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ABREVIATIONS

A adenine
A absorbance
AA amino acid
AD activation domain
amp ampicillin
APS ammonium persulfate
3AT 3-amino-1,2,4,-triazole
ATE amino terminal extension
ATP adenosine 5′-triphosphate
att attachment sites (Gateway System)

B blue light
Bar basta
BarR basta resistance
bp base pairs
BLD bilin lyase domain
BSA bovine serum albumin

C cytosine
°C centigrade
CAB chlorophyll a/b-binding protein gene
cDNA complementary DNA
Chl chlorophyll
CHS chalcone synthase gene
cm centimetres
Col-0 Columbia wild type
Cry cryptochrome
CTAB hexadecyltrimethyl-amonium bromide
C-term carboxyl terminal

D dark
d day
DAPI 4'-6-diamidino-2-phenylIndole 
dATP desoxy-adenosintriphosphate
DB DNA binding domain
dCTP desoxy-cytosintriphosphate
dGTP desoxy-guanosintriphosphate
dH2O deionised water
DNA deoxyribonucleic acid
DNAse desoxyribonuclease
dNTP desoxy-nucleotidetriphosphate
DTE dithioerythitol
DDT dichlordiphenyltrichlorethan 

EDTA ethylenediaminetetraacetic acid 
ESTs expressed sequence tags

f forward
FR far-red light
FRc continuous far-red light
F1, F2, F3 first generation, second generation, third generation

G guanine
g gram
GAI gibberellin insensitive gene
g gravity force
GFP green fluorescent protein
GUS β- glucuronidase
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h hour
H hinge region
HAM hairy meristem maintenance gene
HEPES N-[2-hydroxyethyl]piperazine-N’-[2-ethanesulfonic acid]
HIR high irradiance response
His histidine
His3 histidine reporter gene
HKRD histidine kinase-related domain

IgG immunoglobulin G

kan kanamycin
KanR kanamycin resistance
Kb kilo bases
kDa kilo Dalton

λ lambda
l litre
LB left border
LB-Medium luria-broth medium
LED light emitting diode
LFR low fluence response
LR leucine-rich
Ls lateral suppressor gene

M molar
mA milliamper
MB methylene blue
mg milligram

microgram
ml millilitres 

microlitres
µM micromolar
µmol micromol
min. minutes
mM millimolar
mm millimetres
MOPS 2-morpholinoethansulfonic acid
mRNA messenger RNA 
MS murashige-and-skoog medium

ng nanogram
nm nanometre
nt nucleotides
N-term amino terminal

OD absorbance
ON over night 
ORF open reading frame

P phosphor
PAGE polyacrylamide gel electrophoresis
PAS per-arnt-sim domain
PAT1 phytochrome A signal transduction 1 protein
PBS phosphate buffer saline
PCR polymerase chain reaction
PEG polyethylene glycol 
Pfr far-red light absorbing form of phytochrome
PhHam hairy meristem (HAM) gene of petunia
Phot phototropin
pM picomolar
pmol picomol
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Pr red light absorbing form of phytochrome
PRD per-arnt-sim related domain
PVDF polyvinylidene fluoride
P35S 35S-CaMV promoter

rev reverse
R red light
Rc continuous red light
RB right border 
RGA repressor of ga-1 gene
RNA ribonucleic acid
RNAse ribonuclease
RNAi RNA interference
rpm revolutions per minute
rRNA ribosomal RNA
RT room temperature
RT-PCR reverse transcription polymerase chain reaction

Sec. seconds
SC media synthetic complete dropout media
SCL scarecrow-like gene
SCR scarecrow gene
SD standard deviation
SDS sodium dodecyl sulphate
SDS-PAGE SDS-polyacrylamide gel electrophoresis
SHR short-root gene 
SL1 seuss-like 1 gene
sl seuss-like
SSC sodium chloride-sodium citrate 

T thymine
TBS buffer tris buffered saline buffer
T-DNA transferred DNA
TEMED N,N,N’,N’-tetramethylendiamine
Tm melting temperature
Tris tris-(hydroxymethyl)-aminomethane, 2-amino-2(hydroxymethyl)-1,3-propandiol
T35S 35S-CaMV terminator
Tween 20 polyxyethylene-sorbitane monolaureate

U unit, enzyme activity
UAS upstream activator sequences
5´-UTR 5´-untranslated region
UV-A/UV-B ultraviolet light A/B

V volt
VLFR very low fluence response
Vol volume
v/v volume per volume

λ wavelength
W white light
WT wild type
w/v weight per volume
w/w weight per weight

X-Gal 5-bromo-4-chloro-3-indolyl- -d-galactopiranoside
X-Gluc 5-brome-4-chlor-3-indolyl-β-d-glucurone acid
XTR7 xyloglucan endotransglycosylase gene
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1. INTRODUCTION

1.1. Light and photoreceptors

The survival of unicellular or multicellular organisms depends on their ability to sense and 

respond to their extracellular environment. As sessile organisms, plants are unable to move 

actively towards favourable or away from unfavourable environmental conditions. Therefore, by 

means of their evolution, plants have adapted a high degree of developmental plasticity to 

optimize their growth and reproduction in response to their surrounding environments.

Plants are exposed to a variety of different biotic and abiotic factors in their environment such as 

light, temperature, water abundance, salt, nutrient and toxic content of the soil, infection by 

pathogens, predators and competition with neighbouring plants. Light is one of the major 

environmental signals that influences plant growth and development. Not only is light the primary 

energy source for plants, it also provides them with information to modulate their developmental 

processes such as seed germination, seedling de-etiolation, gravitropism and phototropism, 

chloroplast movement, shade avoidance, circadian rhythms and flowering time (Smith 1995, 

Parks et al. 1996, Robson and Smith 1996, Chen and Fankhauser 2004). After germination, the 

very young seedling must choose between two developmental pathways depending on the 

availability of light. In the absence of light, the seedling grows heterotrophically, using the 

resources from the seed in an effort to reach light. This so called “etiolated stage” is characterized 

by a long hypocotyl, an apical hook and unopened cotyledons. Once the seedling perceives 

sufficient light, it will “de-etiolate”, a developmental process that optimizes the seedling for 

efficient photosynthetic growth (Tab. 1 and Fig. 1). During de-etiolation, the rate of hypocotyl 

growth decreases, the apical hook opens, cotyledons expand, chloroplasts develop, and a new 

gene expression program is induced. 

Table 1. Comparison of the phenotypes of dark-grown (etiolated) and light-grown 
(de-etiolated) seedlings.

Etiolated characteristics De-etiolated characteristics

Apical hook (dicot) or coleoptile (monocot)

No leaf growth

No chlorophyll

Rapid hypocotyl elongation

Reduced radial expansion of stem

Reduced root elongation

Reduced production of lateral roots

Apical hook opens or coleoptile splits open

Leaf growth promoted

Chlorophyll produced

Hypocotyl elongation suppressed

Radial expansion of stem

Root elongation promoted

Lateral root development accelerated
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Using specialized photoreceptors, plants can monitor the quantity, quality, direction, duration and 

wavelength of the incoming light. Three principal families of signal-transducing photoreceptors 

have been identified and characterized in higher plants. These are the red (R)/far-red (FR) light 

(600 - 730 nm) absorbing phytochromes (phy), the blue (B)/UV-A (320 - 500 nm) absorbing 

cryptochromes (cry) and phototropins (phot), and as yet unidentified UV-B (282 - 320 nm) 

sensing receptors (Kendrick and Kronenberg 1994, Briggs and Olney 2001; Fig. 2). These 

photoreceptors perceive, interpret, and transduce light signals via intracellular signalling

pathways to photoresponsive genes, which modulate plant growth and development (Ma et al.

2001, Tepperman et al. 2001). 

Figure 2. Principal families of photoreceptors in higher plants, as identified in Arabidopsis thaliana. 
The wavelength of their maximal absorption is given (nm).

400nm 500nm 600nm 700nm

UV-B receptor

UV-B (282 - 320 nm) 
receptors

cryptochromes (cry1, cry2 and cry3)
phototropins (phot1 and phot2)

blue/UV-A (320 - 500 nm) receptors

phytochromes (phy A - E)

red/far-red light (600 - 730 nm) 
receptors 

λ

Figure 1. The phenotypes of dark- and light-grown Arabidopsis thaliana
seedlings. In darkness seedlings undergo etiolation: elongated hypocotyls, 
closed cotyledons and apical hooks. By contrast, when seedlings perceive light 
they undergo photomorphogenesis: short hypocotyls, open and expanded 
green cotyledons. Adapted from Wang and Deng, 2004.

Dark
Etiolation

Light
Photomorphogenesis

Hypocotyl

Cotyledons

Apical hook
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The light-dependent development of plants, a process called photomorphogenesis, has been 

studied for more then a century in a wide variety of plant species. Due to its small structure and 

genome size, its short life cycle, and the ease with which it can be propagated, Arabidopsis 

thaliana has become a model plant in the study of photomorphogenesis. The Arabidopsis thaliana 

genome encodes receptors absorbing B and UV-A light (Christie 2006) and the phytochromes 

covering the R and FR part of the spectrum (Butler et al. 1959, Furuya 1993, Quail et al. 1995, 

Rockwell and Lagarias 2006). Phytochromes are encoded in Arabidopsis thaliana by a gene 

family of five members, called phytochromes A, B, C, D and E (phy A - E) (Sharrock and 

Quail 1989, Clack et al. 1994).

1.2. Evolution of phytochromes

Phytochromes have been found in all taxa of lower and higher plants examined (angiosperms, 

gymnosperms, mosses, ferns and green algae) and photosynthetic bacteria (cyanobacteria and 

purple bacteria; Kehoe et al. 1996, Hughes et al. 1997, Yeh and Lagarias 1997) as well as in 

non-photosynthetic eubacteria (Mathews and Sharrock 1997, Hughes and Lamparter 1999, 

Vierstra and Davis 2000). However, their role in prokaryotes is not very clear. 

Phytochrome evolution in land plants is marked by a series of gene duplications that have led to 

independently evolving and functionally distinct lines (Mathews 2006). A duplication preceding the 

origin of seed plants resulted in two distinct lines that persist in all seed plants. Phylogenetic 

analyses suggest that subsequent duplications occurred in each of these lines, leading to the four 

major forms found in angiosperms, phytochromes A, B, C, and E (Mathews et al. 1995, Mathews 

and Sharrock 1997). The first duplication occurring about the time of the origin of seed plants, 

generated the PHYA/C and PHYB/D/E lines (Fig. 3). Two later duplications, at about the time of 

the origin of the flowering plants, separated PHYA from PHYC and PHYB/D from PHYE. PHYB 

and PHYD diverged more recently (Fig. 3).

In cycads, Ginkgo, and conifers, a duplication in the PHYA/C-related line led to PHYN and PHYO, 

but the PHYB/E-related line, PHYP, did not diversify in other seed plants except in Pinaceae 

(Schneider-Poetsch et al. 1998, Clapham et al. 1999, Schmidt and Schneider-Poetsch 2002). 

Phylogenetic analyses also suggest that the duplication leading to PHYA and PHYC occurred 

prior to the origin of angiosperms (Mathews et al. 1995, Mathews and Sharrock 1997, Mathews 

and Donoghue 1999).

Gene duplications are considered to be a significant force in genome evolution (Wagner 2001) 

and may also play a significant role in speciation (Lynch and Conery 2000). When a gene 

duplicates, one copy may be silenced or evolve a novel function, or the two copies may subdivide 

functions of the ancestral gene (Ohno 1970, Walsh 1995, Force et al. 1999, Lynch and 

Force 2000). In the case of PHYA and PHYC, both copies have been maintained but they exert 
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different functions. However, recent results showed that the functions of phyA and phyC in the 

dicot A. thaliana are more diverse than in the monocot rice (Takano et al. 2005).

In mosses and ferns, phytochromes seem to be particularly involved in phototropism

(Esch et al. 1999), a function mediated exclusively by the B light absorbing phototropin in the 

angiosperms (Christie et al. 1998). Indeed, in the fern Adiantum, a gene has been characterized 

that encodes both a typical phytochrome and a protein with sequence similarity to NPH1 (the 

Arabidopsis phototropin) (Nozue et al. 1998). Another chimaeric phytochrome gene has been 

identified in the moss Ceratodon (Thümmler and Dittrich 1992), encoding a protein kinase 

carboxy-terminal segment, but its function has not been determined. 

Figure 3. Ancestry of phytochromes among land plants. The first duplication of the land plant
phytochrome occurred near the origin of seed plants (#1). A later duplication occurred before the divergence 
of angiosperms and extant gymnosperms (#2a), separate duplications occurred in angiosperms and 
gymnosperms (#2b). Timeline indicates million years ago. Dashed lines indicate unknown ancestry. Adapted 
from Mathews, 2006. 
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1.3. Classification of phytochromes 

All five phytochromes of Arabidopsis are expressed throughout the plant with only minor 

differences in their expression patterns, however, their abundance and stability differ dramatically 

(Somers and Quail 1995). The protein products of the PHYB and PHYD genes share 

approximately 80% sequence similarity and these are more related to PHYE than they are to 

either PHYA or PHYC proteins (about 50% identity; Fig. 4) (Clack et al. 1994, Sharrock and Quail 

1989, Mathews and Sharrock 1997).

In the 1980’s, spectrophotometric studies indicated that there are at least two distinct pools of 

phytochromes, Type I (light labile) and Type II (light stable). Type I phytochromes, phyA in 

Arabidopsis, are highly abundant in dark-grown seedlings and their protein level drops 100 times 

in light-grown plants (Clough et al. 1999, Hennig et al. 1999, Somers and Quail 1995). This 

downregulation is effective at several levels: a feedback control reduces the PHYA gene 

expression, the mRNA is unstable and furthermore the protein is degraded by a ubiquitin/26S 

proteosome dependent process (Seo et al. 2004). Type II phytochromes are relatively light stable 

and phyB is the most abundant phytochrome in light-grown plants. Phy C - E also belong to this 

group, but are much less abundant (Clark et al. 1994, Hirschfeld et al. 1998).

1.4. Two reversible forms of phytochromes

The physiological functions of phytochromes are determined by their photosensory 

characteristics, which depend on photochemistry. The striking characteristic of the phytochromes 

is their reversible photochromism, the property of changing colour on photon absorption and of 

reverting to the original form on the absorption of another photon. The absorption maximum of the 

phytochrome Pr form is close to that of the chlorophylls at 660 nm (R light), but the Pfr form 

Figure 4. Phylogenetic relationships of the
phytochrome genes of Arabidopsis thaliana, where the 
encoded proteins phyA and phyB have been demonstrated 
to be the principal mediators of responses to far-red (FR)
and red (R) light, respectively.

PHYA

PHYC

PHYD

PHYB

PHYE

Far-red light

Red light

Red light, R/FR, far-red 
light

Red light, R/FR

Red light, R/FR

Gene Light Cue
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absorbs at a longer wavelength with an absorption maximum at 730nm (FR light). Phytochromes 

can exist in vivo in these two isoforms. The Pr form of phytochrome is generally considered to be 

inactive and accumulates to relatively high levels in dark-grown tissues. Up on exposure to R 

light, the Pr form is converted to the Pfr form, which is considered as the biologically active form 

(Quail et al. 1995). The active Pfr form can be converted back to the inactive Pr form by a slow 

non-photoinduced reaction (dark reversion) or much faster upon absorption of FR light (Fig. 5). 

This photoconversion of phytochrome involves a number of intermediate forms in both directions, 

and the establishment of an equilibrium between Pr and Pfr takes several minutes even at 

daylight irradiance levels (Smith 2000). The phytochromes are cytosolically localised in their Pr 

form, but are triggered to translocate to the nucleus upon photoconversion to their Pfr form 

(Kircher et al. 1999, Nagy and Schäfer 2000).

Phytochromes can be used as sensitive estimators of the spectral changes that happen within 

plant communities when daylight interacts with photosynthetic structures (Smith 1982). Daylight 

contains equal proportions of R and FR light (R/FR ratio ≈1.2), but under a canopy this ratio is 

lowered by the absorption of R light by photosynthetic pigments of leaves (Fig. 6). Changes in the 

R/FR ratio due to scattering or reflection from leaves are much more reliable indicators of the 

proximity of potentially competing neighbours than the reduction in the total amount of light 

penetrating the canopy (Ballaré et al. 1987, Gilbert et al. 1995). Plants use phytochromes as 

proximity sensors and modify their growth and development, constituting the “shade avoidance 

syndrome” (Smith et al. 1995). Upon sensing a low R/FR ratio, a shade avoiding plant will exhibit 

enhanced elongation growth and, if the strategy is successful, will project its leaves into regions 

of unattenuated daylight. If elongation is unsuccessful, other aspects of the shade avoidance 

syndrome cause accelerated flowering and early production of seeds, enhancing the probability 

of survival. Shade avoidance is a strategy employed by the majority of angiosperms, ranging from 

Wavelength

Intensity

Duration

Periodicity

R/FR ratio

Pr Pfr

Red

Far-red

Seed germination

De-etiolation

Shade avoidance

Flowering

Responses

synthesis proteolysis

Figure 5. Phytochromes can act as photoconvertible switches. Pr is biologically inactive and upon 
absorption of red photons is converted to Pfr, the active form. Pfr is converted back to Pr by absortion 
of far-red photons or dark reversion.

Dark reversion
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small herbs to large trees, and is of major ecological importance. The ability of phytochrome-

mediated proximity sensing provides the plant with positional information with respect to 

potentially competing neighbours. This can also lead to negative implications for farmers, who 

grow their crops too close on the field.

Phytochromes also provide plants with temporal signals that entrain the phases of the biological 

clock, and others that ensure crucial developmental steps are initiated at appropriate points of the 

life cycle. Endogenous circadian rhythms synchronize development to the changing seasons, as 

exemplified in the photoperiodic control of flowering and dormancy. Even when employed as 

simple light detectors, such as in the stimulation of seed germination or the conversion of the 

etiolated seedling to photosynthetic competence, the phytochromes may be thought of as timing 

agents.

From action spectra it becomes obvious that phytochromes do not only absorb R and FR light 

(Fig. 6; Shinomura et al. 1996). Phytochromes also weakly absorb B light (Furuya and 

Song 1994, Fig. 6) and they act to modulate phototropin-mediated phototropic bending and 

cryptochrome-mediated seedling de-etiolation in response to B light (Ahmad and 

Cashmore 1997, Casal 2000, Lariguet and Fankhauser 2004).

1.5. Structure of phytochromes

The phytochrome molecule is a soluble, dimeric chromoprotein that consists of two polypeptides 

of approximately 125 kDa. Each polypeptide has two main structural domains: a photosensory, 

globular amino-terminal (N-terminal) chromophore-binding domain, which is sufficient for light 

Figure 6. Absorption spectra of 
the Pr and Pfr forms of 
phytochromes (top) and the 
light spectra perceived in the 
open field or under a canopy. 
The X-axis shows the wavelength 
in nm. Adapted from Smith, 2000.
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absorption and photoreversibility (~ 70 kDa), and a regulatory, conformationally more extended 

carboxy-terminal (C-terminal) domain functioning in dimerization and downstream 

signalling (~ 55 kDa). 

The photosensory domain (N-terminal domain) is highly conserved throughout phytochrome 

species (>50% sequence identity between proteins), and it exhibits photoreversible spectral 

changes that are indistinguishable from those observed for full-length phytochrome. This domain 

can be divided into three regions: a short N-terminal extension (ATE, 6 - 10 kDa) which is plant 

specific, the central bilin lyase domain (BLD, ~40 kDa), and a C-terminal PHY domain (~20 kDa) 

(Montgomery and Lagarias 2002). The C-terminal domain can also be subdivided into a 

Per-Arnt-Sim (PAS)-related domain (PRD) containing two PAS repeats and a histidine 

kinase-related domain (HKRD). PAS domains can either be used as protein-protein interaction 

platforms or as response modules to small ligands or changes in light conditions, oxygen levels, 

and redox potentials (Quail 1997, Neff et al. 2000). The putative dimerization motifs (D1 and D2) 

of phytochrome are also localized in the C-terminal half of phytochrome molecules (Quail 1997). 

These two main domains are connected by a flexible hinge region (H) (Fig. 7).

Each monomer is attached to a light-absorbing linear tetrapyrrole chromophore, via a thioether 

linkage to a conserved cysteine residue (Furuya and Song 1994). The chromophore is attached 

with the help of the lyase activity of the BDL domain. The structure of the phytochrome 

chromophore was determined to be a linear tetrapyrrole, phytochromobilin (PΦB). PΦB was 

shown to ligate via the A-ring to a cysteine residue located within the BDL domain (Lagarias and 

Rapoport 1980). Phytochrome is synthesized in the Pr form in dark-grown seedlings. Exposure to 

R light causes a “Z” to “E” isomerization in the C-15 double bond between the C and D rings of 

the linear tetrapyrrole, resulting in the FR absorbing form Pfr (Andel et al. 1996; Fig. 8). Recently, 

N-terminal domain
light sensing domain

C-terminal domain
signal-transducing domain

ATE                     BLD                          PHY         H                     PRD                              HKRD

PAS1 PAS2

chromophore

 D1     D2

Figure 7. Structure of phytochromes. The N-terminal and the C-terminal domains are connected by a 
flexible hinge region (H). Regions of these two domains are marked: amino-terminal extension (ATE), a 
central bilin lyase domain (BLD), a PHY domain, a PAS-related  domain (PRD) containing two PAS repeats 
and a histidine kinase-related domain (HKRD). Two putative dimerization motifs (D1 and D2) are located in 
the C-terminal half of the molecule. Adapted from Wang and Deng, 2004.  
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the three-dimensional structure of the chromophore-binding domain of Deinococcus radiodurans

phytochrome assembled with its chromophore biliverdin in the Pr form has been crystallized 

(Wagner et al. 2005). These data confirmed the predicted cystein residue as the chromophore 

attachment site and identified those amino acids that form the solvent-shielded bilin-binding 

pocket providing the first model for the photochromic behaviour of these photoreceptors.

1.5.1. Structure-function relationships of phytochromes

Analysis has shown that determinants for wavelength specificity of phyA and phyB are located in 

the photosensory domain (Wagner et al. 1996). In the N-terminal domain, the ATE is poorly 

conserved among different phytochromes, in phyA the ATE might be implicated in stabilization of 

the Pfr form of the photoreceptor (Song 1999; Fig. 7). The BDL domain processes chromophore 

lyase activity required for attachment of the chromophore to the apoprotein (Fankhauser 2001, 

Wu and Lagarias 2000). The PHY domain also contributes to the integrity and stability of Pfr, and 

may be also involved in interactions with downstream signalling components and/or in light 

induced nuclear translocation of phytochromes.

The C-terminal domain is believed to be important in dimerization and essential for proper 

downstream signalling (Park et al. 2000, Ni et al. 1998). The PRD domain is required for 

interaction with a number of phy signalling partners, and it also plays a role in stabilization of the 

Pfr form of phyB (Choi et al. 1999, Ni et al. 1998, Quail et al. 1995). However, recent studies 

suggest that the N-terminal domain of phyB is enough to transduce the light signal to downstream 

targets, and the C-terminal domain attenuates the activity of phyB (Matsushita et al. 2003).

Higher plant phytochromes have an HKRD region distantly related to bacterial histidine kinases; 

however they seem to lack several residues essential for kinase activity (Fankhauser 2000, 

Quail 1997). A recombinant oat phyA protein was found to display kinase activity that is light 

dependent and modulated by the chromophore, with Pfr being more active than Pr (Yeh and 

Lagarias 1998). Oat phyA is also phosphorylated in vivo, and two in vivo phosphorylation sites 

have been mapped (Stockhaus et al. 1992, Lapko et al. 1997, 1999). Potential physiological roles 

Figure 8. Photochemical property of phytochromes. The “Z” to “E” 
isomerization of phytochromobilin in the Pr-Pfr transformation of phytochromes 
is indicated. Adapted from Kim et al. 2002.
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of phosphorylation modification of phytochromes could include regulation of their stability (for 

phyA), their subcellular localization, or their interaction with downstream signalling partners 

(Kim et al. 2002, 2004).

1.6. Physiological functions of phytochromes

1.6.1. Phytochromes can initiate high, low and very low fluence responses

In the 1950’s, phytochromes were characterized as a protein pigment that mediates the reversible 

control of night-break of short day flowering plants (such as tobacco and soybean) and lettuce 

seed germination by R and FR light (Borthwick et al. 1952). The R/FR reversibility and reciprocity 

constitute the hallmarks of the classical phytochrome responses. This class of phytochrome 

responses is defined as the low fluence responses (LFR, fluence requirement 

1-1.000 µmol/m2/s). The classical example for LFR is the R light induced germination of lettuce 

seeds and this induction can be inhibited by a subsequent FR light treatment. Thus, 

photoreversibility is one characteristic feature of LFR. Low fluence of R light also induces other 

transient responses, such as changes in ion flux, leaf movement, chloroplast rotation, and gene 

expression (Roux 1994, Haupt and Häder 1994). PhyB to phyE regulate light responses under 

continuous R and white (W) light, and most of their responses can be grouped into the classical 

LFR. 

PhyA is unique among all phytochromes because it is solely responsible for the very-low-fluence 

response (VLFR, fluence requirement 0.001-1.000 µmol/m2/s) and for the FR light dependent 

high irradiance response (HIR, fluence requirement >1.000 µmol/m2/s). The VLFR includes light 

effects on the expression of some genes such as light-induced expression of the CAB 

(chlorophyll a/b binding protein) gene, seed germination, and the gravitropic control of hypocotyl 

growth, and it can be induced with R, FR and B light pulses. The HIR requires relatively high 

photon fluence rates of FR light and a longer duration of irradiation. This response mode operates 

in the regulation of many aspects of seedling de-etiolation, including inhibition of hypocotyls 

elongation, opening of the apical hook, the expansion of cotyledons, changes in gene expression, 

the synthesis of the anthocyanin and a FR light block of greening in subsequent W light 

(Casal et al. 1998, Neff et al. 2000; Tab. 2). Both the VLFR and the HIR are not photoreversible.
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Table 2. Different roles of phytochrome family members in seedling and early vegetative 
development.

Phytochrome member Primary photosensory activities Primary physiological roles
PhyA VLFR

FR-HIR

seed germination under a broad 
spectra of light conditions

seedling de-etiolation under FRc; 
promoting flowering under long 
day condition

PhyB LFR

R-HIR

EOD-FR

seed germination under Rc

seedling de-etiolation under Rc

shade avoidance response

PhyC R-HIR primary leaf expansion

PhyD EOD-FR (R/FR ratio) shade avoidance response

phyE EOD-FR (R/FR ratio) shade avoidance response

1.6.2. Phytochromes and seed germination 

The role of light signals in regulating seed germination has long been established. In natural light 

environments, the timing of seed germination is influenced by multiple factors. These include 

ambient temperature, water availability, the position of seeds in the soil profile, soil disturbance 

and the degree of vegetational shading. 

Germination of the seeds and maturation of the developing seedlings, both dependent upon 

limited storage reserves, are probably the most vulnerable stages of the plant life cycle. In these 

processes, the phytochromes do not operate alone, but seem to be predominant. Phytochromes 

are mainly responsible for initiating germination and they have important roles in de-etiolation, 

perhaps because longer wavelengths of light more readily penetrate the seed coats and the initial 

few millimetres of soil (Shinomura et al. 1996, 1998). 

In Arabidopsis, analyses of loss-of-function mutants and their respective double, triple or even 

quadruple mutants have revealed differential, as well as overlapping, physiological roles for the 

members of the phytochrome family (Franklin et al. 2003, Monte et al. 2003, Quail et al. 1995, 

Whitelam and Devlin 1997). PhyA, phyB and phyE are involved in the control of Arabidopsis seed 

germination. PhyA mediates FR-HIR germination, with phyE playing a secondary role 

(Botto et al. 1996, Shinomura et al. 1996, Hennig et al. 2002). Additionally, phyA uniquely 

mediates VLFR germination, which allows dark-imbibed seeds to germinate in response to 

millisecond pulses of light, irrespective of wavelength (Botto et al. 1996, Shinomura et al. 1996), 

whereas phyB plays a major role in the LFR and promotion of seed germination under prolonged 

R light, which is a R/FR responsible response (Botto et al. 1996, Reed et al. 1994, 

Shinomura et al. 1996). 
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Analysis of phyAphyBphyD and phyAphyBphyE triple mutant combinations uncovered a 

significant role for phyE in mediating R/FR reversible promotion of seed germination and in the 

promotion of germination by FR light, a response previously considered to be mediated solely by 

phyA. Surprisingly, given the high sequence similarity between phyB and phyD, the additional 

absence of phyD did not further impair the germination of phyAphyB seeds (Hennig et al. 2002).

1.6.3. Phytochromes and de-etiolation

De-etiolation is an interplay of several responses, including inhibition of extension growth, 

unfolding of cotyledons, development of the photosynthetic apparatus, expression of 

anthocyanins, and leaf development, all of which are critical for seedling establishment. 

Phytochromes also perform distinct functions in mediating seedling de-etiolation. Following seed 

germination, light signals inhibit hypocotyl extension, promoting the opening and expansion of 

cotyledons. The coordinated synthesis of chlorophyll, chloroplast development and opening of 

stomata enable plants to initiate photosynthetic activity and become photoautotrophic. 

In Arabidopsis, until a light signal is received, seedlings are etiolated and negatively gravitropic. 

This allows seedlings buried beneath soil and/or leaf litter to devote the limited resources in the 

seed to rapidly reaching the light necessary for them to switch from heterotrophic to autotrophic 

growth.

As in germination, phyA and phyB are the principal mediators of R- and FR-induced de-etiolation 

in Arabidopsis thaliana (Reed et al. 1994), and it is likely that phyB-mediated LFR predominates 

in open habitats while phyA-mediated FR-HIR predominates in shaded habitats. PhyC, phyD and 

phyE also contribute to R-induced de-etiolation (Franklin and Whitelam 2005).

The unique role of phyA in inhibiting hypocotyl elongation in prolonged FR light was established 

through analysis of phyA-deficient mutants in a variety of species including Arabidopsis thaliana 

(Nagatani et al. 1993, Parks and Quail 1993, Whitelam et al. 1993), tomato (Van 

Tuinen et al. 1995) and rice (Takano et al. 2001, 2005). When grown in continuous FR light, 

Arabidopsis phyA mutants display long hypocotyls and are unable to open and expand their 

cotyledons (Fig. 9A). This phenotype has been used extensively for screening mutant populations 

for lesions in phyA-signalling.

Mutants deficient in phyB have been also characterised in a variety of species including 

Arabidopsis thaliana (Koornneef et al. 1980, Somers et al. 1991), Brassica rapa 

(Devlin et al. 1992), cucumber (López-Juez et al. 1992), tomato (Van Tuinen et al. 1995), pea 

(Weller et al. 2000) and Nicotiana plumbagnifolia (Hudson et al. 1997). Analyses of these mutants 

have revealed a significant role for phyB in the de-etiolation of seedlings in R, but not in 

prolonged FR light. Under R light conditions, phyB null mutants display elongated hypocotyls and 
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smaller cotyledons when compared to wild-type controls (Fig. 9B). Such phenotypes have been 

used as the basis of genetic screens for mutants deficient in phyB-signalling components.

Redundancy between phyA and phyB has also been reported in the R light-mediated opening 

and expansion of cotyledons (Neff and Van Volkenburgh 1994, Reed et al. 1994, Neff and 

Chory 1998). The generation of double, triple and quadruple mutants, deficient in multiple species 

of phytochrome, have revealed that all five phytochrome family members promote cotyledon 

expansion in continuous R light (Franklin et al. 2003). Despite showing high sequence similarity 

to phyB, the role of phyD in R-mediated de-etiolation appears minor. When grown in continuous 

R light, phyD mutants displayed marginally longer hypocotyls than plants containing an 

overexpressed PHYD gene (Aukerman et al. 1997). The role of phyE in seedling de-etiolation 

appears negligible, when treated with R, FR or W light, etiolated phyE mutant seedlings display 

no obvious mutant phenotype (Devlin et al. 1998). The recent identification of null mutants at the 

PHYC locus has provided insights into the role of this phytochrome in seedling de-etiolation 

(Franklin et al. 2003). When grown in continuous R, phyC mutants displayed elongated 

hypocotyls, suggesting a role for this phytochrome in modulating extension growth. Despite the 

relatively close phylogenetic relationship between PHYA and PHYC, no identifiable role was 

identified for phyC in FR sensing (Franklin et al. 2003, Monte et al. 2003). This is in contrast to 

the rice phyC, which is involved in the photoperception of FR for the de-etiolation as well as the 

induction of CAB (chlorophyll a/b binding protein) genes and has little effect on the R 

light-mediated responses (Takano et al. 2005).

1.6.4. Phytochromes and shade avoidance

One of the most ecologically important capacities of phytochromes is their adaptation to their 

surroundings. In response to neighbour detection shade-intolerant plants increase extension 

growth, suppress branches, produce thinner leaves with less chlorophyll, flower early, and 

Figure 9. Phytochrome photoreceptor mutants of Arabidopsis. 
(A) phyA seedlings compared with WT seedlings grown under far-red 
light. (B) phyB seedlings compared with WT seedlings grown under red 
light (adapted from Franklin et al. 2005).
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decrease allocation to storage organs, a set of responses collectively known as “shade 

avoidance”. 

Experiments with field-grown Arabidopsis and Brassica mutants have defined a clear role for 

phyB in detection of reflected FR light (Schmitt et al. 1995, Ballaré 1999). While phyA may 

enhance the sensitivity to subtle changes in the R/FR ratio caused by reflected light from 

non-shading neighbours (Ballaré 1999), the role of phyA in promoting de-etiolation under dense 

canopies may be antagonistic to some shade avoidance responses (Smith and Whitelam 1997). 

Moreover, analyses of mutants under canopies of lower density indicate a primary role for phyB in 

mediating shade avoidance responses, by increasing the elongation growth of petioles and 

stems, the length-to-width ratio of leaves, and accelerating flowering (Devlin et al. 1996, Smith 

and Whitelam 1997). Lesser roles are attributed to the phyB-related photoreceptors, phyD and 

phyE (Ballaré 1999). Under denser canopies, phyB mutants still retain measurable responses to 

shade, perhaps indicating a greater role for phyD and phyE, and/or for other perception systems, 

in shade avoidance in deep shade (Ballaré 1999; Fig. 10B).

A saturating pulse of FR light given at the end of the day simulating the enrichment of FR in the 

incandescent sunlight induces enhanced hypocotyl elongation in Arabidopsis 

(Robson et al. 1993, Aukerman et al. 1997, Franklin and Whitelam 2005). This end-of-day 

(EOD)-FR response is greatly diminished in phyB, phyD and phyE mutants and is a way to 

assess shade avoidance responses and to determine how plants can react to changing R/FR 

ratios.

1.6.5. The complex interplay among the photoreceptors

As well as having independent functions, phytochromes also show redundancy of functions and 

can also antagonize the action of each other (Reed et al. 1994, Smith 1995). Clearly, 

phytochromes also interact and coact with other photoreceptors. It has been reported that the 

inhibition of hypocotyl elongation under B light by cryptochrome was dependent upon the 

presence of phyA or phyB (Casal et al. 2002). However, it was later shown that cry1 had 

biological activity in a phyA phyB null mutant background in B light, especially at higher fluence 

rates (Shao et. al 2005). Cryptochromes and phytochromes also interact in phototropic curvature: 

prior stimulation of phytochrome by R light enhances the B light-mediated response, and this 

appears to be regulated by phyA (Ballaré et al. 1987, Gilbert et al. 1995). Additionally, phyB and 

cry2 act antagonistically in regulating flowering: phyB appears to repress whereas cry2 stimulates 

floral induction (Mouradov et al. 2002). In addition to these genetic studies indicating interactions 

between phytochromes and cryptochromes there is also evidence that cry1 can physically 

interact with phyA in yeast two-hybrid assays and that cry2 can interact with phyB. It is not only 

clear that phytochromes interact directly with other photoreceptors, but it has also been 

demonstrated that there is an interconnected signal transduction network among phytochromes, 

cryptochromes, phytohormones and environmental stresses (Franklin and Whitelam 2004).
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1.7. Signal transduction by photoreceptors

Between the sensing of an environmental impulse (signal) and an appropriate response the 

information is processed and integrated with other information obtained through different sources. 

This process is called signal transduction. The signal transduction pathway for light is best 

studied for phyA signalling (Bowler and Chua 1994, Millar et al. 1994, Barnes et al. 1997, Mustilli 

and Bowler 1997). Approaches to elucidate this pathway were made using genetic (Fankhauser 

and Chory 1997, Deng and Quail 1999) and biochemical strategies (microinjections: 

Neuhaus et al. 1993, Bowler et al. 1994; two-hybrid screens: Ni et al. 1998, 

Fankhauser et al. 1999, Choi et al. 1999) as well as promoter analysis (Terzhagi and 

Cashmore 1995). It has been demonstrated that the Arabidopsis phytochromes are localized in 

the cytosol in the dark and up on light activation translocate to the nucleus where they form 

speckles whose biological function is not known (Nagatani 2004). The mechanisms of 

photoreceptor signal transduction are far from being completely elucidated, but are believed to 

involve both cytosolic and nuclear components (Nagy and Schäfer 2000).

Photoactivation of phyA is linked to cellular and molecular events that elicit changes in gene 

expression patterns. Several protein intermediates have been isolated to date that are important 

for phyA signalling (Chen et al. 2004). In most cases, genetic screens exploited the hypocotyl 

elongation as a parameter for mutant selection. Only three mutants, fhy1, fhy3 and pat1-1, have 

been isolated that have a nearly abolished inhibition of hypocotyl elongation specifically under FR 

light, very similar to a phyA photoreceptor mutant. Several other mutants have been isolated with 

weaker or intermediate responses (laf1, laf3, laf6, far1, far3, fhl, hfr1/rsf1rep1, fin2, fin219). Other 

mutants have been isolated because of their hypersensitivity towards FR light such as eid1, spa1 

Figure 10. Phytochrome functions throughout a plant´s development. (A) The role of phyA, phyB and 
phyD in the juvenile stages. (B) Phytochromes influencing vegetative development and the transition to 
flowering in adult plants. Red, R; far-red, FR; very low fluence response, VLFR; low fluence response, LFR; 
high irradiance response, HIR.
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and spa4. Although most mutants have been characterized at the molecular level it is still not 

clear how the light signal is transduced (Fig. 11).

Phosphorylation and dephosphorylation are mechanisms widely used by organisms in signalling 

cascades. The presence of putative kinase domains within photoreceptor proteins has suggested 

a role for phosphorylation in light signalling. The C-terminal domain of phytochromes contains a 

region of sequence with homology to histidine kinases, suggesting that phytochrome may act as 

a light-regulated kinase (Yeh et al. 1997). In addition to autophosphorylation, phyA and phyB also 

phosphorylate the protein PKS1 (Phytochrome Kinase Substrate 1) in a light-dependent manner 

in vitro (Fankhauser et al. 1999). The phosphorylation of PKS1 acts negatively to regulate 

phytochrome function, suggesting an important role for phytochrome kinase activity in light 

signalling (Fankhauser et al. 1999). In addition, studies in Arabidopsis have revealed the binding 

of the Pfr form of phyA to increase the phosphate exchange activity of nucleoside diphosphate 

kinase 2 (NDPK2) in vitro (Choi et al. 1999). Such studies suggest NDPK2 to be a positive 

signalling component of the phytochrome-mediated light signal transduction pathway in 

Arabidopsis thaliana. Furthermore, a type 5 protein phosphatase (PAPP5) has been identified 

that specifically dephosphorylates biologically active phytochromes and thereby enhances 

phytochrome-mediated photoresponses and the affinity for NDPK2 (Ryu et al. 2005).

In the nucleus, many proteins that have been identified as signalling intermediates are 

transcription factors: basic helix-loop-helix proteins such as PIF1/PIL5, PIF3, PIF4, PIF5/PIL6 and 

PIL1, many of which can directly interact with phytochromes (Duek and Fankhauser 2005); the 

leucine zipper proteins HY5 and HYH (Oyama et al. 1997, Holm et al. 2002); homeobox proteins 

such as ATHB2, which is involved in the shade avoidance response (Steindler et al. 1999); MYB 

factors such as CCA1 and LHY and transcription factors with DOF domains such as COG1 and 

OBP3 (Wang et al. 1997, Schaffer et al. 1998, Park et al. 2003, Ward et al. 2005). The binding of 

phytochromes to bHLH transcription factors in the nucleus is believed to form an early signalling

step in the de-etiolation of dark grown seedlings. The DNA sequence motif recognised by most 

bHLH transcription factors is termed the E-box, a hexameric sequence, CANNTG. In Arabidopsis, 

the most commonly recognized type of E-box is the sequence CACGTG, termed the G-box 

(Toledo-Ortiz et al. 2003).

Light also regulates photomorphogenesis via the specific targeting of proteins for ubiquitination 

and proteasome-mediated degradation. One of the key regulators of this process is the COP1 

(Constitutive Photomorphogenesis 1) E3 ubiquitin protein ligase which acts downstream of both 

phytochromes and cryptochromes (Ang and Deng 1994, Seo et al. 2004). In the dark, COP1 is 

associated with a nuclear-localised twelve subunit complex, the COP9 signalosome, involved in 

targeting proteins for degradation (Wei and Deng 2003). In the light, COP1 moves out of the 

nucleus allowing proteins involved in the positive regulation of photomorphogenesis, such as the 

transcriptional regulator HY5, to accumulate and photomorphogenesis to occur. In addition, there 
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is physical interaction of photoreceptors (Wang et al. 2002, Yang et al. 2000) with COP1 in a 

light-dependent manner leading to their degradation (Seo et al. 2004)

The regulation of gene expression by phytochrome may also involve chromatin remodelling. This 

pathway of phytochrome signalling was discovered by analysis of det1 mutants. Plants lacking 

this gene exhibit a constitutive de-etiolation in darkness, suggesting that DET1 encodes a 

negative regulator of light signalling, like the COP proteins. Biochemical experiments revealed 

that DET1 could interact with the N-terminal tail of histone H2B in a nucleosome context 

(Benvenuto et al. 2002). This finding indicates that DET1 may regulate light-inducible gene 

expression by modulating chromatin architecture. Furthermore, DET1, together with another 

protein (DDB1), has now been found to interact with COP1, COP10 and the COP9 signalosome 

(Yanagawa et al. 2004), suggesting that polyubiquitin-dependent proteolysis of regulatory factors 

may be closely coupled with chromatin-level control of photoregulated gene expression.

Figure 11. A simplified model for phytochrome-mediated light signalling. Cloned genes are indicated in 
CAPITALS. Genetic loci affecting specific branches of phytochrome signalling are italicized. Proteins that can 
directly interact with phytochromes are boxed. Negative regulators are underlined. Cytoplasmatic localization 
is indicated in green and nuclear localization in red.
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1.8. PAT 1 (Phytochrome A Signal Transduction 1), a GRAS Protein, is 

involved in phytochrome signalling

One of the phyA-dependent signalling intermediates that have been identified is PAT1 

(Bolle et al. 2000). The Arabidopsis thaliana mutant phytochrome A signal transduction (pat)1-1, 

acts in a semi-dominant negative way. Molecular analysis demonstrated that a carboxy-terminally 

truncated PAT1 mRNA is still expressed. Several responses to FR-HIR light are severely reduced 

in this mutant, such the FR light induced gene expression of CHS and CAB. Hypocotyl elongation 

under FR light is strongly enhanced, leading to a phenotype similar to that of the phyA

photoreceptor mutant. No effect on hypocotyl elongation and gene expression was noted under 

any other light conditions, suggesting specificity for the phyA signalling pathway. This protein 

belongs to the class of GRAS proteins, which constitutes are large protein family. GRAS proteins 

have been found in many higher plants such as Arabidopsis, tomato, petunia, lily, rice, barley and 

also in Physcomitrella. However, GRAS proteins are plant-specific as they cannot be found 

outside this clade. The family name is derived from the first three members to be cloned, GAI 

(Gibberellin-insensitive), RGA (Repressor of ga1-3) and SCR (Scarecrow) (Pysh et al. 1999).

GRAS proteins are typically composed of 400 – 770 amino acid residues and exhibit considerable 

sequence homology to each other in their respective C-termini (Fig. 12). The distinguishing 

domains of GRAS proteins, two leucine-rich areas flanking a VHIID motif (named after the most 

prominent amino acid residues), are present in all members of the family. The two leucine-rich 

domains of approximately 100 amino acid residues length are characterized by leucines, which in 

most cases do not occur as heptad repeats. If heptad repeats can be found, their number is 

small, usually one or two, although in AtSCR a stretch of four leucines is positioned in the correct 

spacing for a leucine zipper. Nonetheless, the presence of conserved leucines suggests that 

these domains could be important for protein–protein interactions. An LXXLL sequence appears 

in several GRAS proteins at the beginning of the first leucine-rich domain. The significance of this 

motif in plants is not yet known, although it fits the consensus sequence demonstrated to mediate 

the binding of steroid receptor co-activator complexes to nuclear receptors (Heery et al. 1997). 

Several additional amino acid residues are invariant in most or all members of the GRAS protein 

family. These include the PFYRE and RVER motifs, designated after the respective conserved 

amino acids (Pysh et al. 1999), and the C-terminal SAW motif, which contains three pairs of 

conserved residues: R-(x)4-E,-W-(x)7-G,-W-(x)10-W. After the second leucine-rich domain a 

consensus sequence for a tyrosine phosphorylation site [RK]-x(2,3)-[DE]-x(2,3)-Y]

(Patschinsky et al. 1982) is present in many members of the family, overlapping with the tyrosine 

in the PFYRE motif (Fig. 12). Its function as a phosphorylation site, however, has yet to be 

demonstrated. Despite the substantial homology between GRAS proteins in the C-terminal part, 

the N-terminal amino acid sequences are highly divergent. 
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The GRAS protein family is relatively large with at least 33 identified ORFs in the Arabidopsis 

thaliana genome (Bolle 2004, Tian et al. 2004) and at least 57 genes identified in the Oryza sativa

genome. Comparative analysis revealed duplication and divergence of the GRAS gene family 

between monocots and eudicots, which have diverged from a common ancestor 150 - 300 million 

years ago.

Sequence alignment and phylogenetic analysis of the GRAS gene family reveal several 

subfamilies: the “DELLA" proteins, the SCR-branch, the Ls-branch, the HAM-branch, the 

PAT1-branch, the SHR-branch and the SCL9-branch. The phylogenetic trees are very similar if 

based on full-length sequences or only on the conserved C-termini of the proteins (Fig. 13).

Figure 13. Phylogenetic tree of GRAS proteins. Evolutionary 
relationship among the 33 members of the Arabidopsis thaliana
GRAS protein family (At) including several GRAS proteins from 
Petunia hybrida (petunia; Ph), Lycopersicon esculentum (tomato; 
Le), Lilium longiflorum (lily; Ll), Oryza sativa (rice; Os), 
Hordeum vulgare (barley; Hv) and Zea mays (maize; Zm). Adapted 
from   Bolle, 2004. 

Figure 12. Presentation of the different domains of GRAS Proteins.
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Several GRAS genes have been cloned and functionally characterized in a variety of plant 

species. GRAS proteins are involved in many developmental processes such as axillary meristem 

initiation (LS/LAS; Schumacher et al. 1999, Greb et al. 2003), shoot meristem maintenance 

(HAM; Stuurman et al. 2002) or radial organization of the root (SCR, SHR; 

Di Laurenzio et al. 1996, Helariutta et al. 2000), whilst others are involved in signal transduction 

pathways such as the members of the DELLA protein sub-branch (GAI, RGA, RGL1-3), which are 

negative regulators of the gibberellin signal transduction (Peng et al. 1997, 1999, 

Silverstone et al. 1998, Ikeda et al. 2001) or such as PAT1, which is involved in light signal 

transduction (Bolle et al. 2000). Others have been found to be important for nodulation in 

Medicago and Lotus (Kalo et al. 2005, Smit et al. 2005, Heckmann et al. 2006).

Four proteins in Arabidopsis show high similarity to PAT1, namely SCARECROW-LIKE (SCL)1, 

SCL5, SCL13 and SCL21 (Fig. 13). These proteins cluster to the PAT1-branch of the GRAS 

protein family. The aim of this analysis was to determine of whether these proteins are also 

involved in light signal transduction. Furthermore, the biological and biochemical role of GRAS 

proteins involved in light signalling could be elucidated. 
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2. MATERIALS

2.1. Chemicals and enzymes

All chemicals used in this work had a degree of purity suitable pro analyse and were provided by 

Merck GmbH (Darmstadt, Germany), Pharmacia GmbH (Uppsala, Sweden), Roth GmbH 

(Karlsruhe, Germany), Serva GmbH (Heidelberg, Germany) and Sigma-Aldrich Chemie GmbH 

(Taufkirchen, Germany). 

Radioactive nucleotides were purchased from Amersham Biosciences Europe GmbH (Freiburg, 

Germany). Other chemicals, buffers, and additional materials are described under the respective 

methods. 

2.2. Enzymes

Enzymes were obtained from the following companies, if not otherwise mentioned: Invitrogen 

GmbH (Karlsruhe, Germany), MBI Fermentas GmbH (St.Leon-Rot, Germany), New England 

Biolabs GmbH (Frankfurt/Main, Germany), Promega GmbH (Mannheim, Germany), Qiagen 

GmbH (Hilden, Germany), Roche Diagnostics GmbH (Mannheim, Germany), and Stratagene 

GmbH (Heidelberg, Germany). 

T4 DNA ligase MBI Fermentas GmbH, St.Leon-Rot, Germany

DNAse I, RNAse-free Roche Diagnostics GmbH, Penzberg, Germany

DNA polymerase TaKaRa Ex TaqTM, Takara Bio INC., Shiga, Japan

BioTherm DNA polymerase GeneCraft GmbH, Lüdinghausen, Germany

Shrimp alkaline phosphatase USB, Cleveland, OH, USA

GatewayTM LR Clonase Enzyme Mix Invitrogen GmbH, Carlsbad, CA, USA

GatewayTM BP Clonase Enzyme Mix Invitrogen GmbH, Carlsbad, CA, USA

Protease Inhibitor Cocktail Sigma, Missouri, USA

RNAse A Roche GmbH, Mannheim, Germany

RNAse Inhibitor Roche GmbH, Mannheim, Germany

Proteinase K Invitrogen GmbH, Karlsruhe, Germany

2.3. Kits

ProQuest Two-Hybrid System Invitrogen GmbH, Carlsbad, CA, USA

SuperSignal West Pico Chemiluminiscent Substrate Kit Perbio GmbH, Bonn, Germany

Random Primed DNA Labeling Kit Roche GmbH, Penzberg, Germany

QIAprep Spin Miniprep Kit Qiagen GmbH, Hilden, Germany

QIAquick PCR Purification Kit Qiagen GmbH, Hilden, Germany

QIAquick Gel Extraction Kit Qiagen GmbH, Hilden, Germany
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RNeasy Plant Mini Kit Qiagen GmbH, Hilden, Germany

Omniscript Reverse Transcriptase Kit Qiagen GmbH, Hilden, Germany

DIG High Prime DNA Labeling and Detection Starter Kit Roche GmbH, Penzberg, Germany

Mini Quick Spin DNA Columns Roche GmbH, Mannheim, Germany

pENTR Directional TOPO Cloning Kit Invitrogen GmbH, Carlsbad, CA, USA

Gateway™ pENTR™ Vectors Invitrogen GmbH, Carlsbad, CA, USA 

PCR Cloning System with Gateway Technology Invitrogen GmbH, Carlsbad, CA, USA

with pDONR221/pDONR 201/pDONR 207

2.4. Antibiotic stock solutions

ampicillin 100 mg/ml dissolved in water

chloramphenicol 40 mg/ml dissolved in 70% ethanol

kanamycin 50 mg/ml dissolved in water

gentamycin 10 mg/ml dissolved in water

streptomycin 50 mg/ml dissolved in water

spectinomycin 50 mg/ml dissolved in water

2.5. Oligonucleotides

All oligonucleotides used for PCR reactions, cloning or sequence analyses have been 

synthesized by MWG-Biotech GmbH (Ebersberg, Germany). The list of primers is given in the 

Appendix 1.

2.6. Length and weight standards

GeneRulerTM 1Kb DNA ladder (MBI Fermentas, St. Leon-Rot, Germany) yielding fragments 

between 250 to 10,000 bp and λ DNA restricted with EcoRI and HindIII yielding fragments 

between 564 to 21,226 bp were used as DNA length standards. 

As a standard for the determination of the molecular weight of proteins, Prestained Protein 

Marker, broad range (New England BioLabs, Frankfurt/Main, Germany) was utilized.

2.7. Bacterial strains

E.coli DH5" (Bethesda Res. Lab., 1986)

One Shot® TOP10 Chemically Competent E. coli (Invitrogen GmbH, Karlsruhe, Germany)

Agrobacterium tumefaciens GV 3101 (pMK90RK) (Koncz et al. 1994)
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2.8. Yeast strains

Saccharomices cerevisae, strain MaV203, has been used for the routine introduction of plasmid 

DNA into yeast cells for use with the Proquest Two-Hybrid System with the Gateway Technology 

(Invitrogen GmbH, Carlsbad, CA, USA).

2.9. Antibodies

Primary antibodies were generated by Pineda Antikörper-Service (Berlin, Germany) in rabbit 

against peptides of SCL21 (NH2-CSSIYKSLQSREPES-CONH2) and PAT1 (NH2-CVTDELNDFKH 

KIRE-CONH2). Preimmunsera and bleeds were tested on extracts from wild-type plants and 

knock-out mutants. Secondary antibodies such as goat anti-mouse IgG (H+L) were obtained from 

Molecular Probes Europe BV (Leiden, The Netherlands). A goat anti-rabbit IgG (whole molecule) 

peroxidase conjugate was obtained from Sigma-Aldrich Chemie GmbH (Taufkirchen, Germany). 

2.10. Plasmids

Vectors for standard cloning and plant binary expression vectors used in this work are described 

below.

Table 3. Vectors for standard cloning procedures

Name Application Enzyme Selection 
marker

Company/
Description

pGEM-T Easy 
Vector

For cloning of PCR products DNA T4 ligase ampicillin Promega 
(Mannheim, 
Germany)

pENTR/D-
TOPO

Directionally introduces blunt-end 
PCR products containing a CACC 
at the 5´-end. Generates attB 
flanked donor clones

topoisomerase kanamycin Invitrogen 
(Carlsbad, 
CA, USA)

PENTR 4 Allows restriction cloning of the 
gene of interest for entry into the 
Gateway system

DNA T4 ligase kanamycin Invitrogen 
(Carlsbad, 
CA, USA)

pDONR 201/ 
207/ 221

Gateway-adapted vectors designed 
to generate attL-flanked entry 
clones containing the gene of 
interest following recombination 
with an attB expression clone or an 
attB-linker containing PCR product

BP-clonase kanamycin
gentamycin
kanamycin

Invitrogen 
(Carlsbad, 
CA, USA)

PDEST 32 DNA Binding Domain (DB) 
Gateway Destination Vector 
derived from pDBLeu. The vector is 
used to clone the gene of interest 
in frame with the sequence 
encoding the DNA Binding Domain 
(DB) of the GAL4 protein 
(generating DB-X)

LR-clonase gentamycin Invitrogen 
(Carlsbad, 
CA, USA)

PDEST 22 Activation Domain (AD) Gateway 
Destination Vector. The vector is 
used to clone the gene of interest 
in frame with the sequence 
encoding the Transcription 
Activation Domain (AD) of the 
GAL4 protein (generating AD-Y)

LR-clonase ampicillin Invitrogen 
(Carlsbad, 
CA, USA)
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pDBLeu DNA Binding Domain (DB) cloning 
vector derived from pPC97. It 
contains a multiple cloning site with 
blunt end-generating restriction 
sites in each of the three reading 
frames

DNA T4 ligase kanamycin Invitrogen 
(Carlsbad, 
CA, USA)

PEXP-AD502 Activation Domain (AD) Gateway 
Expression Vector. This plasmid is 
used to construct a cDNA or 
genomic library for identifying 
proteins (AD-Y) that interact with 
the fusion protein (DB-X)

DNA T4 ligase ampicillin Invitrogen 
(Carlsbad, 
CA, USA)

PGFP To generate N-terminal fusion to 
GFP

DNA T4 ligase ampicillin Kost et. al
1998

Table 4. Plant binary expression vectors

Name T-DNA structure Application Selection 
marker in 
bacteria

Selection 
marker in 
plants

Description

pK7GWIWG2(I) LB-(Tnos-KanR-Pnos)-
T35S-(attR1,GW,attR2)-
intron-(attR2,GW,attR1)-
p35S)-RB

RNA
expression

spectinomycin/
streptomycin

kanamycin Karimi et al.
2002

pB7GWIWG2(I) LB-(Tnos-BarR-Pnos)-
T35S-(attR1,GW,attR2)-
intron-(attR2,GW,attR1)-
p35S)-RB

RNA
expression

spectinomycin/
streptomycin

Basta Karimi et al.
2002

pKGWFS7 LB-(Tnos-KanR-Pnos)-
(attR1,GW,attR2)-Egfp: 
gus-T35S)-RB

Promoter
analysis

spectinomycin/
streptomycin

kanamycin Karimi et al.
2002

pK7FWG2 LB-(Tnos-KanR-Pnos)-
(T35S-Egfp:(attR2,GW, 
attR1)-P35S)-RB

N-terminal
fusion to GFP

spectinomycin/
streptomycin

kanamycin Karimi et al.
2002

att = attachment sites (Gateway System), LB = left border, RB = right border, GW = reading frame of 
inserted gene, T35S = 35S-CaMV terminator, p35S = 35S-CaMV promoter, KanR = kanamycin resistance, 
BarR = Basta resistance.

After cloning, all resulting plasmids were sequenced to ensure no errors were introduced into the 

gene during the amplification reactions.

2.11. Hybridisation probes for Northern analysis

Hybridisation probes are listed in Appendix 1 (Tab. 5). DNA probes were generated by PCR, 

amplifying specific regions of the genes of interest using oligonucleotide primers synthesized by 

MWG-Biotech GmbH (Ebersberg, Germany).

2.12. Plant material 

All lines used in this study, are in the Arabidopsis thaliana Columbia background (Col-0). Insertion 

lines were derived from the SALK (http://signal.salk.edu/tabout.html) or SAIL-collection 

(http://www.tmri.org/en/partnership/sail_collection.aspx). 

http://signal.salk.edu/tabout.html)
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Table 5. List of the different lines used for physiological analysis. At, Arabidopsis thaliana

3. METHODS

I. General Techniques of Molecular Biology 

3.1. Preparation of competent bacterial cells

LB-MgSO4: 1% (w/v) Bacto-tryptone, 0.5% (w/v) Yeast extract, 1% (w/v) NaCl, 1% (v/v) 

1M MgSO4

Tfb-I buffer: 30 mM K-acetate, 50 mM MgCl2, 100 mM KCl, 10 mM CaCl2, 15% glycerol

Tfb-II buffer: 10 mM Na-MOPS, pH 7.0, 75 mM CaCl2, 10 mM KCl, 15% glycerol

E. coli DH5α cells were streaked on LB-plates without antibiotics and incubated overnight at 

37°C. Single colonies were selected and used for inoculation of 100 ml of an overnight culture. 

1 ml of the overnight culture was added to 200 ml of pre-warmed LB-MgSO4 and incubated on the 

rotary shaker until an absorbance of 0.5 at 600 nm was reached (approx. 90 – 120 min.). The 

culture was chilled on ice, transferred to sterile round-bottom tubes and centrifuged at low speed 

(4,000 x g, 5 min., 4°C). The supernatants were discarded and the cells resuspended in ice-cold 

Tfb-I buffer (30 ml for a 100 ml culture). The suspension was kept on ice for an additional 90 min. 

Then, the cells were collected by centrifugation (4,000 x g, 5 min., 4°C), the supernatant was 

discarded again and the cells resuspended in 4 ml ice-cold Tfb-II buffer. Aliquots of 100 µl were 

prepared, frozen in liquid nitrogen and stored at –80°C.

MIPS-Code Gene Name of the mutant SAIL or NASC number 
or reference

Resistance

At1g21450 AtSCL1 scl1-1 760 F10 Basta

At1g21450 AtSCL1 scl1-2 1296 B07 Basta

At1g21450 AtSCL1 scl1-3 N602071 kanamycin

At1g50600 AtSCL5 scl5-1 N582550 kanamycin 
sensitive

At2g04890 AtSCL21 scl21-1 313 G09 Basta

At2g04890 AtSCL21 scl21-2 N503630 kanamycin

At5g48150 AtPAT1 pat1-1 Bolle et al. 2000 hygromycin

At5g48150 AtPAT1 pat1-2 N568176 kanamycin

At5g62090 Seuss-like1 sla N585761 kanamycin

At5g62090 Seuss-like1 slb N589954 kanamycin
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3.2. Transformation of bacteria

LB-medium: 10 g Tryptone, 5 g Yeast extract, 10 g NaCl, dH2O up to 1 l

LB-plates: LB-medium with 1.5% (w/v) agar

Appropriate antibiotic(s)

To 100 µl of competent E. coli DH5α cells, 2 - 3 µl of ligation mixture were added and incubated 

for 30 min. on ice. After a heat shock (1.5 min., 42°C) and successive incubation on ice (3 min.), 

500 µl LB-medium were added and the bacteria incubated at 37°C for 1 h on a rotary shaker. The 

cells were then centrifuged (10,000 x g, 30 sec., RT) and the supernatant removed. Cells were 

resuspended in 200 µl of LB-medium and plated onto LB-plates containing the appropriate 

antibiotics. Plates were incubated overnight at 37°C.

Transformation of One Shot® TOP10 Chemically Competent E. coli (Invitrogen GmbH, Karlsruhe, 

Germany) was performed according to the manufacturer’s protocol.

3.2.1. Culture of E. coli DH5α cells for plasmid growth 

In a conical flask, 4 ml of LB-medium with an appropriate antibiotic were inoculated with a single 

colony of E. coli DH5α harbouring the plasmid of interest. The culture was incubated overnight on 

a platform shaker at 37°C and 210 rpm. From this culture the cells were harvested by 

centrifugation (18,000 x g, 5 min., RT) and the plasmid DNA was purified as described below.

3.2.2. Small-scale plasmid isolation from E. coli (Miniprep)

Plasmids were isolated from bacterial cells using QIAprep Spin Miniprep Kit (Qiagen, Hilden, 

Germany) according to the manufacturer’s protocol. DNA was eluted from the columns by 

addition of 50 µl elution buffer and subsequent centrifugation (14,000 x g, 2 min., RT).

3.2.3. Restriction analysis of plasmid DNA

Superdo restriction buffer (10x) : 330 mM Tris-HCl, pH 7.8, 625 mM K-acetate, 100 mM 

MgCl2, 40 mM spermidine, 5 mM dithioerythritol (DTE)

Plasmid DNA was digested with restriction endonuclease(s) by mixing 2 µl of plasmid 

preparation, 10 units of each restriction endonuclease and 1 µl of 1x Superdo buffer and the 

reaction mix was brought to a final volume of 10 µl. After incubation at 37°C for 2 h the DNA was 

analyzed on an agarose gel as described below. If the conditions for two enzymes were 

incompatible with each other, the DNA was digested successively with the respective enzymes 

and buffers provided by the company.
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3.3. Analysis of DNA by agarose gel electrophoresis

50x TAP buffer: 242 g/l Tris-HCl, 0.5 M EDTA, pH 8.0, 57.1 ml pure acetic acid

10x Loading buffer: 1x TAP buffer, 50% (v/v) glycerin, 0.1% (w/v) bromophenol blue, 

0.1% (v/v) xylene cyanol

Agarose gel electrophoresis of DNA was performed in submarine gel tanks of appropriate size. 

All agarose gels used throughout this work were run in 1x TAP buffer and were prepared by 

dissolving from 0.8% to 1.0% agarose and 0.5 µg/ml ethidium bromide in 1x TAP buffer. Samples 

containing an appropriate amount of DNA were mixed with 10x loading buffer prior to sample 

application. The gels were run at 60 - 70 V until optimal separation was achieved. The DNA was 

visualized via fluorescence excitation by illumination with UV light (302 nm). A 1 kb DNA ladder 

was applied as a size standard.

3.3.1. Isolation of DNA fragments from agarose gels

After separation by agarose gel electrophoresis, DNA fragments used for cloning were cut out 

from the gel and extracted by using the QIAquick® Gel Extraction Kit™ (Qiagen GmbH, Hilden, 

Germany) according to the supplier’s protocol. 

3.4. Ligation of DNA fragments

Standard ligation of DNA fragments was performed by mixing 50 ng vector DNA with a five-fold 

molar excess of insert DNA, 1 µl of T4 DNA ligase and 1 µl of 10x ligation buffer and the reaction 

mix was brought to a final volume of 10 µl. The reaction was incubated in a water bath at 16°C or 

at 4°C for ligations in pGEM vector. The assay was used directly for transformation of E.coli cells 

without any further purification.

Cloning reactions using pENTR Directional TOPO Cloning Kit and Gateway LR-/BP-Clonase 

Enzyme Mix (Invitrogen GmbH, Carlsbad, CA, USA) were performed according to the supplier´s 

protocol.

II. DNA analyses

3.5. Isolation of genomic DNA

CTAB-buffer: 2% CTAB,1.4 M NaCl, 20 mM EDTA, 100 mM Tris/HCl, pH 8.0, 100 mM 

β-mercaptoethanol (added before use)

TE (Tris/EDTA) buffer: 10 mM Tris-HCl, pH 7.5 or 8.0, 1 mM EDTA
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Isolation of DNA from plants was performed according to Doyle and Doyle (1990) using CTAB as 

detergent. The leaf material (approx. 300 mg) was homogenised in 1.5 ml-Eppendorf tubes using 

a mechanical stirrer RW16 basic (Kika Labortechnik, Staufen, Germany) for approx. 10 sec. DNA 

was extracted using 400 µl of the CTAB-buffer and continued grinding. Afterwards, the slurry was 

incubated at 65°C for 30 - 60 min. The reaction was centrifuged to remove cellular debris 

(12,000 x g, 10 min.) and DNA precipitated from the supernatant with isopropanol (4°C, 30 min., 

18,000 x g). For PCR amplification usually 0.2 µg DNA were used.

3.6. Polymerase chain reaction (PCR)

Amplification of DNA fragments was performed in a 50 µl reaction mixture with thinwalled PCR 

tubes in a PCR cycler (Advanced Primus 96, PeqLab Biotechnologie GmbH, Erlangen, 

Germany). The following reaction mixture was used:

template: 2 - 10 ng

primer 1 (10 pM): 1 µl (final concentration 0.2 – 1 µM)

primer 2 (10 pM): 1 µl (final concentration 0.2 – 1 µM)

dNTP Mixture (10 mM each): 4 µl (final concentration 200 µM)

PCR buffer (10x): 5 µl

Taq polymerase: 2.5 units/µl

add. H2O ultra pure to 50 µl

The PCR was performed with the following steps, if not otherwise stated:

1) initial denaturing at 94°C for 3 min.,

2) denaturing at 94°C for 30 sec.,

3) annealing usually at 50 - 65°C for 45 sec.,

4) elongation at 72°C for approx. 1 min./1kb DNA,

5) termination at 72°C for 10 min.,

6) cooling to 8°C.

The amplification procedure (steps 2 - 4) was repeated 30 times. The melting temperature of the 

primers depends on their GC content and was calculated by the following formula:

Tm = n (G+C) x 4°C + (A+T) x 2°C

If the two primers chosen had different melting temperatures, the lower one was used. The quality 

of PCR products was monitored by gel electrophoresis.
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3.6.1. Preparation of PCR-derived DNA fragments for ligation

DNA fragments produced by PCR (see Section 3.6.) to be used for cloning were purified with the 

QIAquickR PCR purification Kit (Qiagen GmbH, Hilden, Germany) or precipitated with ½ Vol 30% 

PEG 8000 (Sigma-Aldrich Chemie GmbH, Taufkirchen, Germany) containing 30 mM MgCl2. The 

DNA was then resuspended in 50 µl dH2O.

3.7. Determination of nucleic acid concentrations

DNA and RNA concentrations were determined spectroscopically using an Amersham Pharmacia 

Biotech (Freiburg, Germany) Ultraspec 3000 spectrometer. The minimal volume necessary for 

measuring was 100 µl. Concentrations were determined by measuring the absorbance at 260 

and 280 nm. For clean double stranded DNA the absorption ratio A260/A280 is approx. 1.8. 

Concentrations were calculated as follows:

double stranded DNA [mg/µl] = 50 x A260 x dilution factor

 RNA [mg/µl] = 40 x A260 x dilution factor

III. RNA analyses

3.8. Isolation of total RNA

Total cellular RNA was isolated from plant tissue using TRIzol reagent (Invitrogene GmbH, 

Karlsruhe, Germany) following the supplier’s protocol. The concentration of isolated RNA was 

checked by spectroscopic measurement (see Section 3.7.). As a quality control of isolated RNA, 

aliquots (1 µg) were fractionated on agarose gels containing ethidiumbromide to visualise the 

RNA.

For far-red (FR) light gene expression experiments, seedlings were prepared as described in 

Section 3.19. After induction of germination, seedlings were grown for 4 d in darkness before 

being transferred (0 h) to FR light (0.7 µM m-2s-1) for 3, 6 or 18 h. Tissue was collected and 

frozen in liquid nitrogen and RNA was extracted using the Qiagen Plant RNeasy Kit (Qiagen 

GmbH, Valencia, CA, USA) according to the manufacturer’s instructions. The RNA solutions were 

stored at –20°C until further use.

3.8.1. DNAse I treatment of RNA preparations

DNAseI (Roche Diagnostics GmbH, Penzberg, Germany) treatment of RNA preparations to 

remove contaminating genomic DNA was performed by adding 1 µg/ml of RNAse free/DNAseI.

The reaction was incubated for 30 min. at 37°C and the enzyme was inactivated by heating the 

sample for 10 min. at 65°C.
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3.9. Semiquantitative reverse transcription-polymerase chain reaction    

(RT-PCR)

For the analysis of transcript levels of low abundant genes (e.g. SCL21 and PAT1) a 

semiquantitative reverse transcription (RT) reaction was performed with total RNA extracted from 

wild type (WT) and mutant lines. An oligo(dT)18 primer (10 µM) was hybridized to 1 µg of total 

RNA. Reverse transcription was performed with the Omniscript RT Kit (Qiagen GmbH, Hilden, 

Germany) according to the manufacturer’s instruction. After the RT reaction, 1 µl of the cDNA 

was used for the PCR reaction with gene specific primers for SCL21, PAT1 and SCL13: (PAT1: 

5´-GAACTCTCCATGTGGCCTG-3´; 5´-GCACACGAGGCAACCAA AT-3´; SCL21: 5´-CCCTTATC

GACTTCCACCG-3´; 5´-GATTCGAACATTGCCGTG-3´; SCL13: 5´ -CTCCCATTCAACAAAATTT 

CTTCA-3´; 5´-CCAGCAATACACTACACAGCTC-3´). To be able to discriminate between 

genomic DNA and cDNA amplification products, the 5´-forward primer was located 5’ of the intron 

in the leader sequence, which also prevented amplifying the respective RNAi and antisense 

constructs. PCR reactions were stopped after 25 or 30 cycles and analyzed on agarose gels. The 

number of cycles used was optimized dependent on the abundance of the respective RNA. Each 

PCR was repeated three times.

One µl of the cDNA was also used for a control PCR with the 18S rRNA (18S rRNA-f: 5´-GCTCA 

AAGCAAGCCTACGCTCTGG-3´; 18S rRNA-r: 5´-GGACGGTATCTGATCGTCTTCGAG-3´) or 

the actin2 (actin2-f: 5´-GCAACTGGGATGATATGGAAAAGA-3´; actin2-r: 5´-CAAACGAGGGCTG

GAACAAGACT-3´). In this case the PCR reaction was stopped after 20 cycles and quantified on 

agarose gels. 

3.10. Northern analyses

MOPS buffer: 20 mM MOPS, pH 7.0, 5 mM Na-acetate, 1 mM Na2 EDTA, pH 7.0, final 

pH 5.5 to 7.0

20x SSC buffer: 3M NaCl, 3M sodium citrate, pH 7.0 with HCl

For Northern analysis 5 to 10 mg of total cellular RNA was used. RNA was denaturated through 

incubation with 30% glyoxal (McMaster and Carmichael 1977), electrophoretically separated on 

1.2% agarose gels in MOPS buffer and transferred by capillary force onto a Hybond-N nylon 

membrane (Amersham Pharmacia Biotech GmbH, Freiburg, Germany) in 20x SSC buffer. RNA 

was fixed to the membrane by UV crosslinking (2x Autocrosslink on “UV-StratalinkerTM 2400”, 

Stratagene GmbH, Heidelberg, Germany). EcoRI/HindIII-digested and glyoxylized λ DNA was 

used as a molecular weight standard. 
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3.10.1. Staining of Northern Blots

Methylene Blue (MB) stain: 0.03% (w/v) methylene blue, 0.3 M NaOAc, pH 5.2

After RNA was fixed to the membrane by UV crosslinking, the membrane was stained with 

Methylene Blue to visualize rRNA bands. The blot was soaked in MB stain for 30 - 60 sec. and 

destained in repeated changes of water (usually 3 changes over 2 min.) until background was 

reduced. The membrane was air dried and documented using a digital camera (Coolpix 700, 

Nikon, Tokyo).

3.10.2. Generation and purification of 32P-labelled radioactive probes

DNA labelling of PCR fragments was performed using the Random Primed DNA Labelling Kit 

(Roche Molecular Biochemicals GmbH, Mannheim, Germany) according to the method of 

Feinberg and Vogelstein (1983). Briefly, the fragment to be labelled and the random primers 

provided by the kit were heated in a water bath for 10 min. at 95°C to separate the DNA strands. 

Unlabeled dNTP stock mix as well a reaction buffer, Klenow enzyme and 32Pα-dCTP were added. 

After incubation for 30 min. at 37°C the labelled DNA fragments were separated from 

unincorporated nucleotides using Mini Quick Spin DNA Columns (Roche Molecular Biochemicals 

GmbH, Mannheim, Germany) probe purification columns. The probe was denaturated at 95°C for 

5 min. prior to addition to the pre-heated hybridization buffer. 

3.10.2.1. Hybridisation of nucleic acids

“Church Hyb” hybridisation buffer: 7% (w/v) SDS, 0.5 M NaPhosphate, pH 7.0, 1 mM EDTA

All hybridisations were performed overnight in hybridisation buffer “Church Hyb” (similar buffer 

first described by Church and Gilbert (1984) at 68°C. Prehybridisations were carried out in the 

same buffer for at least two hours. After hybridisation, washing steps were carried out to a final 

stringency of 0.5x SSC and 0.1% (w/v) SDS at RT. For exposure, filters were sealed in plastic 

bags and quantified by phosphorimaging (BASIII Fuji Bio Imaging plates, BAS2000 software 

package and the AIDA software package v3.25 beta; Raytest, Straubenhardt, Germany).

IV. Protein analyses

3.11. Extraction of total proteins for Western Blots

Homogenisation buffer: 50 mM Tris acetate, pH 7.9, 100 mM potassium acetate, 1 mM 

EDTA, 1 mM DDT (always added before use), 20% (v/v) glycerol 

and protease inhibitors (2.5 µl in 1 ml).
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Proteins were isolated from young Arabidopsis thaliana leaves (50 - 100 mg). Plant material was 

homogenised in homogenisation buffer (1 v/w) in 1.5 ml-Eppendorf tubes using a mechanical 

stirrer RW16 basic (Kika Labortechnik, Staufen, Germany) for approx. 10 sec. The extract was 

centrifuged for 10 min. at maximum speed at 4°C. The supernatant was transferred to a new 

Eppendorf tube and stored at –20°C.

3.12. Preparation of Tris-Glycine SDS-Polyacrylamide Gel electrophoreses 

(PAGE)

Solutions for preparing 10% resolving gels :

H2O ultra pure 4.8 ml

40% acrylamide mix 2.5 ml

1.5 M Tris, pH 8.8 2.5 ml

10% SDS 100 µl

10% APS 100 µl

TEMED 4 µl

Solutions for preparing 5% stacking gels :

H2O ultra pure 3.6 ml

40% acrylamide mix 630 µl

1.0 M Tris, pH 6.8 630 µl

10% SDS 50 µl

10% APS 50 µl

TEMED 5 µl

Minigels with 0.75 mm thickness were cast in the Mini-PROTEAN 3 Cell (Bio-Rad Laboratories 

GmbH, Germany) following the instructions manual. The resolving gel was poured and 

polymerized with an overlay of isobutanol. Polymerisation time was at least 30 min., after removal 

of the isobutanol the stacking gel was cast. Mini gels, wrapped in a plastic foil, can be stored at 

4°C for at least one week.

3.12.1. Separation of proteins by PAGE

Tris/glycine/SDS buffer: 250 mM Tris, 1.92 M Glycine, 1% (w/v) SDS, dH2O up to 

1 l

10x Laemmli buffer: 30.25 g Tris, 14.4 g glycerol, 10 g SDS, dH2O up to 1 l

Laemmli sample buffer: 4% (w/v) SDS, 50 mM Tris/HCl, pH 6.8, 10% (v/v)          

ß-mercaptoethanol

Tris-glycine electrophoresis buffer: 25 mM Tris, 250 mM glycine (electrophoresis grade), 

pH 8.3, 0.1% (w/v) SDS
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Gels were assembled in a Mini-PROTEAN 3 Cell Running Chamber (Bio-Rad Laboratories 

GmbH, Germany) and filled with running buffer following the manufacturer's instructions. 

Tris/glycine/SDS or Laemmli buffer were used as running buffer systems. Protein samples were 

treated with Laemmli sample buffer in a 1:2 ratio, boiled at 95°C for 5 min. and loaded into the 

wells of the gel. The electrophoresis was run constant at 120 V until the Bromophenol Blue 

reached the bottom of the gel. Prestained protein marker, broad range (New England BioLabs 

GmbH, Frankfurt/Main, Germany), was used for the determination of molecular masses.

3.12.2. Western analysis

Transfer buffer, pH 8.3: 39 mM glycine, 48 mM Tris, 0.037% (w/v) SDS, 20% (v/v) 

methanol in dH2O

Electrophoretic transfer of proteins from the polyacrylamide gels to a polyvinylidene fluoride 

(PVDF) membrane was performed using the mini Trans-Blot Electrophoretic Transfer Cell (Bio-

Rad Laboratories GmbH, Germany). The PVDF membrane (Hyond-P, Amersham Biosciences 

Europe GmbH, Freiburg, Germany) was activated in methanol and soaked in transfer buffer 

together with two filter paper sheets and the fibre pads. Gel sandwich was prepared in the 

cassette following the instructions manual. Electrophoresis was performed at 150 mA for 120 min. 

or at 20 V overnight at 4°C. Upon completion of the run, the membrane was stained with 

Coomassie Blue R-250 (see below). Detection of proteins on the PVDF membrane was 

accomplished by using antibodies (see Section 3.13.).

3.12.3. Coomassie Blue R-250 staining of protein gels

Coomassie Blue R-250 staining solution: 50% (v/v) methanol, 0.05% (w/v) Coomassie 

Brilliant Blue R-250 dissolved in methanol, 

10% (v/v) acetic acid, 40% (v/v) dH2O

Methanol/acetic acid destaining solution: 5% (v/v) methanol, 7% (v/v) acetic acid, 

88% (v/v) dH2O

After SDS-PAGE, the gels were stained in Coomassie staining solution at RT for 1h with constant 

agitation. The gels were then incubated in destaining solution until the background of the gel 

appeared nearly transparent.
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V. Protein detection

3.13. Immunoblotting

10x TBS Buffer: 200 mM Tris-HCl, pH 7.6, 1370 mM NaCl, dH2O up to 2 l

Blocking solution: 1x TBS, 0.1 - 1% (v/v) Tween20, 5% (w/v) nonfat dried milk or BSA

Washing solution: 1x TBS, 0.1 - 1% (v/v) Tween20

Solution I: 2.5 mM Luminol, 0.4 mM coomaric acid, 0.1 M Tris/HCl, pH 8.5 

Solution II: 5.4 mM hydrogen-peroxide, 0.1 M Tris/HCl, pH 8.5

Proteins covalently bound to a PVDF membrane can be detected with the help of antibodies. 

Dried membranes were pre-wetted in methanol and equilibrated with 1x TBS buffer. Membranes 

were blocked in blocking solution for 1 h to suppress non-specific adsorption of antibodies. 

Proteins were incubated for 2 h at RT or overnight at 4°C with the specific polyclonal antibody 

diluted in washing solution (1:500). Antibodies are detailed in Section 2.9. Membranes were 

washed (1x 15 min. and 2x 10 min.) and incubated for 1 h with a secondary goat anti-rabbit IgG 

peroxidase conjugate antibody (Sigma GmbH, Missouri, USA) diluted 1:10.000 in 1x TBS buffer. 

Again the membranes were washed (1x 15 min. and 2x 10 min.). Incubations were performed at 

RT or at 4°C on a shaker. Antigen-antibody complexes were viewed by chemiluminescent 

reactions using the SuperSignal West Pico Chemiluminiscent Substrate Kit (Perbio GmbH, Bonn, 

Germany) following the manufacturer's instructions, or by chemiluminescent reactions soaking 

the membrane for 1 min. in detection solution (1:1 mixture of solutions I and II). The solution was 

removed and the blot was placed between two Saran wrap foils. Then the membrane was 

exposed to a high performance autoradiography film, Hyperfilm TM (Amersham Biosciences 

Europe GmbH, Freiburg, Germany) for varying periods and the films were developed to detect 

the signals.

VI. Manipulation of yeast cells

3.14. Preparation of competent yeast cells

YPAD medium: 6 g yeast extract, 12 g peptone, 12 g glucose, 60 mg adenine 

hemisulfate, dH2O to 600 ml. For plates, 10 g bacto-agar was 

added.

Buffered lithium solution: 150 µl 10x TE buffer, pH 7.5, 150 µl 1 M lithium acetate, 1200 µl 

dH2O

10x TE buffer: 0.1 M Tris-HCl, 10 mM EDTA, pH 7.5

MaV203 yeast cells were streaked on YPAD-plates and incubated overnight at 30°C. A single 

yeast colony was picked and used for inoculation of 300 ml of an overnight culture. Approx. 3 ml 

of the overnight culture was added to 300 ml of YPAD medium and shaken until an absorbance of 
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1.0 to 1.2 at 600 nm was reached (approx. 120 – 180 min.). The culture was transferred to sterile 

round-bottom tubes and centrifuged at low speed (4,000 x g, 5 min., RT). The supernatants were 

discarded and the cells resuspended in 10 ml highest-quality sterile water. Then, the cells were 

collected by centrifugation (5,000 to 6,000 x g, 5 min., RT), the supernatant was discarded again 

and the cells were resuspended in 1.5 ml buffered lithium solution (freshly prepared). Aliquots of 

150 µl were stored at 4°C until transformation (no more than 4 days).

3.15. Yeast transformation

PEG solution: 120 µl 10x TE buffer, 120 µl 1 M lithium acetate, 960 µl 50% PEG 4000 (Sigma-

Aldrich Chemie GmbH, Taufkirchen, Germany)

SC medium: 6.7 g yeast nitrogen base without amino acids (Sigma-Aldrich Chemie GmbH, 

Taufkirchen, Germany); 1.4 g yeast synthetic drop-out media supplement without 

histidine, leucine, tryptophan and uracil (Sigma-Aldrich Chemie GmbH, 

Taufkirchen, Germany); 40 ml 50% (w/v) glucose; 8 ml 20 mM uracil; 8 ml 

100 mM histidine-HCl and dH2O to 1 l. The medium was autoclaved for 15 min. 

only. The agar was autoclaved separately from the drop-out mix and yeast 

nitrogen base according to the manufacturer´s instructions. For plates, 20 g agar 

was added.

For each transformation, 200 µg of carrier DNA with 5 µg transforming DNA were mixed in a 

sterile 1.5 ml microcentrifuge tube. 150 µl of yeast suspension and 1.2 ml of PEG solution (freshly 

prepared) were added to each microcentrifuge tube. Cells were incubated for 30 min. under 

continuous agitation at 30°C. After a heat shock (20 min., 42°C) the cells were centrifuged (5 sec. 

at RT), resuspended in 200 µl of 1x TE buffer (freshly prepared from 10x stock) and plated onto 

SC plates without leucine and tryptophan. Plates were incubated for 2 to 5 days at 30°C until 

transformants appear.

3.16. Plasmid DNA extraction from yeast cells

Solutions used: 3% (w/v) SDS 

0.2 M NaOH

TE Buffer (10 mM Tris-HCl, pH 7.5, 1 mM EDTA)

3 M sodium acetate

chloroform: isoamyl: alcohol 25:24:1

isopropanol 

70% (v/v) ethanol

Plasmid DNA was extracted from yeast cells according to the procedure provided with the Manual 

Invitrogen ProQuest Two-Hybrid System (Invitrogen, Karlsruhe, Germany). This protocol is a 

modification of the method described by Polaina and Adam, 1991. 
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3.17. Yeast Two-Hybrid and One-Hybrid assays

The full-length SCL21 and PAT1 reading frames and an N-terminal deleted Seuss-like 1 gene 

resulting in a 1,560 bp long fragment, were amplified with the TAKARA Polymerase (TaKaRa Ex 

TaqTM, Takara Bio INC., Shiga, Japan) from a cDNA library. Primers contained the attB

sequences (underlined): (SCL21full-length): SCL21-f: 5´-GGGGACAAGTTTGTACAAAAAAG 

CAGGCTCGATGGACAATGTAAGAGGTTCAATAATG-3´, SCL21-rev: 5´-GGGGACCACTTTGTA 

CAAGAAAGCTGGGTATCACTTCCATGCACAAGATGAC-3´, (PAT1full-length): PAT1-f: 5´-GGG 

GACAAGTTTGTACAAAAAAGCAGGCTCGATGTACAAGCAGCCTAGACAAGAG-3´, PAT1-rev: 

5´-GGGGACCACTTTGTACAAGAAAGCTGGGTACATTTCCAAGCACAAGGAGC-3´, (SEUSS-

like): TH77900-f: 5´-GGGGACAAGTTTGTACAAAAAAGCAGGCTCGATGCAGTACCTATATCAT 

CAGC-3´, TH77-rev: 5´-GGGGACCACTTTGTACAAGAAAGCTGGGTATCATGACTTCCAAGAAT 

ATCCTC-3´. After precipitation with ½ Vol 30% PEG 8000 containing 30 mM MgCl2 and 

resuspension in TE buffer (30 µl), the PCR fragment was introduced with the help of the 

BP-Clonase Enzyme Mix (Invitrogen GmbH, Carlsbad, CA, USA) into the pDONR221-Vector 

(Invitrogen GmbH, Carlsbad, CA, USA).

An N-terminal deletion of SCL21, resulting in a 820 bp long fragment, was amplified with the Ex 

TaqTM Polymerase (TaKaRa, Takara Bio INC., Shiga, Japan) from the cDNA and cloned into the 

pENTR/D-TOPO cloning vector (Invitrogen GmbH, Carlsbad, CA, USA). For directed cloning a

5´-CACC-extension was added to the forward primer: SCL21 delN-f: 5´-CACCATGGTGGAGCCA

ATATCAAG-3´, SCL21 del N-rev: 5´-TCACTTCCATGCACAAGATGAGAC-3´. 

In a next step the PCR fragments were transferred into the pDEST 32- and pDEST 22-vectors 

with the help of the LR-Clonase Enzyme Mix (Invitrogen GmbH, Carlsbad, CA, USA), thereby 

either generating an N-terminal fusion with the GAL4 DNA-binding domain (pDEST 32; “bait”) or 

the GAL4 activation domain (pDEST 22; “prey”). For assaying dimerization the constructs were 

co-transformed and selected on Synthetic Complete Dropout (SC) media without leucine and 

tryptophane. For the one-hybrid assays only the “bait” was introduced in yeast cells and selected 

on SC media without leucine. GAL4-binding UAS drive the expression of the HIS3 reporter gene. 

The ability to grow in the absence of histidine was tested on media without histidine and media 

supplemented with different concentrations of 3-Amino-1,2,4,-Triazole (3AT), 10, 25, 50 and 

75 mM. Colonies were streaked or dropped on master plates and lifted onto plates containing 

different amounts of 3AT. Yeast was incubated at 30°C and growth was evaluated after 2 

subsequent rounds of replica cleaning. The replica cleaning was performed according to the 

procedure provided with the Manual Invitrogen ProQuest Two-Hybrid System (Invitrogen, 

Karlsruhe, Germany). After the tests the plasmids were extracted from the yeast and rechecked 

for the correct fragment insertion via PCR. 
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VII. Growth conditions and physiological characterization

3.18. Seed sterilization, growth conditions and mutant selection

Seeds were surface-sterilized for 10 min. in 50% (v/v) commercial bleach with the addition of 

0.05% Triton X-100, rinsed at least three times and sown on Petri dishes (11 cm diameter) 

containing half-strength Murashige and Skoog basal medium (Sigma, St. Louis) and 0.8% (w/v) 

agar. To select transgenic lines the medium was supplemented with kanamycin or Basta and 3% 

sucrose. Until use for germination assays, plates were stored at 4°C for 4 days and germination 

was induced by 2 h of W light followed by 22 h of darkness at 21°C. After this treatment plates 

were transferred into the appropriate light conditions for 4 days. The blue (B), red (R) and far-red 

light (FR) sources were generated by LED using diodes with a maximum at 469, 660 or 740 nm, 

respectively (Quantum Devices, Barneveld and PVP GmbH, Willich). White light (W) was 

provided by cool-white fluorescent bulbs (Osram L85W125 Universal White Fluorescent Lamps). 

Light intensities were determined with spectroradiometers (W, B und R light: model Li-1800, 

LiCor, Lincoln, NE; FR light: model SKP200 with a sensor for 730 nm, Skye Instruments, UK).

3.19. Physiological measurements

For fluence response experiments, briefly, seedlings were grown on 1x MS plates without 

sucrose and stratified at 4°C in the dark for 4 d. After 2 h in W light, to induce germination and 

22 h in darkness at 21°C plates were transferred to the appropriate light conditions for 4 d at 

21°C. Lines were always analysed in parallel with the appropriate controls. The experiments were 

repeated at least 3 times and each time a minimum of 50 seedlings was analysed. Hypocotyl, 

petiole lengths and cotyledon sizes were documented using a digital camera (Coolpix 700, Nikon, 

Tokyo) and measured with the NIH Image software (ImageJ, National Institutes of Health, 

Bethesda, MD). Data derived from hypocotyl length assays were subjected to statistical analysis 

included in Microsoft Office Excel 2003 such as the t-student-tests to verify hypotheses about 

differences between two mean values. Differences were assumed to be insignificant when the 

P values associated with these tests exceeded 0.05.

Germination assays were performed according to Shinomura et al. 1996. Seeds were sterilized 

and plated on half-strength MS medium without sucrose. After plating, the seeds were pulsed 

with FR light (1 µM m-2s-1) for 10 min. and transferred to darkness (D). To test for R light 

responsiveness seeds were illuminated again after 3 h with R light (5 µM m-2s-1) for 10 min. To 

test for FR light responsiveness a FR light pulse (1 µM m-2s-1) was given after 48 h for 10 min. 

After the appropriate light pulse the seedlings were kept in darkness for 6 days and germination 

was scored positive as soon as the radicle was visible. Germination efficiency was normalized for 

seeds that could germinate without the second light pulse and seeds that did not germinate under 

W light, the following formula was used: [(germination in FR or R) – (germination in D) x 100%] / 

[(germination in WL) – (germination in D)]



                                                                                               Materials and Methods 

45

For chlorophyll accumulation assays, seeds were sown on 1x MS plates without sucrose and 

vernalized for 4 d at 4°C in the dark. After 2 h in W light, to induce germination, and 22 h in 

darkness at 22°C plates were transferred to FR light at 22°C for 4 d. Plants were then shifted for 

an additional 2 - 3 d in W light. 25 seedlings for each of the different lines were harvested in 2 ml 

Eppendorf tubes and incubated overnight in the dark under continuous agitation in 1 ml of 80% 

(v/v) acetone. On the next day, the Eppendorf tubes were centrifuged (2 min., RT at maximum 

speed) and the supernatants were used for measurements of chlorophyll accumulation. 

Chlorophyll accumulation was determined by measuring the absorbances at 645 and 663 nm and 

was calculated according the following formula:

Chl a mg/ml = 12,7*A 663 – 2,69*A 645

Chl b mg/ml = 22,9*A 645 – 4,68*A 663

Total Chl mg/ml = Chl a + Chl b

Total Chl (mg) in original tissue sample= Chl a (mg/ml)* final volume

3.20. Cellular and subcellular localization

The SCL21, PAT1 and SCL13 open reading frames were amplified by PCR from cDNA using 

primers containing restrictions sites for XbaI and KpnI and inserted into the pGFP vector 

(Kost et al. 1998) generating SCL21-, PAT1- and SCL13-GFP fusions driven by the 35S-CaMV

promoter. 

The full-length SCL1 and SCL5 reading frames, resulting in a 1,780 bp long fragment for SCL1

and a 1,580 bp long fragment for SCL5, were amplified with the Ex TaqTM Polymerase (TaKaRa, 

Takara Bio INC., Shiga, Japan) from a cDNA library. Primers contained the attB sequences 

(underlined): (SCL1full-length): SCL1-f: 5´-GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATG 

GTGGAACAAACTGTGGTTAGAG-3´, SCL1rev: 5´- GGGGACCACTTTGTACAAGAAAGCTGGG 

TCCCTCCAAGCTGAAGCAACGATTAAG-3´); (SCL5 full-length): SCL5 f: 5´-GGGGACAAGTTT 

GTACAAAAAAGCAGGCTCCATGGAAGCTACTCAGAAACATATG-3´, SCL5 rev:: 5´-GGGACC 

ACTTTGTACAAGAAAGCTGGGTCCCTCCAAGCACAAGAAGGATAAGAG-3´). 

After precipitation with ½ Vol 30% PEG 8000 (Sigma-Aldrich Chemie GmbH, Taufkirchen, 

Germany) containing 30 mM MgCl2 and resuspension in TE buffer (30 µl), the PCR fragment was 

introduced with the help of the BP-Clonase Enzyme Mix (Invitrogen GmbH, Carlsbad, CA, USA) 

into the pDONR221-Vector (Invitrogen GmbH, Carlsbad, CA, USA). In a next step the fragments 

were combined into the Gateway-adapted binary vector pK7FWG2 (Karimi et al. 2002), which 

contains the coding sequence of GFP in the N-terminus. 

Onion or leek epidermis cells were bombarded with gold particles loaded with DNA (10 µg)

encoding GFP fusion proteins using a helium biolistic gun and incubated in darkness for 12 h. To 

test for possible effects of light the cells were subsequently incubated for 3 h either under FR, R 



                                                                                               Materials and Methods 

46

or W light. A 35S-GFP construct was used as a control. To visualize GFP, fluorescence cells 

were examined using an Axioskop microscope (Carl Zeiss, Jena, Germany).

To examine the SCL1, SCL 21 and SCL13 promoter activity, the DNA fragments upstream of the 

ATG start codon were amplified by PCR and cloned into the pENTR/D-TOPO cloning vector 

(Invitrogen GmbH, Carlsbad, CA, USA). For SCL1 the fragment was 1,385 bp long and for SCL21

1,946 bp. For directed cloning a 5´-CACC-extension was added to the forward primer [SCL1: 

(SCL1 Prom-f: 5´-CACCAGTGCGTACTGTCGTAGGCAC-3´; SCL1 ATG-rev: 5´-CCACAGTTTGT

TCCACCATTCAG-3´) and SCL21: (SCL21 Prom-f: 5´-CACCGCAACAAACTGAACAAG-3´; 

SCL21 Prom-rev: 5´-CAGCTATCTCTGGCAGTGGCTG-3´)]. For the SCL13 promoter two DNA 

fragments containing the SCL13 5´upstream sequences were used. The 5´-end of both fragments 

was located 2,514 bp upstream of the ATG start codon (5´-CACCGTCTGTCTCTTCTCTGGT  

AC-3´). One fragment had its 3´-end located at the beginning of the 5´-UTR, 882 bp upstream of 

the ATG start codon, leading to the promoter fragment lacking the 5´-UTR and the intron therein 

(5´-GCTGAAGAAATTTTGTTGAATGGG-3´), whereas the 3´end of the other fragment was 

located 117 bp downstream of the ATG generating the SCL13-promoter-5´-UTR construct        

(5´-CCAGCAATACACTACACAGCTC-3´). The 5´end of the third construct, which contained only 

the 5´-UTR with the intron sequence began at the predicted transcription start site, 908 bp 

upstream of the ATG (5´-CACCTCCCATTCAACAAAATTTCTTCAG-3´) and the 3´-end was 

located 117 bp downstream of the ATG. With the help of the LR-Clonase Enzyme Mix (Invitrogen 

GmbH, Carlsbad, CA, USA) the fragments were combined into the Gateway-adapted vector 

pKGWFS7 (Karimi et al. 2002), which contained the coding sequence of GFP and GUS 

downstream of the insertion site.

For GUS staining, transgenic seedlings or adults plants were incubated for 3 to 24 h in 0.1 M 

phosphate buffer, pH 7.0, containing 0.1% Triton X-100 (v/v), 10 mM EDTA, 0.5 mM ferrocyanide, 

0.5 mM ferricyanide and 0.125 mM X-Gluc (Roth GmbH, Karlsruhe, Germany). Chlorophyll was 

removed with 70% (v/v) ethanol and the blue staining analysed with a microscope.

VIII. Analysis of mutants and Plant transformation 

3.21. Analysis of mutants

Insertion lines were derived from the Sail- and Salk-collection and selected on Basta- or 

kanamycin-containing medium (see Appendix 1 Tab. 3). Genomic DNA was extracted from 

resistant plants and analysed by PCR to see if they contained the insertion. For scl21-1, scl1-1 

and scl1-2 a primer at the 5´-end of the coding sequence (SCL21 Intron-f: 5´-CCCTTATCGACTT 

CCACCG-3´, SCL1 1110-f: 5´-GCTGAGGCAGATAGTTTCTATCCAA-3´, SCL1-3: 5´-CGAGAAG 

CGCTCTTTCAAGCTCTTG-3´) and from the left border of the T-DNA insertion (Sail LB: 5´-GAAA 

TGGATAAATAGCCTTGCTTCC-3´) were used to detect insertion sites. For scl21-2, pat1-2,

scl1-3 and scl5-1 a primer at the 3´-end of the coding sequence (SCL21 1000: 
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5´-CGAGCAGCACTGCATGGCAAG-3´, PAT TGA-rev: 5´-TTTCCAAGCACACGGCGAAACC-3´, 

SCL1 TGA-rev: 5´-CGGTACCCCTCCAAGCTGAAGCAAC-3´, SCL5 TGA-rev: 5´-CGGTACCCC 

CCAAGCACAAGAAG-3´) and from the left border of the T-DNA insertion (Salk LB: 5´-GTTCACG

TAGTGGGCCATCG-3´) were used to detect insertion sites. 

Gene specific primers flanking the insertion sites were used to distinguish heterozygous from 

homozygous plants (see Results, Tab.1, and Appendix 1, Tab. 2). Homozygous plants were 

selfed and retested in the next generation.

3.22. Plant transformation

Infiltration medium: 5% (w/v) sucrose, 0.05% (w/v) Silwet L-77 (Clough and Bent 1998) 

Antibiotics for transformed Agrobacterium tumefaciens: streptomycin (50 mg/ml), 

spectinomycin (50 mg/ml) 

and gentamycin (10 mg/ml)

Gateway-adapted binary vectors (Karimi et al. 2002) to be used for the stable transformation of 

Arabidopsis thaliana were introduced into Agrobacterium tumefaciens (Koncz et al. 1994). 

Homozygous Col-0 or mutant plants were used for in planta transformation via the Agrobacterium 

tumefaciens floral dip method (Clough and Bent 1998). Briefly, a 300 ml culture of Agrobacterium 

tumefaciens was grown in LB-medium with the corresponding antibiotics at 28°C and harvested 

by centrifugation (4.000 x g, 20 min., RT). The pellet was resuspended in 500 ml of infiltration 

medium. Flowering plants were placed upside down into the bacteria suspension excluding 

rosettes, leaves and soil for 20 sec. Plants were grown until the seeds were dried. Transformants 

were selected on kanamycin- or Basta-containing media, self-fertilized and homozygous progeny 

was selected. 

IX. Generation of constructs

3.23. Transgenic plants

To generate PAT1 and SCL21 RNAi lines a portion of the respective cDNA was amplified, 

resulting in a 665 bp long fragment for PAT1 and a 855 bp long one for SCL21, and cloned into 

the pENTR/D-TOPO cloning vector (Invitrogen GmbH, Carlsbad, CA, USA). For directed cloning 

a 5´-CACC-extension was added to the forward primer (PAT1: 5´-CACCGACTTCAGCGTATGCT 

C-3´; 5´-GCACACGAGGCAACCAAATC-3´; SCL21: 5´-CACCAACTCTCCATGTGGCCTG-3´;  

5´-GATTCGAACATTGCCGTG-3´). With the help of the LR-Clonase Enzyme Mix (Invitrogen 

GmbH, Carlsbad, CA, USA) the fragments were combined into the Gateway-adapted binary 

vector pK7GWIWG2(I) (Karimi et al. 2005), which contains two tail-to-tail insertion sites separated 

by an intron. The expression is driven by the 35S-CaMV promoter. 
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To generate SCL13 antisense plants a portion of the SCL13 cDNA was amplified with XbaI-KpnI 

adaptors at the 5´- and 3´-end (5´-GCTCTAGAATGGAAGCCACAGTCAAAATATTC-3´; 5´-GGTA 

CCTCATTCTGACCCTCCATTTC-3´). The resulting PCR fragment was cloned into the 

appropriate sites of a binary vector (Van der Krol and Chua 1991) in the reverse orientation under 

the control of a 35S-CaMV promoter. 

All constructs were checked by restriction analysis and sequencing. Constructs were transformed 

into Arabidopsis thaliana plants via the Agrobacterium tumefaciens floral dip method (Clough and 

Bent 1998, see Section 3.22.). Transformants were selected on kanamycin- or Basta-containing 

media, self-fertilized and homozygous progeny was selected.

X. Sequence analysis, Databases and Computer programmes

3.24. Sequence analysis

Alignment of sequences was performed with the ClustalW program (DNAStar, MegAlign 6.1). The 

phylogenetic tree was generated with the help of the PHYLIP program 3.6 

(http://evolution.genetics.washington.edu/phylip.html) using SEQBOOT for bootstrapping (100), 

PROTDIST, NEIGHBOR analysis and DRAWTREE.

3.25. Analysis of microarray data

The original data published by the AtGenExpress consortium (http://web.uni-

frankfurt.de//fb15/botanik/mcb/AFGN/atgenex.html) were evaluated according to the analysis 

performed at NASC (http://affymetrix.arabidopsis.info). Values not marked with P were 

discharged. A mean value was generated from the triplicates and standard deviation was 

calculated. Furthermore, the data were compared using the Genevestigator program 

(Zimmermann et al. 2004). 

3.26. Databases 

GenBank http://www.ncbi.nlm.nih.gov/Genbank/index.html

NCBI http://www.ncbi.nlm.nih.gov/

PubMed http://www.ncbi.nlm.nih.gov/entrez/query.fcgi

Swiss-Prot http://us.expasy.org/sprot/

3.27. Computer programmes

ClustalW program (DNAStar, MegAlign 6.1) was used to perform the alignment and analyses of 

the sequences.

http://web.uni-
http://www.ncbi.nlm.nih.gov/Genbank/index.html
http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi
http://us.expasy.org/sprot/
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CorelDraw9 was used to edit the digital images.

Microsoft Excel was used for hypocotyl length analysis, graphics, statistical analysis and 

evaluation of the microarray data.

NIH Image software (ImageJ, National Institutes of Health, Bethesda, MD) was used for 

hypocotyl and cotyledon sizes measurements.

PHYLIP program 3.6 was used to generate the phylogenetic tree.
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4. RESULTS

4.1. Phylogenetic analysis

4.1.1. Phylogenetic tree 

The GRAS protein family is a relatively large family. The Arabidopsis thaliana genome encodes at 

least 33 members (Bolle 2004, Tian et al. 2004), but only a few GRAS proteins have been 

characterized so far. By comparing protein sequences aligned with ClustalW, a neighbour-joining 

phylogenetic tree was generated. The phylogenetic trees are very similar if based on full-length 

sequences or only on the conserved C-termini of the proteins (Bolle 2004). The GRAS protein 

family can be divided into several subfamilies, which have been designated after one of their 

members or a common feature. These subfamilies are: the DELLA proteins, the SCR branch, the 

Ls branch, the HAM branch, the PAT1 branch, the SHR branch and the SCL9 branch (Fig. 14). 

Some proteins do not seem to cluster to sub-branches such as SCL30, SCL11, SCL28, SCL4, 

SCL7, SCL23, SCL3, SCL26 and SCL8.

Four Arabidopsis proteins cluster to the PAT1 branch of the family, namely SCARECROW-LIKE 

(SCL)1, SCL5, SCL13 and SCL21 (Fig. 14), which show high similarity to PAT1. The Arabidopsis

mutant phytochrome A signal transduction (pat1-1) is a semi-dominant mutant, which is disrupted 

in the phytochrome PhyA-specific signalling pathway (Bolle et al. 2000). Members of the PAT1 

branch have an overall identity to other GRAS proteins of 15 to 26%, whereas within this group 

the identity is increased to between 37 to 66%. Because of sequence similarities it was reasoned 

that perhaps all proteins of the PAT1 branch may be involved in light signalling pathways. The 

closest homolog of PAT1 in Arabidopsis thaliana is SCL21 (68% identity).

Figure 14. Members of the PAT1 branch of the GRAS protein family. Neighbour-joining tree of the GRAS 
protein family. All Arabidopsis GRAS proteins and known GRAS proteins from other plant organisms were 
aligned and the unrooted tree was generated with the PHYLIP program. All Arabidopsis proteins in the PAT1 
cluster are indicated.
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4.1.2. Alignment of the Arabidopsis PAT1 branch of the GRAS protein family

The conserved signature motifs described for GRAS proteins are present in all members of the 

PAT1 branch (Fig. 15). The C-terminal part of the GRAS proteins is highly conserved but their 

N-termini vary in sequence. The conserved C-terminal part of the proteins contains the signature 

motifs defined for GRAS proteins, namely two leucine-rich (LR) domains flanking a conserved 

domain around the amino acid residues “V/I HIID”. Furthermore, the motifs PFYRE, RVER, SAW 

and a putative tyrosine phosphorylation site [R]-X(2)-[E]-X(3)-Y (Patschinsky et al. 1982), are 

highly conserved. Besides these motifs, whose functional implications are still unknown, no other 

functional domains could be determinated. On the other hand, all genes encoding proteins for the 

PAT1 branch show a similar genomic structure, as these genes contain an intron upstream of the 

ATG start codon in the 5´-untranslated region (5´-UTR) (see Fig.16). The possible role of this 

intron for gene expression was analyzed with the aid of promoter-GUS fusions (see Section 4.5.). 

Additionally, PAT1 is the only gene of this sub-branch with an additional intron in the coding 

region. 

An alignment of sequences was performed with the ClustalW program (DNAStar, MegAlign. 6.1). 

The alignment shows that SCL21, SCL13, SCL1 and SCL5 also shares several conserved amino 

acids with PAT1 in the N-terminal part of the protein, especially the motif “EAISRRD”, but 

its N-terminus is much shorter than PAT1 (Fig. 15). SCL21 is the shortest protein of all five with 

413 amino acid residues (At2g04890). SCL13 encodes a predicted protein of 529 amino acid 

residues (At4g17230), with a more variable N-terminal and a conserved C-terminal domain 

compared to other members of this branch. The PAT1 cDNA encodes a protein of 490 amino acid 

residues (At5g48150) whereas SCL5 encodes a predicted protein of 496 amino acid residues 

(At1g50600) and SCL1 a predicted protein of 593 amino acid residues (At1g21450).
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4.2. Generation of transgenic Arabidopsis lines with defects in SCL1, 5, 

13, 21 and PAT1

4.2.1. Identification of homozygous insertion lines

In order to evaluate the function of the different proteins of the PAT1 branch (PAT1, SCL21,

SCL13, SCL1 and SCL5) in vivo and to determine, whether they contribute to the phyA-signalling 

pathway in a similar fashion as PAT1, we used reverse genetics to generate loss-of-function lines 

(Fig. 16). As the previously isolated pat1-1 mutant was not a loss-of-function line, we isolated the 

pat1-2 insertion line from the SALK collection (N568176), in which the open reading frame is 

disrupted at AA 37. For SCL21 two insertion lines were identified: scl21-1 carries a T-DNA 

insertion 120 bp after the ATG start codon (SAIL-collection 313_G09), whereas scl21-2 carries a 

T-DNA insertion 9 bp after the stop codon (SALK-collection N503630). As this second line 

Figure 15. Alignment of the amino acid sequences of the proteins of the PAT1 branch with GAI and 
SCR as a more distant relatives. Conserved sequences are shaded. Gaps introduced to facilitate alignment 
of conserved residues are indicated as dashes in the sequence. Conserved motives such as the VHIID 
domain, the putative phosphorylation site and the RVER motif are underlined in red.
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scl21-2

showed no differences in SCL21 gene expression and was disregarded for the physiological 

analysis. 

For SCL1 three insertion lines were identified: scl1-1 carries a T-DNA insertion 45 bp after the 

stop codon (SAIL-collection 760_F10), scl1-2 a T-DNA insertion 840 bp in front of the ATG start 

codon (SAIL-collection 1296_B07) and the scl1-3 insertion line from the SALK collection 

(N602071) a T-DNA insertion in the coding sequence, 1313 bp after the ATG. Lines scl1-1 and 

scl1-2 showed no differences in SCL1 gene expression. As scl1-3 was the only line with a 

disrupted the open reading frame, we continued the analysis with this line. 

For SCL5 only one insertion line from the SALK collection (N582550) was identified: scl5-1. It

carries a T-DNA insertion in the open reading frame, 300 bp after the ATG start codon.

Figure 16. Genomic structure of the different genes of the PAT1 branch. The exon/intron structure and 
the T-DNA insertion sites are indicated. ATG and TGA depict the start and stop codons, respectively. 
Triangles indicate the position of the insertions in the different lines. Thick lines indicate transcribed regions.

To identify plants homozygous for the insertion, seeds from segregating populations of insertion 

lines were tested for their resistance marker. Lines from the SAIL-collection contained a 

resistance gene for Basta and were therefore grown on soil and sprayed with Basta (20 mg/ml) 

after 2 weeks, surviving plants were transferred into individuals pots and grown to maturity on 

soil. In the other hand, lines from the SALK-collection contained a kanamycin resistance and 

therefore for selection they were sown on a Murashige and Skoog basal medium (MS) with 3% 

sucrose and kanamycin (50 µg/µl). After the vernalization for 3 days at 4°C, plates were 

transferred to white (W) light for 2 or 3 weeks until non-resistant plants bleached. Resistant plants 

were then transferred to soil and grown to maturity. Genomic DNA was extracted from adult 

resistant plants and PCR was used to identify homozygous lines for the insertion, utilizing primers 

flanking the insertion site and primers within the left border (LB) of the insertion and the 

respective gene (Tab. 6). Lines were regarded homozygous for the insertion when no 

PCR-product could be obtained with the primers flanking the insertion site, but when a 
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PCR-product could be obtained with a primer within the LB of the insertion and the gene specific 

primer. Furthermore, the position of the insertion was confirmed by sequence analysis.

Table 6. Primers used for the identification of the homozygous lines and the position of the T-DNA 

insertion for the different genes evaluated. n.d. = not determined.

Insertion line Primers flanking 
insertion site

Fragment 
length (bp)

Primers within the 
LB and the gene

Fragment 
length (bp)

scl21-1 SCL21 Xho
SCL21 Kpn

855 Sail LB
SCL21 Intron-f

660

scl21-2 n.d. Salk LB
SCL21 1000

265

scl1-1 SCL1 1500
SCL1 1900

470 Sail LB
SCL1 1110-f

1095

scl1-2 SCL1 Prom-f 
SCL1 ATG-rev

1380 Sail LB
SCL 1-3

1335

scl1-3 SCL1 ATG-f
SCL1 TGA-rev

1790 Salk LB
SCL1 TGA-rev

900-950

scl5-1 SCL5 ATG-f
SCL5 TGA-rev

1580 Salk LB
SCL5 TGA-rev 

300

pat1-2 PAT1 ATG-f
PAT1 TGA-rev

1480 Salk LB
PAT1 TGA-rev

n.d.

4.2.2. Generation of antisense and RNAi lines

To complement this analysis we generated several independent RNAi and antisense lines for 

SCL21, PAT1 and SCL13, to decrease the endogenous gene expression and to determine a 

partial loss-of-function phenotype. For SCL13 no insertion line could be identified, therefore we 

generated several antisense lines. 

For the RNAi lines we chose partial cDNA sequences of SCL21 and PAT1 which were inserted 

into the Gateway-adapted binary expression vector pK7GWIWG2(I) (Karimi et al. 2002). By 

expressing the gene under the control of the 35S-CaMV promoter in a tail-to-tail manner 

separated by an intron, the resulting mRNA can form a stem-loop-structure which is recognized 

by the DICER complex (Brantl 2002, Voinnet 2002). By endonucleolytic cleavage the mRNA is 

reduced to short single stranded mRNAs which bind specifically to the endogenic mRNA and lead 

to its degradation.

The verification of the reduction of the RNA levels in all lines used for the following physiological 

experiments were confirmed with semiquantitative RT-PCR using primers which amplified part of 

the coding sequence, spanning the intron sequence. To be able to discriminate amplification of 

contaminating DNA, the 5´-forward primer was located 5´ of the intron in the leader, which also 

prevented the amplification of the antisense construct. RT-PCR products were obtained with 

cDNA derived from wild-type seedlings, but not from RNA of insertion lines (Fig. 17). Independent 

RNAi and antisense lines showed a variety of different levels of reduction on the RNA level and 

lines, which had the strongest reduction (over 70%) such as SCL21-RNAi-2, were chosen for 

further experiments (Fig. 17). Taken together, these data demonstrate that the isolated lines are 
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disrupted in normal protein function. RNAi and antisense lines were further tested, whether the 

knock-down was also affecting similar genes. In no case interference was seen, not even 

between the most similar genes PAT1 and SCL21.

For antisense lines a portion of the SCL13 cDNA was expressed in reverse orientation under the 

control of the 35S-CaMV promoter. To analyse the reduction of the endogenous SCL13 mRNA a 

RT-PCR was performed with total RNA extracted from WT and SCL13 antisense lines. To avoid 

amplification of contaminating DNA the 5´-forward primer was located 5´ of the intron in the

SCL13 leader, which also prevented the amplification of the antisense construct. Figure 18 

indicates that the reduction of SCL13 mRNA varied between 20 and 90%, but none of the 

transgenic lines showed a complete loss of expression. Both, seedlings under red light and adult 

plants showed a similar reduction of the mRNA levels. To verify that only the targeted mRNA was 

reduced and not other related SCL transcripts the Northern blots were re-hybridized with probes 

of the closest-related family members (SCL1, SCL5 and PAT1). The expression levels of the 

other SCL genes were not affected (data not shown).

Figure 18. Transgenic SCL13 antisense lines show a reduction in the endogenous SCL13 mRNA.  RT-
PCR for SCL13 expression levels was performed on total RNA from 4-day-old plants grown under continuous 

-2 s-1). The expression levels in five SCL13 antisense lines are shown in comparison to 
Col-WT. Control PCR using primers amplifying the 18S rRNA gene showed that equal amounts of reverse 
transcribed RNA were used.

a. Col
b. SCL13-AS1
c. SCL13-AS2
d. SCL13-AS3
e. SCL13-AS4
f. SCL13-AS5

SCL13

18S rRNA

 a         b        c        d         e         f 

Figure 17. No expression of SCL21 and PAT1 was detected in the mutants by RT-PCR. RT-PCR 
analysis of RNA isolated from WT and scl21-1, SCL21-RNAi lines, pat1-2 and PAT1-RNAi lines plants. RNA 
was reverse transcribed and subsequently amplified by PCR using SCL21- and PAT1-specific primers 
or 18S rRNA specific-primers as a control. An asterisk (*) marks PCR-products derived from contamination 
with genomic DNA.
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4.3. Physiological characterization of SCL1, SCL5, SCL21 and PAT1

4.3.1. Hypocotyl elongation under different light conditions

The regulation of hypocotyl elongation by light during seedling de-etiolation is an example of the 

complex interplay among the photoreceptors. A frequently used assay to characterize 

Arabidopsis thaliana mutants involved in light signal transduction pathways is the growth of 

seedlings under different light conditions and subsequent measurement of hypocotyl elongation. 

As phyA is the major photoreceptor/effector for most far-red light responses, the elongation of the 

hypocotyl is inhibited by light and in case of FR light this is exclusively a phyA-mediated 

response. Thus, a phyA photoreceptor mutant (phyA) is completely blind to FR light, resulting in 

long hypocotyls under these conditions (Whitelam et al. 1993, Shinomura et al. 2000). To 

establish whether the loss of the SCL1, SCL5, SCL21 and PAT1 genes are specific for phyA 

signalling, we analyzed the lines under different light conditions, such as continuous red (R), 

far-red (FR) and blue (B) light and darkness (D). Briefly, seeds were surface-sterilized and sown 

on Petri dishes containing Murashige and Skoog basal medium (MS), 0.8% (w/v) agar and no 

sucrose. Plates were stored at 4°C for 4 days for vernalization and germination was induced by 

2 h of W light followed by 22 h of D at 21°C. After this treatment plates were transferred into the 

appropriate light conditions for 4 days. Hypocotyl lengths of at least three independent 

experiments were measured using the NIH Image Software (ImageJ, National Institutes of Health, 

Bethesda, MO) and the data were statistically analyzed.

In all lines, in which PAT1, SCL21, SCL5 and SCL1 gene expression is reduced or abolished a 

reduced inhibition of hypocotyl compared to WT was detected (Fig. 19). This was also true for 

antisense lines of SCL21 and PAT1 (data not shown). Under R and B light the seedlings are 

similar to WT (P > 0.05), suggesting that this is indeed a FR light specific phenotype. When 

grown under D the lines were indistinguishable from WT, indicating that the effects of the 

mutations are light-dependent. The effect under FR light was not as strong as in the phyA mutant. 

But the fact that all differently generated lines, insertion, antisense and RNAi lines, exhibit a 

similar and statistically significant difference to the WT (P < 0.05) makes us confident that SCL1, 

SCL5, SCL21 and PAT1 are involved in phyA-dependent signalling responses. As these 

loss-of-function lines show a decreased responsiveness to FR light, all proteins should act as 

positive regulators.
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4.3.2. Response to different FR light fluences

As the inhibition of hypocotyl elongation is fluence rate response dependent (Kendrick and 

Kronenberg 1994), the hypocotyl length of the different lines were analyzed under different 

intensities of FR light to quantitatively characterize the sensitivity toward FR light. The hypocotyl 

elongation of the different lines was measured and statistically analyzed (Fig. 20). In a phyA 

mutant the hypocotyl elongation is not inhibited even with higher fluences, whereas the hypocotyl 

length of wild-type seedlings is drastically reduced. The scl21, pat1, scl5 and scl1 loss-of-function 

lines have a slight, but statistically significant longer hypocotyl then WT (P < 0.05). The loss of 

inhibition of hypocotyl elongation was stronger at lower fluences but still evident under higher 

fluences.

Figure 19. Physiological analysis of the PAT1, SCL21, SCL5 and SCL1 loss-of-function lines under 
different light conditions. Hypocotyl length of 4-day-old seedlings grown in darkness (D), or under 
continuous far-red (FR; 0.5 µmol m-2 s-1), red (R; 1 µmol m-2 s-1) and blue (B; 8 µmol m-2 s-1) light. Errors bars 
indicate standard deviation.
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4.3.3. Hook opening and cotyledon unfolding

After seed germination, Arabidopsis seedlings follow one of two developmental patterns. In D, 

seedlings follow skotomorphogenic or etiolated development leading to long hypocotyls and 

closed, unexpanded cotyledons protected by an apical hook. In contrast, growth in the light 

results in photomorphogenic or de-etiolated development characterized by short hypocotyls and 

Figure 20. (a) Fluence rate response curve for hypocotyl elongation under FR light of WT (Col), phyA, 
scl21-1, pat1-2 and representative SCL21 and PAT1-RNAi lines. (b) Fluence rate response curve 
for hypocotyl elongation under far-red light of WT (Col), phyA, scl5-1 and scl1-3 lines. Error bars indicate 
standard deviation.
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open, expanded cotyledons that are capable of photosynthesis. The regulation of de-etiolation 

involves a complex interplay of all photoreceptors (Wang and Deng 2003, Chen et al. 2004). 

FR-dependent apical hook opening, cotyledon unfolding and expansion were also examined in 

this study for the different loss-of-function and RNAi lines. FR light is sufficient to trigger this 

response in wild-type seedlings. As can be seen in the Fig. 21, in contrast to phyA, all lines were 

able to unfold the cotyledons and expand them. This shows that the effect of these proteins is 

stronger on hypocotyl elongation than on cotyledon development.

4.4. Physiological characterization of SCL13 antisense lines

4.4.1. Inhibition of hypocotyl elongation under R light conditions is specifically 

impaired in SCL13 antisense lines

The regulation of hypocotyl elongation by light during seedling de-etiolation is an example of the 

complex interplay among the photoreceptors. In W or R light, phyB plays a major role, but even 

phyB null mutants do not have a hypocotyl as long as that of dark-grown plants. A high-resolution 

kinetic analysis of the growth of Arabidopsis seedlings has uncovered that the R light inhibition of 

hypocotyl elongation is controlled by a sequential and coordinated action of phyA and phyB. phyA 

contributes to the initial hypocotyl growth inhibition (first 3 h of irradiation), while phyB functions in 

the later phase (Parks and Spalding 1999).

Two independent antisense lines, SCL13-AS1 and SCL13-AS2, which showed the strongest 

reduction in SCL13 expression (Fig. 18), were used for physiological analysis. The hypocotyl 

elongation of transgenic SCL13 antisense lines was analyzed under all major light regimes. In 

contrast to the other lines defective in proteins of the PAT1 branch, we found a reduced inhibition 

of hypocotyl elongation when transgenic seedlings were grown under continuous R light for 

Figure 21. Phenotype of scl21-1, SCL21-RNAi, pat1-1, pat1-2, PAT1-RNAi, scl5-1 and scl1-3 after 
4 days of FR light. Seedlings grown on MS medium, without sucrose and 0.8% (w/v) agar plates under FR 
light (0.7 µmol m-2 s-1) for 4 days. Loss-of-function and RNAi lines are compared to WT (Col) and phyA. 
Bar at right is 1.0 cm.

  scl5-1 scl1-3 phyACol             scl21-1     SCL21-RNAi    pat1-1         pat1-2     PAT1-RNAi
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4 days compared to WT and not under FR light. These differences were statistically significant for 

both lines ( P < 0.01). This result suggests the involvement of SCL13 in the phytochrome B, C, D 

or E signalling pathways. In addition, a marginally elongated hypocotyl could be observed under 

FR light conditions, which proved not to be statistically significant at the 95% confidence level. 

When grown under B or W light seedlings of the antisense lines were indistinguishable from WT, 

indicating that SCL13 is specific for R light signalling and not a general regulator of light 

responsiveness. The antisense lines also had normal growth responses in D establishing that the 

phenotype is light-dependent (Fig. 22).

4.4.2. Response to different R light fluences

Fluence rate response curves with different intensities of R light were used to quantitatively 

characterize the sensitivity towards R light. The hypocotyl length of the different lines were 

analyzed under different fluences of R light and measured from at least three independent 

experiments using the NIH Image Software and the data were statistically analyzed (T-test). The 

results confirmed that SCL13 antisense lines are taller than wild-type seedlings at all R light 

fluence rates tested, therefore showing reduced sensitivity to R light, but not as strongly as in a 

phyB mutant (Fig. 23). The hypocotyl length of the SCL13-AS3 line, which exhibits a higher 

residual accumulation for SCL13 mRNA as SCL13-AS1 and 2 (Fig. 23), is more sensitive to R 

light under higher fluence rates. Therefore, we were able to correlate the reduction of SCL13 

mRNA with the severity of the phenotype. These findings indicate that SCL13 plays a role in 

seedling de-etiolation processes under prolonged R light.

Figure 22. Hypocotyl length of 4-day-old seedlings grown in darkness (D), or under 
continuous far-red (FR; 0.5 µmol m-2 s-1), red (R; 1 µmol m-2 s-1) and blue               
(B; 5 µmol m-2 s-1) light. Error bars indicate standard deviation.
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4.5. Expression pattern of all genes of the PAT1 branch

4.5.1. Role of the Intron in the 5´-UTR

All genes encoding proteins for the PAT1 branch contain an intron upstream of the ATG in the 5´-

untranslated region (5´-UTR). As the 5´-UTR of the SCL13 transcript includes a 750 nt-long intron 

we wanted to investigate a possible role of this intron for expression. For SCL13 promoter-GUS

fusions, two DNA fragments containing the 5´ upstream sequences were used. The 5´- end of 

both fragments was located at 2,514 bp upstream of ATG start codon. One fragment had its 

3´-end located at the beginning of the 5'-UTR, 882 bp upstream of the ATG start codon leading to 

the promoter fragment lacking the 5´-UTR and intron therein, whereas the 3´ end of the other 

fragment was located 117 bp downstream of the ATG generating the SCL13 promoter-5´-UTR 

construct. The 5´- end of the third construct, which contained only the 5´-UTR with the intron 

sequence began at the predicted transcription start site, 908 bp upstream of the ATG and the 

3´-end was located 117 bp downstream of the ATG. 

The 5´-UTR including the intron on its own was not able to induce any GUS activity, suggesting 

that no alternative transcription start sites are available within this region. The promoter construct 

that lacked the 5'-UTR and the intron generated the same spatial distribution of GUS expression, 

as the SCL13 promoter-5´-UTR construct although at a weaker level. This indicates that 

enhancing elements could be located within the 5'-UTR or the intron. The following panel 

(Fig. 24a) shows the expression of a SCL13 promoter-5´-UTR-GUS fusion in transgenic lines. 

This expression showed that younger leaves exhibited stronger GUS staining compared to adult 

leaves. GUS activity was strongest in cotyledons and roots. 

When seedlings carrying the SCL13 promoter-5´-UTR-GUS construct were grown under different 

light qualities the overall GUS activity did not change, but its distribution varied. No GUS activity 

Figure 23. Fluence rate response curve for hypocotyl elongation 
under R light of WT(Col), phyB null mutant and SCL13-AS1, 2 and 
3. Hypocotyl length in D was considered 100%. Error bars indicate 
standard deviation.
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was detected in the hypocotyl under W light conditions, but when seedlings were grown under D 

or R light some GUS staining in the hypocotyl and in the roots can be detected (Fig. 24b). 

4.5.2. Analysis of the SCL1, SCL21 and SCL13 promoter activities with the 

ß-glucuronidase (GUS) reporter gene

To examine the expression pattern at the cellular level, histochemical staining using 

ß-glucuronidase (GUS) can be used. The promoter fragments of the genes of interest were fused 

in front of the GUS reporter gene and plants (Col) were transformed with these constructs. 

A 1,385 bp long fragment upstream of the ATG start codon was used for SCL1 and a 1,946 bp 

long for SCL21. These constructs were cloned into the Gateway-adapted binary vector 

pKGWFS7 (Karimi et al. 2002). Wild-type plants were transformed with these constructs and at 

least 10 independent lines were obtained for each construct. Eight of them were examined at the 

F2 generation.

We performed GUS assays comparing the expression of the SCL21 promoter-GUS fusion 

construct in Arabidopsis (Col) between adult plants and 4-week-old Arabidopsis seedlings. After 

incubation in X-GLUC solution for 12 h, we observed GUS activity in adult plants as well as in 4-

week-old seedlings although the GUS expression in adult plants was at a very weak level (data 

not shown). The strength of the staining in 4-week-old seedlings differed between the 

transformed plants but not the distribution. WT did not show any staining and was used as a 

control for these assays. GUS activity was strongest in the apical meristem and in the root apex 

(Fig. 25). The expression observed for SCL21 promoter-GUS fusion constructs confirms the data 

derived from microarray analysis, suggesting that the expression of SCL21 is very weak in adult 

plants. 

Figure 24. Expression analysis of SCL13. (a) GUS activity in Arabidopsis transformed with 
a SCL13 promoter-5´-UTR-GUS construct observed in leaves of 20-day-old plants grown 
under greenhouse conditions. (b) GUS activity in Arabidopsis transformed with a 
SCL13 promoter-5´-UTR-GUS construct observed in 4-day-old seedlings under continuous 
white (W ), red (R) light or darkness (D).

adulta

         W                 R            D

4-day-oldb
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We also compared the expression of a SCL21 promoter-GUS fusion construct in transformed 

Arabidopsis seedlings grown under different light conditions. The seedlings were grown in 

darkness (D) and then transferred for 6 h in far-red (FR 6h) or white light (WL 6h), or they were 

grown for 24 h in white light (WL 24h) (Fig. 26). After incubation in X-GLUC solution for 12 h, we 

observed GUS activity (cotyledons) in all seedlings tested, although the GUS expression in 

seedlings grown in FR or WL for 6 h and in those grown in WL for 24 h were weaker compared to 

the level in dark-grown seedlings. When the seedlings were grown in D, GUS activity was 

observed in the apical hooks and root apex similar to the results observed in 4-week-old 

seedlings (Fig. 25).

The SCL1 promoter-GUS fusion constructs showed blue staining in the leaves after incubation in 

X-GLUC solution for 12 h (Fig. 27). The strength of the staining differed between different 

transformed lines but not the distribution. The majority of the examined plants showed completely 

stained leaves and an intensive staining was observed in those parts of the leaf that had lesions 

a

Figure 25. Expression of the SCL21 promoter-
GUS construct in 4-week-old seedlings. (a) Col-
WT as a control. (b, c) in vivo GUS staining in 
Arabidopsis transformed with SCL21 promoter-
GUS construct observed in 4-week-old seedlings. 
Arrows indicate the strongest GUS activity.

b

c

Figure 26. In vivo GUS staining in Arabidopsis transformed seedlings with 
SCL21 promoter-GUS construct. Seedlings were grown in dark (D), far-red 6h 
(FR 6h), white 6h (WL 6h) and white light 24h (WL 24h). Strongest GUS activity is 
indicated by arrows.

D FR (6 h) WL (6 h) WL (24 h)

Cotyledons
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either from parasites or from cutting the tissue for the assay, suggesting that perhaps SCL1 is 

involved in wounding processes (Fig. 27).

4.5.3. Expression pattern of all genes coding for proteins of the PAT1 branch

To test for the expression pattern of SCL21 and PAT1 in different tissues and conditions a digital 

Northern analysis was performed using data generated by microarrays, especially by 

AtGenExpress (Schmid et al. 2005). These data indicate that expression of SCL21 is very weak, 

much weaker than PAT1, and barely detectable. Digital Northern analysis, where expression 

levels in different developmental stages and tissues were compared, revealed only detectable 

levels of SCL21 in maturing seeds compared to seedlings and adult plants (Fig. 28). SCL21 is 

induced especially beginning with seed stage 8, in which the embryo is in the walking stick stage. 

This suggests a role during germination and in the first days of a plant´s life. PAT1, on the other 

hand, is expressed to a higher level in all tissues. In seedlings, it is detectable predominantly in 

the hypocotyl and in adult tissue mainly in the mature flower (in stamen and petals) and in the 

cauline and senescent leaves (Fig. 29).

Figure 28. Expression levels of SCL21 and PAT1 in different tissues. Expression of SCL21 and PAT1 in 
different stages of flower, siliques and seed development. Developmental stages are described in 
Schmid et al. 2005. Data are derived from the AtGenExpress 22k microarray expression profiling 
experiments. Mean values of replicas were generated. Error bars indicate standard deviation between the 
replicas.
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Figure 27. Expression of the SCL1 promoter-GUS construct. (a) Leaf of untransformed 
plants as a control. (b, c and d) In vivo GUS staining in leaves. Arrows indicate lesions.
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Data derived from microarrays suggested that SCL21, in contrast to PAT1, is negatively regulated 

by light (Fig. 30, light treatments as described under http://arabidopsis.org/servlets/ TairObject? 

type=expression_set&id=1007966126, data provided by Kretsch et al., unpublished). All light 

conditions, B, R, W and FR had a similar down regulating effect on SCL21 gene expression after 

4 h, less so after 45 min. FR light reduces the SCL21 gene expression but no difference in the 

PAT1 gene expression level could be detected.

Figure 29. Expression levels of SCL21 and PAT1 in different tissues (Schmid et al. 2005). Data are 
derived from the AtGenExpress 22K microarray expression profiling experiments. Error bars indicate 
standard deviation.
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Figure 30. Expression of SCL21 and PAT1 after 45 min. and 4 h of continuous white (W), red (R), blue 
(B) and far-red (FR) light compared to the expression in dark (D). For better comparison the D value was 
set at 100%. Error bars indicate standard deviation.
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For SCL1 and SCL5 we also performed a digital Northern to answer the question how strongly 

these two genes are expressed in different organs and tissues. These data indicate that the 

expression of SCL1 and SCL5 are very similar in adult plants. Analyses, which compared the 

expression levels in different developmental stages and tissues, revealed different levels of SCL1

and SCL5 in maturing seeds. Both genes are induced in seed stage 6, the torpedo stage, 

although the expression level of SCL1 is weaker than SCL5 (Fig. 31). In seedlings, the 

expression of SCL1 and SCL5 is detectable predominantly in the hypocotyl and in the cotyledons. 

In adult tissues, the expression of SCL1 is detectable mainly in the mature flower (sepal), in the 

adult leaf (senescent leaf) and in the roots (lateral roots). On the other hand, the expression of 

SCL5 in adult tissues is mainly detectable in the mature flower (petal), in the adult leaf (cauline 

and senescent leaves) and in the roots (Fig. 32).

Figure 31. Expression levels of SCL1 and SCL5 in different tissues. Expression of SCL1 and SCL5 in 
different stages of flower, siliques and during seed development. Developmental stages are described in 
Schmid et al. 2005. Data are derived from the AtGenExpress 22K microarray expression profiling 
experiments. Mean values of replicas were generated. Error bars indicate standard deviation between the 
replicas.
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Evaluation of microarray data detected no changes in SCL1 and SCL5 expression under different 

light conditions compared to D suggesting that SCL1 and SCL5 are not induced or repressed 

under R or FR light (Fig. 33).
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Figure 32. Expression levels of SCL1 and SCL5 in different adult tissues (Schmid et al. 2005). Data are 
direved from the AtGenExpress 22K microarray expression profiling experiments. Error bars indicate 
standard deviation.

Figure 33. Expression of SCL1 and SCL5 after 45 min. or 4 h of continuous white (W), red (R), blue (B) 
and far-red (FR) light. Error bars indicate standard deviation.
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As we could show that SCL13 is involved in R light signal transduction we were interested 

whether this is also reflected in the expression pattern. In 7d-old seedlings SCL13 expression is 

highest in the green tissues (cotyledons and young leaves), whereas in the shoot apex and 

hypocotyl less expression can be detected. Additionally, SCL13 is also expressed in roots 

(Fig. 34). In adult plants, 21-day-old or older, high SCL13 transcript levels can be observed in 

leaves, with higher levels in younger rosette leaves. Within a leaf, the distal region shows higher 

SCL13 mRNA levels than the proximal region or the petiole (Fig. 35). In addition, expression is 

elevated in senescing leaves. As in young seedlings, less SCL13 mRNA can be detected in 

shoots, stem and apical meristems even after transition to flowering. Furthermore, high SCL13 

mRNA levels can be observed in petals and sepals of flowers, which were tested at different 

developmental stages (Fig. 35). In later stages, such as siliques and seed formation, no elevated 

levels could be seen. This indicates that SCL13 plays a role not only in the seedling stage but 

also throughout the lifetime of Arabidopsis. This notion is confirmed by our observation that the 

SCL13 antisense lines flower earlier than WT (data not shown). The expression of a 

SCL13 promoter-5´-UTR-GUS fusion in transgenic lines confirmed the data derived from 

microarray analysis, as younger leaves showed stronger GUS staining compared to adult leaves 

(Fig. 24). As in the microarray, GUS activity was strongest in cotyledons and in roots. This also 

correlates with the function of SCL13 in the signalling pathway of the light-stable phytochromes.

Evaluation of microarray data and semiquantitative RT-PCR experiments detected no changes in 

SCL13 expression under different light conditions compared to D suggesting that SCL13 is not 

induced or repressed under R or FR light (Fig. 36). Only pulses of UV-B light induced SCL13

expression, but this is probably due to a stress response since SCL13 is also induced by some 

other stresses, such as osmotic or salt stress or after treatment with methyl jasmonate (data not 

shown).

Figure 34. Expression profiling of SCL13. Expression of SCL13 in different tissues of 7-day-old seedlings 
(Schmid et al. 2005). Data are derived from the AtGenExpress 24k microarray expression profiling 
experiments. Mean values of replicas were generated. Error bars indicate standard deviation. 
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Figure 35. Expression of SCL13 in different tissues of adult plants. Developmental stages are described 
in Schmid et al. 2005. Error bars indicate standard deviation.
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4.6. Analysis of the subcellular localization by expressing GFP fusions 

4.6.1. Analysis of the subcellular localization by fluorescence microscopy

To investigate the subcellular localization of PAT1, SCL21, SCL13, SCL1 and SCL5 we fused the 

gene encoding the green fluorescent protein (GFP) to the 3’-terminus of the different GRAS 

genes. The fusion genes were placed under the control of a 35S-CaMV promoter and the 

constructs transiently expressed in onion epidermal cells by particle bombardment. To visualize 

GFP fluorescence, cells were examined using an Axioskop microscope (Carl Zeiss, Jena, 

Germany). 

As shown in Fig. 37, the resulting SCL21-GFP, SCL13-GFP, SCL1-GFP and SCL5-GFP proteins 

were localized throughout the cytoplasm and the nucleus, very similar to PAT1 and GFP. To 

verify the position of the nucleus we used the DAPI stain (data not shown). The distribution was 

not changed under different light conditions. These results indicate that the proteins could act in 

the cytoplasm or in the nucleus.

Figure 36. Expression of SCL13 after 45 min or 4 h of continuous W, R, B and FR light compared to 
the expression in dark and after a pulse of UV-AB or UV-A light in seedlings. Light treatments are 
described under http://arabidopsis.org/servlets/TairObject type=expression_set&id=1007966126, data 
provided by Kretsch et al. , unpublished). 
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For SCL21-GFP we noted that besides cells in which the fluorescence was distributed between 

nucleus and cytoplasm (Fig. 38a), about 30% of the cells expressing the constructs showed 

staining only in the cytoplasm (Fig. 38b). For this experiment the constructs were transiently 

expressed in leek epidermal cells transformed by particle bombardment. 

Figure 37. GFP fluorescence in transiently transformed onion epidermis cells. (a) PAT1-GFP fusion, 
(b) SCL21-GFP fusion, (c) SCL13-GFP fusion, (d) SCL1-GFP fusion (e) SCL5-GFP fusion and (f) GFP as a 
control. Arrows indicate the nucleus. Bar = 50 µm.

a b

c

f

d

e

Figure 38. SCL21-GFP fluorescence in transiently transformed leek epidermis cells. 
(a) the SCL21-GFP fusion is visible in the nucleus and in the cytoplasm and (b) the 
SCL21-GFP fusion is visible only in the cytoplasm. Arrow indicate the nucleus.

a b
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4.7. Detailed physiological analysis of the function of SCL21 and PAT1 in 

Phytochrome A signalling

4.7.1. Block of greening after FR irradiation

One effect of phytochrome A on chlorophyll accumulation is known as the “far-red block of 

greening” (Barnes et al. 1996, Van Tuinen et al. 1996). When seedlings grown for several days 

under FR light are transferred to W light they fail to synthesize chlorophyll. Etiolated seedlings 

accumulate high levels of protochlorophyllide and the PORA protein mediates rapid conversion of 

protochlorophyllide into chlorophyll once the plant emerges into the light. Light, including FR light, 

downregulates PORA expression (Sperling et al. 1997). However, the activation of pora is a light-

dependent step that is not activated by FR light, so that seedlings grown in FR light de-etiolate 

partially but stay yellowish. When such seedlings are transferred into W light they have little pora 

and cannot accumulate chlorophyll rapidly enough (Sperling et al. 1997). This effect is known as 

the “Far-red killing effect”. As the phyA mutant does not sense the FR light it responds like a dark 

grown seedling maintaining the ability to green in subsequent W light exposition.

The loss-of-function lines of PAT1, SCL21 and the PAT1 and SCL21-RNAi lines were tested to 

see whether they are more resistant than the WT to this “Far-red killing effect” (Fig. 39). For 

pat1-1 it has been previously shown that this mutant can green after FR light in a similar way as 

the phyA mutant. Briefly, after seedlings were grown 4 days in FR light they were transferred to 

W light for 2 days and then chlorophyll accumulation was measured compared to seedlings 

grown 4 days in dark and 2 days in W light. A total of 25 seedlings were harvested for these 

measurements and the experiment was repeated three times. It was observed that, in contrast to 

pat1-1, the loss-of-function lines of SCL21 and the SCL21 and PAT1-RNAi lines display no or 

perhaps only a slightly decreased sensitivity to the phyA-dependent block of greening in W light 

after continuous FR light, very similar to the WT. 

Figure 39. Chlorophyll accumulation in the mutants and RNAi lines. 
Chlorophyll content (mg/seedling) of seedlings grown 4 d in far-red (FR) 
and an additional 2 d in white light, compared to seedlings grown 4 d in 
dark (D) and 2 d in white light. The value of the chlorophyll level in the 
seedlings pre-grown in the D was set 100 % for better comparison. 
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4.7.2. Germination efficiency

The light-dependent germination of Arabidopsis seeds is mediated entirely by phytochrome 

(Casal and Yanovsky 1998). Previous reports indicated that phyA and phyB play key roles in 

regulating seed germination under different light conditions (Shinomura et al. 1994,1996, 

Botto et al. 1996, Poppe and Schäfer 1997). In Arabidopsis, R/FR reversible, Low Fluence 

Response (LFR) germination is largely mediated through phyB. Germination is also induced by 

low quantities of R or FR light, the so called “Very Low Fluence Response” (VLFR), or by 

continuous FR light, the “High Irradiance Response” (HIR), both mediated through phyA (Casal 

2000, Schäfer and Nagy 2006). Mutants lacking this photoreceptor cannot germinate in FR light.

In this study we tested whether phytochromes regulate seed germination through PAT1 and 

SCL21. Irradiation with FR light for 10 min after 48 h of imbibition was used to determine the 

involvement of these proteins in this phyA-dependent response. Irradiation for 10 min with R light 

after 3 h of imbibition as well as W light and D controls were performed to obtain information, 

whether other light conditions also influence the germination processes. As a certain percentage 

of seeds is not capable of germination (“dead seeds”) and another percentage germinates even 

without stimulation by light pulse, the germination rate was corrected by these factors.

The Fig. 40 shows that all scl21 lines as well as the pat1 lines tested exhibit between a 30 and 

15% reduction in the efficiency to germinate under FR light compared to WT. The capacity to 

germinate after a R light pulse three hours after imbibition, a well characterized phyB response, 

was not impaired (data not shown).

Figure 40. Germination assays of WT (Col), pat1-1, pat1-2, scl21-1 and 
phyA mutants. Seeds were treated with a far-red light pulse directly after 
sterilization. Treated seeds were irradiated with a 10 min. FR light pulse            
(1 µmol m-2 s-1) after 48 h of imbibition. Germination was assessed after 7 days 
in D. 
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The results obtained from germination assays suggests that VLFR, at least those important for 

germination, are only partially transduced via PAT1 and SCL21, indicating that these proteins are 

predominantly involved in HIR.

4.7.3. Expression of light regulated genes in SCL21 and PAT1

To relate our analysis of gene expression in SCL21 loss-of-function and in PAT1-RNAi lines to 

the phyA-signal transduction pathways, we have focused on the phyA-mediated induction of 

genes encoding the chlorophyll a/b binding protein (CAB), the chalcone synthase (CHS) and the 

xyloglucan endotransglycosylase-related protein (XTR7). CAB and CHS gene expression are 

reduced under FR light conditions in the phyA mutant and dependent on a functional 

phyA-signalling pathway under FR light conditions (Barnes et al. 1996). Both genes are regulated 

by cGMP- and calcium-dependent signal transduction pathways, respectively (Barnes et al. 1995, 

Bowler and Chua 1994, Millar et al. 1995). XTR7, which is involved in cell elongation, is 

negatively regulated by phyA in FR light (Kuno and Furuya 2000). 

Pat1-1 has been shown to be essential for appropriate expression of this subset of phyA-

regulated genes (Bolle et al. 2000). Total RNA was harvested from 4-day-old seedlings (WT, 

phyA, scl21-1 and PAT1-RNAi) grown in darkness, without exposure to FR (D) or after 3 h (FR-3) 

or 6 h (FR-6) irradiation with FRc (1µmol m-2 s-1). Duplicate samples for each treatment were 

prepared from seedlings grown under similar conditions. RNA was denatured through incubation 

with 30% glyoxal, electrophoretically separated in 1.2% agarose gels in MOPS buffer and 

transferred onto a Hybond-N nylon membrane in 20x SSC buffer. Each lane contained 5 µg of 

total RNA. RNA was fixed to the membrane by UV crosslinking and the membrane was 

immediately stained with Methylene Blue to visualize rRNA bands, used as a loading control, and 

documented using a digital camera (Fig. 41b). The same blot was probed successively for 

transcripts encoding CAB, CHS and XTR7.

Figure 41 indicates that there are no major differences in the expression patterns of WT and the 

mutant lines. After 3 h in far-red light (FR-3), the induction of CAB and CHS transcripts and the 

decrease in XTR7 are similar between the WT and the mutant lines. However, after 3 h in far-red 

light (FR-3), no induction of CAB, CHS and no decrease of XTR7 can be observed in a phyA

mutant.
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4.7.4. Regulation of the expression of SCL21 by light

A semiquantitative RT-PCR (Fig. 42) was performed to detect SCL21 in 4-day-old seedlings that 

were grown either without exposure to FR light (D) or after 3 h (3) or 6 h (6) irradiation with 

continuous far-red light (FRc; 1 µmol m-2 s-1). This confirmed the microarray data and showed that 

FR light reduces the SCL21 gene expression but no difference in the PAT1 gene expression level 

could be detected. Furthermore, we could demonstrate that the expression level under FR light 

was controlled by phyA, since no reduction of the SCL21 gene expression level was observed in 

the phyA mutant. Hence, under FR light conditions phyA regulates the expression of SCL21 

negatively. The downregulation of SCL21 is also abolished in pat1-1 and pat1-RNAi mutants, 

suggesting that SCL21 gene expression is regulated by phyA through PAT1. Gene expression of 

PAT1, on the other hand is not regulated by SCL21. To control that equal amounts of cDNA were 

used in the semiquantitative RT-PCR an actin probe was amplified. 

Figure 41. Expression of light regulated genes (CAB, CHS, XTR7) in Col-WT, phyA, scl21-1 and
PAT1-RNAi. (a) 4-day-old etiolated seedlings (D) were compared with those that preceived an additional 3 
or 6 h of far-red light (FR). (b) Equal loading of 5 µg of RNA was verified by stainig the membrane with 
Methylene Blue (rRNA).
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To test if the negative regulation of SCL21 gene expression is FR light specific another 

experiment was performed to detect SCL21 gene expression in 4-day-old seedlings that were 

grown under different light conditions: in D, under R (1 µmol m-2 s-1), B (1 µmol m-2 s-1) and FR 

(1 µmol m-2 s-1) light. In Fig. 43 it can be seen that the SCL21 gene expression was observed in 

wild-type seedlings grown in D slightly reduced and under R light conditions, but in wild-type 

seedlings grown under B and FR light the SCL21 gene expression was strongly reduced. In a 

PAT1-RNAi mutant and pat1-1, the SCL21 gene expression was still strongly reduced in B light, 

but not under FR-light. As a cDNA control a primer pair amplifying the actin2 gene was used. 

These results indicate that not only FR light reduces the SCL21 gene expression level, as in the 

results obtained above (Fig. 42), but B and to a lesser extent R light as well. But only the FR light 

reduction is PAT1-dependent.

Figure 42. Semiquantitative RT-PCR analysis of SCL21 and PAT1 gene 
expression. Total RNA was harvested from 4-day-old seedlings Col-WT, pat1-1, 
pat1-2, scl21-1 and phyA grown in darkness (D) or after 3 h (3) or 6 h (6) 
irradiation with FRc. 2 µg of the respective cDNA were used. No expression of the 
respective genes could be detected in pat1-2 and scl21-1. In pat1-1 a PCR 
product can be detected as the 5´ part of the mRNA served as template, which is 
still present in the pat1-1 mutant. As a control a primer pair amplifying the 
actin2 gene was employed.
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Figure 43. Semiquantitative RT-PCR analysis of SCL21 gene expression. Total 
RNA was harvested from 4-day-old seedlings Col-WT, PAT1-RNAi and pat1-1 grown 
in darkness (D) or after red (R), blue (B) and far-red (FR) light irradiations. As a cDNA 
control actin2 gene was used.
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4.8. Expression of the genes on the protein level

4.8.1. Confirmation of the loss of SCL21 and PAT1 in the knock-out lines 

We have been able to show that the mRNA level of SCL21 and PAT1 in the loss-of-function

mutants was drastically reduced. In order to be sure that no protein was present in these lines we 

performed a Western blot with a total protein extraction from WT and the mutant plants. We 

therefore generated antibodies against PAT1 and SCL21. A previous attempt to generate 

antibodies against overexpressed PAT1 had failed, therefore we used peptides for antibody 

production. Peptides were selected from unique domains with a high potential of surface area. 

Figure 44 shows a Western blot with protein extracts from leaves of the same lines used for 

RT-PCR analysis (Fig. 42), namely WT (Col), PAT1-RNAi, pat1-2 and pat1-1, incubated with the 

anti-PAT1 antibody as a primary antibody. Fifty µg of total protein extract was loaded per lane. 

The anti- PAT1 antibody detected specific bands in the WT extract corresponding to the apparent 

molecular weight of PAT1 (55 kDa). These bands could not be detected in extracts from the 

mutant lines. Thus the protein is missing or strongly reduced in the mutants, confirming that this 

gene are knocked-out in the mutants or strongly reduced in the RNAi lines. Furthermore, with the 

anti-PAT1 antibody we were able to detect a smaller protein in the pat1-1 mutant. This is 

supporting the data gained from Northern anlaysis, where a truncated mRNA could be detected in 

the pat1-1 mutant (Bolle et al. 2000). It also suggests that the truncated protein is more stable 

then the full-length protein as it is more abundant compared to WT. Similar experiments with the 

scl21-1 and SCL21-RNAi lines gave similar results (data not shown). These experiments also 

showed that the antibodies are specific for the respective proteins and could be used for further 

analyses.

Figure 44. Western blot analysis from leaves of  WT (Col) and 
mutant lines. Anti-PAT1 used as a primary antibody. Equal loading 
was checked by a parallel gel with Comassie staining. 
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4.8.2. Expression of SCL21 and PAT1 at the protein level

The results shown above indicated that at least SCL21 is regulated at the transcriptional level by 

light, therefore, it was examined whether the light-regulated reduction of the mRNA level also 

leads to a reduction of the SCL21 protein levels. Figure 45 shows a Western blot with protein 

extracts from 4-day-old wild-type seedlings grown in D, without exposure to FR or after irradiation 

with FRc light (1 µmol m-2 s-1 ) for 3 h (FR-3) or 6 h (FR-6), incubated with the anti-SCL21 

(SCL21 Ab) or anti-PAT1 (PAT1 Ab) antibody as the primary antibodies. Detection was 

performed as in Fig. 44 (Section 3.13.). Western analysis showed that the protein level of SCL21 

is induced under FR light compared to D. Also the level of PAT1 seems to increase after three 

hours of FR light. These data stand in contrast to the expression experiments.

4.9. Yeast Two-Hybrid analysis

The sequence similarity and the similar function between SCL21 and PAT1 prompted us to 

examine whether these two proteins interact physically. This was tested with the yeast 

Two-Hybrid system.

4.9.1. SCL21 activates transcription in yeast

The full-length SCL21 and PAT1 cDNAs were fused to sequences encoding the GAL4 DNA 

binding domain. These fusion constructs were introduced into yeast and tested for their ability to 

promote expression of the HIS3 reporter gene, whose expression is driven by GAL4-binding 

upstream activator sequences (UAS). The interaction was quantified by testing the growth 

response on different concentration of 3-Amino-1,2,4,-Triazole (3AT). This test was performed 

Figure 45. Western blot analysis from 4-day-old WT (Col) 
seedlings grown in darkness (D) or in far-red light (FRc;
1 µmol m-2s-1) for 3 h or 6 h, incubated with the anti-
SCL21 (SCL21 Ab) or anti-PAT1 (PAT1 Ab) antibody as a 
primary antibodies.
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without an additional interacting partner. Only proteins that possess an activation domain can 

induce transcription of the reporter gene of this one-hybrid assay.

Both, SCL21 and PAT1 were able to transactivate. SCL21 was still able to confer transactivation 

on plates containing 50 - 75 mM 3AT, whereas PAT1 was only able to grow on plates containing 

25 mM 3AT. This indicated that both proteins have a transactivational activity when fused to the 

yeast GAL4-DNA-binding domain, SCL21 more effectively. When the N-terminus of SCL21 

(123 bp= 41 AA) was deleted the remaining protein was no longer able to confer a high level of 

transcriptional activity, suggesting that the capacity to activate transcription in yeast resides at 

least partially within the N-terminal 41 amino acid residues of SCL21 (Fig. 46).

In Two-Hybrid assays we were not able to detect any homodimerization of SCL21 and PAT1, but 

also no interaction between SCL21 and PAT1 above background. Unfortunately, as both proteins 

transactivate we cannot exclude that interaction takes place, albeit at lower strength.

4.10. SEUSS-LIKE (SL)1, a putative interactor of PAT1 and SCL21

Seuss-like (SL)1 (At5g62090) has been identified as a putative interactor of PAT1 in a yeast Two-

Hybrid screen (C. Bolle, personal communication). It is a member of a small protein family. 

SEUSS has been identified as an important factor for transcriptional repression. To determine 

whether Seuss-like1 is involved in similar processes as PAT1 we employed reverse genetics to 

generate loss-of-function lines. Two insertion lines could be identified: SLA (SALK-collection 

number N585761) and the SLB (SALK-collection number N589954). Homozygous lines were 

Figure 46. SCL21 and PAT1 can transactivate in a yeast one hybrid assay. A 
GAL4 DNA binding domain was fused to full length PAT1 (A), full-length SCL21 (B)
and a N-terminal deletion of SCL21 (C) and expressed in yeast carrying GAL4-
responsive upstream activator sequences upstream of the HIS3 reporter gene. This 
leads to the ability to grow on media without histidine. Furthermore, growth on 
different amounts of 3AT reflects the strength of transactivation. Growth without and 
with 3AT is shown and compared to a strong (D) and a weak activator (E).

(A) PAT1

(B) SCL21

(C) SCL21 del N-

(D) ++++

(E) ++

0                   25                 50                75  mM 3AT
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identified and characterized at the molecular level. These loss-of-function lines were then used 

for physiological analysis to establish whether they are also involved in the phyA-signalling

pathway.

4.10.1. Physiological analysis of the seuss-like (sl)1 mutants

Homozygous lines lacking SL1 were tested first under FR light conditions and those with 

elongated hypocotyls compared to WT (Col), were analyzed in detail. As can be seen in Fig. 47,

all insertion lines showed an elongated hypocotyl under FR light, with sla2-4 and the slb6-5 being 

the longest. The progeny of these putative mutants was tested under different light conditions, 

continuous B, R and FR light and D to establish whether the loss of the SL1 gene led to a 

phenotype specific for phyA-signalling. Briefly, seeds were surface-sterilized and sown on MS 

medium plates with 0.8% (w/v) agar and no sucrose. Plates were stored at 4°C for 4 days and 

germination was induced by 2 h of W light followed by 22 h of D at 21°C. After this treatment 

plates were transferred to appropriate light conditions for 4 days. Hypocotyl lengths were 

measured and statistically analyzed.

The sla2-4 and slb6-5 lines show a marginally reduced inhibition of hypocotyl elongation under 

FR light compared to WT (Col; Fig. 48). Under R and B light the seedlings are similar to WT, 

suggesting that this is indeed a FR light specific phenotype. When grown under D the lines were 

indistinguishable from WT, suggesting that the effects of the mutations are light-dependent. 

These results suggest that SL1 is also involved in phyA-dependent signalling responses. The 

reason for the weak phenotype could lie in the fact that SL1 has a close homolog in the 

Arabidopsis genome and that therefore only the double mutant will show a more prominent 

phenotype.
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Figure 47. Hypocotyl elongation under far-red light of WT (Col) and different, 
independent SLA and SLB loss-of-function lines. 4-day-old seedlings grown 
under continuous FR light (0.75 µmol m-2 s-1) for 4 days. Error bars indicate 
standard deviation.
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4.10.2. Response to different FR light fluences

Fluences rate response curves with different intensities of FR light were used to characterize the 

sensitivity of these mutants (sla/slb) towards FR light. The hypocotyl lengths of these two lines 

were measured and statistically analyzed. The sla and slb loss-of-function lines have a slightly 

longer hypocotyl then WT (Col) (Fig. 49) very similar to the scl21/pat1-2 mutants.

4.10.3. SEUSS-Like1 can transactivate in yeast Two-Hybrid assay

Similar to SCL21 and PAT1 the full-length Seuss-like1 and the SL1900 can confer transactivation 

when tested in a yeast one-hybrid assay (Fig. 50A). For this experiment we fused the full-length 

SL1 cDNA and a 5´-deleted fragment (1 - 296 AA; SL900) to sequences encoding the GAL4 DNA 

binding domain. These fusion constructs were introduced into yeast and tested for their ability to 

Figure 49. Fluence rate response curve for hypocotyl elongation 
under far-red light of Col-WT, phyA, sla and slb lines. Error bars 
indicate standard deviation.
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lines. Hypocotyl length of 4-day-old seedlings grown in darkness (D), 
or under continuous far-red (FR; 0.5 µmol m-2 s-1), red (R; 1 µmol m-2 s-1) 
and blue (B; 8 µmol m-2 s-1) light. Error bars indicate standard deviation.
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promote expression of the HIS3 reporter gene and for their ability to interact. The interaction was 

quantified by testing the growth response on different concentration of 3AT. 

That SL1900 was still able to confer strong transactivation on plates containing 50 mM 3AT 

suggests that the domain necessary for transactivation is not located in the N-terminal part of the

protein. Furthermore, homodimerization between SL1900 and SL1 were tested. Yeast growth was 

detected on plates containing 25 mM 3AT, but as the transactivating SL1900 construct is able to 

grow on 50 mM 3AT we cannot conclude that SL900 has homodimerization ability. 

4.10.4. Interaction between SEUSS-Like1 and the GRAS proteins, PAT1 and SCL21

The SEUSS-LIKE (SL)1 protein was analyzed in this study also for Two-Hybrid analysis because 

previous protein-protein assays with a cDNA library have revealed these proteins as putative 

interactors with PAT1. We used the yeast Two-Hybrid system in order to confirm whether 

Seuss-like1 interacts physically with PAT1 and SCL21. The full-length SL1 cDNA and a 

5´-deleted fragment (1 - 296 AA; SL900) were fused to sequences encoding the GAL4 DNA 

binding domain. PAT1 and SCL21, on the other hand, were fused to an activation domain. These 

fusion constructs were introduced pairwise into yeast and again tested for their ability to grow on 

different concentration of 3AT.

The assays show that a weak interaction with PAT1 was detected on plates containing 25 mM 

3AT and slightly stronger interaction with SCL21 as yeast growth was still detectable on plates 

containing 50 mM 3AT (Fig. 50). As for the interaction between SL1 and SL1900 we are not able to 

determine without doubt whether SL900 can interact physically with both proteins because of the 

transactivation ability of SL1. Nevertheless, it is interesting to note that the yeast growth on 

50 mM 3AT is diminished in the two-hybrid assays compared to the transactivation assays. This 

indicates that the postulated interaction actually represses activation.

Figure 50. SL900 can transactivate and dimerize in yeast. GAL4-DNA 
binding fusions with SL900 with the different genes (A) = SL900-pEXP, 
(B) = SL900-PAT1, (C) = SL900-SCL21, (D) = SL900-SL, (E) = SL900-SL900. 
Growth on different amounts of 3AT reflects the strength of the 
transactivation and is compared to a strong (G) and a weak activator (F).

     (A)           (B)            (C)          (D)           (E)        (F)     (G)

25 mM 3AT

50 mM 3AT
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5. DISCUSSION

The aim of this study was to determine whether GRAS proteins different from PAT1 are involved 

in light signal transduction and what role these proteins play in this signal transduction. 

Loss-of-function mutants of SCL1, 5, 13, 21 and PAT1 were characterized physiologically by 

observing light specific responses in order to evaluate the possible functions of the different 

proteins. Expression analysis and localization studies were utilized to address cell biological roles 

of these GRAS proteins. Furthermore, their biochemical role was studied by evaluating 

transactivation capacity, dimerization and interaction with other proteins.

5.1. All members of the PAT1 sub-branch of the GRAS protein family are 

involved in light signalling

To that end for all members of the PAT1 sub-branch of the GRAS protein family, SCL1, 5, 13, 21 

and PAT1 homozygous loss-of-function lines were generated with the help of reverse genetics 

utilizing T-DNA insertion lines or with the help of RNAi- and antisense-techniques.

The best-studied effect of light signal transduction is the de-etiolation process (Sullivan and 

Deng 2003, Chen et al. 2004). During de-etiolation hypocotyl elongation of seedlings is inhibited, 

cotyledons unfold and green and gene expression is changed. Especially the inhibition of 

hypocotyl elongation can be attributed to specific photoreceptors by using different light 

conditions. Under FR light only phyA is responsible for initiating the signalling cascade, whereas 

under R light the predominant photoreceptor is phyB. Under B light the cryptochromes are most 

important for inhibition of hypocotyl elongation. Nevertheless, cross-talk between the different 

signalling pathways is well documented (Casal 1996, Canton et al. 1999, Casal et al. 2000, 

Hennig et al. 2001). 

In a first approach, seedlings of all transgenic lines were subjected to different light regimes. The 

results led to the conclusion that SCL1, 5, 21 and PAT1 act as positive components of the 

phyA-dependent signalling pathway. Three independently generated types of function lines, 

insertion, RNAi and antisense lines, demonstrated very similar phenotypes: a decreased 

inhibition of hypocotyl elongation under FR light conditions, but not under any other light 

conditions such as W, B und R light or D. The difference to WT is not drastic, but statistically 

significant, suggesting that these proteins are important regulators of phyA signalling. The 

alternative that the FR light specific phenotype is an indirect consequence of a reduction in the 

photoreceptor phyA itself appears unlikely as the effect is not as severe as that of the phyA 

mutant. 

The fifth member of the PAT1 sub-branch, SCL13, functions as a positive regulatory component 

of the R light signalling pathway, predominantly dependent on phyB. The reduction of 
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SCL13 mRNA in antisense lines specifically decreased the inhibition of hypocotyl elongation 

under R light conditions. The observation that the antisense lines had mainly wild-type phenotype 

under other wavelengths (FR, B, W) and in D established that the phenotype is light dependent 

and specific for R light. Furthermore, the observed phenotype is not a general effect of cell 

elongation under low fluences of light as the effect could be observed also under non-saturating 

conditions of R, but not of FR light. 

From the phenotypes observed and analyzed from the loss-of-function, insertion, RNAi and 

antisense lines we conclude that SCL1, 5, 21 and PAT1 act as a positive regulators of FR light 

signal transduction whereas SCL13 acts as a positive regulator of R light signal transduction. This 

corresponds also with the fact that SCL13 is phylogenetically more distant to PAT1 then for 

example SCL21.

5.1.1. Detailed physiological analysis of the phyA responses in the mutant lines

As phyA is the only photoreceptor in FR light, mutants with defects in phyA show the most drastic 

phenotype. Under continuous FR light, the phyA mutants are characterized by an elongated 

hypocotyl, closed, unexpanded cotyledons protected by an apical hook, and their ability to green 

in W light after growing for several days under continuous FR light (Barnes et al. 1996, Van 

Tuinen et al. 1996).

The absence of any effects of the scl21 and pat1 mutations on FR light regulated hook opening, 

cotyledon expansion, greening in W light after a prolonged FR treatment (FR dependent block of 

greening) and FR light induced germination, indicates that the SCL21 and PAT1 loci modulate a 

distinct subset of phyA-regulated responses mainly affecting hypocotyl elongation. Most mutants 

deficient in positively acting intermediates in phyA signalling are affected in hypocotyl elongation 

(Hudson et al. 1999, Bolle et al. 2000, Fairchild et al. 2000, Fankhauser and Chory 2000, 

Soh et al. 2000, Ballesteros et al. 2001, Wang and Deng 2002, Wang et al. 2002). Hypocotyl 

elongation under continuous FR light has been characterized as a high irradiance response 

(HIR), and we could not show that mutants in SCL21 and PAT1, including the semi-dominant 

mutation pat1-1, had any defects in very low fluence responses (VLFR), indicating that only the 

HIR are channelled through these proteins.

The most important steps during germination are the elongation of the seedling and the change 

from using energy stored in the seed to using light energy. Elongation is accomplished especially 

through longitudinal cell expansion. One of the important enzymes which are needed for cell 

expansion is XTR7, a xyloglucan endotransglycosylase (Xu et al. 1996). Once the hypocotyl 

senses light with its photoreceptors, the elongation is inhibited. Gene expression of XTR7 is high 

in the D and negatively regulated by light, the reduction under FR light signal is dependent on 

phyA. We have compared expression levels of several phytochrome-responsive genes (CHS

coding for the chalcone synthetase and CAB2 coding for the light harvesting complex 
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apoprotein 2) including XTR7 between scl21-1, pat1-RNAi and the WT under FR light. Results 

from these assays indicate that there are no major differences in the expression patterns of Col 

and the mutant lines for the expression of CAB and CHS genes, but we observed that SCL21 and 

PAT1 affect the expression of XTR7. This correlates with the fact that mutants lacking these 

genes have an elongated hypocotyl compared to WT. For pat1-1 it has been shown that in this 

mutant CAB and CHS expression levels in FR light are reduced or abolished (Bolle et al. 2000).

5.1.2. Detailed analysis of the R light responses in SCL13 antisense lines

Three phytochromes have been shown in Arabidopsis thaliana to be involved in R light signalling

besides phyB, notably phyC, D and E. The mutants with defects in phyB have an elongated 

hypocotyl and smaller cotyledons under continuous R and W light, and they are slightly pale 

because of reduced chlorophyll accumulation. They also have elongated petioles, flower earlier 

and do no longer respond to an EOD (end-of-day)-FR pulse. In contrast, we could not detect any 

changes in the many well-described phyB-dependent responses such as germination under R 

light, cotyledon expansion, EOD-FR response, petiole elongation, chlorophyll accumulation and 

gene expression in our SCL13 antisense lines. The main phenotype that could be observed was 

the sensitivity of the hypocotyl elongation towards R light, and the earlier onset of flowering under 

short- and long-day conditions. SCL13 is the only protein to our knowledge in which the 

loss-of-function specifically affects hypocotyl length and not cotyledon expansion.

Not many intermediates in phyB signalling have been identified so far. One reason may be that 

functional redundancy renders it difficult to identify mutants impaired in R light signalling. Most of 

the proteins that have been identified as intermediates of the phyB signal transduction are 

Figure 51. Schematic presentation of the physiological responses of SCL1, SCL5, SCL13, SCL21 and 
PAT1.
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transcription factors, especially basic helix-loop-helix proteins (bHLH) that are localized in the 

nucleus such as PIF3, 4, PIL1, 6, GI, ELF3 and ELF4 (Ni et al. 1998, Liu et al. 2001, 

Fowler et al. 1999, Huq et al. 2000, Doyle et al. 2002, Khanna et al. 2003). However, SRR1 

codes for a nuclear/cytoplasmic protein (Staiger et al. 2003) and RED1 encodes a cytoplasmatic 

cytochrome P450 (Hoecker et al. 2004). This suggests that the R light signal transduction is at 

least modulated in the cytoplasm. 

5.1.3. Interaction between phyA and phyB signal transduction cascades

Previous reports have established a complex pattern of cross-talks between phyA and phyB (and 

other photoreceptors) in the photoregulation of complex developmental processes (Casal 1996, 

Canton and Quail 1999, Casal et al. 2000, Hennig et al. 1999, 2001). PhyA has a synergistic 

effect with phyB under HIR conditions, whereas under VLFR the effect is inhibitory (Neff and 

Chory 1998, Hennig et al. 1999). Activation of phyB signalling appears to be unnecessary for this 

modulation of phyA-mediated HIR, because FR light, which does not induce signalling via phyB, 

is sufficient for the effect. Furthermore a point mutation in phyB (phyB4) can still inhibit the phyA-

dependent HIR, whereas it is unable to induce a signalling cascade. It was speculated that phyA 

and phyB might compete for the same signalling partner in the cytoplasm leading to a negative 

interaction (Hennig et al. 2001).

For SCL13 we crossed the antisense lines into phyA and phyB null mutants to analyze whether 

phyA and phyB are required for the phenotype of these lines. The results show that the      

SCL13-AS-phyA line is still less sensitive to R light compared with phyA, suggesting that phyA is 

not required or plays a minor role in the SCL13 antisense phenotype under R light. The hypocotyl 

elongation of the SCL13-AS-phyB double mutant was statistically indistinguishable from the phyB

null mutant when grown under R light conditions (P > 0.05). These data indicate that hypocotyl 

responsiveness to continuous R light is fully dependent on phyB. Under FR light conditions, the 

SCL13-AS-phyB lines showed an increase in hypocotyl elongation compared to WT (P < 0.05). 

This suggests that in the absence of phyB, SCL13 can act downstream of phyA or at least 

modulate phyA signals. In a SCL13 antisense line in a phyA background the phyA phenotype 

dominated under FR light. This shows that SCL13 is not necessary for phyA signalling, whereas it 

can modulate hypocotyl length under FR light in a phyB-independent way, because phyB is not 

activated by FR light. Together, these data indicate that SCL13 is able to antagonize phyA 

function in continuous FR light.

5.2. Subcellular localization studies suggest that SCL1, 5, 13, 21 and 

PAT1 could play a biological role in the cytoplasm and nucleus

All PAT1-related proteins lack distinguishable nuclear localization (NLS) and nuclear exclusion 

(NES) motives. Therefore, GFP-fusions were generated and transiently expressed in 

onion-epidermis cells. GFP-mediated fluorescence of a SCL1, 5, 13 and SCL21-GFP fusions 
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were observed in the same compartments as PAT1, nucleus and cytoplasm. This localization 

seems not to be affected by different light conditions including D. Therefore, it is up to 

speculation, whether the proteins are distributed evenly in cytoplasm and nucleus or if they cycle 

between the nucleus and the cytoplasm, one of the compartments harbouring the active form the 

other the inactive one. Nevertheless, the results indicate that these proteins could act in the 

nucleus or in the cytoplasm. 

Other GRAS proteins have been shown to localize exclusively in the nucleus such as SCR, SHR 

and SCL8 (Rothmeier and Bolle, unpublished results). This indicates that the active form is 

needed in the nucleus.

For SCL13 we therefore generated lines expressing SCL13-NES/NLS fusions to determine in 

which compartment SCL13 is biologically active. A conserved NLS was fused to the N-terminus 

of the SCL13 protein. This leads to an exclusive nuclear localization of the protein suggesting that 

the SCL13 protein is not actively exported from the nucleus. If the NLS was substituted for a 

nuclear exclusion signal (NES) the protein localized predominantly in the cytoplasm. The fact that 

lines overexpressing an NLS-SCL13-GFP-GUS fusion protein in the nucleus as well as lines 

overexpressing the cytosolic form of SCL13 have a hypersensitive reaction under R light in their 

hypocotyl elongation suggests that SCL13 can perform its role in both compartments.

The weaker GUS activity observed in SCL13-NLS overexpressing lines could be due to a faster 

turnover of the protein in the nucleus. Furthermore, the results underline the findings that SCL13 

is important for the R light signalling as no hypersensitive effect could be measured under D and 

FR light conditions.

The question of localization of the proteins is crucial as phytochrome itself is transported from the 

cytoplasm to the nucleus under activating conditions (Sakamoto and Nagatani 1996, 

Kircher et al. 1999). Furthermore, several signalling intermediates, such as SPA1 (nuclear 

WD-repeat protein, Hoecker et al. 1999), FAR1 (nuclear protein, Hudson et al. 1999), HFR1 (also 

known as REP1) a member of the basic helix-loop-helix (bHLH) family of DNA-binding proteins 

(Fairchild et al. 2000, Soh et al. 2000) and the phyA/phyB interacting protein PIF3 (Ni et al. 1998, 

1999), are localized in the nucleus. Conversely, cytoplasmic localization of the phyA/phyB-

interacting proteins PSK1 and NDPK2, and the involvement of putative heterotrimeric 

GTP-binding proteins, Ca2+/CaM and cGMP in phyA signalling suggest that important early 

signalling events occur in the cytoplasm (Wu et al. 1996, Barnes et al. 1995, Guo et al. 2001, 

Wang et al. 2007).

The constitutive expression of SCL13 indicates that SCL13 has already to be present under 

non-induced conditions so that a quick response can take place after illumination and activation 

of the phytochrome. SCL13 could interact with phyB to transport the latter to the nucleus upon 

illumination. Another possibility is that SCL13 is a signalling intermediate, which amplifies the R 
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light signal either in the cytoplasm or in the nucleus. Further experiments will be necessary to 

determine how SCL13 executes its function.

Comparable experiments have been initiated with SCL21 and PAT1. Besides the fusions with 

either a NES or a NLS sequence, these proteins were also fused to a glucocorticoid-receptor. 

The fusion protein is retained in the cytoplasm, upon induction with dexamethasone, the fusion 

protein is split and the released protein can move to the nucleus. With these experiments we will 

be able to determine whether SCL21 and PAT1 are involved in the cytoplasmic stages of 

phyA-signalling, with the targeting of the Pfr form of phyA to the nucleus or with the signalling

within the nucleus.

5.3. Tissue-specific expression of the PAT1-related genes

Experiments with transgenic lines carrying the SCL13 promoter-5´-UTR-GUS fusion, which 

contained 2,514 bp of the promoter region upstream of the transcription start site, showed that 

the overall GUS activity is similar under different light conditions, but that the tissue-specific 

expression varied. When seedlings grown in W light GUS activity was mainly restricted to 

cotyledons and root, whereas hardly any activity was detectable in hypocotyls. By contrast, 

seedlings grown in D or in R light, which had elongated hypocotyls compared to WT, showed also 

GUS staining in hypocotyls (Fig. 27). It looks as if SCL13 is predominantly expressed in the active 

elongation zones of the hypocotyl.

The SCL13 mRNA is not regulated in a light-dependent fashion, at least under the conditions 

used in the microarray experiments. Microarray analysis revealed that SCL13 mRNA is induced 

in all green tissues and in the root. This implies a function of the protein during the entire life cycle 

of a plant - similar to phyB (Sharrock and Clack 2002). 

Differences between microarray data and GUS expression patterns could arise from the fact that 

GUS assays were performed on 4-day-old seedlings rather than on 7-day-old seedlings used for 

the microarray assays or from differences in fluence rates.

Microarray analysis revealed that SCL1 and SCL5 are also induced in maturing seeds and 

seedlings, although the expression is higher in maturing seeds compared to seedlings. The 

expression pattern for SCL1 is at a weaker level than for SCL5. In seedlings the expression 

pattern is induced in hypocotyl and cotyledons. In the maturing seed the expression is induced in 

seed stage 6 (90 days after flowering, torpedo stage). In addition, the results obtained from GUS 

expression patterns and microarray analysis suggest that SCL1 is also induced by wounding 

processes.

Expression patterns from SCL21 determined by promoter GUS assays showed that GUS activity 

is strongest in cotyledons, apical hook and root apex confirming data derived from the microarray 
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analysis. As the latter data suggested, and confirmed by our Northern analysis (data not shown) 

the expression of SCL21 is very weak, specially in adult plants. The fact that SCL21 is expressed 

at higher levels in maturing seeds compared to seedlings indicates that SCL21 is necessary in 

the first moments of the germinating seedling.

5.4. SCL21 gene expression is negatively regulated by phyA

Whereas PAT1 gene expression is not affected by FR light, the level of SCL21 is reduced by FR 

light in a phyA-dependent manner; this reduction is not observed in a phyA mutant. Furthermore, 

the expression is also not reduced in the pat1-1 und pat1-2 mutants, indicating that PAT1 acts 

upstream of SCL21 gene expression. The fact that SCL21 gene expression is reduced under 

those conditions, in which we postulate its function, is paradoxical at first. On the other hand, 

PAT1 is more abundant at the transcriptional level and protein level, determined by Western 

analysis. The data obtained from GUS assays and microarray analysis suggest that SCL21 first 

helps the seedling to perceive the FR light via phyA signal transduction, whereas PAT1 is 

important in slightly later stages. 

Few other genes of proteins involved in FR light signal transduction such as FHY1 have been 

shown to react in a similar way (Desnos et al. 2001, Zeidler et al. 2001). Most probably their 

proteins are involved in the first steps after the transition from D to light and it is important that 

after the signal has been perceived it is then desensitized. This pattern does not hold for all 

genes of FR light components, because others transcripts (e.g. PAT1, FAR1) are unaffected by 

light or actually increased by FR light (e.g. SPA1, HFR1) (Hudson et al. 1999, Bolle et al. 2000, 

Fairchild et al. 2000, Duek and Fankhauser 2003, Laubinger et al. 2004, Hoecker et al. 1998).

However, additional photoreceptors are also involved in the downregulation of SCL21 transcript 

levels, since SCL21 is also reduced in R, B and W light. This may reflect a point of interaction 

between the signal-transduction pathways associated with these different photoreceptors and the 

PHYA signal-transduction pathway.

5.5. Role of introns in the 5´-untranslated region of the genes

All genes encoding proteins for the PAT1 branch contain a 400 to 700 bp long intron upstream of 

the ATG in the  5´-untranslated region (5´-UTR). By contrast, the coding region is not interrupted 

by any intron, a feature common to most GRAS protein encoding genes in Arabidopsis. We 

wanted to investigate the possible role of this intron for expression pattern and exemplarily, we 

analyzed the SCL13 and SCL1 promoter in more detail .

As the 5´-UTR of the SCL13 transcript includes a 750 nt-long intron, a possible role of this intron 

for expression was investigated. The 5´-UTR including the intron on its own was not able to 

induce any GUS activity. A promoter construct that lacked the 5´-UTR and the intron generated 
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the same spatial distribution of GUS expression, although at a weaker level, indicating that 

enhancing elements could be located within the 5 -UTR or the intron.

In a similar way, for SCL1 we performed experiments with transgenic lines containing 1,380 bp 

upstream of the transcription site (promoter), the 5´-UTR and the intron within (SCL1 promoter-

GUS construct) and lines containing 800 bp of the promoter lacking the intron in the 5´-UTR 

(SCL1 Intron-GUS construct). Transgenic plants carrying the SCL1 promoter-GUS construct 

showed GUS activity that could be detected in the leaves. In contrast, but analogous to the 

SCL13 lines, the transgenic lines carrying the SCL1-Intron-GUS construct were not able to induce 

any GUS activity (data not shown) suggesting that no alternative transcription start sites are 

available within the intron sequence. 

5.6. Protein stability

The semi-dominant pat1-1 mutation has a much stronger phenotype compared to the 

loss-of-function mutant pat1-2. Nevertheless, the responses observed are very similar, just at a 

more moderate level. We had assumed that in the pat1-1 mutant the protein is still expressed, 

albeit in a C-terminally deleted version (Bolle et al. 2000). Here we could detect a truncated 

protein serologically and confirm this hypothesis. The deletion of the C-terminal could shift the 

protein to act in a negative fashion either by changing protein stability or the way it interacts with 

its protein partners. As the protein amount of PAT1 in the pat1-1 mutant is higher as in wild-type 

control we favour the hypothesis that the C-terminal deletion increases the protein stability. 

Overexpression of a 3´-deleted PAT1 gene mimics in part the pat1-1 phenotype 

(Bolle et al. 2000). Yet, a similar deletion with SCL21 did not lead to any elongated hypocotyls 

under FR light (or any other visible phenotypes) supporting the idea that both proteins have 

different roles in the phyA signalling pathway. Overexpression of the full length SCL21 and PAT1 

genes does not result in any change of phenotype suggesting that the protein level is rigidly 

controlled (data not shown).

5.7. Seuss-Like 1, a putative interaction partner of PAT1 and SCL21 

Yeast two-hybrid screens had revealed SEUSS-LIKE protein 1 as a possible interactor of PAT1. 

Furthermore, we were able to detect weak interaction with PAT1 and a slightly stronger 

interaction with SCL21 in the yeast Two-Hybrid assays and this interaction has since been 

strengthened by experiments with the Split-YFP assay (Zintl and Bolle, unpublished results).

SEUSS (SEU) encodes a plant protein with two glutamine-rich (Q-rich, 15% Q overall) domains 

and a highly conserved central domain that shares sequence identity to the dimerization domain 

of the LIM domain-binding (Ldb) family of transcriptional coregulators in animals such as the Ldb1 

in mouse and Chip in Drosophila (Franks et al. 2002, van Meyel et al. 2003, Jurata and 

Gill 1997). Ldb protein family members regulate transcription via direct physical interactions with 

DNA-binding transcription factors such as the LIM-homeodomain proteins (Agulnick et al. 1996, 
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Bach et al. 1997, Jurata and Gill 1997). A second domain of the Ldb proteins, the LIM Interaction 

Domain (LID), mediates the interaction between Ldb proteins and the LIM homeodomain 

proteins. SEU does not have any function in repressing transcription and, on the contrary, may 

have an intrinsic activation potential as revealed in yeast Two-Hybrid assays (Sridhar et al. 2004).

SEU therefore defines a class of plant-specific transcription factors and is a member of a small 

gene family in Arabidopsis thaliana (SEUSS-LIKE genes, Franks et al. 2002). Between 21% and 

81% amino acid sequence identity was found within the conserved central domain when 

compared with other SEUSS-LIKE plant proteins and animal Ldb proteins. While the Ldb proteins 

are similar to SEU only in the conserved central domain, the SEUSS-LIKE proteins from plants 

are similar to SEU in the entire protein. The Arabidopsis thaliana genome encodes two 

SEUSS-LIKE genes, SL1 (At5g62090.1) and SL2 (At5g62090.2); both are 55% identical to SEU 

in the putative dimerization domain and 33% identical over the entire protein. 

With the exception of SEU, the molecular function of other family members of these SEUSS-LIKE

genes is largely unknown. SEU has been isolated as a factor which is important for flower 

development (Franks et al. 2002). Morphological, physiological and genetic evidence implicate 

SEU in auxin-regulated growth and development. Seu exerts a pleiotropic phenotype that 

includes reductions in several classic auxin responses such as apical dominance, lateral root 

initiation, sensitivity to exogenous auxin and activation of the DR5 auxin response reporter. Auxin 

is required in the root for organization of the meristem, gravitropic response, primary root 

elongation and initiation of lateral roots (Sabatini et al. 1999, Moore 2002, Casimiro et al. 2003). 

Furthermore, a role for auxin in light signalling has been described (Morelli and Ruberti 2002; 

Halliday and Fankhauser 2003) but there is no proof that auxin is directly integrated with GRAS 

protein function.

Our results from the physiological analysis of the seuss-like (sl)1 mutants suggest that SL1 can 

function as a positive component of the phyA-dependent signalling pathway as the sl1 mutant 

lines show a decreased inhibition of hypocotyl elongation under FR light but not under any other 

light conditions (W, R and B light or D). The difference to WT is not very drastic but statistically 

significant. 

Interesting would be further physiological experiments to test whether SL1 is also involved in 

auxin signalling or to test if there is an integration auxin with SL1 protein function.

5.8. SCL21 and PAT1 as potential factors involved in activation of 

transcription

One-hybrid analysis showed that both proteins PAT1 and SCL21 can function as transactivation 

factors in yeast, albeit SCL21 to a much better degree as PAT1. Deletion of the N-terminus of 

SCL21 demonstrated that that region plays an important role in transactivation. These results are 
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similar to in vitro results of other GRAS proteins such as OsGAI/SLR1, LeLs, and LlSCR 

(Ogawa et al. 2000, Itoh et al. 2002, Morohashi et al. 2003). Evidence that GRAS proteins could 

be involved in transcriptional regulation is derived from studies on an SCL gene of lily, LISCL 

(Lilium longiflorum scarecrow-like; Morohashi et al. 2003). Transcriptional activation experiments 

demonstrate that the N-terminus of LlSCL fused to a GAL4-DNA binding domain can function as 

a transactivator in yeast and in plant cells. Detailed analysis of essential motifs for the 

transactivation is not available, however.

Although dimerization has been implied in the function of GRAS proteins (Pysh et al. 1999) we 

can neither detect homo- or heterodimers between SCL21 and PAT1. This result could be 

compromised as the experiments in the yeast Two-Hybrid system are difficult to interpret due by 

the fact that the proteins can transactivate. PAT1 and SCL21 could also be acting in a 

hierarchical order comparable to the GRAS proteins SCR and SHR. It has been shown that SHR 

acts upstream of SCR as it controls its expression (Nakajima et al. 2001). Indeed we can 

demonstrate that SCL21 gene expression is dependent on the presence of PAT1. Both SCL21 

and PAT1 have been shown to be able to transactivate, albeit at different levels. Also SCL13 was 

found to display some transactivation capacity in yeast One-Hybrid assays (Rothmeier and Bolle, 

unpublished data). Nevertheless, for many of the GRAS proteins it has yet to be determined 

whether they play a role in transcriptional activation. As PAT1 and SCL13 are also localized in the 

cytoplasm, this would mean that in order to activate the transcription machinery they have to 

migrate to the nucleus. Both PAT1 and SCL13 possess no conserved NLS, future research 

should focus on the mechanisms by which these proteins are transferred into the nucleus for light 

signalling.

5.9. Are GRAS proteins transcription factors?

GRAS genes are proposed to be transcription factors. However, no direct DNA binding ability of 

any GRAS protein has been demonstrated. Future research will be required to determine whether 

transcriptional activation is a hallmark of this protein family and if GRAS proteins can directly 

interact with DNA.

A typical plant transcription factor contains a DNA-binding region, an oligomerization site, a 

transcription regulation domain, and a nuclear localization signal (Liu et al. 1999). It has been 

speculated that the LHRI-VHIID-LHRII region may function as a DNA binding and oligomerization 

domain, analogous to the bZIP protein-DNA interaction, with LHRI and LHRII mediating 

protein-protein interactions and the VHIID mediating protein-DNA interactions (Pysh et al. 1999). 

The C-terminal region with their conserved PFYRE and SAW motifs may act as a regulatory 

domain (Itoh et al. 2002).
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It is intriguing to think that the GRAS proteins could act as transcriptional co-activators, perhaps 

together with other co-transactivators such as the SEU-like proteins, thereby integrating different 

signals. 

5.10. GRAS proteins and light signalling

GRAS proteins have been shown to be involved in many different developmental processes 

(Bolle 2004). Here we could demonstrate that all members of the PAT1- subbranch play roles in 

light signal transduction. 

GRAS proteins are highly conserved in their C-terminus, whereas their N-terminus is more 

variable, suggesting that the N-terminus is responsible for the specificity of the different signalling

cascades. Whereas many GRAS proteins contain stretches of homopolymeric amino acid 

residues such as serine, proline or threonine, PAT1 and SCL21 do not contain these. The 

N-terminal domain of SCL21 is less then half the size of PAT1 and besides a conserved motif at 

its very C-terminal part no homologies can be recognized. In contrast to PAT1, SCL21 contains 

more acidic residues, especially in the motif “ELSMWPDDAKD”. These acidic amino acids could 

be attributed to the transcriptional activity of SCL21, but this remains to be confirmed.

SCL1 and 5 are also conserved in the only N-terminal domain, especially the “EAISRRDL”-motif, 

which is homologous between PAT and SCL21. As all these proteins are involved in the 

phyA-dependent signal transduction, the “EAISRRDL” motif could play a crucial role in this, as it 

is the only conserved motif between all proteins involved in phyA signalling.

It is interesting to note that no SCL21 homologs could be isolated in any other organisms, 

whereas homologs to PAT1 could be determined. Especially from the EST libraries of Solanum 

tuberosum and Nicotiana benthamiana two sequences could be isolated that show a high degree 

of homology to PAT1. In SCL13, this motif is not maintained (Torres Galea et al. 2005). During 

evolution GRAS proteins seem to have acquired different N-terminal domains, which then convey 

the specificity to processes. Nevertheless, further analysis is necessary to validate the 

importance of these motifs in GRAS proteins.

The detection of ESTs with sequence similarity to GRAS proteins in bryophytes indicates that the 

GRAS gene family arose before the appearance of land plants over 400 million years ago 

(Nishiyama et al. 2003). Molecular and phylogenetic analysis of GRAS genes from lower plants, 

such as ferns, bryophytes, and green algae, will help to resolve the evolutionary history of the 

GRAS gene family. The phylogenetic and comparative analysis of the GRAS gene family in 

Arabidopsis thaliana and Oryza sativa will provide a first step towards a functional 

characterization of the GRAS gene family in future. Better knowledge of the mechanisms of the 

action of GRAS proteins and of the biochemical function in individual pathways they act in will 

serve to understand how the proteins are adapted to carry out plant-specific processes.
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6. SUMMARY

In this study, loss-of-function, antisense and RNAi lines of one sub-branch of the GRAS protein 

family, the PAT1 branch, were characterized. The GRAS protein family is a recently discovered 

family of plant-specific proteins. Although plants contain a remarkable number of GRAS proteins, 

they are not present in any other organisms, suggesting a specialized role in plant development 

and signalling. Several Arabidopsis proteins cluster to the PAT1 branch of the GRAS protein 

family, namely SCL21, SCL5, SCL13 and SCL1.

Homozygous insertion lines of SCL1, SCL5, SCL21 and PAT1 were selected and confirmed by 

PCR. Furthermore, RNAi lines for PAT1 and SCL21 were generated. The reduction of the RNA 

levels in all lines used were confirmed by a semiquantitative RT-PCR and, in the case of SCL21

and PAT1, the loss of the protein was confirmed by Western analysis. Several light responses 

such as hypocotyl elongation, hook opening, cotyledon unfolding, germination and chlorophyll 

accumulation were analyzed. From the five members of the PAT1 branch, PAT1, SCL21, SCL1 

and SCL5 seem to be involved in phytochrome A signalling. All three different types of lines, 

insertion, antisense and RNAi lines, show a reduced inhibition of the hypocotyl under far-red light 

conditions compared to WT but not under other light conditions, and this suggests strongly that 

they are specifically involved in phyA-dependent signalling responses. Examination of the apical 

hook opening, cotyledon unfolding and expansion uncovers that the effect of these proteins is 

stronger on hypocotyl elongation than on cotyledon development. The loss-of-function lines of 

SCL21 and the SCL21- and PAT1-RNAi lines, in contrast to pat1-1, display some sensitivity to 

the phyA-dependent block of greening. No strong defect in very low fluence responses such as 

germination could be found, which suggests that these proteins are positive regulators of high 

irradiance responses (HIR). SCL13 antisense lines, in contrast to the other members of the 

PAT1 branch, showed a reduced inhibition of hypocotyl elongation when were grown under 

continuous red light. This suggests the involvement of SCL13 in the phytochrome B, C, D or E 

signalling pathways.

Developmental and tissue specific expression patterns were analyzed using transgenic promoter-

GUS plants. The SCL21 promoter induced GUS expression in the cotyledons and in the root 

apex. Expression of a SCL13 promoter-5´-UTR-GUS fusion in transgenic lines showed that 

younger leaves showed stronger GUS staining compared to adult leaves. In contrast, the analysis 

of the SCL1 promoter activity by in vivo GUS expression led to staining in those parts of the leaf 

that had lesions from parasites, suggesting that SCL1 may be also involved in wounding 

processes. In transient assays, the SCL1-, SCL5-, SCL13-, SCL21- and PAT1-GFP fusion 

proteins were detected in cytoplasm and nucleus. It is conceivable that these proteins might have 

a function in the latter compartments.

Genetic and molecular approaches were used additionally, to characterize the biological function 

of the members of the PAT1 branch, specific of SCL21 and PAT1. Under far-red (FR) light the 
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SCL21 transcript itself is downregulated in a phytochrome A- and PAT1-dependent manner. Both 

PAT1 and SCL21 are positive factors specific for the phytochrome A signal transduction pathway. 

Because of sequences similarities between SCL21 and PAT1, yeast Two-Hybrid assays were 

performed to evaluate whether these proteins interact. Furthermore, One-Hybrid assays showed 

that SCL21 and PAT1 can transactivate in the yeast system, SCL21 more efficiently.

SEUSS-Like1 was isolated as a protein that can interact with PAT1 in the yeast Two-Hybrid 

assay. Therefore, with the aid of reverse genetics mutants were characterized in the Seuss-like 

(sl)1 locus. The lines were characterized physiologically in the same way as the loss-of-function

lines of PAT1 branch proteins. The physiological analysis showed us that the Seuss-like1 gene is 

also involved in phytochrome A signalling responses. Two-Hybrid analyses were also performed 

with the SEUSS-LIKE1 protein demonstrating that it could interact with the SCL21 as well as the 

PAT1 protein.
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8. APPENDIX 1

Primers used in this study are described below.

Table 1. Primers used for identification of insertion lines

Experiment Amplified Gene Primer Name Primer sequence (5´ → 3´)
Identification of the position 
of the T-DNA insertion

SCL21 SCL Intron-f CCCTTATCGACTTCCACCG

SCL21-1000 CGAGCAGCACTGCATGGCAA
G

SCL1 SCL1 1110-f GCTGAGGCAGATAGTTTCTAT
CCAA

SCL1-3 CGAGAAGCGCTCTTTCAAGCT
CTTG

SCL1 TGA-rev CGGTACCCCTCCAAGCTGAA
GCAAC

SCL5 SCL5 TGA-rev CGGTACCCCTCCAAGCACAA
GCCG

PAT1 PAT1 TGA-rev TTTCCAAGCACACGGCGAAAC
C

Identification of the 
homozygous lines

SCL21 SCL21 Xho CCTCGAGAACTCTCCATGTGG
CCTG

SCL21 Kpn CGGTACCGATTCGAACATTGC
CGTG

SCL1 SCL1-1500 GAGGCTTACGAATACTACTCA
G

SCL1-1900 CCTCTGGTAATAATACATGGA
GATG

SCL1 Prom-f CACCAGTGCGTACTGTCGTAG
GCAC

SCL1 ATG-rev CCACAGTTTGTTCCACCATTC
AG

SCL1 ATG-f CGTCGACATGGTGGAACAAAC
TGTG

SCL1 TGA-rev CGGTACCCCTCCAAGCTGAA
GCAAC

SCL5 SCL5 ATG-f GCTCGAGATGGAAGCTACTCA
GAAAC

SCL5 TGA-rev CGGTACCCCTCCAAGCACAA
GCCG

PAT1 PAT1 ATG-f CACCATGTACAAGCAGCCTAG
ACAAG

PAT1 TGA-rev TTTCCAAGCACACGGCGAAAC
C

Table 2. Primers used for the identification of homozygous lines

Experiment Insertion Primer Name Primer Sequence (5´ → 3´)

Identification of the 
insertion site

SALK left-border SALK LB1 GTTCACGTAGTGGGCCATCG

SAIL left-border SAIL LB1 GAAATGGATAAATAGCCTTGC
TTC
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Table 3. Primers used for analysis of the resistance gene

Table 4. Primers used for RT-PCR

Experiment Amplified gene Primer Name Sequence Primer (5´ → 3´)
RT-PCR SCL21 SCL21-f CCCTTATCGACTTCCACCG

SCL21-rev GATTCGAACATTGCCGTG
PAT1 PAT1-f GAACTCTCCATGTGGCCTG

PAT1-rev GCACACGAGGCAACCAAATC
SCL13 SCL13-f CTCCCATTCAACAAAATTTCTTCA

SCL13-rev CCAGCAATACACTACACAGCTC
18S rRNA 18S rRNA-f GCTCAAAGCAAGCCTACGCTCTGG

18s rRNA-rev GGACGGTATCTGATCGTCTTCGAGC

Table 5. Primers used for Northern analysis

Table 6. Primers used for generation of RNAi and antisense lines

Experiment Amplified Gene Primer Name Primer sequence (5´ → 3´)
Generation of RNAi 
lines

SCL21 SCL21pTOPO-f CACCAACTCTCCATGTGGCCTG

SCL21pTOPO-rev GATTCGAACATTGCCGTG
PAT1 PAT1pTOPO-f CACCGACTTCAGCGTATGCTC

PAT1pTOPO-rev GCACACGAGGCAACCAAATC

Generation of 
antisense lines

SCL13 SCL13-f GCTCTAGAATGGAAGCCACAGT
CAAAATATTC

SCL13-rev GGTACCTCATTCTGACCCTCCAT
TTC

Experiment Resistance gene Primer Name Primer Sequence (5´ → 3´)

Analysis of the 
resistance

BAR Basta-f CCAGAACGACGCCCGGCCG

BAR Basta-rev GTCATCAGATCTCGGTGACGG

KAN Kana-f CTCGTCAAGAAGGCGATAGAAG

KAN Kana-rev GGCAGGATCTCCTGTCATCTC

Experiment Amplified Gene Primer Name Primer Sequence (5´ → 3´)

Northern Blot CAB CAB-f CGAGCCATTAACCACGTAAGC

Northern Blot CAB CAB-rev GAGACCATTGTTGAGGCGGCCAT

Northern Blot CHS CHS-f CTCTTCACAATGTTCTTGGAGATG

Northern Blot CHS CHS-rev GCTTCTTGGTCTCCGTCCTTC

Northern Blot XTR7 XTR-f GCTGCGGCTTGCACAGCCTC

Northern Blot XTR7 XTR-rev GATCTTGACAATGTACAATGG



                                                                                                                                        Appendix 1   

111

Table 7. Primers used for GFP fusions

Experiment Amplified gene Primer Name Primer Sequence (5´ → 3´)
GFP fusions SCL1 full-length SCL1-f GGGGACAAGTTTGTACAAAAAAGCAGGCT

CCATGGTGGAACAAACTGTGGTTAGAG
SCL1-rev GGGGACCACTTTGTACAAGAAAGCTGGGT

CCCTCCAAGCTGAAGCAACGATTAAG
SCL5 full-length SCL5-f GGGGACAAGTTTGTACAAAAAAGCAGGCT

CCATGGAAGCTACTCAGAAACATATG
SCL5-rev GGGGACCACTTTGTACAAGAAAGCTGGGT

CCCTCCAAGCACAAGAAGGATAAGAG

Table 8. Primers used for promoter analysis

Experiment Amplified gene Primer Name Primer Sequence (5´ → 3´)
Promoter-GUS 
fusions

SCL1 SCL1 Prom-f CACCAGTGCGTACTGTCGTAGGCAC

SCL1 ATG-rev CCACAGTTTGTTCCACCATTCAG
SCL21 SCL21 Prom-f CACCGCAACAAACTGAACAAG

SCL21 Prom-rev CAGCTATCTCTGGCAGGGCTG
SCL13 SCL13 ATG-f CACCGTCTGTCTCTTCTCTGGTAC

SCL13 intron-rev GCTGAAGAAATTTTGTTGAATGGG
SCL13 5´-UTR-f CCAGCAATACACTACACAGCTC
SCL13 ATG-rev CACCTCCCATTCAACAAAATTTCTTCG

Table 9. Primers used for Two-Hybrid analysis

Experiment Amplified gene Primer Name Sequence Primer (5´ → 3´)
Yeast Two-
Hybrid

SCL21 full-length SCL21-f GGGGACAAGTTTGTACAAAAAAGCAGGC
TCGATGGACAATGTAAGAAGTTCAATAAT
G

SCL21-rev GGGGACCACTTTGTACAAGAAAGCTGGG
TATCACTTCCATGCACAAGATGAC

SCL21 deletion
N-term

SCL21 delN-f CACCATGGTGGAGCCAATATCAAG

SCL21 delN-rev TCACTTCCATGCACAAGATGAGAC
PAT1 full-length PAT1-f GGGGACAAGTTTGTACAAAAAAGCAGGC

TCGTACAAGCAGCCTAGACAAGAG
PAT1-rev GGGGACCACTTTGTACAAGAAAGCTGGG

TACATTTCCAAGCACAAGGAGC
SEUSS-LIKE TH77900-f GGGGACAAGTTTGTACAAAAAAGCCTCG

ATGCAGTACCTATATCATCAGC
TH77900-rev GGGGACCACTTTGTACAAGAAAGCTGGG

TATCATGACTTCCAAGAATATCCTC
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Table 10. Primers used for analysis sequence of the different constructs

Vector Name Primer Name Primer Sequence (5´ → 3´)

PGEM T7 promoter-f ATTTAGGTGACACTATAGAAT

SP6 promoter-rev ATTTAGGTGACACTATAG

PTOPO M13-f GTAAAACGACGGCCAG

M13-rev GTCCTTTGTCGATACTG

PENTR4 pENTR4-f GTGACCTGTTCGTTGCAAC

pENTR4-rev GAGACACGGGCCAGAGCTGC

pDONR207 pDONR 207-f CGCGTTAACGCTAGCATGGATCTC

pDONR 207-rev GTAACATCAGAGATTTTGAGACAC

pDONR201 pDONR 201-f CGCGTTAACGCTAGCATGGATCTC

pDONR 201-rev GTAACATCAGAGATTTTGAGACAC

pDONR221 M13-f GTAAAACGACGGCCAG

M13-rev GTCCTTTGTCGATACTG

pK7GWIWG2/pB7GWIWG2 T35S RNAi GCGGACTCTAGCATGGCCG

INTRON1-RNAi GCAGGTCAGCTTGACACTGAAC

INTRON2-RNAi GCCGTAAGAAGAGGCAAGCG

P35S RNAi CGTAAGGGATGACGCACAATCC

PKGWFS7 P35S RNAi CGTAAGGGATGACGCACAATCC

T35S RNAi GCGGACTCTAGCATGGCCG

pK7FWG2 P35S RNAi CGTAAGGGATGACGCACAATCC

T35S RNAi GCGGACTCTAGCATGGCCG

GFP-rev CGGTGAACAGCTCCTCGCCC

pDEST 22 pDEST22-f CGGTCCGAACCTCATAACAACTC

pDEST-rev AGCCGACAACCTTGATTGGAGAC

pDEST 32 pDEST32-f AACCGAAGTGCGCCAAGTGTCTG

pDEST-rev AGCCGACAACCTTGATTGGAGAC
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