremwerte werden gesondert mit einem Stern 

gekennzeichnet und mehr als eineinhalb Boxlängen außerhalb liegende 

Ausreißerwerte mit einem Kreis. 

Für die statistische Ergebnisanalyse fanden der Wilcoxon-Test für zwei verbundene 

Stichproben und der Mann-Whitney-U-Test für zwei unabhängige Stichproben 

Anwendung. Bei der Analyse der Reparaturversuche diente der Wilcoxon-Test dem 

Vergleich der DNA-Fragmentierungen innerhalb des gleichen Kollektives, während bei 

der Gegenüberstellung der DNA-Fragmentierungen von Kontrollpersonen und 

Tumorpatienten der Mann-Whitney-U-Test angewendet wurde. Bei der Analyse der 

Polyphenolversuche wurde der Wilcoxon-Test eingesetzt. 

Auf eine Korrektur nach Bonferroni wurde verzichtet, da es sich um eine explorative 

Studie handelt. 

Das Signifikanzniveau wurde auf p < 0,05 festgelegt. 
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3. ERGEBNISSE 
 

Im Folgenden werden die Ergebnisse der Versuchsreihen zur Mutagensensitivität und 

DNA-Reparaturkapazität sowie zur protektiven Wirkung der Polyphenole (+)-Catechin 

und Tanninsäure dargestellt.  

Zur quantitativen Analyse wurde das Olive Tail Moment (OTM) bestimmt, das sich aus 

dem Produkt der mittleren DNA-Wanderungsstrecke und der relativen Dichte im 

Kometenschweif ergibt. Die folgenden OTM-Werte sind als Mediane angegeben. 

Die OTM-Mediane nach den Reparaturintervallen wurden zu den Werten nach 

Ausgangsschädigung ins Verhältnis gesetzt, um die DNA-Reparaturkapazitäten 

(DRC15 und DRC30) für beide Kollektive ermitteln und eine Aussage bezüglich des 

Malignomrisikos im oberen Aerodigestivtrakt treffen zu können.  

Für die Ergebnisdarstellung wurden Boxplots gewählt (vgl. 2.7.), die mit dem 

Statistikprogramm 13.0 erstellt wurden.  

Das Signifikanzniveau wurde auf p < 0,05 festgelegt. 

  

3.1 Mutagensensitivität gegenüber BPDE, DNA-Reparatur und 
Reparaturkapazität  

 

Als Lösungsmittel für BPDE und damit auch als Negativkontrolle diente DMSO. Die 

Schädigung erfolgte durch einstündige Inkubation mit 9 µM BPDE. Es wurden 

Reparaturzeiten von 15 und 30 Minuten gewählt. 

 

3.1.1 DNA-Schädigung und Reparatur BPDE induzierter DNA-Schäden an 
oropharyngealen Mukosazellen von tumorfreien Patienten 

 

In Abbildung 15 sind die Ergebnisse für das Kollektiv der Kontrollpersonen (n = 17) 

mittels Boxplot dargestellt. Die Negativkontrolle (DMSO) wies einen Median von 3,05 

auf. Für die Ausgangsschädigung mit BPDE ergab sich ein OTM-Median von 17,75. 

Bei der Reparaturzeit von 15 Minuten erhielt man einen Median von 14,45, bei der 

Reparaturzeit von 30 Minuten einen von 13,7.  
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Beide Reparaturzeiten zeigten einen signifikanten Unterschied zur 

Ausgangsschädigung. Die zugehörigen p-Werte sind in Tabelle 1 dargestellt.  

 

 
  Tabelle 1: 
  p-Werte innerhalb der Kontrollgruppe 

 

 

Vergleich 
 

p-Werte 
 

BPDE vs. Negativkontrolle 
 

< 0,001 
 

15 min Reparatur vs. BPDE 
 

0,001 
 

30 min Reparatur vs. BPDE 
 

< 0,001 
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Abbildung 15: 
DNA-Schädigung und Reparatur BPDE induzierter DNA-Schäden: Kontrollgruppe 

X-Achse: Darstellung der Ausgangsschädigung durch BPDE und der DNA-Migrationen 

nach Reparaturzeiten von 15 Minuten bzw. von 30 Minuten. ○: Ausreißerwert. 

Y-Achse: OTM (Olive Tail Moment) als quantitatives Maß. 
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3.1.2 DNA-Schädigung und Reparatur BPDE induzierter DNA-Schäden an 
oropharyngealen Mukosazellen von Tumorpatienten 
 

Bei den Versuchen an tumorfreien Schleimhautzellen von Patienten mit 

Oropharynxkarzinom (n = 15) ergab sich für die Negativkontrolle mit DMSO ein Median 

von 2,50. Die Ausgangsschädigung mit BPDE zeigte einen OTM-Median von 18,00. 

Die Ausgangsschädigung konnte nach den Reparaturzeiten nicht signifikant reduziert 

werden: Bei der Reparaturzeit von 15 Minuten betrug der OTM-Median 17,90 und bei 

der Reparaturzeit von 30 Minuten 17,00 (vgl. Tabelle 2). Die Verteilung der OTM-Werte 

zeigt die Abbildung 16. 

 
 
 
 
 

 
 
 
 
 
 

 
 

 

 

 

 

 

 

 
 

  Tabelle 2: 
  p-Werte innerhalb der Tumorgruppe 

 

 

Vergleich 
 

p-Werte 
 

BPDE vs. Negativkontrolle 
 

0,001 
 

15 min Reparatur vs. BPDE 
 

0,394 
 

30 min Reparatur vs. BPDE 
 

0,088 

 

O
TM

 

Abbildung 16: 
Reparatur BPDE induzierter DNA-Schäden: Tumorgruppe 
X-Achse: Darstellung der Ausgangsschädigung (BPDE) und der DNA-Migrationen nach 

Reparaturzeiten von 15 Minuten bzw. 30 Minuten. ○: Ausreißerwert. 

Y-Achse: OTM (Olive Tail Moment) als quantitatives Maß. 
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3.1.3 Mutagensensitvität und DNA-Reparatur: Vergleich zwischen 
Patienten mit und ohne Oropharynxkarzinom 

 

Die DNA-Fragmentierungen durch DMSO wurden für das Kontrollkollektiv und das 

Tumorkollektiv nicht-signifikant getestet (OTM-Mediane 3,05 und 2,50). Beim Vergleich 

der Ausgangsschädigung mit BPDE konnte kein signifikanter Unterschied zwischen 

beiden Kollektiven erkannt werden (17,75 und 18,00). Die Mutagensensitivität war in 

beiden Kollektiven vergleichbar. Bei der Gegenüberstellung der Reparaturzeiten 15 

und 30 Minuten zeigten sich signifikant niedrigere Werte bei den tumorfreien Spendern 

(OTM-Mediane 14,45 und 13,7) verglichen mit den Tumorpatienten (17,90 und 17,00). 

Abbildung 17 stellt die Ergebnisse für beide Kollektive gegenüber. In Tabelle 3 sind die 

zugehörigen p-Werte aufgelistet. 
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Abbildung 17: 
Darstellung der Mutagensensitivität gegenüber BPDE und Vergleich der DNA-
Reparatur zwischen Kontroll- und Tumorkollektiv 
X-Achse: Vergleichende Darstellung der Ausgangsschädigung bzw. Mutagensensitvität 

gegenüber BPDE und der DNA-Migrationen nach Reparaturzeiten von 15 Minuten bzw. 

30 Minuten mittels Boxplot für Kontrollpersonen (grüne Balken) und Tumorpatienten 

(rote Balken). ○: Ausreißerwerte. 

Y-Achse: OTM (Olive Tail Moment) als quantitatives Maß. 
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    Tabelle 3:  
    p-Werte für den Vergleich der OTM-Werte zwischen Kontroll- 
    und Tumorgruppe 

 

 

Vergleich 
 

p-Werte 
 

Negativkontrolle 
 

0,198 
 

Ausgangsschädigung 
 

0,365 
 

15 min Reparatur 
 

0,016 
 

30 min Reparatur 
 

0,012 
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3.1.4 DNA-Reparaturkapazität von tumorfreien Patienten 
 

Bei den tumorfreien Spendern konnte nach einer Reparaturzeit von 15 Minuten die 

Ausgangsschädiung mit BPDE (OTM-Median 17,75) auf 14,45 gesenkt werden, was 

einer Reparaturkapazität in % (DRC15) von 20,85 entsprach. Nach 30 Minuten konnte 

noch ein OTM-Median von 13,70 gemessen werden, was eine DRC30 von 25,55 ergab 

(vgl. Abbildung 18).  
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Abbildung 18: 
Reparaturkapazitäten für 15 min (DRC15) und 30 min (DRC30): Kontrollpatienten 
X-Achse: Darstellung der Reparaturkapazitäten nach Reparaturzeiten von 15 und 30 

Minuten für die Kontrollpersonen. 

Y-Achse: Reparaturkapazität in %. 
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3.1.5 DNA-Reparaturkapazität von Tumorpatienten 
 

Bei dem Kollektiv der Tumorpatienten konnte nach DNA-Fragmentierung durch BPDE 

(OTM-Median 18,00) für die 15-Minuten-Reparatur ein OTM-Median von 17,90 und für 

die 30-Minuten-Reparatur ein OTM-Median von 17,00 nachgewiesen werden. Es 

wurde eine DRC15 von 7,26 und eine DRC30 von 17,75 bestimmt (Abbildung 19). 
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Abbildung 19: 
Reparaturkapazitäten für 15 min (DRC15) und 30 min (DRC30): Tumorpatienten 
X-Achse: Darstellung der Reparaturkapazitäten nach Reparaturzeiten von 15 und 30 

Minuten für die Tumorpatienten. ○: Ausreißerwerte. 

Y-Achse: Reparaturkapazität in %. 
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3.1.6 Vergleich der DNA-Reparaturkapazitäten von Patienten mit und 
ohne Oropharynxkarzinom 

 

Der Vergleich der Reparaturkapazitäten von tumorfreien Spendern und 

Tumorpatienten ergab sowohl für die DRC15 einen niedrigeren Wert für das Kollektiv 

der Tumorpatienten (20,85 und 7,26), als auch für die DRC30 (25,55 und 17,75) (vgl. 

Abbildung 20 und Tabelle 4). 
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Abbildung 20: 
Vergleich der Reparaturkapazitäten 15 min (DRC15) und 30 min (DRC30) 
X-Achse: Gegenüberstellung der Reparaturkapazitäten nach Reparaturzeiten von 15 

und 30 Minuten für Kontroll- (grüne Balken) und Tumorkollektiv (rote Balken). ○: 

Ausreißerwerte. 

Y-Achse: Reparaturkapazität in %. 
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3.2 Protektive Wirkung der Polyphenole (+)-Catechin und 
Tanninsäure 

 

Als Negativkontrolle und als Lösungsmittel für die Teststoffe wurde DMSO verwendet, 

als Ausgangsschädigung diente 9 µM BPDE. Ein Teil der Kulturen wurde nur den 

Teststoffen (+)-Catechin bzw. Tanninsäure für eine Stunde ausgesetzt. Der andere Teil 

der Miniorgane wurde zunächst für eine Stunde mit den Teststoffen inkubiert. 

Anschließend erfolgte eine einstündige Exposition mit der Noxe BPDE. 

 

3.2.1 Dosis-Wirkungsbeziehung der Substanzen (+)-Catechin und 
Tanninsäure an nasalen Miniorganen 

 

Für die Erstellung der Dosiswirkungskurven der Polyphenole (+)-Catechin und 

Tanninsäure wurden Miniorgane aus nasalem Epithel herangezogen. Es wurden 

jeweils die Konzentrationen 1 µM, 5 µM, 10 µM, 15 µM und 30 µM getestet. Für 

Tanninsäure zusätzlich auch 50 µM. Ein Teil der Miniorgane wurde nur mit den 

Teststoffen inkubiert, der andere Teil wurde zusätzlich mit BPDE inkubiert. Tabelle 5 

gibt die OTM-Mittelwerte für die verschiedenen Versuchsansätze für (+)-Catechin bzw. 

Tanninsäure an. Die Negativkontrolle sowie die Teststoffe alleine ergaben einen OTM 

< 2, lagen also im nicht-genotoxischen Bereich. Bei der Teststoffinkubation mit 

anschließender BPDE-Exposition ließ sich eine dosisabhängige Wirkung der 

Polyphenole erkennen: Mit steigenden Konzentrationen der Testsubstanzen kam es zu 

einer stetigen Reduktion des OTM-Wertes der Ausgangsschädigung. Lediglich bei 

Tanninsäure in einer Konzentration von 50 µM kam es wieder zu einem leichten 

Anstieg. Für die weiteren Versuche mit (+)-Catechin und Tanninsäure wurden die 

Konzentrationen 1 µM und 5 µM gewählt.  
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Tabelle 5: 
OTM-Mittelwerte für die Teststoffe (+)-Catechin und Tanninsäure

 

Versuchsansätze 
 

n 
 

OTM 
 

DMSO 
 

6 
 

  1,37 
 

Catechin 1µM 
 

4 
 

  1,56 
 

Catechin 5 µM 
 

5 
 

  1,36 
  

Catechin 10 µM 
 

5 
 

  1,65 
 

Catechin 15 µM 
 

5 
 

  1,58 
 

Catechin 30 µM 
 

3 
 

  1,98 
  

BPDE 9 µM 
 

6 
 

13,72 
 

Catechin 1 µM + BPDE 
 

4 
 

10,82 
 

Catechin 5 µM + BPDE 
 

5 
 

10,86 
 

Catechin 10 µM + BPDE 
 

5 
 

  8,09 
 

Catechin 15 µM + BPDE 
 

5 
 

  7,57 
 

Catechin 30 µM + BPDE 
 

3 
 

  7,11 

 

 

 

 

Versuchsansätze 
 

n 
 

OTM 
 

DMSO 
 

5 
 

1,04 
 

Tanninsäure 1µM 
 

3 
 

1,46 
 

Tanninsäure 5 µM 
 

5 
 

1,57 
  

Tanninsäure 10 µM 
 

5 
 

1,38 
 

Tanninsäure 15 µM 
 

5 
 

1,20 
 

Tanninsäure 30 µM 
 

3 
 

1,30 
 

Tanninsäure 50 µM 
 

2 
 

1,06 
  

 BPDE 9 µM 
 

5 
 

10,52 
 

Tanninsäure 1 µM + BPDE 
 

3 
 

9,20 
 

Tanninsäure 5 µM + BPDE 
 

5 
 

7,99 
 

Tanninsäure 10 µM + BPDE 
 

5 
 

7,65 
 

Tanninsäure 15 µM + BPDE 
 

5 
 

7,12 
 

Tanninsäure 30 µM + BPDE 
 

3 
 

5,81 
 

Tanninsäure 50 µM + BPDE 
 

2 
 

6,81 

 

 

Die Dosiswirkungskurven für (+)-Catechin sind in Abbildung 21 und 22 dargestellt, für 

Tanninsäure in Abbildung 23 und 24.  
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Abbildung 21: 
Dosiswirkungskurve für (+)-Catechin 
X-Achse: Balkendarstellung der verschiedenen Versuchsansätze für (+)-Catechin (Ca). 

Y-Achse: OTM (Olive Tail Moment) als quantitatives Maß.   

 

Abbildung 22: 
Dosiswirkungskurve für (+)-Catechin: kombinierte Inkubation 
X-Achse: Balkendarstellung der verschiedenen Versuchsansätze für (+)-Catechin (Ca). 

Y-Achse: OTM (Olive Tail Moment) als quantitatives Maß. 
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Abbildung 23: 
Dosiswirkungskurve für Tanninsäure 
X-Achse: Balkendarstellung der verschiedenen Versuchsansätze für Tanninäure 

(Ta). 

Y-Achse: OTM (Olive Tail Moment) als quantitatives Maß.  

Abbildung 24: 
Dosiswirkungskurve für Tanninsäure: kombinierte Inkubation 
X-Achse: Balkendarstellung der verschiedenen Versuchsansätze für Tanninsäure 

(Ta). 

Y-Achse: OTM (Olive Tail Moment) als quantitatives Maß. 
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3.2.2 Protektive Wirkung von (+)-Catechin und Tanninsäure gegenüber 
BPDE induzierten DNA-Schäden an oropharyngealen Miniorganen 

 

Für die Versuchsreihe zur protektiven Wirkung von (+)-Catechin und Tanninsäure 

wurden Miniorgane aus oropharyngealem Epithel verwendet. Nach Erstellen der 

Dosiswirkungskurven wurden jeweils die Konzentrationen 1 µM und 5 µM ausgewählt. 

Die ermittelten OTM-Mediane sind in Tabelle 6 dargestellt.  

 
 Tabelle 6: 
 OTM-Mediane für die Versuchsansätze 

 

 

Versuchsansätze 
 

OTM 
 

DMSO 
 

1,30 
 

Catechin 1 µM 
 

1,55 
 

Catechin 5 µM 
 

1,26 
  

Tanninsäure 1 µM 
 

1,45 
 

Tanninsäure 5 µM 
 

1,04 
  

BPDE 9 µM 
 

7,85 
 

Catechin 1 µM + BPDE 
 

7,09 
 

Catechin 5 µM + BPDE 
 

5,14 
 

Tanninsäure 1 µM + BPDE 
 

5,40 
 

Tanninsäure 5 µM + BPDE 
 

4,31 

 
 

Die Negativkontrolle mit DMSO und die Testsubstanzen (+)-Catechin und Tanninsäure 

wiesen einen OTM < 2 auf, lagen also im nicht-genotoxischen Bereich. In Kombination 

der Teststoffe mit BPDE konnte die Ausgangsschädigung in allen Konzentrationen 

reduziert werden. Die Ergebnisse wurden in Form von Boxplots dargestellt: Abbildung 

25 für die Negativkontrolle und die Teststoffinkubationen, Abbildung 26 für die 

Ausgangsschädigung und die Teststoffe mit kombinierter BPDE-Exposition. 
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Abbildung 25: 
Nicht-genotoxische Wirkung von (+)-Catechin und Tanninsäure 
X-Achse: Darstellung der Negativkontrolle (DMSO) und der Polyphenole (+)-Catechin und 

Tanninsäure in Konzentrationen von 1 µM und 5 µM. 

Y-Achse: OTM (Olive Tail Moment) als quantitatives Maß. 

Abbildung 26: 
Protektive Wirkung der Polyphenole (+)-Catechin und Tanninsäure 
X-Achse: Darstellung der Ausgangsschädigung sowie der Inkubation der Teststoffe und 

BPDE. Ca+BPDE: Inkubation mit (+)-Catechin und anschließend mit BPDE; Ta+BPDE: 

Inkubation mit Tanninsäure und anschließend BPDE. 

Y-Achse: OTM (Olive Tail Moment) als quantitatives Maß. 
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Bei der Berechnung der p-Werte ergab sich ein signifikanter Unterschied der 

Ausgangsschädigung im Vergleich zur Negativkontrolle. Auch Catechin 1 µM und 

Tanninsäure 1 µM zeigten sich signifikant, blieben aber dennoch kleiner 2, also im 

nicht-genotoxischen Bereich. Die 5 µM-Konzentrationen blieben unter dem Signifikanz-

niveau (vgl. Tabelle 7). Die Versuche mit kombinierten Inkubationen ergaben alle einen 

signifikanten Unterschied zur Ausgangsschädigung (vgl. Tabelle 8). 
 
Tabelle 7:  
p-Wert des Vergleichs der DNA-Migrationen von BPDE bzw. den  
Teststoffen mit der Negativkontrolle 

 

 

Vergleich 
 

p-Werte 
 

           BPDE  
 

0,008 
 

            Catechin 1 µM  
 

0,044 
 

            Catechin 5 µM 
 

0,779 
 

           Tanninsäure 1 µM 
 

0,008 
 

            Tanninsäure 5 µM 
 

0,362 

 

 

 
 Tabelle 8: 
 p-Wert des Vergleichs der DNA-Migrationen der kombinierten  
 Inkubationen mit der Ausgangsschädigung BPDE 

 

 

Vergleich 
 

p-Werte 
 

      Catechin 1 µM + BPDE 
 

0,037 
 

      Catechin 5 µM + BPDE 
 

0,014 
 

      Tanninsäure 1 µM + BPDE 
 

0,022 
 

      Tanninsäure 5 µM + BPDE 
 

0,008 
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4. DISKUSSION 
 

4.1 Auswahl des Patientenkollektivs 
 

Das für die vorliegende Arbeit verwendete Schleimhautgewebe wurde im Rahmen von 

operativen Eingriffen an der Klinik und Poliklinik für Hals-Nasen-Ohrenheilkunde der 

LMU München gewonnen. Es wurden nur Patienten ausgewählt, bei denen keine 

chronischen Infektions- oder Systemerkrankungen vorlagen. Bei den Zellspendern 

erfolgte eine Anamneseerhebung mit besonderem Augenmerk auf Rauchen, 

Alkoholkonsum und beruflich bedingte Exposition gegenüber Fremdstoffen. Dadurch 

konnten Vorbelastungen der Schleimhäute in die Beurteilung der Ergebnisse 

miteinbezogen werden. 

 

4.1.1 Patienten mit und ohne Oropharynxkarzinom als Spender von 
oropharyngealem Epithel für die Versuchsreihen an Einzelzellen   
 

Für die Reparaturversuche an Einzelzellen wurden nur Gewebeproben von männlichen 

Patienten zwischen 28 und 67 Jahren verwendet.  

Als tumorfreie Kontrollpersonen wurden 17 männliche Patienten mit einem 

Durchschnittsalter von 42,9 Jahren ausgewählt, bei denen aufgrund chronisch 

rezidivierender Gaumenmandelentzündungen oder Tonsillenhyperplasien bei 

Schlaferkrankungen eine Indikation zur Entfernung der Mandeln gegeben war. Die 

Resektion der Mandeln wurde in einem infektionsfreien Intervall vorgenommen. 

Infektionsbedingte Gewebeveränderungen konnten jedoch nicht völlig vermieden 

werden. Vom Operationspräparat wurden nur das oropharyngeale Epithel separiert und 

daraus Einzelzellen isoliert.  

Im Vergleich hierzu dienten 15 männliche Patienten mit der Diagnose 

Oropharynxkarzinom als Spender von ebenfalls makroskopisch tumorfreiem 

oropharyngealen Epithel. Ihr Durchschnittsalter betrug 57,2 Jahre. Innerhalb des 

Kollektivs der Karzinompatienten variierten Schweregrade und Stadium der 

Erkrankung. Bei allen Patienten handelte es sich um Erstdiagnosen ohne 

Vorbehandlung mit Strahlen- oder Chemotherapie. Randständig tumorfreies 

Oropharynxepithel konnte bei der operativen Tumorresektion im Gesunden gewonnen 

werden. Es entstand durch die Spende der Gewebeprobe kein zusätzliches Risiko für 

die Patienten.  

Malignome des oberen Aerodigestivtraktes befinden sich in der Häufigkeitsverteilung 

aller Krebserkrankungen an vierter Stelle, wobei Karzinome des Oropharynx an zweiter 

Stelle hinter den Larynxkarzinomen stehen. Vor allem exogene Faktoren wie hoher 
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Nikotin- und Alkoholkonsum spielen eine bedeutende Rolle in der Karzinogenese von 

Kopf-Hals-Tumoren. Jedoch erkranken auch Patienten ohne oben genannte 

Risikofaktoren an Karzinomen im oberen Aerodigestivtrakt. Deswegen ist es neben der 

Evaluierung anderer exogener Noxen von Bedeutung, endogene Risikomarker zu 

identifizieren, die für die individuelle Suszeptibilität verantwortlich sind.  

 

4.1.2 Spender von oropharyngealem bzw. nasalem Epithel für die 
Versuchsreihen an Miniorganen 

 

Für die Versuchsreihen zur zytoprotektiven Wirkung von pflanzlichen Phenolen wurden 

Miniorgane aus oropharyngealem Epithel angelegt. Als Zellspender dienten neun 

Männer und eine Frau mit einem Durchschnittsalter von 34,9 Jahren. Aufgrund 

chronischer Mandelentzündungen oder Vergrößerungen der Gaumenmandeln bestand 

bei allen Spendern die klinische Indikation zu einer Entfernung der Tonsillen. Das 

Oropharynxepithel wurde aus dem resezierten Gewebe gewonnen.  

Für das Erstellen von Dosiswirkungskurven der Phenole wurden Miniorgane aus 

nasalem Epithel kultiviert. Das nasale Epithel stammte von Patienten, bei denen zur 

Verbesserung der Nasenatmung eine sogenannte Konchotomie der unteren 

Nasenmuschel durchgeführt wurde. Dabei wird ein überschüssiger Schleimhautstreifen 

der Concha nasalis inferior reseziert. Es wurde nur tumorfreies Gewebe für die 

Versuchsreihen verwendet. 

Da die oropharyngealen und nasalen Schleimhäute das primäre Kontaktorgan im 

oberen Aerodigestivtrakt gegenüber karzinogenen Umweltschadstoffen darstellen, sind 

diese Epithelien zur Untersuchung protektiver Effekte z.B. von Phenolen besonders 

geeignet.  
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4.2 Genotoxizität und Mutagensensitivität gegenüber BPDE  
 

4.2.1 Genotoxizität von BPDE als Vertreter der polyzyklischen aromatischen 
Kohlenwasserstoffe  

 

Von der International Agency for Research on Cancer (IARC) wurde Benzo[a]pyren 

(BaP), die Leitsubstanz der polyzyklischen aromatischen Kohlenwasserstoffe, als 

Karzinogen 2A eingestuft, also als „wahrscheinlich“ krebserzeugend (International 

Agency for Research on Cancer, 1983; Smith et al., 2001). Das Benzo[a]pyren wird als 

Prokarzinogen im Körper durch Phase I Enzyme wie Monoxidasen und 

Epoxidhydratasen in Benzo[a]pyren-7,8-dihydrodiol-9,10-epoxid (BPDE) metabolisiert. 

Nach der Inaktivierung zum Glukuronid erfolgt die Ausscheidung über Harn und Fäces. 

Als ultimatives Karzinogen kann BPDE durch kovalente Bindung und Oxidation DNA-

Schäden hervorrufen (Cosman et al., 1992; MacLeod und Tang, 1985). DNA-Addukte 

werden gebildet, die während der Replikation Mutationen verursachen oder DNA-

Strangbrüche induzieren können (Liang et al., 2003; Xie et al., 2003). 80-90 % dieser 

Addukte sind an der N2-Position des Guanin gebunden (Cheng et al., 1989). Auch die 

Exzisionsreparatur zur Beseitigung von DNA-Addukten wird beeinflusst. Ein Teil der 

genotoxischen Schädigung durch BPDE entgeht dem Comet Assay, da 

Adduktbildungen in der alkalischen Mikrogelelektrophorese nicht direkt nachgewiesen 

werden können, sondern Einzel- und Doppel-Strangbrüche sowie DNA-Schäden, die 

durch eine inkomplette Exzisionsreparatur bedingt sind.  

In den durchgeführten Versuchsreihen konnten durch BPDE signifikante DNA-Schäden 

in Schleimhautzellen von Tumorpatienten und Kontrollpersonen induziert und mittels 

Comet Assay nachgewiesen werden.  

Benzo[a]pyren, die Leitsubstanz der PAH, entsteht vor allem bei der Verbrennung von 

organischem Material. Auch beim Verbrennen von Tabak bildet sich BaP und findet 

sich vor allem in der Partikelphase des Tabakrauches. Beim Grillen und Rösten von 

Lebensmitteln bilden sich ebenfalls PAH. Messungen ergaben für gegrilltes Fleisch 

BaP-Konzentrationen von bis zu 50 Mikrogramm/kg (Lijinsky, 1991). Seit 2005 

bestehen innerhalb der Europäischen Union Grenzwerte für den BaP-Gehalt in Ölen 

und Fetten von 2 Mikrogramm/kg, in geräuchertem Fleisch und Fisch von 5 

Mikrogramm/kg sowie in Babynahrung von 1 Mikrogramm/kg. Dabei wurde BaP als 

Marker für das Vorkommen von karzinogenen PAH in der Nahrung genützt (EU, 2005). 

Bei Arbeitern in der Eisen- und Stahlindustrie sowie in der Steinkohle- und 

Teerproduktion, die in ihrem Arbeitsbereich vermehrt PAH ausgesetzt waren, konnte 

ein erhöhtes Risiko für die Entstehung von Kopf-Hals-Karzinomen nachgewiesen 

werden (Maier et al., 1994). Im Urin von Koksofenarbeitern wurden erhöhte 
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Konzentrationen von Abbauprodukten des BaP nachgewiesen. Lymphozyten dieser 

Arbeiter zeigten eine signifikant erhöhte Rate an DNA-Strangbrüchen (Popp et al., 

1997). An Feinstaubpartikel gebunden, verteilen sich PAH in der Luft. Durch Inhalation 

belasteter Atemluft und Ingestion kommen die karzinogenen PAH mit der Schleimhaut 

des oberen Aerodigestivtraktes in Kontakt. 

In tierexperimentellen Studien konnten durch Exposition gegenüber PAH Tumore in 

Kehlkopf, Lunge, Magen und Haut hervorgerufen werden (Hoffmann D. und Wynder El, 

1994; Sharma et al., 1997). Bei in vitro-Versuchen an humanen Fibroblastenzelllinien 

konnten DNA-Addukte, DNA-Strangbrüche und Genmutationen durch BaP bzw. BPDE 

induziert werden (Hanelt et al., 1997). An Schleimhautzellen des oberen 

Aerodigestivtraktes und an Lymphozyten konnten mittels Comet Assay genotoxische 

Effekte durch BaP nachgewiesen werden (Harréus et al., 1999; Kleinsasser et al., 

2000). 

 

4.2.2 Mutagensensitivität gegenüber BPDE als endogener Risikomarker 
 

Als endogener Risikomarker beschreibt die Mutagensensitivität die individuelle 

Empfindlichkeit gegenüber DNA-schädigenden Auswirkungen eines Fremdstoffes 

(Cloos et al., 1996). Zusammen mit anderen Faktoren bestimmt sie das Risiko, an 

einem Tumor im oberen Aerodigestivtrakt zu erkranken.  

In der vorliegenden Arbeit wurde die Mutagensensitivität gegenüber BPDE an 

tumorfreier oropharyngealer Schleimhaut von Kontrollpersonen und von Patienten mit 

Oropharynxkarzinom untersucht. Die Methode des Comet Assay wurde bereits in 

mehreren Studien zur Bestimmung der Mutagensensitivität eingesetzt und gilt als 

etabliertes gentoxikologisches Testverfahren (Rajaee-Behbahani et al., 2001; Wu et 

al., 2005). 

Der Vergleich der Mutagensensitivität beider Spendergruppen gegenüber BPDE ergab 

keinen signifikanten Unterschied zwischen Tumor- und Kontrollgruppe. Die 

Mutagensensitivität gegenüber BPDE wurde nicht als Risikomarker für die Entstehung 

von Oropharynxkarzinomen identifiziert. Bereits in einer früheren Studie, in der die 

Sensitivität gegenüber DNA-Schäden und Chromosomenaberrationen bei Patienten 

mit und ohne Tumor im Oropharynx mittels Comet-FISH untersucht wurde, kam man 

zum gleichen Ergebnis. Auch hier ergab sich für beide Kollektive kein signifikanter 

Unterschied bezüglich der DNA-Schädigung durch BPDE (Harréus et al., 2004). Auch 

Kleinsasser et al. fand keinen Unterschied in der Mutagensensitivität bei Patienten mit 

Nasopharynxkarzinom gemessen an Lymphozyten (Kleinsasser et al., 2001b). An 

Lymphozyten konnte im Gegensatz dazu eine erhöhte Sensitivität gegenüber BPDE 

und Bleomycin als endogener Risikomarker für praemaligne Läsionen des oberen 
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Aerodigestivtraktes identifiziert werden (Wu et al., 2002). Eine Assoziation zwischen 

der Empfindlichkeit von Lymphozyten gegenüber Bleomycin und dem Auftreten von 

Zweitkarzinomen im Kopf-Hals-Bereich konnte gefunden werden (Cloos et al., 2000). 

Auch das Risiko für die Entstehung von Lungenkarzinomen wurde mit einer erhöhten 

Mutagensensitivität in Zusammenhang gebracht, nachdem Lymphozyten durch BPDE 

oder γ-Strahlung geschädigt wurden. Bei Lymphozyten mit starken Schäden durch γ-

Strahlung wurde eine Verkürzung der S- und G2-Phase beobachtet (Wu et al., 2005). 

Die chromosomale Empfindlichkeit gegenüber BPDE wurde mittels Comet-FISH an 

oropharyngealen Zellen von Patienten mit und Patienten ohne Oropharynxkarzinom 

ermittelt werden. Bei Tumorpatienten ergab sich eine stärkere Fragmentierung der 

Chromosomen 3, 5 und 8 im Vergleich zu Kontrollpersonen (Harréus et al., 2004). 

3p21.3-Aberrationen, die durch BPDE an Lymphozyten induziert wurden, zeigten eine 

Assoziation mit einem erhöhten Karzinomrisiko im Kopf-Hals-Bereich (Zhu et al., 

2002). Demgegenüber stehen die vorliegenden Ergebnisse, in denen kein signifikanter 

Unterschied der Mutagensensitivität zwischen der Kontroll- und Karzinomgruppe 

gemessen an der Gesamt-DNA festgestellt werden konnte.  

Neben möglichen Unterschieden auf chromosomaler Ebene könnten die 

Testbedingungen Einfluß auf das Ergebnis nehmen. Zum einen könnte das gewählte 

Patientenkollektiv für den Nachweis der Mutagensensitivität ausschlaggebend sein. 

Dabei spielen wohl Alter, Geschlecht, Alkohol- und Nikotinkonsum der Patienten eine 

Rolle. Während Raucher eine erhöhte Mutagensensitivität gegenüber Bleomycin und 

eine verminderte Reparaturkapazität im Comet Assay aufwiesen (Rajaee-Behbahani et 

al., 2001), bestand bei Patienten mit Kopf-Hals-Karzinomen keine Assoziation 

zwischen Rauchen und der Bleomycin induzierten Mutagensensitivität (Bondy et al., 

1993). In einer Studie zum Biomonitoring genotoxischer Effekte konnte ebenfalls kein 

Zusammenhang zwischen der Anzahl der gerauchten Zigaretten und der DNA-

Migration im Comet Assay hergestellt werden (Hoffmann et al., 2005). Chronischer 

Alkoholkonsum hingegen beeinflusste den genotoxischen Schaden von BaP im Comet 

Assay (Harréus et al., 1999). Auch die gewählte genotoxische Substanz und das 

Testverfahren zur Darstellung des DNA-Schadens könnten Einfluß nehmen auf die 

gemessene Mutagensensitivität. BPDE induziert hauptsächlich DNA-Addukte, die nicht 

direkt im Comet Assay dargestellt werden können. Vermutlich ist die gemessene DNA-

Migration im Comet Assay abhängig von der Persistenz der Addukte und der Aktivität 

der Exzisionsreparatur (Speit und Hartmann, 1995). Viele Studien untersuchten die 

Mutagensensitivität statt mit BPDE mit Bleomycin als genotoxische Substanz (Bondy et 

al., 1993; Wu et al., 2002). Ein weiterer Einflussfaktor bezüglich der Mutagensensitivität 

ist schließlich wohl das untersuchte Zellmaterial. Wie auch in vorliegender Studie 
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verwendete Harréus et al. 2004 Oropharynxzellen zur Darstellung der 

Mutagensensitivität (Harréus et al., 2004). In beiden Studien konnte übereinstimmend 

die Mutagensensitivität nicht als endogener Risikomarker für Kopf-Hals-Karzinome 

erkannt werden. Studien an Lymphozyten ergaben abweichende Ergebnisse (Cloos et 

al., 2000; Wu et al., 2002). Die schlechte Korrelation zwischen Lymphozyten und 

Mukosazellen hinsichtlich der Mutagensensitivität wurde bereits beschrieben 

(Kleinsasser et al., 2000). Zusammenfassend bedingt wohl ein unterschiedliches 

Studiendesign die divergierenden Ergebnisse.  

Unseren Untersuchungen zufolge liegt die Ursache für eine erhöhte Suszeptibilität 

gegenüber Oropharynxkarzinomen nicht in erster Linie an einer generell erhöhten 

Mutagensensitvität. Zusätzliche endogene Risikomarker wie interindividuelle 

Unterschiede der DNA-Reparatur scheinen eine bedeutende Rolle zu spielen.  
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4.3 DNA-Reparatur und DNA-Reparaturkapazität 
 

4.3.1 Reparatur BPDE induzierter DNA-Schäden 
 

Die DNA-Reparatur dient dazu, schadhafte Veränderungen der DNA zu beseitigen und 

die Basenpaarungen konstant zu halten. Sie ist als ubiquitärer Schutzmechanismus für 

das Überleben der Zelle und die Zellzykluskontrolle essentiell (Hartwell und Weinert, 

1989).  

Von den Genom-Schäden, die durch BPDE induziert werden, können mittels Comet 

Assay nur Einzel- und Doppel-Strangbrüche sowie Schäden durch eine inkomplette 

Exzisionsreparatur nachgewiesen werden, während die typischen DNA-Addukte nicht 

detektiert werden. Hinsichtlich der Genom-Schädigung durch BPDE kann also nur ein 

Teil der Reparaturvorgänge mittels Comet Assay dargestellt werden. 

Induzierte Einzelstrangbrüche können direkt durch die DNA-Ligase oder durch die 

Basen-Exzisionsreparatur korrigiert werden, wobei letztgenannte vor allem fehlerhafte 

Basen beseitigt (Frankenberg-Schwager, 1989; Lopez-Larraza et al., 1990). 

Schwerwiegende DNA-Schäden wie Doppelstrangbrüche und Crosslinks werden durch 

den Mechanismus der homologen Rekombination beseitigt (Moustacchi, 2000). Zur 

Reparatur BPDE induzierter DNA-Addukte dient vor allem die Nukleotid-Exzisions-

Reparatur, die DNA-Addukte anhand von Veränderung der helikalen Struktur erkennt 

(Goode et al., 2002). Es wird die Globale-Genom-Reparatur von der Transkriptions-

gekoppelten Reparatur unterschieden. Die erste entfernt DNA-Addukte im gesamten 

Genom, während die Transkriptions-gekoppelte Reparatur selektiv die DNA-Addukte 

im transkribierten DNA-Strang von exprimierten Genen berichtigt (Hanawalt et al., 

1994; Mitchell et al., 2003). Daneben können auch Crosslinks und oxidative 

Genomschäden über dieses Reparaturverfahren korrigiert werden (Tang et al., 1992). 

Vermutlich spielt die Basen-Exzisions-Reparatur bei der Entfernung von DNA-

Addukten auch eine Rolle (Braithwaite et al., 1998).  

Zur quantitativen Untersuchung der Reparatur BPDE induzierter DNA-Schäden wurden 

Reparaturzeiten von 15 und 30 min gewählt. Ähnliche Zeiten wurden auch in meheren 

anderen Studien zur Darstellung der Reparaturkapazität verwendet (Kleinsasser et al., 

2005; Schmezer et al., 2001). Diese Zeiten sind wohl optimal für die mittels alkalischer 

Mikrogelelektrophorese gemessene Reparatur von Einzelstrangbrüchen (Schmezer et 

al., 2001). Während die Halbwertszeit für die Reparatur dieser Schäden nur wenige 

Minuten beträgt, ist die Halbwertszeit zur Reparatur von Doppelstrangbrüchen, mehr 

als eine Stunde (Frankenberg-Schwager, 1989; Lopez-Larraza et al., 1990). Im 

Gegensatz zu den meisten Studien zur DNA-Reparatur, die an Lymphozyten 

stattfanden (Gajecka et al., 2005; Schmezer et al., 2001; Wu et al., 1998; Wu et al., 
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2005), wurden die Versuche an oropharyngealer Schleimhaut von Patienten mit und 

ohne Tumor im oberen Aerodigestivtrakt durchgeführt. Es besteht durch die 

Verwendung von Zielgewebe der Karzinogenese im Kopf-Hals-Bereich eine stärkere 

Aussagekraft. Ein Vergleich der genotoxischen Sensitivität zwischen Lymphozyten und 

Schleimhautzellen des oberen Aerodigestivtraktes zeigte eine schlechte Korrelation 

zwischen beiden Zelltypen (Kleinsasser et al., 2000). Die Reparatur fand bei 4°C statt, 

um eine ausreichende Zellvitälität zu gewährleisten.  

Nach Reparaturzeiten von 15 und 30 min konnte für beide Spenderkollektive eine 

Reduktion der DNA-Schäden gemessen werden. Das Reparaturverhalten unterschied 

sich jedoch signifikant zwischen tumorfreien Kontrollpersonen und den 

Karzinompatienten. In der Kontrollgruppe wurden signifikant niedrigere OTM-Mediane 

ermittelt. Tumorfreie Zellspender konnten somit DNA-Schäden in den vorgegebenen 

Reparaturintervallen stärker reduzieren. Die Zellen gesunder Patienten scheinen über 

eine effizientere DNA-Reparatur zu verfügen. Dieses Ergebnis stimmt mit mehreren 

Studien zur Evaluierung von endogenen Risikofaktoren überein. Patienten mit 

Larynxkarzinom und nicht-kleinzelligem Lungenkarzinom zeigten Unterschiede im 

Reparaturverhalten verglichen mit Kontrollpatienten (Gajecka et al., 2005; Rajaee-

Behbahani et al., 2001).  

 

4.3.2 DNA-Reparaturkapazität als endogener Risikomarker 
 

Zur Evaluierung des individuellen Risikos für eine Krebserkrankung ist die DNA-

Reparaturkapazität ein wichtiger Faktor. Die DNA-Reparaturkapazität (DRC) bietet 

Schutz gegenüber genotoxischen Karzinogenen. Eine Verminderung der Reparatur-

kapazität führt zu einer erhöhten Suszeptibilität von Mutationen und genomischer 

Instabilität. Die DRC kann in Zellen auf verschiedene Arten gemessen werden: Als 

Anteil der Schadensabnahme, als Substrataufnahme für die unkontrollierte DNA-

Synthese oder als Expression geschädigter Reportergene in Wirtszellen (Schmezer et 

al., 2001). In einer Übersicht von Studien zur DNA-Reparaturkapazität und 

Tumorsuszeptibilität konnte gezeigt werden, dass in den meisten Fällen eine 

Assoziation zwischen verringerter DNA-Reparaturkapazität und erhöhtem Tumorrisiko 

bestand (Berwick und Vineis, 2000).  

In der vorliegenden Arbeit wurde die DNA-Reparaturkapazität wie auch in einigen 

anderen Studien (Harréus et al., 2001; Kleinsasser et al., 2005; Rajaee-Behbahani et 

al., 2001; Schmezer et al., 2001; Spitz et al., 2003) mittels Comet Assay gemessen. 

Jedoch wurde hier nicht an Lymphozyten gearbeitet, sondern erstmals an 

Schleimhautzellen aus dem oberen Aerodigestivtrakt. Die DRC wurde als Anteil der 
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DNA bestimmt, die nach Ausgangsschädigung mittels BPDE in den Zeitintervallen von 

15 und 30 min repariert wurde.  

Sowohl für die Kontrollpersonen als auch für Patienten mit Kopf-Hals-Karzinom konnte 

ein Unterschied zwischen der DRC15 und DRC30 festgestellt werden, wobei nach 30 

min eine höhere Reparaturkapazität vorlag. Der Vergleich zwischen beiden 

Spendergruppen ergab eine signifikant verminderte DRC für das Kollektiv der 

Karzinompatienten. Dieses Ergebnis lässt den Rückschluss zu, das eine verminderte 

DNA-Reparaturkapazität in den Zielzellen des oberen Aerodigestivtraktes nach 

Schädigung durch ein Tabakkarzinogen als endogener Risikomarker für die 

Entstehung von Karzinomen im Kopf-Hals-Bereich zu werten ist. In einigen Studien 

wurde bereits eine reduzierte DRC mit einem Risiko für die Entstehung Karzinome im 

oberen Aerodigestivtrakt assoziiert (Gajecka et al., 2005; Schantz et al., 1997). 

Daneben konnte ein Zusammenhang zwischen einer familiären Tumorbelastung und 

einer mangelhaften DRC bei Patienten mit Kopf-Hals-Karzinomen im 

Mutagensensitivitäts Assay nachgewiesen werden (Bondy et al., 1993). Auch in der 

mitochondrialen DNA von Kopf-Hals-Karzinom-Zelllinien konnte mit dem Verfahren der 

quantitativen PCR ein Reparaturdefizit beobachtet werden, das für die Entstehung von 

Malignomen im oberen Aeorodigestivtrakt eine wichtige Rolle zu spielen scheint (Kim 

et al., 2006). Als Ursache für die individuell unterschiedliche Suszeptibilität für 

Karzinome im oberen Aerodigestivtrakt wurden Variationen in der Genexpression der 

Reparaturenzyme XRCC1, XPD, ERCC1 und den Genen der Zellzykluskontrolle p 53 

und Cyklin D1 diskutiert. (McWilliams et al., 2000; Nishimoto et al., 2004; Sturgis et al., 

1999; Sturgis et al., 2002). Diese genetischen Variationen könnten die beobachtete 

Verminderung der DNA-Reparaturkapazität bedingen (Goode et al., 2002). Bei 

Patienten mit Nasopharynxkarzinom konnte die Reparaturkapazität gemessen an 

Lymphozyten jedoch nicht als endogener Risikomarker erkannt werden (Kleinsasser et 

al., 2005). Außer im Kopf-Hals-Bereich wurden Reparaturdefizite bei Patienten mit 

Lungentumoren ermittelt. An Lymphozyten von Patienten mit nicht-kleinzelligem 

Lungenkarzinom zeigte sich im Comet Assay eine verminderte Reparaturkapazität für 

15 min (Rajaee-Behbahani et al., 2001).  

Zusammenfassend scheint also ein Zusammenhang zu bestehen zwischen einem 

Defizit der Reparaturkapazität und einer erhöhten Suszeptibilität für Malignome im 

oberen Aerodigestivtrakt, speziell für Karzinome des Oropharynx. Die Ursachen hierfür 

sind noch nicht eindeutig geklärt. Zur genauen Identifizierung endogener Risikomarker 

für die Karzinogenese im oberen Aerodigestivtrakt sind weitere Untersuchungen 

erforderlich, in denen vor allem die Ursachen für das Reparaturdefizit bei Patienten mit 

Oropharynxkarzinom auf chromosomaler bzw. genetischer Ebene zu klären sind.  
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4.4 Protektive Wirkung der Pflanzenphenole (+)-Catechin und 
Tanninsäure 

 

Neben zahlreichen genotoxischen Umweltstoffen, die an der Karzinogenese im oberen 

Aerodigestivtrakt beteiligt sind, gibt es auch Stoffe die protektiv gegenüber 

schädigenden Einflüssen wirken. Ein protektiver Effekt von obst- und gemüsehaltiger 

Ernährung konnte unter anderem für Karzinome von Mundhöhle, Pharynx, Ösophagus 

und Lunge beobachtet werden (Block et al., 1992; Steinmetz und Potter, 1996).  

Für diese protektiven Effekte werden unter anderem pflanzliche Phenole verantwortlich 

gemacht. Vertreter dieser Pflanzenphenole sind sowohl das Flavonoid (+)-Catechin als 

auch das Tannin Tanninsäure. Beide dienen in der vorliegenden Untersuchung als 

Teststoffe. Ihnen werden vor allem antioxidative Eigenschaften zugeschrieben. Als 

Antioxidantien können sie bei oxidativem Stress reaktive Sauerstoffradikale abfangen 

und so die Zellen vor Genomschäden schützen. Als Ursache für die tumorprotektive 

Wirkung dieser Pflanzenstoffe werden neben der antioxidativen Wirkung eine Inhibition 

der Zellproliferation, der Expression von Onkogenen, der Signaltransduktionswege 

sowie eine Enzyminhibition von Phase I Enzymen und damit Minderung der Aktivierung 

von Karzinogenen diskutiert. Außerdem scheinen eine Induktion der 

Zelldifferenzierung, der Expression von Tumorsuppressorgenen, der Apoptose sowie 

eine Enzyminduktion von Phase II Enzymen und damit Steigerung der Detoxifikation 

eine Rolle zu spielen. Auch eine Modulation des Immunsystems und ein Schutz vor 

DNA-Bindung sind vermutlich für die tumorprotektiven Eigenschaften der Phenolen 

verantwortlich (Liu, 2004).  

In der vorliegenden Studie wurde die Wirkung der Polyphenole (+)-Catechin und 

Tanninsäure auf oropharyngeale Miniorgane geprüft. Dabei wurden mögliche 

genotoxische Eigenschaften der Teststoffe als auch protektive Effekte der Polyphenole 

gegenüber dem Mutagen BPDE untersucht. Hierfür wurden die Miniorgane vor einer 

Exposition gegenüber BPDE mit den Polyphenolen vorbehandelt. Als Testverfahren 

diente, wie auch in einigen anderen Studien, der Comet Assay (Dauer et al., 2003; 

Labieniec und Gabryelak, 2003; Wu et al., 2004). In vielen Studien wurde als 

Standardmethode zur Untersuchung der Mutagenität auch der Ames Test an 

Salmonella typhimurium Stämmen eingesetzt (Catterall et al., 2000; Chen und Chung, 

2000; Huang et al., 1983; Kaur et al., 1998). Demgegenüber bietet der Comet Assay 

unter anderem den Vorteil, mutagene Effekte an humanen Zellen untersuchen zu 

können. In der vorliegenden Arbeit wurde erstmals die Wirkung von (+)-Catechin und 

Tanninsäure auf oropharyngeale Epithelzellen dargestellt. Durch die Inkubation der 

Zellen im natürlichen Epithelverband ist ein in vitro-Modell gewählt worden, das der 

Situation in vivo sehr nahe kommt, da die Miniorgane metabolische Eigenschaften 
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aufweisen. Das Verfahren zur Herstellung von Miniorgankulturen ist zuvor in unserem 

Labor etabliert und erstmals mit dem Comet Assay kombiniert worden (Kleinsasser et 

al., 2001a).  

Als Konzentrationen für (+)-Catechin und Tanninsäure wurden 1 und 5 µM verwendet. 

In vivo liegen Polyphenole in Plasmakonzentrationen von 0,1-10 µmol/l (0,1-10 µM) vor 

(Kroon et al., 2004), wobei Flavanole selten 1 µmol/l (1µM) überschreiten (Manach et 

al., 2004). Die gewählten Konzentrationen liegen also im physiologisch relevanten 

Bereich. Bezüglich der gewählten Teststoffe ist anzumerken, dass es sich um 

Aglykone handelt. In vivo hingegen finden Metabolisierungsvorgänge statt und die 

Polyphenole liegen wohl als glukuronidierte und sulfatierte Konjugate vor (Kroon et al., 

2004; Manach et al., 2004).  

 
4.4.1 Protektive Wirkung von (+)-Catechin gegenüber BPDE induzierten 

DNA-Schäden an Miniorganen 
 

Als ein Repräsentant der Flavonoide wurde (+)-Catechin gewählt. Außer in 

verschiedenen Obstsorten wie Äpfeln, Aprikosen und Weintrauben ist (+)-Catechin in 

dunkler Schokolade, in Rotwein, in grünem und schwarzem Tee enthalten (Arts et al., 

2000a; Arts et al., 2000b). Neben einer antioxidativen, entzündungshemmenden, 

gerinnungshemmenden, lipidsenkenden, hypotensiven und antidiabetogenen Wirkung 

besitzen Catechine im Körper auch chemopräventive Eigenschaften (Mennen et al., 

2005). Dorai et al. lieferten eine Übersicht über die chemopräventiven 

Wirkungsmechanismen von Catechin in der Zelle (Dorai und Aggarwal, 2004). 

Bei der Untersuchung des genotoxischen Potentials von (+)-Catechin an 

oropharyngealen Miniorganen ergab sich zwar für die Konzentration von 1 µM (ca.       

3 µg/ml) eine Signifikanz, jedoch blieb der OTM-Mittelwert < 2, also definitionsgemäß 

im nicht-genotoxischen Bereich. In der Konzentration 5 µM (ca. 16 µg/ml) bestand kein 

signifikanter Unterschied zur Negativkontrolle. Es zeigten sich letztlich also keine 

genotoxischen Effekte von (+)-Catechin in der vorliegenden Studie. Im Comet Assay 

konnte an Hep G2 Zelllinien durch (+)-Catechin in Konzentrationen bis zu 500 µg/ml 

nur ein leichter Anstieg an DNA-Strangbrüchen verzeichnet werden (Dauer et al., 

2003). Genotoxische Effekte durch (+)-Catechin scheinen erst in höheren 

Konzentrationen eine Rolle zu spielen. 

Die BPDE-induzierten Genomschäden konnten in unserer Untersuchung durch die 

Vorbehandlung der Miniorgane mit 1 µM bzw. 5 µM (+)-Catechin signifikant reduziert 

werden. Es konnten somit protektive Effekte gegenüber DNA-Schäden durch ein 

Tabakkarzinogen an oropharyngealen Miniorganen nachgewiesen werden. Bei in vitro-

Versuchen an humanen Hepatomazellinien Hep G2 wurden durch Vorbehandlung der 
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Zellen mit 18 µg/ml (+)-Catechin Benzo[a]pyren induzierte DNA-Strangbrüche bis zu  

50 % reduziert werden. BPDE induzierte DNA-Schäden konnten durch Vorbehandlung 

der Zellen mit (+)-Catechin bis zu 90 % vermindert werden. Als Ursache wurden eine 

direkte Interaktion mit BPDE und antioxidative Effekte von (+)-Catechin diskutiert 

(Dauer et al., 2003). Auch eine Inhibition von Cytochrom-P450-abhängigen 

Monoxygenasen wurde für den antimutagenen Effekt von Catechinen verantwortlich 

gemacht (Apostolides et al., 1997). Darüber hinaus wurde berichtet, dass Catechin 

direkt mit BaP-Metaboliten interagieren kann und die Bindung von [3H]-BaP 

Metaboliten an die DNA von Kalbsthymus inhibieren kann (Nagabhushan et al., 1988). 

Dagegen existieren auch einige Studien, in denen kein antimutagener Effekt von (+)-

Catechin beobachtet werden konnte. So wurde beispielsweise im Ames Test kein 

protektiver Effekt von (+)-Catechin gegenüber Benzo[a]pyren nachgewiesen (Catterall 

et al., 2000). Ebenso zeigte (+)-Catechin in einer Konzentration von 1 µM keinen Effekt 

auf die Mutagenität von heterozyklischen Aminen im Salmonella typhimurium Test 

(Apostolides et al., 1996). Weiterhin wurde diskutiert, dass Catechine für die 

antimutagenen Effekte von grünem und schwarzen Tee nicht hauptsächlich 

verantwortlich sind. Es zeigte sich im Vergleich verschiedener Teesorten keine 

Korrelation zwischen dem jeweiligen Catechingehalt und dem antigenotoxischen 

Potential (Bu-Abbas et al., 1996; Ohe et al., 2001). Trotzdem konnten in der 

vorliegenden Untersuchung protektive Effekte nachgewiesen werden. Vermutlich sind 

neben der antioxidativen Wirkung unter anderem auch die Inhibition von Onkogenen, 

die Induktion von Tumorsupressorgenen, eine Minderung der Karzinogenaktivierung 

und ein Schutz vor DNA-Bindung für die antimutagenen Eigenschaften von Catechinen 

verantwortlich (Liu, 2004). Künftige Studien sind notwendig, um die protektiven 

Eigenschaften der Catechine genauer zu erforschen. 

An humanen Kopf-Hals-Karzinom Zelllinien wurde bereits ein wachstumshemmender 

Effekt von Epigallocatechin Gallat (EGCG), einem Catechinbestandteil in grünem Tee 

gezeigt (Masuda et al., 2001). Diese in vitro-Studie legte den Nutzen einer 

chemopräventiven bzw. therapeutischen Anwendung von EGCG bei Patienten mit 

Kopf-Hals-Karzinomen nahe. Eine Übersicht verschiedener klinischer Studien zur 

Chemoprävention von Oropharynxkarzinomen ergab hingegen keinen Beweis für den 

Nutzen einer Gabe von Antioxidantien im Kopf-Hals-Bereich (Scheer et al., 2004). 

Allerdings wurden bei diesen Studien als Antioxidantien nur verschiedene Vitamine 

untersucht, während Pflanzenphenole wie Catechine unberücksichtigt blieben. Anders 

als im oberen Aerodigestivtrakt zeigte die klinische Anwendung von Catechinen in 

grünem Tee bei Patienten mit intraepithelialer Prostataneoplasie einen 

chemopräventiven Effekt gegenüber Prostatakarzinomen (Bettuzzi et al., 2006). Im 



 69

Tiermodell konnte neben der Inzidenz von Lungen- und gastrointestinalen Tumoren, 

auch die Inzidenz von oralen Tumoren durch Catechine aus grünem Tee bzw. EGCG 

reduziert werden (Crespy und Williamson, 2004; Ju et al., 2005). In Tierversuchen an 

Mäusen konnte eine Wachstumsinhibition und Regression von humanen Prostata- und 

Mammatumoren durch EGCG beobachtet werden (Liao et al., 1995).  

Inwieweit ein chemopräventiver oder therapeutischer Nutzen von (+)-Catechin besteht 

ist noch weitgehend ungeklärt. Die vorliegenden Ergebnisse geben Anlass für weitere 

Untersuchungen, um die Wirkung und protektiven Mechanismen von (+)-Catechin auf 

Epithelien im Kopf-Hals-Bereich zu untersuchen. 

 

4.4.2 Protektive Wirkung von Tanninsäure gegenüber BPDE induzierten 
DNA-Schäden an Miniorganen 

 

Als Vertreter der Tannine wurde Tanninsäure ausgewählt. Tanninsäure ist in den 

meisten pflanzlichen Nahrungsmitteln enthalten (Chung et al., 1998), wobei vom 

Menschen täglich ca. 1 g aufgenommen wird (Sanyal et al., 1997). Neben 

adstringierenden, antioxidativen, antimikrobiellen, blutgerinnungsfördernden, blutdruck-

senkenden, lipidsenkenden und immunmodulatorischen Wirkungen werden Tanninen 

auch tumorprotektive Eigenschaften zugeschrieben (Chung et al., 1998; Sanyal et al., 

1997). Untersuchungen an Nagern zeigten einen protektiven Effekt von Tanninsäure 

auf die PAH induzierte Tumorgenese in Lunge, Magen und Haut (Athar et al., 1989; 

Mukhtar et al., 1988). In vitro konnte ein wachstumshemmender Effekt von 

Tanninsäure auf humane maligne Cholangiozyten festgestellt werden (Marienfeld et 

al., 2003). 

Die Untersuchung eines möglichen genotoxischen Potentials von Tanninsäure zeigte 

sich für die Konzentration von 5 µM (ca. 10 µg/ml) nicht signifikant. In der 

Konzentration von 1 µM (ca. 2 µg/ml) ergab sich zwar eine Signifikanz, jedoch blieb der 

OTM-Mittelwert < 2, also definitionsgemäß im nicht-genotoxischen Bereich. In einigen 

anderen Studien zuvor konnte hingegen ein genotoxischer Effekt durch Tannin 

nachgewiesen werden. Durch 100 µg/ml Tanninsäure wurden mittels Comet Assay 

DNA-Strangbrüche in humanen Lymphozyten induziert (Wu et al., 2004). An Hep G2 

Zelllinien konnte mit der gleichen Methode ein genotoxischer Effekt von 

Hamamelistannin in Konzentrationen von 2 – 166 µg/ml beobachtet werden (Dauer et 

al., 2003). Ein Anstieg der Micronuklei von 50% wurde durch 500 µg/ml Tanninsäure in 

Hep G2 Zellen induziert (Sanyal et al., 1997). An chinesischen Hamsterzellinien 

konnten DNA-Strangbrüche durch 15 µM Tannin verursacht werden (Labieniec und 

Gabryelak, 2003). Eine mögliche Ursache für die beobachteten genotoxischen Effekte 

könnte in der prooxidativen Wirkung von Tanninsäure durch Bildung von 
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Hydroxylradikalen liegen (Khan et al., 2000). Im Gegensatz zu diesen Studien zeigte 

sich in einer niedrigen Konzentration von 0.2 µmol Tanninsäure im Ames Test kein 

mutagener Effekt (Chen und Chung, 2000). In der vorliegenden Untersuchung wurden 

ebenfalls niedrige Konzentrationen an Tanninsäure von 1 µM und 5 µM gewählt. In 

niedrigen Konzentrationen scheinen also genotoxische und mutagene Effekte keine 

Rolle zu spielen. 

Durch eine Vorbehandlung der Miniorgane mit Tanninsäure (1 µM und 5 µM) konnten 

die genotoxischen Schäden durch BPDE signifikant reduziert werden. Ein protektiver 

und antimutagener Effekt von Tanninsäure wurde also an oropharyngealen 

Epithelzellen festgestellt. Protektive Effekte von Tanninsäure wurden bereits 

gegenüber verschiedenen Mutagenen beschrieben (Chen und Chung, 2000; Gichner 

et al., 1987; Huang et al., 1985; Sanyal et al., 1997; Wu et al., 2004). Auch Dauer et al. 

wiesen im Comet Assay an Hep G2 Zelllinien eine protektive Wirkung von 

Hamamelistannin gegenüber polyzyklischen aromatischen Kohlenwasserstoffen nach. 

Dabei zeigte sich eine Reduktion der Genotoxizität von BaP um 33 % nach 

Vorbehandlung mit 2 – 166 µg/ml Hamamelistannin. Ein protektiver Effekt gegenüber 

BPDE mit einer Inhibitionsrate von bis zu 90 % konnte bei Vorbehandlung der Zellen 

mit Hamamelistannin beobachtet werden. Als Ursache wurden neben geringen 

antioxidativen Effekten vor allem Adduktbildungen mit dem ultimativen Karzinogen 

BPDE angenommen, während eine Beeinflussung von Reparaturmechanismen 

ausgeschlossen wurde (Dauer et al., 2003). Bereits in früheren Studien konnte der 

antimutagene Effekt von Tanninsäure, Ellagic acid und anderen hydrolysierbaren 

Tanninen auf eine direkte Interaktion der Polyphenole mit dem Diol-Epoxid und eine 

Bildung von Phenol-Mutagen-Addukten zurückgeführt werden (Huang et al., 1985; 

Wood et al., 1982). In tierexperimentellen Studien zur Inhibition der Benzo[a]pyren 

induzierten Haut-Tumorgenese durch Tanninsäure wurden eine Reduktion der 

promotorinduzierten Lipoxygenaseaktivität, eine Inhibition von Cytochrom-P450-

abhängigen Monoxygenasen und antioxidative Eigenschaften diskutiert (Gali et al., 

1991; Mukhtar et al., 1988). Wie für die protektive Wirkung von Tanninsäure gegenüber 

oxidativen DNA-Schäden durch H2O2 vermutet wurde (Wu et al., 2004), könnte die 

Fähigkeit, freie Radikale sowie Eisen- und Kupferionen einzufangen, auch für die 

antimutagene Wirkung gegenüber BPDE von Bedeutung sein. Die Untersuchung 

verschiedener Tanninfraktionen zeigte einen abnehmenden antimutagenen Effekt 

ausgehend von der Fraktion der oligomeren Tannine wie Tanninsäure (Kaur et al., 

1998). Als Ursache hierfür wurde eine stärkere Enzyminhibition Cytochrom-P450-

abhängiger Monoxygenasen durch oligomere Tannine diskutiert. Für die 

Enzyminhibition schien die Anzahl an Hyrdoxylgruppen maßgeblich (Wang et al., 
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1988). Zusammenfassend erscheinen für die protektiven Effekte von Tanninsäure an 

oropharyngalen Epitehlien in der vorliegenden Versuchsreihe eine Reihe chemischer 

und metabolischer Interaktionen verantwortlich. 

Studien für die Anwendung von Tanninsäure in der Chemoprävention von Kopf-Hals-

Karzinomen existieren zum jetzigen Zeitpunkt noch nicht. Tierversuche an Nagern 

ergaben einen protektiven Effekt von Tanninsäure auf die PAH induzierte 

Tumorgenese in Lunge, Magen und Haut (Athar et al., 1989; Mukhtar et al., 1988). Ein 

wachstumshemmender Effekt von Tanninsäure auf humane maligne Cholangiozyten 

zeigte sich auch bei in vitro-Versuchen an Mäusen (Marienfeld et al., 2003). Inwieweit 

ein protektiver Effekt auf die Karzinogenese im oberen Aerodigestivtrakt des Menschen 

besteht, soll in künftigen Studien geklärt werden, um einen präventiven und 

chemotherapeutischen Nutzen im Zusammenhang mit Kopf-Hals-Karzinomen ableiten 

zu können. 
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5. ZUSAMMENFASSUNG 
 

5.1 Hintergrund und Zielsetzung 
 

Der Entstehung von Karzinomen im oberen Aerodigestivtrakt liegen zahlreiche 

exogene Risikofaktoren wie anhaltender Alkohol- und Tabakkonsum, und eine 

Exposition gegenüber verschiedenen Karzinogenen in Umwelt und am Arbeitsplatz zu 

Grunde. Neben den exogenen Faktoren bestimmt die individuelle Empfindlichkeit 

(Suszeptibilität) das Risiko, an einem Tumor im Kopf-Hals-Bereich zu erkranken. Die 

Suzeptibilität wird von verschiedenen genetischen Faktoren beeinflusst, wie der 

Empfindlichkeit gegenüber DNA-schädigenden Fremdstoffen (Mutagensensitivität) und 

der DNA-Reparaturkapazität. Daneben existieren jedoch auch Substanzen, die 

protektiv wirken und die DNA vor genotoxischen Einflüssen schützen. Diese Stoffe zu 

identifizieren und deren Wirksamkeit zu bewerten, ist für chemopräventive und 

chemotherapeutische Ansätze von großer Bedeutung. 

In der vorliegenden Arbeit wurden mögliche Unterschiede in der Mutagensensitivität 

und DNA-Reparaturkapazität zwischen Schleimhautzellen von Patienten mit und 

Patienten ohne Oropharynxkarzinom evaluiert. Daneben sollten protektive Wirkungen 

der Polyphenole (+)-Catechin und Tanninsäure an oropharyngealen Miniorganen 

geprüft werden.  

 

 

5.2 Methoden und Ergebnisse 
 

Zur Quantifizierung induzierter DNA-Schäden wurde die alkalische Einzelzell-Mikrogel-

elektrophorese (Comet Assay) eingesetzt. Bei diesem etablierten Kurzzeittestverfahren 

ergeben sich im elektrischen Feld abhängig von der Bruchstückgröße unterschiedliche 

Wanderungsstrecken von DNA-Fragmenten. Das kometenähnliche Verteilungsmuster 

kann fluoreszenzmikroskopisch beurteilt und mit dem Olive Tail Moment quantifiziert 

werden. Einzelstrangbrüche, alkalilabile Stellen, DNA-Crosslinks und inkomplette 

Exzisionsreparaturstellen werden mit dieser etablierten Methode dargestellt.  

Zur Identifizierung endogener Risikofaktoren wurden an oropharyngealen 

Schleimhautzellen von 15 Patienten mit und 17 Patienten ohne Oropharynxkarzinom 

die Mutagensensitivität, d.h. die individuelle Empfindlichkeit gegenüber Fremdstoffen, 

und DNA-Reaparaturkapazität, d.h. die Fähigkeit in einem vorgegebenen Zeitintervall 

DNA-Schäden zu reparieren, bestimmt. Als genotoxische Substanz diente das 

bekannte Tabakkarzinogen BPDE. Im Gegensatz zu einigen anderen Studien konnten 

keine Unterschiede in der Mutagensensitivität zwischen beiden Gruppen gefunden 



 73

werden. Die Messung der Mutagensensitivität scheint entscheidend vom gewählten 

Testverfahren, dem Patientenkollektiv, der Testsubstanz und den zu untersuchenden 

Zellen abhängig zu sein. Die DNA-Reparaturkapazität, gemessen als prozentualer 

Anteil der reparierten DNA in 15 und 30 min, war bei Schleimhautzellen von 

Tumorpatienten signifikant niedriger. Somit konnte eine verminderte DNA-

Reparaturkapazität als endogener Risikomarker für die Entstehung von 

Oropharynxkarzinomen identifiziert werden. 

An oropharyngealen Miniorganen tumorfreier Kontrollpatienten wurden erstmals 

protektive Effekte der Polyphenole (+)-Catechin und Tanninsäure in zwei 

Konzentrationen mittels Comet Assay untersucht. Eigene genotoxische Effekte der 

Teststoffe konnten ausgeschlossen werden. Durch Vorbehandlung der 

oropharyngealen Zellen mit den Phenolen (+)-Catechin und Tanninsäure konnten 

hingegen durch das Tabakkarzinogen BPDE hervorgerufene DNA-Schäden signifikant 

reduziert werden. Neben der antioxidativen Wirkung der Phenole scheinen eine Reihe 

chemischer und metabolischer Interaktionen für die protektiven Effekte verantwortlich 

zu sein. 

 

5.3 Schlußfolgerung 
 

Als endogene Risikomarker für die Tumorentstehung im oberen Aerodigestivtrakt 

konnte eine reduzierte DNA-Reparaturkapazität in Epithelzellen, dem Zielorgan der 

Karzinogenese, beschrieben werden. Unterschiede in der Mutagensensitivität spielten 

in vorliegenden Untersuchungen keine Rolle. Variationen in der Genexpression 

könnten die beobachtete Verminderung der DNA-Reparaturkapazität bedingen und 

sollten in weiteren Studien untersucht werden. Hierdurch könnten künftige präventive 

und therapeutische Ansätze im Zusammenhang mit der Kopf-Hals-Karzinogenese 

geschaffen werden. 

Eine protektive Wirkung der Polyphenole (+)-Catechin und Tanninsäure konnte an 

Schleimhautzellen des Oropharynx gezeigt werden. Die klinische Bedeutung der 

protektiven Wirkungen dieser Stoffe gegenüber Karzinogenen im Kopf-Hals-Bereich 

und ein möglicher tumorpräventiver bzw. therapeutischer Nutzen dieser Stoffe sollte in 

weiterführenden Studien evaluiert werden. 
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7. ANHANG 
 
 

7.1 Patientenanamnesen 
 

Tumorfreie Patienten als Spender oropharyngealer Schleimhaut zur 
Einzelzellgewinnung 

 

 

Nr. 
 

Alter 
 

 

♂/♀ 
 

Diagnose 
 

Nikotin in 
 Zig/d od. py 

Alkohol in 
g/d 

 

Beruf 

 

1 
 

28 
 

♂ 
 

Chron.Tonsillitis 
 

gelegentlich 
 

10 g 
 

Sozialpädagoge 
 

2 
 

37 
 

♂ 
 

Schlafapnoe 
 

20/d 
 

– 
 

Fußballtrainer 
 

3 
 

48 
 

♂ 
 

Chron.Tonsillitis 
 

o.A. 
 

o.A. 
 

o.A. 
 

4 
 

39 
 

♂ 
 

Chron.Tonsillitis 
 

27/d 
 

10g  
 

Taxiunternehmer 
 

5 
 

41 
 

♂ 
 

Chron.Tonsillitis 
 

30/d 
 

10 g 
 

Handwerker 
 

6 
 

61 
 

♂ 
 

Tonsillenhyperplasie
 

– 
 

10 g 
 

LKW-Fahrer 
 

7 
 

32 
 

♂ 
 

Chron.Tonsillitis 
 

18/d 
 

– 
 

Reinigungsfirma 
 

8 
 

34 
 

♂ 
 

Tonsillenhyperplasie
 

1-3/d 
 

10 g 
 

Lokführer 
 

9 
 

54 
 

♂ 
 

Chron.Tonsillitis 
 

– 
 

– 
 

o.A. 
 

10 
 

48 
 

♂ 
 

Chron.Tonsillitis 
 

30 py 
 

75-125  
 

Lagerarbeiter 
 

11 
 

43 
 

♂ 
 

Chron.Tonsillitis 
 

– 
 

– 
 

Staplerfahrer 
 

12 
 

39 
 

♂ 
 

Chron.Tonsillitis 
 

20/d 
 

10 g 
 

Schreiner 
 

13 
 

35 
 

♂ 
 

Tonsillenhyperplasie
 

5/d 
 

10 g 
 

selbständig 
 

14 
 

57 
 

♂ 
 

Chron.Tonsillitis 
 

– 
 

– 
 

Lehrer 
 

15 
 

37 
 

♂ 
 

Chron.Tonsillitis 
 

18/d 
 

10g 
 

Vertrieb 
 

16 
 

48 
 

♂ 
 

Chron.Tonsillitis 
 

 Bis 30/d 
 

10g 
 

Tech. Angestellter
 

17 
 

50 
 

♂ 
 

Schlafapnoe 
 

– 
 

– 
 

Computerfachm. 

 

Menge des Nikotinkonsums: in Zigaretten pro Tag (Zig/d) oder  

     Packungsjahren (py): 20 Zigaretten pro Tag über ein Jahr 

Menge des Alkoholkonsums: in Gramm 

–: kein Nikotin- oder Alkoholkonsum 

o.A.: ohne Angabe 
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Tumorpatienten als Spender oropharyngealer Schleimhaut zur 
Einzelzellgewinnung 

 

 

Nr. 
 

Alter 
 

 

♂/♀ 
 

Diagnose 
 

TNM/ 
Histo 

 

Nikotin in 
Zig/d od. py 

 

Alkohol 
in g/d 

 

Beruf 

 

1 
 

51 
 

♂ 
 

Tonsillen-CA 
 

pT3N0Mx G2 
 

8-10 / d 
 

75-125 g 
 

Elektroniker 
 

2 
 

62 
 

♂ 
 

Tonsillen-CA 
 

o.A. 
 

o.A. 
 

o.A. 
 

o.A. 
 

3 
 

61 
 

♂ 
 

Oropharynx-CA 
 

pT2N2bM0 G3 
 

Gelegentlich 
 

10 g 
 

Soz.Päd. 
 

4 
 

67 
 

♂ 
 

Tonsillen-CA 
 

pTISN0M0  
 

45 py 
 

C2-Abusus 
 

o.A. 
 

5 
 

55 
 

♂ 
 

Zungengrund-CA 
 

pT2N0M0 G2 
 

40 / d 
 

o.A. 
 

arbeitslos 
 

6 
 

39 
 

♂ 
 

Mundboden-CA 
 

o.A. 
 

40 / d 
 

C2-Abusus 
 

o.A. 
 

7 
 

55 
 

♂ 
 

Oropharynx-CA 
 

pT2N0MX G3 
 

– 
 

– 
 

o.A. 
 

8 
 

54 
 

♂ 
 

Oropharynx-CA 
 

pT1N0MX G2 
 

30-40 / d 
 

– 
 

Dipl.Ing. 
 

9 
 

56 
 

♂ 
 

Mundboden-CA 
 

pT3N0M0 G3 
 

40 py 
 

50-75 g 
 

Schweißer 
 

10 
 

60 
 

♂ 
 

Mundboden-CA 
 

pT2N0MX 
 

40 py 
 

22 g 
 

Rentner 
 

11 
 

64 
 

♂ 
 

Tonsillen-CA 
 

pT1N0M0 G2 
 

– 
 

150 g 
 

Rentner 
 

12 
 

61 
 

♂ 
 

Tonsillen-CA 
 

pT2NxMX G3 
 

60-70 py 
 

10 g 
 

Bankkaufm. 
 

13 
 

54 
 

♂ 
 

Oropharynx-CA 
 

pT1N2bMX G3 
 

– 
 

47-72 g 
 

Autor 
 

14 
 

63 
 

♂ 
 

Zungengrund-CA 
 

cT3N2cM0 G3 
 

20 / d 
 

C2-Abusus 
 

Rentner 
 

15 
 

56 
 

♂ 
 

Tonsillen-CA 
 

pT2N0M0 G2 
 

20 / d 
 

C2-Abusus 
 

o.A. 

 
Menge des Nikotinkonsums: in Zigaretten pro Tag (Zig/d) oder  

     Packungsjahren (py): 20 Zigaretten pro Tag über ein Jahr 

Menge des Alkoholkonsums: in Gramm 

–: kein Nikotin- oder Alkoholkonsum 

o.A.: ohne Angabe 
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Tumorfreie Patienten als Spender oropharyngealer Schleimhaut zur Kultivierung 
von Miniorganen 

 

 

Nr. 
 

Alter 
 

 

♂/♀ 
 

Diagnose 
 

Nikotin in 
 Zig/d od. py 

 

Alkohol in 
g/d 

 

Beruf 

 

1 
 

26 
 

♂ 
 

Chron.Tonsillitis 
 

– 
 

– 
 

o.A. 
 

2 
 

33 
 

♂ 
 

Chron.Tonsillitis 
 

– 
 

– 
 

o.A. 
 

3 
 

18 
 

♂ 
 

Tonsillenhyperplasie
 

– 
 

– 
 

o.A. 
 

4 
 

34 
 

♂ 
 

Chron.Tonsillitis 
 

o.A. 
 

o.A. 
 

o.A. 
 

5 
 

44 
 

♂ 
 

Schlafapnoe 
 

– 
 

– 
 

Putzfirma 
 

6 
 

17 
 

♂ 
 

Chron.Tonsillitis 
 

– 
 

– 
 

Einzelhandel 
 

7 
 

45 
 

♂ 
 

Chron.Tonsillitis 
 

o.A. 
 

o.A. 
 

o.A. 
 

8 
 

45 
 

♂ 
 

Schlafapnoe 
 

– 
 

– 
 

KFZ-Mechaniker 
 

9 
 

29 
 

♀ 
 

Chron.Tonsillitis 
 

o.A. 
 

o.A. 
 

o.A. 
 

10 
 

58 
 

♂ 
 

Schlafapnoe 
 

12/d 
 

10 g 
 

arbeitslos 

 
Menge des Nikotinkonsums: in Zigaretten pro Tag (Zig/d) oder  

     Packungsjahren (py): 20 Zigaretten pro Tag über ein Jahr 

Menge des Alkoholkonsums: in Gramm 

–: kein Nikotin- oder Alkoholkonsum 

o.A.: ohne Angabe 
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7.2 Abkürzungen 
 

BaP   Benzo[a]pyren 

BEGM  Bronchial Epithelial Cell Basal Medium 

BPDE  Benzo[a]pyren-7,8-dihydrodiol-9,10-epoxid 

°C   Grad Celsius 

Ca   Catechin 

ca.   circa 

D   Dalton 

DMEM  Dulbeccos Modified Eagle Medium 

DMSO  Dimethylsulfoxid 

DNA  Desoxyribonucleinsäure 

DRC15  DNA-Reparaturkapazität nach 15 Minuten 

DRC30  DNA-Reparaturkapazität nach 30 Minuten 

EC   (–)-Epicatechin 

ECG  (–)-Epicatechin Gallat 

EGC  (–)-Epigallocatechin 

EGCG  (–)-Epigallocatechin Gallat 

EDTA  Ethylendiamintetraacetat 

FCS  Fetales Kälberserum 

H2O2  Wasserstoffperoxid 

min   Minute 

mA   Milliampere 

mM   Millimolar 

MNNG  Methyl-N’-nitro-N-nitrosoguanidin 

OTM  Olive Tail Moment 

p   Signifikanzniveau 

PAH  Polyzyklische aromatische Kohlenwasserstoffe 

PBS  Phosphat gepuffertes Salz 

Py   Pack year (20 Zigaretten/Tag, 365 Tage/Jahr) 

Ta   Tannin 

U/min  Umdrehungen/Minute 

UGT  UDP-Glucurunosyltransferase 

V   Volt 
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