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Zusammenfassung

In dieser Arbeit wird die Frage untersucht, welche Effekternische Potenziale oder La-
dungsdichten in einem thermischen Plasma haben, das rkdgissh durch eine stark gekop-
pelte Eichtheorie beschrieben wird. Da storungstheswiei Methoden in diesem Parameter-
bereich im Allgemeinen nicht einsetzbar sind, wird als $fiifttel die aus der Stringtheorie
hervorgegangene AdS/CFT Korrespondenz benutzt. AdS/&felne Eichtheorie/Gravitations-
Dualitat (auchHolographiegenannt), die in der hier angewendeten Weise zulassyrgjs-
theoretische Rechnungen in einer Gravitationstheoriegelihisse in einer stark gekoppelten
Feldtheorie zu Uibersetzen . Die hier betrachtete Modsililk ist\/ = 4 Super-Yang-Mills
Theorie in vier Raumzeitdimensionen gekoppelt an funddatetlypermultipletts deN” =
2 Super-Yang-Mills Theorie. Trotz grol3er Unterschiede zua@enchromodynamik (QCD)
konnen viele Phanomene der starken Wechselwirkung tgtialbeschrieben werden. Da-
her sind die hier entdeckten Effekte auch als Vorhersagers€hwerionenkollisionen am
Beschleuniger RHIC in Brookhaven und am LHC in Genf zu selesbesondere fulhren
wir nacheinander baryonische Ladungsdichte, Isospimigsidichte und schlie3lich beide La-
dungsarten (oder chemischen Potentiale) gleichzeitig ein

Wir untersuchen die Thermodynamik des stark gekoppeltasnfds und geben im kano-
nischen sowie grol3kanonischen Ensemble Phasendiagramieigerhin berechnen wir die
wichtigsten thermodynamischen Grol3en als Funktioneeeperatur und Ladungsdichten
oder chemischen Potenziale: die freie Energie, bezieluaige das groRkanonische Potenzi-
al, die innere Energie und die Entropie. Resonanzen in deoFtrom-Spektralfunktion ver-
halten sich bei kleinen Temperaturen gemalfs der (im supengtrischen Fall holographisch
gefundenen) Massenformel fur Vektormesonen proportiomaQuarkmasse und lassen sich
als Quasiteilchen im Plasma interpretieren. Bei hohen Eeatpren wird die Zerfallsbreite
sehr grol3 gegenuiber der Energie dieser Anregungen uneéd@Bnzen bewegen sich zu klei-
neren Energien fur steigende Quarkmasse. Dies implidierExistenz eines Umkehrpunktes
zwischen den beiden Temperaturregimes, dessen Bedeuturapenfalls diskutieren. Fr
Flavorstrome mit Isospinstruktur in einem Plasma mit tiagrschwindender Isospindichte
finden wir heraus, dass die Resonanzen in Spektralfunktianéerschiedlicher Flavorrich-
tungen in Tripletts aufspalten. Eine analytische Untensng dieses Falles im hydrodynami-
schen Limes bestatigt diese Triplettstruktur auch fim @&ffusionspol, das heildt auch fur
die niedrigste quasinormale Frequenz. Weiterhin diskenievir das nicht verschwindende
Quarkkondensat. Ferner finden wir heraus, dass der Bafffasidnskoeffizient auf nicht-
triviale Weise von Baryon- und Isospindichte abhangt. &vitdecken einen Phaseniibergang,
der dem in der 2-Flavor-QCD gefundenen analog ist. Zuletzégern wir unsere hydrodyna-
mischen Betrachtungen auf die Studie der Diffusion schwé&rearmoniums im Plasma bei
starker und bei schwacher Kopplung. Das Verhaltnis desspartkoeffizienten zur Massen-
verschiebung ist bei starker Kopplung, wie erwartet, deutkleiner als das bei schwacher
Kopplung. Dieser Effekt eines stark verringerten Trantqaffizienten bei starker Kopplung
wurde bereits im Fall des Viskositat/Entropiedichte-Q@emten beobachtet.






Abstract

In this thesis we explore the effects of chemical potenbalsharge densities inside a thermal
plasma, which is governed by a strongly coupled gauge theince perturbative methods
in general fail in this regime, we make use of the AdS/CFT espondence which origi-
nates from string theory. AAS/CFT is a gauge/gravity dudhtso callecholography, which
we utilize here to translate perturbative gravity caldolas into results in a gauge theory at
strong coupling. As a model theory for Quantum-Chromo-Dyita (QCD), we investigate
N = 4 Super-Yang-Mills theory in four space-time dimensionsisTtheory is coupled to fun-
damental hypermultiplets df" = 2 Super-Yang-Mills theory. In spite of being quite different
from QCD this model succeeds in describing many of the phemangualitatively, which are
present in the strong interaction. Thus, the effects disVin this thesis may also be taken
as predictions for heavy ion collisions at the RHIC colligerBrookhaven or the LHC in
Geneva. In particular we successively study the introdaatif baryon charge, isospin charge
and finally both charges (or chemical potentials) simulbaséy.

We examine the thermodynamics of the strongly coupled @a$tase diagrams are given
for the canonical and grandcanonical ensemble. Furthernvee compute the most impor-
tant thermodynamical quantities as functions of tempeeadnd charge densities (or chemical
potentials): the free energy, grandcanonical potentiérnal energy and entropy. Narrow
resonances which we observe in the flavor current specimatitins follow the (holographi-
cally found) vector meson mass formula at low temperatunerelasing the temperature the
meson masses first decrease in order to turn around at sorperegore and then increase
as the high-temperature regime is entered. While the naresanances at low temperatures
can be interpreted as stable mesonic quasi-particlesgimmances in the high-temperature
regime are very broad. We discuss these two different temyper-regimes and the physical
relevance of the discovered turning point that connectsithigloreover, we find that flavor
currents with isospin structure in a plasma at finite isodpimsity show a triplet splitting of the
resonances in the spectral functions. Our analytical &atioms confirm this triplet splitting
also for the diffusion pole, which is holographically idiietd with the lowest lying quasi-
normal frequency. We discuss the non-vanishing quark awate. Furthermore, the baryon
diffusion coefficient depends non-trivially on both: banyand isospin density. Guided by
discontinuities in the condensate and densities, we d&s@yphase transition resembling the
one found in the case of 2-flavor QCD. Finally, we extend owrbglynamic considerations
to the diffusion of charmonium at weak and strong coupling expected, the ratio of the
diffusion coefficient to the meson mass shift at strong dogpis significantly smaller than
the weak coupling result. This result is reminiscent of tbsuit for the viscosity to entropy
density ratio, which is significantly smaller at strong cliog compared to its value at weak
coupling.



This thesis is based on the author’s work partly publishefd.ii?,!3, 4] conducted
from October 2005 until May 2008 at the Max-Planck-Institiut Physik (Werner-

Heisenberg-Institut), Minchen under supervision of PD Dohanna Karen Erd-
menger. New results extending significantly beyond thos#ighed until now are

reported in sectioris 4.2, 4/4,4.5,15.3,/6.3, and 6.4. Caelglaew ideas are devel-
oped in the three outlook sectians'4.6,/5.4 land 6.5.

Referee I: PD Dr. Johanna Karen Erdmenger
Referee II: Prof. Dr. Dieter Lust
Datum der mundlichen Prifung: 14. July 2008



Contents

1 __Introduction 3
2 The AdS/CFT correspondence 12
2.1 Stringtheoryand AAS/CIFT . . . . . . . . . . . 12
2.1.1 Dualities and stringtheory . . . . . .. ... ... ... ... ... 13
2.1.2 Blackbranes . . . .. .. ... 16
2.2 Gauge & gravity and gauge/gravity . . . . . . ... e 20
2.2.1 Conformalfieldtheory . . .. .. .. ... ... ... ........ 20
2.2.2 _Supergravity and Anti-de Sittersgace . . .. ... ... ....... 25
2.2.3 Statement of the AAS/CFT-correspondence . . ... ... ... 28
2.3 Generalizations of AAS/CFT: Quarksand mesons . . . .. ... . ... 33
2.4 AdS/CFT at finite temperature . . . . . . . . . .. .. ... .. ...u. 37
2.5 _More Phenomenology from AAS/CFT . . . . . .. .. ... .. ... ... 41
2.6 SUMMALY . . . . . . e e 44
3 Holographic methods at finite temperature 45
3.1 Holographic correlation functicns . . . . ... .. ... ......... 45
3.1.1  Correlation functions in AAS/CFT . . . . .. ... ... ..... 46
3.1.2 Analvtical methods: correlators and dispersiortiats . . . . . . . 49
3.1.3  Numericalmethods . . . . . .. ... ... ... ... ........ 54
3.2 Holographic hydrodynamics . . . .. ... ... ... ... ... .. .. 57
3.2.1 Relativistic hydrodynamics . . . . . . .. .. ... ... ..... 57
3.2.2 Chemical potentialsinOQOFT . . . ... .. ... .. ......... 06
3.2.3 __Transport coefficients: Kuboformula . . .. ........... 62
3.3 _Quasinormalmodes . . . . . . . . . ... e e 6 6
3.4 _SUMMALY . . . . . e e e e e e 70
4 Holographic thermo- and hydrodynamics 71
4.1 Application of the Kubo formula . . . . . .. ... .. ... ....... 72
4.2 Analvtical Hvdrodvmamics at finite isospin potential . . . . . . .. . .. 74
4.2.1 Calculation of transversal fluctuations . . . .. ... ...... ... 75
4.2.2 Correlators of transversalcomponents . . . ... ... ... .. 84
4.2.3 Calculation of longitudinal fluctuations . . . . .. .. ... ... 86
4.2.4 Caorrelators of longitudinal components . . . .. ... ........ 89

4.2.5 Discussion



2 Contents
4.3 Thermodynamics at finite barvon density or potential ...... . . .. ... 95
4.4 Thermodynamics at isospin & barvon density or potential. . . . . . . . . 107

4.4.1 Introducing baryon and isospin chemical potentiats@ensities . . . 108

4.4.2 Thermodynamic quantities . . . . . . . . . .. ... ... .... 112

4.4.3 Discussion of numericalresults . . . . . ... ... .l 113
4.5 _Generalization to flavor numbéf, >2 . . ... ... ... 000 120
4.6 Moleculardynamics. . . . . . . . ... 122
A7  SUMMALY . . . o e e e e e e e e e e e 122

5 __Thermal spectral functions at finite [/(/N,)-charge density 124
5.1 Meson spectra at finite barvondensity . . . .. .. ... ... ... .. 124
5.2 __Meson spectra at finite isospin density . . . . . . . ceeeee ... 133
5.3 Peak turning behavior: quasinormal modes and mesorefass . . . . . . 139
5.4 _Meson spectra at finite isospin and baryon density . . . . .. . ... .. 152
5.5 Summary ... . e e 154

6 Transport processes at strong coupling 155
6.1 Membraneparadigm . . . .. . . . ... 515
6.2 Barvondiffusion . . ... ... .. .. .. ... 546l
6.3 Diffusionwithisospin. . . . . . . . . . .. .. .. .. .. 158
6.4 Charmoniumdiffusion . . . .. .. ... ... ... ... .. .. 161
6.5 Diffusionmatrix . . . . . . . ... 168
6.6 __SUMMAIY . . . . . . . . e e e e 171

7__Conclusion 173

A _Notation 181

Bibliography 184



One might feel like a giant

with the head up in those clouds,

but still

you need to kneel down, in order to see clearly.

May 2008

Introduction

The standard modebf particle physics is a theory of the four known fundamefdates of
nature which has been tested and confirmed to incredibly gbision [5]. Unfortunately
the standard model treats gravity and the remaining thnex$oon different footings, since
gravity is merely incorporated as a classical backgrousiting theoryis a mathematically
well-defined and aesthetic theory successfully unifyiraydy with all other forces appearing
in string theory[6/7, for example], which unfortunatelgka any experimental verification
until now. In this respect string theory and the standard ehodl particle physics can be
seen as complementary approaches which had been separaeghp whose size even was
hard to estimate. The advent AHS/CFTor more generally thgauge/gravity correspon-
dence[8] (explained in chapter|2) and its intense explorationrythe past ten years now
provides us with the tools to build a bridge over this gulclori@lge to connect the experi-
mentally verified gauge theory called the standard modél thi¢é consistently unifying novel
concepts of string theory. AdS/CFT amends both string thaad the standard model. In
particular theduality-character of the gauge/gravity correspondence can betasextend
our conceptual understanding to thermal gauge theorigsoaigscoupling19] such as those
found to govern the thermal plasma generated at the Raltitieavy lon Collider (RHIC)
at Brookhaven National Laboratory [10].

The standard model and its limitations In order to set the stage for our calculations
and to fit them into the ‘terra incognita’ on the currently egt=d map of particle physics, we
start out by reviewing thetandard mode&nd its limitations. At the time thstandard model
of particle physics/ 111, for an introduction] is a widely apted model for the microscopic
description of fundamental particles and their interaxidt claims that in nature two sorts of
particles exist: matter particles (these are fermionsthey carry spin quantum numbgf2)
and exchange patrticles (these are vector bosons, i.e. éngyspin quantum numbeé). The
matter particles interact with each other by swapping tlehamge particles. This means that



4 Chapter 1. Introduction

Fermions| Family | Electric charge Color charge Weak isospin
12 3 left-handed right-handeg
Leptons | v. v, v, 0 / 1/2 /
enT -1 / 1/2 0
Quarks | wuct +2/3 r,b,g 1/2 0
dsb -1/3 r,b,g 1/2 0

Table 1.1: The matter particles of the standard model aagrgpini grouped into families
by their masses [5].

| Interaction | couplesto | Exchange particlé Mass (GeV)| J” |
strong color charge 8 gluons 0 17t
electromagnetic electric charge photon 0 17t
weak weak charge w#, Z° ~ 10? 1

Table 1.2: The exchange particles of the standard modefiogrspin 1, the interaction or
force they mediate and the charge to which they couple [5].

the exchange particles mediate the attractive and reguisigces between the matter particles.
The matter particle content of the standard model is givetable 1.1. As seen from this table
the matter particles are organized into three families ofatedleptonsand quarkswhich
differ by their mass and quantum numbers. In this thesis ¢hevior of these quarlswill be
studied in a regime where a perturbative expansion of threlatd model is not possible. In
particular in chapter!5 we will study how quarks are bound guark-antiquark states (called
mesonginside a plasma at finite temperature. Furthermore we wd@ne the transport
properties of quarks and mesons inside a plasma in chiepter 6.

The exchange particles given in table!1.2 are responsibléh®omediation of the three
fundamental forces: the electromagnetic force, the weadefand the strong force.

Technically the standard model igjaantum field theorgnd as such incorporates the ideas
of quantum mechanics, field theory and special relativitgrt$g from the classical theory of
electrodynamics it is clear, that if we want to apply it to 8meall scale of fundamental par-
ticles, we need to consider effects appearing at small sediech are successfully described
by quantum mechanics. From this necesgitantum electrodynami¢®QED) emerged as the
unification of field theory and quantum mechanics describieglectromagnetic forceNext
it was discovered that the force which is responsible fordta-decay of neutrons in atomic
nuclei, called theveak forcecan be described by a quantum field theory as well. The stdndar
model unifies these two quantum field theories to the elegak quantum field theory. The
third force, thestrongone is described bguantum chromodynami€®CD) which the stan-
dard model fails to unify with the electro-weak theory. Betactro-weak theory and QCD are
based on the concept ghuge theoriesThis means that the quantum field theory is gauged

To be more precise we have to take in account that the theowillviee using in this work as a computable
model for strong coupling behavior is the supersymmeifie- 4 Super-Yang-Mills theory coupled tod =
2 fundamental hypermultiplet. This hypermultiplet contaliroth fermions and scalars due to supersymmetry
and we will refer to both of them as quarks.



by making its symmetry transformations local (i.e. dependa the position in space-time).
By gauging a theory new interactions among matter partaesgauge bosons arise (e.g. the
electromagnetic, weak and strong interaction in the stahat@del). This kind of gauge the-
ories is the one which is studied in the AAS/CFT correspooeleas described in chapier 2-
which may also be called gauge/gravity correspondence.

Up to now we have introduced the standard model as an integagtiantum field theory
but in this setup none of the particles has a nonzero mass,Tyeis one important further
ingredient to the standard model which is not yet experialgntonfirmed is the Higgs boson.
This particle is a spin O field which is supposed to generaertasses for the standard model
particles via the Higgs mechanism [12].

The standard model leaves many questions open of which waan@mly three: The weak
force is103? times larger than gravity. Where does this hierarchy in tingstrengths come
from? Due to its modeling character the standard model hdsgst) 18 parameters (masses
and coupling constants) which need to be put in by hand. Wieaha& physical mechanisms
fixing the values of these parameters? How can gravity bepacated into the gauge theory
framework?

Some of these problems are theoretically solved by exteagibthe standard model: The
minimal supersymmetric standard mod@&ISSM) |13, for a status report] explains the force
hierarchy (and also yields dark matter candidates). Somtlegiuphenomenologically studied
extensions contain extra-dimensions![14, for a reviewg,itbn-commutative standard model
with non-commuting space-time coordinates [15] (recengprss may be found in 15,117,
1&,/19]) and the addition of an unparticle sector governeddmformal symmetry [20] which
thus is closely related to the conformal theories we wiligevin sectiori 2.2/1. But the most
developed and consistent theory known to incorporate tyravihe same conceptual way as
all other forces is string theory (note, tHabp quantum gravity21, for a recent review] has
the same goal).

Finally, the standard model is computed as a perturbatigaresion in the gauge coupling
coefficients. Therefore this description relies on the togpcoefficients to be small. Due
to the fact that the coupling constants are running [11, &atggogical treatment] (i.e. they
change as the energy at which the particle collision is peréadl) there are regimes where the
standard model perturbation series is not applicable. Téwt prominent example of physics
in such regimes is the quark gluon plasma generated in heawillisions at the RHIC col-
lider [22,23, for example]. Also the ALICE detector at ther¢g@ Hadron Collider (LHC)
currently under construction will soon produce data fromsthstrong coupling regimes. Ex-
actly these regimes of gauge theories are now accessiltle €eiitain restrictions) by virtue
of the AdS/CFT correspondence as described in section &l 3nethodically introduced in
chapter 3.

String theory String theorycan solve some of the problems mentioned above mainly be-
cause of its fundamental and mathematically structuredacker. In string theory the funda-
mental objects are not point-like particles Btrings i.e. one dimensional objects, character-
ized by only one single parameter: the string tengibnThese strings have to be embedded
into ten-dimensional space-time. Furthermore, they hawaatisfy certain boundary condi-
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tion just like a classical guitar string. Closed strings la@ps which can propagate through
space-time, whereas the end points of open strings are ednfinhyperplanes, so called
branes The namebranefor higher-dimensional hyperplanes is a generalizatiotheftwo-
dimensional menbrane As a heuristic picture one may imagine an open string to fndasi

to a guitar string, being able to carry different excitasordust like each excitation of the
guitar string corresponds to a distinct tone, each exoitadif a string can be identified with
a distinct particle. The excitations of a closed string espond to different particles. For
example thegraviton which is the massless spin 2 gauge boson mediating the afiavial
force emerges as the quadrupole oscillation of a closewiyst8ince other exchange particles
such as the photon emerge in the same way as a distinct starigteon, this theory provides
a unified concept from which the gauge interactions arisgyding gravity. Therefore string
theory is capable of giving conceptual explanations forstinecture of matter and its interac-
tions in terms of just one string tension parameter. Foratssistency string theory requires
ten dimensions (six of which need to be compactified), sypemsetry and it is reasonable
to give dynamics to the branes, as well. We will learn a bitenalbout string theory in sec-
tion/2.1.2 but a full treatment is beyond the scope of thisithand the reader is referred to
textbooks||6, 7, for example].

Also string theory rises many problems. First of all it is kkotown how to obtain the
standard model from string theory and since that is the éxeertally verified theory any
conceptual extension has to incorporate it. A pending #tem@l problem is the full quantiza-
tion of string theory. And finally we stress again the lack xperimental predictions which
could distinguish string theory from others, confirm it olerit out. Without a way to connect
to reality and to verify string theory or at least the consaferived from it, it is unfortunately
useless for physics.

Current state of AdS/CFT How does the gauge/gravity correspondence c#g@8/CFT
provide tools to connect string theory and possibly the ddesh model? AdS/CFTis the
name originally given to a correspondence between a cegtige theory with conformal
symmetry (i.e. it is scale-invariant) in four flat spaceimimensions on one side and su-
pergravity in a five-dimensional space with constant nggaturvature called anti de Sitter
space-time (AdS) on the other side [8,) 24]. Due to the mismatadimensions which is
reminiscent oholographyin classical optics, the correspondence is sometimesiclatibog-
raphy. This correspondence arises from a string theorypgaling intricate limits which we
describe in detail in chapter 2. Originally the conformaldfitneory considered on the gauge
theory side of the correspondence has h&er- 4 Super-Yang-Mills theory (SYM). Today
gauge/gravity corresponden¢gometimes loosely called AdS/CFT) is also used to refeneo t
extended correspondence involving non-conformal, ngregymmetric gauge theories with
various features modeling standard model behavior suchieed symmetry breaking, matter
fields in the fundamental representation of the gauge grodpcanfinement (to name only
a few). Introducing these features on the gauge theory didleeocorrespondence requires
deformation of the anti de Sitter background on the gravidg.sin other words changing the
geometry on the gravity side from AdS to something else ceatige phenomenology on the
gauge theory side. Unfortunately there is no version of tireespondence available which



realizes QCD or even the whole standard model to date. At threent one relies on the fact
that studying other strongly coupled gauge theories olidestins something about strongly
coupled dynamics in general and maybe even of QCD in paaticubne studies features with
a sufficient generality or universality, such as meson matsssr[25] or the shear viscosity to
entropy ratio of a strongly coupled thermal plasina [9].

The phenomenological virtue of this setup is that we gainreceptual understanding of
strong coupling physics taking the detour via AAS/CFT. Tiséiecause AJS/CFT is not only
a correspondence between a gauge theory and a gravity thebrgther aduality between
them. This means in particular that a gauge theory at strongling corresponds to a gravity
theory at weak coupling. Thus we can formulate a problem éngauge theory at strong
coupling, translate the problem to the dual weakly coupleity theory, use perturbative
methods in order to solve this gravity problem and afterwasd can translate the result
back to the strongly coupled gauge theory. As a specific elawipthis we will compute
flavor current correlation functions at strong coupling itharmal gauge theory with a finite
chemical isospin potential in section 4.2, using the methediewed in chapter 3.

Recently ADS/CFT also uncovered a connection between dydeomics of the gauge the-
ory and black hole physics [26] which attracted broad aiberi@ 7,28, 29, 30, 31, 32, 33,134,
35,19, for example]. Here the main motivation is the so-chliecosity bound

P (L.1)

s Am
which was derived from AdS/CFT for all strongly coupled gatigeories with a gravity dual.
Here the shear viscosity (measuring the momentum transfer in transverse direcisodi+
vided by the entropy density Due to its universal validity in all calculated cases onpd®
that this bound is a generic feature of strongly coupled gatgories which is also valid
in QCD. Indeed the measurements at the RHIC collider confirenprediction in that the
viscosity of the plasma formed there is the smallest thatelvas been measured. This phe-
nomenological success of AAS/CFT motivated many extessiororder to come closer to
QCD and the real world.

One patrticularly important extension to the original cependence [8] was the introduc-
tion of flavor and matter in the fundamental representatidhevgauge group, i.e. quarks and
their bound states, the mesohns![36] further studied in[187.39,/40, 41, 42]. In particular
in [37] it was found that a gravity black hole background iodsi a phase transition in the
dual gauge theory. Further studies have shown that on theétygsade a geometric transi-
tion (see section 2.1.1) corresponds to a deconfinemersitiaanfor the fundamental matter
in the thermal gauge theory. At the moment the flavored exdansf the relation between
hydrodynamics and black hole physics is under intense figagon (43, 44 45, 4€, 47, 48,
4¢9,50/51, 52, 53, 54, 55,156,157, 58] 59,60, 61, incomplsteficlosely related work]. So
far the effect of finite chemical baryon potential in the gadlgeory and the structure of the
phase diagram of these theories have been explored. Foreavref/the field the reader is
referred to[25], while a brief introduction can also be fdurere in section 2.3. This con-
nection between introducing fundamental matter and thexgpon of its thermodynamic an
hydrodynamic properties in the strongly coupled thermabgetheory as well as the extension
to more general chemical potentials is central to my workipaublished inl[1] 2]. This and
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other extensions to the thermal AAS/CFT framework are &ls@éentral goal of this thesis.

In the light of the reasonable hydrodynamics findings agigewiith observations, the bridge
between string theory and phenomenologically relevanggdheories starts to become illu-
minated: Since AdS/CFT is a concept derived from string théois by construction con-
nected to that side of the gulch. If on the other hand we camraxentally confirm the
strong coupling predictions made using this concept, therhave found a way to ascribe
phenomenological relevance to a concept of string thednys i by far no proof that string
theory is the fundamental theory which describes naturecéxainly it would confirm that
these concepts in question correctly capture the workihgatoire. One could be even more
brave and take such a confirmation as the motivation to takedhrespondence not just as
a phenomenological tool but to take it seriously in its sg@st formulation and assume that
the full quantized string theory can be related to the gahgery fully describing nature (this
would have to be a somewhat extended standard model).

The mission for this thesis The general question | wish to answer in this thesis is: What
is the impact of finite baryon and isospin chemical potestmldensities on the thermal phe-
nomenology of a strongly coupled flavored plasma? The gguaefy duality shall be used
to obtain strong coupling results. Since no gravity dual @Bthas been found yet, we work
in a supersymmetric model theory which is similar to QCD ia ghoperties of interest. To
be more precise we consider the gravity setup of a stack.0b3-branes which produce
the asymptotically AdS black hole background and we agdprobe D7-branes which in-
troduce quark probes on the gauge dual side. The AdS blaekbeaalkground places the
dual gauge theory at a finite temperatdreelated to the black hole horizasy, = 77T R?,
where R is the radius of the AdS space. The chemical potential is asareafor the en-
ergy which is needed in order to increase the thermodyndiynicanjugate charge density
inside the plasma. On the gravity side a chemical poterstistroduced by choosing a non-
vanishing background field in time directioty(¢) # 0. The chemical potential then arises
as its boundary valuglirgn Ap(0) = p. Depending on the gauge group from which the fla-
— Obdy

vor gauge fieldA, arises, the chemical potential can give the baryon cherpizintial for
the U (1)-part of the gauge group, the isospin chemical potentiab{é(2) or other chemical
potentials forSU (Ny).

In order to study the phenomenology of the plasma with chahpotentials dual to the
gravity setup, which we have just described, we gradualfyr@gch the construction of the
phase diagram by computing all relevant thermodynamic tifies We shall also study ther-
mal spectral functions describing the plasma as well asp@m properties, in particular the
diffusion coefficients of quarks and mesons inside the ptasm

Note, that in the previously discussed sense we confirm tH&/@ET concept with each
reasonable thermal result that we produce. Furthermaaeing the relation between the
thermal gauge theory and the dual gravity in detail usingifipeexamples will also lead
to a deeper understanding of the inner workings of the Ad$/Edtrespondence in general.
Therefore we can aim for the additional goal of finding out etitmg about string concepts
from our studies, rather than restricting ourselves to fiygosite direction of reasoning.



Summary of results We can generally answer the main question of this thesis thigh
statement that introducing baryon and isospin chemicatmiatls into the thermal gauge
theory at strong coupling has a significant effect on thentteelynamical quantities, on the
correlation functions, spectral functions and on transparcesses. Studying both the canon-
ical and grandcanonical ensemble, we find an enriched trdymamnics at finite baryon and
isospin density, or chemical potential respectively. Intipalar we construct the phase di-
agram of the strongly coupled plasma at finite isospin angldmdensities or chemical po-
tentials, respectively. We compute the free energy, gramaitical potential, entropy, internal
energy, quark condensate and chemical potentials or e siepending on the ensemble.
Discontinuities in the quark condensate and in the bary@hissspin densities or potentials
indicate a phase transition at equal chemical potentiatiensities, respectively. This newly
discovered phase transition appears to be analogous téothvad for 2-flavor QCD in(162].
Conceptually we have also achieved the generalizatiéf( 19, )-chemical potentials with ar-
bitrary N; and we provide the formulae to study the effect of these hifjtaeor gauge groups.

As an analytical result we find thermal correlatorsSéf(2)-flavor currents at strong cou-
pling and a non-zero chemical isospin potential in the hgignamic approximation (small
frequency and momentum). In particular we find that the isopptential changes the loca-
tion of the correlator poles in the complex frequency plambe poles we examine are the
diffusion poles formerly appearing at imaginary frequescilncreasing the isospin potential
these poles acquire a growing positive or negative realgegending on the flavor current
combination. The result is a triplet-splitting of the ongl pole into three distinct poles in the
complex frequency plane each corresponding to one paatilavor combination.

From a numerical study we derive thermal spectral functmini (1)-flavor currents in a
thermal plasma at strong coupling and finite baryon denSity.find mesonic quasi-particle
resonances which become stable as the temperature is sktreln this low temperature
regime these resonance peaks are also found to follow thiernreeson mass formula [38]

M = %;\/z(nﬂ)(nw), (1.2)

where L., and R are geometric parameters of the gravity setup describeectios 5.1. The
radial gravity excitation number is related to the peak considered in the spectral function,
starting with the lowest frequency peakrat= 0. This fact and the fact that the peaks become
very narrow confirm that stable mesonic states form in thempaat sufficiently low temper-
ature (or equivalently at large quark mass). We identifg¢hesonances with stable mesons
having survived the deconfinement transition of the thenrggreement with the lattice re-
sults given inl[63] and the findings af [64]. However, the mpetation of the small mass/high
temperature regime is still controversial. In that patacuegime we observe very broad
resonances which move first to lower frequencies as the tertyve is decreased. Then we
discover a turning point at a certain temperature after ke mesonic behavior described
above sets in. We ascribe the turning behavior to the disegpeharacter of the excitations
at high temperature and argue that these resonances caa imdéfpreted as quasi-particles
and therefore their frequency can not be identified with aoremeson mass. The concise
treatment of these speculations we delay to future workgugirasinormal modes. Neverthe-
less, we already record our observations in section 5.3pasoding interesting insight in the
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gauge/gravity correspondence in terms of a bulk/boundautien correspondence.

The spectral functions at finite isospin density show simmgégonance peaks with a similar
behavior. Additionally the spectral functions for the tréifferent flavor directions show
a triplet splitting in the resonance peaks which resultsfithe isospin potential breaking
the SU(2)-symmetry in flavor space.

Studying transport properties we find that the quark diiash the thermal plasma shows
a vanishing phase transition as the baryon density is isecedrlhis transition is smoothened
to a crossover which appears as a minimum in the diffusioffic@nt versus quark mass or
temperature. A similar picture arises when simultaneoasiipite isospin density is intro-
duced. For the case of quarkonium transport in the plasmanseafisystematic agreement
between the AdS/CFT calculation and the corresponding fireddry calculation confirming
the correspondence on a more than empirical level.

All these effects are caused by significant changes on thetgsade such as: the embed-
dings having a spike and being only of black hole type. Forigefichemical potential there
has to be a finite gauge field on the brane and the field lines artie horizon. Also the
resonance peaks in the spectral function are shifted bylmoton and isospin densities. We
primarily find that by the presence of a baryon and/or isospgmical potential the gravity
solutions which for example generate the peak in the sgdamation are changed consid-
erably. The same is true for those solutions with vanishimgnolary condition called quasi-
normal modes. Their frequencies, called quasinormal #rqies are shifted in the complex
frequency plane by the introduction of finite potentialsnc®i these quasinormal frequencies
correspond to poles in the correlation function, this reagtees with our analytically found
pole shift in the case of the diffusion pole mentioned ab@sgpecially the triplet-splitting of
the poles upon introduction of isospin appears in both tesul

How to read this New results extending significantly beyond those publishdit, [2] are
reported in sectioris 4.2, 4/4,4.5,/5.3,6.3,and 6.4. Caelgleew ideas are developed in the
three outlook sectioris 4.6, 5.4 and 6.5.

This thesis is structured as follows: For improved readgtahd overview each of the main
chapters contains a small summary section at its end. Afeenon-technical introduction
just given in the present introduction chapter, we esthlihe AdS/CFT correspondence in
chaptel 2 on a technical level. The first three chaptersy(hieg this introduction) are written
such that they may serve as a directed introduction to thiedadressed to graduate students or
researchers who are not experts on string theory or AdS/Tebasic concepts needed from
string theory such as branes and duality relations are Yigfoduced in section 2.1.1, then
put together with those of conformal field theory consideneskectiori 2.2.1 in order to merge
these frameworks to the statement of the AdS/CFT correspm@i2.2.3. With chaptér 3
we develop the mathematical methods which we use to compuutelation functions and
transport coefficients from AdS/CFT at finite temperatuect®n 3.2.2 shows how chemical
potentials are implemented and in seclion 3.3 the concegiaginormal modes is reviewed.
This directed introduction is not designed to cover stringory at any rate (for a concise
introduction the reader is referred to reviews, e.gl. [6b6haoks, e.g.[16,17]).

The last four chapters collect all my calculations and tsswhich are relevant for the



11

aim of this thesis. Each of the chaptals 4, 5 and 6 containsilook section which is that
one before the summary section. These outlook sectionseyipkain some ideas how the
investigation of the present topic in that chapter can bdicoed. If available also initial
calculations are presented as a starting point. Chapteowsstine calculation and results of
correlation functions for thermal flavor currents obtaiaedlytically and the thermodynamics
of the thermal gauge theory at finite baryon or isospin or potientials or densities. Chapter 5
shows the numerical calculation and the results and coiocisislerived from thermal spectral
functions of flavor currents in a strongly coupled plasmanaly the transport properties of
guarks and mesons are studied in chapter 6. In chapter 7 Weontlude this thesis putting

stress on the interrelations between our results and onrédation to experiments, lattice and
other QCD results.



The AdS/CFT correspondence

In this chapter we briefly review the gauge/gravity corregfence from its origins in string
theory to its application aiming for phenomenological pec&dns in collider experiments. The
AdS/CFT correspondence, which carries the propertié®lafgraphy(in analogy to hologra-
phy in optics) and auality as well, states that string theory in the near-horizon lwhifV,
coincident M- or D-branes is equivalent to the world-volutheory on these branes. In the
first section we develop the string theory framework in otdestate the correspondence more
precisely and discuss the existing evidence for this comjed correspondence in the second
section. The third section then introduces fundamentatenate. quarks into the duality.
Section four includes a study of the AdS/CFT correspondandieite temperature introduc-
ing the concepts and notation upon which this present woldaged. A brief overview of
other deformations of the original correspondence and thmglications for phenomenology
is given in the last section. We discuss the role of ADS/CF& peenomenological tool and
contrast this to ascribing a more fundamental charactér to i

2.1 String theory and AdS/CFT

The AdS/CFT correspondence is a gauge theory / gravity yheaality appearing in string
theory. We will see that it is special because it relatesngiifocoupled quantized gauge the-
ories to weakly coupled classical supergravity and theeafimakes it possible to study strong
coupling effects non-perturbatively. It may also be turaesuind and used to study gravity at
strong coupling by computations in the weakly coupled fiakbry dual. Nevertheless, from
the string point of view this correspondence is one dualityag many others. In order to
understand its role in string theory, we start out examinieggeneral concept of dualities in
string theory and M-theory.

12
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2.1.1 Dualities and string theory

The AAS/CFT correspondence is heavily used in this work arast carries the character of
a duality relating one theory at strong coupling to a diffeertheory at weak coupling, in this
section we explore other dualities appearing in stringpheoorder to understand the role of
AdS/CFT in string theory.

Up to the early 1990s five different kinds of superstring tieohad been discovereo [7]:
type |1, type lIA, type 1IB, heteroticcO(32), heteroticEs x Fg. This was a dilemma to string
theory as the unique theory of everything. But in 1995 |64,t6is dilemma was resolved to
great extend by virtue of dualities. All five string theoriesd been related to each other by so-
called S-, T-dualities, by compactification and by takingaia limits. Let us pick T-duality
as a representative example to study in more detail.

A brief T-duality calculation T-duality in the simplest example of bosonic string theory
compactified on a circle with radiuB in the 23" dimension is a symmetry of the bosonic
string solution under the transformation of the compaetifan radius? — R = I,>/R and
simultaneous interchange of the winding numbérmwith the Kaluza-Klein excitation num-
ber K. This means that bosonic string theory compactified on decikith radius R with

W windings around that circle and with momenty? = K/R is equivalent to a bosonic
string theory compactified on a circle with radiiy$/R with winding numberk and mo-
mentump? = 1W/R. To see this in more detail, consider the closed bosoniegstction in
25-dimensional bosonic string theory with target spacedioatesX* [68]

Sbosonic= —1" / dO’dT\/— det g, 0, X0 X" , (2.1)

with the metricg, the string tensiof” and al + 1-dimensional parametrizatiqa® = 7, 0! =

o) of the brane world volume where, 5 = 0,1. Here the parameters are the world-sheet
timer = 0,..., 27 and spatial coordinate = 0, ..., 7. Note, that we could generalize this
action [2.1) to the case of a simple p-dimensional objeBtp#@raneas we will learn below.
The most general solution is given by the sum of one solutiavhich the modes travel in one
direction on the closed stringgft-mover$ and the second solution where the modes travel in
the opposite directiorright-mover3

Xt =Xt 4 XE (2.2)

which for closed strings are given by

Xy = %x“ + %lgp“(T —0)+ %ls > %aﬁe*%”“*”) (2.3)
n#0

Xh = Lot Y4 o) + 3, St 2.
n#0

These solutions each consist of three parts: the center s pwsition term, the total string
momentum ozero modderm and the string excitations given by the sum. If we cortifyac
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the 258" dimension on a circle with radiug, we get

X =3@®+3®)+ (ap® + WR)(T+0) + ... (2:5)
Xg =3(a® =)+ (@p® —WR)(T—0)+..., (2.6)

We leave out the sum over excitation modes (denoted bysince it is invariant under com-
pactification. The constaat® is arbitrary since it cancels in the whole solution (2.7).\On
the zero modas affected by the compactification since the momentum bespii = K/R
with K labeling the levels of the Kaluza-Klein tower of excitatsopecoming massive upon
compactification. An extra winding term is added as well. I8othe sum of both solutions in
25-direction reads

X? =2 420874+ 2WRo+ ... . (2.7)

We now see explicitly that the transformation < K, R — a/R applied to equations$ (2.5)
and (2.6) is a symmetry of this theory becausezé® modehanges aéo’ K/ R+ WR) —
(dWR/o' £ Kd'/R) = (WR + o’ K/R). So we get the transformed solution

X% ::i25+2WRT+20/%0+... : (2.8)

Comparing the solutions (2.8) ard (2.7) we note that thestoamed solution is equal to the
original one except for the fact thatandr are interchanged. However, the bosonic string
action is reparametrization invarichtinder(r, o) — (7,5). Therefore we see that physical
guantities like correlation functions are invariant unther T-duality tranformation.

From this duality we learn how we may start from one stringptiiand by different ways
of compactification we arrive at two distinct but equival@rmulations of the same physics.
Another important feature is that certain quantities clesth@ir roles as we go from one com-
pactification to the other (winding modes turn into KaluzieiK modes ag< < W). Finally
we realize that T-duality relates a theory compactified cargd circleR to a theory compact-
ified on a small circley'/R.

By virtue of T-duality another important ingredient for tgauge/gravity correspondence
was introduced into string theory:zEbranes. Introducing open strings into the bosonic the-
ory of closed strings, we need to specify boundary conditatrthe string end points. A nat-
ural criterion for these boundary conditions is to preséteacaré invariance. So we would
choose Neumann boundary conditiagisy* = 0 at the end points = 0, =. Evaluating this
condition for the general solution given in (2.7), we sed tha Neumann condition turns into
a Dirichlet boundary conditiof, X* = 0. This condition explicitly breaks Poincaré invari-
ance by fixingp of the spatial coordinates of open string ends-independent hypersurfaces.
These surfaces are called Dirichlet- gr-Branes and have to be considered as dynamical ob-
jects in addition to the fundamental strings. We will seeohethat AdS/CF'T is a duality
arising from two distinct ways of describing thesg-bBranes in open string theory.

! S-duality exchanges the fundamental strings (i.e. the I$i\the Ramond-Ramond two-forms) with the D1-
branes. So, roughly speaking the string behaves like a BiebrGeneralizing the cage= 1 to arbitraryp
we would find that the p-brane action is reparametrization invariant under a caaighep + 1 world-
volume coordinates given by* — o°(&).
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Analogous to T-duality, S-duality relates a string theorhveoupling constang, to a string
theory with couplingl/gs. In this respect S-duality is very similar to the AdS/CFT litya
which relates a gauge theory at strong coupling to a grakigpty at weak coupling or vice
versa. A particularly interesting example of S-dualityhe electric/magnetic duality (which
is also present iV’ = 4 Super-Yang-Mills theory).

Gauge/gravity dualities We have seen in the last subsection that there exists ayafiet
string dualities and it is time now to narrow our view to théset of gauge/gravity dualities
including the AdS/CFT correspondence.

As for the important special case of gauge/string dualitrese are three kinds relating
conventional (nongravitational) QFT to string or M-theonyatrix theory AdS/CFTandgeo-
metric transitions It is remarkable that quantum mechanical theories aretdyak. may be
replaced by) a gravity theory.

Matrix theoryis a quantum description of M-theory in a flat 11-dimensicsjzce-time
background. So this gives an M-theory approximation beybhd SUGRA limit. In matrix
theory the dilaton is not massless and therefore there ismensionless coupling that could
be used to define a perturbation theory. The fundamentakdsgf freedom are DO-branes
and it is written down in a non-covariant formulation.

Let us briefly consider a second gauge/gravity duality dafjeometric transition It is
a duality relating open strings to closed strings, and thia property which it shares with
AdS/CFT.Z One setup in which the geometric transition takes placevisngby an\ = 1-
supersymmetric confining gauge theory obtained by wrappifgranes around topologi-
cally non-trivial two-cycles of &alabi-Yau manifolddetermining the structure of the inter-
nal space). The remaining four directions of the D5 spandahe finkowski directions. On
the D5-branes open string excitations form a supersymengdiiige theory. The shape of the
Calabi-Yau manifold (of internal space) is parametrizedrimduli These are scalars appear-
ing in the theory having a constant potential which can tlake tarbitrary values. One may
now shrink the two-cycles by varying tmeoduliof the theory in an appropriate way. At the
limit of a zero-size two-cycle the system undergoes a geoateansition to a (sector of the)
theory in which closed strings are the fundamental objectsetexcited. With the vanishing
two-cycles also the D-branes disappear from the descniiidhe system. In section 2.3 we
will meet another particularly interesting example for ageetric transition. That is the tran-
sition from Minkowski to black hole embeddings in the D3/Diane setup. In that case the
D7-brane wraps af? inside theS® of the AdSs x S® background geometry.

In order to find theAdS/CFT correspondeneee have to consider collections of coincident
M- or D-branes. These branes source flux and curvature. BHearoftheories on these branes
with maximal supersymmetry (32 supercharges) are M2-, D8-M5-branes corresponding
to 3-, 4- and 6-dimensional world-volume theories beingesapnformal (SCFT):

2 The basic idea of a geometric transition is that a gauge yh@sscribing an open string sector, i.e. a gauge
theory on D-branes, is dual toflax compactificatiorf a particular string theory in which no D-branes are
present, butluxesare present instead. In other words, as a modulus is vahiec is a transition connecting
the two descriptions 168].
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SCFT onN,. M2-branes < M-theory onAdS, x S7
SCFT onN, M5-branes < M-theory onAdS; x S*
N =4SYMonN,D3-branes «  type lIB onAdSs x S°

Note that also dS/CFT relating a gauge theory to gravity sitpely curved de Sitter space
is interesting because of the experimental observationdhauniverse is accelerated. If
this acceleration is due to a positive cosmological coristha matter and radiation densities
approach zero in the infinite future and our universe appresde Sitter space in future. On
the other dS/CFT might be interesting for the early univeMevertheless it is less explored
than AdS/CFT since it features no supersymmetry. Instead-tfl-branes, Euclidean S-
branes are used.

2.1.2 Black branes

The gauge/gravity correspondence we explain in this seotiginated from the study of black
p-branes inl0-dimensional string theory and -dimensional M-theory. It turned out that one
can describe branes in two ways which are different limitstahg theory: gp-brane is a
solitonic solution to classical supergravity and at the s&éme ap-brane is the hypersurface
of points where an open string is allowed to end. It was shdwbDRirichlet-p-branes (-
branes)give the full string theoretic description of thebranes found as classical solutions
to supergravity. Furthermore black branes are essentighéstudy of dual field theories at
finite temperature (as will be seen in the next section). Beeaf their doubly-important role,
we will expand these thoughts on branes.

Classical solutions In this paragraph we examine the classjedirane solutions to super-
gravity because these objects and their classical deserifh Anti de Sitter space AdS) are
one of the two fundamental building blocks of the AdS/CFTrespondence.

Black p-branes were found as solutions to classical linfitgring and M-theory, like e.g.
the bosonic part of thel-dimensional SUGRA action (with Mand Ms-brane solutions) [68,
equations (12.3), (12.18)]

P d“x%—G(Rf—;Fﬂﬁ

= 5.2
2K,

1
—6/&AQAQ (2.9)

or the 10-dimensional SUGRA action (withpEbrane solutions)

1
2/{%0

s A%y | R+ 100 ~ § ol (2.10)

which include a dilatonP, the curvature scalaR, gauge field strengths),,, and the cor-
responding gauge fieldd,. ~p denotes the gravity constant in dimensibn= 10 or 11.
Branes ardp + 1)-dimensional objects solving the equations of motion aetifrom either
action. They can be viewed as higher-dimensional genatadizs of a black hole in four di-
mensions. Black hole solutions in four space-time dimersare point-like objects, which
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are surrounded by an event horizon. They haves@x3) rotational symmetry and a sym-
metry associated with time-translation invariance. Bladkanes are surrounded by a higher-
dimensional event horizon, they break Lorentz symmetriiefl = d+ 1-dimensional theory
to
SO(d,1) — SO(d — p) X SO(p, 1) (2.11)
— ——
rotational symmetry transverse to braneLorentz symmetry along brane
The Lorentz-symmetry is enlarged to Poincaré symmetrydnyslation symmetries along the
brane. There exist two classespalbrane solutions: the supersymmetric ones which are called
extremaland the ones which break supersymmetry which are catiedextremal The general
extremal Dy-brane solution has the metric

ds® = H,'?n;da’da’ + Hy/?&ndy™dy"™ (2.12)

with the flat Lorentzian metrig along the brane and the Euclidean megrigerpendicular to
the brane. The harmonic functidf, is

Hy(r) =1+ (%)7"’, (2.13)

and the dilaton
e = g, HF P/, (2.14)

The general non-extremal solution comes with the metric

ds® = —A A2 —d? + ALPdatda’ + AL TTAD A +PATNOE ), (2.15)
. 5,
with y = —3 — ==~ and
Ar=1- ()7, (2.16)
r
and the dilaton
e® = g, A_P7I/A (2.17)

The special casg = 3: Note that they = 3-brane solution is special in that it is the only
one in which the dilaton is constatft = g,. We will develop the arguments for the AdS/CFT
correspondence along this specific case below and therefdegle the (classical) D3-brane
solution to supergravity here

ds? = Hy V2 (dt? + dx?) + H3? (dr® + r2dQ57) | (2.18)
Fy = (1 +%)dt Aday Adwy Adzg AdH3 ™, (2.19)
4
Hy =1+ % . R*:=dmg, ()N, (2.20)
T

where we call the AdS radiug in agreement with the AdS/CFT literature.
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Dp-branes and DBIl-action We have already mentioned that branes, in particular D
branes are the crucial objects to consider in order to utatetshe AAS/CFT correspondence.
Beyond this general insight into the working of the correxgence in this section we also
include the effective action, thBirac-Born-Infeld (DBI}action. We will make use of this
formulation later in order to compute brane embeddingsy @ther words the location of the
Dp-branes in the ten-dimensional space and additionallyfaiins on these branes.

As mentioned above, T-duality implies the existence ofraéel dynamical objects in string
theory which are called pbranes. Roughly speaking these are the hypersurfaceggit ta
space on which end points of open strings can lig-bibanes arg + 1-dimensional objects
carrying charge and thus coupling(fo+ 1)-form gauge fields.

The Dirac-Born-Infeld (DBI) action is thép + 1)-dimensional world-volume action for
fields living on a Dy-brane embedded in ten-dimensional space-time. Fop-arBne with
an Abelian gauge field! in a background of non-flat metrig,,, the dilaton® and the two-
form B, in static gauge the DBI action in string frame is given by

Sop = —1bp / dPoe® \/— det {P[g + Blag + 21/ Fop} . (2.21)

Static gauge refers to the choice of world-volume coordisat which by diffeomorphism-
invariance of the action are set equapte- 1 of the space-time coordinaté8*, such that the
pull-back is simplified. The remainin@ — p) coordinates are relabeled zsn'¢'. The¢® are
scalar fields of the world-volume theory with mass dimensiéh= 1. The brane tensiofp,
is given by X
Top = gs(2m)P(a) /2

Note, that the DBI-action also contains a fermionic contiitn (see e.gl169] for details).

The geometry of a numbéy D-branes is more subtle. Coordinates transverse to thebran
are T-dual to non-Abelian gauge fields. The DBI action fos tbase of non-Abelian gauge
fields A is given by

SDp = —TDp / dp+10'€_q>STI'{ \/ det Qﬁ/,{

X \/ —det(Eop + Bar(Q=1 — )" E. 5 + (21a/) F, } . (2.23)

(2.22)

HereQ'; = &' +i(2rd’)[¢', ¢*|Ey; and Ex; = gi; + By, collects the antisymmetric back-
ground tensors. Choosing the transverse scalar fields sathst, ¢*] = 0 we obtain the
general form of the Abelian DBI action (2.21) but for non-Alba gauge fieldsA = AT,
with generatord’, and field strengthg’ = F*T,. The symmetrized trac&Tr{. ..} tells us
to symmetrize the expression in the flavor representatidic@s. Note, that the non-Abelian
DBI-action in this form is only valid up to ordeP(a’*). Another limitation is that we can
only consider slowly varying fields.

Let us choose the special case\dfcoincident D3-branes. The world-volume action of this
stack of branes at low energy is that ofla= 4 dimensional\' = 4-supersymmetric Yang-
Mills theory with gauge grou@/(V,). This theory is supersymmetric and obeysformal
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invariance meaning that it is a conformal field theory as explained Wweld@he massless
modes of the low energy spectrum for open strings ending ersthck of coincident D3-
branes constitute th&¥ = 4 vector supermultiplet iti3 + 1) dimensions.

BPS statesin supersymmetry representations and especially braeesftan classified in
terms of how many supersymmetries they break if introduceiti¢ brane-less theory. The
Bogomolny-Prasad-Sommerfeld (BPS) bound distinguiskedéwden branes which are BPS
and those which are not. Let us see what this means in the éxafmpassive point particlesin
four dimensions. Tha&/-extended supersymmetry algebra for particles of positimes)/ >
0 atrestis

{QL, QLY = 2M6" 5.5+ 2i2"T0,; (2.24)

with the central charge matri¥’/, supersymmetry generatof®, / = 1,..., N and Majo-
rana spinor labels, 5. The central charge matrix can be brought in a form such tleatan
identify a largest componenit;. The BPS-bound is defined in terms of this component as a
lower bound for the particle’s mass

M > |Zy|. (2.25)

States that saturate the boultd= |7, | belong to theshort supermultiplealso called th&8PS
representation In this case some relations in the algebra (2.24) beconeszerh that less
combinations of superchargéscan be used to generate states starting from the lowest one,
resulting in less possible states. States with> |Z;| belong to dong supermultiplet De-
pending on the number of central charges which are equagtméss (e.gM = |Z;| = | Zs|)
the number of unbroken supersymmetries changes. If for pkahalf of the supersymmetries
of a /N = 4 theory are unbroken becauz®f the central charges are equal to the mass, then
the representation is calldwlf BPS In general fom central charges being equal to the mass
we have gn/N') BPS representation

Since BPS states include particles with mass equal to thieatemarge, the mass is not
changed as long as supersymmetry is unbroken, i.e. thess ate stable and in particular we
can examine them at strong and at weak coupling.

Identifying D-p-branes with classical p-branes It is believed that the extrematbrane
in supergravity and the pbrane from string theory are two distinct descriptionshaf same
physical object in two different parameter regimes. Hereestablish a direct comparison to
consolidate this statement which lies at the heart of the/@BS$ correspondence.

In the case = 3 it can be showri [24] that the classigasolution is valid in the regimé <

gsN < N with the string coupling,; and the Ramond-Ramond chatye= [ xF,.;. While
S58—p
the validity of the string theoretic Pbrane description for a stack &f D3-branes is limited

to g, N < 1[24]. As discussed in section 2.1.2Mranes are thé + 1)-dimensional hyper-
surfaces on which strings can end. On the other hand theysares@urces for closed strings.
This fact can be translated into the heuristic picture thasé particular closed string exci-
tations identified with gravitons are sourced by thelbane. This reflects the fact thapb
branes are massive (charged) dynamical objects which alse the space around them. In
particular Dp-branes can carry Ramond-Ramond charges. A stadkadincident D»-branes
carriesN units of the(p + 1)-form charge which can be calculated from the corresponding
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action as shown in [70]. Turning to supersymmetry we find thatDirichlet boundary condi-
tion imposed on the string modes by the presence gi-bfane identifies the left-moving and
right-moving modes (see section 2/1.1) on the string anckthiee breaks at least half of the
supersymmetry. It turns out that in type IIB string theorgres with odg preserve exactly
one half of the supersymmetries and hengeldbanes are BPS-objects. On the other hand
the classicap-brane solution in supergravity carries the Ramond-Ranubradge/N as well
and features the same symmetries. A further check of thdifdation is the computation
of gauge boson masses (which are analogs of the W-boson sringbe standard model) in
the effective theories in both descriptions. It turns oat threaking thé/(/V)-symmetry by a
scalar vacuum expectation value in both setups generasesbavith the same masses. These
bosons are analogs of the W-bosons in the standard modehabguire their masses by the
scalar vacuum expectation value of the Higgs field via thegslimechanism.

2.2 Gauge & gravity and gauge/gravity

This section serves to supply a detailed description oftloeheories involved in the ADS/CFT

correspondence: the superconformal quantum field thed¥y @ flat space on one hand, and
the (limit of ) string theory in Anti de Sitter space (AdS) dretother hand. A direct compar-

ison of their features inevitably leads to the conjectured-to-one correspondence of fields
and operators, of symmetries and eventually of the full tileso

2.2.1 Conformal field theory

The original formulation of the AdS/CFT correspondenceolngs a conformal field theory,
hence CFT, on the conformal boundary of anti de Sitter spaktieough we will later modify
the correspondence in order to come to more QCD-like thediteaking superconformal
symmetry, we now consider the conformal case in order to hassa limit to check the setups
deviating from the conformal case. For example we will se¢ tWvo-point functions —which
are central to this work— in the conformal case are completetermined by the conformal
symmetry.

CFT’s are invariant under the conformal group which is egaliynthe Poincaré group ex-
tended by scale-invariance. In the context of renormadimagroups it was found that many
guantum field theories exhibit a renormalization group fl@tmeen a scale-invariant ultra-
violet (UV) fixed-point (repelling) and a scale-invariantriared (IR) fixed-point (attracting).
The quantum theory of strong interactions, QCD is scalesiawt at it’s IR fixed-point in the
so-called conformal window. This fixed-point, also callbd Banks-Zaks fixed-point, appears
in a distinct window of values for the number of flavors conghio colorsV, < 11/2N., (for
these values asymptotic freedom is guaranteed) while imgazhiral symmetry (i.e. the
guarks are massless) at the same time. So QCD itself becosm¥amal field theory in
this specific limit. This is only one connection between QGial £FT which motivates us
to believe that CFT’s are a good approach to learn somethiagtaQCD in non-perturbative
regimes.
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CFT’s have played a key role in understanding two-dimeradiguantum field theories
since they are exactly solvable by virtue of the conformalugr being infinitely large and
yielding infinitely many symmetries. If we would like to stydiigher dimensions we ob-
tain the conformal group id dimensions by extending the Poincaré group with the regquir
ment of scale invariance. In general the conformal groupdedhe metric invariant up to
an arbitrary scale factay,, (z) — Q2(2)g,.(z). There are two types of additional trans-
formations enhancing Poincaré to conformal symmetrystFwe have the scale transforma-
tion z# — Az* which is generated bf and second, there is the special conformal transforma-
tionz# — (2t +a*2?)/(1+22"a, + a*2?) generated by<,,. Denoting the Lorentz generators
by M, and translations by, the conformal algebra is given by the set of commutators

(M, Pp] = —i(Mup Py — Mup ) » (M, K] = =i(up Ky =m0 K)
(M, M,,| = —in,,M,, £ permutations  [M,,,D]=0, [D,K,|=iK,,
D, P,| = —iP,, P, K, =2iM,, — 2in, D, (2.26)

and all other commutators vanish. The algebra (2.26) is asphic to the algebra of the
rotation groupSO(d, 2) as may be seen by defining the generators®(d, 2) in the following
way
1 1
JMV - MMV > Jud - §(KM - PM) ) ‘],u,(dJrl) - §(KM + PM) ’ J(d+1)d =D. (227)

Note, that we consider all group structures in the Minkowskt in Euclidean signature.

The conformal algebra is extended to the superconformabadgby inclusion of fermionic
supersymmetry operato€g. From the (anti)commutators we see that we need to include tw
further operators for the algebra to be closed: a fermioaitegatorS and theR-symmetry
generatorR. The conformal algebra is supplemented by the relationsngschematically as
follows

D.Ql=-3Q, [D.s)=35, [K.QxS, [P8]xQ,
(0,.QYx P, {SS}xK, {QS'xM+D+R. (2.28)

In d = 4 dimensions theR-symmetry group isSU(4) and the fermionic generators are in
the (4,4) + (4,4) of SO(4,2) x SU(4). Unitary interacting scale-invariant theories are be-
lieved to be invariant under the full conformal group, busthas only been proven ih= 2
dimensions. Given a classical conformally invariant fiélddry, conformal invariance is bro-
ken if we define a quantum theory since this requires introdonof a cutoff breaking scale
invariance. However, thd/ = 4 supersymmetric Yang-Mills theory (SYM) in four dimen-
sions is special in this sense because it is a prominent dgdorm superconformal quantum
field theory. It is shown in[71] that supersymmetry and comfal symmetry are sufficiently
restrictive to limit superconformal algebrasde< 6 dimensions.

The physically relevant representations of the conformalig are given by Eigenfunctions
of the scaling operatab. Its eigenvalues areiA whereA is the scaling dimension of the
corresponding state. Its scaling transformation readgz) — M\“¢(\z). Note that the
commutators in.(2.26) imply that, raises the scaling dimension of a field whitg, lowers
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it. In unitary field theories there are operator of lowest eirsion, which are callegrimary
operators The defining property for a primary operai0y, is that it has the lowest possible
dimension[K, O,] = 0. Correlation functions of fields and in particular of suclngary
fields are severely restricted by conformal symmetry. Tworpfunctions vanish if evaluated
between two fields of different dimensidn For a single scalar field with dimensianit was

shown that ]

(9(0)g(z)) o G (2.29)

Three-point functions are restricted to have the form

Cijk
<¢z(l’1>¢]<x2)¢k(5€3>> |~T1 _ xQ‘AlJ’,AQ AS‘ZCl — SL’3|A1+A3 A2|372 — .T}3‘A2+A3 N (230)

For n-point functions withn > 4 there are more and more independent conformally invari-
ant functions which can appear in the correlator. Similgregsions arise for higher-spin
operators. For example the vector-vector correlator okeored currentd?(z) (having di-
mensionA = d — 1) must take the inversion covariant, gauge invariant form

o) I ) = B (O — 0,0,) — -

P gya e T O =
where B is a positive constant, the central charge of i#tie).J(y) operator product expan-
sion (OPE). The OPE of a local field theory describes the actionvof dperators?O; ()
and O, (y) shifted towards each other in terms of all other operatovéngathe same global
quantum numbers as their prodd2tO, as follows

(O (x ZC (y)). (2.32)

(2.31)

In conformal field theories the energy-momentum tensordiiged in the conformal algebra
and has scaling dimensiak = d just as each conserved current has scaling dimenSien

d — 1. To leading order the OPE for the energy-momentum tensdravgrimary field is
T, (2)$(0) = Ap(0)0, 0,27 + ..., (2.33)

while its two-point function turns out to be (see elg. [72])

C
<TMV(x)TpU(y)> - SQEIZL;/pU( )7
X :Ea
IZ/pU( ) = (5 —2-= )(51/,3 )Saﬂ po (234)
where the projection operator onto the space of symmeatuetess tensors is given by
1 1
Saﬂ e = 5(5ap550 + 0000sp) — E(Sagépo ) (2.35)

The two-point function of energy momentum tensor fluctuaio a black hole background
was used to compute a lower bound on the viscosity [26] in @gty coupled plasma as
mentioned in section 2.5.
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Symmetries and conformal compactification of R'! In this paragraph we study the
causal structure and symmetries of two-dimensional MirgtospaceR ! by a series of coor-
dinate transformations callembnformal compactificatiom order to generalize this analysis
to four dimensions in the next paragraph. We will see tmatformally compactifiefour-
dimensional Minkowski space has the same structure aKitistein static universand that

it can be identified with theonformal compactificationf AdSs.

The flat space with Euclidean signatuRé¢ can be compactified to thédimensional hy-
persphere&s™ with isometrySO(d). A similar compactification can be obtained in Minkowski
space. To give a specific example for the symmetry structugéobally conformal field the-
ories in flat Minkowski space consider the geomdry'. It can beconformally® embedded
into the cylinderR x S'. It has the conformal isometry group structl®(2, 2), which is
generated by six conformé&lilling vectors Killing vectors are the vectorX’,, which leave
the metricg,,,, invariant under infinitesimal coordinate transformatiefys= z,, + ¢X,,. This
condition can be rewritten as follows

Lxguw =0, (2.36)
utilizing the covariant derivativ® inside thelie derivative
LxY =[X,Y]=XY -YX. (2.37)
In local coordinates the Killing condition amounts to tiding equation
£,X,=D,X,+D,X,. (2.38)

In order to incorporate conformal symmetries, i.e. resgpatif the metric with a factok, we
need to generalize the condition (2.36) to its conformasdioer

LXg,uz/ - )\g;u/ . (239)

The six vectors fulfilling the Killing equatiori (2.38) iR!"! are given in light-cone coor-
dinatesr, = t + x by 04, 7.0+, r+20.. Isometries generated by the Killing vectors are
related to the standard representation for generatorseafahformal group (2.26). The two
translations along the cylindd x S! for example are generated by the linear combina-
tion (1 + r.?)0+. We identify these two generators dg and Jy, given in the standard
representatiod,, of the SO(2, 2) rotation algebra being linear combinations of the confdrma
generators as given in (2127).

In order to study the causal structure of this two-dimersidfinkowski space, we utilize a
series of transformations given for examplein [73]. Thiaiatof transformations is often used
to drawconformal diagramgisualizing the causal structure of a specific space-time.ain
is to map Minkowski space into the interior of a compact spaudsince the transformations
involve a conformal rescaling of the metric, this procedarimerefore often calledonformal
compactification Beginning with

ds? = —dt* + da?, (—oo <t,r < 00), (2.40)

3Hereconformalrefers to a series of transformations which are demonstesqglicitly at the end of this section.
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we first transform to light-cone coordinates = ¢ + = giving
ds? = —du,du_ . (2.41)

Now we map this into a compact region using trigonometrictiomsu,. = tan a4 with . =
(7 +6)/2. This gives the metric

1

4 cos? Uy cos® U_

ds?

(—d7r? + da?)  (|ug| < g), (2.42)

which we simplify by a conformal rescaling to our final exmies of the conformal compact-
ification of two-dimensional Minkowski space

ds? = (—=dr? + d6?). (2.43)

The variables are limited to the compact regien < 6 < 7, || + 60 < 7.

Symmetries and conformal compactification of R'?, p > 2 In this paragraph we
generalize the above exampleRf!' to (p + 1)-dimensional Minkowski space which can be
conformally compactifieend then identified with theonformal compactificationf AdS, .

Note, that we can generalize the above examplRt6 conformally embedded intR x
SP, which is theEinstein static universith isometry groupSO(2,p + 1) as we see by an
analogous series of coordinate transformations. We start f

ds® = —dt* + dr? + 2dQ, >, (2.44)

and transform ta.. = ¢t + r which gives
1
ds* = —dujdu_ + Z(u+ —u_)2dQ, 1. (2.45)

Then changing ta. by u+ = tan u. leaves us with
1

4 cos? Uy cos® U_

ds?

1
(—dada_ + I sin? (i, — a_)dQ, %), (2.46)

which transforms under,. = (7 £ 6)/2 into
1

4 cos? Uy cos® U_

ds? (—d7? + d#? + sin® 6dQ, 7). (2.47)

Finally we rescale this result conformally in order to obtai
ds® = —dr? + df* +sin? 0dQ, ,?, (2.48)

which we extend maximally to the regidh< 6 < 7, —o0 < 7 < oo such that its geome-
try R x S? becomes obvious and we can identify it as Huestein static universe

To summarize these results, we state that the universal edvie subgroupSO(2) x
SO(p + 1) of the conformal grougpO(2, p + 1) examined below equatioh (Z2126) (take=
p + 1) can be identified with the isometry of the whole (not onlytpafrit) Einstein static
universeR x S? which we just worked out.
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2.2.2 Supergravity and Anti-de Sitter space

The ADS/CFT correspondence relates a conformal field thgy) to a supergravity in Anti
de Sitter space (AdS) times a compact space. In this subsett examine properties of su-
pergravity in AdS such as symmetries, geometry, field cdrated coordinate representations.
Anti de Sitter spaceldsS, is a maximally symmetriel-dimensionalLorentzian manifold
of constant negative curvature. It is a vacuum solution testein’s field equations of gen-
eral relativity with an attractive (negative) cosmologicanstant. A Lorentzian manifold is
a pseudo-Riemann manifold with signatuted — 1), which again is the generalization of a
differentiable manifold equipped with a metric, called @Rann manifold, on which the re-
striction to a positive-definite metric has been replacethbycondition for the metric not to be
degenerate. To be more specific consider the mettitisf, ., in Poincaré coordinates, ¢, 7)
given by
2 5, dr? 2 2 -2
ds°=R (? + ro(—dt* 4+ dz7)) (2.49)
whereR is the radius of AdS and € [0, oo| is the radial AdS-coordinate. In this form the two
subgroupd SO(1, p) andSO(1, 1) of the isometry groupO(2, p+1) are manifest/SO(1, p)
is the Poincaré transformation ¢t ©) and SO(1, 1) is a scaling symmetry of (2.49) under
the transformatiorit, z,r) — (ct,cZ,c 'r). This scaling can be identified with the dilata-
tion D (introduced in section 2.2.1) in the AdS/CFT-dual conforfredd theory. Note, that
Poincaré coordinates do not cover the whole AdS. This &aeasier to understand in the Eu-
clidean version of Poincaré coordinates which do not cttivemwhole AdS, as well. Turning
the sign of the time component of the metiic (2.49) we get thelifean analog of Poincaré
coordinates. This system only covers one of the two disactedehyperboloids of Euclidean
AdS space. We will discuss the structure of AdS and its ifieation with a hyperboloid
below in the Lorentzian signature case.
Rescaling((2.49) by R? = o gives the standard form of the AdS-metric
2 2
ds? = %dQQ + %(—dtQ + dz?), (2.50)
By transformation to the inverted coordinate= r—!, dr? = y~*dy? we find another form
often used in the literature
dy? + (—dt? + di”
y . )) . (2.51)

ds* = R*(
y

Symmetries and geometry of AdS In Euclidean space-time it can be shown that the
(p + 1)-dimensional hyperbolic space, which is the Euclideanivarsf AdS, ., can becon-
formally mapped to thép + 1)-dimensional disd, ., with the boundary being”. The con-
formal mapping oconformal compactificatiors a series of coordinate transformations used
to map a given space-time into a compact region and studwgitsat structure (see e.d. [73]).
One of these transformations is a conformal rescaling afitéic. A similar compactification

is possible in Minkowski space-time as we will see in detaihis subsection.
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In order to studyAdsS,»-space, we consider thie= p + 2-dimensional hyperboloid

p+1
Xo® + Xpi2® = ) X2 =R (2.52)

i=1

The hyperboloid is embedded in the flat+ 3)-dimensional space with one further dimension
and the metric of the ambient space reads

p+1

ds? = —dXo® — dX, 0" + ) X2 (2.53)
i=1

This space has isomet§O(2, p + 1), it is homogeneous and isotropic. A solutionto (2.52)
is given by the coordinate choice

Xo = RcoshpcosT,
Xpt2 = RcoshpsinT,
Xi:Rsinhin(i:1,...,p+1;ZQ?:1). (2.54)

Note, that the radial coordinageappearing here is different from the radial coordinaie
the previous section. The metric dflS,,, can be obtained by plugging this solution (2.54)
into the metric/(2.53) giving the metric gobal coordinates

ds? = R?*(— cosh? pdr? + dp* + sinh? pdQ?). (2.55)

In the region0 < p, 0 < 7 < 2, this solution covers the hyperboloid once, hence these
coordinates are called global. Expanding the melric {2c% the originp = 0 asds® ~
R2(—d7? 4 dp? + p>dQ?), we recognize the cylinder-symmetsy x R?+!. The S represents
closed time-like curves which violate causality. In ordercure this, we unwrap the circle
by taking theuniversal coveringf the cylinder with—oo < 7 < oo. In order to study the
causal structure of this covering space, which we will sygalll AdS-space from now on, we
proceed with the conformal compactification by transfomiin 6 = sinh p (0 < 6 < 7/2).

The metric becomes ,

ds® = (—d7? + d#* + sin? dQ?) (2.56)

cos? 6
which we then rescale conformally in order to get

ds® = (=dr* + df* +sin?0dQ?) (0< 0 < 7/2, —00 < T < 00). (2.57)

We have obtained the Minkowski metric &instein’s static univers¢2.57). Recall that
we found the same metric with one dimension lower after con& compactification of
Minkowski spaceR!'” in section[2.2/1, equation (2/48). Note that the range ferwri-
abled is only half as big in this conformal compactification 45, as for the conformal
compactification of Minkowski spacR!”?. This means that the conformally compactified
AdS, > only covers one half of Einstein’s static universe.
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This space has topologR x (upper half-sphere af**!) with a boundary at thes?*!-
equatorf = 7/2 which features a topology dR x SP. The boundary found here is the
analog of the boundary of the di$g,,,; encountered in conformally compactified Euclidean
space. Thus we find that the boundary of conformally comfiedtidds, . is identical to
the conformal compactification ¢f + 1)-dimensional Minkowski spacB!?. Having stated
this we are now equipped with an identification of the spacwliich the conformal field
theory lives (i.e. Minkowski space) with the boundary of 8gace on which supergravity
is defined (i.e. AdS). This is a fundamental building blocktfte ADS/CFT correspondence
which we state in the next section. Note that herg(the1)-dimensional boundary @p + 2)-
dimensional AdS is related {@ -+ 1)-dimensional Minkowski space. This fact implies that the
information given by the extra-dimension in the gravitydhein AdS has to be encoded in
the gauge theory with one dimension less in a different wancesthis resembles the principle
of holography in optics, the AdAS/CFT correspondence iseddled AAS/CFT holography. To
be precise the AAS/CFT holography is a particular reabnadif the more general holographic
principle suggested in 174, 75].

Type |IB supergravity Before we state the correspondence let us review the fieleogn
symmetries and properties of supergravity. This exanonatiill reveal that the symmetries
of type IIB supergravity omrddS; x S5 are equal to the symmetries of the superconformal
theory we examined in the preceding section 2.2.1. We withier find some evidence for the
fact that the classical supergravity wijtFbranes is suspiciously similar to the superconformal
theory living on the stack of pbranes.

We are specifically interested in type IIB supergravity in tkmensions which can be de-
fined onAdS5 and which is the gravity theory appearing in the AdS/CFT\{lyAgauge) cor-
respondence. It is the low-energy effective theory of tyBesltring theory. So both have the
same massless fields: two left-handed Majorana-Wey! gnasittwo right-handed Majorana-
Weyl dilatinos, the metrig,,, the two formB,, the dilaton® and the form field€’;, C5, Cy.
the four-formC, has a self-dual field strengffy. Type 1IB supergravity is constructed through
supersymmetry and gauge arguments [ /6, 77] starting frenequations of motion. Further
it was shown that supergravity is stable on anti de Sittecesph/8, for supergravity in 5 di-
mensions] with an appropriate set of boundary conditiomsstBnce of the self-dual five-form
field strength obstructs the covariant formulation of amagtsuch that we need to find an ac-
tion and add a self-duality constraint by hand. The bosoaitqf the action can be written as
the sum of a Neveu-Schwarz (NS), a Ramond-Ramond (RR) an@<imons (CS) term

S = Sns + Srr + Scs (2.58)
1 1
=53 dPz/ =g [e—” <R +40,90"® — §|H3|2) (2.59)
1 2 SETENE T
3 |F1|° + | B3|+ §|F5| (2.60)
1
— | C4y ANHz A\ Fy, (2.61)

C4R2
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with F, 1y = dC,,, Hy = dBy, Fy = Fy — CoHs, F5 = F5 — 1Cy A H3 + 1B, A Fy and the
curvature scalaR . This is the theory which we will relate to a conformal fieleétny through
the AdS/CFT correspondence.

Note, that this supergravity can also be Kaluza-Klein-caatified onS® and then truncated
utilizing the Freund-Rubin Ansatz choosing the five-formbe proportional to the volume
form of S°. The resulting theory igauged supergravitgn AdSs; with possible supersym-
metriesSU(2,2|N/2), N = 2, 4,6, 8. Here we only mention the maximally supersymmetric
caseN' = 8 which has gauge grougU(4). The SO(6)-isometry on the compactification
manifold.S° becomes the local gauge symmetry in the truncated theotigidithesis we will
not consider the gauged supergravities.

2.2.3 Statement of the AdS/CFT-correspondence

In this section we state the correspondence and provide @arson of the gravity theory
with the gauge theory which leads to the conjecture. Furtherinclude a dictionary and a
discussion how to translate or identify objects, e.g. djpesan the gauge theory with those,
e.g. fields in supergravity.

The AdS/CFT-conjecture states that (for the case of D3dwgatype |IB superstring theory
compactified onddS; x S° background described in section 212.2 is duaMo= 4, d = 4
Super-Yang-Mills theory with gauge gro/ (V) 4 as described in section 2.2.1. This equiv-
alence is called the AdS/CFT-correspondence. The striegryhbackground corresponds to
the ground state of the gauge theory, while excitations atadlactions in one description cor-
respond to excitations and interactions in the dual desenipThere are three different levels
on which the gauge/gravity correspondence is conjectured.strong formconjectures that
the full quantized type 1IB string theory a#d S5 x S° with string couplingg, is dual to the
N = 4 Super-Yang-Mills theory (SYM) in four dimensions with gaugroupSU(N) and
Yang-Mills couplinggyw in its superconformal phase. On the string theory sideAtis;
and.S® have the same radius and the five-formF; has integer flug’ F; = N. The parame-
ters from the string theory are related to those on the gahey@y side by

gs = gYM2 ) R4 = 47TgsN(O/>2 : (262)
On the second level a weaker form of the conjecture utilize& Hooft limit
A= gty N =fixed, N — . (2.63)

The gauge theoryy = 4 SYM, in this limit can be expanded iy N and representing a topo-
logical expansion of the field theory’s Feynman diagramis. édbnjectured to be equivalent to
type 1B string theory, which can be expanded in powers ofthiag couplinggs = A\/N rep-
resenting a weak coupling (classical) string perturbaii@ory, i.e. a string loop expansion.

The third and weakest form of the conjecture is targe A\ limit. Expanding the SYM
theory for large\ in powers\—/2 corresponds to an’ expansion on the gravity side. On this
level the AdS/CFT correspondence conjectures that typesuiergravity onAddSs x S° is
dual to the large\ expansion of\' = 4 SYM theory.

4 Or rather with gauge groug (V) according tol[79].
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Road map to the conjecture In order to put forward an argument for the AdS/CFT con-
jecture, consider a stack of parallel D3-branes in type IIB string theory on flat Minkowsk
space. Two kinds of string excitations exist in this setupe tlosed strings propagating
through the ten-dimensional bulk and the open strings wéanchon the D3-branes describing
brane excitations. At energies lower than the inversegtangthl /I, only massless modes
are excited such that we can integrate out massive excigatom obtain an effective action
splitting into three part$' = Spux + Shrane+ Sinteraction 1€ bulk action is identical to the ac-
tion of ten-dimensional supergravity (2158) describingithassless closed string excitations in
the bulk plus possible higher derivative corrections. Bhasrrections come from integrating
out the massive modes and they are suppressed since thaglae drder inl /cut-off = o/.
The brane action is given by the Dirac-Born-Infeld actiorB(pon the stack of D3-branes
already given in[(2.23) for p-branes. It contains th& = 4 SYM action as discussed be-
low (2.23) plus higher derivative corrections suchedsrF*. The interaction between the
bulk modes and the brane modes is describedilyacion These are suppressed at low ener-
gies corresponding to the fact that gravity becomes fresrgeldistances. In the same limit the
higher derivative terms vanish from the brane and bulk adgaving two decoupled regimes
describing open strings ending on the brane and closedstirrthe bulk, respectively.

Now let us take the same setup/®fD3-branes but describe its low energy behavior in an
alternative way, with supergravity. It will turn out that wan again find two decoupled sec-
tors of the effective low-energy theory. In supergraviy-Branes are massive charged objects
sourcing supergravity fields. We have seen the D3-brandisolexplicitly in (2.18), (2.19)
and [2.20). Note that the componept = H; '/ = —(1 + R*/r*) being the measure for
physical time or equivalently energy is not constant butetels on the radial AdS coordi-
nater. For an observer at infinity = oo this means that the local energypjec(r = constant
of any object placed at some constant positigsmred-shifted on the way to the observer. The
observer measures

E(r=00)=(1+ %)_1/4Eobject(r) : (2.64)

Approaching the position = 0 which we call the horizon, the object appears to have smaller
and smaller energy. This means that in the low-energy lingitoan have excitations with
arbitrarily high local energyyiect as long as we keep them close enough to the horizon. This
regime of the theory is called theear-horizon region On the other hand modes that travel
through the whole bulk are only excited in the low-energyitlifintheir energy is sufficiently
small. These are the two regimes (bulk and near-horizo)etheory which decouple from
each other in analogy to the string theory approach. In théieory bulk excitations interact
with the near-horizon region because thg-lvane located at the horizon absorbs the bulk
excitations with a cross sectian ~ w3R® [80,[81]. However, in the low-energy limit this
cross section becomes small because the bulk excitatimesehaave length which is much
bigger than the gravitational size of the brareO(R). The low-energy excitations in the
near-horizon region which have an energy low enough to lttiwveugh the whole bulk are
caught near the horizon by the deep gravitational potept@uced by the massiyebranes

atr = 0. In the near-horizon region < R the metric(2.18) can be approximated wih =



30 Chapter 2. The AdS/CFT correspondence

(1+ (R/r)*) ~ (R/r)* such that it becomes

dr?

ds? —dt* + dx*) + RQF + R%d05?, (2.65)

T
- (
which is the metric of the AdS-spacklS; x S° in the same coordinates as (2.50). This means
that the effective theory near the horizon is string theanyy(kind of excitations possible)
on AdSs x S° and it decouples from the bulk theory which itself is supavigy (low-energy
excitations only) in the asymptotically (- R andH; = 1) flat space.

In both descriptions of p-branes we have now found two decoupled theories in the low-
energy limit:

1. For the classical supergravity solution we found sugatity on AdSs x S° near the
horizon and supergravity in the flat bulk.

2. For the string theoretic pbrane description we found th'€ = 4 SYM theory in flat
Minkowski space on the stack of D3-branes and ten-dimeasgupergravity in the flat bulk.

Since supergravity in the flat bulk is present in both desioms,
we are lead to identify the near-horizon supergravitylitfs x S°
and the\' = 4 SYM brane theory, as well.

The dictionary The natural objects to consider in a conformal field theoeycgrerators)
since conformal symmetry does not allow for asymptoticestair an S-matrix. On the other
side of the correspondence we have fieldshich have to satisfy the IIB supergravity equa-
tions of motion inAdSs x S°. AAS/CFT states that the CFT-operat6rare dual to the fields

on AdSs x S° in a specific way.

Consider as an example for a fieldthe dilaton field®. Its expectation value gives the
value of the dynamical string coupling which is constantydior the special case of D3-
branes which we do not consider here (see equéitionl (2.1 opedwer, the dilaton expectation
value in string theory is determined by boundary conditmrilie dilaton field at infinity (AdS
boundary). By the correspondence between couplings! (Z€Xnow that the coupling in the
gravity theory also determines the gauge coupding or 't Hooft couplingA. Thus changing
the boundary valuelim @(r) = ®yqy Of the (string theory) dilaton field from zero to a finite

T—7"pd
value®pqy changes theycoupling in the dual gauge theory .

On the gauge theory side a change in the gauge coupling isv&chby changing the
term [ d*z®,4,0 in the action, whereg?) is the operatortr 7 containing the gauge field
strengthF’ of the gauge theory© is a marginal operator and thus its presence changes the
value of the gauge theory coupling compared to the case wigemarginal operata® is not
included into the gauge theory.

So we see by considering this special case of the dilatoncktzenging the boundary value
of the field¢ leads to the introduction of a marginal operator in the deddi fiheory. Therefore
the AdS-boundary valugyq, of the supergravity field acts as a source for the operatdin
the dual field theory. This statement is conjectured to haldf fields¢ in the gravity theory
and all dual operator® of the gauge theory (not only marginal ones).

Let us be a bit more precise on what we mean by the boundarg ¥glyof the supergravity
field ¢. In the geometry ofidS; x S° we decompose the fielglinto spherical harmonics on
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the S® which produces Kaluza-Klein towers of excitations witHeliént masses coming from
the compactification. These latter excitations liveAS; with the metricg and (neglecting
interactions) they have to satisfy the free field equatiomofion

(Og +m*)¢ =0, (2.66)
which has two independent asymptotic solutions near thadenyr = oo
O(r) = g ™2 + g + ... (2.67)

Here the 4 is the dimension of the AdS-boundary and the conformal dimension of the
field. The first term with the coefficient,, is the non-normalizable solution, the second term
with the coefficienty, gives the normalizable one. The two expansion coefficigntnd ¢,
are related by the AAS/CFT correspondence to the vacuuncetipn valug/O) of the dual
operator and the external source for the operator respedctiVhis means that only the non-
normalizable solution acts as a source in the way we disdusseve in the example of the
dilaton field

O(r) = Ppgy + (trF*)r—*, (2.68)

where we used that the dilaton field has conformal dimeng&ioa 0 and we note that the
non-normalizable part is related to the asymptotic strimgpting g, = e®va.

By virtue of the operator-field duality we can also identifyrielation functions in the two
theories but since this discussion is crucial for the presenk it will be presented in a sepa-
rate section in 3/1.

Symmetry matching Let us recall the symmetries of 1IB supergravity ddS; x S° (as
considered in 2.2.2) and those &f = 4 super-Yang-Mills (as studied in"2.2.1) in order to
check if the symmetries match on both sides and in order tthese matching symmetries as
hints which quantities are to be identified with each oth@hecorrespondence.

The N' = 4 Super-Yang-Mills theory on the gauge theory side of theexpondence has
the following symmetries: &U(2,2) conformal symmetry and th6U(4) R-symmetry as
discussed in sectidn 2.2.1. It contains theV) gauge vector!,, the fermionic fields\!*3*
and the six scalarg *>6789 Al these fields live in the adjoint representation of theiga
group.

On the other hand we have supergravity whichiiS; has thesometry(transformations
leaving the metric invariant) groufO(4, 2). The S° has isometrySO(6). We consider the
covering groups of0(4,2) and SO(6) which areSU(2,2) and SU(4), respectively. The
AdSs x S°-background preserves as much supersymmetries as flat Wskkspace does.
Under the spatial isometried/ (2, 2) x SU(4) the supercharges transform(ds4)+ (4, 4) and
so the spatial isommetries combine with the conserved sbpeges to give the full symmetry
group of V' = 4 Super-Yang-Mills: the superconformal groisU (2, 2|4) as written out in
sectior 2.2.1.

A direct comparison of these symmetries shows that the gRsymmetry groupsU(4)
of SYM can be identified with the isometries 8t. Finally the conformal symmetr§U (2, 2)
is identified with the isometry group ofd.Ss.
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Holography The AdS/CFT duality carries also the character of a holdgyaf his under-
standing arises from the observation that a four-dimemgigauge theory is related to an
effectively five-dimensional gravity theory. The gaugedhelives on the boundary of the
Anti de Sitter space. We already saw this in section 2.2.2paymg the conformal compact-
ifications of AdS on one hand and of four-dimensional Minkkvgpace on the other. There
we found that thep + 1)-dimensional boundary ofldsS, ., can be conformally mapped to
one half of the Einstein static universe. grdimensions this is a whole Einstein static uni-
verse. Minkowski space was mapped to exactly the sadliemensional whole Einstein static
universe. Since the first four coordinates in both theorresd@entified as the common The
p-dimensional Minkowski space, the extra coordinate in tfavity theory is the radial AdS
coordinate. On the gauge theory side this coordinate tgassinto an energy or renormaliza-
tion scale at which the gauge theory is defined. Excitatiattsenergies higher than this scale
are integrated out on the gauge theory side. So placing tgegaieory on the AdS boundary
corresponds to setting the renormalization scale to igfaitd therefore not integrating out
any fields. As we decrease the energy scale, we integrateayatand more fields moving the
gauge theory to finite values of the radial AdS coordinateteNiat this picture is an incom-
plete heuristic view on the topic which can for example nsveer why the correspondence
should still be valid at a finite radius which is not the bounydaf AdS.

Evidence Although still a conjecture the AAS/CFT correspondencepaased a convincing
number of tests of its validity. The first check of the conjeetis the matching of all global
symmetries. These are independent of the couplings an@ &yeactly as discussed in the
above paragraph.

Generic objects to compute both on the AdS side and then altloeoCFT side are corre-
lation functions. It was found in several cases thatthmint functions of operator® in the
gauge theory match exactly thepoint functions of the supergravity field [82] conjectuted
be dual taO.

Since the correspondence is a duality relating one theatyatg coupling to another one at
weak coupling, itis not in general possible to compute dati@n functions on both sides per-
turbatively. However, there are correlation functionsethilo not depend on the coupling
N = 4 SYM theory is superconformal and therefore scale-invaridrhe superconformal
group PSU(2,2|4) remains exact up to one-loop exact anomalies appearing gyamtiza-
tion. These one-loop diagrams appear when the theory idedtp gravitational or external
SU(4)r gauge fields. All higher order contributions vanish. The-twag contributions can
be calculated and so correlation functions of e.g. globalRents can be calculated even at
strong coupling. Thus it is possible to compare these arogl functions to those of the dual
fields in supergravity which are computed perturbativeigc& we do not know how a specific
normalization in the gauge theory translates into a nozatbn of the gravity theory, we use
the two-point functions in each theory to normalize the R-ent.J — .J such that

J(x) I (y)) = o 2.69

@I W) = e (2.69)
whereA is the conformal dimension of the operatbrThe three-point correlator of R-currents
normalized to the two-point correlator was computed in SYiM & was found to agree with
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the three-point correlation function computed from theldugergravity vector fieldd* nor-
malized to its two-point correlator

(i (@) ) () T5(2))sugra= (@) I, (y) T5(2)) e (2.70)

In [B2] all three-point functions of normalized chiral opésrs in four-dimensionaN' =

4 SYM computed perturbatively were shown to agree with theetators obtained from
AdS/CFT in the limit of large number of color§. Similar results were obtained for other
correlators and no counter example has been found yet.

Also the spectrum of chiral operators does not change wittcaopling and has for exam-
ple been compared in the review [24]. The moduli space oftireries and the behavior of
the theories under deformation by relevant or marginal ajpes was also reviewed in [24].
These examinations have not yielded any contradiction.

After having motivated the conjecture in its original foreaturing adjoint matter fields
only, we now expand the correspondence in order to includddmental matter.

2.3 Generalizations of AdS/CFT: Quarks and mesons

The original AdS/CFT conjecture does not include mattehifundamental representation
of the gauge group but only adjoint matter. In order to conosel to a QCD-like behavior
we therefore investigate how to incorporate quarks and bmind states in this section. We
focus on the main results of |36] arid [38], however for a ceaceview the reader is referred
to [25].

Since ADS/CFT has been discovered a lot of modificationsebtiginal conjecture have
been proposed and analyzed. This is always achieved by ynaglithe gravity theory in
an appropriate way. For example the metric on which the tyrakieory is defined may be
changed to produce chiral symmetry breaking in the dual gdugory 183, 37]. Other mod-
ifications put the gauge theory at finite temperature andymeaonfinement_[84]. Besides
the introduction of finite temperature the inclusion of fantental matter, i.e. quarks, is the
most relevant extension for us since we are aiming at a qtigBt description of strongly
coupled QCD effects at finite temperature. This kind of éffexre the ones observed at the
RHIC heavy ion collider.

Adding flavor to AdS/CFT The change we have to make on the gravity side in order
to produce fundamental matter on the gauge theory side imtitegluction of a small num-
ber Ny of D7-branes. These are also callewbe branessince their backreaction on the
geometry originally produced by the stack §fD3-branes is neglected. Strings within this
D3/D7-setup now have the choice of starting (ending) on tBed alternatively on the D7-
brane as visualized by figure 2.1. Note that the two typesarids share the four Minkowski
directions0, 1, 2, 3 in which also the dual gauge theory will extend on the bound&dAdS as
visualized in figure 212.

The configuration of one string ending éhcoincident D3-branes produces&ti (N) gauge
symmetry of rotations in color space. Similarly the D7-branes generatel@(Ny) flavor
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Figure 2.1: The figure sketches the original ADS/CFT cowadpnce between open and
closed strings and its extension to fundamental mattetimglapen strings to each
other. On the left side the geometry of a stack of coincidérm3-branes (repre-
sented by the thick vertical line) and a small number of ddieict NV, D7-branes
is shown. This is the setup within which the full string thedkescription is re-
duced to the effective Dirac-Born-Infeld description oe thorld volume of the
D7-branes. On the left side of the figure the geometrt@$s x S° is outlined on
which the classical supergravity description is definede&th point on the disc
representingddSs an S® exists but is not drawn for simplicity. The curved lines
with labelsp — ¢ represent strings starting at the stack pftibanes and ending on
the stack of [@-branes. This figure is taken from 125].

D3
D7 [ X | X | X|X|X]|X|X|X

X
X
x
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Figure 2.2: Coordinate directions in which the-Dranes extend are marked by 'x’. D3- and
D7-branes always share the four Minkowski directions ang b separated in
the8, 9-directions which are orthogonal to both brane types.
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gauge symmetry. We will call the strings starting on the lsaitDp-branes and ending on
the stack of [@-branesp — ¢ strings. The originaB — 3 strings are unchanged while the
3 — 7- or equivalently7 — 3 strings are interpreted as quarks on the gauge theory sitie of
correspondence. This can be understood by looking & thé strings again. They come in
the adjoint representation of the gauge group which can teepreted as the decomposition
of a bifundamental representationy? — 1) @1 = N @ N. So the two string ends on the
D3-brane are interpreted as one giving the fundamentagttier giving the anti-fundamental
representation in the gauge theory. In contrast to thig the string has only one end on the
D3-brane stack corresponding to a single fundamental septation which we interpret as a
single quark in the gauge theory.

We can also give mass to these quarks by seperating the stB&«lmranes from the D7-
branes in a direction orthogonal to both branes. Now7 strings are forced to have a finite
length L which is the minimum distance between the two brane stacksth® other hand a
string is an object with tension and if it assumes a minimumgtk, it needs to have a minimum
energy being the product of its length and tension. The daiadjg theory object is the quark
and it now also has a minimum energy which we interpret asaéssiv, = L/(2ra/).

The 7 — 7 strings decouple from the rest of the theory since theircéffe coupling is
suppressed by,/N. In the dual gauge theory this limit corresponds to neghectjuark
loops which is often callethe quenched approximatiohlevertheless, they are important for
the description of mesons as we will see below.

Let us be a bit more precise about the fundamental mattedated by3 — 7 strings. The
gauge theory introduced by these strings (in addition tootthginal setup) gives & = 2
supersymmetrié¢/ (V') gauge theory containindy; fundamental hypermultiplets.

D7 embeddings & meson excitations Mesons correspond to fluctuations of the D7-
branes® embedded in theldS; x S°-background generated by the D3-branes. From the
string-point of view these fluctuations are fluctuationshef hypersurface on which tive— 7
strings can end, hence these are small oscillations df th& string ends. Th& — 7 strings
again lie in the adjoint representation of the flavor gaugrigrfor the same reason which
we employed above to argue tfsat- 3 strings are in the adjoint of the (color) gauge group.
Mesons are the natural objects in the adjoint flavor reptasen. Vector mesons correspond
to fluctuations of the gauge field on the D7-branes.

Before we can examine mesons as D7-fluctuations we need todintadbw the D7-branes
are embedded into the 10-dimensional geometry without aicyuihtions. Such a stable con-
figuration needs to minimize the effective action. The afecaction to consider is the world
volume action of the D7-branes which is composed of a DiramBnfeld as given in(2.21)
and a topological Chern-Simons part

(2ma’)?

Spr = —Tm/d%e—q’\/— det {P[g + Blag + (2ma/)Fop} + TD7/P[C4] ANFAF.
(2.71)
The preferred coordinates to examine the fluctuations obthare obtained from the coordi-

nates given in(2.50) by the transformation= w2 + - - - + w42, r* = 0* + w52 +ws?. Then

5To be precise the fluctuations correspond to the mesons piits 8, 1/2 and 1128, 69].
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the metric reads
2 2
s T 5 R
wherez is a four vector in Minkowski direction$, 1,2, 3 and R is the AdS radius. The
coordinater is the radial AdS coordinate whileis the radial coordinate on the coincident
D7-branes. For a static D7 embedding with vanishing fiekhgjth7 on the D7 world volume
the equations of motion are

(do* + 0*dQ23° + dws® + dwg?), (2.72)

d Q3 dU)576

Ao\ 1 wg? 4wy 40

wherews; ¢ denotes that these are two equations for the two possilgettins of fluctuation.

Since (2.73) is the same type of equation as for the motionsofp&rgravity field in the bulk

which was considered in (2.66), also the solution takes @ faasembling/(2.€7) near the
boundary

0

(2.73)

w576:L+§+..., (2.74)

with L being the quark mass acting as a source ameing the expectation value of the
operator which is dual to the field; s. While c can be related to the scaled quark conden-
satec  {qq)(2ma’)3.

If we now separate the D7-branes from the stack of D3-bradmeguarks become massive
and the radius of th€? on which the D7 is wrapped becomes a function of the radial AdS
coordinater. The separation of stacks by a distaricenodifies the metric induced on the
D7 P[g] such that it contains the terf?o? /(o + L?)d2;*. This expression vanishes at a
radiuse® = r? — L? = 0 such that the® shrinks to zero size at a finite AdS radius.

Fluctuations about these; andwgs embeddings give scalar and pseudoscalar mesons. We
take

ws =0+ 2wa’y, we= L+ 2mdp (2.75)
After plugging these into the effective action (2.71) anganxding to quadratic order in fluc-

tuations we can derive the equations of motionf@ndy. As an example we consider scalar
fluctuations using an Ansatz

o = $(0)e™ NS, (2.76)
where);(S?) are the scalar spherical harmonics on$figg solves the radial part of the equa-

tion and the exponential represents propagating waveseattmomentunt. We additionally
have to assume that the mass-shell condition

M? = —k? (2.77)
is valid. Solving the radial part of the equation we get th@drgeometric functionp

F(—a, —a+1+1; (1+2); ‘L—%Q) and the parameter

1—4/1—k2RY/L>
a=— (2.78)

2
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summarizes a factor appearing in the equation of motion. eimegal this hypergeometric
function may diverge if we take — oc. But since this is not compatible with our linearization
of the equation of motion in small fluctuations, we furthem@md normalizability of the
solution. This restricts the sum of parameters appearirtganhypergeometric function to
take the integer values

n=a—1-—1, n=0,1,2,.... (2.79)

With this quantization condition we determine the scalasomemass spectrum to be

2L
Ms:ﬁ

wheren is the radial excitation number found for the hypergeomdtmction. Similarly we
can determine pseudoscalar masses

Vin+l+1D(n+1+2), (2.80)

2L
TR
For vector meson masses we need to consider fluctuationg gfatinge field4d appearing in

the field strengthf’ in equationi(2.71). The formula for vector mesons (correspw to e.g.
the p-meson of QCD) is

M, Vin+l+1)(n+1+2). (2.81)

MV:%Lz\/(n+l+1)(n+l+2). (2.82)

Note that the scalar, pseudoscalar and vector mesons cedwithin this framework show
identical mass spectra. Further fluctuations correspgridinther mesonic excitations can be
found in |38, 69].

2.4 AdS/CFT at finite temperature

This present work aims at a qualitative understanding ofithie temperature effects inside
a plasma governed by QCD at strong coupling. Our focus wilhigide on the fundamental
matter, the quarks and their bound states, the mesons. drséstion we describe how to
construct a gravity dual to a finite temperature gauge theatty flavor degrees of freedom,
I.e. fundamental matter.

A thermodynamics reminder Within this paragraph we remind ourselves of some ba-
sic concepts of thermodynamics which will be important far desired study of a thermal
quantum field theory at strong coupling.

The first thing to note is that quantum field theory in its apgtion to collider physics is
a theory at zero temperature. However, in order to studyyieav collision experiments,
neutron stars and cosmological setups in which there aite dngugh particle number and
energy densities in order to justify the thermodynamictijrtiermal quantum field theories
have been developed in great detail [85, as an example]e&rertwo formalisms which can
be used to introduce a notion of temperature into quantumh firedory. The simpler method
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is theimaginary-time formalismvhich basically Euclideanizes the time-coordinaby Wick
rotatationt — —iTg,cig @nd afterwards compactifies it on a circle with peripe- 1/7" such
thatr + 3 ~ 7. Any correlation function defined on this periodic Euclidespace-time can
be Fourier-transformed to the four momentum coordinateBecause of the periodicity and
limited range in the time-coordinate < 7 < 3 the Fourier frequency, is discretek, =
2rTn,n = 0, 1,.... These are the real-valuddatsubara frequenciesThe disadvantage
here is that we basically trade the time coordinate for teatpee and therefore loose any
notion of temporal evolution of our system. Therefore we @ally describe equilibrium states
with this formalism. In order to incorporate time and tengtere at equal footing we need
to employ the more complicatedal-time formalism We will come back to this issue when
discussing correlation functions in sect/on! 3.1.

If we have the notion of a temperature in our quantum field the@e can also define a
chemical potentiaj: for a conserved total charge = [ ,...J/° with a charge density®.
Here we assume that the chemical potentigd constant with respect to the four Minkowski
directionsz. The chemical potential is a measure for the energy needaddmne unit of
charge() to the thermal system and it is given in terms of the grandc@abpotential in the
grandcanonical ensemble as

= —058. (2.83)

In order to prove this recall also that a system in contacgt with a heat bath is described by
the canonical ensemble with the partition function

Zcanonical = e? g ) (2-84)

with the Hamiltonian density{ giving the energy of the system after integrating over the
volume. If we would like to work at a finite chemical potential addition we need to put our
system into contact with a particle bath. Then the relevasémble is the grandcanonical one
with the partition function

Zgrana= € 2 O=1T%) (2.85)
The finite charge density® is the thermodynamically conjugate variable to the chemica
potential. Introducing a finite charge density will also eba the chemical potential while
changing the chemical potential will in general also chatingecharge density. In the grand
canonical ensemble the grandcanonical potential is defiged

1
Q= 3 In Zgrand = /(H —nJ?%, (2.86)

which immediately confirms the chemical potential formidaE).

Now a chemical potential in a thermal QFT is given by the timenponent of a gauge
field A;. This may be seen heuristically by comparing the partitiomction in the grand
canonical ensemble (including the charge densijyon one hand

Z = e PI0H=nI%) (2.87)

with the partition function at zero charge density but foraauge theory including a gauge
field A, coupling to the conserved curreit on the other hand

Z[A,] = e P T4 (2.88)
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Choosing only the time component of the gauge fidid non-zero and having called the
thermodynamical charge density suggestivElywe can now identify

Ao = 1. (2.89)

Thus we have seen that introducing a finite gauge field timepom@nt in a thermal QFT is
equivalent to (and therefore may be interpreted as) thednttion of a finite chemical poten-
tial .« for the charge density’. A more formal treatment of this may be found in secfion 3.2.2

Introducing temperature In order to study thermal gauge theories through AdS/CFT we
need a notion of temperature on the gravity side. This mdaatswe need to modify the
background and in particular the background metric in otdancorporate temperature in
the dual gauge theory. The idea of using a metric descrillieggeometry of a black hole
comes about quite naturally since black holes are hologragpermal objects themselves
whosed-dimensional exterior physics is completely captured tsirtfd — 1)-dimensional
horizon surface. This phenomenon is studied in the fieleed&llack hole thermodynamics
The Bekenstein-Hawking formula relates the area of thekithate horizon to the entropy of
the complete black hole (bulk) which has a distinct Hawkiegnperature depending on its
mass.

It was first proposed in_[84] that black hole backgrounds acklbranes as described in
sectiori 2.1.2 are holographically dual to a gauge theoryi fiemperature. The metric for a
stack of black D3-branes can be conveniently written in trenf

2 1 2 2 2 r 12 L ? 2 2 2
ds” = 3 (%) (—f?dt + fdi ) n <E> (d? + 02d0s?) (2.90)
with . .
f(0) =1—§, flo) = 1+%. (2.92)

We obtain this form of the metric from (2.18) by the transfation o> = r? + /% — ¢t
wherer, is the location of the horizon. The Hawking temperatiifeof the black hole hori-
zon is equivalent to the temperatufein the thermal gauge theory on the other side of the
correspondence. In order to relate the temperdtute the factors appearing in metric com-
ponents, we make the metric Euclidean by Wick rotation. Dedivag regularity at the horizon
renders the Euclidean time coordinate to be periodic withode3 = 1/T = rq /(7 L?). Note,
that this background is confining [84] and preserves all tipessymmetry, i.e. the dual field
theory isN' = 4 SYM at finite temperature. Further there exist crucial défeces between
the Euclideanized background and its Minkowski version. Wilediscuss this issue in sec-
tion!3.1.1..

Quarks & chemical potential In order to include fundamental matter in this finite tem-
perature setup we introduce D7-probe branes as descrilsedtior 2.3. At vanishing baryon
density it was observed in [37] that these thermal D7-emipgddare special because in the
gauge theory a phase transition appears which is dual toragjeo transition on the gravity
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Minkowski embedding Critical embedding Black hole embedding

Figure 2.3: Increasing the temperature from the left to itpetpicture we see that the black
hole becomes larger. The embedded brane is pulled towagdsotizon stronger
and stronger until the probe brane just touches the black hotizon (middle
picture). Increasing the temperature further the branellsgthrough the horizon.
This picture is taken from 156].

side (see figure 2.3). The setup is governed by a parametsr A, /T which is propor-
tional to the quotient of quark masd, and temperaturé&'. At large values ofn we have
Minkowski embeddingshich end outside the horizon. We write down the black holérime
in the coordinates introduced in (2.72)

ds? = (aﬁ + w—f) ax? ¢ (T g IO g0 €00 (2.02)
w w(w* — wy?) w2 w2

where we define? = o> + wg(p)” andwy; is the location of the horizon. In thédS; x S°-

background the D7-brane fills the AdS wrapping®rinside theS®. Looking at theS3-part of

the metricl(2.92), fop = 0, , wg > wy we find that theS® shrinks to zero size before reaching

the horizon. These Minkowski embeddings resemble thosseptet vanishing temperature

at large values ofn.

Decreasing the parameter we reach a critical value below which the D7-brane always
reaches to the horizon. The geometrical difference is tirdheseblack hole embeddingsow
the S* in time direction collapses as can be seen from the time camtof the metric (2.92).

This means that the D3/D7-system in presence of a black halergoes a geometrical
transition. That transition is dual to a first order phaseditzon in the thermal field theory
dual. The physics of this transition is discussed in grede¢ail in section 4.3.

However, the central achievement of this present work isitmduce a finite baryon and
isospin density in the setup we have just described. We @l that this changes the em-
beddings and also the phase structure of the theory. We wriliér observe that the phase
transition is softened. This statement will be explainedh@ discussion of this system’s
hydrodynamics in chapter 6. We discover a further transiab equal baryon and isospin
densities discussed in the thermodynamics seCtion 4.4.

Brane thermodynamics and holographic renormalization At finite temperature an ex-
tension of the standard AdS/CFT claim is the conjecturettit@thermodynamics of the ther-
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mal field theory is described by the gravity theory. In paiae, on the thermal field theory
side one has to Euclideanize by a Wick rotatign— i7x in order to identify the Euclidean
path integral with a thermal partition function. On the ghadual side one equivalently has to
Euclideanize the AdS-black hole background (3.12). Thdiean black hole is interpreted
as a saddle-point of the Euclidean path integral such tleatlssical supergravity action is
conjectured to give the leading contribution to the freergye

Se = BF . (2.93)

Note the typographical difference between the actioand the entropys. Recall thatF' =
—1In Z. In what follows we will find these thermodynamic definitioofsentropysS, internal
energyl’ and the speed of sound useful

OF , OP 0P (OE\ ' S
8_—6—T, E=F+TS, US_(?—E_(?—T<(?—T) ——v- (2.94)
For a stack ofV, black D3-branes such as those described by (2.15) the fexgyeturns out
to be

F = TN£T4. (2.95)
From this the energy and entropy are easily computed ang#erf sound is given by
1
2= 2.96
v’ =3 (2.96)

In order to obtain these finite results we hadhtdographically renormalizéhe gravity ac-
tion by adding boundary terms. Let us review the procedsotigraphic renormalizatiom
order to apply it to our setups later on. In general the Eedized AdS-bulk actioﬁg“gp
contains ultra-violet (UV) divergences. The first step isdentify the divergent terms by
introducing a UV-cutoffrnay. Integrating the bulk Dp-action over ttig — 5)-remaining di-
rections and evaluating the result at the cutoff r,x we obtain the boundary acti(ﬁ‘gdgp.
This action contains the UV-divergent terms and in orderetwormalize the bulk action we
simply subtract this boundary action

SEBT= lim (SH, - 52, (2.97)
This Euclideanized and renormalized bulk action is the oaewll derive all thermodynamic
quantities from. We stop at this point since we will not shdwe explicit applications of
this method in this thesis. The interested reader is refetwethe review on holographic
renormalization|86].

2.5 More Phenomenology from AdS/CFT

In this section we give a sketchy overview of the phenomegiosdly relevant outcomes of
AdS/CFT-applications. Only the paragraph discussing gi@BSugimoto model is a bit more
detailed because that model is in many respects a valuabtyy pomplementary competitor
to the D3/D7-setup which we study in this thesis. We alsoflyridiscuss both the model
building aspect and the fundamental value of AdS/CFT.
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Low viscosity bound The phenomenologically most striking prediction of AdSIG& that
the viscosityn to entropy density ratio is incredibly small

n_ (2.98)

This bound is satisfied to leading orderlifV, in all theories with gravity duals computed up
to nowS. It was observed at the RHIC heavy-ion collider that the Kugnon plasma sup-
posedly formed in this experiment has an extremely low \@ggdwell below any viscosity
measured before) numerically comparable with the AdS/Ciltier Most of the models used
to analyze the RHIC data are consistent with ratios in a rahges ~ % o % [89,90, e.g.].
This discovery was even celebrated as an experimentalplityf testing the AAS/CFT cor-
respondence. One has to be careful though since no QCD-thatygtheory has been dis-
covered yet and thus one has to rely onuheversalityof the observables to be measured. In
the context of these viscosity investigations many difiétgckgrounds have been employed
in order to find out what makes this bound so universal. Alestigated gauge theories with
gravity duals show this universal behavior no matter if oreaks conformal symmetry, su-
persymmetry or if one introduces flavor or a finite chemicakpatal. It is still under lively
investigation which principle is the origin of the viscgsitniversality.

In a series of papers [26,128, 29, 31} 32,134, 35, 9] an ideatifin of hydrodynamic modes
with gravity objects was achieved leading to a detailed igyalescription of the hydrody-
namics in a strongly coupled fluid. Recently this framewods lbeen extended to second
order hydrodynamics 192, 92, 93,194]. Here also a correabibthe widely usedMueller-
Israel-Stewart theorys proposed based on gravity consistency arguments. Itliskwawn
that hydrodynamics violates causality. Mueller-Isratdvigart theory is a relativistic gener-
alization of second order hydrodynamics which the authd{®%, 92,193, 94] claim to be
incomplete.

D3/D7-setup A particularly promising setup is the D3/D7-brane configiara described
in 2.3. Its gauge dual contains massive quarks and a chepotahtial can be consistently
introduced. Further it exhibits confinement and thus a firdeophase transition of the fun-
damental matter in the spectrum. We will study this particslystem in most of this thesis.

The calculation of meson spectra[38] in this system was dtigedirst phenomenological
applications of AAS/CFT. Also ratios of B-meson masses werently given([95].

A topic under ongoing investigation is that of heavy-lighesons/195. 26, 97] modeled by
strings spanning from one D7-brane to another after hawepgrated the D7-branes from each
other.

Recently the hadron multiplicities after hadronizatiomief final state in a particle-antiparticle
annihilation [98] have been modelled to surprising accyfaee also 199]).

Interesting effects such as mass shift analogous to thé& 8fact and chiral symmetry
breaking are also observed in gauge/gravity duals with flamowhich pure-gauge Kalb-

6 Note, that a recent investigatidn [87] had claimed that &iglerivative corrections violate the viscosity bound
for a certain family of models. But the same authors alsodidhese very theories to be inconsistent violating
microcausality!188] supporting again the idea of the ursadty of this bound.
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Ramond B fields are turned on in the background, into which afane probe is embed-
ded [55/100, 101].

QCD duals Although some aspects of the D3/D7-brane configurationani@CD quite
well one main point of criticism is that the dual gauge thebag too much symmetry. Re-
member that on the gauge theory side we h&te= 2 supersymmetric Yang-Mills theory
coupled taV = 4 SYM and the conformal symmetry is broken if the quarks becomassive
by seperating the D3 from the D7-branes. Also a finite tempegai.e. a black hole back-
ground metric breaks conformal symmetry. In a differentkdgacund, the Constable-Myers
background all of the supersymmetry is broken and the thewng out to be confining [83].
Also chiral symmetry can be broken separately by choosiegotickground given ir_[37].
Nevertheless, all these approaches only manage to brebkfghe symmetry. An explicit
QCD-dual has not been found, yet.

A special QCD dual: Sakai-Sugimoto model The Sakai-Sugimoto modes an alter-
native D4/D8 anti-D8 brane system witWi. D4-branes andV; pairs of D8/anti-D8-branes.
Here the D4-branes generate the geometry very much like 3her&@nes do in D3/D7 setups
and the D8 and anti-D8 branes are the flavor branes corresgptodhe D7. Since this model
is the second most studied model (after the D3/D7-setumg)dnting fundamental matter, we
discuss also a few technical points here. This setup featoeuark masses but two distinct
phase transitions corresponding to ttteral symmetry breaking and deconfinement transi-
tion, respectively. Supersymmetry is explicitly broken. In tast to the D3-setup, there is
one extra-dimensiom, in the worldvolume of the gauge theory. In order to come doavn t
four space-time dimensions this extra coordinate needg tcompactified. There is also a
geometrical argument for this coordinate to be periodigetber with the "radial” coordinate
u it forms a cigar-shaped submanifold, which has a tip at u. To avoid a singularity at this
tip, x4 needs to be periodic with periad R. The metric of the background at low temperature
is
dz_Ls/z 2 1070 2 @3/2‘1_U2 2 102
s? = (=—)"(dt* + 0;;da'da’ + f(u)dxy) + (—=)>"%( + u?dQ2y) (2.99)
Rpa u fw)

The z4-circle shrinks to zero at = u, and theD8 and their antibranes have nowhere to end
thus staying connected. So the chitgINy); x U(Ny)g is broken to a diagondl (Ny)y in
the low temperature phase.

At finite temperature there always exist two solutions of ahhone is preferred at low
temperature and the other at high temperature. Connectiilstan asymptotic symmetry
among the two circles (time-direction ang) exists. In the high temperature phasandz,
interchange roles (thé(«) in the metric is shifted from one to the other), so thatitheircle
now does not shrink to zero, but theeircle does. Chiral symmetry is restored as the flavor
branes may be parallel now.

The biggest advantage of this model over the D3/D7-setumatschiral symmetry breaking
can be achieved quite naturally. On the contrary, the quasses are not incorporated from
the start but also arise dynamically. Mesons have also bieeited in the Sakai-Sugimoto
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model. For example quark bound states which play the roleGD Qions arise as Goldstone
bosons from the spontaneous symmetry breaking generatednipoducing the probe branes
giving fundamental degrees of freedom. Recent develomémhesons at finite temperature
may be found in{[102]. One recent approach generating quadses dynamically can be
found in [103].

Fundamentalism & phenomenology Let us briefly discuss the phenomenological versus
fundamental value of AAS/CFT. Although still only a conjgret AdS/CFT has failed no com-
parative test so far and it succeeds in describing stronglicmuphenomena. The perturbative
or geometric understanding on the gravity side can be ttatsito an understanding of the
strongly coupled gauge theory on the other side of the gooregence. In this way AdS/CFT
makes it possible to get a qualitative understanding ohgtrmoupling phenomena. At the
present level where we do not have an explicit QCD-gravitgl dine qualitative understand-
ing AdS/CFT supplies us with should be seen as being compimeto for example lattice
data providing exact QCD data but also hiding the inner wagkiof the strongly coupled
theory. In some cases such as for the viscosity bound thetifeannvolved may even be
protected by universality and thus solely depend on thetfettthe gauge theory is strongly
coupled. If this is the case then AdS/CFT results may evetiraoato be valid for QCD or
the real world. All these results justify the duality at leas a valid phenomenological tool.

Turning around the argument, the phenomenological suafesdS/CFT may be seen as
a hint that the gauge gravity correspondence and the phascipom which it was derived
come indeed close to the principles governing nature. Stgdsxplicit instances of the cor-
respondence, for example studying correlators in the D3&up, could also provide us with
a detailed understanding of how the duality works in genenalit might even suggest a way
to prove AdS/CFT.

2.6 Summary

In this technical introduction chapter we have developeddbncepts of the AAS/CFT cor-
respondence and we investigated how these ideas emergedHheocareful study in rather
formal areas of string theory (see2.1). We have shown howififoations of the original cor-
respondence give rise to temperature and fundamentalmretite gauge theory. Temperature
in the gauge theory is generated by a black hole backgrowidas/(2.90) on the gravity side.
Fundamental matter alias quarks is introduced by embedudstgck of N, probe D7-branes
into the ten-dimensional setup in addition to tid>3 branes, which determine the gravity ge-
ometry (as explained [n 2.3). Finally, we discussed the piremological picture which can be
drawn by putting the results in different gravity duals tthgee and extrapolating from it what
the phenomenology of a QCD-dual at strong coupling mighk lde. We are now ready to
develop the methods which we will apply to investigate thenpising D3/D7-configuration.



Holographic methods at finite
temperature

The goal of this work is to develop a qualitative descriptdthermal QCD-plasma at strong
coupling as it is claimed to be seen at the RHIC heavy ionamili In order to compute
observables and study qualitative features of this classystems we utilize the AAS/CFT
duality in order to overcome the difficulty that the systergaserned by QCD at strong cou-
pling. In this present chapter we develop the methods whiemeeded to derive correlation
functions (section 3.1) in the strongly coupled field thebyycomputations on the weakly
coupled gravity side. Furthermore we review how to obtain-equilibrium observables such
as diffusion coefficients and shear viscosity by the formoitaof a gravity dual to relativis-
tic hydrodynamics (sectian 3.2). Finally in section! 3.3 vigcelate the connection between
quasinormal modes known from general relativity in presemica black hole on the gravity
side and distinct hydrodynamic modes. Note that as statdteiprevious chapter no gravity
dual for QCD has been found, yet. Thus we will apply our hadgdric methods to quantum
field theories which are similar to QCD in the properties ¢érast.

3.1 Holographic correlation functions

Since we are interested in the spectral functi®inand in particular in the resonances appeatr-
ing therein which correspond to mesons due to AdS/CFT (asheilargued in section 5),
our motivation to compute retarded correlat6rs is sourced by the formul® = —2 ImG*.
Correlation functions in AdS/CFT have been under intenskamination during the past ten
years. They are useful quantities to compare the conjetgaege/gravity results to results di-
rectly obtained in the quantum field theory as outlined inise@.2.3 (paragraph 'Evidence’).
Moreover retarded two point correlators in Minkowski spate needed to compute non-

45
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equilibrium observables such as transport coefficientsaskiscosity, diffusion coefficient,
heat conductivity,. ..). We briefly distinguish Euclideanrhiulation from the Minkowski for-
mulation of correlation functions in AAS/CFT in sectlon 3.1Afterwards we develop analyt-
ical (3.1.2) and numerical (3.1..3) recipes by which cotrefafunctions may be obtained.

3.1.1 Correlation functions in AdS/CFT

In the beginning of AdS/CFT the correspondence for corieatunctions was formulated
in Euclidean space-time for simplicity. The idea was to obtuclidean correlators from a
conjectured generating functional identity

<ef8M ¢bdy@> — e_ScIassica[(ﬂ , (3 1)

and to analytically continue them afterwards. In this sattive review this Euclidean pro-
cedure and the subtleties which make it fail in general iVelgi extended to the gravity dual
of finite temperature field theories on Minkowski space-tirk@nally we justify the correct
prescription to get thermal Minkowski space correlatoosfra conjectured AAS/CFT identity
similar to (3.1).

The left hand side of (3.1) is the Euclidean space-time geimgr functional for corre-
lators of operator®) in the boundary field theory. In order to Euclideanize thejioally
Minkowskian space-time we had to perform a Wick rotatior 7z = ¢t. On the right hand
side we find the action for the classical solution to the aquaif motion for the bulk fields
in the bulk metric obeying a boundary condition of the forlim ¢ = ¢°¥. Either side

r—srbdy

may be functionally derived with respect to the boundargfig in order to get Euclidean
correlators of the dual operat6t, such that for the two-point function we have

52 e_ScIassica[¢]
0PN () pPN(y)

Note that this implies that on the right hand side we know t@ieit form of the field¢ in
terms of its boundary valug®, i.e. we need to solve the equations of motion for the field
first. The use of the identity (3.1) has proven very usefulaad confirmed by the results for
correlators at zero temperature and for extremal metridk@gravity side, respectively.

At finite temperature however this prescription fails. lbald be clear that the Euclideaniza-
tion is only a tool for simplification and in principle the eelators should be obtainable
from the full Minkowskian description in AAS/CFT. In prao#i it will be necessary to derive
Minkowski correlators directly since in order to get therarfr their Euclidean versions, one
would need to know all th®latsubara frequencies,,. Matsubara frequencies are the discrete
values which arise in finite temperature field theory fromabmpactificationry, ~ 7 + 71
of the Euclidean time coordinate on a circle with the period’ being identified as the tem-
perature in the field theory. Only at these particular fregigs the Euclidean correlators are
defined. The compactification of the Euclidean time appegarirthe black hole background
on the gravity side is dual to thmaginary time formalisnn the dual thermal field theory. In
many applications for correlation functions such as thévdgon of hydrodynamic transport

(O(=)O(y)) (3.2)
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coefficients an approximation of some sort is needed duhiagélculation. For example in
hydrodynamics the frequencies have to be small such thabweat work with all Matsubara
frequencies as would be required to analytically continuelilean correlators to Minkowski
correlators. Due to this fact we need the full Minkowski rgstion.

As shown in [27] also a naive formulation ot (3.1) in Minkowskace-time given by

< i Jonr ¢bdvé> — ¢iSaassald] (3.3)

fails since it produces only real valued correlators. Ingheme work the authors propose a
working recipe to obtain two-point Minkowski correlatorshis is the recipe which we will
make heavy use of and we explain it in the next section 3.1rllly [30] developed a general
prescription involving an analog df (3.1) which can be usedttainn-point correlators and
which we briefly review here in order to clarify the limits dfe two-point correlator recipe
we will use here.

Schwinger-Keldysh formalism for thermal QFT In general the authors of [30] de-
veloped a detailed gravity dual to the real-time formalishth@rmal quantum field theory.
For a detailed review of the real-time or Schwinger-Keldf@tmalism the reader is referred
to [85,130] but let us work out the rough ideas here in orderndenstand the equivalent
features on the gravity side. In this formalism the opesator fields)O live on the time
contourC shown in figure 3.1.

A t
A'tz 1 f

J 9 tf — 10
B tl—’lﬁ

Figure 3.1: The Schwinger-Keldysh contour is a time contowrhere points A and B are
identified (this figure is a slightly modified version of thabsvn in [30]).

The starting pointd and the endB are identified with the conditio®|, = —O|p for
fermionic O andO|, = O| for bosonicO. Now one introduces sources » for the oper-
ator O, » on the upperX), respectively lower) part of the contour along the original real
Minkowski time direction. Defining an appropriate genargtfunctionalZ one can then de-
fine the matrix valued Schwinger-Keldysh propagator whimhielates operators on the upper
and lower parts of the time contour in figure!3.1

iGap(z —y) = 1 0°In Z[¢n, ¢ — G —Gr
o V= §¢q(x) S0m(y) —Go1 G '

Transforming to momentum space 6Yk) = [dz e~***G(x) we can write down the rela-
tions between the components of the Schwinger-Keldyshggator and the ordinary retarded

(3.4)
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two-point functionG*

Gu(k) = ReGR(k)Jrz’coth%ImGR(k), W=k,

2ie~ (B—o)w
Gia(k) = WImGR(k%
2ie” Y
Gn(k) = mImGR(k%
Gos(k) = —ReGR(k)+icoth%ImGR(k). (3.5)

For the choice of the arbitrary length parameter (/2 we see that the Schwinger-Keldysh
correlator is symmetri€;5 = Go;.

Holographic Schwinger-Keldysh formulation Let us now turn to the gravity dual de-
scription of the Schwinger-Keldysh formalism reviewed le {previous paragraph. For the
asymptotically AdS spaces containing a black hole which wmsiler here, there exists an
analog oKruskal coordinatesKruskal coordinates in general relativity cover the engipace-
time manifold of the maximally extended Schwarzschild soluand they are well-behaved
everywhere outside the physical singularity, i.e. thewsho coordinate singularities as other
coordinates do, e.g. at the horizon. The identity/(3.1) estg that one has to know the
explicit form of the classical action including the solutiof the equation of motion for the
field ¢ in terms of boundary values for the field in order to take diwes of the expression
on the left hand side as shown In (3.2) and get an explicitesgion for the correlation func-
tion. Now the main idea is to use this standard AdS/CFT pietscn to get the correlation
functions but to carefully impose boundary conditions oa ginavity fields in the analog of
the Kruskal time coordinate and not in the ordinary Minkoingke. These boundary con-
ditions on the gravity fields will be subject of a detailedatission on the level of two point
correlators in the next section 3.1.2. Let us note here dmy these boundary conditions
are the point where the naive Minkowski formulation of theSA@FT correlator prescription
fails. The reason for this is the fact that in ordinary cooadées the boundary conditions in
Euclidean space-time are completely fixed by the requir¢mieregularity but this is not the
case in the Minkowski version. For example a scalar grawtyl finas to fulfill a second order
equation of motion and therefore one needs to fix two boundanglitions. One of these is
fixed by the boundary datgl,g, = ¢°¥. The other condition is imposed at the horizon where
the scalar locally behaves likeé — u)? with the radial AdS-coordinate < [0, 1] which is
defined in the context of the black hole metric
(rTR)* R?

[—f(w)dt? + dx®] +

ds” = u 4u? f(u)

du® + R2dQ52. (3.6)

Here the horizon is located at= 1, spatial infinity atu = 0 and the functionf is defined
by f(u) = 1 — w?. This metric is obtained from the standard AdS black holerimetith
radial coordinate- by the transformation: = (ro/r)2. The temperaturd = rq/(7R?)
is a function of the AdS-radiu& and the black hole horizon,. In Euclidean space-time
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we haves = +w/(47T) and only one of the two signs produces a regular solution. In
Minkowski signature this is completely different sincereve computed = +iw/(47T") and
both signs can produce regular solutions, thus leaving dnganty which needs to be fixed by
another requirement. Now the main achievement in [30] wasnigle out such a requirement

Figure 3.2: The Penrose diagram for AdS containing a blatk &® shown in’[30].

which is in general applicable to amypoint correlator. This requirement involves applying
boundary conditions at the boundaries of different quadraithe Penrose diagram shown in
figure!3.2 and forming a superposition of those. The diagfaows the causal structure of our
asymptotically AdS space (which contains a black hole) indkal coordinates. In our earlier
attempt to fix boundary conditions we only considered theuBeljant and its boundaries. The
prescription of([30] takes into account that the full spéoge contains four quadrants.

Nevertheless, in what follows it will be sufficient to use eplified boundary condition,
theincoming wave boundary conditievhich allows us to restrict ourselves to the R-quadrant,
to use the original Minkowski coordinates and it finally elegbus to calculate two-point
functions as discussed in the following section 3.1.2. #rigued in(|30] that the general but
also more complicated prescription involving Kruskal ainates in the case of two-point
correlators reduces to the (simple) prescription that veea@out to use.

3.1.2 Analytical methods: correlators and dispersion relations

In order to obtain correlation functions for an operatbin AdS/CFT one usually has to solve
a second order differential equation (as we have alreadyiomsd in the previous section),
the equation of motion for the particular fieddwhich is dual to the operat@®. Often that

equation of motion can only be solved numericZllffhus it is remarkable that in 28, 29]

! Especially if we consider massive quarks, which implies tre@embed a@7-brane. The embedding functions
can in general only be obtained numerically. In this caseaaly the metric component8” appearing in the
equation of motion for our fielg are only given numerically since they contain the embedtlingtions.
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a method has been developed to find the correlators andllytioa a field theory at finite
temperature and without quarks. The main idea of this agbraato use the ratio of four-
momentum and temperatukg (27T) := (v,0,0,q) 2 as an expansion parameter. Then the
fields are expanded in a perturbation series in orders ahdq® and exact solutions to the
equations of motion can be obtained up to the desired orderandgq?®. This kind of expan-
sion is known from statistical mechanics and goes by the nairhgdrodynamic expansion
Note that we only consider the diffusive modes with this ckoiln order to find for example
the sound modes and their damping we would have to considex@ansion inv, gn [104].
From the solutions expandediinandq? we will obtain the correlators of the operatér The
poles of these correlators can be read off directly from thedydical expressions giving the
dispersion relationso(q). Note, that we work in the geometry described(in| [28] wheee th
fluctuations are chosen along thedirection such that = (zo = t, 0, 0, x3 = z). Further-
more we choose the gauge in whidh = 0 and we assume that the remaining space-time
directions have already been compactified such that we lwagertsider a five-dimensional
theory only.

The correlator recipe Let us review the three-step recipe to obtain two-pointelation
functions motivated and developed n[27]. We calculater¢harded two-point correlata”

of the operato© in Minkowski space. The operat6t is dual to a field which we denote ly
where¢ can be a scalab, vectorA,, or tensor fieldl},, merely changing the index structure.
Step number one is to find the part of the action which is quedrathe field¢ dual toO

S = / dud?zB(u)(0,0)* + . . . , (3.7)

where the facto® depends om and the momenta only, collecting metric components and all
other factors in front of the derivativés, ). Now the second step is to solve the equation
of motion for the fieldyp. We rewrite the space-time equation of motion in Fouriecsgich
that all derivatives except,¢ =: ¢’ can be expressed in terms of four-momenta

0=¢" +a(k,u)d + b(k,u)p. (3.8)

This second order differential equation in special case®easolved analytically in the hydro-
dynamic Iirpit of smallv, > < 1.5 The general solution can be splitinto the field’s boundary
value¢¥(k) and the bulk functior§ (u, k)

d(u, k) = ¢PY(K)F(u, k). (3.9)

To clearly illustrate this step, we will consider detailslofs general procedure in the specific
example below. In step three we finally assemble the sol@tionk) obtained in step two and
the coefficientB (u) from step one to obtain the retarded correlator in Fouriacsp

GR(k) = —2B(w)F(u, k)9, (u, k)| (3.10)

u—0 "

2This choice for the four-momentum is adapted to the symeeif the problem we will consider in this
section.

3If the coefficientsu, b are sufficiently complicated (they might be given only nuicety) we have to reside
to numerical methods, two of which are explainec.in |34, 38] [59] reviewed in section 3.1.3 of this work.
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An example To illustrate the three steps in more detail we consider Xaen@le of\V/ = 4
supersymmetric Yang-Mills theory with ai-charge current/* dual to the vector fieldi,, in
five-dimensional supergravity. The part of the action gaadin the gauge field! is given by

N2
S = _ o2 /dud‘lx\/—g(u)FWF“”. (3.11)
s

1

In order to place our field theory at finite temperature, wed wark in the dual AdS black
hole background

(WTR)Q_ W b s R?
" [—f(u)dt” +d ]+4u2f(u)

ds* = du® + R?dQs52%, (3.12)

with the radial AdS-coordinate € [0, 1], the horizon at. = 1, spatial infinity atu = 0 and
the functionf(u) = 1 — w?. This metric is obtained from the standard AdS black holerimet
with radial coordinate: by the transformatiom = (r,/r)?. The temperaturé' = r,/(7R?)
is a function of the AdS-radiug and the black hole horizor,.

Applying step one of our recipe to the quadratic super-Madkaation (3.11), we find the

coefficient ,
N /
B(u) = — 6.2V —g(u)g"™g™ (3.13)

(hiding the index structure on the left hand side).

Hydrodynamic expansion and equation of motion Now in step two of the recipe we
take a closer look on the method for solving the equation ofiencdfor our field A,,. Us-
ing (3.1) in the Euler-Lagrange equation, we get the eqoatf motion

0=0,[v/—9(u)g"g" (0,4, — 05A,)] - (3.14)
We make use of the Fourier transformation

A 2\ — d4k: 7iwt+ik-xA‘ E 3.15
Z(U,SC) (271’)46 z(ua ) ( . )

Rewritten in Fourier space we may split the equation of nmo(®14) into five separate equa-
tions labeled by the free indgx= 0, 1,2, 3,4

1
Al = E(UIQAt +1qA,) =0, (3.16)
" f, ! 1 m2 2
A —A —(— —q9)A;, = A7
:c,y+ f x,y+uf( f ) t 07 (3 )
! 1
A"+ LA+ — (%A Ay) = 3.18

wA, + qfA. =0. (3.19)
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Note that4; and A, need to satisfy the coupled set of three equations!(3:18%)and(3.19)
while the transversal,, , decouple and merely have to satisfy the stand-alone equ@ub7)
separately. However, we can decouple the system for. rewriting (3.16) as

A =gy (3.20)
toq 1o
and use it to substitute, in (3.19) yielding a single second order equationA¢r
(wf) W’ —g*f

Note that the appearance of the third derivati/éis a generic feature of this particular ex-
ample and has nothing to do with the general method. Sineeetjuation does not depend
on any of the other field components we will solve it sepayatald impose conditions for the
other components afterwards. Note that (3.21) has singokficients at the horizon = 1
(and at the boundary as well). We have to invokeitttécial procedurein order to split the
singular behaviof1 — u)? from the regular parf'(u) of the solution

Al =1 —u)F(u). (3.22)

Theindicial exponents characterizing the singular behavior is determined byrgett;, —
(1 —u)?, expanding the singular coefficients bt (3.21) around thizba v = 1 keeping only
the leading order term and evaluating (3.21) with theseiotisins. The result is a quadratic
equation fors giving »
8= i% . (3.23)

By the variable change to a radig= — In(1 — u) with 0 < £ < oo we see that the positive
sign in 3 describes an outgoing wave at the horizi¢) o e~"¢/2 while the negative sign
gives an incoming wavel,(£) o« ¢™¢/2, We select the latter solution to be the physical one
since no radiation should come out of the black hole. Thistenaeferred to as the@coming
wave boundary condition

Now we are ready to write down the hydrodynamic expansionementum-temperature
ratiosto, q? < 1 for the regular parf'(u) of the solution

+102F + q*Gy +wg?H, + ... . (3.25)
We will refer to the first linel(3.24) as tHeading order or first order hydrodynamics terms
while we coin the second liné (3.25econd order hydrodynamics termSubstituting the
leading order hydrodynamic expansion (3.24) into the eqoaif motion (3.21) withA], =
(u—1)""/2F(u) and comparing coefficients in the ord€?$1), O(1v) andO(q?) yields three
equations for the three hydrodynamic functidns F;, G

F + (Z?/Fé —0, (3.26)

g, wf) i 1 (uf) _
F'+ o F1+§[(u_1)2—uf(u_1>]F0_0, (3.27)
G" + (Zj}) Gl — ul_fFO ~0. (3.28)
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Note that we can compute higher order corrections in thigdgyghamic perturbation ap-
proach by inclusion of higher order terms, e.g. the secodeérolerms((3.25). We would
have to compare coefficients up to the desired order of acgwad would end up with e.g.
three further equations added to (3.26), (3.27) and (3@8)hiree additional hydrodynamic
functionsF,, GG, H; in the case of second order corrections.

The solutions to[(3.26), (3.27) and (3.28) can be obtainat/tioally if we start out noting
that we may sef}, = constant= C. Then we gef

Fy=0Cy+ g In(u—1)—Cylnu + % In{(u+1)(u—1)} (3.29)

with two undetermined integration constants C,. These can be fixed by recalling that we
have already chosen the constant ordef'jm) independent fromu, 1, g2 to be given byC.
So we now have to impose the condition on our solutionfApthat it gives no corrections to
this constant’, meaningilli_g% F; = 0. In this limit two of the terms inf; become divergent

and the constants have to be chosen such that these carfteltleaic After application of this
procedure td+; as well, we are left with

iC . 2u?

= —1 .

et (3.30)
1

G = Cln—". (3.31)
2Uu

Now we have a first order solution for the derivatide We can also fix the constant in
terms of boundary values®® for the physical fields. This is important becauSeontains
thew-pole structure of the solution as we will see shortly. Fivstrecall thaﬂin(l] Ay = APV

and lir% A, = AP, Now substitute the solution fad, into equation((3.20) and take the
boundary limit of this expression. This yields

I .
i — g2+ O(w?, g%, wg?)

(3.32)

The denominator of (3.32) contains the poles of the solwtibich are the poles of the retarded
correlator as well.

Taking our third and final recipe-step we assemble the aioefor time components of
the R-charge current

N? 52

)V —gguuw(gtt/l;f‘lt +97AAL), (3.33)
t t

R .
G =2 zltli%(_l&rz

where the double functional derivative encodes the steglettng the terms in the action
which are relevant (meaning quadratic in the fielff) in order to be more illustrative here.

“Note, that the complex logarithim > being a multivalued function has branch points:at 0, co and in
general a branch cut is defined to extend between these moiritse negative axis. Here we define the
complex logarithm on the first Riemann sheet, such thatle(g-1) = +in. All the equations here should
be read with this in mind.
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We finally get

N2T q°
1672 4w — Dg?’
with the constanD = 1/(27T') which is identified with the diffusion coefficient. This imte
pretation is best understood by noting that the diffusicma¢ign

R __
Gtt_

(3.34)

o, Jt = DV2J! (3.35)

can be Fourier transformed to

—iwJ' = D(iq)*J". (3.36)
This suggests that the retarded correlator we found hasaiiect pole structure to be the
Greens function for a diffusion problem, in our case thihesdiffusion of R-charges.

Dispersion relations The dispersion relation for th-charge current/* to first hydrody-
namic order is given by

0 =i —q° + O(w? q*,0g?) . (3.37)
Computing the second order hydrodynamics corrections seritted above, we obtain the
dispersion relation
2 g

0=imw —q°+1In 2(% + quQ —q*) + O(r?, ¢, w?q*) . (3.38)

Since this equation is quadratic wn one at first suspects that two solutions exist, but if we
solve [3.38) and then (recalling, g> < 1) expand both solutions iw, we get

o = —iq® —iln2q* + O(q°%), (3.39)
2%
Waiscard = — 7 + 4 1n 2q* + O(q°). (3.40)

Only the first (3.39) of these two solutions is compatibleéwatr initial assumption thab ~
g?> < 1 since the second solution (3140) has a constant leading wittean absolute value of
order one.

Dispersion relations and correlators of other operad(g.g. the energy-momentum ten-
sor7T*") dual to other fieldg are obtained in the same way.

3.1.3 Numerical methods

It was already mentioned and should be stressed here agdiththmain difficulty in the

computation of the two-point function for any field theoryeoator© is that of solving the

equation of motion for the dual gravity field. This is thesecond stemundertaken in the

context of the recipe from section 3.1.2. In the previousiseave took the small frequency,
small momentum limit (which is called the hydrodynamic lijimn order to obtain an analytical
solution. In this present section we describe two differemherical methods to obtain the full
solution to the equation of motion for the gravity fietdwithout taking the hydrodynamic
limit. We consider the (dis)advantages of both methods.
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Integrating forward The kinetic term in the classical gravity action for any fifllactua-
tion ¢ has the quadratic ford, 90, ¢. Neglecting interaction terms (since we are only inter-
ested in the two-point functions) the Euler-Lagrange aqudbr any gravity field fluctuation
is thus quadratic in derivatives of the field fluctuatianFourier-transforming the Minkowski-
direction derivatives into four-momentum components atiog to equation (3.15) and as-
suming no dependence on the three angular coordinateghenigdial AdS-derivatives, ¢ =
¢' has the general form

0=¢"+ A(u)¢' + B(u)g, (3.41)

and the coefficientsl, B in the backgrounds we will consider only depend on the ra&iis-
coordinater, and on the Minkowski four-momentui Therefore we need to solve second
order differential equations with non-constant coeffitseThe coefficientsi, B can be sin-
gular at the boundaryyg, and at the horizom . In this case one has to perform tinelicial
proceduredescribed in section 3.1..2 yielding an asymptotic form far $olution at the hori-
zon given byl(3.22) as

¢ = (ugg —u)’F(u).

The incoming wave boundary condition determine be negative. Now we proceed by
plugging this Ansatz into the equation of motion (3.41) gie a regular’ equation of motion
for the regular factof'(u) = F'(uy) + F'(uy)(ug — u) + ... of the solutionp

0= F"(u) + A(u)F'(u) + B(u)F(u) . (3.42)
This has to be solved numerically with the boundary condgio
Fluy) =ao, F'(ug)=ar. (3.43)

Explicit values forag, a; are found by plugging the asymptotic form of the regular 8ofu
near the horizon

F(u) = ao + ar(ug — u) + as(ug —u)’ + ..., (3.44)

into the equation of motion (3.42). This procedure yieldsegmation which we can ex-
pand around:; and by matching coefficients of orders (iny — «) we get recursive rela-
tions foray, a1, ... to any desired order in. Since we are free to normaliZ&(u), we can
chooseny = 1 and determine; from the recursive relations fixing our numerical boundary
conditions(3.43). We will use this method for example inyutiea 5.

This method is straightforward and easy to use. We will apipty find the correlators
giving spectral functions in chapter 5.

Matching in the bulk There are cases (such as the calculation of quasinormalghwde
which the numerical method described in the previous pamgfails. An alternative method
to solve the AdS-equations of motion numerically is destim |34/ 33]. The basic idea is to
use two asymptotic solutions at the horizon as startingagalar numerically integrating them
forward into the bulk, then doing the same with two asymptsailutions at the AdS-boundary
and to afterwards match the two boundary solutions to thiecp#ar horizon solution which
satisfies the incoming wave boundary condition, which weaaly discussed in section 3.1.2.
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We can not directly determine the linear combination ofgné¢ed boundary solutions which
is compatible with the boundary conditions since the incgnivave bounary condition is
given only at the horizon.

We again start out with a second order differential equadiomotion for fluctuations) as
given in (3.41) in the AdS Schwarzschild black hole backgi(B.12). Note that in these
coordinates the black hole horizon is located at 1 while the AdS-boundary lies at = 0.
The coefficients4, B again depend on the dimensionless frequency w/(277"), momen-
tumq = ¢/(277T) and on the radial coordinate < u < 1. For definiteness we work in
the setup of(I134] as a specific example wherare fluctuations of the metric tensor. We
first have to determine the asymptotic behavior of the smiuto this equation at the bound-
ary v = 0. Theindicial proceduredescribed in_3.112 yields the leading order asymptotic
behaviorg o< u° or ¢ oc u? with the indicial exponents; = 0 or 3, = 2 corresponding to the
two possible solutions respectively. For a second ordésreintial equation we can expand the
asymptotic solution®’, ®/ according to[[105] into general seriéd’ = (u — upay)?2 A(u)
and®’ = (u — upay)® A(u) Inu + (u — upay)” C(u) with the indicial exponents;, 3, and
the functionsA(u), B(u), C(u) being analytic at: = 0. So in our example we have the
asymptotic solutions fop at the boundary. = 0

Ol = O <b§°> by 4 b 1 ) +hZM o, (3.45)
ol = o2 (bﬁ’ by 4 b 1 ) . (3.46)

We obtain recursive relations for the coefficiebitsb;;, h by plugging each expansion (3.45)
and (3.46) separately into the equation of motion, expanuohin, aroundu = 0 and by then
comparing coefficients in orders of The most general solution of the equation of motionis a
linear combinatior®(u) = a®’ + bPd!! of the two solutions given in (3.45], (3.45) with coeffi-
cientsa, b. But since we have two boundary conditions our solutionlig fietermined and we
give special names to the coefficientsh which satisfy the two boundary conditions:— A
andb — B, such that

d(u) = A(w, q) 2" + B(ro,q)Z"". (3.47)

But how do we findA, B explicitly? In order to see this we also need the two asymptot
solutions at the AdS-horizon = 1, where we calculate the indices = itv/2 and~, =
—itv/2. Just as we did on the boundary, we now have to use the gengah®on at the

horizong’ = (1 — u)" D(u) and¢’” = (1 — u)2D(u) giving

Pl = (1 —u) ™2 <a§0) +aMu+aPu? ) : (3.48)
o' = ol (3.49)

The first thing we note is that only the first solutiohis compatible with the incoming wave
boundary condition as described below equation (3.23). §deabtain recursive relations for
the coefficients; by plugging (3.438) into the equation of motion and compaudagfficients.
Now the idea is that we determine the first two coefficientshia &symptotic horizon-
expansion of the one solutiai satisfying the incoming wave boundary condition (hé?.)
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and a(Il) in (3.48)). Then we use these two values to numerically iaiteg)’ forward into
the bulk. We repeat this procedure with the two solutidhsand®! at the boundary. Then
we find that linear combination of integrated boundary sohg®’ and®’! which equals the
incoming horizon solutio’

AD! + BOIT = ¢l (3.50)

The values of coefficients;, b;, b;;, h are all fixed by recursive relations, with the exception
of b\, %) andb'®. Note, that we are free to normalize the solutigrig’ such that!” = 1
andb?}) = 1. Our freedom to chooiéf) arbitrarily reflects the fact that the solutign is still

a solution if one adds a multiple of the other solutipn. We chooséﬁz) = ( for convenience.
This fixes all the asymptotic expansions.

This particular procedure is more complicated and involvéswy more steps than the for-
ward integration but in some cases such as the search foudstngprmal modes (QNMs) it
is necessary to employ a matching in the bulk see e.@. [28p8set.2] or [48]. The problem
there is that one has to satisfy the incoming wave boundargliton, which implies that the
solution near the horizon is heavily oscillating @s— «)~"™2 and on the other side at the
boundaryu = 0 the solution is required to be normalizable. Numericallw@uld be very
difficult to for example start at the boundary with a normaltile solution and try to match a
highly oscillating solution at the horizon by directly igt@ating forward. Thus the method of
matching integrated solutions in the bulk is preferred here

3.2 Holographic hydrodynamics

There is convincing evidenck![9, for a review] that the AdSIGorrespondence maps rela-
tivistic hydrodynamics on the (thermal) field theory sidebtack hole physics on the grav-
ity side. In this section we remind ourselves of some factsutibelativistic hydrodynam-
ics (3.2.1), we review how to introduce a chemical potentiahermal quantum field the-
ory (3.2.2) and we rederive a method to compute (non-eqjihi) transport coefficients like
the heat conductivity or shear viscosity (3/12.3). The us@erding we gain here on the field
theory side will help us substantially interpreting theulesfrom gravity calculations we per-
form in the AdS/CFT context in the coming chapters.

3.2.1 Relativistic hydrodynamics

Relativistic hydrodynamics [106, 107] is an effective thewhich describes the dynamics of
a fluid at long wave length and small frequency for fluctuaidBince this theory historically
includes dissipative effects it is formulated in terms ofi@ipns of motion and not in terms
of an action principle. These hydrodynamic equations arstijmobtained from a system of
conservation equations an so-callamhstitutive equationsThese constitutive equations ex-
press the conserved quantities (e.g. tensor, vector ¢umgerms ofhydrodynamic variables

such as temperature and four-velocity of a fluid element. theemal system is assumed to
be in local thermal equilibrium but globally the hydrodynamariables may vary. We can
define the local temperatui®%) and the local four-velocity” (%) of a fluid element in the
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system, wherei*u,, = —1. The simplest example of a set of hydrodynamic equatiorisais t
conservation equation for energy and momentum

0,T" =0, (3.51)
together with the constitutive equation for the energy-rantam tensor
T" = (e + P)u*u” + Pg"", (3.52)

with the (internal) energy density the pressuré”® The constitutive equation (3.52) is ob-
tained by writing down all possible terms in an expansion awers of spatial derivatives
of hydrodynamic variables to leading order. We can alsouithelthe next to leading order
yielding

™ = (e + P)u*u” + Pg"" — o™ (3.53)

While the leading ordef (3.52) conserves entropy, the reebeatding order (3.53) contains the
dissipative part* containing first derivatives dof (¥) andu* ().
In systems with a conserved currefit satisfying

9 J" =0. (3.54)

And this current can be expressed in terms of the hydrodymeaariables by the constitutive
equation
J* =du — D(g"" + u'u”)0,d, (3.55)

with the charge density in the fluid rest frame and the constdnt The terms correspond to
the processes of convection and diffusion respectively/ans the diffusion coefficient. In
the fluid rest frame this reduces to

J=-DVd, (3.56)

which is Fick’s diffusion law.
There is an intimate relation between the poles of thermial freeory correlators and the
hydrodynamic modes like for example the diffusion mode gogd by the diffusion equation

0= 0,d— DV?d. (3.57)
Transformed to Fourier space this equation reads
0= (w+iDk*)d. (3.58)

The corresponding field theory two point correlator of a @wed current/* is given in

Fourier space by
1

iw — DKk2’
We easily verify that this two point current correlator is &én function for the diffusion

equation or in other words a solution to the diffusion protle Such identifications are
also possible for other hydrodynamic modes like the shedrsannd modes of the energy-
momentum tensor which are identified with poles in the mdttictuation correlators (for

details the reader is referred 0 [9, and references thHgrein

G(w, k) x (3.59)
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Let us also include the relation between the thermal sddcaination R and the retarded
correlation functiorG% here for completeness.

R =—2ImGE. (3.60)

Heuristically the thermal spectral function gives the thak spectrum of the system at finite
temperature. Resonances appearing in this spectral dinate analogous to the spectral
lines one gets when analyzing light with a prism. The resoearare interpreted as quasi-
particles produced in the plasma. Just as it is the case dorthe visible light spectrum,
the resonances here have a finite width corresponding tofétenle of the quasi-particle
excitation since the thermal system features dissipativegsses. Let us write the energy
and spatial momentur in a four vectork = (w, ¢) while the Green functiol?* may be
written as

G w,q) = —i / d*z e ¥ 9(20) ([J(Z), J(0))) (3.61)

We may find singularities of:"(w, q) in the lower half of the complex-plane, including
hydrodynamic poles of the retarded real-time Green funct@onsider for example

1
L. — 3.62
G w —wo + I ( )
These poles emerge as peaks in the spectral function,
217
= 3.63
R CEPAESE (3.63)

located atv, with a width given byl'. These peaks are interpreted as quasi-particles if their
lifetime 1/T" is considerably long, i.e. i’ < wy. We will discuss the spectral function again
in chapter 5.

Another facet of the spectral function will be made use ofhia diffusion chapter!6. In
its zero frequency limit the spectral function evaluatedeab spatial momentum is related to
the diffusion coefficientD of the chargey to which the correlated®” « (J.J)) current.J
couples

—_ 1 ?ﬁ(p,w,q:())_ . 1 R -
=D = }ul—% — 5, = —Qi% %ImG (p,w,q=0), (3.64)
wherep is the radial AdS coordinate and the susceptibiitis given by
0
=W (3.65)
ol =0

with the charge density" for the conserved charge and the thermodynamically conjugate
chemical potential:. This provides us with a method to compute diffusion coedfits us-
ing the fluctuations about a background. An alternative ogktinakes use of theembrane
paradigmin order to compute the diffusion coefficient from metric quonents only (see
sectior 6.1).
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3.2.2 Chemical potentials in QFT

Since the introduction of a chemical potentigdnd its thermodynamic conjugate charge den-
sity d is a central point in this work, in this section we make therlstig statements given
in section 2.4 more precise. All the ideas explained belowukhbe read with the QFT path
integral formalism in mind.

Introducing a chemical potentialin a QFT at finite temperature T is formally analogous
to turning on a fictitious gauge fields time-compondnpk . Heuristically this can be seen by
the comparison of terms entering the partition functibby turning on a chemical potential
on one hand
BH _, —B(H—-pN) (3.66)

9

Z x e
where( is the temperature obtained from compactifying the timedimate in the imaginary
time formalism,u. is the chemical potential an is the number operator for a particle. We
are working in the grand canonical ensemble. On the othed ancan turn on a fictitious
gauge fieldA,, belonging to a symmetry which conserves a certain curfént

Z x e P s g7 BUH=ALTH) (3.67)
whereA,, = (i, 0). So roughly we obtain the relations
A~ J'~ N . (3.68)

The next paragraph describes the above statements inrlesdd.
From the Noether theorem we know that every symmetry of ayhmamtributes a conserved
current
g 0L
Noether — 8(8MAV)
which for QED equals the electromagnetic current that wentesl formally above ag“. The
conserved charge is obtained by integrating the first compioof the current over all space.
This shows that conserved currents are intimately relatetiarges and introduction of either
implies existence of the other. The electromagnetic ctiran by Maxwells equations be
written as

A, , (3.69)

oL
n— M —
T 0P =

and can therefore be regarded as a source of the field strentijth gauge field.

(3.70)

Finite temperature currents and the chemical potential Inthe context of a non-SUSY
complex scalar field theory we would like to evaluate theipart function with a chemical
potentialys and show that at finite temperatures its introduction is efuiatroducing a ficti-
tious gauge field. In the grand canonical ensemble the jparfitinction is

Z = tr[e M1
Bdr [d3z |in 22 iFTM—H ™, N (m,
_ C / DriDr / DD o I [T G TR A (’”}, (3.71)

SThe identification4; ~ u is solely a field theory matter and has a priori nothing to dthwie AdS/CFT-
correspondence.
5This is a standard finite temperature QFT result. Seele.d] fb@reference.
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with the Hamiltonian
H=7r+ Vo' - Vo +m?plo. (3.72)

The conjugate momenta are defined tor§€) = ag(% — ¢f. By the Noether formula the
conserved current ig, = i(¢'d,¢ — ¢9,¢"). The first component of this is the conserved
charge density = i(¢'n" — ¢m). The integrand of the exponent in the path integral can be

rewritten

i (710:01 + 70:0) — (7i7 + Vo' - Vo +m?610) +iu (rlo! — 7¢)
= — (x1 = i(0; — p)¢) (w —i(0- + p)o') — (3.73)
—(0- + )¢ (0r — )¢ — Vo' - Vo —m?6'6.

This shows that using the Euclidean timee can redefine the time derivative — 0, — u =
Dy (and equivalentlyd,¢)" — [(0, + u)é]" = (Dyo)" ). From standard gauge theory we
know that this is the same as introducing a covariant devivaBut in the case at hand this
gauge field has only one non-zero, constant component,tteedomponentd,. Therefore
this gauge field is non dynamical having no kinetic term.

Performing the functional integration overand~' leads to the following expression for
the partition functior:

7 - / DD e I 7 [ &2 [0r+181 (0r—n)6+ V91 VotmoTg]

which can be analytically continued to Minkowski space tel¢ian effective Lagrangian:
' / Do Do &'/ dt [ [(Or+in) ¢! (Br—in)p— V- Vo—m2¢te]
=’ / DD et & Lerr (3.74)

It is important to note thaf.¢ is not simplyL + p NV, sinceN is a function ofr in addition
to ¢. Instead,

Lo = 0"¢10,0 +in (¢'0h — ¢007) — (m* — i)' (3.75)

The term linear inu is the expecte@\ contribution. The term quadratic jnarises from the
modification of the conjugate momenta= ¢! + iue.

The symmetry under which the current coupling to the chehpogential is conserved
could for example be th€ (1) 5 symmetry. In this case the conserved currghs the baryon-
number-operator density. The conserved charge is therattyeto number.

"Note that only the first term in the integrand of the path iréds depending omr and#t. Considering
—i(0; — p)¢ and—i(0, + )¢t as shifts of the integration variablesandr! (these shifts do not depend on
either of the integration variables), only the second aird term survive the integration to yield the partition
function as an integral over fieldsando! only



62 Chapter 3. Holographic methods at finite temperature

3.2.3 Transport coefficients: Kubo formula

Kubo formulae relate transport coefficientsin non-equilibrium thermodynamics with re-
tarded Green functions of the associated thermodynamicetmat /. Symbolically we can
write

A o< ([J, J])res. - (3.76)

These relations hold up to linear order expanding in thegmadhical forces. This is called
the linear response approximation. In the following subsacthe Kubo formula will be
derived for a system with energy-momentum conservatiow. drtie principle is extended to
an additional conserved current in the next-to-next sufisec

The derivation of Kubo formulae assumes that the systemruratesideration has estab-
lished a local thermal equilibrium in order to define meahihgtate variables like temper-
ature7’, mass density and others locally. On the other hand globally there existemr
equilibrium, that means there are gradients of thermodyeerstate variables or potentials
across the whole system.

Nonequilibrium Kubo formulae in theory with 9,7" = 0 This subsection generally
follows [109]. Let's imagine a thermodynamical system inietha gradient (e.g. a tempera-
ture gradient), T') exists. This gradient will cause the system to respond byiftg a current
J (e.g. a heat current). With this current the system triegjtolidrate the gradient (e.g. heat
flow diminishes temperature gradient by levelling out terapges in the whole system). This
kind of gradient is synonymously called a thermodynamiocedé F'.

We can expand the response of the system (namely the cutwemtjradient as a series of
powers of the gradient:

J=ayg (F)+a (F) +ay (F)*+.... (3.77)

Since the current should vanish with vanishing gradiem,cibnstant term has to vanish and
the linear one is the lowest order contribution with resgedhe gradient-expansion. This
contribution gives the linear response of the system to tadigntF. The proportionality-
factora, is called a transport coefficient, which we will generallyndee byA.

J=AF. (3.78)

We now would like to establish this connection between cusé and the gradients’ driving
them. For this reason we will compute the thermal non-eoguilm average of the energy-
momentum tensaof),, containing several (scalar, vector and tensor) curremt@rder to be
able to use thermodynamics, we assume from now on that a¢gcdglibrium is established
and we can thus define the state variables such as tempeaatligessure locally. We can
also compute local averages and denote therm)by

Remember that in equilibrium we can define the probabilitysity matrixo., = ¢°# to be
used as a calculational tool determining thermal averabeperatorsD

(O)eq = tr[0eqO] - (3.79)
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This has an analog in nonequilibrium

<O>non7eq = tr[Qnonfeq(l)] . (380)

We are interested in the operat@r= 7),, and how to relate its non-equilibrium expectation
value back to quantities which are in local equilibrium (@ged by(.)). Zubarev already
proposed the following construction for non-equilibriubd.0]:

t
Onon—cq = exp{— / BrF Ty, + / dx / dt eI, 0" FV} (3.81)
N——— pes

=[H equilibrium

whereT),, is the thermodynamical 'currenty” " is the thermodynamical force (gradient),
while
FY = pu”. (3.82)

Here we haved = 1/7T with the temperatur@’, u” is the four-velocity component of the fluid
and the parameteiis a small number which will be sent to zero in the end. Notéwesset the
Boltzmann constaritz = 1 throughout this work. So the average over the energy-mament
tensor can be written

t
(T} ) non—eq = trlexp{— / 2 F Ty, + / d*x / At e IT 0P F7Y T, . (3.83)

—_———
=(FH equilibrium

Expanding the exponential to linear order in the gradi#dt® we get

J/

t
(T non—eq™{ Ty )eq + / Az / dt' e (T, (,1), Tpo (T, 8) P FO (2, 1) . (3.84)

-~

(T Tpo)ratarded

The currents collected ify,, may be separated into tensor, vector and scalar currentgagsn
of the thermodynamical standard form

Ty = 0w + €uyty, — pgu + puyuy, + Py, + Puy, (3.85)

where the expansion coefficients are the energy deansjiythe pressure, the tensor struc-
ture o, = [(gup — wutty) (Goo — Uptic) — 3 (g — wut)(gpo — upus)]T*" and the heat cur-
rentP, = (9., — u,u,)u,T7°. Note, that the latter will be absent if there is no quantityoh

as a charge density) relative to which that current could basured. This is a consequence
of relativity since the flow of mass and the flow of heat, i.eergy becomes indistinguishable.
The bracket., .) denotes the quantum time correlation functions defined by

1

(T (1), Tho (27, 1)) =/d7<Tuu(f,t)(6ATTpa(f',t')eAT— (Too (@, 1)), (3.86)
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where we used the abbreviation= [ d*xF"(Z,¢)T;,(Z,t). Due to Curie’s theorem tensor
currents likes,,, are only driven by 'tensor gradients’. The scalar and veptocesses as
well are only related to scalar and vector gradients. Catigat functions between currents of
different tensor rank vanish. In other words to linear orndethe gradients the scalar, vector
and tensor processes have nothing to do with each other. Wesmthis fact picking out the
tensor process to repla@g, by the tensor current,, But which tensor gradient drives this
current? To answer this question, we compute

T,,0'F7 = 0,5 f0°u” + ﬁPp(ﬁ_lﬁpﬁ + u . ul) — pp'd,u’ . (3.87)

Now using equatiori (3.85) on the left hand side of (3.84) &8) on the right, we get

J

~(tensor Stl'UCflj r€S,0)x(00g,0%P)

¢
(O ) non—eq = <0W>eq—|—/d3x' / dt' et =1 (0w (T, 1), 0,5 (T, 1)) BOPur .
=0 —0o0

(3.88)
Analogous separation works for vector and scalar currdhtew the gradienf3o’«’ varies
only slowly compared to the correlation lenght of the reshed integral, we can pull it in front
and get an integral expression for the transport coeffiasabciated with tensor processes,
namely the shear viscosity

t
n= g/dgﬂfl / dt/eg(t/_t) \(UQ,B(:a t)v aaﬁ(flv t/))/ . (389)
—o0 (0as.7*")retarded

This is called a Kubo formula. The coefficients connectedcidas and vector processes are
called bulk viscosity and the heat conductivity respectively.

Kubo formulae in theory with additional conserved current 0,J* = 0 Following
Landau and Lifshitz/|106] one can imagine a thermodynansgatem with an additionally
conserved current

9,T" =0 | 9,J"=0. (3.90)

In such a relativistic hydrodynamic system the energy-munoma tensor and the conserved
current take the form

Tw/ = PG + WULUy + T, Ju = pcly + vV, (391)

where p is the pressure, with the heat function= € + p. p¢ is the charge density of the
conserved charge given by the first component of the conde@weentJ, = po. The dissi-
pative part of the current is denoted By. A contemporary application in the context of the
gauge/gravity correspondence is the calculation of thedwaluctivity in a R-charged black
hole backgrounc |35].
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According to [110] the method described in the previous satisn is completely general
and we can replacg,, by any conserved current. So for the non-equilibrium dgmatrix

t
Onon—cq = exp{— / dPxF Ty, + / dx / dtie= ! . (3.92)
~— ~—~
%/_/ o0

_8H oquilibrium currentassociated gradient

The dissipative pant,, of the conserved current is driven by a gradient in the cpording
chemical potentigl.. From thermodynamical relatiofone can obtain

= —2 (g“)‘ + u“u’\) 8,\% , (3.93)

which tells us thatc is the corresponding transport coefficient. By anology wectude its
Kubo formula to read

»

¢
g/d?’x'/dt'ee(ﬂ_t)(l/a(f, t),v(@, 1)) retarded (3.94)

But now that we know how to compute we should also give a physical interpretation of it.
» certainly tells us how big the dissipative currentwill be, given a certain gradient in the
chemical potential and temperatuigr. Like in the previous subsection, had been the
dissipative current connected to the velocity gradignt,, now v, is the dissipative current
connected to the chemical potentials and the temperatueeegt. So we also know that
Xy =0,\5in(3.92)

Interpretation of the dissipative transport coefficieait The idea here is to relate the new
currenty, to the energy-momentum tensor by expressing pait,ofoy v,,. This is done in
two steps. First the new current needs to be translated intorant we know. Second, the
new gradient of the chemical potential needs to be trartslate

The authors of [35] choose to set the charge currents to.Zero0 for the sake of interpre-
tation. Using the form of/* from (3.91) this immediately tells us

Jo=pc, 0=J;=pcu;+v; (3.95)

which we will use to get an expression for the velocity= —v;/pc. We assume the local
velocity to be small. From equation (3/93) it is known, thaglecting terms quadratic in the
velocity:

A = _%y% (3.96)
So we derive
Loop

8To be more precise: from the fact that dissipative procdésethe current or the shear-processes will produce
entropy.v,, andr,, can be related to the entropy they produce.
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Also from (3.92) itis seen that the pdrg; of the energy-momentum tensor (usually interpreted
as the heat current) now amounts to

Toi = pgoi + wuou; + To; = (€ + p)uou; (3.98)

if we can assume the stress tensor to have vanishing comisolnere by its general inter-
pretation measuring spatial shear effects only. Pluggingur expression for the velocity
yields

1 W
Th. — N 3.99
0i = (€ p)uopc %@T ( )

This completes the first step being the sought after traoslat v, into Tp; via u;.
The second step uség = dp/pc — sdT’/pc in order to translate the gradient:

O = i((‘M) —s0,T). (3.100)
e,

Putting the two steps together gives a well known relation

2
€E+p T
Ty = — o, T — ——0, 3.101
0 (T/Jc) %{ et p p} ( )

=K

As described in Landau and Lifshiiz [106], this expressiwmegthe relativistic hydrodynam-
ics heat current. Compared to the non-relativistic one i @& extra contribution from the
pressure gradient throughout the system. The transpaifictest related to heat flow is the
heat conductivity.

We now have two interpretations of the nex
1. It relates the dissipative current with the temperaturéd ehemical potential gradient
by (3.93). This is true for general currents.
2. It also relates the heat current with the temperature aesbpre gradient by (3.101). This
interpretation though only holds if the charge current shas, so/; = 0.
In the application to R-charged black holes![35] the autlvorsclude by looking at the limit
of vanishing charge current, that the dissipative part efadharge current will contribute to
the heat current and thus is the heat conductivity.

3.3 Quasinormal modes

Quasinormal modes of fields on the gravity side of AdS/CFTiatienately related to the
retarded two-point correlation function&?® of the dual operator® in the thermal field theory.
To be more precise the poles appearing in the correlafare exactly located at the frequency
valuesv,,, of the quasinormal modes belonging to the dual gravity figlarder to understand
this relation on a technical level, we here review the conoéguasinormal modes in gravity
and explore their relation to thermal correlators througtsACFT.
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Quasinormal modes in gravity This paragraph follows closely the work af [111] and
details may be obtained from that original work. Normal n®dee the preferred time har-
monic states:~“! of compact classical linear oscillating systems such agefistrings or
cavities filled with electromagnetic radiation. The norrfralquenciesv,, of these systems
are reakv, € R and the general solution can be written as a linear supdiposif all pos-
sible eigenmodes. Quasinormal modes in classical supergravity are the gnaflmormal
modes but for a non-conservative system. The quasinoregliéncies assume complex val-
uesw,, € C where the imaginary part is associated with the dissipatiothe case of a black
hole background excitations dissipate energy into thekblexde and are therefore damped
when traveling through the bulk. Since we would like to agliAdS/CFT, we are interested in
quasinormal modes in thedimensional AdS Schwarzschild metric

ds® = —h(r)dt* + h(r)"'dr? + r2dQ3_,, (3.102)
with )
_ g ()
h(r) = 7 +1 (T) . (3.103)
This factor for large black holes with, > R in AdS® becomesh(r) = Z — ().

Quasinormal modes are the (quasi) Eigenmodes of fluctusatibirelds in presence of a black
hole (or black brane) background, also referred to asitiggng of the black holeAs a simple
example let us follow [111] and consider the wave equatica wiinimally coupled scalap

V2P =0. (3.104)
Assuming spherical symmetry we may use the product Ansatz
O(t,7,0) = r = (r)Y(0)e ™" (3.105)

with the spherical harmonicg on S¢-2. Splitting the radial from the spherical equation of
motion we obtain

(0% 4+ W2 = V(r)w(r) =0, (3.106)
where the tortoise coordinaté is given by
. dr
The potentiall’ (r*) vanishes at the horizort = —oco and diverges at = co. In general

this equation has solutions for arbitravy The solutions which are called quasinormal modes
are defined to be purely incoming at the horizbn~ e~*(*") (and purely outgoing at
infinity ® ~ e~*(="") | where the boundary of AdS is located in these coordinaf€sis
condition can only be satisfied at discrete complex valuesaziled quasinormal frequencies.
In the AdS black hole case the potenfialdiverges at infinity = oo, such that we require
the solution to vanish at this location.

SWhich is identical to the form used e.g. by Myers et al[in [6f]to a scaling withRk?>
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In order to have a finite variable range we invert the radiardmater — 1/x. The radial
equation of motion for the minimally coupled scalar therdsea

() (@) + D

d u(x) B
P U G mw(:c) =0. (3.108)

In our AdSs-case the coefficients are given by [111]

(.2 +1)2° N (. 2+ 12t 28 x?

= 3.109
s(x) o o PEREmEE ( )
t(z) = 4’2’ — 22° — 22%iw, (3.110)
u(z) = (x —xp)V(x), (3.111)
1 AU(1+ 2 2
Vie)= 24 3EAED) o I (3.112)
4 4 4
2
1
= 22 (3.113)
Lt

wherel(l + 2) is the Eigenvalue of the Laplacian &fi. Note that we do not rewrité (3.108)
such that the factor in front of the second derivative becoare. That is because the coeffi-
cientss, t, u have finite expansions ifx — = ) and thus are more tractable.

We compute the quasinormal modes numerically by expandiagsolution in a power
series about the horizon at= x_. In order to find the near-horizon behavior we determine
the indices (as explained in section 3.102)= 0 anda = iw/(277"). Only the first index
describes ingoing modes at the horizon and we discard tlomd@me. This fixes the leading
order(z — x,)° for our solution and we expand the remaining analytic pait iof a Taylor
series about the horizon [105]

U(r) = (x—2)" ) an(w—zy)", (3.114)
n=0

Then we demand this series to vanish at infinity= oo equivalent tox = 0. The expan-
sion (3.114) is substituted in the equation of motion (3)1A@&rder to compare coefficients
of (z — z,)" in each order. From this we find the recursion relations

3
—

1
tn = == S (k= 1) + Kbyg + tn_glag, (3.115)

" k=0

i

with the expressiot®,, = n(n—1)sy+nty = 223 n(nk — iw). Only the coefficient, remains
undetermined as expected for a linear equation.

Together with the condition that the solutigrshould be normalizable and therefore has to
vanish at spatial infinity)(z = 0) = 0, we have mapped the problem of finding quasinormal
frequencies to the problem of finding the zeroes of

D an(w)(—z)" =0, (3.116)
n=0
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in the complexv plane. Equation (3.116) can only be satisfied for discreteegaof com-
plexw. We approach the exact result by truncating the seriesaad finding the zeroes of the
N

partial sumyy (w,z = 0) = > a,(—x)". To be more specific, we really find the minima of

the absolute value squar@d];(w, x = 0)|? of the partial sum and then check if the value at
that minimum is (numerically) zero. The accuracy can bedased by going to larger and
the error is estimated from the changeudf:) asn is increased.

Alternative QNM computations In more complicated backgrounds (such as the D3/D7-
setup) it is hard or even impossible to write down analytegbressions as those used in
the previous paragraph, especially if some factors likeethbedding function in the metric
components are only given numerically. In this case onedesside to numerical methods.
Numerically we can compute|? directly starting with two boundary conditions at the hori-
zon and search its minimum. In some cases (especially ifahgisn is oscillating heavily
on one boundary) the numerical method of matching in the [k section 7.2] has proven
more adequate to find solutions Numerics may also be improved by a coordinate transfor-
mation to more tractable (non-singular) coordinates. Apliagtion of this latter method is
given in [60].

Quasinormal modes in AdS/CFT In the context of AdS/CFT it has been shown [27,1104]
that the lowest lying (i.e. those with the smallest absolatae) quasinormal frequency of the
perturbation of a distinct gravity field coincides with the pole of the two-point function for
the operato© dual to this distinct field. We can see this by approachingptfadlem with
the question: what is the two-point correlator of two gaugeriant operators? As described
above, the correlator is given by

(O0) = lim B(r)¢(r)o.¢(r), (3.117)
r—Thdy
where¢(r) is the solution to the gravity equation of motion (ordinaiffedential equation
ODE) for the fieldy dual to the operataP. Here we use the same radial coordinatefined
above in equation (3.102). At the boundary the solution awhtten as linear combination
of two local solutions
¢(r) = Agi(r) + Bea(r), (3.118)

with A and B being determined by the coefficients in the differential an for . The
coefficients4 andB give that particular linear combination which satisfiesitttdming wave
boundary condition at the horizon. Near the boundary thatewsl (3.118) splits into the
normalizable and non-normalizable parts

p(r)=Ar 21+ .. )+ Br 2+(1+...), (3.119)

The action quadratic in field fluctuatiopsreduces to the boundary term

S® o lim [ dwdPqB(r,w,q)d(r)d.¢(r) + contact terms (3.120)

T—Thdy



70 Chapter 3. Holographic methods at finite temperature

Applying (3.117) and assumingy, > A_, A, > 0 we obtain the two-point function of op-
eratorsO by an expansion in the radial coordinatand taking the boundary limit afterwards

(00) x % + contact terms (3.121)
The poles of the retarded correlator thus correspond toehsez of the connection coeffi-
cient.A. On the other handl is determined by the coefficients of the equation of motian fo
the field fluctuationy and therefored = 0 is a particular choice of boundary condition for
that field fluctuations. As an example considek_ = 0, A, = 2 andB(r,w, q) o 3 and
Tbdy = OO. Then
—2Br—3
00 li -
\O0) o Lo ™ AT B2
Now we are ready to connect our holographic consideratiagk to the gravity definition
of quasinormal modes given above (3.116). Comparing theapypwoaches we conclude that
the condition for having quasinormal modes coming from gyaf8.116) and the boundary
condition for the field fluctuation in AdS/CFA = 0 are identical. For this reason the quasi-
normal frequencies of black hole excitations are ident#he poles of the retarded two-point
correlator of their AS/CFT-dual operators.

+ contact terms (3.122)

3.4 Summary

In this chapter we have reviewed some thermodynamics anatydamics in the context of
thermal quantum field theories and we have developed hgbgraools to calculate thermal
field theory quantities at strong coupling. The formulatafrthe gauge/gravity correspon-
dence in the Euclidean version has been contrasted to thkoMsgki version. In particu-
lar we found out that the Euclidean prescription is not sigffitto describe non-equilibrium
processes at finite temperature. Motivated by this fact wetwe to develop a recipe to
retrieve two-point correlation functions in Minkowski sy@a which is dual to theeal time
formalismfrequently used in thermal quantum field theory. We have @afhe seen that
correlation functions may be obtained by analytical or nuoca methods. The analytical
recipel 3.1.2 relies on the hydrodynamic approximation ofysbations with only small fre-
quency and momentum. In this case we can extract the relbeantary term of the on-shell
action (first step), solve the equation of motion for the fieldich is dual to the operator
which we would like to find correlations of (second step), dindlly we can use the for-
mulaG? (k) = —2B(u)§(u, —k)0,§(u, k)|, given in [3.10) (third step). Beyond this hy-
drodynamic limit we have seeniin 3.1.3 that we can employ tiferént numerical methods
to take the second step in the prescription and solve thetiequaf motion for the gravity
field numerically. Furthermore we have derived the Kubo falanwhich relates transport
coefficients to the retarded two-point correlation funetid=inally the poles in the thermal
field theory two-point correlators of an operatdrhave been identified with the quasinormal
frequencies of the dual gravity field



Holographic thermo- and
hydrodynamics

In this chapter | present my (partly unpublished) own workrdroducing a chemical isospin
and baryon potential (cf. section 3.2.2) into the thertval= 4 Super-Yang-Mills theory
coupled to fundamental matter as described in secticn 2e8wk/e the first to consider the
non-Abelian part of the flavor gauge group in the context o5AZFT with a finite charge den-
sity [1, /2] and the results are summarized and consideralbigieced especially in secticnsi4.2
and 4.4.

In the upcoming section 4.1 we will start out with an appleatof the Kubo formula for
heat conductivity derived in the previous chapter 3.2.3e fiést of this chapter considers the
D3/D7-brane setup with a background flavor gauge field intced on the D7-brane as de-
scribed in sectioh 2.3, section 2.4 and section 3.2.2. Itiged.2 we first take an analytical
approach to get some exact results for massless quarks inhchapter 5 we will use nu-
merical techniques. In order to do so we have to employ a sireajliency/small-momentum
approximation coined thirydrodynamic expansigincf. equation((3.24), and those following
it). These requirements are then relaxed and in sectiorhé.Background and its thermody-
namics are generalized to non-zero quark masses in a setrp aiso arbitrary frequencies /
momenta of the perturbations (cf. chapter 5) are treatdisie.price for this generalization is
that we have to use numerical techniques in order to find tlasg$ime) D7-brane embeddings
as analyzed in [56]. In this context we will review the thedgnamics at finitd/(1) baryon
density [42] or finite baryon chemical potential [52] in sent4.3. Investigating the effects of
isospin and the non-Abelian part of the flavor group we willelep the thermodynamics for
the non-Abelian pars U (N;) of the full flavor gauge symmetr/ (V). We find a significant
impact of isospin on the hydrodynamics as well as on thermantycs.

71



72 Chapter 4. Holographic thermo- and hydrodynamics

4.1 Application of the Kubo formula

The purpose of the calculation ahead is to understand arut ¢he non-equilibrium methods
introduced in the previous chapter 3/2.3. This general tgtdeding is needed in the com-
ing chaptel 6 and all our asides on diffusion or other noritéeguwm phenomena. We will
keep the computation as general as possible and only in tigesad we apply the result to a
conformal field theory in order to check it. The present cotapon may be seen as a prepa-
ration to apply similar calculations to more QCD-like thiesrin order to find their transport
coefficients.

In [109] a relatively general treatment of the problem ahisaven. The problem is simply
how to (carefully) carry out the integrals inside a Kubo foten Hosoya does this for the Kubo
formula giving the shear viscosity; whereas we are actualgrested in the heat conductivity.
But having this sample calculation at hand let’s follow itlame will see that the steps for our
Kubo formula will walk exactly the same path (up to some cansfactors).

The viscosity Kubo formula is [109]

0 t1 o)
1 dk® 0=~
n:_ghmﬁo / dt e / dt’ / gelkotﬂ(l{io), (4.1)

wheref[(ko) is a 2-point correlation function only depending/dhout of the integration vari-
ables. For the shear viscosity this correlator is the ensrggnentum tensor 2-point function
(T;;T;;). Thee appearing here comes from the non-equilibrium thermodycsformalism
and it parametrizes the (small) deviation from thermal Egruum. Since we will see that it
formally has exactly the same effect as an ordinary QFT eggull will call it the thermal
regulator. Speaking about the ordinary QFT regulators, as is commbit, & (4.1) the field
theory regulator is not explicitly written. We put it backly k° — (1 — iey)k° in order to
keep track of all the poles appearing.

t1

kO - 01— ie
n=—= hmmﬁO / dtye! / —TI(K°(1 —iep)) / dt' e’ (=it (4.2)

—00
S/

v~

t
1 eik0(1—ieg)t/] "1
ikO(1—ieq)

—o0

Of thet’-integral only the upper limitt¢) remains because for the lower bourebt) we get

limtg,ooe p0(1—ieg)t! __ hmt/H - eik%/ ei(*i)koeo)t’ . (43)
~ —
oscillating —0
So from this integral we are left with
1 eiko(l—ieo)tl ) (44)
ikO(1 — ieg)

Note that the use of the regulatey together with the integral gives us a new pole for the
K -integration at’ = 0. We will see that subsequent integration of this ayeogether with
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the thermal regulatos will give us yet a different pole structure in the complekplane.
Explicitly carrying out the same procedure as before with tlew expression we are left with

00 0

1 dKOTI(EO(1 — ieg)) o
_ __1 e - dt Etl +Zk (17@60)1&1 . 45
= T e 0/ o ikO(1 — ieo) / 1€ (4.5)

N J/
-~

1 _aletegk0)(— —ik0)(—
ikO(1—ieq)—ie [1 ol oD (Ze0) etk OO)]

This leaves us with the’-integration and an integrand having two poles

o0 ~ 0 o

1 | /dko I(k°(1 zeoe)) . (4.6)
5(2m)(1 — 2ieo) KO (K —
—0 1 — i€
=A ~
=B
To integrate a function like this the Cauchy-Riemann foranul
f(z)d= ,

T — (2 4.7
/ (Z _ 20)2 ( ﬂ-ll)azf(zﬂz:zo ) ( )

closed contour

is usually of great help. But to apply it we first need to tura thtegrand with two different
poles into one with two poles at the same position to matchfdha of the integrand the
Cauchy-Riemann formula. This can be done by introducingiFe&yn parameters, b making

use of the formula X

! —/dadbé(aer—l) !

(aA+0bB)?’ (4.8)

AB
0
which can be verified by carrying out the integrals on thetrigind side. Plugging id = £°

andB = £’ — it we get

1

r da+b—1) 1
E_/dadb CFT R (4.9)
0

1—ieg a+b

which displays the sought-after second order polé‘at= z’l_i.eoa%b.
formula and integration over the Feynman parametaelds

Use of the Cauchy

1

1 1 .

= —lim, _olim,_.o———— [ da Il . 4.10
T 00y —2260/ @Ok ko= (1-a) (4.10)

0

Now first taking the:, ordinary field theory limit gives
) 1

(= ~

ghmg_@/da OpoI1 Pie(iea) (4.11)

0

We have to assume that the functidifk® (1 — ie,)) introduces no additional poles.
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and afterwards the thermal regulator limit~ 0 produces
i .
= — Ooll ) 4,12
=5 %, ( )
This formula is true for any correlatdf which introduces no new poles it and which does
not depend on any of the time-variableés ;). The Kubo formula for thermal conductivity
will only have a different numerical factor and it will comahe current correlatofJ.J?) (k)
instead of the energy-momentum correla{éy;7;,) (k). But both are only functions of’ as
required. And from the Fourier-transformation ot (2.313exdtially given by
(JoJV) = —§ limOC(ed)EQJ“Ed, (4.13)
€Eq—
with the dimensional regularization parameteand the coefficient’(e;) we can see, that the
conformal flavor current correlator contains no poles‘in
Simply applying formula(4.11) to the conformal flavor cunreorrelator/(4.13) (see al€0112])
we get the transport coefficient
N L ab Ad—eq 1.2+€ _
n= hmedHOM\ako{é Chcafrtea) oy 0, (4.14)

-~

CA<d (1+€q/2)k a2k 0 _

whereM stands for the factors different from the viscosity casee Vanishing of this trans-
port coefficient can be traced to the thermal regulator bggihg it in before taking any of
the limitsey, €9, ¢ — 0. Carrying out all integrations and derivatives before ngkihese three
limits, the coefficient vanishes exactly when taking thefthal’ limit e — 0.

Our interpretation of this fact is that the conformal symimetalized in the correlator
does not allow any scale in the theory. In particular confdreymmetry does not allow
introduction of an energy scale like the temperature. Rhgon the conformal correlator
essentially amounts to setting the temperatiire= 0 in the non-equilibrium theory from
which the Kubo formula is derived.

4.2 Analytical Hydrodymamics at finite isospin potential

In this section | present the first available analytical apgh towards incorporating a non-
Abelian chemical potential into the context of the AdS/CFofrespondence. The solution
of this problem is a central point in this thesis and we piigdfirst results in|1]. | have
extended these calculations considerably for this thésisarticular we will study AdS/CFT-
predictions about the hydrodynamics on the field theory efdée duality. The calculation
presented in this section builds on the achievements inabe without any chemical potential
which is presented in_[28]. Nevertheless, this study is tts¢ @ine to take the non-Abelian
effects into account. All earlier approaches have beemict=d to thel/ (1) baryonic part of
the full flavor groupl/ (N). Also in order to incorporate the non-Abelian structure weahto
develop some new methods and ideas. These mainly unpubliskelts are interpreted and
compared with the published results [1] involving an addhiéil approximation.
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We need to write down the Dirac-Born-Infeld action in thiskground and derive the non-
Abelian equations of motion which will be differential edwas coupled through the space-
time indicesv in field components!? and also through the flavor indices We need to find
the flavor transformation(4.44) from flavor gauge fieldd* to combinations of those, which
decouple the equations of motion in the flavor indieesThen we have to find the on-shell
action to apply the correlator prescription studied in 3. Eurthermore, we need to develop
a modified understanding of how the incoming wave boundandition fixes the singular
behavior of the gauge field fluctuations at the horizon. Téésmiamounts to a distinction of
cases for thendices(4.51). In the next four subsections | present my calcutatio some
detail. A comprehensive discussion and interpretatiomvisgin subsection 4.2.5.

4.2.1 Calculation of transversal fluctuations

We will work in the D3/D7-setup described in section! 2.4 atighing quark mass, i.e. with
flat D7-brane embeddings. The coordinates we use are thinsduced in equation (3.12). In
order to find the effective action which suffices to descritmalf gauge field fluctuations we
start from the Dirac-Born-Infeld action (2J21) for a D7-bea constant dilaton field® = g,
and vanishing transversal scalass= 0 so that we get

Spr = —1Iby / d®¢ Str\/det{g + (2ma/)FY} (4.15)

whereg is the pull-back of the originally ten-dimensional metracthe eight-dimensional
brane andF is the non-Abelian field strength on the brane for a figldMaking use of the
determinant expansion formula for small values/af

LML A2 0 1 1 1
det(1 + M) = ez Mg M*5M%) g 4 M — ZtrM2 + g(trM)z +..., (4.16)

we expand the action in gauge field fluctuatiohaup to quadratic order i, which are
contained inF’. The non-Abelian field strength tensér consists of flavor componenfs”
and representation matricé$ as follows

B, = F4T" = 20, A‘;]T“ + freAb AT, (4.17)

and the field4 is comprised of a background gauge field and fluctuatidiirs the context of
the background field method of quantum field theory

A2 = 6,00 + A2, (4.18)

wherey is the constant time-component which is interpreted as tieenecal potential at the
AdS-boundary. Usind (4.16), and noting thdt= ¢!’ so thattr(g~' ') = 0 by tracing the



76 Chapter 4. Holographic thermo- and hydrodynamics

symmetricg together with the antisymmetri€, we obtain

~

Spr = —TD7/d8§ Str{\/—g\/det[l + g~ 127/ ) F}
1 /A
= —Tpy / d®¢ Str{/—g[1 + 5(27?0/)’51"(9ZZ Fsiq)
1 A /o
—Z(Qﬂa')ztr(gzz Fyoag®™ Foa) +...]} (4.19)

8 (270/)2 Y QY B F
= —TD7 d fStr{\/ —g[l - Tg g FEQFE/Q/ + ... ]} (420)

27TO{/ 2 ’ ;A ~
= —Tpy / 43¢ Str{v/=g[1n,xn, — %gm GEYFA FL o TOT + .. |§4.21)

The symmetrized flavor trace $tr . } applied to the first two terms in the action merely gives
a factor of NV, for the trace over unity while in the second term it gives

St{TT"} = trpuna {T°T" + T°T°}
= trfundvy) [T T7] +2trunaov ) (T°T)
N—— !
Z‘fabcTc
= 2trfund(Nf)(TbTa), (422)

where we have used that our flavor group generdtérare traceless. Furthermore the gen-
erators are Hermitiaff*" = 7 and they live in the fundamental representation of the fla-
vor gauge grouU (Ny). It is in general possible to choose linear combinations givan
set{7T*} such that the trace property

trfund(v,) (T%T") = ka0™ (N0 sum), (4.23)

is satisfied/[113, equation (11.7)]. The standard convergid14] fix the factok, = T for
alla=1,2,..., (NJ% — 1), where theDynkin indeXI'r only depends on the representation. For
the fundamental representation we hdye= 1/2 as we can check explicitly in the example
with Pauli matricesr® for the SU(2) isospin generatorgg, = 0%/2

a ]' a - _aoc __c 26ab
trfund(Nf)(TIsoTIg0> = Ztrfund(Nf)(é "1+ i ) = A
In the hypothetical case that our flavor generafdrsvould live in the adjoint representation
the Dynkin indexI’z would equal the value of the Casimir operafdr = Thgj = Ny.
As mentioned before, we work in the fundamental represiemntaf the flavor grougyU (IVy),
therefore we find the D7-brane action in quadratic order aofygdield fluctuations!

o 1 ab
= 50" (4.24)

2ma’)?
St? = Ty 2

Tr(27°R?) / dudz \/—gg““/g””lﬁﬁyﬁ’z,y, , (4.25)

where we have already integrated over the three angulatidins5, 6 and7 (on which none
of the fields depends) giving the fact@r? R?). With the help of equation (2.22) the factor in
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front of the action integral iri (4.25) can be written as

(2ma’)?

Tb7 1

Tr(2m*R*) = 27 "7 g, 1 (o) *R?. (4.26)

Note, that equation (4.25) still contains cubic and quasiens in the fluctuations but we
have deliberately chosen this covariant form since it iserammpact. We will neglect cubic
and quartic contributions in a later step. The fluctuatidfjgt, v = 0,y = 0, z,u) without
loss of generality are assumed to depend on tintke third directionz; = z and the radial
AdS coordinateu only while we choose a gauge such that the field has componette
Minkowski directions only, i.ev = 0, 1, 2, 3.

ﬁvﬁyﬁauu _ 48[MAIU/L]8[HAV}0L + 4fabc&[qu]A,ubAl/c + fabcfab’c/Af;Alb/Aub/Ayc/
= A0, o+ A (55 AY%)
+4fabca[u(5a35u}0,u + AZ})((Sbg(SM]O:u + AM] b) (6c35u}0,u + Au} c)
+fabc]cab’c’ ((51)35“]0# + AZ])((SC?)(SV}ON + Ai})(Csb/g(w}O,u + AH b’) (5c’351/]0M + Azﬂcéy)

This expression simplifies considerably by noting that\dgives acting on the constant
vanish. Furthermore the terms including more than two biamkud fieldsy vanish because
of the antisymmetrization. For example

0, A O 11606 1 = 0. (4.28)

The mathematical reason for this to vanish is that more tin@background gauge field term
is contracted with one single structure constant. Sinceyaeem including the background
gauge field: by our choice always has to contain the factér, it is clear that more than one
such factor forces two of the flavor indices fff° to be equal to 323 = (. Since there are
at most two different structure constants in one single wuoh asf f . AA (schematically),
we can have at most two background gauge fields in one term.oOthe two . has to be
contracted with the first structure constdrthe other has to be contracted with the other one.
Since we are interested in two-point functions we are akse fo neglect all terms that are cu-
bic or higher order in the field fluctuatiod3(AAA, AAAA,...). After these considerations
the action factor (4.27) becomes

Fo For = A9, AG oA 4 4 fo3egD000 AY A” 1 + 4 £ %00, A A"
+fa30fa36/M2Alc/Ay c + faBCfab’3M2g(]OA8A8/

+fab3fa3c’u2900AgA8’ + fab3fab’3'u2AzA,u b (429)
= 40, Ao A 4 8 f g™ 0y, A A
+2u% (" ALAS, 4 g A2 A%, — g ATAG — g ATAT) . (4.30)

Using this simplified factor (4.30) in the quadratic acti@n2@) we derive the equations of
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motion for the gauge field component§ using the Euler-Lagrange equation

555 555
= — 4.31
0 = % l5@.AT | ~ Jad (4.31)
/_ vV 1ha Tra 0 / " v fha tha
= 8 |:5(8 Ad)( gﬂﬂg FuyF,uz/):| Ad( _ggﬂﬂg F,uz/F,uz/) (432)
(4.33)
After a few simplifications by interchanging indices the afijons of motion can be written as
0 o |:\/_glili oo’ ( ’AZ’])}
+uf [5008 (vV=99"9"" AL) + V=gg" g 0, A} — 2/ —99009"“5‘0142]
—12y/=g9™ g7 [6™ (AL — Ajdosr) + 02(AZ, — Aldoor)] - (4.34)

There is one free space-time indexwhich can take values in the four Minkowski direc-
tions (zg = t,z1 = x,29 = y,x3 = z) and in the radial AdS-directiom, = u as well.
Therefore we can split equation (4.34) into five distinctaténtial equations which are cou-
pled with each other. There is also one free flavor indexhich we will consider in detail
shortly. Let us start choosing the free index 1

0 |:\/_glili 1o’ ( ’AZ’])}
+pf [5105 (v=99"g"" A%) + v=g9" 9" 0, A% — 2/=g9"g" 0o AL,
—2/=gg® g7 [6U(AL, — Albo) + 8%(A2 — A26o,)] - (4.35)

This equation only involves the gauge field components incthéirection and writing down
the other four equations we will see later, that this equatiecouples from all of them and
is therefore the simplest one to solve. We note here thattrerse metric is diagonal such
thatg" = ¢*'* and it vanishes for # ;//, so we get

0 [\/—g/m 11 ( ’Ail])}
+ufdb3 [V=99"g" 01 A} — 2/=gg*g" Dy A}]
gy [ A 1 52 A2] | (4.36)

Now recall that we have chosen the geometry suchAjat,, v; = 0, = 0, 3, 24), Which
implies that the derivatives of fluctuations in all otherrihg, x3, x4-directions vanish

617214; = 0, 85,67714; =0. (437)
Considering this gives

[\/_ g™g" (&iu‘l‘f)] = 2uf "/ =gg%g" B0 A}
=g g [ AL 4 5247 (4.38)
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Now we transform to Fourier space with conventions giverq'uaeion (3.15)

0 = —w [\/—900 11( Zu)Ad)] ‘|‘Z(] [\/—933 11 (Zchll)] [\/—944 11 (8UAC1l)j|
_zlufdb?;\/__ggoogll&oAb L \/_gOO 11 [56[114% + 5d2Aﬂ ] (439)
We abbreviate derivatives in radial AdS-directignd = A’ and sort the equation in deriva-

tives of the gauge field fluctuations A’, A” and normalize it such that the second derivative
has the coefficient one

0= 4ty O (V=09"0") \ur 97 (w2 Af — 20 f Vo A} 1 2 (AL + 6P AD)] + PP AL

\/— g11 g44 1 g44
(4.40)

Turning to the free flavor index we recall that it can take the valués2, 3 corresponding to
the three flavor directions we introduced by assuming&itN; = 2)-isospin flavor symme-
try. We split [4.40) into three equations

0 Al” (\/—gll 44)A B gOO [WQA% o Qiflb?’w,uAl{ + M2(511A% + 51214%)} +g33q2A%
- 1 \/—911944 1 g™ ’
0 — AQ” ( [ gll 44)A B g(]O [QJQA% _ 22f2b3w,uAl{ + M2(521A% + 622A%):| +g33q2A%
- 1 \/—911944 1 g™ ’
0 — avy BlZ00"0") y gN GV
- 1 \/—911944 1 g44
By using the antisymmetry of the structure constgitts = 0, f*¢ = — fb we arrive at
/ 11 44 00 2A1 — 92 AQ 2A1 33 2A1
0 — A%” \(/_ 191 I )Al o g [w 1 Zwlu 144_'_ :u 1] _'_ g q 1 ’ (441)
999 g
/) (\/_gll 44) gOO [w2A2 + 2%0,&141 + QAZ] + 33q2A2
0 = A4 A 2 LT ANTI T (4.42)
1 V=991 g 1 g4 ’
11 44 00, 2 33,2
0 = ayy V09 0Ty TG g (4.43)

11,44 1 44
V=999 g

Decoupling transformation These three differential equations for flavor components of
the gauge field inc;-direction are coupled in the first two flavor directions vehihe third
equation for the component decouples from all others. We decouple the first two equation
as well by a field transformation

Xi=Aj+id}, Yi=A] A} (4.44)
After this transformation the equations of motion for theethnew fieldsX, Y;, A? are given
by

11 44 00/, _ 33 .2
0 — x4 299797 0 g7 (n w+g Cx,

\/_gng44 1 g4
0 — yro V=99"g") g0t w) 497
- 1 \/_g“g44 L= g Ly
11 444 00, 2 33 2
0 = ayy 2WTI9T) gy TGy (4.45)

11 ,44 1 44
V=999 g
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We are working in the background given by the metric (3.12hwhe inverse components and
determinant

00 _ U 1m_ 22 33 _ U 44 uu _ 4u f (u)
g - bQRQf(u) ) g _g _g - b2R2 ) g _g - R2 9
b* RS
v—g9g = —, b=naT, (4.46)
2u3

so that the coefficients can be evaluated to
o (V=99"¢")  f'(u) U TFw?+6"¢  (mFw)?—q’f(u)

= — = 4.47
v=g9*g* fu)” g" uf(u)? - @A

where we used the dimensionless frequency, momentum anuaddeotential
w=w/2rT), q=q/2rT), m=p/(27T), (4.48)

respectively, which have already been introduced at thenhey of sectiorl 3.1.2. These
coefficients|(4.47) are singular at the horizoa- 1 and at the boundary = 0 just like in the
example given in section 3.2..2. Therefore we apply exah#yseme steps in order to gain the
indices at the horizon

§=F(0Fm), (4.49)

where the upper sign inside the bracket belongs to the irataké fieldX; and the lower one
gives the index fol;. The indices at the boundary for both fields are given by

o) = 0, Qg = 1. (450)

Now the question which index produces the solution thasBasi theincoming wave condi-
tion (which tells us to choose only those solutions which propameo the black hole horizon,
see section 3.1.2 for a detailed discussion) is a bit mor#estiian in the previous example.
Let us assume for definiteness that bathro > 0. So in the rest of this thesis we assume
that the chemical potential or m is real and writingwo in order relations we mean only the
real part ofrv. In this case there is only one index choice for the figldsincero + m > 0
and we know that the negative indéx= —i/2(w + m) corresponds to the incoming wave. In
contrast to this we have to distinguish four cases for thexraf X,

%(m m) forto > m : incoming

_ ) —4(w—m)forro < m: outgoing
- +5(r0 —m)forw > m: outgoing ’ (4.51)

+% (1w —m)formw < m : incoming

so fixingm we choose the incoming solution by choosing the first indekeffrequencyw
Is greater or equal to the chemical potentialand we choose the last indexfis smaller.
Let us carry on considering; first. We also need to modify the hydrodynamic expansion
Ansatz (3.24). Recall that our approach is to split the deaguom the regular behavior in the
solution according to

X, =(1—u)F(u), (4.52)
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where F' is a regular function ofi.. Our first choice is that the chemical potential is of the
same order as the frequeney~ m and therefore the small quantities to expand the solution
in are (o — m) andg?. In other words we expand in the spatial momentfnaround zero
while we expand in the frequeney around the fixed value of the chemical potential

Xi(u) = 1—w)’ (F+(w-—mF+9°Gi+...), (4.53)
Xi'(u) = —pl—uw)"" (Fo+ (0 —m)F +q°G1 +...)
+(1 =)’ (F'+ (v —m)F + ¢°Gy +...) (4.54)

Xl"(u) = ﬁ(ﬁ — 1)(1 — U)ﬁ_Q (FQ + (m — m)F1 + q2G1 + .. )
—26(1 —w)’ " (Fy' + (0 —m)FY + ¢°Gy' + ...
+(1 =)’ (F"+ (v —m)FY +¢°Gy" +...) . (4.55)
For definiteness let us consider only the cdse —i(rwv — m)/2 wherer > m. Plugging this

expansion into the equation of motidn (4.45) and seperatidgrsO(1), O(q*) andO(ro—m)
from each other gives

2u
O(1):0 = Fo”—l_ugFO'a
7 7 U 2u
—m): 0 = F, Fy + B/ — F, — F’
O —m) T A B R SRy o s R FR R
2u 1
.0 = G - G/'————F,. 4.56
O(a) 1 [ — 2! ) 0 ( )

Alternative hydrodynamic expansion By choosing the hydrodynamic Ansaltz (4.53) we
assumed from the beginning that the frequency and chemitahpal have to be treated at
equal footing. We can check this assumption by taking a #lighore general Ansatz

Xi(u) = (1 —u)’ (Fy+ wF +mH; +q*G1 +...) . (4.57)

The key point here is that we still assume m, g> to be of the same order but we allow an
individual expansion coefficient/; for the chemical potential. Using this more general ex-
pansion in the equation of motidn (4.45) and seperatingre@€l), O(g?), O(ro) andO(m)
from each other gives

01):0 = F'- %Fo’,

Olr): 0 = 2(1 i MR i it (1- u;;t(l el Qiiuuyﬂl’
O(m): 0 = —ﬁ% = ﬁFO’ ~ u;il R+ g iuu)ZH{,
O): 0 = G — oG u(liUQ)FO, (4.58)

Here we see that the coefficierfis and /7 have to satisfy the same equation of motion. This
is already clear from the start if we look at the differen@guation((4.45) and the Ansatz so
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that we note thain andw always appear as a suw — m), at least at linear order v, m
which we solely consider here. So there is no singler v, so both have identical factors
in the equation of motion and thus their expansion coefftsi@ave to be identical (provided
both satisfy the same boundary conditions)

H =F. (4.59)

We have now learned explicitly that our first Ansatz (4.53)ity justified.

Solving the hydrodynamic differential equations Our efforts have recast our problem
into a set of differential equations (4/45) which are onlygled through the leading order
function F,. ChoosingF, to be constant (with respect to the radial coordindig)= C' is
compatible with all the equations of motion and decouplessifstem

O(I)FQ = C,

1C " 1Cu 2u ,
Olw—m): 0 = Sa e T~ gy ~ aoa
2u C
2 . . //_ /_
O(q ) 0 = G1 71 — u2G1 7u(1 — u2) . (460)

These are effectively first order differential equationgwvain inhomogeneity and we can solve
them with

FO — C,
1C . 1+u
o= —1
1 9 n 9 9
G = 2—6;[7T2+121nu1n(1+u)+12Li2(1—u)+12Lig(—u)}. (4.61)

The functionLi,(u) is the double logarithm and the polylogarithm in generalefiried as

Li,(u) = n:f 4
n=1

Note, that we would not get these solutions (4.61) simplggidathematica since the bound-
ary conditions we have to satisfy here are a bit tricky. Jasdescribed in sectidn 3.1.2 the
general solutions foF; andG; each come with two integration constants which have to be
fixed by requiring thatim,,_.; F; = 0 andlim,_,; F; = 0. In this horzion limit two terms

in each solution become divergent and one has to impose titktiom that these cancel each
other in order to get a regular solution. See also equatidt®}3and the discussion below
it. The constant” can now be determined in terms of the boundary fields, momeaid
frequency as described in sect/on 3.1.2 and we get

k
. (4.62)

e

S Gl

= . 4.63
8 — 4w In2 + 72g? ( )
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Now using the solutions (4.61) and the expression(fdrom (4.63) in the hydrodynamic
Ansatz (4.583) we get the solution to the transversal field

8X Y (1 —u)~*5" i 14u
Xip = : 14+ (v —m)=1 4.64
b 8+ 12¢2 — 4iIn2(r0 — m) e —m)y = (4.64)
2
+g—4 (7 +12Inuln(l 4 u) + 12Lis(1 — u) + 12Liy(—u)) | forro > m,
while the derivative of its finite part turns out to be
X1o' =i(ro —m) XY form > m. (4.65)

We have also included the Minkowski indexhere because writing down the equations of
motion for the componenk, we discover that it is identical to the equation f&f. Now
recall that we have choosem > m. Finding the solution for smaller frequencias < m
amounts to redoing the above equation with replacing alfréguency potential brackets by
absolute value§v — m) — | — m| = (m — tv) and keeping all the signs as they are. So we
only have to switch the order in the final solution to get theakiinequency solution and we
can write

8XPW(1 — u)—i"z" i, 14+u
X1, = : 1 —10)=1 4.66
b2 8 4+ 72q% — 4iIn2(m — 1) Fm—w)y =5 (4.66)
2
+g—4 (72 + 12Inuln(1 + u) + 12Lis(1 — ) + 12Liy(—u)) | formw < m,
while the derivative of it’s finite part is given by
X1o' = i(m —w) XY form < m. (4.67)

Similarly we get the solution for the other flavor combinatiteldsY; » by an analogous
computation replacinov — m) — (1w + m)

8YS (1 —u)="2" i, 14u
)% ’ 1 —1 4.68
b 8 + m2q2 — 4iIn2(1v + m) Fwtmsin— (4.68)
2
+g_4 (72 + 12InuIn(1 + u) + 12Liy(1 — u) 4 12Liy(—u)) | for anyro,
and its derivative
Y12 = i(ro + m) X7y for anyro . (4.69)
Finally the third flavor direction components are obtaingahg2€]
A3, = i A7) for any . (4.70)

Comparing our solutions with those at vanishing chemicaépioal . = 0 [28] we learn
that turning on a constant chemical potentialesults in the substitution
{ t— (v —m) forro>m

w— (m—1) forw<m (4.71)

This is due to the fact that the waly, — ¢, + A, in which we introducen makesu formally
identical to a time derivative. The easiest way to undetsthis fact is to note the form of the
covariant derivative appearing in the Lagrangian in timeation Dy = 9y + Ay = 0y + L.
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4.2.2 Correlators of transversal components

In this section we compute the on-shell action for transaleasd longitudinal or time-like
components of the gauge field. Furthermore the correlatbtsansversal components are
computed here. Let us first assume> m for definiteness.

The non-Abelian on-shell action In order to apply the correlator recipe and identify the
relevant terms in the on-shell action to be evaluated at thedbary, we need to compute the
on-shell action first. Starting from the action (4.25) tdgptwith the explicit expression (4.30)
we integrate the action by parts to obtain

u=1

u=0

2ma)? /
Sg; = TD7TR(27T2R3)%2 {/d4x [\/—gg“g”” ((’LAZ)A&]

- / d*edu [2@/(«/_—gg““/g””/a[MAff])Aff,
—? 8 8 /=g g% g (A — AGig) AL
F2 U —gg" g (9, Ab AG — (%A;’./Aj)] } . (4.72)

Note that we recover the AdS-boundary term (the first ternmguagion (4.72)) which is also
present in the Abelian background. All other (Minkowski)upadary terms vanish by the
standard QFT normalizability argument for fie[d8'VA, |22 =0, i.e. the fieldA, () has
to vanish at infinity in order for the action to be finite and foe theory to be normalizable.
In addition we have three non-vanishing terms with the fukgral over the four Minkowski
directions and over the radial AdS direction.

We now identify the second and third term of this on-shelicac{4.72) with parts of the
equation of motion. After multiplying the equation of mati¢4.34) with the fieIdAz and
reordering we get

20, (V/=gg"" g 0 Al AL — 11 f5 1295 /=g g™ giT (A% — AG60) AL (4.73)
= —pfo {85[\/ —g9% g™ AL)AG + /—gg™ g™ (0. AL AL, — 2(30141;)142/]} :

Substituting this into the action (4.72) finally yields the-shell action

2ma’)? )
Somanel = TD7TR(2W233)%2/ d%{[\/—_gg“g”” (91 A2) AL

u=0
—2uf / du\/_—ggoog?’?’@gAl[’?,Ag]} . (4.74)
Since we transformed the solutions to flavor combinati@psY, we also need to transform

the on-shell action to obtain correlators of the new field borations. In order to make the
result obvious note the relations

Al (4.75)
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and we get the on-shell action for flavor fieldls Y andA? in momentum space after a Fourier
transformation of each gauge field fluctuation

2a’)?
S(§r21)-sheII: TD7TR< ) (27T2R3)2
d4q 44 4 1 / ! 3/ 43 ot
< | @ { V=344 5 Oy + Y/ X) + AT A3 (4.76)
up=0

1

+ piq / duy/=g9"g* (X0Ys — Yo X)) }
0

The term in the last line merely gives contact terms which wglect here. Our on-shell
action [4.76) superficially suggests that the off-diagaratelators, such a&,", vanish.
However, due to the fact that some of our bulk solutidghsandY; depend on more than
one boundary field (as we will see later in elg. (4/1106)), thetr;-component off-diagonal
correlatorsys, G5 do not vanish.

Correlators Using the solutions (4.64) in the on shell action (4.76) aspribed by the
recipe (3.10) gives the transversal correlators

2ma’)? XY,
G = GXY = (—2)TRTD7( mo’) (272 R*\/—gg™ gt 2 (4.77)
XlYi u—0
The factor can be simplified to
(271'0/)2 2153 R3TR
—2) TrT; 2m°R’) = ————— 4.78
( ) RLD7 ( T ) 327T3(()él)2g3’ ( )

which combines with factors from the metric components te tfie overall factoN, 7372 /4.
Then [4.77) yields the correlators

NIRRT 16 + 722 + 4i(w — p) In 2

GXY =GXY = - — 4.79
M 2 s (@=n) 16 4 27m2q2 + 8i(w — p) In 2 (4.79)
Expanding the fraction in a Taylor double seriegtin— m) andq leaves us with

N./TRpT 2q? .

G =Gy = —i 8: (w—p) |1+ ng + divergenO(q*) +...| (4.80)
N TRpT
= —i SR (w—p)+...form >m, (4.81)
Yis

where we have renormalized all expressions in the secopdsibtracted the divergent term
of orderg?). Recall that we have to go through the same procedure wétbtter indexs for
small frequenciess < m. By analogy we know that the correlator turns out to be

N.TRT
—1

XY _ ~XY
Gy =Gy =
8

(p—w)+... form <m. (4.82)
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The other nonzerd” X-flavor combination gives the correlatoés’* which involve a
derivative of the field” for which we have only one index choige= —i(to + m)/2.

N.TRT
7
81

YX _ nYX __
Gll - G22 -

(i +w)+ ... foranymw. (4.83)

Gauge fluctuations pointing along third flavor direction émas along the background gauge
field do not feel the chemical potential. Their correlatitun® out to be equal to those found
at vanishing chemical potential |28] up to a different nolimaion (the correlators from [28]

have to be multiplied by 4 in order to match the corresponaings computed here). Our

correlators read
N.TRT
1

47

All other flavor combinations vanish since the on-shell @tt(4.76) does not contain any
combination such a&’ X, Y'Y

33 _ 33 __
Gll - G22 -

w+ ... foranyw. (4.84)

4.2.3 Calculation of longitudinal fluctuations

Starting from the general equation of motion (4.34) we ckoibe free indexs = 0, 3, 4
which gives a system of three coupled equations of motioth®icomponents of gauge field
fluctuationsAg, Ag

a 00 44 33 »

c=0:0 = A"+ ?f/—vggog44))A0 - % [® AL + wg A% — iquf™® AL | (4.85)
a 33 44 00

r=3:0 = Al BIEE) 4 O [0+ )

i (2w Al + qAl) — (57 AL+ 07 A2)] | (4.86)

33
c=4:0 = wAg/ — qg—OOAgl — wfdb?’Ag,. (4.87)
9

Recall here that our gauge choice has fiXgd= 0. Using the metric coefficients (4.46) of the
black hole background gives

dl/ 1

c=0:0 = AL — o [a>Af + rogA] — iqm ™AL (4.88)
" / u ! 1
c=3:0 = Ad + (( ))Ad IO [(0®Af + g Af)
—im f% (2w AL + qAf) + m? (87 A3 + 07 A3)] (4.89)
c=4:0 = wAY 4+ qf(u)AL — im s> AL (4.90)

These three equations for the two componetjts A5 are not independent. Equations (4.88)
and [4.90) imply((4.89). In order to see this we rewrite (.90

/ o

T AL T vy g0t qa
0 mf(u) 3 +me 0, Ao

o)A 4 AT i A (4.91)
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Using (4.91) ini(4.88) gives

7 ! / 1 m " tom
0= A+ W 4oy g AL + w2 AL) —if (—Ab +7Ab) . (4.92)
R gt ) ST g e
We compare this expression to the third equation in the sy{#e89) and conclude that, if
these two expressions ought to be identical, the followongadion has to be satisfied

m " tom 1
—ifdb?’ ( Ab 4 Ab) — —imfdb3 2mAb + C[Ab + m2 5d1A1 4 5d2A2 )
af) ™ upap ™) = gt ST ORAL S 0D 0T o)
(4.93)
In order to verify this relation we go one step back from theegal equation of motion (4.34)

and rewrite the term quadratic in the chemical potemtiah terms of structure constanfé’
of the flavor group

m? (67 A} + 6P A3) = —m? fP3 0 AG (4.94)
Using this identity inl(4.93) we get
m dab3 1 .
0= T (g + gL — iqmyag)| (4.95)

Coaf(w) |0 uf(w)

and comparing tc (4.88) we find that the expression in bradkatentical to the right hand
side of the equation of motion (4.88) and therefore has tastiamn this way we verified that
equation((4.92) implied by (4.38) and (4.90) is equivalent.89). We thus effectively have
two coupled second order differential equations for two ponents. These we can decouple
as far as the Minkowski indices are concerned by rewriltin8&)

uf(u) " q m
Ad = - Ad —gAg+zEfdb3A’§, (4.96)

and using it in{(4.90) gives

_oqd (uf(w)" 1 2 4d! 2 d’ 2 rdb3 rba3 qal o db3 Ab’
0= 4"+ S AT s (o248 — 2 f(u) A — w2 2 47 — 2ivom [0 A7) |
(4.97)

which depends only on gauge fluctuation componefitsn time direction. This equation
can be split into three equations, one for each flaver 1, 2, 3 and we note that the flavor
structure couples these three equations

11, ! " ]- / /
0 = avy W) e, [(mQ— f(u)g® + m?) Al —zmmAg] , (4.98)

uf(u) uf(u)?
a2 (uf(u))" on 1 2 2 2\ 42/ . 1/
0 = A A [(m — f(u)g? + m?) A2 +2meA0] . (4.99)
0 = 4y WO o e pg2)a (4.100)

uf(u) = uf(u)?

The flavor coupling can be resolved as in the transversallmagse of a flavor transformation

Xo= Ay +iAd, Yy=A;—iA7, (4.101)
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which has the same structure as (4.44), and we are left with

0 — XO/// + (1;]}((7;)))/)(0// + (1‘0 — :}(q;j(u>q XOIa (4102)
0 = Y+ (Z‘é((z))) Yo' + (mﬂg}(;)f Wy, (4.103)
0 = 4 W) o L2 gAY (4.104)

wf(u) =0 uf(u)?

From this point on the solution of this decoupled system afagigns almost concurs with
the method applied in the transversal case 4.2.1. The obbtantial difference is that because
of the equations being second order equations for the diséeaX,,’, Y,’, we have to choose
the Ansatz

Xos' = (1 —u)’F(u), (4.105)

wheref is a regular function of which is different forX, and X;. We have chosen an Ansatz
for the derivative of the field instead of choosing this Aadat the fieldX itself as in (4.52).
Proceeding analogously to the transversal case we obfaitioss for the derivatives directly
as

bd bd

XOI — 2 bid(ym_m)_CI bdy =0
a Xoi($£";;T;§X3 + lir% Ine [qQngy+ (m— m)qX??dy} form <m
(4.106)
Qdey+ o+ m dey ‘
vy = 3 e im)_;‘; L limine |@2YPY 4 (o m)ay Y] (4207)
2A3bdy Adey
A = T imt“c’lj - limne [q2A5"Y + g a3™] (4.108)

for the time components and similarly for the spatial congia

bd bd
_<m*m>qi)((rgj;§‘j;2m)2xs " limIne [(m —m)g XY + (o — m)QX??dy] forrm >m

Xgl = bd bd =0 )
— (m_m)qujng;Qm)zXS L _ lin% Ine [(m — m)ngdy+ (m— m)QX??dy} forro <m

(4.109)
bd bd
yy = _(mtmaYy™+ (w4 m)¥,™

i(o 4+ m) — g2
—limIne [(m Fm)aYY 4 (o + m)Qy;f’dy] , (4.110)
A = D A e g ARt 4 2435 (4.111)
3 210 — q2 e—0 3 3

Here just as in the case for transversal fluctuations we reetldose the appropriate signs
for the solutions to the fieldX, ; in order for the index to be negative such that the incoming
wave boundary condition is satisfied as described in theéraal case belovi (4.51).
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4.2.4 Correlators of longitudinal components

The longitudinal and time component correlators are evatu& analogy to the previous
section and we obtain
N TrTq?

XY _
G = Srite = =D (4.112)

N.T T(w — )2
f;XY ct R 12 11
p— 4- 3
33 8rli(w — p) — Dg?]’ ( )

NIRRT (w — p)q

GXY — _ = GXY 4.114
03 87r[i(w _ /J) _ Dqg] 30 > ( )
N TRrTq?
GYx _ c 4.115
v 8li(w + p) — Dg?)”’ (4.115)
NTRT (w + p)?
QYx _— ctR 4.116
57 Salite 1) - D] (#410)
GYX - _ NCTRT(W + M)q _ GYX (4 117)
03 8nli(w + ) — D¢? 30 '
N.TrTq?
a3 — ctR 4.118
00 drfiw — Dg?]’ ( )
N TrTw?
a3 — 'R 4.119
33 drfiw — Dg?]’ ( )
NCTRT(UQ
Goz = “infiw — D@ G, (4.120)
where we have introduced the coefficient
1

We have not written this out here but the above correlat@siaderstood to change sign in
the same way the transversal ones did. This means we have aboelators forw > ;. but
we need to replacev — i) — (p—w) forw < u for the same reasons discussed below (4.50).

4.2.5 Discussion

This section gives a physical interpretation of the effect®iing from adding a finite constant
isospin chemical potential to th& = 4 SYM theory coupled to a fundamentdl = 2
hypermultiplet. As seen in the previous sections on theityrade this addition amounts
to adding a background gauge field time component in the Ad®v&rzschild black hole
background. Furthermore, we compare the approach preskate to the approach taken
in [2] which neglects more terms, in particular those of or@m?), in the action than the
present approach. We will see that the resultslof [1] whigieaprather cumbersome undergo
a natural completion by taking into account the neglectedsef order®(m?). The keypoint

to note is that the additional approximation in [1] lead to midentification of the leading
order term.



90 Chapter 4. Holographic thermo- and hydrodynamics

Discussion of [I] The approach taken inl[1] is identical with the one preseimnethe
previous sections up to one additional approximation. &t garlier work[[1] it was assumed
that the chemical potential is small < 1. Therefore we expanded the action to quadratic
order in fluctuations to arrive at an equation identical t3@4. But then we went on also
neglecting the terms of ordé?(m?) in that action which leads to the equations of motion

0 = 20. [\/—gg’“/g“/ (3[,414%)}
S ™ (60005 (V=09™9™ Al) + V/=59% g™, Ay — 2/ 59" g 00 AL

The approximations taken here impty~ A,”, (GVAM)Q < 1.
Following the standard procedure to study the singular \iehaf the solutions at the
horizon, we essentially find the same indices as before ir{#480), but with the orde® (m?)

missing
1 1
— R — _— 2 2
B=Fy/ 4(m:|:m) :F\/ 4(m F2rom+m?). (4.122)

setto O
As a result of this the index obtains a non-analytic struetur

1 1o 2m
i T orom) = = 1 2™ 4.12
B$\/4(m$mm) FolF o (4.123)
inheriting this non-analytic structure to all the solusorit this point in the earlier approach
we had to take a further approximation in order to carry oetitidicial procedureand the
hydrodynamic expansigoroperly. The index containing the square root mixes dgffieror-
ders of the hydrodynamic expansion parametgrg®. Therefore we approximate the index

throughm > 1w < 1 by
B=Fy[or oy on. (4.124)

At this point an intricate contradiction with the first appimation O(m?) ~ 0 taken in [1]
emergest. As we know from our full calculation including terms of ord®(m?) yields
analytic indices and no second approximation is needed efieiess, if we would like to
we can simply take the full index (4.1122) without settimg ~ 0, take the full equations of
motion at this point and try to neglect the ord@fm?) by m >> m < 1. Doing so we are
forced to conclude that? >> w?. Therefore it becomes clear now from the full calculation
that we should have included the ord8(m?) rather than the orde®(w?). We also see
that the term quadratic in chemical potential is even latban the mixed term which we
considered in[(4.124). Neglecting the terms quadratic énctiemical potentia®(m?) right
from the beginning in[1] has obstructed the clear view ofditgation that our full calculation
now admits.

As a result the cumbersome combination of approximations v andw produced non-
analytic structures in the correlators which we misidesdifas frequency-dependent diffusion
coefficients.

2The author thanks Laurence G. Yaffe for drawing his attentm this point and especially for all helpful
discussions of this.
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Technical interpretation and quasinormal modes We can use the intuition we have
gained from our hydrodynamic considerations in section13atd from the example calcu-
lation in!3.1.2 to identify the coefficienD appearing in the correlators (4.1.12) to (4.120) on
the gauge theory side with the diffusion coefficient for thesipin charge we have introduced.
Comparing our correlators to those at vanishing chemicedrg@l we learn that the main ef-
fect of an isospin chemical potential is to shift the locatad poles in the correlators b ..

In particular this can be seen from the dispersion relatibickvwe read off the longitudinal
correlation functions

w=—iDg¢* + pforrw > m, (4.125)
w = iDg¢* + pforw < mand only inG*Y" (4.126)

where the positive sign gf corresponds to the dispersion of the flavor combinatiért’ and

the negative sign qf corresponds t6:¥ . For the third flavor direction correlatoés®® there

is no chemical potential contribution in the dispersiomtiein. Looking at the transversal fla-
vor directions withro > m we note that the imaginary part of the pole location is ungean
while the real part is changed from zero to the value of thersb& potential:. So the diffu-
sion pole is shifted from its position on the imaginary awitite left and right into the complex
frequency plane. According to the AdS/CFT hydrodynamitsrpretation this corresponds to
shifting the hydrodynamic modes (poles in the retarded gdlgory correlator are identified
with the quasinormal frequencies as discussed in sect®)noB.equivalently on the gravity
dual side to shifting the quasinormal modes in the compleguency plane as shown in fig-
ure(4.l for the two examples = 0.1, 0.2. To be more precise we observe a shift in the
frequency or energgto + m) of the SU(2)-flavor gauge field fluctuations. Note that the other
solution for the case < m would produce a pole/ quasinormal frequency in the upper-com
plex frequency plane corresponding to an enhanced mods sohition is unphysical since if
we have the finite chemical potentialthen any perturbation introduced into the system has
to have this minimum energy at least, i.e. only perturbaiaith o > m can form inside
the plasma. Now since we are working at finite spatial momantior that perturbation, the
energy of that excitation needs to be even larger than

In figure[4.2 we see as an example the two spectral funcfRlys = —2ImGyY (from
equation [(3.60)) valid in different regions (see seciighB3for a discussion of the spectral
function). The red curve is the spectral function for theegas< m while the black curve
shows the case > m. In any case it is true that the spectral function is non-hegaince
the negative parts are cut off because they lie outside therr®f validity for that particular
solution. Moreover, only the one which is cut off belowv= m (black curve in figure 412
for v > m) is physical, i.e. the red curve is discarded entirely.

The right plot in figure 4.3 shows the dependence of the pealerspectral function on
spatial momentumg = 0.1, 0.3, 0.5 (in units of 27T’). Increasing the momentum shifts the
peak in the spectral function to larger frequencies whil¢ha limit ¢ — 0 the peak ap-
proachesv = m. This behavior confirms the interpretation given above ofeaatation
having to have at least the energy= m in order to be produced in the plasma. The de-
pendence on the chemical potential is shown in the left dlfigare/4.3. The peaks and the
frequency cut-off ato = m, even the whole spectral function is shifted to a higherdeswy
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by the amount of the chemical potential. The peak appearng is the lowest lying one in
a series of resonance peaks which under certain circunestame will identify with quasi-
particle excitations in section 5.1. It is important to ntitat this particular diffusion peak is
not contained in the spectra computed in sectioh 5.1 bec¢aukat section we sef = 0 for
simplicity. Nevertheless the higher peaks and quasinomaales show similar behavior. In
the present setup the peak is just interpreted as a resoimatimeplasma which corresponds
to the diffusive hydrodynamic mode at small g, m < 1. Note that the high frequency tail
for valuesto « 1 is not physical since this is the region where our hydrodyinaxrpansion
breaks down.

The most striking feature here is that the peak in the sgdatmation does not appear di-
rectly below the pole in the complex frequency plane buthghigshifted to a higheRe to.
Looking at the contour plot this behavior can be traced badké antisymmetric structure of
the pole. The spectral function surfe®&Re o, Im 1v) over the complex frequency plane as
shown in figure 4.2 is antisymmetric around the pole with tigh iRe ro side being positive
showing a pole at-oco and the lowRe tv side being negative showing a pole-atc. From
figurel4.2 it is also obvious that the poles in the spectrattion deform the spectral function
surface antisymetrically such that the spectral functiomav = 0 is deformed antisymmet-
rically accordingly receiving the structure shown as thechkl(physical) curve above = m
in the left plot of figure: 4.2. Note that this behavior is gtilesent if we set. = 0 such that the
diffusion pole lies on the imaginary frequency axis, but pleak of the spectral function ap-
pears at a shifted positian o< +=D¢?. A computation of the residues (see alsa [49]pat 0
confirms this behavior for the correlatars, and(Gs; while the mixed correlatofys gives a
peak in the spectral function centeredwat 0.

Physical interpretation The physical interpretation of this frequency or energytsbads
us into the internal flavor space. Switching on a backgroundyg field in the third flavor di-
rection only and letting th8U (2)-fluctuations about it point into an arbitrary internal ditien

is completely analog to the caselarmor precessioim external space-time. Larmor preces-
sion of a particle with spin, i.e. with a finite magnetic morngnexternal space (Minkowski
space-time) occurs if for example an electron (3pjir= 1/2) is placed in an external magnetic
field B. If themagnetic moment of the electron points along the external fietd| B then the
electron does not feel the field and nothing is changed. lirasinto that the transversal spin-
components or equivalently spins entirely orthogonal éxttagnetic field feel a torqua x B
leading to the precession of the spin around the magneticHBelThe frequency of this pre-
cession depends on the strength of the external field as welh ahegyromagnetic moment
taking into account quantum effects and is called Larmagudescy. Let us choose the geom-
etry with the magnetic field pointing along the third spaceedion, then the torque on the
magnetic moment becomes

Mo Bs
mx B = —my B3 . (4.127)
0
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Figure 4.1: Left plot: The analytically computed locatiditloe poles in the flavor-transverse
correlation functiongG*Y and G¥X at finite chemical potentials = 0.1 (red
squares) and gt = 0.2 (green diamonds). The left most pole corresponds to
the combinatiort” X, the one in the middle t83 and the right most one t& Y.
Right plot: The contour plot shows the value of the spectratfion near the pole
for 4 = 0.1 in the complex frequency plane.
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Figure 4.2: Left plot: The spectral function computed frdrma two correlators is shown ver-
sus only real frequencias € R for the chemical potentiah = 0.1. We have
chosen to include the negative branches for completendssobe that the in-
coming wave boundary condition always selects the poditieach such that the
spectral function is always positive. Right plot: The spactunction surface is
shown over complex values of the frequency. This plot shdwsstructure of the
spectral function around the diffusion pole shiftedRioro = m = 0.1. Note that
the left plot is a vertical cut through the right plot along filanelm v = 0.
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Figure 4.3: Left plot: The spectral function in transverialor direction and longitudi-
nal space-time directiofR;) for different values of the chemical potentjal=
0.1 (blue), 0.3 (light-blue), 0.5 (purple). For simplicity we have chosen =
1/(2nT) = 1, ¢ = 0.1 (this means that we set the temperatur’te- 1/(27)).
Right plot: This is the same picture as the left plot with tHeebcurve being
identical to the blue curve in the left plot but the other @s\correspond to
a fixed u = 0.1 and changing momentum = 0.1 (blue), ¢ = 0.3 (green),
q = 0.5 (red).

Our situation for the flavor field fluctuations is completehadbgous except for the fact that
our precession takes place in the internal flavor spacerrtithe in space-timé We have the
torque on the flavor field fluctuations inside flavor space

X 0 NG
Y | x| 0 ]=]| —uX |, (4.128)
A3 i 0

where the components correspond to the three flavor direcfib! + 7%, T — T2, T3} in
the case ob U (2)-flavor. Assuming that components Y, A% andy are positive, we conclude
that.X andY are precessing with opposite sense of rotation. The flavdrifeamor frequency
is given by the chemical potential = ;.. The chemical potential is the minimum energy
which an excitation has to have in order to be produced angagated in the plasme,i, =
m.

Problem at the horizon We have introduced the chemical potential in our D3/D7setu
in the simplest possible way by choosing the correspondragity background gauge field
componentd, = .+ ¢/p + ... to be constant throughout the whole AdS bulk. This includes
the special case that this gravity field does not vanish abldoek hole horizon. Unfortunately
there remains a conceptual problem with this simple conptatential apporach. Studying the
AdS black hole metric (3.1.2), we see that in these coordsnati¢he horizon: = 1 the time
component of the metric vanishgg goo = 0. Therefore a vector in time direction such@®s

is not well-defined in these coordinates. One possibleisoltid this problem is to claim that
the background flavor gauge field should vanish at the hofizdtevertheless we can argue

3The author is grateful to Dam T. Son for suggesting this prissation.
4The author is grateful to Robert Myers and David Mateos fanfig this out and suggesting to work with a
non-constant background flavor gauge field.
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that the constant background field approach is still justifie a qualitative estimate. Com-
paring to figuré 4J5 in the next section where we choose a postant background field,
which vanishes at the horizon, we notice that the backgrgmde field solving the equa-
tions of motion is constant almost everywhere. Only in a $nmeglion near the horizon it has
a non-zero derivative which drops quickly to approach zerihé bulk as seen from the slope
of A, in figure[4.5. Since we are interested in the boundary theolyy we can argue that the
constant background field is a good approximation in thabregraking in account the non-
constant behavior of the flavor background near the horizerely influences the equation
of motion (not the on-shell action for correlation funct®)nSolving the equations of motion
for gauge field fluctuations we see that the difference is argiift of values at the boundary
coming from integrating the peak near the horizodjnl,.

In order to incorporate both the simplicity of a constantdgaound field in the bulk and the
vanishing boundary condition at the horizon we could usetieéa functiornu(u) = O(u —
uy)p With a constan.. Nevertheless, the derivative of this potential has a qedtk at the
horizon and we have not studied yet how this influences oupcdation. Finally we should
note that there may be other background field configuratiohsng this setup which might
not have to vanish at the horizon. In order to study this paitwould have to go to non-
singular coordinates such as Kruskal coordinates.

4.3 Thermodynamics at finite baryon density or
potential

In this section we will review the thermodynamics of the sgly coupled thermal field theory
dual to a D3/D7-brane configuration in the AdS black hole lgaoknd (3.12). This section
summarizes the results of the work of Myers et al. on thisa¢gi,/52, 56| 41] and provides
a few additional remarks. This will help us to interpret owmnaresults within this and similar
setups that follow in the next sections and chapters.

Except from changing the radial coordinate framo o we also have to be careful with
the definition of the thermodynamic ensemble in which we aogkimg. It is crucial for
the understanding of all brane thermodynamics to undeddtaat we can work either in the
canonical ensembler in thegrandcanonical ensembl&he canonical ensemble is in contact
with a heat bath only and we work at an arbitrary but fixed chatgnsitynz. In contrast
to this situation the grandcanonical ensemble additigrialin contact with a particle bath
such that the chemical potential is fixed at an arbitraryealn the thermodynamic limit both
ensembles are equivalent but we will see that there are [@p@®e regions in one ensemble
which we can not reach in the other. Therefore it is instugcto consider both.

Brane configuration and background Let us describe the gravity dual of the canonical
ensemble first, i.e. we fix the charge density which in our tsigke baryon charge density;.

We consider asymptoticalljidSs; x S° space-time which arises as the near horizon limit of
a stack ofV,. coincident D3-branes. More precisely, our background isldfi black hole,
which is the geometry dual to a field theory at finite temperafsee e.gl 128]). We make use
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of the coordinates of [42] to write this background in Minkskisignature as

d32=1<£)2 (_f7~2dt2+fdm2)

2\R
R\? (4.129)
+ (E) (do? + 0%d3),
with the metricdQ? of the unit5-sphere, where
4 4
O 3 i
g - —, — 1 + -—
f(o) S f(o) )i (4.130)

R* = 47Tgcho/2, oy = TnR%

HereR is the AdS radius,g, is the string coupling constant, the temperaturey, the number
of colors. In the following some equations may be written enconviniently in terms of the
dimensionless radial coordinate= o/, Which covers a range from = 1 at the event
horizon top — oo, representing the boundary @fl.S space.

Into this ten-dimensional space-time we embégd coinciding D7-branes, hosting flavor
gauge fieldsd,,. The embedding we choose lets the D7-branes extend in editiins ofAdS
space and, in the limjt — oo, wraps anS® on theS®. It is convenient to write the D7-brane
action in coordinates where

do?® + 0*d02 = do® + 0*(d#* + cos® Adp* + sin? HdQ3), (4.131)

with 0 < 6 < 7/2. From the viewpoint of ten dimensional CartesihSs x S°, 0 is the angle
between the subspace spanned by the 4,5,6,7-directidoswhich the D7-branes extend
perpendicular to the D3-branes, and the subspace spanniba By9-directions, which are
transverse to all branes.

Due to the symmetries of this background, the embeddingsrakpnly on the radial co-
ordinatep. Definingy = cos#, the embeddings of the D7-branes are parametrized by the
functionsx(p). They describe the location of the D7-branes3j9-directions. Due to our
choice of the gauge field fluctuations in the next subsecti@remaining three-sphere in this
metric will not play a prominent role.

The metric induced on the D7-brane probe is then given by

ds® = E <£>2 (—J; dt* + fdwz)

2\R

1 /R\*1— 2+, (4.132)
+- | — do

2\ 1—x?

+ R*(1 — x*)dQ;.

Here and in what follows we use a prime to denote a derivatithe n@spect t (resp. top in
dimensionless equations). The symh6Fg denotes the square root of the determinant of the
induced metric on the D7-brane, which is given by

V9= 93% (1- Xz)\/l — X%+ 02X (4.133)
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The table below gives an overview of the indices we use ta tefeertain directions and
subspaces.

AdSs 93
coord. names 2 ' 2 2* o -
Uy Vy e
indices Uy Jyens 0

0 1 2 3 4

The background geometry described so far is dual to thehak 4 supersymmetric
SU(N.) Yang-Mills theory with N, additional ' = 2 hypermultiplets. These hypermulti-
plets arise from the lowest excitations of the strings shieig between the D7-branes and
the background-generating D3-branes. The particles septed by the fundamental fields of
the ' = 2 hypermultiplets model the quarks in our system. Their mésss given by the
asymptotic value of the separation of the D3- and D7-braimethe coordinates used here we
write [59] B

jﬂ_j; = 2= Im px(p) =m, (4.134)
where we introduced the dimensionless scaled quark mass

In addition to the parameters incorporated so far, we ainafdescription of the system at
finite chemical potentigl and baryon density . In field theory, a chemical potential is given
by a nondynamical time component of the gauge field. In theityrdual, this is obtained by
introducing ap-dependent gauge field componehy p) on the D7 brane probe. For now we
consider a baryon chemical potential which is obtained ftbhel/(1) subgroup of the flavor
symmetry group. The sum over flavors then yields a factalN pfn front of the DBI action
written down below.

The value of the chemical potentialin the dual field theory is then given by

p= lim Ay(p) = on il (4.135)

p—00 2

where we introduced the dimensionless quaniifpr convenience. We apply the same nor-
malization to the gauge field and distinguish the dimensiaqiantity A from the dimension-
|eSS/I0 = AO (27’(’0/)/@]{.

The action for the probe branes’ embedding function and gfielyls on the branes is

Spel = — Ny Tp7 /dgf | det(g + F)|. (4.136)

Hereg is the induced metric (4.132) on the bratejs the field strength tensor of the gauge
fields on the brane anglare the branes’ worldvolume coordinatésy; is the brane tension
and the factorV, arises from the trace over the generators of the symmetnypgomder
consideration. For finite baryon density, this factor wal different from that at finite isospin
density.
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In [42], the dynamics of this system of branes and gauge fishls analyzed in view of
describing phase transitions at finite baryon density. Keraise these results as a starting
point which gives the background configuration of the braméedding and the gauge field
values at finite baryon density. To examine vector mesontspege will then investigate the
dynamics of fluctuations in this gauge field background.

In the coordinates introduced above, the actigp for the embedding(p) and the gauge
fields’ field strength?” is obtained by inserting the induced metric and the fielchsfitetensor
into (4.136). As in([42], we get

3 ~
Spei = —N;Tp7 0% /dgf psz(l —x%)

» \/1 R 2%(1 —X2)F?% . (4.137)

wherel,, = 9,4, is the field strength on the brang, depends solely op.

According to [42], the equations of motion for the backgrouields are obtained after
Legendre transforming the action (4.137). Varying this émdye transformed action with
respect to the fielg gives the equation of motion for the embeddingg),

51 f 2\t 7
g | 2 LF0 = X)x \/1 _8d
r [\/1 2 2y + P8 F3(1 — x2)3
___ Pfix \/1 L 8 (4.138)
VI—X+p27 VA=)

_ 1 — 2 2. 12
x {3(1 ) 27— UP—— XX } .
pSF3(1 — x2)3 + 8d2

The dimensionless quantityis a constant of motion. Itis related to the baryon numbesitgn

:W

Below, equation((4.138) will be solved numerically for @ifént initial valuesy, andd. The
boundary conditions used are

np NyNVAT?d. (4.139)

xX(p=1)=x0,  Ipx(p) T 0. (4.140)
The quark mass: is determined by,. It is zero fory, = 0 and tends to infinity for, — 1.
Figure[4.4 shows the dependence of the scaled quark mass2M,/+/AT on the starting
valuey, for different values of the baryon density parametrized by 5. In general, a small
(large)xo is equivalent to a small (large) quark mass. koK 0.5, xo can be viewed as being
proportional to the large quark masses. At larggfor vanishingd, the quark mass reaches a
finite value. In contrast, at finite baryon densityyifis close tol, the mass rapidly increases
when increasing, further. At small densities there exists a black hole to lblagle phase
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Figure 4.4: The dependence of the scaled quark mass- 2M,/v/AT on the horizon
valuey, = lim,_., x of the embedding.

transition which we will discuss in section 4.3. In embedginvhere this phase transition is
present, there exist more than one embedding for one spew@fs value. In a small regime
close tox, = 1, there are more than one possible valugofor a givenm. So in this small
region, x, is not proportional tal/,. The equation of motion for the background gauge field
Als

_ ~ 2 a2 12
0,4 = 2d——1 Vi RS — (4.141)
VIQ =31 x2)° + 8
Integrating both sides of the equation of motion frogto somep, and respecting the bound-
ary conditionA4y(p = 1) = 0 [42], we obtain the full background gauge field

_2d/dp f\/l_x s — (4.142)
VIO =231 — x2)8 + 8

Recall that the chemical potential of the field theory is gibglim, ., flo(p) and thus can be
obtained from the formula above. Examples for the functitedavior of Ay(p) are shown
in figurel4.5. Note that at a given baryon density # 0 there exists a minimal chemical
potential which is reached in the limit of massles quarks.

The asymptotic form of the fieldg(p) and Ay (p) can be found from the equations of motion
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Figure 4.5: The three figures of the left column show the emimggfunctiony versus the
radial coordinate, the corresponding background gauge fiefisand the dis-
tancel = p between the D3 and the D7-branesiat 10~/4. L is plotted
versusr, given byp? = r? + L2. In the right column, the same three quantities are
depicted ford = 0.25. The five curves in each plot correspond to parametrizations
of the quark mass to temperature ratio with = x(1) = 0, 0.5, 0.9, 0.99 (all
solid) and0.99998 (dashed) from bottom up. These correspond to scaled quark
massesn = 2Mq/T\/X =0, 0.8089, 1.2886, 1.3030, 1.5943 in the left plot and
tom = 0, 0.8342, 1.8614, 4.5365, 36.4028 on the right. The curves on the left
exhibit, =~ 10~%. Only the upper most curve on the leftat = 0.99998 develops
a large chemical potential of = 0.107049. In the right column curves correspond
to chemical potential valugs = 0.1241, 0.1606, 0.5261, 2.2473, 25.3810 from
bottom up.
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in the boundary limip — oo,

_ d
A== g , (4.143)
x=%+§+-~-- (4.144)

Here 1 is the chemical potentialy is the dimensionless quark mass parameter given in
(4.134),c is related to the quark condensate by

(W) = —é\/XNfNCT?’c, (4.145)

andd is related to the baryon number density as stated in (4.1389.also figure 4.5 for this
asymptotic behavior. Thg-coordinate runs from the horizon valge= 1 to the boundary
at p = oo. In most of this range, the gauge field is almost constant eaches its asymptotic
value, the chemical potential, at p — oo. Only near the horizon the field drops rapidly
to zero. For smally, — 0, the curves asymptote to the lowest (red) curve. So there is
a minimal chemical potential for fixed baryon density in teetup. At small baryon den-
sity (d < 0.00315) the embeddings resemble the Minkowski and black hole edibgd
known from the case without a chemical potential. Only a Hpike always reaches down to
the horizon.

Brane thermodynamics at vanishing charge density and potential In order to under-
stand the dual gauge theory thermodynamics of this graettypswe have just built up, let us
take one step back and choose the baryon density to vamish=.0. This setup was analyzed
in [56] and we briefly review the results. The most prominé&etrimodynamic feature of the
D3/D7-setup at vanishing charge densities is a phase ti@m&r the fundamental matter be-
tween a confined and a deconfined phase taking place at theratng!/;,,g. Dual to this we
have a geometric transition as shown in figure: 4.6 on the yraude of the correspondence
from a Minkowski phaseo ablack hole phaserespectively. This means that at vanishing
density and potential depending on the parametéviinkowski embeddings and black hole
embeddings are both present. Looking at the free energyigafe(4.7) of these configura-
tions reveals that there are actually three different regione low-temperature region where
only Minkowski-embeddings (blue dotted line in figure!4.7¢ @ossible, one intermediate
region where both embeddings are possible but one is thgmmaoaically favored, and finally
one high-temperature regiom(> 0.92) where only black hole embeddings (red line in fig-
urel[4.7) are present. The intersection point of the branaligslowest free energy marks
the phase transition nedr /T = 0.766. This transition of course is reflected in disconti-
nuities and multi-valued regions in thermodynamic qué&tisuch as the free energy the
entropysS, the internal energy’ and the speed of soung. The free energy, entropy and inter-
nal energy are shown for the D3/D7-setup in figure: 4.7. Thesatifies are computed using
equations/(2.93) and (2.94) as well as himdographically renormalize@see section 2.4) D7-
brane action. Furthermore the speed of sound can be writarsam of contributions from
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Figure 4.6: Schematic sketch of the three different kind=snolbeddings which solve the back-
ground equations of motion at vanishing charge density atenpial. This figure
is taken from[[55].

the D3 and D7-branes which we expand\ip/ N, keeping only the leading order
2 S_ S3-|—S7 1 )\Nf ( 1 8c)+

US:——7:—+

—_ 4.146
o Cuztcyr 3 (12m)27N, ( )

with the parameteim which is related to the quark mass by (4.134) and the parambting
related to the quark condensate by (4/145). The numerisaltris shown in figure 4.8.

Brane thermodynamics at finite baryon density Now we consider a finite baryon den-
sity setup as described at the beginning of this section asdare inl[42]. This paragraph’s
title already states clearly that we are working in the cacedensemble here fixing the baryon
density to a finite value and having the chemical potential ts@rmodynamic variable. Look-
ing at the embeddings we find numerically in figurel 4.5, we plesthat no Minkowski em-
beddings exist at finite baryon density. In other words: éhgralways a thin spike reaching
from the D7-branes down to the black hole horizon. This spiwe be characterized more
closely looking at the Legendre transformed D7-action fabeddings with a very thin spike,
i.e. in the limity — 1 we find

1
Spr ~ —ngVes— /dt do v/ —g00(g41 + gee(010)2)), (4.147)

2T

which is the Nambu-Goto action for a bundle of fundamentaigs with a density,, stretch-
ing from the D7-brane to the horizon. This means that in theoeal setup for non-zero
baryon density we only have access to black hole embeddiigsan only reach Minkowski
embeddings in the case of vanishing baryon densjty= 0 (equivalentlyd = 0) while the
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Figure 4.7: The free energy, entropy and internal energysamvn as functions of the
scaled temperature at vanishing charge density and paitemtiis figure is taken
from [5€].

chemical potential may be chosen arbitrarily. In contraghis vanishing density case, in our
setup developed for finite baryon density, a vanishing dgrméso implies that the chemical
potential vanisheg = 0 as seen froni (4.142). Note, that Minkowski embeddings drpss-
sible but these always imply vanishing density. The systeimiée baryon density features an
apparent phase transition. The transition takes place lfitaok hole embedings to other black
hole embeddings which is different from the Minkowski todkadole transition at vanishing
density. Furthermore the black hole to black hole transitieases to exist at a critical point in
the phase diagram 4.9 which lies(d@ = 0.00315, T;,.q/M = 0.7629). Later examinations
in the grandcanonical ensemble have shown that this bldektddlack hole transition is not
the thermodynamic process taking place in this region. Eha¢cause there actually exists a
mixed (Minkowski and black hole) phase in the region arourattansition line in figurz 4.9
and the mere black hole embeddings considered here do rmottgithermodynamic ground
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Figure 4.8: The speed of sound shown as a function of thedtateperature at vanishing
charge density and potential. This figure is taken from [56].

state of the system. Therefore the transition takes plaivesle® a black hole and a (possibly)
mixed phase.

0. 0035
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0.762  0.764 0. 766 0. 768
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Figure 4.9: The phase diagram in the canonical ensemble dgstem at finite baryon den-

sity. On the axes the scaled baryon dengity shown versus the scaled tempera-
tureT'/M. This figure is taken froni [£2].

Brane thermodynamics at finite baryon chemical potential In order to understand
the statements about the correct ground state and how tdinbtid phase transition, let us
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now turn to the grandcanonical ensemble. We fix the chemumiaginpial to a finite value and
consider the baryon density as our thermodynamic varidblégure[4.10 we have sketched
the Minkowski with vanishing density as a grey shaded regi@mall temperature and chem-
ical potential. Meanwhile the black hole phase with finiteyloa density is shown in white.
It is important to note here that the separation line betvikese two grey and white regions
does in principal not have to be identical with the line of gh&ansitions. Recall that in the
canonical ensemble we have found, at least apparentlychk btde to black hole transition, so
this would be a white region to white region transition in thagran 4.10. The line of phase
transitions is not shown in figuie 4/10 and one has to deterimiftom looking at the free
energy of all configurations that are possible at a giventgddin.) in the phase diagram. The
resulting grandcanonical phase transition line is showtn@ased line in figure 4.11. In fig-
ure 4.10 we merely show some exemplary equal-density Imesder to illustrate what region
we are able to scan in the canonical ensemble. Figure 4.1M@ssihe@ density-temperature

,UJq/mq

. d=0.00315

N
N

0.2 04 06 0.8 1
T/M

Figure 4.10: The phase diagram in the canonical ensemliteglagainst the variables of the
grandcanonical ensemble. On the axes the scaled chemteatiady., /M, with
the quark masd/, is shown versus the scaled temperatfiifé/. This figure is
taken from our work/[2].

phase diagram which follows from a thorough examinatiorhefdystem in the grandcanon-
ical ensemble. The red line in figure 4.12 shows the chargsityamhich is computed along
the line of transitions in the grandcanonical ensemble ligain is given by the red line
in figurel4.11. Note that on the other side of the phase tiansihe density is zero and so
in the grandcanonical ensemble the charge density jumpsZevo to a finite density in this
region and the intermediate densities under the red curfigure/4.12 are not accessible. The
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Figure 4.11: The line of phase transitions in the grandcemabansemble for a system at finite
baryon chemical potential. On the axes the scaled chenmatahpaly., /M, with
the quark masd/, is shown versus the scaled temperaffiyd/. This figure is
taken from52].

blue line shows the line of black hole to black hole phasesiteoms which were found in the
canonical ensemble (cf. figure 4.9). The grey shaded regiologed by blue and green lines
shows a region where the present black hole embeddings atablm against fluctuations of
baryon charge, i.e. the conditiom,, /(Ou,)|r > 0 is not satisfied for these embeddings. Since
both ensembles in the infinite volume limit are equivalerd,nged to explain why there seem
to be regions which one can only enter in the canonical enksdooibnot in the grandcanonical
one. The idea here is that for the density-temperature sailnder the red curve in figure 4,12
the system stays in a mixed phase where both Minkowski arck lilele phase are present.
As an analog to this we may recall that for example water featauch a mixed phase in the
transition from its liquid to its gaseous phase. Note thatrégion of the mixed phase (un-
der the red curve in figure 4.12) is not identical with the oegivhere unstable embeddings
exist (grey shaded region in figure 4.12).

Now we understand the statement that the black hole to blaleigdhase transition found in
the canonical ensemble is not realized. This is becausé&#msition (blue line in figur2 4.12)
lies entirely in the mixed phase. Since in the canonicalpeticonsidered the pure black hole
phase to be the thermodynamic ground state, those resaolteté®e trusted in this particular
region of the mixed phase. We would have to carry out our tbesmamic analysis with that
mixed phase.
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Figure 4.12: The phase diagram in the grandcanonical erledorta system at finite chemi-

cal potential. On the axes the scaled baryon densiyshown versus the scaled
temperaturd’/ M. This figure is taken froni [52].

4.4 Thermodynamics at isospin & baryon density or
potential

Here we consider an extension of the previous section whengavked at finite baryon back-
grounds, i.e. we considered only thg1)-part of the full U(Ny) flavor group. Now we
supplement this setup by switching on a finite isospin bamlgd, i.e. theSU(N;)-part of
the flavor group, at the same time. The results presentedanenay work in collaboration
with Patrick Kerner (cf.[[115]) and the results presente laee currently to be published [3].
We have to develop a few new concepts and interpretationghbuesulting calculations are
analogous to those in section4.3.

The main point of the previous section was to understand iasgdiagram and thermo-
dynamics of the gauge theory with finite baryon density orepbal which is dual to the
D3/D7-brane setup in a non-extremal AdS-black hole baakgl@n the gravity side. We have
learned in that simple example that we need to carry out majsgc renormalization (cf. sec-
tion/2.4) in order to get finite thermodynamics and we expeee that there may be unstable
configurations or mixed phases which force us to make useedhigrmodynamic ensembles
in a complementary way. That is so important because now @aing to use very sim-
ilar embeddings and carry out the same thermodynamic dadtysa thermal gauge theory
when an isospin and baryon chemical potential (or equitigiéimeir conjugate densities) are



108 Chapter 4. Holographic thermo- and hydrodynamics

switched on simultaneously. In principle we are free to cotaphermodynamic quantities for
any N but since we will work numerically, we need to plug in definiembers and for this
purpose let us confine our examination to the special isasEa/N; = 2. The generalization
to arbitrary number of flavors is accomplished in the nextisa@.5.

4.4.1 Introducing baryon and isospin chemical potentials and
densities

Starting from the Dirac-Born-Infeld action

SB&| = —TD7 / dsfStr{ \/det(g + (271'0/)FB&| )} s (4148)

with the baryon and isospin background gauge field
Foat = Spduo [FioT° + FioT" + FRT° + FigT°] (4.149)

with flavor group generator$®, a = 1,2,..., (Nf2 — 1). Here we have assumed that the
background gauge field has its only component in time directioh and that it only depends
on the radial AdS-coordinate, = o. Therefore the only non-vanishing derivative acting on

777777

background field strength would ¢!, = 29, A7 + fete Al Ag, which with our assumptions
becomes i, = 0,40,004 A% + 00,0 f**°Aj A§ and the second term vanishes because of the
antisymmetry in indice$, c. The first term in((4.149) is the baryonic background already
considered in the previous section. The remaining threeseorrespond to the three flavor
directionsa = 1, 2, 3in flavor space and the generatorsafe= o“/2 with the Pauli matrices

which we complete by the identity’ in order to have a complete basis

o (10 1 (01 s (0 —i 3 (1 0
U_(Ol’a_l(J’U_iO ,0—0_1.(4.150)

Now we would like to find an exact solution for the backgroureddfiand the D7-brane
embedding and thus we rewrite the action (41148)

Sgar = —Tp7 / d¥¢Str{/— det gv/det(1 + g~1(27a/) Fae )}, (4.151)

= —Tpr / d*¢Str{y/— det g\/det[1 + g%g* (2ra’)?(Fea 10)?]}, (4.152)
(4.153)
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and we have performed the second step by calculating thendetnt

Joo 0 0 0 (QWQI)FB&I 40 0 0 0
0 g1 0 0 0 0 0 0
0 0 g O 0 0 0 0
, - 0 0 0 g3 0 0 0 0
det(g + (2ma’) Faar) = —(2ma’)Feeasgy 0 0 0 Gaa 0 0 O
0 0 0 0 0 gss 0 0
0 0 0 0 0 0 g6 O

0 0 0 0 0 0 0 g7

900911 922933944955966 977 + 911922933955966977(27T0/)2(FB&l 40)2 )

= detg [14 ¢"¢"(2ma/)*(Feai10)?] - (4.154)

Making use of the spin-representation property (Cliffoigelra) of Pauli matrices
{0, 0"} = 26, (4.155)
we evaluate the square of non-Abelian background gaugestieddgths appearing in (4.151)

(Fae 40)2 = [(FEO)Q + (F410)2 + (F420)2 + (FSO)Q] (00/2)2 +
2F g [Fuo' /2 4+ Fio® /24 Fiyo® /2] (6°/2). (4.156)

Recall that we havé,, = —F,, = 90,4, SO we do not have to take care of the structure
constant term or any commutator. Now we observe that allderoupling different flavor
representations’o’ | i # j,i,j = 0,1,2,3 are proportional to the baryonic pieé¢& and
thus have the fornt°c°Fc? . a = 1,2, 3. Thus the determinant simplifies to a sum in which
the flavors are decoupled if we set the baryonic field to Z&€fo= 0. Then for pure isospin
background we have the action

S = —Tm/dngtr{\/ —det g\/ILfoNf + (2ma’)?2g%0g4 [(Fi)?] (09/2)%},
= —Tpy / d8§Str{ILfoNf}\/ —det g\/l + (2%)/)2900944[(}750)2] ,

= Ty [ ey gy 1+ O g (e + ()
(4.157)

In this setup we can study how the three different chargeitien®r equivalently how the
three components of the chemical potential in flavor dicediinfluence each other. We will
elaborate on this in section 6.5.

A slightly more complicated case emerges if none of the fittdngths vanishes),



110 Chapter 4. Holographic thermo- and hydrodynamics

0Vi=0,1,2,3

Seal = —TD7/d8§Str {\/—detg

1 1
X \/ Iy, xn, + (2ma/)?gP0 gt {Z((FQO)Q + (F2)2)(09)2 4 §F30Fgoaa00} } .

(4.158)

The complicating feature here is that one has to evaluatsgbhare root of a sum of partly
non-diagonal flavor representations. In order to simplkinig the square root inside this
action we only consider the diagonal gauge representatibmghich gives the baryonic part
ando? which gives the isospin piece. This is equivalent to turnireflavor coordinate system
until our chemical potential points along the third isosgirection. In this case we get the
action

SB&|3 = —TD7/d8£Str{v—detg

(271.&/)2900944

X | Inyxn, + ((Fio)? + (FSO)Q)J(UO)Q + 2F Fiyodo®

4 ~
(F03)2
— T / d8§Str{\/—detg
1 CrolaRaT [(p03y2 4 o0 ] 0
7'('0/ 200,44
0 14 Zre)e g )49 I—[(F%®)? — 2FFy)]

(27Ta/>2900g44
L ZrPe Y e oy g

= —Tm/d%/— det g x

(27Ta/>2900g44
+\/1 e (F)? = 2F F

(4.159)

Note, that there is a term mixing the two flavor field strengfis F in each of the two
square roots. Since we are interested in the equations admrfot the gauge fields appearing
asF}, = 0,A}, we would end up with a set of coupled equations of motiontfpand A3 if we
simply applied the Euler-Lagrange equation to this actlarorder to decouple the dynamics
right here, we introduce the rather obvious flavor comboreti

X1 =Ag+ Ay, Xo=A)—Aj, (4.160)
which yields the action

Speiz = —TD7/d8§v—detg

210 2,00 H44 Qe 2 500 44

(4.161)
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Substituting in the explicit metric induced on the D7-bré4d.32) gives
Spaiz = —TD7/ dgf@f’fﬂl - x%)
x <\/l —X* + 0*(0,x)* — 2(2m’)2fi2(1 — Xx?)(0,X1)?
+\/1 — X2+ 0*(0,x)? - 2(2m')2i2(1 - X?)@)@)?) . (4.162)

S

These are just two summed up copies of the Abelian actiomgivg4.137) and in order
to solve for the background gauge fields and for the brane ddihg y we have to apply
the same steps aslin 4.3 to each of the two terms. This meanseghand two constant of
motiond,, d, each of which is proportional to a certain flavor charge dgnkegendre trans-
forming the action in order to eliminate the fields, X5 in favor of these constants, d,,

we obtain the action

~ 05 oS
— - Sl Xy — + Xy—r
Seeiz = Sgai3 / d*¢ < 15X1 + 25X2)

= —TD7/ d%@g?’ff(l - X2)\/1 — X2+ 0*(9,x)?

- 8d,? i 8dy?
(27Ta/)2T12)706J?3<1 _ X2)3 (QWa/)QT[QﬁQGf?,(l _ X2)3 ’

(4.163)

And from this the equation of motion for the embedding fumcty can be deduced in the

following form

=2
~ 8)( 8d1 8d2
a K 1— 2 P 1+~—+ 1+~—
b P S X)\/l—x2+P2(5pX)2 \l P8 f3(1 — x2) J P8 f3(1 —

x?)
347 ~ 2 ~ 2
p°ffx 8d 8d
=— —— =9 B = x*) +20(0,0)7] [ |1+ =5 - =t 5 s 5
V1I=x2+p2(0,x) PR=x) N\ P — )
24 72 )
———————— (1= X*+ P} (9x)° & + &
PO f3(1 — y2)3 L ~o -9
VA 14 s
PO f3(1—x?) PO f3(1—x?)
(4.164)

This is the equation of motion we need to solve numericaliytie embedding functior(p, d, JQ).
The boundary conditions opare unchanged to those in the purely baryonic ¢dpg) = xo

andx'(pm) = 0.



112 Chapter 4. Holographic thermo- and hydrodynamics

4.4.2 Thermodynamic quantities

Let us collect the numerical results for thermodynamic dtias graphically here. We will
use a few meaningful parameter combinations to producs pésus the mass to energy ratio
in order to understand how the finite baryon and isospin tieesnfluence the quark conden-
sate, the themodynamic quantities entropy, internal gnéee energy, and the hydrodynamic
guantity speed of sound.

Let us start out by identifying the string theory objects ethproduce the spike which is
always present if any of the two (baryon or isospin) dersigenon-zero. In the spirit of the
'strings from branes’ approach reviewed in section 4.3 wgenelre-transformed action as

; TD7 gX 6f3(1— 2)?
S = \[,/ 1_ Z\/ oo 2TD7 . (4.165)

Note thaty = cos#, which becomeg ~ 1 if the embedding is very near to the axis. There-
fore, the second factors in the square roots can be neglactede get

N
5 VVoI 53 Zd/dtdpf/ 1_g><

N
V, Vol (5%)
T ol ; di/ dtd@\/_gtt(gpp + 900(0,0)?) - (4.166)

Recognize the fact that the result above can be written addah#&u-Goto action for a bundle
of strings stretching imp direction but free bending in thedirection

§ — —V3\Vol(S?) (Z dZ) Sne s (4.167)

i=1

whereVj is the Minkowski space volume while \(@?) gives the volume of th&3.
As we have learned in section 2.4 we need to compute the aetenies
N N
Sot =~ ((Ghax — m*)* = dmc) (4.168)

which holographically renormalize the supergravity atctidhis renormalized Euclideanized
action is then identified with the free energy (2.93). Hefgy is the UV -cutoff and the
factor \V is given by
TD7‘/3VO|(SB)Q§{ B )\NC%TB

4T 32

whereV; again is the Minkowski space volume.
We have computed all thermodynamic quantities (free enenggrnal energy, entropy,
speed of sound) in analogy to the case at vanishing denfs?s In order to accomplish

N =

(4.169)
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Figure 4.13: Numerical results in the canonical ensemblee dlependence of the quark

condensate on the scaled quark mass= Mf:‘; at baryon densitieg? =
0.00005 (top left), the same value but zoomed into the region neabldek hole
to black hole transition (top right)i? = 0.5 (bottom left) andi® = 2 (bottom
right). Differently colored curves in one plot show distimalues of the isospin
density in relation to the baryon density presefit= d” in orange/d’ = 3/4d”
in red,d’ = 1/2d” in blue,d’ = 1/4d” in green andi’ = 0 in black. These
plots were generated by Patrick Kerner [115].

this we have made use of the thermodynamic relations givegumtion|(2.94) and the equa-
tions following it. Nevertheless, here we only show seléaaantities in order to keep the
overview. For details confer with [3] and |[115]. Results iretcanonical ensemble for the
quark condensate are compared in figure 4.13, those for thepgncan be found in 4.16,

free energy in 4.15 . Results from the grandcanonical enteeanb displayed in figures 4./17
and 4.14.

4.4.3 Discussion of numerical results

As an analytical result we find an accidental symmetry in tiierical results which makes
it possible to interchange baryon and isospin density. @gelt of this is that the numerical
embeddings are always black hole embeddings if eirfﬁeﬁé 0, or d! # 0, or both. Again
these black hole embeddings mimic the behavior of Minkowskbeddings with a spike from
the brane to the horizon at small temperatures or large quasses just like in the case with
baryon density only. The black hole to black hole phase itiansfound in the baryonic
case continues to exist at finite isospin. Neverthelesse thee some significant differences
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Figure 4.14: Numerical results in the grandcanonical etdenThe dependence of the quark

condensate on the scaled quark mass= 2%; at baryon potentialg:® =

0.1M, (top) andu® = 0.8M, (bottom) . Differently colored curves in one
plot show distinct values of the isospin potential in redatto the baryon po-
tential presentu’ /M, = 047 /M, (black), ' /M, = .5 /M, (green)u /M, =
suP /M, (blue),u’ /M, = 218 /M, (red),u’ /M, = P /M, (orange). The dotted
purple curves correspond to Minkowski embeddings. Thests plere generated
by Patrick Kerner{[115].

to the baryonic case showing in the quark condensate anchdldgnamical quantities upon
introduction of isospin density or potential. In partiauwae find signatures of a new phase
transition across the line of equal potential or densitydospin and baryon charge resembling
the phase diagram found in the case of 2-color QCD [62].

Condensates, chemical potentials and densities Figure 4.13 shows the quark conden-
satec at different baryon densities. Different curves in the platrrespond to different values
for the isospin density in relation to the baryon densitye Black curve is from now on always
the case with only baryon density. So in order to find out whatdffect of isospin density is,
we look for deviations from the black curves in all diagram& change the isospin density in
quarter steps front’ = 0/4d” tod’ = 4/4d". Due to the accidental symmetry we can simply
interchangel”® andd’ for all d’ > d® and we get the same pictures as for the cése d5.
At small ¢% andd’ we still observe a phase transition between distinct blat& Bmbed-

dings (see spiraling behavior in the top right plot in figurg&3j. A look on the free energy
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Figure 4.15: Numerical results in the canonical ensembhe: dependence of the free energy

on the scaled quark mass = f}f; at baryon densitieg? = 0.00005 (top
left), the same value but zoomed into the region near theklitate to black
hole transition (top right)d® = 0.5 (bottom left) andd® = 2 (bottom right).
Differently colored curves in one plot show distinct valuwéshe isospin density
in relation to the baryon density preserit: = d” in orange,d’ = 3/4d" in
red,d’ = 1/2d” in blue,d’ = 1/4d” in green andi’ = 0 in black.These plots
were generated by Patrick Kernzr [115].

diagram given in figure 4.15 confirms the existence of thisditeon nearm = 1.306 where
the branches of the free energy curve cross each other.|Reatthis is the phase transition
discussed in the baryonic case which was found to be replacadransition from the black
hole phase to a mixed phase rather. We will study the depeed#rthe location of this tran-
sition on isospin and baryon density below. In the— 0 limit any finite density breaks the
supersymmetry and the chiral condensate asymptotes tderiom-zero value. We find that
a larger baryon density produces a larger condensate innthtel — 0. Furthermore we
observe that the maximum appearing in the baryonic (blackjlensate curve in the bottom
left plot from figure 4.18) vanishes with increasing isospamsity. Adding larger and larger
isospin density to the baryon density asymptotes to thestasen in the bottom right plot at
large baryon density. Here the maximum has disappearethellnits7T” — 0 and7 — oo
introduction of isospin density does not seem to have argcetin the condensate since all
curves unify in these limits.

Calculating the baryon and isospin chemical potentials ne & discontinuity at the val-
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Figure 4.16: Numerical results in the canonical ensemblee dependence of the entropy

on the scaled quark mass = 2];47‘{ at baryon densitiegd? = 0.00005 (top
left), the same value but zoomed into the region near thekltate to black
hole transition (top right)d®? = 0.5 (bottom left) andd® = 2 (bottom right).
Differently colored curves in one plot show distinct valwéshe isospin density
in relation to the baryon density presenf: = d” in orange,d’ = 3/4d” in
red,d’ = 1/2d” in blue,d’ = 1/4d" in green andi’ = 0 in black. These plots
were generated by Patrick Kernzr [115].

uesd? = d. We take this discontinuity as an indicator for the exiseeata phase transition
along the line?® = d’. In particular ford®? > d! we find

lim p? =M,, lim u'=0. (4.170)
For the cas@® < d’ the accidental symmetry between baryon and isospin deai$itys to

interchange these two and we are back in the case we disdusfeed. Finally, in the crucial
cased? = d! we can not distinguish between the two densities and botiniciaé potentials
approach the same value

M, M
lim p? = =% lim p/ = —=2. (4.171)
This means that the chemical potential has to change discanisly when the case of equal
densities is crossed increasing or decreasing one of bo#itoks. We will discuss this phase
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Figure 4.17: Numerical results in the grandcanonical etdenThe dependence of the grand-

canonical potentidl and the entropys; on the scaled quark mass= \2%; We

have choseniz/M, = 0.01 in the two plots on top ang /M, = 0.8 in the
lower ones. Differently colored curves in one plot showidistvalues of the
isospin potential in relation to the baryon potential présg’ = 0 (black), ! =
1uP (green),u! = 145 (blue), ! = 247 (red), ! = 1P (orange). The dotted
purple curves correspond to Minkowski embeddings. Thests plere generated
by Patrick Kerner[[115].
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transition further in{|3] but we have indications that thiarsition is completely analogous to
the one found in the condensates in the context of 2-color (82D Here we only collect
more evidence for the transition from calculations in thengicanonical ensemble.

In order to learn more about the structure of the isospin amngdn phase diagram, we inves-
tigate the setup in the grandcanonical ensemble. Figud:shdws the chiral condensate and
the baryon density versus the mass parametefrhe purple dotted curve in all grandcanoni-
cal plots shows the Minkowski embeddings while the colorawes show results for different
isospin chemical potentials and the black curve alwayssgive case of non-vanishing baryon
chemical potential only.

The condensate shows a discontinuity (a gap) between thkoMiski and the black hole
embeddings. Increasing the baryon density the lower left ipl figure[4.14 shows that in-
creasing the isospin density there exist black hole emibgddior all values ofn, whereas
the baryonic curve ends at a finite where the transition to Minkowski embeddings takes
place. While the curves giving the baryon density (righuooh in figure 4.14) for different
values ofu! have the same zera limit, they split considerably increasing the mass parame-
term. The isospin density shows a similar behavior except thasfitting between curves
of different isospin potential is larger. From the baryocése we remember that we have no
phase transition for” > M, (compare the phase transition line in figlre 4.9). Looking at
the case.” = 0.8, with the orangeq’ = 1”), red (! = 3/41.%) and blue (/ = 1/2u7)
curves in figure 4.14 we conclude from their monotonousleadmg behavior that there is
no phase transition for these combinations of potentialesl In all these cases the sum of
chemical potentials satisfi¢s” + /) > M, suggesting that compared to the baryonic case
the same critical value for the phase transition to disapgeats, with the mere difference that
the critical valuel/, now has to be compared to the sum of both chemical poten8aise the
black curve corresponds tp” + p!) = (0.8 + 0)M, < M, the black (baryonic) curve shows
a phase transition. Note that here the introduction aneass of isospin potential drives this
system from a regime with a phase transition into a regimbowit a phase transition which
is definitely a considerable impact on the system. The caatershows the same effect.

Thermodynamic quantities Coming to the thermodynamic quantities, we only mention a
few exemplary points where the introduction of isospin hagyaificant impact on the quan-
tity. The entropy in the canonical ensemble shows such aadtrgince the minimum present
at vanishing isospin density in figure 4.16 vanishes as tiepia density is increased. Itis also
worthwhile to note that in the large mass limit — oo the baryonic entropy curve (black)
asymptotes to zero while the finite densities generate @ntab any temperature or equiva-
lently mass.

In the grandcanonical ensemble the entropy and internagygreave the same qualitative
behavior shown in figurie 4.17. Similar to the condensate tinelp baryonic curve in the black
hole phase (black curve with! = 0) shows a maximum in entropy and energy near= 5
before it ends neat. = 7 and the system enters the Minkowski phase following the lpurp
dotted line for larger mass parameter Increasing the isospin chemical potential as in the
condensate we see (figure 4.17, bottom row) that the transigiain vanishes since the system
remains in the black hole phase corresponding to the mooasiy increasing entropy and
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Figure 4.18: The locatiom of the black hole—black hole phase transition is shown as-a su

face over the baryon density — isospin densit§ £d’)-plane. The approximately
circular upper edge shows the line of critical points whaeettansition vanishes.
This plot was generated by Patrick Kerner [115].

energy curves. This interpretation is confirmed by our €sid{3] of the grandcanonical
potential shown in figure 4.17.

Black hole to black hole transition In figurel4.18 we trace the location of the black hole
to black hole phase transition in the volume spanned by Inedgosityd?, isospin densityl’
and the mass-temperature parameterThe result is a two-dimensional surface showing an
apparent rotationad O (2)-symmetry. Note that we show only one quadrant since thelanei
tal symmetries between the charge densities mentionadrefarice the other three quadrants
to be identical copies of this first one. The complete phasesttion surface would be nearly
circular and finite since it terminates at the critical psiah the upper edge. A close study of
the seemingly circular upper edge of this surface showsthieefO(2)-symmetry is actually
broken. This upper edge contains the critical points at vthe phase transition disappears.
An analysis of the inner region moving towards the origin we that the surface asymptotes
to being rotationally symmetric.

The phase transition line at finite baryon density only cspomds to the front edgé/(= 0)
of the surface shown in figure 4/18. Thus, together with thekdm SO(2) symmetry we
conclude that the two differnent densities have actuallyffarént effect than merely taking
the baryon density to be larger. The broken symmetry showbtéesnterplay between isospin
and baryon density.

It would be interesting to study the stability of these plsa@e rather the stability of solu-
tions in them). It is not impossible that the finite isospisaainfluences the thermodynamics
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such that the baryonic black hole to mixed phase transis@ualitatively changed or it may
not even be the favored transition anymore. We plan to stoidyir [3].

The diffusive part of this system’s hydrodynamics is exagdim chapterl6, section 6.3. We
will extend the phase diagram from figure 4.18 there beyoaditte of critical points tracing
a minimum appearing in the diffusion coefficient and claighthat this is ahydrodynamic
transition being a softened version of the thermodynamical transiiotging at the line of
critical points. The rotational symmetry in that extendehsition surface will be obviously
broken to a discretg,-symmetry reflecting the accidental symmetries among theges.

4.5 Generalization to flavor number N > 2

In the previous section we restricted our study of the effedta non-Abelian background
gauge field on the thermodynamic quantities in a stronglptEaligauge theory on the ca¥e =
2 for definiteness. In the present section we show how this casée systematically gener-
alized to arbitrary flavor groups (N, > 2).

The first step to take is to find a generalization of the diagfianor representations which
simplified taking the square root and the symmetrized traee ttavor representations in the
exampleN; = 2. Recall that there ar@V; — 1) diagonal generators in®l/ (N) which form
the Cartan subalgebra Inspired by the interpretation that a diagonal generatd$(@(Ny)
should charge one brane differently with respect to all sthee write the diagonal generators
belonging to the Cartan algebra as

1-th position
) —_——N—
N =diag(l,...,—(Ny—1),...,1) i=1,...,Ny—1. (4.172)
For this choice of matrices the first flavor component is géas the reference quantity to

which all isospin charges are measured. We call the unityixnfatr the baryonic part\°.
Thus, we can generaliz€),c® + Fj,0° to

Nj—1
Ny

Fu! = F,, =Fo,\°+ Z Fi N (4.173)

Thus the general effective action for a geometry in whichlthekground flavor field points
along the diagonal directions only then reads

SDBI = —TD7/ d£88tr(\/| det(g)\o + 27TO/F)|>

= _TD7/ dgg\/ Str<\/)\0 27TO[ g00g44(F40)2> s

where in the second line the determinant is calculated.eSime action inl(4.174) is diagonal
in the flavor space, we are able to evaluate the trace (for metals seel [115]). After a
redefinition of the fields
Np—1
=AQ+ > AL Xi=) Al- DAL, i=1,...,(Ny—1), (4.175)
‘ JFi

(4.174)
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where X; is thei-th component of the non-Abelian gauge fields, the non-Abelian DBI
action becomes a sum of; Abelian DBI actions

Np—1 =
5= Tor [ et 0 (Z 1= + (000 — 22ma P L (1 )@Y,
(4.176)
The constants of motion are given by
G 95 (Qm,)szﬁ, 3 (1 x»)?0,X, |
o0 T L=+ 20,07 — 202m0pf (1= )0,
(4.177)

From the relations of the gauge fields we can read off theioastbetween the conjugate
charge densities

Ny—1

B=dl=>Y"d, d"=>"d;— (Ny—1)d; i=1,...,N;—1. (4.178)
= JFi

We now construct the Legendre transformation of the acdoh/6) to eliminate the fieldX;
in favor of the constants,

Ny
~ 0S
8
-9 - § X, 2
S=5 / d°¢ 2 50

i Ny—1 82
Z—Tm/ 8¢ 33ff1— \/1—X + 0*(9px)? (Z (2ra’)2T2, 6J?3(1_X2)3 :

(4.179)

Finally we obtain the equation of motion for the embeddinas

Co ,x gy 842
3p{pff(1x)\/1 T (Z Wg,l_))}

- Ny—1
_ P’ ffx 82
__\/1_X2+p2(8px)2{[3(1—x)+2p (Z Qs 2)) (4.180)

24 i 2
— (1= X + p*(9,X)” -
PP =) ’ go 14
PO f3(1—x?)

This equation of motion completes the formulae descrilduegritroduction of the non-Abelian
part of the flavor groupyU (V) in the gravity background for an arbitrary numiéy of fla-
vors. This may be taken as the technical starting point faur&investigations of the effects
of non-Abelian chemical potentials with any desired flavomtrer N; as long as we stay in
the probe-brane (or quenched) lin\y < V..
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4.6 Molecular dynamics

Guided by the intuition obtained from dispersion effect@xamples such as propagation of
light through a prism, we assume that perturbations indiddfliermal medium, the plasma,
with different frequencies and momenta will not all interadth the plasma in the same way
and will not propagate in the same manner. Therefore it isoreable that the constant trans-
port coefficients we have considered so far should actuallynbdified to incorporate a fre-
guency and momentum dependence. On the thermal gauge #i@etiis idea is developed in
the context omolecular dynamicfl1€]. For example the frequency-dependent generalizatio
of the Kubo type formulae introduced in section 3.2.3 forgkeeral transport coefficientis
given by

n(w) = C / dt e (1,(0), J (1)) (4.181)

0

where(' is a thermodynamic constant ariglis the zero spatial momentum limit of the current
relevant for this transport process. For examplewas the heat conductivity thef) would
be identified with the heat current.

As described in chapter 2, the gauge/gravity corresporadsiates that the full gauge the-
ory is encoded in the gravity theory. Thus we can also asshat¢lie momentum dependent
transport coefficients are encoded in the gravity theorgohtrast to our hydrodynamic (small
frequency, long wave length) approach of section 3.1.2, areuse the more general setup
which will be described and applied in chapter 5 for the cotagon of flavor current correla-
tion functions. These are valid for perturbations with @esy four-momentum. So one way
to find the momentum-dependent transport coefficients ofid¢ltetheory side is to compute
the correlators using a numerical gravity calculation. Sehthen have to be substituted into
expressions such as the generalized Kubo formula (4.181).

It would also be interesting to fit these results to the amakxpressions from molecular
dynamics. We may discover relations between the gravitytlaeeial gauge theory similar to
the identification of correlator poles with quasinormatjuencies.

4.7 Summary

In this chapter | have presented some of the main resultg®fhhsis including the analytic
form of correlators being connected to hydrodynamics. Westaso seen the numerically
found thermodynamics at finite non-Abelian flavor chargesitess.

The main result for the hydrodynamic case are the corredatbich all are similar to

NCTRTq2
87[i(w — p) — Dg?]

GXY = form >m . (4.182)
The longitudinal and time component correlators all haeediffusion polew = 4u — iDg?
while transversal modes do not show this diffusive behavidre correlators have different
dependence on the frequency and spatial momentum (ct)) (@m8ilthe equations following it
for details). The presence of an isospin potential mainlyifeats itself in the pole structure
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of longitudinal () and 3-component) correlators through shifting the locationtw pole in
the complexv-plane by the amount of the chemical potential along the real axis. Thus
the main effect of the isospin potential is that it splits tlyerodynamic diffusion pole located
on the imaginary frequency axis into a triplet. This behawoa direct consequence of the
changed indicial structure with indicgs= +i(rw +m)/2. Two directions in flavor space (=
1,2) are affected in this way while the third flavor direction giéel to the chemical potential
does not feel the potential. We have developed a physicadprétation of this situation by
analogy to the symmetry breaking which occurs in the cadeaahor precessiomf a spin
inside a real-space magnetic field.

Since the poles of the correlator correspond to quasindnegliencies in the gravity con-
text, we have also analyzed the structure of these poleg tisgnimaginary part of the cor-
relator in the complex frequency plane. We found an antisgtryraround the pole which
translates into an antisymmetry in the spectral functidre $pectral function displays a low-
energy cut-off at the valu® = m which we interpret as a minimum energy that perturbations
in the plasma need to have in order to be produced. The spregtcéion also shows the struc-
ture of triplet splitting that we found in the poles. We wilesexactly this behavior again in
chapter 5 when we consider spectral functions at finite goegs at arbitrary momentum. In
sectior 4.2.5 we have discussed these results and compavadéarlier approach neglecting
terms of ordeiO () in [1].

Furthermore, we have introduced the new concept of a fulkAbealian chemical po-
tential, and we have developed the necessary techniquesatgza its dynamics and the
thermodynamics produced by this setup. These methodsdm@ulavor transformation to
fieldsoc (A! & A?) decoupling the flavor structure in the corresponding bamkgd equations
of motion. For definiteness we have applied our techniquélse@xampleV; = 2 but sec-
tionl4.5 generalizes these concepts and calculationaladsto arbitrary flavor numbeéy,. In
particular we study the quark condensate, the internabjgnéy the entropys, free energyr’
and the speed of sound,. In the two-flavor setup we find two different phase transiio
One is the black hole to black hole transition known from tlaeybnic case. However, the
second transition is located at the line in the phase diagweinere isospin and baryon density
or potential are equal. We have strong indications thattthrssition is analogous to that one
found for 2-flavor QCD inl|62].

Finally, we have considered transport coefficients whigbetie on frequency and spatial
momentum of the disturbance in the contextradlecular dynamics 4.€. The gravity calcu-
lation should contain all the information about this fouormentum dependence. Therefore,
we suggest to obtain correlators from gravity numericalhyfixed frequency and momentum,
and to substitute these correlators into Kubo formulae tainlthe transport coefficients. Re-
peating this procedure scanning through different frequemd momentum values we should
obtain the four-momentum dependence of the transport ceaftinumerically.



Thermal spectral functions at finite
U(Ny)-charge density

In this chapter we apply numerical techniques to computspleetral function of vector cur-
rents at finite charge densities. We analyze the spectruthéocases of vanishing densities,
finite baryon density (secticn 5.1), finite isospin density = 2 (section 5.2), as well as fi-
nite baryon and isospin density at the same time (secticn &dpecially the latter case is
motivated by the possible comparison to the phenomenolbgyfective two flavor models
of QCD and lattice results. The spectra resulting from owrgg#gravity calculations show
guasi-particle resonances which at low temperatures cademified with vector mesons
having survived the deconfinement transition. These mesande seen as analogs of the
QCD rho-meson. A central point to this thesis is also theadisgy of a turning point in the
frequency where the resonances appear when the mass-seunpgrarametern. oc M, /T is
changed (wheré/, is the quark mass ariithe temperature). At high temperatures the quasi-
particle interpretation of peaks in the spectral functibas to be modified as we speculate in
sectior 5.8 utilizing quasinormal modes.

5.1 Meson spectra at finite baryon density

Application of calculation method We now compute the spectral functions of flavor
currents at finite baryon densityz, chemical potential: and temperaturé in the ‘black
hole phase’ which was discussed in section 2.4. Compardutinit of vanishing chemical
potential treated in [59], we discover a qualitatively difint behavior of the finite temperature
oscillations corresponding to vector meson resonances.

To obtain the spectral functions, we compute the corradataf flavor gauge field fluctua-
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tions A, about the background given kly (4.137), denoting the fulbgdiield by

~

Au(p, f) = 52"210(p) + Au(fv P) : (5.1)

According to section 4.3, the background field has a nonsbang time component, which
depends solely op. The fluctuations in turn are gauged to have non-vanishingpoments
along the Minkowski coordinatesonly and only depend on these coordinates angd. okd-
ditionally they are assumed to be small, so that it sufficestwider their linearized equations
of motion. Note, that in these conventions the field strefigittuationsr,,, = 29,,4,) only
existin directiong:, v = 0, 1, 2, 3, 4. Meanwhile the anti-symmetric background field strength
has only two non-vanishing componetitg = — F,.
The fluctuation equations of motion are obtained from theatiffe D7-brane action (4.15),

where we introduce small fluctuationsby settingF,, — £, = 20,,A,; with A = A +
A. The background gauge field is given by [4.141). Note that from now on we denote
field fluctuations with the simple symbol (e4).and we provide the normalized background
fields with a tilde A. The main difference to the fluctuations considered in ead.2 is
the fact that the present fluctuations now propagate on asyomaetric background' given
by the symmetric and diagonal metric pgrsummed with the anti-symmetric gauge field
background?

G=g+F, (5.2)

and the fluctuation’s dynamics is determined by the Lagemgi

£ = /]det(G + F)], (5.3)

with the fluctuation field strength),, = 20;,A,;. Since the fluctuations and their derivatives
are chosen to be small, we consider their equations of matity up to linear order, as
derived from the part of the Lagrangi@dnwvhich is quadratic in the fields and their derivatives.
Denoting this part by,, we get

1 1
Ly = 1V |det G| (G“aGmFaﬁFw - §GWGMFWFM) : (5.4)

Here and below we use upper indices @Grto denote elements af~!. The equations of
motion for the components of are

1
0=20, Mdet G| (G"™ G — GFG") O, Ay + §G[””}G‘”FW} . (5.5)

Note, that the last term each in the quadratic Lagrandgiad) @nd in the equation of mo-
tion (5.5) comes from the terrtr(G—'F)]? in the determinant expansion (4.16). We recall
that G~! here including the background gauge fiélds not symmetric anymore and so the
trace over the contraction with our anti-symmetric fielésgth/’ does not vanish in general.
Nevertheless, in the geometry we have choosen here thesgenxhs are all proportional to
the gauge fluctuation in time directiofyy which will drop out of our considerations by the
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time we set the spatial momentum of perturbations to zero.uk&eep these terms anyhow
in order to be precisé

The terms of the corresponding on-shell action atgmundaries are (witp as an index
for the coordinatey, not summed)

Sgr;—shell _ QHWQRBNfTD7 /d4;p |det G|

s (5.6)
% ((G*)? 400,40 — GHG™ 40,4, )

OH

Note that on the boundanys at p — oo, the background field strengthi,o(pz) = 0 and
the background matri% reduces to the induced D7-brane metricTherefore, the analytic
expression for the on-shell action is identical to the oelsdiction found in[|59]. There, the
action was expressed in terms of the gauge invariant fielgpooment combinations

E, =wA, + qAy, E,.=wA,.. (5.7)

In the case of vanishing spatial momentym— 0, the Green functions for the different
components coincide and were computed as [59]

N¢N,T? 0,F

G =Gy, = Gy, = G =~ lim <’)3PET,((5)) : (5.8)
where theF(p) in the denominator divides out the boundary value of the fielthe limit of
largep according to the recipe we developed and discussed in s&fid? and 3.1/3. The ther-
mal correlators obtained in this way display hydrodynanmmperties, such as poles located
at complex frequencies (in particular whélip) = 0 which is the boundary condition on the
equation of motion foZ obeyed by quasinormal modes, [cf.!3.3). They are used to cempu
the spectral function (3.60). We are going to compute thetfansE(p, k) = E*Y(k)F(p, k)
numerically in the limit of vanishing spatial momentum — 0. The functionsg(p, E)
from the recipe in equatiori (3.10) are then obtained by digdut the boundary value
EP(E) = lim,_. E(p, k). Numerically we obtain the boundary value by computing the
solution at a fixed large. Finally, the indices on the Green function denote the camepts
of the operators in the correlation function, in our caseotitidiagonal correlations (as,,.,
for example) vanish.

In our case of finite baryon density, new features arise tjinahe modified embedding and
gauge field background, which enter the equations of mobdt) for the field fluctuations.
To apply the prescription to calculate the Green functiom Reurier transform the fields as

4 7 -
Adp.) = [z A F). (5.9

We choose our coordinate system to give us a momentum vetctbe dluctuation with
nonvanishing spatial momentum only in a single directiohjolv we choose to be the'
componentf = (w, q,0,0).

1The author appreciates the comment on this notation issee gi [61].
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For simplicity we restrict ourselves to vanishing spatimmentumg = 0. In this case
the equations of motion for transversal fluctuatids)s, match those for longitudinal fluctu-
ationsE,. For a more detailed discussion see [59]. As an example dentie equation of
motion obtained from (515) with = 2, determiningltl = £, = wA,,

/ 22 44 00
O:E//+8P[ |detG|G G ] B — G Q2 w2E
| det G|G22G44 G =t

1-
=E"+9,In <§f2fp3(1 — X"+ pPX)

. \/1 2= x0A))
AL = X%+ p*X7)

~1_2 2. 12
2 f L= X"+ X"

2ot =x2)

The symbolv denotes the dimensionless frequemncy= w/(277T"), and we made use of the
dimensionless radial coordingte= o/ oy

In order to numerically integrate this equation, we deteemocal solutions of that equation
near the horizop = 1. These can be used to compute initial values in order torate@5.10)
forward towards the boundary. The equation of motion (5HE3) coefficients which are sin-
gular at the horizon. According to standard methods/[10t& Jocal solution of this equation
behaves a& — pn)?, whereg is a so-called ‘index’ of the differential equation. We cautgp
the possible indices to be

(5.10)

+ 8o

3= +imw. (5.11)

Only the negative one will be retained in the following, ®ntcasts the solutions into the
physically relevant incoming waves at the horizon and tloeeesatisfies the incoming wave
boundary condition. The solutiofi can be split into two factors, which afge — 1)~ and
some functionF'(p), which is regular at the horizon. Note, that tlisis different from the
function§ introduced earlier. Whildé” results from splitting the full solutiof’ into a regular
and aregulating part (see section 3.1.2), the fun@icesults from splitting the full solutio”’
into a boundary and a bulk part. The first coefficients of aeseeixpansion of'(p) can be
found recursively as described In [33) 34]. At the horizoa lttcal solution then reads

E(p)=(p—1)""F(p)

. j 5.12
:(p—l)lm|:1+%(p—1)+"l. ( )
So, F(p) asymptotically assumes values
Flo=1)=1,  9,F(p)| =72 (5.13)
p:

For the calculation of numbers, we have to specify the badenmsityd and the mass pa-
rametery, ~ M,/T to obtain the embeddings used in(5.10). Then we obtain a solution
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for a given frequency using initial values (5.12) and (5./13) in the equation of io(5.10).
This eventually gives us the numerical solutionsfgp).
Spectral functions are then obtained by combining (5.8)(&r&0),

_ NyN.T? : 3L (p)
R(w,0) = —— Im ph_)Iglo (p EQ) ) (5.14)

Results for spectral functions We now discuss the resulting spectral functions at finite
baryon density, and observe crucial qualitative diffeemncompared to the case of vanishing
baryon density. In figures 5.1 to 5.4, some examples for teetsgd function at fixed baryon
densityny o d are shown. To emphasize the resonance peaks, in some plstsbivact the
quantity

Ry = N;N.T? 1o, (5.15)

around which the spectral functions oscillate, cf. figuke 5.
The graphs are obtained for a valueladboved* given by

d* =0.00315, d=2"%ng/(N;VAT?), (5.16)

where the fundamental phase transition does not occur. ifeeett curves in these plots
show the spectral functions for different quark massesesponding to different positions on
the solid blue line in the phase diagram shown in figure!4. ¥yaRdless whether we choge
to be below or above the critical valué, we observe the following behavior of the spectral
functions with respect to changes in the quark mass to teatyrerratio.

Increasing the quark mass from zero to small finite valuesltesh more and more pro-
nounced peaks of the spectral functions. This eventuadigde¢o the formation of resonance
peaks in the spectrum. At small masses, though, there ararmmwnpeaks. Only some broad
maxima in the spectral functions are visible. At the sametan these maxima evolve into
resonances with increasing quark mass, their positionggsand moves to lower fregencies
1o, see figuré 5/1. This behavior was also observed for the dasmishing baryon density in
[59].

However, further increasing the quark mass leads to a drddfarence to the case of
vanishing baryon density. Above a valug"™ of the quark mass, parametrized H§™, the
peaks change their direction of motion and move to largeresbfio, see figuré 512. Still the
maxima evolve into more and more distinct peaks.

Eventually at very large quark masses, givenybgloser and closer to 1, the positions of
the peaks asymptotically reach exactly those frequencreshweorrespond to the masses of
the vector mesons at zero temperature [38]. In our coorenétese masses are given by

M = % V2(n+1)(n+2), (5.17)

wheren labels the Kaluza-Klein modes arising from the D7-braneppiiag S3, and L. is
the radial distance in th@,9)-direction between the stack of D3-branes and the D7, eteddua

at theAdS-boundary,
M,
Lo = lim ox(p) o< —*. (5.18)
0—00 T
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Figure 5.1: The finite temperature part of the spectral fonc¢& — R, (in units of N, N.T?/4)
at finite baryon density. The maximum grows and shifts to smaller frequencies
as xo is increased towardg, = 0.7, but then turns around to approach larger
frequency values.
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Figure 5.2: The finite temperature part of the spectral fonc¢& — R, (in units of N, N.T?%/4)

at finite baryon density. In the regime ofy, shown here, the peak shifts to larger
frequency values with increasing.
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250" -

200+ | |
150/ |
100

i}i(m, O) — NRo

50"
~100-

Figure 5.3: The finite temperature p8tt- R, of the spectral function (in units of ; N.7%/4)
at finite baryon density. The oscillation peaks narrow and get more pronounced
compared to smallex,. Dashed vertical lines show the meson mass spectrum
given by equation (5.1.7).

The formation of a line-like spectrum can be interpretechasetvolution of highly unstable
quasi-particle excitations in the plasma into quark bouades, finally turning into nearly
stable vector mesons, cf. figulres!5.3 and 5.4.

We now consider the turning behavior of the resonance pduaksrsin figures 5./1 and 5.2.
There are two different scenarios, depending on whethegubek mass is small or large.

First, when the quark mass is very smil} < 7', we are in the regime of the phase diagram
corresponding to the right half of figure 4.10. In this regithe influence of the Minkowski
phase is negligible, as we are deeply inside the black hadsghwWe therefore observe only
broad structures in the spectral functions, instead of peak

Second, when the quark mass is very large,> T, or equivalently the temperature is very
small, the quarks behave just as they would at zero temperdtuming a line-like spectrum.
This regime corresponds to the left side of the phase diagrdigure/4.10, where all curves
of constant asymptote to the Minkowski phase.

The turning of the resonance peaks is associated to theesésof the two regimes. Afy™
the two regimes are connected to each other and none of thdomisiant.

The turning behavior is best understood by following a lifieanstant density/ in the
phase diagram of figure 4/10. Consider for instance the bblielline in figure: 4.10, starting
at large temperatures/small masses on the right of thekist, we are deep in the unshaded
region (3 # 0), far inside the black hole phase. Moving along to lod@gn/, the solid blue
line in figurel4.10 rapidly bends upwards, and asymptote®tb the line corresponding to
the onset of the fundamental phase transition, as well dsetedparation line between black
hole and Minkowski phase (gray region). This may be intéguteas the quarks joining in
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Figure 5.4: The spectral functif (in units of N, V. 7% /4) at finite baryon density. At large
X0, as here, the peaks approach the dashed drawn line specdtremby (5.17).

bound states. Increasing the mass further, quarks formsalstable mesons, which give rise
to resonance peaks at larger frequency if the quark massresised.

We also observe a dependencey§f" on the baryon density. As the baryon density is
increased from zero, the value gf™ decreases.

Figures 5.4 and 5.5 show that higherexcitations from the Kaluza-Klein tower are less
stable. While the first resonance peaks in this plot are varsow, the following peaks show
a broadening with decreasing amplitude.

This broadening of the resonances is due to the behavioureofjtasinormal modes of
the fluctuations, which correspond to the poles of the catoet in the complex plane, as
described in the example (3162) and sketched in figure 5.& |dtation of the resonance
peaks on the real frequency axis corresponds to the reabfpilae quasinormal modes. Itis a
known fact that the the quasinormal modes develop a largéarglimaginarypart at higher
n. So the sharp resonances at lmywhich correspond to quasi-particles of long lifetime,
originate from poles whith small imaginary part. For higlescitations inn at larger,
the resonances broaden and get damped due to larger imagerés of the corresponding
quasinormal modes.

For increasing mass we described above that the peaks qfeéb&a functions first move to
smaller frequencies until they reach the turning peiff". Further increasing the mass leads
to the peaks moving to larger frequencies, asymptoticalhr@aching the line spectrum. This
behavior can be translated into a movement of the quasinonodes in the complex plane.
It would be interesting to compare our results to a direatudation of the quasinormal modes
of vector fluctuations in analogy to [48].

In [48] the quasinormal modes are considered for scalaruidticins exclusively, at van-
ishing baryon density. The authors observe that startiom the massless case, the real part
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Figure 5.5: The thermal spectral functiéh (in units of N;N.7?/4) compared to the zero
temperature resuii,.
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Figure 5.6: Qualitative relation between the location &f goles in the complex frequency
plane and the shape of the spectral functions on theuwestis. The function
plotted here is an example for the imaginary part of a caiweldts value on the
realw axis represents the spectral function. The poles in the plgh are closer
to the real axis and therefore there is more structure inghetgal function. This
figure was generated by Felix Rust [117].
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of the quasinormal frequencies increases with the quarls iiira$, and then turns around to
decrease. This behavior agrees with the peak movementdiar spectral functions observed
in [59, figure 9] (above the fundamental phase transitigns< 0.94) where the scalar meson
resonances move to higher frequency first, turn around ane tosmaller frequency increas-
ing the mass further. These results do not contradict theeptevork since we consider vector
modes exclusively. The vector meson spectra consideredCingt vanishing baryon den-
sity only show peaks moving to smaller frequency as the quoaags is increased. Note that
the authors there continue to consider black hole embeddirtpw the fundamental phase
transition which are only metastable, the Minkowski embegsl being thermodynamically
favored. At small baryon density and small quark mass ouctspeare virtually coincident
with those of [59]. In our case, at finite baryon density, klaole embeddings are favored for
all values of the mass over temperature ratio. At small \&atf&@'/ M in the phase diagram of
figurel4.10, we are very close to the Minkowski regime, terapee effects are small, and the
meson mass is proportional to the quark mass as in the supersyic case. Therefore, the
peaks in the spectral function move to the right (higherdesties) as function of increasing
quark mass.

The turning point in the location of the peaks is a consegai@ifdche transition between
two regimes, i.e. the temperature-dominated one also wisen [59], and the potential-
dominated one which asymptotes to the supersymmetricrsjpect

We expect the physical interpretation of the left-movingloé peaks in the temperature-
dominated regime to be related to the strong dissipativextffpresent in this case. This is
consistent with the large baryon diffusion coefficient prasin this regime as discussed in
section 6.2 and shown in figure 5.1. A detailed understanairibe physical picture in this
regime requires a quantitative study of the quasipaticleater which we leave to future
work.

Let us emphasize that it is likely that the turning point bebais not a consequence of the
finite baryon density. In our approach it is just straighifard to investigate th& — 0 limit
since black hole embeddings are thermodynamically faveved neail’ = 0 at finite baryon
density. We expect that a right-moving of the peaks consistéh the SUSY spectrum should
also be observable for Minkowski embeddings at vanishimgdradensity forl” — 0. How-
ever this has not been investigated for vector modes naittjéB] nor in [59]. An extension
of the analysis presented here to perturbations with nomskiang spatial momentump # 0
has appeared in [61].

5.2 Meson spectra at finite isospin density

Radially varying SU(2)-background gauge field In order to examine the casé; = 2

in the strongly coupled plasma, we extend our previous arslyf vector meson spectral
functions to a chemical potential withU (2)-flavor (isospin) structure. Starting from the
general action

Sey= —T.Tpr /ng det(g + B)|, (5.19)
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we now consider field strength tensors

E,, = o (23 A2 +5 QH fabc bAC) (5.20)
with the Pauli matrices® and A given by equation (5/1). The factet, /(2ra’) is due to
the introduction of dimensionless fields as described b¢o®B5). In order to obtain a finite

isospin-charge density; and its conjugate chemical potentjal, we introduce artU(2)-
background gauge field [1]

i 3:Ao<p>(é Y ) (5.21)

This specific choice of the 3-direction in flavor space as aglspace-time dependence sim-
plifies the isospin background field strength, such that wetwe copies of the baryonic
backgroundF),, on the diagonal of the flavor matrix,

- a,A 0
3 __ p<10 B
Fypo® = ( 0 9,4, ) . (5.22)

The action for the isospin background differs from the ac{4.137 for the baryonic back-
ground only by a group theoretical factor: The factor= 1/2 (comparel(5.19)) replaces the
baryonic factorV; in equation(4.136), which arises by summation overltié) represen-
tations. We can thus use the embeddings) and background field solution,(p) of the
baryonic case o1 142], listed here in section 4.3. As befare collect the induced metrig
and the background field strengthin the background tens@¥ = g + F.

We apply the background field method in analogy to the bacyoase examined in sec-
tion5.1. As before, we obtain the quadratic action by expanthe determinant and square
root in fluctuationsA;. The term linear in fluctuations again vanishes by the eqoatf
motion for our background field. This leaves the quadratimac

Sl(so = on(27° R*)Tpr T, /dp /d4x V |det G|
1
x |G G (AL AL

_|_

9H J3)2 fab3 pab'3 gb s
(QMI)Q(AO) S8 AL 5,0 AL, 6,1 )
" ~wu! ! Vv QH A3 rab3
(G G GG ) I AR R Al Al b | (5.23)
Note that besides the familiar Maxwell term, two other tempgear, which are due to the

non-Abelian structure. One of the new terms depends lipnetii other quadratically on the
background gauge field and both contribute nontrivially to the dynamics. The egpraof
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motion for gauge field fluctuations on the D7-brane is

0 =0, [\/\det Gl (G”“G"“ BeZdelD FH] (5.24)

\det G| A3fab3 (GI/OGO'/J, GVO’GO/J,) Fb

pv

with the modified field strength linear in fluctuatiods, = 201, Ay + fab8 A3 (50, AL +

dou Ay )or® /(2m).
Integration by parts of (5.23) and application lof (5.24)¢sthe on-shell action

S = o T, Tprm* R? /d437 V/|det G|

x (Grierr - aaw) gk

PH

(5.25)

The three flavor field equations of motion (flavor index 1, 2, 3) for fluctuations in transver-
sal Lorentz-directionsr = 2,3 can again be written in terms of the combinatiéff =
qA$ + wA%. At vanishing spatial momentum= 0 we get

s 0,(y/]det GIGHG2)
0=EL + [de EY (5.26)
\/ |det G|GH4G22
el 2i0gwGP -
~ o (omw)* + (A3 EL + %A%E%,
s 0,(y/]det GIGHG2)
0= £+ [de g2 (5.27)
\/ |det G|GH4G22
00 2
- o llow + (A7) 23 - w’éinA?’E%a
44 122

V]detGlgegz T G4

Note that we use the dimensionless background gaugeAipld A%(27a/)/oy and oy =
7T R?. Despite the presence of the new non-Abelian terms, at hagjspatial momentum
the equations of motion for longitudinal fluctuations are #ame as the transversal equa-
tions (5.26),1(5.27) and (5.28), such thiat= Er = E..

Note at this point that there are two essential differendeshwdistinguish this setup from
the approach with a constant potentigl at vanishing mass followed inl[1]. First, the inverse
metric coefficientsy*” contain the embedding functiopn(p) computed with varying back-
ground gauge field. Second, the background gauge figlavhich gives rise to the chemical
potential, now depends gn

Two of the ordinary second order differential equaticn2€%. (5.27), (5.28) are coupled
through their flavor structure. Decoupling can be achiewedrénsformation to the flavor
combinations!|1]

X =FE'4iE* Y =FE'—iE*. (5.29)
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The equations of motion for these fields are given by

det 44 122 00 )2
9,(y/|det GlG*G )y _ 4G (0 —m) X

0=X"+ 5.30
V/|det G|GHG?2 G ( )
/Idet 44 22 00 2

V| det G|GHG22 GH# ’
0= o 1 %(VIdet G )y G0 (5.32)

V/|det G|G44G22 G

with dimensionlessn = A}/(27T) andw = w/(27T). Proceeding as described in sec-
tion 5.1, we determine the local solution of (5.30), (5.3h§ §5.32) at the horizon. The
indices turn out to be

. Aj(p=1)
G =+i {m F @nT) } : (5.33)
SinceA}(p = 1) = 0 in the setup considered here, we are left with the same inglax(&.11)

for the baryon case. Therefore, here the chemical poteiti@ not influence the singular
behavior of the fluctuations at the horizon. The local solutioincides to linear order with
the baryonic solution given in (5.12).

Application of the recipe described in section 3.1..2, 3dn8 [3.60) yields the spectral
functions of flavor current correlators shown in figures 51d8.8. Note that after transform-
ing to flavor combination& andY’, given in [5.29), the diagonal elements of the propagation
submatrix in flavor-transvers&’, Y directions vanish(Gxx = Gyy = 0, while the off-
diagonal elements give non-vanishing contributions. Bingitudinal component? however
is not influenced by the isospin chemical potential, such ¢ha s is nonzero, while other
combinations withZ® vanish (se€|1] for details).

Introducing the chemical potential as described above fogra-temperatureldSs x S°
background, we obtain the gauge field correlators in analog¥12]. The resulting spectral
function for the field theory at zero temperature but finiteraical potential and densif ;5.
is given by

N, T2T,

9{O,iso = 47T(m + rﬂoo)2 ) (534)

with the dimensionless chemical potential, = lim, .., A3/(27T) = p/(27T). Note
that (5.34) is independent of the temperature. This pahigyes subtracted when we consider
spectral functions at finite temperature, in order to deiteerthe effect of finite temperature
separately, as we did in the baryonic case.

Results at finite isospin density Infigure'5.7 we compare typical spectral functions found
for the isospin case (solid lines) with that found in the loaiig case (dashed line). While the
gualitative behavior of the isospin spectral functionseagrwith the one of the baryonic spec-
tral functions, there nevertheless is a quantitative difiee for the componenfs, Y, which
are transversal to the background in flavor space. We findhbatropagator for flavor combi-
nationsGy x exhibits a spectral function for which the zeroes as welhagpeaks are shifted to
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Figure 5.7: The finite temperature part of spectral fun&iof,, — Qoo (N UNits
of N.T2T,/4) of currents dual to fields(, Y are shown versus. The dashed
line shows the baryonic chemical potential case, the saiides show the spec-
tral functions in presence of an isospin chemical potentiibts are generated

for yo = 0.5 andd = 0.25. The combinations{Y andY X split in opposite
directions from the baryonic spectral function.

higher frequencies, compared to the Abelian case curvethiéospectral function computed
from Gxy, the opposite is true. Its zeroes and peaks appear at loaguencies. As seen
from figurel5.8, also the quasi-particle resonances of thegalifferent flavor correlations
show distinct behavior. The quasi-particle resonance peé#hke spectral functiofRy y ap-
pears at higher frequencies than expected from the vecteommaass formula (5.17) (shown
as dashed grey vertical lines in figure!5.8). The other flérarsversal spectral functiofyy
displays a resonance at lower frequency than observed ibathwnic curve. The spectral
function for the third flavor directioM s zs behaves a8t in the baryonic case.

This may be viewed as a splitting of the resonance peak inée tthistinct peaks with equal
amplitudes. This is due to the fact that we explicitly brdak $ymmetry in flavor space by our
choice of the background fielﬂg. Decreasing the chemical potential reduces the distance of
the two outer resonance peaks from the one in the middle @anelftre the splitting is reduced.

The described behavior resembles the mass splitting of msesopresence of a isospin
chemical potential expected to occur in QCD [118,/119]. Adéindependence of the separa-
tion of the peaks on the chemical potential is expected. Gseations confirm this behavior.
Since our vector mesons are isospin triplets and we breakabkpin symmetry explicitly, we
see that in this respect our model is in qualitative agre¢mih effective QCD models. Note
also the complementary discussion of this pointiri [58].

To conclude this section, we comment on the relation of thesqumt results to those of
our previous papef [1] where we considered a constant naiigbgauge field background
for zero quark mass. From equation (5.33), the different@d®n a constant non-vanishing
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Figure 5.8: A comparison between the finite temperatureqfatie spectral function® xy
andfRy x (solid lines) in the two flavor direction¥ andY” transversal to the chem-
ical potential is shown in units oV, 77, /4 for large quark mass to temperature
ratio yo = 0.99 andd = 0.25. The spectral functiofR s s along thex = 3-flavor
direction is shown as a dashed line. We observe a splittingefine expected
at the lowest meson masstwat= 4.5360 (n = 0). The resonance is shifted to
lower frequencies foR yy and to higher ones fdRy x, while it remains in place
for Resps. The second meson resonance peak=(1) shows a similar behav-
ior. So the different flavor combinations propagate diffelye and have distinct
guasi-particle resonances.
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background gauge field and the varying one becomes clead] th¢ field is chosen to be
constant inp and terms quadratic in the background gauge fig}d« 1 are neglected. This
implies that the squarév = m)? in (5.30) and[(5.31) is replaced by* = 2tom, such that

AZ(p=1)
(27T)ro

ro < A3, then thel under the square root can be neglected. In this case theadeaction
develops a non-analytic structure coming from {fie factor in the index.

However in the case considered here, the background galdyesfeenon-constant function
of p which vanishes at the horizon. Therefore the indices haweisal form3 = +iw from
(5.33), and there is no non-analytic behavior of the spEtinations, at least none originating
from the indices.

It will also be interesting to consider isospin diffusiontime setup of the present paper.
However, in order to see non-Abelian effects in the diffasamefficient, we need to give
the background gauge field a more general direction in flapace or a dependence on fur-
ther space-time coordinates besigedn that case, we will have a non-Abelian term in the
background field strength),, = 0,42 — 9, A% + faAb A py?/(2ma/) in contrast to), Ag
considered here.

we obtain the indiceg = +w4/1F

instead of ((5.33). If we additionally assume

5.3 Peak turning behavior: quasinormal modes and
meson masses

This section serves to discuss the interpretation of regmnpeaks appearing in the spectral
functions we computed previously. That interpretationi@sely related to understanding the
movement of the peaks as the mass-temperature parameasechanged, i.e. the turning of
the resonance peaks observed in section 5.1. Also the guasihmodes play an important
role here since their location in the complex frequency @liarrelated to the resonance peaks
appearing in the spectral function. Furthermore knowirggdhasinormal modes precisely,
we can quantify qualitative observations in the spectratfion’s behavior. Note, that one
important feature to remember about our setup is that thekquass)/, and the temper-
atureT' do not appear independently but always together in the fdrtheo mass parame-
term = 2M,/(V/AT).

It should be kept in mind that in this present section we colike intermediate outcomes
of our investigation and we suggest a few possible inteatimts. Nevertheless, due to the
intermediate state of our studies this section is very dpdeea and we are working on testing
the alternatives and making our line of argument concise.

Observations The three pictures 5.9, 510 and 5.11 summarize an analiyfie durning
point appearing in vector meson spectral functions at flvatieyon density at a distinct quark
mass to temperature ratio (roughlym o xo up tox, = 0.6 orm = 0.8). In order to
obtain the resonance frequency and decay width of the (gomesions the spectral function
peaks were locally (all the values of the peak which are ablez@orizontal axis) fitted to the
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Figure 5.9: The frequency of the first resonance peak (madglafest vector meson)
in the vector spectral function is shown depending on thesnudghe quarks
parametrized by, for different baryon densitie$. For the lower curves at small
density we identify a clear turning point (minimum).
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with the free parametet, the decay width" and the lowest vector meson resonamge ;.
Although this is a crude approach (the resonances do notthaveorenz shape but are de-
formed, cf. 149]) the location and width of the peaks are gegad quite well (optical check).
The height of the peaks might be a subject to discussion geagnknown parametet varies
roughly betweer).1 and10 over the scanned parameter range. Nevertheless, thissanisly
merely designed to find qualitative features and for quaini# results we plan to use a differ-
ent approach utilizing quasinormal modes.

The movement of the resonance frequency visible in figures@g@ests two distinct limits.
First, there seems to be no turning point in the case of zemsitye With increasing mass
parametern the resonance peak moves further and further to lower frezjege. Since the
turning point should not be negative, we expect either tiaicurve goes back up or asymp-
totes to some finite value. The latter conclusion agrees th@lspectra shown in [59], where
for the case of vanishing baryon density the peaks were femagproach a distinct small fre-
quency as the mass parameter is increased towards itakcviiciey, — 1. The decrease of
the turning point value with increasing baryon density asaghin figure 5.11 suggests that at
vanishing density the turning point would lie at the critieenbeddingy, = 1, corresponding
to a quark mass ofi(d = 0, yo = 1) ~ 1.3.
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Figure 5.10: The frequency of the first resonance peak (méskglaest vector me-
son) in the vector spectral function is shown depending oe thass
of the quarks parametrized by, for different baryon densities] =
0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.5, 1, 10. For the lower curves at small
density we identify a clear turning point (minimum) whilestpeaks at large den-
sity d > 1 move to higher frequency with increasing parameter

Second, in the limit of large densities>> 1 we again find that the turning point disap-
pears but now there are only right-moving peaks approadhmggr and larger frequencies as
the mass parameter is increased. Note, that this behavieesagvith what we expect if we
are to identify the resonance peaks with meson masses asskstin section 5.1. However,
the peak movement towards smaller frequencies in the lihvianishing density as well as at
intermediate densities is a rather unexpected featureiodhtext of the meson mass interpre-
tation. We may also say that the peak movement to smallenéracjes causes the appearance
of the peak turning point. For this reason later we will foomsexplaining the movement of
peaks to smaller frequencies and we will start with the J@ngs density case for simplicity
below in the paragraph ‘Heuristic gravity interpretation’

In order to understand what causes the resonance peaks spebtral function to move
towards smaller frequencies with increasing mass paramegt@e now examine the solutions
to the regular functio” (cf. (5.12)) which we found numerically and from which thespal
function is essentially computed usirig (£.14). In figure35ie real and imaginary part of
the regular functiorf'(p) are shown versus the radial coordinat& he two upper plots show
the solution for a vector perturbation with enengy= 1, the two lower plots forw = 2. In
all four plots the solid black line shows results for the flaia&sless) embedding = 0, the
red dashed curve is evaluated at a finite mass- 0.4. The real and imaginary part @f(p)
show a similar oscillation behavior with decreasing fragpyefor largerp. The lower curves
atw = 2 display more oscillations over the entire rangeodhan the upper ones at = 1.
Note that figure 5.13 shows the whole radial variable rangeesior the numerical solution
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Figure 5.11: The location of the turning point for the lowesttor meson mass is shown de-
pending on the baryon density. Data points read from cunvels as given in fig-
ure/5.10 are displayed as dots, the line shows a quadratiedit- 1.21d+0.53d2.
The fit should not be taken too seriously since it is more neasle to consider
the equivalent plot for the turning point in terms of the pbgk parameterm
shown for pseudoscalar excitations in figure 5.15.
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Figure 5.12: Thepreliminary Thirring coupling versus embedding parametgiin the case
of d = 0 (green) andl = 0.25 (red).
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we used the cutoffg)'™ = 1.00001, ppg" = 10°. This means that figufe 5.13 shows all the
oscillations which are present in the solutions over thele/#@S. This is a key observation
for our interpretation since it means that there is only @adiamount of oscillations in each
solution and the number of oscillations increases witheasing energyo. We will come
back to this observation in the paragraph ‘Heuristic ggawiterpretation’. From figure 5.13
it is also evident that the red dashed curve at lasger 0.4 does not reach the amplitude of
the solid blac flat embedding curvexai = 0. One is tempted to interpret that with growing
mass parametey, or equivalentlym the solutionF'(p) gets damped more and more.

Considering especially the real parts of the solutionsldigd in the left column of fig-
ure(5.13 we observe that the amplitude of this 'strechedlagon’ near the horizop = 1
first drops rapidly to remain almost constant in the rest efwéiriable range0 ~ p < pyqy.
Note in particular, that all these features appear alreatlyg massless embedding (solid black
line in figure!5.13). Therefore we are lead to conclude thesétfeatures of the solutions are
caused by the finite temperature background (the pure AdBi@olin terms of Bessel func-
tions would show amplitude damping but no change of frequenc

Nevertheless, we should not forget that the coordipatesplayed in figure 5.13 is not the
radial distance which the mode experiences but the distahimd is measured by an observer
at infinity. Therefore the picture might be distorted. In@rtb get the physical distance which
a comoving observer measures we have to transform to thepragial coordinate

s= [4pV/ET0. (5.36)

where G is the metric induced on the D7-brane being a function of weable p and the
embeddingy in general. Since we only have a numerical expressionyfave can not
find an analytic expression for the coordinate Either we gets numerically from the in-
tegration (5.36) or we restrict ourselves to a near horizmpr@imation where we know
that x(p) = xo + x2(p — 1)*> + .... We choose the numerical approach. The solufion
is plotted versus the proper coordinate in figure 5.14 neauhtirizon. Note that the range
of 0 < s < 9 shown in these plots corresponds to a much larger range iarihmal co-
ordinatel < p < 4000. We observe that the solution oscillates with apparentlystant
frequency and an evident decrease of the amplitude. Notehbalecrease of the amplitude
is very smooth here (compare the first and second maximumafdr eurve). Increasing the
mass parametey, or equivalentlym we find from the upper plot in figure 5.14 that the am-
plitude is decreasing from curve to curve while the propererangth grows. We argue that
this wavelenght growth is responsible for the shift of resme peaks to smaller frequencies.
A qualitative change of this situation which confirms ourga®n happens if we switch on
a finite baryon density (cf. right plot in 5.14). In this cabe decrease of the amplitude is
diminished and the growth of the wavelenght is stopped andbgerve a turning behavior
with growing amplitude and decreasing wave lengthyfer= 0.9 (blue curve).

The proper distance (on the brane) between the horizon aistirectipointp in the bulkAs =
s — sy depends on the embedding functignas seen from equation (5/36). In fact with in-
creasing mass paramedgy (or m) we find that the distancls also increases. This is already
obvious from the embeddings for increasipgshown in figure 4.5. There the spike reaching
from the brane to the horizon becomes larger and larger witheasingy, and thus when
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Figure 5.13: The real and imaginary part of solutidf() are shown versus the radial AdS-
coordinatep. Each plot shows two curves one of which is evaluated at kargs
massyy = 0 (solid black) while the other is generated at a finite mags=
0.4 (dashed red). The two plots on top are generated by a vectturipation
with energyro = 1 while the two lower plots show the equivalent results at
the doubled energw = 2. A quasinormal mode would satisfy the boundary

condition lim |F| = 0 at the boundary.
P~ Pbdy

traveling the same distance in the coordinaten the brane or rather on the spike one travels
a longer and longer distance.

Before we consider possible explanations let us record asedbservation comparing
the movement of the resonance peaks and the minimum apgearthe diffusion coeffi-
cient (cf. section 6.2). In figure 5.15 the lower curve shdweslocation of the first resonance
peak in the spectral function plotted against the densitwith increasingl the peak moves
to lower mass values:. However, the upper curve shows that the location of theusiidin
minimum with increasing density moves to largern. This observation suggests that these
two quantities are driven apart from each other by an effecegated through the finite baryon
density.

Heuristic gravity interpretation We now approach the interpretation of the left moving
resonance peaks from the gravity side finding out how thetisolsi /' to the equation of
motion change with increasing mass parameteand how in turn this influences the spectral
function peaks. So our task is to follow a distinct peak (éhg.first resonance peak) appearing
in the spectral function at a certaitetv while we are changing the mass parameterThe
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Figure 5.14: Imaginary part of the solution to the regularchion F' versus the proper radial

coordinates [115]. The upper plot at vanishing baryon density 0 shows that

the initially sinusodial solution is deformed as the masspeetery is increased.
Furthermore, its amplitude decreases while the wave lengtbhases. The upper
plot shows that introducing a finite baryon density= 0.2 causes the solutions

to change their behavior with increasigg While the first three curves for, =

0.01, 0.5, 0.8 show the same qualitative behavior as those in the upperthiot
blue curve fory, = 0.9 clearly signals a qualitative change with its increased
amplitude. Looking at the wave lengths in the lower plot walize that already
the green curvey(, = 0.8) shows a decreased wave length as well as the blue
curve (o = 0.9).
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Figure 5.15: Comparison of the resonance peak movementetontition of the diffusion
minimum versus the baryon density in the case of scalar ftictos. This plot
was generated by Patrick Kerner [115].
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Figure 5.16: Contour plot of the flavor current spectral fiortsurface near the lowest quasi-
normal mode in the limig = 0 [117]. Note, that this is not the diffusion pole.

first problem that arises is how to identify those solutiéhehich produce a particular peak
in the spectral function. We would have to scan all posstibfer each choice ofn. Therefore
we take a more elegant detour via the quasinormal modes. Alawe argued before in
figure!5.6 the spectral function can be seen as the real fneglexige of a spectral function
landscape over the complex frequency plane. The reson&ads pve observe in the spectral
function over reatv are caused by poles in the complex frequency plane appeaxaaly at
the quasinormal mode frequencies of the equation of ma&dr0)j. Although at the moment
we do not have a concise quantitative relation between thsigarmal frequencies and the
exact location of the resonance peaks in the spectral iumeti real, we assume that the
qualitative motion of the resonance peaks is directly causethe corresponding motion of
the quasinormal frequencies asis changed. In other words we assume here that if we can
show that the quasinormal frequencies are shifted to smaHe asm is increased, then
we have also shown that the resonance peaks move to sfalter This is confirmed by
observations from contour plots of the spectral functioarnguasinormal mode locations
such as figure 5.16. At the moment we will just take this as aoraption motivated by our
observations but we are momentarily working on a concissicel.

Quasinormal modes have a determined behavior at the bousidae by definition (cf. sec-
tion [3.3) they have to vanish theféym(p = ppoay) = 0. This means that if we keep this
boundary condition satisfied by adjustingas we dial through values of, we always pick
that particular solutior#” which generates the pole in the spectral function at theiqoasal
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frequency. Thus we have solved the problem how to identidgéhsolutions responsible for
generating a peak in the spectral function.

Connecting the observation of finitely many oscillations@th solution in figure 5.13 with
the distinct boundary condition at the AdS-boundary, wektiat each quasinormal mode so-
lution Fp v at the complex value gy, is fixed on both ends of the variable rangg ( ppay)
and shows a finite number of oscillations in between. Thisabieh is very similar to that of
solutions we would expect from quantum mechanics in a box.tlke reason we start our
line of argument with the assumption that in the case at haf8-#pace in radial direction
can be seen as a ‘box’. As we have seen in fiQurel 5.13, changgngnass parametet or
equivalentlyy,, causes the solutiof’ to change. In our ‘box’ picture we now attribute this
change to the change of the size of the AdS-‘box’. Increasing equivalent to decreasing
the temperatur@’ which results in shifting the location of the horizon in thienénsionful
coordinatep = oy to a smaller value sincg; = 7T'R%. This means that we increase the
distance between the horizon and the boundary which makebdl’ larger. In order for the
same number of oscillatiorisof F to fit into the larger box, the effective wave length has to
grow and equivalently the effective frequency of the mode toashrink. It is this shrinking
effective frequency which we suspect to cause a movemetieofiiasinormal frequency to
smaller real parts and eventually to cause the left-motidheoresonance peaks versus real

Note, that the heuristic description of AdS as a box with it glepending on the mass
parameter is supported by our discussion of the properhengf. equation/(5.36)) which the
mode experiences on the brane.

Looking at the problem even more generally, we notice thatgbak motion to smaller
frequencies appears exclusively at small values of the passnetern or equivalently at
high temperatures. As we have seen in the analysis of (gquason spectra in section 5.1
in this parameter range it is no longer possible to identify tesonances as quasi-particles.
Due to their large decay width we should rather consider therne short-lived mesonic
excitations in the plasma. In this regime the finite tempemeffects overcome the vacuum
effects governed by supersymmetry. Therefore it is natarglok for a thermal interpretation
of the left-motion of these resonance peaks as an effecteopldssma interacting with the
probe quarks. If this interaction on the gravity side coutdfbund to damp the functiof’
and to become stronger asis increased, this could give an explanation for the deangas
frequency in analogy to a damped harmonic oscillator. Hyacis is the approach we take in
the next paragraph to find an analytic solution.

Analytical results Motivated by the exact numerical solution to the fluctuagguations

of motion shown in figure 5.14, we suspect that this dampetiatsog curve near the horizon
can be approximated by a dampgulasi-harmonimscillator, i.e. we should be able to find
an approxiate equation of motion which is a generalizatidh® damped harmonic oscillator
equation. Byqguasi-harmoniove mean that the oscillator is damped with the damping de-
pending on the location of the mode in radial direction. Frbmobservations in figure 5/13

2Different numbers of oscillations correspond to the déferquasinormal modes and according to our reason-
ing also to the different peaks appearing in the spectraition. Here we only want to follow one single
peak in the spectral function and therefore we keep the nuoflwescillations constant.
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we have already concluded that the amplitude changes yapedir the horizon and ceases to
change very quickly in order to stay virtually constant Lt boundary is reached. Thus itis
reasonable to assume that the damping of the nfonhainly takes place near the horizon and
a near-horizon approximation can capture this effect. is shirit we take the near-horizon
limit o ~ 1 and at the same time the high-frequency limit> 1.

Applying these limits for the flat embedding = 0 in the equation of motiori (5.10) we
obtain the simplified equation of motion

1
yH" 4+ (—2iv0 — y) H' + i (\7 + 1) H=0, (5.37)

where the variable ig = 2im§(g — 1) and the regular functiort/ (y) comes from the

AnsatzE = (o — 1)°F with the redefinition’ = ¢~ V7/2®(e~1) [f . This equation of motion
has the form oKummers equatigrwhich is solved by the confluent hypergeometric function
of first H = | Fi[—iro(1/+/7 + 1), —2itv, 2] and second kind/. Boundary conditions rule
out the second kind solution which is non-regular at thezworiand therefore contradicts the
assumptions put into the Ansatz= (o — 1)°F. Since we are interested in how the solution
changes with decreasimg, we need to choosg, non-vanishing. Also with this complication
we still get Kummers equation with changed parameters aactialytic solution forF' is
given by

ivow, |74 Ax2[x0,d12 1 74 CZQ
Fee "N 1 | =i — + 1|, —2iw, 2inz ZJF% :
2/ 7+ Pghot ~ X
(5.38)

with the near horizon expansion of the embedding functiea xo + x2[xo, d|z* + ... where
we determine recursively

Xo—3x0+3x5— 1
4(1 = 3x§ + 3x5 — xb + d?)

Xz2[x0, d] = 3x0 (5.39)

The approximate solution faF' is shown in figure 5.17. Furthermore we can calculate the
fractiono, F'/ E appearing in the spectral function near the horizon usiisgattalytic solution.
The result is displayed in figure 5/18. This near horizontliminot the spectral function
since we would have to evaluate it at the boundary which keséyond the validity of the
near horizon approximation. Nevertheless, according torotial assumptions that the effect
of damping mainly takes place near the horizon we furtheurassthat the limit shown in
figure!5.18 already contains the essential features of thetisp function. Indeed the fraction
shows distinct resonance peaks which move to lower fregegntwe increase the mass
parametern. The right picture shows the same situation at a finite bagemsityd = 1
and we see that the peaks do not move to lower frequencies &s asubefore. Thus also
the vanishing of the turning point at large densities as fesebefore is captured by this
approximate solution.

The fact that we find Kummer’s equation to describe the hrglpiency near-horizon dy-
namics of our gravity problem is especially interesting iew of a recent thermodynamics
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Figure 5.17: Approximate analytic solution compared togkact solution atv = 70,d =
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Figure 5.18: Approximate spectral function fraction néerthorizon computed with the func-
tion £ = (p — 1)°F(p) and F' being the analytic approximation given in equa-
tion (5.38).
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work on the ‘Propagation of boundary of inhomogeneous heatlaction equation’ [120].
In this work exact analytical solutions of the heat condutiquation in an inhomogeneous
medium are found. That diffusion equation which is the agaldour gravity equation of
motion reads

0iJ(pt) = p'=°9, [D(p)p*'9,J (p, )] . (5.40)

with the position dependent diffusivit)(p). The authors of[[120] show that this can be
transformed into Kummer’s differential equation. In ouagty equation of motion the metric
factors depend on the radial AdS postitipand therefore some combination of them can be
seen as analog to the position-dependent diffusivity). It might be no coincidence that our
gravity setup leads us directly to a diffusion equation wehtie diffusion coefficient can be
expressed in terms of metric factors since exactly this iatvitie membrane paradigm in the
context of AdAS/CFT predicts as we will discuss in section 6.1

Gauge theory speculations On the gravity side we have found some hints that the gravity
solution can be viewed as a damped oscillation with the daghgepending dynamically on
the radial AdS position and on the choice of the mass parametelncreasing the mass
parametern we found that the solutiong are more damped. We attributed this damping to
the metric background and found an analytic near-horiztutiso for £ which is damped by
coefficients in the near-horizon equation of motion whicpete on the radial position, on the
embedding functiory, and on the finite baryon densiy Now an open task is to translate this
geometric gravity picture into a thermal gauge theory phasmology. Our basic assumption
here will be that the damped gravity modes dissipating gnarp the black hole horizon
correspond to a dual current dissipating energy into thertakeplasma.

In order to see the peaks and their movement at all, we neaxhtader the background and
the fluctuations at once. We therefore suggest that the aakgheir motion are generated
by the interaction of the metric components and the grawfy filuctuations which translates
to an interaction between the thermal plasma and the prodasgjwe introduce. Our obser-
vations suggest that this interaction dominates the sdtsmall values ofn and x, (high
temperatures). The peak motion to lower frequencies whiteeasingn o« M,/T means
that at fixed temperatur€ as we put more mass energy, into the excitations, the result-
ing plasma excitation (at low temperatures identified witheson) is less and less energetic.
Minding energy conservation we have to ask where the eneogg gvhich we put in. A
possible explanation for this behavior is that the energyputeinto the excitation is directly
dissipated into the plasma. This would happen if the cogptietween the plasma and the
quarks would become stronger and stronger as the mass garasiacreased.

One could try to put these speculations into a more rigorous by assuming that we have
aThirring modetlike gauge theory here, which describes the self-inteacif our quarks.

So the idea here is that the quarks couple less and less t@t@eaatand more and more to the
plasma which could be seen as a decrease iitireing coupling

r
JThirring X Q’ (5.41)

3The author is grateful to Karl Landsteiner for suggestirig #pproach.
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with the (quasi)meson decay widitand the (quasi)mesonic excitation enefyyrhe Thirring
coupling computed with our setupdt= 0, 0.25 is shown in figuré 5.12 versus the quark mass
parametery,. At both finite and vanishing baryon density we observe thatTthirring cou-
pling decreases rapidly as the critical valuge= 1 is approached.

A more concise relation between the gravity and gauge sshadsbe given soon [121].

5.4 Meson spectra at finite isospin and baryon density

We have successfully introduced finite baryon and isospanggs simultaneously into the dual
thermal gauge theory by the gravity background describsgatior 4.4. In the two previous
sections we have studied fluctuations around the two Iidﬁ’ts# 0, d’ = 0 (section 5.1)
ord® = 0, d" # 0 (section 5.2). In order to compare our results to computatia finite
isospin and baryon QCD-models [122, 123,1124] (e.g. lati&D and two-flavor QCD) we
need to compute fluctuations about the general ¢&sg 0, d # 0.

We start from the Dirac-Born-Infeld action (2121) at vamighB-field just like in the cases
where only one density is non-zero

1 - 1 ~ 1 ~
SDBI = —TD7/d8§Str { vV — det G [1 + étr(Gle) - Z(GilF)Q + gtr(Gle) + .. :| } 5
(5.42)
where the field strength
Fr = Fi, T = 20, AyT" + AL ACT® + 2" A AG T, (5.43)

contains the non-Abelian gauge field fluctuatiehas well as the background field§, A3 (given
by analogs of((4.142) which can be derived from the actiof§2) using the transforma-
tion (4.160)4). In the case of introduced isospin, i&; = 2 with the Pauli sigma repre-
sentationg = ¢ completed by unity = 1 the full background is collected i@ given

by

g%g" 0 0 0 20pA50* 0 0 0
0 g'te® 0 0 0 0 0 0
0 0 ¢2° 0 0 0 0 0
0 0 0 ¢*° 0 0 0 0
G= 26[4213306* 0 0 0 g0 0 0 0 - (544)
0 0 0 0 0 ¢c® 0 0
0 0 0 0 0 0  ¢%s° 0
0 0 0 0 0 0 0 ¢"o°

where g is the metric [(4.132) induced on the D7-brane. Note that we have the com-
plication of two different (diagonal) flavor representaan the determinany — det G and

“Note that in chapter 5 the notation for background and flutioa is reverse compared to chapter 4. In this
present chapted denotes the background whike denotes fluctuations about the background. In chapter 4
we usedA to denote the background for simplicity since in that chattere are no fluctuations.
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furthermore the operatorg and G do not commute since there are flavor representations
attached to each of them. By our choice the background gagige itome only with the di-
agonal representations, ie®= 0, 3 such that only40 #0 andA3 # 0, while the fluctuations
are admitted in any flavor directiof?, # 0, Va = 0,1,2,3. In order to be able to compute
the square roots and the symmetrized flavor trace in therg(#142) we need to simplify their
arguments.

In order to simplify the expressions appearing in the actieaneed to commute the back-
groundG with fluctuationsE”. It is reasonable to split the background into parts whieé iih
distinct representations in order to have definite comrnuartatiles. Taking into account that
we only have background fields in flavor directions- 0, 3 the background containing metric
and background gauge fields reads

G = (gw,+28 Ao )a + 20,43 0* (5.45)
=B
:A;w —Ppv

Note that4,, and B, both come with representations diagonal in flavor space tiyt.4,,,
commutes with all flavor representations,, is further composed of the metric term being di-
agonal in Minkowski space and the antisymmethg] which has only two non-vanishing
entries+9, A3. The non-commuting term with the coefficieBs,, is anti-symmetric in the
Minkowski indices and has only the two entri¢#, A3. We can make use of these properties
later in order to simplify the action. For a simplified notatiwve abbreviatels’ = 0, Ag.

Looking at the actiori (5.42) we learn that we need the inveiesteicGG —! which we compute
by solving the defining equatioi** G, = d6,¢°. The resultis

G = A0 4 B g, (5.46)

with the inverse coefficients for the firStx 5 entries

g44[(Ag')2+(A8/)2+goog44] 0 0 O Agl[(Ag/)Qf(Ag/)QJrgoog;y;]
[(A"—A3")2 490094 [(AY +A3)2+g009a4] (A" —A3")2+g00gaa] [(AY +A3")2+9g00944]
0 g11 0 0 0
AM = 0 0 922 0 0
0 0 0 933 0
AY'[(AS)2—(A3)%+g00gad] 0 0 900[(A9)2+(A3")2 +googaa]

(AY —A3")2 4 g00gaa] [(AY +A3)2+g00g44] (A" = A")2+g00g44] [(AS +AF)2+g00 gaa]
5.47

where the only other non-zero entries in the remaining dvas are diagy>®, ¢%, ¢™") and
the other coefficient is given by

- 7 7 2944148/14%/ 7
(A —A3")2+900944)[(Af +AE")2+g00944]

A3 [—(AY)24+(AE") 2 +g00g44]
(A9 = A3")2+g00gaa] [(AY +A3")2+go0gaa]

0 0
B" = 0 0 :
0 0

S OO o O
o OO o O
S OO o O

- 7 7 2900148/148// 7
[(AY'—A3")2+g00g44][(AY +A3")2+g00944]

(5.48)

_ i Agl[_(Ag/)2+(148/)2+90/0944]
/ 7
(A —A3")2+g00944)[(AG +AE")2+g00944]
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with all other entries vanishing.

In the isospin case the action can be simplified considersiblye the representation ma-
trices being spin representations satisfy the Clifforcelatg in addition to the commutation
relations

{0, 0"} = 26" and [0°, 0" = ie®0°Va,b=1,2,3; (0", 0% =0Va,b,c=0,1,2,3.
(5.49)

The action(5.42) can now be written in terms of these inverée B*” and the fluctua-
tions (5.43). Using their properties along with the groupiaiure simplifications (5.49) we
have to work out the commutation relation farand F' and apply these to simplify the action
terms. For example the term proportionat¥¢*' £,,G**' E,,» can be brought to the standard
form GW’GW’FWFW/ -+ commutators. These formulae may be taken as the startingfpoi
the calculation of fluctuations about the baryon and isobptkground.

5.5 Summary

In this chapter we have computed spectral functions to e&ple thermal gauge theory dual
to the D3/D7-brane setup with finite baryon and isospin desssi

Upon the introduction of a finite baryon density we found resme peaks in these spec-
tral functions appearing at distinct frequencies in sexfd.. At small temperatures the en-
ergy (frequency) of the resonances follows the vector mesass formula while their width
becomes smaller and their resonance frequency larger waeleerease the temperature fur-
ther. These facts suggest the interpretation that the a@senpeaks correspond to mesonic
quasi-particles formed inside the plasma. Having survilieddeconfinement transition of the
theory these vector mesons are analogous tg-ineson of QCD.

However, at high temperatures the resonances become \a@ayg bnd their frequency lo-
cation does not relate to the mass formula. These peaks a@sge ta lower frequencies if
we decrease the temperature or equivalently increase ths pasametem. There exists a
turning point at which the resonance peaks change theicttbhrealong the frequency axis
when the temperature-mass parameteis changed. We speculate that in the same way in
which the low-temperature (large mass) regime is ruled bgshadfects, théhermal regime
is governed by temperature effects. In order to collectewie for this interpretation we ex-
amined the solutions of the gravity field dual to the flavorrent relevant for our spectral
functions in section 513. We give an analytic solution fag gravity field equation of motion
and the spectral function fraction in the high-frequencgra®orizon limit. This solution is
the confluent hypergeometric functipfR; showing oscillatory and damped behavior.

Introducing a finite isospin density in section!5.2 we disred a triplet splitting of the
peaks. This behavior agrees with the analytical resulta/stgpa triplet splitting of the cor-
relator poles in the complex frequency plane at finite isospiemical potential for massless
guarks studied in section 4.2. The splitting depends onitleso$ the chemical potential. Note
again that this behavior is reminiscent of the Q@imeson which is a triplet under the QCD
isospin symmetry.

Finally, in the last section 5.4 we introduced the conceptded to compute gravity fluc-
tuations and to obtain from these the correlators at finitgdraand isospin densities.



Transport processes at strong coupling

Experimental results obtained at the RHIC collider sug¢jest the plasma state generated
there in collisions of gold ions behaves as a fluid (rathen thayas as originally assumed)
is microscopically governed by QCD at strong coupling andditemperature. We thus use
the AAS/CFT duality in the present chapter in order to compransport properties of the
strongly coupled plasma. In particular we focus on the difin of conserved charges such
as the baryon charge and isospin charge. Section 6.1 rethevgeneral membrane paradigm
approach to compute diffusion coefficients from the metamponents only. We apply the
formulae obtained there in sections!6.2 and 6.3 to find thgdoeand the isospin diffusion
coefficients, respectively. Since in the previous chaphave found evidence for mesonic
guasi-particle states to survive the deconfinement tiansitside the plasma, we go on study-
ing the diffusion of such quarkonium states in seciion 6.thaly we consider the case of
a background gauge field in arbitrary flavor direction whiotuces three different isospin
charges on the gauge theory side. In section 6.5 we studyegtadn these three charge
densities which drive thermal currents.

6.1 Membrane paradigm

Let us begin our study of the diffusion properties at finiteyloba and isospin densities by mo-
tivating the so callednembrane paradigiwhich relates transport coefficients to components
of the background metric tensor. In our case this metriociews! include contributions from
the background gauge fields on the D7-brane. We also rebtatetcessary assumptions and
put down the most important formulae. A detailed derivaitan be found in[[31] while a
review of the complete subject may be found.in [9].

The basic idea behind the membrane paradigm approach iste tiee hydrodynamic nor-
mal modes on the gauge theory side of the correspondencedwitatjonal counterpart. This

155
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gravitational counterpart then has to fulfill the same disjom relations as the hydrodynamic
modes. For example the gravity mode dual to the diffusionersitbuld have the dispersion
relationw = —iDg?. The approach used in [31] is to construct the gravity flusdmawith
exactly this dispersion property. Having done this the axgdentify the diffusion coefficient
with an expression in the result depending on the metric amapts. This yields the diffusion
formula for a charge coupled to a conserved vector current

D—_ V9 _ v dp —400944 . (6.1)
g11v —9go09a4 | ,—1 Vo',

Similar formulae can be found for the gravitational tensactilations dual to the shear mode [31].
There are a few assumptions to be made in order for the diervit work. First, the metric
components all have to be independent from all coordinatethk radial AdS-coordinate;.
Second, the time component of the gravity vector fidldp) can be expanded in a series
overq?/T? < 1 (at least ifp is not exponentially close to the horizon). Third, spatialige

field components change slower with time than the time-campbvaries over spa¢é, A, | <

|01 Aol

6.2 Baryon diffusion

In this section we calculate the baryon diffusion coeffici@nd its dependence on the baryon
density. As discussed in [52], the baryon density affeatsidication and the presence of the
fundamental phase transition between two black hole embgsl@bserved irl [£2]. This first
order transition is present only very close to the separdiiee between the regions of zero
and non-zero baryon density shown in figure 4.10 as discussfede in section 413. We show
that the fundamental phase transition may also be seen iiffasion coefficient for quark
diffusion. It disappears at a critical baryon density. Néweless, the diffusion coefficient
shows a smoothened transition beyond this critical densitych we will call hydrodynamic
transition and which appears as a minimum in the diffusion coefficiemsw® quark mass
diagram.

In order to compute the diffusion using holography, we userttembrane paradigm ap-
proach reviewed in sectidn 6.1 developed in [31] and exteémad5S]. This method allows
to compute various transport coefficients in Dp/Dqg-branapefrom the metric coefficients.
The resulting formula for our background is equatiori 6.1ckhs the same as in [59].

The dependence dP on the baryon density and on the quark mass originates frem th
dependence of the embeddig@n these variables. The results forare shown in figur2 6.1.

Discussion The thick solid line shows the diffusion constant at vamghibaryon density
found in [59], which reache® = 0 at the fundamental phase transition. Increasing the
baryon density, the diffusion coefficient curve is liftedfopsmall temperatures, still showing

a phase transition up to the critical density= 0.00315. This is the same value as found
in [42] in the context of the phase transition of the quarkdmrsate.
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Figure 6.1: The diffusion coefficient times temperaturdagtpd against the mass-scaled tem-

perature for diverse baryon densities parametrized by0.1 (uppermost line in
upper plot, not visible in lower plot)).004, (long-short-dashed)).00315 (thin
solid), 0.002 (long-dashed).000025 (short-dashed) and (thick solid). The fi-
nite baryon density lifts the curves at small temperatutégrefore the diffusion
constant never vanishes but is only minimized near the gihassition. The lower
plot zooms into the region of the transition. The phase tt@msvanishes above a
critical valued* = 0.00315. The position of the transition shifts to smallgf A/,
asd is increased towards its critical value.
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The diffusion coefficient never vanishes for finite densBpth in the limit of 7/M — 0
andT/M — oo, D - T converges td /2r for all densities, i.e. to the same value as for van-
ishing baryon density, as given for instancelinl [31] for Rugje diffusion. Near the phase
transition, the diffusion constant develops a nonzero mim at finite baryon density. Fur-
thermore, the location of the first order phase transitionasdo lower values o’/ M while
we increasel towards its critical value.

In order to give a physical explanation for this behavior, fweus on the case without
baryon density first. We see that the diffusion coefficientisiaes at the temperature of the
fundamental deconfinement transition. This is simply duth&fact that at and below this
temperature, all charge carriers are bound into mesonsangfiicg any baryon number.

For non-zero baryon density however, there is a fixed nhumbeaharge carriers (free
quarks) present at any finite temperature. This implies tiatdiffusion coefficient never
vanishes. Switching on a very small baryon density, eveavibéhe phase transition, where
most of the quarks are bound into mesons, by definition thdfestil be a finite amount of
free quarks. By increasing the baryon density, we increas@mount of free quarks, which
at some point outnumber the quarks bound in mesons. Therefdhe large density limit
the diffusion coefficient approachds = 1/(2zT) for all values ofT'/M, because only a
negligible fraction of the quarks is still bound in this limi

Note that as discussed in [53,/42] 52] there exists a regidheiin, T') phase diagram
at smallng andT where the embeddings are unstable. In figure 6.1, this quonels to the
region just below the phase transition at small baryon dgn§his instability disappears for
largen g (compare also figure 4.12).

6.3 Diffusion with isospin

In this section we consider the diffusion coefficient congoufrom the membrane paradigm
formula (6.1) adding a finite isospin density to the finiteylmar density exclusively considered
in the previous section. The gravity dual to such a theoryadh&zady been discussed in sec-
tion/4.4. The finite isospin density enters the diffusionftioent through the D7 embedding
function x(p, d?, d') which appears in the metric components(p, d®,d’). We obtain the
explicit embedding function by solving its equation of nooti4.164) and then simply plug in
the metric coefficients (4.132) into the diffusion formual). This procedure yields the plots
given in figure 6.2. The physical significance of this diffusicoefficient will be discussed at
the end of this section and for now we refer to it aseffective baryon diffusion coefficient

Discussion The diffusion coefficient in this background with finite barydensity and with
finite isospin density (thermodynamical conjugate of thenattal potential in the third flavor
direction) behaves very similar to the case with finite bargensity only. In the limit of
vanishing densitied® = 0 = d! the diffusion coefficient reduces to the thick black line
shown in figure: 6.1 showing a sharp transition from the diffei®lack hole phase to the non-
diffusive Minkowski phase at the critical mass-temperataluem.;. Again the explanation
is that neither baryon nor isospin charges are availabt@\bile criticalm. We now switch on

a small baryon density and increase the isospin densityarnepusteps from zero (black curve)
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Figure 6.2: The diffusion coefficient times temperatupgd’ is plotted versus the mass-

temperature parameter at baryon density (a}® = 5-10~° and (b)d? = 20. Dif-
ferent curves in one plot show results for distinct valuethefisospin density (top
down):d’ = 0 (black),d’ = 1/4d” (green)d’ = 1/2d” (blue),d’ = 3/4d” (red),
d’ = dP (orange). These plots were generated by Patrick Kefne}[115

to d! = dP (orange curve) in figure 6.2, (a). At these small densitidg tie case in which
both densities are equal differs significantly from the dvdyyon density case. The diffusion
curve for this case drops up to 50 percent below the baryaligevabove the transition and
follows the baryonic case closely below the transition. ot in on figure 6.2, (a) would
show a spiraling behavior for all the curves near the locatibthe former phase transition.
The new location of the transition shifts to smalteras the isospin density is increased. This
qualitative behavior has also been observed when we ireni¢bs baryon density at vanishing
isospin density in the previous section. Thus we can sunz@ahat the introduction of any
of the two densities shifts the location of the phase tramsito lower values of the mass-
temperature parameter (as may be seen in the phase diagram'4.18). At a critical aatibn

of densities the transition again vanishes.

Increasing the baryon density & = 20 in figure[6.2, (b) we observe a more pronounced
splitting between the different isospin density curves aifsghe casel’ = d? drops signif-
icantly below the other isospin value curves. All the curshew a clear minimum near the
location of the former phase transition. We interpret thisimum structure as a smoothed
version of the previously sharp phase transition and calyarodynamic transitionWe fur-
ther identify this transition as a crossover. Following libeationy,, of the minimum when
varying the two densities we observe that the rotationalrsginy O(2) formerly present at
small densities in the phase diagram 4.18, now at large tiles&s broken to a discrei&,. All
the diffusion curves approach the valug2r) in both the large and small mass limit. This
evolution is shown in the contour plot 6.3. Contours coroegpto equal values of the mass
parametern at the phase transition.

We now come back to the question which diffusion coefficieathave actually calculated
applying the membrane paradigm formula {6.1). Since we matechanged the formula
at all and taking a closer look at its derivation, we are leathe conclusion that we have
again calculated the baryon diffusion coefficient. Sineerietric background now includes
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isospin density in addition to the baryon density, this folaralso incorporates the effect of the
finite isospin density on the diffusion of our baryons. So wadatude that the coefficient we

have computed is the baryon diffusion coefficient takingdoaant the isospin-driven baryon

diffusion, thus we call it theffective baryon diffusion coefficierih order to study the effects

of baryon and isospin diffusion seperately, we have to nyoithié membrane paradigm and
also our setup to include a non-Abelian structure in the imbarckground as briefly discussed
in the outlook sectioh 6.5.

6.4 Charmonium diffusion

In accordance with recent QCD lattice results [63] and itigations of [64] we observed
in the previous chapter that in our model D3/D7-theory ®ahlasi-particle states of quarks
and antiquarks survive the deconfinement transition oftieental field theory{/ = 4 SYM

in our case) which governs the thermal plasma under invasgtig After having studied the
diffusion of individual quarks considering their isospindabaryon charge in the previous
sections (see also [125, 126, 127]), we now turn to the ddfusf those quark-antiquark
bound states having survived in the thermal plasma. We wdl finat similar to the viscosity
boundrn/s, the quarkonium diffusion at strong coupling is also sigaifitly smaller than at
weak coupling. The energy loss of heavy quarks and their dhatates is experimentally of
high interest/[89, 128, 129, 130, 131, 132]. The most prontiegample of such bound states
in QCD is charmoniumdg), or rather its first excited state calleliv>. In our holographic
setup we examine an analogous configuration of fundameatdsfin SYM theory at strong
coupling. We start by illustrating the general idea of oulcgktion with a review of the
analogous QCD calculation. Afterwards we translate thélpra to SYM theory and solve
it by the calculation of correlation functions in the duahgty theory. The result will be
the quark-antiquark bound state diffusion coefficient edrgj coupling. The content of this
section is taken from the work![4] in collaboration with DefBeaney.

Summary of QCD results Our task is to describe the interactions of a heavy meson with
the QCD medium. We accomplish this by a dipole approximatbich has yielded a good
estimate of the//v> coupling to nucleil[133]. Following the effective field thgacalculation
first carried out in[133], we consider the sum of the pure Q@@rangian and an interaction
Lagrangian describing color-electric (indé) and color-magnetic ( inde®) interactions

. C C
L= gliv- 00, + 55501080, + 1501080, (6.2)
with
Op = —G"1G" Y, Op = 1G"G 5" — G"G Mo, . (6.3)

G is the non-Abelian field strength of QCD, angd andcy are coefficients to be determined
from the QCD dynamics. This Lagrangian may be used for daiscyibound states of heavy
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quarks with four-velocity,,. In the rest frame of a heavy quark bound state; (1,0, 0, 0),
the operator®); andOp are

Op =E*.E4, Op =B*.B*, (6.4)

whereE# andB“ are the color electric and magnetic fields.
For the gluons the stress-energy tensor is given by

T = 1g" GPAG 54 — GHAG . (6.5)
Using this we may write
Op =T" - uG?, Op =T + tG>. (6.6)
cr andcp are polarizabilities which may be determined from mesonssasts,
oM = —(H;) = —(cg + cg)T® — 1(cp — cp)txG?. (6.7)

If the constituents of the charmonium dipole are non-relstic it is expected that the mag-
netic polarizabilitycp is of second order in the four-veloci(v?) relative to the electric
polarizability cy. For heavy quarks we assume tlgt can be neglected and set = 0.
Below we will generalize our results to the holographic ecit

We expect the kinetics of the heavy meson dipole in the metiue described by Langevin
equations for long time scales compared to the medium etives

dz; pi
P~ ()~ mom, 69)
(G(O&) = royo(t —t). (6.10)

Here thet; are components of an arbitrary force acting on the heavy@ipop are its position
and momentum, respectively. In this context the coefficierg the second moment of the
force applied to the dipole. The drag coefficigptand the fluctuation coefficientare related

by the Einstein equation
K

m 5 (6.11)

D =

with the mass\/ and temperaturé'.

In the regime of times long compared to medium correlatiamsshort compared to the
time the system needs to equilibrate, we can neglect the arefficient in equation (6.9).
Then the fluctuation coefficientis obtained from the correlation of microscopic forcg's

o — % / A(F () F(0)) (6.12)

The thermodynamical forcg& acting on the heavy dipole is determined by the gradient
—VU of the potentiall identified as the interaction part of the Lagrangian

U= L= [ @oslesSx00,0x.0). (6.13)
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So the fluctuation coefficient is given by

. 2T ¢ d3q R
K= — })IL% 3—&)@/ (271_)3q ImGEQEQ(wa q)7 (614)
where
G, (w0, k) = —i / d4xei’5-f@(x0)<%(x, t)%(o» | (6.15)

The three-momentum facte® in (6.14) comes from the derivative in the potential gradi-
entVU and the term proportional to? vanishes in the zero-frequency limit.
In the case of QCD the integral in (6/14) evaluates to
2 5
cy 647
== T°. 6.16

T NI (6.16)
The fluctuation coefficient which we identified with the second moment of the force acting
on the dipole gives the rate of momentum broadening. We d&sttify the coefficientsg, cp
as the electric and magnetic polarizabilities. These aatbgous coefficients in the following
are calledr with an appropriate index (e.g.r, ar).

Linear perturbations of A/ = 4 Super-Yang-Mills theory Our aim is to calculate the
heavy meson diffusion coefficiertfrom gauge/gravity duality. This requires the calculation
of the two-point correlators as well as of the polarizaigitin ' = 4 Super-Yang-Mills
theory.

To set the scene we transfer the results of the precedinipseot\' = 4 SU(N) Super-
Yang-Mills theory. We consider the effective Lagrangian

. e y «
L=¢liv-0¢, + FTQQSZT“ Do,y + FggbltrFngv, (6.17)

which is a linear perturbation ¢f = 4 Super-Yang-Mills theory by two composite operators.
The polarization coefficientar, ar will be determined below from meson mass shifts in
gauge/gravity duality.

The force on the dipole now becomes

F(t)=— / d*x¢lV [aTN2T“”uuu,, - %tr F?| ¢, . (6.18)
Again there will be no cross-terms. In the gauge/gravitylithuthis is reflected in the fact that
at tree level in supergravity, there is no contributiod Ty (z)tr F?(y)) = WW =0,
with g% the metric component anbl the dilaton.

We proceed by calculating the stress tensortaihd correlators from graviton and dilaton
propagation through the AdS-Schwarzschild black hole gamknd. Moreover we determine
the polarizabilityar by considering the linear response of the meson mass torsmgton the
black hole. The polarizability - is obtained by determining the linear response of the meson
mass to a perturbation of the dilaton. As an example we chibesdilaton deformation of Liu
and Tseytlin[[134].
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AdS/CFT setup We consider two different gravity backgrounds, the theramal the dila-
ton one. Starting with the gravity dual &f = 4 theory at finite temperature given by the
AdS-Schwarzschild black hole with Minkowski signatureqgeg. 128]). Asymptotically near
the horizon the corresponding metric returns4@Ss; x S°. The black hole background is
needed in the subsequent both for calculating the necessarpoint correlators7y7oo)
and(trF*tr %), as well as for obtaining the polarizability contributiar the linear response
of the meson masses to the temperature.

We make use of the coordinates 0t [37] to write the AdS-Schedrild background in
Minkowski signature as

ds? = (%)2 <—f7dt2 + fde) (?) (dr? + 72d02) | (6.19)

with the metricdQ? of the unit5-sphere, where

rd ~ rd TrR?
ry=1--" r)=1+ -2 rg = ——,
£(r) - F(r) " =T (6.20)

R* = 4Arg,N.o/°, A =4nNys, G2y = 4y, .

In this section we will work in a coordinate system with ineef radial Ad.S-coordinateu =
R?/r? used in e.g.[128]. In these coordinates, the deforméds; part of the metric[(6.19)
reads

(rTR)?

ds? = - (= f(u)dzy® + da?) +

R? 9
wefw ™
with f(u) = 1 — v? and the determinant square rogtg; = %.

A further necessary ingredient is the polarizability cdnition obtained from the linear
response of the meson massié'. The gravity dual of the operatorF? is the dilaton field.
Therefore, we consider a dual gravity background with a el dilaton flow. We choose
the dilaton flow of Liu and Tseytlin [134] which correspondsa configuration of D3 and
D(-1) branes.

In order to fix notation, we write down the string frame meti¢134] in the form

(6.21)

(%>2dfz+<§) (dr? +72d02)| . (6.22)

2 _ P/27.2 _ P
dSstring - dSEinstein =€ r

The type 1IB action in the Einstein frame for the dilatbnthe axionC' and the self-dual gauge
field strengthts = «F; reads

1 1

. 10 — _1 2_12@ 2 - 2
S_%%O/d x\/_g{R SO0F — SPOCY (B | (6.29)

with the curvature scalaR and the ten-dimensional gravity constant

1 1
= . 6.24
2 (@) o2
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Solving the equations of motion derived from (€.23), we obthe dilaton solution
P 4q
e :gs(1+ﬁ). (6.25)

Note that the parametgrwe are using here differs from that given in [134] in the faliog
wayq = RTSQLiu&Tseytlin-
The dilaton is dual to the field theory operatof'trappearing in the gauge theory ac-
tion Sgauge= | d*ztrF? + .. .. So the expectation value or one-point function of this efmr
is given by
08 N?

(tri?y = —

0 2m? RS (6.26)

Correlators According to (6.14) and (6.18) the heavy meson diffusiorffagent is given
by

(2T g, [[ar\? R ar\? R
k= —lim (@)/(2#)3(1 {<m> ImGszz(w,q)—i—(m) ImGTT(w,q)} , (6.27)

w—0

where the bracket is the imaginary part of the foice (6.18)etator G%X-. We need to cal-
culate the retarded momentum space correlapy of the energy momentum tensor compo-
nent7 which is dual to the metric perturbatidn,, and the 2-point correlata@rZ%, .. of the
operator tF#? dual to the dilatori. On the gravity side both field correlators are computed in
the black hole background (6/19) placing the dual gaugeyhamerator correlation functions
at finite temperature.

For simplicity in this section we work in the conventions arabrdinates of([28]. Espe-
cially the radial coordinate is changed fronto « with the horizon at: = 1. These are the
same coordinates we have used in section 3.1.2. We apply ¢tigoch of [27] to find the
two-point Minkowski space correlators from the classieglergravity action as described in
sectior 3.1.2 .

The classical gravity action for the graviton and dilatonlained from((6.23) as

1 1
5
where ,
1 Qs N
== . 6.29
kE K}y  ATR3 (6.29)
So comparing ta (317) we get
1
Bc} = —p\/ _g5guu . (630)
Ks
The equation of motion derived frorm (6/28) in momentum spaees
1 2 2 2
ARl . . ¥ AP (6.31)

uf(u) uf(u)?
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with the dimensionless frequensy= w/27 7 and spatial momentum compongnt ¢/27 7.
The equation of motior (6.31) has to be solved numericallwicoming wave boundary
condition at the black hole horizon. Computing the indiced axpansion coefficients near
the boundary and horizon as done 1nl[33, 34], we obtain thexpsytic behavior as linear com-
bination of two solutions. We get the correlators by appiytinematching methodescribed
in sectiori 3.1.3. Solving (6.31) and matching the asympgmilutions, we obtain

lim / 4 @ o rmGR, (w0, )] = N*TC (6.32)
w—0 ) (2m)3 3w F2p2 i 4 b '
The corresponding result for the energy-momentum comgac@nelator is obtained in an
analogous way from the action and equations of motion ajrélaztussed in [29] . The final
resultis

lim / d—gqq—Q[—QTlmGR (w,q)] = N*TC. (6.33)

w—0 ) (27)3 3w T 2 '
Note that the real numbe¢s, Cs here are numerical values which are currently being checked
The final results will appear inf4].

Polarizabilities Looking at the meson diffusion formula (6/27) we realizet tha have to
determine the polarizabilities;, ar. In analogy to the QCD calculation we consider the
effective SYM Lagrangiar (6.17) leading to the meson mass sh

oM = —ar (T™) — ap (trF?) . (6.34)

On the other hand the mesons are dual to the gravity field fitiotus describing the embed-
ding of our D7-brane (cf. sectidn 2.3) and their masses aterm@ed by the dynamics of
the gravity fluctuations. We have already reviewed how to mai@ meson masses from D7-
brane embeddings in sectidon 2.3. One of the major results takghe meson mass formula
for scalar excitations (2.80) which depends on the anguleitagion number as well as on
the radial excitatiom. From here on we will consider the case of the lowest anguleitae
tion [ = 0 only. Picking up the QCD idea that the interaction with em&rcolor-fields shifts
the meson mass linearly (cf. equation (6.7)) we write dowaralogous relation for the gauge
condensatétr %)

M = —ap(trF?) . (6.35)

The constant of proportionality is identified with the polarization. It can be calculated
by determining the meson mass shift/ at a given value of the gauge condensaté™)

g. Let us now determine the mass shift analytically. This nexputhe further assumption
thatg = ¢/L* is small. Next we derive the equation of motion for D7-branetfiations as
shown in [135] and subsequently linearize that equatiapn which then gives

P

— 9,0°9,0(p) = M* (p+1)2

o(p) + Alp)d(p) , (6.36)

where the operatah(p) is given by

4

A(p) = _4C.7Teaney( 2p (6.37)

1)
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Setting the operatof = 0 returns the case of vanishing gauge condengafe’) = 0. So
the termA¢ describes the meson mass shift generated by the condemstite kevel of the
equation of motion. We consider the lightest of the mesonshnosing the lowest radial
excitation number, = 0 and the solution at vanishing condensategjs Any deviationdg,
from the solutiong, of the casejreaney = 0 may be written as a linear combination of the
functionse,,, which are a basis of the function space of all solutions,

3(p) = do(p) + > andu(p), a, < 1, (6.38)
n=0
M? = Mg + 6 Mg, SMZ < 1. (6.39)

Plug this Ansatz into the equation of motion derived.in [138hke use of the radial fluctu-
ation equation of motion at vanishing(2.73) and keep terms up to linear order in the small
parameters,,, ¢ andd M to get

3 oo B B 3 B 3 ©
T D M nte) = OV 5 ) U s S S aninlo) + Aot

(6.40)
We now multiply this equation by, (p), integrate ovep € [0, oo and make use of the fact that
the ¢,, are orthonormal and of the non-interacting lowest modet&miuw, = v/12/(p?> + 1)
in order to rewrite

[e.e]

SNIE = - / dp o) Alp)do(p)

4 6.41
= 4Q/d;0 (pri Po(p)9pt0(p) ( )
=——3.
From§MZ = 2Myd M, we therefore obtain

LOMG V2 52 R

My = ——— - 6.42
0= SR I (6.42)

spe3 T T Ty N

where we inserted the meson mass formula (2.80) and switzdadto dimensionful quanti-
ties. By comparison with (6.35) we may now identify:

92 6 D) 3/2
ap = 27?2£ i = v2 X . (6.43)
5 N2L  20m MIN?

The calculation of the polarizability; is completely analogous. We are now looking
for the proportionality constant of meson mass shifts wébpect to deviations from zero
temperature,

oM = —ar <TOO>. (6.44)
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The vacuum expectation value
1
(1) = S N°T* (6.45)
is proportional to'temperaturg'. We eventually obtain the polarizabilityr as

_ 9\/5 )\3/2
160w M3N?

(0%

(6.46)

These results (6.43) and (6146) for small valueg afree very well with the numerical calcu-
lation we performed in parallel (not shown here, see [4] fetads) relaxing the assumption
thatg needs to be small.

Result Substituting our polarizations (6.43) arid (6.46), as wslltlee correlators (6.33)
and [6.32) into the Kubo equation for the heavy meson diffusoefficient/(6.27) yields

2 2

\/5 )\3/2 9\/5 )\3/2 )\3T9

R = <ﬂ M3N2 (ClNzTg) + EW (CQNzTg) = 03 YTy (647)
q q

with numerical value€’;, (5, C's which are currently being checked. The final results will
appear inl[4].
This strong coupling result resembles the weak couplingirebtained from a perturbative
calculation very closely
3T

R=03 — )
a06N2

(6.48)
where the inverse Bohr radiug ' replaces the quark massg, as the characteristic energy
scale. In order to compare the weak coupling result (6.48)dstrong coupling result (6.47),
we need to divide by the corresponding mass slifg)* such that the Bohr radius and the
quark mass cancel from the results. The numBeis still being checked. Nevertheless,
our preliminary results indicate that the ratig(6M)? is about five times smaller at strong
coupling compared to its value at weak coupling. It is reasglthat the viscosity to entropy
quotient shows an analogous behavior being much smallémaigscoupling[26]. After the
exact values;, C; are confirmed we will draw a more precise conclusicn [4].

6.5 Diffusion matrix

This section collects a few ideas and formulae which resoithfworking towards the compu-
tation of diffusion matrices. The basic idea here is mo#éddty the fact that the diffusion of
a certain charge can be induced by different gradients. épsatwhich such an effect might
occur is a thermal plasma in which the three flavor chargeitlesiare fixed to three different
values. For example in section 6.3 we found that the simetias presence of finite baryon
and isospin density changes the baryon diffusion coeffidgrea different way than increasing
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a finite baryon density alone. This motivates the idea tongeahe diffusion coefficients re-
lating distinct gradients to distinct currents in a mafri¥Analogous matrix structures appear
in the context of Ohm’s law at strong coupling for the heat eim@rge conductivity [136]. We
will use the D3/D7-system with a non-vanishing isospin dgna all three flavor directions
as a sample setup to study. We collect a few intermediatétsesud ideas in order to develop
the basic plan of the calculation.

Up to now in this work we have chosen a chemical potentiahlong the third flavor di-
rectiono® in isospin space. The thermodynamically conjugate quaigithe charge den-
sity ¢! = d'* coupling to this particular flavor direction. Now in genetiaére are two more
charge densitied”, d” to which the corresponding chemical potentials are congidgan the
gravity side of the correspondence the flavor gauge field comptsA' and A? couple to the
isospin charge densitied!, {2, respectively. The action relevant for this approach idicig
all three isospin directions has been given in equaiiorbl#). already. In this section we are
interested in how a gradient in one of the three isospin ehdemsities”, d’2, d’s influences
the current of a different one of these charge densitiestiaravords, our goal is to compute
the components of the diffusion matrix

Dyy Dis Dig
D= Dy Dw Dy |, (6.49)
D3y D3y Dss

appearing in the diffusion equation for three isospin charg

Jol Dll D12 D13 ) Jol
80 Jg — D21 D22 D23 (92(?2 Jg . (650)
J3 D31 D3y Dss T

In this general setup all three flavor directions are equa& .ha&ve not picked any one of them
to be special as in our previous approach. So it is reasonatdesume that the diffusion
induced by a charge gradient e.g. in 1-direction drives sectiin 2-direction with the same
strength as a charge gradient in 2-direction drives a leatirwhich impliesD, = Do;.
Therefore, the diffusion matrix is assumed to be symmetrit@an thus be diagonalized. We
have at least two paths which could bring us to our goal: Eite extend the membrane
paradigm by flavor indices, such that we have an equationasina (6.1) but with flavor
indicesD® = D*(g¢,, ¢%,), or we compute the fluctuations and read the diffusion caeffic
from the zero frequency limit of the spectral functions asadibed in equatiori (3.64). No
matter which of these two approaches we choose, either oné¢ohacorporate the flavor
structure of fields.

Change the paradigm Starting from the action (4.157)

2 1\2
5 = ~Torly [ d%\/—deWH%900944[@10)%<Ffo>2+<Ffo>21.

1The author is grateful to Christopher Herzog for valuabsedssions on this topic.
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we first note that the different flavors appear as a sum undesdare root and are thus
mixed. This can for example be seen by assuming the backdrgamnge fields to be small
and expanding the square root. At the ords™*, o/*) cross-terms such as!”F2* appear
coming from the expression1 /8[(2ra/)?/4g®g*(F'* + F2* + F3%))2,

Now going back to arbitrary values for the background gauglddj we try to derive and
solve the equations of motion for the background fields ameshdembedding in analogy
to the baryonic case described in seciior 4.3. We get fouateans of motion, one for the
embeddingy and three for the three different flavor gauge fieltfs Again we can identify
constants of motion, but now rather than having only one, axehhreal*. These can be
used in order to Legendre transform the action and elimith@&eldsAg in favor of the three
constants of motior®. Carrying on in this way we assume that the only differencéheo
Abelian case will be that the embedding function will dependill three isospin densities.

Using the membrane paradigm formula in its original (inéssgl) version (611), gives only
one single diffusion coefficienD. We speculate that one has to go through its derivation
in [31] including the flavor indices from the start. This wolesumably yield a distinct formula
for each flavor combination such as

ab
p— | V9 dp —J0du (6.51)
g11v —900944 | ,—1 V')

It is likely that we need to introduce the non-Abeli&fy (2) structure in the metric part of the
background as well, not only in the background gauge fieldseabave done until now. So
probably we need to consider an action of the fgfrRy det[g¢c + (2ma’) FPo?].

Fluctuation approach Alternatively or better additionally in order to check thewnver-
sion of the paradigm, we could use equatibn (3.64) in ordefetive the diffusion matrix
components from the flavor field fluctuations in the form of $ipectral function. We spec-
ulate that the flavor components of the diffusion matrix carrddated to the correlators of
flavor fields in different directions

_ . R*(p,w,q=0) o1
—ab Mbe __ (] _ ac _
=YD = ili% 50 = 2}}1&1) —QwImG (p,w,q=0), (6.52)
where the susceptibilitg® is given by
da
% = 0 (5) , (6.53)
a/"L Hb:O

with the charge density* for the conserved chargg® and the thermodynamically conjugate
chemical potentiali®. The retarded correlat@® results from calculating the correlation of
flavor currents/® and.J®.

Note, that in section 5.2 we have already computed suchrgpéatctions. We have calcu-
lated fluctuations in different isospin directions abowg gimplified isospin backgrounﬂg.
There we have transformed to flavor combinatighs- £' +iE?, Y = E' —{E? and results
have to be transformed back to the original fields in ordessigm the flavor indices appropri-
ately. Of course in this simplified setup two of the flavor geadensities and corresponding
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chemical potentials were set to zero such that the susdéptibatrix has only vanishing en-
tries except for the third flavor directidf®3 # 0. We would have to extend the background
as described above in order for the flavor susceptibilit@gmvanish=®* # 0. Furthermore,
at the moment the numerical precision in the suscpetikality spectral functions has to be
improved in order to get reasonable results.

A trivial result? To conclude this section we briefly discuss the probableamés for the
calculation of the isospin diffusion matrix. We could bring the argument that due to the
rotational symmetry in flavor space we can always rotate @vafflcoordinate system in which
the isospin points along the third flavor direction for exdenf his is the restriction from three
degrees of freedond!, d}, d} to only oned. If this is true then the isospin diffusion matrix
would have to be proportional to unity. However, in the catéimite baryon and isospin
density we have explicitly seen that the baryon diffusioaftitoient changes differently if a
finite isospin density is present. Thus we assume that dtitettsat case the diffusion matrix
can not be proportional to unity. In this case the explamagdhat we introduce the physical
baryon and isospin densities and give them different vakeethat we can distinguish between
them. Then we transform to non-physical densities in whiehgroblem simplifies. But here
we keep all the degrees of freedom we have since we trangfdfmi’) — (d',d?). After
solving the problem with these simpler flavor coordinatesraasform back to the physical
baryon and isospin densities which we had introduced in #ggnming. Since we had chosen
the physical baryon and isospin density to be differens, dhifference reflects in the response
of the system given by the baryon diffusion coefficient bethgnged compared to the case
of vanishing isospin density. Now we argue that in the casanishing baryon but non-zero
isospin densities a similar effect might occur if we admifedent, non-zero, physical charge
densities for all three flavor directions.

6.6 Summary

In this chapter we have studied the diffusion of quarks amdt thound states inside a ther-
mal plasma at strong coupling. We started this study by vaag the membrane paradigm,
a holographic method to find transport coefficients merelgwing the metric components
on the gravity dual side in section 5.1. With this calculatibtool at hand we found in
section 6.2 the coefficient of baryon charge diffusion in tinermal theory at finite baryon
charge density which is dual to our D3/D7-setup. That difascoefficient approaches a
fixed value ofD = 1/(27T") at low and at high temperatures. At intermediate tempegatur
the baryon diffusion coefficient shows a minimum which hiti lower temperatures as the
density is increased. At vanishing baryon density the diffn coefficient still asymptotes to
the valueD = 1/(27T) at large temperatures while it vanishes at the phase tiamsgm-
perature and for all temperatures below it. We interpret Iblyi the baryon charge carriers, the
guarks to vanish below the transition because they get bmtioduasi-meson states carrying
no net-baryon charge. At finite baryon density by definitica aiways have a finite amount
of baryon charge carriers so the diffusion coefficient cairvaaish for this reason.
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In section 6.3 we additionally introduced a finite isospimsley to the baryon density and
studied their combined effect on baryon charge diffusiohe Baryon diffusion coefficient
qualitatively behaves as in the pure baryon density cas#iestibefore and increasing the
isospin density appears to have the same qualitative edfeeidding more baryon density.
That this is not the case can be seen from the study of the adedeparyon-isospin density
phase diagram 6.3. In this diagram we have first traced thegitot of the (black hole to
black hole) phase transition present at small densitiesene extended it by following the
minimum in the diffusion coefficient mentioned above. Sitioe rotational symmetry in this
phase diagram over the baryon-isospin density plane isoably broken tdz,, we clearly
see that baryon and isospin density have different effactsydrodynamics of this theory, so
there is a subtle interplay between them.

Section 6.4 extends our considerations of quark diffusmthe diffusion of their bound
states. In particular motivated by experimental and lattesults hinting at charmonium bound
states having survived the deconfinement phase transitiQC®, we examine the mesonic
bound states which we have found in chapter 5.1. We find therahvaum diffusion to meson
mass-shift quotient/(§1/)? to be significantly smaller at strong coupling compared $o it
value at weak coupling. The calculation is still being creztkout will be published sooni[4].

Collecting basic ideas and proposing some technical stppints in sectioh 6.5 we sug-
gest how to introduce the concept of a flavor diffusion matiike matrix structure is based
on the idea that a charge density in one flavor direction milgiie a current in another. In
analogy to similar effects present in classical systemis difterent charges studying this ma-
trix may also elucidate the different (baryon and isospinsitg-induced) contributions to the
effective baryon diffusion coefficient found in section'6.3



Conclusion

This final chapter summarizes what we have learned in theseouir this thesis about the
thermal gauge theory at strong coupling holographicall tluthe D3/D7-setup described in
sections 2.3 and 4.3. In particular we have studied the lvaakgl introducing finite baryon
and isospin densities and chemical potentials, as well @dltloctuations around this back-
ground. The strongly coupled thermal Super-Yang-Millotlyewith finite densities or poten-
tials serves as our model theory for the quark-gluon plasrodyzed at present and future
colliders (RHIC at Brookhaven, LHC at CERN). | list all of mgsults and discuss their in-
terrelations. Finally, | give my conclusions and an outloBlecall for the discussion that our
D3/D7-setup at finite temperature is controlled by the patamn « M,/T, thus increasing
the quark mass/, is equivalent to decreasing the temperaflir@and vice versa.

Results at a glance and discussion At finite baryon density we have discovered mesonic
guasi-particle resonances in the thermal spectral fumetd flavor currents in section 5.1 (see
figurel5.4). These resonance peaks follow the holographsommass formula [38]

M = %;\/Q(nﬂ)(nm), (7.1)

at large masses or equivalently at low temperature. Thisim#et increasing the quark mass
(which increase$.., as well) the resonance peaks move towards higher frequéiye also
their width (inversely proportional to the lifetime of thexciatation) compared to their en-
ergy is narrow, we identify these resonances with stableovesesons in the plasma having
survived the deconfinement phase transition of the theohys iE in qualitative agreement
with the lattice calculation given in [63] and also with [64Dn the other hand, in the small
mass/high temperature regime the interpretation of splatnction maxima is still controver-
sial (see alsc [137, 61]). In this high temperature regimdimeebroad maxima as opposed to
narrow low-temperature resonance peaks. Moreover, thagema do not follow the meson

173



174 Chapter 7. Conclusion

mass formula at all (see figure 5.1). Quite the contrary s since we observe the maxima to
move towards lower frequencies as we increase the quark gstable) particle interpreta-
tion is no longer justified in this high-temperature/ smadlss regime. Decreasing the temper-
ature in order to approach the low-temperature regime, s@ger a turning point, where the
maxima of the spectral functions change their directiom@lihe frequency axis as discussed
in section 5.3. The location of the lowest lying resonancakps shown in figure 7.1 (a)
versus the mass parametgy (cf. figure[4.4). Different curves correspond to distinctytmen
densities, with the bottom curve corresponding to the lowessity (cf. figure 5.10 for de-
tails). Thus, we claim that we have to distinguish betweerntémperature-dominated and the
mass-dominated regime. In section/5.3 we have worked t@aancexplanation for the high
temperature behavior and for the peak turning we obsentbelfimit of high frequencies we
have found an analytical solution near the horizon in terinh® confluent hypergeometric
function. This analytical solution (as well as the numdrgaution for arbitrary momenta
and radial coordinate values) shows oscillatory behawidrdamping in agreement with our
hypothesis: In the high temperature regime there are ndeskalund states of quarks, but
merely unstable excitations in the plasma which quicklgigiate their energy to the plasma.
Our analytical solution reproduces the effect of resongeeds in the 'spectral function frac-
tion’ (see 5.3) moving towards lower frequencies when theswmrameter is increased. We
have also related these thoughts to quasinormal modeshefuvie commented on that we
could learn more about the inner workings of the gauge/graarrespondence in this exam-
ple by studying how to relate the bulk solutions generatiggeaks in the spectral function
to the spectral functions explicitely (see discussion efgbasinormal mode solutions in sec-
tion5.3 contained in the paragraph 'Heuristic gravity iptetation’).

We have studied the fluctuations aroundsdn(2) isospin background as well in section/5.2.
The resulting spectral functions at finite isospin densigysdnown in figuré 711 (c). We clearly
observe a triplet splitting of the resonance peaks. Intwodpa chemical potential in a specific
flavor direction we have broken th&l/(2)-symmetry and we clearly observe the splitting
because our vector mesons are triplets under the isospiip gamalogous to the-meson in
QCD). As a methodical achievement we have generalizedratidtae describing this setup to
includeU (Ny)-chemical potentials with arbitraty in sectiori 4.5. Note, that all the spectral
functions we have computed numerically are evaluated fidugsations with vanishing spatial
momentumg = 0. In this limit the correlators for transversal and longihal directions
coincide. One effect of this is that we are not able to idgritie lowest one of the poles,
i.e. the hydrodynamic diffusion pole which should appeathea longitudinal correlators.
However, in the analytical calculation in sect/on/4.2 wesidar exclusively this pole.

In the hydrodynamic approximation, i.e. at small freques@nd spatial momenta we are
able to find correlators analytically at finite isospin cheahipotential (see section 4.2). The
longitudinal correlators are particularly interestingcs the diffusion pole appears in them.
We have observed a triplet splitting (see figure 7.1 (d)) of thiffusion pole which can also
be seen from the dispersion relation which we read off thgitadinal correlation functions

w= —iD¢**p for w>m, (7.2)
w= D¢+ p for w<m andonlyin G*V, (7.3)

where the positive sign gf corresponds to the dispersion of the flavor combinatign’
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and the negative sign af corresponds t6:;¥X. For the third flavor direction correlatoés®
there is no chemical potential contribution in the dispmigielationw = —iDg?. We have
argued that by introducing a chemical potential along tirel flavor direction and considering
the fluctuations in any flavor direction the setup in flavorcgpaesembles that of Larmor
precession in real space. The fluctuations precede aroerdkgignated third flavor direction
with the Larmor frequency; = u. This frequency we also interpret as the minimal energy
any excitation needs to have in order to be produced in trsgr@aln this hydrodynamic limit
we have also computed the spectral functions corresponditige diffusion poles, discussed
the quasinormal modes and the residues. We have also disictiesreconciliation of these
present results with the approach takeriin [1] in section 4.2

From our discussion in section 5.1 we know that the poles afreetation function in the
complex frequency plane generate the structure in thenpeaksal functions (cf. figure 5.6). It
is convincing that upon introduction of isospin we obseheesame behavior of triplet splitting
in both the analytical approximation for the diffusion psleown in figure 7.1 (d) and for the
mesonic resonances in the numerically computed spectmatifuns shown in figure 7.1 (c).
We are not able to see the effect of the diffusion pole itsethie numerical results because
there we simplified tg = 0. But the higher frequency poles obviously have the samketrip
splitting as the diffusion pole, as we can infer by lookingh&t spectral function peaks splitting
more and more when we increase the isospin density and wiite ¢hemical isospin potential
as well.

We have studied diffusion of quarks and their quarkoniunmilatates as specific examples
for transport phenomena in chagter 6. Utilizing the memégzaradigm in secticn €.2 we have
found the coefficient of baryon or equivalently quark chatgision in the thermal theory at
finite baryon charge density which is dual to our D3/D7-s€sge figure 6.1). That diffusion
coefficient approaches a fixed valuedf= 1/(27T") at low and at high temperatures. At
intermediate temperatures the baryon diffusion coefftcs®ows a minimum which shifts to
lower temperatures as the density is increased. The minimsueaso lifted if the density
is increased. At vanishing baryon density the diffusionficient still asymptotes to the
valueD = 1/(2#T) at large temperatures while it vanishes at the phase tiamg#mperature
and for all temperatures below it. This effect is caused leylihryon charge carriers, the
guarks which vanish below the transition because they getdamto meson states carrying
no net-baryon charge. At finite baryon density this effectib present at sufficiently low
temperature since there the quarks are also bound into mecestates as we have learned from
our study of the spectral functions. Nevertheless, by defmive always have a finite amount
of baryon charge carriers so the diffusion coefficient carenganish.

The black hole to black hole phase transition present aefant increasing baryon density
is shifted to a lower temperature as we see for example initfusidn coefficient in figuré 6J1.
As mentioned above, the transition is lifted in the sense tt&a minimum in the diffusion
coefficient increases from zero at vanishing baryon demsitardsl/(27) at large densities.
This black hole to black hole transition continues to exisbaf a small isospin density is
introduced additionally.

Simultaneously introducing baryon and isospin densithaliackground we have discov-
ered a further phase transition indicated by discontiesith thermodynamic quantities. For
example the quark condensate and the baryon and isospiitieiease discontinuous on the
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line of pointsi.® = . This transition resembles that one found in the case ofvxfl@CD
found in [62]. In addition we found significant changes inrthedynamic quantities through
simultaneous isospin in section 4.4. These changes areatifajive nature, i.e. introduc-
ing isospin charge or potential it identical to merely introducing more baryon density.
The distinct effects of baryon and isospin charge or paaéhgcome obvious in the hydrody-
namic regime. In figure 7.1(b) we see a contour plot of thesiteom temperature parametrized
by m over the (baryon density, isospin density)-plane. Thismsehat the contours are con-
tours of equal transition temperature. Only the innermast @f this diagram traces the black
hole to black hole transition at small densities. This titams vanishes for baryon densities
aboved? = (.00315 (see discussion in 4.3). For larger densities we have sitnpted the
location of the minimum in the diffusion coefficient which waentify as the temperature at
which a softened version of the thermodynamic transitien,a hydrodynamic transition oc-
curs. From the contour plot in figure 7.1(b) we clearly se¢ émanitial rotational symmetry
at small densities suggests that baryon and isospin demaity the same effect. However
at large densities the outermost contours clearly showthigatotational symmetry is broken
to aZ, symmetry. This means that baryon and isospin density hdfereht effects on the
hydrodynamics of this theory.

Extending our studies of transport phenomena to boundsstdtquarks, we have com-
puted the diffusion of quarkonium in section 6.4. Our resididicate that the diffusion to
meson mass-shift quotiery/ (§1/)? is significantly smaller at strong coupling than at weak
coupling. This resembles the case of the viscosity to eptdgmsity quotient which takes on
significantly smaller values at strong coupling as well [26]

Conclusions & Outlook In conclusion we have reached the goal of this thesis outline
the introduction on pace 8. We have successfully incorpdrtite concepts of baryon/isospin
chemical potentials and densities in the D3/D7-gravityldnadeling quarks and mesons.
We have studied the rich phenomenology of this model on aitqtieé level and we have
found many interesting signatures being consistent witlt&aresults and effective QCD cal-
culations. Nevertheless, we have also found novel stresfwhich had not been predicted
previously. Based on our experience with its qualitativedwor it would be interesting to
study this model also on a quantitative level. In this analgsiotients of quantities could
prove to be useful, which show universal behavior, such asigtosity to entropy ratio. Our
preliminary quantitative result on the charmonium diftusto meson mass-shift ratio clearly
confirms this belief.

Constructing the phase diagram we have shown that isospsitggotential has effects
significantly different from baryon density/potential. s&l in the analysis of spectral func-
tions isospin effects such as the triplet splitting distiisty the isospin phenomenology clearly
from the baryonic signatures. One important extension®ftbrk presented here will be the
computation of meson spectra at finite baryon and isospisityesis described in section 5.4.
Having both the rich effects of the baryon and isospin bawkgd and the interaction with
fluctuations about it will produce a potentially rich pheremmology. The technical considera-
tions in section 5.4 show that this calculation is complekfbasible. Furthermore, we have
restricted our analysis to vector mesons, but it is easyteEneiit to scalars and pseudoscalars
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Figure 7.1: These four plots visualize some of the main tesflthis thesis. (a) Frequency
location of the lowest resonance peak in the spectral faneti finite baryon den-
sity dg # 0. The baryon density is increased fraip = 0.01 (the bottom curve)
to dg = 10 (the top curve). For details confer figure 5.10 and its disicusin
the text. (b) Contour plot of the location of the phase tramsicrossover mass
parameter over the (baryon density, isospin density)elafe) Triplet splitting
of resonance peaks at finite isospin density# 0 for vanishing spatial momen-
tum g = 0. This splitting corresponds to a triplet splitting of ther@sponding
poles in the complex frequency plane. (d) Location of théudibn pole for the
three different flavor combination¥Y’, Y X and33 (cf. section 5.2) computed
analytically in the hydrodynamic limito, g, m < 1 at finite spatial momen-
tumq # 0. The diffusion pole shows a triplet splitting as well.
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as well (seel[115] for parts of an equivalent analysis). &lated results on the baryon and
isospin background will we published soon [3].

Nevertheless, also our studies of the setup with baryonityemdy, brought up interesting
relations. For example the analysis of the resonance peakitupoint gives us a deeper
insight in how the gauge/gravity correspondence worksrimseof a correspondence between
the gravity bulk solutions and the gauge theory spectrattfans. The further study of this
topic will either confirm our speculations about the thermdin of the resonance turning
point or prove it wrong. In any case the analytic gravity siolus which we seek to construct
and their direct relation to the gauge theory spectral fonstencodes valuable information
about the gauge/gravity correspondence. We will develsatmalysis in{[121].

Analytical and numerical studies of the charge diffusioaffioients have consistently con-
firmed the interpretations we developed for our spectrattions. For example the decreasing
baryon charge diffusion coefficient at small temperaturgioms the meson interpretation of
the formation of narrow resonance peaks. A further way airtgshis interpretation would be
the computation of the diffusion coefficient for the quagsons corresponding to the peaks
in the spectral functions. If this quasi-meson diffusiorfticient vanishes above the hard
phase transition at zero densities, this would confirm theseé mesons simply vanish there.
At finite density we expect this quasi-meson diffusion om\ydecrease as the temperature is
increased well above the transition temperature.

The baryon charge diffusion coefficient has been computéia &iofinite baryon density
only and at finite baryon and isospin densities. We foundtti@isosin density changes the
baryon charge diffusion coefficient significantly. Due ta camputational method using the
membrane paradigm we have not been able to separate theidfftontributions generated
by the finite isospin from those generated by the finite badensity. Therefore we suggest to
study these different contributions developing the framdvof a diffusion matrix as desribed
in section 6.5. This computation will also answer the quesif the effect of finite isospin
density is simply additive, i.e. if we could get its contriaun to the diffusion coefficient
by subtracting the diffusion coefficient in the purely ban@background. Based on our
observations of the minimum in the baryon diffusion coedfitishown in figure 7.1(b), we
suspect a more subtle interplay between baryon and isospsitées. Note, that in section 5.5
we develop the relevant formulae for three different isogbiarges rather than for one isospin
and one baryon charge. Nevertheless, the framework onegoged should easily generalize
to that case as well.

Now after considering the possibility that modes with diet flavor might behave differ-
ently inside the thermal plasma, we should also worry aldoaufdct that modes with different
frequencies or spatial momenta propagate through the plasdifferent ways. We have com-
mented on the possible incorporation of this idea into otusén the context of molecular
dynamics discussed in sectionl4.6.

Finally, we collect a few pronounced signals which the ribleipomenology explored here
predicts to be seen at colliders. A clear signature are #igesimeson resonances having
survived the deconfinement transition, showing a turnirtgal®r in their energy as the tem-
perature is decreased. At sufficiently high isospin denisitthe plasma a resonance peak
triplet splitting depending on the amount of isospin dgnsitould be visible. We further ex-
pect discontinuities in thermodynamical quantities tovslip across the line of equal baryon
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and isospin densities or potentials due to the phase ti@msie discovered across that line.
Nevertheless, since our supersymmetric model is not QCDheald not be surprised to see
different behavior in some cases in the collider experiseRiowever, the high-temperature
regime of the baryon diffusion coefficient down to the thedyrmamic or hydrodynamic phase
transition should be taken seriously. Also the small valiuge charmonium diffusion coef-
ficient is a very interesting effect to look for, given thatesembles the viscosity to entropy
ratio in its strong coupling behavior.
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Notation

Here we give an overview of the notation which we use in thesihif not specified otherwise.
We denote three-vectors in spatial directions by minusletiers in bold face such as four
vectors including the time component are givenayhigher-dimensional vectors are given
by the plain minuscule letter, e.g. If any of the momentum components q appears in
an order relation such as < 1 we actually mean to denote the real pArv < 1. The
chemical potential is assumed to take real values € R throughout the whole thesis. All
mathematical sets of numbers are given in bold face font.ekample the whole numbers
are given byZ, the real numbers are given B and the complex numbers l§y. We work

in natural units, i.e. we set the reduced Planck’s congtantl and the speed of light= 1.
Additionally the Boltzmann constant is choskes = 1 for convenience.
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Chapter A. Notation

Symbols If not specified otherwise in the text, the following symbbbve been used to

denote the quantities listed below in arbitrary order

local pressure
internal energy
energy momentum tensor
heat current
local temperature

a3

=
S

@
Il

inverse temperature

free energy in canonical ensemble
grandcanonical potential
entropy
entropy density
action
chemical potential
charge density
conserved charge density
four-velocity of a fluid volume
quark condensatgq)
charge
thermal spectral function
diffusion coefficient
shear viscosity (coefficient)
guarkonium diffusion coefficient

L ST e 0D NS= T

<
=

thd@&a@o

T Lie group generator
T.€R representation factor

Ny number of flavors / D7-branes
N =N, number of colors / D3-branes

pu horizon value of the dimensionless radial AdS coordinate

(A.1)
(A.2)
(A.3)
(A.4)
(A.5)

(A.6)

(A7)
(A.8)
(A.9)
(A.10)
(A.11)
(A.12)
(A.13)
(A.14)
(A.15)
(A.16)
(A.17)
(A.18)
(A.19)
(A.20)
(A.21)

(A.22)

(A.23)
(A.24)
(A.25)

26\

pB = ppdy boundary value of the dimensionless radial AdS coordinate A.27)

oy horizon value of the dimensionful radial AdS coordinate
0B = obdy boOundary value of the dimensionful radial AdS coordinate

2).
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quMq
X0

U

o = w
- 2nT
_ g
1= 907
14
m=——
27T

guark mass

horizon value of embedding function
dimensionless radial AdS coordinate Witk © < 1

dimensionless frequency
dimensionless spatial momentum

dimensionless chemical potential

(A.30)
(A.31)
(A.32)

(A.33)
(A.34)

(A.35)

Furthermore, the indiceB or I in d?, d’, u®, u! denote baryon or isospin charge densities
and chemical potentials, respectively.



Bibliography

[1] J. Erdmenger, M. Kaminski, and F. Rusggospin diffusion in thermal AAS/CFT with

flavor, Phys. RevD76 (2007) 046001, arXiv:0704.1290 |hep-th].

[2] J. Erdmenger, M. Kaminski, and F. Rugtiolographic vector mesons from spectral

functions at finite baryon or isospin densiBhys. RevD77 (2008) 046005,
arXiv:0710.0334 |hep-th].

[3] J. Erdmenger, M. Kaminski, P. Kerner, and F. Rudplographic thermodynamics for

[4]

fundamental matter at finite baryon and isospin densityappear.

K. Dusling, J. Erdmenger, M. Kaminski, F. Rust, D. Tearmyd C. Young,
Quarkonium transport in AdS/CFE.Tto appear.

[5] W.-M. Yao, C. Amsler, D. Asner, R. Barnett, J. BeringerBRrchat, C. Carone,

184

C. Caso, O. Dahl, G. D’Ambrosio, A. DeGouvea, M. Doser, Seffithn, J. Feng,

T. Gherghetta, M. Goodman, C. Grab, D. Groom, A. Gurtu, K. iWaga, K. Hayes,
J. Hernandez-Rey, K. Hikasa, H. Jawahery, C. Kolda, K. Y.Mdngano,

A. Manohar, A. Masoni, R. Miquel, K. Monig, H. Murayama, Kakamura, S. Navas,
K. Olive, L. Pape, C. Patrignani, A. Piepke, G. Punzi, G. Blaffl. Smith,

M. Tanabashi, J. Terning, N. Torngvist, T. Trippe, P. VogeMatari, C. Wohl,

R. Workman, P. Zyla, B. Armstrong, G. Harper, V. LugovskySPhaffner, M. Artuso,
K. Babu, H. Band, E. Barberio, M. Battaglia, H. Bichsel, OeBel, P. Bloch,

E. Blucher, R. Cahn, D. Casper, A. Cattai, A. Ceccucci, D.Ktdiaorty,

R. Chivukula, G. Cowan, T. Damour, T. DeGrand, K. Desler, MbDs, M. Drees,

A. Edwards, D. Edwards, V. Elvira, J. Erler, V. Ezhela, W.detter, B. Fields,

B. Foster, D. Froidevaux, T. Gaisser, L. Garren, H.-J. Gei®eGerbier, L. Gibbons,
F. Gilman, G. Giudice, A. Gritsan, M. Grinewald, H. Haber Hagmann,

I. Hinchliffe, A. Hocker, P. Igo-Kemenes, J. Jackson, Khidson, D. Karlen,

B. Kayser, D. Kirkby, S. Klein, K. Kleinknecht, I. Knowles,. Rowalewski, P. Kreitz,
B. Krusche, Y. Kuyanov, O. Lahav, P. Langacker, A. Liddle|geti, T. Liss,

L. Littenberg, L. Liu, K. Lugovsky, S. Lugovsky, T. Mannel, Manley, W. Marciano,
A. Martin, D. Milstead, M. Narain, P. Nason, Y. Nir, J. Peako8. Prell, A. Quadt,

S. Raby, B. Ratcliff, E. Razuvaev, B. Renk, P. Richardso®d&sler, G. Rolandi,

M. Ronan, L. Rosenberg, C. Sachrajda, S. Sarkar, M. Schtnigchneider, D. Scott,
T. Sjostrand, G. Smoot, P. Sokolsky, S. Spanier, H. SpiéleBtahl, T. Stanev,

R. Streitmatter, T. Sumiyoshi, N. Tkachenko, G. Trilling,\&lencia, K. van Bibber,


http://www.slac.stanford.edu/spires/find/hep/www?texkey=Erdmenger:2007ap
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Erdmenger:2007ja

Bibliography 185

M. Vincter, D. Ward, B. Webber, J. Wells, M. Whalley, L. Wotfstein, J. Womersley,
C. Woody, A. Yamamoto, O. Zenin, J. Zhang, and R.-Y. ZReview of Particle
Physics Journal of Physics G3(2006) 1+.

[6] J. Polchinski, String theory. Vol. 1: An introduction to the bosonic stringambridge,
UK: Univ. Pr. (1998) 402 p.

[7] J. Polchinski, String theory. Vol. 2: Superstring theory and beypri@ambridge, UK:
Univ. Pr. (1998) 531 p.

[8] J. M. Maldacena,The large N limit of superconformal field theories and supavgy,
Adv. Theor. Math. Phys2 (1998) 231-25Z, hep-th/97112.00.

[9] D. T. Son and A. O. Starinetsyiscosity, Black Holes, and Quantum Field Theory
Ann. Rev. Nucl. Part. Scb7 (2007) 95-11&, arXiv:0704.0240 [hep-th].

[10] M. Gyulassy and L. McLerranNew forms of QCD matter discovered at RHNcl.
Phys.A750 (2005) 30—-63, nucl-th/0405013.

[11] M. E. Peskin and D. V. SchroedeAn Introduction to quantum field thegryReading,
USA: Addison-Wesley (1995) 842 p.

[12] P. W. Higgs, Broken symmetries and the masses of gauge bpBbwys. Rev. Lettl3
(1964) 508-509.

[13] MSSM Working Group Collaboration, A. Djouadet al, The minimal
supersymmetric standard model: Group summary rejyap-ph/9901246.

[14] D. Hooper and S. Profumd)ark matter and collider phenomenology of universal
extra dimensiongPhys. Rept453(2007) 29-11%, hep-ph/0701197.

[15] X. Calmet, B. Jurco, P. Schupp, J. Wess, and M. Wohlgenarhe standard model on
non-commutative space-tinteur. Phys. JC23(2002) 363-376, hep-ph/0111..15.

[16] M. M. Najafabadi, Noncommutative Standard Model in Top Quark Sef803.2340.

[17] A. Alboteanu, T. Ohl, and R. RucklThe Noncommutative Standard Model at
O(theta?), Phys. RevD76(2007) 10501€, 0707.3595.

[18] A. H. Chamseddine and A. Conne§pnceptual Explanation for the Algebra in the
Noncommutative Approach to the Standard Moéédlys. Rev. Lett99 (2007) 191601,
0706.3690.

[19] M. Buric, D. Latas, V. Radovanovic, and J. Trampetionzero Z— gamma gamma
decays in the renormalizable gauge sector of the noncontimeistandard model
Phys. RevD75(2007) 097701.

[20] H. Georgi, Unparticle PhysicsPhys. Rev. Lett98 (2007) 221601, hep-ph/07032.60.


http://www.slac.stanford.edu/spires/find/hep/www?texkey=Maldacena:1997re
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Son:2007vk
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Gyulassy:2004zy
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Djouadi:1998di
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Hooper:2007qk
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Calmet:2001na
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Najafabadi:2008sa
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Alboteanu:2007bp
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Chamseddine:2007ia
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Georgi:2007ek

186 Bibliography

[21] A. Ashtekar, An Introduction to Loop Quantum Gravity Through Cosmoldgyovo
Cim. 122B(2007) 135-155, gr-qc/0702C30.

[22] B. B. Backet al, The PHOBOS perspective on discoveries at RHNGcl. Phys.
A757 (2005) 28-101, nucl-ex/0410C22.

[23] W. Fischer, RHIC operational status and upgrade planBrepared for European
Particle Accelerator Conference (EPAC 06), Edinburghl8nd, 26-30 Jun 2006.

[24] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri,ardz, Large N field
theories, string theory and gravitiPhys. Rept323(2000) 183-386, hep-th/99051.11.

[25] J. Erdmenger, N. Evans, I. Kirsch, and E. Threlfdlesons in Gauge/Gravity Duals -
A ReviewarXiv:0711.4467 |hep-th].

[26] G. Policastro, D. T. Son, and A. O. Starinef)e shear viscosity of strongly coupled
N =4 supersymmetric Yang-Mills plaspfahys. Rev. Lett87 (2001) 081601,
hep-th/01040¢6.

[27] D. T. Son and A. O. Starinetdylinkowski-space correlators in AAS/CFT
correspondence: Recipe and applicatipdEP09 (2002) 042, hep-th/0205051.

[28] G. Policastro, D. T. Son, and A. O. StarineiE8pm AdS/CFT correspondence to
hydrodynamicsJHEPQ9 (2002) 043, hep-th/0205052.

[29] G. Policastro, D. T. Son, and A. O. StarineEspm AdS/CFT correspondence to
hydrodynamics. II: Sound wavelHEP12 (2002) 054, hep-th/0210220.

[30] C. P. Herzog and D. T. Sorchwinger-Keldysh propagators from AdS/CFT
correspondence]HEPO3 (2003) 046, hep-th/0212072.

[31] P. Kovtun, D. T. Son, and A. O. Starinetslolography and hydrodynamics: Diffusion
on stretched horizongHEP10 (2003) 064, hep-th/0309213.

[32] P. Kovtun, D. T. Son, and A. O. Starinet¥jscosity in strongly interacting quantum
field theories from black hole physjd2hys. Rev. Lett94 (2005) 111601,
hep-th/04052:1.

[33] D. Teaney,Finite temperature spectral densities of momentum and Bgeh
correlators in N = 4 Yang Mills theoryPhys. RevD74 (2006) 045025,
hep-ph/0602044.

[34] P. Kovtun and A. StarinetsThermal spectral functions of strongly coupled N =4
supersymmetric Yang-Mills thegriyhys. Rev. Lett96 (2006) 131601,
hep-th/06020%9.

[35] D. T. Son and A. O. Starinetd;lydrodynamics of R-charged black hgldsiEP0O3
(2006) 052, hep-th/0601157.


http://www.slac.stanford.edu/spires/find/hep/www?texkey=Ashtekar:2007tv
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Back:2004je
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Aharony:1999ti
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Erdmenger:2007cm
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Policastro:2001yc
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Son:2002sd
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Policastro:2002se
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Policastro:2002tn
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Herzog:2002pc
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Kovtun:2003wp
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Kovtun:2004de
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Teaney:2006nc
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Kovtun:2006pf
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Son:2006em

Bibliography 187

[36] A. Karch and E. Katz,Adding flavor to AdS/CFTIJHEPO6 (2002) 043,
hep-th/02052:6.

[37] J. Babington, J. Erdmenger, N. J. Evans, Z. Guralnil, laKirsch, Chiral symmetry
breaking and pions in non-supersymmetric gauge / gravigisihys. RevD69
(2004) 066007, hep-th/0306018.

[38] M. Kruczenski, D. Mateos, R. C. Myers, and D. J. Wintekégson spectroscopy in
AdS/CFT with flavoyrJHEPQ7 (2003) 049, hep-th/0304032.

[39] M. Kruczenski, D. Mateos, R. C. Myers, and D. J. Wintefswards a holographic
dual of large-N(c) QCDJHEPO5 (2004) 041, hep-th/0311270.

[40] I. Kirsch, Generalizations of the ADS/CFT correspondemagtsch. Physs2 (2004)
727-826, hep-th/0406274.

[41] D. Mateos, R. C. Myers, and R. M. ThomsoalHdplographic phase transitions with
fundamental mattePhys. Rev. Lett97 (2006) 091601, hep-th/0605046.

[42] S. Kobayashi, D. Mateos, S. Matsuura, R. C. Myers, ansl RThomson,
Holographic phase transitions at finite baryon densidEP02 (2007) 016,
hep-th/06110¢€9.

[43] K. Ghoroku and M. Yahiro,Holographic model for mesons at finite temperagure
Phys. RevD73(2006) 12501C, hep-ph/0512289.

[44] K. Maeda, M. Natsuume, and T. Okamunscosity of gauge theory plasma with a
chemical potential from AdS/CEPhys. RevD73(2006) 066013, hep-th/0602010.

[45] K. Peeters, J. Sonnenschein, and M. Zamakltilographic melting and related
properties of mesons in a quark gluon plasmiays. RevD74 (2006) 106008,
hep-th/06061¢5.

[46] D. Mateos, R. C. Myers, and R. M. ThomsoalHplographic viscosity of fundamental
matter, Phys. Rev. Lett98 (2007) 101601, hep-th/06101.84.

[47] S. Nakamura, Y. Seo, S.-J. Sin, and K. P. Yogendramew phase at finite quark
density from AdS/CF hep-th/06110z 1.

[48] C. Hoyos-Badajoz, K. Landsteiner, and S. Montermlographic Meson Melting
JHEPO04 (2007) 031, hep-th/0612169.

[49] I. Amado, C. Hoyos-Badajoz, K. Landsteiner, and S. Moot Residues of
Correlators in the Strongly Coupled N=4 Plasnizhys. RevD77 (2008) 065004,
0710.4458.

[50] S. Nakamura, Y. Seo, S.-J. Sin, and K. P. YogendiBaryon-charge Chemical
Potential in AdS/CFlarXiv:0708.2818 |hep-th].


http://www.slac.stanford.edu/spires/find/hep/www?texkey=Karch:2002sh
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Babington:2003vm
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Kruczenski:2003be
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Kruczenski:2003uq
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Kirsch:2004km
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Mateos:2006nu
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Kobayashi:2006sb
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Ghoroku:2005kg
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Maeda:2006by
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Peeters:2006iu
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Mateos:2006yd
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Nakamura:2006xk
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Hoyos:2006gb
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Amado:2007yr
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Nakamura:2007nx

188 Bibliography

[51] A. ParnachevHolographic QCD with Isospin Chemical Potential
arxiv:0708.3170 |hep-th].

[52] D. Mateos, S. Matsuura, R. C. Myers, and R. M. Thomsidnlographic phase
transitions at finite chemical potentiaHEP11 (2007) 085,
arxiv:0709.1225 |hep-th].

[53] A. Karch and A. O’BannonHolographic Thermodynamics at Finite Baryon Density:
Some Exact ResujJt3HEP11 (2007) 074, arXiv:0709.0570 |hep-th].

[54] K. Ghoroku, M. Ishihara, and A. Nakamur®3/D7 holographic Gauge theory and
Chemical potentig arXiv:0708.3706 |hep-th].

[55] J. Erdmenger, R. Meyer, and J. P. ShogldS/CFT with Flavour in Electric and
Magnetic Kalb-Ramond FieldarXiv:0709.1551 [hep-th].

[56] D. Mateos, R. C. Myers, and R. M. Thomsofhermodynamics of the brane
hep-th/0701132.

[57] D. Mateos and L. PatinoBright branes for strongly coupled plasmasiEP11 (2007)
025, arXiv:0709.2168 |hep-th].

[58] O. Aharony, K. Peeters, J. Sonnenschein, and M. Zamaklao meson condensation
at finite isospin chemical potential in a holographic moaelQCD,
arxiv:0709.3948 |hep-th].

[59] R. C. Myers, A. O. Starinets, and R. M. Thomsd#iglographic spectral functions and
diffusion constants for fundamental maftédHEP11 (2007) 091,
arxiv:0706.0162 [hep-th.

[60] N. Evans and E. ThrelfallMesonic quasinormal modes of the Sakai-Sugimoto model
at high temperaturearXiv:0802.0775 |hep-th].

[61] R. C. Myers and A. SinhaThe fast life of holographic mesqi3804.2168.

[62] K. Splittorff, D. T. Son, and M. A. StephanoWCD-like theories at finite baryon and
isospin densityPhys. RevD64 (2001) 016003, hep-ph/0012274.

[63] M. Asakawa and T. Hatsuda&harmonia above the deconfinement phase transition
Nucl. Phys. Proc. Suppl29(2004) 584-586, hep-lat/0309001.

[64] E. V. Shuryak and |. Zahedlowards a theory of binary bound states in the quark
gluon plasmaPhys. RevD70 (2004) 054507, hep-ph/04031.27.

[65] T. Mohaupt, Introduction to string theorylLect. Notes Phy$31(2003) 173—-251,
hep-th/0207249.

[66] E. Witten, String theory dynamics in various dimensipNsicl. PhysB443(1995)
85-126 hep-th/9503124.


http://www.slac.stanford.edu/spires/find/hep/www?texkey=Parnachev:2007bc
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Mateos:2007vc
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Karch:2007br
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Ghoroku:2007re
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Erdmenger:2007bn
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Mateos:2007vn
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Mateos:2007yp
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Aharony:2007uu
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Myers:2007we
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Evans:2008tv
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Myers:2008cj
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Splittorff:2000mm
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Asakawa:2003xj
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Shuryak:2004tx
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Mohaupt:2002py
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Witten:1995ex

Bibliography 189

[67] P. Horava and E. WitteniHeterotic and type | string dynamics from eleven dimensions
Nucl. PhysB460(1996) 506—524, hep-th/95102.09.

[68] K. Becker, M. Becker, and J. H. Schwar3tring theory and M-theory: A modern
introduction. Cambridge, UK: Cambridge Univ. Pr. (2007) 739 p.

[69] I. Kirsch, Spectroscopy of fermionic operators in AdS/CBREPO09 (2006) 052,
hep-th/0607205.

[70] J. Polchinski,Dirichlet-Branes and Ramond-Ramond Chargelsys. Rev. Lett75
(1995) 4724-4727, hep-th/9510017.

[71] W. Nahm, Supersymmetries and their representatidviscl. PhysB135(1978) 149.

[72] J. Erdmenger and H. Osborgonserved currents and the energy-momentum tensor in
conformally invariant theories for general dimensiph&icl. PhysB483(1997)
431-474, hep-th/9605009.

[73] S. M. Carroll, Spacetime and geometry: An introduction to general reigtivSan
Francisco, USA: Addison-Wesley (2004) 513 p.

[74] G. 't Hooft, Dimensional reduction in quantum gravjigr-qc/9310026.

[75] L. Susskind,The World as a hologrand. Math. Phys36 (1995) 6377-6396,
hep-th/94090¢&09.

[76] M. Pernici, K. Pilch, and P. van NieuwenhuizeBauged N=8 D=5 Supergravity
Nucl. PhysB259(1985) 460.

[77] M. Gunaydin, L. J. Romans, and N. P. Warn@ympact and Noncompact Gauged
Supergravity Theories in Five-Dimensiomucl. PhysB272(1986) 598.

[78] G. W. Gibbons, C. M. Hull, and N. P. Warnef,he Stability of Gauged Supergravity
Nucl. PhysB218(1983) 173.

[79] J. M. Maldacena, G. W. Moore, and N. Seibef@sbrane charges in five-brane
backgroundsJHEP10(2001) 005, hep-th/0108152.

[80] I. R. Klebanov, World-volume approach to absorption by non-dilatonic kegriNucl.
Phys.B496(1997) 231-242, hep-th/9702076.

[81] S. S. Gubser, I. R. Klebanov, and A. A. Tseytlitring theory and classical
absorption by three-braneblucl. PhysB499(1997) 217-240, hep-th/9703040.

[82] S. Lee, S. Minwalla, M. Rangamani, and N. Seibeftpree-point functions of chiral
operators in D =4, N =4 SYM at large M\dv. Theor. Math. Phy<2 (1998) 697-718,
hep-th/9806074.


http://www.slac.stanford.edu/spires/find/hep/www?texkey=Horava:1995qa
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Kirsch:2006he
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Polchinski:1995mt
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Erdmenger:1996yc
http://www.slac.stanford.edu/spires/find/hep/www?texkey=tHooft:1993gx
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Susskind:1994vu
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Maldacena:2001ss
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Klebanov:1997kc
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Gubser:1997yh
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Lee:1998bxa

190 Bibliography

[83] N. R. Constable and R. C. Myergxotic scalar states in the AAS/CFT
correspondenceJHEP11 (1999) 020, hep-th/9905081.

[84] E. Witten, Anti-de Sitter space, thermal phase transition, and confe® in gauge
theories Adv. Theor. Math. Phy2 (1998) 505-53Z, hep-th/98031.31.

[85] A. K. Das, Finite temperature field theorySingapore, Singapore: World Scientific
(1997) 404 p.

[86] K. Skenderis,Lecture notes on holographic renormalizatj@iass. Quant. GraL9
(2002) 5849-5876, hep-th/0209067.

[87] M. Brigante, H. Liu, R. C. Myers, S. Shenker, and S. Yaid@scosity Bound Violation
in Higher Derivative Gravity0712.0805.

[88] M. Brigante, H. Liu, R. C. Myers, S. Shenker, and S. Yaid&e Viscosity Bound and
Causality Violation 0802.3318.

[89] PHENIX Collaboration, A. Adaret al., Energy Loss and Flow of Heavy Quarks in
Au+Au Collisions at\/(syy) = 200 GeV, Phys. Rev. Lett98 (2007) 172301,
nucl-ex/0611018.

[90] P. Romatschke and U. Romatschiéscosity Information from Relativistic Nuclear
Collisions: How Perfect is the Fluid Observed at RH|®hys. Rev. Lett99 (2007)
172301 0706.1522.

[91] R. Baier, P. Romatschke, D. T. Son, A. O. Starinets, andNMstephanov,Relativistic
viscous hydrodynamics, conformal invariance, and holpgsaJHEPO4 (2008) 100,
0/712.2451.

[92] M. Natsuume and T. Okamur&ausal hydrodynamics of gauge theory plasmas from
AdS/CFT dualityPhys. RevD77 (2008) 066014, 0712.2916.

[93] M. Natsuume and T. Okamur&omment on “Viscous hydrodynamics relaxation time
from AdS/CFT corresponden¢®712.2917.

[94] M. Natsuume and T. Okamura note on causal hydrodynamics for M-theory branes
0801.1/97.

[95] J. Erdmenger, N. Evans, and J. GrosBeavy-light mesons from the AdS/CFT
correspondenceJHEPO1 (2007) 098, hep-th/0605241.

[96] J. Erdmenger, K. Ghoroku, and I. Kirschiolographic heavy-light mesons from
non-Abelian DB) JHEPQO9 (2007) 111, arXiv:0706.3978 |hep-th].

[97] C. P. Herzog, S. A. Stricker, and A. VuorineRemarks on Heavy-Light Mesons from
AdS/CFT0802.2956.

[98] N. Evans and A. TedderA holographic model of hadronizatip711.0300.


http://www.slac.stanford.edu/spires/find/hep/www?texkey=Constable:1999ch
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Witten:1998zw
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Skenderis:2002wp
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Brigante:2007nu
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Brigante:2008gz
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Adare:2006nq
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Romatschke:2007mq
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Baier:2007ix
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Natsuume:2007ty
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Natsuume:2007tz
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Natsuume:2008iy
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Erdmenger:2006bg
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Erdmenger:2007vj
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Herzog:2008bp
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Evans:2007sf

Bibliography 191

[99] P. Castorina, D. Grumiller, and A. loriolThe Exact String Black-Hole behind the
hadronic Rindler horizon,0802.2286.

[100] T. Albash, V. Filev, C. V. Johnson, and A. KundA,topology-changing phase
transition and the dynamics of flavqirep-th/06050¢&8.

[101] T. Albash, V. Filev, C. V. Johnson, and A. KundGJobal currents, phase transitions,
and chiral symmetry breaking in large N(c) gauge thebrgp-th/0605175.

[102] V. Mazu and J. SonnenscheiNon critical holographic models of the thermal phases
of QCD, 0711.4273.

[103] A. Dhar and P. NagTachyon condensation and quark mass in modified Sakai-
Sugimoto modeD804.4807.

[104] P. K. Kovtun and A. O. StarinetQuasinormal modes and holograptBhys. Rev.
D72 (2005) 08600¢, hep-th/05061.84.

[105] C. M. Bender and S. Orszad\dvanced mathematical methods for scientists and
engineers

[106] L. D. Landau and E. M. LifshitzFluid Mechanics Pergamon Press (1959) 536 p.

[107] D. Forster,Hydrodynamic Fluctuations, Broken Symmetry, and Corretat
Functions. Frontiers in physics; 47 (1983) 326 p.

[108] J. I. Kapusta,Finite temperature field theoyy

[109] A. Hosoya, M.-a. Sakagami, and M. Takadpnequilibrium thermodynamics in field
theory: Transport coefficient&nn. Phys154(1984) 229.

[110] D. N. Zubarev,Noneugilibrium statistical thermodynamjcslew York, Consultants
Bureau; Studies in Soviet science (1974) 489 p.

[111] G. T. Horowitz and V. E. HubenyQuasinormal modes of AdS black holes and the
approach to thermal equilibriupPPhys. RevD62 (2000) 024027, hep-th/9909056.

[112] D. Z. Freedman, S. D. Mathur, A. Matusis, and L. Rastdllorrelation functions in
the CFT{)/AdS( + 1) correspondenceNucl. PhysB546(1999) 96-118,
hep-th/98040%8.

[113] H. Georqi, Lie algebras in particle physics. From isospin to unifiedahes Front.
Phys.54(1982) 1-255.

[114] M. Bohm, A. Denner, and H. Joo$;auge theories of the strong and electroweak
interaction. Stuttgart, Germany: Teubner (2001) 784 p.

[115] P. Kerner,Diploma thesis to appear.


http://www.slac.stanford.edu/spires/find/hep/www?texkey=Castorina:2008gf
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Albash:2006ew
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Albash:2006bs
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Mazu:2007tp
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Dhar:2008um
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Kovtun:2005ev
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Horowitz:1999jd
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Freedman:1998tz

192 Bibliography

[116] J. P. Boon and S. YipMolecular hydrodynamigsDover Publications Inc., New York
(1991) 417p.

[117] F. Rust,PhD thesis to appear.

[118] L.-y. He, M. Jin, and P.-f. ZhuandRion superfluidity and meson properties at finite
isospin densityPhys. RevD71 (2005) 116001, hep-ph/0503272.

[119] S. Chang, J. Liu, and P. Zhuaniucleon mass splitting at finite isospin chemical
potential nucl-th/0702032.

[120] R. G. Abdel-RahmanPropagation of boundary of inhomogeneous heat conduction
equation Appl. Math. Comput141(2003), no. 2-3, 231-239.

[121] J. Erdmenger, M. Kaminski, P. Kerner, and F. Rusterpretation of peaks in
holographic spectral functions and their movemetat appear.

[122] J. B. Kogut and D. K. SinclairQuenched lattice QCD at finite isospin density and
related theoriesPhys. RevD66 (2002) 014508, hep-lat/0201017.

[123] D. Toublan and J. B. Kogutisospin chemical potential and the QCD phase diagram
at nonzero temperature and baryon chemical potenialys. LettB564(2003)
212-216, hep-ph/0301183.

[124] J. B. Kogut and D. K. SinclairThe finite temperature transition for 2-flavor lattice
QCD at finite isospin densityPhys. RevD70(2004) 094501, hep-lat/0407027.

[125] C. P. Herzog, A. Karch, P. Kovtun, C. Kozcaz, and L. Gif&aEnergy loss of a heavy
quark moving through N = 4 supersymmetric Yang-Mills plasdt#EPO7 (2006) 013,
hep-th/06051£8.

[126] J. Casalderrey-Solana and D. Teandgavy quark diffusion in strongly coupled N = 4
Yang Mills Phys. RevD74(2006) 085012, hep-ph/06051.99.

[127] S. S. GubserPrag force in AdDS/CFTPhys. RevD74 (2006) 126005,
hep-th/06051€2.

[128] STAR Collaboration, J. Bielcik,Centrality dependence of heavy flavor production
from single electron measurement in s(NN)**(1/2) = 200-G&V+ Au collisions
Nucl. Phys A774(2006) 697—-700, nucl-ex/0511005.

[129] PHENIX Collaboration, A. Adaret al, J/psi Production iny/(syxy) = 200 GeV
Cu+Cu Collision$0801.0220.

[130] PHENIX Collaboration, A. Adaret al., J/psi production vs centrality, transverse
momentum, and rapidity in Au + Au collisions at s(NN)**(12P200- GeV\, Phys.
Rev. Lett.98 (2007) 232301, nucl-ex/0611C20.


http://www.slac.stanford.edu/spires/find/hep/www?texkey=He:2005nk
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Chang:2007sr
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Kogut:2002tm
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Toublan:2003tt
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Kogut:2004zg
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Herzog:2006gh
http://www.slac.stanford.edu/spires/find/hep/www?texkey=CasalderreySolana:2006rq
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Gubser:2006bz
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Bielcik:2005wu
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Adare:2008sh
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Adare:2006ns

Bibliography 193

[131] PHENIX Collaboration, S. S. Adleet al., J/psi production and nuclear effects for d
+ Au and p + p collisions at s(NN)**(1/2) = 200-Ge\Phys. Rev. Lett96 (2006)
012304 nucl-ex/0507032.

[132] NAG6O Collaboration, R. Arnaldet al, Anomalous J/psi suppression in In-In
collisions at 158- GeV/nuclepiucl. PhysA774(2006) 711-714.

[133] M. E. Luke, A. V. Manohar, and M. J. Savag®,QCD Calculation of the interaction
of quarkonium with nucleiPhys. LettB288(1992) 355-359, hep-ph/9204219.

[134] H. Liuand A. A. Tseytlin,D3-brane D-instanton configuration and N = 4 super YM
theory in constant self-dual backgrounducl. PhysB553(1999) 231-249,
hep-th/99030¢ 1.

[135] K. Ghoroku and M. YahiroChiral symmetry breaking driven by dilatpRhys. Lett.
B604(2004) 235-241, hep-th/0408040.

[136] S. A. Hartnoll and C. P. HerzogQhm’s Law at strong coupling: S duality and the
cyclotron resonangeéPhys. RevD76(2007) 106012, 0706.3228.

[137] A. Paredes, K. Peeters, and M. Zamaklsliesons versus quasi-normal modes:
undercooling and overheatingHEPO5 (2008) 027, 0803.0759.


http://www.slac.stanford.edu/spires/find/hep/www?texkey=Adler:2005ph
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Luke:1992tm
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Liu:1999fc
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Ghoroku:2004sp
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Hartnoll:2007ip
http://www.slac.stanford.edu/spires/find/hep/www?texkey=Paredes:2008nf

	1 Introduction
	2 The AdS/CFT correspondence
	2.1 String theory and AdS/CFT
	2.1.1 Dualities and string theory
	2.1.2 Black branes

	2.2 Gauge & gravity and gauge/gravity
	2.2.1 Conformal field theory
	2.2.2 Supergravity and Anti-de Sitter space
	2.2.3 Statement of the AdS/CFT-correspondence

	2.3 Generalizations of AdS/CFT: Quarks and mesons
	2.4 AdS/CFT at finite temperature
	2.5 More Phenomenology from AdS/CFT
	2.6 Summary

	3 Holographic methods at finite temperature
	3.1 Holographic correlation functions
	3.1.1 Correlation functions in AdS/CFT
	3.1.2 Analytical methods: correlators and dispersion relations
	3.1.3 Numerical methods

	3.2 Holographic hydrodynamics
	3.2.1 Relativistic hydrodynamics
	3.2.2 Chemical potentials in QFT
	3.2.3 Transport coefficients: Kubo formula

	3.3 Quasinormal modes
	3.4 Summary

	4 Holographic thermo- and hydrodynamics
	4.1 Application of the Kubo formula
	4.2 Analytical Hydrodymamics at finite isospin potential
	4.2.1 Calculation of transversal fluctuations
	4.2.2 Correlators of transversal components
	4.2.3 Calculation of longitudinal fluctuations
	4.2.4 Correlators of longitudinal components
	4.2.5 Discussion 

	4.3 Thermodynamics at finite baryon density or potential
	4.4 Thermodynamics at isospin & baryon density or potential
	4.4.1 Introducing baryon and isospin chemical potentials and densities
	4.4.2 Thermodynamic quantities
	4.4.3 Discussion of numerical results

	4.5 Generalization to flavor number Nf>2
	4.6 Molecular dynamics
	4.7 Summary

	5 Thermal spectral functions at finite U(Nf)-charge density
	5.1 Meson spectra at finite baryon density
	5.2 Meson spectra at finite isospin density
	5.3 Peak turning behavior: quasinormal modes and meson masses
	5.4 Meson spectra at finite isospin and baryon density
	5.5 Summary

	6 Transport processes at strong coupling
	6.1 Membrane paradigm
	6.2 Baryon diffusion
	6.3 Diffusion with isospin
	6.4 Charmonium diffusion
	6.5 Diffusion matrix
	6.6 Summary

	7 Conclusion
	A Notation
	Bibliography

