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All sex

 

General Introduction 
 

 

Humans at all times were intrigued by the seemingly infinite diversity of species on our 

planet. The current number of described species on earth range between 1.5 and 1.8 

million, and over 70 percent of them belong to the animal kingdom (Pearse, 1987; Wilson, 

2000). Although complex and difficult to calculate, estimations on the total number of 

species on earth range from five up to 50 millions and above (Erwin, 1988; Erwin, 1997; 

May, 1988). Others question these very high estimates of species beta diversity due to the 

applied methodology (Bartlett et al., 1999). Historically, myths and theories were used to 

explain species richness, many with a religious background, but this topic was investigated 

with a more and more scientific approach from the enlightenment on. Nowadays the 

generally accepted explanation of the origin of biodiversity is the evolutionary theory by 

(Darwin, 1859). In his book “The origin of species by means of natural selection” he 

suggests, that diversity is the outcome of a continuous process, which can be traced back to 

a common ancestor right at the bottom of the “tree of life”. In short, there are three factors, 

which are working together: Mutation and recombination generate a high variance between 

individuals and selection then acts on an excess of offspring. Individuals with beneficial 

heritable traits may have a higher probability to reproduce and consequently such traits 

may accumulate over time – ultimately generating new species. 

ual species have two sexes and sexual dimorphism between males and females is 

widespread. However, the fact that males sometimes possess conspicuous traits such as 

large antlers or long and/or colourful feathers, which seem to reduce male survival, was at 

first puzzling to Darwin. Yet, years later, he discussed his solution “sexual selection 

theory” in-depth in “The descent of man and selection in relation to sex” (Darwin, 1871). 

Its central points are inter-male-competition over access to females and female choice. 

Stabilising selection generally maintains only a single phenotype per sex, yet disruptive 

selection can lead to the evolution of diverse reproductive strategies within a single sex. 

Those strategies may occur on the behavioural level, but can also involve morphological, 

physiological and life history adaptations. Typically, larger males tend to achieve mating 

success by dominance and aggression, whereas physically weaker ones apply “sneaking-

tactics” or mimic females. For example, large males in some ungulates attract females on 
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leks, whereas younger or weaker males, the so called satellite males, gather on the 

edges of the mating arena, and try to sneak mating opportunities (Appolino et al., 1992; 

Isvaran, 2005). 

A theoretical review by (Gross, 1996) broadly classified alternative reproductive 

strategies and tactics into three categories. First, alternative strategies, that are genetically 

determined polymorphisms, which have equal average fitness and are maintained by 

negative frequency-dependent selection, i.e., the rarer phenotype achieves on average a 

higher reproductive success than the common one. Alternative strategies are rare in nature, 

but were found in several vertebrates and also in two ant species, Harpagoxenus sublaevis 

and Leptothorax spec. A. In the latter species a single locus polymorphism controls the 

development of winged and wingless females (Buschinger, 1978; Heinze and Buschinger, 

1989). Second, mixed strategies (with alternative tactics) are genetically monomorphic. 

Here, again alternative tactics should have equal average fitness and should be retained via 

frequency-dependent selection. No example for a mixed strategy is known so far. Third, 

conditional strategies (with alternative tactics) are also genetically monomorphic, but 

tactics have unequal average fitness and are maintained by status-dependent selection (with 

or without frequency-dependent selection). The vast majority of described intrasexual 

variations belong to these conditional strategies and are found predominantly among the 

males. This was explained by a stronger intrasexual selection within the male sex, because 

competition for access to females and variation in mating success is higher (Gadgil, 1972; 

Trivers, 1972). Alternative reproductive phenotypes in male animals have been described 

for vastly different taxa such as insects (scarab beetle, Onthophagus taurus (Moczek and 

Emlen, 1999)), arachnids (mite, Sancassania berlesei (Radwan et al., 2002)), crustaceans 

(shrimp, Paracerceis sculpta (Shuster and Wade, 1991)), fish (blennies, Salaria pavo 

(Oliveira et al., 2001)), amphibians (woodhouse toad and great plains toad (Bufo 

woodhousii and Bufo cognatus (Leary et al., 2005)), reptiles (side-blotched lizard, Uta 

stansburiana (Sinervo and Lively, 1996)), birds (ruff, Philomachus pugnax (van Rhijn, 

1973)) and mammals (blackbuck, Antilope cervicapra (Isvaran, 2005)). 

Within social Hymenoptera, alternative reproductive tactics are much more 

common in queens than in males contrary to the above described general findings for other 

taxa. Indeed, different queen morphs or at least a bimodal distribution of queen size has 

been described in roughly ten percent of all ant species and nearly in all ant genera (Heinze 

and Keller, 2000). Various morphs of queens have been described in ants, from fully-

winged ones to primarily wingless queens, alate queens are assumed to be the ancestral
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 state, yet in several species queens have reduced wings (brachypterous queens) or are 

completely wingless (apterous queens). In some ant species workers have the opportunity 

to mate (gamergates) or to reproduce parthenogenetically and thus can replace the queen 

morph entirely (Heinze and Keller, 2000; Heinze and Tsuji, 1995). The morphological 

variation in queens is often associated with changes in the social organisation of their 

colonies. Whereas alate queens typically mate on the wing, disperse, found independently 

and head their colonies alone (monogyny), apterous queens tend to mate in or close to their 

nest, found dependently and reproduce along side their sisters in a colony (polygyny). 

Mounting evidence points towards a common evolutionary scenario, where natural 

selection discriminates against dispersing and independent founding alate queens, when 

dispersal costs are high. This is the case, when predation is high, habitats fragmented or 

close to saturation without available nesting sites, mating opportunities rare or under 

unfavourable (cold or dry) climates. Than natural selection favours queen adoption and 

consequently secondary polygyny with dependant nest founding (i.e. budding). In the long 

term, this in turn leads to a reduction in general queen size and especially of wings and 

flight muscles, which are not anymore needed for dispersal (Bourke and Franks, 1995; 

Heinze and Keller, 2000; Heinze and Tsuji, 1995).  

Ant males are commonly winged, possess a pronounced thorax with strong flight 

muscles combined with large eyes, three ocelli and sensitive antennae. Further, their sperm 

production usually terminates during pupal development, but at the latest a few days after 

eclosion. All these features are explained by the fact, that mating usually occurs in large 

swarms, where males are unable to dominate several females and rarely mate more then 

once (Hölldobler and Wilson, 1990). In contrast to apterous queens that are at least present 

in a few genera of almost all subfamilies, wingless (ergatoid) males are only present in 

nine ant genera (Heinze and Tsuji, 1995). 

 

The genus Hypoponera belongs to the Ponerini tribe of the Ponerinae ants (Bolton, 2003), 

which are regarded as primitive, as they are grouped into a very basal branch of the ant 

phylogeny. Roughly 170 species and subspecies are recognized of this almost worldwide 

distributed genus (www.ento.csiro.au/science/ants/ponerinae/hypoponera/hypoponera 

.htm). Genus-wide detailed research on the biology of the various species is still at the 

beginning, albeit this genus is a well-known hot spot for alternative reproductive strategies 

in males and females. An extension of a first grouping regarding the presence of different 

reproductive morphs and social structures in Hypoponera by Yamauchi (1998-1999) is 
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shown in Table 1. The three types comprise possible steps in the evolution of wing loss 

and causal or concomitant circumstances. The first category contains species with for ants 

typical winged reproductives like H. nippona and H. sauteri. In the second, one find 

species with winged and wingless female and male morphs (H. opacior, H. opaciceps and 

H. nubatama). The third group contains species with the two queen morphs, but with only 

wingless males (H. schauinslandi and H. gleadowi). 

My main study species, H. opacior exhibits alate and apterous reproductives of 

both sexes and thus belongs to the intermediate category (Table 1 and Figure 1). The queen 

morphs and the associated social forms were described as follows (Foitzik et al., 2002): 

alate reproductives conduct mating flights and mated queens found, after shedding their 

wings (now called dealate queens), new colonies haplometrotically or rarely 

pleometrotically (by one or a few queens), resulting in rare monodomous colonies (Figure 

2). In contrast, apterous reproductives typically mate intranidally (within their mother 

colony). Such inseminated apterous (intermorphic) queens found new nests dependently by 

budding. One or several young queen/s leave the mother colony together with a part of 

their worker force and found a new nest in the neighbourhood, since dispersal abilities of 

wingless individuals are restricted. 

 
Table 1: Overview over possible causes and concomitant circumstances, which correspond with the 
occurrence of alate and apterous reproductive morphs in different Hypoponera species (modified after 
Yamauchi (1998-1999)). Species are grouped into three types. Factors given in italics remain to be verified. 
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Figure 1: Four different morphs of H. opacior pupae (cocoons were artificially removed). From left to right: 

 
Figure 2: On the left: young, alate H. opacior queen on a twig. Its still pale cuticula will harden and 
onsiderably darken within a few days. On the right: dealate H. opacior queen. 

 This results in a polydomous nest structure of colonies headed by intermorphic 

queens. The mating behaviour of H. opacior wingless sexuals is among the most 

excepti

ergatoid male, worker, intermorphic queen and alate queen.  
 

 

c
 

 

onal ones in ants. Ergatoid males mate with their sisters, which are still enclosed in 

their cocoon for up to 40 hours (Figure 3). Those matings are described as mate guarding 

and are terminated when the intermorphic queen finally emerge from their cocoon and 

starts moving around. However, (Foitzik et al., 2002) never collected alate reproductives 

during two collection trips in August and September of 1997 and 1998, respectively, 

although those are present in museum collections.  
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igure 3: Mate guarding be  is mating with a intermorphic 
ueen, still enclosed in the coco

In this study, the appearance of both reproductive morphs was investigated in a 

opulation in Southeastern Arizona (USA) during three consecutive years from 2003 to 

2005. T
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haviour of an ergatoid H. opacior male, which
on. 

 

 

p

he vast majority of all colonies were collected in the Chiricahua Mountains, which 

is a small mountain range with an approximate expansion of 30 km times 120 km and a 

maximum elevation of almost 3000 m. The Chiricahuas are part of the “Sky Islands”, that 

are mountain ranges separated by dry flatlands similar to islands in the sea, which are 

located where the Rocky Mountains and the Sierra Madre meet (Heald, 1951). The 

Chiricahua Mountains, with their exceptional geographic position at the border of the 

Nearctic and the Neotropical region belong to the northernmost extension of the “Madrean 

pine-oak woodland”. This is one of the 34 biodiversity hotspot regions worldwide, in 

which “…75 percent of the planet’s most threatened mammals, birds and amphibians 

survive within habitat covering just 2.3 percent of the Earth’s surface…” 

(www.biodiversityhotspots.org). Not surprisingly, the Chiricahua Mountains ant fauna 

diversity is also exceptionally high with around 200 described species (pers. com. “Ant 

Course 2003”). As a comparison, from the well-studied Central European fauna only 175 

ant species have been described of 11,000 world wide described ant species and careful 

estimations of 17,000 species (Seifert, 2007). Species richness in the Chiricahuas has been 

also attributed to the presence of five vertical life zones, which gradually change with 

elevation and provide a wide spectrum of different habitats. The “Sonoran (west) and 

Chihuahua (east and south) Desert” communities inhibit the flats and foothills, and as 

available precipitation rises with elevation and temperatures decrease, the life zones 

change till one find “Mixed coniferous forest” on the mountain tops. H. opacior colonises 

suitable habitat patches throughout all vertical life zones except desert habitats. However, 
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it prefers patches with sufficient soil humidity at intermediate elevations around 1700 m, 

which are found e.g. besides creeks (Figure 4). Their nests are preferentially established 

under stones and rocks, but they also use cavities in the upper soil layer as nest sites, which 

they only slightly modify. Workers forage in the soil and leaf litter, usually alone. Only 

rarely they were observed in tandems. The life cycle of H. opacior and the proximate 

causes for the development of reproductives are investigated in CHAPTER 1. In addition, I 

explore seasonal variation in demography and sex allocation strategies during the two 

reproductive seasons. 

 

 

 

he second study species, H. schauinslandi (formerly H. bondroiti, revised by 

(Seifer 04)) produced alate and intermorphic queens and ergatoid males during each 

reprodu

Figure 4: Views of a typical pine-oak-juniper woodland habitat of H. opacior in the Chiricahua Mountains 
(Arizona, US). 

 

T

t, 20

ctive period. At least the laboratory colonies exhibited two reproductive periods per 

year, one in spring and a second in autumn. Interestingly, there are two morphs of the 

ergatoid males; large supposedly “aggressive” ones with a thick dark-brown cuticule and 

small “docile” ones with a thin amber coloured cuticula, which often occur simultaneously 

within the same nest (Yamauchi et al., 1996). Consequently, this species is grouped in the 

third category (Table 1). H. schauinslandi is a tramp species, which occurs in temperate 

zones only in anthropogenic surroundings like greenhouses, which are heated during the 

cold season. This and a few other species of the genus Hypoponera are almost 

cosmopolitan (Delabie and Blard, 2002; McGlynn, 1999; Seifert, 2004). However, due to 

their cryptic lifestyle their presence is often only noticed by the identification of alate 

queens caught during their mating flights (Delabie and Blard, 2002). Although these tiny 

ants manage to establish themselves in new areas on the long-term, they do not become 
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detrimental to other species. Therefore, they generally lack the potential of invasive species 

to become a pest and are rather referred to as tramp species. Key features for invasive- and 

tramp species are a widespread geographical distribution, nests with several queens 

(polygyny), sometimes in combination with intranidal mating, multiple connected nests 

(polydomy), sometimes even unicoloniality, low levels of intra-species aggression and 

superior foraging strategies (Delabie and Blard, 2002; Holway et al., 2002; Passera, 1994). 

A further characteristic of tramp species is their often reduced genetic diversity, 

which is partly linked to above described factors like reduced inter-species aggression. 

This ca

tures represent alleles of the same gene and are 

called 

n be traced back to the introduction of only a few founder colonies in new habitats, 

as it may occasionally happen e.g. by human transport of goods. Such genetic bottlenecks 

can be studied since the investigation on the protein- and genetic-level became possible 

with the advent of molecular methods.   

(Hunter and Merkert, 1957) described in 1957, how enzymes can be separated via 

gel electrophoresis. Their different struc

allozymes. This quick, cheap and easy technique is still in use today. However, it 

suffers from a weak resolution, which is overcome by modern techniques such as DNA 

sequencing and microsatellites. The latter are segregated, neutral markers with codominant 

alleles consisting of short tandem repeats. As no suitable microsatellite primers for the ant 

genus Hypoponera were available, I developed five highly polymorphic markers for H. 

opacior (CHAPTER 2). Microsatellites became broadly available after the invention of the 

polymerase chain reaction (PCR) by Kary Mullis in 1983. PCR enables the amplification 

of small DNA amounts and rose subsequently to a standard method in genetically working 

laboratories. The growing application of microsatellites from the late 1980’s on allowed to 

address a large variety of behavioural ecological questions on the mating strategies, 

dispersal and kin structure (Queller et al., 1993). The latter became very important for 

social insects with their altruistic castes. Hamilton (1964) developed the “kin-selection 

theory” as a modification of Darwin’s “natural selection theory” to explain the evolution of 

altruism. Kin-selection theory “…specifies the conditions under which an organism is 

selected to perform an altruistic act toward a related individual” (Trivers and Hare, 1976). 

Although it is “the only acceptable evolutionary explanation of altruistic behaviour” (Oli, 

2003), kin structures of haplodiploid eusocial insect colonies deviate regularly from 

classical assumptions for monogynous colonies (headed by a single queen), which is only 

singly mated (monandrous). Additionally, it was thenceforward possible to investigate the 

population structure on different hierarchical levels. Also dispersal abilities, in this study of 
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both alate and apterous reproductives of H. opacior, which formerly could only be 

investigated by tedious mark and recapture experiments, are now estimated by the spatial 

structure of varying allele frequencies between demes or the relatedness between nests 

within a single plot (CHAPTER 3). Furthermore the relatedness structure within the colony 

can affect other decisions, such as sex ratio strategies, which dependent on the relatedness 

asymmetries between workers to young queens and to males (also within CHAPTER 1). 

Let us go to back to the loss in genetic diversity caused by inbreeding and founder 

effects. Sibmating, as it occurs regularly in both Hypoponera species, reduces genetic 

diversi

or arrhenotokous parthenogensis), which is present in 

ty (Tsuji and Yamauchi, 1996), and may carry severe costs due to the production of 

usually sterile diploid males onto colonies (Ross et al., 1993; Stouthammer et al., 1992). 

Sex determination in Hymenopterans is not dependant on sex chromosomes, but instead is 

determined by their ploidy level. Males are usually haploid and females diploid. However, 

sterile diploid males are produced, when fertilized diploid eggs are homozygous at the sex 

determining locus. Those males are especially detrimental during the period of colony 

founding, as ant males never work (Hölldobler and Wilson, 1990). In case of sibmating, 

singly mated queens produce either zero or 50 percent diploid males from fertilized eggs. 

Rarely, diploid males are able to reproduce, yet, costs are only postponed to sterile triploid 

offspring (Agoze et al., 1994; Oishi et al., 1993; Stouthammer et al., 1992). To reduce 

costs due to sterile diploid males to a minimum, it is necessary that workers recognize 

them as early in development as possible, either already as egg or during the early larval 

stages. Males in the honey bee Apis mellifera are reared in special cells, which allow an 

easier detection and elimination of diploid male larvae by workers, as they develop in 

regular worker cells (Woyke, 1965). It is known, that also ants, e.g. Formica, which tend 

their brood collectively in brood chambers are able to detect such diploid male cues 

(Pamilo et al., 1994). A recent review describes over 40 species producing diploid males 

(van Wilgenburg et al., 2006). 

This peculiarity is attributed to the mode of sex determination by haplodiploidy 

(also known as arrhenotoky 

approximately 20 percent of all animal species (Bell, 1982; Cook, 1993). It was first 

described from (Dzierzon, 1845) for A. mellifera, and around 100 years later, (Whiting, 

1939; Whiting, 1943) suggested single locus complementary sex determination (sl-CSD) 

as the genetic concept behind haplodiploidy in the parasitic wasp Bracon hebetor. Workers 

and queens develop from fertilized eggs which are diploid and heterozygous at the sex 

determination locus (AiAj or AjAi). Different to that, males usually develop from 
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unfertilised, haploid eggs which are hemizygous at the sex determination locus (Ai or Aj). 

But in cases when fertilized diploid eggs are homozygous at the sex determination locus 

(AiAi or AjAj) they will develop into diploid males. Recently, once again A. mellifera, 

which is one of the most important model organisms in Hymenoptera, was in the centre of 

interest as (Beye et al., 2003) described their sex determination locus and the mechanism 

behind, the sl-CSD, on the molecular level. Indeed, a single locus, called complementary 

sex determiner (csd), with highly variable alleles was found to be the primary signal 

governing sexual development by its allelic composition. Since diploid males have zero 

fitness positive selection act in favour of rare alleles and diversifying selection is expected 

to increase allele number (Hasselmann and Beye, 2004).  

However, sex determination within the Hymenoptera may be diverse and 

supposedly strongly depends on the life history of the respective species. A further model 

propos

or colonies. But social insects 

ke ants, some bees and wasps are more than that, they are eusocial (truly social) (Bourke 

ed for this order, relaxing negative effects of inbreeding, is the multi-locus 

complementary sex determination (ml-CSD), which is based on the same concept as sl-

CSD, but with two or more sex determining loci (Crozier, 1971; Snell, 1935). Models, 

which completely overcome the possibility of diploid male production, are the “genetic 

balance model” from (da Cunah and Kerr, 1957) and the “genomic imprinting model” 

(Beukeboom, 1995; Poirié et al., 1992). While the former “model is now considered 

invalid due to lack of evidence (e.g. it cannot explain diploid males)” (Beukeboom, 1995), 

there is twofold evidence for the second one in the regularly inbreeding wasp Nasonia 

vitripennis (Dobson and Tanouye, 1998; Trent et al., 2006). 

 

Sociality describes the habit of animals of living in groups 

li

and Franks, 1995). These species are characterized by a reproductive division of labour, 

overlapping generations of adults and cooperative brood care (Wilson, 1971). Tasks in 

which different castes cooperate are further extended to e.g. foraging for food, nest 

maintenance and colony defence. Workers of those species are expected to act 

altruistically, that is individuals act in ways that decrease their own fitness in favour of the 

fitness of related individuals, usually the queen. However, systematically overlooked in the 

past, there is more and more evidence for social individuals that act selfishly with the goal 

to increase exclusively or predominantly their own fitness. Although cooperation is 

prominent in social insect societies, conflicts and their resolution came more and more in 

the focus of scientific interests during the last three decades. Currently five different kinds 
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of conflicts are under investigation, by name, there is queen-worker conflict over the sex 

ratio, conflicts over male parentage, conflicts over female parentage and conflict over 

reproductive dominance (Bourke and Franks, 1995; Crozier and Pamilo, 1996; Wenseleers 

et al., 2003). Just recently the conflict over caste determination was added (Bourke and 

Ratnieks, 1999; Ratnieks, 2001; Strassmann et al., 2002; Wenseleers et al., 2003). Bourke 

and Ratnieks (1999) theoretical work, and preceding preliminary articles (Bourke and 

Franks, 1995; Nonacs and Tobin, 1992; Ratnieks and Reeve, 1992), on conflict over caste 

determination predict potential conflict between female larvae and adult individuals, 

usually workers. The conflict may occur during economical periods of colony growth 

followed by a reproductive phase and especially when workers and reproductives are 

reared simultaneously. It arises, because a diploid larva which develops into a queen 

instead of a worker gains more inclusive fitness (Bourke and Ratnieks, 1999; Ratnieks, 

2001; Wenseleers et al., 2003). Selection acts within this conflict scenario on two levels. 

Whereas larvae are selected on the individual level, benefiting from selfishly choosing the 

pathway of queen development, adults are selected on the colony level, displaying their 

antagonistic behaviour for the good of the colony. Prerequisite is a high self-determination 

potential of female larvae due to a low queen-worker size dimorphism and control of their 

own food intake (Bourke and Ratnieks, 1999). Several lines of evidence for the above 

described conflict come from detailed studies on swarm founding Melipona stingless bees, 

which vastly overproduce worker-size queens and from the genera Nannotrigona, Plebeia 

and Schwarziana, where a second caste of dwarf queens is regularly produced besides 

“normal” queens (Ratnieks and Wenseleers, 2005; Ribeiro et al., 2006). However, workers 

kill the majority of those excess queens upon emergence (Wenseleers et al., 2004; 

Wenseleers et al., 2005). 

  In three Hypoponera species, H. opacior, H. schauinslandi and H. sp., I observed 

low size differences between worker and queen caste, cannibalism between sibling larvae 

and a for ants untypical active separation of larvae by workers. This is discussed in 

CHAPTER 4 in terms of caste conflict and further possible interpretations.
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 Abstract 

 

Hypoponera opacior exhibits alternative reproductive morphs in both sexes 

 

The ant 

associated with distinct sexual behaviours. Our long-term study reports strong seasonality 

in sexual production with two separated mating seasons in early and late summer. Alate 

reproductives emerge in June, swarm during the monsoon season and establish new 

colonies independently. In contrast, wingless reproductives appear in late August, mate 

within their natal or adjacent nests and either do not disperse or reproduce by budding. The 

divergent dispersal patterns allow to analyse the impact of local factors on investment 

strategies by comparing sex allocation between the two reproductive phases. The optimal 

allocation ratio for wingless reproductives should be influenced by both competition for 

matings between brothers (local mate competition) and rivalry among young queens for 

workers, nest sites or food (local resource competition). A more male-biased allocation 

ratio for wingless reproductives demonstrates the greater importance of local resource 

competition. 
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Introduction 

 

 

During the last three decades alternative reproductive strategies or tactics within a single 

sex were shown to allow flexible reactions to environmental and social conditions in many 

animal and plant taxa (Gross, 1996; Lovett-Doust and Lovett-Doust, 1990). The ability to 

vary morphological, behavioural, physiological and life history traits with external 

parameters can enable an individual, or in the case of social insects a colony, to maximise 

its reproductive success. 

According to a theoretical review by Gross (1996) alternative reproductive 

strategies and tactics can be broadly classified as (i) alternative strategies that are 

genetically determined polymorphisms, which have equal average fitness and are 

maintained by frequency-dependent selection. (ii) Mixed strategies (with alternative 

tactics) are genetically monomorphic, and tactics should have comparable average fitness 

and should be retained via frequency-dependent selection. (iii) Conditional strategies (with 

alternative tactics) are also genetically monomorphic, but tactics have unequal average 

fitness and are maintained by status-dependent selection (with or without frequency-

dependent selection). The vast majority of described intrasexual variations belong to this 

category (Gross, 1996). 

The majority of alternative reproductive phenotypes in animals is found among 

males. This was explained by a stronger intrasexual selection within the male sex, because 

competition for access to females and the variation in mating success is higher (Gadgil, 

1972; Trivers, 1972). Alternative reproductive phenotypes in male animals are described 

for vastly different taxa such as insects (scarab beetle, Onthophagus taurus (Moczek and 

Emlen, 1999)), crustaceans (shrimp, Paracerceis sculpta (Shuster and Wade, 1991)), fish 

(blennies, Salaria pavo (Oliveira et al., 2001)), reptiles (side-blotched lizard, Uta 

stansburiana (Sinervo and Lively, 1996)), birds (ruff, Philomachus pugnax (van Rhijn, 

1973)) and mammals (blackbuck, Antilope cervicapra (Isvaran, 2005)). 

In contrast to the general greater diversity in male reproductive strategies, in social 

Hymenoptera different female reproductive morphs are much more common than 

morphological or behavioural variation in males. The ancestral state in ants is alate male 

and female reproductives that conduct mating flights. Males in those large swarms undergo 

intense scramble competition and are mostly unable to monopolise potential mating 
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partners. Consequently, intrasexual selection is low in males leading to general adaptations 

as strong flight muscles and excellent olfactory and visual capabilities (Hölldobler and 

Wilson, 1990). Yet, divergent selection frequently occurs in queens and primarily wingless 

(apterous or intermorphic) queens, mostly in addition to alate queens, were shown in all ant 

subfamilies. In contrast worker-like, wingless males (ergatoid males) are only present in 

nine ant genera (Anergates, Aporomyrmex, Cardiocondyla, Crematogaster, Formicoxenus, 

Hypoponera, Pheidole, Plagiolepis and Technomyrmex) (Heinze and Tsuji, 1995). The 

highest variation, both in male and in female reproductive morphs, occurs in the tiny ants 

of the genus Hypoponera.  

In H. opacior, distinct differences in the social structure of colonies were shown to 

be associated with specific tactics of a conditional strategy in alate and apterous queens 

(Foitzik et al., 2002). Alate queens mate in nuptial flights presumably with alate males and 

shed their wings after dispersal. These dealate, inseminated queens found their colonies 

independently (haplometrotic) in low nest-density areas. In contrast, colonies with apterous 

queens occur typically in dense aggregations, and here mating takes place in or close to the 

natal nest. The extraordinary mating behaviour has been described as mate guarding 

(Foitzik et al., 2002): ergatoid males copulate with intermorphic queens for hours even 

before the latter completely emerge from the cocoon. New colonies are later founded 

dependently by these young inseminated queens by budding accompanied by a fraction of 

the worker force. Some young intermorphic queens become adopted by their mother nest 

and consequently nests are frequently polygynous. Furthermore, colony structure was 

found to be highly polydomous, with many colonies occupying multiple nest sites in the 

soil connected by tunnels. 

Here, we analysed the annual cycle of reproduction in H. opacior with its two sets 

of alate and apterous reproductives. In the following we document two seasonally 

separated reproductive phases in early and late summer. Competition between related 

offspring of one sex should reduce the value of this sex for its parents and in social insects 

also for related adult workers (Alexander and Sherman, 1977; Hamilton, 1967). Clearly, 

for ergatoid males, which predominantly mate within the mother nest, the prerequisites for 

local mate competition (LMC) are met (Alexander and Sherman, 1977; Hamilton, 1967). 

Competition among brothers for access to females should lower their value and 

consequently sex allocation should be strongly female-biased. However, local factors 

similarly or possibly even stronger reduce the relative value of apterous queens (local 

resource competition, LRC) (Clark, 1978). Successful nest foundation of these queens in 
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the vicinity of the mother nest, leads to strong competition over nest sites, resources and 

especially workers that accompany queens and help during nest foundations. The varying 

importance of local parameters on optimal investment strategies during the two 

reproductive phases makes H. opacior ideally suited to investigate the competing impact of 

LMC and LRC on sex allocation in apterous reproductives. Additionally, the sterility of 

workers excludes their direct influence on the primary sex ratio. 

 We show that sex allocation ratios were over years consistently more male-biased 

for apterous reproductives in August compared to the production of alate reproductives in 

June. This indicates that contrary to the expectation for a species with nest mating and 

consequently local mate competition other factors, in our case competition among females, 

can have a stronger impact on sex allocation strategies. 

 

 

Material & Methods 

Ant collections and maintenance 

H. opacior ant colonies were collected in May 2003, June 2004 - 2005 and in August 2003 

- 2005 in oak-juniper forest habitats in the Chiricahua Mountains AZ, USA. Additionally, 

in 2004 and 2005 H. opacior colonies were collected at different mountain ranges, the so 

called “Sky Islands” throughout Southeastern Arizona (Huachuca Mountains, Pinaleno 

Mountains and Santa Catalina Mountains). 

H. opacior ants dwell in the uppermost soil layer, preferentially directly under 

stones. We turned stones and smaller rocks and collected ants and brood with an aspirator. 

The surrounding soil was carefully searched for possible existing side chambers. All ant 

colonies were transported to the laboratory either at the Southwestern Research Station 

(SWRS) or to Munich and were accurately censused. Small nests were frozen and stored in 

100 % ethanol for genetic studies, while larger nests were kept in three-chamber-boxes (10 

cm x 10 cm x 3 cm) with a moistened plaster floor. Small artificial nest chambers were 

created and covered by a microscope slide. At the SWRS, ant colonies were fed every 

other day with pieces of dead insects and kept at room temperature. In the Munich 

laboratory, ants were offered three times a week freshly killed fruit flies ad libitum and 

were kept either at room temperature or in a climate chamber at 24 °C, 60 % humidity and 

a 12/12 h night/day-rhythm. 
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To analyse the seasonal production of reproductives, we either closely monitored 

the production of reproductives and workers, or we stored entire H. opacior colonies in 

100 % ethanol. We determined the caste of ethanol preserved adult individuals under the 

stereo microscope and noted the number of alate and dealate queens, intermorphic queens, 

workers, alate and ergatoid males, pupae (small or large) and larvae. In order to verify our 

morphological caste determinations we completely dissected all female ants from ten nests. 

Further, cocoons were carefully opened under the microscope and the metamorphosing 

ants were classified as alate queen, intermorphic queen, worker, alate or ergatoid male or 

“prepupa” (small or large). To allow the classification of prepupae into either alate 

reproductives or workers, we measured the cocoon length and -width of live, cocooned 

pupae in a single, large nest in June 2004 under a stereo microscope (NIKON SMZ 800) 

and observed their caste fate. Detailed caste determination was carried out in a random 

sample of ant nests in June and August 2004 and August 2005 and for the entire brood of 

all ant nests collected in June 2005.  

 

Genetic analysis 

For genetic analysis 572 individuals from 92 H. opacior nest were used. August samples 

with 89 % of the individuals and 82 nests prevailed clearly those from June. Individual 

specimens were preserved in 100 % ethanol or frozen at –20 °C until extraction. DNA was 

isolated from individual ants using the Puregene DNA extraction kit (Gentra Systems). The 

ants were genotyped at the following five microsatellite loci HoP 26, HoP 54, HoP 58, 

HoP 60 and HoP 64 (Rüger et al., 2005). The applied protocol and program is given in 

Rüger et al. (2005) and for amplification we used a PXE 0.2 Thermal Cycler (Thermo 

Electron Corporation). Amplified fragments were detected on a MegaBACE (Amersham 

Biosciences) and analysed using the program Fragment Profiler 1.2 (Amersham 

Biosciences). The regression relatednesses were calculated by weighting colonies equally 

and the standard errors (SEs) were estimated by jackknifing over colonies (or in cases with 

sample sizes smaller then the number of loci, over loci) with the program RELATEDNESS 

5.0.8 by Goodnight and Queller (1994; 1989). Life-for-life relatednesses were used 

throughout. 
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Definitions and statistics 

The differentiation between the castes in H. opacior nests poses unusual problems. There 

are four different types of females: alate queens, dealate queens, intermorphic queens and 

workers. Dealate queens are primarily winged (alate) queens, which are morphologically 

very distinct from workers (possess a structured thorax, large eyes and three ocelli), and 

which had shed their wings after the mating flight. In contrast, the external morphology of 

intermorphic queens resembles that of workers closely. They differed from workers only 

slightly in size and by having slightly larger eyes. In living ants, discrimination was only 

possible in freshly eclosed (callow) individuals, in which the pigmented eyes contrasted 

with the yellow cuticle. The considerably darkened cuticle of older individuals made this 

slight difference in eye size only unambiguously detectable in dead individuals under the 

microscope. Contrary to the small external differences, the internal morphology varied 

strongly between these two castes: intermorphic queens had fully functional ovaries 

consisting of 2 x 3 ovarioles and a spermatheca, while workers completely lacked 

reproductive organs. In cases where we did not discriminate between intermorphic queens 

and workers we referred to them as worker-like individuals. 

The highly polydomous colony structure with interconnecting tunnels between nest 

chambers (Foitzik et al., 2002) and free ranging workers made a nest definition necessary. 

For this study we considered a H. opacior nest, when we found at least one reproductive 

female, and/or two or more worker-like individuals, and/or brood. The term “established 

nests” was used for queen-right nests that contained at least one worker-like individual. 

To assess the different investment in the three apterous and the two alate morphs, 

samples were killed by freezing, dried at 60 °C for 48 h and weighed subsequently with a 

“Satorius micro scale”. We calculated the cost ratio as the mean dry weight of queens 

through the mean male dry weight. The investment ratio was calculated as (n of queens per 

nest * cost ratio) / (n of females * cost ratio + n of males). We note that alate queens were 

predominantly virgins at the time of collection, while most intermorphic queens were 

supposedly mated and had started ovary development. 

For statistic calculations we used the program STATISTICA 6.0 from StatSoft. The 

Mann-Whitney U test is indicated by U value, the Chi-square test by χ2 value. 
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Results 

Nest demography 

From 2003 - 2005, we collected a total of 724 Hypoponera opacior nests, from which 81 

% were queenless, 10 % were headed by a single intermorphic queen, 4 % by more then 

one intermorphic queen and 5 % were headed by dealate queen(s). Over all years, only 2.6 

% of the 38 dealate queen colonies were polygynous, while 30 % of the 99 nests with 

intermorphic queens were polygynous. The frequency of polygynous nests was 

significantly higher for intermorphic queen nests than for dealate queen nests over all years 

(Fisher’s exact test: p < 0.002). In queen-right nests the mean number of intermorphic 

queens was 1.52 (range 1 - 7) in spring and 4.15 (range 1 - 21) after eclosion in August 

2005. This significant difference (U = 777.0, n1, 2 = 62, 53, p < 0.00001) suggests budding 

before hibernation or in early spring. The number of intermorphic queens per nest did not 

vary between Mai 2003 and June 2004 and 2005 (Kruskal-Wallis ANOVA: H = 1.14, p = 

0.566). 

A high fraction of dealate queen nests were founding nests without workers (53 %), 

while only 3 % of intermorphic queen nests were collected during the founding stage 

(Table 1). Yet, established colonies with dealate queen contained more workers than nests 

with intermorphic queens (Table 1). The number of pupae and the productivity per worker-

like individual did not differ significantly between the two types of colonies (Table 1). 

These data indicate independent nest foundation by alate queens and dependant nest 

foundation by intermorphic queens. 

We found a strong seasonality, in that founding dealate queen nests were much 

more frequent in August than in May and June (Fisher’s exact test: p < 0.008). 

Furthermore, nests with intermorphic queens contained more pupae and exhibited a higher 

productivity in August compared to June during the three study-years (number of pupae: U 

= 14540.5, p < 0.00001; productivity: U = 13989.5, p < 0.00001). This could not be shown 

for established dealate queen nests, for which our sample size is considerably smaller. As 

an exception to the relative constant seasonal production over years, we found an unusually 

high productivity in August 2005, after an extraordinary high precipitation in July and 

August 2005 compared to previous years (Kruskal-Wallis ANOVA: H = 28.21, p = 

0.00001).
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Table 1: Demographic comparisons between nests with dealate and intermorphic queens. Results are 
depicted as N or mean ± SE; (range). Significant p-values are in bolt letters.  
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The investment in reproductive females in June was significantly higher than in 

August (U = 1252.0, p = 0.001), while the investment in males did not differ between June 

and August in both years (U = 1946.0, p = 0.848). Nests from our collections in August 

2004 and 2005, which invested in ergatoid males, were significantly smaller then those that 

invested in intermorphic queens, or both apterous reproductives (Kruskal-Wallis ANOVA: 

H2,86 = 12.60, p = 0.001). The production of ergatoid males was observed in detail in 

August 2005. Apterous reproductives were produced in 85 from 131 nests with cocoons. 

However, only 47 % contained both sexes, whereas 18 % produced only intermorphic 

queens and 35 % only ergatoid males. Between one and a maximum of 18 ergatoid males 

coexisted within a single nest (mean ± SE: 4.86 ± 0.59). The number of ergatoid males and 

number of pupae per nest were clearly positively correlated (Spearman’s rank correlation: r 

= 0.406, p < 0.00001). 

 

Sex allocation and reproductive seasonality  

Dry weights for the different castes are given in Table 2. Generally, castes differed in 

weight (ANOVA: F4,55 = 73.36, p < 0.00001) and the alate reproductive morphs were 

clearly heavier then the apterous ones. To allow the calculation of the investment ratio we 

computed the cost ratio for alate and apterous reproductives separately. Alate females 

weighted on average 1.63 times more than alate males, intermorphic queens were 2.28 

times heavier than ergatoid males. 

 
Table 2: Dry weight of the different H. opacior morphs in µg after drying at 60 °C for 48 h were significant 
different from each other (ANOVA: F4,55 = 73.36, p = 0.00001). Asterisks indicate the p-value of the Fisher 
LSD post hoc test, ** = p < 0.005, *** = p < 0.0001. 
 

  N Mean ± SE (µg) Range Fisher LSD (p) 

       

Alate queens 10 246 ± 9 190 - 291  

203 ± 6 165 - 252 
*** 

Intermorphic queens 14 

179 ± 5 117 - 217  
** 

*** 

Workers 21 

Alate males   5 151 ± 9 151 - 157   

Ergatoid males 10   89 ± 2   79 -   97 
*** 
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In June 2004 and 2005 98.6 % of all produced reproductives were alates, whereas 

in August always 100 % were apterous. The population-wide numerical sex ratio (queens / 

males + queens) was 0.617 and 0.684, in June 2004 and 2005, respectively (Table 3). The 

population-wide investment ratio over both years was 0.766, which was not significantly 

different from 3 : 1 (χ2 = 0.55, p = 0.459). The mean proportional investment did not differ 

between both years (Kolmogorov-Smirnov two-sample test: n1, 2 = 18, 11, p > 0.1). The 

population-wide numerical sex ratio for apterous reproductives was 0.444 and 0.406 in 

August 2004 and 2005 (Table 3) and the population-wide investment ratio was 0.645 and 

0.609. There was no difference in colony-level investment between years (Kolmogorov-

Smirnov two-sample test: n1, 2 = 32, 85, p > 0.1) and over both years the female to male 

investment ratio in August was 1.60 : 1.  

Due to the absence of annual variation in the colony investment ratios within each 

season, we pooled the data over both years for the graphical representations (Figure 1) and 

further analyses. The colony investment ratios of alate and apterous reproductives differed 

during the reproductive period in June (Kolmogorov-Smirnov two-sample test: n1, 2 = 29, 

10, p < 0.005). Likewise, colony investment ratios for alates in June differed from the 

ratios for apterous reproductives raised in August (Kolmogorov-Smirnov two-sample test: 

n1, 2 = 29, 117, p < 0.005). However, we did not observe seasonal differences in the colony 

investment ratios of apterous reproductives either raised in June or August (Kolmogorov-

Smirnov two-sample test: n1, 2 = 10, 117, p > 0.10; Figure 1).  
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Figure 1: Proportional investment for both queen morphs in H. opacior, given as proportion of investment in 
young queens from total sexual investment, including the cost ratio values for alate and apterous morphs. 
Proportional investments within each reproductive morph did not differ between 2004 and 2005. The bars 
represent pooled data from June and August of both years, respectively. 
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Table 3: Sex allocation in a H. opacior population from Southeastern Arizona from 2003 - 2005. The 
numerical sex ratio was calculated as queens / (males + queens).  
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In order to study which parameters influence the colony-level investment ratios we 

analysed its association with the total sexual investment and nest size (number of adult 

worker-like individuals) for all nests that produced at least one reproductive individual. 

Investment ratios in alate reproductives - a high value indicate investment predominantly 

in queens - were negatively correlated with the total alate sexual investment, but showed 

no association with nest size (Table 4). Nest size had no influence on the total sexual 

investment in alates (Spearman’s rank correlation: rs = 0.10, n = 29, p = 0.614). In August 

investment ratios were positively associated with total sexual investment and nest size 

(Table 4). Furthermore, the latter two parameters were also correlated (Spearman’s rank 

correlation: rs = 0.29, n1, 2 = 117, 117, p = 0.001). In summary, H. opacior nests in June 

with a high investment in reproductives raised mainly alate males, while large nests in 

August invested mainly in intermorphic queens. Furthermore, nest size was only positively 

associated with a female-biased investment ratio in August (Table 4).  

 
Table 4: Correlation of proportional investment in queens (alate, apterous) per H. opacior nest and total 
sexual investment and nest size. Correlations were conducted with pooled data from 2004 and 2005. Still 
significant p-values after correcting α–values according to the sequential Bonferroni method (Rice, 1989) 
were given in bolt letters. 
 

 Month Reproductive 

morph 

Spearman’s rank 

correlation (rs) 

P-value N 

Total sexual 

investment 

June Alate -0.45    0.015   29 

 August Apterous   0.52 < 0.00001 117 

Nest size June Alate -0.02    0.919   29 

   0.0003  August Apterous   0.33 

 

117 

 

New workers were produced in the two reproductive periods in June and August. In 

June 2005 all but one nest with brood produced new workers independently of their 

participation in the production of reproductives.  
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These results show a clear seasonality for the production of alate and apterous 

reproductives, which emerged in early and late summer. Yet, the social organisation of the 

nests did not influence which reproductive morphs a nest produced. All types of nests, 

queenless ones and those headed by dealate or intermorphic queen(s) raised reproductive 

offspring in the characteristic seasons. Furthermore, the frequency of nests with the three 

social organisations did not differ between June and August both in 2004 and 2005 (Figure 

2).  

 
Figure 2: Proportion and n (in brackets) of reproductives producing nests headed by a dealate queen, by 
intermorphic queens or without a queen in June and August (pooled data from 2004 and 2005). Proportions 
did not differ between both reproductive periods (Fisher’s exact tests (sequential Bonferroni corrected (Rice, 
1989)): p > 0.05). 
 

 

Clearly, not social organization but the reproductive periods influenced the 

production of the two sexual forms. Interestingly, the onset of the North American 

Monsoon in Arizona, USA, coincides with the emergence of the alate reproductives 

(Figure 3; precipitation data from 1965 – 2005 by courtesy of the “Western Regional 

Climate Center”, http://www.wrcc.dri.edu). 
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Figure 3: Schematic graph of the annual cyclic offspring production in H. opacior (the solid line indicates 
the brood-biomass of predominantly alate reproductives; the dashed line indicates the brood-biomass of 
apterous reproductives) as observed from 2003 to 2005. The grey dotted bars represent the mean precipitation 
rate at the SWRS near Portal, Arizona, USA, of the years 1965 to 2005. The emerging of predominately alate 
reproductives and workers in late June coincides with the onset of the North American Monsoon. Apterous 
reproductives and workers begin to emerge in late August. The left picture shows an alate queen and the right 
an ergatoid male mating with a still in the cocoon enclosed intermorphic queen. 
 

Genetics 

The life-for-life relatedness of workers as calculated from the entire data set, differed with 

a mean of 0.194 ± SE 0.082 in June only tendentiously from the mean in August with 

0.427 ± 0.032 (t-test: t = 1.73, n1, 2 = 4, 58, p = 0.062). Similarly, life-for-life relatedness 

values of workers to queens and workers to males did not vary between both reproductive 

periods (t-test: t = 0.328, n1, 2 = 5, 39, p = 0.745; t = 0.184, n1, 2 = 5, 19, p = 0.856). 

Relatedness coefficients (based upon 22 colonies) of workers toward reproductive females 

were significantly greater than those of workers towards males. Yet, relatedness 

asymmetry was not different between June and August (Figure 4). 
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Figure 4: Mean life-for-life relatedness values ± SE. The relatedness coefficient of workers to queens was 
significantly greater than that of workers to males (repeated-measures ANOVA: F1,20 = 33.62, p = 0.00001). 
Relatedness asymmetry of workers to queens and males was not different between June (ratio = 2.64 : 1) and 
August (ratio = 3.29 : 1; F1,20 = 0.04, p = 0.844).  

 

Discussion 

 

 

Why does H. opacior pursue a two-fold strategy with regular production of two 

reproductive morphs of both sexes? In ants reproduction by alate queens and males is 

assumed to be the ancestral state (Hölldobler and Wilson, 1990). H. nippona and H. sauteri 

produce only alates (Yamauchi et al., 2001), suggesting that nuptial flights may also be 

ancestral in this genus. While ensuring dispersal, mating flights followed by independent 

nest foundation are exceedingly risky endeavours. The production of apterous 

reproductives allows mating in the safe haven of the nest and dependant nest foundation 

with a start-up help of workers. Thus, rapid expansion and exploitation of favourable 

habitats become possible. However, this form of reproduction has the problem of 

inbreeding and restrains dispersal, as budding nest fragments disperse on foot. Thus, 

reproduction by both reproductive forms allows settlement of new habitats through alates, 

followed by rapid expansion by apterous reproductives in suitable patches.  

 In contrast to H. opacior where alates are produced regularly each year, in 

Cardiocondyla obscurior, a phylogenetically distant ant species with alternative 
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reproductive tactics in males, alate males are only produced under adverse environmental 

conditions for the colony, e.g. extreme temperature changes or food shortage (Cremer and 

Heinze, 2003). In H. opacior the production of alate and apterous reproductives coincides 

with seasonal changes in the environment. Periodic environmental cues can be low winter 

temperatures - our study site is located above 1500 m in the Chiricahua Mountains - and 

high precipitation rates during the North American Monsoon in summer. As a proximate 

factor, the cold temperatures could influence the developmental avenue of hibernating 

larvae and the feeding activity of workers. Indeed, this was shown for the ant Myrmica 

rubra, where hibernated (vernalised), large, third instar, female larvae developed mainly 

into queens, while smaller ones developed into workers (Brian, 1955; Brian, 1975).  

Ultimately, nuptial flights followed by independent colony foundations in the wet 

monsoon season are certainly favoured, because of a decreased risk of desiccation, 

facilitation of nest building and increased food abundance. Many ant species from Arizona, 

such as the harvester ants Pogonomyrmex and the honey pot ants Myrmecocystus conduct 

nuptial flights a few days after the beginning of the monsoon (Bartz and Hölldobler, 1982; 

Hölldobler, 1976; Nagel and Rettenmeyer, 1973), typically after a heavy rain. Although, 

precipitation varies in Arizona greatly during the year, the North American Monsoon 

(Mexican Monsoon), which starts in Arizona in early July (Higgins et al., 1999), causes the 

highest annual precipitation rates in this area (http://www.wrcc.dri.edu/cgi-

bin/cliMAIN.pl?az6716). Mating flights are very risky for young queens, causing 

tremendous mortality rates through predation and dehydration (Hölldobler and Wilson, 

1990). Facilitation of nest digging is certainly less important in H. opacior than in larger 

desert ant species, which construct deep, elaborate nests. Yet, the increased humidity in the 

soil and in the leaf litter layer, where Hypoponera ants typically forage, leads to a general 

proliferation of the soil fauna and thus to an increased food supply for the young founding 

nests. A correlation between the breeding success of birds in warm, arid climates and the 

amount of precipitation was shown in Li and Brown (1999) and papers within. This might 

also be the ecological reason for the second reproductive period in late summer with the 

fast developing apterous reproductives. Indeed, in our study we found a generally higher 

productivity of H. opacior nests in August than in the comparatively dry June. Productivity 

was highest in August 2005 following a monsoon with exceptionally high precipitation 

rates. Also other animals respond to the high food supply after the monsoon rain. The Ash-

throated Flycatcher (Myiarchus cinerascens) depart from their breeding grounds in arid 
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lowland habitats in the northern Southwest and Mexico to feed and moult in the region of 

the Mexican Monsoon shortly after the onset of the monsoon rains (Butler et al., 2006). 

 After the H. opacior alate queens have successfully started a colony, they have to 

raise their first workers. Dealate founding queens were quite common in August, while we 

found in spring only few established nests with dealate queens. Indeed, survival during the 

first winter is low and probably depends on the worker force. This might be another 

important reason for an early mating flight of the alates in H. opacior as it extends the time 

to set up a colony and rear the first workers.  

 The occurrence of alate and apterous reproductives of both sexes were also 

described in the congeneric species H. eduardi and H. nubatama and in the dolichoderine 

ant Technomyrmex albipes (Le Masne, 1956; Yamauchi et al., 1991; Yamauchi et al., 

2001). In contrast to H. opacior, the reproductive cycles were reversed in H. nubatama. 

Apterous reproductives appeared in this Japanese Hypoponera species mainly in summer, 

whereas alate reproductives conducted nuptial flights in autumn (Yamauchi et al., 2001). T. 

albipes with its huge polydomous colonies produced alate reproductives in the first 

reproductive period in late spring, whereas apterous reproductives were produced acyclic 

throughout the year, except in winter. In this dolichoderine ant species dealate queens were 

even rarer, but the number of intercastes exceeded those of intermorphic queens in H. 

opacior by far (Yamauchi et al., 1991).  

Each of the two queen phenotypes in H. opacior exhibits an alternative 

reproductive tactic of a conditional strategy, which is also reflected in the social structure 

of their colony (Foitzik et al., 2002). Our larger sample corroborates these earlier data, as 

all established dealate queen colonies but one contained a single queen, whereas nests with 

intermorphic queens were headed significantly more often by several queens. Furthermore, 

similar to the situation in H. nubatama (Yamauchi et al., 2001) established dealate queen 

nests were exceedingly rare and represented only less then three percent of all nests. As 

high numbers of alates were produced by H. opacior colonies, this low fraction of dealate 

nests certainly reflects the low rate of independent colony establishment. The number of 

intermorphic queens was highest shortly after their emerging and mating in late summer, 

while fewer queens per nest were consistently found in spring, reflecting nest budding 

either before or directly after hibernation.  

 Contrary to the majority of alternative reproductive tactics described from other 

animal species (Gross, 1996), we found in H. opacior that the production and mating 

season of alate and apterous reproductives are almost completely temporally separated. 
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Only a few nests reared ergatoid males in June, which may have the opportunity to 

copulate with freshly emerged alate queens. Copulation of alate males within the mother 

nest was never observed and it is therefore likely that these alate males need the mating 

flight to trigger sexual behaviour, as in many other ant species (Hölldobler and Wilson, 

1990). Intrasexual conflict over reproduction between two male morphs should therefore 

be rare or totally absent, but has been observed in C. obscurior, where alate males mimic 

the odour of young queens to be not attacked and killed by apterous fighter males (Cremer 

et al., 2002).  

 Intranest worker relatedness was found to be slightly higher in August than in June, 

which can be attributed to a higher number of intermorphic queens contributing to 

offspring production earlier in the season. In both reproductive periods relatedness 

asymmetry between adult workers and female and male brood was close to 3 : 1. 

Consequently, the observed population-wide investment ratio of 3 : 1 of alate 

reproductives in June conforms to the worker optimum (Fisher, 1930; Trivers and Hare, 

1976). Yet, as the relatedness asymmetries from the perspective of reproductive females 

were not calculated and multiple queens per nest reproduce, it is possible that the observed 

investment ratio could also be in the evolutionary interest of the queens.  

 The investment sex ratio in H. opacior should be influenced by local factors only 

for the within nest-mating, low dispersing morphs raised in late summer. Apterous 

reproductives of a single nest intensely compete with each other for mates (males, LMC 

(Alexander and Sherman, 1977; Hamilton, 1967) and for resources (females, LRC (Clark, 

1978). In contrast to the classical model developed by Hamilton (1967) for species with 

wingless males, in H. opacior apterous queens also show strongly reduced dispersal 

abilities. Their winglessness promotes LRC, as the reduced dispersal capability of ergatoid 

males facilitates LMC. The population-wide investment ratio of apterous reproductives in 

August was 1.60 : 1, despite similar within-nest relatedness values in June and August. 

This ratio, although overall still female-biased, is clearly lower that is more male-biased 

than sex allocation in June and may suggest a preponderance of LRC. This is furthermore 

supported by a lower absolute production of intermorphic queens compared to alate queens 

and a population-wide male-biased numerical sex ratio in late summer. The relatively high 

investment in apterous males can be explained by an even stronger reduction of the value 

of apterous queens through LRC or less intense competition among related males, possibly 

through male dispersal to neighbouring nests on foot. Indeed relatively low relatedness 

values suggest that males sometimes migrate to adjacent nest chambers through the 
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extended tunnel system. However, despite a similar biology, the highly female-biased 

investment ratio among apterous reproductives of T. albipes and C. obscurior (Cremer and 

Heinze, 2002; Tsuji and Yamauchi, 1996) strongly indicates that LMC can considerably 

reduce the colony value of apterous ant males.  

In ant species that reproduce by budding, local resource competition among 

nestmate females can occur over two important commodities. First, intermorphic queens 

compete for workers, which are essential for successful dependent nest foundation, and 

second, newly established daughter nests compete for resources such as high-quality nest 

sites and food. In such a situation, accompanying workers are parts of the resources 

invested by a colony in female production, if they remain permanently with the new queen 

in the daughter nest (Hamilton, 1975; Pamilo, 1991). Intense competition among 

neighbouring daughter nests should still lead to an overall male-biased investment, even if 

workers are counted as part of the female investment. Yet, albeit we did not investigate 

worker production in detail, including workers into the calculation of the investment ratio 

in August would make it even more female-biased, approaching the value observed for 

alates in June. This indicates a somewhat balanced tug-of-war between the local forces 

acting on the reproductive values for queens and males. 

In addition to the population-wide patterns in the sex allocation, we found a strong 

bimodal distribution of investment ratios on the colony level (split sex ratios) in August. 

Furthermore during the production of apterous reproductives, larger colonies with an 

increased sexual investment allocated relatively more resources into queens. These 

findings can be explained by the resource limitation hypothesis (Nonacs, 1986a; Nonacs, 

1986b), which suggests that larger colonies with a higher food provision rate should invest 

in the costly production of queens, while smaller nests with a lower and less secure food 

supply should favour the production of males. Finally, our findings that many colonies 

invest only in reproductives of a single sex are inconsistent with the constant male- or 

constant female hypothesis (Frank, 1987). 

  



Chapter I                                                                                                                             43 

                                                                                                                                                                             

Conclusions 

 

 

The here documented two annual reproductive phases in an Arizonan population of the 

ponerine ant H. opacior elucidates the importance of ecological factors on alternative 

reproductive tactics and sex allocation patterns. The highly unusual clear temporal 

separation of the production and the mating season of the two sets of reproductive morphs 

provides the unique possibility to investigate how seasonal changes influence nest 

foundation success and how dispersal and competition affect optimal investment strategies. 

Our data indicate that the timing of the alate production is governed by the North 

American Monsoon and the approaching winter, while a well-balanced tug-of-war between 

local forces acting on the reproductive values for queens and males influences allocation 

patterns in the apterous season. 
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Abstract 

 

 

The ant genus Hypoponera, with its high diversity of alternative reproductive tactics, is of 

particular interest in studies on sexual selection. In the species Hypoponera opacior, 

winged and wingless males and queens co-occur and molecular markers are essential to 

study the reproductive success of these sexual tactics. Primers were developed for five 

polymorphic microsatellite loci isolated from H. opacior. Their variability was tested on 34 

colonies from a population in the United States. Nine to 21 alleles per locus were found 

with observed heterozygosities between 0.1 and 0.7. A significantly positive FIS value 

suggests inbreeding in this ant with predominant intracolonial matings. 
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In most ant species, sexual selection is less intense because nuptial flights do not allow 

males to monopolize females. The ant genus Hypoponera, however, contains a large 

diversity of reproductive strategies and tactics both in males and queens (Foitzik et al., 

ile 

Proteinase K (MBI 

n) was used and the 

2002; Le Masne, 1956; Yamauchi et al., 1996; Yamauchi et al., 2001). In the Neotropical 

Hypoponera opacior, winged reproductives copulate during nuptial flights in early 

summer, while in August wingless males guard females and mate with them within their 

mother nest. These reproductive strategies are associated with differences in colony 

organisation: dealate queens head mostly monogynous, monodomous colonies, wh

colonies with wingless sexuals commonly contain several queens and occupy multiple 

nests. The latter social organization resembles that of unicolonial, invasive ants and indeed 

some Hypoponera species are cosmopolitical tramps (Giraud et al., 2002; Holway et al., 

1998). High resolution molecular markers are necessary to measure the reproductive 

success of the various sexual tactics to shed light on the evolution and maintenance of 

alternative reproductive strategies. Here, we characterize five polymorphic loci for H. 

opacior, which will further allow to analyse the impact of inbreeding and reproductive 

behaviours on the fine-scale genetic structure of colonies and populations.  

These soil dwelling ants were collected in the Chiricahua Mountains near the South 

Western Research Station (SWRS), Portal, AZ, USA. About 260 individuals were ground 

in liquid nitrogen and the tissue was digested with RNAse and 

Fermentas) at 56 °C over night. The DNA was extracted with a standard 

Phenol/Chloroform protocol and digested with Tsp 509 I, which was later removed by a 

second Phenol/Chloroform step. Two adaptors (Tsp AD short and Tsp AD long (Tenzer et 

al., 1999)) were ligated to the DNA, resulting in blunt-ended fragments. Ultrafree-4 

spinning columns (Millipore) were used for purification and the ligation products were 

amplified by using the adaptor Tsp AD short as primer. The 25 µL reaction mixture for 

each of the 32 polymerase chain reactions (PCR) contained 0.5 µL ligation product, 2.5 µL 

10 x Taq polymerase buffer (-MgCl2), 2.5 mM MgCl2, 1.0 mM dNTPs (MBI Fermentas), a 

final concentration of 1 µM Tsp AD short and 1.25 units of Taq DNA polymerase 

(Promega). For the PCR a T1 Thermocycler (Biometra Whatma

following program was applied: 72 °C for 5 min to synthesize the nick between the linker 

and the genomic DNA, followed by 20 cycles at 93 °C for 1 min, 55 °C for 1 min and 72 

°C for 1 min. The purified amplification product was enriched with repeat motives by 

hybridising them with biotinylated oligonucleotides of either (CA)13 or (GA)13 that had 

been linked to streptavidin-coated magnetic beads (Dynabeads M-280m Streptavidin; 
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Dynal) (Tenzer et al., 1999). Unhybridized fragments were removed in four washing steps. 

Another PCR was performed directly with 1 µL of bead solution under the same conditions 

but without the initial extension step.  

The DNA enriched with repeat motives was ligated into the plasmid pcR2.1 and 

transformed into Top 10F’ cells (TA Cloning Kit; Invitrogen). Positive clones were dot-

plotted on nylon membranes (Hybond-N+ membrane; Amersham Life Science) and probed 

with fluorescein-11-dUTP labelled oligonucleotides (CA)13 and (GA)13 (Gene Images 3’-

oligolabelling and Gene Images CDP-Star detection module; Amersham Life Science).  

We detected 96 complementary Plasmid inserts, 82 of which were sequenced using 

BigDye Terminator v1.1 Cycle Sequencing Kit (Applied Biosystems) and M13 forward 

and reverse primers (MWG) on an ABI Prism 310 Genetic Analyser (Applied Biosystems). 

Primer pairs were designed for 13 of the 55 clones, which possessed repeat motives and 

these were tested on DNA from individuals of eight different colonies, which was 

extracted with PureGeneKit (Promega). Gradient PCR was carried out in 20 µl reactions 

with approx. 10 ng DNA (1.0 µL), 2.0 µL 10 x Taq Polymerase buffer (-MgCl2), 2.5 mM 

MgCl2, 0.2 mM each dNTP (MBI Fermentas), 0.5 µM each primer, 4 µL Enhancer 

Solution P (peQlab) and 0.4 units of Taq DNA Polymerase (Promega). The following 

PCR-program was used: denaturation at 94 °C for 5 min, followed by 35 cycles of 94 °C 

for 1.15 min, 55 °C for 45 s and 72 °C for 45 s, then 72 °C for 7 min.  

For each of the nine microsatellite loci where we obtained an amplification product, the 

forward primer was labelled with an ABI fluorescent dye at the 5’-end (either HEX, TET 

or FAM; MWG Biotech). All reactions were performed in a T-GRADIENT Thermocycler 

(Biometra), the fragments were detected on the ABI and analysed using GENESCAN 

(Applied Biosystems). Five of the nine loci were polymorphic for H. opacior and the 

number of alleles ranged between nine and 21 for 106 individuals from 34 nests (Table 1). 

All ant nests were collected from a single population in the Chircahua Mountains, Arizona 

and thus, we could not explicitly test for population substructure. The program 

RELATEDNESS calculates F-statistic by taking the nest structure into consideration, that 

is the program uses only nests as independent units, not individuals. 

A significant FIS value was calculated for each of the five loci with the program 

RELATEDNESS 4.2 (Goodnight and Queller, 1994) with a mean of 0.44 (± SE 0.04; 95 

%CI = 0.34-0.54) over the five loci indicating true inbreeding in H. opacior. Consequently 

all loci show significant deviations from Hardy-Weinberg equilibrium (Raymond and 

Rousset, 1995) (Table 1). Linkage disequilibrium was calculated with the software 
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th 

e exception of the ones amplified with the primer pair HoP 26 – HoP 58 (P < 0.01). The 

five primer pairs were also tested in two tramp species of the genus, 

Hypoponera schauinslandi and Hypoponera sp., and all of them except HoP 26 yielded an 

amplification product. However, variability was demonstrated only at a single loci so far in 

the limited sample (n = 1 colony for each species). These powerful genetic markers will 

thus prove to be an important step forward in the analysis of the evolutionary basis of the 

fascinating reproductive strategies in Hypoponera ants. 

GENEPOP (Raymond and Rousset, 1995) and all loci were found to be independent wi

th
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Table 1: Primer sequences and characterization of five microsatellite loci in the ant Hypoponera opacior. 

 

 

Ta annealing temperature; n sample size; NA, number of alleles; HO, observed heterozygosity; HE, expected 
heterozygosity; mca, most common allele; * Forward (F) primer was FAM, TET or HEX-labelled; P-HWE 
P-value for Hardy-Weinberg equilibrium with α-value after Bonferroni correction of 0.01 (Raymond and 
Rousset, 1995). 
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Abstract 

 

 

In ants alternative reproductive tactics of winged and wingless reproductives often 

represent complementary dispersal strategies. The two sexual morphs each in males and 

females of the ant Hypoponera opacior mate during different seasons and allow colonizing 

and rapidly populating habitat islands. Here, we used microsatellite markers to investigate 

the genetic structure of this species on different levels. On a macrogeographic scale we 

found considerable structure between and within various mountain ranges in Southeastern 

Arizona, USA. However, generally genetic and geographic distances did not correspond. 

Only subpopulations from within the Chiricahua Mountains were genetically more similar 

than those from different mountain ranges. This lack of an association between geography 

and genetic structure can be explained by the analysed sites being relics from a large 

ancestral population. Post-pleistocene climate changes led to desertification of lowland 

sites, so that H. opacior populations retreated to more humid habitats at higher elevation 

and consequently populations became isolated. On a local scale, we show multicolonial 

nest structure, also evident from behavioural recognition trials, which revealed consistent 

aggression between non-nestmates. Yet, polygyny and dependant nest foundation also led 

to detectable population viscosity. Frequent sibmatings between wingless reproductives 

caused a high inbreeding coefficient of 0.45. Wingless males, expected to avoid inbreeding 

to reduce diploid male load, actually either selectively mated with close relatives or 

showed random mating. Finally, we could not detect diploid males in this highly inbred 

species, suggesting elimination of diploid male brood or a sex determination mechanism 

other then complementary sex determination. 
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Introduction 

 

 

In contrast to solitary animals, where behavioural actions are predominantly under direct 

selection, cooperative behaviours in social species are often best explained by kin selection 

(Hamilton, 1964). Hence in social animals, analyses of genetic relationships within and 

between groups are important to gain a deeper understanding of the evolution and 

maintenance of behavioural strategies. Multiple reproductive tactics or strategies in solitary 

species often represent alternatives selected by frequency- or state dependant selection 

(Gross, 1996). In contrast, alternative tactics in social insect species can have a 

complementary function, for example winged morphs are responsible for long distance 

dispersal, while wingless reproductives allow the fast exploitation of local resources 

(Heinze and Keller, 2000).  

The tiny Hypoponera ants exhibit, in contrast to the vast majority of ants, a great 

variety of alternative reproductive strategies and tactics in both males and females. Some 

species produce winged (alate) reproductives, which are typical for ants and which mate on 

nuptial flights, while in other Hypoponera species obligate wingless (apterous) males mate 

with females in or close to the mother colony (Foitzik et al., 2002; Le Masne, 1956; 

Yamauchi et al., 1996; Yamauchi et al., 2001). Our focal species H. opacior represents an 

interesting intermediate form and produces both types of reproductives during two discrete 

mating seasons of the year (Foitzik et al., 2002; Rüger and Foitzik, submitted).  

analysed before. In this study, we investigate the genetic structure of H. 

After a mating and dispersal flight in July, inseminated alate H. opacior queens 

shed their wings and found new colonies independently. During a second mating season in 

late August - early September apterous males mate with apterous (intermorphic) queens 

within or close to the mother nest. These matings, which have been described as mate 

guarding, are quite unusual as apterous males copulate with intermorphic queens for hours, 

while the latter are still partially enclosed in their cocoons (Foitzik et al., 2002). Both 

apterous males and females can only disperse on foot and thus sib-matings are presumably 

rather the rule than the exception. Inseminated intermorphic queens either stay in the 

mother nest or start new nests dependently with the help of workers, most likely in close 

vicinity to the mother nest (Rüger and Foitzik, submitted). The genetic colony and 

population structure of an ant species with such an unusual and flexible reproductive mode 

has not been 
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opacio

strategies of 

wingle

). H. opacior chiefly settles in oak-juniper forests at 

interme

r on different geographic scales, from castes and colonies over patches to 

subpopulations (demes). We thus add to a better understanding on the impact of alternative 

reproductive tactics onto nest organisation, migration and mate choice in ants. 

 In particular, we expect the genetic structure of H. opacior populations to be 

strongly influenced by the frequency and magnitude of long distance dispersal events by 

winged reproductives. If dense H. opacior nest aggregations are the result of only a few or 

even a single colonisation event by an alate queen, a very low genetic variability is 

expected on a microgeographic scale. The few alleles introduced by founder queens might 

also get lost in time through extensive inbreeding of apterous reproductives. Hence in 

addition, the local structure should also be affected by the behavioural 

ss colony members. Our genetic analysis should therefore elucidate how often and 

how far apterous males and females disperse through the subterranean tunnels, which 

connect H. opacior nests. The evolutionary independence of nests in dense aggregations 

with often more than 25 nests per 100 m² in H. opacior (Foitzik et al., 2002) can be low 

through a loss of nestmate recognition abilities of workers, which allow the adoption of 

non-nestmates and thus promote genetic mixing. In extreme cases this could result in a 

unicolonial population structure, which was frequently observed in invasive ant species 

(Drescher et al., 2007; Giraud et al., 2002; Goodisman et al., 2007; Jaquiéry et al., 2005; 

Thomas et al., 2006). Albeit many Hypoponera ants are tramp species, which recently 

established new populations abroad (Delabie and Blard, 2002; McGlynn, 1999; Seifert, 

2004), H. opacior is native to Southeastern Arizona and presumably populated this area for 

a long time (Hunt and Snelling, 1975; MacKay and Vinson, 1989). 

The Chiricahua Mountains in Southeastern Arizona, our main study area, belong to 

the so called “Sky Islands”, mountain ranges at the contact zone of the Rocky Mountains 

and the Sierra Madre, isolated by long stretches of desert habitat (Heald, 1951). Climate 

changes since the Pleistocene let to the retreat of oak-juniper and pine forests to the more 

humid sites along the slopes and on-top of these peaks, which can reach more than 3000 m 

in elevation (Marshall, 1957

diate elevations, and hence its habitat is highly fragmented. The investigation of 

genetic differentiation in this special geographic setting is of exceptional interest. Our 

macrogeographic population genetic analyses may thus provide novel insights into 

migration rates of the tiny alate reproductives between different slopes of the same and in-

between mountain ranges, which are often separated by more than 50 km of desert scrub or 

grass habitat. 
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In many animals, females and sometimes also males actively choose their mating 

partner to increase their reproductive success (Kokko et al., 2006). Ants, in contrast, 

commonly mate during nuptial flights (Hölldobler and Wilson, 1990), in which due to 

intense scramble competition active choice appears to be barely possible. Yet, apterous 

males of H. opacior mate in the safety of the nest and guard females in copula for several 

hours (Foitzik et al., 2002). Males not in copula constantly antennate developing females 

and thus might actively choose their mating partners. However, most of the available 

virgin females in the nest are close relatives, so that males should actively search for less 

lated females to avoid inbreeding. In this study we used highly variable genetic markers 

 determine whether apterous H. opacior males show inbreeding avoidance. 

Inbreeding in haplodiploid Hymenoptera with their typical complementary sex 

determ ntal impact on colony fitness, which is caused by the 

. Under single locus complementary sex 

izygous individuals on the sex 

us, will 

develop

 the production of diploid males, 

most H

re

to

ination can have a very detrime

production of sterile diploid males (Cook, 1993)

determination, predominant in ants, bees and wasps, hem

locus will develop into males, while heterozygous eggs will become females (Whiting, 

1939; Whiting, 1943). Fertilized eggs, which are homozygous at the sex loc

 into sterile diploid males (Agoze et al., 1994; Stouthammer et al., 1992). The 

honey bee sex locus was recently sequenced and was found to be under diversifying 

selection, as expected to avoid the costly production of diploid males (Beye et al., 2003; 

Hasselmann and Beye, 2004). Especially during colony foundation, when workers are 

important, diploid males are a large burden to the colony and often lead to an early colony 

death. Only very rarely direct fitness costs of diploid males are postponed, when they 

manage to mate and father triploid offspring, which, however, are always sterile (Agoze et 

al., 1994). Thus, to evade the fitness costs associated with

ymenopterans strongly avoid inbreeding through population-wide mating swarms 

and long distance flights of both sexes e.g. in Apis and Melipona bees (Michener, 1974) or 

by temporal separation of female and male dispersal (Hölldobler and Bartz, 1985; 

Hölldobler and Wilson, 1990). 

However, in Hymenopterans with within-nest matings such as many Hypoponera 

or Cardiocondyla species (Foitzik et al., 2002; Schrempf et al., 2006; Schrempf et al., 

2005; Yamauchi et al., 1996; Yamauchi et al., 2001), inbreeding is often the rule, so that an 

alternative sex determination system has to be used or diploid males have to be eliminated 

at a very early stage, as in honey bees (Santomauro et al., 2004). Our genetic analysis will 

also allow us to estimate the frequency of diploid males. 
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 In summary, the aims of our microsatellite study are fourfold. First, in a population 

genetic project we investigated structure and gene flow between subpopulations both 

within and between different mountain ranges in Southeastern Arizona. Second, we 

analysed intranest relatedness, colony and population structure of H. opacior on a 

 both genetic methods and nestmate recognition experiments. 

) in 1998 and 

etween 2003 and 2005. We genotyped a total of 855 individuals from 376 nests.  

Samples were preserved in 100 % ethanol and frozen at –20 °C until DNA 

extraction. Ants were washed in ddH2O and thoroughly homogenised after treatment with 

liquid nitrogen. Subsequently, DNA was isolated using the Puregene DNA extraction kit 

(Gentra Systems). The five microsatellite loci HoP 26, HoP 54, HoP 58, HoP 60 and HoP 

64 (Rüger et al., 2005) were amplified in a PXE 0.2 Thermal Cycler (Thermo Electron 

Corporation) following the protocol and program given in (Rüger et al., 2005). Fragment 

length was detected on a MegaBACE (Amersham Biosciences) and analysed using the 

program Fragment Profiler 1.2 (Amersham Biosciences). 

To investigate general patterns of genetic diversity, a subsample with only diploid 

individuals from the Chiricahua Mountains were used. Deviations from Hardy-Weinberg 

equilibrium, observed and expected heterozygosities and the inbreeding coefficient FIS at 

each locus were calculated with the program GENEPOP version 3.4 (Raymond and 

Rousset, 1995) or FSTAT Version 2.9.3 (Goudet, 2001). Furthermore, unidirectional and 

ymmetrically relatedness values between castes were calculated with the program 

E

microgeographic scale, using

Third, we analysed whether apterous males mate assortatively to avoid inbreeding. Finally, 

we calculated inbreeding coefficients and investigated the occurrence and frequency of 

diploid males.  

 

 

Material & Methods 

Samples and microsatellite analysis 

Hypoponera opacior colonies were collected in Southeastern Arizona (USA

b

s

RELATEDNESS 5.0.8 (Goodnight and Queller, 1994; Queller and Goodnight, 1989). For 

these calculations we weighed colonies equally and 95 % confidence intervals were 

estimated by jackknifing over nests (or in cases with sample sizes smaller then the number 

of loci, over loci). The frequency of null alleles was estimated using the equation: r = (H  – 
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HO) / (1 + HE) (Brookfield, 1996). A general absence of linkage disequilibrium between 

these five microsatellites was formerly shown in H. opacior, with the single exception of 

the loci HoP 26 – HoP 58, which behave not entirely independent (Rüger et al., 2005). 

 

Macrogeographic structure 

We sampled six geographically separated subpopulations from the Chiricahua Mountains. 

In addition, we collected H. opacior nests from one subpopulation each in three adjacent 

mountain ranges; the Santa Catalina-, the Pinaleno- and the Huachuca Mountains (Figure 

1). For population genetic analysis we genotyped 268 workers, a dealate and an 

intermorphic queen. We sampled on average 30 nests per deme with a range from 27 to 34. 

Only a single individual per nest was genotyped to investigate the genetic differentiation 

between demes. To avoid multiple sampling of individuals from the same colony due to 

polydomy (multiple nest-sites per colony) of H. opacior, a minimum distance between 

sampled nests of at least five meters was maintained. FST-values were calculated with the 

program Microsatellite Analyser (MSA) (Dieringer and Schlötterer, 2003).  

 

 

Figure 1: Collecting sites of Hypoponera opacior in Southeastern Arizona; (USA) 1 = Cave 
Creek (Chiricahua Mts, N 31° 52.867′, W 109° 11.682′); 2 = F-Plot close to SWRS (Chiricahua Mts, N 31° 
52.000', W 109° 12.609'); 3 = Pinery Canyon (Chiricahua Mts, N 31° 57.089', W 109°18.595'); 4 = Price 
Canyon (Chiricahua Mts, N 31° 45.131', W 109° 15.184'); 5 = West Turkey Creek (Chiricahua Mts, N 31° 
51.883', W 109° 21.489'); 6 = Rucker Canyon (Chiricahua Mts, N 31° 45.427', W 109° 22.201'); 7 = Mt. 
Graham (Pinaleno Mts, N 32° 38.740', W 109° 48.707'); 8 = close to Nickville (Huachuca Mts, N 31° 
26.214', W 110° 16.535'); 9 = Mt. Lemmon (Santa Catalina Mts, N 32° 21.863', W 110° 42.659'). 
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Microgeographic structure and behavioural observations 

The microgeographic genetic structure of H. opacior was investigated on a 6.0 m x 16.5 m 

area (F-plot) with a high nest density, which was located on the eastern slope of the 

Chiricahua Mountains (Figure 1; close to subpopulation 2, Elevation: 1659 m above sea 

level). In August 2004, we inspected every potential nest site closely by turning every 

stone / small rock in this study plot and mapped the exact position of each nest. Ant nests 

were maintained in three-chamber-boxes (10 cm x 10 cm x 3 cm) with a moistened plaster 

floor in the laboratory of the Southwestern Research Station and fed ad libitum with dead 

insects every other day. With a subsample of 14 nests we conducted aggression tests in 

mid-Au

st, each worker 

as used only once. Behavioural interactions in these encounters were recorded by scan 

ampling every twenty seconds during a period of five minutes. In addition, we recorded 

biting uring the duration of the trials. We genotyped five workers per nest if 

available to elucidate the genetic colony structure. To test for an association between 

e constructed half-matrices of geographic distance, 

ary sex determination 

entails 

roductives are infrequent but long-lasting, as mate 

uarding is typically for apterous males (Foitzik et al., 2002). To investigate mate choice, 

e removed mating pairs and stored them in 100 % ethanol. As a control, we removed in 

ach case a randomly chosen intermorphic queen and an apterous male from the same nest 

nd preserved them in 100 % ethanol. The caste of the female was determined under the 

gust 2004. Workers of each nest were marked with enamel paint and aggression 

behaviour was observed in pair-wise encounters in a neutral arena (diameter: 10 mm) 

under a stereo microscope. We tested all possible combinations between study nests 

including nestmate controls, and so far enough workers were present in a ne

w

s

ad libitum d

distance, relatedness and behaviour, w

symmetrical relatedness values between each pair of nests and the seven different 

behaviours observed during the experiments. Matrices comparisons were conducted with 

the Mantel test (program: XLSTAT) (Mantel, 1967; Mantel and Valand, 1970). 

 

Assortative mating and diploid males 

Inbreeding in Hymenopteran species with the typical complement

tremendous costs in the production of sterile diploid males. Therefore, we expected 

apterous males to avoid inbreeding by preferentially mating with less related virgin queens. 

In August 2004 and 2005, H. opacior nests, which were maintained in the laboratory at the 

Southwestern Research Station, were checked regularly for ongoing copulations. 

Copulations between apterous rep

g

w

e

a

  



Chapter III                                                                                                                          65  

stereo microscope, because apterous males sometimes accidentally try to copulate with 

sterile workers. For this analysis we genotyped 152 individuals at our five microsatellite 

e only genotyped reproductives and assessed their unidirectional relatedness from 

ale to female in both groups (mating pairs and nestmate controls) with the program 

RELATEDNESS 5.0.8 (Goodnight and Queller, 

unidirectional relatedness values  co

dependant sam  to labo y e  apterous which emerged from 

the cocoon in th ory, wer a  to other nests and were thus restricted 

to mate with interm

As pointed out above, H. c  severe costs from the production of 

diploid males caused by regular sib-matin  betw n apte . We attempted 

to estimate these costs by analysing the frequency of diploid m

enotyped 93 apterous and 18 alate males at all five microsatellite markers. 

locus were generally high, yet 

lower than expected given the high number of alleles. Consequently, inbreeding 

coefficients (FIS) were consistently positive, and overall loci strong inbreeding was 

detected (FIS = 0.447, 95 % CI: 0.33 – 0.60). This finding is consistent with the intra-nest 

matings of the apterous reproductives. Furthermore, deviations from Hardy-Weinberg 

equilibrium were significant (p < 0.00001, for each of the five loci). 

An estimation of null alleles, which could also cause heterozygote deficiencies, was 

significantly higher than the actually missing amplification products in our samples for 

each of the five loci (Chi square test for each locus separately: p < 0.00001, respectively). 

Thus null alleles can not explain the high frequency of homozygotes; rather regular 

inbreeding appears to be the cause. 

 

 

 

 

loci. W

m

1994; Queller and Goodnight, 1989). The 

per nest were statistically mpared with the t-test for 

ples. Due rator  maint nance, males, 

e laborat e un ble to disperse

orphic queens from the same nest. 

 opa ior might suffer

g ee rous reproductives

ales. For this purpose we 

g

 

 

Results 

General patterns of genetic diversity 

Our five microsatellite markers were highly variable for H. opacior with between 14 – 36 

alleles per locus (Table 1). Observed heterozygosities per 
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able 1: Number of alleles (NA), observed and expected heterozygosities (HO, HE) and the inbreeding 

Locus NA HO HE FIS 

T
coefficient (FIS) after (Weir and Cockerham, 1984) for all five loci. Calculations were based on a data set of 
630 diploid H. opacior individuals from 283 nests from the Chiricahua Mountains (AZ, USA). 
 

 

HoP 26 24 0.462 0.848 0.456 

HoP 54 33 0.584 0.866 0.326 

HoP 58 14 0.188 0.810 0.768 

HoP 60 36 0.562 0.933 0.398 

HoP 64 26 0.614 0.864 0.289 

Over all loci    0.447 ± SE 0.08  

(95 % CI: 0.33 – 0.60) 

 

 

 All unidirectional- and symmetrically relatedness values between the different 

castes in H. opacior nests are given in Table 2. The relatively low relatedness values for 

Hymenopteran colonies of 0.20 can be explained by regular polygyny, multiple mating and 

polydomy in nests headed by intermorphic queens. Relatedness coefficients were generally 

higher in nests collected in August than in June and these differences were significant for 

queens and workers (Table 2). 
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n June and August, Table 2: Relatedness coefficients (r) between all Hypoponera opacior castes i
respectively. Unidirectional relatedness is indicated by an arrow (→) and symmetrical relatedness by a dash 
(–). The number of nests investigated (N), the standard error (SE), the 95 % confidence interval (CI) and the 
p-value for the t-test comparing r-values between June and August are given (significant p-values are in bolt). 
 
 



 68                                                                                                                          Chapter III

M

P lation gen analysis rev d significa structure in H. opacior from theastern 

Arizona and as a rule restricte flow bet the different subpopulations (Table 3). 

The estimated ue over i and su ations w 1 (95 % .057 – 

0.085). Over all nine study sites, geographic distance was significantly and positively 

associated with genetic differentiation (Figure 2; Mantel test: r = 0.648, p < 0.0003). 

However, this association was entirely due to subpopulations from the Chiricahua 

Mountains being genetically m ilar. 

 
T  3: Genetic rsity at micro ite markers o ne H. opacior opulations fro ur different 
m ain ranges i ern Ari
 

     

acrogeographic scale 

opu etic eale nt  Sou

d gene ween 

FST-val  all loc bpopul as 0.07  CI: 0

ore sim

able
ount

div
n So

e sat
zon

ell f ni subp m fo
utheast a. 

 HoP 26 HoP 54 HoP 58 HoP 60 HoP 64
Chiricahua Mts. (Subpopulation 1; n = 30) 
NA 10  

 

 = 27) 

NP 2 1 0 0 0 

E
Chiricahua Mts. (Subpopulation 3; n = 61) 
NA 7 14 6 19 9 
NP 1 0 0 0 0 

 
Chiricahua Mts. (Subpopulation 4; n = 30) 

11 19 10 18 14 
2 1 0 2 0 

16.47  15.54 .03 

0.947 9 0.934 91 
lation 5; n = 29

A 11 10 19 6 
NP 0 0 0 1 0 
AR 7.75 9.95 8.61 15.32 5.70 
Ho 0.286 0.577 0.276 0.448 0.552 
HE 0.740 0.873 0.605 0.919 0.742 

18 10 21 14 
NP 0 2 0 2 2 
AR 8.62 16.19 8.99 17.30 11.54
Ho 0.467 0.586 0.200 0.567 0.567 
HE 0.838 0.946 0.863 0.940 0.845 
Chiricahua Mts. (Subpopulation 2; n
NA 10 17 6 17 11 

AR 9.44 14.33 5.98 15.09 9.81 
Ho 0.519 0.556 0.111 0.704 0.296 
H  0.884 0.908 0.813 0.933 0.832 

AR 5.95 12.01 5.42 15.76 8.53 
Ho 0.258 0.484 0.032 0.710 0.548 
HE 0.628 0.906 0.512 0.939 0.774

NA 
NP 
AR 8.78 
Ho 0.467 0.633 0.310 0.750 0.793 

9.07 11

HE 0.819 0.86 0.7
Chiricahua Mts. (Subpopu
N  9 

) 
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Chiricahua Mts. (Subpopulation 6; n = 30) 
NA 12 13 8 20 11 
NP 1 0 0 0 2 
AR 9.76 13.00 7.70 16.12 9.59 
Ho 0.400 0.722 0.172 0.690 0.733 
HE 0.829 0.900 0.927 0.930 0.830 
Pinaleno Mts (Subpopulation 7; n = 28) 
NA 11 7 7 9 5 
NP 1 0 1 0 0 
AR 9.86 6.15 5.79 8.42 4.60 
Ho 0.357 0.500 0.214 0.357 0.370 
HE 0.837 0.634 0.493 0.808 0.458 
Huachuca Mts (Subpopulation 8; n = 34) 
NA 11 14 7 13 11 
NP 
AR 

2 
8.85 

0 
11.69 

0 
6.10 

0 
9.33 

1 
8.96 

Ho 0.618 0.576 0.152 0.485 0.500 
HE 0.803 0.878 0.603 0.825 0.625 
Santa Catalina Mts (Subpopulation 9; n = 31) 

E 0.898 0.294 0.864 0.763 
Total (Subpopulation 1-9; n = 270) 
NA 24 27 15 32 26 

NA 9 13 5 13 12 
NP 0 0 0 0 1 
AR 8.37 11.62 4.46 10.70 9.66 
Ho 0.387 0.567 0.129 0.484 0.600 
H  0.864 

 

e relations

NA: total number of alleles; NP: number of private alleles; AR: allelic richness; HO: observed heterozygosity; 
HE: expected heterozygosity; n: number of analysed ant colonies. 
 
 
 
 
 
Table 4: Results of Mantel tests (r- and p-value) on th hip between the internest distance, 
symmetrical relatedness and aggression (number of bites during the behavioural tests). Significant p-values 
are given in bolt. Workers from thirteen larger nests from a 99 m² Chiricahua study plot were used. 
 
 
Groups R p 

Distance – relatedness - 0.270 0.014 

Distances – aggression   0.215 0.057 

Relatedness – aggression - 0.137 0.229 
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Figure 2: Isolation-by-distance in Hypoponera opacior from Southeastern Arizona. Positive association 
between geographical distance (km) and multilocus microsatellite estimates of pairwise differentiation 
between demes (FST; M
between subpopulations

antel test: r = 0.648, p < 0.0003). Lower oval comprises pairwise comparisons 
 within Chiricahua Mts. and the upper oval those between subpopulations from 

different

test: r = 0.079, p = 0.774).  

To investigate population genetic structure between the four different mountain 

enetic data from the different Chiricahua Mountains 

 mountain ranges.  
 

 

In a second analysis, we concentrated on structure within the Chiricahua 

Mountains. Pairwise FST-values between the six demes showed a mean of 0.033 and 

ranged between 0.007 and 0.065. Only three of all possible comparisons were not 

significantly different from zero. The FST-values between Chiricahua Mountain 

subpopulations were significantly lower than those between subpopulations from different 

mountain ranges (t-test for independent samples: n 1, 2 = 15, 21, t = 7.59, p < 0.00001). Our 

study sites within the Chiricahua Mountains had a mean distance of 15.9 km (range: 4.6 

km to 24.1 km), yet linear distance was not associated with genetic differentiation (Mantel 

ranges in more detail, we merged the g

subpopulations into a single sample. Consequently, we found a mean pairwise FST-value of 

0.099 between these four mountain ranges (range: 0.059 to 0.151) at a mean distance of 

117.7 km (range: 89.0 km to 154.0 km) between these subpopulations. Surprisingly, in this 

data set, geographic distance and genetic differentiation were negatively correlated (Mantel 
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test: r = -0.886, p = 0.025), indicating more distant sites to be genetically more similar. 

This negative association could not be detected, when we included a single, randomly 

chosen deme from the Chiricahua Mts. (for all six Mantel tests: p > 0.05). 

 

Microgeographic scale and behavioural observations 

The microgeographic structure of H. opacior was investigated in a 99 m² plot from the 

eastern slope of the Chiricahua Mountains (Figure 1; close to subpopulation 2: F-plot). In 

total, we found 40 H. opacior nest chambers, i.e. nest density was high with 0.40 nests / 

m². We genotyped 102 workers from 30 nests (mean number of individuals per nest = 3.4, 

r nge: 1 to 5) and h allelic di r microsatellite markers even in this 

very small patch. s range nine a  median allelic 

diversity was eigh  diversi al, representing on average about 

3 eles  larg  ent ear 

d irw ated ot a r = 

-

To analyse behavioural colony boundaries, we conducted simple aggression tests 

r which we used a subsample of nests (N = 14). These nests were larger and contained at 

least te

 workers interacted invariably peacefully, while non nestmate 

orkers attacked and bit each other much more frequently (Mann-Whitney U test: n 1,2 = 

4, 66, U = 234.5, p < 0.003). In addition, the Mantel test revealed a significant negative 

association between distance and symmetrical relatedness values between these larger 

nests (Table 4). Further, aggression (N of bites) slightly increased with distance between 

e nests. Finally, aggression and relatedness between nests were not associated.  

 

a  found a hig versity at ou

 Allele number d from six to lleles and

t. Hence genetic ty was substanti

0 % of the all  found in our much er sample from the ire Chiricahua Mts. Lin

istance and pa ise symmetrical rel ness values were n ssociated (Mantel test: 

 0.045, p = 0.351). 

fo

n workers. During the aggression tests, ants interacted rarely and biting was the 

most prevalent behaviour, which we consequently analysed statistically. First of all, our 

aggression tests could demonstrate well-developed nest mate recognition abilities in 

H. opacior. Nestmate

w

1

th

Assortative mating and diploid males 

In order to elucidate inbreeding avoidance by apterous males we compared relatedness 

values between copulating pairs and non-mating controls from 13 nests in August 2004 

and 2005, respectively. Relatedness values did not deviate from a normal distribution 

(Kolmogorov-Smirnov test: p > 0.20) and the results are given in Table 5. Interestingly, in 
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August 2004 males were copulating with females, which were significantly more closely 

related to them than randomly chosen males and intermorphic queens from the same nests 

(control). Yet, in the August 2005 data set, relatedness between mating pairs and controls 

did not differ. Overall, males obviously do not select mates according to their relatedness 

(Table 5). 

 
Table 5: Mate choice in H. opacior. Comparison of the relatedness values between mating pairs of wingless 
reproductives (mating) and non-mating controls (control) from the same nest. Significant p-level for the t-test 
for dependant samples is given in bolt. 
 

 

 Mating  

Male → queen 

r ± 95 % CI, n 

Control 

Male → queen 

r ± 95 % CI, n 

 

T-test for dependant 

samples  

August 2004 0.601 ± 0.194, 13 0.402 ± 0.194, 13 T =   3.410, p = 0.005 

August 2005 0.363 ± 0.205, 13 0.408 ± 0.166, 13 T = - 0.559, p = 0.586 

August 04 & 05  0.480 ± 0.138, 26 0.405 ± 0.119, 26 T =   1.179, p =

 

 

Finally, our genotyping did not uncover a single diploid male among 111 H. 

opacior males investigated. All males were shown to be hemizygous at all of these highly 

variable genetic markers, indicating an absence or a very low frequency of adult diploid 

males in H. opacior.  

 

 

Discussion 

 

 

This first genetic study on the population and colony structure of Hypoponera ants with 

their fascinating reproductive strategies revealed strong geographic structuring and high 

levels of inbreeding. Genetic structuring on a microgeographic scale was influenced by the 

reproductive tactic of apterous reproductives in H. opacior with their restricted dispersal 

abilities, intra-nest matings and regular polygyny and polydomy. Nevertheless, relatedness 

analysis demonstrate that nests have a distinct genetic composition different from that of 

 0.250 
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surrounding nests and that, on a behavioural level, workers treat nest mates with less 

aggression than workers from neighbouring nests. In this aspect, H. opacior, which is 

native to Southeastern Arizona, differs from many tramp and invasive ant species with 

could not explain genetic differentiation. This is 

their typical unicolonial colony structure (Drescher et al., 2007; Giraud et al., 2002; 

Goodisman et al., 2007; Jaquiéry et al., 2005; Thomas et al., 2006). Furthermore, our 

intranest relatedness estimates varied between the seasons. Higher relatedness values in 

late summer indicates a higher number of queens contributing to the offspring emerging in 

June, which is supported by demographic analysis (Rüger and Foitzik, submitted). Our 

genetic analysis support observations that apterous reproductives are highly related. 

Moreover, males do not appear to select less related mating partners. Indeed our data from 

2004 suggests that they might actively choose more closely related intermorphic queens for 

mating. Albeit our behavioural observations and genetic data demonstrated regular 

inbreeding, we uncovered no evidence for the production of diploid males. This indicates 

that H. opacior colonies either remove diploid male eggs or larvae at an early stage or 

more likely that Hypoponera ants use a sex determination mechanism other than the 

typical Hymenopteran complementary sex determination system (Cook, 1993). 

Structuring (mean FST of 0.10) was very pronounced between the different mountain 

ranges given the relatively short distances of around 100 km between sites. Comparable or 

lower genetic differentiation was shown for a number of ant species between 

subpopulations, which are separated by several hundred up to a thousand kilometres 

(Brandt et al., 2007; Sanetra and Crozier, 2003). Moreover, the FST-values between the six 

Chiricahua sites indicate moderate genetic differentiation (Hartl and Clark, 1997) between 

subpopulations, which were from 4 to 24 km apart. Indeed, significant restriction in gene 

flow was found in twelve of 15 possible pairings of Chiricahua subpopulations. Albeit we 

found such strong structuring, genetic differentiation in general did not increase with 

distance. Only subpopulations from within the Chiricahua Mountains were genetically 

more similar than demes from other mountain ranges. Yet, even within the mountain range 

of the Chiricahuas, linear distance 

supposedly due to the strong physical structuring of the area, with steep mountain slopes 

and unfavourable habitats both on the hot desert plains and on the cold boreal fir forests on 

the mountain tops. Air-line distance does not take into account physical migration barriers 

or the regular direction of the wind. H. opacior alates participate in mating flights in July 

(Rüger and Foitzik, submitted), during the North American Monsoon, when winds 

predominantly blow from a westerly direction in Southeastern Arizona (Chakraborty and 
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Krishnamurti, 2003). Yet, wind direction could not explain fixation indices between the 

four mountain ranges (data not shown). Hence passive transport of winged males or 

females is not responsible for the observed macrogeographic genetic structure. 

Surprisingly air-line distance was negatively correlated to genetic distance between 

mountain ranges, when all subpopulations from the Chiricahuas were lumped into one. 

Analyses based on just a single, randomly chosen Chiricahuan subpopulation instead 

revealed the complete absence of isolation-by-distance. Taken together with the 

unexpectedly high allelic diversity in all studied subpopulations, extant populations of H. 

opacior in the “Sky Island region” potentially represent refuge populations from a very 

large ancestral population. Indeed, several climate changes since the Pleistocene strongly 

reduced the area with adequate habitat conditions for H. opacior in the Southwestern 

e dramatic consequences. An alternative hypothesis to explain the current 

southwestern Europe. Workers of each supercolony are peacefully accepted in every nest 

United States. During the late Wisconsinan (22,000 to 11,000 years before present), when 

the climate in this area was meseic and cooler, woodland communities spread across 

present desert sites at lower elevations, serving as a link between mountain ranges 

(Thompson and Anderson, 2000; Van Devender and Spaulding, 1979). Yet, about 11,000 

years ago the climate became warmer and dryer. Desertification of the lowlands apparently 

forced species such as H. opacior, which are adapted to more humid conditions, to retreat 

to mountain slopes. Genetic data also support such a scenario for populations of the ridge-

nosed rattlesnake Crotalus willardi from the Sky Island region (Holycross and Douglas, 

2007). Our study species, H. opacior, has its centre of distribution in tropical Central 

America and the southern parts of the United States are the most northern parts of its 

range. For species at the ecological boundaries of their distribution, minor climate changes 

can hav

distribution of H. opacior in Southeastern Arizona would be that subpopulations 

populations were established through long distance dispersal over extended stretches of 

uninhabitable desert. Yet, this would have resulted in extreme genetic bottlenecks and a 

strong association between distance and genetic differentiation, assumptions, which can 

not be supported by our genetic data.  

On a microgeographic scale, we found significant relatedness among nest mates and, on a 

behavioural level, recognition and aggression towards non-nestmates. Hence H. opacior 

populations in Southeastern Arizona have a multicolonial structure, which strongly differ 

from supercolonial species as the invasive Argentine ant Linepithema humile with its two 

unicolonial supercolonies, which cover a stretch of 6000 km along the shore of 
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throughout its range, but aggression is extremely high between both colonies (Giraud et al., 

2002; Jaquiéry et al., 2005). Despite the general multicolonial nest structure in H. opacior, 

ng 

tzik et 

al., 2002), but is unusual for Hymenopterans with single locus complementary sex 

determination, where the production of sterile, diploid males should incur high fitness costs 

(Cook, 1993; Crozier and Pamilo, 1996). Indeed, our analysis of mate choice by apterous 

males indicated that males either actively choose closely related mating partners or show 

random mating in respect to relatedness. Additional studies will demonstrate whether H. 

opacior males indeed under certain circumstances preferentially mate with close relatives 

as our 2004 data suggest. Active inbreeding was recently shown in a cichlid fish, where 

mating partners might benefit from a higher relatedness because it enhances cooperation 

we found relatedness between nests to decrease with internest distance for larger nests. An 

increased relatedness among neighbouring nests, also known as population viscosity, is 

generally associated with low dispersal capabilities of founding queens (Hamilton, 1964; 

Pamilo, 1998). Population viscosity, the result of philopatry in queens or dependant 

founding of new colonies is typical for polygynous (several queens per nest) ant species 

(Crozier et al., 1984; Giraud et al., 2000; Pamilo, 1983). Correspondingly, the low, yet 

detectable viscosity at the fine scale in H. opacior can be explained by polydomy, 

polygyny and dependant colony foundation of apterous queens on foot, which are 

accompanied by workers (Foitzik et al., 2002; Rüger and Foitzik, submitted). 

Clearly the main function of alate reproductives is long distance dispersal and discovery of 

new, unoccupied sites, while local exploitation appears to be more efficient by apterous 

reproductives. This dual reproductive strategy in H. opacior, with outcrossing alates in 

June and inbreeding apterous reproductives in August, resembles the mixed breeding 

system in Viola plants with cross-pollinating chasmogamous and self-pollinating 

cleistogamous flowers (Culley, 2002). Outbreeding chasmogamous flowers occur in early 

spring (mid-April to May) and are typically pollinated by insects, whereas self-pollinati

flowers are produced after the canopy has formed (May to September) (Culley, 2002; 

Culley, 2003). Such a dual strategy may combine several advantages: Outbreeding allows 

new combinations of the genome, which might be advantageous for colonizing new 

habitats, while selfing (inbreeding) conserve favourable gene combinations for the local 

habitat. 

Our study further demonstrates a strong footprint of regular inbreeding in H. opacior. This 

was expected by our behavioural observations of habitual within-nest mating (Foi
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(Thunken et al., 2007) and is quite common in plants, where selfing prohibits the beak-up 

inations (Goodwillie et al., 2005). 

 respect to our analysis of relatedness between mating partners in H. opacior we have to 

ote that our laboratory nests disallowed males to leave the mother nest and disperse. In 

evertheless, our genetic data unambiguously demonstrate 

igh rates of inbreeding. Indeed, the FIS-values in H. opacior were only slightly lower than 

the highest values ever reported in ants, which were found in the ant Cardiocondyla batesii 

with regular intranidal mating (Schrempf et al., 2005). Several generations of inbreeding 

should theoretically result in a nearly clonal nest structure as modelled for the ant 

Technomyrmex albipes (Tsuji and Yamauchi, 1996). In stark contrast, H. opacior nest 

aggregations exhibit relatively high allele numbers, which points towards multiple, or even 

frequent colonisation events of suitable habitats by alate queens. Although nests headed by 

a dealate queen were relatively rare (about 5 % of all nests), all colony types contributed to 

the production of alate sexuals, which emerge in late June and participate in nuptial flights 

after the onset of the North American Monsoon in July (Rüger and Foitzik, submitted).  

Albeit inbreeding was exceedingly high, we did not detect adult diploid males. This might 

indicate a sex determination system in Hypoponera ants other than single locus 

complementary sex determination common for Hymenopterans. Indeed, the production of 

diploid males has been reported for more than 40 species of social Hymenoptera, and 

supported in these species complementary sex determination (van Wilgenburg et al., 2006). 

An in-depth investigation of the sex determination mechanism in H. opacior will be 

difficult as it demands laboratory breeding and has to be the focus of future studies. 

of locally adapted gene comb

In

n

dense nest aggregations of H. opacior nest chambers are often connected through 

subterranean tunnels (Foitzik et al., 2002). Apterous males, albeit equipped with a weakly 

sclerotised cuticule, can potentially migrate to neighbouring nests, where they could find 

less related mating partners. N

h

  



Chapter III                                                                                                                          77 

 

 

 

Acknowledgements 

 

 

We are grateful to the Southwestern Research Station (SWRS) for accommodation and 

support. Funding came from the DFG (German Science Foundation, Fo 289/5) and two 

grants (SWRS Student Support Fund) from the American Museum of Natural History 

(New York) in 2004 and 2005. 

 



  

 

  



Chapter IV                                                                                                                          79  

Chapter IV 
 

 

 

 

Larval cannibalism  

and worker-induced separation  

of larvae in Hypoponera ants:  

a case of  

conflict over caste determination? 
 

 
Markus H. Rüger, Janine Fröba and Susanne Foitzik 

 

 

 

 

 

 

 

 

 

__________ 

Online First: Insectes Sociaux (2007)

  



  

  



Chapter IV                                                                                                                          81  

 

Abstract 

 

 

Reproductive altruism and cooperative brood care are key characteristics of eusocial 

insects and reasons for their ecological success. Yet, Hymenopteran societies are also the 

stage for a multitude of intracolonial conflicts. Recently, a conflict between adult and 

larval colony members over caste fate was described and evidence for overt conflict was 

uncovered in several bee species. In theory, diploid larvae of many Hymenopteran species 

should experience strong fitness benefits, if they would be able to change their 

developmental pathway towards the queen caste. However, larval self-determination 

potential is low in most advanced eusocial Hymenopterans, because workers often control 

larval food intake and queen-worker caste dimorphisms are generally high. In the ant genus 

Hypoponera, larvae actively feed on food provided by workers and here we show 

extremely low queen-worker size differences in these ants: the lowest in H. opacior, where 

fertile wingless (intermorphic) queens weigh on average only 13 % more than workers. 

Thus, slightly better nutrition during development might change the fate of a Hypoponera 

larva from a completely sterile worker to a fertile queen. One possibility to obtain extra 

food for Hypoponera larvae with their well-developed mandibles would be to cannibalise 

adjacent larvae. Indeed, we observed frequently larval cannibalism in natural nests. Yet, 

adult workers apparently try to prohibit larval cannibalism by carefully separating larvae in 

the nest. Larvae, which were experimentally brought into close contact, were rapidly set 

apart. Workers further sorted larvae according to size and responded swiftly to decreasing 

food levels, by increasing interlarval distance. Still, an experimental manipulation of the 

larval cannibalism rate in H. schauinslandi failed to provide conclusive evidence for the 

link between larval cannibalism and caste development. Hence, further experiments are 

needed to determine whether the widespread larval cannibalism in Hypoponera and the 

untypical brood distribution can be explained by an overt caste conflict. 
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Introduction 

 

 

The tremendous success of eusocial Hymenopterans is based on cooperation between 

behaviourally and often also morphologically distinct female castes (Hölldobler and 

Wilson, 1990). Queens, the reproductive caste, generally gain direct fitness, while workers 

only obtain indirect fitness benefits from their altruistic behaviour. In the vast majority of 

Hymenopteran species, female morphological castes are determined through 

environmental factors during larval development (Wilson, 1971; Wheeler, 1986; Wheeler, 

1994). Only very rarely, for example in hybrid zones of seed harvester ants, genetic 

predisposition prevails (Winter and Buschinger, 1986; Fraser et al., 2000; Julian et al., 

2002; Helms Cahan and Keller, 2003; Volny and Gordon, 2002; Heinze and Buschinger, 

1989). Caste determination leads to different developmental pathways of diploid larvae. 

Recent studies on eusocial bees clearly demonstrate differential gene expression in queen 

and worker larvae (Cnaani et al., 2000; Corona et al., 1999; Evans and Wheeler, 1999). 

Also in ants, different genes are expressed in adult ant queens and workers (Gräff et al., 

2007), as could be expected seen the differences in morphology, behaviour and life 

expectancy. Lasius niger queens were found to show an overexpression of genes involved 

in somatic maintenance and reproductive division of labour. 

 In most ant species with environmental caste determination, totipotent diploid 

larvae that receive an above threshold quality or quantity of food develop into queens, 

while less well-nourished individuals will become workers (Wilson, 1971; Wheeler, 1986; 

Wheeler, 1994). Most ant larvae are unable to actively feed, but rely entirely on food and 

water provided via trophallaxis by adult nestmate workers. Hence, the primary decision 

whether an individual will develop into a worker or a queen is thus generally made by 

adult workers, which control larval provisioning (Hunt and Nalepa, 1994). However, ant 

larvae are able to actively signal their needs to workers through a hunger cue as observed 

in the fire ant Solenopsis invicta or via begging behaviour as in Gnamptogenys striatula 

(Cassill and Tschinkel, 1995; Cassill and Tschinkel, 1999; Kaptein et al., 2005). In the 

latter species acquiring extra food through begging might allow G. striatula larvae to 

manipulate their future reproductive options. Similarly, Hypoponera larvae might have 

more control over their food intake as they have well-developed mandibles and actively 

feed on prey delivered by workers. The tiny soil-dwelling Hypoponera ants are well-
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known for their diversity of morphological queen and male castes, both within and 

between species (Foitzik et al., 2002; Yamauchi et al., 1996; Yamauchi et al., 2001). In H. 

opacior, our main study species, we could recently demonstrate that alate queens and 

males develop from overwintered larvae and conduct mating flights in early summer 

(Rüger and Foitzik, submitted). In August / September, H. opacior intermorphic queens 

and wingless (ergatoid) males mate within the mother nest. They are raised from eggs laid 

in spring and early summer. The completely sterile workers emerge in both reproductive 

seasons. Hence, there are three potential developmental pathways for diploid larvae, and 

the question arises whether Hypoponera larvae try to control their caste fate.  

Despite the high level of cooperation in eusocial insect societies, divergent genetic 

interests between colony members can lead to aggressive interactions and even the killing 

of nest mates (Bourke and Franks, 1995; Crozier and Pamilo, 1996). Intracolonial conflicts 

between adults over reproduction and sex allocation were intensely studied during the last 

three decades, and just recently a conflict between adult and larval colony members on 

caste determination was brought to our attention, based on kin selection (Nonacs and 

Tobin, 1992; Bourke and Ratnieks, 1999). The conflict over caste determination arises 

because diploid larvae that develop into queens instead of workers, can obtain higher 

fitness by own reproduction (Bourke and Ratnieks, 1999; Ratnieks, 2001; Wenseleers et 

al., 2003). Conversely, colony productivity increases when a larger proportion of the 

diploid brood develops into workers instead of fertile queens, by which the inclusive 

fitness r by indirect fitness. The conflict over caste fate was 

 workers and reproductives are reared 

simultaneously, when larvae have a high self-determination potential due to low queen-

of adult workers will be highe

thought to be especially intense, when

worker size dimorphism or when larvae have control over food intake (Bourke and Franks, 

1999). Open conflict over caste fate was recently described in Melipona bees, where 

queens are worker-sized and develop in identical, similarly provisioned cells as workers. In 

M. beecheii roughly 5 - 25 % of the diploid larvae in natural colonies develop into queens 

and a large fraction of these superfluous queens are killed upon emergence by worker 

sisters (Ratnieks and Wenseleers, 2005; Moo-Valle et al., 2001; Wenseleers et al., 2004). 

In Schwarziana quadripunctata, another stingless bee, normal queens are larger than 

workers and are reared in special, larger cells on the comb periphery. Yet, in this species a 

second worker-sized queen caste evolved. These dwarf queens are reared in worker cells 

and end up heading more than one fifth of all colonies, albeit they do not have the full 

reproductive potential of normal-sized queens (Wenseleers et al., 2005). Instead of trying 
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to develop into a small queen on low food provisioning, there are more ways to influence 

the caste fate. Hymenopteran larvae can take a more active role by influencing their food 

regime. In some stingless bees of the genera Frieseomelitta and Leurotrigona larvae can 

obtain more food during larval development by biting through cell walls and feeding on the 

provision mass of neighbouring cells (Ribeiro et al., 2006; Faustino et al., 2002). 

Theoretically, ant larvae could enhance their provisioning by feeding on nest mate larvae. 

In Hypoponera active cannibalism between larvae was observed. By their high head 

mobility, well-developed mandibles and active feeding behaviour of Hypoponera larvae 

may allow them to selfishly influence their caste development towards intermorphic 

queens

 impact of food levels on 

larval distribution and finally on caste development.  

 

tudy system, ant collecting and rearing 

Three Hypoponera species were used in this study. Colonies of the Neotropical ant 

in the Chiricahua Mountains AZ, USA close to the 

 which are only slightly larger than their complete sterile workers sisters. It is 

expected according their genetic interest that adult workers try to prohibit cannibalism 

among nest mate larvae and the production of superfluous intermorphic queens by securely 

separating larvae and controlling their food intake. In this study, we quantified caste 

differences and the occurrence of larval cannibalism in three Hypoponera species, 

documented the natural distribution of larvae in ant nests and the influence of workers on 

their distribution. Furthermore, we analysed experimentally the

 

Material & Methods 

S

H. opacior were collected 

“Southwestern Research Station” between 2003 and 2005. This native ant exhibits two 

distinct alternative reproductive tactics with both alate and apterous males and females 

(Foitzik et al., 2002). Colonies from the tramp ant H. schauinslandi (Emery) (formerly 

H. bondroiti, revised by (Seifert, 2004)) were decedents of a laboratory stock originally 

derived from ants found in the soil of a box of African rose chafers, which was sent from 

the “Aqua-Zoo Düsseldorf” (Germany) to a colleague of ours. This Tropical-cosmopolitan 

species occurs in buildings with stable heating conditions throughout Europe (Seifert, 

2004) and exhibits alate and intermorphic queens. H. schauinslandi males are always 

wingless (ergatoid males), but two different morphs, “majors” and “minors”, were 
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described (Yamauchi et al., 1996). The undescribed H. sp., colonies of which were 

collected at the “Tierpark Berlin Friedrichsfelde” (Germany) in 2003, produced during 

three year laboratory maintenance only apterous females and “minor” males. Although this 

species is morphologically very similar to H. schauinslandi it is genetically clearly 

separated based on sequence data from the mtDNA gene Cytochrome Oxidase I and II 

(Sequence divergence of 7.2 %, unpublished data). All three species live subterranean. 

H. opacior modifies pre-existing cavities in soil, favourably under large stones, while 

H. schauinslandi and H. sp. prefer to nest under and in rotten wood (Yamauchi et al., 1996; 

Foitzik et al., 2002).  

Ant colonies were maintained in the laboratory in artificial nests in plastic boxes 

00 mm x 100 mm x 58 mm). Two round nest chambers (20 mm diameter, 1 mm deep) 

were created in moisturized plaster and covered with a microscope slide. The bottom of the 

d with black watercolour to achieve a better contrast to the whitish 

rous morphs, the samples were 

n) or one larva was placed 

(2

chamber was staine

larvae. Ant nests were kept in a climatic chamber at 24 °C constant and a 12/12 h day and 

night rhythm or at room temperature. All colonies were fed ad libitum with living, 

wingless Drosophila sp. and cookie crumbs three times a week. 

 

Castes dry weight 

Individuals of all castes from H. opacior and H. schauinslandi were killed by freezing at -

20 °C. To measure differential investment in alate and apte

dried at 60 °C for 48 h and weighed subsequently with a micro-scale (Satorius). 

 

Occurrence of cannibalism 

To analyse the occurrence of cannibalism between larvae in a standardized way we 

allowed close contact between two ant larvae in the absence of workers for six hours in 

two different positions: two larvae were positioned side-by-side on their two dorsal pairs of 

fleshy tubercles, so called “sticky doorknobs” (parallel positio

on the ventral side of the other (on-top position). The latter resembles the position of food, 

which is usually placed by workers on larva’s ventral side in front of their head. As only 

the on-top position resulted in repeated cannibalism events, all further experiments were 

carried out by placing larvae in this position. In a second part of the experiment, we were 

interested in the influence of larval development on the frequency of cannibalism. Larvae 
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were grouped into three different size classes: small (< 0.7 mm), medium (0.7-1.3 mm) and 

large (> 1.3 mm). The frequency of cannibalism was subsequently observed between 

larvae of the same size class. We decided to conduct all cannibalism experiments over six 

hours, to give larvae enough time for the attack, while remaining in good condition in the 

absence of food and care normally provided by workers. During the experiments larval 

pairs were regularly checked for the occurrence of cannibalism and their position. If a larva 

moved and was not anymore in the desired position, the position was restored. Finally, the 

pairs of larvae were controlled under a dissecting stereo microscope. We noted the 

occurrence of cannibalism when one larva was clearly feeding on the other and the victim 

rva was shrivelled and did not show the typical turgor of healthy larvae.  

 

Half of the nests from each species in the “low food level group” (low) was fed with two 

la

Larval distribution 

To investigate the distribution of Hypoponera larvae in undisturbed artificial ant nests, we 

took digital images of eleven H. opacior nests, which contained between 20 and 129 larvae 

and 14 H. schauinslandi nests with 8 to 26 larvae. In order to obtain precise measurements 

of the length and width of a larva and the distance between its mandibles and its nearest 

neighbour and the length and width of the neighbouring larva, distances were measured 

with “AnalySIS” V 2.11 (Soft-Imaging Software GmbH). Measurements were obtained 

with high accuracy; mean and standard error of ten repeated measurements of the length of 

the same H. schauinslandi larva was 1.28 mm ± 0.01 mm. 

To analyse whether workers purposely cause the unusual larval distribution, we 

experimentally placed all larvae on a large brood pile. For these trials, we used artificially 

composed nests of H. opacior (N = 8) with five workers and 14 larvae and H. 

schauinslandi (N = 8) with eight workers and 20 larvae, each. The larvae were positioned 

on a pile in the centre of the nest chamber, before workers were reintroduced. As soon as 

the first worker discovered a larva, timing started. Digital images were taken after 0, 5, 10, 

15, 30, 60, 120 and 1440 min and the distances between each larvae and its nearest 

neighbour were measured on the screen or as described above. 

 If cannibalistic behaviour of larvae is dependant on food levels, workers could react 

by varying inter-larval distances. To investigate whether workers react adaptively on 

differences in the larval provisioning rate, ten artificially composed H. opacior and ten 

H. schauinslandi nests were assigned to either of two treatments for four consecutive days. 
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Drosophila sp. flies on day two and four, whereas the “high food level group” (high) 

received half a fly three times a day. Each nest contained 20 larvae and four workers, 

spectively. Nests were digitally photographed before the onset of the experiment, and at 

the end of each of the four days. The distances between each larvae and its nearest 

easured with the “AnalySIS” system. We analysed the effects of the 

mpact of cannibalism on caste fate 

inally, we investigated in H. schauinslandi whether larvae, which were allowed to 

cannibalise other larvae, exhibit a higher probability to develop into reproductives in 

comparison to their non-cannibalistic sister larvae. By feeding on conspecifics larvae 

itional food, which under the expectation of a nutrition 

dependent caste determination could lead to a higher probability to reach the queen caste. 

as 

metamorphosed and emerged from its cocoon. 

ll callows were frozen at –20 °C in individually marked Eppendorf caps. They were 

re

neighbour were m

parameters “number of larvae per nest”, “point in time” and “low / high” on the distance to 

the nearest neighbouring larva. Therefore, we conducted a general linear model for each 

parameter separately and for all possible combinations. Non-significant predictors were 

removed sequentially until only significant ones remained. 

 

I

F

cannibalistic larvae received add

Therefore, we artificially composed 20 nests with one intermorphic queen, ten workers and 

nine larvae (one small, five medium and three large; same size classes were used as 

described above). Adult individuals per nest were taken from the same stock nest and were 

marked with a yellow gloss paint dot, whereas larvae were chosen randomly. Ten nests 

were treated as the “cannibalistic group” and the other ten as the “control group”. In the 

“cannibalistic group” all larva from each nest were moved to a separate nest specific box 

with moistened plaster floor. Every larva was provisioned with a living larva, which w

placed on their ventral side in on-top position, as described above. From now on, the lower 

larva had two hours to cannibalise the upper one. In cases where cannibalisation was not 

achieved at that time, we artificially perforated the upper larva with a tiny needle and 

placed it back in the on-top position. After in total six hours, all larvae were placed back 

into their source nests. The “control group” was similarly treated to induce similar stress 

through handling, except that they did not receive the possibility to feed on other larvae. 

Both treatments were repeated for four consecutive days. The demography of all nests was 

monitored every day, until the last larva had 

A
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weighed with a micro-scale (Satorius) and their eye diameter was measured under a 

dissecting microscope. Finally, we dissected the callows to determine their ovary status. 

 

Statistics 

In general, our data were not normally distributed. Consequently, we used non-parametric 

statistics. Abbreviations are as follows: Mann Whitney U test (MWU test), Spearman rank 

order correlation (SRC) and Chi square test (χ2 test). For multiple regression (MR) and 

general linear model (GLM) analyses, we tried to normalize skewed data with a square 

root transformation. Further, ANOVA and subsequent LSD post hoc test were applied. All 

statistical calculations were performed with the program Statistica 6.0 from StatSoft. 

 

 

Results 

Castes of H. opacior differed in their dry weight (ANOVA: F(4,55) = 73.36, p < 0.00001; 

igure 1), albeit the weight ranges of the three female castes overlapped to a certain extent. 

d about 21 % more than intermorphic 

 major 

males in H. schauinslandi, respectively, were heavier then their ergatoid brother-castes 

(Figure 1). In H. schauinslandi queens of both castes, which were included in our 

measurements, had fully developed ovaries. 

 

 

Castes dry weight 

F

Alate queens, the largest female caste, weighte

queens. These intermorphic queens in turn were about 13 % heavier than workers. Weight 

differences in our measurements might slightly underestimate differentiation between the 

two H. opacior queen castes, as most intermorphic queens were inseminated and had 

started ovary development, while alate queens were predominantly virgins at collection. 

 The dry weights of the five H. schauinslandi castes were significantly different 

from each other (ANOVA: F(4,40) = 59.22, p < 0.00001; Figure 1). However, in this species 

we found no weight differences between dealate (alate queens, which shed their wings) and 

intermorphic queens (Fisher LSD post hoc test, p < 0.25). Dealate queens were 48 % and 

intermorphic queens 56 % heavier then workers. Alate males in H. opacior and
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Cannibalism frequencies in Hypoponera larvae 

hen two larvae were placed side-by-side. In contrast, 

cannibalism regularly occurred in all three Hypoponera species, when two larvae were 

laced in the on-top position. Over all experiments, the proportion of cannibalism in H. 

 %. Cannibalism rates were not different 
2 

***

) (5) (5)

igure 1: Dry weights (m acior and
NOVA: H

uinsland
 = 73.3

ean ± S
thin

hey are 
0) = 59.2 H. signi

n of Fisher’s L st hoc  sign , ** = p
.00

Cannibalism was never observed w

p

opacior was 7.6 % and in H. schauinslandi 4.2

from each other (χ = 1.27, df = 1, p = 0.26, n = 251; Table 1). Cannibalism was with 42.9 

% exceptionally common in the undescribed H. sp. (χ2 tests: H. o. - H. sp., p < 0.0001; H. 

s. – H. sp., p < 0.00001). The frequency of cannibalism did not depend on larval size in H. 

opacior and H. schauinslandi (χ2 tests: p > 0.05). In every case of cannibalism the lower 

larva, which was positioned in a regular feeding position, attacked the upper larvae. 
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Table 1: Results of two trial series on the occurrence of cannibalism in H. opacior, H. schauinslandi and H. 
sp.. In the first trial series larval size was not taken into account, while in the second, larvae were grouped 
according to size: small (< 0.7 mm), medium (0.7-1.3 mm) and large (> 1.3 mm). 

 

Species Trial series Larval class On-top trials Cannibalism    

      N   N    %  

H. opacior 1    25   6 24.0 

 2 Small   58   1   1.7 

  Medium   33   2   6.1 

  Large   16   1   6.3 

 Σ  132 10      7.6 

H. schauinslandi 1    58   2   3.5 

 2 Small   20   2 10.0 

  Medium   20   0   0.0 

  Large   21   1   4.8 

 Σ  119   5      4.2 

H. sp. 1    14   6  42.9 

 

 

Distribution of brood in Hypoponera ant nests 

In all three Hypoponera species, larvae were clearly not positioned on a brood pile. 

ontrary to eggs and cocoons, they were noticeably separated from each other in the nest 

hamber. All eggs were placed on a pile and had direct contact to other eggs. Cocoons in 

rong 

 width and length (SRC: H. opacior: p < 0.00001; H. 

chauinslandi: p < 0.00001). Here, we present only the results for larval width, as width is 

probab

C

c

natural nests of Hypoponera were also grouped together in three-dimensional chambers in 

the soil or in cavities in rotten wood (pers. obs.). Our measurements demonstrated a st

association between larval

s

ly more relevant for workers, which are responsible for larval sorting, as they grab 

larvae laterally for transport and may assess their size by their weight and/or the mandible 

opening angel. Larval distribution was not random, but larvae were sorted according to 
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width and inter-larval distances were positively correlated with larval width. In H. opacior 

and H. schauinslandi the mean distance between larval mandibles and the body surface of 

its nearest neighbour was 1.09 mm ± SE 0.02 mm (range: 0.11 – 6.39 mm) and 1.43 mm ± 

SE 0.08 mm (range: 0.13 – 6.03 mm), respectively. A typical larval distribution in an 

artificial H. opacior nest is shown in Figure 2. In each of the two species we found a 

significantly positive correlation between larval width and the width of its nearest 

neighbour overall nests (SRC: H. opacior: rs = 0.268, p < 0.00001, n = 755; H. 

schauinslandi: rs = 0.501, p < 0.00001, n = 224, respectively). However, we also noted 

strong differences between nests, ranging from highly significant positive correlations over 

slight positive tendencies to no correlations at all. Likewise, larval width and distance to its 

nearest neighbour were positively associated (SRC: H. opacior: rs = 0.171, p < 0.00001, n 

= 755; H. schauinslandi: rs = 0.308, p < 0.00001, n = 224). Again, between-nest variation 

was high.  

 

 
 
Figure 2: Typical larval distribution pattern in an undisturbed H. opacior laboratory nest. Workers 
redistribute the larvae on the entire nest surface to provide a minimum space between neighbours. Different 
to larvae, eggs are placed on a pile (above the right nest entrance). The scale bar is equivalent to 5 mm. 
 

 

To investigate larval distribution and sorting in more detail, a multiple regression 

analysis was conducted to investigate the influences of three predictors: width of the first 

larva, number of larvae per nest and width of the second larva on the distance to the nearest 
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n both 

ases negatively associated, but only in H. opacior significantly so. In detail, we found in 

H. opacio ll effect (F(3,75 0.00001), 

a signif cant positiv luence of the width of the first larvae (β = 0.131, p = 0.0004), a 

significant negative influence of th  = -0.273, p < 0.00001) 

and an insignificant value for the H. schauinslandi  

overall effect was again significant positive (F(3,220) = 10.419, R

The width of the f rvae was sig β = 0.156, p = 0.041), the influence 

of the number of larvae per nest was not significant, but again negatively correlated (

0.690, p = 0.309) and the width of the ae was with β = 0.211 and p = 

0.006 significant positive, too. Due to a high correlation between larval length and width, 

we obtained similar results for larval length (SRC: rs = 0.834, p < 0.00001). 

The r-values for spatial relationships were calculated after (Clark and Evans, 1954), 

where zero indicates a complete aggregati  distribution and 2.15 complete 

H. opacior between 0.69 and 1.05 

H. schauinslandi between 0.48 and 1.03. 

Our experimental manipulation of larval distribution, where larvae were positioned 

on an artificial brood pile at

neighbouring larvae. It turned out, that both the overall effect and the width of the first 

larva were significantly positive in both species. The number of larvae per nest was i

c

r a significant positive overa 1) = 30.065, R2 = 0.107, p < 

i e inf

e number of larvae per nest (β

width of the second larva. For  the
2 = 0.124, p < 0.00001). 

irst la nificant positive (

β = -

neighbouring larv

on, one random

over dispersion. R for the larval distribution varied in 

and in 

 the beginning of the experiment, resulted in a rapid 

redistribution of larvae by ant workers in all trials. Distance to the nearest neighbour 

increased rapidly with time within the next few hours (SRC over all colonies: H. opacior rs 

= 0.481, p < 0.00001; H. schauinslandi rs = 0.425, p < 0.00001; Table 2). 
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Table 2: Workers of H. opacior and H. schauinslandi actively redistribute larvae that were artificially 
positioned on a brood pile. The rs and p-values of the Spearman rank order correlations between time and 
distance of each larva to its nearest neighbour are given for each nest and over all nests, respectively. 
 

 
          Hypoponera opacior Hypoponera schauinslandi 

Nest # rs P rs P 

  1 0.407         <0.0001 0.386 <0.00001 

  2 0.441         <0.00001 0.554 <0.00001 

  3 0.336         <0.001 0.360 <0.00001 

  4 0.532         <0.00001 0.605 <0.00001 

  5 0.302         <0.003 0.484 <0.00001 

  6 0.691         <0.00001 0.379 <0.00001 

  7 0.450         <0.0001 0.424 <0.00001 

  8 0.631         <0.00001 0.362 <0.00001 

Total 0.481         <0.00001 0.425 <0.00001 

 

 

 

Different food levels affected the distances between larvae and its nearest 

neighbour in H. opacior (GLM: F(1,847) = 51.6, p < 0.00001; Figure 3) and distances 

between neighbouring larvae were smaller in the well-nourished group (MWU test: U = 

78406.0, p = 0.001). In addition, the interaction between the food level treatment and the 

number of larvae per nest influenced inter-larval distances (GLM: F(1,847) = 46.5, p < 

0.00001). In contrast, in H. schauinslandi only time, the number of larvae per nest and the 

 in the low food group and 13.5 % in the high food group. Larval dwindling was 

egligible in H. schauinslandi with only 4.0 % and 0.1 %, in the two food treatments 

group were significant (MWU test: U 

interaction between both factors were significant (GLM: F(1,972) = 11.4, p = 0.0008; F(1,972) 

= 5.0, p = 0.03; F(1,972) = 11.6, p = 0.0007). During the experiment, the number of larvae 

per nest decreased. This was especially pronounced in H. opacior with a reduction of 33.3 

%

n

respectively. Differences within the low and the high 

= 29330.0, p < 0.00001; U = 36314.0, p = 0.00001). 
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Figure 3: Distances to the nearest neighbour of ten H. opacior and H. schauinslandi nests, respectively, are 
given as means and 95 % CI during two different food level treatments on four consecutive days (0 = start 
situation, 1 – 4 = situation on the evening of each day). High food level colonies received food ad libitum and 
low food level colonies were kept under regular feeding conditions. 
 

 

Experimentally induced cannibalism and caste fate 

More than seven percent of the larvae in the “cannibalistic group” cannibalised the offered 

larvae within the first two hours, yet over 75 % fed on the artificially perforated larvae 

during the following four hours. After 45 days (17.01. – 02.03.2006) all experimentally 

treated H. schauinslandi larva had emerged. We obtained 39 callows from 90 larvae in the 

0 1 2
Point in

3 4
 time

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

D
is

ta
nc

e 
to

 th
e

ne
ar

es
tn

ei
gh

bo
ur

(m
m

)

H. opacior

High food level
Low food level

0 1 2 3 4
Point in time

0.4

0.6

0.8

1.0

1.2

D
is

ta
nc

e 
to

 th
e

ne
ar

es
tn

ei
gh

bo
ur

1.6

1.4

(m
m

)

High food level
Low food level

H. schauinslandi

  



 96                                                                                                                        Chapter IV

“cannibalistic group” and 41 callows form 90 larvae in the “control group”. Thus, a 

surprisingly low number of larvae managed to develop into adulthood. We did not find any 

differences between the callows in the “cannibalistic group” and in the “control group”. 

Neither the weight (mean ± SE: 181 ± 6 µg, 178 ± 6 µg) nor the eye diameter (mean ± SE: 

21.1 ± 0.76 µm, 20.5 ± 0.53 µm) were different (MWU test: U = 758, p = 0.69; U = 734, 

p = 0.53, n1, 2 = 39, 41). Correspondingly, all dissected callows contained no ovaries and 

were consequently workers. The duration of the pupal stage, between pupation and 

eclosion was with 25.1 ± 0.48 and 24.2 ± 0.53 (mean ± SE) days also not significantly 

differen

s. The dry 

weight

m was observed between two 

Hypopo

t. 

 

 

Discussion 

 

 

An open conflict on caste determination is expected in the small societies of Hypoponera 

ants, because of the high potential of the larvae to influence their own caste fate by active 

feeding behaviour, i.e. cannibalism, and the existence of intermorphic queens. Indeed, we 

found very low size dimorphisms between workers and reproductive female

 of intermorphic queens was only 13 % larger than that of sterile workers in H. 

opacior, and in H. schauinslandi both intermorphic and winged queens were about 50 % 

heavier than workers. These caste differences are very low compared to other ant 

subfamilies. In the myrmicine Pheidole desertorum gynes are more then three times 

heavier than major and 26 times heavier than minor workers (Helms, 1995). Similarly, in 

Temnothorax nylanderi virgin queens reach the four and a half-fold weight of workers 

(Foitzik and Heinze, 2000), and in the formicine Lasius flavus (Formicinae) virgin queens 

were 14.4 times heavier than workers (Steinmeyer, pers. comm.). Albeit dry weight 

differences vary considerably between taxa, most ant species exhibit strong queen-worker 

size dimorphisms. The exceptions are some ponerine ants with relatively low caste 

differences (Peeters, 1997).  

 The occurrence of cannibalism between sibling larvae in the context of a selfishly 

increased food intake was situation-dependent. No cannibalis

nera larvae positioned side-by-side. Possibly numerous spire-like tubercles and 

hairs that cover almost the entire body surface of Hypoponera larvae can serve as 
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protection against cannibalism by fellow larvae (Wheeler, 1910). Yet, the frequent 

cannibalism observed in all three species in the on-top position is consistent with the 

finding that ponerine larva can be a menace for their sister larvae (Wheeler and Wheeler, 

1979). Frequencies of eight and four percent in H. opacior and H. schauinslandi within six 

hours appear to be low just at first glance. But many larvae would be victimised during 

their larval development time of about two months in H. opacior and three weeks in 

H. schauinslandi (unpubl. data), when positioned on a regular brood pile with physical 

contact.  

We found no variation in cannibalism rates between different larval developmental 

stages, although this may have been expected, due to a potentially higher benefit of extra 

food in critical developmental periods. Developmental pathways are fixed after so-called 

decision points and subsequently larvae are unable to further influence their caste fate 

(Wheeler, 2002; Hölldobler and Wilson, 1990). Yet, larvae in each of the three size 

categories were able and did pierce the integument of fellow larvae without the help of 

workers. Adult Hymenopterans cannibalise brood during periods of food shortage (Wilson, 

1971). However, in our experiments Hypoponera ant colonies were fed adequately to 

sustain colony growth. Cannibalism rates varied between species and might be no general 

feature of this genus, as no cannibalism was reported from an Australian Hypoponera 

species, which also lacked intermorphic queens (Peeters and Hölldobler, 1992). 

Larvae, which managed to develop into female reproductives can reproduce and 

gain direct instead of only indirect fitness benefits. Especially in H. opacior it appears 

highly beneficial to become an intermorphic queen as her intranidal mating and dependant 

foundation secures a high chance of successful nest establishment (Rüger and Foitzik 

submitted). Indeed, dissections of 64 young intermorphic queens from 16 H. opacior nests 

showed that all but one were inseminated and had developing eggs in their activated 

ovaries (unpubl. data). This is different from the bee Schwarziana quadripunctata where 

dwarf queens show a reduced fecundity and both dwarf and normal queens conduct risky 

mating flights (Wenseleers et al., 2005). Similarly in the ant species H. schauinslandi 

intermorphic queens, albeit of similar weight, laid fewer eggs and raised fewer larvae 

under controlled conditions than dealate queens. However, this effect levelled of during 

colony development (unpubl. data), so that it could be equally favourable for a diploid 

larvae to develop into either of the two reproductive morphs. 

Whereas female larvae should behave selfishly and try to maximise their food 

intake to develop into reproductives, sterile adult workers, whose behaviour is selected 
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mainly on the colony level, should have opposing interests (Bourke and Ratnieks, 1999). 

We observed that adult workers thoroughly separate larvae in the nest, supposedly to 

prevent larval cannibalism and consequently an overproduction of reproductive females. 

Indeed, we found that larvae in undisturbed laboratory nests of H. opacior and H. 

schauinslandi almost always have a minimum distance to its nearest neighbour. 

Additionally, larval size is positively correlated with the distance to the nearest neighbour 

and larvae are sorted by size. Workers do not exhibit this distinct sorting behaviour 

towards eggs and cocoons. Furthermore, they regularly checked egg piles for emerging 

first instars, which were immediately removed and redistributed in the nest. Rapid 

separation and redistribution of larvae from an artificially created pile started as soon as the 

larvae 

us, where workers arrange brood by size in two-dimensional concentric annuli 

(Franks

were discovered by workers. Distances between nearest neighbouring larvae 

increased swiftly with time in all trials with H. opacior and H. schauinslandi. The fast and 

sensible reaction of ant workers constantly adjusting larval spacing, suggests an adaptive 

nature of this behaviour. In some genera of stingless bees such as Frieseomelitta and 

Leurotrigona a selfish strategy of developing larvae was observed, which can be compared 

to larval cannibalism in Hypoponera. Instead of consuming nestmate larvae, they bite 

through the cell wall and feed on the provision mass of the neighbouring cell to bias their 

developmental pathway to become a queen. Similar to the spacing of larvae in Hypoponera 

nests by ant workers, bee workers normally try to prevent direct contact between cells by 

building small wax bridges. Only as an emergency queen rearing mechanism, workers 

build cells directly adjacent to others (Faustino et al., 2002; Ribeiro et al., 2006). In 

addition to the observed regular spacing patterns, H. opacior workers reacted to varying 

food levels. Distances between neighbouring larvae in the low food level group increased 

over time, indicating that hungry larvae are more prone to cannibalise their nest mates. 

Sorting of larvae was also observed in the myrmicine ant Temnothorax 

unifasciat

 and Sendova Franks, 1992). In contrast to Hypoponera larvae, Temnothorax larvae 

are fed by trophallaxis, and larval sorting was thought to ease systematic brood care 

through workers. Active cannibalism between these myrmicine larvae with their poorly 

developed mandibles is improbable, while cannibalism between Hypoponera larvae 

appears to impose sufficient costs to explain larval spacing. Hence brood sorting may have 

arisen independently in these unrelated genera as their brood care systems vary greatly. 

We would have preferred to conduct our final experiment with several Hypoponera 

species, however at this point we had merely H. schauinslandi colonies available. Despite 
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a slightly increased weight and eye diameter in eclosing individuals from the cannibalistic 

group, intermorphic or alate queens were produced in neither of the two treatments. The 

small, artificially created colonies were still in their growth phase and hence invested only 

in workers (Hölldobler and Wilson, 1990). Yet, if caste determination in H. schauinslandi 

is solely nutrition dependent, a diet supplemented through cannibalistic consumption of 

nestmate larvae should have changed the caste fate of developing larvae. Hence irrefutable 

evidence that larval cannibalism in Hypoponera ants should be explained by the selfish 

attempt of developing larvae to become queens is as yet missing. Nevertheless minor 

queen-worker caste differences, frequent larval cannibalism and the distinct brood sorting 

behaviour of workers all point to an overt conflict over caste determination in Hypoponera.  

Hypoponera workers are completely sterile and thus all males are sons of the 

queen. 

 females (Rf = 0.39) and 

males ( m = 0.12) from microsatellite data (Rüger and Foitzik, sumitted) and calculated 

accordingly z* = 0.55. H. opacior has two reproductive periods per year (Rüger and 

Foitzik, submitted) and intermorphic queens eclose almost exclusively during late August. 

Consequently conflict over caste fate is expected to be strongest during the summer brood. 

For such a situation, under larval self-control of caste fate and the assumptions of 

Hardy-Weinberg with monogynous, monandrous colonies, 20 % of all totipotent female 

larvae should develop into queens (Ratnieks, 2001). The conditions in Hypoponera with 

their frequently polygynous colonies headed by intermorphic queens diverge from the 

assumptions of this model. This might lower the benefit for female larvae to develop into 

intermorphic queens, whereas the high success rate of dependant nest foundation might 

favour queen development. Whereas in Melipona bees, colonies pay costs due to selfish 

queen overproduction and killing (Koedam et al., 1995), Hypoponera colonies suffer 

through brood destruction. Yet in both cases selfish behaviour of larvae lead to a reduced 

inclusive fitness of adult colony members. All three Hypoponera species reproduce at least 

partially by budding, which reduces the size of the mother colony in the same way as the 

swarm founding behaviour of bees. But contrary to stingless bees, Hypoponera 

intermorphic queens and workers disperse on foot. Consequently, local resource 

competition (Clark, 1978; Pamilo, 1991) should reduce the relative fitness benefit of 

queens.  

The equation z* = (1- Rf) / (1 + Rm) from (Wenseleers et al., 2003) originally 

developed for swarm-founding social Hymenoptera allows an even more precise 

calculation of the optimal proportion of diploid larvae developing into intermorphic queens 

(z*) in H. opacior. We obtained life-for-life relatedness values to

R
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However, excess production of intermorphic queens in Hypoponera, especially in H. 

, is not easy to detect. Typically, average nest sizes in H. opacior with fifteen 

d 1.5 intermorphic queens (Rüger and Foitzik, submitted) indicate, that the 

Finally the context of caste fate conflict might provide an explanation for the 

exceptional larval morphology in Hypoponera and a few other ponerine genera (Wheeler, 

1900; Wheeler and Wheeler, 1952; Taylor, 1967). A pair of fleshy tubercles on each of the 

4th and 5th abdominal somites (Wheeler and Wheeler, 1971), the so called “doorknobs” 

(Peeters and Hölldobler, 1992), are used by workers to position larvae on the floor, wall or 

ceiling of the nest chambers, similar to the anchor-tipped hairs described from 

Tetramorium larvae (Wheeler and Wheeler, 1976). Various, yet not completely convincing 

ideas on the adaptive function of the “sticky doorknobs” in Hypoponera larvae were given. 

They could improve head and neck movement during feeding (Wheeler, 1900), or serve to 

keep the body surface from the humid substrate (Peeters and Hölldobler, 1992). Our study 

suggest that sticky doorknobs allows Hypoponera workers to securely separate larvae, in 

contrast to some other ponerine ants without these fleshy tubercles, where larvae are rather 

mobile. Clearly a higher mobility of Hypoponera larvae with their cannibalistic tendencies 

would cause the early death of many larvae. Hence, sticky doorknobs prevent larval 

movement and frequent cannibalism between sister larvae - for the good of the colony. If 

true, larvae might exhibit at the same developmental stage behavioural features 

(cannibalism) that are shaped by “selfish” individual selection, while selection on the 

colony level forced them to develop sticky doorknobs, which prohibit their cannibalistic 

tendencies together with larval sorting behaviour of the workers. 

 

 

 

 

opacior

workers an

worker force, which accompanies an intermorphic queen, during budding is very small. In 

contrast, Apis mellifera colonies produce 15 – 25 queens and 150,000 workers per 

swarming season (Seeley, 1985; Winston, 1987). Repeated budding events in H. opacior 

through an overproduction of intermorphic queens might be the cause for the tiny nest size 

observed in the field. Clearly, additional work is needed here. We suggest focusing on the 

self-determination potential of female larvae in H. opacior before workers and 

reproductives are produced in August and on their female caste allocation at the time of 

eclosion.   
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General Discussion 
 

 

The seemingly unspectacular genus Hypoponera with its tiny ants, which belong to the 

primitive subfamily Ponerinae, shows probably the highest diversity of alternative 

reproductive strategies and tactics in both sexes within the family Formicidae. This 

peculiarity makes Hypoponera an ideal model genus for studies on the evolution of 

alternative tactics in male and female reproduction. However, to gain a deeper 

understanding which social and ecological conditions shape the reproductive behaviour 

and morphology, it is necessary to gather detailed knowledge on the behaviour, life history, 

cology and sociogenetics of the focal species. In my dissertation I approached this 

tern 

Arizon

e

important and complex evolutionary question in a Neotropical Hypoponera species, H. 

opacior. As mentioned in the introduction, scientific information on the large ant genus 

Hypoponera, with more than 100 species, is only slowly accumulating. My study was 

prompted by preceding work on H. opacior, which demonstrated two morphological 

different reproductive phenotypes in each sex (Foitzik et al., 2002). Winged (alate) and 

wingless (apterous) males and queens were reported from a population in Southeas

a. Both queen morphs are associated with a certain social structure of the colonies 

they head. Once an alate queen has mated on the wing, she sheds her wings (now called 

dealate queen) and independently found a new colony (haplometrotic) mainly in areas with 

a low nest density. In contrast, apterous (intermorphic) queens are generally mated by 

apterous (ergatoid) brothers within the mother nest. New nests tend to be founded 

dependently by budding of young intermorphic queens (pleometrotic) with a part of the 

work force. This leads to areas with a very high nest density (Foitzik et al., 2002). 

 

The seasonality of reproduction 

Despite this general picture, nothing was known on the timing of alate reproduction and 

the proximate causes influencing the production of the different reproductive morphs. Is 

the latter mediated by genetic, social or environmental factors? And how is the population 

structure of H. opacior affected by the dispersal abilities of alate and apterous morphs? 

Within many species, individuals exhibit diverse phenotypes despite an absence of 

genotypic variation, a phenomenon described by the term phenotypic plasticity. Evolution 
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can either act stabilizing on the plasticity of the phenotype or can exploit its plasticity. As 

pointed out by Nijhout, (2003), “phenotypic plasticity is the primitive character state for 

most if

emonstrated 

that H.

 of plants and likewise in a richer fauna, providing a 

wealth 

 not all traits” and therefore their development depend on variable and manifold 

internal and external influences. Reaction norms describe a continuous distribution of 

phenotypic morphs, while discrete phenotypes are called polyphenisms. In insects, 

developmental processes are generally mediated by various regulating mechanisms of 

hormone secretion, which in turn are influenced by a number of environmental factors (e.g. 

nutrition, temperature) (Nijhout, 2003). Other than in most non-social insects, where 

offspring receive almost no further attention after egg laying, larval development in 

(eu)social insects, like in ants, is additionally governed by workers, which tend and feed 

larvae until pupation. 

 

My long-term study, including six field stays during the years 2003 to 2005 d

 opacior in Southeastern Arizona possesses a bivoltine lifecycle with two offspring 

generations per year (CHAPTER 1). These two generations clearly differed from each 

other, albeit in both workers and reproductives were produced. The first generation 

emerged in late June and reproductives were predominately alates. Whereas in the second 

generation, which emerged in late August, reproductives were exclusively apterous.    

Interestingly, the emergence of alate reproductives is strongly correlated with the 

onset of the North American Monsoon, a weather phenomenon, which constantly causes 

the by far highest precipitation rates in this area in the month of July (see CHAPTER 1, 

Figure 3). This leads to a higher air humidity, which provides favourable conditions for H. 

opacior mating flights and in addition moistens the soil. Overall, it results in a prospering 

nature, e.g. blooming and growing

of nutrition for the food chain. This improved provisioning may also support the 

second generation in the year, because it allows rapid larval growth. High food availability 

may explain the short developmental time of apterous compared to alate reproductives. 

Additionally, hibernation may trigger larval developmental pathways towards alate 

morphs, as it is the case in other ant species (Brian, 1955; Brian, 1975). Yet, H. opacior is 

a Neotropical species and hibernation may only play a role in the most northward parts of 

its range. In the ant Cardiocondyla obscurior alate males are produced under adverse 

conditions, however ergatoid males are constantly produced throughout the year (Cremer 

and Heinze, 2003). Contrary, alate reproductives of the seed-harvesting ant Chelaner sp. 

appeared after a period of sufficient rain, whereas brachypterous (short winged) 
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on 

remain

ean winter rains. 

reproductives were produced after drought, however this study is only based on two nests 

(Briese, 1983).  

Polyphenisms such as the winged and wingless morphs of H. opacior have been 

described as adaptations to reliable and predictable variations in the environment (Nijhout, 

2003). Interestingly, for polyphenisms is the inducing environment not the same as the 

selective environment. Whether the annual reproductive cycle in H. opacior from 

Southeastern Arizona is directly triggered by or adapted to the North American Monso

s to be investigated. This could be accomplished by a comparative field study, for 

example in the northern parts of Arizona or adjacent areas of Utah, Colorado or New 

Mexico, in which H. opacior has its most northward distribution. Contrary to Southeastern 

Arizona these areas experience no monsoon and show a relatively constant precipitation 

rate throughout the year. Of interest would also be a comparison with populations from 

Southern California, which experience the typical Mediterran

The production of dispersing and non-dispersing polyphenisms in separate seasons 

allows an optimal use of their complementary functions. Alates ensure genetic 

recombination by outbreeding and promote colonisation of new favourable habitat patches 

by dispersal on the wing. In contrast, apterous reproductives avoid all risky endeavours 

such as mating flights and solitary founding by within-nest matings and dependant 

founding by budding. Thereby they retain an existing genetic composition, which might 

provide advantages in the actual habitat patch, and allow its quick colonisation and 

exploitation. Such dual strategies may be evolutionarily favoured under reliable variations 

in ecology and were described in several animal (e.g. H. nubatama (Yamauchi et al., 2001) 

and Technomyrmex albipes (Tsuji et al., 1991; Yamauchi et al., 1991) and plant species 

(Viola pubescens (Culley, 2002)).  

In a large number of ant species two queen morphs occur. Yet, morph differences 

are not necessarily as pronounced as in H. opacior, often the second morph is just an 

isometric reduced version of the regular alate queen, but typically, nests headed by these 

microgynes or macrogynes differ in their social organisation (Hölldobler and Wilson, 

1977; Stille, 1996). This is the case in Myrmica ruginodis and in Temnothorax rugatulus, 

where microgynes abound in nests with several queens, while outbreeding macrogynes 

found new colonies independently and occur mainly in monogynous colonies (Elmes, 

1991; Rüppell et al., 1998). By contrast, in Solenopsis geminata both queen morphs 

disperse, but still macrogynes found independently, while microgynes become queens by 

infiltration or adoption in established colonies (McInnes and Tschinkel, 1995). Microgynes
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somewhat resemble wingless queens in H. opacior as they show matings close to or within 

the mother nest and often are only able to found new nests with the help of workers. In 

most ant species with macrogynous queens, their nests show a higher relatedness and are 

monogynous. Different to the situation in H. opacior, macrogynes and microgynes are 

produced in the same reproductive period (yet, S. geminata produced macrogynes from 

May to

eneral pattern in ants that alates are larger than apterous reproductives, 

implying that they require more nutrition during their development, that is, they are more 

costly to produce. Furthermore, these size differences of gynes give a good indication of 

olony founding. Gynes with high energy reserves found independently, 

and special habitat structure is often also important as habitat stability my promote

 September and microgynes from September to November (McInnes and Tschinkel, 

1995)) and these alternative reproductive tactics are only found in queens, not in males. 

 My study confirms earlier findings by Foitzik et al. (2002), that queen morphs in 

H. opacior are associated with social nest organisation. Monogyny, monodomy and 

independent colony founding were again found for alate queens, which participate in 

nuptial flights, while intermorphic queens occurred in polygynous and polydomous nest 

aggregations. These fundamental differences have also been found between monogynous 

and polygynous ant species (Hölldobler and Wilson, 1977).  

It is a g

their mode of c

while dependently founding queens do not rely on those (Keller and Passera, 1989). 

Although, size dimorphism between female reproductives in Hypoponera is by far not as 

pronounced as in other ant species, alate reproductives of both sexes of H. opacior and H. 

schauinslandi are still larger and heavier than apterous ones. Beside the costs, the 

differential reproductive potential of the two queen morphs is of evolutionary interest. For 

insects in general it has been suggested, that wingless individuals are more fecund than the 

respective winged form, since resources, which are usually used for the development of the 

flight apparatus can now be reallocated to reproduction (Groeters and Dingle, 1989; Roff, 

1984; Roff, 1986; Roff and Fairbairn, 1991). This is not the case for both queen morphs of 

H. opacior, H. schauinslandi and H. sp., which have an identical ovariole number (3 + 3) 

and additionally, H. schauinslandi produced equal numbers of adult worker offspring 

(M.H. Rüger, unpubl.). Apart from their fertility, investment in intermorphic queens in H. 

opacior has a higher likelihood to pay off, as colonies headed by dealate queens are rare. 

Nevertheless, colonies invest regularly in alate reproductives to ensure outbreeding and 

dispersal. The proportional investment in the winged and wingless morphs is assumed to 

be a trade-off between the advantages of dispersal and the associated costs. The temporal 
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 winglessness and vice versa (Harrison, 1980; Heinze and Tsuji, 1995; Roff, 1986). A 

detailed analysis by Roff (1994) supported his hypothesis that flightlessness in insects is 

favoure

irely different dispersal patterns of the reproductive morphs in H. opacior provide 

the rare opportunity to compare the impact of local factors on the sex allocation. While 

alates disperse, barely dispersing apterous reproductives compete with each other for mates 

compete locally for rare nest sites, limited food or 

d in stable woodland sites and at high altitude or latitude (Roff, 1990). The first two 

points go along with the habitat preference of H. opacior in Southeastern Arizona, which 

nest in mountainous oak-juniper forests. 

Sequence analysis of about 1450 base pairs of the mitochondrial Cytochrome 

Oxidase I and II region of dealate and intermorphic queens demonstrated that the 

alternative reproductive tactics in H. opacior are indeed exhibited within a single species 

(M.H. Rüger, unpubl.). Furthermore, I could document participation to sexual production 

in both seasons of all nest types irrespective of whether they were headed by an alate or 

one to several apterous queens. This consequently excludes a genetic morph determination 

and strongly supports the role of the environment on morph determination. Hence, the 

species H. opacior expresses a conditional strategy with two alternative tactics per sex 

(Gross, 1996). 

 

Sex allocation  

The ent

and resources. Intermorphic queens may 

a restricted number of workers required for dependent founding (local resource 

competition, LRC) (Clark, 1978), while ergatoid males compete for mating partners (locale 

mate competition, LMC) (Alexander and Sherman, 1977; Hamilton, 1967). Theory 

predicts that LRC biases sex allocation towards males, whereas LMC acts in the opposite 

direction. Queen influence on sex allocation in H. opacior is probably weak, since over 80 

% of reproductive offspring producing nests were queenless. H. opacior workers are sterile 

and have no ovaries. Consequently they lack the opportunity to directly bias the primary 

sex ratio by producing males. However, workers can increase their fitness biasing the sex 

ratio towards the more related sex. Indeed, microsatellite analyses demonstrate that 

workers are about three times more closely related to queens than to males. Yet, this 

relatedness asymmetry (relatedness of workers towards reproductive females divided by 

the relatedness of workers towards males) does not differ between June and August, which 
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otherw

 are more pronounced than local mate 

compet

 on dispersal 

ise may have affected investment ratios. As found, relatedness values suggest a 3 : 1 

investment in queens, if workers are able to bias sex allocation in their interest. 

I found strong differences in sex allocation ratios between the two reproductive 

periods. In June, sexual investment was biased towards alate queens, while in August it 

was split into nests investing predominantly in intermorphic queens and others invested 

strongly in ergatoid males. On the population level, the proportional investment in queens 

was more male-biased in August then in June, albeit general inbreeding suggested local 

male competition in the former season. My data thus indicate that local selection pressures 

and competition among intermorphic queens

ition. In contrast to the expectation under local mate competition, ant nest did not 

generally produce low ergatoid males numbers, but either invested only in just a single sex 

or strongly in males. The high number of single sex-brood suggests that either ergatoid 

males or intermorphic queens disperse on foot to mate. Indeed, ergatoid males in the 

laboratory were observed outside the nest chamber after eclosion of all pupae (pers. obs.). 

In the myrmicine ant C. elegans, which typically mates within-nests, foreign ergatoid 

males are not attacked by workers and dispersal of young queens and ergatoid males may 

lower negative effects of inbreeding as suggested by a recent genetic study (Lenoir et al., 

2007). 

 

Population structure and sociogenetics 

Behavioural field observations require typically huge endeavours, and for cryptic species 

like H. opacior they are sometimes unfeasible. However, indirect inferences

abilities, here for alate and apterous sexuals, respectively, can be drawn by thorough 

sampling and mapping in the field and subsequent genetic analysis. State of the art genetic 

markers are microsatellites (also called simple sequence repeat (SSR) or simple sequence 

length polymorphism (SSLP)). These are heritable small nuclear repeats, which are usually 

not under selection. I tested several primer pairs for microsatellite loci from other ponerine 

ants e.g. Diacamma ceylonense (Gopinath et al., 2001), Gnamptogenys striatula (Giraud et 

al., 1999) and Platythyrea punctata (Schilder et al., 1999). Unfortunately, neither of them 

was suitable for H. opacior, because they were either not polymorphic or did not yield 

amplification products. This may suggest that these ant genera are too distantly related to 

H. opacior. Consequently, I developed five highly polymorphic microsatellites for H. 

opacior (CHAPTER 2, (Rüger et al., 2005)). 
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The level of gene flow and consequently the dispersal abilities of individuals, or in 

the case of ants of reproductives, is reflected in the genetic composition of subpopulations 

(demes). An absence of structuring between demes can be traced back to high dispersal 

abilities and panmictic matings. The stronger the differentiation between the demes, the 

weaker the dispersal abilities of reproductives. In a genetic study, I investigated 

differentiation between nine different demes of H. opacior from four different adjacent 

mountain ranges (Sky Islands) of Southeastern Arizona (CHAPTER 3). The analyses 

ioural 

tructure as I used these larger colonies to investigate behavioural colony boundaries. 

Aggression tests showed well-developed nest mate recognition, and a slight increase in 

dispersal abilities of males. Ergatoid males of H. opacior contrary to winged males in other 

included one deme each from the Huachuca Mts, the Santa Catalina Mts, the Pinaleno Mts 

and six demes from within the Chiricahua Mts. 

In general, gene flow between all demes was restricted. Isolation by distance was 

significantly positive over all study sites, but was not present within the Chiricahua Mts 

and when single demes of the four Sky Islands were compared. This is due to a less 

pronounced substructuring between demes from within the Chiricahua Mts. This shows 

clearly, that dispersal between the Sky Islands is strongly restricted and that even within 

the Chiricahua Mts alate dispersal capabilities are by far not sufficient to maintain 

panmixia. The substructuring in H. opacior is compared to other ant species, and with 

respect to the relatively short spatial distance between the demes of this study, clearly 

pronounced (Brandt et al., 2007; Clémencet et al., 2005; Goropashnaya et al., 2004; Lenoir 

et al., 2007; Sanetra and Crozier, 2003). A potential explanation can be found in the 

climatic history of the Sky Island region. During the Pleistocene, the area was more humid 

and habitats favoured by H. opacior were not restricted to the mountainous regions as 

today, but instead covered also the flats, which in the present are inhospitable dry desert 

lands (Thompson and Anderson, 2000; Van Devender and Spaulding, 1979).  

 Microgeographic analysis revealed some evidence for population viscosity, i.e. an 

increased genetic similarity between neighbouring nests, which is generally found in 

species with highly restricted dispersal abilities. Internest relatedness and nest distance on 

a 99 m² plot were not associated for the entire sample, but in a smaller subsample of the 

larger nests. The latter comparison allowed also contrasting genetic and behav

s

aggression with internest distance. Overall, in addition to the finding of significant 

relatedness among nestmates, these results suggest a multicolonial nest structure and low 

population viscosity. Information from nuclear markers such as microsatellites also reflects 
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ant species with non-dispersing queens do not facilitate long-range dispersal (Crozier et al., 

1984; Sanetra and Crozier, 2003) and consequently, my finding partly diverge from an 

expected clear population viscosity. Additionally, I found high allele diversity within this 

plot what may be due to occasional independent nest foundations by dealate queens, 

however no such nests were sampled. As already mentioned above, it may be possible that 

apterou

les might be unable to accurately measure relatedness 

differen

les by genotyping, despite regular brother-sister matings. 

    

s males or females disperse farther than previously assumed, either during the 

mating or the nest founding period.    

 H. opacior ergatoid males were expected to avoid inbreeding to reduce costs 

associated with the production of diploid males. Diploid males in Hymenoptera are 

generally sterile and occur when diploid individuals are homozygous at the sex locus 

(Cook, 1993). A genetic comparison between mating apterous reproductives and a control 

in August 2004 showed that males preferentially copulated with more closely related 

intermorphic queens. Yet, the repetition of this experiment in the consecutive year 

indicated random mating. Clearly, H. opacior males do not avoid inbreeding. Evolutionary 

it may make sense for ergatoid males to go for closer relatives, as this reinforces the effect 

of the dual strategy in H. opacior. In the absence of costs of inbreeding, ergatoid males 

would hence accumulate alleles, which were already successful in a local habitat patch. 

However, a generalisation is questionable as this active inbreeding was only found in one 

year. In addition, ergatoid ma

ces between potential mating partners as recognition is normally based on cuticular 

hydrocarbon profiles (Singer, 1998). Ergatoid males mate with young intermorphic queens, 

while these are still partially enclosed in the cocoon. Young ants during the first days after 

emergence and young slave making ant queens are known to be odourless (chemical 

insignificance) and do not exhibit a pronounced cuticular hydrocarbon signature (Lenoir et 

al., 2001). The same is true for cocooned pupae (Lenoir et al., 2001; Witte, pers. com.). 

Contrary, males of a Bethylidae species can recognize female cocoons by their unique 

hydrocarbon profile (Howard, 1992). Inbreeding may be not very costly in H. opacior as I 

could not detect diploid ma

 

Conflict over caste determination 
Clonal societies may represent the only social situation, where inner-nest conflicts are 

expected to be entirely absent. But despite a very high inbreeding coefficient (FIS = 0.44)  

H. opacior is far from being clonal. Relatedness between nestmates varied between 0.2 and 

  



General Discussion                                                                                                           111  

0.5. Hence, conflicts between nest-mates may still occur. Only queen-worker conflict over 

direct reproduction can be ruled out, as Hypoponera workers lack ovaries and are 

invaria

y weight analyse show that size differences in H. opacior and H. schauinslandi 

between workers and both queen morphs are small compared to other ant species. 

ies. Workers separated larvae carefully and 

sorted larvae by size in both species and even extended the distances between starving H. 

opacior larvae (CHAPTER 4). 

The presence of an overt caste conflict is nicely described for meliponine bees. In 

Melipona beecheii all larvae develop in identical, mass provisioned and sealed cells, and 

consequently queens, who have the same body mass as workers are by far overproduced. 

However, a large fraction of these virgin queens is killed by workers shortly after 

emergence (Moo-Valle et al., 2001; Ratnieks and Wenseleers, 2005; Wenseleers et al., 

2004). Another stingless bee, Schwarziana quadripunctata, even produces in addition to 

“normal” queens, dwarf (worker-sized) queens, which are also able to head a colony on 

their own. But again, workers aggressively discriminated against dwarf queens 

(Wenseleers et al., 2005).  

 Unfortunately, the final experiment with H. schauinslandi, which allowed 

additional food intake by cannibalism in one group of larvae in comparison to a control 

group, failed to link larval cannibalism and caste development. Further experiments are 

necessary to elucidate if observed patterns are indeed explained by an overt conflict over 

caste determination in Hypoponera. It may be most promising to focus on H. opacior, 

where worker-queen size differences are smallest and the larval dispersal behaviour of 

bly sterile. However, this circumstance may emphasise larval selfishness as 

becoming a queen is their only option to gain direct fitness (Bourke and Ratnieks, 1999; 

Ratnieks, 2001; Wenseleers et al., 2003). 

M

Moreover, it was documented that larvae are able to actively cannibalise other larvae in 

natural nests as well as during experiments. Assumed that caste determination in 

Hypoponera is nutrition dependent as suggested for other Formicidae (Wheeler, 1986; 

Wheeler, 1994), an increased food intake by cannibalism may lift worker destined larvae 

over a threshold and open the developmental pathway towards the queen morph. This two 

findings, small queen-worker size difference and larvae, which are in control of their food 

intake, meet the requirements by Bourke and Ratnieks (1999) and open the possibility for 

an overt conflict over caste determination between larvae and adult workers. It is possible 

that larval distribution maintained by workers, which prohibits physical contact between 

larvae, counteract larval cannibalistic tendenc
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workers was most pronounced. In this respect the period of larval growth from late spring 

to early terous sexual larvae develop may be especially interesting. 

Alternatively, larval sorting may be seen in the context of brood care as it is 

escribed by Franks and Sendova Franks (1992) for Temnothorax unifasciatus and 

re, a promising approach would be to investigate how the annual 

reprodu

 summer when ap

d

cannibalism may occur just accidentally as larvae feed on every item in their reach. 

 

Further directions 
As mentioned befo

ctive cycle in H. opacior is shaped by annual variation in precipitation and 

temperature. This would include comparing the timing of reproduction between 

populations from various climate zones. Sex allocation studies indicate that local resource 

competition is rather important and follow-up studies could analyse how queens compete 

for workers and how sterile worker decide which queen to follow. In addition the potential 

conflict over caste fate needs more attention, as pointed out above. Another logical and 

promising step is the establishment of a solid Hypoponera phylogeny in combination with 

the alternative reproductive strategies of the already investigated Hypoponera species to 

shed light on their evolution. 
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Summary 
 
 

reproductives were produced, presum

rent differences in mating behaviour and 

dispersal and head nests with a fundam

ate queens found new colonies independently, 

resulting in monogyny and unidomy of nests headed by this queen morph. In contrast, 

Evolution ultimately leads to diversity, both within and between species and sexes. 

Reproductive strategies within a single sex are sometimes expressed as discrete alternative 

phenotypes, so called polyphenisms. Ants of the genus Hypoponera almost certainly 

exhibit the highest diversity of alternative reproductive strategies and tactics within the 

family Formicidae. 

This long-term study revealed a bivoltine lifecycle (two reproductive periods per 

year) in a population of the ponerine ant species Hypoponera opacior from Southeastern 

Arizona. During the first reproductive period in late June, predominantly winged (alate) 

ably from hibernated larvae. Contrary, in the second 

reproductive period in late August, exclusively wingless (apterous) reproductives emerged 

after a comparatively short developmental time. Sterile workers were produced during both 

reproductive periods. The emergence of alates was strongly correlated with the onset of the 

North American Monsoon, which cause the highest precipitation rates in this region. An 

increased humidity may be advantageous for the mating flight and dispersal of alates, as 

well as for colony founding. Alate production early in season is probably required as only 

dealate queens, who successfully raise the first workers before winter, will survive 

hibernation. Both male and female alternative phenotypes are not genetically determined in 

H. opacior. Demographic analyses revealed that nests headed by both dealate (dewinged) 

and apterous (intermorphic) queens invested in both phenotypes in the characteristic 

periods. This indicates that the observed phenotypes of queens and males are alternative 

tactics of a conditional strategy, which is environmentally mediated. 

The two distinct queen morphs show appa

entally different social structure. While alate 

reproductives exhibit an outbreeding mating behaviour, where males and females mate on 

the wing and thus ensure dispersal concurrently, apterous reproductives show an 

inbreeding mating behaviour, where copulations typically occur between siblings within 

the mother nest (intranidally). Interestingly apterous males show mate guarding behaviour 

and stay in copula with apterous queens, which are still partially enclosed in the cocoon. 

Following the dispersal flight, single deal
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intermo

. This high investment in males indicated that local mate 

competition is less intense than local resource competition among nestmate queens. 

Intermorphic queens compete mainly for workers, which go along with them during nest 

foundations and greatly increase the founding success of intermorphic queens. 

A genetic approach on the basis of newly developed highly polymorphic 

microsatellites detected a strong substructuring between subpopulations of different 

mountain ranges of the Sky Islands and even between subpopulations in one of them, the 

Chiricahua Mts. However, isolation by distance was only present over all subpopulations 

and was due to a comparatively lower substructuring within the Chiricahua Mts. This 

pattern may be regarded as the outcome of post Pleistocene climatic changes, where 

reduced precipitation rates restricted a once widely distributed H. opacior population to the 

more favourable habitats at higher elevations. On the microgeographic scale only low 

population viscosity was detected. A subsample of larger nests, with which also aggression 

tests between workers were conducted, showed a correlation between inter-nest relatedness 

and distance. A decrease in relatedness between nests with distance is expected for 

founding queens with low dispersal capabilities. Albeit aggression decreased with distance, 

the behavioural data indicate strong nestmate recognition, suggesting a multicolonial 

population structure on a microgeographic level.  

Ergatoid males, which mate with nestmate intermorphic queens within their mother 

colony, were expected to avoid inbreeding, assuming kin recognition abilities. A 

comparison of the relatedness between copulating pairs and nestmate controls, revealed the 

contrary in 2004. Males significantly selected more closely related partners, while random 

mating was detected the year after. Inbreeding avoidance by ergatoid males may be not 

that important as despite a high inbreeding coefficient no sterile diploid males were 

detected by microsatellite analysis. 

rphic queens disperse on foot accompanied by workers and thus found new nests 

dependently. This mating and dispersal behaviour of intermorphic queens, lead to a 

polygynous, polydomous yet also multicolonial nest structure. 

The tiny apterous reproductives have only low dispersal abilities, especially when 

compared to alates. Sex allocation in the wingless sexuals should therefore be strongly 

influenced by local selection pressures as males and females compete with relatives of the 

same sex for resources. Multi-year comparison in sex investment ratios between alate and 

apterous reproductives documented a male-biased allocation in apterous reproductives 

when compared to the alates
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inally, behavioural observations showed that all larval stages actively cannibalise 

nestmate larvae. Further, larvae in natural nests and experiments were deliberately 

separated from one another by workers to avoid physical contact. Moreover, queen-worker 

size differences are small compared to other ant genera. These findings were interpreted 

and discussed in terms of the kin selected conflict over caste determination. However, a 

final experiment could not verify a conclusive connection between an enhanced nutrition 

by cannibalism and development towards the queen morph. Alternatively it is possible that 

the unusual larval sorting behaviour by workers could be regarded in the context of brood 

care and larval provisioning. 

F
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