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A Alanine 
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CH calponin homology 

CMV Cytomegalovirus 
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Dock180 180kDa protein downstream of Crk 
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4 Summary
The extracellular matrix (ECM) provides the structural frame for the development 

of tissues and organs. The ECM is bound by numerous membranous matrix-adhesion 

molecules and thereby triggers intracellular signals that control various cellular functions 

such as survival, polarity, proliferation and differentiation. Integrins represent an 

important family of ECM adhesion molecules which link the ECM with the intracellular 

actin-cytoskeleton. Integrin mediated adhesion structures also serve as important 

signaling platforms, although the integrin itself does not harbors any catalytic domains. 

Therefore integrin signaling depends on the recruitment of a number of cytoplasmic 

proteins that directly or indirectly bind to the short cytoplasmic integrin tails. During my 

PhD thesis I worked on three of these molecules, ILK, Kindlins and Palladin, and used 

the mouse as a model system to address their in vivo function. 

First, I investigated the role of integrin-linked kinase (ILK) in skeletal muscle. 

Loss of ILK expression in mice leads to peri-implantation lethality due to a cell 

polarization defect of the early embryo and abnormal actin accumulations. Studies in 

Caenorhabditis elegans and Drosophila melanogaster revealed an essential function for 

ILK in the attachment of actin filaments to the membrane of muscle cells and lack of 

ILK expression results in early lethality during embryogenesis. We generated mice with 

a skeletal muscle-restricted deletion of ILK that developed a mild, but progressive 

muscular dystrophy. This phenotype is predominantly restricted to myotendinous 

junctions (MTJs). Ultrastructural analyses showed muscle cell detachment from the 

basement membranes, and an accumulation of extracellular matrix. Endurance exercise 

training enhances the defect leading to disturbed subsarcolemmal myofiber architecture 

and an abrogation of the phosphorylation of Ser473 as well as Thr308 of protein kinase 

B (PKB)/Akt. The reduction in PKB/Akt activation is accompanied by an impaired 

insulin-like growth factor 1 receptor (IGF-1R) activation. 
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Second, I studied the expression and in vivo function of a further integrin- and 

actin- associated protein, palladin. Palladin belongs to the palladin/myotilin/myopalladin 

protein family. Palladin represents a phosphoprotein which plays an important role in 

cell adhesion and motility. Initially, I characterized the gene structure and the expression 

pattern of palladin. The palladin gene spans about 400 kb, with 25 exons and 3 

alternative promoters resulting in at least three different isoforms (200 kDa, 140 kDa and 

90-92 kDa) in mice. Using RT-PCR and in situ hybridizations of embryonic and adult 

tissues, I could show that the 200kDa isoform is predominantly expressed in heart and 

skeletal muscle. In contrast, the 140kDa isoform is expressed in various tissues and 

represents the major palladin isoform of the brain. The 90-92 kDa isoform is almost 

ubiquitously expressed with highest levels in tissues rich in smooth muscle, like bladder, 

uterus, small intestine and colon. The expression of the 200kDa isoform was 

characterized in more detail with a polyclonal antibody showing that this isoform 

localizes to the Z-discs of heart and skeletal muscle cells. In vitro differentiation 

experiments with a mouse myoblast cell line revealed an induction of the 200kDa 

isoform during myoblast fusion and differentiation suggesting that the biggest palladin 

isoform may serve as a molecular scaffold during myogenesis. 

Third, I specifically inactivated the largest palladin isoform in mice. Lack of the 

200 kDa palladin isoform has no impact on the development, viability and fertility of 

mice. However ultrastructural analyses by transmission electron microscopy (TEM) 

showed a mild cardiac myopathy due to disintegration of myofibrils.  

In collaboration with the group of Olli Carpén, we generated palladin 200 kDa 

isoform/ myotilin double knockout mice. Myotilin is also expressed in heart and skeletal 

muscle. Ablation of both myotilin and palladin 200 kDa isoform in mouse revealed in 

addition to the mild cardiac myopathy a structural and functional impairment of skeletal 

muscle. 

Finally, I was also involved in the characterization of the expression and 

subcellular localization of a novel family of integrin associated proteins: the Kindlins. 
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The Kindlin family consists of three members, Kindlin-1, -2 and -3. Mutations in 

Kindlin-1 cause a human disease, called Kindler Syndrome, which represents a skin 

blistering disease affecting the actin cytoskeleton of basal keratinocytes. Kindlin gene 

expression was first analyzed at the mRNA level by RT-PCR and Northern Blot studies. 

In situ hybridizations showed that Kindlin-1 is preferentially expressed in epithelia. 

Kindlin-2 is expressed in all tissues with highest levels in striated and smooth muscle 

cells. While both localize to integrin-mediated adhesion sites in cultured keratinocytes 

Kindlin-2, but not Kindlin-1, colocalizes with E-cadherin to cell-cell contacts in 

differentiated keratinocytes. In contrast, Kindlin-3 expression is restricted to 

hematopoietic cells. Using a Kindlin-3-specific antiserum and an EGFP-tagged Kindlin-

3 construct, we could show that Kindlin-3 is present in podosomes, which are 

specialized adhesion structures of hematopoietic cells. 
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5 Introduction

5.1 Integrins
Integrins represent a major class of cell adhesion molecules, which are expressed 

in all types of cells and mediate adhesion to extracellular matrix (ECM) proteins and 

other cell surface proteins. Integrins are �/� heterodimeric type I transmembrane 

molecules, which associate with intracellular proteins upon extracellular ligand binding. 

The integrin mediated matrix-adhesion complex, which can be easily detected in vitro, is 

named focal adhesion (FA) (Figure 1.1A). Members of the integrin family have been 

identified in most metazoa from sponges, Drosophila melanogaster, Caenorhabditis 

elegans to vertebrates (Figure 1.1B). In mammalian, 18 different � and 8 different � 

subunits exist, which assemble into 24 different heterodimeric receptors (Hynes and 

Zhao, 2000; Brakebusch et al., 2002; Hynes, 2002).  

Based on the recognition specificity, integrins interact with three different subsets 

of ECM components (Figure 1.1B). The first group recognizes fibronectin (FN) or 

vitronectin (VN); both proteins contain the amino acid sequence arginine-glycine-

aspartic acid (or, in abbreviated amino acid nomenclature, RGD). Two related integrins 

(�4�1, �9�1) can bind FN and also interact with immunoglobin (Ig)-superfamily counter 

receptors such as VCAM-1 (vascular cell adhesion molecule). The second group 

interacts with laminin and the third group binds to collagen. The �2 integrin family 

represents a separate group, which is restricted to leukocytes and recognizes Ig-

superfamily containing cell surface proteins thereby mediating heterotypic cell-cell 

adhesion. 

In principle, integrins fulfil two major tasks. They link the extracellular matrix via 

a number of adaptor proteins with the intracellular cytoskeleton and are therefore crucial 

for cell adhesion, cell spreading and migration of cells. In addition, integrin associated 

complexes are signalling relays which influence other signalling pathways directly or 
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indirectly and thereby control a number of cellular processes like cell adhesion, cell 

polarity, cell motility, cell growth and survival (Brakebusch et al., 2002; Danen and 

Sonnenberg, 2003; Wiesner et al., 2005). 

 

 

Figure 1.1 (A) Schematic representation of an integrin mediated cell-matrix adhesion site 

connecting the ECM with the actin cytoskeleton. (B) The integrin receptor family in C.elegans, 

Drosophila and mammals (Taken from Hynes, 2002; Danen and Sonnenberg, 2003 and modified) 

 

With the advent of genetically modified mice the in vivo function of the individual 

� or � subunits could be addressed resulting in the observation of a diversity of 

phenotypes (Table 1.1). These phenotypes range from peri-implantation lethality (�1), 

major developmental defects (�4, �5, �v and �8), perinatal lethality (�3, �6, �8, �v, �4 

and �8), and defects in haematopoietic cell function (�2, �IIb, �L, �M, �E, �2, �3 and 
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Table 1.1 Integrin gene knockout phenotypes. (Taken from Hynes, 2002 and modified) 

 

�7), inflammation (�6), angiogenesis (�1 and �3) and muscular dystrophy (�7) (Hynes, 

2002). In parallel, abnormal integrin function has also been described in human diseases 
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such as epidermolysis bullosa (�6�4) and Glanzmann thrombosthenia (�IIb�3). 

Therefore, further extensive investigations of integrins are absolutely essential for a 

deeper understanding of the molecular processes controlling integrin functions. This will 

potentially open new therapeutic strategies. 

 

5.1.1 Integrin activation

5.1.1.1 The structure and regulation of integrin activity 

Integrins display allosteric regulation through binding of both extracellular and 

intracellular ligands which trigger the transition from a low-affinity state (the “inactive” 

state) towards a high-affinity state (the “active” state) (Liddington and Ginsberg, 2002; 

Calderwood, 2004).  

The crystal structure of integrin �v�3, a receptor implicated in cardiovascular and 

bone function, provided unprecedented insights into the mechanism of integrin 

activation and ligand binding (Xiong et al., 2001). The length of integrins is 

approximately ~280Å. Integrins consist of an � (~150-180kDa) and a � (~100kDa) 

subunit. Both subunits consist of a large extracellular domain, a transmembrane domain 

and a small cytoplasmic tail of around 20 to 50 amino acids (aa.). One exception is the 

�4 integrin cytoplasmic tail consisting of more than 1000aa.  

The �v�3 integrin is composed of an ovoid head region which is formed by the � 

propeller from the �v subunit and the �A domain from the �3 subunit. The two parallel 

leg regions are formed by the two calf domains and the thigh domain of the � subunit 

and the three EGF-like repeats and the hybrid domain of the � subunit (Figure 1.2). The 

metal ion-dependent adhesion site (MIDAS), which binds activating divalent cations (e.g. 

Mn2+ or Mg2+), is located in the �A domain adjacent to an inhibitory calcium binding 

site (ADMIDAS termed from ‘adjacent to MIDAS) (Humphries et al., 2003). Since the 

first description of the integrin crystal structure in 2001 (Xiong et al., 2001), researchers 

tried to use electron microscopy (EM) and X-ray crystallization to investigate the shape 
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and the atomic structure of integrins. It is still debated whether the bent integrin form 

represents the active or the inactive conformation (Figure 1.2A and B).  
 

Figure 1.2 Schematic representation of the �v�3 integrin crystal structure (A) bent-image 

(‘inactive’ or ‘low-affinity ligand-binding’) form. (B) Straightened image (‘active’ or ‘high-

affinity ligand-binding’). Left, � subunit and right, � subunit. The � subunit from N to C terminal 

comprises a �A domain, a hybrid domain, EGF repeats transmembrane domain and the 

cytoplasmic domain; the � subunit comprises an �A domain, a � propeller domain, a thigh 

domain, two calf domains, a transmembrane domain and the cytoplasmic domain.. The � strands 

are shown in blue and � helices in red. (Taken from Humphries et al., 2003 and modified) 
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Arnaout and co-workers showed that the bent-form still can bind RGD peptides 

and FN (Xiong et al., 2002; Adair et al., 2005) in a Mn2+-dependent manner and 

therefore concluded that the bent conformation indeed represents an active form. In 

parallel, Springer and co-workers showed with negative stain EM that a recombinant 

extracellular part of the �v�3 integrin drastically changed its conformation from a bent- 

to straightened-form upon Mn2+- or RGD-dependent activation (Takagi et al., 2002) 

(Figure 1.3). 

 

 

 

Figure 1.3 Switchblade model for global integrin conformation regulation defined by EM. (A) 

Bent conformation. (B) Extended conformation with closed headpiece seen in Mn2+. (C) 

Extended conformation with opened headpiece seen with cyclic RGD peptide ligand. (Taken 

from Takagi et al., 2002 and modified) 

 

This led to the conclusion that the individual integrin conformations bind their 

ligands with different affinities (Carman and Springer 2003). The conformational 

changes are mainly regulated through binding of intracellular proteins to the � integrin 

cytoplasmic tail. This event is called ‘inside-out signalling’ and is explained in the 

following chapters. 
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5.1.1.2 Integrin activation by Talin 

A number of cytoskeletal proteins, including talin, �-actinin, filamin, tensin and 

ILK are implicated in linking members of the integrin family to filamentous actin 

(Brakebusch and Fässler, 2003). Talin represents one of the best studied integrin 

cytoplasmic binding proteins, and  is also the key regulator of integrin activation. Talin 

is a large cytoplasmic protein (~270 kDa), composed of an N-terminal head domain of 

~50 kDa, and a large C-terminal rod domain of ~220 kDa which is made up of a series 

of amphipathic helical bundles (Campbell and Ginsberg, 2004; Wegener et al., 2007). 

The head domain contains a band Four-point-one, Ezrin, Radixin, and Moesin (FERM) 

domain with three subdomains (F1, F2 and F3). The F3 subdomain harbours a binding 

site for the � integrin cytoplasmic domain and is sufficient to activate integrins 

(Calderwood et al., 2002). 

Structural and biochemical studies from NMR, crystal structure, cell-based 

function assays and immunoprecipitations (IPs) revealed that the binding of talin to the 

integrin � cytoplasmic tail is the final common step in integrin activation (Figure 1.4) 

(Tadokoro et al., 2003; Wegener et al., 2007) (Figure 1.4). So far, binding of the talin 

head domain with �1, �2, �3, and �5 and weakly with �7 has been shown. It also 

interacts with focal adhesion kinase (FAK), phosphatidylinositol-4,5-biphosphate (PIP2), 

phosphatidylinositol-phosphate kinase type I gamma (PIPKI�) and weakly to actin 

(Brakebusch and Fässler, 2003; Wiesner et al., 2005). The C-terminal rod domain 

contains binding sites for vinculin, a ubiquitous cytoskeletal protein found at cell-cell 

and cell-ECM contacts, for actin and also with a much lower affinity to the integrin � 

subunit (Hemmings et al., 1996; Yan et al., 2001). 
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Figure 1.4 Schematic representation of talin-induced integrin activation. (A) The talin F3 

domain binds to the cytoplasmic tail of � integrin. (B) F3 engages the membrane-distal (MD) 

part of the �3-integrin tail (in red), which becomes ordered, but the �-� integrin interactions that 

hold the integrin in the low-affinity conformation remain intact. (C) In the subsequent step, F3 

domain engages the membrane-proximal (MP) portion of �3 tail while maintaining its MD 

interactions. Consequences of this additional interaction are (1) destabilization of the putative 

integrin salt-bridge; (2) stabilization of the helical structure of the MP region; and (3) 

electrostatic interactions between F3 and the acidic lipid head groups. The net result is a change 

in the position of the transmembrane helix, which is continuous with the MP-�-tail helix. (Taken 

from Wegener et al., 2007) 

 

The interaction between talin and the � integrin subunit does not only promote 

integrin activation but in addition leads to recruitment and activation of the PIP2–

producing enzyme PIPKI� (Di Paolo et al., 2002; Ling et al., 2002). This leads to an 

increased local concentration of PIP2, which on one hand, further increases the affinity 

of the talin FERM domain to bind the integrin cytoplasmic tail, and on the other hand 

attracts other PIP2 binding proteins like vinculin to the integrin adhesion sites. Upon 
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binding to PIP2, vinculin changes its conformation and exposes binding sites for talin 

and �-actinin (Gilmore and Burridge, 1996; Hüttelmaier et al., 1998, 1999). Finally, the 

interaction between talin and vinculin increases the affinity of vinculin for filamentous 

(F)-actin leading to the recruitment of F-actin to FAs (Figure 1.5). 

 

 

 

Figure 1.5 Talin-mediated integrin activation and integrin associated protein recruitment to 

focal adhesions. (A)Many integrins that are not bound to the extracellular matrix (ECM) are 

present on the cell surface in an inactive conformation, which is characterized by ‘bent’ 

extracellular domains that mask the ECM-binding pocket. (B) When talin is recruited to the 

plasma membrane and activated in association with PIPKI�, it binds to the cytoplasmic tail of � 

integrins. This interaction separates the cytoplasmic domains and induces the integrins to adopt 

the ‘primed’ conformation. (C) The integrin extracellular domains extend and unmask the 

ligand-binding site, allowing the integrin to bind specific ECM molecules. Finally, the integrin 

cytoplasmic domains recruit other focal-adhesion proteins, like vinculin, focal adhesion kinase, 

paxillin and integrin-linked-kinase, leading to the activation of some signalling pathways.  

(Taken from Legate et al., 2006 and modified) 

 12 



 Introduction 

 

 

5.1.2 Integrin cytoplasmic binding proteins 

Increased ligand binding affinity of the integrin’s extracellular domain is controlled 

by the interaction between cytoplasmic proteins and the integrin cytoplasmic tails. 

Although the integrin cytoplasmic tails are short and do not harbour any functional 

domains, they serve as docking sites for proteins that link integrins to the cytoskeleton or 

for a number of signalling proteins like kinases (Figure 1.1A). Genetic deletion or 

mutation studies showed that the integrin cytoplasmic tails control integrin activity 

(O’Toole et al., 1991, 1994; Ginsberg et al., 2001). Since the integrin cytoplasmic tails 

lack enzymatic activity, the signal transduction from outside into the cell critically 

depends on the recruitment of cytoplasmic tail binding proteins. This event is called 

‘outside-in signalling’. 

Focal adhesions (FA) are well studied integrin mediated cell-adhesion structures 

that connect the extracellular matrix with the cytoskeleton. However, these structures 

can only be observed in vitro and have a size of ~ 1μm. They form from more immature 

structures which are named focal complexes (FCs; 100-200 nm in size). More than 50 

proteins have been localized in FAs including tyrosine kinases (e.g. c-src, FAK), Ser/Thr 

kinases (e.g. PKC, PAK), proteases (calpain II) or GTPase modulators (e.g. Pix, 

Dock180) (Zamir and Geiger, 2001). This indicates that FAs also serve as important 

signalling relays. In the past 20 years, interactions of the integrin cytoplasmic tails with 

more than 20 proteins have been shown (Table 1.2).  
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Table 1.2 Integrin cytoplasmic domain binding proteins. Integrins interact with a number of 

proteins which are connected to the actin cytoskeleton or to different signalling pathways. 

(Taken from Liu et al., 2000 and modified)  

 

These integrin cytoplasmic tail binding proteins include actin-binding proteins (e.g. 

�-actinin, talin and filamin), adaptor or kinase proteins (e.g. integrin-linked-kinase, ILK; 

focal adhesion kinase, FAK; paxillin and Grb2), guanine nucleotide exchange factors 
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(e.g. cytohesin-1,-3), transcriptional co-activators (e.g. JAB1), transmembrane protein 

(e.g. CD98) and a novel FERM domain protein family (e.g. Kindlin-1, -2 and -3) (Liu et 

al., 2000; Kloeker et al., 2004; Ussar et al., 2006). 

 

Taken together, the integrin family plays a central role in the transduction of cell-

matrix adhesion signals. Integrin signalling is indispensable not only for cell adhesion, 

cell migration, cell proliferation, cell survival and cell differentiation but also for the 

assembly of ECMs. Since integrins lack actin-binding sites and enzymatic activities, 

they recruit a number of intracellular proteins, which bind to the integrin cytoplasmic 

tails and serve as signalling platforms and docking sites for the actin cytoskeleton. Three 

integrin-and actin- associated proteins, integrin-linked kinase (ILK), kindlin and palladin, 

will be introduced in the following section. 

 

 

5.2 Integrin-linked kinase 
 

5.2.1 ILK and its binding partners 

Integrin-linked kinase (ILK) was initially described as a non-receptor 

serine/threonine (Ser/Thr) kinase and was identified in a yeast-two hybrid (Y2H) screen 

as a protein which binds to the cytoplasmic tails of �1 and �3 integrin (Hannigan et al., 

1996). The molecular function of ILK at the integrin adhesion site is not fully 

understood. ILK was believed to act as a kinase phosphorylating target proteins 

including PKB/Akt and GSK-3� (Delcommenne et al., 1998; Persad et al., 2000). 

Moreover, ILK expression and activity were upregulated in several cancers suggesting 

that it plays a role in tumorigenesis and cancer invasion. (Persad and Dedhar, 2003). 

ILK consists of 452 aa and has a molecular weight of ~52 kDa. The protein is 

composed of three distinct domains. The N-terminal domain contains four ankyrin 
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repeats, which mediate protein-protein interactions. The N-terminus binds to PINCH-1 

and PINCH-2 (particularly interesting Cys-His-rich protein, also known as LIMS1 and 

LIMS2) (Tu et al., 1999; Zhang et al., 2002; Braun et al., 2003). The C-terminal domain 

shares significant homology to Ser/Thr protein kinases, however a number of 

biochemical and cell biological assays demonstrated that the C-terminus also serves as 

an interaction domain for �1 and �3 integrins (Hannigan et al., 1996; Wu and Dedhar, 

2001), paxillin , �-parvin (Nikolopoulos and Turner, 2000; Olski et al., 2001; Tu et al., 

2001), �-parvin (Olski et al., 2001; Yamaji et al., 2001) and kindlin-2 (Mig-2 or UNC-

112) (Mackinnon et al., 2002; Ussar et al., 2006). A putative pleckstrin homology (PH) 

domain is located between these two domains and partially overlaps with the C-terminal 

kinase domain. ILK, PINCH and parvin form a heterotrimeric complex, called IPP 

complex (Figure 1.6). 

 

 
 

Figure 1.6 Schematic picture of ILK and its associated partners. ILK represents an adaptor 

protein at integrin adhesion sites and  links integrins to the actin cytoskeleton. (Taken from 

Legate et al., 2006)  
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5.2.2 Biochemical and genetic studies of ILK 

ILK plays an important role in integrin signalling. Although the C-terminal kinase 

domain lacks certain amino acids, which are usually highly conserved in other Ser/Thr 

kinases, a kinase activity has been shown in ILK overexpressing cells. Putative 

phosphorylation targets are e.g. PKB/Akt (at Ser473), GSK-3� (at Ser9), myosin light 

chain, myosin phosphatase, parvins and the integrin cytoplasmic tails (Delcommenne et 

al., 1998; Janji et al., 2000; Deng et al., 2001; Deng et al., 2002; Kiss et al., 2002) (Table 

1.3).  

 

 
 

Table 1.3 ILK substrates. List of proteins which were shown to be phosphorylated by ILK. 
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Genetic ablation of ILK in Caenorhabditis elegans and Drosophila melanogaster 

led to actin filament detachment in muscle resulting in early lethality during 

embryogenesis. Interestingly, the severe phenotypes in nematodes as well as in flies can 

be fully rescued by an ILK protein harboring an inactive kinase domain. These 

experimental results indicate that ILK kinase activity is dispensable for the development 

and physiology of invertebrates (Zervas et al., 2001; Mackinnon et al., 2002). In mice 

conditional ablation of ILK in fibroblasts, chondrocytes, hepatocytes or keratinocytes 

showed that PKB/Akt or GSK-3� phosphorylation levels were not diminished (Grashoff 

et al.,2003; Sakai et al., 2003; Terpstra et al., 2003; Gkretsi et al., 2007; Lorenz et al., 

2007). However, studies in other cell types such as endothelial cells, neurons, or 

macrophages show that ILK loss leads to reduced PKB/Akt or GSK-3� activity (Gary et 

al., 2003; Troussard et al., 2003; Friedrich et al., 2004). Sequence alignments of the ILK 

kinase domains from different organisms revealed a lack of essential motifs (e.g. the 

catalytic base and Mg2+ chelating residues) which are highly conserved in other Ser/Thr 

kinases (Legate et al., 2006; Hanks, 2003). Therefore, it is still obscure whether ILK 

possesses kinase activity in vivo.  

 

5.2.3 Analysis of the role of ILK in mammalian skeletal muscle 

Loss of ILK expression in mice leads to peri-implantation lethality with impaired 

actin dynamics at integrin attachment points and abnormal epiblast polarity (Sakai et al., 

2003). �1 integrins regulate myoblast fusion and maintenance the muscle sarcomeres in 

mammals (Fässler et al., 1996; Hirsch et al., 1998; Schwander et al., 2003). Similar in C. 

elegans and Drosophila, mammalian, ILK is also highly expressed in myofibers and 

myoblasts. 
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5.2.3.1 Development and architecture of skeletal muscle 

Skeletal muscle consists of highly specialized contractile cells, which enable 

locomotion of an organism but it fulfils also important functions for other physiological 

processes such as breathing. Mammalian skeletal muscle is derived from progenitor cells 

that originate from somites. During the split of the somites into dermomyotome and 

sclerotome, the mononucleated embryonic myogenic progenitor cells (e.g. myoblasts) 

invade the myotome and fuse and form myotubes at around embryonic day 11 (e.g. 

E11.0). Probably at the same time, a phase that is referred as primary myogenesis, 

myoblasts start migrating from the dermomyotome towards the limb and differentiate 

into multinucleated muscle fibers, known as primary fibers. A second wave of 

myogenesis takes place between E14.5 and E17.5. This phase is called secondary 

myogenesis and involves fusion of fetal myoblasts either with each other to give rise to 

secondary fibers or they fuse with the previously formed primary fibers (Duxson et al., 

1989; Evans et al., 1994; Doberstein et al., 1997) (Figure 1.7). Certain cell surface 

receptors are particularly involved in the cross-talk between cells and the extracellular 

matrix (Henry and Campbell., 1998; Sasaki et al., 1998).  In skeletal muscle, two major 

matrix adhesion complexes exist: dystrophin-glycoprotein complex (DGC) and integrins 

(Henry and Campbell, 1998, 1999; Mayer, 2003). 
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Figure 1.7 (A) Myogenic progenitors in mouse embryo E11.5 days, as visualized through 

expression of the MyoD LacZ reporter. MyoD expression is localized to the trunk somite 

progenitors at the sites of epaxial, hypaxial and limb muscle differentiation, and the head 

mesoderm progenitors, including the first and the second branchial arches (BA), the tongue and 

larynx and the extra-ocular muscles. (B) Somite origins of myogenic progenitors originate in the 

dorsal-medial and ventral-lateral lips (DML and VLL) of the dermomyotome. Cells of DML 

migrate ventrolaterally, differentiate and form the myotomal muscles, which will give rise to the 

epaxial deep back muscles. The VLL provides progenitors that migrate ventrally to form the 

ventral body wall muscles; that migrate dorsolaterally to form the hypaxial myotome and that 

delaminate from the VLL and migrate to the dorsal and ventral muscle-forming regions of the 

limb where they differentiate to form the limb muscles (Taken from Elizabeth Pownall et al. 

2002). 

 

A skeletal muscle cell (also called muscle fiber) has a highly unorthodox structure. 

A single, cylindrically shaped muscle cell is 10 to 100 �m thick, up to 100 mm long, and 

contains hundreds of nuclei. Skeletal muscle cells have a highly ordered internal 

architecture. A longitudinal section through the muscle fiber reveals a cable-like 

structure with hundreds of thinner, cylindrical strands, called myofibrils (Figure 1.8A). 

Each myofibril consists of several contractile units, called sarcomeres. Each sarcomere 

 20 



 Introduction 

in turn shows a distinctive banding pattern, which gives the muscle fiber a striated 

appearance. An ultra-structural analysis reveals that the banding pattern is due to two 

distinct types of filaments, thin filaments and thick filaments (Figure 1.8B). Each 

sarcomere is flanked by a Z-disc (or Z-line) and contains a central dark band (called A 

bands) and light zones adjacent to the Z-disc (called I band) (Figure 1.8B, C). In relaxed 

sarcomeres, a H zone is visible in the center of an A band (Figure 1.8C).  

 

 

 

Figure 1.8 The structure of skeletal muscle. (A) Schematic diagram of skeletal muscle 

organization from an entire body muscle to a muscle fiber. A longitudinal section through the 

muscle fiber reveals a cable-like structure with hundreds of thinner, cylindrical strands, called 

myofibrils. (B) Electron micrograph of a longitudinal section through a single sarcomere shows 

the typical banding pattern. (C) Schematic diagram of the contractile unitl, called sarcomere, 

with overlapping arrays of thin and thick filaments. Each sarcomere extends from one Z-disc (or 
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Z-line) to the other Z-disc and contains dark bands (called A bands) and light zones (called I 

band).. (Taken from the website: http://Dayton.fsci.umn.edu/~bill) 

 

5.2.3.2 Role of integrins in skeletal muscle development and function 

Integrins play an essential role during murine myogenesis and muscle homeostasis 

(Mayer, 2003). A whole set of different �1 integrins (e.g. �1, �3, �4, �5, �6, �7 and �v) 

is expressed in muscle progenitor cells (Gullberg et al., 1998). It has been shown that 

these integrins localize to costameres (FA-like structure connecting the sarcomeric Z-

discs with the sarcolemma), to the neuromuscular junctions (NMJs, the myotendinous 

junctions (MTJs) and the sarcolemma. During myogenesis, the �1 integrin switches from 

the �1A to the �1D variant (van der Flier et al., 1997; Zhidkova et al., 1995; Belkin et al., 

1996). In parallel, �5�1 (FN receptor) and �6�1 (laminin receptor) are highly expressed 

in early muscle development and become downregulated after myotube formation, 

whereas �7�1 (laminin receptor) is mainly restricted to skeletal and cardiac muscle and 

becomes strongly upregulated upon myoblast fusion. These data suggests that during 

terminal muscle differentiation, the muscle cell environment switches from a 

fibronectin-rich matrix to a laminin-containing basement membrane (Bronner-Fraser et 

al., 1992, Blaschuk and Holland, 1994; Boettiger et al., 1995; Yao et al., 1996; Blaschuk 

et al., 1997). 

Due to the early lethality of �1, �4 and �5 integrin knockout mice, an analysis of 

their roles in muscle development was not possible. On the other hand, no obvious 

muscle defects have been described for �1-, �3-, �6- and �v-deficient mice (Table 1.1). 

Analysis of �5 integrin-knockout chimeras and �7-deficient mice showed muscular 

dystrophy, suggesting that �5- and �7 integrins regulate muscle fibre integrity (Mayer et 

al., 1997; Taverna et al., 1998). Mice lacking �1 integrin specifically in skeletal muscle 

die immediately after birth strongly suggesting that �1 integrins regulate myoblast fusion 

and sarcomere assembly (Schwander et al., 2003). 
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5.2.3.3 The role of ILK in skeletal muscle

ILK is highly expressed in the skeletal muscle (Hannigan et al., 1996). There it 

predominantly localizes to myotendinous junctions (MTJs) and costameres. Costameres 

are composed of proteins typically found in FAs, such as integrins, vinculin, talin, and �-

actinin, and provide structural linkage to sarcomeric actin filaments. Thus, costameres 

transmit contractile forces from the sarcomere across the sarcolemma to the extracellular 

matrix. 

It has been recently shown that knockdown of ILK in zebrafish (z-ilk) results in 

lethal heart failure (Bendig et al., 2006). Conditional deletion of ILK in mouse 

cardiomyocytes by using muscle creatine kinase-Cre (mck-Cre) leads to heart dilation, 

fibrosis and disaggregation of cardiomyocytes. These animals die at an age of 6 to 12 

weeks (White et al., 2006), similar to cardiac-specific �1 integrin and FAK knockout 

mice (Shai et al., 2002; Peng et al., 2006). Interestingly, the loss of cardiac ILK is 

accompanied by a reduction in Akt phosphorylation (at Ser473). Based on the reduced 

Ser473-phosphorylation of ILK deficient cardiomyocytes, the ability of ILK to 

phosphorylate Ser473 of PKB/Akt in vitro (Persad et al., 2000; Delcomenne et al., 1998) 

and the observation that PKB/Akt activity is crucial for cardiomyocyte growth and 

contractility (DeBosch et al., 2006; Condorelli et al., 2002), it was concluded that 

mechanical stress-mediated activation of ILK supports cardiomyocyte homeostasis via 

PKB/Akt activation. 

However, the role of ILK in skeletal muscle is still unclear. In vitro overexpression 

of ILK in mouse C2C12 myoblasts abrogates myotube formation by inactivating 

p44/p42 MAP kinase, thus preventing cell cycle exit and inhibiting the expression of 

myogenic determination genes (MyoD and myogenin) (Huang et al., 2000). In contrast, 

Miller et al. (2003a) showed that overexpression of ILK increases the expression of 

myogenin and promotes the formation of myotubes in rat L6 myoblast cells. However, 

mck-Cre driven conditional deletion of ILK in murine cardiac and skeletal muscle 

revealed no obvious skeletal muscle defect indicating that ILK is dispensable for the 
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development and homeostasis of skeletal muscle (White et al., 2006). This unexpected 

finding might be explained by the severe heart abnormalities and the early death of the 

mice, or alternatively could result from incomplete Cre-mediated (mck-Cre) ILK gene 

deletion in skeletal muscle.  

 

 

5.3 The Kindlin protein family 
 

5.3.1 Kindlin protein structure 

The Kindlin gene family is named after the gene mutated in Kindler syndrome, an 

autosomal recessive genodermatosis in human (Jobard et al., 2003). The family consists 

of three members in mice and men: Kindlin-1 (URP1), Kindlin-2 (Mig-2) and Kindlin-3 

(URP2/Mig2B). The first member was identified in a differential cDNA library screen as 

mitogen inducible gene-2 (Mig-2) (Wick et al., 1994). The other two members were 

initially named URP1 (Unc-112 Related Protein 1) and URP2 due to their sequence 

homology to the kindlin orthologue in Caenorhabditis elegans: Unc-112 (Rogalski et al., 

2000; Weinstein et al., 2003). 

Murine Kindlin-1, 2 and 3 are composed of 677, 680 and 665 amino acids and 

have a molecular size of ~77.4 kDa, ~78 kDa and ~76 kDa, respectively. An amino acid 

sequence alignment revealed a 60% identity and 74% similarity between murine 

Kindlin-1 and -2, 53% identity and 69% similarity between Kindlin-1 and -3, and 49% 

identity and 67% similarity between Kindlin-2 and -3. 

Kindlins harbor a FERM domain, which consists of three subdomains: F1 to 3. The 

hallmark of Kindlin proteins is a PH (Pleckstrin Homology) domain, which is inserted 

into the F2 subdomain (Weinstein et al., 2003; Kloeker et al., 2004) (Figure 1.9). A 

nuclear localization signal (NLS) is exclusively present in Kindlin-2. A comparison of 
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FERM domain proteins revealed highest homology between the F3 subdomain of 

Kindlins and Talin. Furthermore, like talin, all Kindlin proteins bind to the cytoplasmic 

tails of �1 and �3 integrins through its FERM domain in vitro (Weinstein et al., 2003; 

Shi et al., 2007; Moser et al., 2008).  

 

 
 

Figure 1.9 Domain structure of Kindlin-1, -2 and -3 proteins. Schematic representation of the 

FERM (red color), PH (blue color) and NLS (green color) domains of Kindlins.  

 

5.3.2 Kindlin gene expression

In humans, Northern blots and RT-PCR analyses from different tissues showed 

high Kindlin-1 expression in keratinocytes, colon, kidney and placenta and at lower 

levels in heart, skeletal muscle, liver and small intestine. Kindlin-2 was moderately 

expressed in spleen, prostate, testis, ovary, small intestine, colon, heart, placenta, lung, 

liver, kidney and pancreas, and weakly expressed in thymus, brain, skeletal muscle and 

keratinocytes. Kindlin-3 was highly expressed in spleen, thymus and peripheral blood 

leukocytes (Siegel et al., 2003; Weinstein et al., 2003). Subcellular localization of 

Kindlin proteins was studied by transfection experiments with EGFP-tagged Kindlin 

cDNA constructs showing that Kindlin-1 colocalizes to actin stress fibers in fibroblasts 

(Tu et al., 2003) and Kindlin-2 is present in FAs of epithelial cells (Siegel et al., 2003). 
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Microarray analyses of different tumor tissues showed upregulated Kindlin-1 

expression in colon and lung tumors (Weinstein et al., 2003). Furthermore, increased 

Kindlin-2 levels have been reported in leiomyomas. Interestingly, in this study Kindlin-2 

was mainly localized to the nucleus of normal and neoplastic smooth muscle cells (Kato 

et al., 2004).  

 

5.3.3 In vivo function of Kindlins 

Loss of Kindlin-1 in humans gives rise to Kindler syndrome, a rare genodermatosis, 

which is characterized by atrophy, trauma-induced blistering at early life, sun sensitivity, 

abnormal pigmentation and fragility of the skin (Siegel et al., 2003). Kindler syndrome 

is the first skin blistering disease resulting from defects in the linkage of the actin 

skeleton to cell matrix adhesions (Kindler, 1954; Siegel et al., 2003; Ashton et al., 2004; 

White et al., 2005). Genetic studies in C. elegans showed a requirement of the Kindlin 

orthologue, Unc-112, for the attachment of body-wall muscle cells to the hypodermis. 

Therefore, loss of Unc-112 in nematodes results in an embryonic lethal PAT (paralyzed, 

arrested elongation at twofold) phenotype (Rogalski et al., 2000). 

Biochemical studies with recombinant integrin tails revealed differences in the 

binding mode between kindlin and talin. A point-mutant of the proximal NPxY-motif 

within the �3 integrin cytoplasmic tail (Y747A) which abrogates talin binding was still 

bound by Kindlin-2 in vitro (Shi et al., 2007). However, a mutation of the distal NxxY-

motif prevented Kindlin-3 binding to �1 and �3 integrin tails (Moser et al., 2008). 

Cell biological studies showed that the FERM domain is necessary for the correct 

targeting of Kindlin proteins to FAs. Interestingly, Kindlin-2 promotes �IIb�3 integrin 

activation and fibrinogen binding in a chinese hamster ovary (CHO) cell reporter system, 

however integrin activation was less efficient than talin (Shi et al., 2007) indicating that 

Kindlin-2 is involved in integrin activation.  
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Recently, a critical role of Kindlin-2 for cardiogenesis in zebrafish has been 

reported. Downregulation of the Kindlin-2 homologue in zebrafish (z-kindlin-2) by 

using the morpholino knowdown technique showed a severe disruption of cardiac 

structure and function affecting ventricle morphology, size and contractility. 

Ultrastructural analysis of these hearts revealed abnormalities of intercalated discs and a 

failure in the attachment of myofibrils to membrane complexes (Dowling et al., 2008). 

Inactivation of Kindlin-3 in mice results in a postnatal lethal phenotype, which is 

characterized by severe bleedings and anemia. In vitro and in vivo analyses of Kindlin-3 

deficient platelets revealed that Kindlin-3 is required for platelet integrin activation. 

Lack of Kindlin-3 causes a defect in platelet aggregation and resistance to arterial 

thrombosis. Thus, Kindlin-3, like Talin, is an essential regulator of integrin activation 

(Moser et al., 2008). 

Taken together, Kindlins are important integrin binding proteins that regulate 

integrin activation in all different cell types.  

 

 

5.4 Palladin
 

5.4.1 Palladin and its binding partners 

Palladin represents a member of the recently characterized 

palladin/myotilin/myopalladin protein family in human and mice. They are all 

characterized by highly conserved Ig-like domains (called IgCAM, a member of the 

immunoglobulin domain Cell Adhesion Molecule subfamily) in the C-terminus of each 

protein (Figure 1.10) (Otey et al., 2005).  

Palladin colocalizes to actin-based structures such as stress fibers, cell-cell 

junctions, embryonic Z-lines and FAs (Parast and Otey, 2000; Mykkänen et al., 2001). 

Palladin was reported to be ubiquitously expressed in embryonic tissues and 

 27 



 Introduction 

downregulated in certain tissues of adult mice (Parast and Otey, 2000). In contrast, the 

expression of the two other family members, myotilin and myopalladin, are highly 

restricted to striated muscle tissue (Bang et al., 2001; Mykkänen et al., 2001). 

 

 

 

Figure 1.10 The structural homologies between palladin (largest isoform), myotilin and 

myopalladin suggest that they belong to the same family. The homologies are strongest in the 

IgCAM (immunoglobulin domain Cell Adhesion Molecule subfamily) domains (red color). Only 

palladin contains two Proline-rich regions (green color). 

 

Northern and Western blot analyses of palladin revealed a complex expression 

pattern with multiple isoforms (Parast and Otey, 2000; Mykkänen et al., 2001). The 

palladin gene spans about 400 kb, with at least 24 exons and 3 alternative promoters in 

human and mice (Otey et al., 2005). Immunoblots from different tissues showed that at 

least 3 different variants are expressed: a 200 kDa isoform, a 140 kDa isoform and a 90-

92 kDa isoform (Figure 1.11A).  

The 200 kDa isoform is composed of five Ig-CAM domains, two of them are 

localized in the N-terminus and three are located in the common C-terminus. A cluster of 

proline-rich/serine-rich regions are found in the center of the protein. The 140 kDa 

isoform lacks the first N-terminal Ig-CAM domain. Expression of the 90-92 kDa isoform 
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is controlled by a promoter in the middle of the gene resulting in a protein with the 

proline-rich/serine-rich region at the N-terminus followed by the three Ig-CAM domains 

in the C-terminus (Figure 1.11A). 

The 200 kDa isoform has been detected in embryonic and adult heart as well as in 

skeletal muscle. The 140 kDa isoform is widely expressed in many embryonic tissues 

and is downregulated in most adult tissues. An exception is stomach and uterus which 

are tissues rich in smooth muscle cells. The 90-92 kDa isoform is ubiquitously expressed 

in embryonic tissues and downregulated in certain adult tissues of mice (Figure 1.11B). 

Various biochemical assays identified a large number of palladin interaction 

partners, most of them are actin-binding proteins: �-actinin, VASP, profilin, ezrin, Esp8, 

Lasp-1 and even F-actin itself (Mykkänen et al., 2001; Boukhelifa et al., 2004; Rönty et 

al., 2004; Goicoechea et al., 2006; Boukhelifa et al., 2006; Rachlin and Otey, 2006; 

Dixon et al., 2008). In addition, palladin binds to a number of proteins that influence 

actin organization: Abl/Arg kinase binding protein (ArgBP2), lipoma preferred partner 

(LPP) and SPIN90 (also known as DIP, mDia interacting protein) (Figure 1.12) (Rönty 

et al., 2005; Jin et al., 2007; Rönty et al., 2007). Taken together, the cellular localization 

of palladin and its binding partners suggests that it fulfils an important function as an 

actin-associated scaffolding molecule. 
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Figure 1.11 Palladin isoforms. (A) Schematic representation of palladin isoforms. (B) Western 

blot analyses show a ubiquitous palladin expression at embryonic day 15 (E15), and become 
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restricted to a few tissues such as spleen and gut in the adult tissues. (Taken from Parast and 

Otey, 2000) 

 

 

 

 

Figure 1.12 Palladin interacting proteins. Blue bars indicate their interaction sites within the 

palladin protein. 

 

 

5.4.2 Biochemical and genetic studies of palladin 

The IgCAM domains are the hallmark of the palladin/myotilin/myopalladin protein 

family. Ig-like domains are thought to mediate protein-protein interactions (Williams 

and Barclay, 1988). Actin co-sedimentation and differential sedimentation assays 

showed that the third IgCAM domain of palladin directly binds to F-actin in vitro. 
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Furthermore, the tandem third and forth IgCAM domains are required to bundle F-actin 

(Dixon et al., 2008). 

Overexpression of the 140 kDa and 90-92 kDa palladin isoforms resulted in 

changes in cell morphology and actin distribution (Rachlin and Otey, 2006). Reduced 

palladin expression by antisense or siRNA approaches caused dramatic reduction of 

stress fibers, FAs, dorsal ruffles and podosomes (Parast and Otey, 2000; Goicoechea et 

al., 2006). Complete inactivation of all palladin isoforms in mice results in embryonic 

lethal phenotype at ~E15.5 due to cranial neural tube closure defects (Luo et al., 2005). 

Fibroblasts isolated from these embryos showed defects in cell migration, adhesion and 

stress fiber assembly (Luo et al., 2005; Liu et al., 2007a). In addition, analyses of the 

palladin deficient fetal liver showed a defective erythropoiesis and erythroblastic island 

formation (Liu et al., 2007b). Taken together, these data suggest again that palladin plays 

an essential role in the assembly and remodeling of the actin cytoskeleton. 

 

5.4.3 The role of palladin in human disease 

Biochemical and genetic studies showed that palladin interacts with various actin-

binding proteins. Palladin is important for cell migration, adhesion and the assembly of 

the actin cytoskeleton in vitro and inactivation of palladin in mouse results in neural tube 

closure and fetal erythropoietic defects. 

Recently, Shiffman and co-workers have shown a single nucleotide polymorphisms 

(SNPs) in the paladin gene which is linked to myocardial infarction (MI) (Shiffman et al., 

2005). In addition, a point mutation within the human palladin gene (P239S at the �-

actinin binding site of the 90-92 kDa isoform) was found in familial pancreatic cancer 

and overexpression of palladin correlates to sporadic pancreatic cancer (Pogue-Geile et 

al., 2006; Zogopoulos et al., 2007). These observations suggest that abnormal or high 

levels of palladin cause cytoskeletal changes in pancreatic cancer and may be 

responsible for or contribute to the tumor’s invasive and migratory abilities. However, 
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the role of palladin in the onset and progression of these diseases is still unclear. Thus, a 

detailed examination of the molecular function of palladin could lead to a better 

understanding of the pathophysiology of these human diseases. 
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6 Aim of the thesis 
The aim of my thesis was to study the role of integrin associated proteins in mouse 

by analyzing their expression patterns and by generating specific mouse mutants to 

address their in vivo functions. 

The main project addresses the role of ILK in skeletal muscle. Inactivation of ILK 

in mice, nematodes and flies revealed an essential function for the early development of 

these organisms making it impossible to study ILK function in skeletal muscle. In vitro 

studies in murine C2C12 myoblasts showed that ILK overexpression inhibits the 

formation of multinucleated myotubes by activating p44/p42 MAP kinase and thereby 

preventing cell cycle exit. In contrast, a conflictive observation in rat L6 myoblasts 

showed that overexpression of ILK stimulates myotube formation and induces muscle 

differentiation without affecting MAP kinase activity. To investigate the role of ILK for 

myogenesis in vivo, the ILK gene was conditionally deleted in skeletal muscle by 

transgenic expression of the Cre-recombinase under the control of the human skeletal �-

actin (HSA) promoter. The results are presented in paper I: “Integrin-linked kinase 

stabilizes myotendinous junctions and protects muscle from stress-induced damage”. 

As a second aim I functionally characterized palladin, an F-actin associated protein 

that also localizes to integrin-mediated adhesion sites. At the beginning I characterized 

the complex genomic organization of the gene and analyzed the expression pattern of the 

different splice variants during mouse development and in adult tissues. I became 

particularly interested in the largest palladin isoform, which is mainly expressed in heart 

and skeletal muscle. A deeper characterization of this isoform was achieved with the 

help of a specific antiserum and the generation of an isoform specific knockout mouse 

(manuscript I and II, in preparation). 

Finally, I was involved in an initial characterization of a novel integrin interacting 

family, the Kindlins. Kindlins localize to integrin-mediated adhesion structures and 

directly interact with the � integrin subunit and ILK. We analyzed the mRNA expression 
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pattern of all three Kindlin genes during embryonic development and in adult tissues. 

EGFP-tagged Kindlin-1 to 3 cDNA contructs were used to determine their subcellular 

localization in various cell types. The results are presented in paper II: “The Kindlins: 

subcellular localization and expression during murine development”. 
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7 Brief summaries of the publications 

7.1 Paper I: Integrin-linked kinase stabilizes myotendinous 

junctions and protect muscle from stress-induced damage 

Integrin-mediated cell-matrix interactions play crucial roles for development, 

tissue homeostasis, and maintenance. Upon ligand binding, integrins recruit a number of 

different proteins to their cytoplasmic tails. An important binding partner of integrins 

represents integrin-linked kinase (ILK). ILK is highly expressed in skeletal muscle 

predominantly at costameres, which are the focal adhesion-like structures and 

myotendinous junctions (MTJs). To investigate the function of ILK in skeletal muscle, 

we conditionally ablated the ILK gene by using the human skeletal �-actin (HSA) 

promoter-driven Cre transgene. 

In this paper, we show that loss of ILK triggers a mild, progressive muscular 

dystrophy, which is mainly restricted to MTJ areas and characterized by detachment of 

basement membranes and accumulation of extracellular matrix. Interestingly, endurance 

exercise training enhances the defects at MTJs, leads to disturbed subsarcolemmal 

myofiber architecture and abrogates phosphorylation of Ser473 as well as Thr308 of 

PKB/Akt. The reduction in PKB/Akt activation is accompanied by an impaired insulin-

like growth factor 1 receptor (IGF-1R) activation. Co-immunoprecipitation experiments 

revealed that the �1 integrin subunit is associated with the IGF-1R in muscle cells. Our 

data identify the �1 integrin-ILK complex as an important component of IGF-1R/insulin 

receptor substrate signaling to PKB/Akt during mechanical stress in skeletal muscle. 
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7.2 Paper II: The Kindlins: subcellular localization and 

expression during murine development 

The Kindlin gene family represents a new family of focal adhesion (FA) proteins 

and is named after the gene mutated in Kindler syndrome, an autosomal recessive 

genodermatosis in human. It consists of three members in mice and men: Kindlin-1 

(URP1, Unc-112 Related Protein 1), Kindlin-2 (Mig-2) and Kindlin-3 (URP2/Mig2B). 

Their modular structure consists of a centrally located FERM (Band Four point 

one/Ezrin/Radixin/Moesin) domain whose F2 subdomain is split by a pleckstrin 

homology (PH) domain. In vitro studies have shown that Kindlin-1 can bind to the 

cytoplasmic tails of �1 and �3 integrins and Kindlin-2 binds to ILK. 

In this paper, we describe the genomic organization, gene expression and 

subcellular localization of murine Kindlins-1, -2 and -3. In situ hybridization data show 

that Kindlin-1 is preferentially expressed in epithelia, and Kindlin-2 in striated and 

smooth muscle cells. Kindlins-1 and -2 are both expressed in the epidermis. While both 

localize to integrin-mediated adhesion sites in cultured keratinocytes. Kindlin-2, but not 

Kindlin-1, colocalizes with E-cadherin to cell-cell contacts in differentiated 

keratinocytes. Using a Kindlin-3-specific antiserum and an EGFP-tagged Kindlin-3 

construct, we could show that Kindlin-3 is present in the F-actin surrounding ring 

structure of podosomes, which are specialized adhesion structures of hematopoietic cells 

 

7.3 Paper III: Identification and embryonic expression of a new 

AP-2 transcription factor, AP-2 epsilon 

AP-2 (activator protein-2) represents a family of four closely related and 

evolutionarily conserved sequence-specific transcription factors: AP-2�, -�, -� and –�. 

AP-2� was first identified in 1991 due to its ability to bind to the SV40 and the human 

metallothionein IIa gene promoters and was initially considered as a unique transcription 
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factor without any homology to other transcriptional regulators. A second homologous 

gene, AP-2�, was identified in 1995 and subsequently two further genes, AP-2� and AP-

2�, were cloned. AP-2 proteins consists of an N-terminal proline- and glutamine-rich 

transactivation domain, followed by a positively charged �-helical DNA binding region 

and a helix-span-helix motif, which mediates homo- and heterodimerization of AP-2 

proteins. 

In this paper, we describe the identification of a fifth, previously unknown AP-2 

gene, AP-2�. AP-2� consists of 434 amino acids with an almost identical C-terminal 

DNA-binding and dimerization domain compared to the other AP-2 family members. 

Although the N-terminal localized activation domain is less homologous, the position 

and identity of certain amino acids known to be essential for transcriptional 

transactivation are conserved. Reverse transcriptase-polymerase chain reaction analyses 

from total RNA of murine embryos revealed AP-2� expression from embryonic day 

E7.until birth. Whole-mount in situ hybridizations with a specific AP-2� cDNA fragment 

on mouse embryos demonstrated that AP-2� expression is mainly restricted to neural 

tissue, particularly to the midbrain, hindbrain, and olfactory bulb. This expression 

pattern was confirmed by immunohistochemical stainings with an AP-2�-specific 

antiserum. Furthermore, AP-2� is specifically expressed in a hypothalamic nucleus and 

the neuroepithelium of the vomeronasal organ suggesting that AP-2� may play an 

important role during the development of the olfactory system. 

 

7.4 Manuscript I: Comparative expression analysis of the 

murine palladin isoforms 

Palladin is a recently identified phosphoprotein and colocalizes to actin-based 

structures such as stress fibers, cell-cell junctions, embryonic Z-lines and FAs. Multiple 

palladin isoforms exist due to different promoter usage and alternative splicing giving 
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rise to at least three major products: a 200kDa isoform, a 140kDa isoform and a doublet 

of 90-92 kDa. 

In this manuscript, we describe the expression of the different palladin isoforms 

during mouse development and adult tissues by RT-PCR and in situ hybridizations. The 

200kDa isoform is predominantly expressed in developing heart and skeletal muscle and 

remains the dominant isoform in both tissues after birth. The 140kDa isoform is 

expressed in various tissues and represents the major isoform of the brain. The 90-92 

kDa isoforms are almost ubiquitously expressed with highest levels in smooth muscle 

rich tissues. We generated a specific antiserum against the 200kDa isoform which 

localizes it to the Z-discs of cardiac and skeletal muscle cells. Interestingly, the 

expression of this isoform increases during in vitro differentiation and fusion of C2C12 

myoblasts, which is concordant with the expression of this isoform in more 

differentiated myoblasts in vivo. Therefore our data suggest that the large palladin 

isoform is an important molecular scaffold during sarcomeric organization. 

 

7.5 Manuscript II: Characterization of striated muscle specific 

palladin 200kDa isoform and double myotilin/200kDa 

palladin deficient mice (manuscript in preparation) 

Palladin, Myopalladin and Myotilin form a small subfamily of cytoskeletal 

proteins that contain Ig (immunoglobulin) domains. They all bind actin and actin-

associated proteins and are thought to play important roles in actin cytoskeleton 

organization. Myotilin and myopalladin are predominantly expressed in cardiac and 

skeletal muscle, whereas palladin displays a ubiquitous expression pattern in vertebrate 

tissues. We could recently show that the 200 kDa palladin isoform, one of the palladin´s 

multiple isoforms, is mainly expressed in heart and skeletal muscle and might play a role 

in the organization of the sarcomere. 
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Missense mutations in the human myotilin gene cause muscle disorders, like 

dominant limb girdle muscular dystrophy type 1A causing a myofibrillar myopathy. 

Surprisingly, inactivation of myotilin in mice had no consequences on muscle integrity 

suggesting that palladin or myopalladin functionally compensate for the absence of 

myotilin in these animals. 

In this paper, we describe the generation of a palladin mouse mutant that lacks 

specifically the 200kDa isoform. These mice develop a mild cardiomyopathy with 

ultrastructural modification of the cardiac myofibrils. In contrast, skeletal muscles do not 

show this phenotype.  

In order to address the question whether palladin and myotilin can functionally 

compensate each other, we generated palladin 200kDa isoform/myotilin double 

knockout mice. Double knockout animals show the same cardiac ultrastructural 

alterations like in palladin single knockout mice. Interestingly, double mutants develop a 

skeletal muscle phenotype consisting of late-onset skeletal muscle myofibrillar 

disorganization. Grip force tests confirmed that only the double knockout mice show a 

significant decrease in muscle force. These data suggest that the 200kDa palladin 

isoform and myotilin can compensate for each other in skeletal muscle and that the 

absence of both causes a skeletal muscle architectural and contractile phenotype. In 

contrast to that, myotilin does not seem to play a crucial role in the organization of 

cardiac myofibrils. 
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    Introduction 

 ECM of skeletal muscle consists of a basement membrane 

(BM) surrounding each myofiber and interstitial connective 

tissue (endomysium) between the myofi bers. The attachment of 

myofi bers to the BM is mainly mediated by integrins and the 

dystrophin – glycoprotein complex (DGC;  Mayer, 2003 ;  Michele 

and Campbell, 2003 ). Integrins are expressed throughout the 

sarcolemma of myofi bers but are highly enriched at two force-

transducing and force-regulating structures, the myotendinous 

junctions (MTJs), which connect myofi bers to tendons, and the 

costameres, which are focal adhesion – like structures that con-

nect the sarcomeric z bands with the sarcolemma. 

 Integrins are a large family of  � / �  heterodimeric adhesion 

receptors ( Bouvard et al., 2001 ;  Hynes, 2002 ). Several  � 1 inte-

grins were shown to play essential roles during myogenesis and 

muscle homeostasis ( Mayer, 2003 ). Antibody perturbation studies 

and  � 1 integrin gene ablations in fl ies and mice demonstrated 

that  � 1 integrins regulate proliferation and fusion of myoblasts 

and the assembly and maintenance of sarcomeres ( Menko and 

Boettiger, 1987 ;  Volk et al., 1990 ;  Sastry et al., 1996 ;  Hirsch et al., 

1998 ;  Schwander et al., 2003 ). The  � 7 � 1 and, until the fi rst 

postnatal days, the  � 5 � 1 integrins are expressed at the MTJs, 

where they implement and maintain the linkage of the myofi ber 

to the tendon matrix.  � 5 Integrin – defi cient chimeric mice develop 

a muscle dystrophy associated with reduced adhesion and 

proliferation of myoblasts ( Taverna et al., 1998 ).  � 7 Integrin –

 defi cient mice suffer from a progressive muscular dystrophy 

with disrupted MTJs ( Mayer et al., 1997 ;  Miosge et al., 1999 ). 

 Integrins transduce important signals. They control actin 

dynamic and link the actin cytoskeleton with the ECM, and they 

transduce biochemical signals in cooperation with growth factor 

receptors, including receptors for insulin-like growth factor (IGF; 

 Goel et al., 2004 ), PDGF ( Schneller et al., 1997 ;  Baron et al., 

2002 ), VEGF ( Soldi et al., 1999 ), and epithelial growth factor 

(EGF;  Moro et al., 1998 ;  Moro et al., 2002 ). An important and still 

largely unanswered question is how integrins execute their 

Skeletal muscle expresses high levels of integrin-
linked kinase (ILK), predominantly at myotendinous 
junctions (MTJs) and costameres. ILK binds the 

cytoplasmic domain of  � 1 integrin and mediates phos-
phorylation of protein kinase B (PKB)/Akt, which in turn 
plays a central role during skeletal muscle regeneration. 
We show that mice with a skeletal muscle – restricted dele-
tion of ILK develop a mild progressive muscular dystrophy 
mainly restricted to the MTJs with detachment of base-
ment membranes and accumulation of extracellular matrix. 
Endurance exercise training enhances the defects at 

MTJs, leads to disturbed subsarcolemmal myofi ber archi-
tecture, and abrogates phosphorylation of Ser473 as 
well as phosphorylation of Thr308 of PKB/Akt. The re-
duction in PKB/Akt activation is accompanied by an 
impaired insulin-like growth factor 1 receptor (IGF-1R) 
activation. Coimmunoprecipitation experiments reveal that 
the  � 1 integrin subunit is associated with the IGF-1R in 
muscle cells. Our data identify the  � 1 integrin – ILK complex 
as an important component of IGF-1R/insulin receptor 
substrate signaling to PKB/Akt during mechanical stress 
in skeletal muscle.

 Integrin-linked kinase stabilizes myotendinous junctions 
and protects muscle from stress-induced damage 
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 To test ILK functions in the skeletal muscle of mice with-

out affecting cardiac function, we conditionally ablated the ILK 

gene using human skeletal  � -actin (HSA) promoter – driven Cre 

expression. We found that loss of ILK triggered a mild, progressive 

muscular dystrophy, mainly restricted to MTJ areas, which was 

dramatically aggravated after exercise and accompanied by 

an impaired phosphorylation of IGF – 1 receptor (IGF-1R) and 

PKB/Akt at the Thr308 and Ser473 residues, respectively. 

 Results 

 Skeletal muscle-specifi c deletion of the 

 ILK  gene 

 Because ILK-null ( ILK lacZ/lacZ  ) mice die shortly after implanta-

tion ( Sakai et al., 2003 ), we used the Cre/loxP system to disrupt 

the  ILK  gene specifi cally in skeletal muscle. To obtain mice 

with the genotype HSAcre +  /ILK flox/flox   (called HSACre-ILK), 

 ILK fl ox/fl ox   mice ( Grashoff et al., 2003 ) were intercrossed with a 

transgenic mouse strain expressing the Cre recombinase under 

the control of the  HSA  promoter ( Schwander et al., 2003 ). 

 The effi ciency of the Cre-mediated deletion of the ILK 

gene in vivo was tested by Southern blotting using genomic 

DNA and Western blotting using protein extracts from gastroc-

nemius (GC) muscle of 3-mo-old control and HSACre-ILK 

mice. The Southern blots revealed a recombination effi ciency of 

 � 80% ( Fig. 1 A ) and the Western blots an  � 70% reduction of 

ILK protein level ( Fig. 1 B ).   Similar experiments with muscle 

tissue from 4-wk-, 3-mo-, and 1-yr-old HSACre-ILK mice 

revealed that the ILK gene deletion and ILK protein reduction 

remained stable ( Fig.1 C  and not depicted). 

 It has been reported that the HSA-Cre transgene induces 

DNA recombination as early as embryonic day (E) 9.5 ( Schwander 

et al., 2003 ). Despite this early Cre activity, we observed robust 

ILK immunostaining in all hindlimb muscle of E14.5 and 16.5 

HSACre-ILK embryos ( Fig.1 D  and not depicted). The intensity 

and the distribution of ILK immunostaining were comparable to 

muscle tissue from control mice with a strong signal at the MTJs 

and a weaker sarcolemmal staining ( Fig. 1 D ). Peri- and post-

natally, ILK was not detected in HSACre-ILK muscle by immuno-

staining ( Fig. 1 D ). Quantifi cation of Western blots from muscle 

tissue lysates showed a 60 – 70% reduction in ILK protein levels 

at this stage ( Fig.1 C ). These results show that the ILK gene is 

effi ciently deleted by the HSA-Cre transgene and that the ILK 

mRNA and/or protein have a long half-life in skeletal muscle 

cell precursors and muscle fi bers. 

 HSACre-ILK mice develop a 

muscular dystrophy 

 Intercrosses of HSAcre +  /ILK +/ �    males with  ILK fl/fl   females 

revealed a normal Mendelian distribution of the four possible 

genotypes among 231 offspring tested: HSAcre +  /ILK fl / �   ; HSAcre +  /
ILK fl /+  ; HSAcre  �   /ILK fl / �   ; and HSAcre  �   /ILK fl /+   = 24.4; 23.7; 

25.2; and 26.8%. HSACre-ILK mice did not show an overt pheno-

type at birth. They were viable, fertile, and showed normal 

growth rates with normal weight and body length. At 3 wk of 

age, when control mice began to securely walk, HSACre-ILK 

mice still shambled and showed an abnormal walking pattern. 

functions in myoblasts and adult skeletal muscle. Integrin cyto-

plasmic domains lack actin binding sites and enzymatic activ-

ities. Therefore, integrin signals are transduced through accessory 

molecules such as talin,  � -actinin, and integrin-linked kinase 

(ILK;  Brakebusch and F ä ssler, 2003 ). 

 ILK is composed of ankyrin repeats at the N terminus, a 

pleckstrin homology – like domain, and a putative kinase domain 

at the C terminus, which binds the cytoplasmic tail of  � 1 and 3 

integrins ( Grashoff et al., 2004 ,  Legate et al., 2006 ). A major 

function of ILK is to organize the actin cytoskeleton by recruit-

ing actin binding and actin-regulatory proteins, such as PINCH, 

parvin, paxillin, and kindlin ( Legate et al., 2006 ), and to phos-

phorylate several proteins, including GSK-3 �  and PKB/Akt 

( Delcommenne et al., 1998 ;  Novak et al., 1998 ;  Persad et al., 

2000 ), both of which are important for homeostasis and regen-

eration of muscle ( Glass, 2003 ;  Hoffman and Nader, 2004 ). 

 ILK is ubiquitously expressed and essential for the devel-

opment of vertebrates and invertebrates. Mice lacking ILK die 

during the periimplantation stage because of abnormal F-actin 

reorganization and polarity of the epiblast ( Sakai et al., 2003 ). 

In  Drosophila melanogaster  and  Caenorhabditis elegans , the 

deletion of ILK leads to muscle detachment resembling the  

�  integrin loss-of-function phenotype ( Zervas et al., 2001 ; 

 Mackinnon et al., 2002 ). Interestingly, the severe phenotypes 

both in fl ies and nematodes can be fully rescued with kinase-

dead versions of ILK, suggesting that in invertebrates the kinase 

activity is dispensable for development and physiology ( Zervas 

et al., 2001 ;  Mackinnon et al., 2002 ). 

 Similarly, as in fl ies and nematodes, mammalian myoblasts 

and myofi bers express high levels of ILK. In myofi bers ILK is 

found at MTJs and costameres. The costameric location makes 

ILK perfectly suited to transduce contractile forces from the sarco-

meres across the sarcolemma to the ECM. Consistent with such 

a function, mice and zebrafi sh that lack ILK function in cardio-

myocytes exhibit severe defects in mechanotransduction resulting 

in lethal heart dilation, fi brosis, and disaggregation of cardio-

myocytes ( Bendig et al., 2006 ;  White et al., 2006 ). The defects in 

mouse cardiomyocytes are associated with reduced Ser473 

phosphorylation of PKB/Akt. Because PKB/Akt activity is cru-

cial for cardiomyocyte growth and contractility ( Condorelli et al., 

2002 ;  DeBosch et al., 2006 ) and ILK phosphorylates Ser473 of 

PKB/Akt ( Delcommenne et al., 1998 ;  Persad et al., 2000 ), it was 

concluded that mechanical stress – mediated activation of ILK 

supports cardiomyocyte homeostasis via PKB/Akt activation. 

 The role of ILK functions in skeletal muscle is obscure. 

Overexpression of ILK in C2C12 myoblasts was shown to 

inhibit myoblast fusion by sustained phosphorylated Erk1/2 

activation, thus preventing cell cycle exit and myogenic determi-

nation ( Huang et al., 2000 ). However, ILK overexpression in L6 

myoblasts was shown to promote fusion and myogenin expression 

( Miller et al., 2003a ). Finally, genetic studies in mice showed 

that ILK is dispensable for the development and homeostasis of 

skeletal muscle ( White et al., 2006 ). The latter fi nding was un-

expected and could potentially be because of the severe heart 

abnormalities and the early death of the mice, or it could alter-

natively result from incomplete Cre-mediated ILK gene deletion 

in skeletal muscle. 
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cle groups derived from control mice exhibited myofi bers with 

regular diameter and peripherally located nuclei. In contrast, all 

three muscle types analyzed from HSACre-ILK mice contained 

myofi bers with variable fi ber size and centralized nuclei ( Fig. 3, 

A and B ; Fig. S1 A; and Fig. S2, A and B, available at http://

www.jcb.org/cgi/content/full/jcb.200707175/DC1).   Staining of 

tissue sections for ATPase and NADH activity revealed that 

both fast and slow fi ber types showed centralized nuclei ( Fig. 3 B ). 

The irregular fi ber size with centralized nuclei could be ob-

served as early as 10 d after birth and were aggravated with age 

( Fig. 3 A  and Fig. S1 B). The number of myofi bers with central 

nuclei increased from 11.6  ±  2.9% in 3-mo-old mice to 22.2  ±  

5.1% in 12-mo-old mice, whereas the number in control mice 

was  � 2% at all ages analyzed. Furthermore, we frequently 

To visualize the defect, we painted the front pad of control and 

HSACre-ILK mice with red ink and the hind pad with blue ink 

and let them walk on blotting paper. HSACre-ILK mice had 

an abnormal footprint pattern ( Fig. 2 A ) with a signifi cantly 

shorter stride length, and this abnormality was maintained with 

age ( Fig. 2 B ).   

 Adult mammalian skeletal muscle is differentiated into 

distinct fi ber types, which are characterized by a unique combi-

nation of functional, biochemical, and metabolic properties. 

To exclude the possibility that loss of ILK affected only specifi c 

muscle fi ber types, we analyzed the histology of muscles with 

predominantly fast fi bers (tibialis anterior muscle), slow fi bers 

(soleus muscle), and a mixture of slow and fast fi bers (GC muscle) 

from control and HSACre-ILK mice. Samples of all three mus-

 Figure 1.    ILK expression in HSACre-ILK mice.  (A) South-
ern blot analysis of ILK in control (HSAcre  �   /ILK fl /+  ) and 
HSACre-ILK (HSAcre +  /ILK fl / �   ) GC muscles from two 4-wk-old 
mice. fl , fl ox; con, control; rec., recombined allele. (B) West-
ern blot analysis of ILK expression in muscle used for 
Southern blot assay. GAPDH was used as a loading control. 
(C) Quantifi cation of the ILK protein content of control and 
HSACre-ILK muscle by densitometric measurement of the 
Western blot signals. Data are expressed as the mean  ±  
SD. (D) Immunofl uorescence of ILK (red) in control and 
HSACre-ILK in E16.5 forelimbs, postnatal day 1 (P1) fore-
limbs, and 3-mo-old GC muscles. ILK is highly expressed 
at the MTJ (arrowheads). Lower levels of ILK are detected 
at the sarcolemma. No ILK signal is detected at the MTJ 
of HSACre-ILK mice. Nuclei are stained with DAPI (blue). 
Bars: (E16.5) 4  μ m; (P1 and 3-mo) 50  μ m.   
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trusions ( Fig. 5 D , arrowheads). Interestingly, sarcomeres of 

HSACre-ILK myofi brils that contained central nuclei and, hence, 

had regenerated, appeared similar to control mice ( Fig. 5, E and F ), 

indicating that regeneration occurs normally in the absence of 

ILK expression. 

observed loosened intercellular space fi lled with fi brotic mate-

rial and mononuclear cell infi ltrates, which were particularly 

prominent at MTJs and in regions near tendons ( Fig. 3 A ). 

 The extent of the fi brosis was assessed in more detail by 

analyzing collagen deposition using trichrome staining. In the 

GC of 4-wk-old mice, no obvious difference between control 

and HSACre-ILK was observed. However, at the age of 5 mo, 

fi brotic regions were observed in the endomysial space around 

myofi bers and at the MTJs of HSACre-ILK mice. The fi brosis 

became more pronounced in 12-mo-old muscle ( Fig. 4 ).   

 Because ILK-defi cient MTJs displayed abnormalities, we 

further analyzed them at the ultrastructural level. The MTJs 

from control mice were extensively folded, forming digit-like 

protuberances of regular size and width that were covered with 

a well-structured BM and extended from the muscle cells into 

the collagen-rich tendon matrix ( Fig. 5, A and C ).   The MTJs of 

5-mo-old HSACre-ILK mice had folds with irregular size and 

width ( Fig. 5, B and D ). We frequently observed that the BM was 

detached from the sarcolemma at the base of the digit-like pro-

 Figure 2.    Footprint analysis.  Footprints of 4-wk-, 3-mo-, and 12-mo-old 
control and HSACre-ILK mice. (A) Front and back pads were inked in red 
and blue colors, respectively. (B) The distances between each two footprints 
were measured by pixel, and to diminish the infl uence of body length, 
the distances were divided by body length. The stride length of front and 
back feet of 4-wk-, 3-mo-, and 12-mo-old mutant mice are signifi cantly 
shorter in HSACre-ILK mice. Data are expressed as mean  ±  SD ( n  = 3; ***, 
P  <  0.001).   

 Figure 3.    HSACre-ILK muscle displays signs of a mild dystrophy.  (A) Hema-
toxylin/eosin-stained paraffi n sections of the GC muscle of 10-d-, 5-mo-, and 
12-mo-old control and HSACre-ILK mice. Note that the myofi bers of HSACre-
ILK mice show irregular diameter, centrally located nuclei (arrowheads), mono-
nuclear cell infi ltrates (asterisk), and fi brosis in 12-mo-old mutant muscle. Bars: 
(10-d) 40  μ m; (5-mo) 50  μ m; (12-mo) 60  μ m. (B) Myosin ATPase, pH 4.6, 
and NADH-stained cryosections of the GC muscle of 3-mo-old HSACre-ILK 
muscles. Myofi ber with asterisks indicate type II fi bers with centralized nuclei. 
Arrowheads indicate type I fi bers with centralized nuclei. Bar, 80  μ m.   
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variant of the  � 1 integrin subunit called  � 1D integrin, which is 

found at the MTJs and costameres ( Belkin et al., 1996 ;  van der 

Flier et al., 1997 ). Western blotting and immunostaining revealed 

strong  � 1D integrin expression at MTJs and lower levels at the 

sarcolemma both in control and HSACre-ILK muscle ( Fig. 6, A 

and B ). Although similar amounts were detected by immuno-

blotting, immunostaining for  � 7A � 1 and  � 7B � 1 integrins re-

vealed irregular staining patterns with reduced signals in some 

areas of the muscle tissue ( Fig. 6 B ). Furthermore, unlike in 

control muscle, the  � 5 staining was not restricted to the tendon 

but partly extended into the muscle fi bers ( Fig. 6 B ). 

 The BM around myofi bers is assembled by integrins and 

the DGC ( Mayer et al., 1997 ;  Miosge et al., 1999 ;  Nawrotzki et al., 

2003 ;  Guo et al., 2006 ;  Rooney et al., 2006 ). Immunostaining 

 Collectively, these results suggest that the deletion of the 

ILK gene from skeletal muscles leads to a mild muscular 

dystrophy characterized by abnormalities at MTJs, variation of 

myofi ber size, and increased fi brosis. 

 Loss of ILK affects integrin localization 

at MTJs 

 ILK forms a ternary complex with PINCH and parvin that is 

important for the stability of the individual components and the 

recruitment of the complex into focal adhesions. Similarly, as 

reported for other cell types and tissues, HSACre-mediated loss 

of ILK was associated with reduced PINCH1 and  � -parvin levels, 

which are both highly expressed in skeletal muscle ( Fig. 6 A ).   

The ILK – PINCH – parvin complex is thought to regulate inte-

grin function and actin reorganization. Interestingly, however, 

ultrastructural analysis revealed no signs of F-actin detachment 

from the sarcolemma both at the MTJs and in central areas of 

the muscle tissue (Fig. S3, available at http://www.jcb.org/cgi/

content/full/jcb.200707175/DC1). This indicates that, in contrast 

with fl ies and nematodes, ILK is not essential for anchoring ac-

tin fi laments to the muscle cell membrane. 

 The predominant integrin of skeletal muscle is the  � 7 � 1D 

integrin. The  � 7 integrin gene is alternatively spliced, producing 

the  � 7B splice variant ( � 7B � 1), which is the predominant form 

in skeletal muscle found at the sarcolemma and the MTJ, and 

the  � 7A splice variant ( � 7A � 1), which is expressed at MTJs 

( Nawrotzki et al., 2003 ). Both  � 7 subunits associate with a splice 

 Figure 4.    Altered collagen deposition in HSACre-ILK muscles.  Trichrome 
staining of paraffi n sections of GC muscle of 4-wk-, 5-mo-, and 12-mo-old 
control and HSACre-ILK mice. Collagen-containing fi brotic regions display 
blue color signals (arrowheads). Bar, 50  μ m.   

 Figure 5.    Abnormalities at the MTJs of HSACre-ILK mice.  Alteration of 
MTJs in HSACre-ILK mice. Electron micrographs of the MTJ of 5-mo-old 
control (A and C) and HSACre-ILK (B and D) mice. (A and B) MTJs with 
multiple fi nger-like interdigitations of regular organization and length are 
observed in control (A) and HSACre-ILK (B) mice. (C) The fi nger-like folds 
are covered by a well-organized and closely attached BM interdigitating 
with collagen fi brils in control mice. (D) HSACre-ILK mice showed folds 
of slightly different length and width with a partial detachment of the BM 
(arrowheads). (E and F) The sarcomeric structure was normal in fi bers of 
HSACre-ILK containing centralized nuclei (asterisk). The open white rectangle 
in E indicates the region shown in F. Bars: (A and B) 2.2  μ m; (C and 
D) 500 nm; (E) 20  μ m; (F) 800 nm.   
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Erk1/2 were similar between control and HSACre-ILK myoblasts 

( Fig. 7 A ). When the primary myoblasts were induced to form 

myotubes, we observed that HSACre-ILK myoblasts were able 

to effi ciently form multinucleated myotubes ( Fig. 7, B – D ). Neither 

the number of myotubes nor the kinetic of their formation dif-

fered between the cultures of control and HSACre-ILK myoblasts. 

Furthermore, quantitative analysis revealed similar numbers 

of nuclei per myotube in control and HSACre-ILK cultures 

( Fig. 7, C and D ). These data indicate that ILK plays no obvious 

role in myoblast proliferation, differentiation, and fusion. 

 Abnormal mechanical stress response 

 To test how mechanical stress affects the integrity of HSACre-

ILK muscles, we subjected 5-mo-old control and HSACre-ILK 

mice, respectively, to daily treadmill exercise with an upward 

inclination of 10 °  at 18 m/min for 60 min, 5 d/wk. In the fi rst 

3 wk, both control and HSACre-ILK mice maintained the re-

quired speed of 18 m/min at the 10 °  inclination during the whole 

training sessions. Because HSACre-ILK mice were unable to 

run at this speed without breaks after the 3-wk training pe-

riod, we terminated the treadmill exercise and analyzed the 

muscle tissue. 

revealed normal expression of  � -dystroglycan, laminin  � 2, and 

dystrophin ( Fig. 6 B  and Fig. S4, available at http://www.jcb.org/

cgi/content/full/jcb.200707175/DC1). Collectively, we conclude 

that ILK defi ciency in muscle does not affect F-actin anchorage 

and BM assembly but affects the distribution of integrins. 

 Normal myoblast fusion in vitro 

 Because of the long half-life of the  ILK  mRNA and/or protein, 

HSACre-ILK embryos still contained signifi cant levels of ILK 

in skeletal muscle tissue around the time of myoblast migration 

and fusion ( Fig. 1 D ). Therefore, we isolated primary myoblasts 

from the hindlimbs of 2-d-old control and HSACre-ILK mice 

and compared their ability to form myotubes in vitro. Western 

blotting of freshly isolated myoblasts cultured in growth me-

dium (GM) or differentiation medium (DM) revealed faint levels 

of ILK ( Fig. 7 A ), which were most likely derived from fi bro-

blast contaminations (desmin-negative cells; not depicted).   

The switch from GM to DM induced the expression of the myo-

genic marker myogenin and repressed the expression of MyoD 

to a similar extent in both control and HSACre-ILK cells. PINCH1 

levels decreased concomitantly with ILK, whereas the levels of 

integrin  � 1D, phosphorylated PKB/Akt, and phosphorylated 

 Figure 6.    Expression and distribution of ILK-
associated proteins.  (A) ILK, Pinch, and parvin 
are decreased in HSACre-ILK muscle, whereas 
 � 1,  � 1D,  � 5,  � 7A, and  � 7B integrin and 
phosphopaxillin (p-paxillin),  � -dystroglycan 
( � -DG), and caveolin-3 are not changed. GAPDH 
was used as the loading control. (B) Immuno-
fl uorescence staining of  � 7A,  � 7B,  � 5, and 
 � 1D integrins and  � -dystroglycan. Note the 
prominent  � 7A integrin signals (red) at MTJ 
of control muscles and the reduction at MTJs 
of HSACre-ILK muscles. Although  � 7B integrin 
(red) is expressed on the sarcolemma of all 
myofi bers in the control, it shows an irregular 
staining pattern in HSACre-ILK muscle. In con-
trast to the control muscle,  � 5 integrin signals 
are not restricted to the tendon of HSACre-ILK 
muscles.  � 1D Integrin and  � -dystroglycan sig-
nals are comparable between control and 
HSACre-ILK muscles. Bars: ( � 7A integrin,  � 5 
integrin, and  � -dystroglycan) 40  μ m; ( � 7B in-
tegrin) 35  μ m; ( � 1D integrin) 60  μ m.   
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 Furthermore, we observed profound abnormalities in MTJs 

of HSACre-ILK muscles at the ultrastructural level. Although 

control mice had normal MTJs after the exercise program (Fig. S5, 

C and D), the MTJs from HSACre-ILK mice almost completely 

lost their digit-like interdigitations and instead formed irregular 

membrane protrusions and invaginations ( Fig. S5, E and F ). 

Concomitantly with these defects, the BM detachment from 

the sarcolemma was further aggravated (Fig. S5, F and G) 

when compared with untrained muscle ( Fig. 5 F ). In addition, 

in some areas the BM was replaced by an electron-dense mate-

rial (Fig. S5 F). 

 Training experiments with 9-mo-old HSACre-ILK mice 

showed that they were unable to exercise at a speed of 18 m/min. 

This age-dependent decline in running capacity made it impossible 

to perform a training intervention comparable to the 5-mo-old mice. 

 Hematoxylin/eosin and trichrome staining of trained 

HSACre-ILK muscles revealed an increase in fi brosis which 

was not detected in control muscles ( Fig. 8 A ).   The myofi bers of 

untrained HSACre-ILK mice showed mild dystrophic changes 

and were positive for methylene blue staining ( Fig. 8 B ). In con-

trast, fi bers of trained HSACre-ILK muscle were frequently 

negative for methylene blue, indicating muscle damage ( Fig. 8 B ). 

To evaluate the mechanical stress – induced damage more quanti-

tatively, we investigated the levels of stretch/injury-responsive 

muscle ankyrin-repeat proteins Ankrd2 and CARP ( Miller et al., 

2003b ;  Hentzen et al., 2006 ). Both Ankrd2 and CARP mRNA 

were found to be signifi cantly up-regulated in trained HSACre-

ILK muscles, further confi rming the exercise-induced muscle 

damage in HSACre-ILK mice (Fig. S5, A and B, available at 

http://www.jcb.org/cgi/content/full/jcb.200707175/DC1). 

 Figure 7.    Normal fusion of HSACre-ILK myo-
blasts.  (A) Protein levels of ILK and PINCH1 
are dramatically decreased in primary HSACre-
ILK myoblasts both in GM and DM. Signals of 
desmin and myogenin increase and MyoD de-
creases in response to differentiation in both cell 
types. The levels of  � 1D integrin, pSer473-Akt, 
pThr308-Akt, Akt, pErk1/2, and Erk1/2 are 
comparable. GAPDH was used as the load-
ing control. (B) Myoblast cells were isolated 
from postnatal day 2 control and HSACre-ILK 
hindlimbs, incubated in DM, and evaluated 
microscopically. Differentiated myoblasts and 
myo tubes were stained with sarcomeric  � -actinin 
antibody (red) and DAPI (blue). (C) Quantifi cation 
of myotube numbers from control and HSACre-ILK 
myoblasts plated at different cell densities. Data 
are expressed as mean  ±  SD ( n  = 3; 200 and 
400 cells/nm 2 ). (D) Determination of the num-
ber of nuclei per fused myotube. No difference 
between control and HSACre-ILK mice was 
observed (P = 0.253). Bars: (phase) 50  μ m; 
(sarcomeric  � -actinin) 80  μ m.   
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 In muscle, PKB/Akt can be activated by an intracellular 

signaling cascade that is triggered through the activation of 

IGF-1R ( Mourkioti and Rosenthal, 2005 ). Therefore, we tested 

whether IGF-1R levels and/or activation were altered in exer-

cised HSACre-ILK muscle. Western blotting and real-time PCR 

revealed that the total protein and RNA levels of IGF-1R were 

similar before and after exercise in control and HSACre-ILK 

mice ( Fig. 9, B and C ). Upon exercise, the phosphorylation 

of cytoplasmic tyrosines in the activation loop of IGF-1R 

(Tyr1131/1135/1136), which are known to induce PKB/Akt-

activation ( Vasilcanu et al., 2004 ), signifi cantly increased by 57.9  ±  

0.19% in exercised control muscle ( Fig. 9, B and D ). In contrast, 

there was no increase in phosphorylation of IGF-1R in HSACre-

ILK muscle upon exercise ( Fig. 9, B and D ). Importantly, the 

failure of increased IGF-1R phosphorylation upon training was 

not caused by diminished IGF-1 secretion because IGF-1 levels 

were even higher in trained HSACre-ILK muscle than in that of 

trained controls ( Fig. 9 E ). These fi ndings suggest that ILK acts 

in concert with growth factors to protect muscle from mechanical 

damage by regulating the IGF-1R – PBK – Akt signaling pathway. 

 The  � 1 integrin subunit can associate with the IGF-1R in 

several cell types ( Goel et al., 2006 ). To test whether a similar 

association occurs before and/or during the formation of myo-

fi bers, we cultured C2C12 cells for different days in fusion me-

dium in the presence or absence of IGF-1, cross-linked and 

immunoprecipitated  � 1 integrin subunits, and fi nally probed the 

precipitate with antibodies against IGF-1R, EGFR,  � -dystro-

glycan, and  � 1 integrin. As shown in  Fig. 9 F , the  � 1 integrin 

associated with the IGF-1R, with or without IGF-1 treatment 

and before and after myoblast fusion. Interestingly, the amount of 

IGF-1R –  � 1 integrin complexes increased in response to IGF-1 

treatment. The association was specifi c because  � 1 subunits nei-

ther coimmunoprecipitated with EGFR ( Fig. 9 F ) nor with 

 � -dystroglycan (not depicted). 

 Discussion 

 In this paper, we report the skeletal muscle – specifi c ablation of 

the ILK gene, which leads to a mild muscular dystrophy and 

increased susceptibility to stress-induced damage. The exercise-

induced defects are associated with reduced PKB/Akt acti va-

tion, which is likely caused by an impaired cross talk between 

 � 1 integrin – ILK and the IGF-1R – insulin receptor substrate 1 – 

PI-3K signaling pathway. 

 ILK maintains MTJs of untrained muscle 

 Loss of ILK resulted in a very mild phenotype characterized by a 

persistent shamble without affecting weight or life span and dam-

aged muscle fi bers with increased presence of centralized nuclei 

and large variation of myofi ber size. Other alterations were re-

stricted to the MTJs and included increased fi brosis, infi ltration of 

a few infl ammatory cells, and detachment of BMs at the base of the 

interdigitations. Because we observed normal Erk1/2 activation 

and normal levels of activated PKB/Akt in ILK-defi cient muscle, 

we conclude that muscle regeneration works effi ciently in the ab-

sence of ILK, and that muscle damage likely results from a me-

chanical rather than a signaling failure. Furthermore, it seems that 

Collectively, these data demonstrate that ILK-defi cient skeletal 

muscle is highly susceptible to mechanical stress. 

 ILK modulates IGF signaling 

 Growth of skeletal muscle critically depends on the activation 

of mTOR kinase by PKB/Akt ( Glass, 2003 ;  Hoffman and Nader, 

2004 ). ILK phosphorylates Ser473 of PKB/Akt and is thought 

to be required for full PKB/Akt activation. To test PKB/Akt ac-

tivity, we isolated muscle tissue and performed Western blotting 

using phosphospecifi c antibodies. Untrained HSACre-ILK muscle 

displayed levels of Ser473 and Thr308 phosphorylation compa-

rable with those of control muscle ( Fig. 9 A ).   Upon training, 

however, we observed a signifi cant increase in the phosphoryla-

tion of Ser473 as well as of Thr308 residues of PKB/Akt in 

control muscle, whereas the HSACre-ILK muscle showed a 

strongly attenuated response ( Fig. 9 A ). 

 Figure 8.    Exercise-induced alterations in myofi bers of HSACre-ILK mice.  
(A) Hematoxylin/eosin (H & E)- and trichrome-stained cryosections of the 
GC muscle of trained control and HSACre-ILK mice. Arrowheads indicate 
fi brotic regions. Bar, 50  μ m. (B) Methylene blue – stained skeletal muscle 
fi bers of untrained and trained HSACre-ILK mice. Trained HSACre-ILK 
muscles contain necrotic fi bers (asterisk). Bars: (top) 35  μ m; (bottom) 
900 nm.   
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and, to a lesser extent, for integrin binding to the ECM. It is pos-

sible that the requirements of ILK are slightly different between 

invertebrate and vertebrate muscle. Alternatively, it could also be 

that our mice have subtle actin defects that escaped detection. 

 ILK is not required for myoblast fusion and 

sarcomere assembly 

 Although the  � 1 integrins were shown to regulate myoblast fu-

sion and sarcomere assembly ( Menko and Boettiger, 1987 ;  Hirsch 

ILK is important for the stabilization of adhesion sites exposed to 

high mechanical forces, such as MTJs, whereas at costameres, 

where less force is transmitted, ILK seems to be dispensable. 

 The destabilization of MTJs is caused by a detachment of 

the BM rather than a detachment of F-actin from the sarcolemma, 

indicating that loss of ILK primarily affects ligand binding of in-

tegrins. This observation differs from the loss-of-function studies 

of ILK in fl ies ( Zervas et al., 2001 ), where ILK is primarily re-

quired to attach the actin cytoskeleton at the plasma membrane 

 Figure 9.    Altered IGF signaling after endur-
ance exercise training.  (A and B) Western 
blot analysis of untrained and endurance 
exercise – trained control and HSACre-ILK GC 
muscle for ILK, pSer473-Akt, pThr308-Akt, 
total Akt, pTyr397-FAK, and total FAK (A) 
and pTyr1131/1135/1136-IGF-1R and total 
IGF-1R (B). GAPDH was determined to show 
equal loading. (C) Densitometric quantifi cation of 
pTyr-IGF-1R levels from resting and endurance 
exercised – trained control and HSACre-ILK 
muscles. The increase of pTyr-IGF-1R was sig-
nifi cantly reduced in muscle from HSACre-ILK 
mice ( n  = 4; **, P  <  0.01). (D) Real-time PCR 
analysis of IGF-1R mRNA expression of con-
trol and HSACre-ILK muscles. The levels were 
not signifi cantly different between control and 
HSACre-ILK mice ( n  = 4; P = 0.199). (E) Mea-
surement of autocrine IGF-1 levels of control 
and HSACre-ILK muscles by ELISA. The level of 
IGF-1 in trained HSACre-ILK was 75% higher 
than in trained control muscles. Data are ex-
pressed as mean  ±  SD ( n  = 4; *, P  <  0.05). 
(F) C2C12 mouse myoblasts were lysed before 
(0) and after 1 and 4 d of differentiation with 
or without IGF-1 treatment, immunoprecipitated 
with rabbit anti –  � 1 integrin antiserum or rab-
bit IgG (as control), and immunoblotted with 
rabbit anti – IGF-1R, rabbit anti –  � 1 integrin, or 
rabbit anti – EGF-R antiserum. 8  μ g of lysates 
were used as inputs.   
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as S6K and 4E-BP ( Bodine et al., 2001 ;  Rommel et al., 2001 ). 

Several reports have recently challenged this view and showed 

that the phosphorylation of Ser473 is mediated by the mTOR ki-

nase rather than ILK, that the phosphorylation of Thr308 is suf-

fi cient for activation of PKB/Akt, and that the phosphorylation 

of Ser473 determines the specifi city of PKB/Akt toward FOXO1 

and FOXO3 and, to a lesser extent, the absolute activity of PKB/

Akt ( Frias et al., 2006 ;  Guertin et al., 2006 ;  Jacinto et al., 2006 ; 

 Shiota et al., 2006 ). Despite these novel fi ndings, ablation of the 

ILK gene in cardiomyocytes of mice led to a dramatically reduced 

Ser473 phosphorylation of PKB/Akt. Because the phosphorylation 

levels of Thr308 were not determined in ILK-defi cient cardio-

myocytes, it is unclear whether loss of ILK affected the specifi city 

of PKB/Akt only or also the overall activity of PKB/Akt. 

 We observed similar phosphorylation levels of Ser473 and 

Thr308 in control and HSACre-ILK muscle of untrained mice, 

suggesting that the mild muscular dystrophy upon ILK loss is 

not a result of diminished ILK-dependent PKB/Akt activation. 

In sharp contrast, forced treadmilling triggered an increase of 

Ser473 phosphorylation in the skeletal muscle of control mice, 

whereas phospho-Ser473 levels failed to rise in HSACre-ILK 

muscle. Moreover, the reduced PKB/Akt phosphorylation was not 

restricted to the potential ILK target Ser473 but was also observed 

on Thr308, indicating that mechanical load – induced activation of 

both the PDK-1 and Ser473 kinase activities requires ILK. 

 These fi ndings suggest that loss of ILK likely affects an 

activator, which is upstream of both the PDK-1 – Thr308-PKB –

 Akt and the Ser473 – PKB/Akt pathways in mechanically chal-

lenged muscle. A potential candidate for such an upstream 

activator is IGF-1R, which plays a central role during muscle 

repair ( Musaro et al., 2001 ), acts through PI-3K/PKB/Akt/mTor 

signaling ( Bodine et al., 2001 ;  Rommel et al., 2001 ), cross talks 

with the  � 1 integrin signaling pathway ( Goel et al., 2004 ,  2006 ), 

and was shown to activate ILK ( Attwell et al., 2000 ). We per-

formed Western blot assays with antibodies against the phos-

phorylated form of IGF-1R and could indeed demonstrate that 

IGF-1R activation is severely impaired in trained HSACre-ILK 

muscle. It is well known that physical training triggers IGF-1R 

phosphorylation and the downstream activation of PKB/Akt 

and the mTor complexes, which in turn give rise to the forma-

tion of new myofi brils. Consistent with the reduced PKB/Akt 

phosphorylation, the training-induced phosphorylation of IGF-1R 

at tyrosine residues (Tyr1131/1135/1136) in the activation loop 

of the kinase domain was almost completely abrogated in HSACre-

ILK muscle. Phosphorylation of Tyr1136 was shown to be required 

for the IGF-1 – induced phosphorylation of insulin receptor sub-

strate 1, the interaction of the regulatory p85 subunit of PI-3K with 

IGF-1R, and the downstream-activation of PKB/Akt ( Vasilcanu 

et al., 2004 ). Moreover, we observed that the  � 1 integrin sub-

unit can form a complex with IGF-1R in C2C12 cells before 

and after fusion into myotubes. Interestingly, IGF-1 treatment 

increases the amount of  � 1 integrin – IGF-1R complex, corrobo-

rating that the complex formation has a functional role in IGF 

signaling. Collectively, our data suggest that the  � 1 integrin –

 IGF-1R complex is using ILK to activate the IGF-1R signaling 

machinery, leading to PKB/Akt activation and regeneration of 

exercise-induced muscle damage. 

et al., 1998 ;  Schwander et al., 2003 ), it is still unclear how 

 � 1 integrins execute these functions. Two studies reported that ILK 

is acting downstream of  � 1 integrin to control fusion and sarco-

mere formation. The studies overexpressed wild-type and mutant 

ILK cDNAs in either mouse or rat myoblast cell lines and came 

to opposite conclusions. Although one study showed that ILK 

antagonizes myoblast fusion by sustained Erk1/2 activation, 

preventing cell cycle withdrawal and myogenic determination, 

another study reported that ILK stimulates fusion and myogenic 

determination ( Huang et al., 2000 ;  Miller et al., 2003a ). 

 Unfortunately, the long half-life time of the ILK mRNA 

and/or protein did not permit us to study myoblast fusion and 

sarcomere assembly in vivo. Therefore, we isolated primary myo-

blasts from newborn control and HSACre-ILK mice and tested 

whether they fuse and assemble sarcomeres in vitro. We found 

that primary ILK-defi cient myoblasts exhibit normal fusion and 

sarcomere assembly, indicating that ILK does not play an obvi-

ous and very prominent role during myogenic differentiation. 

These fi ndings are in line with recent zebrafi sh data showing 

that loss of ILK function results in severe heart failure but nor-

mal development of skeletal muscle. 

 ILK protects myofi bers from force-

induced damage 

 Contrary to the mild defects of ILK-defi cient skeletal muscle, 

disruption of ILK function in zebrafi sh or the myocardium of 

mice leads to lethality with progressive contraction defects, 

heart dilation, and fi brosis ( Bendig et al., 2006 ;  White et al., 2006 ). 

The strong phenotype suggests that mechanical loading triggers 

the severe defects. We tested this assumption by exposing control 

and mutant mice to forced treadmilling and found that mu-

tant mice could not complete the 4-wk training protocol with 

a treadmilling speed of 18 m/min, demonstrating that the func-

tion of HSACre-ILK muscle was profoundly compromised. 

After training for 3 wk, the MTJs of HSACre-ILK muscle dis-

played an almost complete loss of interdigitations, extensive BM 

detachments, and myofi ber necrosis. 

 Although treadmilling profoundly augmented the defects 

at the MTJs, we still observed normal insertions of actin fi la-

ments at the sarcolemma at MTJs. This could have several rea-

sons. It is possible that the training protocol was not vigorous 

enough to trigger actin fi lament detachment as observed in fl ies 

and nematodes. It is also conceivable that ILK plays no or only 

a minor role as a mechanical linkage for the terminal sarco-

meres at MTJs. Finally, loss of ILK may be compensated by other 

actin-linked adhesion molecules such as the DGC. Consistent with 

the latter assumption, it was demonstrated that mdx/ � 7 inte-

grin  � / �   double mutant mice develop a more severe muscle 

dystrophy than dystrophin or  � 7 integrin single mutant mice 

( Guo et al., 2006 ;  Rooney et al., 2006 ). 

 ILK is required for the mechanical stress-

induced activation of PKB/Akt 

 ILK is believed to phosphorylate and, thereby, modulate the 

activity of several target proteins, including PKB/Akt, which, 

in turn, plays a central role during the repair of skeletal muscle 

by activating the mTOR complex and downstream targets such 
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 Endurance exercise training 
 Experiments were performed with 5-mo-old control (seven mice; weight: 
27.0  ±  0.7 g) and HSACre-ILK (six mice; weight: 25.1  ±  0.9 g) mice. 
The treadmill (Exer3/6; Columbus Instruments) endurance training consisted 
of a 60-min treadmill exercise 5 d a week at a velocity of 18 m/min at an 
angle of 10 ° . Mice were elicited to run by touching their back with a pencil. 
Mice were accommodated to the situation for 1 wk before starting the experi-
ments. The velocity of 18 m/min was chosen because in these preexperi-
ments, control and HSACre-ILK mice were able to constantly run for 1 h at this 
velocity. An angle of 10 °  was chosen to increase the muscle load during the 
training. The training was performed for 4 wk. At the end of this period, 
animals were killed and the vastus lateralis and GC muscles were isolated, 
fi xed in 4% buffered PFA for 6 h, and prepared for ultrastructural analysis. 

 An additional test was initiated with 9-mo-old control ( n  = 6) and 
HSACre-ILK ( n  = 6) mice under the conditions described in the previous 
paragraph. Because HSACre-ILK mice were unable to abide the exercise, 
the experiment was terminated. The local Animal Care Committee approved 
all experimental procedures. 

 Real-time PCR 
 Muscle RNA was isolated with the RNeasy Mini kit (QIAGEN). 1  μ l cDNA 
generated from 200 ng RNA with the iScript cDNA Synthesis kit (Bio-Rad 
Laboratories) was subjected to real-time PCR using the iQ SYBR Green 
Supermix (Bio-Rad Laboratories) and the iCycler (Bio-Rad Laboratories). 
The following primers (Mouse Genome Informatics number1204415) were 
used for detecting IGF-1R: forward, 5 � -TGGCACCTACAGGTTCGAG-3 � ; and 
reverse, 5 � -TGATGGACACACCTGCATG-3 � . The following primers were used 
for CARP: forward, 5 � -GAGAAGTTAATGGAGGCTGG-3 � ; and reverse, 
5 � -GTTCAGCAACAGTTTCAGGAC-3 � . The following primers were used 
for Ankrd2: forward, 5 � -CCACAGAGCTCATCGAGCAG-3 � ; and reverse, 
5 � -CTAGCACTAGCATGTCCATGG-3 � . Gene expression was quantifi ed using 
the Gene Expression Analysis Program for the iCycler iQ Real-Time PCR 
Detection system (Bio-Rad Laboratories) and normalized to GAPDH levels. 

 Cross-linking and immunoprecipitation 
 C2C12 mouse myoblasts were maintained in GM and differentiation was 
induced with DM. Treatment with 100 ng/ml mIGF-1 (R & D Systems) in DME 
was performed 14 h after starvation. 

 Cross-linking reaction was performed in 1 mM DSP (Thermo Fisher 
Scientifi c) in PBS for 20 min on ice. Cells were lysed in IP buffer containing 
1% Triton X-100, 0.05% sodium deoxycholate, 150 mM NaCl, and 50 mM 
Tris-HCl, pH 8, with protease inhibitors and phosphatase inhibitors (cocktails 
1 and 2). For coimmunoprecipitation of  � 1 integrin, 700  μ g of lysates were 
incubated with anti –  � 1 integrin antiserum for 30 min at 4 ° C and then with 
35  μ l of protein A – Agarose for another 1 h. Protein complexes were washed 
three times in wash buffer (0.1% Triton X-100, 0.005% sodium deoxycholate, 
150 mM NaCl, and 50 mM Tris-HCl, pH 8) and subsequently extracted with 
5 ×  SDS loading buffer for 5 min at 95 ° C. 

 Myosin ATPase, pH 4.6, staining 
 Unfi xed cryosections were preincubated for 10 min at RT in incubation buf-
fer (0.1 M NaOAc and 1 mM EDTA adjusted to pH 4.6). Slides were dipped 
in incubation buffer, pH 9.6, and then immediately incubated in ATP solution 
(10 mg ATP in 10 ml incubation buffer, pH 9.6) for 10 min at 37 ° C. After 
washing with double-distilled H 2 O (ddH 2 O), slides were immersed in 2% 
CoCl2 for 5 min. After another wash with ddH 2 O, slides were immersed in 
0.1% ammonium sulfi de solution for 30 s. Finally, the slides were washed 
under running water for 5 min, dehydrated, and mounted in glycerine jelly. 

 NADH staining 
 Unfi xed cryosections were incubated for 30 min in 0.2M Tris-HCl, pH 7.4, 
1.5 mM NADH, and 1.5 mM Nitroblue tetrazolium (Sigma-Aldrich) at 
37 ° C. After incubation, slides were rinsed three times with ddH 2 O and 
mounted in Evanol. 

 Masson ’ s trichrome staining 
 Slides were mordant in preheated Bouin ’ s solution (saturated picric acid/
formaldehyde/glacial acetic acid = 15:5:1) for 15 min at 56 ° C. After cool-
ing to RT, slides were washed under running water to remove the yellow 
color and stained in Weigert ’ s iron hematoxylin solution for 5 min. Slides 
were then washed for 5 min under running water, rinsed in ddH 2 O, and 
stained in Biebrich scarlet-acid Fuchsin for 5 min. After rinsing in ddH 2 O, 
slides were transferred to Aniline blue Solution for 5 min and, subsequently, 
to 1% acetic acid for 2 min. Finally, the slides were rinsed, dehydrated 
through alcohol, cleared in xylene, and mounted. All chemicals were from 
Sigma-Aldrich. 

 Materials and methods 

 Mouse strains 
 To obtain mice with a skeletal muscle – restricted deletion of the  ILK  gene, 
fl oxed  ILK  mice ( Grashoff et al., 2003 ) were crossed with transgenic mice 
expressing the Cre gene under the control of the  HSA  promoter ( Schwander 
et al., 2003 ). All animals were fed ad libitum and housed according to the 
guidelines of the Society of Laboratory Animal Science. 

 Antibodies 
 Antibodies used in this study were mouse anti-GAPDH (Millipore), mouse 
anti – sarcomeric  � -actinin (Sigma-Aldrich), rabbit anti-caveolin3 (Abcam), 
rabbit anti-Erk1/2 (Cell Signaling Technology), rabbit anti – phospho-Erk1/2 
(Thr202/Tyr204; Cell Signaling Technology), mouse anti-desmin (BD Bio-
sciences), mouse anti-paxillin (Transduction Laboratories), rabbit anti-phos-
phopaxillin (Tyr118; Cell Signaling Technology), mouse anti-myogenin (BD 
Biosciences), rabbit anti-MyoD (Santa Cruz Biotechnology, Inc.), rabbit 
anti-FAK (Millipore), rabbit anti – phospho-FAK (Tyr397; Invitrogen), mouse 
anti-dystrophin (Abcam), goat anti –  � -dystroglycan (Santa Cruz Biotechnology, 
Inc.), rabbit anti – EGF-R (Cell Signaling Technology), rabbit anti – phospho –
 IGF-1R (Tyr1131/1135/1136; Acris Antibodies), rabbit anti – IGF-1R 
(Cell Signaling Technology), and mouse anti – IGF-1R (Millipore). Fluorescent 
dye – conjugated secondary antibodies were obtained from Invitrogen. 
All other antibodies used have been described previously ( Nawrotzki 
et al., 2003 ;  Sakai et al., 2003 ;  Stanchi et al., 2005 ;  Chu et al., 2006 ; 
 Guo et al., 2006 ). 

 Western blotting 
 Muscle tissue was homogenized in modifi ed RIPA buffer (50 mM Tris-HCl, 
pH 7.4, 150 mM NaCl, 5 mM EDTA, 0.1% SDS, 1% Triton X-100, 1% 
sodium deoxycholate, protease inhibitors [Roche], and phosphatase inhib-
itors [Sigma-Aldrich]). Extracted proteins were gel separated and immuno-
probed as previously described ( Grashoff et al., 2003 ). 

 Histology, immunofl uorescence, and electron microscopy 
 Muscle tissues from embryos or newborn or adult mice was excised and ei-
ther frozen in liquid nitrogen – cooled isopentane or dehydrated and em-
bedded in paraffi n. 8  μ m of transverse sections were cut and collected onto 
SuperFrost Plus (Menzel-Gl ä ser) slides. The area of myofi bers was deter-
mined on hematoxylin/eosin-stained paraffi n sections using the Axiovision 
software (Version 4.6.3.0; Carl Zeiss, Inc.). 

 Immunofl uorescence was done on cryosections as described in 
 Mayer et al. (1997) . Images were collected by confocal microscopy 
(DMIRE2; Leica) using Leica Confocal Software (version 2.5, build 1227) 
with 40 or 63 ×  oil objectives, by fl uorescence microscopy (DMRA2; Leica) 
using SimplePCI software (version 5.1.0.0110; GTI Microsystems) with 
20, 40, or 63 ×  oil objectives, or by bright fi eld microscopy (Axiovert; Carl 
Zeiss, Inc.) using IM50 software (Leica) with 10 or 40 ×  objectives. All images 
were collected at RT. Digital images were manipulated and arranged using 
Photoshop CS2 (Adobe). Transmission electron microscopy was performed 
using an electron microscope (902A; Carl Zeiss, Inc.) as described in 
 Hirsch et al. (1998) . 

 In brief, muscle biopsies were fi xed in 4% buffered PFA, rinsed three 
times in cacodylate buffer, and then treated with 1% uranyl acetate in 70% 
ethanol for 8 h. The biopsies were subsequently dehydrated in a graded 
series of ethanol and then embedded in Araldite (SERVA). Semithin sec-
tions (500  μ m) were cut with a glass knife on an ultramicrotome (Reichert) 
and stained with Methylene blue. Ultrathin sections (30 – 60 nm) for elec-
tron microscopic observation were processed on the same microtome with 
a diamond knife and placed on copper grids. 

 Isolation and differentiation of primary myoblasts 
 Primary myoblasts were isolated as described by  Rando and Blau (1994) . 
In brief, hindlimbs were dissected from 1 – 2-d-old mice, placed in PBS, minced 
with a razor blade, and enzymatically dissociated with a mixture of colla-
genase II (0.1%; Worthington Biochemical) and dispase (2.4 U/ml; grade II; 
Roche). The slurry, maintained at 37 ° C for 30 – 45 min, was triturated every 
15 min with a 5-ml plastic pipette. After centrifugation at 350  g  for 10 min, 
the pellet was resuspended in DME containing 20% FCS, 2 mM glutamin, 
and 1% Pen/Strep (Invitrogen) and preplated into noncoated tissue culture 
dishes for 20 min for attaching fi broblasts to the dish surface. The nonadher-
ent cells were then transferred into 0.2% gelatin-coated 6-well plates (approx-
imately two limbs for one well). Differentiation was induced with 5% horse 
serum (Invitrogen) in DME for 2 – 4 d. A myotube was defi ned as having three 
or more nuclei. 
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Figure S1 

Figure S1   HSACre-ILK muscle displays centralized nuclei in different 
type of muscles. (A) Hematoxylin and eosin–stained paraffin sections of 
soleus, tibialis anterior (TA), and extensor digitorum longus (EDL) of 5-mo-old 
control and HSACre-ILK mice. Note the irregular diameter and centrally 
located nuclei (arrowheads) in myofibers of HSACre-ILK mice. Bar, 30 μm. (B) 
The number of myofibers with central nuclei increased from 7.2 ± 2.1% in 4-
wk-old HSACre-ILK mice, to 11.6 ± 2.9% in 3-mo-old HSACre-ILK mice, to 
22.2 ± 5.1% in 12-mo-old HSACre-ILK mice, whereas the numbers in control 
mice were 1.0 ± 0.3%, 1.1 ± 0.7, and 1.2 ± 0.6, respectively, at the ages 
analyzed. Data are expressed as mean ± SD (P < 0.01). 



Figure S2 

Figure S2. Measurement of myofiber density and size. (A) The density of 
myofibers was defined by the number of myofibers per area (10,000 pixel2). 
GC, tibialis anterior (TA), and soleus muscles from 3- and 5-mo-old control and 
HSACre-ILK mice were measured. The soleus myofiber density was 150.4 ±
11.6 and 210.6 ± 29.8 in 3-mo-old control and HSACre-ILK (P < 0.001) mice, 
respectively, and 17.5 ± 1.8 and 27.5 ± 3.9 in 5-mo-old control and HSACre-ILK 
(P < 0.001) mice, respectively. Data are expressed as mean ± SD. (B) Myofiber 
size of GC, soleus, and TA muscles of 3- and 5-mo-old control and HSACre-ILK 
mice was measured by pixel2 per myofiber and shown by dot-plots. The 
HSACre-ILK muscles show an altered distribution of fiber size with a prevalence 
of fibers with a smaller diameter. 



Figure S3 

Figure S3. Normal F-actin of control and HSACre-
ILK sarcolemma. Ultrastructural analysis of control 
and HSACre-ILK muscles. Bar, 150 nm. 
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Figure S5 

Figure S5. Muscle damage and detachment of BM in trained HSACre-
ILK muscle. (A and B) Relative mRNA levels of Ankrd2/Arpp and CARP 
are shown, measured by quantitative PCR in GC muscle from trained 
control and HSACre-ILK mice. The levels of both Ankrd2/Arpp and CARP 
are significantly elevated in HSACre-ILK muscle. Data are expressed as 
mean ± SD (n = 3; ***, P < 0.001). (C–G) Light (C and D) and electron (E–
G) micrographs of skeletal muscle fibers of control (C and E) and HSACre-
ILK (D, F, and G) mice. (C) Normal MTJ with regular short interdigitations. 
(D) HSACre-ILK MTJ lost the typical shape and shows cytoplasmic 
processes and invaginations with variable size and shape. (E–G) The 
fingerlike folds of MTJ are covered by a closely attached BM in trained 
control (E) muscle. The BM (arrows) is frequently detached at less affected 
fingerlike folds (F) and almost completely between irregularly shaped 
cytoplasmic processes of severely affected MTJ in HSACre-ILK (G) mice. 
Bars: (C and D) 35 μm; (E and F) 900nm; (G ) 1.4 μm. 
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The three Kindlins are a novel family of focal adhesion proteins. The Kindlin-1 (URP1) gene is
mutated in Kindler syndrome, the first skin blistering disease affecting actin attachment in
basal keratinocytes. Kindlin-2 (Mig-2), the best studied member of this family, binds ILK and
Migfilin, which links Kindlin-2 to the actin cytoskeleton. Kindlin-3 is expressed in
hematopoietic cells. Here we describe the genomic organization, gene expression and
subcellular localization of murine Kindlins-1 to -3. In situ hybridizations showed that
Kindlin-1 is preferentially expressed in epithelia, and Kindlin-2 in striated and smooth
muscle cells. Kindlins-1 and -2 are both expressed in the epidermis. While both localize to
integrin-mediated adhesion sites in cultured keratinocytes Kindlin-2, but not Kindlin-1,
colocalizes with E-cadherin to cell-cell contacts in differentiated keratinocytes. Using a
Kindlin-3-specific antiserum and an EGFP-tagged Kindlin-3 construct, we could show that
Kindlin-3 is present in the F-actin surrounding ring structure of podosomes, which are
specialized adhesion structures of hematopoietic cells.

© 2006 Elsevier Inc. All rights reserved.
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Introduction

The Kindlin gene family is named after the gene mutated in
Kindler syndrome, an autosomal recessive genodermatosis in
humans [1]. Kindlin-1 is a member of a new family of focal
adhesion (FA) proteins. The family consists of three members
in mice and men. The Kindlin proteins are composed of a
centrally located FERM (Band 4.1/Ezrin/Radixin/Moesin)
domain interrupted by a pleckstrin homology (PH) domain.
The first member of this family was identified in a differential
cDNA library screen as mitogen inducible gene-2 (Mig2 now
termed Kindlin-2) [2]. The two other genes were initially
namedUnc-112 Related Protein 1 (URP1 now termedKindlin-1)
and URP2 (now termed Kindlin-3), due to their homology to
the Caenorhabditis elegans gene unc-112 [3]. Siegel et al. [5]

proposed to name the three different genes Kindlin-1 (URP1),
Kindlin-2 (Mig2) and Kindlin-3 (URP2/Mig2B [4]), which we will
also do throughout this article.
Kindlin-1 and Kindlin-2 have been shown to play an

essential role in integrin-mediated adhesion and spreading.
Both proteins localize to FAs and loss of either leads to
delayed cell spreading in different cell lines [6,7]. These
studies also showed that Kindlin-1 can interact with the
cytoplasmatic tails of β1 and β3 integrins and Kindlin-2 with
the integrin-linked kinase (ILK). Binding partners for Kindlin-
3 are not known. The ability of Kindlin-2 to bind Migfilin, a
LIM domain containing protein capable of binding Filamin,
revealed a novel linkage between integrins and the actin
cytoskeleton [7]. Whether Kindlin-1 also binds Migfilin has
not been investigated yet, although the high homology
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between Kindlin-1 and Kindlin-2 makes such a binding
activity very likely [8].
Genetic studies have so far been performed in humans and

C. elegans. Null mutations of the Kindlin orthologue Unc-112 in
nematodes are embryonic lethal due to a paralyzed arrested
elongation at twofold (PAT) phenotype. Unc-112 localizes
together with PAT3/β-integrin and PAT4/ILK to dense bodies
andM-lines atmuscle attachment sites, which link themuscle
to the bodywall. Loss of Unc-112 impairs cell–matrix adhesion
and integrin function resulting in muscle detachment from
the body wall and severe paralysis [9].
Loss of Kindlin-1 in humans gives rise to Kindler syndrome.

Kindler syndrome patients show different skin pathologies
that undergo changes during the patients' lifetime. The
syndrome is characterized by skin atrophy and trauma-
induced skin blisters at early life. During infancy, the blistering
becomes less and instead photosensitivity and progressive
poikiloderma develops. In addition, there are indications that
Kindler Syndrome patients may be prone to squamous cell
carcinoma development [10]. Kindler Syndrome is the first
skin blistering disease resulting from defects in actin cytoske-
leton anchorage to cell matrix adhesion sites [5,11,12,13].
However, the molecular mechanism leading to the multiple
defects of Kindler Syndrome is only poorly understood and
simple actin anchorage insufficiencies cannot completely
explain the phenotype.
Several reports describe a transcriptional misregulation of

Kindlins in various types of cancer. Kindlin-1 is overexpressed
in lung and colon carcinomas, whereas Kindlins-2 and -3 were
unchanged or even reduced [3]. Kindlin-2 expression has been
shown to be elevated in leiomyomas and greatly decreased in
leiomyosarcomas [14]. Interestingly, an almost exclusive
nuclear staining of Kindlin-2 was observed in both tumors,
suggesting additional functions of Kindlin-2. This observation
is of note since Migfilin has been shown function in the
nucleus as transcriptional coactivator during cardiomyocyte
differentiation in mice [15]. Finally, increased expression of
Kindlin-3 has been reported in different kinds of B cell
lymphomas [4]. However, the molecular role of Kindlin
proteins during tumor formation is so far completely unclear.
In the present paper, we report the expression of the three

Kindlins during murine development and in adult tissues and
characterize their subcellular localization in different cell
types.

Materials and methods

Northern blotting

Total RNA was extracted with Trizol (Invitrogen) following the
manufacturer's protocol. Total RNA (8 μg) was separated on a
denaturating agarose gel and transferred to Hybond N+
membranes (Amersham). The following primers were used
to amplify the Kindlin probes:

Kindlin-1 forward: TCTGAGGTTGACGAGGTAG (Exon 6);
Kindlin-1 reverse: ACTTCATTCATACCATCAGC (Exon 9);
Kindlin-2 forward: CTAGATGACCAGTCTGAAGACG (Exon 4);
Kindlin-2 reverse: TGAATCGGAGCAGCAAGGCC (Exon 6);

Kindlin-3 forward: GAGAAGGAGCCTGAAGAGGAG (Exon 4);
Kindlin-3 reverse: TAAATCGCAGCCAAAGCACATC (Exon 6).

The amplified probes were radiolabeled using the Redi-
Prime II random prime labeling kit (Amersham). Membranes
were hybridized overnight at 65°C in Church buffer, washed
and exposed for 1–8 days at −80°C with Kodak Biomax MS
screens (Kodak).

RT-PCR

Total RNA (1 μg) was used for first strand cDNA synthesis
according to the protocol of the manufacturer using Super-
Script III polymerase (Invitrogen) and random hexamer
primers. Specific cDNA fragments were amplified using the
following primers:

Kindlin-1 forward: CTACACCTTCTTTGACTTG;
Kindlin-1 reverse: AGGGATGTCAGTTATGTC.
Kindlin-2 forward: GTACCGAAGTAGACTGCAAGG;
Kindlin-2 reverse: CATACGGCATATCAAGTAGGC.
Kindlin-3 forward: AGCTGTCTCTGCTGCGTGCTC;
Kindlin-3 reverse: ATACCTTGCTGCATGAGGCAC.

Radioactive in situ hybridization

33P-UTP-labeled sense and antisense riboprobes were gener-
ated by in vitro transcription from linearized vectors contain-
ing Kindlins-1/-2/-3-specific cDNA fragments (see Northern
Blotting). Paraffin sections from mouse embryos at different
embryonic stages were dewaxed, rehydrated and hybridized
as previously described [16].

Antibody production and affinity purification

A Kindlin-3-specific peptide (EPEEEVHDLTKVVLA; aa 156–170)
was coupled to Imject Maleimide Activated mcKLH (Pierce)
and used to immunize rabbits. The antiserum was subse-
quently affinity purified using a commercial kit (SulfoLink Kit,
Pierce Biotechnology Inc., Rockford, IL, USA). High affinity
antibodies were eluted from the columnusing 100mMGlycine
buffer, pH 2.7 and then dialyzed against phosphate-buffered
saline (PBS).

Western blotting

Both cells and tissues from adult C57BL/6 mice were homo-
genized in lysis buffer (1% Triton X-100, 50 mM Tris–Cl pH 7.4,
300 mM NaCl, 5 mM EDTA and protease inhibitors (Roche)).
Equal amounts of total protein (about 20 μg) per lane were
separated on a 10% polyacrylamide gel and transferred to
PVDF membranes (Millipore). Kindlin-3 (1:1000), tubulin
(1:5000), GAPDH antibodies (1:5000; Chemicon) were used
together with the appropriate secondary antibody (1:50000 in
5% bovine serum albumin (BSA); Biorad).

Constructs

All Kindlin cDNAs were cloned into the pEGFP-C1 vector
(Clontech). A partial Kindlin-1 cDNA was obtained from Image
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clone 3157716. The missing N-terminal part was amplified
from epidermal cDNA by PCR using CAGGTCGAC-
CATCTGCCTGGGCCACAATG as forward primer and CAAGT-
CAAAGAAGGTGTAG as reverse primer. Kindlin-2 full-length
cDNA was obtained from Image clone 3596509. Kindlin-3
was cloned by amplifying a 558 bp fragment from the N-
terminus (CAGGTCGACATGGCGGGTATGAAGACAG; AGAA-
GTGTGCTGGCATGC) containing the start codon combined
with the residual nucleotides from the Image clone 4187161.
Final expression constructs were confirmed by sequencing.

Immunostaining

Paraffin sections were dewaxed, rehydrated and endogenous
peroxidase was blocked by incubating the slides for 20 min in
2.5ml H2O2/75mlmethanol. Blockingwas performed for 1 h in
PBS supplemented with 10% goat serum and 1% BSA.
Subsequently, the Kindlin-3 antibody (1:500) was incubated
at 4°C over night. Sectionswere incubatedwith a 1:200 dilution
of biotinylated anti-rabbit secondary antibody for one hour
and transferred to ABC solution (Vector Laboratories) for an
additional 30 min. Secondary antibody was detected with
diaminobenzidine (DAB). Counterstaining of the sections was
performed with methylene green and sections were mounted
with Entellan.

Immunohistochemistry

Cells were grown on fibronectin (5 μg/ml, Calbiochem) coated
glass cover slips, fixed with PBS supplemented with 4%
paraformaldehyde (PFA) and 3% sucrose, permeabilized with
0.25% Triton X-100 in PBS for 10min, blocked in PBS containing
3% BSA and 5% goat serum for 1 h. Cells were immunostained
for paxillin (monoclonal antibodies, BD Transduction), α-
actinin (monoclonal antibodies, Sigma), vinculin (monoclonal
antibodies, Sigma) and TRITC-labeled phalloidin (1:500; Sigma)
to visualize F-actin. Alexa647 and Cy3-conjugated secondary
antibodies were purchased from Molecular Probes. Stained
cells were mounted in Elvanol and pictures were taken with a
Leica DMRA2 microscope and a Hamamatsu camera.

Transfections

Immortalized wild-type mouse embryonic fibroblasts, mouse
keratinocytes, primary cardiomyocytes and dendritic cells
were transfected with the EGFP-Kindlin-1, EGFP-Kindlin-2 and
EGFP-Kindlin-3 cDNA constructs using Lipofectamine 2000
(Invitrogen) following the manufacturer's instructions.

Cell culture

Primary wild-type macrophages and dendritic cells were
derived from bone marrow of 5-day-old mice and cultured
on bacterial petri dishes for 7 days in DMEM, supplemented
with glutamine, 10% FCS, Pen/Strep (all Invitrogen), M-CSF (to
derive macrophages) or GM-CSF (to generate dendritic cells).
Both cytokines were derived from a hybridoma supernatant.
The supernatant was used in a 1:10 dilution.
Immortalized newborn mouse keratinocytes were main-

tained in MEM supplemented with 5 μg/ml insulin (Sigma),

10 ng/ml EGF (Roche), 10 μg/ml transferrin (Sigma), 10 μM
phosphoethanolamine (Sigma), 10 μM ethanolamine, 0.36 μg/
ml hydrocortisone (Calbiochem), glutamine (Invitrogen), Pen/
Strep (Invitrogen), 45 μM CaCl2 and 8% chelated FCS. For
differentiation keratinocytes were cultured in growthmedium
containing 1 mM CaCl2 over night. Immortalized mouse
embryonic kidney fibroblasts were maintained in DMEM
supplemented with 10% FCS.

Isolation and culture of neonatal mouse cardiomyocytes

Cardiomyocytes were isolated fromhearts of P1 newbornmice
by treatment with 0.4 mg/ml collagenase II (Worthington,
Freehold, NJ) and 1 mg/ml pancreatin (Sigma) in ADS buffer
(116 mM NaCl, 0.8 mM NaH2PO4, 1 g/l glucose, 5.4 mM KCl,
0.8 mM MgSO4 and 20 mM 2,3-butanedione monoxime in
20 mM HEPES, pH 7.35) for 10 min at 37°C. Fresh enzyme
solution (0.3ml/heart) was added and tissuewas incubated for
8min. The supernatant containing dispersed cardiac cells was
transferred to a new tube containing 1 ml FCS (per heart) and
centrifuged at low speed (80×g, 6 min), resuspended in 2 ml
FCS and kept at 37°C. The remaining tissue fragments were
incubated with fresh enzyme solution (0.3 ml/heart) as above
for additional 5 times. Cell suspensions were pooled and
centrifuged at low speed (80×g, 6 min) and resuspended in
4 ml ADS buffer.
Cells were grown on glass coverslips coated with fibro-

nectin (10 μg/ml) at a cell density of 3.0×105 cells/35-mm
culture dish in plating medium (67% DMEM, 17% M199
medium, 10% horse serum, 5% FCS, 1% Pen/Strep and
4 mM glutamine). Cells were incubated at 37°C in a 5% CO2
humidified incubator. The next day the plating medium was
replaced with maintenance medium (75% DMEM, 23.5% M199
medium, 0.5% horse serum, 1% Pen/Strep, 4 mM glutamine
and 0.1 mM phenylephrine).

MAC sorting of primary T and B cells

A whole spleen from an adult C57BL/6 mouse was strained to
obtain a single cell suspension. 3×107 cells were incubated in
300 μl PBS with 3 μl FITC conjugated B220 (PharMingen) and
CD3 (eBioscience) antibodies for 10 min at 4°C. Cells were
washed with PBS and incubated with 30 μl anti-FITC MACS-
beads (Miltenyi Biotec) for 10 min, washed with PBS, isolated
in a magnetic field and eluted from beads, following the
manufacturer's recommendations.

Results and discussion

Genomic organization of the murine Kindlin gene family

All three murine Kindlin genes were identified in a genomic
search of the Ensembl database using the human Kindlin
cDNAs. The chromosomal localization of the three human and
murine Kindlin genes is shown in Table 1. The human as well
as the murine Kindlin genes are composed of 15 exons with
the translation start site in exon 2. The murine Kindlin-1 gene
spans 38.5 kb resulting in a transcript of approximately 4.6 kb.
Themurine Kindlin-2 gene has a length of 70 kb and gives rise
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to a 3.2 kb transcript. Kindlin-3 represents the smallest gene
with 19.8 kb encoding a 2.5 kb mRNA.

Kindlin protein structure

Translation of the murine cDNAs results in proteins of 637 aa
(Kindlin-1), 680 aa (Kindlin-2) and 655 aa (Kindlin-3), respec-
tively. A sequence alignment between the three murine
Kindlin proteins revealed that Kindlins-1 and -2 are most
closely related, sharing 60% identity and 74% similarity, while
Kindlin-3 is more distantly related sharing 53% identity and
69% similarity to Kindlin-1 and 49% identity and 67% similarity
to Kindlin-2.
Kindlin proteins have a unique domain architecture. They

are composed of a centrally located FERM domain interrupted

by a PH domain [6]. FERM domains are found in a number of
proteins linking the membrane to the cytoskeleton [17].
Among these proteins, the FERM domain of talin is most
homologous to the Kindlin FERM domains. In vitro assays
have shown an interaction between Kindlin-1 and the
cytoplasmatic tails of β1 and β3 integrins [6]. Therefore, it
has been proposed that Kindlins bind to β1 and β3 integrins
with a similar mechanism as it has been described for talin
[18,19].
The second common domain within Kindlins is the PH

domain. Although PH domains are known to mediate binding
to phosphatidylinositol phosphates [20], the function and
specificity of this domain have not been further characterized
in Kindlin proteins.
A nuclear localization signal (NLS), amino acids 55–72, is

exclusively present in Kindlin-2 only. In accordance with this
finding, nuclear localization of Kindlin-2 has been reported in
leiomyosarcomas and leiomyomas. Furthermore, the Kindlin-
2 interacting proteinMigfilin can localize to the nucleus. There
it functions as a coactivator for the CSX/NKX2-5 transcription
factor to promote cardiomyocyte differentiation [14].
Taken together, Kindlin proteins are typical adaptor

proteins with two domains known to mediate membrane
association. However, both the molecular regulation of

Table 1 – Genomic localization of the human and murine
Kindlin genes

Mouse Human

Kindlin-1 2F2 20p12.3
Kindlin-2 14B 14q22.1
Kindlin-3 19A 11q13.1

Fig. 1 – Expression pattern of Kindlins-1/-2/-3. (A) Northern blot from different tissues. Total RNAwas extracted from organs of
2-week-old C57BL/6 mice. Staining of ribosomal RNA with ethidium bromide was used to control loading. (B) Skin from adult
C57BL/6 mice was separated into epidermis and dermis by trypsin digestion and total RNA was reverse transcribed to detect
differential expression of Kindlin-1 and Kindlin-2 in epidermis, dermis andwhole skin. (C) Total RNA from 2-week-old C57BL/6
mice was reverse transcribed into cDNA and expression of the three Kindlins was checked by RT-PCR. GAPDH was used as
loading control. (D) Total RNA was extracted from total embryos at different embryonic stages. RT-PCR was performed for all
three Kindlinswith cDNAderived from the total RNA. GAPDHwas used to show equal loading. Sk.muscle: skeletalmuscle; Sm.
Int.: small intestine; Epi: epidermis.
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Kindlin proteins and the specific binding of certain interactors
to individual Kindlin proteins are only poorly understood.

Expression patterns of murine Kindlin-1 to -3 in adult tissues
and during embryonic development

The tissue distribution of the murine Kindlin genes was
analyzed bymultiple tissue Northern blots and RT-PCR of total
RNA from 2-week-oldmice using specific cDNA fragments and
primer pairs (Fig. 1A). The specificity of the cDNA probes was
confirmed in a Southern blot containing all three murine
Kindlin cDNAs (data not shown).
Kindlin-1 transcripts were detected in bladder and colon

and at lower expression levels in kidney, skin, small intestine,
stomach and thymus with Northern blot assays. RT-PCR
revealed additional weak Kindlin-1 expression in ovary and
uterus. Recently, a larger splice variant of Kindlin-1 was
detected in human intestine [5]. This isoform is generated by
including intron 7 into the coding sequence and was recently
found in a thymus cDNA (AK_030947). This alternative splicing
event gives rise to a 5.2 kb transcript, a premature translation
stop, and a short protein isoform of 352 amino acids. Using
primer pairs located in exon 6 and intron 7 we could detect the
long transcript in kidney, colon and small intestine (data not
shown). The existence of this isoform became also apparent in
our Northern blots, which revealed a second, approximately
5.2 kb large transcript in colon and small intestine (Fig. 2A).
Since no antibody against the N-terminus of Kindlin-1 is
currently available, it remains to be seen whether this
transcript is translated and if so, which function this short
Kindlin-1 protein might fulfil.
Since there is a strong interest in a detailed expression

analysis of Kindlin-1 in skin, we separated epidermis from
dermis. RT-PCR analysis indicated strong expression of

Kindlin-1 in the epidermis, and much weaker expression in
the dermis (Fig. 1B). Whether the dermal expression is indeed
derived from dermal cells or alternatively from hair follicle
keratinocytes is unclear. Interestingly, Kindlin-2 is inversely
expressed, with higher expression levels in the dermis than in
the epidermis (Fig. 1B). This finding is particularly interesting,
since Kindlin-2 seems not to compensate for the loss of
Kindlin-1 in Kindler Syndrome. Whether this is due to the
distinct expression in different cell layers of the skin or
because of differences in the subcellular localization of both
proteins within the keratinocytes needs to be addressed in the
future.
Northern blot and RT-PCR analyses confirmed Kindlin-2

expression in all tissues analyzed. The levels differed between
tissues and were high in heart, lung, skeletal muscle, kidney,
bladder and stomach. In contrast to the broad expression
pattern of Kindlin-2, Kindlin-3 showed a restricted expression
pattern with signals in lung, spleen, thymus and very low in
lymph nodes (Fig. 1A). RT-PCR confirmed a strong Kindlin-3
expression in hematopoietic tissues and much lower in other
tissues, which may be due to contamination of these tissues
by blood cells (Fig. 1C).
Expression of Kindlin genes during embryonic develop-

ment was tested by RT-PCR from RNA samples derived from
E7.5 to 18.5 embryos. All Kindlin genes are expressed
throughout the analyzed time points, although Kindlin-3
expression was low at E7.5 and increases until E13.5 (Fig. 1D).
To determine the distribution of the Kindlin mRNAs during

mouse development, we performed radioactive in situ hybrid-
izations on mouse embryo sections from different develop-
mental stages.
The same probes that were used for Northern blot

experiments were subcloned into pBluescript to derive sense
and antisense transcripts. As expected from the RT-PCR and

Fig. 2 – Radioactive in situ hybridizations on E13 and E15mouse embryo sections reveal Kindlin-1 expression in the developing
gut epithelium (arrowhead in panel A) and epithelium of the oral cavity and tongue at E13 (arrowheads in panel C). Consecutive
sections hybridized with the sense probe indicate signal specificity (B, D). At E15, Kindlin-1 expression is found in the
oesophageal epithelium (E) and gut epithelium (F).
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Northern blot analyses, Kindlin-1 expression was hardly
detected in the embryo. Weak signals could be detected in
the epithelium of the gut from E12.5 onwards, as well as in the
oral epithelium and oesophagus. Control hybridizations with
the sense probe revealed no signal in these organs (Fig. 2). All
attempts to detect Kindlin-1 in other embryonic or adult
tissues were unsuccessful.
In contrast, Kindlin-2 expression was seen in many organs

with strongest expression in the not sooth but smoothmuscle
cell layer of a number of organs including the developing gut,
bladder, oesophagus and blood vessels (Fig. 3). Strong expres-
sion was also found in striated muscle such as tongue and

heart. In agreement with Northern blot and RT-PCR data,
Kindlin-3 expression was restricted to hematopoietic organs
such as the fetal liver and thymus. Interestingly, between
E12.5 and E16.5 Kindlin-3 signals were detectable throughout
the whole liver with strong signals in large multinucleated
cells that most likely represent megakaryocytes (Figs. 4A–F).
Weak staining was detected in the thymus (Figs. 4G, H). Based
on the restricted expression of Kindlin-3 in adult hemato-
poietic tissues, the uniform signal in the embryonic liver was
likely derived from lymphoid progenitor cells rather than
from hepatocytes. In line with this notion, neither Northern
blot nor RT-PCR revealed Kindlin-3 expression in adult liver
(Figs. 1A and C).

Fig. 3 – In situ hybridizations reveal Kindlin-2 expression in
all three muscle types. Kindlin-2 is expressed in the smooth
muscle layer of the developing gut at E12 (A), E13 (B) and E15
(C). In addition, Kindlin-2 expression is found in the smooth
muscle layers surrounding the oesophagus (E), large vessels
(arrowhead in panel E), around the bronchial epithelium of
the lung (E), in the bladder and hindgut (both F). Expression in
skeletal muscle is seen in the tongue and the diaphragm
(D,E). A weaker signal is detected in cardiac muscle (E).
b, bladder; g, gut; h, heart; hg, hindgut; l, lung; m, skeletal
muscle; o, oesophagus; t, tongue.

Fig. 4 – In situ hybridizations on sagittal sections of murine
embryos at E12 (A, B), E13 (C, D), and E15 (E–H). Panels A, C, E,
and G show brightfield views of panels B, D, F, and G,
respectively. Kindlin-3 expression is mainly restricted to the
developing liver with particularly strong signals in large
multinucleated cells, most likely representing
megakaryocytes (A–F). (G,H) Kindlin-3 is also expressed in
thymus at E15. g, gut; k, kidney; li, liver; lu, lung; st, stomach;
t, thymus.
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Altogether these data indicate that Kindlin-1 expression is
confined to epithelial cells of the skin and gut, Kindlin-2
expression is broad with high expression in striated and
smooth muscle cells and Kindlin-3 expression is restricted to
hematopoietic tissues.

Kindlin-3 is expressed in different hematopoietic cell types and
is localized to podosomes

To date, the Kindlin-3 protein has not been investigated in any
study. Therefore we generated a rabbit polyclonal antiserum
against Kindlin-3 (see Materials and methods). The affinity
purified antibody reacted with an approximately 100 kDa
protein from mouse embryonic fibroblasts transfected with
EGFP-tagged murine Kindlin-3 cDNA. As a control, cell lysates
from fibroblasts transfected with EGFP-Kindlin-1 or -2 con-
structs showed no crossreactivity with the Kindlin-3 antibody
(Fig. 5A). The anti-Kindlin-3 antibody was then used to
immunoblot lysates derived from multiple organs of adult
C57BL/6 mice. In accordance with the RNA data Kindlin-3
protein could be detected in spleen, thymus, lymph node and
lung (Fig. 5B).

Due to this very broad expression pattern of Kindlin-3
within hematopoietic tissues, we addressed the expression in
different hematopoietic cell types. Western Blots from MACS
sorted T and B cells and in vitro differentiated macrophages,
immature and mature dendritic cells were performed. Inter-
estingly, Kindlin-3 was expressed in all these hematopoietic
cell types at similar levels and seems not to be restricted to a
specific hematopoietic lineage (Fig. 5C). Since Northern blot
and RT-PCR analyses revealed weak expression of Kindlins-1
and -2 in spleen and thymus, we investigated expression of
both genes in different hematopoietic cell types by RT-PCR.
Interestingly, both Kindlins-1 and -2 are expressed in T cells
and very weak in B cells (Fig. 5D).
Furthermore, the anti-Kindlin-3 antibody was used for

immunohistochemical stainings of mouse embryo sections.
The Kindlin-3 protein was observed in the developing liver
with particularly high signals in megakaryocytes (Fig. 5E),
confirming our in situ hybridization data (Figs. 4A–F).
To investigate the subcellular localization of Kindlin-3, we

first overexpressed EGFP-tagged Kindlin-3 in murine fibro-
blasts. Unexpectedly, we could not observe any specific
localization to FA but rather a diffuse cytoplasmatic staining

Fig. 5 – Hematopoietic expression pattern and typical subcellular localization of Kindlin-3. (A) Western blot of NIH3T3 cells
transfected with EGFP-Kindlins-1/-2/-3 with the Kindlin-3 antibody. A GFP antibody was used to control loading. (B) Western
blot of different mouse tissues from adult C57BL/6 probed with the Kindlin-3 antibody. Tubulin was used to control loading. (C)
Western blot for Kindlin-3 from different hematopoietic cell types (DC: dendritic cells). GAPDH was used to control loading. (D)
RT-PCR for Kindlin-1 and Kindlin-2 from different hematopoietic cell types. GAPDH was used to control loading. (E)
Immunostaining of E14.5 embryo sections with Kindlin-3 antibody (Li: liver). (E′) Higher magnification of the liver.
(F) EGFP-Kindlin-3 colocalizes with vinculin in podosomes of cultured dendritic cells.
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Fig. 6 – Subcellular localization of Kindlin-1 and Kindlin-2. (A) Mouse embryonic fibroblasts (MEFs) were seeded onto
fibronectin and transiently transfected with EGFP-Kindlin-1 and EGFP-Kindlin-2, respectively. 24 h after transfection cells were
costained for paxillin and F-actin. Arrowheads indicate focal adhesion sites. Arrows indicate colocalization with F-actin.
(B) Spontaneously immortalized mouse keratinocytes were transiently transfected with EGFP-Kindlin-1. Cells were costained
for paxillin and F-actin. EGFP-Kindlin-2 transfected cells were differentiated with 1 mM CaCl2 overnight, and costained for
E-cadherin and F-actin. Arrowheads show colocalization of EGFP-Kindlin-2 and E-cadherin at cell–cell contacts. (C) Primary
mouse cardiomyocytes were transfected with EGFP-Kindlin-2 and after fixation costained with α-actinin.
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(data not shown). This indicates that either Kindlin-3 differs in
its localization from the other two family members or cannot
compete with the endogenous Kindlin-2 for FA recruitment in
these cells. Kindlin-1 and Kindlin-3 expression could not be
detected in these cells by RT-PCR (data not shown). Therefore,
we used immunofluorescence stainings of in vitro differen-
tiated macrophages and dendritic cells. In contrast to fibro-
blasts or epithelial cells, hematopoietic cells do not form
classical FA. Instead, they form podosomes, adhesion struc-
tures characterized by a core of F-actin and actin-associated
proteins surrounded by a ring consisting of plaque proteins
such as talin or vinculin (reviewed in [21] and [22]). Coimmu-
nofluorescence stainings with phalloidin revealed that Kin-
dlin-3 colocalizes to podosomes (data not shown). Therefore, a
more detailed analysis of Kindlin-3 localization within podo-
somes was performed. Transfection of immature dendritic
cells with EGFP-Kindlin-3 and subsequent staining for vinculin
(Fig. 5F) and talin (data not shown) revealed Kindlin-3
localization to the actin surrounding ring of podosomes.
Altogether these data show that Kindlin-3 is present in
hematopoietic adhesion complexes and expressed inmultiple
hematopoietic cell lineages.

Kindlins-1 and -2 localize to different cell adhesion sites

Previous studies have localized human Kindlin-1 and Kindlin-
2 to FAs. Using EGFP-tagged cDNA constructs transiently
transfected into mouse embryonic fibroblasts, we tested the
localization of murine Kindlins. Transfection of neither
Kindlin constructs nor the EGFP control affected cell morphol-
ogy during cell spreading when compared to untransfected
cells (data not shown).
Kindlin-1 colocalized with paxillin to focal complexes and

FAs (Fig. 6A). A similar staining pattern was also observed for
Kindlin-2 suggesting that Kindlins-1 and -2 are recruited to
newly formed focal contacts, andhencemayplay an important
role during the assembly of the cell–matrix adhesion complex.
In addition to the integrin-containing adhesion structures,
Kindlin-2 also localized to actin stress fibers. Altogether these
data indicate that all three Kindlin proteins localize to specific
cell–matrix adhesion sites in vitro.
Our in situ hybridizations suggested a preferential expression

of Kindlin-1 in epithelial cells and Kindlin-2 in striated and
smooth muscle cells in vivo. Therefore we investigated the
localization of Kindlins-1 and -2 in immortalized mouse kerati-
nocytes and of Kindlin-2 in addition in primary cardiomyocytes.
Keratinocytes transfected with EGFP-Kindlin-1 revealed

fluorescent labeling of paxillin-positive FAs and phalloidin-
positive actin stress fibers (Fig. 6B). A similar staining pattern
could be observed for Kindlin-2 (data not shown). However,
cells transfected with EGFP-Kindlin-1 often revealed a strong
perinuclear and a weak filamentous signal that failed to
colocalize with F-actin. Whether these signals are a conse-
quence of Kindlin-1 overexpression or indeed represent an
additional subcellular localization of Kindlin-1 outside of FAs
remains to be addressed. Furthermore, we investigated the
localization of Kindlins-1 and -2 in calcium differentiated
keratinocytes. Surprisingly, we could not observe localization
of EGFP-Kindlin-1 to cell–cell contacts, as previously assumed
[8] (data not shown). In contrast, EGFP-Kindlin-2 colocalized

with E-cadherin to cell–cell contacts (Fig. 6B). This result is the
first indication that Kindlins-1 and -2 can localize to different
subcellular compartments. It could explain why Kindlin-2
cannot compensate for Kindlin-1 loss in Kindler Syndrome.
Unfortunately, no Kindlin-1 or -2-specific antibodies are
available, which would be required to investigate the sub-
cellular localization in vivo.
To test the localization of Kindlin-2 in muscle cells, we

isolated primary cardiomyocytes from newborn mice and
transfected them with EGFP-tagged Kindlin-2. Kindlin-2
colocalized with α-actinin to Z-discs of cardiomyocytes (Fig.
6C). This observation implies that Kindlin-2 like UNC-112
plays an important role in the organization of cell–matrix
adhesion sites in muscle cells.
In summary, our analyses revealed that all three Kindlins

are expressed during early development, but expression of
each isoform is restricted to certain tissues and cell types. This
is most evident for Kindlin-3, which is exclusively expressed
in cells of hematopoietic origin. The expression pattern of
Kindlins-1 and -2 show a partial overlap, although with a
preference for Kindlin-1 expression in epithelial cells of the
skin and the gastrointestinal tract and Kindlin-2 in striated
and smoothmuscle cells. Kindlins-1 and -2-specific antibodies
will be important tools to investigate their subcellular
localization in more detail in vivo. This is medically relevant,
since our analyses demonstrate that Kindlin-2 is expressed in
the epidermis but can apparently not compensate for the loss
of Kindlin-1 expression in Kindler syndrome patients. This
observation is in line with our in vitro data indicating that in
contrast to Kindlin-1, Kindlin-2 localizes to cell–cell contacts
of differentiated keratinocytes and might therefore be less
involved in the cell–matrix adhesion of keratinocytes. Identi-
fication of novel Kindlin binding partners will be one
important aim to understand the cellular functions of Kindlin
proteins. Additionally, Kindlin-deficient mice could give
important insights into the function of this gene family during
development and disease.
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Identification and Embryonic Expression of a New
AP-2 Transcription Factor, AP-2�
Hao-Ven Wang,1 Kristina Vaupel,1 Reinhard Buettner,2 Anja-Katrin Bosserhoff,3 and Markus Moser1*

AP-2 proteins comprise a family of highly related transcription factors, which are expressed during mouse
embryogenesis in a variety of ectodermal, neuroectodermal, and mesenchymal tissues. AP-2 transcription factors
were shown to be involved in morphogenesis of craniofacial, urogenital, neural crest-derived, and placental tissues.
By means of a partial cDNA fragment identified during an expressed sequence tag search for AP-2 genes, we
identified a fifth, previously unknown AP-2–related gene, AP-2�. AP-2� encodes an open reading frame of 434 amino
acids, which reveals the typical modular structure of AP-2 transcription factors with highly conserved C-terminal DNA
binding and dimerization domains. Although the N-terminally localized activation domain is less homologous, position
and identity of amino acids essential for transcriptional transactivation are conserved. Reverse transcriptase-
polymerase chain reaction analyses of murine embryos revealed AP-2� expression from gestational stage embryonic
day 7.5 throughout all later embryonic stages until birth. Whole-mount in situ hybridization using a specific AP-2�
cDNA fragment demonstrated that during embryogenesis, expression of AP-2� is mainly restricted to neural tissue,
especially the midbrain, hindbrain, and olfactory bulb. This expression pattern was confirmed by
immunohistochemistry with an AP-2�–specific antiserum. By using this antiserum, we could further localize AP-2�
expression in a hypothalamic nucleus and the neuroepithelium of the vomeronasal organ, suggesting an important
function of AP-2� for the development of the olfactory system. Developmental Dynamics 231:128–135, 2004.
© 2004 Wiley-Liss, Inc.
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INTRODUCTION

AP-2� was identified due to its ability
to bind to the SV40 and the human
metallothionein IIa gene promoters
and initially was considered to rep-
resent a unique transcription factor
without any homology to other tran-
scriptional regulators (Mitchell et al.,
1987). In 1995, a second homolo-
gous gene, AP-2�, was cloned
(Moser et al., 1995) and, subse-
quently, two further AP-2 genes,
AP-2� (also known as AP-2.2) and

AP-2�, enlarged the family of AP-2
transcription factors (Bosher et al.,
1996; Chazaud et al., 1996; Oulad-
Abdelghani et al., 1996; Zhao et al.,
2001). All currently known AP-2 pro-
teins share a modular structure con-
sisting of an N-terminal proline- and
glutamine-rich transactivation do-
main, followed by a positively
charged �-helical DNA binding re-
gion and a helix-span-helix motif,
which mediates homo- and het-
erodimerization of AP-2 proteins (Wil-

liams and Tjian, 1991a,b; Bosher et
al., 1996). The C-terminal domains of
AP-2 proteins share the highest de-
gree of similarity and were also
highly conserved during evolution,
as cloning of the Drosophila AP-2
protein revealed 68% identity with
AP-2� in this region (Bauer et al.,
1998; Monge and Mitchell, 1998). In
contrast, the N-terminal transactiva-
tion domain appears to be structur-
ally more flexible and, therefore, less
conserved between the individual
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AP-2 proteins, although, with the ex-
ception of AP-2�, certain critical res-
idues and motifs involved in tran-
scriptional activation are conserved.
A limited number of only 36 critical
amino acid residues was mapped
previously and is believed to interact
with coactivators of the transcription
machinery (Wankhade et al., 2000).
Expression analyses in mammals,

birds, and amphibians showed that
AP-2 genes are involved in the for-
mation of craniofacial, neuroecto-
dermal, ectodermal structures, limb
buds, and urogenital tissues (Mitchell
et al., 1991; Snape et al., 1991; Moser
et al., 1995, 1997a; Shen et al., 1997;
Epperlein et al., 2000). The functional
relevance of AP-2 proteins for mam-
malian development was demon-
strated by the lethal phenotypes of
AP-2�, AP-2�, and AP-2� mouse mu-
tants. Of interest, the phenotypes of
these mutants differ significantly, de-
spite that the expression patterns of
AP-2�, AP-2�, and AP-2� genes over-
lap in many tissues during mouse de-
velopment. AP-2� knockout mice
exhibit severe craniofacial defects
and defective closure of the anterior
neural tube and body wall (Schorle
et al., 1996; Zhang et al., 1996; Nottoli
et al., 1998; Brewer et al., 2002). AP-
2�–deficient mice complete embry-
ogenesis, but die shortly after birth
due to impaired kidney function
(Moser et al., 1997b, 2003). Finally,
AP-2�mutant embryos die very early
after gastrulation as a result of de-
fective placental development (Au-
man et al., 2002; Werling and
Schorle, 2002).
Recently, germ line missense mu-

tations in the human AP-2� gene
have been linked to Char syndrome,
characterized by patent ductus ar-
teriosus, facial malformations, and

hand anomalies. AP-2� mutations in
patients with Char syndrome result in
a transdominant negative AP-2�
protein with defective DNA binding
properties (Satoda et al., 1999,
2000). These results clearly indicate
that AP-2 genes execute also essen-
tial nonredundant functions during
human development.
In this study, we describe a new

fifth member of the AP-2 transcrip-
tion factor family, AP-2�, which is
mainly expressed in the central ner-
vous system during murine embryo-
genesis. We additionally describe
here the generation and character-
ization of an AP-2�–specific anti-
serum that can be used for Western
blots, gel mobility shift assays, and
immunohistochemistry.

RESULTS AND DISCUSSION

Identification of the Mouse
AP-2� cDNA

By a BLAST search for AP-2 genes, we
identified a partial cDNA clone,
which encoded a predicted pep-
tide with significant homology to the
central region of AP-2 proteins
(AA414551; IMAGE 778986). By using
this partial cDNA sequence, an ex-
tended expressed sequence tag
(EST) BLAST search identified several
overlapping EST clones (described in
the Experimental Procedures sec-
tion). Because all of these indepen-
dent ESTs encoded the same pre-
dicted peptide with significant
homology to the DNA binding and
dimerization domains of the four pre-
viously known AP-2 proteins, we as-
sumed that they were derived from
a distinct, fifth AP-2 protein, which
we designated AP-2�. Unfortunately,
all these clones lacked the 5� region

of the new AP-2� gene. Specific
primer pairs were chosen to amplify
a 551-bp cDNA fragment by reverse
transcriptase-polymerase chain re-
action (RT-PCR) that was subse-
quently used as a probe to screen
an embryonic day (E) 14 mouse em-
bryo cDNA library. The cDNA library
screen identified one positive
lambda phage clone and the iden-
tity of the AP-2� cDNA was verified
by sequencing. Again, this cDNA
clone only covered the 3� region of
the murine AP-2� cDNA. Finally, a
BLAST search to human EST clones
identified a full-length AP-2� cDNA
clone (IMAGE 5786430). In addition
to the coding sequence, this clone
contained 232-bp 5�- and 664-bp 3�-
untranslated regions (UTRs) and the
insert was used to generate a cyto-
megalovirus (CMV) promoter-driven
AP-2� expression plasmid.
By using the NIX software pack-

age, the murine genomic sequence
from Celera and the NCBI data-
base, we determined the genomic
organization of the murine AP-2�
gene. The overall structure of the
mAP-2� gene is highly conserved
and, as known from AP-2�, �, and �
genes, consists of seven exons span-
ning approximately 20,000 bp. The
genomic organization suggests that
these genes were most likely derived
by gene duplication of a single an-
cestor. The exon–intron boundaries
follow the conserved splice donor
and acceptor sites (Table 1). The
NCBI database maps the AP-2�
gene to human chromosome 1 and
mouse chromosome 4. Table 2 sum-
marizes the chromosomal loci of all
five human and murine AP-2 genes.
The AP-2� gene encodes a pre-

dicted peptide of 434 amino acids
harboring all modular domains

TABLE 1. Overview of Exons and Exon–Intron Junction of AP-2�

Exon
number

Exon size
(bp)

Sequence at exon–intron junction

3�splice acceptor 5�splice donor

1 �144 TCC GCC ATG gtg agt
2 573 ctt ctg cag GAG CGC CCC GAA TTG CAG gta agc
3 52 tat ttg cag GCG ATA GAT TCA AGA AAG gta agg
4 223 gtt cca cag TCC CCA TTC CCT CCG AAG gta gga
5 119 tac gtt aag GGC CAA GTC TGG TGG AAG gta agc
6 142 ttt ccc cag GAG AAG CTG GGC TGC CAA gtg agt
7 �283 ccc cac cag GCA ǴAT CTG CAT CGG AAG taa ctg

TABLE 2. Chromosomal Locations of
Human and Murine AP-2 Genes

AP-2

Chromosome
location

Human Mouse

� 6p24 13 A5-B1
� 6p12 1 A2-A4
� 20q13.2 2 H3-H4
� 6p12.1 1 A3
	 1p34.3 4 D2.2
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shared by the classic AP-2 genes,
AP-2�, �, and �. Highly conserved
DNA binding and dimerization motifs
homologous to the other murine
AP-2 proteins are present in the C-
terminal half starting from amino
acid 208 (Fig. 1). The transcriptional
activation domain located in the N-
terminal half is much less conserved
between the different AP-2 proteins.
However, functionally important res-
idues, including the PY motif at posi-
tions 47 to 51 in AP-2�, the aspartic
acid residue corresponding to posi-
tion 52 in AP-2� and the two leucine
residues at positions 107 and 108 of
AP-2� (Wankhade et al., 2000), are
present in AP-2� and in all other AP-2
isoforms, except for AP-2� (Fig. 1). Of
interest, AP-2� lacks a short N-termi-
nal peptide, a feature that has been
also observed in Xenopus AP-2 (Win-
ning et al., 1991).

Tissue-Specific Expression of
AP-2� During Murine
Embryogenesis and in Adult
Tissues

To determine the expression profile
of AP-2� during murine embryogen-
esis, RT-PCR was performed with AP-
2�–specific primers chosen from the
3� end and the 3� UTR of the AP-2�
cDNA (see Experimental Procedures
section). Gel electrophoresis re-
vealed bands on ethidium bromide–
stained agarose gels for all analyzed
embryonic stages from E7.5 to E17.5.
The expression signal strikingly in-
creases from E8.5 to E14.5 and de-
clines thereafter. Of interest, expres-
sion levels at E7.5 were higher
compared with later stages, proba-
bly due to the fact that these RNA
samples were prepared from whole
conceptuses, suggesting that AP-2�,
as well as AP-2� and AP-2� (Moser et
al., 1997a; Auman et al., 2002), is also
expressed in extraembryonic struc-
tures (Fig. 2A).
Next, we transcribed sense and

antisense digoxigenin-labeled ribo-
probes from an AP-2�–specific cDNA
fragment obtained from the 3� UTR
to determine embryonic expression
patterns by whole-mount in situ hy-
bridization. Specificity was verified
by hybridizing the probe to a South-
ern blot with full-length cDNAs of AP-
2�, �, �, and � and the partial murine Fig. 1. Clustal W alignment of murine AP-2� and the previously known AP-2�, �, �, and �

proteins. Identical amino acid residues are boxed in black with white lettering, whereas
similar residues are shown in gray boxes. Gaps between amino acids are filled with a dash.
Functional AP-2 domains are indicated above by horizontal bars.
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AP-2� cDNA clone (data not shown).
Whole-mount in situ hybridization of
E8.5 embryos revealed AP-2� expres-
sion in a distinct patch of cells in the
neural folds of the prospective mid-
brain region (Fig. 2B,C). This region
increased in size, when neural folds
started to fuse at E9.0 (Fig. 2D,E).
From E9.5 on, AP-2� signals were
abundant in the hindbrain primor-

dial anterior of the fourth ventricle
and in the spinal cord. In addition,
strong signals were detected in the
midbrain and midbrain–hindbrain
junction (Fig. 2F,G). Of interest, a pair
of distinct patches of cells in the an-
terior midbrain became evident at
E10.5 (Fig. 3A,B). Thus, AP-2� expres-
sion partially overlaps with expres-
sion of other AP-2 genes in these re-

gions. In particular, AP-2� and AP-2�
were previously detected in the mid-
brain, the midbrain–hindbrain junc-
tion, the primordia of the cerebellum
and the spinal cord (Moser et al.,
1995, 1997a). Additionally, AP-2� ex-
pression has also been localized to
the midbrain region at this time point
(Zhao et al., 2003). Of interest, AP-2�
expression was also observed in the
developing olfactory bulb, in which
no other AP-2 genes are expressed
at this early stage of development
(Fig. 3D–G). Sectioning of these em-
bryos confirmed the restricted AP-2�
expression in the neuroepithelium
and did not reveal any signals in
neural crest cells (data not shown).
To analyze AP-2� expression in the

brain at later stages, we dissected
brains from E12.5 to E15.5 embryos
and performed whole-mount in situ
hybridizations. Figure 4 shows differ-

Fig. 2. AP-2� expression during murine embryogenesis. A: Re-
verse transcriptase-polymerase chain reaction with an AP-2�–spe-
cific primer set reveals AP-2� expression during embryogenesis
from embryonic day (E) 7.5 until E17.5. As a control, the quality
and amount of cDNA preparations were tested by amplification of
a �-actin fragment. B–G: Whole-mount in situ hybridization of E8.5
(B,C), E9.0 (D,E), and E9.5 (F,G) mouse embryos. AP-2�–specific
signals are present in a restricted region of the neural folds of the
future midbrain at E8.5 (marked by an arrow in B and C). At E9.0
and E9.5, AP-2� is expressed in the midbrain region (arrowheads)
the hindbrain (arrow in G) and spinal cord (arrowhead in G).

Fig. 3. Whole-mount in situ hybridization of embryonic day (E)
10.5 (A–C), E11.5 (D,E), and E12.5 (F,G) mouse embryos hybridized
with an AP-2�–specific probe. A,C: AP-2� is expressed in the mid-
brain and hindbrain. B: Note the two lateral regions of AP-2� ex-
pression in the anterior midbrain. C: Backside view indicates stain-
ing anterior of the fourth ventricle (long arrow) and the spinal cord
(arrow). D–G: Arrows indicate AP-2� expression in the primordium
of the olfactory bulbs of E11.5 and E12.5 embryos. Control hybrid-
izations performed with a sense probe did not reveal any signals
(data not shown).



Fig. 4. Whole-mount in situ hybridizations of brain from embryonic day 14.5 embryos hybridized with an AP-2�–specific cDNA probe.
A–D: Lateral (A), backside (B), ventral (C), and frontal (D) view of the same brain showing AP-2� expression in the olfactory bulb and the
mesencephalon. Additional sites of AP-2� expression are distinct regions in the pons (arrowhead in A), medulla oblongata (arrows in A,
B, and C), and spinal cord (arrowhead in C).

Fig. 5. Characterization of an AP-2�–specific antiserum. A: Western-blot analysis from RIPA extracts of HepG2 cells transfected with
expression plasmids of all five AP-2 isoforms probed with the anti–AP-2� antiserum. Equal loading was confirmed by anti-tubulin staining.
B: Gel mobility shift assays of in vitro translated (IVT) AP-2 proteins incubated with radioactively labeled optimized hMtIIa and the
AP-2�–specific antiserum shows the formation of a supershifted AP-2�–DNA antibody complex.

Fig. 6. A–C: Immunohistochemical staining with the AP-2�–specific antiserum of sagittal sections of the head region of embryonic day
(E) 12.5 embryos. B and C show magnifications of the boxed area in A. Single AP-2�–positive cells in the midbrain (arrowheads in B) and
the most cranial telencephalon (arrow in C). D,E: Coronal and sagittal sections of the olfactory bulb from E15.5 embryos, respectively.
AP-2� is expressed in mitral cells of the olfactory bulb and the rostral accessory olfactory bulb (encircled by a dashed line in E). F: AP-2�
is further expressed in the ventrolateral nucleus of the hypothalamus (indicated by arrows). G,H: Transverse (G) and coronal (H) sections
of E15.5 and newborn mice of the vomeronasal organ, respectively. AP-2�–positive cells are found in the sensory neuroepithelium of the
vomeronasal organ. AOB, accessory olfactory bulb; III, third ventricle; MC, mitral cells; NS, nasal septum; OE, olfactory epithelium; OV,
olfactory ventricle; VNO, vomeronasal organ.
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ent perspectives of an E14.5 brain
hybridized with the AP-2� probe. This
stage reveals very strong expression
of AP-2� in the olfactory bulb and a
much weaker signal in the midbrain.
In addition, signals could also be de-
tected in distinct nuclei of the pons
and medulla oblongata and the spi-
nal cord (Fig. 4A–D). In parallel, we
performed radioactive in situ hybrid-
izations on sections of E12 to E16.5
embryos. Of interest, we were not
able to detect AP-2� in the midbrain
any longer at E16.5, suggesting a
down-regulation of AP-2� in this
structure, whereas expression in the
olfactory bulb was still detectable
(data not shown). Finally, we were
unable to detect any AP-2� expres-
sion in the brain of 1.5- and 3-month-
old mice by in situ hybridization
(data not shown). The decrease in
AP-2� expression was also confirmed
by RT-PCR analyses from adult tissue
preparations showing only very
weak signals in the brain and ovary
(data not shown).

Generation of AP-2�–Specific
Antiserum and
Immunohistochemical Analysis
of AP-2� Expression

To analyze AP-2� protein expression
in more detail, we aimed to gener-
ate an AP-2�–specific polyclonal an-
tiserum (see Experimental Proce-
dures section). AP-2�–transfected
NIH3T3 cells showed strong nuclear
staining when incubated with the
antiserum raised against an N-termi-
nal peptide of the AP-2� protein
(data not shown). Specificity was
tested by Western blot analysis of ly-
sates from HepG2 cells that were
transfected with cDNAs of all five
AP-2 isoforms (Fig. 5A). In addition,
we performed gel mobility shift as-
says of in vitro translated AP-2 iso-
forms together with the optimized
hMtIIa binding sequence (Mohibul-
lah et al., 1999). Here, a supershift
was only formed with the AP-2�–DNA
complex (Fig. 5B). Both assays con-
firmed that the antiserum specifically
recognizes the AP-2� protein without
any cross-reactivity.
Finally, we used this antiserum for

immunohistochemistry of paraform-
aldehyde-fixed sections of E12.5 and
E15.5 embryos. Again, the specificity

of this antiserum was proven by the
nuclear staining and the staining
pattern itself, which clearly con-
firmed the data obtained from in situ
hybridizations. At E12.5, we de-
tected labeled cells in the midbrain
and the most cranial region of the
telencephalon (Fig. 6A–C). Of inter-
est, AP-2�–positive cells are not lim-
ited to the roof of the midbrain,
where three other members of the
AP-2 family, AP-2�, AP-2�, and AP-
2�, are expressed at that time point
in more differentiated neuronal cells
(Moser et al. 1995; Zhao et al. 2003;
own unpublished data). In contrast,
AP-2�–positive cells are distributed
throughout the neuroepithelium in
neuroblasts that have left the prolif-
erative ventricular zone (Fig. 6B).
These data indicate that (1) AP-2� is
expressed already earlier during the
maturation process of neuronal cells
and (2) its expression does not over-
lap at the cellular level with the
other members of the AP-2 family in
the midbrain. Although, we were
able to show an interaction be-
tween AP-2� with other members of
the AP-2 gene family in vitro, by per-
forming pull down analysis and gel
shift assays, our data here do not
support any in vivo relevance of this
interaction. Therefore, this point
needs further examinations (data
not shown).
From E12.5 onward, strongest

AP-2� expression is seen in the olfac-
tory system. At E15.5, no AP-2�–posi-
tive cells were stained in the mid-
brain. In contrast AP-2� protein
expression could be detected in the
mitral cell layer of the olfactory bulb
and the rostral portion of the acces-
sory olfactory bulb (Fig. 6D,E).
Chemosensation in most mam-

mals is achieved by at least two dis-
tinct nasal tissues: the main olfactory
epithelium and the vomeronasal or-
gan. The axonal processes of both
structures project to mitral cells of
the olfactory bulb and the acces-
sory olfactory bulb, respectively. In
both structures, AP-2� is expressed.
Of interest, AP-2� is also expressed in
the vomeronasal organ, which rep-
resents the sensory organ of social
chemical stimuli, like pheromones,
whereas no expression is found in
the olfactory epithelium. In the
vomeronasal organ, AP-2� is only

present in the crescent-shaped sen-
sory epithelium and not in the later-
ally located nonsensory epithelium
at E15.5 and in newborn animals
(Fig. 6G,H). The vomeronasal neuro-
epithelium is divided into an apical
and basal zone of sensory epithe-
lium. Axons of apical vomeronasal
neurons terminate on mitral neurons
in the rostral zone of the accessory
olfactory bulb, where AP-2� is also
expressed (Zufall et al., 2002; re-
viewed in Halpern and Martinez-
Marcos, 2003). At the moment, we
cannot claim, that AP-2�–positive
cells only belong to the apical zone
of the vomeronasal neuroepithe-
lium, it rather seems that it is ex-
pressed in neuroepithelial cells of
both layers. Finally, pheromonal
stimuli induce endocrinological
changes in the animal, which are
mainly regulated by certain hypo-
thalamic nuclei controlling the se-
cretion of hormones by the hypoph-
ysis. Of interest, AP-2� expression
could be also detected in a ventro-
lateral nucleus of the hypothalamus
(Fig. 6F). Whether these cells control
hypophyseal function needs further
investigation.
Taken together, our expression

data reveal a restriction of AP-2� ex-
pression to neuronal cells of the mid-
brain, hindbrain, olfactory bulb,
and vomeronasal neuroepithelium,
which clearly differs with respect to
time and spatial pattern from all
other members of the AP-2 family.
We therefore speculate that AP-2�
fulfills essential and nonredundant
functions for embryonic develop-
ment in these organs.

EXPERIMENTAL PROCEDURES

Identification of AP-2� and
Cloning of a Partial Murine
AP-2� cDNA Clone

Computer searches using the BLAST
algorithm identified a murine cDNA
clone with high homology to the
AP-2 gene family (AA414551; IMAGE
778986). An extended database
search using the NCBI-BLAST soft-
ware revealed several EST clones
containing partial cDNA clones of
the murine AP-2� gene (BF464155,
BI134735, BF461668, BE987978,
AI50520).
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The predicted cDNA sequences
were used to design primer sets to
amplify an AP-2� probe (mAP-2�
sense1: GTC TTC CAG GAT TGG
CGG AG; mAP-2� anti2: GGC TGG
AAA CTC AGT CTC AC). As a tem-
plate, we used total cellular RNA ex-
tracted from a mouse embryo at
gestational stage E14. The resulting
cDNA fragment of 551 bp was then
used to screen a murine embryonic
E14 cDNA library (AMS Biotechnol-
ogy Europe LTD, Lugano, Switzer-
land). Handling of lambda phages
and plaque lifting was performed as
described previously (Moser et al.,
1995). After screening 4.5 
 105

lambda phages, one positive clone
was identified, which contained the
3� part of the AP-2� cDNA (see
Fig. 1).
Both the lambda clone and, in

parallel, the IMAGE cDNA clone (IM-
AGE 778986) were sequenced on
both strands using an ABI377 DNA
sequencer. Finally, a full-length hu-
man EST clone (IMAGE 5786430)
containing 5� and 3� UTRs was also
obtained, sequenced, and used for
further experiments. The genomic or-
ganization of the mouse AP-2� gene
was mapped by using the NIX soft-
ware package and the NCBI data-
base, together with a comparison of
the cDNA sequences.

RT-PCR and Whole-Mount
In Situ Hybridization

Total cellular RNA from mouse em-
bryos of different stages and tissues
from adult C57BL/6 mice were iso-
lated by using Trizol (Invitrogen,
Karlsruhe, Germany) following the
manufacturer’s instructions. cDNA
synthesis was performed with 2 �g of
total RNA using the Superscript II
cDNA synthesis kit (Invitrogen). For
RT-PCR studies, the following primer
set were taken: mAP-2� spec sense:
CAA GCA TCG GAA GTA ACT GGC;
mAP-2� spec anti: CAC CTC TGA
TGT GTT ATC AGC.
Whole-mount in situ hybridization

was performed essentially as de-
scribed (Wilkinson, 1993). As a probe,
a 526-bp fragment obtained from
the 3� UTR region of the murine AP-2�
cDNA was excised with StuI/SalI from
the murine IMAGE clone (IMAGE
778986) and subcloned into pBlue-

script. Digoxigenin-labeled cRNA
sense and antisense probes were in
vitro transcribed from the linearized
plasmid as described previously
(Moser et al., 1995). The same frag-
ment was gel-purified and labeled
with [32P]dCTP by using a random
primed labeling kit (Amersham,
Braunschweig, Germany). Southern-
blot hybridization to linearized plas-
mids of the AP-2�, AP-2�, AP-2�, AP-
2�, and AP-2� cDNAs indicated that
the probe hybridized specifically to
AP-2� but not to any other AP-2
gene.

Generation of AP-2�–Specific
Antiserum and Western Blotting

Polyclonal AP-2�–specific antiserum
was raised in rabbits by using pep-
tide immunogens fused to KLH. The
AP-2�–specific peptide was MERP-
DGLGGAAAGGTR, which represents
the N-terminus of the protein. For
Western-blot analysis, 20 �g of RIPA
cell lysates of HepG2 cells trans-
fected with each of the five AP-2
expression plasmids were loaded
per well, separated on 10% sodium
dodecyl sulfate-polyacrylamide gel
and transferred to nitrocellulose. A
1:5,000 dilution of the AP-2� anti-
serum was used before specific an-
tibody binding was detected with
the ECL system (Amersham).

Immunohistochemical Analysis

Paraffin sections of E12.5, E15.5, and
newborn mice were rehydrated in
alcohol solutions, endogenous per-
oxidase activity was blocked with
3% H2O2/methanol for 15 min, fol-
lowed by antigen retrieval by heat
treatment in 10 mM sodium citrate
buffer (pH 6.0). After incubation with
10% goat serum/3% bovine serum al-
bumin, sections were incubated
with AP-2�–specific antiserum (at a
dilution of 1:2,500) at 4°C overnight.
Positive signals were developed with
peroxidase-conjugated secondary
antibody using diaminobenzidine
followed by counterstaining with
methyl green.
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Abstract

Palladin is a recently identified phosphoprotein that interacts with a number of actin-

associated proteins and thereby fulfils a crucial function as a molecular scaffold in 

organizing and stabilizing the actin cytoskeleton. Multiple palladin isoforms exist due 

to different promoter usage and alternative splicing giving rise to at least four major 

products: a 200 kDa isoform, a 140 kDa isoform and two isoforms with a size of 90-

92 kDa. Here, we describe the expression of these isoforms during mouse 

development and adult tissues by RT-PCR and in situ hybridizations. The 200 kDa 

isoform is predominantly expressed in developing heart and skeletal muscle. The 140 

kDa isoform is expressed in various mesenchymal tissues, and also represents the 

major isoform of the brain. The 90-92 kDa isoforms are almost ubiquitously 

expressed with highest levels in smooth muscle-rich tissues. Immunohistochemical 

and immunofluorecence staining with an anti-200 kDa isoform-specific antiserum 

localizes the large isoform to the Z-discs of cardiac and skeletal muscle cells. 

Interestingly, the expression of this isoform is initiated and increasing during in vitro

differentiation and fusion of C2C12 myoblasts suggesting that the the 200 kDa 

palladin isoform may play a scaffolding role during sarcomeric organization.



Introduction 

The precise dynamic organization of the actin cytoskeleton is crucial for almost all 

cellular processes; in particular cellular morphogenesis, cell motility and cell 

contractility depend on the coordinative action of various actin-binding proteins that 

regulate the assembly and disassembly of actin-fibers and the actin-network. Palladin 

is an actin-associated phosphoprotein that has been shown to fulfil an essential role 

in maintaining cell morphology and cytoskeletal organization in different cell types. 

This is achieved by Palladin´s multi-domain structure which is supposed to act as a 

molecular scaffold that recruites multiple actin associated proteins such as �-actinin,

VASP, ezrin, profilin, Lasp-1, Esp8 and F-actin itself (Mykkänen et al., 2001; 

Boukhelifa et al., 2004; Rönty et al., 2004; Goicoechea et al., 2006; Boukhelifa et al., 

2006; Rachlin and Otey, 2006; Dixon et al., 2008). In addition, palladin interacts with 

a number of proteins, which are involved in actin organization such as Abl/Arg kinase 

binding protein (ArgBP2), lipoma preferred partner (LPP) and SPIN90 (Rönty et al., 

2005; Jin et al., 2007; Rönty et al., 2007). 

Recent database searches revealed a much more complex genomic organization of 

the palladin gene than originally thought. The palladin gene structure is highly 

conserved between mouse and man and spans ~400kb on mouse and human 

chromosomes 8B3.3 and 4q32.3, respectively. At least three different promoters 

drive the expression of three major forms that are classified as the 200 kDa, the 140 

kDa and the doublet isoforms of 90 to 92 kDa. From each isoform alternative splicing 

events results in further less well characterized products (reviewed in Otey et al. 

2005). The three major isoforms contain three C-terminal immunoglobulin-like 

domains of the IgCAM (immunoglobulin domain Cell Adhesion Molecule subfamily) 

class that mediate the binding to ezrin and F-actin (Mykkänen et al., 2001; Dixon et 



al., 2008). Depending on the isoform up to three proline-rich regions are N-terminal to 

the IgCAM domains and mediate the interaction with profilin and Mena/VASP family 

proteins (Boukhelifa et al., 2004). The short 90 to 92 kDa isoforms are thought to be 

expressed ubiquitously in chicken, mouse and human tissues (reference?). The 140 

kDa isoform is transcribed from an alternative promoter located in the middle of the 

gene and contains a fourth IgCAM domain and a proline-rich sequence that extends 

the N-terminus of the 90-92 kDa isoform. Recently, a two hybrid screen identified the 

actin binding protein Lasp-1 as a novel interactor of the 140 kDa isoform (Rachlin and 

Otey, 2006). This isoform is mainly expressed during development in a variety of 

tissues including kidney, spleen, gastro-intestinal tract and skeletal muscle, and to a 

much lesser extent in adult tissues (Parast and Otey, 2000). Finally, the longest, 200 

kDa isoform is transcribed from the most 5´ promoter and appends an approximately 

1kb long exon onto the 140 kDa transcript. Translation of the additional coding 

sequence adds a fifth IgCAM domain. Expression of the 200 kDa isoform has been 

detected in the developing heart of chicken and mouse (Parast and Otey, 2000).

Palladin belongs to the palladin/myotilin/myopalladin family that have multiple IgCAM 

domains in their C-terminal region in common. The two other members, myotilin and 

myopalladin, are both expressed in striated muscle and heart and predominantly 

localize to the Z-disc (Salmikangas 1999, Bang et al., 2001). Both proteins bind �-

actinin and are thought to play an essential role in sarcomeric organization 

(Salmikangas et al., 1999; Bang et al., 2001). In line with this speculation is the 

observation that single missense mutations in the N-terminus of myotilin cause two 

distinct inherited muscular disorders called limb-girdle muscular dystrophy 1 A 

(Hauser et al., 2000) and myofibrillar myopathy (Selcen and Engel., 2004). Both 

show ultrastructural changes of sarcomeres. 



The function of palladin as an actin organizing protein was first analysed in a variety 

of different cell lines by antisense experiments and siRNA knockdown approaches 

resulting in a dramatic loss of the F-actin distribution (Parast and Otey, 2000; Rachlin 

and Otey, 2006). Overexpression of palladin leads to more robust actin-fibers 

suggesting that palladin is required for the organization and stabilization of the actin 

cytoskeleton. Inactivation of all palladin isoforms in mouse results in an embryonic 

lethal phenotype caused by an exencephaly and body wall closure defects. Palladin-

deficient embryonic fibroblasts revealed disturbed stress fiber formation, impaired cell 

attachment to extracellular matrix (ECM) components and reduced cell motility (Luo 

et al.,2005).

Here we present a comparative expression analysis of the major palladin isoforms 

during murine embryogenesis and in adult tissues. With the help of an antiserum 

specific for the 200kDa isoform and an EGFP-fusion protein construct we addressed 

its cellular localization and showed that the largest palladin isoform is dynamically 

expressed during myofibrillogenesis. 



MATERIALS AND METHODS 

RT-PCR

Total RNA (2 µg) was used for first strand cDNA synthesis according to the protocol 

of the manufacturer using SuperScriptIII polymerase (Invitrogen) and random 

hexamer primers. Specific cDNA fragments were amplified using the following 

primers: Exon2 sense: CATCCAGAAACTGAGGAGCC; Exon3 sense: 

TGCTGCCTGTGCATTTTCCC; Exon5 antisense; AGCTTTCGCTGTCAGAGTCC; 

Exon12 sense: AGGAGCCCTCGACACCCAC; Exon13 sense: 

CAGATGGGACTTTTCCGCTC; Exon14 antisense: ACTTGGTTCTGCAGCTGCTG. 

Whole mount and radioactive in situ hybridization 

Digoxigenin- or 33P-UTP-labelled sense and anti-sense riboprobes were generated 

by in vitro transcription from linearized vectors containing 200 kDa and 140 kDa 

specific or Exon18-19 cDNA fragments. Whole-mount in situ hybridization was 

performed essentially as described (Wilkinson, 1993). For radioactive in situ

hybridization, paraffin sections from mouse embryos at different embryonic stages 

were dewaxed, rehydrated and hybridized as previously described (Moser et al., 

1995).

Antiserum production 

A palladin 200 kDa specific peptide (TSSHDSFYDSLSDVQE; aa) located in exon 2 

of the palladin gene (see figure 1) was coupled to Imject Maleimide Activated mcKLH 

(Pierce) and used to immunize rabbits. 

Western Blotting 



Both cells and tissues from embryos or adult C57BL/6 mice were homogenized in 

modified RIPA buffer (50 mM Tris-HCl pH7.4, 150 mM NaCl, 5mM EDTA, 0.1% SDS, 

1% Triton X-100, 1% Na-deoxycholate) and in the presence of protease (Roche) and 

phosphatase inhibitors (Sigma). Equal amounts of total protein (20 �g) were 

separated by SDS-PAGE under reducing condition and transferred to PVDF 

membranes (Millipore). Immunoblots were developed using the ECL detection 

system (Amersham). Palladin 200 kDa isoform specific antiserum (1:10k), rabbit anti-

MyoD (1:150, Santa Cruz), rabbit anti-myogenin (1:150, Santa Cruz) antibodies were 

used together with the appropriate secondary antibody (1:10k, Biorad). 

Constructs

Several palladin cDNAs were PCR amplified using the IMAGE cDNA clone 

BC_027364 and mouse whole embryo cDNA at E15.5 and cloned into the pEGFP-N1 

vector (Clontech). Final constructs were confirmed by sequencing.  

Immunostaining

Paraffin sections were dewaxed, rehydrated and endogenous peroxidase was 

blocked by incubating the slides for 20 min in 2.5 ml H2O2/75 ml methanol. Blocking 

was performed for one hour in 10% goat serum/1% BSA/phosphate-buffered saline 

(PBS) and the palladin 200 kDa isoform specific antibody (1:500) was incubated at 

4°C over night. Sections were incubated with a 1:200 dilution of biotinylated anti-

rabbit secondary antibody for one hour and transferred to ABC solution (Vector 

Laboratories) for an additional 30 min. Secondary antibody was detected with 

diaminobenzidine (DAB). Counterstaining of the sections was performed with 

methylene green and sections were mounted with Entellan. 



Immunohistochemistry 

Mouse myoblast cells (C2C12) were grown on 0.2% gelatin (Merck) coated glass 

cover slips, fixed with 4% PFA/3% sucrose/PBS, permeabilized with 0.25% Triton X-

100 in PBS for 10 min, blocked in PBS containing 3% BSA and 5% goat serum for 

one hour. Cells were immunostained for palladin 200 kDa specific antiserum (1: 800), 

and co-stained with �-actinin (monoclonal antibodies from Sigma) visualize Z-discs. 

Alexa488 and Cy3-conjugated secondary antibodies were purchased from Molecular 

Probes. Stained cells were mounted in Elvanol and pictures were taken with a Leica 

DMRA2 microscope and a Hamamatsu camera. 

Transfections

NIH3T3 cells and primary cardiomyocytes were transfected with EGFP-palladin 200 

kDa isoform cDNA construct using Lipofectamine 2000 (Invitrogen) following the 

manufacturer’s instructions. 

Isolation and culture of neonatal mouse cardiomyocytes 

Cardiomyocytes were isolated from hearts of P1 newborn mice treated with enzyme 

solution (0.4 mg/ml collagenase (Worthington, Freehold, NJ) and 1 mg/ml pancreatin 

(Sigma, St. Louis, MO) in ADS buffer (116 mM NaCl, 0.8 mM NaH2PO4, 1 g/l 

glucose, 5.4 mM KCl, 0.8 mM MgSO4 and 20 mM 2,3-butanedione monoxime in 20 

mM HEPES, pH 7.35) for 10 min at 37°C. Fresh enzyme solution (0.3 ml/heart) was 

added and tissue was incubated for 8 min. The supernatant containing dispersed 

cardiac cells was transferred to a new tube containing 1 ml FCS (per heart) and 

centrifuged at low speed (80xg, 6 min), resuspended in 2 ml FCS and kept at 37 oC. 

The remaining tissue fragments were incubated with fresh enzyme solution (0.3 ml/ 



heart) as above for additional 5 times. Cell suspensions were pooled and centrifuged 

at low speed (80xg, 6 min without brake) and resuspended in 4 ml ADS buffer.

Cells were seeded on glass coverslips coated with fibronectin (10 µg/ml) at a cell 

density of 3.0x105 cells/35-mm culture dish in plating medium (67% DMEM, 17% 

medium M199, 10% horse serum, 5% FCS, 1% Pen/Strep and 4 mM glutamine 

(Invitrogen)). Cells were incubated at 37oC in a 5% CO2 humidified incubator. The 

next day the plating medium was replaced with maintenance medium (75% DMEM, 

23.5% medium M199, 0.5% horse serum, 1% Pen/Strep, 4 mM glutamine and 0.1mM 

phenylephrine). 

Isolation and differentiation of primary myoblasts 

Primary myoblasts were isolated as described by Rando and Blau (1994). Briefly, 

hindlimbs were dissected from 1 to 2-day-old mice, placed in PBS, minced with a 

razor blade and enzymatically dissociated with a mixture of collagenase II (0.1%, 

Worthington, Freehold, NJ) and dispase (grade II, 2.4U/ml, Roche). The slurry, 

maintained at 37oC for 30-45 min, was triturated every 15 min with a 5-ml plastic 

pipette. After centrifugation at 350xg for 10 min, the pellet was resuspended in 

DMEM containing 20% FCS, 2 mM Glutamin, 1% Pen/Strep (all Invitrogen) and 

preplated on non-coated tissue culture dishes for 20 min for the attachment of 

fibroblasts to the dish surface. Non-adherent cells were then transferred into 0.2% 

gelatine-coated 6-well-plates (about 2 limbs for 1 well). Differentiation was induced 

with 5% horse serum (Invitrogen) in DMEM for 2-4 days. A myotube was defined as 

having three or more nuclei. 



RESULTS AND DISCUSSION 

Genomic organization of the murine palladin gene and expression of palladin 

isoforms during mouse development and in adult tissues 

In order to analyse the expression of individual palladin isoforms during embryonic 

development and in adult tissues, specific RT-PCR reactions were performed using 

primers shown in Fig 1 and RNA from whole embryos at embryonic day (E) 7.5 to 

E18.5 (Fig. 2A). The 200, 140 and both 90-92 kDa isoforms were expressed 

throughout embryogenesis. However, whereas the 200 kDa and 90-92 kDa isoform B 

increased from E7.5 until E10.5 and slightly decreased thereafter, the two other 

isoforms remained almost constant.

The same primers were used to analyse the expression profile of the palladin 

isoforms in various adult tissues (Fig. 2B). The 200kDa isoform was dominantly 

expressed in heart and skeletal muscle but much less abundant in several other 

tissues. In contrast, the 140kDa isoform was expressed in multiple organs and 

represents the dominant isoform of the brain. The 90-92 isoform A revealed an even 

wider distribution with absent expression in heart and low expression levels in brain, 

spleen, skin and testis. Finally, the 90-92 isoform B again was more restricted to 

tissues rich in smooth muscle cells such as bladder, uterus, small intestine and colon, 

but is also expressed in liver, kidney and spleen and most prominent in lung. In 

summary, both small isoforms are dominantöy exxpressed in smooth muscle cell.-

containing tissues and lung when compared to the two larger isoforms. 

Recently a 50kDa palladin isoform was reported to be expressed in mouse 

embryonic fibroblasts (Luo et al., 2005). We screened the same embryonic and adult 

tissues for this isoform using the primers shown in Fig 1. However, no specific 



product was detected suggesting that this isoform is expressed either at very low 

levels or only in certain cell types not included in the tissues analyzed. 

Tissue specific expression of the 200 kDa and 140 kDa palladin isoforms 

during embryonic development 

To determine the distribution of the individual palladin transcripts during mouse 

development, we performed whole mount in situ hybridizations (ISH) on embryos 

(E8.5 -11.5) (Fig. 3) and radioactive ISHs on mouse embryo (E12 – E15) sections 

(Fig. 4) from different developmental stages. 

Specific probes for the 200 kDa and 140 kDa isoforms were generated by amplifying 

the first exons of both variants (see also figure 1 for location of the probes). These 

were then subsequently subcloned into pBluescript to derive sense and antisense 

transcripts. In line with the RT-PCR analyses, whole mount ISHs on E8.5 to E11.5 

embryos revealed that the 200kDa isoform was strongly expressed in heart. At later 

stages this isoform was expressed in the ventricles and the atria of the heart. The 

200 kDa isoform was first expressed in anterior somites at E9.5 and gave rise to a 

characteristic double striped signal in the myotome of E10.5 and E11.5 embryos, 

which most likely represents differentiating myoblasts. In contrast, the 140 kDa 

isoform revealed a much broader expression pattern and was detected in the anterior 

neural plate and brain of E8.5 and E9.5 embryos. In addition, the 140 kDa isoform 

was expressed in somites in a posterior to anterior descending gradient with highest 

expression levels in epithelial somites. The 140kDa isoform was also expressed in 

the presomitic mesoderm. Interestingly, the amount of the 140 kDa isoform 

decreased during the differentiation of the somites into dermo-myotome and 

sclerotome. At E10.5 and E11.5 the 140 kDa isoform was also found in the facial 

mesenchyme with strong expression in the branchial arches.  Migrating myoblasts of 



the epaxial and hypaxial myotome of which the latter invade the limb bud 

mesenchyme were also positive for the 140 kDa isoform.

We then tried to generate specific probes for the short isoforms (90-92 kDa A and B 

and the 50 kDa isoform). Unfortunately the 5´exons of the short isoforms were too 

short and had a high GC content (~70) and could therefore not been used as specific 

probes for in situ hybridizations. To include these isoforms in our ISHs we used a 

cDNA probe covering exons 18 and 19 (E18-19 probe). By using this probe both long 

transcripts were also detected, revealing the characteristic staining pattern within the 

heart, facial mesenchyme, limbs and somites. However, this probe revealed an 

ubiquitous palladin expression indicating that the short isoforms are expressed 

throughout all tissues, as suggested by the RT-PCR studies..

In parallel, radioactive in situ hybridizations on sections of mouse embryos confirmed 

the restricted expression pattern of the 200 kDa isoform in the developing heart and 

skeletal muscle system at E12 and E14 (Fig. 4A, D). Parallel sections hybridized with 

a 140kDa specific probe showed expression in mesenchymal tissues like the facial 

mesenchyme, the dermis and the kidney mesenchyme. Weaker signals were 

detected in the brain, skeletal muscle like the tongue, around the bronchi of the lung, 

in cartilage and the perichondrium (Fig. 4B, F-K). The E18-19 probe, which detects 

all palladin isoforms, gave signal in the whole embryo (Fig. 4C and E), confirming that 

the palladin gene is ubiquitously expressed, although the individual isoforms have a 

specific expression pattern. 

Control hybridizations with the sense probes revealed any signals in the whole mount 

or in the radioactive in situ hybridizations (data not shown).

Altogether these data indicate that the 200 kDa isoform is mainly confined to heart 

and skeletal muscle cells, the 140 kDa isoform expression is much broader with high 



expression levels in mesenchymal tissues and the smaller isoforms are ubiquitously 

expressed.

Palladin 200 kDa isoform localizes to the Z-discs of cardiac and skeletal muscle 

cells

To date, the subcellular localization of the largest murine palladin isoform has not 

been addressed. To discriminate between the 200kDa palladin isoform from the more 

widely expressed shorter forms we generated a rabbit polyclonal antiserum against 

an N-terminal peptide localized within exon2 of the palladin gene (see material and 

methods). Specificity and cross-reactivity of the 200 kDa isoform antiserum are 

shown in protein lysates from NIH3T3 cells transfected with different EGFP-tagged 

palladin isoforms (Fig. 5A, B). The specificity of the 200 kDa isoform antiserum was 

also confirmed by immunohistochemical staining on paraffin sections from mouse 

embryos showing again the 200 kDa isoform expression in heart and skeletal muscle 

(Fig. 5D). Furthermore, we generated a second rabbit polyclonal antiserum against a 

peptide localized in exon 11, which is only present in the 200 and 140 kDa isoforms. 

Western-Blot analyses revealed that this antiserum specifically binds to these 

isoforms and it also detects the endogenous 140 kDa isoform expressed in NIH3T3 

cells (Fig. 5C).

To investigate the subcellular localization of the 200 kDa isoform in striated muscle 

tissues, primary cardiomyocytes and myoblasts from mouse embryos were isolated 

and either transfected with an expression construct encoding for the EGFP-tagged 

200 kDa isoform or we used the 200 kDa isoform specific antiserum for 

immunofluorescence stainings. Both transfected primary cardiomyocytes as well as 

fused primary myoblasts revealed colocalization of the 200 kDa isoform with �-actinin 

in a characteristic striped pattern representing the sarcomeric Z-discs (Fig. 5E).  



The 200kDa isoform of palladin is induced during myoblast differentiation  

C2C12 cells represent a valuable model to study myoblast differentiation and fusion 

in vitro. To address the role of the two large palladin isoforms during myotube 

differentiation, C2C12 cells were grown for 1, 3 and 6 days in differentiation medium 

and the levels of the two palladin isoforms were determined by RT-PCR and 

Western-blot analyses. The differentiation of myblast into myotubes were confirmed 

by the change in cell morphology, extent of cell fusion and molecularly by the 

expression of two myogenic transcription factors, myoD and myogenin. They show a 

reciprocal expression behaviour during myoblast differentiation, with high MyoD 

levels in undifferentiated myoblasts which then decreases during the differentiation 

process, and low myogenin in myoblasts, which becomes up-regulated during 

myotube formation.

Interestingly, the large 200 kDa isoform of palladin, which is almost undetectable in 

undifferentiated C2C12 myoblasts, became significantly expressed during the 

differentiation process (Fig. 6A). In line with this observation, the 200 kDa isoform 

protein level also increased during differentiation suggesting that the 200kDa isoform 

is specifically synthesized during the formation of the highly ordered contractile unit in 

striated muscle cells, the sarcomere (Fig. 6B). mRNA encoding the 140kDa isoform 

was present at almost constant levels during myoblast differentiation, while levels of 

the 140kDa polypeptide declined (Fig. 6 A,B). 

Our data reveal that the different palladin isoforms are expressed in a tissue specific 

pattern during development and in adult organs. Only the 90-92 kDa isoform B 

seems to be almost ubiquitously expressed. The largest, 200 kDa isoform is mainly 

expressed in striated muscle. Interestingly, this isoform becomes expressed during 

the differentiation of myoblasts to myotubes and the formation of myofibrils. The 140 



kDa isoform is expressed in mesenchymal cells and also in migrating myoblasts 

during development. During muscle differentiation the transition from a myoblast, 

which contains stress-fiber-like structures, to fused myotubes that have formed the 

contractile units critically depends on an ordered expression of striated muscle 

specific proteins, which become precisely positioned within the sarcomere. Based on 

palladin´s multidomain structure and function as an actin-binding scaffolding protein 

the 200 kDa isoform might be crucial for the correct assembly of sarcomeric proteins.
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FIGURE LEGENDS

Figure 1. Schematic presentation of the murine palladin gene structure and various 

transcripts. Closed boxes show translated regions of the different splice variants. 

Arrows indicate the localization of the primer pairs that have been used for RT-PCR 

reactions. The stars in exon 2 and 11 show the peptide regions which were chosen to 

generate the 200 kDa specific and 200/140 kDa isoform antisera. The cDNA regions 

used as probes for the ISHs are shown as grey boxes below the transcripts. 

Figure 2. Expression of the different palladin isoforms during mouse development 

and in adult tissues. RT-PCR analyses with specific primer pairs for the individual 

palladin isoforms from total RNA extracted from whole embryos at different 

embryonic stages (A) and from various adult tissues (B). GAPDH was used as the 

control.

Figure 3. Whole mount in situ hybridization on E8.5, E9.5, E10.5 and E11.5 mouse 

embryos with palladin isoform specific probes. Embryos were hybridized with the 200 

kDa specific probe (A), the 140 kDa specific probe (B) and a pan-palladin probe that 

detects all isoforms (C).

Figure 4. Radioactive in situ hybridization of mouse embryo sections with the 200 

kDa (A, D), the 140 kDa (B, F-H) and pan-palladin (C, E) cDNA probes. A to C show 

sagittal sections from whole E12 embryos. D to H show magnifications from sagittal 

sections of E14 embryos. I to K show bright field images of dark field pictures F to H. 

Whereas the 200 kDa isoform is only expressed in heart and skeletal muscle (A,D), 

the 140 kDa isoform is more widely expressed (B) particularly in mesenchymal cells 

of the facial mesenchyme (F), around the bronchi of the lung (G) and the kidney. The 

pan-palladin probe reveals an ubiquitious expression pattern (E). fm, facial 

mesenchyme; kd, kidney; lu, lung. 

Figure 5. Characterization of polyclonal palladin antisera and subcellular localization 

of the palladin 200 kDa isoform to the Z-discs of cardiomyocytes and fused 

myoblasts. Western blots from NIH3T3 cell lysates transfected with 200 kDa isoform-, 

140 kDa isoform-, 90-92 kDa isoform-, 50 kDa isoform- EGFP or EGFP only 



constructs were incubated with anti-GFP antibody (A), with anti-200 kDa isoform 

antiserum (B) and the 200/140 kDa isoform antiserum. (D) Immunohistochemical 

staining of a 12.5 embryo sagittal section with the anti-200 kDa isoform antiserum 

reveals strong expression in skeletal muscle and heart. (E) Localization of the 200 

kDa palladin isoform to the Z-discs of primary cardiomyocytes, which have been 

transfected with an EGFP-200-kDa isoform expression construct and costained for �-

actinin. Below, fused primary myoblasts were stained with the 200 kDa specific 

antiserum showing colocalization with �-actinin to the Z-discs of the sarcomeres.  

Figure 6. Expression of the 200 and 140 kDa palladin isoforms during in vitro

myogenesis of C2C12 cells. (A) RT-PCRs from total RNA isolated from C2C12 cells 

that have been cultered in differentiation medium für 0, 1, 3 and 6 days. PCR was 

performed with specific primer pairs for the 200 and 140 kDa isoforms and the 

myogenic differentiation markers MyoD and Myogenin. GAPDH was used as control. 

(B) In parallel, protein lysates were isolated from the same samples and Western blot 

analyses were performed and probed with the 200 and 140 kDa isoform antisera, 

and MyoD and Myogenin antibodies. Actin was used as loading control. 
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