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Summary 
 

Summary 
Understanding intracellular vector trafficking is crucial for the improvement of vector 

design strategies. While mechanisms of vector trafficking might not be of concern when 

experiments are successful, understanding vector-cell interactions becomes an important 

focus when gene expression does not reflect the dosage of input vector, or if the host 

has an unexpected response. 

Besides biochemical studies, microscopic techniques are powerful tools for the study of 

viral infection. Labeling of viral capsids with chemical dyes requires highly pure viral 

preparations to avoid labeling of contaminating proteins. Since the required level of 

purity cannot be easily achieved for most retargeting vectors, we aimed to generate GFP 

tagged AAV capsids.  

In this work it is demonstrated that the GFP incorporation into the viral capsid allows 

the generation of highly infectious GFP tagged particles which behave in cell entry and 

intracellular trafficking like wt AAV. 

Applying FISH analysis and confocal microscopy for detection of the viral genome and 

the viral capsid, it was observed that only the genomes but no intact viral capsids are 

delivered into the nucleus. This suggests that uncoating occurs before or during nuclear 

entry, contradicting the previous model of AAV entry into the host cell. In addition, our 

data provide first experimental evidence that the phospholipase A2 domain previously 

identified on the viral capsid might play a role in nuclear entry rather than in endosomal 

escape of the virus.  

In preliminary in vivo experiments, GFP tagged AAV could be detected also in infected 

animal tissue. 

The amino acid position 587 which is usually used in our group to insert retargeting 

peptides does not tolerate larger polypeptides. Since this study revealed that large 

polypeptides like GFP can be inserted at the N-terminus of VP2, this cloning strategy is 

sought to be applied for the insertion of larger retargeting polypeptides such as single 

chain antibodies. 

In another set of experiments the amino acid position 453 was found to be another 

useful retargeting site. Insertion of retargeting peptides at this site yielded viral mutants 

that were able to transduce target cells with higher efficiency than mutants carrying 

identical insertions at the 587 position. 
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Introduction 
 

1 Introduction 

1.1 Adeno-associated Virus 

Adeno-associated virus (AAV) was discovered 1965 when different groups described 

small, uniformly formed, virus like particles which were noticed during electron 

microscopical examination of simian adenovirus type 15 (SV15) (Atchison et al. 1965). 

These particles were 18-20 nm in diameter and showed an icosahedral symmetry 

(Mayor et al. 1965). Staining with acridin orange demonstrated that these particles 

contained DNA which contributed to the suggestion that those particles are viruses. The 

particles replicated only in cells that were coinfected with adenovirus. The authors 

named the particles adeno-associated virus (Atchison et al. 1965). 

Today, AAV has been classified as a member of the Parvoviridae. With a diameter of 

only 18 to 30 nm the parvoviruses are among the smallest known viruses (latin: parvum 

= small). Viruses of this family contain a single-stranded DNA genome of 

approximately 5 kb and a non-enveloped icosahedral capsid. The family of 

Parvoviridae contains two subfamilies the Densovirinae which infects invertebrates and 

the Parvovirinae which is specific for vertebrates. These subfamilies are divided into 

three genera. The subfamily Parvovirinae includes the genera Parvovirus, Erythrovirus 

and Dependovirus. Adeno-associated viruses belong to the Dependovirus genus. 

Parvovirus B19 is the only human pathogen within the Parvoviridae (Erythrovirus 

genus) and causes Erythema infectiosum, hydrops fetalis and abortion (Brown 2000; 

Vafaie and Schwartz 2004). All other representatives of this family, including AAV, are 

not pathogenic for humans (Berns and Linden 1995; Blacklow 1988). On the contrary, 

AAV seems to be protective against bovine papillomavirus and adenovirus mediated 

cellular transformation (de la Maza and Carter 1981; Hermonat 1989; Khleif et al. 1991; 

Mayor et al. 1973) and to have cytotoxic effects in malignant cells (Raj et al. 2001). 

In contrast to the Parvovirus and Erythrovirus genus, which are autonomous 

parvoviruses, AAV replication, and thus a productive infectious life cycle, depends on 

co-infection with unrelated helper viruses e.g. adenovirus (Ad), herpesvirus (HSV), 

human cytomegalovirus (HCMV), or papillomavirus (Berns 1990; Muzyczka 1992). In 

the absence of a helper virus AAV is able to establish a latent form of infection by 

stably integrating its genome into the the host cell genome. Helper viruses can be 
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partially replaced by chemical or physical carcinogens (Heilbronn et al. 1985; Yakobson 

et al. 1987,1989; Yalkinoglu et al. 1991). This leads to the conclusion that helper 

viruses induce specific changes in the host cell and thereby providing competence for 

AAV replication. 

Until now, 11 serotypes which share different levels of sequence homology, have been 

identified (Gao et al. 2002, 2004; Mori et al. 2004). AAV1-4 and 6 have been detected 

as contaminants of adenoviral preparations. AAV5 was isolated from penile 

condylomata lata (human wart) (Bantel-Schaal and zur Hausen 1984), AAV6 seems to 

be a recombination between AAV1 and 2 (Xiao et al. 1999). AAV7, AAV8 and AAV9 

have been detected in Rhesus monkey, AAV10 and AAV11 in Cynomolgus monkey 

(Gao et al. 2002, Mori et al. 2004). Sera epidemical studies suggest that AAV2, AAV3 

and AAV5 are epidemic in humans, whereas AAV4, 7-11 are endemic in nonhuman 

primates (Gao et al. 2002). The natural occurrence of AAV1 and AAV6 is not known.  

Although the other serotypes have attracted increasing attention during recent years, 

AAV serotype 2 is still the best characterized serotype, being the first isolated and 

cloned. 

1.2 Genome organization of AAV2 

Wild type AAV2 contains a single stranded DNA genome of 4679 nucleotides 

(Srivastava et al. 1983). The genome can be divided into three functional subunits. 

These are the two open reading frames (ORF) rep and cap flanked by the inverted 

terminal repeats (ITR) (Carter and Samulski 2000). It contains three promotors (p5, p19 

and p40) and a common polyadenylation signal (Fig. 1). The 5’-ORF rep encodes four 

Rep proteins, a family of multifunctional, non structural proteins. The different Rep 

proteins are named upon their molecular weight: Rep78, Rep68, Rep52 and Rep40. The 

larger Rep proteins are controlled from the p5, the smaller Rep proteins from the p19 

promotor (Lusby and Berns 1982). Splicing of a common intron leads to Rep68, a splice 

variant from Rep78, and Rep40 from Rep52. The larger Rep proteins are important for 

site specific integration, control of replication and transcription (Chejanovsky and 

Carter 1989; Pereira et al. 1997; Philpott et al. 2002a/b). The smaller Rep proteins seem 

to be involved in accumulation and packaging of single stranded DNA into the 

preformed capsid (Dubielzig et al. 1999; King et al. 2001). The Rep proteins can act as 

transactivator of transcription in presence of helper virus functions and as repressor of 
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the three viral promotors in absence of helper virus (Kyostio et al.1994; Pereira et al. 

1997). 

The 3’-ORF cap encodes the three capsid proteins VP1, VP2 and VP3, which form the 

60 subunits of the viral capsid in a 1:1:8 to 1:1:20 ratio (Kronenberg et al. 2001; 

Rabinowitz et al. 1999). All three capsid proteins are controlled by the p40 promotor 

and use the same stop codon. VP2 and VP3 are N terminal truncated variants of VP1. 

Synthesis of VP1 is regulated by alternative splicing whereas VP2 is initiated from an 

unusual translation initiation codon (ACG) (Becerra et al. 1985, 1988). The molecular 

weight of VP1, VP2 and VP3 is 90 kDa, 72 kDa and 60 kDa, respectively. VP3 alone is 

sufficient for capsid formation, but VP1 is required for viral infection (Warrington et al. 

2004). VP2 seems not essential for capsids formation and infectivity (Lux et al. 2005; 

Warrington et al. 2004). Capsid assembly takes place inside the nucleus (Wistuba et al. 

1995, 1997). 

The 145bp long ITRs form hairpins of a T-shaped structure which contains Rep binding 

sites (RBS) and a terminal resolution site (TRS) which is a specific cleavage site for 

Rep proteins (Im and Muzcyczka 1990; McCarty et al. 1994; Snyder et al. 1990). They 

serve as origin of replication, contribute to the regulation of gene expression and are 

important for site specific integration and rescue of the provirus from the human 

chromosome 19 (Labow and Berns 1988; McLaughlin et al. 1988; Samulski et al. 

1987). 

ITR 10 20

polyA

40 50 60 70 80 90 ITR
p19 p40p5

30

Rep78

Rep68

Rep52

Rep40

VP1

VP2

VP3  
 

Figure 1. Map of the AAV genome. The AAV genome encompasses 4680 nucleotides, divided into 100 map units. 

Indicated are the two inverted terminal repeats (ITRs), the three viral promoters at map position 5, 19, and 40 (p5, 

p19, and p40) and the polyadenylation signal at map position 96 (poly A). The open reading frames are represented 
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by rectangles, untranslated regions by solid lines and the introns by nicks intercepting the solid lines. Large Rep 

proteins (Rep78 and Rep68) controlled by the p5 promoter and small Rep proteins (Rep52 and Rep40) driven by the 

p19 promoter exist in spliced and unspliced isoforms. The cap genes encoding the three different capsid proteins 

VP1, VP2, and VP3 are controlled by the p40 promoter. 

 

1.3 Infectious biology of AAV 

1.3.1 Virus cell interaction 

Of all the serotypes, AAV2s infectious biology is the best characterized. However, a 

detailed understanding of intracellular trafficking, endosomal release or viral uncoating 

is still missing. Moreover, most experiments were performed within the same cell line, 

the human cervix carcinoma cell line HeLa. The current model of the infection process 

is depicted in figure 2.  

Single Virus Tracing (SVT) studies characterized the motion of AAV2 outside the cell 

as normal diffusion with a diffusion coefficient of D = 7.5 µm2/s. Approaching the cell 

membrane diffusion was decelerated, and finally stopped when AAV gets in contact 

with the cell membrane with a mean touching time of 62 ms. Most virions show 

multiple contacts to the cell before entering or being finally released from the cell. In 

average 4.4 repetitive touching events are observed. It is not clear whether these 

multiple touching events represent a binding and release process to viral receptors or 

adsorption to cellular structures (Seisenberger et al. 2001).  

Heparan sulfate proteoglycan (HSPG) has been identified as the primary receptor of 

AAV2 (Summerford and Samulski 1998). HSPG binding residues are located within the 

VP3 region. 5 amino acids have been identified to be involved in HSPG binding: R484, 

R487, K532, R585 and R588. Mutational analysis showed that especially R585 and 

R588 are essential for the interaction with HSPG (Kern et al. 2003; Opie et al. 2003; 

Wu et al. 2000). Even though HSPG has been described as AAVs attachment receptor, 

it was shown that AAV2 is able to enter some cells in the absence of HSPG. It was 

proposed that HSPG is also the primary receptor for AAV3 whereas sialic acid was 

identified as the attachment receptor for AAV4 and 5 (Rabinowitz et al. 2002; Handa et 

al. 2000; Kaludov et al. 2001). The primary receptors for the other serotypes are not 

known yet. In addition to the attachment receptor, secondary receptors are required for 

viral infection. Three coreceptors have been described for AAV2 so far, fibroblast 

growth factor receptor I (hFGFR I), αvß5-integrin and hepatocyte growth factor receptor 
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(HGFR) (Summerford et al. 1999, Qing et al. 1999, Kashiwakura et al. 2005). Human 

FGFR I was also shown to interact with AAV3 (Blackburn et al. 2006). For hFGFR I a 

function in enhancing the interaction of virion and HSPG was proposed (Qing et al. 

1999). The function of HGFR is not known yet. Integrins are known to transduce 

signals between extra- and intracellular space. They influence the organization of the 

cytoskeleton and translate mechanical stimuli into biochemical signals (Blystone et al. 

2004; Ingber et al. 2003). Blocking of αvß5-integrin with antibodies can prevent 

internalization of rAAV2 into HeLa cells. Therefore, it was suggested that binding to 

αvß5-integrin mediates endocytosis (Sanlioglu et al. 2000). For AAV5 platelet derived 

growth factor receptor (PDGFR) was identified as coreceptor (Di Pasquale et al. 2003). 

PDGFR was also discussed to act alone as a receptor for AAV5 because it is in itself a 

sialo-glycoprotein (Daniel et al. 1987).  

1.3.2 Receptor mediated endocytosis of AAV 

The endocytotic process was studied for AAV2 and 5. Following receptor binding 

AAV2 enters the cell by a receptor mediated endocytosis through clathrin coated pits in 

a dynamin dependent manner (Bartlett et al. 2000, Duan et al. 1999). Endocytosis seems 

to be a fast process with a half time of 10 min (Bartlett et al. 2000). Single Virus 

Tracing measurements showed an individual viral uptake even within milliseconds. 

AAV5 also was localized predominantly in clathrin coated vesicles. However, in rare 

situations, AAV5 was found to be endocytosed in noncoated vesicles, representing 

probably caveolae (Bantel-Schaal et al. 2002). Similar to ligand-receptor interaction, it 

was shown that receptor binding of AAV2 causes intracellular signal transduction. 

Binding to αvß5 activates (in addition to mediate endocytosis) Rac1, a small GTP 

binding protein, stimulating thereby phosphoinositol-3 kinase (PI3K) which facilitates 

the rearrangement of microfilaments and microtubuli (Sanlioglu et al. 2000). Treatment 

of infected cells with nocodazole, which leads to depolymerization of microtubules, or 

with cytochalasin B, which disrupts microfilaments, reduces perinuclear accumulation 

of AAV2 (Sanlioglu et al. 2000).  

1.3.3 Endosomal processing of AAV 

Intracellular trafficking and endosomal processing are further complex steps which are 

known to be important for efficient cell transduction. These processes seem to be the 

rate limiting step in many cell types. For example, AAV2 is endocytosed in polarized 
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airway epithelial cells from the apical and the basolateral surface. Although the apical in 

contrast to the basolateral surface does not contain HSPG and αvß5 integrin, only a 3 to 5 

fold reduction in endocytosis was detected. However, transduction of cells from the 

apical surface is reduced >200-fold, indicating that in addition “postendocytotic” 

barriers exist for AAV mediated gene transfer (Duan et al. 2000). Recently, it was 

shown that several dependoviruses can penetrate barrier cells (epithelia and endothelia) 

by transcytosis. This process is cell type and serotype specific. For AAV5 it was shown 

that this transport pathway is distinct from transduction (Di Pasquale and Chiorini 

2005). 

Studies evaluating subcellular distribution of AAV2 following infection remain 

ambiguous and sometimes controversial. It was proposed that AAV2 is already released 

from the early endosome (Xiao et al. 2002) or might traffic through late endosome 

compartments (Douar et al. 2001, Hansen et al. 2001a). It was also shown that AAV2 

colocalizes with transferrin (Duan et al. 1999). Transferrin is known to be recycled 

through the perinuclear recycling endosome (PNRE) (Ren et al. 1998, Sonnichsen et al. 

2000). Therefore, it was suggested that this compartment might be involved in the 

processing of AAV. Recently a dose dependent trafficking was described, observing a 

predominant trafficking of AAV2 to the late endosome at low multiplicities of infection 

(MOI 100 genomes/cell) and trafficking of AAV2 to the PNRE at high MOI (104 

genomes/cell). In addition, dose-response curves showed that viral movement through 

the PNRE is more competent for transgene expression than movement through the late 

endosome (Ding et al. 2006). Furthermore, it was proposed that AAV2 and 5 localize 

inside the golgi compartment (Bantel-Schaal et al. 2002, Pajusola et al. 2002). 

1.3.4 Endosomal escape of AAV 

In addition, to the unsolved question when and where AAV escapes from the endosome, 

the mechanism of endosomal release is not known. Acidification inside the endosomes 

seems to be essential in priming AAV for nuclear entry. This assumption is based on the 

observation that microinjection of AAV2 particles directly into the cytoplasm (instead 

of natural infection) did not result in gene expression (Ding et al. 2005). The same 

effect can be reached by the addition of inhibitors of acidification like bafilomycin A1 

or ammonium chloride (Bartlett et al. 2000). It might be that this acidification leads to a 

conformational change inside the viral capsid. Interestingly, it has been shown that the 
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N-terminal region of VP1 contains a domain resembling secretory phospholipase A2 

(sPLA2); a domain that was not known to exist in virus capsids (Zádori et al. 2001). A 

mutation in the catalytic center of the PLA2 motif of AAV2 causes a dramatic drop in 

infectivity (Girod et al. 2002). PLA2s are divided into three main types based on their 

biological properties: secretory Ca2+-dependent PLA2 (sPLA2), cytosolic Ca2+-

dependent PLA2 and intracellular Ca2+-independent PLA2. PLA2s are involved in 

physiological and pathological processes such as lipid membrane metabolism, signal 

transduction pathways, inflammation and degenerative diseases (Dennis 1997, Kramer 

and Sharp 1997, Balsinde et al. 1999). PLA2s catalyze the hydrolysis of phospholipid 

substrates at the 2-acyl ester (sn-2) position to release lysophospholipids and free fatty 

acids. The N-terminus of VP1 is located inside the AAV2 capsid and was shown to be 

exposed after heat shock (Kronenberg et al. 2005). This domain might be involved in 

endosomal escape or nuclear uptake. 

1.3.5 Nuclear translocation of AAV 

Viral translocation into the nucleus is, in contrast to endocytosis and trafficking to the 

perinuclear region, a slow and inefficient process. Perinuclear accumulation can be 

observed from 30 min p.i. on (Bartlett et al. 2000) and persist also many hours after 

gene expression has already started (Xiao et al. 2002). Only very few information is 

available about the mechanism of nuclear import. Having a diameter of 25 nm AAV can 

potentially pass the nuclear pore complex (NPC). However it is not clearly 

demonstrated whether AAV uses the NPC to enter the nucleus. It was shown that AAV 

interacts with nucleolin, a nuclear shuttle protein (Qiu et al. 1999). Others have 

suggested a nuclear entry independent of the NPC (Hansen et al. 2001b). Inside the VP2 

region a nuclear localization sequence (NLS) is located which is important for capsid 

assembly (Hoque et al. 1999) but it is not known whether this NLS has a function for an 

incoming virus. There are also controversial data about the compartment in which 

uncoating (release of the viral genome out of the capsid) takes place and whether an 

intact capsid or only the DNA is shuffled into the nucleus. Some groups detected viral 

capsids inside the nucleus (Bartlett et al. 2000, Sanlioglu et al. 2000). Xiao and 

colleagues observed a great difference in the efficiency of nuclear translocation of the 

viral capsid dependent on presence or absence of a helper virus (Xiao et al. 2002). In the 

absence of adenovirus, only the viral genome seems to be transported into the nucleus, 
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while in presence of adenovirus, a shuffling of intact viral capsids into the nucleus was 

observed. By Single Virus Tracing directed motion (reminding of  microtubule 

dependent movements) of viral capsids inside the nuclear area was observed. They 

suggested that those particles move inside nuclear invaginations and therefore inside the 

cytoplasm. Studies with nocodazole which inhibited such directed motions strengthened 

this hypothesis (Seisenberger et al. 2001). Our own studies showed no efficient 

transport of intact viral capsids, but of viral genomes into the nucleus independent of the 

presence of a helper virus. Data were generated by taking advantage of a new confocal 

microscopic software which allowed a more precise localization of signals within the z 

axis (Lux et al. 2005). With this method we detected also capsids within nuclear 

invaginations confirming the hypothesis made by SVT studies.  

Another interesting aspect of AAV infection is the enhancement of transduction by 

proteasome inhibitors. This was shown for several serotypes in different cells (AAV2 

(Duan et al. 2000; Yan et al. 2002), AAV1-4 (Hacker et al. 2005), AAV5 (Yan et al. 

2002)). An effect of proteasome inhibitors was observed for AAV2 also in vivo in some 

organs from infected mice: Proteasome inhibitors augmented the transduction efficiency 

in lung from 0 to 10% and liver from 0.5 to 5% whereas inhibitors had no effect on 

transduction efficiency in muscle and heart muscle (Duan et al. 2000). Furthermore, it 

was shown that denaturated capsids of AAV2 and AAV5 are ubiquitinated in contrast to 

intact capsids which were no substrate for ubiquitination (Duan et al.  2000; Yan et al. 

2002). This suggests that only AAV capsids that passed the endosomal processing, and 

thereby underwent a conformational change, are accessible for ubiquitination. (Yan et 

al. 2002). 
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Fig. 2. The AAV infection pathway.  AAV touches the membrane several times before entering the cell. Attachment 

to its primary receptor HSPG and the co-receptors FGFR and αvβ5 integrin is triggering a receptor-mediated 

endocytosis in a dynamin dependent manner into clathrin coated pits. This internalization is facilitated by the activity 

of Rac1. Activation of Rac1 subsequently stimulates PI3K pathways which regulate endosome trafficking along the 

cytoskeleton. The exact mechanism of endosomal release is not clear yet. Viral uncoating takes place before or during 

nuclear entry. Viral DNA enters the nucleus by an unknown mechanism. (Figure modified from Büning et al. 2003.) 
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1.3.6 Latent or lytic cycle 

Upon nuclear entry, the presence or absence of a helper virus determines whether AAV 

enters a lytic or latent life cycle. In the absence of helper functions AAV enters a latent 

cycle which leads to integration of the viral genome into chromosome 19q13.3-qter. 

This locus is called AAVS1 (Kotin et al. 1992). Before viral integration, second strand 

synthesis and a basal expression of the Rep proteins are activated (Brister and 

Muzyczka 2000; Redemann et al. 1989). A complex of Rep78 and Rep68 was shown to 

bind to both, the Rep binding site (RBS) inside the viral ITRs and to a homologous 

sequence inside the AAVS1 locus, mediating thereby integration (Weitzmann et al. 

1994; Linden et al. 1996). After super infection with a helper virus, the integrated 

genome is activated by entering the lytic cycle, leading to viral gene expression, rescue 

and replication of the AAV genome with subsequent production of viral progeny (Berns 

and Giraud 1996). 

In the presence of helper virus during AAV infection, induction of gene expression and 

replication takes place directly. 

 

1.4 Visualization of AAV  

Besides conventional biochemical studies, microscopic techniques are emerging as 

powerful tools for the study of viral infection. A promising development for the 

investigation of AAV was the finding that viral particles can be labeled by cyanine dyes 

generating a stable N-hydroxysuccinimide (NHS)-ester with amino groups at the capsid 

surface (Bartlett et al. 2000). However, this labeling method is labor intensive and 

hampered by the low efficiency of the labeling reaction (on average one dye per capsid) 

(Seisenberger et al. 2001). High particle numbers need to be used for fluorescence 

microscopy studies to overcome this problem. This limitation was conquered by a new 

technique, Single Virus Tracing (SVT), recently described by our group (Seisenberger 

et al. 2001). This method is based on the detection of single molecules using an 

epifluorescent microscope and a laser beam as a light source, allowing the real time 

observation of single virus particles labeled with a single dye inside living cells. 

Although it is possible to merge the transmitted-light picture of the cell with the virus-

tracking movie by the SVT method, a direct co-localization of virions and cellular 

organelles remains difficult. Additionally, highly pure viral preparations have to be used 
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to avoid labeling of contaminating proteins. This cannot be easily achieved for many 

AAV retargeting vectors, since many mutants lose the ability to bind heparan sulphate 

proteoglycans preventing the use of heparin affinity chromatography for purification.  

Therefore, in this work an alternative strategy for the labeling of the AAV capsid by 

using the enhanced green fluorescent protein (GFP) was developed. GFP has been 

extensively used as a fusion protein to study intracellular trafficking and localization of 

proteins. It has an effective chromophore, which absorbs UV or blue light and emits 

green fluorescence. No further gene products or substrates are needed. Moreover, GFP 

does not seem to interfere with cell growth and function. GFP fusion proteins thus 

provide an attractive tool for biological studies including viral tracking (Desai and 

Person 1998; Elliott and O'Hare 1999; Glotzer et al. 2001; McDonald et al. 2002; 

Sampaio et al. 2005; Suomalainen et al. 1999; Ward 2004; Warrington et al. 2004).  

During the preparation of this work Warrington and colleagues also generated GFP 

tagged AAV particles. However, their GFP tagged AAV particles showed a more than 

104 fold reduction of particle to infectivity ratio in contrast to wt AAV (Warrington et 

al. 2004), which is not desirable if one aims to study mechanisms of viral entry with 

those particles. 

1.5 AAV as a vector for gene therapy 

Gene therapy can be defined as the transfer of genetic material into cells of an organism 

with the aim to cure a disease. There are two major approaches for somatic gene 

transfer: transfer by viral or non viral vectors (gene gun, lipofection, naked DNA). For 

the success of gene therapy, safety and efficiency are the most important aspects. There 

is still no vector system that fulfills both aspects perfectly. Viruses are parasites and 

have developed strategies to deliver genes into cells through an evolutionary process 

which leads to expression of these genes. Viral vector systems are generally efficient in 

transduction of cells but have in general more immunologic or toxic side effects and are 

often limited in the packaging capacity. In contrast non viral vector systems have no 

limited coding capacity and are safe, but suffer from low efficiency and selectivity. 

The first phase I gene-based clinical trial, in 1990, was dedicated to the treatment of 

adenosine deaminase deficiency (Blaese et al. 1995). Until now 1145 clinical trials of 

gene therapy worldwide for the treatment of cancer, inherited or acquired genetic 

disorders and treatment of cardiovascular diseases or infectious diseases like AIDS have 
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been accepted. Severe throwbacks show that the ultimate success of gene therapy is not 

reached yet. Setbacks were caused by the case of Jesse Gelsinger, an ornithine 

transcarbamylase deficiency (OTCD) patient, who died in 1999 in a gene therapy trial 

after application of an adenoviral vector in consequence of multiple organ failure which 

was due to a strong cellular immune response against the vector. Furthermore, cases of 

leukemia were reported that developed in 3 of 16 X-linked severe combined 

immunodeficiency (XL-SCID) patients after treatment with retroviral modified 

hematopoietic precursor cells (Hacein-Bey-Abina et al. 2003). These cases demonstrate, 

that although remarkable progress has been reached in gene therapy the breakthrough of 

this treatment will depend on the development of safe and efficient vectors. 

AAV has many features that make it attractive for use as a gene therapy vector. An ideal 

requirement of AAV as a vector system is its nonpathogenicity for humans (Berns and 

Linden 1995; Blacklow 1988; Blacklow et al. 1968; Blacklow et al. 1971). Moreover, 

AAV vectors are replication deficient due to the lack of viral genes in the vector 

genome. Furthermore AAV can transduce a broad variety of dividing and non dividing 

cells including differentiated tissues as the central nervous system, eye, lung, liver, 

muscle and haematopoietic system (Fisher et al. 1997; Fisher-Adams et al. 1996; 

Flannery et al. 1997; Flotte et al. 1993; Kaplitt et al. 1994; Snyder et al. 1997). AAV 

vectors have the potential to integrate specifically (Huttner et al. 2003) which is an 

advantage over retroviral vectors which showed the problem of insertional mutagenesis 

leading to the development of a leukemia-like blood disorder as mentioned above. A 

promising previous study could show expression of the AAV vector genome after more 

than one year after AAV application (Fisher et al. 1997). Furthermore, AAV capsids are 

relatively stable, allowing high titer purification of the virions. Up to 1010-1011 

infectious particles/ml of rAAV can be produced (Grimm et al. 1999). 

But, as any other vector system, AAV also has some disadvantages. One is its low 

coding capacity. The optimal genome size for AAV vectors is between 4.1 and 4.9 kb 

(Dong et al. 1996). One major problem is the high prevalence of AAV specific 

antibodies (Ab) in the human population. 50 to 96% are seropositive for AAV Ab, and 

18 to 67.5% of them have neutralizing antibodies, depending on age and ethnic group 

(Chirmule et al. 1999; Erles et al. 1999; Moskalenko et al. 2000). Animal experiments 

have shown that neutralizing antibodies greatly reduce or even prevent transgene 

expression after readministration of the vector (Fisher et al. 1997; Xiao et al. 2000; Xiao 
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et al. 1996). Thus many people carry antibodies against AAV before a possible gene 

therapy. The broad host tropism, initially seen as an advantage, is a disadvantage in 

systemic applications since the specific and selective transduction of respective cells of 

interest is not possible.  

Although still some hurdles have to be overcome, AAV is overall a promising vector for 

gene therapy. Actually, there are 25 open gene therapy trials utilizing AAV worldwide. 

Most of them deal with monogenic or cancer diseases. 

1.6 Retargeting of AAV vectors 

To overcome the problem of low specificity of AAV infection, one main aim of our 

group is to modify the viral capsids to redirect the interaction of AAV to specific cell 

receptors. This process is called retargeting. Two approaches have been used to modify 

the natural tropism of AAV: genetic manipulation of the capsid gene (and therefore the 

capsid) and chemically cross linking of bifunctional antibodies (Fig. 3). 

Pioneer work was done in our laboratory by Anne Girod (Girod et al. 1999). Since at 

that time the crystal structure of the AAV capsid was not known she did a sequence 

alignment of the AAV2 VP1 protein with the homologous capsid protein of CPV. 

Different sites which seemed to be located inside flexible regions at the outer surface of 

the capsid were tested for the insertion of retargeting peptides. The site of amino acid 

position 587 showed to be the most promising site for retargeting. This site became the 

position of choice for insertion of retargeting sequences for many other approaches 

(Grifman et al. 2001; Nicklin et al. 2001; Ried et al. 2002, Shi et al. 2001; Perabo et al. 

2003, 2006). 

Insertion of larger polypeptides inside the 587 position resulted in a markedly reduced 

packaging efficiency. Although still having to be proven as an efficient position for the 

insertion of targeting peptides, the N-terminus of VP2 (amino acid position 138) seem 

to be the most promising insertion site for larger peptides (Yang et al. 1998; Warrington 

et al. 2004; Lux et al. 2005). 

In the approach of indirect targeting a linker module is used to mediate the interaction 

between cell and viral capsid. The interaction between virus and cell can be mediated by 

bispecific antibodies. To generate an universal targeting vector an immunoglobulin 

binding domain (Z34C) was inserted at the 587 position which enables the capsid to 

bind different antibodies via their Fc regions (Ried et al. 2002). 
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Fig. 3. Targeting strategies. Using wt tropism (A), AAV binds directly via structural motifs of the capsid to the 

cellular receptor. Retargeting can be mediated by a ligand which is genetically inserted into the capsid (B) or by 

interaction between cell and virus mediated by an associated molecule (e.g a bispecific antibody) (C). 

1.7 Adenovirus free production of wt AAV and recombinant 

AAV vectors (rAAV) 

For the production of wt AAV vectors two different plasmids are needed. The wt AAV 

plasmid encoding rep and cap flanked by the ITRs and an adenoviral helper plasmid 

coding for essential adenoviral helper genes (E2a, E4 and VA) but lacking the 

adenoviral structural genes (Collaco et al. 1999; Grimm and Kleinschmidt 1999; Xiao et 

al. 1998) (Fig. 4A). Both plasmids are transfected into 293 cells. AAV viral progeny 

can be harvested 48 h post transfection from the cell lysates and purified to high titers 

by either by gradient centrifugation (CsCl, Iodixanol) and/or column chromatography 

(Zolotukhin et al. 1999) (Fig. 4B). 

For the generation of recombinant AAV vectors (rAAV) rep and cap are deleted, 

leaving only the ITR sequences of the parental virus, which are the only cis elements 

required for the production of viral particles (replication and packaging). The rep/cap 
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sequence can then be replaced by a marker gene (e.g. GFP) or a therapeutic gene. For 

the production of rAAV vectors rep and cap have to be submitted in trans cloned into a 

“helper plasmid”(Fig. 4A). In consequence, when generating rAAV, a triple transfection 

has to be performed: transfection of the vector plasmid (transgene flanked by the ITRs), 

the rep/cap (RC) helper plasmid and the adenoviral helper plasmid (Fig. 4C). 

For the production of modified virions, mutations are introduced into the cap gene of wt 

plasmid if the wt genome is to be packaged or into the helper plasmid if a transgene is 

to be packaged. 

A 

 
 
B

 
C 
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Figure 4. Packaging of AAV. (A) Plasmid constructs used for packaging of AAV. In contrast to the wild type AAV 

plasmid, which contains the viral rep and cap gene and the ITRs, the vector plasmid is devoid of all viral genes. Only 

the ITRs are left which flank the transgene and serve as packaging signal. The RC helper plasmid provides the 

regulatory (Rep) and the capsid proteins (Cap) required for replication of the ITR flanked transgene cassette and 

packaging into preformed capsids. The Ad helper plasmid codes for the adenoviral helper genes E2a, E4 and VA. For 

packaging of wt AAV (B) wt AAV plasmid and adenoviral helper plasmid are transfected into 293 cells; for 

packaging recombinant AAV (C) vector plasmid, RC helper plasmid, and adenoviral helper plasmid are transfected 

into 293 cells. After replication and assembly of viral particles cells are lysed and AAV virions are harvested and 

purified by iodixanol gradient centrifugation (B and C). 

 

1.8 Aim of this work 

As AAV has no clinical relevance because of its non pathogenicity in human, there was 

no great effort to elucidate its infectious biology. An increased interest for the 

understanding of AAV infectious biology has emerged as adeno-associated viruses have 

gained attention as a gene therapy vector in the last decade. While cell entry can be 

modified successfully by retargeting, it was shown that different post entry steps can 

limit AAV transduction of many cell types. Retargeting ligand insertions in the viral 

capsid could cause differences not only in cell entry but also in intracellular processing 

of these vectors in comparison to wt AAV. Understanding AAV infectious biology is 

essential to improve safety and efficiency of such vectors for the treatment of acquired 

and inherited diseases. 

Visualization of several viruses by fluorescent proteins facilitated the investigation of 

different viral mechanisms. Our group has previously employed anorganic cyanine dyes 

to label the capsid and visualize viral entry of AAV. As this method is hampered in 

specific applications, for example the purity of viral preparations needed for chemical 

labeling cannot be easily achieved for many targeting vectors, an alternative labeling 

method was desirable. The aim of this work was to develop a novel and convenient 

technology to visualize the infectious pathway of AAV inside fixed or living cells. 

Therefore, enhanced green fluorescent protein (EGFP) was introduced into AAV 

particles by fusing it to the capsid protein VP2. Such modified capsids were 

characterized by detailed testing for capsid integrity, packaging, infectivity and 

trafficking in comparison to unmodified AAV capsids. In addition, we applied different 

imaging technologies (e.g. confocal microscopy and FISH) to investigate nuclear entry 

of AAV.  
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2 Results  

2.1 Green fluorescent protein-tagged adeno-associated virus 

particles allow the study of cytosolic and nuclear trafficking 

 

2.1.1 GFP fusion does not interfere with nuclear translocation of VP2 

The enhanced green fluorescent protein (GFP) has been widely used as a fusion protein 

to monitor the cellular localizations of proteins (Chalfie et al. 1994). However, it is a 

relatively large protein for being inserted into a compact structure such as the AAV 

capsid. Based on the observation that large insertions are tolerated at the N-terminus of 

VP2 (Yang et al. 1998), we decided to generate a GFP-VP2 fusion protein to 

incorporate a fluorescent marker into the AAV capsid. For this purpose, the VP2 ORF 

was amplified by PCR and fused to the C-terminus of the GFP open reading frame (Fig. 

5), with the human cytomegalovirus (CMV) promoter controlling transcription. To 

avoid translation from the natural VP2 start codon, the translation start codon was 

deleted. 

To test the biological properties of this GFP-VP2 fusion protein, transient transfections 

of HeLa cells with pGFP-VP2 were carried out. As a control, HeLa cells were 

transfected with a GFP expressing plasmid lacking any known organelle homing signals 

(Ried et al. 2002). 48 h post transfection, cells were fixed and the nuclear lamina stained 

with an anti-lamin B antibody. Since VP2 contained a nuclear localization sequence 

(Hoque et al. 1999), GFP-VP2 was expected to be detectable in the nucleus, whereas the 

GFP lacking homing signals should be distributed throughout the whole cell. Figure 6 

shows that this was indeed the case, allowing to conclude that the GFP fusion does not 

hamper the nuclear localization VP2. 
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Fig. 5. Schematic representation of the plasmids. (A) The plasmid pGFP-VP2 encodes the GFP-VP2 fusion 

protein. VP2 was amplified by PCR from pUC-AV2 and cloned into the multiple cloning site of pEGFP-C3 

(Clontech). During this step, the VP2 start codon was deleted. (B) To produce wild type AAV the plasmid pUC-AV2 

was used (upper panel). A G-to-C substitution within the wobble position of the VP2 start codon (T138) was 

introduced, resulting in the plasmid pUC-AV2-VP2k.o. (lower panel). Due to the substitution, VP2 expression was 

abolished without altering the amino acid sequence of VP1.  

 

 
 

Fig. 6. Transient transfection of HeLa cells with GFP-VP2 and GFP expressing plasmids. Cells were transfected 

at 80% confluence with pGFP-VP2 (A) or pGFP (B) and fixed 48 h post transfection. The nuclear lamina was stained 

with Texas Red conjugated anti-lamin B antibody.  
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2.1.2 Substitution of VP2 by GFP-VP2 fusion protein results in 
infectious virions 

In a prior study, scFv-VP2 fusion proteins used to generate viral particles resulted in 

viral progeny only when all three wild type AAV capsid proteins were provided during 

the packaging process (Yang et al. 1998). Since the GFP insertion was of similar size as 

scFv, we assumed that all three unmodified wild type capsid proteins had to be provided 

during the packaging process to obtain infectious GFP-tagged viral particles. The first 

step was therefore to determine the amount of VP2 which could be substituted by GFP-

VP2 without interfering with the production of infectious AAV particles. We tested a 

30% and 60% substitution of pUC-AV2 (coding for the AAV genome) by pGFP-VP2 

during packaging. The viral preparations generated were named 30%-GFP-VP2-AAV 

and 60%-GFP-VP2-AAV, respectively. Wild type AAV was used as control. 48 h post 

transfection virus producing cells were harvested and cell lysates were purified by 

iodixanol step gradients. The 25% and the 40% phase of the gradient were harvested 

and genomic and capsid titers were determined. DNA containing viral particles with 

comparable titers were detected for the different viral preparations (25%-phase of the 

gradient: 2-5x1010/ml; 40%-phase of the gradient: 0.5-1x1011/ml). The amount of intact 

capsids was determined by ELISA using the anti-capsid antibody A20 (Wobus et al. 

2000). As expected, a higher amount of empty capsids was obtained in the 25%-phase 

of the gradient. However, all the capsid titers showed comparable values (25%-phase of 

the gradient: 5-8x1013/ml; 40%-phase of the gradient: 0.4-1x1013/ml). Thus, neither 

capsid assembly nor DNA packaging was affected in the 30%- and the 60%-GFP-VP2-

AAV preparations in comparison to the wild type control.  

To investigate, if the GFP-VP2 fusion proteins were inserted into the AAV capsid and if 

the GFP-tagged virions retained infectivity, HeLa cells were incubated with the 30%- 

and 60%-GFP-VP2-AAV preparations, respectively. 2 h p.i. cells were washed 

intensively, detached from the plate by trypsin treatment and analyzed by flow 

cytometry. Treatment with trypsin removes all the proteins bound at the cell surface 

(Awedikian et al. 2005; Mizukami et al. 1996), thus only intracellular GFP signals 

should be detected. GFP positive cells were obtained in samples infected with both 

preparations. The highest amount of GFP positive cells (19.5%) was obtained with 

60%-GFP-VP2-AAV, whereas 13.5% GFP positive cells were detected using the same 

amount of capsids of 30%-GFP-VP2-AAV. In contrast, no green cells were detected 
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when wild type AAV was used. To exclude pseudo-transduction, heparin inhibition 

controls were included. Heparin, a soluble analogue of the primary AAV receptor 

heparan sulphate proteoglycan (HSPG), blocks wild type AAV infection by binding to 

the viral capsid. Since the HSPG binding region of AAV is located in the VP3 region of 

the capsid proteins (Wu et al. 2000), the ability to bind to these molecules should be 

retained by the GFP-tagged virions. Incubation of both viral preparations with heparin 

inhibited cell transduction indicating that a viral infection and not pseudo-transduction 

was responsible for the GFP signal measured in the GFP-VP2-AAV infected cells.  

These results demonstrate that GFP fusion proteins were incorporated into the AAV 

capsid of infectious virions and that the GFP signal provided by GFP-tagged virions 

was detectable by flow cytometry. 

 

2.1.3 Production of GFP tagged AAV virions in the absence of wild 
type VP2  

Since comparable titers were obtained for the 30%-GFP-VP2-AAV and the 60%-GFP-

VP2-AAV preparations, we investigated the possibility to package a 100%-GFP-VP2-

AAV preparation. A wild type AAV encoding plasmid containing a VP2 start codon 

mutation was generated (pUC-AV-VP2k.o.; Figure 5) and used to package 100%-GFP-

VP2-AAV. In addition “VP1/VP3 only particles” (VP2 k.o.-AAV), 60%-GFP-VP2-

AAV and wild type AAV were produced and purified by density gradient 

centrifugation. First, a Western blot analysis of our different preparations was 

performed (Fig. 7). Although only virions isolated from the 40% phase of the iodixanol 

gradient were used for the following studies, also the 25% phase of the gradient was 

analyzed by Western blot. For wild type AAV we obtained three signals corresponding 

to VP1, VP2 and VP3 (Fig. 7, lane 1) in a ratio of approximately 1:1:20. As expected, 

VP2 k.o.-AAV contained only VP1 and VP3 proteins (lane 2 and 3), whereas in the 

100%-GFP-VP2-AAV preparation the GFP-VP2 fusion protein, VP1 and VP3 were 

detected (lane 4). The 60%-GFP-VP2-AAV was packaged in the presence of all three 

unmodified AAV capsid proteins; four protein bands (GFP-VP2, VP1, VP2 and VP3) 

were visible (lane 6).  
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Further, we performed a detailed titer analysis. Therefore, each virus mutant was 

packaged at least a second time. The capsid, genomic and infectious titers of these 

preparations were determined and empty-to-full and genomic particle-to-infectivity 

ratios were calculated to directly compare the different preparations for packaging 

efficiency and infectivity (Tab. 1). No significant difference between mutants (including 

wild type) was observed for genomic nor capsid titers which ranged between 1.3x1011 

and 1.5x1012, and 7.35x1012 and 1.36x1013 per ml, respectively. The ratios of empty-to-

full capsids varied to nearly the same extent for different preparations of the same virus 

mutant (including wild type) as between the different mutants. This reveals that the 

deletion of VP2 or the substitution by GFP-VP2 does not interfere with capsid 

formation or viral genome packaging. The genomic particle-to-infectivity ratios were 

slightly increased for VP2 k.o.- and the 100%-GFP-VP2-AAV-preparations, but 

remained within the variation described for wild type AAV preparations (Girod et al. 

1999; Grimm et al. 1999; Ried et al. 2002). 

The results revealed that GFP-tagged virions with a 100 % substitution of VP2 by GFP-

VP2 can be generated with high titers (2x109 infectious particles/ml). 

 

 
 

Fig. 7. Western blot analysis of iodixanol gradient purified AAV capsids. After iodixanol gradient centrifugation 

same amount of viral capsids (1010) of wild type AAV (lane 1; 40% phase of iodixanol gradient), VP2 k.o.-AAV 

(lane 2: 40% phase of iodixanol gradient; lane 3: 25% phase of iodixanol gradient), 100%-GFP-VP2-AAV (lane 4: 

40% phase of iodixanol gradient; lane 5: 25% phase of iodixanol gradient) and 60%-GFP-VP2-AAV (lane 7; 40% 

phase of iodixanol gradient) were separated by SDS-10% polyacrylamide gel electrophoresis and analyzed by 

Western blot using the B1 antibody. 
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TABLE 1. Characterization of the different viral preparations 
Preparationd Genomic 

particles/ml 
Physical 

particles/ml 
Infectious 

particles/ml 
Empty/full 

ratio 
Genomic 
 particle/ 

infectivity ratio 
    
Wild type AAVa 2.49 x 1011 1.25 x 1013 8.38 x 109 50.2 29 
Wild type AAVb 1.04 x 1012 1.19 x 1013 1.67 x 1010 11.4 62 
      
VP2 k.o.-AAVa 1.30 x 1011 9.39 x 1012 1.31 x 108 72.2 991 
VP2 k.o.-AAVb 1.17 x 1012 1.41 x 1013 4.19 x 109 12.1 278 
      
60% GFP-VP2-AAVa 7.01 x 1011 1.04 x 1013 8.39 x 109 14.8 84 
60% GFP-VP2-AAVb 2.15 x 1011 1.25 x 1013 2.10 x 109 58.1 102 
60% GFP-VP2-AAVc 4.10 x 1011 7.35 x 1012 2.10 x 109 17.9 195 
      
100% GFP-VP2-AAVa 3.00 x 1011 1.36 x 1013 1.31 x 108 45.3 2,288 
100% GFP-VP2-AAVb 4.39 x 1011 9.71 x 1012 2.10 x 109 22.2 208 
100% GFP-VP2-AAVc 1.50 x 1011 1.09 x 1013 1.05 x 109 7.2 1,431 

 

  

 

d Titers were determined by quantitative PCR, A20 ELISA, and infectious titer assay, respectively (a, b, and c 

indicate viral preparations that were independently packaged) 

 

2.1.4 Visualization of viral infection by GFP-VP2 tagged AAV 
particles 

To determine, if GFP-tagged virions were suited for intracellular visualization, viral 

infections of HeLa cells followed by wide field fluorescent microscopic analysis 2 h p.i. 

were performed. GFP signals seemed to localize partly in the nucleus or perinuclear 

area in cells infected with the 60%- and 100%-GFP-VP2-AAV preparations (Fig. 8A 

and Fig. 8B). The fluorescent microscopy images obtained thus resembled published 

results with unlabeled or chemically labeled virions (Bartlett et al. 2000; Xiao et al. 

2002). No signal was detected inside the cell when soluble heparin was used, 

demonstrating that the GFP signal was not due to pseudo-transduction (Fig. 8C).  

A promising development in the field of fluorescent microscopy is live cell imaging. 

Infection of live HeLa cells with GFP-tagged AAV virions followed by live cell 

imaging microscopy allowed the visualization of virions undergoing cell membrane 

contact (Fig. 9 and movie 1 in supplement). Some of these virions touched the cell 

membrane multiple times similar to the observations, made previously by SVT 

(Seisenberger et al. 2001). As observed in fluorescent microscopy, most of the virions 

stacked to the membrane, again confirming previous SVT observations, which showed 
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that less than half of the virions enter the cell (Seisenberger et al. 2001). Furthermore, 

GFP-tagged virions seem to move inside the cytoplasm of infected cells and in the 

perinuclear area (Fig. 9 and movie 1 in supplement), suggesting the potential of this 

technology for real-time imaging studies.  

 

Fig. 8. GFP-tagged virions analyzed by wide field fluorescent microscopy. Cells were infected with 5x106 capsids 

per cell of 100%-GFP-VP2-AAV (A) and 60%-GFP-VP2-AAV (B and C) in the absence (A and B) or presence of 

heparin (C). Cells were fixed and nuclei were stained with Dapi.  

 

Fig. 9. Live cell imaging of GFP-tagged virions. HeLa-DsRed2Nuc cells were infected with 60%-GFP-VP2-AAV 

(106 capsids per cell). Cells were incubated for 20 min at 37°C and 5% CO2. Then live cell movies were obtained 

under physiological conditions. (Left) The still image shown here was obtained from the movie 1 supplied in the 

supplemental material; (right) heparin control.  

 

2.1.5 GFP-tagged virions within the cell are recognized by A20 

To assess if the GFP signals within the cell are emitted from intact viral particles, cells 

were infected with 100%-GFP-AAV and fixed at 2, 4, 11 and 24 h p.i. Intact viral 

capsid were stained by A20 (A20 recognizes whole but not dissociated AAV capsids 
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(Bleker et al. 2005)) whereas an anti-lamin B antibody was used to visualize the nuclear 

membrane. Figure 10 shows one example obtained by confocal microscopy. GFP-

tagged AAV particles recognized by A20 were detected within the cell and above the 

nuclear membrane. An almost 100% colocalization of the GFP-signals (Fig. 10, upper 

left) with A20 reactive AAV capsids (upper right) was observed (merge data are shown 

in Fig. 10, lower right). The few detectable non-colocalized signals were due to a very 

faint A20 signal which became visible after enhancing its excitation energy. Thus GFP 

signals visible within the cells emanate from intact virions.  

 

Fig. 10. Intact 100%-GFP-VP2-AAV particles within the cell. HeLa cells were infected with 100%-GFP-VP2-

AAV (106 capsids per cell). At 4 h p.i., cells were fixed and stained with A20 (recognizes intact AAV capsids; RRX 

conjugated secondary antibody) and anti-lamin B antibody (nuclear membrane; Cy5 conjugated secondary antibody). 

(upper left panel: GFP staining; upper right panel: A20 staining; lower left panel: anti-lamin B; lower right panel: 

merge). Analysis was performed by confocal microscopy. 
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2.1.6 Viral capsids do not enter the nucleus efficiently  

In order to analyze the time course of nuclear entry of AAV in more detail, HeLa cells 

were infected with 100%-GFP-VP2-AAV for 2, 4, 11 and 24 h with or without 

adenovirus type 5 coinfection (MOI of 5), and confocal laser scanning images were 

obtained. For each image, a series of horizontal sections was prepared by taking images 

each 0.2 µm (z-stack) and superimposed with the Leica confocal software. Figure 11B 

shows a typical image obtained 4 p.i. without adenovirus coinfection. Many GFP 

signals were visible in the nucleus of the infected cells (nuclear lamina stained in red by 

anti-lamin B antibody). This image leads to the assumption that GFP-tagged virions 

were efficiently transported into the nucleus in less than 4 hours, consistent with 

published results (Bartlett et al. 2000). However, the Leica confocal software enables 

the vertical sectioning of the superimposed pictures and allows to visualize a certain 

image plane within this stack. The investigator can determine if a certain signal 

emanates within, above or below the image plane and this enables the investigator to 

localize the object of interest more precisely. Using this technique, we could determine 

that in the absence of helper virus and up to 4 h p.i., the GFP signals (from the GFP-

tagged virions) were localized above but not within the nucleus (Fig. 11C, top row). 

This is in contrast to results derived from the superimposed picture (Fig. 11B) 

indicating its limitations. At 24 h p.i. isolated signals were visible inside the nucleus (of 

Fig. 11C, arrows in top rows).  

Moreover, in the superimposed picture of cells coinfected with adenovirus many GFP 

signals were observed in the nucleus 2 h p.i. Applying the new vertical sectioning 

method uncovered that most of the signals are localized above the nucleus (Fig. 11C, 

buttom row). With prolonged incubation time, the amount of coinfected cells showing a 

GFP signal inside the nucleus slightly increased (e.g. 4 h p.i.), but still the majority of 

signals were found outside the nucleus. Even after prolonged incubation (up to 11 h, 

data not shown) more than 90% of the GFP signals remained outside the nucleus. 

Interestingly, 24 h p.i. many coinfected cells showed a diffused GFP distribution within 

the nucleus. This phenomenon was not observed in the absence of helper virus 

coinfection even after prolonged observation times (48 h, data not shown). Since this 

image resembles the image obtained after transfection with pGFP-VP2 (Fig. 11D), we 

analyzed the viral preparations used to infect the cells and the respective viral infected 
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cells by PCR. These analyses revealed that GFP sequences were packaged into the viral 

capsid, although the plasmid used to express GFP-VP2 during the packaging process 

contained no AAV inverted terminal repeats. It remains to be elucidated whether this is 

attributed to recombination or other events. 

  

 29



Results 
 

Fig. 11. Time course of AAV infection visualized by GFP-tagged AAV virions. HeLa cells were infected with 106 

capsids per cell of 100%-GFP-VP2-AAV with or without adenovirus type 5 (MOI of 5) coinfection. In addition, a 

heparin control was included (A). At 2, 4 and 24 h p.i., cells were fixed and the nuclear lamina was stained with 

TexasRed conjugated anti-lamin B antibody. A series of horizontal sections (each 0.2 µm one image) were obtained 

for each image. With Leica confocal software all images of a series were superimposed. (B) Superimposed image of a 

series of sections 4 h p.i. in the absence of adenoviral coinfection. (C) Time course of infection with and without 

adenovirus (Ad5) coinfection. The square image of each panel shows one horizontal section of the stack. The vertical 

sections of the stack are depicted on the right and bottom of each panel. Arrows show GFP signals detected within the 

nucleus. (D) Comparison of images obtained 24 h p.i. in the presence of adenovirus (left) and after transfection of 

pGFP-VP2 (right). 

 

To exclude that the observed results are due to inefficient nuclear transport of the GFP-

tagged virions, the same experiments were performed with wild type AAV in Ad5 

coinfected cells. For detection of viral capsids and viral capsid proteins A20- and B1- 

antibodies were used, respectively. A20 recognizes intact but not dissociated AAV 

capsids whereas B1 binds to amino acid 726-733 at the C-terminus of all 3 capsid 

proteins (Bleker et al. 2005). At 2, 4 and 11 h p.i. almost no B1 staining was detectable, 

in marked contrast to A20 staining (data not shown). At 4 and 11 h p.i., no difference 

was observed when comparing GFP-tagged with wild type virions (for an example at 11 

h p.i., see Fig. 14B). At these time points only isolated intact capsids (recognized by 

A20) were found within the nucleus and the majority (over 90%) of the virions were 

visible outside the nucleus (Fig. 14B). At 24 h p.i. both antibodies were able to 

recognize their targets and resulted mainly in a nuclear staining (data not shown). This 

suggests that at this time point, new viral capsid proteins have been synthesized in the 

Ad5 coinfected cells and new capsids have been formed. 

From this we propose that an adenoviral function augments the nuclear translocation of 

viral capsids. However, the low level of GFP or A20 signals detected within the nucleus 

suggests a very inefficient nuclear translocation. Thus, uncoating seems to occur before 

or during nuclear entry.  

To further investigate this hypothesis, HeLa cells were infected by wild type AAV 

using 10x less virions per cell. Infections were performed with and without helper virus. 

Since viral replication in adenovirus coinfected cells is reported to start between 8 and 

12 h p.i. (Mouw and Pintel 2000; Xiao et al. 2002), infections were stopped at 2, 4, and 

11 h p.i. To visualize viral genomes FISH hybridization was performed. In addition, 

viral capsids and the nuclear lamina were stained by antibodies (Fig. 12A and 12B). 
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Viral genomes were detectable outside and within the nucleus at 11 p.i. (Fig. 12A and 

arrows in Fig. 12B). No colocalization of viral genomes and intact viral capsids was 

observed within the nucleus, whereas colocalizations were detectable in the perinuclear 

area and within the cytoplasm (red signals in Fig. 12A and in the merged image indicate 

intact capsids recognized by A20). In addition, empty capsids (no colocalization) were 

visible in the perinuclear area. Some of the FISH signals in the perinuclear area showed 

no colocalization with A20 and therefore with intact capsids. It has yet to be 

investigated if these signals emanate from free viral genomes or if they colocalize with 

one of the three VP proteins. The same image was obtained using a comparable amount 

of viral genomes in the absence of adenovirus, revealing that the observed viral 

genomes originate from incoming virions and are not the result of viral replication. 

Furthermore, it allows the assumption that a nearly comparable nuclear transport of 

viral genomes occurs with or without helper virus. Interestingly, viral genomes within 

the nucleus are already detectable at earlier time points (2 and 4 h p.i.) both in the 

presence and absence of Ad5 although 10x less virions per cell were used than for the 

capsid studies (Fig. 11 and 14). Under these conditions (105 instead of 106 capsids per 

cell) viral capsids are detected within the cell, but none of these localize within the 

nucleus (Fig. 12B).  

To investigate if the viral DNA enters the nucleus naked or still associated to viral 

capsid fragments or one of the NLS containing VP proteins (VP1 and VP2), the same 

experiment was carried but using the B1 antibody instead of A20 to detect single viral 

capsid proteins. B1 recognizes the C-terminus of the three capsid proteins, which is 

thought to be buried within the intact capsid. Therefore, B1 recognizes only capsid 

fragments or single capsid proteins. No B1 signals whether outside nor inside the 

nucleus were detected (data not shown). This is still only a hint and no evidence for the 

hypothesis that complete uncoating takes place before entering the nucleus, since the 

failure of detection of B1 signals could be due to a sensitivity problem of detection of 

single proteins. Further investigations are ongoing at the moment. 

However, all our current results strongly support the hypothesis that uncoating of AAV 

occurs during or before nuclear entry. However, at the current state it cannot be 

excluded that viral genomes within the nucleus are associated with one of the three viral 

capsid proteins. 
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Fig. 12. Visualization of viral genomes by FISH. (A) HeLa cells were infected with wild type AAV (105 capsids 

per cell = 8,700 genomic particles per cell) and adenovirus type 5 (MOI of 5). Cells were fixed 11 h p.i. and FISH 

(green, Oregon green labeled DNA probe) was performed to visualize viral genomes, whereas intact capsids and 

nuclear membrane were stained using A20 (red; RRX conjugated secondary antibody) and anti-Lamin B antibody 

(blue: Cy5 conjugated secondary antibody), respectively. Analyses were performed by confocol microscopy and one 

image plane out of a z-stack is shown (top left: FISH; top right: A20; bottom left: anti-Lamin B; buttom right: 

merge). (B) Enlargement and vertical sectioning of merge shown in panel (A). The arrows show one example of a 

viral genome localized within the nucleus. The green signal indicates the viral genome visualized by FISH, using an 

Oregon green-labeled DNA probe; red signal indicates intact capsids visualized by A20 and RRX-conjugated 

secondary antibody; blue signal indicates nuclear lamina visualized by anti-lamin B and Cy5-conjugated secondary 

antibody. 

2.1.7 Confirmation of viral uncoating observations utilizing GFP-
VP2-AAV for nuclear entry analyses  

For wild type AAV we could show that uncoating seems to take place during or before 

nuclear entry. If GFP-VP2-AAV behaves like wild type AAV2, viral genomes should 

be detected within the nucleus 2-4 h p.i., whereas viral capsid should be visible 

perinuclear. Therefore, HeLa cells were infected with 105 or 106 capsids per cell of 

100%-GFP-VP2-AAV with or without adenovirus type 5 (MOI of 5) coinfection. 

Infections were stopped by fixing the cells 2, 4, 6, 8, and 11 h p.i. Viral genomes were 

detected by FISH utilizing a RRX labeled DNA probe, capsids were visible by the GFP-

tag, whereas nuclear lamina was stained using an anti-Lamin B antibody (Cy5 

conjugated secondary antibody). Figure 13 shows one representative example. In this 

experiment for both 105 and 106 capsids per cell only viral genomes and not capsids of 

GFP-VP2-AAV were detectable within the nucleus. In single cells viral genomes were 
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detectable from 4 h on. The number of FISH signals inside the nuclei increased with the 

time. Again, like for wild type AAV adenovirus coinfection had no influence on the 

course of infection. GFP-VP2-AAV capsids colocalized with FISH signals in the 

perinuclear area were detectable only when utilizing 106 capsids per cells. Utilizing 

10xless capsids per cell resulted in a very weak GFP signal and thereby hampering 

colocalization studies.  

A         B 

 
 

FIG. 13. Visualization of viral genomes by FISH . (A) HeLa cells were infected with 100%-GFP-VP2-AAV (106 

capsids per cell = 105,000 genomic particles per cell). Cells were fixed 11 h p.i. FISH was performed to visualize 

viral genomes (red, Neutravidin-RRX conjugate from Molecular Probes which binds specifically to the biotin labeled 

DNA probe, labeled by a biotin nick translation kit from Roche), capsids were directly labeled by the incorporated 

GFP-VP2 fusion protein, and the nuclear lamina was visualized by an anti-Lamin B antibody (blue: Cy5 conjugated 

secondary antibody). Analyses were performed by confocol microscopy and one image plane out of a z-stack is 

shown (top left: GFP-VP2; top right: FISH; bottom left: anti-Lamin B; bottom right: merge). (B) Enlargement and 

vertical sectioning of merge shown in (A). The arrows show one example of a viral genome localized within the 

nucleus.  

(viral genome: red, RRX labeled DNA probe; capsids: green, directly labeled by GFP-VP2, nuclear membrane: blue: 

anti-Lamin B recognized by Cy5 conjugated secondary antibody) 
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2.1.8 AAV is found in nuclear invaginations 

Single particles have been shown to reach the nuclear area within seconds (Seisenberger 

et al. 2001) and a perinuclear accumulation of AAV was described to occur within 1-2 h 

p.i. (Bartlett et al. 2000; Xiao et al. 2002). Interestingly, we observed in addition AAV 

particles within tubular channels which extend deeply into the nucleoplasm (Fig. 14). 

This could first be assumed from SVT analysis. With SVT studies our group had 

observed that AAV moved very quickly on certain “pathways” through the nuclear area. 

We hypothesized that these pathways were nuclear invaginations, which are tubular 

structures derived from the nuclear envelope. The enclosed core is continuous with the 

cytoplasm and may function to bring larger proportions of the cytoplasm close to a 

nuclear pore (Fricker et al. 1997). In addition, a function of these nuclear channels in 

transport processes has been proposed (Dupuy-Coin et al. 1986). Within our current 

analysis, we observed AAV particles within nuclear invaginations (visualized by 

nuclear lamina staining), which verify our former assumptions (Seisenberger et al. 

2001). These pictures were obtained for both, the GFP-tagged virions (Fig. 14A and C) 

and wild type AAV (Fig. 14B). The capsids were recognized in both cases by A20 

revealing that intact viral capsids were detected within the nuclear invaginations. 

Although the significance of this colocalization has to be clarified, it explains the 

directed motion along defined pathways through the nuclear area observed by SVT. 
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Fig. 14. AAV inside nuclear invaginations. (A) HeLa cells were infected with 106 capsids per cell of 100%-GFP-

VP2-AAV. At 11 h p.i., cells were fixed, and the nuclear lamina was stained with TexasRed conjugated anti-lamin B 

antibody. Analysis was performed by confocal microscopy. A series of horizontal sections (each 0.2 µm) were 

obtained for each image. The square image shows one horizontal section of the stack. The vertical sections of the 

stack are depicted on the right and bottom of each panel. (white arrows: capsid in nuclear invaginations; blue arrows: 

capsid in perinuclear area). (B) HeLa cells were infected with 106 capsid per cell of wild type AAV and adenovirus 

type 5 (MOI of 5). At 11 h p.i., cells were fixed. Capsid and nuclear membrane were stained using A20 (red; RRX 

conjugated secondary antibody) and anti-Lamin B antibody (blue; Cy5 conjugated secondary antibody), respectively. 

Microscopical analyses were performed as described in legend to panel A. Under these conditions isolated signals of 

intact capsids were detectable inside the nucleus (white arrow). In addition, viral capsid within nuclear invaginations 

have been observed (blue arrows). (C) HeLa cells were infected with 106 capsid per cell of 100%-GFP-VP2-AAV 

and coinfected with adenovirus type 5 (MOI of 5). At 2 h p.i., cells were fixed. Capsids and nuclear membrane were 

stained using A20 (red; RRX conjugated secondary antibody) and anti-Lamin B antibody (blue: Cy5 conjugated 

secondary antibody), respectively. Microscopical analyses were performed as described in legend to panel A. GFP-

tagged virions in nuclear invaginations were recognized by A20 (blue arrows). 

 

2.1.9 GFP-VP2-AAV colocalizes with transferrin but not with dextran 

Duan et al. described a colocalization of Cy3 labeled rAAV and transferrin which 

indicates that rAAV enters the cell via clathrin mediated endocytosis. The same entry 

pathway was proposed for Canine Parvovirus (CPV) which also colocalizes with 

transferrin but not with a fluid phase marker like dextran (Parker and Parrish 2000). 

To give an additional example and to further prove the applicability of GFP-VP2-AAV 

to study the infectious biology of AAV we aimed to visualize AAV cell entry utilizing 

GFP-VP2-AAV and prelabeled transferrin and dextran. HeLa and PtK2 cells were 

infected with 100%-GFP-VP2-AAV. PtK2 cells were used since they are more 
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convenient for the online tracking of movements within cells. They have a very flat 

shape of 1-2 µm in the cell peripherie and only 5 µm in the nuclear area. In comparison 

the theoretical z resolution of a confocal microscope is about 0.5 µm. As a consequence 

this results in a more or less 2D situation and signals do not get lost quickly when they 

move in the z-axes. Therefore, PtK2 cells are often used for monitoring movements by 

live cell imaging (e.g. Döhner et al. 2002). Prior to the colocalization experiment we 

were able to show that infection of PtK2 cells with AAV leads to expression of viral 

protein. 1 µl of rAAV coding for GFP as a transgene leads to 99% positive HeLa cells 

and 78% positive PtK2 cells detected by FACS analysis. Concomitant to infection either 

Alexa 633 labeled transferrin or Texas Red labeled Dextran (MW 3000) was added to 

the media. In these experiments GFP-VP2-AAV and transferrin or dextran, respectively, 

were initially bound to the surface of the cells by incubation at 4°C for 60 min and then 

shifted to 37°C, which initiates cellular uptake, by putting the multiwell chambers into 

the incubation chamber (37°C, 5% CO2) of the live cell microscope. Subsequently, the 

distribution of AAV and transferrin or dextran were detected online up to 4 h post 

infection. We observed that GFP-VP2-AAV colocalizes with transferrin but not with 

dextran in both cell lines (Fig. 15). As it was shown for CPV, GFP-VP2-AAV 

colocalizes in a perinuclear vesicular compartment with transferrin.  
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Fig.15. AAV colocalizes with transferrin. PtK2 cells (male rat kangaroo kidney epithelial cells) seeded into glass 

bottom multiwell chambers from LabTek were infected with 100%-GFP-VP2-AAV; approximately 106 capsids/ cell. 

Additionally Alexa Flour 633 labeled transferrin in a final concentration of 0.5 mg/ml or Texas Red® labeled 

Dextran 3000 MW in a final concentration of 0.1 mg/ml was added to the media (Molecular Probes). Cells were 

incubated on ice to allow virus binding to the cells. Multiwell chambers were transferred directly after incubation on 

ice to a live cell microscope which was equipped with an incubation chambers allowing the observation of cells under 

physiological conditions (37°C, 5% CO2). Upper row: codetection of transferrin (red, left image) and GFP-VP2-AAV 

(green, mid image) and merge (right image). Some colocalizations are marked by white arrows. The image was taken 

3 h p.i. Lower row: Codetection of dextran (red, left image) and GFP-VP2-AAV (green, mid image) and merge (right 

image). No colocalization was observed. Image was taken 3.5 h p.i. 

2.1.10 GFP-VP2-AAV shows directed movements inside cells similar 
to Cy5 labeled AAV  

In previous studies performed in cooperation with Prof. Bräuchle and his group 

movements of incoming Cy5 labeled AAV were characterized by Single Virus Tracing 

(Seisenberger et al. 2001). Only a small part of AAV trajectories characterized inside 

the cells showed a directed motion, indicating microtubule dependent transport of the 

virus. This was surprising since experiments utilizing the microtubuli disturbing agent 

nocodazole had been shown to inhibit AAV infection. A possible reason for this 

discrepancy is very likely the temperature. Initial experiments were carried out at room 

temperature. However, Vihinen-Ranta et al. observed that a reduction in temperature to 

18°C leads to depolymerisation of microtubules (Vihinen-Ranta et al. 1998). Based on 

this, an incubation chamber was obtained and measurements at 37°C were performed. 

HeLa cells were infected with Cy5 labeled AAV and movies were obtained with a time 

laps of 40 ms for each image as described by Seisenberger and colleagues. Under these 

conditions directed movements were the dominant kind of motion giving evidence for 

our hypothesis that measurements of microtubuli dependent movements cannot be 

performed by room temperature. Within our experiments at 37°C, velocity between 0.7 

and 1.6 µm/sec were calculated by determining the distance and time of movement (see 

movies 2 and 3 in supplement).  

GFP-VP2-AAV particles were invented as an alternative to the chemically labeling of 

AAV capsids. Therefore, we analyzed in cooperation with PD Sodeik (MHH, 

Hannover, Germany) whether GFP-VP2-AAV is suited for live cell imaging. The 

dynamics of GFP tagged virions in infected PtK2 cells were analyzed by sequential 

fluorescence microscopic photography. To obtain movies pictures were taken with a 

time laps of 1 to 2 seconds and an exposure time of 0.5 seconds. For one movie a series 
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of 100 pictures was taken. To judge if the observed directed movements are due to 

microtubuli dependent transport processes, infection of cells incubated one hour prior to 

infection with nocodazole (50 µM final concentration) or cytochalasin D (0.1 µm final 

concentration) were performed in parallel.  

Many particles performed small irregular, oscillatory movements without making large 

displacements. But also particles could be observed performing directed movements 

(Fig. 16 and movie 4 in supplement). Directed movements were observed only in the 

absence of nocodazole whereas cytochalasin D had no influence on directed 

movements. This indicates that the directed motion is microtuble and not actin filament 

dependent. 

Directed movements were tracked by determining the xy-position of the fluorescent 

viral particles in each frame. From the xy displacements between each frame the 

velocity was calculated. The velocity of the directed motion within one track was 

mostly not homogenous. It can be observed that a particle shows directed movement 

then pauses at the same position to continue the track several seconds later. The 

maximum velocity calculated from 25 viral trajectories was 4.48 µm/sec. 

Approximately 50% of the particles moved with speeds of 0.5-1.0 µm/sec (Fig. 17). The 

average velocites of those tracks were in the range between 0.22-1.66 µm/sec. Directed 

movements observed in cells treated with cytochalasin D showed comparable velocities. 

The maximum speeds detected were in the range between 0.55-1.36 µm/sec whereas the 

average speeds was 0.27-0.49 µm/sec. Maximum velocities determined with GFP 

tagged AAV with conventional time laps microscopy were comparable with speeds 

observed in SVT measurements of chemically labeled AAV (Seisenberger et al. 2001). 

Furthermore velocities are within the range reported for movements of other viruses 

along microtubules: ~ 0.2-4 µm/sec (Suomalainen et al. 1999; Seisenberger et al. 2001; 

Lakadamyali et al. 2003; Sampaio et al. 2005; Wolfstein et al. 2006). 
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Fig. 16. Live cell imaging of GFP-VP2-AAV. Left: still image of a movie taken of a PtK2 cell infected with approx. 

106 capsids of 100%-GFP-VP2-AAV (white bar = 10 µm). Right: enlargement and z projection of the 100 single 

frames of the rectangular section (marked in the left image).  
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Fig. 17. Relative frequency of maximal velocities.  Directed movements of 100%-GFP-VP2-AAV particles in 

infected PtK2 cells were tracked by determining the xy-position of the fluorescent viral particles in each frame. From 

the xy displacements between each frame the velocity was calculated. 
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2.2 Application of GFP-VP2-AAV 

2.2.1 Visualization of GFP-VP2-AAV in vivo  

The great potential of direct labeling is the direct monitoring of the course of infection 

in vivo. Not only in living cells but also in living animals interesting information could 

be obtained. To assess if this is possible utilizing GFP tagged AAV capsids, such 

particles were subretinal injected into the eye of rats in cooperation with Dr. Rolling 

(University of Nantes, France) who is working on gene therapy of retinal degeneration 

(Fig 18). Gene therapy represents a possible approach for treating retinal degradation 

because the eye is easily accessible and allows local application of therapeutic vectors 

with reduced risk of systemic effects. An efficient long-term gene expression was 

already shown for AAV2 based vectors (Bennet et al. 1999; Ali et al. 2000).  

Flatmounts of the neuroretina and sclera/choroid/RPE showed that GFP detection in the 

layers of photoreceptors and retinal pigment epithelium (RPE) is indeed possible (Fig. 

19). 
Fig. 18. Section of the eye showing the retina and its 

layers. The retina is the innermost of the three layers 

of the eye.  It consists of the outer simple epithelial 

layer called the retinal pigmented epithelium (RPE) 

and the inner neurosensory retina.  Between these two 

layers lies a potential space, the subretinal space, 

across which the two layers adhere.  The retina is 

bound by the choroid externally, the vitreous 

internally, the ora serrata anteriorly, and is continuous 

with the optic nerve posteriorly. 

www.bostonretinalimplant.org 
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Fig. 19. GFP-VP2-AAV detected in the RPE. Wt Wistar rats were anesthetized with an intramuscular injection. For 

subretinal injection, the sclera and the choroid were punctured and a 33-gauge needle was then inserted in a tangential 

direction under an operating microscope. In one application, 6x1010 capsids were injected. 24 h p.i. a retinal 

flatmount was obtained. Therefore enucleated eyes were fixed with 4% paraformaldehyd for 40 minutes at room 

temperature. After washing, the eyes were cut through the pars plana and the anterior segment and the lenses were 

removed. The eye cup was cut peripherally into four sections under an operating microscope and flattened. The 

neuroretina was removed from the sclera/choroids/RPE with fine forceps and both cell layers were mounted on a 

glass side and examined by fluorescence microscopy. 

Left image: Green fluorescent spots were detected in the layer of retinal pigment epithelium. Right image: negative 

control 
 

2.2.2 Utilization of the VP2 N-terminus as insertion site for 
retargeting polypeptides 

One major aim of our group is the generation of retargeting (= receptor/cell specific) 

vectors for gene therapy. Based on our characterization of GFP-VP2-AAV it can be 

assumed that the N-terminus of VP2 can be used for insertion of larger polypeptides. 

This is important for the field of AAV retargeting since larger peptides insertions within 

the capsid interfere with AAV packaging.  

Therefore, a new PhD project was started with the aim of generating vectors specific for 

colorectal cancer cells and for Hodgkin Lymphoma. The sequences of single chain 

antibodies against CEA (colorectal embryonic antigen) and against CD30 (marker for 

Hodgkin Lymphom) were fused with the N-terminus of VP2. Therefore, the GFP 

sequence was replaced by the sequences for the single chain antibodies against CEA or 

CD30, respectively. Sequences of single chain antibodies were amplified from 

expression vectors provided by Prof. Abken (UKK, Köln, Germany). The natural 

binding site of AAV for its primary receptor heparan sulfate proteoglycan (HSPG) is 

located within the VP3 region and is not affected by insertion of polypeptides at the 

VP2 N-terminus. To avoid transduction of cells via the natural primary receptor of 

AAV2, crucial amino acid residues for HSPG binding were mutated in addition (R→A 

aa585/ R→A aa588). Until now we have observed that virions containing single chain 

antibodies can be packaged with comparable titers to wt AAV (Tab. 2). Transduction of 

HeLa could be successfully prevented by the mutation of the HSPG binding region. 

Currently, infection studies are being performed to determine the targeting specificity of 

these new vectors. 
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TABLE 2 Characterization of the different viral preparations 
 

Preparation 
Genomic 

particles/ml 
Transducing 
particles/ml* 

   
ssGFP-AAV2HaCEA 1.52 x 1012 2.19 x 109 

ssGFP-AAV(2)aCEA 3.46 x 1011 n.i. 

ssGFP-AAV2HaCD30 3.97 x 1012 9.21 x 108 

ssGFP-AAV(2)aCD30 4.65 x 1011 n.i. 

ssGFP-AAV2RC 1.29 x 1012 4.44 x 109 

 
* the infectious titer was determined on HeLa; n.i. = non infectious 

ssGFP-AAV2HaCEA: rAAV2 with anti CEA inserted at the VP2 N-terminus;  
ssGFP-AAV(2)aCEA rAAV2 with anti CEA inserted at the VP2 N-terminus and mutation of 2 residues important for 

the HSPG binding;  
ssGFP-AAV2HaCD30: rAAV2 with anti CD30 inserted at the VP2 N-terminus;  
ssGFP-AAV(2)aCD30: rAAV2 with anti CD30 inserted at the VP2 N-terminus and mutation of 2 residues important 

for the HSPG binding;  
ssGFP-AAV2RC:  wt AAV2 capsid  
All vector contain ssGFP as a transgene. (Data kindly provided by Jorge Boucas) 
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2.3 PLA2 – an important domain within the AAV2 capsid 

To continuously improve the vector system, a detailed understanding of functional 

domains within the AAV capsid proteins is important. It has been shown that the unique 

region of VP1 contains a secretory phospholipase A2 (sPLA2) domain; a domain that 

was not known to exist in virus capsids (Zádori et al. 2001).  

A mutation in the catalytic center of the PLA2 motif of AAV2 causes a dramatic drop in 

infectivity. No differences in cell adhesion, entry or accumulation in the perinuclear 

area could be observed between wt and PLA2 mutant, however these mutants show a 

drastically reduced and delayed Rep expression (Girod et al. 2002). Based on these 

results, it can be assumed that the PLA2 activity is required for a step in the life cycle of 

AAV, following perinuclear accumulation, but prior to the onset of gene expression. 

This suggests that the PLA2 activity is may be required for endosomal escape or 

transfer of viral genomes into the nucleus. 

 

2.3.1 Both wt AAV and PLA mutant seem to accumulate inside the 
endoplasmatic reticulum  

To address this question we performed a costaining of viral capsids and the 

endoplasmatic reticulum (ER). HeLa cells were infected with 105 capsids per cell in 

parallel with wild type AAV and PLA2 mutant. The PLA2 mutant analyzed contains a 

substitution of the amino acids histidine (D) and aspartic acid (D) to alanin (A) and 

asparagin (N) at amino acid position 76 and 77, respectively, within the capsid protein 

VP1. These amino acids are located within the catalytic center of the phospholipase A2 

domain. Infections were stopped by fixing the cells 2, 4 and 11 h p.i. Capsids and the 

ER were stained by antibodies (polyclonal Calreticulin (ABR) rabbit antibody). At all 

time points analyzed, both wt and PLA2 mutant capsids colocalized with the ER 

staining (Fig. 20). 
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Fig. 20. Colocalization of viral capsids and ER signals. HeLa cells were infected with 105 capsids of wt AAV or 

PLA2 mutant per cell. Cells were fixed 4 h p.i. Viral capsids were stained with A20 and a FITC conjugated secondary 

antibody (green). The ER was stained with a calreticulin antibody and a secondary Cy5 conjugated antibody (blue). 

Analyses were performed by confocal microscopy and one image plane out of a z-stack is shown. Left: wt AAV 

infected cells. Right: PLA2 mutant infected cells. Arrows show accumulation of viral capsids within the ER. 

 

However, the ER signal covers a relatively large area around the nucleus. To exclude 

that the capsids are localized only in the same region of the ER and not really within 

membrane stacks of the ER we wanted to get a higher resolution of this region of 

interest. Therefore, we started to establish an electron microscopic analysis of AAV 

inside infected cells in cooperation with Prof. Dienes (Institute for Pathology, 

University of Cologne). For that purpose same infections as described above were 

performed. Cells were fixed and then analyzed by electron microscopy (EM). The first 

results obtained by EM seemed to verify our immunofluorescence data: wt AAV and 

PLA2 mutant capsids localize within the ER structure (Fig. 21 and 23). For wt AAV, 

escape from a vesicular organelle was observed (Fig. 22). In addition, viral capsids of 

both wt and PLA mutant were also detected in the cytoplasm (outside of organelles) 

(Fig. 21, 22 and 23). The exact organelle from where viral capsids are released into the 

cytoplasm and if it is the same organelle for the wt and the PLA2 mutant cannot be 

concluded from these preliminary results. But the data favor the idea that also the PLA2 

mutant is able to escape from endosomes or other vesicular compartments to which the 

capsids are transported, concluding that the phospholipase activity is not needed for 

viral escape from vesicular compartments. However, more data have to be obtained to 

strengthen this hypothesis. Furthermore, the current fixation protocols did not result in 
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an optimal recovery of cell structures. Therefore, a modified protocol and in addition 

immunogold staining against the viral capsid and cellular markers will be applied in the 

ongoing experiments to obtain a better depiction of intracellular membranes and viral 

capsids.  

 
 

Fig. 21. Accumulation of wt AAV within membrane stacks. Electron micrographs of HeLa cells infected with wt 

AAV (106 capsids per cell) fixed 4 h p.i. Red circled particles show viral capsids outside of organelles (upper image) 

lower image: enlargement of green rectangle. Green arrows show wt capsids accumulated within membrane stacks. 

(scalebars = 142 nm) 

 45



Results 
 

 

Fig. 22. Left image: viral escape out of a vesicular 

compartment. Electron micrograph of HeLa cells 

infected with wt AAV (106 capsids per cell) fixed 4 h p.i. 

Viral capsids are detected inside a vesicular 

compartment. Green arrow depicts a viral escape out of 

this organelle Red arrow shows a viral capsid free within 

the cytoplasm. (scalebar = 20 nm) 

Fig. 22. Left image: viral escape out of a vesicular 

compartment. Electron micrograph of HeLa cells 

infected with wt AAV (106 capsids per cell) fixed 4 h p.i. 

Viral capsids are detected inside a vesicular 

compartment. Green arrow depicts a viral escape out of 

this organelle Red arrow shows a viral capsid free within 

the cytoplasm. (scalebar = 20 nm) 

Fig. 23. Lower images: the PLA mutant accumulates 

within membrane stacks. Electron micrographs of 

HeLa cells infected with PLA mutant (106 capsids per 

cell) fixed 4 h p.i. (A) shows PLA mutant capsids within 

membrane stacks (green arrows). (B) shows viral capsids 

outside of organelles (red circled particles). (scalebars = 

45 nm) 

Fig. 23. Lower images: the PLA mutant accumulates 

within membrane stacks. Electron micrographs of 

HeLa cells infected with PLA mutant (106 capsids per 

cell) fixed 4 h p.i. (A) shows PLA mutant capsids within 

membrane stacks (green arrows). (B) shows viral capsids 

outside of organelles (red circled particles). (scalebars = 

45 nm) 
  

 

2.3.2 DNA signals from the PLA2 mutant cannot be detected inside 
the nucleus but inside nuclear invaginations 

In further immunofluorescence experiments, we compared wt AAV and the PLA2 

mutant regarding the distribution of viral DNA and capsids in the perinuclear area. 

HeLa cells were infected as described above and fixed 11 h post infection. Nuclear 

lamina and viral capsids were stained with antibodies, while DNA was visualized by 

FISH. We observed, in contrast to wt AAV no FISH signals (= no signal for viral DNA) 

from the PLA2 mutant within the nucleus. Outside the nucleus, the PLA2 mutant 
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behaved like wt AAV (FISH signals colocalized perfectly with capsid signals). 

Colocalizing signals of DNA and capsid were detected in close proximity to the nuclear 

membrane and inside nuclear invaginations (Fig. 24). 

A                  B 

 
 

Fig. 24. Visualization of viral genomes by FISH. HeLa cells were infected with wt or PLA2 mutant (105 capsids 

per cell). Cells were fixed 11 h p.i. FISH (green, Oregon green labeled DNA probe) was performed to visualize viral 

genomes, intact viral capsids were stained with A20 (red, RRX conjugated secondary antibody). The nuclear lamina 

was visualized by an anti-Lamin B antibody (blue: Cy5 conjugated secondary antibody). Analyses were performed by 

confocal microscopy and one image plane out of a z-stack is shown (upper left: viral genomes; upper right: viral 

capsids; lower left: anti-Lamin B; lower right: merge). (A) wt AAV: the arrow shows one example of a viral genome 

localized within the nucleus. (B) PLA2 mutant: the arrow shows one example of a viral genome colocalized with 

viral capsid inside a nuclear membrane invagination. No FISH signals are detected within the nucleus. 

 

2.3.3 The PLA2 mutant shows in contrast to wt AAV no DNA 
replication 

To investigate if the PLA2 mutant is able to replicate its genome, HeLa cells were 

infected with wt AAV and PLA2 mutant, respectively, and coinfected with adenovirus 

type 5 at a multiplicity of infection (MOI) of 5. Since adenoviral proteins are necessary 

to assist AAV replication, HeLa cells were either coinfected or preinfected with 

adenovirus (1, 5 or 16 h) to evaluate if the time point of adenovirus infection makes a 

difference. For AAV infection 105 viral capsids per cell of wild type AAV or PLA2 

mutant were utilized. 2, 4 or 6 h after AAV infection cells were fixed with 4% 

paraformaldehyd. Nuclear lamina was stained with an anti-Lamin B antibody and viral 

DNA was visualized by FISH. Interestingly, viral DNA replication was detected as an 
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accumulation of FISH signals inside the nucleus only in cells preinfected with 

adenovirus for 16 h, followed by 4 h wt AAV infection. No viral replication was 

detected under the same conditions for the PLA2 mutant (Fig. 25). 

 

 
Fig. 25. Visualization of viral replication. HeLa cells were infected with adenovirus type 5 at a MOI of 5. 16 h post 

Ad infection cells were infected with wt or PLA2 mutant (105capsids per cell). Cells were fixed 6 h post AAV 

infection. FISH hybridization (green, Oregon green labeled DNA probe) was performed to visualize viral genomes 

and the nuclear lamina was visualized by an anti-Lamin B antibody (blue: Cy5 conjugated secondary antibody). 

Analyses were performed by confocal microscopy. A vertical sectioning out of a z-stack is shown. (left panel) wt 

AAV infection; (right panel) PLA2 mutant. Replication was detected as bright accumulation of FISH signals inside 

the nucleus only after wt AAV infection.  

2.3.4 Next steps of analysis of the PLA mutant  

In following experiments we want to compare the wt AAV and the PLA2 mutant 

directly within the same cell. To distinguish the two different viruses inside the same 

cell, viral capsids should be tagged with different fluorescent proteins. As an alternative 

to GFP-VP2, monomeric DsRed was fused to the N-terminus of VP2 by cloning the 

VP2 PCR fragment at the C terminal cloning site of a DsRed expression vector from 

Clontech. Thus, DsRed labeled capsids can be generated in the same way as GFP 

labeled capsids. To generate a labeled PLA2 mutation containing capsid, the VP2 knock 

out was inserted into pHD/AN resulting in pHD/AN VP2ko. This plasmid has the same 

sequence as pUC-AV2 with exception of the HD/AN mutation. Thus, labeled capsids 

can be generated by transfecting 293 cells with pxx6, pGFP-VP2 or pDsRed-VP2 

respectively and pHD/AN VP2ko instead of puc-AV2. At the moment DsRed-VP2-

AAV and DsRed-VP2-HD/AN are being characterized. 
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2.4 Amino acid position 453 as an alternative insertion site  

A sensitivity problem arises if chemical labeled AAV2 capsids, carrying only one dye 

per capsid are analyzed by confocal or fluorescent microscopy (not single virus tracing). 

Therefore, a higher number of fluorescent dyes incorporated into the viral capsids 

would be desirable allowing detection of a more physiological amount of virions per 

cell by conventional fluorescent and confocal microscopy. Therefore, we wanted to 

evaluate a different labeling method. Insertions within the VP3 region have the 

advantage of being displayed 60 times on the capsids, in contrast to approximately 5 to 

10 times when the insertion is located in the VP1 or VP2 region. The 587 position, 

which is located within the VP3 region, was demonstrated to be a well suited site for 

insertion of retargeting sequences (Grifman et al. 2001; Nicklin et al. 2001; Ried et al. 

2002; Shi et al. 2001; Perabo et al. 2003, 2006). However, insertions at the 587 position 

interfere with wild type AAV receptors binding and therefore cannot be used for 

insertions of fluorescence proteins in attempt to study infectious biology. Regarding the 

structure of AAV (Xie et al. 2002) we were attracted by the amino acid position 453 

which is located on the top of the higher peak within the capsid (Fig. 26). We thought 

that an insertion at this site should be perfectly presented – like 587 – 60x at the capsids 

surface. However, several attempts to introduce larger polypeptides within the VP3 

region were not compatible with viral packaging. Thus, fluorescent proteins like GFP 

derivates are too large to be inserted within that region. As an alternative we tried to 

incorporate an α-helical tetracystein-containing peptide (21 amino acids: 

GGWEAAAREACCRECCARAGG) into the 453 position. This peptide is specifically 

recognized by FLASH-EDT2 (Fluorescein arsenical helix binder-1,2 Ethanedithiol 

adduct) which becomes strongly fluorescent after binding to the tetracystein peptide 

(Griffin et al. 1998). Moreover, we inserted as a control a NGR motif (11aa: 

ACVLNGRMECA) which, we already knew, is functional at the 587 site in vitro. The 

NGR peptide binds specifically to the tumorendothelial isoform of aminopeptidase N 

(APN), also known as CD13. APN is thought to play a role in chemokine processing 

and tumor invasion (Pasqualini et al. 2000). Curnis and coworkers showed that a tumor 

endothelium specific isoform of APN is upregulated on the very same tissue (Curnis et 

al. 2002). Insertions were cloned into the pRC plasmid. Thus generating the plasmids 

pRC NGR 453 or pRC FLASH 453. 
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Fig. 26. Location of the amino acid positions 587 

and 453 within the AAV capsid. (A) Ribbon drawing 

of one AAV capsid subunit (modified from Xie et al. 

2002). Arrows mark location of 587 (yellow arrow) 

and 453 (red arrow) position. The locations of the 

neighboring symmetry axes are shown (2, 3 and 5 fold 

symmetry axes). (B) Lower panel: Surface topology of 

the AAV2 capsid (modified from Xie et al. 2002). 

Dotted circles mark the higher peak on which the 453 

position is located. Upper panel: Enlargement of the 3 

fold symmetry region. Amino acid 587 on the top of 

the lower peak is colored yellow and 453 on the top of 

the higher peak iscolored  red.  

2.4.1 Only the NGR not the FLASH peptide is tolerated at the 453 
position 

To control whether insertions at the new site allow the production of infectious virus, 

crude viral lysates were generated. Therefore, 293 cells were transfected with pxx6 

(adenoviral helper plasmid), pGFP (plasmid encoding for the transgene) and either pRC 

(unmodified capsid), pRC NGR 453, pRC FLASH 453 or pOEN (negative control; stop 

codon inside the cap gene). Thus 293 cells should produce the following viral particles: 

RC-rAAV/GFP (wt viral capsids with GFP as transgene), NGR-453-rAAV/GFP (capsid 

with NGR insertion at the 453 site and with GFP as transgene) and FLASH-453-

rAAV/GFP (capsid with FLASH insertion at the 453 site and with GFP as transgene). In 

the negative control where pOEN instead of pRC was transfected into 293 cells no viral 

capsids should be generated but free GFP protein. This allows us to distinguish between 

virus mediated transduction and GFP pseudotransduction. Cells were harvested 2 days 

post infection by trypsin treatment. Crude lysates were obtained by subjecting the cells 

to three freeze and thaw cycles. Crude viral lysates were used to infect HeLa cells thus 

determining the ability of the viral lysate to mediate GFP expression. HeLa cells were 
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screened for GFP expression at the microscope one and two days after infection. Only 

lysates containing wt AAV or the NGR 453 rAAV showed expression of GFP. Lysates 

of the negative control and FLASH 453 rAAV showed no GFP expression. From this 

we concluded that insertion of the α-helical tetracystein-containing peptide was not 

compatible with infectivity. A reason for this might be the formation of a helix 

interfering with the folding of the β-barrels which form the peak on which the 453 

position is located. A larger spacer between peptide and capsids might be a solution for 

this problem. However, the NGR peptide at the 453 position showed potential as a new 

retargeting position within the capsids. For this reason we decided to analyze this in 

more detail.  

 

2.4.2 NGR in 453 mediates an efficient transduction of HUVEC cells 

Viruses were produced and purified by an iodixonal step gradient: RC-rAAV/GFP, 

NGR-453-rAAV/GFP and NGR-587-rAAV/GFP (contains NGR in aa position 587). 

Genomic particle titer was analyzed by DNA dot-blot hybridization. Gene expression of 

the different vectors was measured in HUVEC (human umbilical vein endothelial cells) 

and HFF (human foreskin fibroblast). HUVEC are used as a tumor endothelial model, 

because when primary HUVEC are kept in culture for longer time they start to develop 

a capillary like network, thus macroscopically indicating the switch to an angiogenic 

phenotype (Vailhe et al. 2001). Primary HUVEC were isolated from umbilical cords 

obtained from the new born clinic of the Ludwigs Maximilians-University. HHF were 

used as a non endothelial control for primary cells. HFF are reported to be permissive 

for AAV2 (Russell et al. 1994).  

In a first attempt, to determine if the inserted NGR motif provides the vectors with 

targeting ability, HUVEC and HFF were infected with 104 genomic particles per cell. 

Additionally, infections on HUVEC were carried out in the presence of soluble heparin 

to check whether binding to the attachment receptor HSPG influences viral 

transduction. Infected cells were harvested 2 days post infection and GFP expression 

was measured by fluorescence activated cell sorting (FACS). With RC-rAAV/GFP 

19.9% of HUVEC and 69.1% of HFF could be transduced. The NGR 587 mutant was 

able to transduce 14.5% of HUVEC and 7.95% of HFF whereas the NGR-453 mutant 

was able to infect 62.5% of HUVEC and 70.2% of HFF. For RC-rAAV/GFP a 7.2 fold, 
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for NGR-453-rAAV/GFP a 6.3 fold, but for NGR-587-rAAV/GFP only a 1.4 fold 

reduction in transduction was reached when incubating the vector with soluble heparin 

(Fig. 27). These results indicate that the insertion at 453 leads to an enhanced 

transduction of HUVEC, which points towards a successful new ligand-receptor 

interaction. Heparin inhibits wt and the 453 mutant nearly to the same extent while the 

inhibition of the 587 mutant was much lower. Furthermore HFF were transduced to the 

same extent from RC-rAAV/GFP (69.1%) and NGR-453-rAAV/GFP (70.2%) while 

transduction with NGR-587-rAAV/GFP was much lower (7.95%). This might indicate 

that HSPG is still used as a receptor by NGR-453, which is not astonishing since the 

heparin binding site is not affected within the 453 mutant.  
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Fig. 27. Transduction efficiencies of NGR mutants. Transduction efficiencies of RC-rAAV/GFP (RC), NGR 587-

rAAV/GFP (NGR 587) and NGR-453 rAAV/GFP (NGR 453) transduction of HUVEC in the presence (black bars) 

and absence of heparin (white bars) and of HFF (grey bars) determined by FACS. 

2.4.3 The alternative retargeting peptide RGD-4C shows RGD 
mediated transduction 

In parallel, in vivo studies were carried out in our group with the NGR-587-rAAV/GFP. 

They showed no hint that the NGR motif is able to redirect the respective targeting 

mutant towards tumor endothelia (unpublished results). For this reason we decided to 

exchange the NGR peptide for the RGD-4C peptide (11aa: ACDCRGDCFCA). The 

RGD-4C peptide binds specifically to αvß3/αvß5 integrins (Koivunen et al. 1995). A 

RGD motif was also selected in former work of our group using an AAV display on a 

human megakaryocytic cell line (M-07e) (Perabo et al. 2003). Virions containing such 
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RGD peptides at the 587 position were able to transduce M-07e but not Mec1 (B-cell 

chronic lymphatic leukemia cells in prolymphoid transformation). M-07e and Mec1 are 

both poorly transduced by wt AAV2. Insertions were cloned into the pRC plasmid, 

generating the plasmid pRC RGD 453. The four cysteins in the peptide are thought to 

build sulfate bridges in a way that the RGD becomes perfectly exposed. 

RC-rAAV/GFP, RGD-4C-453-rAAV/GFP and RGD-4C-587-rAAV/GFP were 

packaged and purified by an iodixanol step gradient. Genomic titers were determined by 

quantitative PCR. HeLa, M-07e and Mec1 cells were infected using the same genomic 

particles per cell (approx. 104). To analyze whether the infection is mediated by the 

insertion, competition experiments were included. Therefore cells were preincubated 

with 300 µM soluble GRGDTP or GRGES peptides for 10 min. The RGD containing 

peptide should block RGD mediated cell entry by competing for integrin binding 

(receptors for RGD motif containing ligands). The RGE containing peptide is a 

nonspecific negative control. The transduction efficiencies were determined 3 days post 

infection by FACS (Fig. 28).  

Interestingly, AAV with RGD-4C in 453 transduced M-07e cells more efficiently than 

RC rAAV (41% in comparison to 25%) and than RGD-4C in 587 (9%). Transduction of 

M-07e with RGD-4C containing virions was inhibited by GRGDTP peptides but not by 

unspecific GRGES peptides. Transduction of M-07e with RC-rAAV/GFP was not 

inhibited by both of the peptides. This indicates that the transduction of M-07e with 

RGD-4C containing virions is mediated by the RGD insertion and that the insertion site 

is important for enhancement of transduction.  

In contrast, Mec1 cells were not infected by RGD-4C-453-rAAV/GFP (2%). RC 

transduced 25% and RGD-4C-587-rAAV/GFP 11% of Mec1.  

RC-rAAV/GFP transduced 98% of HeLa and was not inhibited by soluble peptides. 

RGD-4C in 453 rAAV was able to transduce HeLa cells to 52%. Inhibition with RGD 

containing peptide reduced transduction efficiency only to 40%, which indicates that 

these virions, in which the HSPG binding is not affected by peptide insertion (in 

contrast to 587 insertions) are still able to enter cells through the HSPG mediated entry 

pathway in addition to RGD-4C. Infection of HeLa cells with RGD-4C-587-rAAV/GFP 

showed a lower transduction (21%), demonstrating that peptides at the 587 position 

interfere with natural receptor binding. Transduction was inhibited by GRGDTP soluble 

peptide to 7% indicating a RGD mediated entry also on HeLa cells. 
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Fig. 28. Transduction efficiencies of RGD-4C mutants. Transduction efficiencies ± standard deviation in triplicate 

experiments as determined by FACS of RC rAAV/GFP (RC), RGD-4C 587 rAAV/GFP (RGD-4C 587) and RGD-4C 

453 rAAV/GFP (RGD-4C 453) on M-07e, Mec1 and HeLa (cyan bars). Transduction rates were also assessed after 

pre-incubation of the cells with competing GRGDTP (blue bars) or unspecific GRGES (yellow bars) 
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3 Discussion 

3.1 Incorporation of GFP-VP2 into the viral capsid allows the 

production of infectious particles 

To track the intracellular trafficking of AAV and derived vectors in infected cells, we 

have tagged virions by incorporation of GFP-VP2 into the viral capsid. In a first step, 

chimeric virions containing VP1, VP2, GFP-VP2 and VP3 were produced. GFP-tagged 

AAV particles could also be generated without the addition of wild type VP2. This 

observation is in contrast to Yang et al. (1998), who showed that the AAV capsid is not 

able to tolerate large insertions at the N-terminus of VP2 without the simultaneous 

addition of wild type VP2. This discrepancy might be due to differences in the 

production and purification method: Yang et al. expressed the different VP proteins 

from three different plasmids controlled by the CMV promoter, and used a CsCl density 

gradient for purification. In addition, remaining helper virus was inactivated by heat. 

Using the natural AAV viral promoters and a helper virus-free production method 

allowed to efficiently generate particles with N-terminal VP2-fusions of different size 

(Loiler et al. 2003; Shi et al. 2001; Warrington et al. 2004; Wu et al. 2000). The largest 

insertion described so far is the 30 kDa GFP protein used by Warrington et al. and in 

our study. Interestingly, although Warrington and colleagues used the same amino acid 

position (aa 138) for the VP2 fusion, the genomic particle-to-infectivity ratio reported 

by Warrington et al. was remarkably higher (up to 130 fold less infectious) than ratios 

obtained for our GFP-tagged virions (Warrington et al. 2004). In addition an up to 30 

fold higher amount of empty capsids was detected within their study. We observed a 

genomic particle-to-infectivity ratio between 84 and 195 for 60%-GFP-VP2-AAV, and 

between 208 and 2288 for the 100%-GFP-VP2-AAV, which is higher than ratios 

obtained for the wild type AAV within our study (29 and 62), but still in the range 

described for wild type preparations (Ried et al. 2002). Furthermore, no increase in the 

amount of empty capsids was detected. Since we used the same amino acid position for 

the fusion (aa 138), the differences observed must have been caused by other factors. 

One main difference could be the choice of the promoter responsible for the 

transcription of VP2. Warrington et al. used the natural p40 promoter, and translation 

was initiated from a modified and therefore stronger start codon (ATG instead of ACG), 
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which resulted in a more efficient VP2 and in the inhibition of VP3 initiation from this 

template. In our case, the viral CMV promoter was used to control the transcription of 

the fusion protein and the VP2 translation start codon was deleted. Warrington and 

colleagues performed a Western blot of their GFP-tagged virions. When comparing 

their Western blot results with the results obtained for our GFP-tagged virions packaged 

in the presence of pGFP-VP2 (Fig. 7), the most obvious difference was the amount of 

VP1 detected in the GFP-tagged virion preparations. While the preparations of 

Warrington and colleagues showed a clear reduction for the VP1 signal, the amount of 

VP1 in our preparations was comparable to wild type AAV. It is known that VP1 - 

possibly because of its phospholipase activity - is essential for AAV infectivity (Bleker 

et al. 2005; Girod et al. 2002; Kronenberg et al. 2005; Zádori et al. 2001). Therefore the 

reduced amount of VP1 within the preparations of Warrington et al. might be a 

reasonable explanation for the lower infectivity of the vectors produced by Warrington 

and colleagues and the discrepancy to our results. It remains unknown if the 

modification of the VP2 translation start codon as carried out by Warrington and 

colleagues or other factors are responsible for the VP1 reduction. However, our 

preparations yielded an up to 130 fold increased viral infectivity in comparison to 

Warrington et al., with an infectious titer of 109 per ml. 

In addition, we could detect colocalization of A20 and GFP-VP2 derived signals by 

immunofluorescence within infected cells. Since A20 recognizes only intact capsids 

(Bleker et al. 2005), the integrity of AAV does not seem to be affected through the 

GFP-VP2 incorporation.  

3.2 AAV capsids are not transported into the nucleus 

efficiently 

According to the current model of AAV infection, AAV enters host cells by receptor-

mediated endocytosis, which is a very fast process that occurs in approximately 60 ms 

(Seisenberger et al. 2001). Within the first 10 minutes, two-thirds of membrane bound 

virus particles are internalized (Bartlett et al. 2000). The endocytotic process and the 

subsequent trafficking steps are still poorly understood and may differ substantially in 

different cell types, and in some cases even in the same cell types (Duan et al. 2000; 

Hansen et al. 2001a). Different organelles have been proposed for the release of AAV 
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into the cytoplsm. Thereafter, the destiny of AAV remains unclear. Some studies have 

observed a perinuclear accumulation within 1-2 h p.i., which persisted in the absence of 

adenovirus coinfection for at least 16 h (Warrington et al. 2004; Xiao et al. 2002). In 

contrast, using laser scanning confocal microscopy, Bartlett observed AAV particles 

within the nucleus of infected cells already 2 h p.i. despite the absence of helper virus 

(Bartlett et al. 2000).  

In this study, it was observed that intracellular trafficking of GFP-tagged virions occurs 

quickly at least in HeLa cells. This is in agreement with results obtained with SVT. This 

sensitive method allows the observation of single particles in a living cell. Due to this 

high sensitivity, it was possible to detect at least one AAV particle in the nuclear area of 

50% of the cells 15 minutes p.i. In some cases, AAV reached the nuclear area within 

seconds (Seisenberger et al. 2001). In contrasts to this, the nuclear entry of intact AAV 

capsids is comparably slow. Although many virions were already accumulated in the 

perinuclear area before 2 h p.i. we observed in the absence of helper virus coinfection 

only isolated GFP signals from the GFP-VP2-AAV particles within the nucleus of cells 

at 11 and 24 h p.i. (no signal at 2 or 4 h p.i.). This result clearly contradicts results 

described by Bartlett et al., who observed in the absence of helper virus AAV particles 

inside the nucleus 2 h p.i. (Bartlett et al. 2000). This can be explained by the limited 

microscopic possibilities available at that time.  

In adenovirus coinfected cells, a few GFP signals were observed within the nucleus 2 h 

p.i. (earliest time point observed), revealing that adenovirus is able to augment nuclear 

entry of AAV capsids. These results would confirm previous observations that 

described intact viral particles within the nucleus of coinfected cells in less than 1 h p.i. 

(Warrington et al. 2004; Xiao et al. 2002). However, the amount of AAV capsids we 

observed by applying the new vertical sectioning method for data analysis was much 

lower than described by (for example) Xiao et al. (2002). In all conditions and at all 

time points analyzed during this study, only very few GFP signals provided by the GFP-

VP2-AAV particles could be detected within the nucleus. This was not due to the GFP-

VP2-AAV virions used to analyze this step of the infectious biology, since the same 

image was obtained with wild type AAV visualized by A20 (Fig. 14). Even 11 h p.i. in 

the presence of helper virus, signals of intact capsids were detected inside the nucleus 

only in rare cases (cells were infected with 106 capsids/cell). The majority of AAV 
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capsids was detected in the perinuclear region. From this data it can be excluded that 

GFP tagged capsids are not transported into the nucleus due to the GFP incorporation. 

3.3 Viral uncoating takes place before or during nuclear entry 

From the experiments described above it was assumed, that the transport of intact viral 

capsids into the nucleus of infected cells is an inefficient process. Therefore, it might be 

an unspecific event, which is not needed for viral replication. We hypothesized, that 

viral uncoating takes place before or during nuclear entry independent of helper virus 

coinfection. This model was strengthened by the comparison of the amount of viral 

genomes with the amount of capsids detected within the nucleus at different time points 

of the infection in the presence and absence of helper virus: Neither in the presence nor 

in the absence of helper virus intact viral capsids were detected within the nucleus of 

cells infected with 105 instead of 106 viral capsids per cell. In contrast, under the same 

conditions, viral genomes were detected already 2 h p.i. within the nucleus with a slight 

increase in signals with prolonged observation times.  

Almost no signals in the perinuclear region were observed, using an antibody specific 

for the C-termini of VP1, VP2 and VP3, which are buried within the intact capsid. 

Furthermore, no signals for dissociated capsid proteins were detected inside the nucleus. 

For parvovirus B19, it was recently shown in vitro, that the full length viral DNA is 

released from the capsids upon treatment with low pH (mimicking endosomal 

acidification) without capsid disassembly (Ros et al. 2006). This might be an 

explanation for not detecting dissociated capsid fragments or single capsid proteins in 

infected cells. A similar situation was seen for GFP-VP2-AAV. In cells infected with 

GFP-VP2-AAV only the viral genome was detectable inside the nucleus upon early 

time points after infection (4 h p.i.). GFP-VP2 signals were only detected in the 

perinuclear region. It is known that the VP2 region contains a nuclear localization signal 

(NLS), which is important during viral assembly, but it could not be proven that this 

NLS is also important for the incoming virus (Hoque et al. 1999). Moreover, it was 

shown in this study that VP2 knock out mutants are still infectious and furthermore, no 

GFP-VP2 signals of incoming virions are detected in the nucleus. However, it has to be 

considererd that VP1 also contains the VP2 region coding for the NLS.  
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In conclusion we can argue that the uncoating takes place before or during nuclear entry 

and is independent of helper virus coinfection. It still unclear, whether the AAV DNA is 

still associated with capsid proteins or needs the help of cellular proteins during nuclear 

entry.  

3.4 Entry pathway and intracellular trafficking of GFP 

tagged AAV are not altered in comparison to wt AAV 

AAV enters the cell through receptor mediated, clathrin dependent endocytosis (Bartlett 

et al. 2000; Duan et al. 1999). In this study, GFP-VP2-AAV colocalizes with 

transferrin, a marker for receptor mediated endocytosis, as seen for Cy3 labeled rAAV 

(Duan et al. 1999). This is a further evidence that the GFP tag does not interfere with 

the normal infectious pathway of AAV. Furthermore, colocalization of GFP-VP2-AAV 

and transferrin was observed in perinuclear compartments close to the nucleus. This 

suggests that AAV takes the same intracellular route as transferrin, trafficking through 

the perinuclear recycling endosome. In addition, GFP-VP2-AAV did not colocalize 

with the fluid phase marker dextran. This is congruent with observations of canine 

parvovirus (Parker and Parrish 2000). 

Inhibition of viral infection with nocodazole was shown previously for AAV (Sanlioglu 

et al. 2000) indicating that AAV needs the microtubule network for intracellular 

trafficking. Velocities in the range of 1.8 and 3.7 µm/sec for directed movements were 

determined in previous work with Cy5 labeled AAV (Seisenberger et al. 2001). Live 

cell studies with GFP-VP2-AAV determined maximal velocities for single viral tracks 

with directed motion up to 4.5 µm/sec. Treatment of the cells with nocodazole abolished 

directed movements, whereas cytochalasin D had no effect on directed motion, thus 

giving evidence that the observed directed motions rely on microtubule transport. 

Microtubules are known to be the highways for long distance transport. Many viruses 

require microtubules during cell entry for efficient nuclear targeting, either for cytosolic 

transport of viral particles or for transport of particles inside vesicles. Among these 

viruses are herpes simplex virus (Sodeik et al. 1997), human immunodeficiency virus 

(McDonald et al. 2002), adenovirus (Suomalainen et al. 1999), parvoviruses 

(Seisenberger et al. 2001; Suikkanen et al. 2003), simian virus 40 (Pelkmans et al. 

2001), influenza virus (Lakadamyali et al. 2003) or hepatitis B virus (Funk et al. 2004). 
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The velocities measured in this study are in agreement with published results for 

different viral particles moving along microtubules at speeds of 0.2-4 µm/sec 

(Suomalainen et al. 1999; Seisenberger et al. 2001; Lakadamyali et al. 2003; Sampaio et 

al. 2005; Wolfstein et al. 2006). About 50% of GFP-VP2-AAV particles moved with 

velocities of 0.5-1 µm/sec. This is slightly slower than measured by Single Virus 

Tracing. However, this can be due to a better time resolution of the SVT setup, which 

allowed to take images every 40 msec in contrast to a time laps of 1000 msec used when 

generating movies with the conventional microscope. Viral particles are difficult to 

track if the distance of a particle between two frames within a movie is too large. But 

even so, the velocities are comparable to velocities measured for other viral particles.  

All together, these results, which demonstrate the integrity of the viral capsid, and time 

kinetics and intracellular viral trafficking comparable to wt or cyanine dye labeled 

capsids, prove that GFP tagged AAV can be used for live cell studies. Furthermore, 

preliminary data showed that GFP-VP2-AAV can be utilized for visualization of viral 

infections in animal tissue. This potential provides a novel method for monitoring viral 

infection within preclinical models.  

In continuation of this work, the VP2 N-terminus is currently being tested as a 

retargeting site. Since this site tolerates large insertions such as GFP, we tested the 

insertion of larger retargeting polypeptides, such as single chain antibodies. It was 

shown, that also incorporation of polypeptides similar in the size of GFP allow the 

production of viral particles. Titers of these vectors were comparable to wt and GFP-

VP2-AAV. Furthermore, transduction of wt AAV permissive HeLa cells, could be 

prevented successfully by introducing additional mutations inside the HSPG binding 

region. It is currently being tested, whether the incorporation of a single chain antibody 

redirect viral tropism. 

3.5 PLA2 – an important domain within the AAV2 capsid 

The unique region of VP1 plays a central role in parvovirus biology. Sequence 

alignment of the VP1 unique sequence of most parvoviruses including AAV2 identified 

a phospholipase A2 (PLA2) motif, resembling the catalytic domain of secreted PLA2 

(sPLA2), an activity that was not known to exist in viruses (Zádori et al. 2001). PLA2 

hydrolyses specifically the 2-acyl ester (sn-2) bond of phospholipids to generate 
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lysophospholipids and free fatty acids. Mutations of critical amino acid residues in the 

putative PLA2 of porcine parvovirus (PPV) resulted in strongly reduced PLA2 activity 

and virus infectivity (Zádori et al. 2001). Mutation in the catalytic center of PLA2 

within the AAV2 capsid showed a drastically reduced and delayed Rep expression. 

PLA2 mutants were not affected in packaging. Binding to or entry into cells were both 

unaffected in those mutants. This suggests that the PLA2 activity is required for a step 

in the virus life cycle following perinuclear accumulation of virions, but prior to the 

onset of early gene expression. Moreover, it was shown that the loss in infectivity of the 

PLA2 mutant cannot be restored by complementing the PLA activity in trans (Girod et 

al. 2001). The PLA2 domain resides inside the capsid, but it was shown for AAV2 that 

VP1 is exposed after heat shock (Kronenberg et al. 2005). For minute virus of mice 

(MVM), another member of the parvovirus family, it was demonstrated that also low 

pH dependent endosomal processing leads to the externalization of VP1 (Mani et al. 

2006).  

Results of this study demonstrate that wt AAV2 and the PLA2 mutant are trafficked to 

the same perinuclear compartment or region. Evidence was provided by 

immunofluorescence costainings of the ER and the viral capsids. Wild type and mutant 

AAV accumulated both within the ER region stained with a specific antibody. In 

electron microscopy for this region of interest, accumulations within tubular-reticular 

structures characteristic for the ER were observed. Although unusual for viruses, it is 

known that simian vacuolating virus 40 (SV40) is sorted into the smooth ER bypassing 

the Golgi complex (Pelkmans et al. 2001; Norkin and Kuksin 2005). Viral capsids of 

AAV 2 and 5 localized inside the Golgi area was observed (Pajusola et al. 2002; Bantel-

Schaal et al. 2002). For AAV2 this was observed by immunofluorescence at 2.5 h p.i. in 

contrast to 4 h p.i. which was the time point of observation in our study. Therefore, it 

could be possible that AAV passes the Golgi complex on its way to the ER. Several 

toxins (e.g. Shiga toxin) are routed from the endosome through the Golgi apparatus to 

the ER to be finally released into the cytosol, showing that this pathway in principal 

exists (Sandvig et al. 1992; Lauvrak et al. 2004, Saint-Pol et al. 2004). How SV40 

transfers its DNA from the ER into the nucleus is not known, but it seems to involve a 

cytosolic phase, because neutralizing anti-SV40 antibodies injected into the cytoplasm 

inhibited the infection (reviewed by Greber and Fornerod 2005). Furthermore, SV40 

enters the nucleus through the nuclear pore complex (Clever et al. 1991). To decide to 
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which organelle AAV2 is finally transported, more time points will have to be analyzed. 

In addition, other fixation protocols and immunogold staining will have to be 

performed.  

Furthermore, free viral particles inside the cytoplasm were detected for both the wt 

AAV and the PLA2 mutant, suggesting that the PLA2 activity is not important for the 

release from membrane surrounded organelles. In addition, DNA containing viral 

particles (also of the PLA2 mutant) were detected in close vicinity of the nuclear 

membrane and inside nuclear invaginations. The only difference between the wild type 

and the PLA2 mutant observed until now, is that no viral DNA of the PLA2 mutant was 

detected inside the nucleus and in consequence no DNA replication was detected. From 

this preliminary data we suggest that the PLA2 activity might be involved directly in 

nuclear entry and not in release from membrane surrounded organelles. 

3.6 Amino acid position 453 is an alternative insertion site 

The knowledge of possible insertion sites within the capsid that do not interfere with 

capsid assembly and infectivity, is important for both the generation of labeled vectors 

and retargeting vectors. Quite an effort was done in this field. Insertion sites were found 

by insertional mutagenisis or with the help of a hypothetical model of the AAV2 capsid 

three dimensional structure, which was derived upon capsids protein amino acid 

sequence alignment between CPV and AAV2 (Wu et al. 2000; Shi et al. 2001; Girod et 

al. 1999). Position 587 is the most promising retargeting site based on this alignment 

model (Girod et al. 1999). Furthermore, different positions close to the 453 site were 

tested: 447 (Girod et al. 1999) 441, 459 (Shi et al. 2001). Insertion at these sites all 

interfered with viral transduction. Recently, the atomic capsids structure of AAV2 was 

determined by x-ray crystallography (Xie et al. 2002). Determining the location of the 

three positions 441, 447, 459 based on the new published structure, we observed that all 

are located within the two ß-barrels forming the highest peak of the AAV capsids and 

therefore probably interfere with the ß-sheet folding. Using this structural data, the 453 

position was identified, which is located inside the linker sequence between the two ß-

sheets, forming the peak (Fig. 26).  

Originally we wanted to use this site to introduce an α-helical tetracystein-containing 

peptide which is specifically recognized by FLASH-EDT2 (fluorescein arsenical helix 

binder-1,2 ethanedithiol adduct). This component becomes strongly fluorescent after 
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binding to the tetracystein peptide (Griffin et al. 1998). However, we observed that 

insertion of this α-helical peptide was not compatible with viral cell transduction. 

Reason for this might be that the spacer between peptide and capsids sequence was too 

short and therefore the folding of an α-helix interfered with capsid assembly. To 

overcome this a larger spacer flanking the peptide has to be tested. 

Since our group is interested in generating vectors for gene therapy we tested this site 

for its ability to insert retargeting peptides. Both retargeting peptides, NGR and RGD-

4C, at the 453 position mediated an enhanced transduction efficiency of target cells. 

However, the 453 insertion mutants still showed affinity for HSPG. This conclusion 

was drawn from the observed 6 fold reduction in transduction of HUVEC with NGR-

453-rAAV in the presence of soluble heparin. This was not unexpected since the 

residues reponsible for HSPG binding are not touched by insertions at the 453 position. 

This was also observed for the RGD-4C insertion at the 453 site. HeLa cells were better 

transduced by RGD-4C-453-rAAV/GFP (52%) than by RGD-4C-587-rAAV/GFP 

(21%) and transduction was inhibited by soluble RGD peptides only to a minor extent 

(52% to 40%). For ex vivo application a better transduction of cells in comparison to the 

wt AAV would be sufficient. In systemic application however, the binding to the natural 

primary receptor is not desirable, for safety and efficiency reasons. Therefore, we 

decided to replace the essential arginines involved in HSPG binding at amino acid 

position 585 and 588 with alanines (in addition to the 453 insertion). The production of 

these viruses is in process. Furthermore, we are interested whether a double insertion 

mutant at 453 and 587 is functional. This would provide the opportunity to either insert 

more ligands at the capsid surface or to insert two different ligands to improve 

transduction of target cells. 

However, the data provide evidence for the direction of the insertion mutants towards an 

alternative receptor. The NGR-453 mutant showed a 3 fold better transduction 

efficiency in comparison to RC-rAAV on HUVEC. 

Concerning the targeting capability of 453 mutant another prove has been made: the 

RGD-4C insertion at the 453 position enhanced in comparison to RC-rAAV 

transduction of M-07e cells which are devoid of HSPG (41% in comparison of 25%). 

Transduction could be inhibited 4 fold by RGD containing but not RGE containing 

soluble peptides, showing that insertion at the 453 site mediates the M-07e transduction. 

Interestingly the RGD-4C peptide inserted into the 587 position transduced M-07e cells 
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poorly (9%) although it was shown in previous work in our lab that two different RGD 

containing peptides were fished on M-07e cells in an AAV display. Furthermore, it was 

shown that these fished RGD peptides inserted into the AAV capsid at the 587 position 

specifically transduce M-07e but not Mec1, demonstrating that the viral display selects 

peptides specific for the cells used during the selection (Perabo et al. 2003). From this it 

can be concluded that not only the RGD motif itself mediates efficient transduction, but 

the amino acid context of the RGD motif and the location of the insertion within the 

capsid is important for transduction. This indicates that insertion into the 453 position 

might be more efficient than the 587 or vice versa, depending on the inserted peptides. 

In summary, the 453 site seems to be a promising alternative and/or a additional 

position to the 587 site for insertion of retargeting peptides. 

 

3.7 Conclusions and outlook 

Different methods (Western blot, immunofluorescence microscopy and FACS analysis) 

showed that GFP-VP2 is incorporated into the viral capsid. A detailed titer analyses 

revealed that genomic particle and infectious titers are comparable to wild type titers. 

Also the behavior of GFP tagged AAV particles in intracellular trafficking, velocities of 

directed movements, colocalization with endocytotic marker and nuclear localization of 

the viral genome was indistinguishable to wt AAV visualized by antibodies or direct 

labeling with chemical dyes. Furthermore, first data demonstrated that GFP-VP2-AAV 

can be detected also in infected animal tissue. All together, GFP-VP2-AAV seems to be 

a promising alternative for chemical labeling of the viral capsid. This knowledge 

provides a platform for utilization of GFP-VP2-AAV for further studies of the 

infectious biology of AAV. Future projects will include the introduction of the GFP-

VP2 fusion protein into viral capsids of different serotypes and retargeting mutants and 

studies on the intracellular trafficking in different cell types. Alternative fluorescent 

proteins such as DsRed will be tested to concomitantly trace the intracellular trafficking 

of different viruses. The knowledge derived from these studies should help to design 

better vectors for gene therapy. 

Another major conclusion from the work presented here, is that uncoating takes place 

before or during nuclear entry. This conclusion was drawn from the inefficient transport 

of intact viral capsids of incoming AAV into the nucleus and the finding that in contrast 
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to viral capsids the viral genome can be detected inside the nuclei shortly after infection 

independently of helper virus coinfection. 

Although the question of the function of the PLA2 domain is not solved, it seems that it 

is not required for endosomal release since both wt and PLA2 mutant capsids are found 

in the cytoplasm and inside nuclear invaginations. Since in contrast to the wt AAV no 

genome of the PLA2 mutant was detected inside the nucleus, we could narrow down the 

function of the PLA2 activity to a role in nuclear entry. 

Concerning that AAV is routed within the same compartment like transferrin and that 

AAV is detectable inside the endoplasmatic reticulum (based on immunofluorescence 

and electron microscopic data), we complemented some possible details to the current 

entry pathway of AAV (Fig. 29). However many questions remain to be answered. 

What is the role of the ER in AAV infection? What is the mechanism of nuclear entry? 

Is the PLA2 activity needed for nuclear entry?  

The desire to test another labeling method resulted in the detection of the 453 position 

as an alternative insertion site for the generation of AAV retargeting mutants. 453 is 

located at the top of the higher peak within the VP3 protein. Insertion of different 

targeting peptides showed a great enhancement in transduction of target cells. Since the 

HSPG binding site is not affected by insertion at the 453 site, in contrast to insertions at 

the 587 position (normally used for retargeting in our group), the wt tropism is not 

abolished which is desirable with regard to labeling. To improve this vector for 

ultilization in systemic application a HSPG binding knock out is generated in addition 

to the 453 insertion.  
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Fig. 29. Model of viral infection modified based on our current results. The potential intracellular pathways of 

AAV after receptor mediated endocytosis based on our own and other studies are depicted. Red asterisks mark 

potential sites where AAV is released into the cytoplasm. There is evidence that AAV is routed from the early 

endosome (EE) through the perinuclear recycling endosome (PNRE) (Xiao et al. 2002; Duan et al. 1999 and our own 

observations). From there it may enter the Golgi complex (Pajusola et al. 2002). From the Golgi AAV may be 

trafficked to the endoplasmatic reticulum (blue arrows) (own observations). Instead of being routed through the 

PNRE it may be trafficked to the late endosome (LE) (black arrows) (Douar et al. 2001; Hansen et al. 2001a). Once 

released into the cytosol uncoated viral DNA enters the nucleus (own observations) possibly through the nuclear pore 

complex (NPC). 
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4. Experimental procedures 

4.1 Materials 

4.1.1 Antibodies 

Antibodies against cellular antigenes 

• Polyclonal goat anti Lamin B antibody, IgG (Santa Cruz Biotechnology) 

• Polyclonal rabbit anti calreticulin antibody, IgG (Affinity BioReagents) 

 

Antibody against AAV2 proteins 

• Rep76/3 (Rep-specific antibody), monoclonal mouse hybridoma supernatant 

(DKFZ Heidelberg, PD Dr. J. Kleinschmidt) 

• A20 (AAV2-capsid antibody), monoclonal mouse hybridoma supernatant  

(DKFZ Heidelberg, PD Dr. J. Kleinschmidt) 

• B1 (VP3-specific antibody), monoclonal mouse hybridoma supernatant     

(DKFZ Heidelberg, PD Dr. J. Kleinschmidt) 

 

Secondary antibodies 

• Texas Red conjugated donkey anti goat antibody (Dianova) 

• Cy5 conjugated donkey anti goat antibody (Dianova)  

• Cy5 conjugated  donkey anti rabbit antibody(Dianova) 

• FITC conjugated goat anti mouse antibody (Dianova) 

• RRX conjugated goat anti mouse antibody (Dianova) 

• Biotin-SP-conjugated rabbit anti mouse antibody (Dianova) 

• AP conjugated anti Dig Antibody (Roche) 

• Peroxidase conjugated anti mouse IgG (H+L) (Sigma) 
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4.1.3 Cell lines  

Cell line description source 
293 human embryonic kidney cells 

immortalized by adenoviral 
genes E1A and E1B 

ATCC CCL 2; American Type 
Culture Collection, Rockville, 
Maryland 

HeLa human cervix epitheloid 
carcinoma   

ATCC CCL 2 

HeLa dsRed Nuc HeLa stably transfected with 
SV40NLS::DsRed 

generated by Nico Görlitz in our 
laboratory 

HFF human foreskin fibroblast 
(primary cells) 

PomoCell GmbH, Heidelberg, 
Germany 

HUVEC human umbilical vein 
endothelial cells (primary cells) 

isolated from umbilical cords  

M-07e human megakaryotic leukemia 
cell line 

James D. Griffin, Boston, 
Massachussets 

Mec1 B-cell chronic lymphatic 
leukemia cells in prolymphoid 
transformation 

Federico Caligaris-Cappio, Torino, 
Italy 

PtK2 male rat kangaroo kidney 
epithelial cells (derived from 
metastatic site) 

Beate Sodeik, Hannover, Germany

 

4.1.4 Viral strains (besides AAV) 

Wild type adenovirus type 5 was generated in HeLa in the group of Prof. Hallek using 

the plasmid pTG3602 which encodes wt adenovirus 5. 

 

4.1.5 Bacterial strains 

Plasmids were amplified in E. coli TOP10F' and DH10B (Invitrogen). 

 TOP10F’: 

 F' {lacIqTn10(TetR)} mcrA ∆(mrr-hsdRMS-mcrBC) Φ80lacZ∆M15 ∆lacX74 deoR 

recA1 araD139 ∆ (ara-leu)7697 galU galK rpsL (StrR) endA1 nupG  

(Invitrogen Corp., Karlsruhe) 

DH10B: 

F' mcrA ∆(mrr-hsdRMS-mcrBC) Φ80lacZ∆M15 ∆lacX74 recA1 end A1 araD139 ∆ 

(ara-leu)7697 galU galK λ-rpsL  nupG  

(Invitrogen Corp., Karlsruhe) 
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4.1.6 Plasmids 

Plasmid purification was performed using QIAGEN plasmid purification kits. 

Plasmids from our or cooperating institutions: 

pUC-AV2 (pwt) 

wtAAV2 genome (rep-cap ORF flanked by ITRs) cloned into pUC19. Within the 

pUC19  backbone an ampicillin resistance gene is encoded. The plasmid was purchased 

from the MediGene AG (Martinsried) (Ried et al. 2002). 

psub201(+)  

contains like pwt the wtAAV2 genome: rep-cap ORF flanked by ITRs (Samulski et al. 

1987). 

pHD/AN 

pHD/AN was generated by site specific mutagenisis of the cap gene within pwt, 

inducing a substitution of the amino acids histidine (D) and aspartic acid (D) to alanin 

(A) and asparagin (N) at amino acid position 76 and 77, respectively, within N-terminus 

of the capsid protein VP1. These amino acids are located within the catalytic center of 

the phospholipase A2 domain (Girod et al. 2002). The plasmid was obtained from the 

plasmid-bank of the group of Prof. Hallek. 

pxx6 

Adenoviral helper plasmid: expression plasmid of adenoviral helper proteins: VA, E2A, 

E4 and ampicillin resistance gene. pXX6 was kindly provided by R. J. Samulski 

(Chapel Hill, University of North Carolina, USA).  

pGFP 

The pGFP plasmid is an AAV vector plasmid in which the AAV ITR sequences 

flanking the hygromycin selectable marker gene controlled by the thymidine kinase 

promoter and the Aequorea victoria Green Fluorescence Protein (GFP) gene regulated 

by the cytomegalovirus promoter.  

pRC 

The pRC plasmid was constructed as previously described (Girod et al. 1999). Briefly, 

the 4.5 kb Xba I-fragment of psub201(+) (Samulski et al. 1987), containing the rep and 

cap ORFs of AAV was subcloned into the Pst I and BamH I sites of pSV40oriAAV. No 

ITRs are encoded (Chiorini et al. 1995).  
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pOEN 

For the construction of plasmid pOEN, the HCMV promoter/enhancer cassette and the 

GFP open reading frame in the plasmid pEGFPC-1 (Clontech) were substituted with the 

wt AAV-2 genome encoding fragment of plasmid pUC-AV2. A DNA fragment 

encoding amino acids AAAstopA and the restriction sites NotI and AscI was inserted 

between amino acid position 587 and 588 by PCR mutagenesis (Perabo et al. 2003). 

 

Generation of plasmids:  

pUC-AV2-VP2k.o. 

The plasmid pUC-AV2-VP2k.o. was obtained by PCR amplification combined with site 

directed mutagenesis of pUC-AV2, changing the ACG start codon into ACC using 

overlapping PCR fragments (VP2ko_for: 5´-GTTAAGACCGCTCCGGG-3´ and 4066: 

5´-ATGTCCGTCCGTGTGTGG-3´; VP2ko_back: 5´-CCCGGAGCGGTCTTAAC-3´ 

and 3201: 5´-GGTACGACGACGATTGCC-3´) and ligation of the fragments by a 

second PCR step using the primers 3201 and 4066. The resulting fragment was digested 

with BsiWI and EcoNI and sticking end ligated into pUC-AV2.  

pGFP-VP2 

To obtain the plasmid pGFP-VP2 the sequence coding for VP2 was amplified from 

pSUB201+ by PCR using the primer pair VP2-N 5´- CTCCGGGAAAAAAGAGG-3´ 

and VP2-C: 5´-TTACAGATTACGAGTCAGGTAT-3´, thereby deleting the VP2 start 

codon and ligated into pEGFP-C3 (Clontech), which was digested with Bgl II and filled 

in by Klenow polymerase. The plasmid pDsRed2Nuc was generated by deletion of the 

EGFP encoding region from pEGFP-Nuc (Clontech) and insertion of the DsRed2 gene, 

which was amplified by PCR (Primers: 5’-CGG AGT ACA TCA ATG G-3’ and 5’-

AGA TCC GGT GGA TCC TAC CT-3’) from pDsRed2-N1 (Clontech) and cut with 

AgeI. 

Plasmids with insertions at 453 or 587 position: pRC FLASH 453, pRC NGR 587, 

pRC NGR 453, pRC RGD 587, pRC RGD 453, pRC RGD 587 

Peptide insertion at the 453 or 587 position within VP3 were generated by site directed 

mutagenisis of the cap ORF within pRC. Briefly, two primer pairs were designed, with 

overlapping inner primers of opposite priming directions which contain a 5’ overlap 

encoding for the peptide insertions (primers see below) and two outer primers binding 
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in the pRC backbone up and downstream from the insertion site (453 and 587) (3201 5´-

GGTACGACGACGATTGCC-3´, 4066: 5´-ATGTCCGTCCGTGTGTGG-3). In this 

way two overlapping PCR fragments were generated containing each one part of the 

peptide insertion sequence. In a second PCR step, using the two overlapping PCR 

fragments from the first PCR as templates and the primers 3201 and 4066, the two 

overlapping PCR fragments were ligated. The resulting fragment and the pRC backbone 

were cut with restriction enzymes BsiWI and XcmI and ligated. All cloning procedures 

were done using standard protocols (Maniatis et al. 1989). 

Primers 

FLASH_for 5’-TGT AGA GAA TGT TGT GCA CGA GCA GGA ACC ACC ACG 

CAG TCA AGG CT-3’ and FLASH_back 5’-ACA CGC TTC TCG TGC TGC AGC 

TTC CCA TCC TCC TCC ACT TGG AGT GTT TGT T-3’ 

NGR 453_for 5’-GCC GCA TGG AGT GCG CGA CCA CCA GCG AGT CAA GGC 

T-3’ and NGR 453_back 5’-CGT TCA GTA CGC ACG CTC CAG TTG GAG TGT 

TTG TT-3’ 

NGR 587: (OJE 007) 5’-CGC GTG CGT ACT GAA CGG CCG CAT GGA GTG CG-

3’ and OJE 008 5’-CGC GCG CAC TCC ATG CGG CCG TTC AGT ACG CA-3’ 

RGD4C 453_for 5’-GCG TGT GAC TGC CGC GGA GAC TGC TTC TGT GCG 

ACC ACC ACG CAG TCA AGG CT-3’ and RGD4C 453_back 5’-CGC ACA GAA 

GCA GTC TCC GCG GCA GTC ACA CGC TCC ACT TGG AGT GTT TGT T-3’ 

RGD4C 587: OJE 011 5’-CGC GTG TGA CTG CCG CGG AGA CTG CTT CTG TG-

3’ and OJE 12 5’-CGC GCA CAG AAG CAG TCT CCG CGG CAG TCA CA-3’ 

4066: 5´-ATGTCCGTCCGTGTGTGG-3´ and 3201: 5´-GGTACGACGACGATTGCC-

3´ 

Synthetic Oligonucleotides 

All synthetic oligonucleotides were obtained by Metabion in Martinried. 

DNA sequencing 

Sequence analyses for control of cloned plasmids were carried out by the sequencing 

unit of the Gene Center headed by Dr. Blum. 
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4.1.7 Chemicals and other Material 

Aceton Roth, Karlsruhe 
Agarose Sigma, Deisenhofen 
Ampicillin Sigma, Deisenhofen 
Aqua bidest. Millipore 
ARESTM DNA Labeling Kit  Molecular Probes, Oregon, USA 
Benzonase Merck, Darmstadt 
Biomax Light Film Kodak, New York, USA 
Biotin conjugated Streptavidin Dianova, Hamburg 
Biotin Nick Translation Mix Roche, Mannheim 
Bovines Serumalbumin AppliChem, Darmstadt 
Canulas Peske, Aindling 
Cell culture plasticware TPP, Trasadingen, Switzerland 
Coverslips Roth, Karlsruhe 
Cy5 Monofunctional Dye Amersham Pharmacia Biotech 
Dextran conjugates Molecular Probes, Oregon, USA 
Dialyse Cassettes Pierce, Rockford, USA 
DIG DNA Labeling and Detection Kit Boehringer Mannheim 
DNA Pol I New England Biolabs, Schwalbach 
dNTPs Boehringer Mannheim 
Dulbecco´s MEM with Glutamax Invitrogen, Karlsruhe 
EDTA AppliChem, Darmstadt 
EndoFree® Plasmid Maxi Kit Qiagen, Hilden 
Ethidiumbromid Roth, Karlsruhe 
Fetal calf sera Invitrogen Corporation 
Filter 0,20µm,0,45µm Peske, Aindling 
Formaldehydlsg. min. 37% Merck, Darmstadt 
Formamid Fluka ChemieAG, Buchs, Schweiz 
Gelatine Sigma, Deisenhofen 
Glycine Merck, Darmstadt 
Heparin  B. Braun Melsungen AG 
HEPES  Roth, Karlsruhe 
HiTrap Heparinaffinity chromatography-
column 

Amersham Pharmacia Biotech 

Iodixonal (Optiprep) Sigma, Deisenhofen 
Isopropanol Roth, Karlsruhe 
Maleic acid Sigma, Deisenhofen 
Methanol Roth, Karlsruhe 
Molecular weight marker: 
-1kb or 100bp ladder 
-λ DNA Hind III                                            

 
 
New England Biolabs, Schwalbach 

NeutrAvidin RRX conjugate Molecular Probes, Oregon, USA 
Nitrocellulose membrane Schleicher & Schuell, Dassel 
Objectholder                                                   Medco, München 
Parafilm    Roth, Karlsruhe                          
Paraformaldehyd       Sigma, Deisenhofen 
PBS    Invitrogen Corporation 
Penicillin/Streptomycin Invitrogen Corporation 
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Permafluor  Immunotec, Heidelberg 
Proteinase K                                                   Merck, Darmstadt 
Reaction tubes Falcon and Eppendorf 
Restriction enzymes                                       New England Biolabs, Schwalbach  
Salines Sodium Citrate (SSC) Merck, Darmstadt 
Sodiumchlorid Riedel-de Haën, Seelze 
Sodiumdodecylsulfat (SDS)                         Merck, Darmstadt 
Transferrin conjugates Molecular Probes, Oregon, USA 
TMB Sigma, Deisenhofen 
Tris Merck, Darmstadt 
Triton®X-100 Sigma, Deisenhofen 
Trypsin-EDTA                                               Invitrogen, Karlsruhe 
Tween®20                                                      Merck, Darmstadt 

 

Standard Kits 

DNeasy®Tissue Kit Qiagen, Hilden 

EndoFree® Plasmid Kits Qiagen, Hilden 

PCR Purification Kit    Qiagen, Hilden 

Gel Extraction Kit  Qiagen, Hilden 

Light-Cycler-FastStart DNS Master SYBR Green I Roche, Mannheim 

 
Buffer and Solutions 
For buffers and solutions, please refer to the corresponding chapters. 
 

4.2 Methods 

4.2.1 Cell culture 

All cells were maintained at as monolayer culture at 37°C and 5% CO2 in adequate 

media and supplements (see table below). 100 U/ml penicillin and 100 mg/ml 

streptomycin were added to the media.   

Cell line  media  Supplements (additional) 
293 DMEM 10 % FCS, 2 mM L-glutamine 
HeLa DMEM 10 % FCS, 2 mM L-glutamine 
HeLa dsRed Nuc DMEM 10 % FCS, 2 mM L-glutamine 
HFF DMEM 10 % FCS, 2 mM L-glutamine 
HUVEC ECGM 2% FCS, 0,4% Endothelial Cell Growth Supplement 
M-07e RPMI   10 % FCS, Interleukine 3 (10 ng/ml), 2 mM L-glutamine 
Mec1 Isocove’s 

media 
10 % FCS, 2 mM L-glutamine 

PtK2 MEM 10 % FCS, 0.1 mM NEAA, 2 mM L-glutamine 

 73



Experimental procedures 
 

DMEM: Dulbecco´s modified Eagle´s medium (Invitrogen), ECGM: Endothelial Cell Growth Medium (PromoCell); 

RPMI 1640 media (Invitrogen) Iscove’s media (PromoCell), MEM: minimal essential media (Invitrogen), FCS fetal 

calf sera (Invitrogen), NEAA non essential amino acids (Invitrogen) 

 
Cell stocks 

About 107 cells were suspended in cold freeze medium (50% FCS, 40% cultivation 

media, 10% DMSO), distributed in 1ml Cryo-tubes (Nunc) and cooled on ice for at least 

one hour. Stocks were then cooled in the -80°C freezer and later stored in liquid 

nitrogen. 

For recultivation Cryo-tubes were thawed in warm water and cells were quickly 

suspended in the according medium. Cells were pelleted at 300g and resuspended in 

fresh medium to remove DMSO. 

 
Isolation of primary HUVEC 

Primary HUVEC were isolated from umbilical cords obtained from the Newborn Clinic 

at the hospital of the Ludwig-Maximilians-University (LMU, Großhadern, Germany) in 

agreement with the guidelines of the ethic commission of the hospital of the LMU. An 

isolation protocol described by Jaffe and colleagues was applied with some slight 

modifications (Jaffe et al. 1973). Briefly, umbilical veins were rinsed with PBS several 

times, and incubated with 0.2% collagenase type IV in PBS (Sigma) at 37°C for 10 

minutes. HUVECs were harvested by rinsing the veins with PBS several times and 

collected in a 50 ml reaction tube. After centrifugation, cells were resuspended in 

Endothelial Cell Growth Medium (PromoCell). 

4.2.2 Viral production and purification.  

AAV particles were produced in HEK293 cells by the adenovirus free production 

method using pXX6 (Xiao et al. 1998) to supplement the adenoviral helper functions. 

Briefly, HEK293 cells were seeded at 80% confluence in 15cm2 cell culture plates and 

cotransfected with the packaging plasmids by calcium phosphate precipitation with a 

total of 37.5 µg plasmid. For each plate a solution of 1ml CaCl (250mM), DNA and 1ml 

transfection buffer HBS (50mM HEPES, 280mM NaCl, 1.5 mM NaP) was prepared, 

incubated for 2 min and pipetted onto the plate while cautious mixing with the medium. 

15-20 plates per vector were transfected for large scale production and  3-5 plates for 

small scale production. 
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For the production of wild type AAV pUC-AV2 and pXX6 were transfected in a 1:1 

molar ratio. For the production of chimeric virions cells were transfected with pXX6, 

pUC-AV2 and pGFP-VP2, substituting 30% or 60% of pUC-AV2 with pGFP-VP2. For 

the production of the VP2 k.o.-AAV HEK293 cells were transfected with pUC-AV2-

VP2k.o. and pXX6 in a 1:1 molar ratio. For the production of the 100%-GFP-VP2-

AAV pUC-AV2-VP2k.o., pGFP-VP2 and pXX6 were transfected in 1:1:1 molar ratio. 

For the production of recombinant AAV (rAAV) pXX6 and pGFP were transfected 

with either pRC, pRC NGR 453, pRC NGR 587, pRC FLASH 453, pRC RGD4C 453 

or pRC RGD4C 587 in 1:1:1 molar ratio respectively. 48 h post transfection cells were 

harvested and pelleted by low-speed centrifugation. Cells were resuspended in 150 mM 

NaCl, 50 mM Tris-HCl (pH 8.5), freeze-thawed several times, and treated with 50 U/ml 

Benzonase for 30 minutes at 37°C. To purify the viral preparation by iodixanol gradient 

centrifugation, the cell debris was spun down at 3700g for 20 minutes at 4°C and 

supernatant was loaded onto an iodixanol gradient containing a 60% iodixanol phase at 

the bottom, following by 40%, 25% and 15% iodixanol phase. Iodixanol solutions of 

different concentrations were layered beneath the virus containing solution. The 

gradient was centrifuged in an ultra centrifuge at 65.000rpm for 1.5h and at 18°C. The 

40% and in some cases the 25% phase were then extracted with a canula by puncturing 

the tube underneath the 40% phase and allowing the solution to drip into a Falcon tube 

until the 25% phase was reached. The 25% phase was collected in a new Falcon tube.  

 

15% Iodixanol :  25% Iodixanol :  

10xPBS 5 ml 10xPBS 5 ml   
2 M MgCl2 25 µl 2 M MgCl2 25 µl   
1 M KCl 125 µl 1 M KCl 125 µl   
5 M NaCl 10 ml Optiprep 20 ml   
Optiprep 12.5 ml 0.5% Phenolrot 75 µl   
0.5% Phenolrot 75 µl Sigma Wasser ad 50 ml   
Sigma Wasser ad 50 ml     
      
40% Iodixanol: 60% Iodixanol:   

10xPBS 5 ml 2 M MgCl2 25 µl   
2 M MgCl2 25 µl 1 M KCl 125 µl   
1 M KCl 125 µl Optiprep 50 ml   
Optiprep 33.3 ml 0.5% Phenolrot 25 µl   
Sigma Wasser ad 50 ml     
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To generate highly pure viral preparations, a heparin affinity chromatography was 

performed in addition. The viral solution was loaded onto a 1ml HiTrap Heparin affinity 

column (Amersham) utilizing of a sterile peristaltic pump with a flow rate of 0.3 ml/ 

sec. The column was washed with PBS substituted with 2 mM MgCl2 and 1 mM KCl. 

The virus was eluted with PBS 1M NaCl. 

4.2.3 Determination of AAV titers 

Particle titer of vector stocks was determined by quantitative PCR (Theiss et al. 2003) 

or DNA dot-blot hybridization (Girod et al. 1999). Therefore, viral DNA was isolated 

from vector stocks according to the DNeasy kit protocol (Qiagen, Hilden, Germany). 

Capsid titer of vector stocks was determined by A20-ELISA as previously described 

(Girod et al. 1999). Infectious titer was obtained by infecting HeLa cells as monolayers 

on cover slips with serial dilutions of viral preparations in the presence of adenovirus 

type 5 (MOI 5). 72 h post infection Rep protein expression was determined by 

immunofluorescence staining (Wistuba et al. 1997). Briefly, cells were fixed in 

methanol and acetone for 5 min, respectively. After washing with PBS, unspecific 

reactions were blocked by incubation with 0.2% gelatine in PBS for 10 min. The cover 

slips were incubated for 1 h at room temperature with the anti-Rep antibody 76/3 

(kindly provided by Dr. Jürgen Kleinschmidt, DKFZ Heidelberg, Germany), cover slips 

were washed and blocked again and incubated for 1 h with a secondary antibody (FITC 

conjugated goat anti-mouse; 1:100 in PBS; Dianova). Titers were calculated from the 

last limiting dilution of viral stocks that led to fluorescence positive cells. 

4.2.4 Functional testing of GFP-VP2 fusion protein by transient 
transfection  

HeLa cells (grown on coverslips) were transfected by calcium phosphate precipitation 

(Girod et al. 1999) at 80% confluence with the plasmid pGFP-VP2. As control, HeLa 

cells were transfected in parallel with pGFP (Hacker et al. 2001). 48 h post transfection 

cells were fixed for 30 minutes in 4% paraformaldehyde (PFA). The nuclear lamina was 

stained as described below using anti-lamin B antibody.  
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4.2.5 Western Blot  

For the detection of viral capsid proteins 1010 capsids were separated on a SDS-

polyacrylamide gel (10%) and blotted onto a nitrocellulose membrane. The membrane 

was then blocked with 0.2% I-Block (Sigma) in Tris buffered saline supplemented with 

Tween 20 (TBS-T) over night at 4°C. After incubation with B1 antibody (kindly 

provided by Dr. Jürgen Kleinschmidt (DKFZ Heidelberg, Germany); 1:10 in 0.2% I-

Block) and three washing steps in TBS-T, the membrane was incubated for 1 h with a 

peroxidase conjugated anti-mouse IgG antibody (1:5000 in 0.2% I-Block, Sigma). The 

membrane was washed again, subsequently incubated for 5 min with SuperSignal West 

Pico Chemiluminescent Substrate (Pierce) and then exposed to Biomax Light Film 

(Kodak).  

4.2.6 Fluorescence activated cell sorting (FACS) analyses  

4x104 HeLa cells were seeded per well in a 24 well plate. 24 h later cells were infected 

with 8x107 capsids/cell in presence or in absence of 425 units of heparin/ml. The virus 

binding was carried out for 30 min. on ice. Thereafter, cells were shifted to 37°C for 1 

h. Cells were harvested, resolved in 0.5 ml PBS and analyzed with a Coulter Epics XL-

MCL (Beckman Coulter). A minimum of 5000 cells were analyzed for each sample. 

The percentage of positive cells is defined as the fraction beyond the region of 99% of 

the control of untransfected cells. Data were analyzed with the use of WinMDI 2.8 

FACS software. 

4.2.7 Immunoflourescence 

4x104 HeLa cells per well were seeded onto 12 mm coverslips inside 24 well plates. 24 

h later HeLa cells were infected with 1x106-5x106 capsids/cell with or without 425 units 

heparin/ml added to the medium. When indicated, cells were coinfected with adenovirus 

type 5 (MOI 5). The infection was carried out for 0.5 h on ice. Cells were then shifted to 

37°C and incubated at 37°C and 5% CO2 for the indicated time period.  

Cells were washed with PBS and fixed for 0.5 h with 3% PFA in PBS at room 

temperature, washed again with PBS and the reminding PFA was quenched for 10 min 

with 50 mM NH4Cl in PBS. Nuclear staining was obtained by Dapi (1 µg/ml in PBS) 

for 5 min or by anti-lamin B antibody staining. For antibody staining cells were 

permeabilized with 0.2% Triton X 100 in PBS for 10 min, blocked for 10 min with 
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0.2% gelatine in PBS and then incubated for 1 h at room temperature with first 

antibodies as indicated. As first antibodies polyclonal goat anti-lamin B IgG antibody 

(1:50 in PBS, Santa Cruz Biotechnology), monoclonal A20 or B1 hybridoma 

supernatant derived from mice (kindly provided by Dr. Jürgen Kleinschmidt, DKFZ 

Heidelberg, Germany) were used. After washing and blocking, the cells were incubated 

for 1 h with secondary antibodies. As secondary antibodies we used Texas Red or Cy5 

conjugated donkey anti-goat-antibody (Dianova, diluted 1:50 or 1:100 in PBS, 0.2% 

gelatine) and Rhodamine Red-X (RRX) conjugated donkey anti-mouse (Dianova, 

diluted 1:200 in PBS, 0.2% gelatine). The cover slips were washed in PBS again, 

embedded in Vectashield mounting medium (Alexis) and examined. 

4.2.8 Fluorescence in situ hybridisation (FISH)  

Plasmid pRC (Hacker et al. 2001) which encodes Rep and Cap of AAV2 was linearized 

and labeled with 5-(3-aminoallyl)dUTPs by nick translation. Incorporated dUTPs were 

labeled with amino reactive Oregon Green 488 by ARES DNA labeling kit (Molecular 

Probes) according to manufacturers manual. Alternatively the linearized plasmid was 

labeled with biotin-16-dUTPs by biotin nick translation kit from Roche. To detect the 

AAV genome inside cells, HeLa cells were prepared as described above. Cells were 

infected with wild type AAV2 (105 capsids/cell), fixed with 3% PFA after indicated 

time points, quenched and permeabilized as described before. Nuclear lamina and viral 

capsids were stained by polyclonal goat anti-lamin B IgG antibody and monoclonal A20 

hybridoma supernatant derived from mice (kindly provided by Dr. Jürgen Kleinschmidt, 

DKFZ Heidelberg, Germany). Cy5 conjugated donkey anti-goat antibody (Dianova) and 

Rhodamine Red-X conjugated donkey anti-mouse antibody (Dianova) were used as 

secondary antibodies. After antibody staining cells were washed with PBS. A 

hybridization mixture containing 1 ng/µl labeled DNA probe, 50% formamide, 7.3% 

dextran sulphate, 15 ng/µl salmon sperm DNA and 0.74x SSC was denaturated for 3 

min at 95°C and shock cooled on ice. Cover slips were inverted onto the denaturated 

hybridization mixture (only the DNA probe was denaturated since the AAV genome is 

single stranded). Cover slips were sealed with rubber cement and hybridization occurred 

at 37°C over night. Rubber cement was removed and cover slips were washed 3x in 2x 

SSC at 37°C, 3x in 0.1x SSC at 60°C and 2x in PBS. If the direct labeled probe was 

used for hybridization, cells were embedded in Vectashield mounting medium (Alexis). 
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If the biotin labeled probe was used it was stained with RRX conjugated NeutrAvidin™ 

(10µg/ml) (Molecular Probes) for 1 h at room temperature. Cells were washed 2x in 

PBS and embedded in Vectashield mounting medium. 

4.2.9 Microscopic tools 

Wide field fluorescence microscopy  

Images were acquired with an immunofluorescence microscope (Zeiss, Axioskop) 

equipped with filters specific for GFP and Dapi using a 40x (NA1.3) objective. Images 

were obtained with a CCD camera (Visicam, Visitron Systems) with MetaMorph 

Imaging System version 3.0.  

 

Confocal microscopy 

To localize the GFP-VP2 signal within the cell more precisely, images were obtained by 

confocal laser scanning microscopy using a Leica DM IRE2 microscope with a Leica 

TCS SP2 laser system or a Zeiss Axiovert 200M microscope with a Zeiss LSM 510 

Laser Module, using a 63x (NA 1.4) objective and filter settings optimized for 

respective dyes. For each sample a series of 0.2 to 0.25 µm horizontal sections were 

made. The pinhole was adjusted to 1 airy unit. Images were processed by Leica confocal 

software or LSM 510 Meta software and Adobe Photoshop version 7.0. 

 

Live cell imaging (Time-laps microscopy) 

For live cell images 2x105 HeLa-DsRed2Nuc cells were seeded onto the glass bottom of 

microwell dishes (35 mm; Mat Tek). 24 h later cells were infected with or without 425 

units heparin/ml media with approx. 106 capsids per cell. Cells were incubated for 20 

min at 37°C and then analyzed by live cell microscopy under physiological conditions. 

Live cell movies were obtained with an inverse Zeiss Axiovert 200M microscope with a 

63x (NA1.4) objective using Zeiss filter sets (FS)10 for GFP and DsRed. Images were 

taken with a Zeiss Axiocam HRm using the Axiovision 3 software with a time laps of 

30 seconds.  

 

Determination of viral velocities with conventional time laps microscopy 

Therefore PtK2 were seeded onto cover slips. Prior to infection coverslips were directly 

clamped inside a POC-R (cell cultivation system from Zeiss). Cells were covered with 
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CO2 independent media (Invitrogen) to which OSS (oxygen scavenging system 0.1 

mg/ml glucose oxidase, 18 µg/ml catalase and 2.3 mg/ml glucose) was added to protect 

the cells from damage caused by photooxidative stress. CO2 independent media had to 

be used, since no CO2 regulation could be done. Cells were infected with approximately 

106 capsids per cell of 100%-GFP-VP2-AAV. Cells were observed with an Axiovert 

200 microscope from Zeiss equipped with a Xenon lamp and filter settings for GFP 

detection. Images were taken with Imago-QE camera from Photonics with the help of 

Till vision software. To obtain movies pictures were taken with a time laps of 1 to 2 

seconds and an exposure time of 0.5 sec. For one movie a series of 100 pictures was 

taken. Movies were processed with Metamorph and ImageJ software. Directed 

movements were tracked by determining the xy-position of the fluorescent viral 

particles in each frame. From the xy displacements between each frame the velocity was 

calculated. 

 

Single Virus Tracing (SVT) measurements 

HeLa cells were seeded in 8 well chambers (LabTek). Before measurements normal 

DMEM was replaced by CO2 independent media (Invitrogene). Cells were infected with 

Cy5 (Amersham) labeled wt AAV. Measurements were carried out at 37°C. Cy5 dyes 

are generating a covalent link with amino groups of amino acids within proteins. To 

avoid unspecific protein labeling of contaminating proteins Cy5 labeling was carried out 

with highly pure wt AAV preparations. Therefore virions were purified in addition to 

the iodixanol gradient by heparin affinity chromatography. Labeling reaction was 

carried out for 2h on ice. To get rid of the excess of free dye virions were was dialyzed 

against PBS.   

For these measurements we used a Nikon TE300 microscope equipped with a PentaMax 

CCD Camera (Visitron) and a HeNe Laser (633nm, 35 mW, Coherent). To generate 

movies, images were taken every 40 ms. For one movie 200-400 images were taken. 

Movies were processed with Metamorph imaging software determining xy-position of 

the fluorescent viral particles in each frame. From the xy displacements between each 

frame the velocity was calculated.  
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Transmission electron microscopy 

4x104 HeLa cells per well were seeded on coverslips within a 24 well plate. 24 h later 

cells were infected with 106 capsids per cell. The virus binding was carried out for 30 

min. on ice. Thereafter, cells were shifted to 37°C for 4 h. Cells were fixed with 2.5% 

glutaraldehyd in Cacodylate buffer (100 mM, pH 7.2) at room temperature for 30 min. 

Cells were then washed with Cacodylate buffer and post fixed with 1% 

Osmiumtetraoxid in Cacodylate buffer for 30 min to 1 h. Cells were washed again in 

Cacodylate buffer and then dehydrated with increasing ethanol concentrations (50%, 

70%, 90%; each concentration twice) for 5 min and finally with 100% ethanol p.a. twice 

for 10 min and 20 min. Cells were incubated with propylenoxid (2 x 15 min) and then 

infiltrated with increasing concentrations of Araldit. Araldit/Propylenoxid 1:2 at room 

temperature for 1 hour, Araldit/Propylenoxid 1:1 at 4°C over night and then for max. 2 

h in 100% Araldit. Samples are transferred into resign filled casting molds. 

Polymerization occurred over night at 40°C and hardening at 70°C for 36-40 h. 

Ultratomes (50 nm) were generated with UltracutE (Reichert-Jung). Electron 

micrographs were obtained with a transmission electron microscope (TEM, Zeiss EM 

902). 

4.2.10 Animal studies 

Wt Wistar rats were anesthetized with an intramuscular injection. For subretinal 

injection, the sclera and the choroid were punctured and a 33-gauge needle was then 

inserted in a tangential direction under an operating microscope. In one application 

6x1010 capsids were injected. 24 h p.i. a retinal flatmount was obtained. Therefore, 

enucleated eyes were fixed with 4% paraformaldehyd for 40 minutes at room 

temperature. After washing the eyes were cut through the pars plana and the anterior 

segment and the lens were removed. The eye cup was cut peripherally into four sections 

under an operating microscope and flattened. The neuroretina was removed from the 

sclera/choroids/RPE with fine forceps and both cell layers were mounted on a glass side 

and examined by fluorescence microscopy. 

4.2.11 Determination of transduction efficiencies  

2x104 cells were seeded in 48 well plates and transduced with the respective rAAV/GFP 

vector, harvested 48 hrs p.i., washed and resuspended in 0.5 ml PBS. The percentage of 

GFP expressing cells was determined by flow cytometry with a Coulter Epics XL-MCL 
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(Beckman Coulter, Krefeld). A minimum of 5000 cells were analyzed for each sample. 

Transduction efficiency of the retargeting mutants was also determined in the presence 

or absence of 300µM of GRGDTP or GRGES peptides (Bachem, Bubendorf), or 425 

units/ml soluble heparin (Braun, Melsungen). 
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5. Abbreviations
  

aa amino acid CLL chronic lymphocytic leukemia 

AAV adeno-associated virus CMV cytomegalovirus 

AAV2 adeno-associated virus serotype 2 CPV canine parvovirus 

AAVS1 AAV integration site 1  CTL cytotoxic T-lymphocyte 

 (located in human chromosome 19) Cy3, Cy5 indocarbocyanine dyes 

Ab antibody Da Dalton 

Ad adenovirus DMEM Dulbecco's Modified Eagle Medium 

 e.g. for example (Lat.: exempli gratia) 

Amino acids: ELISA enzyme-linked immunosorbent assay 

A (Ala)  alanine 

C (Cys)  cysteine 

D (Asp)  aspartate 

E (Glu)  glutamate 

F (Phe)  phenylalanine 

G (Gly)  glycine 

H (His)  histidine 

I (Ile)  isoleucine 

K (Lys)  lysine 

L (Leu)  leucine 

M (Met)  methionine 

N (Asn)  asparagine 

P (Pro)  proline 

Q (Gln)  glutamine 

R (Arg)  arginine 

S (Ser)  serine 

T (Thr)  threonine 

V (Val)  valine 

W (Trp)  tryptophan 

Y (Tyr)  tyrosine 

EM electron microscope  

ER endoplasmatic reticulum 

FACS fluorescence-activated cell sorting  

FCS fetal calf serum 

FGFR fibroblast growth factor receptor 1 

Fig.  figure 

FISH fluorescence in situ hybridization 

FITC fluorescein isothiocyanate 

FPV feline panleukopenia virus 

GFP green fluorescence protein 

h hour 

HSPG heparan sulfate proteoglycan 

ITR inverted terminal repeat 

kb kilobases 

min minute 

MOI multiplicity of infection 

MVM minute virus of mice 

MT microtubule 

n.i. non infectious 

NLS nuclear localization signal 

 NPC nuclear pore complex 

Bases:  nt nucleotide 

A adenin 

C cytosin 

G guanin 

T thymin 

ori origin of replication  

ORF open reading frame 

p.i. post infection 

PLA2 phospholipase A2 

 PNRE perinuclear recycling endosome 

B19 human B19 parvovirus rAAV recombinant AAV 

bp base pair  RBS Rep binding site 

BSA bovine serum albumin Rep viral regulatory protein 

CEA colorectal cancer antigen RPE retinal pigment epithelium 

ch chromosome rpm rounds per minute  

 83



Abbreviations 
 

RRX Rhodamine Red-X 

RT room temperature  

sec second 

SDS sodium dodecyl sulfate  

Stav streptavidin 

SVT  Single Virus Tracing 

TRS terminal resolution site 

VP viral protein (AAV capsid protein) 

w/o without 

wt AAV wild type AAV 
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