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Abstract

In this thesis we prove some results on symplectic structures on 4-dimensional manifolds and contact
structures on 5-dimensional manifolds. We begin by discussing the relation between holomorphic and
symplectic minimality for Kahler surfaces and the irreducibility of minimal simply-connected symplec-

tic 4-manifolds under connected sum. We also prove a result on the conformal systoles of symplectic
4-manifolds. For the generalized fibre sum construction of 4-manifolds we calculate the integral homol-
ogy groups if the summation is along embedded surfaces with trivial normal bundle. In the symplectic
case we derive a formula for the canonical class of the generalized fibre sum and give several appli-
cations, in particular to the geography of simply-connected symplectic 4-manifolds whose canonical
class is divisible by a given integer. We also use branched coverings of complex surfaces of general
type to construct simply-connected algebraic surfaces with divisible canonical class. In the second
part of the thesis we show that these geography results together with the Boothby-Wang construction
of contact structures on circle bundles over symplectic manifolds imply that certain simply-connected
5-manifolds admit inequivalent contact structures in the same (non-trivial) homotopy class of almost
contact structures.

Zusammenfassung

In dieser Arbeit beweisen wir einige Aussagéper symplektische Strukturen auf 4-dimensionalen
Mannigfaltigkeiten und Kontaktstrukturen auf 5-dimensionalen Mannigfaltigkeiten. Wir untersuchen
zurachst den Zusammenhang zwischen dem symplektischen und dem holomorphen Mitsbegiiff

fur Kahlerfchen. AuRerdem beweisen wir ein Ergeliifier die Irreduzibiliait minimaler, einfach-
zusammenangender symplektischer 4- Mannigfaltigkeiten unter zusamémeggnder Summe und ei-

ne Aussagéber die konformen Systolen symplektischer 4-Mannigfaltigkeiten. athates betrachten

wir die Konstruktion von differenzierbaren 4-dimensionalen Mannigfaltigkeiten durch die verallgemei-
nerte FasersummeilFden Fall, dass die Summation entlang eingebetteahieh mit trivialem Nor-
malenliindel erfolgt, berechnen wir die ganzzahligen Homologiegruppen und im symplektischen Fall
auch die kanonische Klasse der Fasersumme. Wir betrachten verschiedene Anwendungen, insbeson-
dere hinsichtlich der Geographie einfach-zusamraagkender symplektischer 4-Mannigfaltigkeiten
deren kanonische Klasse durch eine vorgegeberieliche Zahl teilbar ist. Wir zeigen auch, dass man

mit geeigneten verzweigtedberlagerungen von komplexend€hen vom allgemeinen Typ einfach-
zusammenangende algebraischedehen konstruieren kann, deren kanonische Klasse eine vorgege-
bene Teilbarkeit besitzt. Im zweiten Teil der Arbeit betrachten wir die Boothby-Wang Konstruktion
von Kontaktstrukturen auf Kreisindelniiber symplektischen Mannigfaltigkeiten. Zusammen mit den
Resultateriiber Geographie aus dem ersten Teil der Arbeit zeigen wir, dass es auf bestimmten einfach-
zusammenangenden 5-Mannigfaltigkeiten Kontaktstrukturen gibt, die néduivalent sind, aber die

in derselben (nicht-trivialen) Homotopieklasse von Fast-Kontaktstrukturen liegen.
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Chapter |

Intr oduction

In this thesis we are interested in symplectic structures on closed 4-dimensional manifolds and contact
structures on closed 5-dimensional manifolds. A particularly interesting case is when the manifolds are
simply-connected, because simply-connected 4-manifolds can be classifiedarmpaomorphisray a
theorem of M. H. Freedman [45] and simply-connected 5-manifolds can be classifieditfiedonor-
phismby a theorem of D. Barden [6]. It follows from Barden'’s classification theorem that two simply-
connected smooth closed 5-manifolds are diffeomorphic if and only if they are homeomorphic. This
does not hold for simply-connected 4-manifolds because of the existence of many “exotic” 4-manifolds
and explains to some extent why a corresponding classification for simply-connected 4-manifolds up to
diffeomorphisnis not known. We now briefly describe the background and then summarize the content
of each chapter.

It is a basic question in the theory of 4-manifolds to determine whether a given differentiable
4-manifold admits a symplectic structure or not. Historically, the first examples of symplectic 4-
manifolds were khler surfaces, because thaler form is always a symplectic form. In particular, all
complex algebraic surfaces have a symplectic structure. The first example of a symplectic 4-manifold
which cannot be Bhler is due to K. Kodaira and W. P. Thurston [137]. This manifold is a torus bundle
over the torus and has first Betti number equal to 3. It admits a symplectic structure by an explicit
construction. However, since the first Betti number a@hiler surfaces is always even by Hodge theory,
it follows that the manifold cannot bedtler.

In addition to the construction for surface bundles by Thurston, there are several ways to construct
new symplectic 4-manifolds. A very useful construction isgbaeralized fibre sumue to R. E. Gompf
[52] and J. D. McCarthy and J. G. Wolfson [91]. This construction works in arbitrary even dimensions.
In particular, it can be applied to symplectic 4-manifolds which contain symplectic surfaces with trivial
normal bundle: Given two symplectic 4-manifold$ and N and embedded symplectic surfaceg
and Xy of the same genus and with self-intersection zero, there exists a new symplectic 4-manifold
X = M#s,,=x, N obtained by “summingM andN along the embedded surfaces. This construction
also works for differentiable 4-manifolds and embedded surfaces without symplectic structures and in
this way yields new differentiable and often exotic 4-manifolds.

Another construction, related to the generalized fibre sum, is clhetl surgeryand is due to
R. Fintushel and R. J. Stern [38]. Given a 4-manifaldvhich contains an embedded torLiof self-
intersection zero and an arbitrary knitin S, a new 4-manifoldXx can be constructed with the
following properties: If the manifold{ and the complement of the torus i are simply-connected,
then the knot surgery manifold i is again simply-connected and homeomorphi&tdor every knot
K. Moreover, if the manifoldX is symplectic, the torug’ symplectically embedded and the kgt
fibred, then the manifolX 5 also admits a symplectic structure.
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With these and several other constructions (in particular, the rational blow-down construction [37]
andLuttinger surgery [2]) it is possible to construct many new simply-connected symplectic and non-
symplectic 4-manifolds. To mention some examples, one can find symplectic 4-manifolds which are
simply-connected and cannot bélder, generalizing the result of Thurston to simply-connected mani-
folds. In some cases the manifolds cannot be homeomorphicéhkeksurface because of the Kodaira-
Enriques classification of complex algebraic surfaces, in particular the existence of the Noether inequal-
ity ¢? > 2y, — 6 for minimal surfaces of general type. In other cases the symplectic 4-manifolds are
homeomorphic to Ehler surfaces but still do not admit &Kler structure. There are also construc-
tions of simply-connected 4-manifolds which cannot admit a symplectic structure at all, even though
there exists a 4-manifold homeomorphic to it which does admit a symplectic structure. This shows
that the existence of symplectic structures on 4-manifolds depends in a subtle way on the differentiable
structure of the 4-manifold.

To distinguish symplectic 4-manifolds fromaKler surfaces and from non-symplectic 4-manifolds
often requires the invariants derived from the theories of S. K. Donaldson [30, 31] and N. Seiberg
and E. Witten [145], which have their origin in theoretical physics. In particular, there are several
theorems of C. H. Taubes on the Seiberg-Witten invariants of symplectic 4-manifolds [131, 132, 133,
134] and extensions by T.-J. Li and A.-K. Liu to the exceptional caskjof= 1 [86, 87, 88, 90].

The Seiberg-Witten invariants for the constructions mentioned above can be calculated by theorems of
several authors [38, 103, 104, 109, 136].

It is also possible to give (at least partial) answers to the so-cgbedraphy questiofor sym-
plectic manifolds: Suppose a lattice poiat y) in Z x Z is given. Then the geography question asks
whether there exists a simply-connected symplectic 4-manifélduch that the Euler characteristic
e(M) is equal tox and the signature (M) is equal toy. In other words, which coordinate points in
the plane can be realized by the topological invariants of simply-connected symplectic 4-manifolds? A
similar question can be asked for simply-connected complex surfaces of general type. There are several
parts and sectors of the plane that have been filled for both geography questions, in some cases under
the additional assumption that the manifolds are spin.

Another interesting question, sometimes calbedany, tries to determine whether a given lattice
point can be realized by several different 4-manifolds. For example, the constructions above imply that
many lattice points can be realized by infinitely many homeomorphic but pairwise non-diffeomorphic
simply-connected symplectic 4-manifolds. One can also consider the botany question for symplectic
structures on a given differentiable 4-manifold, i.e. whether a fixed differentiable simply-connected 4-
manifold admits several inequivalent symplectic structures. Some results for this question in the case of
homotopy elliptic surfaces can be found in articles by C. T. McMullen and C. H. Taubes [97], |. Smith
[126] and S. Vidussi [140]. A (non-exhaustive) list of references for the geography results and the
constructions of symplectic 4-manifolds mentioned above, in addition to the references already cited,
is [26, 35, 39, 41, 44, 60, 81, 85, 106, 107, 108, 110, 111, 112, 113, 114, 115, 116, 128, 130, 141].

The second part of this thesis concerns contact structures on 5-manifolds. By a construction of
W. M. Boothby and H. C. Wang [13], it is possible to associate to every symplectic manifold a contact
structure on a certain circle bundle over this manifold. In particular, one can associate to every simply-
connected symplectic 4-manifold a simply-connected 5-manifold which is a circle bundle over
M and admits a contact structure related to the symplectic structufd .o his is the connection
between the manifolds of dimension 4 and 5 in our thesis.

The existence question for contact structures on simply-connected 5-manifolds in general (which
is the analogue of the geography question for simply-connected contact 5-manifolds) has been solved
by H. Geiges [51]: A simply-connected 5-manifold admits a contact structure if and only if the
third integral Stiefel-Whitney clasd’;(X) € H3(X;Z) vanishes. The proof of this theorem relies on



the fact that simply-connected 5-manifolds can be classified up to diffeomorphism by the theorem of
D. Barden mentioned above.

However, there still remains the guestion concerning uniqueness or non-uniqueness of contact
structures on simply-connected 5-manifolds (corresponding to the botany question). There are sev-
eral ways in which contact structures on the same manifold can be “equivalent”; contact structures can
be deformed into each other through contact structures or there could exist a self-diffeomorphism of the
manifold which maps one contact structure to the other contact structure. By a theorem of J. W. Gray
[57] the first case is actually contained in the second. In any of these cases, we call the contact struc-
turesequivalent. One can also consider a different form of deformation between contact structures,
where one does not assume that the deformation is through contact structures but only the symplectic
structure on the contact distribution, given by the definition of contact structures, is carried along in the
deformation. In this case the contact structures are deformed through so-called almost contact struc-
tures. One can similarly define aqguivalence of almost contact structuigsallowing combinations
of deformations and arbitrary self-diffeomorphisms of the manifold.

If two contact structures are equivalent then they are also equivalent as almost contact structures, but
the converse is not always true. The existence theorem of Geiges mentioned above provides a contact
structure in every equivalence class of almost contact structures on simply-connected 5-manifolds. One
can think of contact structures in different equivalence classes of almost contact structures as being
“trivially” different for topological reasons. The interesting question is then to find contact structures
which are equivalent as almost contact structuresibtias contact structures.

To distinguish such inequivalent contact structures there exists a theory caitfeatt homology,
invented by Y. Eliashberg, A. Givental and H. Hofer [33]. Using invariants derived from this theory
inequivalent contact structures which are equivalent as almost contact structures have been found on
several 5-manifolds: on the sphe§e by I. Ustilovsky [139], onI™? x S andT® by F. Bourgeois [15]
and on many simply-connected 5-manifolds by O. van Koert [74]. The constructions in these cases yield
infinitely many inequivalent contact structures in the same homotopy class of almost contact structures.
However, the examples are all in the trivial homotopy class whose first Chern class is zero. As far as
we know, inequivalent contact structures on 5-manifolds have only been found in this homotopy class.
In Chapter X we construct some examples of inequivalent contact structures in homotopy classes with
non-vanishing Chern class.

We now describe the content of each chapter separa@digpter 1l collects some basic prelimi-
naries on 4-manifolds, in particular on the intersection form and on complex algebraic surfaces.

Chapter lll was published together with D. Kotschick under the same titlatinMath. Res. No-
tices 2006, Art. ID 35032, 1-13. We only made some very minor adaptations for inclusion in this thesis.
The first part of the chapter concerns the difference between two notions of minimalit@lidensur-
faces,symplecticand holomorphic minimality, where the first one is defined by the non-existence of
a symplectic embedde@d-1)-sphere and the second one by the non-existence of a holomorphic em-
bedded(—1)-sphere. It is not clear that both notions agree. We will prove that they are identical for
all Kahler surfaces except the non-spin Hirzebruch surfaGefor n > 1 odd, cf. Theorem 3.2. The
second part of Chapter 3 concerns the irreducibility of symplectic 4-manifolds. The main theorem
3.3 was proved by D. Kotschick for the calsg > 2 in [79], cf. also [80]. It is extended here to the
caseb; = 1 which is exceptional because the Seiberg-Witten invariants are not completely indepen-
dent on the choice of parameters but depend on certain chambers. The theorem implies that minimal
simply-connected symplectic 4-manifolds areirreducible, meaning that in any connected sum de-
compositionX = X;# X, one summand has to be homeomorphisto

Chapter IV has been published under the same titl®Menuscripta math121, 417-424 (2006).
have only made minor modifications for inclusion here. The main result, Corollary 4.4, is an extension
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of a theorem of M. Katz [70] on the so-callednformalsystoledor blow-ups of the projective plane
to a larger class of manifolds. The proof uses some results derived from the Seiberg-Witten theory for
symplectic 4-manifolds.

Chapter V on the generalized fibre sum is a cornerstone of this thesis, because many constructions
in Chapter VI use fibre sums. In the first part of the chapter we calculate the integral homology of the
generalized fibre suX = M#sx,,-x, N of two differentiable 4-manifoldd/, N (without symplec-
tic structures) along embedded surfagigg, X with trivial normal bundles. The first homology is
determined in Theorem 5.11, the first cohomology in Proposition 5.15 and an exact sequence for the
second homology in Theorem 5.36. If the cohomologyhfN and.X is torsion free and the classes
represented by the surfacEs; and Xy are indivisible, a formula for the intersection form &f is
determined in Theorem 5.37. Such formulas are known in many special cases and are often derived
in applications using the generalized fibre sathhoc. However, as far as we know, they have not
appeared in complete generality. The second part of Chapter V concerns the canonical class of the
symplectic generalized fibre sui of two symplectic 4-manifolds along symplectic surfaces. In The-
orem 5.55 a formula for the canonical classXfis derived under the assumptions of Theorem 5.37
describing the intersection form. This is also one of the reasons why we calculated the cohomology of
X in detail, because this is necessary to identify the terms giving a contribution to the canonical class.
A formula for the canonical class is known in the case that the generalized fibre sum is along tori (there
is also a more general formula by E.-N. lonel and T. H. Parker [69]). However, also for the case of tori
we did not find a complete proof in the literature, in particular taking care of the existence of rin tori.
We compare the formula in Theorem 5.55 with some of the formulas used in the literature and give
some applications: In Section V.6.1 we consider the generalized fibre sum of elliptic sukfaces
and E(m) which are not glued together by a fibre preserving diffeomorphism but with a “twisting”
and determine the rim tori contribution to the canonical class in this case. In Section V.6.2 a variation
of an idea of I. Smith [126] is described for the construction of inequivalent symplectic forms on the
same 4-manifold if a symplectic 4-manifold admits certain Lagrangian tori of self-intersection zero.
The construction uses that, given a Lagrangian torus which represents an essential homology class in a
symplectic 4-manifoldZ, one can deform the symplectic structure on the manifold such that it induces
either a negative volume form, the zero form or a positive volume form on the torus while the canonical
class remains unchanged.

Chapter VI concerns the geography of simply-connected symplectic 4-manifolds whose canonical
class is divisible by a given integer > 1. This version of the geography question has not been
considered before, as far as we know, except for the ¢ase which corresponds to spin manifolds.

The examples which are constructed can be used in Chapter X to find inequivalent contact structures
on certain simply-connected 5-manifolds. Following some general remarks in Section V1.1, we apply
in Section VI.2 the calculations in Chapter V on the generalized fibre sum. First we consider the case
that the simply-connected 4-manifold hgs= 0 (hence is a homotopy elliptic surface) and later the
casec? > 0. The case? < 0 is very simple if one uses the results of C. H. Taubes [134] and A. K. Liu
[90].

The main existence result for symplectic structures with divisible canonical class in the case of
homotopy elliptic surfaces is Theorem 6.11. The idea of the construction is to first raise the divisibility
of the canonical class of an elliptic surface by doing a knot surgery along the fibre and then “break-
ing” the divisibility to the appropriate divisor by doing a further knot surgery on a rim torus. Using
a refinement of this construction and the results from Section V.6.2, we show that one can also real-
ize on thesamehomotopy elliptic surface several symplectic structures whose canonical classes have

1Thereis however an indirect proof using the calculation of the Seiberg-Witten invariants for gluing Afgra. [109]
and [136].



different divisibilities by breaking the divisibility in several different ways, cf. Proposition 6.14, The-
orem6.16 and Corollary 6.18. Hence these symplectic structures are inequivalent, which generalizes
the work of McMullen-Taubes [97], Smith [126] and Vidussi [140] mentioned above, who also found
inequivalent symplectic structures on homotopy elliptic surfaces. The construction uses the existence
of several independent triples of Lagrangian tori (as rim tori) in elliptic surfaces, which are needed for
the construction from Section V.6.2.

In the next subsection some of these results are generalized to the case?whéreThe construc-
tion uses a form of “generalized knot surgery” along surfaces of higher genus [41]. In this way one
can increase? while keeping the signature of the manifold and the divisibility of the canonical class
fixed. The symplectic surfaces of higher genus which we use arise from the knot surgery construction.
In particular, Theorem 6.20 solves the existence question for simply-connected symplectic manifolds
with ¢ > 0 and negative signature whose canonical class is divisible by a given even idteger
We also have some results for odd divisibility, cf. Theorem 6.27 and Proposition 6.32. However, we do
not have as complete an answer as for the case of even divisibility, because in the even case the sigha-
ture is constrained by Rochlin’s theorem which does not hold in the odd case. Using the construction
from the previous subsection it is possible to find inequivalent symplectic structures on some of these
manifolds, cf. Theorem 6.22 and Theorem 6.29 (explicit examples of this type on simply-connected
closed 4-manifolds with? > 0 do not appear in the literature, though their existence is implicitly clear
by [126]).

In the following sections of Chapter VI a second, independent way is described to construct simply-
connected symplectic 4-manifolds with divisible canonical class. This construction uses branched cov-
erings over pluricanonical divisors on algebraic surfaces of general type. Hence the examples will again
be surfaces of general type. In Section VI.3 we define branched coverings and give a criterion when a
branched covering over a simply-connected complex surface is again simply-connected, cf. Theorem
6.45 and Corollary 6.47. The proof uses a theorem of M. V. Nori [105] on the fundamental group
of the complement of a complex curve in a complex surface. Section V1.4 contains a description of
some results on the geography of simply-connected surfaces of general type, in particular those due to
U. Persson, C. Peters and G. Xiao [115, 116]. In the following section these geography results and the
existence of base point free pluricanonical divisors (summarized in Section 11.3.7) are used to construct
the branched coverings with divisible canonical class.

In Chapter VIl we summarize the classification of simply-connected 5-manifolds by D. Barden [6]
and S. Smale [125], including the topological invariants of simply-connected 5-maniXolased for
the classification, in particular the linking form on the torsion subgrouffX'; Z) which gives rise
to the so-called-invariant. Also some details for the construction of the irreducible building blocks of
simply-connected 5-manifolds are given in Section VII.5 and a proof for the theorem on the connected
sum decomposition in Section VII.6.

Chapter VIII recalls some basic facts about contact structures and we define the notion of equiva-
lence of contact structures in Definition 8.10. In Theorem 8.18 we show that two almost contact struc-
tures on a 5-manifoldk’ whoseH?(X; Z) does not contain 2-torsion are homotopic as almost contact
structures if and only if they have the same first Chern class. This extends a theorem of H. Geiges [51]
who proved the same result under the assumptionXha simply-connected. In Theorem 8.20 and
Corollary 8.22 this result is combined with the classification theorem for simply-connected 5-manifolds
to deduce that two almost contact structures on a simply-connected 5-maXigoie equivalent if and
only if their first Chern classes have the same divisibility as elemerdi€ (X ; Z). The proof uses that
certain automorphisms df?(X; Z) can be realized by orientation preserving self-diffeomorphisms of
X. We call the divisibility of the first Chern class of an almost contact struciuwe X its level. It
follows that two almost contact structures &nare equivalent if and only if they lie on the same level.
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In Chapter IX we collect and prove some results on the topology of circle bundles. In particular,
Lemma 9.8 shows that the total space of a circle bundle is simply-connected if and only if the base man-
ifold M is simply-connected and the Euler class is indivisible as an eleméit(n/; Z). In the case
whereM is a simply-connected 4-manifold and the Euler classindivisible Barden’s classification
theorem of simply-connected 5-manifolds from Chapter VIl can be used to determine the total space
X up to diffeomorphism. It turns out th& is diffeomorphic to a connected sum of several copies of
52 x §3if X is spin. If X is not spin there is one additional summand given by the non-triiAal
bundle overS?. The total number of summands in both cases is equal(fa’) — 1, cf. Theorem 9.12
(this has also been proved in [32]). These manifolds are, up to diffeomorphism, precisely the simply-
connected 5-manifoldX” with torsion freeH,(X; Z). In Section IX.3 we describe the Boothby-Wang
construction of contact structures on circle bundles. Together with the diffeomorphism classification
above, it follows that one can realize the same abstract simply-connected 5-mddifaith torsion
free Hy(X;Z) as a Boothby-Wang total space over different simply-connected symplectic 4-manifold
with the same second Betti number. In this way one can construct numerous contact structures on a
given simply-connected 5-manifold with torsion free second homology.

In Chapter X we show that some of these contact structures are inequivalent using a version of
contact homology for the Morse-Bott case [15, 33]. Ketand&; be two contact structures on an
abstract simply-connected 5-manifotdwith torsion freef, (X'; Z) which are on the same level (hence
both are equivalent as almost contact structures). Suppose that both contact structures can be realized
as Boothby-Wang contact structures over two different simply-connected symplectic 4-manifolds
andMs:

X
>
(M, w1) (Ma,w2)

We prove essentially that if the divisibilities of the canonical classes of the symplectic structu«es
on M, and M, are different, then the contact structuresXrare inequivalent, cf. Corollary 10.18. In
this way the existence of inequivalent contact structures on simply-connected 5-manifolds with torsion
free Ho(X;Z) is related to the geography of symplectic 4-manifolds with divisible canonical class as
in Chapter VI. In the second part of the chapter some explicit examples will be given, in particular on
non-zero levels corresponding to non-vanishing first Chern class.

The Appendix finally contains some calculations for the complement of a submanfotd di-
mensionn — 2 in a manifold M of dimensionn which are used in several places in Chapters V and
VI.
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In this chapter we collect some results and formulas on differentiable 4-manifolds which will be
usedthroughout the thesis. We give some references at the beginning of each section where the proofs
for the statements can be found (or in the references therge) manifolds we consider in this thesis
are all smoothly differentiable.

[1.1 Differentiable 4-manifolds

General references for this section are the books by Freedman-Quinn [46] and Gompf-Stipsicz [56].

[1.1.1 The intersection form

Let M be a closed, oriented 4-manifold. By Poineatuality and the Universal Coefficient Theorem,
the torsion subgroups of all homology and cohomology groups are determined by(Tidt #):

TorH,(M;Z) = TorH*(M;Z)
> TorHy(M;7Z)
>~ TorH*(M; 7).
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All other torsion groups vanish. Thetersection form,
Qu: HX(M;Z) x H*(M;Z) — Z,

is defined byQ s (a, 3) = (o U B, [M]), where[M] € H*(M;Z) denotes the fundamental class given
by the orientation. Via Poincarduality we get an equivalent form @ (M ; Z), which we also denote
by Qs. One often writes

a-b=Qun(PD(a),PD(b)).

The intersection forn®),; is a symmetric and bilinear form. i is a torsion element of/2(M; Z),
thenQy(a,z) = 0 for all x € H?(M;Z). Hence the intersection form induces a symmetric and
bilinear form onH?(M; Z)/Tor. By Poincagé duality

QM(av B) = <a7 PD(ﬂ»’
and the Universal Coefficient Theorem
H?(M:;Z)/Tor = Hom(Hy(M; Z),Z).

It follows that the intersection form off?(M;Z)/Tor is non-degenerate. A homotopy equivalence
between closed, oriented 4-manifolds induces an isomorphism of intersection forms.

Q) is calledevenif Qs (a, @) = 0 mod2 for all « € H?(X; Z) andoddotherwise. This is called
thetypeof Q). A characteristic elemerfor Q,, is an elemenB ¢ H?(M;Z) such that

Qum(B,0) = Qun(a,a) mod2, foralla € H2(M;Z).

There also exists a corresponding intersection fornf3i0A/; R). We can choose a basis of the
vector spaceéf?(M; R) such that this form is represented by a diagonal matrix of type

diag(+1,4+1,...,+1,—-1,—-1,...,—1).

In other words ), is always diagonalizable ov&. The number oft-1 and—1 entries are denoted
by b5 (M) andb, (M). These numbers do not depend on the choice of basi# f¢n/; R) and are
homotopy invariants ol/. The intersection fornd),, is called

positive definitef b, (M) = 0,
negative definité b5 (M) = 0,
definitein either case anghdefiniteif both b3 (M) > 1.

Thesignatures (M) is defined as
o(M) = b (M) — by (M).

One can show that
Qur(x,z) = o(M) mod8 (2.2)

for every characteristic elementof H2(M;Z), cf. [56, Lemma 1.2.20]. Note thatis a characteristic
element ifQ) 5, is even. Hence in this case the signatu(@/) is divisible bys.

We consider in particular the non-degenerate, symmetric, bilinear fagymdetermined by the
following matrices:
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Q@ = (1) onZ, with Q(e, e) = 1 on the basis element.

Q@ = (—1) onZ, with Q(e, e) = —1 on the basis element.

(Vo)

Q = H onZ?, given by

Q = EgonZ8, given by

21000000
12100000
01210000
00121000
00012101
00001210
000 0O0OT120
000O01O0O02

The forms(1) and(—1) are odd and the form& (indefinite of signatur®) and Es (positive definite
of signatureB) are even.

Indefinite, non-degenerate, symmetric, bilinear foépnsf rankb and signature can be classified
as follows (up to isomorphism) [99]:

e If () is odd, ther() is isomorphic to

b3 (1) & by (—1).
e If () is even, ther) is isomorphic to

¢By @ o H.

Definiteforms are not classified in general. However,bgnaldson’s theorenf29, 31], if Q) is the
intersection form(),,; of a smooth, closed, oriented 4-manifald and Q) is definite, then),, is
isomorphic to

Qu =b(1)=(1)@...® (1) if Qu is positive definite.
Qu =b2(—1)=(-1) @...®(-1)if Qu is negative definite.

Hence in this cas€),, is diagonalizable ove¥.. The classification of indefinite forms above, together
with Donaldson’s theorem for the definite case, imply that the intersection €gmof a smooth,
closed, oriented 4-manifold is determinediayM ), o (M) and the type.

[1.L1.2 The second Stiefel-Whitney class

Let M be a closed, oriented 4-manifold amd(M) € H?(M;Z>) the second Stiefel-Whitney class of
M. The 4-manifoldM is spin if and only ifws (M) = 0. By theWu formula

(wa(M),a) = Qpr(a,a) mod2, foralla € Ho(M;Z).
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Hence ifc € H?(M;Z) is a class with
¢ = wy(M) mod2,

thenc is a characteristic element f@r;. Since every closed, oriented 4-manifol®isin®, such classes
always exist.
Suppose thad/ is spin. It follows that

Qr(a,a) =0mod2, foralla € Ho(M;Z),

henceQ), is an even form. By equation (2.1) this implies thdt\/) is divisible by8. Note that this
holds already for topological 4-manifolds. If a closed spin 4-manifdlds smoothRochlin’s theorem
[119] implies that the signatukg( M) is in fact divisible by 16.

Conversely, suppose th@ty, is even. Then

(we(M),a) =0 mod2

for all a € Ho(M;Z). By the following exact sequence, coming from the Universal Coefficient Theo-
rem,

0 — EXt(Hy(M;Z),Zs) —— H2(M;Zy) — Hom(Hy(M;Z), Zs) — 0,

the classwy (M) is in the image of the homomorphismThe group Ext(H(M; Z), Z2) vanishes for
example if M is simply-connected. Hence M/ is a simply-connected, closed, oriented 4-manifold,
then is spin if and only ifQ)  is even (the other direction follows from the previous paragraph). The
following theorem is due to Freedman [45, 46].

Theorem 2.1. Let M, N be simply-connected, closed, smooth 4-manifolds. Supgpole(M;Z) —
Hy(N;Z) is an isomorphism preserving intersection forms. Then there exists a homeomorphism
f: M — N, unique up to isotopy, such thét = 6.

We denote the Euler characteristic of closed, oriented 4-manifaldsy e(M). SupposeM is
simply-connected. Then
e(M) =2+ by(M).

Hencee(M) determinedq (M) and vice versa. If\f is simply-connected then the invariarts\/),
o(M) and whetherV/ is spin or not spin determine the intersection fagy, by Section I1.1.1 up to
isomorphism and by Freedman’s theorem the 4-maniféldp to homeomorphism.

1.2 Symplectic manifolds

General references for this section are the books by Gompf-Stipsicz [56] and McDuff-Salamon [96].

[1.2.1 Almost complex structures

Let M be a smooth manifold anf — M a smoothR-vector bundle of rankn. A complex structure
on the vector bundl& is a smooth bundle isomorphisit £ — F (fibrewise linear and covering the
identity of M) such that/? = —1dg. Given such an endomorphisii the vector bundléZ becomes a
C-vector bundle of rank with multiplication

CxE—FE, (a+ib)-v=av+0bJ(v) (a,beR).
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In particular, the Chern classeg F, J) of E, fori > 0, are well-defined.

An almost complex structuen a smooth manifold/ of even dimension2n is a complex structure
on the vector bundl& M. Let M be a closed, oriented 4-manifold with an almost complex structure
J. Then the following always holds, cf. [56, Theorem 1.4.15]:

c1(M,J) = we(M) mod2
cA(M,J) =2e(M) + 30(M)
ca(M,J) =e(M) € HYM;Z).

Note in particular that the mo2l reduction ofc; (M, J) and the integers?(M, J) andca(M, J) are
purely topological invariants ofl/ which do not depend on the almost complex structéireThe
existence question for almost complex structures on oriented 4-manifolds is solWd'&yheorem
[146, 64]: suppose thal/ is a closed, oriented 4-manifold andt H?(X;Z) a class with

c=wy(M)mod2, ¢ =2e(M)+ 30(M).
Then there exists an almost complex structlien M such that; (M, J) = c.
Definition 2.2. Let M be an arbitrary closed, oriented 4-manifold. We define the integers

ci (M)
CQ(M)

2e(M) + 30(M)
e(M).

Hence if M admits an almost complex structusethen c?(M,J) = c3(M) andcy(M,J) =
CQ(M).

[1.2.2 Symplectic structures

A symplectic structuren a real vector spac¥ is by definition a non-degenerate, bilinear skew-
symmetric formw: V' x V — R. Non-degeneracy here means that for every non-zero vectol”
there exists a vectar € V with w(v, w) # 0. A symplectic form exists on a vector spdcef and only
if the dimension oft” is even. A symplectic structure on a real vector burfdle~ M is by definition
a family of symplectic structures on each fikig which varies smoothly with the base pomtIf M
is an even-dimensional manifold, one can consider symplectic structures in this sense on the tangent
bundleT' M. They correspond to non-degenerate 2-formd46nA symplectic structuren a manifold,
however, is a non-degenerate 2-fatnon M which satisfies in additiodw = 0.

Supposel — M is a vector bundle with a symplectic structure A complex structure/ on £
is calledcompatiblewith o if (v, Jv) > 0 for all non-zerov in E ando(Jv, Jw) = o(v,w) for all
v,w € V. This implies thayy(v, w) := o(v, Jw) defines a metric o’ (an inner product) such that
J becomes skew-adjoint. Every symplectic vector bundle admits a compatible complex structures and
the space of such structures for fixeds contractible. Hence the Chern classes of symplectic vector
bundles are well-defined, independent of the choice of compatible complex structure. In particular,
every symplectic manifold)M, w) admits a compatible almost complex structure. Taronical class
K of wis by definition—c; (T X, J), whereJ is an almost complex structure compatible with

1.3 Complex manifolds

Some general references for this section are the books by Barth-Peters-Van de Ven [8], Friedman [47],
Gompf-Stipsicz [56], Griffiths-Harris [58], Harris [61] and Hartshorne [62].
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11.3.1 Divisors

Let M bea smooth compact complex manifold of dimensianA divisor D on M is by definition a
locally finite linear combination (ovef) of irreducible complex hypersurfaces,

D= ZaV

The divisorD is called effective if allz; > 0 and not alla; vanish. Every divisoD defines a holomor-
phic line bundle denoted b§ (D) — M. The Chern class aP(D) is given by

c1(O(D)) = > a;PD[V;] € H*(M; Z).

Two divisors are called linearly equivalent if they define isomorphic holomorphic line bundles. The
linear systemD| defined by a divisoD is the set of all effective divisors linearly equivalentoand
the zero divisor. Lef. — M be a holomorphic line bundle. Then the following holds:

e If L has a global non-trivial meromorphic sectigrthen the locus of singularities and zeroes of
s defines a divisoD = (s) with O(D) = L.

e If D is any divisor such tha® (D) = L, then there exists a meromorphic sectioaf L with
(s) = D. HenceL is isomorphic toO(D) for some divisorD if and only if L has a global
non-trivial meromorphic section anfl is isomorphic toO(D) for someeffectivedivisor D if
and only if L has a global non-trivial holomorphic section.

e The linear systemD| defined byD consists of the zero loci of all holomorphic sectiong€4dfD)
and there is an identificatig®| = PH°(M, O(D)).

e Finally, if M is algebraic, then every holomorphic line bundle— M has a non-trivial mero-
morphic section.

11.3.2 Representing line bundles by non-singular curves

If M™ is a smooth (real) manifold then every classip_»(M;Z) can be represented by a smooth
submanifoldfF™~2 ¢ M of codimension 2 and each classht ()M ; Z) can be represented as the first
Chern clasg:; (L) of a complex line bundld.. The relation between the two is that the zero set of a
smooth section of,, which is transverse to the zero section, is a smooth codimension 2 submanifold in
M which represents the Poinéadual ofc; (L).

We want to do a similar construction for complex manifolds. L&be a smooth complex algebraic
manifold andL — M aholomorphic line bundle. We would like to represent the Poidaal ofc; (L)
by a smooth complex hypersurface.

By definition, abase poinof L (or the linear systerf.|) is a pointp € M where all holomorphic
sections ofL vanish. Equivalently, the point is contained in each elemenLpf Supposel has no
base points. In particulaf, has non-trivial holomorphic sections. Then we can define a holomorphic
map

fr: M —CPN,  N=hr"(MOL)) -1,

in the following way: lets, ..., sy be a basis of the finite dimensional complex vector sgate\1, O(L))
of holomorphic sections af. Thenf;, is given by

fr(p) = [so(p): ... : sn(p)].
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In this situation, the zero set of holomorphic sectiond. @reprecisely the preimages of hyperplanes
H =~ CPN-! ¢ CPY. By Bertini’s Theorem (cf. [61, Theorem 17.16]), the preimage is a smooth
hypersurface for a generic hyperplaAe HenceL has a holomorphic section with zero gef which
is a smooth hypersurface with(L) = PD([D)).

A line bundleL without base points is callempleif there exists am > 1 such that the may; <~
defined by the line bundI&®™ is an embedding. By thakai-Moishezon Criterioficf. [62, Chapter
V, Theorem 1.10]) a line bundlgé on a complex algebraic surfadd is ample if and only ifL? > 0
andL - C > 0 for all irreducible curve€’ on M.

[1.3.3 Invariants of complex surfaces

Let M be a compact complex surface, i.e. a smooth compact complex manifold of diméndibe
canonical line bundlgs of M is the bundle of holomorphic 2-forms . Thecanonical classs the
first Chern class of the canonical bundle, also denotef bit is related to the first Chern class of the
tangent bundle by, (M) = ¢1(TM,J) = —K. We denote the trivial line bundle ol by O. The
following invariants are defined fav/:

Theirregularity
q(M) = h"Y (M) = dimH' (M, O).

Thegeometric genus
py(M) = h%*(M) = dim H*(M, O).

Theplurigenera
P (M) = dim HY(M, O(mK)).

Theholomorphic Euler characteristic
Xn(M) = x(0) =1 = q(M) + pg(M).

Some of them can be related to topological invariants of the closed, oriented 4-madifold

e By theNoether formula, which is the Riemann-Roch formula for the holomorphic tangent bundle
of M:

Xn(M) = 75(ct (M) + c2(M))
(c1(M) — (M)
(e(M) + o (M)).

= 00— ._.

e For complex surfaces in general we hayéM ) = h'O(M) + q(M).

e If b1(M) is even, which is always the case foakler surfacesy (M) = 2¢(M) andbd (M) =
2pg (M) + 1.

Definition 2.3. Let M be an arbitrary closed, oriented 4-manifold. We define the number

Xu(M) = §(e(M) +o(M)).
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If M admitsthe structure of a compact complex surface, thef\/) is equal to the holomorphic Euler
characteristic by the Noether formula. In the general case of an arbitrary closed oriented 4-manifold
we can calculatg, (M) as
Xn(M) = 5(1 = bi(M) + by (M)).

Henceyx, (M) is an integer if and only i} (M) —b, (M) is odd. On compact complex surfacgs( M)
is by definition an integer. One can prove that the numbgi\/) is also an integer i/ admits an
almost complex structure: Sineg(M, J) = we(M) mod2, the class:; (M, J) is characteristic. This
implies thatc? = o(M) mod8 by equation (2.1), heneg M) + o(M) = 0 mod4.

If M is a closedspin4-manifold, then

c2(M) = 8x,(M) mod16.

This follows because (M) = ¢3(M) — 8x,(M) anda (M) = 0 mod 16 by Rochlin's theorem. If\/
is a closedspin4-manifold which admits in addition amlmost complex structure, then

c}(M) = 0 mods.

This follows becausg;, (M) is in this case an integer.

11.3.4 Kodaira-Enriques classification

Let M be a compact complex surface. TiKedaira dimension:()M) of M can be defined as follows
(see [47, 56]):

k(M) = min{k € Z | P,(M)/n* is a bounded function of > 1},
whereP,, (M) denote the plurigenera éff. This implies:
k(M) = —ocoif P,(M) = 0foralln.

k(M) = 0 if someP, (M) is non-zero and P,,(M)} is a bounded sequence.

(M
k(M) =1if {P,(M)} is unbounded but P, (M)/n} is bounded.
(M

k(M) =2if {P,(M)/n} is unbounded.

By definition, a surface afeneral typds a complex surfacé/ with k(M) = 2. In the remaining
cases the following is known by the Kodaira-Enriques classification:

e If M is a minimal complex surface with(M) = —oco thenM is eitherC P?, geometrically ruled
or of Class VII. A geometrically ruled surface is by definition a holomorghie!-bundle over a
Riemann surface and a surface of Class VIl is by definition a complex surface (@ith = —oo
andb, (M) = 1.

e If M is a simply-connected minimal complex surface witid/) = 0 thenM is aK 3-surface. A
K3-surface is by definition a complex surfag€ with trivial canonical bundle anéh (M) = 0.
Every K 3-surface is simply-connected andHKler. Any twoK 3-surfaces are diffeomorphic.

e If M is a minimal surface with:(M) = 1 thenM is anelliptic surface. An elliptic surface is
by definition a complex surfack/ with a holomorphic projectioa: M — C onto a compact
complex curve, such that the generic fibresradre elliptic curves. Note that there are elliptic
surfaces withs(M) = —oo or 0 (e.g.CP2#9CP? or K 3-surfaces).
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[1.3.5 Elliptic surfaces

Additional references for this section are [48, 53]. Ldtbe an elliptic surface with elliptic fibration

7: M — C. We will only consider the case whefé is smooth and usuallg’ = CP'. In particular,

an elliptic fibrationr: M — S? is a singularT’?-fibration. Arelatively minimal elliptic surfacés an
elliptic surface, which is not the blow-up of another elliptic surface. One can give a complete list of
relatively minimal simply-connected elliptic surfaces:

e There exist simply-connected elliptic surfaces without multiple fibres, denotéd{ by for n >
1, with invariants

by(E(n)) =12n—2, bJ(E(n))=2n-1, py(E(n))=n—1.
e(E(n)) = 12n, o(B(n)) = =8n,  ci(E(n)) =0, xn(E(n)) = n.

In particular,E(1) = CP?#9CP? and E(2) is a K 3-surface. The elliptic surfacE(n) is spin
if and only if n is even. The canonical class B{n) is given by

K =(n-2)F
whereF' denotes the class of a general fibre.

e There exist simply-connected elliptic surfaces with multiple fibres, denotedl'(by, , with
n > 1 andp, ¢ coprime. The surface(n), , have the same Betti numbers and Chern invariants
asE(n) above and®(n)1 = E(n). If nis odd, then allE(n), , are non-spin. lf is even,
thenE(n), 4 is spin if and only ifpq is odd. The class of a general fibfeis divisible bypg. Let
f denote the homology clasggF. Then f is indivisible in homology and the canonical class of
E(n)p,q is given by
K = (npg—p—q)f.
These surfaces can be classified up to diffeomorphism as follows, cf. [56, Section 3.8:3f2
thenE(n),, andE(n), , are diffeomorphic if and only ifp, ¢} = {p, ¢’} as unordered pairs. The
surfacesF(1), , are calledDolgachev surfaces. Far> 1, the surfaced’(1), , are all diffeomorphic

to E(1). If p,q,p’, ¢’ are> 2 thenE(1), 4 is diffeomorphic toE(1),r , ifand only if {p, ¢} = {p’, ¢'}.
These surfaces are never diffeomorphidid ).

[1.3.6 Surfaces of general type

Let M be a smooth minimal surface of general type. Every complex surface of general type is algebraic.
There are a number of important inequalities, which the invarianid dfave to satisfy:

c2(M) > 0andez(M) = e(M) >0
c3(M) > 2p,(M) — 4 (Noether's inequality)
c}(M) < 3ca(M) (Bogomolov-Miyaoka-Yau inequality)

If M is a minimal surface of general type afican irreducible complex curve oW, thenK,C >
0 with equality if and only ifC' is a smooth rational curve of self-intersectief. Hence by the Nakai-
Moishezon Criterion (cf. Section 11.3.2) the canonical bunfBlg is ample if and only ifA/ does not
contain rationa(—2)-curves.
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11.3.7 Pluricanonical divisors

Let M be a minimal smooth complex algebraic surface of general type. We consider the multiples
L = nK = K®" of the canonical line bundle of/. By a theorem of Bombieri ([12], [8]), all
divisors in the linear systerim K| are connected. IfnK | is base point free, then we can find a non-
singular divisor representing X’ by subsection 11.3.2. The question of existence of base points in
pluricanonical systems of the form K | has been studied in great detail. We summarize what is known
in the following theorem.

Theorem 2.4. Let M be a minimal smooth complex algebraic surface of general type. Then the pluri-
canonical systerm K| has no base points in the following cases:

oen>4
e n=3andK?>2
e n=2andK? >5o0rp, > 1.

For the proofs and references see [11, 12, 23, 73, 98, 118]. Theiwcasé has been proved by
Kodaira who also proved the case= 3, K? > 2 for p, > 1; in this case the claim fop, = 0,1
has been proved by Bombieri. Reider reproved these results and the ease K? > 5. The case
n =2,K? < 4,p, > 1 has been proved more recently.

Remaining cases:We describe what is known in the cases with> 2 not covered by Theorem
2.4. Supposa = 3, K? = 1: By Noether’s inequalitys® = 1 impliesp, < 2. We discuss each case
pg = 0,1, 2 separately.

(1) A numerical Godeaux surfade by definition a minimal surfacé/ of general type with? =
1,pg = 0. The numbeb of base points o8 X'| on such a surface is determined by TefM/; Z) =
Hy(M;Z) in the following way (see [101]):

b=11{t € Hi(M;Z) |t # —t}].

For numerical Godeaux surfacéh (M ;7Z) can only be a cyclic group of ordet 5. All these
cases occur [117]. In particuld8K | is base point free if{;(M;Z) = 0 or Zs, e.g. if M is
simply-connected.

(2.) On surfaces wittk? = 1,p, = 1, the linear systenBK| is always base point free [19].
(3.) If K? =1,p, = 2, then|3K| always has a base point [11].

Supposer = 2, p; = 0andl < K? < 4:
(1.) If M is a numerical Godeaux surfaces{ & 1) then|2K| always has base points.

(2.) No example is known of a surface with = 0 and2 < K? < 4 such that2K| has base points
[98]. This includesnumerical Campedelli surfaces, i.e. minimal surfaces of general type with
K? =2,p, = 0. ForK? = 4itis known that|2K| is base point free under certain assumptions
on the fundamental group @, in particular if, (M) is cyclic or of odd order [23, 77].
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We prove that all minimal symplectic four-manifolds are essentially irreducible. We also clarify
the relationship between holomorphic and symplectic minimality &hker surfaces. This leads to a
new proof of the deformation-invariance of holomorphic minimality for complex surfaces with even
first Betti number which are not Hirzebruch surfaées.

[11.1 Introduction and statement of results

In this chapter we discuss certain geometric and topological properties of symplectic four-manifolds.
Our main concern is the notion of minimality and its topological consequences. We shall extend to
manifolds withb] = 1 the irreducibility result proved in [79, 80] for the case that > 1. We also

show that holomorphic and symplectic minimality are equivalent precisely for thabéeKsurfaces
which are not Hirzebruch surfaces. Together with work of Buchdahl [17], this yields a new proof of the
deformation-invariance of holomorphic minimality for complex surfaces with even first Betti number,
again with the exception of Hirzebruch surfaces.

[.1.1  Minimality

A complex surface is said to be minimal if it contains no holomorphic sphere of selfintersedticee

for example [8]. A symplectic four-manifold is usually considered to be minimal if it contains no sym-
plectically embedded sphere of selfintersection see for example [92, 52]. In the case of atfer
surface both notions of minimality can be considered, but it is not at all obvious whether they agree. In

This chapter has been published under the same title with D. Kotschici.iMath. Res. Notices 2006, Art. ID 35032,
1-13.
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the recent literature on symplectic four-manifolds there are frequent references to (symplectic) mini-
mality, and often Khler surfaces are considered as examples, but we have found no explicit discussion
of the relationship between the two definitions in print, compare e. g. [92, 93, 94, 122, 52, 80, 54].

An embedded holomorphic curve in @Kler manifold is a symplectic submanifold. Therefore, for
Kahler surfaces symplectic minimality implies holomorphic minimality. The following counterexam-
ple to the converse should be well known:

Example 3.1. Let X,, = P(O @ O(n)) be then'" Hirzebruch surface. I is odd and» > 1, thenX,,
is holomorphically minimal but not symplectically minimal.

In Section 111.2 below we explain this example in detail, and then we prove that there are no other
counterexamples:

Theorem 3.2. A Kahler surface that is not a Hirzebruch surfaég, with n odd andn > 1 is holo-
morphically minimal if and only if it is symplectically minimal.

A proof can be given using the known calculations of Seiberg—Witten invariantaldeKsurfaces.

Using Seiberg—Witten theory, it turns out that for non-rulezhter surfaces symplectic and holomor-
phic minimality coincide because they are both equivalent to smooth minimality, that is, the absence of
smoothly embedde(-1)-spheres. The case of irrational ruled surfaces is elementary.

Such a proof is not satisfying conceptually, because the basic notions of symplectic topology should
be well-defined without appeal to results in gauge theory. Therefore, in Section 111.2 we give a proof of
Theorem 3.2 within the framework of symplectic topology, using Gromov's theotilodlomorphic
curves. We shall use results of McDuff [92] for which Gromov’s compactness theorem is crucial.
Essentially the same argument can be used to show that symplectic minimality is a deformation-
invariant property, see Theorem 3.6. This natural result is lurking under the surface of McDuff’s
papers [92, 93, 94], and is made explicit in [98], compare also [121, 122]. Of course this result is
also a corollary of Taubes’s deep work in [132, 134, 135, 80], where he showed, among other things,
that if there is a smoothly embeddéd1)-sphere, then there is also a symplectically embedded one.

In Section Il.2 we shall also prove that for compact complex surfaces with even first Betti number
which are not Hirzebruch surfaces holomorphic minimality is preserved under deformations of the
complex structure. This result is known, and is traditionally proved using the Kodaira classification,
cf. [8]. The proof we give is intrinsic and independent of the classification. Instead, we combine the
result of Buchdahl [17] with the deformation invariance of symplectic minimality and Theorem 3.2.

1.1.2 Irreducibility

Recall that an embeddéd-1)-sphere in a four-manifold gives rise to a connected sum decomposition
where one of the summands is a copy@?P2. For symplectic manifolds no other non-trivial decom-
positions are known. Gompf [52] conjectured that minimal symplectic four-manifolds are irreducible,
meaning that in any smooth connected sum decomposition one of the summands has to be a homotopy
sphere. In Section 111.3 below we shall prove the following result in this direction:

Theorem 3.3. Let X be a minimal symplectid-manifold withb; = 1. If X splits as a smooth
connected sunX = X;# X5, then one of theX; is an integral homology sphere whose fundamental
group has no non-trivial finite quotient.

For manifolds withb] > 1 the corresponding result was first proved in [79] and published in [80].
As an immediate consequence of these results we verify Gompf’s irreducibility conjecture in many
cases:
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Corollary 3.4. Minimal symplectic4-manifolds with residually finite fundamental groups are irre-
ducible.

To prove Theorem 3.3 we shall follow the strategy of the proobfor- 1 in [79, 80]. In particular
we shall use the deep work of Taubes [132, 134, 135], which produces symplectic submanifolds from
information about Seiberg—Witten invariants. What is different in the tgise 1, is that the Seiberg—
Witten invariants depend on chambers, and one has to keep track of the chambers one is working in.
In addition to conjecturing the irreducibility of minimal symplectic four-manifolds, Gompf [52]
also raised the question whether minimal non-ruled symplectic four-manifolds shtisty 0, where
K is the canonical class. For manifolds with > 1 this was proved by Taubes [132, 134], compare
also [80, 135]. The cagg = 1 was then treated by Liu [90], who refers to this question as “Gompf’s
conjecture”. Liu [90] also proved that minimal symplectic four-manifolds which are not rational or
ruled satisfyK - w > 0. We shall use Liu’s inequalities to keep track of the chambers in our argument.
Although the results of Liu [90], and also those of Li—Liu [88, 89], are related to Theorem 3.3, this
theorem does not appear there, or anywhere else in the literature that we are aware of.

[11.2 Notions of minimality

First we discuss the Hirzebruch surfacés = P(O & O(n)), with n odd and> 1, in order to justify
the assertions made in Example 3.1 in the Introduction.

If n = 2k + 1, consider the union of a holomorphic sectiSrof X,, of selfintersection-n and
of k disjoint parallel copies of the fibré&. This reducible holomorphic curve can be turned into a
symplectically embedded sphekeby replacing each of the transverse intersectionS ahd F' by a
symplectically embedded annulus. Then

E-E=(S+kF)?=8-S+2kS-F=-n+2k=—1.

This shows thaX,, is not symplectically minimal. To see that it is holomorphically minimal, note that
a homology clas# containing a smooth holomorphje-1)-sphere would satisf§g? = K - E = —1,
and would therefore b& + kF', as above. However, this class has intersection number

E-S=(S+kF)-S=-n+k=-k—1<0

with the smooth irreducible holomorphic cur$§e Therefore F can only contain a smooth irreducible
holomorphic curve ifff = S, in which case: = 0 andn = 1.

Next we prove that for all other &ler surfaces symplectic and holomorphic minimality are equiv-
alent.

Proof of Theorem 3.2In view of the discussion in Ill.1.1 above, we only have to prove thakXifw)
is a Kahler surface which is not a Hirzebruch surfag with n odd andn > 1, then holomorphic
minimality implies symplectic minimality.

We start by assuming th&tX, w) is not symplectically minimal, so that it contains a smoothly
embedded —1)-sphereE C X with w|g # 0. Orient E so thatw|z > 0, and denote byE] €
Hy(X;Z) the corresponding homology class. The almost complex strucfucespatible withv are
all homotopic to the given integrablg; in particular their canonical classes agree with the canonical
classK of the Kahler structure. It is elementary to find a compatiblr which the spheré’ with the
chosen orientation ig-holomorphic. Thereforé’ satisfies the adjunction formula

g(E)=1+LFE*+K E).
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We conclude thafl - E = —1. (Note that the orientation oF is essential here.) This implies in
particular that the expected dimension of the moduli spacéledlomorphic curves in the homology
class[E] vanishes.

Let 7 be the completion — with respect to a suitable Sobolov norm — of the spac® aflmost
complex structures compatible with cf. [95]. McDuff has proved that, for almost complex structures
J from an everywhere dense subset’jin there is a unique smooti-holomorphic spher€’ in the
homology class$E], see Lemma 3.1 in [92].

The uniqueness implies that the cuWevaries smoothly with/. One then uses Gromov’s com-
pactness theorem for a family of almost complex structures to conclude that farrait necessarily
generic, there is a uniqué&-holomorphic representative of the homology cl@8swhich, if it is not a
smooth curve, is a reducible cur¢e = . C; such that eacly’; is a smooth/-holomorphic sphere.
Compare again Lemma 3.1 in [92] and [95]. (In these references redutinbdomorphic curves are
called cusp curves.)

Let J; be a sequence of generic almost complex structurgswhich converges to the integrable
Js asj — oo. For eachJ; there is a smoothy;-holomorphic spherd’; in the homology class
[E]. Asj — oo, the E; converge weakly to a possibly reduciblg,-holomorphic curveF. If
E isirreducible, then it is a holomorphie-1)-sphere, showing th&tX, J..) is not holomorphically
minimal. If E5, is reducible, let

k
Eoo = Zm,CZ
=1

be the decomposition into irreducible components. The multipliciticare positive integers. Eacly
is an embedded sphere, and therefore the adjunction formula implies

C24+K-Cj=-2.

Multiplying by m; and summing ovei we obtain

k

k k
=1 =1

i=1

Now the second term on the left hand side equélsEl = —1, so that we have

k k
Zmszzl—QZml
i=1 i=1

It follows that there is an indeksuch tha‘CZ.2 > —1.If (Ji2 = —1 for somei, then we again conclude
that (X, J) is not holomorphically minimal. 11C? > 0 for somei, then (X, J) is birationally
ruled or is rational, cf. Proposition 4.3 in Chapter V of [8]. Thus, if it is holomorphically minimal, it
is either a minimal ruled surface @rP?, but the latter is excluded by our assumption ¥t .J.. ) is

not symplectically minimal. 1{ X, J,,) were ruled over a surface of positive genis,—— B, then

the embedding of th¢—1)-sphereE would be homotopic to a map with image in a fibre, because
7|g: E — B would be homotopic to a constant. But this would contradict the factAtas non-zero
selfintersection.

Thus we finally reach the conclusion th@X, J.,) is ruled overCP!. If it is holomorphically
minimal, then it is a Hirzebruch surface, with n» odd andn > 1, becauseX; is not holomorphically
minimal, andXy;, has even intersection form and is therefore symplectically minimal.

This concludes the proof of Theorem 3.2. O
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Remark 3.5. We have used that the existence of a rational holomorphic curve of non-negative selfin-
tersection in a complex surface implies that the surface is rational or ruled. Such a statement also holds
in the symplectic category, cf. [92], but we do not need that here.

The exposition of the proof of Theorem 3.2 can be shortened considerably if one simply uses
McDuff’'s Lemma 3.1 from [92] as a black box. We have chosen to include some of the details so that
the reader can see that the degeneration of fHeolomorphic curved’; asj — oo is the exact inverse
of the regeneration used in the discussion of Example 3.1.

The following theorem, Proposition 2.3.A in [98], can be proved by essentially the same argument,
allowing the symplectic form to vary smoothly, compare also [92, 122]:

Theorem 3.6 ([98]). Symplectic minimality is a deformation-invariant property of compact symplectic
four-manifolds.

Note that holomorphic minimality of complex surfaces is not invariant under deformations of the
complex structure. In the &hler case the Hirzebruch surfac®g with n odd are all deformation-
equivalent, but are non-minimal fer = 1 and minimal forn > 1. In the non-Kahler case there are
other examples among the so-called Class VII surfaces.

For complex surfaces of non-negative Kodaira dimension it is true that holomorphic minimality is
deformation-invariant, but the traditional proofs for this are exceedingly cumbersome, see for exam-
ple [8], section 7 of Chapter VI, where it is deduced from the Kodaira classification and a whole array
of additional results. For the case of even first Betti number we now give a direct proof, which does not
use the classification.

Theorem 3.7. Let X be a holomorphically minimal compact complex surface with even first Betti
number, which is not a Hirzebruch surfaég, with n odd. Then any surface deformation equivalent
to X is also holomorphically minimal.

Proof. Let X, with ¢ € [0, 1] be a smoothly varying family of complex surfaces such thigat= X.
Buchdahl [17] has proved that every compact complex surface with even first Betti numiadalésikn,
without appealing to any classification results. Thus, edghs Kahlerian, and we would like to
choose Kahler formsuvg andw; on Xy and X, respectively, which can be joined by a smooth family of
symplectic formsu;. There are two ways to see that this is possible.

On the one hand, Buchdahl [17] characterizes thallr classes, and one can check that one can
choose a smoothly varying family ofafler classes fak;, which can then be realized by a smoothly
varying family of Kahler metrics. On the other hand, we could just apply Buchdahl’s result for each
value of the parameterseparately, without worrying about smooth variation of thé#hker form with
the parameter, and then construct a smooth famjilgf symplectic not necessarilydhler forms from
this, cf. [122] Proposition 2.1. In detail, start with arbitrargaider formsw; on X;. As the complex
structure depends smoothly érthere is an open neighbourhood of eagle [0, 1] such thatu,, is a
compatible symplectic form for alk; with s in this neighbourhood of,. By compactness df), 1],
we only need finitely many such open sets to cduet]|. On the overlaps we can deform these forms
by linear interpolation, because the space of compatible symplectic forms is convex. In this way we
obtain a smoothly varying family of symplectic forms.

Now X = X, was assumed to be holomorphically minimal and not a Hirzebruch suiace
with oddn. Therefore, Theorem 3.2 shows th&§ is symplectically minimal, and Theorem 3.6 then
implies thatX; is also symplectically minimal. The easy direction of Theorem 3.2 showsXhas
holomorphically minimal. O
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Let us stress once more that this result is not new, but its proof is. The above proof does not use the
Kodaira classification. The only result we have used from the traditional theory of complex surfaces
is that a surface containing a holomorphic sphere of positive square is rational, which entered in the
proof of Theorem 3.2. We have not used the generalization of this result to symplectic manifolds, and
we have not used any Seiberg—Witten theory either. Our proof does depend in an essential way on the
work of Buchdahl [17]. Until that work, the proof that complex surfaces with even first Betti numbers
are Kahlerian depended on the Kodaira classification.

[1.3 Connected sum decompositions of minimal symplectid-manifolds

In this section we prove restrictions on the possible connected sum decompositions of a minimal sym-
plectic four-manifold withb = 1, leading to a proof of Theorem 3.3. To do this we have to leave the
realm of symplectic topology and use Seiberg—Witten gauge theory.

Let X be a closed oriented smoothmanifold withb3 (X) = 1. We fix aSpin® structures and a
metricg on X and consider the Seiberg—Witten equations for a positive spiaad aSpin® connection
A:

Di¢ = 0
Fro= o(¢,¢)+n,

where the parameteris an imaginary-valueg-self-dual2-form. HereA denotes thé/ (1)-connection
on the determinant line bundle induced frofmso thatF; is an imaginary-valued-form. A reducible
solution of the Seiberg—Witten equations is a solution witk 0.

For every Riemannian metrig there exists g-self-dual harmoni@-form w, with [w,]? = 1.
Because; (X) = 1, this2-form is determined by up to a sign. We choose a forward cone, i. €. one
of the two connected components{fof € H?(X;R) | a* > 0}. Then we fixw, by taking the form
whose cohomology class lies in the forward cone.

Let L be the determinant line bundle of tBpin® structures. The curvature”, represent$Zc; (L)
in cohomology, and every form which represents this class can be realized as the curvakioe af
Spin© connectionA. For given(g, n) there exists a reducible solution of the Seiberg—Witten equations
if and only if there is &pin® connectionA such thatFZ = 1, equivalently(c; (L) — %n) ~wy = 0.
Define the discriminant of the parametéysn) by

Ar(g,n) = (ci(L) — 5=n) - wy .

Onedivides the space of parametédks n) for which there are no reducible solutions into the plus
and minus chambers according to the sign of the discriminant. Two pairs of parateters and
(92, m2) can be connected by a path avoiding reducible solutions if and only if their discriminants have
the same sign, i. e. if and only if they lie in the same chamber. A cobordism argument then shows that
the Seiberg—Witten invariant is the same for all parameters in the same chamber. In this way we get the
invariantsSW, (X, s), SW_(X, s) which are constant on the corresponding chambers.

Suppose now thak has a symplectic structute. Thenw determines an orientation of and
a forward cone inif?(X;R). We will take the chambers with respect to this choice. Moreaver,
determines a canonical class and aSpin® structures, -1 with determinantX —!. One can obtain
every otherSpin® structure by twisting ,—: with a line bundleF, to obtains, -1 @ E. This Spin®©
structure has determinaht~! ® E2.
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The Taubes chambes the chamber determined by parametgrs)) with g chosen such that it is
almost Kahler withw, = w and

n:FXO—irw with >0,
where Ay is a canonical connection d—!. We have the following:
Lemma 3.8. The Taubes chamber is the minus chamber, for the choice of forward cone as above.

Proof. We have

(f(K) = gn) -y = (B, — £ — derw) -
= (%FXO - S%Tw) ‘w
= —%WQ <0,
because the wedge product of a self-dual and an anti-self-dual two-form vanishes. O

The following theorem is due to Taubes [131, 132, 134], compare [88, 89] for théLasd.

Theorem 3.9. The Seiberg—Witten invariant in the minus chamber for the canofijgal® structure is
non-zero. More precisefyW_(X,s,-1) = £1. Moreover, ifSW_(X,s,-1 ® F) is non-zero and
E # 0, then for a generico-compatible almost complex structuve the Poincaé dual of the Chern
class ofE’ can be represented by a smoottholomorphic curve: C X.

We have the following more precise version of the second part of Theorem 3.9, which is also due
to Taubes.

Proposition 3.10. SupposesW_(X,sx-1 ® E) is non-zero, andZ # 0. Then for a generic almost
complex structure/ compatible withw there exist disjoint embeddeiholomorphic curveg’; in X
such that

PD(Cl (E)) = Z ml[CZ],
=1

where eachC; satisfiesK - C; < C; - C; and each multiplicityn; is equal tol, except possibly for
those: for which C; is a torus with self-intersection zero.

This depends on a transversality result Jeholomorphic curves, see Proposition 7.1 in [134] and
also [135, 80]. Proposition 3.10 immediately implies the following:

Corollary 3.11. If SW_(X,sx1 ® E) # 0 with E? < 0 thenX contains an embedded symplectic
(—1)-sphereX.

Proof. Choose a generic compatible almost complex strucfuas in Proposition 3.10, and consider
E =3%".m;C;. ThenE? = Y, m?C? because th€); are disjoint, hencé’f < 0 for somej. We can
compute the genus @f; from the adjunction formula:

g(Cj):l—F%(Cj-Cj—FK-Cj)S l—i-Cj-Cj <0.
HenceX = C} is a sphere with self-intersection numbet. O

After these preparations we can now prove Theorem 3.3.
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Proof of Theorem 3.3Let (X,w) be a closed symplectit-manifold withb] = 1. We denote byK
both the first Chern class of any compatible almost complex structure, and the complex line bundle
with this Chern class.

First, suppose thatX,w) is symplectically minimal and rational or ruled. Then, by the classifi-
cation of ruled symplectic four-manifoldsf is diffeomorphic either taC P2, to an even Hirzebruch
surface, or to a geometrically ruledéKler surface over a complex curve of positive genus, compare
e. g. [95]. These manifolds are all irreducible for purely topological reasons. This is cleéaPfoand
for the even Hirzebruch surfaces, because the latter are diffeomorplictoS2. For the irrational
ruled surfaces note that the fundamental group is indecomposable as a free product. Therefore, in any
connected sum decomposition one of the summands is simply connected. If this summand were not
a homotopy sphere, then the other summand would be a smooth four-manifold with the same funda-
mental group but with strictly smaller Euler characteristic than the ruled surface. This is impossible,
because the irrational ruled surfaces realize the smallest possible Euler characteristic for their funda-
mental groups, compare [78].

Thus, we may assume th@t’, w) is not only symplectically minimal, but also not rational or ruled.
Then Liu's results in [90] tell us thak? > 0 andK - w > 0.

If X decomposes as a connected skim= M # N then one of the summands, s&y has negative
definite intersection form. Moreover, the fundamental grougvdfias no non-trivial finite quotients,
by Proposition 1 of [81]. In particulak;(N;Z) = 0, and hence the homology and cohomology\of
are torsion-free. IV is an integral homology sphere, then there is nothing more to prove.

SupposéV is not an integral homology sphere. By Donaldson’s theorem [31], the intersection form
of IV is diagonalizable oveZ. Thus there is a basis, ..., e, of H?(N; Z) consisting of elements with
square—1 which are pairwise orthogonal. Write

n
K:KM—FZCLZ‘G,‘,
=1

with Ky € H%*(M;Z). Thea; € Z are odd, becausf is a characteristic vector. This shows
in particular thatK is not a torsion class. Its orthogonal complemé&nt in H?(X;R) is then a
hyperplane. AsK? > 0 andb; (X) = 1, the hyperplang{- does not meet the positive cone. Thus
Liu's inequality K - w > 0 must be strictK - w > 0.

Now we knowSW_ (X, sx-1) = £1 from Taubes’s result, wherg,-: is theSpin® structure with
determinant ~! induced by the symplectic form. The inequality(—K) - w < 0 shows that a pair
(g,0) is in the negative, i. e. the Taubes chamber, whengi®almost Kahler with fundamental two-
form w. As K+ does not meet the positive cone, all pdigs0) are in the negative chamber, for all
Riemannian metricg. We choose a family of Riemannian metrigson X which pinches the neck
connectingM and N down to a point a3 — oo. Forr large we may assume that converges to
metrics on the (punctured) and N, which we denote by, andgy.

Lemma 3.12. If we choose the forward cone fdr to be such that it induces ol the forward cone
determined by the symplectic structure, then for every Riemannian metnic)/, the point(g’,0) is
in the negative chamber @ff with respect to th&pin® structures,,; on M obtained by restriction of

SK-1.

Proof. The chamber is determined by the sigreofs) - w,. We have

0> (=K) wg =ci(sg-1) wg, = c1(sm)- wy +c1(sn) - wy,
—  c1(snr) - wgy, FC1(8N) - wgy, @Sr — 00 .
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We know thatv,,, is self-dual harmonic with respect tg;, and hence vanishes becatig¢N) = 0.
This implies that; (s -1) - wg, converges te;(sr) - wg,, for r — co. Thus

ci(sm) - wgy <0.

However, we have, (s)/) = K;;', and

n
Ky =K'+) a}>K’+n>n>1,
i=1

showing thatk ;; does not meet the positive conelaf. Thuse; (sy) - wy,, < 0. Again becaus;;
does not meet the positive coneldf, this inequality holds for all metricg’ on M. O

The degeneration of thg. asr goesto infinity takes place in the negative chamberdgr ., where
the Seiberg—Witten invariant is1, and by the Lemma,, is in the negative chamber fej,. It follows
thatSW_(M, 5]\/[) = =+1.

We now reverse the metric degeneration, but use a difféfpint® structure onN. Instead of
usingsy with ¢i(sy) = — > | a;e;, We use the uniqupin® structures’y, with ci(sy) = ajer —
> 5 ae;. For every metric onV there is a unique reducible solution of the Seiberg—Witten equations
for this Spin® structure withn = 0. Gluing this solution to the solutions o given by the invariant
SW_(M,sp), we findSW_(X,s") = £1, wheres’ is theSpin® structure onX obtained froms;, and
sy, compare Proposition 2 of [81]. We hawe= 5,1 ® E, with E = aje;. ThereforeE? = —a? <
—1, and Corollary 3.11 shows that is not minimal. This completes the proof of Theorem 3.3.
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Chapter IV

On the conformal systoles of 4-manifolds
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We extend a result of M. Katz on the conformal systoles for blow-ups of the projective plane to all
four-manifolds withb; = 1 and odd intersection form of type-1) @ n(—1). The same result holds
for all four-manifolds withb; = 1 with even intersection form of typen Es & H for n > 0 and which
are symplectic or satisfy the so-calléebonjecturel.

IV.1 Introduction

There are several notions of systolic invariants for Riemannian manifolds, which were introduced by
M. Berger and M. Gromov (see [59] and [9, 28] for an overview). The most basic conceptks the
systole sys(.X, g) of a Riemannian manifol&’, defined as the infimum over the volumes of all cycles
representing non-zero classeshfi(X;Z). In this note we discuss a different systole, namely the
conformal systole, which depends only on the conformal class of the Riemannian metric. We briefly
review its definition (see Section V.2 for details).

Let (X2", ¢) be a closed oriented even dimensional Riemannian manifold. The Riemannian metric
defines arL.?-norm on the space of harmonicforms onX and hence induces a norm on the middle-
dimensional cohomologyd™ (X ; R). Theconformaln-systoleconfsys, (X, ¢) is the smallest norm of
anon-zero element in the integer lattid& (X; Z)r in H™(X;R). Itis known that for a fixed manifold
X the conformaln-systoles are bounded from abovegagaries over all Riemannian metrics. Hence
the supremunt’S(X) = sup, confsys, (X, g) of the conformal systoles over all metrigss a finite
number, which is: priori a diffeomorphism invariant ok .

The interest in the literature has been to find bound€’#8¢ X') that depend only on the topology
of X, e.g. the Euler characteristic &f, whereX runs over some class of manifolds. In [18] P. Buser

1This chapter has been published under the same tifisinuscripta math121, 417-424 (2006).
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and P. Sarnak proved the following inequalities for the closed orientable sublaadgenuss: there
exists a constar@ > 0 independent of such that

C7tlogs < CS(X,)? < Clogs, Vs> 2. 4.1)

In dimension 4, M. Katz [70] proved a similar inequality for the conformal 2-systole of blow-ups
of the complex projective plan@P?: there exists a consta6t > 0 independent of, such that

C'v/n < CS(CP*#nCP?)* < Cn, Vn > 0. (4.2)

In his proof, M. Katz used a conjecture on theriod mapof 4-manifoldsX with b = 1. The period
map is defined as the map taking a Riemannian mettic the point in the projectivization of the
positive cone inf%(X; R) given by theg-selfdual direction (see Section 1V.2). The conjecture, which
is still open, claims that this map is surjective. However, an inspection of the proof of M. Katz shows
that this surjectivity conjecture in full strength is not needed and that in fact his theorem holds in much
greater generality.

In Section IV.3, we first remark that the following proposition holds as a consequence of recent
work of D. T. Gay and R. Kirby [50].

Proposition 4.1. The period map for all closed 4-manifolds with = 1 has dense image.
Using the argument of M. Katz, this implies the following theorem.
Theorem 4.2. There exists a universal constafitindependent oK andn = by(X) such that
C~'vn < CS(X)? < Cn, (4.3)
for all closed 4-manifoldsX with b = 1 which have odd intersection form.
Another consequence of Proposition 4.1 is the following theorem.

Theorem 4.3.Let X, X’ be closed 4-manifolds wifij’ = 1 which have isomorphic intersection forms.
ThenCS(X) = CS(X').

This shows that in dimension 4 the invarigné is much coarser than a diffeomorphism invariant.
Theorem 4.3 can be compared to a result of I. K. Babenko ([5], Theorem 8.1.), who showed that a
certain 1-dimensional systolic invariant for manifolds of arbitrary dimension is a homotopy-invariant.

Theorem 4.3 enables us to deal with even intersection forms. Suppdsea closed 4-manifold
with b5 = 1 and even intersection form. By the classification of indefinite even quadratic forms, the
intersection form ofX is isomorphic toH @ (—k)Eg for somek > 0. In particular, for eachr € N
there are only finitely many possible even intersection forms of rank less or equal.tlréance by
Theorem 4.3, the invariaidtS takes only finitely many values on all 4-manifolds with even intersection
form, b5 = 1 andby < r. We will show thatsymplectic4-manifoldsX with b3 (X) = 1 and even
intersection form necessarily hakg X') < 10 (see Section 1V.4). The same bound holdX'igatisfies
the so—calleo?z—conjectue (see Section IV.5). Hence together with Theorem 4.2, we get the following
corollary, which possibly covers all 4-manifolds withi = 1.

Corollary 4.4. There exists a universal constatitindependent ok andn = b2(X) such that
C~'vn < CS(X)? < Cn, (4.4)

for all closed 4-manifoldsY with b = 1 which are symplectic or have odd intersection fogvor
satisfy theg-conjectue if ) is even.
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V.2 Definitions

Let (X?", g) be a closed oriented Riemannian manifold. We denote the spagharmonicn-forms
on X by H"(X). The Riemannian metric defines &A-norm onH"(X) by

|a|%2:/ aA*xa, acH'(X), (4.5)
X

wherex is the Hodge operator.

Given the unique representation of cohomology classes by harmonic forms, we obtain an induced
norm| - |4, which we call thgg-norm, on the middle-dimensional cohomolafy (X; R). The confor-
mal n-systole is defined by

confsys, (X, g) = minf|al, | @ € H"(X:Z)z \ {0}}, (4.6)

where H"(X; Z)r denotes the integer lattice " (X;R). More generally, ifL is any lattice with a
norm| - |, we define
AL, |- ]) = min{|v] | v € L\ {0}}, 4.7)

hence confsyg X, g) = M (H"(X;Z)r, | - |4). The conformal systole depends only on the conformal
class ofg since the Hodge star operator in the middle dimension is invariant under conformal changes
of the metric.

The conformal systoles satisfy the following universal bound (see [70] equation (4.3)):

confsys (X, g)% < gbn(X), for b, (X) > 2. (4.8)

Clearly, there is also a bound fay,(X) = 1, since the Hodge operator on harmonic forms is up to a
sign the identity in this case, hence confsys, g) = 1. Therefore, the supremum

CS(X) = supconfsys, (X, g) (4.9)
g

is well-defined for all closed orientable manifolds™.
We now consider the case of 4-manifolds= 2. In this case thg-norm onH?(X;R) is related
to the intersection fornd by the following formula:

ol = Q(at,a™) = Q(a™,a7), (4.10)

wherea = a™ + o~ is the decomposition given by the splittidg?(X;R) = H™ @& H~ into the
subspaces representedggelfdual and anti-selfdual harmonic forms. We abbreviate this formula to

|-12=SR(Q,H"), (4.11)

whereS R denotes sign-reversal. Sinée" is the@-orthogonal complement df —, we conclude that
the norm| - |, is completely determined by the intersection form andgtaeti-selfdual subspadd —.

In particular, letX be a closed oriented 4-manifold witj = dim H* = 1. The map which takes
a Riemannian metric to the selfdual liiE" in the coneP of elements of positive square ii*(X; R)
(or to the point in the projectivizatioR(P) of this cone) is called the period map. In the proof of his
theorem, M. Katz used the following conjecture, which is still open, in the case of blow-{pB-of

Conjecture 1. The period map is surjective for all closed oriented 4-manifolds mjtlt 1.
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If X isa 4-manifold withb; = 1, we switch the orientation (this does not changed#rerm on
H?(X;R)) to obtainb, = 1. Then theg-norm is completely determined by the intersection form and
the selfdual line, which in the new orientationfis.

Lemma 4.5. Let X be a 4-manifold witth, = 1 and intersection forn®) and letL be the integer
lattice in H?(X;R). Then\; (L, SR(Q, V))'/?) depends continuously on the anti-selfdual liie

This follows because the vector space no$i(Q,V)'/? depends continuously ol and the
minimum in A\; cannot jump (cf. Remark 9.1. in [70]).

IV.3 Proofs of the theorems on conformal systoles

The following theorem is a corollary to [50, Theorem 1] of D. T. Gay and R. Kirby (compare also [3]).

Theorem 4.6. If X is a closed oriented 4-manifold and € H?(X;Z)r a class of positive square,
then there exists a Riemannian metricErsuch that the harmonic representativenois selfdual.

In fact, in the cited theorem it is shown that there exists a closed 2«fofwith certain properties)
representingy and a Riemannian metrig¢ such thatw is g-selfdual and hence harmonic. Theorem
4.6 implies Proposition 4.1, because the set of points given by the lines through integral classes in
H?(X;R) form a dense subset B{P). We can now prove Theorem 4.3.

Proof. Let X be X with the opposite orientatior, be the integer lattice ifi/?(X;R) andQ = —Q.
We have
CS(X) < supAi(L, SR(Q,V)'/?), (4.12)
%

where the supremum extends over all negative definite lineés H?(X;R). This inequality is an
equality because the image of the period map is dense and because of Lemma 4.5. The right-hand side
depends only on the intersection form. O

We now prove Theorem 4.2,

Proof. Let X be a closed 4-manifold with intersection foh= (1) @ n(—1) for somen > 0. Itis
enough to prove inequalities of the forh/n < C'S(X)? < Bn for some constantd, B > 0, since
we can then tak€' = max{A~!, B}. The inequality on the right-hand side follows from equation
(4.8). We are going to prove the inequality on the left, following the proof of M. Katz.

Lemma 4.7. There exists a constak{n) > 0 (which depends only on and is asymptotic ta/27e
for large n) such that

CS(X) > k(n)'/*. (4.13)
Proof. It is more convenient to work witkX', which is X with the opposite orientation. We identify
H?*(X;R) = R™! = R""! with quadratic formyg,, ; given byg, 1(z) = 23 + ... + 22 — 22, . If g
is a metric onX then theg-norm is given by - |§ = SR(gn,1,v) Wherexv = —v and SR means sign
reversal in the direction af.

Let L = I, = Z™! C R™! be the integer lattice. According to Conway-Thompson (see [99],

Ch. Il, Theorem 9.5), there exists a positive definite odd integer lattiGeof rankn with

i -z > k(n), 4.14
re BBy T @ 2 Kln) (4-14)
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wherek(n) is asymptotic ton/27e for n — oo. By the classification of odd indefinite unimodular
forms,CT, @ 1y = I,,1, hence there exists a vectoe Z™1 with qn,1(v) = —1such thav+ =~ CT,,.
According to M. Katz, there exists an isomettyof (R™!, ¢, 1) such that

A (L, SR(gn 1, Av)Y?) > k()4 (4.15)

By Proposition 4.1, there exists a sequence of Riemannian mefrias X whose selfdual lines con-
verge to the line througiv. Lemma 4.5 implies

confsys, (X, gi) == A (L, SR(gn1, Av)'/?). (4.16)
HenceC'S(X) > k(n)'/4. O
Lemma 4.7 finishes the proof of Theorem 4.2. O

IV.4 Symplectic manifolds

We now show that symplectic 4-manifolds Wi&@i = 1 necessarily havé, < 10, as stated in the
introduction (note that we always assume symplectic forms to be compatible with the orientation, i.e. of
positive square).

Lemma 4.8. Let X be a closed symplectic 4-manifold with = 1 and even intersection for). Then
Q=HorQ=Ho(—Ey).

1
10
of rank 8 associated to the Dynkin diagram of the Lie graiggsee [56]).

Here H denotes the bilinear form given iy = andFEy is a positive-definite, even form

Proof. If b, = 0then@ = (1). If b, > 0thenq is indefinite and hence of the for@h = H & (—k) Eg,
sinceQ is even. It follows thatX is minimal because the intersection form does not split ¢ff &). If

K? < 0 then according to a theorem of A.-K. Liu [9QX is an irrational ruled surface and hence has
intersection formQ = H (or Q = (1) @ (—1), which is odd). IfK? = 2x + 30 > 0 thendb; +b; <9
andb; = 0 orb; = 2, becausd — b;(X) + by (X) is an even number for every almost complex
4-manifold X. If b; = 0thenb;, < 9, henceQ = H or H & (—Eg). If by = 2 thenb, < 1, hence
Q=H. O

Remark 4.9. It is possible to give a different proof of Proposition 4.1 for symplectic manifolds, which
relies on a theorem of T.-J. Li and A.-K. Liu ([89], Theorem 4). This theorem implies that on a
closed 4-manifold¥ with b5 = 1 which admits a symplectic structure, the set of classé$i0X; R)
represented by symplectic forms is dense in the positive cone, because it is the complement of at most
countably many hyperplanes. If a closed symplectic 4-manifold iite= 1 is minimal(i.e. there are

no symplectid —1)-spheres), then the period map is in fact surjective.

IV.5 The g-conjecture and some examples

The%-conjecturds a (weak) analogue of thlg-conjecturewhich relates the signature and second Betti
number of spin 4-manifolds. The main result in this direction is a theorem of M. Furuta [49] that all
closed oriented spin 4-manifold§ with b3 (X) > 0 satisfy the inequality

%|O’(X)| + 2 < by(X), (4.17)
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whereo (X) denoteghe signature. This generalizes work of S. K. Donaldson [30, 31]. C. Bohr [10]
then proved a (slightly weaker) inequalityo (X)| < bo(X) for all 4-manifolds with even intersection

form and certain fundamental groups, including all finite and all abelian groups. These are special
instances of the following generé’;conjecture.

Conjecture 2. If X is a closed oriented even 4-manifold, then
Flo(0)] < ba(X), (4.18)
wheres (X) denotes the signature.
Here we call a 4-manifoléven, if it has even intersection form.

Lemma 4.10. If X is an even 4-manifold withj = 1, then the%-conjectue holds forX if and only if
Q=HorQ=Ho (—FEyg).

Il

Proof. If X is an even 4-manifold witth] = 1, thenQ = H & (—k)Es for somek > 0. The
3-conjectureis equivalent tot < 1. O

In particular, by Lemma 4.8, th%—conjectureholds for all even symplectic 4-manifolds which
satisfyb; = 1.

There are many examples of 4-manifolds with= 1 where Theorem 4.3 applies, e.g. the infinite
family of simply-connected pairwise non-diffeomorphic Dolgachev surfaces which are all homeomor-
phic to CP249CP? (see[56]). These 4-manifolds aredhler, hence symplectic. There are also re-
cent constructions of infinite families of non-symplectic and pairwise non-diffeomorphic 4-manifolds
homeomorphic t@ P2#nCP2 for n > 5 (see[43, 114]). If we take multiple blow-ups of these man-
ifolds, the blow-up formula for the Seiberg-Witten invariants [36] shows that the resulting manifolds
stay pairwise non-diffeomorphic. Hence we obtain infinite families of symplectic and non-symplectic
4-manifoldsX with n = by(X) — oo, where Theorem 4.2 applies.

2J.-H.Kim [71] has proposed a proof of tlﬁ-}conjecture.However, some doubts have been raised about the validity of
the proof. Hence we have chosen to state the result still as a conjecture.
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In this chapter we describe a construction of 4-manifolds known agetheralized fibre suwhich
is due to R. E. Gompf [52] and J. D. McCarthy and J. G. Wolfson [91]. This construction can be applied
to find new 4-manifolds. It can also be done symplectically and yields new examples of symplectic 4-
manifolds.

In Section V.1 we define the generalized fibre sum for the case of two closed oriented 4-manifolds
M and N which contain closed embedded surfaghg, >y of the same genug. We only consider
the case when both surfaces have trivial normal bundle, i.e. their self-intersection nudpensd
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¥% vanish. LetS denote some fixed surface of genusWe consider the surfaces,, andXy as
coming from embeddings,;: ¥ — M andiy: ¥ — N and also choose a trivialization for the
normal bundle of both surfaces, i.eframing. We then delete an open tubular neighbourhood of each
surface in the corresponding 4-manifold and glue the manifolds together along their boundaries, which
are diffeomorphic t&C x S'. The gluing diffeomorphism is chosen such that it preserves the natural
S1-fibration on the boundaries of the tubular neighbourhoods, given byérliansto the surfaces.
The resulting 4-manifold is denoted by = M#y,,—x, N and can depend on the choice of gluing
diffeomorphismep.

In Sections V.2 and V.3 we calculate the homology groupX afsing the Mayer-Vietoris sequence
and give some applications in V.4, in particular we review some constructions using the generalized
fibre sum. In Section V.5 we consider the symplectic version of this construction and derive a formula
for the canonical clas& x of a symplectic generalized fibre sukh = M#sy,,,—», N. We will give
some applications in Section V.6 and compare the formula to some other formulas which can be found
in the literature on this subject. In the final subsection we derive a theorem, following an idea of
I. Smith [126], which shows how one can find inequivalent symplectic structures on a simply-connected
4-manifold if there exists a simply-connected symplectic 4-manifold which contains a certain triple of
Lagrangian tori. The formula for the canonical class and the construction of inequivalent symplectic
structures will be applied in Chapter VI.

V.1 Definition of the generalized fibre sum

Let M and N be closed, oriented, connected 4-manifolds. Supposedthatnd Xy are closed,
oriented, connected embedded surfaces/imnd N of the same genug LetvX,; andvXy denote
the normal bundles of;; andX . The normal bundle of the surfadg,, is trivial if and only if
the self-intersection numbét?, is zero. This follows because the Euler class of the normal bundle
is given bye(vX,r) = *PD[X )], wherei: ¥, — M denotes the inclusion and the evaluation of
PDI[X ] on [X] is given byX, - ¥3,. From now on we will assume thaty, andXy have zero
self-intersection.

For the construction of the generalized fibre sum we choose a closed oriented SLofagenusy
and smooth embeddings

i o — M
iNy: 2 — N,

with imagesX; andX ;. We assume that the orientation induced by the embeddings pandX v
is the given one.

Since the normal bundles &f,; and X are trivial, there exisD2-bundlesvy,; andvY y em-
bedded inM and N which form tubular neighbourhoods fat,; andXy. We fix once and for all
embeddings

Y xSt — M

w:E xSt — N,

with imagesdvy,; andovy y, which commute with the embeddingig and:y above and the natural
projections: x S — ¥, 0v3r — Xy anddvE y — . The maps,, andry form fixed reference
trivialisations which we calframingsfor the normal bundles of the embedded surfacgsandX .
We can think of the framings,; and ry as giving sections of th&'-bundlesdry,, and dvSy.
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They correspond to “push-offs” afy; and Xy into the boundary of the tubular neighbourhoods. In
fact, since trivializations of vector bundles are linear, the framings are completely determined by such
push-offs.

Definition 5.1. Let ™ andX" denote push-offs af,; andX y into Ov3,, anddvy y given by the
framingsry; andry.

We setM’ = M \ intvX,; andN’ = N\ intvXy, which are compact, oriented 4-manifolds with
boundary. We choose the orientations as follows:¥X0x D? choose the orientation &f followed by
the standard orientation d¥? given bydx A dy. We can assume that the framingg andry induce
orientation preserving embeddings®fx D? into M and N as tubular neighbourhoods. We define
the orientation ort x S' to be the orientation of followed by the orientation of'. This determines
orientations oroM’ anddN’. Both conventions together imply that the orientationodd’ followed
by the orientation of the normal direction pointingt of M’ is the orientation ord/. Similarly for V.

We want to gluel/” and N’ together using diffeomorphisms between the boundaries which preserve
the fibres of theS*-bundlesdvy, anddvy y. Note thatDif f+(S!) retracts ontd5O(2). Hence by
an isotopy we can assume that the gluing diffeomorphism is linear on the fibrés,pfand v y.
The gluing diffeomorphism then corresponds to a bundle isomorphism covering the diffeomorphism
IN O z'];}. The “trivial” diffeomorphism will correspond to the diffeomorphism which identifies the
push-offs of¥,; andX y in the boundary of the normal bundles.

Suppose? = ¥ x R? is a trivialized, oriented®?-vector bundle oveE. Every bundle isomorphism
E — FE covering the identity ok and preserving the orientation on the fibres is given by a map of the
form

F: Y xR? - % x R?
(ZE,U) = (J“?A(l‘) : U)
whereA is a smooth mapl: ¥ — GL'(2,R) with values in the2 x 2-matrices with positive determi-

nant. We can isotop this bundle isomorphism to a new one suchithaps toSO(2). If we restrict
to the unit circle bundle itF, the map is of the form

F: ¥ xSt -2 xsh

(z,a) — (z,C(z) - a), (5.1)

whereC: ¥ — S' is a map and multiplication is in the group'. Every smooth mag’ of this
kind defines an orientation preserving bundle isomorphism. rLéénote the orientation reversing
diffeomorphism

r: Y xSt =¥ xS (z,0) — (z,a@),

whereS! c C is embedded in the standard way andenotesomplex conjugation. Then the diffeo-
morphism

p=For: L xS - ¥ xSsh
(z,0) — (z,C(z)a)

is orientation reversing. We define
¢=0¢(C)=Tnopory. (52)

Theng is an orientation reversing diffeomorphism ovX,; — OvXy, preserving fibres. I€ is a
constant map thea is a diffeomorphism which identifies the push-offsXof; and .
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Definition 5.2. Let M and N be closed, oriented, connected 4-manifoldsand N with embedded
oriented surfaceE; andXy of genusg and self-intersectiofl. Thegeneralized fibre surof A/ and
N along3l); andXy, determined by the diffeomorphism is given by

X(¢) =M Uy N
X (¢) is again a differentiable, closed, oriented, connected 4-manifold.

See [52] and [91] for the original construction. The generalized fibre sum is often denoted by
M#sy.,,=x, N or M#xN and is also called the Gompf sum or the normal connected sum. By a
construction of Gompf (cf. Section V.5) the generalized fibre su##s;,,—x, /N admits a symplectic
structure if(M,wys) and(V,wy) are symplectic 4-manifolds aridy,, ¥ symplectically embedded
surfaces.

In the general case, the differentiable structureXois defined in the following way: We identify
the interior of slightly larger tubular neighbourhoads’,, andvX’; via the framingsry; andrx with
¥ x D whereD is an open disk of radius We think ofo M’ andON’ to beX. x S, whereS denotes the
circle of radiusl /v/2. Hence the tubular neighbourhoads ,; andv v above have in this convention
radius1/v/2. We also choose polar coordinate® on D. The manifoldsM \ ¥, andN \ Xy are
glued together along imt>~, \ X5, and intvX’y \ Xy by the diffeomorphism

O: Y x (D\{0}) -2 x(D\{0})
(x,7,0) — (z,\/1 =712 C(x) —0).

This diffeomorphism is orientatiopreservingbecause it reverses on the disk the orientation on the
boundary circle and the inside-outside direction. It is also fibre preserving and ideffifieandO N’

via ¢. Itis literally an extension op and hence should be denoted ByWe nevertheless denote it by
® since we will only use this diffeomorphism if the trivializationg, 7y are fixed, hence its meaning

is unambiguous.

(5.3)

Definition 5.3. Let ¥ x denote the genugsurface inX given by the image of the push-dff"! under
the inclusion)’ — X. Similarly, letY’, denote the genug surface inX given by the image of the
push-off£" under the inclusiodV’ — X.

In general (depending on the diffeomorphignand the homology oK) the surface& x andX’y
do not represent the same homology clasXin

V.1.1 Basic notations and definitions

We now collect some additional basic definitions and notations which will be used in the following
sections. Their meaning and interpretation will be given later at the appropriate place.

Let M and N be again two closed, oriented 4-manifolds with embedded closed oriented surfaces
Yy andXy of genusg and X = M#sx,,-x, N the generalized fibre sum. In general, we often
denote homology classes of degeen M, N and X and their Poinc& duals by the same symbol.

The symbolsH, (Y) and H*(Y') denote the homology and cohomology groups Withoefficients of
a topological spac¥. If a definition involves an index/ there will be a corresponding definition for
N.

(1.) EmbeddingsWe fix the following notation for some embeddings of manifolds into other mani-
folds. We denote the maps induced by them on homology by the same symbol:
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iv:n— M

pyv: M — M

v M — X

png: Ovyiy — M/
There is also a projection

p: Y xSt — St
and induced projections

PM (91/2]” — Z,p]\[: 81/21\7 — X

defined via the framings,; andry .

(2.) Basis for homologyWe define bases for the homology of the boundaryBfand N’ in the
following way: Any given basis off/;(X) can be represented by oriented embedded loops
Ys--s Y29 INE.

(@) Denote the loops; x {*} in X x S! also by~; foralli = 1,...,2g. Leto denote the loop
{x} x S*in ¥ x S*. Then the loops

Y1y -5 72g5 0,

represent homology classes (denoted by the same symbols) which determine a basis for
Hy(X x St) = 729+, The bases fof; (0vX ) and H; (0vX ) are chosen as follows:
%‘M = TM i, oM = TM +O
W o=1n, o =TN.o
The classes™ oV represented by the circle fibres in the boundary of the tubular neigh-
bourhoods are called theeridiansto the surfaceX®,; andXy in M’, N'.
(b) Letvy,...,73,,0" € H'(Z x S') = Hom(H (X x S'),Z) denote the dual basis. By
Poincaé duality this determines a basis
Iy =PD(v;), i=1,...,2g,
Y =PD(c")

for Hy(X x S1). The bases fofl5(0vY ) and Ho(9vX ) are chosen as follows:

M =m0, M=%

NV =y, 2N =7y,2.

The surfaces representitig”’ andX? are the push-offs of ;; andX y given by the fram-
ingsTys andry .

(3.) Cohomology clas<C The mapC': ¥ — S'in equation (5.1) which was used to define the gluing
diffeomorphismgy determines a cohomology class in the following way:

(@) Let[C] € H(%;Z) denote the cohomology class given by pulling back the standard gen-
erator of H!(S*; Z). We sometimes denof€’] by C if a confusion is not possible.
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(b) We also define the following integers: Foe 1, ..., 2g, leta; be the integer
a; = deg(Co;: ST — S1)
=([C],7i) = (C,m) € Z.
The integersu; together determine the cohomology cla€§. Since the mag” can be
chosen arbitrarily, the integens can (independently) take any possible value.

(4.) Divisibilities kng, kn We define integers,,, ky as follows:

(&) We denote the homology and cohomology classes defineéd bgndX  in M and N by
the same symbol.
(b) The image of the homomorphism
H2<M7 Z) - Zv
a— (PD(Xy), o)

is a subgroup of the form,;Z with &y, > 0. We defineky > 0 for X similarly and
denote the greatest common divisorkqf andky by nsy.

(5.) Homology classesAn, An and By, B We make two additional assumptions:

(a) We assume that;; andX y are non-torsion homology classes. Than, kx > 0.
(b) We also assume that there exist claségs € Ho(M;7Z) and Ay € Hy(N;Z) such that
Yy =kyAy andXy = kv Ap.

We then choose classés,, € Hy(M) and By € Hy(N) which have intersection numbers
By - Ay = 1andBy - Ay = 1. These classes exist becausg, Ay are non-torsion and
indivisible.

(6.) Perpendicular classed’he group of perpendicular classes is defined as follows:

(@) LetP(M) = (ZAy © ZBy;)* be the orthogonal complement of the subgrdis,, @
ZB)s in Hao(M) with respect to the intersection for@,,. We call P(M) the group of
perpendicular classes. It contains in particular all torsion element /) and has rank
ba(M) — 2. Similarly for N.

(b) There is a splittingd2 (M) = ZAy & ZBy & P(M). Under this splitting, an element
a € Ho(M) decomposes as

a=(a-By — B%(a “Apn)An 4 (- App) By + @,
wherea = o — (a . AM)BM — (a - By — BJQW(O[ . AM))AM € P(M)
(7.) Homomorphisms ing @ in and iy, + ig; The following homomorphisms will occur several
times:
i Din: Hl(Z; Z) — Hl(M; Z) S¥ H1(N;Z)
A (i (), in(N),
and
ity +i: HY(M;Z)® H'(N;Z) — HY(Z;Z)

(@, ) = iy + iy
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(8.) Rim tori The groupsk(M’), R(N') andR(X) of rim tori in M’, N’ and X are defined as the
image of H!(X; Z) under the homomorphisms
par 0 PDoplhy: HY (S, Z) — Ho(M';Z)
pn o PDoph: HY(X:Z) — Hy(N';Z)
i © piag © PD o ply: HY(S5Z) — Ha(X;Z),

By Proposition 5.25 there are isomorphisms

Cokerit, — R(M)
Cokeriy — R(N')
Coker(iy, +iy) — R(X).

R

(9.) Split classesThe groupS(X) of split classegor vanishing classes) of is defined as$H(X) =
ker f, where

f:ZBy ®ZBn @ ker(z'M @iN) — 7L

(.TMBM,:L‘NBN,O[) — xymky +rnEN — <C, a}.

(10.) Dimensiond We also consider the homomorphisig @ in andi}y, + i3 for homology and
cohomology withR-coefficients.

(a) We denote by the dimension of the kernel of the linear map

iy Din: H(Z;R) — H{(M;R) ® Hi(N;R)
A= (i A\ iNA).

(b) In Lemma 5.8 we show that

dim Ker (i3, + iy) = bi(M) + b1(N) — 29 + d = dim Coker(ins @ in)
dim Coker(iy, +iy) = d = dim Ker(iy @ in),

This implies that the rank aR(X) is equal tod and the rank of(X ) equal tod + 1.
(11.) Special surfaces inX We define the following elements in the homologyX6f

(a) The surfaces itX determined by the push-offs &f;,, ¥ under inclusion:

Yx = o puu M, Xy =y ounSY € Ho(X).

(b) A class inX sewed together from the class%BM and -2 B which bound in}/’

nNMN
and N’ the B2 fold multiple of the meridians! ando™:

Bx = —+—(knBy — kyBuy) € S(X).

nMN
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(c) Arim torus inX determinedy the diffeomorphisn:
29
Re = nu o par(=)_ a0} € R(X),
i=1

where the coefficients; = (C, ;) are defined as above. By Lemma 5.6 we have

E/X —Yx =R¢e, and
2g

Ro=nno 'U’N(Z aiFlN).
=1

(12.) Mayer-Vietoris sequencedNVe use the following Mayer-Vietoris sequencesiorM and V.
(@) ForM = M’ UvXyy:
.o — Hp(OM') — Hp(M') @ Hp(X) — Hp(M) — Hj_1(OM') — ...
with homomorphisms
Hi(0M') — Hy(M') @ Hi(Y), a— (ume™, paa)
Hi(M') & Hg(X) — He(M), (z,y) — pmz — iny.
(b) ForN = N'UvXy:
.. — H(ON') — H(N') ® H(X) — Hp(N) — Hg_1(ON') — ...
with homomorphisms
Hy,(ON') = Hy(N'") ® H(S), aw— (unva™,pya)
Hi(N")® Hi(X) — Hi(N), (z,y)— pnT —iNy-
(c) ForX = M'"UN":
= Hy(OM') %5 Hy (M) @ Hy(N') — Hy(X) — Hy_1(OM') — ...
with homomorphisms
Yr + Hp(OM') — Hp(M') ® Hy(N'), a— (upo, pydwc)
H,(M') @ Hp(N') — Hi(X), (x,y) = nuz —nny.

We will also consider the Mayer-Vietoris sequences for cohomology.

V.1.2 Action of the gluing diffeomorphism on the basis for homology

Recall that the generalized fibre sum is define&as X (¢) = M’ U, N’ where¢: 0v¥y — vy

is a diffeomorphism preserving the meridians and covering the diffeomorp]jtjsmjj. In general,
different choices of diffeomorphisms can give non-diffeomorphic manifold& (¢). However, if¢
and¢’ are isotopic, thetX (¢) and X (¢') are diffeomorphic. We want to determine how many different
isotopy classes of diffeomorphismsof the form above exist: Suppose that

c': v — S

is any other smooth map. ThéH determines a self-diffeomorphisphof X x S* and a diffeomorphism
¢': ¥y — OvXy as before.
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Proposition 5.4. Thediffeomorphisms), ¢’: v, — OvX are smoothly isotopic if and only if
[C] = [C"] € HL(Z). In particular, if [C] = [C'], then the generalized fibre sufg¢) and X (¢') are
diffeomorphic.

Proof. Suppose thap and¢’ are isotopic. Since
p= T]TII © ¢ OTM,

this implies that the diffeomorphisms p’ are isotopic, hence homotopic. The mapsC’ can be
written as
C=propor, C'=propou,

where.: ¥ — X x S! denotes the inclusion — (x, 1) andpr denotes the projection onto the second
factor inX x S!. This implies thaiC' andC’ are homotopic, hence the cohomology claggsésand
[C"] coincide.
Conversely, ifC] = [C'] thenC andC’ are homotopic maps. We can choose a smooth homotopy
A: Y x[0,1] — S,
(,8) = Az, )

with Ag = C andA; = C’. Define the map

R: (E xS x[0,1] — ¥ x S,
(x,a,t) — Ry(x, ),
where
Rt(flf,Oé) = (I’,A(.’L’,t) ’ a)'

ThenR is a homotopy betweemandy’. Note that the mapR;: X x S' — X x S! are diffeomorphisms
with inverse

(yaﬁ) = (yaA(yvt)il : ﬁ)a

whereA(y,t)~! denotes the inverse as a group elemeistiinHenceR is an isotopy betweepandy’
which defines via the trivializations,;, 7y an isotopy betweed, ¢'. O

We now determine the action of the gluing diffeomorphigsto M’ — N’ for a generalized fibre
sumX = X (¢) on the homology of the boundari®d/’ andoN’. We use the given framings to de-
scribe this action in bases for the homology groups chosen above. This calculation will be needed later
because the induced map on homology appears in the Mayer-Vietoris sequences for the calculation
of the homology groups ok .

Lemma 5.5. The mapp,: Hi(0vEy) — Hi(OvXy) is given by
¢t = +ao®, i=1,....2
oM = —oN.

Proof. We have
p(7i(t), %) = (i(t), (C o :)(t) - %),

whichimpliesp.y; = v; + a;o foralli = 1,...,2g. Similarly,

p(*v t) = (*7 C(*) : f)?

whichimpliesp,oc = —o. The claim follows from these equations and equation (5.2). O
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Note thatp, is given in the basisy, ..., v24, 0 by the following matrix inGL(2g + 1,Z) with
determinant equal te-1:

1 0 0 0
0 1 0 O
0 O 1 0
ay az ... azg -1

Lemma 5.6. The mapp..: Ha(OvXys) — Ho(OvEy) is given by
¢ IM = TN i=1,...,2

2g
¢ M = — (Z aﬂV) + 3V,

i=1

Proof. We first compute the action gf on the first conomology of x S*. By the proof of Lemma
5.5,

(P_l)*%' =7 +tao, 1=1,...,2¢
(p~1)so = —0.
We claim that

() =7, i=1,...,29,
29

(P H*(c*) = (Z aﬂf) —o"
=1

This is easy to check by evaluating both sides on the given bagis(df x S') and using (p=1)*u, v) =
{, (p~1)4v). By the formula
A(Aanp) =an g, (5.4)

for continuous mapa between topological spaces, homology clagsasd cohomology classes(see
[16], Chapter VI. Theorem 5.2.), we get for allc H*(X x S!),

pPD(p*1) = pu(p*un [E x 1)

=N pa]S x St
1101 ps] 1] (5.5)
=—punN[X xS
=—PD().
sincep is orientation reversing. This impligs PD () = —PD((p~')*11) and hence
p*FZ:_Fh i:17...,297
29
,0*2 = — (Z aiFi> + 3.
=1
The claim follows from this. O

Proposition 5.7. Thediffeomorphismp is determined up to isotopy by the difference of the homology
classesp, =M and 2V in ovEy.

This follows because by the formula in Lemma 5.6 above, the difference determines the coefficients
a;. Hence it determines the clafs| and by Proposition 5.4 the diffeomorphissrup to isotopy. An
interpretation of the difference, > — xV = — 59 4,I'N will be given in Section V.3.1.
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V.1.3 Calculation of the dimensiond
Recallthat we defined homomorphisms
iv @ in: Hi(5Z) — Hi(M;Z) & Hi(N; Z)
A= (i (A),in (M),
and
it +in: H(M;Z)® H(N;Z) — H'(Z;Z)
(o, B) = iya + iy

The kernels ofy; @ iy andi}, + i3 are free abelian groups, but the cokernels can have torsion. We
can also consider both homomorphisms for homology and cohomologyRadthefficients.

Lemma 5.8. Consider the homomorphismg @ i andi}, + i3, for homology and cohomology with
R-coefficients. Led = dim Ker(iy; @ ix). Then

dim Ker(iy, +iy) = bi(M) 4+ b1(N) — 29 + d = dim Coker(iys & in)
dim Coker(iy; + i) = d = dim Ker(iys @ in),
whereg denotes the genus of the surface

Proof. By generallinear algebr#,, +i%; is the dual homomorphism tq; ©iy under the identification
of cohomology with the dual vector space of homology vigtitoefficients. Moreover,

dim Coker(ip; @ in) = b1 (M) + by (N) —dim Im (ips @ iy)
=0 (M) +b1(N) — (29 —dim Ker(ips @ in))
:bl(M)+b1(N) —29+d.

This implies

dim Ker (i}, + i) = dim Coker(iys @ in) = b1(M) + b1 (N) — 29 +d
dim Coker(iy, + iy ) = dim Ker(iy @ in) = d.

V.1.4 Choice of framings

In this subsection, we define certain specific reference trivializatigns;, which are adapted to the
splitting of H(M') into H; (M) and the torsion group determined by the meridiartef in 90M'.
This is a slightly “technical” issue which will make the calculations much easier. We use the results
from the Appendix.

By subsection A.4 there exist certain classes

AMGHI(M,;ZkM)v ANGHI(N/;ZkN)
which determine splittings

SAy - H{(M';Z) — Hy(M;Z) ® Zg,,

a— (pma, (A, o)),
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and similarly forN. We want the framings;; andry to be compatible with these splittings in the
following way: The exact sequence

H1(6M’) — Hl(M,) &) Hl(Z) — HI(M),
coming from the Mayer-Vietoris sequence faf, maps

Vi () = parpar = iy
oM = (para™,0) — prrparo™.

By exactnessp M = iy andparpno™ = 0, wherey is determined byy; via the trivial-
izationT,,. Let
SAn - Hl(MI) — Hi(M) © Zy,,

be the splitting map above. This maps

i yM = (oarpary s (An, iay™)) = Giarvis (Angy i yM))
paro™ i (0,1).

Let [cM] = (Anr, uyM) € Zy,, - It follows that the composition

H (M) "™ Hy (M) ™ H\(M) & Zs,, (5.6)

is given on generators by

M (i, [6])

oM = (0,1).
We can change the reference trivialization to a new trivializationr;, such thaty changes to

MM

M’ M
Vi =7 —G

)

foralli = 1,...,2¢g ando™ stays the same. This follows as in Lemma 5.5. The composition in
equation (5.6) is now given by
/ .
M (i, 0)
oM = (0,1).
Lemma 5.9. There exists a trivializatiom,; of the normal bundle of;, in M, such that the compo-
sition s
Hy(0M") ™™ H\(M') 2 H\(M) ® Z,,
is given by
AM s iy, 0), i=1,...,2g
oM = (0,1).
There exists a similar trivializationy for the normal bundle of .

Definition 5.10. We call such framings for the normal bundlesXf; andX  allowed. They depend
on the choice ofd;; and Ay.

From now on we only work with a fixed, allowed framing for the normal bundles of bigthand
YN
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V.2 Calculation of the first integral homology

V.2.1 Calculation of H,(X;Z)

In the case that the greatest common divisgty of ks, kn is not equal td,, the formula forH, (X'; Z)
will involve a certain torsion term. Letdenote the homomorphism defined by

r: Hi(32) — Znyy,
A= (C,A) mod nyn.
We then have the following formula fat; (X; Z):
Theorem 5.11. Consider the homomorphism
Hy(5;7) ™5 Hy (M Z) @ Hy (NS Z) © Ty,
A= (i A in A, ().
ThenH,(X;Z) = Coker(is ® iy ® ).

In the proof we use a small algebraic lemma which can be formulated as follow#l aetlG be
abelian groups andl: H — G andh: H — Z homomorphisms. Léety,, kx be positive integers with
greatest common diviser,; . Consider the (well-defined) map

D: Ly, © Ly — Linpyns
([z], W]) = [z +y).
Lemma 5.12. The homomorphisms
V:HBL— GP Ly, ® Ly,
(z,a) — (f(z),a modkys, h(x) — a modky),
and
V' H— G® L,y
x+— (f(x),h(x) modnyN)
have isomorphic cokernels. The isomorphism is inducetiilzy p.
Proof. The mapld & p is a surjection, hence it induces a surjection
P: G ®Zy,, ® Ly, — Cokery'.

We compute the kernel ad? and show that it is equal to the imagef This will prove the lemma.
Suppose an element is in the image/ofThen it is of the form(f(x),a modkys, h(z) — a modky).
The image undeP of this element i f(x), h(x) modn,s ), hence in the image af’. Conversely,
let (g, u modkys,v modky) be an element in the kernel &f. The element maps undéd @ p to
(9,u +v modnysy), hence there exists an element H such thay = f(x) andu + v = h(z) mod
nysn. We can choose integetsd, e such that the following equations hold:

u+v—h(z) =cnyn = dkpr + ekn.
Define an integeti = u — dkjy;. Then:

u = amodk,s
v=h(z) —a+eky = h(z) —amodky.

Hence(g,u modk,s,v modky) = ¥ (x,a) and the element is in the image©f O
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We now prove Theorem 5.11.
Proof. SincedM’, M’ and N’ are connected, the Mayer-Vietoris sequenceXahows that
H{(X) = Coker(y: H(OM') — H{(M') ® H(N")).
The homomorphisny, is given on the standard basis by

AW (s pnd + aipno™)
oM (uaro™, —pyo™).
We want to replaced, (M') by Hi(M) & Zy,, and H(N') by H,(N) & Zy,, as in Proposition
A.2. We choose splittings as in subsection V.1.4. Since we are working with an allowed framing, the
composition
n M N SAM
Hy(0M'")'= Hy(M'") = H{(M) & Zy,, (5.7)

is given on generators by

%M = (iM’Yi, 0)

oM = (0,1),
as before. Similarly, the composition
Hy(ON') ™ Hy(N') "2 H (N) & Z,, (5.8)

is given by
Y+ (in7,0)
o = (0,1).
If we add these maps together, we can replacby
H{(OM') — Hi(M) & Ly, ® Hi(N) & Ly,
7@1\/[ = (ZM/VM 0, N, ai)
oM (0,1,0,-1).
Using the isomorphisnif; (X x S') = Hy(X) & Z — Hy(0M’) given byr,,, we get the map

Hl(E) Pl — Hl(M) ®Zl€M @Hl(N) @Zk]\m

59
()\,Oé) — (i]y[)\,a modk:M,iN)\, <C, )\) —amodk:N), ( )

which we call again);. To finish the proof, we have to show that this map has the same cokernel as
the map

iM @ZN Dr: Hl(z) — Hl(M) @Hl(N) @Znhn\m
A (iM)\,iN)\, <C, )\) moanN).

This follows from Lemma 5.12. O
An immediate corollary is the following.

Corollary 5.13. If the greatest common divisor @fy; and ky is equal tol, then H,(X;Z) =
Coker(as @ in). In particular, H;(X; Z) does not depend d@’] in this case (up to isomorphism).
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V.2.2 Calculation of the Betti numbers of X
As a corollary to Theorem 5.11 we can compute the Betti numbe?$s. of

Corollary 5.14. The Betti numbers of a generalized fibre sm= M #x,,,—x, N along surfaces
andX y of genugy and self-intersection are given by

bo(X) = bsy(X) =1

bi(X) = b3(X) = by (M) + by (N) —2g +d
bo(X) = by(M) + be(N) — 2+ 2d

by (X)=0b3 (M) +b(N)—1+d

by (X) =by (M) +by(N)—1+d,

whered is the integer from Lemma 5.8.

Proof. The formula forb, (X) follows from Theorem 5.11 and Lemma 5.8, since we can leave away
all torsion terms to calculatiy (X'). To determine the formula fdr (X)), we use the formula for the
Euler characteristic of a space decomposed into two pidcés

e(AUB) =e(A) +e(B)—e(ANB),
ForM = M'UvSy, with M/ NvXy =2 % x ST, we get

e(M) = e(M') + e(vEy) — e(E x S
=e(M')+2—2g,

sincer,; is homotopy equivalent t&; andX x S! is a 3-manifold, hence has zero Euler character-
istic. This implies

e(M') =e(M)+2g—2, andsimilarly e(N') =e(N)+ 29— 2.
ForX = M’ UN’, with M’ N N’ =% x S, we then get

e(X) =e(M') +e(N')
=e(M)+e(N)+4g —4.

Together with the formula fai; (X)) = b3(X) above, this implies

bo(X) = =2+ 2(by (M) + b1 (N) — 2g + d) + 2 — 21 (M) + ba(M)
+2 = 2by (N) + ba(N) +4g — 4
= bg(M) +bQ(N) — 24 2d.

It remains to prove the formulas fbf(X). By Novikov additivity for the signature [56, Remark 9.1.7],
o(X)=0(M)+o(N),
we get by adding.(X) on both sides,
2b5 (X) = 2bg (M) + 2b5 (N) — 2 + 2d,
henceby (X) = b5 (M) + b3 (N) — 1 + d. This also implies the formula far, (X). O

A direct computation ob2 (X ') asthe rank ofHy(X; Z) will be given in Section V.3.4.
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V.2.3 Calculation of H'(X;Z)

SinceH!(X;Z) istorsion free it is determined up to isomorphism completely by its rank, given by the
first Betti numbeb; (X) from Corollary 5.14. We nevertheless give an explicit calculatioH 6X ; Z)
because this will be useful later on.

Consider the following part of the Mayer-Vietoris sequence in cohomology:

0 — H'(X) "I gy e BY(NY) L HY (M),

Sincen?, — ny is injective, H'(X) is isomorphic to the kernel af; = u%, + ¢* k. We want to
calculate this kernel. Consider the map

why: HY(M') — H' (oM.

By the proof of Proposition A.2, the magj,: H'(M) — H*(M’) is an isomorphism. Via the framing
Ty We can identify
HY(OM') = HY(X) @ ZPD(xM).

Note thato™ ™ = PD(XM) in OM’.
We want to calculate the composition

HY(M) = H' (M) " 5V oM) = HY(S) @ ZPD(EM).
Leta € HY(M). Then

(Whephros W) = (o, parpnryi™)
= <Oé, ZM’YZ>

= (i, i),

and

<,U/7\4p7\40£, Uzj\/l> = <aapMMMUM>
=0.

Hence the compositiofl ' (M) — HY(X)®ZPD(XM) is given byi%, 0. Similarly, the composition
HY(N) — HY(X) @ ZPD(=Y) is given byi%, @ 0. We now consider the composition

HYM)o HY(N) = HY(M') o HY(N') #, HY(OM') = HY(X) @ ZPD(2M).

The mapy; is given byus, + ¢* k. Sinceg* N = AM* foralli = 1,...,2g, we see that this
composition is given by

(%, +i%) ®0: HY(M)® HY(N) — H(X) @ ZPD(2M). (5.10)
In particular, we get:
Proposition 5.15. The first conomology?! (X ; Z) is isomorphic to the kernel of

ity +iy: HY(M;Z)® HY(N;Z) — H'(; 7).
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V.3 Calculation of the second integral cohomology
We consider the following part of the Mayer-Vietoris sequence:
H (M) @ HY(N') 5 1Y (oM7) — H2(X) ™M g2ty @ HA(N') 22 12 (0M).
This implies a short exact sequence
0 — Cokery; — H*(X) — Kery; — 0. (5.11)

By equation (5.10),
Cokery} = Coker(i}, + i) ® ZPD(2M). (5.12)

We calculate Cokefiiy, + i) in the next section, which is related to the notiorriof tori.

V.3.1 Rimtoriin Hy(X;7Z)

We consider the following part of the Mayer-Vietoris sequence\for
Ho (M) "M [y (M) @ Ho(X) P25 Hy (M) -2 Hy (M), (5.13)
The subgroup kesy, in Hy(OM') is generated by the classe¥, fori = 1,...,2g.

Lemma 5.16. The kernel ofpy;: Ho(M') — Ho(M) is equal to the image of kefi; under the
homomaorphisnu ;.

Proof. Supposex is an element in kesy,. Thenpypuya = iypya = 0. Conversely, suppose
B is an element inHy(M') with pps8 = 0. Then0 = pa3 — ia(0), hence by exactness of the
Mayer-Vietoris sequence there existsare Hy(OM') with 5 = ppra, 0 = pyra. This implies that
Im ppr = kerpay. O

Note that there exists an isomorphigt o p*,: H(X;Z) — kerpy,, where
pis: H'(S) — H'(OM')
and
PD: HY(OM') — Hy(OM')
is Poincaé duality. In our standard basis, this isomorphism is given by
HY(2;7Z) — kerpys

Z ciy; Z cifﬁ\/l.

Lemma 5.17. Every element in the kernel pf; can be represented by a smoothly embedded torus in
the interior of M’.

(5.14)

Proof. Note that the classd¥" c Hy(0M') are of the formy™ x o™ wherexM is a curve or&y,.
Hence every elemerft € kerp,, is represented by a surface of the forf x ¢, wherecM is a
closed, oriented curve on,,; with transverse self-intersections. A collar@#/’ = dvX,; in M’ is
of the formX,; x S' x I. We can eliminate the self-intersection points of the cuffein ¥, x I,
without changing the homology class. If we then cross with, we see thati;(T) = ¢™ x o™ can
be represented by a smoothly embedded torud'in O
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We have the following definition, see e.g. [34, 42, 68].

Definition 5.18. We callup(T') € Ha(M') for an element” € kerpy, therim torusin M’ associated
to T. Equivalently, we can consider rim tori as being associated to elementsdnH ! (%; Z) via
par o PDoph (o). We denote byR(M') the group of all rim tori, i.e. the image of the homomorphism

py 0 PDoph : HY(X) — Hy(M').

Rim tori are already “virtually” in the manifold/ as embedded null-homologous tori. Some of
them can become non-zero homology classes if the tubular neighbourbbgds deleted. There is
an analogous construction fof.

We want to discuss orientations and intersection numbers of rim tori and related surfaces: Note that
by definitionI'; = PD(~}). This implies

(PD(Ly), ;) = b4,

hence the surfaces; have intersectiod;; with the curvesy;. Similarly, suppose that a torus is
associated to an elemeRt>?, ¢;v;. ThenPD(T) = 3., ¢;T; and

T"yj:Cj.

Suppose thdt' is given bya x o wherea is an oriented curve oB. GiveT the orientation determined
by the orientation of followed by the orientation of. Then

T"Yj = _(a"’y]')’

because the orientation &f x S! is the orientation of followed by the orientation of!. These
relations also hold o@M’ and ON’. Finally, suppose that is another oriented curve oi. We
view e as a curve on the push-off”! in M’. The curvee defines a small annulug,; in a collar of
OM' =¥ x S! x I given byE); = e x I wherel is an interval pointing radially outwards along the
D? factor invX; = ¥ x D?. Give E), the orientation ot followed by the orientation of pointing
into M. Denote byl the rim torus in)M’ associated td@” = a x o. We then have

T]V[-EM:(CLXU)-(GXI)
.67

because the orientation of a collax S' x I is given by the orientation ot followed by the orientation
of S! and followed by the orientation df pointingout of M’, cf. Section V.1.

Lemma 5.19. With our orientation conventions, the algebraic intersection number of a rim tBxus
and an annulugv,; as above is given by, - Eay = a - e.

We can map every rim torus i/’ under the inclusiom,;: M’ — X to a homology class iX.

Definition 5.20. We callys o upr () the rim torus inX associated to the elememtc H'(X). The
group of rim tori inX is defined as the image of the homomorphism

s o piar o PD opiy: HY () — Hy(X).

We can also map every rim torus M via the inclusion)y : N — X to an embedded torus iX.
This torus is related to the rim torus coming i#& in the following way:
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Lemma5.21. Leta beaclass inH'(X). Thennas o pipso PDopl,a0 = —ny oy o PDop’ya. Hence
for the same element € H'(X) the rim torus inX coming viaN’ is minus the rim torus coming via
M.

Proof. The action of the gluing diffeomorphisg on second homology is given by I'M = —T'V.
Leta € H(X) be a fixed class,
29

a:Zci%fk.

=1
The rim tori in M’ and N’ associated tax are given by
29 29 29
ay =Y _cpul, ay = apnTy == cipng. )
i=1 =1 =1
In X we get
29
mran +nnan = Y ei(mrpnr — v pn )Y
=1

=0,

by the Mayer-Vietoris sequence fof. Hence ifay; anday are rim tori in M’ and N’ associated to
the same element € H'(3;Z) thennyray = —nyay-. O

Definition 5.22. Let R¢ denotethe rim torus inX determined by the class Zfﬁl a;TM € Hy(OM')
under the inclusion oM’ in X as in Definition 5.18. This class is equal to the image of the class
S22 ;TN € Hy(AN') under the inclusion 0PN’ in X

Recall that® x is the class inX which is the image of the push-off* under the inclusiod/’ —
X. Similarly, >’y is the image of the push-oE" under the inclusiodv/ — X.

Lemma 5.23. The classe¥’y, andXx in X differ by
Yy —¥x = Re.
This follows since by Lemma 5.6,
29
P SM = — (Z aﬂV) + N,
i=1

The difference is due to the fact that the diffeomorphiscioes not necessarily match the classés
andx?.

Recall that the embedding, : X — M defines a homomorphism
ity HY (M) — HY(X).
We now determine the set of elementsii(3) which map to null-homologous rim tori if/’.

Proposition 5.24. The kernel of the map,; o PD o pj}, is equal to the image af; ;.
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Proof. Considetthe following sequence coming from the long exact sequence for the daioM’):
Ha(M',0M") % Hy(0M') ™5 Hy(M').
Under Poinca duality
Hy(M',0M") —2— Hy(aM")
gl gl (5.15)
HY(MY) M)
This shows that the kernel @fy; o PD o p%, is equal to the set of all elementse H'(X) such
that p},c is in the image ofu},. Note that the embeddingn,: M’ — M induces an isomorphism

pirs HY(M) — H'(M') by the proof of Proposition A.2. Hence the image.df; is equal to the

image ofu}, 0},
Suppose: € H'(X) is an element such that ¢ is in the image ofu}, p%,. Hence we can write

PME = [P,
for some3 € H'(M). We havep?,;c = Z?il cjv; for certain coefficients;. The coefficients can be
determined as follows:
¢i = (Phsc: %)
= (P By i)
= </87 ZN[71>
= (i3, 7).

In the third step we have used the Mayer-Vietors sequence (5.13). We have also denoted,ctasses
¥ andX x S!, which correspond under the projectipnby the same symbol. This implies

29

pac =Y (iBv)

i=1
= PminBB-
Sincepj, is injective it follows thatc = i},4. Hencec is in the image of},.

Conversely, the same calculation backwards shows that every class in the iniggeft (M) —
H'(X) gives undep?, a class inH!(0M’) in the image ofu}, o}, O

We can now prove the main theorem in this subsection.
Theorem 5.25. Leti},, i3 denote the homomorphisms
ity: HY(M;Z) — HY(2;Z), and iy: HY(N;Z) — H'(Z;Z).

Then the defining maps in Definitions 5.18 and 5.20 for the groups of rim tad'inV’ and X’ induce
isomorphisms

Cokerit, — R(M)
Cokerity — R(N')

1%

Coker(iy, +iy) — R(X).
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Proof. The statement abouk(M’) and R(N’) follows immediately from Lemma 5.24. It remains to
prove the statement aboii{ X'). Consider the following diagram:

Hy(X, M) —2— Hy(OM') ™ Hy(X)
gT MM%_IT ”NT
H3(N',ON") —2— Hy(dN') —— Hy(N')

The horizontal parts come from the long exact sequences of pairs, the vertical parts come from in-
clusion. The isomorphism on the left is by excision. Hence the kerng)ofs given by the image
of

par o ¢yt 0d: Hy(N',ON') — Hy(M').

We claim that this is equal to the image of
ppr © PDopyyoiy: HI(N) — HQ(M/).

This follows in three steps: First, by equation (5.15) and the remark following it, the imagesof
equal to the image aPD o u} o pj. By the Mayer-Vietoris sequence fof

HY(N) "2 gYNY) @ 1Y () "N L 9N
we haveuy, o pi, = pjy © 7. Finally, we use the identity
¢» ' o PDopy =—PDopjy,

which is equivalent to the known identity., '’ = —T'V, foralli = 1,.. ., 2g.

Suppose thatt € H'(X) is in the kernel ofjy o pas o PD o p%,. This happens if and only if
pav o PD o pjacisin the kernel ofyy,. By the argument above this is equivalent to the existence of a
classBy € H(NV) with

piar © PD o pya = pag o PD o pyy o iy .
By Lemma 5.24, this is equivalent to the existence of a glagsc H' (M) with
o =iy Bu + iNOn.

This shows that the kernel @fi; o p1ar © PD o pj, is equal to the image af;, + i}, and proves the
claim. 0O

Corollary 5.26. Therank of the abelian subgrou(X) of rim tori in H(X; Z) is equal to the integer
d, defined in Lemma 5.8.

V.3.2 Perpendicular classes

For the calculation of7%(X; Z) it remains to calculate the kernel of
vy HA(M') & H*(N') — H*(OM'),
whereys = iy, + ¢*ujy, as in equation (5.11). Consider the homomorphism

why: HA(M') — H?*(OM').
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By Lemma A.1 there exists a short exact sequence

2 *
o (M) #i H2(M') -2 Kerip, — 0, (5.16)
ZSn

where kefiy, is the kernel ofiys: Hi(X) — Hi(M). This sequence splits because kgris free
abelian and we can write

H2(M)
ANV,

A splitting can be defined as follows: The images of loops representing the classes jn leder
the embedding,;: ¥ — M bound surfaces id/. Using the trivializationry; we can think of these
loops to be on the push-off™ and the surfaces they boundii’. In this way the elements in kéf;
determine classes iH?(M') = Hy(M',0M’).

We also use the trivialization; to identify

I

H*(M") @ keriyy. (5.17)

H*OM') =2 H(Z x SY) =2 Z @ H (2),
where theZ summand is spanned WD (). We can then consider the composition

H*(M)
AN,

@ keriy = H2(M') "™ H2(0M') = 7 & H,\(D).

Proposition 5.27. The compaosition

. HA(M)

is given by
([A]l, ) — (A - X, ).

Note that this map is well-defined in the first variable sidtg = 0. The map in the second
variable is inclusion.

Proof. The proof is in two steps. To show thal, is the identity on the second summand note that by
Poincagé duality

Hy(M',0M") —2— H(aM")

~| =|

HAMY) B m2 o)

as in equation (5.15). This implies the claim by our choice of splitting. It remains to prove that
pirPilAl = (A-Zar)PD (™)

Note thatu}, pi,A = p},i3,A by the Mayer-Vietoris sequence fof = M’ U vX ). Since
(ipfA,X) = (A, Xn) = A- Sy

the class’, A is equal to( 4 - X)/)1, wherel denotes the generator &f?(X), Poincaé dual to a point.
Sincep}, (1) is the Poincae dual of a fibre irf0M’ = dvE), the claim follows. O
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Note that the map
is given by intersection wittt,,;. Hence it can take values only i,Z because:,, is divisible by
k.

— 7

Definition 5.28. We choose a clasB,; ¢ H?(M;Z) with By, - Ay; = 1. Such a class exists because
Ay is indivisible. We denote the image of this classif(M’) & Hy(M',0M') by B,

Then the equatiol,; - Xy; = k) implies that the map given by intersection wih;, is surjective
ontok;Z.

Lemma 5.29. The classB), € Hy(M', 0M') bounds thek),-fold multiple of the meridian i@1/".
Proof. Under Poinca& duality the sequence
H2(M) 2 g2y M g o)
corresponds to
Hy(M) — Hy(M',0M") -2 Hy (M),

where the firstmap i8lo (M) — Ha(M, X)) = Ho(M',0M'). Hence the clasB), € Ho(M',0M’)
maps toky; oM. O

Consider the subgroup iH?(M;Z) generatedy the classe®,; and A,;.! Since A2, = 0 and
Ay - By = 1, the intersection form on these (indivisible) elements looks like

B2 1
1 0)°
Definition 5.30. Let P(M) = (ZBy @ ZAy)* denote the orthogonal complementfif? (M) with

respect to the intersection form. The element®{d/) are calledperpendicular classes.

Since the restriction of the intersection form(#By; & Z A, ) is unimodular (it is equivalent té&/
if B2, isevenandtd+1)® (—1)if B2, is odd) it follows that there exists a direct sum decomposition

H*(M) = ZBy ® ZAy @ P(M). (5.19)

The restriction of the intersection form (A1) /Tor is again unimodular (see [56, Lemma 1.2.12]).
This implies also that the rank @f()) is b (M) — 2.

Lemma 5.31. For every element € H?(M) there exists a decomposition of the form
a = (a-Ay)By + (o By — By(a- Am))Au + @, (5.20)

whee
= — (Oé . AM)BM — (a . BM — BJQ\/[(Oé . AM))AM

Ql

is an element inP (M), hence orthogonal to botH 5, and By,.

This subgroup corresponds to the Gompf nucleus in elliptic surfaces defined as a regular neighbourhood of a cusp fibre
and a section, cf. [53], [56, Section 3.1].



58 The generalized fibre sum of 4-manifolds

This follows by writingp(«) = « + aAy + bBys. The equationg(a) - Ay = 0 = p(a) - By
determine the coefficients b.
SinceX ;s = kA, We can now write
H*(M)
YANY:

Definition 5.32. We defineP (M) 4,, = Zy,, Am & P(M).

& ZkMAM @ZBM @P(M)

Note that all constructions and definitions in this section can be done for the maiifasdwell.

V.3.3 Split classes i, (X;Z)
In this section we calculate the kernel of the homomorphism
Yy H*(M') @ H*(N') — H*(OM').
Consider the following map:
f:ZBy ®ZBN @ Kker(ipy @in) — Z
(zp By, N By, ) — xakay + envky — (C ).
Here B,,, By are just formal terms which could be left away.

Definition 5.33. Let kerf = S(X). We callS(X) the group ofsplit classe®f X. It is a free abelian
group of rankd + 1 since kel(iy; @ i) has rankd by Lemma 5.8.

The elements iy (X') have the following interpretation:

Lemma 5.34. The element$x, By, 2y By, ) in S(X) are precisely those elements 4B, @
Z.By @ ker (i @ in) such thato™ + zprkpro™ bounds inM’, o + zxkyo™ bounds inN’, and
both elements get identified under the gluing diffeomorplgism

Proof. Suppose that an element
oM+ re™ =m0 + o™ € Hi(OM),

with o € H;(X), is null-homologous inV/’. By the proof of Theorem 5.11 this happens if and only
if iy =0 € Hi(M) andr is divisible bykys, hencer = x ks for somezy, € Z. In this case it
bounds a surface if/’. The classy™ + ro™ maps undep to the class

N+ (Ca)eN —ra.

This class is null-homologous iV’ if and only if iy = 0 and (C,«) — r = (C, ) — ks IS
divisible by kx, hence
<C, a> - kafM = iL'NkN.

We can now prove:

Theorem 5.35. The kernel of the homomorphism
w3 HY(M') & HA(N') — H*(0M')
is isomorphic taS(X) ® P(M)a,, ® P(N)ay-
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Proof. By equation 5.18, the map;, is given by

P(M)a,, ® ZBy @ keriyy — kyZPD(o™M) @ Hy (%)

(ear, g, ang) = (warkar, anr).
We can replacey, by a similar map

P(N)a, ®ZBy @ keriy — kyZPD(o™) @ Hy (%)

(en,zn,an) — (znkn, an).
Under the identifications

H*OM') = H(0M') = Z & H,(¥), and
H?*(ON') = H{(ON') = Z ® Hy (%)

given by the framings,, 7y, we can calculate the map
¢*: H*(ON') — H*(OM')
as follows: By equation (5.5), we have

¢5PD(0") = ~(¢™ )0
$3PD(7Y) = —(¢~

—_

Henceg* is given by

ZoH\(X) —Za H(D)
(.fC,y) = (JI - <va>7 _y)'

Therefore, we can replace the map = 13, + ¢*y by the following homomorphism:
P(M)a,, ® P(N)ay ®ZBy & ZBy @ keriy @ keriy — Z & Hi(X)

given by
(em,en,za, N, anm, an) — (zapka + xvkn — (C,an), apr — an).

Elements in the kernel must satisiy; = ayn. In particular, both elements are in kgf N keriy =
ker(ins @ in). Hence the kernel of the replaced is given by

S(X)@P<M)AM 69P(‘N)AN'

V.3.4 Calculation of H?(X;Z)

We can now write the short exact sequence (5.11) in the following form, using the calculations in
equation (5.12), Theorem 5.25 and Theorem 5.35:

Theorem 5.36. There exists a short exact sequence

0— R(X)®ZEx — H*(X;Z) — S(X) @ P(M)a,, ® P(N)a, — 0. (5.21)
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Note thatY x is the class (or its Poincardual) coming from the push-of" under the inclusion
M' — X. We can check the second Betti number given by the exact sequenég?fdf;Z) in
Theorem 5.36: together with our previous calculation of the ranks for the corresponding groups we get

bo(X)=d+ 14 (d+ 1)+ (bo(M) —2) + (b2(N) — 2)
= b2(M)+bQ(N) — 2+ 2d.

This is the same number as in Corollary 5.14.

V.3.5 The intersection form of X

The group of split classeS(.X) always contains the element

Bx = —X—(kyBar — kyBy).

nMN

In particular, if Xy, and Xy represent indivisible classes we hab¥g = Bj; — By. Suppose in
addition that the cohomologies 8f, N and X are torsion free. This is equivalent 6’ or H, being
torsion free. To check whethéf; (X) is torsion free one can use Theorem 5.11 and Corollary 5.13. We
want to prove that we can choogelementsSy, . .., Sy in S(X), which form a basis fof (X ') together

with the clasBy, and a basi®y, . . ., R4 for the group of rim toriR(X') such that the following holds:

Theorem 5.37.Let X = M#sx,,-x, /N be a generalized fibre sum of closed oriented 4-manifolds
M and N along embedded surfac&s,, > 5 of genusy which represent indivisible homology classes.
Suppose that the cohomology/Mdf, N and X is torsion free. Then there exists a splitting

H*(X;Z)=P(M)® P(N)® (5 (X)® R(X))® (ZBx ® ZXx),

where
(S'(X)DR(X))=(ZS1 DZR) @ ... D (ZSq ® ZRy).

The direct sums are all orthogonal, except the direct sums inside the brackets. In this direct sum, the
restriction of the intersection forr@ x to P(M) and P(N) is equal to the intersection form induced
from M and N and has the structure

(BJQWJrB]?\, 1)

onZBx ® ZX x and the structure

on each summands; ® ZR;.

The construction of the surfaces represensing . ., S, is rather lengthy and will be done step by
step.

Choose a basis, . . ., a4 for the subgroup of kerfz @ i) of those elements such thatC, «)
is divisible byn /. We then get a basis ¢f( X') consisting of the element

Bx = ——(knBy — knBy)

nMN

andd further elements of the form

Si = xp(ai)By + xn(ai) By + oy, 1 <i<d,
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wherex y;(a;), N (o) are coefficients with
ry(ei)ky + zn(ai)ky = (C, o).

The classBy is sewed together from surfacesMy and N’ which represent the classg%%BM and

2 By that bound théEX-fold multiple of the meridians ande™ in 9M’ anddN’.

The (immersed) surfaces representffy@re constructed as follows (see Lemma 5.34): The images
of the loopsa; on X under the embeddings,, iy bound inA/ and N surfacest” anleN. We can
consider the images of the to be curvesy anda¥ on the push-off&* andX¥ on the boundary
of tubular neighbourhoodsY), andv¥,. The surfaceD and D can be taken disjoint from
the interior of the tubular neighbourhoods and can be considered as eleméféNifi, 9M’) and
Hy(N',0N’). On the boundary ofY’,, andvX’y; we considerrys(«;)ka andzy (o;)ky parallel
copies of the fibre™ ando?¥ which are disjoint from the curves andal¥. They bound surfaces
in M’ and N’ homologous ta/(a;)Bj, andx v (o) B)y. We can connect the disjoint union of these
curves on the boundaries oF/, andvX, by homologiesQM and@QY to connected curves” and
cN on the boundary of tubular neighbourhoads,, andv¥y of slightly smaller radius where we
think the gluing ofM’ and N’ via ¢ to take place. We can achieve thatc = . Then the surfaces

SZM = DZM U an(Oéi)Bfw U in
SY =D} Uz (o) By UQY

sew together to give the split classgsn X.

We have to choose the orientations carefully to get oriented surfagesndS;: The surfacedl,
and X are oriented by the embeddingg,ix from a fixed oriented surfac. The surfaces3;,
and By are oriented such thaty; By, = +ky andXyBy = +ky. The extensiorp of the gluing
diffeomorphismy (see equation (5.3)) inverts dnthe inside-outside direction and the direction along
the boundan®D. Hence with the orientation induced fro,,; and By, the punctured surfaces
representing%ng and-® B’ sew together to give an oriented surfdgg in X .

nMN

We orient the surfaces™ andS» in the following way: The curves} andc) are oriented so
that they represent the classe¥ + z,/(a;)ky o™ andad + zn(oi)kyo® . The surfacesM and
SN are inacollar x S* x I of 9M’ anddN’ of the formeM x I andcl¥ x I. We can choose the
surfacesSM and S connected. We define the orientation §ff to be induced from the orientation
of ¢M followed by the orientation of pointing into M’. Exactly in the same way the orientation of
SZN is induced from the orientation ofV followed by the orientation of pointing intoN’.

In this case the orientation dfis inverted by® but ¢.c = ¢V. This implies that the surface
SiM with its given orientation and the surfaséV with the oppositeorientation sew together to give an
oriented surfacée; in X.

Lemma 5.38. With this choice of orientations we have

Bx - YXx = (kmkn)/nun
SZ' . ZX = :cM(aZ)kM = <C, Oéi) — .’L‘N(Oéi)k]\[.

Proof. We can calculate the intersection numbers either odfhs&de or theV side and check that the
results are the same. Note that by Lemma 5.23

Yx =Y% — Re.
SinceB); - Xy = kyr we get on thel, side

Bx -YXx = (kn/nyun)Bum - X = (Enka)/nun.
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On theN sidewe have

d
Bx - ¥x = (kp/nyun)By - (BN — Zajl“év) = (kmkn)/nun,
i=1

since we can assume that the surfabe is disjoint from the rim tori induced b]]j.v in N. Similarly
we get forS; - ¥ x on theM side

Si - Xx = xp () By - X = xpg (i) kg

On theN side we have with our orientation convention
d
Si . ZX = —mN(ai)BN . ZN — DZN . (— Zajl“év) = —a:N(oz,-)kN + <C, Oéi>.
j=1

O

We can also calculate the intersection of certains classes with rim toriz}ebe a rim torus in
M’ induced from an elemefit € H'(%). ThenRY is the image of

2g

> (T, )T

j=1

under the inclusion aM’ in M. The rim torusRY induces under the inclusiaW’ — X arim torus
in X which we denote by?r. The class” € H!(X) also induces a rim toruB% in N’ which is the
image ofzf.g:l(T, fyj>F§V in N’. Under the inclusiolV’ — X the classk¥ maps to-Rr, cf. Lemma
5.21.

Lemma 5.39. The rim tori R¥ and RY do not intersect wittE,; and ¥ . They also do not intersect
with themselves or other rim tori. We can also assume that they do not interse@ witB . Hence

Rr-Y¥x =0, Rr-Bx=0, Rp-Rp=0.

This follows because the rim tori can be moved away from all of the surfaces mentioned in the
lemma. We want to calculate the intersection of rim tori with the split claSse¥/e can assume that
RM intersectsSM only in DM. Let o denote the curves on the push-aff/ determined by the
curvesa; € ker(iy @ in) above. We expand} = 327 oy, Then by Lemma 5.19

RY s} = R} . DM
29
= Z<Ta ’Yj>az'j
j=1
= <T, Oéi).

Similarly we get
RY - SN = (T, ).

Lemma 5.40. Let Ry denote the rim torus itk which is the image oR2! under the inclusion\/’ —
X. ThenRT . Sz = <T, Oéi>.
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Proof. Thiscan be calculated again on thé side or theNV side: On theM side we have
Ry -S;=RM .M — (T, ;).

On theN side we have
Rp-Si=(—Ry) - (=S) = (T, ),

because we know thd@} induces via the inclusiofv’ — X the rim torus- Ry and we have to change
the orientation or5;¥ by the argument above. O

We now assume that the divisibilitiés,, ky are equal td and the cohomologies éf/, N and.X
torsion free. For the following arguments it is useful to choose a basB(fdf) consisting of pairwise
transverse surfacdsy, ..., P, embedded in/. The surfaces, ..., P, can be chosen disjoint from
Y u- We choose similar surfaces v which give a basis foP (V).

We simplify the surfaces; as follows: We can connect the surfadg’ to any other closed surface
in M in the complement of>,, to get a new surface which still bounds the same lagh. We
can consider the surfade = DZM to be transverse to the surfacks . .., P, and disjoint from their
intersections. Led; be the algebraic intersection number of the surfaceith the surface?;. We want
to add closed surfaces 0 to make the intersection numbeisfor all j = 1,...,n zero. The new
surfaceD’ then does not intersect algebraically the surfaces giving a basis for the free paf/of

Let 3 denote the matrix with entrigs,; = P, - P; for k,j = 1,...,n, determined by the intersec-
tion form of M. This matrix is invertible oveZ since the restriction of the intersection formRg\/)
is unimodular. Hence there exists a unique veetarZ™ such that

n

> B = —0;.

k=1

LetD' =D+ ;_, rxPr. Then

n
D'-Py=5;+Y rif=0.
k=1

We can also add some copiesXf; to z;(«;) By to get a surface which has zero intersection with
Bjs. This can be done for each indéx= 1,...,d to change the surfac@M to new surfaces i/
(denoted by the same symbol) which still bour}d in 91’ and do not intersect (algebraically) with
the surfaces itP(M ) and the surfacé;,.

A similar construction can be done fd¥ to get new surfaces?¥ which do not intersect with
surfaces defining a basis for the free part/ffV) and the surfacé3y. Since their boundaries get
identified under the diffeomorphisih they sew together pairwise to give new split clasSesn X
which form a basis fo5 (X ') together with the clasBx. Thus we have proved:

Lemma 5.41. There exists a basiBx, 51, ..., Sy of S(X), where the split surfaceS;, ..., S, are
sewed together from surfac&$! € Hy(M’',0M') and SN € Hy(N’,0N’) which do not intersect
algebraically with the surfaceB;,; and By and the surfaces giving a basis f6&X( M) and P(N).

By our assumptiotk; = ky = 1 we haveBx = Bj; — By and we can add suitable multiples of
By to the element$); to get new basis elements of the fon= =y («;) By + a; where

rn(a;) = (C, ai),
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The surfaces; is now sewed together from surfaces

M _ M
SM = D]

SN =pNu@NuUN.

K3
The surfacé/}Y" is a punctured surface constructed from the surface

UiN = J}N(Oéi)BN U —xN(a,-)B]gVEN
by smoothing double points and deleting the partihy. This surface represents the clasg «; ) (By —
B%,Xy) in N. We have added-z v («;) B2 parallel copies o&:" outside ofvYy to make the inter-
section number of¥ with By zero.

By the calculation in Lemma 5.38 above, the elemehthave zero intersection with x while
BxXx = 1. Moreover,B% = B2, + B%. LetS'(X) be the subgroup generated by the elements
Si,...,SgsuchthatS(X) = ZBx ¢ S’(X). By our assumptiort); = ky = 1, the sequence (5.21)
simplifies to

0—ZYx ® R(X) — H*(X) — S(X)@® P(M)® P(N) — 0.

SinceS(X) is free abelian, we can lift this group to a direct summandiéf X; Z). Since we also
assumed that the cohomology &f, N and X is torsion free, the whole sequence splits and we can
write

H*(X)=P(M)® P(N)® S(X) ® R(X) ® ZXx.

Different splittings of this form are possible: We can add element®(ik) & ZX. x to the lift of basis
elements ofP(M) and P(N) to get a new lift. However, we can specify a lift by declaring that the
elements in the lifted®()/) and P(IV) are orthogonal to the classesSiX).

Lemma 5.42. There exists a splitting
H*(X)=P(M)® P(N)® (S (X)® R(X))® (ZBx ® ZXx),

where the direct sums are all orthogonal, except the two direct sums inside the brackets. In this direct
sum, the restriction of the intersection fo@y to P(M) and P(N) is the intersection form induced
from M and IV, it vanishes om?(X') and has the structure

By, +B% 1
1 0

onZBx & 7ZXYx.

We now simplify the intersection form o$f (X) & R(X'). This will complete the proof of Theorem
5.37. Note that for every non-zero elementr(.X ) there has to exist an element$\(X) such that
both have non-zero intersection because the intersectiondogris non-degenerate.

Lemma 5.43. The subgroup kerfi @ iy) is a direct summand aff; (X).

Proof. Suppose thatv € ker(iys @ i) is divisible by an integet > 1 so thata = co/ with o/ €
Hy(X). Thenciyo/ = 0 = ciya’. SinceHi(M) and H1(N) are torsion free this implies that
o € ker(iys @ in). Hence ker(is @ iy ) is a direct summand. O
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By this lemma we can complete the basis. . . , a4 for ker (iy, @iy ) by elementg;, 1, ..., B2 €
H,(¥) to a basis of{; (X). Since the basis elements are indivisible, we can represent them by closed,
embedded, oriented, connected curveXEinn particular, the surface$? and S can be chosen as
embedded surfaces.

Letad,...,a}, 85,4, -, 55, denote the dual basis ®f'(X) andRy, ..., Ry, the corresponding
rim tori in H2(X). Then

Si'Rj:(Sij, fOflSde
Si'RjZO, fOI’d—I—lSjSZg.

This implies thatRy, . .., R; are a basis oR(X) and R 1, . . . , Rag vanish. We simplify the surfaces
S; as follows: Letr;; = 5; - S; fori,5 = 1,...,d denote the intersection matrix for the chosen basis
of S’(X). Let

Si=5i—> riRp.

k>i

The surfaces] are tubed together from the surfacgsand certain rim tori. They can still be consid-
ered as split classes sewed together from surfacé$’iand N’ bounding the loops; and still have
intersectionS; - R; = d;;. However, the intersection numbes$ - S’ for i # j simplify to (where
w.l.o.g.j > 1)

Sp- 8= (8= Y riRi) (S — Y rR)

k>t >j
= SZ . Sj — Tij
=0.
Denote these new split classes agairbhy. . ., S; and the subgroup spanned by then$iX )& R(X)

again byS’(X). The intersection form 088’ (X ) & R(X) now has the form as in Theorem 5.37 and
completes the proof.

Remark 5.44. Note that we can choose the bagis. . ., 2, of H;(X) we started with in Section V.1.1
as

v =q; forl<i<d
v =B, ford+1<i<2g.

This choice does not depend on the choic€'cfinceay, . . ., ay are merely a basis for ken@i @ iy).
Then the rim toriRy, ..., Ry are given by the image of the classfég, . ,l“y under the inclusion
OM' — M' — X and the rim tori determined by}’ ,,...,T'5] are null-homologous if. In this

basis the rim torugic in X is given by

d
RC = — Z (LiRi.
=1

The split classes); are sewed together from certain surfaé’éé, SzN bounding Ioops:lM in oM’ and
¢ in 9N’ which represent the classes

yMin oM’
YN + a;o™ in ON',
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and get identified under the diffeomorphigimwherei = 1,...,d. The surfaces™ andS¥ are of
the form

SM — pM

sy =pNu@NuulY,

whereU}N' is a punctured surface constructed from a surtaferepresenting,; (By — B3 y) in N.

In particular, under our assumptiofi& (X ; Z) does not depend as an abelian group on the choice
of C. However, the self-intersection numbei§and hence the intersection foig might depend on
the choice ofC.

Remark 5.45. Under the assumptions in Theorem 5.37 there exists a group monomorgRism; Z) —
H?(X;Z) given by

EM [ad EX
BM[ [ad BX
Id: P(M) — P(M).

Here we have used the decompositiontbf( M) given by equation (5.19). A classc H?(M) maps
under this homomaorphism to

a+ (aXy)Bx + (aBy — B3 (aXy))Ex € HX(X)

by equation (5.20), wher@ € P(M). In this way, the free abelian groui? (M) can be realized as a
direct summand off?(X). There exists a similar monomorphisi? (N; Z) — H?(X;Z) given by

Yy — Yy =Yx + Re
BN = BX
Id: P(N) — P(N).

For the first line cf. Lemma 5.23. Hendé&*(N) can also be realized as a direct summand/éf X ).
Note that in general the embeddingsrtut preserve the intersection form, the images of both embed-
dings have non-trivial intersection and in general do not Spanx).

V.4 Applications

The formula in Theorem 5.37 is well-known in the case of a fibre sum of elliptic surfaces, see e.g. [56,
Section 3.1]: We begin with the fibre sum of two copies of the elliptic surface) along a regular
fibre, giving theK 3-surfaceF(2). The elliptic fibration onM = E(1) — S? determines a normal
bundle of a regular fibr&,; = F by taking the preimage of a small disk . This also determines
a canonical push-off given by a nearby fibre and hence a trivialization of the normal bundle. A section
of the elliptic fibration is a spher8,, of self-intersection-1. SinceE(1) = CP249CP? thegroup
P(M) is free abelian of rank. In [56] it is shown that the intersection for@,, restricted toP (M)
is isomorphic to— E5s.
Take a second copy of E(1) and a regular fibr& 5. LetC be an arbitrary class ifi'! (T?) and¢
a corresponding gluing diffeomorphism. We form the generalized fibreX(m = E(1)#r_rpE(1).
In this case the resulting manifold does not depend up to diffeomorphism on the choic€ gince
every orientation preserving self-diffeomorphism®fF extends overZ(1) \ intvF [56, Theorem
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8.3.11]. Hence we can choosgeasthe identity. Thenp identifies the fibres in the boundary of the
normal bundles and we get an elliptic fibrationf= F(2) = K3 overS.

The spheres3,; and By sew together to a sphefey in X of self-intersection-2. SinceFE(1)
is simply-connected, Keli,; @ iy) = H'(T?;7Z), henced = 2. This implies thatS(X) is a free
abelian group of rank and R(X) = H'(T?;Z) is free abelian of rank 2. SincE(1) admits an
elliptic fibration with a cusp fibre, one can show that there exists an identification of the/fitieh
T? = S' x S! such that the simple closed loops given®yx 1 and1 x S! bound inE(1) \ intv F
disks D1 and D, of self-intersection-1 ([56]). Take copies of these disk3}!, D} and DYV, DY in
M andN. Sinceg is the identity, these disks sew together to give split classend.S; in X which
are spheres of self-intersectior2.

By Theorem 5.37 we have

wEen--no-ne( e )e( ).

The last term is the intersection form @B x ¢ ZX x. Since

-2 1\ /0 1Y)
(F0)=(1s)-"
as quadratic forms ovet, we get for the intersection form & 3 the well-known formula-2Es ©3H.

This can be extended inductively to the elliptic surfaé&s) = E(1)#p—rpE(n —1). For E(3)
we have

H2(E(3):Z) = P(E(1)) & P(E(2)) & ( 2 > o ( 7 > ® ( A ) .

The fibre sum has been done along the fiise in X = F(2) and used the surfad8x constructed
above which sews together with the sectioniifl) to give a sphere itf(3) of self-intersection-3.
This accounts for the last summand. We have again two split cl&ssasd.S, represented by spheres
of self-intersection-2. We can read ofP(£(2)) from the calculation above and get

H*(E(3);2) :—3E8@4< 7 )@( A >
Since
(P 5)=tmecn

as integral quadratic forms, the intersection forntig8) is isomorphic to5(+1) ¢ 29(—1). For E(4)
we get

H*(E(4);Z) = P(E(1)) ® P(E(3)) ® ( _12 (1) > & ( _12 (1) ) ® ( _14 (1) )

Since P(E(3)) is isomorphic to-3Fg & 4H we see that the intersection form B{4) is isomorphic
to —4FEg & 7TH, and so on.
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V.4.1 Knot surgery

Thefollowing construction is due to Fintushel and Stern [38]. Kebe a knot inS®. Denote a tubular
neighbourhood o by vK = S' x D?. Letm be a fibre of the circle bundiévK — K and use
an oriented Seifert surface féf to define a sectioh: K — JdvK. The circlesm and! are called the
meridianand thdongitudeof K. Let My be the closed 3-manifold obtained @Dehn surgery ot .
M is constructed in the following way: Considé? \ intv(K) and let

f: (58" x D?) — 9(8% \ inty(K))
be a diffeomorphism which maps in homology the cii@le? ontol. Then one defines
My = (S? \intv(K)) Uy (S x D?).

The manifoldM is determined by this construction uniquely up to diffeomorphism. One can show
that it has the same integral homology $%x S'. The meridianmn, which bounds the fibre in the
normal bundle toK in S3, becomes non-zero in the homology &fx and defines a generator in
H1(Mg; 7). The longitudd is null-homotopic inM [ since it bounds one of thB2-fibres glued in.

This copy of D? determines together with the Seifert surfacefdh closed, oriented surface My
which intersectsn once and generatd$, (M ; Z).

Consider the closed, oriented 4-manifdidi, x S. It contains a torugy, = m x S! of self-
intersectiorn). Let X be an arbitrary closed, oriented 4-manifold, which contains an embedded torus
Tx of self-intersectiord representing an indivisible homology class. Then the resuthot surgery
on X is given by the generalized fibre sum

XK = X#TX:TM(MK X Sl)

The 4-manifoldX x may depend on the choice of gluing diffeomorphism, which is not specified. The
4-manifold M has the same integral homology$% x T2. The surface constructed from the Seifert
surface forK intersectsl’y; precisely once. We can use this surfacéBag. We also choose a class
By intersectingl'xy once. The embedding; of the torusT’y; in My x S' is an isomorphism on first
homology and we can write

iy ®ix: Z° — 722 ® H\(X;7Z)
a— (a,ixa).
In particular, the map
7? ® Hi(X;Z) — Hi1(X;Z)
(2,y) =y —ixz,

determines an isomorphism betwe&h (Xx;Z) = Coker(as & ix) and H;(X;Z). Moreover,
ker(ips @ix) = 0 and the group of split classé§ X i) = Z is generated by x,, = By — Bx. Since
i*, is an isomorphism, there are no non-zero rim torkig. The groupP (M x S*) is also zero and
we get a short exact sequence

0 — ZTx, — H*(Xk;Z) — ZBx, ® P(X) — 0.

SinceBx, - Tx, = 1, the classedx, and Bx, define indivisible elements itf?(X ) and the
sequence splits, so we can write

H*(X;Z) = ZTx, @ ZBx, @ P(X). (5.22)
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(Note that we do not have to assume that the cohomology @ torsion free as in Theorem 5.37.)
There is a similar splitting

H*(X;Z) = ZTx ® ZBx ® P(X).

Hence we can define an isomorphism

H*(X;7Z) = H*(Xk;7) (5.23)
of abelian groups, given by
TX — TXK
BX = BXK (524)

Id: P(X) — P(X),

cf. Remark 5.45. The clads, has zero intersection with the classe#’if1X') since they can be moved
away from the boundary. The clags, also has zero intersection with the element®iX) since
this holds forBx. The self-intersection number d@x, is equal to the self-intersection number of
By, because the clag3); has zero self-intersection (it can be moved away inthdirection). Hence
the isomorphisnfi?(Xk; Z) = H?(X;7Z) also holds on the level of intersection forms.

Assume in addition thak’ and X’ = X \ Tx are simply-connected. Thek is again simply-
connected and by Freedman’s theorem [45]and X are homeomorphic. However, one can show
with Seiberg-Witten theory that and X i are in many cases not diffeomorphic [38].

Suppose thak is afibred knot, i.e. there exists a fibration

S3\inty(K) —— %
Sl
over the circle, wher&), are punctured surfaces of geriugorming Seifert surfaces fak'. ThenM

is fibred by closed surfacd3,, of genush. This induces a fibre bundle

Mszl <—Eh

l

T2

and the torug’,; = m x S' is a section of this bundle. By a theorem of Thurston [137} x S!
admits a symplectic form such tha}, and the fibres are symplectic. This construction can be used
to do symplectic generalized fibre sums aldng, cf. Section V.5. The canonical class bfx x S!

can be calculated by the adjunction inequality, because the fibyeand the torug’,, are symplectic
surfaces and form a basis Bk (M x S';7Z). We get:

Kypovst = (20— 2)Tyy. (5.25)
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V.4.2 Lefschetz fibrations

For the following discussion see [1], [4], [56, Chapter 8] and [84]. (et w) be a closed, symplectic
4-manifold. For every point € M we can choose smooth coordinate charts

Y = (21,22): U - C?2=R?,

defined on an open neighbourhoGd— M of p such that)(p) = 0. We call a coordinate chart of this
kind adaptedto the symplectic structure if the complex lines in the local coordinates are symplectic
with respect tav.

Definition 5.46. A symplectic Lefschetz pencil ofV/, w) consists of the following data:
(1.) A non-empty set of point8 C M, called the set dbase points.
(2.) A smooth, surjective map: M \ B — CP!.

(3.) Afinite set of pointsA C M \ B, called the set ofritical points, away from which the mapis
a submersion.

In addition, the data have to satisfy the following local models:
(1.) Forevery poinp € B there exists an adapted chétt, z5) such thatr(z;, z2) = 22/21.

(2.) For every poinp € A there exists an adapted chért, z2) in which (21, 22) = 22 + 22 + c for
some constant € CP'.

Forz € CP! thefibre F, of the pencil is defined as~!(z) U B C M. Letn = |B| denote the
number of base points. The local model around the base points implies that one can blow u@Bthe set
to get a symplectic 4-manifol®y = M#nCP? anda smooth, surjective map

mn: N — CP!,

which is a submersion away from the set of critical poitisC N and still has the local form
nn(z1,22) = 22 + 22 + cateveryp € A. In particular,my: N — CP! is a singular fibration

with symplectic fibres, which are the proper transforms 6%, for everyz € CP!. The fibration

N — CP'is called asymplectic Lefschetz fibration. By a perturbation one can assume that each fibre
contains at most one critical point.

The classical construction of these fibrations for complex algebraic surfaces, due to Lefschetz, is
as follows: Letd/ ¢ CPP be an algebraic surface, embedded in some projective space of dimension
D. Let A = CPP~2 be a generic linear subspace@P” of codimensior2 which intersects\/ in a
number of points3. Consider the set of all hyperplangs = CPP~! of CP? which containA. This
set is called enciland is parametrized by € CP!. Every pointinM \ B is contained in a unique
hyperplaneH,.. This defines a holomorphic map M \ B — CP!. One can show that satisfies
the local model of a symplectic Lefschetz pencil as above with fibByes: 7—!(z) U B given by the
hyperplane sections/ N H,.

The hyperplane sectiong N H, intersect pairwise precisely iB. They are all homologous and
have self-intersection, wheren = |B|. The proper transforms, in N = M#nCP? arecomplex
curves of genug (hence symplectic surfaces with respect to tdlér form) of self-intersectio, all
but finitely many of which are smooth.

By the Lefschetz Hyperplane theorem, the homomorphism

in: Hi(Xn;Z) — Hi(N;Z),
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induced by inclusion is a surjection and the kernel is generated by the sahishingcycles. The
vanishing cycles bound disks iN, calledLefschetz thimblesr vanishing disks, which intersekty
only in the vanishing cycle and contain precisely one critical ppiatA. For each critical point there
is a corresponding vanishing cycle and a thimble. One can construct the thimbles in such a way that
they are Lagrangian disks [4]: By our assumption on Lefschetz fibrations, a singular fibre contains only
one critical point. Let: denote the parameter index@P' of the smooth fibre_ y and letz; be the
parameter index of a singular fibk,,. Connectr andx; by a pathry in CP!, which avoids all other
critical values. The symplectic&hler form induces a natural horizontal distribution/éi A, given by
the symplectic complement to the tangent space along the fibres. The parallel transport of a vanishing
cycle inX  along the curvey then converges to the critical point in the fibre abayeand defines the
Lagrangian vanishing disk.

We can assume that all critical valuesmof are contained in a small neighbourhoodvafh CP!.
This implies that we can assume that the Lefschetz thimbles are disjoint from the surfaces representing
the classes i?(V), which can be moved away frody. Similarly, by using a homotopy, we can
assume that the point where the exceptional spBgrantersects the fibr& y does not lie on any of
the vanishing cycles. This implies that the thimbles can be made disjointBgras well.

Suppose thalV has torsion free cohomology and consider the generalized fibre sum

X = N#sy—syN.

The Lefschetz fibratiodv — CP! defines a natural tubular neighbourhoodsh{ with a canonical
trivialization given by a push-off into a nearby fibre. If we take the gluing diffeomorphismmich is
the identity with respect to this trivialization, it follows thatalso admits a Lefschetz fibration in genus
g curves overCP!. Suppose that the group of vanishing cycle#fin(> v; Z) has rankd and choose a
basisdy, ..., ds. Then the corresponding Lefschetz thimbles for both copie$ eéw together to give
basis elements, ..., S, for the group of split classes, represented by 2-spheres of self-intersection
—2. Since the thimbles are Lagrangian disks, we can assume that these two spheres are Lagrangian if
the fibre sum is done symplectically as in Section V.5. Two copies of the exceptional $hhgriee a
(symplectic) spher®y of self-intersection-2 in X. The second cohomology &f can be calculated
by Theorem 5.37:

H*(X;7Z)=2P(N)® (d +1) < _12 é ) .
This generalizes the formula for the fibre siiitll ) # r—r E(1) = E(2) above. We can also add further
copies ofN, cf. Section VI.2.4.

V.5 A formula for the canonical class

In this section we recall the definition of the symplectic generalized fibre sum by the construction of
Gompf [52]. Let(M,wys) and (N,wy) be closed, symplectic 4-manifolds aid,, ¥y embedded
symplectic surfaces of genys Denote the symplectic generalized fibre sum¥y= M#s,,, s, N.
We want to determine a formula for the canonical classin terms of M and V.

The symplectic generalized fibre sum is constructed using the following lemma. Recall that we
have a fixed trivialization of tubular neighbourhoads,; andvXy by 73 andry. Hence we can
identify them with: x D, whereD denotes the open disk of radilisn R?.

Lemma 5.47. The symplectic structures,; andwy can be deformed by rescaling and isotopies such
that both restrict on the tubular neighbourhooes ,; and Xy to the same symplectic form

w = ws +wp,
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wherewp is the standard symplectic structugg, = dx A dy on the open unit dislO andwy, is a
symplectic form orx.

Proof. We follow the proof in [52]. Choose an arbitrary symplectic fatnon > and rescalev,; and

wp such that
/ wyp = Wy = / w.
XM SN b))

We can then isotop the embeddings: ¥ — M andiy: ¥ — N without changing the images, such
that both become symplectomorphisms ong and> . The isotopies can be realized by taking fixed
embeddings,,, iy and composing them with isotopies of self-diffeomorphisma/f&ndN (because
M andN are closed manifolds). Hence we can consider the embeddings to be fixed and instead change
the symplectic formss, andwy by pulling them back under isotopies of self-diffeomorphisms.
The embeddingsy;: X x D — M andry: ¥ x D — N are symplectic on the submanifaliix 0.
We can isotop both embeddings to new embeddings which are symplectic on small neighbourhoods of
¥ x 0 with respect to the symplectic form+ wp onY x D. SinceX is compact, we can assume that
both are symplectic ot x D, whereD, denotes the disk with radius< 1. Again the isotopies can
be achieved by considering, andry unchanged and pulling back the symplectic forms\érand N
under isotopies of self-diffeomorphisms.
It is easier to work with disks of radius We rescale the symplectic formg,, wy andw +wp by
the factorl /2. Then we compose the symplectic embeddingsandry on (X x D, (1/€?)(w-+wp))
with the symplectomorphism

YxD—XxD,
(p; (,9)) = (p, (ex, €y),

whereX x D has the symplectic forrfl /e?)w+wp. We then definers, = (1/€2)w to get the statement
we want to prove. O

It is useful to choose polar coordinateséd) on D such that

dx = dr cosf — rsin 6df
dy = drsin 6 + r cos 0d6.

Thenwp = rdr A df. The manifoldsM \ X, andN \ Xy are glued together along inEy; \ Xy,
and intvX x \ Xy by the orientation preserving and fibre preserving diffeomorphism

®: (D\{0}) x X — (D\{0}) x X
(r,0,2) — (V1 —1r2,C(x) — 0, z).

The action of® on the 1-formsir anddé is given by

—r
O*dr =d(ro®)=dy1—r?2= dr
(ro®) = dv/ —

(5.26)

®*df = d(0 o @) =dC — db.
This implies thatd*wp = wp — rdr A dC. We can think of the gluing of\/’ and N’ along their
boundaries to take place alosgx X, whereS denotes the circle of radiu%. Let Ann denote the

annulus inD between radius/+/2 and1. On theN side we take the standard symplectic structupe
on Ann x ¥ which extends over the rest &f. On the boundarg N’ given byS x X this form pulls
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back to the formd*wp = wp — rdr AdC ondM'. TheSt-valued functionC has the same differential
as a certain functiorfi: ¥ — R. Let p be a smooth cut-off function cAnn which is identical tal near
r = 1/+/2, identical to0 nearr = 1 and depends only on the radiusConsider the following closed
2-form onX x Ann:

wp —rdr Nd(pf) = wp —rdr A (fdp + pdC)
=wp — prdr NdC.

Since this form is non-degenerate at every point over the annulus it follows that we can deform the
symplectic structure at radius'v/2 througha symplectic structure odnn x X on theM side such

that it coincides with the standard forop atr = 1. From here it can be extended over the restbof

In this way we define a symplectic structusg on X.

Remark 5.48. Note that the Gompf construction for the symplectic generalized fibre sum can only be
done if (after a rescaling) the symplectic structurgs andw, have the same volume aty; andX y:

/ wp = WN -
Xm XN

To calculate this number bothi,; andX ; have to be oriented, which we have assuragatiori. It

is not necessary that this number is positive, the construction also works with negative volume. In the
first case the orientation induced by the symplectic forms coincides with the given orientafion on
andXy and is the opposite orientation in the second case.

We will also need compatible almost complex structures: We choose the standard almost complex
structureJp on D which mapsiz o Jp = —dy anddy o Jp = dx. In polar coordinates

droJp = —rdb
rdf o Jp = dr.

We also choose a compatible almost complex structurg.ofhe almost complex structutg, + Jx,
extends to compatible almost complex structuredbandN.

Recall that the smooth sections of the canonical budig are 2-forms on\/ which are “holo-
morphic”, i.e. complex linear. We choose the holomorphic 1-férp = dx + idy on D, which is in
polar coordinates

Qp = (dr + irdf)e®. (5.27)
This form satisfie$)p o Jp = iQ)p. We also choose a holomorphic 1-fofs. on Y. We can choose
this form such that it has precisely — 2 different zeroe9;, . . ., p24—2 of index+1. We can assume

that all zeroes are contained in a small digk around a pointy disjoint from the zeroes. The form
Qp A Qy is then a holomorphic 2-form o x ¥ which has transverse zero set consistingpf- 2
parallel copies o). This 2-form can be extended to holomorphic 2-formsiérand N as sections of
the canonical bundles.
Note that/p and€)p are not invariant unded, even ifC = 0: On S x X we have

d*dr = —dr

®*df = dC — db.
Hence

*Qp = —(dr + ir(df — dC))e "0+
dro®*Jp = —r(df — dC)
r(df — dC)®*Jp = dr,
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atr = 1/4/2. By a similar argument as above, we can defebin/p through an almost complex
structure ondnn x X on theM side such that it coincides with the standafigl atr = 1. We can

do this in such a way that the almost complex structure is compatible with the symplectic structure on
Ann x 3 above. We can also defordn*(2p on Ann x X through a nowhere vanishing 1-form which

is holomorphic for this almost complex structure such that it becomes-at equal to

*Qp = —(dr + irdf)e 0T,

Then ‘ '
(I)*(QD A QZ) = —QDG_QW AN Qgezc.

We now construct a sectidny of K x in the following way: Choose a holomorphic 2-form on the
tubular neighbourhoody:; of radius1 of the foerf‘D4 A Qs where

OM = (dr + irdf)e®,

as in equation (5.27). Also choose a holomorphic 2-fé¥gnon the normal bundleX 5 of radius1 of
the formQ} A Qs where .
QN = —(dr + irdf)e®.

We think of M’ and N’ as being glued together alosgx X whereS is the circle of radiug /v/2. On
the N side we have o% x X the holomorphic 2-form

—ON A Qs

It pulls back unde® to a holomorphic 2-form o x ¥ on theM side. By the argument above it can
be deformed omnn to the holomorphic 2-form

Q%[e*zia A Qgeic

atr = 1. The almost complex structure coming frashunder® can be deformed similarly such that

it becomes the standarfh atr = 1. Let Ann’ denote the annulus between radiuand2. We now
want to change the forft e=2% A Qx.e’® over Ann’ x % through holomorphic 2-forms to the form
Q% A Qs atr = 2. We will always extend the almost complex structure by the standard one if we
extend over annuli.

The change will be done by changing the functiod?+iC atr = 1 over Ann’ x 3 to the constant
function with valuel atr = 2. This is not possible if we consider the functions as having image in
S1, because they represent different conomology classes onX.. Hence we conside$!' ¢ C and
the change will involve crossings of zero. We choose a smooth fungtiotnn’ x ¥ — C which is
transverse to and satisfieg; = e~2+C and f, = 1. The Poinca dual of the zero set gf is then
the cohomology class @' x ¥ determined by thé&!-valued functione2 ¢

Lety}", ..., 431" oM be a basis of' (S x ¥ys;Z) as in Section V.1.2. Then the cohomology

class determined by*~iC is equal to— 3227, a;vM" + 20™". The Poinca dual of this class is

2g
—> ar}M +25M
=1

Proposition 5.49. There exists a 2-forr®’ on Ann’ x Xj; which is holomorphic fot/p + Js and
satisfies:

o () = 9%6_2"9/\92&0 atr =1andQ) = Q]\D/l/\QE atr = 2.
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« Thezeroes of the forY’ are all transverse and the zero set represents the clas.? , a,T'M +
232 M in the interior of Ann’ x 3, and2g — 2 parallel copies ofdnn/.

The appearance of the zero seEfﬁl aiFlM + 2%M can be seen as the obstruction to extending
the S'-valued function on the boundary dfnn’ x ¥ given by f; atr = 1 and f; atr = 2 into the
interior (cf. Section VIII.3). Under inclusion iX, this class becomel + 2X x, cf. Definition 5.22.
We get the following corollary:

Corollary 5.50. There exists a symplectic forury with compatible almost complex structufg and
holomorphic 2-fornf2x on X such that:

e On the boundaryv. v of the tubular neighbourhood &f y in V of radius2 the symplectic form
and the almost complex structure arg = wp+ws, andJy = Jp+Jy wWhileQx = —QpAQs.

e On the boundaryv ), of the tubular neighbourhood af,; in M of radius2 the symplectic
form and the almost complex structure arg = wp + wx andJx = Jp + Jy while Qx =
Qp A Qx.

e Onthe subset af>  between radiust/\/i and2, which is an annulus times v, the zero set of
Qx consists oRg — 2 parallel copies of the annulus.

e On the subset ofX,; between radiuﬁ/\/i and 2, which is an annulus times,,, the zero set
of Qx consists oRg — 2 parallel copies of the annulus and a surface in the interior representing
_N\29 1M M
D imy aily 4257

We now assume thdty; = kxy = 1 and that the cohomology groups &f, N and X are torsion
free, so that we can use Theorem 5.37. Split the canonical Blgsas

d d
Kx =pu +pN + Z 5:5; + Z riR; + bx Bx + oxXx,
=1 i=1

wherepy; € P(M) andpy € P(N).2 The coefficients can be determined by using intersections:

Kx~Sj=3jS]2-+Tj

Kx-Rj:Sj
Kx - Bx =bx(Bj; + BY) + ox
Kx - -Yx =bx.

Similarly, the coefficientg,; andpy can be determined by intersectihgy with classes inP(M) and
P(N). We assume that,; andXy are oriented by the symplectic formg; andwy. ThenXx is a
symplectic surface ik of genusg and self-intersectiof, oriented by the symplectic formy. This
implies by the adjunction formula

bx = Kx -Xx =29 — 2,

hence
ox = Kx - Bx — (29 — 2)(B}; + B).

2In the proof of [39, Theorem 3.2.] a similar formula is used to compute the SW-basic classes for a certain generalized
fibre sum.
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Similarly, note that every rim torug; is of the forme; x o™ in 9M’ C X for some closed ori-
ented curve:; on ¥,,. By writing ¢; as a linear combination of closed curves®jy without self-
intersections and placing the corresponding rim tori into different lajagsx S' x t; in a collar
Yp x St x I of 9M’, we see thaR; is a linear combination of embedded Lagrangian tori of self-
intersectior) in X . Since the adjunction formula holds for each one of them,

s; =0, forallj=1,...,d

hence also
7“]' = KX . Sj.

It remains to determing,s, pv, Kx - Bx andKx - S;. To determine,, note thatyy, Kx = Ky =
pi, K. This implies that the intersection of a class)/ ) with K x is equal to its intersection with
K. Recall that we have by equation (5.19) a decomposition

H*(M;Z) = P(M) © Z% ) @ ZByy. (5.28)

By our choice of orientation fox ;;, the adjunction formula holds and we halig; >y, = 2g — 2. By
equation 5.20 we can decompdsg, in the direct sum (5.28) as

Ky =Ky + (KuBu — (29 — 2)Bi)Sum + (29 — 2) B, (5.29)
where we have set
Ky = Ky — (29 — 2)By — (KyBar — (29 — 2)B3) S € P(M).

It is then clear that

pv = K.
Similarly,
Ky =Ky + (KNBy — (29 — 2)B%)YN + (29 — 2)By
with
Ky =Ky —(29—2)By — (KyByn — (29 — 2)B%)XN € P(N)
andwe have

oy = Kn.

We now calculate{x - Bx. Our choice of orientation foE,;; andX y and the fact thak,; By, =
+1 = ¥y By determines an orientation &f,; and By and hence an orientation féty .

Lemma 5.51. With this choice of orientation, we havéx Bx = Ky By + KBy + 2.

Proof. We extend the holomorphic 2-forfap A Q5 on the boundargv s, of the tubular neighbour-
hood ofX;; in M of radius2 to the holomorphic 2-form on3,; given by the same formula and then
to a holomorphic 2-form o/ \ vX,,. The zero set of the resulting holomorphic 2-fofyy, restricted

to vy = Dy x Xy consists of2g — 2 parallel copies ofD,,. We can choose the surfaé,
such that it is parallel but disjoint from these copiedhf; insidevX; and intersects the zero set of
Qs outside transverse. The zero setBjy then consists of a set of points which count algebraically
as Ky Bys. We can do a similar construction fof. We think of the surfacé3x as being glued to-
gether from the surface8,; and By by deleting in each a disk of radiig/2 in D; and Dy around

0. On the M side we get two additional positive zeroes coming from the intersection with the class
— 3% a,TM 4+ 25M in Corollary 5.50 over the annulus i, between radius/+/2 and2. Adding
these terms proves the claim. O
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It remains to determine the intersectidids -.5; whichgive the rim tori contribution to the canonical
class. This is not possible in general and depends on the situation. We make the following definition.

Definition 5.52. Let Q)x; be a given 1-form orE with 2¢g — 2 transverse zeroes, holomorphic with
respect to a given almost complex structuie. Under the embeddingy; and the trivializationr;,

of the normal bundle equip the tubular neighbourheadh,; of radius2 with the almost complex
structureJp + Jx; and the holomorphic 2-forrep A Qs. Let SM be a closed oriented surface in
M’ = M \ vX,; which bounds a closed curve™ on 9vX,; which is disjoint from the zeroes of

Qp A Qs on the boundary. TheR(;S™ denotes the obstruction to extend the given sectidlid gfon

oM over the whole surfacg . This is the number of zeroes one encounters when trying to extend the
non-vanishing section ak; on 9SM over all of SM. There is an exactly analogous definition fér

with almost complex structurép + Jx, and holomorphic 2-forrf p AQ2s: on the tubular neighbourhood
vYy of radius2.

In particular, there are numbeféMSN andKNSiN for the surfaces bounding Ioopy in OM’
andc in N’ which represent the classes

yMin oM’
YN 4+ a;oN in ON',

and get identified under the diffeomorphigin We choose the basis fd{,(X), the rim tori R;, the
curvescM, ¢V and the surfaces, SV as described in Section V.3.4 and Remark 5.44.

Lemma 5.53. With the choice of orientation as in Section V.3.4, we hiaweS; = K SM — Ky SN —
;.

Proof. The proof is the similar to the proof for Lemma 5.51. The minus sign in frodt oY comes
in because we have to change the orientatiosSnif we want to sew it toS? to get the surface;

in X. This time the non-zero intersections over the annulul jp between radius/\/i and2 come
from the intersection of the annulus

WX [1/v2,2]
andthe class
29 d
= arM +25M = =Y "R 425V,
=1 =1

giving —a;. O
We can evaluate this term further because we have chosen

M _ M
sM = D]

N N N N/
Si =0Qy UDy Ul

whereUiN/ is constructed from a surfadéiN representing:;(By — B% X x) by deleting the part in

v¥n. There are additional rim tori terms in the definition of thgused to separat; and.S; for

i # 7 which we can ignore here because the canonical class evaluates to zero on them. We think of
the surface)¥ as being constructed in the annulus between raglarsd3 timesY. . We extend the
almost complex structure and the holomorphic 2-form over this annulus without change. Hence there
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are no zeroes a2y on Q. The surfaceD)Y contributesk y DY to the numbeis xS and the surface
UN' contributes

KNUiN, = aiKN(BN — (B%V)ZN)
= a;(KnBy — (29 — 2)B%)).

Hence we get:

Lemma 5.54. With our choice of the surface% and ¥, we have
KxS; = Ky DM — KyDY — a;(KnBy — (29 — 2)B%, +1).

This formula has the advantage that the first two terms are independent of the choice of the diffeo-
morphisme¢. By collecting our calculations we get:

Theorem 5.55. Let X = M#y,,—x, N be a symplectic generalized fibre sum of closed oriented
symplectic 4-manifoldd/ and N along embedded symplectic surfaceg;, ¥ of genusg which
represent indivisible homology classes and are oriented by the symplectic forms. Suppose that the
cohomology of\/, N and X is torsion free. Choose a basis féf?(X; Z) as in Theorem 5.37, where

the split classes are constructed from surfasgs, S as in Section V.3.4 and Remark 5.44. Then the
canonical class o is given by

d
Kx :K—M‘|‘K—N+ ZTZ‘Ri-Fbex-FUXEX,
=1

wheie
Ky =Ky — (29— 2)By — (Ky By — (29 — 2)B3) S € P(M)
Ky =Ky —(29—2)By — (KNBn — (29 — 2)B%)XN € P(N)
ri = KxS; = Ky DM — KDY — ai(KnBy — (29 — 2)B% + 1)
bx =29 —2
ox = KyBu + KnBy +2 — (29 — 2)(B3; + BY).

Note thatK x depends in this formula on the diffeomorphignthrough the term
—a;(KnyBy — (29 —2)BY + 1)
which gives the contribution
d
(KnBy — (29— 2)BX + 1)Ro = — Y _ai(KnyBy — (29 — 2)B} + 1)R;
=1
to the canonical class.

Remark 5.56. The apparent asymmetry betweéf and N in the rim tori contribution toKx is
related to the asymmetry in definingy to come fromx~ and not from:". To write the formula in
a symmetric way note that Z?Zl a; R; is precisely the rim torug¢ in X determined by the gluing
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diffeomorphismg, cf. Definition 5.22 and Remark 5.44. By Lemma 5.23 we h&yve= ¥/, — Xx.
Hence we can write

d
Kx = Ky + Ky + ) tiRi+bxBx + nxEx + xS,
=1

where
Ky = Ky — (29 — 2)Byr — (Ky By — (29 — 2)Bi) 5w € P(M)
Ky =Ky — (29— 2)By — (KnBy — (29 — 2)BX)En € P(N)
ti = KyD} — KyD)Y
bx =29 —2
nx = KyBu +1— (29 — 2)Bj,
ny = KyBy +1— (29 — 2)B%.

Note that under the embeddings Bf (M) and H?(N) into H?(X) given by Remark 5.45, the
canonical classes d@ff and N map to

Ky — K+ (29 — 2)Bx + (K By — (29 — 2)B3,)Yx
Ky v+ Ky + (29 —2)Bx + (KnyBy — (29 — 2)B3) Y.

This implies with Remark 5.56:
Corollary 5.57. Under the assumptions in Theorem 5.55 and the embedding$(afl) and H2(N)
into H%(X) given by Remark 5.45, the canonical classXof= M#sy,,-x, N is given by
d
Kx =Ky +Ky+3x +3y — (29— 2)Bx + Y _tiR;,
=1
wheret; = Ky DM — KyDN.

For example, suppose that= 1, the coefficients;, . .. ¢, vanish and>x = ¥',.. Then we get the
classical formula for the generalized fibre sum along tori

Kx =Ky + Ky +2Xx,

which can be found in the literatur, e.g. [126]. See Section V.6.1 for more applications in the torus case.

V.6 Examples and applications

To check the formula for the canonical class given by Theorem 5.55 we calculate the AGuare
Qx(Kx, Kx) and compare it with the classical formula

c1(X)? = c1(M)? + E(N) + (89 — 8), (5.30)
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which can be derived independently using the formulas for the Euler characteristic and the signature of
a generalized fibre sum (see the proof of Corollary 5.14) and the fornjula 2¢ + 30. We do this
step by step. We have (cf. Theorem 5.37):
Qx (K, Kur) = Qu(Kun, Kur)
= Qu (K, Kur)
= K3 — (29 — 2) Ky By — (29 — 2)(Kv By — (29 — 2) By)
= K3} — (49 — 4) Ky By + (29 — 2)*B3,.
The second step in this calculation follows since by definitidyy is orthogonal toB;; and ;.
Similarly -
Qx(Kn,EKn) = K% — (49 — 4)KnBy + (29 — 2)*B%.
The rim torus terny"%_| r; R; has zero intersection with itself and all other termdsin. We have
Qx(bxBx,bxBx) = (29 — 2)*(B%, + B%),
and
2Qx (bxBx,oxYx) = 2(29 — 2)(Ky By + KnBy + 2 — (29 — 2)(B3; + BX)).
The self-intersection of x is zero. Adding these terms together, we get
K% = K3y — (49 — 49Ky Bur + (29 — 2)°Bi + KX — (49 — 4 Kn By + (29 — 2)° B
+ (29 — 2)*(Biy + BY) +2(29 — 2)(Kn By + Kn By +2 — (29 — 2)(Bi; + BY))
= Kiy + K} + (29 — 2)*(B3, + Byy) + (29 — 2)*(Bi, + BR)
—2(2g — 2)*(B3; + BY) + (8¢ — 8)
= K3 + K%+ (8¢ — 8).
This is the expected result in equation (5.30).
As another check we compare the formula fox in Theorem 5.55 with a formula of lonel and
Parker which determines the intersectionfof with certain homology classes for symplectic general-
ized fibre sums in arbitrary dimension and without the assumption of trivial normal bundig ahd

Yy (see [69, Lemma 2.4] and an application in [138]). For dimengiwaith surfaces of genug and
self-intersection zero the formula can be written (in our notation for the cohomology:of

KxC = KyC forC e P(M)
KxC = KnC forC € P(N)
KxdYx =KyXy = KXy
=29 —2 (by the adjunction formula)
KxR =0 forall elementsin?(X)
KxBx = KyBy + KnBy + 2(ByXy = BNEnN)
= KyBy + KnBy + 2.
There is no statement about the intersection with class84 ) that have a non-zero component in
ker(ins @iy ). We calculate the corresponding intersections with the formul&feiin Theorem 5.55.
ForC € P(M) we have
Kx-C=Ky-C
=Ky - C,
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where the second line follows because the terms in the formul& fgrinvolving B,; andX,; have
zero intersection witlt’, being a perpendicular element. A similar equation holds\Woil he intersec-
tion with X x is given by

Kx-¥Yx =(29-2)Bx -Xx
=29 — 2.

The intersection with rim tori is zero and

Kx -Bx =bxB% +0x
= (29 — 2)(B3; + BXY) + KBy + KnBn + 2 — (29 — 2)(B3 + BR)
= Ky By + KnBy + 2,

which also follows by Lemma 5.51. Hence with the formula in Theorem 5.55 we get the same result as
with the formula of lonel and Parker.

The following corollary gives a criterion when the canonical claSg is divisible by d as an
element inH?(X;Z).

Corollary 5.58. Let X be a symplectic generalized fibre suifi#ts;,,—x,, N as in Theorem 5.55. If
K x is divisible by an integed > 0 then

e the integerg — 2 and K, By + Kx By + 2 are divisible byd, and

e the cohomology classés,; — (K By )Xy in H2(M;Z) and Ky — (KyBy)Sy in H2(N; Z)
are divisible byd.

Conversely, if all; vanish, then these conditions are also sufficientgr being divisible byi.

The proof is immediate by the formula for the canonical clEsssinceBy andX x are indivisible.
The following proposition gives a criterion which excludes the existence of non-zero rim tori in the
cohomology ofX .

Proposition 5.59. Let M, N be closed 4-manifolds with embedded surfaggs and X of genus

g. Suppose that the first homology &f and N is torsion free and the map, © in: Hi(X;Z) —
H,(M;Z)® Hi(N;Z) is injective with torsion free cokernel. Then the cohomology of the generalized
fibore sumX = M#s,,—x, IV does not contain non-zero rim tori. This holds, in particular, if one of
the maps,y, iy is injective with torsion free cokernel.

Proof. Under the assumptions, there is a splittfig(M ) ® H1(N) = Im (ipr @ in) @ Coker(ips @
in). We can find a basis, ..., ey, of Hi(X;Z) consisting of elements whose images, w;) =
(iareiyine;) fori =1,...,2g can be completed to a basisBf (M) @ H,(N) by elements

(V2g+1, W2g+1), - - -5 (VN, WN)-
Take the dual basigy;, 3;). Thena; € HY(M) andB; € HY(N). We have
(iprai +inBis e5) = (o, v5) + (Bi, wy)
= 51]

Hence the image$ii,c; + i%6;}, with i = 1,...,2¢, form a dual basis tde;} for H(X). In
particular,i}, + i} is surjective and?(X) = 0. If one of the maps,,, iy satisfies the condition, then
clearlyiys @ i is injective. A torsion element in the cokernel is also a torsion element in the cokernel
of both mapsg,, andi . This proves the claim. O
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Consider, for example, the manifold = My x S usedin the knot surgery construction from
Section V.4.1. The first homology i is generated by the image of the toflig = m x S'. Hence
irne: T? — M induces an isomorphism aff; and the knot surgery manifold§x do not contain rim
tori, for arbitrary closed 4-manifold’.

We can calculate the canonical class in the following way: Recall Miatx S* fibres overT™
with fibre a surfaces;, of genush. The generalized fibre sum is done along a secfignand the
canonical class oM x St is (2h — 2)Ty;. We will use the fibreZ, asB)y,. We haveB]?W = 0and
By Ky = 2h — 2. This implies thatfd; = 0.

Corollary 5.60. Let X be a closed, symplectic 4-manifold with torsion free cohomology. Suppose that
X contains a symplectic torus of self-intersectibariented by the symplectic form. L&t be a fibred
knot andX i the result of knot surgery alorifiy. Then the canonical class &fx is given by

KXK :Tx+(2h+KxBx)TXK,
WhereK—X =Kx — (KxBx)Tx.

Theproof is immediate by the formula for the canonical class in Theorem 5.55. We want to compare
this formula to the formula given by Fintushel and Stern in [38, Corollary 1.7]:

KXK = Kx +2hTx. (531)
This formula involves the identificatioA ?(X; Z) = H?(X;Z) in equation (5.23) which sends

Tx — Tx,
Bx +— Bx,
Id: P(X)— P(X).

We can split the clasK y € H?(X;Z) as before intd y = K—X_+(KXBX)TX whereKy € P(X).
Thenthe classK'x + 2hTx maps under this isomorphism #x + (2 + KxBx)Tx,, which is
identical to our formula. See also Corollary 5.57.

V.6.1 Generalized fibre sums along tori

We consider some further applications of Theorem 5.55. Metand N be closed symplectic 4-
manifolds which contain symplectically embedded 6y} andTy of self-intersectiord), representing
indivisible classes. Suppose tht and NV have torsion free homology and both tori are contained
in cusp neighbourhoods. Then each torus has two vanishing cycles coming from the cusp. We choose
identifications of boti,; andTx with 72 such that the vanishing cycles are given by the simple closed
loopsy; = S' x 1 andy, = 1 x S'. The loops bound embedded vanishing diskd4nand N of
self-intersection-1 which we denote byDM D) and (DY, DY). The existence of the vanishing
disks shows that the embeddinfjs, — M andTy — N induce the zero map on the fundamental
group.

We choose for both tori trivializations of the normal bundles and corresponding pushfind
TN . By choosing the trivializations appropriately we can assume that the vanishing disks bound the
vanishing cycles on these push-offs and are containéd inint 7y, and N \ intvTy. We consider
the symplectic generalized fibre sukh= X (¢) = M#r,,-1, N for a gluing diffeomorphism

¢: O(M \ intvTy) — O(N \ intvTy).
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The vanishing cycles on both tori give a basisfr{T?; Z) andwe can describe the cohomology class
C with respect to this basis: if; = (C,~;) ando denotes the meridians #0,; in M andT in N then
¢: OV — OvTn maps in homology

Y17 ao
Y2 Y2 + a0

Ot —0

by Lemma 5.5. Note thatl; (X (¢)) = H1(M )@ Hi(N) by Theorem 5.11. Hence under our assump-
tions the homology of{ (¢) is torsion free. The group of rim tori iB(X) = Coker(#, + %) = Z2.

Let Ry, R, denote a basis fak(.X ). We calculate the canonical classXf= X (¢) by Theorem 5.55:
Let By, and By denote surfaces ifd and N which intersectl,; andTy transversely once. Then the
canonical class is given by

Kx =Ky + Ky + (rRy +1r2R2) + bxBx + oxTx,
where

Ky = Ky — (KyBag)Toy € P(M)
Ky = Ky — (KnBy)Ty € P(N)
r; = KxS; = Ky DM — KDY — a;(KyBy + 1)
bx =29g—-2=0
ox = Ky By + KBy + 2.

Lemma 5.61. In the situation above we hav€,; DM — KyDN = 0fori = 1,2.

Proof. Note that the pair¢D{!, D) and (D!, D) sew together in the generalized fibre sixip =
X (Id) to give embedded spherss, S, of self-intersection-2. We claim that

Kx,S;i = KyDM — KDY =0, i=1,2.

This is clear by the adjunction formula if the spheres are symplectic or Lagrangian. In the general case,
note that inX there are rim torR;, R, which are dual to the spherss, S, and which can be assumed
Lagrangian by the Gompf construction. Consider the paiand.S;: By the adjunction formula we

have Kx,R; = 0. The sphere5; and the torusk; intersect once. By smoothing the intersection
point we get a smooth torus of self-intersection zerdinrepresenting?; + S;. Note thatKx, is

a Seiberg-Witten basic class. The adjunction inequality [104] impliesAhg{( R, + S1) = 0 which

shows thatx,.S; = 0. In a similar way it follows that<x,S2 = 0. O

This implies:

Proposition 5.62. Let M, N be closed symplectic 4-manifolds with torsion free homology. Suppose
that T), and Ty are embedded symplectic tori of self-intersectibmhich are contained in cusp
neighbourhoods inV/ and N. Then the canonical class of the symplectic generalized fibre sum
X = X(¢) = M#tr,,—1, N is given by

KX:KM+K—N+(T1R1+T2R2)+U)(TX
ZKM-FKN—FT)(—FT)/(,
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where
m: Ky — (KMBM)TM S P(M)
K—N: Ky — (KNBN)TN € P(N)
r; = —ai(KNBN + 1)
ox = KyBy + KnBy + 2.

The second line in the formula fdt x holds by Corollary 5.57 under the embeddingst#( M) and
H2(N)in H%(X).

HereTx is the torus inX determined by the push-off* andT% is determined by the push-off
TN. As a special case suppose that the oy and Ty are contained in smoothly embedded nuclei
N(m) € M andN(n) C N which are by definition diffeomorphic to neighbourhoods of a cusp fibre
and a section in the elliptic surfac&§m) andE(n), cf. [53], [56]. The surface®,; and By can now
be chosen as the spher&g, Sy inside the nuclei corresponding to the sections. The spheres have
self-intersection-m and —n respectively. If the spher&,, is symplectic or Lagrangian in/ we get
by the adjunction formula

KySy =m — 2.

If m = 2 this holds by an argument similar to the one in Lemma 5.61 also without the assumption that
S is symplectic or Lagrangian. With Proposition 5.62 we get:

Corollary 5.63. Let M, N be closed symplectic 4-manifolds with torsion free homology. Suppose that
Ty andTy are embedded symplectic tori of self-intersectiavhich are contained in embedded nuclei
N(m) C M and N(n) C N. Suppose that, = 2 or the sphereS), is symplectic or Lagrangian.
Similarly, suppose that = 2 or the sphere5y is symplectic or Lagrangian. Then the canonical class
of the symplectic generalized fibre sim= X (¢) = M+#r,,—1, N is given by

Kx =Ky + Ky — (n—1)(a1Ry + aaRa) + (m +n —2)Tx
— Rg + Ry + (m — )Tx + (n — 1T,
where
Ky = Ky — (m—2)Ty € P(M)
Ky = Ky — (n—2)Ty € P(N).

For the second line in this formula fdt x see Remark 5.56. Note that the clas@ R, + a2 R2)
is equal to the rim toru®¢ in X which satisfiec = T% — Tx. We consider two examples:

Example 5.64. Suppose thafl/ is an arbitrary closed symplectic 4-manifold with torsion free ho-
mology andT), is contained in a nucleud’(2) C M. Suppose thalV is the elliptic surfaceZ(n)
with general fibreTy. SinceKg(,) = (n — 2)Ty we getKy = 0. Hence the canonical class of
X = X(¢) = M#r,,—1yE(n) is given by

Kx =Ky — (n — 1)(&1R1 + CLQRQ) +nTx.

Note thatK,; = Kj; € P(M) in this case. If bothu; andas vanish (hence the vanishing cycles
in the generalized fibre sum are identified) we et = Kj; + nTx. This can be compared to the
classical formulakx = K + Ky + 2T'x which can be found in the literature, e.g. [126].Mf is
simply-connected theX is again simply-connected: This follows becawég) \ Ty andE(n) \ Tn
are simply-connected (the meridians bound punctured disks given by the sections).
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Example 5.65. Supposehat M = E(m) and N = E(n) with general fibregy; andTy. Then the
canonical class oK = X (¢) = E(m)#r,,—1y E(n) is given by

Kx =—(n—1)(aR1 +a2R2) + (m+n—2)Tx

= (m—1)Tx + (n—1)Tx. (5:32)

If both coefficientsa; anday vanish, we get the standard formutéy = (m + n — 2)Tx for the
fibore sumE(m + n) = E(m)#1,=1yE(n). If n = 1 we see from the first line that there is no rim
tori contribution, independent of the gluing diffeomorphigm The canonical class is always given
by (m — 1)Tx. This can be explained because every orientation-preserving self-diffeomorphism of
J(E(1) \ intvF) extends ovel(1) \ intvF whereF’ denotes a general fibre. Hence all generalized
fibre sumsX (¢) are diffeomorphic to the elliptic surfacg(m + 1) in this case (see [56, Theorem
8.3.11]). Ifn # 1 butm = 1 a similar argument holds by the second line.

If bothm, n # 1, then there can exist a non-trivial rim tori contribution. For exampie i n = 2
and we consider the generalized fibre siim= X (¢) = E(2)#r,,=1, E£(2) of two K3-surfaced/(2)
then

Kx = —(a1Ry + a2Ro) + 2Tx
=Tx +T)/(

If the greatest common divisor afi andas; is odd thenK x is indivisible (because there exist certain
split classes inX dual to the rim torik; andRs). In this case the manifol& is no longer spin, hence
cannot be homeomorphic to the spin manifél@t).

We return to the general case of closed 4-manifdifignd N which contain toril; and Ty of
self-intersectiord, lying in cusp neighbourhoods. For the following lemma we do not have to assume
that the manifolds and the tori are symplectic. By varying the parametess which determine the
gluing diffeomorphismp up to isotopy, we get & ¢ Z family of closed 4-manifolds

X(a1,a2) = M#7,,—1yN.
Using the existence of a cusp one can show that this reducdSgdeanily up to diffeomorphism:

Lemma 5.66. The manifoldX (a1, as) is diffeomorphic taX (p, 0) wherep > 0 denotes the greatest
common divisor ofiy, as.

Proof. In the basisy;,ve, o for H1(T? x S1) the gluing diffeomorphisng is represented by the matrix

1 0 0
0 1 0
ap a -1

Every automorphismd € SL(2,7Z) acting on(y;,72) can be realized by an orientation preserving
self-diffeomorphism ofl’y;. SinceT), is contained in a cusp neighbourhood this diffeomorphism can

be extended (using the monodromy around the cusp) to an orientation preserving self-diffeomorphism
of M which mapsT, to itself and has support in the cusp neighbourhood, cf. [53], [56, Lemma 8.3.6].
Similarly, any automorphism i§ L (3, Z) of the form

x % 0
* *x 0
0 0 1

3This formula can also be derived from a gluing formula for the Seiberg-Witten invariants @longf. [109, Corollary
22].
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acting on(vy1,72,0) can be realized by an orientation preserving self-diffeomorphigmof ov T},
which preserves the push-af (as a set) and the meridiart’ . This diffeomorphism can be extended
to an orientation preserving self-diffeomorphismidf\ intvT;. A similar result holds for automor-
phisms inSL(3,7Z) realized by diffeomorphismg acting onovT sinceTy is also contained in a
cusp neighbourhood.

We can choose integers, o such that

ai a2 __
=t +re=2 =1.
1, 125

Let ¢ be a diffeomorphism corresponding to the matrix

Consider the diffeomorphism
¢ =vYnodothy: Ty — Ty

Multiplying matrices one can check thatis represented by the matrix

1 0 0
01 0 .
p 0 —1

In particular,¢’ can be realized as a gluing diffeomorphism and singe 1)y extend over the comple-
ments of the tubular neighbourhoodsin and NV, it follows that the manifoldsX (¢’) and X (¢) are
diffeomorphic. This proves the claim. O

In particular, forM = E(m) and N = E(n) with general fibresly;, T we get a family of
simply-connected symplectic 4-manifolds

X(mvnap) = E(m)#TM:TNE(TL), pE Z.

Note thatX (m, n, p) has the same characteristic numb&rando as the elliptic surfac& (m + n).
The manifoldsX (m,n,p) and X (m,n, —p) are diffeomorphic andX (m,n,0) is diffeomorphic to
E(m+n). The canonical class of = X (m,n, p) can be calculated by the formula in Example 5.65:

Kx =—-(n—1)pRi+ (m+n—2)Tx.
This implies:

Proposition 5.67. If (m 4+ n — 2) does not divid¢n — 1)p thenX (m, n, p) is not diffeomorphic to the
elliptic surfaceE(m + n).
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Proof. If X (m,n,p) is diffeomorphic toE(m + n) and(m + n — 2) does not dividgn — 1)p then

we have constructed a symplectic structurefimn + n) whose canonical clas& x is not divisible

by m + n — 2. Note thatE(m + n) hasb; > 3 under our assumptions. The canonical cl&Ss is

a Seiberg-Witten basic class @&1{m + n). The Seiberg-Witten basic classes of the smooth manifold
underlying E(m + n) are known. They are of the formF" where F' is a general fibre andl is an
integer withk = m +n mod 2 and|k| < m + n — 2, cf. [48], [82]. However, a theorem of Taubes
[133] shows that the only basic classesifin + n) which can be the canonical class of a symplectic
structure aret(m + n — 2)F. This is a contradiction. O

As a corollary, we get a new proof of the following known result, cf. [56, Theorem 8.3.11]:

Corollary 5.68. Letn > 2, p € Z and F' a general fibre in the elliptic surfacE(n) with fibred tubular
neighbourhood F. Suppose thap is an orientation preserving self-diffeomorphisnoefF’ realizing

1 00
0 1 0 | eSL3,2)
p 0 1

on H,(0vF'). Them) extends to an orientation preserving self-diffeomorphisifi@f) \ int v F' if and
onlyifp = 0.

Proof. Suppose that # 0. If ¢ extends to a self-diffeomorphism éf(n) \ intvF, thenX (m, n, p)
is diffeomorphic toE(m + n) for all m > 1. Sincen # 1 we can choose: large enough such that
(m + n — 2) does not dividén — 1)p. This is a contradiction to Proposition 5.67. O

Note that the diffeomorphisnp doesextend in the case of/(1) for all integersp € Z by [56,
Theorem 8.3.11].

V.6.2 Inequivalent symplectic structures

In this section we will prove a theorem similar to a result of I. Smith [126, Theorem 1.5] which can be
used to show that certain 4-manifalf admit inequivalent symplectic structures, where “equivalence”
is defined in the following way (cf. [140]):

Definition 5.69. Two symplectic forms on a closed oriented 4-maniféldlare calledequivalent, if
they can be made identical by a combination of deformations through symplectic forms and orientation
preserving self-diffeomorphisms éf .

Note that the canonical classes of equivalent symplectic forms have the same (maximal) divisibility
as elements ofi?(M;Z). This follows because deformations do not change the canonical class and
the application of an orientation preserving self-diffeomorphism does not change the divisibility.

We will use the following lemma.

Lemma 5.70. Let (M, w) be a symplectic 4-manifold with canonical cla&s Then the symplectic
structure—w has canonical class K.

Proof. Let J be an almost complex structure ai, compatible witho. Then—J is an almost com-
plex structure compatible withw. The complex vector bundig’ X', —.J) is the conjugate bundle to
(T'X,J). By [100], this implies that, (T'X,—J) = —c1 (T X, J). Since the canonical class is minus
the first Chern class of the tangent bundle the claim follows. O
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Let My x S' bea 4-manifold used in the knot surgery construction whres a fibred knot of
genush. Let Tk be a section of the fibre bundle

Mszl <———~Eh

T2
andB afibre. We fix an orientation dfix and choose the orientation &) such thafl'x - B = +1.
There exist symplectic structures o x S* such that both the fibre and the section are symplectic.

We can choose such a symplectic structutewhich restricts to boti'x and B as a positive volume
form with respect to the orientations. It has canonical class

K* = (2h —2)Tk

by the adjunction formula. We also define the symplectic farm= —w™. It restricts to a negative
volume form onlx andBx . By Lemma 5.70, the canonical class of this symplectic structure is

K~ = —(2h — 2)Tk.

Let X be a closed oriented 4-manifold with torsion free cohomology which contains an embedded
oriented torug’x of self-intersectior). We form the oriented 4-manifold

by doing the generalized fibre sum along the gdix, Tk ) of oriented tori. Suppose thaf has a
symplectic structurerx such thafl'x is symplectic. We consider two cases: If the symplectic farm
restricts to a positive volume form @y we can glue this symplectic form to the symplectic farmn
on M x S* to get a symplectic structure;gK on X . The canonical class of this symplectic structure
is

K%, = Kx + 2hTx,

as seen above, cf. equation (5.31).

Lemma 5.71. Suppose that x restricts to a negative volume form @k,. We can glue this symplectic
form to the symplectic form~ on My x S to get a symplectic structutey,  on Xx. The canonical
class of this symplectic structure is

Ky, = Kx —2hTx.

Proof. We use Lemma 5.70 twice: The symplectic forrvx restricts to a positive volume form on
Tx. We can glue this symplectic form to the symplectic faorh on M x S* which also restricts to

a positive volume form ofdx. Then we can use the standard formula (5.31) to get for the canonical
class of the resulting symplectic form of

K=—-Kx +2hTx.
The symplectic formu;(K we want to consider iginusthe symplectic form we have just constructed.

Hence its canonical cIassIé;(K = Kx — 2hTYx. O

Lemma 5.72. Let (M, w) be a closed symplectic 4-manifold with canonical cl&Sg. Suppose that
M contains pairwise disjoint embedded oriented Lagrangian surfdges.., 7,1 (r > 1) with the
following properties:
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e Theclasses of the surfacds, ..., T, are linearly independent i/ (M ; R).

e The surfaceTl,., 1 is homologous ta 77 + ... + a,T;, where all coefficients, ..., a, are
positive integers.

Then for every non-empty subsetc {71,...,T,} there exists a symplectic forwx on M with the
following properties:

e All surfacesTlt, . .., T, are symplectic.

e The symplectic formvg induces on the surfaces i% and the surfacd.,; a positive volume
form and on the remaining surfaces{ffy, ..., 7.} \ S a negative volume form.

Moreover, the canonical classes of the symplectic structugeare all equal toK;;. We can also
assume that any given closed oriented surfac&findisjoint from the surface$, ..., 7,11, which is
symplectic with respect to, stays symplectic favg with the same sign of the induced volume form.

Proof. The proof is similar to the proof of [52, Lemma 1.6]. We can assume&hat{7;i,...,T,}

withs+1 <r. Let
s r—1
c= Zai, CI = Z a;.
i=1 =541

Since the classes of the surfad@s. . ., T, are linearly independent iy (M ; R) and H3, ,(M) is the
dual space ofi,(M;R) there exists a closed 2-formon M with the following properties:

/77:—1,...,/7]:—1
T s
/ 77:—|—1,...,/ n=+1
TS+1 Tr—1

/ n=(c+1)
/ n=c+1.

Tria

Note that we can choose the valueyadn T, . . ., T, arbitrarily. The value ofT’.; is then determined
byT,11 =a1Th + ...+ a,T,. We can choose symplectic formes on eachl’; such that

/wi—/n, foralli=1,...,r+ 1.
T T;

The symplecticv; induces orf; a negative volume form if < s and a positive volume form if > s+1.

The differencev; — j;n, whereyj;: T; — M is the embedding, has vanishing integral and hence is an
exact 2-form onl; of the formda;. We can extend each; to a small tubular neighbourhood ©f

in M, cut it off differentiably in a slightly larger tubular neighbourhood and extend byall of M.

We can do this such that the tubular neighbourhoodg, of. . , 7,41 are pairwise disjoint. Define the
closed 2-formy’ = 5 + Y271 da; on M. Then

i’ = jin+ da; = w;.

The closed 2-forms’ = w + tn/ is for small values of symplectic. Sincejfw = 0 we get that
Jiw' = tw;. Hencew' is for small valueg > 0 a symplectic form on\/ which induces a volume
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form onT; of the same sign as; foralli = 1,...,r + 1. The claim about the canonical class follows
because the symplectic structutgsare constructed by a deformationwefWe can also choose> 0
small enough such that still restricts to a symplectic form on any given symplectic surface disjoint
from the tori without changing the sign of the induced volume form on this surface. O

We consider the construction in Lemma 5.72 on triples of Lagrangian tori. Recall that the nucleus
N (2) is the smooth manifold with boundary defined as a regular neighbourhood of a cusp fibre and a
section in thei'3-surfaceF(2). It contains an embedded torus given by a regular fibre homologous to
the cusp. It also contains two embedded disks of self-interseetlamhich bound vanishing cycles on
the torus. The vanishing cycles are the simple-closed loops given by the faciorsHrs! x S?.

Suppose thatM, w) is a simply-connected symplectic 4-manifold which contains pairwise disjoint
oriented Lagrangian toffiy, 75, R of self-intersection zero which represent indivisible classes such that
T1,T; are linearly independent arfi@lis homologous taT; + 7> for some integet. > 1. We assume
that R is contained as the torus coming from a general fibre in an embedded ndg@us- M. In
N (2) there exists an oriented embedded splterd self-intersection-2 intersectingR transversely
and positively once. We assume tHatis disjoint from N (2) and that there exists a further embedded
sphereS; in M which is disjoint fromN (2) and intersectd’ transversely and positively once. We
also assume thét intersects the torus, transversely once.

Example 5.73. Let M be the elliptic surfacd”(n) with n > 2. In this example we show that there
existn — 1 triples of Lagrangian tor{7%, T%, R') as above wher&' is homologous ta; 7} + T4, for
i=1,...,n— 1. The integers,; > 0 can be chosen arbitrarily and for each triple independently. All
tori T¢ and R* are contained in disjoint embedded nudl&i2). Together with their dual 2-spheres they
realize2(n— 1) H-summands in the intersection formB{n). In particular, the tori in different triples

are linearly independent. The tori are constructed as rim tori, whgend R’ are standard rim tori
coming from the factors i’ = 72 = S* x S! andT is realized by taking the product of a torus knot

on the fibref" with the meridian. We can also achieve that all Lagrangian tori and the 2-spheres that
intersect them once are disjoint from the nucldig:) C E(n) defined as a regular neighbourhood of

a cusp fibre and a section i(n).

The construction is quite clear by [55, Section 2]. We nevertheless give the explicit construction
here. The proof is by induction: Suppose the Lagrangian triples are already construdi#d f@nd
consider a splitting o (n + 1) as a fibre sunE(n + 1) = E(n)#r-rE(1) along a general fibre.
Choose a general fibt® in both E(n) and E(1) with fibred tubular neighbourhoods. The boundaries
of the tubular neighbourhoods can be identified With= S x S x S1. ConsiderF(1) and a collar
St x St x St x I for the boundary of2(1) \ int v F. In this collar we consider three disjoint tori given

by

Vo=5'xS'%x1xmrg

V1:SIX1><SIX’I“1

Vo =1x 8! % 8 x ro,
where0 < rp < 1 < r2 < 1 and the numbers in the intervhincrease towards the interior &f(1) \
intvF. The toruslj is a push-off of the fibré”. Similarly, we consider in a collar faE'(n) \ intv F’
three disjoint tori given by

Vo =58t xSt x1x s

V1 =8"x1xS"x s

Vo=1x 8" x S x s,
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wheresy > s1 > so are chosen such that the tori get identified pairwise in the fibre sum. We can
assume that is symplectic whilel’;, Vs are Lagrangian (note thétis the identity in this case).

We can choose elliptic fibrations such that near the general filbtleere exist two cusp fibres in
E(1) and three cusp fibres ii(n) (note thatZ(m) has an elliptic fibration witlém cusp fibres for all
m, cf. [56, Corollary 7.3.23]).

In E(1) there exist three disjoint sections for the elliptic fibration. We can assume that they are
parallel inside the collar td x 1 x S' x I and intersect the fibré in three distinct pointdag x
ap, a1 x 1,1 x as}, where allag, af), a1, as # 1. Hence the circles

A0:a0Xa6X51XTQ
A1:a1><1><Sl><7“1

A2:1><a2><5'1><7“2,

bound three disjoint disks of self-intersectieri in E(1) \ F. Since the numbers; are ordered in-
creasingly, it follows that the disk boundimy only intersects the toruis; for i = 0, 1, 2. In particular,
the disk boundingd, intersectd/, in a single point and the disks boundidg, A, intersectl, V5 in
acircle.

The two cusp fibres i(1) determine four disjoint vanishing cycles o F = S x St x S1.
We can assume that they lie at some parameter/. We can choose the following three out of them:
There is one cycle of the form

BQZSlbeXb3XT2,

and two parallel cycles of the form

01201X51X02X7“1
Cy=1x 5% e3 x 9.

Here B, andC> correspond to the second cusp and we have ignored one vanishing cycle for the first
cusp. The three vanishing cycles bound disks of self-interseetiowhich are the cores of certain 2-
handles attached to these circles. We can assume thatalare pairwise different and different from
1 anday, a, a1, a2. Then allB;, C; are pairwise disjoint and disjoint fromM,. The only intersection
with Ay, A, is betweenAs, C5 in one point. We can also assume that the vanishing disks are inside
the collar of the formy x I where the curve is given byB,, C; or C5. Note that the disks bounding
B, Cs are disjoint fromlj, V; because they start at radits The disk bounding’; is disjoint from
V, for the same reason and frovh because; # 1.

Similarly, on theE(n) side we have a section which determines a disk of self-interseetiothat
bounds the circle

A0:a0Xa6XSIXSD,

intersectd/;y in one point and is disjoint fronir;, V5. We also have six vanishing cycles coming from
the three cusps and choose the following five: There are three parallel cycles of the form

Do =S'xdyx1x s

D;=S'x1xd; x s

By = S' X by x b3 X s,
and two parallel cycles of the form

Fo=epx S x1x s

Ci=c1 xSt x ey % s1.
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We have ignored one vanishing cycle for the third cusp. We can assume; thiat e, are pairwise
different and different froni, theb;, ¢; anday, aj. Note that the disks boundinBy, Ey are disjoint
from V7, V5 on the E(n) side becausg is the largest parameter. Also the disks boundihg C;
are disjoint fromV;, becausel;,cs # 1 and the disk bounding3; is disjoint from V4, V; because
b, b3 # 1. We can also assume that all disks defined so far are disjoint if they have different indices.
We can now define the nuclei: The nucleVign + 1) containingl}, has dual sphere sewed together
from the disks boundingl, and vanishing disks bounding, and E,. The nucleusV(2) containing
V1 has dual sphere sewed together from the disks bour@jrand vanishing disks bounding; and
D;. Finally, the nucleusV (2) containingVs has dual sphere sewed together from the disks bounding
B5 and vanishing disks bounding, andCs.
To define the Lagrangian tripld?}, T, R) let Ty = V4 andR = V5. Denote by, : S — S x 1
the embedded curve given by thea, 1)-torus knot and lef, denote the Lagrangian rim torus

TQZCQXSIXT‘g

in the collar above. Them;, represents the classaT} + R, henceR = a1 + T5. This torus has one
positive transverse intersection with the sphere coming faranda negative transverse intersections
with the sphere coming fror@;. This finally proves the claim about the existence:6f 1 triples of
Lagrangian tori inf(n).

Remark 5.74. Since the elliptic nucleusv(n) C E(n) is disjoint from the nuclei containing the
Lagrangian tori it follows that the knot surgery manifdit{n)# r—r, (M x S1) for any fibred knot
K still containsn — 1 triples of Lagrangian tori as above.

Remark 5.75. Suppose that” is an arbitrary closed symplectic 4-manifold which contains an embed-
ded symplectic torugy of self-intersectiord, representing an indivisible class. Then the symplectic
generalized fibre sufnY #r, —r E(n) containsn — 1 triples of Lagrangian tori. By the previous re-
mark this is also true foV = Y #r, —p E(n)#r-1, (M x S') whereK is an arbitrary fibred knot.
Suppose that the homology Bfis torsion free Ty is contained in a cusp neighbourhoodvirand the

fibre sum withE(n) is done such that the vanishing cycles on the tori get identified, cf. Section V.6.1.
Let g denote the genus of the knat and letBy be a surface it which intersect§y once. Then the
formulas in Proposition 5.62 and equation (5.31) imply that the canonical classsafiven by

KV = K—Y + (KyBy +n+ 2g)TV

whereKy = Ky — (KyBy)Ty. If m(Y) = m(Y \ Ty) = 1 thenV is again simply-connected.
In this way one can construct simply-connected symplectic manifolds not homeomorphic to elliptic
surfaces which contain triples of Lagrangian tori.

We return to the general case of a simply-connected symplectic 4-matibld) which contains
a triple of Lagrangian toriy, 75, R as above. By Lemma 5.72 there exist two symplectic structures
w4, w— on M with the same canonical clag§,; asw such that

e The toriTy, T, R are symplectic with respect to both symplectic forms.
e The formw, induces oy, 7>, R a positive volume form.

e The formw_ induces o} a negative volume form and &, R a positive volume form.

4Seg[35, Section 8 and 9] for a related construction.
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We can also achieve thétis symplectic with positive volume form in both cases.
Let K1 and K> be fibred knots of genus;, h- to be fixed later. Consider the associated oriented
4-manifoldsM ., x S! as in the knot surgery construction, fioe 1, 2. We denote sections of the fibre

bundles
MKi X Sl — Zhi

!

T2
by Tk, which are tori of self-intersectiof. Choose an orientation on each toflg,. Note that the
Lagrangian torily, 75 in M are orientedh priori.
We construct a smooth oriented 4-manifdldas follows: For an integen > 1 consider the elliptic
surfaceE'(m) and denote an oriented general fibrefylet M, denote the smooth manifold obtained
by the generalized fibre sum of the paifd, R) and(E(m), F'):

My = E(m)#p—rM.

The gluing diffeomorphism is chosen as follows: We choose the natural trivializations for the normal
bundles ofR in N(2) ¢ M andF C E(m) given by the fibrations. Consider the push-g&ffof R
into the boundary of the tubular neighbourhaefl. The vanishing cycles oR’ bound two disks of
self-intersection-1 in N(2) \ intvR. There are similar vanishing cycles on the push#gfinto ov F
coming from a cusp in an elliptic fibration df(m). We choose the gluing such that the push-offs
and the vanishing cycles get identified. The disks then sew together pairwise to give two embedded
spheresS’, S” in M, of self-intersection-2. By choosing two different push-offs given by the same
trivializations we can assume thét and.S” are disjoint. Note that the sphefewhich intersectsk
once and a section for the elliptic fibration @i{m) sew together to give an embedded sphgren
M, of self-intersection-(m + 2). The sphere also ensures thaltl, is simply-connected sinck/ is
simply-connected.

We denote the torus iy, coming from the push-off?’ by Ry. There exist two disjoint tori i/,
which we still denote by}, Ts, such thatR, is homologous t@7T; + T> in My. Note that the sphere
S1 was disjoint fromR and is still contained id/,. Hence we have the following surfacesiify:

e Embedded oriented tdfi;, 15, Ry of self-intersectior) such thatk, is homologous taT} + 1.
¢ Disjoint embedded spherés, S; whereS; has self—intersectioﬂg =—(m+2).

e The sphere5; intersectsl’ transversely once, has intersectien with 7, and is disjoint from
Ry.

e The sphere; intersectsiy, 15 transversely once and is disjoint frdfy.
We do knot surgery with the fibred knéf; along the torug’ to get the oriented 4-manifold
M1 = MO#leTKl (MKl X Sl)

Since the manifold\/, is simply-connected and contains a sph&réntersectingl’; once, we see that
M, is simply-connected.

The manifold)M; contains a torus which we still denote By. We do knot surgery with the fibred
knot K> along the torug’ to get the oriented 4-manifold

X = Mi#ry=ry, (Mg, x S*).

Note that the spher8, in Mj is disjoint fromT}, hence it is still contained id/; and intersectds
once. This shows that the manifaldis simply-connected.
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Lemma 5.76. Theclosed oriented 4-manifold

X = E(m)#FZRM#leTkl (Mg, x Sl)#TQZTK2 (Mg, % Sl)
is simply-connected.

Definition 5.77. There exists a surface i which we callC, sewed together from the sphefe and
a Seifert surface foK,. The surface has genas and self-intersection(m + 2). It intersects the tori
T, and Ry in X transversely and positively once and is disjoint fréoim

Lemma 5.78. There exists a surfac€; in X which has intersection€1 Ry = a, Ci1T7 = 1 and is
disjoint fromT5,. We can also assume thatCs = 0.

Proof. We can construct the surfacg explicitly as follows: Note that irf?(m) there exists a surface
of some genus homologous dacopies of a section which intersects the fibtdransversely: times.

A similar surface exists in the nuclew§(2) C F(2). These surfaces glue together to give a surface
A in My which has intersectiond Ry = AT, = a and is disjoint fromi;. We tube this surface to
the spheres; which is disjoint fromR, and has intersection$;7; = 1 andS175 = —a. We get a
surfaceB in My with BRy = a, BT} = 1 and BT» = 0. By increasing the genus if necessary we can
assume thabB is disjoint fromT;. Sewing the surfac® to a Seifert surface foK; we get a surface
C}in X with C{Ry = a, C;Ty = 1. The surface is disjoint frorii,. Suppose that’; Cs is non-zero.
Then by adding suitable many copiesif to C we get a surfac€’; which hasC;Cy = 0 while the
intersections withky and73 do not change. O

We now define two symplectic forms}g andwy on X. On the elliptic surfaceZ(m) we can
choose a symplectic @hler) formwg which restricts to a positive volume form on the oriented fibre
F'. It has canonical class

Kgp=(m—-2)F.

Note that the oriented torus in M is symplectic forw, andw_ such that both forms induce positive
volume forms onk. Hence we can glue both symplectic forms to the symplectic fopmo get two
symplectic formsug, w, on M. By Example 5.64, the canonical class for both symplectic forms on
My is

K]VIO = Ky +mRy.

We now extend the symplectic forms #. We choose in each fibre bundiéy, x S! fori = 1,2 a
fibre Bg, and orient the surfacBg, such thatl'x, - Bx, = +1 with the chosen orientation dfi, .
There exist symplectic structures on the closed 4-manifdfgs x S! such that both the section and
the fibre are symplectic. We choose a symplectic structyren My, x S which induces a positive
volume form onl'x, andBg,. The canonical class is given by

Ky = (2hy — 2)Tk,.

On Mg, x S* we define two symplectic forms; andw; . The formw{r induces again a positive
volume form onl'x, , By, . It has canonical class

K{ = (2h — 2)Tk,.

The formw; is given by—wi". It induces a negative volume form on bdil, and By, and has
canonical class
K[ = —(2hy — 2)Tk,.
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The oriented torugy in My is symplectic for both forms,j, w, such thatus induces a positive
volume form andy, a negative volume form. Considéf; = MO#TFTK1 (Mg, x S1). This closed
oriented 4-manifold has two symplectic structures with canonical classes

K}, = Ky +mRo+ 2T
K];fl =Ky +mRy — 2hT}
by Lemma 5.71. The symplectic forms are glued together from the @ajrsv;") and(wy , wy ).
The torusT, can be considered as a symplectic torusMa such that both symplectic struc-
tures induce positive volume forms on it since we can assume that the symplectic foriis on
are still of the formwy andw, in a neighbourhood of,. Hence on the generalized fibre sum

X = Mi#r=14, MK, X S1 we can glue each of the two symplectic forms o to the symplectic
form w, on M, x S*. We get two symplectic structures éhwith canonical classes

Ky = Ky +mRo + 20Ty + 2ho T
K)_( = Ky +mRy — 2hT1 + 2hoT5.

This can be written usingy = aT1 + 15 as

K; =Ky + (2h1 + am)T1 + (2h2 + m)TQ

K;( =Ky + (*2h1 + am)T1 + (2h2 + m)TQ.
Theorem 5.79.Let (M, w) be a simply-connected symplectic 4-manifold which contains pairwise dis-
joint oriented Lagrangian toril, 75, R of self-intersection zero, representing indivisible classes such
that Ty, 75 are linearly independent it/ (M ;R) and R is homologous taT} + 1> for some integer
a > 1. Suppose thak is contained in a nucleud’(2) C M, the spheres in N (2) intersectsl’ trans-

versely once and is disjoint fromN (2). Suppose also that there exists an embedded sghere)/
which is disjoint from (2) and intersectd transversely once. Then the closed oriented 4-manifold

X = B(m)#r=rM#1 =1, (Mrc; X SV #1,7,, (M, X V)
is simply-connected and admits two symplectic structzu@su;( with canonical classes
K{ = Ky + (2h1 + am)Ty + (2ho +m)Th
K)_( =Ky + (—2h1 + am)T1 + (2h2 + m)TQ.

For example, suppose that,, is divisible as a cohomology class by an integer 2. Choose
fibred knotsk, K5 of genush; = 1 andhy = d — 1 and taken = 2 anda = 1. Then the 4-manifold
X admits two symplectic structures with canonical classes

K3 = Ky + 4Ty + 2dT5

Ky =Ky + 2dT5.
Suppose thad does not dividet. Note that the clasg; is indivisible and linearly independent from
T,, cf. Lemma 5.78. Hence the second canonical class is divisiblevilyile the first canonical class

is not divisible byd. Therefore the symplectic structurce§ andwy are inequivalent. The manifold
X is simply-connected and has invariants

3(X) = (M)
(
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We can replacés by »rd — 1 wherer > 1 is an arbitrary integer to get the same divisibility result.
By choosing different knot&’s the formula for the Seiberg-Witten invariants in [38] show that we can
find an infinite family (X)xen Of simply-connected 4-manifolds homeomorphicXoand pairwise
non-diffeomorphic such that eacty, admits a pair of inequivalent symplectic structures.

Remark 5.80. If the sphereS which intersectsRk is symplectic in)M then we can assume that the
surfaceC; in X of genush, and self-intersectior (m+2) is symplectic for both symplectic structures
w} andwy on X.

Remark 5.81. Instead of doing the generalized fibre sum witbm) in the first step of the construction
we could also do a knot surgery with a fibred kit of genushg > 1. This has the advantage that
both¢? and the signature do not change under the construction. However, the Splier&/ is then
replaced by a surface of gentig, sewed together from the sphe¥ein M and a Seifert surface for
K. Hence we do not have a natural candidate in the last step to show/thafl’;, and henceX are
simply-connected.
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In this chapter we derive some geography results for simply-connected symplectic 4-manifolds
and for surfaces of general type whose canonical classes are divisible as a cohomology class by a
given integerd > 1. Recall thatgeographytries to find for any given pair of integefs;, y) in Z x
Z a 4-manifold M with some specified properties such that the Euler charactetisti) equalsz
and the signature (M) equalsy. Note that this can be expressed in an equivalent way in terms of
other invariants, since any two invariants out of the &etr, ¢7, x,} determine the remaining two.

If the 4-manifold is simply-connected then any two invariants together withyjiieof the manifold,
i.e. whether it is spin or not, determine the manifold up to homeomorphism by Freedman’s theorem
[45], cf. Chapter II.

The general geography question for simply-connected symplectic 4-manifolds and for surfaces of
general type has been studied by several authors (references can be found in Chapter I). In particular,
with the intention to cover a large geographical area, the spin and non-spin case for simply-connected
symplectic 4-manifolds has been considered by R. E. Gompf [52], J. Park [111, 112] and B. D. Park
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and Z. Szab[110]. The spin and non-spin case for simply-connected complex surfaces of general type
has been considered by Z. Chen, U. Persson, C. Peters and G. Xiao in [26, 115, 116]. The geography
guestion for simply-connected symplectic 4-manifolds whose canonical class is divisible by a given
integerd > 1 has not been considered systematically, as far as we know, except theeasehich
corresponds to the general case of symplectic spin 4-manifolds.

In Section V1.2 we construct several families of simply-connected symplectic 4-manifolds with
divisible canonical class using the generalized fibre sum construction from Chapter V. In particular, in
the case of homotopy elliptic surfaces é 0) a complete answer to the geography question is possible,
cf. Theorem 6.11. We can also answer the question in the case of simply-connected symplectic 4-
manifolds withc? > 0, negative signature and even divisibility (Theorem 6.20) and have some partial
results for the corresponding case of odd divisibility in Section VI.2.3. The emphasis of the construction
here is to find examples which are as small as possible in terofs thfe Euler charactersticand the
signatures. We will also show, by the construction in Section V.6.2, that some of these manifolds
have several inequivalent symplectic structures, whose canonical classes have different divisibilities.
This can be viewed aslaotanyresult for symplectic structures on a given differentiable 4-manifold.
Similar examples have been found on homotopy elliptic surfaces by C. T. McMullen and C. H. Taubes
[97], I. Smith [126] and S. Vidussi [140]. We did not try to find simply-connected symplectic 4-
manifolds with canonical class divisible by an integer 3 andnon-negativesignature, since even
without a restriction on the divisibility of the canonical class such 4-manifolds are notoriously difficult
to construct.

In the remaining part of this chapter, starting from Section VI.3, we will show that simply-connected
complex surfaces of general type with divisible canonical class can be constructed by using branched
coverings over smooth curves in pluricanonical linear systems. The main results can be found
in Section VI.5. Some of these algebraic surfaces are because of their topological invafiaats (c
and the parity of the divisibility o) and Freedman’s theorem homeomaorphic to some of the simply-
connected symplectic 4-manifolds constructed with the generalized fibre sum. However, itis quite clear
from the construction that these symplectic 4-manifolds have several Seiberg-Witten basic classes. In
particular, they can not be diffeomorphic to any minimal surface of general type, cf. Theorem 6.4.

VI.1 General restrictions on the divisibility of the canonical class

We begin by deriving some general restrictions for symplectic 4-manifolds which admit a symplectic
structure whose canonical class is divisible by an integgr1.

Let M be a closed, symplectic 4-manifold with canonical cl&Ss Since M admits an almost
complex structure, the number

Xn(M) = 1(e(M) + o(M))

has to be an integer. (M) = 0, this number is}(1 + b3 (M)). In particular, in this caséy (M)
has to be an odd integer ang(M) > 0. As explained in Chapter II, there are two further constraints
if M is spin:

cA(M)=0mod8 and (M) = 8x,(M) mod16,

wherec? (M) = 2e(M) + 30 (M). We say thaf is divisible by an integet if there exists a conomol-
ogy classA € H?(M;Z) with K = dA.

Lemma 6.1. Let (M,w) be a closed symplectic 4-manifold. Suppose that the canonical Alass
divisible by an integed. Thenc?(M) is divisible byd? if d is odd and byd? if d is even.
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Proof. If K is divisible byd we can writeK = dA, whereA € H?(M;Z). The equation?(M) =
K? = d?A? implies thatc? (M) is divisible byd? in any case. Ifl is even, thenvy(M) = K = 0 mod
2, henceM is spin and the intersection for@,, is even. This implies that? is divisible by2, hence
c(M) is divisible by2d>. O

Note that the cas€ (M) = 0 is special, since there are no restrictions from this lemma (see Section
VI.2.1). For the general case of spin symplectic 4-manifolds:(2) we recover the constraint that
is divisible bys.

Further restrictions come from the adjunction inequality

2—2=K-C+C-C,
whereC' is an embedded symplectic surface of gepusriented by the symplectic form.

Lemma 6.2. Let (M, w) be a closed symplectic 4-manifold. Suppose that the canonical lass
divisible by an integed.

e If M contains a symplectic surface of genuand self-intersection, thend divides2g — 2.

e If d # 1 then M is minimal. If the manifold}M is in addition simply-connected, then it is
irreducible.

Proof. The first part follows immediately by the adjunction formulaMfis not minimal (see Chapter
[l) then it contains a symplectically embedded sphgref self-intersection—1). The adjunction
formula can be applied and yields - S = —1, henceK has to be indivisible. The claim about
irreducibility follows from Corollary 3.4 in Chapter IIl. O

The canonical class of a 4-manifold with b; > 2 is a Seiberg-Witten basic class, i.e. it has
non-vanishing Seiberg-Witten invariant. Hence only finitely many classé#%\/; Z) can be the
canonical class of a symplectic structure/dn

The following is proved in [89].

Theorem 6.3. Let M be a (smoothly) minimal closed 4-manifold Wbtjﬁ = 1 which admits a sym-
plectic structure. Then the canonical classes of all symplectic structur@$ are equal up to sign.

If M is a Kahler surface, we can also consider the canonical class ofgdhkeKform.
Theorem 6.4. Suppose thal/ is a minimal Kahler surface withb; > 1.
e If M is of general type, theft K, are the only Seiberg-Witten basic classedbf

e If N is another minimal Khler surface withh] > 1 and¢: M — N a diffeomorphism, then
¢*Kn = +K)y.

For the proofs see [48], [102] and [145]. Note that the second part of this theorem is not true in
general for the canonical classyfmplectic structuresn 4-manifolds withb; > 1: there are examples
of 4-manifolds M which admit several symplectic structures whose canonical classes are different
elements inf%(M; Z) and lie in disjoint orbits for the action of the group of orientation preserving self-
diffeomorphisms on72(M; Z) [97]. In some cases the canonical classes have different divisibilities
and for that reason can not be permuted by a diffeomorphism, cf. [126], [140] and examples in the
following sections.

It is useful to define the (maximal) divisibility of the canonical class, at least in the case that
H?(M;7Z) is torsion free.
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Definition 6.5. SupposéH is a finitely generated free abelian group. koe H let
d(a) = max{k € Ny | there exists an elemebtc H, b # 0, with a = kb}.

We call d(a) the divisibility of a (or sometimes, to emphasize, thraximaldivisibility). With this
definition the divisibility ofa is 0 if and onlya = 0. We calla indivisibleif d(a) = 1.

In particular, if M is a simply-connected manifold, the cohomology grdiip(M; Z) is torsion
free and the divisibility of the canonical cla&s € H?(M;Z) is well-defined.

Proposition 6.6. Suppose thad/ is a simply-connected closed 4-manifold which admits at least two
symplectic structures whose canonical classes have different divisibilities /AT hignot diffeomorphic
to a complex surface.

Proof. The assumptions imply thadt has a symplectic structure whose canonical class has divisibility

> 1. By Lemma 6.2, the manifold/ is (smoothly) minimal. Suppose that is diffeomorphic

to a complex surface. The Kodaira-Enriques classification impliesithat diffeomorphic toC P?,

CP! x CP! an elliptic surface®(n), 4, with n > 1 andp, ¢ coprime, or to a surface of general type.
Note that)/ cannot be diffeomorphic t6 P2 because the structure of the cup product on cohomol-

ogy andc? = 9 imply that the canonical class of every symplectic structure has divisibiligysimilar

argument applies t& P! x CP!. The SW-basic classes &f(n), , are known [37]. They consist of

the set of classes of the forhy wheref denotes the indivisible clags= F'/pq andk is an integer

k=npqg—p—qmod2, |kl <npq—p—aq.

By a theorem of Taubes [133] it follows that the canonical class of any symplectic structéie:.py),
is given by=+(npq — p — q) f. Hence there is only one possible divisibility. This follows for surfaces
of general type by Theorem 6.4. O

V1.2 Constructions using the generalized fibre sum

We begin with the casel < 0. The following theorem is due to C. H. Taubes [134] in the dgse 2
and to A. K. Liu [90] in the casé; = 1.

Theorem 6.7. Let M be a closed, symplectic 4-manifold. Suppose Mas minimal.
e If b (M) > 2, thenK? > 0.

o If b5 (M) =1andK? < 0, thenM is aruled surface, i.e. a8?-bundle over a surface (of genus
> 2).

Since ruled surfaces over irrational curves are not simply-connected, any simply-connected, sym-
plectic 4-manifold) with K2 < 0 is not minimal. By Lemma 6.2 this implies thaf is indivisible,
d(K) =1.

Let (xn,c?) = (n, —r) be any lattice point, witm, > 1 and M a simply-connected symplectic
4-manifold with these invariants. Sindd is not minimal, we can blow down @-1)-sphere inM to
get a symplectic manifold/’ such that there exists a diffeomorphism

M = M'#CP2.
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Since

the manifoldM’ has invariants
(xn,c3) = (n, —r +1).
Hence by blowing dowm spheres in\/ of self-intersection-1 we get a simply-connected symplectic
4-manifold N with M = N#rCP? andinvariants(x, c3) = (n,0).
Conversely, consider the manifold
M = E(n)#rCP2.
Then M is a simply-connected symplectic 4-manifold with indivisitie Sincex,(E(n)) = n and
c2(E(n)) = 0, this implies
(Xh(M)7 C%(M)) = (n7 _T)'
Hence the pointn, —r) can be realized by a simply-connected symplectic 4-manifold.

VI.2.1 Homotopy elliptic surfaces
We now consider the cagg = 0.

Definition 6.8. A closed, simply-connected 4-manifaM is called ehomotopy elliptic surfacé M is
homeomorphic to a relatively minimal, simply-connected elliptic surface, i.e. to a surface of the form
E(n)p,q With p, ¢ coprime, cf. Section 11.3.5.

Note that by definition homotopy elliptic surfacés$ are simply-connected and have invariants

(M) =0
e(M)=12n
o(M) = —8n.

The integem is equal tox (M). In particular, symplectic homotopy elliptic surfaces hdgé = 0.
We want to prove the following converse.

Lemma 6.9. Let M be a closed, simply-connected, symplectic 4-manifold With= 0. Then)M is a
homotopy elliptic surface.

Proof. SinceM is almost complex, the numbey, (M) is an integer. The Noether formula
Xn(M) = £(K? 4 e(M)) = 15e(M)
impliesthate (M) is divisible by12, hencee(M) = 12k for somek > 0. Together with the equation
0= K?=2¢e(M)+30(M),

it follows thato (M) = —8k. Suppose thad/ is non-spin. Ifk is odd, thenM has the same Euler
characteristic, signature and type &¢k). If k is even, then\/ has the same Euler characteristic,
signature and type as the non-spin manifbld),. SinceM is simply-connected)/ is homeomorphic
to the corresponding elliptic surface by Freedman’s theorem [45].

Suppose that/ is spin. Then the signature is divisible b§, due to Rochlin’s theorem. Hence the
integerk above has to be even. Théi has the same Euler characteristic, signature and type as the
spin manifoldE (k). Again by Freedman'’s theorem/ is homeomorphic td (k). O
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Lemma 6.10. Supposehat M is a symplectic homotopy elliptic surface such that the divisibiliti{ of
is even. Ther, (M) is even.

Proof. The assumption implies that is spin. The Noether formula then shows that /) is even,
sinceK? = 0 ando (M) is divisible by16. O

The next theorem shows that this is the only restriction on the divisibility of the canonicali€lass
for symplectic homotopy elliptic surfaces.

Theorem 6.11.Letn andd be positive integers. H is even, suppose in addition thais even. Then
there exists a symplectic homotopy elliptic surfat€ w) with y; (M) = n whose canonical clasg
has divisibility equal tal.

Proof. If nis1 or2, the symplectic manifold can be realized as an elliptic surface. Recall from Section
11.3.3 that the canonical class of an elliptic surfdcér), , with p, ¢ coprime is given by

K = (npqg—p—q)f,

wheref is indivisible andF' = pqf denotes the class of a generic fibre. ko 1 andd odd we can
take the surfac&(1),42 2, Since

(d+2)2—(d+2)—2=d.
Forn = 2 andd arbitrary we can také&’(2) .41 = E(2)4+1,1, Since
2d+1)—(d+1)—1=d.

We now consider the case > 1 in general. We separate the proof into several cases. Suppose that
d = 2k andn = 2m are even, wittk, m > 1. Consider the elliptic surfacE(n). It contains a general
fibre F which is a symplectic torus of self-intersectionin addition, it contains a rim toru® which
arises from a decomposition @ (n) as a fibre sunE(n) = E(n — 1)#prFE(1). The rim torusRk
has self-intersectiofi and a dual (Lagrangian) 2-sphe$e which has intersectio®S = 1. We can
assume thakk and S are disjoint from the fibre’. The rim torus is in a natural way Lagrangian.
By a perturbation of the symplectic form we can assume that it becomes symplectic. We tjiee
orientation induced by the symplectic form. The proof consists in doing knot surgery along the fibre
and the rim torusk (see Section V.4.1).

Let K; be a fibred knot of genug, = m(k — 1) + 1. We do knot surgery along' with the knot
K to get a new symplectic 4-manifoltl/;. The elliptic fibrationE(n) — CP! has a section which
shows that the meridian df, which is theS!-fibre of ov F — F, bounds a disk i£(n) \ intv F. This
implies that the complement &f in E(n) is simply-connected (see Corollary A.4), hence the manifold
M is again simply-connected. By the knot surgery construction, the manifiglds homeomorphic
to E(n). The canonical class is given by formula (5.31):

Klbh = (n — 2)F +2g1 F
=(2m —2+2mk —2m +2)F
= 2mkF.

Here we have identified the cohomology bf; and E(n) as explained in connection with formula
(5.31). Note that the rim toru® is still an embedded oriented symplectic torus\ih and has a dual

1Generalizedibre sums along rim tori have been considered e.g. in [35], [40], [52], [60] and [142].
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2-sphereS, because we can assume that the knot surgery takes place in a small neighbourhood of
F disjoint from R and S. In particular, the complement a® in M, is simply-connected. Lek,

be a fibred knot of genug, = k and M the result of knot surgery oif; along R. ThenM is a
simply-connected symplectic 4-manifold homeomorphié&fa). The canonical class is given by

K =2mkF + 2kR.

The classK is divisible by2k. The sphereS' sews together with a Seifert surface fg¢ to give a
surfaceC' in M with C - R =1andC - F = 0, henceC' - K = 2k. This implies that the divisibility of
K is preciselyd = 2k.

Suppose thail = 2k + 1 andn = 2m + 1 are odd, witht > 0 andm > 1. We consider the
elliptic surfaceF (n) and do a similar construction. L&f; be a fibred knot of genug = 2km +k+1
and do knot surgery alon§f as above. We get a simply-connected symplectic 4-maniféjdwith
canonical class

Ky, = (n—2)F + 291 F
2m+1—-2+4+4km+ 2k +2)F
(dkm + 2k +2m + 1)F
(

2m + 1)(2k + 1)F.

Next we consider a fibred knéf, of genusgs = 2k+1 and do knot surgery along the rim tor&s The
result is a simply-connected symplectic 4-maniféfdhomeomorphic tdZ(n) with canonical class

K = (2m +1)(2k + 1)F + 2(2k + 1)R.

The classX is divisible by(2k + 1). The same argument as above shows that there exists a sGtface
in M with C' - K = 2(2k + 1). We claim that the divisibility ofi is precisely(2k + 1): Note that
M is still homeomorphic ta#(n) by the knot surgery construction. Sineds odd, the manifold\/
is not spin and this implies thatdoes not dividek” (an explicit surface with odd intersection number
can be constructed from a section Bfn) and a Seifert surface for the knéf;. This surface has
self-intersection numbern and intersection numbég2m + 1)(2k + 1) with K.)

To cover the caser = 0 (corresponding ta = 1) we can do knot surgery on the elliptic surface
E(1) along a general fibré” with a knot K; of genusg; = k + 1. The resulting manifold\/; has
canonical class

Ky = —F + (2k + 2)F = (2k + 1) F.

Suppose thatl = 2k + 1 is odd andn = 2m is even, withk > 0 andm > 1. We consider the
elliptic surfaceE(n) and perform a logarithmic transformation aloAgof index2. Let f denote the
multiple fibre such thaf" is homologous t@f. There exists a 2-sphere #i(n), which intersectsf
in a single point (for a proof see the following lemma). In particular, the complemefitroE(n); is
simply-connected. The canonical classiifn), = E(n)2,1 is given by

K= (2n-3)f.
We can assume that the torfiss symplectic (e.g. by considering the logarithmic transformation to be

done on the complex surfadg(n) to get the complex surfadé(n).). Let K be a fibred knot of genus
g1 = 4km + k 4+ 2. We do knot surgery along with K as above. The result is a simply-connected
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symplectic 4-manifold homeomorphic fo(n),. The canonical class is given by

dm — 3+ 8km +2k+4)f
8km +4m +2k+1)f

Ky = (2n=3)f +20.f
= (
= (
= (4m+1)(2k + 1) 1.
We now consider a fibred kndt, of genusg, = 2k + 1 and do knot surgery along the rim toris
We get a simply-connected symplectic 4-maniféfdhomeomorphic tdZ(n), with canonical class

K=(4m+1)2k+1)f+2(2k+1)R.
A similar argument as above shows that the divisibilityofs d = 2k + 1. O

Lemma 6.12. Letp > 1 bean integer andf the multiple fibre inE(n),. Then there exists a sphere in
E(n), which intersectg transversely in one point.

Proof. We can think of the logarithmic transformation as gluifig x D? into E(n) \ intvF by a
certain diffeomorphisng: 72 x S' — dvF. The fibref corresponds t@? x {0}. Consider a disk
of the form{x} x D?2. It intersectsf once and its boundary maps undeto a certain simple closed
curve ondvF'. SinceE(n) \ intvF is simply-connected, this curve bounds a diskEim) \ intvF.
The union of this disk and the digk} x D? is a sphere irF(n),, which intersects’ once. O

Remark 6.13. In Theorem 6.11, and similarly in the following theorems, it is possible to construct
finitely many homeomorphic homotopy elliptic surfag@s, ),.cn with x; (M, ) = n and the following
properties:

(1.) The 4-manifoldgM, ),y are pairwise non-diffeomorphic.

(2.) For every index € N the manifoldM, admits a symplectic structure whose canonical class has
divisibility equal tod.

This follows because we can vary in each case the khoand its genug;. For example in the first
case in the proof above @hdn even) we can choose= bmk —m + 1 whereb > 1 is arbitrary to get

the same divisibility. The claim then follows by the formula for the Seiberg-Witten invariants of knot
surgery manifolds [38].

We can give another construction of homotopy elliptic surfaces as in Theorem 6.11 that also yields
a second inequivalent symplectic structure on the same manifoleh. et andd be positive integers.
If d is even, assume thatis even. We consider two cases. Suppose éhat2k + 1 > 3 is odd.
Consider the elliptic surfac&(n — 1). By Example 5.73 the 4-manifol(n — 1) has two disjoint
embedded nucleN (2), each of which contains an oriented Lagrangian rim tdRuand7; coming
from a splittingE(n— 1) = E(n—2)#r—pE(1). There also exists a (connected) oriented Lagrangian
rim torus7» representing? — 7 in homology. We then use the construction for Theorem 5.79: Let
K1, K5 be fibred knots of genus; = ho = k. We first do a generalized fibre sum aloRgwith an
elliptic surfaceFE (1) (along a general fibre ify(1)) and then knot surgeries along the t8yi 7. We
get a simply-connected 4-manifold

X =E()#r=rE(n — 1)#T1=TK1 (Mg, x Sl)#T2=TK2 (Mg, % Sl)
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There exist two symplectic structureg, wy on the smooth manifoldd whose canonical classes are
given by

K} = (n—3)F +dT + dT5
Ky =(n—3)F + (—=d+2)T1 + dI.

The manifoldX has invariants

A(X)=0
e(X)=12n
o(X)=—-8n

Note that the general fibiE of E(n —1) is still an oriented embedded torusihof self-intersectior).

We can assume thét is symplectic with respect to the symplectic form}, wy on X, both inducing

a positive volume form. The sphere giving a section for an elliptic fibratioR'@f — 1) is also still
contained inX. Consider the even integefd — 1) + (d + 3) and a fibred knof{s of genushs with

2hz = n(d — 1) + (d + 3). We can do knot surgery with this knot along the general fibre to get a
simply-connected 4-manifold’. It has two symplectic structures with canonical classes

K =d(n+1)F +dTy + dT%
Ky =dn+1)F+ (—d+2)Ty +dT>.

There exists a surfag@; in W which intersectd; once and is disjoint froniy and F', cf. the con-
struction in Lemma 5.78. Sineé> 3 the first canonical class is divisible lywhile the second is not.
Note thatlV is because of its invariants and Lemma 6.9 a homotopy elliptic surfacewitl) = n.

Similarly suppose thad = 2k > 6 andn > 4 are even. We do the same construction is above:
This time we start withZ'(n — 2). Let K, K5 be fibred knots of genus; = hy = k£ — 1. We firstdo a
Gompf sum onE'(m — 2) along the rim torusk with the elliptic surface(2) and then knot surgeries
along the toril, T>. We get a simply-connected 4-manifold

X = E(Q)#FZRE(TL - 2)#T1:TK1 (MKI X Sl)#T2=TK2 (MK2 X Sl)
with two symplectic structuresy, wy, whose canonical classes are
K} =(n—4)F +dT + dT3
Ky =n—-4)F 4+ (-d+4)T1 + dT>.
Consider the even integer(d — 1) + 4 (note thatn is even) and a fibred kndt’s of genushs with
2hs = n(d — 1) + 4. We do knot surgery along the symplectic todsn X with this knot to get a
simply-connected 4-manifold’. It has two symplectic structures with canonical classes
Ky}, = dnF + dTy + dT>
Ky, = dnF 4 (=d + 4)T1 + dT>.

Sinced > 6 the first canonical class is divisible kywhile the second is not, again by the surface from
Lemma 5.78. The manifolé is a homotopy elliptic surface witR, (W) = n.

Proposition 6.14. Letn > 3 and d be positive integers witd # 1,2,4. If d is even, suppose in
addition thatn is even. Then there exists a homotopy elliptic surfd€ewith x;, (W) = n which
admits at least two inequivalent symplectic structuesvs. The canonical class of; has divisibility
d while the canonical class of; is not divisible byd.
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This construction can be generalized since the elliptic sufg@é + 1) containsN pairs of nuclei
N(2) as above which come from iterated splitting$N + 1) = E(N)#rE(1), E(N) = E(N —
1)#rE(1), etc. (see Example 5.73). These nuclei gené&ratessummands of the form

-2 1

1 0
in the intersection form oE(N + 1). The construction can be done on each pair of nudléz)
separately by a mild generalization of Lemma 5.72 (note that the construction in this lemma changes
the symplectic structure only in small tubular neighbourhood of the Lagrangian surfaces). Thus on the

same homotopy elliptic surfacé possibly more divisors of can be realized as the divisibility of a
canonical class. We make the following definition:

Definition 6.15 (Definition of the setQ). Let N > 0, d > 1 be integers andy, ..., dy positive
integers dividingi, whered = dy. If d is even, assume that all, ..., dy are even. We define a sgt
of positive integers as follows:

e If dis either odd or not divisible by, let ) be the set consisting of the greatest common divisors
of all (non-empty) subsets dfly, ..., dn}.

e If dis divisible by4 we can assume by reordering thiat . . . , d; are those elements such thiat
is divisible by4 while ds. 1, ..., dy are those elements such thiatis not divisible by4, where
s > 0is some integer. Thef) is defined as the set of integers consisting of the greatest common
divisors of all (non-empty) subsets §do, . . ., ds, 2ds+1, ..., 2dN}.

We can now formulate the main theorem on the existence of inequivalent symplectic structures on
homotopy elliptic surfaces:

Theorem 6.16.Let N, d > 1 be integers and, . .., dy positive integers dividing, as in Definition
6.15. LetQ be the associated set of greatest common divisors. Choose an integ8ras follows:

e If d is odd letn be an arbitrary integer witln > 2NV + 1.
e If dis even leh be an even integer with > 3N + 1.

Then there exists a homotopy elliptic surfa@ewith x, (W) = n and the following property: For each
integerq € @ the manifoldiW admits a symplectic structure whose canonical claskas divisibility
equal tog. HencelV admits at leastQ| many inequivalent symplectic structures.

Proof. Suppose thadl is odd. Then all divisorsly, ..., dy are odd. Let;, h; andh be the integers
defined by

a; =d+d;
2h;, = d — d;
oOh=d—1,

for everyl < i < N. Letl be an integel> N + 1 and consider the elliptic surfadé(l). It contains
N pairs of disjoint nucleiV(2) where each pair contains Lagrangian rim @fiand R, representing
indivisible classes, which arise by splitting off &{1) summand, cf. Example 5.73. There also exists
for each pair a third disjoint Lagrangian rim torii§ representing?’ — a;7%.

We do the construction from Section V.6.2 on each trileT%, R in E(1) (1 < i < N): We first
do a generalized fibre sum &f(l) with E(1) along R* and then knot surgeries aloffl§ andT% with



V1.2 Constructions using the generalized fibre sum 107

fibred knots of genus; andh, respectively. We get a (simply-connected) homotopy elliptic surféce
with x5,(X) = [+ N. By Theorem 5.79 the 4-manifold has2’V symplectic structures with canonical
classes

N
Kx=(1-2F+) ((£2h; +a:)T} + (2h + 1)T3)

;1
=(1=2F + > ((&(d - di) + d + )T} + dT3) .
=1

Here F' denotes the torus iX coming from a general fibre if({) and thet-signs in each summand
can be varied independently. We can assumefhiatsymplectic with positive induced volume form
for all 2V symplectic structures o . Consider the even integHid — 1) + 2 and letK be a fibred knot

of genusy with 2¢g = I(d — 1) + 2. We do knot surgery witli along the symplectic torug' to get a
homotopy elliptic surfac&V with (W) = [ + N which has symplectic structures whose canonical
classes are

N
Kw=(1-2+29)F + ) ((£(d—d;) + d + d;)T} + dT3)
=1

N
=diF + " ((£(d — d;) + d + d;)T} + dT}) .
=1

Suppose thay € @ is the greatest common divisior of certain elemefits};c;, wherel is a non-
empty subset of0, ..., N}. LetJ be the complement afin {0,..., N}. We choose the minus sign
for eachi in I and the plus sign for eaghin J to get a symplectic structute, on W. It has canonical
class

Kw =dIF + (2d;T} +dT3) + Y _(2dT{ + dT}).
iel jeJ

Note that2 does not divided becausel is odd. Considering the surfaces from Definition 5.77 and
Lemma 5.78 for each Lagrangian péir/, 7% ) implies that the canonical clagsy of w, has divisibil-
ity equal tog.

Suppose thatl is even but not divisible by 4. We can writed = 2k andd; = 2k; for all
i =1,...,N. The assumption implies that all integdrs:; are odd. Leu;, h; andh be the integers
defined by

%y =k — ki
h=Fk—1.

Let! be an even integer N + 1. For each of theéV pairs of nucleiN (2) in E(l) we consider a triple
of Lagrangian tori withly = R — a;T}. We do the following construction on each triglé, T3, R?,
with 1 < i < N in E(I): We first do a generalized fibre sumBf/) with E£(2) alongR* and then knot
surgeries alon@? and7% with fibred knots of genus; andh. We get a homotopy elliptic surface
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with x,(X) = [ + 2N. The 4-manifoldX has2”¥ symplectic structures with canonical classes

N
Ky =(—2)F+Y ((£2hi + 2a;)T} + (2h + 2)T})
=1

(1—2 F+Z ki) + K+ ki) Ti + dT3) .

Consider a fibred knak™ of genusg where2g = [(d — 1) + 2 (note that is even). Doing knot surgery
with K along the symplectic torus in X we get a homotopy elliptic surfad® with x, (W) = [+2N
which has symplectic structures whose canonical classes are

= (1—2+29) F+Z +(k — ki) + k + k)T + dT3)
=1
N . .
=dIF + Y ((£(k = ki) + k + k)T{ + dT3) .

=1
Letq € @ be the greatest common divisor of elemeafjtsvherei € I for some non-empty index sét
with complement/ in {0, ..., N}. Choosing the plus and minus signs as before, we get a symplectic
structurew, on W with canonical class

Kw = dIF + (T} + dT3) + > (dT{ + dT3). (6.1)
icl jeJ
As above, the canonical classwaf has divisibility equal tay.
Finally we consider the case thadtis divisible by 4. We can writed = 2k andd; = 2k; for all
i =1,...,N. We can assume that the divisors are ordered as in Definition 6.13; j.e.,d, are
those elements such thatis divisible by4 while ds1, ..., dxy are those elements such thiais not
divisible by4. This is equivalent té, .. ., ks being even and,. 1, ..., ky odd. Leta; andh; be the
integers defined by

2a0; =k + k;

2h; = k — k;,
fori=1,...,sand

2a; = k + 2k;

2h; = k — 2k;,

fori = s+1,..., N. We also definé = k—1. Letl be an even intege¥ N +1. We consider the same
construction as above starting frafi(/) to get a homotopy elliptic surfacE with x,(X) =1+ 2N
that ha2"V symplectic structures with canonical classes

N . .
Kx =(1=2)F+ Y ((£2hi +20,)T{ + (2h + 2)T3)

=1

N . .
(1-2) F+Z ki) + ke + k)T +dT3) + Y ((=(k — 2k;) + k + 2k) T} + dT3) .
i=s+1
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We then do knot surgery with a fibred kn&t of genusg with 2g = I(d — 1) 4 2 along the symplectic
torus F' in X to get a homotopy elliptic surfac@” with x, (W) = | + 2N which has symplectic
structures whose canonical classes are

N
Kw=(1-2+29)F + ) ((&(k— ki) + k + k;)T{ + dT3)
=1

s N
=diF +> (k= ki) +k+ k)T +dT3) + > ((£(k — 2k) + k + 2k;) T} + dT3) .
1=1 1=s+1

(6.2)

Let g be an element ig). Note that this time

for ¢ < s while

(k — 2/62‘) + (k’ + 2]62‘) =d
—(k —2k;) + (k +2k;) = 2d;

fori > s+ 1. Sinceq is the greatest common divisor of certain elemefhtfor i < s and2d; for
i > s+ 1 this shows that we can choose the plus and minus signs appropriately to get a symplectic
structurew, on W whose canonical class has divisibility equalto O

Example 6.17. Supposethat d = 45 and choosely = 45,d; = 15,dy = 9,d3 = 5. Then

Q = {45,15,9,5,3,1} and for every integer. > 7 there exists a homotopy elliptic surfacés

with x, (W) = n that admits at leadt inequivalent symplectic structures whose canonical classes
have divisibility equal to the elements ). One can also find an infinite family of homeomorphic but
non-diffeomorphic manifolds of this kind.

Corollary 6.18. Letm > 1 be an arbitrary integer.

e There exist simply-connected non-spin 4-manifdldshomeomaorphic to the elliptic surfaces
E(2m + 1) and E(2m + 2) which admit at leas2™ inequivalent symplectic structures.

e There exist simply-connected spin 4-manifoldshomeomorphic taZ(6m — 2) and E(6m)
which admit at leas2?™~! inequivalent symplectic structures and spin manifolds homeomorphic
to £(6m + 2) which admit at leas??™ inequivalent symplectic structures.

Proof. ChooseN pairwise different odd prime numbeps, ...,py. Letd = dy = p1 - ... py and
consider the integers

di=p2-p3-... DN

d2=p1-p3-... DN

dNy =p1-... PN—1,
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obtained by deleting the corresponding primedinThen the associated sét of greatest common
divisors consists of all products of the where each prime occurs at most once: If such a product
does not contain precisely the primegs, . . ., p;, thenz is the greatest common divisor @f, , . . . , d;, .
The set) has2" elements.

Letm > 1 be an arbitary integer. Settimg = m there exists by Theorem 6.16 for every integer
n > 2N + 1 = 2m + 1 a homotopy elliptic surfac&” with x,(1W) = n which has2™ symplectic
structures realizing all elements ¢ as the divisibility of their canonical classes. Sinte odd, the
4-manifoldsiW are non-spin.

Setting N = 2m — 1 there exists for every even integer> 3N + 1 = 6m — 2 a homotopy
elliptic surfaceWV with (W) = n which has2?™~! symplectic structures realizing all elements in
@ multiplied by 2 as the divisibility of their canonical classes. Since all divisibilities are even, the
manifold W is spin. SettingV = 2m we can choose = 6m + 2 to get a spin homotopy elliptic
surfacelV with y;, (W) = 6m + 2 and22™ inequivalent symplectic structures. O

VI.2.2  Spin symplectic 4-manifolds withc? > 0 and negative signature

Symplectic manifolds witke? > 0 and divisible canonical class can be constructed with a version of
knot surgery for higher genus surfaces described in [41].H et K} denote the2h + 1, —2)-torus
knot. Itis a fibred knot of genus. Consider the manifold/ x S' from the knot surgery construction,

cf. Section V.4.1. This manifold has the structure af;abundle overl™:

]WKXS1 <————Eh

|

T2

We denote a fibre of this bundle B. The fibration defines a trivialization of the normal bundiey.
We form g consecutive generalized fibre sums along the fibrgdo get

Yon = (Mg x SO#tspesp#t - #npes, (Mg x S1).

The gluing diffeomorphism is chosen such that it identifiesXthdibres in the boundary of the tubular
neighbourhoods. This implies th#} ;, is aX;,-bundle overX,:

Yo «—— X

|

2y

We denote the fibre again byr. The fibre bundle has a sectialy sewed together frorg torus
sections ofMx x S!. Since the knof is a fibred knot, the manifold/x x S* admits a symplectic
structure such that the fibre and the section are symplectic. By the Gompf construction this is then also
true forY, ;.

The invariants can be calculated by the standard formulas:

A(Ygn) = 8(g = 1)(h —1)
e(Yogn) =4(g —1)(h - 1)
o(Ygn) = 0.
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By induction ong onecan show thatr; (Y} ;) is normally generated by the image of(¥Xs) under
inclusion [41, Proposition 2]. This fact, together with the exact sequence

H\(Xp) = Hi(Yyn) — Hi(Eg) = 0

coming from the long exact homotopy sequence for the fibrafipn— Y, , — 3, via Lemma A.5,
shows that the inclusioks — Y, ; induces an isomorphism ol; and the inclusiorr — Y,
induces the zero map. In particuléf; (Y, ,; Z) is free abelian of rank

b1(Yyn) = gbi (Mg x ') = 2g,
cf. also Theorem 5.11 and Corollary 5.14. This implies with the formula for the Euler characteristic
bQ(Yg,h) = 4h(g — 1) + 2.

The summandh(g — 1) results from2h split classes together witth dual rim tori which are created
in each fibre sum. Fintushel and Stern show that there exists a basis for the group of split classes (or
vanishing classes) consisting ®k(g — 1) disjoint surfaces of genus and self-intersectio. This

implies
Py B 2 1 0 1
H*(Yyn:Z) = 2h(g 1)<1 0)@<1 0),

where the last summand is the intersection form{dhs & ZX ). They also show that the canonical
class ofY, j, is given by
Ky = (2h —2)Xs5+ (29 — 2)Xp, (6.3)

whereX g andX i are oriented by the symplectic form. This can be proved inductively with the formula
for the canonical class in Theorem 5.55: The case 1 is clear by the general formula for standard
knot surgery, cf. equation (5.25). Suppose the formula is proved'fer Y, , and we want to prove it
forY =Y, 14 = N#s,—x,.M whereM = My x S1. If we use forB),; and By the surfaces given

by a section for the fibration, we can see that

Ky=0
Kny=0
by =2h —2

oy =29 —2+2=2(g+1)—2.

Since By corresponds to the sectidly in Y, , andXy to the fibreXr, the claim in equation (6.3)
follows if the rim tori coefficients; = Ky .S; vanish. This can be proved with the adjunction inequality
[104] for Seiberg-Witten basic classes, becatisare surfaces of gen@sand self-intersection.

Suppose thafif is a closed symplectic 4-manifold which contains a symplectic surfageof
genusg and self-intersection, oriented by the symplectic form. We can then form the symplectic
generalized fibre sum

X = M#s=nsYgn-

If 7 (M) =7 (M \ ) = 1, thenX is again simply-connected because the fundamental group of
Y, n is normally generated by the imagemf(Xs). Since the inclusiois — Y 5 is an isomorphism
on H; no rim tori occur in this generalized fibre sum. Hence we can write by Theorem 5.37

H*(X;Z) = P(M) ® P(Y,s) ® (ZBx © ZXx).
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The surfaceByx is sewed together from a surfaé®,; in M with By,X), = 1 and the fibreXg. In
particular, B3 = B2, becauses?, = 0. This implies that the embedding?(M;Z) — H?*(X;Z)
given by

Yp— Yk,
By — By (6.4)
Id: P(M) — P(M)
preserves the intersection form. Therefore we can write
H*(X;7) = H*(M;Z) © P(Y, ) (6.5)
with intersection form
2 1
This generalizes equation (5.23). The invariantXadre given by
ci(X) = cf(M) + 8h(g — 1)
e(X)=e(M)+4h(g—1)
o(X)=o0(M).

We calculate the canonical class &f Since no rim tori occur in the Gompf sum, the formula in
Theorem 5.55 simplifies to

Kx =Ky + Ky +bxBx +oxXx,

where
Ky = Ky — (29— 2)By — (Ky By — (29 — 2)BY,) Sy € P(M)
Ky = Ky — (29— 2)Sr — (KySF — (29 — 2)3%)%s
=Ky — (29 —2)Zp — (2h — 2)Xg
=0
bx =29 —2
ox = KyBy + KyYSp +2 — (29 — 2)(B3, + ¥%)
= KBy + 2h — (29 — 2) B3,
This implies

Kx = Ky + (29— 2)Bx + (KuBur + 2h — (29 — 2) Bi)Ex.
Note that the class
Ky =Ky + (29 — 2)By + (Kn By — (29 — 2)BY)Su
maps under the embeddikff (M) — H?(X) in equation (6.4) to the class
K+ (29 — 2)Bx + (Kn By — (29 — 2)B3)Sx
and2hX; maps ta2hY x. Therefore we can write under the isomorphism in equation (6.5)
Kx = Ky + 2k, (6.6)

where the class on the right is an element in the subgféti\/; Z) of H*(M;Z) & P(Y, ). This
follows also by Corollary 5.57. Formula (6.6) generalizes (5.31). In particular we get:
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Proposition 6.19. Let M bea closed, symplectic 4-manifold which contains a symplectic subage
of genugy > 1 and self-intersectiofl. Suppose that; (M) = 71 (M \ X)) = 1 and that the canonical
class ofM is divisible byd.

e If d is odd there exists for every integer 1 a simply-connected symplectic 4-manifafdwith
invariants

(X)) = (M) +8td(g — 1)
e(X)=e(M)+4td(g—1)
o(X) = o(M)
and canonical class divisible b¥

e If d is even there exists for every integer 1 a simply-connected symplectic 4-maniféidwith
invariants

(X)) = (M) +4td(g — 1)
(

e(X)=e(M)+2td(g—1)
o(X) =

Q

(M)
and canonical class divisible ¥

This follows from the construction above by taking the genus of the torus/kaetd if d is odd
and2h = td if d is even. Hence if a symplectic surfakg, of genusg > 1 and self-intersectiof
exists inM we can raise? without changing the signature or the divisibility of the canonical class.
Note that by Lemma 6.2 the integénecessarily divideg — 1 if d is odd andd divides2g — 2 if d is
even.

We can apply this construction to the symplectic homotopy elliptic surfaces constructed in Theorem
6.11. In this section we consider the case of even divisihilig;nd in the following section the case of
oddd.

Recall that we constructed a simply-connected symplectic 4-manifofdom the elliptic surface
E(2m) by doing knot surgery along a general filifavith a fibred knoti; of genusy; = (k—1)m+1
and a further knot surgery along a rim torHswith a fibred knotKs of genusg, = k. Here2m > 2
andd = 2k > 2 are arbitrary even integers. The canonical class is given by

Ky =2mkF + 2kR = mdF + dR.

The manifold) is still homeomorphic td(2m). There exists an embedded 2-sphg€ria E(2m) of
self-intersection-2 which intersects the rim torug once. We can assume th&iis disjoint from the
fibre F' and that the symplectic structure é{2m) we began with was chosen such that the regular
fibre F', the rim torusR and the dual 2-sphelg are all symplectic and the symplectic form induces a
positive volume form on each of them.

The 2-spheré& minus a disk sews together with a Seifert surfacefferto give in M a symplectic
surfaceC' of genusk and self-intersectior-2 which intersects the rim toru8 once. By smoothing the
double point we get a symplectic surfa€g; in M of genusg = k£ + 1 and self-intersectiofl which
represents’ + R.

The complemend/ \ 3, is simply-connected: This follows because we can assumethas is
contained in a nucleu¥ (2), cf. [55], [56] and Example 5.73. Insid€(2) there exists a cusp which is
homologous taR and disjoint from it. The cusp is still contained M and intersects the surfagg,
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once. SinceV is simply-connected and the cusp homeomorphi§ipthe claimmy (M \ Xp/) = 1
follows.

Lett > 1 be an arbitrary integer ands the (2h 4 1, —2)-torus knot of genug = tk. We consider
the generalized fibre sum

X = M#EM:ESYg,h
whereg = k + 1. ThenX is a simply-connected symplectic 4-manifold with invariants

cH(X) = 8tk? = 2td?
e(X) = 24m + 4tk* = 24m + td*
o(X)=—16m.

The canonical class is given by

Kx = Ky + 2tkX )y
= d(mF+R+tEM).

HenceK x has divisibilityd, since the class.F’ + R + tX3; has intersection with 3,,. We get:

Theorem 6.20.Letd > 2 be an even integer. Then for every pair of positive integers there exists
a simply-connected closed spin symplectic 4-manifohdith invariants

(X)) = 2td?
e(X) = td* + 24m
o(X) = —16m,

such that the canonical clagsx has divisibilityd.

Note that this solves by Lemma 6.1 and Rochlin’s theorem the existence question for simply-
connected 4-manifolds with canonical class divisible by an even integer and negative signature. In
particular (ford = 2), every possible lattice point wittf > 0 ando < 0 can be realized by a simply-
connected spin symplectic 4-manifolds with this construction (the existence of such 4-manifolds has
also been proved in [110] in a similar way).

Example 6.21. To identify the homeomorphism type of some of these manifoldg tet2k. We then
have

3 (X) = 8tk?
xn(X) = th? + 2m.
We want to determine when the invariants are on the Noetheejire2y;, — 6: This is the case if and

only if
6tk> = 4m — 6

hence2m = 3tk? + 3, which has a solution if and only if bothandk are odd. Hence for every pair of
odd integerg, k > 1 there exists a simply-connected symplectic 4-maniféldith invariants

3 (X) = 8tk?
xn(X) = 4tk*> +3
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such that the divisibility ofx is 2k. Recall that for every odd integer > 1 there exists by a
construction of Horikawa [65] a simply-connected spin complex algebraic sukfaoca the Noether
line with invariants

8r
Xh(M) =4r 4+ 3.

See also Theorem 6.53 in Section VI.4 and [56, Theorem 7.4.20] where this surface i§/¢alled 1).

For every given odd integer > 1 a symplectic 4-manifold homeomorphic to such a spin Horikawa
surface can be realized by the construction above with1 andt = r. For odd integerg > 3,¢ > 1

we also get spin homotopy Horikawa surfacésvhose canonical clags x is divisible by2k. These
manifolds cannot be diffeomorphic to Horikawa surfaces: Sijce- 1 the canonical clas& y is a
Seiberg-Witten basic class oxi. It is proved in [65] that all Horikawa surfacéd have a fibration

in genus2 curves, hence by Lemma 6.2 the divisibility &ify; is at most2 and in the spin case the
divisibility is equal to2. Since Horikawa surfaces are minimal surfaces of general type, they have a
unigue Seiberg-Witten basic class up to sign, given by the canonicalilgssf. Theorem 6.4. Since

the divisibilities of K3y and K x do not match, this proves the claim.

Returning to the general case of Theorem 6.20 we can extend the construction in the proof of
Theorem 6.16 to show:

Theorem 6.22.Let N > 1 be an integer. Suppose that> 2 is an even integer andy, ..., dy are
positive even integers dividing) as in Definition 6.15. Lef) be the associated set of greatest common
divisors. Letm be an integer such th&m > 3N + 2 andt > 1 an arbitrary integer. Then there exists
a simply-connected closed spin 4-manifdldwith invariants

(W) = 2td>
e(W) = td* + 24m
o(W) =—16m,

and the following property: For each integer € @ the manifoldi/ admits a symplectic structure
whose canonical clask™ has divisibility equal ta;.

Proof. Let ] = 2m — 2N. By the construction of Theorem 6.20 there exists a simply-connected
symplectic spin 4-manifold with invariants

A (X) = 2td>
e(X) = td* + 121
o(X)=-8I

KX = d(mF+ R+tEM).

In particular, the canonical class &f has divisibility d. In the construction ofX starting from the
elliptic surfaceE/(1) we have used only one Lagrangian rim torus. Hehee2 of thel — 1 triples

of Lagrangian rim tori inE(l) (cf. Example 5.73) remain unchanged. Note that2 > N by our
assumptions. Since the symplectic form B(Y) in a neighbourhood of these tori does not change in
the construction ofX' by the Gompf fibre sum, we can assume thatontains at leastV triples of
Lagrangian tori as in the proof of Theorem 6.16. We can now use the same construction as in this
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theorem on théV triples of Lagrangian tori inX to get a simply-connected spin 4-manifdid with
invariants

(W) = 2td>
e(W) = td? + 121 + 24N = td* + 24m
o(W)=—-8l—16N = —16m.

For eachy € @ the manifoldi} admits a symplectic structutg, whose canonical class is given by the
formulas in equation (6.1) and (6.2) where the teli is replaced by x = d(mF + R + tXyy). It
follows again that the canonical classugf has divisibility precisely equal tg. O

Corollary 6.23. Letd > 6 bean even integer antd> 1, m > 3 arbitrary integers. Then there exists a
simply-connected closed spin 4-manifldwith invariants

A(W) = 2td?
e(W) = td* + 24m
o(W) = —16m,

and W admits at least two inequivalent symplectic structures.

This follows with N = 1 and choosingly = d andd; = 2, since in this casé) contains two
elements.

Example 6.24.We consider the cas€ = 1 of Theorem 6.22 for the spin homotopy Horikawa surfaces
in Example 6.21. Lek > 3 be an arbitrary odd integer antl = dy = 2k,d; = 2. Note that
the assumptio?m > 3N + 2 = 5 is always satisfied becaugen = 3tk? + 3 in this case by the
calculation above. Sinaé = 2k is not divisible by4, the set? is equal to{2k, 2} by Definition 6.15.

By Theorem 6.22 there exists for every odd integer 1 a spin homotopy Horikawa surfacé on the
Noether line with invariants

A (X) = 8tk>
xn(X) = 4tk? + 3,

which admits two inequivalent symplectic structures: the canonical class of the first symplectic struc-
ture is divisible by2k while the canonical class of the second symplectic structure is divisible only by
2.

Remark 6.25. With more care it is possible to do the construction in Theorem 6.22 startingft@m
in the case that is even and = N + 1. Thus the same theorem can be proved for integergith
2m = 3N + 1.

We start with the same construction as in the proof of Theorem 6.16 wherév + 1 and we
use N triples of rim tori. We have now used up all available triples. Note that theTtpin Y are
by construction symplectic for all symplectic structuteswith positive induced volume form. We
can consider for instance the torilig. We use the existence of a surfacgin Y, cf. Definition 5.77
and Remark 5.80. The surfacg intersects the toriy and R, transversely and positively once and
is disjoint from 77} and all other rim tori in the construction from Theorem 6.16. It is also disjoint
from the torusF'. The surfac&’; has genug — 1 and self-intersection-4. Since we can assume that
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the spheres' in the nucleus containing; was symplectic in£(l) it follows thatC; can be assumed
symplectic (with positive induced volume form) for all symplectic structurgsnY’.

By adding two parallel copies of the tord§ to C, and smoothing the two double points we
get a symplectic surfacEy in Y of genusg’ = k + 1 and self-intersectiofn representing the class
2T} + Cy. The complement” \ Xy is simply-connected: This follows because the surfdgecame
from the spheré in the nucleusV(2) containing the torus;. HenceXy is still intersected once by
a cusp homologous t&;. We can now do the same construction as before (raisity a generalized
knot surgery with thg2h + 1, —2)-torus knot of genug = tk on the surface ;). To show that
the canonical clas&y (q) of the resulting manifold? has divisibility ¢ one has to use the explicit
formulas in (6.1) and (6.2) and the surfa¢gsfrom Lemma 5.78.

VI.2.3 Non-spin symplectic 4-manifolds withc? > 0 and negative signature

In this section we construct some families of simply-connected symplectic 4-manifoldsAwith0
such that the divisibility ofK is a given odd intege#i > 1. However, we do not have a complete
existence result as in Theorem 6.20.

We first consider the case that the canonical cldssis divisible by an odd integed and the
signatures (X)) is divisible bys.

Lemma 6.26. Let X be a closed simply-connected symplectic 4-manifold suchifRais divisible by
an odd integer! > 1 ando(X) is divisible by8. Thenc?(X) is divisible by8d>.

Proof. Suppose that-(X) = 8m for some integem € Z. Thenb, (X) = b3 (X) — 8m hence
bo(X) = 2b (X) — 8m. This implies

e(X) = 2b5 (X) +2 — 8m.

Since X is symplectic, the integér; (X) is odd, so we can writé] (X) = 2k + 1 for somek > 0.
This implies

e(X) =4k + 4 — 8m,
hencee(X) is divisible by4. The equation?(X) = 2¢(X) + 30(X) shows that?(X) is divisible by
8. Sincec?(X) is also divisible by the odd integdf the claim follows. O

The following theorem covers the case tiiét hasodd divisibility and the signature is negative,
divisible by8 and< —16:

Theorem 6.27.Letd > 1 be an odd integer. Then for every pair of positive integerswith n > 2
there exists a simply-connected closed non-spin symplectic 4-maHifaiith invariants

3 (X) = 8td?
e(X) = 4td® + 12n
o(X)=-8n

such that the canonical clagsx has divisibilityd.

Proof. The proof is similar to the proof of Theorem 6.20. We can wite- 2k + 1 with £ > 0.
Suppose thah = 2m + 1 is odd wherem > 1. In the proof of Theorem 6.11 we constructed a
homotopy elliptic surfacé/ with x, (M) = n from the elliptic surface®(n) by doing knot surgery
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along a general fibré" with a fibred knotk; of genusg; = 2km + k + 1 and a further knot surgery
along a rim torusk with a fibred knotK» of genusg, = 2k + 1 = d. The canonical class is given by

= (2m + 1)dF + 2dR.

There exist a symplectically embedded 2-spttene £ (n) of self-intersection-2 which sews together
with a Seifert surface fokK, to give in M a symplectic surfac€’ of genusd and self-intersection-2
which intersects the rim torug once. By smoothing the double point we get a symplectic suifage
in M of genusg = d+ 1 and self-intersectiof which represent§’ + R. Using a cusp which intersects
Y once, it follows as above that the complemént\ 3, is simply-connected.

Lett > 1 be an arbitrary integer andds the (2h + 1, —2)-torus knot of genug = td. We consider
the generalized fibre sum

X = M#s,=nsYqgn

whereg = d + 1. ThenX is a simply-connected symplectic 4-manifold with invariants
3 (X) = 8td*

e(X) = 4td* + 12n
o(X) = —8n.

The canonical class is given by

Kx = Ky + 2tdX
=d((2m+ 1)F + 2R + 2tXyy).

HenceK x has divisibilityd, since the clas®m + 1) F' + 2R + 2t3, has intersectiof with 3, and
intersection2m + 1) with a surface coming from a section Bi{n) and a Seifert surface fdx;.

The case thah = 2m is even wheren > 1 can be proved similarly. By doing a logarithmic
transform on the fibré” in E(n) and two further knot surgeries with a fibred kgt of genusg; =
4km + k + 2 on the multiple fibref and with a fibred knof{s of genusg, = 2k + 1 = d along a rim
torusR, we get a homotopy elliptic surfac€ with x,(X) = n and canonical class

Kx = (4m+ 1)df + 2dR.
The same construction as above yields a simply-connected symplectic 4-manivalth invariants

3 (X) = 8td*
e(X) = 4td® + 24n
o(X)=—8n.

The canonical class is given by

Kx = Ky +2tdX
=d((4m +1)f + 2R+ 2tXy).

HenceK x has again divisibilityd. O
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Example 6.28. Themanifolds in Theorem 6.27 have invariants

3 (X) = 8td*
n(X) = td* + n.

In a similar way to Example 6.21, this implies that for every pair of positive integigrs> 1 with d
odd andt arbitrary there exists a non-spin symplectic homotopy Horikawa sufaca the Noether
line ¢2 = 2x;, — 6 with invariants

3 (X) = 8td*
xn(X) = 4td® + 3,

whose canonical class has divisibilily Note that for every integes > 1 there exists a non-spin
Horikawa surfacé\/ [65] with invariants

If sis odd there exists only one deformation type of such surfaces, denot&d3es + 2) in [56,
Theorem 7.4.20]. I& is even there exist two deformation types given by the homeomorphic manifolds
X (3,2s+2)andU(3,s+1). For every given integer > 1 a simply-connected symplectic 4-manifold
homeomorphic to such a non-spin Horikawa surface can be realized by the construction above with
d = 1 andt = s (note thatn > 2 holds automatically in this case). 4f > 3 is an odd integer

andt > 1 an arbitrary integer we also get non-spin homotopy Horikawa surfaces whose canonical
class has divisibilityl. By the same argument as before in Example 6.21, these 4-manifolds cannot be
diffeomorphic to a Horikawa surface.

In the general case, one can prove the following as in Theorem 6.22.

Theorem 6.29.Let N > 1 be an integer. Suppose that> 3 is an odd integer and, . . . , dy positive
integers dividingd, as in Definition 6.15. Lef) be the associated set of greatest common divisors.
Let m be an integer such thate > 2N + 2 and¢ > 1 an arbitrary integer. Then there exists a
simply-connected closed non-spin 4-manifdldwith invariants

(W) = 8td?
e(W) = 4td* 4 12m
o(W) = —8m,

and the following property: For each integer € @ the manifoldi/’ admits a symplectic structure
whose canonical clask™ has divisibility equal ta;.

Proof. The proof is analogous to the proof of Theorem 6.22. ILetm — N. By the construction of
Theorem 6.27 there exists a simply-connected non-spin symplectic 4-makifaith invariants

A(X) = 8td?
e(X) = 4td® + 121
o(X)= -8,
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whose canonical clagds x hasdivisibility d. The manifoldX containg — 2 triples of Lagrangian tori.
By our assumptions— 2 > N. Hence we can do the construction in Theorem 6.16{fodd) to get
a simply-connected non-spin 4-manifdlid with invariants

A(W) = 8td?
e(W) = 4td* + 121 + 12N = 4td* + 12m
o(X)=—-8l—8N = —8m.

The 4-manifold¥ admits for every integef € @ a symplectic structure whose canonical class has
divisibility equal toq. O

ChoosingN = 1, dy = d andd; = 1, the set) contains two elements. This implies:

Corollary 6.30. Letd > 3 be an odd integer antl > 1, m > 4 arbitrary integers. Then there exists a
simply-connected closed non-spin 4-manifidfdwith invariants

(W) = 8td?
e(W) = 4td*> 4 12m
o(W) = —8m,

and W admits at least two inequivalent symplectic structures.

Remark 6.31. Let Y be an arbitrary closed symplectic 4-manifold which contains an embedded sym-
plectic torusTy of self-intersectior). Suppose thaly is contained in a cusp neighbourhood and
represents an indivisible class. Consider the symplectic generalized fibre sum

V = Y#Ty:FE(n)#F:TK(MK X Sl)
whereK is an arbitrary fibred knot. The manifold has invariants

ci(V) =d(Y)
e(V)=e(Y)+12n
o(V)=0o(Y)—8n.

By Remark 5.75 the symplectic manifold containsn — 1 triples of Lagrangian tori. If the canonical
classKy has a suitable divisibility and the genus of the kiédis chosen appropriately one can find
inequivalent symplectic structures by starting from the smooth manifold

We want to describe a second example that yields for every odd infeger a simply-connected
symplectic 4-manifold? whose canonical class has divisibilifyandc? (W) = 2d2.

The first building blockV is constructed as follows: Consider the product of two closed surfaces
U = X, x ¥ of genusg andh. In U we have the singular surface given by the one point union
¥4V X5 We can smooth the intersection point to get a symplectic sulacef genusg + h and self-
intersectior2, blow up two points orE;;and letSy denote the proper transform i = U#2CP2.
Thenly is a symplectic surface of self-intersectionThe Euler characteristic &f is

e(U) = e(Eg)e(Xn) = 4(g = )(h = 1).
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Sinces(U) = 0, the manifoldV has invariants

Note that the inclusion induces a surjection(Xy) — 71(V) and an isomorphisnif; (Xy;7Z) —
Hy(V;Z) (compare to the building bloo®; in [52, Section 5]).

The second building block consists of the simply-connected symplectic 4-manif&lh, 1)
defined in [56, Chapter 7], see also Section VI.5.3. It is diffeomorph@R3+# (4n + 1)@ andhas
invariants

A(X)=—4n+38
e(X)=4n+4
o(X)=—4n

The manifoldX has two fibrations ove€ P': one of them has a fibr&; of genus) and the other one
has a fibref, of genusn — 1. We defineX x = F5. Both fibrations have a section; in particular, the
complementX \ ¥x is simply-connected.

Suppose that > 1 is an arbitrary integer and lgtbe any integer with < g < n — 1. Define
h = n — 1 — g and consider the manifold as above. Then the genusXf is equal to the genus of
Y x and we can construct the symplectic generalized fibre sum

W = X#ZX:EVV

Since X \ Xx is simply-connected ang; (Xy) — m1(V) is a surjection we see th&’ is simply-
connected. Note that the inclusion induced isomorphi$ni®y ) — H; (V') implies by Proposition
5.59 that the generalized fibre sui does not contain rim tori. Hence there are no rim tori contribu-
tions to the formula for the canonical class. We can use Corollary 5.58 to determine the dividibility
of the canonical clasKy, of W

The canonical class df is given by

Ky = (2h — 2)29 + (29 — 2)%), + E1 + Eo,

whereFE1, E5 denote the exceptional spheres. Bt be one of the exceptional spheres. Tﬁé\?n =
Ky By = —1. SinceXy represents

EV:EQ—FZh—El—EQ

it follows that
Ky — (Ky By )Xy = (2h — 1)29 + (29 — 1)X%y,.

The canonical class of is (cf. Section VI.5.3)
Kx =(n—-2)F, — F>.

The fibration with fibreF, = ¥ x has a section which is a symplectic sphére of self-intersection
B% = —1. We have agaitk y Bx = —1 and

KX — (KxBx)EX = (n — 2)F1.
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By Corollary 5.58 the divisibility ofi(yy is the greatest common divisor of the integers
n—2,29g—1,2h—1,2(9+h) — 2.

By our choiceg + h = n— 1 we have2(g + h) — 2 = 2(n — 2). Hence we can leave the last term away
to calculate the greatest common divisor. Moreover,

2h—1=2n—-2—-29—-1=2(n—2)— (29— 1).
Hence the divisibility ofKyy is the greatest common divisor of— 2 and2g — 1.

Proposition 6.32. LetW = X#sx,—-x, V be the generalized fibre sum above where h = n — 1.
ThenW is a simply-connected symplectic 4-manifold with invariants

AW)=8g(n—1—-g)—4n+6
e(W)=4g(n—1—9g)+4n+6
o(W)=—4n -2
The divisibility of Ky is the greatest common divisorof— 2 and2g — 1.

The formulas for the invariants df follow by the standard formulas (cf. Corollary 5.14 and
equation (5.30)):

ci (W) C?(X)+61(V)+8(g+h)—8
e(W) = e(X) +e(V) +4(g +h) -
o(W) =o(X) +a(V).

To get a particular example chooge= h > 1 arbitrarily. Thenn = 2¢g + 1 andn — 2 = 2¢g — 1. The
manifold W has invariants

(W) =8g%—8g+2
e(W) = 4g? + 89 + 10
o(W)=—-8g—6
and Ky has divisibilityd = 2g — 1. We can write the invariants also in termsdo&nd get:

Corollary 6.33. For every odd intege#l > 1 there exists a simply-connected symplectic 4-manifidld
with invariants
A(W) = 2d?
e(W) =d? +6d+ 15
o(W) = —4d — 10,
such that the canonical clagsy, has divisibilityd.

For example, foy = 2, we get a symplectic manifoldd” with ¢} = 18,e = 42,0 = —22 such
that iy has divisibility 3. The manifoldiV is homeomorphic toCP2#31CP2. Forg = 3 we get a
symplectic manifold¥ with ¢? = 50, e = 70,0 = —30 such thatky, has divisibility5. This manifold
is homeomorphic td 9CP2#49CP2. The Chern number? and the Euler characteristic for a given

divisibility are smaller than the ones in Theorem 6.27.
In general, we could not answer the following question:

Question 1. For a given odd integed > 1 find a simply-connected symplectic 4-manifdldwith
c3(M) = d* whose canonical class has divisibility

Note that there is a trivial example fdr= 3, namelyC P2,
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VI.2.4 Constructions using Lefschetz fibrations

Let M = M'#rCP? — CP"' bea holomorphic Lefschetz fibration with fibré,; of genusg. The
fibration defines a natural trivialization of the normal bundI&gf in M. We take the generalized fibre
sum of two copies of\/ alongXy; such that the gluing diffeomorphisghon 0vy,, is the identity
with respect to the natural trivialization given by the fibration:

X =M#s,,=x,,M.

Then X is the fibre sum of two copies af/ and has an induced Lefschetz fibration o@P' in
genusg curvesXx. Suppose thad/ is simply-connected. TheX is simply-connected because the
exceptional spheres i/ intersect the surface,; once. By our choice of gluing diffeomorphism the
vanishing disks fo,; in M sew together pairwise to give Lagrangian 2-sphefgs. ., Sy, in X
of self-intersection-2 which determine a basis of the subgra$ig.X) ¢ H?(X), cf. Theorem 5.37
and Section V.4.2. The group of rim toR(X) in X is free abelian of ranRg. We choose a basis
Ry,..., Ry, dual to the basis fof’(X).

The fibre summing can be iterated:

M(n) = M#ZM:ZMM# s #ZM:EMM'
ThenM (n) is a simply-connected Lefschetz fibration o@P! in genusg curvesy x.
Proposition 6.34. The canonical class oX = M (n) is given by
Kx =) Ku, + (29— 2)Bx + ((n—2) + (29 — 2)n)x,
i=1

where

Ky, = (Ky+3m) — (29 — 2)(By + X)
forall:=1,...,n.

This formula should be interpreted such that the clagsgs lie in different copiesP(M;) of
P(M), each of which is a direct summand Bf(X; Z).

Proof. The proof is by induction, cf. the formula in Theorem 5.55. We first check thercasd. We
have:

Kx = (Ky+3m) — (29 —2)(By +2Xm) + (29 = 2)By + (=14 (29 - 2)) X0
=K.
Suppose that > 2 and the formula is correct for — 1. Write N = M (n — 1) and consider the fibre
sumX = M#sy,,-x,,N. We use forB,, an exceptional sphere it/ and for By the symplectic
sphere of self-intersection(n — 1) from the previous step. Using the adjunction formula we have
Ky By = —1
Ky =Ky —(29—2)By — (=14 (29— 2))2u
= (Ky +2u) — (29 —2)(By + Xum)
= Kum,,
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and similarly
KyBy=n-3
Ky=Ky—(29—2)By —((n—3)+ (29 —2)(n—1))Sy
n—1

= Kum, +(29—2)By +((n—3)+ (29— 2)(n —1))Sy
=1
—(29-2)Bn —((n—3) + (29 —2)(n — 1))En
n—1

= Ky,

1

.
Il

We also have
bx =29 —2
ox=—14+Mn—-3)4+2—-(29g—2)(-1—-(n—-1))
=(n—2)— (29 —2)n.
Note that all coefficients; vanish by our choice for the trivialization and the gluing diffeomorphism

and
KxS;=KyDM — KxDN =0,

since S; is a Lagrangian sphere of self-intersectief. Hence all rim tori coefficients; are zero.
Adding the terms above proves the proposition. O

Remark 6.35. Onecan also derive a formula for the canonical class of a twisted fibre sum of some
M (n) andM (m), as in Section V.6.1. This could have applications as in Corollary 5.68.

Note that forg = 1 andM = E(1) with general fibreF’ we haveK,; + ¥y, = —F + F = 0.
Hence we get again the formuléy = (n — 2)F for the canonical class of = E(n). In the general
case we have:

Corollary 6.36. Let X = M (n) be then-fold fibre sum of simply-connected holomorphic Lefschetz
fibrations. Then the divisibility oK x is the greatest common divisor of— 2 and the divisibility of
the classKy, + Sy € H?(M; 7).

Proof. The greatest common divisor af — 2 and the divisibility of K3, + ¥, divides Kx: This
follows because this number also divides— 2 = (K, + X)X by the adjunction formula. The
number then divides all terms in the formula in Proposition 6.34.
Conversely, letl denote the divisibility of x . Itis clear that divides2g—2 sinceK x X x = 2g—2
by the adjunction formula or the formula above. We have
KxBx = (29 —2)B% + ((n —2) + (29 — 2)n).

This implies thatd divides alson — 2. The integerd also has to divide every terify;,. This shows
that it divides the clas&;; + 3/, proving the claim. O

Remark 6.37. Sincethe complex curveZ,; on the blow-upM = M'#rCP2 — CP! is the proper
transform of a curv& ;. in M’, the divisibility of K5, + X, is equal to the divisibility of ;s + 3.
This follows because the canonical class and the class of the proper transform are given by

Sy=Xy —FE,—...— E,
KM:KM/+E1+...+ET,
whereE; denotes the exceptional spheres.
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Remark 6.38. If ¢ > 1, we can use the construction in Proposition 6.19 on the gesusfaceX. x to
increase-} (X ) while keeping the signature and the divisibility &fy fixed. Note thatr; (X \Tx) = 1
sinceX is simply-connected and the sphétg sewed together from exceptional spheres in both copies
of M intersect x once. Hence the 4-manifold we obtain is again simply-connected (cf. [41, Section
3] for a related construction).

Remark 6.39. In principle it should also be possible to do the construction with triples of Lagrangian
rim tori from Theorem 5.79 like in the previous sections to find inequivalent symplectic structures on
simply-connected 4-manifolds, starting from affold fibore sumAM/(n). Note that every fibre sum
contributes2g rim tori out of which we can forny Lagrangian triples. One can probably extend
Example 5.73 to show that some of these rim tori are contained in ni¥g2). In particular, this
should work for the fibrationX (m, n) in Section VI.5.3.

VI.3 Branched coverings

In the following sections we will describe another construction of simply-connected symplectic 4-
manifolds with divisible canonical class. This construction uses branched coverings of algebraic sur-
faces. We will first define the notion of branched coverings and give a criterion in Corollary 6.47 which
ensures that the branched coverings we use are simply-connected if we start with a simply-connected
manifold.

VI.3.1 Definition

Let M™ be a closed, oriented manifold add*~2 a closed, oriented submanifold of codimension 2.
Suppose that the fundamental clé8$ € H,,_»(M;Z) is divisible by some integer. > 1. Choose a
classB € H,_2(M;Z) such tha{F] = mB. Let Ly, L denote the complex line bundles with Chern
classes

c1(Lr) = PD[F]|, ¢ (L) =PD(B).

Sincecy (Lr) = me1(Lp), there exists an isomorphism
LY~ Lp.
We consider the following map
¢: Lp — LF™,
r—r®---@x (mfactors).
On each fibre, this map is given by
CoC® 2~2® - Q2.

Let e be a basis vector of thg-vector spac€. Thene ® - - - ® e is a basis ofC®™ which induces an
isomorphism

c®m - C
21€Q - @ zme > (21 ... - Zm)e.

The composition
C—-C®" 5 C

is then the map — 2. On the unit circle, this is am-fold covering. Hence we get
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Lemma 6.40. Let L, Lr — M be complex line bundles with (L) = meci(Lp) and denote the
associated circle bundles Yz, E. Then the map

(Z): LB — L%m >~ LF
induces a fibrewise:-fold coveringEg — EFp.

Lets: M — L be asection which vanishes aloAgis non-zero o/’ = M\ F and is transverse
to the zero section.

Theorem 6.41. Consider the set
X =¢ 1(s(M)) C Lp.

ThenX is again a smooth manifold of dimensian Let7: X — M denote the restriction of the
projectionLg — M.

e OverM’, the mapp: ¢~ (M') — M’ is anm-fold cyclic covering.

° Ihe intersection o with the zero section df 5 is a smooth submanifolf of X and = maps
F diffeomorphically onta.

e Lety(F) denotea tubular neighbourhood af in X. The projectionr mapsv(F') ontoa tubular
neighbourhood(F) of F in M. Under the identificatio = F via «, there is a vector bundle
isomorphism/(F) = v(F)®™ andthe mapr corresponds to the map above. In other words,
there are local coordinates of the forthx D% C v(F)andU x D%, C v(F),withU C F = F
sud thatm has the form

U x D% — U x D3, (z,2) — (z,2™).

For a proof, see [63].

Definition 6.42. Them-fold branched (or ramified) coverindy/ (¥, B, m) of M branched ovef' and
determined byB is defined as

M(F,B,m) = ¢ *(s(M)) C Lp.

SupposéV is a smooth complex algebraic surface dhd- M a smooth connected complex curve.
If m > 0is an integer that divide®)] andB € Hy(M;Z) a homology class such thdd] = m B, then
there exists a branched covering( D, B, m). Since the divisoD has an associated holomorphic line
bundle, one can show that the line bundlg in the previous section can be chosen as a holomorphic
line bundle as well (see [63]). This implies that the branched covering admits the structure of an
algebraic surface. The invariants f can be calculated by the following proposition.

Proposition 6.43. Let D be a smooth connected complex curve in a complex sufacgich that
[D] = mB. Let¢: M(D,B,m) — M be the branched covering. Then the invariants\of:=
M (D, B, m) are given by:

(@) Ky = ¢*(Kp + (m —1)B)
(b) ¢}(N) = m(Kpy + (m —1)B)?
() e(N) =me(M) — (m —1)e(D),
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wheree(D) = 2 — 2g(D) = — (K - D + D?) by the adjunction formula.

Proof. The formula fore(N') can be calculated by the well-known formula for the Euler characteristic
of a space decomposed into two pieces (which we used already in the proof of Corollary 5.14) and the
formula for standard, unramified coverings:

e(N) = e(N\ D) + e(v(D)) — e(dv(D))
=me(M \ D) + e(D) =m(e(M) —e(D)) + e(D)
=me(M) — (m — 1)e(D).

Here D denoteghe complex curve iV over the branching divisaD as in Theorem 6.41. The formula
for ¢2(IV) follows then by the signature formula of Hirzebruch [63]:

m?—1
N) =mao(M) — 2
o(N)=mo(M) o
Theformula for Ky can be found in [8, Chapter |, Lemma 17.1]. O

We will consider the particular case that the complex cuwves in the linear systenm K| and
hence represents in homology a multipl& ,,; of the canonical class aff. Letm > 0 be an integer
dividing n and writen = ma.

Lemma 6.44. Let D be a smooth connected complex curve in a complex suftaegth [D] = nK ;.
Then the invariants of thex-fold ramified coverp: M (D, aKyr, m) — M branched oveD are given

by:
(a) KN = (n+ 1 —a)(ﬁ*K]w
(b) F(N) =m(n+1—a)*c(M)
(©) e(N) = me(M) + (m — Dn(n + 1) (M)
Proof. We have]D] = nK); andB = aK),. Hence we can calculate:
Ky+(m—-1)B=(1+ma—a)Ky=(n+1—a)Ky
e(D) = —(Ky - D + D?)
= —(n+n)AE(M) = —n(n + 1)E(M)

This implies the formulas. O

VI.3.2 The fundamental group of branched covers

Let M bea closed oriented manifold arfd®~2 a closed oriented submanifold. Suppose f#gt=
mB and consider the branched coverihf= M (F, B, m). Even if the base manifold/ is simply-
connected the fundamental groupidfis in general non-trivial. The following theorem can be used to
ensure that the branched covers are simply-connected/Let M \ F' denote the complement &f.

Theorem 6.45.Let M be a closed oriented manifold add*~2 a closed oriented submanifold such
that [F'] is a non-torsion class if,,_»(M; Z). Suppose in addition that the fundamental group/6f
is abelian. Then for alln and B with [F] = mB there exists an isomorphism

m(M(F, B,m)) 2 w1 (M).
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Proof. Letk > 0 denote the maximal integer dividing]. Thenm dividesk and we can writd = ma
with @ > 0. Let M’ = M(F, B,m) \ F. Denote the meridian t&' in M, i.e. the class of a fibre in
ov(F), by z. By Proposition A.3 we get

71 (M(F, B,m)) = m1(M')/N (7).

We have an exact sequence
0— Wl(ﬁ) i T (M") — Zy — 0,

sincer: M’ — M’ is anm-fold cyclic covering. The assumption that(1’) is abelian implies that
m1(M") is also abelian. Therefore, the normal subgroups generated by the fibres in these groups are
cyclic and we get an exact sequence of subgroups

OHZaﬁﬂZmaJHZmHO,

whereo is the meridian ofF’ in M’. The surjectionZ,,,.c — Z,, implies that for each element
a € m1(M’) there is an integer € Z such thatx + ro maps to zero itZ,, and hence is in the image
of m,. In other words, the induced map

T m (M) — w1 (M") /(o)
is surjective. The kernel of this map (&), hence
mi(3)/{5) — m(M)/(0).
Again by Proposition A.3, this implies, (M (F, B,m)) = w1 (M). O

We will use this theorem in the case whevé is a 4-manifold andF" an embedded surface. In
general, the complement of a 2-dimensional submanifold in a 4-manifold does not have abelian fun-
damental group even i#/ is simply-connected. However, this is sometimes the case if we consider
complex curves in complex manifolds. The following theorem is due to Nori ([105], Proposition 3.27).

Theorem 6.46.Let M be a smooth complex algebraic surface dndEl ¢ M smooth complex curves
which intersect transversely. Assume th¥t > 0 for every connected component C D. Then the
kernel ofr (M \ (DU E)) — m (M \ E) is a finitely generated abelian group.

In particular, forE = (), this implies that the kernel of
m(M') — 1 (M)

is a finitely generated abelian grouplifis connected an@? > 0, whereM’ denotesM \ D. If M is
simply-connected it follows that; (M’) is abelian. Together with Theorem 6.45 we get the following
corollary to Nori's theorem.

Corollary 6.47. Let M be a simply-connected, smooth complex algebraic surfaceland M a
smooth connected complex curve with > 0. Let M bea cyclic ramified cover o/ branched over
D. ThenM is also simply-connected.

If the divisor not only satisfie®? > 0 but is ample, there is a more general theorem by Cornalba
[27]:



V1.3 Branched coverings 129

Theorem 6.48.Let M beann-dimensional smooth complex algebraic manifold &nd- 1/ a smooth
ample divisor. LetV/ bea ramified cover of\/ branched overD. Then

7, (M)

I

Wk(M), nggn—l,
andr, (M) surjectsontor,, (M).
In particular, we get in the case of complex surfaces=(2):

Corollary 6.49. Let M be a smooth complex algebraic surface a@nd- M a smooth ample divisor.
Let M bea ramified cover of\/ branched oveD. Thenm (M) = 71 (M).

In a different situation, Catanese [20] has also used restrictions on divisors to ensure that the com-
plement of a curve in a surface and certain ramified coverings are simply-connected.

Example 6.50.Let M = CP? and D a smooth complex curve of degree> 0 representingnH €
Hy(M;Z), where H = [CP!'] denotes the class of a hyperplane. The canonical clags3fis
K = —3PD(H). By the adjunction formula,

g(D)=1+L(K D+ D?

we can compute the genus bf g(D) =1+ %n(n —3). SinceD? > 0 andC P? is simply-connected,
the complement P2 \ D has abelian fundamental group by Nori’s theorem. This implies that

m1(CP?\ D) = H\(CP*\ D;Z) = Zy,

which has been proved by Zariski in 1929 [147]. We can also considet-foéd cyclic branched
covering
¢: M = M(D,H,n) — M.

By Corollary 6.47 the complex algebraic surfais simply-connected. The invariants are given by
the formulas in Proposition 6.43:

Ky = (n—4)¢"H
(M) = n(n — 4)?
c2(M) =3n+ (n—1)n(n — 3)
sincecy(CP?) = 3 ande(D) = —n(n — 3). The calculation
(M) — 2co(M) = n(n* — 8n + 16) — n(6 + 2n* — 8n + 6)
= n(—n? +4),
implies
o(M)=—-%(n*>—4)n

Note that M is a simply-connected 4-manifold such tht; is divisible by d = n — 4. However,
c2(M) grows with the third power ofl and is rather larger. One can show thatis diffeomorphic to
a complex hypersurface iiP? of degreen (cf. [56, Exercise 7.1.6]).
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V1.4 Geography of simply-connected surfaces of general type

In this section, we collect some results on the geography of simply-connected surfaces of general type.
We consider branched coverings of some of these surfaces over pluricanonical divisdss in the

next section. The surfaces we obtain will then have a canonical class divisible by a certain integer
d > 1. We begin with the following result due to Persson [115, Proposition 3.23] which is the main
geography result we will use for our constructions.

Theorem 6.51. Letx, y be positive integers such that
20 —6 <y < 4x — 8.

Then there exists a simply-connected minimal complex suifaoégeneral type such thay, (M) = =
andc?(M) = y. Furthermore M can be chosen as a genus 2 fibration.

The smallest integer to get an inequality which can be realized with> 0 is z = 3. Since
xh(X) = py(X) + 1 for simply-connected surfaces, this corresponds to surfacepwith2. Hence
we get minimal simply-connected complex surfadésvith

py=2andK?=1,2,3,4.
Similarly, for z = 4, we get surfaces with

py=3andK?*=2,....8.
We consider surfaces of general type with = 1 and K2 = 2 in general.

Proposition 6.52. For K2 = 1 and K = 2 all possible values fop, given by the Noether inequality
can be realized by simply-connected minimal complex surfaces of general type.

Proof. By the Noether inequality, only the following values fgy are possible:

K*=1: p,=0,1,2
K*=2: p,=0,1,2,3.

The cases? = L,pg =2 andK? = 2,p, = 2,3 are covered by Persson’s theorem. The surfaces
with K? = 1,p, = 2 andK? = 2,p, = 3 are Horikawa surfaces, as described in [65], [66]. The
remaining cases can also be covered: The Barlow surface, constructed in [7], is a simply-connected
minimal complex surface of general type witti> = 1,p, = 0, hence it is a numerical Godeaux
surface. Minimal surfaces of general type Wittt = 1,pg = 1 exist by constructions due to Enriques.
They are described in [19]: they are all simply-connected and deformation equivalent, in particular
diffeomorphic. Simply-connected minimal surfaces with = 2, p, = 1 have also been constructed

by Enriques (see [25], [22]). Finally, Lee and Park have recently constructed in [85] a simply-connected
minimal surface of general type withi? = 2, p, = 0. It is a numerical Campedelli surface. O

We now consider the case of surfaces of general type which are spin (the following two theorems
arefrom [116]). Recall that spin complex surfaces necessarily have

(M) =0mod8 and c2(M) = 8y,(M) mod16.

The first theorem shows that not all lattice points which satisfy these congruences can be realized by a
simply-connected minimal complex surface of general type.
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Theorem 6.53. SupposéV! is a simply-connected spin surface of general type with
2xn(M) — 6 < f(M) < 3(xn(M) —5).
ThenM admits a fibration in genus 2 or genus 3 curves and the invariants are either
o c2(M) = 2x,(M) — 6, wherec?(M) is an odd multiple o8, or
o 3(M) = E(xn(M) — 4), with x,(M) = 1 mods3.

All possible points with these constraints can be realized by simply-connected spin complex surfaces of
general type.

Note thay, (M) —6 < (M) holds automatically by the Noether inequality. The first case (spin
Horikawa surfaces on the Noether line) occurs if and only if there exists an integdl, such that

(M) = 8(1+2n),
Xn(M) =7+ 8n.

This implies that
e(M)="16+80n, o(M)=—48 — 48n.

The second case occurs if and only if there exists an intege®, such that

ci(M)
xn(M)

(1+n),
+ 3n.

8
7
This implies

e(M)="16+28n, o(M)=—48— 16n.

In[116] also an area witk? > 3(, —5) is covered. The congruences= 0 mod8 andc? = 8y,
mod 16 imply

2 _
This congruence can be split in two cases:
d — 0mod4, and < — 2 mod4
& txn=0mod4, and < + x; =2 mod4.
Thefollowing theorem covers a sector for the second case.
Theorem 6.54. Suppose that, y are positive integers with = 0 mod8 and § + = = 2 mod4. If
3(z —5) < y < Bz —4),

then there exists a simply-connected spin surfddeof general type, such that,(M) = x and
c}(M) = y. The surfaceVl can be realized as a fibration in genus 4 curves.

The surfaces of general type in this section all haye< 4y, which is equivalent tar < —c?.
There are also geography results for simply-connected surfaces of general type closero(tiae
(c? = 8xy,) or with positive signature [26, 115, 116]. In the simply-connected case, all surfaces have
to lie below the linec? = 9, which is given by the Bogomolov-Miyaoka-Yau inequality.
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V1.5 Branched covering construction of algebraic surfaces with divisible

canonicalclass
In this section we construct simply-connected complex algebraic surfaces as branched coverings such
that the canonical class is divisible by a given integer 0. In subsections VI.5.1 and VI.5.2 we
consider coverings branched over a smooth curve in the pluricanonical linear $ygten, whereM
is a surface of general type. In subsection VI.5.3 we consider an example where the curve is singular,
not a multiple of the canonical divisor and the surfddes not of general type.

We begin with the first case. Suppose thatis a simply-connected minimal complex surface of
general type. Letn,d > 2 be integers such that — 1 dividesd — 1. We can writea = % and
definen = ma. Thend = n + 1 — a and the assumptions imply that> 2. We assume thatK,
can be represented by a smooth complex connected éumel/ (see Sections 11.3.2 and 11.3.7). Let
M = M(D,aK ), m) denote the associatea-fold branched cover over the curéa We have

D? =n?K3, >0,

henceM is a simply-connected complex surface by Corollary 6.47. We can calculate the invariants by
Lemma 6.44.

Theorem 6.55. Let M be a simply-connected minimal surface of general typerand > 2 integers
such thatd — 1 is divisible bym — 1 with quotienta. Suppose thab is a smooth connected curve

in the linear systemnK ;| wheren = ma. Then them-fold cover of M, branched overD, is a
simply-connected complex surfakg of general type with invariants

o Ky =do* K
o G(3) = md2 (M)
o o(M) = m(e(M) + (d — 1)(d + @) (M)
o (M) = mxu (M) + fym(d —1)(2d + a + 1) (M)
o o(M) = —1m(2e(M) + (d(d — 2) + 2a(d — 1))c3(M)).
In particular, the canonical clas&’; is divisible byd and M is minimal.

The surfaceVl is of general type becausg(1) > 0 andM cannotbe rational or ruled. The claim
about minimality follows because the divisibility & is at leastd > 2, cf. Lemma 6.2. The formula
for x,, (M) follows by writinge(M) in terms ofy, (M), c3 (M),

o e(M) = 12mxp(M) +m((d—1)(d+a) — 1)c2(M)
and calculating
Xn(M) = mxp(M) + %m((d —1)(d+a)+d*—1)E(M),

which gives the formula above. Note also thdfl/) is always negative. Hence we cannot construct
surfaces with positive signature in this way, even if we start with surfaces of positive signature.
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VI.5.1 General results

We want to compute the image of the sector of surfaces of general type from Theorem 6.51 for the
transformationd: (e(M), c2(M)) — (e(M), c3(M)) given by the formulas in Theorem 6.55. We use
the following equivalent formulation of Persson’s theorem:

Corollary 6.56. Lete, c be positive integers such that> 36 — e ande + ¢ = 0 mod12. If
1(e—36) <c< i(e—24),
thenthere exists a simply-connected minimal surfa¢ef general type with invariants(1/) = e and
2
ci(M) =c.

Proof. Under the linear transformatiogy, = %(cf + e), the Noether line? = 2x; — 6 maps to

hencer? = 1(e—36). Similarly, the lineci = 4y, —8 maps tarf = 1 (e—24). Persson’s theorem gives
reasonable pointse, y) only for z > 3. The liney;, = 3,c? = t fort > 0 maps toc? = 36 — e. The
points we consider in thg, ¢) plane have to be to the right from this line, hemce 36—e. Conversely,
if (e, c) is anintegral point in the sector defined by these three lines and satisfies the canditien0
mod 12 coming from the Noether formula, we can compute the intager= % (c? + e) andsee that
(e, c) is the image of a point in the sector in Persson’s theorem. O

Letm, a, d be integers as above. We can write the transformation as

(58 )-=(5 ) (40

where we have made the abbreviatidn= (d—1)(d+a). ® is a linear map, which is invertible ov&
and maps the quadrant where both coordinates have non-negative entries into the same quadrant. The

inverse of® is given by
Caon )=+ e ) (Sam )

Sincee(M) andc?(M) areintegers withe(M) + ¢2(M) = mod 12, we see that a pointz,y) =
(¢/,c) € Z x Zis in the image of the mag, if and only if ¢’ is divisible bymd?, ¢’ is divisible bym
andle' + =2 = 0mod12.

We want to calculate the image of the line- %(e —36), which appears in the version of Persson’s
theorem above. Let=t,c = (¢t — 36), for t > 0. Then

* (s lay )= (Rl i)

e(M)=mt(1+:A) — EmA

(M) = %mth - %md?

This implies

We can solve the first equation foand replace in the second equation. We get:

— 1

(M) = 7(1 T1a) (2d?e(M) — 3md?),
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hence 2

(M) = N (e(M) — 36m). (6.7)
Similarly the linec? = (e — 24) mapsto

2(M) = & M) — 24 6.8

Thepoints given by Persson’s theorem have to satisfy the constrairt6 — e. The image of the line
2 .
Cl — 36 —els

2
(W) = —(liiA)(e(M) _ 36m). (6.9)

Summarizinghe calculation, we see that the image of the lattice points in the s?@ef 36) <c¢<
%(e —24),with ¢ > 36 —e ande + ¢ = 0 mod12, is given precisely by the points in the sector between
the lines (6.7) and (6.8), which are to the right of the line (6.9) and satigf§) = 0 modm, ¢3(M) =
modmd? and
Le(M) + =45c3(M) = 0 mod12.

Thesurfaces in Persson’s theorem 6.51 haye> 2 and K2 > 1. By section 11.3.2, the linear system
InK|, forn > 2, on these surfaces has no base points, except in thegase, K? = 1 andn = 3.
Sincen = ma andm > 2, this occurs only forn = 3,a = 1 andd = 3. The corresponding image
under® has invariantsge, c3) = (129, 27). This exception is always understood in the following.

In all other cases we can consider the branched covering construction from this section to get
minimal surfaces of general type with the invariants above, such that the canonical class is divisible by
d. We can summarize this as follows: Consider integers, d as above, withn,d > 2,a > 1 and

A= (d—1)(d+ a).

Theorem 6.57. Letx, y be positive integers such thatl — A) > 36 — z andx + (1 — A)y = 0 mod

12, If
1

1
5+ A) (24 A)
then there exists a simply-connected minimal complex surfacef general type with invariants
e(M) = mz andc?(M) = md>y, such that the canonical class df is divisible byd.

(x—36) <y < (x — 24),

Note that the sector in Persson’s theorem 6.51 intersects non-trivially with the lines and sectors for
spin surfaces, given by 6.53 and 6.54. In this case, a point ifxthe?) plane can be realized by a spin
surface and the formula for the canonical class of the branched covering shousithttten already
divisible by2d. We have calculated some examples for small valuesarfdm, see Table VI.1.

VI.5.2 Examples

In this section we calculate some further examples for the branched covering construction given by
Theorem 6.57 and for some surfaces not covered by Persson’s theorem. Note thatdor anywe

can choosen = 2 anda = d — 1 corresponding to 2-fold covers branched oy2d — 2)K. The
formulas for the invariants simplify to

o 2(M) = 2d*c3(M)

o e(M) = 24x,(M) + 2d(2d — 3)c3 (M)
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d m A Invariantse( M), c(M) with the corresponding poirftz, y) underneath
3 2 10 90, 18 108, 36 132, 36 126, 54 150, 54
(45,1) (54,2) (66, 2) (63,3) (75,3)
3 3 8 —— 150, 54 186, 54 171, 81 207, 81
(43,1) (50,2) (62,2) (57,3) (69, 3)
4 2 21 112, 32 154, 64 176, 64 192, 96 216, 96
(56,1) (76,2) (88,2) (96, 3) (108, 3)
4 4 15 200, 64 256, 128 304, 128 312,192 360, 192
(50,1) (64,2) (76,2) (78,3) (90, 3)
5 2 36 142, 50 212, 100 236, 100 282, 150 306, 150
(71,1) (106, 2) (118,2) (141, 3) (153, 3)
6 2 99 180, 72 288, 144 312, 144 396, 216 420, 216
(90,1) (144, 2) (156, 2) (198, 3) (210, 3)

Table VI.1: Ramifiedcoverings of surfaces from Persson’s theorem 6.51 with dividible

o xn(M) = 2xp(M) + 3d(d — 1)t (M).
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Thefirst two examples are double coverings with= 2, the third example uses coverings of higher

degree. Note that some of the surfaces are because of their invariintsafed the parity of the

divisibility of K) homeomorphic to some of the simply-connected symplectic 4-manifolds constructed
in Sections VI.2.2 and VI.2.3.

Example 6.58.We consider the Horikawa surfaces [65] on the Noetherdfne 2x;, — 6, which exist
for everyx;, > 4 and are also given by Persson’s theorem 6.51. We pave3 andc? > 2. Hence by

Theorem 2.4 the linear systemi | for n > 2 on these surfaces has no base points. The Noether line

corresponds in the version of Persson’s theorem in Corollary 6.56 to the%lhae%(e — 36). We take

m = 2 anda = d — 1. Itis easier in this case to calculate the points in the image of the Noether line
under® directly. The equation?(M) = 2y, (M) — 6 implies

by the formulas above.

Proposition 6.59. Let M be a Horikawa surface on the Noether licdg= 2y, — 6 wherey;, = 4 + 1
for I > 0. Then the 2-fold covel! of the surfaceM, branched ovef2d — 2) K, for an integerd > 2,

has invariants

cA(M) =4d*(1 + 1)

Xn(M) =6+ (1 + 5d(d — 1)) (M),

xn(M) =6+ (2+d(d—1))(I+1)
e(M)=172+4( +1)(6 + 2d*> — 3d)

o(M) = —48 — 4(1 + 1)(4 + d* — 2d).

The canonical clas&(y; is divisible byd.
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Ford even, the integeti? —2d = d(d—2) is divisible by4, hencer is indeed divisible by6, which
is necessary by Rochlin’s theorem. Since there exist spin Horikawa surfac€sfoy = 8(1 + 2k)
with & > 0, the canonical class on the branched covers Wwith 8% + 3 are divisible by2d. The
invariants are on the line

— 42 _
M) = ———— M) — .10
which has inclination close td for d very large. Moreover, we have
2T d? =7
AlM) = 5@ —3q M) ~ T2

SinceA = (d — 1)(2d + 1) = 1 + 2d* — 3d, this is exactly the line

given by Theorem 6.57, faff = 2d%y, e = 2u.

Example 6.60. We calculate the invariants for the branched covers with 2 and integergl > 3 for
the surfaces given by Proposition 6.52. Simce- ma > 4 in this case, Theorem 2.4 shows that the
linear systemn K| has no base points and we can use the branched covering construction.

Proposition 6.61. Let M be a minimal complex surface of general type with = 1 or 2. Then the
2-fold coverM of the surfaceM, branched ovef2d — 2) K, for an integerd > 3, has invariants

(M) = 22

e(M) =24(py + 1) + 2d(2d — 3)
o(M) = —16(py + 1) — 2d(d — 2), if K> =1andp, =0,1,2.

e(M) = 24(py + 1) + 4d(2d — 3)
o(M) = —16(py + 1) — 4d(d — 2), if K> =2andp, =0,1,2,3.
In both cases the canonical clasS;; is divisible byd.

Example 6.62. Consider the Barlow surfac&/p and the surfacé/; p of Lee and Park that were
mentioned in the proof of Proposition 6.52. They have invariants

A (Mp) =1,xp(Mp) = 1 andea(Mp) = 11
c%(MLP) = 27Xh<MLP> =1 andCQ(MLP> = 10.

By section 11.3.2, we can consider branched covers over both surfaceswith 3 (the Barlow surface

is a simply-connected numerical Godeaux surface, h@I¢eis base point free). See Tables V1.2 and

VI.3 for a calculation of the invariants af/ for small values ofd andm. The 2-fold covering of

the Barlow surface branched ovek ), has the same invariant$, o and divisibility of the canonical

class (d= 3) as a simply-connected symplectic 4-manifold obtained in Corollary 6.33. There is also a
coincidence between thiefold cover of the Barlow surface branched ovés;; and the2-fold cover

of the surface of Lee and Park branched o¥ff,,: Both have the same Chern invariants and the
same divisibilityd = 4 of the canonical class. Hence the manifolds are homeomorphic, but it is unclear
whether they are diffeomorphic. By Lemma 6.4, both branched coverings have the same Seiberg-Witten
invariants.
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d | m | ma| (d=1)(d+a) | e(Mp) | ci(Mp) | xn(Mp) | b3(Mp) | o(Ms)
302 | 4 10 42 18 5 9 —22
33| 3 8 57 27 7 13 ~29
412 6 21 64 32 8 15 ~32
4] 4| 4 15 104 64 14 27 48
502 | 8 36 94 50 12 23 46
503 ] 6 28 117 75 16 31 53
505 | 5 24 175 125 25 49 75
6| 2 | 10 55 132 72 17 33 —64
66| 6 35 276 216 41 81 ~112
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Table VI.2: Ramifiedcoverings of the Barlow surfad/; of degreem branched ovema K.

VI.5.3 Branched covers over singular curves

One can also construct examples of algebraic surfaces with divisible canonical class by taking branched
covers over singular curves. Itis also not necessary to start with surfaces of general type and branching
divisors which are a multiple of the canonical class. The following example of such a covering is
described in [56, Chapter 7]: Le%, ,, denote the singular complex curve @P! x CP! which is

the union of2n parallel copies of the first factor aritin parallel copies of the second factor. The
curve B,, ,,, represents in cohomology the classS; + 2mS,, wheresS; = [CP! x {x}] and Sy =

[{x} x CP!]. Let X'(n,m) denote the double covering 6fP! x CP! branched oveB,, ,,. Itis a
singular complex surface, which has a canonical resolutiom, m) (see [8, Chapter I11]). As a smooth
4-manifold, X (n, m) is diffeomorphic to the double cover 6fP! x CP! branched over the smooth
curveén,m given by smoothing the double points. Hence we can calculate the topological invariants
for X = X (n, m) with the formulas from Proposition 6.43 and get:

A(X)=4(n—-2)(m—2)
e(X)=6+22m—1)2n—1)
o(X)=—4mn

We write X’ = X’(n,m) andM = CP! x CP!. Let¢: X’ — M denote the double covering,
n: X — X' the canonical resolution andl = ¢ o 7 the composition. Since all singularities B, ,,,
are ordinary double points we can calculate the canonical clakshyf[8, Theorem 7.2, Chapter III]:

Kx = ¢*(Ky + 3 Bn)
=% (=251 — 253 + nS1 + mSs)
=¢*((n = 2)S1 + (m — 2)5,).
One can give the following interpretation of this formula: The mapX — CP!' x CP! followed

by the projection onto the first factor defines a fibratisn— CP! whose fibres are the branched
covers of the rational curve®} x CP!, wherep € CP!. The generic rational curve among them
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d| m | ma| (d-1)(d+a) | e(Mpp) | E(Mrp) | xn(Mrp) | b5 (Mpp) | o(MLp)
31 2 4 10 60 36 8 15 —28
3] 3 3 8 78 54 11 21 —-34
4 2 6 21 104 64 14 27 —48
4 | 4 4 15 160 128 24 47 —64
5 | 2 8 36 164 100 22 43 —76
5 | 3 6 28 198 150 29 57 —82
51 5 ) 24 290 250 45 89 —110
6 | 2 10 55 240 144 32 63 —112
6| 6 6 35 480 432 76 151 —176

Table VI.3: Ramifiedcoverings of the Lee-Park surfadé; » of degreem branched ovemaK.

is disjoint from the2m curves inB,, ., parallel to{x} x CP! and intersects then curves parallel to
CP! x {x} in 2n points. This implies that the generic fibf® of the fibration is a double branched
cover of CP! in 2n distinct points and hence a smooth complex curve of genusl. In the surface
X it represents the clags'S,. Similarly, there is a fibratiodk — CP! in genusm — 1 curves which
represenf; = ¢*S;. Hence we can write

Kx = (n— Q)Fl + (m— 2)F2

Since the rational curves given by the factor€iR! x CP! intersect in one point, the fibrdg and
F5 will intersect on the resolution of the double covering in two points, hénde = 2. This implies
againc?(X) = 4(n — 2)(m — 2).

One can show that all of the surfac&gn,m) are simply-connected [56, Exercise 7.3.16]. By
varying n. andm we can achieve all divisibilities, e.g. far = m = 6 we get an algebraic surface
X (6,6) with invariantsc? = 64,e = 248, 0 = —144 and K x divisible by 4. In general, one can
show thatX (1, m) is diffeomorphic taC P24 (4m + 1)CP? (see[40], [56, Exercise 7.3.8])X (2, m)
is diffeomorphic to the elliptic surfac&(m) and X (3, m) is a Horikawa surface on the Noether line
3 = 2xy, — 6.

Remark 6.63. Catanese and Wajnryb [24, 20, 21] have constructed surfaces via branched coverings
over singular curves with the following properties: Supposi c — 1 > 2 are integers. Then there
exist simply-connected surfac8sf general type with invariants

¢ (S) =8(a+c—2)(2b—2)
Xn(S) = (a+c¢—2)(2b—2) 4+ 4b(a + ¢),
and the divisibility of K g is the greatest common divisor ef+ ¢ — 2 and2b — 2. Moreover, some

of these surfaces are diffeomorphic but not deformation equivalent, thus giving counter-examples to a
well-known conjecture.
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In 1965, D. Barden gave a complete classification of simply-connected closed 5-manifolds [6]. The
proof uses the theory di-cobordisms developed by S. Smale [124] to conclude thattwanifolds
which agree in certain topological invariants are diffeomorphic (Smale gave a classification for spin
simply-connected 5-manifolds in 1962, cf. [125]).

In this chapter we describe the topological invariants of simply-connected 5-manKoldsd in
the classification, in particular the linking form on the torsion subgroup of the second integral homol-
ogy. The linking form gives rise to the so-callethvariantwhich takes integer values {0, 1, ..., oo}.
Thei-invariant is also related to the second Stiefel-Whitney class and vanisKeis gpin. The result
of Barden’s theorem is that two simply-connected 5-manifolds are diffeomorphic if and only if they
have isomorphic second homology and thevariants are the same.

Using Barden’s theorem it is possible to determine all simply-connéctednifolds which are ir-
reducible under connected sum. One can also show that every simply-conhvectadfold X can be
decomposed under connected sum into finitely many irreducible pieces. The splitting is unique if it con-
tains at most one non-spin summand. As a corollary, we determine all simply-connected 5-manifolds
with torsion free homology up to diffeomorphism. This will be used in Chapter 1X to classify simply-
connected 5-manifolds which can be obtained as circle bundles over simply-connected 4-manifolds.
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The material in this chapter is not new, it is already contained in Barden’s article [6]. However,
we try to do some of the calculations in more detail, in particular in Sections VII.5 and VII.6 on the
constructions of the irreducible building blocks of simply-connected 5-manifolds and the connected
sum decomposition.

VII.1 Linking forms

VII.1.1 The topological linking form

Let X™ be a closed oriented-dimensional manifold. Fix an elemefite TorH,,_,—1(X;Z) and let
y = PD(¢) € TorHY (X ; Z) denote the Poincardual of¢. We consider the long exact sequence in

cohomology associated to the sequence of coefficient gioup<. 4, QL Q/Z — 0:
s HY(X;Q) 2% HU(X;Q/7) L BN (X;7) 5 HYY(X;Q) — ...

Here denotes the associated Bockstein homomorphism. iixa torsion elemeni,y = 0. Hence
there exists an € H4(X;Q/Z) with (z) = y.

Definition 7.1. Let{ € TorH,_,—1(X;Z) be as above angl € TorH,(X;Z) an arbitrary element.
Thelinking numberof n and¢ is defined as

b(n, &) = (z,n) € Q/Z.

This number is well-defined, independent of the choiceroff 2/ € H?(X;Q/Z) is another
element withg(z') = y, thenz’ — z = p.pu, for some element, € HY(X;Q). Since rational
cohomology classes evaluate to zero on torsion homology classes), = (x,n).

The name “linking number” has the following interpretation: one can represent the homology
classes) and¢ by cyclesu and z. Sincer is a torsion class, there exists a chaire Cy1(X)
such thatec = au for somea € Z. One can show thathas a well-defined intersection number with
which is equal taz - b(n, £) (cf. [129]).

The following theorem summarizes the basic properties of linking numbers.

Theorem 7.2. The linking numbers define a non-degenerate bilinear form
b: TorHy(X;Z) x TorH,_q—1(X;Z) — Q/Z.

This form is called thdinking form. In different degrees, the linking forms are relatedfy, £) =
(—1)matip(¢,n) forall n € TorH,(X;Z) and{ € TorH,,—,—1(X;Z).

A proof can be found, e.g. in [129], Chapter 14.7 and 15.6.

Proposition 7.3. If h: X — Y is a homotopy equivalence, then

by (h«n, hi&) = bx (1, §).

Proof. Let g: Y — X be a homotopy inverse th and3(z) = PD(&) as in the definition of the
linking number. Then we have:

PD(h.§) = g"PD(§) = g"B(x) = B(g"x).

The claim now follows from
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Suppose the dimension &f isodd,n = 2¢+ 1. Then the linking numbers define a non-degenerate
bilinear form
b: TorH,(X;Z) x TorHy(X;Z) — Q/Z.

If ¢ is even, them is skew-symmetric by Theorem 7.2.

Definition 7.4. The linking form of a closed, oriented 5-manifold is the non-degenerate skew-
symmetric bilinear form given by

b: TorHy(X;Z) x TorHy(X;Z) — Q/7Z.

VII.1.2 Skew-symmetric bilinear forms

Let G be a finite abelian group artd G x G — Q/Z a non-degenerate skew-symmetric bilinear form.
Thenb defines a homomorphisin G — Z, in the following way: By skew-symmetry, we have

2b(z,x) = b(z,x) + b(x,z) =0,
henceb(z,z) € {0, 3} for all z € G. We can then consider the map
b: G — Zo,
x — 2b(z, x).

This is a homomorphism:

b(x +y) =2b(z +y,z +y) = b(x) + 2b(x,y) + 2b(y, x) + b(y) = b(x) + b(y).

More generally, letH be a finitely generated abelian group andHd — Z, a homomorphism,
wherep is a prime.

Definition 7.5. A basis forH as an abelian group, such tlyais non-zero on at most one basis element,
is called ap-basis.

Supposer € H is an element witlp(z) # 0. In particularz # 0. Let1 < r < oo denote the order
of 2. Thenr¢(x) = 0, hencer is divisible byp. This implies that the order af is of the formr = p’
with1 < p < .

Lemma 7.6. If H is afinitely generated abelian group agd H — Z, a homomorphism, thed has
a ¢-basis such that all basis elements have prime power order.

Proof. We follow the proofin [6]. Letey, . . ., e, denote a basis dff such that all elements have prime
power order (including, possibly, infinite order). If the orderpfs not a power op, theng(e;) = 0.
We can assume without loss of generality that the basis elemehltbbrder a power op, on which

¢ is non-zero, arey, . .., e, Where0 < b < a and the order oé; is at least the order af;, 1, for all

0 <i<b-—1. The orders ok, e, are of the fornp”, p*, with 1 < s <r < co. Then

p(e1) = kn, ¢(e2) =n,

for somen € Z, andk € Z, not divisible byp. The elementde; — ke, ez} form a basis of the
subgroupH’ generated byeq, e2}: If ze; + yeo is an arbitrary element in this subgroup, then

xe +yes = x(e1 — kea) + (y + kx)es.
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Hence{e; — kes, e2} generatef!’. Supposes(e; — kes) + wey = 0 for integersv, w € Z. We get
ve;+(w—uvk)ez = 0, which impliesve; = 0 = (w—wvk)ez. Hencep” dividesv andp?® dividesw —vk.
Sinces < r, the integep?® also dividesy, hence it dividesv. Thereforewes = 0 = v(e; — kes).

Note that¢(e; — kea) = 0. Hence we can change the basis elements. ., e, to new basis
elements such thatvanishes on one of them. In this way, we can change the basis inductivelyp until
iS non-zero on at most one basis element. O

Choose ap-basisfor H consisting of elements of prime power ordergls 0, seti(¢) = 0. If ¢
is not identically zero, lep’ with 1 < i < oo be the order of the basis element on whicls non-zero.
We seti(¢) = i.

Definition 7.7. The integeri(¢) € {0,1,...,00} is called thei-invariant of the homomorphism
¢: H — 7Z,. One can show that¢) does not depend on the choicefebasis forH andi(¢) = i(¢ow)
for any automorphism of H (see [6]).

We now consider again a finite abelian graipandb: G x G — Q/Z a non-degenerate skew-
symmetric bilinear form. Then there is the homomorphisnG — Z, asabove. The following
theorem is proved in [6].

Theorem 7.8. For a finite abelian groug ' as above, the forrh is determined by théinvarianti(b)
upto isomorphism.

One can also give an explicit classification of non-degenerate skew-symmetric bilinear forms on
finite abelian groups. Consider the following forms:

e A onZsy, given on the generatarby b(z,z) = 1/2.

e B, onZ,, ® Z,, for m > 2, given on the standard generators by

(=t ")

e Cp, ONZy, ® Zyy, for m > 2 even, given on the standard generators by
0 1/m
~1/m 1/2 )"

Theorem 7.9. LetG be a finite abelian group anit G x G — Q/Z a non-degenerate skew-symmetric
bilinear form. Then has a basis such thatis given by a form of one of the following three types:

One can prove the following theorem:

® By @...0 By,
® By ®...®By,_, DA
¢ By @...0 By, , ®Cor,r > 1.

For a proof, see [129]. Since the corresponding basek-baseswe can read off thé-invariants:
They ared, 1 andr, with r > 1, respectively. Note that the second case and the third casefdrare
distinguished by the isomorphism type of the underlying groups. As a corollary, using the toplogical
linking form from the first section in this chapter, we get:
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Corollary 7.10. If X is a closed, oriented manifold of dimension= 4¢ + 1, then
TorHyy(X;Z)=H@® HorH & H @ Zs,
for some finite abelian grouf. In the second case, thidénvariant ofb hasto be equal tdl.

In particular, this holds for Torg{ X; Z) for a closed, oriented 5-manifold.

VII.2 The Stiefel-Whitney classes

In this section we show that the Stiefel-Whitney classes of a closed differentiable mawifd&pend
only on the homotopy type a#/. This will be needed later to prove that if two simply-connected
closed 5-manifolds are homotopy equivalent, then they are already diffeomorphic. A reference for this
section is [16, Chapter VI, Section 17.].

If X is atopological space, ti&teenrod squareare certain homomorphisms

Sq': HM(X;Zy) — H*(X;Zy),

which exist for alli, ¥ > 0 and are natural with respect to continuous maps{ — Y. Let M be a
closed differentiable manifold of dimensian We need not assume thif is oriented. In any case, it
has aZ»-fundamental clasg\/] € H,,(M;Zs).

Lemma 7.11. The homomorphism

H'(M;Zs) — Hom(H"""(M; Zs),Z3),a + (a U —, [M]),
is an isomorphism.
Proof. We have two isomorphisms:

(1.) HY(M;Zs) — Hom(H;(M;Zs),Zs),a — (a,—), given by the Universal Coefficient Theorem
sinceZs, is a field, and

(2.) H" Y (M;Zs) — H;(M;Zs),c — c N [M], given by Poinca duality.
Both isomorphisms combine to the isomorphism in the statement of the lemma. O
Consider now the homomaorphism
H" (M;Zs) — Ly, ¢ — (S¢'(c), [M]).
The Lemma implies that there exist unique classés/) € H'(M;Zs), fori > 0, such that
(vi(M) Ue,[M]) = (S¢'(c), [M]) Ve e H" ' (M;Ls). (7.1)

Thev;(M) are called thaVu classe®f M. One can prove that they determine the Stiefel-Whitney
classes in the following way:

wi (M) = quk_jvj(M)-

See [16], Theorem 17.5 Chapter VI. From this we deduce
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Proposition 7.12. Supposé.: M — N is a homotopy equivalence between smooth closed manifolds.
Then
h*wg(N) = wi(M) VE > 0.

Proof. Itis enough to show that*v;(N) = v;(M) for all k. Letg: N — M be a homotopy inverse
to h. We get:

(hW*vi(N) U, [M]) = (vi(N) U g"c, g«[M]) = (vi(N) U gc, [N])
)

(
= (8q'(g"c). [N]) = (g"Sq'(c), [N])
(S¢'(c), 9«[N]) = (Sq'(c), [M]), Ve ee H"(M;Zy).
)

By uniqueness, this impligs v;(N) = v;(M). O

VI.3 The topological invariants of simply-connected 5-manifolds

In this section, letX be a closed, simply-connected, oriented 5-manifold. We want to describe the
topological invariants o .
VII.3.1 Homology and cohomology ofX

Let G = Hy(X;Z). Then the homology and cohomology groups®fire completely determined by
G This follows by Poinca duality

H*(X;7) = Hs 4(X;Z)
and the Universal Coefficient Theorem, which implies

TorH"(X;Z) = TorH, 1(X;Z) and H"(X;Z)/Tor= Hy(X;Z)/Tor.

0 1 2 3 4 5
H,(X;7) Z 0 G G/TorG 0 Z
H™(X;7) Z 0 G/TorG G 0 Z

Table VII.1: Integral homology and cohomology in degree
of simply-connected 5-manifoldk.

VII.3.2 The linking form
The linking numbers define a non-degenerate skew-symmetric bilinear form
b: TorHy(X;Z) x TorHy(X;Z) — Q/Z.
By Corollary 7.10, we have
TorHy(X;Z) =2 H® Hor 2 H® H ® Zo,
for some finite abelian grouff. We also get the homomorphism

b: TorHy(X;Z) — Zy, x — 2b(x, x).



VII.3 The topological invariants of simply-connected 5-manifolds 145

VII.3.3 The second Stiefel-Whitney class
SinceH:(X;Z) = 0, the Universal Coefficient Theorem implies that
H?(X;Z) = Hom(Hs(X;Z), Za),

via evaluation of cohomology on homology classes. Hence we can think of the second Stiefel-Whitney
classwy(X) € H?(X;Zsy) as a homomorphism

wo(X): Ho(X;Z) — Zo.
This homomorphism has arinvariant as in Definition 7.7.

Definition 7.13. We seti(X) = i(w2(X)) and call this number iq0, ..., 00} the i-invariant of the
closed, simply-connected 5-manifald. By Definition 7.7 and Proposition 7.12, the integeX) is a
homotopy invariant ofX.

The following proposition is due to Wall, cf. [143, Proposition 1 and 2].

Proposition 7.14. The homomorphismsandw- are identical on the torsion subgroup éf,(X; Z),
ie.
wa(x) = 2b(x, ) mod2,

for all torsion elements € TorHz(X;Z).

Theorem 7.15.Let X, Y be closed, simply-connected, oriented 5-manifolds. Suppose that the second
homologyH»(X;7Z) and Hy(Y'; Z) are isomorphic as abelian groups andX) = i(Y"). Then there
exists an isomorphis: Hy(X;Z) — Hs(Y;7Z) which preserves the linking forms on the torsion
subgroups and satisfies,(Y) o 0 = wy(X).

Proof. By Theorem 7.8 we can find an isomorphism
o: TorHy(X;Z) — TorHy(Y; 7Z)
which preserves the linking form. By Proposition 7.14,
w2(Y)|ror 0 0 = wa(X)|70r-
We fix wa(X)- andws (Y')-bases fotH» (X ; Z) and Hy(Y'; Z). Then we get splittings
Hy(X;7Z)=F(X)® TorHy(X;Z), Hy(Y;Z)=F(Y)® TorHy(Y;Z),

where F(X) and F'(Y') are isomorphic and free abelian groups:(IK) = i(Y) < oo, thenws(X)
andws(Y) vanish on the free parts of this splitting. Hence any isomorphism

7: F(X)— F(Y),

gives an isomorphisri = 7 @ ¢ that satisfies the condition of the theoremi(IK) = i(Y) = oo,
then the second Stiefel Whitney classes are non-zero on precisely one basis element of the free parts of
the splitting above. Choosing an isomorphism of the free parts mapping these basis elements into each
other gives again an isomorphighmwhich satisfies the conditions of the theorem. O

Theformula in this proposition can be compared to the Wu formudéa) = Q (o, o) mod2 for all & € Ha(M; Z) on
a closed oriented 4-manifoltl/ with intersection fornQ).
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VIl.4 Barden'’s classification theorem

Thefollowing theorem is the classification theorem for simply-connected 5-manifolds and was proved
by D. Barden in [6] using surgery theory.

Theorem 7.16 (Barden).Let X, Y be simply-connected, closed, oriented 5-manifolds. Suppose that
0: Hy(X;Z) — Ho(Y;Z) is an isomorphism preserving the linking forms on the torsion subgroups
and such thatv,(Y)of = wo(X). Then there exists an orientation preserving diffeomorplfistx —

Y such thatf, = 6.

We sketch the proof. Since it involves thecobordism theorem, we briefly recall the notion of
cobordisms.

Definition 7.17. A cobordismbetween closed manifoldX andY is a compact manifold” with
oV =X1Y.

The manifoldsV, X andY need not be connected. Ttrevial cobordismis X x [0, 1].

Definition 7.18. A cobordismV betweenX andY is anh-cobordismif the inclusionsX — V and
Y — V are homotopy-equivalences.

Equivalently, bothX andY are (strong) deformation retracts Bf The following h-cobordism
theorem for simply-connectéddcobordisms is due to Smale [124].

Theorem 7.19.1f V™ is a simply-connectet-cobordism of dimension > 6, thenV is diffeomorphic
to the trivial cobordism.

In particular, if the boundary df is of the formoV = X I1'Y for connected manifoldX andY’,
thenX andY are diffeomorphic.

Let X,Y be closed, simply-connected, oriented 5-manifolds @ndi»(X;Z) — Hy(Y;Z) an
isomorphism preserving the linking forms and such thatY") o 6 = wo(X). Barden first shows in
his proof that there exists a simply-connected cobordisShetweenX andY such that the inclusions
i: X — Vandj:Y — Vinduce isomorphisms,: Hy(X;Z) — Hy(V;Z) andj.: Ho(Y;Z) —
H(V;Z) on second homology, witli, ! o i, = #. He then shows that” can be replaced by an
cobordism, inducing the same isomorphigmn the second homology groups &f andY. By the
h-cobordism theorem of Smale, there exists a diffeomorphism

F:V-YxI.
This induces an orientation preserving diffeomorphism
f: X =Y f=prioFoi.
Sincepry o F o j can be assumed to be the identity¥opwe see that
0= fi: Ho(X;Z) — Ha (Y3 Z).

This is a rough sketch of the proof for Barden’s theorem. With Theorem 7.15, we get the following
corollary.

Corollary 7.20. Let X, Y be closed, simply-connected 5-manifolds with isomorphic second homology
Hy(X;Z) = Ho(Y;Z) andi(X) = i(Y). ThenX andY are diffeomorphic.
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Hence Hy(X;Z) andi(X) form a complete set of invariants for closed, simply-connected 5-
manifolds. Since the linking form and the second Stiefel-Whitney class are homotopy invariants, we
get:

Corollary 7.21. If two closed, simply-connected 5-manifoldsY” are homotopy equivalent, then they
are diffeomorphic.

Proof. If h: X — Y is a homotopy equivalence, thén= h, preserves linking numbers (Proposition
7.3) andws(Y') 06 = wy(X) (Proposition 7.12); hence there exists a diffeomorphfsnX — Y such
that f, = h,. O

VILL5 Construction of building blocks

Recallthe following definition:

Definition 7.22. A smooth manifoldX™ of dimensionn is calledirreducibleif in any connected sum
decompositionX = Y;#Y> one of the summands is diffeomorphic$6.

There is a different definition, used for example in Section I1.1.2, where a smoothnifold is
called irreducible if and only if in any connected sum decomposition one of the summdnuaén-
morphicto S™. In the 5-dimensional case this difference is inessential by Corollary 7.21.

Note that a connected sum of two manifolds is simply-connected if and only if both summands
are simply-connected. It is possible to give a complete list of all simply-connected, closed, irreducible
5-manifolds. They are constructed in [6] (see Table VII.2). There are three special manifolds (W
S? x 83, 8%2x53) and several families: a family;, wherek € N = {1,2,...} and for every prime
numberp a family M., k € N. The manifoldX; is exceptional in this list because it is diffeomorphic
to W#W, cf. Proposition 7.28. All other manifolds in Table VII.2 are irreducible.

Manifold X Hy(X;7Z) wa(X) b(X) i(X) W5(X)
(1) Xk, keN Lok B Lok #0 Cox k #0
(2) Wu-manifold W Zy #0 A 1 #0
3) M, p prime,k € N Lk © L 0 Bk 0 0
4) S? x S8 Z 0 - 0 0
(5) S2% 83 4 £0 - 00 0

Table VI1.2: Building blocks of simply-connected 5-manifolds.

Here S?x S3 denotes the non-trivia$-bundle overS? (which is unique up to isomorphism, be-
causer; (SO(5)) = Z) andW5(X) € H3(X;Z) denotes the third integral Stiefel-Whitney class,
given by the image ofv, (X)) under the Bockstein homomorphism

s HA(X;Z) 25 H2(X:Z,) -5 H3(X;Z) — ...

associated to the short exact sequence of coefficiertsZ /AN Zo — 0. The manifolds in the
table above are pairwise not homotopy equivalent, distinguished by their invariants.

We want to give an explicit construction of the manifolds in Table VII.2. The following theorem is
a generalization of the Heegaard decompositiod-ofanifolds to manifolds of higher dimension (see
[76, Chapter VIII, Cor. 6.3]).
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Theorem 7.23. A (k — 1)-connectectlosed(2k + 1)-dimensional manifoldk > 1, is obtained by
identifying the boundaries of two manifolds, each of which is a connected sum along the boundary of a
number of(k + 1)-disc bundles oves*.

In particular fork = 2, all simply-connected closed 5-manifolds can be obtained in this way from
D3-bundles overs?. We explicitly describe this decomposition for the manifolds in Table VII.2 and
then prove that all simply-connected 5-manifolds can be obtained by connected sums of these building
blocks.

Up to isomorphism, there are twb?3-bundles overS? (becauser;(SO(3)) = Z): the trivial
bundleA = S? x D? and a non-trivial bundlé = $%x D3. The boundaries a@4 = S? x S? and
OB = CP2#CP2, sincedB = $?x.52 is the non-trivialS2-bundle overS2. Let A, B’ denote the
boundary connected sums

A= A#,A, B’ = B#,B.

ThenA’ and B’ are simply-connected compact 5-manifolds with boundary
0A" = 0A#0A, OB’ = 0B#0B.

We want to show that all building blocks in Table VII.2 are constructed by taking two copies of a
manifold of the same typd, A’, B or B’ and gluing them together along their boundaries via certain
orientation reversing diffeomorphisms.

Since A and B are homotopy equivalent t8% they have homology only in degréeand2. We
denote the generator éf2(A;Z) by v and the generator dffy(B;Z) by v. Letz,y denote the stan-
dard generators ofl5(0A;Z), corresponding to th&2-factors, andp, ¢ the standard generators of
H,(0B;Z). If i denotes the inclusion of the boundary into the manifold, we have

ix(z) =u,i(y) =0, and i.(p) =v="1i.(q).

The claim forB follows because andq are the fundamental classes of the image of sectiofi$#52.
Similarly, Hy(A’; Z) has generators; , u; and Hy(0A’; Z) has generators; , y1, 2, y2 such that

is(25) = uj,14(y;) = 0,
whereasH,(B’; Z) has generators, , v, and Hy(0B’; Z) has generators,, g1, p2, g2 such that
ix(py) = vj = ix(q5)-

Let A(k) andB(n) for 1 < k,n < co denote the matrices

1 0 0 —k 1 n —-n O
01 0 O n 1 0 n
AR =109 1 o |" B®W=|, o 1 &
0 0 0 1 0O —n n 1

We write ¢ (e1, e2, €3, €4) as a shorthand notation f0p.eq, d.ea, die3, duey).

The 4-manifold9 A anddB have natural orientation reversing self-diffeomorphisms, given by an
orientation reversing self-diffeomorphism on ofi&-factor and the identity on the oth&f-factor for
0A and by interchanging the summand®i. They induce orientation reversing self-diffeomorphisms
on the connected sunisd’ anddB’ (see Lemma 2 in [144]). 1& is an orientatiorpreservingself-
diffeomorphism of one of the manifoldsA4, 9B, dA’, OB’, we can compose it with this orientation
reversingself-diffeomorphism to get an orientatisaversingself-diffeomorphism, which we denote
by ¢.

We construct the following manifolds:
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e S2xS% = B Uz B, where
Joo: OB — OB

is an orientation preserving self-diffeomorphism realizing on second homalegy.(p, q) =
(p,q)-

e W = B Uz B, where
g—1: 0B — 0B

is a orientation preserving self-diffeomorphism realizing on second homdlpgy).(p, q) =

o M[A(k)] = A" Us- A', where
fr: 0A" — 0A

is a orientation preserving self-diffeomorphism realizing on second homology
(fr)«(z1, 91, 22, y2) = (71,91, T2, y2) A(k).

e X[B(n)] = B' Ug; B, where
gn: OB' — 0B’

is a orientation preserving self-diffeomorphism realizing on second homology

(gn)«(P1, 91,2, 42) = (P1,q1, D2, q2)B(n).

Since the maps on homology above always preserve the intersection form, the existence of the
corresponding diffeomorphisms follows from a theorem of Wall (see [144]):

Theorem 7.24.Let M be a closed, simply-connected 4-manifold which is a connected sum of copies
of CP2,CP? and S? x S2. For by(M) > 10 exclude the case that (M) = 1 or by (M) = 1.

Then any automorphism of the intersection fafy, can be realized by an orientation preserving
self-diffeomorphism af/.

The corresponding building blocks in Table VII.2 are defined\gs = MI[A(p¥)] and X, =
X[B(2F1)]. Since the manifoldsi, A’, B, B’ are simply-connected, the manifolds we have con-
structed are simply-connected closed oriented 5-manifolds. We now compute their homology, which
can be reduced to computirkéy (X '; Z) by Section VI1.3.1.

Proposition 7.25. The second homology groups are given by:
(1.) Ho(S?’%xS3,Z) =7
(2.) Hy(W3Z) = Zo
(3.) Ha(M[A(K);Z) = Ly, & Zy,

(4) Ho(X[B(n)]; Z) = Zon @ Zaon
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Proof. We need the following form of the Mayer-Vietoris sequence: Suppgsdéare manifolds with
boundary andX = U U, V' with a diffeomorphismp: 0U — 0V LetiV,:" denote the inclusion of
the boundary in the manifolds. Then there is the exact sequence, cf. Section V.1.1:

s Hyy (X) — Hy(0U) -5 Hoy(U) @ Ho (V) — Ho(X) — ...

with U (z) = (i¥(x), i) ¢«(z)). In our situation we have
0 — H3(X) — Ho(0U) - Hy(U) @ Ho(V) — Ho(X) — 0.

HenceH,(X) is isomorphic to the cokernel df. SinceU = V in our case, we denote the homology
generators of the manifold with a bar, likew.

(1.) ¥isgiven by
p—v+U
qgr—v+.
Hencelm¥ = Z(v + v). Sincev,v + v is a basis forHy(B) @& Hs(B) we get Cokel = Z.
(2.) ¥is given by
p—U+U
qgr—v—.
Hencelm¥ = 2Zv @ Z(v — v). With the same basis as in (a) this implies Coke¥ Zs.
(3.) W is given by
T U — Uy
Y1 — kug

To — U2 — U2

Y2 — —kuq.

We take the basigy, uz, u; — uy, us — ug for Hy(A') @ Hy(A'). Then Cokel = 7y, & Zy,.

(4.) W is given by

p1 — v1 + (n+ 1)v1 + nvg
q1 — v + (n+ 1)07 — nty
p2 — ve — nuy + (n+ 1)
(n+1)vz

qo +— V2 + nuy +

Hencea basis for the image oF is 2nv7, 2nvz, v1 + (n + 1)v1 + nvz, v2 + no1 + (n + 1)v3.
For Hy(B') @ H»(B') we take as basis the last two elements of the basis of together with
v1,03. Then CokelWr = Zy,, @ Zo,.
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We want to determine thé&invariant of the closed, simply-connected 5-manifolds constructed
above. Because of Theorems 7.8 and 7.9 this will determine their linking forms. It is clear that

i(S? x $3) =0, and
W) =1,

sinceS? x S3 is spin and the only possible linking form difp (W; Z) = Z, is of type A, which has
i-invariantl.

Lemma 7.26. A connected sulX = Y;#Y5 of n-dimensional oriented manifolds is spin if and only
if bothY; andY; are spin. A similar result holds for boundary connected sums.

Proof. To define the connected sum Bf andY> one chooses embedded digkg and D3 in Y7,Y>
and an orientation reversing diffeomorphigm D} — DZ. Suppose&’; andY; are spin and choose
spin structures. Since there is only one spin structur®®mip to homotopy, the image undgrof the
induced spin structure o} and the induced spin structure @1 are homotopic. This is also true
for the induced spin structures oY, \ int D7) andd(Y> \ int D3). Hence the image underof the
induced spin structure an(Y; \ int DY) extends ovet’ \ Dj to give a spin structure oX .
Conversely, suppose that is spin. We only prove the cage> 3. A spin structure orX induces
spin structures ofr; \ int D} andY> \int D%. SinceH!(S™"~1;Zs) = 0if n > 3, there is only one spin
structure onS” 1. It extends oveD™. Hence the spin structures 6Y; \ int D}) andd(Y> \ int DY)
extend ovetD} and D3 to give spin structures oy, andYs. O

Lemma 7.27. Themanifolds)M [A (k)] are spin for allk > 1 and the manifolds{[B(n)] are non-spin
forall n > 1.

Proof. Suppose a manifold of typ&'[B(n)] is spin. A spin structure oX [B(n)] induces a spin
structure onB’, which induces a spin structure @B’ = 2CP2#2CP2. This is impossible, since
2CP242CP? hasodd intersection form.

We denoteM [A(k)] by A} Uz Al. The manifoldA is spin, since it is homotopy equivalent$3.
By Lemma 7.26 A’ is spin. Sincel ' (52 x S?#.52 x §%;7Z,) = 0, there exists a unique spin structure
on dA’, up to homotopy. Choose spin structures4in A,. The image undef;, of the induced spin
structure orv A is homotopic to the induced spin structure @4}, hence extends ovet,, to give a
spin structure o/ [A(k)]. O

In particular, X}, is not spin fork > 1 and M, is spin for all primeg and integers: > 1. This
implies that

(M) = 0 for all primesp and integers > 1.

On the other hand(X}) # 0 for all £ > 1. Since
Hy (X3 Z) = Lok ® Lo,
it follows by Theorem 7.9 that( X}, ) = Cy. In particular,

i(Xg) = k for all integersk > 1.
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VI.6 Connected sum decomposition of simply-connected 5-manifolds

In this section we prove that all building blocks in Table VII.2 are irreducible, exégpwhich is
diffeomorphic tolW#W. We also prove the existence and uniqueness of the connected sum decompo-
sition.

Proposition 7.28. The closed, simply-connected 5-manifolds in Table VII.2 are all irreducible, except
X1, which is diffeomorphic t&V #W .

Proof. If X = Yi#Y5 is a connected sum decomposition, then
Hy(X;7Z) = Hy(Y1;7Z) @ Ho(Yo; Z).

Hence if X is one of the manifold$V, S? x S3,52x.S3, then one of the summands — sEy— has
Hy(Y3;Z) = 0. By Theorem 7.16Y5 is diffeomorphic taS°>.

Suppose thad/,. = Yi#Y> is a non-trivial connected sum decomposition. For any prinaad
integerk > 1, an isomorphism of the form

Zpk @ZpkgG@G/

with G, G" # 0, impliesG = G’ = Z,x, by writing G andG” as a direct sum of cyclic groups of prime
power order and using the uniqueness of this decomposition. Hence

Hy(Y1;Z) & Hy(Ya; Z) & L.

By Corollary 7.10, this is possible only if = 2 andk = 1. Since the linking forms o7 andY; are
non-trivial, they have to be isomorphic t i.e. of the form

Y1 by, y1) = 1/2
Y2+ b(y2,y2) = 1/2,
whereyy, y» denote generators for the second homology,cdndYs. By Corollary 7.20, the manifolds

Y1, Y5 have to be diffeomorphic to the Wu-manifolid.
Similarly, if X, = Y1#Y5 is a non-trivial connected sum decomposition, thea 1 and

Hy(Y1;Z) = Ho(Ya; Z) = Zo,

henceY; =Y, = W.
We want to determine the connected sui#W: The elements; = y1 + y2, 22 = yo form a
basis forHy (W #W; Z) with

wg(Mg)(Il) = 2b($1,$1) =0 mod?2
wa(M2)(x2) = 2b(x2,22) =1 mod 2.

Hencez, zo form aws-basis forlV #W and it follows that (W #W) = 1. By Corollary 7.20 /W #W
is diffeomorphic toX;, but not diffeomorphic tal/,. This proves the proposition. O

Theorem 7.29. Every closed, simply-connected 5-manifal is diffeomorphic to a unique (up to
order) connected sum

X = Q.. #On#P,

where
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e (Q1,...,Q, are simply-connected irreducible spin 5-manifolds.
e If X is spinthenP is S°.

e If X is not spin thenP is eitherWW, X; = W#W or a simply-connected irreducible non-spin
5-manifold X} with k& > 2.

Proof. We first provaUniqueness:Suppose that there exists a diffeomorphism between closed, simply-
connected 5-manifolds of the form

X = Q#.. . #Qu#P = Qi# ... #Q,#P".

If X is spin, then all summands iK have to be spin. This implie® = P’ = S5. The manifolds
Q;, Q; are of the formM,» for primesp and integers: > 1 or 52 x 83, SinceH(M,x; Z) is always
torsion andH» (S? x S3;Z) = Z, the number of? x $3’s among they;, Q; must be equal to the rank
of Hy(X;Z). Writing the torsion subgroup aff2(X;Z) as a sum of cyclic groups of prime power
order determines th&/,. summands among th@;, 0; uniquely. This proves the uniqueness claim if
X is spin.

Suppose thak is not spin. We can find a,-basis for

Hy(X;Z) = Hy(Q1;Z) @ ... D Hy(Qn; Z) ® Ho(P;7Z)

which is non-zero only on one basis elementig( P; Z). Hencei(X) = i(P). This determines if
i(P) > 2. If i(P) = 1, thenP is diffeomorphic tolW or X,. The sum of the torsion subgroups of the
second homology fo)+, ..., Q, is of the formH & H, whereH is a direct sum of groups of prime
power order. Hence

TorHy(X;Z)= H@® Hor = H® H & Zo,

if P = Xy or P =W, respectively. Therefore, TorflX ; Z) determines whethe? = X, or P = W.
This shows that the non-spin summaRds uniquely determined by, which impliesP = P’.

The number ofs? x S? is again equal to the rank df(X;Z), if P # $?xS3, and to the rank
minus 1, if P = $2x 3. Since Tori(P;Z) is already determined, the remaining summaies?);
of the form M, are determined by Tor#{X; Z). This proves uniqueness of the decompositioA if
is non-spin.

We now proveExistence: Let X be a closed, simply-connected 5-manifold with linking form
b. Suppose that(X) < oo. All possible linking forms given by Theorem 7.9 can be realized by a
connected sum of manifolds of the typg;, M,x, W, where only oneX; or W summand is needed.
This follows because can by any prime anéd > 1 any integer. We get a closed, simply-connected
5-manifold X’ with

Ho(X';7Z) =2 TorHy(X;Z), i(X') =i(X).

Let X" = X#rS? x S3, wherer denotes the rank dflx(X;Z). Then
Hy(X";Z) = Hy(X;Z), i(X") =i(X).

The closed, simply-connected 5-manifold’ is of the form as in the statement of the theorem and by
Corollary 7.20,X and X" are diffeomorphic.

Suppose that(X) = oo. By Corollary 7.10, the torsion subgroup &% (X;Z) has to be of the
form H & H. We can realize this direct sum as the torsion subgroup of a connected sum of manifolds
of type M. We add ones? x.S% summand to get a closed, simply-connected 5-maniflavith

Hy(X',Z) = TorHy(X;Z) ® Z, i(X') = i(X).
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Let X" X#(r — 1)5? x S3, wherer denotes again the rank éf,(X; Z). Then
Hy(X",Z) = Hy(X;Z), i(X") =i(X).
HenceX and X" are diffeomorphic by Corollary 7.20. O
The following corollary will be used in Chapter IX.

Corollary 7.30. Let X be a simply-connected closed oriented 5-manifold \&ii.X ; Z) = Z*. Then
X is diffeomorphic to

o #kS? x S3if X is spin, and
o #(k—1)5% x S3#5%2xS3if X is not spin.

Proof. This follows from Theorem 7.29 becausk(X;Z) is torsion free. O
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In this chapter we recall the basic notions related to contact structures. We then focus on the 5-
dimensionalcase and show that a theorem of H. Geiges [51] on the classification of almost contact
structures up to homotopy on simply-connected 5-manifolds can be extended to all 5-makifolds
whoseH?(X; Z) does not contain 2-torsion. In the last section, we show how to classify almost contact
structures on simply-connected 5-manifoldsup toequivalence, where a combination of homotopies
and orientation preserving self-diffeomorphisms is allowed. The proof uses Barden’s classification
theorem for simply-connected 5-manifolds from Chapter VII, in particular the possibility to realize
certain automorphisms df,(X; Z) by an orientation preserving self-diffeomorphismof

VIIl.1 Basic definitions

Let X27*! be connected, oriented manifold of odd dimension. Suppose?!(X) is a 1-form onX
without zeroes. Then
¢ = kera = {(p,v) € TX | ap(v) = 0}

is a smooth distribution oX' (a subbundle of"X) of rank2n, sinceq, is a non-vanishing linear map
T,X — Rforall p € X. We consider the 2-formda. on X. It defines a skew-symmetric bilinear form
on each tangent spa@g X .

Definition 8.1. If the restriction(da)|¢ is symplectic (i.e. non-degenerate), then we aadl contact
form. The hyperplane distributiahis called theunderlying contact structure.

Every contact form induces an orientation on the contact stru¢tuas a vector bundle, through
the symplectic forn{da)|¢. SinceT' X is an oriented vector bundle by assumption, the quofieXif &
is an oriented real vector bundle of rank 1 and hence trivial. Therefore, we can write

TX =R&¢, (8.1)
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whereR denotes the trivial real vector bundle of rank 1, realized as a subbund@l& ofSince¢ is the
kernel ofa, the 1-forme is non-zero on each non-zero vectofof
We have the following equivalent characterization of contact forms.

Lemma 8.2. A 1-forma on X is a contact form if and only if A (da)™ is a volume form orX .

Proof. Supposey is a contact form. The(da)” restricted tc is a volume form on each fibre. Choose
abasis;, ..., e+ 0f T, X suchthatv(e;) # 0 andes, . . ., e2,+1 define an oriented basis §f Then

aA(da)(e1,...,eant1) = aler)(da) (e, ..., eant1) # 0.

Hencea A (da)™ is non-zero at each poipte X and therefore a volume form oX.

Conversely, suppose that\ (do)” is a volume form. Leey, e, . . ., e2,41 be a basis of , X such
thata(e;) # 0 andeg, . .., es,41 form a basis of = kera. Since volume forms are always non-zero
on bases, the calculation above shows that)" (e, . .., e2,4+1) # 0. This is equivalent tqdo)|e
being symplectic. O

Since X was assumed oriented to start with, we can compare the orientatiah dgfined by
a A (da)™ with the given one.

Definition 8.3. A contact forma is calledpositiveor negative, depending on whether the orientation
of X coincides with the orientation defined byA (da)"”.

If f/: X — Ris a smooth, nowhere vanishing function and contact form on¥X, thena/ := fa
anda have the same kerngl Moreover,

do/ = df AN a+ fdao.

Hence(dd')|¢ = f(da)|¢ is symplectic andy’ is also a contact form.

Conversely, suppose that two contact forms/’ have the same underlying contact structgire
Then there exists a smooth, nowhere vanishing funcfiodX — R such thate’ = fa: We may
choose a fixed complemeiit of ¢ in TX, such thair and o’ are both non-zero on each non-zero
vector inR. SinceR is trivial, we can choose a howhere zero sectiofihen
_op(v)
fp) : o (0)
is a well defined smooth, nowhere vanishing function’dnThis impliesa’ = f«, since this equation
holds on the common kerngland on the section, spanningR. We conclude:

Lemma 8.4. Two 1-formsa, o/ are contact with the same underlying contact structgiéand only
if there exists a smooth, nowhere vanishing functfonX — R such thato’ = fa. The symplectic
structure induced by’ on¢ is of the form(da/)|¢e = f(da)|e.

Let « be a 1-form. We set
kerda = {(p,v) € TX | da(v,z) =0 forallz € T,X}.
Suppose that is a contact form. Let € 7, X be a vector in ket N kerda. Then
a A (da)™(v,va,...,vep41) = 0,

for all vectorsuvs, . .., v2p41 IN T, X. Sincea A (da)™ is a volume formyp has to be zero.

The 2-formda cannot be symplectic o/, sinceX is of odd dimension. Hence the kerneldf
cannot be zero at any poipte X. Since kerla N kera = 0 and kefx has rankn, the kernel ofda
must be 1-dimensional. IR is a non-zero element in kéev thena(R) # 0. Therefore we can make
the following definition.
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Definition 8.5. Let « bea contact form onX. Then there exists a unique vector figtd on X with
da(Ry) =0, «a(Ry) =1.
R, is called theReeb vector fieldf o.

The vector fieldR,, defines a splitting
TX =RR, &€,

as in equation 8.1. However, ngws not only the kernel ofy, butRR,, is the kernel ofla.
By the Cartan formula,

L, o = diRaa—l—iRada
= 0.

Hence the flow of the Reeb vector field preserves the contact form and the contact structure.

Let ¢ be a contact structure. We fix a splittiig’ = R & ¢ anda coorientation, i.e. an orientation
on the line bundI®. We now only consider defining 1-fornaswhich evaluate positively on the vector
defining the orientation oR. There exists a complex structufeon £ compatiblewith the symplectic
structure(da)|¢ on each fibre (see Section 11.2 in the preliminaries). For fikéd)|¢, the space of
such J is contractible, hence we get well-defined Chern classé$) € H?¥(X;Z), independent
of the choice of a compatiblé. Moreover, if we choose a different defining form for ¢ which
evaluates positively on the orientation Rf then by Lemma 8.4 there exists a functibpn X — R
which is everywhere positive and such thdt= fa. The functionf can be deformed smoothly into
the constant function with valug without ever crossing zero. This implies that the Chern classes do
not depend on the choice of defining form

Definition 8.6. The Chern classes.(¢) € H?¥(X;Z) of a cooriented contact structugeare well
defined and independent of the choice of the defining farmespecting the coorientation, and the
almost complex structuré.

A contact structure determines, in particular, a symplectic subbundieXobf corank1. This is
also known as an almost contact structure.

Definition 8.7. An almost contact structuren X2 *+! is a rank2n-distribution¢ with a symplectic
structures on¢.

Clearly, every contact structure determines an almost contact structure. The converse is true if and
only if the symplectic structure on¢ is of the form(da)|¢ for a 1-forma on X defining¢. For each
almost contact structuig we can choose again a compatible almost complex strugturée space of
suchJ is contractible, hence we get well-defined Chern classes. However, they will depend in general
on the symplectic structuke, not only on the distributiog as in the contact case. The first Chern class
of £ is related to the second Stiefel-Whitney class in a similar way as in the almost complex case:

Lemma 8.8. Let¢ be an almost contact structure of. Thenc; (§) = wa (M) mod2.
Proof. By the Whitney sum formula faf' X = £ & R,
w2(X) = w2 (&) Uwo(R) = wa(§).

Since¢ — X is a complex vector bundle, with complex structure compatible wjtlve havew,(§) =
c1(£) mod2. This implies the claim. O
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Suppose tha;, ¢t € [0, 1] is a smooth family of contact structures on a closed manifdldVe can
choose a smooth family dfformsc; definingé;. Using the Moser technique, one can prove that there
exists a smooth family; of self-diffeomorphisms ofX" with ¢y = Idx such that)*a; = fiayp, for
smooth functiong; on X [96]. This implies the following theorem of Gray [57].

Theorem 8.9. Let¢;, t € [0, 1] be a smooth family of contact structures on a closed maniXal@hen
there exists an isotopy;, t € [0, 1] of diffeomorphisms o™ such that); ¢, = &.

Because of this theorem, we call contact struct@res which can be deformed into each other
by a smooth family of contact structurestopic. We call almost contact structuresmotopic, if
they can be connected by a smooth family of almost contact structures. The contact structures in an
isotopy class or the almost contact structures in a homotopy class all have the same Chern classes.
We can also consider (almost) contact structgrgswhich are permuted by an orientation-preserving
self-diffeomorphismy) of X, in the sense that*¢’ = &.

Definition 8.10. We call almost contact structures and contact structures on an oriented mahifold
equivalent, if they can be made identical by a combination of deformations (homotopies, resp. iso-
topies) and by orientation-preserving self-diffeomorphism&X of

See Vidussi's article [140] for a related definition for symplectic forms.

VIIl.2 Almost contact structures as sections of a fibre bundle

For the homotopy classification of almost contact structures on 5-manifolds it is helpful to have a
different description of almost contact structures as sections of some bundle, such that two almost
contact structures are homotopic if and only if the corresponding sections are homotopic (through
sections).

Let X be an oriente@n + 1-dimensional manifold and Fr(X— X the frame bundle with fibre
SO(2n+1) for some auxiliary Riemannian metric d. Fix an embedding o§O(2n) in SO(2n+1).
SinceC™ = R?" we also have an embedding@fn) in SO(2n). An almost contact structure o¥i is
given by an hyperplane in the tangent bundlekt@t each point together with a complex structure on
this hyperplane. Hence an almost contact structure at a poixitiefthe same as an equivalence class
of orthonormal frames under the actionléfn) as a subgroup o$O(2n + 1) (see [57]).

Let Z denote the bundle Fr(}¥U (n). ThenZ fibres overX with fibre SO(2n +1)/U(n). An al-
most contact structure can be thought of as a sectigh divo almost contact structures are homotopic
if and only if the corresponding sections dfare homotopic. We will need the following lemma.

Lemma 8.11. SO(5)/U(2) = CP3.

We will sketch a proof; details can be found in [123]. [(&1, g) be a Riemannian spin 4-manifold.
Denote the positive spinor bundle ovefrby V., , which is a vector bundle with fibr&?, and the bundle
of self-dual 2-forms by\2 , which is a vector bundle with fibr@3. It is known that

Pc (V) =2 S(AY), (8.2)

asS? bundles, wher@c(-) denotes complex projectivization aig-) the associated unit sphere bun-
dle. Itis also known that each element $fA%) can be interpreted as a complex structure on the
tangent space at the point df below. In other WordsS(AfL) can be identified with thevistor space

of M.
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We now specialize to the case df = S* with the standard metric. One can see thax(5) acts
transitively on the twistor space 6, with stabilizerUU (2). This implies that

S(A%) = SO(5)/U(2).

On the other hand/, can be identified with the tautological quaternionic line bundle Ut =~ S*.
Hence,V, \ {zero section= H? \ {0} = C*\ {0}. This implies that

Pc(V,) = CP3.

The lemma now follows from equation (8.2).

VIIL.3 Overview of obstruction theory

To classify almost contact structures on oriented 5-manifolds up to homotopy, we will use obstruction
theory. We briefly recall the basic principles of this theory, following the exposition in Steenrod’s book
[127]. Let X be aCW-complex andE — X a fibre bundle. Obstruction theory tries to answer the
guestions whether there exist a sectiorfbét all and, given two sections @, whether there exist a
homotopy between them.

We will begin by describing how to systematically answer the first question Xl'&tdenote the
g-skeleton ofX . Suppose a sectiof: X(? — F for someg > 0 is given. We want to extend it to the
(¢ + 1)-skeleton. This can be done if and only if it can be extended to the interior of gyvery)-cell.

Leto = e4t! be a(q + 1)-cell with attaching ma@edt! — X(9. Pick some poinp € o. By
local triviality of the fibre bundleE|, = E, x o. Composing the sectiofiwith the attaching map and
projecting on the first factor, we get a map do — E,. Itis not difficult to show that the sectighon
do extends to all ofr if and only if f extends to a map from to E,,.

Sincedo = S9, f determines an elemeff] € =,(E,). We will denote this element also by
c(f,o) = c(f)(o). We conclude thaf extends to a section ovef(e+1 if and only if ¢(f) () = 0 for
all (¢ + 1)-cellso.

We want to viewe( f) as a cellulag + 1)-cochain with values in the group,(E). At the moment,
c(f) takes values inry(E,), wherep depends on the cett. It is clear thatr,(E,) = 7,(E,) for
p # p/, however there is no canonical isomorphism. In the situation we are going to consider below,
we can nevertheless make sense:(gf) as a cochain with values in a fixed group(E). Hence
o(f) € CT(X;my(E)).

Proposition 8.12. A sectionf on X () extends oveK (“+1) if and only ifc(f) = 0 € C9(X; 7, (E)).

One can prove that(f) is co-closed,ic(f) = 0, hencec(f) defines a cohomology class in
H%Y(X; 7,(E)) which we denote by(f). The vanishing of this conomology class has the following
interpretation.

Proposition 8.13. A sectionf on X (9 can be changed to a section 6f(? extending overX (411,
while leaving it unchanged oX (“~1), if and only ifé(f) = 0 € HY(X;7,(E)).

We now consider the second question above. Suppose we have sggtibinef £ over X and a
homotopyK betweenfo| y,—1) andfi|y 1) (note that is a section ofZ x I on X(@~1 x I). Does
K extend to a homotopy betweep and f; on X (@2

Let o be ag-cell on X. This defines &g + 1)-cello x I on X x I with boundary

IoxI)=0x{0}UdoxIUo x {1}.
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Pick a pointp € 0. Ond(c x I) we have the map

foloxgoy U Klaoxr U filoxqiy: 9(o x I) — Ep.

This map determines an elementif( £,) which we denote byi( fy, K.f1)(o). Again, we can view
d(fo, K, f1) as an element i60'?(X; 7y (E)).

Proposition 8.14. A homotopyK betweenf, and f; on X1 extends ovetX (@ if and only if
d(f07K7 fl) = 0 € Cq<X77Tq<E))

Again one can show that( fy, K, f1) is co-closed, hencé(fo, K, f1) determines a cohomology
classd( fo, K, f1) € H1(X;m,(E)). We then have a similar proposition as aboved(gf).

Proposition 8.15. A homotopyK betweenf, and f; on X (@1 can be changed to a homotopy on
X(a-1) extending overX (), while leaving it unchanged ok (“~2), if and only ifd(fy, K, f1) = 0 €
HY(X;mq(E)).

VIIl.4 Homotopy classification of almost contact structures in dimen-
sion 5

Let X be a smooth manifold. We consider the long exact sequence
o HY(X;Z) 2 HA(X Z0) 2 H3(X,Z) — ...

associated to the short exact sequence of coefficiertsZ 272 7, 0. The homomorphism
(3 is the associated Bockstein homomorphism and € H?(X;Z,) for « € H?*(X;Z) is called the
mod 2 reduction ofa. Let E — X be anR-vector bundle. The image of the second Stiefel-Whitney
classwy(F) underg is denoted byVs;(E). In particular,W5(E) = 0 if and only if wy(E) is the mod
2 reduction of an integral class.

The existence question fatmost contact structuresn 5-manifolds was settled by the following
theorem of Gray [57].

Theorem 8.16.Let X be a closed, orientable 5-manifold. Th&nhadmits an almost contact structure
if and only ifiW3(X) = 0.

The existence ofontact structure®n simply-connected 5-manifolds was proved by Geiges [51].
He also proved a classification theorem for almost contact structures on simply-connected 5-manifolds
up to homotopy:

Theorem 8.17.Let X be a simply-connected, closed 5-manifold.

e Every classin?(X;Z) that reduces modto wo(X) arises as the first Chern class of an almost
contact structure. Two almost contact structuggs¢; are homotopic if and only i€ (&) =

c1(61)-

e Every homotopy class of almost contact structures admits a contact structure.

A different proof for the existence of contact structures on simply-connected 5-manifolds can be
found in [74, 75]. We will prove the following generalization for the classification of almost contact
structures:
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Theorem 8.18. Let X be a closed, oriented 5-manifold without 2-torsion i (X;Z). Then two
almost contact structureg and¢; on X are homotopic if and only if; (§p) = c1(&1).

One direction is clear: if two almost contact structures are homotopic, then they have the same first
Chern classes. We now prove the other direction, which requires some preparations.

Let X be a closed, oriented 5-manifold afg .J) an almost contact structure dn, whereJ is a
compatible complex structure @n Then¢ is the associated vector bundle of a principdR) bundle
over X that we denote, for simplicity, also gy

There is a principal bundle
Fr(X) «—— U(2)

!

VA

which we call€. HereZ denotes the manifold Fr(}YU (2) as in Section VIII.2. As seen abovecan
be thought of as a sectighof the bundle

Z «—— CP3=5S0(5)/U(2)

|

X

In fact, = f*€ as alU(2)-bundle.
We need to determine the first six homotopy group8Bf. For this we consider the Hopf fibration

S? Sl

|

CP3
and the following part of the long exact homotopy sequence for this fibration:

0—0— m5(CP?) - 0—0— m(CP?) —0—0— 7m3(CP? - 0—
0 — m(CP?) —Z — 0 — m (CP?) — 0 — 0.
From this we see that
m(CP?) =7
m(CP3 =0 i=0,1,3,4,5
We now consider the following principal bundle
SO(5) «—— U(2)
cp3

which we denote bye. Supposér: S? — CP? is a continuous map. Léb] denote the integer given
by [h] € m(CP3) = Hy(CP3;Z) = Z. We want to prove the following relation:

2[h] = (c1(E), h«[57))
= (a1 (P E), [5%)).
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The following part of the long exact homotopy sequence for the bufidle

(S0(5)) = m(CP?) & m(U(2)) = m1(SO(5)) — m1(CP?),

is given by
O—>ZQ>Z—>Z2—>O.

This shows thabd: mo(CP3) — m1(U(2)) is multiplication by 2 inZ. On the other hand it is known
that

Oh = (c1(E), [h])

for all [h] € m2(CP3), cf. Lemma 9.7. This implies the claim.

Let &y, & be two almost contact structures &ngiven by sectiongy, f; of the CP3 bundleZ —
X. We want to determine whefy and f; are homotopic as sections. SinegCP?) vanishes in all
degrees less or equal than 5, exceptfgfCP*) = Z, the only obstruction comes from degree 2.
Hence we can assume that there exists a homafoetweenf, and f; on the 1-skeletoX () and
have to see when we can find a homotopy betwgeand f; on X @). This happens if and only if the
obstruction clasg( fo, K, f1) € H?(X;m(CP?)) = H?(X;Z) vanishes. The following lemma will
therefore complete the proof of Theorem 8.18.

Lemma 8.19.If ¢; (50) =1 (51), then2d(f0, K, fl) = 0.

Proof. Let o be a 2-cell fromX (). As explained above, we get a map
Fy = foloxgoy U Kloox1 U filox{1y: 0(c x I) — CP?.

This map determines an elementris( C P3) which we denoted by( fo, K, f1)(c). Sincer; (CP3) =
0, we can homotofF, such that the domains gf, f1 are shrunk to smaller 2-cells arid becomes
constant. Hence we may assume tfiaind f; are already identical and constant &n') and the
homotopyK is a constant map.

The mapsf; on the 2-cellr then induce mapk? on the 2-spheré = o /9o, fori = 0, 1. We have

d(fo, K, f1)(0) = [n]] — [1]].

These maps for all 2-cells i (?) fit together to give a commutative diagram

X(Q)/X(l)
Now recall that we have the principal bundie
Fr(X) «—— U(2)

l

A

We know that
c1(&) = ei(fi'€) = prer(hi€)
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and2[h?] = (c1(h:€), &) by the relation above. Supposg &) = c1(£1). We consider the long exact
sequence in cohomology, associated to the p&l), X (1)):

o HY(X®,2) S g2 (x®/xW. 72 B g x@.z) Do - .

We see that ker* = 6 H' (X (D; 7). Thisimpliesc; (hi€)—ci (hiE) = da, for somen € H (XM 7).
This in turn gives

Q[hg] - 2[hﬁ = <50é,6’> = <Oé,8&> =0
for all 2-cellso, since thes are cycles. We finally g&td( fo, K, f1)(o) = 0for all o, henced(fo, K, f1) =
0. O

VIII.5 The level structure of almost contact structures in dimension 5

SupposeX is a simply-connected 5-manifold. By the Universal Coefficient TheoféhiX; Z) is
torsion free. Hence the divisibility of elementsc H?(X;Z) is well defined, cf. Definition 6.5. The
classification of simply-connected 5-manifolds (see Chapter VII) implies the following theorem.

Theorem 8.20. SupposeX is a simply-connected, closed, oriented 5-manifold.d. et € H?(X;Z)
be classes with the same divisibility and whose mod 2 reduction(iX'). Then there exists an orien-
tation preserving self-diffeomorphisin X — X such thatp*c’ = c.

The proof uses the following lemma.

Lemma 8.21. Let G be a finitely generated free abelian group of rankSupposer € Hom(G,Z) is
indivisible. Then there exists a basis . . ., e,, of G such thain(e;) = 1 anda(e;) = 0 for ¢ > 1.

Proof. The kernel ofx is a free abelian subgroup 6fof rankn — 1. Letes, .. ., e, be a basis of kerx
The image ofw in Z is a subgroup, hence of the formZ. Sincec is indivisible, m = 1, so there
exists are; € G such thatv(e;) = 1. The sety, ..., e, is linearly independent. They also span
because ify € G is some element, them(g — a(g)e1) = 0, hencey = a(g)er + > ,~q Ai€i. O

We can now prove Theorem 8.20.

Proof. By the Universal Coefficient Theorent{?(X;7Z) = Hom(Hy(X;Z),Z) since X is simply-
connected. Hence we can view’ as homomorphisms of2(X; Z) with values inZ. Letp: Z —
Zs5 be mod 2 reduction. The assumptioncoandc’ is equivalent to

wz(X) =poc=pod,

as homomorphisms oH»(X; Z) with values inZ,, cf. Section VII.3.3. Since and¢’ have the same
divisibility, we can write
c=ka, d=kd

with a, o/ € Hom(Hy(X;Z),Z) indivisible. We can writeH»(X;7Z) = G @& TorHy(X;Z) with G
free abelian. By Lemma 8.21 there exist basgs. ., e, ande/, . .., e/, of G such that

aler) =1=4d(e}), alex) =0=ad'(e}) Vk>1.



164 Contact structures on 5-manifolds

Let 6 be the group automorphism dff2(X; Z) given byf(e;) = ¢, for all ¢ > 1, and which is the
identity on Tor/(X;7Z). Then

(doB)(e;) =€) =cle;) Vi>1.
Hencer’ of = conG. This equality holds on all off;(X'; Z) sincec and¢’ are homomorphism té and
hence vanish on all torsion elements. By the assumption above, this implies{faf o = wa(X).
Moreover, sincé is the identity on TorH(X; Z), it preserves the linking form. By Barden’s theorem
7.16, the automorphisit is induced by an orientation preserving self-diffeomorphismX — X
such thatp, = 6. We have

c(\) = (¢ A) = (¢*c)(N), forall X € Ho(X;Z).
Henceg*d = c. O

We can use Theorem 8.17 or 8.18 (cf. also Lemma 8.8 and Definition 8.10) to get the following
corollaryfor almost contact structures.

Corollary 8.22. Let X be a simply-connected, closed, oriented 5-manifold. Then two almost contact
structuresty and&; on X are equivalent if and only if;(£y) andc; (£;) have the same divisibility in
integral cohomology.

The other direction follows, because the divisibilities of elementg#(.X ; Z) are preserved under
automorphisms. Note that simply-connected manifolds have torsiorf#ffeay the Universal Coeffi-
cient Theorem.

Definition 8.23. We denote the divisibility of; (¢) by d(&), as in Definition 6.5.

We sometimes call(¢) the level of £&. By Corollary 8.22, almost contact structures and hence
contact structures on a simply-connected 5-manifoidaturally form a “spectrum” consisting of levels
which are indexed by the divisibility of the first Chern class. Two contact structur&same equivalent
as almost contact structures if and only if they lie on the same level. Note that simply-connected spin 5-
manifolds have only even levels and non-spin 5-manifolds only odd levels, cf. Lemma 8.8. In Chapter
X, we will use invariants from contact homology to investigate the “fine-structure” of each level in this
spectrum. For instance, O. van Koert [74] has shown that for many simply-connected 5-manifolds the
lowest level, given by divisibilityd, contains infinitely many inequivalent contact structures.
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In the first part of this chapter, we collect and prove some results on the topology of circle bundles
over closed manifoldg/. The results will be used in the case where the dimension of the base manifold
is equal to4 in Chapter X. In particular, we will show that the total space of a circle bundle is simply-
connected if and only if the base manifold is simply-connected and the Euler class is indivisible. We
also determine when the total space is spinMifis a simply-connected 4-manifold and the Euler
class of the circle bundle ovél is indivisible, we can use the classification of simply-connected 5-
manifolds from Chapter VII to determine the total spa€eip to diffeomorphism. It turns out tha
is diffeomorphic to a connected sum of several copieS?ok S2 if X is spin. If X is not spin there is
an additional summand of the forf? x S3.

The second part of this chapter describes the so-called Boothby-Wang construction: Suppose that
w is a symplectic form on a manifold/ which represents an integral cohomology class andlet
be the total space of the circle bundle overwith Euler class equal t@w]. The construction then
associates ta a contact structure ofX. We will consider this construction in the Chapter X for
symplectic 4-manifolds. By the classification of the total spaXes circle bundles mentioned above,
one can choose many different simply-connected sympléati@nifolds) which give diffeomorphic
simply-connecte@-manifolds X and hence many contact structures on the same abStmaanifold.

We will show that in some cases this gives rise to contact structures on simply-connected 5-manifolds,
coming from different symplecti¢-manifolds, which are equivalent as almost contact structures but
not equivalent as contact structures .

IX.1 Topology of circle bundles

Let M be a closed, connected, orienteananifold andr: X — M the total space of a circle bundle
over M with Euler class: € H?(M;Z), whereH?(M; Z) might have torsion. We consider the map

(e,—): Ho(M;Z) — Z,

given by evaluation of the Euler class. We make the following generalization of definition 6.5 for this
case:
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Definition 9.1. We calle indivisibleif (e, —) is surjective.
Clearly, if e is indivisible,e cannot be written as = kc, with k > 1 andc € H?(M; Z).
Lemma 9.2. A classe € H%(M;Z) is indivisible if and only if the map
eU: H"2(M;Z) — H"(M;Z) 2 7Z
is surjective.

Proof. The mape U on H"~2(M; Z) is surjective if and only if there exists an element H"~2(M;Z)
such that

(eUa, [M]) =1.

Via Poincaé duality (c:= « N [M]) this is equivalent to the existence of a class Hz(M;Z) such
that

<€> C> =1,

which is equivalent to the mafe, —) being surjective. O

There is the following exact Gysin sequence for circle bundles [100]:
L HR(X) T HE M) S gRY M) TS R X)) T

Lemma 9.3. Integration along the fibrer,: H**1(X) — H¥(M) is Poincaé dual to the map
7wt Hy—1(X) — Hy_p(M).

Proof. Letw: D — M denote the disc bundle with Euler classThenX = 9D and integration along
the fibre
T : H¥YOD) — H*(M)

is given by (see [100])
H*'(9D) - H*2(D,0D) T H*(D) = H*(M).

Hered denotes the connecting homomorphism in the long exact sequence of th® paip) andr !
the inverse of the Thom isomorphism

7: HY(D) — H*"*(D,dD), 2 — z U,

where the Thom class € H?(D,dD) can be written as the Poinéadual of the fundamental class of
the zero sectiov in D. Under Poinca duality, the connecting homomorphisncorresponds to

ix: Hy_(0D) — Hy,_(D),

wherei: 0D — D is the inclusion. We want to show thati..: H,_;(0D) — H,_;(M) is Poincae
dual to integration along the fibre. This is equivalent to

meoPDoror*: H¥ (M) — H,_(M),
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wherePD: H**2(D,0D) — H,_(D) is Poincaé duality, being just Poincarduality on)/. Let
o € H¥(M). Then

o PDoTorn"(a) =

This proves the claim.

Lemma 9.4. Theimage ofr,: Ho(X;Z) — Ho(M;Z) is the kernel of e, —).
Proof. We consider the following part of the Gysin sequence:
H" (X)) I H2(M) =5 H" (M) = Z.

A classa € H"%(M;Z) is in the image ofr, if and only if e U o = 0, which is the case if and only
if the Poincaé dualc = PD(«) € H2(M;Z) satisfiese, ¢) = 0. Since integration along the fibre

T HVY(X;2Z) — H"*(M;Z)
is by Lemma 9.3 Poincéardual to
e Ho(X;Z) — Ho(M;Z),
this proves the claim. O

We now consider the following part of the Gysin sequence:

Ue

. — H" (M) =% H"(M) — H"(X) = H" Y (M) — 0.

This shows that is indivisible if and only ifr,: H"(X;Z) — H" 1(M;Z) is an isomorphism, in

other words
7wt H1(X;Z) — H1(M;7Z)

is an isomorphism. The long exact homotopy sequence of the fibréitien X — M
s (M) L iy (SY) — m(X) 5 m (M) — 1
induces via Lemma A.5 an exact sequence
Hy(SYZ) — Hi(X;Z) — Hi(M;Z) — 0.

Hence we see thatis indivisible if and only if the fibreS' c X is null-homologous.
From the long exact homotopy sequence above, we see that the fituiéli®motopidf and only
if 9: mo(M) — 71(S?) is surjective. Both statements are equivalent to

ot (X)) — m (M)

being an isomorphism.
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Lemma 9.5. Themapd: mo(M) — 71(S1) = Z in the long exact homotopy sequence for fibre bundles
is given by

o (M) b, Hy(M;7Z) © g
whereh denotes the Hurewicz homomorphism.

Proof. Let f: S? — M be a continous map anil = f*X the pull-backS!-bundle overS?. By
naturality of the long exact homotopy sequence there is a commutative diagram

(X)) —— mo(M) —2— m(8)) —— m(X) —— m (M)

[ #| -| [
To(B) —— m(S?) —2— m(S)) —— m(E) —— 1

Since f can represent any elementsin(M ) and the equatiorf*(e(X)) = e(FE) holds by naturality
of the Euler class it suffices to prove the claim farequal toS?. We then have to prove that the map
d: mo(S?) — w1 (Sh) is multiplicationZ % Z by the Euler numbes = (e(E), [S?]).

By the exact sequence above it follows thafS') = Z maps surjectively onta;(E). Hence
m1(E) is a finite cyclic group, in particular abelian. Therefore we have to prove Bitdtr) =
H,(FE) = m(FE) is equal taZ/aZ. This follows from the following part of the Gysin sequence:

H'(S?) =5 H?(S?) — H*(E) ™ H'(S?) = 0.
O

Lemma 9.5 implies tha? is surjective if and only if(e, —) is surjective on spherical classes.

Remark 9.6. More generally, lefX — M be aU (m)-principal bundle. Using the clutching construc-
tion and a Mayer-Vietoris argument one can show thdtF) = H,(E) = Z/aZ for any principal
bundleU (m) — E — S?, wherea = (c;(E), [S?]). This implies as above (this lemma has been used
in the proof of Theorem 8.18):

Lemma 9.7. Let X — M be aU(m)-principal bundle. Then the map: mo (M) — 71 (U(m))
in the long exact homotopy sequence is given by

I

7
mo(M) 2 Hy(M;z) T 7,
Lemma 9.8. X is simply-connected if and onlyiff is simply-connected andis indivisible.

Proof. If X is simply-connected, the long exact homotopy sequence showsrth&f) = 1 and
0: m(M) — 1 (S*) is surjective. Hence/ is simply-connected and the Hurewicz mlapmy (M) —
Hy(M;Z) is an isomorphism. The surjectivity éfimplies thate is indivisible. Conversely, suppose
that M is simply-connected andis indivisible. The same argument shows & surjective. The long
exact homotopy sequence then implies the exact sequenee; (X) — 1. Hencer (X)) =1. O

Lemma 9.9. Supposthe first Betti number af/ vanishesh, (M) = 0. Thenthe map*: H?(M;Z) —
H?(X;7) is surjective with kernéeZ - e.

Proof. We consider the following part of the Gysin sequence:
HOOM) 25 H2(M) = H2(X) — HY(M).

By assumption/' (M) = 0. Hencer*: H?(M) — H?(X) is surjective with kerneH’(M) U e =
Z-e. O
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We now determine when the total spakXéds spin.

Lemma 9.10. The total spaceX is spin if and only ifwy (M) = ae mod2 for somen € {0, 1}, i.e. if
and only if M is spin orwy (M) = e mod2.

Proof. We claim that the following relation holds:
wa(X) = 7 wa(M).

This follows because the tangent bundleXofis given byT X = #*T'M & R and the Whitney sum
formula implieswy(TX) = wa(7*TM) U wo(R) = 7 wo(TM). HenceX is spin if and only if
wo (M) is in the kernel ofr*.

We consider the following part of th#,-Gysin sequence:

HO(M; Z3) =5 HA(M; Zy) " H(X; Zs),
wheree denoteghe mod 2 reduction of. We see that the kernel af* is {0,€}. This implies the
claim. 0O
We now specialize to the case where the dimensialfa$ equal to 4.

Theorem 9.11.Let M be a simply-connected closed oriented 4-manifold &nithe circle bundle over
M with indivisible Euler class. ThenX is a simply-connected closed oriented 5-manifold and the
homology and cohomology &f are torsion free. We have:

o Hy(X;Z)= Hs5(X;Z) =7
o Hi(X;Z)= Hy(X;Z) =0
o Hy(X;Z)= H3(X;Z) = z0>(M)-1,

Proof. We only have to prove that the cohomologyXfis torsion free and the formula fdf2 (X ; Z).
The cohomology groupH?(X), H'(X) andH?(X) are always torsion free for an oriented 5-manifold
X. We have the following part of the Gysin sequence:

o H3OM) T H3(X) = H2(M) — ...

By assumptionH3(M) = 0. Therefore the homomorphism injects H3(X) into H?(M), which is
torsion free by the assumption thaf is simply-connected. Hendd?(X; Z) is torsion free itself. It
remains to considel?(X) and H*(X). By the Universal Coefficient Theorem and Poirgcduality,
H?(X) is torsion free if and only ifif; (X) is torsion free, if and only if7*(X) is torsion free. Since
H1(X) = 0, we see that/?(X) and H*(X) are torsion free.

By Lemma 9.9 we havél?(X;Z) = H?(M;Z)/7 - e. SinceH?(M;Z) is torsion free and is
indivisible, H2(M; Z) /7 - e = 7b*(M)~1_ This implies the formula foHy(X; Z) = H3(X;Z). O

By the classification theorem for simply-connected 5-manifolds, in particular Corollary 7.30, we
getthe following theorem (this has also been proved in [32]).

Theorem 9.12.Let M be a simply-connected closed oriented 4-manifold Anithe circle bundle over
M with indivisible Euler clasg. ThenX is diffeomorphic to

o X = #(by(M) —1)5% x S3if X is spin, and
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o X = #(bo(M) —2)S? x S34#52%S3if X is not spin.
The first case occurs if and only:if, (M) = ae mod2, for somen € {0, 1}.

Since every closed oriented 4-manifoldSgin® and henceuvy (M) is the mod 2 reduction of an
integral class, we conclude as a corollary that every closed simply-connected 4-manifsldiffeo-
morphic to the quotient of a free and smodéth-action on(be (M) — 1)52 x S3.

IX.2 Connections on circle bundles with prescribed curvature

In this section we give a proof for a theorem of Kobayashi [72] that every closed 2-form representing
the Euler class of a circle bundle can be realized as the curvature form of a principal connection on this
bundle. If the closed 2-form is a symplectic form, a multiple of the connection will be a contact form
on the total space of the circle bundle. This will be shown in the next section.

We first discuss the relation between the Euler class of a prinSipalndle and the curvature of
a connection on this bundle, see e.g. [14]. ketP — M be a principalS!-bundle. We identifyS*
in the standard way with/(1). SinceU(1) = SO(2), the principal bundle” has a first Chern class
c1(P) and an Euler class(P) in H?(M;Z). Both are the same,

c1(P) = e(P).

Hence it is enough to focus on the Euler cla$®). We denote the natural image of this class in
H%*(M;R) = H? (M) by e(P)g.

Let A be al/(1)-connection orP. This is a certain 1-form o® with values inu(1) = ‘R which is
invariant under the&*-action. The curvaturé' of A can be considered as a closed 2-form\énLet R
denote the fundamental vector field generated by the action of the elémesatu(1). An orbit of R,
topologically a fibre ofP, has period 1. There are the following relations, coming from the definition
of a connection on a principal bundle:

dA=7"F
A(R) = 2mi.

Finally, there is a formula fo#( P)g in terms of F:

e(P)r = [5=F]| € Hpp(M).
We now prove the following theorem of Kobayashi [72].

Theorem 9.13. Let M be a smooth manifold and: P — M a principal S'-bundle with Euler
classe(P)r € H3,(M). Letw be a closed differential form representingP)r. Then there exists a
connectiond on P with curvatureF equal to—2miw.

Proof. We choose an arbitrary connectidnon the principalS*-bundleP — M. Then its curvature
F'is an imaginary valued 2-form ol such that

dA = *F

e(P)g = [%F] .



IX.3 The Boothby-Wang construction 171

As cohomology classésk F] = [w], hence there exists a 1-fomon M such that

LF — w = dp.

3
P

We define a new connection
A=A+ 2wt p.

Then
dA = dA + 2rin*dp
=" F + 2%1(%%*15 — W)
= 2mimtw.
Hence the curvature of A is —2miw. O

IX.3 The Boothby-Wang construction

We want to construct circle bundles over symplectic manifdidlsvhose Euler class is represented
by the symplectic form. Since the Euler class is an elemeri tf); Z) the symplectic form has
to represent an integral conomology classHi(M; R), i.e. it has to lie in the image of the natural
homomorphism

H(M;7Z) — H*(M;R) = H25(M).

The existence of such a symplectic form is guaranteed by the following argument (this argument is from
[52, Observation 4.3]): LetM,w) be a closed symplectic manifold. For every Riemannian metric on
M, there exists a smaitball B. around0 in the space of harmonic 2-forms dd such that every
element inu + B, is symplectic. Since the set of classeddA()M; R) represented by these elements is
open, there exists a symplectic form which represents a rational cohomology class. By multiplication
with a suitable integer, we can find a symplectic form which represents an integral class. If we want, we
can choose the integer such that the class is indivisible. Note also that all symplectic formsHh
can be connected to by a smooth path of symplectic forms. This implies that they all have the same
canonical clas# asw.

We fix the following data:

e A closed connected symplectic manifold/?",w) with symplectic formw, representing an
integral cohomology class iH?(M; R).

e Anintegral lift (w]z € H?(M;Z) of [w] € H% p(M).

Let 7: X — M be the principal circle bundle ove¥/ with Euler classe(X) = [w]z. Choose a
connectiond on X — M with curvature—2miw, as in Theorem 9.13.

Proposition 9.14. Define the real valued 1-forth = %A on X. Then\ is a contact form onX with

d\ = —m*w
AMR) =1.
Proof. We have the relations
dA = —2mit*w

A(R) = 2mi.
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This implies the corresponding relations farThe tangent bundle oX splits asT X 2 R & «n*TM,
where the trivialR-summand is spanned by the vector fiéld Fix a point of X and choose a basis
(R,v1,...,vq,) Of its tangent space, where thgform an oriented basis of the kernelxf Then

AN (AN (R, v1,...,v2,) = (dXN)"(v1, ..., v2p)
= (_1)nwn(ﬂ_*v1, ceey 7r*'U2n)

# 0.
Hence\ A (d\)™ is a volume form onX, and)\ is contact. O

Remark 9.15. If we define the orientation ol via the splittingT’ X = R & «*T M, where the trivial
R-summand is oriented bit andT M by w, then)\ is a positive contact form if. is even and negative
otherwise.

Definition 9.16. The contact structurgon the closed oriented manifoki>”*+!, defined by the contact
form X\ above, is called th®oothby-Wang contact structuessociated to the symplectic manifold
(M,w). Sinced\(R) = 0, the Reeb vector field of is given by the vector field along the fibres.

For the original construction see [13].

Proposition 9.17.1f )\ is another contact form, defined by a different connectléas above, then the
associated contact structugéis isotopic to€.

Proof. The connectiord’ is anS*-invariant 1-form onX with

dA" = dA
A'(R) = A(R).
Henced’ — A = *« for some closed 1-formy on M. DefineA; = A + n*ta for t € R. ThenA,; is
a connection otX with curvature—2riw for all t. Let\; = A + 7*(5ta). Then), is a contact form

on X forall ¢t € [0,1], with A\g = X and\; = X. Therefore£ and¢{’ are isotopic through the contact
structures defined by;. O

The Chern classes gfaregiven by the Chern classes ©fin the following way.

Lemma 9.18. Let X — M be a Boothby-Wang fibration with contact structdre Thenc;(§) =
m*¢;(TM,w) for all ¢ > 0. The manifoldX is spin, if and only if

c1(M) = ajw]z mod2,
for somex € {0, 1}.

Proof. Let J be a compatible almost complex structure doon M. Then there exists a compatible
complex structure/’ for £ on X such thatr*(T'M, J) = (§,J') as complex vector bundles. The
naturality of characteristic classes proves the first claim. The second claim follows from Lemma 9.10
andc; (M) = wq(M) mod2. O
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In this chapter we construct contact structures on certain simply-connected 5-magifettsch
are equivalent as almost contact structures but are not equivalent as contact structures. The contact
structures arise on circle bundles over simply-connected symplectic 4-manifdids) by the con-
struction from Chapter IX. We will use the results form Chapter VIl to determine when they are
equivalent as almost contact structures. In the first part of this chapter we show how the theory of
contact homology implies that the divisibility of the canonical cl&ssf the symplectic structure is
an invariant of the contact structure on the total space of the Boothby-Wang circle bundle oVeés
can then use the examples from Chapter VI to find examples of contact structures on simply-connected
5-manifoldsX with torsion freeHs(X;Z) which are equivalent as almost contact structures but not
as contact structures. This adds examples of inequivalent contact structures with non-vanishing first
Chern class to the (infinitely many) contact structures with first Chern class zero found by O. van Koert
in [74] on these simply-connected 5-manifolds. Also I. Ustilovsky [139] found infinitely many contact
structures on the sphef® and F. Bourgeois [15] off’2 x S3 andT®, both in the case of vanishing
first Chern class.

X.1 The construction for symplectic 4-manifolds
We fix the following data:
e Aclosed, simply-connected, symplectic 4-manifoM, w), with symplectic formw representing
an integral cohomology class i#?(M;R), cf. the argument at the beginning of Section 1X.3.

Since H%(M; Z) is torsion free[w] has a unique integral lift, which we also denote|by €
H?(M;7Z). We assume thaw] is indivisible.
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e Letm: X — M be the principalS'-bundle overM with Euler class(X) = [w]. ThenX
is a closed, simply-connected, oriented 5-manifold with torsion-free cohomology (see Theorem
9.11). We will often denote the clags] also byw.

e Let \ be a Boothby-Wang contact form o with associated contact structugg(Definition
9.16). By Proposition 9.17 the contact structgr@oes not depend okup to isotopy.

By Theorem 9.12, the 5-manifold is diffeomorphic to
o #(bo(M) —1)5? x S3if X is spin, and
o #(bo(M) —2)S? x S34#52x 83 if X is not spin.

Hence the same abstract, closed, simply-connected 5-matkfelith torsion free homology can
be realized in several different ways as a Boothby-Wang fibration over different simply-connected
symplectic 4-manifoldg/ and therefore admits many, possibly non-equivalent, contact structures.

Definition 10.1. Let d(¢) > 0 denote the divisibility ofc;(¢) € H?(X;Z), as in definition 6.5.
Similarly, we denote the divisibility of the canonical cla§s= —c; (M) € H?(M;Z) of w by d(K).

Note thatX is spin if and only ifd(¢) is even by Lemma 8.8. With Corollary 8.22 we get:

Proposition 10.2. Suppose thatM’, ') is another closed, simply-connected, symplectic 4-manifold
with integral and indivisible symplectic fora¥. Denote the associated Boothby-Wang total space by

(X7, ).

e The simply-connected 5-manifol@sand X’ are diffeomorphic if and only i2(M) = ba (M)
andd(§) = d(¢') mod2.

e If d(&) = d(¢'), then¢ and¢’ are equivalent as almost contact structures.

The divisibility d(£) can be calculated in the following way: By Lemma 9.9, the bundle projection
m defines an isomorphism

™ H3(M;7) /7w — H?(X;Z),

and by Lemma 9.18 we have
el (M) = e1(§).

Let [c;(M)] denote the image af; (M) in the quotientt{?(M; Z) /Zw, which is free abelian since
is indivisible. Thend(¢) is also the divisibility of the clasg:; (M)]. We will user™ to identify

H*(X;Z) = H*(M;Z) /7w, and
c1(§) = [er(M)].

We then have:

Lemma 10.3. The divisibilityd(¢) is the maximal integed such that
c1(M)=dR+ yw

wherey is some integer an® € H?(M;Z) not a multiple ofo.
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X.2 The A-invariant

Let 7: X — M be a Boothby-Wang fibration as in the previous section. We can choose a class
A € Hy(M;Z) such thatv(A) = (w, A) = 1 because we assumed thais indivisible. Consider the
number

c1(A) := (c1 (M), A).

We want to determine the set of all these integers. We fix one arbitrary eletpentH, (M ; Z) with
w(A()) = 1.
Lemma 10.4. The set of integers

{ci(A) | A € Hy(M;Z), w(A) = 1}

is equal toc; (Ap) + d(&)Z. In particular, the reduction; (A) € Z/d(£)Z is independent of the choice
of A.

Proof. By Lemma 9.4, the image of homomorphism: Hy(X;Z) — Hy(M;Z) induced by the
bundle projection is the kernel ¢b, —). On the other hand, we know thatc, (M) = ¢1(£). Suppose
A € Hy(M;Z) is a class withu(A) = 1. Thenw(A — Ap) = 0, henced — Ay = =B for some
B € Hy(X;Z). This implies

c1(A) = c1(Ag) + (e1(M), 7. B)
c1(Ao) + (e1(€), B)

€ c1(Ap) + d(&)Z.

Conversely, lein € Z be an arbitrary integer. We can choose a clBiss Hy (X ; Z) with (¢, (£), B) =
md(€) since the divisibility ofc; (£) is d(&). Define the homology clasé := Ay + m.B on M. Then
we havev(A) = 1 ande; (A) = ¢1(Ao)+md(§). This shows that all integers in the setAg) +d(§)Z
can be realized ag (A) with w(A4) = 1. O

Definition 10.5. We call ¢;(4) € Z/d(§)Z the A-invariant A(w) of the symplectic 4-manifold
(M,w).

The lemma implies that the set of all numbek$A), with A € Ho(M;Z) andw(A) = 1, is
completely determined by(¢) € N andA(w) € Z/d(£)Z. The following lemma describes some
relations between these numbers.

Lemma 10.6. The following relations hold:

(1.) Letcy (M) = d(€)R + ~w for some class € H?(M;Z) and integery € Z. ThenA(w) = v
modd(§).

(2.) The integerl(K) dividesd(¢).
(3.) LetA be an integer reducing tt (w) modulod(§). Thenged(A, d(€)) = d(K).

Proof. (1.) This follows by the definition ofA(w) if we evaluate both sides a# € Ha(M; Z) with
w(A) =1.

(2.) We can writec; (M) = d(K)W whereW is a class inH?(M;Z). Then[c;(M)] = d(K)[W]
in H2(M;7Z)/Zw. Sinced (&) is the divisibility of [c; (M)], the integewl(¢) has to be a multiple
of d(K).
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(3.) By part(a)
c1(M)(A) = d(§)R(A) +,

whereA € Hy(M;Z)is aclass withw(A) = 1 andy = A modd(§). Sinced(K) dividese; (M)

andd(¢), it also divides divides and hence\. On the other hand, there exists a homology class
B € Hy(M;Z) such thatl(K) = ¢1(M)(B). Again by part (a)

d(K) = d(§)R(B) + yw(B).

Hence there exist integefsy € Z such thatl(K) = zd(&) + yA. This proves the claim.
U

X.3 Contact homology

In this section we consider invariants derived from contact homology. We only take into account the
classical contact homologifco™t (X, £) which is a graded supercommutative algebra, defined using
rational holomorphic curves with one positive puncture and several negative punctures in the symplec-
tization of the contact manifold. We use a variant of this theory for the so-called Morse-Bott case,
described in [15] and in Section 2.9.2. in [33].

We are going to associate to each Boothby-Wang fibratioX' — M as above a graded commu-
tative algebr&l(X, M). Choose a basiBy, ..., By of Ha(X;Z), whereN = by(X) = bo(M) — 1
and let

A, =mB, € Hy(M;Z), 1 <n<N.

Note that
c1(By) = (c1(§), Bn) = (c1(M), An) = c1(Ap).

Choose a clasd, € H»(M;Z) such that

w(Ao) =1.
The classes\y, 44, ..., Ay form a basis offy(M; Z). We consider variables
z = (21, .. .,ZN), and

q= {Qk,i}keN, 0<i<a,
wherea = by (M) + 1. They have degrees defined by

deg(zn) = _QCl(Bn)
deg(qr,;) = deg; — 2 4 2¢1(Ao)k,

wheredegA; is given by

0 ifi=0
degA; =< 2 ifi=1,...,bo(M)

In our situation the degree of all variables is even (hence the algebra we are going to define is truly
commutative, not only supercommutative).

Definition 10.7. We define the following algebras.
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e £(X)=C[H2(X;Z)] = the graded commutative ring of Laurent polynomials in the variables
with coefficients inC.

o A(X, M) =D c,Aa(X, M) = the graded commutative algebra of polynomials in the variables
q with coefficients ing(X).

A homomorphisng of graded commutative algebrais2l’ over £(X)

¢:A=PAs - A = P,

dez dez
is a homomorphism of rings, which is the identity 86X') and such thap(;) C 2/, forall d € Z.

Lemma 10.8. e Uptoisomorphism, the ring(X) does not depend on the choice of bd3js. .., By
for Ho(X;Z).

e For fixed £(X), the algebra?l(X, M) does not depend, up to isomorphism 02¢X ), on the
choice of the classly € Hy(M;Z) as above.

Proof. Let By, ..., By be another basis ofi,(X;Z) and £(X) the associated ring, generated by
variablesz. Then there exists matrix

(Bmn) € SL(N,Z)
with 1 < m,n < N, such that

N
n=1

Definea homomorphisny: £(X) — £(X) via

forall 1 < m < N. Then¢ preserves degrees and is an isomorphism, since the niafix) is
invertible.

Let Ay beanother element iff2(M; Z) such thatu(A4y) = 1 and?l(X, M) the associated algebra,
generated by variablegg Then there exists a vector

(o) € ZN,
with 1 < n < N, such that

N
Ay = Ao + Z anA,.
n=1

Definea homomorphism): (X, M) — (X, M) via

N
Teg = e | [ 227" k€N, 0<i<a,

n=1

and which is the identity o (X'). Theny preserves degrees and is invertible. O
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We will now describe the relation ofi(X, M) to the Boothby-Wang contact structugeon X
induced byw and theA-invariantA(w). Letd := d(§) andA an integral lift of A(w) € Z/dZ.

Definition 10.9. Suppose thaf > 1. For0 < b < d denote byQ), the set of generatofgy; ; } with
deg(qi,i) = 2b mod2d.

Remark 10.10. If ¢;(§) # 0, the variables, ..., z, which generate the ring(X) do not all have
degree zero. Henc® (X, M) = (X, M)/£(X), which is an algebra ovet, does not inherit a
natural grading in this case. However, since the degrees of the varigbdes all multiples od, the
algebraB (X, M) has a grading by elements#,. The images of the generatays; form generators
for this infinite polynomial algebra an@, is the set of generators of degrgiemod 2d (I learnt this
interpretation from K. Cieliebak).

Lemma 10.11. Assume thatl > 1. Then the se), is infinite if d(K) divides one of the integers
b—1,b,b+ 1 and empty otherwise.

Proof. Supposel(K) = ged(A, d) divides one of the integefis+ ¢, with e € {—1,0,1}. Then the
equation
b= —e+ Ak + da

has infinitely many solutions > 1 with a € Z. Choose an integér < i < a with degA; — 2 = —2e.
SinceA = ¢;(A4p) modd by Lemma 10.4,

deg(qr,i) = —2€ + 2¢1(Ag)k = —2¢ + 2Ak = 2b mod2d

for infinitely manyk > 1. Hence these, ; are all inQy,.

Conversely, suppose thétk) does not divide any of the integerst+ ¢, withe € {—1,0,1}. Sup-
pose that), contains an elemenj ;. We havedeg(q; ;) = —2€ + 2¢1(Ap)! for somee € {—1,0,1}.
By assumption,

deg(qi ;) = —2€ + 2c1(Ap)l = 2b — 2do,

for somea € Z. This implies
b+e=ci1(Ao)l +da=Al+dd,
for some integet’ € Z. This is impossible, sincé( K) divides the right side, but not the left sidel]

Example 10.12.Suppos¢hatd > 1. If d(K) € {1, 2,3}, then Lemma 10.11 implies th&, is infinite
forallb=0,...,d — 1. If d(K) > 4 (and hencel > 4 as well), then at least one of tlig, is empty,
e.g.Q)s is always empty in this case.

We now make the following assumptions:

e The simply-connected 5-manifold can be realized as the Boothby-Wang total space over an-
other closed, simply-connected, symplectic 4-manifdiff, ') wherew’ represents an integral
and indivisible class. This implies in particular tha{M') = by(M) = a — 1. Denote the
canonical class ofM’,w’) by K’ and its divisibility byd(K”)

e We assume thai(¢') = d(¢) =: d and choose an integral lifs" of A(w') € Z/dZ.

e Let %A(X, M’) denote the associated algebra o), generated by variablefy ;}, with
leN,0<j<a.
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If d > 1, denote by, as above the set of generatérﬁ’j} of degree congruent @b modulo2d, for
each0) < b < d.

Lemma 10.13. Assume thatl > 4 and at least one of the numbef$K),d(K') is > 4. Then the
following two statements are equivalent:

e There exists an integér < b < d such that), and@; do not have the same cardinality (i.e. one
of them is empty and the other infinite).

o d(K) £ d(K").

Proof. Suppose thad(K) = d(K’). By Lemma 10.11, the setg, andQ; have the same cardinality
forall 0 < b < d. Conversely, suppose thétK') # d(K'); without loss of generality( K') < d(K').

If d(K) € {1,2,3} letb = 2. ThenQ- is infinite, whileQ’, is empty (sincel(K’) > 4 by assumption).
If d(K) > 4letb = d(K)—1 > 3. Thend(K) dividesb + 1, butd(K") does not divide any of the
integersb — 1,b,b + 1. HenceQ), is infinite andQ);, empty. O

Lemma 10.14. Suppose¢hat either (i)d = 0 or (ii) d > 4 and at least one of the numbet&X), d(K")
is > 4. If the Zy4-graded polynomial algebra® (X, M) and®B (X, M') overC are isomorphic, then
d(K) =d(K").

Proof. Suppose thaf = 0 and that there exists an isomorphism®B (X, M) — B(X, M’). In this
case, both algebras are graded by the integers and the elements of lowest dé€g§(ég i) and
B(X, M’) have degree-2 + 2A and—2 + 2A/, respectively. Since has to preserve degree, this
impliesA = A’ and hence

d(K) = ged(A,0) = A = A" = ged(A,0) = d(K).

Now assume that > 4 and at least one af( K ), d(K') is > 4. Suppose that(K') # d(K') and there
exists an isomorphism: B (X, M) — B(X, M'). Both algebras are freely generated by the images
of the elementg g ; } and{q; ; }, which we still denote by the same symbols.

By Lemma 10.13, there exists an inte@e< b < d such that), and@; have different cardinality.
Without loss of generality, we may assume tljatis empty and?; infinite (otherwise we consider
o). Let q, s be a generator iy;. Theng;,. , is a polynomial in the images

{0(ar,i) }ren0<i<as

with coefficients inC and we can write

qvl",s = f(¢(Qk1,i1)v SRR d)(ka,iu)) € C[éb(%,n)’ e 7¢(qu7iv)}‘

The images(qy,;) are themselves polynomials in the variables; } with coefficients inC. Expressed
as a polynomial in the variabl€g; ; }, at least one of the imagegg,, ;,,), 1 < w < v, must contain a
summand of the formg;. ; with o € C non-zero. Since preserves degrees(qy,, i,,) is homogeneous
of degree

deg(d(qr, i) = deg(aq, ;) = deg(q, ;) = 2b mod2d.

This impliesdeg(qx,, .,,) = 2b mod2d, henceyy,, ;, € Qp. This is impossible, sinc;, = 0. O

Lemma 10.15. Supposehat either (i)d(K) = d(K') or (ii) both numbersi(K),d(K') are < 3 and
d # 0. Then the algebrag( (X, M) and2((X, M') are isomorphic oveg(X).
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Proof. We can choose a basiy, . .., By of Hy(X;Z) such that

a(Bi) =d(§) =d
c1(Bp) =0, forall2<n<N.

Choose elementd, € Hy(M;Z) andAj, € Hy(M'; Z) such that
Cl(A()) = A, Cl(AE)) = A,.

This is possible by Lemma 10.4. We will use these bases to define the alggbfasd/) and(( X, M').
Suppose thal(K) = d(K’). If d = 0, then

A = ged(A,0) = d(K)
A’ = ged(A',0) = d(K').
This impliesdeg(qx,;) = deg(qj, ;) for all k € N,0 < i < a. Hence the map
qk,i'_)qz’ia kEN,OSZSQ,

induces a degree preserving isomorphism( X, M) — 2A(X, M').
Supposel > 1. Under our assumptions, the s€ls and@; have the same cardinality for each
0 < b < d, cf. Lemma 10.13 and Example 10.12. Hence there exists a bijection

W Nx{0,...,a} — Nx{0,....a}, (k) — 0(k, i),

such that
deg(qr,) = deg(qyy, ) mod2d.
Sincez; has degree-2d, there exists for eactk, i) € Nx {0,...,a} anintegekx(k, i) € Z, such that

a(k,i
deg(qr;) = deg(4" )q:/,(k,i))-

The map

qk,i — Zia(k’i)qip(kd), k S N, 0 S 1 S a,

therefore induces a well-defined, degree preserving isomorphis@(X, M) — (X, M') over
£(X). O

Combining Lemmas 10.14 and 10.15 we arrive at the following theorem.

Theorem 10.16.The algebrai(X, M) and4(X, M) are isomorphic oveg(X) if and only if one
of the following three conditions is satisfied:

e d > 1andbothd(K),d(K") <3
e d=0andd(K)=d(K'")
e d>4andd(K)=d(K') > 4.

Here we have used that an isomorphismledlgebras induces an isomorphisnt®falgebras.
The following result is described in [33], Proposition 2.9.1.
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Theorem 10.17.For a Boothby-Wang fibratiok’ — M as above, the Morse-Bott contact homology
Hem (X, €) specialized at t = 0 is isomorphic ta((X, M).

Using Theorem 10.16 and Proposition 10.2 we get the following corollary. The part concerning
equivalent contact structures follows, because equivalent contact structures have isomorphic contact
homologies.

Corollary 10.18. Let X be a closed, simply-connected 5-manifold which can be realized in two differ-
ent ways as a Boothby-Wang fibration over closed, simply-connected symplectic 4-mdnifolds)
and (Ma,w2), whose symplectic forms represent integral and indivisible classes:

X
N
(M, w1) (Ma,w2)

Denote the associated Boothby-Wang contact structureX oy &, and&; and the canonical classes
of the symplectic structures ly; and K. Then:

e The almost contact structures underlyifigand &, are equivalent if and only d(£;) = d(&2).
Suppose thag; and&; are equivalent as contact structures.

o If d(&)) = d(&) = 0, thend(K) = d(K>).

o If d(&1) = d(&) # 0, then either bothi( K ), d(K2) < 3ord(K;) = d(K2).

X.4  Applications

In order to apply Corollary 10.18 it is useful to perturb the symplectic form on a given symplectic
manifold (M, w), because in this way one can construct Boothby-Wang contact structures on different
levels on the same total space ovdr

Lemma 10.19.Let (M, w) be a minimal closed symplectic 4-manifold wigh(1/) > 1 and canonical
classK. Then every class i ?(M; R) of the formlw]+t K for a real numbet > 0 can be represented
by a symplectic form.

Proof. Note that the canonical clag§ is a Seiberg-Witten basic class. Sintkis assumed minimal,
Proposition 3.10 and the argument in Corollary 3.11 showAhat represented by a disjoint collection

of embedded symplectic surfaces/ifi all of which have non-negative self-intersection. The inflation
procedure [83], which can be done on each of the surfaces separately and with the same parameter
t > 0, shows thafw| + ¢ K is represented by a symplectic form oh. O

We can now prove:

Theorem 10.20.Let M be a closed, minimal simply-connected 4-manifold Wjth)/) > 1 andw a
symplectic form or/. Denote the canonical class ofby K and letm > 1 be an arbitrary integer.

Then there exists a symplectic forhon M, deformation equivalent to and representing an integral

and indivisible class, such that the first Chern class of the associated Boothby-Wang contact structure
¢’ has divisibilityd(¢') = md(K).

!Notethat contact homology is actually a family of algebras which can be specialized aiahy* (X ; R).
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Proof. Let k = d(K). We can assume thatis integral and choose a basis #¢(M; Z) such that

K = k(1,0,...,0)
w = (w1,w2,0,...,0).

By a deformation we can assume thais not parallel tok’, hencews # 0. We can also assume that
w1 is negative whilev, is positive: Consider the change of basis vectors

(1,0,0,...,0) — (1,0,0,...,0)
(0,1,0,...,0) — (g, %1,0,...,0),

whereq is some integer. Then the expressionsathanges to
(w1 + qwa, w9, 0,...,0).

Hence ifq is large enough, has the correct sign andthgign is chosen correctly, the claim follows.
Suppose that € H?(M;Z) is an indivisible class of the form

o= (01,09,0,...,0)

which can be represented by a symplectic form, also denoted hgt { denote the contact structure
induced on the Boothby-Wang total spacedoyWe claim that the divisibilityi(¢) is given by

d(C) = kloa|.

To prove this we writeK' = —¢y(M) = rR + ~vo, whereR = (R1, R2,0...,0). Thenk — vo; and
~oq are divisible byr. This implies that dividesko,. Conversely note that by assumptien o- are
coprime. LetR;, Rs be integers with

1= UQRl — 0'1R2

and define
Y= —k’RQ.

Then we can write
K = koyR — kRyo.

This proves the claim aboudf().
Suppose that» > 1. By multiplying the expression fav with the positive numbewﬁ2 we see that
the (rational) class
(,m,0,...,0), «a= w1 s
is represented by a symplectic form. Note thak 0. By the inflation trick in Lemma 10.19 with
parametet = 7 (1 — «) it follows that

W' = (a,m,0,...,0)+ (1 — ,0,...,0)
= (1,m,0,...,0)

is represented by a symplectic fowh The class’ is indivisible. Let¢’ denote the induced Boothby-
Wang contact structure. By our calculation abaif@/) = mk. O
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Definition 10.21. For integersd > 4 andr > 2 denote byQ(r,d) the number of elements of the
following set:

k > 4, k dividesd and there exists a simply-connected
Q(r,d) = # < k € N | symplectic 4-manifold M, w) with by(M) = r andbs (M) > 1
whose canonical clags has divisibilityd(K) = k.

Lemma 10.22.Letd > 4 andr > 2 be integers. Suppose that either
e dis odd andX the simply-connected 5-manifol = (r — 2)52 x S3#5%2xS3, or
e dis even andX the simply-connected 5-manifald = (r — 1)52% x S3.
In both cases, there exist at le&3tr, d) many inequivalent contact structures on the leveh X .

Proof. Recall that a spin (non-spin) simply-connected 5-manifold has only even (odd) levels. Suppose
thatd > 4 is an integer and)/, w) a simply-connected symplectic 4-manifold wiih(A/) = r and

by (M) > 2 whose canonical class has divisibility= d(K) > 4 dividing d. We can writed = mk.

By Lemma 6.2, the manifold/ is minimal and by Theorem 10.20 there exists a symplectic structure
w’ on M that induces on the Boothby-Wang total spacevith b2(X) = r — 1 a contact structure with

d(¢) = d. Since the symplectic forma’ is deformation equivalent to the canonical clas& remains
unchanged. By Corollary 10.18 the contact structures on the same non-zerd @vel coming

from symplectic 4-manifolds with different divisibilities > 4 of their canonical classes are pairwise
inequivalent. O

Definition 10.23. For an integekl > 4 let N (d) denote the number of positive integers4 dividing
d. If dis even, letN’(d) denote the number of odd divisars4 of d.

Lemma 10.24.Letd > 4 andr > 2 be integers.
(1.) For anyr we haveQ(r,d) < N(d).
(2.) If dis even and- is not congruent t@ mod4, thenQ(r,d) < N(d').

Proof. The first statement is clear by the definitions. For the second statement, suppageithat
simply-connected symplectic spin 4-manifold. Then the intersection €gpis even and; (M) odd.
Note thath, = by — o, henceby (M) = 2b3 (M) — o(M). SinceQ, is even, the signature(M) is
divisible by8. This implies thab, (M) is congruent t@ mod 4 becauséy (M) is odd. Hence if- is
notcongruent t@ mod4 then there does not exist a simply-connected symplectic spin 4-madifold
with second Betti number. Hence all elements @) (r, d) are in this case odd. O

We can now use our geography results from Chapter VI to estimate the n@rabel) for different
values ofr andd. For example, from symplectic structures on homotopy elliptic surfaces we get:

Lemma 10.25.Letn > 1 andd > 4 be arbitrary integers.
(1.) Ifdisodd, therQ(12n — 2,d) = N(d).
(2.) Ifdis even, the(24n — 2,d) = N(d) andQ(24n — 15,d) = N'(d).

Proof. By Theorem 6.11 we have the following:
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(1.) Suppose that > 1 andd > 4 is odd. Then for every (odd) divisdr > 4 of d there exists a
symplectic homotopy elliptic surfacel with by (M) = 12n — 2, b5 (M) > 3 andd(K) = k. If
n = 1 one can choose a Dolgachev surfaddewith by(M) = 10, b5 (M) = 1 andd(K) = k.
Since the canonical class of a Dolgachev surface is represented by two disjoint tori of self-
intersection zero, given by the multiple fibres, the proofs of Lemma 10.19 and Theorem 10.20
also work in this case.

(2.) Suppose that > 4 is even andn > 1. Then for everyodddivisor &k > 4 of d there exists a
symplectic homotopy elliptic surfack/ with bo(M) = 12m — 2 andd(K) = k. For aneven
divisor k > 4 of d there exists a symplectic homotopy elliptic surfddewith by (M) = 12m — 2
andd(K) = k ifand only if m > 2 is even.

HenceQ(12m — 2,d) > N(d') if mis odd andQ(12m — 2,d) = N(d) if m is even. Setting
m = 2n — 1 in the first case angh = 2n in the second case the claims follow.

O

With Lemma 10.22 we get:
Proposition 10.26.Letn > 1 be an arbitrary integer.

(1.) On every odd level > 5 the 5-manifold(12n — 4)S? x S3#S5%x 53 admits at leastV (d)
inequivalent contact structures.

(2.) On every even level > 4 the 5-manifold24n — 3)S? x S admits at leastV(d) inequivalent
contact structures.

(3.) Onevery even level> 4 the 5-manifold 24n — 15)5? x S% admits at leastV/(d) inequivalent
contact structures.

In a similar way we can use other geography results from Chapter VI to find inequivalent contact
structures on simply-connected 5-manifoliswith torsion freeHs(X; Z).
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In this appendix we derive some formulas for the first homology and the fundamental group of the
complemenbf a closed, oriented codimension 2 submaniféldn a closed, oriented manifold/.
We are in particular interested in the case of surfaces in 4-manifolds. However, the general case of
codimension 2 submanifolds is not more difficult, hence we consider this case. Some of the results are
well-known and used in many places in the literature, for instance Proposition A.3 on the fundamental
group and Proposition A.2 on the first homologyH{ (M) = 0. We use the results in this chapter in
particular in Sections V.1.4, V.3.2 and VI.3.2.

A.1 Definitions

Let M™ be a closed, oriented manifold aftt—2 c M a closed, oriented submanifold of codimension
2 which represents a non-torsion cléB$ € H,,_»(M;Z). We denote a closed tubular neighbourhood
of F byv(F) orvF and let

M' = M\ intvF.

ThenM’ is an oriented manifold with boundafy F'. On the closed manifold/, the Poincak dual of
[F] acts as a homomorphism éfx(M;Z),

(PD([F)),—): Ho(M;Z) — Z.

By the assumption of¥’] the image of this homomorphism is non-zero and hence a subgrdiipfof
the formkZ with k > 0. We assume thaf'] is divisible byk, i.e. there exists aclass € H,,_o(M;Z)
such tha{F|] = kA. This is always true iff,,_o(M;7Z) = H*(M;Z) is torsion free.
We fix the following notation for some of the inclusions. For simplicity, we denote the maps
induced on homology and homotopy groups by the same symbol:
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it F—-M

p: M — M

w: OvFE — M’

j: o — M', whereo denotes aneridianof F in M, i.e. a fibre of the circle bundiévF — F'.

For any topological spac¥, we use as an abbreviation the symbalg X ) and H*(X) to denote the
homology and cohomology groups &f with Z-coefficients. Other coefficients are denoted explicitly.
Let A’ be the image off under the homomorphism

f:Hpo(M)— Hy_o(M,F) = H, o(M' oM, (A1)
where the first map comes from the long exact homology sequence for thépait) and the second
map is by excision.
A.2 Calculation of the first integral homology

We begin with the calculation of the first homology of the complemetit wf M. A similar calculation
has been done in [67] and [120] for the case of a 4-maniféldnd under the assumptidh, (M) = 0.

Lemma A.1. There exists a short exact sequence

(M)

— ZPDIF P HA (M) — ker(i: Hy_5(F) — Hy_3(M)) — 0.

This sequence splits, becaudg _3(F) = H'(F) is torsion free.
Proof. We consider the long exact sequence in cohomology associated to ti@/paif’):
o HA(M, M) — H2(M) 2 H2(M') 2 H3 (M, M) — H3(M) — ...
By excision, Poincdr duality and the deformation retractio’ — F we have:
H*(M, M"Y = H*(vF,0vF) = H,_,(vF) = H,_(F).

The mapH*(M, M') — H*(M) is then under Poincarduality equivalent to the map H,_(F) —
H,_,(M). With k£ = 1, 2, this proves the claim. O

We have the following proposition.
Proposition A.2. For M and F as aboveH,(M";Z) = H,(M;Z) & Zj.

Proof. We first show thatZ'(M’) = H'(M). This follows from the long exact sequence in homology
for the pair(M, F):

0— Hp1(M) — Hp1(M,F) — Hyp2(F) o n—2(M) — Hp—2(M,F) — Hy_3(F) — Hp—3(M).

The mapi is given by
i: Hyo(F) 27 — Hyp_o(M),m— m-[F].
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Since[F] is non-torsion, the mapis injective. This implies that{,,_; (M, F) = H,_1(M). Hence
by excision and Poincarduality

HI(M/) = anl(MlaaM,) = anl(Ma F) = anl(M) = HI(M)
By the Lemma A.1 we see that

TorH*(M') = Tor(H?*(M)/ZPDIF))
>~ Tor(H?(M)/ZkPD(A))
>~ TorH?(M) & ZPD(A)/kZPD(A)
=~ TorH*(M) & ZyPD(A).

~— —

The third step follows becauseis indivisible and of infinite order. The Universal Coefficient Theorem
implies that
TorH?(M) = Ext(H, (M), Z) = TorH, (M),

and similarly ford/’ (the second isomorphism is not canonical). This implies
TorH(M") = TorH, (M) & Z,.
Using again the Universal Coefficient Theorem we get

Hy(M') = H*(M'") ® TorH, (M)
HY(M) @ TorH, (M) & Zy,

12

A.3 Calculation of the fundamental group

In this section, we determine the relation betwee)!’) and (M) which can be expressed as
follows:

Proposition A.3. The fundamental groups 8f and M’ are related by
m1 (M) = m (M')/N (o),
whereN (o) denotes the normal subgroupin(M’) generated by the meridianof F in M'.

Proof. We choose a base point éW/’, which we do not write down in the following. We want to
apply the Seifert-van Kampen Theorem to the decomposition

M = M' Uy v(F).
We fix presentations

T(F) = (a1, .., Qm | T1,...,Tn)
7T1(M/) = <517"'7/6k ‘ Q17"'7QZ>7
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where ther; and3; areclosed loops inF” and M’ starting and ending at the base poinbii/’. Note
thatm (v(F')) = w1 (F') sinceF is a strong deformation retract of F'). Let

Y m(Ov(F)) — m(F)
pu: i (Ov(F)) — mi (M)

denote the canonical homomorphisms induced by the inclusions (and projection in the first case). The
long exact homotopy sequence for the fibre buritfie~ dv(F) — F gives an exact sequence

o m(SY) = T (Ov(F) L (F) — 1. (A.2)
Hence we can choose generatgrs. . . , yp,+1 for w1 (Ov(F')) such thaty,, 1 = o and

V() =0y, fori=1,....m
w(7m+1) =1.

We set
wj = p(y) €m(M), 1<j<m+1.

Under the natural inclusionsandp we can view alky; and3; as elements imr (M). By Seifert-van
Kampen

—1 -1 -1
T (M) = (a1, s m, B1y o, B | 1, T Q1 @ WY Wy W)

We want to simplify the presentation fog (1 ). The relation?o)ziw;1 = 1imply that in7; (M) we get
a; = w; for 1 <4 < 'm. Since thew; are relations in the variable we can write

ﬂ-l(M) = <ﬁ17""ﬁk | le"arn7Q17"'7CIl7w:n£,.1>a

where the relations

’I“Z'(Oél, e ,am)
become
ri(wl, e ,wm).
The curver;(aq, .. ., a;y) is null-homotopic or¥'. Since
Q,Z)(T‘i(’h, e 77771)) = Ti(alv R am)v
we see by the exact sequence (A.2) thét, ..., vy,) is homotopic to a multiple/fjjﬂ of the fibre.

This implies that
ri(wy, . .. 7wm)w;fﬁ1

is null-homotopic inM’ and hence a product of the, . . ., ¢;. Therefore

T (M) = (B, B | qu, - @ W)
m(M')/N(0),

12

sincew,, +1 is the class of the fibre in; (M’). O

Corollary A.4. If M is simply-connected, then (M’) = N (o). Hence the fundamental group of the
complemenf//’ is normally generated by.
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Proposition A.3 implies that the sequence

1— N(o) L mM) L (M) —1 (A.3)

is exact. By the following lemma this sequence induces an exact sequence in homology.

LemmaA.5. LetA -~ B 25 ¢ — 1 be an exact sequence of groups. Then this induces an exact

sequence on abelianizatiofg(A) 7o) H(B) 1) H(C)—0.

Proof. By the universal property of abelianizations, we get a commutative diagram

A g, B 2, ¢ —1
n| n| |
HA) 29 gy 2N ey —— o

The mapH (p) is surjective, sincéd o p is surjective. Moreover (p) o H(j) = H(po j) = 0. Let
B € H(B) with H(p)(5) = 0. Choose € B with H(b) = /3. Thenp(b) is a product of commutators
inC,

p(b) = I[e;, cf].

Sincep is surjective, we can choose preimagge®’, of ¢;, ¢,. Let
v = b(IL[b;, b)) L.

Thenp(d') = 1andH(V') = 3. Leta € A with j(a) =V anda = H(a). ThenH(j)(a) =
H(j(a)) = H(Y') = 3. This proves exactness Ht(B). O

Corollary A.6. Thefirst integral homology groups df/’ and M are related by the exact sequence
0— Zy L Hy(M';Z) 2 Hy(M;Z) — 0. (A.4)
which splits. The image gfis generated by the classof the meridian of" in M.
Proof. By equation (A.3) and Lemma A.5 we get a short exact sequence
0 — H(No]) L Hy(M') £ Hy (M) — 0.

The subgroug (N[o]) is equal to the cyclic subgrouf) generated by the class of a fibre, which is
finite by Proposition A.2. Hence the map

TorH?(M) = Ext(H,(M); Z) oy Ext(Hy(M'); Z) = TorH?*(M')

has cokernel isomorphic tgr). Since the magp.)* is the same as the naturally induced mgp
on cohomology, which by the proof of Proposition A.2 has cokefgPD(A)’, we see thato) =
L. O
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A.4 Splittings for the first homology

By Theorem A.2 we know that the short exact sequence in Corollary A.6 splits. We want to determine
an explicit splitting. We dualize the short exact sequence

0— Zp L H (M) L Hy (M) -0
to get the sequence
0 — Hom(EH; (M), Zy) 2> Hom(Hy (M), Z1,) 2> Hom(Z, Zy).

Note with our convention from the beginning homology and cohomology groups without explicit co-
efficients have integral coefficients. A splitting of sequence (A.4) is determined by a homomorphism

s: Hi(M') — Zy, withsoj=Idg,,
or, equivalently, an element
s € Hom(Hl(M'),Zk), with J¥s = |de.

Suppose there exists such an elemerithen every othes’ € Hom(H, (M’), Zj) with j*s = Idy, is
given bys’ = s + p*t for somet € Hom(H; (M), Z). This follows becausg*(s’ — s) = 0 and by
exactness of sequence (A.4). All suctan be chosen to define a splittislg

By the Universal Coefficient Theorem,

Hom(H; (M), Zy) = H' (M'; Zy)

and similarly forM. Hence a splitting is determined by an elemert H'(M'; Z;,) with {a, j.o) = 1
and every other splitting’ is of the forma’ = a+p* 3 where3 is an (arbitrary) element il ' (M; Zy,).
We now want to construct a classih! (M’; Z;,) which defines a splitting.
Let A € H,_o(M) be a class withF| = kA, as above, and’ € H,,_»(M’',dM") the associated
class inM’. We consider the long exact sequence in cohomology related to the sequence of coefficients

0-zrz27 >0
L HY (MY B HY M 7)) om0 B B2y

Here3 denotes the associated Bockstein homomorphism. Sihisea k-torsion class o/’ we have
k- PD(A") = 0. Hence there exists a clagsc H*(M'; Zy) with 3(A) = PD(A").

We can realize the Bockstein homomorphism as a connecting homomorphism explicitly in the fol-
lowing way (see e.g. [16]): We denote the singular chain compléXoby C... Leta € Hom(C}, Zy,)
be a representative od. Then there exists an elemeitc Hom(C1,Z) such thata is the modk
reduction ofa. Sinceda = 0 we see thaba € Hom((», Z) takes values ikZ and hence is divisible
by k. Then the cochairéa is coclosed and represen®D(A) € H*(M';Z).

We consider the homomorphism

SA: Hl(M/;Z) — Hl(M;Z) @Zk
a— (pea, (A, a)).

Proposition A.7. The homomorphism, determines a splitting of the short exact sequence in Corol-
lary A.6.
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Proof. Let [y] € Hy(M';Z) denotethe class of a fibre of the circle bundbe(F) — Fin M’'. To
prove thats 4 determines a splitting of the short exact sequence (A.4) we have to show that

(A, [7]) =1 modk.

Since[y] has ordek in H,(M'; Z) there exists a chaim € Cy such thatty = do. We get

(A, 7)) = {a,7) = (@,
= (a,

We can cap offp.o in M with k£ many 2-disksD?, which are fibres of the normal bundi¢F), to
get a closed chain representing a clags| € Ha(M;Z). Letc be a cocycle representif@D(A) €
H?(M;7Z). Then we can write

mod k&

) )
do) = ($6a,0) mod k.

\/

?rl»—‘ Q

pe= %5& + Op,
for somep € Hom(Cy, Z), sinceda representd®D(A’) = p* PD(A). Then we have modulb:

(A, [7])

pre,o) = (op,0)
C, PxO

(

= (¢, ps0) — k(p,7)

= (¢, 7) — k{c, D?) — K, )
= (PD(A),[r])

2(PD[F],[r]) mod k.

We know that{ PD|F, [r]) = k since the zero section of F') intersects each fibre once. This implies
the claim. O
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