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PREFACE 
 

Within the scope of the increasing demand for assessment tools to understand the 

future impacts of Global Change on the water cycle and other natural resources, 

environmental scientists try to bridge the gap between the small scale of well 

understood physical process models and the regional scale of resource management 

decisions. In this context, the aim of the integrative project GLOWA-Danube 

(www.glowa-danube.de) is to develop and apply a regional scale modelling tool to 

assist future water and resource management in the 77,000 km2 Upper Danube 

catchment. 

A necessary part of any land surface model implemented in such a predictive, 

mesoscale modelling tool is the integration of physically based algorithms that couple 

the energy transfer and storage processes with the water cycle at the soil-vegetation-

atmosphere boundary. As a part of my master thesis, I already had the chance to gain 

insight into the complex world of simulating soil water processes together with the 

difficulties one encounters trying to provide spatially distributed parameters for such 

models. Therefore, I was glad to join the “Hydrology and Remote Sensing” working 

group of GLOWA-Danube, led by Prof. Dr. Wolfram Mauser, soon after my 

graduation. This gave me the chance to further my knowledge about the soilscape as 

the main storage of water, energy and nutrients at the land surface, as well as its 

spatial heterogenity. For this reason, special thanks go to Prof. Mauser for giving me 

the chance to work for an integrative, application oriented project, for having 

confidence in my work and for the encouragement he always provided. Moreover, he 

constantly supported the progress of this thesis and simultaneously granted a high 

degree of personal freedom to develop my own ideas and methods. 

The project GLOWA-Danube, as a part of the national GLOWA (Global Change of the 

Water Cycle) programme is mainly funded by the Federal Ministry of Education and 

Research (Bundesministerium für Bildung und Forschung, BMBF). Additional funding 

is provided by the Free State of Bavaria and the federal state of Baden-Würtemberg. 

Best thanks go to these governmental bodies for supporting the project and, as a 

consequence, making this thesis possible. 

This work could not have been compiled without the help and support of the members 

of the Chair of Geography and Geographical Remote Sensing of the Ludwig-

Maximilians University, Munich (Germany). Therefore, many thanks go to all former 

and current members of this section for the great working atmosphere and the many 

solutions they provided on various scientific and technical problems I enountered 

during my time as a PhD student. 

 A special thank goes to Prof. Dr. Ralf Ludwig for introducing me into the field of 

numerical models of the land surface, especially hydrological models, during his time 

as an assistant professor at the Chair of Geography and Geographical Remote Sensing 

and member of our GLOWA-Danube working group. 
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1. Introduction 

1.1. Integrated Global Change Assessment 

Over the past several years, the public awareness for climate change, driven by 

anthropogenic emissions of CO2, methane and other trace gases, has steeply 

increased. However, global warming is already happening and the immediate 

reductions in greenhouse gas emissions necessary to stop further atmospheric 

temperature increase, are not economically and politically feasible. Humans have also 

altered a significant fraction of the Earth’s surface via changing the original land 

cover to agricultural and built-up areas. Both climate and land use changes are 

strongly connected to rapidly changing global economics and to a strong increase in 

the world’s population. These socio-economic and environmental transformations are 

considered in the term "Global Change". Despite recent efforts to reduce the 

threatening trend in these human-induced changes, especially climate warming will 

likely carry on for another 100 years or more (IPCC, 2007). For this reason, research 

on the expected impacts of Global Change on natural and managed environments is 

needed because knowledge about these impacts is the basis for future mitigation and 

adaptation strategies.  

The objective of the project GLOWA-Danube (www.glowa-danube.de) is to investigate 

the impact of change in climate, population and land use on the water resources of 

the Upper Danube basin and to develop and evaluate regional adaptation strategies. 

Therefore, the integrative Global Change decision support system (DSS) DANUBIA is 

developed by a team of researchers from different natural and socio-economic science 

disciplines (MAUSER 2003, LUDWIG et al 2003a). To assist future water management, 

DANUBIA can simulate the water and energy fluxes and their related matter fluxes in 

the natural environment, as well as the water use in energy production, farming, 

tourism, industry and households. For the first time a water-related, predictive 

modelling framework (Fig. 1-1) is set up, which includes all necessary interactions 

between natural science process models and social science deep actors models. The 

modular framework is designed within the Unified Modelling Language (UML), which 

serves as a common language between the disciplines and helps with the integration 

and sound coupling of the disciplinary models (MAUSER & LUDWIG 2002, MAUSER & 

MUERTH 2008). The DSS components are implemented in the object-oriented 

programming language JAVA. The process pixel ("proxel") is the basic spatial unit 

which enables the coupling of all the models on a common spatial platform and the 

exchange of variables with a well defined spatial representation. Raster-based 

simulation models have a long tradition in the natural sciences, but the key to the 

approval of the proxel concept in the socio-economic sciences is the commitment to 

agent-based (deep actors) modelling. In this approach, human activities are spatially 
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resolved and represented by describing the varying preferences, decisions and the 

distinct behaviour of the actors. 

 

Fig. 1-1: Components of the decision support system DANUBIA. 

The main purpose of this DSS is the assessment of the future water cycle in the 

mesoscale Upper Danube catchment (an area of about 77.000 km2) under changing 

boundary conditions, to support knowledge-based water resources and land use 

management.  The concept of scenario based decision support with DANUBIA (Fig. 

1-2) regarding Global Change, is based on scientifically sound meteorological input 

and the dynamic representation of future regional development. This includes political 

and economical conditions as well as demographic and sociological trends inside and 

outside the catchment borders. Aside from influencing the scientific projections of 

regional development, stakeholders can formulate their own strategies to adapt to 

Global Change or to mitigate its effects. These strategies can be incorporated into the 

possible decisions of the agents in the deep actors models. 

 

Fig. 1-2: Abstract model of scenario based decision support with DANUBIA. 
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To realistically assess future impacts of Global Change, especially of climate warming, 

on the environment and human societies, the exchange and storage of matter and 

energy on the land surface must be adequately represented by predictive models. 

These land surface models need to be non-calibrated to landscape characteristics that 

are under possible change due to the future developments. This includes empirical 

relationships and lumped model parameters that are connected to pre-defined, 

lumped parts of the landscape, like Hydrological Response Units (HRUs) (BECKER & 

BRAUN 1999). It is obvious that future changes in climate and land cover, as well as in 

the intensity of human activity will have an unknown effect on these relationships and 

can change the spatial distribution of the predefined representative landscape units. 

Furthermore, any model specific representation of space hinders direct coupling with 

other models, of ground water or atmosphere processes for example, and impedes the 

use of remote sensing data as a major source of spatially distributed data (MAUSER & 

BACH 2008). Moreover, the closure of matter and energy cycles at the land surface 

must be explicitly taken into account, to ensure realistic simulations of the expected 

alteration of water and energy fluxes and their feedbacks from other coupled models. 

Especially the upcoming (bidirectional) coupling of land surface models and Regional 

Climate Models (RCMs) needs consistent balances of water, energy and trace gases at 

the land surface (PITMAN 2003, HAGEMANN & JACOB 2007, MARKE 2008).  

The distributed, physical hydrological model PROMET (PROcesses of Mass and 

Energy Transfer) was further developed during the first and second project stages of 

GLOWA-Danube, as part of DANUBIA’s Landsurface component. Its ability to 

represent the mesoscale water balance of the Upper Danube basin and to reproduce 

daily runoffs for a number of gauges inside the catchment has recently been proved 

by MAUSER & BACH (2008).  

Besides that, advancements in modules related to the energy and matter cycles at the 

land surface have been made to include all necessary processes for the assessment of 

future changes in plant development (LENZ 2007, HANK 2008), soil carbon and 

nitrogen availability (NEUHAUS & KLAR 2007), storage of water as snow and ice 

(PRASCH et al 2007) and soil erosion (WALDMANN & MAUSER 2007). Prerequisite for a 

number of these modules is the realistic simulation of soil physical processes, 

especially the prediction of spatial and temporal distributed fields of soil moisture and 

soil temperature on the basis of the available soil physical properties. Even though the 

better part of mid-latitude catchments is covered with vegetation, fluxes of water 

vapour, heat and radiation from the soil into the canopy and the atmosphere have to 

be accounted for in upcoming coupled scenario runs. 
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1.2. Scientific Objectives and Outline of the Thesis 

The advancement of the DANUBIA Landsurface component to predict the soil-

vegetation-atmosphere transfer (SVAT) of radiation and heat and to simulate spatially 

distributed soil temperature patterns were main objectives of the model development 

during the second GLOWA-Danube project stage from 2004 to 2007. The SVAT of 

radiation and heat is a prerequisite for the successful coupling of the Landsurface 

component with the RCMs available for scenario simulations (MM5, REMO) (MARKE 

2008). Hourly prediction of distributed soil temperature fields is a requirement for the 

successful implementation of biochemical process models that predict the 

transformation and storage of carbon and nitrogen in soils (NEUHAUS & KLAR 2007) 

and an agent-based model of farming decisions (Fig. 1-3). 

 

Fig. 1-3: Recipients of output variables computed by SHTM within the DANUBIA 

framework. 

Therefore, it is the objective of this thesis to present the principles and methods of the 

proposed soil heat transfer and storage module (SHTM) and its sensitivity to different 

surface energy balance algorithms. This work also investigates the possible mesoscale 

representation of the interactions between energy and water in soils, especially 

during times of soil water freezing. During all stages of model development, special 

consideration was given to the balance between intended temporal and spatial scale 

of the application in mesoscale river basins and the desired physical accurateness of 

the proposed algorithms and parameters.  

All model components presented in this work were implemented in the raster-based, 

modular SVAT model PROMET for testing and validation. SHTM was then 

successfully integrated into the DANUBIA decision support system together with the 

most promising soil surface energy balance model. 
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After a brief introduction into the common approaches to model soil energy transfer 

and storage, Chapter 2 gives a short description of the physical geography and the 

demographic and economic characteristics of the area under investigation. The 

present-day water use and water pollution topics in the Upper Danube catchment are 

outlined and the potential conflicts regarding water use and water resource 

management are also addressed.  

The data necessary to validate simulated time series of soil temperature and the 

spatial patterns of surface temperature is presented in Chapter 3. The data set 

includes 43 soil temperature time series from meteorological network stations, two 

data sets from field campaigns of the Department of Geography, Munich and 12 area-

wide remotely sensed surface temperature maps. 

Chapter 4 gives a comprehensive exposition of all soil physical processes and 

parameters related to the simulation and evaluation of soil temperatures. A short 

summary of the basic principles of the soil water module, implemented in PROMET 

and the DANUBIA Landsurface component, is followed by an in-depth description of 

the equations, the parameters, the boundary conditions and the chosen model 

geometry of SHTM. Three surface ground heat flux models of differing complexity for 

snow-free conditions are presented and rounded off with a snow-soil heat transfer 

algorithm.  

The spatial distribution of the basic soil properties in the Upper Danube basin and the 

derivation of the associated hydraulic parameters is the subject of Chapter 5. 

Output variables of SHTM are validated against point-scale time series and spatially 

distributed temperature patterns in Chapter 6. First, the influences of different model 

configurations and boundary conditions on model performance are evaluated by 

means of an extensive field-campaign data set. Then, the performance of SHTM is 

assessed via soil temperature time series recorded by meteorological network 

stations. At the end of this chapter, simulated surface temperature patterns are 

compared to remote sensing data, with special attention to areas of the catchment 

with a low degree of vegetation cover. 

A summary of the achievements in regional and long-term simulation of the energy 

household of soils and an outlook on future applications of coupled simulations of soil 

water and energy conclude the thesis in Chapter 7. Finally, the outlook on possible 

future advancements suggests a simple, empirical approach for the simulation of 

mesoscale lateral runoff on frozen soils. 
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1.3. State of the Art in Soil Temperature Simulation 

Temperature variations below the earth’s surface have been of scientific interest since 

the 17th century, when discussion arose about the penetration depth of the solar 

radiation into the ground (BUNTEBARTH 2002). When FOURIER (1822) published the 

theoretical background for heat conduction problems, different authors started to 

work on the measurement and the prediction of heat wave propagation into the 

ground. One of the early works, which includes the collection of soil temperature time 

series at different sites as well as an analysis of site-specific thermal properties from 

the annual temperature cycle was compiled by J.D. FORBES (1846). Already at that 

time, the annual and diurnal variation of soil temperature was described with sine-

wave equations, which included the increase in damping and time-lag of the soil 

temperature amplitude with increasing depth. The modern form of the analytical sine-

wave equation was proposed by CARSLAW & JAEGER (1959).  

Investigations on the influence of landscape properties on measured soil temperatures 

began in the 19th century with the advent of continuous meteorological measurements 

and the rising interest in the effect of climate on plant growth and cultivation. FRÖDIN 

(1913) for example, found that both vegetation and snow cover have a great impact on 

the amplitude of ground temperatures. Then, in the 1960’s, resistance thermometers 

had led to a multitude of soil temperature surveys. Together with the fundamental 

works of DE VRIES (1963) on thermal conductivity and of GEIGER (1961) on near-

ground climatology, the scientific basis for the understanding of the processes and 

influencing variables of heat exchange and storage in the soil-vegetation-atmosphere 

continuum was provided. These works provide all the facts from soil physics and 

micrometeorology, which are essential for a theoretical model of soil surface heat 

exchange. In the following years, a number of authors, such as MONTEITH (1973), 

THOM (1975), CHOUDHURY et al (1986), OKE (1987) or CAMPBELL & NORMAN (1998) 

proposed or compiled different methods, that enabled the numerical quantification of 

surface energy and matter fluxes at the local scale. Numerical solutions of the 

differential equations governing the conductive and convective heat transfer in soils 

were developed in soil physics (CAMPBELL 1985, HUWE 1999, LI & SUN 2008). 

From a meteorological or climatological point of view (LIANG et al 1999), the 

calculation of the ground heat flux into the soil can be (a) an empirical relationship 

between net radiation and ground heat flux (CHOUDHURY et al 1987, KUSTAS & 

DAUGHTRY 1990), (b) the “force-restore” method (DEARDORFF 1978) that assumes a 

sinusoidal course of the diurnal ground heat flux or (c) the explicit representation of 

the heat diffusion and storage in soils. The former methods were developed to reduce 

the computational effort of numerical weather prediction (NWP) and global climate 

models (GCMs). Increased processing power, the advent of regional climate models 

(RCMs) and the call for more detailed representations of soil and vegetation processes 

in atmospheric models, like the carbon cycle in climate models (PITMAN 2003), led to 

the inclusion of explicit multi-layer soil temperature models. However, most of these 
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models do not incorporate site-specific soil properties nor do they incorporate the 

influence of soil moisture on soil temperature, mainly due to their large scale 

application (ÁCS et al 1990, HAGEMANN et al 1999, LIANG et al 1999, CHEN & DUDHIA 

2001, BEST et al 2005 amongst others). These simplifications of the energy and water 

processes in the soil-vegetation-atmosphere system can lead to significant variations 

in predicted near-surface temperatures (PETERS-LIDARD et al 1998, MOBERG & JONES 

2004, MIAO et al 2007). 

In the land surface modelling community, a variety of different approaches to soil 

temperature simulation were developed, which can be roughly divided into empirical-

statistical and physical-deterministic models. Many of these models arose out of the 

need to provide soil moisture and temperature as input data to biochemical process 

models on the transformation of nitrogen (LUDWIG et al 2001) or carbon (RAICH & 

SCHLESINGER 1992) in soils and their exchange between soil and atmosphere. 

The most common empirical approach utilized in ecological models is the sine-wave 

algorithm of CARSLAW & JAEGER (1959), which relates the diurnal or annual course of 

the soil temperature at a given depth to the mean and extreme values of near-ground 

air temperature and the average thermal soil properties. A similar methodology was 

proposed by KLUENDER et al (1990), which effectively reproduced daily minimum and 

maximum temperatures at 5 and 10 cm soil depth at different sites in Arkansas, USA. 

BELTRAMI (2001) and THORN et al (1999) analysed the relationship of climate station 

data and measured soil temperatures in cold climate regions and were able to 

produce satisfying results with their statistical models, even though snow cover and 

soil water freezing had a significant impact on the annual soil temperature cycle. 

Most Soil-Vegetation-Atmosphere Transfer (SVAT) schemes of energy and matter, 

primarily designed as predictive tools in agricultural and forest meteorology, 

hydrology and physical geography, use deterministic representations of the soil heat 

transfer and storage in soils. But, as opposed to pure soil physical models, their soil 

temperature algorithms frequently use empirical approximations for some complex 

parameters, dependencies and boundary conditions. The empirical approximations 

faciliate the application of these models in areas of local to regional scale if input data 

from thematic maps, remote sensing or landscape analysis is available. Relevant SVAT 

models, including physically-based soil temperature schemes are DAISY (VAN DER 

KEUR et al 2001, HANSEN 2002), CoupModel (ALVENÄS & JANSSON 1997) and BEKLIMA 

(BRADEN 1995, WELPMANN 2003) amongst others. The forest floor model of OGÉE & 

BRUNET (2002) combines a typical SVAT approach for water and energy fluxes with 

the force-restore method of DEARDORFF (1978). 

 



 

8 

2. The Upper Danube Watershed 

2.1. Hydrology, Climate and Topography 

The Danube is the second largest river in Europe with a watershed area of 817.000 

km² and a length of 2,888 km (Fig. 2-1). Its source is in the Black Forest in south-

western Germany and it flows through the northern foreland of the Alps, the 

Pannonian and Romanian lowlands, and drains through a delta into the Black Sea. 

The project GLOWA-Danube is limited to the analysis of the upper part of the 

catchment defined by the discharge gauge Achleiten, near Passau in Germany. This 

Upper Danube discharge basin has an area of 76.653 km² and consists of a southern, 

mountainous part with altitudes up to 4049 m a.s.l., a large foreland and low 

mountain ranges along its northern border. 

 

Fig. 2-1: Location of the Upper Danube within the whole Danube catchment. 

Following LUDWIG et al (2003) the climate is temperate and humid, but with a strong 

north-south gradient towards the Alps. The mean annual temperature decreases from 

+8 °C in the lowlands along the Danube to -5 °C in the partially glaciated Central Alps 

(Fig. 2-2). Likewise, precipitation ranges from 650 mm in the northern low mountain 

ranges to over 2000 mm per year in the high mountain ranges of the Northern Alps 

(Fig. 2-3). The significant difference in precipitation patterns between seasons 

originates from the stronger and more frequent orographic precipitation events 

during summer, when moist air from the Atlantic Ocean flows to the Alps by north-

western currents and produces frequent convective summer rains. 
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These heterogeneous physiogeographic characteristics lead to a strong spatial and 

temporal differentiation of runoff generation. Regional floods occur frequently in the 

alpine foreland and the Alps, triggered by strong precipitation events in summer. 

Additionally, characteristic large-scale weather patterns combined with snowmelt 

activity can trigger floods, which have an impact upon the whole Upper Danube 

region and its tributaries (e.g. the 200-years Pentecost Flood of 1999). For flood 

protection, energy production and management of water resources, the discharge of 

all important tributaries of the Upper Danube has been regulated with reservoirs and 

dams. To a large extent, their management is determined by the dynamics of the 

snow and ice storage in the Alps. The Inn, the most important alpine tributary, 

contributes 52% of the average discharge of 1430 m³/s, measured during the period 

1901 to 2002. Mean high water during this period was 4110 m³/s and mean low water 

615 m³/s. During the most recent flooding of Passau in August 2002, peak discharge 

of the Danube at Achleiten was 7700 m³/s. 

 

Fig. 2-2: Annual mean snow cover and air temperature simulated with PROMET for 

the period 1971 to 2000. 

 

Fig. 2-3: Mean winter and summer precipitation simulated with PROMET for the 

period 1971 to 2000. 
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2.2. Geology, Soils and Vegetation 

The geology of the Upper Danube catchment can be divided into 5 major units from 

north to south: The Paleaozoic Basement mountains, the Karst low mountain ranges, 

the Molasse lowlands, the alpine foreland dominated by pleistocene deposits and the 

Alps. In the central part of the Upper Danube basin, Jurassic Karst is the lowest 

hydrogeologic layer, covered by two Molasse layers. These, again, are covered by 

quartenary deposits in many areas of the catchment. 

 

Fig. 2-4: Schematic geologic map of the Upper Danube watershed (BARTHEL et al 

2005). 

The soil distribution in the Upper Danube region is closely related to the surface 

geology, as shown in Fig. 2-5. Most of the soilscape evolved after the last ice age, for 

this reason most soils do not exceed a depth of 150 to 200 cm. The prevalent soil 

textures found on quartenary deposits are loamy sand and sandy loam, with gravelly 

lower horizons in areas of alluvial deposits. Typical soils on tertiary deposits are silt 

loam and clay silt where Loess settled on the periglacial landscape during the glacial 

periods. In the mountainous regions, the mesoscale soil maps display mainly 

Leptosols, whose textures are determined by the weathering products of the 

respective bedrock.  

The highly fragmented land cover and land use are mostly determined by human 

activity. Forestry and agricultural use (grassland, farmland) of different intensities 

dominate, whereas the present agricultural potential is limited in various parts of the 

catchment by climatic and pedogenic disfavours in terms of high precipitation, low 

temperatures and shallow soils with a high fraction of coarse material. Natural 

vegetation is mostly found in inaccessible, mountainous regions, but still often 
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influenced by tourism and forestry. This includes the once sizeable wetlands that have 

been drained and cultivated in the past. These wetlands appear as clay loam areas in 

the soil map (together with the areas covered by water). The land cover map 

presented in Fig. 2-6 is derived from the 1:100,000 data set of the pan-European 

CORINE Land Cover project CLC-2000 (2004).  

 

Fig. 2-5: Soil type map of the Upper Danube catchment derived from the 1:1,000,000 

soil overview map of Germany (BÜK1000, BGR 1998). 

 

Fig. 2-6: Land cover map of the Upper Danube catchment based on the 1:100,000 

data of the European CORINE Land Cover project (2004). 
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2.3. Water Use and Resource Management 

The Upper Danube catchment is home to approximately 10 million people, which 

comes down to an average population density of about 130 people per km2. Yet, the 

majority of the inhabitants (inh.) are located in the central and northern part of the 

region, in and around the most important agglomerations Munich (1,350,000 inh.), 

Augsburg (260,000 inh.), Ingolstadt (120,000 inh.) and Ulm (120,000 inh.). While the 

central part of the region, around Munich, has economical significance on the 

European level (industry and services), there is a strong socio-economic gradient, 

especially towards the southern and eastern parts, where agriculture and tourism play 

a more important role. The diverse physiographic and socio-economic situation in the 

Upper Danube leads to specific local water use and water pollution topics. Intensive 

agriculture and stock farming releases large amounts of fertilizers and pesticides, 

which conflicts with quality issues of the mainly decentralized public water supply 

from ground- and spring water. Furthermore, the possibly decreasing quantity of river 

runoff in a changing climate will lead to future struggles regarding surface water use. 

All important tributaries of the Upper Danube have been regulated for flood 

protection, water resource management, and energy production through reservoirs 

and dams. Then again, the lower part of the Upper Danube is part of the European 

waterway that connects the North Sea to the Black Sea and therefore needs certain 

water levels. An increasing amount of winter runoff is used for the production of 

artificial snow in the skiing regions of the Alps and reduces the winter runoff levels of 

some smaller tributaries. All of this conflicts with environmental sound river levels 

that are needed to protect the riparian and wetland ecological reserves. 

Despite these possible future conflicts, the water resource management of this region 

is complex and largely uncoordinated between the different administrative entities. 

73% of the Upper Danube basin is controlled by the German states Bavaria and 

Baden-Württemberg, most of the alpine part (24%), including the important tributary 

Inn, belongs to Austria and some minor areas to Switzerland, Italy and the Czech 

Republic. On one hand, the water supply structures are split between hundreds of 

communal water suppliers. On the other hand, the ongoing implementation of the 

European Water Framework Directive demands for an integrated, ecological sound 

water resource management on the catchment scale. Combined with the ongoing 

changes in climate, land use, touristic activity and agricultural production goals, the 

future of water in the Upper Danube basin is largely unclear. GLOWA-Danube aims at 

supporting knowledge-based decisions regarding these issues, by providing a 

decision support system that takes into account most of these natural and socio-

economic processes on the catchment scale.  
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3. The Data 

This chapter describes the data sets used for the validation of the soil temperature 

and soil ice simulations presented in chapter 6. Aside from numerous point data sets 

of climate stations and ground measurements, a limited data set of remotely sensed 

land surface temperatures derived from NOAA-AVHRR is presented. 

3.1.  Eddy Correlation System Measurements 

To validate simulated soil temperature series against scientifically collected data, time 

series of two micrometeorological systems of the Department of Geography 

(University of Munich) were used. Both were situated near Munich, Germany, and 

measured all necessary variables (Table 3-1) to determine turbulent vapour and 

energy fluxes between the land surface and the atmosphere, via the eddy–correlation 
method (DABBERDT et al 1993, TWINE et al 2000). Data from these Eddy-Flux (EF) 

stations, was used in three different ways in this work: First of all, the basic structure 

of the heat transfer module was tested with measured soil heat flux G0 and soil 

moisture data and those simulated temperatures were compared to the measured soil 

temperatures Tmeas(z). Secondly, the measurements of Rnet and G0 were used to derive 

an empirical ratio of ground heat flux to radiation, which can be used in PROMET, if 

no surface energy balance algorithm is run. Finally, the time series of Tmeas(z) were 

used to validate the simulated temperatures of the fully coupled land surface model. 

Table 3-1: Variables measured at the Eddy-Flux sites. 

 

One station was situated on a rape field at Gut Hüll, west of Munich (48.09°N, 

11.33°E, 587m a.s.l.) in the summer of 2003. The soil texture at this site was surveyed 

as clay silt in the upper 0.45 m (about 70% silt and 20% clay), followed by a small 

silty clay horizon (~3 cm) on loamy gravel deposited during the Riss glacial. The EF 

station was set up during spring and was operational for the main vegetation period of 

the rapeseed field, which was harvested on July 15, 2003. An agrometeorological 
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station of the Bavarian State Office of Agriculture is located nearby, that was also used 

for validation of the annual temperature course. The collected data was used for a 

diploma thesis that investigated the rapeseed parameters used in the biological 

module of PROMET (MARKE 2004).  

The other station at Wielenbach, south-west of Munich (47.89°N, 11.16°E, 550 m 

a.s.l.), is operational since 2003 on an floodplain meadow. The soil texture of the 

upper horizon is loamy sand (about 40% silt and 15% clay) with high organic 

material content on the alluvial deposits (sandy gravel) of the river Ammer. 
Unfortunately, soil moisture and soil temperature are heavily influenced by the 

shallow groundwater level most of the year. Interestingly, a soil temperature station of 

the German meteorological network was put into operation in April 2007 nearby, so 

soon comparisons of the measurements of both stations can be conducted. For this 

work the data of this new station is not used, because the meteorological time series 

for the year 2007 was not available for the summer of 2007. 

 

Fig. 3-1: Locations of the Eddy-Flux stations inside the Upper Danube catchment. 
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3.2. Data from Meteorological Networks 

To validate SHTM on a variety of catchment proxels (process pixels), time series from 

a number of meteorological stations were used. However, the two available datasets 

both have their own limitations, as described below. Consequently we compared 

simulated temperature time series with data from both networks, in order to get an 

overall evaluation of the performance of PROMET regarding soil heat flux simulations.  

3.2.1. Network of the German Weather Service 

At some of the meteorological and climatological stations of the German Weather 

Service (Deutscher Wetter Dienst, DWD), soil temperature and the basic 

meteorological variables are measured simultaneously three times a day. Synoptic 

stations not only detect soil temperature continuously, but also provide data three 

times a day for the climatological data set. The advantage of this dataset is that the 

thermometers are maintained regularly and errors or gaps in the data are identified 

automatically and evaluated by professionals. Yet, the data set has a limited temporal 

resolution, that does not always capture the true daily amplitude of the near surface 

soil temperature fluctuations. For that reason, the daily mean values and daily 

amplitudes of soil temperature provided by the DWD are used. Most of the continuous 

measurements of soil temperature are conducted at 5, 10, 20 and 50 cm depth and at 

7:30h, 14:30h and 21:30h CET, the so-called Mannheimer Stunden. 

 

Fig. 3-2: Locations of the DWD soil temperature stations inside the catchment. 
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About 70 soil temperature stations have been operational inside the catchment from 

1951 to 2007. The validation dataset from 15 stations was selected based on two 

conditions: The chosen stations had to represent different regions of the investigation 

area and recorded soil temperature during the years 2001 to 2005.  

Table 3-2: DWD soil temperature stations used for validation. 

 

3.2.2. Agrometeorological Network of Bavaria 

The second source of continuous time series of soil temperature for validation is the 

Agrometeorological Network (AgMet, http://www.lfl.bayern.de/agm/) of the Bavarian 

State Office of Agriculture (Bayerische Landesanstalt für Landwirtschaft, LfL). The 

128 meteorological stations operated by the LfL are distributed over the agricultural 

regions of Bavaria, but are mainly supervised by farmers. Thus, the quality of the 

measurements varies from station to station. Measurements are provided as hourly 

values and can easily be downloaded via the internet. Additionally, basic information 

about each location is supplied, including mean annual temperature and precipiation, 

as well as a short description of the landscape. The data recorded at every site 

includes precipitation, air temperature at 20 and 200 cm height, wind speed and soil 

temperature at 5 and 20 cm depth. The temperature sensors used for air and soil 

measurements are resistance thermometers of the type Pt 100 A that have an effective 

range of -30 to +40 °C and an accepted tolerance of ±0.15 °C. Some stations also 

measure incident radiation, humidity, leaf wetness and/or soil temperature at 50 cm 

depth.  

The network was founded in 1989 to support environmentally friendly crop 

production in Bavaria. Climate, beneath soil and vegetation type, is an important 

criterion for successful crop development and influences many aspects of agriculture. 

As the spatial density of the DWD meteorological network was insufficient for field 

specific adaption of cultivation techniques, the first AgMet stations were put into 

operation in the early 1990s. To encourage use of knowledge based cultivation 

management, a public web-based data server was set up, to allow unlimited access to 
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the AgMet data for public and scientific users (FRÖHLICH 2001). Mean and extreme 

values from the station’s sensors are logged every 10 minutes and put into the 

network’s database. Users can download mean and extreme values on an hourly or 

daily basis from the internet site of the Bavarian agrometeorological network.  

The validation dataset used in this work consists of 28 stations chosen to represent 

the different agricultural areas of Bavaria and two purposely chosen ones. Freising 

(Nr. 008) was chosen because it is operated by the University of Applied Sciences 

Weihenstephan and the DWD and Gut Hüll (Nr. 072) because it is situated near the EF 

site mentioned above. Unfortunately, the 2003 soil temperature dataset from Gut Hüll 
was obviously flawed when compared to recorded air temperatures, so the validation 

dataset used in this work includes only the 2004 soil temperature time series. 

The names and numbers of all stations used in this work are found in Appendix B, 

their distribution in the catchment is depicted in Fig. 3-3. 

 

Fig. 3-3: Location of the agrometeorological stations inside the Upper Danube 

catchment. 
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3.3. NOAA-AVHRR Land Surface Temperature 

The only feasible way to measure surface temperature over regional or continental 

scales is to use remote sensing by satellites. Many studies have been devoted to 

establish a methodology to retrieve land surface temperatures from sensor data of the 

Advanced Very High Resolution Radiometer (AVHRR) of the US National Oceanic and 

Atmospheric Administration (NOAA). It measures the radiance of earth’s surface in 

five spectral channels, of which channels 4 and 5 are within the range of earth’s 

thermal emission bands. In this study, data from the NOAA-17 AVHRR/3 sensor is 

used because it has a repetition rate of one day, scanning the Upper Danube region at 

approximately 11:00 CET, and a spatial resolution of about 1km.  

The sensor data from NOAA-17 is recorded by a ground station operated at the 

Department of Geography in Munich and is automatically processed and 

georeferenced for use in the Upper Danube catchment at the company VISTA, 

including an automatic cloud and snow cover classification. The land surface 

temperature (LST) of each scene is retrieved from AVHRR brightness temperatures 

(BTs) in channels 4 and 5 by the application of three different Split Window 

Techniques (SWT). Because there are numerous SWT algorithms published in 

literature (see DASH et al 2002), this chapter shall examine the possible differences in 

using different techniques for LST retrieval. 

  

Fig. 3-4: Part of a NOAA-AVHRR strip map over Europe (17.09.2003). 
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3.3.1. The AVHRR/3 sensor 

The AVHRR/3 is a six channel scanning radiometer providing three solar channels in 

the visible-near infrared region and three thermal infrared channels. Of these 

channels only five can be transmitted to Earth at any given time, including channels 4 

and 5, which work at the spectral ranges of 10.3 – 11.3 and 11.5 – 12.5 µm 

respectively. The detectable temperature range of the thermal channels is 180 to 350 

K and the spatial resolution at nadir is 1.09 km. The orbital spacecraft NOAA-17 

travels at an altitude of 833 km and retrieves complete strip maps of the earth’s 

surface from pole to pole approximately once a day. The satellite orbits around the 

earth every 101 minutes, passing the area of interest, the Upper Danube basin, 

between 10:30 and 12:00 CET heading south.  

3.3.2. The Determination of Land Surface Temperatures  

Satellite sensors measure the surface-leaving radiance of the land surface, modified 

by the atmosphere, in different spectral channels (DASH et al 2002). For this reason, 

LST retrieval has to solve three different problems:  

1) To estimate the thermal emissivity єT of a land surface as a heterogeneous, non-flat 

reference face, that is characterized by the type of land cover and underlying soil, and 

the moisture on the surface and in the soil. 

2) To determine the amount of atmospheric absorption of radiation transmitted from 

the surface to the sensor, especially due to water vapour. 

3) And to compute the true LST from the brightness temperature (BT) of the available 

infrared channels. BT is defined as the temperature of a hypothetical black body 

emitting an identical amount of radiation at the channel’s mean wavelength. 

True emissivities of heterogeneous surfaces are hard to come by, but their values lie 

within the range of 0.90 and 0.99 for most natural land covers. Only the extensive use 

of remote sensing techniques is able to determine the true emissivity of a land surface 

pixel (DASH et al 2002). Therefore most SWTs distinguish є by the type of land cover, 

namely water (єT ≈ 0.98), bare soil (єT ≈ 0.90-0.96) and vegetation (єT ≈ 0.94-0.99), 

with values given for the 8 to 14 µm thermal waveband. A summary of experimentally 

determined emissivities and their implication on LST retrieval can be found in QIN & 

KARNIELI (1999), SNYDER et al (1998) and SOBRINO et al (2000). 

Regarding atmospheric effects, the AVHRR sensor was built to make measurements in 

one of the “atmospheric windows” (10.3-12.5 µm wavelength), where the influence of 

atmospheric absorption, especially due to water vapour, is as small as possible. If the 

atmosphere is dry and visibility is good, then, as several authors assume, there is no 

atmospheric contribution to the thermal sensor’s signal (e.g. KERR et al 1992). Some 

of the more sophisticated LST retrieval methods make use of atmospheric 

transmittance and radiance models, like MODTRAN, to quantify the atmospheric 

effect on a physical basis (e.g. YANG & YANG 2006). Preparations for global scale 
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monitoring of LST, where detailed information on atmospheric temperature and water 

vapour content are hardly available, distinguish SWT parameters for cold and warm, 

as well as dry and wet atmospheric conditions (YU et al 2008). 

The brightness temperatures BT4 and BT5 of both channels of the AVHRR determined 

by the sensor algorithm then are fed into the basic split window equation: 

b)BT(BTaBTT 5440 +−⋅+=       (3.1) 

Where coefficients a and b account for atmospheric conditions and surface emissivity, 

respectively. Some SWT methods determine these coefficients solely depending on єT 

of channels 4 and 5, while others also incorporate the water vapour dependence in 

non-linear equations (DASH et al 2002). 

In this study three different techniques were chosen, in order to quantify the 

difference between using a simple SWT and using a more complex one. The first SWT 

algorithm was chosen because of its simple structure and semi-empirical 

consideration of vegetation cover, although it was developed for semi-arid regions 

(KERR et al 1992). Additionally, it is based on the basic algorithm for SWT and is 

designed to work without the need for atmospheric correction and emissivity 

estimation, as most other algorithms. The coefficients of equation (3.1) only vary as a 

result of land cover and were determined during a case study in southern France 

(Table 3-3). Actual surface temperature is determined by a weighting coefficient CNDVI 

depending on the Normalized Difference Vegetation Index (NDVI) 

NDVI)(NDVI

)NDVI(NDVI
C

max

min
NDVI −

−
=       (3.2) 

The final surface temperature is determined from the weighted mean between the 

potential soil and vegetation temperatures (Tveg and Tsoil) which are calculated by 

using equation (3.1) and the coefficients of KERR et al (1992) 

soilNDVIvegNDVI0 T)C(1TCT ⋅−+⋅=      (3.3) 

The second method presented here is a modification of the widely used SWT equation 

of BECKER & LI (1990) for use with NOAA-16 and -17 sensors 

2

TBT
e

2

TBT
dcT 5454

0

BB −
⋅+

+
⋅+=     (3.4) 

The coefficients used in this equation have to be calibrated according to atmospheric 

conditions, emissivity values and sensor specifications. The offset of this equation is 

constant, but the other two coefficients are related to mean thermal emissivity (єT) 

and the emissivity difference (∆ єT) between channel 4 and 5, if sensor characteristics 

and typical atmospheric conditions are known (BECKER & LI 1990). YANG & YANG 

(2006) used the MODTRAN atmospheric transmittance and radiance algorithm, to 

simulate 4 different model atmospheres for the main land of China and found for 

NOAA-17, that c = 0.89 and d and e are related to emissivity by  
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+=     (3.6) 

The third SWT algorithm used in this study was developed by ULIVIERI et al (1994) 

and is a variant of the basic SWT equation that incorporates thermal emissivity. If 

atmospheric water vapour content is less than 3.0 g/cm3, LST is defined as 

( ) TT5440 ∆ε75ε148)BT(BT1.8BTT −−+−+=    (3.7) 

This simple technique was found to correlate well with ground measurements by 

VASQUEZ et al (1997) and is recommended by YU et al (2008) for application in 

heterogeous, large scale investigations, because of its low sensitivity to emissivity 

errors, but acceptable precision performance under different conditions. VASQUEZ et 

al (1997) report, that the typical temperature deviation due to a 1% error in estimated 

emissivity is about 0.8 K for the ULIVIERI et al (1994) algorithm, while the BECKER & LI 

(1990) type algorithm shows a deviation of about 1.4 K due to this emissivity error. 

To determine the actual emissivities of the different land surface types without any 

additional information about the true NDVI, it is assumed that, if vegetation cover is 

present in humid climates, then the NDVI is greater than 0.5. After SOBRINO et al 

(2000), the mean emissivity of both thermal bands is therefore set to 0.985 for 

vegetated pixels, but following VASQUEZ et al (1997) and the investigations on 

emissivities cited in SOBRINO et al (2000), ∆є is assumed to be 0.010. In the case of 

built up areas or in regions of intensive agricultural use after harvest, where only a 

small number of trees and meadows remain, we suppose the NDVI to be smaller than 

0.2. Again, following SOBRINO et al (2000) and their analysis of typical land surface 

emissivities, the mean thermal emissivity єT is set to 0.970 and ∆єT = 0.010. This 

relates to a reflectivity of the AVHRR channel 1 of 0.25 in the equations derived by 

SOBRINO et al (2000). Solving the above equations leads to the parameters c/d/e in 

Table 3-3.  

Table 3-3: Coefficients a & b (KERR et al 1992) and c, d & e (YANG & YANG 2006). 

 

In case of vegetation cover, the ULIVIERI et al (1994) algorithm then reduces to 

K 0.03)BT(BT1.8BTT 5440 +−+=      (3.8) 

and for bare soil surfaces to 

K 0.69)BT(BT1.8BTT 5440 +−+=      (3.9) 
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Applying these three methods on theoretical brightness temperatures reveals 

remarkable differences in estimated land surface temperatures. For comparison only, 

graphs showing the original parameterisation of equation (3.4) by BECKER & LI (1990) 

are also presented in the following figures.  

If the difference in brightness temperatures of channel 4 and 5 (dBT) is fixed to a 

typical value (for example 1.3 K), then the difference of these SWTs in derived LST is 

nearly constant for a broad range of brightness temperatures (Fig. 3-5). This arises 

from the fact that in both basic SWT equations, the relationship between mean 

brightness temperature and LST is nearly 1:1. Only the offset varies significantly. 

Moreover, the influence of dBT on the calculated LST is expressed differently, when 

comparing the different SWT parameterisations. Typically, BT4 is between 1 and 2 K 

higher than BT5. For that reason, Fig. 3-6 shows the relationship of LST to BT5, with a 

fixed BT4 of 290.0 K. Apparently, two SWT methods developed for the second 

generation of AVHRR sensors (BECKER & LI 1990 and KERR et al 1992) show a nearly 

parallel slope in Fig. 3-6, but about 4.5 K difference in absolute LST. The YANG & YANG 

(2006) parameterisation of the BECKER & LI (1990) equation, on the other hand, 

displays a different dependency of LST to dBT, especially in the case of a vegetated 

surface. The ULIVIERI et al (1994) model has a similar slope than the YANG & YANG 

(2006) equations and represents a moderate relationship of LST to brightness 

temperature difference.  

Still the expected difference in LST, in the typical dBT range of the AVHRR channels, 

is 2 to 3 K for vegetated surfaces between the algorithms used in this study. In case of 

bare soil, the computed LST is in the range of about 1 K for all algorithms beside the 

KERR et al (1992) equation, which seems to underestimate soil surface temperatures 

by 4 to 5 K.  

Given the evaluations in literature (QUADRIARI et al 2002, VASQUEZ et al 1997, YU et al 

2008), the ULIVIERI et al (1994) algorithm is supposed to be the most reliable SWT for 

heterogeneous landscapes like the Upper Danube catchment. Based on this analysis, 

the effort to validate simulated land surface temperatures, presented in the following 

chapter will concentrate on correlations between remotely sensed and simulated land 

surface temperatures. Only in regions with intensive agricultural land use, soil surface 

temperature can be estimated from NOAA-AVHRR in late autumn. Here, the bare soil 

parameterisations are applied depending on simulated vegetation cover, even if the 

real heterogeneous land cover could have a NDVI greater than 0.2.   
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Fig. 3-5: Relationship of LST to channel 4 BT with dBT = 1.3 K. 

 

Fig. 3-6: Relationship of LST to channel 5 BT (with channel 4 BT of 290.0 K). 
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4. Description of Soil Processes  

4.1.  The Modular Land Surface Model PROMET 

The Soil-Vegetation-Atmosphere-Transfer (SVAT) model PROMET (PROcesses of 

Mass and Energy Transfer) is a raster-based, modular framework consisting of several 

interdependent but coupled modules to simulate water, energy and matter fluxes on 

the catchment scale. The original model for the computation of land cover-dependent 

evapotranspiration with the Penman-Monteith equation (as in MAUSER & SCHÄDLICH 

1997) includes the following modules: 

(a) The radiation module calculates the radiation balance according to its 

geographical location, sun angle and cloud cover. 

(b) The soil hydraulic module calculates the soil water content as a function of 

infiltration, exfiltration, percolation and capillary rise (EAGLESON 1978). 

 (c) The plant physiological module calculates the water transport in plants as a 

function of the specific stomatal resistance, determined by absorbed photosynthetic 

active radiation, temperature, humidity and soil moisture (BALDOCCHI et al. 1987). 

(d) The aerodynamic module calculates the removal of transpired water vapour into 

the atmosphere (MONTEITH & UNSWORTH 2008). 

(e) The snow module ESCIMO, which was recently updated by PRASCH et al (2008) 

after STRASSER et al (2007), calculates the surface processes in case of snow cover. 

Recent developments in PROMET account for the processes needed to close the 

energy and matter cycles at the land surface and the coupling of transpiration to the 

biophysical processes of a dynamic vegetation (Fig. 4-1). The advancements include: 

(f) An alternative two-layer dynamical biophysical canopy module (HANK 2008) based 

on the work of FARQUHAR et al (1980) that calculates the transpiration, biomass 

production and energy balance of the canopy, 

(g) improvements of the radiation module to calculate incoming radiation for both 

vegetation layers and the ground surface (HANK 2008, MAUSER & BACH 2008), 

(h) a multi-layer soil hydraulics module that extends the original EAGLESON (1978) 

approach to calculate surface and interflow runoff (MAUSER & BACH 2008) 

(i) an energy balance algorithm for non-vegetated surfaces and the soil surface below 

canopies, 

 (k) and the Soil Heat Transfer Module (SHTM) that calculates soil energy fluxes and 

storage (including soil freezing) for the soil layer stack, both presented in this work. 
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Therefore, PROMET, in its latest version (MAUSER & BACH 2008), extends the classical 

SVAT scheme by coupling energy and water fluxes at the land surface with 

biophysical processes (Fig. 4-1). The main driving meteorological variables 

(precipitation, air temperature, wind speed, air moisture and cloud cover) needed for 

simulation can be obtained from measured time series, for example from German 

Weather Service (Deutscher Wetter Dienst, DWD) climate stations data. For the 

simulation of future Climate Change scenarios, possible future weather trends based 

on DWD data from 1960 to 2006 can be generated with the stochastic weather 

generator (MAUSER et al 2007). Additionally, PROMET has the ability to use output 

variables of regional climate models (RCM) for scenario modelling. As RCMs like 

REMO, MM5 or CLM work on different temporal and spatial scales not compatible 

with PROMET, the meteorological scaling tool SCALMET (MARKE 2008) was 

developed, which conserves energy and mass flux densities between land surface and 

atmosphere even in alpine terrain. 

 

Fig. 4-1: PROMET energy and mass transfer at the land surface without snow cover. 

Like most SVAT models, PROMET describes the processes at the land surface as 

vertical, one-dimensional fluxes, aside from lateral runoff. For the adequate 

representation of future changes in fluxes and storage variables, the submodels of 

PROMET are not calibrated to any site-specific characteristics. All static vegetation 

and soil parameters are predefined on the basis of field measurements, literature 

values or transfer functions. The basic, spatially distributed input data needed for 

simulation runs are raster maps of elevation, slope and exposition, as well as raster 

maps of vegetation and soil type classes. 
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To close the water cycle at the catchment scale, additional modules describing the 

ground water retention and the flow through channels, lakes and man-made 

reservoirs are available within the PROMET framework. For a climatological study 

period of 33 years, the water balance, daily discharges and significant return periods 

at several gauges in the Upper Danube basin were reproduced with good accuracy 

and without calibration against measured discharge (MAUSER & BACH 2008). 

The processes of water and heat transfer in soils represented in PROMET are 

depicted in Fig. 4-2, together with their main influences on root zone processes. The 

vertical distribution of soil temperatures is driven by an interannual lower boundary 

condition and the ground heat flux provided by an energy balance algorithm at the 

soil surface. Soil temperature influences the biochemical activity in the root zone and 

can affect the soil water distribution via soil water freezing. The energy fluxes 

computed by SHTM in return are impacted by the actual water content supplied by 

the soil water model of PROMET. Additionally, both the soil water and the soil energy 

cycles are connected by the evaporation of water at the soil surface.   

 

Fig. 4-2: Energy and mass transfer on and inside the soil layer stack of PROMET. 

In the following, a detailed description of all soil physical processes and parameters 

related to the simulation of soil temperatures with SHTM are presented. After a short 

summary of the basic principles of the soil water module, an in-depth description of 

the equations, the parameters, the boundary conditions and the chosen model 

geometry of SHTM is given. Three surface ground heat flux models of differing 

complexity for snow-free conditions are presented and complemented with a soil 

surface heat transfer algorithm in case of snow cover. 
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4.2. The Soil Moisture Module 

To simulate water fluxes in the soil column, PROMET uses a modified version of the 

Eagleson model (EAGLESON 1978, MAUSER & SCHÄDLICH 1997) that predicts the 

infiltration and exfiltration of the soil column. In recent years, the soil layer stack of 

the model was extended to compute up to 4 layers (MAUSER & BACH 2008) and 

implemented in the decision support system DANUBIA (LUDWIG et al 2003) along with 

other new modules for PROMET. The algorithm basically distinguishes between "wet" 

and "dry" time steps. Water sources for a soil layer are infiltration from above 

(effective precipitation or percolation from upper soil layer) and capillary rise from the 

groundwater table or the lower soil layer. Water sinks can be evaporation from the top 

soil layer, root water uptake (all layers with roots) and gravitational drain (which is 

summed up with capillary rise for the net percolation of a soil layer). Actual infiltration 

into a soil layer is handled by the Philip equation PHILIP (1957), excess water is added 

to lateral flow. If surface infiltration into the top soil layer exceeds the infiltration 

capacity, the remaining water is added to the simulated overland flow. If the net 

percolation of a soil layer exceeds the infiltration capacity of the soil layer below, the 

remaining water is added to the model output "interflow". All computations in the soil 

layer stack are run "top down", which means that the most active upper layer is run 

first and the lowest, least dynamic layer is run last. 

4.2.1. Derivation of Hydraulic Parameters 

The following section describes the derivation of the static parameters used to 

compute an analytic solution of the Philip equation based on the concepts of 

EAGLESON (1978) and BROOKS & COREY (1964). The classification of soils and the 

derivation of the hydraulic parameters for these classes are found in Chapter 5. 

The variability of the volumetric water content Θ of a homogenous soil column is 

described by the one-dimensional concentration dependent diffusion equation of 

PHILIP (1957):  
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where t is the time in [s], z is the depth in [cm], k(Θ) is the effective hydraulic 

conductivity in [cm/s]. 

Herein the hydraulic diffusivity D(Θ) in [cm2/s] is defined as 

( ) ( ) ( )
Θ

ΘΨ
ΘΘD

∂
∂= k        (4.2) 

with Ψ(Θ) being the soil matrix potential in [cm]. 

To find an analytic solution of the Philip equation, an approximation of Ψ(Θ) and k(Θ) 

based on measurable, static soil parameters must be found. EAGLESON (1978) applied 
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the equation proposed by BROOKS & COREY (1964) to describe the relationship 

between soil moisture and matrix potential  

( ) ( ) m
1

S1ΨsΨ
−

⋅=        (4.3) 

where Ψ(1) is the air entry tension in [cm], also called bubbling pressure head (bph), 

S is the saturation of the effective pore space n with water (S = Θ/n) and m is the 

pore-size distribution index (psdi). 

“The bubbling pressure head represents the value of the suction head at which, 

during dewatering of a sample, gas is first drawn through the soil sample.” (EAGLESON 

1978) The psdi is the slope of the retention curve, where the soil suction increases 

exponentially with decreasing soil water content Θ. 

The hydraulic conductivity k(Θ) for the unsaturated soil matrix after BROOKS & COREY 

(1964) is 

( ) ( )/m3m2
f

c
f SkSkΘk +⋅=⋅=       (4.4) 

where ks is the saturated hydraulic conductivity and 

c = (2 + 3m) / m        (4.5) 

Because n is constant for a simulation time step, the approximative equation of the 

diffusivity D(Θ) is 
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with d = c – (1/m) –1      (4.8) 

and can be solved if the following static parameters are known: 

• saturated hydraulic conductivity ks 

• bubbling pressure head Ψ(1) 

• pore-size distribution index m 

• effective porosity n 



 

29 

4.2.2. The Eagleson-type Model of Soil Water Dynamics 

The soil water algorithm implemented in PROMET is based on the model proposed by 

EAGLESON (1978) for homogenous soil columns, but was enhanced by MAUSER & BACH 

(2008) for simulating soil moisture movement in a multi-layer soil model. Instead of 

applying the Eagleson equations to a single homogenous root zone layer, each layer 

of the soil model is assumed to be one Eagleson-type homogenous soil column. The 

following initial and boundary conditions were set by EAGLESON (1978) to assure the 

soundness of his analytical solution of the Philip equation and were accounted for in 

the PROMET soil water model. 

The ground water table is much deeper than the bottom of the simulated soil layer, so 

the medium is considered to be effectively semi-infinite. Sensitivity analysis has 

shown that the minimum distance between the simulated soil compartment and the 

groundwater table has to be greater than the bubbling pressure head of the lowest 

soil layer, because the bph describes the theoretical height of the capillary fringe. 

The soil moisture is spatially uniform throughout the soil column. This is not true for 

the multi-layer soil module, but water transfers into and out of a soil layer are 

modelled assuming that the surrounding soil matrix has the same characteristics as 

the computed layer. 

Even heterogeneous vegetation cover has its roots distributed evenly throughout the 

soil column in the single layer model. The multi-layer model root density is definable 

for each individual soil layer, but is homogenous throughout a soil layer. 

Based on these basic assumptions, EAGLESON (1978) defined the following conditions 

for the ratios of exfiltration and infiltration: 

ip < fi*: If the precipitation intensity ip is lower than infiltration capacity fi*, the 

precipitated water can infiltrate and the soil (layer) surface is unsaturated (Si ≤ 1), 

because the soil moisture is transferred to the soil matrix below.   

Ep < fe*: If the evaporation demand Ep is lower than the exfiltration capacity fe*, 

actual evaporation is not inhibited and the soil (layer) surface does not run dry (Si ≥ 

0), because the soil (layer) provides enough water for surface evaporation. 

ip ≥ fi*: If the precipitation intensity exceeds the infiltration capacity, the soil (layer) 

surface can be saturated (Si = 1) and water runs off laterally at the soil (layer) surface. 

Ep ≥ fe*: If the evaporation demand exceeds the exfiltration capacity, the soil (layer) 

surface dries up (Si = 0) and the actual evaporation equals the exfiltration capacity of 

the soil (layer).  

This simple concept was extended by MAUSER & BACH (2008) to incorporate the 

simulation of lateral runoff and vertically explicit soil moisture contents. Validation 

runs showed a better correlation of simulated surface soil moisture patterns with 

remote sensing (LÖW et al 2007) and more realistic time series of soil layer moisture 

compared with field measurements (see LÖW 2008).  
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Fig. 4-3: Soil water fluxes simulated by the modified 4-layer Eagleson model. 

The infiltration and exfiltration capacity of a soil column is defined by the equations 

provided by PHILIP (1969). The increase in soil moisture during infiltration into a 

semiinfinite soil with an initial soil moisture content Θ0 = n*S0 is defined as 

( ) ( ) ( )tΘKtFzdΘdzΘΘ 0i

Θ

Θ0

0

1

0

−==− ∫∫
∞

     (4.9) 

with Θ1: effective water content at the soil surface, Fi(t): sum of infiltrated water [cm], 

K(Θ0): unsaturated hydraulic conductivity at water content Θ0. 

The reduction in soil water content between precipitation events (with the 

transpiration rate EV of the vegetation cover) is obtained by the formula 
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with Fe(t): sum of exfiltrated water [cm]. 

At the same time, an amount of water equal to K(Θ0)*t percolates out of the 

considered soil compartment.  
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Fig. 4-4: Boundary conditions at the soil surface during wet and dry periods 

(EAGLESON 1978). 

By series expansion and transformation of the original Philip equation (4.1) and by 

use of the approximations (4.3) and (4.4) of BROOKS & COREY (1964), the infiltration 

capacity fi* after EAGLESON (1978) is defined as 
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with the nondimensional infiltration diffusivity φi, which CRANK (1956) determined 

for even-numbered d. 
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The analogous exfiltration capacity fe* is 
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with the exfiltration diffusivity φe for even-numbered d. 
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Equations (11) and (13) are the simulation equations for infiltration and exfiltration. 

As mentioned before, the percolation is only a function of the hydraulic conductivity 

K(S0) of the soil matrix with the initial saturation S0. Therefore, the percolation 

velocity v is 
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v = K (S0)        (4.15) 

After GARDNER (1958) the soil hydraulic conductivity for capillary rise is related to the 

soil suction Θ by the power function 

( ) ( )bΘΨaΘK ∗=        (4.16) 

If the surface of the soil compartment is dry and the matrix potential above the 

groundwater table (depth Z) is equal to the bubbling pressure head Ψ(1), the velocity 

ω of the capillary rise is defined as  
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The relation of the empirical parameter B to the pore-size distribution index is  
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As a result, the equation for the capillary rise in the Eagleson-model with the 

constraint ω / ep < 1 is  
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So the effective netto percolation p of the computed soil compartment is  

p = (v – ω) * t        (4.20) 

Equations (4.11), (4.13) and (4.20) now provide descriptions of the three relevant 

processes for the vertical movement of soil moisture on the basis of the parameters 

described in the previous section. The regionalization of these parameters is 

presented in Chapter 5. 
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4.3.  The Soil Heat Transfer Module SHTM 

4.3.1. Basic Concepts of Soil Heat Transfer 

Basis for the computation of soil temperature are the one-dimensional, conductive 

heat transfer equations 
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where G(z) is the heat flux [W/m2] at depth z, Cs is the heat capacity [J/kgK] and λ is 

the heat conductivity [W/mK]. 

For large enough, homogenous layers and a fixed time step, it is possible to reduce 

the heat flow G1,2 from the mean depth of layer 1 (z1) to the mean depth of layer 2 (z2) 

to  

12

21
1,2 zz

TT
λG

−
−

⋅−=        (4.23) 

where λ is the heat conductivity between these two points. In SHTM λ is the heat 

conductivity of the lower (in this case thicker) soil layer and fluxes are positive if 

upward towards the soil surface. 

The Newman criterion defines the minimum distance between two layer means 

(points) if heat flux parameters and the simulation time step are known, so there is no 

oscillation between those two points  

vC2λ∆t∆z ⋅=        (4.24) 

with Cv: volumetric heat capacity [J/m3K]. For example, if λ = 2,0 W/mK, Cv = 1.7*106 

J/m3K and the typical time step is 3600 seconds, the minimum distance between to 

layer means has to be 0.09 m. Because this would lead to heat flux oscillations with 

the geometry applied to the upper soil layers, a sufficient overclocking is done. 

The driving variable of any soil temperature model is the surface ground heat flux G0, 

which can significantly change the temperature of the upper soil layer during a time 

step of one hour. This upper boundary condition can be an empirical surface ground 

heat flux G0 or the soil surface temperature T0 generated by a surface energy balance 

model (see 4.5). If the upper boundary is forced by a soil surface temperature T0, the 

resulting surface ground heat flux is computed by 
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Like in the modified Eagleson-model, the forcing at the upper boundary is transfered 

from top down to the next soil layer. Therefore, the temperature T1’(t) is used to 

compute the heat flux from the upper layer downwards. This method was tested with 

measured ground heat flux data and provided the best results for SHTM: 
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0
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⋅
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After computing all the heat fluxes, the new mean temperature of each layer of the 

soil layer stack with thickness dj at time step t = t0+∆t is calculated by 
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The heat flux commences downwards as described by equations (4.26) to (4.28) with 

the downward heat flux becoming the upper one of the next lower layer. For the 

lowest layer n of the soil layer stack (here: n = 4) the lower heat flux Gn,n+1 is 

influenced by lower boundary condition TV, which is computed by an analytical 

solution (CARSLAW & JAEGER 1959): 

( ) ( ) 







−⋅⋅+=

−

D

v
max

z
z

yavvv z

z
t-tωcoseATt,zT D

v

   (4.29) 

with Tav: mean annual air temperature, Ay: annual amplitude of air temperature, zv: 

mean depth of virtual layer, tmax: time of maximum air temperature and ω = 2π/τ: 

angular velocity of cosine function, while the damping depth zD is a function of 

thermal conductivity λ and volumetric heat capacity CV. The damping depth zD, 

represents the reduction in amplitude of the temperature variation with depth, and is 

the depth at which the amplitude is e-1 (0.37) times its value at the surface 

ωC2λz VD =        (4.30) 

Depending on the chosen angular velocity ω, the damping depth can be calculated for 

the annual or daily amplitude of the soil temperature. As the daily damping depth Ad 

for a soil with a relatively high λ (2.0 W/mK) and low CV (1,700,000 J/m3K) is about 

0.18 m, the daily amplitude Ad(2.5 m) at a depth of 2.5 m is negligible 

d
713.89

d
0.18

2.5

dd A109.3eAeAm)(2.5A ⋅⋅=⋅=⋅= −−−
  (4.31) 

Therefore, the algorithm applied for the analytical temperature Tv (4.29) does not 

consider a daily amplitude, but shows a considerable lag of the annual maximum 

temperature at 2.5 m depth (Fig. 4-5).  
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Fig. 4-5: Typical analytical temperature curve at 2.5 m virtual layer depth. 

The required air temperature dependent parameters were prepared for the whole 

Upper Danube watershed from meteorological data for each year from 1970 to 2004. 

In multiple year simulations Tav is updated at the end of the hydrological year to 

account for annual differences in air temperature. As the deeper soil “remembers” the 

annual temperature cycle, any simulation run should be started with the mean annual 

temperature of the previous year.  

The convective transport of energy by liquids or vapor is neglected, but the thermal 

parameters λ and Cv are computed each time step with regard to the material 

composition of each soil layer (solids, liquid and frozen water, air). The assumption is 

that slow moving soil water passing a small temperature gradient has only a small 

temperature difference to the surrounding soil matrix. On the other hand the 

volumetric water content is raised, so the volumetric heat capacity increases while 

temperature stays the same. This equates to an effective increase in stored energy per 

soil layer when the soil moisture increases, and vice versa. Furthermore, the biggest 

impact of convective heat transfer on simulated temperature is in times of high 

infiltration. However, estimating precipitation temperature of rainstorms is difficult 

and has a high rate of uncertainty. Simple models equal precipitation temperature to 

near ground air temperature, but this is critized by authors from other disciplines too 

(e.g. JANSSEN et al 2007) or simply not true for some regions of the world (ANDERSON 

et al 1998). More complex algorithms assume it to be equal to the dew point 

temperature for rain (e.g. MARKS et al 1999), but still the atmospheric processes are 

not easily parameterized.  

Point scale evaluation showed only a minor impact of convective heat transport on 

predicted soil temperatures for mesoscale simulations with SHTM. When comparing 

time series simulated with convective transport against time series simulated without 

it, less then 10% of the simulated hourly soil temperatures differed by more than 0.1 

K, while only less then 1% differed by more than 1.0 K. Furthermore, including 

convective heat transport could not improve the model results in any statistically 

significant way. Therefore, for the time being we abstained from adding another 

algorithm with high uncertainty and show in Chapter 6 that conductive heat transfer 

characterizes long term soil temperature time series soundly.  
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4.3.2. The Significance of Freezing Water 

To include a realistic simulation of winter temperatures and soil freezing, the potential 

releasable latent energy LEpot,j [J] of the soil water in each layer is computed as soon 

as the layer temperature drops below the freezing point. LEpot,j of a given layer j acts 

as a buffer before the soil layer temperature Tj further diminishes. Because some of 

the water in a soil matrix is influenced by freezing point depression, we included an 

empirical relationship between liquid and frozen water against the soil temperature Ťj 

in °C. The empirical relationship is derived from the laboratory findings of WATANABE 

& MIZOGUCHI (2002). Because the logarithmic curve is extremely steep for 

temperatures near the freezing point, we assume soil freezing starts at Ťj = –0.1 °C. 

Using this empirical approximation, about 70% of the water is frozen at Ťj = –1 °C 

and about 90% at Ťj = –6 °C. This algorithm agrees well with the findings of NYBERG 

et al (2001), who measured a reduction in liquid soil water content of about 2/3 for 

mineral soils below  –1 °C.  
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Fig. 4-6: Release of latent (LE) and sensible energy (SE) of soil water during freezing. 

Based on this work of WATANABE & MIZOGUCHI (2002), we relate the volumetric 

content of frozen water in a soil layer to the soil layer temperature by  

a)  if  Ťj  < –0.1 °C then  

.00)T(Θ jjice, =
(

       (4.32) 

b)   if  Ťj ≤ –0.1 °C then  

( ) jjjjice, Θ)Tln(-0.110.7)T(Θ ⋅⋅+=
((

     (4.33) 

So the potential releasable latent energy due to freezing LEpot,j is dependent on the 

current temperature Tj of the soil layer j 
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The actual released latent energy due to freezing ∆LEact,j is the sum of the upper and 

low heat flux Gnet,j and the sensible heat change of a soil layer ∆SEj , which is 

dependent on the temperature change of the soil layer.  

( ) Vj0j Cd)T(tT(t)SE ⋅⋅−=∆       (4.35) 

lowerupperjnet, GGG +=        (4.36) 

jjact,jnet, ∆SE(t)∆LE∆tG +=⋅−      (4.37) 

In reality the total released latent energy due to freezing LEact,j is equal to LEpot,j. But 

as ∆LEact,j is very large compared to the change in sensible energy just below freezing 

point, the frozen soil procedure in PROMET calculates LEpot,j and Tj in 0.1 K 

temperature steps for soil temperatures below 273.15 K. 

If the net heat flux into a soil layer is negative and Ťj > 0, the algorithm checks if the 

(negative) potential releasable latent energy of the last time step is greater than the 

possible change in actual freezing energy due to Gnet,j 

( ) ∆tG)(tLE)(tTLE jnet,0jact,0jjpot, ⋅+>     (4.38) 

If this is true, the temperature of the soil layer is reduced in 0.1 K steps until 

( ) T)(∆SE∆T)(tT∆LEtG j0jjpot,jnet, ∆−+≤∆⋅    (4.39) 

Then the new soil layer temperature Tj(t) is  

( )∆T∆SEC)(tT(t)T jjV,0jj ⋅+=      (4.40) 

and the new actual released latent energy due to freezing is 

T)(∆SE∆tG)(tLE(t)LE jjnet,0jact,jact, ∆+⋅+=     (4.41) 

If the change in energy is positive during a time step, the procedure checks if the 

energy input would raise the latent energy content above the threshold of the next 

warmer temperature step (+ 0.1 K) 

( ) ∆tG)(tLEK 0.1)(tTLE jnet,0jact,0jjpot, ⋅+<+    (4.42) 

If equation (4.42) is true, Tj and LEact,j are again computed by Eq. (4.40) and (4.41), 

otherwise the temperature is raised by another step and (4.42) is checked again. 

If the soil layer temperature rises above 273.05 K in this way, the procedure is 

repeated until the released latent energy is filled up again (LEact,j = 0).  
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4.3.3. Influence of Soil Layer Geometry on Heat Flux Simulations  

The layer structure of the soil model in PROMET is flexible, but for most applications 

it is run with four layers of 0.05, 0.15, 0.45 and 1.35 m thickness in descending order. 

A fifth "virtual" layer acts as the lower boundary condition of the SHTM, describing 

the temperature in a depth of 2.5 m with an analytical function. This stacking was 

used for all temperature simulations presented in this work. 

The thickness of the individual soil layers was uniformly determined for all soil types, 

to achieve an identical impact of the model geometry on runoff generation and energy 

fluxes for all soil type classes. The influence of soil layer geometry on simulated water 

and energy fluxes has to be considered in any catchment scale model with a low 

vertical resolution of the soil column. To achieve the best solution for the computation 

of soil temperatures with four layers, we followed the work of BEST et al (2005). Their 

paper describes the analysis of the errors in amplitude and phase of simulated time 

series of soil surface temperature for numerical heat transfer models in comparison to 

the analytical, exact solution of the one-dimensional heat transfer equations (4.21) 

and (4.22). On the other hand, soil layer depths were constrained by the soil horizon 

database and the maximum depth of the root zone normally considered by the soil 

water model. Therefore, the maximum depth was set to 2.0 m and the thickness of the 

top layer set to 0.05 m. To employ a geometric progression, as recommended by BEST 

et al (2005), we used a multiplier of 3.0, which resulted in a total soil depth of 2.0 

meters.  

 

Fig. 4-7: Structure of the SHTM soil layer stack. 

To quantify the damping of the daily temperature amplitude Ad of the upper two 

modelled soil layers, the soil temperature series of a simulation run with fixed thermal 

parameters was analyzed. λ was set to 2.0 W/mK and Cv to 2.0·106 J/m3K, while all 

other parameters and variables were left unchanged. The presented daily amplitudes 

of hourly temperatures were simulated at a maize site with clay loam soil in the 
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central part of the catchment. Fig. 4-8 clearly shows the typical damping of the 

temperature amplitude at the soil surface Ad(z0) with increasing depth in conjunction 

with a good coefficient of determination. Not surprisingly R2 gets worse with 

increasing depth, due to the fact that the heat flux pulse gets weaker with depth. The 

amplitude in the second layer already is less controlled by hourly extreme values at 

the surface, more by the average surface temperatures around noon and before 

sunrise. 

 

Fig. 4-8: Comparison of the simulated daily temperature amplitude at the soil surface 

with the simulated daily temperature amplitude in the upper soil layers. 

Even more interesting is the comparison of the simulated damping with the 

theoretical damping. The daily damping depth dD (4.30) of the test configuration is 

0.166 m and the actual damping of the temperature variation at a given depth is 
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Dissolving this equation for z leads to 
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The relationships of Ad(z) to Ad(z0) are provided by the slopes of the linear regressions 

shown in Fig. 4-8 for the upper two soil layers. Solving (4.44) leads to the finding that 

the numerically simulated amplitude of the first layer represents the analytic 

temperature amplitude at 0.04 m depth and the simulated second layer amplitude is 

related to the analytical temperature amplitude at 0.16 m. This implies that the daily 

amplitude of simulated layer-average temperatures should be validated against 

measurements at these depths and this insight can be used for the determination of 

soil parameters from measured time series of soil temperature in the future. A similar 

analysis regarding the annual amplitude over 20 years revealed that the simulated 

amplitude of the first layer resembles the analytical amplitude at 0.05 to 0.10 m and 
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the second layer amplitude resembles the one at about 0.25 to 0.30 m. This would 

mean that the geometry of the soil layer stack and the algorithms used in SHTM 

underestimate the annual amplitudes of soil temperature compared to the analytical 

sine-wave solution of heat transfer in soils. But as shown in section 6.4.2, SHTM does 

not underestimate the annual amplitude when compared to measured data. In fact, 

the analysis of the annual temperature damping with depth is flawed by an 

overestimation of the amplitude at the soil surface, as a single hot day can increase it 

significantly. Still this does not flaw the daily analysis, as on most days of a year the 

surface temperature amplitude is not influenced by single, hourly peaks.  
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4.4. The Computation of Thermal Soil Parameters 

4.4.1. The Volumetric Heat Capacity 

The actual volumetric heat capacity Cv of each soil layer is computed at the beginning 

of every simulation time step as the sum of the volumetric heat capacities of its 

constituents Cvi and their volumetric fraction xi 

∑
=

=
n

1i
viiv CxC         (4.45) 

Liquid and frozen soil water are separately accounted for, hence the heat capacity of a 

soil layer decreases (see Table 4-1) when freezing. Yet, the volumetric fraction of 

water increases by 8.9% for soil ice during the phase change, raising the CV by a 

small amount. The heat capacity of air is negligible (0.065·106 J/m3K) and is not taken 

into account.  

Table 4-1: Volumetric heat capacity CV [J/m3K] of soil components. 

 

4.4.2. Theory on the Thermal Conductivity of Soils 

The calculation of the thermal conductivity λ of a highly complex mixture of solids, 

liquids and gases like soil is much more problematic. The typical range of λ is 

between 0.5 and 2.5 W/mK for natural soils. A possible method to measure thermal 

conductivity is the Thermal Time Domain Reflectometry, also called Thermal-TDR, 

which uses heat pulses and their time lag at different depths (e.g. OCHSNER et al 

2001). But as these field techniques are expensive and time-consuming, most non-

point simulation models use physical or empirical models to estimate this thermal 

property. The most commonly used model for n soil components is the physical one 

from DE VRIES (1963), which characterizes λ in relation to the shape and volumetric 

fraction xi of the main constituents of the soil: 
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with λi being the conductivities of the individual soil components and ki a coefficient 

related to the conductivity λ0 of the main surrounding medium (λ0 = λw for water or λ0 

= λa for air), the shape-factor gd(α) and the dimensions of space m 
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The form-factor α describes the deviation of a soil particle from the spherical shape (α 
= 1). Oblate spheroids are flattened spheres (α < 1), while prolate spheroids are 

bulging spheres (α > 1). Flat particles are extremely prolate (α→∞). 

Again the shape-factor gd(α) depends on the form-factor α and is the absolute 

measure of describing the shape of the rotational ellipsoid in one dimension of space. 

Dimensions 1 and 2 are perpendicular to the axis of the ellipsoid, dimension 3 is 

parallel to it.  

g1(α) = g2(α)         (4.48) 

g3(α) = 1 – 2* g1(α)       (4.49) 

For oblate spheroids (α < 1) g1(α) is 
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In the case of prolate spheroids (α > 1) 
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The mineral components of the soil are often regarded as one medium, but to 

distinguish the fraction of clay minerals xclaymin from quarts and other minerals, 

MØBERG (1988) empirically found a relation to soil texture 

claysiltsandclaymin x0.85x0.4x0.3x ⋅+⋅+⋅=     (4.52) 

Given the typical form-factors α (after MØBERG 1988), one can calculate the 

coefficients ki for wet and dry conditions (Table 4-2) with equations (4.47) and (4.51) 

and solve DE VRIES’ equation (4.46). This parameterisation technique was validated 

against data by OCHSNER ET AL (2001), ABU-HAMDEH (2003), COSENZA ET AL (2003) and 

others. 

Table 4-2: Heat conductivity of soil constituents after DE VRIES (1963), form-factor α 

(* = if condition is dry) after MØBERG (1988) and calculated coefficients ki. 

 



 

43 

4.4.3. Numerical Approximation of the Soil Thermal Conductivity 

As DE VRIES stated in 1963, it is assumed that water rests on soil particles as a thin 

film, dominating as the connecting continuum well below field capacity while air 

forms bubbles. Not until soil moisture reaches the permanent wilting point (ΘPWP), air 

becomes the connecting continuum between soil particles. Because of that we follow 

HANSEN (2002), who suggests using the wet condition ki up to a soil suction of 1000 

hPa (moisture content ΘpF3). To simplify the numerical computation, the Quadratic 
Parallel Function (QPF) of WOODSIDE & MESSMER (1961) is used for moist soil layers 

instead of the DE VRIES (1963) equation.  

( ) ( )[ ]2aws ΘλΘλ1λλ −Φ++Φ−=     (4.53) 

with Φ: total porosity of the soil, λ w: thermal conductivity of water and λ a: thermal 

conductivity of air. The thermal conductivity of the solid particles λs with the 

respective ki(wet) values is 
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For larger soil moisture deficits, the actual heat conductivity is interpolated in relation 

to soil moisture content Θ between λpF3 (conductivity at 1000 hPa, wet condition) 

computed with the QPF and λpwp (conductivity at 16000 hPa, dry condition). The 

thermal conductivity λpwp of a soil at the wilting point (where xw: the fraction of water 

equals the simulated water content Θpwp) is calculated using DE VRIES’ (1963) equation 

and the ki coefficients for dry soils (λ0 = λa) 
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The interpolation procedure utilizes the following weighting function 
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A validation of the simplified QPF model with different sets of measured data by 

COSENZA et al (2003) showed that it is in good agreement with the de Vries model and 

has a similar accuracy when predicting the thermal conductivity of soils. It also 

outperformed the transfer function based on multiple regression developed by 

COSENZA et al (2003). Their Numerical Simulation (NS) model is also shown in Fig. 

4-9, but was not adopted in SHTM. 
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Fig. 4-9: Comparison of thermal conductivity of two soils computed with a) the DE 

VRIES (1963) equation, b) the QPF of WOODSIDE & MESSMER (1961) and c) 

the transfer function (NS) of COSENZA et al (2003). 
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4.4.4. Sensitivity of Thermal Parameters on Soil Properties 

For large scale simulations, where few or no soil properties are measurable spatially, 

it is important to determine the sensitivity of model parameters to spatially distributed 

input data like soil texture, which have a large inherent uncertainty due to their 

spatial heterogenity. This analysis can be a guideline for more sophisticated 

geostatistical techniques to predict soil properties, such as soil-landscape models. 

Summaries of digital soil mapping and geostatistical techniques used in quantitative 

soil science are found in MCBRATNEY et al (2003) or SCULL et al (2003). 

Obviously, the heat capacity CV of a soil is most sensitive to the static parameter 

porosity and the variable soil moisture content (Table 4-1). The sensitivity of CV to soil 

moisture changes (~ 4.2 MJ/m3K) is twice as high as the sensitivity to porosity (~ 2.0 

MJ/m3K), but as the simulation of soil moisture is even more sensitive to the input 

parameter porosity, this is the most important spatially variable soil parameter for 

calculating CV. 

The examination of the sensitivity of the de Vries model on its input parameters is 

definitely more complex. The sensitivity of λ, relative to the soil’s solid composition 

(sand, silt, clay) has two aspects. On one hand, different soil textures have a large 

impact on the conductivity for a given soil moisture in the lower moisture range, 

because of the assumption of DE VRIES (1963) that the continuous medium changes 

below a soil suction of about 1000 hPa. On the other hand, soil suction characterizes 

the relative state of the soil in terms of water availability, biochemical processes etc. 

better than the absolute soil water content. Fig. 4-10 shows that soil textural 

composition has only minimal impact on thermal conductivity related to soil suction. 

The impacts of more clay minerals (increase of λ) and therefore higher soil moisture 

(decrease of λ) seem to negate each other when using the de Vries model. 

  

Fig. 4-10: Sensitivity of thermal conductivity to changes in soil texture for a sandy 

loam, simulated with the numerical approximation algorithm (see 4.4.3). 



 

46 

The crucial input parameters for the calculation of soil heat conductivity are the total 

porosity and the organic matter content of a soil layer. The high ki values and low 

conductivities of organic matter and air (Table 4-2) have a significant impact on λ 

when using the de Vries model. For this short sensitivity analysis, a typical sandy 

loam soil is chosen, with a soil matrix consisting of 25% clay, 35% sand and 5% 

organic matter and having a total porosity of 45%. Fig. 4-11 and Fig. 4-12 clearly 

show that λ is inversely related to these parameters and both have a similar impact 

within their typical limits. In contrast to soil hydraulic properties, where soil texture 

(and porosity) have the strongest influence on soil water balance, the 

parameterisation of a soil temperature model needs better spatially distributed, 

vertically heterogeneous organic matter content values. The use of a soil-landscape 

model, which also utilizes high resolution land use data, seems to be the appropriate 

tool for this, because organic matter content is strongly related to vegetation type. 

  

Fig. 4-11: Sensitivity of thermal conductivity to organic matter content of a sandy 

loam.  

 

Fig. 4-12: Sensitivity of thermal conductivity to total porosity of a sandy loam. 



 

47 

4.5. The Determination of the Surface Ground Heat Flux 

Depending on the model configuration, the ground heat flux G0 at the soil surface is 

computed by three different methods for snow-free conditions. The first method, also 

used in the DANUBIA Landsurface component, distinguishes between the energy 

fluxes at the canopy and at the soil surface level to close the energy balance. The 

second approach calculates the energy fluxes at the land surface depending on the 

incoming radiation and the evapotranspiration from the Penman-Monteith equation 

(MONTEITH 1965). Then, an empirical approximation of the surface ground heat flux 

as a fraction of the net radiation is implemented. In the end, a physically based 

approach is presented, that determines the heat flux between a potential snow cover 

and the soil. 

4.5.1. Explicit Model of Landsurface Energy Fluxes 

If PROMET is run with the dynamic vegetation module (HANK 2008) based on the 

work of FARQUHAR (1980), then the energy transfer between atmosphere, canopy and 

soil is modelled by two independent energy balance algorithms for vegetation and 

inanimate surfaces. The transmission of the solar radiation Rglobal through canopies is 

handled by the light interception algorithm of CAMPBELL & NORMAN (1998). The 

shortwave incoming radiation (Rsw,in) minus the reflected shortwave radiation (Rsw,out), 

determined by the soil albedo αs, and the longwave emission (Rlw,in) of the canopy (if 

vegetation cover is present) or the near-ground air layer in case of none (derived from 

measured Tair at 2 meter height) equal the incoming radiation (Rin) [W/m2] at the soil-

atmosphere interface 

inlw,insw,sinlw,outsw,insw,in RR )α(1RRRR +−=++=   (4.57) 

In this fully coupled land surface algorithm, an iterative procedure to determine the 

soil surface temperature T0 is applied (see Fig. 4-13). The incoming radiation flux (Rin) 

is put into an iteration scheme, which seeks for the optimum of T0 to solve this 

approximative energy balance equation where all fluxes are positive towards the 

exchange surface 

( ) χGHLERR 0soilsoiloutlw,in ++++−=     (4.58) 

with G0: surface ground heat flux, Hsoil: sensible heat flux, LEsoil: latent heat flux, 

Rlw,out: outgoing longwave radiation and χ: error in estimation at the soil surface. 

If the state variables of soil and boundary layer are known, then only T0, as the 

controlling variable between the outgoing fluxes must be found. Because Rlw,out, Hsoil 

and G0 are 

4
0outlw, TσεR ⋅⋅−=        (4.59) 
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A

0soilair,
airairsoil R

TT
CρH

−
⋅=       (4.60) 
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0 z

TT
λG

−
⋅=        (4.61) 

with ε: emissivity of soil surface, σ: Boltzmann constant (= 5.67·10-8 W/m2K4) , ρair: 

density of air [kg/m3], Cair: specific heat capacity of air [J/kgK], Tair,soil: air temperature 

above soil surface, T1: temperature of upper soil layer and z1: mean depth of upper 

soil layer [m]. 

RA [s/m] is the aerodynamic resistance to diffusive and turbulent transport of heat and 

vapour from a surface into the atmosphere. It is assessed at each time step by the 

procedure presented in 4.5.5. 

 

Fig. 4-13: Representation of the surface energy fluxes at the soil surface. 

The latent energy flux of evaporation LEsoil is solved by the Penman-Monteith 

equation (MONTEITH 1965) for evaporation from non-vegetated surfaces. Though the 

equation is not dependent on T0, the net radiation Rnet available for evaporation is, 

because  

( ) ( )0outlw,in0netsoil TRRTR LE −=≤−     (4.62) 

Additionally, the amount of water evaporated (Ev) in [mm] due to the heat flux (LEsoil) 

[W/m2] is related to surface temperature (T0), because the latent heat of vaporization 

CLE [J/g] can be approximated after DINGMAN (2002) with 

( )K)273.16(T2.3612501C 0LE −⋅−=      (4.63) 

)(TC

3.6LE
Ev

0LE

soil ⋅
−=        (4.64) 

The iteration of T0 is stopped if the modulus of χ in the approximative energy balance 

equation (4.58) is smaller than the accepted imprecision, usually 5 W/m2. A similar 

procedure without the surface ground heat flux term is used to determine the energy 

balance of the canopy during the evaporation of intercepted water. 
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4.5.2. Penman-Monteith Energy Balance Model 

If PROMET is run with the plant physiological module of BALDOCCHI et al (1987) to 

solve the Penman-Monteith equation for both vegetated and non-vegetated surfaces, 

then the energy balance can be closed for the complete land surface, incorporating 

the ground surface and the canopy (if any).  

( ) χGHLERR 0outlw,in ++++−=      (4.65) 

with H: the total sensible heat flux from the landsurface. 

Thus, the incoming radiation (Rin) is the total net shortwave radiation on top of the 

canopy plus the longwave incoming radiation from the atmosphere 

inlw,globalin Rα)(1RR +−=       (4.66) 

As the total evapotranspiration (ET) is determined by the Penman-Monteith algorithm 

in advance, the total latent heat flux (LE) from the land surface to the atmosphere is 

determined by rearranging equation (4.64) for the latent heat flux LE 

)(TCET0.2778LE 0LE⋅⋅−=       (4.67) 

As CLE(T0) varies only slightly for small differences in temperature, the terms 

depending on the surface temperature on the right-hand side of the approximative 

energy balance can be reduced to  

( ) χRHGLE)(R outlw,0in +++−=−      (4.68) 

Assuming that the energy fluxes at the land surface are computed with one 

temperature for canopy and ground surface, then the temperature dependent 

variables are found with equations (4.59) and (4.61) and the general form of the 

sensible heat flux equation  

A

0air
airair R

TT
CρH

−
⋅=        (4.69) 

 

 

Fig. 4-14: Representation of the energy fluxes at the bulk land surface. 
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As was the case in the previous model variant, the iteration procedure varies the 

surface temperature T0 until the modulus of χ in the approximative energy balance 

equation (4.65) is smaller than the predefined value 5 W/m2. 

4.5.3. Empirical Model of Surface Ground Heat Fluxes 

The third approach to determine the energy flux from the landsurface into the soil is 

based on the empirical analysis of measured ground heat fluxes and the net short and 

long wave radiation. This enables PROMET to simulate the soil temperature without 

any surface energy balance algorithm, hence saving computing time. 

Analysis of the hourly aggregated time series of surface ground heat flux (G0) and net 

radiation (Rnet) at the two Eddy-Flux measurement sites used in this study gave a first 

estimate of the ratio CGHF between these two variables. CGHF is often used as an 

empirical relationship, because areal measurement of G0 is difficult and its physical 

based simulation requires some kind of soil temperature model.  

netGHF0 RCG ⋅−=        (4.70) 

Many surface energy models used to simulate mesoscale evapotranspiration or land 

surface temperatures estimate a daytime CGHF of 5% to 20 % for vegetated surfaces 

(e.g. CHOUDHURY et al 1986, NIEMEYER 2000, BOEGH et al 2002). More advanced 

empirical relationships take Leaf Area Index (LAI) (CHOUDHURY et al 1987) or the 

Normalized Differenced Vegetation Index (NDVI) (KUSTAS & DAUGHTRY 1990) into 

account when computing the values of daytime G0 of vegetated surfaces. Although 

taking vegetation cover into account, these models have the major drawback that they 

were developed for semi-arid regions, where G0 plays an important role in 

determining energy balance and evapotranspiration, unlike in temperate, humid 

landscapes like the Upper Danube basin. Furthermore, in most of these simple 

models, night time CGHF is not calculated, even though empirical analysis shows it to 

be distinctly different from the day time value. 

Therefore, we analysed the hourly relationship between measured Rnet and G0 during 

the vegetation period of a rapeseed field (Gut Hüll) in summer 2003 and a marshy 

meadow (Wielenbach) during the summer months of 2004. Apart from the hours 

around sunrise and sunset the linear regression of G0 to Rnet was satisfying to both the 

Gut Hüll site (Fig. 4-15), as well as the meadow site (Fig. 4-16). For the rapeseed field 

the mean daytime ratio CGHF(day) was 0.08 and the night time ratio CGHF(night) was 0.35. 

The corresponding values for the meadow site were 0.10 and 0.40. Consequently, the 

empirical ground heat flux model distinguishes between day time and night time on 

the basis of incoming short wave radiation. 
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Fig. 4-15: Ratio of ground heat flux to net radiation of a rape field (April-July 2003). 

 

Fig. 4-16: Ratio of ground heat flux to net radiation of a meadow site (May-Sept. 

2004). 

The results of applying this simple model on the measured hourly net radiation are 

shown in Fig. 4-17. The model performed better than expected at the rapeseed site, 

presumably because of the short time series and the stable and dry atmospheric 

conditions during the summer of 2003. Convective heat transport played no 

significant role due to the lack of strong precipitation events. At the meadow site, the 

result was still satisfying despite the unsettled weather conditions during the summer 

of 2004 and the unpredictable influence of ground water at this site near the river 

Ammer. That is, the applied CGHF is found to be not valid during precipiation events 

and the true soil moisture was considerably higher most of the year than the one 

simulated by the Eagleson soil water model, due to the shallow ground water table. 
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OGÉE et al (2001) assessed the daytime soil heat flux below forests as 5 to 10 % of the 

incident net radiation for south-west France. As we had no measurements at a forest 

site, we used the lower value for the temperate, denser forests in the Upper Danube 

basin. From the data presented in OGÉE et al (2001) the estimated CGHF(night) is also 

about 40% like the ratio applied to grassland sites. 

The range of CGHF(day) for non-vegetated surfaces is estimated between 0.2 and 0.5 by 

CHOUDHURY et al (1987). Other authors assume values between 0.2 and 0.35 (KUSTAS 

& DAUGHTRY 1990, NORMAN et al 1995, NIEMEYER 2000), mostly for semi-arid regions 

where evaporation is less dominant than in northern Europe. Hence we assumed, the 

lower boundary as the effective CGHF(day) for non-vegetated surfaces. The night time 

value was set to 0.8, based on the assumption that the often stable near ground air 

layers allow for little latent and sensible heat flux to the soil surface. 

 

Fig. 4-17: Measured vs. empirical ground heat flux (Gut Hüll and Wielenbach). 

Table 4-3 sums up the parameterisation described here. Solar angle was not 

incorporated in this simple model (like in KUSTAS & NORMAN 1999), nor was the heat 

capacity of soil above the heat flux plates taken into account as MAYOCCHI & BRISTOW 

(1995) demand. The uncertainty in determining the soil heat flux for a mesoscale 

catchment on the basis of some point measurements was considered too high in 

contrast to these problems. Unfortunately, a linear relationship between soil wetness 

and G0 could not be found in the data, therefore the empirical ground heat flux model 

is consciously kept very simple, as most soil temperature applications are run with 

one of the energy balance models implemented in PROMET. 

Table 4-3: Empirical landcover-dependent ratios of ground heat flux to net radiation. 
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4.5.4. The Snow-Soil Heat Transfer Algorithm 

If snow cover is present on a process pixel, the soil heat flux is determined based on 

the temperature difference between the snow pack surface Tsnow and the first layer of 

the soil layer stack T1. The snow module ESCIMO (STRASSER et al 2002) implemented 

in PROMET (PRASCH et al 2008) calculates the snow surface temperature on the basis 

of the snow pack energy balance (Fig. 4-18) 

0MEAEGHLER 0net =+++++      (4.71) 

with AE: advective energy due to precipitation and ME: potential snow melt energy. 

 

Fig. 4-18: Energy (broken lines) and water/energy fluxes (solid lines) during snow 

cover. 

In many snow process models G0 is assumed to be constant in space and time, often 

with a value of 2 W/m2. To close the energy balance for the whole land surface, a 

steady-state heat flow equation as proposed by STÄHLI & JANSSON (1998) is modified 

for the heat transfer from the upper soil to the snow pack surface. As the thermal 

conductivity of snow λsnow is distinct from the thermal conductivity λ1 of most soils, the 

problem is solved by finding the soil surface temperature T0 with 

 
SS

snowSS1
0 f1

TfT
T

+
+

=        (4.72) 

The weighting factor fSS to determine T0 in case of steady state heat flux is 

snow1

1snow
SS zλ

zλ
f

⋅
⋅

=        (4.73) 

where zsnow: the snow pack height and z1: the mean depth of the top soil layer. 

The heat flow from the upper soil layer is calculated through equation (4.74) 

1

010
10 z

)(tT(t)T
λG

−
⋅=−       (4.74) 
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and the heat flux into the snow pack could be calculated with 

snow

00snow
snowsnow0, z

(t)T)(tT
λG

−
⋅=      (4.75) 

 

Fig. 4-19: Steady state assumption of heat flow through upper soil layer and snow 

pack. 

Because of the steady state assumption, G0,snow should be equal to –G0 (STÄHLI & 

JANSSON 1998). But the assumption that the soil surface temperature should be at, or 

below, the freezing point when it is covered by snow does not allow for a steady state. 

Snow falling on a non-frozen surface immediately melts, so when a snow pack builds 

up, the soil surface temperature is set to 273.16 K and G0 is calculated using equation 

(4.75). This leads to strong ground heat fluxes toward the surface, as seen in Fig. 

4-20, and to melting of freshly fallen snow on relatively warm ground. However, soon 

the thin top soil layer is cooled down and isolates the snow pack from the warmer soil 

layers below. Results regarding the snow water equivalent presented by PRASCH et al 

(2008) and validation of winter soil temperature presented in this work (see section 

6.4.2) show a good agreement with natural conditions. 

 

Fig. 4-20: Difference in G0 with and without the assumption of T0 ≤ 273.16 K (with 

Tsnow =270 K, zsnow = 0.05 m and z1 = 0.025 m). 
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4.5.5. The Atmospheric Resistance above the Soil Surface  

The general formulation of the aerodynamic resistance RA,0 for turbulent transfer into 

neutral atmospheric conditions is dependent on the horizontal wind speed (uz) and 

the roughness parameters of the surface (e.g. CAMPBELL & NORMAN 1998) 








 −
⋅






 −
⋅

⋅
=

m

dc

h
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z
2A,0 z

hh
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z

hh
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uk

1
R     (4.76) 

with hc: reference height, hd: displacement height, zh: roughness length for heat flux, 

zm: roughness length for momentum flux, k: von Karman’s constant (k = 0.4). This 

formulation is used for the computation of the atmospheric resistance, where energy 

fluxes from canopies are computed.   

For soil surfaces, one can estimate the roughness parameters hc = 0.04 m, hd = 0.0 m 

and zm = 0.004 m from values given in literature (CAMPBELL & NORMAN 1998, OKE 1987 

and LIU et al 2007) and follow CAMPBELL & NORMAN (1998), who assume that the 

roughness length for heat flux zh within canopies is related to zm by 

zh = 0.2 · zm        (4.77) 

Solving equation (4.76) with these fixed parameters for soil surfaces reduces the 

aerodynamic resistance RA,0 for neutral conditions to 

z
A,0 u

56.2
R =         (4.78) 

To assess the influence of atmospheric stability on heat fluxes in the near-ground air 

layers, one can use the empirical bulk Richardson number RiB (MONTEITH & 

UNSWORTH 2008) instead of more complex physical models, where g is the 

acceleration due to gravity (9.81 ms-2) 
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dc0air
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)h(h)T(T
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−⋅−

⋅=      (4.79) 

The actual atmospheric resistance RA can then be computed with the well-known 

stability correction function of CHOUDHURY (1986) with β = 5 

( ) 4
3

BA,0A Riβ1RR
−

⋅−⋅=       (4.80) 

This leads to plausible values of atmospheric resistance for soil surfaces, but this 

algorithm to determine the atmospheric resistance is complex and unstable for very 

low, but realistic, wind speeds (< 0.2 m/s) and is based on very sensitive surface 

parameters that are only roughly estimated. Hence, an empirical approach to 

determine the atmospheric resistance above soil surfaces, especially under canopies, 

is presented in the following. 

KUSTAS & NORMAN (1999) developed a simple model (N95) to predict heat fluxes from 

soil and vegetation in which they used the results from two empirical studies about 

the heat transfer from soil surfaces into the atmosphere. Their formulation of the 
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aerodynamic resistance of a soil surface includes two empirical parameters: CFC, a 

constant related to free convection, and CTC, related to turbulent convection.  

zTCFC
A uCC

1
R

⋅+
=        (4.81) 

KONDO & ISHIDA (1997) conducted laboratory and field experiments on the free 

convection of soils and found RA of soils without the influence of wind to be 

approximately 260 s/m, relating to a CFC of 0.0038 m/s. Measurements of heat transfer 

from bare soils and soils under canopies (SAUER et al 1995 and others) and the 

analysis of these measurements in comparison with theoretical models by SAUER & 

NORMAN (1995) led to the universal empirical value of 0.012 m/s for CTC used in the 

N95 model KUSTAS & NORMAN (1999).  

As Fig. 4-21 portrays, this algorithm leads to similar values of RA for wind speeds > 

0.5 m/s as the complex algorithm presented above. But for very low wind speeds, the 

CHOUDHURY (1986) algorithm becomes unstable, even for this typical case of (Tair – T0) 

= –3 K. Therefore, this simple, empirical approach is implemented in this version of 

PROMET, for both bare and vegetated soil surfaces. 

 

Fig. 4-21: Relationship of atmospheric resistance over a soil surface to wind speed 

for both algorithms presented, with (Tair-T0) equal to -3 K. 
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5. The Parameterisation of Soils 

5.1. Available Soil Maps 

The only available soil map covering the whole German part of the Upper Danube 

catchment is the Soil Overview Map of Germany on a scale of 1:1,000,000 

(Bodenübersichtskarte von Deutschland 1:1.000.000, BÜK1000). It shows 34 soil 

associations within the Upper Danube catchment with a spatial accuracy of about 1 

kilometre. Each primary soil type of the 34 soil associations is described by a typical 

soil profile with quantitative values of the main soil properties (soil texture, pore 

volume, water holding capacity, organic material content, coarse material content and 

others). Because this map has the highest coverage in the Upper Danube basin, it is 

the spatial reference for all parameterisations of the soil process models. 

 

Fig. 5-1: Southern part of the BÜK1000 soil type map of Germany. 

The challenge of applying spatially relevant parameters to the soil association classes 

of the BÜK1000 is to interpret the legend of the soil map in conjunction with the 

explicitly given soil horizon properties of one typical soil found in a specific class. The 

soil horizon properties include contents of clay, sand, coarse material and organic 

matter as well as porosity and volumetric water contents at field capacity and wilting 

point. Aside from that, data on carbon and nitrogen contents and acidity is tabulated 

for each soil layer.  
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Spatially more explicit soil maps, like the German Soil Overview Map on a scale of 

1:200,000 (BÜK200), are unfortunately only available for some parts of the catchment. 

Furthermore, soil maps of this scale were not produced for most of the alpine parts 

(Austria, Swiss) of the catchment, especially for non-agricultural areas. Yet, a first 

analysis of the simulated water cycle based on BÜK200 data has shown, that local 

ground water recharge and lateral runoff rates are significantly different when using 

this soil map data with higher spatial accuracy, but catchment scale water fluxes are 

only slightly affected. Therefore, if 1:200,000 soil maps with a greater coverage are 

available in the future, this analysis should be redone.  

5.2. Classification of the BÜK1000 Soil Units 

For the establishment in the decision support system DANUBIA, the soil mapping 

units of the BÜK1000 were standardized to four layers and the soil properties of the 

layers of each class were determined and tabulated. Soil units with similar vertical soil 

texture sequences were merged and the properties of the soil units with the highest 

degree of coverage in the Upper Danube basin were assigned to 15 new soil type 

classes. For the evaluation of the soil type classes, the retention parameters, bubbling 
pressure head and pore-size distribution index after BROOKS & COREY (1964), were 

determined for each class with the equations (5.2) and (5.3) found in chapter 5.3. 

Then the water contents at field capacity and permanent wilting point were computed 

with equation (4.3). The resulting plant available water for the soil type classes was 

compared with the tabulated values of the dominant soil units to assure a good spatial 

representation of the soil type specific hydraulic properties. 

The first step of grouping the 34 soil units of the BÜK1000 (see Appendix A) into 15 

soil type classes based on textural information was done manually, because the 

descriptions of the soil associations in the map legend sometimes did not fit the 

tabulated properties of these soil units. Especially soil units 11 and 13 were assigned 

to soil type classes based on their description. The calcareous soils found in low lying 

floodplains (soil unit 11) were characterized by a great variety of soil textures. Here 

we found a sandy loam texture to fit the description better than the loamy clay 

horizons given as an example in the horizon database of the BÜK1000. Secondly, soil 

unit 13 found on the gravel plain around Munich was assigned to sandy loam soils on 

gravel, not to the clay loam class, as the horizon database suggested. 

For each class the soil profile of the spatially dominant soil unit was standardized to 

four soil layers and was used as a basis for all further parameterisation and validation 

steps (Table 5-1). The transformation of the horizon characteristics of the original soil 

profiles into the 4 model horizons was done in a way that preserved the typical 

layering of the dominant soil type.  
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Table 5-1: Basic properties of the DANUBIA soil type classes. 
# Depth Type Coarse OrgMat GPV FPV Clay% Sand%
1 Sand 5 mS 0% 15.0% 51.5% 51.5% 1 95
1 (dominant soil unit: 10) 20 mS 0% 4.0% 45.5% 45.5% 1 95
1 65 mS 0% 4.0% 45.5% 45.5% 1 95
1 200 mS 0% 0.0% 34.2% 34.2% 1 95

2 Gravelly Sand 5 gS 0% 5.0% 40.4% 40.4% 1 95
2 (dominant soil unit: 63) 20 gS 20% 1.8% 27.8% 34.8% 1 95
2 65 gS 20% 0.5% 26.8% 33.5% 1 95
2 200 gS 20% 0.0% 30.6% 38.3% 1 95

3 Loamy Sand 5 Sl4 0% 3.0% 47.5% 47.5% 15 60
3 (dominant soil unit: 30) 20 Sl3 0% 1.0% 42.3% 42.3% 10 65
3 65 Ls4 20% 0.0% 27.6% 34.5% 20 60
3 200 Ls4 20% 0.0% 27.6% 34.5% 20 60

4 Gravelly Loamy Sand 5 Slu 0% 10.0% 60.0% 60.0% 10 45
4 (dominant soil unit: 61) 20 Sl4 20% 3.0% 42.5% 53.1% 15 60
4 65 Sl4* 40% 0.0% 25.0% 41.7% 15 60
4 200 Sl3* 40% 0.0% 25.0% 41.7% 10 60

5 Sandy Loam 5 Sl4 0% 5.0% 47.5% 47.5% 15 60
5 (dominant soil unit: 21) 20 Sl4 0% 3.0% 47.5% 47.5% 15 60
5 65 Lt2 0% 0.0% 35.2% 35.2% 30 30
5 200 Ls2 0% 0.0% 38.5% 38.5% 20 35

6 Sandy Loam on Gravel 5 Sl4 20% 10.0% 43.8% 54.8% 18 52
6 (dominant soil unit: 14) 20 Sl4 20% 3.0% 43.8% 54.8% 18 52
6 65 Sl4 20% 1.0% 34.0% 42.5% 18 52
6 200 gS* 60% 0.0% 14.4% 36.0% 5 90

7 Clayey Silt 5 Ut3 0% 4.0% 52.5% 52.5% 15 10
7 (dominant soil unit: 42) 20 Ut3 0% 2.0% 52.5% 52.5% 15 10
7 65 Ut4 0% 1.0% 44.5% 44.5% 20 10
7 200 Ut4 0% 0.0% 41.5% 41.5% 24 6

8 Silt Loam 5 Lu 0% 5.0% 46.5% 46.5% 20 20
8 (dominant soil unit: 18) 20 Lu 0% 1.0% 46.5% 46.5% 20 20
8 65 Tu3 0% 0.0% 39.5% 39.5% 35 10
8 200 Lu 10% 0.0% 35.6% 39.6% 20 20

9 Clay Loam 5 Lt2 0% 3.0% 47.0% 47.0% 30 30
9 (dominant soil unit: 58) 20 Lt2 0% 1.0% 47.0% 47.0% 30 30
9 65 Lu 0% 1.0% 45.5% 45.5% 30 15
9 200 Tu3 0% 1.0% 42.0% 42.0% 35 10

10 Clay 5 Tl 0% 10.0% 65.0% 65.0% 60 20
10 (dominant soil unit: 51) 20 Tl 0% 3.0% 54.5% 54.5% 60 20
10 65 Tt 0% 0.0% 51.0% 51.0% 60 20
10 200 Tt 0% 0.0% 51.0% 51.0% 60 20

11 Peat 5 H 0% 35% 77.0% 77.0% -1 -1
11 (dominant soil unit: 6) 20 H 0% 35% 77.0% 77.0% -1 -1
11 65 H 0% 35% 77.0% 77.0% -1 -1
11 200 H 0% 35% 77.0% 77.0% -1 -1

12 Soils on Calcerous Rock 5 Lts 0% 15.0% 61.8% 61.8% 35 45
12 (dominant soil unit: 68) 20 Lts 0% 6.5% 46.1% 46.1% 40 40
12 65 Tl* 60% 0.0% 18.2% 45.5% 50 30
12 200 Lts* 85% 0.0% 7.1% 47.3% 45 35

13 Soils on Crystalline Rock 5 Ls4 20% 15.0% 45.2% 56.5% 20 60
13 (dominant soil unit: 55) 20 Ls4 30% 8.0% 36.1% 51.5% 20 60
13 65 Ls4* 40% 1.0% 23.7% 39.5% 20 60
13 200 Ls4* 60% 0.0% 15.4% 38.5% 20 60

14 High Alpine Soils 5 Lt2 20% 10.0% 48.1% 60.1% 30 30
14 (dominant soil unit: 69) 20 Slu* 80% 2.5% 10.1% 50.5% 17 38
14 65 Sl3* 85% 0.0% 7.4% 49.3% 10 65
14 200 Sl3* 85% 0.0% 7.4% 49.3% 10 65

15 Soils on Karst 5 Lt3 0% 9.0% 63.5% 63.5% 40 20
15 (dominant soil unit: 50) 20 Tl 20% 4.0% 45.5% 56.9% 50 30
15 65 Tt* 64% 2.0% 21.2% 58.9% 70 15
15 200 Tt* 64% 2.0% 21.2% 58.9% 70 15  
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Because most simulation algorithms and parameterisation techniques do not 

incorporate the coarse material fraction of soils, the coarse material classes of the soil 

horizon data were converted to coarse material volumetric fractions (CV) (Table 5-2) 

as described in the German Soil Mapping Manual (BoKA5, AG BODEN 2005).  

Table 5-2: Allocation of CV values for the coarse material classes used in the BoKA5 

(AG BODEN 2005). 

 

The pore volumes of the fine textured soil (FPVs) were then computed from gross 

pore volumes (GPVs) to achieve realistic pore volumes compared to the values given 

by the BoKA5 (AG BODEN 2005) for the considered soil type classes using the relation 

CV)(1
GPV

FPV
−

=        (5.1) 

Regarding the nomenclature of the German soil texture classification (AG BODEN 

2005), it is important to note that it differs substantially from the US soil taxonomy. 

All soil texture related class terms were derived from the German soil taxonomy. For 

comparison the following figure demonstrates these differences (Fig. 5-2). 

 

Fig. 5-2: Soil texture triangles of the German and the US soil taxonomy. Coloured 

areas show the different boundaries of the classes loamy sand, sandy loam 

and sandy clay loam. 

To extrapolate the soil type classes of the BÜK1000 to the non-German parts of the 

catchment, a simple classification based on elevation and geology was performed. In 

the first step, the distribution of soil textures in the southern part of the BÜK1000 was 

analyzed in relation to elevation above sea level. Then, the result was applied to the 

southern (alpine) part of the basin: 
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Up to 490 m:  Silt loam 

491 - 880 m:   Sandy loam 

881 – 1330 m:  Leptosols (on Calcareous / Crystalline Rock) 

Above 1330 m: High Alpine Soils 

In a second step the Leptosols were distributed among the Soils on Calcareous Rock 

and Soils on Crystalline Rock classes by splitting the alpine part of the basin into the 

northern Limestone Alps and the crystalline Central Alps. The small Czech part of the 

catchment in the north-east (not shown in Fig. 5-3) was classified as Soils on 
Crystalline Rock, like the surrounding area. 

Finally, the soil type classes of some map units were reclassified according to the land 

cover information used in the Upper Danube. Areas with Peat soil but non-bog land 

cover were reclassified as Clay Loam and non-peat pixels with bog land cover were 

reclassified as Peat. Additionally, the High Alpine Soils with forest land cover were 

reclassified as Leptosols. The soil unit Water Surface was given the soil type Clay 
Loam, as spatial information about land cover is governed by the dedicated data layer. 

 

Fig. 5-3: Coverage of the BÜK1000 (dark) in the Upper Danube basin (light). 
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Fig. 5-4: Map of the 15 soil type classes of the Upper Danube catchment assigned to 

the 1:1,000,000 soil map of Germany and extrapolated to the non-German 

parts of the catchment. 
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5.3. Soil Hydraulic Parameterisation 

For the application of the Eagleson-type soil water model, the easily available soil 

characteristics specified in the BÜK1000 database are used to derive the soil 

hydraulic properties of the soil type classes defined for the Upper Danube basin. Good 

predictions of these hydraulic parameters for regional scale simulations are achieved 

if well-tested Pedotransfer Functions (PTFs) are used (MCBRATNEY et al 2002, WÖSTEN 

et al 2001 and others). The most common types of PTF are the multiple regression 

equations based on soil hydraulic databases like UNSODA (NEMES et al 2001) or 

HYPRES (WÖSTEN et al 1999). Because measurements of soil hydraulic characteristics 

are time-consuming and costly for larger simulation areas, PTFs are the only effective 

method to generate the parameters needed to model soil water processes on a larger 

scale. Yet, PTFs show considerable prediction errors due to their simplifying nature 

and have to be carefully chosen with regard to the available input data, the desired 

accuracy, the needed hydraulic parameters and the geographical region. Therefore, 

attempts to evaluate PTFs with different data sets have resulted in inconsistent 

conclusions regarding the accuracy of these PTFs (TIETJE & TAPKENHINRICHS 1993, 

CORNELIS et al 2001, WAGNER et al 2004). The only set of PTF equations that 

performed well in all three studies was the one of VEREECKEN et al (1989) to predict 

the parameters of the VAN GENUCHTEN (1980) water retention equation. Still, these 

authors agree on the fact, that the best PTF are derived from data sets collected in 

geographically similar regions. 

Regarding the Upper Danube basin, the main factors considered were the types of 

parameters to be predicted and the representation of typical runoff behaviour for the 

mapped soil units. The available soil characteristics for the typical soil profiles are 

extensive, but the spatial extent of the mapped soil units and their definition as soil 

type associations do not allow an accurate parameterisation. Thus, we chose the 

Pedotransfer Functions of RAWLS & BRAKENSIEK (1985), because they provide the 

water retention parameters bubbling pressure head (Ψ(1)) and pore-size distribution 
index (m) of the Brooks & Corey model (BROOKS & COREY 1964). WAGNER et al (2004) 

evaluated different PTFs with data sets from Bavaria and found that the RAWLS & 

BRAKENSIEK (1985) functions for the Brooks & Corey model performed poorly for root 

zone soil measurements compared to other models. This result can be expected due 

to the fact that the Brooks & Corey model describes the soil water retention with a 

continuous function with one less parameter than does the widely used van 
Genuchten model (VAN GENUCHTEN 1980). Then again, the Brooks & Corey model 

showed the best performance for water retention simulations of deeper tertiary 

sediments due to its low sensitivity on clay content. Actually, the validation of the soil 

parameterisation at the point scale does not make sense when the modified Eagleson 

model is applied on the mesoscale Upper Danube basin. Therefore the focus for this 

parameterisation was to achieve a realistic simulation of the regional scale plant 

available water content and the validation of runoff generation on the sub-catchment 

scale.  
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Nevertheless, point scale soil moisture validation with the parameters based on the 

BÜK1000 showed reasonably good results considering the parameterisation strategy 

and the simplified nature of the soil water model. The following Pedotransfer 

functions were used to obtain the hydraulic parameterisation of the soil type classes 

found for the Upper Danube catchment.  

RAWLS & BRAKENSIEK (1985) found the following relationship between Ψ(1) and the 

basic soil properties clay content C [%], sand content S [%] and total porosity Φ 

[volumetric fraction]. 

Ψ(1) = exp [5,3396738 + 0,1845038 C – 2,48394546 Φ   
–  0,00213853 C² – 0,04356349 S Φ – 0,61745089 C Φ   
+  0,00143598 S² Φ ² – 0,00855375 C² Φ²   
–  0,00001282 S² C + 0,00895359 C² Φ   
–  0,00072472 S² Φ + 0,0000054 C² S   
+  0,50028060 Φ² C]       (5.2) 

Furthermore the pore-size distribution index can be computed with 

m = exp [-0,7842831 + 0,0177544 S – 1,062498 Φ  
–  0,00005304 S² – 0,00273493 C² + 1,11134946 Φ²  
–  0,03088295 S*Φ – 0,00026587 S² Φ²  
–  0,00610522 C² Φ² – 0,00000235 S² C   
+  0,00798746 C² Φ – 0,0067449 Φ² C]    (5.3) 

For the computation of the effective porosity considered by the soil water model, the 

simple equations of SCHEINOST et al (1997) were favoured because they gave similar 

good results, compared to other, more complex equations. Organic material (OM) is 

considered as a weight per weight percentage [w/w%], Θs and Θr are volumetric 

fractions. 

Θs = 0.85 Φ + 0.13 C       (5.4) 

Θr = 0.52 C + 0.928 OM      (5.5) 

Effective porosity n then is the difference between the saturated water content Θs and 

the residual water content Θr  

n = Θs – Θr         (5.6) 

At last, the saturated hydraulic conductivity of the fine textured soil ks,f is estimated by 

the regression equation of WÖSTEN et al (1999) (with D: bulk density in [g/cm3] and 

topsoil: a parameter that is 1 for upper soil layers and 0 for lower soil layers) 

ks = exp [7.755 + 0.0352 S + 0.93 topsoil – 0.967 D2  
– 0.000484 C2 – 0.000322 S2 + 0.001 S-1 – 0.0748 OM-1 
– 0.643 ln(S) – 0.01398 D C – 0.1673 D OM  
+ 0.02986 topsoil C – 0.03305 topsoil S]    (5.7) 

This function performed well in the study of WAGNER et al (2001) and was developed 

for a wide range of soils based on the HYPRES (HYdraulic PRoperties of European 
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Soils) database. Furthermore, it considers the organic material content and 

distinguishes between topsoil and subsoil layers, which relates to the basic soil 

morphology. By this means, the hydraulic conductivity is differentiated depending on 

the soil horizon and the layer depth, which led to lower conductivities for the upper 

horizons in relation to the BoKA5 values (AG BODEN 2005). Many other PTFs, as well 

as the BoKA5 tables, do not incorporate these facts when estimating soil physical 

properties. Nonetheless, the comparison of the ks,f values (Table 5-3 and Fig. 5-5) 

calculated with WÖSTEN et al (1999) and the values tabulated in the soil mapping 

manual BoKA5 (AG BODEN 2005) results in a good coefficient of determination.  

 

Fig. 5-5: Saturated hydraulic conductivity of two PTFs vs. BoKA5 (AG Boden 2005). 

The correlation of other PTFs with the values of the BoKA5 and their coefficient of 

determination are given in Table 5-3. Obviously, the PTFs of WÖSTEN (1997), 

BRAKENSIEK et al (1984) and SAXTON et al (1986) correlate badly with very low 

coefficients of determination. The simple equation of COSBY et al (1984) gave a 

satisfying correlation with the BoKA5 data, but a larger scatter. The correlations do 

not include soil horizons dominated by sand or coarse material. 

Table 5-3: Statistical measures of the linear regression (forced through zero) of 

hydraulic conductivities derived from PTF vs. BoKA5 values 
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For the final parameterisation of ks the volumetric fraction of coarse material CV was 

taken into account. In soil layers with a CV up to 30%, the volume taken up by the 

coarse material was considered as an inactive region, effectively reducing the cross 

section for water flow. Therefore a small CV reduces the ks value by 

ks = ks,f • (100% − CV)      (5.8) 

The hydraulic conductivity of soil layers with a CV above 30% was found by using the 

weighted average of ks,f and the typical hydraulic conductivity of the bedrock ks,br 

taken from DINGMAN (2002) 

ks = ks,f • (100% − CV) + ks,br • CV     (5.9) 

Fig. 5-6 shows the final ks values for the soil types classified in the Upper Danube 

basin subdivided into the 4 computational soil layers. Since hydraulic conductivity is 

the key parameter for the simulation of infiltration and lateral runoff generation, 

validation runs were performed to validate the lateral runoff generated by the model 

with gauge measurements at the subcatchment scale. Generally, good coefficients of 

determination for simulated daily river runoff compared to gauge measurements at 

the catchment outlet Achleiten and at subcatchment outlets were achieved by MAUSER 

& BACH (2008). 
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Fig. 5-6: Saturated hydraulic conductivity of the Upper Danube soil type classes. 

Like the hydraulic conductivity, the plant available water of the soil type classes on 

the basis of the parameters n, m and Ψ(1) had to be assessed. Therefore the Brooks & 
Corey soil water retention equation (4.3) was applied for each soil layer for the 

distinctive soil suctions used in the German soil mapping manual. Soil moisture at 

field capacity Θfc is defined with pF 1.8 (−64 hPa) in the German soil handbook (AD-
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HOC-AG BODEN (2005) and often with pF 2.5 (−330 hPa) in the international literature 

(DINGMAN 2002). Yet, the true suction of a specific soil horizon at Θfc is a result of its 

specific textural and structural composition, as well as the depth to the saturated zone 

(SCHEFFER & SCHACHTSCHABEL 2002). The water content Θpwp at permanent wilting 
point is computed for a pF 4.2 (−15,000 hPa), therefore the plant available water 

content Θpa of a soil layer is  

 Θ - Θ  Θ pwpfcpa =        (5.10) 

The total plant available water storage in the soil column WSpa for each soil type class 

is the sum of the volumetric water content times the layer thickness di of each layer i 

and is expressed as a volume per unit area [mm] 

∑
=

⋅=
4

1i
iipa,pa ∆dΘWS       (5.11) 

Because field capacity is defined for a range of soil suctions, Fig. 5-7 displays both the 

minimum (pF 2.5) and maximum (pF 1.8) values of WSpa computed with the Brooks & 
Corey function against the total plant available soil water storage of the typical 

BÜK1000 soil profiles. The standard deviation of simulated WSpa at pF1.8 from the 

one given in the BÜK1000 legend is 42 mm and the parameterisation explains about 

91% of the differences between the individual soil type classes (Fig. 5-8). The Peat 
soil type class could not be parameterized with the PTFs, thus the required hydraulic 

properties had to be taken from the BoKA5 and the Brooks & Corey parameters had to 

be calibrated to fit the typical water retention of boggy soils. 
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Fig. 5-7: Plant available water WSpa per soil type class (PROMET vs. BÜK1000). 
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AS BOHRMANN (2007) could show, the hydraulic parameterisation of soils based on the 

German soil texture classification (Ad-HOC-AG BODEN 2005) seems to be appropriate 

for regional scale hydrological model applications, because the soil texture classes are 

relatively small. Together with the above comparison of the WSpa values, it is shown 

that this parameterisation strategy is able to represent the soil water dynamics of the 

soil type classes extracted from the BÜK1000 data. As a consequence, the greatest 

uncertainties of the regional scale hydrological simulations in the Upper Danube 

basin are a result of the low spatial resolution of the available soil map, resulting in a 

strong aggregation of different soil types and textures into single landscape scale soil 

associations.  

 

Fig. 5-8: Scatter plot of WSpa per soil type class (PROMET vs. BÜK1000).
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6. Evaluation of SHTM Accuracy 
and Uncertainty 

The first part of the validation strategy concentrates on the comparison of point 

measurements with simulated layer averaged soil temperatures. Furthermore, the 

influences of interpolated climate data, plant cover and simulated soil moisture on 

model performance are evaluated by means of the extensive data set recorded during 

the Eddy-Flux campaigns in 2003 and 2004. The performance of PROMET / SHTM in 

different regions of the Upper Danube catchment is assessed via soil temperature 

time series recorded by DWD and AgMet network stations. Finally, land surface 

temperature patterns of the investigated area derived from NOAA-AVHRR scenes are 

compared to model outputs. 

6.1. Statistical Criteria 

For the comparison of simulated time series with measured data, quantitative criteria 

that explain the correlation of mean and extreme values, as well as potential phase 

shifts between different time series, are needed. The following statistical criteria were 

found to be significant for the analysis of continuous time series, especially in 

hydrology (see NASH & SUTCLIFFE 1970, LEGATES & MCCABE 1999 and DINGMAN 2002 

amongst others), besides the daily and annual means, amplitudes and frequencies of 

these continuous series. 

The linear regression of simulated hourly or daily values with the associated 

measured values is expressed as a linear function  

y = a·x + b        (6.1) 

The correlation coefficients a (gain) and b (offset) describe the ability of the model to 

represent the physical processes that result in the measured variable. The associated 

coefficient of determination (R2) is a measure of the implicit scatter involved in 

reproducing the natural processes due to phase shifts, parameter uncertainty or non-

systematic model errors. For comparison of simulated with measured hourly time 

series, every 5th value was taken as a random sample. This type of random sample 

was chosen, because analytical statistics like linear regression analysis requires 

independent samples of the statistical population of data pairs (BAHRENBERG et al 

1999). As the actual hourly mean value of a temperature time series is dependent on 

the previous hourly mean value, especially during the diurnal cycle, the systematic 

random sample taken every 5th hour of a time series tries to reduce this 

interdependency of the investigated temperature values. At the same time, taking 
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every 5th value of an hourly time series moves the three chosen hours a day by one 

hour every day, resulting in randomly chosen hours per day in a longer time series. 

A widely used measure is the Root Mean Square Error (RMSE), which gives a good 

measure for overall deviation, but is very sensitive to single large deviations. 

( )

N

MS

RMSE

N

1i

2
ii∑

=

−
=       (6.2) 

with N: number of data pairs, Si: simulated value and Mi: measured value. 

The Root Mean Square Deviation (RMSD) used for the comparison of simulated and 

remotely sensed data is similarly 

( )

N

RSS

RMSD

N

1i

2
ii∑

=

−
=       (6.3) 

with RSi: remotely sensed value. It is mathematically similar to RMSE, but marks the 

comparison of a simulated dataset with data derived from remote sensing by 

techniques that are models themselves.  

Another commonly used criterion in hydrology is the Coefficient of Model Efficiency 

(CME) after NASH & SUTCLIFFE (1970) that ranges between one and zero for satisfying 

agreement between model and measurement and becomes negative for an insufficient 

correlation of these two. 
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1CME       (6.4) 

with Mm: the average value of Mi. 

For the assessment of the systematic bias of a predicted variable, the deviation of the 

simulated arithmetic mean from the measured arithmetic mean (deviation of mean, 

DM), which is equal to the arithmetic mean of the differences between simulated and 

measured variables, reads 

( ) ∑∑∑ −=−=
N

1
i

N

1
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N

1
ii M

N
1

S
N
1

MS
N
1

 DM     (6.5) 

A mixture of these criteria together with graphical representations of simulated and 

measured time series of, mostly, soil temperature is used to validate the performance 

of the heat flux and storage models implemented in PROMET. 

 



 

71 

6.2. Dependence of SHTM on Boundary Conditions 

The following field data was recorded at the two Eddy-Flux sites (see 4.1) south-west 

of Munich, located in a rapeseed field and a meadow, respectively. Measurements 

taken on both sites by colleagues of the Department of Geography (University of 

Munich) included soil temperature at depths of 7.5, 15 and 25 cm, soil moisture by 

TDR probes at the same depths and ground heat flux (G0) with a heat flux plate in 5 

cm depth. They were used to validate the performance of the Soil Heat Transfer 

Module as a stand-alone model.  

As the G0 measurements were taken at 5 cm depth, in the following, the model’s 

upper boundary and the depths of the soil thermometers are corrected for this shift 

when comparing these measurements to simulated data. In this case, validation 

depths are 2.5, 10 and 20 cm below the level of the heat flux plates, the imaginary 

"soil surface" and upper boundary condition. 

 

Fig. 6-1: Performance of SHTM with known boundary conditions at the Gut Hüll site: 

Measured vs. simulated hourly values of soil temperature (CME = 0.95). 

The simulation for the summer season at Gut Hüll, from 30.04.2003 to 15.07.2003, 

fitted very well with the measured data (see Fig. 6-2) when using measured soil 

moisture and ground heat flux. Soil texture and soil density were determined as part 

of the field work during the summer of 2003 and were used as input parameters for 

this stand-alone simulation with SHTM. However, Fig. 6-2 shows that the daily 

amplitude is slightly overestimated, which can be ascribed to the coarse layering of 

the soil layer stack used in SHTM. Models for the exact reproduction of soil 

temperatures at certain depths, like SOHE (HUWE 1999) or BEKLIMA (BRADEN 1995), 

divide the soil column into 10 or more layers, with thicknesses as small as 0.005 m. 

The slight overestimation of daily temperature amplitudes with a 4-layer model is 

consistent with the analysis of BEST et al (2005) regarding the transmission of heat 

pulses into the soil.  
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Fig. 6-2: Performance of SHTM with known boundary conditions at the Gut Hüll site: 

Scatter plots of simulated vs. measured hourly soil temperatures at two 

depths of the soil column. 

The Wielenbach data of 2004 could not be reproduced equally well by SHTM. The 

problems encountered here were missing soil texture data, strong influence of ground 

water and damaged soil moisture probes. Texture was estimated as loamy sand, with 

a high, but unknown, organic material content in the upper horizon. But variation of 

the soil properties did not enhance model performance significantly. Soil water 

content had to be simulated with the Eagleson-type soil water model, but it could not 

capture the strong influence of the shallow ground water table on soil moisture 

dynamics due to the model constraint, that the water table has to be deeper than the 

lower soil boundary. Consequently, in this case not all of the boundary conditions are 

known and the analysis of this model run shows the possibly strong influence of 

unknown soil water dynamics on soil temperature simulations. At that site, the high 

soil water content dampens the temperature amplitude and furthermore, in case of 

ground water influence, there is an unknown convective heat transport between 

ground water and soil that is not represented in SHTM simulations. 

Nonetheless, the model could reproduce the dynamics of the upper two soil 

thermometers (Fig. 6-3) quite well, until the start of the winter season. Then, the 

convective transport of heat from the warmer saturated zone into the upper soil 

seemed to compensate some of the negative heat flux towards the cold soil surface. 

This led to a much warmer subsoil at the measurement site, unlike the model output. 

Table 6-1: Statistics of simulation runs with SHTM and known boundary conditions. 
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Fig. 6-3: Performance of SHTM with known boundary conditions at the Wielenbach 

site: Measured vs. simulated hourly soil temperature at two depths of the 

soil column. 
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6.3. Influence of Different Model Configurations  

In the following, the simulation run of PROMET with SHTM and the explicit energy 

balance algorithm at the standard 1x1 km2 resolution is compared to the point scale 

measurements taken at the Gut Hüll site in summer 2003. Then, the influence of other 

PROMET modules on the performance of SHTM is evaluated by analyzing a modified 

plant parameterisation and a different meteorological input. Results with both the 

Penman-Monteith energy balance model and the empirical ground heat flux model 

are also presented. 

6.3.1. Results Based on the Explicit Energy Balance Algorithm 

The comparison of simulations with the full PROMET model, including the explicit 

energy balance algorithm, against temperature series taken at the EF sites, naturally 

shows larger deviations than the stand-alone SHTM version, because the input 

variables of SHTM are provided by other modules with inherent uncertainties. The 

following analysis of model results and measurements aims at showing how 

mesoscale simulations of soil temperature compare to point scale conditions. All 

simulations were started at a model time of one year before the validation period, in 

order to minimize the influence of any arbitrary starting conditions. 

 

Fig. 6-4: Performance of PROMET w/ SHTM at the Wielenbach site: Measured vs. 

simulated hourly soil layer 2 temperatures. 

The proxel (process pixel) of the Wielenbach site is characterized by intensive 

grassland on a nearly flat clay loam (Ut2) soil at an altitude of 542 m. Again, the 

amplitudes of the simulated time series are highly overestimated, due to the problems 

described in the previous section (see Fig. 6-4). The CME (= 0.72) is relatively high 

because the Wielenbach time series spans from May to December and therefore, the 

deviation of measured temperatures from the mean is quite high. The RMSE (= 2.2 °C) 

is acceptable for this type of location, but most importantly, the mean temperatures 

are reproduced quite well by the model (Table 6-2). It should be noted, the full model 
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performs better in simulating soil temperatures in late autumn, more so than the 

stand-alone version with measured ground heat flux.  

Because of the ground water related, strong systematic error of the simulated soil 

temperatures at the Wielenbach site, the further validation of PROMET with SHTM 

concentrates on the Gut Hüll site, where the previous validation with known boundary 

conditions showed that these are well known. Attention should be paid to the fact that 

in this case, soil layer temperatures are compared with time series taken at the true 

measurement depths unlike in section 6.2, because the depth of the heat flux plates 

has not to be considered. 

Like the previous site, the measurement site Gut Hüll is located on a proxel with 

matching land cover and soil type conditions. The land use of this proxel is cultivated 

land, which is set to rapeseed cultivation for all simulation runs, on a clay silt (Ut2) 

soil at 581 m height above sea level. The model slope is 0.5°, facing north.  

A qualitative assessment of the temperature graphs in Fig. 6-5 shows, that the mean 

daily temperatures of the upper two soil layers are overestimated by the model, but 

the run of the simulated curves is well related to the measurements. Following the 

analysis of the amplitude damping in 3.3.3, the hourly top soil layer (0-5 cm) 

temperature should match a measurement in 4 cm depth and the one of the third 

layer should be evaluated against measurements taken at 60 cm depth. But because 

the daily amplitude in the third layer is very small and the annual damping decreases 

slowly with depth, presumably the layer averaged temperature (20-65 cm) can be 

validated against the measured temperature at 25 cm depth with some caution. Yet 

the simulated temperature of the second layer (5-20 cm) can clearly be validated 

against the time series of the soil thermometer at a depth of 15 cm. This conclusion is 

supported by the statistical values presented in Table 6-2, especially arithmetic mean, 

RMSE and CME. Analysis of the linear regressions (see also Fig. 6-6) illustrates some 

systematic error that is reduced with increasing depth and very good coefficients of 

determination for layers 2 and 3. 

A quantitative assessment of the daily amplitudes produced by the model shows that 

for both, the top and the second soil layer, the correlation between model and reality 

(R2) is low (Fig. 6-7). Still, the data of the second soil layer scatters sufficiently well 

along the 1:1 graph. All in all, the performance of SHTM with the explicit energy 

balance module inside the PROMET framework performs well when comparing 

simulated hourly temperatures with field measurements. Still some unknown factors 

reduce the potential accuracy of SHTM that it has shown, when run with known 

boundary conditions. Therefore, the most influential model parameters, inputs and 

configurations, are assessed in the following section. 
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Fig. 6-5: Performance of PROMET w/ SHTM on the Gut Hüll proxel: Measured vs. 

simulated hourly soil temperatures for three modelled soil layers. 
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Fig. 6-6: Performance of PROMET w/ SHTM at the Gut Hüll site: Scatter plots of 

simulated vs. measured hourly soil temperatures at two depths of the soil 

column. 

 

Fig. 6-7: Performance of PROMET w/ SHTM at the Gut Hüll site: Scatter plots of daily 

soil temperature amplitudes at two depths of the soil column. 

Table 6-2: Statistical values of the simulations with the PROMET w/ SHTM model. 

 



 

78 

6.3.2. Influence of Soil and Plant Parameters 

The influence of soil properties on thermal conductivity of a soil layer is addressed in 

3.4.4, as well as in the linear relationships of volumetric heat capacity with porosity 

and soil water content. Thermal conductivity λ is mainly influenced by the organic 

material fraction of a soil layer, its porosity and soil water content. A sensitivity 

analysis has already been presented, but a variation of porosity or organic material 

content at the Gut Hüll site does not improve the overall performance of SHTM 

because the differences between simulated and measured soil temperatures vary with 

time. This leads to the conclusion that the simulated soil moisture differs from the 

measured one, due to differences in interpolated and measured precipitation. A 

simulation run with the meteorological time series recorded by the EF station is 

presented in the next section.   

To assess the influence of the canopy on the soil energy balance, the LAI, the most 

important input variable of the canopy light interception algorithm, was modified. Fig. 

6-8 shows the standard LAI simulated by the Farquar model, two test 

parameterisations with reduced and increased LAI trends and an interpolation of 

Plant Area Index (PAI) measurements that were recorded at the Gut Hüll site. While 

PAI is a measure of the surface of the whole crop, including blossoms, stems and 

fruits, the LAI only relates to the photosynthetically active leaf areas of a crop.  

 

Fig. 6-8: Simulated LAI and interpolated, measured PAI of rapeseed in summer 2003. 

As expected, the influence of the LAI variation on the ground heat flux due to the two 

test parameterisations is clearly visible in the statistical criteria. Even a small 

reduction (~0.6) in simulated LAI leads to a warmer soil surface and higher simulated 

soil temperatures, therefore a reduced performance of SHTM (CME = 0.64, RMSE = 

1.68, see Table 6-3). Similar to the model used by THUNHOLM (1990), simulated soil 

temperatures are sensitive to the LAI and the light interception ratio of the canopy. 
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Fig. 6-9: Correlation of simulated with measured soil temperatures based on reduced 

(left) and increased (right) LAI at Gut Hüll. 

 

Fig. 6-10: Correlation of simulated with measured temperature amplitudes based on 

reduced (left) and increased (right) LAI at Gut Hüll. 

By contrast, a slightly stronger increase (~1.0) in LAI leads to a better representation 

of mean daily temperatures (CME = 0.91, RMSE = 0.84), as shown in Fig. 6-9 and 

Table 6-3. But even though the increased LAI leads to a better performance of SHTM 

in regards to mean daily temperatures, the correlation of the simulated daily 

amplitudes (Fig. 6-10) with the measured ones decreases. But PROMET is also 

designed for the simulation of plant growth, when the biophysical canopy module of 

HANK (2008) is included. On this account, these high LAI values during most of the 

growth period can not be accepted as realistic, when compared to measurements and 

literature values. Most likely, the light transmission through canopies algorithm 

should be improved. And, as the analysis of the stand-alone version showed, a slight 

overestimation of daily amplitudes is expected, presumably due to the soil layer stack 

geometry, contrary to the underestimation in the "increased LAI" case.  
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6.3.3. Influence of Meteorological Input Data 

Meteorological input variables for catchment scale simulations with PROMET are 

provided by an algorithm that supplies hourly time series by temporal interpolation of 

climate station records. Subsequently, at each time step, a spatial interpolation 

scheme prepares the meteorological input for each proxel on the basis of the 

surrounding climate stations data. As a consequence, the meteorological drivers of 

the land surface process modules already differ from the true conditions found at the 

investigated site. To assess the deviation of the most influential inputs, Fig. 6-11 

presents scatter plots of air temperature and global radiation. Notably, simulated air 

temperature has a lower daily amplitude (gain < 1), but is generally higher than the 

true air temperature at Gut Hüll (offset = 2.7), especially at night. Warmer air 

temperatures that have been mostly recorded at midday are reproduced much better 

by the interpolation procedure of the model. Overall, the difference between the 

arithmetic means of the simulated and measured time series for the recorded period 

(30.04. to 15.07.2003) is +0.52 °C, mainly caused by an overestimation of night time 

air temperatures by the temporal interpolation of the meteorological module. 

Global radiation from the radiation model is actually on average 14 W/m2 lower than 

the measured one, but average net radiation above canopy is about 40 W/m2 higher in 

the model than measured in the field. Three reasons seem to lead to this 

overestimation of net radiation: Especially during night time, the long wave net 

radiation is biased by overestimated air temperatures in the model. Additionally, too 

high simulated air temperatures reduce the sensible heat flux from the soil surface 

into the atmosphere and therefore adding a positive bias on simulated soil 

temperatures. 

 

Fig. 6-11: Differences between simulated and measured air temperature (left) and 

above canopy global radiation (right) at Gut Hüll. 

Secondly, reflection and absorption of incoming radiation are strongly related to 

vegetation and soil parameters that can not be exactly known. Finally, standard 
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measurements of net radiation generally underestimate true net radiation. HODGES & 

SMITH (1997) found, that at 15 of 21 measuring sites they investigated, net radiation 

was underestimated by about 5% in the daytime and about 45% at night. TWINE et al 

(2000) also estimate the daytime accuracy of net radiation measurements to be about 

6 %, mainly caused by the heating of their measurement devices by solar radiation. 

Spatial interpolation of precipitation introduces even more uncertainty, due to the 

spatial and temporal non-continuous nature of precipitation. But since SHTM does not 

consider convective heat transport due to infiltrating water, the main effect of 

precipitation taken in consideration is the increase in soil moisture during and after 

rain events. Graphs of simulated and recorded soil moisture time series (Fig. 6-12) 

reveal that too little precipitation is computed in the beginning and during the second 

half of the validation period. Substituting the interpolated precipitation with the one 

recorded at the EF site produces a better fit of simulated and recorded soil moisture 

in the second layer.  

 

 

Fig. 6-12: Measured soil moisture at different depths (Gut Hüll 2003) vs. simulated 

soil moisture with interpolated and measured meteorological drivers. 
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In some way, the performance of the model is improved during the validation period, 

by using the recorded values of air temperature, global radiation above canopy and 

precipitation as driving input (Fig. 6-13). The fit of the top layer temperature with the 

7.5 cm measurement improves (Table 6-3), but the measures of deviation between the 

simulated second layer temperature and the associated measurement are not 

improved. Only the coefficient of determination (R2) points out, that the non-

systematic errors, due to the meteorological inputs, are reduced. As expected, the 

average simulated daily amplitude is greater than before for both soil layers, as a 

result of increased input from global radiation, and the coefficients of determination 

for the regression of daily amplitudes increase too, at both soil depths (Fig. 6-14 and 

Table 6-4), when using the recorded meteorological inputs. 

 

Fig. 6-13: Performance of PROMET with measured meteorological input at Gut Hüll: 

Measured vs. simulated hourly soil temperature of the second soil layer. 

 

Fig. 6-14: Performance of PROMET with measured meteorological input at Gut Hüll: 

Scatter plots of measured vs. simulated daily soil temperature amplitudes 

of the upper two soil layers. 
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This investigation shows that interpolated climate data leads to non-systematic errors 

in soil temperature simulations that can be reduced for point-scale model runs, when 

using recorded meteorological data. It reveals also, that in this case, the implemented 

combination of canopy model, explicit energy balance module and SHTM introduces 

a systematic overestimation of daily and long-term soil temperature amplitudes in the 

upper layers. Though, the deviation of the modelled temperatures from the measured 

ones is rated low. This is because a simplified, mesoscale model, run with standard 

parameterisations, is compared to point scale measurements of a sensitive variable, 

that is affected by highly complex conditions. 

Table 6-3: Summary of statistical criteria related to different model runs (standard = 

standard model run; meteo input = model run with recorded Tair, Rglobal and 

precipitation). 

 

Table 6-4: Summary of linear regression between measured and different simulated 

daily amplitudes of soil temperature at the Gut Hüll site. 
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6.3.4. Results with Simplified Ground Heat Flux Modules 

Besides the sensitivity of the simulated soil temperature to input variables and 

parameters, PROMET provides three different algorithms that compute ground heat 

fluxes on an hourly time scale. All findings shown so far, were computed with the 

algorithm presented in 3.6.1, that separates the energy balances for the soil surface 

and the canopy (if any). In the following, results are shown with the energy balance 

algorithm for the Penman-Monteith evapotranspiration module and the empirical 

model of surface ground heat flux. 

The Penman-Monteith Energy balance (PME) module basically uses the same 

iteration scheme as the Explicit Energy Balance (EEB) model, but calculates the 

surface energy fluxes for the entire land surface, including soil surface and canopy. 

Hence, in case of plant cover, no soil surface temperature is computed, only a overall 

land surface temperature. Thus it is assumed, that for dense canopies the influence of 

the above canopy radiation flux on soil heat flux is disproportionately strong, leading 

to exaggerated daily and long-term amplitudes of simulated soil temperatures. Fig. 

6-15 illustrates, that the deviation of PME temperature from measured temperature in 

the second layer is noticeable stronger than with the EEB model (Fig. 6-5) before day 

of year (DOY) 155 at Gut Hüll. During the second half of the validation period, the 

PME model performs similarly well as the EEB. As a consequence, the correlation of 

hourly simulated temperatures with measured ones has a similar trend, but a larger 

scatter (Fig. 6-16), that way the coefficient of determination is reduced when 

compared to the results with EEB input, as well as the CME (Table 6-5). Interestingly, 

the deviation of the simulated from the measured mean temperature during the 

validation period is lower for the PME variant than for the EEB variant. The daily 

amplitudes are overestimated with PME input for both tabulated soil layers and 

surprisingly the correlation (R2) of PME-simulated amplitudes with measured ones in 

the second soil layer is very low.  

 

Fig. 6-15: Performance of SHTM w/ PME input at the Gut Hüll site: Measured vs. 

simulated hourly soil temperatures in the second soil layer. 
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Fig. 6-16: Performance of SHTM w/ PME input at the Gut Hüll site: Scatter plots of 

hourly soil temperatures and daily amplitudes in the second soil layer. 

Table 6-5: Summary of statistical criteria related to the three different surface 

ground heat flux models EEB, PME and EmpGHF.  

 

If SHTM is run with the Empirical Ground Heat Flux module (EmpGHF), where G0 is 

calculated as a fraction of net radiation, the fit of the predicted soil temperatures with 

the measurements is drastically reduced (Fig. 6-17). The simulated daily amplitudes 

are of the same order as the ones produced with the EEB module (Table 6-5), but the 

progression of the daily mean temperature from April to Juli 2003 is too much 

influenced by the position of the sun and the related global radiation. Despite the low 

performance of this model configuration, it has advantages over using the purely 

analytical sine wave approach, implemented in some models. The analytical approach 

overlays two sine waves based on equation (4.29) for the daily and annual amplitudes 

of the soil temperature. Even if the model efficiency of the analytical solution for the 

15 cm depth (Fig. 6-19) is better in this case (CME = 0.32, RMSE = 2.31 °C), it cannot 

explain the day to day variation of soil temperature (R2 = 0.61 as opposed to R2 = 0.83 
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in the EmpGHF case), nor does its amplitude vary with differing atmospheric or soil-

related conditions.  

In summary, this analysis points out, that some energy balance algorithm has to be 

implemented in any catchment scale land surface model to compute realistical 

estimates of hourly soil temperatures. The simple empirical approach that relates 

ground heat fluxes to computed net radiation, implemented in some models which 

emphasize on assimilation of remotely sensed data (CHOUDHURY et al 1987, KUSTAS & 

DAUGHTRY 1990, NIEMEYER 2000, BOEGH et al 2002), should not be used in soil 

physical or biochemical predictions. It only beats the sine wave approach in terms of 

sensitivity to local conditions; otherwise its ground heat flux predictions are 

unreliable. The long term predictive ability of the EEB and PME driven soil 

temperature simulations, as well as the ability of SHTM to predict soil temperatures 

below the freezing point are explored in the next section. 

 

Fig. 6-17: Performance of SHTM w/ EmpGHF at the Gut Hüll site: Measured vs. 

simulated soil temperatures in the second soil layer. 
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Fig. 6-18: Performance of SHTM w/ EmpGHF at the Gut Hüll site: Scatter plots of 

measured vs. simulated hourly soil temperatures and daily temperature 

amplitudes in the second soil layer. 

 

Fig. 6-19: Temperature curve of a possible solution of the sine-wave approach 

against soil temperature measured at Gut Hüll at 15 cm depth. 
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6.4. Validation against Meteorological Network Data 

6.4.1. Comparison of SHTM with AgMet Time Series  

To assess the performance of SHTM within in the PROMET framework in different 

regions of the mesoscale Upper Danube catchment, temperature time series, 

recorded at 5 and 20 cm soil depth at 28 agrometeorological (AgMet) stations (Fig. 4-

3) are compared to model outputs of the soil layers for 0-5 cm and 5-20 cm depth, 

respectively. At three sites only the time series of the year 2004 could be used for 

validation, because of measurement errors during the extreme summer of 2003.  

All PROMET runs for this investigation are carried out with standard input parameters 

on a 1x1 km2 raster size. The spatial distribution of soils is not modified, but land use 

is set to extensive grassland for all investigated proxels, to reflect the usual plant 

cover of meteorological measurement sites. Output of SHTM is validated for both the 

EEB and PME surface energy modules, because both configurations are applicable in 

hydrological studies. The validation of the simulated in comparison to the recorded 

hourly time series of soil temperature is quantified on the basis of statistical criteria 

prepared for each simulated year and each investigated site. The coefficient of model 

efficiency (CME), the root mean of squared error (RMSE) and the deviation of the 

simulated annual mean from the measured one are tabulated for all AgMet stations 

and both years (2003 and 2004) in Appendix B. To assess the overall performance of 

SHTM, frequency distributions of 10 evenly distributed classes of the statistical 

criteria of the 53 available combinations of the modeled years and the chosen AgMet 

stations, or "cases", are analysed in the following. 

Although the actual soil properties found at some AgMet sites differ considerable 

from the ones used in the soil parameterisation, the mean RMSE of the second soil 

layer temperature for all cases is only 1.75 °C and over 61% of the RMSE values are 

below 1.8 °C (Fig. 6-20), when the EEB variant is used. Compared to the RMSE 

achieved at the EF sites, at 82% for the AgMet cases the model performance is better 

than the one achieved for the second soil layer at Wielenbach. The RMSE mean values 

of the more dynamic upper soil layer are greater, but still over 75% of the calculated 

RMSE are lower than 2.6 °C and therefore better than the one achieved for the top 

layer of the Gut Hüll proxel. As for RMSE, the PME variant performs only slightly 

worse than PROMET / SHTM with EEB, but extreme deviations, with RMSE values 

greater than 3.0 °C (Fig. 6-21), increase notably.  

Regarding the simulated annual mean of soil temperature at the depths of 5 and 20 

cm, most of the simulated annual means with the EEB variant are close to the 

measured mean annual temperatures (Fig. 6-20). The PME variant on the other hand, 

underestimates the mean annual soil temperature for nearly all of the investigated 

sites (Fig. 6-21). Interestingly, the negative deviation is less pronounced in the second 

than in the top soil layer, leading to the conclusion that average energy input from the 

PME module is too small. 
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Fig. 6-20: Frequency distribution of annual statistical criteria (RMSE, deviation of 

annual mean temperature, CME) of the AgMet cases (one case per year 

and per AgMet station) simulated with PROMET w/ EEB ground heat flux. 
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Fig. 6-21: Frequency distribution of annual statistical criteria (RMSE, deviation of 

annual mean temperature, CME) of the AgMet cases (one case per year 

and per AgMet station) simulated with PROMET w/ PME ground heat flux. 
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Finally, the frequency distributions of the CME show the greatest discrepancy 

between both energy balance options. About 62% of the calculated soil layer 2 CME 

values of the EEB driven simulation are greater than 0.94 (Fig. 6-20), as opposed to 

only 36% in the case of the PME variant (Fig. 6-21). As the CME after NASH & 

SUTCLIFFE (1970) is dependent on the variation of the measured variable during the 

investigated period, a CME ≥ 0.90 is expected for a good fit of near surface soil 

temperature with an annual amplitude of about 15 °C. Low CME values (< 0.82), due 

to possible measurement errors or model input and parameterisation problems, show 

up in the EEB statistics, but are sharply increased in the PME variant. This is due to 

larger daily temperature amplitudes in the PME simulation, as shown by example at 

the Sarching site in Fig. 6-22. As the PME ground heat flux is related to the energy 

balance on top of canopy, it is evident, that daily G0 rates are overestimated and night 

time G0 is underestimated in case of plant cover. On the other hand, measured 

amplitudes vary strongly from site to site, by reason of varying soil properties, 

differing canopy heights and variations in data quality.  

Table 6-6: Comparison of two PROMET configurations validated against time series 

of the years 2003 and 2004 from 28 agrometeorological sites in Bavaria. 

 

 

Fig. 6-22: Scatter plots of measured vs. simulated top soil layer temperature 

amplitudes at the AgMet site Sarching during 2004 (left: PROMET w/ EEB; 

right: PROMET w/ PME). 
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Nevertheless, some improvement of the PME algorithm should be possible by relating 

the effective G0 to land cover properties, especially to vegetation properties. But 

instead of relating G0 directly to Rnet like the EmpGHF algorithm does, the daily 

amplitude of the land surface temperature could be reduced for the calculation of G0 

depending on vegetation cover. A possible approach could be similar to the method of 

ZHENG et al (1993) and KANG et al (2000), who related daily soil temperature 

dynamics to air temperature and LAI derived from Landsat Thematic Mapper data. 

6.4.2. Comparison of SHTM with DWD Time Series 

The German weather service (DWD) data on soil temperature time series, used in the 

following, are only recorded three times a day, but provide a higher accuracy as a 

result of regular, professional sensor calibration and post-processing of the data. As 

the simulated daily amplitudes of soil temperature have already been evaluated in the 

previous sections, the available DWD time series are used to validate daily SHTM 

outputs over multiple years, with focus on the performance of the soil freezing model 

and the resulting winter temperatures of the near surface soil. Again, no soil or 

vegetation parameters are customized to local conditions and all validation runs are 

carried out on the standard 1x1 km2 proxel with extensive grass land cover for the 

years 2002 to 2005. The model configuration includes the enhanced biophysical 

canopy module of HANK (2008) and the explicit energy balance (EEB) algorithm.  

Table 6-7: Summary of statistical criteria for the validation period 2002 to 2005 of 

SHTM w/ EEB at 15 DWD stations inside the Upper Danube catchment. 

 

As the first part of the analysis, the statistical criteria, deviation of annual mean, 

RMSE and CME, are computed for each year at each validation site. The daily mean of 

the simulated temperature of the first soil layer is compared to the measured mean 

soil temperature at 5 cm depth and the second soil layer temperature with the 

measurement at 20 cm. Table 6-7 shows the statistical values for each DWD site, 

averaged over the validation period. Due to the less dynamic nature of daily 

temperature time series, the mean CME values calculated for each site are in the 



 

93 

range of 0.94 to 0.98. Likewise, the RMSE values range from 1.03 °C to 2.10 °C and 

therefore are significantly lower than in the analysis of hourly soil temperatures at the 

AgMet sites. The difference in RMSE between the top and the second soil layer is 

considerable reduced when investigating daily time series, from about 0.5 °C to 0.1 

°C, averaged over all data sets. The mean annual deviation of simulated to measured 

soil temperature is on average close to zero for the top layer (-0.12 °C) and slightly 

lower in the second layer (-0.39 °C).  

 

Fig. 6-23: Scatter plots of measured and simulated daily soil temperature at the DWD 

station Weiden for the years 2002 to 2005. 

 

Fig. 6-24: Scatter plots of measured and simulated daily soil temperature at the DWD 

station Oberschleissheim for the years 2002 to 2005. 

To further inspect the performance of SHTM compared to the DWD records, scatter 

plots of simulated temperatures in the upper three model layers against the 

measurements at 5, 20 and 50 cm at the best and worst performing sites, Weiden and 

Oberschleissheim, are depicted in Fig. 6-23 and Fig. 6-24. The linear regressions 

presented, are based on every 5th value (see section 6.1) of the 4-year time series 

chosen as a random samples. As the day-to-day variation in temperature decreases 

with increasing depth, the coefficient of determination increases with soil depth in 

both cases from about 0.975 to 0.985. The slope of the regression curve in the Weiden 

case (Fig. 6-23), is closer to one at all soil depths, than at the Oberschleissheim site 

(Fig. 6-24). The slight overestimation of the annual amplitude at Weiden is 

compensated by a negative offset that denotes some systematic model error, likely 

due to differences between the soil parameterisation and the true soil properties. The 

same holds true for the Oberschleissheim site, but with a more drastic reduced annual 
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amplitude at all depths that leads to a regression curve slope below 0.9. The increase 

in offset with depth, demonstrates that the 5 to 20 cm model layer does not represent 

the measurement at 20 cm adequately. This also holds true for the 20 to 65 cm model 

layer and the 50 cm measurement depth. Contrary to the analysis in section 4.3.3, the 

representative measurement depths regarding the annual temperature course are 

closer to the surface for these two soil layers. 

To quantify the expected accuracy of SHTM throughout the Upper Danube catchment 

under different atmospheric conditions, frequency distributions of the main statistical 

criteria, divided into 10 even classes, for each year and each site (DWD "cases", Fig. 

6-25) are discussed in the following. The 84 sets of statistical values computed from 

the daily soil temperatures for each year and each DWD station used in this study are 

tabulated in Appendix B.  

As the average value of the mean annual deviation of soil temperature suggests (see 

above), over 80% of the mean deviations of simulated from measured temperature in 

the top soil layer range between -0.6 and 0.6 °C and in the second layer between -1.0 

and 0.6 °C. The mode of the soil layer 1 distribution is -0.4 °C, while the soil layer 2 

distribution has no clear mode, but two at -0.4 °C and -0.8 °C. Together with the 

results of the AgMet analysis, it is evident, that SHTM models the mean annual 

temperature with an accuracy better than 1.0 °C in 90% of all tested cases. 

Over 90% of the daily soil temperature RMSE values computed for the top soil layer 

are lower than 2.0 °C and even 73% are lower than 1.6 °C. In the AgMet validation 

75% of the RMSE values were lower than 2.6 °C, showing that simulating hourly 

values of soil temperature increases the standard error significantly. Switching from 

hourly to daily analysis of simulated soil temperatures still decreases the average 

standard error of the simulated second layer temperature to 1.39 °C for the DWD 

cases, with over 81% of all calculated RMSE values being lower than 1.6 °C. 

When examining the coefficient of model efficiency for mean daily soil temperatures 

on an annual basis, the frequency distributions show clear modes at 0.97 for the top 

soil layer and 0.98 for the second soil layer. Over 90% of all computed CME are 

greater than 0.93 and 0.94, respectively. This leads to the conclusion that PROMET 

with SHTM and the EEB algorithm performs very well, when simulating daily soil 

temperatures under grass land cover, even on a mesoscale resolution. 
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Fig. 6-25: Frequency distribution of annual statistical criteria (RMSE, deviation of 

annual mean temperature, CME) of the DWD cases (one case per year and 

per DWD station) simulated with PROMET w/ EEB ground heat flux. 
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To assess the performance of the soil energy transfer and storage model with respect 

to freezing of soil water, the correlation of simulated to measured daily soil 

temperatures during the winter months December, January and February is inspected 

in detail by means of the DWD ground temperature records. First the scatter plots of 

measured and simulated soil temperatures during the winter months at the DWD sites 

Weiden and Oberschleissheim are discussed. In contrast to the whole year data sets, 

the simulated winter temperatures correlate better with the recorded data at the 

Oberschleissheim station (Fig. 6-26). The linear regression between the 10 cm 

temperature record and the second layer simulation (RMSE = 0.75 °C) at this site 

exhibits the best R2, the lowest offset and the gain closest to 1:1. The top soil layer 

temperature also correlates well with the 5 cm record (RMSE = 0.92 °C), only the 

temperature recorded at 20 cm depth is underestimated by the simulated temperature 

of the second soil layer (RMSE = 1.02 °C). All scatter plots for the Weiden site (Fig. 

6-27), show that the simulation seems to overestimate the temperature fluctuations in 

winter, with gain values greater than one and negative offsets up to 1 °C. Again the 

linear correlation closest to 1:1 is found when comparing the second layer 

temperature with the 10 cm temperature record (RMSE = 0.85 °C). Obviously, the 

freezing of soil water changes the comparability of modelled and recorded 

temperature time series.  

 

Fig. 6-26: Scatter plots of daily measured vs. simulated winter temperatures (Dec. to 

Feb.) at the DWD station Oberschleissheim. 

 

Fig. 6-27: Scatter plots of daily measured vs. simulated winter temperatures (Dec. to 

Feb.) at the DWD station Weiden. 
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As freezing starts at the soil surface, the soil temperature below is kept above the 

freezing point as long as there is liquid water available at the surface. The freezing 

front slowly moves downwards and as the volumetric energy content above the 

freezing front is drastically reduced, the soil below still has the additional latent 

energy content of the water trapped in its soil matrix. The soil freezing model, on the 

other hand, assumes that the amount of frozen water is equally distributed throughout 

the soil layer. Hence, modelled soil temperatures during soil freezing could fit better 

with records above the lower soil boundary, like the 5 to 20 cm soil layer 

temperatures at both sites correlate better with measurements at 10 cm depth, than at 

20 cm depth. Additionally, the presumption, that the soil surface temperature is set to 

0.0 °C when covered with snow, potentially leads to unrealistic accumulations of 

simulated top soil temperatures close to the freezing point.  

 

Fig. 6-28: Measured vs. simulated hourly soil temperatures at the Weiden site during 

two winters of the validation period 2002 to 2005.  
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Fig. 6-28 depicts the simulated temperature of the second soil layer at the Weiden site 

and the three temperature records related to this model layer for the winter 2002/03. 

One can perceive that until the end of January the model fits well with the dynamics of 

the three records. The deviation of the simulated from the recorded graphs after that 

date is likely a result of deviations of modelled from true ground heat flux between the 

snow cover and soil, or differences in modelled and true liquid water contents. In the 

following simulated winter SHTM performs not as good as in the previous one. Again 

in late January, the simulated soil temperature drops below the measurements, which 

surprisingly do not fall below the freezing point, even at 5 cm depth. This raises the 

suspicion, that measurements of soil temperatures near 0.0 °C could be disturbed by 

the measuring setup or other anthropogenic impacts (e.g. nearby buildings). 

SHTM performs similar at most of the investigated DWD measurement sites, with the 

exception of the Hohenpeissenberg observatory data set, where only 9 days of top soil 

freezing were measured in the 4 year validation period (Table 6-8). As DEDECEK et al 

(2008) report, larger anthropogenic structures, like the one found at 

Hohenpeißenberg, can have a significant impact on the subsurface temperature field. 

Therefore it is assumed that the freezing point temperature record of this site is 

modified by the ground heat flux of the nearby building. Similar, but smaller, effects 

could have also affected other temperature time series used in this work.   

But as the main field of application of PROMET is the simulation in mesoscale 

catchments, a different validation strategy is applied to evaluate the soil freezing 

algorithm. In Table 6-8, the number of days in the validation period (2002 to 2005) 

with a temperature at or below the freezing point for each measurement depth and 

the top two model layers is presented. Comparison of the modelled and recorded soil 

frost days highlights the ability of the model to reproduce the statistical frequency of 

occurrence of soil frost. If the typical depth of frost penetration at the investigated 

sites is seldom greater than 20 cm, the occurrence of non-frozen topsoil above frozen 

subsoil can be neglected. After LÖPMEIER (2006), the frost penetration in lowland 

Bavaria is about 35 cm in extreme winters like 1996/97 or 2005/06 and considerably 

shallower in most other years. 

As expected, the top model layer overestimates the occurrence of soil freezing in 

relation to the 5 cm measurement, because this temperature record disregards any 

freezing in the soil above. The average frequency of frozen soil water recorded at 5 

cm and simulated for 5 to 20 cm soil depth, on the other hand, fits quite well for most 

of the investigated DWD sites (Fig. 6-29). If the average is calculated without the 

extreme exception Hohenpeißenberg and the three stations with not sufficient 

records at 5 cm depth during the winter months, the model overestimates days with 

frozen soil by two per year (Table 6-8). But frozen soil water at 5 cm depth, does not 

equate to soil freezing at 10 cm depth for most of the DWD sites. Therefore, the 

occurrence of soil frost at this depth is clearly exaggerated by the second soil model 

layer and at most sites the freezing front seldom reaches a depth of 20 cm. But this 

inaccuracy of the model is due to the coarse model geometry in combination with the 

large amount of energy that is released when soil water freezes. 
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Table 6-8: Frequency of the occurrence of daily soil temperatures at or below the 

freezing point during the validation period 2002 to 2005 at three 

measurement depths (5, 10 and 20 cm) and in the upper two model layers. 

 

 

Fig. 6-29: Frequency of daily soil temperatures at or below the freezing point during 

the validation period 2002 to 2005 at two measurement depths (5, 10 and 

20 cm) and in the second model layer. 
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6.5. Identification of Surface Temperature Patterns 

In the previous sections, a systematic analysis of recorded and simulated soil 

temperatures has proved, that the soil heat transfer module SHTM, implemented in 

PROMET, driven by an explicit energy balance (EEB) algorithm at the soil surface, 

provides soil temperature time series with an accuracy of about 1.5 K when compared 

to daily recordings and with a typical standard deviation of 2.3 K, when compared to 

hourly recordings. But the most sensitive part of a soil column with regard to the 

energy balance of the land surface, the few upper most centimetres and with it the 

soil surface temperature can not be evaluated with meteorological station data. The 

sole method to validate the spatial distribution of simulated soil surface temperature 

(SST) is its comparison with land surface temperature (LST) from remote sensing 

products using thermal infrared wavelengths. For that reason, LST products of the 

NOAA-AVHRR thermal channels 4 and 5 were derived with the simple Split Window 

Techniques (SWT) of KERR et al (1992) and ULIVIERI et al (1994), as well as with the 

more complex SWT of Becker & Li (1990), modified for the NOAA-17 sensor by YANG 

& YANG (2006). Three SWTs were chosen to quantify the differences of the LST 

results, when using SWT algorithms of different complexity (see section 3.3 for more 

details). The analysis of these SWT algorithms showed (see section 3.3.2), that the 

simple KERR et al (1992) technique produces LSTs close to the channel 4 brightness 

temperature (BT4), whereas the SWTs of ULIVIERI et al (1994) and YANG & YANG (2006) 

compute LSTs about 2-4 K and 3-5 K higher than the BT4, respectively.  

The evaluation of simulated LST, and particularly of simulated SST, is based on 12 

AVHRR scenes (Table 6-9), retrieved during March and April of 2003 and September 

and October of 2005. Scenes taken during early spring and early autumn are 

preferable for an analysis of SST, because many agricultural crops have not yet 

developed in early spring and most crops have been harvested in September and 

October. It should be noted that this study only relatively compares model outputs 

with remote sensing products, because the average surface temperature of the chosen 

SWTs algorithms differ by up to 5 K. 

Table 6-9: Date and time of the NOAA-17 recordings used in this study. 

 

As a first qualitative comparison of simulated and remotely sensed temperature 

patterns, the visual differences of a simulated LST map and the LST maps generated 

by the various SWTs are compared in the following. The 22nd of September 2005 is 
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chosen, because the NOAA scene of that day has a very low fraction of snow and 

cloud cover over most of the Upper Danube basin. Fig. 6-30 depicts the LST pattern 

derived from the AVHRR scene with the KERR et al (1992) SWT for vegetated surfaces. 

The simulated LST map (Fig. 6-31) shows similar patterns, especially the warmer 

regions along the course of the river Danube and the colder regions in the Alps are 

well defined. The simulated LST map also identifies a colder central western part, as 

opposed to the warmer central eastern part of the catchment. The YANG & YANG (2006) 

algorithm surface temperature map (Fig. 6-32) reveals similar patterns, but the mean 

LST is about 3 K higher, as found in section 3.3. The same can be perceived in the 

ULIVIERI et al (1994) map (Fig. 6-33) with LSTs on average 1.5 K warmer than the 

ones derived with the KERR et al (1992) SWT. The main visual difference between 

remotely sensed and simulated LST is the less pronounced land use pattern in the 

simulated map, especially the cooler forest areas in the central and western part of 

the catchment are missing in the simulation. This can be attributed to the dominant 

land cover “Extensive Grass” (Fig. 2-6) in this area, which has a high simulated LAI in 

autumn (HANK 2008), and the missing soil temperature signal for high LAI canopies 

due to the implemented canopy transmittance algorithm (see also below). 

The NOAA-derived LST is also more influenced by the relief in the mountainous 

regions of the Alps than the simulated surface temperature. This could be due to the 

fact that the intensity of the longwave radiation recorded by the AVHRR sensor is 

influenced by the slope and exposition of the land surface. This leads to errors in the 

measurements of the true land surface temperature by remote sensors, because of the 

reduced radiant intensity obtained by the sensor from sloping surfaces (e.g. MINNIS & 

KHAIYER 2000). Then again, the smoothed relief of the 1 km2 digital elevation map 

used for the simulations in the Upper Danube basin also introduces errors in the 

calculation of incoming solar radiation, leading to errors in simulated LSTs. 

In the next step, the differences between the simulated surface temperatures and the 

ones derived with the presented SWTs are analyzed visually and with the help of 

frequency distributions of their differences for two selected AVHRR scenes. All LST 

maps derived from remote sensing data via SWTs were generated with the respective 

parameters for a vegetation covered land surface, while the SST maps of the 

presumed “vegetation-free” proxels were created with the bare soil parameters given 

in section 3.3.2. At the end of the chapter, the diagrams of mean deviation and RMSD 

between simulated and remotely sensed surface temperatures for all presented 

AVHRR scenes show that the presented results are consistent for both the spring 

2003, as well as the autumn 2005 NOAA-AVHRR recordings.  

Although some parts of the remotely sensed LST maps are influenced by nearby 

clouds or the steep relief in the high alpine part of the catchment, the following 

analysis is carried out on all proxels not covered by clouds or snow. Removal of the 

problematic raster points from two sample scenes did not alter the statistical criteria 

significantly, since the major part of the investigation area is cloud free in all chosen 

AVHRR scenes and the fraction of the catchment proxels affected by steep relief 

(here: slope > 15°) effects is lower than 5 %. 
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Fig. 6-30: Land surface temperature of the Upper Danube catchment derived from 

NOAA-AVHRR channels 4 and 5 with the KERR et al (1992) SWT algorithm 

(DOY 265). 

 

Fig. 6-31: Land surface temperature of the Upper Danube catchment simulated with 

PROMET (DOY 265). 
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Fig. 6-32: Land surface temperature of the Upper Danube catchment derived from 

NOAA-AVHRR channels 4 and 5 with the YANG & YANG (2006) SWT 

algorithm (DOY 265). 

 

Fig. 6-33: Land surface temperature of the Upper Danube catchment derived from 

NOAA-AVHRR channels 4 and 5 with the ULIVIERI et al (1994) algorithm 

(DOY 265). 
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To assess the correlation of simulated to remotely sensed SSTs, the differences in 

surface temperature for all proxels with agricultural use but without any plant cover 

are presented in the following. Even though most proxels assumed to be uniformly 

covered with agricultural crops in the model have highly heterogeneous land cover in 

reality, the warm regions in Fig. 6-32 show that the land cover of the main agricultural 

areas is dominated by open soil and anthropogenic structures with low 

evapotranspiration rates. Proxels with active vegetation cover and sufficient soil 

moisture always appear cooler, because of the heat loss caused by transpiration. 

The maps depicting the differences between the modelled LST and the LST derived 

from AVHRR sensor data with three different SWTs (Fig. 6-34) emphasize the 

observations made above. But even more important, the SST difference maps, 

showing the differences between simulated bare soil skin temperature and the surface 

temperature of presumably vegetation-free pixels (Fig. 6-34), are evidence for a good 

fit of model and remote sensing data, especially when using the Ulivieri SWT to derive 

SST. Bare soil pixels are defined as all proxels with any crop cultivation land use, that 

are set to “harvested” before the 1st of September by the agricultural management 

module included in the biophysical canopy module of HANK (2008). About 16 % of 

the proxels in the catchment meet this requirement in autumn 2005, which is 

accounted for in the scaling of the diagram axes in Fig. 6-35.  

To quantify the differences between simulated and SWT-derived soil surface 

temperatures, as well as their variation, Fig. 6-35 shows the frequency distributions of 

the SST differences between land surface model and investigated SWTs for the 

midday NOAA scene of the 22nd September 2005. The LST differences are presented 

in the same way and the differences between modeled air temperature (AT) and 

AVHRR-derived LSTs are also displayed for comparison. The deviation of the areal 

mean SSTs and the respective root mean square deviations (RMSD) are discussed in 

the following for the assumed bare field proxels. 

The modelled SST has the lowest bias if substracted from the Ulivieri SST (0.73 K), 

while it has a clear negative bias (-1.33 K) when compared to the Yang&Yang SSTs 

and a strong positive one (2.70 K) versus the Kerr algorithm results. The root mean 

square deviation (RMSD) is lowest for the comparison with the Ulivieri SWT as well 

(2.18 K), slightly higher for the Yang&Yang SWT (2.45 K) and very high for the Kerr 
SWT (4.03 K). The standard deviations of the SST differences are quite similar for all 

SWTs, with 2.05 K for the Ulivieri and Yang&Yang algorithms and 2.07 K for the Kerr 
SWT. These statistical values of this particular date are very close to the average ones 

for the 8 AVHRR scenes in autumn 2005 (Fig. 6-39) and therefore are presented here.  

Regarding the whole catchment LST, the PROMET versus Kerr SWT comparison 

scores best, with a mean deviation of 0.13 K and a RMSD of 2.70 K. The mean bias 

between the simulated values and the Ulivieri-derived LSTs is -1.36 K and the bias is 

clearly negative when the simulation is compared to the Yang&Yang SWT (-2.71 K). 

The corresponding RMSD values are 3.01 K and 3.83 K, respectively. These results 
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highlight the difficulties of choosing the appropriate SWT algorithm and parameters 

for the comparison of simulation results with remotely sensed surface temperatures. 

 

 

 

Fig. 6-34: Difference maps of simulated to remotely sensed LSTs (left) and difference 

maps of simulated to remotely sensed SSTs (proxels with agricultural use, 

but no vegetation cover) on 22.09.2005 (DOY 265) for the three SWT 

algorithms used in this study.  
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Fig. 6-35: Frequency distributions of the differences between simulated surface and 

air temperatures and the LSTs and SSTs derived from NOAA-AVHRR data 

with three different SWTs (KERR et al 1992, ULIVIERI et al 1994 and YANG & 

YANG 2006) for the 22nd of September 2005, 11:27 CET.  
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Fig. 6-35 also shows that the simulated near-ground air temperatures (AT) are lower 

than the simulated LSTs as expected for cloud-free, midday conditions. The mean 

deviation of modeled AT from Ulivieri-derived LSTs, for example, is -2.71 K while the 

deviation of modeled LST from Ulivieri-LST is only -1.36 K. At the same time, the 

standard deviations of the differences between AT and NOAA-LST are slightly lower 

(2.3 K) than the ones of the differences between PROMET-LST and NOAA-LST (2.7 K) 

for all utilised SWTs. This points to some irregular errors in the simulation results, 

most likely related to the spatial distribution and parameterisation of land cover 

properties. Then again, the clearly pronounced peak of the SST frequency 

distributions and their relatively low standard deviation (2.1 - 2.2 K) leads to the 

conclusion that the simulated bare soil fraction represents the true land cover 

conditions well. 

 

Fig. 6-36: LST maps (01.04.2003, DOY 91) simulated with PROMET (left) and derived 

from NOAA-AVHRR with the Ulivieri SWT (right). 

 

Fig. 6-37: Difference maps of simulated to Ulivieri SWT derived LSTs (left) and SSTs 

(right) for the Upper Danube catchment on 01.04.2003 (DOY 91). 
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Contrary to the analysis of PROMET results versus the AVHRR scene taken in 2005, 

the variation in surface temperature derived from AVHRR data with the Ulivieri SWT 

on the 1st of April 2003 (Fig. 6-36) is not equally reproduced by the PROMET 

simulation. As a consequence, the LST difference map in Fig. 6-37 depicts stronger 

regional variations than the maps in Fig. 6-34. Therefore, the average LST bias (-2.37 

K) between simulation and Ulivieri SWT, as well as the average RMSD (4.19 K) are 

greater for the spring scene, than for the autumn scene (Fig. 6-39), even though most 

of the alpine part of the catchment is masked by snow and clouds. Despite the 

average deviation between simulation and Kerr-LST is lower (-0.32 K), the RMSD is 

also high (3.48 K). The bias between simulation and Yang&Yang-LST is even worse 

than for the September scene (-3.85 K), leading to a RMSD of 5.16 K. The standard 

deviation of all three LST difference frequency distributions (Fig. 6-38) is equally high 

with 3.43 K, showing that the relative variation of the LST values within a NOAA scene 

is the same for all three SWTs. The simulated air temperatures are on average 2.7 K 

lower than the simulated LSTs and their frequency distributions of temperature 

differences spread even stronger (standard deviation of 3.7 K). This is contrary to the 

September scene analysis, where the standard deviations of the air temperature 

differences were lower than ones of the LST differences. All in all, the stronger spatial 

heterogenity of the surface temperatures recognisable in the NOAA-AVHRR scene is 

not reproduced in the same manner by the PROMET surface temperature map. 

Possibly, the sparse canopies in early spring lead to the fact, that a higher fraction of 

longwave radiation emitted from the soil surface reaches the satellite’s sensor. The 

transmittance of a canopy for longwave radiation is related to LAI in the model, but 

potentially the chosen dependency has to be reanalysed in the future. 

About 6% of all proxels are considered bare soil surfaces until mid of April and 

therefore their surface temperatures are assumed to be soil surface temperatures in 

the analysis. But due to the cloud and snow cover in the alpine part of the catchment 

~7% of the available AVHRR pixels are considered bare soil in the following. 

Like in the autumn scene analysis, the absolute mean deviation between remote 

sensing data and model is lowest (1.07 K) and the RMSD best (2.60 K), when 

comparing PROMET output with the SSTs derived with the Ulivieri-SWT (Fig. 6-38). 

Again, the deviation of simulated surface temperatures from Kerr-SSTs is highly 

positive for the spring scenes (3.19 K) with a very high RMSD (4.01 K) and the 

PROMET output is on average lower than the Yang&Yang-SSTs (-1.89 K) with a RMSD 

of 3.07 K. The standard deviations of the SST frequency distributions are roughly the 

same (~2.4 K) and notedly lower than the ones of the LST frequency distributions 

(~3.4 K). The shapes of the distribution curves in Fig. 6-38 make this clearly visible, 

because the vertical axes are scaled in relation to the total number of available proxels 

available for LST and SST analysis.  

For comparison, the frequency distribution diagrams of the differences between 

simulated temperatures and surface temperatures derived with the ULIVIERI et al 

(1994) SWT for all 12 processed NOAA-AVHRR scenes are found in Appendix C. 
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Fig. 6-38: Frequency distributions of the differences between simulated surface and 

air temperatures and the LSTs and SSTs derived from NOAA-AVHRR data 

with three different SWTs (KERR et al 1992, ULIVIERI et al 1994 and YANG & 

YANG 2006) for the 1st of April 2003, 10:57 CET. 
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As there is no "true" remotely sensed LST product, Fig. 6-39 presents the average 

values of mean deviation (MD) and RMSD of the simulated surface temperatures and 

air temperatures from the SWT derived LSTs and SSTs for all 12 NOAA-AVHR scenes.   

PROMET simulates spatially distributed air temperature fields by interpolating DWD 

station data. For that reason, it is assumed, that the mean air temperature of the non-

alpine part of the Upper Danube catchment is represented well by the simulation, if 

atmospheric conditions are similar throughout the investigated area. Since most of 

the catchment is cloud-free at the particular times of NOAA observations used, this 

should be true for the investigated dates.  

 

Fig. 6-39: Average MD (mean deviation) and RMSD values of SST, LST and air 

temperature simulated with PROMET compared to surface temperature 

derived from the three different split window techniques (SWT). 

The mean difference between simulated surface and air temperatures is 2.3 K in 

spring 2003 and 1.2 K in autumn 2005. Average differences between remotely sensed 

LST and simulated air temperature range between 0.8 and 6.0 K (Fig. 6-39). The 

temperature of vegetated surfaces should be close to air temperature recorded at 2 m 

above canopy after PRIHODKO & GOWARD (1997) and the maximum difference between 

surface temperature and air temperature after noon is 5 to 10 K AFTER CAMPBELL & 

NORMAN (1998). This leads to the assumption, that the YANG & YANG (2006) SWT 

overestimates LSTs in this case. LSTs derived with the KERR et al (1992) algorithm fit 

well with the simulated LSTs, but the extremely low soil surface temperatures 

calculated with this model seem to be a relict of the development of the original 

parameterisation in a semi-arid region. 

Average SSTs simulated with PROMET including SHTM perform well, when 

compared to surface temperatures derived from NOAA-AVHRR data with the ULIVIERI 

et al (1994) SWT. The average bias is 0.7 K and the RMSD is 2.3 K for all 12 points in 

time investigated. Additionally, this SWT is recommended by VASQUEZ et al (1997) 

and YU et al (2008) for use in heterogeneous, large regions, where true thermal 

emissivities are not know.  
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Fig. 6-40: Diagrams of mean deviation (MD) and root mean squared difference 

(RMSD) between surface temperatures simulated with PROMET and the 

ones derived from the three different SWTs for all investigated NOAA-

AVHRR scenes.
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7. Conclusions and Outlook 

The Global Change decision support system DANUBIA has been under further 

development during the second project stage (2004 to 2007) in the integrative project 

GLOWA-Danube. The Landsurface component of DANUBIA was enhanced to close 

the water-related energy and nitrogen cycles in the soil-vegetation-atmosphere 

system of the land surface. It was the intent of this thesis to show, that the soil 

temperature and energy balance modules developed for the hydrological model 

PROMET are ready to bridge the gap between regional scale (up to 100,000 km2) 

application and the demand for implementation of physical process models in 

predictive, coupled model frameworks like DANUBIA.  

The modelling approach for the Soil Heat Transfer Module (SHTM) and the related 

soil water and surface balance modules is physical and process oriented, but also 

includes a variety of empirical simplifications and parameters, that were related to 

basic soil and vegetation properties.  

A variety of validation runs showed that the chosen methods and parameterisations 

reproduce time series recorded on a multitude of locations in the catchment with 

satisfying accuracy without site-specific calibrations. Comparison of land surface 

temperature (LST) patterns derived from remote sensing data indicated, that the 

simulated soil surface temperatures are within the range of accuracy of the LST 

extraction methods. Yet, different LST retrieval methods exhibited serious differences 

in absolute surface temperatures.  

The achievements presented in this thesis provide a basis for the interdisciplinary 

improvement of biochemical soil process models and of the coupling of land surface 

and atmosphere models. Additionally, first results with an empirical model of lateral 

runoff on frozen soils promise future improvements in winter high flow simulation. 

Preparation of input data for the soil process models 

The provision of spatially distributed input and validation data for soil process models 

run in mesoscale catchments still is an unsolved problem of environmental sciences. 

The high spatial heterogeneity of soil properties needed for soil process models and 

the continuous nature of these properties limit the availability of spatially accurate, 

quantitative soil maps. Even for parts of the investigated area that have been mapped 

in detail, the assignment of soil property values to map units and their aggregation to 

the desired scale is a scientific task on its own. Remote sensing techniques, for the 

most part based on microwave sensors, are still under development for use in densely 

vegetated, humid climates and are limited to top soil investigations. Therefore, the 

1:1,000,000 Soil Overview Map (BÜK1000) of the German part of the Upper Danube 

basin was reclassified with regard to the vertical sequence of soil textural properties.  
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Because of the interactions between the soil water and soil energy modules, a set of 

Pedotransfer Functions for the estimation of the hydraulic parameters of the Eagleson 

soil water model was applied on the new soil type classes. The characteristic values of 

soil moisture content derived with the Brooks & Corey soil water retention equation 

compared well to those given for the chosen BÜK1000 soil classes with regard to the 

coarse resolution of the soil map. Together with the results of other authors on the 

spatial distribution of soil moisture (LÖW 2007) and the temporal course of river runoff 

(MAUSER & BACH 2008), this concluded that the prepared spatially distributed data set 

of soil properties appropriately reflects the true physical characteristics of the soils in 

the Upper Danube basin on a raster scale of 1 km2. Both the regionalization of the 

static soil parameters and the realistic simulation of the dynamic soil water content 

were prerequisites for a successful representation of soil energy fluxes and storage.  

Configuration of SHTM 

Like in most SVAT schemes, the energy cycle of the land surface was described by 

vertical, one-dimensional process equations in PROMET. For the heat transport in 

soils, therefore the one-dimensional, conductive heat transfer equation was applied. 

The dynamic lower boundary condition controlled by the annual temperature cycle of 

the preceding year represented the interannual temperature differences. Changes in 

soil moisture content and the release of latent energy due to soil water freezing were 

integrated in the numerical solution.  

A simulation run carried out with known boundary conditions identified the potential 

precision of SHTM in reproducing measured soil temperatures (RMSE < 1 °C), despite 

its coarse vertical resolution of just four soil layers. A second one, where all input 

variables except for soil moisture were provided, underlined the effect of soil moisture 

on temperature and the possible error due to convective heat fluxes in an extreme 

case of ground water influence. 

Because the land surface model is intended for applications in mid-latitude regions, 

the implemented soil energy balance algorithms reflect soil-atmosphere, soil-snow 

and soil-vegetation energy fluxes. For three surface ground heat flux algorithms with 

differing complexity the impacts on simulated soil temperature time series were 

analysed. This highlighted the need for the separate computation of canopy and soil 

surface energy processes, if simulated temperatures are to be used as sensitive input 

variables for other process models.  

Empirical estimates of the ground heat flux or analytical sine-wave soil temperature 

models performed poorly in predicting topsoil temperatures and definitely cannot be 

recommended in coupled modelling systems. Furthermore, the analysis exposed that 

future improvements in the canopy radiation transmission algorithm are possible. The 

sensitivity of the soil surface energy balance on simulated LAI values also showed that 

a biophysical plant growth model sensitive to climatic change should enhance the 

predictive accuracy of future soil conditions relevant for carbon and nitrogen 

transformation models. 
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Evaluation of SHTM results 

Validation of a soil heat transfer and storage model applied on a regional scale 

catchment in a temperate, humid climate with spatially distributed measurements of 

absolute temperatures is nearly impossible. Dense vegetation, snow and 

anthropogenic structures cover the soil surface most of the year and in most parts of 

the investigated area. Even if bare soil surfaces are exposed to the field of view of 

airborne or space borne sensors, the discrepancy between the spatial resolution of 

land cover in the mesoscale raster-based model and the true land cover inhibits direct 

comparison of simulated and remotely sensed soil surface temperatures. Furthermore 

remote sensing techniques cannot quantify subsurface temperatures. 

For that reason, measurements from field campaigns and observational networks 

were the only source of accurate soil temperature data at different depths. Even 

though these point scale data sets basically are of limited significance for the 

surrounding area, it was supposed that, if the process description in the model is 

correct, the differences between simulated and measured values originate from the 

disparity of the parameters and inputs of the model from the real conditions.  

Since the model had shown its accuracy with known boundary conditions, the 

validation of SHTM at 43 different sites in the catchment could show that the 

predictive error due to model geometry, parameterisation and inaccuracy of input 

variables increased only moderately. The mean annual temperature was reproduced 

with an accuracy better than 1 K at 90% of all measurement sites and the average 

RMSE of the simulated temperatures in the upper two soil layers was lower than 2 K 

when daily values were compared with data from 15 DWD sites. The average RMSE of 

predicted soil temperatures increased to 1.75 K for the 20 cm depth and to 2.3 K for 

the 5 cm soil depth, when hourly value were evaluated. Further analysis of the data 

also highlighted that simulated daily temperature amplitudes correlated well with 

measured ones and that the model could explain > 97% of the annual variation in 

daily mean temperatures. All in all the model performance proved to be robust over 

different parts of the investigated area and the spatial distribution of soil parameters 

seemed to characterize the main physiographic regions well.  

To include some measure of the energy exchange between soil surface and 

atmosphere, in a next step simulated surface temperature maps were compared to 

LST patterns derived from NOAA-AVHRR remote sensing data. 12 AVHRR nearly 

cloud-free records from early spring and autumn were selected to compare the 

surface temperature of areas with potentially sparse vegetation cover. Areas in the 

eastern part of the Upper Danube basin with intensive agricultural crop production 

were identifiable in both the simulated and remotely sensed LST maps.  

Assuming that the land cover map utilised in the model represents the true land use, 

the (soil) surface temperatures of the simulated bare field proxels were compared 

with the  corresponding temperatures derived from AVHRR data. Since all three Split 

Window Techniques used to extract surface temperatures from the AVHRR data 

provided unequal results, the absolute deviation between model and satellite data 
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could not be identified. The lowest average Root Mean Square Deviation of 2.3 K and 

the lowest mean bias deviation were achieved when the simulated soil surface 

temperatures were compared to the ones derived with the ULIVIERI et al (1994) 

technique. Nonetheless, this comparative analysis gave important insights into the 

spatial variability of simulated surface temperatures to be due, even though the 

application of thermal infrared remote sensing data is still a complex issue.  

Outlook 

Further integrative investigations will show, to which extent the application of SHTM, 

instead of approximative algorithms, improves the performance of biochemical soil 

process representations, especially of the Soil Nitrogen Transformation (SNT) model  

developed within the GLOWA-Danube project. Furthermore, the ongoing analysis of 

soil moisture and soil temperature trends in climate change scenario runs with 

DANUBIA, will provide a universal basis for the further assessment of the state of the 

soils in the Upper Danube catchment in the next 50 years. 

The upcoming bidirectional coupling of the Landsurface component of DANUBIA with 

the RCMs available in the project, will show to which extent the energy fluxes 

computed by the PROMET energy balance algorithms comply with the energy fluxes 

that are expected by the individual RCMs. It is assumed that both the energy flux 

densities computed by PROMET and the ones computed by the internal land surface 

algorithms of the RCMs have their own characteristics. The adjustment of the 

individual models of land surface and atmosphere processes for a seamless 

bidirectional coupling is one of the great challenges of the development of integrated 

simulation models for Climate Change impact assessment. 

From a hydrological point of view, the influence of frozen soil water on lateral runoff 

generation, especially during snow melt events, is an interesting topic. So far, only 

few regional scale hydrological models incorporated the effect that under some 

circumstances frozen soil water blocks infiltrating melt water or precipitation and 

therefore increases surface runoff, or more often interflow runoff below the soil 

surface. If PROMET is run with SHTM, the amount of frozen water in the upper soil 

layers can be simulated with reasonable vertical resolution. Therefore, an empirical 

model for lateral runoff was implented in PROMET (Appendix D) and is under further 

evaluation. First results show that the simulated frequency of winter high flows can be 

improved by including this simple model even in mesoscale basins.  

Three subcatchments in the Upper Danube region are now under investigation, that 

exhibit no significant influence from anthropogenic structures, like dams and 

reservoirs, on the annual course of gauged river runoff. These are the subcatchments 

of the Ammer at the northern edge of the Alps, the Naab, draining parts of the 

northern mountain region, and the Vils situated in the central-eastern lowland.  

Just like some authors report (see Appendix D), only in specific situations lateral 

runoff on frozen soils contributes to winter high flows. PROMET simulates some 

runoff peaks more closely with the proposed empirical soil ice extension than without, 
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but the timing or quantity of many other high runoff events is not sufficiently 

reproduced. This is due to the preliminary model parameterisation now under further 

investigation, but just as much due to the inherent uncertainties of mesoscale 

predictions of precipitation or snow melt events. 

But with respect to the assessment of long-term changes in runoff behaviour, the 

present version of the runoff on frozen soil extension already produces promising 

results. Analysis of the daily river runoff at the gauge Heitzenhofen (Naab) 

demonstrates that PROMET reproduces the frequency of high water runoffs in winter 

more closely with the proposed extension than without (Fig. 2-1). Similar results are 

achieved in the other two subcatchments, but further statistical appraisal of the 

results must be accomplished. In addition, the interrelationship of snow melt, frozen 

soil runoff and other influencing factors during winter high waters must be more 

deeply analysed. 

As the regional warming trend in Europe will likely lead to shorter retention times of 

water as snow and ice and many models propose lower water levels in summer, the 

estimation of the effects of soil ice on runoff generation could be helpful to better 

quantify the future amounts of water recharging the aquifers or running off laterally in 

winter.  

 

Fig. 7-1: Frequency distribution of simulated and measured daily high water runoff 

values during winter (November to April) at the gauge Heitzenhofen 

(Naab) for the period of 1971 to 2001. 
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8. Abstract 

The investigation of the impact of Global Change on the basic resources on which life, 

and man, depends, is the main objective of the environmental science community at 

the beginning of the 21st century. Advances in information technology, new methods 

of spatially distributed data retrieval and increased understanding of the physical, 

chemical and biological processes in the Earth system facilitate integrative models of 

the dynamic processes under change. Together with the integration of deep actors 

models from social and economical sciences into a common model framework, 

scenario runs based on inputs from Regional Climate Models (RCMs) and constrained 

by prognoses of the future developments in demography, economy and human 

behaviour are now possible.  

The objective of the integrative project GLOWA-Danube is the development of such a 

modelling system and its application on the mesoscale catchment of the Upper 

Danube river with an area of about 77,000 km2. The decision support system 

DANUBIA is designed for plausible predictions of the impact of changes in climate, 

human behaviour and land use on the future of the water and related matter cycles. 

DANUBIA is able to assist knowledge-based management decisions, by predicting the 

effects of adaptation and mitigation strategies on the natural resources of the Upper 

Danube basin. 

The closure of the water, energy, nitrogen and carbon cycles in the soil-vegetation-

atmosphere system relies on the adequate representation of all processes involved 

and their interaction. To close the energy cycle in the soil-vegetation-atmosphere 

system and provide valuable input data for biochemical models of soil nitrogen and 

carbon transformation, this thesis presents the Soil Heat Transfer Module (SHTM) 

together with an energy balance algorithm of the soil surface for regional scale 

simulations.  

SHTM combines simplified physical algorithms for the computation of the actual 

temperature in the upper soil layers and a dynamic lower boundary condition to 

represent Climate Change conditions. Changes in soil moisture and soil freezing are 

explicitly taken into account. The surface ground heat flux as the driving force of the 

model is provided by an explicit solution of the soil surface energy balance and a 

snow-soil coupling algorithm, respectively. 

This thesis shows, that the soil temperature and energy balance modules developed 

as extensions of PROMET (PROcesses of Matter and Energy Transfer) are ready to 

bridge the gap between regional scale (up to 100,000 km2) application and the 

requirement of physical process models in predictive, coupled modelling systems like 

DANUBIA. 
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Appendix A: Soil Hydraulic Properties  

Appendix A 1: Hydraulic parameters for the soil type classes used in DANUBIA and 

PROMET, derived from basic soil property data with the Pedotransfer 

Functions of RAWLS & BRAKENSIEK (1985) and WÖSTEN et al (1999). 
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Appendix B: Individual Statistical Values of the 

Validation Runs at AgMet Sites  

Appendix B 1: Statistical values derived from the comparison of the SHTM w/ EEB 

simulation with measured time series of the year 2003 from 25 

agrometeorological stations.  
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Appendix B 2: Statistical values derived from the comparison of the SHTM w/ EEB 

simulation with measured time series of the year 2004 from 28 

agrometeorological stations. 
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Appendix B 3: Statistical values derived from the comparison of the SHTM w/ PME 

simulation with measured time series of the year 2003 from 25 

agrometeorological stations. 
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Appendix B 4: Statistical values derived from the comparison of the SHTM w/ PME 

simulation with measured time series of the year 2004 from 28 

agrometeorological stations. 
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Appendix C: Frequency Distributions of surface 

Temperature Differences between PROMET and 

the Ulivieri Split Window Technique (SWT) 

 

Appendix C 1: Frequency distributions of the differences between simulated surface 

and air temperatures and the LSTs and SSTs derived from NOAA-AVHRR 

data with the SWT of ULIVIERI et al (1994) for the 27.03.2003, 11:09 CET. 

 

Appendix C 2: Frequency distributions of the differences between simulated surface 

and air temperatures and the LSTs and SSTs derived from NOAA-AVHRR 

data with the SWT of ULIVIERI et al (1994) for the 01.04.2003, 10:57 CET. 
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Appendix C 3: Frequency distributions of the differences between simulated surface 

and air temperatures and the LSTs and SSTs derived from NOAA-AVHRR 

data with the SWT of ULIVIERI et al (1994) for the 14.04.2003, 11:03 CET. 

 

Appendix C 4: Frequency distributions of the differences between simulated surface 

and air temperatures and the LSTs and SSTs derived from NOAA-AVHRR 

data with the SWT of ULIVIERI et al (1994) for the 15.04.2003, 10:42 CET. 
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Appendix C 5: Frequency distributions of the differences between simulated surface 

and air temperatures and the LSTs and SSTs derived from NOAA-AVHRR 

data with the SWT of ULIVIERI et al (1994) for the 01.09.2005, 11:09 CET. 

 

Appendix C 6: Frequency distributions of the differences between simulated surface 

and air temperatures and the LSTs and SSTs derived from NOAA-AVHRR 

data with the SWT of ULIVIERI et al (1994) for the 05.09.2005, 11:18 CET. 
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Appendix C 7: Frequency distributions of the differences between simulated surface 

and air temperatures and the LSTs and SSTs derived from NOAA-AVHRR 

data with the SWT of ULIVIERI et al (1994) for the 06.09.2005, 10:54 CET. 

 

Appendix C 8: Frequency distributions of the differences between simulated surface 

and air temperatures and the LSTs and SSTs derived from NOAA-AVHRR 

data with the SWT of ULIVIERI et al (1994) for the 22.09.2005, 11:27 CET. 
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Appendix C 9: Frequency distributions of the differences between simulated surface 

and air temperatures and the LSTs and SSTs derived from NOAA-AVHRR 

data with the SWT of ULIVIERI et al (1994) for the 24.09.2005, 10:42 CET. 

 

Appendix C 10: Frequency distributions of the differences between simulated 

surface and air temperatures and the LSTs and SSTs derived from NOAA-

AVHRR data with the SWT of ULIVIERI et al (1994) for the 13.10.2005, 

11:18 CET. 
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Appendix C 11: Frequency distributions of the differences between simulated 

surface and air temperatures and the LSTs and SSTs derived from NOAA-

AVHRR data with the SWT of ULIVIERI et al (1994) for the 14.10.2005, 

11:24 CET. 

 

Appendix C 12: Frequency distributions of the differences between simulated 

surface and air temperatures and the LSTs and SSTs derived from NOAA-

AVHRR data with the SWT of ULIVIERI et al (1994) for the 17.10.2005, 

11:57 CET. 
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Appendix D: An Empirical Model of Soil Freezing 

Impact on Runoff Generation 

The soil energy algorithm described in the model description calculates the amount of 

latent energy LEact,j stored as soil ice for each layer j. Therefore it is possible to 

compute the fractional content of frozen water for each soil layer and each time step 

by dividing LEact,j by the volumetric heat of fusion  


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




⋅⋅⋅÷=

3
2
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kg
1000

kg
J

334000m1dLEΘ    (4.82) 

Substracting the amount of frozen soil water Θice,j from the total soil water content Θj 

results in the liquid soil water content Θliquid,j. Since water expands its volume by 

8.9% during freezing, the air content of the soil decreases by an equal amount. From 

a modelers point of view, the freezing of soil water increases the content of solid 

particles of a soil layer and diminishes the effective porosity nj of the layer j. 

Therefore, the freezing algorithm computes the new soil porosity nact,j of soil layer j by 

substracting the volumetric fraction of soil ice from nj 

( )09.1Θ-n jice,jact, ⋅= jn       (4.83) 

Now the actual saturation of the remaining pore space decreases with freezing, 

because nact,j decreases, but the fraction of air-filled pores increases in relation to the 

pores filled with liquid water (see Fig. 0-1) 

j
j
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nn
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=       (4.84) 

If freezing in soil layers progresses, the volume of air-filled pores is further reduced, 

because water expands during the liquid to solid phase change. However, since water 

in bigger pores freezes first and adhesive water freezes last, the soil “dries” as the 

frozen phreatic water becomes part of the soil matrix (Fig. 0-2) as long as there is no 

infiltration and even if there is no exfiltration. Fig. 0-3 exemplifies that the soil suction 

increases with ice formation and therefore the total water content for a given suction. 

This leads to increased capillary rise into the frozen layer, if water is available from 

below, or additional retention of infiltrating water during snow melt or precipitation 

events. As this water freezes the model can simulate the build up of basal ice sheets 

when the air-filled pore fraction of the upper layer reaches a minimum and the 

reduced hydraulic conductivity by pore ice for the lower soil layers. This relates to 

theoretical and experimental findings of JOHNSSON & LUNDIN (1990), BAYARD et al 

(2005) and others. 
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Liquid soil water to effective porosity ratio for s oil temperatures below freezing point                      
(total soil water content = 35%, total porosity = 5 0%)
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Fig. 0-1: Ratio of liquid water to effective porosity for temperatures below 0 °C. 

Increase in soil suction for soil temperatures belo w freezing point for a silt loam                            
(total soil water content = 35%, saturation water c ontent = 45%)
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Fig. 0-2: "Drying" of a soil while freezing. 

Increase in water content at pF2.0 for soil tempera tures below 0 °C for a silt loam                            
(soil suction = 100 hPa, saturation water content =  45%)
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Fig. 0-3: Virtual increase of soil water content at 100 hPa for temperatures < 0 °C. 
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To quantify the changes in runoff behaviour of frozen soil layers two complementary 

algorithms are implemented in PROMET. The first one is formulated similar to LUNDIN 

(1990), were the effect of frozen water on hydraulic conductivity K(s) is described 

with an impendence factor Ei and the soil ice coefficient CIce.  

k(S)10k(S) IceiC-E
act ⋅=       (4.85) 

According to LUNDIN (1990), the value of Ei has to be empirically determined and can 

have a value between 1 and 8. The typical value of Ei given by JOHNSSON & LUNDIN 

(1991) is 4, but to ensure numerical stability of the Eagleson type soil water model the 

impendance factor was set to 3.0. The soil ice coefficient CIce in the model of LUNDIN 

(1990) is the proportion of frozen to total soil water, called thermal quality. But this 

parameterisation leads to the same actual conductivities for dry and wet soils at a 

given temperature, because the thermal quality is the same for all soils at a given 

temperature in our model using the equation after WATANABE & MIZOGUCHI (2002). 

Therefore we substituted the total soil water content by the effective porosity of the 

soil layer to take different soil moisture values into account. Fig. 0-4 exemplifies the 

difference between the thermal quality and the soil ice coefficient CIce. 
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Fig. 0-4: Comparison of simulated thermal quality and soil ice coefficient of the 

upper soil layer of a lowland maize field. 

But even with very low actual hydraulic conductivities lateral runoff from frozen soils 

are hard to simulate at hourly time steps and with relatively large soil layers in 

contrast to high resolution soil physics models at the field scale. Therefore, a second 

algorithm is implemented in PROMT that mimics ice blocking in case that most of the 

medium and large pores of a soil layer are filled with ice. The idea behind this 

approximate equation is that the soil water exposed to the lowest adhesive forces 

inside the soil matrix freezes first. Water held by strong forces will freeze last, but 

these water molecules also interact weakly with external water fluxes like infiltration. 

So if the soil moisture is near field capacity and most of the phreatic water is frozen, 

the soil matrix no longer interacts with infiltrating water, nor does capillary rise occur. 

If water tries to infiltrate into the frozen soil layer, some of it runs off laterally while 
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the other part passes through the macro pores to the next soil layer. The distribution 

of these two water fluxes is difficult to parameterize for mesoscale simulations, but 

field experiments published by other groups (JOHNSSON & LUNDIN 1991, STADLER et al 

1997, KUCHMENT et al 2000, NYBERG et al 2001, BAYARD et al 2005) and analysis of 

recorded runoff peaks were used to identify the runoff splitting coefficient Csplit.  

If the actual effective soil porosity nact,j is smaller than a certain threshold value nib, 

the water infiltrating (Qinf) into a soil layer is split into lateral (Qlateral) and vertical 
(Qmacro) water fluxes according to the empirical Csplit value, individually assigned to 

each soil layer by the following equations 

Qlateral = Csplit * Qinf       (4.86) 

Qmacro = (1 − Csplit) * Qinf       (4.87) 

The parameterisation of nib and Csplit used in this work is mainly influenced by the 

findings of BAYARD et al (2005) for alpine terrain, that about 25 – 40% of snowmelt 

run off laterally on frozen ground with a frost depth greater 30 cm and up to 60 % 

run off on basal ice sheets. Despite the field scale nature of their investigation, it 

serves as an evidence for realistic Csplit values. The splitting coefficients in this study 

are set to 0.15, 0.30, 0.50 and 1.00 for the soil model layers 1 to 4, so that the lateral 

flows depicted in Fig. 0-5 ensue. The threshold nib is set to 3 % to enable ice blocking 

only when a soil layer is nearly saturated with water and most of it has frozen. First 

results with the ice blocking algorithm show an improvement of simulated winter high 

flows compared to standard model runs. But further investigation on the 

regionalization of the Csplit values has to be conducted. 

 

Fig. 0-5: Lateral runoff (relative to surface infiltration) modelled due to the chosen 

ice blocking parameterisation for frozen soil layers. 
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