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1. Introduction 
 
1.1 Physically based Modelling and Climate Change 
The knowledge and public acceptance of the fact that the climatic conditions of the world are 

changing has finally found its way from the desks of scientists into the consciousness of the 

open public (IPCC 2001, 2007). Now that the world is aware of the changes that will happen and 

in some places already can be experienced, the interest in the possible effects of a changing 

climate is escalating. The most important question in that context will be how to deal with a 

changing climate and how to oppose the effects that are accompanying the change. A major 

part of the answer to that question is embedded in the knowledge about the extent and force of 

the reactions that will be provoked in our environment by the climate change. 

The currently discussed future scenarios cover a wide range. On one hand exaggerated future 

projections that are envisioning disastrous cataclysms are broadcasted mostly by the yellow 

press, while on the other hand studies that are trying to play the effects of a changing climate 

down still are circulating (WEINGART ET AL. 2000). Somewhere between those extreme opinions 

lies a variety of possible future projections that are based on physical principles and can be 

derived from a detailed analysis of scientific calculations. These calculations have to be 

accompanied by probabilities that describe the likelihood of incidence of the projected change 

scenarios. Physically based computational models here provide an excellent didactic method to 

widen the understanding of the processes involved and to unveil the interconnectedness of the 

manifold cycles that are working together at the landsurface to form the landscape environment 

(JONES 1992, PENG 2000). 

When investigating the impacts of climate change with physically based methods, it is 

necessary to construct a mechanism that is capable of mapping the current and the historic 

situation with the best possible quality. The basic demand for this instrument would be a reliable 

physical accuracy, requiring that all determinant physical parameters are taken into account.  

One of the physical components that are likely to react to climate change in a most sensitive 

way is the vegetation cover (HUNTLEY 1991). Through its multiple and diverse functionality, the 

living canopy functions as a connecting element between the processes that occur in the soil 

and the atmosphere. The living vegetation is anchoring soil and land, especially in extreme 

environments and therefore plays the role of an important erosion inhibitor (DE BAETS ET AL. 

2007). For man and animal the stability of agricultural production is of major concern, as plants 

are a resourceful reserve of food (ACC AND SCN 2004). Also the cultivation of crops that are 

intended as an additional source of renewable energy has gained importance over the last 

years (HALL ET AL. 1993). Photosynthetic reactions that are proceeding in every green plant as 
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long as energy is provided by the sunlight, contribute to the world climate according to their 

functionality as carbon dioxide sinks (BETTS ET AL. 1997, CAO AND WOODWARD 1998). And last 

but not least the plant growth activity greatly influences the water balance on all scales from 

micro climates within the living canopy up to the scale of the global water balance, by on one 

hand shading the earth and with that inhibiting the soil evaporation and by contributing largely to 

the atmospheric water vapour content through transpiration processes on the other (NEILSON 

AND MARKS 1994). The importance of the vegetation cover becomes even more apparent, when 

we consider that the great majority of the land biomass on the earth today consists of vegetation 

phytomass (HUNTLEY 1991). A deeper understanding of how the vegetation responds to climate 

change therefore will be of paramount importance, if possible reactions of the entire biosphere 

to climate change shall be assessed (PRENTICE ET AL. 1991, PENG ET AL. 1998, CRAMER ET AL. 

1999). 

When the task of the assessment of climate change effects with the help of physical models is 

approached, a detailed description and reproduction of the vegetation dynamics is 

indispensable and has to be given a high priority. This work consequently endeavours to clear 

the way towards an enhanced understanding and an improved prediction of climate change 

effects on vegetation dynamics by extending an existing hydrological land surface model, that 

already has proven its reliability and stability, by a biophysically based simulation of 

photosynthetic behaviour that will be able to trace the sensitivity of the living canopy with 

respect to temperature change and rising atmospheric CO2 concentrations. 

 

 

1.2 State of the Art 
Climate change is a major issue that is worked on by scientists of the most diverse fields. 

Recent studies cover the effects of climate change from the scientific view of biologists, 

oceanographers, zoologists, foresters, hydrologists, agronomists, politicians, economists et 

cetera. Since this work mainly gives attention to climatic changes that are directly influencing 

physical processes at the land surface and are affecting the life of humans and animals in a 

primary way, political and socioeconomic studies are neglected here and the focus is drawn 

towards physical and biological research. 

During the past years an increasing number of published studies can be observed that are 

treating the application of computational models for mathematical predictions and the support of 

quantitative conclusions (JONES 1992). However, the latest cognitions have revealed that the 

majority of the models that are applied to the assessment of climate change effects still are 

lacking an adequately detailed description of the living canopy (BETTS ET AL. 2007). A more or 

less static representation of the canopy in a model is neglecting the respiration and gas 

exchange processes that occur in the real landscape and cannot satisfy a detailed future 
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projection of climate change effects. In opposition to those models, the green vegetation is 

actively reacting to the changing atmospheric conditions (SELLERS ET AL. 1996). Recent studies 

could prove that the vivid interaction between the canopy and the atmosphere is a determinant 

and highly variable process, which is influencing the atmospheric water vapour content and as a 

consequence also the water balance of the land surface (BETTS ET AL. 2007). This is mainly due 

to changes of the gas exchange behaviour of green vegetation under elevated atmospheric CO2 

concentrations (CHEN 1994, FIELD ET AL. 1995). This so called ‘physiological forcing’ (BETTS ET 

AL. 2007) has already been detected in observational records of increasing average continental 

runoff over the twentieth century (GEDNEY ET AL. 2006). It has been found in various studies that 

the increase of continental runoff is the consequence of a reduced transpiration activity of the 

vegetation cover (SELLERS ET AL. 1996, BETTS ET AL. 1997, HUNGATE ET AL. 2002, LONG ET AL. 

2006), which leads to a higher supply of water on the land surface and in the near surface soil 

layers (WIGLEY AND JONES 1985). Other studies that are not taking the dynamic vegetation 

response to elevated atmospheric CO2 concentrations and rising annual mean temperatures 

into account and are solely relying on the so called ‘radiative forcing’ of climate change (ARNELL 

AND LIU 2001, WARREN 2006, DE WIT AND STANKIEWICZ 2006) are not able to trace these 

sensitive changes of the landsurface water household. The composition of a highly dynamic 

vegetation model that is capable of a response to climate change induced variations of the 

meteorological driving forces therefore is one of the major concerns of this thesis. 

The computational modelling of vegetation dynamics dates from early pioneers like the 

JABOWA model, which was developed by Botkin et al. in the early seventies of the previous 

century (BOTKIN ET AL. 1972). The early models that were applying the aid of computers were 

developed for forested areas only and initiated a whole science of computer aided vegetation 

modelling that soon developed from the mapping of mere forest areas also to the modelling of 

other vegetation types (BOX 1981, PENG 2000). Nowadays, various models exist that are 

mapping environmental vegetation processes on a very detailed level. On the global scale here 

will have to be mentioned the BIOME model family developed by PRENTICE ET AL. (1992) as an 

example for static biogeographical models. The BIOME model again has encouraged the 

development of a series of static ecophysiological models like CENTURY (PARTON ET AL. 1993), 

the FOREST-BioGeoChemical model (BGC, RUNNING AND COUGHLAN 1988), the Global 

Environmental Model (GEM, RASTETTER ET AL. 1991), the Terrestrial Ecosystem Model (TEM, 

RAICH ET AL. 1991) or the Frankfurt Biosphere Model (FBM, LÜDEKE ET AL. 1994). 

Soon the static biogeographical models were enhanced to meet the demand of a dynamic 

description of vegetation activity. As examples may serve the BIOME2 and BIOME3 models by 

HAXELTINE AND PRENTICE (1996 AND 1997), the Dynamical Global Phytogeography Model 

(DOLY, WOODWARD ET AL. 1995), the Mapped Atmosphere-Plant-Soil System (MAPSS, 

NEILSON 1995), the family of Dynamic and Energetic Models of Earth’s Terrestrial Ecosystem 
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and Resources (DEMETER, FOLEY 1995) or the LPJ Model (SITCH ET AL. 2003) that also has 

also been adapted to a simulation of managed lands (LPJml, BONDEAU ET AL. 2007) with its 

most recent derivate, which is the Potsdam Biosphere Module (PBM, CRAMER ET AL. 2004). 

The need to develop models that are capable of mapping the carbon feedbacks of the canopy 

dynamically over time and space lead to a series of models like the Integrated Biosphere 

Simulator Model (IBIS, FOLEY ET AL. 1996), the HYBRID model (FRIEND ET AL. 1997), the 

Carnegie Ames Stanford Approach (CASA, POTTER AND CLOOSTER 1999) and to model 

combinations like MAPSS-CENTURY (LENIHAN ET AL. 1998) or TEM-DVM (PAN ET AL. 2000). 

Besides canopy models that are currently applied to a modelling of the global vegetation 

activity, even more precise and detailed models exist that are applied to regional forestry or 

agricultural objectives. Here the Crop Environment Resource Synthesis model family (CERES, 

JONES AND KINIRY 1986, RITCHIE 1991) is one of the agricultural models that is most commonly 

applied and is constantly enhanced with respect to the mapping of different cultivars. Other 

determinant and complex general growth models emanate from the so called ‘School of de Wit’ 

(BOUMAN ET AL. 1996) that can look back on a series of continuous development from the initial 

elementary crop growth simulator (ELCROS, DE WIT ET AL. 1970), over the basic crop growth 

simulator (BACROS, DE WIT ET AL. 1978), the simple and universal crop growth simulator 

(SUCROS1, VAN KEULEN ET AL. 1982, GOUDRIAAN AND VAN LAAR 1994, SUCROS 2, VAN LAAR ET 

AL. 1997), up to the latest development of the ‘School of de Wit’ model family, which is 

represented by the genoptype by environment interaction on crop growth simulator (GECROS, 

YIN AND VAN LAAR 2005). Other models that are predominantly applied for agricultural purposes 

can be represented by WANGRO (KANNEGANTI AND FICK 1991), the AGROSIM model 

compilation (MIRSCHEL AND WENKEL 2007) or the MODWht model (RICKMAN ET AL. 1996). 

 

 

1.3 Motivation and Goals of the Thesis 
With exception of the latest development of the school of de Wit model family (GECROS), none 

of the models listed in section 1.2 is capable of mapping an adequately dynamic interactive 

reaction of the vegetation cover with respect to carbon dioxide and temperature, as far as it is 

known to the author. 

In this work, a biochemically based assimilation model for C3 grasses (FARQUHAR, VON 

CAEMMERER AND BERRY 1980) is applied in combination with enhancements concerning the 

mathematic description of C4 photosynthesis (CHEN ET AL. 1994) and forest growth (FALGE 

1997). The photosynthesis model is combined with a model of stomatal conductance (BALL, 

WOODROW AND BERRY 1987) to enable the hydrological landsurface model PROMET (MAUSER 

AND BACH 2008) to the simulation of dynamic vegetation processes, including an explicit 

simulation of the leaf gas exchange. Through the detailed description of biochemical processes 
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within the leaf and the explicit simulation of the gas exchange between leaf and atmosphere, a 

direct interconnection of the modelled processes to external climate relevant parameters is 

established. Thus, a dynamic reaction of the modelled biochemistry to environmental 

parameters like air pressure, radiation, atmospheric carbon dioxide concentration and 

temperature can be mapped by the model, which is a basic prerequisite for the assessment of 

climate change effects that are related to vegetation activity. 

The scientific aim and central target of this work is the investigation of vegetation behaviour 

under changing climatic conditions and the quantification of the effect that the vegetation 

dynamics impose on the hydrology of a river catchment. In this regard it will be of particular 

interest that diverging processes have to be expected when the canopy is exposed to a 

changing climate. On one hand rising temperatures and rising atmospheric CO2 concentrations 

are pointing towards an increase of growth activity, due to the fact that all chemical processes 

are supposed to be accelerated when exposed to higher temperatures according to the van’t 

Hoff rule. Also numerous publications have shown that elevated CO2 concentrations may result 

in somewhat higher plant productivities (WONG 1979, SELLERS ET AL. 1996, FIELD ET AL. 1995, 

KÖRNER 2000, LONG ET AL. 2006), although in the meantime it has been found that these 

changes are mostly due to changed environmental conditions, while the photosynthetic reaction 

itself is rapidly adapting to the enriched CO2 supply (KÖRNER 2006). On the other hand, the 

changing climate not only affects the photosynthetic processes, but also has an impact on the 

whole landsurface water balance. An increase of the average temperature may result in a lower 

water supply that may again lead to an increase of drought stress. The future balance of growth 

enhancing (rising levels of temperature and CO2) and growth inhibiting (increased frequency of 

water stress, decline of summer precipitation) processes will decide, whether the expected 

higher vegetation activity will be reduced or even be compensated by drought stress in the near 

future. 

For the investigation of the future behaviour of the vegetation processes, computer aided 

modelling techniques are applied on a physical basis. As could be shown in section 1.2, a great 

variety of modelling approaches for different purposes that are related with plant growth already 

exists. The scientific challenge of this work therefore is not the development of another 

vegetation model. It rather is the review of existing modelling approaches, the understanding of 

the concerned processes, the selection of adequate methods and finally their combination and 

integration into a functioning modelling system that is capable of giving quantitative answers to 

climate change enquiries. This is a comprehensive task that requires an intensive engagement 

with different natural sciences on a very detailed level. The awareness of the 

interconnectedness of natural processes, disregarding the boundaries of single scientific niches, 

is one of the most determinant advantages that distinguish the science of Geography. The 

consolidation of methods that descend from different branches of the natural sciences therefore 
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is an appealing task for a universal scientist, who is not afraid of penetrating scientific grounds 

of neighbour sciences in order to tide over joints in science that actually are an interconnected 

system in nature. 

The spatial extent of this study is limited to the watershed boundary of the Upper Danube 

catchment (see section 2), while the temporal dimension is separated into two time segments. A 

so called “reference” period, ranging from 1960 to 2006 and a “scenario” period that comprises 

the forthcoming 50 years from 2011 to 2060. The reason for choosing a scenario time frame 

that is relatively short compared to other projections, for example those introduced by the 

Intergovernmental Panel on Climate Change  that partly cover ranges of up to 500 years into 

the future (IPCC 2001, 2007), is twofold. On one hand the proposed time frame is appealing 

because a great number of our contemporaries are likely to experience the manifestation of the 

possible changes in person. The other reason, why a limitation to 50 years was chosen for this 

task, is founded on restrictions that accompany the generation of artificial meteorology data for 

the scenario model runs. The stochastic generation of artificial weather data as applied here 

(see section 5.3.2, MAUSER ET AL. 2007) is limited by the data base of measured meteorological 

observations that can be integrated into the generation of the chain of artificial weather events. 

Since the observed regional meteorological data that could be acquired for this study only 

covers 46 years from 1960 to 2006, saturation effects that manifest in statistic repetitions of 

observed extremes occur, when the time frame and the connected scenario changes exceed a 

critical range. The limitation of the spatial extent to the Upper Danube catchment is due to 

several reasons. Most important, the scientific exchange with the GLOWA-DANUBE 

cooperative project, founded by the German Ministry of Education and Research (BMB+F), 

allowed for the acquisition of a comprehensive data base. The Upper Danube catchment is a 

rewarding subject for investigation, since it is a very heterogeneous landscape ranging from 

plain periglacial brash fields up to high alpine zones. It is a region that is economically active 

and densely inhabited, combining a huge variety of land uses that are formed by the antithetic 

demands of heavy and high tech industry, recreation and intensive agriculture, large forested 

areas and steep alpine rocks, big cities and rural villages. For hydrological applications, a river 

basin generally is an appealing entity due to the fact that the water balance can be controlled 

and verified with help of the measured runoff at the benchmark gauge, where the main stream 

drains the water basin. Last but not least the Upper Danube Basin is the region that I live in, 

which is the reason why I personally am most highly interested in the changes that will be of 

consequence for the environment and the people that are living in this part of central Europe. 

Concerning the methods, the physically based hydrological landsurface model PROMET 

(MAUSER AND BACH 2008) forms an excellent basis for this work. The model has already proven 

its stability and capacity for hydrological applications on the landscape scale (MAUSER AND 

STRASSER 1997, MAUSER AND SCHÄDLICH 1998, STRASSER 1998, LUDWIG 2000). Due to its 
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modular architecture, additional extensions can easily be integrated, gradually enhancing the 

models functionality. 

 

 
 
Figure 1.01: Cycle of modelled scales. Chloroplast image inspired by MOORE ET AL. (1998). 
 

Besides the actual physical modelling, the scale that is used to comprehend the single 

modelling steps is a determinant factor. For this work, a modelling approach was applied that 

finds its beginning at the scale of a landscape or mesoscale, where the meteorology that 

powers the model is interpolated. The general energy flux then is directed to the leaves of the 

canopy and from there on to the microscale of the chloroplast level, where the processes of 

photosynthesis are modelled explicitly, based on mitochondrial activities. The products of the 

chloroplast photosynthesis then are scaled up to the leaf level and from there are scaled further 

back to the entire landscape in a last step (fig. 1.01). 

 

USGS definition of a river catchment area: 
 

„The land area where precipitation runs off into 
streams, rivers, lakes, and reservoirs. It is a land 

feature that can be identified by tracing a line 
along the highest elevations between two areas on 

a map, often a ridge.” 

 
Figure 1.02: Definition of the river drainage area through a watershed, based on the terrain topography. 
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The term landscape in this context refers to the natural entity of a river catchment (fig. 1.02). 

The drainage basin offers ideal natural boundaries for modelling approaches, due to several 

reasons. On one hand, the river catchment is a naturally defined area that does not necessarily 

follow administrative borders and represents a natural landscape unit (HEATHCOTE 1998). On 

the other hand, the boundaries of a river catchment allow for a validation of the model results 

simply because the water balance can be retraced by comparing the model results with 

measured runoff data from the basin gauge. In comparison with the measurement of 

evapotranspiration and precipitation respectively, the recording of runoff rates can be 

accomplished with relatively high precision. 

 

 

1.4 Biological Modelling 
A model is a representation of a real system, such as a plant in this context, which can be used 

to simulate certain features of the more complex real system (JONES 1992). The description of 

the investigated process can either be empirical, or a simulation that is based on a 

mathematical abstraction of the system under consideration. A mathematical model will include 

a concise formulation of a hypothesis, so that it can be applied to the generation of predictions. 

Those predictions again can be tested by measurements either in the laboratory or in the field 

and may bring about a refinement of the initial hypothesis (fig. 1.03). 

 

 
 
Figure 1.03: The role of models in a scientific method, modified after JONES (1992). 
 

Biological systems are very complex, so that a complete mathematical description is rarely 

achieved. Simplifying assumptions therefore have to be made in every study, but can be refined 
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through an intensive testing of the model. An accurately validated mathematical model has 

specific advantages that can be summarized according to JONES (1992): 

− It constitutes precise statements of hypotheses. 

− It is inherently testable. 

− It can explain or describe a large number of separate observations in a concise form. 

− It helps to identify those areas where knowledge is lacking and further experiments or 

observations are required. 

− It can be used to predict system behaviour in untried combinations of conditions. 

− It can be used as a management tool. 

In the domain of plant growth and environmental modelling, different mathematical model 

approaches have been developed. A general distinction has to be made between empiric 

models that do not attempt to describe the mechanisms involved and mechanistic models that 

apply well-known physical processes to the explanation of a phenomenon on a very detailed 

level. Both types may return reliable results, but it is a model of the latter kind that holds the 

largest potential for accurate predictions under a wide range of conditions (JONES 1992). 

The mathematical models may be further discerned into deterministic or stochastic and again 

into dynamic or static models. Deterministic models define the model output according to the 

applied inputs, while stochastic models incorporate an element of randomness. However, most 

biological models are of the deterministic kind, due to reasons of simplicity. Also the model 

applied in this work belongs to this kind of mathematical models. Static models are used for the 

simple description of a final result, while dynamic models, such as the one that is introduced 

here, include a treatment of the time dependence of a process and therefore are particularly 

appropriate for the simulation of processes like plant growth or yield production (JONES 1992). 

 

 

1.5 Photosynthetic Processes 
Before the modelling approaches for the simulation of photosynthetic processes are presented 

in detail, the terms and definitions involved must be introduced. Most commonly known is the 

basic equation of photosynthesis (eq. 1.01), which describes the process of the transformation 

of carbon dioxide to glucose under use of sunlight energy that is absorbed by the chlorophyll in 

the leaves of green plants. 

 

OHOOHCOHCO lChlorophylSunlight
226126

/
22 66126 ++⎯⎯⎯⎯⎯⎯ →⎯+  (Eq. 1.01)

 

Less widely known are the chemical processes that are contributing to this conversion and the 

role of the enzymes that are catalyzing the associated reactions. Basic requirements for a 

functioning photosynthetic reaction are the availability of energy, water and carbon dioxide. 
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While the leaves are collecting energy through the specific absorption behaviour of the 

chlorophyll, the water is transported from the roots via the xylem of the stem and the carbon 

dioxide is made available through an active gas exchange thanks to the stomata of the leaf 

(LARCHER 1995).  

The fluxes of the associated molecules are directed into the chloroplasts, which are filled with 

stacks of so called thylakoids (the grana) and an aqueous space that is surrounding the grana 

(fig. 1.04, MOORE ET AL. 1998). The actual photosynthesis is a two stage process, consisting of 

a so called “light” or light dependent and a “dark” or to some degree light independent reaction. 

The term “light” reaction summarizes the processes that happen in the grana of the chloroplast 

(fig. 1.04), where energy-transport-molecules, namely Adenosine-Tri-Phosphate (ATP) and 

Nicotine-Adenine-Dinucleotid-Phosphate (NADPH), are constructed, using the absorbed 

sunlight energy. During this process of energy conversion from radiation into a stable chemical 

form of energy, H2O molecules are split and pure oxygen (O2) is released. The energy stored in 

the ATP and NADPH molecules is consumed by the “dark” reaction that takes place within the 

stroma of the chloroplasts. 

 

 
 
Figure 1.04: Cut through a chloroplast, inspired by MOORE ET AL. (1998). 
 

 

1.5.1 „Light“ Reaction 
Like antennae, the leaves are collecting sunlight energy for the plant. For the photosynthesis, 

only the part of the solar radiation is valuable that is absorbed by either chlorophyll a or b or by 

accessory pigments such as carotenoids that are covering the surface of the thylakoids. 

However, it has been found that the main light harvesting is done by the different types of 

chlorophyll, while the accessory pigments are mainly required to protect the chlorophyll against 

photodestruction in times of excess light (HOPKINS 1991). The chloroplast pigments all have 

their absorption maxima in the blue and in the red spectral domain (fig. 1.05, JONES 1992).  

The thylakoids, which consist of stacked chlorophyll and accessory pigments, represent a 

multimolecular functioning unit that is termed a “photosystem”. Due to the fact that a single 

chlorophyll molecule is very small and would only be struck by the sunlight photons a few times 
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per second (HOPKINS 1999), the chlorophyll molecules are organized as so called light-

harvesting complexes (LHC) that are concentrating the incoming energy and are transferring it 

into the reaction centre of the photosystem. 

 

 
 
Figure 1.05: Absorption spectra of chlorophyll a (680), b and carotene that apply to PSII. Modified after JONES (1992). 
 

Eukaryotes, like all higher plants, are equipped with two different photosystems, I (PSI) and II 

(PSII) that are linked by a multiprotein aggregate termed the cytochrome complex (fig. 1.06). 

The light harvesting is conducted by chlorophyll P680 (Chlorophyll a with a relative absorption 

maximum at 680 nm, fig. 1.05) for PSII and for PSI by chlorophyll P700 (Chlorophyll a with a 

relative absorption maximum at 700 nm). Within the photosystem II, electrons are excited by the 

incoming sunlight. Their energy is used to generate ATP compounds, a process termed 

photophosphorylation (fig. 1.06). 

 

 
 
Figure 1.06: Electron transport chain passing the photosystems II and I. 
 

The photophosphorylation can either be conducted in form of a non-cyclic electron transport (as 

shown in fig. 1.06) where ATP for the reduction of CO2 is produced, but also a cyclic electron 

transport through PSII is possible that generates additional ATP required for the support of other 

metabolic activities in the chloroplast. Thereby, the electrons pass a redox chain, leading 
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through the cytochrome complex, where a reductant termed “ferrodoxine” is produced. During 

the cyclic or non-cyclic photophosphorylation, water (H2O) is split into hydrogen (H) and oxygen 

(O2). In case of a non-cyclic electron transport, the electrons are transported into the 

photosystem I after the photophosphorylation has taken place, where the electron level is even 

more elevated through the energy provided by the chlorophyll P700, finally resulting in the 

generation of NADPH. 

Following that scheme, a continuous electron flux occurs within the thylakoids, where low level 

electrons are extracted from water, their energy level is elevated and a strong reductant 

(ferrodoxine) is produced that is applied to the reduction of NADP+ to NADPH (fig. 1.06). This 

NADPH also is a strong reductant, which is soluble in water and therefore is a mobile carrier for 

electron energy. NADPH diffuses freely through the stroma, where it is used to reduce CO2 in 

the carbon reduction cycle (see section 1.5.2). During that process, oxygen is released and 

energy is stored within stable chemical compounds. 

 

 

1.5.2 „Dark“ Reaction (Carbon Fixation) 
Within the stroma of the chloroplast, the products of the “light” reaction are used to generate 

carbohydrates by establishing a covalence bond between the free hydrogen and the carbon 

dioxide from the surrounding air. This is where carbon is fixed from the atmosphere, a process 

that, regardless of its name, is not entirely independent from direct illumination, since some of 

the enzymes need an activating energy impulse in addition to the energy that is transported via 

ATP and NADPH (HOPKINS 1999). The photosynthetic carbon reduction (PCR) is different for C3 

and C4 plants. While for C3 plants the Calvin-pathway is cycled, for C4-plants the Hatch-Slack-

Cycle is passed before the Calvin-Cycle is set into action. Also a third variation of the pathway 

of carbon fixation exists in species that are specially adapted to arid environments. It is termed 

the Crassulacean-Acid-Metabolism (CAM). Since no families of CAM-species are modelled 

within the area of this study, this alternative is neglected here. 

 

1.5.2.1 The Calvin-Cycle of C3 Plants 
The carbon fixation itself is conducted with the help of energy that is transported into the stroma 

through the NADPH compounds. The cycling process that applies to C3 plants is termed the 

Calvin cycle or Calvin-Benson cycle, according to the scientists that paved the way for a deeper 

understanding of the carbon reduction processes, Melvin Calvin and Andrew Benson (BASSHAM 

ET AL. 1950). 

The CO2 that enters the leaf via the stomata is fixed by Ribulose-Biphosphate (RuBP), a sugar 

molecule. The reaction is catalysed by the receptor enzyme Ribulose-1.5-BiPhosphate-

Carboxylase. Due to its ability to catalyse a similar reaction not only for carbon dioxide but also 
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for oxygen, the molecule is also called RuBP Carboxylase/Oxigenase (RUBISCO). Amounting 

to about 50 percent of the soluble protein within the leaves of green plants, RUBISCO is 

supposed to be the most abundant protein on earth (HOPKINS 1999). 

Through RUBISCO and CO2, a six-carbon intermediate molecule is formed, which is transient 

and unstable, so that it quickly is hydrolyzed to two molecules of 3-phospholglycerate (3-PGA, 

eq. 1.02). 

 

( )ceratephosphoglyCOeBiPhosphatRibulose −⋅⎯→⎯+−− 325.1 2  (Eq. 1.02)

 

The first stable product in the cycle of carbon fixation therefore is a three-carbon molecule, 

which is the reason for this way of carbon fixation being referred to as the C3 cycle (HOPKINS 

1999). 

Within the Calvin-cycle, two processes require the energy that has been stored by the “light” 

reaction in form of ATP and NADPH, as there are the reduction of 3-PGA on one hand and the 

regeneration of the RuBP receptor molecule on the other. The 3-PGA is reduced to a triose 

sugar-phosphate (glyceraldehyde-3-phosphate, G3P) through a two-step reaction, where the 

intermediate form of 1.3-BiPhosphateGlycerate is rapidly passed. The G3P is exported to the 

cytoplasm where the triose molecules are joined to synthesize fructose-phosphate and glucose-

phosphate. Those triose phosphates later are used in a competitive process for the synthesis of 

either starch that is stored within the chloroplasts or sucrose, which is exported into the cytosol. 

The regeneration of the RuBP receptor enzyme is accomplished by a series of reactions, whose 

net message is that the uptake of three CO2 molecules is needed for the regeneration of three 

RuBP molecules (eq. 1.03). 

 

PGRuBPCORuBP 3333 2 +⋅⎯→⎯⋅+⋅  (Eq. 1.03)

 

The regeneration of the receptor enzyme therefore equals the speed of the cycle (fig. 1.07). 

Equation 1.03 indicates that only every third turn of the cycle, that is to say every third CO2 

molecule that is taken up, produces an additional glycerol-aldehyde-3-phosphate (G3P), so that 

in total 12 turns of the cycle are necessary for the generation of one glucose molecule, which is 

the final product of the photosynthesis. 

The energy consumed by both processes, the RuBP regeneration and the 3-PGA reduction, 

amounts to 2 molecules of NADPH and 3 molecules of ATP that are required for the reduction 

of each molecule of CO2. Since the activity of RUBISCO is highly sensitive to light, independent 

of the amount of available energy through ATP and NADPH, the rate of photosynthesis is a very 

variable process. 
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Figure 1.07: Calvin cycle of the carbon fixation in C3 plants, indicating the energy consumption for the fixation of 3 carbon dioxide 
molecules. 
 

1.5.2.2 The Hatch-Slack-Cycle of C4 Plants 
The discovery of the cycle of C4 carboxylation can be traced to the scientists H. P. Kortschak, 

M. D. Hatch and C. R. Slack (KORTSCHAK ET AL. 1965, HATCH AND SLACK 1966). Consequently 

the C4 pathway is also termed the Hatch-Slack-Kortschak-Cycle. For C4-plants, the process of 

carbon fixation is different from that of the C3-plants, mainly due to some general anatomic 

differences. C4-plants incorporate two different photosynthetic tissues, the bundle sheath cells 

on one hand and the mesophyll on the other. Being traced back to the German anatomist G. 

Haberland, this special characteristic is internationally known as the “Kranz”-anatomy (TAIZ AND 

ZEIGER 2000). 

The C4 cycle is determined by the enzyme phosphoenol pyruvate carboxylase (PEPcase), 

which catalyzes the carboxylation of phosphoenol pyruvate (PEP) using HCO3
- as the substrate 

rather than CO2. The product of this reaction is oxaloacetate (OAA), a four carbon molecule that 

is moderately unstable and is quickly transformed to a more stable acid, either by reduction to 

malate or by transanimation to aspartate, which then is transported from the mesophyll into the 

bundle sheath cells. There, the acid undergoes a carboxylation that results in available CO2 that 

is used for the reduction of triose sugars via the PCR-cycle analogue to the Calvin-cycle of C3-

plants. The PEPcase of C4-plants therefore plays a role similar to that of RUBISCO for C3-

plants. The great difference to the C3 pathway is based on the fact that CO2 is assimilated in the 

mesophyll and then is transported into the bundle sheath cells via C4 acids. In the bundle 

sheath, the acids are decarboxylated and release their stored CO2 again directly at the site of 
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the PCR. Due to their ability to artificially concentrate CO2 at the site of carboxylation, the C4-

plants are not as sensitive to external CO2 concentrations as C3-plants. 

 

 
 
Figure 1.08: C4 cycle of carbon fixation, indicating the additional energy consumption for the regeneration of the PEPcase. 
 

Under optimal conditions, C4 species are able to assimilate CO2 at rates two or three times that 

of C3 species. But not all of this advantage is converted into photosynthetic productivity because 

the concentration of CO2 in the bundle sheath cells costs additional energy. For each 

assimilated CO2 molecule, two ATP molecules must be expended for the regeneration of PEP in 

addition to the ATP and NADPH that is required for the maintenance of the PCR cycle (fig. 

1.08). The overall energy consumption of the C4 photosynthesis therefore amounts to 2 

molecules of NADPH and 5 molecules of ATP per molecule of fixed CO2. 

 

 

1.6 The Leaf Photosynthesis Model by Farquhar, von 
Caemmerer and Berry 

The core model that is applied in this work for the modelling of the photosynthetic productivity is 

based on the biochemical model for photosynthetic CO2 assimilation by G. D. Farquhar, S. von 

Caemmerer and J. A. Berry (FARQUHAR ET AL. 1980). The model was initially developed for the 

modelling on the leaf scale only. However, it has become one of the most important biological 

models and has largely contributed to the enhancement of the understanding of photosynthetic 

activity (FARQUHAR ET AL. 2001). Keeping in mind the models origin as a leaf model, the 

adaptation to the simulation of the photosynthetic behaviour of a whole landscape is an 

appealing challenge for this work. Other contributions (i.e. FIELD ET AL.1996, FIELD 2000) are 

showing that the adaptation of the “Farquhar”-model on the global scale is currently in progress. 
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The mathematical description of photosynthetic activity, as proposed by Farquhar et al., is a 

further development of the early photosynthesis models developed by HALL AND BJÖRKMANN 

(1975), PEISKER (1976) and BERRY AND FARQUHAR (1978). Since its publication in 1980, the 

model has been improved and enhanced continually (FARQUHAR AND VON CAEMMERER 1982, 

VON CAEMMERER 2000, BUCKLEY AND FARQUHAR 2004, MCNEVIN ET AL. 2006). 

The model simulates various aspects of the biochemistry of photosynthetic carbon assimilation 

in C3 species. The most determinant of them include the kinetic properties of ribulose 

biphosphate carboxylase/oxygenase (RUBISCO), the requirements for the photosynthetic 

carbon reduction and photorespiratory carbon oxidation cycles, the dependence of electron 

transport on photon flux and the presence of a temperature dependent upper limit to electron 

transport. 

The outstanding character of the model is based on its unique way to describe the rate of net 

photosynthesis as the result of the competing processes of carboxylation and oxygenation, 

which again are limited on one hand by the fixation capacity of RUBISCO and on the other by 

the rate of the electron transport through the photosystems (fig. 1.09). The rate of the electron 

transport again determines the regeneration of the receptor enzyme RuBP (see section 1.5.2.1), 

so that the limiting processes in the model are interconnected. 

 

 
 
Figure 1.09: Representation of the general assumptions of the “Farquhar et al.” model of photosynthesis. 
 

While the availability of RUBISCO in the model mainly is determined by the CO2 supply, the 

electron transport greatly depends on the amount of absorbed light quanta (FALGE 1995). The 

resulting rate of photosynthesis therefore is not only the product of environmental conditions, 

but is controlled by two determinant limiting processes that again are highly sensitive to external 

environmental conditions such as the atmospheric CO2 concentration, air and leaf temperature 

or the radiation budget. A detailed description of the mathematic content of the model, as it was 

implemented into the PROMET model environment, is given in section 3.3.3.5. 
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2. The Upper Danube Catchment 
 
Since the issues of this work are closely connected to the requirements and the objectives of 

the GLOWA-Danube cooperative project, the area of this study is limited to the watershed 

boundaries of the river Danube and again restricted to the catchment area of the Upper 

Danube. The Upper Danube catchment is defined by the area drained via the gauge “Achleiten” 

in Austria. The gauge Achleiten is located shortly downstream the city of Passau and drains an 

area of more than 76 x 103 km². The resulting catchment area has a geographic extension of 

roughly 8.5° E to 14° E and of 46° N to 50° N (fig. 2.01). 

As has been mentioned in section 1.3, the selection of this area was based on various reasons, 

among them being the diversity with respect to the natural environment and the socio-economic 

characteristics of the area that is drained by the Danube. The general characteristics of the 

Upper Danube catchment can give an insight into the natural diversity of the river basin and are 

briefly introduced in the following. For a more detailed characterization of the Upper Danube 

Basin it is referred to BRAUN (2007). 

 

 

2.1 Natural Realities 
The Danube has a great historic and economic significance, which can be traced back to an 

outstanding characteristic that distinguishes this river from other European streams. It is flowing 

over a great distance in an East-West direction, while most other navigable European rivers like 

the Rhine, Elbe, Oder, Rhône or Volga are either streaming North- or Southward. 

With a length of 2 857 km from well to estuary, the Danube represents the second largest river 

in Europe, being only exceeded by the Volga with a total length of 3 685 km. For comparison, 

the world’s longest river, the Nile with a total length of 6 671 km, is flowing more than twice the 

distance of the Danube River. Nonetheless, the Danube extends from 8° 09’ E to 29° 45’ E and 

encompasses a total area of 817 x 103 km², where it unites versatile landscapes that represent 

an overview of the central European landscape diversity (fig. 2.01). The basin area covers large 

parts of the Alps, comprising glaciered mountains, forested low mountain ranges, hill countries 

and vast periglacial brash plains. The full catchment stretches across 18 European countries, 

from the Danube source at the confluence of the headstreams Brigach and Breg in the East of 

Donaueschingen in Southern-Germany, to its destination near the seaport Constanta in 

Eastern-Romania, where the Danube discharges into the Black Sea (RZD 1986, fig. 2.01). 

The upper part of the catchment, referred to as the “Upper Danube” in the following, is 

delineated at the gauge Achleiten (287 m a.s.l.) shortly below the city of Passau, where the 
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Danube tributaries Inn and Ilz are discharging into the main stream (fig. 2.01 and fig. 2.06). The 

catchment upstream from this point covers an area of 76 653 km² with a river length of 

approximately 580 km (BLFW 1999). 

 

 
 
Figure 2.01: The Upper Danube catchment defined by the gauge “Achleiten” (287 m a.s.l.) in relation to the entire Danube river 
system, including the major tributaries (Backdrop: World map taken from ESRI Globe Data). 
 

If the catchment area is categorized into natural landscape units, the low mountain ranges of the 

Black Forest to the West, the Swabian and the Franconian Alb to the North, the Bavarian and 

Bohemian Forest in the East have to be discerned from the hilly Alpine Foreland and the high 

Alps in the South (fig. 2.03). In the central region of the catchment, large fen landscapes are 

found such as the Donauried, the Donaumoos and the Dungau. 

Five European countries are part of the territory of the Upper Danube, while the largest part is 

situated in Germany in the states of Bavaria (62 %) and Baden-Württemberg (11 %). One of the 

main tributaries to the Danube, the Inn (fig. 2.01 and 2.06), has its headwater located in Austria 

(24 %) with minor parts in Switzerland (2 %) and Italy (< 1 %). Additionally, a small part in the 

East of the catchment belongs to the Czech Republic (BLFW 1999, fig. 2.02). 

The Western and Northern boundary of the Upper Danube Basin is defined by the so called 

European watershed that divides the catchment of the river Rhine from the Danube drainage 

basin. In the North, the drainage system of the river Elbe borders the Danube basin, while the 

neighbouring river systems in the South belong to the streams Po and Etsch, who have their 

headwaters located in the Italian Alps. Towards the East, the adjacent basins belong to the 

central part of the Danube catchment itself (fig. 2.01). Within the Upper Danube Basin, the 

major tributary rivers that are entering the main stream from the orographically sinistral side 

include the Wörnitz, the Altmühl, the Naab and the Regen, while on the dextral side the Iller, the 

Lech, the Isar and the Inn are joining the Danube river. Among those, the Inn is the largest 
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contributor to the Danube, covering a catchment area of 26.13 x 103 km2. The part of the Upper 

Danube catchment that is accessed by the Inn is the part of the basin that reaches farthest into 

the Alps and includes high alpine territory, the highest point being located at Piz Bernina with 

4049 m a.s.l. (RZD 1986, BLFW 1999). 

 

 
Figure 2.02: The Upper Danube catchment area in relation to the Central European countries that are part of it (Base data: ESRI 
World Database). 
 

 

2.2 Geology and Geomorphology 
The area is characterized by a variety of geological media that allow for a rough geographical 

classification. Here will have to be discerned a high alpine part from the alpine foreland and the 

region of the low mountain ranges of the Swabian and Franconian Albs (MEYNEN AND 

SCHMITHÜSEN 1953, fig. 2.03). 

The central Alps are primarily composed of crystalline shale and granite, while the Northern rim 

and the foothills consist of limestone, which is locally moulded with typical alteration formations. 

Especially the karst alteration has to be mentioned here that most intensively determines the 

surface morphology through calcite solution processes and can be observed in all limestone 

based parts of the Alps (LANGENSCHEIDT 2001, FISCHER 2006). Directing the view further to the 

North, the foothills of the Alps are followed by clastic sedimentations of the flysch zone and a 

narrow band of rock formations termed the helvetic nappes (RAMSAY 1981). Large deposits of 

folded Molasse sediments, a by-product of erosion processes that occurred during the genesis 

of the Alps, form the Southern part of the alpine foreland (fig. 2.04). The Molasse is covered in 

most places by quarternary unconsolidated sediments of the Würm glacial period. In some parts 

of the alpine foreland, aeolian loess sediments cover the glacial rubbles and allow for the 

genesis of fertile soils. With the end of the Würm ice age about 12 000 years before present, the 

Base data:  
ESRI World Database 

Upper Danube Basin 

Germany

Austria

Switzerland

Czech 
Republic

Italy

Area Percentage 
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melting glacial ice cover left a landscape that is shaped with typical fluvial and fluvio-glacial 

landforms. The large surface water bodies of the Chiemsee, Ammersee and Starnberger See 

are some of the more prominent vestiges of the glacial period (MEYER AND SCHMIDT-KALER 

1997). 

 

 
 
Figure 2.03: Three-Dimensional bird’s eye view of the Upper Danube catchment seen from the West, based on a 1 x 1 km 
resolution DEM applying a superelevation factor of 10. Indication of the major low and high mountain ranges. 
 

Beyond the reach of the glacial ice masses, the coverage of which still can be reconstructed 

through the arched ridges of the terminal moraines, the Molasse basin continues towards the 

North (fig. 2.04). 

 

 
 
Figure 2.04: Geologic map of the Upper Danube Basin, modified after Barthel et al. (2005). 
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In the North, the Molasse is shaping a hilly landscape that is termed the tertiary hill country. The 

tertiary hills are partially divided by gravel plains of the larger rivers. Also the Danube River has 

carved its valley through these tertiary deposits, passing the Jurassic plateaus of the Swabian 

and the Franconian Jura, which are located in the North, as well as the crystalline mountains of 

the Bavarian Forest in the Northeast (JERZ 1993). 

 

 

2.3 Climate 
The climate of the Upper Danube area shows the typical characteristics of a seasonal climate 

zone. A temperature maximum in July and a minimum at the end of January are pointing 

towards a temperate continental climate. According to the genetic “Flohn” classification, the 

area is categorized as a transition climate of the extra tropical zone of Westerlies (FLOHN 1971). 

Following the effective “Köppen and Geiger” classification system (KÖPPEN 1936), the region is 

assigned to the Cfb-climate zone, indicating a cool, ever moist and temperate climate. Applying 

another effective global classification system following Troll and Paffen, the Upper Danube falls 

into the category of moderately cool climates. It is represented by the III3 climate zone, which 

describes a sub-oceanic transition climate with annual temperature amplitudes of 16 to 26 K 

and mild and moderately cool winters respectively, the coldest month not falling below an 

average temperature of -3 °C. The precipitation maximum occurs in the summer season, which 

is characterized by moderately warm temperatures and by a relatively long duration. The 

average vegetation period is supposed to last more than 200 days per year (TROLL AND PAFFEN 

1964). 

The weather in the Upper Danube area is dominated by patterns that are due to prevailing 

Westerlies, since the whole basin is located in the Northern mid-latitude temperate zone. The 

summer is characterized by North-Westerly and Westerly winds that change their direction of 

origin to mostly South-West during the winter. The summers are characterized by heavy rainfall 

due to the barrier effect of the Alps, which is fetching great amounts of humidity out of the 

steady North-West winds. By this effect, advection currents from the Northern Atlantic tend to 

bring enduring and yielding precipitation to the windward side of the Alps. During Southerly 

storms, the Upper Danube Basin happens to be situated on the leeward side of the Alps, where 

“Foehn” events occur. This local weather phenomenon is a common feature in the area’s 

weather patterns, its influence sometimes extending as far to the North as the Danube valley. 

Mean annual precipitation sums are ranging from approximately 700 mm in the Danube valley 

to 1500 mm around the alpine foothills (fig. 2.05). At higher alpine elevations, larger precipitation 

sums that notably peak above 2000 mm have been recorded. The accumulation of precipitation 

along the successive alpine mountain ranges that occurs during Northerly meteorological 

conditions, greatly contributes to this increase of annual precipitation sums from North to South. 
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Figure 2.05: Interpolated long-term precipitation for the Upper Danube catchment discerned into the hydrological summer (May-
October) and winter half-year (November-April), indicating the orographically induced South-to-North climate gradient. The 
displayed precipitation sums are interpolated model results for the 30-year time period from 1971-2000. 
 

This gradient of precipitation applies to winter and summer rainfalls (fig. 2.05). The more 

elevated parts of the Black and the Bavarian Forest are also receiving annual precipitation sums 

of up to 1500 mm. While the plateaus of the Swabian and Franconian Alb also represent humid 

regions and tend to exceed 1000 mm a-1, the lowest precipitation sums are recorded in the 

basins of the rivers Altmühl and Naab as well as inside the ridge of the impact crater of the 

Nördlinger Ries, which dates from the Miocene (BMU 2003). Low annual rainfall also is reported 

from some of the central alpine valleys. The German part of the catchment (73 % of the total 

area, fig. 2.02), reaches an annual mean precipitation sum of 950 mm with the maximum of 

rainfall occurring in the summer (fig. 2.05, right). Especially in the alpine foreland, extreme local 

weather events like thunderstorms may bring up to 200 mm of precipitation per day during the 

summer months (RZD 1986). 

The duration of the snow cover is another important landscape characteristic that can be 

applied for the description of the climatic conditions (fig. 2.06, left). 40 - 60 days of annual snow 

cover are reported for large parts of the catchment area, while the duration may exceed 100 

days in the mountainous parts at higher elevations. In the Alps, the snow cover may last around 

six to eight months of the year at elevations of 2000 m. With an increasing gradient, ranging 

from the outskirts to the central Alps, the elevation of a perennial snow cover lies between 2900 

and 3200 m a.s.l. (RZD 1986). Last but not least, the snow cover stability depends on the 

distribution of the annual mean temperature, which again is greatly influenced by the orography 

of the area (fig. 2.06, right). While the mean temperature in large parts of the alpine foreland 

levels around 7 – 8 °C, some favoured locations along the Danube River and in the lower parts 

of its tributaries may report annual mean temperatures of 8 to 10 °C. Annual temperature 

averages below the freezing point are commonly recorded in the mountains. 
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Figure 2.06: Modelled long term duration of the snow cover (left, base data: MAUSER ET AL. 2007) and interpolated annual mean 
temperature (right) of the Upper Danube Basin, indicating the orographically induced South-to-North climate gradient. The snow 
cover duration and the temperature map both show averaged model results, calculated for a 30-year time period (1971 – 2000). 
 

The highest monthly mean temperatures are observed in July with 16 to 18 °C, while the coldest 

month turns out to be January, when mean temperatures between –2 and –3 °C are recorded. 

According to the general elevation gradient, the temperatures in the mountainous parts of the 

catchment decline with increasing altitude. The temperature gradient can be expressed with a 

rate of 0.5 - 0.7 K per 100 m in the summer, while the gradient is reduced to 0.2 - 0.4 K per 100 

m during wintertime, due to frequent atmospheric inversion weather patterns (RZD 1986). It is a 

common feature of terrain with high relief energy, such as the Upper Danube Basin, that 

pronounced small-scale variations of climate often occur due to the local diversity of the 

radiation budget, air temperature, cloud cover, wind conditions and precipitation. 

 

 

2.4 Hydrology 
During the younger Tertiary and the advanced Pleistocene (approx. 1.7 m ybp), the drainage 

system in the alpine foreland was influenced by tectonic activities. Especially the Rhine rift, that 

has been caving in since the Eocene and still is sinking deeper today, has determined the 

diverging flow directions of the Danube and the Rhine river system (KLÜPFEL 1926). 

The early ancestor of the Danube river system, the Aare-Danube, was established in the 

Miocene (25 - 5 m ybp), taking a course along the Northern rim of the alpine Molasse basin and 

collected the waters that were flowing from the Alps in a Northerly direction. The Aare-Danube 

to that time was a big alpine river that also gathered great water masses from the Swiss 

midlands, a process that can still be reconstructed by comparing alpine gravel samples from the 

Alb plateau and the Swiss Jura. Other gravel findings indicate that the Aare-Danube also 

received discharges from the Southern- and Mid-Black Forest. To that time, also large parts of 
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the Neckar basin were drained into the Molasse basin and only the northernmost part of the 

Neckar already belonged to the Ur-Rhine catchment. During the middle of the Pliocene (5 – 1.7 

m ybp), the erosion power of the Aare was outmatched by the tectonic elevation of the Black 

Forest, so that the Aare was truncated from the Danube river system and changed its course 

towards the Mediterranean, depriving the Danube of one of its main alpine tributaries. 

During the high Pliocene, the accelerated descend of the Upper Rhine Graben led to a crossing 

of the Kaiserstuhl watershed by the Ur-Rhine. This again changed the course of the Aare and 

integrated the Aare into the Rhine river system, strongly enforcing the erosion power of the 

Rhine. The regressive erosion of the Rhine again was strengthened by large masses of melting 

water during the Würm ice age, finally leading to the carving of the Wutach valley. That way, the 

Danube lost another determinant tributary to the Rhine river system. The Wutach erosion is still 

going on today, gradually shifting the Rhine-Danube watershed and cutting off more and more 

of the Danube catchment. It is expected that in geologic times the upper part of the Danube will 

completely change its course and become a tributary to the Rhine river system. 

 

 
Figure 2.07: The Upper Danube catchment defined by the Austrian gauge “Achleiten” (287 m a.s.l.) with its major tributaries and 
urban settlements in relation to the central European countries that are part of it. 
 

Nowadays, the alpine foreland is intersected by a number of rivers that are flowing from the Alps 

in a Northerly direction. Their course is deflected by the Danube, who is taking a course parallel 

to the mountain range of the Alps. The great number of tributaries is strongly influencing the 

flow regime of the Danube. Along the course of the main river, the hydrologic flow regime 

changes several times, according to the influence that the flow regimes of its affluents are 

taking. The alpine tributaries are characterized by a maximum discharge during the summer 
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months due to snow melt and glacier runoff, while the rivers coming from the North can be 

described as a pluvial regime type with their runoff maxima in the winter. Frequent flood 

situations during the early summer months are a common phenomenon due to the high 

precipitation rates along the northward side of the Alps. 

The mean discharge rate of the Upper Danube measured at the gauge Achleiten near the city of 

Passau (fig. 2.07) lies around 1420 m3 s-1 (LUDWIG ET AL. 2003), more than half of this amount 

being contributed by the large catchment of the tributary Inn, whose drainage area reaches far 

into the Alps (BLFW 1999). Most of the rivers nowadays are regulated by dams and hydropower 

stations, so that a natural condition of discharge no longer can be found in the hydrographs of 

the Danube tributaries. Also the natural erosion capacity and sediment transportation is inhibited 

by the structures that control the discharge rates. The Pleistocene glaciations intensively formed 

the South of the Upper Danube and left a multitude of Lakelands, which are now also 

contributing to a balanced hydrograph, thanks to the compensating effect of their retention 

potential. 

 

 

2.5 Soils 
Regional variations of the factors and processes of soil formation such as bedrock, terrain, 

climate, vegetation or time, lead to the development of a multitude of different soil types in the 

Upper Danube Basin. The soil textures are ranging from loamy clays to grainy sand and, due to 

the great natural disparities, the variety of soil types ranges from weakly developed Leptosols in 

the mountain regions to fertile Luvisols that have been developing on aeolian loess sediments 

since the ice ages and nowadays are used intensively for agricultural purposes. 

According to the climatic gradient, the young soils in the Alps are not very strongly developed in 

depth. They are discerned by the type of bedrock into Lithics or rendzic and umbric Leptosols. 

In the forested altitudinal belts, Regosols and some chromic Cambisols are developed on 

carbonate rocks, while the crystalline bedrock regions of the central Alps more favoured the 

development of umbric Leptosols and albic Luvisols. Along the valley floors, eutric Leptosols, 

Luvisols, Cambisols as well as gleyic Luvisols and Gleysols occur locally. On the moraine ridges 

that pervade the alpine foreland as well as on the permeable gravel plains, mainly Luvisols are 

developed. Some rendzic Leptosols are found in the gravel basin that surrounds the city of 

Munich. The loess sediments in the tertiary hill country encouraged the development of Luvisols 

and Cambisols. Depending on the ground water level, gleyic Luvisols and Gleysols are frequent. 

Along the courses of the numerous rivers, brooks and ditches that are found throughout the 

Upper Danube area, Fluvisols are found. The postglacial Lakelands are blotched with vast fens 

yielding peaty soils that are economically exploited in many places. The Swabian and 

Franconian low mountain ranges are mostly covered by rendzic Leptosols and chromic 
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Cambisols, which are predominant on the upper Jurassic, while Vertisols and gleyic Luvisols are 

found on brown and lower Jurassic bedrock. On the crystalline rock formations of the Bavarian, 

Bohemian and the Black Forest, umbric Leptosols and fertile Cambisols dominate, which tend to 

podsolize on granite and gneissic rock (KUNTZE ET AL. 1994, HINTERMAIER-ERHARD AND ZECH 

1997). 

 

 

2.6 Vegetation 
The economically propelled anthropogenic influence in the basin of the Upper Danube has 

diluted the natural distribution of vegetation types over the centuries. Under natural conditions, 

the spatial distribution of plant biomes is a product of the climatic, geologic and geomorphologic 

properties of the landscape. 

In the case of the Upper Danube Basin, the potential natural vegetation would largely be 

represented by deciduous and mixed forests in almost all of the area (RZD 1986). Under 

undisturbed natural conditions, deciduous forests dominated by beech (fagus sylvatica) and oak 

species (quercus robur and quercus petrea) would inhabit the parts of the basin that lie below 

the critical altitudinal belts, where climatic conditions inhibit the prevalence of the species. 

The situation today reveals, that man has claimed most of the territory that provides suitable 

conditions for agricultural purposes, while the forest stands have shifted to sites that are not 

accessible for mechanically supported cultivation techniques. Local phenomena of the alpine 

Foreland that visualize the process of forest suppression, are the steep moraine ridges that in 

some places are the only forested arcs that intersect the rural landscape. 

Economic forestry has substituted the natural vegetation by large plantings of spruce (picea 

abies), so that only few pure deciduous forests still are found. Wherever lack of human impact 

allows for a natural vegetation development, zones that are unique and rich in species remain. 

The stripes of forest that are lining the alluvial zones of the Danube and its tributaries may serve 

as an example for undisturbed vegetation. In the more elevated montane and subalpine 

altitudinal belts of the mountainous areas, mixed mountain forests composed of spruce, white fir 

(abies alba) and beech as well as coniferous forests are situated. Anthropogenic influence has 

led to a domination of spruce in the alpine surroundings as well, so that the timberline, which is 

found at about 1800 – 1900 m in the Upper Danube catchment, is also composed of spruce 

trees. 

The central part of the Alps, which is receiving noticeable less precipitation than the Northern 

rim (fig. 2.05), also inhabits spruce in the lower stands, while larch (larix decidua) and more 

scarcely swiss stone pine (pinus cembra) and mountain pine (pinus mugo) climb heights up to 

the elevated central alpine timberline at 2400 m. Above this altitude, only grasses (carex 

curvula) and ericaceae (i.e. calluna vulgaris) remain, representing native species that are 
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adequately adapted to the extreme alpine environment (ELLENBERG 1996). In the South of 

Bavaria, some of the once widespread moorlands have been preserved in their natural state 

and are no longer exploited through the commercial extraction of peat. 

 

 

2.7 Socio-Economic Aspects 
The landscape of the Upper Danube catchment has been intensely influenced, formed and 

modified by the activity of man. The area is inhabited by about 11 million people, resulting in a 

dense population of more than 100 inhabitants per square kilometre, combined with a vivid 

economic activity. The largest settlements of the area are the agglomerations of Munich with 1.2 

million inhabitants, followed by Augsburg with 260.000 and Ingolstadt with a population of 

115.000 respectively (LUDWIG ET AL. 2003). Besides the high alpine crests, the whole area is 

well connected to public infrastructure and is easily accessible due to a dense traffic network 

(fig. 2.08). 

 

 
Figure 2.08: Topographic situation of the Upper Danube catchment including the major cities, traffic routes, rivers and surface 
water bodies (base data: ESRI World Database). 
 

Surrounding the major cities, important industries have been established, while nearly all of the 

rural landscape is used agriculturally. Agriculture either manifests in form of meadows and 

pastures, that nourish a multitude of dairy and meat farms, or in form of acres applied for the 

production of cereals and silage crops. Pastures even are found in the high and remote areas of 

the mountains. Common arable crops include winter and summer grains (mainly triticum 

aestivum L., hordeum vulgare L., secale cereale L.) as well as maize (zea mays L.). More 
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regionally concentrated, sugar-beet (beta vulgaris), potatoes (solanum tuberosum L.), canola 

(brassica napus L.) as well as specialized crops like hop (humulus L.) and asparagus 

(asparagus L.) are cultivated. It has to be mentioned that the agricultural landscape within the 

Upper Danube Basin is relatively small parcelled, compared to other European regions 

(BAYERISCHES STAATSMINISTERIUM FÜR LANDWIRTSCHAFT UND FORSTEN 2006). The climatically 

favourable low basins along the river Danube itself offer preferable conditions for agricultural 

purposes. With increasing elevation, the acres are repelled by extended pastures and 

grasslands, so that also the higher terrain, which rather limits agricultural productivity due to the 

colder climate, is used extensively. 

One strong pillar of the tertiary industry in the Upper Danube is tourism. Especially the regions 

of the Alps and the Bavarian Forest are attractive for tourists, but also the cities of Munich and 

Salzburg as well as the numerous architectural relics such as castles and fortresses that date 

from the monarchic times, are helping to develop the tourism into an economic branch of 

substantial size. 

The management of water resources is a topic widely pursued in the Upper Danube catchment 

by public and private institutions. The management not only includes the fresh water supply for 

people, trade and industries, but also flood protection and low flow management as well as the 

operation of hydropower facilities. Another issue of water management is the controlling of 

shipping traffic along the navigable routes of the Danube river system. The Rhine-Main-Danube-

Channel connects the navigable part of the Danube below the estuary of the Altmühl to the 

Rhine-Main river system, forming an important international waterway that ranges from the 

Black Sea up to the North Sea. This hydrologic connection leads to an artificial export of water 

from the Danube basin into the Rhine-Main basin (LUDWIG ET AL. 2003). 

Water management interventions led to a profound redesign of the natural watercourses 

according to the perceptions of hydraulic engineering. Especially the production of hydro power, 

but also flood protection measures, led to river regulations and to the construction of dams and 

storage reservoirs throughout the catchment area. Today, the Danube and its tributaries are 

largely regulated with numerous flow barrages and reservoir power stations. This process is 

accompanied by a substantial shortening of the natural river courses and a reduction of 

retention basins, delicately increasing the flood potential. Recent developments show the effects 

of a change in hydrological engineering that manifests in the reconstruction of retention areas 

and a renaturalisation of river courses according to the goals of the European water framework 

directive. 
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3. Coupling a Physically Based Landsurface 
Model with a Biological Description of Canopy 
Processes 

 
3.1 The Landsurface Simulator PROMET 
The process of radiation mass and energy transfer model PROMET, developed and enhanced 

by MAUSER AND BACH (2008), is a physically based process model that simulates a wide variety 

of landsurface parameters. It is designed for world wide application and can be operated on 

different scales (MAUSER AND SCHÄDLICH 1998). PROMET has been adapted to fit within the 

DANUBIA modelling framework (MAUSER AND LUDWIG 2002) and is used as land surface core 

model of the climate change decision support system DANUBIA (LUDWIG ET AL. 2005). The main 

task of the model is the solution of the energy and water balance at the land surface, while all 

determinant fluxes are taken into account. It is developed in FORTRAN77 and FORTRAN90 

code, guaranteeing high computational performance. PROMET requires input data in form of a 

raster based geographic information system (GIS, fig. 3.01). In addition, parameter sets that 

characterize the soil and vegetation properties as well as meteorological inputs are needed. 

 

 
Figure 3.01: Exterior model design of the PROMET landsurface simulator. 

 

The time step of the calculation is variable, but was set to one hour for all calculations presented 

in the context of this work. Within some submodels, like for the soil percolation, this frequency is 

overclocked to guarantee a numerically stabile mapping of the fluxes. Every point of the raster 

array is calculated successively for each time step. The model can be preset to produce spatial 

results in form of GIS layers but is also applicable for single point or network calculations, which 

are stored as tables. The frequency of the output data normally matches the modelling time 

step, but the results can also be displayed and stored as aggregated daily, monthly or annual 
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values. The internal model architecture generally follows a top down cycle (fig. 3.02). The main 

model components are represented by: 

− the interpolation of the input meteorology (MAUSER AND BACH 2008),  

− the distribution of the incoming energy and the solution of the surface energy and water 

balance (CAMPBELL AND NORMAN 1998, OKE 1978, DINGMAN 1994), 

− the simulation of the snow cover processes (STRASSER 1998), 

− the straightforward vegetation model (BALDOCCHI ET AL. 1987), 

− the soil percolation model (EAGLESON 1978). 

 

 
 
Figure 3.02: Interior top down model cycle of the PROMET model. 

 

 

3.2 Adapting PROMET to the physically based Modelling of 
Photosynthesis 

The PROMET model provides an excellent basis for a further development with regard to 

canopy processes. The GIS structure and the module based architecture allow for an easy 

coupling of additional modules. The core of the traditional calculation of the landsurface 

evapotranspiration in PROMET is based on the Penman-Monteith equation (PENMAN 1956, 

MONTEITH 1965). The resistances of the vegetation cover and the biomass generation, which 

are needed for the solution of that equation, are provided through a relatively straightforward 

vegetation model after BALDOCCHI ET AL. (1987). The carbon fluxes as well as the detailed 

energy fluxes are not taken into account so far. If the possible reactions of the landscape water 

household to a changing climate shall be investigated, the rough representation of the 

vegetation cover does not longer seem appropriate. The manifold interactions of the carbon 

dioxide supply with transpiration rates and biomass production, that again delicately affect the 

water balance of the landsurface, can only be mapped with a more sophisticated vegetation 
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model. Due to that reason, a vegetation module that is based on the detailed modelling of 

photosynthetic processes, considering the leaf energy balance as well as the leaf gas fluxes, 

was integrated into the PROMET model structure. The integration of the new vegetation module 

was designed in a way that still allows the calculation of the more static Penman-Monteith 

approach as an alternative. The explicit calculation of active plant growth though requires an 

extra set of input parameters (see section 3.3.4). 

 

 

3.3 The PROMET Biological Model 

In addition to the already available functionality of PROMET, the explicit biological module 
consists of five steps that are processed subsequently: 

− Import of the parameters for all landuse categories. 
− Initialization of the biological variables. 
− Distribution of the incoming radiation. 
− Steering of the biological routines via a management module. 
− Computation of the leaf energy balance including the photosynthesis. 
− Modelling of physical plant growth. 
− Solution of the land surface energy balance. 

The following section intends to give an insight into the chain of submodels and the modelled 
processes that are directly connected to the biological routines of the latest version of PROMET. 
A list of the applied mathematical symbols is given in the appendix (A.1). For further information 
concerning the modelling of inanimate landscape processes, it is referred to MUERTH (2008) for 
the soil and surface energy balance and to MARKE (2008) for meteorological scaling methods. 
 

 

3.3.1 Radiation 
As mentioned above, PROMET follows a top down approach for its model cycle. The beginning 

of the calculation therefore is marked by the import of the meteorological parameters and 

commences with the distribution of the incoming energy into the canopy. Since the PROMET 

biological routines are the major topic of this work, only the irradiative processes that are directly 

connected with the vegetated land surface are described here. 

The major force that is driving the processes at the land surface is the incoming radiation. Since 

the vegetated land surface in PROMET is modelled as a two layered canopy, the distribution of 

the incoming energy into the canopy has to be performed for the two layers successively. Only 

the amount of energy that is intercepted by the leaves is available for the biological processes, 

so that in a first step, a coefficient that describes the extinction of a solar beam by the leaves is 

determined. CAMPBELL AND NORMAN (1998) decided that the leaf properties of a crop could best 

be described through a random ellipsoidal distribution of the leaves. The extinction coefficient 
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for direct radiation (Κed) is calculated following CAMPBELL (1986) in dependence of a shape 

parameter (χ) and the solar zenith angle (Ψ, eq. 3.01). 

 

( )
( ) 733.0

22

182.1774.1
tan

−+⋅+

Ψ+
=ΨΚ

χχ
χ

ed  (Eq. 3.01)

 

Here, the shape parameter (χ) is determined from the leaf angle (βl). For spherical leaf angle 

distributions, the parameter approaches a value of one, while for vertical leaf angles it becomes 

zero (eq. 3.02). 
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In order to simplify the calculations, the leaf angles in PROMET are set static for both canopy 

layers but are discerned into forested and non-forested categories according to table 3.01. 

 
Table 3.01: Initialisation of the leaf angles and the corresponding shape parameters for two canopy layers. 
 

 βl (Forest) βl (Other) Χ (Forest) Χ (Other)
Upper layer: 40.11° 79.64° 2.28 0.31
Lower layer: 29.79° 63.02° 3.66 0.84

 

The extinction coefficient then is variable, depending on the solar zenith angle (fig. 3.03). 
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Figure 3.03: Course of the extinction coefficient for ellipsoidal canopies in dependence of the solar zenith angle. 
 

The required solar zenith angle is determined for the current latitude and model hour. With the 

help of the extinction coefficient, the proportion of reflected sunlight, i.e. the albedo of the 

canopy (Ac), can be determined following CAMPBELL AND NORMAN (1998). The canopy albedo 

depends on the sun elevation angle, which is expressed through the extinction coefficient 

mentioned above. It also is a function of the density of the canopy and of the albedo of the bare 

soil (As) that is lying beneath the vegetation cover. Before the albedo can be determined, the 

canopy hemispherical reflection coefficient (ρcpy
H) has to be calculated in dependence of the leaf 
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absorptivity for different wavelengths (eq. 3.03), accounting for the fact that leaves naturally are 

not black bodies. The absorptivity of the leaf for the photosynthetically active radiation range 

(αpar) is assumed with 89 %, while for the near infrared an absorptivity of 45 % is used (αnir, 

(EVANS 1987, BJÖRKMAN AND DEMMING 1987). The canopy hemispherical reflection coefficient 

then is the average of both spectral ranges (eq. 3.03). 
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For a well developed canopy, as well as during the night, the underlying soil is neglected, so 

that the canopy albedo (Ac) can be written as (eq. 3.04): 
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For a less well developed canopy, the albedo has to be adjusted according to the fraction of 

bare soil that is shining through (eq. 3.05). Naturally, this process only is relevant during day 

time. The leaf absorptivity for the whole shortwave spectrum (αsw) is applied here with an 

assumed average value of 70 % (EVANS 1987). 
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The influence of the bare soil albedo, assumed with 20 %, on the total surface albedo, 

decreases with increasing leaf area values (LAI, fig. 3.04). 
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Figure 3.04: Variability of the surface albedo, as a combination of bare soil and canopy reflectance characteristics, in dependence 
of the solar zenith angle and the grade of development of the vegetation cover. 
 

The amount of energy that is not reflected due to the canopy albedo will enter the canopy and 

has to be distributed to the two canopy layers. This includes the calculation of the sunlit or 

respectively shaded areas within the canopy layers, as well as an estimate of the fraction of 
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radiation that is transmitted through the canopy and will be available for soil processes beneath 

the vegetation layers. 

During the night, when the solar zenith angle surmounts 90°, the whole canopy is assumed to 

be shaded. Consequently, the fraction of shaded leaf area is set to 100 % for all vegetation 

layers and no shortwave radiation is absorbed by the canopy. As soon as the sun is rising, the 

leaf area in the upper vegetation layer that is illuminated by direct sunlight (LAsun1) is determined 

as a function of the total leaf area in the upper layer (LA1) and the solar zenith angle (Ψ) 

following BALDOCCHI ET AL. (1987, eq. 3.06). 
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The leaf area of the upper layer, which is shading the canopy beneath, has to be taken into 

account for the lower vegetation layer, so that equation 3.06 has to be modified (eq. 3.07). 
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(Eq. 3.07)

 

From the respective sunlit leaf areas, the reciprocal fractions of shaded leaf area (Sf1/2) can be 

derived for both canopy layers (eq. 3.08). 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

2/1

2/1
2/1 1

LA
LAS sun

f  (Eq. 3.08)

 

The fraction of the incoming shortwave direct radiation has already been determined as the 

remainder of the incoming direct radiation that is not reflected due to the canopy albedo. For the 

incoming shortwave diffuse radiation, the intercepted portion (Κdif) is calculated following 

CAMPBELL AND NORMAN (1998) as an exponential function of the overall leaf area (eq. 3.09). 

 

( )210392.08933.0 LALA
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For the biological processes within the leaf, only the fraction of the incoming energy is of 

importance that is featuring a wavelength within the photosynthetically active spectral domain, 

i.e. the PAR. But only the fraction of the PAR that remains in the leaf and is not transmitted to 

the soil is available for the photosynthesis model. The transmitted fraction of direct and diffuse 
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PAR (tPARdir/dif) therefore has to be determined as a function of the leaf absorptivity for the PAR 

and the extinction coefficients for direct and diffuse shortwave radiation, also considering the 

total leaf area (eq. 3.10). 
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The total absorbed energy input for the biological processes (aPARdir/dif) through incoming 

shortwave radiation (SWdir/dif) then can be expressed as (eq. 3.11). 
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Equation 3.11 naturally only applies to the upper canopy layer. For the lower layer, the energy 

that already has been absorbed by the leaves above has to be subtracted. The fraction of 

photosynthetically active radiation in relation to the whole shortwave spectrum (fPAR) is 

assumed to be constant at an average value of roughly 50 % according to own spectrometer 

sky measurements. For the long wave radiation, which is continuously entering the canopy 

irrespective of the model time, the absorptance is calculated differently for the two canopy 

layers. While for the upper vegetation layer, the incoming long wave radiation from the 

atmosphere (LW) is coming from above, the lower vegetation layer is emitting long wave 

radiation according to its temperature (Tc2) following the Stefan-Boltzmann law of emission and 

is adding this radiated energy to the energy budget of the upper layer (aLW1, eq. 3.12). 

 

( ) ( )4
21 clwlw TLWaLW ⋅⋅+⋅= σαα  (Eq. 3.12)

 

The absorptivity for long wave radiation (αlw) is set variable for different canopies (93 - 98 %). 

The symbol σ represents the natural Stefan-Boltzmann constant. The lower canopy layer again 

is supposed to be shielded from the atmospheric long wave radiation, but receives long wave 

energy due to emissions of the upper canopy layer from above (Tc1). From below, the soil 

surface is contributing the energy that is emitted according to its temperature (Ts, eq. 3.13). 

 

( ) ( )44
12 slwclw TTaLW ⋅⋅+⋅⋅= σασα  (Eq. 3.13)

 

When the absorbed portions of the incoming radiation from the direct and the diffuse short 

wave, as well as from the long wave input have been determined, the energy budget is passed 

on to the biological submodel. Figure 3.05 illustrates the various energy fluxes that are involved 

with the distribution of the energy within the canopy. 
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Figure 3.05: Fraction of reflected, absorbed and transmitted direct shortwave radiation for two canopy layers (left) and distribution 
of the longwave radiation within the two layered canopy structure (right). 
 

 

3.3.2 Surface Processes 
Before all requirements of the biological submodels are met, two important surface parameters 

have to be considered, as there is the circulation of air through the canopy and the interception 

of precipitation through the plant organs. The wind velocity within the canopy greatly influences 

the heat dissipation from the leaves, while the evaporation of intercepted water from a wet leaf 

surface determines the leaf energy budget by converting the incoming radiation into latent 

evaporation energy, which then is no longer available for the photosynthesis. Both therefore are 

processes that most sensitively interact with the biological core model, so they are briefly 

introduced in this section. 

 

 

3.3.2.1 Wind Velocity within the Canopy 
The wind velocity that enters the model via the imported meteorology is a measured speed that 

is interpolated from anemometer measurements, which usually are taken at a standard 

measuring height of ten meters above the ground. This velocity normally does not apply to the 

real horizontal movement of air that can be experienced at the ground level, due to the retarding 

effect of the surface roughness. Within a dense canopy, the wind is even more limited, so that 

an isolated microclimate can develop within the stand that is scarcely stirred by external 

influences (OKE 1978). The measured wind speed is regulated down to the canopy level by 

applying a logarithmic wind profile (eq. 3.14, CIONCO 1965, OKE 1978, DINGMAN 1994). 
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For equation 3.14, the parameter u(z) is the wind velocity at a certain height above the ground 

(z), zm is the roughness length, Κ is the von Karman constant and u* is the friction velocity. For 

the roughness length, as well as for the displacement height, reasonable approximations exist 

that apply to dense vegetation types (JARVIS ET AL. 1976, CAMPBELL AND NORMAN 1998), but 

since it is agreed, that in reality they vary with wind speed and canopy structure (MONTEITH 

1976, MONTEITH AND UNSWORTH 1990, JONES 1992), they are modelled explicitly here. 

The roughness of the vegetated land surface is primarily determined by the currently developed 

leaf area and the overall height of the canopy. The roughness length (zm) is a measure of the 

form drag and the skin friction of the layer of air that interacts with the surface (CAMPBELL AND 

NORMAN 1998, p. 69). It can be approximated through a fifth degree polynomial that is based on 

measured data of the momentum roughness parameter (eq. 3.15, fig. 3.06, left, SHAW AND 

PEREIRA 1982), which is multiplied by the overall canopy height (Hc). 
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A solid surface exerts a certain drag on the wind that is flowing above it. The wind speed will 

decrease logarithmically until it finally is zero when the observed height equals the surface 

height. The plane, where the wind profile converges to zero, is elevated from the ground for 

canopies. The displacement from the ground of the so called zero plane is termed as the 

displacement height (dis0). Like the roughness length, it depends on the leaf area as well as on 

the canopy height and can likewise be approximated via a polynomial (eq. 3.16, fig. 3.06, right, 

SHAW AND PEREIRA 1982). 

 

( ) ( )[ ]4766.00985.00088.0 2
0 +⋅+⋅−⋅= LAILAIHdis c  (Eq. 3.16)

 

 
Figure 3.06: Derivation of the momentum roughness parameter (left) and the zero plane displacement height (right) from data 
measured by SHAW AND PEREIRA (1982). Please note that the coefficient of determination (r²) is correlated with the order of the 
polynomial and therefore is overestimated in both figures. 
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Figure 3.06 illustrates the stability of the polynomials (eqs. 3.15 and 3.16) for small leaf areas. 

For leaf areas higher than 4.5, both parameters are assumed to converge at the level of LAI 4.5. 

With the help of the roughness length (zm), the zero plane displacement height (dis0), the height 

of the wind measurement (Hm) and the natural von Karman constant (Κ = 0.41), the friction 

velocity (u*) can be determined. The friction velocity is directly proportional to the wind speed 

measured at height z and depends on the friction of the wind with the surface. It has a physical 

unit of m s-1 (eq. 3.17, OKE 1978), although a direct interpretation is not recommended 

(CAMPBELL AND NORMAN 1998). 
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When the results of the equations 3.15, 3.16 and 3.17 are inserted into equation 3.14, the wind 

speed within each canopy layer can be determined according to the measured wind speed at 

the measuring height and the current development of the vegetation cover. The parameters 

involved with the calculation of the wind profile are illustrated in figure 3.07. 

 

 
 
Figure. 3.07: Vertical wind profile over a canopy surface indicating the parameters that are involved in the calculation of the 
surface friction (inspired by DINGMAN 1994). 
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3.3.2.2 Interception Evaporation 
In PROMET, the temperature of the landsurface is determined by an iterative distribution of the 

incoming energy into the latent heat flux, the ground heat flux and the sensible heat flux. While 

for the surface temperature of the vegetated land surface the biological processes play an 

important role (see section 3.3.3.5), the latent heat flux of the inanimate land surface consists of 

the soil and the interception evaporation. 

The amount of water that enters the soil directly after a rainfall event is referred to as effective 

precipitation (BAUMGARTNER AND LIEBSCHER 1996). However, a large portion of the rainfall is 

intercepted either by anthropogenic structures like buildings, roads or parking areas or by the 

surface of the leaves and twigs of the vegetation cover (DYCK AND PESCHKE 1995, 

BAUMGARTNER AND LIEBSCHER 1996). The interception evaporation is a determinant component 

of the landsurface water balance as it is modelled in PROMET (eq. 3.18, fig. 3.08): 

 

( ) ( ) ( ) ( )soilsnowSITiseff ssEEERRPP Δ+Δ+++++=+ int  (Eq. 3.18)

 

Thereby Peff is the effective precipitation, Pint is the intercepted precipitation, Rs is the surface 

runoff, Ri is the interflow beneath the surface, ET is the transpiration through the canopy, EI is 

the interception evaporation, ES is the soil evaporation and Δsswow/soil represents the change of 

the snow or soil water storage respectively. Figure 3.18 outlines the hydrological components of 

the surface water balance that are accounted for in PROMET. 
 

 
 
Figure 3.08: Components of the PROMET surface water balance. 
 

While for non-vegetated land use categories, the amount of rainfall that can potentially be 

intercepted before it penetrates the soil is assumed to be static during the year (GRIMMOND AND 

OKE 1991), the seasonal variability of the storage capacity of the canopy is determined in 

dependence of the leaf area and the fractional cover for the vegetated land surface (eq. 3.19, 

fig. 3.09, GASH 1979, VAN DIJK AND BRUIJNZEEL 2001, WOHLFAHRT ET AL. 2006). 
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( )2
max 00575.0498.0935.0 LAILAIfCOVERI ⋅−⋅+⋅⋅=Δ  (Eq. 3.19)

 

For small leaf areas, it has to be taken into account that not the whole proxel that is receiving 

precipitation may be vegetated, so the interception capacity has to be reduced according to the 

fractional cover of the canopy (fCOVER, fig. 3.09, left). The fractional cover describes the 

degree of canopy closure and is derived from the LAI using a simple exponential function (eq. 

3.20). 

 

LAIefCOVER ⋅−−= 11  (Eq. 3.20)
 

For anthropogenic structures, as well as for canopies that are defoliated (LAI = 0), a basic 

interception capacity (ΔImax) of 0.935 mm is assumed (GRIMMOND AND OKE 1991, GASH ET AL. 

2007). 
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Figure 3.09: Correlation of leaf area and canopy closure (left) and variability of the interception capacity of the canopy in 
dependence of the leaf area and the fractional cover (right). 
 

The simulation of the filling and drainage of the storage of intercepted water follows a simplified 

method that is based on the assumptions of GASH (1979). The most determinant assumptions in 

that context are: 

− No evaporation takes place until the rainfall has ceased. 

− No water drips from the leaves until the interception storage is filled completely. 

Conversely this means that, if the storage for intercepted water is filled, all the rainfall that is 

additionally falling onto the leaves will drip off and will be added to the effective precipitation. 

The rest of the precipitation, staying on top of the canopy, evaporates as soon as the rainfall 

stops and enough energy for the evaporation is available. In PROMET, the latent energy of the 

evaporation of intercepted water (Ep) is modelled parallel to the potential evaporation of open 

water bodies, applying a reduced form of the Penman-Monteith approach by using the Priestley-

Taylor equation (eq. 3.21, PRIESTLEY AND TAYLOR. 1972). 
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For equation 3.21, Rn is the energy balance (see eq. 3.22), s(Tl) is the slope of the saturation 

vapour pressure curve in dependence of the leaf temperature (see eq. 3.23), p is the density of 

air, cp is the specific heat of air, es is the saturation deficit, ra is the aerodynamic resistance and 

γ is the psychrometric constant (see eq. 3.26). 

The energy balance can be written as equation 3.22 with Osw and Olw standing for the outgoing 

short and long wave radiation respectively. 

 

( ) ( )lwswdifdirn OOLWSWSWR +−++=  (Eq. 3.22)
 

The slope of the saturation vapour pressure curve (s(Tl)) also depends on the temperature (Tl), 

the gas constant (R), the molar mass of water (MH2O), the saturation pressure (e) as well as on 

the latent heat of vaporization (L) and can be determined following MURRAY (1967, eq. 3.23). 
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The latent heat of vaporization is a linear function of the temperature (eq. 3.24) following 

BAUMGARTNER AND LIEBSCHER (1996). 

 

( )[ ]16.273361.22501 −⋅−= lTL  (Eq. 3.24)
 

Figure 3.10 illustrates the temperature dependency as well as the interconnectedness of the 

parameters L, e and s(Tl). 
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Figure 3.10: Temperature dependency of the latent heat of vaporization (left), the saturation vapour pressure (middle) and the 
slope of the saturation vapour pressure curve (right). 
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The aerodynamic resistance (ra) with a physical unit of s m-1 is derived through an empirical 

relation to the wind velocity (eq. 3.25, CAMPBELL AND NORMAN 1998, p. 103), the latter being 

determined according to the methods described in the previous section. 

 

)(
54

zu
ra =  (Eq. 3.25)

 

The psychrometric constant by definition is not a constant as implied by its name, but depends 

on the air pressure (eq. 3.26) with MH2O and Mair representing the molar masses of water and air 

respectively. 
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When all involved parameters are finally determined, the potential interception evaporation (EI) 

has to be converted from a latent heat flux with the physical unit of W m-2 h-1 to a mass flux in 

mm h-1, while at the same time it has to be limited to the amount of water that currently is stored 

within the interception storage (ΔI, eq. 3.27). 
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As long as there is water in the interception storage, the incoming energy is used for the 

evaporation of the intercepted water and only a minimum amount is provided for the 

maintenance of the biological processes. However it is assumed, that stomatal gas exchange 

can happen as long as the leaves are wet, but only from the lower side of the leaves, which is 

supposed to be the dry one. 
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Figure 3.11: Model results for the interception evaporation from the needles of a coniferous stand in the central region of the Upper 
Danube catchment for the 11th of July 1998. 
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Figure 3.11 displays exemplary model results for the interception evaporation of a coniferous 

forest on a randomly chosen summer day (11th of July 1998). At the beginning of the day, the 

needles already are wet from a previous rainfall event. Approximately 1.8 mm of precipitation is 

suspended within the canopy, but since there is no energy input during the night, nothing 

evaporates from the intercepted storage. During the early morning hours, another 0.6 mm of 

rainfall are added to the storage of intercepted water, so that the total amount of intercepted 

water increases to 2.4 mm. At the beginning of July the forest is fully developed and has a 

maximum interception capacity of 4.7 mm. Consequently, no water drips off onto the ground. 

When the rainfall stops at 7 am, the sun has already risen and the intercepted water starts to 

evaporate. Since the exemplary day is a very cloudy day (average cloud cover is 88 percent), 

the needles take about ten hours until they are completely dry at 4 pm. During the late afternoon 

hours, the biological processes finally receive the total amount of incoming energy. After sunset 

at 9 pm it starts to rain again and the needles are wetted with about 0.3 mm of intercepted water 

until midnight. According to this example, the interception of rainfall leads to a constant cycle of 

wetting and drying in the course of the model year (fig. 3.12). 
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Figure 3.12: Measured precipitation and modelled intercepted rainfall for a winter wheat stand during the model season 
1998/1999. 
 

Figure 3.12 clearly explains the interrelation of precipitation and the amount of rainfall that is 

intercepted by the canopy. This example, taken from a winter wheat site, demonstrates the 

dynamics of the annual course of the intercepted water storage, whose holding capacity is 

highly dependent on the development of the crop. During the winter months, the sparse canopy 

is only capable of holding 0.5 mm of the incoming precipitation, so the major part of the rainfall 

drips off from the leaves onto the ground and enters the soil. During the early summer months, 

the crop develops rapidly and the potential storage capacity for intercepted precipitation 

increases with the newly developed leaf area. The increased frequency of thunderstorms, with 

high precipitation rates during the summer months, results in periods of constantly wet leaves. 

Due to the high radiation input in the summer, the whole storage of intercepted water can be 

evaporated during the course of one day. 
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3.3.3 Biological Processes 
With exception of the initialization section, which only is passed once for all of the 27 landuse 

categories that are implemented in PROMET (fig. 3.13) during the first model time step, the 

biological subroutines of PROMET consist of a chain of submodels that are cycled successively 

for every element of the raster data set at each model time step (fig. 3.14). 

 

 
Figure 3.13: Model hierarchy of the 27 integrated landuse categories. 

 

3.3.3.1 Model Initialization 
When the model run is started, the input parameters that correspond with the different landuse 

categories and are needed for the calculation of the biological submodels are read from 

parameter files and stored within the internal GIS structure. All crop specific information, 

concerning the 27 different landcover categories that are accounted for in the model, is 

arranged following a strict hierarchy that allows for a clear differentiation between the different 

landuse types (fig. 3.13). This enables the model to access the correct parameters 

unmistakeably for each vegetation type from all subroutines. The land cover hierarchy also 

includes information, if the currently modelled pixel is a vegetated or a non-vegetated surface 

type. For non-vegetated surface types, the biological submodels are skipped. In PROMET, it 

also is assumed that no biological activities take place beneath a closed snow cover. The 

biological routines, with exception of the progress of the phenological stages, consequently do 

not run if a snow cover is modelled for a proxel at the current time step. 
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Figure 3.14: Flowchart of the biological subroutines of PROMET. 
 

The vegetation cover is modelled for two vegetation layers, so that the leaf gas exchange 

routines have to be called twice for every time step (fig. 3.14). The leaf energy balance is solved 

subsequently for the sunlit and shaded parts of the leaves of both vegetation layers. Figure 3.14 

also illustrates that the actual photosynthesis is a byproduct of the efforts concerned with the 

determination of the latent heat flux from the leaf. When the leaf energy balance is finally 

solved, the resulting carbon fixation is passed on to the plant growth routine, where the newly 

generated biomass is utilized according to the phenological stage of the canopy (see section 

3.3.3.6.2). 

The biological submodels of PROMET require a set of variables from the preceding model time 

step. Important parameters for example are the already accumulated biomass, the growth stage 

that has been reached by the vegetation type of the currently modelled proxel, the overall depth 

and density of the root system et cetera. When a model run is initialized, this information is not 

available for the very first time step. The model therefore was equipped with a subroutine that 

only is called once for the first time step and initializes the most determinant variables of the 

biological submodels. The initialisation is dynamic to some degree, so that the model run can be 

started on a user-defined day of the year. 

In a first step it is decided, whether the modelled canopy is a perennial type and therefore 

requires the biological submodel at any time of the year, or if the cover type is of a seasonal 

kind. The non-perennial crops are discerned into winter and spring crops. If the starting day of 

the modelled time window lies beyond the vegetation period, the variables are set to zero and 
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the model run commences without the biological submodels running. If the starting day lies 

within the vegetation period of the currently modelled canopy type, the explicit initialisation is 

started. 

The determinant that is used to initialise all other important variables is the leaf area index. It is 

assumed that the annual course of the LAI can generally be structured into four phases (fig. 

3.15, left): 

− A period, where the leaf area is at its minimum (LAIini),  

− a period of increasing leaf area,  

− a time of maximum LAI values (LAImax) and  

− a time, where the leaf area decreases. 

 

 

 
 
Figure 3.15: Phases of LAI development (left) and LAI curves for selected crops used for the initialization of the first time step. 

With a simple function, the green leaf area index is assumed in dependence of the DOY (eqs. 

3.28-31). For every crop, a different parameter set is used that modifies the course of the 

function (fig. 3.15, right). The boundaries of the functions are the days of the year, where the 

phases of LAI development are changing. While d is the currently modelled day, dincstart is the 

day when the leaf area starts to increase, dincend the day when it stagnates, ddecstart the day when 

the leaf area starts to decrease again and ddecend marks the completion of the senescent phase. 

 

iniLAILAI =  

If d is lower than 
dincstart or d is greater 

than ddecend 
(Eq. 3.28)
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maxLAILAI =  
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(Eq. 3.30)

  

( )[ ]{ } ( inidecstart LAILAIddk
ini eLAILAI −⋅−−⋅−+= max

2
2 1 )

 

If d is greater than 
ddecstart and d is lower 

than ddecend 
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For the equations 3.29 and 3.30, k1 and k2 are coefficients that modify the gradient of the LAI 

increase and decrease. 

This method is considered to provide reasonable initialisation values for the agricultural crops as 

well as for the natural grasslands in the colline altitudinal belt. However, the different 

appearances of natural canopies at higher altitudinal vegetation zones are not accounted for in 

this approach. This would lead to the failure that for example coniferous forests on alpine sites 

above 1500 m sea level height, where the spruce forest is gradually superseded by dwarf-pines, 

would be initialized with the same large leaf area that they are supposed to develop in the plain 

regions of the alpine foreland. To account for this problem, all pixels of the input data set for the 

Upper Danube Basin that are populated with coniferous trees (see appendix A.8.1) were 

analysed with respect to their altitude and their annual mean temperature. It was found that a 

strong correlation of elevation and annual mean temperature exists (r² = 0.96, fig. 3.16, left), so 

that the annual mean temperature could well be consulted for the differentiation of the altitudinal 

vegetation zones. 

 

 

If the observed or interpolated annual mean temperature of a modelled pixel falls below 8 °C, 

which within the Upper Danube Basin normally is the case for elevations that exceed 600 m 

a.s.l. (fig. 3.16, left), the determined leaf area values are reduced by a factor that is based on a 

third-degree polynomial of the annual mean temperature of the preceding model year (fig. 3.16, 

right, eq. 3.32). 

 

3986.00524.00133.00013.0 23 +⋅+⋅+⋅−= avgavgavgLAI TTTR  (Eq. 3.32)
 

Taking the reduction factor into account, the initial leaf area for proxels located at “cold” sites 

reads (eq. 3.33): 

 

LAIRLAILAI ⋅=  If Tavg is lower than 8 °C (Eq. 3.33)

 
Figure 3.16: Relation of long-term annual mean temperature and terrain elevation for coniferous sites within the Upper Danube 
Basin (left) and factor reducing the leaf area of coniferous forest in dependence of the annual mean temperature of the last 
modelled year (right). 
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When the leaf areas for all vegetation categories that either are perennial or in their active 

growing period are determined, the height of the canopy (hc) is calculated using a cultivar 

specific relation of leaf area and plant height (LHrel). 

 

relc LHLAIh ⋅=  (Eq. 3.34)
 

Due to lack of better data for the first model time step, all relevant temperatures like the leaf and 

soil temperatures are initialised with the air temperature (Ta) as a first guess. 

With the help of the LAI development phases (fig. 3.15), the phenological phase is determined 

according to the DOY. The rate of development (see section 3.3.3.6.1) is supposed of having 

reached half the amount of the transition to the next growth stage, thus allowing the crop to 

autonomously commence its phenological development once the model run has started. 

As soon as the phenological phase is known, the leaf biomass can be determined by inverting 

the “LAI-to-leaf-mass-per-area” relationship (eq. 3.35, see section 3.3.3.6.3). The leaf biomass 

then is extrapolated to the other plant parts that are stem, grain and root using the imported 

allocation percentages (see section 3.3.3.6.2). 

 

LMALAIBleaf ⋅=  (Eq. 3.35)
 

For the initialisation of all agricultural vegetation types, the root depth (RD) is assumed as a 

percentage of the crop specific maximum root depth (RDmax, tab. 3.02), according to the 

phenological stage. Natural and perennial canopies are initialized with their specific maximum 

root depth. 

 
Table 3.02: Initial root depth according to the initial growth stage. 
 

d < dincstart dincstart > d < dincend dincend > d < ddecend d > ddecend 

max3.0 RDRD ⋅=  max7.0 RDRD ⋅=  maxRDRD =  max3.0 RDRD ⋅=  
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Figure 3.17: Initial root length density distribution into four soil layers.   
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The distribution of the root density to the soil layers is initialised by an exponential function (eq. 

3.36, GEWITZ AND PAGE 1974, ADIKU ET AL. 1996). Depending on the soil type, either three or 

four soil layers (Ls) exist in the model that can possibly be rooted. The initial root length density 

of a soil layer (RLDLs) decreases with increasing soil depth for all vegetation types (fig. 3.17). 

Having passed through the initialization process, the model is able to run all biological 

submodels, starting from any user-defined day of the year. However, it is recommended to 

compute the model at least one model year in advance, before the results can be considered to 

be reliable. This spin-up time allows the soil water balance to adjust to the current meteorology 

and the biological parameters to accommodate to the climatic specifications. All model results 

and intermediate results presented here were generated with a spin-up phase of at least one 

model year. 

 

3.3.3.2 Agricultural Management 
Before the submodels that compute the actual plant growth are called, general agricultural 

management measures have to be considered. 

All arable crops in the model are sowed at noontime, when their cultivar specific sowing date 

(dsow) is reached. The crop related variables are set to zero and the root depth is set to a sowing 

depth of 3 cm. Most important, the planting process activates all biological submodels for the 

crop, which had been skipped during the fallow period, so that the active growing process can 

commence. The natural and perennial crops do not have a specific sowing date, but are starting 

with active growth as soon as there is no snow cover signalled. An exception is made for 

deciduous forest, whose period of active growth is started with the emergence of leaves. This 

determinant phenological step is controlled by the phenology submodel (see section 

3.3.3.6.1.3.2). For all agricultural crops, the growth period lasts until the cultivar specific harvest 

date (dhar) is reached. When the crop is harvested at noontime, the biomass, plant height and 

LAI variables are set to zero and the active growth is aborted. The portion of the biomass that is 

considered as “harvestable” depends on the crop type. While for cereals only the grain mass is 

harvested, for silage crops and grassland the whole aboveground biomass is collected. The 

harvestable part of the accumulated biomass is transformed into harvest mass (Bhar) using a 

linear relation between biomass and grain harvest. Also the units are transformed from kg m-2 to 

a unit of t ha-1 applying a factor of 10 (eq. 3.37). 

 

( ) 10⋅+⋅= bmBB grainhar  (Eq. 3.37)
 

Figure 3.18 shows the stable correlation of grain biomass and grain yield for winter wheat that 

could be obtained from field measurements of two wheat test sites. The location of the test sites 

as well as the applied measuring techniques can be followed in section 4.1. 
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Figure 3.18: Combine harvester yield measurements for the test sites “Kochfeld” and “Hofanger” (compare section 4.1) in front of a 
GIS based land use map (left). Derivation of a relation between dry grain mass and measured grain yield (right). 
 

On ten sample points, five for each test field, the dry grain mass including the straw part of the 

spikes was measured shortly before the fields were harvested (see section 4.1.4). The spatial 

distribution of the usable harvested mass was recorded during the harvest with a DGPS 

supported measurement system on a combine harvester. The combine measurements were 

corrected with the overall weight of the harvested freight and resulted in maps of obtained yield. 

The yield maps were compared with the destructive field measurements by integrating both into 

a GIS (fig. 3.18, left). 

The correlation of fruit biomass and harvested grains (fig. 3.18, right) shows that the yield of 

winter wheat is approximately 70 % of the fruit biomass. Unfortunately, for all other arable crops 

no explicit yield measurements could be obtained, so that the relations had to be estimated in 

the style of the winter wheat measurements or were derived from the parallel analysis of model 

results and agricultural harvest statistics respectively (BAYERISCHES STAATSMINISTERIUM FÜR 

LANDWIRTSCHAFT UND FORSTEN 2004 and 2006). Table 3.03 gives an overview of the 

parameters applied for the conversion of biomass to yield for different crops. 

 
Table 3.03: Parameters used for the transformation of 
harvested biomass [kg m-2] to yield [t ha-1]. 
 

Crop Type Slope [m] Intercept [b] 
Hop 0.0391 0.1321 
Oat 1.0282 0.0000 
Oleaginous 0.2562 0.1053 
Potato 2.7201 1.3457 
Rye 0.7383 0.0000 
Sugar 4.6454 2.3387 
Summer Wheat 1.1685 0.0358 
Winter Barley 0.6668 0.1315 
Legumes 0.7314 0.0283 
Winter Wheat 4.4922 2.8081 
Other 1.0000 0.0000 

n = 10
R² = 0.92

Slope (m) = 0.4492
Intercept (b) = 2.8081
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For the grassland crop types, the harvested mass equals the aboveground biomass. Paying 

respect to the fact that grassland can be cut more than once a year, the harvest mass is 

accumulated during the season. Besides that, the cutting of the grassland is modelled parallel to 

the harvest of arable crops, but the initialization of the cutting is variable. For intensive 

grassland, the first cut is initialised as soon as the LAI has developed to a value of four. If this is 

not the case until the 20th of June, the meadow is cut anyway. The second cut happens in the 

model, when the LAI again has recovered to a value of four, but not before the 20th of July and 

not after the 15th of August. The last of three possible cuts per season then follows between the 

20th of September and the 20th of October. For extensive grassland, only two cuts per season 

are possible, the first occurring not before the 15th of June and not until the LAI has developed 

to a value of four. The second cut for extensive grassland is possible in autumn between the 

20th of September and the 20th of October. 

Once in a model year during winter time some variables have to be reset for the natural 

canopies as well as for the perennial agricultural grasslands. For example a part of the root 

system is supposed to die during wintertime, thus avoiding unnatural accumulations of root 

mass. Also the number of accumulated cuts of grasslands has to be reset for the next season. 

 

 

3.3.3.3 Leaf Energy Balance 
The basis of all calculations, applied for the modelling of the biological processes in PROMET, 

is the energy balance of the leaf. It consists of the energy input through absorbed radiation on 

one side and three kinds of energy dissipation from the leaf on the other (fig. 3.19). 

 

 
 
Figure 3.19: Components of the leaf energy balance of PROMET biological. 
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The solution of the leaf energy balance is performed through an iteration that approximates a 

balanced equilibrium between the energy that is gained by the leaf via the absorption of 

radiation on one hand and the energy that is lost due to heat dissipation from the leaf at a 

specific leaf temperature on the other. The dissipation of energy from the leaf consists of three 
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components, as there are the heat loss through emission, the conductive heat dissipation and 

the latent heat flux (fig. 3.19). Those three fluxes have to be calculated for every iteration step, 

since they all are highly dependent on the temperature of the leaf. According to the internal 

architecture of the model, the whole iteration has to be performed four times for every element 

of the raster data set at each time step, because the sunlit and the shaded parts of the leaf area 

have to be calculated for both of the vegetation layers successively (fig. 3.20). 

 

 
Figure 3.20: Iteration loop for the calculation of the leaf energy balance, indicating that one model time step requires the 
initialization of four iterations per raster element. 
 

It therefore is of consequence to aspire the least number of iterations possible. This is 

accomplished by applying an efficient iteration rule that is capable of solving the required fluxes 

by applying no more than three iteration steps for most cases. The iteration method is briefly 

described in the following section. 

 

3.3.3.4 Iterative Determination of the Leaf Temperature 
The leaf temperature for either sunlit or shaded leaves in a particular canopy layer is determined 

through the energy balance of the leaf. The equilibrium leaf temperature, i.e. the temperature at 

which energy losses equal energy gains, is determined iteratively. Applying an initial estimate 

for the leaf temperature (Tl,ini) as well as the energy input to the leaf, a new temperature 

estimate (Tl,est) is calculated, at which heat losses due to emission, convective losses and latent 

heat transfer equal the energy input, which again is composed of the absorbed short and long 

wave radiation. Since all energy losses are sensitive to temperature (see sections 3.3.3.4.1 - 3), 

the heat dissipation is calculated for a number of temperatures, until the gains and losses differ 

by no more than a threshold. The critical threshold was assumed with 5 W m-2 for all 

calculations presented in the context of this work. 

Usually, the leaf temperature from the preceding time step is chosen as the initial leaf 

temperature. If the leaf temperature has not changed significantly since the last time step, the 

initial estimate might be good enough and the iteration can possibly be avoided in order to save 

computing time. If the initial temperature estimate does not produce an energy loss that is 

sufficiently close to the gain, the iteration is begun. Since the relationship between the total 
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energy loss and the leaf temperature is nearly linear, the iteration can be kept rather simple. At 

first, a range of possible leaf temperatures and their corresponding energy losses is spanned, 

based on the initial temperature. If the initial temperature produces a heat loss that lies above 

the equilibrium radiation (fig. 3.21, left), then the initial temperature (Tl,ini) is used as the upper 

boundary (Tl,upp) for the first iteration step, while the lower boundary (Tl,low) is assumed to be 10 

K below (fig. 3.21, right). In figure 3.21, the energy fluxes dissupp and disslow represent the heat 

dissipations that correspond with the upper and the lower boundary of the estimated leaf 

temperature. 

 

 
 
Figure 3.21: Initial estimate for the iterative solution of the leaf energy balance. The exemplary initial estimate is far too high (left), 
so the iteration is started with the initial intermediate temperature being applied as upper boundary (right). 
 

For an initial estimate that happens to produce a heat loss that falls below the equilibrium, the 

opposite will be the case, so that the initial estimate will be used as the lower boundary, while 

the upper boundary will be assumed 10 K above. In a second step, an intermediate temperature 

is estimated applying a linear interpolation (eq. 3.38) between the equilibrium radiation (radeq) 

and the chosen extreme temperatures with their corresponding heat dissipations (fig. 3.22, left). 
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The energy loss for this temperature is calculated and its closeness to the desired energy 

equilibrium is assessed. If the result is not sufficiently close, a second iteration is performed (fig. 

3.22, right). For the second iteration, the temperature boundaries are shifted according to the 

result of the first iteration. If the intermediate temperature of the first iteration step produces a 

total energy loss that lies below the equilibrium (fig. 3.22, left), this can be taken as an indication 

that the leaf temperature was assumed too cold and that the correct solution will be found 

between the intermediate temperature of the first iteration and the upper temperature boundary. 

Consequently, the second iteration is started with the intermediate temperature serving as the 

new lower bound of the estimation range (fig. 3.22, right). 
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Figure 3.22: Exemplary results of the iteration steps 1 and 2. For the first iteration step, the intermediate temperature was 
assumed too low (left), so that for the second iteration step it is used as the lower temperature boundary (right). 
 

For the second iteration, it may be the case that the leaf temperature is assumed too warm, so 

that the intermediate temperature happens to exceed the equilibrium temperature. In this case, 

the boundaries of the estimate are redistributed the other way round. The intermediate 

temperature of the second iteration step then will be used as the upper boundary for the third 

iteration step (fig. 3.23, left). 

 

 
Figure 3.23: Exemplary results of the iteration steps 3 and 4. For the third iteration step, the leaf temperature again is assumed too 
low, only to meet the requirements of the threshold with the fourth iteration. 
 

This swaying calculation proceeds until the critical threshold is satisfied or the correct 

temperature is found (fig. 3.23, right). However, experiences have shown that for most cases 

two or three iteration steps are sufficient when a tolerance to failure of 5 W m-2 is accepted. 

Thereby it has to be remembered that the three ways of heat dissipation (see sections 3.3.3.4.1 

- 3) have to be calculated for every iteration step. The leaf temperature therefore is highly 

sensible to external influences (fig. 3.24). 

Figure 3.24 traces the daily course of modelled leaf temperatures for a winter wheat stand. 

During the night, naturally the complete stand is shaded and only the shade temperatures are 

calculated. Both vegetation layers are emitting energy according to their temperature and 

therefore fall below the air temperature during night time. 
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Figure 3.24: Daily course of the modelled leaf temperature of a wheat stand on a hot summer day (20th of July 1998), discerned 
into two canopy layers as well as into sunlit and shaded leaves. 
 

The lower canopy layer is shielded by the upper canopy layer and therefore does not cool as 

much as the lower layer. As soon as the sun rises (at 6 am), the temperatures start to diverge. 

The energy input from above causes the upper layer to heat up more rapidly than the lower 

layer, so that at 7 am it is warmer than the lower layer. At the same time, the temperature of the 

sunlit leaves of the upper canopy layer exceeds the air temperature, while the lower vegetation 

layer as well as the shaded leaves stay beneath it, due to the increasing amount of latent heat 

that is transported from the leaves with the transpiration. The energy input of the sunlit leaves in 

the upper layer is rather high, so that the loss of latent heat cannot fully compensate the energy 

input. As a consequence, the leaves heat up until they have reached a temperature that lies 2.5 

degrees above the air temperature and nearly five degrees above the shaded leaves of the 

lower layer. From the temperature maximum (at 2 pm) on, the temperatures start to converge 

again. As soon as the sun angles are too low to irradiate the leaves, the temperature of the 

sunlit leaves decreases rapidly, so that at sunset (8 pm) the sun temperatures again equal the 

shade temperatures. 

 

3.3.3.4.1 Longwave Emission 

The emission of heat from the leaf is calculated applying the Stefan-Boltzmann-Law of emission 

successively for the estimated leaf temperature of both, the shaded and the sunlit leaves (eq. 

3.39). 

 

4
,002.0 estlleafrad TDiss ⋅⋅⋅= σα  (Eq. 3.39)

 

According to Kirchhoff’s law, the emissivity of the leaf is assumed to equal its absorptivity (αleaf). 

The overall absorptance of the leaf is set to 96 % according to NOBEL (1991). While σ is the 

Stefan-Boltzmann constant, the factor 0.002 converts the physical unit from W m-2 to KW m-2 

and at the same time doubles the emitted energy, taking into account that long wave radiation is 
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emitted on both sides of the leaf (fig. 3.19). The applied temperature (Tl,est) is the estimated leaf 

temperature of the current iteration step. 

 

3.3.3.4.2 Sensible Heat Flux 

The conductive heat loss, or the sensible heat flux from the leaf respectively, depends on three 

major conditions, as there are the temperature gradient between the leaf and the surrounding 

air, the thermal conductivity of the air and the inhibition of energy transport through the 

boundary layer that exists between leaf and atmosphere. 

The temperature gradient (ΔT) depends on the difference of the air temperature (Ta) to the 

currently estimated leaf temperature (eq. 3.40). 

 

( )16.273, +−=Δ aestl TTT  (Eq. 3.40)

 

The thermal conductivity of the air (tca) is approximated through a linear relation (eq. 3.41) 

according to measurements from NOBEL (1991, fig. 3.25, left). 

 

( ) ( ) aTtca ⋅⋅+⋅= 96 10671431024343  (Eq. 3.41)

 

The thickness of the boundary layer (tbl) according to NOBEL (1991) depends on the width of the 

leaf (wl) and the wind velocity (u), as displayed in equation 3.42 and figure 3.25 (right). 

 

u
wltbl ⋅= 004.0  

(Eq. 3.42)

 

 
Figure 3.25: Coefficient of the thermal conductivity of air in dependence of the air temperature (left) and thickness of the boundary 
layer in dependence of the wind velocity and the width of the leaf (right). 
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With increasing wind speed, the thickness of the boundary layer is reduced (fig. 3.26), while it is 

generally thinner for small leaves than it is for broad ones (fig. 3.25, right). 
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Figure 3.26: Thickness of the boundary layer in dependence of the wind velocity. 
 

The sensible heat flux from the leaf then can be written as equation 3.43, where the 

denominator of 1000 accounts for the conversion from W m-2 to KW m-2 and the factor of 2 for 

the double sided exposure of the leaf. 
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3.3.3.4.3 Latent Heat Flux 

The third and most determinant loss of energy from the leaf is the amount of energy that is 

transported from the plant via the stream of latent heat, which escapes through the stomata. 

This process can most adequately be described with the term transpiration. The driving force of 

the transpiration stream is the vapour pressure gradient between the leaf and the surrounding 

air. Nonetheless, two barriers are inhibiting the latent heat flux. The determinant resistance that 

inhibits the gas exchange between the leaf and the atmosphere is the cuticle of the leaf, whose 

conductivity is regulated through the stomata of the epidermis. A second barrier is opposed to 

the transpiration stream by the resistance of the boundary layer that surrounds the leaf surface. 

The conductance of the boundary layer (ga) for water vapour can be described as equation 3.44 

following NOBEL (1991). 

 

estl
a TR

P
tbl
dwvg

,

1000
⋅

⋅⋅=  (Eq. 3.44)

 

Besides the gas constant (R) and the actual air pressure (P), this requires the determination of 

the thickness of the boundary layer (tbl, see previous section) and the diffusion coefficient of 

water vapour (dwv). 
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The diffusion coefficient of water vapour can be approximated through a linear relation with the 

Celsius degree air temperature (Ta) following NOBEL (1991, eq. 3.45). 

 

aTdwv ⋅⋅+⋅= −− 75 1048.110126.2  (Eq. 3.45)

 

Based on the assumption that a correct physical description of growth processes will apply to 

every form of vegetation growth, all vegetation types are described through the same physical 

routines in PROMET. Nonetheless, an exception has to be made here for the calculation of the 

boundary layer surrounding the needles of coniferous species. The alternative calculation of the 

conductance of the boundary layer for H2O accounts for the bunching of needles around 

coniferous twigs (eq. 3.46). The needles shield each other against atmospheric influences, 

producing a space of reduced wind speed which leads to an inhibited conductivity of the 

boundary layer (JARVIS ET AL. 1976). 

 

( )43.067.1
bl
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a

g
g

Σ⋅
=

 (Eq. 3.46)

 

The influence of the reduction can be regulated through a scaling parameter (Σbl) that was 

assumed with a value of 1 for the calculations that are presented here. 

The calculation of the stomatal conductance (gs) requires the simulation of all processes that 

are related to the leaf photosynthesis and which are described in detail within the following 

section (3.3.3.5). Since these processes are highly correlated with the leaf temperature, they 

are repeatedly calculated for every iteration step until the correct leaf temperature is found (see 

section 3.3.3.4). 

After the stomatal conductivity has been determined through the photosynthesis routine, the 

overall conductivity of the leaf (gl) that consists of the two inhibiting barriers stomata (gs) and 

boundary layer (ga) is calculated (eq. 3.47). 

 

⎟⎟
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+=

sa
l gg

g 11/1  (Eq. 3.47)

 

The flux of transpired water for the currently estimated leaf temperature and the current time 

step than is described as equation 3.48, where Δe represents the vapour pressure deficit and P 

is the current air pressure with the physical unit mbar. For the calculation of the vapour pressure 

deficit (Δe = el - ea), the vapour pressure within the leaf (el) is assumed to equal the saturation 
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pressure, while the atmospheric vapour pressure (ea) is determined through the relative 

humidity of the surrounding air. 

 

l
Tflux gP

eE
⋅
Δ

=  (Eq. 3.48)

 

For the final determination of the total heat loss, the transpiration flux has to be transformed into 

a physical unit of KW m-2 using an approximation of the latent heat of vaporization (kJ mmol-1) 

according to NOBEL (1991, eq. 3.49). 
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Now, the total heat loss (disstot) for the currently estimated leaf temperature can be summed 

(eq. 3.50) by combining the results of the equations 3.39, 3.43 and 3.49. 

 

latsensradtot dissdissdissdiss ++=  (Eq. 3.50)

 

3.3.3.5 Net Primary Production 
The innermost core of the biological submodels of PROMET consists of the net photosynthesis 

model for C3 species by FARQUHAR, VON CAEMMERER AND BERRY (1980), including extensions 

and improvements developed by FALGE (1997) for the modelling of forest growth as well as 

adaptations to the simulation of C4 species applying a method after CHEN ET AL. (1994). 

 

3.3.3.5.1 Carboxylation Limitations 

The modelling of the net photosynthesis rate is based on the enzyme kinetics of Ribulose-1.5-

Biphosphate-Carboxylase-Oxigenase (RuBisCO). The concentration of the competitive gases 

CO2 and O2 is taken into account, while the relation of the concentration of Ribulose-1.5-

Biphosphate (RuBP) and the number of active RuBisCO enzymes is monitored. The stomatal 

conductance is modelled in dependence of the assimilation rate, the relative air humidity and 

the gradient of the CO2 concentration, applying an empirical function after BALL ET AL. (1987). 

This model was chosen for an implementation into PROMET, because it includes the explicit 

reaction of the assimilation rate on the CO2 concentration within the leaf (Ci). The internal CO2 

concentration again is connected through the stomata to the CO2 concentration of the 

atmosphere (Ca), which, besides the temperature, is the determining variable when the impact 

of climate change is assessed with a physically based model. 
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The rate of carboxylation is limited by two determinant situations. For low CO2 concentrations 

within the leaf, the fixation rate of RuBisCO and the concentration of CO2 and O2 determine the 

assimilation rate (wc), while for high CO2 concentrations the photosynthesis is limited by the rate 

of the electron transport or the rate of RuBP regeneration (wj) respectively (see section 1.5). 

The rate of net photosynthesis according to FARQUHAR ET AL. (1980) then reads as (eq. 3.51): 
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 (Eq. 3.51)

 

The term 0.5 x rd here represents the fraction of the dark respiration (rd) during daytime, which 

can best be described as the mitochondrial respiration. The symbol Γ* stands for the CO2 

compensation point, i.e. the assimilation rate where the oxygen production of the 

photosynthesis process exceeds the oxygen demand of the mitochondrial respiration. The CO2 

compensation point is calculated following FALGE (1997, eq. 3.52) in dependence of the 

maximum velocity of oxygenation (Vomax) and carboxylation (Vcmax) with O2 representing the 

internal oxygen concentration within the leaf and τ standing for a dimensionless factor that 

describes the substrate specifity: 
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By multiplying the numerator with a factor of 1000, the compensation point is converted from the 

physical unit of ml l-1 to µl l-1. 

The parameters rd, τ, Kc and Ko are temperature dependent and are all four described through 

an exponential Arrhenius-function (FARQUHAR AND WONG 1984, MEDLYN ET AL. 2002b, eq. 3.53): 
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The temperature, used here for the definition of the kinetic constants, is the leaf temperature 

from the current estimate for the latent heat flux (Tl,est), while the parameters rd25, τ25, Kc25 and 

Ko25 are holding the value of the corresponding Michaelis-Menten constants at 25 °C. Eard, Eaτ, 
Eac and Eao are representing the activation energies of the respective processes with the unit J 

mol -1, while the constant R stands for the gas constant with a value of 8.31 J K-1 mol-1. 

The competitive conversion of CO2 (carboxylation rate wc, eq. 3.54) and O2 (oxygenation rate wo, 

eq. 3.55) by RuBisCO under saturated RuBP conditions is modelled following FARQUHAR ET AL. 

(1980): 
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The temperature dependency of the maximum velocity of the carboxylation (Vcmax), which is 

needed for the calculation of wc and wo, is described as a complex Arrhenius-function (JOHNSON 

ET AL. 1942, MEDLYN ET AL. 2002a and b, eq. 3.56), mostly parallel to the other temperature 

dependent parameters, while the calculation of Vomax can be avoided through substitution (eq. 

3.55). 
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In equation 3.56, the variable Edvcmax stands for the deactivation energy of the process, while Δs 

is a term that describes the entropy in J K-1 mol-1. The general course of the correlation of the 

chemical processes in the leaf with the leaf temperature is illustrated in figure 3.27 for the 

Arrhenius-functions of the simple (fig. 3.27, left) and the complex type (fig. 3.27, right). 

 

 
 
Figure 3.27: Arrhenius-function of the simple type for the calculation of the temperature dependency of the Michaelis-Menten 
constant for Oxygen (left) and complex Arrhenius-function for the calculation of the maximum velocity of carboxylation for a range 
of common leaf temperatures (right). 
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If not enough RuBP is present, the photosynthesis in the model is limited by the rate of 

regeneration of RuBP, which is the case for CO2 saturated conditions in the mesophyll of the 

leaf. In this case, the rate of photosynthesis (pm) is smaller than the rate of RuBP conversion (wc 

+ wo). For the regeneration of one RuBP molecule, four electrons have to be transported for the 

provision of the needed chemical energy (see section 1.5.2, FARQUHAR AND VON CAEMMERER 

1982). The degree of the limitation due to the electron transport is accounted for in equation 

3.57. 
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⋅=  (Eq. 3.57)

 

Remembering equations 3.54 and 3.55, wj can also be described simplified as equation 3.58: 
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 (Eq. 3.58)

 

The modelling of C4 species here demands an extra treatment, for the C4 photosynthesis is 

supposed to be solely controlled by the PEPcarboxylase (CHEN ET AL. 1994, see section 

1.5.2.2). Therefore, the electron limited rate of carboxylation wj is determined according to CHEN 

ET AL. (1994) as (eq. 3.59) for all C4 crops: 
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The rate of leaf photosynthesis under saturated CO2 conditions (pm, eq. 3.61) is modelled in 

dependence of the absorbed photosynthetic active radiation (aPAR) and the temperature 

dependent rate of RuBP regeneration at saturated light and CO2 conditions (Pml, eq. 3.60). The 

temperature dependency of the potential rate of the RuBP regeneration is modelled using the 

complex Arrhenius-Function (eq. 3.60) with Jmax representing the maximum rate of the electron 

transport through the photo system II. 
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The light dependency of photosynthesis is well known. A well established (FALGE 1997, 

TENHUNEN ET AL. 1976) empiric equation after SMITH (1937) therefore is used (eq. 3.61), where 

α is the light use efficiency at saturated CO2, when no photorespiration takes place, featuring a 

physical unit of mol CO2 per mol photons, and aPAR is the absorbed photosynthetic radiation. 

 

2

22

1
ml

m

P
aPAR

aPARp
⋅

+

⋅
=

α
α

 (Eq. 3.61)

 

The radiation input here has to be converted from W m-2 to a quantum flux density of µmol 

photons of PAR m-2 s-1. This is accomplished by using a simple conversion factor of 4.56 µmol 

per Joule PAR (LARCHER 1994, GOUDRIAAN AND VAN LAAR 1994, YIN AND VAN LAAR 2005). 

 

3.3.3.5.2 CO2 Diffusion 

The last variable that is needed, before the assimilation rate that corresponds with the currently 

estimated leaf temperature can be computed, is the concentration of CO2 at the location where 

the carboxylation takes place, i.e. within the leaf. A fixed ratio between atmospheric and 

intercellular CO2 could be applicable (RODRIGUEZ ET AL. 1999), because observations have 

shown that under a wide range of conditions the ratio stays constant at about 0.7 for C3 and 

about 0.4 for C4 plants (GOUDRIAAN AND VAN LAAR 1978, WONG ET AL. 1979). Later is has been 

found that the Ci/Ca ratio depends on the air-to-leaf water vapour deficit (COLLATZ ET AL. 1992, 

LEUNING 1995, ZHANG AND NOBEL 1996). Analytical solutions are available for the derivation of 

the Ci/Ca ratio (COLLATZ ET AL. 1992, BALDOCCHI 1994), but they are averted here in favour of a 

simplified assumption following YIN AND VAN LAAR (2005, eq. 3.62) that derives the internal CO2 

concentration as a linear function of the vapour pressure deficit and the gradient of 

concentration between the leaf and the atmosphere. 
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Here el and ea represent the vapour pressure within the leaf and in the atmosphere respectively, 

while c0 and c1 are empirical input coefficients. The adjustment of the input coefficients was 

derived by YIN AND VAN LAAR (2005) from observed data by MORISON AND GIFFORD (1983). The 

default value for c0 is 0.14 for both C3 and C4 species, while c1 is initialised with a value of 0.116 

for C3 and of 0.195 for C4 species. Ci derived from equation 3.62 is used as a first guess. The 

internal CO2 concentration is needed to determine, whether the dominating limitation is due to 
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the Rubisco activity or to the electron transport, that is to say if either wc or wj applies. The true 

CO2 concentration cannot be determined until the actual net photosynthesis has been 

computed. For the calculation of the stomatal conductance for H2O (gs), a widely recognized 

model developed by BALL ET AL. (1987) is applied (eq. 3.63). There, gmin is the minimum 

conductance, i.e. the conductance of the leaf cuticle when the stomata are closed, gfac is the 

BALL ET AL. (1987) coefficient of stomatal conductance that describes the sensitivity of the 

stomatal reaction upon environmental factors, np is the net rate of carbon fixation, rh is the 

relative humidity of the surrounding air and Cs is the concentration of CO2 at the leaf surface. 

 

( )
s

d
s C

rhrnpgfacgg ⋅⋅+⋅⋅+= 5.01000
min  (Eq. 3.63)

 

Assuming a molecular diffusion between leaf surface and atmosphere within the boundary layer, 

the CO2 concentration at the leaf surface can be derived from Fick’s diffusion law (eq. 3.64). 

 

a
as g

npCC 10006.1 ⋅⋅−=  (Eq. 3.64)

 

The denominator ga here is the conductivity of the boundary layer calculated after NOBEL (1991, 

see section 3.3.3.4.3, eq. 3.44), the factor of 1000 compensates the different physical units 

between np and ga (mmol to µmol), while the factor 1.6 results from the difference of the 

diffusion behaviour of H2O and CO2 (FARQUHAR AND SHARKEY 1982). 

 

 

3.3.3.5.3 Analytical Solution 

The derivation of the photosynthesis parameters introduced above finally leads to a system of 

equations that consists of four equations with four unknowns, as there are the net 

photosynthesis (np), the concentration of CO2 at the leaf surface (Cs), the stomatal conductance 

(gs) and the internal concentration of CO2 (Ci). This system of equations could be solved by 

iteration (FALGE 1997), but since this computation already has to be performed successively for 

every iteration step for the sunlit and the shaded leaves of two vegetation layers and again for 

each time step (see section 3.3.3.4), an analytical solution following BALDOCCHI (1994) was 

favoured here in order to save computing time. According to BALDOCCHI (1994), the equation 

describing the net carbon fixation (eq. 3.51) can be reconverted to equation 3.65 by applying the 

auxiliary variables a (µmol m-2 leaf area s-1), b (µl l-1), d (µl l-1) and e (-), which are initialized 

according to table 3.04. 
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The auxiliary variables are holding values that are initialized according to table 3.04 (left) or to 

table 3.04 (right) respectively, depending on the conditions that are currently limiting the carbon 

fixation rate. If the photosynthesis is currently limited by RuBisCO or the CO2/O2 concentration, 

wc will be lower than wj. If the rate of the electron transport for the regeneration of RuBP is 

limiting the carbon fixation rate, wj will be smaller than wc. 

 
Table 3.04: Initialisation of the auxiliary variables applied to the analytical solution of the photosynthesis related equation system, 
depending on the nature of the limitation of the carbon fixation rate. 
 

If wc < wj (CO2 is limiting) If wj < wc (Electron transport is limiting) 

maxVca =  mpa ⋅= 4  

( )oc KOKb /1 2+⋅=  
*8 Γ⋅=b  

*Γ=d  
*Γ=d  

1=e  4=e  

 

For the solution of this equation system, two different derivations of the internal CO2 

concentration are necessary. The first can be calculated by applying Fick’s diffusion law to the 

diffusion from the leaf surface into the mesophyll as well, so that equation 3.64 is converted to 

equation 3.66: 

 

s
si g

npCC 10006.1 ⋅⋅
−=  (Eq. 3.66)

 

If the equations for the determination of gs (eq. 3.63) and Cs (eq. 3.64) then are inserted into 

equation 3.64, the second computation for Ci can be derived (eq. 3.67) with the assistance of 

another set of auxiliary variables (tab. 3.05, bottom). 
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This expression for the internal CO2 concentration (eq. 3.67) is equated with equation 3.51, 

which was introduced at the beginning of this section, and then transformed until a cubic 

equation for np can be derived (eq. 3.68). 
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With the assistance of the auxiliary variables determined in table 3.05 (bottom), another set of 

auxiliary variables (o1-4) can be initialized (tab. 3.05, top). 

 
Table 3.05: Initialization of the auxiliary variables o1-4 applied to the solution of the cubic equation system for the determination of 
the net photosynthesis rate and initialization of the auxiliary variables kappa, beta, gamma and lambda for the calculation of the 
internal CO2 concentration. 
 

κ⋅= eo1  

( ) κβλ ⋅⋅⋅−−⋅+⋅= dreaebo 5.02  

( ) ( ) βγλ ⋅⋅⋅−−⋅⋅+⋅⋅⋅+⋅= dad reaCbrbdao 5.05.03  

( ) ( ) add Crearbdao ⋅⋅⋅⋅−−⋅⋅⋅+⋅= γγ 5.05.04  
 
With: 

( )agggfacrh /6.1/11600 min
2 +⋅−⋅=κ  

( ) 6.1/5.0160026.1/1600 2
min gfacrhrgggfacrhgC daaa ⋅⋅⋅⋅−−⋅−⋅⋅⋅⋅=β  

gfacrhgrggC adaa ⋅⋅⋅⋅⋅+⋅⋅= 5.01000minγ  

( )min6.1/1600 ggfacrhga −⋅⋅⋅=λ  

 

Following a solution scheme for cubic equations after BRONSTEIN AND SEMENDJAJEW (1984), the 

equation is transformed to the normal form of a cubic equation through a division by o1 (eq. 

3.69) and the help of the auxiliary variables r, s, and t (tab. 3.06). 

 

023 =+⋅+⋅+ tsnprnpnp  (Eq. 3.69)

 
Table 3.06: Initialisation of the auxiliary variables p, q, r, s, t, y and dis applied to the solution of the cubic equation for np. 
 

12 / oor =   

13 / oos =  ( ) 3/3 2rsp −⋅=  

14 / oot =  tsrrq +⋅−⋅= 3/27/2 3
 

( ) ( 23 2/3/ qpdis += )  3/rnpy +=  

 

Via substitution with the auxiliary variables y, p and q (tab. 3.06, right), a reduced equation is 

generated that can be written as equation 3.70: 

 

03 =+⋅+ qpyy  (Eq. 3.70)
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In dependence of the algebraic sign of the discriminant (dis, tab. 3.06, left) and the auxiliary 

variable p, either one real and two conjugated complex solutions, or three real solutions will be 

available, which can be computed with the help of the auxiliary variables v1 and v2 (tab. 3.07). 

 
Table 3.07: Initialisation of the auxiliary variables v1 and v2 applied to the solution of the reduced equation for np. 
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If p is larger than zero, only one real solution for the net photosynthesis rate exists (eq. 3.71). 
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sinh = Sinus hyperbolicus 

 

If p is smaller than zero and the discriminant (dis) is larger than zero, there also is only one real 

solution for np (eq. 3.72). 
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(Eq. 3.72)

cosh = Cosinus hyperbolicus 

 

But, if p is smaller than zero, while the discriminant is zero or above, the equation system 

results in three real solutions for the rate of the net photosynthesis (np1-3, eqs. 3.73a-c). 
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acos = Arcus Cosinus 
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The most complex solution therefore at least returns three different results. The subsequent 

decision tree according to FALGE (1997) will lead to the correct rate of net photosynthesis. 

 

If κ is larger than zero: 

• If all three solutions (np1-3) are positive, the smallest solution is the correct one. 

• If only one of the solutions is negative, this will be the one to select. 

• For all other cases, the greatest solution will be the right one. 

 

If κ is smaller than zero: 

• The third real solution (np3) will always be the correct one. 

 

For the case that κ exactly equals zero, the equation system for the net rate of carbon fixation is 

reduced from a cubic to a quadratic equation system (eq. 3.74). 

 

0432
2 =+⋅+⋅ oonponp  (Eq. 3.74)

 

For this occurrence, the auxiliary variables o2-4 (tab. 3.08, top) are initialised slightly different 

from the ones that are used for the solution of the cubic equation (tab. 3.05, top). 

 
Table 3.08: Initialization of the auxiliary variables o2-4 applied to the solution of the quadratic equation system for the 
determination of the net photosynthesis rate. 
 

βλ ⋅+⋅= ebo2  

( ) ( ) βγγλ ⋅⋅⋅−−⋅⋅+⋅+⋅⋅⋅+⋅= dad reaCebrbdao 5.05.03  

( ) ( ) add Crearbdao ⋅⋅⋅⋅−−⋅⋅⋅+⋅= γγ 5.05.04  
 
With: 

6.1/5.016001600 2
min gfacrhrgC da ⋅⋅⋅⋅−⋅⋅−=β  

gfacrhgrggC adaa ⋅⋅⋅⋅⋅+⋅⋅= 5.01000minγ  

ag⋅=1600λ  

 

The reduced quadratic equation for np (eq. 3.74) has two possible solutions (eqs. 3.75a and b), 

from which the second (np2) is the correct one. 
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When np finally is determined, the other unknowns can subsequently be calculated. By inserting 

the result for np into equation 3.64, Cs is derived. From np and Cs, the stomatal conductance gs 

can be derived through equation 3.63. In a last step, the internal concentration of CO2 (Ci) is 

computed by inserting np, Cs and gs into equation 3.66. At the end of the calculation it becomes 

evident, whether the first guess for the internal CO2 concentration drawn from equation 3.62 had 

been correct. If it turns out that the first guess was wrong to such a degree that the dominating 

limitation is other than estimated, the calculation has to be repeated with the changed 

initialisation set for the auxiliary variables a, b d and e according to table 3.04. 

Figure 3.28 shows the daily course of the modelled net primary production and the stomatal 

conductivity of a deciduous forest. The model result was extracted from the middle of the Upper 

Danube catchment (459 m a.s.l.) for a randomly chosen warm spring day (7th of May 2003). The 

pictured time of the year is the most active growth period for the deciduous forest, during which 

the trees are rapidly developing their full leaf area. The rates of the net primary production 

therefore reach very high values of about 5.7 µmol m-2 s-1 at noontime. The stomatal 

conductivity more or less traces the course of the NPP, although during the afternoon hours, 

when the temperatures and the radiation input are high, the conductivity is slightly reduced. 

During night time, the photosynthetic activity stops, since the processes involved are only active 

in the presence of light (see section 1.5.1 and 1.5.2). In the absence of radiation, the NPP 

becomes slightly negative due to respiration processes. 
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Figure 3.28: Exemplary model results for the photosynthetic activity of a deciduous forest on the 7th of May 2003, indicating the 
parallel development of the daily course of net primary production and the directly related stomatal conductivity. The graphs show 
model results that were averaged for the sunlit and the shaded parts of the two canopy layers. 
 

The stomatal conductance displayed here, is the stomatal conductance that is determined 

through the NPP, assuming an abundant water supply. It therefore can more adequately be 

termed the “potential” stomatal conductivity, while the overall conductivity of the leaf also 
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depends on the resistance of the boundary layer (see section 3.3.3.4.2) and the soil water 

supply (see the following section). 

 

3.3.3.5.4 Stomatal Conductance 

It was outlined in section 3.3.3.5.2 through equation 3.62 that the stomatal conductivity depends 

on an ensemble of conditions. A low rate of the net primary production will lead to a low 

stomatal conductivity. Also a low relative humidity at the leaf surface will cause a closing of the 

stomata (BALL ET AL. 1987). This is all due to the general paradox of transpiration: 

Every plant cell requires a minimum amount of H2O for the maintenance of the cell turgor. The 

plant therefore has to reduce the loss of humidity to the absolute minimum, while at the same 

time the gas exchange with respect to CO2 has to be maintained at an optimal rate (TAIZ AND 

ZEIGER 2000). So, if the energy balance or the CO2 supply does not allow for an effective 

carboxylation, the stomata will remain closed. High CO2 concentrations at the leaf surface will 

also result in a reduced conductivity, simply because it is no longer necessary for the plant to 

open the stomata as long as the CO2 concentration already allows for an effective 

photosynthesis. The competitive exchange of CO2 and H2O therefore is reduced under elevated 

CO2 conditions (SAGE 1994, WULLSCHLEGER ET AL. 2002). The opening of the stomata is caused 

by an increased cell turgor within the so called guard cells, a pair of which each stoma is 

equipped with (HOPKINS 1999, fig. 3.29). 

 

 
 
Figure 3.29: The dependence of stomatal aperture on the cell water content is represented in the model through a direct linkage 
with the soil water storage of the rooted soil layers. 
 

As long as ideal conditions favour the carboxylation, a continuous stream of water vapour is 

extracted from the leaf. If the cell water household meets its lower limit, the stomata will not be 

able to open any more and the conductivity is reduced to the conductivity of the cuticle, i.e. the 

minimal stomatal conductivity (gmin). Another parameter of the numerator of equation 3.62, 

which is directly scaling the stomatal conductivity, is the stomatal sensitivity coefficient gfac 
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(BALL ET AL. 1987). In PROMET, the cell water household is represented by a direct linkage 

between the gfac and the extractable soil water storage of each soil layer that is connected to 

the root system of the plant (fig. 3.29). 

Before the assimilation rate can be calculated, the availability of soil moisture is assessed. The 

root length densities (cm cm-3, see section 3.3.3.6.4) for each soil layer are multiplied with the 

thickness of their corresponding soil layer (cm), so that the absolute root length (cm) per soil 

layer is available. In a second step, the percentage of the root length per soil layer is calculated 

in relation to the absolute root length of the soil profile. For each of the four soil layers, the 

inhibition (inhi) due to the soil water supply is assessed, according to the percentage of root 

length within each layer (rli). The relation of the leaf water potential to the stomatal resistance 

can be described through a loading function following JARVIS AND MORISON (1981, eq. 3.76) that 

only is applied for potential differences that return a solution between zero and 1. In equation 

3.76, the symbol Ψi is the suction in the current soil layer, Ψ0 is the threshold of suction that 

initiates the inhibition, while aΨ and bΨ are scaling parameters. 

 

( )[ ]{ ΨΨ }+⋅Ψ−+Ψ⋅= barrlinh riii 0  (Eq. 3.76)

 

Water transport from the soil into the xylem of the plant is encouraged as soon as the suction of 

the stream of transpiration exceeds the soil potential. According to BISCOE ET AL. (1976), the 

rate of transpiration is directly related to the difference of leaf and soil potential, but the potential 

difference is not zero, when no transpiration takes place. This mainly is due to the resistance of 

the roots, which is represented in equation 3.76 through the parameter rr. The resistance of the 

transition from soil to the root was assumed with 0.4 MPa, while the critical threshold (Ψ0) was 

set to 1 MPa for all vegetation types. According to investigations from BOYER (1976), the 

parameter aΨ was adjusted to -2 for cereals, to -1.25 for maize, to -1 for grassland and to -0.94 

for forest vegetation types, while the offset bΨ was assumed with a value of 1 for all crops. If the 

sum of suction power and root potential does not exceed the threshold, the inhibition is set to 

one, so that no inhibition is modelled for the concerned soil layer. The stomatal sensitivity 

coefficient gfac then is reduced according to the weighted inhibition for all of the four soil layers 

(eq. 3.77). 
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Of course, the inhibition due to the soil moisture storage can only scale the stomatal 

conductivity within the boundaries that are given by the other parameters from equation 3.62 

and which are also steering the stomatal aperture. But in extreme cases, where none of the 
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rooted soil layers is able to yield water, it can cause a total closing of the stomata, reducing the 

conductivity to the permeability of the cuticle. 

 

 
 
Figure 3.30: Model soil profile indicating the root distribution of a fully developed deciduous forest and the soil moisture situation of 
four soil layers as well as the precipitation during a dry period of the summer of 2003. For this example, the inhibition of the 
stomatal conductance due to the soil moisture is determined through the hydrological dynamics in the soil layer 3. 
 

Figure 3.30 shows exemplary model results for the inhibition of the stomatal conductance due to 

the soil moisture induced gfac-reduction. During the pictured period, ranging from the 19th of 

September to the 5th of October 2003, the displayed root system of the deciduous forest is fully 

developed. 41 % of the total root mass is located at a soil depth that is assigned to the soil layer 

4. This soil layer is completely dry, so that nearly half of the root system cannot contribute to the 

water supply of the tree. A small part (21 %) of the root system is located in the soil layers 1 and 

2, while the remaining 38 % are found in soil layer 3. All three upper rooted soil layers are 

depleted, gradually increasing the inhibition factor. Due to the root distribution, the inhibition is 

mainly determined through the moisture of the third soil layer. In the middle of the pictured 

period, a small rainfall event causes a jump of the soil moisture in the two upper soil layers, but 

since the precipitation sum is quite small, already the third soil layer does not profit from it. 

Since this is the layer, which in this case determines the inhibition, the inhibition factor stays 

more or less constant at a high level of 65 %. Only when, at the beginning of October, several 

successive days with precipitation are refilling the soil water storage of the upper layers, the 

inhibition factor is reduced to zero and the water uptake continues freely. 
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3.3.3.6 Plant Growth 
The newly fixed carbon that has been accumulated from the gross primary production of the 

shaded and the sunlit leaves of both vegetation layers has to be transformed into biomass and 

must be distributed to the different parts of the plant. Thus, the physical properties of the canopy 

are defined that form the basis for the calculations in the next time step. 

 

3.3.3.6.1 Phenology 

The phenological behaviour of the modelled vegetation categories greatly influences the 

seasonal variation of the water balance related variables. By determining the stages of major 

growth activity on one hand and the phases of maturity, where biomass and transpiration 

activity are subdued, on the other, the annual course of evapotranspiration is controlled. The 

most determinant phenological consequence therefore is the duration of the active growing 

period or the phases of winterly dormancy respectively. 

 

3.3.3.6.1.1 Crop Phenology 

In PROMET, the phenological phases of the agricultural crops are discerned into eleven stages 

that are following the model of the major BBCH growth stages (tab. 3.09, BIOLOGISCHE 

BUNDESANSTALT FÜR LAND- UND FORSTWIRTSCHAFT 1997). 

 
Table 3.09: Phenological stages in PROMET and their relation to the international BBCH 
code. 
 

Stage Growth Phase  BBCH 

9 vegetative PREGERMINATION ≈ 00-03 
10 vegetative GERMINATION ≈ 05 

0 vegetative EMERGENCE ≈ 09 
1 vegetative LEAF_DEVELOPMENT ≈ 10-19 
2 vegetative SIDESHOOTS_DEVELOPMENT ≈ 20-29 
3 vegetative STEM_ELONGATION ≈ 30-39 
4 vegetative HARVESTABLE_VEGETATIVE_PARTS ≈ 40-49 
5 generative INFLORESCENCE ≈ 50-59 
6 generative FLOWERING ≈ 60-69 
7 generative FRUIT_DEVELOPMENT ≈ 70-77 
8 generative MATURITY ≈ 83-99 

 

The general possibility for the start of plant growth is given, when the model time reaches the 

predefined sowing day of a crop. The phenological phase is set to “pregermination” and a flag 

that signals dynamic growth activity is set, enabling the biologically related submodels. The 

sowing depth is assumed with 3 cm, suiting the majority of the modelled crops (ITADA 2005, 

LÜBKE ENTRUP AND ÖHMICHEN 2000, GEISLER 1980, FISCHBECK ET AL. 1999). The uppermost soil 

compartment is modelled with a thickness of 5 cm and therefore the conditions within that layer 

are determining the germination. If the soil temperature in the first soil layer is above the 

freezing point and at the same time the soil moisture exceeds the wilting point, the germination 
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is initiated. From then on, the average daily thermal time (dTTavg, eq. 3.78) is observed in 

dependence of the air temperature at model day i and model hour j (Ta,i,j) and of the cultivar 

specific base temperature (Tb). 
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(Eq. 3.78)

 

The leaves are starting to penetrate the surface, when a cultivar specific heat threshold, 

assumed for the emergence, is exceeded. The determination and the progress of the following 

phenological phases is modelled in dependence of the air temperature. For all temperature 

related decisions, a set of cultivar specific cardinal temperatures Tb (base), To (optimum) and Tc 

(ceiling) is used. In PROMET, there exist three combinations of absolute values for the cardinal 

temperatures for each crop type. The application of the different temperature sets is variable 

and depends on the current growth stage. The cardinal temperatures on one hand are used for 

the restriction of sub- or supraoptimal temperatures, where no development is possible, but also 

determine the calculation of the hourly temperature effect that is modelled using a response 

function (eq. 3.79) following YIN AND VAN LAAR (2005). 
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The hourly temperature effect (hTeff) is calculated with Ta,i,j representing the current hourly air 

temperature and ci the temperature response curvature coefficient. Due to lack of more precise 

data, a value of 1.0 is considered to be applicable for the curvature coefficient (YAN AND HUNT 

1999). 

 

 
Figure 3.31: Exemplary response curve of the hourly temperature effect for three different sets of cardinal temperatures that apply 
to winter wheat crops. 
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Equation 3.79 results in a bell-shaped curve that varies between 0 and 1 and reaches its 

maximum when the current air temperature equals the optimum temperature of the currently 

modelled crop (fig. 3.31). If the hourly temperature effect is greater than zero, the hourly thermal 

time (hTT) is defined as (eq. 3.80): 

 

bjia TThTT −= ,,  (Eq. 3.80)
 

As long as the modelled crop is within the vegetative phase and has not reached the stage of 

inflorescence, the hourly rate of vernalisation (Vnh) is calculated for the winter crops, parallel to 

the calculation of the hourly temperature effect, but with a different set of boundary 

temperatures (VnTb, VnTo, VnTc) that apply to the vernalisation habits of the cultivar (eq. 3.81). 
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At the end of every modelled day, the temperature effect, the hourly thermal time as well as the 

vernalisation rate are averaged for the actual day. If the average vernalisation rate is above 

zero, the day is considered as an effective vernalisation day (Vdeff). The effective vernalisation 

days again are used to compute the overall vernalisation effect, which increases with the 

number of accumulated vernalisation days (eq. 3.82, fig. 3.32, left). 
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The length of the day, and with that the possible duration of energy input from the sun, 

influences the speed of development differently for specific crop types. For so called “short day” 

plants, which are crops that are supposed to switch from vegetative to generative growth under 

conditions with short day lengths like potato (solanum tuberosum), and for day neutral plants 

like maize (zea mays), the light effect is assumed to be constant (HOPKINS 1995). For all other 

“long day” crop types it is modelled explicitly. 

The astronomic length of the day (LOD) or the daily photoperiod respectively (eq. 3.84) is 

determined after YIN AND VAN LAAR (2005). First the declination of the sun (Ϩ) has to be 

calculated in dependence of the day of year (DOY, eq. 3.83). 
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The daily photoperiod (Dlp) then is determined by the current latitude (φ) and the twilight angle 

(α*, eq. 3.84), which was assumed with -2° according to YIN AND VAN LAAR (2005). 
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The light effect curve is calculated using a method that follows STRECK ET AL. (2003) with psen 

representing the sensitivity of the cultivar to the LOD and Mop describing the minimal optimum 

day length (eq. 3.85). The sensitivity parameter was assumed with 0.3, representing an average 

value for different species of winter cereals (STRECK ET AL. 2003). 

 
( )oplpsen MDp

eff eL −⋅−−=1  (Eq. 3.85)

 

The light effect increases with longer photoperiods, but shows saturation at day lengths of 

twelve hours and above (fig. 3.32, right). 
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Figure 3.32: Dependence of the vernalisation effect on the absolute number of effective vernalisation days (left). Exemplary light 
effect for winter wheat in dependence of the photoperiodic day length (right). 
 

Finally, the daily development rate (ωi) is determined, discerned into vegetative and generative 

phases of growth (eq. 3.86a and b) and limited by a cultivar specific maximum development rate 

(ωi,max): 

 
Vegetative growth Generative growth 

 

effeffeffii VnLhT ⋅⋅⋅= max,ωω  effii hT⋅= max,ωω  (Eq. 3.86a/b)
 

For the progress of the phenological stages, the daily development rate is accumulated until a 

cultivar specific threshold is surpassed and the transition to the next growth stage is initiated 

(fig. 3.33). 
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Figure 3.33: Exemplary curve of the modelled phenologic development for the wheat test site “Hofanger” (see section 4.1) during 
the summer months of the season 2004, indicating the accumulation of the development rate and the thresholds that initiate the 
transition to the next phenological stage. 
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Figure 3.33 shows an exemplary course of the modelled accumulated development rate of a 

wheat field in combination with the corresponding phase transitions. It becomes evident that the 

transition of the growth stages accelerates during the summer months, only to slow down again 

after the growth activity has switched from vegetative to generative growth, i.e. after the 

development of an inflorescence. 

 

3.3.3.6.1.2 Grassland and Natural Vegetation Phenology 

The phenological stages of the natural vegetation categories as well as those of agricultural 

grasslands are modelled analogously to the phenological development of the arable land. Since 

grassland is considered to be a perennial land cover, there is no sowing date defined. When the 

agricultural grassland is cut, the growth stage is reset to the stage of “leaf development” and the 

accumulation of the daily development rate starts anew. The phenological development of 

natural grassland is reset during wintertime to prepare the initial conditions for the next season. 

 

3.3.3.6.1.3 Forest Phenology 

In PROMET, a temperature based approach is used to simulate both, the spring activation that 

signalizes the beginning of the growing season as well as the autumnal defoliation that ends the 

vegetation period (HANK AND MAUSER 2007). A simplified version of the EXP55 model by 

CANNEL AND SMITH (1983) LN55, modified, verified and parameterized by MENZEL (1997), was 

used for the reproduction of the start of “leaf emergence” for deciduous trees as well as for the 

incidence of “mayshoot” in case of the coniferous trees. For the deciduous trees, the discard of 

the leaves in autumn is modelled in dependence of frost occurrence according to SCHNEIDER 

(1999). 

 

3.3.3.6.1.3.1 Deciduous Trees 

The model implicitly divides the winterly dormancy of trees into two phases. First, the 

endogenous dormancy that is determined by inner restrictions has to be neutralized by a 
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winterly chill impulse. If the inner dormancy is resolved, the start of growth is secondarily 

inhibited by external conditions, resulting in an exogenously determined dormancy. The chill 

impulse, which is essential for the neutralization of the endogenous dormancy, is calculated by 

accumulating the chill days (CD) that occur when the daily mean temperature (DMT) falls below 

a plant specific temperature threshold (tbCD, eq. 3.87). 
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The term d1 is marking the start day of the accumulation, while d is representing the currently 

modelled day. The possible accumulation of chill days starts on the first of November (d1) and 

continues until the necessary amount of chill days (CDmin) is accumulated. Since fagus sylvatica 

(beech) with an area percentage of 39.24 % is the most common deciduous tree in the alpine 

foreland (LWF 2004, see appendix A.4), it was assumed that the regional deciduous forest is 

largely represented by that tree type. Therefore, the threshold value (tbCD) of 9 °C that applies 

to beech trees (tab. 3.10) was chosen for the calculation of the chill days. The actual amount of 

temperature below the threshold is unessential, since each chill day is weighted equally. For 

beech trees, a sum of 83 chill days is considered to be the critical threshold that ends the 

endogenous dormancy (tab. 3.10). From the day, when the inner dormancy is overcome, the 

daily mean temperature is accumulated in form of thermal degree days (TDD, eq. 3.88). 
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In equation 3.88, the term Ta,i holds the daily mean air temperature on day i while Tb represents 

the plant specific base temperature assumed with 6 °C for beech trees (tab. 3.10). At the same 

time, the chill days are further accumulated until they either reach an assumed maximum 

amount of chill days (CDmax) or the critical temperature sum (TTcrit) is surmounted by the thermal 

degree days (eq. 3.89). 
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If the thermal degree days sum up to a value that exceeds the calculated critical emergence 

temperature, the growing season is activated. The TDDs that are necessary to overcome the 

exogenous dormancy, decrease with an increasing number of accumulated chill days (eq. 3.90), 
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so that the threshold will become lower, the longer it takes for the forest to reach the critical 

temperature sum and the more chill days occur during that time (fig. 3.34, left). 

 

( )CDbaTTcrit ln⋅+=  (Eq. 3.90)
 

The parameters a and b are plant specific and are assumed for fagus sylvatica with a = 

1708.4645 and b = -312.0680 (tab. 3.10). If the temperature threshold definitely is not 

exceeded, the leaf emergence is enforced after a maximum amount of chill days has been 

accumulated (CDmax). 

The reduction of the critical temperature threshold depends on the tree type, but the 

parameterization for beech trees seems to represent an average course of the function 

compared to other regional trees (fig. 3.34, left). An exemplary model run for a deciduous forest 

is shown in figure 3.34 (right). The accumulation of the chill days starts at the beginning of 

November. At the 22nd of January, the minimum sum of chill days is already surpassed and the 

endogenous dormancy is replaced by the exogenous dormancy. While the critical emergence 

temperature decreases with the further accumulating chill days, the temperature starts to sum 

up from the 3rd of March onwards, when the average air temperature surpasses the base 

temperature of 6 °C for the first time in the year. The graphs finally meet at the 30th of April, 

causing the leaf emergence to be initiated. 

 

 
Figure 3.34: Left: Critical temperature sum for the leaf emergence (TTcrit) of different deciduous tree types. Right: Example of 
modelled leaf emergence for a deciduous forest in the East of the Upper Danube Basin indicating the variables involved (model 
year 1998, 467 m a.s.l.). 

 
The defoliation at the end of the growing season is modelled using an approach that depends 

on the occurrence of consecutive frost events (SCHNEIDER 1999). From the 1st of September on, 

the minimum day temperatures are logged. If the minimum day temperature falls below zero on 

consecutive days and accumulates to a frost sum of -3.0 °C, the defoliation is initialized, 

resulting in a rapid decrease of the leaf biomass. If the accumulation of the frost sum is 

interrupted by a warmer day with no frost occurring, the frost sum is reset to zero. The latest 

possible day for the defoliation is the day of year 334, i.e. the 30th of November (MENZEL 1997). 
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Figure 3.35: Example of modelled defoliation for a deciduous forest in the East of the Upper Danube Basin (model year 1987, 
467 m a.s.l.) showing hourly values of air temperature and the resulting frost sum as well as the critical boundaries of 0 °C for the 
air temperature (dashed) and -3.0 °C for the frost sum (solid). 

 

Figure 3.35 pictures an exemplary course for the accumulation of frost temperatures. Short frost 

events at the beginning and middle of October do not lead to a defoliation of the trees, as long 

as they do not penetrate the critical frost sum of -3.0 °C. Two days with consecutive frost 

events, falling well below the freezing point, finally induce the discard of the leaves of the 

exemplary forest on the 7th of November (fig. 3.35). 

 

3.3.3.6.1.3.2 Coniferous Trees 

Coniferous trees in the model are parameterized according to the requirements of picea abies 

(spruce), because with an area percentage of 65.06 % (LWF 2004, see appendix A.4) they 

represent the predominant coniferous tree type in the Upper Danube Basin. 

 
Table 3.10: Parameters used for the description of the phenological behaviour of deciduous 
and coniferous trees (MENZEL 1997). 
 

 Deciduous (fagus sylvatica) Coniferous (picea abies) 
d1 ( DOY ) 305 305 
tbCD ( °C ) 009 009 

tb ( °C ) 006 005 
a ( - ) 1708.4645 1615.5578 
b ( - ) -0312.0680 -0247.0063 

CDmin ( d ) 083 076 
CDmax ( d ) 204 244 

 

Spruce trees are an all season vegetation type that does not discard its needles during 

wintertime. But the start of the growth activity in spring is characterized by a sudden increase of 

the leaf/needle area, if the external conditions are favourable. The incidence of this phenological 

shift is modelled analogously to the leaf emergence of deciduous trees, but with a parameter set 

that meets the behaviour of the spruce tree type (tab. 3.10, right, fig. 3.36, left). 
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Figure 3.36: Left: Critical temperature sum for the mayshoot (TTcrit) of different coniferous tree types. Right: Example of modelled 
mayshoot for a coniferous forest in the middle of the Upper Danube Basin indicating the variables involved (model year 1998, 
554 m a.s.l.). 

 

Figure 3.36 (right) indicates that the accumulated chill days for an exemplary coniferous site 

already surpass the threshold for the neutralization of the internal dormancy on the 20th of 

January of the model year 1998. Still the temperatures are low so that the accumulation of 

thermal degree days does not commence until the 13th of February. A late snow event during 

March even stops the TDDs from further development, while the chill days keep accumulating 

and contribute to the descent of the critical temperature threshold. Rising air temperatures, from 

the middle of April onwards, finally lead to a rapid development of the TDDs and to an initiation 

of mayshoot on the 8th of May 1998. 

 

3.3.3.6.2 Carbon Allocation 

The photosynthesis module, as described in section 3.3.3.5, simulates the amount of fixed 

carbon for a time step in form of the net primary production (NPP) for one square metre of leaf 

area. The absolute net primary production of a plant though is determined through the amount 

of carbon that is oxygenated due to respiration processes. The respiration again is determined 

by the overall biomass that has to be maintained. Therefore, the rate of carbon fixation is 

exported from the photosynthesis routine in form of the gross primary production (GPP). Since 

the GPP is already calculated in a spatial unit (per square metre leaf area, see section 3.3.3.5), 

it can easily be extrapolated to the whole canopy and again to the whole landscape via the LAI. 

The extrapolation is done for the two modelled vegetation layers and their sunlit and shaded 

parts separately. Before the total amount of fixed carbon of the current time step is exported 

from the leaf gas exchange submodel, the four different rates of productivity are summed. 

The actual amount of newly available biomass though is determined by the net primary 

production (NPP), which again is the result of the GPP minus the amount of carbon that is 

continuously spent for the production of adenosine triphosphate (ATP) on one hand and for the 

maintenance of the cell structure the cell turgor or the turnover of organic structures on the other 

(HOPKINS 1999). An approach after JONES (1991, cited in ADIKU ET AL. 2006) is used for the 

estimation of the maintenance respiration (Rm, fig. 3.37) in dependence of the air temperature 
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(Ta), with km representing the maintenance respiration rate at 25 °C (assumed with 6 x 10-4) and 

bm standing for the maintenance respiration coefficient (assumed with 693 x 10-4, eq. 3.91). 
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mm ekR  (Eq. 3.91)

 
Figure 3.37: Maintenance respiration in dependence of the air 
temperature. 

 

 

In addition to the maintenance respiration, the efficiency of conversion (E) has to be accounted 

for. It is a fixed proportion of 25 % of the GPP (Pg) that is dedicated to the canopy gross 

respiration as proposed by MCCREE (1970). The residual is considered as the net primary 

production (Pn, eq. 3.92), after it has been converted from carbon to glucose (CH2O) in a last 

step, so that the NPP finally reads: 

 

( )( )totmgn BRP.EP ⋅−⋅⋅= 52  (Eq. 3.92)
 

In equation 3.92, the factor of 2.5 accounts for the conversion of carbon (molar mass = 12 g 

mol-1) to glucose (molar mass = 30 g mol-1), while Btot is the total biomass that has already been 

accumulated and now requires energy for the maintenance respiration. Of course, the dry 

biomass as observed in the field does not only consist of pure carbon or glucose respectively, 

but rather is a composition of proteins, cellulose, lipids, organic acids and minerals (PENNING DE 

VRIES ET AL. 1989, MOHREN 1987). 

 
Table 3.11: Divisors for the reduction of pure 
glucose to dry biomass (SCHNEIDER 1999). 
 

Plant part g Glucose per g Biomass
Leaf 1.60
Stem 1.54
Root 1.47
Grain 1.50

 

Thus, the net primary production has to be reduced, according to the percentages that can be 

allocated to the different plant parts. The demand of glucose for the production of dry biomass 

varies for the different organs of the plant and also for different kinds of plants. For PROMET, a 
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parameterization that is supposed to apply to most of the modelled landuse types is used (tab. 

3.11, SCHNEIDER 1999). 

The modelled amount of phytomass now has to be allocated to the different parts of the plant. 

This process is highly dependent on the growth stage and greatly influences the appearance of 

the plant and also its further development. A parameter set for each landuse type provides 

information on the allocation percentage of the different plant parts in dependence of the 

phenological phase. Figure 3.38 gives an example of the parameterization for winter wheat. The 

parameter sets for the other landuse categories are listed in the appendix (A.8.1 – 22). 
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Figure 3.38: Allocation of the distribution of the net primary production to the different plant parts in dependence of the 
phenological phase. Exemplary parameters for winter wheat. 
 

During the first phenological phases, the growth of the wheat root system requires all of the 

assimilated glucose. When the stand reaches the stage of emergence, the leaf development 

gains most of the productivity and the development of the stem commences. With phase 3 

(stem elongation, see tab. 3.09) the stem starts to shoot and soon requires most of the 

assimilated carbon (fig. 3.39). With the flowering (stage 6), a fruit is slowly developing until, 

during stage 9 (fruit development), 60 % of the total assimilate are concentrated within the 

grains. The growth stage dependent distribution of biomass to the different plant parts mostly 

follows the allocation percentages applied in the vegetation models CERES (HODGES AND 

RITCHIE 1991) or DSSAT (TSUIJ ET AL. 1994) for the agricultural landuse categories, while for the 

forested areas, the allocation is steered according to MOHREN (1987, 1994) for coniferous and 

following the model of KRAMER (1995) for deciduous trees. 

 

 
Figure 3.39: Modelled accumulation of biomass and distribution to the different plant parts in dependence of the phenological 
stage. Exemplary course of development for a winter wheat site during the growth season 2003/2004. 
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When the crop has reached the phenological stage of fruit development (stage 7), the leaf and 

stem biomass starts to decrease by a crop specific percentage per model hour (eq. 3.93). 

 

( )decleafleaf BBB −⋅= 1  (Eq. 3.93)
 

This accounts for the loss of leaves that are gradually turning brown during the ripening 

process. Analogously, the stem and the root biomass are reduced when the crop has exceeded 

the growth stage of maturity, accounting for the simulation of senescence. 

 

3.3.3.6.3 Aboveground Parameters 

The parameter, which is most intensively determining the assimilation capacity of the modelled 

plants, is the leaf area. It represents the absolute area that intercepts the sunlight and provides 

energy for all chemical processes in the plant cells. In PROMET, the leaf area is modelled in 

form of the green leaf area index (LAI), which is defined as half the developed area of green 

vegetation elements (leaf chlorophyll content higher than 15 μg cm-2) per unit of horizontal soil 

(PRIVETTE ET AL. 2001). The LAI in the model develops in dependence of the absolute 

phytomass that has been assigned to the leaves of the plant. It is assumed that a stable 

relationship exists between the dry leaf mass and the leaf area that accounts for the physical 

structure of the leaf (i.e. thickness, stability etc.). For the crops wheat and maize, this 

relationship could be derived from field measurements. Figure 3.40 (left) shows the reasonably 

stable relation (r² = 0.57) of measured LAI values and dry leaf biomass, which is the result of 

destructive field measurements for the wheat test site “Hofanger” in 2004 (see section 4.1.3). 

 

 
Figure 3.40: Derivation of the leaf mass per leaf area for winter wheat, based on field measurements of the vegetation period 
2004. Correlation of measured LAI with measured dry leaf mass (left) and course of the leaf mass area with increasing LAI values 
(right). 
 

Figure 3.40 (right) indicates, that the relative leaf mass area is not independent of the absolute 

LAI value. The larger the overall leaf area gets, the lower the leaf mass that has to be dedicated 

to the generation of the leaf area becomes. However, the relation of LMA to LAI seems to 

stabilize for LAI values that are larger than three. Due to lack of data for the other landuse 
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categories, besides wheat and maize, the LMA for each crop (LMAc) was assumed to be stable 

for the whole growing period. The actual green leaf area therefore is modelled as (eq. 3.94): 

 

c

leaf

LMA
B

LAI =  (Eq. 3.94)

 

The mapping of LAI values with a stable LMA though seemed not to be appropriate for 

perennial landuse categories that are not harvested or cut in the course of the year and do not 

discard their leaves respectively. Those are landuse categories like the natural grasslands 

(natural, alpine) as well as coniferous forest. The leaf area for those categories is determined 

using the initialisation function in dependence of the DOY and the phenological stage, as 

described in section 3.3.3.1, with respect to the current average annual air temperature of the 

modelled proxel (section 3.3.3.1, eqs. 3.28 – 3.31). In the case of coniferous forest, the day 

when the leaf area starts to increase (dincstart), is determined through the incidence of mayshoot 

that tends to happen later in the year for colder regions of higher elevation (fig. 3.41). 
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Figure 3.41: Courses of modelled leaf area values for coniferous forest depending on the annual mean air temperature as well as 
on the incidence of mayshoot. 
 

For the description of the aboveground appearance of the plants and for the calculation of the 

interaction of plant and atmosphere (see section 3.3.2), the absolute height of the canopy (Hc) is 

an important variable, which is determined as a linear function of the leaf area (eq. 3.95). In 

contrast to the relation of leaf area to leaf mass, the relation of leaf area to plant height is 

variable during the vegetation period. This is due to the fact that the leaf area decreases more 

rapidly than the plant height during senescence. 

 

relc LHLAIH ⋅=  (Eq. 3.95)
 

The relation LHrel decreases by a constant amount per hour during the senescent growth 

stages, thus avoiding an unnaturally rapid decrease of the canopy height with decreasing green 

leaf areas. For deciduous forests, the canopy height is determined by applying the relation to 
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the stem biomass instead of the LAI, due to the fact that the green LAI turns zero during 

wintertime, while the height of the forest has to be maintained until the leaf growth starts again 

in spring. 

 

3.3.3.6.4 Root Growth 

The development of the root system determines the access of the plant to the soil water storage 

and it therefore represents the basis for all transpiration and gas exchange processes (see 

section 3.3.3.5.4). Regarding the root development, two different directions have to be 

discerned. On one hand the root growth towards deeper soil depths progresses during the 

growing season, while at the same time a ramification and densification of the root system at 

soil depths that already have been conquered by the roots takes place (HOPKINS 1999). The 

root growth in PROMET is implemented mostly following the model of CERES (HODGES AND 

RITCHIE 1991). 

A large fraction of 40 % of the biomass that has been allocated to the roots is used for the 

formation of the root reticulum and of mucilage for the protection of the root meristem (RITCHIE 

1998). Only 60 % of the newly allocated biomass is used for the root length increase (Rlinc). In 

addition, a relation of root mass to root length (Rml) divides the newly developed root biomass 

into fractions that are used for the increase of the root length on one hand and the increase of 

root thickness on the other (eq. 3.96). 

 

mlrootinc RincBRl ⋅⋅= 6.0  (Eq. 3.96)
 

The parameterisation of the fraction Rml is based on measured data by GREGORY ET AL. (1978) 

and was assumed with 1.05 x 104 cm root length per gram of root biomass. The root growth 

towards deeper soil depths progresses in dependence of the hourly thermal time (hTT), with an 

assumed lengthening of 0.1 cm per thermal degree hour, so that under ideal conditions, i. e. 

during a warm and moist summer day, maximum root growth rates of up to 3 cm per day are 

theoretically possible until the crop specific maximum root depth (RDmax) is reached or the depth 

of the deepest soil layer of the current soil profile (SDmax) is penetrated (eq. 3.98). The root 

development though is inhibited by the water supply of the deepest rooted soil layer (RLmax). 

The soil moisture conditions for each soil layer are represented by a soil moisture deficit factor 

(SMdef, eq. 3.97) following SCHNEIDER (1999). 

 

( )
( )

maxmax

max

,2.4,

,2.44
RLpfRLfc

RLpfl
defSM

θθ

θθ

−

−
⋅=  (Eq. 3.97)
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This factor is only computed, if less than 25 % of the total extractable soil water is available at 

the soil depth where the roots are growing. It then depends on the actual soil moisture (θl), the 

wilting point (θpf4.2,l) and the total extractable soil water in the respective soil layer (fig. 3.42). The 

amount of water that can possibly be extracted by the canopy is defined as the field capacity 

(θfc,l) minus the wilting point of the soil type that dominates the currently computed soil layer. 
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Figure 3.42: Soil profile with four layers and root system, explaining the rooted fraction of a soil layer (left) and dependence of the 
soil moisture deficit factor on the amount of total extractable soil water (right). 
 

An additional inhibition of the root growth towards unexplored soil layers is the physical 

resistance of the soil structure that is represented by the factor Rp. This resistance factor 

signalizes the preference of the root growth, when a soil layer of certain structural 

characteristics is passed. It is defined in dependence of the soil grain size and the compactness 

of the soil material based on analyses of the effective rooting depth for agricultural sites 

conducted by the AG BODEN (2005). 
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Figure 3.43: Root preference factor according to soil grain size and soil compactness (left: colour chart, right: diagram). 
 

It appears that the rootability of the soil increases with decreasing sand content, due to the 

better water supply that is associated with smaller soil particles, but decreases again if the 

compactness of the soil is getting too high, accounting for the reduced aeration of the soil (AG 
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BODEN 2005, fig. 3.43). Taking all inhibitions into account, the root depth on a theoretic model 

day i (RDi) is computed as (eq. 3.98): 

 

( ) ⎥⎦
⎤

⎢⎣
⎡ ⋅⋅⋅+=

− defpii
SMRhTTRDSDRDMINRD 1.0;;

1maxmax  (Eq. 3.98)

 

Parallel to the root depth, the density of the root system in the different soil layers has to be 

determined. For each soil layer, a root length density factor (RLDfac) is calculated (eq. 3.99, 

SCHNEIDER 1999) with Zl representing the thickness of the rooted soil layer and Ndef standing for 

the nitrogen deficit factor: 

 

lpdefdeflfac
ZRNSMMINRLD ⋅⋅⎥⎦

⎤
⎢⎣
⎡= ;

,  (Eq. 3.99)

 

The nitrogen deficit is modelled for each soil layer as a function of the total mineral nitrogen 

content of the soil layer with the unit kg N ha-1 after JONES AND KINIRY (1986) and GODWIN 

(1987) respectively (eq. 3.100). 

 

( )totN
def eN ⋅−⋅−= 15.017.10.1  (Eq. 3.100)

 

Thus, PROMET already provides an interface for a nitrogen model input. But since the nitrogen 

cycle is not modelled explicitly yet, the nitrogen deficit factor (Ndef) was assumed with 1.0 for all 

soil layers. As a consequence, the soil moisture deficit factor is the only inhibiting parameter for 

the root length density. The root length density factor is reduced for the lowest rooted soil layer 

according to the explored fraction of that layer (fig. 3.42, left) and is accumulated for the whole 

soil profile (RLDfac,tot). 

The increase of root length (RLinc), which has been determined due to the newly developed root 

biomass (eq. 3.98), then is distributed to the soil layers according to the root length density 

factor, so that the root length density at a model time step (i) for each soil layer (l) can be 

described as (eq. 3.101): 

 

( )[ ] ( 1,
,,

1,,

/
−− ⋅−

⎭
⎬
⎫

⎩
⎨
⎧ ⋅

+= ilsen
l

totfacinclfac
ilil RLDR

Z
RLDRLRLD

RLDRLD )  (Eq. 3.101)

 

For each time step, a small proportion of the root length (Rsen) is supposed to die back 

(STEINGROBE ET AL. 2001) and therefore is subtracted from the root density that already has 

been accumulated. 
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Figure 3.44 shows an exemplary course of modelled root development for a winter crop. After 

the seedling has germinated during a warm autumn, the first hairs of the roots already penetrate 

the third soil layer (fig. 3.44, left). Nonetheless, with exception of the first soil layer, which only 

has a thickness of 5 cm and contains the majority of the root hairs produced during the 

germination, the root system is very thready, showing root length densities of less than 0.1 cm 

cm-3 (fig. 3.44, right). With the beginning of November (DOY 305), the root growth stagnates 

during the winter season. In spring, the root growth not only accelerates its course towards the 

full depth of the soil profile, but also strengthens the root system by allocating root biomass into 

the densification of the relative root lengths. In the middle of May (DOY 130), the deepest soil 

layer is accessed completely and its full water reservoir is made accessible for the stream of 

transpiration. 

 

0

20

40

60

80

100

120

289 309 329 349 4 24 44 64 84 104 124 144 164 184 204 224DOY

R
oo

t d
ep

th
 [c

m
]

 
Figure 3.44: Exemplary course of modelled root development of a winter wheat site in the middle of the Upper Danube Basin (352 
m a.s.l.) from the 15th of October 1998 to the 18th of August 1999. Rooting depth of the winter crop penetrating the four layers of 
the soil profile (left) and corresponding development of the root length densities for each soil layer (right). 
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3.3.4 Input Parameters 
Even the most physically based model requires parameters that are steering the internal 

processes or are defining certain limits and value ranges in order to minimize the accumulation 

of failures during a model run. For PROMET, the parameters needed for the operation can be 

discerned into three categories. 

On one hand, spatial input data has to be provided in form of a GIS that includes information on 

the terrain, the soil types and the landuse categories covered by the modelled area. A second 

kind of parameter set then includes the attributes that are corresponding with the soil or landuse 

categories that are mapped by the GIS. Finally, the model needs meteorological driving inputs 

that cover the modelled time frame and have to be provided in form of meteorological network 

data. This section is intended to give an overview about the parameters applied for the 

generation of the model results presented in this work. 
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3.3.4.1 Spatial Parameters 
PROMET is a raster based model that is applicable on variable scales. The spatial resolution of 

the GIS input data set is determining the model resolution. For this work, the raster data was 

processed to meet a 1 x 1 km grid, so that a single raster element describes an area of one 

square kilometre. The raster data set has a dimension of 430 lines and 425 columns, 

comprising an area of 182.750 x 10³ km². From this total area, 76.214 x 10³ km² are situated 

within the boundaries of the Upper Danube Basin. The parts of the GIS that lie beyond the 

watershed are masked from the computation. 

 

3.3.4.1.1 Landuse 

The spatial patterns of the different landuse categories were derived from the CORINE land 

cover product of the European Environment Agency. Since the CORINE land cover map only 

identifies major landuse types such as “artificial”, “agricultural”, “forest/natural”, “wetlands” and 

“water bodies”, the classification had to be modified and adapted in order to represent the 

natural variability of the Upper Danube landscape (fig. 3.45). 

 

 
Figure 3.45: Aggregated land use map of the Upper Danube Basin based on the EEA CORINE Land cover classification, 
corrected and adjusted to match the regional agricultural statistics. 

Categorized Land Cover 

Land Cover Percentage 

Base data: Bayerisches Landesamt für Statistik und Datenverarbeitung (2001-2003), Bundesanstalt für Statistik 
Österreich (2004), Österreichisches Statistisches Zentralamt (1996), Statistisches Landesamt Baden-Württemberg 
(1997),  European Environment Agency EEA, CORINE Land Cover, Copenhagen (2005). 

 

Especially the agricultural landuse types had to be provided on a more detailed level, due to the 

entirely different seasonal behaviour of the miscellaneous crops. This was accomplished by 
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distributing the agricultural crops according to agricultural statistics on the communal level. 

Thus, the percental distribution of different agricultural crops is based on statistic records, 

ensuring a realistic representation of the land use diversity with a spatial accuracy on the 

communal level. Since the exact location of single crops within the borders of a community 

cannot be derived from this information, the land cover map is supposed to be static, 

disregarding the interannual crop rotation or long-term landuse changes. 

Figure 3.45 pictures aggregated major land cover categories, roughly indicating the spatial 

landuse patterns of the Upper Danube Basin. The largest part, with about 40 % of the total area, 

is forested, followed by grassland with 24 % and arable land with 21 %. Due to the high alpine 

areas in the South of the Upper Danube, about 4 % of the area is classified as non-vegetated 

rock surface, while an equally large part is labelled as natural area, mostly representing alpine 

pastures. Another 4 % of the area is considered as sealed or artificial, tracing the distribution of 

the major urban agglomerations. The existence of large surface water bodies that contribute to 

the land cover map with nearly 1 % is due to the glacial forming processes of the last ice age 

(see section 2.2). A small part of the high alpine crests in the South of the Upper Danube is 

classified as glaciated. Due to reasons of visualization, the displayed image (fig. 3.45) only 

features the major landuse categories. A detailed landuse map that provided the GIS layer for 

the model runs can be found in the appendix (A.5). 

When the area percentages of the landuse categories are analysed at the full detail level, the 

domination of forest and grassland becomes even more apparent. Figure 3.46 ranks the 

discerned landuse types according to their percental contribution to the total catchment area. 

Together, forest and grassland apply to more than 60 % of the total area, whereas coniferous 

forest alone contributes to that proportion with about 25 %. Among the arable landuse types, 

winter wheat, silage crops (mostly represented by maize) and winter barley are dominating. 

 

 

 
Figure 3.46: Areas of the Upper Danube, covered by the discerned land use categories with their accumulated area percentages. 
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3.3.4.1.2 Soil Texture 

The Upper Danube Basin features soil types that mostly are tracing the geologic units (compare 

section 2.2, fig. 2.04). The soil map was derived through a blending of different soil maps, 

available from the federal agency of geosciences and resources (BGR 2000, MUERTH 2008). For 

the GIS database, 15 different soil categories are discerned. Figure 3.47 shows the soil types 

categorized according to their particle size. 

 

 
 
Figure 3.47: Map of aggregated soil texture types, based on the German Soil Survey Map 1 : 1000 000 (BGR 2002). 

 

The distribution of the soil types shows a more balanced course than that of the landuse 

categories (fig. 3.48). The most frequently represented soils are leptosols, characterising 

shallow and relatively young soils with a straightforward A-C profile, which are typical for a 

periglacial landscape. 

 

 
 
Figure 3.48: Areas of the Upper Danube, covered by the explicit soil texture categories with their accumulated area percentages. 
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The agriculturally used regions mostly are located on sandy to silty loam sites. An exception is 

represented by the gravel fields that surround the agglomeration of Munich in the middle of the 

Upper Danube Basin (fig. 3.47). A more detailed soil map, picturing all discerned soil types, can 

be found in the appendix (A.6). 

 

3.3.4.1.3 Digital Elevation Model 

 

 
Figure 3.49: Top left: Digital elevation model mosaic for the Upper Danube Basin (relief 2 x vertical exaggeration); Top right: 
Slope derived from the DEM; Bottom left: Hypsometric curve, statistics and percentages of terrain exposure derived from the 
DEM; Bottom, right: Terrain orientation (9 major categories) derived from the DEM. 

Hypsometric Curve DEM Statistics 

 

Providing a digital elevation model for a large area such as the Upper Danube Basin, whose 

boundaries are not tracing administrative borders, is a difficult task, since the administration of 

geodetic data is generally managed by the regional authorities. The DEM applied for the 

Base data: Bayerisches Landesvermessungesamt (LVA), 
Landesvermessungsamt Baden-Württemberg, Bundesamt für Eich- 
und Vermessungswesen (BEV) Wien, Amt der Tiroler 
Landesregierung Innsbruck, SRTM (Shuttle Radar Topography 
Mission) X-Band, U.S. Geological Survey GTOPO30. 
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simulation of the Upper Danube Basin therefore is a mosaic that was combined from six 

elevation models of different origin (fig. 3.49, bottom left). 

The DEM expresses the high relief energy of the Upper Danube through its statistics. The 

absolute values, averaged for the 1 x 1 km raster, are ranging from low heights of 290 m above 

the sea level at the main gauge in the East of the basin, up to the high crests of the Rhaetian 

Alps in the South-West with 3630 m (i.e. Piz Bernina 4048 m). The standard deviation of 

approximately 680 m emphasizes the undulating surface of the terrain. The mean elevation is 

found at 837 m (fig. 3.49, bottom left). The hypsometric curve of the DEM shows a characteristic 

bend at a height of 800 m. More than 70 % of the total area is located below that mark. The 

curve again steepens its course at about 2500 m above the sea level, a height that is only 

exceeded by approximately 2 % of the DEM area. The alpine height of 3000 m only is exceeded 

by 0.2 % of the DEM (fig. 3.49, bottom left). 

Along the alpine hillsides, the DEM shows steep slopes of up to 40 % (fig. 3.49, top right). Also 

the low mountain ridges of the Bavarian Forest and the Swabian Alb are characterized through 

steep hillsides, while the alpine foreland, due to the glacial gravel plains, shows a more 

balanced relief. The mean slope lies at about 9 %, while the standard deviation is 12.5 %.  

Equally large areas, with a percentage of about 20 %, are oriented towards the East and the 

West (fig. 3.49, bottom right). With 15 % and approximately 10 % respectively, the terrain is 

exposed to the North and to the South. 5.6 % of the area is classified as horizontal, showing no 

significant orientation. Overall, the Upper Danube seems to face all directions more or less 

equally distributed. 

 

3.3.4.1.4 Mask and Subcatchments 

 

 
 
Figure 3.50: Mask layer as applied for the model runs, including the major Upper Danube subcatchments. 
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In PROMET, the calculation can be limited to the borders of a mask layer. In this case, the 

overall mask naturally traces the watershed of the Upper Danube Basin (fig. 3.50). The mask 

layer may also carry information on subcatchment areas that can be derived through a 

topographic parameterization of the DEM. If information on subcatchment areas is provided, the 

model can be adjusted to export model results for selected areas within the superior mask, 

enabling an assessment of the models behaviour for the drainage areas of single tributaries. 

Figure 3.50 shows the mask layer applied for the model runs including a selection of the major 

subcatchments. 

 

 

 

3.3.4.2 Parameter Attributes 
While the GIS layers for the soil textures and the land cover carry the information where the 

discerned categories are located, an associated parameter table provides the attributes of the 

various mapped soil or vegetation categories. 

 

3.3.4.2.1 Landuse Parameters 

The imported plant properties on one hand include information on the agricultural management 

of the land cover category, like the dates of sowing and harvest, but also physical parameters 

that describe the cultivar specific efficiency of carbon fixation. Table 3.12 lists the crop specific 

parameters that are required for the description of the different land cover properties within the 

biological routines of PROMET. 

For the generation of the model results that are presented in the scope of this thesis, the plant 

physiological parameters were adjusted according to different authors or were based on own 

measurements respectively. For the parameters that are steering the plant chemism, settings 

taken from FALGE ET AL. (1996), FALGE (1997), FALGE ET AL. (1997) and WARING AND RUNNING 

(1998) were applied for the simulation of the leaf gas exchange of the forest types. C3 grasses 

and connatural cereals were parameterized according to FARQUHAR ET AL. (1980), while the 

carboxylation of C4 plants is modelled using parameters taken from CHEN ET AL. (1994). 

The phenology model, as well as the above- and belowground development of grassland and 

cereals, was initialised according to RITCHIE (1991), HODGES AND RITCHIE (1991), RITCHIE (1993) 

and SCHNEIDER (1999), while for maize, parameters taken from JONES AND KINIRY (1986) and 

KINIRY AND BONHOMME (1991) are applied. The phenological development of the forest landuse 

categories was parameterized according to CANNEL AND SMITH (1983) and MENZEL (1997). 

Where in-field data could be provided, the parameters were adjusted according to own 

observations. A detailed illustration of the parameters that were applied for the generation of the 

model results presented in this work can be found in the appendix (A.8.1 - 27). 
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Table 3.12: Crop input parameters required for the PROMET biological model. 
 

Parameter Unit
Position in the land cover hierarchy [Flags]
Grey value corresponding with the landuse GIS layer [DN]
Leaf mass per leaf area [kg m-2]
Day of sowing [DOY]
Day of harvest [DOY]
Ratio LAI to height  [m m-2 leaf area]
Minimum (initial-) LAI [m² m-2]
Maximum LAI [m² m-2]
Start of LAI-increase phase (initialization) [DOY]
End of LAI-increase phase (initialization) [DOY]
Start of LAI-decrease phase (initialization) [DOY]
End of LAI-decrease phase (initialization) [DOY]
Plant specific LAI-increase constant 1 (initialization) [-]
Plant specific LAI-increase constant 2 (initialization) [-]
Width of the leaf [m]
Carboxylation capacity at 25 °C [µMol m-2 leaf area second-1]
Maximum rate of electron transport through PS II at 25 °C [µMol electron-1 m-2 leaf area second-1]
Michaelis-Menten constant for oxygen at 25 °C [µmol mol-1]
Michaelis-Menten constant for carbon at 25 °C [µmol mol-1]
Respiration capacity at 25 °C [g CO2 m-2 leaf area second-1]
Light use efficiency  [Mol CO2 m-2 leaf area]
Ball-Berry coefficient for stomatal conductance [-]
Minimum leaf conductance through cuticle [mmol m-2 s-1]
Internal concentration of oxygen in the leaf [ml l-1]
Fraction of dark respiration during daytime [fraction]
Light-effect (longday / shortday crop type) [Flag]
Cardinal temperatures - 3 sets for different growth stages [°C]
Maximum biomass decrease per hour for senescence [kg h-1]
Heat sum needed for leaf emergence [°C]
Relation of root mass to root length [cm g-1 m-2]
Root senescence factor [-]
Maximum root depth [cm]
Allocationfactors for leaf biomass [fraction]
Allocationfactors for stem biomass [fraction]
Allocationfactors for root biomass [fraction]
Allocationfactors for grain biomass [fraction]
Vernalisation temperatures (minimum, optimum, maximum) [°C]
CO2 diffusion coefficient 1 [-]
CO2 diffusion coefficient 2 [1 kPA-1]

 

Some of the input parameters that are steering the kinetics of photosynthesis have to be 

adjusted after they are imported from the parameter files, accounting for the different growth 

conditions in alpine environments. This only is the case for forest and for grassland vegetation 

types, since they both are represented in alpine and in plain terrain simultaneously. The 

carboxylation capacity, the maximum rate of electron transport and the respiration capacity at 

25 °C are elevated by a factor of 1.42 for grassland, located on sites that feature annual mean 

temperatures (AMT) above 8.5 °C (eq. 3.102). 

 

( 42.1,,,, 2525max25max2525max25max )⋅= dd rJVcrJVc  if AMT > 8.5 °C (Eq. 3.102)
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For forest vegetation types, the three important parameters are adjusted to meet the reduction 

of the transpiration activity with increasing terrain elevation as proposed by FALGE ET AL. (1996) 

and KÖSTNER (2001). The carboxylation capacities and with them the possible stomatal 

conductance (see section 3.3.3.5.4) are modelled to decrease linearly from sites showing 

annual mean temperatures of greater than 8.5 °C to high alpine locations, where the annual 

mean temperatures are around zero and no growth is possible. This gradual shift is traced 

through the calculation of an elevation factor (eFac) that is correlating the terrain elevation with 

the local annual mean temperatures (eq. 3.103). 

 

2.227075.213 +⋅−= AMTeFac  (Eq. 3.103)
 

The carboxylation capacity (Vcmax25) then is adjusted according to equation 3.104a for 

deciduous and according to equation 3.104b for coniferous tree types. 

 

33.1030333.025max +⋅−= eFacVc  

 

for deciduous trees 
 

(Eq. 3.104a)

5.92025.025max +⋅−= eFacVc  for coniferous trees (Eq. 3.104b)
 

Both, the maximum rate of electron transport (Jmax25) and the respiration capacity (rd25) are 

scaled linearly preserving their natural relation to the carboxylation capacity according to 

equations 3.105 and 3.106 respectively. 

 

4.025max25max ⋅=VcJ  

 
(Eq. 3.105)

013.025max25 ⋅=Vcrd  (Eq. 3.106)
 

In combination with the reduced leaf area, as it is assumed for sites with lower AMTs (see 

section 3.3.3.1), this reduction is supposed to map the natural sequence from fully developed 

forests at colline heights towards slowly developing dwarf pine stands, which are marking the 

timber line at alpine elevations. 

 

 

3.3.4.2.2 Soil Parameters 

Like the cultivar specific plant properties, the soil properties for each soil texture category are 

imported via ascii input files. The parameters that are needed for the modelling of the soil 

processes were adjusted following RAWLS ET AL. (1992), DYCK AND PESCHKE (1995) and 

MUERTH (2008). The soil relevant parameters are listed in table 3.13. The parameterisation of 

the different soil types, applied for the generation of the model results presented here, can be 

found in the appendix (A.9). 
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Table 3.13: Soil input parameters, analogously required for both, the Penman-Monteith and the biological PROMET model. 
 

Parameter Unit
Number of soil layers [-]
Soil temperature [°C]
Ground water level [m]
Permeability [cm second-1]
Effective pore volume [%]
Pore size distribution index [-]
Bubbling pressure head [-]
Layer thickness [cm]
Clay content [m³ m-3]
Sand content [m³ m-3]
Organic matter [m³ m-3]
Retention water content [%]
Cumulative pore volume  [%]
Initial Pf-value [Pf]

 

 

3.3.4.3 Observational Networks 
The model requires several meteorological input parameters that can be imported from input 

files in a tabular form, as there are precipitation, air temperature, relative humidity, wind velocity 

and the radiation balance, which is derived from the observed cloud cover according to MÖSER 

AND RASCHKE (1984). The meteorological data is provided by operational observation networks 

such as that of the German Weather Service, which are recording data at certain hours of the 

day. In case of the stations that are operated by the German Weather Service, the 

measurements are documented at the so called “Mannheimer” hours at 7:30 am, 2:30 pm and 

9:30 pm. The raster based model structure though requires the provision of discrete values for 

all relevant meteorological variables at the location of every raster element for each time step, 

i.e. for all hours of the day in this case. The imported network data consequently has to be 

interpolated in temporal as well as in spatial terms. 

In the model, the temporal interpolation precedes the spatial interpolation. The temperature, the 

relative humidity, the wind velocity as well as the cloud cover are supposed to be continuous 

parameters that could sufficiently be described through a cubic spline interpolation. The 

disaggregation of the precipitation records has to take into account that the rainfall occurs in 

discrete events and cannot be described through a simple interpolation. Two types of rainfall are 

discerned. Precipitation that falls in form of a steady rain with a low intensity is divided from 

events of a short duration with high rainfall intensity, such as showers or thunderstorms. 

The spatial interpolation is based on the assumption that an elevation dependency applies to all 

meteorological input parameters. This dependency can either be formulated through physical 

relations or elevation regressions. Since the regression method is due to produce failures at the 

locations where direct observations are available, i.e. at the locations of the weather stations, 

the resulting residuals also are interpolated. In order to minimize the deviations, a cubic inverse 
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distance loading function is applied here, that is taking six surrounding weather stations into 

account. The interpolated residuals then are added to the trend plane that is derived from the 

elevation regression, reducing the deviations between the measurements and the interpolation. 

Since the meteorological interpolation is not the central issue of this work, the related 

procedures are not further discussed here. For a more detailed description of the interpolation 

methods it is referred to LUDWIG (2000) and to MARKE (2008). 

 

 
Figure 3.51: Map of the weather stations used for the meteorological interpolation for the Upper Danube Basin, indicating the 
spatial pattern and the elevations of the observation sites. 

Base data:  
Deutscher Wetterdienst DWD 
Offenbach am Main, Zentralanstalt 
für Meteorologie und Geodynamik 
ZAMG Wien. 

 

For the modelling of the Upper Danube catchment, data could be obtained from observation 

networks of the German Weather Service and the Austrian Central Agency of Meteorology. In 

total, data from 360 stations was revised and combined to generate a continuous data set that 

covers the years from 1960 to 2006 with a satisfying density and an adequately uniform spatial 

distribution (fig. 3.51). Due to the difficulties of the installation and operation of permanent 

weather stations in mountainous terrain, the density of the observation network decreases 

significantly with increasing elevation (fig. 3.51, left). The elevation range of 300 to 600 m above 

the sea level is most densely covered by weather stations with 45 % of the network being 

located at those heights. Only 23 stations or 6 % of the network respectively are measuring 

meteorological data at alpine heights above 1500 m. 
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4. Model Validation 
 
In the course of the development of a model for the interactive simulation of landsurface 

processes, the highest priority is the maintenance of a physically based process description in 

combination with a minimum application of empiric relations. The general assumption of such a 

modelling approach is that an accurate physical description of the involved processes will lead 

to realistic model results. A monitoring of the models quality and accuracy consequently can be 

accomplished by comparing the model results to measured data. It is a problem that not all of 

the parameters that are mapped by the model can be covered by a validation effort. 

Nonetheless, the verification of every parameter that actually can be investigated increases the 

overall reliability of the model (JONES 1991). 

In this work, the validation process is performed for selected model parameters that could be 

supported with reference data. First, the model is tested on the micro scale for single test fields, 

where the reference data could be collected by means of a field campaign. When the model has 

proven its functionality on the small scale, the methods can be transferred to the larger 

landscape or meso scale. There, the models accuracy is tested for single landuse categories in 

the first instance and in a second step for the whole variety of crops that are representing the 

natural variety of the entire mapped landscape. This is accomplished on one hand by comparing 

the model results with calculations of a control model, which already has proven its reliability on 

the mesoscale, and by referencing with literature data on the other. 

 

 

4.1 Field Scale Validation 
Before the models reliability on the landscape scale is tested, the model has to prove its 

functional efficiency for single land use categories. Since PROMET is able to process input data 

for different spatial resolutions and therefore is applicable on different scales, model runs were 

initiated that were limited to the spatial extension of single fields, tilled with a single crop type. 

This is a spatial scale that enables the collection of validation data by means of field 

measurements. 

 

4.1.1 Selection of Test Sites 
The selection of the test area was determined by several factors, as there are the existence of 

feasible test sites, their accessibility and the chance to find farmers that are willing to cooperate, 

since all the test sites that were worked on in the course of this thesis are private property. The 

test area finally chosen for the measurement campaigns is located near the town of Gilching, a 
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middle sized town belonging to the commuter belt of Munich, whose city centre lies 25 km in the 

South-West from the capital. Gilching is part of the administrative district Starnberg, a region 

that lies within the Northern Bavarian foothills, embedded between the Ammersee in the West 

and the Starnberger See in the East. The test area is more or less directly located in the heart of 

the Upper Danube catchment (fig. 4.01, left). 

As mentioned above, the selection of the test sites was determined by several important factors, 

including the natural premises as well as the availability of cooperative farmers. In terms of 

natural conditions it was considered to be necessary to find a C3 and a C4 crop (see section 

1.5.2) for comparison of the two carbon cycle systems that at the same time would provide large 

enough acreage to be mapped by the model. Since the ground truth sampling is destructive and 

may cause some damage to the crop, it is a difficult task to persuade farmers to entrust their 

acres. Within the test area Gilching, four test sites finally could be arranged. A wheat field 

(Triticum aestivum L.) tilled with an elite wheat cultivar “Achat” and a maize stand (Zea mays L.) 

of the cultivar “Magister” were chosen for the sampling seasons 2004 and 2005 respectively (fig. 

4.01). 

 
 
Figure 4.01: Test sites 2004/2005 embedded in a generalised landuse map (generated from field data 2005) with their relative 
position within the Upper Danube Basin (left). Background: Digital orthorectified aerial photograph mosaic of the season 2003 
kindly provided by the Bavarian Land Surveying Office. 
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Three of the test sites are located next to the autobahn Munich-Lindau (A96), while one maize 

site lies more in the South near the village of “Hochstadt”. The different sites were named 

according to their respective location. 

 

 

4.1.2 Test Sites 2004 
For the sampling year 2004, two test sites, one for each crop could be acquired. The wheat site 

lies in front of Hüll manor, whose proprietor has already been cooperating with the University of 

Munich in several projects. With a size of 14.32 ha, the site is medium sized for Bavarian 

acreages (BAYERISCHES STAATSMINISTERIUM FÜR LANDWIRTSCHAFT UND FORSTEN 2006). It is 

located on a moraine ridge of the Ammer-Loisach glacier that dates from the Saale/Riß ice age 

(see section 2.2). The moraine ridge causes a relatively coarse relief with an absolute height 

difference of 12 m and slopes of up to 10 % within the field. Also the orientation of the field is 

split due to the moraine ridge. While the Northern half is exposed to the North-West, the 

Southern half slopes to the South-East (fig. 4.01, left). A weather station of the Bavarian agro-

meteorological network is positioned in the very middle of the test site. The predominant soil 

particle size is loamy silt, composed of a Braunerde soil type (fig. 4.11, top middle), which 

corresponds to cambisols in the FAO classification system. 

The maize site with 3.63 ha is even smaller. It has a mostly rectangular shaped contour and is 

situated on top of a small hill in the East of the village of Argelsried. The Southern part steeply 

slopes towards a country road with a maximum slope of 12 % and an absolute height difference 

of 9 m. With exception of the Southern corner, the whole field is oriented to the North. The 

dominant soil particle size is coarse loam, with loamy silt in the Eastern corner of the field (fig. 

4.13, top middle). 

 

 

“Hofanger” “Argelsried”

 
Figure 4.02: 3D-Block image of the test sites “Hofanger” (left) and “Argelsried” (right), indicating the geometry and the terrain 
situation of the fields as well as the position of the sampling points of the field campaign. The images include four layers (aerial 
photograph, landuse map, soil map, digital elevation model). 
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4.1.3 Test Sites 2005 
The sampling period 2005 also featured a field campaign on one wheat field and one maize site. 

The wheat site has a size of 8.5 ha and again belongs to the acreage of Hüll manor, while the 

maize site is located more in the South of the test area near the village of Hochstadt (fig. 4.01). 

With a size of 22.02 ha, the maize field represents a somewhat larger Bavarian acre. The 

average acreage of typical farms in Bavaria is 26.1 ha, normally split into 14 fields, resulting in 

average field acreages of only 1.8 ha (BAYERISCHES STAATSMINISTERIUM FÜR LANDWIRTSCHAFT 

UND FORSTEN 2006). Both fields show a very even surface with no significant relief (fig. 4.03, left 

and right). However, the wheat site is slightly oriented towards the North, while the maize site 

mainly is facing an Easterly direction. The whole extent of the wheat site is modelled with a 

sandy loam soil particle size (fig. 4.12, top middle), while the maize site also is composed of 

sandy loam but with a streak of clay loam that intersects the main body of the field (fig. 4.14, top 

middle). 

 

 

“Kochfeld” “Hochstadt”

 
Figure 4.03: 3D-Block image of the test sites “Kochfeld” (left) and “Hochstadt” (right), indicating the geometry and the terrain 
situation of the fields as well as the position of the sampling points of the field campaign. The images include four layers (aerial 
photograph, landuse map, soil map, digital elevation model). 

 

 

4.1.4 Field Campaign 
With the help of student assistants, two field campaigns were conducted during the vegetation 

periods of the years 2004 and 2005. For both of the growing seasons, a variety of plant 

parameters was monitored with a weekly sampling interval. All data resulting from the field work 

for the years 2004 and 2005 was collected in the frame of the DFG funded project “Coupled 

Analysis of Vegetation Chlorophyll and Water Content Using Hyperspectral, Bidirectional 

Remote Sensing”. Besides the biomass and phenology parameters, which are presented in the 

scope of this work, the project collected detailed data concerning the vertical distribution of 

chlorophyll, carbon and nitrogen within the canopy. 
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4.1.4.1 Defining a Sampling Pattern 
For every test site, five sampling points were defined, one at every corner and a fifth right in the 

middle of the field, thus creating an equally distributed sampling pattern for each test site (fig. 

4.04, right). The sampling points were selected from aerial photographs and located in the field 

using handheld GPS receivers of the type Garmin eTrex (fig. 4.04, left). Table 4.01 lists the 

exact geographic locations of the sampling points for all four of the test fields of the two 

sampling years. 

 

 

 
 
Figure 4.04: GPS positioning of sampling points (left) and general pattern for the positioning of sampling points within a test field 
(right). 

General 
scheme 
for the 
positioning 
of the 
sampling 
points 

 
Table 4.01: GPS - Coordinates of the sampling points of the four test fields (Geographic, WGS 84). 
 

  
“Hofanger” 2004 (Wheat) Easting Northing Altitude

Sample Point 1 11°19'21.5'' 48°05'37.5'' 583 m a.s.l.
Sample Point 2 11°19'30.0'' 48°05'36.6'' 583 m a.s.l.
Sample Point 3 11°19'45.3'' 48°05'29.4'' 579 m a.s.l.
Sample Point 4 11°19'41.5'' 48°05'26.1'' 584 m a.s.l.
Sample Point 5 11°19'34.4'' 48°05'31.9'' 590 m a.s.l.

    
    

“Argelsried” 2004 (Maize) Easting Northing Altitude
Sample Point 1 11°18'44.5'' 48°06'15.5'' 574 m a.s.l.
Sample Point 2 11°18'49.3'' 48°06'18.1'' 567 m a.s.l.
Sample Point 3 11°18'54.9'' 48°06'14.9'' 565 m a.s.l.
Sample Point 4 11°18'51.6'' 48°06'11.3'' 573 m a.s.l.
Sample Point 5 11°18'50.3'' 48°06'15.0'' 571 m a.s.l.

  
    

“Kochfeld” 2005 (Wheat) Easting Northing Altitude
Sample Point 1 11°18'55.8'' 48°05'28.9'' 572 m a.s.l.
Sample Point 2 11°18'56.5'' 48°05'24.9'' 572 m a.s.l.
Sample Point 3 11°18'48.1'' 48°05'24.8'' 573 m a.s.l.
Sample Point 4 11°18'40.1'' 48°05'26.7'' 573 m a.s.l.
Sample Point 5 11°18'39.7'' 48°05'21.4'' 574 m a.s.l.

  
    

“Hochstadt” 2005 (Maize) Easting Northing Altitude
Sample Point 1 11°17'05.7'' 48°02'58.0'' 612 m a.s.l.
Sample Point 2 11°16'43.9'' 48°02'48.0'' 616 m a.s.l.
Sample Point 3 11°16'32.3'' 48°02'52.7'' 615 m a.s.l.
Sample Point 4 11°16'48.1'' 48°03'01.0'' 612 m a.s.l.
Sample Point 5 11°17'08.6'' 48°03'02.1'' 611 m a.s.l.
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4.1.4.2 Field Methods 
The Department of Geography of the Ludwig-Maximilians-Universität of Munich has experience 

of many years with the procedures of field sampling campaigns. In the course of field work in 

the frame of several projects, a set of methods for the sampling of aboveground vegetation 

parameters was established that is briefly introduced in the following. 

 

4.1.4.2.1 Meteorology 

In the years 1989 to 1991, the Bavarian Ministry of Agriculture and Forestry installed a network 

of 122 weather stations, designed to meet the requirements of agricultural applications. The 

stations of this agro-meteorological network are supervised by the Bavarian Agricultural 

Regional Office and provide mostly consistent data for the past 15 years. Free of charge, the 

data is available via the internet (http://www.lfl.bayern.de/agm/). The weather station that was 

consulted here, is the station number 72 located at Gut Hüll in Krailling, Bavaria (fig. 4.05). 

 

  

Height above sea level: 580 m 
Latitude: 48° 05' 36" N 

Longitude: 11° 19' 35" E 
Long term temperature avg.: 7 – 8 °C 
Long term precipitation avg.: 850 – 1000 mm 

In operation since: 05-03-1990 

   
 
Figure 4.05: Weather station Nr. 72 of the agro-meteorological network Bavaria (www.lfl.bayern.de). 

 

As an additional advantage it can be considered that the weather station no. 72 is directly 

placed in the middle of the test site “Hofanger” of the sampling year 2004, allowing for a 

comparative analysis of the meteorological interpolation quality of PROMET (see section 

3.3.4.3). Before the meteorological data was applied to a comparative analysis with model 

results, the data were tested for consistency. 

 

4.1.4.2.2 Phenology 

Parallel to the growth stages as they are modelled in PROMET (see section 3.3.3.6.1, tab. 

3.09), the phenological development of the test sites was monitored according to the 

internationally recognized BBCH-Code (Federal Biological Institute – Federal Bureau of Species 

- Chemical Industry, BIOLOGISCHE BUNDESANSTALT FÜR LAND- UND FORSTWIRTSCHAFT 1997). 

The classification system categorizes the growth stages of different crops by applying a decimal 

code, ranging from 0 (sowing) to 99 (ripeness, harvested, fig. 4.06). 
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By comparing detailed descriptions and images of the observable aboveground features of the 

different phenological stages of both investigated crops, the accurate determination of the 

current stage of development can be accomplished with reliable precision by an experienced 

operator. 

 

4.1.4.2.3 Canopy Height 

The height of the canopy was determined for two levels applying a folding rule (fig. 4.07, left). 

On every sampling point, a set of ten measurements was averaged for the leaf and for the 

sprout level (fig. 4.07, right). 

 

 
 
Figure 4.06: Decimal code of BBCH growth stages with their corresponding observable features. Modified after BIOLOGISCHE 
BUNDESANSTALT FÜR LAND- UND FORSTWIRTSCHAFT (1997). 

Growth Stages of Cereals (BBCH) 

10 11 12 13 21 23 30 09 

31 73 32 37 39 47 51 59 65 

 
 
Figure 4.07: Principle of measuring the height of a canopy in the field. 
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4.1.4.2.4 Stand Density 

The density of a canopy stand is defined as the number of plants per square metre ground. It 

depends on the row distance and the sowing rate, which again is determined by the 

adjustments of the sowing machine and the rate of germination. The rate of germination is 

related to the type of seed that has been used. Not every seedling is bound to emerge in spring, 

but once the seedlings have emerged, the stand density nearly is constant for the growth 

period. Therefore it is sufficient to measure the stand density once in a season for every test 

site, usually at the end of June, when both crops (maize and wheat) are showing clear sowing 

tracks. Two different methods were applied. In 2004, the number of plants along one metre of a 

sowing track was counted and extrapolated by multiplying the result by the number of sowing 

tracks per metre (fig. 4.08, left). In 2005, a cardboard model, resembling precisely a quarter of 

square metre, was inserted at a randomly chosen section of the field, but in direct 

neighbourhood to the regular sampling points (fig. 4.08, right). 

 

Season 2004 Season 2005 

  
 
Figure 4.08: Method of the stand density measurements of the season 2004 (left) and 2005 (right). 
 

All the shoots encircled by the cardboard were counted manually. The process was repeated 

five times and the results were averaged and multiplied by four to generate the final value of 

plants per m². Both methods produced reliable values, although the stand density showed clear 

variations. The average stand density for the maize site for example was 11.5 plants per square 

metre for the year 2005, whereas in 2004 the maize site only counted 9.5 plants per m². 

 
4.1.4.2.5 Dry Biomass 

For the biomass sampling, three plants along one sowing track were cut directly above the 

ground on each sampling point. The plant parts then were neatly packed into waterproof plastic 

bags in order to preserve the inner humidity of the sample. After the samples had been 

transported to the laboratory, they were divided manually into the fractions stem, leaf and fruit to 

be weighed on a laboratory scale. When the wet weight was listed, the samples were dried for 

at least 24 hours at 85 °C in a drying oven with a constant air supply. When the samples were 
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thoroughly dry, the weighing was repeated and the final weight was calculated following the 

subsequent equations (eqs. 4.01 and 4.02). 
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The whole chain of the weighing cycles was conducted equally for all three aboveground plant 

fractions (fig. 4.09). 

 

 

 

4.1.4.2.6 Leaf Area Index (LAI) 

During the 2004 campaign, the relative leaf area was measured on both test sites at a weekly 

interval, although with a slight offset to the general field days. The offset is due to the 

requirement of special irradiative conditions for the LAI measurements. While rainfall generally 

prevents a measurement, sunny conditions are not in favour of the technique either, for the 

instrument is requiring a diffuse illumination situation. 

The measurement itself was conducted with the help of two LI-COR LAI-2000 instruments. The 

measuring technique combines a measurement of sky brightness above the canopy with 

measurements beneath the canopy, while the sensor is viewing skywards. In practice, four 

„below” measurements are taken to achieve a suitable spatial average for the corresponding 

sampling point. To exclude the effect of the operator and the shadow he is casting during the 

measurements, the LAI-2000 was operated using a 180° azimuth view. Below and above 

canopy measurements were carried out at identical heights and azimuth directions. 

The LAI-2000 working principle is based on measurements of the gap fraction at five zenith 

angles. The data that have to be supplied are the path lengths of view through the canopy at 

 
Figure 4.09: Weighing chain for the determination of the dry biomass for different plant parts. 
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those five angles (fig. 4.10). Therefore the LAI-2000 sensor has five concentric rings that make 

up a field of view extending from zenith (0°) to near the horizon (74°). 

 

 

If the sensor is viewing the sky, the 0° detector is measuring the brightness straight overhead, 

while the 5th detector is measuring the brightness of a ring centred at 68° subtending 13°. Five 

values of canopy transmittance are calculated from these readings by dividing corresponding 

below and above pairs. From the transmittance at all five zenith angles, the LAI is calculated as 

output. For more details on the measurement principle it is referred to LI-COR (1992). The 

resulting LAI values are means and standard deviations of one measurement cycle, which 

consists of one measurement above and four recordings below the canopy (fig. 4.10). 

 

 

 

4.1.5 Field Scale Modelling 
For the model application on the field scale, local GIS data sets were constructed for each of the 

four test sites. As mentioned in section 3.1, the spatial resolution of the model calculations is 

determined by the spatial resolution of the digital elevation model. For the modelling on the field 

scale, a 10 x 10 m elevation model was kindly provided by the Bavarian land surveying office. 

The detailed DEM allowed the derivation of the required terrain parameters (elevation, slope 

and aspect) for all four test sites (figs. 4.11, 4.12, 4.13, 4.14, bottom row). Soil information in 

terms of soil texture and soil type was provided through the generalization of a digital geologic 

map provided by the Bavarian State Office of Geology, while the landuse information was based 

on own mapping campaigns (figs. 4.11, 4.12, 4.13, 4.14, top middle and right). 

Since the field scale modelling is limited to the boundaries of the test area Gilching (fig. 4.01), a 

subset of 19 stations was clipped from the available meteorological network (fig. 3.51). Figure 

4.15 shows the meteorological subset in spatial relation to the modelled test fields. 

 

 
 
Figure 4.10: Principle of a leaf area measuring cycle with the LI-COR LAI-2000 instrument. 
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Figure 4.11: 10 x 10 m resolution GIS data set for the field scale modelling of the 2004 wheat test site “Hofanger”. Top left: Mask 
layer, top middle: Soil particle size, top right: Land use, bottom left: Elevation [m a.s.l.], bottom middle: Slope [%] and bottom right: 
Aspect. All figures comprise an area of 890 by 680 m. 

 
Figure 4.12: 10 x 10 m resolution GIS data set for the field scale modelling of the 2005 wheat test site “Kochfeld”. Top left: Mask 
layer, top middle: Soil particle size, top right: Land use, bottom left: Elevation [m a.s.l.], bottom middle: Slope [%] and bottom right: 
Aspect. All figures comprise an area of 630 by 410 m. 
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Figure 4.13: 10 x 10 m resolution GIS data set for the field scale modelling of the 2004 maize test site “Argelsried”. Top left: Mask 
layer, top middle: Soil particle size, top right: Land use, bottom left: Elevation [m a.s.l.], bottom middle: Slope [%] and bottom right: 
Aspect. All figures comprise an area of 530 by 410 m. 

 
Figure 4.14: 10 x 10 m resolution GIS data set for the field scale modelling of the 2005 maize test site “Hochstadt”. Top left: Mask 
layer, top middle: Soil particle size, top right: Land use, bottom left: Elevation [m a.s.l.], bottom middle: Slope [%] and bottom right: 
Aspect. All figures comprise an area of 1000 by 680 m. 
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.1.6 Field Scale PROMET vs. Field Measurements 
or the assessment of the model quality in comparison with field measurements, model runs 

d in the previous section. A 

mong the meteorological parameters that are determining the plant growth in the model, three 

he radiation balance of the canopy surface 

 
Figure 4.15: Subset of German-Weather-Service stations applied for the modelling of the field scale in the test area Gilching. 

 

4
F

were performed applying the field scale GIS data sets introduce

spin-up period of one model year was considered to grant an adequate initialisation time, where 

the model was allowed to balance the soil water storage according to the input meteorology. 

Due to the fact that PROMET does not feature a detailed description of the nutrient cycles (see 

section 3.3.3.6.4), the preceding crop was assumed to equal the respective target crop. The 

points that had been mapped by the field campaigns (tab. 4.01) were located via GIS methods 

and extracted from the spatial model results. Measured and modelled data were compared for 

the accumulated biomasses of the different aboveground plant parts, as well as for the plant 

height, leaf area and phenological development of the respective crops. 

 

4.1.6.1 Meteorology 
A

parameters are of particular importance. T

determines the energy budget that is available for the photosynthetic processes (see section 

3.3.1), while the precipitation interacts with the canopy by replenishing the soil water storage on 
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one hand and by wetting the leaves and thus diverting energy for the interception evaporation 

on the other (see section 3.3.2.2). The temperature finally determines the velocity of the 

chemical reactions that are driving the photosynthesis within the chloroplasts (see section 

3.3.3.5). For the assessment of the quality of the meteorological interpolation, only temperature 

and rainfall were investigated, due to the debatable quality of the radiation sensors of the agro-

meteorological weather station. The modelled meteorology was extracted from the 10 x 10 m 

raster of the model results for the days that are determining the growth season of the winter 

crop of 2004 (October 1st 2003 to August 31st 2004) at the location of the weather station in the 

direct middle of the test site “Hofanger”. 

 

 

Figure 4.16 indicates a good interpolation of meteorological parameters in the case of the mean 

air temperature with a coefficient of determination of 0.99, a slope of 1.03 and a Nash-Sutcliffe 

efficiency coefficient of 0.98 (NASH AND SUTCLIFFE 1970). Sound results also are achieved for 

the rainfall (r² = 0.84, slope = 0.82, Nash-Sutcliffe = 0.94). Deviations between modelled and 

measured precipitation occur, when local weather events such as thunderstorms are registered 

by the weather station at the field, while they are not mapped by the gauging stations that are 

surrounding the test field. The station of the German Weather Service that is nearest to the test 

field (Maisach-Gernlinden, fig. 4.15) is located at a linear distance of nearly 14 kilometres. 

Considering the absolute sums, the model interpolated slightly more precipitation than it was 

recorded by the weather station as well as slightly warmer temperatures. In total, the 

meteorological situation at the field is well reproduced by the model, so that the meteorological 

interpolation can be considered to be adequate for simulations on the field scale. 

 

4.1.6.2 Winter Wheat 2004 
The life cycle of the 2004 winter crop is spanned between the date of sowing (15th of October 

2003) and harvest (22nd of August 2004). Only the main growth period during the summer 

months is covered by the field campaign, so that a subset of the model results, ranging from the 

 
Figure 4.16: Interpolated vs. measured precipitation and temperature for the weather station No. 72 of the agro-meteorological 
network Bavaria. Annual course (left) and correlation (right) for the growth cycle of the wheat test field “Hofanger” from October 
2003 to August 2004. 
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1st of April to the 31st of August 2004, could be analyzed in comparison with field 

measurements. The data recorded at the five sampling points in the field (see section 4.1.2) 

were averaged and compared to the model results, which were extracted from the modelled 

data sets at the locations corresponding to the sampling points and equally were averaged for 

the comparison. Besides the courses of modelled and measured average results, figure 4.17 

also indicates the absolute ranges of the modelled growth parameters (dashed lines). 

 

  

  

 
Figure 4.17: Modelled vs. measured aboveground dry biomass for the sampling period of the wheat test field “Hofanger” from April 
1st to August 31st 2004. Course of development (left) and correlation including coefficients of determination and Nash-Sutcliffe 
coefficients (right) discerned into the plant parts leaf (top), stem (middle) and grain (bottom). 
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For the three aboveground plant parts “stem”, “leaf” and “grain”, the modelled values reasonably 

match the field data concerning their magnitude and also their course. This results in stable 

coefficients of model efficiency. The Nash-Sutcliffe coefficients are varying between 0.76 for the 

leaves (fig. 4.17, top right) and 0.97 for the weight of the fruit (fig. 4.17, bottom right). In addition, 

the slopes of the regression lines stay close to a value of one and the intercept values also are 

low, both indicating a non-biased representation of the measured biomasses through the model. 

The scattering of the measured data clearly shows that the measured biomass is the result of 

destructive measuring techniques (see section 4.1.4.2.5). This representation of the natural 

variability of the stand in the reference data is resulting in jumps and steps that can be found 

throughout the field measurements. The scattering of the values is highest for the leaf biomass 

and lowest for the grain dry weight, leading to an increasing accuracy of the model results from 

leaf to grain mass. Nonetheless, the natural variability seems to be approximately mapped by 

the model, since the modelled extremes are mostly enveloping the measured range. 

The most determining factor, concerning the realistic representation of the carbon allocation to 

the different parts of the plant, is a correct modelling of the phenological progress. The 

phenological modelling is mainly determined by the air temperature (see section 3.3.3.6.1). The 

sensible representation of the air temperature by the model consequently leads to a sound 

mapping of the phenological stages (fig. 4.18). 

 

 

Figure 4.18 shows that the process of hibernation is well traced by the model, as well as the 

rapid development that characterizes the month of June. Most of the deviations are due to the 

model’s incapability of mapping single growth stages between the major classes, while the 

observations include the finer measures between the decimal steps. The BBCH stage 80 

(maturity) is the highest grade of development that is modelled, so that during the ripening the 

modelled value stays constant. A reasonable mapping of the leaf area is of great importance, 

since it determines the interception of sunlight energy for all photosynthetic reactions. The rapid 

increase of the leaf area in spring as well as the steady decrease during the ripening phase is 

 
Figure 4.18: Modelled vs. observed plant phenology. Course of development (left) and correlation (right) for the sampling period of 
the wheat test field “Hofanger” from April 1st to August 31st 2004. 
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well reproduced by the model, although it slightly over-predicts the accumulation of leaf area 

during late May (fig. 4.19, left). The high coefficient of correlation of 0.88 may be due to the 

bunching of LAI-measurements for leaf area indices greater than four and the relatively small 

number of measurements for low LAI-values. 

 

 

The model results for the test field Hofanger showed high correlations concerning R2 as well as 

ash-Sutcliffe coefficients for all of the observed aboveground plant parameters, as could 

rogress results in a realistic simulation of the biomass allocation to the different plant parts. For 

a continuative and more detailed interpretation of the displayed data, the digital acre file 

(“Schlagkartei”) of the test field is available in the appendix (A.10). 

 
Figure 4.20: Modelled vs. observed overall canopy height. Course of development (left) and correlation (right) for the sampling 
period of the wheat test field “Hofanger” from April 1st to August 31st 2004. 

 

Since the plant height is modelled as a function of the LAI (see section 3.3.3.6.3), it shows an 

analogue trend. Spring canopy heights are over-predicted, while the decrease of height after 

growth stage 70 (fruit development) is well reproduced by the model (fig. 4.20). 

 

 
Figure 4.19: Modelled vs. observed leaf area index. Course of development (left) and correlation (right) for the sampling period of 
the wheat test field “Hofanger” from April 1st to August 31st 2004. 
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4.1.6.3 Winter Wheat 2005 
Parallel to the modelling of the wheat test site 2004, a model run was conducted for the second 

C3 test site “Hofanger”. The winter crop was sowed the 15th of October 2004 and harvested on 

ugust 19th 2005. In-field data was available for the time from April to August 2005. Instead of 

going through the full comparison like for the previous test site, only the results of the 

confrontation of modelled and measured plant parameters are summarized in table 4.02. 

 
Table 4.02: Assessment of the model results for the aboveground physiological plant parameters of the wheat test site “Hofanger” 
(April 1st to August 31st 2005) in comparison with field measurements. 
 

Parameter [n] N.-S. Slope [m] Intercept [b] Coeff. of Determination [R²]

A

Leaf Biomass: 18 0.49 0.52 0.11 [kg m-2] 0.51
Stem Biomass: 18 0.71 0.70 0.09 [kg m-2] 0.73
Grain Biomass: 18 0.85 0.93 0.02 [kg m-2] 0.87

Leaf Area Index: 7 0.86 0.95 0.30 [-] 0.89
Canopy Height: 18 0.91 0.83 16.72 [cm] 0.97

Phenology: 18 0.94 0.94 -0.83 [-] 0.97
 

The 2005 wheat test site shows somewhat weaker results than those that could be achieved for 

ass are the weakest. For the 

 conducted in the field. The LAI comparison 

uative 

terpretation of the displayed data, the digital acre file is available in the appendix (A.11). 

 

4.1.6. e 2004 
Du nt p ays o 3 and C4 species 

(s  the elling 4 photosynthesis slightly differs from the method that is 

a  meta lism ( ection 3  

th  the re are in prese in mor

he growth cycle of a maize stand strongly differs from that of a winter crop. The sowing 

the 2004 wheat site. The slopes of the regression lines indicate that the model tends to 

underestimate the biomass accumulation with increasing overall biomasses, while the stable 

coefficients of correlation and of model efficiency show that the annual course seems to be 

accurately represented. The relatively high intercept values for the leaf and for the stem 

biomasses indicate that low biomasses are more likely to be overrated by the model. Due to 

strong scattering of the measured data, the results for the leaf biom

season of 2005, no LAI measurements were

presented in table 4.02 applies leaf area values that are based on an ESA ENVISAT/MERIS 

remote sensing product (BEAM-VISAT, TOA_Veg, see BACOUR ET AL. 2006) and were extracted 

for the test site from satellite imagery of the summer 2005. The LAI is soundly traced by the 

model and also the quality of the other plant parameters emphasizes the stability of the model 

for the simulation of the carbon allocation of C3 species on the field scale. For a contin

in

4 Maiz
e to the differe athw f carbon assimilation that are characterising C

ee section 1.5), mod  of the C

pplied for the C3 bo see s .3.3.5). The results of the field scale model runs for

e maize test site refo  aga nted e detail. 

T

window in the alpine foreland ranges from April 20th to the middle of May (FISCHBECK ET AL. 

1999), while the maize crops usually are harvested during the first week of October 
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(SCHWERTMANN ET AL. 1987). Field measurements were available on 20 dates from May to 

September for the summer of 2005. Figure 4.21 lists the averaged field measurements and 

model results for the five sampling points of the maize test site “Argelsried”. 
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Figure 4.21: Modelled vs. measured aboveground dry biomass for the sampling period of the maize test field “Argelsried” from May 
1st to September 30th 2004. Course of development (left) and correlation including coefficients of determination and Nash-Sutcliffe 
coefficients (right) discerned into the plant parts leaf (top), stem (middle) and grain (bottom). 
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of a strong correlation between modelled and measured data. 
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The regression line for the leaf biomass (fig. 4.21, top right) shows a noticeable offset from the 

zero intercept. This is due to a systematic feature of the model algorithm. Since the whole 

photosynthesis depends on the absorption of light by the leaves, growth can only be modelled, if 

the leaf area is above zero. However, the algorithm worked out to react unstably for very small 

leaf areas. Consequently, the modelled leaf area is set to a default minimum value as soon as 

the leaf emergence is initiated in the model. It was shown in section 3.3.3.1 that the relation of 

leaf area to leaf mass is assumed to be constant. So with the setting of a minimum leaf area, 

also a minimal leaf mass is initialized that in this case disturbs the correlation by assuming a 

leaf mass of about 20 g m-2 throughout the month of May, while the measurements are still 

showing very low leaf biomasses. 

 

n extremely rapid progress of the 

gure 4.22: Modelled vs. observed plant phenology. Course of development (left) and correlation (right) for the sampling period of 

 
Figure 4.23: Modelled vs. observed leaf area index. Course of development (left) and correlation (right) for the sampling period of 
the maize test field “Argelsried” from May 1st to September 30th 2004. 
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For the modelling of the phenological progress, the same restrictions apply as for the wheat 

sites. Only the major decimal steps are modelled, but nonetheless, the course of development is 

well traced by the model. The maize site is characterized by a

the maize test field “Argelsried” from May 1st to September 30th 2004. 

phenological stages during the month of July (fig. 4.22). 
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The representation of the leaf area index by the model suffers the same restrictions that are 

disturbing the course of the leaf biomass. For the early growth stages, the leaf area like the leaf 

mass is overrated. However, the lines seem to match quite closely for the further course of the 

year. The relatively high coefficient of correlation of 0.88 may here also be due to the bunching 

of LAI measurements within a value range between 2 and 4, while only few measurements exist 

for low leaf areas (fig. 4.23). 

Since the plant height is modelled as a function of the LAI, it also is overestimated for the early 

growth stages, clearly showing through the offset of the regression line that accumulates to 

nearly 24 cm at the y-axis. The constantly high canopy height of more than 250 cm again is well 

 

The courses of the modelled aboveground parameters for the C4 test site “Argelsried” showed 

reasonable to high correlations for all of the observed plant features. The model seems to be 

capable of a sound reproduction of the carbon allocation also of C4 species on the field scale. 

traced by the model, even during the phase of ripening trough late August and September. 

 

 

4.1.6.5 Maize 2005 
To support the stable results that could be achieved for the maize test site 2004, a model run on 

the second C4 site was conducted. Reducing the full comparison like it was displayed for the 

previous test site, only the results of the confrontation of modelled and measured plant 

parameters are summarized in table 4.03. 

 
Table 4.03: Assessment of the model results for the aboveground physiological plant parameters of the maize test site 
“Hochstadt” (May 1st to September 30th 2005) in comparison with field measurements. 
 

Parameter [n] N.-S. Slope [m] Intercept [b] Coeff. of Determination [R²]

Leaf Biomass: 17 0.70 0.61 0.04 [kg m-2] 0.94
Stem Biomass: 17 0.78 0.66 0.07 [kg m-2] 0.97
Grain Biomass: 17 0.92 0.94 0.09 [kg m-2] 0.91
Canopy Height: 17 0.80 0.95 51.87 [cm] 0.93

Phenology: 18 0.97 0.88 7.11 [-] 0.98

 
Figure 4.24: Modelled vs. observed overall canopy height. Course of development (left) and correlation (right) for the sampling 
period of the maize test field “Argelsried” from May 1st to September 30th 2004. 
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The second maize test site also shows high coefficients of determination as well as of model 

efficiency, but the generally lower slopes of the regression lines are indicating that the model 

tends to underestimate the biomasses for this test site at least for higher values. Unfortunately, 

no leaf area measurements could be acquired for the maize site in 2005, so that no correlation 

for the LAI is included in table 4.03. Due to the strong correlation of plant height and leaf area 

and the high correlation of measured and modelled canopy height, it can be deduced that the 

LAI is reasonably reproduced by the model as well. 

 

4.1.6.6 Yield 
 

easurements of an impingement sensor. The sensor is mounted on a combine harvester and 

or a comparison with the model results, the original yield map was resampled to meet the 

of 10 x 10 m (fig. 4.25). Apart from the marginal regions with 

 reality, due to the coarsening of the shape 

ccording to the DTM resolution of 10 x 10 meters. The modelled yield ranges from 9.99 to 11.7 
-1  mean value of 10.99 t ha-1 and a standard deviation of 0.28. The 

For the 2004 wheat test site “Hofanger”, a digital yield map could be acquired, that is based on

m

monitors the pressure of the threshing good at a constant rate. The spatial allocation of the yield 

measurements is managed via DGPS. The combine measurement was corrected by comparing 

the absolute sum of measured yield for the stand with the total weight harvested. 

F

models micro scale resolution 

lower yield, the measured yield variation of the stand was between 7 and 10 t ha-1, indicating 

that the crop was developed strongly and homogeneously. With a total harvest of 142.7 t, the 

average yield of the 14.44 ha site was 9.88 t ha-1 (see appendix A.10). 

 

 

The model returned a total yield of 157.31 t on 14.31 ha. The size of the field as it is 

represented in the model is 0.13 ha smaller than in

 
Figure 4.25: Yield map based on a combine measurement in full and resampled resolution compared to the modelled yield of the 
season 2004 for the wheat test site “Hofanger”. 

a

t ha , combined with a

variability of the measured yield is much higher, returning a standard deviation of 1.25, while the 

mean measured yield value is 9.88 t ha-1. The average yield therefore is overestimated by 1.11 t 
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ha-1 in the model results, while the absolute yield is overestimated by 14.61 tons. A major 

restriction here is based on the fact that the model is not able to reproduce mechanically 

inflicted yield losses such as windbreak or the lower plant densities at the field margins that are 

 to 10.41 t ha-1 and thus 

duce the deviation between modelled and measured average yield to 0.58 t ha-1. 

The average values indicate that the model is capable of the reproduction of grain yield in a 

realistic dimension, but they do not contain information concerning the spatial representation of 

heterogeneities within the stand. Here the direct comparison of the yield map with the modelled 

yield reveals that the severe underestimation of yield variability by the model results in a 

clouded correlation of the data. Nonetheless, the absolute deviations are limited. 43 % of the 

field area does not exceed a deviation of 0.5 t ha-1 (fig. 4.26, left). Only the field regions that are 

exposed to mechanical stress at the field margins or along the cart track, which intersects the 

field at a North-West to South-East direction, show deviations above 1.5 t ha-1 (fig. 4.26, right). 

 

 cannot be 

and environmental interference is not included in the model, so that wind break, pests and 

due to machine induced stress. The spatial variability of the yield measurement therefore was 

not fully mapped by the model. Only the productive zone on top of the moraine ridge at the 

eastern middle of the field (fig. 4.25) seems to be traced by the model results. Nonetheless, the 

average yield is well reproduced, especially if the mechanically stressed areas of the crop are 

disregarded. In that case, the average measured yield would increase

re

 

These deviations are mainly due to external conditions that are not included in the model. For 

example, the soil map that was applied for the model runs is rather coarse (fig. 411, upper 

middle). This may be appropriate for a generalised modelling on a larger scale, but for the field 

scale it turns out that the local heterogeneity of soil characteristics can be traced in the plant 

development and therefore is represented in the measured yield map, while it

 
Figure 4.26: Spatial pattern of the absolute differences between measured and modelled yield (right) and histogram of the area 
percentages with their corresponding deviations (left) for the wheat test site “Hofanger” season 2004 (right). 

regarded in the model. Also, the model does not yet contain an explicit description of the 

nutrient cycle and consequently is unable to map fertilization effects. Last but not least human 
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diseases but also yield loss caused by browsing game and damage due to the operation of 

machines cannot be reproduced. A possibility, to make information on these natural events 

available to the model, is the application of remote sensing techniques. Due to that reason an 

interface has been constructed to include remotely sensed measurements of leaf absorptivity in 

the course of the model runs. Since the topic of this work is the preparation of a physically 

based model that is designed for a mapping of possible future scenarios rather than for a best 

ossible representation of agricultural situations, this approach is not further discussed here. 

Considering the spatial results of the model runs on the field scale, it becomes apparent that the 

lack of “natural” information leads to a reduced heterogeneity of the model results. Figure 4.27 

pictures the modelled overall biomass that was fixed on all four of the field scale test sites. 

 

ather 

omogenous concerning their predominant soil types as well as their relief. Nonetheless, the 

p

 

Besides the test sites “Hofanger” and “Argelsried” (fig. 4.27, left), the test fields are r

 
Figure 4.27: Field scale model results for the accumulated overall biomass (root, stem, grain and leaf) for the respective growth 
cycles of the four test sites “Hofanger” (top left), “Kochfeld” (top right), “Argelsried “ (bottom left) and “Hochstadt” (bottom right). 
The backdrop shows orthorectified b/w aerial photographs recorded during the aerial survey 2003 that were kindly provided by the 
Bavarian Land Surveying Office. 

h
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results show a certain spatial variability that mostly corresponds with the applied soil map. The 

soil particle sizes that are provided by the soil map, as well as the terrain orientation with 

respect to the exposure to sunlight as derived from the DEM seem to have a strong effect on 

the modelled productivity. 

 

 

4.2 Meso Scale Validation 
For the testing of the PROMET model on the meso scale, model runs covering the past 46 

years from 1960 to 2006 were conducted for the whole Upper Danube Basin, applying the input 

data described in section 3.3.4 et sequentes. Selected results from this reference time series 

are analysed and compared to measured and observed data in this section. The validation on 

the mesoscale commences with a comparative analysis of the modelled aboveground carbon 

fixation with measured biomass data that is derived from field campaigns. In a second step, the 

models capability of mapping the landscape evapotranspiration is assessed by comparing the 

model results with a reference model that was applied to the same time period using identical 

meteorological and geographical input data. Finally, the performance of the phenology model for 

forests is analysed in comparison with literature data. 

 

4.2.1 PROMET vs. Field Measurements for Selected Proxels 
The model results, which were acquired by applying the input data set for the whole Upper 

Danube Basin as described in section 3.3.4, are compared to field measurements of different 

nd use categories in this section. Field data was available from historic field campaigns that 

BAHC” as part of the International Geosphere Biosphere Programme – 

s they are displayed in figure 4.28, can be found in the 

d data for the cereal and maize crops contains plant physiological parameters such 

s stem, leaf and grain, while for the 

mpled. For both, the crops and the 

la

were carried out at the University of Munich in the frame of the project “Biospheric Aspects of 

the Hydrological Cycle – 

IGBP (OPPELT 2002). The measurements provide information at weekly intervals for the 

vegetation period of the years 1999, 2000 and 2001. In total, 11 test sites, all located in the 

South-West of the city of Munich, were available that covered the crops wheat, maize and oat 

as well as intensive and extensive grassland. A table, listing the geographic positions, names 

and crop types of the available test sites, which could be resorted to for the model 

parameterization and validation a

appendix (A.12). 

The collecte

as the dry biomass for the three aboveground plant part

grasslands only the overall aboveground dry matter was sa

grasslands, the overall plant height was measured at each sampling date, while the 

phenological stage was exclusively determined for the agricultural crop test sites. Of course, 

questions of scale arise, when field measurements are compared to model outputs that are the 
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result of a simulation on a relatively coarse resolution of 1 x 1 km. The land use categories 

represented in the model are very likely to differ from the actual land cover type that could be 

found at the exact geographic location in nature. Figure 4.28 compares the exact location of the 

available test sites with the corresponding proxels of the land cover map that was used for the 

model runs (see section 3.3.4.1.1). With exception of four winter wheat test sites in the Eastern 

centre of the map, none of the sampled cultivars seems to represent a landuse majority that 

shows in the model landuse patterns. 

 

 
 
Figure 4.28: Available test sites for different landuse categories with their spatial situation compared to the 1x1 km landuse majority 
applied for the mesoscale model runs. Indication of the position of the general test area in the heart of the Upper Danube Basin. 
 

The models capability of mapping the aboveground physiology of the crops wheat and maize 

lready was described in the previous section, so that the display of the model results for the 

test fields on the landscape scale is skipped here and only the two mapped vegetation types 

that were not tested on the field scale (grassland and oat) are presented here in detail. The 

a
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testing of the grassland vegetation types is of great importance due to the high area percentage 

that they make up in the landuse map of the Upper Danube. The modelling of the oat crop can 

be interpreted as an example for agricultural spring crops. 

Due to the discrepancy between the aggregated landuse map applied for the model runs on the 

landscape scale and the actual position of the test fields, the landuse map was adjusted in a 

way that it mapped the respective crops at their best possible geographic location. Table 4.04 

lists the adjustments of the landuse map that were necessary for the calculation of the test 

results. 

 
Table 4.04: Adjustment of the 1 x 1 km model landuse map due to the representation of the available test fields at their exact 
geographic position. 
 

GIS Row GIS Column Original Land Cover Adjusted Land Cover Test Site Seasons
231 240 Winter Wheat Intensive Grassland Unterbrunn 1999
228 238 Coniferous Forest Oat St. Gilgen 1999
229 230 Coniferous Forest Extensive Grassland Inning 2 1999-2001

 

 

4.2.1.1 Intensive Grassland 

As was mentioned in section 3.3.3.2, the modelling of intensive grassland is characterized by 

three cuts that can occur during a season. As exemplary test site, the meadow “Unterbrunn” 

was chosen, which is located in the East of the test area and provided sampling data from April 

to September of the season 1999. The measured aboveground dry matter clearly features the 

cuttings at the end of May and at the end of July as well as the late cut in September. The 

model almost perfectly traces the accumulation of aboveground biomass for the intensive 

grassland site. The period of reduced growth that follows the second cut also is well 

represented in the model results (fig. 4.29). 
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Figure 4.29: Course of modelled and measured total aboveground dry biomass of the intensive grassland test site “Unterbrunn”. 
Results from a single proxel, modelled at a resolution of 1 x 1 km, compared to field measurements of the season 1999. 
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Due to the exact modelling of the cuts, which to some degree surely is coincidental in this case, 

t

Sutcliffe coe most ideal slope of 1.05 and a small intercept of 

only 0.01 kg m 4.30 ults are opy ich is m  

due to a strong o stima he g th o f 

e growth season after the first cut, the plant height is far better reproduced by the model, but 

onetheless the regression results are disturbed, resulting in a moderate coefficient of 

d an intercept of 9 cm (fig. 4.30, right). 

 

The results could prove that the model is able to reproduce the accumulation of biomass for 

grassland vegetation types on the coarse 1 x 1 km scale with a high accuracy. Also the 

standard mapping of the agricultural management seems to apply well to the alpine foreland, 

resulting in a realistic representation of the meadow cuts for intensive grassland. 

 

.2.1.2 Extensive Grassland 

assland 

est site “Inning 2” was chosen, which is located in the West of the test area and 

s may not apply 

 all sites equally. 

 
 
Figure 4.30: Modelled vs. measured dry biomass (left) and canopy height (right) of the intensive grassland test site “Unterbrunn” 
for the growth season 1999. 

he measured and the modelled aboveground biomass are highly correlated, showing a Nash-

fficient of 0.96
-2

, combined with an al

 (fig. , left). The res  weaker for the can  height, wh ostly

vere tion of height for t rowth period before e first cut. F r the rest o

th

n

correlation of 0.7 with a slope of 0.87 an
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For the quality assessment of the model with respect to the modelling of extensive gr

types, the t

provides field data from three successive years (1999, 2000 and 2001). 

Regarding figure 4.31, it becomes apparent that although the destructive field measurements 

show high scattering, the model clearly overestimated the biomass accumulation in spring 

before the first cut at least for the years 2000 and 2001, while for 1999 the spring growth was 

mapped quite accurately. The absolute values are rarely met by the model, but the comparison 

shows that the overall representation of the biomass accumulation is modelled within a likely 

range and with a realistic annual course. Although the dates of the meadow cuts are variable in 

the model as well as in the field, the standard mapping of agricultural measure

to
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Exclusively considering the growth season 1999, which is the season that provides the highest 

ich are due to 

e models ignorance of the farmers decisions, are neglected, the correlation of modelled and 

oefficient of model efficiency of 0.79 (fig. 4.32, right). 

 

The testing of the model for extensive grassland showed that the model is able to reproduce the 

biomass allocation for extensive grasslands with a satisfying accuracy. Deviations are likely to 

occur, when the agricultural management in the model is not adequately representing the 

decisions that farmers are making in the field. Here again, remote sensing techniques would 

offer a possibility to increase the models certainty with respect to agricultural management 

measures as could already be shown by SCHNEIDER (1999). 

density of field measurements, it can be recognized that the first of the two cuts that are 

possible on extensive grassland sites, is conducted about 10 days earlier in the model than it 

was observed in the field (fig. 4.32, left). The second cut in turn is modelled two weeks later 

than it was observed, severely disturbing the correlation. If these deviations, wh

th

measured biomass returns a satisfying c

 

 
igure 4.31: Course of modelled and measured dry biomass of the extensive grassland test site “Inning 2”. Results from a single 

 

F
proxel, modelled at a resolution of 1 x 1 km, compared to field measurements of the seasons 1999, 2000 and 2001. 

 
Figure 4.32: Course of modelled and measured dry biomass, indicating the errors that possibly occur due to the modelling of 
management measures (left), and modelled versus measured dry biomass of the extensive grassland test site “Inning 2” for the 
season 1999. 
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4.2.1.3 Spring Crops (Oat) 

 
 

 
Figure 4.33: Modelled vs. measured aboveground dry biomass for the sampling period of the oat test site “St. Gilgen” from April 1st 
to August 31st 1999. Course of development (left) and correlation including coefficients of determination (right) discerned into the 
plant parts leaf (top), stem (middle) and grain (bottom). 
 

The previous sections analysed the models behaviour for the growth simulation of winter C3 

crops (wheat), summer C4 crops (maize) and perennial C3 grasslands. A fourth agricultural 

group is formed by C3 spring crops, which are exemplarily represented here by the oat test site 

“St. Gilgen”. 
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The important growth determining management dates for oat crops in the alpine foreland are 

the 20th of March for the sowing and the 15th of August for the harvest (SCHWERTMANN ET AL. 

1987). Due to a relatively wet August of the year 1999, the test site “St. Gilgen” was not 

harvested until the 25th of August, when the stand had developed to a stage of full ripeness. 

Figure 4.33 pictures the model results for the biomass allocation to the aboveground plant parts 

in comparison with measured data for the growth season from April to August 1999. The model 

results again are derived from a single 1 x 1 km proxel and therefore do not contain a range of 

variability. The modelled biomasses for the spring crop show similar characteristics as those 

achieved for the winter crops. Again, the scatter in the field measurements is high for the leaf 

nd for the stem biomass, while the grain biomass shows a somewhat lesser variability. The 

correlation of measured and modelled dry biomass thus is highest for the grains with a 

coefficient of model efficiency of 0.95 (fig. 4.33, bottom right) and weakest for the stem biomass, 

resulting in a moderate coefficient of correlation of 0.55 (fig. 4.33, middle right). The course of 

the measured leaf development shows a constant increase of leaf mass until harvest, while the 

model simulates a slight decrease of the leaf mass that accompanies the ripening (fig. 4.33, top 

left). During the early growth stages, the leaf mass again is overrated by the model, due to the 

reasons discussed in section 4.1.6.4, while the biomass increase of the grains after the 

flowering (stage 60) is adequately met by the model. In total, the correlation of measured and 

mulation for the spring crop on the mesoscale shows weaker results 

an those that could be achieved for the winter crops on the field scale. This may be due to the 

higher scatter of the destructive field measurements for the oat crop, taking into account that the 

differentiation of the plant parts in the laboratory is somewhat more difficult for the filigree oat 

ears than it is for the wheat plants. 

 

process. The phenological phase 80 (Maturity) for the oat site therefore is shorter compared to 

a

modelled biomass accu

th

 

 
Figure 4.34: Modelled vs. observed plant phenology. Course of development (left) and correlation (right) for the sampling period of 
the oat test site “St. Gilgen” from April 1st to August 31st 1999. 

According to GEISLER (1980), oat crops are harvested shortly before they have reached a state 

of dead ripeness in order to avoid the loss of grains through drop-out during the harvesting 

Phenology [BBCH]

Slope = 0.86
Intercept = 5.07

20

60

80

100

M
od

el
le

d

Phenology [BBCH]

20

60

80

100

120

n = 18
R2 = 0.97

40
40

N.-S. = 0.94
0

0 20 40 60 80 100

Measured
0
A-99 M-99 J-99 J-99 A-99

Modelled

Observed

 130



Model Validation 

 

the previously discussed crops (fig. 4.34, left). Nonetheless, the progress of the phenological 

stages of the spring crop, which naturally develops devoid of a winterly chill phase, is well 

traced by the model. 

The height of the canopy, parallel to the leaf biomass, is overrated during the growth stage of 

leaf development, but is slightly underestimated for the summer months (fig. 4.35, left). During 

the stage of maturity, the measured canopy height decreases, while the model misleadingly still 

simulates a slight increase of the canopy height. Besides these deviations, the annual course 

seems to be adequately mapped. 
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The validation results for the modelling of the exemplary spring crop on the mesoscale turned 

out to be somewhat weaker than those that could be achieved for the other agricultural crop 

types on the field scale. This, besides other reasons, surely is also due to the discrepancy that 

is likely to exist between measurements from a single field and model results derived from a 

proxel with a spatial extent of 1 x 1 km. Nonetheless, the model can be considered to be 

capable of a realistic representation of plant physiological parameters also for spring crops. 

.2.2 Relating the Coupled Approach to a Reference Model 

ges of the respective river basins, applying the general storage equation 

Figure 4.35: Modelled vs. observed overall canopy height. Course of development (left) and correlation (right) for the sampling 
period of the oat test site “St. Gilgen” from April 1st to August 31st 1999. 
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Unfortunately, not all parameters that are modelled and are playing an important role for the 

simulation of natural surface processes can easily be measured. The variable that surely is 

most difficult to measure on a larger scale is the evapotranspiration. However, the 

evapotranspiration can secondarily be assessed on the catchment scale via the runoff that is 

measured at the gau

(see section 3.3.2.2, eq. 3.18). Due to the stable relation of the inflows and outflows of the water 

balance components, a model that is driven with measured precipitation data and already has 
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been referenced with measured runoff data is likely to simulate realistic rates of 

evapotranspiration as well. Therefore, the referencing of a model through a comparison of the 

odel results with outputs of a second control model that applies a different approach, but uses 

the same input data and already is known to produce good results, is a convenient and valid 

method for the quality assessment of variables that would be hard to measure in the field. 

 

4.2.2.1 The Penman-Monteith-PROMET 
PROMET in its current version offers the possibility to choose two different calculation paths for 

the modelling of evapotranspiration processes (MAUSER AND BACH 2008). If the explicit 

biological model, which is the main topic of this work and has been described in detail in section 

3, is switched off, PROMET is perfectly able to calculate the landsurface water balance with an 

alternative approach. The explicit canopy model is reduced to a simplified vegetation routine, 

 

pproach, the leaf area, the plant height and the root depth are modelled as static functions of 

ce. 

m

applying a productivity of transpiration approach following BALDOCCHI ET AL. (1987). In this

a

the DOY. The actual landsurface evapotranspiration (ETa) is calculated applying the Penman-

Monteith-Equation (eq. 4.03, PENMAN 1956, MONTEITH 1965), where L* is the specific heat of 

evaporation per mm, s is the gradient of the vapour pressure curve, Rn is the radiation balance, 

G is the ground heat flux, p is the air density, cp is the specific heat of air, ra is the aerodynamic 

resistance, es(Ta)-e is the saturation deficit in dependence of the air temperature (Ta) and the 

saturation pressure (es), γ is the psychrometric constant and rs finally is the stomatal resistan

 

( ) ( )( )−⋅

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⋅+

⋅
+−⋅

⋅=
as

a
n eTe

r
GRs

ET 1

a

s
a

r
rs

L
1

*

γ
 (Eq. 4.03)

 

PROMET applied with the Penman-Monteith approach has proven its reliability in a number of 

publications for various watersheds of different sizes (i.e. MAUSER AND STRASSER 1997, MAUSER 

AND SCHÄDLICH 1998, STRASSER 1998, LUDWIG 2000) and therefore can legitimately be 

consulted as a reference model for the biological model version. 

 

4.2.2.2 PROMET_Biological vs. PROMET_Penman-Monteith 
A comparative analysis of the modelled water balance components of the Penman-Monteith 

model on one hand and the biological model on the other was conducted by setting both models 

up to a reference model run. Thereby, the same geographic data base, the same meteorological 

input data and the same computer was applied to both models. The reference model run

pcp

 was 

erformed for the years of 1960 to 2006 applying the input data set for the Upper Danube p
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catchment as described in section 3.3.4. The results for the first model year (1960) were 

utines are to be tested here, the inanimate landuse categories were neglected for this 

analysis. Due to the differences of the description of the vegetation growth activity of the two 

model approaches, the results for the evapotranspiration components partly feature strong 

deviations (fig. 4.36). 

 

g strategies, were mapped for the soil evaporation. While the Penman-

neglected in order to allow both models to adapt to the meteorological situation and to settle 

their soil water balances. As the models are compared in order to assess the quality of the 

biological model with respect to the major water household components, the hydrologic year, 

ranging from the 1st of November to the 31st of October, was applied as the temporal base unit 

for the analysis. 

 

4.2.2.2.1 Selected Reference Proxels 

The results for the evapotranspiration components of the modelled reference data were 

extracted for a set of 22 proxels, each representing one of the vegetation landuse categories 

that are accounted for in the input data set. For the selection of the random reference proxels, 

extreme locations like high elevations etc. were avoided in order to create a data survey that 

represents more or less average conditions of the Upper Danube area. A list of the reference 

proxels chosen for this survey is available in the appendix (A.13). Since only the biological 

ro

 

The best correlation between both models exists for the transpiration, where small deviations 

are more or less balanced between both models. Keeping the direct relation of the aboveground 

plant physiology to the interception capacity of the landsurface in mind (see section 3.3.2.2), the 

deviations that occur between the different model approaches for the interception evaporation 

are not surprising, since both models follow entirely different vegetation modelling strategies. 

For all landuse categories, the biological model reports somewhat lower sums of interception 

evaporation than the Penman-Monteith model. Strong deviations, which also are due to the 

different modellin

 
 
Figure 4.36: Modelled annual evapotranspiration of the hydrological year 1999, discerned into transpiration (left), interception 
evaporation (middle) and soil evaporation (right) for 22 different vegetation landuse proxels. Correlation between modelled results 
applying the Penman-Monteith approach and the biological model. 
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Monteith approach only simulates soil evaporation until the modelled vegetation has developed 

del is calculating soil evaporation applying an explicit to a full canopy closure, the biological mo

soil temperature model, which is driven by the energy that is transmitted even through the 

closed canopy above (MUERTH 2008). The biological model consequently calculates soil 

evaporation for the whole course of the year. Due to that discrepancy, the biological model 

returned much higher rates of soil evaporation than the Penman-Monteith approach. The results 

of the comparative model runs for the hydrological year 1999 are summarized in table 4.05. 

 
Table 4.05: Annual sums of evapotranspiration components [mm] for the hydrological year 1999, modelled with the Penman-
Monteith approach and deviations of the results achieved with the biological model. 
 

  Penman-Monteith Model [mm] Deviation of the Biological Model
Landuse Precip. Trans. Evap. Interc. Sum Trans. Evap. Interc. Sum

Coniferous Forest 1124 525 0 235 760 +33 + 15 - 45 + 3.41
Extensive Grassland 860 279 31 115 425 - 63 + 80 - 14 + 2.44
Intensive Grassland 786 270 30 123 424 - 70 + 93 - 20 + 2.77

Deciduous Forest 728 593 0 175 768 - 27 + 64 - 30 + 6.46
Winter Wheat 625 224 72 123 419 - 33 + 58 - 25 - 0.42

Silage 946 205 38 132 375 - 7 + 47 - 37 + 2.66
Winter Barley 811 205 74 123 402 - 31 + 62 - 28 + 2.61

Natural Grassland 723 237 9 166 412 + 8 + 52 - 60 + 0.18
Forage 884 193 30 112 335 - 25 + 34 - 9 + 0.71

Summer Barley 895 207 31 103 341 - 25 + 31 - 7 - 0.71
Wetland 732 330 0 157 487 - 172 + 229 - 54 + 3.88

Oleaginous 812 195 38 148 381 - 1 + 35 - 34 - 0.15
Setaside 739 255 16 164 435 - 5 + 60 - 58 - 2.72

Alpine 1494 38 0 53 91 - 7 + 55 - 47 + 0.83
Oat 806 205 76 137 417 - 31 + 60 - 26 + 2.34

Maize 810 239 84 126 450 - 33 + 62 - 33 - 3.16
Sugar 799 223 41 153 417 - 1 + 42 - 41 - 0.61
Potato 736 257 60 117 434 - 15 + 45 - 31 - 1.45

Rye 733 231 48 120 400 - 33 + 61 - 27 + 0.26
Hop 834 267 91 129 487 - 23 + 47 - 26 - 0.96

Summer Wheat 858 190 72 113 375 - 40 + 50 - 8 + 2.65
Legumes 839 203 39 133 375 - 3 + 37 - 34 + 0.72

 

Although the evapotranspiration components partly show strong deviations, the overall annual 

sum of evapotranspiration is reproduced by both models at nearly the same level with only 

minor deviations (table 4.05, right). This may be due to the fact that both models were provided 

with the same supply of energy and water, since identical meteorological input data was used 

for both models. The deviations between both models are the combined result of the different 

algorithms that are applied for the evaporation components, of the differences of the modelled 

agricultural management measures and of the differences of the parameterization of both 

models. The landuse category “wetland” may serve as a somewhat extreme example. Table 

4.05 shows that for this land cover extremely high deviations exist between the 

evapotranspiration components of both models, although they nearly evaporate the same 

overall sum during the hydrological year. While the annual evapotranspiration in the Penman-
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Monteith model mainly consists of transpiration, the biological model predominantly mapped soil 

evaporation. The example shows that both models may be behaving different for the discerned 

vapotranspiration components, but both affect the annual water balance in a comparable 

d
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The P.-M. model also returned days with absolute zero transpiration throughout the summer, 

which were not mapped by the biological model. This is due to the biological model returning 

small values of transpiration even when it is raining, while the P.-M. model is not constructed to 

produce transpiration in that case. However, the overall correlation of the daily rates of 

transpiration of both models is reasonably good, returning a Nash-Sutcliffe coefficient of model 

efficiency of 0.7 (fig. 4.37, right). 

The interception evaporation in both models is determined by the provision of rainfall and 

radiation on one hand and the amount of water that can possibly be intercepted by the canopy 

on the other. This interception storage capacity greatly depends on the modelled plant 

physiologica

 
 
Figure 4.37: Daily rates of transpiration of a silage proxel, calculated via the biological and the Penman-Monteith model for the 
hydrological year 1999. Annual course (left) and correlation of both models (right). 
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than it is returned by the biological model (fig. 4.38, left). This results in a distortion of the 

correlation at times, when the full storage capacity of the canopy is utilized and evaporates in 

the course of a single day (fig. 4.38, right). In total, the biological model tends to underestimate 

the storage capacity of the canopy, compared to the Penman-Monteith approach. 

 

 

As long as there is no vegetation cover modelled, which for the maize silage crop is the case 

from autumn to early spring, both models return almost identical rates of soil evaporation, with 

exception of a peak in October, which is due to differences of the available soil water storage 

that remains after the harvest. As soon as the canopy closure is complete, the P.-M. model 

ceases to produce soil evaporation, while the biological model still returns evaporation rates. 

Apart from these systematic differences, the correlation would be rather good (fig. 4.39, right). 

 
Figure 4.38: Daily rates of interception evaporation of a silage proxel, calculated via the biological and the Penman-Monteith model 
for the hydrological year 1999. Annual course (left) and correlation of both models (right). 
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Although the deviations between the two model types are noticeable, both models returned 

nearly identical annual sums of evapotranspiration for the 22 investigated vegetation land cover 

types. While the biological model on average returned less transpiration and less interception 

evaporation than the Penman-Monteith approach, the surplus of soil evaporation compensates 

for this effect, so that the dimension of the annual balance again is simulated at the same level 

by both models. 

 
 
Figure 4.39: Daily rates of soil evaporation of a silage proxel, calculated via the biological and the Penman-Monteith model for the 
hydrological year 1999. Annual course (left) and correlation of both models (right). 
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4.2.2.2.2 Spatial Statistics 

In the previous section, the two models were compared concerning the annual sums as well as 

the annual course of their respectively modelled evapotranspiration components. The models 

turned out to correlate reasonably well concerning the variability, which results from the 

divergent evapotranspiration behaviour of the different land use categories. However, each 

landuse category is represented in the data set at a characteristic spatial distribution. To assess 

the ability of the biological model concerning the reproduction of the spatial variability as well, 

the spatial results of the reference model run were analyzed for both model types. 

igure 4.40 indicates that during the long-term reference period, the biological model generally 

 

me it featured an equally higher standard deviation. For some of the peaks, the models show a 

high for all of the different land covers. The vegetation 

gure 4.40: Modelled evapotranspiration for a 46-year period (1961-2006), averaged for the Upper Danube catchment area. 
left) and correlation (right) of the evapotranspiration modelled by the PROMET_Biological model and the 

F

returned slightly less evapotranspiration than the Penman-Monteith approach, while at the same

ti

nearly parallel course (e.g. 1965-1968), while others are completely missed by the biological 

model (e.g. 1963). Nonetheless, both model results correlate reasonably well, although the 

overall average evapotranspiration for both models does not exceed an interannual variation of 

70 mm (fig. 4.40, right). 

 

 

In order to include the mapping of the spatial patterns into the comparison, the averaged model 

results for the reference period were correlated for each proxel and discerned into the 27 

different landuse categories that are accounted for in the input data set. Table 4.06 lists the 

results of this comparison, while a full overview is given in the appendix (A.14). 

PROMET_Penman-Monteith model. 

The correlation between both models is 

landuse categories are characterized by slopes that slightly fall below the ideal value of one, 

visualizing the generally slightly lower evapotranspiration that is returned by the biological 

model. 
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Table 4.06: Spatial correlation of the annual average evapotranspiration [mm] of both, the PROMET-Penman-Monteith and the 
PROMET_Biological model. Compared model results for the hydrological years of 1961 to 2006, calculated for the Upper Danube 
Basin. 
 

Landuse Type  ET Penman-Monteith ET Biological N N.-S. Slope R²
Coniferous Forest 554.99 552.93 25012 0.92 1.00 0.94

Extensive Grassland 309.35 260.87 9548 0.57 0.84 0.84
Intensive Grassland 368.85 303.31 8010 -3.61 0.83 0.61

Deciduous Forest 505.04 490.15 5681 0.92 0.97 0.95
Winter Wheat 352.70 360.52 5179 0.69 1.02 0.86

Rock 046.34 059.91 3301 0.58 1.23 0.88
Silage 379.03 326.41 2790 -1.28 0.77 0.85

Residential 063.77 063.89 2624 0.97 1.00 0.96
Winter Barley 351.18 334.34 2120 0.56 0.95 0.85

Natural Grassland 217.97 197.04 1270 0.87 0.94 0.91
Forage 303.32 298.59 1228 0.84 0.99 0.90

Summer Barley 289.23 298.89 1163 0.79 1.03 0.90
Wetland 299.34 287.87 1127 0.53 0.93 0.55

Oleaginous 369.23 322.51 989 -0.60 0.87 0.71
Set Aside 418.55 391.83 920 -0.52 0.94 0.71

Alpine Grassland 171.66 118.32 854 -1.40 0.69 0.62
Oat 337.07 293.40 770 -1.04 0.87 0.75

Maize 385.24 351.09 749 -1.03 0.91 0.74
Water 622.15 632.14 573 0.94 1.02 0.99
Sugar 390.80 399.95 434 0.43 1.02 0.79

Industrial 062.28 062.20 411 1.00 1.00 0.99
Potato 380.27 415.17 328 -0.12 1.09 0.93

Rye 332.58 311.46 293 0.68 0.94 0.80
Hop 399.87 382.12 168 0.19 0.96 0.81

Summer Wheat 316.22 296.74 85 0.38 0.94 0.83
Legumes 368.56 365.07 77 0.85 0.99 0.89

Glacier 029.92 034.91 10 -1.84 1.40 0.71
 

 addition to the good correlation, both models returned comparable values for the average 

 

As concluded for relation le s in evio ction  

correlation f  

In

evapotranspiration sum for the different land covers (fig. 4.41, left). 
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or the transpiration alone is not as good as for the plain evapotranspiration (fig.

Evapotranspiration

n = 27
R2 = 0.97

Slope = 0.96
N.-S. = 0.99

0

100

200

300

400

500

600

700

0 100 200 300 400 500 600 700

Penman-Monteith [mm]

Bi
ol

og
ic

al
 [m

m
]

 

Transpiration

n = 22
R2 = 0.89

Slope = 0.90
N.-S. = 0.85

100

200

300

400

Bi
ol

og
ic

al
 [m

m
]

Penman-Monteith [mm]
0

0 100 200 300 400  
 
Figure 4.41: Correlation of the long-term (1961-2006) average evapotranspiration (left) and transpiration (right) modelled by the 

ETPROM _Biological model and the PROMET_Penman-Monteith model. 
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Figure 4.42: Map of deviation between the long-term (1961-2006) average evapotranspiration modelled by the 
PROMET_Biological model and the PROMET_Penman-Monteith model. 

primarily due to the entirely different description of the vegetation behaviour of both models. In

o

results of both models were also compared with respect to the modelled runoff. For the 

modelling of the runoff, the surplus of water that is generated on each proxel according to the 

general storage equation, is converted to a flux of runoff from each proxel and again is routed 

through a network of rivers that finally drains the catchment at the basin gauge (MAUSER AND 

BACH 2008). The basin gauge of the Upper Danube is represented by the gauge Achleiten as 

described in section 2.1. For the 46 year reference time series, both models produced very 

 139



Model Validation 

 

similar rates of runoff at the main gauge, resulting in a very high correlation of the two modelling 

approaches (fig. 4.43, left). 
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Both models show high correlations with the measured runoff, featuring Nash-Sutcliffe efficiency 

coefficients of 0.82 and 0.86 respectively. The high correlation of the Penman-Monteith 

approach with the measured runoff could already be shown by MAUSER AND BACH (2008). Small 

deviations mostly are due to an overrating of the average discharge during snowmelt periods. 

Floodwater and low flow peaks are precisely mapped by both model approaches. In relation to 

the gauge measurements, the biological model returned a similar slope of the regression line in 

-Monteith approach (see tab. 4.07). 

combination with almost identical coefficients of correlation and of model efficiency respectively, 

ompared to those that were achieved applying the Penmanc

 
Tab. 4.07: Results for the correlation of modelled and measured runoff (1970-2003) at the main gauge of the Upper Danube 
catchment for the two different model approaches. 
 

 Biological vs. 
Penman-Monteith 

Penman-Monteith vs. 
Measured Runoff 

Biological vs. 
Measured Runoff 

T = 1961-2006 1970-2003 1970-2003 
N = 16 742 12 356 12 356 

R² = 0.97 0.87 0.87 
Slope = 1.04 1.05 1.09 

Nash-Sutcliffe = 0.97 0.86 0.82 
 

Compared to the reference model, the biological model approach could prove to produce 

reliable results concerning the absolute sums as well as the spatial and temporal variability of 

the evapotranspiration components for the catchment area. Although the biological model 

enerally returned slightly lower rates of evapotranspiration, the comparison with measured 

runoff data could reveal that the water balance seems not to be negatively affected. 
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Figure 4.43: Correlation of modelled runoff for the gauge “Achleiten” by the PROMET_Biological model and the 
PROMET_Penman-Monteith model (1961-2006, left) and correlation of modelled and measured runoff for the main gauge of the 
Upper Danube catchment (1970-2003, right). 
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4.2.3 Consulting External Data 
For the assessment of model parameters that are not mapped by own sampling campaigns 

measured data may be available through publications of neighbour sciences. In this case, the 

ecological branch of forestry was able to contribute detailed studies concerning the phenological 

behaviour of trees in Southern Europe (MENZEL 1997), which allowed for a testing of the 

phenology submodel of the forest vegetation types. 

The main phenological phases of the forested areas are of great importance to the annual water 

balance, as the date of the incidence of the major growth stages determines the absolute 

temporal range where the woodlands are able to contribute to the overall evapotranspiration of 

the landsurface. During the reference model run, which was calculated for the Upper Danube 

from 1960 to 2006, the model was reconstructed to export the date of the first incidence of the 

 the growth stages “Leaf Emergence” and “Defoliation” for 

eciduous trees as well as of the incidence of “Mayshoot” in the case of coniferous trees (see 

major growth stages of deciduous and coniferous woodland. Thereby, a 46-year data set of the 

spatially distributed incidence of

d

section 3.3.3.6.1.3) was collected. Since the Upper Danube catchment comprises a high variety 

of altitudes, the results were analysed for three discerned altitudinal vegetation zones as there 

are the so called “colline” belt, ranging from 300 to 600 m above the sea level, the “montane” 

level from 600 to 1500 m a.s.l. and the “alpine” altitudinal zone exceeding that mark (fig. 4.44). 

 

 
Figure 4.44: Terrain elevation within the Upper Danube Basin indicating the spatial distribution and the percentage of the 
altitudinal vegetation belts. 
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4.2.3.1 Deciduous Forest Phenology 

As described in section 3.3.3.6.1.3, the simulation of the forest phenology is based on the 

analysis of average and extreme air temperatures. Leaf emergence in spring is mainly initiated 

 

The average incidence of the modelled leaf emergence in the Upper Danube varies between 

the DOY 86 and 154 (27th of March till 3rd of June for a non leap year) for the years 1961 to 

2006, while the average incidence of the defoliation covers a range of DOY 245 to 334 (2nd of 

September till 30th of November for a non leap year). Figure 4.45 also indicates that the leaf 

emergence, according to the natural temperature gradient, occurs earlier at the colline (grey) 

than at the montane level (red), with exception of the years 1965, 1973 and 1975. 

 

 
Figure 4.45: DOY of the mean and extreme modelled initiation of leaf emergence for deciduous trees in the Upper Danube Basin 
from 1961 to 2006, discerned into two altitudinal vegetation zones (left). Corresponding trends for the 46-year period 1961-2006 
(right). 

by warm weather, whereas the autumnal defoliation is dependent on the occurrence of frosty 

days. Increasing average air temperatures will cause the leaves to emerge earlier in spring and 

will delay their fall in autumn, while the contrary would be the case for a decrease of the 

average air temperature. When the dates of incidence of these processes are averaged for the 

whole Upper Danube Basin and are displayed for the 46 year time series, a data set is created 

that shows patterns of natural variability (fig. 4.45 and fig. 4.46, left). 

 

 
Figure 4.46: DOY of the mean and extreme modelled initiation of defoliation for deciduous trees in the Upper Danube Basin from 
1961 to 2006, discerned into two altitudinal vegetation zones (left). Corresponding trends for the 46-year period 1961-2006 (right). 
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The dashed lines represent extreme sites within the Upper Danube catchment area. A 

reciprocal picture was calculated for the defoliation that continuously occurs earlier at the 

montane than at the colline altitudinal belt (fig. 4.46). Since deciduous forest is not supposed to 

be found at altitudes that exceed 1500 m above the sea level, no results for the alpine altitudinal 

zone of the Upper Danube are available. 

Besides the interannual variability, both rows show a very slight trend. While the date of leaf 

mergence tends towards lower days of the year, i.e. an earlier incidence, with a soft slope (m) 

of -0.04 and a weak correlation of R² = 0.01 (fig. 4.45, right), the date of defoliation develops 

towards higher days of the year, or a later occurrence respectively, with a slightly sharper slope 

of 0.17 and a likewise weak correlation of R² = 0.06 (fig. 4.46, right). If both dates are drifting 

apart, this will necessarily result in a prolonged vegetation period. Indeed, the model shows a 

discernable increase of active growing days of deciduous forest during the past 45 years. While 

the absolute average length of the vegetation period showed durations of 152 to 198 days per 

year for the time from 1960 to 2006 (fig. 4.47, left), featuring a natural variability of 46 days 

(approx. 7 weeks), it seems to tend towards a longer duration with a slope of 0.21 and a weak 

 

Although both phenological transitions show discernable trends, the gradual change seems to 

be veiled by the interannual variability, leading to weak correlations. In order to visualize the 

trend, the moving ten-year average (1965-2001) is calculated, based on the model data for the 

years 1961-2006.  

Figure 4.48 shows that the trends of the moving average of leaf emergence and defoliation are 

ore stable, although they are diluted by a cooler period during the eighties of the 20th century. 

 

 
Figure 4.47: Mean and extreme duration of the modelled vegetation period for deciduous trees in the Upper Danube Basin from 
1961 to 2006, discerned into two altitudinal vegetation zones (left). Corresponding trends for the 46-year period 1961-2006 (right). 

e

correlation of R² = 0.06 (fig. 4.47, right). 

 

m

Nonetheless, the modelled incidence of leaf emergence has steadily developed towards an

earlier date since 1982, while the discard of the leaves was modelled to occur later in the year. 

If only the development from 1982 onwards was considered, the development of the vegetation 

period would be alarming, showing a prolongation trend of 32 days within 50 years (R2 = 0.88). 

Vegetation Period of Fagus sylvatica

100
120
140
160
180
200
220
240
260
280

YearD
ay

s 
pe

r y
ea

r

80

19
60

19
62

19
64

19
66

19
68

19
70

19
72

19
74

19
76

19
78

19
80

19
82

19
84

19
86

19
88

19
90

19
92

19
94

19
96

19
98

20
00

20
02

20
04

20
06

Mean Colline Montane Max Min

r2 = 0.07 / m = 0.21

r2 = 0.05 / m = 0.16

r2 = 0.07 / m = 0.26

175

180

185

190

195

165

170

19
60

19
65

19
70

19
75

19
80

19
85

19
90

19
95

20
00

20
05

Year

D
oy

Mean Montane Colline

 143



Model Validation 

 

 

A closer examination of the data reveals that, although the average trends still are weak and the 

slopes are inclining gently due to the undulating course that the change is taking, the absolute 

onsequences can be more definite when the dates are considered in their spatial variability. 

Two ten year averages (1961-1970 and 1997-2006), one at each end of the reference period, 

were calculated and compared to each other (fig. 4.49). The maps are colourized in a way that 

early leaf emergence, which is technically connected to warmer temperatures, appears orange 

to red, while later leaf emergence is displayed green. Both maps show a strong terrain 

influence. It manifests for instance in the green barrier in the South that indicates the later leaf 

emergence that is modelled for areas with strong alpine influence, whereas the lower landscape 

in the middle of the basin shows light green to yellow colour a predominant 

incidence of leaf emergence already at the end of April. 

c

s, indicating 

 

 
Figure 4.49: 10-year average of the initiation of leaf emergence, modelled by PROMET for the Upper Danube Basin 1961-1970 
(left) and 1997-2006 (right). 
 

 
Figure 4.48: Moving 10-year averages of modelled leaf emergence, defoliation and the resulting vegetation period from 1965 to 
2001, based on modelled data for the years 1961-2006. 
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A parallel picture can be observed for the defoliation (fig. 4.50). Only here, the orange to red 

colours are indicating a late incidence, which is technically due to a retarded occurrence of frost. 

 

 
Figure 4.50: 10-year average of the initiation of defoliation, modelled by PROMET for the Upper Danube Basin 1961-1970 (left) 
and 1997-2006 (right). 
 

If the two maps are subtracted, the difference of both 10-year-averages can be visualized, 

creating a map of mean change (fig. 4.51). Both phenological transitions, the leaf emergence 

and the defoliation, are determining the absolute duration of the vegetation period. Their 

diverging development results in a dominance of orange to red colours in the map of change. 

 

 
 
Fi
co

gure 4.51: Change of the modelled 10-year average of the duration of the active growth period for deciduous trees (1997-2006 
mpared to 1961-1970) in the Upper Danube Basin. 
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The legend is coloured in a way that a change towards a prolongation of the mean duration of 

the vegetation period, which technically is caused by an increase of mean temperature, is 

displayed orange to red, while a change towards a shortening of the vegetation period, which is 

due to a general cooling, is displayed green. 

The observed patterns imply that the sensitivity of the forest phenology in terms of temperature 

change is somehow connected to the terrain. Especially the low mountain ranges of the 

Swabian and the Franconian Alb show the largest changes with a prolongation of the 10-year 

average of the vegetation period of up to one month. Also a region of shorter growth periods is 

noticeable in the valley of the river Inn in the South-East of the basin, which is mostly caused by 

an earlier discard of leaves due to early frost events. While in some places the vegetation period 

is up to one month longer at the beginning of the 21st century compared to the sixties of the 20th 

century, the average prolongation for the Upper Danube sums up to 8.3 days. The landuse 

category “deciduous forest” in the model is parameterised like fagus sylvatica, due to the 

predominant appearance of beech trees in the Upper Danube Basin (LWF 2004). MENZEL 

(1997) provides a detailed report on observed development stages of trees in Europe based on 

e analysis of long term data of International Phenological Gardens (IPG). A set of IPGs for 

 

henological stages of trees (see appendix A.16). A subset of the phenological data, including 

Table 4.08: Average incidence of the leaf emergence of beech trees (fagus sylvatica) based on observed long time data (1963-
1993) of International Phenological Gardens in Europe (MENZEL 1997) and modelled results for the Upper Danube Basin. 
 

  Avg. for Europe Avg. for S.-Germany Min Max Variation 

th

Europe was selected (see appendix A.15) and analysed in terms of the average incidence of

p

the IPGs Trier, Stuttgart-Hohenheim, Stuttgart-Weilimdorf, Grafrath, Freising-Weihenstefan and 

Tharandt, was used to generate average values and limits of variation that were supposed to 

apply to Southern Germany. Table 4.08 summarizes the observed incidences of leaf emergence 

and the modelled results for the Upper Danube Basin. 

 

Early 123 122 92 163 71 
Normal 126 125 93 153 60 Observed: 

Late 129 128 99 151 52 
Colline  122 99 140 41 

Montane  127 88 154 66 Modelled: 
Total  125 88 154 66 

 

The average dates for the incidence of the leaf emergence in Southern Germany, as derived 

from the literature for beech trees, are most perfectly met by the model. Observed and modelled 

mean leaf emergence occur on DOY 125, i.e. on the 5th of May. Also the variability of the 

modelled leaf emergence with 66 days is comparable to the observed dimensions. While the 

model results for the colline altitudinal belt feature the characteristics of early emerging IPG 

clones, the dates achieved for the montane level tend towards a later emergence. For the 

 defoliation, a similar quality of the model results could be verified. The mean date of defoliation
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for both, observed and modelled data, is the DOY 302 or the 29th of October respectively. 

Although the average incidence is perfectly met, the model seems to underestimate the 

variability as it is observed for Southern Germany. While the observed values vary by a range of 

140 days, the model returned a maximum variation of 84 days (tab. 4.09). This may be due to 

the different observational regions, but may also be due to the fact that the discard of leaves in 

nature may have other reasons besides the mere temperature dependency as it is assumed in 

the model. It is known that the increase of atmospheric ethylene concentrations towards the end 

of the summer is encouraging the generation of the auxin (indole-3-acetic acid, IAA) hormone, 

which again is triggering the defoliation (HOPKINS 1999). These chemical processes are not 

accounted for in the model. 

 
Table 4.09: Average incidence of the defoliation of beech trees (fagus sylvatica) based on observed long time data (1963-1993) of 
International Phenological Gardens in Europe (MENZEL 1997) and modelled results for the Upper Danube Basin. 
 

  Avg. for Europe Avg. for S.-Germany Min Max Variation 
Observed: Total 307 302 196 336 140 

Colline  305 260 334 74 
Montane  300 250 334 84 Modelled: 

Total  302 250 334 84 
 

In total, the results indicate that the model is capable of returning a phenological behaviour of 

deciduous tree types for the leaf emergence as well as for the defoliation that very closely 

matches the observed dates. Consequently, the modelled absolute length of the vegetation 

period can be assumed to be soundly reproduced by the model. 

 

4.2.3.2 Coniferous Forest Phenology 

F  

“ ayshoot” is determine ra en  dec s tr  

coniferous trees may surmount the altitude of 1500 ll three altitudinal zones (colline = grey, 

montane = red, alpine = blue) are discerned here. 

 

into three altitudinal vegetation zones (left). Corresponding trends for the 46-year period 1961-2006 (right). 

or coniferous forest, the rapid increase of growth activity in spring, referred to as the

m , d technically pa llel to the leaf emerg ce of iduou ees. Since

m, a

 
Figure 4.52: Modelled average and extreme incidence of coniferous mayshoot for the Upper Danube Basin (1961-2006), discerned 
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The late incidences that are modelled for the high alpine coniferous sites are biasing the 

average towards a later occurrence of mayshoot. The average incidence of modelled mayshoot 

for the whole Upper Danube Basin therefore stays close to the dates that were modelled for the 

montane altitudinal belt (fig. 4.52, left). Nonetheless, the coniferous trees generally seem to 

develop towards an earlier incidence of the mayshoot, although the slopes are quite small and 

the regressions are veiled by the interannual variability (fig. 4.52, right). Surprisingly, the 

average values trace a parallel development for all three altitudinal belts. 

A more differentiated picture is revealed, when the spatial patterns are taken into account. 

Figure 4.53 emphasizes the effect of the terrain elevation on the incidence of phenological 

stages. Clearly the alpine barrier is discernable in cyan to blue colours, which are indicating a 

te incidence of the mayshoot. Also the trees that are covering the Black Forest in the West of 

t

figure 4.53, he major y la ye olo the , 

while orange to red colours are dominating in the right frame. This already im  that a nge 

of phenological behaviour is noticeable comparing t o averaged ades

 

la

he catchment and the Bohemian Forest in the East are characterised by a later mayshoot. In 

 t it of the alpine fore nd is represented by llow c urs in  left frame

plies  cha

he tw  dec . 

 
Figure 4.53: Modelled 10-year average of the initiation of mayshoot for coniferous trees 1961-1970 (left) compared to 1997-2006 
(right) for the Upper Danube Basin. 
 

By subtracting the two 10-year averages, a map of average change can be created (fig. 4.54). 

With exception of a small area in the South-West of the basin, the mayshoot was modelled 

earlier for the 10-year average from 1997-2006 than for the period from 1961-1970. In the 

average, the earlier incidence of mayshoot sums up to 7.69 days for the whole Upper Danube 

area. Based on the analysis of IPG data, CHMIELEWSKI (2001) could prove that the beginning of 

e active vegetation period in central Europe has shifted to an earlier incidence by 8 days 

 

th

during the past 30 years. The modelled change therefore matches the observed change quite
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well. Again, the low mountain ranges of the Swabian Alb as well as of the Black and the 

Bohemian Forest are the regions that are most intensively affected by the change, featuring an 

earlier occurrence of mayshoot of up to three weeks in the average. 

 

 
 
Figure 4.54: Change of the modelled 10-year average of the incidence of mayshoot for coniferous trees (1997-2006 compared to 
1961-1970) in the Upper Danube Basin. 
 

A summary of the model results and the observed data for coniferous forest is listed in table 

4.10. Although the alpine regions are somewhat biasing the average, the model well meets the 

observed dates for the mayshoot in Southern Germany. 

 
Table 4.10: Average incidence of the mayshoot of spruce trees (picea abies) based on observed long time data (1963-1993) of 
International Phenological Gardens in Europe (MENZEL 1997) and modelled results for the Upper Danube Basin. 
 

  Avg. for Europe Avg. for S.-Germany Min Max Variation 
Early 127 128 73 179 106 

Normal 134 134 80 194 114 Observed: 
Late 138 139 82 201 119 

Colline  130 112 159 47 
Montane  141 117 181 64 

Alpine  169 140 181 41 Modelled: 

Total  139 112 181 69 
 

The average modelled dates for the Upper Danube correspond to the observed values of a 

“late” IPG clone, while the average for the colline zone lies between the “early” and the “middle” 

observed date. Although the model simulated the incidence of mayshoot precisely concerning 

the average, it does not trace the full temporal variability of the observed values. Since the 

progress of phenological stages is also determined by the local situation of water supply, 
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shading and so forth, this lack of variability may be due to the relatively coarse 1 x 1 km spatial 

resolution of the model. In order to investigate in how far the lack of spatial variability is 

accompanied with a reduced temporal variability, observed time series are required in addition 

 the average dates. Eleven of the currently operated IPGs are located next to the Upper 

Danube catchment (fig. 4.55). 

 

to

 
 
Figure 4.55: International Phenological Gardens located next to and within the Upper Danube Basin. 
 

While no time series of the modelled forest species could be acquired for the three IPGs that 

a

G ch could be 

accessed, ince the tim a a blis by M L (1997). The 

IPG contributed time series of the observed incidence of mayshoot (IPG phase 2) for three IPG 

clones of picea abies 121 (early), 122 (middle), 123 (late) for a per of 1959 to 1993. For the 

years of 196 , the observed and the modelled data overlap and allow for a comparative 

a . ince the location of the IPG Offenbach lies beyond the borders of the 

nt area, a site that features comparable annual mean temperatures was 

ctually are located within the boundaries of the Upper Danube Basin (Donaueschingen, 

rafrath and Weihenstefan, fig. 4.55), the database of the garden Offenba

 s  e series for pice bies already are pu hed ENZE

iod 

1 to 1993

nalysis (fig 4.56). S

Upper Danube catchme

selected for the comparison. An analysis of long term data provided by the German Weather 

service returned that the city of Offenbach features an annual mean temperature of 10.3 °C, 

while the warmest region within the Upper Danube can be found in the valley of the river Inn 

with annual mean temperatures of up to 10.1 °C for the respective period. A proxel of the model 
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 151

rved peak of early mayshoot in 1969. The best fit between 

odelled and observed dates could be achieved for the IPG clone 122, which is associated with 

an average behaviour (MENZEL 1997). The correlation between the modelled mayshoot and the 

dates observed for the “middle” clone 122 (fig. 4.56, right) indicates, that the model is likely to 

reproduce the mayshoot rather later than it is observed. This may be due to the different 

geographic positions of observed and modelled dates. The IPG Offenbach, being located in the 

South-East of Frankfurt, is characterized by the low terrain elevation of 99 m above the sea 

level, while the lowest altitude that can be found within the borders of the Upper Danube Basin 

is 290 m above the seal level. The resulting differences of the annual mean temperature that 

discerns the IPG Offenbach from the Inn valley, which provided the test proxel, may well 

account for the deviations. 

 

data set, taken from the Inn valley in the South-East of the Upper Danube Basin, therefore was 

selected for the comparison. 

Figure 4.56 shows that the model is capable of tracing the temporal variability of the observed 

time series. While some of the peaks are perfectly reproduced by the model (1974, 1981, 1983), 

it completely misses the obse

m

 
Figure 4.56: Course of observed and modelled incidence of mayshoot of picea abies for a time series from 1961 to 1993 (left) and 
correlation of modelled and observed (middle) mayshoot dates. 
 

The model could prove its capability of a precise reproduction of the average incidence of major 

phenological stages for deciduous and coniferous forest trees. It also returned realistic spatial 

distributions of the investigated phenological transitions. For coniferous sites it could further be 

shown that the model is able to trace temporal patterns at a reasonable level. The model results 

for the reference model period from 1961 to 2006 also are carrying a strong indication that 

considerable changes of the phenological behaviour of trees already are occurring. The 

modelled changes reasonably match the changes of phenological phases as they are observed 

for central Europe in the literature by CHMIELEWSKI (2001) and CHMIELEWSKI AND RÖTZER 

(2001). The following sections will include an investigation on the further development of those 

changes under the impact of a possible future climate. 
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5. Modelling Climate Scenarios 
 
For the assessment of a possible future climate, it is necessary to find an international standard 

that allows for the comparison of the results that are derived from different models. Only 

recently, the efforts of the scientists that are participating in the Intergovernmental Panel on 

Climate Change were honoured in relation with the Nobel Prize for peace 2007. The work of the 

IPCC obviously is most widely known and is thought to be perceived as a decision support for 

politicians worldwide. Thus, for the modelling of climate scenarios in this work, an international 

standard was found in the emission scenarios that were published in the special report on 

emissions scenarios (SRES) by the IPCC (2000, 2007). 

However, there still is a large uncertainty in the literature that surrounds both, future emissions 

and the possible developments of their underlying driving forces. The uncertainties range from 

inadequate scientific understanding of the problems, due to data gaps or lack of data, to the 

inherent uncertainties of future events in general (IPCC 2000). To account for those 

uncertainties, scenario families that are based on different assumptions of future human 

behaviour are used to describe the range of possible future emissions. 

 

5.1 The IPCC CO2-Emissions-Scenarios 
The scenarios developed by the IPCC are based on assumptions of future development of 

determinant variables such as technology, governance, and behavioural patterns. The SRES 

emissions scenarios were developed in a way that they do not include simple catastrophic 

future projections, but endeavour to discuss more likely futures that regard the balance of future 

developments, which also might be complementary. 

 
Table 5.01: IPCC scenario families, discerned into scenario groups with their major characteristics (IPCC 2000). 
 

Scenario Family: A1 A2 B1 B2 
Scenario Group: A1C A1G A1B A1T A2 B1 B2 

Population growth: low low low low high low medium
GDP growth: very high very high very high very high medium high medium
Energy use: very high very high very high high high low medium

Landuse changes: low-med low-med low low med/high high medium
Resource availability: high high medium medium low low medium

Technological development: rapid rapid rapid rapid slow medium medium
Change favouring: coal oil & gas balanced nonfossil regional efficiency as usual

 

In total, four scenario families based on four different future storylines were developed by the 

IPCC, listed in table 5.01, where the respective assumptions on the future development of 

central socioeconomic issues that are associated with each scenario are displayed. 
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5.1.1 The Scenario Families 
As can be derived from table 5.01, the four scenario families are based on a variety of 

assumptions that are concerning the future development of a set of driving forces. While the “A”-

families are scenarios, where economics are the driving factors, the „B“-families are scenarios, 

where environmental policies are the determinant force. Each scenario family is accompanied 

by a storyline that accounts for the assumed changes. Briefly, these storylines are summarized 

according to the IPCC (2000) in the following: 

 

• A1 storyline and scenario family: This storyline is based on the assumption of a future 

world of very rapid economic growth, combined with a low population growth. It assumes 

the rapid introduction of new and more efficient technologies. Major underlying themes 

are the convergence among regions, capacity building and increased cultural and social 

interactions. Also a substantial reduction of regional differences of per capita income is 

hypothesized. The A1 scenario family develops into four groups that describe alternative 

directions of technological change concerning the energy system. The discerned groups 

are the A1C (favouring “clean coal" technologies), the A1G (favouring “fossil oil- and 

gas" technologies), the A1B (“balanced” development of energy technologies) and the 

A1T (transition towards solar and nuclear technologies) scenarios. 

 

• The A2 storyline and scenario family: This storyline describes a very heterogeneous 

future world. The basic theme is self-reliance and preservation of local identities. Fertility 

patterns across regions converge very slowly, which results in high population growth. 

Economic development is primarily regionally oriented. Consequently both, the per 

capita economic growth as well as the technological change, are more fragmented and 

slower than in other storylines. 

 

• The B1 storyline and scenario family: This storyline pictures a convergent world with 

a low population growth as assumed in the A1 storyline, but with rapid changes of 

economic structures towards a service and information economy. This is supposed to go 

along with reductions of material intensity and the introduction of clean and resource-

efficient technologies. This scenario emphasizes global solutions that lead to economic, 

social and environmental sustainability, including improved equity. Additional climate 

initiatives are neglected. 

 

• The B2 storyline and scenario family: This storyline outlines a world, where local 

solutions to economic, social and environmental sustainability are emphasized. Basic 

assumptions are a moderate population growth, intermediate levels of economic 
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development and less rapid and more diverse technological change than in the B1 and 

A1 storylines. While the scenario is also oriented towards environmental protection and 

social equity, it focuses on local and regional levels. 

 

This variety of assumptions of human behaviour leads to different carbon dioxide and other 

greenhouse gas (GHG) emissions scenarios that again are resulting in changes of the global 

average temperature (tab. 5.02). 

 
Table 5.02: Projected globally averaged surface warming at the end of the 21st century for 
different model cases (IPCC 2007). 
 

Temperature Change °C (2090-2099 relative to 1980-1999) 
Case Best estimate Likely Range 

Constant year 2000 
concentrations: 0.6 0.3 - 0.9 

B1 scenario: 1.8 1.1 - 2.9 
A1T scenario: 2.4 1.4 - 3.8 

B2 scenario: 2.4 1.4 - 3.8 
A1B scenario: 2.8 1.7 - 4.4 

A2 scenario: 3.4 2.0 - 5.4 
A1FI scenario: 4.0 2.4 - 6.4 

 

Table 5.02 includes two extreme reference scenarios. On the lower boundary of possible 

temperature changes stands the assumption of constant CO2 emissions, as they were recorded 

in the year 2000. The upper boundary of possible global temperatures is formed by a scenario 

that extremely relies on the consumption of fossil fuels and therefore results in the most extreme 

temperature change (A1FI, fig. 5.01). 
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Figure 5.01: Anthropogenic emissions of CO2 (left) and resulting atmospheric CO2 concentrations (right) for six illustrative SRES 
scenarios for a time frame from 1990 to 2100 (IPCC 2007, modified). 
 

The “constant CO2” as well as the A1FI scenario represent the most extreme positions and 

therefore can be considered to be the most unlikely. However, since economy is assumed to be 

the determining variable also in the future, the A1T (transition between fossil fuel usage and 
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renewable energy) and A1B (fossil fuels reach a balance with renewable energy sources) 

scenarios are the most widely recognized projections. The A1B scenario was chosen as the 

scenario basis for all calculations presented in this work, due to the moderate course it is taking 

and the high probability that is associated with the A1B storyline. 

In that context it has to be mentioned that each scenario is represented not only by a core line 

of development, but by a range of possible realizations for each storyline. These ranges are 

defined through the boundaries that are calculated for the diverse realizations of the respective 

marker scenarios by a set of different environmental and socioeconomic models, a so called 

ensemble. Figure 5.02 pictures the increase of global mean temperature, modelled according to 

the projected green house gas emissions by the IPCC (2007). 

 

6 
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Figure 5.02: Global average temperature projections for the six illustrative SRES scenarios. The shading is the envelope based on 
all six model projections (with climate sensitivity in the range 1.7 to 4.2 °C). The bars on the right hand side indicate the range 
produced by different models for the respective storylines (IPCC 2007, modified). 
 

The coloured lines represent the average of model runs with model ensembles, while the 

coloured bars on the right indicate the range of the ensemble results for the respective 

scenarios. The grey shading outlines the overall range of modelled possible temperature 

increases. 

The first group of A1 scenarios, which includes the A1B scenario, assumes a balanced progress 

across all resources and technologies from energy supply to end use, as well as balanced land-

use changes. The term balanced in this context is defined as not relying too heavily on one 

particular energy source or landuse development respectively. The basic conception of a 

balanced development assumes similar improvement rates for all sorts of energy supply and 

end use technologies (IPCC 2007). 
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5.2 Adapting PROMET to the Simulation of Climate Scenarios 
Since PROMET is a model that entirely relies on physical descriptions of the modelled 

processes (see section 3.1 et seq.), the algorithms themselves do not need to be altered, when 

the model is confronted with climate parameters that deviate from the observed conditions of 

the validation time period. The basic assumption is that the model will produce realistic results, 

when the meteorological input data sets are modified in a way that they can provide a realistic 

image of a changing climate. The increase of the atmospheric CO2 concentration thereby has to 

be considered separately from the expected temperature increase. While the ascent of the 

atmospheric CO2 concentration is a global phenomenon, its local consequences can differ 

strongly from the global average. Accordingly, the modelled change of the CO2 concentration is 

assumed with the globally projected range of the IPCC A1B scenario, while the modelled 

temperature increase is based on the A1B scenario, but is adjusted by a local impact factor that 

applies to the observed and expected trends for the Upper Danube region. 

 

 

5.2.1 Modelling the Increase of Atmospheric Carbon Dioxide 
Likely projections of the future development of the human emission behaviour are published by 

the IPCC for the different scenario families and storylines mentioned above. Usually, the 

published data is derived from economic calculations and is presented with a unit of giga-tons of 

carbon emissions per year. For the plant growth activities modelled here, only the atmospheric 

concentration of CO2 is of direct consequence (see section 3.3.3.5.2). With a rough calculation, 

applying the parameters listed in table 5.03, the emitted tons of C can easily be converted into 

the resulting atmospheric concentration of CO2. 

 
Table 5.03: Parameters for the conversion of annual CO2 emissions to atmospheric CO2 
concentrations. 
 

Earth surface area: 510 000 000 [km²] 
Mean air pressure: 1.033 [kg cm-2] 
Molecular weight of air: 28.8 [g mol-1] 
Molecular weight of carbon: 12 [g mol-1] 
Molecular weight of CO2: 44 [g mol-1] 
Global mass of air: 5.2683 x 1018 [kg] 
Global mass of air: 5268300 [gt] 
Global mass of air: 1.82927 x 1020 [mol] 
Atmospheric CO2-concentration (1970): 328.9 [ppm] 

 

Four parameters have to be known, as there is the overall area of the earth’s surface with 510 x 

106 km2, the mean global air pressure with 1.033 kg cm-2, the annual mass of emitted carbon as 

well as the atmospheric CO2-concentration that applies to the year 1970. The latter two of the 

required parameters are taken from the special report on emissions scenarios (IPCC 2000, fig. 
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5.04, left). First, the emissions are converted into a physical unit of grams and again into a unit 

of mol via the molecular weight of carbon (eq. 5.01). 
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In order to calculate the CO2-concentration, the global mass of the atmosphere with a physical 

unit of mol is required, which is determined following equation 5.02: 
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The increase of the CO2 concentration due to the emitted carbon then can be expressed as 

equation 5.03, with 0.47 representing an empiric conversion factor that accounts for the 

conversion of C to CO2 as well as for the CO2 fixation of natural carbon sinks, like the terrestrial 

and marine re-absorption of emitted carbon (SHAFFER AND SARMIENTO 1995). 
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Figure 5.03 (left) shows the annual carbon emission due to human activities as projected by the 

IPCC for the moderate A1B scenario and the ascent of the atmospheric CO2 concentrations, 

which results from the accumulation of the annual increases calculated via equation 5.03 (fig. 

5.03, right). It is pictured that the A1B scenario includes a reduction of the annual C emissions 

from the year 2050 onwards. Nonetheless, the atmospheric concentrations continue to increase 

in the scenario until they have reached an elevation of nearly 560 ppm in the year 2060. 
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Figure 5.03: Annual emissions of carbon due to human activity according to the IPCC A1B storyline (IPCC 2000, left) and resulting 
atmospheric CO2 concentrations (right) for a time period of 1970 to 2060. 
 

In the model, the derived curves of increasing atmospheric CO2 concentrations are traced 

applying third order polynomials. The course of the A1B scenario as shown in figure 5.03 (right) 
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for example is represented by equation 5.04, where the term “d1970” is holding the 

accumulated model days since the 1st of January 1970. 

 

9.328197010519701031970103][ 427312
2 +⋅⋅+⋅⋅+⋅⋅−= −−− dddppm ionconcentrat CO  (Eq. 5.04)

 

This may well represent the global trend, but for local sites the CO2 concentrations are subject 

to fluctuations. This variability is simulated by overlaying the generated curve at first with an 

annual variation and in a second step with diurnal oscillations. The daily variability again shows 

a distinct seasonality. The simulated fluctuations are based on measurements from OHTAKI 

(1982), which were supposed to be applicable to the Northern hemisphere. In the course of the 

year, the mean concentrations are supposed to vary about a range of 10 ppm. While the 

minimum is found during the most active growth period in July, the maximum is assumed for the 

month of January (fig. 5.04). 
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Figure 5.04: Monthly addends or minuends respectively for the simulation of the seasonal amplitude of the atmospheric CO2 
concentration, based on measurements taken from OHTAKI (1982). 
 

The daily course of the CO2 concentration is characterized by a maximum during the early 

morning hours and a minimum in the evening (fig. 5.05). The amplitude of the diurnal 

oscillations according to OHTAKI (1982) is highest for the summer with 7–15 ppm (here assumed 

with 10 ppm) and lowest during the winter months with 2–3 ppm (here assumed with 2.8 ppm). 
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Figure 5.05: Seasonal variation of the hourly addends or minuends respectively for the simulation of the diurnal amplitude of the 
atmospheric CO2 concentration, based on measurements taken from OHTAKI (1982). 
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When both, the seasonal and the diurnal amplitudes, are taken into account, the modelled 

atmospheric CO2 concentration resembles the oscillating course of natural measurement series 

(fig. 5.06, right). 

 

tmospheric CO2 concentration for a summer day (25th of July 2010, left), for the course of the year 2010 
riod from 2010-2060 (right). 

 

5.2.2 Modelling the Corresponding Change of Temperature and Rainfall 
The change of the annual mean temperature, as it is observed around the globe, mainly is the 

result of the increasing concentration of climate gases in the atmosphere. However, the change 

of temperature has to be considered independently from the change of the CO2 concentration, 

when the global perspective is neglected and investigations on a regional scale are put into 

focus. The reaction of local ecosystems on elevated GHG concentrations may result in 

 

the modelling of the Upper Danube, long-term 

eteorological series (1960-2006) were analyzed with respect to their temperature trend and 

 

 
 
Figure 5.07: Observed annual mean air temperature of the meteorological stations that were applied for the modelling of the Upper 
Danube Basin (1960-2006), relative to the average annual temperature of 1960, including the trend of the regional temperature 
increase. Both are compared to the global relative temperature increase as it is assumed by the IPCC A1B scenario (IPCC 2007). 
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It can be deduced from figure 5.07 that the impact of climate change for the Upper Danube 

region concerning the increase of average temperature (+ 3.9 °C in 2060 compared to 1960) is 

elevated by a factor of 1.7 compared to the assumed global average temperature reaction (+ 

2.3 °C in 2060 compared to 1960). The climate scenario generated for this work consequently 

features a projection of the temperature increase according to the IPCC A1B scenario, but 

additionally incorporates an impact factor of 1.7. The elevated temperature increase more 

adequately suits the conditions in the Upper Danube, continuing the historically mapped course 

(compare figs. 5.07, 5.09 and 5.10). 

Due to the interconnectedness of climatic processes, the change of temperature will also lead to 

a change of the seasonal patterns and annual sums of precipitation. For the generation of 

projected meteorological data, this causes the problem that not only the temperature change 

has to be applied to the model, but also the change of precipitation has to be integrated, while at 

the same time the statistical features of the input meteorology have to be preserved in the 

scenario meteorology. This can easily be maintained by exclusively applying combinations of 

climate parameters that already have been measured in the past, instead of generating 

thoroughly artificial meteorological combinations. 

The projected weather data applied for this work therefore is the result of a stochastic analysis 

of measured meteorological data (MAUSER ET AL. 2007), following the example of the stochastic 

weather generators WGEN (RICHARDSON 1981) or LARS-WG (RACSO ET AL. 1991, SEMENOV ET 

AL. 1998). The procedure is based on the assumption that the sum and the intensity of 

precipitation are connected with certain temperature events. Through a statistical analysis of the 

covariance of the weekly precipitation sums (P) and the weekly mean temperatures (T), which 

are recorded in the historic climate time series, the assumption is derived that the weekly rainfall 

can be expressed as a function of the corresponding weekly mean temperature (eq. 5.05, 

MAUSER ET AL. 2007). 

 

( )TfP =  (Eq. 5.05)

 

This allows for a selection of rainfall events that are statistically connected to a specified 

temperature and therefore ensures the maintenance of the original statistic attributes of the 

temperature and rainfall data series. The measured data thereby are intersected into 

observation weeks, the smallest unit where weather patterns that manifest in stable relations of 

temperature and rainfall were assumed to be adequately mapped, so that for each week of the 

year the mean temperature and average precipitation sum as well as their covariance is 

available. These parameters are representing the average seasonal dependence of 

temperature and rainfall and are forming the basis of a dicing process, which employs a coupled 
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two stage random number generator (IMSL 2003) and uses the weekly means and covariances 

of temperature and rainfall to determine pairs of interdependent random numbers (fig. 5.08). 

 

 
 
Figure 5.08: Generation of artificial meteorological data applying a stochastic weather generator. 
 

By imposing a positive temperature trend on the result of the first random number selection, the 

stochastic generation of the new weather series can be combined with certain conditional 

features. In this example, the increase of annual mean temperature, as proposed by the IPCC 

A1B scenario and amplified by the impact factor of 1.7, has to be mapped by the shuffled 

weather data, so that the statistics of the newly generated temperature series trace a gradual 

increase of mean temperature, which is picturing the specified temperature increase of 3.9 °C 

until the year 2060 compared to 1960 (2.3 °C “IPCC” x 1.7 “impact factor” ≈ 3.9 °C, figs. 5.07, 

5.09 and 5.10). 
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Figure 5.09: Annual mean temperatures relative to the 10-year average of 1991-2000 observed by the meteorological stations, 
which were applied for the modelling of the Upper Danube (solid, see section 3.3.4.3), and stochastically rearranged annual mean 
temperatures, applying a local impact factor of 1.7 to the IPCC A1B scenario (dashed). 
 

The second random number, which represents the corresponding rainfall, is drawn considering 

the previously determined covariance of temperature and precipitation. Following the course of 

the randomly generated pairs of temperature and rainfall, the measured weeks then are 

rearranged by selecting the weekly averages that most closely meet the randomly selected pair 

of temperature and rainfall by applying a Euclidian nearest neighbour distance metric. Through 
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this continuous process of dicing and selecting, the observed data of temperature and rainfall 

for all weeks of the measured data base are shuffled and a new chain of weather weeks is 

recombined, gradually generating new meteorological data series. 

The additionally required meteorological data besides temperature and precipitation like relative 

humidity, wind velocity, radiation and cloud cover (see section 3.3.4.3) are also taken from the 

selected historic observation week and are added to the new meteorological data set. For more 

details concerning the stochastic generation of future weather data it is referred to MAUSER ET 

AL. (2007). The procedure results in a time series of a user-defined length of possible future 

meteorological data, featuring statistical characteristics that are matching the historic 

measurement series (fig. 5.09). 

However, the future weather chain is limited to the observed extremes. With a prolonged future 

extension and more extreme climatic situations, the probability of recurrence of certain extreme 

historic events increases. For the period that is modelled here with a moderate future extension 

of 50 years (2011-2060), the observed data base provided an adequate variability, so that the 

introduced method produced a statistically likely realization of the future climate. Due to the 

methodical characteristic of rearranging measured data, the generated future weather data can 

rather be termed “stochastically nearest neighbour resampled” (MAUSER ET AL 2007) than 

synthetic. 

 

5.2.3 Selected Scenario Storylines 
Each scenario storyline can be composed of not one, but of a multitude of feasible realizations. 

The absolute number of possible combinations is determined by the statistic population of 

measured weather data that can be applied to the stochastic shuffling for the compilation of the 

new weather series. For the generation of a climate scenario that would satisfy the 

specifications required in the scope of this work, a more or less average realization of the IPCC 

A1B scenario was created and modified according to the trend that is implied by the observed 

time series, applying the regional impact factor of 1.7 as described above. The base data 

consisted of 377 weather stations, which provided records for a 46-year time period from 1960 

to 2006. The scenario was constructed to cover a time period that comprises the forthcoming 50 

years from 2011 to 2060 and generally was designed to avoid extreme realizations. In order to 

assess the models sensitivity with respect to the changed climate, a so called baseline scenario 

run also was initialized that was designed to feature no discernable temperature trend. Also the 

atmospheric concentration of carbon dioxide was limited to a static value that applies to 1970 

(≈326 ppm) for the baseline scenario. To enable a separate mapping of the models sensitivity 

with respect to the atmospheric CO2 concentration, the model was also tested in combination 

with a hypothetic scenario that combines the positive temperature trend of the A1B storyline 

with a constant carbon dioxide concentration. 
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Figure 5.10 pictures the trend of the modelled temperature increase within the boundaries of the 

Upper Danube Basin, while the spatial manifestation of the temperature change is visualized in 

the appendix (A.17.1). 
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Figure 5.10: Development of the modelled annual mean temperature for the Upper Danube Basin. Model results based on 
observed data (1960-2006) and modelled temperatures applying to the regionally adapted IPCC A1B climate scenario (2011-
2060), including the respective standard deviations from the area average. 
 

As described above, the rainfall is technically connected to the selected temperature events. 

Parallel to the expectations enunciated by the IPCC (2007), the scenario includes a slight 

increase of winterly precipitation in combination with a decrease of rainfall during the summer 

half-year. The changes are to some extent balancing the annual precipitation sums, but the 

absolute amount of rainfall during the scenario is strongly decreasing (fig. 5.11). 
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Figure 5.11: Development of the annual sums of precipitation for the Upper Danube Basin. Model results based on observed data 
(1960-2006) and modelled rainfall applying to the regionally adapted IPCC A1B climate scenario (2011-2060), including the 
respective standard deviations from the area average. 
 

The average sum of precipitation for the reference period (1961-2006) was modelled with 1050 

mm per year, while for the scenario (2011-2060) the modelled average featured 908 mm of 

rainfall per year (tab. 4.05, also see appendix A.17.2). 
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Considering the change of the precipitation sums for the respective half-years of the model 

period, the diverging change of the precipitation patterns becomes even more apparent. 

 
Table 5.04: Statistical features of the meteorological input data, summarized for the reference and the scenario model period. 
 

 Reference (1960-2006) Scenario (2011-2060) 
 Average Std. Dev. Average Std. Dev.

Temperature: 6.54 °C 2.48 °C 8.89 °C 2.59 °C
Summer Precipitation: 630.40 mm 203.67 mm 478.82 mm 132.30 mm

Winter Precipitation: 420.14 mm 138.01 mm 429.39 mm 126.16 mm
Total Precipitation: 1050.54 mm 333.61 mm 908.21 mm 247.10 mm

 

While the winterly rainfall, although somewhat diluted, continues its slight trend towards higher 

sums (reference slope = 0.92 mm a-1, scenario slope = 0.62 mm a-1), the summer precipitation 

decreases strongly during the scenario period, featuring a slope of - 4.54 mm a-1 (fig. 5.12). The 

statistical features of the meteorological driving parameters are summarized in table 5.04 for the 

reference and the scenario period. 
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Figure 5.12: Development of annual precipitation sums for the Upper Danube Basin discerned into the summer (May-October) and 
winter half-year (November-April). Model results based on observed data (1960-2006) and modelled rainfall applying to the 
regionally adapted IPCC A1B climate scenario (2011-2060), including the respective standard deviations from the area average. 
 

The strong decrease of the summer rainfall, which amounts to more than 150 mm less summer 

precipitation during the scenario period compared to the reference average, in combination with 

the expected increase of the annual mean temperature is supposed to have a definite impact on 

the modelled vegetation parameters. A set of selected model results that are supposed to 

adequately describe the catchments reaction to the assumed climate change are presented in 

the following section. 
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6. The Scenario Results 
 
In this section, the results of the scenario model runs for the future years of 2011 to 2060 are 

analyzed in comparison to the model results of the reference time series (1961-2006). The 

temporal basis for all results presented here again is the hydrological year, ranging from the 1st 

of November to the 31st of October of the respective model year. 

 

 

6.1 Phenology 
For the scenario model runs, the development of major phenological stages of forest trees was 

mapped parallel to the examples presented in section 4.2.3.2. Figure 6.01 pictures the modelled 

course of the average duration of the vegetation period of deciduous trees, which is determined 

by the modelled incidence of leaf emergence in spring and by the discard of the leaves in 

autumn. The trend towards longer periods of active growth per year, which already can be 

perceived in the reference time series from 1961 to 2006, is continued for the scenario period, 

but is intensified under the scenario conditions (reference slope = 0.23 d a-1, scenario slope = 

0.42 d a-1, see tab. 6.01). The strong variability between the single years that characterises the 

model results is also continued for the scenario (fig. 6.01). The standard deviation of about 16 

days from the area average is nearly the same for the reference and the scenario period, 

indicating that the original spatial heterogeneity of the Upper Danube is preserved in the 

scenario (also see appendix A.17.5). 
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Figure 6.01: Course of the average duration of the vegetation period of deciduous trees within the Upper Danube Basin, modelled 
for the reference period from 1961 to 2006 and for the modified IPCC A1B scenario from 2011 to 2060, including the moving 10-
year average and the respective standard deviations from the area mean. 
 

A parallel picture can be observed for the incidence of the mayshoot of coniferous trees, which 

continues its gradual shift towards earlier incidence (fig. 6.02). Here, the change is even more 
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definite, which may be due to the considerably higher count of coniferous proxels (25 013 km2) 

compared to the deciduous areas (5 681 km2). Coniferous trees are covering all zones of the 

Upper Danube more or less equally, while the more sparsely distributed deciduous areas are 

mostly concentrated along the major watercourses (fig. 6.01), which may tend to feature more 

balanced temperatures. 
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Figure 6.02: Course of the average incidence of mayshoot of coniferous trees within the Upper Danube Basin, modelled for the 
reference period from 1961 to 2006 and for the modified IPCC A1B scenario from 2011 to 2060, including the moving 10-year 
average and the respective standard deviations from the area mean. 
 

With exception of the defoliation, the trends that were observed for the reference period are 

continued during the scenario for all phenological transitions. Although the observed trends are 

sustained, they show more definite correlations and steeper slopes for the scenario (tab. 6.01). 

According to the trend, the vegetation period was modelled to lengthen by about four days in the 

average during every decade, mostly due to an earlier incidence of the leaf emergence in 

spring. On average, the period of active growth was modelled 14 days longer for the scenario 

period than it was mapped for the reference series. The discard of the leaves does not show a 

discernable trend during the scenario, although it is modelled to occur nearly seven days later 

compared to the reference average. This may be due to a veiling of the trend through the strong 

variation of the discard between the respective model years. The coniferous mayshoot again 

shows a strong trend and was modelled to happen 15 days earlier for the scenario average 

compared to the reference results. If the data view is restricted to the recent history of the 

reference time series, only considering the years from 1980 onwards, while the 60ies and 70ies 

of the previous century are neglected, the trends are almost perfectly projected into the future 

by the scenario.  

Table 6.01 summarizes the trends and averages that were modelled for the reference and for 

the scenario period. In order to accentuate the directions of the development, the trends 

presented in table 6.01 are based on the moving 10-year average of both time series, shown as 

solid black lines in figs. 6.01 and 6.02. 
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Table 6.01: Trends of the moving 10-year average of the modelled phenological behaviour of forest trees within the Upper 
Danube Basin and modelled average incidence of the major phenological phases, discerned into the reference period from 1961 
to 2006 and the scenario period from 2011 to 2060. 
 

 Reference (1961 – 2006) Scenario (2011 – 2060)

Deciduous Leaf Emergence 
N = 46 50

R2 = 0.19 0.96
Slope = - 0.06 [DOY a-1] - 0.42 [DOY a-1]

Average = 124.67 [DOY] 117.28 [DOY]
Average Std. Dev. = 5.87 [DOY] 5.75 [DOY]

Deciduous Defoliation 
N = 46 50

R2 = 0.40 --
Slope = + 0.17 [DOY a-1] --

Average = 302.89 [DOY] 309.73 [DOY]
Average Std. Dev. = 10.70 [DOY] 11.05 [DOY]

Deciduous Vegetation Period 
N = 46 50

R2 = 0.55 0.96
Slope = + 0.23 [d a-1 a-1] + 0.42 [d a-1 a-1]

Average = 178.23 [d] 192.45 [d]
Average Std. Dev. = 16.56 [d] 16.80 [d]

Coniferous Mayshoot 
N = 46 50

R2 = 0.80 0.99
Slope = - 0.23 [DOY a-1] - 0.47 [DOY a-1]

Average = 143.65 [DOY] 127.96 [DOY]
Average Std. Dev. = 12.27 [DOY] 11.71 [DOY]

 

Figure 6.03 visualizes the spatial manifestation of average changes for deciduous (left) and 

coniferous trees (right), that could be discerned between the reference and the scenario period. 

 

 
Figure 6.03: Map of change of the average duration of the vegetation period of deciduous trees (left) and of the incidence of 
mayshoot of coniferous forests (right) within the Upper Danube Basin, picturing the difference between the model results achieved 
for the reference period from 1961 to 2006 and for the modified IPCC A1B scenario from 2011 to 2060. 
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While the prolongation of the vegetation period is strongest in the valley of the river Inn that lies 

in the South-East of the basin, a slight shortening of the vegetation period was mapped for 

some proxels in the South-West of the catchment area (fig. 6.03, left). The shift towards earlier 

dates of the incidence of mayshoot is strongest for the mountainous regions of the Alps and the 

Black Forest, while it is lowest for the central region of the Danube valley itself (fig. 6.03, right). 

The spatial patterns of the average dates of the phenological transitions are displayed in the 

appendix (A.17.3 - 6). 

Since the phenology model that is applied to the agricultural landcover types also is based on a 

temperature related approach, it is likely that a more rapid progress of the modelled 

phenological phases can be expected under elevated average temperature conditions, although 

a more detailed analysis of this development has not been completed yet. 

 

 

6.2 Biological Productivity 
In order to assess the temporal development of the overall modelled biological productivity, 

which can be defined as the accumulated annual net primary production (NPP), the assimilated 

biomass was summed for the different plant parts, so that the absolute biomass was available 

that was allocated for each proxel during the hydrological year. The accumulated biomass was 

averaged for all proxels of the Upper Danube data set that are assigned to vegetation landuse 

types and thereby returned time series of modelled average biological productivity in terms of 

annual sums of NPP for the Upper Danube Basin. The model results picture a clear trend 

towards increasing biological productivity within the Upper Danube catchment that equally 

applies to the reference and to the scenario period (fig. 6.04). 
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Figure 6.04: Course of the average annual accumulation of dry biomass for the Upper Danube Basin, modelled for the reference 
period from 1961 to 2006 and for the modified IPCC A1B scenario from 2011 to 2060, including the moving 10-year average and 
the respective standard deviations from the area mean. 
 

The slope of the increase of biomass accumulation is slightly steeper for the scenario compared 

to the reference period, indicating an average additional productivity of roughly 500 kg ha-1 for 
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every decade (tab. 6.02). The results for both periods are featuring comparable standard 

deviations from the area average, indicating that the spatial diversity is reasonably preserved in 

the scenario. 

 
Table 6.02: Trends of the moving 10-year average of the modelled biological productivity within the Upper Danube Basin and 
modelled average biomass allocation, discerned into the reference period from 1961 to 2006 and the scenario period from 2011 to 
2060. 
 

 Reference (1961 – 2006) Scenario (2011 – 2060)
N = 46 50

R2 = 0.90 0.96
Slope = + 0.0047 [kg m-2 a-1 a-1] + 0.0058 [kg m-2 a-1 a-1]

Average = 1.21 [kg m-2 a-1] 1.51 [kg m-2 a-1]
Average Std. Dev. = 0.45 [kg m-2 a-1] 0.48 [kg m-2 a-1]

 

The average productivity was modelled to be elevated by about 3 tons per hectare for the 

scenario compared to the reference period. Several factors are contributing to this development. 

The generally higher temperatures are causing accelerated chemical reactions according to the 

van’t Hoff rule, while the increased atmospheric CO2 supply additionally encourages the 

allocation of carbon. Also the longer duration of the vegetation period, which could equally be 

detected in the control and in the scenario results (see sections 4.2.3 and 6.1), contributes to 

higher annual sums of accumulated biomass. Figure 6.05 pictures the diverging courses of 

differently modelled future annual biomass accumulations for the case of an exemplary 

grassland proxel, taken from the middle of the Upper Danube Basin. The scenario period is 

divided into three storylines, including the baseline scenario devoid of any trend, the locally 

adapted IPCC A1B scenario, which was applied for all spatial results that are presented here, 

and the A1B scenario in combination with the hypothetic assumption of a constant atmospheric 

CO2 concentration, the latter being included to enable the investigation of the models sensitivity 

concerning the carbon dioxide supply. 
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Figure 6.05: Biological productivity of an intensive grassland proxel from the middle of the Upper Danube catchment (457 m a.s.l.), 
calculated for the reference period (1961-2006) and for three different future storylines including the modified A1B scenario with 
and without assumed CO2 increase and the unbiased baseline scenario (2011-2060). 
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The grassland proxel features a definite increase of biological productivity for the years 1961 to 

2006 that also characterises the spatial average (compare figs. 6.04 and 6.05). The baseline 

scenario shows no discernable trend (slope = -0.0009, R2 = 0.04), indicating the non-biased 

behaviour of the model for constant external conditions, while the hypothetic constant CO2 

scenario shows a soft increase (slope = 0.0025, R2 = 0.30), but at the same time significantly 

lower productivities compared to the “normal” A1B scenario. The diverging development of the 

A1B scenario and the constant CO2 scenario are revealing the strong influence that the supply 

of carbon dioxide is exerting on the modelled carbon allocation. The slightly increasing trend of 

the constant CO2 scenario, compared to the levelled development that applies to the baseline 

scenario, again pictures the isolated influence of the temperature change on the chemical 

reactions that are steering the simulation of the carbon allocation. However, the increasing trend 

of the reference period (slope = 0.008, R2 = 0.52) is almost perfectly continued into the future for 

the combination of the CO2 and temperature development that was assumed for the modified 

A1B scenario (slope = 0.009, R2 = 0.80). The assumptions that were made for the scenario 

therefore seem to picture a likely realization of the future development of the photosynthetic 

activity under climate change conditions.  

Despite the average trend, the spatial manifestation of the possible local changes is of 

importance. Especially the agricultural areas in the foreland of the Alps benefit from the change, 

showing an increased allocation of biomass of up to 4 t ha-1 on average (fig. 6.06, left). 

 

 
Figure 6.06: Map of change of the average annual accumulation of dry biomass (left) and of the average annual count of water 
stress days (right) for the Upper Danube Basin, picturing the difference between the model results achieved for the reference 
period from 1961 to 2006 and for the modified IPCC A1B scenario from 2011 to 2060. 
 

Nonetheless it is striking that not the entire catchment area shows increased rates of biomass 

allocation as would be assumed from the influence that the changed environmental conditions 
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are taking. The central area of the Danube valley itself features lower rates of productivity during 

the scenario, indicated by predominantly light red colours in figure 6.06 (left). This anomaly is 

due to the limiting effect of the water supply that characterizes this agriculturally intensely used 

region. Already during the reference period, the model results for the Danube valley locally 

report up to 200 days of limited growth due to water stress per year, indicating that the water 

supply is a growth limiting factor throughout the vegetation period (see appendix A.17.7 - 8). 

The region consequently is unable to transform the growth encouraging changing climatic 

conditions into an increased productivity, because it already has been producing near the 

naturally limited maximum in the past. The accelerated progress of the phenological phases 

under the increased temperature conditions may also contribute to a decrease of productivity 

through a shortened phase of generative growth. The spatial manifestation of the combined 

changes results in a gradual shift of the agricultural productivity from the North to the South of 

the catchment area under scenario conditions. 

 

 

6.3 Drought Stress 
In order to picture the development of water stress events under climate change conditions, the 

absolute occurrences of limited photosynthetic activity due to water stress situations were 

assessed by counting the absolute number of days featuring a growth limitation that could be 

traced to the water supply. As was described in section 3.3.3.5.4, the modelled conductance of 

the leaves with respect to water vapour is determined by several factors. The reduction of 

stomatal conductivity that is triggered by the water supply can be assessed separately from the 

other causes, like for example the CO2 supply, since it manifests in the model through a 

temporarily reduction of the BALL ET AL. (1987) coefficient for stomatal conductance (gfac). If a 

vegetated proxel during the model runs features a water stress induced growth reduction at 

least during one model time step, the actual model day is counted as a water stress event. The 

absolute intensity of the water stress thereby is neglected and only the actual occurrence of 

water stress is accumulated for the hydrological years of the model period in the form of so 

called “water stress days”. Preparing an average indicator of the water stress situation for the 

model area, it is not sufficient to simply average the count of mapped water stress days, for the 

absolute number of proxels that actually are featuring water stress may vary between the model 

years. In order to bridge that problem, the averaging has to be extended to all vegetated areas 

within the model data set, i.e. all proxels that would potentially be able to yield water stress 

days. This can be accomplished by relating the absolute number of water stress days (WSD) of 

all proxels that actually reported water stress (n) to the total number of vegetated proxels (N, eq. 

6.01). 
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The spatial averaging resulted in time series of the modelled average number of water stress 

days per year. Although already the results for the reference period showed an increase of the 

average count of water stress events (see tab. 6.03), figure 6.07 features a severe increase of 

the slope of the trend for the Upper Danube under scenario conditions, as they were assumed 

for the modified A1B storyline (also see tab. 6.03). Not only the average number of days that are 

counted as water stress days increases for the scenario, but also the absolute count of proxels 

that actually are reporting water stress is modelled to rise, significantly biasing the average 

towards intensified average drought stress. While the average count of stress affected proxels 

was 44 833 for the reference, more than 13 500 km2 additionally reported water stress for the 

scenario in the average (tab. 6.03). This implies that not only the absolute number of water 

stress events per season is increasing, but also areas that did not show water stress effects 

during the reference period, are becoming sensitive to the water supply under the impact of a 

possible future climate of the kind as it was applied here with the modified A1B storyline. The 

highest increase of water stress events therefore is mapped for regions that were featuring low 

numbers of water stress days during the reference period like for example the Northern rim of 

the Alps, while the regions that already showed high stress impact during the reference period 

did report less determinant changes (fig. 6.06, right). 
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Figure 6.07: Course of the average annual count of water stress days within the Upper Danube Basin, modelled for the reference 
period from 1961 to 2006 and for the modified IPCC A1B scenario from 2011 to 2060, including the moving 10-year average and 
the respective standard deviations from the area mean. 
 

Water stress and biological productivity are reciprocally determining each other in the model. If 

the water stress is high, only reduced growth is possible, while at the same time the probability 

for the occurrence of water stress is increased during phases of rapid growth, when high rates 

of transpiration occur. An increase of drought stress during the early growth stages therefore will 

lead to reduced or crippled growth, which again will result in a reduced number of dry stress 
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events for the rest of the year, simply because the plants are too weakly developed to transpire 

amounts of water that would overstrain the soil water supply. The central region of the Danube 

valley, which was showing lower rates of productivity during the scenario compared to the 

reference period as discussed in the previous section, therefore even reports a slight decrease 

of the water stress days during the scenario (fig. 6.06, right). Visualizations of the spatial 

patterns of the average water stress limitation modelled for the reference and for the scenario 

period for the region of the Upper Danube are available in the appendix (A.17.8). 

 
Table 6.03: Trends of the moving 10-year average of the modelled water stress events within the Upper Danube Basin and 
modelled average count of water stress days per year, discerned into the reference period from 1961 to 2006 and the scenario 
period from 2011 to 2060. 
 

 Reference (1961 – 2006) Scenario (2011 – 2060)
N = 46 50

R2 = 0.47 0.97
Slope = + 0.19 [d a-1 a-1] + 0.95 [d a-1 a-1]

Average = 40.70 [d a-1] 74.66 [d a-1]
Average Std. Dev. = 55.50 [d a-1] 67.51 [d a-1]

Average Affected Area = 44833.54 [km2] 58353.31 [km2]
 

 

6.4 Water Cycle Components 
The modelled components of the water balance for the climate scenario situation on one hand 

are the result of the changed temperature and rainfall environment, but on the other hand 

comprise all the changes that have been provoked in the biological activity by the CO2, 

temperature and water supply changes. Higher rates of biological productivity, which are 

induced by accelerated chemical reactions under elevated temperature conditions, as well as 

prolonged vegetation periods, may result in increased sums of evapotranspiration, while a more 

frequent occurrence of water stress again may reduce the annual evapotranspiration 

significantly. The evapotranspiration therefore combines a whole variety of reactions and 

consequently can be considered to be a parameter that most sensitively summarizes the 

response of the landsurface to climate change. 

The modelled course of the average annual sum of transpiration (fig. 6.08) shows a faintly 

increasing trend for the reference period. This trend is inversed for the scenario, where the 

transpiration rates are slightly decreasing on average (see tab. 6.04). The increase of the 

transpiration sums in the reference series is developing parallel to the increasing biological 

activity that also was mapped for this period. But, while the biological activity was modelled to 

continue its course towards higher rates of biomass accumulation, the transpiration is slightly 

reduced under scenario conditions. An increase of transpiration activity can be traced to two 

facts. Increasing temperatures are contributing to an intensification of transpiration by provoking 

higher rates of gas exchange through accelerated chemical reactions on one hand, but on the 

other hand are directly influencing the gas exchange by increasing the leaf-to-atmosphere water 
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vapour deficit. If only the temperature was accounted for in the climate scenario, these effects 

could be expected to extend their course into the future, continuing the trend of increasing 

transpiration rates. But two factors are exerting a counter influence that is exceeding the 

positive trend, forcing the development into a downward direction again. As was described in 

section 5.2.3, the elevated temperature is accompanied by a significant decrease of summer 

precipitation. This results in a strong increase of drought stress events, which naturally are 

inhibiting the transpiration. In addition to this effect, the level of the atmospheric CO2 

concentration was increased during the scenario according to the IPCC A1B storyline. An 

increase of the concentration of carbon dioxide at the leaf surface is modelled to lead to a 

reduced conductivity of the stomata (see section 3.3.3.5.4), which again results in reduced rates 

of transpiration. Due to the increased efficiency of the gas exchange under elevated CO2 

conditions, the photosynthetic processes in the leaf can be maintained at a high rate, while at 

the same time less water vapour is lost through the gas exchange (SAGE 1994). This stomatal 

reaction can be equally observed for both C3 and C4 species (TYREE AND ALEXANDER 1993). 
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Figure 6.08: Course of the average annual sum of transpiration within the Upper Danube Basin, modelled for the reference period 
from 1961 to 2006 and for the modified IPCC A1B scenario from 2011 to 2060, including the moving 10-year average and the 
respective standard deviations from the area mean. 

Table 6.04: Trends of the moving 10-year average of the modelled transpiration and evapotranspiration within the Upper Danube 
Basin and modelled average of both water cycle components, discerned into the reference period from 1961 to 2006 and the 
scenario period from 2011 to 2060. 
 

 Reference (1961 – 2006) Scenario (2011 – 2060)

Transpiration 
N = 46 50

R2 = 0.90 0.64
Slope = + 0.58 [mm a-1 a-1] - 0.34 [mm a-1 a-1]

Average = 269.77 [mm a-1] 281.95 [mm a-1]
Average Std. Dev. = 155.35 [mm a-1] 134.08 [mm a-1]

Evapotranspiration 
N = 46 50

R2 = 0.82 0.20
Slope = + 0.84 [mm a-1 a-1] - 0.12 [mm a-1 a-1]

Average = 380.91 [mm a-1] 403.22 [mm a-1]
Average Std. Dev. = 205.84 [mm a-1] 187.06 [mm a-1]
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Figure 6.09 pictures rates of transpiration that correspond to the biological activity displayed in 

figure 6.05 for an exemplary grassland site. Although this proxel is only showing a moderate 

water stress impact and therefore does not feature the decreasing trend of the transpiration for 

the scenario that characterizes the average development, it almost ideally demonstrates the 

increased efficiency of the gas exchange under elevated CO2 conditions. The highest increase 

of transpiration is mapped for the hypothetic constant CO2 scenario (slope = 1.26, R2 = 0.65), 

whereas the baseline scenario again shows no definite trend (slope = -0.13, R2 = 0.02). 
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Figure 6.09: Annual sums of transpiration of an intensive grassland proxel from the middle of the Upper Danube catchment (457 m 
a.s.l.), calculated for the reference period (1961-2006) and for three different future storylines including the modified A1B scenario 
with and without assumed CO2 increase and the unbiased baseline scenario (2011-2060). 
 

While the “normal” A1B scenario showed the highest productivity among the different storylines 

(fig. 6.05), the mapped transpiration rates are subdued compared to the constant CO2 scenario 

(slope = 0.67, R2 = 0.40), accounting for the increased efficiency of gas exchange under 

elevated CO2 conditions. Again, the modified A1B storyline features the smoothest continuation 

of the development of the transpiration rates that were modelled for the reference conditions 

(slope = 0.77, R2 = 0.25). 

Despite the decreasing average trend of the transpiration, the modelled average sum of 

transpiration is slightly higher for the scenario period compared to the reference results, 

although it is likely that the decrease of transpiration will continue if the scenario is expanded 

further into the future and the atmospheric CO2 concentration is even more elevated. 

Since the transpiration is a major component of the overall evapotranspiration, the average 

course of the total evapotranspiration is strongly determined by the development of the 

transpiration rates and therefore follows similar characteristics, although at a higher absolute 

level. The course of the evapotranspiration also is characterized by a slight increase during the 

reference period that is partly compensated by an even slighter decrease under the scenario 

conditions (fig. 6.10). The inanimate components of the evapotranspiration, the soil and the 

interception evaporation, are continuing their increasing course during the scenario, mostly due 

to the elevated water vapour deficit that is associated with the increased average temperatures. 
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The decline of the evapotranspiration under scenario conditions therefore is not as strong as 

that of the mere transpiration (fig. 6.10, tab. 6.04). 
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Figure 6.10: Course of the average annual sum of evapotranspiration within the Upper Danube Basin, modelled for the reference 
period from 1961 to 2006 and for the modified IPCC A1B scenario from 2011 to 2060, including the moving 10-year average and 
the respective standard deviations from the area mean. 
 

Besides their parallel temporal development, the transpiration and the evapotranspiration are 

featuring similar spatial patterns. The change of the transpiration and of the evapotranspiration 

shows a striking North to South gradient, that optically divides the catchment area into a 

Northern part that features lower and a Southern part that shows higher evapotranspiration 

sums for the scenario conditions (fig. 6.11). 

 

 
Figure 6.11: Map of change of the average annual sum of transpiration (left) and evapotranspiration (right) within the Upper 
Danube Basin, picturing the difference between the model results achieved for the reference period from 1961 to 2006 and for the 
modified IPCC A1B scenario from 2011 to 2060. 
 

Obviously, the water supply is determining the spatial manifestation of the evapotranspiration. 

While the Northern part only features a small increase of water stress events during the 
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scenario period, the absolute frequency of drought stress is very high (see appendix A.17.8). 

The Southern part in contrast is the region that shows the most intense increase of drought 

stress events during the scenario (fig. 6.06, right), although it still features moderate water 

stress frequencies (see appendix A.17.8) and therefore is able to contribute to a higher 

evapotranspiration. The change of the evapotranspiration, in accordance with the other scenario 

results, is pointing towards a shift of the landscape characteristics that is progressing from North 

to South for the course of the scenario and is gradually accessing the alpine regions. 

Spatial representations of the respective average sums of both, the transpiration and the 

evapotranspiration, that were calculated for the reference and the scenario period are available 

in the appendix (A.17.9 - 10). 

The decrease of the summer precipitation and the generally elevated evapotranspiration both 

are contributing to a decrease of runoff during the course of the climate scenario (fig. 6.12). 

Nonetheless, the decrease of the discharge rates is somewhat diluted by the negative trend of 

the transpiration that partly compensates the decline of the rainfall. Although the absolute 

decrease of the average runoff at the main gauge of the Upper Danube catchment is veiled by 

the seasonal variability of the discharge to some degree, the expected trend features an 

average decline of nearly 400 m3 s-1, or nearly a third of the average discharge rate 

respectively, in 50 years time (fig. 6.12). The high peaks of flood events that are characterising 

the observed gauge data are maintained for the scenario period to some degree (e.g. July of the 

year 2014, see fig. 6.12), while the runoff minima of the scenario are consistently lower 

compared to the reference series, indicating that the seasonal distribution of the rainfall is likely 

to lead to a significant decrease of the base flow during the summer months. 
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Figure 6.12: Monthly average rates of discharge for the main gauge of the Upper Danube Basin “Achleiten” (287 m a.s.l.). 
Measured data (1970-2003) and modelled runoff for the reference period (1970-2006) and the modified IPCC A1B climate 
scenario (2011-2060). 
 

All of the investigated parameters showed dynamic reactions to the environmental changes that 

were assumed for the climate scenario. The reactions manifested in clearly discernable trends, 

while all parameters featured a preserved temporal and spatial variability that clearly matches 
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the fluctuations modelled for the observed conditions of the reference period. The baseline 

scenario was spot-checked for a set of reference proxels and did not return any trends as 

expected. This can be taken as an indication that the observed future trends are not due to a 

systematic bias of the model, but exclusively represent the models reaction to the climate 

scenario. The results therefore can be considered to provide a reliable information basis that 

does not feature extreme trends, but nonetheless is clearly giving notice of the directions of the 

changes that are likely to happen in a possible future that may resemble the assumptions that 

were made here for the regionally adapted IPCC A1B scenario. 



Conclusion and Outlook 

 

7. Conclusion and Outlook 

 
In the course of this work, a powerful instrument for the assessment of climate change enquiries 

has been constructed, validated and applied to a climate scenario. In order to achieve an active 

response of biological landsurface activities to climate change impacts, a biochemically based 

model of photosynthesis was integrated into a multiscale land surface model. The resulting 

coupled model approach then was applied to the mesoscale river catchment of the Upper 

Danube, firstly for reasons of model validation and secondly in order to launch investigations on 

the sensitivity of the modelled landsurface processes to altered environmental conditions. 

The quality assessment of the coupled model approach was conducted on different scales, 

ranging from the detailed microscale of single test acres to the mesoscale of a diverse 

landscape. In comparison with measured and observed data, the model could prove its 

capability of a sound reproduction of aboveground plant physiological parameters, such as 

biomass, leaf area, canopy height and stages of phenological progress. The newly developed 

coupled model approach therefore can adequately be applied to studies that are concerned with 

plant physiological enquiries. At the mesoscale, the model was able to soundly trace 

evapotranspiration and runoff rates of a validated reference model. Consequently, the coupled 

model approach may well be applied to investigations concerning the dynamics of the 

landsurface water balance. The phenology model, which was applied for the description of the 

phenological progress of forest trees and which is supposed to have a determinant influence on 

the water balance of the river catchment, was able to closely reproduce phenological dates as 

they are documented in the literature. In total, the diverse validation efforts all returned good 

results, so that the new coupled model approach can be considered to be adequately developed 

and may well be confronted with future modelling enquiries. 

The dynamic response of the model to changed environmental conditions was tested by 

applying the model to the simulation of a climate scenario. The attention thereby was directed to 

a moderate scenario rather than to extreme projections, thus increasing the plausibility of the 

simulation. The basis of the climate scenario was found in the internationally acknowledged 

IPCC A1B storyline as proposed by the Special Report on Emissions Scenarios by the 

Intergovernmental Panel on Climate Change, ensuring international comparability of the model 

results. By generating future meteorological driving parameters through a rearrangement of 

measured weather data, the feasibility of the future weather patterns can be considered to be 

high. The model results for the climate scenario featured variations and standard deviations that 

well matched the statistical characteristics of the reference model results, but at the same time 

returned clear trends of a possible future development for a selection of landsurface 
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parameters. A spot-checking of the model behaviour for a control scenario, which was 

constructed to feature constant temperature, rainfall and CO2 conditions, could prove that the 

modelled trends are exclusively due to the models reaction to the changed environment 

parameters and cannot be traced to a general systematic bias of the model system. The 

modelled future projections therefore can be considered to represent a reasonable perspective 

of possible future developments. 

Nonetheless, the model in its current configuration is still suffering some restrictions that might 

be subjected to a further development. For example, the model is assuming ideal nutrient 

conditions for the plant growth, unaware of possible fertilisation measures and atmospheric 

nitrogen depositions. Although the modelled biological activity is limited by the water supply and 

determined according to the temperature as well as to the supply of atmospheric carbon 

dioxide, which both are steering the velocity and the efficiency of the chemical reactions within 

the chloroplast, it does not include an explicit description of the nitrogen cycle. This nutrient 

cycle though determines the maintenance of the supply of the Rubisco receptor enzyme and 

therefore strongly influences the overall biological productivity (HANK ET AL. 2006). Also the 

reaction of the stomatal conductivity on atmospheric CO2 enrichment may be influenced by the 

nitrogen status of the plant (KATTGE ET AL. 1997). 

For a more intensive application of the model on the field scale, e.g. in the function of an 

agricultural production model, a further development with respect to a detailed description of the 

nutrient cycle and possible fertilization effects will be of utmost importance. If the model shall be 

applied as a model of agricultural production, additional management actions will have to be 

included in the algorithms. Also the realistic representation of mechanically inflicted yield losses, 

such as hailstorms, windbreak etc. will have to be taken care of in future versions of the model. 

A simplifying assumption, which may be restricting the models applicability for investigations of 

drought stress effects, is that the vegetation routines do not explicitly account for crop damages 

due to longer phases of water shortage yet. The modelled plants are currently supposed to 

recover completely after a drought stress event, neglecting the loss of leaves or the desiccation 

of roots and twigs. An integration of a simulation of structural damage that gradually progresses 

with increasing drought stress intensity and duration will be a sensible expansion of the models 

functionality. 

A reasonable approach for the integration of information on management actions, mechanically 

inflicted yield losses, pests and diseases or possible drought damages is represented by remote 

sensing techniques. A parameter that might account for a variety of those external restrictions 

for example is the fraction of absorbed photosynthetically active radiation. The so called fAPAR 

can be derived from remote sensing data with high precision. Especially hyperspectral remote 

sensing systems, which are capable of monitoring the behaviour of chlorophyll absorptance at 
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high spectral resolution for the respective spectral domain, could easily supply this information 

and thereby would greatly enhance the models functionality. 

Concerning the photosynthesis core model it has to be critically considered that the model does 

not yet include an adaptive reaction of the plant metabolism to the atmospheric CO2 enrichment 

under scenario conditions, as it was observed by KÖRNER (2006). The strong influence of the 

carbon dioxide supply on the modelled net rate of carbon allocation that could be verified in the 

scenario results therefore may be overrated to some degree. Model enhancements towards a 

more detailed reaction of the vegetation cover on elevated CO2 conditions, such as those 

summarized for example by FANGMEIER AND JÄGER (2001), would greatly increase the reliability 

of the model predictions for larger climate scenarios that are ranging further into the future. 

Another restriction of the model in its current version is the basic assumption of a static land 

cover. For small time periods, like those which are comprised by the calculations presented in 

the context of this work, static land cover information might be adequate, assuming a 

representation of the different land use categories that is balanced over the years due to the 

regionally adapted crop rotation. For the modelling of larger time periods under assumed 

climate change conditions, which may exceed 50 years of future projection, the regional 

composition of crops and natural areas is likely to change. For example, the lower water supply 

during the summer months will require the cultivation of crops that are more resistant to water 

stress. Also the elevation of annual mean temperatures may increase the risk of forest fires, 

which again may lead to an increased representation of natural succession areas in the landuse 

map. At the same time, the timberline may access more elevated terrain according to the rising 

temperatures, gradually expanding the forested areas in the alpine region. It has to be assumed 

that adaptations to the changed environment will be enforced, which will have to be considered 

when the future development of a natural entity, such as that of a river catchment, is 

investigated for larger time periods. 

A validation study by MUERTH (2008) that was based on remote sensing data could reveal that 

the landsurface energy balance, modelled with the introduced approach, features lower than 

expected landsurface temperatures for vegetated proxels. First investigations are pointing 

towards an overestimation of the sensible heat flux from the leaves, combined with a slight 

underestimation of the canopy absorptance. The further improvement of the description of the 

leaf surface energy exchange therefore will be a sensible next step for the future development 

of the model. 

A general difficulty that accompanies the modelling of detailed biological processes, as they 

occur in the cells of green plants, is the relatively high number of required specific input 

parameters. While for the landuse categories that are presented in detail within this work, the 

parameterization can be considered to be sufficiently developed, other land cover types remain 

that still need to be investigated further in order to provide improved adjustments for important 
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parameters. Although the model is physically based and is supposed not to be calibrated in any 

way, an application of the model under entirely different natural conditions may involve the 

adaptation of some of the parameters. Also an application in geographic regions that differ 

strongly from the premises of a central European landscape may raise the need to include 

further land cover types. For example a model application in extremely dry environments would 

have to result in an implementation of the Crassulacean Acid Metabolism (CAM) besides the C3 

and C4 pathways, which are part of the endeavours of this thesis. 

The development of a model is a process that features constant enhancements and 

improvements. It is one of the particularities of model development, which contributes to the 

fascination of this scientific field, that a model rarely is finished completely. Suggestions 

concerning a further development of the model always remain and provide interesting 

challenges for future work. The coupled PROMET_Biological model here makes no exception. 

Although the model has reached a stage of development that well enables a model application 

for diverse scientific enquiries, the restrictions mentioned above provide appealing opportunities 

of improvement. It is a task that should gratefully be accepted in order to strengthen the role of 

computer aided modelling and decision support systems worldwide. While the increased 

reliability of computer aided simulations will lead to a better understanding of the concerned 

processes, the new cognition again will improve the hypotheses that are the basis of the model 

algorithms. This cycle of improvements is supposed to result in thoroughly developed decision 

support systems that will be able to reliably assist humanity with the management of the diverse 

challenges that the future changes of our environment may hold. 
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The central issue of this thesis is concerned with the investigation of vegetation related 

landsurface parameters under the impact of changing climate conditions. The spatial extent of 

the study is limited to the borders of the Upper Danube drainage basin, according to the 

requirements of the cooperative Project GLOWA-Danube (Global change of the Hydrological 

Cycle), funded by the German Ministry of Education and research (BMB+F). 

In the frame of global change research, computer aided modelling has developed to an 

important resource during the last decades. Thereby models, which are capable of mapping 

landsurface parameters at high spatial and temporal resolution, play an important role. For 

investigations that are concerned with global change enquiries, models are required that are 

based on physical relations and whose description of the involved processes is accomplished 

by applying a minimum of empiricism. The application of physically based models requires the 

important basic assumption that the physical process description will also be stable, if the model 

is exposed to external conditions that are different to those of contemporary reference periods. 

Before a model can be applied to such investigations, it has to prove its functionality in 

comparison with measured data. A physically based model that has been validated through 

measurements, should consequently be capable of producing reliable information also when it is 

exposed to changed external conditions, like in a future scenario for example, at least as long 

as the variability of the external parameters is limited to a valid physical range. 

Current publications are indicating that the dynamic behaviour of the vegetation cover often is 

inadequately accounted for in studies that are investigating the impacts of climate change with 

respect to the landsurface water cycle. In order to enable a dynamic feedback between the 

animate land cover and the atmosphere, which might be sensitive enough to trace active 

reactions of the vegetation cover on changing climatic conditions, the physically based land 

surface process model PROMET (Process of Radiation Mass and Energy Transfer Model) was 

enhanced by an explicit description of the growth activity of different plant types. 

A well-established model of C3 photosynthesis was combined with a model approach for the 

description of the conductivity between leaf and atmosphere and furnished with extensions 

concerning the description of the C4 metabolism. Also a parameterization that applies to the 

modelling of forest trees was included. The outstanding character of this model is based on the 

description of the rate of photosynthetic activity as the result of the competing limitations due to 

the carbon dioxide supply on one hand and the possible rate of electron transport through the 

cell organs on the other. The model consequently includes an explicit description of the enzyme 

kinetics of the receptor enzyme ribulose-1.5-biphosphate-carboxylase/oxygenase (RUBISCO), 
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as well as of the active gas exchange between the location of the carbon fixation (chloroplast) 

and the atmosphere. The energy that is required for the photosynthesis is provided as the result 

of an explicitly modelled energy balance of the leaf, where energy inputs in form of absorbed 

radiation on one hand and energy losses in form of the sensible heat flux, emissions from the 

leaf and the loss of latent heat due to the stream of transpiration on the other are accounted for. 

The results of the photosynthesis routines, especially the rate of net carbon fixation and the rate 

of transpiration, are scaled from the microscale (leaf) to the mesoscale (landscape) via the Leaf 

Area Index (LAI). The photosynthetic products are distributed to the different plant organs 

following the example of the CERES growth models and in that way are determining the 

physiological appearance of the modelled canopy. In order to account for the seasonal 

dynamics of plant development, a modelling of the progress of phenological stages was 

integrated. While for some of the natural vegetation types static seasonal phases are assumed, 

the determination of the growth stages of agricultural crops as well as of grassland is modelled 

dynamically. A special relevance with respect to the landscape water balance is associated with 

the phenological behaviour of forest trees. The incidence of the determinant growth stages of 

forest therefore is also simulated dynamically. 

In order to test the stability of the applied physical relations, the model was subjected to an 

intensive validation program. First of all, the sensitivity of the model algorithms was investigated 

at the high resolution field scale (10 m). For this spatial scale, field measurements could be 

acquired by means of intensive field campaigns that were conducted in the frame of the project 

„Coupled Analysis of Vegetation Chlorophyll and Water Content Using Hyperspectral, 

Bidirectional Remote Sensing“, which was funded by the German research Foundation (DFG). 

Two stands of winter wheat, representing C3 crops, and two fields of maize, exemplary for C4 

crops, could be acquired as test sites for the campaigns. For both plant types, the model 

achieved good to very good results concerning the overall biomass production and the 

allocation of the assimilates to the different aboveground plant parts. Also the development of 

the leaf area and of the canopy height was well reproduced by the model. A detailed analysis of 

the models potential concerning the yield estimation of agricultural sites could reveal that, 

although the model is well able to reproduce the mean yield, it proved to be insensitive to the 

mapping of zones of low productivity, which are due to mechanically induced stress or to the 

occurrence of pests and diseases respectively. The modelled agricultural yield therefore tends 

to be generally overestimated. 

In a second step, the model was applied to a coarser spatial resolution of 1 km, which applies to 

the mesoscale, and again was compared to field measurements. For extensive as well as for 

intensive grassland, the model could prove that the accumulation of biomass and the height of 

the canopy are reproduced realistically. Although the measures of agricultural management as 

they are accounted for in the model, like e.g. the different count of cuts per season for intensive 

 184



Summary 

 

and extensive grassland, were well mapped, discrepancies of management actions may 

temporarily lead to strong deviations between modelled and measured parameters. 

Some modelled parameters cannot easily be measured in their spatial manifestation, like for 

example evapotranspiration. For the investigation of the models capability with respect to the 

simulation of the evapotranspiration components, a comparison with a reference model was 

conducted. Only a model that is thoroughly validated for different scales and regions can be 

applied as reference source. Concerning the reproduction of the landscape evapotranspiration, 

the reliability of the reference model has to be assessed through the comparative analysis of 

modelled runoff rates with hydrographs that are measured at the gauge of the drainage area. 

The PROMET model, besides the biological approach that is presented in this thesis, is capable 

of calculating the landsurface evapotranspiration alternatively applying the Penman-Monteith 

equation. This is accomplished in combination with a straightforward description of the 

vegetation activity, which is more or less restricted in terms of dynamics, although seasonally 

variable. Thanks to the parallel architecture of both models (PROMET_Penman-Monteith and 

PROMET_Biological), a comparative analysis could be conducted that was based on identical 

input data for a reference period of 1961 to 2006. For this 46-year period, both models returned 

analogue annual sums of evapotranspiration, although the annual courses of the 

evapotranspiration components partly differed noticeably. The biological PROMET returned 

slightly less evapotranspiration on average, combined with a somewhat higher spatial variability, 

than the PROMET-Penman-Monteith approach. The annual sum of evapotranspiration was well 

traced by the biological model, concerning the temporal course as well as the spatial variability. 

The relative deviations between both models stayed below 20 % for nearly the whole Upper 

Danube Basin. An equally good correlation was found between the modelled runoff of both 

model approaches. Compared to measured runoff data, the biological approach and the 

Penman-Monteith model likewise returned good results. 

The functionality of the model with respect to a mapping of the determinant phenologic phases 

of forest trees finally could be investigated in comparison with data taken from the literature. The 

literature values are based on the analysis of long-term data, which is derived from the 

European network of International Phenological Gardens. It could be shown that the mean 

incidences as well as the temporal dynamics of the phenologic phases are well documented by 

the model. The high temporal variability that characterises the observed data though could not 

be traced with its full range by the model. 

Considering the good results of the different validation efforts it can be stated that the model 

soundly demonstrated its capability concerning the precise reproduction of a variety of structural 

landsurface variables on different scales under observed climatic conditions. An application of 

the model to the calculation of climate scenarios therefore seems appropriate. 
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In order to enable comparability with international research approaches, the internationally 

acknowledged global change scenarios developed by the Intergovernmental Panel on Climate 

Change (IPCC), were basically applied. The moderate A1B emissions scenario, which is based 

on the assumption of a balanced future development of different energy technologies, was 

selected and modified by a regional impact factor that was assumed to apply to the local 

situation of the Upper Danube catchment. The impact factor was determined through an 

analysis of the measured long-term data of 360 weather stations from the Upper Danube region. 

The change of the annual mean temperature that was accounted for in the scenario model runs 

adds up to an increase of the average temperature of roughly 3.4 °C until the year 2060 

compared to the time period of 1980 to 1999, while the increase of the atmospheric CO2 

concentration was modelled to meet a value of roughly 550 ppm in the year 2060. The 

meteorological input data required for the modelling of the future scenarios was generated 

through a shuffling of the measured relations of temperature and rainfall, based on a stochastic 

approach. In order to assess the models sensitivity with respect to changing climatic conditions, 

a baseline scenario also was calculated. This control scenario featured constant annual mean 

temperatures from the year 2006 on, without a discernable increasing trend. The atmospheric 

concentration of carbon dioxide also was assumed to stay constant at a level that applies to 

1970 (≈ 326 ppm) for the baseline scenario. 

Being applied to the regionally adapted IPCC A1B climate scenario, the model returned clear 

statements, projecting a possible future development of selected landsurface parameters within 

the Upper Danube area. Concerning the phenological behaviour of forest trees, the model 

simulated a strong trend towards earlier incidence of the leaf emergence of deciduous as well 

as of the mayshoot of coniferous trees, contributing to a significant elongation of the vegetation 

period. These longer phases of active growth in combination with the rising temperatures and 

the elevated supply of atmospheric carbon dioxide led to an increase of biological activity in the 

model results that manifested in increasing rates of biomass accumulation for the Upper 

Danube area. The increased biological activity in combination with the strong decrease of 

summer precipitation, which was assumed in the climate scenario, again led to an escalating 

frequency of drought stress events in the Upper Danube Basin. Not only the average count of 

water stress events per year was modelled to increase, but also a spatial extension of the 

regions that are affected by drought stress was mapped by the model. This general increase of 

water stress and the significant decrease of summer precipitation entailed a slight decline of the 

transpiration and evapotranspiration of the Upper Danube area in the scenario results. The 

modelled decline of the summer precipitation also resulted in a noticeable decrease of the 

modelled average discharge rates at the main gauge of the basin. The base flow rates during 

the summer months thereby are likely to be primarily affected. 
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Since the model results for the scenario period featured temporal and spatial variations and 

standard deviations that were closely matching the statistics of the reference period, while at the 

same time they showed clear trends though they were avoiding extreme realizations, the 

scenario assumptions can be considered to be reliable. The baseline scenario, which was spot-

checked for a set of reference proxels, did not return any trends as expected, indicating that the 

observed future trends are not of systematic origin. 

Although, within the scope of this work, the coupled model approach has been developed to a 

degree that well justifies an application to scientific issues, there still remain fields that may be 

subjected to further enhancements, based on the perception that a model never is developed 

completely, but rather is always open to constant modifications and improvements. For instance 

the implementation of an explicit description of the nutrient fluxes would greatly enhance the 

models functionality with respect to agricultural purposes. In the context of agricultural 

applications, a dynamic coupling of the model with remote sensing techniques is especially 

promising. Also it may be the case that some of the landuse specific parameters may have to be 

refined or adjusted for an application of the model in natural conditions that strongly differ from 

the central European premises, which were basically consulted for the development of the 

model. 

The further development of the introduced model approach is an appealing challenge, which 

might considerably contribute to the improvement of computer aided decision support systems. 

It can be assumed that the progress of the development of physically based models due to a 

more profound understanding of the processes on one hand and the sophistication and 

refinement of the model algorithms that result from the increase of knowledge on the other, may 

contribute to the development of reliable systems, that will be able to sustainably assist 

humanity with the handling of future environmental challenges. 
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9. Zusammenfassung (German) 
 
Die vorliegende Arbeit beschäftigt sich mit der Untersuchung von vegetationsbezogenen 

Landoberflächenparametern unter dem Einfluss sich ändernder Klimabedingungen. Die 

räumliche Basis bildet dabei das Einzugsgebiet der oberen Donau, entsprechend der 

Anforderungen des vom Deutschen Bundesministerium für Bildung und Forschung (BMB+F) 

geförderten Verbundprojektes GLOWA-Danube (Globaler Wandel des Wasserkreislaufs). 

Im Laufe der letzten Jahrzehnte haben sich computergestützte Modelle zu wichtigen 

Werkzeugen der Forschung entwickelt. Im Rahmen der Global Change Forschung nehmen 

Modelle, die in der Lage sind Landoberflächenprozesse in hoher räumlicher und zeitlicher 

Auflösung zu reproduzieren, eine besonders wichtige Rolle ein. Für Untersuchungen im 

Zusammenhang mit Global Change Fragestellungen sind Modelle vonnöten, die vorwiegend auf 

physikalischen Beziehungen basieren und deren Prozessbeschreibung dementsprechend auf 

ein Minimum an empirischen Annahmen beschränkt ist. Bei der Arbeit mit physikalisch 

basierten Modellen wird die wichtige Grundannahme getroffen, dass die physikalischen 

Algorithmen auch dann stabil sind, wenn das Modell mit externen Bedingungen konfrontiert 

wird, die von denen aktueller Referenzzeiträume abweichen. Bevor ein Modell aber für eine 

solche Untersuchung angewendet werden kann, muss seine Funktionalität im Vergleich mit 

gemessenen Daten überprüft werden. Ein solcherart validiertes und physikalisch basiertes 

Modell, sollte, entsprechend der Grundannahme der physikalischen Stabilität, in der Lage sein, 

auch für veränderte externe Bedingungen, wie sie z.B. in Zukunftsszenarien angewendet 

werden, verlässliche Aussagen treffen zu können, solange sich die Variabilität der externen 

Bedingungen innerhalb gültiger physikalischer Grenzen bewegt. 

In der aktuellen Literatur wird beschrieben, dass das dynamische Verhalten der 

Vegetationsdecke in zeitgenössischen Studien zur Untersuchung von Auswirkungen des 

Klimawandels auf den Landschaftswasserhaushalt nur unzureichend berücksichtigt wird. Um 

eine dynamische Rückkopplung zwischen der belebten Landoberfläche und der Atmosphäre 

herzustellen, die auch in der Lage ist eine aktive Reaktion der Vegetationsdecke auf sich 

verändernde klimatische Bedingungen abzubilden, wurde im Rahmen dieser Arbeit das 

physikalisch basierte Landoberflächenprozessmodell PROMET (Process of Radiation Mass and 

Energy Transfer Model) um eine explizite Beschreibung des Wachstumsverhaltens 

verschiedener Pflanzentypen erweitert. 

Dazu wurde ein etabliertes Modell zur Berechnung der Photosynthese von C3 Pflanzen mit 

einem Modellansatz zur Beschreibung der Leitfähigkeit zwischen Blatt und Atmosphäre 

kombiniert und mit Erweiterungen für die Beschreibung des C4 Metabolismus, sowie einer 
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Parametrisierung für die Modellierung von Waldbäumen versehen. Die prinzipbedingte 

Besonderheit dieses Modellansatzes ist, dass die photosynthetische Aktivität als potenzielle 

Assimilationsrate beschrieben wird, die durch das Angebot an verfügbarem Kohlendioxid auf 

der einen und durch die Elektronentransportkapazität der Mitochondrien auf der anderen Seite 

limitiert wird. Das Modell beinhaltet dementsprechend eine explizite Beschreibung der 

Enzymkinetik des Rezeptorenzyms Ribulose-1.5-Biphosphat-Carboxylase/Oxygenase 

(RUBISCO), sowie des aktiven Gaswechsels zwischen dem Ort der Kohlenstofffixierung 

(Chloroplast) und der Atmosphäre. Die zur Photosynthese benötigte Energie wird dem Modell 

als Restglied einer explizit modellierten Energiebilanz der Blattoberfläche zur Verfügung 

gestellt, wobei Energieinputs in Form von absorbierter Strahlung auf der einen und 

Energieverluste in Form von fühlbarer Wärme, langwelliger Ausstrahlung und latentem 

Wärmeverlust durch den Transpirationsstrom auf der anderen Seite berücksichtigt werden. 

Die Ergebnisse der Photosyntheseroutinen, hervorzuheben sind hier die Raten der netto 

Kohlenstofffixierung sowie der Transpiration, können mit Hilfe des Blattflächenindex (LAI) von 

der Mikroskala (Blatt) auf die Mesoskala (Landschaftsebene) transponiert werden. Die Produkte 

der Photosynthese werden in Anlehnung an die CERES Wachstumsmodelle in die 

verschiedenen Pflanzenorgane verteilt und bestimmen so das äußere Erscheinungsbild der 

modellierten Vegetationsdecke. Um auch die jahreszeitliche Dynamik der 

Vegetationsentwicklung zu berücksichtigen, wurde eine Modellierung des Fortschreitens der 

phänologischen Phasen integriert. Während für einige natürliche Vegetationstypen feste 

Phasen in Abhängigkeit der Jahreszeit angenommen werden, erfolgt die Bestimmung der 

Wachstumsstadien von Ackerpflanzen und Grünland dynamisch. Eine besondere Bedeutung im 

Hinblick auf den Landschaftswasserhaushalt kommt der phänologischen Entwicklung von 

Waldbäumen zu. Sie wurde dementsprechend ebenfalls dynamisch implementiert. 

Um die physikalische Stabilität der verwendeten Beziehungen zu überprüfen, wurde das Modell 

einer intensiven Validierung unterzogen. Dabei wurde zunächst das Verhalten der 

Modellalgorithmen auf der hoch aufgelösten Feldskala (10 m) untersucht. Die entsprechenden 

Messdaten konnten auf dieser Skala durch intensive Geländemessungen bereitgestellt werden, 

die im Rahmen des von der deutschen Forschungsgemeinschaft (DFG) geförderten Projektes 

„Coupled Analysis of Vegetation Chlorophyll and Water Content Using Hyperspectral, 

Bidirectional Remote Sensing [Gekoppelte Analyse des Chlorophyll- und Wassergehaltes von 

Vegetation mit Hilfe von hyperspektraler, bidirektionaler Fernerkundung]“ erhoben wurden. Als 

Testflächen standen hierfür zwei Winterweizenfelder (C3) sowie zwei Maisfelder (C4) zur 

Verfügung. Das Modell zeigte für beide Pflanzentypen gute bis sehr gute Ergebnisse im Bezug 

auf die Gesamtbiomasseproduktion und die Allokation der Assimilate in den verschiedenen 

oberirdischen Pflanzenteilen. Auch die Entwicklung der Blattfläche und der Bestandeshöhe 

wurde vom Modell gut reproduziert. Eine Analyse des Potentials zur Ertragsmodellierung von 
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landwirtschaftlichen Flächen konnte zeigen, dass das Modell zwar in der Lage ist mittlere 

Erträge gut zu reproduzieren, jedoch Niederertragszonen, die auf mechanische oder 

parasitische Beeinträchtigungen des Wachstums zurückzuführen sind, ignoriert und 

dementsprechend zu einer Überschätzung des Ertrages neigt. 

In einem zweiten Schritt wurde das Modell auf einer, der Mesoskala entsprechenden, gröberen 

räumlichen Auflösung von 1 km angewendet und wiederum mit Messdaten verglichen. Für 

extensiv und intensiv bewirtschaftete Grünlandflächen konnte gezeigt werden, dass die 

Akkumulation der Biomasse, sowie die Bestandeshöhe vom Modell realistisch wiedergeben 

werden. Obwohl die im Modell abgebildeten landwirtschaftlichen Maßnahmen, wie z. B. die 

unterschiedliche Anzahl der Wiesenschnitte bei extensiv und intensiv genutzten Flächen, 

teilweise gut erfasst wurden, können diesbezügliche Diskrepanzen temporär zu hohen 

Abweichungen zwischen Modell und Messung führen. 

Um auch Modellparameter zu untersuchen, die sich einer direkten Messbarkeit ihrer 

flächenhaften Ausprägung entziehen, wie z.B. die Evapotranspiration, wurde ein Vergleich mit 

einem Modell angestrebt, dessen Verlässlichkeit im Bezug auf die Berechnung der 

Gebietsverdunstung bereits im Vergleich mit Pegel-Abflussdaten bewiesen wurde. Das Modell 

PROMET ermöglicht die Berechnung der Landoberflächenverdunstung neben dem hier 

vorgestellten Ansatz auch entsprechend der Penman-Monteith Methode, allerdings in 

Kombination mit einer zwar jahreszeitlich variablen, aber aufgrund von mehrheitlich statischer 

Parametrisierung insgesamt eingeschränkt dynamischen Beschreibung der Vegetationsaktivität. 

Durch die parallel gestaltete Architektur der beiden Modelle (PROMET_Penman-Monteith und 

PROMET_Biological), ließ sich eine vergleichende Analyse durchführen, die auf identischen 

Eingabedaten für einen Referenzzeitraum von 1961 bis 2006 berechnet wurde. Beide Modelle 

zeigten analoge Jahressummen der Evapotranspiration für diese 46-jährige Zeitreihe, obgleich 

die jährlichen Verläufe von Trans- und Evapotranspiration teilweise große Unterschiede 

aufwiesen. Das PROMET_Biological Modell simulierte im Mittel geringfügig kleinere 

Verdunstungsraten als das Penman-Monteith Modell, allerdings in Kombination mit einer 

gesteigerten räumlichen Variabilität. Die Jahressummen der Evapotranspiration wurden vom 

Biological Modell hinsichtlich des zeitlichen Verlaufs und auch der räumlichen Variabilität gut 

wiedergegeben. Die relativen Abweichungen zwischen beiden Modellen blieben unterhalb einer 

Schwelle von 20 % für den größten Teil des Einzugsgebietes der Oberen Donau. Ebenfalls gute 

Korrelationen wurden hinsichtlich der modellierten Abflüsse erzielt. Im Vergleich mit 

gemessenen Abflussdaten, konnten beide Modellansätze, der explizite Gaswechselansatz und 

die Penman-Monteith-Methode, vergleichbar gute Ergebnisse verzeichnen. 

Die Funktionalität des Modells im Hinblick auf die Abbildung der wesentlichen phänologischen 

Phasen von Waldbäumen konnte schließlich im Vergleich mit Literaturwerten, die auf der 

Analyse von Messdaten des Europäischen Netzwerks der Internationalen Phänologischen 
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Gärten beruhen, untersucht werden. Es zeigte sich, dass die mittleren Eintrittstermine, sowie 

die zeitliche Dynamik der Phasen, sehr gut vom Modell erfasst werden. Die hohe zeitliche 

Variabilität der aus Beobachtungen stammenden Eintrittstermine konnte in den 

Modellergebnissen allerdings nicht erreicht werden. 

Insgesamt konnte gezeigt werden, dass der vorgestellte Modellansatz in der Lage ist, eine 

Vielzahl an Landoberflächen- und Vegetationsvariablen unter gegenwärtigen Klimabedingungen 

auf unterschiedlichen Skalen mit hoher Genauigkeit wiederzugeben, so dass eine Anwendung 

des Modells für die Berechung von Landoberflächenprozessen unter Szenarienbedingungen 

angemessen erscheint. 

Um die Vergleichbarkeit mit internationalen Studien zu gewährleisten, wurden die international 

anerkannten Global Change Szenarien des Intergovernmental Panel on Climate Change (IPCC) 

als Ausgangsbasis verwendet. Das moderate A1B Emissions-Szenario, das von einer 

zukünftigen Ausgewogenheit bei der Entwicklung von verschiedenen Energietechnologien 

ausgeht, wurde mit einem lokalen Wirkungsfaktor verrechnet, der sich aus der Analyse der 

vorhandenen Messdaten aus 360 Klimastationen des Einzugsgebietes der oberen Donau und 

seiner unmittelbaren Umgebung ergab. Die bei der Modellierung berücksichtigte mittlere 

Temperaturerhöhung beträgt dementsprechend ca. 3.9 °C bis zum Jahr 2060 im Vergleich zum 

Temperaturmittel des Jahres 1960, bei einem gleichzeitigen Anstieg der atmosphärischen 

Kohlendioxidkonzentration auf ca. 550 ppm. Die meteorologischen Eingabedaten, die für die 

Modellierung der Zukunftsszenarien erforderlich waren, wurden durch eine Neuanordnung der 

gemessenen Temperatur-Niederschlagsbeziehungen bereitgestellt, die auf einem 

stochastischen Verfahren basiert. Um die Sensitivität des Modells im Bezug auf eine Änderung 

der klimatischen Verhältnisse zu untersuchen, wurde zusätzlich ein Vergleichsszenario 

berechnet. Das Vergleichs-, oder Basislinienszenario geht von einer konstanten, trendfreien 

Entwicklung der Jahresmitteltemperatur ab dem Jahr 2006 aus. Die atmosphärische 

Kohlendioxidkonzentration wurde für das Basislinienszenario als konstant auf dem Niveau von 

1970 (≈ 326 ppm) angenommen. 

Die Anwendung des Modells auf das regional angepasste IPCC A1B Szenario ergab deutliche 

Aussagen bezüglich der zukünftigen Entwicklung ausgewählter Landoberflächenparameter 

innerhalb des Einzugsgebietes der Oberen Donau. Im Bezug auf die phänologische 

Entwicklung von Waldbäumen wurde vom Modell unter Szenariobedingungen eine starke 

Tendenz zu einem verfrühten Einsetzen des Blattaustriebs von Laubbäumen sowie des 

Maitriebs von Nadelbäumen simuliert, was in einer deutlichen Verlängerung der 

Vegetationsperiode im Modell resultierte. Diese verlängerten Wachstumsphasen wiederum 

führten, in Verbindung mit der dem Wachstum förderlichen erhöhten Temperatur sowie der 

erhöhten atmosphärischen Kohlendioxidkonzentration, zu einer Zunahme der 

photosynthetischen Aktivität, die sich in einem starken Ansteigen der jährlichen 
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Trockenmassefixierung widerspiegelte. Die erhöhte Wachstumsaktivität, zusammen mit den im 

Szenario als stark rückläufig angenommenen Sommerniederschlägen, zog ein starkes 

Ansteigen der Häufigkeit von Trockenstressereignissen im Einzugsgebiet nach sich. Die 

Simulation signalisierte nicht nur eine Zunahme der mittleren Häufigkeit von 

Trockenstressereignissen, sondern auch eine räumliche Ausdehnung der von Wasserstress 

betroffenen Gebiete. Die allgemein höhere Trockenstressbelastung und der signifikante 

Rückgang der Sommerniederschläge im Klimaszenario führten zu einem leichten Absinken der 

modellierten Transpirations- sowie der Gesamtverdunstungssummen des Einzugesgebietes der 

Oberen Donau. Trotz der leicht verringerten Verdunstungsraten, führte der modellierte 

Rückgang der Sommerniederschläge zu einer spürbaren Abnahme der Abflusssummen am 

Hauptpegel des Einzugsgebietes. Es ist anzunehmen, dass die sommerlichen 

Niedrigwasserabflüsse von dieser Entwicklung besonders betroffen sein werden. 

Die Modellergebnisse für den Szenarienzeitraum zeigten zeitliche und räumliche Varianzen und 

Standardabweichungen, die mit den statistischen Eigenschaften der Ergebnisse des 

Referenzzeitraumes vergleichbar waren. Obwohl die Szenarienrechnungen entsprechend des 

moderat gewählten Klimaszenarios keine extremen Zukunftsperspektiven zeichnen, 

identifizierten die Modellrechnungen eindeutige Trends für eine mögliche zukünftige 

Entwicklung ausgewählter Landoberflächenparameter. Das Vergleichsszenario, bei dem 

Temperatur, Niederschlag und die atmosphärische Kohlendioxidkonzentration als konstant 

angenommen wurden, zeigte in stichprobenartigen Untersuchungen erwartungsgemäß keine 

eindeutigen Tendenzen. Eine systematische Ursache kann demnach für die aus den 

Szenarienrechnungen abgeleiteten Trends ausgeschlossen werden. 

Obwohl der gekoppelte Modellansatz im Rahmen dieser Arbeit bis zu einer Reife entwickelt 

wurde, die einen Einsatz des Modells für wissenschaftliche Fragestellungen rechtfertigt, so 

ergeben sich, entsprechend der grundsätzlichen Annahme dass ein Modell niemals gänzlich 

fertig entwickelt und ständigen Veränderungen und Verbesserungen unterworfen sein wird, 

selbstverständlich Möglichkeiten der Weiterentwicklung. Beispielsweise würde die 

Implementierung einer expliziten Beschreibung der Nährstoffflüsse die Anwendbarkeit des 

Modells für landwirtschaftliche Fragestellungen deutlich erhöhen. Im Zusammenhang mit einer 

landwirtschaftlichen Anwendung erscheint eine dynamische Kopplung des Modells mit 

Fernerkundungsmethoden besonders vielversprechend. Ebenso ist nicht auszuschließen, dass 

einige der landnutzungsspezifischen Modellparameter noch verfeinert, bzw. für eine 

Anwendung des Modells in bisher nicht berücksichtigten Naturräumen, angepasst werden 

müssen. 

Die Weiterentwicklung des hier vorgestellten Modellansatzes ist eine anspruchs- und reizvolle 

Herausforderung, die einen wesentlichen Beitrag zur Verbesserung von computergestützten 

Entscheidungsunterstützungssystemen leisten kann. Es ist davon auszugehen, dass die 
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fortschreitende Entwicklung physikalisch basierter Modelle durch eine Verbesserung des 

Verständnisses der abgebildeten Prozesse auf der einen und eine daraus hervorgehende 

Verfeinerung der Modellalgorithmen auf der anderen Seite, dazu betragen wird verlässliche 

Systeme zu schaffen, die in der Lage sein werden die Menschheit beim Umgang mit 

zukünftigen klimatisch bedingten Herausforderungen nachhaltig zu unterstützen. 
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12. Appendix 
 
A.1 List of Symbols 

Radiation - Page 31 et seq.
Symbol  Caption Unit

cA  = Albedo of the canopy [%]

sA  = Albedo of bare soil [%]

1aLW  = Absorbed long wave rad. upper veg. layer [W m-2]

2aLW  = Absorbed long wave rad. lower veg. layer [W m-2]

difaPAR
 = Absorbed diffuse PAR [W m-2]

diraPAR  = Absorbed direct PAR [W m-2]

lwα  = Leaf absorptivity for long wave radiation [%]

nirα  = Leaf absorptivity for near Infrared [%]

parα
 = Leaf absorptivity for PAR [%]

swα  = Leaf absorptivity for short wave radiation [%]

lβ  = Leaf angle [°]

fPAR  = Fraction of PAR [%]

difΚ  = Extinction coefficient for diffuse radiation [-]

edΚ  = Extinction coeff. for ellipsoidal canopies [-]

LAI  = Leaf area Index [m2 m-2]

1LA  = Leaf area of the upper veg. layer [m²]

2LA  = Leaf area of the lower veg. layer [m²]

1sunLA  = Sunlit leaf area of the upper veg. layer [m²]

2sunLA  = Sunlit leaf area of the lower veg. layer [m²]

LW  = Incoming long wave radiation [W m-2]

H
cpyρ

 = Canopy hemispherical reflection coeff. [-]

1fS  = Fraction of shaded leaf area upper layer [%]

2fS  = Fraction of shaded leaf area lower layer [%]

difSW
 = Incoming shortwave diffuse radiation [W m-2]

dirSW  = Incoming shortwave direct radiation [W m-2]
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Radiation (continued) - Page 31 et seq.
Symbol  Caption Unit

σ  = Stefan-Boltzmann constant (5.6704 x 10-8) [W m-2 K-4]

1cT  = Canopy temperature upper veg. layer [K]

2cT  = Canopy temperature lower veg. layer [K]

diftPAR  = Fraction of transmitted diffuse PAR [-]

dirtPAR  = Fraction of transmitted direct PAR [-]

sT  = Soil surface temperature [K]

χ  = Canopy shape parameter [0 - 1]

Ψ  = Solar zenith angle [°]

Surface Processes - Page 36 et seq.
Symbol  Caption Unit

pc  = Specific heat of air [J g-1 K-1]

0dis  = Zero plane displacement height [m]

IΔ  = Intercepted water storage [mm]

maxIΔ  = Maximum interception capacity [mm]

snowsΔ  = Snow water storage [mm]

soilsΔ  = Soil water storage [mm]

e  = Saturation pressure [mb]

IE  = Interception evaporation [mm]

pE  = Latent heat of potential evaporation [W m-2 h-1]

se  = Saturation deficit [mb]

SE  = Soil evaporation [mm]

TE  = Transpiration [mm]

fCOVER  = Fractional cover [%]

γ  = Psychrometric constant [mb °C-1]

cH  = Height of the canopy [m]

mH  = Measurement height [m]

Κ  = Von Karman constant (0.41) [-]
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Surface Processes (continued) - Page 36 et seq.
Symbol  Caption Unit

L  = Latent heat of vaporization [J g-1]

*L  = Specific heat of evaporation per mm [J g-1]

LAI  = Leaf Area Index [m2 m-2]

LW  = Incoming long wave radiation [W m-2]

airM  = Molar mass of air (28.97) [g mol-1]

OHM 2  = Molar mass of water (0.0180153) [kg mol-1]

lwO  = Outgoing long wave radiation [W m-2]

swO  = Outgoing shortwave radiation [W m-2]

p  = Air density [g m-3]

effP  = Effective precipitation [mm]

intP  = Intercepted precipitation [mm]

R  = Gas constant (8.314472…) [J K-1 mol-1]

ar  = Aerodynamic resistance [s m-1]

iR  = Interflow [mm]

nR  = Radiation balance [W m-2]

sR  = Surface runoff [mm]

( )lTs  = Slope of the saturation pressure curve [Pa K-1]

difSW  = Incoming shortwave diffuse radiation [W m-2]

dirSW  = Incoming shortwave direct radiation [W m-2]

lT  = Leaf temperature [K]

*u  = Friction velocity [m s-1]

)(zu  = Wind velocity at height z [m s-1]

z  = Height above ground [m]

mz  = Roughness length [m]
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Biological Initialisation - Page 45 et seq.

Symbol  Caption Unit

leafB  = Leaf biomass [kg m-2] 

d  = Model day [DOY]

decendd  = Day of end of LAI decrease phase [DOY]

decstartd  = Day of start of LAI decrease phase [DOY]

incendd  = Day of end of LAI increase phase [DOY]

incstartd  = Day of start of LAI increase phase [DOY]

e  = Eularian number (2.718281828459...) [const.]

ch  = Canopy height [m]

1k  = Coefficient of LAI-increase curve [-]

2k  = Coefficient of LAI-decrease curve [-]

LAI  = Leaf Area Index [m² m-2]

iniLAI  = Initial (minimum) Leaf Area Index [m² m-2]

maxLAI  = Maximum Leaf Area Index [m² m-2]

relLH  = Relation of LAI to canopy height [m m-2 leaf area]

LMA  = Cultivar specific leaf mass area [kg m-2 leaf area]

sL  = Number of soil layer [-]

RD  = Root depth [cm]

maxRD  = Maximum root depth [cm]

LAIR  = LAI reduction factor [0 - 1]

sLRLD  = Root length density at a soil layer [cm cm-3]

avgT  = Annual mean temperature [°C]

Agricultural Management - Page 49 et seq.
Symbol  Caption Unit

grainB  = Grain biomass [kg m-2] 

harB  = Harvest mass [t ha-1]

hard  = Harvest date [DOY]

sowd  = Sowing date [DOY]
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Agricultural Management (continued) - Page 49 et seq.

Symbol  Caption Unit

m  = Slope of grain mass to harvest relation [-]

b  = Intercept of grain mass to harvest relation [t ha-1]

Leaf Temperature - Page 52 et seq.
Symbol  Caption Unit

leafα  = Absorptivity of the leaf [%]

intDiss  = Heat dissipation at intermediate temp. [KW m-2] 

sensDiss  = Heat dissipation due to conduction [KW m-2]

LatDiss  = Latent heat dissipation [KW m-2]

lowDiss  = Heat dissipation at lower boundary [KW m-2]

radDiss  = Heat dissipation due to emission [KW m-2]

totDiss  = Total heat dissipation [KW m-2]

uppDiss  = Heat dissipation at upper boundary [KW m-2] 

dwv  = Diffusion coefficient of water vapour [m2 s-1]

eΔ  = Saturation deficit [mbar]

TΔ  = Temperature gradient [K]

ae  = Atmospheric vapour pressure [mbar]

le  = Vapour pressure in the leaf [mbar]

TfluxE  = Transpiration [mmol m-2 leaf area s-1]

ag  = Boundary layer conductivity for H2O [mmol m-2 leaf area s-1]

lg  = Leaf conductivity to H2O [mmol m-2 leaf area s-1]

sg  = Stomatal conductivity for H2O [mmol m-2 leaf area s-1]

P  = Air pressure [Pa / mbar]

R  = Gas constant (8.314472…) [J K-1 mol-1]

eqrad  = Equilibrium radiation [KW m-2]

σ  = Stefan-Boltzmann constant (5.6704 x 10-8) [W m-2 K-4]

blΣ  = Scaling factor for the bunching of needles [-]

aT  = Air temperature [°C]



Appendix – List of Symbols 

 

 6

 
Leaf Temperature (continued) - Page 52 et seq.

Symbol  Caption Unit

tbl  = Thickness of boundary layer [m]

tca  = Thermal conductivity of air [W m-1 °C-1]

estlT ,  = Estimated leaf temperature [K]

lowlT ,  = Lower boundary of the est. leaf temp. [K]

inilT ,  = Initial leaf temperature [K]

upplT ,  = Upper boundary of the est. leaf temp. [K]

u  = Wind velocity [m s-1]

wl  = Width of leaf [m]

Photosynthesis - Page 59 et seq.
Symbol  Caption Unit

α  = Light use efficiency [mol CO2 mol photons-1]

aPAR  = Absorbed photosynthetic radiation [µmol photons m-2 leaf area s-1]

0c  = Empirical input coefficient 1 [-]

1c  = Empirical input coefficient 2 [1 kPA-1]

aC  = Atmospheric CO2 concentration [ppm]

iC  = Internal (leaf) CO2 concentration [ppm]

sΔ  = Entropy term [J K-1 mol-1]

e  = Eularian number (2.718281828459...) [const.]

ae  = Atmospheric vapour pressure [mbar]

maxJEa  = Activation energy [J mol-1]

maxVcEa  = Activation energy [J mol-1]

( )ocrdEa ,,,τ  = Activation energies [J mol-1]

maxJEd  = Deactivation energy [J mol-1]

maxVcEd  = Deactivation energy [J mol-1]

le  = Vapour pressure in the leaf [mbar]

*Γ  = CO2 compensation point [µl l-1] / [ml l-1]

gfac  = Stomatal sensitivity parameter [-]
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Photosynthesis (continued) - Page 59 et seq.
Symbol  Caption Unit

ming  = Conductance of the cuticle [mmol m-2 leaf area s-1]

sg  = Stomatal conductivity for H2O [mmol m-2 leaf area s-1]

25maxJ  = Max. rate of electron transport at 25 °C [µmol e-1 m-2 leaf area s-1]

cK  = Michaelis-Menten constant for C [µl l-1]

25cK  = Michaelis-Menten constant for C at 25 °C [µl l-1]

oK  = Michaelis-Menten constant for O [ml l-1]

25oK  = Michaelis-Menten constant for O at 25 °C [ml l-1]

np  = Rate of net leaf photosynthesis  [µmol m-2 leaf area s-1]

2O  = Internal (leaf) concentration of oxygen [ml l-1]

mp  = Rate of photosynthesis at saturated CO2 [µmol m-2 leaf area s-1]

mlp  = Potential rate of RuBP regeneration [µmol m-2 leaf area s-1]

R  = Gas constant (8.314472…) [J K-1 mol-1]

25τ  = Substrate specifity at 25 °C [-]

dr  = Dark respiration [µmol m-2 leaf area s-1]

25dr  = Respiration capacity at 25 °C [g CO2 m-2 leaf area s-1]

rh  = Relative air humidity [%]

τ  = Substrate specifity [-]

estlT ,  = Estimated leaf temperature [K]

maxVc  = Maximum speed of carboxylation [mmol m-2 leaf area s-1]

25maxVc  = Carboxylation capacity at 25 °C  [µmol m-2 leaf area s-1]

maxVo  = Maximum rate of oxygenation [µmol m-2 leaf area s-1]

cw  = RuBisCO limited rate of carboxylation [µmol m-2 leaf area s-1]

jw  = Carboxylation rate ltd. by electron transp. [µmol m-2 leaf area s-1]

ow  = RuBisCO limited rate of oxygenation [µmol m-2 leaf area s-1]
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Photosynthesis, analytical solution - Page 64 et seq.
Symbol  Caption Unit

a  = Auxiliary variable [µmol m-2 leaf area s-1]

b  = Auxiliary variable [µl l-1]

β  = Auxiliary variable [ppm2 (mmol m-2 s-1)2 (µmol m-2 s-1)-1]

d  = Auxiliary variable [µl l-1]

dis  = Discriminant, auxiliary variable [(mmol m-2 s-1)6]

e  = Auxiliary variable [-]

γ  = Auxiliary variable [ppm (mmol m-2 s-1)2]

κ  = Auxiliary variable [ppm (mmol m-2 s-1)2 (µmol m-2 s-1)-1]

λ  = Auxiliary variable [ppm (mmol m-2 s-1)2 (µmol m-2 s-1)-1]

1np  = Solution of the quadratic/cubic eq. system [µmol m-2 leaf area s-1]

2np  = Solution of the quadratic/cubic eq. system [µmol m-2 leaf area s-1]

3np  = Solution of the cubic eq. system [µmol m-2 leaf area s-1]

1o  = Auxiliary variable [ppm2 (mmol m-2 s-1)2 (µmol m-2 s-1)-2]

2o  = Auxiliary variable [µl l-1 ppm (mmol m-2 s-1)2 (µmol m-2 s-1)-1]

3o  = Auxiliary variable [µl l-1 ppm (mmol m-2 s-1)2]

4o  = Auxiliary variable [ppm2 (mmol m-2 s-1)2 µmol m-2 s-1]

p  = Auxiliary variable [(mmol m-2 s-1)2]

q  = Auxiliary variable [(mmol m-2 s-1)3]

r  = Auxiliary variable [mmol m-2 s-1]

s  = Auxiliary variable [(mmol m-2 s-1)2]

t  = Auxiliary variable [(mmol m-2 s-1)3]

1v  = Auxiliary variable [-]

2v  = Auxiliary variable [mmol m-2 s-1]

y  = Auxiliary variable [µmol m-2 s-1]



Appendix – List of Symbols 

 

 9

 
Stomatal Conductance - Page 70 et seq.

Symbol  Caption Unit

Ψa  = Multiplicative scaling parameter [-]

Ψb  = Additive scaling parameter [-]

iinh  = Inhibition due to water stress in soil layer i [0 – 1]

irl  = Fraction of root length in soil layer i [%]

rr  = Root resistance [MPa]

iΨ  = Soil suction power in layer i [MPa]

0Ψ  = Soil suction power threshold for inhibition [MPa]

Crop Phenology - Page 73 et seq.
Symbol  Caption Unit

*α  = Twilight angle [°]

ic  = Temperature response curvature coeff. [-]

lpD  = Daily photoperiod [h]

avgdTT  = Average daily thermal time [°C]

effhT  = Hourly temperature effect [0-1]

hTT  = Hourly thermal time [°C]

effL  = Light effect [0 - 1]

opM  = Minimal optimum day length [h]

senp  = Photoperiod-sensitivity-parameter [1 h-1]

π  = Pi (3.14159265358979…) [const.]

ϕ  = Geographic latitude [°]

δ  = Declination of sun [°]

jiaT ,,  = Air temp. on model day i and model hour j [°C]

bT  = Base temperature [°C]

cT  = Ceiling temperature [°C]

oT  = Optimum temperature [°C]

effVd  = Effective vernalisation day [d]

effVn  = Vernalisation effect [0 - 1]
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Crop Phenology (continued) - Page 73 et seq.

Symbol  Caption Unit

bVnT  = Vernalisation base temperature [°C]

hVn  = Hourly vernalisation rate [-]

cVnT  = Vernalisation ceiling temperature [°C]

oVnT  = Vernalisation optimum temperature [°C]

iω  = Daily development rate [-]

max,iω  = Maximum daily development rate [-]

Forest Phenology - Page 77 et seq.
Symbol  Caption Unit

a  = Additive parameter for temp. threshold [-]

b  = Multiplicative param. for temp. threshold [-]

CD  = Chill day [d]

maxCD  = Maximum number of chill days [d]

minCD  = Chill days needed for external dormancy [d]

d  = Actual model day [d]

1d  = Model start day [d]

iaT ,  = Mean air temperature on model day i [°C]

bT  = Base temperature [°C]

CDTb  = Base temperature for chill days [°C]

critTT  = Critical heat sum for emergence [°C]

TDD  = Thermal degree day [d]

Carbon Allocation - Page 81 et seq.
Symbol  Caption Unit

decB  = Percentage of biomass decrease [% h-1]

grainB  = Grain biomass [kg m-2] 

leafB  = Leaf biomass [kg m-2] 

mb  = Maintenance respiration coefficient [-]
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Carbon Allocation (continued) - Page 81 et seq.

Symbol  Caption Unit

rootB  = Root biomass [kg m-2] 

stemB  = Stem biomass [kg m-2] 

totB  = Total biomass [kg m-2]

E  = Efficiency of conversion [%]

cH  = Canopy height [m]

mk  = Maintenance respiration constant  [g CH2O g tissue-1 h-1]

LAI  = Leaf Area Index [m² m-2]

relLH  = Relation of LAI to canopy height [m m-2 leaf area]

cLMA  = Cultivar specific leaf mass area [kg m-2 leaf area]

nP  = Rate of net photosynthesis [kg CH2O m-2 h-1]

gP  = Rate of gross primary production [kg C m-2 h-1]

LAIR  = LAI reduction factor [0 - 1]

mR  = Maintenance respiration [g CH2O g tissue-1 h-1]

Root Growth - Page 86 et seq.
Symbol  Caption Unit

hTT  = Hourly thermal time [°C]

rootincB  = Increase of root biomass [kg m-2 h-1]

defN  = Nitrogen deficit factor [0 - 1]

totN  = Total nitrogen content of the soil layer [Kg N ha-1]

iRD  = Root depth on model day i [cm]

maxRD  = Maximum root depth [cm]

lfacRLD ,  = Root length density factor of soil layer l [-]

totfacRLD ,  = RLD factor of the soil profile [-]

lRLD  = Root length density per soil layer [cm cm-3]

ilRLD ,  = Root length density of soil layer l on day i [cm cm-3]

incRl  = Root length increase [cm h-1]

maxRL  = Deepest rooted soil layer [1 - 4]
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Root Growth (continued) - Page 86 et seq.

Symbol  Caption Unit

mlR  = Relation of root mass to root length [cm kg-1]

pR  = Root preference factor [0 - 1]

senR  = Root senescence percentage [% h-1]

defSM  = Soil moisture deficit factor [0 - 1]

maxSD  = Maximum soil depth [cm]

lθ  = Soil moisture in soil layer l [vol. %]

lfc ,θ  = Field capacity in soil layer l [vol. %]

lpf ,2.4θ  = Wilting point in soil layer l [vol. %]

lZ  = Thickness of the soil layer l [cm]

Landuse Parameter Attributes - Page 96/97
Symbol  Caption Unit

AMT  = Annual Mean Temperature [°C]

eFac  = Increase of root biomass [kg m-2 h-1]

25maxJ  = Max. rate of electron transport at 25 °C [µmol e-1 m-2 leaf area s-1]

25dr  = Respiration capacity at 25 °C [g CO2 m-2 leaf area s-1]

25maxVc  = Carboxylation capacity at 25 °C  [µmol m-2 leaf area s-1]

Penman-Monteith Equation - Page 132
Symbol  Caption Unit

pc  = Specific heat of air [J g-1 K-1]

e  = Actual vapour pressure [kPa]

se  = Saturation vapour pressure [kPa]

aET  = Real landsurface Evapotranspiration [mm]

G  = Ground heat flux [W m-2]

γ  = Psychrometric constant [kPa K-1]

*L  = Specific heat of evaporation [J g-1]

p  = Air density [g m-3]
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Penman-Monteith Equation (continued) - Page 132

Symbol  Caption Unit

ar  = Aerodynamic resistance [s m-1]

nR  = Net radiation [W m-2]

sr  = Stomatal resistance [s m-1]

s  = Slope of saturation vapour pressure curve [kPa K-1]

aT  = Air temperature [°C]

Scenario Generation - Page 158 et seq.
1970d  = Days since 1st of January 1970 [d]

P  = Weekly precipitation sum [mm]

T  = Weekly mean temperature [°C]

Scenario Results - Page 179

avgWSD  = Average number of water stress days [d]

iWSD  = Annual sum of water stress day per proxel [d]

n  = Number of proxels reporting water stress [-]

N  = Number of vegetated proxels (68 770) [-]
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A.2 DOY-Table for Normal Years 

 

Days since the beginning of the year (DOYs) for normal years 
 

 Jan. Feb. March April May June July August Sept. Oct. Nov. Dec. 

1st 1 32 60 91 121 152 182 213 244 274 305 335 
2nd 2 33 61 92 122 153 183 214 245 275 306 336 
3rd 3 34 62 93 123 154 184 215 246 276 307 337 
4th 4 35 63 94 124 155 185 216 247 277 308 338 
5th 5 36 64 95 125 156 186 217 248 278 309 339 
6th 6 37 65 96 126 157 187 218 249 279 310 340 
7th 7 38 66 97 127 158 188 219 250 280 311 341 
8th 8 39 67 98 128 159 189 220 251 281 312 342 
9th 9 40 68 99 129 160 190 221 252 282 313 343 

10th 10 41 69 100 130 161 191 222 253 283 314 344 
11th 11 42 70 101 131 162 192 223 254 284 315 345 
12th 12 43 71 102 132 163 193 224 255 285 316 346 
13th 13 44 72 103 133 164 194 225 256 286 317 347 
14th 14 45 73 104 134 165 195 226 257 287 318 348 
15th 15 46 74 105 135 166 196 227 258 288 319 349 
16th 16 47 75 106 136 167 197 228 259 289 320 350 
17th 17 48 76 107 137 168 198 229 260 290 321 351 
18th 18 49 77 108 138 169 199 230 261 291 322 352 
19th 19 50 78 109 139 170 200 231 262 292 323 353 
20th 20 51 79 110 140 171 201 232 263 293 324 354 
21st 21 52 80 111 141 172 202 233 264 294 325 355 

22nd 22 53 81 112 142 173 203 234 265 295 326 356 
23rd 23 54 82 113 143 174 204 235 266 296 327 357 
24th 24 55 83 114 144 175 205 236 267 297 328 358 
25th 25 56 84 115 145 176 206 237 268 298 329 359 
26th 26 57 85 116 146 177 207 238 269 299 330 360 
27th 27 58 86 117 147 178 208 239 270 300 331 361 
28th 28 59 87 118 148 179 209 240 271 301 332 362 
29th 29  88 119 149 180 210 241 272 302 333 363 
30th 30  89 120 150 181 211 242 273 303 334 364 
31st 31  90  151  212 243  304  365 

 
Normal Years within the model period (1960-2060) 

1961 1974 1987 2001 2014 2027 2041 2054 
1962 1975 1989 2002 2015 2029 2042 2055 
1963 1977 1990 2003 2017 2030 2043 2056 
1965 1978 1991 2005 2018 2031 2045 2057 
1966 1979 1993 2006 2019 2033 2046 2058 
1967 1981 1994 2007 2021 2034 2047 2059 
1969 1982 1995 2009 2022 2035 2049  
1970 1983 1997 2010 2023 2037 2050  
1971 1985 1998 2011 2025 2038 2051  
1973 1986 1999 2013 2026 2039 2053  
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A.3 DOY-Table for Leap Years 

 

Days since the beginning of the year (DOYs) for leap years* 
 

 Jan. Feb. March April May June July August Sept. Oct. Nov. Dec. 

1st 1 32 61 92 122 153 183 214 245 275 306 336 
2nd 2 33 62 93 123 154 184 215 246 276 307 337 
3rd 3 34 63 94 124 155 185 216 247 277 308 338 
4th 4 35 64 95 125 156 186 217 248 278 309 339 
5th 5 36 65 96 126 157 187 218 249 279 310 340 
6th 6 37 66 97 127 158 188 219 250 280 311 341 
7th 7 38 67 98 128 159 189 220 251 281 312 342 
8th 8 39 68 99 129 160 190 221 252 282 313 343 
9th 9 40 69 100 130 161 191 222 253 283 314 344 

10th 10 41 70 101 131 162 192 223 254 284 315 345 
11th 11 42 71 102 132 163 193 224 255 285 316 346 
12th 12 43 72 103 133 164 194 225 256 286 317 347 
13th 13 44 73 104 134 165 195 226 257 287 318 348 
14th 14 45 74 105 135 166 196 227 258 288 319 349 
15th 15 46 75 106 136 167 197 228 259 289 320 350 
16th 16 47 76 107 137 168 198 229 260 290 321 351 
17th 17 48 77 108 138 169 199 230 261 291 322 352 
18th 18 49 78 109 139 170 200 231 262 292 323 353 
19th 19 50 79 110 140 171 201 232 263 293 324 354 
20th 20 51 80 111 141 172 202 233 264 294 325 355 
21st 21 52 81 112 142 173 203 234 265 295 326 356 

22nd 22 53 82 113 143 174 204 235 266 296 327 357 
23rd 23 54 83 114 144 175 205 236 267 297 328 358 
24th 24 55 84 115 145 176 206 237 268 298 329 359 
25th 25 56 85 116 146 177 207 238 269 299 330 360 
26th 26 57 86 117 147 178 208 239 270 300 331 361 
27th 27 58 87 118 148 179 209 240 271 301 332 362 
28th 28 59 88 119 149 180 210 241 272 302 333 363 
29th 29 60 89 120 150 181 211 242 273 303 334 364 
30th 30  90 121 151 182 212 243 274 304 335 365 
31st 31  91  152  213 244  305  366 

 
Leap Years* within the model period (1960-2060) 

1960 1984 2008 2032 2056 
1964 1988 2012 2036 2060 
1968 1992 2016 2040  
1972 1996 2020 2044  
1976 2000 2024 2048  
1980 2004 2028 2052  

 
*Leap years are all years that are dividable by four without remainder. An exception is made for full centuries, which are 
calculated like normal years. Another exception is made, if a full century is dividable by 400 without remainder, which then 
is considered also to be a leap year. This for example is the case for the year 2000 of the model period. 
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A.4 Species of Bavarian Forests 
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A.5 Map of Landuse 
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A.6 Map of Soil Texture 
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A.7 Map of Terrain Elevation 
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A.8 Parameters Applied to the Modelled Landcover Types 
A.8.1 Coniferous Forest 

Area percentage: 32.82 % 

Covered area: 25 013 km² 

 

Specifications: Forested areas with all-season large leaf areas. 
The predominant land use category in the Upper 
Danube Basin. C3-Metabolism. 

 

Parameter Value Unit

cLMA  0.7 [kg m-2 leaf area]

sowd  perennial [DOY]

hard  perennial [DOY]

relLH  1.5 [m kg-1 stem mass m-2]

iniLAI  7 [m² m-2]

maxLAI  8.5 [m² m-2]
lw  0.002 [m]

25maxVc  dynamic [µMol m-2 leaf area s-1]

25maxJ  dynamic [µMol e-1 m-2 leaf area s-1]

25oK  278.4 [µl l-1]

25cK  404.9 [ml l-1]

25dr  dynamic [g CO2 m-2 leaf area s-1]
α  0.2 [Mol CO2 m-2 leaf area]
gfac  9.2 [-]

2O  210 [ml l-1]

dr  0.5 [Fraction]
Long Day Crop Type 0 [Flag]
3 x bT  / oT  / cT  0, 25, 30 / 0, 25, 30 / 0, 25, 30 [°C]

critTT  60.4 [°C]

maxRD  130 [cm]

bVnT  / oVnT  / cVnT  -1.3 / 4.9 / 15.7 [°C]

ithresPT ,  181 / 220 / 250 / 305 [DOY]
Allocation of assimilated carbon: [%]

Root

Stem

Leaf

Grain

0%

20%

40%

60%

80%

100%

1 2 3 4 5
Grow th Stage  
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A.8.2 Extensive Grassland 
 

Area percentage: 12.53 % 

Covered area: 9 552 km² 

 

Specifications: Agricultural grassland that is only cut two 
times per year. The first cut does not 
happen before the 15th of June. C3-Mtb. 

 

Parameter Value Unit

cLMA  0.06 [kg m-2 leaf area]

sowd  perennial [DOY]

hard  perennial [DOY]

relLH  0.2 [m m-2 leaf area]

iniLAI  0.8 [m² m-2]

maxLAI  4.4 [m² m-2]
lw  0.02 [m]

25maxVc  59.1 [µMol m-2 leaf area s-1]

25maxJ  30.4 [µMol e-1 m-2 leaf area s-1]

25oK  278.4 [µl l-1]

25cK  404.9 [ml l-1]

25dr  0.94 [g CO2 m-2 leaf area s-1]
α  0.05 [Mol CO2 m-2 leaf area]
gfac  14.0 [-]

2O  210.0 [ml l-1]

dr  0.5 [Fraction]
Long Day Crop Type 1 [Flag]
3 x bT  / oT  / cT  0, 20, 30 / 0, 20, 35 / 0, 20, 35 [°C]

critTT  60.4 [°C]

maxRD  150 [cm]

bVnT  / oVnT  / cVnT  -1.3 / 4.9 / 15.7 [°C]
9 x ithresPT ,  0 / 0.2 / 0.3 / 0.45 / 0.6 / 0.9 / 1 / 1.5 / 2 [Thres.]
Allocation of assimilated carbon: [%]

Root

Stem

Leaf

Grain

0%

20%

40%

60%

80%

100%

10 9 0 1 2 3 4 5 6 7 8
Grow th Stage

 



Appendix – Landuse Parameters 

 

 22

A.8.3 Intensive Grassland 
 

Area percentage: 10.51 % 

Covered area: 8 010 km² 

 

Specifications: Agricultural grassland that is cut up to three 
times per year. The first cut must happen before 
the 15th of June. C3-Metabolism. 

 

Parameter Value Unit

cLMA  0.065  [kg m-2 leaf area]

sowd  perennial  [DOY]

hard  perennial  [DOY]

relLH  0.2  [m m-2 leaf area]

iniLAI  0.8  [m² m-2]

maxLAI  4.2  [m² m-2]
lw  0.02 [m]

25maxVc  59.1 [µMol m-2 leaf area s-1]

25maxJ  30.4 [µMol e-1 m-2 leaf area s-1]

25oK  278.4 [µl l-1]

25cK  404.9 [ml l-1]

25dr  0.94 [g CO2 m-2 leaf area s-1]
α  0.045 [Mol CO2 m-2 leaf area]
gfac  16.0 [-]

2O  210.0 [ml l-1]

dr  0.5 [Fraction]
Long Day Crop Type 1 [Flag]
3 x bT  / oT  / cT  0, 20, 30 / 0, 20, 35 / 0, 20, 35 [°C]

critTT  60.4 [°C]

maxRD  170 [cm]

bVnT  / oVnT  / cVnT  -1.3 / 4.9 / 15.7 [°C]
9 x ithresPT ,  0 / 0.2 / 0.3 / 0.45 / 0.6 / 0.9 / 1 / 1.5 /2 [Thres.]
Allocation of assimilated carbon: [%]

Root
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Grain
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A.8.4 Deciduous Forest 
 

Area percentage: 7.45 % 

Covered area: 5 681 km² 

 

Specifications: Forested areas with an explicit vegetation period 
between leaf emergence and defoliation. C3-
Metabolism. 

 

Parameter Value Unit

cLMA  0.072 [kg m-2 leaf area]

sowd  181 [DOY]

hard  334 [DOY]

relLH  1.4 [m kg-1 stem mass m-2]

iniLAI  2.2 [m² m-2]

maxLAI  8.2 [m² m-2]
lw  0.08 [m]

25maxVc  dynamic [µMol m-2 leaf area s-1]

25maxJ  dynamic [µMol e-1 m-2 leaf area s-1]

25oK  278.4 [µl l-1]

25cK  404.9 [ml l-1]

25dr  dynamic [g CO2 m-2 leaf area s-1]
α  0.11 [Mol CO2 m-2 leaf area]
gfac  13.0 [-]

2O  210.0 [ml l-1]

dr  0.5 [Fraction]
Long Day Crop Type 0 [Flag]
3 x bT  / oT  / cT  0, 25, 30 / 0, 25, 30 / 0, 25, 30 [°C]

critTT  60.4  [°C]

maxRD  180  [cm]

bVnT  / oVnT  / cVnT  -1.3 / 4.9 / 15.7 [°C]

ithresPT ,  181 / 220 / 244 / 335 [DOY]
Allocation of assimilated carbon: [%]
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A.8.5 Winter Wheat 
 

Area percentage: 6.79 % 

Covered area: 5 178 km² 

 

Specifications: Winter crop that is sowed in October and 
harvested in August. Between sowing and 
harvest the area lies fallow. C3-Metabolism. 

 

Parameter Value Unit

cLMA  0.07 [kg m-2 leaf area]

sowd  288  [DOY]

hard  231  [DOY]

relLH  0.1837 [m m-2 leaf area]

iniLAI  0.4  [m² m-2]

maxLAI  6.0  [m² m-2]
lw   0.015 [m]

25maxVc  68.1  [µMol m-2 leaf area s-1]

25maxJ  32.3  [µMol e-1 m-2 leaf area s-1]

25oK   278.4 [µl l-1]

25cK   404.9 [ml l-1]

25dr  0.93  [g CO2 m-2 leaf area s-1]
α   0.13 [Mol CO2 m-2 leaf area]
gfac  12.5  [-]

2O  210.0 [ml l-1]

dr  0.5  [Fraction]
Long Day Crop Type 1  [Flag]
3 x bT  / oT  / cT  0, 19, 30 / 4, 24, 35 / 8, 24, 35 [°C]

critTT  60.4 [°C]

maxRD  130.0 [cm]

bVnT  / oVnT  / cVnT  -1.3 / 4.9 / 15.7 [°C]
9 x ithresPT ,  0 / 0.2 / 0.3 / 0.6 / 0.74 / 0.85 / 2.49 / 2.9 / 3.18 [Thres.]
Allocation of assimilated carbon: [%]
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A.8.6 Silage 
 

Area percentage: 3.66 % 

Covered area: 2 790 km² 

 

Specifications: Agricultural silage crop that is mostly 
parameterized parallel to maize. C4-Metabolism. 

 

Parameter Value Unit

cLMA  0.055  [kg m-2 leaf area]

sowd  114  [DOY]

hard  308  [DOY]

relLH  0.2  [m m-2 leaf area]

iniLAI  0.4  [m² m-2]

maxLAI  5.1  [m² m-2]
lw  0.05  [m]

25maxVc  63.1  [µMol m-2 leaf area s-1]

25maxJ  29.3  [µMol e-1 m-2 leaf area s-1]

25oK  450.0  [µl l-1]

25cK  650.0  [ml l-1]

25dr  0.86  [g CO2 m-2 leaf area s-1]
α  0.34  [Mol CO2 m-2 leaf area]
gfac  9.0  [-]

2O  210.0 [ml l-1]

dr  0.5  [Fraction]
Long Day Crop Type 0  [Flag]
3 x bT  / oT  / cT  10, 30, 42 / 8, 30, 42 / 8, 30, 42 [°C]

critTT  51.0 [°C]

maxRD  145.0 [cm]

bVnT  / oVnT  / cVnT  -1.3 / 4.9 / 15.7 [°C]
9 x ithresPT ,  0 / 0.2 / 0.3 / 0.45 / 0.65 / 0.9 / 1.0 / 1.5 / 2.0 [Thres.]
Allocation of assimilated carbon: [%]
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A.8.7 Winter Barley 
 

Area percentage: 2.78 % 

Covered area: 2 119 km² 

 

Specifications: Winter crop that is sowed in October and 
harvested in August. Between sowing and 
harvest the area lies fallow. C3-Metabolism. 

 

Parameter Value Unit

cLMA  0.073  [kg m-2 leaf area]

sowd  280  [DOY]

hard  232  [DOY]

relLH  0.2  [m m-2 leaf area]

iniLAI  0.4  [m² m-2]

maxLAI  4.5  [m² m-2]
lw   0.01 [m]

25maxVc   68.1 [µMol m-2 leaf area s-1]

25maxJ   32.3 [µMol e-1 m-2 leaf area s-1]

25oK   278.4 [µl l-1]

25cK   404.9 [ml l-1]

25dr   0.93 [g CO2 m-2 leaf area s-1]
α   0.0475 [Mol CO2 m-2 leaf area]
gfac   12.8 [-]

2O  210.0 [ml l-1]

dr  0.5  [Fraction]
Long Day Crop Type 1  [Flag]
3 x bT  / oT  / cT  0, 19, 30 / 4, 24, 35 / 8, 24, 35 [°C]

critTT  60.4 [°C]

maxRD  130.0 [cm]

bVnT  / oVnT  / cVnT  -1.3 / 4.9 / 15.7 [°C]
9 x ithresPT ,  0.2 / 0.4 / 0.6 / 0.85 / 1.0 / 1.5 / 1.8 / 2.0 / 2.3 [Thres.]
Allocation of assimilated carbon: [%]
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A.8.8 Natural Grassland 
 

Area percentage: 1.66 % 

Covered area: 1 270 km² 

 

Specifications: Natural open spaces with no agricultural 
management. C3-Metabolism. 

 

Parameter Value Unit

cLMA  0.1  [kg m-2 leaf area]

sowd  perennial  [DOY]

hard  perennial  [DOY]

relLH  0.2  [m m-2 leaf area]

iniLAI  0.8  [m² m-2]

maxLAI  5.2  [m² m-2]
lw  0.03  [m]

25maxVc  59.1  [µMol m-2 leaf area s-1]

25maxJ  30.4  [µMol e-1 m-2 leaf area s-1]

25oK  278.4  [µl l-1]

25cK  404.9  [ml l-1]

25dr  0.94  [g CO2 m-2 leaf area s-1]
α  0.078  [Mol CO2 m-2 leaf area]
gfac  16.0  [-]

2O  210.0 [ml l-1]

dr  0.5  [Fraction]
Long Day Crop Type 1  [Flag]
3 x bT  / oT  / cT  0, 20, 30 / 0, 20, 35 / 0, 20, 35 [°C]

critTT  60.4 [°C]

maxRD  150.0 [cm]

bVnT  / oVnT  / cVnT  -1.3 / 4.9 / 15.7 [°C]
9 x ithresPT ,  0 / 0.2 / 0.3 / 0.45 / 0.6 / 0.9 / 1 / 1.5 / 2 [Thres.]
Allocation of assimilated carbon: [%]
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A.8.9 Forage 
 

Area percentage: 1.61 % 

Covered area: 1 228 km² 

 

Specifications: Agricultural spring crop that is sowed in March 
and harvested in August. C3-Metabolism. 

 

Parameter Value Unit

cLMA  0.067 [kg m-2 leaf area]

sowd  67 [DOY]

hard  221 [DOY]

relLH  0.266 [m m-2 leaf area]

iniLAI  0.4 [m² m-2]

maxLAI  4 [m² m-2]
lw  0.02 [m]

25maxVc  59.15 [µMol m-2 leaf area s-1]

25maxJ  30.4 [µMol e-1 m-2 leaf area s-1]

25oK  278.4 [µl l-1]

25cK  404.9 [ml l-1]

25dr  0.94 [g CO2 m-2 leaf area s-1]
α  0.061 [Mol CO2 m-2 leaf area]
gfac  13.5 [-]

2O  210 [ml l-1]

dr  0.5 [Fraction]
Long Day Crop Type 1 [Flag]
3 x bT  / oT  / cT  0, 20, 30 / 0, 20, 35 / 0, 20, 35 [°C]

critTT  60.4 [°C]

maxRD  150 [cm]

bVnT  / oVnT  / cVnT  -1.3 / 4.9 / 15.7 [°C]
9 x ithresPT ,  0.0 / 0.1 / 0.5 / 1.8 / 2.8 / 3.5 / 3.9 / 4.0 / 4.1 [Thres.]
Allocation of assimilated carbon: [%]
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A.8.10 Summer Barley 
 

Area percentage: 1.52 % 

Covered area: 1 163 km² 

 

Specifications: Agricultural spring crop that is sowed in March 
and harvested in August. C3-Metabolism. 

 

Parameter Value Unit

cLMA  0.055 [kg m-2 leaf area]

sowd  75 [DOY]

hard  221 [DOY]

relLH  0.2 [m m-2 leaf area]

iniLAI  0.4 [m² m-2]

maxLAI  4.1 [m² m-2]
lw  0.01 [m]

25maxVc  58.3 [µMol m-2 leaf area s-1]

25maxJ  42.1 [µMol e-1 m-2 leaf area s-1]

25oK  278.4 [µl l-1]

25cK  404.9 [ml l-1]

25dr  0.9 [g CO2 m-2 leaf area s-1]
α  0.056 [Mol CO2 m-2 leaf area]
gfac  14.0 [-]

2O  210 [ml l-1]

dr  0.5 [Fraction]
Long Day Crop Type 1 [Flag]
3 x bT  / oT  / cT  0, 25, 37 / 0, 25, 37 / 0, 25, 37 [°C]

critTT  70.8 [°C]

maxRD  130 [cm]

bVnT  / oVnT  / cVnT  -1.3 / 4.9 / 15.7 [°C]
9 x ithresPT ,  0.1 / 0.3 / 0.6 / 0.8 / 1.0 / 1.2 / 1.4 / 1.6 / 1.8 [Thres.]
Allocation of assimilated carbon: [%]
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A.8.11 Wetland 
 

Area percentage: 1.47 % 

Covered area: 1 127 km² 

 

Specifications: Natural marsh areas. C3-Metabolism. 

 

Parameter Value Unit

cLMA  0.4 [kg m-2 leaf area]

sowd  perennial [DOY]

hard  perennial [DOY]

relLH  0.2 [m m-2 leaf area]

iniLAI  1.2 [m² m-2]

maxLAI  4.5 [m² m-2]
lw  110 [m]

25maxVc  40 [µMol m-2 leaf area s-1]

25maxJ  20 [µMol e-1 m-2 leaf area s-1]

25oK  278.4 [µl l-1]

25cK  404.9 [ml l-1]

25dr  0.6 [g CO2 m-2 leaf area s-1]
α  0.025 [Mol CO2 m-2 leaf area]
gfac  17.0 [-]

2O  210 [ml l-1]

dr  0.5 [Fraction]
Long Day Crop Type 0 [Flag]
3 x bT  / oT  / cT  0, 25, 30 / 0, 25, 30 / 0, 25, 30 [°C]

critTT  60.4 [°C]

maxRD  150.0 [cm]

bVnT  / oVnT  / cVnT  -1.3 / 4.9 / 15.7 [°C]
9 x ithresPT ,  0 / 0.2 / 0.3 / 0.45 / 0.65 / 0.9 / 1 / 1.5 / 2 [Thres.]
Allocation of assimilated carbon: [%]
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A.8.12 Oleaginous 
 

Area percentage: 1.29 % 

Covered area: 989 km² 

 

Specifications: Various agricultural oil seeds, mainly winter 
rape. C3-Metabolism. 

 

Parameter Value Unit

cLMA  0.064 [kg m-2 leaf area]

sowd  253 [DOY]

hard  195 [DOY]

relLH  0.27 [m m-2 leaf area]

iniLAI  0.8 [m² m-2]

maxLAI  5.5 [m² m-2]
lw  0.01 [m]

25maxVc  63.1 [µMol m-2 leaf area s-1]

25maxJ  29.3 [µMol e-1 m-2 leaf area s-1]

25oK  278.4 [µl l-1]

25cK  404.9 [ml l-1]

25dr  0.86 [g CO2 m-2 leaf area s-1]
α  0.046 [Mol CO2 m-2 leaf area]
gfac  16.0 [-]

2O  210 [ml l-1]

dr  0.5 [Fraction]
Long Day Crop Type 1 [Flag]
3 x bT  / oT  / cT  2.5, 25, 40 / 2.5, 25, 40 / 2.5, 25, 40 [°C]

critTT  51 [°C]

maxRD  120 [cm]

bVnT  / oVnT  / cVnT  -3.17 / 3.5 / 17.2 [°C]
9 x ithresPT ,  0 / 0.2 / 0.3 / 0.45 / 0.65 / 0.9 / 1 / 1.5 / 2 [Thres.]
Allocation of assimilated carbon: [%]
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A.8.13 Set Aside 
 

Area percentage: 1.20 % 

Covered area: 920 km² 

 

Specifications: Fallow agricultural land. C3-Metabolism. 

 

Parameter Value Unit

cLMA  0.06 [kg m-2 leaf area]

sowd  perennial [DOY]

hard  perennial [DOY]

relLH  0.2 [m m-2 leaf area]

iniLAI  0.8 [m² m-2]

maxLAI  4.8 [m² m-2]
lw  0.03 [m]

25maxVc  59.1 [µMol m-2 leaf area s-1]

25maxJ  30.4 [µMol e-1 m-2 leaf area s-1]

25oK  278.4 [µl l-1]

25cK  404.9 [ml l-1]

25dr  0.94 [g CO2 m-2 leaf area s-1]
α  0.0595 [Mol CO2 m-2 leaf area]
gfac  14.0 [-]

2O  210 [ml l-1]

dr  0.5 [Fraction]
Long Day Crop Type 1 [Flag]
3 x bT  / oT  / cT  0, 20, 30 / 0, 20, 30 / 0, 20, 35 [°C]

critTT  60.4 [°C]

maxRD  150 [cm]

bVnT  / oVnT  / cVnT  -1.3 / 4.9 / 15.7 [°C]
9 x ithresPT ,  0 / 0.2 / 0.3 / 0.45 / 0.65 / 0.9 / 1 / 1.5 / 2 [Thres.]
Allocation of assimilated carbon: [%]
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A.8.14 Alpine Grassland 
 

Area percentage: 1.12 % 

Covered area: 854 km² 

 

Specifications: Alpine pastures. C3-Metabolism. 

 

Parameter Value Unit

cLMA  0.09 [kg m-2 leaf area]

sowd  perennial [DOY]

hard  perennial [DOY]

relLH  0.1 [m m-2 leaf area]

iniLAI  0.8 [m² m-2]

maxLAI  4.2 [m² m-2]
lw  0.05 [m]

25maxVc  45 [µMol m-2 leaf area s-1]

25maxJ  22.5 [µMol e-1 m-2 leaf area s-1]

25oK  278.4 [µl l-1]

25cK  404.9 [ml l-1]

25dr  0.68 [g CO2 m-2 leaf area s-1]
α  0.069 [Mol CO2 m-2 leaf area]
gfac  14.0 [-]

2O  210 [ml l-1]

dr  0.5 [Fraction]
Long Day Crop Type 0 [Flag]
3 x bT  / oT  / cT  0, 25, 30 / 0, 25, 30 / 0, 25, 30 [°C]

critTT  60.4 [°C]

maxRD  150 [cm]

bVnT  / oVnT  / cVnT  -1.3 / 4.9 / 15.7 [°C]
9 x ithresPT ,  0 / 0.03 / 0.05 / 0.1 / 0.15 / 0.2 / 0.25 / 0.3 / 0.4 [Thres.]
Allocation of assimilated carbon: [%]
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A.8.15 Oat 
 

Area percentage: 1.01 % 

Covered area: 770 km² 

 

Specifications: Agricultural spring crop that is sowed in March 
and harvested in August. C3-Metabolism. 

 

Parameter Value Unit

cLMA  0.087 [kg m-2 leaf area]

sowd  67 [DOY]

hard  218 [DOY]

relLH  0.2 [m m-2 leaf area]

iniLAI  0.4 [m² m-2]

maxLAI  5 [m² m-2]
lw  100 [m]

25maxVc  60.6 [µMol m-2 leaf area s-1]

25maxJ  20.2 [µMol e-1 m-2 leaf area s-1]

25oK  278.4 [µl l-1]

25cK  404.9 [ml l-1]

25dr  0.84 [g CO2 m-2 leaf area s-1]
α  0.3 [Mol CO2 m-2 leaf area]
gfac  7.5 [-]

2O  0 [ml l-1]

dr  0.5 [Fraction]
Long Day Crop Type 1 [Flag]
3 x bT  / oT  / cT  0, 25, 37 / 0, 25, 37 / 0, 25, 37 [°C]

critTT  70.8 [°C]

maxRD  150.0 [cm]

bVnT  / oVnT  / cVnT  -1.3 / 4.9 / 15.7 [°C]
9 x ithresPT ,  0.0 / 0.5 / 0.8 / 1.2 / 1.5 / 1.7 / 2.0 / 2.1 / 2.5 [Thres.]
Allocation of assimilated carbon: [%]
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A.8.16 Maize 
 

Area percentage: 0.98 % 

Covered area: 749 km² 

 

Specifications: Agricultural crop that is sowed in April and 
harvested in October. C4-Metabolism. 

 

Parameter Value Unit

cLMA  0.052 [kg m-2 leaf area]

sowd  114 [DOY]

hard  289 [DOY]

relLH  0.66 [m m-2 leaf area]

iniLAI  0.4 [m² m-2]

maxLAI  5.1 [m² m-2]
lw  0.05 [m]

25maxVc  63.1 [µMol m-2 leaf area s-1]

25maxJ  29.3 [µMol e-1 m-2 leaf area s-1]

25oK  450 [µl l-1]

25cK  650 [ml l-1]

25dr  0.86 [g CO2 m-2 leaf area s-1]
α  0.38 [Mol CO2 m-2 leaf area]
gfac  8.7 [-]

2O  210 [ml l-1]

dr  0.5 [Fraction]
Long Day Crop Type 0 [Flag]
3 x bT  / oT  / cT  10, 30, 42 / 8, 30, 42 / 8, 30, 42 [°C]

critTT  51 [°C]

maxRD  145 [cm]

bVnT  / oVnT  / cVnT  -1.3 / 4.9 / 15.7 [°C]
9 x ithresPT ,  0 / 0.01/ 0.03/ 0.59 / 1.2 / 1.5 / 2.06 / 2.5 / 2.8 [Thres.]
Allocation of assimilated carbon: [%]
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A.8.17 Sugar 
 

Area percentage: 0.56 % 

Covered area: 434 km² 

 

Specifications: Agricultural sugar beet crop. The root biomass is 
harvested. C3-Metabolism. 

 

Parameter Value Unit

cLMA  0.78 [kg m-2 leaf area]

sowd  114 [DOY]

hard  308 [DOY]

relLH  0.2 [m m-2 leaf area]

iniLAI  0.4 [m² m-2]

maxLAI  4.9 [m² m-2]
lw  0.03 [m]

25maxVc  63.1 [µMol m-2 leaf area s-1]

25maxJ  29.3 [µMol e-1 m-2 leaf area s-1]

25oK  278.4 [µl l-1]

25cK  404.9 [ml l-1]

25dr  0.86 [g CO2 m-2 leaf area s-1]
α  0.135 [Mol CO2 m-2 leaf area]
gfac  13.0 [-]

2O  210 [ml l-1]

dr  0.5 [Fraction]
Long Day Crop Type 0 [Flag]
3 x bT  / oT  / cT  10, 30, 42 / 8, 30, 42 / 8, 30, 42 [°C]

critTT  51 [°C]

maxRD  200 [cm]

bVnT  / oVnT  / cVnT  -1.3 / 4.9 / 15.7 [°C]
9 x ithresPT ,  0.1 / 0.2 / 0.5 / 0.7 / 0.8 / 1.0 / 1.1 / 1.3 / 1.5 [Thres.]
Allocation of assimilated carbon: [%]

Root

Stem
Leaf

Grain

0%

20%

40%

60%

80%

100%

10 9 0 1 2 3 4 5 6 7 8
Grow th Stage  
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A.8.18 Potato 
 

Area percentage: 0.43 % 

Covered area: 328 km² 

 

Specifications: Agricultural crop. The root biomass is harvested. 
C3-Metabolism. 

 

Parameter Value Unit

cLMA  0.06 [kg m-2 leaf area]

sowd  114 [DOY]

hard  308 [DOY]

relLH  0.1 [m m-2 leaf area]

iniLAI  0.3 [m² m-2]

maxLAI  5.1 [m² m-2]
lw  130 [m]

25maxVc  63.1 [µMol m-2 leaf area s-1]

25maxJ  29.3 [µMol e-1 m-2 leaf area s-1]

25oK  278.4 [µl l-1]

25cK  404.9 [ml l-1]

25dr  0.86 [g CO2 m-2 leaf area s-1]
α  0.088 [Mol CO2 m-2 leaf area]
gfac  13.5 [-]

2O  0 [ml l-1]

dr  0.5 [Fraction]
Long Day Crop Type 1 [Flag]
3 x bT  / oT  / cT  10, 30, 42 / 8, 30, 42 / 8, 30, 42 [°C]

critTT  51.0 [°C]

maxRD  200 [cm]

bVnT  / oVnT  / cVnT  -1.3 / 4.9 / 15.7 [°C]
9 x ithresPT ,  0.0 / 0.3 / 0.6 / 0.9 / 1.2 / 1.4 / 1.6 / 1.8 / 2.0 [Thres.]
Allocation of assimilated carbon: [%]

Root

Stem

Leaf

Grain

0%

20%

40%

60%

80%

100%

10 9 0 1 2 3 4 5 6 7 8
Grow th Stage  
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A.8.19 Rye 
 

Area percentage: 0.38 % 

Covered area: 293 km² 

 

Specifications: Agricultural winter crop. C3-Metabolism. 

 

Parameter Value Unit

cLMA  0.057 [kg m-2 leaf area]

sowd  283 [DOY]

hard  232 [DOY]

relLH  0.2 [m m-2 leaf area]

iniLAI  0.4 [m² m-2]

maxLAI  4.5 [m² m-2]
lw  110 [m]

25maxVc  68.1 [µMol m-2 leaf area s-1]

25maxJ  32.3 [µMol e-1 m-2 leaf area s-1]

25oK  278.4 [µl l-1]

25cK  404.9 [ml l-1]

25dr  0.93 [g CO2 m-2 leaf area s-1]
α  0.051 [Mol CO2 m-2 leaf area]
gfac  12.0 [-]

2O  0 [ml l-1]

dr  0.5 [Fraction]
Long Day Crop Type 1 [Flag]
3 x bT  / oT  / cT  0, 19, 30 / 4, 24, 35 / 8, 24, 35 [°C]

critTT  60.4 [°C]

maxRD  180.0 [cm]

bVnT  / oVnT  / cVnT  -1.3 / 4.9 / 15.7 [°C]
9 x ithresPT ,  0.0 / 0.4 / 0.6 / 0.85 / 1.0 / 1.2 / 1.6 / 1.9 / 2.2 [Thres.]
Allocation of assimilated carbon: [%]

Root

Stem

Leaf
Grain

0%

20%

40%

60%

80%

100%

10 9 0 1 2 3 4 5 6 7 8
Grow th Stage  
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A.8.20 Hop 
 

Area percentage: 0.22 % 

Covered area: 168 km² 

 

Specifications: Agricultural perennial crop. C3-Metabolism. 

 

Parameter Value Unit

cLMA  0.056 [kg m-2 leaf area]

sowd  114 [DOY]

hard  308 [DOY]

relLH  1.3 [m m-2 leaf area]

iniLAI  0.5 [m² m-2]

maxLAI  5 [m² m-2]
lw  0.04 [m]

25maxVc  63.1 [µMol m-2 leaf area s-1]

25maxJ  29.3 [µMol e-1 m-2 leaf area s-1]

25oK  278.4 [µl l-1]

25cK  404.9 [ml l-1]

25dr  0.86 [g CO2 m-2 leaf area s-1]
α  0.105 [Mol CO2 m-2 leaf area]
gfac  10.5 [-]

2O  210 [ml l-1]

dr  0.5 [Fraction]
Long Day Crop Type 0 [Flag]
3 x bT  / oT  / cT  10, 30, 42 / 8, 30, 42 / 8, 30, 42 [°C]

critTT  51 [°C]

maxRD  400 [cm]

bVnT  / oVnT  / cVnT  -1.3 / 4.9 / 15.7 [°C]
9 x ithresPT ,  0.0 / 0.2 / 0.4 / 0.75 / 1.1 / 1.5 / 2.0 / 2.5 / 2.8 [Thres.]
Allocation of assimilated carbon: [%]

Root
Stem

Leaf

Grain
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20%

40%

60%

80%

100%

10 9 0 1 2 3 4 5 6 7 8
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A.8.21 Summer Wheat 
 

Area percentage: 0.11 % 

Covered area: 85 km² 

 

Specifications: Agricultural spring crop that is sowed in March 
and harvested in August. C3-Metabolism. 

 

Parameter Value Unit

cLMA  0.048 [kg m-2 leaf area]

sowd  67 [DOY]

hard  221 [DOY]

relLH  0.2 [m m-2 leaf area]

iniLAI  0.4 [m² m-2]

maxLAI  4.1 [m² m-2]
lw  0.01 [m]

25maxVc  58.3 [µMol m-2 leaf area s-1]

25maxJ  42.1 [µMol e-1 m-2 leaf area s-1]

25oK  278.4 [µl l-1]

25cK  404.9 [ml l-1]

25dr  0.9 [g CO2 m-2 leaf area s-1]
α  0.049 [Mol CO2 m-2 leaf area]
gfac  12.3 [-]

2O  210 [ml l-1]

dr  0.5 [Fraction]
Long Day Crop Type 1 [Flag]
3 x bT  / oT  / cT  0, 25, 37 / 0, 25, 37 / 0, 25, 37 [°C]

critTT  70.8 [°C]

maxRD  130 [cm]

bVnT  / oVnT  / cVnT  -1.3 / 4.9 / 15.7 [°C]
9 x ithresPT ,  0.1 / 0.4 / 0.6 / 0.8 / 1.0 / 1.2 / 1.5 / 1.7 / 2.0 [Thres.]
Allocation of assimilated carbon: [%]

Root

Stem

Leaf
Grain
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40%
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80%

100%

10 9 0 1 2 3 4 5 6 7 8
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A.8.22 Legumes 
 

Area percentage: 0.10 % 

Covered area: 78 km² 

 

Specifications: Agricultural crop representing pea, bean, lentil 
and soybean. C3-Metabolism. 

 

Parameter Value Unit

cLMA  0.059 [kg m-2 leaf area]

sowd  114 [DOY]

hard  308 [DOY]

relLH  0.3 [m m-2 leaf area]

iniLAI  0.4 [m² m-2]

maxLAI  5.1 [m² m-2]
lw  0.05 [m]

25maxVc  63.1 [µMol m-2 leaf area s-1]

25maxJ  29.3 [µMol e-1 m-2 leaf area s-1]

25oK  278.4 [µl l-1]

25cK  404.9 [ml l-1]

25dr  0.86 [g CO2 m-2 leaf area s-1]
α  0.1 [Mol CO2 m-2 leaf area]
gfac  13.0 [-]

2O  210 [ml l-1]

dr  0.5 [Fraction]
Long Day Crop Type 1 [Flag]
3 x bT  / oT  / cT  10, 30, 42 / 8, 30, 42 / 8, 30, 42 [°C]

critTT  51 [°C]

maxRD  145 [cm]

bVnT  / oVnT  / cVnT  -1.3 / 4.9 / 15.7 [°C]
9 x ithresPT ,  0.0 / 0.2 / 0.4 / 0.55 / 0.75 / 0.9 / 1.3 / 1.7 / 2.0 [Thres.]
Allocation of assimilated carbon: [%]

Root
Stem

Leaf Grain
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20%

40%

60%

80%

100%

10 9 0 1 2 3 4 5 6 7 8
Grow th Stage
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A.8.23 Rock 

Area percentage: 4.39 % 

Covered area: 3346 km² 

 

Specifications: Alpine areas with no vegetation cover. 

A.8.24 Residential Areas 

Area percentage: 3.44 % 

Covered area: 2624 km² 

 

Specifications: Sealed urban and residential areas with the 
agglomeration of Munich in the middle of the 
catchment. 

A.8.25 Water 

Area percentage: 0.75 % 

Covered area: 573 km² 

 

Specifications: Rivers, lakes and water bodies. 

A.8.26 Glacier 

Area percentage: 0.60 % 

Covered area: 459 km² 

 

Specifications: Alpine glaciers. 

A.8.27 Industrial 

Area percentage: 0.53 % 

Covered area: 411 km² 

 

Specifications: Sealed urban and suburban industrial areas. 
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A.9 Parameters of Selected Soil Types 
Soil Type L GWL P EPV PDI BPH CC SC OM RWC CPV

1 0.483591 0.003472 43.40 500 6.57 0.01 0.95 0.15 0.51 51.50
2 0.501178 0.002894 38.30 500 6.86 0.01 0.95 0.04 0.51 45.50
3 0.501178 0.002894 38.30 500 6.86 0.01 0.95 0.04 0.51 45.50

Sand 

4 0.573994 0.002546 28.69 500 9.68 0.01 0.95 0.00 0.51 34.20
1 0.527114 0.003472 33.94 500 7.69 0.01 0.95 0.05 0.51 40.38
2 0.568623 0.002546 23.36 500 9.43 0.01 0.95 0.02 0.41 27.84
3 0.580839 0.002546 22.45 500 10.02 0.01 0.95 0.01 0.41 26.78

Pebble Sand 

4 0.541166 0.002546 25.71 500 8.23 0.01 0.95 0.00 0.41 30.60
1 0.350122 0.000583 34.68 500 10.27 0.15 0.60 0.03 7.65 47.50
2 0.402910 0.000579 32.13 500 12.38 0.10 0.65 0.01 5.10 42.28
3 0.320699 0.000107 17.40 500 22.06 0.20 0.60 0.00 8.16 27.63

Loam Sand 

4 0.320699 0.000107 17.40 500 22.06 0.20 0.60 0.00 8.16 27.63
1 0.350122 0.000370 34.68 500 10.27 0.15 0.60 0.05 7.65 47.50
2 0.350122 0.000583 34.68 500 10.27 0.15 0.60 0.03 7.65 47.50
3 0.215993 0.000078 18.52 500 96.34 0.30 0.30 0.00 15.30 35.20

Sand Loam 

4 0.318699 0.000168 25.13 500 49.99 0.20 0.35 0.00 10.20 38.50
1 0.323118 0.000176 31.76 500 9.95 0.18 0.52 0.10 7.34 43.80
2 0.323118 0.000709 31.76 500 9.95 0.18 0.52 0.03 7.34 43.80
3 0.336956 0.000232 23.43 500 18.55 0.18 0.52 0.01 7.34 34.00

Loam Brash 

4 0.500674 0.001019 11.48 500 7.81 0.05 0.90 0.00 1.02 14.40
1 0.332799 0.000440 38.93 500 45.64 0.15 0.10 0.04 7.65 52.50
2 0.332799 0.000121 38.93 500 45.64 0.15 0.10 0.02 7.65 52.50
3 0.306004 0.000209 30.23 500 71.49 0.20 0.10 0.01 10.20 44.50

Clay Silt 

4 0.300671 0.000160 27.68 500 85.52 0.20 0.10 0.00 10.20 41.50
1 0.315783 0.000301 31.93 500 48.96 0.20 0.20 0.05 10.20 46.50
2 0.315783 0.000185 31.93 500 48.96 0.20 0.20 0.01 10.20 46.50
3 0.188196 0.000080 20.36 500 137.65 0.35 0.10 0.00 17.85 39.60

Silt Loam 

4 0.308305 0.000142 23.42 500 75.57 0.20 0.20 0.00 9.18 35.60
1 0.261708 0.000261 28.55 500 38.21 0.30 0.30 0.03 15.30 47.00
2 0.261708 0.000398 28.55 500 38.21 0.30 0.30 0.01 15.30 47.00
3 0.254739 0.000184 27.28 500 70.34 0.30 0.15 0.01 15.30 45.50

Loam 

4 0.202472 0.000102 22.40 500 114.21 0.35 0.10 0.01 17.85 42.00
1 0.183315 0.000404 32.45 500 24.74 0.60 0.20 0.10 30.60 65.00
2 0.152039 0.000457 23.53 500 61.68 0.60 0.20 0.03 30.60 54.50
3 0.128776 0.000060 20.40 500 83.55 0.60 0.20 0.00 30.60 51.00

Clay 

4 0.128776 0.000060 20.40 500 83.55 0.60 0.20 0.00 30.60 51.00
1 0.180000 0.001160 75.60 300 40.00 0.01 0.01 0.97 1.00 76.60
2 0.180000 0.001160 75.60 300 40.00 0.01 0.01 0.97 1.00 76.60
3 0.180000 0.001160 75.60 300 40.00 0.01 0.01 0.97 1.00 76.60

Marsh 

4 0.302124 0.000115 37.25 300 37.74 0.25 0.15 0.01 12.75 55.00
1 0.281064 0.000195 31.77 800 18.10 0.30 0.30 0.10 12.24 48.10
2 0.334324 0.000169 7.29 800 21.27 0.17 0.38 0.03 1.73 10.10
3 0.425566 0.000141 5.53 800 16.61 0.10 0.65 0.00 1.02 7.40

Leptosols 

4 - - - - - - - - - -

  
L = Soil Layer CC = Clay content [m³/m³]
GWL = Ground water level [m] SC = Sand content [m³/m³]
P = Permeability [cm/sec] OM = Organic matter [m³/m³]
EPV = Effective pore volume [%] RWC = Retention water content [%]
PDI = Pore size distribution index [-] CPV = Cumulative pore volume [%]
BPH = Bubbling pressure head [-]  
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A.10 Acre File of the Wheat Test Site “Hofanger” Season 2004 
 
General Information 
Size: 14.44 ha 
Preceding Crops: 2001: Triticale 
 2002: Summer Barley 
 2003: Rape 
  
  
Cultivation Information 
Sowing Date 15.10.2003 
Cultivar: Wheat Achat (Elite-Wheat) 
Sowing Quantity: Average: 1.20 dt/ha 
 Total: 17.33 dt 
TKG: 47.00 g  
Sowing Density: 248 Seeds per m² 
Germination Capacity: 97 % 
Row Distance: 12 cm 
Harvestdate: 22.08.2004 
Total amount harvested: 1427.00 dt 
Average Yield: 98.82 dt/ha 
  
  
Operation of Machines 
Date Action Total Time [h] hours/ha  
22.07.2003 Stubble Processing 3.62 0.25  
19.08.2003 Pest Management 1.97 0.14  
04.09.2003 Stubble Processing 6.00 0.42  
15.10.2003 Sowing 22.00 1.52  
17.10.2003 Rolling 6.00 0.42  
29.10.2003 Pest Management 2.15 0.15  
12.03.2004 Manuring 1.23 0.09  
03.04.2004 Manuring 1.54 0.11  
15.04.2004 Pest Management 2.09 0.14  
29.04.2004 Pest Management 1.73 0.12  
30.04.2004 Manuring 1.38 0.10  
18.05.2004 Pest Management 1.93 0.13  
20.05.2004 Manuring 1.36 0.13  
30.05.2004 Manuring 1.21 0.08  
06.06.2004 Pest Management 2.36 0.16  
11.06.2004 Manuring 2.06 0.14  
15.06.2004 Pest Management 1.45 0.18  
23.06.2004 Pest Management 2.35 0.16  
22.08.2004 Harvest 10.00 0.69  
     
     
Application of Pesticides [dt] 
Date Type Total Amount /ha BBCH 
19.08.2003 Round Up Turbo 39.00 2.70  
29.10.2003 Schneckenkorn 45.92 3.18 05 
 Fenikan 15.31 1.06 05 
15.04.2004 Starane 7.36 0.51 25 
 CCC 14.73 1.02 25 
29.04.2004 CCC 5.92 0.41 30 
18.05.2004 Input Set 5.92 0.41 32 
06.06.2004 Twist 3.03 0.21 39 
 Input Set 7.51 0.52 39 
 Camposan 4.48 0.31 39 
 Karate Zeon 1.16 0.08 39 
15.06.2004 Starane 2.90 0.36  
23.06.2004 Twist 2.17 0.15 65 
23.06.2004 Rogor 7.51 0.52 65 
 Input Set 8.95 0.62 65 
     

      
Application of Fertilizers [dt] 
Date Type Total Amount /ha N BBCH 
12.03.2004 AHL 16.66 1.15 42 VB 
03.04.2004 Patentkali 18.88 1.31   
15.04.2004 AHL 4.12 0.29 10 25 
29.04.2004 Natrel 16.17 1.12  30 
 AHL 4.12 0.29 10 30 
30.04.2004 AHL 21.08 1.46 53 30 
20.05.2004 AHL 2.78 0.26 9 32 
 Natrel 14.94 1.40  32 
 Bittersalz 99.23 9.30  32 
30.05.2004 Piammon 20.65 1.43 47 37 
06.06.2004 Bor 2.02 0.14  39 
 Bittersalz 150.18 10.40  39 
11.06.2004 AHL 23.15 1.60 58 51 
      
      
Nutrition Balance [kg ha-1] 

 N P2O5 K2O MgO CaO 
 Nitrate Diphosphorpentoxide Potassium Magnesium Calcium 

Demand: 237.2 79.1 59.3 19.8 59.3 
Input: 226.5 0.0 39.2 13.1 -179.3 

Balance: -10.7 -79.1 -20.1 -6.7 -238.6 
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A.11 Acre File of the Wheat Test Site “Kochfeld” Season 2005 
 
General Information 
Size: 8.41 ha 
Preceding Crops: 2002: Triticale 
 2003: Summer Barley 
 2004: Rape 
  
  
Cultivation Information 
Sowing Date 15.10.2004 
Cultivar: Wheat Achat (Elite-Wheat) 
Sowing Quantity: Average: 1.28 dt/ha 
 Total: 10.76 dt 
TKG: 50.00 g  
Sowing Density: 251 Seeds per m² 
Germination Capacity: 98 % 
Row Distance: 12 cm 
Harvestdate: 19.08.2005 
Total amount harvested: 605 dt 
Average Yield: 71.94 dt/ha 
  
  
Operation of Machines 
Date Action Total Time [h] hours/ha  
18.08.2004 Stubble Processing 3,36 0.40  
13.09.2004 Pest Management 1.10 0.13  
15.10.2004 Sowing 11.55 1.37  
04.11.2004 Pest Management 1.25 0.15  
22.03.2005 Manuring 3.25 0.39  
24.03.2005 Manuring 0.70 0.08  
04.04.2005 Rolling 3,35 0.42  
16.04.2005 Pest Management 0.98 0.12  
13.05.2005 Pest Management 1.20 0.14  
14.05.2005 Manuring 0.98 0.12  
30.05.2005 Manuring 0.75 0.09  
31.05.2005 Pest Management 1.24 0.15  
10.06.2005 Manuring 1.08 0.13  
30.06.2005 Pest Management 1.30 0.15  
19.08.2005 Harvest 4.00 0.97  
     
     
Application of Pesticides [dt] 
Date Type Total Amount /ha BBCH 
13.09.2004 Round Up Turbo 22.12 2.63  
04.11.2004 Schneckenkorn 26.24 3.12 11 
 Fenikan 8.75 1.04 11 
16.04.2005 CCC 8,45 1.00 25 
13.05.2005 Impulse 3.34 0.41 32 
 CCC 4.29 0.51 32 
 Flamenco FS 8.57 1.02 32 
31.05.2005 Starane XL 8.57 1.02 39 
 Camposan 1.71 0.20 39 
 Twist 1.71 0.20 39 
 Input Set 5.13 0.61 39 
 Fury 0.86 0.10 39 
30.06.2005 Input Set 5.59 0.66 69 
 Rogor 4.64 0.55 69 
     
     
Application of Fertilizers [dt] 
Date Type Total Amount /ha N BBCH 
22.03.2005 Patentkali 10.93 1.30   
24.03.2005 AHL 8.90 1.08 38 VB 
16.04.2005 AHL 1.18 0.14 5 25 
13.05.2005 AHL 0.84 0.10 4 32 
14.05.2005 Zinksulfat 8.82 1.05  32 
 AHL 17.62 2.09 75 32 
30.05.2005 Piammon 13.77 1.64 54 37 
31.05.2005 Bittersalz 42.41 5.04  39 
31.05.2005 Bor 0.86 0.10  39 
10.06.2005 AHL 12.93 1.54 55 51 
      
      
Nutrition Balance [kg ha-1] 

 N P2O5 K2O MgO CaO 
 Nitrate Diphosphorpentoxide Potassium Magnesium Calcium 

Demand: 172.7 57.6 43.2 14.4 -43.2 
Input: 231.5 0.0 39.0 13.0 -177.5 

Balance: 58.9 -57.6 -4.2 -1.4 -220.7 
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A.12 Available Historic Test Sites 
 

    
Coordinates  

(Gauß – Krueger) 
   

Longitude Latitude Altitude Name Crop Sampling Season
      

4442339 5318280 656 “Frieding Meister 1” Maize 1999
4442359 5318220 656 “Frieding Meister 2” Maize 1999
4441416 5316713 675 “Frieding” Maize 1999
4447610 5326283 590 “Mitterwies” Maize 1999
4448099 5325365 594 “Unterbrunn” Maize 1999
4446233 5329394 570 “St. Gilgen” Oat 1999
4441515 5316909 672 “Frieding Weizen” Winterwheat 1999
4448547 5328437 572 “Hüll” Winterwheat 1999
4447603 5326421 590 “Mitterwies Weizen” Winterwheat 1999
4446514 5326130 593 “Brunner” Maize 2000
4437804 5327005 570 “Inning Mais 1” Maize 2000
4437634 5326925 566 “Inning Mais 2” Maize 2000
4447039 5325840 595 “Brunner Capo” Winterwheat 2000
4448814 5328655 571 “Hüll Capo” Winterwheat 2000
4449889 5328440 590 “Stürzer Bussard” Winterwheat 2000
4449954 5328505 591 “Stürzer Capo” Winterwheat 2000
4449119 5326355 595 “Schlaubfeld” Extensive Grassland 2001
4446189 5326555 592 “DLR” Maize 2001
4446634 5323465 616 “Tiefenbrunn” Maize 2001
4448059 5325574 593 “Unterbrunn” Maize 2001
4446304 5326700 588 “DLR Weizen” Winterwheat 2001
4448959 5328250 573 “Hüll Weizen” Winterwheat 2001
4448129 5325900 591 “Mitterwies Weizen” Winterwheat 2001
4445874 5328995 571 “St. Gilgen Weizen” Winterwheat 2001
4449774 5328870 584 “Stürzer Weizen” Winterwheat 2001
4448099 5325365 594 “Unterbrunn Bussard” Winterwheat 2001
4448158 5325669 593 “Unterbrunn Wiese” Intensive Grassland 1999, 2000
4449154 5326240 593 “Schlaubfeld Weizen” Winterwheat 2000, 2001
4438273 5327596 577 “Inning 2” Extensive Grassland 1999, 2000, 2001
4446313 5329377 570 “St. Gilgen Wiese” Extensive Grassland 1999, 2000, 2001
4438174 5327691 568 “Inning 1” Intensive Grassland 1999, 2000, 2001
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A.13 List of Selected Reference Proxels 
 
 

     
Area Rank Landuse Type GIS Row GIS Column Altitude 

   
1 Coniferous Forest 224 285 552 

2 Extensive Grassland 203 325 458 

3 Intensive Grassland 161 289 457 

4 Deciduous Forest 160 238 375 

5 Winter Wheat 136 318 352 

6 Rock 122 242 407 

7 Silage 205 187 493 

8 Residential 221 260 534 

9 Winter Barley 181 272 507 

10 Natural Grassland 100 283 438 

11 Forage 207 251 496 

12 Summer Barley 211 242 514 

13 Wetland 135 243 413 

14 Oleaginous 179 160 488 

15 Set Aside 151 264 381 

16 Alpine 350 241 2096 

17 Oat 180 164 467 

18 Maize 180 266 508 

19 Water 240 228 553 

20 Glacier 299 373 2676 

21 Sugar 179 176 445 

22 Industrial 199 275 466 

23 Potato 164 236 396 

24 Rye 167 231 402 

25 Hop 171 266 459 

26 Summer Wheat 208 273 493 

27 Legumes 183 230 453 
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A.14 Long-Term Annual Evapotranspiration 
(PROMET_Biological vs. PROMET_Penman-Monteith) 
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Long-Term Annual Evapotranspiration (continued) 
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Long-Term Annual Evapotranspiration (continued) 
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A.15 Selected International Phenological Gardens of Europe 
 

 

 

 
    Base data: European borderlines (ESRI World database), locations of the IPGs after MENZEL (1997). 
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A.16 Long-Term Records of Phenological Phases in Europe 
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A.17 Reference and Scenario Period – Selected Model Results 

 
A.17.1 Annual Mean Temperature 
 

 
 
 
 
A.17.2 Annual Sum of Precipitation 
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A.17.3 Leaf Emergence of Deciduous Forest 
 

 
 
 
 
A.17.4 Defoliation of Deciduous Forest 
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A.17.5 Vegetation Period of Deciduous Trees 
 

 
 
 
 
A.17.6 Mayshoot of Coniferous Forest 
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A.17.7 Biological Productivity 
 

 
 
 
 
A.17.8 Drought Stress 
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A.17.9 Transpiration 
 

 
 
 
 
A.17.10 Evapotranspiration 
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