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1 Einleitung 

 

1.1 Einführung und Fragestellung 

 

Der Typ 1 Diabetes – eine Autoimmunerkrankung – ist eine der häufigsten Erkran-

kungen im Kindesalter. Sie erfolgt aus einer selektiven Zerstörung der insulinprodu-

zierenden ß-Zellen im Pankreas durch das körpereigene Immunsystem mit der Folge 

eines absoluten Insulinmangels. Die Ursachen des Typ 1 Diabetes sind noch nicht 

geklärt, aber es ist wahrscheinlich, dass eine genetische Prädisposition und Um-

weltfaktoren ursächlich am Autoimmunprozess beteiligt sind (Atkinson 2001, Gianani 

2005, Peng 2006, Virtanen 2003). In der folgenden Arbeit werden Ernährungsfakto-

ren und deren Einfluss auf die Krankheitsentstehung und Krankheitsprogression 

untersucht. Vorbefunde aus einer Reihe von prospektiven Studien im Kindesalter 

haben ergeben, dass Kinder, die vor der Pubertät Typ 1 Diabetes entwickeln, bereits 

vor dem 3. Lebensjahr Inselautoantikörper aufweisen (Ziegler 1999, Kimpimäki 

2002). Das bedeutete, dass eine Störung des Immunsystems, wenn sie in der Tat 

durch Umweltfaktoren getriggert wird, durch sehr früh einwirkende Umweltfaktoren 

ausgelöst werden muss. Als Umweltfaktoren werden derzeit Ernährung (z. B. kurze 

Stilldauer, zeitiges Einführen von Kuhmilch oder Gluten), Infektionen und psychoso-

ziale Faktoren diskutiert (Knip 1999, 2005, Virtanen 2003). Die Arbeitsgruppe von 

Frau Prof. Dr. med. Anette-G. Ziegler beschäftigt sich seit vielen Jahren mit der 

Untersuchung von Ernährungsfaktoren, die in der Ernährung eines Kindes im ersten 

Lebensjahr eine Rolle spielen. So konnte an Hand der BABYDIAB Studie gezeigt 

werden, dass die zu frühe Gabe von Beikost und vor allem von Gluten mit einem 

erhöhten Diabetesrisiko assoziiert ist (Ziegler 2003). Bezüglich des Stillens konnte 

gezeigt werden, dass Mütter mit Diabetes ihre Kinder sehr viel seltener stillen als 

nicht diabetische Mütter, dass aber Nicht-Stillen oder kurzes Stillen nicht mit einem 

erhöhten Diabetesrisiko einhergeht (Ziegler 2003, Hummel S 2007). Im Gegenteil 

haben sogar Kinder von Müttern mit Diabetes ein signifikant geringeres Risiko, Insel-

autoantikörer zu entwickeln oder an Typ 1 Diabetes zu erkranken als Kinder von 

Vätern mit Typ 1 Diabetes (Warram 1984, Bleich 1993, El-Hashimy 1995, Lorenzen 

1998). 

In der vorliegenden Arbeit wurden nun weitere frühkindliche Ernährungsfaktoren 

analysiert: erstens die Trinkwasserqualität im ersten Lebensjahr und zweitens die 
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Fettsäurezusammensetzung der Erythrozytenmembran als Biomarker für die 

Fettsäureaufnahme mit der Nahrung. 

Schon frühere Untersuchungen konnten einen Zusammenhang zwischen Bestand-

teilen im Trinkwasser (Nitrat/Nitrit, pH-Wert) und dem Typ 1 Diabetes feststellen. 

Allerdings wurde bei früheren Untersuchungen die Trinkwasserqualität zum Zeitpunkt 

der Diabetesdiagnose oder sogar nach Manifestation durchgeführt, so dass ein 

Zusammenhang zwischen der Trinkwasserqualität und der Entstehung von Insel-

autoimmunität nicht analysiert werden konnte (Stene 2000, Parslow 1997).  

Hier wurde nun erstmals anhand der prospektiven BABYDIAB Studie die Trink-

wasserqualität im ersten Lebensjahr auf die Entstehung von Inselautoimmunität und 

Progression zum Typ 1 Diabetes untersucht. 

Auch eine mögliche Prävention des Typ 1 Diabetes durch die immunmodulierenden 

Eigenschaften der omega-3 Fettsäuren Eicosapentaensäure und Docosahexaen-

säure wurde anhand von retrospektiven Erhebungen publiziert (Stene 2000, 2003). 

Außerdem zeigte sich in einer aktuellen Analyse der prospektiven DAISY Studie aus 

Colorado, dass die Aufnahme von omega-3 Fettsäuren sowie der Gehalt an omega-3 

Fettsäuren in der Erythrozytenmembran mit einem verminderten Risiko für Insel-

autoimmunität verbunden ist (Norris 2007). 

In der vorliegenden Arbeit soll vor allem der Frage nachgegangen werden, ob sich 

die Fettsäurezusammensetzung der Erythrozytenmembran zwischen Kindern von 

Müttern mit Typ 1 Diabetes und Kindern von Müttern ohne Typ 1 Diabetes in der 

frühen Kindheit unterscheidet. Diese Information soll indirekt darüber Auskunft 

geben, ob die Ernährung von Kindern diabetischer Mütter anders ist als die Ernäh-

rung von Kindern diabetischer Väter und somit Unterschiede im Diabetesrisiko 

erklären könnte. Hierzu wurde die Fettsäurezufuhr über die Bestimmung der 

Fettsäurezusammensetzung der Erythrozytenmembran der an der BABYDIÄT Studie 

teilnehmenden Kinder untersucht. 
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1.2 Allgemeine Grundlagen 

 

Typ 1 Diabetes – allgemein 

 

Der Typ 1 Diabetes ist eine chronische Stoffwechselerkrankung und zählt zu den 

Autoimmunerkrankungen. Im Verlauf des Autoimmunprozesses kommt es zur einer 

selektiven Zerstörung der insulinproduzierenden ß-Zellen im Pankreas, so dass auf-

grund eines absoluten Insulinmangels eine exogene Insulinzufuhr nötig ist, um die 

Glucosehomöostase aufrechtzuerhalten. Die Entstehung des Typ 1 Diabetes beruht 

z.T. auf einer genetischen Prädisposition, die aber nicht allein zum Ausbruch der Er-

krankung führt. Es werden vor allem Umweltfaktoren als Auslöser für den Auto-

immunprozess diskutiert. (Atkinson 2001, Gianani 2005, Peng 2006, Virtanen 2003). 

Die Manifestation des Typ 1 Diabetes tritt häufig sehr plötzlich auf und ist gekenn-

zeichnet durch akute Beschwerden wie Polyurie, Polydipsie, rascher Gewichtsver-

lust, Hunger, Übelkeit, Erbrechen oder allgemeines Krankheitsgefühl. Aufgrund des 

absoluten Insulinmangels kommt es im Blut zur Hyperglykämie und somit auch zur 

Ausscheidung von Glucose im Urin sowie durch den gestörten Glucosestoffwechsel 

zur Bildung von Ketonkörpern, was unbehandelt ohne Insulintherapie ins ketoazidoti-

sche Koma führen und tödlich enden kann. Betroffene müssen sich ihr Leben lang 

mehrmals täglich Insulin spritzen. Aufgrund der heutigen modernen Therapieformen 

ist es den Patienten möglich, weitgehend ein normales Leben zu führen. Trotzdem 

kann es zu Spätfolgen, wie kardiovaskulären Erkrankungen, Retinopathien und 

Nephropathien kommen (Mehnert 2003), so dass die Erforschung der Ursachen bzw. 

geeigneter Präventionsmaßnahmen von essentieller Bedeutung ist. 

 

 

Epidemiologie des Typ 1 Diabetes 

 

Die Prävalenz des Typ 1 Diabetes in Deutschland beträgt 0,3%. In Deutschland liegt 

dabei die Inzidenz bei den 0-14 Jährigen zwischen ca. 13-16/100 000 Kinder/Jahr 

(Ziegler 2003, Galler 2005, Rosenbauer 2002).  

Weltweit lassen sich geographische Unterschiede bezüglich der Inzidenzrate fest-

stellen. Sie variiert von sehr niedrig wie in Asien und Südamerika (0,1/100 000/Jahr) 

bis sehr hoch wie in Sardinien, Finnland, Schweden, Großbritannien, Kanada und 
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Neuseeland (≥ 20/100 000/Jahr) (Karvonen 1993, 2000). Auch innerhalb Europas 

schwankt die Inzidenzrate erheblich: So ist der Typ 1 Diabetes viel häufiger in den 

nordeuropäischen Ländern als in den südeuropäischen Ländern zu finden, mit einer 

Ausnahme: Sardinien (37,8/100 000/Jahr). Die Inzidenzraten in Schweden und 

Finnland liegen bei 30 bzw. 40,9/100 000 Kinder/Jahr und somit beträchtlich höher 

als in Rumänien: 5,3/100 000/Jahr. Diese weltweite Variation der Inzidenzrate reflek-

tiert zu einem Teil die unterschiedlichen genetischen Hintergründe der verschiedenen  

Populationen und zum anderen möglicherweise Umweltfaktoren, die die Inselauto-

immunität auslösen (The DIAMOND Project Group 2006, Karvonen 1993, 2000).  

Weiterhin zeigt sich, dass die weltweite Diabeteshäufigkeit in den letzten Jahren 

deutlich ansteigt. So beträgt der Anstieg der Inzidenzrate in Europa für den Zeitraum 

von 1989-1994 3,4% pro Jahr. Dabei zeigt sich auch eine Tendenz zu immer mehr 

jüngeren Patienten, denn in der Altersgruppe von 0 bis 4 Jahren ist ein Anstieg der 

Inzidenzrate von 6,3% zu verzeichnen. Es wird allgemein davon ausgegangen, dass 

die Inzidenzrate im Jahr 2010 40% höher sein wird als 1998. Als Gründe für die stei-

genden Inzidenzraten werden sowohl die vermehrte Vererbung der Diabetes-Risiko-

gene als auch der Einfluss von Umweltfaktoren angenommen (Onkamo 1999, 

Rosenbauer 2000, EURODIAB ACE Study Group 2000). 

 

 

Pathogenese des Typ 1 Diabetes 

 

Bedeutung von genetischen Faktoren in der Pathogenese des Typ 1 Diabetes 

 

Das Vorhandensein einer entsprechenden genetischen Prädisposition ist Voraus-

setzung für die Entwicklung eines Typ 1 Diabetes. So erkranken 5% der Kinder von 

Müttern oder Vätern mit Typ 1 Diabetes selbst an einem Typ 1 Diabetes.  

Zurzeit sind ca. 20 verschiedene Gen-Loci bekannt, die mit dem Typ 1 Diabetes 

assoziiert sind. Dabei hat das IDDM1 Gen, das innerhalb der HLA (human leukocyte 

antigen) Klasse II Region auf dem Chromosom 6p21 zu finden ist, den größten Ein-

fluss mit etwa 50% auf die Entwicklung eines Typ 1 Diabetes. Diese HLA-Moleküle 

sind im Immunsystem für die Antigenpräsentation gegenüber den CD4+ T-Zellen 

verantwortlich (Atkinson 2001, Davies 1994, Gianani 2005). Neben den Genotypen 

HLA-DR*03/04 (DQB1*57non-Asp) und HLA-DR*04/04 (DQB1*57non-Asp), die mit 
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dem höchsten Risiko verbunden sind, gibt es auch protektive HLA-Haplotypen wie 

z.B. HLA-DR2 (DQB1*0602) (Atkinson 2001, Hummel 2002). So besitzen Kinder von 

Typ 1 diabetischen Eltern mit einem HLA-Risikogenotyp ein kumulatives Risiko von 

20% innerhalb der ersten 5 Jahre Inselautoimmunität zu entwickeln und somit ist das 

Risiko bei diesen Kindern 10mal höher als bei Kindern ohne diese Genotypen (2,7%) 

(Schenker 1999). Bei Kindern aus der gesunden Allgemeinbevölkerung mit diesen 

Risikogenotypen liegt das Risiko für einen Typ 1 Diabetes bei ca. 3-4%. 

Weitere Typ 1 Diabetes determinierende Genorte sind: der IDDM2 Locus (Insulin-

genpolymorphismus) auf Chromosom 11p15 (Davies 1994, Pugliese 2002), der 

IDDM4 Locus auf Chromosom 11q13, IDDM5 Locus auf Chromosom 6q25, IDDM6 

Locus auf Chromosom 18q21 und  IDDM8 Locus auf Chromosom 6q27 sowie der 

IDDM12 Locus auf Chromosom 2q33 (zytotoxisches T-Lymphozyten assoziiertes 

Antigen CTLA-4 Gen) und die Interleukin-4 und Interleukin-13 codierenden Gene auf 

Chromosom 5q31 (Davies 1994, Steck 2005, Badenhoop/Usadel 2003). 

 

 

Bedeutung der Immunologie in der Pathogenese des Typ 1 Diabetes 

 

Aus Untersuchungen an Pankreaten von Typ 1 Diabetikern geht hervor, dass es im 

Verlauf des Autoimmunprozesses zu einer Zerstörung und Entzündung der ß-Zellen 

durch Infiltration von mononukleären Zellen in die pankreatischen Inseln (Insulitis) 

kommt (Gepts 1965, Foulis 1986). Nimmt die Inselzellmasse um mehr als 80% ab, 

wird der Typ 1 Diabetes klinisch manifest. Die Infiltrate setzen sich aus CD4+ T-

Zellen, CD8+ T-Zellen, B-Lymphozyten und Makrophagen zusammen (Atkinson 

2001, Bach 1994). Dabei sind hauptsächlich die CD4+ T-Zellen an der initialen Zer-

störung der ß-Zellen beteiligt (Haskins 1990). Aufgrund der unterschiedlichen Zyto-

kinausschüttung werden die CD4+ T-Zellen in Th1-Zellen und Th2-Zellen eingeteilt 

(Paul 1994).  Untersuchungen an NOD Mäusen zeigten, dass die Th1 Zellen eine 

maßgebliche Rolle in der Progression des Typ 1 Diabetes spielen. Auf der anderen 

Seite wird den Th2 Zellen eine protektive Wirkung zugeschrieben (Tian 1997, Liblau 

1995, Katz 1995). 

Bereits Jahre vor Ausbruch der Krankheit lassen sich in der Phase des Prädiabetes 

Inselautoantikörper im Blut nachweisen: Insulinautoantikörper (IAA), Glutamatdecar-

boxylaseautoantikörper (GADA), Tyrosinphosphataseautoantikörper (IA2A) und 



 6

zytoplasmatischer Inselzellautoantikörper (ICA). Sie sind wichtige Immunmarker für 

die Diagnostik und Prädiktion des Typ 1 Diabetes. Diese 4 Inselautoantikörper kön-

nen mittels sensitiven, international standardisierten Methoden im venösen und 

kapillaren Blut bestimmt werden. Ein Charakteristikum für die Risikoabschätzung 

eines Typ 1 Diabetes ist zum einen die Anzahl der Inselautoantikörper und zum 

andern das Alter bei Entstehung von Inselautoantikörpern (Hummel 2004, Ziegler 

1999). So zeigen die Ergebnisse der prospektiven BABYDIAB Studie, dass bei Kin-

dern, die in der frühen Kindheit einen Typ 1 Diabetes entwickeln, bereits in den ers-

ten beiden Lebensjahren Inselautoantikörper nachgewiesen werden können. Dabei 

stellt der Autoantikörper gegen Insulin (IAA) meist den ersten Antikörper dar. Nur bei  

älteren Kindern ist GADA der erste nachweisbare Antikörper (Ziegler 1999). Kinder, 

die später an einem Typ 1 Diabetes erkranken, haben zudem hoch affine IAA 

(Achenbach 2004). Für die Progression zum Typ 1 Diabetes ist nicht nur das Auftre-

ten eines Inselautoantikörpers entscheidend, sondern die Ausweitung der Immun-

antwort (spreading) auf weitere Antigene wie GADA und IA2A ist wichtig für das Fort-

schreiten einer Insulitis zum Typ 1 Diabetes (Naserke 1998). So haben Kinder mit 

multiplen Inselautoantikörpern ein Risiko von 40% in den nächsten 5 Jahren einen 

Typ 1 Diabetes zu entwickeln (Hummel 2004). In der Regel entwickeln Kinder persis-

tierende Inselautoantikörper mit zum Teil schwankenden Antikörpertitern, aber es 

gibt auch Kinder mit transienten Inselautoantikörpern bzw. mit singulären Inselauto-

antikörpern. Das Vorhandensein nur eines Inselautoantikörpers bzw. eines transien-

ten Inselautoantikörpers stellt in den meisten Fällen eine harmlose nichtprogressive 

Inselautoimmunität dar (Colman 2000, Hummel 2004). Weiterhin konnte die 

BABYDIAB Studie zeigen, dass die Progression zum Typ 1 Diabetes invers mit dem 

Alter, bei dem multiple Inselautoantikörper auftreten, korreliert. Die Progression ver-

läuft signifikant schneller bei Kindern, die innerhalb des ersten Lebensjahres multiple 

Inselautoantikörper entwickeln im Vergleich zu Kindern, bei denen erst später im 

Leben multiple Inselautoantikörper im Blut detektierbar sind (Hummel 2004, Achen-

bach 2005).  
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Bedeutung von  Umweltfaktoren in der Pathogenese des Typ 1 Diabetes 

 

Es gibt einige Hinweise für eine Beteiligung von Umweltfaktoren an der Entstehung 

des Typ 1 Diabetes. So zeigten Studien bei monozygoten Zwillingen, dass nur in 23-

55% der Fälle beide Zwillinge an einem Typ 1 Diabetes erkranken (Barnett 1981, 

Kapiro 1992, Kyvik 1995, Olmos 1988). Weiterhin berichteten Migrationstudien über 

eine Angleichung der Inzidenzrate bei Nachkommen in der neuen Umgebung. Auf-

grund dieser Beobachtungen und der weltweit steigenden Inzidenz des Typ 1 Dia-

betes wird den Umweltfaktoren eine immer größere Relevanz zugesprochen (Knip 

2005, Onkamo 1999, Peng 2006). Seit mehreren Jahrzehnten wird sowohl die dest-

ruktive als auch  die protektive Bedeutung von Umweltfaktoren in der Pathogenese 

des Typ 1 Diabetes in verschiedenen Tier- und Humanstudien erforscht. Trotz einer 

Vielzahl von durchgeführten Studien herrscht immer noch Unklarheit über den auslö-

senden „Trigger“ und über den genauen Zeitpunkt dessen Einwirkung. In Tab. 1 sind 

die Umweltfaktoren aufgeführt, die in der Pathogenese des Typ 1 Diabetes zurzeit 

diskutiert werden.  
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Tab.1: Mögliche Umweltfaktoren in der Pathogenese des Typ 1 Diabetes 

 

Ernährungsfaktoren 

Stilldauer/Einführung von Kuhmilch 
Gluten 

Vitamin D 
Trinkwasser 

 Zink 
Nitrat/Nitrit/N-Nitoso-Verbindungen  

n-3 Fettsäuren 

Virale Infektionen 

Enteroviren  
Röteln 

Retroviren  
Rotaviren 

Cytomegaloviren 

Impfungen 

Mumps, Masern, Röteln 
Hepatitis B 
Varizellen 

Polio 
Haemophilus Influenza 

Diphterie 
Tetanus 
Pertussis 

Hygiene 

Pränatale/Perinatale/Postnatale Faktoren 

Alter der Mutter 
Komplizierter Geburtmodus 

Ernährung der Mutter in der Schwangerschaft 
Geburtsgewicht 

Gewichtszunahme 

Psychosoziale Faktoren 

Sozialstatus der Eltern 
Stress 

 
 
 
 
Ernährungsfaktoren 

 

Stilldauer und Einführung von Kuhmilch 

Zahlreiche Fall-Kontroll-Studien wurden durchgeführt, um zu klären, ob eine kürzere 

Stilldauer bzw. zeitiges Einführen von Kuhmilch für den Typ 1 Diabetes prädisponie-

ren. Aufgrund von fehlenden eindeutigen Beweisen wird diese Hypothese immer 

noch kontrovers diskutiert (Gerstein 1994, Harrison 1999, Melonie 1997). Natürlich 

bedingen sich Stilldauer und Zeitpunkt der Kuhmilcheinführung gegenseitig, denn je 

kürzer die Stilldauer, desto früher werden Kuhmilchprodukte in die Ernährung eines 

Säuglings eingeführt (Harrison 1999, Füchtenbusch 1995).  

In einer Metaanalyse von 1994  wurde das Typ 1 Diabetes Risiko aus 13 Fall-Kont-

roll-Studien berechnet. Hier zeigte sich eine 1,37fache Erhöhung des Typ 1 Diabetes 

Risikos, wenn die Kinder kürzer als 3 Monate gestillt wurden bzw. eine 1,57fache 
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Erhöhung des Typ 1 Diabetes Risikos bei Einführung von Kuhmilch vor dem             

4. Lebensmonat (Gerstein 1994). Dennoch gibt es auch Untersuchungen aus 

England, Dänemark und Sardinien, die keinen Zusammenhang zwischen Stilldauer 

bzw. Einführung von Kuhmilch und dem Risiko für Typ 1 Diabetes finden konnten 

(Bodington 1994, Kyvik 1991, Meloni 1997). 

Ein weiterer Faktor der berücksichtigt werden muss, ist das genetische Risiko. So 

berichteten Kostraba et al. und Perez-Bravo et al., dass das relative Risiko signifikant 

höher war (11,3 und 13,1), wenn Kinder mit einem Hochrisikogenotyp (HLA) weniger 

als 3 Monate exklusiv gestillt wurden bzw. eine Exposition gegenüber Kuhmilch vor 

dem 3. Lebensmonat erhalten hatten (Kostraba 1993, Perez-Bravo 1996). 

Dem gegenüber stehen vor allem 4 große prospektive Studien aus den USA, Aus-

tralien, Deutschland und Finnland. So konnten Norris et al. in einer retrospektiven 

Analyse im Rahmen der DAISY Studie keinen signifikanten Zusammenhang zwi-

schen der Entwicklung von Inselautoimmunität bis zu einem Alter von 7 Jahren und 

der frühkindlichen Ernährung in den ersten 6 Lebensmonaten finden (Norris 1996). 

Dieses Ergebnis konnte von Couper et al. mit der australischen Baby DIAB Studie 

bestätigt werden. Hier wurden 317 Kinder diabetischer Eltern von Geburt an bis zum 

29. Lebensmonat nachverfolgt. Die Eltern wurden gebeten in Form von Tagebüchern 

und Fragebögen die Ernährung ihres Kindes festzuhalten. Es wurde das exklusive 

Stillen, Gesamtstilldauer, Einführung von Formulanahrungen oder Einführung ande-

rer Nahrungsmittel analysiert. Auch hier konnte kein Zusammenhang zwischen der 

Inselautommunität und der frühkindlichen Ernährung entdeckt werden (Couper 

1999). Gleiche Resultate wurden auch in der deutschen BABYDIAB Studie erzielt, 

die ebenfalls Kinder von erstgradigen Verwandten von Geburt an untersucht. Exklu-

sives Stillen und Gesamtstilldauer unterschieden sich nicht zwischen den Inselauto-

antikörper positiven und Inselautoantikörper negativen Kindern. Auch nach einer 

separaten Analyse von HLA-Hochrisiko Kindern konnte kein Zusammenhang fest-

gestellt werden (Hummel 2000, Ziegler 2003). Ebenso konnte in der finnischen DIPP 

Studie, in der 3565 Kinder mit einem erhöhtem genetischen Typ 1 Diabetes Risiko 

von Geburt an prospektiv nachverfolgt werden, keine Assoziation zwischen der 

Gesamtstilldauer bzw. exklusiven Stilldauer und der Entwicklung von Inselautoimmu-

nität beobachtet werden (Virtanen 2006). 

Folgende Kuhmilchproteine werden bezüglich der Kuhmilch-Hypothese diskutiert: 

Casein, Bovin-Serum-Albumin (BSA) und ß-Lactoglobulin. Als ein möglicher Mecha-
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nismus wird die immunologische Kreuzreaktion (Mimikry) zwischen Kuhmilchprotei-

nen und Inselantigenen vermutet (Harrison 1999, Schrezenmeir 2000, Wasmuth 

2000). Ferner vermuteten Vaarla et al., dass eine frühkindliche Ernährung mit 

Formulanahrung auf Kuhmilchbasis in eine Kreuzreaktion mit bovinem Insulin resul-

tiert. Kinder, die mit Formulanahrungen auf Kuhmilchbasis gefüttert wurden, hatten 

signifikant höhere IgE-Antikörpertiter gegen bovines Insulin als gestillte Kinder im 

Alter von 3 Monaten. Die IgE-Antikörpertiter gegen bovines Insulin verringerten sich 

in beiden Gruppen im Alter von 12 und 18 Monaten. Aber bei 11 Kindern, die min-

destens 2 Inselautoantikörper entwickelt hatten, erhöhten sich die IgE-Antikörpertiter 

während des Beobachtungszeitraumes (Vaarla 1999). Weiterhin berichteten Paronen 

et al., dass die zellulären und humoralen Reaktionen gegen bovines Insulin bei Kin-

dern mit 3 Monaten höher waren, wenn diese Formulanahrung auf Kuhmilchbasis 

erhalten hatten als bei exklusiv gestillten Kindern (Paronen 2000). Diese Beobach-

tungen könnten von Bedeutung sein, da der Insulinautoantikörper bei Kleinkindern oft 

der erste Autoantikörper ist (Ziegler 1999). Auf der anderen Seite darf nicht verges-

sen werden, dass Muttermilch eine ausgezeichnete Quelle für die Versorgung des 

Neugeborenen mit wichtigen immunmodulierenden Faktoren für die Reifung und 

Entwicklung des Darms und des darmassoziierten Immunsystems, aber auch für die 

Bereitstellung von Antikörpern, Leukozyten, Lysozym und Lactoferrin für einen passi-

ven Immunschutz ist, so dass ein Fehlen von Muttermilch mit einer veränderten Ent-

wicklung des darmassoziierten Immunsystems unter Verdacht steht (Harrison 1999). 

Da die meisten publizierten Ergebnisse aus retrospektiven Studien stammen, ist es 

besonders wichtig Daten aus prospektiven Studien zu sammeln.  

Zurzeit wird im Rahmen der TRIGR Studie (Trial to Reduce Diabetes in the Geneti-

cally at Risk), eine prospektive Interventionsstudie, der Einfluss von Kuhmilchprotein 

auf die Entstehung von Inselautoimmunität evaluiert. Kinder aus der Interventions-

gruppe erhalten nach dem Abstillen eine spezielle Caseinhydrolysatnahrung, wäh-

rend die Kontrollgruppe eine normale Formulanahrung auf Kuhmilchbasis erhält. In 

der Pilotstudie mit 242 Kindern war die kumulative Inzidenz für Inselautoimmunität in 

der Interventionsgruppe signifikant niedriger (Akerblom 2005). 
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Gluten 

Als ein weiterer Nahrungsfaktor, der in der Pathogenese des Typ 1 Diabetes eine 

Rolle spielt, wird Gluten diskutiert. Gluten ist das Klebereiweiß des Getreides und ist 

externer Trigger für die Zöliakie, eine Malabsorptionsstörung im Kindes- und Erwach-

senenalter. Zöliakie und Typ 1 Diabetes kommen oft zusammen vor, so haben 5% 

der Typ 1 Diabetiker auch zusätzlich eine Zöliakie (Cronin 1997, Not 2001, Hummel 

2000b). Das gehäuft gemeinsame Auftreten von beiden Erkrankungen wird auf den 

gemeinsamen Risiko-HLA-Haplotyp DR3 (DQ02) zurückgeführt (Barker 2006). In 2 

Studien an NOD Mäusen konnte durch eine glutenfreie Diät die Typ 1 Diabetesinzi-

denz signifikant reduziert bzw. die Diabetesmanifestation signifikant heraus gezögert 

werden (Funda 1999, Schmid 2004). 

Ventura et al. untersuchten die Korrelation zwischen der Dauer der Glutenexposition 

von Zöliakie-Patienten und der Prävalenz von anderen Autoimmunerkrankungen. Die 

Prävalenz für den Typ 1 Diabetes war signifikant höher, wenn die Zöliakie nach dem 

10. Lebensjahr diagnostiziert wurde im Vergleich zu Patienten mit einem Alter bei 

Diagnose von < 2 Jahren (6,6% vs. 0,8%) (Ventura 1999). Somit kann durch eine 

frühzeitige Erkennung einer Zöliakie und eine daraus resultierende glutenfreie Ernäh-

rung eventuell die Entstehung von anderen Autoimmunerkrankungen wie Typ 1 Dia-

betes verhindert werden. 

Auch scheint der Zeitpunkt der Einführung von glutenhaltiger bzw. getreidehaltiger 

Beikost für die Entwicklung von Inselautoimmunität wichtig zu sein. So fanden Norris 

et al. bei 1183 Kindern der DAISY Studie mit einem genetischen Risiko oder einem 

erstgradigen Verwandten ein signifikant erhöhtes Risiko für Inselautoimmunität, wenn 

getreidehaltige Beikost (glutenhaltiges und glutenfreies Getreide wie Reis) vor dem 4. 

Lebensmonat oder nach dem 6. Lebensmonat gegeben wurde (HR: 4,29; 5,36) 

(Norris 2003). In der deutschen BABYDIAB Studie hatten Kinder, die vor dem          

3. Lebensmonat glutenhaltige Nahrung erhalten hatten ein signifikant erhöhtes Insel-

autoantikörper Risiko als Kinder, die in den ersten 3 Lebensmonaten gestillt wurden 

(HR: 4,0). Aber im Gegensatz zur DAISY Studie konnte kein erhöhtes Risiko für 

Inselautoimmunität bei Einführung glutenhaltiger Nahrung nach dem 6. Lebensmonat 

festgestellt werden (Ziegler 2003). 

Gegenwärtig wird in der BABYDIÄT Studie der Einfluss einer verzögerten Glutenex-

position auf die Entstehung von Inselautoimmunität bzw. die Entwicklung eines Typ 1 

Diabetes untersucht. 
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Vitamin D 

Im Gegensatz zum Kuhmilchprotein und dem Gluten werden der aktiven Form des 

Vitamin D dem 1,25 Dihydroxycholecalciferol (Calcitriol, Vitamin D3) protektive 

Eigenschaften im Hinblick auf die Entstehung eines Typ 1 Diabetes zugesprochen. 

Die biologische Aktivität des Calcitriol wird erst nach Bindung an den Vitamin-D-

Rezeptor wirksam, der auf fast allen Zellen des Immunsystems zu finden ist. Das 

Calcitriol moduliert das Immunsystem auf verschiedenen Wegen: zum einen durch 

Reduzierung der Antigenpräsentation und zum anderen durch Inhibierung von IL-2 

und IFN-γ Produktion der Th1 Zellen mit einer gleichzeitigen Zytokinerhöhung der 

Th2 Zellen. Dadurch kommt es zur Unterdrückung der Th1 Zellproliferation (Mathieu 

2005, Saggese 1989). Dieser Wirkmechanismus könnte den protektiven Effekt einer 

Vitamin D Supplementierung erklären. 

Bei NOD Mäusen führte eine Behandlung mit 1,25 Dihydoxycholicalciferol zu einer 

verminderten Diabetes-Inzidenz (Mathieu 1994). Ebenso zeigt die EURODIAB Studie 

und eine große finnische Studie, dass eine Vitamin D Supplementation im ersten 

Lebensjahr mit einem reduzierten Typ 1 Diabetes Risiko einhergeht (The EURODIAB 

Substudy 2 Study Group 1999, Hyppönen 2001). 

 

 
Trinkwasser 

Die Bedeutung der Trinkwasserqualität für die Entstehung von Inselautoimmunität 

und Typ 1 Diabetes wurde in verschiedenen epidemiologischen Studien erforscht, 

die zu widersprüchlichen Ergebnissen führten. In der frühkindlichen Ernährung hat 

das Trinkwasser bei der Zubereitung von Tee und Formularnahrungen auf Pulver-

basis eine besondere Relevanz. Im Fokus der Untersuchung stehen dabei vor allem 

ein niedriger  pH-Wert, hohe Nitrat- und Nitritkonzentrationen und Zink. 

 

Nitrat/Nitrit 

Nitrat ist eine aus Stickstoff und Sauerstoff bestehende Verbindung, die natürlicher-

weise im Boden und Grundwasser vorkommt. Der Stickstoff aus dem Nitrat dient den 

Pflanzen zum Eiweißaufbau, darum wird in der Landwirtschaft Nitrat als Dünger ein-

gesetzt. So kann die Nitratbelastung von Boden und Grundwasser in ländlichen 

Gebieten besonders hoch sein (McKnight 1999). Laut EU-Trinkwasserverordnung 

2001 darf der Grenzwert für Nitrat von 50 mg/l nicht überschritten werden. Die 

Hauptquellen für die Aufnahme von Nitrat in der menschlichen Ernährung sind 
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Gemüse (Spinat, Feldsalat, Kohlrabi, Rote Beete) gefolgt von Trinkwasser und gepö-

keltem Fleisch (Kasper 2000, Biesalski 1999). Nitrat und Nitrit werden in der 

Lebensmittelindustrie aufgrund ihrer antimikrobiellen Eigenschaften und ihrer Fähig-

keit, gepökeltem Fleisch eine rote Farbe und einen besonderen Geschmack zu ver-

leihen, eingesetzt (Lucke 1999). Nitrat kann im Gastrointestinaltrakt durch Bakterien 

zu Nitrit reduziert werden, welches wiederum in Anwesenheit von Aminen zu kanze-

rogenen Nitrosaminen (N-Nitroso-Verbindung) umgewandelt werden kann (Ohshima 

1981, Spiegelhalder 1976). Diese endogene Bildung wird bei sauren pH-Werten 

begünstigt. Nitrosamine können aber auch mit der Nahrung aufgenommen werden 

über gepökeltes Fleisch, Fisch und Käse (Scanlan1983). Dabei erhöht sich der 

Gehalt an Nitrosaminen, wenn man gepökeltes Fleisch/Wurst gemeinsam mit Käse-

sorten, die reich an sekundären Aminen sind, erhitzt (Kasper 2000, Biesalski 1999). 

Etwa 5 % der aufgenommen Nitratmengen werden im Körper zu Nitrit reduziert (Choi 

1985). Die antioxidativ wirksamen Vitamine C und E können vor der Nitrosamin-

bildung schützen, in dem sie im Körper Nitrat zu Stickstoffmonoxid reduzieren, 

welches nicht mit Aminen zu Nitrosaminen umgewandelt werden kann  (Chow 2002, 

Mirvish 1986, Tannenbaum 1991).  

Die akzeptable tägliche Aufnahmemenge (ADI-Wert) von Nitrat und Nitrit für Erwach-

sene und Kinder liegt bei 0 - 3,7 mg/kg Körpergewicht bzw. 0 - 0,7 mg/kg Körperge-

wicht (FAO/WHO 2002). Diese Werte gelten allerdings nicht für Säuglinge unter 3 

Monaten. Nitrit kann Hämoglobin zum Methämoglobin oxidieren, welches bei Säug-

lingen aufgrund des noch nicht voll entwickelten Methämoglobinreduktase Enzym-

systems zu einer Zyanose führt, die wiederum im schlimmsten Fall tödlich enden 

kann (McKnight 1999). 

Neben den kanzerogenen Eigenschaften konnte den N-Nitroso-Verbindungen wie 

Streptozotocin und N-Nitrosomethylurea in diversen Tierexperimenten auch diabeto-

gene Eigenschaften nachgewiesen werden (Wilander 1975, Rakieten 1963).  

Aber auch epidemiologische Studien weisen auf einen Zusammenhang zwischen der 

Nitrataufnahme mit der Nahrung bzw. Trinkwasser und einem erhöhten Typ 1 Dia-

betes Risiko hin. So konnte in England eine erhöhte Typ 1 Diabetes Inzidenz mit 

einer Nitratkonzentration von > 14,85 mg/l im Trinkwasser assoziiert werden (Pars-

low 1997). Ebenso demonstrierten Kostraba et al. eine positive Korrelation zwischen 

dem Nitrat im Trinkwasser und der Typ 1 Diabetes Inzidenz (Kostraba 1992). Im 
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Gegensatz dazu konnten Untersuchungen aus Sardinien und den Niederlanden 

keinen Beweis hierfür erbringen (Casu 2000, van Maanen 2000). 

Da wie oben erwähnt Nitrat und Nitrit hauptsächlich über die Nahrung aufgenommen 

wird, erforschten Virtanen et al. den Zusammenhang zwischen der Nitrat- und Nitrit-

aufnahme mit der Nahrung bzw. mit dem Trinkwasser und dem Typ 1 Diabetes 

Risiko. Es zeigte sich, dass die diabetischen Kinder und ihre Mütter signifikant mehr 

Nitrit mit der Nahrung verzehrt hatten als die Kontrollgruppe, hingegen die Nitratauf-

nahme keinen Einfluss hatte. Keine Unterschiede wurde bezüglich der aufgenomme-

nen Nitrat- und Nitritmenge über das Trinkwasser zwischen den diabetischen Kindern 

und der Kontrollgruppe gefunden (Virtanen1993). Ebenso konnte in der Swedish 

Childhood Diabetes Study eine Dosis-Wirkungs-Beziehung zwischen dem häufigen 

Verzehr von Lebensmittel reich an Nitrosaminen, Nitrat und Nitrit und dem Typ 1 

Diabetes festgestellt werden (Dahlquist 1990). In einer australischen Studie konnte 

dieses Ergebnis nicht bestätigt werden. Hier hatten Kinder kein erhöhtes Typ 1 Dia-

betes Risiko, wenn sie Nahrung reich an Nitrosaminen zu sich genommen hatten 

(Verge 1994). 

 

Zink 

Zink spielt eine wichtige Rolle im Insulinmetabolismus (Insulinsynthese und –sekre-

tion) und ist wichtiger Bestandteil von vielen Enzymen wie die Superoxid-Dismutase, 

ein Enzym, das vor reaktiven Sauerstoffspezies schützt. Aufgrund dieser Eigen-

schaften wird auch die Rolle des Zinks als ein möglicher protektiver Faktor in der 

Pathogenese des Typ 1 Diabetes erforscht (Tayler 2005, Chausmer 1998, Dudson 

1998). Im Mausmodell konnte eine Zinksupplementierung des Trinkwassers einen 

Streptozotocin (eine N-Nitroso-Verbindung) induzierten Diabetes durch Hochregulie-

rung von Metallothionein gehemmt werden. Metallothionein ist eine Proteingruppe, 

die die DNA vor Radikalen schützt (Ohly 2000). Als ein weiterer Mechanismus für die 

Wirkung von Zink wird die Inhibierung von NFκB, ein proinflammatorischer Transkrip-

tionsfaktor, diskutiert (Tayler 2005, Ho 2001). 

In einer schwedischen Fall-Kontroll-Studie war eine hohe Zinkkonzentration im 

Grundwasser mit einem signifikant erniedrigten Typ 1 Diabetes Risiko assoziiert 

(Haglund 1996). Ein gleiches Ergebnis konnte auch eine Studie aus England erzie-

len. Die Typ 1 Diabetes Inzidenz war signifikant reduziert, wenn die Zinkkonzentra-

tion im Trinkwasser zwischen 22,27-27,00 µg/l betrug (Zhao 2001). Im Unterschied 



 15

dazu konnte eine finnische Studie keinen Zusammenhang zwischen dem Zinkgehalt 

im Grundwasser und der Typ 1 Diabetes Inzidenz aufzeigen (Moltchanova 2004). 

Weiterhin berichten viele Untersuchungen von einer signifikant verminderten intra-

zellulären Zinkkonzentration sowie von einer verminderten Zinkkonzentration im 

Serum und Plasma bei Typ 1 Diabetikern als in den Kontrollgruppen (Hägglöf 1983, 

Isbir 1994, Raz 1989, Walter 1991). 

 

 

n-3 Fettsäuren  

Die Bedeutung der n-3 Fettsäuren für das Immunsystem erfolgt überwiegend über 

die Beeinflussung der Eicosanoidsynthese, Zytokinproduktion und der Lympho-

zytenfunktion (Calder 2004, Yaqoob 2004).  

Eicosanoide werden in den meisten Fällen über die Arachidonsäure gebildet, die 

wiederum durch die Phospholipase A aus den Membranphospholipiden freigesetzt 

wird. Anschließend wird die Arachidonsäure über Cyclooxygenasen und Lipoxygena-

sen in proinflammatorische Prostaglandine, Thromboxane der 2er Serie und Leuko-

triene der 4er Serie umgewandelt (Calder 2004, Yaqoob 2004).  

Nur die Eicosapentaensäure konkurriert mit der Arachidonsäure als Substrat für die 

Cyclooxygenase und Lipoxygenase und inhibiert die Oxidation der Arachidonsäure. 

Wird anstelle der Arachidonsäure die Eicosapentaensäure freigesetzt, werden Pros-

taglandine und Thromboxane der 3er Serie und Leukotriene der 5er Serie synthe-

siert, die entweder weniger physiologisch aktiv sind bzw. antiinflammatorisch, anti-

thrombotisch, antichemotaktisch und antivasokonstriktiv wirken. Durch Verzehr von 

Fischöl nimmt der Anteil der n-3 Fettsäuren in den Membranen zu, was zu einer ver-

minderten Synthese von proinflammatorischen Eicosanoiden wie Prostaglandin E2, 

Thromboxan A2 und Leukotrien B4 aus der Arachidonsäure resultiert (Calder 2004, 

Yaqoob 2004). 

Andererseits beeinflussen die n-3 Fettsäuren über Eicosanoide die Zytokinproduk-

tion. So konnte in Tier- und Humanstudien durch eine tägliche Supplementierung von 

n-3 Fettsäuren eine verminderte Synthese von IL-1, IL-2, IL-6 und TNF-α festgestellt 

werden, die wiederum proinflammatorische Eigenschaften besitzen (Calder 2004, 

Yaqoob 2004). 

Weiterhin wurde den n-3 Fettsäuren eine Verminderung der Lymphozytenprolifera-

tion, der Natürlichen Killerzell-Aktivität, der T-Zell und Makrophagen vermittelten 
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Zytotoxizität, sowie eine verringerte Expression von HLA Klasse II Molekülen auf 

aktiven Monozyten und eine Erhöhung der Suppressor-T-Zellen Aktivität nachge-

wiesen (Calder 2004, Yaqoob 2004, Molvig 1991, Meydani 1993, Hughes 2000). 

Diese immunmodulierenden Effekte der n-3 Fettsäuren werden im Hinblick auf eine 

mögliche Prävention des Typ 1 Diabetes als sehr günstig bewertet. Es wird vermutet, 

dass Zytokine wie IL-1, IL-6, TNF-α die pankreatischen β-Zellen schädigen. Zawalich 

und Diaz zeigten, dass IL-1, TNF-α die Insulinsekretion beeinträchtigen können und 

zytotoxisch auf die Inselzellen wirken (Zwalisch 1986). Ebenfalls demonstrierten 

Campell et al. die Zytotoxizität von IFN-γ und TNF-α auf Inselzellen von Mäusen 

(Campell 1988). Eine Inhibierung der Produktion von IL-1, IL-2 und TNF-α durch n-3 

Fettsäuren in humanen Lymphozyten in vitro und in vivo konnten Endres et al. und 

Kumar und Das erreichen (Endres 1989, Kumar 1994). Durch eine Supplementierung 

von 2g/Tag Eicosapentaensäure und 1g/Tag Docosahexaensäure über 7 Wochen 

konnte eine signifikante Hemmung der Proliferation von mononukleären Zellen und 

eine reduzierte  IL-1β Immunoreaktivität in mononukleären Zellen und Monozyten in 

gesunden Probanden und bei neudiagnostizierten Typ 1 Diabetikern nachgewiesen 

werden. Dennoch kam es dabei nicht zu einer verringerten Sekretion von IL-1β, TNF-

α, PGE2 und LTB4 (Molvig 1991).  

Die genetische Prädisposition des Typ 1 Diabetes ist, wie eingangs beschrieben, 

innerhalb der HLA Klasse II Genotypen lokalisiert (Atkinson 2001). Supplementierung 

von gesunden Probanden mit 3g Fischöl pro Tag über 3 Wochen führte zu einem 

verminderten Level der HLA Klasse II (HLA-DP, -DQ und –DR) Expression auf der 

Oberfläche von peripheren Monozyten (Hughes 1996). Dagegen berichteten eben-

falls Hughes et al., dass die Eicosapentaensäure die Expression von HLA–DR von 

unstimulierten humanen Monozyten in vitro hemmt, während die Docosahexaen-

säure diese Expression erhöht (Hughes 1996b). In einer neueren Untersuchung von 

2000 kam es zu einer Reduzierung der antigenpräsentierenden Funktion von aktiven 

Monozyten wenn Eicosapentaensäure und Docosahexanensäure in einem Verhältnis 

von 3:2 gegeben wurde (Hughes 2000). 

Ferner wird angenommen, dass die n-3 Fettsäuren eine wichtige Rolle im Typ 1 Dia-

betes bedeutsamen Th1/Th2 Gleichgewicht spielen. Im Tiermodell führten Behand-

lungen mit Fischöl zu einer Suppression der IL-2 induzierten Th1 Aktivität und zu 

einer direkten Hemmung der Th1 Entwicklung bzw. zu einer indirekten Down Regu-

lation der Th1 Proliferation durch Erhöhung der Th2 Funktion, denen wiederum eine 
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protektive Wirkung bezüglich des Typ 1 Diabetes zugeschrieben wird (Arrington 

2001, Zhang 2005). 

Eine Untersuchung an Typ 1 Diabetikern und Patienten mit Insulinautoantikörpern 

berichtet über eine erhöhte Expression der Prostaglandin-Synthase 2 (COX2) in 

Makrophagen, was wiederum in einer veränderten proinflammatorischen Eicosanoid-

synthese resultieren könnte (Litherland 1999). Im NOD-Maus Modell konnte durch 

eine Reduktion der Expression der Prostaglandin-Synthase 2 in Makrophagen eine 

signifikant verminderte Diabetesinzidenz erzielt werden (Litherland 1999).  

Bei einer weiteren Studie mit Mäusen konnte das Ausmaß der Insulitis durch eine 

Fischölsupplementierung verringert werden (Linn 1989). In einer Untersuchung an 

Wistar Ratten schützten mehrfach ungesättigte n-3 und n-6 Fettsäuren signifikant vor 

einem mit Alloxan induzierten Diabetes (chemisch-induziert), wenn diese Tiere zuvor 

mit Fischöl behandelt wurden (Kirshna 2001). Alloxan ist über die Bildung von OH˙-

Radikalen toxisch für die β-Zellen. In dieser Studie wirkten die n-3 und n-6 Fettsäu-

ren protektiv durch Erhöhung des antioxidativen Status der Ratten (Kirshna 2001).  

Stene et al. fanden im Jahre 2000 in einer norwegischen Fall-Kontroll-Studie eine 

starke negative Korrelation zwischen Lebertran-Einnahme in der Schwangerschaft 

und dem Typ 1 Diabetes Risiko für die Nachkommen mit einem OR von 0.3. In einer 

Nachfolgerstudie von 2003 konnte dieses Ergebnis nicht bestätigt werden, aber die 

Lebertran-Einnahme im ersten Lebensjahr war mit einem signifikanten verminderten 

Risiko für Typ 1 Diabetes verbunden. Unklar in beiden Studien ist, ob die Wirkung 

der n-3 Fettsäuren allein oder in Kombination mit dem im Lebertran ebenfalls reich-

lich vorkommenden Vitamin D zurückzuführen ist. Denn auch dem Vitamin D wird 

eine im Bezug auf die Entstehung des Typ 1 Diabetes schützende Funktion zuge-

schrieben (Stene 2000, 2003). Erst kürzlich zeigten Norris et al. in einer Analyse der 

prospektiven DAISY Studie, dass die Aufnahme an omega-3 Fettsäuren invers mit 

dem Risiko für Inselautoimmunität korreliert (HR: 0,45; 95% Konfidenzintervall: 0,21-

0,96; p=0,04). Diese Assoziation wurde verstärkt, wenn nur Kinder mit multiplen 

Autoantikörpern oder mit Typ 1 Diabetes in die Analyse einbezogen wurden (HR:23; 

95% Konfidenzintervall: 0,09-0,58; p=0,002). Außerdem waren in der einer zweiten 

Analyse im Rahmen einer Fall-Kontroll-Studie (n=244) erhöhte Konzentrationen an 

omega-3 Fettsäuren in der Erythrozytenmembran mit einem verminderten Risiko für 

Inselautoimmunität assoziiert (HR: 0,63; 95% Konfidenzintervall: 0,41-0,96; p=0,03) 

(Norris 2007). 
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Weitere Untersuchungen sind nötig, um die genauen Wirkmechanismen der n-3 Fett-

säuren im Immunsystem zu verstehen, die für eine Verhinderung von Inselauto-

immunität und Typ 1 Diabetes von Vorteil sind. Somit könnte auch eine ausreichende 

Versorgung mit n-3 Fettsäuren prä- und postnatal von entscheidender Bedeutung 

sein.  
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2 Bedeutung der Trinkwasserqualität im ersten Lebens-

jahr für die Entstehung von Inselautoimmunität und 

Typ 1 Diabetes 

 

2.1 Hintergrund und Problemstellung 

 

Ein Zusammenhang zwischen der Trinkwasserqualität und der Entstehung von Typ 1 

Diabetes wurde wiederholt propagiert. So wird von einem erhöhten Risiko für Typ 1 

Diabetes in Gegenden mit niedrigem pH-Wert, niedrigen Zinkkonzentrationen oder 

höheren Nitratkonzentrationen ausgegangen. Die z. T. widersprüchlichen Ergebnisse 

der bisher durchgeführten Studien stammen meist aus retrospektiven Untersu-

chungen oder aus Untersuchungen, die zum Zeitpunkt der Manifestation des Typ 1 

Diabetes durchgeführt wurden. Da aber der Prozess der Inselautoimmunität bereits 

viele Jahre vor der klinischen Manifestation des Typ 1 Diabetes beginnt und bereits 

in den ersten Lebensjahren auftreten kann, ist davon auszugehen, dass die Entste-

hung von Inselautoimmunität und Typ 1 Diabetes durch Faktoren beeinflusst wird, die 

in den ersten Lebensjahren einwirken. Deshalb war das Ziel dieser Arbeit, erstmalig 

die Bedeutung der Trinkwasserqualität im ersten Lebensjahr für die Entstehung und 

Progression von Inselautoimmunität anhand der prospektiven BABYDIAB Studie zu 

analysieren. Dabei wurde ein Nested Fall-Kontroll-Studienansatz gewählt. Folgende 

Fragestellungen sollten dabei genauer untersucht werden: 

 

1. Welche Bedeutung hat die Trinkwasserqualität im ersten Lebensjahr für die 

Entstehung von Inselautoimmunität bzw. unterscheidet sich die Trinkwasser-

qualität des getrunkenen Wassers zwischen Kindern, die innerhalb der ersten 

Lebensjahre Inselautoantikörper entwickelt haben und Kindern, die keine 

Inselautoantikörper entwickelt haben? 

 

2. Welchen Einfluss hat die Trinkwasserqualität im ersten Lebensjahr auf die 

Progression von Inselautoimmunität zum Typ 1 Diabetes?  

 

3. Welchen Einfluss hat die Trinkwasserqualität im ersten Lebensjahr auf die 

Progression von Inselautoimmunität zum Typ 1 Diabetes in Abhängigkeit von 
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den HLA-Risikogenotypen DR 3/4 bzw. 4/4, vom Geschlecht (männlich versus 

weiblich), vom Wohnort (Norddeutschland versus Süddeutschland) und des 

Elternteils, das an Typ 1 Diabetes erkrankt ist (Proband Mutter versus 

Proband Vater)? 

 

 

Da innerhalb Europas ein ausgeprägtes Nord-Südgefälle bezüglich der Inzidenzrate 

des Typ 1 Diabetes existiert, sollten mit Hilfe der BABYDIAB-Studie, einer prospek-

tiven deutschlandweiten Verlaufsuntersuchung bei Kindern mit einem diabetischen 

Elternteil, folgende Fragestellungen beantwortet werden: 

 

4. Ist auch innerhalb Deutschlands ein Nord-Südgefälle im Hinblick auf die Ent-

stehung von Inselautoimmunität und in der Progression von Inselauto-

immunität zum Typ 1 Diabetes zu beobachten? 

 

5. Gibt es mögliche Unterschiede in der Trinkwasserqualität im ersten Lebens-

jahr zwischen Nord- und Süddeutschland innerhalb der Nested Fall-Kontroll-

Studie? 

 

6. Gibt es mögliche Unterschiede in der Trinkwasserqualität im ersten Lebens-

jahr zwischen Nord- und Süddeutschland innerhalb der Inselautoantikörper 

positiven und negativen Kinder der Nested Fall-Kontroll-Studie? 
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2.2 Methode 

 

2.2.1 Untersuchungspopulation: BABYDIAB-Studie 

 

Als Untersuchungspopulation wurden Teilnehmer der BABYDIAB-Studie herangezo-

gen, die am Institut für Diabetesforschung in München durchgeführt wird. Die BABY-

DIAB-Studie ist eine prospektive Verlaufsuntersuchung bei Kindern von Eltern mit 

Typ 1 Diabetes. Die Rekrutierung fand von 1989 bis 2000 in ganz Deutschland statt. 

Ziele dieser Studie sind: Identifizierung des Zeitpunktes der Entstehung von Insel-

autoimmunität im Leben eines Typ 1 Diabetikers, Charakterisierung der Entste-

hungsphase von Inselautoimmunität und Evaluierung des Zusammenhangs zwi-

schen Inselautoimmunität und genetischen Risikomarkern sowie Umweltfaktoren. 

Nabelschnurblut wurde bei Geburt und venöses Blut bei 9 Monaten, 2, 5, 8, 11 und 

14 Jahren gesammelt.  Autoantikörper gegen Insulin (IAA), Glutamatdecarboxylase 

(GADA) und gegen die Tyrosinphosphatase (IA-2A) werden in jeder Blutprobe zu 

jedem Untersuchungszeitpunkt gemessen und halbjährlich bis jährlich nach dem 

Auftreten von Inselautoantikörpern. Anhand von Fragebögen, die ebenfalls zu jedem 

Follow-up-Besuch ausgefüllt werden, werden Ernährungs- und Umweltfaktoren wie 

Stillgewohnheiten, Zeitpunkt der Einführung von Beikost und Impfungen evaluiert.  

1709 Kinder wurden bei Geburt für die Studie rekrutiert. Insgesamt haben 1650 Kin-

der mindestens an der Nachuntersuchung mit 9 Monaten teilgenommen und erfüllen 

somit die Einschlusskriterien, die mindestens eine Nachuntersuchung nach Geburt 

vorsehen. Davon haben 1021 Kinder eine Mutter mit Typ 1 Diabetes, 603 Kinder 

einem Vater mit Typ 1 Diabetes und bei 26 Kinder sind beide Elternteile an einem 

Typ 1 Diabetes erkrankt. Das mittlere follow-up Alter der Kinder von Geburt bis zum 

Zeitpunkt der Analyse im November 2005 betrug 7,5 Jahre mit einer Streubreite von 

9 Monaten bis 16 Jahren, während die drop-out Rate im Alter von 2 Jahren 7,5% und 

im Alter von 5 Jahren 14,6% betrug. Weiterhin wurden bei 1462 Kindern die HLA DR-

DQ Genotypen aus der 2-Jahres-Probe bestimmt. 106 Kinder (7,3%) haben den HLA 

DRB1*03-DQA1*0501-DQB1*0201/DRB1*04-DQA1*0301-DQB1*0302 (DR3 /DR4-

DQ8) Genotyp und 59 Kinder (4,0%) den DRB1*04-DQA1*0301-BQB1*0302/ 

DRB1*04-DQA1*0301-DQB1*0302 Genotyp, die mit dem höchstem Typ 1 Diabetes 

Risiko von 10-20% verbunden sind. 
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Endpunkte der BABYDIAB-Studie 

Die Endpunkte der BABYDIAB-Studie sind die Entwicklung von Inselautoimmunität 

bzw. eines Typ 1 Diabetes. Inselautoimmunität ist hier definiert als das Vorhanden-

sein positiver Antikörper-Titer bei einem oder mehreren Inselautoantikörpern (IAA, 

GAGA, IA-2A) in mindestens 2 aufeinander folgenden Blutproben. Zur Bestätigung 

der Inselautoimmunität, d. h. von persistierenden Inselautoantikörpern wird innerhalb 

von 6 Monaten eine 2. Blutprobe angefordert. Wird in einer 2. Blutprobe die Insel-

autoimmunität nicht bestätigt, gilt das Kind als Inselautoantikörper negativ. 

 

Kinder mit Inselautoimmunität 

Von den 1650 Kindern der BABYDIAB-Studie entwickelten bis zum Analysezeitpunkt 

(November 2005) 107 Kinder persistierende Inselautoantikörper und 34 der 107 

Kinder mit persistierenden Inselautoantikörpern erkrankten an einem Typ 1 Diabetes.  

1543 Kinder waren bis zum Analysezeitpunkt Inselautoantikörper negativ.  

 

Die Genehmigung der Studie erfolgt durch die Ethikkommission von Bayern (Bayeri-

sche Landesärztekammer Nr. 95357). 

 

 

2.2.2 Zusammensetzung der Nested Fall-Kontroll-Studienpopulation  

 

Zur Analyse der Bedeutung der Trinkwasserqualität im ersten Lebensjahr für die Ent-

stehung von Inselautoimmunität und Progession zum Typ 1 Diabetes, wurde aus 

dem BABYDIAB Kollektiv  eine Nested Fall-Kontroll-Studie konzipiert: Ab Herbst 

2003 wurde zu jedem Inselautoantikörper positivem Kind jeweils mindestens 1 

Kontrollkind mit vergleichbarem Geburtsdatum (+/- 1 Monat) und gleichem HLA-

Genotyp ausgewählt. 

Von 234 Kindern der BABYDIAB-Studie konnten Trinkwasseranalysen gesammelt 

werden. Von diesen Kindern sind 95 Kinder Inselautoantikörper positiv und davon 

erkrankten 30 Kinder an einem Typ 1 Diabetes. Weitere 139 Kinder sind Inselauto-

antikörper negativ. Die genaue Zusammensetzung der Nested Fall-Kontroll-Studien-

population ist in Tab. 2: aufgeführt.  
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Tab. 2: Zusammensetzung der Nested Fall-Kontoll-Studienpopulation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Inselautoantikörper 
positive Kinder 

Inselautoantikörper 
negative Kinder  

Anzahl gesamt 95 139 

Alter zum Zeitpunkt der 
Analyse in Jahren 
(Durchschnitt) 

9,7 10,1 

HLA-Risikogenotypen 
DR3/4; DR4/4 

32 (33,7%) 47 (33,8%) 

Typ 1 Diabetes (n) 30 0 

Inselautoantikörper (n) 

   = 1 

   ≥ 2 

 
39 
56   

 _ 

Alter bei Auftreten des 
1. Inselautoantikörpers 
(Jahre) 

2,15 (0,53 - 11,06) _ 

Geschlecht (n) 

weiblich 
männlich 

 

48 
47 

 

69 
70 

Proband (n) 

Mutter 
Vater 
Beide Elternteile 

 

50 
40 
5 

 

94 
42 
3 

Wohnsitz Nord-
Deutschland (n) 

49 (51,6%) 81 (58,3%) 

Rauchen während der 
Schwangerschaft 
(Mutter) 

11 (11,6%) 16 (11,5%) 
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2.2.3 Daten der Trinkwasserqualität im ersten Lebensjahr 

 

Daten der Trinkwasserqualität wurden ab Herbst 2003 von den Versorgungsunter-

nehmen angefordert, die während des ersten Lebensjahres des Kindes für die Trink-

wasserversorgung zuständig waren. Dabei wurde die Adresse des Kindes während 

des ersten Lebensjahres anhand der Fragebögen ermittelt bzw. bei der Familie 

telefonisch nachgefragt. Die Trinkwasserversorgungsunternehmen wurden entweder 

telefonisch oder schriftlich gebeten, die Jahresmittelwerte der physikalisch-chemi-

schen Parameter der von der Trinkwasserverordnung 1990 vorgeschriebenen  

Untersuchungsanalysen zu faxen oder per Post zu schicken. Analysiert wurden 

folgende Trinkwasserparameter: pH-Wert, pH-Wert nach Calciumcarbonatsättigung, 

Färbung, Trübung, Nitrat, Nitrit, Aluminium, Eisen und Mangan. 

 

 

2.2.4 Trinkwasserdaten der Versorgungsunternehmen 

 

Die Zusammensetzungen der gesendeten und analysierten Trinkwasseranalysen 

sind in Tab. 3 dargestellt. Die gesendeten Trinkwasseranalysen enthielten meist 

Jahresmittelwerte der gemessenen Parameterkonzentrationen aber auch zum Teil 

nur Werte aus einer Trinkwasseranalyse des Geburtsjahres. In wenigen Fällen 

konnten jedoch die Versorgungsunternehmen Trinkwasseranalysen nicht aus dem 

geforderten Geburtsjahr heraussuchen und übermittelten Trinkwasseranalysen aus 

einem anderen Jahrgang mit der Zusicherung, dass sich die Parameter nicht geän-

dert haben. Obwohl um die vollständigen Analysendaten der physikalisch-chemi-

schen Parameter gebeten wurde, schickten die Versorgungsunternehmen teilweise 

auch nur Auszüge aus der Analyse zu. 

Allen gesendeten Trinkwasseranalysen liegt die Trinkwasserverordnung von 1990 zu 

Grunde.  

Gründe für das Fehlen von Trinkwasseranalysen weiterer Kinder waren: keine Infor-

mationen über die Adresse während des erstens Lebensjahres oder keine Rückmel-

dung der Trinkwasserversorgungsunternehmen trotz mehrmaliger Anfragen. 

Bei 4 Probanden wurden bei den Parametern Trübung, Eisen, Aluminium und 

Mangan laut der Trinkwasserverordnung von 1990 Grenzwertüberschreitungen ge-

messen.  
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Tab. 3: Zusammensetzung der gesendeten Trinkwasseranalysen 

 

 

TVO: Trinkwasserverordnung 

 

 

 

2.2.5 Definition Nord-/Süddeutschland 

 

Anhand der vorgelegenen Adressen im ersten Lebensjahr wurden die 234 Kinder der 

Nested Fall-Kontroll-Studienpopulation in Nord- und Süddeutschland eingeteilt. Als 

Süddeutschland wurden die Bundesländer Baden-Württemberg und Bayern definiert, 

während die restlichen Bundesländer als Norddeutschland definiert wurden. 

Weiterhin wurden auch alle weiteren Kinder der BABYDIAB-Studie mit Hilfe der 

aktuellen Adresse in Nord- und Süddeutschland eingeteilt. 

 

 
 
 
 

 Anzahl 
(n) 

Median Minimum Maximum Grenzwerte 
TVO 

 

pH-Wert  

 

 

228 

 

 

7,62 

 

 

6,52 

 

 

9,28 

 

 

6,5 - 9,5 

  

pHc-Wert 

 

 

70 

 

 

7,63 

 

 

7,0 

 

 

8,88 

 

 

 

Färbung (m
-1

) 

 

 

106 

 

 

0,08 

 

 

< Nachweisgrenze 

 

 

0,42 

 

 

0,5 

  

Trübung (TE/F) 

 

 

123 

 

 

0,115 

 

 

< Nachweisgrenze 

 

3,2 

 

 

1,5 

  

Nitrat (mg/l) 

 

 

234 

 

 

9,6 

 

 

< Nachweisgrenze 

 

 

43 

 

 

50 

  

Nitrit (mg/l) 

 

 

219 

 

 

0,009 

 

 

< Nachweisgrenze 

 

 

0,09 

 

 

0,1 

 
 

Eisen (mg/l) 

 

196 

 

 

0,01 

 

 

< Nachweisgrenze 

 

 

0,56 

 

 

0,2 

  

Aluminium (mg/l) 

 

 

147 

 

 

0,019 

 

 

< Nachweisgrenze 

 

 

0,65 

 

 

0,2 

  

Mangan (mg/l) 

 

 

192 

 

 

0,0049 

 

 

< Nachweisgrenze 

 

 

2,03 

 

 

0,05 
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2.2.6 Statistik 

 

Die statistischen Auswertungen wurden unter Verwendung des Softwarepaketes 

SPSS, Version 13.0 durchgeführt. 

 

Für die Analyse, ob es einen Zusammenhang zwischen der Trinkwasserqualität im 

ersten Lebensjahr und der Inselautoimmunität gibt, wurden die ausgewählten Trink-

wasserparameter der 95 Inselautoantikörper positiven Kinder mit denen der 139 

Inselautoantikörper negativen Kinder nach Überprüfung auf Normalverteilung 

(Kolmogorov-Smirnov-Test mit Lilliefors Korrektur) mit dem Mann-Whitney-U-Test 

verglichen. Dieser Test wurde ebenfalls für die Untersuchung möglicher Unter-

schiede in der Trinkwasserqualität im ersten Lebensjahr zwischen Nord- und Süd-

deutschland innerhalb der gesamten BABYDIAB Population und innerhalb der Insel-

autoantikörper positiven und negativen Gruppen angewendet. Die Lifetable-Analyse 

wurde für die Fragestellung des Einflusses der Trinkwasserqualität auf die Progres-

sion von Inselautoimmunität zum Typ 1 Diabetes angewandt. Es wurden hier die 

Mediane der Trinkwasserparameter analysiert. Weiterhin wurde die Lifetable-Analyse 

zur Überprüfung möglicher Unterschiede in der BABYDIAB-Population zwischen 

Nord- und Süddeutschland hinsichtlich Entstehung von Inselautoimmunität und Prog-

ression zum Typ 1 Diabetes durchgeführt. Die Odds Ratio und die korrigierte Odds 

Ratio wurde mit Hilfe der Cox-Regression berechnet. Die Korrektur für multiples 

Testen erfolgte nach der Bonferroni Methode. 

Für alle Analysen wurde ein p-Wert von < 0,05 als signifikant eingestuft. 
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2.3 Ergebnisse 

 

2.3.1 Bedeutung der Trinkwasserqualität im ersten Lebensjahr für die Entste-

hung von Inselautoimmunität 

 

Für diese Untersuchung wurden die Trinkwasserparameter pH-Wert, pH-Wert nach 

Calciumcarbonatsättigung (pHc), Färbung, Trübung, Nitrat, Nitrit, Eisen Aluminium 

und Mangan aus dem ersten Lebensjahr der Inselautoantikörper positiven Kinder mit 

denen der Inselautoantikörper negativen Kindern verglichen.  

 

pH-Wert und pHc-Wert 

Von den 95 Inselautoantikörper positiven Kindern konnten bei 93 bzw. 29 Kindern 

Daten zum pH-Wert bzw. pHc-Wert des Trinkwassers im ersten Lebensjahr gesam-

melt werden. Von 135 bzw. 41 Inselautokörper negativen Kindern lagen Daten zum 

pH-Wert bzw. pHc-Wert vor. Die Analyse von beiden Parametern ergab, dass keine 

signifikanten Unterschiede bezüglich pH-Wert und pHc-Wert des Trinkwassers im 

ersten Lebensjahr zwischen den Inselautoantikörper positiven und negativen Kindern 

gefunden werden konnten (p=0,507 bzw. p=0,780) (Tab. 4; Abb. 1). Ferner konnte 

auch kein Einfluss dieser Parameter auf die Entstehung von Inselautoimmunität auf-

gezeigt werden, wenn für die HLA-Risikogenotypen DR 3/4 und 4/4, der Lage des 

Wohnortes (Norddeutschland), des Geschlechts (männlich) und des mütterlichen Typ 

1 Diabetes korrigiert wurde (Tab. 5). 

 

 

 

 

 

 

 

 

 
                  Insel-AK+                       Insel-AK-                                      Insel-AK+                       Insel-AK- 

 
 
Abb. 1: Vergleich des pH-Wertes (A) und des pHc-Wertes des Trinkwassers im ersten Lebensjahr (B) 
von den Kindern, die später Inselautoantikörper entwickelt haben (○) gegenüber den Kindern, die 
keine Inselautoantikörper entwickelt haben (  ) 

6

7

8

9

10

p=0,507

6

7

8

9

10

p=0,507

7.0

7.5

8.0

8.5

9.0

p=0,780

p
H

-W
e
rt

 

p
H

c
-W

e
rt

 

B A 



 28

Färbung und Trübung 

Von 44 bzw. 49 der 95 Inselautoantikörper positiven Kindern konnten Angaben zur 

Färbung bzw. Trübung des Trinkwassers im ersten Lebensjahr gesammelt werden. 

Von den139 Inselautoantikörper negativen Kindern lagen Angaben zur Färbung und 

Trübung des Trinkwassers im ersten Lebensjahr bei 62 bzw. bei 74 Kindern vor. Der 

spektrale Absorptionskoeffizient (Färbung) des Trinkwassers im ersten Lebensjahr 

lag bei den Inselautoantikörper positiven Kindern signifikant niedriger als bei den 

Inselautoantikörper negativen Kindern (p=0,002) (Tab. 4; Abb. 2). Auch nach 

Korrektur für multiples Testen war der spektrale Absorptionskoeffizient (Färbung) des 

Trinkwassers im ersten Lebensjahr bei den Inselautoantikörper positiven Kindern 

signifikant niedriger als bei den Inselautoantikörper negativen Kindern (p=0,018). Im 

Gegensatz dazu hat sich die Trübung des Trinkwassers im ersten Lebensjahr zwi-

schen den beiden Gruppen nicht unterschieden (p=0,690) (Tab. 4; Abb. 2). Weiterhin 

war aber nach Korrektur für die HLA-Risikogenotypen DR 3/4 und 4/4, der Lage des 

Wohnortes (Norddeutschland), des Geschlechts (männlich) und des mütterlichen Typ 

1 Diabetes ein spektraler Absorptionskoeffizient von < 0,0825 mit einem signifikant 

verringerten Risiko für Inselautoimmunität verbunden: OR 0,5; 95 % Konfidenzinter-

vall 0,2-0,9, p=0,02 (Tab. 5). Aber nach Korrektur für multiples Testen war dieses 

Ergebnis nicht mehr signifikant (p=0,18). 
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Abb. 2:  Vergleich von Färbung (A) und Trübung des Trinkwassers im ersten Lebensjahr (B) zwischen 
den Kindern, die später im Leben Inselautoantikörper entwickelt haben (○) gegenüber denen, die 
keine Inselautoantikörper entwickelt haben (  ) 
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Nitrat und Nitrit 

Von allen 95 Inselautoantikörper positiven und von allen 139 Inselautoantikörper 

negativen Kindern konnten Angaben zur Nitratkonzentration des Trinkwassers im 

ersten Lebensjahr gesammelt werden. Es konnten keine signifikanten Unterschiede 

bezüglich der Nitratkonzentration des Trinkwassers im ersten Lebensjahr zwischen 

beiden Gruppen beobachtet werden (p=0,898) (Tab. 4; Abb. 3). Bei 92 Inselautoanti-

körper positiven Kindern und bei 127 Inselautoantikörper negativen Kindern lagen 

gleichzeitig Angaben zur Nitritkonzentration des Trinkwassers im ersten Lebensjahr 

vor. Die Nitritkonzentration des Trinkwassers im ersten Lebensjahr war tendenziell 

niedriger bei den Inselautoantikörper positiven Kindern im Vergleich zu den Insel-

autoantikörper negativen Kindern. Dieses Ergebnis war aber nicht signifikant 

(p=0,063) (Tab. 4; Abb. 3). Auch nach Korrektur für die HLA-Risikogenotypen DR 3/4 

und 4/4, der Lage des Wohnortes (Norddeutschland), des Geschlechts (männlich) 

und des mütterlichen Typ 1 Diabetes konnte kein Einfluss der Nitrat- und Nitritkon-

zentrationen des Trinkwassers im ersten Lebensjahr auf die Entstehung von Insel-

autoimmunität beobachtet werden (Tab. 5). 
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Abb. 3: Vergleich der Nitratkonzentration (A) und der Nitritkonzentration des Trinkwassers im ersten 
Lebensjahr (B) zwischen den Kindern, die später im Leben Inselautoantikörper entwickelt haben (○) 
gegenüber denen, die keine Inselautoantikörper entwickelt haben (  ) 
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Eisen, Aluminium und Mangan 

Von den 95 Inselautoantikörper positiven Kindern konnten bei 79 Kindern Angaben 

zur Eisenkonzentration, bei 60 Kinder Angaben zur Aluminiumkonzentration und bei 

76 Kindern Angaben zur Mangankonzentration des Trinkwassers im ersten Lebens-

jahr gesammelt werden. Von den 139 Inselautoantikörper negativen Kindern lagen 

bei 117 Kindern Daten zur Eisenkonzentration, bei 87 Kindern Daten zur Aluminium-

konzentration und bei 116 Kindern Daten zur Mangankonzentration des Trinkwassers 

im ersten Lebensjahr vor. Die Eisen-, Aluminium- und Mangankonzentration des 

Trinkwassers im ersten Lebensjahr haben sich nicht signifikant zwischen den Insel-

autoantikörper positiven und negativen Kindern unterschieden (p=0,087 / p=0,866 / 

p=0,771) (Tab. 4; Abb. 4). Ferner konnte auch kein Einfluss der Eisen-, Aluminium- 

und Mangankonzentrationen im Trinkwasser des ersten Lebensjahres auf die Ent-

stehung von Inselautoimmunität aufgezeigt werden, wenn für die HLA-Risikogeno-

typen DR 3/4 und 4/4, der Lage des Wohnortes (Norddeutschland), des Geschlechts 

(männlich) und des mütterlichen Typ 1 Diabetes korrigiert wurde (Tab. 5). 
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Abb. 4: Vergleich der Eisenkonzentrationen (A), Aluminiumkonzentrationen (B) und Mangankonzent-
rationen des Trinkwassers im ersten Lebensjahr (C) zwischen den Kindern, die später Inselauto-              
antikörpern entwickelt haben (○) gegenüber den Kindern, die keine Inselautoantikörper entwickelt 
haben (  ) 
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Tab. 4: Mediane und Interquartilen Abstand der analysierten Trinkwasserparameter bei den 
untersuchten Inselautoantikörper positiven und negativen Kindern 
 

 
* nicht korrigiert für multiples Testen 

 

 

 

 

 

 

Parameter Anzahl 
25. 

Perzentile 
Median 

75. 
Perzentile 

p-Werte* 

pH-Wert 

Insel-AK+ 

Insel-AK- 

 

93 

135 

 

7,40 

7,40 

 

7,62 

7,62 

 

7,98 

7,86 

 
 

0,507 
 

pHc-Wert 

Insel-AK+ 

Insel-AK- 

 

29 

41 

 

7,38 

7,45 

 

7,56 

7,63 

 

8,23 

7,94 

 
 

0,780 
 

Färbung (m
-1

) 

Insel-AK+ 

Insel-AK- 

 

44 

62 

 

0,013 

0,057 

 

0,045 

0,090 

 

0,090 

0,103 

 
 

0,002 
 

Trübung (TE/F) 

Insel-AK+ 

Insel-AK- 

 

49 

74 

 

0,090 

0,084 

 

0,100 

0,135 

 

0,305 

0,236 

 
 

0,690 
 

Nitrat (mg/l) 

Insel-AK+ 

Insel-AK- 

 

95 

139 

 

4,80 

3,84 

 

9,50 

9,24 

 

16,60 

21,23 

 
 

0,898 
 

Nitrit (mg/l) 

Insel-AK+ 

Insel-AK- 

 

92 

127 

 

0,005 

0,005 

 

0,009 

0,009 

 

0,009 

0,010 

 
 

0,063 
 

Eisen (mg/l) 

Insel-AK+ 

Insel-AK- 

 

79 

117 

 

0,009 

0,009 

 

0,009 

0,019 

 

0,028 

0,030 

 
 

0,087 
 

Aluminium (mg/l) 

Insel-AK+ 

Insel-AK- 

 

60 

87 

 

0,009 

0,009 

 

0,019 

0,017 

 

0,024 

0,026 

 
 

0,866 
 

Mangan (mg/l) 

Insel-AK+ 

Insel-AK- 

 

76 

116 

 

0,001 

0,001 

 

0,0049 

0,0049 

 

0,009 

0,019 

 
 

0,771 
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Tab. 5: Odds-Ratio für die Entstehung von Inselautoimmunität in Abhängigkeit von der 
Trinkwasserqualität im ersten Lebensjahr innerhalb der Nested Fall-Kontroll-Studie 
 

 

§ 
korrigiert für: HLA DR 3/4, 4/4; Norddeutschland; Geschlecht-männlich; Mutter mit T1D 

* nicht korrigiert für multiples Testen 
 

Parameter 
Insel- 
Ak+ 

 

(n) 

Insel- 
Ak- 

 

(n) 

 
Odds-Ratio  

(95% Konfidenz-
intervall) 

korrigierte 
Odds-Ratio  

(95% Konfidenz-
intervall)

 §
 

p-Werte* 
korrigierte 

Odds-
Ratio 

pH-Wert (Median) 

< 7,62 

≥ 7,62 

 

48 

45 

 

77 

58 

 

0,8 (0,6 - 1,3)
 

1,0 (Referenz) 

 

 0,8 (0,5 - 1,2)
 

 1,0 (Referenz) 

0,260 

pHc-Wert (Median) 

< 7,63 

≥ 7,63 

 

16 

13 

 

21 

20 

 

1,3 (0,6 - 2,7)
 

1,0 (Referenz) 

 

1,3 (0,6 - 3,1)
 

1,0 (Referenz) 

0,476 

Färbung (m
-1

) (Median) 

< 0,0825 

≥ 0,0825 

 

30 

14 

 

24 

30 

 

1,0 (Referenz) 

0,4 (0,3 - 0,8)  

 

1,0 (Referenz) 

0,5 (0,2 - 0,9)  

0,02 

Trübung (TE/F) (Median) 

< 0,115 

≥ 0,115 

 

29 

20 

 

33 

41 

 

1,0 (Referenz) 

0,9 (0,6 - 1,4)  

 

1,0 (Referenz) 

0,7 (0,4 - 1,3)  

0,305 

Nitrat (mg/l) (Median) 

< 9,58 

≥ 9,58 

 

48 

47 

 

70 

69 

 

1,0 (Referenz) 

0,9 (0,6 - 1,4)  

 

1,0 (Referenz) 

0,9 (0,6 - 1,3)  

0,489 

Nitrit (mg/l) (Median) 

< 0,009 

≥ 0,009 

 

71 

21 

 

82 

45 

 

1,0 (Referenz) 

0,6 (0,4 - 1,0) 

 

1,0 (Referenz) 

0,6 (0,4 - 1,0) 

0,065 

Eisen (mg/l) (Median) 

< 0,01 

≥ 0,01 

 

46 

33 

 

54 

63 

 

1,0 (Referenz) 

0,7 (0,5 - 1,2)  

 

1,0 (Referenz) 

0,8 (0,5 - 1,2)  

0,240 

Aluminium (mg/l) (Median) 

< 0,019 

≥ 0,019 

 

41 

19 

 

60 

27 

 

1,0 (Referenz) 

1,2 (0,7 - 2,0)  

 

1,0 (Referenz) 

1,2 (0,7 - 2,0)  

0,552 

Mangan (mg/l) (Median) 

< 0,0049 

≥ 0,0049 

 

39 

37 

 

61 

55 

 

1,0 (Referenz) 

1,0 (0,7 - 1,6)  

 

1,0 (Referenz) 

1,1 (0,7 - 1,8)  

0,657 
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2.3.2 Bedeutung  der Trinkwasserqualität im ersten Lebensjahr für die 

Progression von Inselautoimmunität zum Typ 1 Diabetes   

 

Um zu untersuchen, ob die Trinkwasserqualität im ersten Lebensjahr einen Einfluss 

auf die Progression von Inselautoimmunität zum Typ 1 Diabetes hat, wurden die 

Parameter pH-Wert, pH-Wert nach Calciumcarbonatsättigung, Färbung, Trübung, 

Nitrat, Nitrit, Eisen, Aluminium und Mangan aus den Trinkwasseranalysen im ersten 

Lebensjahr der Inselautoantikörper positiven Kinder anhand der Mediane mittels 

Lifetable-Analyse untersucht.  

 

 

pH-Wert und pHc-Wert 

Bei Kindern mit Inselautoantikörpern wurde das kumulative Lifetable-Risiko für die 

Progression von Inselautoimmunität zum Typ 1 Diabetes nicht durch den pH-Wert 

und bzw. den pHc-Wertes der Trinkwasserqualität im ersten Lebensjahr beeinflusst 

(Abb. 5; Tab. 6). Tendenziell war ein niedriger pH-Wert < 7,62 mit einem nicht signifi-

kant erhöhtem Risiko für die Progression zum Typ 1 Diabetes verbunden (p=0,061). 

Das kumulative Risiko für die Progression zum Typ 1 Diabetes innerhalb von 5 

Jahren nach dem Auftreten von Inselautoimmunität betrug 28% (95% Konfi-

denzintervall: 14-42%) bei den Kindern, die einem Trinkwasser pH-Wert von <7,62 

im ersten Lebensjahr exponiert waren im Vergleich zu 14 % (95% Konfidenzintervall: 

2-26%) bei den Kindern, die einem Trinkwasser pH-Wert von >7,62 im ersten 

Lebensjahr exponiert waren (Abb. 5; Tab. 6). Aber nach Korrektur für die HLA-Risi-

kogenotypen DR 3/4 und 4/4, der Lage des Wohnortes (Norddeutschland), des 

Geschlechts (männlich) und des mütterlichen Typ 1 Diabetes waren pH-Werte < 7,62 

mit einem signifikant erhöhtem Risiko verbunden: OR 2,5; 95% Konfidenz-       

intervall 1,1-5,8; p=0,034 (Tab. 6). Nach Korrektur für multiples Testen war dieser 

Unterschied hinsichtlich des pH-Wertes nicht mehr zu beobachten (p=0,306).  
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Abb. 5: Kumulatives Lifetable-Risiko für die Progression von Inselautoimmunität zum Typ 1 Diabetes 
in Abhängigkeit des mittleren pH-Wertes (A) und des mittleren pHc-Wertes (B). Die Zeit ab dem 
ersten Auftreten von Inselautoimmunität (IA) beginnt mit der Blutprobe, in der mind. ein persistierender 
Inselautoantikörper gefunden wird und endet bei Diabetesmanifestation oder der letzten verfügbaren 
Blutprobe. Unter dem Graph ist die Anzahl der untersuchten Kinder zum jeweiligen Zeitpunkt aufge-
führt. 
 
 
 
 

Färbung und Trübung 

Bei Kindern mit Inselautoantikörpern wurde das kumulative Lifetable-Risiko für die 

Progression von Inselautoimmunität zum Typ 1 Diabetes nicht durch spektralen 

Absorbtionskoeffizienten (Färbung) und des spektralen Streukoeffizienten (Trübung) 

der Trinkwasserqualität im ersten Lebensjahr beeinflusst (p=0,588, p=0,303) (Abb. 6; 

Tab. 6). Ferner konnte auch kein Einfluss der Färbung und der Trübung des Trink-

wassers im ersten Lebensjahr auf die Progression von Inselautoimmunität zum Typ 1 

Diabetes aufgezeigt werden, wenn für die HLA-Risikogenotypen DR 3/4 und 4/4, der 

Lage des Wohnortes (Norddeutschland), des Geschlechts (männlich) und des müt-

terlichen Typ 1 Diabetes korrigiert wurde (Tab. 6). 
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Abb. 6: Kumulatives Lifetable-Risiko für die Progression von Inselautoimmunität zum Typ 1 Diabetes 
in Abhängigkeit des mittleren spektralen Absorbtionskoeffizienten (Färbung) (A) und des mittleren 
spektralen Streukoeffizienten (Trübung) (B). Die Zeit ab dem ersten Auftreten von Inselautoimmunität 
(IA) beginnt mit der Blutprobe, in der mind. ein persistierender Inselautoantikörper gefunden wird und 
endet bei Diabetesmanifestation oder der letzten verfügbaren Blutprobe. Unter dem Graph ist die 
Anzahl der untersuchten Kinder zum jeweiligen Zeitpunkt aufgeführt. 

 
 
 
Nitrat und Nitrit 

Bei Kindern mit Inselautoantikörpern wurde das kumulative Lifetable-Risiko für die 

Progression von Inselautoimmunität zum Typ 1 Diabetes nicht durch die Nitrat- und 

die Nitritkonzentration der Trinkwasserqualität im ersten Lebensjahr beeinflusst 

(p=0,196, p=0,399) (Abb. 7; Tab. 6). Auch nach Korrektur für die HLA-Risikogeno-

typen DR 3/4 und 4/4, der Lage des Wohnortes (Norddeutschland), des Geschlechts 

(männlich) und des mütterlichen Typ 1 Diabetes konnte kein Einfluss der Nitrat- und 

Nitritkonzentrationen des Trinkwassers im ersten Lebensjahr auf die Progression von 

Inselautoimmunität zum Typ 1 Diabetes beobachtet werden (Tab. 6). 
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Abb. 7: Kumulatives Lifetable-Risiko für die Progression von Inselautoimmunität zum Typ 1 Diabetes 
in Abhängigkeit des mittleren Nitratwertes (A) und des mittleren Nitritwertes (B). Die Zeit ab dem 
ersten Auftreten von Inselautoimmunität (IA) beginnt mit der Blutprobe, in der mind. ein persistierender 
Inselautoantikörper gefunden wird und endet bei Diabetesmanifestation oder der letzten verfügbaren 
Blutprobe. Unter dem Graph ist die Anzahl der untersuchten Kinder zum jeweiligen Zeitpunkt aufge-
führt. 

 
 
 
 
 
Eisen, Aluminium und Mangan 

Bei Kindern mit Inselautoantikörpern wurde das kumulative Lifetable-Risiko für die 

Progression von Inselautoimmunität zum Typ 1 Diabetes nicht durch die Eisenkon-

zentration, die Aluminiumkonzentration und die Mangankonzentration mit der Trink-

wasserqualität im ersten Lebensjahr beeinflusst (p=0,621, p=0,176, p=0,461) (Abb. 

8; Tab. 6). Ebenso konnte nach Korrektur für die HLA-Risikogenotypen DR 3/4 und 

4/4, der Lage des Wohnortes (Norddeutschland), des Geschlechts (männlich) und 

des mütterlichen Typ 1 Diabetes kein Einfluss der Eisen-, Aluminium- und der 

Mangankonzentrationen des Trinkwassers im ersten Lebensjahr auf die Progression 

von Inselautoimmunität zum Typ 1 Diabetes festgestellt werden (Tab. 6). 
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Abb. 8: Kumulatives Lifetable-Risiko für die Progression von Inselautoimmunität zum Typ 1 Diabetes 
in Abhängigkeit des mittleren Eisenwertes (A), des mittleren Aluminiumwertes (B) und des mittleren 
Manganwertes (C). Die Zeit ab dem ersten Auftreten von Inselautoimmunität (IA) beginnt mit der Blut-
probe, in der mind. ein persistierender Inselautoantikörper gefunden wird und endet bei Diabetes-
manifestation oder der letzten verfügbaren Blutprobe. Unter dem Graph ist die Anzahl der untersuch-
ten Kinder zum jeweiligen Zeitpunkt aufgeführt. 
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Tab. 6: Odds-Ratio für die Progression von Inselautoimmunität zum Typ 1 Diabetes in 
Abhängigkeit der untersuchten Trinkwasserparameter im ersten Lebensjahr 
 

 

# 
signifikant p < 0,05 (nicht korrigiert für multiples Testen) 

§
 korrigiert für: HLA DR 3/4, 4/4; Norddeutschland; Geschlecht-männlich; Mutter mit T1D 

 

 

Parameter T1D 
Odds-Ratio (95% 

Konfidenzintervall) 
Korrigierte Odds-Ratio 

(95% Konfidenzintervall)
§
 

pH-Wert (Median) 

< 7,62 

≥ 7,62 

19 

10 

 

2,0 (0,9 - 4,7) 

 1,0 (Referenz) 

 

2,5 (1,1 - 5,8)
# 

1,0 (Referenz) 

pHc-Wert (Median) 

< 7,63 

≥ 7,63 

19 

10 

 

1,5 (0,5 - 4,5) 

 1,0 (Referenz) 

 

1,4 (0,4 - 4,8) 

 1,0 (Referenz) 

Färbung (m
-1

) (Median) 

< 0,0825 

≥ 0,0825 

19 

10 

 

 1,0 (Referenz) 

0,6 (0,2 - 1,8) 

 

 1,0 (Referenz) 

0,5 (0,2 - 1,8) 

Trübung (TE/F) (Median) 

< 0,115 

≥ 0,115 

19 

10 

 

 1,0 (Referenz) 

1,7 (0,9 - 4,9) 

 

1,0 (Referenz) 

           1,7 (0,6 - 5,2) 

Nitrat (mg/l) (Median) 

< 9,58 

≥ 9,58 

18 

12 

 

 1,0 (Referenz) 

0,8 (0,4 - 1,8) 

 

 1,0 (Referenz) 

0,9 (0,4 - 1,9) 

Nitrit (mg/l) (Median) 

< 0,009 

≥ 0,009 

20 

9 

 

 1,0 (Referenz) 

1,5 (0,7 - 5,5) 

 

 1,0 (Referenz) 

            1,6 (0,6 - 4,0) 

Eisen (mg/l) (Median) 

< 0,01 

≥ 0,01 

12 

11 

 

 1,0 (Referenz) 

1,3 (0,5 - 3,2) 

 

 1,0 (Referenz) 

1,2 (0,5 - 3,1) 

Aluminium (mg/l) (Median) 

< 0,019 

≥ 0,019 

13 

4 

 

 1,0 (Referenz) 

0,7 (0,2 - 2,2) 

 

 1,0 (Referenz) 

0,6 (0,2 - 2,1) 

Mangan (mg/l) (Median) 

< 0,0049 

≥ 0,0049 

11 

11 

 

 1,0 (Referenz) 

1,0 (0,4 - 2,5) 

 

 1,0 (Referenz) 

0,7 (0,2 - 2,2) 
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2.3.3 Risiko für die Entstehung von Inselautoimmunität und Progression von 

Inselautoimmunität zum Typ 1 Diabetes in Abhängigkeit des Wohnortes 

(Norddeutschland vs. Süddeutschland) innerhalb der BABYDIAB-

Population 

 

Für diese Untersuchung wurden alle 1650 Kinder der BABADIAB Studie anhand der 

aktuellen Adressen in Nord- und Süddeutschland eingeteilt. Als Süddeutschland 

wurden die Bundesländer Baden-Württemberg und Bayern definiert, während die 

restlichen Bundesländer als Norddeutschland definiert wurden. 58 Inselautoanti-

körper positive Kinder, darunter 21 Kinder mit Typ 1 Diabetes und 960 Inselautoanti-

körper negative Kinder hatten demnach ihren Wohnsitz in Norddeutschland, während 

49 Inselautoantikörper positive Kinder, darunter 13 Kinder mit Typ 1 Diabetes und 

583 Inselautoantikörper negative Kinder ihren Wohnsitz in Süddeutschland hatten 

(Tab. 7). 

Die Lifetable-Analyse ergab keinen Unterschied in der Entstehung von Inselauto-

immunität zwischen Kindern, die in Norddeutschland leben und Kindern, die in Süd-

deutschland leben (p=0,107) (Abb.9). Weiterhin konnte ebenfalls kein Unterschied in 

der Progression von Inselautoimmunität zum Typ 1 Diabetes zwischen Kindern, die 

in Norddeutschland leben und Kindern, die in Süddeutschland leben, beobachtet 

werden (p=0,318) (Abb. 9). 

 

 

Tab. 7: BABYDIAB-Population aufgeteilt nach Nord- und Süddeutschland 

 

 

 

 

 

 

 

 

 

 

 

 

Inselautoantikörper  
positive Kinder 

Typ 1 Diabetes 
Inselautoantikörper 

negative Kinder  

Norddeutschland 58 21 960 

Süddeutschland 49 13 583 
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Abb. 9: Kumulatives Lifetable-Risiko für die Entstehung von Inselautoimmunität (A) und für die 
Progression von Inselautoimmunität zum Typ 1 Diabetes (B) in Abhängigkeit von Wohnort in Nord- 
und Süddeutschland. Im Graph (A) beginnt der Beobachtungszeitraum bei Geburt und endet bei Ent-
stehung von Inselautoimmunität bzw. mit der letzten verfügbaren Blutprobe. Im Graph (B) beginnt die 
Zeit ab dem ersten Auftreten von Inselautoimmunität (IA) mit der Blutprobe, in der mind. ein persistie-
render Inselautoantikörper gefunden wird und endet bei Diabetesmanifestation oder der letzten 
verfügbaren Blutprobe. Unter dem Graph ist die Anzahl der Kinder zum jeweiligen Zeitpunkt aufge-
führt. 

 

 

 

2.3.4 Trinkwasserqualität im ersten Lebensjahr differenziert nach Nord- und 

Süddeutschland innerhalb der Nested Fall-Kontroll-Studienpopulation 

 

Anhand der vorliegenden Adressen wurden die 234 Kinder der Nested Fall-Kontroll-

Studienpopulation in Nord- und Süddeutschland eingeteilt. Auch hier wurden die 

Bundesländer Baden-Württemberg und Bayern als Süddeutschland definiert.  

Die in Tabelle 8 dargestellte Gesamtübersicht aller untersuchten Trinkwasserpara-

meter unter Berücksichtigung der geographischen Lage des Wohnortes zeigte, dass 

es z. T. signifikante Unterschiede zwischen Nord- und Süddeutschland gab. Der pH-

Wert, pHc-Wert, die Färbung und die Trübung waren signifikant höher in Nord-

deutschland im Vergleich zu Süddeutschland (p=0,013; p=0,006; p=0,001; p=0,013). 

Auch die Nitrit-, Eisen- und Mangankonzentration waren in Norddeutschland höher 

als in Süddeutschland (p=0,000). Bei den Parametern Nitrat- und Aluminiumkonzent-
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ration waren keine signifikanten Unterschiede zu beobachten. Nach Korrektur für 

multiples Testen waren nur noch die Unterschiede bezüglich Färbung (p=0,009), 

Nitrit-, Eisen- und Mangankonzentrationen (p=0,000) signifikant zwischen Nord- und 

Süddeutschland innerhalb der Nested Fall-Kontroll-Studie.   

In einem nächsten Schritt wurde untersucht, ob diese beobachteten Unterschiede 

der Trinkwasserqualität zwischen Nord- und Süddeutschland auch in der Gruppe der 

Inselautoantikörper positiven und negativen Kinder zu beobachten sind. 

Innerhalb der Inselautoantikörper positiven Kinder zeigte sich ebenfalls, dass der pH-

Wert und der pHc-Wert des Trinkwassers in Norddeutschland signifikant höher war 

als in Süddeutschland (p=0,005; p=0,018), (Tab. 9). Ferner waren auch die Para-

meter Nitrit-, Eisen- und Mangankonzentration signifikant höher in Norddeutschland 

als in Süddeutschland (p=0,000; p=0,007; p=0,000), (Tab. 9). Im Gegensatz dazu 

gab es keine signifikanten Unterschiede zwischen Nord- und Süddeutschland inner-

halb der Inselautoantikörper positiven Kinder bezüglich Färbung, Trübung, Nitrat- und 

Aluminiumkonzentration des Trinkwassers im ersten Lebensjahr (Tab. 9). Nach 

Korrektur für multiples Testen waren innerhalb der Inselautoantikörper positiven 

Kinder nur noch der pH-Wert (p=0,045), die Nitrit- und Mangankonzentrationen 

(p=0,000) des Trinkwassers im ersten Lebensjahr signifikant höher in Norddeutsch-

land als in Süddeutschland. Im Vergleich dazu zeigte sich innerhalb der Inselauto-

antikörper negativen Kinder bei den Parametern pH-Wert, pHc-Wert, Nitrat-, Nitrit- 

und Aluminiumkonzentrationen des Trinkwassers im ersten Lebensjahr keine signifi-

kanten Unterschiede zwischen Nord- und Süddeutschland (Tab. 10). Färbung und 

Trübung waren signifikant höher in Norddeutschland als in Süddeutschland (p=0,003; 

p=0,006), (Tab. 10). Auch die Eisen- und Mangankonzentrationen des Trinkwassers 

im ersten Lebensjahr waren innerhalb der Inselautoantikörper negativen Kinder 

signifikant höher in Norddeutschland (p=0,000) als in Süddeutschland (Tab. 10). 

Dennoch war die Färbung (p=0,027) und die Eisen- und Mangankonzentration des 

Trinkwassers im ersten Lebensjahr (p=0,000) nach der Korrektur für multiples Testen 

signifikant höher in Norddeutschland als in Süddeutschland innerhalb der Inselauto-

antikörper negativen Kinder. Nach Korrektur für multiples Testen war der Unterschied 

hinsichtlich der Trübung nicht mehr signifikant.  
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Tab. 8: Mediane und Interquartilen Abstand der analysierten Trinkwasserparameter von 
allen untersuchten Kindern der Nested Fall-Kontroll-Studie unter Berücksichtigung der Lage 
des Wohnortes (Nord-/Süddeutschland) 
 

 
* nicht korrigiert für multiples Testen 
 

 

 

 

 

Parameter Anzahl 
25. 

Perzentile 
Median 

75. 
Perzentile 

p-Werte* 

pH-Wert 

Nord 

Süd 

 

129 

99 

 

7,40 

7,40 

 

7,65 

7,62 

 

8,22 

7,73 

 
 

p=0,013 
 

pHc-Wert 

Nord 

Süd 

 

48 

22 

 

7,45 

7,36 

 

7,74 

7,47 

 

8,19 

7,67 

 
 

p=0,006 
 

Färbung (m
-1

) 

Nord 

Süd 

 

75 

31 

 

0,030 

0,000 

 

0,090 

0,049 

 

0,100 

0,090 

 
 

p=0,001 
 

Trübung (TE/F) 

Nord
 

Süd 

 

82 

41 

 

0,090 

0,071 

 

0,145 

0,100 

 

0,315 

0,153 

 
 

p=0,013 
 

Nitrat (mg/l) 

Nord 

Süd 

 

130 

104 

 

2,85 

6,85 

 

8,90 

10,67 

 

18,40 

19,86 

 
 

p=0,209 
 

Nitrit (mg/l) 

Nord 

Süd 

 

121 

98 

 

0,009 

0,001 

 

0,009 

0,005 

 

0,011 

0,009 

 
 

p=0,000 
 

Eisen (mg/l) 

Nord 

Süd 

 

116 

80 

 

0,009 

0,005 

 

0,020 

0,009 

 

0,033 

0,017 

 
 

p=0,000 
 

Aluminium (mg/l) 

Nord
 

Süd 

 

95 

52 

 

0,009 

0,007 

 

0,013 

0,019 

 

0,025 

0,025 

 
 

p=0,357 
 

Mangan (mg/l) 

Nord
 

Süd 

 

117 

75 

 

0,003 

0,001 

 

0,009 

0,001 

 

0,019 

0,005 

 
 

p=0,000 
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Tab. 9: Mediane und Interquartilen Abstand der analysierten Trinkwasserparameter bei den 
Inselautoantikörper positiven Kindern unter Berücksichtigung der Lage des Wohnortes 
(Nord-/Süddeutschland) 
 

 
* nicht korrigiert für multiples Testen 

 

 

 

 

Parameter Anzahl 
25. 

Perzentile 
Median 

75. 
Perzentile 

p-Werte* 

pH-Wert 

Nord 

Süd 

 

49 

44 

 

7,42 

7,35 

 

7,85 

7,62 

 

8,30 

7,73 

 
 

p=0,005 
 

pHc-Wert 

Nord 

Süd 

 

19 

10 

 

7,41 

7,31 

 

8,00 

7,44 

 

8,66 

7,60 

 
 

p=0,018 
 

Färbung (m
-1

) 

Nord 

Süd 

 

29 

15 

 

0,023 

0,000 

 

0,040 

0,049 

 

0,090 

0,080 

 
 

p=0,191 
 

Trübung (TE/F) 

Nord
 

Süd 

 

32 

17 

 

0,090 

0,085 

 

0,105 

0,100 

 

0,308 

0,310 

 
 

p=0,657 
 

Nitrat (mg/l) 

Nord 

Süd 

 

49 

46 

 

3,12 

7,15 

 

  9,00 

10,43 

 

16,42 

21,29 

 
 

p=0,267 
 

Nitrit (mg/l) 

Nord 

Süd 

 

48 

44 

 

0,009 

0,001 

 

0,009 

0,005 

 

0,015 

0,009 

 
 

p=0,000 
 

Eisen (mg/l) 

Nord 

Süd 

 

45 

34 

 

0,009 

0,005 

 

0,014 

0,009 

 

0,030 

0,015 

 
 

p=0,007 
 

Aluminium (mg/l) 

Nord
 

Süd 

 

36 

24 

 

0,009 

0,007 

 

0,010 

0,019 

 

0,021 

0,028 

 
 

p=0,292 
 

Mangan (mg/l) 

Nord
 

Süd 

 

45 

31 

 

0,005 

0,001 

 

0,009 

0,001 

 

0,014 

0,005 

 
 

p=0,000 
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Tab. 10: Mediane und Interquartilen Abstand der analysierten Trinkwasserparameter bei den 
Inselautoantikörper negativen Kindern unter Berücksichtigung der Lage des Wohnortes 
(Nord-/Süddeutschland) 
 

 
* nicht korrigiert für multiples Testen 

 

 

 

 

 

Parameter Anzahl 
25. 

Perzentile 
Median 

75. 
Perzentile 

p-Werte* 

pH-Wert 

Nord 

Süd 

 

80 

55 

 

7,40 

7,40 

 

7,61 

7,62 

 

8,06 

7,73 

 
 

p=0,358 
 

pHc-Wert 

Nord 

Süd 

 

29 

12 

 

7,46 

7,41 

 

7,66 

7,50 

 

8,06 

7,80 

 
 

p=0,136 
 

Färbung (m
-1

) 

Nord 

Süd 

 

46 

16 

 

0,070 

0,002 

 

0,090 

0,055 

 

0,150 

0,090 

 
 

p=0,003 
 

Trübung (TE/F) 

Nord
 

Süd 

 

50 

24 

 

0,104 

0,052 

 

0,164 

0,098 

 

0,330 

0,150 

 
 

p=0,006 
 

Nitrat (mg/l) 

Nord 

Süd 

 

81 

58 

 

2,85 

4,75 

 

8,50 

10,85 

 

19,82 

20,50 

 
 

p=0,530 
 

Nitrit (mg/l) 

Nord 

Süd 

 

73 

54 

 

0,009 

0,004 

 

0,009 

0,009 

 

0,010 

0,019 

 
 

p=0,093 
 

Eisen (mg/l) 

Nord 

Süd 

 

71 

46 

 

0,010 

0,006 

 

0,020 

0,009 

 

0,040 

0,022 

 
 

p=0,000 
 

Aluminium (mg/l) 

Nord
 

Süd 

 

59 

28 

 

0,009 

0,007 

 

0,013 

0,019 

 

0,029 

0,024 

 
 

p=0,753 
 

Mangan (mg/l) 

Nord
 

Süd 

 

72 

44 

 

0,003 

0,001 

 

0,010 

0,001 

 

0,019 

0,005 

 
 

p=0,000 
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2.3.5 Nitrat-, Nitrit-, Eisen-, Aluminium- und Mangankonzentrationen des Trink-

wassers in Beziehung zum pH-Wert 

 

Innerhalb der gesamten Nested Fall-Kontroll-Studienpopulation waren die Nitratkon-

zentrationen signifikant invers mit den pH-Werten im Trinkwasser korreliert (r= -0,28; 

p=0,000). Für eine zusätzliche Analyse wurden die pH-Werte des Trinkwassers der 

gesamten Nested Fall-Kontroll-Studienpopulation in Quartilen eingeteilt. Die       

Nitratkonzentrationen waren signifikant höher in der 1. Quartile (pH-Wert < 7,40; 

Nitrat: 20,78 mg/l) im Vergleich zu der 4. Quartile (pH-Wert ≥ 7,94, Nitrat: 9,14 mg/l); 

p=0,000 (Abb. 10). Keine Assoziation konnte zwischen einem niedrigem pH-Wert 

und der Nitrit-, Eisen-, Aluminium- und Mangankonzentration des Trinkwassers 

(p>0,05) gefunden werden (Abb. 11). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Abb. 10: Korrelation zwischen dem pH-Wert und den Nitratkonzentrationen des Trinkwassers im 
ersten Lebensjahr innerhalb der Nested Fall-Kontroll-Studie 
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Abb. 11: Korrelation zwischen dem pH-Wert und der Nitritkonzentrationen (A), der 
Eisenkonzentrationen (B), Aluminiumkonzentrationen (C) und Mangankonzentrationen (D) des 
Trinkwassers im ersten Lebensjahr innerhalb der Nested Fall-Kontroll-Studie 

 

A B 

C D 

p=0,588 p=0,952 

p=0,160 p=0,555 
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2.4  Diskussion 

 

2.4.1 Bedeutung der Trinkwasserqualität im ersten Lebensjahr für die Entste-

hung von Inselautoimmunität und die Progression von Inselauto-

immunität zum Typ 1 Diabetes 

 

Die Ursachen für Inselautoimmunität und für die Progression von Inselautoimmunität 

zum Typ 1 Diabetes sind noch nicht geklärt. Es wird vermutet, dass durch ein 

Zusammenspiel zwischen genetischen Faktoren und Umweltfaktoren die Zerstörung 

der insulinproduzierenden ß-Zellen im Pankreas durch das eigene Immunsystem 

ausgelöst wird (Atkinson 2001, Gianani 2005, Knip 2005, Virtanen 2003). Die Jahre 

vor der klinischen Manifestation des Typ 1 Diabetes sind in der Phase des Prädia-

betes durch die Autoimmunität gegen die Inselzellen gekennzeichnet (Atkinson 2001, 

Gianani 2005).  

Da diese Inselautoimmunität bereits in den ersten beiden Lebensjahren auftreten 

kann, werden vor allem Umweltfaktoren als Auslöser von Inselautoimmunität vermu-

tet, die zu diesem Zeitpunkt auf das Immunsystem einwirken (Knip 1999, 2005, 

Virtanen 2003). Dabei wurde auch die Rolle der Trinkwasserqualität in verschiedenen 

Studien erforscht. Eine positive Korrelation zwischen den Parametern niedriger pH-

Wert, niedrige Zinkkonzentration bzw. erhöhte Nitratkonzentration und einem erhöh-

tem Typ 1 Diabetes Risiko wurde berichtet (Stene 2000, Parslow 1997). Diese 

Erkenntnisse beruhen jedoch zum größten Teil auf retrospektiven Studien bzw. auf 

Studien, die die Trinkwasserqualität zum Zeitpunkt der Diabetesdiagnose oder nach 

Manifestation analysiert haben. Deshalb ist es noch unklar, welchen Einfluss die 

Trinkwasserqualität im ersten Lebensjahr auf die Entstehung von Inselautoimmunität 

und Typ 1 Diabetes hat.  

Anhand einer Nested Fall-Kontroll-Studie im Rahmen der prospektiven BABYDIAB-

Studie mit 139 Inselautoantikörper negativen Kindern und 95 Inselautoantikörper 

positiven Kindern bot sich nun die Möglichkeit zum ersten Mal den Einfluss der 

Trinkwasserqualität im ersten Lebensjahr auf die Entstehung von Inselautoimmunität 

und auf die Progression von Inselautoimmunität zum Typ 1 Diabetes zu untersuchen. 

Hierzu wurden die Trinkwasserparameter pH-Wert, pH-Wert nach Calciumcarbonat-

sättigung, Färbung, Trübung, Nitrat, Nitrit, Aluminium, Eisen und Mangan analysiert. 
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In der hier durchgeführten Nested Fall-Kontroll-Studie lag der spektrale Absorptions-

koeffizient (Färbung) des Trinkwassers im ersten Lebensjahr bei den Inselautoanti-

körper positiven Kindern signifikant niedriger als bei den Inselautoantikörper negati-

ven Kindern (p=0,018). Die Farbe des Wassers kann durch organische Substanzen 

(Huminstoffe), Einbrüche von Fäkalien, physikalisch-chemische oder durch mikro-

biologische Verunreinigungen beeinträchtigt sein. Infolgedessen sind die Gründe für 

diesen gefundenen Zusammenhang unklar. Außerdem lagen nur bei 44 Inselauto-

antikörper positiven Kindern und nur bei 62 Inselautoantikörper negativen Kindern 

Angaben zur Färbung des Trinkwassers vor. Ferner zeigte sich nach Korrektur für die 

HLA-Risikogenotypen DR 3/4 und 4/4, der Lage des Wohnortes (Norddeutschland), 

des Geschlechts (männlich) und des mütterlichen Typ 1 Diabetes, dass ein spektra-

ler Absorptionskoeffizient von < 0,0825 mit einem signifikant verringerten Risiko für 

Inselautoimmunität verbunden ist: OR 0,5; 95% Konfidenzintervall 0,2-0,9; p=0,02.  

Aber nach Korrektur für multiples Testen war dieses Ergebnis nicht mehr signifikant 

(p=0,18). 

Weiterhin wurden zwar tendenziell niedrigere Nitrit- und Eisenkonzentrationen im 

Trinkwasser des ersten Lebensjahres bei Inselautoantikörper positiven Kindern 

gefunden, jedoch konnten aber keine Unterschiede in den untersuchten Trinkwas-

serparametern pH-Wert, pHc-Wert, Trübung, Nitrat-, Nitrit-, Eisen-, Aluminium- und 

Mangankonzentration im ersten Lebensjahr zwischen den Inselautoantikörpern 

positiven und Inselautoantikörper negativen Kindern gefunden werden.  

In Übereinstimmung mit den hier dargestellten Ergebnissen wurden in den Studien 

von Stene et al. und Zhao et al. ebenfalls keine Korrelationen zwischen den Eisen-, 

Aluminium- und Mangankonzentrationen im Trinkwasser und dem Typ 1 Diabetes 

Risiko gefunden (Stene 2002, Zhao 2001). Dennoch ist hinzuzufügen, dass ein 

direkter Vergleich mit den Ergebnissen anderer Untersuchungen aufgrund unter-

schiedlicher Methoden relativ schwierig ist. 

 

Bezüglich der Progression zum Typ 1 Diabetes zeigte sich, dass Inselautoantikörper 

positive Kinder, die Trinkwasser mit einem niedrigeren pH-Wert (< 7,62) im ersten 

Lebensjahr erhielten, ein 2,5-fach höheres Risiko besaßen einen Typ 1 Diabetes zu 

entwickeln als Kinder, die Trinkwasser mit einem höherem pH-Wert (≥ 7,62) erhiel-

ten. Zu einem vergleichbaren Ergebnis kam auch eine Studie von Stene et al. mit 64 

Typ 1 Diabetikern und 250 Kontrollpersonen, in der Leitungswasser mit einem pH-
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Wert von 6,2–6,9 mit einem vierfach erhöhtem Typ 1 Diabetes Risiko verbunden war 

im Vergleich zu einem pH-Wert ≥ 7,7 (OR: 3, 73; 95% Konfidenzintervall: 1,52- 9,15) 

(Stene 2000). Aber hier wurde die Trinkwasserqualität nach Diabetesmanifestation 

und nicht wie in der vorliegenden Analyse im ersten Lebensjahr beurteilt. Weiterhin 

lässt sich feststellen, dass der Bereich des pH-Wertes in der aktuellen Untersuchung 

viel größer war und weniger saure pH-Werte gemessen wurden als im Vergleich zu 

der vorangegangenen Studie. Obwohl in der vorliegenden Studie ein marginaler 

Zusammenhang zwischen einem niedrigeren pH-Wert des Trinkwassers und der 

Progression zum Typ 1 Diabetes dargestellt werden konnte, sind die Ursachen 

hierfür unklar und lassen zurzeit nur Spekulationen zu. Ein möglicher Mechanismus 

für das erhöhte Progressionsrisiko zum Typ 1 Diabetes bei niedrigem pH-Wert ist die 

Annahme, dass die Trinkwasserqualität sich über die Zeit nicht ändert. Auf der 

anderen Seite scheint der pH-Wert in Übereinstimmung mit den Überlegungen von 

Stene et al. 2002 nicht ursächlich an diesem Prozess beteiligt zu sein, sondern muss 

als ein Marker für die Bioverfügbarkeit bzw. Toxizität von Mineralien und als ein 

Faktor für das Überleben von Mikroorganismen angesehen werden. Zwar waren die 

Nitratkonzentrationen innerhalb der Nested Fall-Kontroll-Studie invers mit den pH-

Werten im Trinkwasser verbunden, dennoch waren sowohl die Nitratkonzentrationen 

als auch alle anderen getesteten Parameter wie Nitrit, Eisen, Aluminium, Mangan, 

Färbung und Trübung nicht mit einem erhöhten Risiko für die Progression zum Typ 1 

Diabetes assoziiert. Trotzdem wird vermutet, dass ein niedriger pH-Wert mit 

bestimmten Konzentrationen von Bakterien und mit dem Überleben von Enteroviren 

verbunden ist. Auf der anderen Seite ist aber auch bekannt, dass einige Mikroorga-

nismen gegenüber verschiedenen Desinfektionsarten resistent sind. (Abbaszadegan 

1993, Nwachcuku 2004, Sjogren 1981, Salo 1976). Leider wurde in der vorliegenden 

Arbeit nicht der Gehalt an  Mikroorganismen im Trinkwasser analysiert, so dass diese 

Hypothese nicht bestätigt werden kann. Jedoch muss hier berücksichtigt werden, 

dass nach Korrektur für multiples Testen ein Zusammenhang zwischen einem pH-

Wert < 7,62 und der Progression zum Typ 1 Diabetes nicht mehr nachgewiesen 

werden konnte. 

 

Die β-Zell-toxischen Eigenschaften von N-Nitroso-Verbindungen sind schon lange 

bekannt. Da diese aus Nitrat bzw. Nitrit gebildet werden können, wurde in früheren 

Studien ein besonderer Focus auf die Nitrat- und Nitritmengen im Trinkwasser gelegt. 
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In der vorliegenden Analyse konnten keine Assoziationen zwischen den Trinkwas-

serparametern Nitrat und Nitrit und der Entstehung von Inselautoimmunität bzw. 

Progression zum Typ 1 Diabetes gefunden werden. Diese Ergebnisse stimmen mit 

Untersuchungen aus Sardinien, den Niederlanden und Finnland überein, die eben-

falls keinen Zusammenhang zwischen der Nitrat- und Nitritkonzentration im Trink-

wasser und dem Typ 1 Diabetes Risiko feststellen konnten (Casu 2000, von Maanen 

2000, Virtanen 1993).  

Im Gegensatz dazu zeigten andere epidemiologischen Studien einen Zusammen-

hang zwischen der Nitrat- bzw. Nitritaufnahme mit dem Trinkwasser und dem Typ 1 

Diabetes Risiko. So war eine Nitratkonzentration von > 14,85 mg/l im Trinkwasser mit 

einer erhöhten Typ 1 Diabetes Inzidenz in Yorkshire, England assoziiert. Die 

Studienpopulation bestand aus 1797 Typ 1 Diabetikern (0-16 Jahre), die zwischen 

1978-1994 diagnostiziert wurden. Daten über die Nitratkonzentrationen im Trinkwas-

ser basierten auf über 9000 Proben, die zwischen 1990-1995 in 148 Wasserversor-

gungszonen getestet wurden (Parslow 1997). Ebenso berichtete Kostraba et al. von 

einer positiven Korrelation zwischen dem Nitratgehalt im Trinkwasser und der Typ 1 

Diabetes Inzidenz in Colorado. Bezirke mit einer Nitratkonzentration im Trinkwasser 

in der 3. Tertile (0,77 - 8,2 mg/l) hatten ein signifikant erhöhtes Typ 1 Diabetes Risiko 

im Vergleich zu Bezirken mit einem Nitratgehalt im Trinkwasser in der 1. Tertile   

(0,00 - 0,084 mg/l), p=0,02 (Kostraba 1992). Jedoch wie einleitend schon 

angesprochen, beruhen diese Ergebnisse auf retrospektiven Untersuchungen zum 

Zeitpunkt der Diagnose oder nach Manifestation. Im Vergleich zu den anderen 

Ländern lagen die durchschnittlichen Nitratwerte in der vorliegenden Untersuchung 

bei 9,6 mg/l und somit höher als für andere Länder berichtet.  

Ursache für die unterschiedlichen Ergebnisse könnte sein, dass Nitrat und Nitrit  

hauptsächlich über Gemüse oder gepökeltes Fleisch aufgenommen wird (Laitinen 

1993, Penttilä 1990, Petersen 1999). So zeigten Virtanen et al., dass diabetische 

Kinder und deren Mütter signifikant mehr Nitrit mit der Nahrung verzehrten als die 

Kontrollgruppe (0,9 mg vs. 0,8 mg, p < 0,001). Interessanterweise hatte jedoch die 

Nitrataufnahme mit der Nahrung keinen Einfluss auf das Typ 1 Diabetes Risiko 

(Virtanen 1994). Ein weiterer wichtiger Punkt der in diesen Zusammenhang zu 

beachten ist, ist  auch die Aufnahme von N-Nitroso-Verbindungen über die Nahrung. 

Die Daten von Verge et al. zeigten aber keinen Zusammenhang zwischen der 

Nitrosaminaufnahme über die Nahrung und dem Typ 1 Diabetes Risiko in Australien 
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(Verge 1994). Wiederum wurde in der Swedish Childhood Diabetes Study eine 

Dosis-Wirkungs-Beziehung zwischen dem häufigen Verzehr von Lebensmittel reich 

an Nitrosaminen (OR für geringen Verzehr 1,0; mittleren Verzehr 2,3; häufigen 

Verzehr 5,5), Nitrat und Nitrit (OR: 1,0; 0,8; 2,4) und dem Auftreten von Typ 1 

Diabetes festgestellt (Dahlquist 1990). Leider wurden in der vorliegenden Arbeit nur 

die Nitrat- und Nitritgehalte im Trinkwasser untersucht und nicht noch zusätzlich die 

Aufnahme von Nitrat, Nitrit und Nitrosaminen mit der Nahrung.  

 

Seit längerer Zeit wird weiterhin vermutet, dass Zink ein möglicher protektiver Faktor 

in der Pathogenese des Typ 1 Diabetes ist. So zeigten Haglund et al. aus Schweden 

und Zhao et al. in England, dass höhere Zinkkonzentrationen im Grundwasser          

(OR: 0,8; 95% Konfidenzintervall: 0,7-0,9) bzw. Trinkwasser (Inzidenz-Rate-Ratio 

von 0,76; 95% Konfidenzintervall 0,59-0,97 bei einer Zinkkonzentration zwischen 

22,27-27,00 µl) mit einem verminderten Typ 1 Diabetes Risiko einhergeht (Haglund 

1996, Zhao 2001). Bedauerlicherweise wurden die Zinkkonzentrationen im Trink-

wasser durch die Wasserwerke in der vorliegenden Untersuchung nicht bestimmt, 

somit konnte diese Assoziation, die in vorangegangenen Studien berichtet wurde, 

nicht überprüft werden. Aber auch hier ist zu erwähnen, dass der Hauptanteil der 

Zinkaufnahme über andere Lebensmittelmittel erfolgt (Scherz 2006). 

 

Ein limitierender Faktor in der vorliegenden Arbeit ist die gemessene Trinkwasser-

qualität durch die Wasserwerke an den Trinkwasserversorgungsstellen. Leider 

konnte nicht das Leitungswasser von jeder Familie analysiert werden und es könnten 

somit kleine Abweichungen zwischen der gemessenen Trinkwasserqualität durch die 

Wasserwerke und der Qualität des Leitungswassers aufgrund von unterschiedlichen 

Rohrleitungssystemen in den Haushalten bestehen. 

Ein weiterer Kritikpunkt dieser Arbeit ist die nicht vorhandene Information über die 

aufgenommenen Trinkwassermengen der Kinder im ersten Lebensjahr bzw. die 

fehlende Information über die Art des am häufigsten verwendeten Trinkwassers 

(Leitungswassers, Brunnenwasser, gekauftes Mineralwasser). Die Daten von der 

DONALD Studie weisen darauf hin, dass Formula ernährte Kinder mehr Trinkwasser 

konsumieren als gestillte Kinder aufgrund der Zubereitung der Formulanahrungen 

auf Pulverbasis. Die dabei aufgenommenen Trinkwassermengen wurden anhand von 

3-Tages-Ernährungsprotokollen berechnet. Weiterhin kalkulierten sie ein Szenario 
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über die aufgenommenen Nitratmengen über das Trinkwasser und schätzten die 

Nitrataufnahme am höchsten für die Formula ernährten Kinder ein (Hilbig 2002). 

Folglich müssen  in die Analysen zukünftiger Studien die aufgenommenen Trinkwas-

sermengen bzw. die Art des am häufigsten verzehrten Wassers miteinbezogen 

werden.  

 

Zusammenfassend zeigen die Ergebnisse dieser Untersuchung zwar einen Zusam-

menhang zwischen der Färbung des Trinkwassers im ersten Lebensjahr und der 

Entstehung von Inselautoimmunität sowie zwischen dem pH-Wert des Trinkwassers 

und der Progression von Inselautoimmunität zum Typ 1 Diabetes, dennoch sind 

diese Assoziationen marginal.  

 

 

2.4.2 Risiko für die Entstehung von Inselautoimmunität und Progression zum 

Typ 1 Diabetes und die Trinkwasserqualität in Abhängigkeit des 

Wohnortes (Norddeutschland vs. Süddeutschland) innerhalb der 

BABYDIAB-Population bzw. der Nested Fall-Kontroll-Studie 

 

Weiterhin sollte im Rahmen dieser Arbeit geklärt werden, ob die Entstehung von 

Inselautoimmunität und Progression zum Typ 1 Diabetes und die  Trinkwasserquali-

tät im ersten Lebensjahr auch durch die geographische Lage beeinflusst wird. Da 

innerhalb Europas ein ausgeprägtes Nord-Südgefälle bezüglich der Inzidenzrate des 

Typ 1 Diabetes existiert (The DIAMOND Project Group 2006) und die BABYDIAB-

Studie eine prospektive deutschlandweite Verlaufsuntersuchung bei Kindern mit 

einem diabetischen Elternteil ist, wurde hier die Entstehung von Inselautoimmunität 

und die Progression zum Typ 1 Diabetes und die Trinkwasserqualität im ersten 

Lebensjahr differenziert nach Nord- und Süddeutschland (Bayern, Baden-Württem-

berg) innerhalb der BABYDIAB-Population bzw. Nested Fall-Kontroll-Studie unter-

sucht. 

Es konnten keine Unterschiede in der Entstehung von Inselautoimmunität und in der 

Progression zum Typ 1 Diabetes zwischen Nord- und Süddeutschland innerhalb der 

BABYDIAB Population gefunden werden. Hier ist aber auch hinzuzufügen, dass die 

Einteilung in Nord- und Süddeutschland relativ ungenau war und die Fallzahl für 

diese Überprüfung zu klein war. Außerdem ist anzumerken, dass die Gesamtvertei-
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lung der BABYDIAB-Population auf Nord- und Süddeutschland zu ungleichmäßig war 

(960 vs. 558). Ein deutschlandweites Diabetesregister ist nötig, um mögliche Unter-

schiede in der Typ 1 Diabetes Inzidenz zwischen Nord- und Süddeutschland aufzei-

gen zu können. Leider existieren zurzeit nur regionale Register in Baden-Württem-

berg, Sachsen und Nordrhein-Westfalen (Galler 2005, Neu 2002, Rosenbauer 2000). 

Obwohl keine Unterschiede in der Entstehung von Inselautoimmunität und in der 

Progression zum Typ 1 Diabetes zwischen Nord- und Süddeutschland innerhalb der 

BABYDIAB Population beobachtet werden konnte, zeigte sich jedoch bezüglich der 

Trinkwasserqualität z. T. signifikante Unterschiede zwischen Nord- und Süddeutsch-

land. Nach Korrektur für multiples Testen waren innerhalb der gesamten Nested Fall-

Kontroll-Studienpopulation die Parameter Färbung, Nitrit-, Eisen- und Mangan-

konzentrationen, innerhalb der Inselautoantikörper positiven Kinder die Parameter 

pH-Wert, Nitrit- und Mangankonzentrationen und innerhalb der Inselautoantikörper 

negativen Kinder die Parameter Färbung, Eisen- und Mangankonzentrationen signifi-

kant höher in Norddeutschland als in Süddeutschland.  

Eine genaue Interpretation der vorliegenden Ergebnisse ist ohne weitere Unter-

suchungen nicht möglich, da hier nur die geographische Einteilung der Wohnorte in 

Nord- und Süddeutschland erfolgte. Nitrat und Nitrit werden in der Landwirtschaft 

häufig als Dünger eingesetzt, dadurch kann Grundwasser in den ländlichen Gebieten 

oft mehr mit Nitrat belastet sein als in der Stadt (McKnight 1999). Unterschiede 

zwischen Stadt und ländlicher Gegend wurden aber hier nicht untersucht. 
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2.4.3 Ausblick 

 

Umweltfaktoren scheinen eine essentielle Rolle in der Entstehung des Typ 1 Diabe-

tes zu spielen, dennoch war es basierend auf den bisher durchgeführten Studien mit 

kontroversen Ergebnissen bisher schwierig einzelne Umweltfaktoren genau zu iden-

tifizieren. Dies ist bedingt durch die ungenaue Methodik dieser Studien (retrospekti-

ves Studiendesign, Recall Bias, fehlende Informationen über die Exposition gegenü-

ber Umweltfaktoren in der frühen Kindheit, geringe Fallzahl, verschiedene Popula-

tionen, Nichtbeachtung von genetischen Risikofaktoren usw.). Auf der Grundlage der 

bisher publizierten Ergebnissen über den Zusammenhang von Umweltfaktoren und 

der Entstehung von Typ 1 Diabetes wird seit 2004 die internationale Beobachtungs-

studie TEDDY (The Environmental Determinants of Diabetes in the Young) durch-

geführt, an der auch das Institut für Diabetesforschung als Studienzentrum beteiligt 

ist. Das Hauptziel ist es, bei Kindern mit einem erhöhten genetischen Typ 1 Diabetes 

Risiko Umweltfaktoren zu identifizierten, die zu Typ 1 Diabetes führen oder davor 

schützen. Die TEDDY Studie soll im Weiteren Aufschluss über die Bedeutung der 

Trinkwasserqualität an der Entstehung von Inselautoimmunität und Typ 1 Diabetes 

geben.  Insgesamt beteiligen sich 6 Zentren aus 4 Ländern: Deutschland, Finnland, 

Schweden und USA (Georgia/Florida, Colorado, Washington). Im ersten Teil der 

Studie sollen weltweit über 350.000 Kinder aus der Allgemeinbevölkerung und über 

5500 Kinder mit einem erstgradigen Verwandten mit Typ 1 Diabetes auf Risikogene 

in den ersten Lebensmonaten gescreent werden. Im zweiten Teil der Studie sollen 

insgesamt über 7000 Risikokinder aus der Allgemeinbevölkerung und fast 800 

Risikokinder mit einem erstgradigen Verwandten mit Typ 1 Diabetes engmaschig 

nachuntersucht werden. Die Erhebung der Umweltfaktoren, wie Ernährung, 

Infektionen, Impfungen und psychische Belastungen sowie regelmäßige Blutunter-

suchungen erfolgen bis zu einem Alter von 4 Jahren 3-monatlich und anschließend 

bis zum 15. Lebensjahr halbjährlich. Proben des am häufigsten verzehrten Wassers 

werden im Alter von 9 Monaten, 3, 5, 7, 9, 11, 13 und 15 Jahren von den Familien 

gesammelt. 
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3 Einfluss des mütterlichen Typ 1 Diabetes auf die Fett-

säurezusammensetzung der Erythrozytenmembran 

 

3.1 Hintergrund und Problemstellung  

 

Langkettige, mehrfach ungesättigte Fettsäuren (LC-PUFA) haben eine große Rele-

vanz in der frühkindlichen Entwicklung. Als Bestandteile der Membranphosholipide 

von Neuronen und Photorezeptoren der Retina sind sie für deren Entwicklung 

intrauterin und perinatal von entscheidender Bedeutung (Koletzko 2001). Darüber 

hinaus wird vermutet, dass die Versorgung mit LC-PUFA EPA und DHA aber auch 

mit dem Risiko für Inselautoimmunität und Typ 1 Diabetes invers assoziiert ist (Norris 

2007, Stene 2000, 2003). Daten über eine ausreichende Versorgung mit LC-PUFA in 

der frühen Kindheit von Kindern diabetischer Mütter sind noch nicht ausreichend 

verfügbar. Für die Ernährung eines gesunden Säuglings in den ersten Lebens-

monaten ist Muttermilch die beste Quelle für die Bedarfsdeckung des Säuglings und 

für die Bereitstellung von langkettigen, mehrfach ungesättigten Fettsäuren. Die Fett-

säurezusammensetzung der Muttermilch unterscheidet sich erheblich von industriell 

gefertigten Formulanahrungen, da diese vor allem keine Docosahexaensäure 

enthalten (Koletzko 1999). Untersuchungen zur Fettsäurezusammensetzung der 

Muttermilch berichten aber auch über Unterschiede in der Milchfettszusammen-

setzung von Müttern mit Typ 1 Diabetes aufgrund der veränderten Stoffwechsellage. 

(Bitman 1989, Jackson 1994). Ein geeigneter Biomarker für die Fettsäureaufnahme 

mit der Nahrung ist die Bestimmung der Fettsäurezusammensetzung der Erythro-

zytenmembran. (Fuhrman 2006, Farquhar 1963, Feunekes 1993, Glatz 1989, Godley 

1996). Aufgrund ihrer Lebensdauer von 120 Tagen spiegeln sie die Ernährung von 

mehreren Monaten wieder (Arab 2002, 2003).  

Da Kinder von Müttern mit Diabetes ein signifikant geringeres Risiko haben, Insel-

autoantikörer zu entwickeln oder an Typ 1 Diabetes zu erkranken als Kinder von 

Vätern mit Typ 1 Diabetes (Warram 1984, Bleich 1993, El-Hashimy 1995, Lorenzen 

1998), soll in der vorliegenden Arbeit vor allem der Frage nachgegangen werden, ob 

die Ernährung im Hinblick auf die Fettsäurezufuhr zwischen Kindern von Müttern mit 

und ohne Typ 1 Diabetes unterschiedlich ist. Hierzu wurde die Fettsäurezufuhr über 

die Bestimmung der Fettsäurezusammensetzung der Erythrozytenmembran der an 
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der BABYDIÄT Studie teilnehmenden Kinder untersucht. Die BABYDIÄT-Studie ist 

eine Präventionsstudie zur Verhinderung des Typ 1 Diabetes durch Eliminierung von 

Gluten während des 1. Lebensjahres. Kinder mit einem erstgradigen Verwandten mit 

Typ 1 Diabetes und Typ 1 Diabetes-assoziiertem HLA-Risikogenotyp werden bis zu 

einem Alter von 3 Monaten eingeschlossen. Die Kinder werden in eine Kontroll- und 

Interventionsgruppe randomisiert (6 bzw.12 Monate glutenfrei). Im Alter von 3, 12, 24 

und 36 Monaten werden Blutproben zur Bestimmung der Fettsäurezusammen-

setzung der Erythrozytenmembran gesammelt und als Phosphatidylcholin- und 

Phosphatidylethanolaminfraktionen (PC, PE) erfasst.  

Folgende Punkte sollten dabei genauer untersucht werden: 

 

 

1. Welchen Einfluss hat der mütterliche Typ 1 Diabetes auf die Fettsäurezusam-

mensetzung der Erythrozytenmembran bei Kindern mit einem erhöhten Typ 1 

Diabetes Risiko im Alter von 3 Monaten? 

 

2. Welchen Einfluss hat das Voll Stillen in den ersten 3 Monaten, eine Fischöl-

supplementierung der Mutter während der Schwangerschaft und/oder Stillzeit, 

die Schwangerschaftsdauer und das Geburtsgewicht auf die Fettsäurezu-

sammensetzung der Erythrozytenmembran bei Kindern mit einem erhöhten 

Typ 1 Diabetes Risiko im Alter von 3 Monaten? 

 

3. Unterscheidet sich die Fettsäurezusammensetzung der Erythrozyten-

membran im Alter von 3 Monaten zwischen den Kindern mit einem erhöhten 

Typ 1 Diabetes Risiko, die von einer Mutter mit Typ 1 Diabetes bzw. einer 

Mutter ohne Typ 1 Diabetes in den ersten 3 Monaten voll gestillt wurden? 

 

4. Welchen Einfluss hat der mütterliche Typ 1 Diabetes sowie die Gluteninterven-

tion und die Gesamtstilldauer auf die Fettsäurezusammensetzung der 

Erythrozytenmembran bei Kindern mit einem erhöhten Typ 1 Diabetes Risiko 

im Alter von 12 Monaten? 
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5. Welchen Einfluss hat der mütterliche Typ 1 Diabetes sowie die Gluteninterven-

tion auf die Fettsäurezusammensetzung der Erythrozytenmembran bei 

Kindern mit einem erhöhten Typ 1 Diabetes Risiko im Alter von 24 Monaten? 

 

6. Korreliert die Fettsäurezusammensetzung der Erythrozytenmembran mit den 

durch die 3-Tages-Ernährungsprotokolle erhobenen Daten zur Aufnahme von 

Fettsäuren mit der Nahrung? 
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3.2 Methode 

 

3.2.1 Die BABYDIÄT-Studie 

 

Die Fettsäurezusammensetzung der Erythrozytenmembran wurde anhand des Kol-

lektivs der BABYDIÄT-Studie untersucht. 

Die BABYDIÄT-Studie ist eine Interventionsstudie, in der Neugeborene von Müttern 

oder Vätern bzw. Geschwistern mit Typ 1 Diabetes mit den Diabetes-Hochrisiko-

genotypen DRB1*03-DQA1*0501-DQB1*0201/DRB1*04-DQA1*0301-DQB1*0302; 

DRB1*04-DQA1*0301-BQB1*0302/DRB1*04-DQA1*0301-DQB1*0302 oder DRB1 

*03-DQA1*0501-DQB1*0201/DRB1*03-DQA1*0501-DQB1*0201 im Alter von maxi-

mal 3 Monaten eingeschlossen wurden. Die Rekrutierung fand von 2001 bis 2006 in 

ganz Deutschland statt. Ziel der BABYDIÄT-Studie ist, den Einfluss einer Ernäh-

rungsintervention, nämlich eine Verzögerung der Glutenexposition, auf die Entste-

hung von Inselautoimmunität bzw. die Entwicklung eines manifesten Typ 1 Diabetes 

zu untersuchen und durch die engmaschigen Nachuntersuchungen die Entstehung 

von Inselautoimmunität aufzuklären. Bei Geburt wurden aus Nabelschnurblut bzw. 

bis zum 3. Lebensmonat aus venösem Blut die HLA-Genotypen bestimmt. Als offene 

randomisierte kontrollierte Studie bekam die Hälfte der Kinder bis zum Alter von 12 

Lebensmonaten eine glutenfreie Ernährung, die andere Hälfte erhielt glutenhaltige 

Nahrung ab dem 6. Lebensmonat (entspricht der allgemeinen Ernährungsempfeh-

lung in Deutschland). Die Randomisierung wurde unter Einbeziehung des HLA-

Genotyps, des Verwandtschaftsverhältnisses zum diabetischen Familienmitglied und 

des Geschlechts des Säuglings durchgeführt. Jede Familie wurde einmal, wenn das 

Kind ca. 3 Monate alt war, von einer Ökotrophologin vor Ort besucht, welche die 

glutenfreie Ernährung sowie das Ausfüllen von Wochenprotokollen und 3-Tages-

Ernährungsprotokollen erklärte. Ferner wurde den Eltern Informationsmaterial über 

eine glutenfreie Ernährung und Listen von glutenfreien Produkten bereitgestellt. 

Ebenso wurde der Kinderarzt der Familie über die Studie aufgeklärt, da er die Blut-

entnahmen durchführt. Insgesamt wurden 149 Kinder in die Studie eingeschlossen 

und ab dem 3. Lebensmonat in 3-monatlichen Abständen bis zum dritten Lebensjahr 

mittels Blut-, Urin- und Stuhlproben nachuntersucht. Zu jedem Untersuchungszeit-

punkt werden die Blutproben auf Autoantikörper gegen Insulin (IAA), Glutamatdecar-

boxylase (GADA) und gegen die Tyrosinphosphatase (IA-2A) untersucht. Außerdem 
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werden Antikörpersubklassen, Epitope und Zöliakie-assoziierte Antikörper gegen die 

Gewebstransglutaminase C bestimmt. Virale oder bakterielle Erreger werden in den 

Blut-, Stuhl- und Urinproben erfasst. Des Weiteren wird mit Hilfe von 3-Tages Ernäh-

rungsprotokollen, Wochenprotokollen und Fragebögen die Ernährung der Kinder 

evaluiert. Stillgewohnheiten, Säuglingsmilchnahrungen, Einführung von neuen Nah-

rungsmitteln, Erkrankungen und Medikamente werden täglich in den Wochen-

protokollen notiert.  

Ein Endpunkt der BABYDIÄT-Studie ist die Entwicklung von Inselautoimmunität bzw. 

die klinische Manifestation eines Typ 1 Diabetes. Inselautoimmunität ist hier definiert 

als das Vorhandensein positiver Antikörper-Titer bei einem oder mehreren Inselauto-

antikörpern (IAA, GAGA, IA-2A) in mindestens 2 aufeinander folgenden Blutproben. 

Zur Bestätigung der Inselautoimmunität, d. h. von persistierenden Inselautoanti-

körpern wird eine 2. Blutprobe angefordert. Wird in einer 2. Blutprobe die Inselauto-

immunität nicht bestätigt, gilt das Kind als Inselautoantikörper negativ. Ein weiterer 

Endpunkt ist das Auftreten von zöliakieassozierten Antikörpern (Transglutaminase-

Antikörper) sowie durch eine Biopsie nachgewiesene Zöliakie (Schmid 2004b). 

Insgesamt wurden 1168 Neugeborene vor dem 3. Lebensmonat auf die HLA-DR und 

DQ Risikoallele untersucht, dabei wiesen 170 (14,5%) Säuglinge einen Diabetesrisi-

kogenotyp auf. Von diesen 170 Kindern entschieden sich 149 (87,6%) Familien für 

die Teilnahme an der BABYDIÄT Studie. 73 Kinder wurden in die Interventions-

gruppe und 76 Kinder in die Kontrollgruppe eingeteilt. Die Kinder wurden über einen 

mittleren Zeitraum von 16 Monaten (Zeitspanne 0-36 Monaten) nachbeobachtet. 

Glutenhaltige Nahrungsmittel wurden in der Interventionsgruppe mit 11,7 Monaten 

und bei der Kontrollgruppe mit 6,9 Monaten eingeführt. 11 Familien (7%) haben die 

Teilnahme an der BABYDIÄT-Studie vorzeitig abgebrochen (durchschnittliches Alter 

bei drop out: 0,7 Jahre). Die engmaschigen Nachuntersuchungen bis zum 3. 

Lebensjahr sind bei 41 Kindern abgeschlossen und in ca. 2,5 Jahren werden sie 

dann bei allen Kindern beendet sein. Nach dem 3. Lebensjahr werden die Kinder 

hinsichtlich der Entwicklung der Endpunkt weiter beobachtet.  

Die BABYDIÄT-Studie wurde von der Ethikkommission der Ludwig-Maximilian-Uni-

versität München, Deutschland genehmigt (Ethikkommission der Medizinischen 

Fakultät der Ludwig-Maximilian-Universität Nr. 329/00).      
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3.2.2 Kollektiv aus der BABYDIÄT-Studie für die Bestimmung der Fettsäure-

zusammensetzung der Erythrozytenmembran  

 

Seit März wurden 2003 bei den Kindern der BABYDIÄT-Studie im Alter von 3, 12, 24 

und 36 Monaten jeweils mindestens 1,5 ml venöses Blut im EDTA-Röhrchen für die 

Analyse der Fettsäurezusammensetzung in der Erythrozytenmembran gesammelt. 

Bis November 2005 standen von den 112 in die Babydiät-Studie eingeschlossenen 

Kindern 145 Blutproben für die Analyse zur Verfügung.  

 

 
Beschreibung der Studienpopulation 

 
Von 48 Kindern lag jeweils eine Blutprobe zur Analyse im Alter von 3 Monaten vor: 

23 Kinder von Müttern mit Typ 1 Diabetes, 25 Kinder von Müttern ohne Typ 1 Dia-

betes (Tab. 11). 27 dieser Kinder wurden in den ersten 3 Monaten voll gestillt: 10 

Kinder von Müttern mit Typ 1 Diabetes und 17 Kinder von Müttern ohne Typ 1 Dia-

betes. Die anderen 21 Kinder erhielten in den ersten 3 Monaten nur Formulanahrung 

oder wurden noch zusätzlich teilgestillt. Informationen über eine Fischölsupplemen-

tierung der Mutter während der Schwangerschaft und/oder der Stillzeit standen von 

19 Müttern mit Typ 1 Diabetes und von 23 Müttern ohne Typ 1 Diabetes zur Verfü-

gung, 7 Mütter mit Typ 1 Diabetes und 6 Mütter ohne Typ 1 Diabetes nahmen Fisch-

ölsupplemente während der Schwangerschaft und/oder der Stillzeit ein.  

Informationen über die Schwangerschaftsdauer und das Geburtsgewicht lagen bei 

allen 25 Müttern mit Typ 1 Diabetes und bei allen 24 Müttern ohne Typ 1 Diabetes 

vor. Der Median der Schwangerschaftsdauer betrug bei den Müttern mit Typ 1 Dia-

betes 38 Wochen und 39,5 Wochen bei Müttern ohne Typ 1 Diabetes. In beiden 

Gruppen wurde jeweils ein Kind als Frühgeburt, d. h. vor der 37. Schwangerschafts-

woche geboren. Bei Kindern von Müttern mit Typ 1 Diabetes lag die eine mittlere 

Geburtsgewichtperzentile bei 81, während diese  bei Kindern von nicht diabetischen 

Müttern 56,5 betrug.  

Im Alter von 12 Monaten konnten von 49 Kindern Blutproben gesammelt werden, 

davon hatten 25 Kinder eine Mutter mit Typ 1 Diabetes und 24 Kindern eine nicht 

diabetische Mutter. 10 Kinder mit einer diabetischen Mutter und 12 Kinder ohne dia-

betische Mutter waren in der Interventionsgruppe. Die mittlere Gesamtstilldauer 
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betrug 18,5 Wochen bei den Kindern von Müttern mit Typ 1 Diabetes und 41,3 

Wochen bei den Kindern von nicht diabetischen Müttern.  

Im Alter von 24 Monaten konnten bei 32 Kindern Blutproben gesammelt werden, 

davon hatten 19 Kinder hatten eine Mutter mit Typ 1 Diabetes und 13 Kinder hatten 

eine Mutter ohne Typ 1 Diabetes. 9 Kinder von Müttern mit Typ 1 Diabetes und 8 

Kinder von Müttern ohne Typ 1 Diabetes waren in der Interventionsgruppe. 

Im Alter von 36 Monaten konnten von 16 Kindern Blutproben gesammelt werden: 10 

Kinder von Müttern mit Typ 1 Diabetes und 6 Kindern von nicht diabetischen Müttern. 

(Tab. 11). 

 

Tab. 11: Beschreibung der Untersuchungspopulation 

 

Mutter mit T1D Mutter ohne T1D Gesamt 

Alter: 3 Monate 23 25 48 

   Vollstillen (n) 10 17 27 

   Fischölsupplementierung (n) 7 6 13 

   Median Schwangerschaftsdauer    

(Wochen) 
38 39,5 39 

   Frühgeborene (n) 1 1 2 

   Median Geburtsgewichtperzentile  81 56,5 69 

Alter: 12 Monate 25 24 49 

Interventions- /Kontrollgruppe 10/15 12/12 22/27 

   Median Gesamtstillen (Wochen) 18,5 41,25 30,25 

Alter: 24 Monate 19 13 32 

   Interventions- /Kontrollgruppe 9/10 8/5 17/15 

Alter: 36 Monate 10 6 16 

 
Randomisierung in die Kontroll- oder Interventionsgruppe erfolgt nach dem 3. Lebensmonat;   
in den Analysen erfolgte bei 12 und 24 Monaten jeweils eine Korrektur für die Glutenintervention 
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3.2.3 Probensammlung und -verarbeitung 

 

Die Blutentnahme erfolgte durch den eigenen Kinderarzt vor Ort. Die Blutproben 

wurden per Express Service innerhalb von 24 h an das Institut für Diabetesforschung 

in München geschickt. Hier wurden die Proben zunächst bis zur weiteren Aufarbei-

tung vorbereitet und eingefroren. 

 
Vorbereitung der Proben:  
 
EDTA-Blut wurde bei 3000 rpm 10 min zentrifugiert und anschließend das Plasma 

abpipettiert. Danach wurden die Erythrozyten 3mal mit der 10-fachen Menge an 0,9% 

NaCl gewaschen.  

 

Einfrieren der Proben: 
 
Auf das Erythrozytensediment wurde zum Hämolysieren je nach Erythrozytenmenge 

ca. 1 ml aqua dest hinzu gegeben und dann 2 ml Isopropanol + Butylhydroxitoluol 

(50 mg/l) unter ständigem Schütteln langsam zugegeben. Die Probe wurde bei –80°C 

bis zur Weiterverarbeitung gelagert.  
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3.2.4 Bestimmung der Fettsäurezusammensetzung der Erythrozytenmembran 

der BABYDIÄT Kinder 

 
 
Die Bestimmung der Fettsäurezusammensetzung der Erythrozytenmembran wurde 

im Stoffwechsellabor des Dr. von Haunerschen Kinderspitals in München von der 

Doktorandin durchgeführt (Geppert 2005). Hierzu wurden die eingefrorenen Proben 

am Tag der Weiterverarbeitung ins Stoffwechsellabor transportiert, dort aufgetaut 

und analysiert. 

 

Extraktion:  
 
Die aufgetaute Probe wurde in ein 25 ml Zentrifugengläschen vollständig überführt. 

Unter ständigem Schütteln unter Zuhilfenahme eines Vortexers wurden 6 ml Isopro-

panol und 4 ml Chloroform zugegeben. Daraufhin wurde die Probe bei wiederholtem 

Schütteln 10 Minuten stehen gelassen und anschließend bei 3000 rpm 10 min zent-

rifugiert und der Überstand durch einen mit Chloroform angefeuchteten Filter in einen 

Spitzkolben filtriert. Im zweiten Extraktionsschritt wurde erneut 4 ml Chloroform unter 

ständigem Schütteln zur Probe gegeben, und die Probe wurde bei wiederholtem 

Schütteln stehen gelassen und anschließend in den Spitzkolben filtriert. Zentrifu-

gengläschen und Filter wurden anschließend mit je 2 ml Chloroform nachgewaschen. 

Diese Extraktionsmethode entspricht in modifizierter Form der von Folch 1957 vorge-

schlagenen Extraktion mit Chloroform unter Verwendung eines polaren Lösungsmit-

tels. Die Probe wurde dann mit dem Rotationsverdampfer unter reduziertem Druck 

bei 35°C bis zur Trockne gebracht.  

 

Dünnschichtchromatographie, Isolierung der Phosphatidylcholin-Fraktion und 
Phosphatidylethanolamin-Fraktion:  
 
Als Laufmittel wurde ein Gemisch aus Chloroform : Methanol : NH3 (25%) : Aqua dest 

(73 ml : 27 ml : 2,2 ml : 2,8 ml) verwendet und 30 min vor der Dünnschichtchroma-

tographie in die Entwicklungskammer gegeben, zusätzlich wurde eine Seite der 

Kammer mit Filterpapier belegt, um eine gleichmäßige Sättigung des Gasraumes 

über dem Laufmittel zu erzielen. Das getrocknete Lipidextrakt wurde in 400 µl eines 

Gemisches von Chloroform/Methanol (1/1, v/v) aufgenommen und auf eine Dünn-

schichtplatte aufgetragen. Die Auftragstelle wurde zweimal mit 90 µl Chloroform 

nachgewaschen. Die Platte wurde anschließend in die Entwicklungskammer gege-
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ben und wurde ca. 90 min bis zu einer Laufhöhe von 1 cm unterhalb des oberen 

Randes entwickelt, dadurch wurden die Phospholipide von den freien Fettsäuren, 

Triglyceriden und Cholesterinestern getrennt. Danach wurde die Platte bei Raum-

temperatur ca. 15 min getrocknet. Die Lipidfraktionen wurden unter einer UV-Lampe 

nach Besprühen mit 2,7 Dichlorfluorescein identifiziert. Die entsprechenden Stellen 

mit Fluoreszenz-Markierung für die Phosphatidylcholin-Fraktion und die Phosphati-

dylethanolamin-Fraktion wurden mit einem Spatel ausgekratzt und mit Hilfe eines 

DIN A4 Blattes sowie eines Trichters in ein 4 ml Braunglasfläschen überführt.  

 

Synthese der Fettsäuremethylester:  
 
Die gewonnenen Lipidfraktionen wurden mit 1 ml methanolischer HCl versetzt und 

bei 85°C für 45 Minuten im Thermoblock erhitzt.  

 

Extraktion der Fettsäuremethylester: 
 
Nach einer 30minütigen Abkühlungsphase wurde der Ansatz mit folgender Puffer-

mischung: Natriumsulfat/Natriumhydrogencarbonat/Natriumcarbonat (2/2/1, wt/wt/wt) 

neutralisiert und anschließend zweimal mit jeweils 1 ml Hexan extrahiert. Nach der 

Zugabe von Hexan wurde die Probe jeweils 4 min bei 2300 rpm zentrifugiert und die 

obere Hexanphase in ein 2 ml Braungläschen gegeben und unter Stickstoff ein-

gedampft.  

 

Aufnahme des Extraktes: 
 
Die aufkonzentrierte Probe wurde anschließend in 50 µl Hexan mit BHT (2 g/l) auf-

genommen, mit Hilfe eines Vortexers gut geschüttelt und in ein Microvial überführt. 

Das Vial wurde in das 2 ml Braunglas gegeben und dieses mit einer Bördelkappe gut 

verschlossen. Die Probe wurde bis zur GC-Analytik bei –20°C aufbewahrt.  

 

Gaschromatographie:  
 
Zur Analyse der Fettsäuremethylester diente ein Gaschromatograph Modell HP 5890 

Serie II. Zur quantitativen Detektion kam ein Flammenionisationsdetektor (FID) zum 

Einsatz. Vor der Analyse wurde zum Kalibrieren ein Gemisch mit bekannten Fett-

säurekonzentrationen (GLC-85, Nu-Chek-Prep Inc., Elysian, Minnesota, USA) 

gemessen und ausgewertet. Ein Probenvolumen von 3 µl wurde bei einer Injektor-

temperatur von 110ºC eingespritzt, die anschließend bei 50ºC/Minute auf 250ºC 
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erhöht wurde. Die Temperatur des Detektors betrug 300ºC. Wasserstoff wurde als 

Trägergas verwendet und zur Trennung der einzelnen Fettsäuremethylester diente 

eine Kapillarsäule (BPX70, SGE, Weiterstadt, Deutschland) mit einem Innendurch-

messer von 0,32 mm und einer Länge von 60 m. Die Temperatur des Säulenofens 

wurde zuerst von 130ºC (Anfangstemperatur) bei 3ºC/Minute auf 180ºC erhöht und 

anschließend bei 1,5ºC/Minute auf 200ºC erhöht und schließlich bei 7ºC/Minute auf 

210ºC erwärmt (Tab. 12). Über einen Integrator wurden die Signale des Detektors 

aufgezeichnet. 

Die Fettsäuremethylester wurden durch den Vergleich der Retentionszeiten mit 

denen eines bekannten Standards [Nu-Chek (Elysian, Minnesota, USA) und Sigma 

(Taufkirchen, Deutschland)] identifiziert. Für die Quantifizierung der Fettsäuren 

wurden Response Faktoren durch Analyse eines Gemisches mit bekannten Fett-

säurekonzentrationen (GLC-85, Nu-Chek-Prep Inc., Elysian, Minnesota, USA) ermit-

telt. Es wurde die Auswertungssoftware Easy Chrome Elite 2.61 (Scientific Software, 

Pleasanton, CA) verwendet (Abb. 12).  

 

Tab. 12: GC Programm für die Fettsäureanalyse 

Ofen  

Anfangstemperatur 130°C 

Anfangszeit  0,5 min 

Rate  3,0°C/min 

Endtemperatur  150°C 

Rate A  1,5°C/min 

Endtemperatur  180°C 

Rate B  3,0°C/min 

Endtemperatur  210°C 

Zeit bis zum Ende  23 min  

Druck  

Anfangsdruck  1,10 bar 

Rate  0,025 bar/min 

Enddruck 1,8 

Zeit bis zum Ende  40 min 

Injektor / Detektor  

Injektor Temperatur 250°C 

Detektor Temperatur 300°C 
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In den Tabellen 13-15 sind die verwendeten Chemikalien, Verbrauchsmaterialen und 

Gebrauchsgegenstände/Geräte aufgeführt. 

 

Tab. 13: Chemikalien 

 

Chemikalien Hersteller 

Ammoniaklösung 25% pro analysi Merck, Darmstadt 

Aqua ad iniectabilia B. Braun, Melsungen 

Chloroform reinst Merck, Darmstadt 

DC-Platten 20x20 cm Kieselgel 60 Merck, Darmstadt 

2,7 Dichlorfluorescein Merck, Darmstadt 

2,6 Di-tert. butyl-p-kresol (BHT) Sigma, Deisenhofen 

2,6 Di-tert. butyl-p-kresol (BHT) Fluka, Buchs, Schweiz 

Ethanol absolut Merck, Darmstadt 

n-Hexan pro analysi Merck, Darmstadt 

Methanol reinst Merck, Darmstadt 

Methanolische HCL (3N) Supelco, Bellefonte, USA 

Natriumcarbonat pro analysi Merck, Darmstadt 

0,9%ige NaCl-Lösung B.Braun, Melsungen 

Natriumhydrogencarbonat pro analysi Merck, Darmstadt 

Natriumsulfat pro analysi Merck, Darmstadt 

2-Propanol pro analysi Merck, Darmstadt 

 
 
 
Tab. 14: Verbrauchsmaterialien 

 

Verbrauchsmaterialien Hersteller 

Bördelkappe R11-1.0 CS-Chromatograohie Service, Langenwehe 

Braunglasfläschen R1, G4 CS-Chromatograohie Service, Langenwehe 

Dichtscheibe G13 CS-Chromatograohie Service, Langenwehe 

DC-Platten; Kieselgel 60 Merck, Darmstadt 

Filterpapier Grade 388 Sartorius, Göttingen 

Mikroglaseinsätze G30/6 mit Polymerfuß CS-Chromatograohie Service, Langenwehe 

Pipettenspitzen 50-1000 Brand, Wertheim 

Pipettenspitzen 2-200µl; 50-1000µl; 500-2500µl Eppendorf, Hamburg 

Polycarbonatröhrchen 12ml Sarstedt, Nümbrecht 

Schraubkappe G 13 CS-Chromatograohie Service, Langenwehe 
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Tab. 15: Gebrauchsgegenstände und Geräte 
 

Geräte Hersteller 

Entwicklungskammer Desaga, Heidelberg 

Einhals-Spitzkolben 50 ml Brand, Wertheim 

Membran-Vakuumpumpe MZ 2c Vacuubrand, Wertheim 

Messzylinder 100 ml Brand, Wertheim 

Metallblock-Termostat Typ 2102 Bachofer, Reutlingen 

Pipette 10-100µl, 100-1000µl Brand, Wertheim 

Pipette 50-250µl, 200-1000µl, 500-2500µl Eppendorf, Hamburg 

Rotor Büchi Rotorvapor R-114 Büchi Labortechnik, Flawil, Schweiz 

Stickstoffabdampfvorrichtung Typ 5000 6101 Bachofer, Reutlingen 

Trichter D35mm, D55mm Duran Schott, Mainz 

UV-Lampe Benda Laborgeräte und UV-Strahler, Wiesloch 

Vortexer VF2 Janke u. Kunkel IKA-Labortechnik, Heitersheim 

Waage Mettler, Gießen 

Wasserbad, Büchi Waterbath B-480 Büchi-Labortechnik, Flawil, Schweiz 

Zentrifugengläschen 25 ml Schmitz, München 

Zentrifuge Universal Hettich, Tuttlingen 

Zentrifuge Beckmann GPRCentrifuge Beckmann, Bucks, UK 

Autosampler HP HP7673 Hewlett Packard, Böblingen 

Kapillarsäule BPX-70 (60m x 0,32 mm) SGE Weiterstadt 

Controller HP7673 Hewlett Packard, Böblingen 

Gaschromatograph HP 5890 Serie II Hewlett Packard, Böblingen 

Integrator HP 3396 Serie II Hewlett Packard, Böblingen 
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3.2.5 Berechnung des Fettsäuregehaltes 

 

Die genaue Fettsäurekonzentration in den Phospholipiden PE und PC konnte nicht 

berechnet werden, da kein interner Standard verwendet wurde und das analysierte 

Erythrozytenvolumen nicht genau bekannt war. Somit wurden die prozentualen 

Gewichtsanteile der einzelnen Fettsäuren kalkuliert. Hierzu wurde die Peakfläche 

jeder Fettsäure durch die Summe aller Peakflächen der Fettsäuren C14-C24 dividiert 

und das Ergebnis mit 100 multipliziert. 

 

                                                               Fettsäure (Peakfläche)  

 
                            Summe aller identifizierten C14 – C24 Fettsäuren  (Peakfläche) 

 
 

 

Zusätzlich wurden für jede Probe die Summe der gesamten SFA, der gesamten 

MUFA, der gesamten n-3 PUFA und der gesamten n-6 PUFA ermittelt. 

 

 

3.2.6 Reproduzierbarkeit der durchgeführten Analysen 

 

Vor der Analyse der Blutproben der Studienpopulation wurde ein Probenpool an 

Erythrozyten einer Kontrollperson angelegt. Hierzu wurde ebenfalls Blut in EDTA-

Röhrchen gesammelt, aliquotiert und wie in Kapitel 3.2.2 beschrieben verarbeitet und 

bis zur Analyse eingefroren. Der Intraassay Variationskoeffizient wurde durch 

Bestimmung einer Kontrollprobe zu jedem Analysendurchlauf bestimmt (pro Analyse: 

7 Proben + 1 Kontrollprobe). Insgesamt wurden 20 Kontrollproben analysiert. 

 

 

3.2.7 Dokumentation der Ernährung 

 

Wochenprotokolle Ernährung Kind 
 
Die Familien werden angehalten täglich folgende Lebensmittelgruppen anzukreuzen, 

aus denen das Kind an dem entsprechenden Tag gegessen hatte: Muttermilch, 

Formulanahrungen, Industrielle Breimahlzeiten, glutenhaltiges Getreide, glutenfreies 

Fettsäure (wt%) =  x 100 
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Getreide, Kartoffeln, Gemüse, Obst, Fleisch, Fisch, Eier, Sojaprodukte, Milchpro-

dukte und Süßigkeiten: Es sollen dabei nicht die verzehrten Mengen angegeben 

werden. Diese Wochenprotokolle sollen ab dem 3. Lebensmonat bis zum Alter von 

1,5 Jahren geführt werden. 

 

Wochenprotokolle Ernährung der stillenden Mutter 
 
Stillende Mütter werden gebeten während der gesamten Stillzeit täglich den even-

tuellen Verzehr von Fisch und Fischölkapseln zu protokollieren. Dabei soll der Fisch-

verzehr nach Fischsorten mit hohem und niedrigem Fettgehalt angekreuzt werden. 

 

3-Tages-Ernährungsprotokolle 
 
Die Eltern der Kinder werden gebeten ein 3-Tages-Ernährungsprotokoll ihres Kindes 

an 3 aufeinander folgenden Tagen zu führen, wenn das Kind 3, 6, 9, 12, 18, 24, 30 

und 36 Monate alt ist. Dabei sollen alle verzehrten Lebensmittel, Getränke, Vitamin-

/Mineralstoffpräparate und Medikamente an diesen Tagen notiert werden. Weiterhin 

wird Ort und Zeitpunkt der Mahlzeit protokolliert. Alle verzehrten Lebensmittel und 

Getränke sollen gewogen bzw. abgemessen werden. Die Zutaten beim Kochen und 

Backen sollen ebenfalls gewogen und notiert und die Zubereitungsart (braten, 

kochen) angegeben werden. Die Reste sollen auch beschrieben werden, z. B. Rest 

nur aus Kartoffeln, nicht verzehrte Fettränder. Ferner werden die Familien angehal-

ten, die Produktnamen und den Hersteller und Produktangaben (Brotsorte, Fettgehalt 

Milchprodukte, Typenzahl Mehl, Obstsorte usw.) zu protokollieren und auch die Ver-

packungen und Banderolen aufzuheben und mit dem Ernährungsprotokoll zuschi-

cken. Bei Mahlzeiten außer Haus sollen die verzehrten Mengen möglichst in Haus-

haltsmaßen (Tasse, Esslöffel) und haushaltsüblichen Einheiten (Scheibe, Stückzahl) 

angegeben werden. 

Die 3-Tages-Ernährungsprotokolle werden am Forschungsinstitut für Kinderernäh-

rung (FKE) in Dortmund in die Lebensmittel- und Nährwertdatenbank LEBTAB 

eingegeben und analysiert. Fett werden als Gesamtfett, gesättigte Fettsäuren, ein-

fach ungesättigte Fettsäuren, mehrfach ungesättigte Fettsäuren und Linolsäure in 

g/Tag ausgewertet. Aufgrund der meist unzureichenden Kennzeichnung von Säug-

lingsprodukten und Fertiggerichten konnte keine Auftrennung bezüglich n-3- und n-6 

Fettsäuren vorgenommen werden. Die einfach ungesättigten Fettsäuren werden aus 

der Differenz von Gesamtfett und den gesättigten und mehrfach ungesättigten Fett-
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säuren berechnet. Insgesamt wurden 53 3-Tages-Ernährungsprotokolle von den 

Familien zu den dazugehörigen 145 Blutproben angefertigt und am Forschungs-

institut für Kinderernährung in Dortmund ausgewertet (Tab. 16). 

 

Tab. 16: Anzahl der ausgewerteten 3-Tages-Ernährungsprotokolle in Abhängigkeit vom Alter 
des Kindes 

 

Alter in Monaten Kontrollgruppe Interventionsgruppe Gesamt 

3 16 18 34 

12 6 4 10 

24 5 3 8 

36 1 0 1 

 
Gesamt 53 

 

 
Fragebögen 
 
Da die Familien erst besucht werden, wenn das Kind ca. 3 Monate alt ist, wird die 

Ernährung des Kindes in den ersten 3 Lebensmonaten anhand eines Fragebogens 

erhoben. Hier wird nach dem Stillverhalten, Formulanahrungen, eventuelle Beikost-

einführung und Vitamin-/Mineralstoffpräparate gefragt. 

Informationen über eine Fischölsupplementierung der Mutter während der Schwan-

gerschaft wurde anhand eine Fragebogens bei Geburt erfasst.  

 

 

3.2.8 Definitionen 

 

Vollstillen:  

Gemäß den WHO Kriterien (WHO 1991) wurde Stillen als Vollstillen definiert, wenn 

die Kinder Muttermilch mit oder ohne zusätzliche Gabe von Wasser oder Getränken 

auf Wasserbasis, Vitamine und Medikamente aber keine Formulanahrung, Milch oder 

Beikost erhielten.  
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Geburtsgewicht und Schwangerschaftsdauer: 

Angaben über Geburtsgewicht und Schwangerschaftsdauer wurde anhand des 

Untersuchungsheftes der Kinder erfasst. Die Schwangerschaftsdauer (in Wochen) 

wurde ab dem ersten Tag der letzten Menstruation berechnet. Das Geburtsgewicht 

wurde für das Geschlecht des Kindes und für die Schwangerschaftsdauer korrigiert 

und als Perzentile der Referenzpopulation, ermittelt durch das German Perinatal 

Registry, angegeben (Voigt 1996).  

 

 

3.2.9 Statistik 

 

Die statistischen Auswertungen wurden unter Verwendung des Softwarepaketes 

SPSS, Version 13.0 durchgeführt. 

 

Die Ergebnisse der Fettsäureanalyse sind bei den normalverteilten Variablen als 

Mittelwerte und Standardfehler des Mittelwertes der prozentualen Gewichtsanteile 

aller detektierbaren Fettsäuren (C14-C24) und bei den nicht normalverteilten Variab-

len als Median mit Interquartilem Range (25.-75. Perzentile) angegeben. 

 

Die Überprüfung der Daten auf Normalverteilung wurde anhand des Kolmogorov-

Smirnov-Tests (mit Lilliefors Korrektur) durchgeführt. Die Signifikanzen wurden dann 

entweder über den T-Test für normal verteilte Variablen oder über den Mann-Whit-

ney-U Test für nicht normal verteilten Variablen berechnet. 

 

Die Korrektur für die Variablen Interventionsgruppe (Gluten mit 12 Monaten), Stillen, 

Schwangerschaftsdauer, Geburtsgewicht und Fischölsupplementierung der Mutter 

während der Schwangerschaft und/oder Stillzeit (ja, nein) erfolgte durch eine multiva-

riate Analyse (allgemeines lineares Modell). 

 

Die Korrektur für multiples Testen erfolgte nach der Bonferroni Methode. 

 

Die Korrelation zwischen der Fettsäurezusammensetzung der Erythrozytenmembran 

und den durch die 3-Tages-Ernährungsprotokolle erhobenen Daten zur Aufnahme 

von Fettsäuren mit der Nahrung wurde anhand des Korrelationskoeffizienten nach 
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Sperman-Rho ausgewertet. Da die Fettsäurezusammensetzung der 

Erythrozytenmembran als Gewichtsprozente analysiert wurde, wurde die Aufnahme 

der gesättigten Fettsäuren, einfach ungesättigten Fettsäuren, mehrfach ungesättig-

ten Fettsäuren und der Linolsäure mit der Nahrung ebenfalls in Prozente der 

Gesamtfettaufnahme umgerechnet. 

 

Für alle Analysen wurde ein p-Wert von < 0,05 als signifikant eingestuft. 
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3.3 Ergebnisse 

 

3.3.1 Reproduzierbarkeit der durchgeführten Analysen 

 

Die Analyse der 20 Kontrollproben zeigte eine gute Reproduzierbarkeit der verwen-

deten Methode zur Bestimmung der Fettsäurezusammensetzung der Erythrozyten-

membran. Der Intraassay Variationskoeffizient lag bei den meisten Fettsäuren < 5% 

(Tab. 17). 

 
Tab. 17: Intraassay Variationskoeffizient der analysierten Fettsäuren 

 

 PC 
n=20 
VK% 

PE 
n=20 
VK% 

SFA   
C14:0 2,76 6,02 
C16:0 3,45 5,45 
C18:0 1,62 3,54 
C20:0 4,48 4,23 
C22:0 4,99 4,96 
C24:0 8,23 9,65 
   

MUFA   

C16:1 n-7 2,23 3,45 
C18:1 n-9 3,87 4,86 
C18:1 n-7 1,68 6,32 
C20:1 n-9 4,65 4,82 
C22:1 n-9 5,53 3,53 
C24:1 n-9 9,36 15,23 
   

n-9 PUFA   

C20:3 n-9 4,69 4,22 
   

n-6 PUFA   

C18:2 n-6 2,63 3,82 
C18:3 n-6 4,63 4,91 
C20:2 n-6 5,01 1,69 
C20:3 n-6 3,58 5,78 
C20:4 n-6 4,12 3,64 
C22:2 n-6 4,39 1,52 
C22:4 n-6 7,93 8,45 
C22:5 n-6 4,63 5,45 
   

n-3 PUFA   

C18:3 n-3 4,02 7,25 
C20:3 n-3 1,89 4,82 
C20:5 n-3 3,78 4,75 
C22:5 n-3 4,82 2,59 
C22:6 n-3 5,64 4,19 
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3.3.2 Vergleich der Fettsäurezusammensetzung von PE und PC der Erythro-

zytenmembran bei Kindern von Müttern mit und ohne Typ 1 Diabetes im 

Alter von 3 Monaten 

 

Kinder von Müttern mit Typ 1 Diabetes hatten im Alter von 3 Monaten einen signifi-

kant höheren prozentualen Anteil der gesättigten Fettsäuren 16:0 in der PC und PE 

Fraktion der Erythrozytenmembran als Kinder von nicht diabetischen Müttern [PC: 

16:0: 35,45 ± 0,35 vs. 33,89 ± 0,26, pkorrigiert=0,005, PE: 15,77 (14,70 - 16,94) vs. 

15,22 (14,09 - 15,63), pkorrigiert=0,05 Tab. 18]. Der prozentuale Anteil der  n-3 PUFA 

22:5 in der PC Fraktion war signifikant niedriger bei den Kindern von Müttern mit Typ 

1 Diabetes im Vergleich zu den Kindern von nicht diabetischen Müttern [0,36 ± 0,03 

vs. 0,46 ± 0,02, pkorrigiert=0,025, Tab. 18]. EPA und DHA waren zwar tendenziell nied-

riger bei den Kindern von diabetischen Müttern als bei Kindern von nicht diabeti-

schen Müttern, dieses Ergebnis war aber nicht signifikant [PC: EPA 0,15 (0,10 - 0,21) 

vs. 0,16 (0,13 - 0,22); pkorrigiert=0,153; DHA 1,53 ± 0,13 vs. 1,65 ± 0,11; 

pkorrigiert=0,496; PE: EPA 0,46 (0,37 - 0,64) vs. 0,54 (0,44 - 0,73); pkorrigiert=0,312, DHA 

7,54 ± 0,37 vs. 7,92 ± 0,38; pkorrigiert=0,486, Tab. 18, Abb. 13].  

Auch die Fettsäuregruppen SFA, MUFA und PUFA haben sich nicht zwischen den 

beiden Gruppen unterschieden (Tab. 18). Die prozentualen Anteile der gesamten n-6 

PUFA, n-3 PUFA und n-3 bzw. n-6 LC-PUFA waren zwar etwas geringer bei den 

Kindern von Müttern mit Typ 1 Diabetes im Vergleich zu den Kindern von nicht dia-

betischen Müttern, dieser Unterschied war aber nicht signifikant. Weiterhin hat sich 

auch der Quotient n-6/n-3 Fettsäuren nicht zwischen den Gruppen unterschieden 

(pkorrigiert>0,05), Tab. 18. 
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Abb. 13: Vergleich der prozentualen Anteile von EPA und DHA in PE und PC im Alter von 3 Monaten 
zwischen den Kindern von Müttern mit und ohne Typ 1 Diabetes 
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Tab. 18: Fettsäurezusammensetzung der Phospholipidfraktionen der Erythrozytenmembran 
der 3 Monate alten Kinder von Müttern mit und ohne Typ 1 Diabetes  
(Gewichtsprozente, Mittelwert ± SEM bzw. Median mit IQR) 

 

 PC PE 

Mutter mit T1D 
n=23 

Mutter ohne T1D 
n=25 

Mutter mit T1D 
n=23 

Mutter ohne T1D 
n=25 

SFA     
C14:0 0,54 ± 0,05 0,40 ± 0,03 0,19 ± 0,02 0,16 ± 0,02 
C16:0 35,45 ± 0,35 * 33,89 ± 0,26* 15,77 (14,70 - 19,94)* 15,22 (14,09 - 16,63)* 
C18:0 11,75 (11,21 - 12,73) 12,95 (11,82 - 13,46) 8,85 ± 0,23 8,95 ± 0,17 
C20:0 0,20 (0,15 - 0,23) 0,17 (0,15 - 0,22) 0,12 ± 0,01 0,11 ± 0,01 
C22:0 0,10 ± 0,02 0,12 ± 0,02 0,01 (0,01 - 0,03) 0,01 (0,01 - 0,03) 
C24:0 0,13 (0,11 - 0,23) 0,13 (0,09 - 0,59) 0,01 (0,00 - 0,02) 0,01 (0,01 - 0,03) 
Gesamt 48,15 (47,13 - 49,51) 47,77 (46,99 - 48,04) 24,33 (23,34 - 27,39) 24,38 (23,22 - 25,10) 

     

MUFA     

C16:1 n-7 0,33 ± 0,02 0,31 ± 0,02 0,13 ± 0,01 0,13 ± 0,01 
C18:1 n-9 18,17 (17,24 - 18,84) 17,53 (16,42 - 18,73) 16,58 (15,38 - 19,19) 15,67 (14,70 - 16,19) 
C18:1 n-7 2,20 ± 0,06 2,09 ± 0,06 1,27 ± 0,04 1,16 ± 0,03 
C20:1 n-9 0,41 (0,34 - 0,62) 0,38 (0,32 - 0,49) 0,51 (0,46 - 0,69) 0,49 (0,41 - 0,54) 
C22:1 n-9 0,06 (0,05 - 0,09) 0,06 (0,05 - 0,08) 0,06 (0,05 - 0,10) 0,06 (0,05 - 0,08) 
C24:1 n-9 0,27 (0,20 - 0,48) 0,27 (0,18 - 0,53) 0,04 (0,03 - 0,15) 0,03 (0,02 - 0,07) 
Gesamt 21,62 (20,70 - 22,52) 20,78 (19,85 - 22,03) 18,71 (17,27 - 21,11) 17,47 (16,36 - 18,35) 
     

n-9 PUFA     

C20:3 n-9 0,06 (0,05 - 0,07) 0,07 (0,06 - 0,09) 0,18 (0,14 - 0,24) 0,19 (0,16 - 0,23) 
     

n-6 PUFA     

C18:2 n-6 16,57 (15,03 - 18,76) 17,27 (15,96 - 18,28) 4,53 (4,16 - 5,62) 4,60 (4,14 - 4,98) 
C18:3 n-6 0,05 (0,03 - 0,06) 0,05 (0,03 - 0,06) 0,05 (0,04 - 0,12) 0,05 (0,04 - 0,09) 
C20:2 n-6 0,41 (0,37 - 0,42) 0,41 (0,37 - 0,45) 0,31 (0,27 - 0,45) 0,29 (0,26 - 0,38) 
C20:3 n-6 1,84 ± 0,10 2,03 ± 0,08 1,56 (1,38 - 1,97) 1,58 (1,45 - 1,93) 
C20:4 n-6 6,69 (4,71 - 8,31) 7,47 (6,29 - 8,09) 27,78 (24,46 - 29,19) 28,33 (27,54 - 29,54) 
C22:2 n-6 0,05 (0,03 - 0,10) 0,04 (0,03 - 0,06) 0,08 (0,06 - 0,10) 0,07 (0,05 - 0,09) 
C22:4 n-6 0,43 (0,35 - 0,54) 0,47 (0,43 - 0,53) 7,97 ± 0,18 7,81 ± 0,17 
C22:5 n-6 0,19 (0,12 - 0,24) 0,17 (0,14 - 0,21) 1,30 ± 0,06 1,29 ± 0,05 
Gesamt 27,31 (26,67 - 28,57) 27,90 (26,81 - 28,86) 43,48 ± 0,75 44,44 ± 0,39 
n-6 LC-PUFA 9,70 (7,36 - 11,51) 10,66 (9,46 - 11,37) 38,47 ± 0,83 39,64 ± 0,36 
     

n-3 PUFA     

C18:3 n-3 0,10 (0,07 - 0,14) 0,08 (0,06 - 0,13) 0,07 (0,06 - 0,12) 0,07 (0,04 - 0,09) 
C20:3 n-3 0,05 (0,02 - 0,12) 0,06 (0,02 - 0,10) 0,04 (0,01 - 0,23) 0,16 (0,04 - 0,27) 
C20:5 n-3 0,15 (0,10 - 0,21) 0,16 (0,13 - 0,22) 0,46 (0,37 - 0,64) 0,54 (0,44 - 0,73) 
C22:5 n-3 0,36 ± 0,03 * 0,46 ± 0,02 * 3,30 ± 0,19 3,56 ± 0,10 
C22:6 n-3 1,53 ± 0,13 1,65 ± 0,11 7,54 ± 0,37 7,92 ± 0,38 
Gesamt 2,21 ± 0,17 2,47 ± 0,14 11,57 ± 0,55 12,31 ± 0,47 
n-3 LC-PUFA 2,11± 0,48 2,38 ± 0,43 11,16 (9,40 - 12,87) 11,40 (10,82 - 12,89) 
n-6/n-3 11,92 (9,74 - 17,90) 11,22 (9,61 - 13,36) 3,80 (3,38 - 4,47) 3,70 (3,22 - 4,03) 

 
SFA saturated fatty acids (gesättigte Fettsäuren), MUFA monounsaturated fatty acids (einfach ungesättigte Fettsäuren), PUFA 

polyunsaturated fatty acids (mehrfach ungesättigte Fettsäuren), LC-PUFA long-chain polyunsaturated fatty acid (langkettige, 

mehrfach ungesättigte Fettsäuren), PC Phosphatidylcholin, PE Phosphatidylethanolamin 

 

*    pkorrigiert ≤ 0,05  
**   pkorrigiert ≤ 0,01  
*** pkorrigiert ≤ 0,001 

 



 79

3.3.3 Einfluss weiterer Faktoren auf die Fettsäurezusammensetzung der Ery-

throzytenmembran von Kindern im Alter von 3 Monaten in der 

multivariaten Analyse 

 

Frühere Studien haben gezeigt, dass das Stillenverhalten, Schwangerschaftsdauer, 

Geburtsgewicht und Fischölsupplementierung der Mutter während der Schwanger-

schaft oder Stillzeit die Fettsäurezusammensetzung der Erythrozytenmembranen der 

Kinder beeinflussen können. Diese Faktoren wurden als Kovariaten in der multiva-

riaten Analyse eingesetzt.  

 

Mütterlicher Typ 1 Diabetes 

In Übereinstimmung mit der univariaten Analyse war zwar der mütterliche Typ 1 Dia-

betes in der multivariaten Analyse mit höheren SFA Anteilen in der Erythrozyten-

membran der Kinder im Alter von 3 Monaten verbunden [PC: 14:0: 0,56 ± 0,05 vs. 

0,36 ± 0,05, p=0,007], beeinflusste aber nicht die prozentualen Anteile von EPA und 

DHA.  

 

Voll Stillen in den ersten 3 Monaten 

27 Kinder wurden in den ersten 3 Monaten voll gestillt und 21 Kinder wurden nicht 

voll gestillt. In der PC Fraktion hatten voll gestillte Kinder signifikant höhere prozen-

tuale Anteile der gesättigten Fettsäure 18:0 [13,02 ± 0,19 vs. 10,99 ± 0,26 p=0,000], 

der einfach ungesättigten Fettsäuren 16:1 n-9 [0,37 ± 0,02 vs. 0,26 ± 0,02 p=0,001],  

18:1 n-7  [2,03 ± 0,06 vs. 2,02 ± 0,08 p=0,008], der n-6 PUFA 20:3 n-6 [2,09 ± 0,07 

vs. 1,64 ± 0,09 p=0,000], 20:4 n-6 [7,33 ± 0,35 vs. 5,99 ± 0,46 p=0,026] und der 

gesamten n-6 LC-PUFA [10,54 ± 0,40 vs. 8,67 ± 0,52 p=0,007] gegenüber den nicht 

voll gestillten Kindern. 

In der PE Fraktion hatten voll gestillte Kinder signifikant höhere prozentuale Anteile 

der MUFA 16:1 n- 7 [0,15 ± 0,01 vs. 0,09 ± 0,01 p=0,001] der n-3 PUFA 22:5 n-3 

3,78 ± 0,15 vs. 3,15 ±  0,19 p=0,012], der gesamten n-3 PUFA [13,55 ± 0,43 vs. 

11,27 ± 0,56 p=0,003] und den gesamten n-3 LC-PUFA [12,86 ± 0,38 vs. 10,82 ± 

0,49 p=0,002] im Vergleich zu den nicht voll gestillten Kindern.  

Währendessen hatten die voll gestillten Kinder in der PC Fraktion signifikant niedri-

gere prozentuale Anteile der gesättigten Fettsäure 16:0 [34,16 ± 0,25 vs. 35,82 ± 

0,33 p=0,000], der MUFA 20:1 n-9 [0,34 ± 0,02 vs. 0,50 ± 0,03 p=0,000] sowie der-3 
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PUFA 18:3 n-3 [0,07 ± 0,01 vs. 0,12 ± 0,01 p=0,000]. In der PE Fraktion waren die 

prozentualen Anteile der MUFA 18:1 n-9 [15,47 ± 0,34 vs. 17,58 ± 0,45 p=0,001], 

20:1 n-9 [0,45 ± 0,03 vs. 0,66 ± 0,04 p=0,000], der gesamten MUFA [17,38 ± 0,38 vs. 

19,72 ± 0,50 p=0,001], der n-6 PUFA 18:2 n-6 [4,39 ± 0,19 vs. 5,39 ± 0,25 p=0,003], 

20:2 n-6 [0,28 ± 0,02 vs. 0,41 ± 0,02 p=0,001], 22:2n-6 [0,07 ± 0,04 vs. 0,19 ± 0,05 

p=0,027] und der n-3 PUFA 18:3 n-3 [0,05 ± 0,01 vs. 0,11 ± 0,01 p=0,000] signifikant 

niedriger bei den voll gestillten Kindern als bei den nicht voll gestillten Kindern. 

Insbesondere zeigte sich, dass die voll gestillten Kinder signifikant höhere prozen-

tualen Anteile von EPA und DHA in der PE Fraktion besaßen [EPA: 0,71 ± 0,05 vs. 

0,53 ± 0,06 p=0,04; DHA: 8,84 ± 0,32 vs. 7,34 ± 0,43 p=0,008] als die nicht voll 

gestillten Kinder im Alter von 3 Monaten (Abb. 14). In der PC Fraktion haben sich die 

prozentualen Anteile von EPA und DHA zwischen den beiden Gruppen nicht unter-

schieden [EPA: 0,20 ± 0,03 vs. 0,19 ± 0,04 p=0,880; DHA: 1,87 ± 0,12 vs. 1,50 ± 

0,15 p=0,068]. Weiterhin war der Quotient n-6/n-3 Fettsäuren sowohl in den PE Lipi-

den als auch in den PC Lipiden bei den gestillten Kindern signifikant niedriger als bei 

den nicht gestillten Kindern [PE: 3,29 ± 0,16 vs. 4,23 ± 0,21 p=0,001; PC: 10,74 ± 

0,95 vs. 14,08 ± 1,25 p=0,04]. 

 

Fischölsupplemente während der Schwangerschaft und/oder Stillzeit 

Weiterhin hatten auch die Kinder, deren Mütter während der Schwangerschaft 

und/oder Stillzeit Fischölsupplemente einnahmen signifikant höhere prozentuale 

Anteil von EPA und DHA in der PE Fraktion im Alter von 3 Monaten [EPA: 0,72 ± 

0,07 vs. 0,52 ± 0,04 p=0,02; DHA: 8,93 ± 0,46 vs. 7,24 ± 0,29 p=0,008] als Kinder, 

deren Mütter keine Fischölsupplemente nahmen (Abb. 15). In der PC Fraktion haben 

sich die prozentualen Anteile von EPA und DHA zwischen den beiden Gruppen nicht 

unterschieden [EPA: 0,21 ± 0,05 vs. 0,18 ± 0,03 p=0,615; DHA: 1,86 ± 0,17 vs. 1,51 

± 0,11 p=0,085]. Außerdem waren auch die prozentualen Anteile der gesamten n-3 

PUFA und n-3 LC-PUFA in den PE Lipiden signifikant höher bei den Kindern von 

Müttern, die während der Schwangerschaft und/oder Stillzeit Fischölsupplemente 

einnahmen als in der Vergleichsgruppe (n-3 PUFA: 13,46 ± 0,61 vs. 11,35 ± 0,40 

p=0,008; n-3 LC-PUFA: 12,85 ± 0,54 vs. 10,82 ± 0,35 p=0,004). Ferner hatten auch 

die Kinder, deren Mütter während der Schwangerschaft und/oder Stillzeit Fischöl-

supplemente einnahmen einen signifikant niedrigeren Quotient der n-6/n-3 Fettsäu-

ren in der PE Fraktion, aber nicht in der PC Fraktion, als Kinder, deren Mütter keine 
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Fischölsupplemente nahmen [PE: 3,40 ± 0,23 vs. 4,12 ± 0,15 p=0,016, PC:11,24 ± 

1,36 VS: 13,48 ± 0,86 p=0,203]. 

 

Schwangerschaftsdauer und Geburtsgewicht 

Schwangerschaftsdauer und Geburtsgewicht beeinflussten nicht die Anteile von EPA 

und DHA in der PE und PC Fraktionen der Erythrozytenmembran im Alter von 3 

Monaten. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Abb. 14: Vergleich der prozentualen Anteile von EPA und DHA in der PE Fraktion der Erythrozyten-
membran  von 3 Monate alten Kindern, die voll gestillt bzw. nicht voll gestillt wurden 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Abb. 15: Vergleich der prozentualen Anteile von EPA und DHA in der PE Fraktion der Erythrozyten-
membran von 3 Monate alten Kindern, deren Mütter während der Schwangerschaft und/oder Stillzeit 
Fischölsupplemente einnahmen bzw. keine Fischölsupplemente einnahmen 
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3.3.4 Vergleich der Fettsäurezusammensetzung von PE und PC der Erythro-

zytenmembran zwischen voll gestillten Kinder von Müttern mit und ohne 

Typ 1 Diabetes im Alter von 3 Monaten 

 

Kinder, die voll gestillt wurden und eine Mutter mit Typ 1 Diabetes hatten, besaßen 

im Alter von 3 Monaten signifikant höhere prozentuale Anteile von 14:0 in der PC 

Fraktion [14:0 0,63 ± 0,06 vs. 0,42 ± 0,02, pkorrigiert=0,01] als voll gestillte Kinder von 

nicht diabetischen Müttern (Tab. 19). Die prozentualen Anteile aller anderen Fettsäu-

ren waren zwischen den Kindern von Müttern mit und ohne Typ 1 Diabetes ver-

gleichbar. Ferner haben sich auch nicht die prozentualen Anteile von DHA und EPA 

zwischen den beiden Gruppen unterschieden [PC EPA: 0,19 (0,15 - 0,25) vs. 0,16 

(0,14 - 0,22) pkorrigiert=0,473, DHA 1,77 ± 0,11 vs. 1,83 ± 0,12 pkorrigiert=0,755; PE EPA: 

0,64 (0,51 - 0,86) vs. 0,54 (0,44 - 0,82) pkorrigiert=0,334, DHA: 8,05 ± 0,34 vs. 8,53 ± 

0,12 pkorrigiert=0,950] (Abb. 16). Auch nachdem die Fettsäuregruppen SFA, MUFA, 

PUFA, n-3 PUFA, n-6 PUFA und n-3 und n-6 LC-PUFA verglichen wurden, konnten 

keine Unterschiede zwischen den  voll gestillten Kindern von Müttern mit und ohne 

Typ 1 Diabetes festgestellt werden (pkorrigiert>0,05). Weiterhin hat sich auch nicht der 

Quotient der n-6/n-3 Fettsäuren zwischen den voll gestillten Kindern von Müttern mit 

und ohne Typ 1 Diabetes unterschieden [PC: 11,06 (9,33 - 12,17) vs. 11,22 (9,66 -

12,89) pkorrigiert=0,537; PE: 3,47 (2,96 - 3,67) 3,56 (2,97 - 4,03) pkorrigiert=0,386] (Tab. 

19).  
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Tab. 19: Fettsäurezusammensetzung der Phospholipidfraktionen der Erythrozytenmembran 
der in den ersten 3 Monaten voll gestillten Kinder von Müttern mit und ohne Typ 1 Diabetes 
(Gewichtsprozente, Mittelwert ± SEM bzw. Median mit IQR) 

 

 PC PE 

Mutter mit T1D 
n=10 

Mutter ohne T1D 
n=17 

Mutter mit T1D 
n=10 

Mutter ohne T1D 
n=17 

SFA     
C14:0 0,63 ± 0,06** 0,42 ± 0,02** 0,17 ± 0,02 0,17 ± 0,03 
C16:0 34,43 ± 0,40 33,36 ± 0,28 15,13 (14,62-15,91) 15,22 (14,43 - 15,52) 
C18:0 12,77 (11,99 - 13,44) 13,32 (12,87 - 13,69) 9,05 ± 0,26 9,14 ± 0,20 
C20:0 0,18 (0,14 - 0,21) 0,16 (0,15 - 0,18) 0,12 ± 0,02 0,10 ± 0,01 
C22:0 0,08 ± 0,02 0,14 ± 0,03 0,01 (0,01 - 0,02) 0,01 (0,01 - 0,03) 
C24:0 0,11 (0,09 - 0,31) 0,46 ± 0,12 0,02 (0,00 - 0,02) 0,01 (0,01 - 0,03) 
Gesamt 48,25 (47,6 - 48,97) 47,80 (47,19 - 48,23) 24,46 (23,55 - 25,53) 24,45 (23,49 - 25,24) 

     

MUFA     

C16:1 n-7 0,40 ± 0,01 0,35 ± 0,02 0,15 ± 0,03 0,15 ± 0,04 
C18:1 n-9 17,58 (16,85 - 18,23) 17,01 (16,36 - 18,199 15,96 (14,68 - 16,85) 15,06 (14,32 - 15,74) 
C18:1 n-7 2,23 ± 0,06 2,18 ± 0,04 1,23 ± 0,03 1,18 ± 0,03 
C20:1 n-9 0,35 (0,30 - 0,38) 0,34 (0,31 - 0,38) 0,48 (0,43 - 0,51) 0,44 (0,40 - 0,50) 
C22:1 n-9 0,06 (0,04 - 0,07) 0,06 (0,05 - 0,07) 0,06 (0,05 - 0,07) 0,05 (0,04 - 0,07) 
C24:1 n-9 0,25 (0,15 - 0,46) 0,24 (0,14 - 0,70) 0,08 (0,03 - 0,19) 0,03 (0,01 - 0,10) 
Gesamt 20,89 (20,48 - 21,71) 20,33 (19,62 - 21,22) 18,02 (16,75 - 18,80) 17,07 (16,03 - 17,57) 

     

n-9 PUFA     

C20:3 n-9 0,07 (0,06 - 0,09) 0,07 ± 0,01 0,18 (0,13 - 0,28) 0,17 (0,15 - 0,22) 
     

n-6 PUFA     

C18:2 n-6 16,15 (15,23 - 17,14) 17,23 (15,96 - 17,72) 4,32 (4,07 - 4,60) 4,53 (4,11 - 4,76) 
C18:3 n-6 0,06 (0,04 - 0,06) 0,04 (0,03 - 0,06) 0,05 (0,04 - 0,09) 0,05 (0,04 - 0,08) 
C20:2 n-6 0,41 (0,38 - 0,45) 0,42 (0,37 - 0,48) 0,27 (0,25 - 0,30) 0,28 (0,24 - 0,35) 
C20:3 n-6 2,12 ± 0,12 2,18 ± 0,08 1,58 (1,40 - 1,90) 1,57 (1,32 - 1,93) 
C20:4 n-6 7,97 (6,26 - 8,42) 7,50 ( 7,23 - 8,36) 28,24 (27,13 - 30,27) 28,31 (27,80 - 29,51) 
C22:2 n-6 0,05 (0,02 - 0,08) 0,04 (0,03 - 0,06) 0,07 (0,03 - 0,08) 0,06 (0,05 - 0,08) 
C22:4 n-6 0,49 (0,36 - 0,54) 0,50 (0,44 - 0,54) 7,81 ± 0,25 7,71 ± 0,19 
C22:5 n-6 0,19 (0,12 - 0,23) 0,16 (0,14 - 0,22) 1,29 ± 0,08 1,31 ± 0,07 
Gesamt 27,15 (26,71 - 27,66) 28,44 (26,81 - 29,05) 44,03 ± 0,89 44,12 ± 0,44 
n-6 LC-PUFA 11,28 (9,16 - 11,93) 10,93 (10,43 - 11,91) 39,59 ± 1,06 39,64 ± 0,44 

     

n-3 PUFA     

C18:3 n-3 0,08 (0,06 - 0,10) 0,07 (0,05 - 0,09) 0,06 (0,05 - 0,07) 0,05 (0,04 - 0,07) 
C20:3 n-3 0,10 (0,04 - 0,12) 0,06 (0,03 - 0,10) 0,13 (0,03 - 0,28) 0,09 (0,03 - 0,24) 
C20:5 n-3 0,19 (0,15 - 0,25) 0,16 (0,14 - 0,22) 0,64 (0,51 - 0,86) 0,54 (0,44 - 0,82) 
C22:5 n-3 0,45 ± 0,02 0,45 ± 0,02 3,95 ± 0,27 3,61 ± 0,12 
C22:6 n-3 1,77 ± 0,11 1,83 ± 0,12 8,05 ± 0,34 8,53 ± 0,12 
Gesamt 2,59 ± 0,13 2,60 ± 0,16 13,37 ± 0,60 12,95 ± 0,50 
n-3 LC-PUFA 2,51 ± 0,13 2,53 ± 0,15 11,93 (11,48 - 13,71) 10,93 (10,90 - 13,52) 
n-6/n-3 11,06 (9,33 - 12,17) 11,22 (9,66 - 12,89) 3,47 (2,96 - 3,67) 3,56 (2,97 - 4,03) 

 

SFA saturated fatty acids (gesättigte Fettsäuren), MUFA monounsaturated fatty acids (einfach ungesättigte Fettsäuren), PUFA 

polyunsaturated fatty acids (mehrfach ungesättigte Fettsäuren), LC-PUFA long-chain polyunsaturated fatty acid (langkettige, 

mehrfach ungesättigte Fettsäuren), PC Phosphatidylcholin, PE Phosphatidylethanolamin 

 

*    pkorrigiert ≤ 0,05 
**   pkorrigiert ≤ 0,01 
*** pkorrigiert ≤ 0,001 

 



 84

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Abb.16: Vergleich der prozentualen Anteile von EPA und DHA in PE und PC im Alter von 3 Monaten 
zwischen den Kindern von Müttern mit und ohne Typ 1 Diabetes, die in den ersten 3 Monaten voll 
gestillt wurden 
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3.3.5 Vergleich der Fettsäurezusammensetzung von PE und PC der Erythro-

zytenmembran zwischen Kindern von Müttern mit und ohne Typ 1 

Diabetes im Alter von 12 Monaten 

 

Im Alter von 12 Monaten hatten Kinder von Müttern mit Typ 1 Diabetes niedrigere 

prozentuale Anteile der gesättigten Fettsäure 18:0 [pkorrigiert=0,025] in der PE Frak-

tion, von 22:0 in der PC Fraktion [pkorrigiert=0,05] und niedrigere prozentuale Anteile 

der MUFA 24:1 n-9 [pkorrigiert=0,05] und der n-3 PUFA  DHA [pkorrigiert=0,015] in der PE 

Fraktion (Tab. 20). Auf der anderen Seiten hatten Kinder von Müttern mit Typ 1 Dia-

betes höhere prozentuale Anteile von PUFA 18:2 n-6 [pkorrigiert=0,05] und 18:3 n-3 

[pkorrigiert=0,000] in der PE Fraktion als Kinder von nicht diabetischen Müttern (Tab. 

20). Als die Fettsäuregruppen SFA, MUFA, PUFA, n-3 PUFA, n-6 PUFA und n-3 und 

n-6 LC-PUFA verglichen wurden, konnten keine Unterschiede gefunden werden. 

Außerdem hat sich auch nicht der Quotient der n-6/n-3 Fettsäuren zwischen den 

beiden Gruppen unterschieden (pkorrigiert>0,05), (Tab. 20). 

Nach Korrektur für die Gesamtstilldauer und die Teilnahme an der Glutenintervention 

in der multivariaten Analyse hatten Kinder von Müttern mit Typ 1 Diabetes einen sig-

nifikant höheren prozentuale Anteil von 24:1 n-9 in der PC Fraktion [PC 24:1 n-9: 

0,31 ± 0,03 vs. 0,17 ± 0,03 pkorrigiert=0,025] als Kinder von nicht diabetischen Müttern. 

Die Stilldauer beeinflusste die prozentuale Anteile von MUFA 20:1 n-9 

[pkorrigiert=0.005], von n-3 PUFA DHA [pkorrigiert=0.000] und von den gesamten n-3 

PUFA [pkorrigiert=0.005] in der PE Fraktion der Erythrozytenmembran. 
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Tab. 20: Fettsäurezusammensetzung der Phospholipidfraktionen der Erythrozytenmembran 
der 12 Monate alten Kinder von Müttern mit und ohne Typ 1 Diabetes  
(Gewichtsprozente, Mittelwert ± SEM bzw. Median mit IQR) 

 

 PC PE 

Mutter mit T1D 
n=25 

Mutter ohne T1D 
n=24 

Mutter mit T1D 
n=25 

Mutter ohne T1D 
n=24 

SFA     
C14:0 0,43 ± 0,02 0,41 ± 0,03 0,12 (0,11 - 0,18) 0,16 (0,12 - 0,23) 
C16:0 35,89 (34,13 - 37,01) 34,89 (33,46 - 36,23) 15,04 ± 0,37 14,85 ± 0,46 
C18:0 10,91 (10,22 - 11,28) 11,42 (10,84 - 12,45) 8,25 (7,78 - 8,61)* 9,06 (8,53 - 9,69)* 
C20:0 0,15 (0,14 - 0,17) 0,15 (0,12 - 0,17) 0,12 (0,09 - 0,13) 0,12 (0,09 - 0,18) 
C22:0 0,05 (0,02 - 0,05)* 0,06 (0,04 - 0,13)* 0,04 (0,01 - 0,07) 0,03 (0,02 - 0,06) 
C24:0 0,09 (0,07 - 0,11) 0,14 (0,08 - 0,50) 0,02 (0,00 - 0,05) 0,02 (0,00 - 0,03) 
Gesamt 46,91 (46,15 - 47,91) 47,36 (46,49 - 48,36) 23,28 ± 0,59 24,47 ± 0,48 

     

MUFA     

C16:1 n-7 0,40 ± 0,03 0,36 ± 0,02 0,13 ± 0,01 0,12 ± 0,01 
C18:1 n-9 18,31 ± 0,29 18,34 ± 0,27 17,16 ± 0,36 16,77 ± 0,36 
C18:1 n-7 1,99 ± 0,04 1,85 ± 0,05 1,18 ± 0,03 1,11 ± 0,03 
C20:1 n-9 0,37 ± 0,02 0,36 ± 0,01 0,63 ± 0,02 0,56 ± 0,02 
C22:1 n-9 0,40 (0,35 - 0,45) 0,06 (0,43 - 0,78) 0,07 (0,06 - 0,09) 0,08 (0,05 - 0,09) 
C24:1 n-9 0,17 (0,14 - 0,23)* 0,29 (0,15 - 0,44)* 0,06 (0,04 - 0,09) 0,04 (0,03 - 0,08) 
Gesamt 21,33 ± 0,33 21,28 ± 0,31 19,25 ± 0,40 18,69 ± 0,38 

     

n-9 PUFA     

C20:3 n-9 0,08 (0,06 - 0,10) 0,07 (0,04 - 0,08) 0,13 (0,11 - 0,15) 0,11 (0,10 - 0,14) 
     

n-6 PUFA     

C18:2 n-6 20,60 ± 0,44 20,12 ± 0,42 6,68 ± 0,17* 6,00 ± 0,20* 
C18:3 n-6 0,06 (0,05 - 0,08) 0,05 (0,04 - 0,06) 0,06 (0,05 - 0,09) 0,07 (0,04 - 0,09) 
C20:2 n-6 0,40 (0,35 - 0,45) 0,38 (0,34 - 0,42) 0,43 ± 0,02 0,38 ± 0,02 
C20:3 n-6 1,90 ± 0,07 1,65 ± 0,07 1,53 (1,40 - 2,23) 1,48 (1,31 - 1,74) 
C20:4 n-6 5,30 ± 0,28 5,29 ± 0,34 26,75 ± 0,57 26,91 ± 0,57 
C22:2 n-6 0,05 (0,04 - 0,07) 0,07 (0,04 - 0,13) 0,13 ± 0,01 0,11 ± 0,01 
C22:4 n-6 0,43 (0,37 - 0,48) 0,40 (0,30 - 0,47) 9,42 ± 0,24 8,57 ± 0,33 
C22:5 n-6 0,21 (0,14 - 0,26) 0,20 (0,15 - 0,23) 1,45 (1,19 - 1,74) 1,23 (1,02 - 1,44) 
Gesamt 29,69 (28,58 - 30,65) 28,69 (26,98 - 30,45) 46,87 ± 0,70 44,81 ± 0,78 
n-6 LC-PUFA 8,29 ± 0,35 8,32 ± 0,53 40,11 ± 0,75 38,75 ± 0,83 

     

n-3 PUFA     

C18:3 n-3 0,15 ± 0,01 0,14 ± 0,01 0,14 ± 0,01*** 0,11 ± 0,01*** 
C20:3 n-3 0,07 (0,03 - 0,09) 0,08 (0,03 - 0,10) 0,22 (0,16 - 0,27) 0,25 (0,19 -0,27) 
C20:5 n-3 0,14 (0,10 - 0,21) 0,14 (0,10 - 0,19) 0,51 ± 0,04 0,56 ± 0,04 
C22:5 n-3 0,43 (0,35 - 0,53) 0,42 (0,27 - 0,49) 0,53 (0,36 - 0,61) 0,55 (0,38 - 0,66) 
C22:6 n-3 0,89 (0,66 - 1,16) 0,99 (0,82 - 1,35) 4,25 (3,82 - 5,68)* 5,64 (4,46 - 7,34)* 
Gesamt 1,74 (1,38 - 2,16) 1,80 (1,57 - 2,29) 9,48 ± 0,33 10,83 ± 0,40 
n-3 LC-PUFA 1,59 (1,23 - 1,98) 1,67 (1,41 - 2,13) 8,95 ± 0,30 10,28 ± 0,38 
n-6/n-3 16,27 (12,43 - 18,30) 17,18 (13,94 - 22,01) 4,19 (3,82 - 4,72) 4,67 (4,07 - 5,05) 

 
SFA saturated fatty acids (gesättigte Fettsäuren), MUFA monounsaturated fatty acids (einfach ungesättigte Fettsäuren), PUFA 

polyunsaturated fatty acids (mehrfach ungesättigte Fettsäuren), LC-PUFA long-chain polyunsaturated fatty acid (langkettige, 

mehrfach ungesättigte Fettsäuren), PC Phosphatidylcholin, PE Phosphatidylethanolamin 

 

*    pkorrigiert ≤ 0,05 
**   pkorrigiert ≤ 0,01 
*** pkorrigiert ≤ 0,001 
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3.3.6 Vergleich der Fettsäurezusammensetzung von PE und PC der Erythro-

zytenmembran zwischen Kindern von Müttern mit und ohne Typ 1 

Diabetes im Alter von 24 Monaten 

 

Im Alter von 24 Monaten waren keine Unterschiede in der Fettsäurezusammen-

setzung der Erythrozytenmembran zwischen den Kindern von Müttern mit und ohne 

Typ 1 Diabetes festzustellen. Insbesondere waren keine Unterschiede in den pro-

zentualen Anteilen von EPA und DHA zwischen den beiden Gruppen zu beobachten 

[PC EPA: 0,25 ± 0,03 vs. 0,23 ± 0,02 pkorrigiert=0,623; DHA 1,01 (0,86 - 1,37) vs. 1,16 

(0,80 - 1,28) pkorrigiert=0,880; PE EPA: 0,75 ± 0,06 vs. 0,76 ± 0,04 pkorrigiert=0,837; 

DHA: 5,36 ± 0,28 vs. 5,84 ± 0,43 pkorrigiert=0,383] (Tab. 21) Es konnten ebenfalls 

keine Unterschiede bzgl. des Anteils der Fettsäuregruppen SFA, MUFA, PUFA, n-3 

PUFA, n-6 PUFA und n-3 und n-6 LC-PUFA zwischen den Kindern von Müttern mit 

und ohne Typ 1 Diabetes gefunden werden. Darüber hinaus war der Quotient der    

n-6/n-3 Fettsäuren zwischen den Kindern von Müttern mit und ohne Typ 1 Diabetes 

nicht unterschiedlich (pkorrigiert>0,05), (Tab. 21). Auch nach Korrektur für die Gluten-

intervention in der multivariaten Analyse hatten Kinder von diabetischen Müttern ver-

gleichbare prozentuale Fettsäureanteile in der Erythrozytenmembran wie Kinder von 

nicht diabetischen Müttern (PC EPA: 0,24 ± 0,03 vs. 0,23 ± 0,03 pkorrigiert=0,779; DHA: 

1,28 ± 0,193 vs. 1,19 ± 0,23 pkorrigiert=0,767; PE EPA: 0,75 ± 0,056 vs. 0,77 ± 0,07 

pkorrigiert=0,793; DHA: 5,36 ± 0,32 vs. 5,83 ± 0,40 pkorrigiert=0,359). 
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Tab. 21: Fettsäurezusammensetzung der Phospholipidfraktionen der Erythrozytenmembran 
der 24 Monate alten Kinder von Müttern mit und ohne Typ 1 Diabetes  
(Gewichtsprozente, Mittelwert ± SEM bzw. Median mit IQR) 

 
 

 PC PE 

Mutter mit T1D 
n=19 

Mutter ohne T1D 
n=13 

Mutter mit T1D 
n=19 

Mutter ohne T1D 
n=13 

SFA     
C14:0 0,41 ± 0,03 0,43 ± 0,03 0,17 ± 0,02 0,16 ± 0,01 
C16:0 34,04 (33,46 - 34,59) 33,15 (32,04 - 35,37) 13,94 (13,22 - 15,29) 14,63 (13,12 - 14,97) 
C18:0 11,86 ± 0,24 11,87 ± 0,30 8,95 (8,51 - 9,64) 8,83 (8,14 - 10,42) 
C20:0 0,14 ± 0,01 0,15 ± 0,01 0,09 (0,07 - 0,11) 0,14 (0,07 - 0,17) 
C22:0 0,08 ± 0,01 0,10 ± 0,02 0,04 (0,02 - 0,06) 0,03 (0,01 - 0,04) 
C24:0 0,13 (0,08 - 0,32) 0,13 (0,10 - 0,45) 0,01 (0,01 - 0,04) 0,02(0,01 - 0,03) 
Gesamt 46,82 (46,25 - 47,36) 46,74 (45,50 - 47,49) 23,35 (22,20 - 24,90) 23,39 (22,04 - 25,39) 

     

MUFA     

C16:1 n-7 0,42 ± 0,03 0,38 ± 0,04 0,14 ± 0,01 0,14 ± 0,01 
C18:1 n-9 18,15 ± 0,35 17,63 ± 0,47 16,45 ± 0,40 15,40 ± 0,37 
C18:1 n-7 1,70 (1,61 - 1,77) 1,74 (1,63 - 1,84) 1,04 ± 0,03 0,95 ± 0,02 
C20:1 n-9 0,29 (0,27 - 0,30) 0,27 (0,25 - 0,30) 0,49 (0,45 - 0,57) 0,46 (0,43 - 0,49) 
C22:1 n-9 0,05 (0,04 - 0,06) 0,05 (0,04 - 0,06) 0,05 (0,04 - 0,08) 0,05 (0,04 - 0,06) 
C24:1 n-9 0,24 ± 0,03 0,26 ± 0,04 0,07 ± 0,02 0,11 ± 0,05 
Gesamt 20,87 ± 0,39 20,33 ± 0,53 18,27 ± 0,43 17,07 ± 0,39 

     

n-9 PUFA     

C20:3 n-9 0,12 (0,09 - 0,15) 0,10 (0,06 - 0,13) 0,17 ± 0,01 0,16 ± 0,01 
     

n-6 PUFA     

C18:2 n-6 19,32 ± 0,39 21,11 ± 0,63 5,51 ± 0,197 6,00 ± 0,28 
C18:3 n-6 0,07 ± 0,01 0,07 ± 0,01 0,09 (0,07 - 0,10) 0,09 (0,07 - 0,10) 
C20:2 n-6 0,35 ± 0,01 0,37 ± 0,02 0,27 ± 0,01 0,29 ± 0,02 
C20:3 n-6 1,90 ± 0,08 1,95 ± 0,10 1,37 (1,23 - 1,87) 1,48 (1,29 - 1,68) 
C20:4 n-6 5,98 ± 0,32 5,99 ± 0,26 28,13 ± 0,60 28,51 ± 0,41 
C22:2 n-6 0,05 (0,03 - 0,11) 0,04 (0,03 - 0,07) 0,08 ± 0,01 0,08 ± 0,01 
C22:4 n-6 0,48 (0,39 - 0,51) 0,40 (0,38 - 0,49) 8,72 ± 0,23 8,25 ± 0,29 
C22:5 n-6 0,22 (0,18 - 0,27) 0,20 (0,17 - 0,24) 1,30 ± 0,07 1,35 ± 0,05 
Gesamt 29,55 (27,18 - 30,18) 30,51 (29,38 - 30,97) 45,65 ± 0,66 46,10 ± 0,65 
n-6 LC-PUFA 9,45 (8,35 - 10,30) 8,97 (8,30 - 9,42) 40,05 ± 0,72 40,00 ± 0,61 

     

n-3 PUFA     

C18:3 n-3 0,16 ± 0,01 0,17 ± 0,01 0,12 ± 0,01 0,12 ± 0,01 
C20:3 n-3 0,10 (0,07 - 0,11) 0,09 (0,06 - 0,10) 0,22 ± 0,02 0,20 ± 0,03 
C20:5 n-3 0,25 ± 0,03 0,23 ± 0,02 0,75 ± 0,06 0,76 ± 0,04 
C22:5 n-3 0,50 (0,44 - 0,61) 0,49 (0,42 - 0,55) 4,71 ± 0,17 4,69 ± 0,19 
C22:6 n-3 1,01 (0,86 - 1,37) 1,16 (0,80 - 1,28) 5,36 ± 0,28 5,84 ± 0,43 
Gesamt 2,01 (1,81 - 2,36) 2,05 (1,67 - 2,50) 11,16 ± 0,41 11,62 ± 0,54 
n-3 LC-PUFA 1,82 (1,67 - 2,17) 1,89 (1,50 - 2,31) 10,37 ± 0,37 10,81 ± 0,50 
n-6/n-3 14,25 (12,73 - 15,86) 14,67 (11,93 - 18,51) 4,18 (3,74 - 4,68) 4,06 (3,58 - 4,52) 

 
SFA saturated fatty acids (gesättigte Fettsäuren), MUFA monounsaturated fatty acids (einfach ungesättigte Fettsäuren), PUFA 

polyunsaturated fatty acids (mehrfach ungesättigte Fettsäuren), LC-PUFA long-chain polyunsaturated fatty acid (langkettige, 

mehrfach ungesättigte Fettsäuren), PC Phosphatidylcholin, PE Phosphatidylethanolamin 

 

*    pkorrigiert ≤ 0,05 
**   pkorrigiert ≤ 0,01 
*** pkorrigiert ≤ 0,001 
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3.3.7 Korrelation zwischen der Fettsäurezusammensetzung der Erythrozyten-

membran und der durch die 3-Tages-Ernährungsprotokolle erhobenen 

Daten zur Fettsäureaufnahme mit der Nahrung 

 

Insgesamt wurden zu den Blutproben 53 die dazugehörigen 3-Tages-Ernährungs-

protokolle angefertigt und am Forschungsinstitut für Kinderernährung in Dortmund 

ausgewertet. 

Eine signifikante Korrelation zwischen der Linolsäureaufnahme mit der Nahrung und 

den prozentualen Anteilen der Linolsäure in den Phospholipidfraktion PE und PC der 

Erythrozytenmembran konnte festgestellt werden (PE: r=0,455 p=0,001, PC: r=0,400 

p=0,003), (Abb. 17, Abb. 18). 

Im Gegensatz dazu korrelierten die durch die 3-Tages-Ernährungsprotokolle erhobe-

nen Daten zur Fettsäureaufnahme mit der Nahrung nicht mit den korrespondierenden 

Fettsäuregruppen SFA, MUFA und PUFA der PE und PC Fraktionen der Erythro-

zytenmembran (PE: SFA r=0,223 p=0,109, MUFA r=0,084 p=0,550, PUFA r=-0,035 

p=0,802; PC: SFA r=0,236 p=0,089, MUFA r=-0,048 p=0,738, PUFA r=113 p=0,421) 

(Abb. 17, Abb. 18). 
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Abb. 17: Korrelation zwischen der Fettsäureaufnahme mit der Nahrung (%) und den korrespondie-
renden Fettsäuren (A) SFA, (B) Linolsäure 18:2 n-6, (C) MUFA, (D) PUFA in der PE Fraktion der 
Erythrozytenmembran (wt%)  
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Abb. 18: Korrelation zwischen der Fettsäureaufnahme mit der Nahrung (%) und den korrespondie-

renden Fettsäuren (A) SFA, (B) Linolsäure 18:2 n-6, (C) MUFA, (D) PUFA in der PC Fraktion der 
Erythrozytenmembran (wt%),  
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3.4 Diskussion 

 

Ziel dieser Arbeit war es in einem Diabetes-Risikokollektiv die Fettsäurezusammen-

setzung der Erythrozytenmembran in Abhängigkeit einer Typ 1 Diabetes Erkrankung 

der Mutter zu untersuchen. Bis auf wenige Studien, die den Effekt des mütterlichen 

Diabetes auf die Fettsäurezusammensetzung der Plasmalipide und der Phospho-

lipide der Erythrozytenmembran der Mütter und des Nabelschnurblutes der Neugebo-

renen untersuchten, ist diese vorliegende Arbeit der erste Versuch, den Einfluss des 

Typ 1 Diabetes bei Müttern auf die Fettsäurezusammensetzung der Erythrozyten-

membran bei deren Nachkommen  im Alter von 3, 12 und 24 Monaten zu erforschen. 

Da Kinder von Müttern mit Diabetes ein signifikant geringeres Risiko haben, Insel-

autoantikörer zu entwickeln oder an Typ 1 Diabetes zu erkranken als Kinder von 

Vätern mit Typ 1 Diabetes (Warram 1984, Bleich 1993, El-Hashimy 1995, Lorenzen 

1998), soll diese Untersuchung indirekt darüber Auskunft geben, ob sich die Ernäh-

rung von Kindern diabetischer Mütter zu der Ernährung von Kindern diabetischer 

Väter unterscheidet. 

 

 

3.4.1 Einfluss des mütterlichen Typ 1 Diabetes auf die Fettsäurezusammen-

setzung der Erythrozytenmembran 

 

In der vorliegenden Arbeit konnte gezeigt werden, dass die Fettsäurezusammen-

setzung der Erythrozytenmembran nur geringfügig durch den mütterlichen Typ 1 

Diabetes beeinflusst wurde. Im Vergleich zu den Kindern von nichtdiabetischen Müt-

tern hatten die Kinder von Müttern mit Typ 1 Diabetes im Alter von 3 Monaten höhere 

prozentuale Anteile von gesättigten Fettsäuren, insbesondere von 14:0. Diese Unter-

schiede konnten ebenfalls beobachtet werden, wenn nur voll gestillte Kinder analy-

siert wurden. Im Alter von 12 Monaten konnten einige wenige Unterschiede in der 

Fettsäurezusammensetzung der Erythrozytenmembran zwischen den Kindern von 

Müttern mit und ohne Typ 1 Diabetes gefunden werden, während im Alter von 24 

Monaten keine Abweichungen entdeckt wurden. 

Die beobachteten kleinen Unterschiede in der Fettsäurezusammensetzung der Ery-

throzytemembran bei den Kindern von Müttern mit Typ 1 Diabetes resultieren wahr-

scheinlich aus Abweichungen in der Muttermilchzusammensetzung der Mütter mit 
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Typ 1 Diabetes. Diese sind durch einen veränderten Fettstoffwechsel der diabeti-

schen Mütter bedingt. Es ist bekannt, dass Insulin eine wichtige Rolle in der Lipo-

genese der Milchdrüse spielt (Jones 1984). Somit können Veränderungen in den 

Plasmainsulinkonzentrationen die Qualität und Quantität der Milchlipide beeinflussen. 

So ergab eine Untersuchung von Robinson et al., dass ein Streptozotozin induzierter 

Diabetes bei Ratten die Fettsäuresynthese in den Milchdrüsen der Ratten reduziert 

(Robinson 1978). Andere Untersuchungen deuten weiter darauf hin, dass ein Mangel 

an Insulin die Aktivität von Phosphofructo-Kinase und Acetyl-Co-A-Carboxylase ein-

schränkt. Beide Enzyme sind ebenfalls wichtige regulatorische Enzyme in der Lipo-

genese (Burnol 1988, Munday 1986).  

Ferner beeinflusst Insulin Enzyme in der Leber, die im Rahmen der Biosynthese von 

langkettigen mehrfach ungesättigten Fettsäuren für die Kettenverlängerung und Ein-

führung von Doppelbindungen von Fettsäuren verantwortlich sind. So sind die Akti-

vitäten der ∆6- und der ∆5-Desaturase, die für die Synthese von PUFA nötig sind, 

durch den Diabetes beeinträchtigt (el Boustani 1989, Arisaka 1991, Brenner 2000). 

Dennoch scheint eine Behandlung mit Insulin die normale Aktivität der Enzyme ∆6- 

und der ∆5-Desaturase wiederherzustellen (el Boustani 1989, Igal 1991).  

Auf der anderen Seite wird aber auch von einem verminderten PUFA Status der dia-

betischen Mütter berichtet (Tilvis 1985, Lakin1998). Zu diesen Ergebnisse kamen 

auch Min et al., die in den PE und PC Lipiden der Erythrozytenmembran von Müttern 

mit Typ 1 Diabetes signifikant geringere Konzentrationen an DHA als in der Kontroll-

gruppe fanden. Außerdem wurden in den PE Lipiden des Nabelschnurblutes der 

Kinder von Mütter mit Typ 1 Diabetes ebenfalls niedrigere DHA Konzentrationen 

gemessen (Min 2005). Ghebremeskel et al. hatten einen verminderteren Gehalt von 

Arachidonsäure und DHA in den Plasmalipiden des Nabelschnurblutes bei gesunden 

Neugeborenen von Müttern mit Typ 1 Diabetes gefunden (Ghebremeskel 2004). Im 

Gegensatz zu diesen beiden Studien konnten diese Unterschiede in der vorliegen-

den Untersuchung bezüglich den prozentualen Anteilen von EPA, DHA, den gesam-

ten n-3 PUFA und den gesamten n-6 PUFA in den Phospholipiden der Erythro-

zytenmembran im Alter von 3, 12 und 24  Monaten nicht bestätigt werden. 

 

Über die Zusammensetzung von Muttermilch diabetischer Mütter gibt es nur wenige 

Untersuchungen mit kontroversen Ergebnissen. Bitmann et al. untersuchten die 

Muttermilchzusammensetzung einer diabetischen Mutter vom 3. bis 7. Tag postpar-
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tum und beobachteten geringere Konzentrationen der MUFA C10-C14 und einen 

höheren Gehalt an Ölsäure (18:1 n-9) sowie höhere Konzentrationen an PUFA in der 

Milch der diabetischen Mutter im Vergleich zu der Referenzpopulation. Die beo-

bachteten Unterschiede wurden auf eine veränderte Fettsynthese in den Milchdrüsen 

als auch auf eine vermehrte Kettenverlängerung zurückgeführt (Bitmann 1989). Dem 

gegenüber  berichteten Jackson et al. geringere Konzentrationen von PUFA in der 

Muttermilch von Müttern mit Typ 1 Diabetes 14-84 Tage postpartum (Jackson 1994). 

In einer anderen Studie konnten keine Unterschiede in der Milchzusammensetzung 

vom 3-35 Tag postpartum von 6 Müttern mit streng kontrollierten Typ 1 Diabetes im 

Vergleich zu den 5 Müttern in der Kontrollgruppe festgestellt werden (van Beusekom 

1993). Im Vergleich zu diesen Studienergebnissen, die aufgrund ihrer kleinen Pro-

benanzahl limitiert sind, wurde in dieser Analyse eine relativ große Anzahl von 129 

Blutproben untersucht.  

 

 

3.4.2 Einfluss weiterer Faktoren auf die Fettsäurezusammensetzung der Ery-

throzytenmembran 

 

Weiterhin konnten auch einige weitere Faktoren gefunden werden, die die Fettsäure-

zusammensetzung der Erythrozytenmembran beeinflussen können. So war das Voll-

stillen in den ersten 3 Monaten sowie eine Fischölsupplementierung der Mutter wäh-

rend der Schwangerschaft und/oder der Stillzeit mit einem erhöhten prozentualen 

Anteil von EPA und DHA und der gesamten n-3 PUFA und n-3 LC-PUFA in der PE 

Fraktion verbunden. Diese Ergebnisse bestätigen frühere Studien, die zeigten, dass 

Stillen und eine Fischölsupplementierung während der Schwangerschaft oder der 

Stillzeit signifikant die Fettsäurezusammensetzung der Erythrozytenmembran der 

Kinder beeinflussen. So zeigten Henderson et al., dass durch eine Supplementation 

von 6 g Fischöl pro Tag über 21 Tage während der Stillzeit der Anteil an EPA und an 

DHA in der Erythrozytenmembran sowohl bei den Kindern als auch bei den Müttern 

zunahm, während keine Veränderungen im DHA Gehalt und n-6 Fettsäuregehalt 

beobachtet wurde (Henderson 1992). Eine Studie von Dunston et al., die den Effekt 

von 4 g Fischöl pro Tag ab der 20. Schwangerschaftswoche bis zur Geburt auf die 

Fettsäurezusammensetzung der Erythrozytenmembran von Mutter und Kind unter-

suchte, zeigte, dass im Vergleich zu der Kontrollgruppe die Mütter in der Interventi-
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onsgruppe signifikant höhere prozentuale Anteile von EPA und DHA in der Erythro-

zytenmembran zwischen der 30.-37. Schwangerschaftswoche hatten, dieses Ergeb-

nis blieb bis zur 6. Woche postpartum konstant. Weiterhin waren die Anteile der n-6 

PUFA bei den Müttern in der Interventionsgruppe reduziert. Bezüglich der Fettsäure-

zusammensetzung der Erythrozytenmembran des Nabelschnurblutes der Kinder 

konnten ebenfalls erhöhte Anteile von EPA und DHA und geringere Anteile von n-6 

PUFA im Vergleich zu der Kontrollgruppe in dieser Studie festgestellt werden. Ferner 

ist auch eine Fischölsupplementierung während der Schwangerschaft und/oder Still-

zeit mit einem erhöhten Gehalt von n-3 PUFA in der Muttermilch verbunden (Hender-

son 1992, Dunston 2004b, Borris 2004).  

 

Es konnte ebenfalls schon nachgewiesen werden, dass gestillte Kinder einen höhe-

ren Status von n-3 Fettsäuren, insbesondere von DHA in der Erythrozytenmembran 

besitzen  als Kinder, die Formulanahrung erhalten (Putnam 1982, Granot 2000, Innis 

1994). Auch in der Untersuchung von Granot et al. waren im Alter von 2 bis 4 Monate 

die prozentualen Anteile der gesamt n-3 Fettsäuren und der DHA der Erythrozyten-

membran höher bei den gestillten Kindern als im Vergleich zu den Kindern, die mit 

Formulanahrung ernährt wurden. Aber hier zeigte sich, dass der prozentuale Anteil 

von EPA sich nicht zwischen den Gruppen unterschied. Gegenüber der vorliegenden 

Arbeit wurden hier die Gesamtphospholipide der Erythrozytenmembran bestimmt. In 

einer anderen Studie bei 40 Kindern im Alter von 4,5-6 Monaten, besaßen die 

gestillten Kinder höhere prozentuale Anteile von n-3 und n-6 LC-PUFA sowohl in den 

PE Lipiden als auch in den PC Lipiden (Putnam 1982). In Übereinstimmung mit der 

vorliegenden Analyse war in einer aktuelleren Studie mit 97 Kindern (2-12 Monate 

alt) exklusives Stillen mit einem erhöhten Gehalt von DHA in den Erythrozyten PE 

Lipiden der Kinder verbunden. Im Gegensatz zu der vorliegenden Analyse war in der 

Studie von Minda der Gehalt von EPA in den PE und PC Lipiden bei den Kindern, die 

exklusiv gestillt wurden, vermindert (Minda 2002). Darüber hinaus gibt es eine Viel-

zahl von weiteren Publikationen, die zu ähnlichen Ergebnissen bezüglich den pro-

zentualen Anteilen von EPA und DHA sowohl in der PE Fraktion als auch in der PC 

Fraktion der Erythrozytenmembran gekommen sind (Innis 1994, 1997, Auestad 

1997). Die in der vorliegenden Analyse beobachteten signifikant höheren Anteile der 

Arachidonsäure 20:4 n-6, einer Fettsäure, die ebenfalls für die frühkindliche Ent-

wicklung entscheidend ist, in der PC Fraktion bei den gestillten Kindern, konnte 
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ebenfalls schon in früheren publizierten Studien nicht nur für die PC Fraktion sondern 

auch für die PE Fraktion gefunden werden (Minda 2002, Innis 1994, 1997). Es wurde 

weiterhin schon über einen verminderten Anteil der Fettsäuren Linolsäure, Ölsäure 

und α-Linolensäure in der Erythrozytenmembran von gestillten Kindern im Vergleich 

zu nicht gestillten Kindern berichtet, diese Befunde konnten in der vorliegenden 

Arbeit ebenso bestätigt werden (Minda 2002, Innis 1994, 1997). 

Die gefundenen Unterschiede zwischen den gestillten und nicht gestillten Kindern 

beruht auf der Tatsache, dass sich die Fettsäurezusammensetzung der Muttermilch 

zu der von industriell gefertigten Formulanahrungen erheblich unterscheidet. Tradi-

tionelle Formulanahrung auf Kuhmilchbasis werden mit Hilfe von Pflanzenölen her-

gestellt, die zwar Linolsäure und α-Linolensäure enthalten, aber nicht Docosa-

hexaensäure oder Arachidonsäure (Koletzko 1999). Die Menge an Linolsäure und α-

Linolensäure in der Formulanahrung hängt anderseits auch von der Art des verwen-

deten Pflanzenöles ab, was dann wiederum in einer veränderten Fettsäurezusam-

mensetzung der Erythrozytenmembran resultiert (Innis 1992, 1997). Die Fettsäure-

zusammensetzung der Muttermilch hängt wie schon erwähnt von verschiedenen 

Faktoren ab, wie Ernährung der Mutter, Milchfettkonzentration, Stilldauer, Schwan-

gerschaftsdauer oder Stoffwechselerkrankungen der Mutter (Olsen 1992, Kovasc 

2005, Minda 2004, Jackson 1994). Dabei stammt der größte Teil der essentiellen 

Fettsäuren in der Muttermilch aus den mütterlichen Fettdepots und ca. 30% direkt 

aus der Ernährung (Demmelmair 1998). 

Durch eine Anreichung von Formulanahrungen mit LC-PUFA erreichen Flaschen-

kinder ähnliche Fettsäurelevels in den Erythrozytenmembranen wie gestillte Kinder 

(Koletzko 1999, Makrides 1995, Maurage 1998), was folglich in Studien im Hinblick 

auf die frühkindliche Entwicklung auch zu einer besseren neuronalen und visuellen 

Leistung führte (Carlson 1996, Agostoni 1995). In der vorliegenden Analyse hat aber 

keines der nicht voll gestillten Kinder eine Formulanahrung mit LC-PUFA bekommen. 

Im Rahmen dieser Arbeit konnte weiterhin gezeigt werden, dass der Quotient n-6/n-3 

Fettsäuren nicht durch den mütterlichen Typ 1 Diabetes beeinflusst wird. Jedoch 

hatten voll gestillte Kinder in der PE und PC Fraktion und Kinder, deren Mütter wäh-

rend der Schwangerschaft und/oder Stillzeit Fischölsupplemente einnahmen in der 

PE Fraktion einen signifikant niedrigeren Quotienten n-6/n-3 Fettsäuren. Diese 

Befunde bestätigen, dass Muttermilch ein optimales Verhältnis n-6 zu n-3 Fettsäuen 

besitzt (Hanson 2003). Die Fettsäurezusammensetzung in der Erythrozytenmembran 
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wird durch das Verhältnis n-6 zu n-3 Fettsäure über die Nahrung beeinflusst (Brenner 

1966). Im menschlichen Organismus können die langkettigen, mehrfach ungesättig-

ten n-3 und n-6 Fettsäuren C20 bis C22 aus der Linolsäure und α-Linolensäure über 

Einführung von Doppelbindungen und Kettenverlängerungen gebildet werden. Dabei 

können durchschnittlich nur 1-4% der α-Linolensäure in Docosahexaensäure (22:6n-

3) umgesetzt werden (Sprecher 1995). Linolsäure und α-Linolensäure dienen als 

Substrat für die Desaturasen, dabei wird die α-Linolensäure bevorzugt umgesetzt. 

Somit unterdrückt ein höherer Quotient n-6/n-3 Fettsäuren die Umsetzung der α-

Linolensäure, was wiederum in einer vermehrten Bildung von n-6 LC-PUFA resultiert.  

Ein weiterer wichtiger Aspekt, der in diesen Zusammenhang nicht vergessen werden 

darf, ist die Versorgung des Neugeborenen mit wichtigen immunmodulierenden 

Faktoren über die Muttermilch für die Reifung und Entwicklung des Darms und des 

darmassoziierten Immunsystem. Darüber hinaus stellt die Muttermilch aber auch 

Antikörper, Leukozyten, Lysozym und Lactoferrin für einen passiven Immunschutz 

bereit, so dass ein Fehlen von Muttermilch mit einer veränderten Entwicklung des 

darmassoziierten Immunsystems unter Verdacht steht, was wiederum auch in der 

Pathogenese des Typ 1 Diabetes von Bedeutung sein kann (Harrison 1999, Hanson 

2003). 

 

Frühgeborene haben oft gegenüber reif geborenen Kindern einen signifikant geringe-

ren Status an essentiellen n-6 und n-3 PUFA (Foreman-van Drongelen 1995, 

Hornstra 2000). Dennoch scheinen die Konzentrationen an essentiellen Fettsäuren in 

den Phospholipiden des Nabelschnurblutes von Frühgeborenen sich nicht von den 

Nabelschnurblutkonzentrationen von Feten in einem vergleichbaren Gestationsalter 

zu unterscheiden (van Houwelingen 1996). Die Fettsäurezusammensetzung des 

fötalen Blutes und des Blutes der Mutter ändert sich während der Schwangerschaft 

dahingehend, dass mit fortschreitender Schwangerschaft sich vor allem der Anteil an 

DHA erhöht (van Houwelingen 1996, Al 2000), somit ist der geringe LC-PUFA Status 

des Frühgeborenen physiologisch begründet (Hornstra 2000). Weiterhin wurde auch 

eine positive Korrelation zwischen dem Geburtsgewicht und den Konzentrationen an 

DHA, Arachidonsäure und Dihomo-γ-Linolensäure im Nabelschnurblut beobachtet 

(Leaf 1992, Foreman-van Drongelen 1995). Ferner gibt es auch widersprüchliche 

Untersuchungen bezüglich der Fettsäurezusammensetzung von Muttermilch zwi-

schen Müttern mit frühgeborenen Kindern und Müttern mit reif geborenen Kindern 
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(Kovasc 2005). In der vorliegenden Analyse beeinflussten aber Schwangerschafts-

dauer und Geburtsgewicht nicht die Fettsäurezusammensetzung der Erythrozyten-

membran. Auf der einen Seite wurde hier nicht wie in den vorangegangenen Studie 

das Nabelschnurblut untersucht, sondern das Blut im Alter von 3 Monaten und auf 

der anderen Seite war jeweils nur ein Kind in jeder Gruppe ein Frühgeborenes.  

Die Genauigkeit der gefundenen Ergebnisse beruht auf der Annahme, dass durch 

die Verwendung der Bestimmung der Fettsäurezusammensetzung der Erythro-

zytenmembran als unabhängigen quantitativen Biomarker Auskunft über die Ernäh-

rung der letzten Monate gegeben wird. Daneben reflektiert die Erythrozytenmembran 

sowohl die Fettsäureaufnahme mit der Nahrung als auch den individuellen Fettmeta-

bolismus (Arab 2002, 2003).  

Ein weiterer limitierender Faktor dieser Arbeit ist die Bestimmung der prozentualen 

Anteile der Fettsäuren und nicht die Bestimmung der absoluten Konzentration jeder 

Fettsäure sowie die fehlende Analyse der Gesamtlipide der Erythrozytenmembran. 

 

Zusammenfassend zeigen die Ergebnisse dieser Untersuchung, dass nur geringfü-

gige Unterschiede in der Fettsäurezusammensetzung der Erythrozytenemembran 

zwischen Kindern von Müttern mit und ohne Typ 1 Diabetes bestehen. Es konnte 

ebenfalls bestätigt werden, dass Muttermilch eine ausgezeichnete Quelle zur Bereit-

stellung LC-PUFA wie EPA und DHA ist. Auch voll gestillte Kinder von diabetischen 

Müttern hatten eine vergleichbare Versorgung.  

Dennoch waren die prozentualen Anteile von EPA und DHA geringer bei nicht voll 

gestillten Kindern als bei voll gestillten Kindern. Somit sollten fischölsupplementierte 

Formulanahrungen für nicht voll gestillte Kinder diabetischer Mütter in Betracht gezo-

gen werden, damit eine gleiche Zusammensetzung an EPA und DHA in der Erythro-

zytenmembran wie von voll gestillten Kindern erreicht werden kann. Weitere Studien 

sind nötig, um die gefundenen Ergebnisse zu bestätigen. 
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3.4.3 Korrelation zwischen der Fettsäurezusammensetzung der Erythrozyten-

membran und der durch die 3-Tages-Ernährungsprotokolle erhobenen 

Daten zur Fettsäureaufnahme mit der Nahrung 

 

Neben der Bestimmung des Fettsäuregehaltes von Serum, Plasma und des Fettge-

webes gilt die Fettsäurezusammensetzung der Erythrozytenmembran als ein geeig-

neter Biomarker für die Fettsäureaufnahme mit der Nahrung. (Fuhrman 2006, Farqu-

har 1963, Innis 1992, Feunekes 1993, Glatz 1989, Godley 1996). Vor allem reflektiert 

sie den Status an Monoenfettsäuren wie der Ölsäure und den LC-PUFA EPA und 

DHA (Vlaardingerbroek 2004). Aufgrund ihrer Lebensdauer von 120 Tagen spiegeln 

sie die Ernährung von mehreren Monaten wieder (Arab 2002, 2003).  

Im Rahmen der vorliegenden Arbeit sollte geklärt werden, ob die Fettsäurezusam-

mensetzung der Erythrozytenmembran mit den durch die 3-Tages-Ernährungsproto-

kollen erhobenen Daten zur Fettsäureaufnahme mit der Nahrung korreliert. Hierzu 

wurden 53 Blutproben und die dazugehörigen Protokolle ausgewertet. 

Eine positive Korrelation konnte zwischen der Linolsäureaufnahme mit der Nahrung 

und dem Linolsäuregehalt in den Phospholipiden der Erythrozytenmembran fest-

gestellt werden (PE: r=0,455 p=0,001, PC: r=0,400 p=0,003).  

Die Daten von Glatz et al. und Feunekes et al. weisen übereinstimmend darauf hin, 

dass der Linolsäuregehalt in der Erythrozytenmembran mit der Linolsäureaufnahme 

mit der Nahrung korreliert. Glatz et al. untersuchte bei 47 Probanden, ob der Linol-

säuregehalt in der Erythrozytenmembran die Änderung in der Fettsäurezufuhr mit der 

Nahrung im Rahmen einer Ernährungsinterventionsstudie widerspiegelt und berich-

tete von einem positiven Zusammenhang (Glatz 1989). In der Studie von Feunekes 

et al. war ebenfalls der Linolsäuregehalt in der Erythrozytenmembran mit der Linol-

säureaufnahme über die Nahrung in den letzten Monaten assoziiert (r =0,44). Die 

Linolsäurezufuhr mit der Nahrung wurde anhand eines Food Frequency Questionnai-

res und über ein ernährungsgeschichtliches Interview erhoben (Feunekes 1993).  

Da die Linolsäure zu den essentiellen Fettsäuren gehört und somit mit der Nahrung 

zugeführt werden muss, deutet das positive Ergebnis in der vorliegenden Arbeit 

ebenfalls darauf hin, dass der Linolsäuregehalt in der Erythrozytenmembran ein 

geeigneter Biomarker für die Linolsäurezufuhr mit der Nahrung in den letzten Mona-

ten und Wochen ist. 
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Ferner war aber kein Zusammenhang hinsichtlich der SFA, MUFA und PUFA Auf-

nahme mit der Nahrung und den korrespondierenden Fettsäuregruppe in der PE und 

PC Fraktion der Erythrozytenmembran zu beobachten. Ein möglicher Grund für das 

Fehlen einer positiven Korrelation zwischen der Fettsäureaufnahme mit der Nahrung 

und den korrespondierenden Fettsäuregruppen in den Phospholipiden der Erythro-

zytenmembran ist die nicht genaue Auswertung der Fettsäurezufuhr über die 3-

Tages-Ernährungsprotokolle am Forschungsinstitut für Kinderernährung (FKE) in 

Dortmund. Die Fettaufnahme mit der Nahrung wurde nur als Gesamtfett, gesättigte 

Fettsäuren, einfach ungesättigte Fettsäuren, mehrfach ungesättigte Fettsäuren und 

Linolsäure in g/Tag analysiert und es erfolgte keine Auftrennung in die einzelnen 

Fettsäuren. Ein weiterer Grund könnte sein, dass die Anzahl der Proben zu gering 

war. 

Im Vergleich hierzu zeigten Fuhrmann et al., dass der Erythrozyten Phospholipid 

Gehalt an Linolsäure, Ölsäure, gesamten PUFA, EPA und DHA mit den Daten zur 

Fettsäureaufnahme mit der Nahrung der untersuchten 204 Frauen korrelierte 

(Fuhrman 2006). Zu ähnlichen Ergebnissen kamen auch Poppitt et al., die einen 

positiven Zusammenhang zwischen den aufgenommen Fettsäuren Ölsäure, EPA und 

DHA mit der Nahrung (im Rahmen einer randomisierten Cross-over Studie mit 

zugeteilter und kontrollierter Diät) und den entsprechenden Fettsäuren in der Ery-

throzytenmembran aufzeigen konnten (Poppitt 2005). In einer aktuellen Studie von 

Orton et al. wurde ebenfalls eine positive Korrelation zwischen der gesamten n-3 

Fettsäureaufnahme (ρ=0,23; p<0,0001) und den marinen PUFA (ρ=0,43; p<0,0001) 

in der Nahrung und den gesamten n-3 Fettsäuren und marinen PUFA in der Erythro-

zytenmembran gefunden. Ähnlich wie in der vorliegenden Untersuchung, analysier-

ten Orton et al. die Fettsäurezusammensetzung der Erythrozytenmembran bei 

Kindern (Alter: 1-11 Jahre) mit einem erhöhtem Typ 1 Diabetes Risiko im Rahmen 

der DAISY Studie anhand von 917 Proben und korrelierten diese mit den durch ein 

Food Frequency Questionnaires erhobenen Daten zur Fettsäureaufnahme (Orton 

2007). Da im Gegensatz zu der vorliegenden Untersuchung in den anderen Studien 

anstatt eines 3-Tages-Ernährungsprotokolls ein Food Frequency Questionnaires zur 

Evaluierung der Fettsäureaufnahme mit der Nahrung verwendet wurde, stellt sich 

folglich hier die Frage, ob ein Food Frequency Questionnaires eventuell geeigneter 

für die Evaluierung der LC-PUFA mit der Nahrung als ein 3-Tages-Ernährungsproto-

koll ist. Da Kleinkinder vermutlich nur gelegentlich Fisch verzehren, könnte somit die 
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Auskunft über den Fischverzehr durch ein 3-Tages-Ernährungsprotokoll inadäquat 

sein. 

Schlussfolgernd zeigen die vorgestellten Ergebnisse dieser Arbeit, dass die Bestim-

mung der Fettsäurezusammensetzung der Erythrozytenmembran ein verlässlicher 

Biomarker für die Fettsäureaufnahme mit der Nahrung ist und bestätigt damit die 

Validität der gefundenen Ergebnisse bezüglich dem Vergleich der Fettsäurezusam-

mensetzung der Erythrozytenmembran zwischen den Kindern von Müttern mit und 

ohne Typ 1 Diabetes. Dennoch sollte in zukünftigen Studien die Erhebung der Fett-

säureaufnahme mit der Nahrung durch ein 3-Tages-Ernährungsprotokoll nicht in 

Fettsäuregruppen sondern in einzelnen Fettsäuren erfolgen. 

 

 

3.4.4 Ausblick 

 

Untersuchungen zur Bedeutung der n-3 Fettsäuren EPA und DHA bei der Entste-

hung von Inselautoimmunität und Typ 1 Diabetes führten bislang zu sehr wider-

sprüchlichen Befunden. Unter anderem beobachteten Stene et al. im Jahre 2000 in 

einer norwegischen Fall-Kontroll-Studie eine starke negative Korrelation zwischen 

Lebertran-Einnahme in der Schwangerschaft und dem Typ 1 Diabetes Risiko für die 

Nachkommen mit einem OR von 0.3 (95% Konfidenzintervall: 0,12-0,75). In einer 

Nachfolgestudie von 2003 konnte dieses Ergebnis nicht bestätigt werden, aber die 

Lebertran-Einnahme im ersten Lebensjahr war mit einem signifikanten verminderten 

Risiko für Typ 1 Diabetes verbunden. Jedoch stammen diese Ergebnisse aus retros-

pektiven Untersuchungen. Unklar in beiden Studien ist, ob die beobachtete Wirkung 

des Lebertrans auf die n-3 Fettsäuren allein oder die Kombination mit dem im Leber-

tran ebenfalls reichlich vorkommenden Vitamin D zurückzuführen ist. Denn auch dem 

Vitamin D wird eine im Bezug auf die Entstehung des Typ 1 Diabetes schützende 

Funktion zugeschrieben (Stene 2000, 2003). 

Auf der Grundlage der gewonnen Ergebnisse dieser Arbeit soll im weiteren Verlauf 

der BABYDIÄT Studie die Frage geklärt werden, ob eine Korrelation zwischen dem 

Anteil von n-3 Fettsäuren in der Erythrozytenmembran und der Entwicklung von 

Inselzellautoimmunität bzw. Typ 1 Diabetes bei Kleinkindern mit erhöhtem Diabetes-

Risiko besteht. Aufgrund der noch zu kurzen Nachverfolgungszeit der BABYDIÄT 

Studie war dies im Zuge dieser Arbeit leider nicht möglich. Es werden weiterhin Pro-
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ben zur Bestimmung der Fettsäurezusammensetzung der Erythrozytenmembran bei 

den Kindern der BABYIDÄT Studie gesammelt und im Anschluss bezüglich der oben 

genannten Fragestellung ausgewertet. Ferner wird auch im Rahmen der TEDDY 

Studie (siehe Kapitel 2.4.3) die Rolle der n-3 Fettsäuren EPA und DHA in der Ätiolo-

gie des Typ 1 Diabetes durch Bestimmung der Fettsäurezusammensetzung der 

Erythrozytenmembran erforscht. In der TEDDY Studie werden hierzu Blutproben im 

Alter von 3, 6, 12 Monaten und anschließend jährlich gesammelt und analysiert. 
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4 Zusammenfassung 

 

Der Typ 1 Diabetes ist eine chronische Autoimmunerkrankung, in deren Ätiologie 

neben einer genetischen Prädisposition auch Umweltfaktoren eine wichtige Rolle 

spielen. Da Inselautoimmunität bereits in ersten Lebensjahren auftreten kann, deuten 

verschiedene Studien darauf hin, dass vor allem frühkindliche Ernährungsfaktoren 

(kurze Stilldauer, zeitiges Einführen von Kuhmilch und Gluten, Trinkwasserqualität, 

geringe Versorgung mit n-3 Fettsäuren), entscheidend am Autoimmunprozess betei-

ligt sind. Jedoch stammen diese Befunde zum größten Teil aus retrospektiven Unter-

suchungen. 

 

Im ersten Teil der vorliegenden Arbeit war es nun das Ziel, zum ersten Mal den 

Zusammenhang zwischen der Trinkwasserqualität im ersten Lebensjahr und der Ent-

stehung von Inselautoimmunität und Typ 1 Diabetes anhand der prospektiven 

BABYDIAB Studie im Rahmen einer Nested Fall-Kontroll-Studie mit 234 Kindern zu 

untersuchen. 

 

Es lassen sich für den ersten Teil der Arbeit folgende Befunde zusammenfassen: 

 

1. In der univariaten Analyse konnte zwar ein marginaler Zusammenhang zwischen 

einem niedrigen pH-Wert und der Progression zum Typ 1 Diabetes gefunden 

werden (p=0,034), d.h. Inselautoantikörper positive Kinder, die Trinkwasser mit 

einem niedrigeren pH-Wert (< 7,62) im ersten Lebensjahr erhielten, besaßen ein 

2,5-fach höheres Risiko einen Typ 1 Diabetes zu entwickeln als Kinder, die 

Trinkwasser mit einem höherem pH-Wert (≥ 7,62) erhielten. Aber nach Korrektur 

für multiples Testen konnte dieser Zusammenhang nicht mehr festgestellt 

werden.  

2. Weiterhin war zwar ein spektraler Absorptionskoeffizient (Färbung) von < 0,0825 

des Trinkwassers im ersten Lebensjahr mit einem signifikant verringerten Risiko 

für Inselautoimmunität gegenüber einem Absorptionskoeffizienten von ≥ 0,0825 

(OR: 0,5; 95% Konfidenzintervall 0,2-0,9; p=0,02) verbunden. Aber nach Kor-

rektur für multiples Testen war dieses Ergebnis ebenfalls nicht mehr signifikant 

(p=0,18). Jedoch lagen nur bei 44 Inselautoantikörper positiven Kindern und nur 
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bei 62 Inselautoantikörper negativen Kindern Angaben zur Färbung des Trink-

wassers vor. 

3. Es konnte kein Zusammenhang zwischen den anderen untersuchten Trinkwas-

serparametern pHc-Wert, Trübung, Nitrat-, Nitrit-, Eisen-, Aluminium- und 

Mangankonzentration im ersten Lebensjahr und der Entwicklung von Insel-

autoimmunität und der Progression zum Typ 1 Diabetes nachgewiesen werden. 

4. Weiterhin sollte im Rahmen dieser Arbeit geklärt werden, ob die Entstehung von 

Inselautoimmunität und Progression zum Typ 1 Diabetes und die  Trinkwasser-

qualität im ersten Lebensjahr auch durch die geographische Lage beeinflusst 

wird. Es konnten keine Unterschiede in der Entstehung von Inselautoimmunität 

und in der Progression zum Typ 1 Diabetes zwischen Nord- und Süddeutschland 

innerhalb der BABYDIAB Population gefunden werden. Jedoch zeigte sich 

bezüglich der Trinkwasserqualität z. T. signifikante Unterschiede zwischen Nord- 

und Süddeutschland. Nach Korrektur für multiples Testen waren innerhalb der 

gesamten Nested Fall-Kontroll-Studienpopulation die Parameter Färbung, Nitrit-, 

Eisen- und Mangankonzentrationen, innerhalb der Inselautoantikörper positiven 

Kinder die Parameter pH-Wert, Nitrit- und Mangankonzentrationen und innerhalb 

der Inselautoantikörper negativen Kinder die Parameter Färbung, Eisen- und 

Mangankonzentrationen signifikant höher in Norddeutschland als in Süddeutsch-

land.  

 

Zusammenfassend zeigen diese Ergebnisse im ersten Teil dieser Arbeit zwar einen 

Zusammenhang zwischen der Färbung des Trinkwassers im ersten Lebensjahr und 

der Entstehung von Inselautoimmunität sowie zwischen dem pH-Wert des Trinkwas-

sers und der Progression von Inselautoimmunität zum Typ 1 Diabetes, dennoch sind 

diese Assoziationen marginal.  

 

 

 

 

 

 

 

 



 105

Im zweiten Teil der vorliegenden Arbeit war es weiterhin das Ziel, den Einfluss des 

mütterlichen Typ 1 Diabetes auf die Fettsäurezusammensetzung der Erythrozyten-

membran der an der BABYDIÄT Studie teilnehmenden Kindern zu untersuchen.  

 

Es lassen sich für den zweiten Teil der Arbeit folgende Befunde zusammenfassen: 

 

1. In der vorliegenden Arbeit konnte gezeigt werden, dass die Fettsäurezusammen-

setzung der Erythrozytenmembran nur geringfügig durch den mütterlichen Typ 1 

Diabetes beeinflusst wurde. Im Vergleich zu den Kindern von nichtdiabetischen 

Müttern hatten die Kinder von Müttern mit Typ 1 Diabetes im Alter von 3 Monaten 

höhere prozentuale Anteile von gesättigten Fettsäuren, insbesondere von 14:0 

(PC: 14:0: 0,56 ± 0,05 vs. 0,36 ± 0,05, p=0,007). Diese Unterschiede konnten 

ebenfalls beobachtet werden, wenn nur voll gestillte Kinder analysiert wurden. Im 

Alter von 12 Monaten konnten einige wenige Unterschiede in der Fettsäurezu-

sammensetzung der Erythrozytenmembran zwischen den Kindern von Müttern 

mit und ohne Typ 1 Diabetes gefunden werden, während im Alter von 24 Monaten 

keine Abweichungen entdeckt wurden. 

2. Weiterhin konnten auch einige weitere Faktoren gefunden werden, die die 

Fettsäurezusammensetzung der Erythrozytenmembran beeinflussen können. So 

war das Vollstillen in den ersten 3 Monaten sowie eine Fischölsupplementierung 

der Mutter während der Schwangerschaft und/oder der Stillzeit mit einem erhöh-

ten prozentualen Anteil von EPA und DHA und der gesamten n-3 PUFA und n-3 

LC-PUFA in der PE Fraktion verbunden. Schwangerschaftsdauer und Geburts-

gewicht beeinflussten aber nicht die Fettsäurezusammensetzung der Erythro-

zytenmembran. 

3. Eine positive Korrelation konnte zwischen der Linolsäureaufnahme mit der Nah-

rung und dem Linolsäuregehalt in den Phospholipiden der Erythrozytenmembran 

festgestellt werden (PE: r=0,455 p=0,001, PC: r=0,400 p=0,003). Ferner war aber 

kein Zusammenhang hinsichtlich der SFA, MUFA und PUFA Aufnahme mit der 

Nahrung und den korrespondierenden Fettsäuregruppe in der Erythrozyten-

membran zu beobachten. 
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Zusammenfassend zeigen die hier erhobenen Daten im zweiten Teil dieser Arbeit, 

dass sich die Fettsäurezusammensetzung der Erythrozytenmembran zwischen Kin-

dern von Müttern mit und ohne Typ 1 Diabetes nur geringfügig unterscheidet, insbe-

sondere bei Kindern, die voll gestillt wurden. Die Bereitstellung von LC-PUFA wie 

EPA und DHA über die Muttermilch diabetischer Mütter ist mit der von Müttern ohne 

Typ 1 Diabetes vergleichbar. Dennoch waren die prozentualen Anteile von EPA und 

DHA geringer bei nicht voll gestillten Kindern als bei voll gestillten Kindern. Folglich 

sollten fischölsupplementierte Formulanahrungen für nicht voll gestillte Kinder diabe-

tischer Mütter in Betracht gezogen werden, damit eine gleiche Zusammensetzung an 

EPA und DHA in der Erythrozytenmembran wie von voll gestillten Kindern erreicht 

werden kann. Weitere Studien sind nötig, um die gefundenen Ergebnisse zu bestäti-

gen. 
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