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Anatomical abbreviations 
 
 
Osteology 

ac accessory distal condyles on 
humerus 

acr  acromion 
adp apex of deltopectoral crest 
ar  acromial ridge 
ambb attachment of M. biceps 

brachii 
ameu attachment of M. 

entepicondylo-ulnaris 
amhr attachment of M. 

humeroradialis 
amsc attachment of M. supracora-

coideus 
amtb attachment of M. triceps 

brachii  
amtbc attachment of coracoidal 

anchor of M. triceps brachii 
caput coracoscapulare 

bt  biceps tubercle on coracoid 
ccl contact for clavicle 
cdp caudodistal process on 

scapula 
cdr distal condyle of radius 
cdu distal condyle of ulna 
ce centrale 
cf  caudal flange on scapular 

blade 
chr humeral cotyle of radius 
chu humeral cotyle of ulna 
cid caudal intercondylar 

depression 
cl  clavicle 
cne  centrale 
co  coracoid 
cocp  caudal process of coracoid 
cof coracoid foramen 
cp cranial process of ulna 
cpt caudoproximal tubercle of 

radius 
crdt craniodistal tubercle of radius 
crp craniodistal process on 

scapula  
crr cranial ridge on radius 
dc  distal carpal(s) 
dcr dorsocranial ridge on 

humerus 
de distal expansion of scapula 
did dorsal intercondylar 

depression 
dp  deltopectoral crest 
drc distal radial condyle 
ep extensor pit(s) 
et extensor tubercle(s) 
fc caudal facet on ulna 

fcm craniomedial fossa of coracoid 
fmc facet for M. cucullaris 
fmcb fossa for M. coracobrachialis 

(brevis) 
fmdc facet for M. deltoideus 

clavicularis 
fmds fossa for M. deltoideus 

scapularis 
fmeu facet for M. ectepicondylo-

ulnaris 
fmfdl facet for origin of M. flexor 

digitorum longus 
fmfdp fossa for M. flexor digitorum 

profundus 
fmpq fossa for M. pronator 

quadratus 
fmsc fossa for M. supracoracoideus 

(pars scapularis) 
fmscs fossa for M. subcoracoideus 
fmsh fossa(e) for M. 

scapulohumeralis 
fmsm facet for M. supinator manus 
fmsp facet for M. serratus profundus 
fmss facet for M. serratus 

superficialis 
fmssc facet for M. subscapularis 
fmtbh facet(s) for M. triceps brachii 

capiti humerales mediales 
fmtbhm facet for M. triceps brachii 

caput humerale mediale 
fr radial fossa on ulna 
ft flexor tubercle 
fvm ventromedial fossa of coracoid 
gl  glenoid cavity 
h  humerus 
hh  humeral head 
hlt lateral tubercle of humerus 
hmt  medial tuberosity of humerus 
hrc  radial condyle of humerus 
huc ulnar condyle of humerus 
i  intermedium 
icb impressio m. coracobrachialis 
icl interclavicle 
imr intermuscular ridge(s) 
lepc  ectepicondyle 
lfmc lateral flange(s) of 

metacarpal(s) 
lp lateral process of ulna 
m  manus 
mc  metacarpal 
mcdc metacarpal distal condyles 
mcep metacarpal extensor pit(s) 
mclp metacarpal ligament pit(s) 
mepc entepicondyle 
ol olecranon process 
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pcs processus sternocoracoidei 
ph  phalanx, phalanges 
plp phalangeal ligament pit(s) 
pi  pisiform 
pua proximal ulnar articular facet 

of radius 
r  radius 
rae  radiale 
rcp radial caudoproximal process 
rcr radial cotyle of radiale 
rct radial cranioproximal 

tubercle 
rnsc recessus for N. 

supracoracoideus 
rt radial tubercle (= tmb?) 
rup radial ulnar process 
sa sternocoracoidal articulation 
sc  scapula 
sca scapulocoracoidal articulation 
scb scapular blade 
sch scapular head 
scs scapulocoracoidal suture 
sgb  supraglenoidal buttress 
sgf  subglenoidal fossa on 

coracoid 
smld scar for M. latissimus dorsi 
ssc suprascapula 
ssca suprascapular articulation 
ste  sternum 
stp sternal plate 
tmb tubercle for M. brachialis 
tmbb tubercle for M. biceps brachii 
tmtbs tubercle for M. triceps brachii 

caput scapulare 
ua ulnar articular facet on radius 
ucu ulnar cotyle of ulnare 
ul  ulna 
ule  ulnare 
un ungual(s) 
urt ulnar radial tubercle 
vip ventral intercondylar pit 
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Myology

AD5  M. abductor digiti V 
AdA M. adductor alulae 
ADM M. abductor digiti majoris 
AP  M. abductor pollicis 
AR  M. abductor radialis 
B  M. brachialis 
BB  M. biceps brachii 
C  M. cucullaris 
CB  M. coracobrachialis  
CBbrev M. coracobrachialis brevis 
CBcran M. coracobrachialis cranialis 
CBlong M. coracobrachialis longus 
CC  M. costocoracoideus 
CCprof M. costocoracoideus 

profundus 
CCsup M. costocoracoideus 

superficialis 
DC  M. deltoideus clavicularis 
Dmaj M. deltoideus major 
Dmin M. deltoideus minor 
DS  M. deltoideus scapularis 
EBA M. extensor brevis alulae 
ECR M. extensor carpi radialis 
EctU M. ectepicondylo-ulnaris 
ECU  M. extensor carpi ulnaris 
EDC  M. extensor digitorum 

communis 
EDP  Mm. extensores digitorum 

profundi 
EDS Mm. extensores digitorum 

superficiales 
ELA M. extensor longus alulae 
ELDM M. extensor longus digiti 

majoris 
ELDMdist M. extensor longus digiti 

majoris pars distalis 
EM1 M. extensor metacarpi I 
EM4 M. extensor metacarpi IV 
EntU M. entepicondylo-ulnaris 
FCR  M. flexor carpi radialis 
FCU  M. flexor carpi ulnaris 
FDL M. flexor digitorum longus 
FDL1 M. flexor digitorum 

superficialis 
FDL2 M. flexor digitorum 

profundus 
FDM M. flexor digiti minimi 
FDP  Mm. flexores digitorum 

profundi 
FDS  Mm. flexores digitorum 

superficiales 
FDSprof M. flexor digitorum 

superficialis pars profundus 
FD5  M. flexor digiti V 
FPB  M. flexor pollicis brevis  
HR  M. humeroradialis 
I Mm. interossei 
Idors Mm. interossei dorsales 
Ivent Mm. interossei ventrales 
ID avian M. interosseus dorsalis 
IV avian M. interosseus ventralis 
L  Mm. lumbricales 
LD  M. latissimus dorsi 
LDcaud M. latissimus dorsi caudalis 

LDcran M. latissimus dorsi cranialis 
LS  M. levator scapulae 
LSHL Lig. scapulohumerale laterale 
LSSI Lig. Sternoscapulare 

internum 
P  M. pectoralis 
PA palmar aponeurosis 
PQ  M. pronator quadratus 
PT  M. pronator teres 
PT1 M. pronator superficialis 
PT2 M. pronator profundus 
R  M. rhomboideus 
S  M. supinator 
SC  M. supracoracoideus 
SCcor M. supracoracoideus pars 

coracoideus 
SCscap M. supracoracoideus pars 

scapularis 
SCS  M. subcoracoscapularis 
SCS1 M. subscapularis 
SCS2 M. subcoracoideus 
SCS3 M. coracobrachialis caudalis 
SH  Mm. scapulohumerales 
SHcaud M. scapulohumeralis 

caudalis 
SHcran M. scapulohumeralis 

cranialis 
SM  M. supinator manus 
SP  M. serratus profundus 
SS  M. serratus superficialis 
StC  M. sternocoracoideus 
TB M. triceps brachii (inserting 

tendon) 
TBC M. triceps brachii caput 

coracoideum (Euparkeria) 
TBCs  M. triceps brachii caput 

coracoscapulare 
TBHlat  M. triceps brachii caput 

humerale laterale 
TBHmed M. triceps brachii caput 

humerale mediale 
TBHposticum M. triceps brachii caput 

humerale posticum 
TBS  M. triceps brachii caput 

scapulare 
TL transversal ligament 
TM  M. teres major 
UMD M. ulnometacarpalis dorsalis 
UMV M. ulnometacarpalis 

ventralis 
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Institutional abbreviations 

 

AMNH American Museum of Natural History, New York, USA 

BMNH  The Natural History Museum, London, United Kingdom 

BP  Bernard Price Institute for Palaeontological Research, University of 

the Witwatersrand, Johannesburg, South Africa 

BSC  B. M. Birla Science Centre, Hyderabad, India 

CM Carnegie Museum of Natural History, Pittsburgh, USA 

CUT  Geological Museum, Chengdu University of Technology, Chengdu, 

People’s Republic of China 

FFCLRP  Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, 

Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil 

GPIT  Geologisches und Paläontologisches Institut der Universität 

Tübingen, Tübingen, Germany 

GSI-SR  Geological Survey of India, Southern Region, Bandalaguda, 

Hyderabad, India 

ISI  Indian Statistical Institute, Geology Museum, Kolkata, India 

IVPP  Institute of Vertebrate Palaeontology and Palaeoanthropology, 

Beijing, People’s Republic of China 

MACN  Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, 

Buenos Aires, Argentina 

MB  Museum für Naturkunde der Humboldt-Universität zu Berlin, Berlin, 

Germany 

MCN  Museu de Ciências Naturais da Fundação Zoobotânica do Rio 

Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil 

MCP  Museu de Ciências e Tecnologia, Pontifícia Universidade Católica do 

Rio Grande do Sul, Porto Alegre, Brazil 

MCZ  Museum of Comparative Zoology, Harvard University, Cambridge, 

Massachusetts, USA 

MLP  Museo de La Plata, University of La Plata, La Plata, Argentina 
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MN  Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de 

Janeiro, Brazil 

MNHN  Muséum National d’Histoire Naturelle, Institute de Paleontologie, 

Paris, France 

NM  Nasionale Museum Bloemfontein, Bloemfontein, South Africa 

NMZ National Museum of Zimbabwe, Bulawayo, Zimbabwe 

OUMNH  Oxford University Museum of Natural History, Oxford, United 

Kingdom 

PVL  Instituto de Paleontología, Fundación Miguel Lillo, San Miguel de 

Tucuman, Argentina 

PVLR  Museo de Ciencias Naturales, Universidad Nacional de La Rioja, La 

Rioja, La Rioja, Argentina 

PVSJ  Museo de Ciencias Naturales, Universidad Nacional de San Juan, 

San Juan, San Juan, Argentina 

SAM  Iziko South African Museum, Capetown, South Africa 

SMNS  Staatliches Museum für Naturkunde Stuttgart, Stuttgart, Germany 

UCMP  University of California Museum of Paleontology, Berkeley, 

California, USA 

UFSM  Universidade Federal de Santa Maria, Santa Maria, Rio Grande do 

Sul, Brazil 

USNM  United States National Museum, Smithsonian Institution, 

Washington D.C., USA 

YPM  Yale Peabody Museum of Natural History, Yale University, New 

Haven, Connecticut, USA 

ZDM  Zigong Dinosaur Museum, Dashanpu, Zigong, Sichuan, People`s 

Republic of China 
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1 Introduction 

 

For the general public, sauropods represent one of to the most familiar groups 

of dinosaurs. They are easy to distinguish from other dinosaurs by their excep-

tionally long necks and tails, their quadrupedal stance with long, columnar limbs, 

and particularly by their gigantic dimensions. The mass of the most gigantic 

sauropods surpasses that of even the largest ornithopods, theropods, and extinct 

mammals by an order of magnitude: Argentinosaurus, the largest well-described 

taxon, is estimated to have weighed about 78 metric tonnes (Mazzetta et al., 

2004). The average sauropod seems to have had a mass well above 10 tonnes, 

combined with lengths in the range of 10 to 30 meters. Only recently, findings of 

dwarf sauropods (Sander et al., 2006) or of sauropods with deviant body plan 

(Rauhut et al., 2005) leave the impression that the spectrum of evolutionary adap-

tations explored by sauropods was much wider than previously thought.  

However, even the stereotype sauropod is a fascinating object of study for 

many scholars, as exemplified by the wealth of scientific contributions dealing 

with biomechanics (e.g., Alexander, 1985, 1989; Christian and Preuschoft, 1996; 

Christian and Heinrich, 1998; Christian et al., 1999a,b; Stevens and Parrish, 1999, 

2005a,b; Christian, 2002; Christian and Dzemski, 2007), physiology (e.g., Hoh-

nke, 1973; Weaver, 1983; Daniels and Pratt, 1992; Paul, 1998; Perry and Reuter, 

1999; Seymour and Lillywhite, 2000; Burness et al., 2001; Wedel, 2003, 2005), 

nutrition (e.g., Christiansen 1999, 2000; Upchurch and Barrett, 2000; Barrett and 

Upchurch, 2005, 2007), growth (e.g., Curry, 1999; Sander, 1999, 2000; Sander et 

al., 2004; Curry Rogers and Erickson, 2005; Sander and Klein, 2005), reproduc-

tion (e.g., Janis and Carrano, 1992; Chiappe et al., 2005) and evolutionary history 

(e.g., Upchurch, 1995, 1998; Wilson and Sereno, 1998; Wilson, 2002; Upchurch 

et al., 2004) of these enormous creatures. After the North American ‘bone wars’ 

between E. D. Cope and O. C. Marsh in the late 19th century (see Colbert, 1997) 

and the famous sauropod discoveries in Africa and China early in the 20th century 

(see Lavas, 1997; Sues, 1997; Maier, 2003), academic interest in this group 

seemed to have diminished for a while, but since the mid 1990s, the number of 

publications on sauropods has almost doubled to well over 10 per year. Just since 

the beginning of this project early in 2004, the number of valid sauropod genera 

increased by almost 40%, from about 90 to 126 in late 2007. The impression 

comes to one’s mind that we are currently experiencing a ‘gold rush’ of sauropod 

palaeontology. 
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The question of sauropod gigantism and limb evolution 

Despite this renewed interest in sauropods, much of their biology and evolu-

tionary history is still poorly understood. Especially the most prominent feature of 

the sauropods, their exceptional gigantism, has remained enigmatic. What specific 

adaptations enabled these animals to achieve their enormous dimensions? What 

role played the physical and ecological parameters of their surroundings, such as 

the Mesozoic atmosphere and flora? And how did these creatures function as gi-

ants – how did they stand, walk, breathe, and circulate their blood? How high 

were their metabolic rates, and how much foliage did they have to consume to 

meet their demands? These questions formed the starting point of the DFG-

funded interdisciplinary Research Unit 533 ‘Biology of the Sauropod Dinosaurs’, 

initiated and coordinated by Martin Sander of the University of Bonn, and during 

the first 3-year funding period incorporating 30 German, Austrian, Swiss, and 

British researchers in 12 subprojects.  

 
Figure 1-1. Cladogram of the major archosaur groups. The clade Dinosauromorpha, which includes 
Lagerpeton + Dinosauriformes, is not shown (Lagerpeton has no forelimb material preserved). Phylo-
genetic relationships are simplified after Benton (2004).  

 

Among the questions raised above, a crucial aspect for any attempt to interpret 

and explain sauropod gigantism is the evolutionary history of the group. Accord-

ing to the current paradigm of dinosaur paleontology, all dinosaurs form a mono-

phyletic group and are plesiomorphically bipedal (Sereno, 1991, 1997, 1999; No-

vas, 1996; Padian, 1997a; Carrano, 1999; Benton, 2004). The ancestral dinosaur is 

assumed to be a small bipedal runner (below 2 meters long), with short arms and 

grasping hands, and a carnivorous diet (Sereno, 1997). Moreover, there is a con-
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sensus that Dinosauria splits into two monophyletic groups, Ornithischia and 

Saurischia, the latter comprising the carnivorous Theropoda and the herbivorous 

Sauropodomorpha (fig. 1-1; Gauthier, 1986; Brinkman and Sues, 1987; Benton, 

1990, 2004; Novas, 1992, 1996; Sereno, 1997, 1999; Langer and Benton, 2006). 

The sauropodomorphs include Sauropoda and ‘Prosauropoda’, small to medium 

sized animals with bipedal and quadrupedal forms among them (fig. 1-2; see 

Galton and Upchurch, 2004, and Upchurch et al., 2004, for reviews). The sauro-

pod ancestor may be among ‘prosauropods’, if these animals form a paraphyletic 

group, or both groups share a common ancestor, if prosauropods are mono-

phyletic (see below). Regardless of the interrelationships of sauropodomorphs, it 

has never been shown in detail how the transition from small, bipedal forms to 

gigantic, graviportal quadrupeds may have occurred. The appendicular skeleton 

and musculature are of special interest for this issue, since these organ complexes 

had to carry and move the enormous masses in living sauropods, and are there-

fore essential for the understanding of their gigantism.  

 

 
Figure 1-2. Sauropodomorph interrelationships. Simplified cladogram based on Wilson (2002) and 
Yates (2004). *Note that Sauropodomorpha, Sauropoda, and Prosauropoda form a node-stem-triplet 
according to the definition of Sereno (1998). Therefore, Saturnalia would be excluded from Sauro-
podomorpha. However, Sauropodomorpha has originally been defined as the stem-based sister 
taxon to Theropoda (Gauthier, 1986), a definition adopted by most recent works (e.g., Galton and 
Upchurch, 2004; Yates, 2007). 

 

Both fore- and hindlimbs are highly complex organ systems consisting of a 

high number of subsystems related to locomotion and support, such as bones, 

cartilage, joints, ligaments, tendons and muscles. Because of the contrasting mor-
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phology of the pectoral and pelvic girdles, their different connection to the axial 

skeleton, and the strong regional specialization in the bodies of higher amniotes, 

there is little serial homology among the muscles of the fore- and hindlimb – both 

systems are independent organs with strongly differing morphology. Therefore, it 

is to be expected that fore- and hindlimbs underwent completely different modifi-

cations during the evolutionary history of the sauropods.  

Previous works 

Basal sauropodomorphs (‘prosauropods’) represent one of the least understood 

groups of dinosaurs, both in respect to phylogenetics and biology. Leal et al. 

(2004) went so far as to claim “Working with the so-called ‘Prosauropoda’ is quite 

frustrating”. Early classifications of dinosaurs interpreted these animals as a sub-

group of the bipedal, carnivorous theropods (Marsh, 1884b; Lull, 1953), or as 

ancestors of both carnosaurs and sauropods (von Huene, 1908, 1909, 1914a, 1929, 

1932), until Colbert (1964) and Charig et al. (1965) recognized that the group 

Saurischia consists of two distinct lines, the Theropoda and Sauropodomorpha 

(Colbert’s ‘Palaeopoda’ + Sauropoda). The latter authors also were the first to 

emphasize that the hands and feet of prosauropods were not adapted to bipedality 

as in theropods. They rejected the idea of secondary quadrupedalism in sauro-

podomorphs as proposed by von Huene (1929, 1932) and assumed that some fully 

bipedal prosauropods were specialized forms not directly ancestral to sauropods. 

Galton (1971a) modified this view and regarded prosauropods as facultative bi-

peds that generally retained the ability to move on all fours at low speeds, proba-

bly their usual behavior (Galton, 1973, 1976). His argument is mainly based on 

the ratio between hind limb and dorsal vertebral column, which is intermediate 

between typical quadrupeds and unambiguous bipeds in prosauropods. Cluver 

(1978) and van Heerden (1979) went beyond Galton and suggested that forms like 

Plateosaurus and Massospondylus had only semi-erect limbs and were obligate quad-

rupeds. A view contrasting that of Galton and van Heerden was proposed by 

Coombs (1978a), who regarded prosauropods as generally bipedal animals, albeit 

the slowest of all dinosaurian bipeds. Cooper (1981) went even further and recon-

structed Massospondylus as fully bipedal, endothermic and probably with isolating 

integument (down feathers). The common interpretation of ‘prosauropod’ hands 

as grasping organs (e.g., von Huene, 1905, 1926; Lull, 1953; Galton, 1984b, 1990; 

Galton and Upchurch, 2004) has supported this view of obligate bipedal ‘pro-

sauropods’. However, in his paper on speeds and gaits in various dinosaurs, Thul-

born (1982) assumed the larger prosauropods to be fully quadrupedal. The debate 
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on body posture continued during the 1980s, when Galton (1985a) for the first 

time recognized prosauropods as herbivorous animals. He furthermore proposed 

that they represent the first high-browsers in tetrapod evolution, able to reach the 

higher parts of plants by standing upright with support by the tail in a tripodal 

stance.  

At the same time as the posture debate, Cruickshank (1975) and van Heerden 

(1978) raised the idea that all prosauropods may belong to a specialized group not 

directly ancestral to sauropods, based on general anatomical dissimilarities. Bon-

aparte and Vince (1979) and Bonaparte (1986a,b) rejected this hypothesis, stress-

ing that the similarities between both groups weigh far more than the proposed 

dissimilarities. However, Sereno (1989) revived the idea of Cruickshank and van 

Heerden, based on the first cladistic analysis of sauropodomorphs. This work 

opened a long debate on the interrelationships of basal sauropodomorphs, with 

several workers claiming that prosauropods are a paraphyletic (or even poly-

phyletic) assemblage that includes the ancestor of the sauropods (Benton, 1990; 

Dodson, 1990; McIntosh, 1990a,b, 1997; van Heerden, 1997; Padian, 1997b; 

Bonaparte, 1999; Luo et al., 1999; Luo and Wang, 2000, Yadagiri, 2001; Yates, 

2001, 2003a, 2004, 2007; Yates and Kitching, 2003; Reisz et al., 2005), while oth-

ers supported the idea of a monophyletic Prosauropoda (Galton, 1990; Gauffre, 

1995, 1996; Sereno, 1997, 1999a; Upchurch, 1997a,b; Wilson and Sereno, 1998; 

Benton et al., 2000; Buffetaut et al., 2000; Hinic, 2002; Martínez, 2002; Pisani et 

al., 2002; Galton and Upchurch, 2004). In this context, it has been put forward by 

some authors that the anatomy of the grasping hand of prosauropods was too 

specialized to be ancestral to sauropods (Sereno, 1989, 1997; Galton, 1990; Chris-

tiansen, 1997; Wilson and Sereno, 1998; Martínez, 2002). The analyses of Yates 

(2003a, 2004), Yates and Kitching (2003), and Upchurch et al. (2007) in a way 

provide a compromise between both standpoints, resolving a monophyletic core 

of prosauropods (Prosauropoda sensu strictu), while other taxa traditionally placed 

in Prosauropoda are either stem-sauropodomorphs or still prosauropod-like mem-

bers of a stem-based Sauropoda (fig. 1-2). The debate on sauropodomorph interre-

lationships continues, since in the most recent analysis ‘Prosauropoda’ completely 

dissolves into a paraphyletic set of successive sister taxa to Sauropoda (Yates, 

2007).  

In comparison, modern scholars studying higher sauropodomorphs (i.e., 

sauropods) are closer to consensus with regard to locomotor functional morphol-

ogy and phylogenetic relationships. Soon after the recognition of the Sauropoda 

as a distinct group of dinosaurs (Marsh, 1878) a general consensus emerged that 
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sauropods were semi-aquatic animals (Cope, 1878a,b; Marsh, 1883, 1884a), 

mainly based on their cranial and cervical anatomy, although earlier accounts 

already have interpreted the limbs of these animals as those of fully terrestrial 

creatures (Marsh 1877a,b; Cope 1878c,d). Dollo (1906) put forward that sauro-

pods are primary quadrupeds, a view generally accepted until the paradigm of 

plesiomorphic dinosaurian bipedality arose in the 1990s (see above). With the 

exemption of Riggs (1904), the first attempts to reconstruct stance and locomotion 

in single sauropodomorph genera were strongly influenced by the former view. 

For example, Hay (1908, 1910, 1911) and Tornier (1909) assumed the locomotion 

of Diplodocus to be crocodile-like, with sprawling limbs and the belly resting on the 

ground, hardly able to move effectively on land. Abel (1910), Holland (1910), and 

Matthew (1910) rejected these extreme views and argued for an upright, gravipor-

tal stance, but the idea of a semi-aquatic mode of life that helped these animals to 

bear their enormous weight persisted in the literature for the next 50 years (e.g., 

Colbert, 1962; Romer, 1966). Janensch (1937) suggested that Brachiosaurus may 

have fed on high trees, but did not go so far as to reject a semi-aquatic lifestyle. 

The paradigm shift did not come until the works of Bakker (1971) and Coombs 

(1975, 1978a), who reinterpreted sauropod anatomy and established the modern 

view of active, fully terrestrial herbivores.  

From this point onwards, further interpretations of sauropod functionality 

were possible. Using equations based on biomechanical works on extant mam-

mals, Alexander (1976, 1985, 1989) and Thulborn (1982) reconstructed speeds 

and general gaits in dinosaurs, including sauropodomorphs. According to these 

analyses, sauropods possessed athletic capabilities similar to elephants, but 

reached lower speed:mass ratios than modern mammals. Moreover, the speed of 

sauropods was found to be primarily controlled by step length and step frequency 

of the forelimbs. The works of Alexander and Thulborn remained the only ac-

counts on sauropod locomotor behavior until Christiansen (1997a) compared 

sauropod limbs to that of elephants in some detail and interpreted their functional 

morphology. He found similarities in both groups, such as the dominant role of 

proximal retractors in locomotion, while forearm extensors lost their importance. 

Christian et al. (1999a,b) recalculated the speeds of sauropods and forelimb 

biomechanics of Brachiosaurus with improved biomechanical methods, while Wil-

son and Carrano (1999) were the first to integrate ichnological, morphological and 

biomechanical evidence to show that wide-gauge sauropod trackways were pro-

duced by titanosaurs, a sauropod subgroup with specialized locomotor adapta-

tions. Carrano (2000) studied the functional morphology of hindlimbs in dino-
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saurs and noted that the improved, parasagittal stance and gait evolved independ-

ently in several dinosaur lineages, including sauropods. Bonnan (2003, 2004) was 

the first author who dealt with the evolution of sauropod forelimb functional 

morphology in detail. He recognized that full pronation of the manus was not 

possible in sauropods and suggested a close connection between a triradiate mor-

phology of the proximal ulna and a tube-like metacarpus. However, he later 

changed his view regarding the latter point and now assumes that both characters 

evolved independently (Bonnan and Yates, 2007). Bonnan (2005) also gave an 

account on the functional evolution of the pes in sauropods. Most recently, Car-

rano (2005) analyzed the evolution of proportions and orientations of the individ-

ual limb elements in sauropodomorphs and listed adaptations in connection with 

graviportal stance in sauropods, including a vertically oriented metacarpus and 

elongate intermetacarpal articulations. He comes to the same conclusions as 

Christiansen (1997a): the importance of flexion and extension of the distal limb 

elements for locomotion was reduced, and the main propulsive motion was per-

formed by the proximal elements (humerus and femur). None of the works listed 

above includes detailed soft tissue reconstructions or a large taxon sample size.  

The phylogenetic interrelationships of sauropods are well understood due to 

recent works. During the last decade numerous cladistic analyses of sauropods 

were published that clarified sauropod interrelationships (Upchurch 1995, 1998, 

1999; Calvo and Salgado, 1995; Salgado et al., 1997; Wilson and Sereno 1998; 

Wilkinson et al., 2000; Curry Rogers and Forster, 2001; Wilson 2002; Upchurch 

et al., 2004). Although these works differ in some details, a consensus emerged 

that basal sauropods form a set of successive sister taxa to a monophyletic group 

called Neosauropoda, which split prior to the Upper Jurassic into two main linea-

ges, Diplodocoidea and Macronaria (fig. 1-2). 

Apart from studies of sauropodomorphs, important contributions to the under-

standing of dinosaur forelimb morphology and soft tissue anatomy were made in 

other fields. Although the methodology of phylogenetic inference (chapter 2) was 

formalized only recently (Bryant and Russell, 1992; Witmer, 1995), accompanied 

by the establishment of the name ‘Extant Phylogenetic Bracket’ (EPB) by Witmer 

(1995), Gregory and Camp (1918) and Miner (1925) already applied a similar 

method for their reconstructions of musculature of the cynodont therapsid Cynog-

nathus and the temnospondyl amphibian Eryops, respectively. Muscle reconstruc-

tions of early synapsids were also performed by Romer (1922), who furthermore 

reconstructed pelvic muscles in saurischians, mainly based on the anatomy of 

crocodilians (Romer, 1923). Later workers did not explicitly state their methods 
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for reconstructing limb muscles in dinosaurs, e.g. in Russell’s (1935) reconstruc-

tion of the ceratopsian Chasmosaurus. There were no further attempts of dinosaur 

muscle reconstructions, until Colbert (1964) in his overview of saurischian interre-

lationships also considered the pelvic musculature as an important difference be-

tween the two major saurischian subgroups. Shortly thereafter, Ostrom (1969, 

1974, 1976) included muscle reconstructions combined with functional interpreta-

tions in his groundbreaking description of the advanced theropod Deinonychus and 

his hypothesis of the origin of bird flight. Other workers began to include forelimb 

muscle reconstructions in studies of extinct synapsids (Jenkins, 1971; Walter, 

1986), captorhinids (Holmes, 1977) and dinosaurs (Raath, 1977; Coombs, 1978b; 

Santa Luca, 1980; Nicholls and Russell, 1985; Dilkes, 2000; Carpenter, 2002). 

With respect to dinosaurs, most of these works were either based on avian or 

crocodilian anatomy, without clear phylogenetic bracketing. Bryant and Seymour 

(1990) evaluated the reliability of various reconstructions and criticized that in 

recent contributions dinosaur muscles were modeled on bird anatomy only, an 

observation that finally led to the development of the EPB (see above). Finally, 

Farlow et al. (1995) summarized the results and problems of previous analyses of 

dinosaurian muscle architecture. 

The 1990s brought a change in methodology of muscle reconstructions in ex-

tinct vertebrates, not only by introduction of the EPB, but also by a new phyloge-

netic perspective on muscle change that complements reconstructions of single 

genera (or specimens). With respect to saurischians, most workers concentrated 

on theropod hindlimb musculature. Gatesy (1990) opened the debate by his ac-

count on the evolution of the M. caudofemoralis longus in theropods, and was 

followed by others (Gatesy, 1995, 2001, 2002; Gatesy and Middleton, 1997; Far-

low et al., 2000; Hutchinson and Gatesy, 2000; Hutchinson, 2001a,b, 2002, 2004; 

Hutchinson et al., 2005). Other applications of the EPB deal with the evolution of 

parts of the cranial soft tissue in archosaurs (Witmer, 1997; Holliday and Witmer, 

2007). Finally, Jasinoski et al. (2006) were the first to apply a similar approach to 

forelimbs in a group of theropods (dromaeosaurids). While a detailed understand-

ing of evolutionary transformations of both myology and osteology of the limbs is 

beginning to emerge for the theropod-bird transition, this field is hardly covered in 

other groups of dinosaurs.  

Outline of this work 

The research presented in this work is part of the subproject C4, ‘Evolution of 

the sauropod bauplan’, within the DFG Research Group 533. Project C4 focused 
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on the interrelationships of the sauropodomorph dinosaurs (PIs Rauhut, Hone) 

and the evolution of the appendicular skeleton and musculature. To gain a view 

on sauropod limb evolution that is as complete as possible, it was necessary to 

examine a high number of taxa that represent the entire evolutionary pathway 

from basal archosaurs to neosauropods. For these reasons, and for the significant 

differences between forelimbs and hind limbs, the complex question of locomotor 

evolution in sauropods has been subdivided into two separate, but closely related 

projects. Regina Fechner examined the evolution of the hind limb complex, 

whereas the work at hand explores the evolution of the pectoral girdle and fore-

limb in sauropodomorphs, dealing with following questions: Which transforma-

tions occurred during sauropodomorph evolution, and when? Is it possible to 

identify key adaptations or preadaptations in both the skeleton and the muscula-

ture that give clues to sauropod gigantism? Based on osteology and myology, 

which functional changes in the forelimb can be inferred on the line to neosauro-

pods? 

 Although accounts on saurischian forelimb functional morphology and recon-

structions of dinosaurian forelimb musculature have been published before (see 

above), this work provides scientific novelties in two different aspects: a broad 

phylogenetic approach that examines forelimb functional adaptations and trans-

formations throughout sauropodomorph evolutionary history (instead of accounts 

on single genera), and for the first time reconstructions of appendicular soft tissue 

anatomy in this group. Moreover, among works that deal with dinosaur locomo-

tor evolution, in most cases the forelimb is neglected, possibly due to the bipedal-

ity paradigm mentioned above. Although many ornithischians are also obligate or 

facultative quadrupeds (stegosaurs, ankylosaurs, advanced ceratopsians, some 

advanced ornithopods), this work is the first that examines the importance of fore-

limb evolution under the broader context of quadrupedal locomotion in dino-

saurs. 

The main text starts with a chapter on ‘Material and Methods’, listing the fossil 

material, extant specimens and bibliographic resources that serve as the primary 

data source for this work, and explaining the methods applied, especially the Ex-

tant Phylogenetic Bracket (EPB). In chapter 3, all archosaur forelimb muscles are 

reviewed, and the possible inference in the archosaurian ancestor is evaluated for 

each muscle. This is a necessary prerequisite for the reconstructions done in the 

following chapters, since no standardized concept of osteological and myological 

nomenclature for fossil tetrapods currently exists. Various scholars use different 

nomenclatorial concepts that often make individual works difficult to compare. 
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Therefore, chapter 3 attempts to establish a nomenclatorial consensus for archo-

saurian forelimb myology, which may serve as a base for future descriptions and 

reconstructions in crurotarsians, pterosaurs and dinosaurs. The following five 

chapters are case studies of muscle reconstructions and functional morphology of 

several fossil taxa. The forms chosen represent different stages on the evolutionary 

line to Neosauropoda. Chapter 4 describes Euparkeria capensis, a form close to the 

crocodile-bird split and therefore serving as the archetype for all archosaurs, and 

the basal dinosauriform Lewisuchus admixtus. Chapter 5 deals with several repre-

sentative dinosaurs that lie outside Sauropodomorpha, such as basal ornithischi-

ans, herrerasaurids, and basal theropods, and reviews the evidence for plesiomor-

phic bipedalism in dinosaurs. Forms on the stem-line of sauropodomorphs, such 

as Saturnalia tupiniquim and Thecodontosaurus antiquus, are addressed in chapter 6. 

Forelimb functional morphology and myology of ‘typical prosauropods’ are 

evaluated in chapter 7, with a study on different adaptational pathways within this 

group. Chapter 8 deals with forelimb anatomy and functionality in basal sauro-

pods and gives an outlook on further modifications in neosauropods. Finally, 

chapter 9 integrates the details accumulated in the preceding chapters by use of a 

phylogenetic framework, and summarizes the anatomical transformations that led 

to the evolution of the sauropod forelimbs. A short summary of the main results 

of this work is given in chapter 10. 
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2 Material and Methods 
 
 
Material 

The primary data source of this work is, of course, original fossil material. In 

order to trace evolutionary transformations of sauropodomorph forelimb 

osteology and musculature in detail, it was necessary to examine as much relevant 

fossils as possible. Therefore, skeletal remains of at least 100 individuals of about 

48 different genera have been examined in scientific collections worldwide. These 

numbers have to be given with an expression of uncertainty, because in some 

cases the author noted unclear or incorrect taxonomic assignments. In course of 

this work, it became clear that a general taxonomic revision of basal 

dinosauromorphs and sauropodomorphs is necessary, a task clearly beyond the 

scope of this thesis. However, results from the author’s own examinations will be 

incorporated into a monographic work that covers a complete taxonomic revision 

of the Saurischia (Rauhut et al., in prep.).  

The following taxa were examined personally (in phylogenetic order):  

• basal Archosauria: Euparkeria capensis 

• basal Ornithodira: Scleromochlus taylori, Lagosuchus talampayensis, Lewisuchus 

admixtus, Marasuchus lilloensis 

• basal Saurischia: Eoraptor lunensis, Herrerasaurus ischigualastensis, 

Guaibasaurus candelariensis, Saturnalia tupiniquim  

• basal Neotheropoda: Dilophosaurus wetherilii, Coelophysis bauri, Segisaurus 

halli, Liliensternus liliensterni, Ceratosaurus nasicornis, Piatnitzkysaurus floresi, 

Kaijiangosaurus lini, Poekilopleuron bucklandii 

• non-sauropodous Sauropodomorpha: Thecodontosaurus antiquus, Efraasia 

minor, Plateosaurus engelhardti, Ruehleia bedheimensis, Unaysaurus tolentinoi, 

undescribed prosauropod (‘Riojasaurus’) from the Los Colorados 

Formation, second undescribed prosauropod (PVL field number 6) from 

the Los Colorados Formation, Coloradisaurus brevis, Riojasaurus incertus, 

Plateosauravus cullingworthi (‘Euskelosaurus’), Mussaurus patagonicus, 

undescribed prosauropod (‘Plateosaurus sp.’) from the El Tranquilo 

Formation, Massospondylus carinatus, Lufengosaurus huenei, ‘Gyposaurus’ 

sinensis, Yunnanosaurus huangi 

• non-eusauropod Sauropoda: Anchisaurus polyzelus, undescribed sauropod 

(“Melanorosaurus”) from the Lower Elliot Formation, Melanorosaurus readi, 

Antetonitrus ingenipes, Kotasaurus yamanpalliensis 
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• Eusauropoda: Shunosaurus lii, Barapasaurus tagorei, Klamelisaurus gobiensis, 

Omeisaurus tianfuensis, “Bashunosaurus kaijiangoensis”, Mamenchisaurus 

constructus, M. hochuanensis, M. guangyuanensis, Cetiosauriscus leedsi, 

Patagosaurus fariasi, Cetiosaurus oxoniensis, “Cetiosaurus” mogrebiensis, 

Bellusaurus sui 

A complete list of the material examined is given in Table 2-1.  

 

Table 2-1 

Taxon name (number of individuals) Specimen numbers 

Anchisaurus polyzelus (4) UCMP 82961 
YPM 1883 
YPM 208 
YPM 209 

Antetonitrus ingenipes (2) BP/1/4952 
BP/1/4952b 

Barapasaurus tagorei (≥1) ISI R 86 
ISI R 69 
ISI R unnumbered coracoid 

‘Bashunosaurus kaijiangoensis’ (1) CUT unnumbered 

Bellusaurus sui (≥1) IVPP field site 83003 

Ceratosaurus nasicornis (1) USNM 4735 

Cetiosauriscus leedsi (1) BMNH R 3078 

Cetiosaurus oxoniensis (1) OUMNH J 13605-13607 
OUMNH J 13609-13613 

‘Cetiosaurus’ mogrebiensis (2) MNHN No. 3 
MNHN No. 8 

Coelophysis bauri (7) AMNH 7223 
AMNH 7224 
AMNH 7227 
AMNH 7228 
AMNH 7230 
AMNH 7231 
AMNH 7238 

Coloradisaurus brevis (≥2) PVL 3967 

Dilophosaurus wetherili (2) UCMP 37302 
UCMP 77270 

Efraasia minor (7) SMNS 12354 
SMNS 12667 
SMNS 12668 
SMNS 12684 
SMNS 12843 
SMNS 14880 
SMNS 14881 
SMNS 17928 

Eoraptor lunensis (1) PVSJ 512 

Euparkeria capensis (4) SAM 5867 
SAM 6047 
SAM 7696 
SAM 7700 
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Table 2-1 (continued) 

Guaibasaurus candelariensis (1) MCN-PV 2355 
MCN-PV 2356 

‘Gyposaurus’ sinensis (1) IVPP V26 

Herrerasaurus ischigualastensis (6) MACN 18060 
MLP 61-VIII-2-3 (currently in MACN) 
PVSJ 53 
PVSJ 373 
PVSJ 407 
PVSJ 605 

Kaijiangosaurus lini (1*) CUT 13655 

Klamelisaurus gobiensis (1) IVPP V9492 

Kotasaurus yamanpalliensis (≥5) BSC unnumbered 
GSI-SR 70/SY 
GSI-SR 71/SY 
GSI-SR 72/SY 
GSI-SR 73/SY 

Lagosuchus talampayensis (2) MCZ 9483 (= ‘MCZ 4121’) 
PVLR 09 

Lewisuchus admixtus (1) PVLR 01 (= MLP 64-XI-14-6) 

Liliensternus liliensterni (≥2) MB.R.2175 

Lufengosaurus huenei (1) IVPP V15 

Mamenchisaurus constructus (1) IVPP 946 

Mamenchisaurus hochuanensis (1) ZDM 0126 

Mamenchisaurus guangyuanensis (1) CUT unnumbered 

Marasuchus lilloensis (2) PVL 3871 (currently in MACN) 
PVL 4672 (currently in MACN) 

Massospondylus carinatus (5) BP/1/4934 
BP/1/4998 
BP/1/5241 
SAM 3357 (‘Gryponyx africanus’) 
SAM K391 

Melanorosaurus readi (≥3) NM 3314 
SAM-PK-3449 
SAM-PK-3532 

Mussaurus patagonicus (1) PVL 4210 (currently in MACN) 

Omeisaurus tianfuensis (1) ZDM 5002 

Patagosaurus fariasi (3) MACN CH-225 
MACN CH-932 
PVL 4617 

Piatnitzkysaurus floresi (2) MACN CH-895 
PVL 4073 

Plateosauravus cullingworthi (≥2) SAM 3341-3351 

Plateosaurus engelhardti (4) GPIT 1 
GPIT 2 
SMNS 13200 

Poekilopleuron bucklandii (1) MNHN 1897-2 

Riojasaurus incertus (1) PVL 3808 

Ruehleia bedheimensis (1) MB RvL 1 

Saturnalia tupiniquim (2) MCP 3844-RV (currently in FFCLRP) 
MCP 3845-RV (currently in FFCLRP) 

Scleromochlus taylori (1) BMNH R3146 
BMNH R3556 
BMNH R3914 
BMNH R4823/4 

Segisaurus halli (1) UCMP 32101 

Shunosaurus lii (1) IVPP V9065 
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Table 2-1 (continued) 

Thecodontosaurus antiquus (2) YPM 2192 
YPM 2195 

Unaysaurus tolentinoi (1) UFSM 11069 (currently in MN) 

Yunnanosaurus huangi (1) IVPP V20 

Undescribed prosauropod from the Los Colorados Fm PVL field number 6 

Undescribed prosauropod from the Los Colorados Fm PVLR 056 (‘Riojasaurus’) 

Undescribed prosauropod from the El Tranquillo Fm MLP 68-II-27-1 (currently in MACN, 
‘Plateosaurus’) 
MACN SC-3379 

Undescribed prosauropod from the Lower Elliot Fm NM 1551 (‘Melanorosaurus’) 

Table 2-1. Alphabetical list of fossil taxa examined in this work. Specimen counts are given in 
parentheses behind the taxon binomen. *Kaijiangosaurus lini is a composite of at least three 
individuals; however, all forelimb elements appear to belong to the same individual. 

 

In addition to the fossil material, three specimens of extant archosaurs were 

obtained for dissection, including Caiman crocodilus (1) and Gallus gallus (2). 

Furthermore, macerated skeletons of Crocodylus porosus, Alligator mississippiensis, 

Gavialis gangeticus, Gallus gallus, and Gyps fulvus were investigated for osteological 

correlates of the musculature (see below, Methods). 

Methods 

All fossil bones were visually examined and described in high detail. Special 

attention was given to the structure of bone surfaces. Ridges, tubercles, 

depressions, rugosities, and striations were carefully described and mapped in 

sketches. If possible, series of digital photographs, mostly stereo pictures of 4.0 

megapixels resolution, were taken for all sides of each element. Furthermore, a 

series of straight distance measurements was taken for each element by use of 

standard calipers and tape measures (fig. 2-1). Based on descriptions, drawings, 

photographs, and measurements, digital images of single elements and articulated 

skeletal parts were created using Adobe® Illustrator® CS2 and Adobe® Photoshop® 

CS2 computer programs. For better comparison, all drawings show elements of 

the right body side. If drawings are based on elements from the left body side, the 

images were mirrored.  

The muscle reconstructions presented in the following chapters are mainly 

based on a thorough review of the literature on tetrapod (especially archosaurian) 

forelimb muscles (chapter 3). To confirm and three-dimensionally visualize the 

findings of previous workers, own dissections of the crocodilian Caiman crocodilus 

and the chicken Gallus gallus were made. During these dissections, special 

attention was given to potential osteological correlates of individual muscles, such 

as ridges, tubercles, depressions, rugosities, striations, and other surface 
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properties. These findings were counter-checked with macerated skeletons of 

various other archosaurs (see above, Material) and descriptions in the literature. 

The sum of these data forms the basis for the application of the Extant 

Phylogenetic Bracket (see below). As for the osteological images, digital drawings 

of reconstructed musculature were created by using Adobe® Illustrator® CS2. 

Figure 2-1. Measurements taken during examination of original material. A, scapula. B, coracoid.  
C, long bones. Abbreviations: DA, deflection angle; DH, deltopectoral crest height; DW, distal 
width; GL, glenoid length; GW, glenoid width; L, length; MW, mid-shaft width; PW, proximal 
width; W, coracoid width.  

The Extant Phylogenetic Bracket (EPB) is a rationale formally established by 

Witmer (1995) and consistently applied for soft tissue reconstructions throughout 

this work. It might be noted that Bryant and Russell (1992) already published a 

similar methodology, but did not create a formal name. Both approaches try to 

minimize the amount of speculation in attempts of soft tissue reconstructions in 

extinct vertebrates by a strict deductive concept based on phylogenetic inference. 

Frost (1990) and Witmer (1995) emphasize that the form of a bone actually is 

induced by the morphology of the surrounding soft tissues and the biomechanical 

stress they exert on the bone, not vice versa. Therefore, accurate soft tissue 

reconstructions are the basis for any interpretations of the function and biology of 

an extinct organism, of interaction of extinct organisms, and of long-lost 

ecosystems. Otherwise, inaccuracies in soft tissue reconstructions of a certain 

organ will cause false functional interpretations, which in turn may lead to 
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increasing errors in the interpretation of the biology of whole organisms and their 

ecology.  

Figure 2-2. The Extant Phylogenetic Bracket as applied in the present work. A, Identification of 
homologous muscles and their osteological correlates in extant archosaurs; based on these data, 
reconstruction of the musculature of their last common ancestor. B, Tracing of transformations of 
osteological correlates during sauropodomorph evolution and inference of myological change. 

The main work steps for phylogenetic inference of muscles, based on the 

rationales of Bryant and Russell (1992) and Witmer (1995), are shortly 

summarized here: 
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• identification of the closest extant outgroups to the extinct taxon of 

consideration; these taxa form the Extant Phylogenetic Bracket (fig. 2-

2A) 

• verification of muscle homologies in both extant taxa by outgroup 

comparison (see chapter 3) 

• identification of osteological correlates (textural traces left by muscles 

on a bone) of individual muscles 

• identification of homologous osteological correlates in the fossil taxon 

of consideration 

• reconstruction of origin and insertion of each muscle according to the 

identified osteological correlates 

• reconstruction of attachment sites of muscles that have no osteological 

correlates, based on phylogenetically inferred plesiomorphic origins and 

insertions and their relationships to other muscles 

• inference of line of action of each muscle 

Regarding the last step, reliant reconstructions of two- or three-dimensional 

forms of muscles in extinct vertebrates are impossible by modern knowledge, and 

are therefore pure speculation (see Gans and Bock, 1965; McGowan, 1979, 1982, 

1986; Bryant and Seymour, 1990). Accordingly, this work refrains from such 

attempts and provides only lines of action in a three-dimensional space that span 

between points or areas of origin and insertion. This is scientifically more 

founded, however not free from extrapolation (see chapter 3 for a detailed 

discussion of this issue).  

For this work, the procedure described above was applied to as much non-

neosauropod sauropodomorph taxa as possible. Furthermore, close outgroups 

such as dinosauriforms, herrerasaurids and basal theropods are also taken into 

account (fig. 2-2B). The osteological, myological and morphometric differences 

observed are then ordered with the help of cladograms and stratocladograms to 

determine the exact sequence of evolutionary modifications, their point of time, 

and if possible, their geographical distribution. The phylogeny used for creation of 

these diagrams is a combination of overlapping published phylogenies (see 

chapter 9), because no single analysis currently exists that covers all taxa 

examined in this work. 

Osteological nomenclature 

Osteological terms used in this thesis are mainly based on Romerian 

nomenclature and chiefly follow the convention of the book ‘The Dinosauria’, 
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second edition (Weishampel et al., 2004). Replacement of Romerian terminology 

by standardized terms of the Nomina Anatomica Avium (NAA; Baumel et al., 

1993) is avoided whenever possible (contra Harris, 2004), because the highly 

specialized morphology of the avian forelimb can hardly serve as a 

nomenclatorial model for more plesiomorphic tetrapods such as sauropods. For a 

detailed discussion on the advantages and disadvantages of applying the NAA to 

all diapsids, see Wilson (2006). However, in some cases Romerian nomenclature 

is imprecise or misleading, and specifications of such terms as suggested in the 

following chapters are in part based on the NAA. Nevertheless, a convention 

completely adopted from the NAA throughout this work is the use of the terms 

cranial/caudal instead of anterior/posterior. The main reasons are that the NAA 

standardization of myological nomenclature is an advancement over the 

proliferation of myological synonyms in the decades before, and that there is no 

conflict with traditional paleontological terms. Accounts on musculature of fossil 

vertebrates use highly differing nomenclatorial systems that in most cases are 

based on extant model taxa anyway (chapter 3). Therefore, to keep compatibility 

with NAA myological terms (e.g., M. serratus superficialis pars cranialis), the use 

of anterior/posterior has been abandoned and topographical attributes of 

common Romerian terms have been exchanged accordingly (e.g., ‘cranial process 

of ulna’ instead of ‘anterior process’). A conflict with standardized terminology of 

saurischian vertebral laminae as established by Wilson (1999) is not given since 

these structures do not play a role for the topics discussed in this thesis.  

Another terminological problem is the orientation of the scapulocoracoid and 

humerus in extinct archosaurs. Reconstructions of the shoulder girdle in 

sauropods reach from horizontal (e.g., Parrish and Stevens, 2002) to steeply 

inclined orientations (Schwarz et al., 2007a), creating confusingly different usages 

of topographical attributes. For instance, the distal tip of the scapular blade may 

either be termed ‘caudal end’ or ‘dorsal end’. Likewise, the humerus changed its 

orientation during archosaur evolution, from a plesiomorphical semi-erect 

position to an upright orientation in sauropods (chapters 4–9); therefore, the 

plesiomorphical dorsal side of the humerus later became the posterolateral side 

(fig. 2-3). In their account on dromaeosaurid shoulder musculature, Jasinoski et 

al. (2006) avoided these problems by consistently applying developmental 

topographical attributes. Since the orientation of the developing limb is similar in 

all tetrapod embryos, this concept avoids confusion when changes of muscular 

attachment sites are discussed. However, the functional orientation of each 

element sometimes differs strongly from its developmental orientation (tab. 2-2). 
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Therefore, strict usage of developmental topographical attributes hampers 

functional interpretations, which yet are the main purpose of the present study. 

Accordingly, the solution applied here is to use generally developmental 

orientations (tab. 2-2), but also to discuss functional orientations when necessary. 

 

Figure 2-3. Simplified diagram of the developmental orientation of sauropodomorph forelimb 
elements. Compare with Table 2-2. 
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Table 2-2 

Element Developmental 
orientation 

Functional (positional) orientation 

  Basal sauropodomorphs Higher Sauropods 
  This work Galton and 

Upchurch 
(2004) 

This work Upchurch et 
al. (2004) 

Scapula dorsal caudodorsal dorsal caudodorsal caudal 
 ventral cranioventral ventral cranioventral cranial 
 anterior craniodorsal cranial craniodorsal dorsal 
 posterior caudoventral caudal caudoventral ventral 
 lateral lateral lateral lateral lateral 
 medial medial medial medial medial 

Coracoid dorsal dorsolateral dorsal caudolateral caudal 
 ventral ventromedial ventral craniomedial cranial 
 anterior cranial cranial craniodorsal dorsal 
 posterior caudal caudal caudoventral ventral 
 lateral ventrolateral lateral craniolateral lateral 
 medial dorsomedial medial caudomedial medial 

Humerus dorsal dorsolateral caudal caudolateral caudal 
 ventral ventromedial cranial craniomedial cranial 
 anterior cranial lateral craniolateral lateral 
 posterior caudal medial caudomedial medial 

Radius anterior craniolateral lateral cranial cranial 
 posterior caudomedial medial caudal caudal 
 lateral caudolateral caudal lateral lateral 
 medial craniomedial cranial medial medial 

Ulna anterior craniolateral lateral cranial cranial 
 posterior caudomedial medial caudomedial caudal 
 lateral caudolateral caudal caudolateral lateral 
 medial craniomedial cranial craniomedial medial 

Metacarpalia dorsal dorsal cranial cranial cranial 
 ventral palmar caudal palmar caudal 
 anterior medial medial medial medial 
 posterior lateral lateral lateral lateral 

Table 2-2. Comparison of developmental and functional orientations and corresponding 
topographical attributes in the pectoral girdle and forelimb of sauropodomorphs. The functional 
orientation as applied throughout this work is also compared to that applied in the most recent 
reference works on sauropodomorph anatomy, as published in The Dinosauria (Weishampel et al., 
2004). 
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3 A review of archosaurian forelimb musculature:  

The fundament for reconstructions in extinct taxa 

 

Introduction 

The extremities of tetrapods are highly complex structures. With regard to the 

archosaur forelimb, plesiomorphically 31 individual bones (humerus, radius, ulna, 

carpals, metacarpals, phalanges) articulate in three major (shoulder, elbow, wrist) 

and numerous minor (radioulnar, intercarpal, carpometacarpal, metacarpo-

phalangeal, interphalangeal) joints. The forelimb articulates with the trunk via the 

pectoral girdle, which consists of three major elements (scapula [including su-

prascapula], coracoid, clavicles). Soft tissue connects the pectoral girdle to the 

cervical and cranial dorsal vertebral column, and to the dorsal and sternal ribs. 

The ventral pectoral girdle (i.e., the coracoid) articulates with the sternum. 

These bony and cartilaginous elements are supported and controlled by nu-

merous skeletal muscles. Ligaments also have a significant influence of joint 

movement (Alexander and Bennett, 1987), but are hard to reconstruct since they 

usually lack unambiguous osteological correlates (see Jenkins, 1993). Therefore, 

the soft tissue inference throughout this thesis focuses on the musculature. Due to 

reductions or development of additional muscular heads, the exact number of 

individual muscles varies among taxa (or sometimes, individuals). Nevertheless, 

around 70 individual skeletal muscles in 43 muscle groups probably existed in the 

forelimb of basal archosaurs. The number of scholars who studied the forelimb 

musculature of birds, crocodiles, and other diapsids may be in the same order of 

magnitude, and these various authorities often adopted different nomenclatorial 

systems (see Davis, 1936). These inconsistencies in terminology are not problem-

atic for the description of the myology of individual species, genera, or small 

groups of closely related species, but they become disturbing in attempts to recon-

struct musculature in a major extinct clade, using the rationale of phylogenetic 

inference as proposed by Bryant and Russell (1992) and Witmer (1995).  

Currently, there is a debate about standardizing osteological and myological 

nomenclature in amniotes by abandoning Romerian terms and extending existing 

standardized terminologies to all stem-taxa: The veterinarian NAV (Nomina 

Anatomica Veterinaria, International Committee on Veterinary Anatomical No-

menclature, 1994) is put forward as the standard nomenclature for all synapsids, 

and the NAA (Nomina Anatomica Avium, Baumel et al., 1993) as the standard 

nomenclature for all diapsids (Harris, 2004). However, this concept generates 
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several logical and practical problems (Wilson, 2006), and is currently not widely 

accepted. One of the purposes of this chapter is therefore to propose a nomencla-

torial system for diapsid (especially archosaurian) forelimb myology that keeps 

compatibility with major classical works, but incorporates NAA concepts when 

necessary to avoid ambiguities.  

However, due to the major morphological gaps between extant archosaurian 

clades, it is currently not possible to homologize all forelimb muscles with cer-

tainty. These cases and their impact on attempts to reconstruct musculature in 

extinct taxa are also discussed. A third question to be explored in this chapter is 

the meaningfulness of phylogenetic inference, if the ‘bracket taxa’ of the EPB are 

morphologically and temporally so distant like birds, crocodilians, and more basal 

diapsids. In short, this chapter examines theoretical aspects of phylogenetic infer-

ence of extinct archosaur forelimb musculature, and therefore forms the logical 

fundament for the reconstructions presented in the following chapters. 

General theoretical aspects of phylogenetic inference of musculature 

The methodological basis for muscle reconstructions in extinct taxa is the Ex-

tant Phylogenetic Bracket (EPB) as proposed by Bryant and Russell (1992) and 

Witmer (1995). The concept of the EPB has already been described under ‘Mate-

rial and Methods’ (chapter 2). Here, the practical application of the EPB for the 

reconstruction of archosaur forelimb muscles will be explored shortly.  

In tetrapods, there are basically three different ways for a muscle to connect to 

the skeleton and exert force on it: direct (fleshy), tendinous, and aponeurotically 

via tendon-like sheets of connective tissue that attach to a wider area or linear 

along the bone (Dolgo-Saburoff, 1929; Hildebrand and Goslow, 2001). Bryant 

and Seymour (1990) examined the correlation of attachment type and potential 

osteological correlate, based on a case study in mammalian carnivores. These 

authors found that muscles with a direct type of attachment to the bone are less 

likely to have osteological correlates. Such muscles are sometimes associated with 

depressions or flattened surfaces on the bone, but areas of these bone surface fea-

tures do not necessarily correlate with areas of muscle attachment (Bryant and 

Seymour, 1990). However, the border between areas of attachment of two neigh-

boring muscles may be marked in some cases by a low intermuscular ridge. Like-

wise, parallel orientations of near-surface Sharpey’s fibers may also give a hint 

towards the extent of a fleshy muscular attachment. In fossil bones, fiber orienta-

tion is often indicated by faint, parallel surface striations, or is directly visible due 

to erosion of the outermost bone layer. In contrast to direct attachments, tendons 
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and aponeuroses more commonly have osteological correlates. Tendons often 

form scars or pits with reduced pore density, while aponeuroses in most cases 

leave distinct scars on the bone (Bryant and Seymour, 1990). Similar structures 

are also associated with ligaments. Scarring is explained by ossification of colla-

gen fibers above the bone surface, a physiological reaction to tensile stress (Jones 

and Boyde, 1974). Bryant and Seymour (1990) also noted that tendinous and 

aponeurotic attachments are more abundant in mammals than in archosaurs, 

which may explain why muscle reconstructions in extinct archosaurs are less reli-

able than in extinct mammals (see McGowan, 1979, 1982, 1986). Although the 

attachment types of a certain muscle may vary among closely related taxa or even 

intraspecifically, some muscles are relatively conservative in this respect (see mus-

cle descriptions below). 

Due to the ambiguities produced by relative specialization of or variation 

within crown-group taxa (see below), it is not possible to phylogenetically infer 

origin and insertion for all muscles in extinct taxa with certainty. Witmer (1995) 

categorized the quality of soft tissue reconstructions into three ‘levels of infer-

ence’.  

In the ideal case, both extant outgroup taxa possess a homologous soft tissue 

attribute (a muscle) that is consistently associated with osteological correlates. If 

these correlates can be recognized in fossils, phylogenetic inference is unequivocal 

(‘Level I inference’) and supports reconstruction of this feature in the extinct 

taxon. For example, M. triceps brachii caput scapulare is present in crocodilians 

and in birds (NAA term: M. scapulotriceps), and is associated with distinct oste-

ological correlates (origin: scar dorsal to the glenoid, insertion: olecranon proc-

ess). Because both correlates are also present in basal archosaurs, the muscle is 

likely to have existed in these forms as well. However, there is also the possibility 

that a muscle does not leave any clear osteological correlate in both extant bracket 

taxa, but that a conspicious structure is present at the probable site of origin or 

insertion of this muscle in the extinct group of interest. To interpret this structure 

as an osteological correlate of a certain muscle involves more speculation than 

‘normal’ level I inference. (Regarding sauropodomorph forelimb evolution, the 

rare cases where such an interpretation becomes necessary will be discussed in the 

following chapters.) 

A ‘Level II inference’ is given if one of the extant outgroup taxa lacks a certain 

muscle, either due to its plesiomorphic anatomy or due to apomorphic reduction. 

For example, M. levator scapulae is plesiomorphically present in crocodilians, but 

completely lost in birds. Based on the plesiomorphic form of the scapula in basal 
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archosaurs, it is reasonable to infer the presence of M. levator scapulae in these 

forms, too. However, this inference involves more speculation, because the EPB 

assessment is equivocal in this case. 

Finally, even more speculation is involved when features are reconstructed that 

are not present in both extant bracket taxa (‘Level III inference’). For example, it 

was frequently suggested that sauropodomorphs possessed extensive, vascularized 

cartilaginous epiphyses and large articular capsules (Hay, 1911; Holliday et al., 

2002; Schwarz et al., 2007b), osteologically correlated to the rough, pitted articu-

lar surfaces of the long bones. However, no such structure exists in crocodiles or 

birds, and the EPB assessment is negative with respect to this feature. 

An assessment of the presence of each forelimb muscle in basal archosaurs is 

given below, with an indication of the level of inference where necessary. Natu-

rally, level III inferences of muscles are avoided throughout this thesis. 

 

Variation and the choice of extant sample taxa 

The uncertainty of phylogenetic inference increases with the temporal and 

morphological distance between both extant bracket taxa, especially if the matter 

of interest is not only the mere existence of a muscle, but its exact location. This 

uncertainty becomes even stronger if the extant bracket taxa are themselves het-

erogenic groups with much interspecific variation. Single specimens of one extant 

bracket taxon may not be representative for the whole clade. Moreover, they may 

show homoplastic characters that are also present in the second extant bracket 

taxon, which may cause false interpretations of symplesiomorphic anatomy. 

Therefore, the ideal would be to reduce variations observed within each extant 

bracket taxon to a ‘consensus anatomy’ that represents the plesiomorphic condi-

tion, which may then serve as a base for the EPB assessment. However, due to 

missing anatomical and phylogenetic data in many taxa, this is a challenging task. 

Two examples of this problem are given in the following. 

Numerous anatomical studies of modern birds exist, but recent accounts on 

crocodilian forelimb anatomy are relatively rare. Meers (2003) published the sole 

comparative study, incorporating dissections of 10 specimens of five different spe-

cies (genera Alligator, Crocodylus, Gavialis, and Osteolaemus). He found crocodilian 

forelimb muscles to be highly conservative, but there is some intraspecific varia-

tion in the locations and types of attachment of several shoulder muscles. Meers 

(2003) observed the greatest interspecific variation in Gavialis gangeticus, an aquatic 

species that exhibits displacement of forearm extensors and flexors, relative to the 
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condition found in other crocodilians. He suggested that these modifications are a 

consequence of the aquatic mode of life and locomotion in Gavialis. However, 

Jasinoski et al. (2006), who based their study about forelimb musculature in dro-

maeosaurids on dissections of several specimens of Caiman, provided muscle in-

sertion maps that differed from those of Meers (2003). For example, while Meers 

(2003) found M. cucullaris (‘M. trapezius’ in his work) to insert on the cranial 

edge of the scapular blade in all examined species, this muscle attaches to the dor-

sal edge of the acromial region in Caiman, resembling the plesiomorphic condition 

(see below, section ‘M. cucullaris’). This example demonstrates how the choice of 

extant sample taxa influences the EPB assessment: There is a great danger to gen-

eralize observations in a (necessarily small) sample for the whole bracket taxon (in 

this case, Crocodylia), which may lead to false reconstructions of the plesiomor-

phic state at the root of the EPB.  

A similar risk exists for the second extant taxon that forms the archosaurian 

EPB, the clade Aves. Because bird forelimbs are highly specialized organs that 

have been extensively modified during bird evolution, due to their dominating 

role for locomotion and behavior, one tends to choose the phylogenetically basal-

most birds as an adequate sample for all Aves. However, modern palaeognaths 

are also highly specialized, possibly paedomorphic (de Beer, 1956; Feduccia, 

1986) birds that secondarily modified or reduced much of their pectoral girdle and 

forelimb (Fürbringer, 1886; Steiner, 1949; Cracraft, 1974). With respect to fore-

limb osteology and myology, these birds actually are of little help to reliantly re-

construct the musculature of basal archosaurs. It is therefore essential to found the 

EPB assessment on extant sample taxa that resemble a ‘generalized plesiomorphic 

bird’. However, current knowledge does not allow for a secure assessment which 

bird taxon serves best for this role. Moreover, some bird taxa exhibit a high level 

of individual myological variation, making it difficult to recognize any phyloge-

netic signal in their muscular anatomy (McGowan, 1979, 1982, 1986), but these 

observations cannot be generalized for all Aves (Raikow et al., 1990). 

There is still much research to do on the question of constancy of tetrapod 

muscular anatomy within species or within larger clades, on homologies and 

phylogenetic history of individual muscles, and on the functionality of muscle 

groups during locomotion. To gain a comprehensive view on the plesiomorphic 

myology of archosaurs, the sample size of extant taxa cannot be high enough. For 

example, Hutchinson (2001a,b, 2002) dissected more than 100 specimens of Gal-

lus and additional 85 specimens of various other extant Reptilia for his studies on 

theropod hindlimb evolution. On the other hand, his paleontological sample was 
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restricted to a small number of specimens that represent major stages in theropod 

evolution. Due to a focus on a large sample of fossil material, a revision of diapsid 

forelimb myology based on own dissections would clearly be beyond the temporal 

and financial scope of the present thesis. Therefore, this chapter follows a different 

approach: As much published accounts on diapsid forelimb anatomy as possible 

are reviewed in order to summarize which anatomical details are currently known 

about the muscular anatomy of the last common ancestor of extant archosaurs, 

and what is unknown. This should serve as a better fundament for assessing my-

ological evolution of sauropodomorphs or any other extinct archosaur group than 

adding another individual (and hence probably not representative) observation to 

the literature. 

Archosaurian forelimb myology 

In order to get an overview over the complex set of forelimb muscles and their 

function, the musculature may be subdivided into groups. Different ways of sub-

division have been proposed:  

In his classic works, Fürbringer (1876, 1888, 1902) recognized the value of 

homologous innervations in order to homologize individual muscles of the ex-

tremities, and grouped the musculature accordingly. Fürbringer (1888) also ar-

gued that the connection between nerve and muscle is already fixed at the begin-

ning of ontogenetic development, a suggestion later known as the Fürbringer hy-

pothesis. Gadow and Selenka (1891) followed his approach, and other workers 

henceforth relied on innervations to identify limb muscles in anatomical studies 

(e.g., Howell, 1936a,b, 1937). Romer (1922) was the first to express doubts on the 

reliability of nerve supply as a panacea to questions about muscle homologies. 

Haines (1935) rejected any requisite connection between muscles and their nerve 

supply: homologous muscles actually may be innervated by different nerves, due 

to individual or phylogenetic variation. Therefore, the Fürbringer hypothesis does 

not necessarily help to homologize crocodilian and avian muscles, and a muscle 

classification based on innervation patterns would not be suited for the matter 

discussed in the present work. 

A second way of subdividing limb muscles is expressed by the terms ‘extrinsic’ 

and ‘intrinsic’ musculature. Extrinsic muscles are those that origin from the trunk 

and act on the limb, while intrinsic muscles are confined to the girdle and limb. 

Most recently, Meers (2003) adopted this concept and also extended it to distin-

guish between extrinsic and intrinsic manual flexors and extensors, the former 

group having its origin on the antebrachium, the latter on the carpus and meta-



40 Sauropodomorph forelimb evolution REMES 

 

carpus. However, in his works on the embryonic development of lacertilians, 

Romer (1942, 1944) already showed that such a classification is artificial, because 

some ‘extrinsic’ muscles (M. latissimus dorsi, M. pectoralis) are clearly derived 

from the embryonic limb bud muscle mass, while others are modified axial mus-

cles. Furthermore, M. teres major of reptiles is a specialized portion of M. latis-

simus dorsi that relocated its origin onto the scapular blade; therefore, although 

plesiomorphically part of an ‘extrinsic’ muscle, it would have to be classified as 

‘intrinsic’. For all these logical difficulties, Romer (1942, 1944) abandoned this 

concept and suggested a classification based on embryonic development.  

Romer (1922, 1924) proposed that the pectoral limb of tetrapods is derived 

from the pectoral fin of fishes, which typically possess only two muscular bodies, 

a dorsal extensor and a ventral flexor muscle. Therefore, all limb muscles of 

tetrapods should be derived from one of these muscle masses and may be classi-

fied as ‘dorsal’ or ‘ventral’, respectively. His hypothesis was later confirmed by 

embryological examinations of Necturus (Chen, 1935), Lacerta (Romer, 1942, 

1944), and Chrysemys (Walker, 1947). Romer’s hypothesis henceforth served as a 

standard for limb muscle classification for other scholars (Miner, 1925; Howell, 

1936a,b; Walker, 1973; Cong et al., 1998; Meers, 2003; Jasinoski et al., 2006), 

who sometimes equated dorsal muscles with extensors and ventral muscles with 

flexors. For instance, Meers (2003) classified the dorsal M. ectepicondylo-ulnaris 

(‘M. flexor ulnaris’ in his work) as a forearm extensor, although this muscle func-

tionally serves as a flexor, a derived trait. However, many workers, especially 

ornithologists, refrained from adopting any subdivision of limb muscles, and in 

anatomical descriptions listed muscles simply in gross proximodistal order (e.g., 

Vanden Berge and Zweers, 1993). Both concepts are regarded here as not concise 

enough for a thorough understanding of function and functional change. 

Therefore, the muscles of the pectoral girdle and forelimb have been subdi-

vided here into gross functional units that correspond to the mechanical units 

moved by these muscles. These are, in proximodistal order:  

a) muscles that connect the pectoral girdle to the axial skeleton (cingulo-axial 

muscles), 

b) muscles that act on the humerus (humeral muscles),  

c) muscles that act on the antebrachium (antebrachial muscles), and  

d) muscles that act on the manus, i.e., carpus, metacarpus, and phalanges 

(manual muscles).  

The verb ‘to act’ has to be viewed from an internal, proximodistal frame of ref-

erence here, since from a position outside of the animal, it is often not possible to 
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determine ‘fixed’ and ‘moved’ elements during the complex process of locomo-

tion. Byerly (1925) adopted a similar subdivision, albeit with a higher number of 

less inclusive muscle groups. These functional units are not necessarily ‘natural’ 

groups in sense of their phylogenetical or embryological derivation, but serve well 

to understand the functional morphology of the limb, one of the main purposes of 

the present work. 

In the following sections, the morphology and phyletic variation of each fore-

limb muscle will be shortly described, with special emphasis on potential osteo-

logical correlates. Only anatomical and topological aspects will be discussed, since 

the treatment of functional suppositions about the muscles of modern animals 

would be beyond the scope of this chapter. Due to the extreme modification of the 

chelonian pectoral girdle both in form and position, muscles that attach to this 

structure are hard to compare to those of other tetrapods. Therefore, turtle muscu-

lature is taken into full account only in sections III and IV (antebrachial and hand 

muscles). A simplified cladogramm of the tetrapod groups treated in this chapter 

is given in figure 3-1.  

 

Figure 3-1. Cladogramm of the extant tetrapod groups examined throughout this chapter, and their 
relationship to sauropodomorphs. 

Additionally to the morphological descriptions, nomenclatorial synonyms are also 

reviewed. The names suggested here follow a concept of ‘best compromise’ be-

tween NAA standardization and compatibility to earlier works. As will be shown, 

some of the NAA concepts also serve well for archosaurs or other diapsids, and 

should be preferred over misleading terms that exist in the literature on anatomy 
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of non-avian reptiles. A simplified overview of the muscles treated in this chapter 

is provided in the Appendix of this work. 

I. Cingulo-axial muscles 

1. M. cucullaris (C).  

Synonyms:  

M. trapezius (Haughton, 1866; Mivart, 1867, 1870; de Vis, 1884; Cong et al., 1998;  

Meers, 2003) 

M. dorso-scapularis (Fürbringer, 1876)  

M. triangularis dorsi primordialis (Ribbing, 1938) 

Remarks – Although frequently named ‘M. trapezius’ in the literature, both the classi-

cal works of Fürbringer (1886, 1888, 1900, 1902) and modern ornithological works (e.g., 

Berger, 1966; Vanden Berge and Zweers, 1993) prefer the term ‘M. cucullaris’. The name 

‘M. trapezius’ has its origin in human anatomy, and although both M. trapezius and M. 

cucullaris are derived from the same primordial muscle mass, they are no strict homo-

logues. Therefore, the term ‘M. cucullaris’ is most appropriate. 

DESCRIPTION – Plesiomorphically, M. cucullaris (figs. 3-2, 3-3) is a thin, sheet-

like superficial muscle that has its origin on the occiput and aponeurotically along 

the cervical dorsal midline, and its insertion on the acromial region of the scapula. 

In amphibians, the origin of M. cucullaris extends from the exoccipitals back to 

about the level of the cranial edge of the scapula, and the muscular body is undi-

vided (Miner, 1925; Francis, 1934; Ribbing, 1938). A similar condition is found in 

Sphenodon, however with a slight differentiation into an occipital and a cervical 

part (Fürbringer, 1876, 1900; Byerly, 1925; Miner, 1925). In squamates as well as 

in archosaurs, both parts fully differentiate into M. sternocleidomastoideus, which 

spans along the lateral side of the neck between the occiput and the ventrocranial 

edge of the sternum, and into M. cucullaris sensu strictu. In both groups, the cra-

niocaudal extent of M. cucullaris is variable. In Iguana, its origin extends almost 

from the occiput to the level of the fifth dorsal vertebra (Mivart, 1867), while in 

Chamaeleo, its extent is restricted to one or two dorsal vertebra (Mivart 1870; Für-

bringer, 1876, 1900). In crocodilians, the differentiation of the plesiomorphic M. 

cucullaris is most derived, since not only the areas of origin are separated widely, 

but also the insertion sites of M. sternoatlanticus (a derivate of M. supracleido-

mastoideus) and M. cucullaris are neighboring no longer (Fürbringer, 1876, 1886, 

1888, 1900, 1902). In amphibians, M. cucullaris inserts along the cranial edge of 

the scapula down to the contact between scapula and coracoid (Miner, 1925; Rib-

bing, 1938). The muscle mainly inserts in the acromial area in squamates (Sand-
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ers, 1870, 1872; de Vis, 1884; Romer, 1922; Byerly, 1925; Miner, 1925), while its 

derivate, M. sternocleidomastoideus, inserts laterally at the clavicle, interclavicle, 

and sternum (Fürbringer, 1876, 1900; Byerly, 1925; Miner, 1925; Ribbing, 1938). 

Most crocodilians strongly modified the ancestral state by restricting the insertion 

of M. cucullaris to the cranial edge of the scapula blade, without reaching down to 

the acromial area, and simultaneously further differentiating M. sternocleidomas-

toideus into two separate muscles that insert on the cranial edge of the sternum 

(Fürbringer, 1876; Meers, 2003). These modifications are related to the reduction 

of the clavicles in crocodilians. However, the insertion site of M. cucullaris is still 

located immediately caudal to the acromion in Caiman (own observations; Jasi-

noski et al., 2006). 

M. cucullaris of birds in a way resembles the ancestral state more than that of 

crocodilians. The craniocaudal extent of its origin strongly varies, from almost all 

along the neck in Rhea to a small caudal bundle at the base of the neck (Für-

bringer, 1876, 1886, 1888, 1900, 1902; Vollmerhaus et al., 1992). In all carinates, 

M. cucullaris inserts laterally on the furcula, while in ratites, which have lost their 

clavicles, it inserts on the acromion or dorsal coracoid (Fürbringer, 1876, 1886, 

1888, 1902; Gadow and Selenka, 1891). In some bird groups, a specialized slip of 

M. cucullaris develops that becomes involved in controlling the propatagium 

(Fürbringer, 1888, 1902; Hudson and Lanzilloti, 1955).  

DISCUSSION – Outgroup comparison leaves it unresolved whether the insertion 

of M. cucullaris along the cranial edge of the scapula blade is a plesiomorphic trait 

(retained in synapsids and crocodiles) that was reduced in lepidosaurs and lost in 

birds, or if it is a secondarily derived state of crocodilians, however least expressed 

in Caiman. In the latter case, which is regarded as most parsimonious here, the 

configuration of M. cucullaris in basal archosaurs should resemble that of Spheno-

don more than that of Crocodylus. A second difficulty is that M. cucullaris usually 

leaves no osteological correlates (Romer, 1922; own observations). Therefore, 

reconstructions of this muscle involve a high level of speculation.  

2. M. rhomboideus (R). 

Synonyms: 

M. rhomboides (Fürbringer, 1886, 1888, 1900, 1902) 

Remarks – This muscle is consistently named M. rhomboideus in almost all anatomi-

cal works, with the exception of the slight difference in writing proposed by Fürbringer. In 

birds, only M. rhomboideus superficialis is homologous with M. rhomboideus of croco-

diles. 
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DESCRIPTION – M. rhomboideus (fig. 3-3) is restricted to archosaurs and not 

existent in other diapsids or basal tetrapods. It is regarded as a differentiation of 

M. serratus profundus, and a convergent development to the homonymous mus-

cles in mammals and anurans (Fürbringer, 1876).  

In crocodilians, M. rhomboideus takes its origin from the dorsal fascia, caudal 

to M. cucullaris and level with the 8th and 9th presacral vertebra (Fürbringer, 

1876). A slight differentiation into a cranial and a caudal portion is observable in 

some taxa, e.g. Alligator sinensis (Cong et al., 1998). It consistently inserts onto the 

medial side of the suprascapular cartilage, commonly in the cranial two thirds 

(Fürbringer, 1900; Cong et al., 1998; Meers, 2003). Therefore, this muscle has no 

osteological correlates in crocodilians. 

In most birds, two muscles of the name M. rhomboideus exist, M. rhomboi-

deus superficialis and M. rhomboideus profundus. The former is homologous 

with M. rhomboideus of crocodilians, while the latter is a new derivate of M. ser-

ratus profundus (Fürbringer, 1876, 1888, 1902). In carinates, both muscles arise 

sometimes fleshy, sometimes aponeurotical from the dorsolateral sides of the neu-

ral spines, and insert along the dorsal (developmentally cranial) border or dor-

somedial rim of the scapular blade. M. rhomboideus superficialis extents its inser-

tion onto the dorsal head of the furcula in some forms (Fisher, 1946; Schreiweis, 

1982). The origin and insertion of M. rhomboideus profundus is located some-

what caudal to that of M. rhomboideus superficialis, however both muscles usu-

ally overlap for most of their extent (Fisher, 1946; Fisher and Goodman, 1955; 

Hudson and Lanzilloti, 1955, 1964; Schreiweis, 1982; McGowan, 1986). They are 

closely associated and sometimes coadunate (Fürbringer, 1888, 1902; McGowan, 

1986).  

The morphology of Mm. rhomboidei in ratites is variable. In Rhea and Struthio, 

M. rhomboideus superficialis is located far cranially and partially coadunate with 

M. cucullaris (Fürbringer, 1888, 1902). As a consequence, it is completely sepa-

rate from M. rhomboideus profundus. However, in Casuarius, its insertion along 

the dorsal border of the scapula resembles the condition found in carinates. In 

Casuarius and in Apteryx, M. rhomboideus profundus has not fully differentiated as 

a separate muscle. In both taxa, it is part of M. serratus profundus, and has its 

origin on the dorsal ribs (Fürbringer, 1888, 1902; McGowan, 1982). However, M. 

rhomboideus profundus is present in Rhea, Struthio, and Dromaius (Fürbringer, 

1888).  

DISCUSSION –Based on the imperfect development in some ratites, Fürbringer 

(1902) suggested that M. rhomboideus profundus is a novel muscle that is re-
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stricted to Aves and only in carinates fully developed. However, since ratites are 

inadequate for polarizing avian myological characters (see above), it is also possi-

ble that M. rhomboideus profundus already was present in dromaeosaurids (Jasi-

noski et al., 2006), or even earlier in theropod evolution. Given the conjoint inser-

tion dorsomedially on the scapular edge, M. rhomboideus profundus has no oste-

ological correlate that is clearly distinguishable from that of M. rhomboideus su-

perficialis. Therefore, strict phylogenetic inference does not rule out the presence 

of M. rhomboideus profundus in basal archosaurs, although this is improbable 

(chapter 4). Nevertheless, the EPB unequivocally implies the presence of a M. 

rhomboideus (superficialis) in those forms (level I inference), but its extent is a 

matter of speculation. 

 
Figure 3-2. Origins, insertions and lines of action of superficial cingulo-axial muscles in urodeles (A, 
right lateral view; B, dorsal view), Sphenodon (C, left lateral view), and Varanus (D, left lateral view). 
Shaded attachment areas and lines of action indicate muscles that lie on the remote side of the re-
spective bony element. 
 

3. M. levator scapulae (LS). 

Synonyms: 

M. serratus magnus (Haughton, 1866) 

M. levator claviculae (Mivart, 1867, 1870) 

M. collo-scapularis superficialis (Fürbringer, 1876) 

M. levator scapulae superficialis (Fürbringer, 1900; Byerly, 1925; Cong et al., 1998) 

M. basi-scapularis (Ribbing, 1938) 
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Remarks: Fürbringer (1876, 1900) preferred the term M. levator scapulae superficialis, 

contrasting this muscle to M. levator scapulae et serratus profundus (M. serratus profun-

dus in this work), which also rotates the scapula cranially. However, later workers referred 

to the superficial muscle simply as M. levator scapulae, a convention followed here. 

DESCRIPTION – M. levator scapulae (figs. 3-2, 3-3) is situated on the lateral 

side of the neck (medial to M. cucullaris) in all tetrapods with the exception of 

birds and turtles. Probably, it is phylogenetically related to M. cucullaris, as a de-

rivate of the musculature that connected the head and dermal pectoral girdle in 

lower tetrapods (Romer, 1922). In amphibians, it is still attached to the occiput 

(Ribbing, 1938). In Reptilia, its origin was transferred to the transverse processes 

of the first few cervical vertebrae (usually, atlas or axis). In contrast to amphibi-

ans, lepidosaurs develop two heads of this muscle (an inferior or ventral head and 

a superior or dorsal head) that retain a common origin but split caudally towards 

their insertions (Miner, 1925). In Sphenodon, the ventral head inserts medially 

along the cranial edge of the scapula down to the acromion, while the dorsal head 

attaches to the craniodorsal part of the lateral side of the suprascapular cartilage 

(Fürbringer, 1876, 1900; Byerly, 1925; Miner, 1925). This condition has been re-

garded as specialized by Fürbringer (1900): In other lepidosaurs, such a division 

of M. levator scapulae into a dorsal and a ventral part is present, but not as pro-

nounced as in Sphenodon. The ventral part of the lepidosaurian M. levator scapu-

lae usually attaches to the whole cranial edge of the scapula (sometimes extending 

onto the lateral side) and also to the lateral side of the dorsal extremity of the 

clavicle, close to its articulation with the acromion (Mivart, 1867; Sanders, 1870, 

1872, 1874; Fürbringer, 1876, 1900; de Vis, 1884; Romer, 1922; Ribbing, 1938).  

In crocodilians, the origin of M. levator scapulae extends to the cervical verte-

bral ribs, but retains an attachment to the cervical transverse processes (Haughton, 

1866, Fürbringer, 1876, 1900; Meers, 2003). There is no clear differentiation into 

a dorsal and a ventral head, although Fürbringer (1876) mentions a slight portion-

ing into a dorsal and a ventral part in some forms. However, Cong et al. (1998) 

found this muscle to split into a superficial and a deep layer in Alligator sinensis.  

DISCUSSION – The fleshy origin of this muscle was not found to leave any un-

ambiguous osteological correlates on the cranial cervical transverse processes or 

ribs that may be distinguished from the areas of attachment of M. serratus pro-

fundus. However, the cranial edge of the scapula is slightly thickened at the site of 

insertion of M. levator scapulae in crocodilians. Moreover, a narrow convex facet 

may be found cranial to the flattened area of attachment of M. deltoideus scapu-
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laris, indicating an extension of M. levator scapulae onto the lateral surface of the 

scapula.  

 
Figure 3-3. Origins, insertions and lines of action of superficial cingulo-axial muscles in Alligator (A, 
left lateral view; B, dorsal view) and Gallus (C, left lateral view; D, dorsal view). Shaded attachment 
areas and lines of action indicate muscles that lie on the remote side of the respective element. 
 

Since M. levator scapulae is lost in birds, it is difficult to reconstruct its mor-

phology in basal archosaurs by phylogenetic inference alone. The development of 

a dorsal (suprascapular) head in lepidosaurs may be synapomorphic for this 

group, but this condition may also be plesiomorphic for diapsids and secondarily 

reduced in crocodiles. However, the latter assumption would be less parsimonious 

and is therefore not taken into consideration here. Moreover, it can be assumed 

that M. levator scapulae was lost in birds as a result of the reorientation of the 

scapula in Maniraptora (Jasinoski et al., 2006). Hence, the muscle probably was 

still present in basal archosaurs, although the EPB produces equivocal results in 
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this case. The exact extent of the insertion of M. levator scapulae is a matter of 

speculation, because the associated osteological structures are not easy to identify.  

4. M. serratus superficialis (SS). 

Synonyms: 

M. latissimus dorsi scapulocostalis (Haughton, 1866) 

M. serratus magnus (Mivart, 1867, 1870; Ribbing, 1938) 

M. thoraci-scapularis superficialis (Fürbringer, 1876) 

M. costo-sterno-scapularis (Byerly, 1925) 

M. serratus anterior, M. serratus posterior (Fisher, 1946; Fisher and Goodman, 1955;  

Berger, 1953, 1954, 1955, 1956a–c, 1957, 1960, 1966) 

M. serratus ventralis thoracis (Meers, 2003) 

Remarks: In reptiles, there are at least two layers of the M. serratus complex, referred 

to as M. serratus superficialis and M. serratus profundus by most modern workers. Earlier 

workers subsumed these muscles under ‘M. serratus magnus’ (Mivart, 1867, 1870; Rib-

bing, 1938) or simply ‘M. serratus’ (Sanders, 1870, 1872; de Vis, 1884). Regarding birds, 

Fisher and Berger (see citations above) subdivided M. serratus superficialis into two or 

three discrete muscles, namely M. serratus anterior, M. serratus posterior, and M. serratus 

metapatagialis, additional to M. serratus profundus. However, the NAA recognized the 

common origin of the three superficial muscles, and standardized their terminology as 

constituting three different parts of M. serratus superficialis (Vanden Berge and Zweers, 

1993). 

DESCRIPTION – M. serratus superficialis (figs. 3-2, 3-3) is located on the lateral 

side of the body just medial and caudal to the scapula, and is covered by M. latis-

simus dorsi. The muscle connects the scapula to the ribcage, and is characterized 

by a strong interspecific plasticity in its origin; however, there are commonalities. 

In Sphenodon, the origin of M. serratus superficialis is restricted to the lateral side 

of the last cervical rib and the first sternal rib. The muscle inserts on the caudoven-

tral edge of the cartilaginous suprascapula and the caudodorsal corner of the bony 

scapula (Fürbringer, 1900; Miner, 1925). Miner (1925) noted that M. serratus 

superficialis is not well developed in amphibians, but reduced to a tendinous sheet 

that connects the posterior edge of the suprascapula to the lateral body wall. In 

contrast, lepidosaurs usually have this muscle subdivided into two to four slips 

that have their origin on various ribs in the caudal cervical and cranial thoracic 

region (including the sternal ribs). These slips insert differently on the su-

prascapula and sometimes on the caudodorsal edge of the bony scapula (Mivart, 

1867, 1870; Sanders, 1870, 1872; Fürbringer, 1876, 1900; de Vis, 1884).  
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In crocodilians, the threefold origin of M. serratus superficialis is confined to 

the ventral part of the last cervical rib and to the uncinate processes and adjacent 

shafts of the first three thoracic ribs (Fürbringer, 1876, 1900). The three slips 

merge and insert together along the caudal edge of the scapula and suprascapula 

(Fürbringer, 1876; Cong et al., 1998). The ventral part of this muscle tends to 

separate the belly of M. subcoracoscapularis into two portions (Fürbringer, 1876, 

1900), a development towards the condition seen in birds (see below). M. serratus 

superficialis is much stronger in crocodilians than in lepidosaurs (Fürbringer, 

1876; Ribbing, 1938). 

In most birds, M. serratus superficialis has differentiated into three separate 

muscular bodies called pars cranialis, pars caudalis, and pars metapatagialis, re-

spectively (Gadow and Selenka, 1891; Fürbringer, 1902; Ribbing, 1938; Vanden 

Berge and Zweers, 1993). Pars cranialis usually arises from the ventral parts of the 

last cervical and first thoracic ribs, and sometimes also from their uncinate proc-

esses. It inserts fleshy, sometimes tendinous on the cranial part of the ventral 

scapular border and divides M. subcoracoscapularis (M. subscapularis in birds) 

into two portions (Gadow and Selenka, 1891; Fürbringer, 1902; Fisher, 1946; 

Hudson and Lanzilloti, 1955, 1964; Berger, 1966; McGowan, 1982, 1986; 

Schreiweis, 1982; Vanden Berge and Zweers, 1993). If it inserts tendinously, a 

triangular tubercle on the caudal scapular blade correlates with this muscle (Jasi-

noski et al., 2006). Pars caudalis takes its origin from various ribs, usually between 

the second and the sixth thoracic rib, ventral to or directly on the uncinate proc-

esses. It inserts on the posterior third of the ventral edge of the scapular blade 

(Fürbringer, 1902; Fisher, 1946; Fisher and Goodman, 1955; Hudson and Lanzil-

loti, 1955, 1964; Berger, 1966; McGowan, 1982, 1986). 

The picture is somewhat different in palaeognathous birds. In Struthio and 

Casuarius, M. serratus superficialis is undifferentiated. The muscle does not subdi-

vide M. subscapularis, because the tendinous insertion of M. serratus superficialis 

is situated lateral to the former (Gadow and Selenka, 1891). However, Rhea and 

Apteryx show a differentiation of this muscle into a pars cranialis and a pars cau-

dalis, but exhibit no trace of a pars metapatagialis (Fürbringer, 1902; McGowan, 

1982). Furthermore, the site of insertion of these muscles has shifted onto the dor-

sal edge of the scapula in Rhea (Fürbringer, 1902).  

DISCUSSION – Given the variable condition in ratites, Fürbringer (1902) con-

cluded that the differentiation of M. serratus superficialis into a pars cranialis and 

a pars caudalis must have occurred at the base of modern birds, and is probably 

related to the reorientation of the scapula blade. However, this reorientation be-
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gan earlier in maniraptoran evolution (Gatesy and Baier, 2005), and the primitive 

condition of M. serratus superficialis in some ratites may in fact be a result of pae-

domorphosis (see above, ‘Variation and the choice of extant sample taxa’). Never-

theless, more basal theropods show a plesiomorphic orientation of the pectoral 

girdle (Carpenter, 2002). Therefore, a crocodilian-like, undivided insertion along 

the entire caudal margin of the scapula probably was present in all archosaurs 

plesiomorphically. However, the exact extent of this insertion is hard to delimit, 

since no unambiguous osteological correlates are present in the extant bracket 

taxa.  

5. M. serratus profundus (SP). 

Synonyms: 

M. serratus magnus (Mivart, 1867, 1870; Ribbing, 1938) 

M. serratus anterior (Sanders, 1870, 1872; Romer, 1922) 

M. collo-thoraci-scapularis profundus (Fürbringer, 1876) 

M. levator scapulae et serratus profundus (Fürbringer, 1900) 

M. rhomboideus (Rabl, 1916) 

M. serratus anticus (Byerly, 1925) 

M. serratus profundus ventralis (Cong et al., 1998) 

M. serratus ventralis cervicis (Meers, 2003) 

Remarks: Most authors recognized M. serratus profundus as a part of the Mm. serrati 

complex, but several synonyms have been proposed (see list above). However, the NAA 

uses the term M. serratus profundus (Vanden Berge and Zweers, 1993), a useful standardi-

zation that is easily applicable to the anatomical conditions in lower diapsids. Few authors 

(e.g., Meckel, 1828; Rabl, 1916) have suggested that parts of this muscle may be homolo-

gous to M. rhomboideus of archosaurs (and mammals, rendering this muscle an amniote 

synapomorphy), a hypothesis rejected by Fürbringer (1876, 1900). 

DESCRIPTION – Like M. serratus superficialis, M. serratus profundus (figs. 3-4, 

3-5) is located on the lateral side of the body. It is covered by the former muscle, 

by the scapular blade, and by M. latissimus dorsi. With the exception of mammals 

and carinate birds, it is divided into a superficial and a deep layer in most other 

tetrapods. The deep layer usually has a wider origin than the superficial layer 

(Ribbing, 1938; Fürbringer, 1876, 1900, 1902; Gadow and Selenka, 1891). In am-

phibians, M. serratus profundus arises from the ends of the two middle cervical 

ribs (Miner, 1925), or from the transverse processes of the last two cervical verte-

brae (Ribbing, 1938), and inserts on the medial surface of the suprascapular carti-

lage. The area of insertion is conservative in non-avian diapsids, but the points of 
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origin on the axial skeleton are highly variable. The origin of M. serratus profun-

dus usually comprises the ventral parts of all six cervical ribs in Sphenodon, and its 

deep layer inserts along the dorsomedial border of the suprascapula (Fürbringer, 

1900; Byerly, 1925; Miner, 1925). In other lepidosaurs, this muscle variably arises 

from two to six cervical ribs (Fürbringer, 1876, 1900; Mivart, 1867; Sanders, 1870, 

1872; Rabl, 1916; Ribbing, 1938), but usually not from the transverse processes. 

In archosaurs, the muscle retains the origin from the transverse processes. In 

Alligator, the attachment of M. serratus profundus comprises the ribs and trans-

verse processes of the fifth (or sixth) to tenth cervical vertebra (Fürbringer, 1900). 

In other crocodilians, this origin may extent caudally to the dorsal edge of the 

uncinate process of the second thoracic rib (Fürbringer, 1876, 1900). Like in lepi-

dosaurs, M. serratus profundus inserts on the medial side of the suprascapular 

cartilage, but sometimes extends ventrally onto the dorsal edge of the bony scap-

ula, where it is partially associated with a rugose surface texture (Jasinoski et al., 

2006; own observations).  

The superficial layer of M. serratus profundus tends to fuse with M. serratus 

superficialis pars posterior in all birds but Struthio and Casuarius, where the primi-

tive reptilian condition is retained (Fürbringer, 1902). Moreover, with the excep-

tion of Apteryx and Casuarius, a new derivate of M. serratus profundus developed, 

M. rhomboideus profundus (Fürbringer, 1886; see above, ‘M. rhomboideus’). The 

remaining main portion of M. serratus profundus is highly variable. It has its ori-

gin on two to six ribs in the caudal cervical and cranial thoracic region. The points 

of attachment locate sometimes ventrally, sometimes proximally, and in the latter 

case also include the adjacent transverse processes. In most cases, the origin is 

situated on the last two cervical ribs plus the first and sometimes second thoracic 

rib. The muscle also extends cranially in some forms, which has been explained 

by a shift of the pectoral girdle relatively backwards along the vertebral column 

(Fürbringer, 1902). M. serratus profundus generally inserts on the medial surface 

of the caudal part of the scapular blade, but the outline and exact position of the 

area of attachment is variable (Gadow and Selenka, 1891; Fisher, 1946; Fisher 

and Goodman, 1955; Hudson and Lanzilloti, 1955, 1964; Berger, 1966; Schrei-

weis, 1982).  

DISCUSSION – The usually fleshy attachments of M. serratus profundus do not 

have any unambiguous osteological correlates on the ribs, transverse processes, or 

scapula (with the exception in crocodilians mentioned above). However, the gen-

eral area of origin and insertion is relatively constant in all diapsids. Given its 

morphology in both crocodilians and birds, it is justified to infer that in basal ar-
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chosaurs M. serratus profundus took its origin from the transverse processes and 

ribs of the last cervicals and first dorsals, and consisted of two layers (level I infer-

ences). Reconstructing its point of insertion in basal archosaurs involves more 

speculation, since the cartilaginous suprascapula is lost in birds, but was probably 

still present in non-maniraptoran dinosaurs (level II inference). 

 

Figure 3-4. Deep cingulo-axial muscles of urodeles (A, right lateral view; B, dorsal view) and lepi-
dosaurs, here Sphenodon (C, right lateral view; D, ventral view). Shaded attachment areas and lines 
of action indicate muscles that lie on the remote side of the respective bony element.  
 

6. M. costocoracoideus (CC). 

Synonyms: 

M. pectoralis secundus (Haughton, 1866) 

M. sternocosto-scapularis (Fürbringer, 1876, 1900) 

M. costosterno-coracoideus (Miner, 1925; Dilkes, 2000) 

M. sternocoracoideus internus (Ribbing, 1938) 

Remarks: The term M. costocoracoideus is fully appropriate only for crocodilians, al-

though many authors also use this name for a certain muscle in lepidosaurs (see below). It 

has not been shown beyond doubt that the crocodilian M. costocoracoideus is homolo-

gous to M. sternocoracoideus in birds (contra Jasinoski et al., 2006). Therefore, both mus-

cles are treated separately here. 

DESCRIPTION – M. costocoracoideus (figs. 3- 4, 3-5) and M. sternocoracoideus 

are closely related. Muscles of these names exist in parallel in lepidosaurs, but 

archosaurs only have one muscle left, a M. costocoracoideus in crocodilians and a 
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M. sternocoracoideus in birds. However, the homologies of these muscles are 

unclear (see Discussion). 

In Sphenodon, there are three muscles on the ventral side of the body that con-

nect the axial skeleton to the pectoral girdle: M. sternocoracoideus superficialis, 

M. sternocoracoideus profundus, and M. costocoracoideus. Miner (1925) inter-

preted all of these muscles as derivates of M. sternohyoideus of amphibians, the 

cranial-most part of the ventral axial musculature. In Sphenodon and other lepi-

dosaurs, a small M. costocoracoideus arises from the cranial edge of the first ster-

nal rib (Mivart, 1867; Fürbringer, 1876, 1900; de Vis, 1884; Rabl, 1916; Miner, 

1925). The muscle inserts into the prominent Ligamentum sternoscapulare inter-

num, which spans between the medial side of the scapula (dorsocranial to the 

glenoid) and the dorsolateral side of the sternum. A branch of this ligament inserts 

onto the coracoid, directly medial to the glenoid. Since the inserting M. costo-

coracoideus is oriented towards the scapula in lepidosaurs, the main action of this 

muscle is to rotate the scapula backwards, while the effect on the coracoid is mi-

nor.  

In crocodilians, M. costocoracoideus is not associated with the Ligamentum 

sternoscapulare internum. Instead, the large muscle is subdivided into a superfi-

cial and a deep head that arise from the cranial edges of the last cervical rib and 

the first sternal rib, respectively, and jointly insert onto the caudal and medial 

sides of the coracoid (Haughton, 1866; Fürbringer, 1876, 1900; Cong et al., 1998; 

Meers, 2003). There is no osteological correlate of M. costocoracoideus in croco-

dilians. However, the potentially homologous M. sternocoracoideus of birds is 

correlated with a marked depression on the coracoid (see ‘M. sternocoracoideus’). 

DISCUSSION – None of the aforementioned authors make a clear statement if 

the crocodilian M. costocoracoideus is homologous to the Mm. sternocoracoidei 

or to M. costocoracoideus of lepidosaurs. Moreover, it is not clear if M. sterno-

coracoideus of birds is a homologue of the crocodilian M. costocoracoideus or of 

the lepidosaurian muscles of the same name (see below, ‘M. sternocoracoideus’). 

Jasinoski et al. (2006) assumed the former to be the case, based on similar attach-

ment sites and patterns of innervation. However, since all these muscles are de-

rived from a common primordial muscle, there is currently no way to test this 

assumption: the conditions in all three clades (Lepidosauria, Crocodylia, Aves) 

may constitute autapomorphic specializations. Therefore, phylogenetic inference 

only allows to state that in basal archosaurs one or more muscles existed that 

arose from the medial side of the sternum and/or the cranial edge of the first ster-
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nal rib, and inserted caudally and medially on the coracoid (see below, ‘M. ster-

nocoracoideus’). 

 
Figure 3-5. Deep cingulo-axial muscles of Alligator (A, lateral view; B, ventral view; C, dorsal view) 
and Gallus (D, lateral view; E, dorsal view). Shaded attachment areas and lines of action indicate 
muscles that lie on the inside of the respective bony element. 
 

7. M. sternocoracoideus (StC). 

Synonyms: 

M. sterno-coracoidalis (Sanders, 1870, 1872, 1874) 

Remarks: see ‘M. costocoracoideus’ above. 

DESCRIPTION – M. sternocoracoideus (figs. 3-4, 3-5) is found in birds and lepi-

dosaurs, but not in crocodilians. The lepidosaurian M. sternocoracoideus arises 

with two heads (M. sternocoracoideus superficialis and M. sternocoracoideus 

profundus) from the dorsal (internal) side of the sternum. In dorsal view, the ex-

ternal M. sternocoracoideus superficialis is covered by the internal M. sternocora-
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coideus profundus. In Sphenodon and squamates, the M. sternocoracoideus super-

ficialis takes its origin from the craniolateral side of the sternum, close to the cora-

coidal articulation, while the latter arises from the caudal half of the sternum. The 

two heads may extend their origin onto the bases of the sternal ribs, and are par-

tially separated from each other by the Ligamentum sternoscapulare internum. 

Both muscles join and insert on the medial side of the coracoid. The insertion of 

M. sternocoracoideus superficialis is fleshy, while that of M. sternocoracoideus 

profundus is often tendinous and located cranial to the former (Mivart, 1867; 

Sanders, 1872, 1874; Fürbringer, 1876, 1900; Byerly, 1925; Miner, 1925; Ribbing, 

1938).   

In birds, M. sternocoracoideus is sometimes undivided (e.g., in Struthio and 

Rhea), and sometimes separated into a superficial and a deep layer. The muscle 

arises primarily from the medial and often also from the lateral side of the Proces-

sus craniolateralis sterni (sternocoracoidal process). Like in lepidosaurs, this ori-

gin may extend onto the sternal ribs in carinates, but this is not observed in ratites. 

If present, the superficial part inserts on the lateral process of the coracoid (close 

to the sternal articulation), while the deep part inserts into a characteristic triangu-

lar depression (Impressio m. sternocoracoidei) on the dorsomedial side of the 

coracoid near its sternal base (Gadow and Selenka, 1891; Fürbringer, 1902; Fisher 

and Goodman, 1955; Hudson and Lanzilloti, 1955, 1964; Berger, 1966; 

McGowan, 1982, 1986; Schreiweis, 1982). The Impressio m. sternocoracoidei 

may cover almost half of the internal side of the coracoid in some forms, e.g. in 

Galliformes (Hudson and Lanzilloti, 1964). 

DISCUSSION – Fürbringer (1886, 1888, 1902) homologizes the M. sternocora-

coideus complex of birds with that of lepidosaurs, but assumes that the superficial 

and deep layers are not homologous. Instead, he suggests that the muscle ob-

served in birds is a derivate of M. sternocoracoideus superficialis of lepidosaurs 

(Fürbringer, 1902), probably based on similar points of origin and insertion close 

to the sternocoracoidal joint. To the author’s knowledge, no workers except Jasi-

noski et al. (2006) suggest that M. sternocoracoideus of birds may be fully ho-

mologous to M. costocoracoideus of crocodiles. If Fürbringer’s (1902) hypothesis 

is correct, then both a M. sternocoracoideus and a M. costocoracoideus must have 

existed in basal archosaurs. The former muscle would then have been reduced on 

the crurotarsan line, the latter on the ornithodiran line. Both reductions are 

probably related to the strong modifications of the coracoids in crocodilians and 

birds. M. sternocoracoideus shows unambiguous osteological correlates in birds 

(origin: Processus craniolateralis sterni, insertion: Impressio m. sternocoracoidei), 
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but no clear homologues of these structures are present in crocodilians or basal 

archosaurs. In summary, since the homologies of the ventral cingulo-axial mus-

cles are not fully resolved, there is room for speculation regarding their presence 

in basal archosaurs. Some osteological structures of fossil sauropodomorphs may 

indeed be interpreted as evidence for the presence of both M. sternocoracoideus 

and M. costocoracoideus (chapters 4-9).  

II. Humeral muscles. 

8. M. deltoideus scapularis (DS). 

Synonyms: 

M. infraspinatus (Haughton, 1866; Sanders, 1870, 1872, 1874) 

M. suprascapularis anterior (Mivart, 1870) 

M. dorsalis scapulae (Fürbringer, 1876, 1900; Byerly, 1925; Francis, 1934; Ribbing,  

1938; Cong et al., 1998; Walthall and Ashley-Ross, 2006) 

Remarks: Although early authors tried to homologize this muscle with the mammalian 

M. infraspinatus, its affiliation with the Mm. deltoidei system has been demonstrated by 

comparative works of Fürbringer (1876, 1886, 1900) and embryological analyses (Romer, 

1944). Although most classic authors prefer the term ‘M. dorsalis scapulae’ over ‘M. del-

toideus scapularis’, recent works on dinosaurian shoulder anatomy use the latter name 

(Nicholls and Russell, 1985; Dilkes, 2000; Jasinoski et al., 2006), a convention that is 

accepted here. It is not clear whether the avian M. deltoideus major is homologous to M. 

deltoideus scapularis of other diapsids, as assumed by Nicholls and Russell (1985) and 

Jasinoski et al. (2006). Fürbringer (1888, 1902) supposes that M. deltoideus scapularis is 

completely lost in birds, rendering all avian deltoid muscles derivates of M. deltoideus 

clavicularis. Therefore, these muscles will be discussed in the following paragraph (‘M. 

deltoideus clavicularis’). 

DESCRIPTION – M. deltoideus scapularis (figs. 3-6, 3-7) is present early in 

tetrapod evolution, and remains relatively conservative. In amphibians, it arises 

laterally from the center of the suprascapular cartilage and inserts dorsolaterally 

on the deltopectoral crest (Fürbringer, 1876; Miner, 1925; Francis, 1934; Walthall 

and Ashley-Ross, 2006). The condition found in Sphenodon is similar to that of 

amphibians, since the main portion of the origin of M. deltoideus scapularis is still 

situated on the suprascapula (Fürbringer, 1900; Miner, 1925). In other lepi-

dosaurs, the muscle shows variation in its extent and grade of association with M. 

deltoideus clavicularis. The caudal side of the clavicle and the dorsal region of the 

acromion serve as additional areas of origin. In some forms, it is hard to separate 

M. deltoideus scapularis from M. deltoideus clavicularis, especially near their 
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insertion (Mivart, 1867; Sanders, 1874; Fürbringer, 1876, 1900; de Vis, 1884; 

Rabl, 1916; Ribbing, 1938). However, other squamates (e.g., chamaeleonids) 

show a complete separation of these muscles, in both origin and insertion. In 

these forms, M. deltoideus clavicularis keeps its fleshy insertion on the external 

side of the deltopectoral crest (see below, ‘M. deltoideus clavicularis’), while M. 

deltoideus scapularis tendinously attaches somewhat more dorsoproximal on the 

humerus (Mivart, 1870; Sanders, 1870, 1872; Fürbringer, 1876, 1900). This condi-

tion is also found in Sphenodon (Byerly, 1925; Miner, 1925). 

Crocodilians have a smaller M. deltoideus scapularis that shows no attachment 

to the acromial region. However, the muscle is often bipennate and therefore rela-

tively forceful (Fürbringer, 1876; Meers, 2003). It arises from the cranial or dor-

socranial part of the lateral side of the scapular blade, but does not extend much 

onto the suprascapula. Like in Sphenodon and many squamates, M. deltoideus 

scapularis inserts by a tendon on the dorsocranial side of the humerus close to the 

humeral head, proximal to the insertion of M. deltoideus clavicularis (Haughton, 

1866; Fürbringer, 1876, 1900; Cong et al., 1998; Meers, 2003; Jasinoski et al., 

2006). The origin of M. deltoideus scapularis correlates to a flattened area on the 

dorsolateral scapular blade, but is hard to delimit. Its tendinous insertion on the 

humerus may be indicated by a low tubercle.   

DISCUSSION – Given the condition found in Sphenodon, many squamates, and 

crocodilians, separate insertions of M. deltoideus scapularis and M. deltoideus 

clavicularis are plesiomorphic for diapsids, and therefore were present in basal 

archosaurs, too. However, since birds seemingly have completely lost this muscle 

(Fürbringer, 1888, 1902), the EPB allows only for a level II inference here. In ex-

tinct forms, a flattened area craniodorsolaterally on the scapular blade, and a tu-

bercle proximal to the deltopectoral crest may be interpreted as traces of M. del-

toideus scapularis, but this conclusion involves some speculation. 

 

9. M. deltoideus clavicularis (DC). 

Synonyms: 

M. cleido-humeralis, M. coraco-humeralis anterior et sterno-humeralis posterior  

(Fürbringer, 1876) 

M. cleido-humeralis (Byerly, 1925) 

M. procoracohumeralis (Miner, 1925; Walthall and Ashley-Ross, 2006) 

M. acromialis (Ribbing, 1938) 

M. deltoideus major, M. deltoideus minor, M. deltoideus propatagialis (ornithological  

literature) 
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Remarks: Many authors referred to this muscle simply as M. deltoideus, but the use of 

the term ‘M. deltoideus scapularis’ instead of ‘M. dorsalis scapulae’ throughout this work 

makes the epithet ‘clavicularis’ necessary. As has been noted under paragraph ‘M. deltoi-

deus scapularis’ above, it is assumed that all deltoid muscles of birds are derivates of M. 

deltoideus clavicularis (see Discussion below). Therefore, all these muscles are discussed 

in this paragraph. 

DESCRIPTION – M. deltoideus clavicularis (figs. 3-6, 3-7) shows much varia-

tion, and it is not always easy to homologize the various derivates of the deltoi-

deus complex of extant tetrapods. In caudate amphibians, its probable homo-

logue, M. procoracohumeralis superficialis, arises from the craniolateral face of 

the coracoid and inserts proximally on the cranial side of the deltopectoral crest of 

the humerus (Miner, 1925; Francis, 1934; Walthall and Ashley-Ross, 2006). In 

anurans, the muscle takes origin from the clavicle and interclavicle and inserts in a 

wide area along the humeral shaft (Fürbringer, 1876; Ribbing, 1938).  

The site of insertion of M. deltoideus clavicularis is relatively conservative in 

sauropsids, whereas its origin is subject to major variances. In all sauropsids, the 

muscle is located superficially in the cranial region of the shoulder. In Sphenodon, 

the origin is situated on the ventral part of the lateral side of the clavicle and on 

the cranial part of the interclavicle, including the caudal margin of the transverse 

processes of that element. M. deltoideus clavicularis inserts dorsocranially on the 

deltopectoral crest (Fürbringer, 1900; Byerly, 1925; Miner, 1925).  

An origin from the ventral clavicle and its caudal margin is retained in most 

squamates (Mivart, 1867; Sanders, 1870, 1872; Fürbringer, 1876, 1900; de Vis, 

1884). An occasional origin from the interclavicle has also been reported (Sanders, 

1874; Rabl, 1916; Ribbing, 1938). Fürbringer (1876, 1900) observed a positive 

correlation between the width of the ventral part of the clavicle and the size of M. 

deltoideus clavicularis. Fibers that arise from the cranial part of the clavicle wrap 

around its cranial border and form the deep part of this muscle (Fürbringer, 1876). 

As in Sphenodon, the fleshy insertion of M. deltoideus clavicularis is located on the 

cranial face of the deltopectoral crest, distal to M. deltoideus scapularis (Mivart, 

1867; Sanders, 1870, 1872, 1874; Fürbringer, 1876, 1900; de Vis, 1884; Rabl, 

1916).  

It is self-evident that in sauropsids with reduced clavicles the origin of M. del-

toideus clavicularis is modified. In chameleons, the origin of this muscle has 

shifted onto the craniolateral edge of the coracoid and the adjacent sternum 

(Mivart, 1870; Fürbringer, 1876, 1900), while in turtles, the muscle is highly vari-

able and arises from the crista deltoidea on the internal side of the plastron (Rib-
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bing, 1938; Walker, 1973). The relatively large M. deltoideus clavicularis of 

crocodilians takes its origin from the acromial region and along the cranial edge of 

the scapula. The muscle inserts fleshy on the cranial side of the deltopectoral crest 

(Haughton, 1866; Fürbringer, 1876; Nicholls and Russell, 1985; Cong et al., 1998; 

Meers, 2003).  

The deltoid muscles of birds are highly modified in comparison to those of 

other sauropsids. Three derivates of the deltoid system are recognized, M. deltoi-

deus major, M. deltoideus minor, and M. deltoideus propatagialis (= M. tensor 

propatagialis). The latter muscle, a derivate of M. deltoideus major only found in 

carinates, controls the tension of the propatagial skin. Therefore, it is not relevant 

for the subject of this thesis and will not be further discussed. 

M. deltoideus major is present in all birds, and is usually subdivided into two 

heads (Vanden Berge and Zweers, 1993). Together with M. pectoralis and M. 

supracoracoideus, it belongs to the most important flight muscles. M. deltoideus 

major arises from the acromion process or from a larger area on the lateral side of 

the scapular head, as well as from the dorsal part of the lateral side of the furcula 

(Fürbringer, 1888, 1902; Fisher, 1946; McGowan, 1986; Fisher and Goodman, 

1955; Hudson and Lanzilloti, 1955, 1964; Berger, 1966; Vollmerhaus et al., 1992). 

In some forms, it also has a tendinous, sometimes fleshy connection to the dorsal 

edge of the scapula (Fürbringer, 1888, 1902; Hudson and Lanzilloti, 1955). In 

ratites, the origin of M. deltoideus major is restricted to the scapular acromion 

process, as a consequence of the reduction of the clavicles (Fürbringer, 1902; 

Berger, 1966; McGowan, 1982). In all birds, the muscle inserts fleshy on the del-

topectoral crest, and additionally on the dorsal or caudodorsal side of the humeral 

shaft in many forms (Fürbringer, 1888, 1902; Fisher, 1946; Fisher and Goodman, 

1955; Hudson and Lanzilloti, 1955, 1964; McGowan, 1982, 1986; Schreiweis, 

1982). 

M. deltoideus minor, the most deep-seated of all shoulder muscles, is lost in 

most ratites, or fully merged with M. deltoideus major in Struthio (Fürbringer, 

1888, 1902; Gadow and Selenka, 1891, McGowan, 1982). In neognaths, the mus-

cle lies caudal and parallel to M. deltoideus major, and arises from the bones and 

ligaments around the triosseal foramen (Fürbringer, 1888, 1902; Ribbing, 1938; 

Fisher, 1946; Fisher and Goodman, 1955; Hudson and Lanzilloti, 1955, 1964; 

Berger, 1966; McGowan, 1986). Thus, its origin is located on the proximal clavi-

cle and the acromion process, and in contrast to M. deltoideus major also on the 

coracoid. The latter origin may expand along the coracoid ventrally to the ster-

num in some groups, including penguins and Gallus (Fürbringer, 1902; Schrei-



60 Sauropodomorph forelimb evolution REMES 

 

weis, 1982; Vollmerhaus et al., 1992). M. deltoideus minor inserts close to M. 

deltoideus major on the proximal part of the cranial face of the deltopectoral crest, 

between the dorsal tubercle of the humerus and the caudal ridge (margo caudalis) 

of the shaft (Fürbringer, 1888, 1902; Fisher, 1946; Fisher and Goodman, 1955; 

Hudson and Lanzilloti, 1955, 1964).  

DISCUSSION – Considering the distribution among tetrapods, an origin from 

the ventral clavicle and the interclavicle seems to represent the plesiomorphic 

condition of M. deltoideus clavicularis. However, in extant archosaurs all deltoid 

muscles are located dorsally in the shoulder region. Therefore, Fürbringer (1876) 

doubts that the crocodilian M. deltoideus clavicularis is fully homologous to its 

namesake in lepidosaurs. Instead, it may have developed from a fusion of parts of 

both M. deltoideus scapularis and M. deltoideus clavicularis (Fürbringer, 1876).  

The situation in birds is even more complicated. Fürbringer (1888, 1902) as-

sumes M. deltoideus major to be a homologue of the crocodilian M. deltoideus 

clavicularis. However, some authors (especially those who reconstructed muscula-

ture in dinosaurs) have homologized the avian M. deltoideus major with M. del-

toideus scapularis of other sauropsids (Ribbing, 1938; Nicholls and Russell, 1985; 

Dilkes, 2000; Jasinoski et al. 2006), rendering the avian M. deltoideus propatagi-

alis the only derivate of the crocodilian M. deltoideus clavicularis, and the avian 

M. deltoideus minor a new muscle without homologues in other tetrapods. In 

contrast, based on the sites of origin and patterns of innervation of avian deltoid 

muscles, Fürbringer (1888, 1902) states that it is more plausible that M. deltoideus 

scapularis has been completely lost in birds (probably as a consequence to the 

reorientation of the scapula). He also assumes that both M. deltoideus minor and 

M. deltoideus propatagialis are derivates of a primordial M. deltoideus major (and 

therefore of a muscle related to the crocodilian M. deltoideus clavicularis). Be-

cause Fürbringer (1888, 1902) is the only author among those listed above who 

justified his assumptions with arguments, his model is favored in the present the-

sis.  

Due to these unsolved questions of homology, it is difficult to reconstruct the 

cranial deltoid musculature of basal archosaurs with certainty. Strict phylogenetic 

inference implies that a clavicular deltoid muscle (that gave rise to the crocodilian 

M. deltoideus clavicularis on the one hand and to the avian Mm. deltoidei major 

et minor on the other) was located dorsally and arose from the acromion and 

clavicle. However, under consideration of the condition seen in other sauropsids 

and the presence of both an interclavicle and clavicles with robust ventral ends in 

basal archosaurs (chapter 4), it is also possible that the deltoid musculature of 
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forms like Euparkeria still resembled the lepidosaurian condition more than that of 

birds and crocodiles (which both possess highly modified pectoral girdles). Never-

theless, given the loss of the interclavicle and reduction of the clavicle in or-

nithodirans (e.g., Benton, 2004), it is at least probable that basal dinosaurs had a 

dorsally placed M. deltoideus clavicularis (not necessarily a strict homologue of its 

crocodilian namesake), but it is impossible to say if this muscle was already differ-

entiated into a M. deltoideus major and a M. deltoideus minor. The EPB implies 

that this muscle arose at least from the dorsal part of the clavicle and the acromial 

region of the scapula, and inserted on the (developmentally) cranial side of the 

deltopectoral crest. To decide if its origin extended onto the cranial edge of the 

scapula blade as in crocodilians is speculative (level II inference). 

 

Figure 3-6. Superficial humeral muscles arising from the pectoral girdle in urodeles (A, lateral view; 
B, ventral view) and Sphenodon (C, lateral view; D, ventral view). Shaded attachment areas and lines 
of action indicate muscles that lie on the remote side of the respective bony element. 
 

10. M. coracobrachialis (CB). 

Remarks: There are no synonyms for M. coracobrachialis in the literature. However, 

there is some variation in the naming of the individual heads of this muscle. Most authors 

use the terms M. coracobrachialis brevis and M. coracobrachialis longus for the two heads 

present in non-avian reptiles and amphibians. The NAA uses the terms M. coracobrachi-

alis cranialis and M. coracobrachialis caudalis, but the latter muscle actually is derived 

from the M. subcoracoscapularis system (Sullivan, 1962) and will therefore be discussed 

under ‘M. subcoracoscapularis’ below. 
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DESCRIPTION – The relatively conservative M. coracobrachialis (figs. 3-6, 3-7) 

is plesiomorphically subdivided into two heads. The short head, M. coracobrachi-

alis brevis, has its fleshy origin on the caudal half of the outside (i.e., ventrolateral 

surface) of the coracoid in caudate amphibians (Miner, 1925; Francis, 1934; 

Walthall and Ashley-Ross, 2006) and virtually all lepidosaurs. In some forms, the 

origin extends cranially to cover almost the complete ventrolateral surface of the 

coracoid (Mivart, 1867, 1870; Sanders, 1874; Rabl, 1916). The muscle inserts onto 

the ventral side of the humerus between the deltopectoral crest and the medial 

tuberosity, usually covering the proximal half or two thirds of the shaft. The inser-

tion often correlates to a depression. The other head, M. coracobrachialis longus, 

arises caudally to M. coracobrachialis brevis from a small area on the lateral face 

of the caudal angle (in caudate amphibians, from the caudal edge) of the coracoid. 

In some forms, the origin may extend onto the medial side of the coracoid, and 

onto the Ligamentum sternoscapulare internum (see ‘M. costocoracoideus’ 

above). M. coracobrachialis longus runs parallel to the medial side of the humerus 

and inserts on or slightly proximal to the humeral entepicondyle (Mivart, 1867, 

1870; Sanders, 1870, 1872, 1874; Fürbringer, 1876, 1900; de Vis, 1884; Rabl, 

1916; Romer, 1922; Miner, 1925). 

Crocodilians have completely lost the long head of M. coracobrachialis. The 

remaining M. coracobrachialis brevis arises from almost the entire external sur-

face of the coracoid, with the exception of the cranial and medial edges (Für-

bringer, 1876; Meers, 2003; own observation). Like in more basal tetrapods, it 

inserts ventrally on the humerus, but is restricted to its proximal third (Fürbringer, 

1876; Ribbing, 1938; Meers, 2003).  

The avian M. coracobrachialis consists of two mainly independent heads, M. 

coracobrachialis cranialis and M. coracobrachialis caudalis. However, Sullivan 

(1962) showed that the latter muscle is embryologically derived from the M. sub-

coracoscapularis system and will therefore be discussed below (see ‘M. subcora-

coscapularis’ below). In ratites, the fleshy origin of the large M. coracobrachialis 

cranialis is located on the dorsolateral edge of the coracoid immediately craniov-

entral to the glenoid (Fürbringer, 1888, 1902; McGowan, 1982; Nicholls and Rus-

sell, 1985). As in other tetrapods, it inserts on the proximal ventral surface of the 

humerus. In carinates, the origin of the relatively small M. coracobrachialis crani-

alis has shifted cranially, and is restricted to the lateral side of the acrocoracoid 

process and to the Ligamentum acrocoracohumerale (Fürbringer, 1902). The 

muscle has a fleshy insertion on the proximal cranial (developmentally ventral) 

side of the humerus within the Impressio coracobrachialis, a well-defined oste-
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ological correlate of this muscle (Fürbringer, 1888, 1902; Fisher, 1946; Fisher and 

Goodman, 1955; Hudson and Lanzilloti, 1955, 1964; Berger, 1966; McGowan, 

1986; Vanden Berge and Zweers, 1993).  

DISCUSSION – Nicholls and Russell (1985) interpreted the crocodilian M. cora-

cobrachialis brevis ventralis as a homologue of the lepidosaurian M. coracobra-

chialis longus, but the insertion of both parts of M. coracobrachialis at the proxi-

mal end of the humerus renders this interpretation improbable. Fürbringer (1888, 

1902) and Romer (1944) demonstrated the homology of the avian M. coracobra-

chialis cranialis to M. coracobrachialis brevis. Therefore, the EPB implies that M. 

coracobrachialis longus was already lost in basal archosaurs.  

Since the origin of M. coracobrachialis brevis is mainly fleshy, and birds 

strongly modified the coracoid and its muscles, the exact area of origin of this 

muscle is hard to delimit in extinct forms. However, phylogenetic inference im-

plies that it was situated on the lateral surface of the coracoid, between the origins 

of M. biceps brachii and M. supracoracoideus. In both crocodilians and birds, the 

site of origin has shifted cranially relative to the plesiomorphic condition, but Für-

bringer (1902) regarded these developments as convergent. On the other hand, 

Romer (1922) already remarked the constancy of the insertion of M. coracobra-

chialis brevis (= cranialis) within a depression on the developmentally ventral 

proximal humerus. This depression is also present in extinct archosaurs. There-

fore, interpreting this structure as the site of insertion of M. coracobrachialis bre-

vis is a Level I inference. 

 

11. M. supracoracoideus (SC). 

Synonyms: 

M. pectoralis secundus (MacAlister, 1864) 

M. pectoralis minor, M. supraspinatus (Haughton, 1866) 

M. epicoraco-humeralis, M. subclavius (Mivart, 1867, 1870) 

M. supraspinatus (Sanders, 1870, 1872, 1874) 

M. epicoracohumeralis (de Vis, 1884; Byerly, 1925; Cong et al., 1998) 

M. coracohumeralis (Rabl 1916) 

M. coracobrachialis brevis dorsalis (for scapular head) (Meers, 2003) 

Remarks: The homology of this muscle has been a matter of debate among the anato-

mists of the 19th century, resulting in a multitude of differing names. The current term ‘M. 

supracoracoideus’ was established by Fürbringer (1876, 1888) for non-avian reptiles and 

birds, and has been adopted by almost all following ornithologists. Therefore, the NAA 

also uses this term in its standardized terminology (Vanden Berge and Zweers, 1993). 
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DESCRIPTION – Like M. coracobrachialis brevis, M. supracoracoideus (figs. 3-

6, 3-7) is characterized by a relatively constant site of insertion, and a varying area 

of origin. The amphibian homologue of this muscle arises from a large portion of 

the lateral side of the coracoid and inserts onto the apex of the deltopectoral crest, 

proximal to the insertion of M. pectoralis. A second insertion is situated just cra-

nial to the humeral head (Miner, 1925; Francis, 1934; Walthall and Ashley-Ross, 

2006). In Sphenodon, the muscle is relatively large and strongly coadunate with M. 

coracobrachialis brevis. Its origin is located on the cranial half of the lateral side of 

the coracoid. The muscle inserts on the lateral tuberosity on the proximal base of 

the deltopectoral crest, and on the ventral part of the Ligamentum scapulohumer-

ale laterale (Fürbringer, 1900; Miner, 1925; Ribbing, 1938). Most squamates show 

a similar morphology, but the cranial coracoid fenestra perforates the squamate 

coracoid in the area of the M. supracoracoideus attachment. Thus, the muscle 

arises from the edges of this opening. M. supracoracoideus inserts on the proximal 

base of the deltopectoral crest next to the lateral tuberosity (Mivart, 1867; Sand-

ers, 1870, 1872; Fürbringer, 1876, 1900; de Vis, 1884; Rabl, 1916; Ribbing, 1938). 

Chameleons exhibit a modified morphology: M. supracoracoideus is partially 

displaced dorsally and differentiated into a ventral and a dorsal head, the latter 

arising from up to two thirds of the lateral side of the scapula (Mivart, 1870; Für-

bringer, 1876, 1900). 

In crocodilians, M. supracoracoideus is subdivided into a coracoidal and a 

scapular head. In this respect, it resembles the condition seen in chameleons. The 

coracoidal part arises from the entire cranial half of the coracoid, including its 

medial side, and inserts next to pars scapularis on the apex of the deltopectoral 

crest (Fürbringer, 1876, 1900; Ribbing, 1938; Cong et al., 1998). Meers (2003) 

subdivided this muscle into three heads (Mm. supracoracoidei brevis, intermedius 

et longus). However, Nicholls and Russell (1985) found only a single head arising 

from the medial side of the coracoid, and Jasinoski et al. (2006) were not able to 

identify a M. supracoracoideus brevis in their specimens. Apparently, the origin of 

the ventral part of M. supracoracoideus is subject to substantial variation. The 

scapular part of M. supracoracoideus has its origin on the ventral third of the lat-

eral side of the scapula, and may insert somewhat more proximal to pars coracoi-

deus on the base of the deltopectoral crest (Meers, 2003; Jasinoski et al., 2006).  
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Figure 3-7. Superficial humeral muscles arising from the pectoral girdle in Alligator (A, left lateral 
view; B, ventral view) and Gallus (C, dorsal view; D, ventral view; E, cranial view). Shaded lines of 
action indicate that the course of a muscle is on the remote side of the respective bony element. 

 

The avian M. supracoracoideus is strongly enlarged. It is one of the most im-

portant flight muscles and serves as the primary wing elevator. Almost all birds 

retain a fleshy origin of this muscle from the coracoid, but the main part of M. 

supracoracoideus has extended caudally to arise from the ventral surface and 

carina of the sternum, deep to M. pectoralis. The coracoidal part of M. supracora-

coideus arises in most cases from the medioventral part of the coracoid, where it is 

separated from the origin of M. coracobrachialis caudalis by an intermuscular 

ridge (Baumel and Witmer, 1993). All fibers of M. supracoracoideus converge 

into a strong tendon that wraps around the acrocoracoid, runs through the 

triosseal foramen and inserts onto the lateral tuberosity of the humerus (Für-

bringer, 1888, 1902; Fisher, 1946; Fisher and Goodman, 1955; Hudson and 

Lanzilloti, 1955, 1964; Berger, 1966; Schreiweis, 1982; McGowan, 1986). Für-



66 Sauropodomorph forelimb evolution REMES 

 

bringer (1886) noted a positive correlation between the size of M. supracoracoi-

deus and the size of the acrocoracoid process. In ratites other than Rhea, the origin 

of this muscle is restricted to the lateral side of the coracoid, but its point of inser-

tion is the same as in carinates (Fürbringer, 1888, 1902; Gadow and Selenka, 

1891; McGowan, 1982; Nicholls and Russell, 1985). 

DISCUSSION – A single-headed origin from the craniolateral side of the cora-

coid seems to constitute the plesiomorphic condition of M. supracoracoideus. 

Fürbringer (1900) speculated that the fusion of M. supracoracoideus and M. cora-

cobrachialis brevis seen in Sphenodon might be plesiomorphic for diapsids. A sub-

division into a coracoidal head and a scapular head as in chameleons, turtles 

(Walker, 1973) and crocodilians is hence derived. Since birds do not have a scapu-

lar head of this muscle, phylogenetic inference cannot answer the question if the 

condition found in crocodilians is close to the plesiomorphic archosaurian mor-

phology, or is unique to this group. Therefore, some speculation is needed to de-

cide if basal archosaurs possessed a scapular division of M. supracoracoideus 

(level II inference), but the reconstruction of neighboring muscles and the struc-

ture of the scapula in these forms support this model (chapter 4). Moreover, under 

the assumption of a sister group relationship between archosaurs and chelonians 

(Zardoya and Meyer, 1998; Hedges and Poling, 1999; Kumazawa and Nishida, 

1999; Rest et al., 2003; Iwabe et al., 2005; Matsuda et al. 2005), outgroup com-

parison also strengthens such a reconstruction. Accordingly, the scapular head 

would be secondarily lost in birds, as a consequence of the reduction and reorien-

tation of the proximal scapula.  

 

12. M. pectoralis (P). 

Synonyms: 

M. pectoralis major (Haughton, 1866; Mivart, 1867, 1870; Sanders, 1870, 1872, 1874;  

de Vis, 1884) 

M. pectoralis superficialis (Fisher, 1946; Fisher and Goodman, 1955) 

Remarks: This muscle is uniformly named M. pectoralis in all tetrapods. However, dif-

ferent epithets exist in the literature, because early anatomists regarded other ventral 

shoulder muscles as part of M. pectoralis system (e.g., M. supracoracoideus). In birds, 

there are two additional muscular slips derived from M. pectoralis. Accordingly, the NAA 

distinguishes between M. pectoralis sternobrachialis (M. pectoralis thoracicus of earlier 

authors), M. pectoralis costobrachialis (M. pectoralis abdominalis), and M. pectoralis 

propatagialis (Vanden Berge and Zweers, 1993).  
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DESCRIPTION – The large M. pectoralis (figs. 3-8, 3-9, 3-10) is situated on the 

ventral side of the tetrapod body, and is a powerful adductor and retractor of the 

forelimb. In all tetrapods, it inserts distally on the caudal side of the deltopectoral 

crest. Its primary origin is the ventral surface of the sternum, but it may also ex-

tend caudally onto M. rectus abdominis in amphibians (Miner, 1925; Francis, 

1934; Ribbing, 1938; Walthall and Ashley-Ross, 2006). The anuran M. pectoralis 

has a cranial extension onto the coracoid (Ribbing, 1938).  

In Sphenodon, the origin of this muscle is more extensive than in amphibians 

and includes the dermal parts of the shoulder girdle and abdomen. M. pectoralis 

arises from the lateral surface of the clavicle, from the ventral sides of the inter-

clavicle and sternum, from the medial ends of the sternal ribs, and from the cra-

nial 15-17 gastralia (Fürbringer, 1900; Byerly, 1925; Miner, 1925; Ribbing, 1938). 

A similar arrangement is found in squamates, but the origin from the clavicle is 

present only in few forms (e.g., Sanders, 1872; de Vis, 1884; Rabl, 1916). The 

posterior extension of M. pectoralis is restricted to sternal ribs 2 to 4 in Squamata 

(Fürbringer, 1900; Ribbing, 1938). 

The crocodilian M. pectoralis retains its origin from the interclavicle, almost 

the entire sternum, and sternal ribs 1 to 8 (Fürbringer, 1876; Meers, 2003). Meers 

(2003) noted a differentiation into a cranial and a caudal division, the latter some-

times extending onto the gastralia. In Alligator sinensis, Cong et al. (1998) identi-

fied an additional head of this muscle that connects to the pelvic region, and 

named it M. pectoralis abdominalis (a superficial slip similar to that found in 

birds, see below). However, this derivate could not be found in Caiman (own ob-

servation) and is not reported by other authors. 

In carinate birds, M. pectoralis usually is the largest muscle of the body and the 

primary wing depressor. Additional to the large sternobrachial part, there are also 

two small slips that run to the pelvic region (pars abdominalis) and control the 

propatagium (pars propatagialis). M. pectoralis arises from the entire sternum, 

with the exception of the dorsomedial parts covered by M. supracoracoideus, and 

extends also onto the lateral side of the furcula (Fürbringer, 1888, 1902; Hudson 

and Lanzilloti, 1955; Berger, 1966; Schreiweis, 1982; Vanden Berge and Zweers, 

1993). In some forms, M. pectoralis is differentiated into a superficial and a deep 

layer (Fisher, 1946; Fisher and Goodman, 1955). Hudson and Lanzilloti (1964) 

found the muscle to be extended onto the lateral sides of the first three sternal ribs.  

M. pectoralis is reduced in ratites, its origin being restricted to the lateral region 

of the sternum and the adjacent ventrolateral part of the coracoid (the latter part is 
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missing in Struthio). These forms also lack pars propatagialis and, with the excep-

tion of Apteryx, pars abdominalis.  

DISCUSSION – M. pectoralis is easy to homologize and is correlated with an 

unambiguous osteological feature at its insertion, the distal part of the deltopec-

toral crest. Therefore, it can be concluded that the muscle arose from the sternum 

and inserted into the deltopectoral crest in basal archosaurs, too. More specula-

tion is necessary for an assessment of the cranial and caudal extent of its origin. 

Romer (1922) and Miner (1925) concluded that interclavicular and clavicular ori-

gins are plesiomorphic for tetrapods, but were lost in modern amphibians. Since a 

clavicular origin is present both in birds and in Sphenodon, whereas crocodilians 

lost their clavicles but retained an origin of M. pectoralis from the interclavicle, it 

is possible that in basal archosaurs this muscle also connected to the clavicles. The 

caudal extent of M. pectoralis is hard to reconstruct, because its fleshy origin does 

not leave clear osteological correlates on the sternal ribs and gastralia; moreover, 

these elements are seldomly preserved in fossil forms. Nevertheless, Fürbringer 

(1900) assumed that the well-developed gastral apparatus found in many fossil 

amniotes might have served as an anchor for M. pectoralis. Crocodilians would 

then have lost this site of origin, in conjunction with a reduction of the gastralia.  

 
Figure 3-8. M. latissimus dorsi, M. pectoralis and the Mm. scapulohumerales complex of urodeles 
(A, right lateral view; B, ventral view) and Sphenodon (C, right lateral view; D, ventral view). There 
is no M. teres major in these groups. 
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13. M. latissimus dorsi (LD). 

Synonyms: 

M. dorso-humeralis (Fürbringer, 1876; Francis, 1934) 

Remarks: Fürbringer (1876) is the only author who suggested a deviant name for this 

muscle, based on his topological nomenclature. However, his system never became widely 

accepted in the literature. 

DESCRIPTION – M. latissimus dorsi (figs. 3-8, 3-9, 3-10) is the only muscle that 

spans between the dorsal axial skeleton and the humerus. It is present in all 

tetrapods (Romer, 1922). In amphibians, the muscle arises from the dorsal fascia 

and partially from the transverse processes and neural spines in the cranial trunk 

region (Miner, 1925; Francis, 1934; Ribbing, 1938; Walthall and Ashley-Ross, 

2006). It merges with other soft tissue structures and does not reach the surface of 

the humerus in some forms (Miner, 1925), but in others, in inserts by a strong 

tendon on the dorsal humerus just caudal to the deltopectoral crest (Francis, 1934; 

Walthall and Ashley-Ross, 2006). 

A strong tendinous insertion of this muscle on the dorsal side of the humerus is 

also present in almost all non-avian Reptilia. The tendon of insertion is shared 

with M. teres major, if the latter muscle is present. M. latissimus dorsi of Spheno-

don has a wide aponeurotic origin that may extend over the neural spines of the 

last three cervical and nine dorsal vertebrae. The muscle narrows down to a strong 

tendon that passes between the scapular and medial humeral heads of M. triceps 

brachii (see below, ‘M. triceps brachii’), and variably inserts onto the proximal 

half of the dorsal side of the humerus (Fürbringer, 1900; Miner, 1925). Quite a 

similar morphology is seen in squamates, which indeed often lack a M. teres ma-

jor (Mivart, 1867; Sanders, 1870, 1872; Fürbringer, 1876, 1900; Rabl, 1916). The 

craniocaudal extent of M. latissimus dorsi is reduced in chameleons (Mivart, 

1870; Fürbringer, 1876, 1900; Ribbing, 1938) and some other forms (Sanders, 

1874; de Vis, 1884) to three or four dorsal vertebrae.  

The crocodilian M. latissimus dorsi has a short aponeurotic origin from the 

level of dorsal vertebrae 1 to 5, leading to a muscle that is comparatively weaker 

than in most lepidosaurs. Like in lepidosaurs, the tendon of insertion passes be-

tween two heads of M. triceps brachii, fuses with the tendon of M. teres major, 

and inserts onto the proximal dorsal side of the humerus, where it usually leaves a 

prominent scar, tubercle or depression (Meers, 2003). M. latissimus dorsi exhibits 

a slight differentiation into a cranial and a caudal part at its origin (Fürbringer, 

1876; Cong et al., 1998).  
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The avian M. latissimus dorsi is much more specialized than the corresponding 

muscle of other tetrapods. It consists of three independent heads, pars meta-

patagialis (a dermal aberration that controls the metapatagium), pars cranialis, 

and pars caudalis. The latter two heads may fuse in some forms (Fürbringer, 1900; 

McGowan, 1986). In most birds, pars cranialis arises aponeurotically from the 

neural spines of the last cervical and two or three cranial dorsal vertebrae (Für-

bringer, 1888, 1902; Hudson and Lanzilloti, 1955; Schreiweis, 1982; McGowan, 

1986). In galliforms, the origin is level with the last two cervicals and the first dor-

sal (Hudson and Lanzilloti, 1964). Its elongate, tendinous insertion on the caudal 

(developmentally dorsal) side of the humerus is correlated with a distinct ridge 

(Fürbringer, 1902). The caudal part of M. latissimus dorsi usually is stronger than 

the cranial part and takes origin from the neural spines of the caudal dorsal verte-

brae, as well as from the cranial edge of the ilium. Like pars cranialis, it passes 

between M. scapulotriceps and M. humerotriceps on its way to the dorsal side of 

the humerus. Its insertion is often separate from that of pars cranialis and some-

times associated with a bony eminence. In other forms, pars caudalis does not 

reach the humerus but connects to the M. triceps brachii complex (Galliformes, 

Hudson and Lanzilloti, 1964), or it fuses with M. latissimus dorsi pars cranialis 

(Cathartidae, Fisher, 1946).  

In contrast to the condition found in neognaths, the ratite M. latissimus dorsi 

pars caudalis usually is smaller than pars cranialis (Fürbringer, 1888, 1902). In 

Rhea and Dromaius, it lost its connection to the dorsal fascia and arises from one 

or two thoracic ribs (Gadow and Selenka, 1891). Only in Struthio, an aponeurotic 

origin from dorsal vertebrae 6 to 8 and the ilium is retained (Gadow and Selenka, 

1891). Apteryx shows no differentiation into a cranial and a caudal part (Für-

bringer, 1888, 1902); however, McGowan (1982) stated that pars cranialis is com-

pletely lost in this form. In the remaining ratites, the origin of M. latissimus dorsi 

pars cranialis does not extend to the cervical vertebrae. In Rhea, Dromaius, and 

Casuarius, there is also a small muscle arising from the scapula that fuses to pars 

cranialis, and potentially is a homologue of M. teres major (Fürbringer, 1902; 

Ribbing, 1938; see Discussion below, and section ‘M. teres major’). 

DISCUSSION – M. latissimus dorsi is a constant feature of all tetrapods (Romer, 

1922). Since its tendinous insertion is associated with an osteological correlate in 

both extant bracket taxa and also in other amniotes, it is a level I inference to 

identify a similar structure on the dorsal side of the humerus of extinct archosaurs 

as the point of attachment of this muscle. It can also be concluded that in these 

forms the tendon of insertion passed between the scapular and the medial head of 
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M. triceps brachii. A differentiation of M. latissimus dorsi into a cranial and a 

caudal part is possible for basal archosaurs (level II inference), but not probable 

(chapter 4). It should also be noted here that Fürbringer (1886, 1902) suggested 

that the avian M. latissimus dorsi cranialis might indeed represent a homologue of 

M. teres major, rendering the caudal part of M. latissimus dorsi the only true 

homologue of the reptilian muscle (see below, ‘M. teres major’). Given its origin 

from the dorsal fascia and the lack of clear osteological correlates, the craniocau-

dal extent of M. latissimus dorsi cannot be reconstructed reliably in extinct archo-

saurs.  

 
Figure 3-9. M. pectoralis, M. latissimus dorsi, M. teres major, and M. scapulohumeralis (caudalis) 
of Alligator. Shaded attachment areas and lines of action indicate muscles that lie on the remote side 
of the respective bone. 
 

14. M. teres major (TM). 

Synonyms: 

M. teres (Ribbing, 1938) 

Remarks: Although a direct homology of this muscle to the mammalian M. teres ma-

jor is doubtful (see below, Discussion), all modern authors apply this term also for diap-

sids. The present thesis follows this convention. 

DESCRIPTION – M. teres major (fig. 3-9) is a specialized part of M. latissimus 

dorsi (Fürbringer, 1876, 1900; Romer, 1922) that takes origin from the caudodor-

sal part of the lateral side of the scapular blade. It is missing in amphibians, Sphe-

nodon, and most squamates, with the exception of some agamids (e.g., Uromastyx), 

where it arises from the caudal part of the suprascapula, or the caudal edge of the 
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scapula (Fürbringer, 1876, 1900). The insertion of this muscle is located proxi-

mally on the dorsal side of the humerus, next to the medial tuberosity. The tendon 

of insertion is shared with that of M. latissimus dorsi (Fürbringer, 1900). M. teres 

major is also present in many chelonians (especially pleurodirans), where it arises 

from almost the whole length of the lateral side of the scapula prong. As in croco-

dilians, its tendon of insertion fuses to that of M. latissimus dorsi (Ribbing, 1938; 

Walker, 1973). 

In crocodilians, M. teres major is comparatively well developed and equals M. 

deltoideus scapularis in size. It arises fleshy from the caudodorsal region of the 

lateral side of the scapula, in some forms also having contact to the suprascapular 

cartilage. As mentioned above, it inserts together with M. latissimus dorsi by a 

strong tendon on the proximodorsal side of the humerus, leaving a distinct scar 

(Haughton, 1866; Fürbringer, 1876; Ribbing, 1938; Cong et al., 1998; Meers, 

2003).  

Most birds have lost M. teres major. Only in Rhea, a small muscle arises from 

the dorsal part of the scapula blade, and fuses with M. latissimus dorsi cranialis 

prior to their common insertion (Fürbringer, 1886, 1888, 1902; see also above, 

‘M. latissimus dorsi’).  

DISCUSSION – As noted by Fürbringer (1876, 1900) and Romer (1922), a M. 

teres major is a specialized part of M. latissimus dorsi that shifted its origin onto 

the dorsal part of the scapula. Since the cranial part of M. latissimus dorsi is al-

ways close to the scapula, it is easy to imagine how a M. teres major might have 

evolved independently several times in tetrapod history. The distribution of this 

muscle among extant tetrapods suggests that it formed at least four times, in 

mammals, agamids, archosaurs, and chelonians. It is also possible that the muscle 

seen in Rhea and the crocodilian counterpart are independent developments. 

However, according to the amniote phylogeny suggested by recent molecular 

studies (Zardoya and Meyer, 1998; Hedges and Poling, 1999; Kumazawa and 

Nishida, 1999; Rest et al., 2003; Iwabe et al., 2005; Matsuda et al. 2005), the pres-

ence of M. teres major may also be a synapomorphic character of Chelonia + 

Archosauria that was secondarily lost in most birds. Fürbringer (1886, 1902) 

made the suggestion that the avian M. latissimus dorsi cranialis may indeed repre-

sent a modified M. teres major that extended its origin dorsally onto the dorsal 

fascia. However, embryological examinations (Sullivan, 1962) could not find sup-

portive data for this hypothesis. In summary, it is assumed here that M. teres ma-

jor was present in basal archosaurs, arose fleshy from the caudodorsal part of the 

scapula, and inserted in common with M. latissimus dorsi. Since it has no unam-
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biguous osteological correlates at its origin, the exact localization of this muscle is 

somewhat speculative. 

 
Figure 3-10. M. pectoralis, M. latissimus dorsi and Mm. scapulohumerales in Gallus.  

 

15. Mm. scapulohumerales (SH). 

Synonyms: 

M. infraspinatus (Mivart, 1867; de Vis, 1884)  

M. suprascapularis posterior (Mivart, 1870) 

M. teres minor (Sanders, 1870, 1872) 

M. scapulo-humeralis profundus (Fürbringer, 1876) 

M. proscapulohumeralis brevis, M. dorsalis scapulae (Fisher, 1946; Fisher and  

Goodman, 1955; Berger, 1953, 1954, 1955, 1956a–c, 1957, 1960, 1966) 

Remarks: The long list of synonyms for the scapulohumeral muscles results from a dis-

pute on the homology of this complex. However, modern workers on crocodilian anat-

omy (Cong et al., 1998; Meers, 2003) as well as the NAA (Vanden Berge and Zweers, 

1993) adapt Fürbringer’s (1900, 1902) nomenclature and use the term M. scapulohumer-

alis, without questioning the derivation of the two avian muscles (M. scapulohumeralis 

cranialis and M. scapulohumeralis caudalis) from a common origin.  

DESCRIPTION – The Mm. scapulohumerales complex (figs. 3-8, 3-9, 3-10) con-

sists of two muscles, M. scapulohumeralis cranialis and M. scapulohumeralis 

caudalis. At least one of these two muscles is present in all sauropsids, with the 

exception of turtles (Walker, 1973). A similar, single muscle is present in caudate 

amphibians (Miner, 1925), but mammals other than Echidna show no traces of M. 

scapulohumeralis (Ribbing, 1938). 

The key taxon for the reconstruction of the plesiomorphic condition of Mm. 

scapulohumerales is Sphenodon (Fürbringer, 1900). In this animal, the muscle re-
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tains both a cranial and a caudal head. M. scapulohumeralis cranialis arises from 

the dorsal part of the coracoid and the ventral part of the scapula. It also has a 

second origin by a deeper, small muscular slip that comes from the caudal edge of 

the scapula. The fleshy insertion on the dorsoproximal humerus is situated be-

tween that of M. latissimus dorsi and the medial tuberosity. M. scapulohumeralis 

caudalis is smaller than the cranial head, and arises dorsally to the latter on the 

ventral half of the scapula. Both muscles are separated from each other by M. 

triceps brachii caput scapulare. Pars caudalis inserts medially to the cranial part 

on the distal end of the medial tuberosity (Fürbringer, 1900; Byerly, 1925; Miner, 

1925).  

Other extant lepidosaurs have completely lost M. scapulohumeralis caudalis 

(Fürbringer, 1900). The remaining M. scapulohumeralis (cranialis) is relatively 

small, but retains its origin from the caudal part of the ventral scapula and dorsal 

coracoid, i.e. from the rim of the coracoscapular fenestra. Only in Chamaeleon, its 

origin is restricted to the caudal edge of the ventral scapula. Like in Sphenodon, the 

squamate M. scapulohumeralis has a fleshy insertion proximomedially on the 

dorsal humerus (Mivart, 1867; Sanders, 1870, 1872; Fürbringer, 1876, 1900; de 

Vis, 1884; Rabl, 1916).  

In contrast to squamates, crocodilians lost M. scapulohumeralis cranialis and 

retained M. scapulohumeralis caudalis. Its origin is restricted to the caudal edge 

and caudolateral margin of the ventral third of the scapula. Running over the ar-

ticular capsule, it inserts right distally to the medial tuberosity, next to M. sub-

scapularis and between two of the humeral heads of M. triceps brachii (Für-

bringer, 1876, 1900; Ribbing, 1938; Cong et al., 1998; Meers, 2003).  

Most carinate birds preserved both parts of M. scapulohumeralis, but pars cra-

nialis is frequently lost, e.g. in Columba (Berger, 1966). The muscle arises from the 

ventral part of the collum scapulae, just distal to the glenoid, but may extent cau-

dally up to one fifth of the length of the scapular blade. It inserts onto the proxi-

mal dorsal humerus, just distolateral to the pneumatic fossa, where it may be cor-

related with a bony eminence. M. scapulohumeralis caudalis usually is wider than 

pars cranialis, having a fleshy origin from most of the lateral surface of the scapu-

lar blade except its cranial quarter and caudal tip. The muscle has a tendinous 

insertion distomedially on the medial tuberosity (Fürbringer, 1888, 1902; Fisher, 

1946; Fisher and Goodman, 1955; Hudson and Lanzilloti, 1955, 1964; Berger, 

1966; McGowan, 1986; Vollmerhaus et al., 1992; Vanden Berge and Zweers, 

1993).  
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Ratites have substantially reduced or completely lost M. scapulohumeralis cra-

nialis (Gadow and Selenka, 1891; Fürbringer, 1902; McGowan, 1982; Berger, 

1966). Pars caudalis has a less extended origin that is restricted to the ventral edge 

of the scapular blade, but Struthio and Rhea have a wider insertion distal to the 

medial tuberosity than most carinates (Fürbringer, 1888, 1902). 

DISCUSSION – Although some authors assumed that Mm. scapulohumerales 

are independent specializations of M. supracoracoideus (pars cranialis, Romer, 

1922), Mm. deltoidei (Miner, 1925; Ribbing, 1938), or M. subscapularis (pars 

caudalis, Fürbringer, 1900), embryological examinations revealed that both mus-

cles differentiate from a single primordial muscle mass (Sullivan, 1962). Under 

consideration of the situation met in Sphenodon and birds, it must be concluded 

that basal archosaurs had both a cranial and a caudal part of M. scapulohumer-

alis. Due to its mainly fleshy nature, pars cranialis has no unambiguous osteologi-

cal correlates in Sphenodon and most birds. However, Jasinoski et al. (2006) re-

ported an oval scar that correlates to the origin of this muscle in Cygnus and identi-

fied a similar structure in dromaeosaurids. The origin of M. scapulohumeralis 

caudalis is varying in Sphenodon, crocodilians, and birds; therefore, its localization 

in extinct archosaurs requires some speculation. Since the areas of insertion of 

both Mm. scapulohumerales are relatively constant in all diapsids, it is a Level I 

inference to identify the distal part of the medial tuberosity as the site of insertion 

of the caudal head, and to reconstruct the cranial head to have inserted between 

this tuberosity and the scar of M. latissimus dorsi.   

 

16. M. subcoracoscapularis (SCS). 

Synonyms: 

M. scapulo-humeralis posterior (Romer, 1922) 

M. subscapularis, M. teres major (Rabl, 1916) 

M. subscapulo-coraco-brachialis (Byerly, 1925) 

M. subscapularis, M. subcoracoideus, M. coracobrachialis caudalis (see remarks) 

Remarks: This muscle complex, which plesiomorphically arises by two heads from the 

coracoid and the scapula, has been substantially modified in archosaurs. It is differentiated 

into three or more independent parts in birds (M. subscapularis, M. subcoracoideus, M. 

coracobrachialis caudalis), while crocodilians retained a scapular head only (M. subscapu-

laris). Hence, NAA and crocodilian nomenclature cannot properly reflect the plesiomor-

phic condition that was present in basal archosaurs. Therefore, in accordance with Dilkes 

(2000), Fürbringer’s (1900) subsuming name for this muscle complex is preferred through-

out this thesis. 
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DESCRIPTION – The caudatan M. subcoracoscapularis (fig. 3-11) arises from 

the ventral third of the medial side of the scapula and the adjacent coracoid. A 

comparable muscle is missing in anurans (Miner, 1925; Francis, 1934; Ribbing, 

1938). 

Most diapsids, with the exception of crocodilians, exhibit a differentiation of 

M. subcoracoscapularis into two portions, a caudal head (‘M. subcoracoideus’), 

and a scapular head (‘M. subscapularis’). The Ligamentum sternoscapulare inter-

num runs between both heads. However, this split is not much pronounced in 

Sphenodon (Fürbringer, 1900; fig. 3-11). In this form, pars coracoideus has a fleshy 

origin from the majority of the inner side of the coracoid, while the small pars 

scapularis comes from the caudoventral edge and adjacent medial side of the 

scapula. Both heads soon fuse and insert with a common tendon onto the medial 

tuberosity of the humerus (Fürbringer, 1900; Miner, 1925). In other lepidosaurs, 

the area of origin of M. subcoracoscapularis is much enlarged and covers almost 

the complete inner surface of the shoulder girdle, including the ventral part of the 

suprascapular cartilage. In some forms, pars scapularis wraps around the caudal 

border of the scapula, and arises in part also from its lateral face (Mivart, 1867; 

Sanders, 1870, 1872, 1874; Fürbringer, 1876, 1900; de Vis, 1884; Rabl, 1916; Rib-

bing, 1938). In other forms, like chameleons, both heads are smaller and clearly 

separate at their origins, but always fuse towards their common insertion on the 

medial tuberosity (Mivart, 1870; Fürbringer, 1876, 1900). 

Turtles have lost the coracoidal head of this muscle complex, but the remain-

ing head (M. subscapularis) is well developed and clasps around the medial, cau-

dal, and lateral parts of the scapular prong (fig. 3-12). As in other tetrapods, the 

muscle inserts via a tendon on the medial tuberosity of the humerus (Ribbing, 

1938; Walker, 1973). Crocodilians also have lost pars coracoideus, while the large 

scapular head (M. subscapularis) arises from almost the entire medial surface of 

the bony scapula (fig. 3-12). Its insertion on the medial tuberosity is somewhat 

extended distally onto the base of that process (Haughton, 1866; Fürbringer, 1876, 

1900; Cong et al., 1998; Meers, 2003).  

In contrast to crocodilians and turtles, birds retain a coracoidal head of M. 

subcoracoscapularis, and exhibit a novel derivate known as M. coracobrachialis 

caudalis (Sullivan, 1962; see Discussion below). Furthermore, pars scapularis (M. 

subscapularis) is subdivided into a medial and a lateral head in most birds (fig. 3-

12). The fleshy origin of the coracoidal head (M. subcoracoideus) may cover the 

complete medial side of the coracoid, but in many birds it is restricted to the 

proximal, the middle, or the distal third of that bone (Fürbringer, 1902; Fisher, 
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1946). Ratites are no exception in this respect (MacAlister, 1866; Fürbringer, 

1888, 1902; Gadow and Selenka, 1891; McGowan, 1982). In galliforms and pen-

guins, the muscle also has a fleshy origin from the craniodorsal side of the ster-

num (Hudson and Lanzilloti, 1964; Schreiweis, 1982). In some forms, M. sub-

coracoideus has differentiated into two individual heads (Hudson and Lanzilloti, 

1955; Berger, 1966; Vollmerhaus et al., 1992).  

 
Figure 3-11. M. subcoracoscapularis and M. triceps brachii complex of caudatan amphibians (A, 
lateral view; B, ventral view) and Sphenodon (C, lateral view; D, ventral view). Shaded attachment 
areas and lines of action indicate muscles that lie on the remote side of the respective bone. 

 

The medial head of M. subscapularis arises fleshy from about the proximal half 

of the medial side of the scapula, including the acromion process. The lateral head 

is restricted to the proximal half of the scapular blade, where it arises from its ven-

tral border and in some forms also from its lateral face (Fürbringer, 1902; Hudson 

and Lanzilloti, 1955, 1964; Berger, 1966; Schreiweis, 1982; McGowan, 1986; 

Vollmerhaus et al., 1992). In ratites, both heads immediately fuse right after their 

origin (Gadow and Selenka, 1891). They are weakly developed in Casuarius and 

Dromaius, and caput mediale is lost in Apteryx (McGowan, 1982). In contrast, 

these muscles have an extensive origin from the medial side of the shoulder girdle 

in Rhea and Struthio (Gadow and Selenka, 1891). 

In all birds, the individual heads of the M. subcoracoscapularis complex unite 

and insert via a common tendon on the medial tuberosity of the humerus (MacAl-
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ister, 1866; Fürbringer, 1888, 1902; Gadow and Selenka, 1891; Fisher, 1946; 

Fisher and Goodman, 1946; Hudson and Lanzilloti, 1955, 1964; Berger, 1953, 

1954, 1955, 1956a–c, 1957, 1960, 1966; Schreiweis, 1982; McGowan, 1982, 1986; 

Vollmerhaus et al., 1992; Vanden Berge and Zweers, 1993).  

Neither McGowan (1982) nor Nicholls and Russell (1985) could identify a M. 

coracobrachialis caudalis in Apteryx or Struthio, but Gadow and Selenka (1891) 

and Fürbringer (1888, 1902) noted the presence of this muscle in Struthio, and a 

significant development of this muscle in Rhea. The carinate M. coracobrachialis 

caudalis is well developed and arises from the ventral and lateral sides of the cora-

coid, the adjacent sternum, and the Ligamentum sternocoracoideum. The muscle 

is associated with an intermuscular ridge that separates its area of origin from that 

of M. supracoracoideus (Gadow and Selenka, 1891; Fürbringer, 1902). M. cora-

cobrachialis caudalis inserts by a short and strong tendon on the apex of the me-

dial tuberosity of the humerus in virtually all birds (Fürbringer, 1888, 1902; Rib-

bing, 1938; Fisher, 1946; Fisher and Goodman, 1955; Hudson and Lanzilloti, 

1955, 1964; Berger, 1966; Schreiweis, 1982; McGowan, 1986; Vollmerhaus et al., 

1992). 

 
Figure 3-12. M. subscapularis and the M. triceps brachii complex of chelonians (A, lateral view) 
and Alligator (B, lateral view; C, dorsal view; D, caudal view). Shaded attachment areas and lines of 
action indicate muscles that lie on the remote side of the respective bone. 

 

DISCUSSION – Due to the primarily fleshy origin of all heads of M. subcora-

coscapularis, there are no osteological correlates that allow for an unequivocal 

delimitation of their extent in extinct archosaurs. However, outgroup comparison 
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implies that the last common ancestor of birds and crocodilians had both a cora-

coidal and a scapular head of M. subcoracoscapularis, covering most of the inner 

surface of the shoulder girdle and inserting together on the medial tuberosity of 

the humerus. A different situation is encountered with M. coracobrachialis cau-

dalis. Based on a misinterpretation of the crocodilian M. coracobrachialis brevis 

ventralis by Nicholls and Russell (1985), Jasinoski et al. (2006) homologized the 

avian M. coracobrachialis caudalis with M. coracobrachialis longus of non-

archosaurian diapsids (compare section ‘M. coracobrachialis’ above). However, 

Fürbringer (1902) already noted that the avian M. coracobrachialis caudalis can-

not be homologized with any of the related muscles of non-avian sauropsids; in-

stead, it represents a new muscle unique to birds. Sullivan (1962) demonstrated 

that the muscle is embryologically derived from the M. subcoracoscapularis sys-

tem (as already indicated by the insertion on the medial tuberosity), but suggested 

to retain the established name. The correlation of the avian muscle to a distinct 

intermuscular ridge and to a specialized form of the coracoid indicates that it 

probably was not present in basal archosaurs, but emerged later in theropod evo-

lution. However, to deny its presence in sauropodomorphs or other dinosaurs is 

just a Level II inference. 

 

III. Antebrachial muscles. 

17. M. triceps brachii (TB). 

Synonyms: 

M. extensor cubiti (MacAlister, 1864) 

M. triceps (Haughton, 1866; Mivart, 1867, 1870; Sanders, 1870, 1872, 1874;  

de Vis, 1884; Romer, 1922; Fisher, 1946; Fisher and Goodman, 1955; Dilkes, 2000;  

Meers, 2003) 

M. anconaeus (Fürbringer, 1876, 1886, 1888, 1900, 1902; Byerly, 1925; Miner, 1925;  

Francis, 1934; Walthall and Ashley-Ross, 2006) 

M. extensor ulnae (Ribbing, 1938) 

M. scapulotriceps, M. coracotriceps, M. humerotriceps (Vanden Berge and Zweers,  

1993) 

Remarks: In order to maintain anatomical preciseness, the annex ‘brachii’ for ‘M. tri-

ceps’ is retained throughout this thesis, although some recent authors refrained from using 

it (see synonymy list above). Cong et al. (1998) as well as the first edition of the NAA 

(Vanden Berge, 1979) also preferred this term. The modern standardized ornithological 

nomenclature (Vanden Berge and Zweers, 1993) suggests to use the terms ‘M. scapulotri-

ceps’, ‘M. coracotriceps’, and ‘M. humerotriceps’, but since more heads of M. triceps bra-
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chii are present in lepidosaurs and crocodilians, this concept cannot be applied to all diap-

sids. Fürbringer (1876) preferred the term ‘M. anconaeus’ over ‘M. triceps brachii’, be-

cause the diapsid muscle is no ‘triceps’ in literal sense, but his concept never became 

widely accepted in the literature. 

 
Figure 3-13. The M. subcoracoscapularis and M. triceps brachii complexes of Gallus (A, dorsal 
view; B, ventral view). Shaded attachment areas and lines of action indicate muscles that lie on the 
remote side of the respective bone. 

 

DESCRIPTION – In most tetrapods, M. triceps brachii (figs. 3-11, 3-12, 3-13) is a 

complex set of individual muscle heads that fuse distally to end in a common ten-

don, which inserts on the olecranon process of the ulna. In its plesiomorphic con-

dition, as observed in caudatans and lepidosaurs, M. triceps brachii consists of 

four parts, a scapular head (M. triceps brachii caput scapulare), a head arising 

from the coracoid (M. triceps brachii caput coracoideum), and two humeral heads 

(M. triceps brachii caput humerale mediale, M. triceps brachii caput humerale 

laterale). 

M. tr iceps brachii  caput scapulare (TBS): In amphibians like Crypto-

branchus, the scapular head arises by a tendon from the caudal edge of the scapula, 

immediately behind the glenoid. Other forms (e.g., Necturus) have an attachment 

to the shoulder joint capsule only (Miner, 1925; Francis, 1934). In Sphenodon, the 

tendinous origin is placed more cranially, between the cranial and the caudal head 

of M. scapulohumeralis on the ventral part of the lateral side of the scapula (Für-

bringer, 1900; Byerly, 1925; Miner, 1925). In squamates, the muscle has a strong 

tendon of origin arising from the caudal rim of the scapula immediately behind 

the glenoid (Sanders, 1870, 1872, 1874; Fürbringer, 1876, 1900; Rabl, 1916; Rib-

bing, 1938). The muscle may be subdivided into two portions in some forms 

(Mivart, 1870; Fürbringer, 1876, 1900; de Vis, 1884), and has an additional tendi-
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nous origin from the Ligamentum scapulohumerale laterale in others (e.g., Iguana: 

Mivart, 1867; Rabl, 1916).  

Turtles and crocodilians have a strong tendinous origin of this muscle, which is 

located on the scapula directly dorsal to the glenoid (Haughton, 1866; Fürbringer, 

1876, 1900; Ribbing, 1938; Walker, 1973; Nicholls and Russell, 1985; Cong et al., 

1998), and associated with a prominent scar on the bone (Meers, 2003; Jasinoski 

et al., 2006; own observation). However, Fürbringer (1876) noted that the course 

of this muscle relative to other muscles and nerves has shifted laterally, and con-

cluded that it is only in part homologous to the scapular head of M. triceps brachii 

of lepidosaurs. Like in crocodilians, the avian M. scapulotr icpes arises next to 

the glenoid from the caudal edge of the collum scapulae (Fürbringer, 1902; Hud-

son and Lanzilloti, 1955; Berger, 1966; Fisher and Goodman, 1964; Schreiweis, 

1982; McGowan, 1986), where it is often associated with a tubercle (Baumel and 

Witmer, 1993). This condition is also found in ratites (MacAlister, 1864; Für-

bringer, 1888, 1902; McGowan, 1982). However, in more derived birds the origin 

of this muscle may extend cranially onto the lateral side of the scapula and even 

onto the furcula (e.g., in Gallus: Fürbringer, 1902; Hudson and Lanzilloti, 1964; 

Vollmerhaus et al., 1992). 

M. tr iceps brachii  caput coracoideum (TBC). The coracoidal head of 

M. triceps brachii arises by a tendon from the caudal end of the coracoid in am-

phibians, just medial to M. coracobrachialis longus (Miner, 1925; Francis, 1934). 

Sphenodon exhibits a similar morphology (Fürbringer, 1900; Miner, 1925). In most 

squamates, the tendon of origin attaches to the entire caudomedial border of the 

coracoid, in some forms also to the Ligamentum sternoscapulare internum 

(Mivart, 1867, 1870; Sanders, 1870, 1872, 1874; Fürbringer, 1876, 1900; Ribbing, 

1938). However, the coracoidal head is lost in chameleons (Mivart, 1870; Für-

bringer, 1876, 1900) and also in chelonians (Ribbing, 1938; Walker, 1973).  

In crocodilians, one of the muscular heads of M. triceps brachii is found in a 

roughly similar position, but it is not regarded as fully homologous to the caput 

coracoideum of other diapsids (see Discussion below). This head arises from the 

two branches of the Ligamentum sternoscapulare internum that connect to the 

caudal margin of the scapula and the caudomedial border of the coracoid, respec-

tively (Haughton, 1866; Fürbringer, 1876, 1900; Ribbing, 1938; Cong et al., 1998; 

Meers, 2003; Jasinoski et al., 2006). Therefore, the muscle is referred to as M. 

tr iceps brachii  caput coracoscapulare. On the caudomedial edge of the 

scapula, the insertion of the internal sternoscapular ligament leaves a rugose scar 

(Jasinoski et al., 2006; own observation).  
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In contrast to crocodilians, birds lack a connection of such a muscle to the 

scapular blade. However, the minute M. coracotr iceps arises from a ligament 

that connects the cranial edge of the sternum and the craniomedial part of the 

scapulocoracoidal contact. M. coracotriceps remains tendinous over most of its 

length (Fürbringer, 1902; Berger, 1966; Vanden Berge and Zweers, 1993), and is 

completely lost in ratites (Fürbringer, 1888, 1902; McGowan, 1982).  

M. tr iceps brachii  capit i  humerales  (TBH). All humeral heads of M. 

triceps brachii arise fleshy from the dorsal and caudal sides of the humerus. In 

amphibians, their areas of origin are fluctuating in their extent on the humerus, 

from a restriction to the proximal quarter (caput humerale  laterale  of Crypto-

branchus: Miner, 1925), to an extension over the complete proximodistal length of 

the shaft (caput humerale  mediale  of some salamanders: Francis, 1934; 

Walthall and Ashley-Ross, 2006). In Sphenodon, both caput humerale laterale and 

caput humerale mediale occupy the whole length of the humerus between the 

insertions of Mm. scapulohumerales and the medial tuberosity proximally, and 

the articular condyles distally. While the lateral head is situated on the dorsal side 

of the shaft, the medial head runs down the caudoventral side of the humerus. 

Proximally, both heads are separated by the areas of insertion of M. latissimus 

dorsi and Mm. scapulohumerales (Fürbringer, 1900; Byerly, 1925; Miner, 1925). 

The same morphology is found in squamates. In all lepidosaurs, caput humerale 

laterale is usually larger than caput humerale mediale (Mivart, 1867, 1870; Sand-

ers, 1870, 1872, 1874; Fürbringer, 1876, 1900; de Vis, 1884; Rabl, 1916; Ribbing, 

1938). Chelonians have reduced the medial head of M. triceps brachii, and the 

remaining M. triceps brachii caput humerale covers the majority of the dorsal side 

of the humeral shaft (Ribbing, 1938; Walker, 1973). In contrast, crocodilians are 

specialized by having a third humeral head that is referred to as M. tr iceps bra-

chii  caput humerale  posticum. This large, additional head has its origin on 

the dorsal side of the shaft, between caput humerale laterale and caput humerale 

mediale. Proximally, the insertion of M. scapulohumeralis caudalis separates this 

head from the origin of the medial head (Fürbringer, 1876, 1900; Ribbing, 1938; 

Meers, 2003). In contrast to crocodilians, birds have simplified the humeral part of 

the M. triceps brachii system. Only one head is retained (M. humerotriceps), 

but this muscle may be subdivided into a cranial and a caudal part proximally at 

the level of the pneumatic fossa. The muscle has its origin on the caudodorsal side 

of the humeral shaft, caudal to the insertion of M. latissimus dorsi (Gadow and 

Selenka, 1891; Fürbringer, 1902; Fisher, 1946; Hudson and Lanzilloti, 1955, 

1964; Berger, 1966; Schreiweis, 1982; McGowan, 1986; Vanden Berge and 
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Zweers, 1993). In most ratites, M. humerotriceps is reduced in volume (Für-

bringer, 1888, 1902), but McGowan (1982) reported a substantial development of 

this muscle in Apteryx.  

All heads of M. triceps brachii usually fuse in the distal part of the brachium 

and insert by a common tendon on the olecranon process of the ulna. In many 

forms, a sesamoid (the ulnar patella) is incorporated into this tendon. In some 

birds, M. scapulotriceps and M. humerotriceps insert at different points on this 

process (Hudson and Lanzilloti, 1955; McGowan, 1986).  

DISCUSSION – The complex morphology of M. triceps brachii, with somewhat 

unclear homologies of the individual heads, hampers the inference of its mor-

phology in the last common ancestor of birds and crocodilians. As mentioned 

above, Fürbringer (1876) noted that the scapular head has a different course in 

crocodilians. M. scapulotriceps of birds is similar in this respect, leading 

Fübringer (1886) to homologize both heads. To interpret the rugose scar immedi-

ately above the glenoid in basal archosaurs as the point of origin of the tendon of 

M. triceps brachii caput scapulare is therefore a Level I inference. On the other 

hand, Fürbringer (1886, 1888, 1902) found the avian M. coracotriceps to be ho-

mologous with the caput coracoideum of lepidosaurs, but not with the crocodilian 

caput coracoscapulare. According to Fürbringer, the latter head developed by 

fusion of the plesiomorphic caput coracoideum with a ventral division of caput 

scapulare, rendering the archosaurian caput scapulare in part a novel develop-

ment, and caput coracoscapulare an autapomorphy of Crocodylia. However, ba-

sal archosaurs and dinosaurs have a slight eminence on the caudal edge of the 

scapular blade, which might be homologous to the rugose scar left by the insertion 

of the internal sternoscapular ligament in crocodilians (see chapter 4). Therefore, 

it cannot be ruled out that all archosaurus plesiomorphically had such a cora-

coscapular head of M. triceps brachii, which may have been secondarily lost in 

birds. Under consideration of the reorientation of the scapular blade and the gen-

eral reduction of this head in birds, a loss of the scapular anchor would actually be 

expected. However, this interpretation is a Level II inference only. 

Regarding the humeral parts of M. triceps brachii, it is obvious that birds have 

lost the lateral head, while they retained the medial head (caudal to the insertion 

of M. latissimus dorsi). Moreover, Fürbringer (1888, 1902) homologized the cra-

nial part of the avian M. humerotriceps with the caput posticum of crocodilians. 

Some birds also exhibit a lateral head of M. humerotriceps in the craniodistal part 

of the brachium, but Fürbringer (1902) interpreted this as a convergent develop-

ment. Since caput humerale laterale is a plesiomorphic feature that is retained in 
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crocodylians, basal archosaurs may have possessed all three humeral heads of M. 

triceps brachii. Due to their fleshy origins, the exact extents of these heads are 

hard to delimit, unless clear intermuscular ridges are present. The common inser-

tion of all heads on the olecranon process of the ulna is retained in all tetrapods. 

Therefore, it is a Level I inference to assume the same insertion in basal archo-

saurs. 

 
Figure 3-14. Proximal antebrachial musculature of urodeles (A, right lateral view; B, antebrachium 
in dorsal view) and Sphenodon (C, antebrachium in dorsal view; D, ventral view; E, right lateral 
view). Shaded lines of action indicate muscles that lie on the remote side of the respective bone. 
 

18. M. biceps brachii (BB). 

Synonyms: 

M. biceps (MacAlister, 1864; Mivart, 1867, 1870; Sanders, 1870, 1872, 1874;  

de Vis, 1884; Rabl, 1916; Romer, 1922; Fisher, 1946; Fisher and Goodman, 1955;  

Walker, 1973; Dilkes, 2000) 

M. biceps humeri (Haughton, 1866) 

M. coraco-antebrachialis (Fürbringer, 1876; Byerly, 1925) 

Remarks: For the same reasons as noted under ‘M. triceps brachii’, this thesis prefers 

to use the full term for this muscle instead of the common abbreviation ‘M. biceps’. Für-

bringer’s (1876) alternative nomenclature did not prevail in the literature, and is therefore 

not taken into consideration.  
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DESCRIPTION – There is no M. biceps brachii in extant amphibians (Miner, 

1925; Francis, 1934; Ribbing, 1938). Instead, its role of flexing the forearm is 

taken over by a specialized, deep part of M. supracoracoideus (‘M. coracoradialis 

proprius’). The presence of M. biceps brachii (figs. 3-14, 3-15, 3-16) is a shared 

character of all amniotes. In Sphenodon, it arises fleshy from the medial part of the 

outer surface of the coracoid, and becomes tendinous in the region of the shoulder 

joint and deltopectoral crest. Distally the muscle again becomes fleshy, before it 

finally fuses close to the elbow joint to M. brachialis. It inserts via a forked tendon 

proximally on both the radius and the ulna (Fürbringer, 1900; Miner, 1925). 

Squamates exhibit a similar morphology, but in many forms the origin is some-

what more caudally placed (Mivart, 1867; Sanders, 1870, 1872, 1874; Fürbringer, 

1876, 1900; Rabl, 1916). Chameleons and few other forms are specialized in hav-

ing a tendinous origin of this muscle on the coracoid (Mivart, 1870; Fürbringer, 

1876, 1900; de Vis, 1884). Moreover, Mivart (1870) observed that the radial ten-

don of M. biceps brachii in Chamaeleo leaves a prominent tubercle on the ulnar 

(medial) side of the radius. Romer (1922) stated that the ulnar as well as the radial 

insertion is associated with a rugose structure in most basal amniotes.  

In turtles, M. biceps brachii has differentiated into two independent heads, a 

pars superficialis and a pars profundus. Both muscles arise from the caudal edge 

of the coracoid, the superficial part extending further medially than the deep head. 

Resembling lepidosaurs, the middle section of the superficial head is tendinous, 

while pars profundus partially fuses to M. brachialis. The superficial head inserts 

tendinously on the radius, while the deep head attaches by a tendon to the ulna 

(Walker, 1973). In contrast, crocodilians have a relatively weak, slim M. biceps 

brachii that arises by a wide, thin tendon from the cranioventral edge of the cora-

coid, cranially to M. coracobrachialis brevis (Fürbringer, 1876, 1900). At this lo-

cation, it leaves a prominent, elongate scar that is oriented in parallel to the shaft 

axis (Cong et al., 1998; Meers, 2003). As in lepidosaurs, the muscle partly fuses to 

M. brachialis distally, and splits into two tendons that insert on the proximal ends 

of radius and ulna (Fürbringer, 1876, 1900; Ribbing, 1938). However, the radial 

insertion does not correlate to a tuberosity on the radius; instead, it is situated 

caudal to the prominent tubercle that serves as the anchor for the tendon of M. 

humeroradialis (Cong et al., 1998; Meers, 2003; Jasinoski et al., 2006; own obser-

vations).  

The avian M. biceps brachii shows much variation. It is often reduced or dif-

ferentiated into several small parts, including a pars propatagialis that controls the 

propatagial skin. In carinates, the muscle usually arises from the acrocoracoid 
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process of the coracoid and the medial tuberosity of the humerus, both origins 

being connected by the Ligamentum acrocoracohumerale that spans over the dor-

sal side of the pectoral girdle (Fürbringer, 1902; Sy, 1936; Berger, 1966; Vanden 

Berge and Zweers, 1993). In some forms, the tendinous humeral origin extends 

distally beyond the medial tuberosity; in this case, a prominent bicipital crest is 

developed (McGowan, 1986; Fisher, 1946; Fisher and Goodman, 1955; Hudson 

and Lanzilloti, 1955). M. biceps brachii arises tendinously, but becomes fleshy at 

the level of the deltopectoral crest. Like in other diapsids, it inserts by a forked 

tendon on both radius and ulna, where it correlates to tuberosities (Fürbringer, 

1902; Berger, 1966; Vollmerhaus et al., 1992; Vanden Berge and Zweers, 1993). In 

ratites, the muscle has a relatively wide origin from the dorsolateral edge of the 

coracoid, immediately cranial to the glenoid. The ulnar insertion is weak in 

Struthio and missing in Apteryx (Fürbringer, 1902; McGowan, 1982).  

DISCUSSION – Plesiomorphically, M. biceps brachii arises fleshy from the me-

dial part of the external surface of the coracoid. Since the coracoids of both birds 

and crocodilians are strongly modified, and those of basal archosaurs are not, 

common characters of extant archosaurs (like a tendinous origin from the cranio-

dorsal part of the coracoid) may indeed be due to convergence. Ostrom (1976) 

homologized the prominent tubercle present on the caudolateral side of dinosau-

rian coracoids with the avian acrocoracoid; therefore, the term ‘biceps tubercle’ 

for this structure is justified. Carpenter (2002) presented an alternative interpreta-

tion: he assumes that this protuberance is a remnant of bone between the large 

depressions for M. supracoracoideus and M. coracobrachialis, and did not serve 

for any muscle attachment. However, this tubercle is very large, quadrangular, 

and rugose in other dinosaurs (e.g., Plateosaurus, chapter 7), and has therefore 

clearly been associated with soft tissue in the living animal.  

Since a humeral head of M. biceps brachii is present in most birds, but misses 

in crocodilians, its inference in basal archosaurs is equivocal. However, no basal 

archosaur exhibits a bicipital crest or a homologous structure next to the medial 

tuberosity that may correlate to the origin of a biceps tendon.  

Regarding the insertion of M. biceps brachii, outgroup comparison clearly im-

plies that a split tendon leading to both ulna and radius was present in basal ar-

chosaurs. The prominent tubercle on the cranial side of the radius is associated 

with M. biceps brachii in birds and some lepidosaurs, but with M. humeroradialis 

in crocodilians. Therefore, it is somewhat speculative to interpret such a structure 

in extinct archosaurs as the site of insertion of M. biceps brachii (chapter 5). If a 
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tubercle is present cranially on the proximal ulna, it probably correlates to the 

insertion of the ulnar tendon of this muscle. 

 
Figure 3-15. Proximal antebrachial musculature of chelonians (A, ventral view; B, antebrachium in 
dorsal view) and Alligator (C, ventral view; D, cranial view). 
 

19. M. humeroradialis (HR). 

Synonyms: 

M. brachialis externus (Haughton, 1866) 

M. brachio-radialis (Romer, 1922) 

M. spiralis (Ribbing, 1938) 

M. brachialis caput laterale (Cong et al., 1998) 

Remarks: The term ‘M. humeroradialis’ was established by Fürbringer (1876), who 

recognized the unusual properties of this muscle. Many other workers regarded it as a 

specialized part of M. brachialis, or introduced own terminologies (e.g., ‘M. brachio-

radialis’, Romer, 1922). However, recent workers on crocodilian myology use Für-

bringer’s terminology (Meers, 2003; Jasinoski et al., 2006). A homology of this muscle 

with the avian M. deltoideus propatagialis caput caudale is possible, but not proven. 

DESCRIPTION – M. humeroradialis (figs. 3-14, 3-15) constitutes a remnant of a 

phylogenetically old muscle that has been lost in most extant diapsids. It is present 

in mammals (Romer, 1922; Ribbing, 1938), in Sphenodon, and in crocodilians. 

Romer (1944) observed its anlage also in embryos of Lacerta, but the muscle misses 

in any hatched squamate known. Some parts of M. deltoideus propatagialis of 
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birds (see also above, ‘M. deltoideus clavicularis’) may also be homologous to M. 

humeroradialis (Fürbringer, 1876, 1900, 1902).  

In Sphenodon, the muscle has no contact to the skeleton. It arises from the ven-

tral end of Ligamentum scapulohumerale laterale, and from an aponeurosis that 

covers the caudal side of M. deltoideus clavicularis. Distally, it merges with the 

proximal parts of M. supinator (Fürbringer, 1900; Miner, 1925; Ribbing, 1938).  

M. humeroradialis is well developed in crocodilians. Situated between M. bra-

chialis and M. triceps brachii caput humerale laterale, it arises fleshy from the 

craniodorsal side of the humerus, just distal to M. deltoideus clavicularis (Haugh-

ton, 1866; Fürbringer, 1876, 1900; Meers, 2003; Jasinoski et al., 2006; own obser-

vation). Its area of origin is rugose in Alligator, and may also be clearly demar-

cated from the insertion of M. deltoideus clavicularis by a distinct scar (Meers, 

2003). The muscle inserts via a strong tendon on the craniolateral side of the 

proximal radius, where it leaves a prominent tubercle (Fürbringer, 1876, 1900; 

Cong et al., 1998; Meers, 2003).  

Fürbringer (1902) homologized parts of the avian M. deltoideus propatagialis 

caput breve with M. humeroradialis of Sphenodon. This avian muscle helps to span 

the propatagium and has no contact to the skeleton.  

DISCUSSION – Based on their similar innervation, Fürbringer (1876) was the 

first to recognize the close relationship of M. deltoideus clavicularis and M. 

humeroradialis, a view later confirmed by Howell (1936) and Romer (1944). By 

now, it has not been convincingly shown that parts of the avian M. deltoideus 

propatagialis are homologous to the crocodilian M. humeroradialis. However, 

since the presence of this muscle seems to be a plesiomorphic trait of tetrapods, it 

probably existed also at the base of the archosaurs. Nevertheless, the muscle lacks 

a strong development or association with osteological correlates in any tetrapod 

group other than crocodilians. Therefore, postulating that structures visible on the 

humerus or radius of extinct archosaurs are traces of M. humeroradialis can only 

be a Level II inference. Some alternative configurations of the M. biceps brachii – 

M. humeroradialis – M. brachialis complex in sauropodomorphs will be discussed 

in the following chapters.  

 

20. M. brachialis (B). 

Synonyms: 

M. brachialis anticus (Haughton, 1866; Mivart, 1867, 1870; Sanders, 1870, 1872, 1874;  

de Vis, 1884) 

M. humero-antebrachialis inferior (Fürbringer, 1876; Byerly, 1925) 
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M. brachialis inferior (Gadow and Selenka, 1891; Fürbringer, 1888, 1900, 1902;  

Miner, 1925; Walker, 1973; Dilkes, 2000) 

Remarks: Most authors used the term ‘M. brachialis’ for this muscle, but various epi-

thets that describe its relative position on the arm were added. For standardization and 

simplification purposes, modern authors abandoned these epithets. Again, Fürbringer’s 

(1876) alternative nomenclature did not find wide acceptance in the literature.  

DESCRIPTION – Plesiomorphically, M. brachialis (figs. 3-14, 3-15, 3-16) is pre-

sent in all amniotes and caudate amphibians. In the latter group, it has its origin 

on the proximal half of the humerus, just distal to the insertion of Mm. deltoidei 

(‘M. procoracohumeralis superficialis’, M. deltoideus scapularis). It inserts fleshy 

on the cranial proximal part of the radius (Miner, 1925; Walthall and Ashley-

Ross, 2006). In Sphenodon, M. brachialis is strongly developed, and covers most of 

the cranioventral humeral shaft, beginning with the base of the deltopectoral crest. 

It has contact to M. humeroradialis dorsoproximally and merges with M. biceps 

brachii distally. Together with the latter muscle, M. brachialis inserts by a shared 

split tendon on both ulna and radius (Fürbringer, 1900; Miner, 1925). There is not 

much variation of this pattern in squamates, with the exception of the loss of M. 

humeroradialis (see above). This allows M. brachialis to have contact with the 

ventral part of M. triceps brachii caput humerale laterale (Mivart, 1867; Sanders, 

1874; Fürbringer, 1876, 1900; de Vis, 1884; Rabl, 1916; Ribbing, 1938). Minor 

modifications found in chameleons and some other species include a reduction of 

the radial insertion, or an insertion independent from that of M. biceps brachii 

(Mivart, 1870; Sanders, 1870, 1872; Fürbringer, 1876, 1900). Turtles have a simi-

lar origin of this muscle, but the insertion is fleshy on the proximal third of the 

ulna and the adjacent radius (Walker, 1973). 

In crocodilians, M. brachialis is relatively weak. Proximally, the muscle is in 

close connection with M. humeroradialis. It arises from the entire cranioventral 

humeral shaft distal to the deltopectoral crest, and fuses distally with M. biceps 

brachii, sharing the split tendon of insertion that runs to ulna and radius (see 

above, ‘M. biceps brachii’). In some species, the ulnar insertion is reduced 

(Haughton, 1866; Fürbringer, 1876, 1900; Ribbing, 1938; Cong et al., 1998; 

Meers, 2003).  

The avian M. brachialis is short and restricted to the elbow region. As in tur-

tles, both origin and insertion are fleshy. The muscle arises from the distal part of 

the humeral shaft, just proximal to the entepicondyle, where it is associated with a 

slight depression (Fürbringer, 1888, 1902; Gadow and Selenka, 1891; Hudson and 

Lanzilloti, 1955, 1964; Vollmerhaus et al., 1992). It inserts obliquely on the 
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proximoventral (developmentally medial) surface of the ulna, where it correlates 

to a depression at least in some forms (McGowan, 1982, 1986; Fisher, 1946; 

Fisher and Goodman, 1955; Berger, 1966). An additional radial insertion is pre-

sent in Struthio, Apteryx and penguins (Fürbringer, 1888, 1902; McGowan, 1982; 

Schreiweis, 1982).  

DISCUSSION – M. brachialis shows little variation in its relative position, but 

some modifications in its extent and point of insertion. In basal amniotes, the 

humeral shaft exhibits four triangular facets, one of these being probably associ-

ated with M. brachialis (Romer, 1922). However, such facets are not distinguish-

able in archosaurs any more, making the exact extend of the origin of M. brachi-

alis in fossil archosaurs hard to delimit. Nevertheless, phylogenetic inference im-

plies that the muscle arose from the humeral shaft distal to the deltopectoral crest 

in basal archosaurs, and that it inserted together with M. biceps brachii on both 

radius and ulna in these forms. The separate insertion of both muscles is a derived 

character probably restricted to Aves, because the osteological correlates of M. 

brachialis found in birds are still missing in their closest outgroup, the Dro-

maeosauridae (Jasinoski et al., 2006). 

 
Figure 3-16. Proximal antebrachial musculature of Gallus (A, ventral view; B, dorsal view). 
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21. M. supinator (S). 

Synonyms: 

M. ectepicondylo-radialis (Gadow and Selenka, 1891) 

M. extensor antebrachii radialis partim (Ribbing, 1907, 1938) 

M. abductor antebrachii radialis (Rabl, 1916) 

M. extensor carpi radialis partim (Byerly, 1925; Dilkes, 2000; Abdala and Moro, 2006) 

M. tractor radii (Haines, 1939; Walker, 1973) 

M. brachioradialis (Haines, 1939) 

Remarks: The nomenclature of the forearm musculature of tetrapods is confused, be-

cause many late 19th and early 20th century authors grouped the individual muscle heads 

that arise from the humeral epicondyles differently under various names, in most cases 

without testing their homologies (see also the note on the antebrachial extensor muscula-

ture below). Therefore, this thesis prefers the most recent nomenclatorial system of Meers 

(2003), but replaces some of his new terms by NAA standardized terminology (Vanden 

Berge and Zweers, 1993). In case of M. supinator, both Meers (2003) and the NAA prefer 

this classical term to the alternatives listed above. 

DESCRIPTION – M. supinator (figs. 3-14, 3-15, 3-16) is part of the antebrachial 

extensor musculature that arises from the ectepicondylar region of the humerus. It 

can be distinguished from other muscles of that group by its extensive, fleshy in-

sertion on the craniomedial side of the radius. M. supinator therefore serves to 

rotate the hand outwards.  

In caudatans, the muscle has a tendinous origin from the lateral side of the ec-

tepicondyle, and inserts fleshy on the distal part of the craniomedial radius 

(Miner, 1925). Some forms exhibit no clear distinction of this muscle from M. 

extensor carpi radialis and M. abductor radialis (Ribbing, 1907; Walthall and 

Ashley-Ross, 2006).  

In Sphenodon and other lepidosaurs, the muscle arises from the proximal part of 

the ectepicondyle, the other extensor muscles being situated more distal. The ori-

gin correlates to the supinator crest, a remnant of the prominent supinator process 

of early tetrapods (Romer, 1922; Miner, 1925). M. supinator inserts fleshy along 

the craniomedial side of the radius (Mivart, 1867, 1870; Sanders, 1870, 1872, 

1874; de Vis, 1884; Ribbing, 1907, 1938; Rabl, 1916; Byerly, 1925; Miner, 1925; 

Haines, 1939; Abdala and Moro, 2006).  

The chelonian M. supinator is specialized by having an extended, fleshy origin 

that covers the ventral part of the distal third of the humerus. As in other non-

avian Reptilia, it inserts onto the entire craniomedial side of the radius (Ribbing, 

1938; Walker, 1973). In crocodilians, the morphology is generally very similar to 
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that of lepidosaurs: The muscle arises by a tendon from the ectepicondyle close to 

M. extensor carpi radialis, and inserts fleshy along the craniomedial radial shaft, 

distal to the tubercle for the insertion of M. humeroradialis (Ribbing, 1907, 1938; 

Cong et al., 1998; Meers, 2003). 

In birds, M. supinator is a short muscle that spans over the elbow joint. It 

arises tendinously, together with M. extensor digitorum communis, from the cra-

niolateral ectepicondyle, and inserts fleshy within the proximodorsal half of the 

radius, distal to the biceps tubercle (Fisher, 1946; Fisher and Goodman, 1955; 

Hudson and Lanzilloti, 1955, 1964; Berger, 1966; Schreiweis, 1982; McGowan, 

1986; Vollmerhaus et al., 1992; Vanden Berge and Zweers, 1993). In ratites, its 

insertion may extend along the entire shaft of the radius (MacAlister, 1864; 

Gadow and Selenka, 1891; McGowan, 1982).  

DISCUSSION – M. supinator is relatively conservative: In most tetrapods, it 

arises tendinously from the proximal ectepicondyle, and inserts fleshy on the cra-

niomedial shaft of the radius. This is also true for crocodilians and birds; however, 

the extent of the insertion is somewhat reduced in neognaths. It is therefore a level 

I inference to reconstruct a M. supinator with a similar origin and insertion in 

basal archosaurs. 

 
Figure 3-17. Antebrachial muscles arising from the epicondyles in urodeles (A, dorsal view; B, 
ventral view) and Sphenodon (C, dorsal view; D, ventral view). 
 

22. M. abductor radialis (AR). 

Synonyms: 

M. supinator longus partim (Mivart, 1867, 1870) 

M. supinator brevis (Sanders, 1870) 

M. extensor longus digitorum partim (Sanders, 1872, 1874) 

M. extensor antebrachii et carpi radialis partim (Ribbing, 1907; Walthall and  

Ashley-Ross, 2006) 

M. extensor carpi radialis b (Ribbing, 1907) 
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M. abductor antibrachii radialis partim (Rabl, 1916) 

M. extensor carpi radialis partim (Byerly, 1925; Dilkes, 2000; Abdala and Moro, 2006) 

M. extensor carpi radialis profundus (Miner, 1925) 

M. extensor radialis profundus (Haines, 1939; Walker, 1973) 

Remarks: Being a part of the antebrachial extensor musculature, the nomenclatorial 

confusion mentioned in the last paragraph also pertains to M. abductor radialis. Since this 

muscle is lost in birds and no NAA term is available, it is regarded here as best solution to 

adopt the term recently introduced by Meers (2003), M. abductor radialis. 

DESCRIPTION – Like M. supinator, M. abductor radialis (figs. 3-17, 3-18) dif-

ferentiated from the primordial extensor mass found in amphibians, M. extensor 

antebrachii et carpi radialis. The amphibian muscle arises by a short tendon from 

the distal part of the ectepicondyle and inserts on the entire cranial side of the 

radius, the radiale, and the intermedium (Ribbing, 1907; Miner, 1925; Walthall 

and Ashley-Ross, 2006). However, Haines (1939) found an internal differentiation 

of this muscle into a M. supinator, M. abductor radialis, and M. extensor carpi 

radialis in Salamandra (see the sections on these muscles for his synonyms).  

In Sphenodon, squamates, chelonians, and crocodilians, M. abductor radialis 

takes origin from the ventrodistal part of the ectepicondyle. It inserts on almost 

the entire craniolateral face of the radius, beginning just distal to the insertion of 

M. biceps brachii (Mivart, 1867; Sanders, 1870, 1872; Ribbing, 1907; Rabl, 1916; 

Byerly, 1925; Miner, 1925; Haines, 1939; Walker, 1973; Abdala and Moro, 2006). 

The area of insertion is restricted to about the proximal half of the radius in 

crocodilians, and may vary in some squamates (Mivart, 1870; Sanders, 1874; 

Ribbing, 1907; Meers, 2003).  

There is no equivalent muscle in extant birds. 

DISCUSSION – This plesiomorphic muscle, which is present in all lepidosaurs 

and turtles, is preserved in modern day crocodilians, albeit somewhat reduced in 

length. Consequently, it is probable that M. abductor radialis was also present in 

basal archosaurs and arose by a tendon from the ectepicondyle. However, its 

fleshy type of insertion without unambiguous osteological correlates does not al-

low for an exact delimitation of its extent. Since birds have lost this muscle, its 

reconstruction in sauropodomorphs is merely a level II inference in terms of Wit-

mer (1995). Nevertheless, the retention of this muscle in different types of amnio-

tes implies that its loss in birds is correlated to the evolution of flight, and that it 

was reduced only late in dinosaur evolution. 
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Figure 3-18. Antebrachial muscles arising from the epicondyles in chelonians (A, dorsal view; B, 
ventral view) and Alligator (C, dorsal view; D, ventral view). 
 

23. M. ectepicondylo-ulnaris (EctU). 

Synonyms: 

M. anconaeus (Haughton, 1866; Fisher, 1946; Fisher and Goodman, 1955; Berger,  

1953, 1954, 1955, 1956a–c, 1957, 1960, 1966; Hudson and Lanzilloti, 1955, 1964) 

M. extensor antebrachii ulnaris (Ribbing, 1907, 1938; Haines, 1939) 

M. extensor ulnaris (Romer, 1922; Haines, 1939) 

M. anconaeus quartus (Miner, 1925) 

M. extensor carpi ulnaris (Cong et al., 1998) 

M. flexor ulnaris (Meers, 2003)  

M. extensor antebrachii et carpi ulnaris (Walthall and Ashley-Ross, 2006) 

Remarks: This muscle has long been referred to as ‘M. anconaeus’ in the ornithological 

literature. However, this term also has been used as a synonym for M. triceps (e.g., Für-

bringer, 1876), and has therefore been replaced by ‘M. ectepicondylo-ulnaris’ in the NAA 

to avoid confusion. Due to the lack of a widely accepted nomenclatorial system for the 

forearm musculature of non-avian Reptilia, the homologous muscle of these forms bears 

various names. Since the orientation of this muscle is same in all diapsids, and the NAA 

term is descriptive (rather than based on function, which is subject to change throughout 

evolution), it is here considered best to apply this term throughout this work. 

DESCRIPTION – M. ectepicondylo-ulnaris (figs. 3-17, 3-18, 3-19) is plesiomor-

phically present in all tetrapods, but lost in squamates. It is closely related to M. 

extensor carpi ulnaris; both muscles are fused in some amphibians and turtles. In 

these forms, M. ectepicondylo-ulnaris has its tendinous origin on the distal-most 

point of the ectepicondyle, and inserts fleshy along the lateral side of the ulnar 

shaft, the ulnare, and the pisiforme. In chelonians, the insertion extends onto 

metacarpal V (Ribbing, 1907, 1938; Haines, 1939; Walker, 1973; Walthall and 

Ashley-Ross, 2006). The more distal parts of this muscle mass must be regarded as 

homologues of M. extensor carpi ulnaris, and will be treated later. A full differen-
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tiation into two independent muscles is found in anurans and in Salamandra (Rib-

bing, 1938; Haines, 1939).  

In Sphenodon, the common muscular body has differentiated into two distinct 

parts. M. ectepicondylo-ulnaris exhibits the same general topology as in more 

basal tetrapods, but its insertion is restricted to the proximal half of the ulnar shaft 

(Miner, 1925; Ribbing, 1938; Haines, 1939). The muscle is completely lost in 

squamates.  

Crocodilians have reduced the carpal part of this muscle complex (see below, 

‘M. extensor carpi ulnaris’). The remaining M. ectepicondylo-ulnaris attaches to 

the lateral side of the entire shaft of the ulna (Haughton, 1866; Ribbing, 1907, 

1938; Cong et al., 1998; Meers, 2003).  

In contrast to squamates and crocodilians, birds kept both M. ectepicondylo-

ulnaris and M. extensor carpi ulnaris (= ‘M. extensor metacarpi ulnaris’ in NAA 

terminology). As in other tetrapods, M. ectepicondylo-ulnaris takes origin by a 

strong tendon from the distal ectepicondyle. The muscle inserts dorsocranially 

(developmentally craniolaterally) on the proximal half of the ulnar shaft, in some 

forms (e.g., galliforms) on the entire ulnar shaft (Fisher, 1946; Fisher and Good-

man, 1955; Hudson and Lanzilloti, 1955, 1964; Berger, 1966; McGowan, 1982, 

1986; Schreiweis, 1982; Vollmerhaus et al., 1992). It is partly fused to M. extensor 

metacarpi ulnaris in Struthio (Gadow and Selenka, 1891). 

DISCUSSION – M. ectepicondylo-ulnaris is present in both crocodilians and 

birds and has a conservative course. Therefore, it is easy to infere its presence in 

basal archosaurs. Moreover, in all tetrapods M. ectepicondylo-ulnaris is the distal-

most of the ectepicondylar muscles. However, some speculation is required re-

garding the extent of its insertion, since there are no clear osteological correlates. 

Nevertheless, both in crocodilians and in plesiomorphic birds such as galliforms, 

the muscle covers the complete lateral side of the shaft of the ulna, rendering a 

similar pattern in basal archosaurs probable. 

 

24. M. pronator teres (PT). 

Synonyms: 

M. pronator radii (Haughton, 1866; Sanders, 1872, 1874) 

M. entepicondylo-radialis (Gadow and Selenka, 1891) 

M. flexor antebrachii radialis (Ribbing, 1907) 

M. pronator radii teres (Miner, 1925) 

M. pronator brevis, M. pronator longus (Fisher, 1946; Fisher and Goodman, 1955;  

Fujioka, 1959) 
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M. pronator sublimis (Hudson and Lanzilloti, 1955, 1964) 

M. pronator superficialis, M. pronator profundus (Vanden Berge and Zweers, 1993,  

and other ornithological literature) 

Remarks: Most authors use the originally mammalian term ‘M. pronator teres’ for this 

muscle. In birds, both pronators (M. pronator superficialis, M. pronator profundus = ‘M. 

pronator brevis’, ‘M. pronator longus’) seem to be derived from this muscle (Sullivan, 

1962). Therefore, the mammalian terms M. pronator teres and M. pronator quadratus are 

adapted throughout this thesis to avoid confusion. Ribbing (1907) suggested an alternative 

nomenclature, and grouped M. pronator teres (his ‘M. flexor antebrachii radialis’) together 

with M. flexor carpi radialis. He further interpreted M. pronator accessorius of squamates 

as the true homologue of the mammalian M. pronator teres, and claimed the chelonian 

M. pronator teres to be a homologue of this latter muscle. Consequently, this led him to 

report that ‘M. flexor antebrachii radialis’ is lost in turtles. However, most other authors 

correctly identified M. pronator teres throughout the various tetrapod groups, and recog-

nized the small, additional pronator of squamates as an autapomorphic trait, probably 

derived from M. pronator quadratus (see below, ‘M. pronator quadratus’).  

DESCRIPTION – The presence of an independent M. pronator teres (figs. 3-17, 

3-18, 3-19) is a synapomorphic character of amniotes. In modern amphibians, the 

fibers that arise from the entepicondyle and insert onto the radial shaft are still 

part of a larger muscle called ‘M. flexor antebrachii et carpi radialis’ (Walthall and 

Ashley-Ross, 2006). Alternatively, Miner (1925) suggested that some fibers of the 

amphibian M. flexor digitorum communis might be homologous to M. pronator 

teres.  

In all diapsids, M. pronator teres arises tendinously from the entepicondyle. In 

lepidosaurs, its origin is often located on the summit of the entepicondylar region. 

The muscle inserts fleshy on the cranial radial shaft in interspecifically varying 

positions, sometimes medially, sometimes laterally, more proximally, more dis-

tally, or along the entire shaft (Mivart, 1867, 1870; Sanders, 1872, 1874; Ribbing, 

1907, 1938; Rabl, 1916; Byerly, 1925; Miner, 1925; Haines, 1950; Abdala and 

Moro, 2006). Essentially the same changing conditions are found in turtles (Rib-

bing, 1907, 1938; Walker, 1973) and crocodilians (Haughton, 1866; Ribbing, 

1907, 1938; Cong et al., 1998; Meers, 2003). However, a constant character of this 

muscle is that its area of insertion is always situated distal to the insertions of M. 

humeroradialis, M. biceps brachii, and M. brachialis.  

The superficial portion of M. pronator teres (M. pronator superficialis) did not 

change much in birds. In Apteryx, the tendon of origin is shared with M. flexor 

carpi ulnaris (McGowan, 1982; = ‘M. flexor metacarpi ulnaris’), but in most 
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birds, the tendon arises autonomously from the proximal part of the entepicon-

dyle. The insertion is in most cases fleshy on the ventral (developmentally cranial) 

side of the shaft of the radius, again in varying relative lengths and positions 

(MacAlister, 1864; Gadow and Selenka, 1891; Fisher, 1946; Fisher and Good-

man, 1955; Hudson and Lanzilloti, 1955, 1964; Berger, 1966; McGowan, 1982, 

1986; Vollmerhaus et al., 1992). 

 
Figure 3-19. Antebrachial musculature arising from the epicondyles in Gallus (A, dorsal view; B, 
ventral view).  

 

The avian ‘M. pronator profundus’ arises distally from the entepicondyle, but 

shares its tendon of origin with M. entepicondylo-ulnaris. The origin is located 

between that of ‘M. pronator superficialis’ and that of a derivate of M. flexor digi-

torum longus, ‘M. flexor digitorum superficialis’. The muscle inserts fleshy along 

a narrow line on the caudoventral side of the radius, caudally to ‘M. pronator 

superficialis’. The length and position of this insertion on the radial shaft is vari-

able (Fisher, 1946; Fisher and Goodman, 1955; Hudson and Lanzilloti, 1955, 

1964; Bentz, 1979; McGowan, 1986; Vanden Berge and Zweers, 1993). Both pro-

nators, ‘M. pronator superficialis’ and ‘M. pronator profundus’, are fused in rat-

ites (Gadow and Selenka, 1891; Berger, 1966; McGowan, 1982).  

DISCUSSION – M. pronator teres is present in all diapsids and has a fairly con-

stant position. It always arises from the entepicondylar region and inserts on the 

cranial part of the radial shaft. Therefore, it can be concluded that basal archo-

saurs had a M. pronator teres in a similar position (Level I inference). However, 

the exact extent of the area of insertion of this muscle on the radius is in most 
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cases hard to delimit, since the fleshy insertion usually is not associated with oste-

ological correlates. The differentiation of M. pronator teres into two largely inde-

pendent muscles probably is autapomorphic for Neornithes. 

 

25. M. entepicondylo-ulnaris (EntU). 

Synonyms: 

M. supinator accessorius (Mivart, 1867) 

M. supinator brevis (de Vis, 1884) 

M. flexor antebrachii ulnaris (Ribbing, 1907, 1938) 

M. anconeus medialis (Fujioka, 1959) 

M. epitrochleo-anconaeus (Miner, 1925; Haines, 1950) 

M. epitrochleoanconeus (Abdala and Moro, 2006) 

‘gallinaceous muscle’ (ornithological literature) 

Remarks: This muscle has received various names, and in many myological descrip-

tions it was overlooked. When mentioned, the name used for this muscle was either based 

on mammalian anatomy (M. epitrochleo-anconaeus) or on the system of Ribbing (1907), 

or a new name was introduced. Since there is no general agreement over the nomenclature 

of this muscle, it is here considered best to use the standardized term of the NAA (Vanden 

Berge and Zweers, 1993), M. entepicondylo-ulnaris. This term is descriptive and, because 

of the conservative nature of this muscle, also applicable to other diapsids. 

DESCRIPTION – The presence of M. entepicondylo-ulnaris (figs. 3-17, 3-18, 3-

19) is a plesiomorphic character of tetrapods. It constantly arises from the entepi-

condyle, sometimes sharing its tendon of origin with M. flexor carpi ulnaris, and 

attaches fleshy to the medial side of the ulna. The area of insertion varies within 

groups and species. In some caudatans, the muscle is lost (Ribbing, 1907) or fused 

to M. flexor carpi ulnaris (Walthall and Ashley-Ross, 2006), but it normally in-

serts on the middle of the shaft of the ulna (Ribbing, 1907; Miner, 1925). In lepi-

dosaurs, M. entepicondylo-ulnaris inserts variably on the medial side of the ulna, 

but normally attaches within the proximal half of that bone (Mivart, 1867; de Vis, 

1884; Ribbing, 1907, 1938; Rabl, 1916; Miner, 1925; Haines, 1950; Abdala and 

Moro, 2006). The muscle seems to be fused to M. flexor carpi ulnaris in Chamaeleo 

(Mivart, 1870).  

In chelonians, the area of insertion of M. entepicondylo-ulnaris is extended 

along the entire medial side of the ulna. In most forms, the muscle has fused to M. 

flexor carpi ulnaris, or the partition of both muscles is indistinct (Ribbing, 1907, 

1938; Walker, 1973). Crocodilians have completely lost M. entepiconylo-ulnaris 

(Ribbing, 1907).  
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In birds, the muscle is preserved only in Galloanserae and tinamous (Hudson 

et al., 1972). Berger (1966) and Vanden Berge and Zweers (1993) reported its 

presence in the kiwi, but McGowan (1982) found the muscle to be absent in his 

sample. M. entepicondylo-ulnaris has not been identified in other palaeognaths. 

When present, it arises together with M. pronator profundus (see above, ‘M. pro-

nator teres’) from the craniodistal corner of the entepicondyle, and has a fleshy 

insertion on the caudoventral (developmentally medial) side of the shaft of the 

proximal ulna, between the insertion of M. brachialis and the origin of ‘M. ul-

nometacarpalis ventralis’ (= M. pronator quadratus) (Gadow and Selenka, 1891; 

Berger, 1966; Sullivan, 1962; Hudson and Lanzilloti, 1964; Vollmerhaus et al., 

1992; Vanden Berge and Zweers, 1993). 

DISCUSSION – M. entepicondylo-ulnaris is present in most tetrapods, including 

basal birds. Its absence in flightless palaeognaths might be secondary. Although 

the muscle is lost in crocodilians, it is hence probable that it was still present at the 

base of the archosaurs. Strict application of the EPB without considering the out-

groups would provide only equivocal or even contrary results, depending on 

which sample taxa are chosen for Aves. Romer (1922) reported this muscle to 

have osteological correlates on the ulnae of early amniotes, but in fossil archo-

saurs the extent of its insertion is usually hard to delimit. 

 

26. M. pronator quadratus (PQ). 

Synonyms: 

M. ulni-metacarpalis ventralis (Gadow and Selenka, 1891) 

M. pronator profundus, M. interosseus antebrachii (Ribbing, 1907, 1938) 

M. pronator profundus (Rabl, 1916; Haines, 1950; Cong et al., 1998) 

M. flexor carpi ulnaris brevis (Fisher, 1946; Fisher and Goodman, 1955; Berger,  

1966) 

M. ulnometacarpalis ventralis (Vanden Berge and Zweers, 1993, and other  

ornithological literature) 

Remarks: The term used throughout this thesis and in many other works, ‘M. pronator 

quadratus’, is based on the form of this muscle in mammals. In Reptilia, the muscle is 

often not quadrangular, leading some authors to prefer the term ‘M. pronator profundus’, 

but this would cause confusion with the avian muscle of the same name (see above, ‘M. 

pronator teres’). The amphibian ‘M. pronator profundus’ listed by Ribbing (1907, 1938) 

actually refers to M. ulnocarpalis, a muscle lost in amniotes. Ribbing (1907) correctly uses 

M. pronator profundus for the other tetrapod groups, but names the amphibian homo-

logue ‘M. interosseus antebrachii’. In birds, the muscle is called ‘M. ulnometacarpalis 

ventralis’ by most authors. ‘M. ulnometacarpalis dorsalis’ is derived from the Mm. exten-
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sores digitorum superficiales system and not related to M. pronator quadratus (Sullivan, 

1962; see below, ‘Mm. extensores digitorum superficales’).  

DESCRIPTION – M. pronator quadratus (figs. 3-20, 3-21, 3-22) is present in 

most tetrapods, with the exception of anurans (Ribbing, 1907, 1938). The cau-

datan M. pronator quadratus arises fleshy from the entire lateral side of the shaft 

of the ulna and inserts on the opposing side of the shaft of the radius, as well as on 

the ventral (flexor) surfaces of the radial and first carpal (Ribbing, 1907; Miner, 

1925). In some forms, the origin extends onto the ulnare and intermedium, while 

the insertion is restricted to the carpus (Walthall and Ashley-Ross, 2006).  

In Sphenodon, the muscle has its origin on the radial side of the shaft of the 

ulna. The same is the case in other lepidosaurs, but occasionally the origin is lo-

cated on the distal ulna only. M. pronator quadratus usually inserts on the distal 

half of the radius and on the radiale, but may extend onto the whole shaft of the 

radius in some forms (Mivart, 1867, 1870; Sanders, 1870; de Vis, 1884; Ribbing, 

1907, 1938; Rabl, 1916; Byerly, 1925; Miner, 1925; Haines, 1950; Abdala and 

Moro, 2006). Additionally, squamates have a second pronator (M. pronator ac-

cessorius) that arises from the entepicondyle and inserts fleshy on the proximal 

radius. Since this muscle is often coadunate with M. pronator quadratus, Ribbing 

(1907, 1938) suggested that it may be a specialized part of the latter muscle.  

The insertion of M. pronator quadratus on the radius is lost in turtles, restrict-

ing the attachment of this muscle to the lateral carpus and to the base of the first 

metacarpal (Ribbing, 1907, 1938; Walker, 1973). In comparison, the pattern 

found in crocodilians resembles Sphenodon: M. pronator quadratus covers most of 

the radial side of the ulna and the ulnar side of the radius, but there is no insertion 

on the radiale (Haughton, 1866; Ribbing, 1907, 1938; Cong et al., 1998; Meers, 

2003). 

The avian ‘M. ulnometacarpalis ventralis’ usually arises ventrally from the ul-

nar shaft. The origin may vary in relative length and position, but is located on the 

distal half of the ulna in many birds. The tendon of insertion wraps around the 

ventral side of the radiale and inserts craniodorsally on the carpometacarpus, di-

rectly proximal to the base of metacarpal I (Gadow and Selenka, 1891; Fisher, 

1946; Fisher and Goodman, 1955; Hudson and Lanzilloti, 1955, 1964; Berger, 

1966; McGowan, 1986; Vollmerhaus et al., 1992; Vanden Berge and Zweers, 

1993). Because of similarities in development and position, Sullivan (1962) ho-

mologized this muscle with M. pronator quadratus of other amniotes. 
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DISCUSSION – The insertion of M. pronator quadratus on the shaft of the ra-

dius is a plesiomorphic character of amniotes. This connection is lost only in tur-

tles and birds, whereas in crocodilians it is extensive. Strict phylogenetic inference 

leaves it unresolved whether the muscle in basal archosaurs inserted on the radius, 

on the carpus, or on both. However, under consideration of the outgroups, it 

seems probable that the insertion on the radius was retained in these forms. Alter-

natively, the connection to the radius may have been already lost in the last com-

mon ancestor of birds, crocodilians, and turtles, rendering the crocodilian condi-

tion a reversal. In any way, the fleshy origin and insertion, usually without clear 

osteological correlates, make it difficult to reconstruct the extent of this muscle.  

 
Figure 3-20. M. pronator quadratus and extensor muscles acting on the carpus of urodeles (A, dor-
sal view; B, ventral view) and Sphenodon (C, dorsal view; D, ventral view). 

 

IV. Manual muscles.  

As a convention, avian digits will be addressed here as I, II, and III, following 

Vargas and Fallon (2005a,b).  

a) Antebrachial musculature acting on the hand 

Note: There is particularly little compatibility between the muscles of the avian 

forearm extensor mass and those of other tetrapods. In this thesis, a set of ho-

mologies is used that is regarded as most parsimonious by the author. The argu-

ments for this choice are discussed in the following. However, there is little, if 

any, positive evidence for these homologies, since both topology and innervation 

patterns are ambiguous. Therefore, the homologies suggested here should be 

tested by future research, especially by means of developmental and genetic ex-

aminations. 
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27. M. extensor carpi radialis (ECR). 

Synonyms: 

M. extensor antebrachii et carpi radialis partim (Ribbing, 1907, 1938; Walthall and  

Ashley-Ross, 2006) 

M. extensor carpi radialis superficialis (Miner, 1925) 

M. extensor radialis superficialis, M. extensor radialis intermedius (Haines, 1939) 

M. extensor carpi radialis longus (Fujioka, 1959) 

M. extensor metacarpi radialis (Fisher, 1946; Berger, 1953, 1954, 1955, 1956a–c, 1957,  

1960, 1966; Fisher and Goodman, 1955; Hudson and Lanzilloti, 1955, 1964;  

Sullivan, 1962; McGowan, 1982, 1986; Schreiweis, 1982) 

M. extensor carpi radialis longus (Meers, 2003) 

M. extensor carpi radialis intermedia (Abdala and Moro, 2006) 

Remarks: The term ‘M. extensor carpi radialis’ is often used in a wider context, sub-

suming other muscles like M. abductor radialis or M. supinator (e.g., in Ribbing, 1907). 

Here, it is restricted to the muscle that connects the ectepicondyle and the dorsomedial 

carpus, listed as ‘M. extensor carpi radialis pars superficialis’ and ‘pars intermedius’ in 

Haines (1939). Both heads are treated together, since they show tendencies to fuse in some 

groups (e.g., turtles) and probably have a common phylogenetic origin. 

DESCRIPTION – M. extensor carpi radialis (figs. 3-20, 3-21, 3-22) is part of the 

antebrachial extensor complex that arises by several tendons from the ectepicon-

dyle of the humerus. In amphibians, it is still part of an undivided muscle mass 

(M. extensor antebrachii et carpi radialis) and inserts on the dorsal side of the ra-

diale, sometimes also extending its insertion onto the ulnare, centrale, or interme-

dium (Ribbing, 1907, 1938; Miner, 1925; Haines, 1939).  

The beginning differentiation of this muscle mass observed in some amphibi-

ans (Miner, 1925) is complete in amniotes. In lepidosaurs plesiomorphically, the 

central part has a tendinous origin on the central ectepicondyle, and consists of 

two distinct muscle heads that insert on the dorsal side of the radiale and on the 

cranial face of the radius, between M. abductor radialis and M. supinator (Sand-

ers, 1870; Ribbing, 1907, 1938; Byerly, 1925; Haines, 1939; Abdala and Moro, 

2006). The former part is named pars superficialis, the latter pars intermedius. 

These two muscles are often lost in squamates (Mivart, 1867, 1870; Sanders, 

1872, 1874; de Vis, 1884; Rabl, 1916). Turtles exhibit the same pattern, but pars 

superficialis and pars intermedius are fused in some species (Ribbing, 1907, 1938; 

Haines, 1939; Walker, 1973).  

Crocodilians differ only by having lost pars intermedius. The remaining M. ex-

tensor carpi radialis inserts via a tendon proximomedially on the radiale (Ribbing, 
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1907, 1938; Haines, 1939; Meers, 2003; own observation). A similar pattern is 

found in birds: M. extensor carpi radialis arises by a tendon cranially from the 

ectepicondyle, passes the radiale dorsally, and inserts on the extensor process of 

the carpometacarpus near the base of metacarpal I (Hudson and Lanzilloti, 1955, 

1964; Fujioka, 1959; Berger, 1966; Sullivan, 1962; McGowan, 1982; Schreiweis, 

1982; Vollmerhaus et al., 1992). In some forms, the muscle may be subdivided 

into two heads (Fisher, 1946; Fisher and Goodman, 1955; McGowan, 1986; Van-

den Berge and Zweers, 1993).  

DISCUSSION – A tendinous origin on the ectepicondyle is a constant character 

of M. extensor carpi radialis in all Reptilia. The loss of this muscle in several 

squamates is an autapomorphic trait, as well as the somewhat more distal inser-

tion on a newly developed osteological correlate (the carpometacarpal extensor 

process) in birds. It is therefore probable that in basal archosaurs the muscle in-

serted via a tendon on the radiale. Phylogenetic inference implies that the head 

inserting on the radius (M. extensor carpi radialis intermedius) was lost at the root 

of the archosaurs. Since this head usually does not leave osteological traces, there 

are no clues to argue for the opposite. 

 
Figure 3-21. M. pronator quadratus and extensor muscles acting on the carpus of chelonians (A, 
dorsal view; B, ventral view) and Alligator (C, dorsal view; D, ventral view). 

 

28. M. extensor carpi ulnaris (ECU). 

Synonyms: 

M. extensor metacarpi ulnaris (Gadow and Selenka, 1891; Sullivan, 1962;  

Berger, 1966; Vanden Berge, 1979; McGowan, 1982, 1986; Schreiweis, 1982) 

M. extensor antebrachii et carpi ulnaris partim (Ribbing, 1907, 1938; Walthall and  

Ashley-Ross, 2006) 

‘ulnar extensor’ partim (Romer, 1922) 

M. flexor metacarpi radialis (Fisher, 1946; Fisher and Goodman, 1955) 



104 Sauropodomorph forelimb evolution REMES 

 

Remarks: Most authors referred to the most caudal muscle of the forearm as M. exten-

sor carpi ulnaris. Meers (2003) did not recognize that the muscle is lost in crocodilians and 

therefore misleadingly identified M. extensor digitorum communis as ‘M. extensor carpi 

ulnaris longus’. Some ornithological works name this muscle ‘M. extensor metacarpi ul-

naris’, but this alternative was abandoned in the NAA (Vanden Berge and Zweers, 1993). 

Few authors used the synonym ‘M. flexor metacarpi radialis’, because functionally the 

muscle is a flexor. However, Sullivan (1962) demonstrated its derivation from the extensor 

mass, and recommended to use the common term. 

DESCRIPTION – In many urodele amphibians, M. extensor carpi ulnaris (figs. 

3-20, 3-21, 3-22) has not yet fully differentiated from M. ectepicondylo-ulnaris (see 

also section ‘M. ectepicondylo-ulnaris’ above). The common muscle mass is usu-

ally called M. extensor antebrachii et carpi ulnaris (Ribbing, 1907; Walthall and 

Ashley-Ross, 2006). It arises together with M. extensor digitorum communis and 

M. extensor carpi radialis from the ectepicondyle. The superficial fibres, which are 

homologous to M. extensor carpi ulnaris, insert laterally on the ulnare (Miner, 

1925; Walthall and Ashley-Ross, 2006). In anurans and salamanders, both mus-

cles are fully differentiated; in these forms, M. extensor carpi ulnaris attaches to 

the ulnare only (Ribbing, 1907, 1938; Haines, 1939). 

The muscle is relatively conservative in non-archosaurian reptiles. In all diap-

sids, it arises by a tendon from the distal part of the ectepicondyle. In some squa-

mates, there is a second anchor on the proximal ulna, just distal to the olecranon 

process (Sanders, 1870, 1874). In all lepidosaurs, the tendon of insertion attaches 

to the pisiforme and the lateral side of the proximal base of metacarpal V (Mivart, 

1870; Sanders, 1870, 1874; de Vis, 1884; Ribbing, 1907, 1938; Haines, 1939). In 

some forms, there is also a connection to the distal ulna (Miner, 1925; Abdala and 

Moro, 2006). M. extensor carpi ulnaris has the tendency to fuse with M. flexor 

carpi ulnaris (see section ‘M. flexor carpi ulnaris’ below) in some squamates, e.g., 

Iguana (Mivart, 1867; Rabl, 1916; Ribbing, 1938), forming a uniform muscle mass 

laterally on the forearm.  

In chelonians, the muscle still forms a unified muscle with M. ectepicondylo-

ulnaris, resembling the condition found in most urodeles. However, as in lepi-

dosaurs, its tendon of insertion attaches to the pisiforme, ulnare, and metacarpal 

V laterally (Ribbing, 1907, 1938; Haines, 1939; Walker, 1973). There is no M. 

extensor carpi ulnaris in crocodilians (Ribbing, 1907; Haines, 1939).  

Due to the reduction of the outer digits, birds have strongly modified the inser-

tion of this muscle. It still arises by a tendon from the distal ectepicondyle. Dis-

tally, it runs through a furrow, the Incisura tendinosa, on the dorsal side of the 
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distal condyle of the ulna, passes the dorsal side of the ulnare, and inserts on the 

intermetacarpal process on the proximocaudal side of metacarpal II (Gadow and 

Selenka, 1891; Fisher, 1946; Fisher and Goodman, 1955; Hudson and Lanzilloti, 

1955, 1964; Sullivan, 1962; Berger, 1966; McGowan, 1986; Vollmerhaus et al., 

1992; Vanden Berge and Zweers, 1993). M. extensor carpi ulnaris is lost in Apteryx 

(McGowan, 1982). In Struthio, it is fused with M. ectepicondylo-ulnaris proxi-

mally and inserts on the base of metacarpal III (MacAlister, 1864; Gadow and 

Selenka, 1891).  

DISCUSSION – M. extensor carpi ulnaris is present in all Reptilia with the ex-

ception of crocodilians. Therefore, it is probable that the muscle was still present 

at the base of the archosaurs, and disappeared on the crocodilian line only. Fusion 

to M. ectepicondylo-ulnaris seems to occur independently in several lineages; it is 

unclear whether the fused condition found in most urodeles (but not anurans) and 

turtles is plesiomorphic or secondarily acquired. In fossil archosaurs, a scar on the 

proximal dorsolateral corner of the ulnare and/or metacarpal V implies a plesio-

morphic morphology of M. extensor carpi ulnaris, resembling lepidosaurs or tur-

tles, because no other muscles insert at this location in extant tetrapods. However, 

given the loss of the muscle in crocodilians and its strongly modified insertion in 

birds, this reconstruction would only be a level III inference under strict appliance 

of the EPB. 

 
Figure 3-22. Probable avian homologues of M. pronator quadratus and of the carpal extensors of 
non-avian reptiles, as present in Gallus (A, dorsal view; B, ventral view). M. extensor longus alulae is 
probably a homologue of M. supinator manus; M. ulnometacarpalis ventralis is probably a homo-
logue of M. pronator quadratus. 
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29. M. supinator manus (SM). 

Synonyms: 

M. extensor carpi (Haughton, 1866) 

M. extensor ossis metacarpi pollicis (Mivart, 1867, 1870; Sanders, 1870, 1872, 1874;  

de Vis, 1884) 

M. extensor pollicis longus (Gadow and Selenka, 1891; Fisher, 1946; Hudson and  

Lanzilloti, 1955, 1964; Berger, 1953, 1954, 1955, 1956a–c, 1957, 1960, 1966) 

M. abductor metacarpi II (Ribbing, 1907) 

M. abductor digiti I (Ribbing, 1907) 

M. abductor pollicis longus (Rabl, 1916; Cong et al., 1998; literature on mammalian  

anatomy) 

M. supinator brevis (Byerly, 1925) 

M. extensor longus digiti II (Fisher and Goodman, 1955) 

M. extensor indicis longus (Sullivan, 1962) 

M. extensor longus alulae (McGowan, 1982, 1986; Schreiweis, 1982; Vanden Berge  

and Zweers, 1993) 

M. extensor carpi radialis brevis (Meers, 2003; Fujioka, 1959) 

M. abductor longus pollici (Abdala and Moro, 2006) 

M. abductor et extensor digiti I (Walthall and Ashley-Ross, 2006) 

Remarks: The extraordinarily long list of synonyms makes it difficult to identify a 

widely accepted term that may serve as a ‘common denominator’ for this muscle. The 

mammalian term listed in the NAV, ‘M. abductor pollicis longus’, has rarely been used in 

descriptions of reptilian anatomy. The term suggested by the NAA, ‘M. extensor longus 

alulae’, cannot be applied to non-avian diapsids, because these lack an alula. The only 

term that is not easy to confuse with names of other muscles is ‘M. supinator manus’, as 

applied by Miner (1925) and Haines (1939). Therefore, it is proposed here to use that term 

for this muscle. 

DESCRIPTION – Originally, M. supinator manus (figs. 3-20, 3-21, 3-22) takes 

origin from the ulnar side of the antebrachium, crosses the wrist and inserts medi-

ally on the first metacarpal. In extant urodeles, the relatively short muscle arises 

from the dorsal side of the intermedium and the distal condyle of the ulna, some-

times also from the radius and centrale, and inserts medially on the proximal base 

of metacarpal I (Ribbing, 1907; Miner, 1925; Haines, 1939; Walthall and Ashley-

Ross, 2006). Anurans have shifted the origin onto the central part of the fused 

antebrachial bones, while the insertion is situated at mid-length on the dorsal side 

of metacarpal I (Ribbing, 1938; Haines, 1939).  

In lepidosaurs, M. supinator manus extends its origin proximally onto the cra-

niomedial side of the distal ulnar shaft. Like in urodeles, the muscle attaches via a 
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tendon to the base of metacarpal I medially (Mivart, 1867, 1870; Sanders, 1870, 

1872, 1874; de Vis, 1884; Ribbing, 1907, 1938; Rabl, 1916; Byerly, 1925; Haines, 

1939; Abdala and Moro, 2006). In some forms, there is also a connection to the 

ulnare (e.g., Varanus; Haines, 1939). Regarding Sphenodon, Miner (1925) men-

tioned that the muscle extends its origin medially onto the interosseal membrane 

between ulna and radius.  

Most turtles exhibit a similar pattern of this muscle, but the area of origin may 

extend even further proximally in some forms, and covers almost the entire cra-

niomedial side of the ulnar shaft. An origin from the intermedium is also pre-

served. As in lepidosaurs, the muscle inserts via a tendon on the base of metacar-

pal I (Ribbing, 1907, 1938; Haines, 1939; Walker, 1973). In some forms such as 

Trionyx, M. supinator manus extends medially and arises also from the lateral side 

of the radius. 

A second, radial origin of M. supinator manus is a synapomorphic character of 

archosaurs. Moreover, the muscle extends its area of origin along the entire length 

of the shafts of both radius and ulna. The point of insertion has shifted onto the 

dorsoproximal edge of the radiale (Haughton, 1866; Ribbing, 1907, 1938; Haines, 

1939; Meers, 2003). The homologous muscle of birds, M. extensor longus alulae, 

is topologically similar to the crocodilian muscle: There are two heads that arise 

from the ulna and the radius, fuse distally and insert together with M. extensor 

carpi radialis via a common tendon on the extensor process on the proximocranial 

(developmentally medial) side of the carpometacarpus, a region that is homolo-

gous to metacarpal I. Both heads may be differentially developed, depending on 

the taxon (Gadow and Selenka, 1891; Fisher, 1946; Fisher and Goodman, 1955; 

Hudson and Lanzilloti, 1955, 1964; Sullivan, 1962; Berger, 1966; McGowan, 

1982, 1986; Schreiweis, 1982; Vanden Berge and Zweers, 1993).  

DISCUSSION – Phylogenetic inference implies that M. supinator manus was 

well developed in basal archosaurs, taking origin from both ulna and radius and 

extending relatively far proximally. Due to its fleshy type of origin, the exact ex-

tent is hard to delimit in fossil forms. Under consideration of non-archosaurian 

outgroups and the site of attachment in birds, it is most probable that the muscle 

in basal archosaurs inserted by a tendon medially on the base of metacarpal I, 

rendering the more proximal insertion in crocodilians a specialization that results 

from the modified proximal carpus. 
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Figure 3-23. Superficial manual muscles of urodeles (A, dorsal view; B, ventral view) and Sphenodon 
(C, dorsal view; D, ventral view).  

 

30. M. extensor digitorum communis (EDC). 

Synonyms: 

M. extensor carpi radialis (Mivart, 1867, 1870; de Vis, 1884) 

M. extensor communis digitorum (Sanders, 1870; Byerly, 1925) 

M. extensor longus digitorum (Sanders, 1872, 1874) 

M. extensor digitorum communis longus (Rabl, 1916) 

M. humerodorsalis (Haines, 1939) 

M. extensor carpi ulnaris longus, ?M. extensor metacarpi I, ?M. extensor metacarpi IV  

(Meers, 2003) 

M. extensor digitorum longus (Abdala and Moro, 2006) 

Remarks: Most authors use the term ‘M. extensor digitorum communis’ or a similar 

perception for this muscle. This is also standardized in the NAA (Vanden Berge and 

Zweers, 1993). The alternative of Haines (1939), ‘M. humerodorsalis’, failed to gain wide 

acceptance in the literature. Meers (2003) misidentified this muscle as M. extensor carpi 

ulnaris, which is actually lost in crocodilians (Ribbing, 1907; see below, ‘M. extensor carpi 

ulnaris’). Mm. extensores metacarpi I et IV sensu Meers (2003) are regarded here special-

ized parts of the primordial M. extensor digitorum communis, and are therefore treated in 

this section, too.  

DESCRIPTION – M. extensor digitorum communis (figs. 3-23, 3-24, 3-25) is an 

evolutionary old muscle and is present in all tetrapods. In urodele amphibians, it 

arises by a tendon from the dorsal part of the ectepicondyle. Level with the wrist, 

it splits into four tendons that run to the distal phalanx on each finger. The Mm. 

extensores digitorum breves (see below) also control these tendons (Ribbing, 1907; 

Miner, 1925; Walthall and Ashley-Ross, 2006). In contrast, Haines (1939) de-

scribed the amphibian M. extensor digitorum communis as attaching by split ten-

dons proximally to both sides of each metacarpal. The grade of fusion of this 

muscle to the intrinsic extensors is probably subject to variation. 
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In amniotes, the origin remains on the dorsal ectepicondyle, but the connection 

between the long and short extensors is abandoned. In Sphenodon, the muscle dis-

tally splits into four tendons that insert laterally on the proximal bases of metacar-

pals I to IV, directly below the intermetacarpal joints (Miner, 1925; Ribbing, 1938; 

Haines, 1939). The tendon leading to metacarpal I is lost in squamates (Mivart, 

1867; Sanders, 1870, 1872, 1874; de Vis, 1884; Ribbing, 1907, 1938; Rabl, 1916; 

Romer, 1922; Haines, 1939; Abdala and Moro, 2006). In addition, chameleons 

have lost the tendon that inserts on metacarpal II (Mivart, 1870; Ribbing, 1938).  

Turtles kept the plesiomorphic split of each tendon into a medial and a lateral 

branch. These insert on both sides of the proximal base of all metacarpals, except 

of the medial side of metacarpal I, and the lateral side of metacarpal V (Ribbing, 

1907, 1938; Haines, 1939; Walker, 1973). In contrast, the crocodilian M. extensor 

digitorum communis has lost its insertion on metacarpals I, IV, and V. Moreover, 

there is only a single tendon that inserts centrally on the bases of metacarpals II 

and III, the latter branch being very weakly developed and sometimes not observ-

able (Ribbing, 1907, 1938; Haines, 1939; Meers, 2003). Meers (2003) described 

two additional extensors that arise from the proximal carpus, M. extensor meta-

carpi I medially and M. extensor metacarpi IV laterally. The former has its origin 

on the radiale and inserts proximally on metacarpal I, while the latter arises from 

the ulnare and attaches to metacarpal IV. There are no similar muscles in other 

vertebrates. Considering their points of insertion, it is possible that these muscles 

are specialized parts of a primordial M. extensor digitorum communis that lost 

connection to the main muscular body, and took a new attachment on the dorsal 

carpus; however, this assumption has to be tested by future research (see Conclu-

sions below).  

The avian M. extensor digitorum communis arises by a tendon from the ec-

tepicondyle. Its tendon of insertion splits into two branches that run to the proxi-

mal phalanges of digiti I and II, respectively. The cranial (developmentally me-

dial) branch inserts on the caudal side of the proximal phalanx of digit I, and the 

caudal branch attaches to the craniodorsal side of the proximal phalanx of digit II. 

The inserting tendon is correlated to a tubercle on the craniodorsal side of the 

distal ulna, where it is deflected towards the fingers just proximal to the split 

(Hudson and Lanzilloti, 1955, 1964; Sullivan, 1962; Schreiweis, 1982; Berger, 

1966; McGowan, 1986; Vollmerhaus et al., 1992). In some forms, the medial 

branch has shifted its insertion proximally onto metacarpal I (Fisher and Good-

man, 1955), or is completely reduced (Fisher, 1946; Vanden Berge and Zweers, 
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1993). The tendon leading to digit I misses in Struthio (Gadow and Selenka, 1891), 

and the entire muscle is lost in Apteryx (McGowan, 1982). 

DISCUSSION – All reptilian lineages, with the exception of turtles, show a trend 

towards reduction of M. extensor digitorum communis, beginning with the con-

nection to the outer digits. Phylogenetic inference implies that this muscle was 

present at the base of the archosaurs, but its grade of reduction at that point of 

evolution it is difficult to assess, even more so since the hands of Euparkeria are 

incompletely preserved (Ewer, 1965; see chapter 4). If the crocodilian Mm. exten-

sores metacarpi I et IV are indeed derivates of M. extensor digitorum communis, 

it is probable that the latter muscle had tendons leading at least to metacarpals I to 

IV in basal archosaurs. The insertion of this muscle on the proximal phalanges in 

birds is here regarded as an autapomorphic specialization resulting from the coos-

sification of the carpometacarpus. 

 
Figure 3-24. Superficial manual muscles of chelonians (A, dorsal view; B, ventral view) and Alligator 
(C, dorsal view; D, ventral view).  

 

31. M. flexor carpi radialis (FCR). 

There are no synonyms of this muscle known to the author. 

DESCRIPTION – M. flexor carpi radialis (figs. 3-23, 3-24) is closely related to 

M. pronator teres. In urodele amphibians, both muscles still form a unified mass, 

M. flexor antebrachii et carpi radialis. The muscle arises by a tendon from the 

entepicondyle, and attaches distally to the medial side of the radius and the ra-

diale (Ribbing, 1907, 1938; Walthall and Ashley-Ross, 2006). In squamates, M. 

flexor carpi radialis has lost its connection to M. pronator teres. The tendinous 

origin is situated ventrally on the entepicondyle, and the insertion is located 

medially on the radiale and distal carpus. In some forms, the insertion extends 

also onto metacarpal I, or the first phalanx of digit I (Mivart, 1867, 1870; Sanders, 
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1870, 1872, 1874; Ribbing, 1907, 1938; Rabl, 1916; Romer, 1922; Byerly, 1925; 

Miner, 1925; Haines, 1939; Abdala and Moro, 2006). The pattern is essentially 

the same in turtles (Ribbing, 1907, 1938; Walker, 1973). 

M. flexor carpi radialis is completely lost in crocodilians and birds (Ribbing, 

1907, 1938). 

DISCUSSION – Phylogenetic inference implies that M. flexor carpi radialis was 

already lost in the last common ancestor of modern archosaurs. Since the muscle 

has no unambiguous osteological correlates in non-archosaurian reptiles, there is 

no positive evidence for the contrary. Therefore, it is assumed here that all archo-

saurs, including sauropodomorphs, lacked M. flexor carpi radials. 

 

32. M. flexor carpi ulnaris (FCU). 

There are no synonyms of this muscle known to the author. 

DESCRIPTION – M. flexor carpi ulnaris (figs. 3-23, 3-24, 3-25) arises by a ten-

don from the distal part of the entepicondyle in most tetrapods. In urodele am-

phibians, its point of origin lies between that of M. flexor digitorum longus and 

M. entepicondylo-ulnaris, with which it may be intimately fused. The muscle in-

serts tendinously on the lateral side of the ulnare (Ribbing, 1907; Miner, 1925; 

Walthall and Ashley-Ross, 2006). Anurans have lost this muscle (Ribbing, 1907, 

1938). 

In all non-avian reptilians including crocodilians, the ventral side of the pisi-

forme serves as the main site of attachment for M. flexor carpi ulnaris (Haughton, 

1866; Ribbing, 1907, 1938; Byerly, 1925; Miner, 1925; Haines, 1950; Cong et al., 

1998; Meers, 2003). Some squamates developed a second origin from the proxi-

mal end of the ulna (Mivart, 1867, 1870; Sanders, 1872, 1874; de Vis, 1884; Rabl, 

1916; Abdala and Moro, 2006). As mentioned above, the muscle may be fused to 

M. extensor carpi ulnaris in some species (e.g., Iguana: Mivart, 1867; Rabl, 1916), 

and to M. entepicondylo-ulnaris in others (Sanders, 1870). In turtles, the insertion 

may also extend to the lateral sites of the ulna, the ulnare, and metacarpal V. Fu-

sion with M. entepicondylo-ulnaris is also observed in some cases (Ribbing, 1907, 

1938; Walker, 1973). 

Birds preserved the origin from the distoventral entepicondyle, where a slight 

groove or a short process, Processus flexorius, forms its osteological correlate. 

Distally, the tendon of insertion attaches to Processus muscularis of the ulnare 

(Gadow and Selenka, 1891; Fisher and Goodman, 1955; Hudson and Lanzilloti, 
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1955, 1964; Sullivan, 1962; Berger, 1966; Schreiweis, 1982; McGowan, 1986; 

Vollmerhaus et al., 1992; Vanden Berge and Zweers, 1993).  

DISCUSSION – M. flexor carpi ulnaris is found in both groups of extant archo-

saurs and in non-archosaurian outgroups. Therefore, it can be concluded that the 

muscle was present at the base of the Archosauria. Furthermore, the uniform ori-

gin from the distal entepicondyle allows for the inference of a similar origin of this 

muscle in basal archosaurs. In these forms, the insertion of M. flexor carpi ulnaris 

probably was still located on the pisiforme: This element is the osteological corre-

late of M. flexor carpi ulnaris in all non-avian Reptilia, and the insertion on the 

ulnare in birds is here regarded as a reversal in connection with the modification 

of the avian hand skeleton.  

 
Figure 3-25. Superficial manual muscles of Gallus (A, dorsal view; B, ventral view).  

 

33. M. flexor digitorum longus (FDL). 

Synonyms: 

M. palmaris, M. flexor digitorum communis (Haughton, 1866) 

M. flexor profundus digitorum (Mivart 1867; Sanders, 1870, 1874) 

M. flexor longus pollicis, M. flexor profundus digitorum (Mivart, 1870) 

M. flexor perforans digitorum (Sanders, 1872) 

M. flexor digitorum sublimis, M. flexor digitorum profundus (Gadow and Selenka,  

1891; Rabl, 1916; Hudson and Lanzilloti, 1955, 1964) 

M. flexor primordialis communis, Mm. flexores accessorii (Ribbing, 1907) 

M. palmaris communis, M. palmaris profundus dorsalis (Miner, 1925) 

M. flexor digitorum primordialis communis, M. flexor accessorius (Ribbing, 1938) 

M. palmaris longus, M. flexor digitorum longus (Haines, 1950; Walker, 1973) 
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M. flexor digitorum communis, Mm. flexores accessorii (Walthall and Ashley-Ross,  

2006) 

M. flexor carpi ulnaris partim, M. flexor digitorum profundus (Fisher and Goodman,  

1955) 

M. flexor digitorum sublimis, M. flexor digitorum profundus (Hudson and Lanzilloti,  

1955, 1964) 

M. flexor digitorum superficialis, M. flexor digitorum profundus (other ornithological  

literature) 

Remarks: This highly variable muscle complex has not always been treated as a single 

muscle. For example, Haines (1950) regarded the most superficial layer (his ‘M. palmaris 

longus’) as the remnant of an independent muscle that was present at the base of the am-

niotes, but was lost independently in most lineages with the exception of a few squamates. 

However, this concept never found general acceptance in the literature. Moreover, the 

remainder of M. flexor digitorum longus is so variable in number and morphology of its 

individual heads that any splitting into separate units would imply homologies that are 

hard to verify. Therefore, M. flexor digitorum longus is defined here as the entirety of all 

muscular heads arising from the distal humerus, forearm, and carpus, that contribute to 

the formation of the palmar aponeurosis. Due to the long list of synonyms, the nomencla-

ture used here follows the most recent suggestions of Meers (2003) and Abdala and Moro 

(2006). The NAA concept cannot be applied in this case for two reasons: There are only 

two heads preserved in birds, and the terms used in ornithology, ‘M. flexor digitorum 

profundus’ and ‘M. flexor digitorum superficialis’, refer to intrinsic hand muscles in non-

avian Reptilia (see below). 

DESCRIPTION – The general pattern of M. flexor digitorum longus (figs. 3-23, 

3-24, 3-25) is similar in all non-avian reptiles and urodele amphibians. One or 

more heads arise from the entepicondyle, and fuse distally to one or more heads 

that come from the ulna and the carpus. Together, all these individual muscular 

bodies contribute to a wide, tendinous palmar aponeurosis that spans over most of 

the palm. Plesiomorphically, the palmar aponeurosis gives rise to five tendons 

that attach ventrally on the base of the terminal phalanx of each finger.  

In urodele amphibians, there is normally a single head coming from the ent-

epicondyle, and two heads that arise fleshy from the distolateral and distomedial 

faces of the ulna (‘Mm. flexores accessorii’ of Ribbing, 1907). The origin of these 

heads may extend onto the ulnare and the lateral distal carpals (Ribbing, 1907, 

1938; Miner, 1925; Walthall and Ashley-Ross, 2006).  

For Sphenodon, Ribbing (1938) described only one ulnar head of M. flexor digi-

torum longus, but Byerly (1925) and Miner (1925) listed three: one head arises 

from the proximal ulna, just distal to the joint capsule; the second has a wide, 
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fleshy origin from the ventral part of the ulna; and a third head attaches to the 

distolateral side of that bone. In addition, there is a single head arising form the 

entepicondyle, as in urodele amphibians (Ribbing, 1938; Byerly, 1925; Miner, 

1925).  

In contrast to Sphenodon, other lepidosaurs have developed up to four heads 

that arise from the entepicondyle. The most superficial layer (‘M. palmaris longus’ 

of Haines, 1950) has lost the connection to the palmar aponeurosis and inserts on 

the pisiforme, together with M. flexor carpi ulnaris, with which it tends to fuse 

(Sanders, 1872; Ribbing, 1907, 1938). Ribbing (1907) listed three heads arising 

from the ulna and ulnare, but other authors recognized only two (Mivart, 1867; 

Sanders, 1874; de Vis, 1884; Rabl, 1916; Haines, 1950) or one (Sanders, 1870, 

1872; Abdala and Moro, 2006).  

In turtles and archosaurs, the morphological pattern of M. flexor digitorum 

longus is more concise. Usually, there is one entepicondylar head that may be 

slightly subdivided, and one ulnar head that has its fleshy origin from the cau-

dodistal part of the ulna (lateral to M. pronator quadratus) and ulnare (Haughton, 

1866; Ribbing, 1907, 1938; Walker, 1973). Some species of turtles developed addi-

tional heads from the carpus (e.g., Dermochelys) or the radius (Trionyx) (Walker, 

1973). In crocodilians, a superficial part of the entepicondylar head is fused to M. 

flexor carpi ulnaris (Ribbing, 1938), and the origin of the ulnar head extends onto 

the radiale and pisiforme. Meers (2003) regarded the most distal part of this mus-

cle as an individual head, caput carpale. The palmar aponeurosis gives rise to only 

three tendons of insertion (but four in Caiman) that insert on the terminal pha-

langes of the inner fingers (Haughton, 1866; Ribbing, 1907, 1938; Cong et al., 

1998; Meers, 2003).  

Birds have reduced the palmar aponeurosis, which lead to individual tendinous 

insertions of the two parts of M. flexor digitorum longus. The entepicondylar 

head (‘M. flexor digitorum superficialis’) is very variable: in some forms, it has 

lost contact to the humerus, arising from the humerocarpal ligament only; in oth-

ers, it is entirely tendinous or lost completely. Its tendon of insertion runs cranial 

to the Processus pisiformis of the carpus, which serves as a pulley, and inserts on 

the proximal phalanx of digit II. The ulnar head, ‘M. flexor digitorum profundus’, 

arises variably in position and extent from the ventral side of the ulna, its tendon 

of insertion running parallel to that of the entepicondylar head, and inserting on 

the terminal phalanx of digit II (Fisher, 1946; Fisher and Goodman, 1955; Hud-

son and Lanzilloti, 1955, 1964; Sullivan, 1962; McGowan, 1982, 1986; Schrei-

weis, 1982; Vollmerhaus et al., 1992; Vanden Berge and Zweers, 1993). In 
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Struthio, the tendon of insertion splits and runs to all digits, resembling the reptil-

ian condition (MacAlister, 1864; Gadow and Selenka, 1891).  

DISCUSSION – Sullivan (1962) observed that all heads of M. flexor digitorum 

longus develop in common with M. flexor carpi ulnaris from a single muscle pri-

mordium, explaining the frequent fusion of parts of this complex. The variable 

differentiation of the humeral part of M. flexor digitorum longus into several 

heads in squamates possibly reflects ecological specializations (e.g., arboreality). 

With respect to basal archosaurs, phylogenetic inference implies that these forms 

had an entepicondylar head that arose by a tendon from the humerus, and an ul-

nar head that arose fleshy from the caudal side of the ulna. Due to its fleshy na-

ture, the exact extent of the origin of the latter is hard to delimit in fossil forms. 

Furthermore, it is not possible to reconstruct if these heads were subdivided, or if 

additional heads were present. Nevertheless, considering crocodilians and non-

archosaurian reptiles, it is probable that basal archosaurs had a well-developed 

palmar aponeurosis and tendons of insertion running at least to digiti I-IV.  

 

b) Intrinsic musculature of the hand 

34. Mm. extensores digitorum superficiales (EDS). 

Synonyms: 

M. indicator (MacAlister, 1864) 

M. extensor communis digitorum (Mivart, 1867) 

M. extensor brevis digitorum (Sanders, 1870, 1872, 1874) 

M. extensor communis (de Vis, 1884) 

Mm. extensores breves digitorum superficiales (Ribbing, 1907) 

M. extensor pollicis, Mm. extensores digitorum communis breves (Rabl, 1916) 

M. extensor pollicis brevis, Mm. extensores communis digitorum breves (Byerly, 1925) 

Mm. extensores digitorum communis breves (Miner, 1925) 

Mm. extensores digitorum breves (Haines, 1939; Walker, 1973; Cong et al. 1998;  

Abdala and Moro, 2006) 

M. extensor indicis longus, M. flexor metacarpi posterior (Fisher, 1946; Fisher and  

Goodman, 1955) 

M. extensor indicis longus, M. ulnimetacarpalis dorsalis (Hudson and Lanzilloti, 1955,  

1964) 

M. extensor digiti terti longus, M. flexor et abductor digiti quarti (Fujioka, 1959) 

M. extensor medius longus, M. ulnimetacarpalis dorsalis (Sullivan, 1962) 

M. extensor indicus longus, M. ulnometacarpalis dorsalis (McGowan, 1982) 

M. extensor longus digiti majoris pars proximalis, M. ulnometacarpalis dorsalis  

(Vanden Berge and Zweers, 1993, and other ornithological literature) 
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M. abductor et extensor digiti I (Walthall and Ashley-Ross, 2006) 

includes M. extensor pollicis superficialis et indicis proprius (Meers, 2003) 

Remarks: The set of short finger extensors has received various, albeit similar names. 

Following Meers (2003), the superficial and deep portions of these muscles are treated 

separately (see below, ‘Mm. extensores digitorum profundi’). M. extensor pollicis, ad-

dressed as an independent muscle by several authors, is included in Mm. extensores digi-

torum superficiales throughout this work. Obviously, these muscles are strongly reduced 

and modified in birds. There is only one muscle that is easily recognizable as homologous 

to the superficial extensors of non-avian reptiles, M. extensor longus digiti majoris. Fur-

thermore, Ribbing (1938) homologized the avian M. ulnometacarpalis dorsalis with this 

muscle complex, an opinion that is supported by embryological data (Sullivan, 1962) and 

therefore adapted here, too.  

DESCRIPTION – Plesiomorphically, Mm. extensores digitorum superficiales 

(figs. 3-26, 3-27) are short muscles on the dorsal side of the hand that arise from 

the carpus and insert by a tendon dorsally on the terminal phalanx of each finger. 

In urodeles, the origins of all four extensors lie on the dorsal side of ulnare, inter-

medium, and centrale. The tendon of insertion fuses with that of M. extensor digi-

torum communis at the level of the metacarpal-phalangeal articulations (Ribbing, 

1907, 1938; Miner, 1925; Haines, 1939; Walthall and Ashley-Ross, 2006). This 

connection to M. extensor digitorum communis is lost in amniotes (see above, 

‘M. extensor digitorum communis’). In Sphenodon and squamates, the Mm. exten-

sores digitorum superficiales arise from similar positions as in urodele amphibi-

ans, but the most medial (I) or most lateral (V) muscle occasionally shifted its 

origin onto the distal ulna (Mivart, 1867; Sanders, 1870, 1872, 1874; de Vis, 1884; 

Ribbing, 1907, 1938; Rabl, 1916; Byerly, 1925; Miner, 1925; Haines, 1939; Ab-

dala and Moro, 2006).  

The picture is essentially the same in turtles. Usually, all extensors arise from 

the dorsal side of the ulnare and give rise to tendons of insertion that attach to the 

terminal phalanges of each finger (Ribbing, 1907, 1938; Walker, 1973). In some 

species, the origin of the medial parts shifted onto the distal end of the ulna 

(Haines, 1939). Due to the slender proximal carpus of crocodilians, Mm. exten-

sores digitorum superficiales in this group arise also from the radiale (I-III), addi-

tional to the origins on the ulnare and distal ulna (IV-V). As in other non-avian 

reptiles, the tendons of insertion attach to the terminal phalanges (Ribbing, 1907, 

1938; Haines, 1939; Meers, 2003). In addition, Meers (2003) described a thin, 

unusual muscle that arises between Mm. extensores digitorum superficiales I et II, 

and inserts by a split tendon on the proximal phalanges of digiti I and II. There is 
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no indication if the presence of this ‘M. extensor pollicis superficialis et indicus 

proprius’ reflects individual or interspecific variation or is characteristic for all 

crocodilians, but according to its topology, the muscle is derived from the superfi-

cial extensors. 

Birds have strongly modified this muscle complex. There is only one extensor 

that leads to the terminal phalanx of digit II, M. extensor longus digiti majoris. 

The muscle arises fleshy from the caudal side of the shaft of the radius, varying 

interspecifically in its extent and position. The second muscle that is probably 

derived from the Mm. extensores digitorum superficiales complex is M. ul-

nometacarpalis dorsalis. The tendinous origin of this muscle is in a rather plesio-

morphic position, dorsally on the distal end of the ulna. Its fleshy insertion is lo-

cated on the caudodorsal edge of metacarpal III in most birds (Fisher, 1946; 

Fisher and Goodman, 1955; Hudson and Lanzilloti, 1955, 1964; Sullivan, 1962; 

Berger, 1966; Schreiweis, 1982; McGowan, 1986; Vollmerhaus et al., 1992; Van-

den Berge and Zweers, 1993). M. extensor longus digiti majoris is lost in Apteryx 

(McGowan, 1982), but well developed in Struthio (Gadow and Selenka, 1891).  

DISCUSSION – The strong modification of this muscle complex in birds ham-

pers its reconstruction in basal archosaurs by means of extant phylogenetic brack-

eting. Since the muscle is relatively conservative in non-avian reptiles, it is prob-

able that it arose from the lateral carpus (ulnare and adjacent elements) in forms 

like Euparkeria. However, this is merely a Level II inference in terms of Witmer 

(1995).  

 
Figure 3-26. Dorsal views of intrinsic hand extensors and marginal abductors of urodeles (A), Sphe-
nodon (B), chelonians (C), and Alligator (D). Shaded lines of action and attachment areas indicate 
muscles that lie on the remote side of the respective bone. 
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35. Mm. extensores digitorum profundi (EDP). 

Synonyms: 

Mm. interossei partim (Mivart, 1867) 

Mm. extensores phalangorum (Mivart, 1870) 

Mm. interossei dorsales (Sanders, 1870; Byerly, 1925; Walker, 1973) 

M. extensor brevis digitorum partim (Sanders, 1872) 

Mm. extensores breves digitorum profundes (Ribbing, 1907, 1938) 

Mm. dorsometacarpales (Miner, 1925; Haines, 1939; Abdala and Moro, 2006) 

M. flexor metacarpi brevis, M. extensor pollicis brevis (Fisher, 1946) 

M. flexor metacarpi brevis, M. extensor brevis digiti II (Fisher and Goodman, 1955;  

Berger, 1966) 

Distal head of M. extensor indicis longus, M. extensor pollicis brevis (Hudson and  

Lanzilloti, 1955, 1964) 

M. extensor digiti terti brevis, M. extensor indicis (Fujioka, 1959) 

M. extensor medius brevis, M. extensor indicis brevis (Sullivan, 1962) 

M. extensor longus digiti majoris pars distalis, M. extensor brevis alulae (Vanden  

Berge and Zweers, 1993) 

Mm. extensores digitorum breves (Walthall and Ashley-Ross, 2006) 

Remarks: As for the superficial layer of the short finger extensors, the nomenclature 

used in the literature is inconsistent and often based on false homology assumptions. 

Therefore, the detailed and precise nomenclatorial concept of Meers (2003) is regarded as 

exemplary here. There are two potentially homologous muscles in birds: M. extensor bre-

vis alulae and M. extensor longus digiti majoris pars distalis are topologically similar to 

Mm. extensores digitorum profundi of non-avian reptiles. Moreover, the second muscle 

has a close developmental relationship to the proximal (main) part of M. extensor longus 

digiti majoris (Sullivan, 1962).  

DESCRIPTION – Mm. extensores digitorum profundi (figs. 3-26, 3-27) are 

closely related to Mm. extensores digitorum superficiales. The former set of mus-

cles has its origins somewhat more distal than the latter, but both layers fuse and 

share common tendons of insertion that attach to the terminal phalanges of each 

digit (see above, ‘Mm. extensores digitorum superficiales’).  

In Urodela, Mm. extensores digitorum profundi arise from the dorsal side of 

distal carpals 2, 3, and 4. The destinction between the superficial and the deep 

layer is not very clear in these forms (Ribbing, 1907, 1938; Haines, 1939; Walthall 

and Ashley-Ross, 2006). The sites of origin of these muscles have shifted distally 

in amniotes, onto the dorsal sides of each metacarpal. In Sphenodon, Miner (1925) 

found them to be divided into lateral and medial parts that insert on their respec-

tive sides of the metacarpal-phalangeal articulation. In turtles and crocodilians, 
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Mm. extensores digitorum profundi exhibit fusion to the superficial layer. The 

destinction between both extensor layers is clearest in squamates. In this group, 

Mm. extensores digitorum profundi II-V also extended medially and attach to the 

proximolateral side of the preceding metacarpal (Ribbing, 1907, 1938; Haines, 

1939; Walker, 1973; Meers, 2003; Abdala and Moro, 2006).  

The avian muscle that is potentially homologous to M. extensor digiti profundi 

II is the distal head of M. extensor longus digiti majors. This part often misses, but 

is described for Galloanserae (Sullivan, 1962; Hudson and Lanzilloti, 1964; Voll-

merhaus et al., 1992). It arises from the dorsal side of metacarpal II and fuses to 

the tendon of M. extensor longus digiti majors, which leads to the terminal pha-

lanx of digit II (Vanden Berge and Zweers, 1993). Another muscle of birds, M. 

extensor brevis alulae, may represent M. extensor digiti profundi I: The origin is 

located craniodorsally on metacarpal I, and the tendinous insertion is situated on 

the base of the pollex (Gadow and Selenka, 1891; Fisher, 1946; Fisher and 

Goodman, 1955; Hudson and Lanzilloti, 1955, 1964; Sullivan, 1962; Berger, 

1966; McGowan, 1986). Both muscles are lost in Apteryx, but Struthio retained a 

M. extensor brevis alulae (Gadow and Selenka, 1891; McGowan, 1982). 

 
Figure 3-27. Probable avian homologues of the intrinsic hand extensors and marginal abductors of 
non-avian reptiles (Gallus in dorsal [A] and ventral [B] views). For explanations see text. Shaded 
lines of action and attachment areas indicate muscles that lie on the remote side of the respective 
bone. 
 

DISCUSSION – As for Mm. extensores digitorum superficiales, the conservative 

morphology of Mm. extensores digitorum profundi observed in all non-avian rep-

tiles strongly implies that the layer was present and arose from the dorsal sides of 

the metacarpals in basal archosaurs, too. This is also supported by avian anatomy: 
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If the muscles described above are indeed homologous to Mm. extensores digito-

rum profundi, their identical topology would allow for a level I inference of these 

muscles at least with respect to digiti I and II. 

 

36. M. abductor pollicis brevis (APB). 

Synonyms: 

M. abductor pollicis (Fisher, 1946; Hudson and Lanzilloti, 1955, 1964) 

M. abductor alae digiti II (Fisher and Goodman, 1955) 

M. abductor indicis (Sullivan, 1962) 

M. abductor alulae (McGowan, 1986; Vanden Berge and Zweers, 1993) 

M. abductor metacarpi I (Meers, 2003) 

M. abductor brevis pollici (Abdala and Moro, 2006) 

Remarks: If mentioned at all, the majority of authors uses the name M. abductor polli-

cis brevis for this muscle. There are various alternatives in ornithological descriptions, but 

the standardization suggested by the NAA, ‘M. abductor alulae’, cannot be applied to 

non-avian reptiles for obvious reasons.  

DESCRIPTION – M. abductor pollicis brevis (figs. 3-26, 3-27) probably is a me-

dial derivate of M. extensor digiti superficialis I. The muscle is apomorphic for 

amniotes, although some species of amphibians developed a similar muscle (Rib-

bing, 1907). In lepidosaurs, it arises from the ventromedial part of the radiale and 

inserts by a tendon on the medioproximal corner of the first phalanx of digit I 

(Rabl, 1916; Miner, 1925; Haines, 1950). The site of insertion has shifted proxi-

mally onto metacarpal I in some forms (Sanders, 1870; Abdala and Moro, 2006).  

In turtles, the origin of this muscle lies more distally, on the ventral face of dis-

tal carpal 1. The insertion is also proximomedially on the first phalanx of digit I 

(Walker, 1973). The homologous muscle in crocodilians arises fleshy from the 

ventromedial side of the radiale, and inserts by a tendon proximomedially on 

metacarpal I (Meers, 2003).  

The avian M. abductor alulae consistently has a tendinous origin from the ven-

tral side of the tendon of insertion of M. extensor carpi radialis, which is situated 

more or less level with the proximal base of metacarpal I. In some forms, there is 

also a second origin from the extensor process (Fisher and Goodman, 1955; 

McGowan, 1986; Vollmerhaus et al., 1992). The muscle inserts by a tendon cra-

nioventrally on the proximal phalanx of digit I (Gadow and Selenka, 1891; 

Fisher, 1946; Hudson and Lanzilloti, 1955, 1964; Sullivan, 1962; Berger, 1966).  

DISCUSSION – M. abductor pollicis is only seldomly observed in lepidosaurs, 

but its presence in Sphenodon and turtles suggests that it is a phylogenetically old 
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muscle. Extant phylogenetic bracketing implies that the muscle was present at the 

base of the archosaurs, arising laterally from the ventral carpus and inserting onto 

the proximal phalanx of the first digit.  

 

37. M. abductor digiti V (AD5). 

Synonyms: 

M. extensor metacarpi IX (Mivart, 1870) 

M. abductor quinti digiti (Sanders, 1870, 1872) 

M. opponens digiti minimi (Byerly, 1925) 

M. abductor digiti minimi (Walker, 1973) 

M. abductor metacarpi V (Meers, 2003) 

M. abductor digitorum V (Abdala and Moro, 2006) 

Remarks: The majority of authors who mention this muscle use the term ‘M. abductor 

digiti V’. Therefore, this name is favored over Meers’ (2003) recent alternative, which only 

reflects the crocodilian condition. Naturally, there is no homologous muscle in birds or 

lissamphibians, although a very similar muscle abducts digit IV in anurans.  

DESCRIPTION – M. abductor digiti V (fig. 3-26) is very uniform in amniotes. 

Most authors interpreted this muscle as a specialized part of Mm. flexores digito-

rum profundi (e.g., Ribbing, 1907). In all non-avian reptiles, it arises from the 

pisiforme. The insertion is usually on the lateral side of the first phalanx of the 

fifth digit (Sanders, 1872; Ribbing, 1907; Rabl, 1916; Byerly, 1925; Haines, 1950; 

Walker, 1973). In some squamates and crocodilians, there is also a wide, fleshy 

insertion onto the lateral side of metacarpal V (Mivart, 1870; Sanders, 1870; Rib-

bing, 1907, 1938; Cong et al., 1998; Meers, 2003; Abdala and Moro, 2006).  

DISCUSSION – Given the wide distribution and uniform topology of this mus-

cle, it is highly probable that it was also present in basal archosaurs and only lost 

in theropod dinosaurs, due to the reduction of the outer fingers. However, under 

strict appliance of the EPB, this is merely a level II inference.  

 

38. Mm. flexores digitorum superficiales (FDS). 

Synonyms: 

M. flexor sublimis digitorum (Mivart, 1867; Sanders, 1870; de Vis, 1884) 

M. flexor brevis digitorum (Mivart, 1870) 

M. flexor perforatus digitorum (Sanders, 1872, 1874) 

Mm. flexores breves superficiales partim (Ribbing, 1907, 1938; Walthall and  

Ashley-Ross, 2006) 

M. flexor palmaris (Rabl, 1916) 
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Mm. flexores communis digitorum (Byerly, 1925) 

Mm. flexores breves sublimes partim (Miner, 1925)  

M. flexor brevis sublimes (Haines, 1950) 

M. flexor brevis superficialis (Walker, 1973) 

M. flexor digitorum brevis superficialis (Meers, 2003) 

Mm. flexores digiti brevis superficialis (Abdala and Moro, 2006) 

Remarks: The most superficial set of flexor muscles in the palm has received various 

names. Most of them incorporate the adjective ‘brevis’, to emphasize the restriction of 

these muscles to the hand, and to contrast them with M. flexor digitorum longus. How-

ever, for simplification and standardization purposes, it is suggested here to use an abbre-

viated form, ‘Mm. flexores digitorum superficiales’. This also mirrors the terminology of 

the short extensors of the hand (see above, ‘Mm. extensores digitorum superficiales’). 

There are no homologous muscles in birds (Ribbing, 1938).  

DESCRIPTION – The superficial flexors of the hand (fig. 3-28) are represented 

by a single, proximally undivided muscle mass in basal tetrapods, but show much 

specialization and differentiation in higher forms, especially in squamates. In am-

phibians, the muscle arises from the dorsal side of the palmar aponeurosis, splits 

into four slips that run to each digit, and inserts on the distal end of each metacar-

pal as well as ventrally on the bases of the proximal phalanges. Due to inter-

specific variation, the insertion may be displaced laterally, medially, or split to 

insert on both sides; this may also vary from digit to digit (Ribbing, 1907, 1938; 

Miner, 1925; Walthall and Ashley-Ross, 2006).  

In contrast to anamniote tetrapods, Mm. flexores digitorum superficiales of 

amniotes arise from the ventral side of the palmar aponeurosis, directly under the 

skin of the palm. The Mm. lumbricales, which differentiated from the primordial 

Mm. flexores digitorum profundi (Ribbing, 1907), preserved the insertion on the 

dorsal side (see below, ‘Mm. lumbricales’). In Sphenodon and other lepidosaurs, 

the superficial layer is further subdivided into two distinct units. The superficial 

(ventral) unit arises from the transversal ligament, which spans between M. flexor 

carpi ulnaris and the pisiforme. One muscle head leads to each finger, splitting 

into a medial and a lateral slip that let the tendon of M. flexor digitorum longus 

pass between them. These slips reunite to insert in common on the flexor tubercle 

ventrally on the base of the penultimate phalanx of each digit. Dorsal to this layer, 

the deep division arises directly from the ventral side of the palmar aponeurosis. 

These muscles also split distally and attach to both sides of the metacarpal-

phalangeal articulations of digiti II-IV (Byerly, 1925; Miner, 1925). The general 

picture is similar in squamates, but both layers are fused and have a common in-
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sertion (Mivart, 1867, 1870; Sanders, 1874; de Vis, 1884; Ribbing, 1907, 1938; 

Haines, 1950). Each tendon is often expanded distally and connects to other pha-

langes, in some forms also to the ungual (Abdala and Moro, 2006). Moreover, 

interspecific variation includes further subdivision of these muscles (often in cer-

tain digits only), reduction of the attachments to the proximal phalanges, and re-

duction of the deep layer in digit II or IV (Sanders, 1872; Ribbing, 1907, 1938; 

Rabl, 1916). 

In chelonians and crocodilians, there is only one layer of Mm. flexores digito-

rum superficiales. As in other amniotes, this set of muscles arises from the ventral 

side of the palmar aponeurosis in chelonians. One muscle head leads to each digit, 

splits distally and inserts on both sides of the ventral base of the proximal phalanx 

(Ribbing, 1907, 1938; Walker, 1973). The situation is similar in crocodilians, but 

in many forms there is no strong palmar aponeurosis, making the superficial flex-

ors to arise also from the distal carpals. The exact pattern of insertion varies from 

digit to digit, interspecifically, and individually (Ribbing, 1907, 1938; Cong et al., 

1998; Meers, 2003). 

There are no homologous muscles in birds (Ribbing, 1938). The palmar 

aponeurosis is lost, and flexion of the phalanges is controlled by M. flexor digito-

rum longus only.  

DISCUSSION – A subdivision of Mm. flexores digitorum superficiales into a su-

perficial and a deep layer seems to be a specialization restricted to lepidosaurs. 

Based on chelonian and crocodilian anatomy, basal archosaurs can be recon-

structed with a single-layered set of Mm. flexores digitorum superficiales that arise 

from the palm, potentially from a palmar aponeurosis, and insert primarily on 

both sides of the flexor tubercles of the non-ungual phalanges. As for many hand 

muscles, the strong modification of the avian manus in this case hampers the ap-

pliance of the Extant Phylogenetic Bracket: strict phylogenetic inference by con-

sideration of just the two extant archosaur groups renders the presence of these 

muscles in dinosaurs only equivocal.  

 

39. M. flexor pollicis brevis (FPB). 

Synonyms: 

Mm. contrahentes digitorum partim (Ribbing, 1907; Miner, 1925) 

M. adductor pollicis (Rabl, 1916) 

M. flexor pollicis (Byerly, 1925) 

?M. flexor pollicis (Fisher, 1946; Hudson and Lanzilloti, 1955, 1964) 

?M. flexor digiti II (Fisher and Goodman, 1955) 
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?M. flexor indicis (Sullivan, 1962) 

?M. flexor alulae (Schreiweis, 1982; McGowan, 1986; Vanden Berge and Zweers,  

1993) 

M. flexor digitorum V transversus I (Abdala and Moro, 2006) 

Remarks: This muscle has only rarely been reported. Accordingly, homologies are dif-

ficult to assess, and it is possible that such a muscle developed from Mm. flexores digito-

rum superficiales independently in several lineages. Ribbing (1907) and Miner (1925) de-

scribed this muscle, but interpreted it as a relict of the amphibian Mm. contrahentes. The 

name used by Haines (1950) in his general account on the hand flexors seems to be the 

most established one, and is therefore applied here, too. The NAA term ‘M. flexor alulae’ 

cannot be applied to non-avian reptiles, and it is also far from clear if that muscle is ho-

mologous to M. flexor pollicis brevis of some non-avian reptiles. Therefore, M. flexor 

alulae is only tentatively assigned to M. flexor pollicis brevis in this review (see Discussion 

below).  

DESCRIPTION – A M. flexor pollicis brevis (fig. 3-28) has only been described 

in few genera of lepidosaurs: Sphenodon (Byerly, 1925; Miner, 1925), Chamaeleo 

(Mivart, 1870), Iguana (Rabl, 1916), and Varanus (Haines, 1950). ‘M. flexor digi-

torum V transversus I’ of Liolaemus (Abdala and Moro, 2006) seems to be topo-

logically similar, but was not figured by the authors. In these forms, the muscle 

arises from the distal carpals (in Varanus more proximolaterally from the ulnare), 

runs obliquely across the palm, and inserts on the proximal base of the first pha-

lanx of digit I.  

M. flexor alulae of birds is similar insofar as it usually arises close to the pisi-

form process from the proximal carpometacarpus (fig. 3-29). Therefore, it crosses 

the carpus, and inserts caudoventrally on the proximal base of the pollex in many 

forms (Fisher, 1946; Fisher and Goodman, 1955; Sullivan, 1962; Hudson and 

Lanzilloti, 1964; Vollmerhaus et al., 1992).  

DISCUSSION – M. flexor alulae is treated in this section because of its topologi-

cal similarity to M. flexor pollicis brevis, but there is no strong evidence for the 

homology of both muscles. The avian muscle might also represent a specialized 

part of Mm. lumbricales or Mm. flexores digitorum profundi. The absence of M. 

flexor pollicis brevis in crocodilians and turtles does not support an equalization 

of both muscles. However, the systematic position of turtles is still under dispute, 

and crocodilians may secondarily have lost the muscle. Since this issue cannot be 

resolved under the scope of this work, it is tentatively assumed here that basal 

archosaurs and sauropodomorphs lacked a M. flexor pollicis brevis. 
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Figure 3-28. Ventral views of the superficial hand flexors of urodeles (A), Sphenodon (B), chelonians 
(C), and Alligator (D). Shaded lines of action and attachment areas indicate muscles that lie on the 
remote (dorsal) side of the palmar aponeurosis. 

 
Figure 3-29. M. flexor alulae of Gallus (ventral view), a possible homologue of M. flexor pollicis 
brevis. Abbreviations not listed elsewhere: FA, M. flexor alulae. 

 

40. M. flexor digiti V (FD5). 

Synonyms: 

M. flexor brevis minimi digiti (Mivart, 1870) 

M. adductor quinti digiti (Sanders, 1872) 

M. adductor minimi digiti (de Vis, 1884) 

Mm. contrahentes digitorum partim (Ribbing, 1907; Miner, 1925) 

?M. adductor digiti V (Rabl, 1916) 

M. abductor digiti minimi (Byerly, 1925) 

M. flexor brevis digiti V (Haines, 1950) 

M. adductor digiti minimi (Walker, 1973) 

M. flexor digiti quinti brevis, M. opponens digiti quinti (Cong et al., 1998) 

M. flexor digiti V, M. transversus palmaris (Meers, 2003) 

M. flexor digitorum V transversus II (Abdala and Moro, 2006) 

Remarks: This muscle has been reported frequently in several non-avian reptiles. Re-

garding its terminology, the name recently used by Meers (2003) has been selected. It is 

assumed here that ‘M. transversus palmaris’ of Meers (2003) is a specialized part of this 
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muscle. Therefore, ‘M. transversus palmaris’ also is treated in this section. Naturally, there 

is no homologous muscle in birds. 

DESCRIPTION – A specialized M. flexor digiti V that crosses the palm from 

medial to lateral is present in many lepidosaurs, including Sphenodon (fig. 3-28). 

Its origin is always located in the carpus, often on the distal carpals (Sanders, 

1872; Byerly, 1925; Miner, 1925; Walker, 1973), but it may also have shifted onto 

the radiale (Haines, 1950; Abdala and Moro, 2006), metacarpal I (de Vis, 1884), 

the palmar aponeurosis (Mivart, 1870; Ribbing, 1907; Rabl, 1916), or the ulnare 

(Miner, 1925). The muscle inserts medially on the base of the first and in some 

forms also on the second phalanx of digit V. Like M. flexor pollicis brevis, it runs 

deep to the palmar aponeurosis in many forms, including turtles, but ventral (su-

perficial) to Mm. flexores digitorum superficiales in crocodilians. At first glance, 

this pattern speaks against a homology of both muscles. However, if regarded as a 

derivate of the lateral rim of the superficial flexor mass (Ribbing, 1907), it can be 

imagined how such a muscle might shift its origin relative to the flexor tendons 

during ontogeny. Therefore, the different relative position of M. flexor digiti V in 

these groups does not necessarily obviate homology.  

In crocodilians, M. flexor digiti V has differentiated into two parts, the larger 

one of those called ‘M. transversus palmaris’ by Meers (2003) and ‘M. opponens 

digiti quinti’ by Cong et al. (1998). This muscle complex arises from the radiale, in 

some forms also from the caudomedial end of the radius, and inserts ventrome-

dially on metacarpal V and all phalanges of digit V (Ribbing, 1907; Cong et al., 

1998; Meers, 2003).  

DISCUSSION – It is evident that M. flexor digiti V is a specialized part of Mm. 

flexores digitorum superficiales (Ribbing, 1907). However, the different patterns 

of this muscle in crocodilians, turtles, and lepidosaurus raises doubts about its 

strict homology in these groups. This question should be examined by additional 

anatomical and embryological studies in the future, but is beyond the scope of this 

work. Since M. flexor digiti V is absent in birds and does not leave any unambi-

guous osteological correlates, an assessment of its presence in basal archosaurs 

can only be speculative.  
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Figure 3-30. Deep intrinsic manual flexors of urodeles (A), Sphenodon (B), chelonians (C), and Alli-
gator (D). Shaded lines of action and attachment areas indicate muscles that lie on the remote (dor-
sal) side of the palmar aponeurosis. 

 

41. Mm. lumbricales (L). 

Synonyms: 

M. flexor perforatus digitorum partim (Sanders, 1872) 

Mm. interossei partim (de Vis, 1884) 

Mm. flexores breves sublimes partim (Miner, 1925) 

Mm. lumbricales, Mm. contrahentes (Haines, 1950) 

Mm. lumbricalis (Abdala and Moro, 2006) 

Remarks: The second layer of hand flexors was correctly identified as ‘Mm. lumbri-

cales’ by most authors. Exemptions are listed above. 

DESCRIPTION – As mentioned earlier (see ‘M. flexores digitorum superficiales’ 

above), Mm. lumbricales (fig. 3-30) are restricted to amniotes. They are character-

ized by their origin from the dorsal side of the palmar aponeurosis. In Sphenodon, 

a set of six muscles arises distally from the palmar aponeurosis and attaches in 

pairs to both sides of the proximal phalanges of digiti II to IV (Byerly, 1925; 

Miner, 1925; Ribbing, 1938). In squamates, Mm. lumbricales have differentiated 

into a superficial and a deep portion, the latter arising more proximally. The 

number of these muscles and their sites of insertion on the digits are interspecifi-

cally highly variable (Mivart, 1867, 1870; Sanders, 1870, 1872; de Vis, 1884; Rib-

bing, 1907; Rabl, 1916; Haines, 1950; Abdala and Moro, 2006). 

Some genera of chelonians (e.g., Pseudemys) more clearly illustrate the plesio-

morphic pattern of Mm. lumbricales. In these forms, the set of muscles is symmet-

rical: Eight heads arise from the dorsal side of the palmar aponeurosis and run 

along the sides of the digits to insert on both sides of the penultimate phalanx of 

digiti II to IV, laterally on digit I, and medially on digit V. However, other turtles 

have reduced the number of Mm. lumbricales and modified the pattern of inser-

tion (Ribbing, 1907, 1938; Walker, 1973). 



128 Sauropodomorph forelimb evolution REMES 

 

In crocodilians, the number of Mm. lumbricales is reduced, too. They insert in 

pairs on the bases of the proximal phalanges of digiti II and III, and a fifth M. 

lumbricalis attaches to the medial side of the proximal phalanx of digit IV (Rib-

bing, 1907, 1938; Cong et al., 1998; Meers, 2003). No homologues of these mus-

cles exist in birds (Ribbing, 1938). 

DISCUSSION – The presence of Mm. lumbricales is a plesiomorphic feature of 

all amniotes, and some of them are also preserved in crocodilians. Therefore, it 

can be concluded that basal archosaurs possessed a number of these muscles. 

However, the number and sites of insertion of these muscles are so variable in all 

groups of non-avian reptiles that it seems impossible to reconstruct the pattern in 

extinct forms on the basis of present knowledge.  

 
Figure 3-31. Probable avian homologues of Mm. flexores digitorum profundes and Mm. interossei 
of non-avian reptiles (Gallus in ventral view).  

 

42. Mm. flexores digitorum profundi (FDP). 

Synonyms: 

Mm. interossei palmares (Sanders, 1872) 

Mm. interossei pars m. flexor brevis (de Vis, 1884) 

Mm. flexores breves profundi (Ribbing, 1907; Miner, 1925; Haines, 1950) 

Mm. interossei (Rabl, 1916) 

M. abductor major digiti III, M. flexor digiti IV (Fisher and Goodman, 1955) 

M. abductor medius, M. flexor digiti quarti (Sullivan, 1962) 

M. abductor indicis, M. flexor digiti III (Fisher, 1946; Hudson and Lanzilloti, 1955,  

1964) 

Mm. interossei volares (Walker, 1973) 

M. abductor digiti majoris, M. flexor digiti minoris (Vanden Berge and Zweers, 1993) 

Mm. interossei manus (Cong et al., 1998) 

Mm. flexores digiti brevis profundus (Abdala and Moro, 2006) 

Remarks: The deep flexors of the hand are poorly understood. More detailed studies 

on reptilian hand anatomy are necessary to fully understand their various patterns in the 
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future. This becomes evident by the inconsistent terminology, as many authors often re-

garded Mm. flexores digitorum profundi as Mm. interossei (see synonymy list above). The 

corresponding muscles of birds are probably M. abductor digiti majoris and M. flexor 

digiti minimi, because these muscles are topologically similar to Mm. flexores digitorum 

profundi of non-avian reptiles. However, this hypothesis should also be further tested by 

future examinations. 

DESCRIPTION – The deepest flexor layer of the palm (fig. 3-30) arises from the 

distal carpals and inserts onto the metacarpal of each finger in modern amphibi-

ans. Close to the insertion, each belly bifurcates to give way for the origin of M. 

flexor minimus, an accessory flexor not found in amniotes (Ribbing, 1907, 1938; 

Miner, 1925; Abdala and Moro, 2006).  

In lepidosaurs, Mm. flexores digitorum profundi take origin from the distal 

carpals, bifurcate in some forms, and attach to both sides of the proximal phalanx 

of each digit. This plesiomorphic pattern may be modified by the loss of one ore 

more bellies, normally those of the outer fingers (Mivart, 1867; Sanders, 1872; de 

Vis, 1884; Ribbing, 1907, 1938; Rabl, 1916; Haines, 1950; Abdala and Moro, 

2006).  

Chelonians show the same plesiomorphic pattern as lepidosaurs, but the mus-

cle complex has not been studied in detail in many species of turtles (Walker, 

1973). Crocodilians have shifted the origin of these muscles onto the metacarpals, 

but there may still be a connection to the distal carpals. Some heads (e.g., that of 

the second digit in Alligator mississippiensis) show a clear differentiation into a lat-

eral and a medial part. As in other Reptilia, all heads insert on the bases of the 

proximal phalanges of their respective digit (Ribbing, 1907, 1938; Cong et al., 

1998; Meers, 2003).  

The two avian muscles that are probably homologous to Mm. flexores digito-

rum profundi, M. abductor digiti majoris and M. flexor digiti minoris, arise from 

the ventral aspects of their respective metacarpals, the former more cranially on 

the bone, the latter more caudally (fig. 3-31). Both muscles insert on the base of 

the proximal phalanx of their respective digit, M. flexor digiti minoris being asso-

ciated with a distinct tubercle on the caudal side of the bone (Gadow and Selenka, 

1891; Fisher, 1946; Fisher and Goodman, 1955; Hudson and Lanzilloti, 1955, 

1964; Sullivan, 1962; Berger, 1966; Schreiweis, 1982; McGowan, 1986; Vollmer-

haus et al., 1992).  

DISCUSSION – Mm. flexores digitorum profundes are plesiomorphic muscles 

that must have been present at the base of the archosaurs. Phylogenetic inference, 

under acceptance of the homologues proposed above, implies that these forms 
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already had transferred the origin of this muscle complex distally onto the meta-

carpals. The insertions of these muscles are constantly located on the proximal 

phalanges in all amniotes, rendering a similar course in basal archosaurs most 

probable. 

 
Figure 3-32. Mm. interossei in urodeles (A), Sphenodon (B), chelonians (C), and Alligator (D). 
Shaded attachment areas and lines of action indicate muscles that lie on the remote side of the re-
spective bone. 

 

43. Mm. interossei (I). 

Synonyms: 

Mm. flexores breves profundi (Miner, 1925) 

Mm. interdigitales partim (Ribbing, 1938) 

Mm. interossei, Lig. intermetacarpales (Haines, 1950) 

M. adductor alulae (Vanden Berge and Zweers, 1993) 

Remarks: Aside from the confusion regarding the proper identification of Mm. in-

terossei mentioned above (section ‘Mm. flexores digitorum profundi’), the plesiomorphic 

morphology of this layer is not entirely understood. Moreover, parts of this muscle com-

plex are reduced or lost in almost all reptiles, and not much is known about its morphol-

ogy in turtles. Therefore, the plesiomorphic pattern of organization described here is a 

hypothesis that was extracted from published descriptions, but again should be tested by 

future examinations. 

DESCRIPTION – Mm. interossei (fig. 3-32) plesiomorphically consist of two dis-

tinct layers of muscles that interconnect the metacarpal bones. The muscles of the 

dorsal layer have their origin laterally on the proximal bases of metacarpals I to IV 

and run distolaterally to attach to the distal end of the laterally adjacent metacar-

pal in each case. The ventral layer runs vice versa: There are four muscles origi-

nating on the proximomedial bases of metacarpals II to V, each running distome-

dially and inserting distally on the lateral side of the preceding metacarpal.  
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By now, this pattern has not been recognized in any living tetrapod. In am-

phibians and chelonians, only the ventral layer has been described (Miner, 1925; 

Ribbing, 1907, 1938; Walthall and Ashley-Ross, 2006). Lepidosaurs show both 

layers, but the dorsal part is reduced to faint tendinous bands, the intermetacarpal 

ligaments (Ribbing, 1907; Haines, 1950).  

Crocodilians have both layers fully developed, but some heads of the dorsal 

layer have modified their origin and lie ventral to their counterpart of the plesio-

morphically ventral layer, leading to confusion in nomenclature of these muscles 

(Meers, 2003:fig. 18; fig. 3-32). Ribbing (1907, 1938) could not find the two lateral 

Mm. interossei dorsales (between metacarpals III-IV and IV-V) in his sample of 

crocodilians.  

There are no clear homologues of these muscles in birds. The muscles de-

scribed as ‘M. interosseus dorsalis’ and ‘M. interosseus ventralis’ (fig. 3-31) both 

arise fleshy from the borders of the interosseous space, i.e. the caudal side of 

metacarpal II and the cranial side of metacarpal III. The dorsal part attaches cra-

nially on the second phalanx of digit II, and the ventral part caudally on the same 

phalanx. Embryological data indicate that these muscles are composed of several 

fused primordial hand muscles (Dylevsky, 1968). Another possible homologue to 

Mm. interossei, M. adductor alulae (fig. 3-31), arises fleshy from the cranial side 

of metacarpal II and inserts on the caudal face of digit I (MacAlister, 1864; 

Gadow and Selenka, 1891; Fisher, 1946; Fisher and Goodman, 1955; Hudson 

and Lanzilloti, 1955, 1964; Sullivan, 1962; Berger, 1966; Schreiweis, 1982; 

McGowan, 1986; Vollmerhaus et al., 1992). 

DISCUSSION – Since it cannot be convincingly shown that the avian muscles 

described here are homologues of Mm. interossei of non-avian reptiles, appliance 

of the Extant Phylogenetic Bracket is difficult in this case. Nevertheless, consider-

ing their presence in all other tetrapods, it is probable that these muscles existed in 

basal archosaurs and early dinosaurs, too. However, their exact configuration is 

hard to reconstruct, because there are no unambiguous osteological correlates. 

Moreover, it is unclear whether the crocodilian condition is indeed closest to the 

hypothetical plesiomorphic condition described above, or secondarily acquired, 

leaving the question about the morphology of basal dinosaurian Mm. interossei 

open to speculation. 

 

Conclusions 

As already mentioned at the beginning of this chapter, it became evident 

throughout this review how sensitive EPB reconstructions are to the choice of 
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extant sample taxa. For example, Nicholls and Russell (1985) used Chamaeleo as a 

model for lepidosaurs; Jasinoski et al. (2006) chose Caiman to represent crocodili-

ans. However, it has been demonstrated that both genera are highly derived with 

respect to several forelimb muscles, and are therefore not suited per se as represen-

tatives of an entire clade.  

Moreover, the limits of the EPB methodology in general became apparent. The 

method works well if applied to closely related forms (for example, reconstructing 

the myology of Ursus spelaeus by studying modern Ursidae: Bryant and Seymour, 

1990), but problems arise if both extant sample taxa follow totally different 

bauplans, due to long, independent evolutionary histories of both groups. In case 

of birds and crocodilians, both lines diverged at least 240 million years ago, leav-

ing enough time for numerous evolutionary novelties on both branches. Croco-

dilians are no archetypic forms that may serve as a ‘starting point’ for dinosaur 

forelimb evolution, but instead are strongly modified, especially with respect to 

the pectoral girdle and wrist. These osteological novelties definitely reflect my-

ological innovations, too. The challenge is to identify these novelties, and to sort 

them out from symplesiomorphic characters, in one word, to polarize the root of 

the EPB, an important step left out by recent studies (e.g., Jasinoski et al., 2006). 

The only way to polarize is by outgroup comparision, but the available outgroups 

(lepidosaurs, mammals, lissamphibians) are only tips of even longer branches, 

which are likely to have acquired their own evolutionary novelties, too. Since the 

fossil record in most cases cannot provide additional information on soft tissue 

evolution, it is virtually impossible by means of comparative anatomy alone to 

identify homoplastic characters, which are also likely to exist in the muscle anat-

omy of these groups. Hopefully, future progression in genetics and developmental 

biology will help to understand the evolutionary history of the tetrapod muscular 

apparatus better, which may open the door to more reliable reconstructions of 

extinct forms.  

 



REMES  Sauropodomorph forelimb evolution 133 

 

4 Forelimb anatomy of basal archosaurs and  

ornithodirans: Facts and Fictions 

 

Introduction 

The evolutionary history of the Dinosauria began in the Middle Triassic, when 

the two clades emerged that form the crown group Archosauria, Crurotarsi and 

Ornithodira. First representatives of both groups of archosaurs are found in the 

Ladinian of South America, and by the Late Carnian, all major groups of dino-

saurs had left first traces in the fossil record (see Benton, 2004). However, com-

paratively little is still known about the root of the dinosaurs, since only few taxa 

have been identified that fill the evolutionary gap between the relatively conserva-

tive bauplan of basal archosauromorphs and the advanced locomotory system of 

early bipedal dinosaurs, such as Herrerasaurus or Coelophysis. Although Sereno’s 

(1991, 1997) hypothesis (that the success of the first dinosaurs is strongly corre-

lated with the development of fully upright hindlimbs for swift, obligate bipedal 

locomotion) is widely accepted, the dinosauromorph material on which this idea 

is based is incomplete and partially found in multi-taxon assemblages. Therefore, 

the quality of the data that led to this interpretation has to be critically tested. 

Moreover, most studies concentrated on hindlimb anatomy only (e.g., Sereno, 

1991, 1997; Novas, 1996; Carrano, 2000; Hutchinson, 2006), without considering 

other important factors such as relative trunk length and transformations of the 

forelimb anatomy. By examination of the anatomy and function of the forelimb of 

early archosaurs and ornithodirans, this chapter determines what we actually can 

know about the beginning of dinosaurian forelimb evolution. A critical re-

examination raises some doubts about current perceptions on the locomotory 

behavior and ecology of these small archosaurs, which gave rise to a group that 

should dominate the  terrestrial faunas of the planet for the following 155 million 

years. 

 

Data quality 

The relationships of the various groups at the base of the archosaurs are not en-

tirely clear (e.g., the phylogenetic position of Proterochampsidae; Benton, 2004). 

However, Euparkeria capensis from the Anisian of South Africa is closely related to 

the crown group Archosauria (see Benton, 2004, for a review) and may serve as a 

‘prototype’ for the last common ancestor of dinosaurs and crocodilians. Although 
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this form lacks several archosaurian autapomorphies (e.g., Euparkeria retains 

palatinal teeth, and misses numerous ankle characters; Sereno, 1991; Juul, 1994; 

Parrish, 1997; Gower and Weber, 1998; Benton, 2004), the anatomy of its fore-

limbs makes a good starting point for tracking the evolution of this organ complex 

in dinosaurs.  

The taxon Euparkeria was erected by Broom (1913a), and its anatomy and rela-

tionships were shortly described in a successive paper by the same author (Broom, 

1913b). Later, Ewer (1965) published the most detailed study to date on the anat-

omy of this form. The holotype, SAM 5867, is a largely articulated skeleton that is 

embedded in a block of sandstone. The specimen preserves the complete shoulder 

girdle, the interclavicle, clavicles, and the right forelimb without the manus. How-

ever, due to the type of preparation, these elements cannot be examined from all 

sides. There are several referred elements that were fully freed from matrix and 

provide additional information, including two left scapulae, a left coracoid, three 

left humeri, and two left radii (SAM 6047, 6048, 7696, 7700). Moreover, Ewer 

(1965) described and figured an incomplete metacarpus (SAM 13666, 13667), 

which unfortunately could not be examined personally during this study. Accord-

ing to Ewer (1965), all specimens come from the same locality and were probably 

found together in a death assemblage. 

The basal ornithodiran Scleromochlus taylori from the Late Carnian 

Lossiemouth Sandstone Formation of the Elgin area, Scotland, was first described 

by Woodward (1907). Its anatomy was examined in detail only recently (Benton, 

1999). Remains of several small skeletons are preserved as natural molds in a 

coarse-grained sandstone, rendering a detailed study of minute structures and 

bone surfaces impossible. Only in two specimens, BMNH R3556 and BMNH 

R3914, are traces of the forelimbs visible, but no clavicles or hands could be iden-

tified. In recent phylogenetic analyses, Scleromochlus plots as sister group to Ptero-

sauria+Dinosauria (Benton, 1999, 2004), and is therefore the basal-most or-

nithodiran currently known. 

The Ladinian sediments of the Los Chañares Formation of Argentina pro-

duced several early ornithodirans that stand closer to dinosaurs than to pterosaurs 

(Gauthier, 1986; Benton and Clark, 1988; Sereno, 1991; Novas, 1992, 1996; Juul, 

1994; Bennett, 1996; Benton, 1999, 2004). These include Lagerpeton, Lagosuchus, 

Marasuchus, Lewisuchus, and Pseudolagosuchus, which may be a subjective junior 

synonym of the former (Arcucci, 1997). Only Lagosuchus, Marasuchus, and 

Lewisuchus, which are more closely related to dinosaurs than Lagerpeton (Novas, 
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1992, 1996; Juul, 1994; Sereno, 1997; Benton, 1999, 2004), comprise remains of 

the forelimb. All specimens were found on slabs of volcanogenic concretions 

(Rogers et al., 2001), often together with remains of other taxa of archosaurs.  

The holotype of Lagosuchus talampayensis (PVLR 09) is a fragmentary skeleton 

that was found in close association with the holotypic skeleton of the sphenosu-

chid Gracilisuchus stipanicicorum (Romer, 1971, 1972a). A partially articulated pec-

toral extremity that comprises scapula, humerus, radius, and ulna, is present on 

the same side of the slab, but is not directly associated with the axial and hind 

limb elements of the Lagosuchus holotype. These forelimb elements are badly pre-

served, deformed and incomplete, and can only be examined from one side, due 

to the state of preparation. Romer (1971, 1972a) expressed no doubts that the fore-

limb and hind limb elements belong to the same individual. However, since these 

finds are part of a multi-taxon death assemblage, there is no positive evidence for 

this assumption (Sereno and Arcucci, 1994). Sereno and Arcucci (1994) also re-

gard the holotypic skeleton of Lagosuchus talampayensis as non-diagnostic, render-

ing the name a nomen dubium. 

Romer (1972a) erected a second species of Lagosuchus, L. lilloensis, for the 

newly found specimen PVL 3871, which is about 50% larger than L. talampayensis. 

Originally, the specimen included no forelimb material (Romer, 1972a:5). Bona-

parte (1975) attributed new Los Chañares material to Lagosuchus, rejected Romer’s 

(1972a) interpretation of the larger specimen as a second species, and listed under 

PVL 3871 a left scapulocoracoid, humerus, radius, and ulna, without explaining 

where this material was found or why these elements were not mentioned by Ro-

mer. Furthermore, Romer (1972a) described an isolated scapulocoracoid (‘MCZ 

4121’, now labeled MCZ 9483) and referred it to Lagerpeton. However, this speci-

men is also figured in Romer’s work, and the figure caption as well as the label in 

the MCZ collection refers it to Lagosuchus talampayensis. Anyway, this element 

was found isolated from the other partial skeletons (Romer, 1972a), rendering any 

referral doubtful. Finally, Sereno and Arcucci (1994) transferred the entire Lago-

suchus hypodigm (with the exception of MCZ 9483, which was not mentioned by 

these authors) to the new genus Marasuchus. PVL 3871 was declared as the holo-

type, and new material was assigned to this genus, including a partial vertebral 

column (PVL 4672). Under this number, the PVL collection catalogues also a 

right scapulocoracoid and humerus. However, these elements were not mentioned 

or described by Sereno and Arcucci (1994), leaving the origin and possible asso-

ciation with other Los Chañares findings unclear. In summary, there is not a sin-
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gle forelimb element that can be confidently referred to Marasuchus lilloensis, a 

conclusion that is supported by the unusual morphology of the forelimb elements 

catalogued under PVL 3871 (see section ‘Anatomy’ below).  

 
Figure 4-1. Stratigraphic and spatial distribution of Euparkeria and basal Ornithodira. Black bars 
indicate taxa with preserved forelimb material, white bars stand for taxa that lack forelimb material. 
The forelimbs of Scleromochlus are badly preserved (see text for details). Cladogram based on Benton 
(2004). 
 

Lewisuchus admixtus was erected and described by Romer (1972b) and only re-

cently recognized as a member of Dinosauriformes (Arcucci, 1997). The type ma-

terial PVLR 01 (formerly MLP 64-XI-14-14; Romer, 1972b) consists of an articu-

lated skeleton that comprises both scapulocoracoids, the left humerus, and frag-

ments of the left forearm. The left part of the shoulder girdle and humerus are still 

articulated with the skeleton and partially embedded in matrix, but the right 

scapulocoracoid has been prepared off the slab and can be examined from all 

sides. In Hutchinson’s (2001a) consensus cladogram, Lewisuchus is more closely 

related to Dinosauria than other dinosauriforms, probably based on the analysis 

of Novas (1996) and Arcucci’s (1997) assumption that Pseudolagosuchus might be a 

junior synonym of Lewisuchus. 

Finally, remains of another dinosauromorph, Silesaurus opolensis, were found in 

the Late Carnian Krasiejów claystone of southern Poland (Dzik, 2003). Among 

many isolated bones, four partially articulated skeletons were extracted from the 

rock. Three of these specimens also comprise forelimb material (scapulocoracoids, 
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humeri, radii, ulnae), but all elements are still partially embedded in matrix. Un-

fortunately, Silesaurus could not be examined during this study, and no photo-

graphs of the postcranial material were published. Thus, the comments on the 

forelimb anatomy of Silesaurus below are based on the short description and fig-

ures published by Dzik (2003). Moreover, Dzik (2003) puzzled about the combi-

nation of plesiomorphic and advanced characters that can be seen in the material, 

but did not perform a cladistic analysis. Therefore, the phylogenetic position of 

the new taxon is currently unsure, despite some shared derived characters with 

Dinosauriformes. Drawing conclusions based on this form regarding dinosaur 

forelimb evolution is hence difficult.  

Another species attributed to Dinosauriformes, Agnostiphys cromhallensis, was 

extracted from Upper Triassic fissure deposits in southwest England (Fraser et al., 

2002). However, all elements, including a right humerus, were found unarticu-

lated in a bonebed. This hampers a reliable reconstruction of this form, which will 

therefore not be considered in the following discussion. 

In summary, the picture of the beginnings of dinosaur forelimb evolution is 

rather patchy. The Anisian form Euparkeria may serve as the starting point for the 

evolution of both Crurotarsi and Ornithodira. However, in the Ladinian forms 

from the Los Chañares Formation, no reliable information on forelimb anatomy 

is preserved, with the exception of Lewisuchus. Due to their late appearance in the 

fossil record, the Late Carnian forms Scleromochlus and Silesaurus are obviously 

representatives of specialized lineages that evolved independently for at least 10-

15 Ma (fig. 4-1). In contrast to the Ladinian dinosauriforms and the first dinosaurs 

of the Carnian, these taxa were found in the northern hemisphere, adding also a 

spatial gap to the origin of dinosaurs. Considering their debated phylogenetic po-

sition, these forms may not serve as good models for the dinosauriform bauplan 

that gave rise to Dinosauria. Therefore, only Euparkeria and Lewisuchus form the 

base for an evaluation of the beginnings of dinosaur forelimb evolution, making a 

detailed reexamination of the anatomy of these taxa necessary.  

 

Anatomy 

Basal Archosauria: Euparkeria capensis 

Euparkeria capensis is a comparatively small animal, having roughly the size of a 

cat. The shoulder girdle is relatively massive, with large coracoids that almost 

meet in midline, separated only by a spatulate interclavicle. Long, sigmoidal 
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clavicles are placed cranially to these elements and meet in midline at the tip of 

the interclavicle (fig. 4-2). 

 
Figure 4-2. Reconstruction of the shoulder girdle of Euparkeria capensis. A, lateral view; B, ventral 
view; C, caudal view. The cranial and axial skeletal elements are schematically drawn. 

 

Scapulocoracoid. The elongate scapula (fig. 4-3) has a broad and straight shaft 

that is not much constricted at its base, making its cranial and caudal borders ori-

ented in parallel. The shaft is inclined caudally relative to the vertical with about 

20°, and is only slightly expanded at its distal end. The expansion is caudally 

more pronounced than cranially. The cranial and caudal parts of the distal expan-

sion are flattened, while the center is slightly convex in craniocaudal direction. 

The cranial edge of the scapular blade is sharp in its distal two thirds, but becomes 

rounded in the ventral third. The caudal edge is thickened and rounded, especially 

in the ventral third of the blade. The central part of the lateral face of the scapula 
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blade is flat and shows no differentiation into cranial and caudal facets. On its 

medial side, the shaft is concave ventrally, and flat dorsally. As already pointed 

out by Ewer (1965), the shaft of the scapula is striated in dorsoventral direction, 

both laterally and medially.  

In caudal view, the scapular head is deflected about 50° ventrolaterally relative 

to the shaft. The lateral side of the head of the scapula is concave, but in contrast 

to many dinosaurs, there is no acromial crest bordering this depression dorsally. 

The concavity is triangular in outline, extending with its tip onto the base of the 

shaft. The dorsocranial edge of the head (the acromial region, sensu Howell 

[1936a] and Romer [1956]) is thickened and rounded, separating the lateral con-

cavity from the border of the bone. On the supraglenoidal area, there is flattened 

and roughened facet that may extend over the ventral third of the caudal side of 

the scapula (SAM 7700). A rugose tubercle projects laterally at the dorsal glenoid 

border, caudodorsally to the scapulocoracoidal suture. The suture is straight in its 

caudal half, but curves cranioventrally towards the cranial edge of the scapulo-

coracoid. Medially, the scapular head is concave in its center, but the glenoidal 

and acromial regions are convex. Immediately cranial to the supraglenoidal but-

tress, a narrow groove leads ventrally towards the coracoid foramen.  

The scapular part of the glenoid is wider than long and caudoventrally ori-

ented, while the elongate coracoidal part is larger than the former, longer than 

wide, and caudolaterally oriented. Both facets are slightly concave. 

The coracoid of Euparkeria is best preserved in specimen SAM 6047. It has an 

oval outline, being longer craniocaudally than wide transversally, and straight 

medial and lateral edges (fig. 4-3). The external (ventral) surface is slightly convex 

transversally, the internal (dorsal) surface strongly concave. However, the ventral 

surface bears two oval fossae directly medial and cranial to the glenoid, separated 

from each other by a slight swelling (which is more enhanced in SAM 5867). The 

cranial fossa exhibits a sharp edge along its cranial border. The glenoid connects 

to the cranial fossa by a wide recess. Another slight depression is situated along 

the medial edge of the coracoid. A bulging glenoid lip separates the glenoid from 

the subglenoid fossa. The caudomedial edge of the coracoid is thickened and dor-

sally deflected, and probably served for articulation with the cartilaginous ster-

num. Between the depression along the medial border and the subglenoid fossa, 

craniolaterally oriented striations indicate muscle attachment. The large, oval 

coracoid foramen is craniomedially oriented and situated about midlength, close 

to the sutural line. The cranial part of the coracoid, which exhibits radial stria-

tions, is thin-walled, but its craniomedial edge is somewhat strengthened. The 
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sutural facet for the scapula is relatively flat, but exhibits a slight concavity in its 

cranial part.   

 
Figure 4-3. Osteological structures of the pectoral girdle elements of Euparkeria, based on SAM 6047 
(mirrored). Scapula in lateral (A) and medial (B) views. Coracoid in ventral (C), lateral (D), and 
dorsal (E) views.  
 

Interclavicle and clavicles. The elongate, dorsoventrally flattened interclavicle 

has a transversely slightly convex ventral side. Its cranial part appears to be wid-

ened and lozenge-shaped in the holotype, but Ewer (1965) did not describe this 

feature. As Ewer (1965) already mentioned, the interclavicle is striated longitudi-

nally, probably due to dermal sculpturing.  

Only fragments of the clavicles are preserved in the holotype, but their form 

can be inferred from natural molds in the matrix. The clavicles are slightly sig-

moidal and have a round cross-section. The apical end is craniocaudally flattened 

for articulation with the scapula. 
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Figure 4-4. Osteological structures of the forelimb elements of Euparkeria. A, humerus in (from left 
to right) proximal, ventral, distal, caudal, dorsal, and cranial views (based on SAM 7700, mirrored). 
B, radius, and C, ulna, in cranial views (as preserved in SAM 5867).  
 

Humerus. In the holotype (SAM 5867), the slender humerus (fig. 4-4) is ex-

posed from its ventral side only, but other specimens (SAM 6048, 7696, 7700) 

allow for an examination from all sides. The deltopectoral crest has a triangular 

outline with a ventrally directed, slightly rugose apex, and extends distally along 

the proximal third of the humerus. Both the proximal and the distal ends of the 

humerus are expanded. On the ventral side of the proximal expansion, there is a 

wide triangular depression that extends distally up to the distal end of the del-

topectoral crest. The medial tuberosity is dorsoventrally deep, has an oval shape 

and is flattened caudally. In proximal view, it is deflected ventrally relative to the 

axis of the humeral head at about 30°. Cranially, the thickened proximal base of 

the deltopectoral crest is ventrally deflected at a similar angle. The diaphysis has 

an oval to subtriangular cross-section, the craniocaudal axis being longer than the 
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dorsoventral axis. The dorsal face of the humerus is subdivided proximally into 

three shallow, subtriangular facets that are separated from each other by low 

ridges. The humeral head extends only slightly onto the dorsal side, and is bor-

dered by another small facet medially. Dorsodistally to the medial tuberosity, 

there is a prominent, subcircular scar. Further distally, the dorsal side of the 

humerus becomes smooth and slightly convex in craniocaudal direction. The dis-

tal humeral expansion is twisted about 40° cranioventrally relative to the axis of 

the proximal expansion. The radial condyle is slightly smaller than the ulnar con-

dyle. Both condyles have a hemispherical shape in distal view, and are separated 

by a wide intercondylar depression. The intercondylar depression on the ventral 

face of the distal expansion is oval in outline, and exhibits a distinct circular pit on 

its distal end. On the dorsal side of the distal expansion, there is a wide, triangular 

depression.  

Antebrachium. Radius and ulna are both slender, elongate bones in Eu-

parkeria, but do not surpass the humerus in length. The radius has a subcircular 

cross-section, the craniocaudal axis being somewhat longer than the transverse 

axis. The surface of the shaft is smooth, and shows no intermuscular ridges or 

striations. Proximally, the humeral cotyle is circular and concave. About 2 mm 

distal to the articular facet, a small tubercle projects medially. The distal expan-

sion has an oval outline (the long axis being transversely oriented) and is distome-

dially deflected. On its caudolateral side, there is a shallow fossa that receives the 

articular process of the ulna.  

No olecranon process can be observed on the ulna, because that part of the 

bone is still embedded in the matrix. The caudolateral face of the proximal end of 

the ulna is transversally rounded and roughened. There is no distinct lateral proc-

ess, but a narrow ridge that extends distally for one-fifth of the bone. The distal 

half of the lateral side of the ulnar shaft is flattened, and is cranially bordered by a 

sharp intermuscular ridge. Distally, the articular expansion exhibits a low tubercle 

cranially that serves for articulation with the radius. The articular facet is transver-

sally widened and only slightly convex. Since they are still embedded in matrix, 

the medial and caudal sides of the ulna cannot be examined. 

Manus. Ewer (1965) reported the presence of metacarpals I to IV plus the first 

phalanx of digit I in specimens SAM 13666 and 13667. These elements could not 

be located during the collection studies by the author; hence, a brief summary of 

Ewer’s (1965) description is given here. The manus of Euparkeria is characterized 

by a stout metacarpal I that is only half as long as metacarpal II. The distal con-
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dyles of metacarpal I are asymmetric, and the first phalanx of digit I is short and 

block-like. Metacarpal II is robust, while metacarpals III and IV are slightly more 

slender and somewhat shorter. Judging from Ewer (1965:fig. 10i), the hand of 

Euparkeria already had a structure like that of Eoraptor and other basal dinosaurs 

(see chapter 5).  

 

Basal Dinosauriformes: Lewisuchus admixtus 

The holotype of Lewisuchus admixtus (PVLR 01) has about the same size as Eu-

parkeria, but scapula and humerus are more slender and elongate (fig. 4-5). 

Moreover, the coracoid is relatively reduced in size. Scapula and coracoid are 

completely co-ossified, showing no sutural line.  

 
Figure 4-5. Reconstruction of the pectoral girdle of Lewisuchus admixtus (PVLR 01). Dashed lines 
indicate inferred bony and cartilaginous elements that are not preserved. The cranial and axial skele-
tal elements are based on Marasuchus (Sereno and Arcucci, 1994) and schematically drawn. On the 
right side, a reconstruction of the profile of the pectoral girdle is shown in cranial view. 
 

Scapulocoracoid. The scapular blade is elongate and considerably constricted 

at its base (fig. 4-6). Distally, the blade significantly expands cranially, rendering 

its cranial border distinctly curved, while the caudal border remains straight. 

Proximally, the caudal border exhibits an elongate facet. In the cranioproximal 

area of the blade, there is a faint semilunate depression that has a rugose surface 
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texture. The lateral side of the distal expansion is flattened and bears a triangular 

facet cranially. Both the cranial and the caudal edges of the scapular blade are 

sharp. Proximally, the medial side of the blade exhibits an elongate supraglenoi-

dal swelling at the cranial border of its caudal third, rendering the cross-section of 

the base of the blade lozenge-shaped. Distally, the swelling ends at a craniocau-

dally oriented ridge. The distal part of the medial side of the blade is flattened.  

 
Figure 4-6. Osteological structures of the forelimb elements of Lewisuchus (PVLR 01). Scapulocora-
coid in lateral (A) and medial (B) views, humerus (mirrored) in ventral (C) and dorsal (D) views.  

 

In comparison to the shaft, the scapular head is relatively small. Ventro-

laterally, a deep fossa extends over the entire craniocaudal width of the scapular 

head. This fossa is bordered dorsally by a smooth swelling and lacks a distinct 
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acromial ridge. The acromial region of the scapular head exhibits a laterally ori-

ented, oval tubercle that has a slightly roughened surface. On the cranial edge 

next to this tubercle, there is a small, triangular articular facet for the clavicle. 

Caudally, the glenoid is bordered dorsally by a small, laterally projecting ridge. 

The caudal side of the head dorsal to the glenoid is wide, flattened, and ends at a 

sharp ridge laterally. Medial to this ridge, there is an elongate scar, but no distinct 

tubercle as in Euparkeria. An oblique, caudoventrally running ridge subdivides the 

dorsomedial side of the scapular head into two oval depressions, one situated cra-

niomedially, the other caudolaterally.  

Both the scapular and coracoidal parts of the glenoid are rectangular and cau-

dolaterally directed. There is no clear glenoid lip, neither dorsally nor ventrome-

dially. The articular facets of both parts of the glenoid are flat. 

The coracoid (fig. 4-6) has an elongate, oval outline. Its cranial and medial 

borders are relatively wide, rounded and rugose. Caudomedially, there is a large, 

lozenge-shaped tubercle that is posteroventrally directed. Its ventromedial side 

exhibits a smooth facet. Dorsomedial to this tubercle, an elongate, comma-

shaped, caudolaterally oriented depression extends to the glenoid rim. This de-

pression is bordered by a narrow ridge caudomedially and by a small tubercle 

ventromedially. A large, triangular tubercle with a rugose surface texture (for the 

attachment of M. biceps brachii, see below) is adjacent cranially. Starting at this 

tubercle, a smoothly rounded ridge extends cranially and divides the ventrolateral 

face of the coracoid into a dorsolateral and a ventromedial part. The dorsolateral 

part of the coracoid is flat and smoothly merges with the fossa on the scapula 

head. The ventromedial part is relatively narrow and sickle-shaped. The coracoid 

foramen is circular and appears to be more ventromedially placed than in Eu-

parkeria. In dorsomedial view, the coracoid is strongly concave. 

Humerus. The humerus of Lewisuchus is very slender, but the proximal end is 

damaged and parts of the distal end are broken off (fig. 4-6). Therefore, the out-

ward rotation of the distal end relative to the proximal expansion is hard to esti-

mate, but is in the range of 30-45°. Proximally, the main part of the humeral head 

is not preserved, but its base is still visible on the dorsal side of the humerus. Ob-

viously, the head significantly extended dorsally. The medial tuberosity has a 

pointed, triangular outline in proximal view and exhibits a large tubercle on its 

dorsal face. It is not deflected relative to the main axis of the proximal expansion. 

The deltopectoral crest is relatively low and has a smoothly rounded outline, the 

apex being situated midway of its proximodistal extent. The crest extends distally 

about two fifths of the total humeral length. In ventral view, the ventrally oriented 
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apex is spindle-shaped and projects both medially and laterally beyond its base. 

The ventral side of the proximal expansion exhibits a large, oval concavity that 

extends onto the medial side of the deltopectoral crest. The adjacent ventral face 

of the humeral shaft is flattened, the cranial and caudal sides are rounded. On the 

lateral side of the deltopectoral crest, there is a longitudinal groove between the 

overhanging apex and a proximodistally running ridge on the craniodorsal edge of 

the humerus. The dorsal aspect of the proximal expansion exhibits a shallow, 

elongate depression between the medial tuberosity and the humeral head, and a 

smooth facet directly distal to the humeral head. The remaining surfaces of the 

humerus are still embedded in matrix and cannot be examined. 

 

Comments on other forms 

Other basal dinosauriforms may contribute to our understanding of the fore-

limb anatomy of this group, but due to doubtful associations, bad preservation or 

unresolved phylogenetic positions (see section ‘data quality’ above), the morphol-

ogy of the forelimb elements referred to Lagosuchus, Marasuchus, and Silesaurus will 

only briefly be compared to Lewisuchus here. 

The holotype of Lagosuchus talampayensis (PVLR 09) preserves only the proxi-

mal part of the scapula. Despite the poor state of preservation, it can be recog-

nized that the base of the scapular shaft is craniocaudally constricted. Moreover, 

its cranial border is curved and its caudal border straight. Therefore, the scapula 

appears to be of a type similar to that of Lewisuchus. The humerus is more slender 

and elongate than in Lewisuchus, and the small, triangular deltopectoral crest is 

restricted to the proximal quarter of the bone. Like in Euparkeria, radius and ulna 

are slender, but relatively short in comparison to the humerus. The proximal end 

of the ulna exhibits no olecranon process.  

Among the elements referred to Lagosuchus talampayensis by Romer (1972a), the 

scapulocoracoid MCZ 9483 closely resembles that of Lewisuchus, but it is about 

25% smaller and exhibits different proportions. There are also minor differences in 

the form of the distal expansion of the scapula blade, the shape of the fossa on the 

scapular head, the strength of the glenoid lips, and the form of the biceps tubercle 

on the coracoid. Therefore, it can be concluded that MCZ 9483 probably belongs 

to a closely related dinosauriform, but not to Lewisuchus admixtus.  

The scapulocoracoid and forelimb elements catalogued under PVL 3871 (the 

holotype of Marasuchus lilloensis) are entirely different from that of Lewisuchus and 

MCZ 9483. The scapula blade is short, stout and has an enormous distal expan-
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sion that also extends caudodorsally; the glenoid projects caudally and has subcir-

cular articular surfaces; the humerus is extremely long and slender, its proximal 

end is only slightly and its distal end almost not expanded; the deltopectoral crest 

extends only about one third down the shaft. Bonaparte (1975) described these 

elements in detail, and noted similarities of the humerus to the corresponding 

element of the sphenosuchians Hesperosuchus and Pseudohesperosuchus. Similarities 

to basal crocodylomorphs were also recognized by Sereno and Arcucci (1994). 

The form and proportions of the scapulocoracoid, radius, and ulna closely corre-

spond to Sphenosuchia, too (fig. 4-7; compare also to Huene, 1921:fig. 12; Bona-

parte, 1971:figs. 28–30; Crush, 1984:fig. 7; Walker, 1990:figs. 40, 42, 43; Clark et 

al., 2000:fig. 3; Sues et al., 2003:fig. 3; Clark et al., 2004:fig. 3). Considering that 

Romer (1972a) did not mention the presence of forelimb material in the holotype 

of Marasuchus lilloensis, it is concluded here that these elements are sphenosuchian 

in origin, and were accidentally added to the Marasuchus type material by Bona-

parte (1975). 

 
Figure 4-7. Comparison between forelimb elements (A, scapula; B, humerus; C, radius; D, ulna) of 
Hesperosuchus agilis (CM 29894, left) and those referred to Marasuchus lilloensis (PVL 3871, right). 
Aside from size differences, the elements are virtually identical. Hesperosuchus elements are redrawn 
after Clark et al. (2000). 

 

The second scapulocoracoid and humerus of unclear origin, PVL 4672 (la-

belled with Lagosuchus), differ considerably from the corresponding elements of 

Lewisuchus and MCZ 9483. However, they are also unlike the sphenosuchian fore-

limb elements catalogued under PVL 3871. Like in basal sauropodomorphs, the 

scapular blade is relatively short, and its distal expansion projects both cranially 

and caudally (chapter 6). The coracoidal part of the glenoid is elongate and has 

almost double the size of the scapular part, resembling the basal saurischian 
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Eoraptor in this respect (chapter 5). However, PVL 4672 is not well preserved, 

which makes a reliable determination of its systematic affinities difficult. 

The forelimb elements of Silesaurus opolensis, as figured by Dzik (2003), are un-

usual in shape. The scapular blade resembles that of Lewisuchus in its slenderness, 

and in the presence of a curved cranial and a straight caudal edge. The glenoid is 

also similar in shape, but the ventromedial part of the coracoid appears considera-

bly compressed. Humerus, radius, and ulna are extremely elongate and slender, 

making the forelimb only slightly shorter than the hind limb. In Dzik’s (2003) 

figures, no surface features of the long bones can be recognized. The humerus 

even seems to lack a deltopectoral crest. It is obvious that Silesaurus was a highly 

specialized form, also with respect to the forelimbs. The significance of these ad-

aptations have to remain unclear until the phylogenetic position of this taxon can 

be determined more precisely. Interestingly, the basal ornithodiran Scleromochlus 

taylori exhibits a similar elongation of humerus and antebrachium, but its forelimb 

remains significantly shorter than the hindlimb (Benton, 1999). 

 

Muscle reconstructions 

With the review of reptilian forelimb muscles and the discussion of phyloge-

netic inferences for the last common ancestor of all archosaurs as a basis (chapter 

3), it was possible to reconstruct muscle attachment sites in Euparkeria (figs. 4-8, 4-

9) and Lewisuchus (fig. 4-10). Some muscles can be localized easily, others must 

have been present but the extent of their attachments can hardly be delimited. For 

others again, phylogenetic inference and bone morphology provides equivocal 

results only, rendering their reconstruction a matter of speculation. 

 

Euparkeria 

The smooth, undivided lateral surface of the scapular blade of Euparkeria (fig. 

4-8A) makes a definite delimitation of attaching muscles impossible. Considering 

their distribution in other non-avian reptiles, M. deltoideus scapularis, M. scapu-

lohumeralis cranialis, and M. scapulohumeralis caudalis must have been present, 

but no clear facets or intermuscular ridges indicate their borders. The presence of 

M. teres major is equivocal, since the muscle exists in archosaurs but not in other 

diapsids. Because the lateral face of the scapular blade shows no differentiation 

into cranial and caudal facets, this muscle in Euparkeria may not have evolved yet, 

and is therefore not included in the reconstruction presented here. As in all non-

avian reptiles, M. levator scapulae would have attached to the cranial edge of the 
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blade. The thickening of the cranial border in its ventral third, accompanied by a 

narrow facet on the adjacent lateral side of the blade, probably correlates to the 

insertion of M. cucullaris. The elongate, caudolaterally oriented facet along the 

caudal border of the blade possibly indicates the attachment of a superficial layer 

of M. serratus superficialis, which attaches to the caudal edge of the scapular 

blade in extant non-avian reptiles (chapter 3). A similar facet is found on the me-

dial side of the blade, probably correlating to a ventral layer of this muscle. The 

large, triangular depression laterally on the scapular head probably served for the 

attachment of M. supracoracoideus pars scapularis. No other muscle is known to 

attach in this area in extant Reptilia (chapter 3). Cranial to this fossa, the widened 

acromial area would make an accessory attachment of M. deltoideus clavicularis 

possible, but no surface texturing that would indicate muscle attachment can be 

recognized in this region. Caudolaterally, the tubercle that neighbors the glenoid 

unambiguously correlates to M. triceps brachii caput scapulare, like in all diapsids 

(chapter 3). On the medial side of the scapular blade (fig. 4-8B), the triangular 

depression probably correlates to the origin of the scapular head of M. subcora-

coscapularis. The origin of M. serratus profundus distally is hard to delimit, but 

longitudinal striations close to the distal rim indicate an attachment of this muscle 

on the bony scapula. 

On the ventral side of the coracoid (fig. 4-8C), the subglenoid fossa would have 

served for the insertion of M. costocoracoideus, considering the topology of this 

muscle in other Reptilia (chapter 3). The oval, striated area that medially neigh-

bors the subglenoid fossa probably represents the homologue of the large tubercle 

that projects from this area in Ornithodirans, and would have served for the origin 

of M. biceps brachii. The sharply bordered fossa cranial to the glenoid probably 

served for the attachment of M. coracobrachialis. However, this muscle covers a 

large portion of the coracoid in extant non-avian diapsids (chapter 3), and possibly 

extended medially beyond this fossa. It cannot be determined if also the depres-

sion along the medial border of the coracoid is correlated to M. coracobrachialis, 

or if this depression may have accommodated a lateral extension of the attach-

ment of M. pectoralis along the interclavicle. In figure 4-8C, the latter model is 

depicted. Since there is no tubercle or flange on the caudal edge of the scapula 

that would indicate the attachment of the Ligamentum sternoscapulare internum 

(which would correlate to a crocodilian-like M. triceps brachii caput coracoster-

nale [chapter 3]), it is assumed here that Euparkeria preserved the plesiomorphic 

configuration of the coracoidal head of M. triceps brachii. Therefore, a tendinous 

origin of this muscle is reconstructed on the caudal edge of the coracoid. On the 
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medial side of the coracoid, the central concavity probably correlates to the origin 

of the coracoidal part of M. subcoracoscapularis, which must have been present in 

non-crurotarsan archosaurs (chapter 3). Moreover, at least one M. sternocoracoi-

deus probably attached to the cranial region of the coracoid, like in basal diapsids 

(chapter 3).  

 

Figure 4-8. Reconstruction of muscular attachments on the scapula (A, lateral view; B, medial view) 
and coracoid (C, ventral view; D, dorsal view) of Euparkeria. For explanations see text. 

 

The triangular depression on the proximal part of the ventral side of the hume-

rus (fig. 4-9A) probably served for the insertion of M. coracobrachialis, like in all 

tetrapods (chapter 3). Other unambiguous muscular attachments on the humerus 

include that of M. supracoracoideus (apex of the deltopectoral crest), M. subcora-

coscapularis (medial tuberosity), M. pectoralis (caudal side of the deltopectoral 

crest), and M. deltoideus clavicularis (cranial side of the deltopectoral crest). A 

number of other muscles that attach to the humerus cannot be delimited so 
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clearly, although phylogenetic inference implies they were present. These include 

the two humeral heads of M. triceps brachii, the position of which can only be 

roughly estimated since there are no osteological correlates. The insertions of M. 

latissimus dorsi (as indicated by the subcircular scar dorsally on the humerus) and 

M. scapulohumeralis cranialis plesiomorphically are situated between these two 

heads of M. triceps brachii (chapter 3). Thus, a similar configuration is recon-

structed here for Euparkeria (fig. 4-9A). Like in other diapsids, M. scapulohumer-

alis caudalis probably inserted caudoproximally on the humerus, but its extent 

and relations to M. triceps brachii caput humerale mediale and M. scapulohumer-

als cranialis are speculative. On the dorsocranial side of the proximal humerus, 

the insertion of M. deltoideus scapularis is not easy to identify. This muscle possi-

bly inserted on the proximal cranial face of the deltopectoral crest, as in other 

non-avian reptiles (chapter 3). However, the distinct tubercle on the cranioproxi-

mal corner of the humerus may also be correlated to muscle attachment, and no 

other muscle than M. deltoideus clavicularis attaches in this region in extant diap-

sids. M. humeroradialis, which is prominent in crocodilians but minute or lost in 

other tetrapods, was probably also present in Euparkeria. Like in extant forms, the 

sharp ridge dorsodistally to the deltopectoral crest indicates its origin and sepa-

rated it from M. triceps brachii caput humerale laterale. M. brachialis is inferred 

to have arisen from the cranioventral humeral shaft, but no osteological correlates 

help to delimit its extent. The reconstructed configuration of the muscles that at-

tached to the epicondyles is based on the corresponding patterns in Alligator and 

Sphenodon, but remains speculative due to the lack of unambiguous correlates on 

the bone. However, this uncertainty has not much effect on the resulting lines of 

action (see below). 

The facets that are visible on the exposed sides of radius and ulna allow for a 

reconstruction of M. supinator manus. This muscle apparently had developed a 

radial attachment, as indicated by a faint cranial intermuscular ridge on the distal 

half of the bone. Phylogenetic inference implies that the medial side of the radius 

served for the origin of M. supinator, while the craniolateral face of the ulna was 

covered by M. ectepicondylo-ulnaris (chapter 3). M. abductor radialis probably 

attached to the proximal part of the lateral side of the radius, but there is no clear 

demarcation against the origin of M. supinator manus. Between M. abductor ra-

dialis and M. supinator, the laterally projecting tubercle possibly represents the 

point of attachment of M. humeroradialis. The insertion of that muscle is corre-

lated with a distinct tubercle in crocodilians, too (chapter 3); however, it is more 

medially placed in extant forms. The rugose area distal to the olecranon process 
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on the ulna of Euparkeria probably represents the area of attachment of the con-

nective tissue of the elbow joint, in prolongation of the tendon of insertion of M. 

triceps brachii.  

 
Figure 4-9. Reconstruction of muscular attachments on humerus (A), radius (B), and ulna (C) of 
Euparkeria. For explanations see text. 
 

Lewisuchus 

Muscle reconstructions for Lewisuchus slightly differ from those for Euparkeria, 

due to several modifications of the pectoral girdle (fig. 4-10). Most notably, the 

elongate scapular blade not only provides a larger area of attachment for M. del-

toideus scapularis, but is also differentiated into a cranial and a caudal part (see 

above). The caudal part of this differentiation possibly correlates to the attach-

ment of M. teres major, which is present in crocodilians and some ratites, and 

may be synapomorphic for Archosauria (chapter 3). Therefore, it is assumed here 

that M. teres major existed in Lewisuchus, too.  



REMES  Sauropodomorph forelimb evolution 153 

 

 
Figure 4-10. Reconstructions of the muscular attachments on the scapulocoracoid (A, lateral view; 
B, medial view) and humerus (C, ventral view; D, dorsal view) of Lewisuchus. The question mark in 
D indicates that dorsal surface of the humerus cannot be observed in the holotype. For explanations 
see text. 
 

On the medial side of the scapular blade, the fossa for the scapular part of M. 

subcoracoscapularis is elongate, and extends towards the distal part of the blade. 

In addition, the elongate facet on the proximal caudal border probably served for 

the attachment of M. serratus superficialis, and represents a new osteological cor-

relate of this muscle that is easy to recognize in many dinosaurs. Caudolateral to 
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this facet, the minute flange that protrudes over the caudal edge of the scapular 

blade probably correlates to the attachment of a Ligamentum sternoscapulare 

internum (like in crocodilians, chapter 3), and therefore possibly indicates a 

crocodilian-like morphology of M. triceps brachii caput coracoscapulare (fig. 4-

10). However, in birds a similar flange is correlated with M. serratus superficialis 

pars cranialis only.  

As a consequence of the reconstruction of M. triceps brachii caput cora-

coscapulare proposed here, the caudoventromedial tubercle of the coracoid possi-

bly served for the ventral attachment of the Ligamentum sternoscapulare inter-

num. The distinct comma-shaped subglenoid fossa probably correlates to the in-

sertion of M. costocoracoideus, as in Euparkeria. The large, triangular tubercle 

cranioventral to this structure is identified as the origin of M. biceps brachii. The 

remaining muscles that arise from the coracoid, M. supracoracoideus and M. 

coracobrachialis, cannot be delimited unambiguously. There is no indication that 

a cranial extension of M. pectoralis might have attached to the coracoid.  

On the observable parts of the humerus, the pattern of muscle attachments re-

sembles Euparkeria. Differences result from deviant proportions of the bone, i.e. 

the more elongate diaphysis and the less expanded proximal and distal ends. The 

poor preservation and incomplete preparation of the dorsal side of the humerus 

renders any reconstruction of the extents of Mm. scapulohumerales speculative. 

Moreover, these obstacles impede the reconstruction of the humeral heads of M. 

triceps brachii, and prevent the localization of the scar that indicates the insertion 

of M. latissimus dorsi and M. teres major. A dorsocranial ridge that would corre-

late to the origin M. humeroradialis cannot be observed either.  

 

Discussion 

Based on skeletal restorations (figs. 4-2, 4-5) and reconstructed muscular at-

tachments (figs. 4-8, 4-9, 4-10), lines of action of several muscles of the forelimbs 

of Euparkeria and Lewisuchus can be inferred. The cingulo-axial muscles exhibit no 

major changes from basal archosaurs to dinosauriforms. The form of the cranial 

edge of the scapular blade is consistent with a plesiomorphic, ventral insertion of 

M. cucullaris (figs. 4-11, 4-13). Furthermore, phylogenetic inference suggests that 

a M. rhomboideus was present in the last common ancestor of birds and croco-

dilians that probably inserted on the medial side of the suprascapular cartilage 

(chapter 3). The rugose dorsal edge of the scapula in both Euparkeria and 

Lewisuchus probably indicates the presence of such a suprascapular cartilage. Since 
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M. serratus profundus seems to have shifted its insertion onto the dorsal part of 

the medial scapula, the suprascapula might have served solely for the attachment 

of M. rhomboideus. Following this argumentation, M. rhomboideus possibly was 

present in Euparkeria already (figs. 4-12, 4-14). Due to the elongate neck of dino-

sauriforms, the cranial extent of M. serratus profundus probably was reduced rela-

tive to neck length, in order to maintain effective lines of action (fig. 4-12, 4-14). 

The same might be true for M. levator scapulae, but considering the orientations 

of neck and scapula, the muscle would have maintained an effective course even if 

it preserved its plesiomorphic extent (fig. 4-11, 4-13).  

 
Figure 4-11. Reconstruction of the skeletomuscular system of the pectoral girdle and forelimb of 
Euparkeria, superficial part. A, lateral view; B, ventral view. Muscles are depicted by their estimated 
lines of action, giving a gross idea of the function of each muscle.  
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Figure 4-12. Reconstruction of the skeletomuscular system of the pectoral girdle and forelimb of 
Euparkeria, deep part. A, lateral view; B, ventral view. Muscles are depicted by their estimated lines 
of action, giving a gross idea of the function of each muscle. Shaded attachment areas and lines of 
action indicate muscles that lie on the remote side of the respective bone. 

 

No differentiation of the caudal edge of the scapular blade can be observed in 

Euparkeria, but basal dinosauriforms seemingly restricted the insertion of M. serra-

tus superficialis to the medial side of the blade (fig. 4-14). Moreover, a crocodil-

ian-like configuration of M. triceps brachii caput coracoscapulare appears realistic 

(fig. 4-13). The possible presence of M. teres major in Lewisuchus (fig. 4-13) repre-

sents a derived feature that also resembles crocodilians. These inferences support 

earlier observations that Euparkeria had not yet acquired all characters of the Ar-

chosauria (Sereno, 1991; Juul, 1994; Parrish, 1997; Gower and Weber, 1998; 

Benton, 2004): a similar pattern is also reflected in muscular anatomy.  
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Figure 4-13. Reconstruction of the skeletomuscular system of the pectoral girdle and forelimb of 
Lewisuchus, superficial part. Muscles are depicted by their estimated lines of action, giving a gross 
idea of the function of each muscle.  

 

In Euparkeria, the pectoral girdle is almost as wide as high, rendering the cross-

section of the animal circular in this part of the body (fig. 4-2). In contrast, 

Lewisuchus has a scapular blade that is dorsally elongate, arguing for a dorsoven-

trally high and transversely slender profile of the cranial trunk (fig. 4-5). Further-

more, the coracoid of Euparkeria has a horizontal orientation and forms the major 

portion of the glenoid. This configuration allows for an optimal transfer of forces 

with a major medial and a minor vertical component, indicating a sprawling pos-

ture of the humerus. In Lewisuchus, the scapular part of the glenoid is enlarged 

relative both to the scapular head and to the coracoidal part. Given its cau-

dolateral orientation, the glenoid is therefore optimized to transfer dorsomedially 

directed forces.  

The reconstructed lines of action of the main protractor and retractor muscles 

(M. deltoideus clavicularis, M. supracoracoideus, M. pectoralis) are oriented in a 

subhorizontal plane in Euparkeria (fig. 4-11). The accurate angle of orientation of 

the coracoid in Lewisuchus is hard to determine since the scapulocoracoid is diage-

netically compressed, but it appears to have faced more ventrolaterally than ven-
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trally. Thus, in comparison with Euparkeria the line of action of M. supracoracoi-

deus has a stronger vertical component (fig. 4-13). The same might be true for M. 

deltoideus clavicularis, but the course of this muscle is speculative since no clavi-

cles are preserved. 

 
Figure 4-14. Reconstruction of the skeletomuscular system of the pectoral girdle and forelimb of 
Lewisuchus, deep part. Muscles are depicted by their estimated lines of action, giving a gross idea of 
the function of each muscle. Shaded attachment areas and lines of action indicate muscles that lie on 
the remote side of the respective bone. 

 

The areas of origin and insertion of M. coracobrachialis are relatively large in 

Euparkeria. It is to note that the area of a fleshy attachment is primarily controlled 

by the angle of insertion, not necessarily by the volume of the corresponding mus-

cle (Bryant and Seymour, 1990; chapter 3). Anyway, the size of the osteological 

correlates of M. coracobrachialis supports a rather sprawling posture of  the 

humerus. The large scar for the insertion of its antagonist, M. latissimus dorsi, 

substantiates this interpretation (fig. 4-11). This system might have been some-

what weaker in Lewisuchus, but the data are to incomplete to draw definite conclu-

sions. As far as it can be inferred, the configuration of the M. triceps brachii sys-

tem seems to be conservative in Euparkeria. In Lewisuchus, the origins of M. triceps 

brachii caput scapulare and caput coracoscapulare have shifted dorsally (fig. 4-11, 
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4-13). Possibly, this reconfiguration is correlated with a more ventrolateral orien-

tation of the humerus. 

Finally, the hemispherical shape of the distal condyles of the humerus, their 

wide spacing, and the simple, concave form of the proximal articular facets of 

radius and ulna will have allowed for considerable rotation in the elbow joint of 

Euparkeria. If the insertion of M. humeroradialis is correctly identified, this muscle 

might have assisted in axial rotation of the radius, and in pronation of the manus 

(fig. 4-11). Other muscles that have their origin or insertion on the forearm (M. 

abductor radialis, M. ectepicondylo-ulnaris, M. supinator manus) show a croco-

dilian-like configuration (fig. 4-11), obviously indicating shared derived traits of 

archosauromorphs.  

Considering general proportions, the size of the humerus of Lewisuchus (relative 

to the size of the scapulocoracoid and to total body size) is not significantly differ-

ent from Euparkeria (table 4-1). The relation of forelimb to hind limb length is hard 

to estimate in Lewisuchus, since radius, ulna, and femur are missing (Romer 

[1972b] mentions a femur and a tibia, but the specimen actually preserves a tibia 

and a fibula). Moreover, the length of the dorsal vertebral column is hard to esti-

mate in Lewisuchus, since the preserved vertebral column ends with dorsal vertebra 

8. Therefore, the sole morphometric relation that can be calculated and compared 

to Euparkeria is that of humerus to tibia length: this value is 0.79 in Euparkeria and 

0.43 in Lewisuchus.   

Taxon SL HL RL FL TL DVL SL/HL HL/TL 

Euparkeria (SAM 5867) 38 38 32 56 48 140* 1.0 0.79 

Lewisuchus (PVLR 01) 44 46 - - 106 - 0.96 0.43 

 

Table 4-1. Comparison of simple morphometric measurements of forelimbs and hindlimbs in Eu-
parkeria and Lewisuchus. *The dorsal vertebral length is an estimate based on individual vertebrae of 
SAM 5867 and the complete vertebral column of SAM 6047. Abbreviations: SL, scapula length; 
HL, humerus length; RL, radius length; FL, femur length; TL, tibia length; DVL, length of dorsal 
vertebral column. 

 

 

Conclusions 

Regarding bone morphology and muscle system, Euparkeria exhibits a mosaic 

of plesiomorphic features and advanced characters. As Ewer (1965) already 

pointed out, no adaptation to bipedality can be recognized in the forelimb. The 

strong development of the horizontally oriented protractors and retractors, as in-
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dicated by the considerable size of the deltopectoral crest, and the form and orien-

tation of the glenoid indicate a sprawling to semi-erect position of the humerus 

during locomotion. This view is also supported by the significant development of 

the M. coracobrachialis – M. latissimus dorsi system, and the morphology of the 

elbow joint, which allows for considerable rotation.  

In Lewisuchus, the dorsoventrally deep body alone is indicative of increased 

cursoriality, and made a relative elongation of the scapular blade necessary. Ac-

cording to glenoid shape and coracoid orientation, the humerus had a more semi-

erect, less sprawling posture. The development of a crocodilian-type M. triceps 

brachii caput coracoscapulare might be related to this change. However, there are 

no strong indications for bipedality in the forelimb. The elements that are essential 

for evaluating the type of locomotion (radius, ulna, manus) are not preserved. The 

humerus to tibia ratio indicates a significant difference between Lewisuchus and 

Euparkeria (table 4-1), which may be interpreted as an adaptation to cursoriality 

and at least facultative bipedality (Coombs, 1978a). However, trunk and forelimb 

of Lewisuchus are incompletely preserved, precluding a reliable assessment of sig-

nificant morphometric ratios. Lewisuchus exhibits adaptations to an erect posture 

and cursorial locomotion in the hind limb (Fechner, pers. comm. 2007), but it 

cannot be ruled out that this taxon maintained the ability of quadrupedal locomo-

tion. Considering the lack of forelimb material, the inference of trends towards 

bipedality in other Ladinian dinosauriforms (Sereno and Arcucci, 1994; Arcucci, 

1997; Sereno, 1997; Carrano, 2000) is speculative.  

In summary, the available data about the early evolution of the forelimb on the 

line to dinosaurs is rather incomplete and leaves room for speculation. Since distal 

elements (radius, ulna, manus) are missing, no conclusions can be drawn about 

the origin of bipedality. Good cranial material is also wanting, rendering the ecol-

ogy of these early dinosauriforms enigmatic until more complete specimens are 

found. At least with respect to forelimb evolution, the rise of the dinosaurs lies 

more in the dark than previously thought. 
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5 Structure and function of the forelimb in basal  

saurischians and early theropods 

 

Introduction 

Our understanding of the rise of the Dinosauria is still hampered by an incom-

plete fossil record, low numbers of well-preserved specimens, and ambiguous 

phylogenetic relationships. The first known dinosaurs were found in Middle 

Carnian sediments of Argentina (Reig, 1963; Casamiquela, 1967; Sereno et al., 

1993) and Brazil (Colbert, 1970; Bonaparte et al., 1999, 2007; Langer et al., 1999). 

Many of these early forms are incomplete, but current data suggest that at that 

time, dinosaurs already had differentiated into the main subgroups Ornithischia, 

Sauropodomorpha, and Theropoda (Novas, 1996; Sereno, 1997; fig. 5-1).  

Already with the late 19th century dinosaur discoveries, it became evident that 

these animals evolved various types of locomotion. Some groups were recognized 

as habitual bipeds (theropods, some ornithopods; e.g., Wagner, 1861; Leidy, 

1865; Cope, 1867; Huxley, 1869), others as graviportal quadrupeds with fully 

erect limbs (sauropods; e.g., Hulke, 1874; Osborn and Granger, 1901; Osborn, 

1904), and some were reconstructed as quadrupeds with sprawling forelimbs 

(stegosaurs, ceratopsians; e.g., Marsh, 1891; Lull, 1905, 1910). The question 

about the ancestral type of dinosaurian locomotion arose only lately, following 

the application of cladistic methodology to fossil archosaurs and the recognition 

of dinosaurs as a monophyletic group (Bakker and Galton, 1974; Benton, 1984, 

1990; Gauthier, 1984, 1986). Sereno (1991, 1997) suggested that ornithodirans 

acquired a fully erect gait first, then changed to bipedality and finally evolved the 

ability to flight, first in pterosaurus and some 50 million years later in birds. This 

model implies that all ornithodirans, including basal ornithischians and sauro-

podomorphs, are plesiomorphically bipedal, and developed secondary quadru-

pedalism independently in several lineages (Stegosauria, Ankylosauria, Ceratop-

sia, some ‘prosauropods’, and Sauropoda). However, these arguments have been 

weakened by evidence for obligate quadrupedal pterosaurs (Mazin et al., 1995; 

Unwin, 1996, 1999). Moreover, recent studies show that basal dinosauromorphs 

like Lagerpeton had no fully erect hind limb (Fechner, in prep.), and that the data is 

ambiguous regarding the type of locomotion of basal dinosauriforms like 

Lewisuchus (chapter 4; Fechner, in prep.). Based on the ichnological record of di-

nosaurs and their early relatives, Thulborn (2006) even argued that Dinosauria is 

a polyphyletic assemblage, because the foot postures and types of locomotion 
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observable in the earliest ornithischian and sauropodomorph tracks resemble the 

plesiomorphic (basal archosaurian) type, and lack the strong adaptations for bi-

pedality and erect stance that are seen in theropods. Clearly, all theropods are 

obligate bipeds, and the same is true for herrerasaurids. In a similar manner, Ser-

eno et al. (1993) reconstructed one of the earliest dinosaurs known, Eoraptor lunen-

sis, as a biped with grasping hands, but no detailed anatomical study of this criti-

cal taxon has been published. A closer look at the osteology of basal saurischians 

like Eoraptor and Herrerasaurus, a comparison to basal theropods and ornithischi-

ans, and a reconstruction of the forelimb musculature of these forms may give 

better ideas about the early evolution of locomotion in dinosaurs. Which transfor-

mations of the forelimb occurred in parallel to the improvements of the hind limb? 

Are the same transformations visible in all lineages of early dinosaurs, or do dif-

ferent lineages exhibit different trends? And do the forelimbs of all early dinosaurs 

show adaptations related to habitual bipedality? These questions will be addressed 

in this chapter. 

 

Figure 5-1. Relationships and temporal distribution of the early dinosaurs discussed in 
this chapter (Sauropodomorpha, which will be addressed in the following chapters, are 
also shown). Cladogramm based on Rauhut (2003a) and Langer and Benton (2006). 
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Anatomy 

Note: The neutral orientation of the humerus relative to the body in early dino-

saurs is not entirely clear and will be addressed later in this chapter. Therefore, in 

the following descriptions developmental orientations are used (see chapter 2).  

Basal saurischians 

The early saurischians Eoraptor and Herrerasaurus are key taxa for our under-

standing of the forelimb evolution of early dinosaurs, since both are relatively well 

preserved and comprise complete hand skeletons. Especially Eoraptor is of interest, 

because this genus lacks many of the specializations seen in Herrerasaurus and may 

exhibit a forelimb bauplan that is close to that of the ancestral dinosaur.  

Eoraptor 

Scapulocoracoid. The shoulder girdle of Eoraptor lunensis (PVSJ 512; figs. 5-2, 

5-3, 5-4) closely resembles that of the basal dinosauriforms Lewisuchus admixtus 

and MCZ 9483 (‘Lagosuchus talampayensis’). Like in these forms, the scapular 

blade is elongate and has a straight, transversely thickened and rounded caudal 

edge and a concave, transversely narrow and sharp cranial border. The distal ex-

pansion is moderate, but in Eoraptor the blade is less slender than in Lewisuchus. 

The distal half of the lateral side of the blade is flattened, except the caudolaterally 

deflected caudodorsal border. The proximal half of the blade is smoothly rounded 

towards the caudal edge and somewhat flattened in the center. There is no indica-

tion of a flange on the caudal border. Since the medial side of the scapular blade 

cannot be observed, there is no clue regarding the presence of a caudomedial facet 

for M. serratus superficialis (see chapter 4).  

Dorsal to the glenoid, a large, oval, rugose scar faces caudodorsolaterally. 

Proximocranially, there is a wide, triangular depression, extending dorsocranially 

from the middle of the base of the blade. Like in Lewisuchus, the scapular head is 

wide craniocaudally and narrow dorsoventrally. A large, oval fossa extends over 

most of its lateral surface. This fossa has differentiated into a deep depression in 

its cranial two thirds, and a shallow caudal part. Craniodorsally, the acromial 

region bears an elongate, spindle-shaped, dorsolaterally oriented facet. Ventro-

lateral to this facet, the acromial ridge extends caudally for about one third of the 

length of the caput, and forms the craniodorsal border of the aforementioned 

fossa. The sutural line has a distinct step in the caudal part of its course, the cau-

dal-most part of the suture being more ventrally placed than the remaining part 
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(fig. 5-2). The scapular portion of the glenoid has a subquadrangular outline, and 

bears a faint glenoid lip dorsolaterally. Cranially, a triangular recess connects the 

glenoid cavity to the lateral fossa on the scapular head. A strong, bulging glenoid 

lip borders the coracoidal portion of the glenoid laterally and caudally. The articu-

lar facet of the coracoidal glenoid portion is lozenge-shaped and slightly concave. 

 

 

Figure 5-2. Reconstruction of the shoulder girdle of Eoraptor lunensis, based on PVSJ 512. 
Center, lateral view; right, caudal view. The cranial and axial skeletal elements are sche-
matically drawn.  

 

The coracoid is characterized by a strongly developed craniocaudal ridge, 

which divides the element into a dorsolateral and a ventromedial half (figs. 5-2,  

5-3). In cranial view, both sections enclose an angle of about 130°. The coracoid 

foramen is relatively large. It is situated directly cranioventral to the caudal kink 

in the sutural line. Craniodorsally on the lateral face of the coracoid, there is a 

triangular depression. The shallow, subrectangular subglenoid fossa is bordered by 

narrow ridges laterally and caudally, and by a wide shelf medially. The ventrome-

dial corner of the coracoid bears a relatively small, triangular biceps tubercle. 

Moreover, Eoraptor exhibits a smoothly rounded caudomedial process on the 

coracoid that is somewhat larger than the biceps tubercle. The medial edge of the 
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coracoid is thickened and rounded, but narrows cranially. As for the scapula, the 

medial side of the coracoid cannot be examined.  

 

Figure 5-3. Osteological structures of the forelimb elements of Eoraptor lunensis (PVSJ 
512). A, scapula in lateral view. B, humerus in proximal, ventral, and distal views. C, 
radius in lateral view. D, ulna in proximal and medial views.  

 

Humerus. Like in Lewisuchus, the humerus of Eoraptor has about the same 

length as the scapula. It is moderately elongate and has a robust, transversely wide 

shaft (fig. 5-3). The proximal and distal ends are expanded. The distal end is 

twisted with an angle of about 40° relative to the transverse axis of the proximal 

expansion. The subrectangular humeral head is slightly concave ventrally and 

extends onto the shaft dorsally. The lateral tuberosity is dorsoventrally deep, con-

vexly rounded, and somewhat dorsally deflected with respect to the base of the 

humeral head. The proximal base of the medial tuberosity is enlarged and slightly 

ventrodistally deflected. Caudally, the medial tuberosity has the form of an elon-

gate, pointed process, and is oriented in parallel with the axis of the humeral 

head.  

Beginning at the cranioproximal corner of the humerus, the deltopectoral crest 

extends for more than 50% of total humeral length. The crest is ventrally directed 

and relatively large. Its spindle-shaped apex projects cranially over its base and is 

situated in the proximodistal center of the crest. The distal half of the apex exhib-

its a ventrocaudally-deflected facet. The caudal side of the deltopectoral crest is 

slightly concave proximally, and flat distally. The straight ventral edge of the dis-

tal part of the crest tapers off with a low angle relative to the shaft axis. Proxi-

mally, the ventral side of the humerus is flat and bears no distinct fossa. The same 

is true for the ventral side of the shaft. The caudal side of the shaft is wide and 
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convex. Ventrodistally, the intercondylar depression is triangular and widely sepa-

rates the ulnar and radial condyles. The subrectangular ulnar condyle is wider 

craniocaudally than deep dorsoventrally. The entepicondyle exhibits a lancet-

shaped facet, which is bordered by a ridge cranially. The distal part of this facet 

exhibits a rugose, oval depression. The caudoventral corner of the ulnar condyle 

bears a large tubercle. The radial condyle is oval and deflected about 20° ventrally 

relative to the transverse axis of the ulnar condyle.  

Antebrachium. The radii and ulnae of Eoraptor are compressed and deformed, 

especially on the left body side, and do not show many details (fig. 5-3). The ra-

dius slightly curves distocaudally, rendering its cranial edge convex and the cau-

dal edge concave. The proximal end is enlarged and bears a cup-shaped cotyle for 

articulation with the humerus. Craniomedially on the proximal end, there is a 2 

mm long, proximodistally oriented crest. Where uncompressed, the shaft has a 

subcircular cross-section. An intermuscular ridge is visible on the proximal half of 

the medial side of the right radius, and forms the cranial margin of an elongate 

facet on the caudomedial shaft. In the distal third of the medial shaft, another 

intermuscular ridge runs obliquely from the cranial edge to a large tubercle cau-

dally. Craniodistal to this tubercle, there is a spindle-shaped facet. Distally on the 

craniolateral side of the shaft, an unusually prominent, three-sided tubercle pro-

jects craniolaterally and is bordered by an elongate depression medially. The distal 

end of the radius is expanded and curved in transverse direction, rendering the 

cranial side of the distal antebrachium convex and the caudal side concave. Due 

to compression, the natural orientation of the transverse axis of the distal end of 

the radius cannot be reliably assessed. The medial side of the distal end is some-

what flattened, and a small tubercle projects from its craniomedial corner. The 

caudomedial corner of the distal radius is in close contact with the ulna, probably 

showing the natural articulation of the two elements.  

The proximal end of the ulna bears a relatively long cranial process that has a 

bulging edge. The humeral cotyle is strongly concave craniocaudally but only 

slightly concave transversely. The triangular lateral process is placed in the caudal 

third of the proximal expansion. Caudoproximally, the olecranon process has the 

form of a low, rounded prominence, but there is no proximally projecting ossifica-

tion. In proximal view, the medial border of the articular head is concave. A small 

process projects caudomedially from the caudal corner of the proximal ulna. On 

the medial side of the shaft cranial to this process, there is large triangular fossa 

that extends distally for about half the length of the shaft. The shaft is transversely 

narrow and curved, with a convex lateral side and a concave medial side. In cau-
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dal view, the ulnar shaft exhibits a round swelling immediately distal to its proxi-

mal third. A similar swelling is found on the cranial edge of the shaft, proximal to 

the distal third of the shaft. 

 

Figure 5-4. Hand skeleton of Eoraptor, as preserved in PVSJ 512. A, proximal view; B, 
dorsal view; C, ventral view. D, reconstruction of the original articulation of the metacar-
pals in proximal view. 

 

Manus. Both manus were found articulated (fig. 5-4), albeit the left one is 

strongly deformed. All metacarpals are fully developed, without any strong reduc-

tion of the lateral two metacarpals. These are somewhat shorter and less robust 

than metacarpals I–III, but not significantly more so than e.g. in crocodilians (see 

figs. 3-18, 5-5).  

Carpus. Carpal elements are observable only on the ventral side of the left ma-

nus. These include radiale, ulnare, and three distal carpals articulating with meta-

carpal II, III, and IV, respectively. Distal carpals that articulate with the periph-

eral metacarpals may be present on the dorsal side of the specimen, but cannot be 

observed because this side is not fully prepared. There is no indication for the 

presence of a centrale.  

The radiale is large and somewhat elongate proximodistally, possibly due to 

diagenetic deformation. The proximomedial corner of its ventral side exhibits a 

small subquadrangular facet. In proximal view, the ulnare is oval and concave. 

From its ventromedial corner, a small process projects ventrally. The ventral side 

of the ulnare is transversely wide but proximodistally short. It bears a small oval 

depression medially, possible for articulation with a pisiforme. In distal view, the 

ulnare has a convex articular facet that is in contact with the third distal carpal. 

Distolaterally, the radiale articulates with a subrectangular distal carpal that in 

turn has contact to another distal carpal laterally, and to metacarpal I distally (fig. 
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5-4). Presumably, this element represents distal carpal I. The ventral side of distal 

carpal I bears a lateral and a medial tubercle. The second distal carpal is wedge-

shaped, with a tapering ventral side, and is situated close to metacarpals II and 

III. The proximal and distal sides of this element are flat and rectangular in out-

line. A small tubercle protrudes from its ventrolateral corner. The third distal car-

pal has a cubic shape with rounded edges and corners, and articulates with the 

ulnare proximally and metacarpals III and IV distally. A small tubercle projects 

from its proximomedial corner. The distal face of the element is convexly 

rounded. 

 

Figure 5-5. Reconstruction of the right arm of Eoraptor in dorsocranial view. Note the 
prominent ligament pit distomedially on metacarpal IV.  

 

Metacarpus. Metacarpal I has the largest ratio of midshaft diameter to total 

length, and is therefore the most robust of all metacarpals (figs. 5-4, 5-5). The 

proximal end has a trapezoid shape and is convex transversely. A prominent, 

three-sided tubercle projects from its ventrolateral corner. The dorsal side of the 
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shaft is craniomedially oriented, and has a smoothly rounded medial margin. 

Dorsolaterally, a prominent flange extends along the proximal third of the bone. 

The dorsal side of the proximal shaft exhibits a deep, oval depression. The shaft of 

metacarpal I slightly curves distolaterally. Proximally on the dorsal side of the 

distal end, there is a faint depression. The proximolateral face of the shaft exhibits 

a triangular depression that tapers distally. The ventral side of the shaft is wide 

and flattened. Proximally, an oblique ridge runs from the proximomedial corner 

to the lateral side, ending after about one third of the length of the bone. The dis-

tal condyles of metacarpal I are strongly asymmetric. The lateral condyle extends 

far more distally, and is about twice as large as the medial condyle. Both condyles 

are separated by a narrow groove. In distal view, the medial condyle is oval, with 

a dorsoventrally oriented long axis. A tubercle is situated on the ventromedial 

corner of the medial condyle. The ligament pits on both sides of the distal end are 

shallow and have no distinct margins. 

The proximal end of metacarpal II has a transversely narrow, parallelogram-

shaped outline (fig. 5-4). The medial part of the proximal end and the proximal 

articular surface are not preserved. Dorsolaterally, a wide, rounded flange extends 

distally for about one quarter of the total length of the bone. The shaft of metacar-

pal II has a suboval cross-section, with the wider side facing dorsomedially. The 

dorsal side of the shaft is transversely convex, its ventral side flat. On the distal 

third of the dorsal shaft, there is an oval facet that is clearly offset from the proxi-

mal part of the shaft. A small, shallow depression is situated centrally on this 

facet. The form of the distal condyles cannot be observed. 

Metacarpal III is subequal in length to metacarpal II (fig. 5-5). Its proximal ex-

pansion is twice as wide as that of metacarpal II. The articular surface is dorsov-

entrally convex and has a trapezoid shape, with the longest edge on the ventral 

side. The dorsomedial corner is distally deflected and projects dorsally; the ven-

tromedial corner is enlarged, rounded, and also distally deflected. On the medial 

face of the ventromedial corner, there is a slightly concave facet for articulation 

with metacarpal II. The lateral edge of the proximal end is also concave, and 

serves for articulation with metacarpal IV. Dorsolaterally, there is no distinct 

flange like in metacarpals I and II. The dorsal side of the shaft is flattened, while 

the ventral side is transversely convex. Distally, metacarpal III is expanded and 

bears a facet on its dorsal side, similar to that of metacarpal II. The distolateral 

side of metacarpal III exhibits a large, circular ligament pit that is bordered by 

narrow ridges. The distal articular end is subdivided into two symmetrical con-

dyles that are visible in ventral view. 
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Metacarpal IV is significantly more slender than the preceding metacarpals 

(fig. 5-5). Its planar proximal end has a subtriangular, transversely elongate form. 

Ventroproximally, metacarpal IV widely overlaps metacarpal III. The slender 

shaft has a circular cross-section and a shallow depression proximally. The distal 

expansion is subtriangular with a tapering ventral side. It is strongly laterally ro-

tated: the axis through the ligament pits is oriented almost perpendicular to the 

dorsal edge of the proximal expansion. The medial ligament pit is very deep, but 

the lateral ligament pit is only weakly developed. The distal condyle is convex in 

all directions.  

The relatively small, peg-like metacarpal V is slender and has a subrectangular 

proximal end. The shaft is oval in cross-section. Distally, there is a rounded, coni-

cal process. No other details are observable. 

Digits. Phalanges are fully preserved in digiti I-III only. The form of the distal 

end of metacarpal IV and the presence of ligament grooves implies that phalanges 

originally were developed in digit IV (fig. 5-5), but lost prior to fossilization or 

during preparation. In the left hand, a rudimentary phalanx is preserved in articu-

lation with metacarpal V, but the distal end of this element is broken off. There-

fore, the phalangeal formula for Eoraptor can only be stated as 2-3-4-(≥1)-(≥1). 

Other basal dinosaurs such as Heterodontosaurus (fig. 5-12; Santa Luca, 1980) and 

basal sauropodomorphs (chapters 6 to 8) count 2-3-4-3-2 (see also Galton and 

Upchurch, 2004; Norman et al., 2004; Butler et al., 2007a).  

The robust first phalanx of digit I exhibits a subtriangular, asymmetrical 

proximal articular facet, which (unlike other dinosaurs) has no central ridge that 

subdivides the facet in a lateral and a medial cotyle. The dorsal side of the shaft is 

concave proximodistally, but planar transversely. Laterally, the shaft is rounded; 

the ventral side is flat. Distally, a circular pit deeply excavates the dorsal base of 

the articular end. Distolaterally and distomedially to this pit, small tubercles pro-

ject distally. The lateral and medial sides of the distal expansion bear large, deep 

ligament pits that are bordered by wide, rounded ridges. The ungual of digit I is 

not enlarged relative to the remaining unguals, but exhibits a slight asymmetry (its 

lateral side is steeper and flattened). The first ungual is not strongly curved; only 

the distal tip is slightly ventrally deflected. On the ventral side of the ungual, an 

elongate flexor tubercle extends over the entire proximal half of the claw. Nutri-

tive sulci are present only in the distal half of the ungual.  

The first phalanx of the second digit is even more robustly developed and also 

slightly asymmetric, with the lateral part of the distal condyle extending further 

distally. The dorsoproximal edge exhibits a large, semilunate extensor tubercle. 
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An elongate flange protrudes from the proximal part of the dorsomedial edge. As 

for phalanx I.1, a deep circular pit characterizes the dorsal side of the distal end. 

Both the lateral and the medial sides of the distal expansion exhibit ligament pits, 

but the medial pit is only weakly developed. Phalanx II.2 is more slender than 

II.1, has no clear extensor process proximally and lost the medial ligament pit. 

Instead of a circular depression, the dorsal side of the distal end exhibits a trape-

zoid facet. The ungual of digit II is strongly developed and wider than that of digit 

I, but shows no strong curvature either. On both sides of the claw, deep sulci are 

present that follow its curvature distally, but have a sigmoid course proximally.  

The proximal phalanx of digit III is significantly shorter than phalanx II.1. Be-

cause all sides of the shaft are planar, the element appears block-like. Proximally, 

there is a transversely wide, oval extensor tubercle. Like the other proximal pha-

langes, the dorsal side of the distal end bears a circular pit. The distal articular 

condyles are separated by a deep groove, and appear to be symmetric. The re-

maining phalanges are strongly damaged, impeding any observation of details. 

Phalanges III.2 and III.3 are both shorter than the preceding phalanx. The ungual 

of digit III has a shape similar to the unguals of digits I and II. 

Herrerasaurus 

The anatomy of the pectoral girdle and forelimb of Herrerasaurus has already 

been described in detail by Sereno (1993). Novas (1993) used some of the charac-

ters described by Sereno (1993) for a revised diagnosis of Herrerasaurus. Diagnostic 

characters include a proximally projecting medial tuberosity that is separated from 

the humeral head by a deep channel, a ridge-like entepicondyle that is bordered by 

depressions dorsally and ventrally, and an elongate manus that reaches 60% of the 

combined lengths of humerus and radius (Novas, 1993). Moreover, Sereno (1993) 

regarded following additional characters as autapomorphic for Herrerasaurus: a 

saddle-shaped ulnar condyle; a concave-convex, sliding articulation between ulna 

and ulnare; a centrale that is placed distal to the radiale; and an enlarged distal 

carpal IV that articulates with metacarpals IV and V. 

Furthermore, the anatomy of the hand of Herrerasaurus lead Novas (1993) to 

emend the diagnosis of Saurischia, adding two characters: first, the proximal 

bases of metacarpals IV and V overlap the preceding metacarpal on its palmar 

side; second, the first phalanx of the first digit is longer than metacarpal I. Novas 

(1993) interpreted other characters as synapomorphic for Herrerasaurus + Thero-

poda, including a humerus that reaches only 50% of femoral length, deep extensor 
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pits distally on metacarpals I–III, strongly reduced metacarpals IV and V, elon-

gate penultimate phalanges, and enlarged, strongly curved unguals on digits II 

and III that bear prominent flexor tubercles.  

In order to avoid redundancies, the following description lists only additional 

observations of forelimb characters, especially those relevant for muscle recon-

structions.  

Note: Sereno (1993) uses the term ‘acromion’ in a sense synonymous with the terms 

‘scapular head’ or ‘caput scapulae’ of this work. Following the terminology of Romer 

(1956), the term ‘acromion’ should refer only to a distinct process or facet cranially on the 

scapula that serves for articulation with the clavicles. 

Scapulocoracoid. Sereno (1993) underscored the unusal, strap-like form of the 

scapular blade, which is totally unlike those of any other early dinosaur or basal 

dinosauriform (fig. 5-6). Adding to the description by Sereno (1993), further ob-

servations are noted in the following. 

 Both the cranial and caudal margins of the scapular blade are sharply tapering. 

The proximocranial part of the lateral face of the blade exhibits an elongate facet 

in PVSJ 605, but not in PVSJ 53. A low flange slightly protrudes from the caudal 

border of the blade, distal to its proximal third. Medially to this flange, an elon-

gate, sickle-shaped facet extends over the proximal two-thirds of the blade. The 

proximal part of this facet extends cranially to the midst of the blade. The ac-

romial region of the caput bears a rugose, suboval tubercle that faces craniodorso-

laterally. The apical end of the clavicle (which is not known in Herrerasaurus) 

probably articulated with this facet. The lateral side of the scapular head bears an 

elongate fossa that extends only over its cranial two thirds. There is no distinct 

acromial crest. Immediately dorsal to the glenoid, a triangular, rugose scar faces 

caudolaterally. The medial side of the scapular head exhibits a subtriangular de-

pression craniodorsally and a moderate swelling (the preglenoidal buttress) cau-

dally. The sutural line between scapula and coracoid has a characteristical caudal 

kink. The coracoidal part of the glenoid connects to the lateral side of the coracoid 

via a distinct furrow, which is located somewhat ventral to the suture. Ventral to 

the glenoid, the subglenoid fossa has a semilunate shape and exceeds the coracoi-

dal part of the glenoid in size. The subglenoid fossa is bordered craniolaterally by 

a rounded ridge. This ridge bears a small tubercle at mid-length. The coracoid 

foramen is small and caudally placed, about 12 mm distant from the sutural line.  
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Figure 5-6. Reconstruction of the shoulder girdle of Herrerasaurus ischigualastensis, based 
on PVSJ 605. Center, lateral view; right, caudal view. The cranial and axial skeletal ele-
ments are schematically drawn. 

 

Humerus. The humerus (fig. 5-7) is characterized by a large, rectangular del-

topectoral crest that extends distally for about 40% of the length of the humerus. 

Novas (1993) and Sereno (1993) described the diagnostic form of the medial tube-

rosity, which is separated from the humeral head by deep channel. However, this 

channel is not present in all specimens (e.g., not in MLP 61-VIII-2-3, ‘Ischisaurus’). 

On the proximal edge of the humerus, ventrally to the medial tuberosity, there is a 

suboval, craniomedially-oriented facet. A subtriangular facet is found distally to 

the medial tuberosity on the dorsal side of the humerus. The humeral head 

slightly protrudes over the dorsal face of the shaft. In proximal view, it has a ven-

trally concave, kidney-like shape (Sereno, 1993). A longitudinal swelling distal to 

the humeral head divides the proximal part of the dorsal side of the humerus into 

two facets. Cranially, the lateral tubercle of the humerus is slightly thickened and 

bears a subcircular depression. In some specimens, the lateral tubercle is separated 

from the humeral head by a distinct constriction (e.g., MLP 61-VIII-2-3). A dis-

tinct ridge dorsally borders the cranial side of the deltopectoral crest. This ridge 

extends somewhat distally beyond the distal base of the deltopectoral crest. The 

distal part of the caudal side of the deltopectoral crest exhibits conspicuous stria-

tions for muscle attachment.  
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Figure 5-7. Osteological structures of the forelimb elements of Herrerasaurus, based on 
PVSJ 373. A, lateral view. B, ventromedial and proximal views.  
 

As described by Sereno (1993), the distal end of the humerus has no clear in-

tercondylar pits, neither ventrally nor dorsally. However, triangular depressions 

are present in MACN 18060. Craniomedially on the distal end, there is a dis-

tomedially-oriented facet that exhibits a circular depression. This facet is dorsally 

bordered by is a distinct, oval tubercle.  

Antebrachium. Sereno (1993) described the distal parts of the forelimb (figs. 5-

8, 5-9) in high detail, leaving not much to add. Like in Eoraptor, the proximal end 

of the radius lacks a distinct caudal process. The shaft of the radius is circular in 

cross-section, and exhibits a small round tubercle on the lateral side of the proxi-

mal end. Craniomedially on the proximal part of the shaft, there is a sickle-shaped 

facet. Another oval facet is found proximally on the lateral side of the shaft. Cau-

dal to this facet, striations indicate a muscle attachment site. On the caudal border 

of the distal end, an elongate, laterally sharply bordered, peg-like tubercle serves 

for articulation with the ulna. Four small facets at the distal lateral edge of the 

radius probably indicate ligament attachment. A large tubercle is situated on the 

cranial edge of the distal end of the radius, and a second, smaller tubercle is found 

in the cranial half of the medial side of the distal expansion. 
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Figure 5-8. Reconstruction of the forearm and hand of Herrerasaurus in dorsolateral and 
proximal views, based on PVSJ 373 (mirrored).  
 

 

Figure 5-9. Reconstruction of the forearm and hand of Herrerasaurus in ventromedial 
view, based on PVSJ 373 (mirrored).  
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The proximal end of the ulna has a sigmoid medial edge. The well-developed 

olecranon process is not directly proximally, but caudoproximally oriented. A 

small triangular facet is found on the craniomedial corner of the proximal expan-

sion. The lateral process is short, stout and pyramidal in outline. Below this proc-

ess, a short ridge runs distally and slightly cranially. An oval, laterally oriented 

facet is caudodistally adjacent to the lateral process. While the medial side of the 

shaft is considerably flattened, the caudal side of the shaft is transversely convex 

and exhibits strong, proximodistally oriented striations. Craniomedially, a wide, 

concave furrow probably served for articulation with the peg-like process of the 

radius. An elongate, oval tubercle is found close to the distal expansion on the 

caudomedial edge of the shaft. Small, rugose circular facets are found medially 

and caudolaterally on the edge of the distal expansion. 

Manus. In the hand skeleton (figs. 5-8, 5-9), the radiale exhibits a smooth, tri-

angular facet on the distolateral corner of its dorsal side. A similar facet is found 

on the proximomedial corner of its ventral side. The ventral side of the ulnare has 

a large, hemispherical process that articulates in a corresponding socket on the 

radiale. Both the medial and lateral tips of the ventral ulnare bear tubercles. No 

additional observations could be made on the centrale and distal carpals. The 

proximomedial corner of the ventral side of metacarpal I exhibits a rugose, trian-

gular facet. A circular depression is found on the proximal dorsal side of this 

metacarpal. The proximal dorsolateral edges of metacarpals I, II, and III are ex-

tended to flanges that slightly overlap the succeeding metacarpal. On the proximo-

lateral corner of metacarpal IV, there is an elongate, ovoid tubercle. The distal 

ends of these metacarpals have differently formed ligament pits laterally and 

medially, the lateral ones being larger. Sereno (1993) mentioned the strong 

asymmetry of the distal end of metacarpal I, which is also medially rotated rela-

tive to the proximal expansion. In metacarpals II and III, the medial and lateral 

sides of the distal expansion are somewhat dorsally rotated. The ventral side of 

the distal expansion of metacarpal I is characterized by a wide, transversely con-

cave depression. The proximal phalanx of digit I exhibits a triangular facet proxi-

mally on its ventral face. The extensor tubercle proximally on the ungual of digit I 

is only weakly developed. As in Eoraptor, the nutritive sulci are restricted to the 

distal part of this ungual. Ventrally, the flexor tubercle has a faint, transversely 

oriented incision on its proximal face. The tubercle is separated from the proximal 

articular surface of the ungual by a weak constriction.  
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Basal theropods 

Although not in focus of this thesis, a consideration of the forelimb anatomy of 

basal theropods will help to better understand the beginnings of saurischian fore-

limb evolution, and to recognize specializations within Sauropodomorpha. There-

fore, a short summary of anatomical changes from basal dinosaurs to basal thero-

pods, coelophysoids, and ceratosaurs will follow. For a general review of basal 

theropod anatomy, see Rowe and Gauthier (1990) and Tykoski and Rowe (2004). 

More or less complete forelimbs are known from the basal-most theropod 

known, Guaibasaurus candelariensis, the coelophysoids Dilophosaurus, Coelophysis, 

Segisaurus, and Liliensternus, and the basal ceratosaur Ceratosaurus (Marsh, 1892; 

Gilmore, 1920; von Huene, 1934; Rühle von Lilienstern et al., 1952; Welles, 

1984; Colbert, 1989; Rowe, 1989; Bonaparte et al., 1999; Carrano et al., 2005; 

Bonaparte et al., 2007). Coelophysis is accepted here to include ‘Syntarsus’ rhodesien-

sis and ‘S.’ kayentakatae, following Downs (2000) and Bristowe and Raath (2004). 

Regarding the general bauplan of the pectoral girdle and forelimb, all these forms 

have in common a straight, sometimes elongate (Carrano et al., 2005) scapular 

blade with a marked distal expansion (contrasting the more straplike scapula of 

higher theropods), and a rather straight humerus (in contrast to the strongly sig-

moidal shape of later forms). 

 

Figure 5-10. Reconstruction of the shoulder girdle of Dilophosaurus wetherili, based on 
UCMP 37302. Left, lateral view; right, caudal view. The cranial and axial skeletal ele-
ments are schematically drawn. 
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Scapulocoracoid. Major modifications with respect to forms like Lewisuchus 

and Eoraptor include: a larger distal expansion of the scapula (Tykoski and Rowe, 

2004) that extends caudally beyond the caudal border of the blade; a clear differ-

entiation of the proximal scapular blade into a larger cranial and a smaller caudal 

facet; the development of a distinct acromial ridge dorsal to the ventrolateral fossa 

on the scapular head (only in Dilophosaurus and higher theropods, fig. 5-10); and a 

more cranioventral position of the biceps tubercle on the coracoid. The unusual, 

rectangular shape of the scapular blade of Dilophosaurus, which is depicted in 

Welles (1984), and often cited as an autapomorphy of this taxon (e.g., Rauhut, 

2003a; Tykoski and Rowe, 2004), is actually an artefact. Personal observation led 

to the recognition of a fault that runs obliquely through the left scapula, and dis-

places its distal end cranioproximally. In contrast, the right scapula has a form 

comparable to that of other basal theropods (fig. 5-10). A small flange on the 

proximal part of the caudal side of the blade, medially accompanied by a sickle-

shaped facet, is present in all basal forms. The ventrolateral fossa on the scapular 

head is restricted to the cranial part of the bone in Liliensternus and Dilophosaurus. 

In Dilophosaurus and higher theropods, the subglenoid fossa is not caudally, but 

caudolaterally to laterally oriented, and less clearly delimited than in more basal 

dinosaurs (Welles, 1984).  

Furculae. Furculae are known from Coelophysis and Segisaurus (Raath, 1977; 

Tykoski et al., 2002; Rauhut, 2003a; Carrano et al., 2005; Rinehart et al., 2007). 

In both genera, each clavicle has a slightly sigmoidal form and thickens ventrally 

where the right and left elements fuse. The proximal end is somewhat flattened 

and articulates with the acromion facet of the scapula (Carrano et al., 2005; Rine-

hart et al., 2007). In Segisaurus and Coelophysis kayentakatae, a distinct, striated epi-

cleidal facet is preserved (Tykoski et al., 2002; Carrano et al., 2005).  

Humerus. The humerus of Guaibasaurus is characterized by its relatively long 

deltopectoral crest that extends for the entire proximal half of the bone, resem-

bling the condition found in Eoraptor and basal sauropodomorphs (Bonaparte et 

al., 2007; see chapter 6). Other basal theropods usually have the following derived 

characters in common: the humeral head has a parallelogram-like shape in proxi-

mal view; it projects above the developmentally ventral side of the shaft; the me-

dial tuberosity is inclined caudodorsally relative to the main axis of the proximal 

expansion of the humerus; like in Eoraptor, the apex of the deltopectoral crest has 

a cranial projection beyond the cranial face of the crest; the apex is oriented in 
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parallel to the shaft axis; the proximodorsal side of the humerus is flattened; and 

the dorsal intercondylar groove is reduced, as in Herrerasaurus. Other characters 

show no clear trend, e.g., the form of the proximolateral process, the relative 

length of the deltopectoral crest and the form of its distal base. The humerus of 

Dilophosaurus exhibits a number of characters not visible in other coelophysoids, 

including a distal end that is ventrodistally deflected, forming an angle of about 

20° with the axis of the shaft. Moreover, the distal end is ventrocranially rotated 

for about 60°, relative to the main axis of the proximal expansion. In Dilophosau-

rus and Liliensternus, a large, distocaudally directed, lozenge-shaped facet is found 

on the caudal side of the ulnar condyle. The ventral intercondylar depression is 

completely lost in Dilophosaurus.  

 

Figure 5-11. Reconstruction of the forelimb of Dilophosaurus in dorsolateral view, based 
on UCMP 37302 (mirrored). Left, metacarpus in proximal view.  
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Antebrachium. The forearm elements of basal theropods are relatively short 

and stout. In contrast to Herrerasaurus, the proximal and distal expansions are 

marked. Among basal theropods, the form of the proximal articular facet and the 

grade of transverse compression of the shaft of the radius is variable. A cranial 

tubercle (‘biceps tubercle’, see Discussion below) is usually present. Coelophysis is 

unique in exhibiting no tubercle for articulation with the ulna on the distal part of 

the shaft, and having the distal end of the radius only slightly expanded (see also 

Colbert, 1989). In Dilophosaurus, the medial edge of the distal expansion bears a 

projecting shelf.  

An elongate cranial process characterizes the proximal end of the ulna of basal 

theropods. Usually, the lateral process of the proximal end is reduced in size and 

has a three-sided pyramidal outline. In addition, the proximal articular surface is 

strongly concave, and a distinct olecranon process is present. However, this latter 

feature could not be found in Guaibasaurus (Bonaparte et al., 2007). Ceratosaurus 

exhibits a deviant morphology, with a robustly rounded and caudally placed lat-

eral process, an articular surface that is convex in its cranial part, and the absence 

of an ossified olecranon process (instead, there is a rugose swelling that probably 

formed the base for a cartilaginous expansion; see Gilmore, 1920:fig. 59). Coelo-

physis is specialized in having a prominent cranial expansion of the distal articular 

end. 

Manus. Relatively complete hands are preserved in Guaibasaurus, Coelophysis, 

Dilophosaurus, and Ceratosaurus (Marsh, 1892; Gilmore, 1920; Galton, 1971b; 

Raath, 1977; Welles, 1984; Colbert, 1989; Bonaparte et al., 2007). Like Her-

rerasaurus, all these taxa exhibit four phalanx-bearing digits, but no vestigal meta-

carpal V could by identified. Usually, basal theropods have a relatively conserva-

tive carpus that preserves radiale, ulnare, intermedium (not found in Coelophysis), 

and three distal carpals capping the metacarpals (Galton, 1971b; Welles, 1984; 

Colbert, 1989). The first distal carpal is enlarged and overlaps the proximal ends 

of metacarpals I and II (Rauhut, 2003a). No carpals are ossified in Ceratosaurus 

(Gilmore, 1920). The phalangeal formula counts 2-3-4-1 in Coelophysis and Dilo-

phosaurus (and possibly also in Guaibasaurus; Bonaparte et al., 2007), but is un-

known for Ceratosaurus where only phalanges II.1, III.1, and IV.1 are preserved. 

Following characters are shared by all basal theropods: metacarpal I is only half 

as long as metacarpal II, the proximal end of metacarpal I has a trapezoid shape, 

the metacarpals have asymmetric distal articular condyles (the asymmetry is re-

duced in metacarpal III of Dilophosaurus and lost in the same element of Ceratosau-
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rus), deep extensor grooves are present distally on the dorsal side of the metacar-

pals, the shaft of metacarpal III is significantly more slender than that of metacar-

pal II, accompanied by a digit III that is shorter than digit II (Rauhut, 2003a), and 

the unguals have a relatively low curvature. Other details of the hand anatomy 

vary: Metacarpal I and digit I are most robust in Dilophosaurus, but weaker than 

metacarpal II and digit II in Coelophysis. The first metacarpal and digit are consid-

erably reduced in Ceratosaurus. The size of the ligament pits varies interspecifically 

and from digit to digit. Coelophysis exhibits elongate penultimate phalanges, but 

this character is only weakly developed in Dilophosaurus. 

 

Basal ornithischians 

Ornithischians have not been included in this study, but the early evolution of 

locomotion in these animals is a worthwhile question for future research. Recent 

phylogenetic studies suggest that heterodontosaurids are the basal-most ornithis-

chians known (Butler et al., 2007a,b). The postcranial anatomy of Heterodontosau-

rus has been described in detail by Santa Luca (1980), and was reviewed by Wei-

shampel and Witmer (1990) and Norman et al. (2004). Based on these works, the 

forelimb anatomy of this form will shortly be summarized below, in order to as-

sess the observations in basal saurischians described above in a larger context. 

Implications for trends in dinosaurian forelimb evolution will be discussed in 

length in chapter 9. 

Scapulocoracoid. The scapular blade is elongate and slightly expands distally, 

exhibiting a knob-like process caudally. As in other basal dinosaurs, the rugose 

distal end indicates the presence of a cartilaginous suprascapula. The cranial edge 

of the blade is slightly concave, while the caudal edge is straight over most of its 

length. A distinct tubercle for the origin of M. triceps brachii caput scapulare is 

located dorsocaudally to the glenoid on the lateral face of the scapular head. The 

wide glenoid is primarily caudoventrally oriented. Ventrally to the glenoid, an 

ovoid tubercle for the attachment of M. biceps brachii projects from the coracoid. 

Scapula and coracoid are firmly fused. Moreover, Santa Luca (1980) reported the 

presence of a sternal plate. 

Humerus. The humerus of Heterodontosaurus is relatively robust and has an un-

twisted shaft, leading to parallel axes of the proximal and distal ends. The medial 

tuberosity is enlarged. The cranioventrally directed deltopectoral crest is large, 

strong and extends over 40% of the total length of the humerus. Its distal base 

ends abruptly, standing perpendicular to the shaft. Distocaudally, a prominent 
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entepicondyle projects over the surface of the shaft. The ectepicondyle has the 

form of a ridge that proximally projects from the rim of the radial condyle. The 

asymmetrical distal condyles do not extend onto the dorsal side of the humerus, 

and a distinct intercondylar fossa is missing on this side. The ulnar condyle 

reaches somewhat more distally than the radial condyle. Both condyles are rela-

tively large and considerably extend onto the developmentally ventral side of the 

humerus. There is no intercondylar depression on the dorsal side of the humerus, 

although the ulna bears a well-developed olecranon process.  

 

Figure 5-12. Antebrachium and manus of Heterodontosaurus tucki in dorsolateral view. 
Redrawn after Santa Luca (1980).  
 

Antebrachium. The radius of Heterodontosaurus is relatively long, attaining 70% 

of the length of the humerus. The subcircular proximal end bears a proximome-

dially projecting process caudally and a tuberculous swelling laterally. Caudally 

on the distal end, there is a tubercle for articulation with the ulna (Weishampel 

and Witmer [1990] assumed this tubercle to have served for muscle attachment). 
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Relative to the proximal ends, the distal ends of both radius and ulna are medially 

rotated. 

The ulna has a prominent olecranon process. The caudal face of this process is 

thickened and striated. A distinct intermuscular crest that runs obliquely in disto-

lateral direction is found on the proximal two thirds of the lateral side of the shaft. 

This crest separates two attachment sites of antebrachial musculature (see below).  

Manus. Heterodontosaurus has an especially plesiomorphic carpus that com-

prises nine elements, including ulnare (probably fused with the intermedium), 

radiale, pisiform, centrale, and distal carpals I–V (fig. 5-12). The pisiform articu-

lates with the distal end of the ulna and the ulnare. The hand is relatively large, 

surpassing radius and ulna in length and reaching almost the length of the hume-

rus. The proximal articular surfaces of metacarpals I and II are extended onto the 

dorsal surface of the shaft, indicating the possibility of strong extension of the 

manus. Metacarpal I is asymmetric, with a twisted and more distally projecting 

lateral distal condyle. The distal ends of metacarpals I–III bear deep extensor pits. 

As in other basal dinosaurs, digits IV and V are reduced in size. The phalangeal 

formula of Heterodontosaurus counts 2-3-4-3-2. The phalangeal joints of digits I–III 

are asymmetric, causing medial deviation during extension and lateral deviation 

during flexion. The unguals are large and bear prominent flexor tubercles, unlike 

those of other ornithischians.  

 

 

Muscle reconstructions 

Based on phylogenetic inference made possible by a study of extant reptilian 

forelimb musculature (chapter 3), and by comparison to Euparkeria and Lewisuchus 

(chapter 4), muscle attachment sites are reconstructed here for Eoraptor, Her-

rerasaurus, and Dilophosaurus. Among basal theropods, the latter taxon is best pre-

served, and its anatomy is regarded here as representative for basal theropods with 

unreduced arms and hands. The general configuration of the forelimb muscula-

ture in these forms is similar to that of basal dinosauriforms, but there are some 

important differences. However, due to imperfect preservation (especially in 

Eoraptor), some inferences have to remain ambiguous. 

Scapulocoracoid (fig. 5-13). In Eoraptor, the caudal part of the scapular blade 

exhibits no facet for M. teres major. Cranioproximally on the blade, the large tri-

angular depression seems to be homologous with the sickle-shaped facet for M. 

cucullaris of basal dinosauriforms. Hence, the area of insertion of this muscle is 
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relatively enlarged in Eoraptor. However, this narrows down the room for the ori-

gins of Mm. scapulohumerales, implying a more proximodistal than craniocaudal 

configuration of these muscles. A second possibility is a shift of the origin of M. 

scapulohumeralis caudalis towards the caudal edge of the blade. The poor state of 

preservation of the base of the scapular blade does not allow for definite conclu-

sions here. The differentiation of the ventrolateral fossa on the scapular head into 

two distinct areas is a new character that may reflect a separation of M. supra-

coracoideus pars scapularis into two individual heads. The remaining muscle at-

tachments resemble Lewisuchus, however with a relatively small and more crani-

ally placed tubercle for the origin of M. biceps brachii on the coracoid, and a more 

laterally placed tubercle for the origin of M. triceps brachii caput scapulare on the 

scapula. Since no caudal flange on the scapular blade could be recognized, no 

Ligamentum sternoscapulare internum is reconstructed. However, given the 

phylogenetic position of Eoraptor, this ligament probably was also present in this 

form. 

 

Figure 5-13. Reconstructions of the muscular attachments on the scapulocoracoid in Her-
rerasaurus (A), Eoraptor (B), and Dilophosaurus (C). Above, lateral view; below, medial 
view. Not to scale. For explanations see text. 
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The unusual form of the scapular blade of Herrerasaurus reflects a strong modi-

fication of the attaching musculature. The area for attachment of M. deltoideus 

scapularis has significantly shrunk. Moreover, the fossa for the origin of M. sub-

scapularis on the medial side has shifted onto the scapular head, somewhat caudal 

to the acromial region (fig. 5-13). However, the osteological correlates of Mm. 

serrati and M. subcoracoideus on the scapula remain in a configuration similar to 

that of Lewisuchus. Like in Eoraptor, the area caudal to the facet for M. cucullaris 

on the lateral side of the proximal blade is very narrow. This implies a proxi-

modistal configuration of the two Mm. scapulohumerales, under the assumption 

that both muscles preserved their independence. The subdivision of the fossa for 

M. supracoracoideus on the scapular head resembles Eoraptor, too, and may indi-

cate a differentiation of this muscle into two individual heads. The enormous sub-

glenoid fossa implies an unusually well developed M. costocoracoideus. The posi-

tion and size of the biceps tubercle on the coracoid is, like in Eoraptor, more crani-

ally placed than in the basal forms. The configuration of the sternoscapular liga-

ment resembles Lewisuchus, and therefore implies a similar origin of M. triceps 

brachii caput coracoscapulare. 

In Dilophosaurus, the clear differentiation of the lateral side of the scapular 

blade probably indicates the presence of a M. teres major. The configuration of 

the remaining muscles appears conservative, and closely resembles Lewisuchus: 

The sickle-shaped facet on the proximocranial scapular blade correlates to the 

attachment of M. cucullaris. The proximal quarter of the lateral side of the blade 

would have been shared by Mm. scapulohumerales, pars cranialis cranially and 

pars caudalis caudally. Differences are the exceptionally strong development of 

the tubercle for the origin of M. triceps brachii caput scapulare on the scapula, and 

of the tubercle correlating to the origin of M. biceps brachii on the coracoid. 

Lastly, the reduction of the subglenoid fossa is also a derived character. 

Humerus (fig. 5-14). As for the scapulocoracoid, the relatively poor preserva-

tion of the bone surface in Eoraptor hampers the delimitation of muscle attach-

ment sites. The flattened area proximoventrally on the humerus, caudal to the 

deltopectoral crest, probably served for the attachment of M. coracobrachialis, like 

in other tetrapods. The differentiation of the apex of the deltopectoral crest into a 

proximal and a distal facet may correlate to the differentiation of the fossa for M. 

supracoracoideus on the scapula. However, phylogenetic inference leaves the 

question unresolved what part of M. supracoracoideus inserted on which facet of 

the apex. The remaining muscles are reconstructed according to their phyloge-
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netically inferred position, but no unambiguous osteological correlates allow for 

their exact delimitation. This is especially true for the (expectedly) tendinous ori-

gins of the entepicondylar muscles. The caudodistal facet of the humerus, next to 

the ulnar condyle, is assumed here to have served for the origin of M. flexor digi-

torum longus (see also chapter 6). However, there are also other possibilities, e.g. 

a correlation of this structure with the origin of M. entepicondylo-ulnaris.  

 

Figure 5-14. Reconstructions of the muscular attachments on the humerus of Herrerasaurus 
(A; left, ventral view; right, dorsal view), Eoraptor (B; left, ventral view; right, caudal 
view), and Dilophosaurus (C; from left to right, ventral, caudal, dorsal, and cranial views). 
Not to scale. For explanations see text. 
 

Herrerasaurus is characterized by the unusual shape of the medial tuberosity, 

which nevertheless served for the insertion of M. subcoracoscapularis, as in other 

archosaurs. On the dorsal side of the humerus, the clearly delimited facets on both 

sides of the humeral head probably indicate the attachment sites of Mm. scapulo-
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humerales, like in Euparkeria. Distally to these facets, the relatively small, round 

scar marks the insertion of M. latissimus dorsi. Cranially, the swelling proximal to 

the deltopectoral crest probably correlates to the insertion of M. deltoideus scapu-

laris, while M. deltoideus clavicularis inserted on the cranial side of the crest. The 

distinct ridge between the crest and the dorsal side of the humerus marks the latter 

attachment. The differentiation of the elongate shaft into a dorsocranial and a 

caudal facet reflects the origins of M. triceps brachii caput humerale laterale and 

caput humerale mediale, respectively. There is no clear indication for M. humero-

radialis on the humerus, but the rugose tubercle proximolaterally on the radius 

that probably correlates to the insertion of this muscle (chapters 3, 4; fig. 5-15), 

strongly speaks for its presence in Herrerasaurus. On the ventral side, the strong 

striations on the caudal side of the deltopectoral crest indicate the insertion of M. 

pectoralis. More distally, the ventral shaft probably served for the origin of M. 

brachialis, like in other archosaurs. The enlarged entepicondyle provides much 

room for the origins of M. pronator teres and M. entepicondylo-ulnaris. Moreo-

ver, the distocaudal facet of the humerus is enlarged relative to Eoraptor, possibly 

indicating a stronger developed tendon of origin of M. flexor digitorum longus. 

Other epicondylar muscles have no unambiguous osteological correlates and are 

reconstructed in a generalized reptilian pattern. 

Considering muscle attachment sites, the humerus of Dilophosaurus is not sig-

nificantly different from basal saurischians. The most marked exemption is the 

enlargement of the caudodistal facet, probably indicating an even stronger devel-

opment of M. flexor digitorum longus. In addition, the scar for the insertion of M. 

latissimus dorsi and M. teres major on the dorsal side of the shaft cannot be rec-

ognized, and may have been only weakly developed. 

Antebrachium (figs. 5-15, 5-16). The inferred sites of muscular attachment on 

the radius are similar in Eoraptor, Herrerasaurus, and Dilophosaurus (fig. 5-15). The 

medial side is more or less clearly differentiated into a cranial and a caudal facet, 

the former serving for the attachment of M. pronator teres, the latter for that of M. 

pronator quadratus. On the lateral site, there is a similar differentiation, reflecting 

the attachment sites of M. supinator cranially, M. supinator manus caudally, and 

M. abductor radialis caudoproximally.  
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Figure 5-15. Reconstructions of the muscular attachments on the radius of Herrerasaurus 
(A), Eoraptor (B), and Dilophosaurus (C). From left to right, medial, cranial, lateral, and 
caudal views. Not to scale. For explanations see text. 

 

The large tubercle cranial on the radius has usually been interpreted as the site 

of insertion of M. biceps brachii (e.g., Smith and Carpenter, 1990; Sereno, 1993). 

The proximolateral tubercle consequently served for the insertion of M. humero-

radialis. In Eoraptor, a tubercle resembling the ‘biceps tubercle’ of the other forms 
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is placed far too distally to make a realistic site of insertion of this muscle (com-

pare fig. 5-23; Discussion). If this tubercle were homologous to the ‘biceps tuber-

cle’, an alternative muscle configuration would be necessary. One possibility is 

that the strong connection between M. brachialis and M. biceps brachii was given 

up in basal saurischians, making a more distal insertion of M. brachialis on the 

antebrachium possible, while M. biceps brachii kept its plesiomorphic insertion 

cranioproximally on radius and ulna (fig. 5-24). A second option would be that 

M. humeroradialis shifted its insertion distally and attached to the tubercle under 

consideration, but again the position of this tubercle in Eoraptor would produce an 

unrealistic line of action (see Discussion below). 

 

Figure 5-16. Reconstructions of the muscular attachments on the ulna of Herrerasaurus 
(A), Eoraptor (B), and Dilophosaurus (C). From left to right, medial, cranial, lateral, and 
caudal views. Not to scale. For explanations see text. 
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The ulnae (fig. 5-16) of basal saurischians have comparable myological pat-

terns, but differences are more marked than in the radius. The swelling at the tip 

of the cranial process probably served for insertion of the M. biceps brachii / M. 

brachialis system (but see Discussion below), while the strongly striated facet on 

the caudoproximal side indicates the attachment of the M. triceps brachii com-

plex. The depression or facet proximally on the medial shaft marks the origin of 

M. pronator quadratus; this correlate is somewhat reduced in size in Herrerasaurus. 

The distomedial facet probably served for the origin of the ulnar head of M. flexor 

digitorum longus, while the striated caudal side of the shaft indicates the insertion 

of M. entepicondylo-ulnaris. However, the latter two muscles have no unambigu-

ous osteological correlates (chapter 3), rendering their delimitation somewhat 

speculative. An intermuscular crest subdivides the lateral side of the ulna, separat-

ing M. entepicondylo-ulnaris caudally and M. ectepicondylo-ulnaris cranially. 

The cranial edge of the radius probably served for the radial origin of M. supina-

tor manus. In Dilophosaurus, the subtriangular depression cranioproximally on the 

lateral side may indicate a proximal extension of this latter muscle (fig. 5-16C).  

Manus. In the proximal carpus, tubercles dorsomedially on the ulnare and dor-

solaterally on the radiale probably indicate the insertion of M. extensor carpi ra-

dialis and M. extensor carpi ulnaris, respectively. The facet proximomedially on 

the ventral side of the ulnare marks the insertion of M. pronator quadratus. Dis-

tally to this facet, a small depression possibly indicates the origin of M. abductor 

pollicis brevis. The pisiforme, if preserved, correlates to the attachment of M. 

flexor carpi ulnaris. The proximolateral flanges of the metacarpals are interpreted 

here as sites of insertion of the tendons of M. extensor digitorum communis. Like 

in other Reptilia, the depressions on the dorsal side of the metacarpals represent 

the origin of Mm. extensores digitorum profundi, while similar depressions on the 

ventral side correlate with the origin of Mm. flexores digitorum profundi (chapter 

3). The extensor tubercles of the phalanges most likely connected to the shared 

tendons of Mm. extensores digitorum superficiales and Mm. extensores digitorum 

profundi. The origins of the Mm. extensores digitorum superficiales probably 

were located on the carpus, but their exact pattern is a matter of speculation. The 

ungual flexor tubercles correlate with the insertions of the tendons of M. flexor 

digitorum longus. Based on phylogenetic inference, there was probably also a M. 

flexor digitorum superficialis that arose from a palmar aponeurosis and inserted 

on the phalangeal flexor tubercles (chapter 3). However, the exact configuration 

of such a muscle has to remain speculative. Since Mm. interossei and Mm. lum-

bricales lack unambiguous correlates, and phylogenetic inference of the basal ar-
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chosaurian pattern is also difficult in this case (chapter 3), no attempt to recon-

struct these muscles is made here.  

 

 

Figure 5-17. Reconstruction of the skeletomuscular system of the shoulder girdle of Eorap-
tor (superficial part) in lateral view. Muscles are depicted by their estimated lines of action, 
providing a gross idea of the function of each muscle. 
 

 

Figure 5-18. Reconstruction of the skeletomuscular system of the shoulder girdle of Eorap-
tor in ventral view. Muscles are depicted by their estimated lines of action, providing a 
gross idea of the function of each muscle. 
 
 
 



192 Sauropodomorph forelimb evolution REMES 

 

 

Figure 5-19. Reconstruction of the skeletomuscular system of the shoulder girdle of Her-
rerasaurus (superficial part) in lateral view. Muscles are depicted by their estimated lines of 
action, providing a gross idea of the function of each muscle. 
 

 

 

 

Figure 5-20. Reconstruction of the skeletomuscular system of the shoulder girdle of Her-
rerasaurus (deep part) in lateral view. Muscles are depicted by their estimated lines of ac-
tion, providing a gross idea of the function of each muscle. 
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Figure 5-21. Reconstruction of the skeletomuscular system of the shoulder girdle of Dilo-
phosaurus (superficial part) in lateral view. Muscles are depicted by their estimated lines of 
action, providing a gross idea of the function of each muscle. 
 

 

Figure 5-22. Reconstruction of the skeletomuscular system of the shoulder girdle of Dilo-
phosaurus (deep part) in lateral view. Muscles are depicted by their estimated lines of ac-
tion, providing a gross idea of the function of each muscle. 
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Discussion 

Shoulder region 

Reconstructions of the skeletomuscular systems of the shoulder region of 

Eoraptor, Herrerasaurus, and Dilophosaurus (figs. 5-17 to 5-22) exhibit a relatively 

high grade of correspondence among these forms, despite the deviant morphology 

of the scapular blade in Herrerasaurus. To maintain effective lines of action for M. 

levator scapulae and M. cucullaris, the scapular blade has to be inclined 60–70° 

against the horizontal in all three genera. The Mm. serrati would be anchored 

primarily on the first 3–4 dorsal ribs. In Herrerasaurus, the main difference to other 

basal dinosaurs is the position of M. subscapularis. The cranioventral shift of its 

origin relative to the pivot it acts on (the shoulder articulation) causes a change in 

function: Instead of assisting in retraction of a subhorizontally oriented humerus 

(the plesiomorphic function), the novel course leads to an outward rotation of the 

humerus around its long axis when the muscle contracts. In combination with 

protraction, this would bring the hands into a position more suitable for grasping, 

despite the caudolateral orientation of the glenoid (see also the following para-

graph). Theropods like Dilophosaurus lack this adaptation because they developed 

a different solution: M. subscapularis kept its plesiomorphic position medially on 

the scapular blade, but the glenoid is reoriented caudalwards, rendering the mus-

cle an adductor instead of a retractor. The reduction of the scapular blade in Her-

rerasaurus actually may be a direct consequence of the shift of M. subscapularis. 

The course of M. deltoideus clavicularis is hard to reconstruct in the three genera 

considered here, since no clavicles are preserved. However, Dilophosaurus most 

likely had a wide V-like furcula (as known from coelophysoids and basal teta-

nurans) that did not extend far cranioventrally. Under consideration of the form 

of the scapulocoracoid, the line of action of M. deltoideus clavicularis appears 

therefore to be more vertically oriented than in more basal forms, probably corre-

lating to a more vertically held humerus (see below). The remaining muscles do 

not show many modifications relative to Lewisuchus (see chapter 4). This combina-

tion probably allowed for a high grade of movement variability, including protrac-

tion and retraction when the humerus was more or less strongly abducted from 

the parasagittal plane. 

In addition to the reduced scapular blade of Herrerasaurus, the most marked os-

teological differences among the taxa examined here can be observed in the 

humerus. These include variable grades of overall robustness, and differing 

lengths of the deltopectoral crest. The relatively longest crests (with up to 50% 
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humerus length) are found in the basal forms, Guaibasaurus (Bonaparte et al., 

2007) and Eoraptor. The proximal humeral expansion exhibits additional differ-

ences: In Eoraptor, the craniocaudally wide but dorsoventrally narrow humeral 

head lacks an extension onto the ventral side of the shaft, and is therefore best 

suited for rotational movements in (developmentally) craniocaudal, but not dor-

soventral directions. In combination with the wide, caudolaterally opening gle-

noid, this form implies a relatively great flexibility in the movements of the hume-

rus, but excludes an upright, parasagittal swinging. The same conclusions apply 

also to Herrerasaurus. In Dilophosaurus, the combination of a large, vaulted humeral 

head that extends both on the developmentally ventral and dorsal sides of the 

humerus, with a more caudally directed glenoid that has an enlarged scapular 

portion and a reduced coracoidal portion, implies a humeral neutral position with 

a more cranially oriented deltopectoral crest. Moreover, this would create the 

possibility to retract the humerus relatively far, in a near-parasagittal plane. The 

forward deflection of the distal end, as well as the caudal inclination of the medial 

tuberosity relative to the main axis of the proximal end, may also correlate to this 

alternate posture of the humerus. In addition, a more vertical position of the 

humerus apparently led to a reduction of the size of the deltopectoral crest. This 

may be explained by the resulting new function of M. latissimus dorsi / M. teres 

major and Mm. scapulohumerales in retracting the humerus, which probably led 

to a loss of importance of M. pectoralis.  

Arm 

The most significant differences among the brachial skeletomuscular systems 

of the taxa examined here are found in the distal humerus, and much less so in the 

forearm. The widely spaced distal condyli of the humerus in Eoraptor indicate that 

ulna and radius could easily be rotated against each other, while the narrow, 

compressed distal articulation in Dilophosaurus probably caused less flexibility in 

this joint. In Eoraptor and Herrerasaurus, the ulnar condyle is significantly larger 

than the corresponding cotyle of the ulna, also indicating good rotational capabili-

ties. In Eoraptor, both condyli are not oriented in parallel, but form a ventrally 

concave arc. In contrast, Herrerasaurus exhibits a ventrally convex arc. The result-

ing rotational axes of the articular surfaces would have supported pronation of the 

hand in Eoraptor, but supination in Herrerasaurus.  

Another prominent difference is the presence of a large intercondylar pit on the 

developmentally ventral side of the humerus of Eoraptor. Such a pronounced pit is 

lacking in herrerasaurids and theropods, but is present in Euparkeria (chapter 4) 
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and basal sauropodomorphs (chapter 6). Like in living tetrapods, the ventral inter-

condylar pit was covered by the articular capsule and stored synovial fluid (see 

Gardner, 1950; MacConnaill, 1950). Probably, a great amount of synovial fluid 

was needed to be stored within the capsule when changing compressive loads 

acted on the joint and pressed the fluid out of the cartilage (weeping lubrication: 

McCutchen, 1983; Myers, 1983). Compressive loads would occur if the limb was 

used for locomotion, but not during grasping movements. Since a parasagittal 

posture of the humerus can be excluded (see above), the presence of a ventral in-

tercondylar pit may be interpreted as evidence for facultative quadrupedal loco-

motion in Eoraptor, with the humerus held in a semi-erect posture. In turn, the 

reduction of this depression in Herrerasaurus and theropods correlates to obligate 

bipedalism. 

 

 

Figure 5-23. Reconstruction of the skeletomuscular system of the arm of Herrerasaurus in 
dorsolateral (left) and ventromedial (right) views. Muscles are depicted by their estimated 
lines of action, providing a gross idea of the function of each muscle. 
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Figure 5-24. Alternative reconstruction of the M. biceps brachii / M. brachialis system in 
Herrerasaurus. For explanations see text.  

 

As mentioned above, differences in the antebrachium mainly pertain to varying 

positions of the ‘biceps tubercle’ of the radius. Assuming that M. biceps brachii 

indeed inserted on this tubercle, the resulting line of action would run far cranial 

to the humerus, producing an unrealistic gap between muscle and bone. Since M. 

biceps brachii is a two-joint muscle, its effectiveness in flexing the forearm may 

actually have been reduced by such a configuration (see also Bock, 1968): Con-

traction of M. biceps brachii would have caused the humerus to rotate caudally, 

depending on the angle of humeral abduction. Moreover, a distal placement of the 

insertion of M. biceps brachii would make an extraordinary elongation of this 

muscle necessary during forearm extension. These problems are avoided if the M. 

biceps brachii / M. brachialis system is reconstructed similar to other non-avian 

reptiles, with both muscles fusing distally, then splitting again to attach by tendons 

cranially to both ulna and radius (figs. 5-23, 5-25). In this case, the distal shift of 

the tubercle on the radius would make both muscles to cause not only flexion of 

the elbow joint during contraction, but also to pronate the hand. However, such a 
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construction appears not to be very effective. The alternative model proposed 

above (fig. 5-24), with separated M. biceps brachii and M. brachialis (the latter 

inserting alone on the radial tubercle) would provide efficient lines of action for 

both muscles: M. biceps brachii remains the primary flexor of the antebrachium 

and avoids undesirable movements of the humerus by running in parallel to the 

humeral shaft axis, while M. brachialis becomes a strong pronator of the hand. 

Assuming that Eoraptor was capable of quadrupedal locomotion (see above), the 

distal position of the radial tubercle in this taxon consequently might have al-

lowed for full pronation of the hand, in order to place it firmly on the ground. 

However, such a system would be a novelty not known from any living reptile 

(chapter 3). Therefore, quantitative biomechanical analyses and computer models 

(which are beyond the scope of the present work) are the only way to assess if the 

model proposed here might be a realistic option. Future research in this direction 

will probably lead to a more complete understanding of forearm functions of early 

dinosaurs. 

 

Figure 5-25. Reconstruction of the skeletomuscular system of the arm of Dilophosaurus in 
dorsolateral view. Muscles are depicted by their estimated lines of action, giving a gross 
idea of the function of each muscle. 
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Regarding the ulna, it is interesting to note that Eoraptor (and also Guaibasau-

rus) apparently lack a distinct olecranon process, while this feature is pronounced 

in Herrerasaurus and basal eutheropods. The olecranon process is a lever that trans-

fers pulling forces of the M. triceps brachii complex onto the ulna. Possibly, its 

prominence in these early bipedal predators allowed for more effective raking 

movements by forceful extension of the forearm.  

 

Manus 

The inference of facultative quadrupedalism in Eoraptor from humeral and 

antebrachial morphology (see above) is also supported by the anatomy of the 

hand. Concluding from the presence of ligament pits, metacarpal IV probably 

articulated with a fully developed proximal phalanx. Given the phylogenetic posi-

tion of Eoraptor as the sister taxon to Sauropodomorpha + Theropoda (Langer, 

2004; Langer and Benton, 2006), it is likely that this form possessed at least two 

phalanges in digit IV, like many basal sauropodomorphs. The medial rotation of 

the distal end of metacarpal IV may have helped to place the digit on the ground 

during quadrupedal locomotion, but without data about the morphology of the 

phalanges of digit IV, this assessment is rather speculative.  

 

Figure 5-26. Reconstruction of the intrinsic muscles of the hand of Eoraptor in dorsal view. 
Muscles are depicted by their estimated lines of action, giving a gross idea of the function 
of each muscle. 
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Extensor pits on the distal ends of the metacarpals are present in all early dino-

saurs (including heterodontosaurids), but their strong development in theropods 

like Dilophosaurus obviously is related to an increased capability of digital hyperex-

tension (Galton, 1971b; Raath, 1977; see also Carpenter, 2002). In Eoraptor, the 

form of the unguals is generalized: they appear neither especially adapted to pre-

dation nor to locomotion. In contrast, the elongate, strongly recurved unguals of 

Herrerasaurus and Dilophosaurus demonstrate adaptations for grasping and raking 

in these taxa (Welles, 1984; Sereno, 1993). The elongation of the digits and reduc-

tion of the outer fingers in these predatory forms supports such an interpretation 

of manus function. 

 

Figure 5-27. Reconstruction of the forearm muscles acting on the hand of Herrerasaurus in 
dorsal (left) and ventral (right) views. Muscles are depicted by their estimated lines of ac-
tion, giving a gross idea of the function of each muscle. 
 

Despite these osteological novelties, the inferred muscular system of the hand 

exhibits no obvious modifications of the plesiomorphic pattern (figs. 5-26, 5-27, 5-

28). Where observable, the insertions of the epicondylar extensors and flexors on 
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the carpus are conservative. The same is true for the configuration of the intrinsic 

extensors and flexors of the hands of Eoraptor, Herrerasaurus, and Dilophosaurus. 

Possible specializations of the intrinsic abductors and adductors that may be re-

lated to the asymmetry of digit I cannot be recognized, due to the lack of unam-

bigous osteological correlates (chapter 3). 

 

Figure 5-28. Reconstruction of the intrinsic hand muscles of Herrerasaurus in dorsal (left) 
and ventral (right) views. Muscles are depicted by their estimated lines of action, giving a 
gross idea of the function of each muscle. 
 

 

Body proportions 

Measurements of limb element and trunk lengths of several basal dinosaurian 

taxa are summarized in table 1. In Herrerasaurus, Guaibasaurus, and Liliensternus, 

the trunk length estimate is based on the preserved dorsal vertebrae. This was also 

done for Eoraptor, but due to the state of preservation of PVSJ 512, the number of 

dorsal vertebrae cannot be assessed reliably. The observable dorsal centra measure 

about 22 mm in length. Assuming there were 15 dorsal vertebrae as in other basal 

dinosaurs, the original trunk length may have been around 340 mm. The lengths 

of the forelimb elements of Guaibasaurus were calculated based on the proportions 

of the newly found specimen published by Bonaparte et al. (2007). 
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Taxon DVL SL HL RL MC3L FL TL MT3L 

Eoraptor 340* 81 84 60 21 156 160 77 

Herrerasaurus 560* 273 175* 153 57 345 315 165 

Guaibasaurus 470* 128 110* 67* 27* 214 212 95 

Liliensternus 650* 300 205 150 68 420 400 220 

Dilophosaurus 896 331 283 283 98 557 553 300 

Heterodontosaurus 172 86 83 58 22 112 145 68 

 

Table 1. Morphometric measurements of several basal dinosaurs. All values are given in 
mm. Abbreviations: DVL, length of dorsal vertebral column; SL, scapula length; HL, 
humerus length; RL, radius length; MC3L, length of metacarpal III; FL, femur length; 
TL, tibia length; MT3L, length of metatarsal III. Asterisks (*) indicate extrapolations that 
were necessary because of incomplete preservation. 
 

Based on these values, general body and limb proportions are calculated and 

listed in table 2. It becomes evident that among basal saurischians, Eoraptor has an 

unusually large humerus in relation to the scapula, and a hind limb to trunk 

length ratio well below that of herrerasaurids and eutheropods. According to em-

pirical observations made first by Galton (1976a), a value of this ratio above 1.2 is 

indicative for obligate bipedalism, while values below 0.9 are found in obligate 

quadrupeds. Like many basal sauropodomorphs (Galton, 1976a), Eoraptor and 

Guaibasaurus range between these values. Hence, body proportions independently 

support the interpretation that Eoraptor, and possibly also Guaibasaurus, were ca-

pable of facultative quadrupedalism.  

 

Taxon FLL HLL HL/SL FLL/HLL HLL/DVL 

Eoraptor 165 393 1.04 0.42 1.15 

Herrerasaurus 385 825 0.64 0.47 1.47 

Guaibasaurus 204 523 0.86 0.39 1.12 

Liliensternus 655 1040 0.68 0.63 1.59 

Dilophosaurus 664 1410 0.85 0.47 1.56 

Heterodontosaurus 163 325 0.97 0.50 1.89 

 

Table 2. Limb and trunk proportions in basal dinosaurs. Abbreviations: FLL, total fore-
limb length (= combined lengths of humerus, radius, and metacarpal III); HLL, total hind 
limb length (= combined lengths of femur, tibia, and metatarsal III); HL/SL, humerus to 
scapula length; FLL/HLL, forelimb to hind limb length; DVL/HLL, trunk to hind limb 
length. 
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Conclusions 

Although phylogenetically more closely related to Theropoda and Sauro-

podomorpha than Herrerasaurus (Langer, 2004; Langer and Benton, 2006; fig. 5-1), 

Eoraptor exhibits a much more plesiomorphic bauplan of the pectoral girdle and 

forelimb, closely resembling Lewisuchus where comparisons can be made. Both 

osteologically and myologically, the forelimb anatomy of Eoraptor shows adapta-

tions suited for quadrupedal locomotion. These characters are plesiomorphic, and 

not secondarily acquired. However, the elongate hindlimbs and dorsoventrally 

high torso (as demonstrated by the shape of the pectoral girdle) inherited from 

forms like Lewisuchus are indicative for cursorial abilities. Naturally, the preferred 

mode of locomotion of Eoraptor in life is a matter of behavior, and cannot be in-

ferred from anatomy alone.  

As demonstrated by the totally different solutions for protracting and supinat-

ing the hands in Herrerasaurus and theropods such as Dilophosaurus, it is most 

probable that herrerasaurids acquired obligate bipedality independently. It can be 

confirmed that this group constitutes a highly specialized branch of early dino-

saurs that has no tight relations to any other dinosaurian clade (Holtz, 1995a; 

Langer, 2004; Langer and Benton, 2006). Therefore, evolutionary transformations 

of the hind limbs and forelimbs of early dinosaurs have been independent proc-

esses (see also chapter 9). All neotheropods are obligate bipeds with grasping ad-

aptations in the arm and hand, but basal theropods preserve a conservative, dino-

sauriform-like pectoral girdle.  
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6 The pectoral girdle and forelimb of basal sauro-

podomorphs: Anatomy and functional interpretation 

 

Introduction 

As has been shown in the previous chapter, the hypothesis of an obligate bi-

pedal ancestor of all dinosaurs (Sereno, 1991, 1997) is seriously questioned by a 

thorough study of the anatomy of the basal saurischian Eoraptor lunensis. Propor-

tions and hind limb anatomy (Langer, 2004; Fechner, in prep.) are compatible 

with facultative quadrupedalism. Moreover, the relatively plesiomorphic forelimb 

anatomy exhibits adaptations to locomotion, but not to grasping as would be ex-

pected for obligate bipeds. Recent discoveries of the basal-most theropod known, 

Guaibasaurus candelariensis (Bonaparte et al., 2007), imply that facultative quadru-

pedalism may still have been possible at the root of the predatory dinosaurs (chap-

ter 5). Since both the sister taxon and the outgroup to Sauropodomorpha are 

originally no obligate bipeds, the question for the ancestral forelimb bauplan and 

type of locomotion in sauropodomorphs is pending. Key taxa for an understand-

ing of this issue are the basal sauropodomorphs Saturnalia tupiniquim, Thecodonto-

saurus antiquus, Pantydraco caducus, and Efraasia minor, which will be addressed in 

the chapter at hand. In recent phylogenetic analyses, these taxa stand outside the 

clade comprising plateosaurids and more derived sauropodomorphs (including 

sauropods), i.e. the Anchisauria of Upchurch et al. (2007), or the Plateosauria of 

Yates (2007). The position of Mussaurus among basal sauropodomorphs is uncer-

tain (Galton and Upchurch, 2004; Upchurch et al., 2007), since this taxon is based 

only on early juvenile specimens. Therefore, Mussaurus will not be treated in this 

chapter, but comments on the forelimb anatomy of this form are included in chap-

ter 7. 

In contrast to Eoraptor, the forelimb anatomy of Saturnalia, Thecodontosaurus, 

Pantydraco, and Efraasia has been described in great detail by other authors 

(Galton, 1973, 1984; Benton et al., 2000; Yates, 2003; Galton et al., 2007; Langer 

et al., 2007). Based primarily on hindlimb anatomy, Langer (1999, 2003) claimed 

that Saturnalia was no obligate biped, but used a quadrupedal posture when mov-

ing slowly. Moreover, Langer et al. (2007) attempt to reconstruct forelimb muscle 

attachments in Saturnalia. However, the myological results of Langer et al.’s 

(2007) work are problematic in several respects: 
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• for the reconstruction of the shoulder girdle musculature, none of the 

muscles that connect the girdle to the axial skeleton (M. cucullaris, M. 

levator scapulae, Mm. serrati, M. costocoracoideus, M. sternocoracoi-

deus) were considered; 

• names and subdivisions of muscles are based on a comparison of croco-

dilian and avian anatomy only, leading to the reconstruction of muscles 

that probably were not present in basal archosaurs (see chapter 3); 

• many structures are ‘over-interpreted’: although there are countless 

cracks, fragmentations, and abrasions in the material, minute structures 

are homologized with avian characters, or figured as insertion sites of 

certain muscles without discussing the probability of these inferences; 

• some of the inferences made are highly unrealistic, e.g. the identifica-

tion of the ventral intercondylar pit of the distal humerus (which was lo-

cated inside the articular capsule) as the point of origin of M. brachialis; 

• and finally, all inferences are discussed under topological comparisons 

to birds and crocodylians only, but not under functional considerations. 

Therefore, the present chapter reassesses the skeletomuscular system of Satur-

nalia with the method developed in chapter 3, but describes only additional obser-

vations and novelties that are significant for muscle reconstructions. Moreover, 

the anatomy of the pectoral girdle and forelimb of more derived basal sauro-

podomorphs (Thecodontosaurus, Pantydraco, and Efraasia) will be summarized and 

interpreted in terms of myological evolution, with an emphasis on the medium-

sized form Efraasia from the Middle Norian of Germany. Phylogenetically, this 

genus represents the beginning of size increase in sauropodomorphs (fig. 6-1), and 

hence the first recorded step towards sauropod gigantism. 

 

Figure 6-1. Relationships and temporal distribution of basal sauropodomorphs. Note the 
extensive gaps in the fossil record. Cladogramm simplified after Yates (2007). 
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Anatomy 

Saturnalia tupiniquim 

Scapula. In contrast to other basal dinosauriforms, the middle part of the 

scapular blade is considerably constricted with respect to both the distal expansion 

and the scapular head (fig. 6-2). The caudal third of the lateral side of the blade is 

craniocaudally convex, with the exemption of the caudodistal corner, which is 

slightly flattened. On the medial side of the base of the blade, a triangular depres-

sion extends distally beyond the craniocaudal center of the shaft. Like in other 

early dinosaurs, an elongate facet on the caudoproximal part of the medial side of 

the blade extends distally for about one third of the length of the shaft. The ridge 

that borders this facet cranially does not extend to the distal part of the blade (con-

tra Langer et al., 2007); this area of the bone is entirely flat. As noted by Langer et 

al. (2007), a thickened, rugose distal edge of the blade indicates the presence of a 

cartilaginous suprascapula. Like in other basal dinosaurs, the fossa laterally on the 

scapular head (origin of M. supracoracoideus) extends far caudally and connects 

to the glenoid rim. Moreover, a distinct acromial crest resembling that of neo-

theropods (chapter 5) borders the cranial half of the fossa dorsally. Craniodorsal 

to this crest, an oval, rugose, dorsomedially facing tubercle indicates the clavicular 

articulation. In contrast to Langer et al. (2007), a ‘coracoid tuber’ could not be 

recognized; the structure mentioned by these authors is surrounded by fractures 

and may be an artefact, since it is missing in the scapula of the paratype (see also 

‘Muscle reconstructions’ below). Caudally, the scar for the origin of M. triceps 

brachii caput scapulare (‘supraglenoidal pit’ of Langer et al., 2007) is found 4 mm 

dorsal to the edge of the glenoid, and is caudally and slightly laterally oriented. 

The suture between scapula and coracoid is fused. The course of the suture 

slightly curves craniodorsally, but misses the characteristical ‘step’ seen in Eoraptor 

and most theropods. 

Coracoid. The coracoid of Saturnalia is characterized by a large subglenoid 

fossa on its caudal side (fig. 6-2). Langer et al. (2007) describe the form of this 

fossa in detail, which equals the coracoidal part of the glenoid in size. The main 

difference to other basal dinosaurs is the lack of a lateral ridge that separates the 

subglenoid fossa from the ventromedial (external) surface of the coracoid; a simi-

lar condition is found in Dilophosaurus (chapter 5). The semilunate biceps tubercle 

of Saturnalia is prominent (but not as large as in basal theropods), and situated 

cranially between the subglenoid fossa and a striated depression on the caudome-
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dial corner of the coracoid. The dorsomedial (internal) side of the coracoid is 

strongly concave and exhibits intense striations that are craniomedially oriented. 

The coracoidal part of the glenoid is large relative to the scapular part, rendering 

the glenoid cavity caudoventrolaterally oriented. 

 

Figure 6-2. Osteological structures of the pectoral girdle and humerus of Saturnalia, based 
on MCP 3844-RV and 3845-RV. A, scapulocoracoid in lateral (left) and medial (right) 
views. B, coracoids in ventral view. C, humerus in (from left to right) proximal, ventral, 
distal, cranial, dorsal, and caudal views.  

 

Humerus. As noted by Langer et al. (2007), a characteristic feature of the 

humerus of Saturnalia is the low grade of torsion between the proximal and distal 

ends, which is only about 10°. The proximal end is slightly more expanded than 

in other basal dinosaurs. The enlarged medial tuberosity shifted distally, and 

bulges caudomedially from the proximal expansion. It is not deflected towards the 

developmentally dorsal side of the shaft, as is the case in theropods. The proximal 
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part of the deltopectoral crest is ventrally expanded, forming an oval fossa on its 

dorsocranial side. Distocaudally and slightly dorsally to that depression, a promi-

nent, sharp ridge separates the cranial face of the deltopectoral crest and the dorsal 

side of the humeral shaft. This ridge extends distally to the base of the distal ex-

pansion. An oval rugosity is situated immediately caudodorsal to this crest (fig. 6-

2). The apex of the considerably enlarged deltopectoral crest projects over its base 

cranially, caudally, and also distally. The distal base of the deltopectoral crest is 

short and oriented perpendicularly to the axis of the shaft. Distally on the ventral 

side of the humerus, an oval cavity is found in between and somewhat proximal 

to the distal condyles, like in Eoraptor. However, except of this cavity, the inter-

condylar fossa is not well developed. The form of the sharp, ridge-like epicondyles 

is decribed in detail by Langer et al. (2007). Intense striations are found dorsally 

on the distal expansion. The distocaudal corner of the humerus is enlarged and 

rugosely pitted.  

 

Figure 6-3. Osteological structures of radius (A) and ulna (B) of Saturnalia, MCP 3844-
RV. From left to right, medial, cranial, lateral, and caudal views. A proximal view of the 
ulna is given above the medial view of this element.  
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Antebrachium. Radius and ulna are described in length by Langer et al. 

(2007), leaving not much to add. However, some of the structures are interpreted 

differently here in terms of muscular attachments (see below). The most peculiar 

modifications in comparison to other basal dinosaurs are an exceptionally large 

olecranon process of the ulna, an enlarged cranial tubercle on the proximal expan-

sion of the same element, and an expanded facet for articulation with the ulna 

caudolaterally on the distal end of the radius (fig. 6-3). Like in other basal dino-

saurs, a distinct tubercle (‘biceps tubercle’, see below and chapter 5) projects cra-

nially, right distal to the proximal third of the radius. Moreover, a prominent cau-

dal process projects proximally from the proximal articular surface of the radius. 

In general proportions, the radius of Saturnalia is significantly stouter and shorter 

with respect to the humerus than the same element of Eoraptor. The same was 

probably true for the ulna, which is incompletely preserved in Saturnalia.  

 

Other basal sauropodomorphs 

The following description of the forelimb anatomy of a basal sauropodomorph 

is primarily based on Efraasia minor (specimens SMNS 12354, 12667, and 17928). 

Comparisons with Thecodontosaurus (mainly YPM 2192) and Pantydraco are also 

included, but the taxonomy of these forms is debated (Benton et al., 2000; Yates, 

2003a; Galton et al., 2007). The hypodigm of Efraasia (following Yates, 2003b) 

comprises some specimens with apparently deviant morphologies (SMNS 12668, 

12684, the humerus of SMNS 17928). However, it is unclear in how far the exten-

sive diagenetic deformation these elements exhibit may have affected their general 

characters. Similar shape might not reflect taxonomy in this case, but geological 

processes such as compression and folding. In addition, sexual dimorphism may 

also have played a role (Galton, 1997, 1999; Benton et al., 2000). Nevertheless, all 

these taxa have several osteological characters in common that are derived with 

respect to Saturnalia and other basal dinosaurs. These characters will be summa-

rized below. 
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Figure 6-4. Osteological structures of the pectoral girdle of basal sauropodomorphs (here 
Efraasia, SMNS 12684 and 12667). Left, scapulocoracoid in lateral view, center, in medial 
view. Right, coracoid in ventral view.  

 

Scapulocoracoid. The blade of the scapula is long and straight. It has a weak 

distal expansion (fig. 6-4) that is differentiated into two facets, the larger one oc-

cupying the cranial two thirds of the blade. A triangular caudodistal expansion as 

in Saturnalia is missing in Efraasia, but present in Thecodontosaurus. Another char-

acter of Thecodontosaurus that resembles Saturnalia is the dorsally vaulted distal 

edge of the scapular shaft. A faint caudal flange is found close to the base of the 

shaft in all basal sauropodomorphs. On the medial side of the blade behind this 

flange, there is an elongate, curved facet, which is bordered by a prominent ridge 

cranially. The distal half of the medial side of the scapular blade is flattened. A 

large, triangular depression extends proximocranially over the base of the blade 

and the scapular head. The distal rim of the shaft is slightly thickened medially, 

indicating the suprascapular attachment. Cranially on the lateral side, there is a 

craniocaudally narrow facet that extends over the proximal third of the shaft. The 

acromial region is dorsoventrally wide. A distinct tubercle or facet for articulation 

with the clavicle could not be identified. The angle between the acromion and the 

shaft is low, and there is no distinct acromial crest dorsal to the ventrolateral fossa 

(however, this seems to be subject to individual variation, or to the state of preser-

vation: SMNS 12684 has a distinct acromial crest). The ventrolateral fossa is con-

nected to the glenoid via a narrow channel. Compared to more basal dinosaurs, 

the scapular head is low in dorsoventral direction, but wide craniocaudally. Dor-

sal to the glenoid, the triceps tubercle projects caudolaterally, in some specimens 

laterally. 
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On the coracoid, the subglenoid fossa is reduced (fig. 6-4). Only a transversely 

concave but craniocaudally convex facet indicates the insertion of M. costocora-

coideus. Immediately cranioventral to this facet, the triangular biceps tubercle is 

considerably enlarged. Cranioventrally to the biceps tubercle, there is a striated, 

oval depression. The caudoventral corner of the coracoid bears a strong, tubercu-

lous process. The medial side of the coracoid is strongly concave; its cranial half 

exhibits a deep, oval depression.  

The glenoid is characterized by equally sized scapular and coracoidal parts. 

The latter part is more caudally directed than in Saturnalia and other basal dino-

saurs. However, a lateral component in the orientation of the articular surfaces is 

preserved. The glenoid opens caudoventrally with an angle of about 100°. Unlike 

Saturnalia, glenoid lips are faint or missing both on the coracoidal and the scapu-

lar part.  

The scapulocoracoid articulation is complex and subject to variation. The lat-

eral rim extends further ventrally than the medial rim, both enclosing a narrow 

groove close to the medial side of the suture. Moreover, there is a tuberculous 

swelling centrally on the medial base of that lateral rim. The coracoidal part of the 

suture bears a peg-like tubercle cranially that fits into a depression on the scapular 

part. Functionally, the scapulocoracoid articulation is a stabilizing joint and does 

not allow for independent movements, but permits some grade of flexibility be-

tween scapula and coracoid.  

Humerus. The humerus of basal sauropodomorphs like Efraasia exhibits two 

main differences to Saturnalia. First, the medial tuberosity is considerably enlarged 

and somewhat distally shifted, forming a huge tubercle on the caudoproximal side 

of the shaft. Second, the distal expansion is twisted relative to the proximal end 

(fig. 6-5A). The original degree of torsion is hard to assess with the present mate-

rial, since all humeri are deformed to a certain extent. However, in Thecodontosau-

rus (YPM 2195) the angle is about 45°. The straight apex of the cranioventrally 

directed deltopectoral crest is elongate, and extends over one fourth of the length 

of the humerus. Cranially on the dorsal side of the humerus, the lateral tubercle is 

prominent. The humeral head extends somewhat onto the dorsal side of the shaft. 

In some specimens of Efraasia, the dorsocranial ridge on the proximal humeral 

shaft is sharp and strongly developed; in others, it is missing. Like in Saturnalia, 

there is an oval scar adjacent to this ridge. On the distal end, the radial and ulnar 

condyles form a common articular surface ventrally, but are clearly separated dor-
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sally. Also like in Saturnalia, a dorsal intercondylar depression and a ventral inter-

condylar pit are retained. 

 

Figure 6-5. Osteological structures of the forelimb elements of Efraasia (SMNS 12354). A, 
humerus in ventral (left) and dorsal (right) views. B, ulna in medial (left) and lateral (right) 
views. C, radius in lateral (left) and medial (right) views. 

 

As mentioned above, the form of basal sauropodomorph humeri is subject to 

considerable variation, probably at least in part due to diagenetic deformation. 

Thecodontosaurus (YPM 2195) and Pantydraco (BMNH P19/7; Galton et al., 2007) 

differ from Efraasia in the following characters: the humeral shaft is significantly 

more slender; the triangular medial tuberosity is more pointed; and the short del-

topectoral crest extends only over about one third of the length of the humerus, 

leading to a shorter apex and a more triangular outline of the crest. However, 

considering the ongoing debate about the taxonomy of prosauropods from British 

Rhaetic fissure fillings (von Huene, 1908, 1914; Galton, 1973, 1985b, 1997, 1999; 

Kermack, 1984; Benton et al., 2000; Yates, 2003a; Galton et al., 2007), the signifi-

cance of these observations remains unclear until articulated specimens will be 

discovered. Nevertheless, the bauplan of the humerus and configuration of muscu-

lar attachments in these forms is comparable to Efraasia. 

Antebrachium. The radius of Efraasia (fig. 6-5B) is comparable to that of Sat-

urnalia, both in relative size (compared to the humerus) and robustness. Differ-
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ences include details in the configuration of the intermuscular ridges, and the form 

of the distal expansion. However, the latter part of the bone is deformed in 

Efraasia.  

The ulna (fig. 6-5C) exhibits several differences. There is no ossified olecranon 

process; the caudal part of the proximal end of the bone exhibits a low, rounded 

swelling instead that may have served for the attachment of a cartilaginous exten-

sion, as indicated by a roughened, pitted surface. The shaft of the ulna appears to 

be more robust, but the whole element is transversely compressed. A proximocra-

nial tubercle for the insertion of M. biceps brachii and M. brachialis is present, but 

is not as pronounced as in Saturnalia.  

Manus. One specimen of Efraasia (SMNS 17928) preserves the complete meta-

carpus (however, metacarpals I and III are damaged), and also a number of pha-

langes. Elements of the carpus have not been reported for Efraasia, but are present 

in a fully preserved manus of Thecodontosaurus (YPM 2195). Since the hand of 

Saturnalia is not preserved, comparisons can only be made with Eoraptor, the clos-

est outgroup relative.  

 

Figure 6-6. Reconstructions of the hand of Thecodontosaurus (A), and of the metacarpus of 
Efraasia (B; left, dorsal view; right, ventral view).  
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The metacarpus of Efraasia resembles Eoraptor in a number of characters. How-

ever, due to diagenetic deformation, there are not many details to observe. Meta-

carpal I is robust, but not considerably wider than metacarpals II and III (fig. 6-

6B). Poorly defined extensor pits are present distally on the dorsal sides of meta-

carpals II and III. Proximolaterally on metacarpals II–IV, there are distinct 

flanges extending over the proximal quarter of the bone. Metacarpals IV and V 

are more slender than the preceding metacarpals. Their distal articular surfaces 

appear functional, but are not subdivided into lateral and medial condyles. Weak 

lateral ligament pits are present both on metacarpal IV and V. Metacarpal V is 

proximally wide and even longer than metacarpal I, but this may be due to shear-

ing and the loss of the distolateral condyle in the first metacarpal.  

The hand of the stratigraphically younger form Thecodontosaurus is better pre-

served, but exhibits a number of derived characters (fig. 6-6A). Benton et al. 

(2000) described three disc-like distal carpals capping metacarpals I-III, like in 

Eoraptor (chapter 5). Metacarpal I is much more robustly developed than the re-

maining metacarpals. In proximal view, the articular surface is subtriangular with 

a rounded medial corner. Like in all basal dinosaurs, the distal condyles are 

asymmetrical, with the lateral condyle being larger, laterally inclined, and extend-

ing further distally, while the medial condyle extends far proximally on the ventral 

side. Metacarpal II is a rod-like bone and has a triangular proximal articular sur-

face, with a slight flange that extends dorsolaterally. Distally, the dorsal surface of 

metacarpal II bears a large, well-defined extensor pit, and an oval ligament pit 

laterally. Metacarpal III is more slender than metacarpal II. An extensor pit is 

present on the distal expansion, but less distinctly developed than in metacarpal 

II. There is no clear ligament pit laterally; the medial side cannot be examined. 

Metacarpal IV is similar to metacarpal III in general shape. Its distal expansion is 

dorsoventrally compressed and exhibits no extensor or ligament pits. The distal 

condyles are reduced to small, semispherical knobs. Metacarpal V is short and 

robust, and has a flattened distal surface that shows no traces of articular con-

dyles. In proximal view, the metacarpus is slightly arched, but due to deformation 

the original angle cannot be reconstructed reliably. 

The phalangeal formula of Thecodontosaurus is 2-3-4-2-0. Digit I comprises an 

elongate proximal phalanx with a distinct ligament pit laterally (but not medially), 

and a short, deep but transversely narrow ungual. The latter element has a strong 

curvature, and bears a large flexor tubercle ventrally. The unguals of digiti II and 

III are smaller, but similarly shaped. The phalanges of digiti II and III are shorter 

and more robustly developed than phalanx I.1, and exhibit a slight asymmetry 
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with a lateral distal condylus that is laterally flared. Two phalanges are retained in 

digit IV, but these are strongly reduced. There are no phalanges articulating with 

metacarpal V.  

 

Muscle reconstructions 

Referring to the discussion on phylogenetic inferences of archosaurian forelimb 

musculature (chapter 3), and in comparison with the results of chapters 4 and 5, 

attachment sites of the forelimb muscles in basal sauropodomorphs are recon-

structed in figs. 6-7 to 6-10.  

 

Figure 6-7. Reconstructions of the muscular attachments on the scapulocoracoid (A) and 
humerus (B) of Saturnalia. A, scapulocoracoid in lateral (left) and medial views. B, cora-
coid in ventral view. C, from left to right: humerus in ventral, cranial, dorsal, and caudal 
views. For explanations see text. 
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Saturnalia 

Generally, the shoulder girdle musculature of Saturnalia as inferred here is 

comparable to that of Lewisuchus and Eoraptor. Cranioproximally on the scapular 

blade, the facet for M. cucullaris is not caudally expanded as in Eoraptor (however, 

this feature of Eoraptor may also be an artefact, see chapter 5). The main differ-

ences in Saturnalia are: the type of differentiation of the scapular blade, which 

provides only little room for the origin of a M. teres major on the caudodistal 

process; and the restriction of the fossa for the origin of M. subscapularis to the 

cranial part of the base of the scapular blade (fig. 6-7A). The latter modification 

may also be the cause for the craniocaudal constriction of the proximal scapular 

blade (see chapter 5, Herrerasaurus). Moreover, the different shape of the subgle-

noid fossa may indicate an altered angle of insertion or a weaker development of 

M. costocoracoideus. The relatively small biceps tubercle has shifted cranially 

relative to the glenoid, slightly more so than in basal theropods (chapter 5). The 

remaining muscles exhibit a configuration that is very similar to that of 

Lewisuchus, Eoraptor, and basal theropods.  

The humerus of Saturnalia exhibits major modifications of the plesiomorphic 

condition. The elongate apex of the deltopectoral crest might indicate a stronger 

development of M. supracoracoideus. An enlargement of the sites of insertions of 

M. pectoralis and M. deltoideus clavicularis might also have triggered this size 

increase. On the developmentally dorsal side of the humerus, the additional fossa 

on the expanded proximal part of the deltopectoral crest may have served for an 

enlarged, fleshy attachment of M. deltoideus scapularis. Most notably, the scar for 

the insertion of M. latissimus dorsi and M. teres major shifted ventrocranially, 

being situated adjacent to the insertion of M. deltoideus clavicularis and the pos-

sible origin of M. humeroradialis (fig. 6-7). Since the tendon of M. latissimus dorsi 

plesiomorphically runs between Mm. triceps brachii capiti humerale laterale and 

mediale, this shift also caused a reconfiguration of these two muscles: The in-

ferred site of origin of the medial head is enlarged and almost entirely occupies the 

caudal and caudodorsal sides of the shaft, while the origin of the lateral head is 

restricted to the distal half of the cranial side of the shaft. The form of the epicon-

dyles resembles other basal dinosaurs, but the exact configuration of the attaching 

muscles cannot be inferred and is therefore a matter of speculation. However, 

because of the confined area of the epicondyles, alternative configurations of the 

origins of the epicondylar muscles do not have much effect on the reconstructed 

courses of the lines of action (fig. 6-11). Like in theropod dinosaurs, the distocau-
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dal facet adjacent to the ulnar condyle is possibly related to an enlarged origin of 

M. flexor digitorum longus (also suggested by Langer et al., 2007).  

 

Figure 6-8. Reconstruction of the muscular attachments on the antebrachium of Saturna-
lia. A, radius; B, ulna. From left to right, medial, cranial, lateral, and caudal views. For 
explanations see text. 

 

On radius and ulna of Saturnalia, no myological novelties could be recognized. 

With the exception of some proportional differences, the inferred muscle attach-

ment sites are virtually identical to those of Eoraptor (fig. 6-8; see also chapter 5, 

fig. 5-16). The large olecranon process provides an extended area of insertion of 

M. triceps brachii, but the main purpose of this process probably was to serve as a 

lever (see Discussion below). The position of the cranial radial tubercle, which 

probably served for the insertion of M. brachialis (and possibly M. biceps brachii; 

see chapter 5, Discussion), is identical to Herrerasaurus and basal theropods. Since 

there is no trace of a proximal lateral tubercle on the radius, M. humeroradialis 

may have been reduced or lost. However, distal to the deltopectoral crest a possi-

ble site of origin of this muscle is preserved in Saturnalia (fig. 6-7). 
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Figure 6-9. Reconstruction of the muscular attachments on the scapulocoracoid of 
Efraasia. From left to right: scapulocoracoid in lateral view; coracoid in ventral view; 
scapulocoracoid in medial view. For explanations see text. 

Efraasia 

The inferred muscle attachments sites on the pectoral girdle of Efraasia closely 

resemble those of Saturnalia. The evolutionary novelties observed in the latter 

taxon are also present in the former: the attachment of M. costocoracoideus is 

even less clearly defined, and the fossa for the origin of M. subscapularis, situated 

cranially on the medial side of the scapular head and of the base of the blade, is 

slightly enlarged relative to the size of the scapular head (fig. 6-9). Unlike Saturna-

lia, the origin of M. biceps brachii on the considerably enlarged coracoidal biceps 

tubercle has not shifted cranially, but remains in a position comparable to Eoraptor 

and basal theropods (chapter 5). The striated depression medial to the biceps tu-

bercle probably indicates the origin of M. coracobrachialis, which is more medi-

ally located than in other basal dinosaurs. 

The humerus of Efraasia is characterized by the osteological novelty of a 

twisted distal expansion, but this does not significantly affect the inferred sites of 

muscle attachment. In fact, the configuration of muscles is almost identical to 

Saturnalia, with the exception of a more proximally (but still cranially) placed in-

sertion of M. latissimus dorsi and M. teres major. In addtition, the insertion of M. 

subscapularis shifted caudodistally, due to the enlargement of the medial tuberos-

ity (fig. 6-10A). The enlarged cranioproximal fossa on the dorsal side of the hume-

rus may relate to a size increase of M. deltoideus scapularis, which in turn may 
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explain the enlargement and elongation of the scapular blade (the origin of this 

muscle) relative to the scapular head (see fig. 6-9).  

Like in Saturnalia, the inferred muscle attachment sites on radius and ulna are 

conservative (fig. 6-10B+C) in Efraasia. The seemingly enlarged fossa for the ori-

gin of M. pronator quadratus on the medial side of the ulna may indicate an in-

creased size of this muscle, but this inference is rather speculative considering the 

high grade of distortion of this element. 

 

Figure 6-10. Reconstruction of muscle attachment sites on the humerus and antebrachium 
of Efraasia. A, humerus in ventral (left) and dorsal (right) views. B, radius in lateral (left) 
and medial (right) views. C, ulna in medial (left) and lateral (right) views. For explana-
tions see text. 
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Discussion 

The morphological differences between basal sauropodomorphs and other ba-

sal dinosaurs pertain primarily to the humerus and the musculature that acts on it, 

while the cingulo-axial muscles retain a conservative configuration (fig. 6-12). The 

craniocaudally wide humeral head, combined with an elongate, caudolaterally 

directed coracoidal part of the glenoid, permitted protraction and retraction only 

when the humerus was abducted by about 20° or more, as has been demonstrated 

by Langer et al. (2007). The presence of a distinct ventral intercondylar pit proba-

bly indicates that the forelimb was used to support the body in a semi-erect stance 

with a flexed elbow joint, like in Eoraptor (see chapter 5).  

 

Figure 6-11. Reconstruction of the skeletomuscular system of the shoulder girdle and 
forelimb of Saturnalia. Left, scapulocoracoid and forelimb in lateral view. Right, humerus 
and antebrachium in ventromedial view. Muscles are depicted by their estimated lines of 
action, providing a gross idea of the function of each muscle. 

 

As a result of the enlargement of the deltopectoral crest, the insertion areas of 

the deltoid and pectoral muscles increased, which possibly indicates an increase in 

relative size of these muscles. Moreover, because of the elongation of the del-
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topectoral crest, the insertions of M. pectoralis, M. deltoideus clavicularis, and M. 

supracoracoideus shifted distally (figs. 6-11, 6-13). Probably, the consequence was 

an increase in force (accompanied by a reduction of speed) during protraction and 

retraction, following the classic laws of leverage (see Gregory, 1912; Hildebrand 

and Goslow, 2001). The sigmoid form of the humerus of basal sauropodomorphs 

(see also chapter 7) might relate to this issue, since such a shape is assumed to be 

optimal for a compact configuration of voluminous muscles (Lanyon, 1980, 1981; 

Cubo et al., 1999). More powerful protractors and retractors may have been cru-

cial for size increase in basal sauropodomorphs, if the semi-erect posture of the 

humerus is retained and the forelimb is used for locomotion (Biewener, 1989a,b, 

1990). However, since the same modifications are found not only in large sauro-

podomorphs like Efraasia but also in Saturnalia (a taxon not significantly larger 

than Eoraptor), there was probably a second evolutionary factor behind these ad-

aptations. 

 

Figure 6-12. Reconstruction of the cingulo-axial skeletomuscular system and Mm. sub-
coracoscapulares in Saturnalia (lateral view). Muscles are depicted by their estimated lines 
of action, providing a gross idea of the function of each muscle. Shaded areas and lines of 
action indicate that the muscle lies on the remote side of the bone. 

 

The most significant modifications of the sauropodomorph myology compared 

to other basal dinosaurs are found in the courses of M. latissimus dorsi / M. teres 
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major and M. subscapularis (figs. 6-11, 6-12, 6-13). The cranial shift of the inser-

tion of M. latissimus dorsi and M. teres major added a rotational component to 

the movement of the humerus during retraction, leading to supination of the 

hand. This effect is enforced by the outward twist of the distal expansion of the 

humerus relative to the proximal end. The cranioventral shift of the origin of M. 

subscapularis likewise made the humerus to rotate outwardly around its long axis 

during contraction of this muscle, replacing the plesiomorphic retractive-

adductive movement. The possibly enlarged M. deltoideus scapularis might have 

assisted in this action, since it had its origin caudodorsal and its insertion cranial 

to the pivot in the glenoid joint. It is to note that a strong rotation during retrac-

tion of the humerus would probably have been avoided if only M. pectoralis con-

tracted. Therefore, the skeletomuscular system of the sauropodomorph forelimb 

appears to be adapted for supinating the manus during retraction of the humerus, 

but it is probable that the animal could control the grade of supination by means 

of differently contracting the muscles that are involved in this system. The signifi-

cance of these adaptations is not entirely clear, but the ability to control the orien-

tation of the palm may have been advantageous for grasping (see below).  

 

Figure 6-11. Reconstruction of the skeletomuscular system of the shoulder girdle of 
Efraasia, showing scapulocoracoid and humerus in lateral view. Muscles are depicted by 
their estimated lines of action, providing a gross idea of the function of each muscle. 

 

The conservative anatomy of the antebrachium exhibits no other specializa-

tions in this regard. Like in Eoraptor, the position of the cranial tubercle of the 
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radius (the site of insertion of M. brachialis, M. biceps brachii, or both) supported 

pronation of the manus when the elbow joint was flexed (fig. 6-11). In Efraasia, 

the enlarged biceps tubercle on the coracoid may correlate to a more powerfully 

developed M. biceps brachii. On the one hand, this may be correlated to the size 

increase of these animals, which made a positively allometric growth of the mus-

culature necessary (Biewener, 1989a,b, 1990). On the other hand, the presence of 

a large olecranon in Saturnalia may relate to grasping improvements, since this 

process works as a lever to transfer forces exerted by M. triceps brachii to the dis-

tal part of the ulna. Hence, a proximally extended olecranon process enabled a 

more powerful extension of the antebrachium (fig. 6-11). If M. triceps brachii 

were enlarged for these reasons, a powerful antagonist (M. biceps brachii) would 

have been a consequence.  

Finally, the enlargement and strong asymmetry of the first digit of the hand, 

accompanied by the elongation of the phalanges in digits II and III, indicates in-

creased grasping abilities at least in forms like Thecodontosaurus. The evolution of 

grasping abilities in basal sauropodomorphs was corroborated by the development 

of large flexor tubercles on the unguals, and by the size increase of the distocaudal 

humeral facet, which possibly correlates to the origin of M. flexor digitorum 

longus. The enlargement of this facet parallels similar modifications in theropods 

(chapter 5).  

 

Conclusions 

Both osteology and inferred myology indicate that basal sauropodomorphs 

lacked adaptations for an improved mode of locomotion in the forelimb. If used 

for quadrupedal locomotion, a slow, semi-sprawling gate (as inferred for Eoraptor, 

see chapter 5) would have been the consequence. On the other hand, the first 

known sauropodomorphs already exhibit a number of adaptations for grasping. In 

contrast to theropods, the skeletomuscular system of the shoulder region is opti-

mized for increased power and control of such a movement, but not for velocity. 

Therefore, the muscle reconstructions presented here confirm that prosauropods 

were able to powerfully manipulate branches and other plant parts with their 

hands, as has been suggested previously (see review by Galton and Upchurch, 

2004). Nevertheless, the osteological and myological features of these forms are 

still generalized enough to permit multiple uses of the pectoral extremity, includ-

ing locomotion.  
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7 ‘Prosauropod’ forelimb anatomy and the transition 

to Sauropoda 

 

Introduction 

Non-sauropod sauropodomorphs, commonly summarized as ‘prosauropods’, 

are a distinct group of dinosaurs that persisted for about 50 million years, from the 

Carnian possibly up to the Bajocian (fig. 7-1). However, the anatomy of these 

animals is rather uniform, leading to considerable uncertainty about their taxon-

omy and phylogenetic relationships. Recent phylogenetic analyses agree that 

Plateosauravus (formerly part of the hypodigm of ‘Euskelosaurus’; see van Heerden, 

1979; Yates, 2003c) is one of the earliest and most plesiomorphic members of this 

group, aside from Saturnalia and Efraasia (Upchurch et al., 2007; Yates, 2007). 

Moreover, there is a consens that Melanorosaurus and Antetonitrus stand close to (or 

actually are, depending on the taxonomic nomenclature used) the first sauropods 

(Yates and Kitching, 2003; Yates, 2004; Upchurch et al., 2007; Yates, 2007). 

However, the relationships of the remaining non-sauropod sauropodomorphs are 

strongly debated. In addition to the discussion about the existence of mono-

phyletic ‘core’-Prosauropoda (chapter 1), the positions of individual OTUs are 

also highly variable in published topologies. For example, Lufengosaurus has been 

regarded as closely related to Plateosaurus (Galton and Upchurch, 2004), as out-

group to Plateosauridae (Upchurch et al., 2007), or as a sister-taxon to Massospon-

dylus within a monophyletic Massospondylidae (Yates and Kitching, 2003; Yates, 

2004; Yates, 2007). Riojasaurus grouped together with Melanorosaurus and Lessem-

saurus (Galton and Upchurch, 2004), with Plateosaurus and Coloradisaurus (Up-

church et al., 2007), as the basal-most member of the ‘core’-Prosauropoda that 

include the latter two taxa and Massospondylus + Lufengosaurus (Yates and Kitch-

ing, 2003; Yates 2004), or as the sister-taxon to Massospondylidae + more derived 

sauropodomorphs (Yates, 2007). Similar examples could also be given for other 

‘prosauropod’ taxa. Considering that the published topologies – when compared – 

almost appear to constitute random shuffling of ‘prosauropod’ OTUs, there is 

currently no consensus in sight. In future, a better understanding of basal sauro-

podomorph interrelationships will hopefully be possible by means of highly de-

tailed phylogenetic analyses (Rauhut et al., in prep.), and by new finds especially 

from the Carnian, the geological age when most cladogenetic events within this 

group probably took place (fig. 7-1). In this work, the phylogenetic hypothesis of 
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Yates (2007) is chosen as a framework, because it is based on a matrix that cur-

rently scores the highest number of characters (348), and most closely reflects a 

trend in modifications of the functional morphology of the forelimb towards 

sauropod conditions (see below, chapter 9). However, the anatomical observa-

tions presented here possibly will have to be re-evaluated once a consensus on 

basal sauropodomorph phylogeny is established.  

 

Figure 7-1. Phylogenetic relationships and temporal distribution of the taxa discussed in 
this chapter. Cladogram based on Yates (2007). 

 

The forelimb of most non-sauropod sauropodomorphs exhibits only minor 

modifications with respect to the basal-most members of this clade (see chapter 6). 

Naturally, this uniformity hampers the recognition of evolutionary trends. How-

ever, there are some specializations, and a number of large forms show changes 

that may represent the first steps toward sauropod forelimb anatomy. Based on 

the specimens listed in chapter 2, this chapter intends to present the variety of 

‘prosauropod’ forelimbs, and to discuss functional interpretations. Moreover, the 

forelimb anatomy of the sauropodomorph most closely related to true sauropods, 

Antetonitrus ingenipes, will be described and discussed in detail. This taxon repre-

sents the starting point for major modifications of the forelimb skeletomuscular 

system in more derived sauropods (see chapters 8, 9). 
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Anatomy 

Galton (1990) and Galton and Upchurch (2004) reviewed the forelimb anat-

omy of basal sauropodomorphs. However, these works generalize some important 

intergeneric differences that may be important for the understanding of sauro-

podomorph forelimb evolution (chapter 9), making an own review on ‘prosauro-

pod’ forelimb anatomy necessary. More detailed descriptions of the forelimb oste-

ology of individual taxa have been published for Anchisaurus (von Huene, 1906, 

1914; Lull, 1953), Jingshanosaurus (Zhang and Yang, 1995), Lufengosaurus (Young, 

1941), Massospondylus (Broom, 1911; Cooper, 1981), Melanorosaurus (Bonnan and 

Yates, 2007), Plateosaurus (von Huene, 1926), Riojasaurus (Bonaparte, 1969, 1971), 

Unaysaurus (Leal et al., 2004), and Yunnanosaurus (Young, 1942).  

 

Figure 7-2. Three-dimensional reconstruction of the pectoral girdle in Massospondylus, 
based on the articulated specimen BP/1/5241, which also preserves clavicles. A, caudal 
view; B, lateral view; C, cranial view; D, ventral view.  
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Non-sauropod sauropodomorphs 

Bauplan of the pectoral girdle. Our understanding of the structure of the pec-

toral girdle in basal sauropodomorphs has recently been much improved by the 

discovery of exquisitely preserved, fully articulated specimens of Massospondylus 

(Yates and Vasconcelos, 2005). The shoulder girdle elements of these finds are 

almost undeformed and have a largely intact surface. Moreover, for the first time 

in sauropodomorphs, clavicles are found in articulation with the scapula. The 

paired clavicles articulate in midline, forming a wide, V-like brace that closely 

resembles the furcula of theropods (Yates and Vasconcelos, 2005). Disarticulated, 

but similarly shaped clavicles have also been reported for Plateosaurus (von Huene, 

1926). 

With the width of the clavicles and their point of articulation on the scapula as 

constraints, the shoulder girdle of Massospondylus can reliably be reconstructed in 

three dimensions (fig. 7-2). It becomes evident that the plesiomorphic bauplan of 

archosaurs (as observed in Euparkeria, see chapter 4) was retained in a number of 

aspects: the coracoids almost contact in midline; they are more ventrally than 

laterally oriented; the sternum must have been positioned caudal to the coracoids, 

not medially between them; and due to the orientation of the coracoids, the gle-

noid orientation has a major lateral component. In cranial view, the pectoral gir-

dle of Massospondylus is deep and narrow, but widens caudally. Taking the room 

for Mm. serrati and M. subscapularis into consideration, the narrowly constructed 

pectoral girdle fits onto the ribcage only relatively far cranially placed, with the 

coracoids positioned ventral to the last cervical vertebra and the cervicodorsal 

transition. Since the structure of the scapulocoracoid is similar in all other basal 

dinosaurs and sauropodomorphs, such a construction probably applies also to 

these groups (see Discussion below, chapter 9).  

Scapulocoracoid. The scapulae of most ‘prosauropods’ are very similar to the 

scapula of Efraasia. The blade is long and slender, and distally only moderately 

expanded. The scapular head is craniocaudally wide but dorsoventrally low. Dif-

ferences exist in the relative position and size of the caudal flange of the scapular 

blade, in the relative size of the articular facet for the clavicles, in the grade of 

convexity of the distal edge of the blade, and in the form of the caudodistal proc-

ess of the blade (fig. 7-3). In comparison to Efraasia, the cranial fossa for the inser-

tion of M. cucullaris is smaller and more distally placed in most taxa except 

Lufengosaurus. A significant modification is seen in the angle between the cranial 

edge of the scapular blade and the dorsal rim of the acromion: This angle is ple-
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siomorphically low (around 140°), but becomes smaller in Massospondylus and 

Lufengosaurus (around 100°). Uniquely in Unaysaurus, the fossa for the origin of M. 

supracoracoideus is restricted to the caudal half of scapular head, extending crani-

ally only up to the ‘kink’ in the scapulocoracoidal suture (fig. 7-3). Yunnanosaurus 

has a scapular blade that is broadened relative to the scapular head, and lacks the 

facet for M. serratus superficialis medial to the caudal flange on the caudomedial 

side of the blade. 

 

Figure 7-3. Comparison of scapulocoracoids of several ‘prosauropods’. Black arrows indi-
cate the caudal flange of the scapular shaft; medium grey arrows indicate the facet for 
clavicular articulation; light grey arrows indicate the tubercle for the origin of M. biceps 
brachii. Scale bar = 50 mm. 

 

Regarding the coracoid, basal sauropodomorphs primarily differ in the relative 

size of the tubercle for the origin of M. biceps brachii. In many cases, a correlation 

to the size of the animal can be observed: the biceps tubercle is small in Masso-

spondylus, but very large in forms like Lufengosaurus and Yunnanosaurus, where it 

even surpasses the size of the glenoid (fig. 7-3). The glenoid usually opens with a 

wide angle and is caudolaterally oriented. However, in Plateosaurus the angle is 

narrower and the orientation strictly caudoventral, with the coracoid contributing 
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only little to the articular facet (fig. 7-3). Moreover, Plateosaurus, Riojasaurus, Colo-

radisaurus, Lufengosaurus, and Massospondylus exhibit a distinct subglenoid fossa, 

resembling the condition found in basal dinosaurs (see chapters 4 and 5). In other 

‘prosauropods’, this area is saddle-shaped.  

Sternal plates. Ossified sternal plates are known from a number of basal 

sauropodomorphs. Since articulated specimens of Efraasia (SMNS 12667) and 

Thecodontosaurus (YPM 2195) lack ossified sterna, their presence in Plateosaurus 

(von Huene, 1926), Lufengosaurus (Young, 1941), Massospondylus (Cooper, 1981), 

Jingshanosaurus (Zhang and Yang, 1995), and Yunnanosaurus (Young, 1942) possi-

bly is a shared derived character. In most of these forms, the sternal plates have a 

suboval shape with a thickened, rugose craniolateral corner that serves for articu-

lation with the coracoid. In Massospondylus specimen BP/1/4934, the sternal 

plates are lozenge-shaped and co-ossified (fig. 7-4). The presence of a longitudinal 

ridge on the ventral side of the sternum has been reported for Massospondylus 

(Cooper, 1981), Lufengosaurus (Young, 1941), and Jingshanosaurus (Zhang and 

Yang, 1995). 

 

Figure 7-4. Comparison of ‘prosauropod’ sternal plates. A, co-ossified sternal plates of 
Massospondylus (BP/1/4934) in dorsal view. B, right sternal plate of Massospondylus (NMZ 
QG1159) in ventral view; after Cooper (1981). C, right sternal plate of Lufengosaurus (IVPP 
V15) in ventral view. D, ?right sternal plate of Yunnanosaurus (IVPP V20) in ventral view; 
after Young (1942). Scale bar = 50 mm. 

 

Humerus. In non-sauropod sauropodomorphs, the shape of the humerus varies 

considerably, from relatively slender (Plateosaurus) to extremely robust (Yunnano-

saurus). The embryonic form Mussaurus has very slender, elongate humeri that are 

not easy to compare to those of adult ‘prosauropods’ (Bonaparte and Vince, 

1979). However, in general features adult ‘prosauropod’ humeri exhibit strong 

similarities to Efraasia (figs. 7-5, 6-5). Shared characters include a strongly concave 

curvature of the caudal side of the shaft; a slightly sigmoid outline in cranial view; 

an enlarged medial tuberosity of the humerus that is placed distal to the humeral 

head; a large deltopecotral crest that extends over 40-50% of the humeral length 

and is deeper than the humeral shaft is wide; a large distal expansion that equals 
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the width of the proximal expansion (without the medial tuberosity); the presence 

of a ventral intercondylar depression that is, in most cases, not as deep and 

sharply delimited as in the basal-most sauropodomorphs (see chapter 6); and the 

presence of a dorsal intercondylar depression that is albeit weakly developed. The 

position of the scar for the insertion of M. latissimus dorsi and M. teres major is 

also conservative, but this character could only be found in Plateosauravus, 

Unaysaurus, and Massospondylus. Young (1947) reported a similar structure in 

Lufengosaurus magnus (IVPP V82). The morphological details of the deltopectoral 

crest (form in cranial view, angle of the apex relative to the shaft axis, angles of 

the proximal and distal bases relative to the shaft) vary considerably, rendering its 

form possibly diagnostic on the genus level.   

Distinct modifications of the plesiomorphic state can be observed in the form 

of the proximal and distal articular ends (fig. 7-5). The plesiomorphic form of the 

proximal end is a slightly curved, ventrally concave bar, as seen in Saturnalia, 

Efraasia and Plateosauravus. In more derived sauropodomorphs, the humeral head 

becomes wider in dorsoventral and more compressed in craniocaudal direction, in 

combination with a vaulted outline of the proximal expansion in ventral and dor-

sal views (e.g., Massospondylus, Lufengosaurus, Yunnanosaurus). In addition, the 

medial tuberosity is caudodorsally angled with respect to the main axis of the 

humeral head. This angle is very low in Unaysaurus and Massospondylus, but dis-

tinct in Lufengosaurus and an unnamed taxon from the Argentinian Los Colorados 

Formation (PVL field number 6; fig. 7-5). Moreover, there are differences in the 

orientation of the deltopectoral crest: it is primarily ventrally oriented in Plateosau-

rus, but strongly cranioventrally deflected in Massospondylus and a number of other 

forms. However, the large sample of ‘prosauropod’ humeri from the Löwenstein 

Formation of southern Germany suggests that the orientation of this delicate, 

protruding structure mainly reflects the orientation of the humerus relative to geo-

logical pressures during diagenesis or folding. Therefore, the orientation of the 

crest is not a good indicator for taxonomy, phylogeny, or function. A unique fea-

ture only found in Lufengosaurus and PVL field number 6 is an inward kink in the 

course of the deltopectoral crest just proximal to its apex (fig. 7-5). A similarly 

shaped crest of the left humerus of Plateosauravus (SAM 3342) is probably de-

formed, since the crest of the right humerus of the same specimen is straight. 
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Figure 7-5. Comparison of the humeri of several ‘prosauropods’ in proximal (ventral 
down), ventral, distal (ventral up), and caudal views. Black arrows indicate the scar for the 
insertion of M. latissimus dorsi; medium grey arrows indicate the medial tuberosity; light 
grey arrows indicate the orientation of the humeral head. In Lufengosaurus, the distal end 
could not be observed because the specimen is mounted. For the same reason, both the 
proximal and distal ends of Riojasaurus cannot be shown adequately. Scaled to same 
humeral lengths; scale bar = 50 mm. 

 

The distal ends of the humeri of most non-sauropod sauropodomorphs exhibit 

a prominent distocaudal facet that is significantly larger than in Efraasia; only in 

Yunnanosaurus, this facet is somewhat reduced. The grade of cranioventral torsion 

of the distal end relative to the main axis of the proximal end is around 45° in 

most ‘prosauropods’, but only about 30° in Lufengosaurus, PVL field number 6, 

and Yunnanosaurus. Differences are also found in the form and configuration of 

the ulnar and radial condyles. Both condyles are widely separated in Plateosaura-
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vus, but they stand closer in other forms. Usually, the main axis of the radial con-

dyle is angled ventrally relative to the main axis of the ulnar condyle, but this 

character is less clearly developed in Plateosaurus and PVL field number 6 (fig. 7-

5). In most ‘prosauropods’, the radial condyle is somewhat smaller than the ulnar 

condyle, but the reverse is the case in Lufengosaurus and PVL field number 6. In 

Plateosaurus, both condyles are equally sized.  

Antebrachium. In the antebrachium, interspecific variations are minor, and 

usually pertain to proportions (fig. 7-6). Radius and ulna of Mussaurus are espe-

cially elongate, slender bones (Bonaparte and Vince, 1979). In contrast to the ba-

sal-most sauropodomorphs (chapter 6), the cranial tubercle on the radius (‘biceps 

tubercle’) is more distally placed, at mid-length of the radial shaft. Moreover, its 

position has shifted laterally in Plateosauravus, Anchisaurus, and Yunnanosaurus. In 

Massospondylus and Lufengosaurus, the axis of the radial shaft is not perpendicular 

to the plane of the proximal articulation, but cranially angled. This character is 

pronounced in Lufengosaurus (fig. 7-6).  

In lateral view, the caudal side of the shaft of the ulna is convexly curved in 

Plateosauravus, Ruehleia, and Anchisaurus, showing the plesiomorphic condition. 

The caudal side of the ulnar shaft is straight in Unaysaurus and Riojasaurus, but 

sigmoid in Plateosaurus, Yunnanosaurus, and Massospondylus, caused by a caudal 

deflection of the distal articular ends in these forms (fig. 7-6). Minor variations are 

also found in the form of the proximal end of the ulna, pertaining primarily to the 

size of the lateral process (which is much reduced in Massospondylus) and the 

length of the cranial process (which is elongate in Yunnanosaurus). The radioulnar 

articulation shows considerable differences: Riojasaurus, Plateosaurus and Yunnano-

saurus have a tubercle on the craniomedial side of the distal ulna that articulates in 

a fossa caudolaterally on the distal radius, but the reverse is the case in Unaysau-

rus. Plateosauravus, Massospondylus and a number of other taxa exhibit a complex 

articulation with matching tubercles, ridges and fossae on both elements, while 

Ruehleia has no distinct radioulnar articulation at all. Moreover, the distal expan-

sions of both radius and ulna are characterized by a complex arrangement of fac-

ets and tubercles immediately proximal to the rim of the articular cartilage. The 

presence of cartilage caps on the distal ends of the antebrachial bones is indicated 

by a roughened, pitted bone surface.  
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Figure 7-6. Comparison of the antebrachial elements of several ‘prosauropods’. For each 
taxon: left, ulna in proximal, lateral, distal, and medial views; right, radius in correspond-
ing views. Proximal and distal views could not be fully observed in Lufengosaurus and An-
chisaurus; in Anchisaurus and Yunnanosaurus, there was also no access to the medial sides of 
the bones. Grey arrows indicate the position of the cranial radial tubercle. Scaled to same 
ulnar lengths; scale bar = 50 mm. 
 

The long axis of the distal end of the ulna of Plateosaurus, Riojasaurus, Unaysau-

rus, and Massospondylus is outwardly rotated, and forms an angle of about 30° with 

the long axis of the proximal cranial process. In Ruehleia, Lufengosaurus, and Yun-

nanosaurus, the long axis of the distal ulnar expansion is oriented almost perpen-

dicular to that of the proximal cranial process. In Plateosaurus and Coloradisaurus, 

there is a conspicuous tubercle on the distal craniomedial edge of the radius. The 
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distal articular surface of the radius has a suboval form with a pointed caudal cor-

ner in most ‘prosauropods’. In Riojasaurus and Coloradisaurus, it has a pentagonal 

outline.  

Manus. The record of ‘prosauropod’ hands (fig. 7-7) is not as complete as that 

of other forelimb elements. Complete hands are known from Plateosaurus (SMNS 

13200, GPIT 1, and others), Massospondylus (BP/1/4998; BP/1/4934), Lufengo-

saurus (IVPP V15), Anchisaurus (YPM 1883), Yunnanosaurus (IVPP V20), and 

‘Plateosaurus sp.’ from Santa Cruz, Argentina (MLP 68-II-27-1; Casamiquela, 

1977, 1980). Incomplete hands are preserved in ‘Ammosaurus’ (UCMP 82961), 

Ruehleia (MB RvL 1), Unaysaurus (UFSM 11069), Coloradisaurus (PVL 3967), and 

Mussaurus (PVL 4210). Many of these specimens are still embedded in matrix, so 

that not all sides and articulations of the individual elements can be observed. In 

Yunnanosaurus and Lufengosaurus, the hands are mounted and partly covered with 

plaster. 

 

Figure 7-7. Comparison of ‘prosauropod’ hands in proximal views (above) and dorsal 
view (below). Scaled to the same length of metacarpal II for comparison of proportional 
differences; scale bar = 50 mm. 
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Like in Thecodontosaurus, no radiale and ulnare are known from more derived 

sauropodomorphs, even in fully articulated specimens. However, variable num-

bers of disc-like distal carpals have been found in Ruehleia, Plateosaurus, Masso-

spondylus, Lufengosaurus and Yunnanosaurus. In Ruehleia, three elements cap meta-

carpals I–III, one for each metacarpal. These elements are convex proximally and 

concave distally, fitting on the proximal articular surface of the metacarpals. Dis-

tal carpal I is lozenge-shaped. In Plateosaurus (SMNS 13200) and Anchisaurus 

(YPM 1883), only distal carpal I is preserved, which is similar to the correspond-

ing element of Ruehleia. However, distal carpals II to IV have been reported from 

a prosauropod hand assigned to Plateosaurus (Bonnan and Senter, 2007). In Masso-

spondylus, distal carpal I is also similar to the same element of Ruehleia. Moreover, 

there is also a small, circular distal carpal II that is partially overlapped by distal 

carpal I, and a knob-like remnant of distal carpal III. Distal carpal II caps meta-

carpal II, while distal carpal III covers metacarpal III only partially (fig. 7-7). In 

‘Gryponyx africanus’ (SAM 3357-9, probably a junior synonym of Massospondylus; 

Galton and Cluver, 1976; Kitching and Raath, 1984), an even smaller, spherical 

element attaches proximolaterally to distal carpal III. In other specimens of Masso-

spondylus, a similar element has been interpreted as an ossified intermedium 

(Cooper, 1981). Furthermore, fully articulated specimens of Massospondylus (in-

cluding ‘Gryponyx’) exhibit a wide gap between the antebrachial bones and the 

distal carpal row, implying the presence of cartilaginous proximal carpals in the 

living animal. In Yunnanosaurus, only distal carpal I is preserved; this element is 

rectangular and has a distolateral notch for reception of distal carpal II. The car-

pus of Lufengosaurus, which preserves distal carpals I and II, is similar. 

In non-sauropod sauropodomorphs, two types of hands may be distinguished 

(fig. 7-7). The first type, which resembles Thecodontosaurus (chapter 6), is charac-

terized by a metacarpal I that is significantly longer than wide, relatively slender 

metacarpals II and III, elongate phalanges, and the retention of four phalanges in 

digit III. This manual type is seen in Anchisaurus, ‘Ammosaurus’, Plateosaurus, Mus-

saurus, and MLP 68-II-27-1, and was present possibly also in Ruehleia, Unaysaurus, 

and Efraasia. The second type, which is seen in Massospondylus, Lufengosaurus, and 

Yunnanosaurus, is characterized by a metacarpal I that is as wide as long (or 

wider), robust metacarpals II and III, and phalanges that are only about as long as 

wide. In addition, Lufengosaurus and Yunnanosaurus retain only three phalanges in 

digit III. However, Young (1942) assumed that phalanx III.1 is missing in Yun-

nanosaurus (as shown in fig. 7-7). Yunnanosaurus (IVPP V20) is mounted with only 
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an ungual on digit V, but given the size disparity between the articular surfaces of 

this element and metacarpal V, it is probable that there were two phalanges in this 

digit, like in all ‘prosauropods’ except Thecodontosaurus and probably Anchisaurus.  

The individual metacarpals and phalanges vary in proportions, but are rather 

conservative in their characters. Metacarpal I is keyhole-shaped in proximal view 

and preserves asymmetric distal articular condyles. In Massospondylus and Lufengo-

saurus, metacarpal I is slightly inset into the carpus, being more proximally placed 

than the remaining metacarpals (fig. 7-7). Metacarpal I lacks extensor pits; on 

metacarpals II and III, these are only weakly developed (most distinct in 

Ruehleia). The distal ends of metacarpals II–IV have slightly dorsally rotated liga-

ment pits, making these structures visible in dorsal view. Well-developed lateral 

flanges on the dorsoproximal corner of metacarpals I–IV slightly overlap the suc-

ceeding metacarpal dorsomedially. In articulation, the proximal ends of the meta-

carpals form a slight bow in Plateosaurus, Yunnanosaurus, and probably also in 

Ruehleia. In Lufengosaurus, the metacarpals are arranged in a semicircular structure 

(fig. 7-7); the available hands of Massospondylus are too compressed to assess the 

original curvature of the metacarpus.  

The penultimate phalanges of ‘prosauropods’ exhibit proximally extending 

condyles on the dorsal side, indicating the ability to hyperextend the unguals. In 

Massospondylus and Plateosaurus, the distal condyles of phalanx I.1 have rotated 

ventrally in a way to keep the large ungual strongly flexed when the joint is in 

neutral position. In Plateosaurus, the distal condyles of all individual phalanges are 

asymmetrical build, with the lateral condylus extending further distally. A compa-

rable asymmetry could not be observed in other ‘prosauropods’. The first ungual 

is always hypertrophied and strongly curved, but the unguals of digits II to V vary 

in relative width, length, and curvature. Moreover, the ungual of the first digit is 

characterized by an enormous flexor tubercle that makes up about one fourth of 

the dorsoventral height of this element.  

 

Antetonitrus ingenipes and other stem-sauropods 

Yates and Kitching (2003) shortly described the anatomy of Antetonitrus, but 

for a full understanding of the anatomical changes during the ‘prosauropod’-

sauropod transition, a more detailed account on the forelimb morphology of this 

taxon is needed.  
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Scapula. Compared to other basal sauropodomorphs, the scapula of Antetoni-

trus is unusual (fig. 7-8). Like in Yunnanosaurus, the scapular blade is broadened 

relative to the scapular head. The blade is laterally flattened and rather short. The 

conspicuous distal expansion reaches a width of about 50% total scapula length. 

Moreover, the long axis of this expansion is not oriented perpendicularly to the 

long axis of the scapular blade like in other basal sauropodomorphs; instead, both 

axes form an angle of about 60°. Laterally, the blade bears an elongate facet on its 

proximal cranial border. A second, smaller facet is found distal to the former. 

Moreover, a distinct, 15 mm wide and 110 mm long flange protrudes from the 

proximal part of the caudal edge of the blade. A low swelling subdivides the lat-

eral side of the distal expansion into a cranial and a caudal facet. The medial side 

of the distal half of the scapular blade is flattened and striated. Caudoproximally 

on the medial side, a wide, elongate depression extends medial to the caudal 

flange of the blade. The cranioproximal part of the medial blade is convex. 

Proximally, a triangular depression on the craniodorsal part of the scapular head 

extends somewhat onto the base of the blade (fig. 7-8).  

 

Figure 7-8. Osteological structures of the scapula of Antetonitrus. A, lateral view; B, medial 
view; C, reconstruction of the pectoral body profile in caudal view.  
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Caudolaterally on the scapular head, the oval scar dorsal to the glenoid (for at-

tachment of M. triceps brachii caput scapulare) is caudally and slightly medially 

oriented. Cranial to the glenoid, the oval ventrolateral fossa is elongate and shows 

no differentiation into a caudal and a deeper cranial part. Craniodorsally on the 

scapular head, the acromial region is deep, but the clavicular articular facet is bro-

ken off. The angle between the acromion and the cranial edge of scapular blade is 

about 160°. The ventral edge of the scapular head (the suture with the coracoid) 

exhibits a distinct ‘step’. The saddle-shaped scapulocoracoidal articular surface 

has a far ventrally extending lateral rim, but lacks tubercles or fossae.  

 

Figure 7-9. Osteological structures of the humerus of Antetonitrus. A, proximal (ventral 
side down), ventral, and distal (ventral side up) views. B, cranial view. C, dorsal view.  

 

Humerus. The humerus of Antetonitrus is relatively elongate, compared to 

forms like Massospondylus, but retains many basal sauropodomorph features (fig. 

7-9). The distal expansion is twisted about 30° cranially relative to the proximal 

end. Distally, the radial condyle is broken off. The humeral head is enlarged, al-

most hemispherical, and protrudes both above the (developmentally) dorsal and 

ventral sides of the shaft. In proximal view, the head has a subrectangular outline. 

In contrast to other ‘prosauropods’, the medial tuberosity is ventrally deflected, 

not dorsally as e.g. in Lufengosaurus. Cranially on the proximal end, the lateral 

tubercle is missing. The deltopectoral crest is large and extends for about 50% of 

the total length of the humerus. The crest is cranioventrally directed, but this 

might be caused partly by deformation. Both the proximal and distal bases of the 

crest gently curve towards the humeral head and distal shaft, respectively. The 
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apex of the deltopectoral crest is elongate and protrudes cranially. On this side, 

the apex is dorsally bordered by a groove-like depression (the paramarginal 

groove). The apex is narrow in craniocaudal direction and tapers distally. A tu-

bercle projects from its proximocaudal corner. The caudal side of the crest is con-

cave. On the proximoventral part of the humerus caudal to the deltopectoral crest, 

there is a gentle, striated depression like in most archosaurs.  

On the caudal side of the proximal humerus, a small tubercle protrudes imme-

diately distal to the medial tuberosity. Distal to the level of the apex of the del-

topectoral crest, the caudal side of the humeral shaft is flattened. In contrast to 

most ‘prosauropods’, there is no distinct ridge on the craniodorsal shaft dorsal to 

the deltopectoral crest. A narrow crest on the ventral side of the shaft runs 

obliquely from the distal base of the deltopectoral crest towards the cranial corner 

of the ulnar condyle. Craniodistally to this crest, a triangular depression extends 

distally. The deep ventral intercondylar pit is situated in the distal part of this de-

pression. The entepicondyle is caudodorsally placed and reduced to a low, elon-

gate elevation. An ectepicondyle cannot be delimited. In distal view, the ulnar 

condyle is suboval with straight dorsal and ventral edges. The large, concave dis-

tocaudal facet forms an angle of about 45° to the plane of the distal condyles. 

Since the radial condyle is broken off, there is no clue if its long axis formed an 

angle to the long axis of the ulnar condyle like in most basal sauropodomorphs. 

The dorsal side of the distal expansion exhibits a weakly developed intercondylar 

depression. 

Antebrachium. The ulna of Antetonitrus resembles that of other basal sauro-

podomorphs (fig. 7-10). The lateral process is robust and the cranial process short 

and narrow, but not significantly more so than e.g. in Plateosauravus. Caudally on 

the proximal end, there is a domed, rugose area like in other ‘prosauropods’. The 

caudal side of the shaft is only slightly curved. On the cranial edge of the distal 

end, a large tubercle for articulation with the radius protrudes craniomedially, 

accompanied by a cranially adjacent furrow. The distal end is twisted about 10° 

cranially relative to the long axis of the proximal cranial process. On the medial 

side of the proximal end, a wide depression extends distally. The radial fossa cra-

nial to the lateral process has a triangular shape. In cranial view, a small tubercle 

(probably for the insertion of M. biceps brachii) protrudes about 50 mm distome-

dially to the cranial process. Caudal to the lateral process, a wide fossa extends 

distally along the ulnar shaft. The caudal side of the distal expansion is character-

ized by a large, pitted tubercle that merges with the proximally extending distal 

articular surface.  
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The shaft of the radius is transversely flattened. The distal end of the radius is 

oriented almost in parallel to the long axis of the proximal end. The medial side of 

the shaft is smooth and flattened. A low, pitted tubercle projects from the cau-

dolateral side of the proximal end. The cranial and caudal edges of the shaft are 

rounded and lack distinct intermuscular ridges. A large, rugose ‘biceps tubercle' is 

situated on the cranial edge of the shaft, right distal to the proximal third of the 

radius. Distal to this tubercle, the lateral shaft exhibits two facets. The distocranial 

facet is narrow and craniolaterally oriented, while the distocaudal facet is wider 

and laterally directed. The caudal side of the distal end of the radius bears a huge 

tubercle that tapers proximally. Both laterally and medially, this tubercle is bor-

dered by grooves. 

 

Figure 7-10. Osteological structures of the antebrachium and metacarpus of Antetonitrus. 
A, ulna in medial, cranial, proximal, lateral, distal, and caudal views. B, radius in lateral 
and distal views. C, metacarpals I and II in proximal (left) and dorsal (right) views. D, 
phalanx I.1 in dorsal view.  

 

Metacarpus. The holotype of Antetonitrus preserves only metacarpals I and II. 

Metacarpal I is proximodistally compressed and wide relative to its length; meta-

carpal II is robustly build (fig. 7-10). Therefore, the hand of Antetonitrus resembles 

manual type 2 of other ‘prosauropods’ (see above). Both metacarpals exhibit the 

same characters as those of other basal sauropodomorphs; the closest resemblance 
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is with Yunnanosaurus. Metacarpal I retains strongly asymmetric distal articular 

condyles that lead to a medial deflection of the proximal phalanx during exten-

sion, and a lateral deflection during flexion. Both medially and laterally, the con-

dyles bear deep ligament grooves. Metacarpal II is specialized in showing no clear 

differentiation of the distal end into two separate condyles; instead, the articular 

surface for the proximal phalanx resembles a simple reel. Ligament grooves are 

present on both sides, but are weakly developed. There is no trace of an extensor 

pit on the dorsal side of the distal shaft. 

 

The second basal sauropodomorph taxon regarded as closely related to the ear-

liest sauropods is Melanorosaurus. After a confused taxonomic history, Galton et 

al. (2005) proposed a neotype for this genus, NM QR3314. The forelimb anatomy 

of this specimen was recently described and discussed in detail by Bonnan and 

Yates (2007). For a detailed description, the reader is therefore referred to that 

work. NM QR3314 is the only Melanorosaurus specimen that preserves a complete, 

articulated forelimb; other referred specimens are incomplete or of doubtful taxo-

nomic assigment (van Heerden and Galton, 1997; Galton et al., 2005). However, 

in NM QR3314 the bone surfaces are heavily damaged, and provide not much 

information on muscle attachment sites.  

Like in Yunnanosaurus and Antetonitrus, the scapular blade is broad relative to 

the craniocaudal length of the scapular head. The left ulna, one of the best-

preserved forelimb elements of this specimen, is not markedly different from the 

corresponding element of other prosauropods (fig. 7-11A). Most significant in 

NM QR3314 is the virtually complete preservation of the right manus (fig. 7-11B). 

The preserved phalangeal formula is 2-3-4-1-1; however, another unidentified 

bone distal to phalanx V.1 possibly represents a reduced phalanx IV.2 or V.2 (not 

mentioned by Bonnan and Yates [2007]). Metacarpal I is wide and short, meta-

carpals II–IV are robust, and the phalanges are blocky. Moreover, the phalanges 

between the proximal phalanx and the ungual are considerably reduced in size. 

The manus resembles that of Yunnanosaurus most closely, but metacarpals IV–V 

and the distal phalanges are more reduced. No carpal element could be identified. 

Overall, the hand of Melanorosaurus belongs to ‘prosauropod’ manual type 2 (see 

above). 

Other basal sauropodomorphs that stand close to the origin of sauropods and 

preserve forelimb elements include Jingshanosaurus (fig. 7-11C), Chinshakiangosau-

rus, and Gongxianosaurus (fig. 7-11D). The latter form is currently regarded as most 

significant for the ‘prosauropod’-sauropod transition (Upchurch et al., 2004), and 
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will be addressed in more detail in chapter 8. Unfortunately, none of these taxa 

could be included in the present study; hence, only a brief summary of their anat-

omy is presented here, based on published descriptions (Zhang and Yang, 1995; 

He et al., 1998; the forelimb elements of Chinshakiangosaurus have not been de-

scribed or figured yet). Shared characters of Jingshanosaurus and Gongxianosaurus 

include a strongly curved cranial edge of the scapula; a prominent distal expan-

sion of the scapula, with a pronounced caudodistal corner; and an enlarged cora-

coid that almost doubles the size of the scapular head. The humerus of Jingshano-

saurus is markedly robust. It bears a strong deltopectoral crest that extends for 

more than 50% of the length of the humerus, closely resembling Yunnanosaurus in 

this respect. Moreover, it has a triangular ventral intercondylar depression, and a 

large distocaudal facet (possibly for the origin of M. flexor digitorum longus).  

 

Figure 7-11. Comparison of forelimb material of several ‘prosauropods’ that are regarded 
as closely related to Sauropoda. A, ulna of Melanorosaurus (NM QR3314) in proximal, 
medial, distal, and lateral views. B, manus of NM QR3314, in situ preservation; modified 
from Bonnan and Yates (2007). C, interpretative sketches of the forelimb elements of Jing-
shanosaurus, based on photographs in Zhang and Yang (1995). D, forelimb of Gongxiano-
saurus as found in situ; modified from He et al. (1998). 
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Based on the drawings of He et al. (1998), the distal end of the elongate hume-

rus of Gongxianosaurus is not as expanded as in ‘prosauropods’, but resembles the 

sauropod condition (see chapter 8). However, Gongxianosaurus preserves a well-

developed deltopectoral crest on the humerus. The type material of Gongxianosau-

rus also contains a pair of sternal plates that exhibit a straight medial margin and a 

thickened cranial process.  

In Jingshanosaurus, the antebrachial elements are rather short and stout, like in 

Yunnanosaurus. Jingshanosaurus is unique in comprising three carpal elements that 

have been identified as intermedium, distal carpal I, and fused distal carpals II–V 

(Zhang and Yang, 1995). The complex, irregularly shaped block of distal carpals 

II–V is probably not pathologic, since both the left and the right manus show this 

feature. The hand can be assigned to manual type 2. However, metacarpals II and 

III are reduced in length, and measure only slightly more than metacarpal I. The 

manual phalangeal formula of Jingshanosaurus is 2-3-4-3-2. 

 

Muscle reconstructions 

Based on the results of the previous chapters, the shoulder girdle musculature 

is reconstructed here for Unaysaurus, Lufengosaurus, and Antetonitrus. Moreover, 

parts of the antebrachial musculature of Plateosaurus are inferred. The reconstruc-

tion of the myology of Antetonitrus will be discussed in detail in the following 

paragraphs. The remaining reconstructions are based on the same principles, be-

cause not many differences in the topology of muscle attachments can be recog-

nized in basal sauropodomorphs. 

 

Figure 7-12. Reconstructions of the muscular attachments on the scapula of Antetonitrus. 
Left, lateral view; right, medial view. For explanations see text. 
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Scapulocoracoid. In Antetonitrus, the configuration of the scapular muscles 

closely resembles Saturnalia and Efraasia (fig. 7-12). Differences are primarily due 

to the deviant proportions of the scapular blade. The shortening of the blade led to 

a comparatively smaller area of origin of M. deltoideus scapularis. The partition-

ing of the lateral side of the distal expansion into two facets possibly indicates the 

presence of a M. teres major. However, since the plesiomorphic osteological cor-

relate of this muscle could not be identified on the humerus, its course is not re-

constructed here. In Massospondylus, a large scar on the dorsal side of the humerus 

indicates the insertion of M. latissimus dorsi and M. teres major, like in all archo-

saurs plesiomorphically (chapter 3). Possibly, the caudodistal process of the scapu-

lar blade correlates to the origin of this muscle (fig. 7-15; see chapter 6).  

The considerable shortening of the cranial edge of the scapular blade reduces 

the area for the insertion of M. cucullaris and M. levator scapulae. The elongate 

facet on the proximocranial edge of the blade probably served for the insertion of 

M. cucullaris, as inferred for Euparkeria and basal dinosaurs (chapters 4–6). As a 

consequence, the area of insertion of M. levator scapulae appears to be signifi-

cantly reduced. Moreover, the strong curvature of the distocranial edge of the 

scapular blade would have led to an inefficient angle of insertion of M. levator 

scapulae, unless the neck was held level with or below the distal expansion of the 

scapula.  

The relatively broad base of the scapular blade provides much room for the 

origins of Mm. scapulohumerales, but like in all basal archosaurs, there are no 

osteological correlates that would allow for a delimitation of their attachment sites 

(chapters 4–6). The dorsoventrally deep acromial region between the ventral fossa 

and the dorsal border of the scapular head possibly served as a secondary origin of 

M. deltoideus clavicularis. If the clavicles were reduced in Antetonitrus, the muscle 

might also have had its origin solely from this area. The position and relative size 

of the ventrolateral fossa on the scapular head is plesiomorphic. Like in all archo-

saurs (chapter 3), the origin of M. triceps brachii caput scapulare is indicated by a 

circular scar dorsal to the glenoid, and exhibits no significant modifications.  

On the medial side of the scapular blade, the area for the insertion of M. serra-

tus profundus is somewhat reduced. Paralleling the reduction of the area of origin 

of M. deltoideus scapularis, this is a consequence of the shortening of the scapular 

blade. Like in other basal dinosaurs, the elongate facet medial to the caudal flange 

of the scapular blade probably served for the attachment of M. serratus superfici-

alis (chapters 4–6). The considerable elongation of the caudal flange may correlate 
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to a stronger Ligamentum sternoscapulare internum (which in turn may be related 

to a more powerful M. triceps brachii caput coracoscapulare), but this inference is 

rather speculative. Cranially on the medial side of the scapula, the triangular facet 

that indicates the origin of M. subscapularis is slightly enlarged relative to the size 

of the scapular head. Like in Saturnalia and Efraasia, it is situated far ventrally, and 

does not extend much onto the scapular blade. 

The coracoid musculature of basal sauropodomorphs remained largely plesio-

morphic, as far as can be inferred (see fig. 7-14). The most significant difference is 

the enlargement of the biceps tubercle, probably correlating to an exceptionally 

powerful M. biceps brachii. The sites of attachment of the remaining muscles 

show no obvious modifications. The significance of the varying form of the sub-

glenoid fossa (the attachment of M. costocoracoideus) cannot be explained, since 

the origin of this muscle on the sternal ribs and cartilaginous sternum is not pre-

served in any basal sauropodomorph. 

 

Figure 7-13. Reconstructions of muscle attachment sites on the humerus of Antetonitrus. 
From left to right, ventral, cranial, and dorsal views. For explanations see text. 

 

Humerus. Although different in shape from the humeri of basal-most sauro-

podomorphs, the humerus of Antetonitrus lacks traces of major modifications of 

the musculature (fig. 7-13). Nevertheless, there are two main differences. First, the 

loss of the lateral tubercle, accompanied by the reduction of the wide depression 

between this tubercle and the apex of the deltopectoral crest, led to a considerably 

smaller attachment site for M. deltoideus scapularis. This might be correlated to 

the reduction of the origin of this muscle on the scapula (see above), but such a 

causal connection is speculative. Second, in Antetonitrus and many other basal 

sauropodomorphs, there is no trace of the oval scar that indicates the insertion of 
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M. latissimus dorsi and M. teres major. This may be explained with a reduction, 

or these muscles evolved a fleshy instead of a tendinous insertion (see Discussion 

below). Regarding the remaining muscles, the expanded proximal part of the 

humerus provided much room for the insertion of the Mm. scapulohumerales. 

The shortening and constriction of the humeral shaft led to a reduction of the 

probable areas of orgin of Mm. triceps brachii capiti humerales and M. brachialis. 

However, the ventral border of the origin of M. brachialis is probably indicated by 

the narrow crest dorsolaterally to the ventral intercondylar depression. The mus-

cle attachment sites on the medial tuberosity and deltopectoral crest show the 

plesiomorphic configuration (see chapter 6). Similar conditions are also found in 

other ‘prosauropods’ (fig. 7-15). The epicondylar muscles lack osteological corre-

lates that can be identified unequivocally, a problem already addressed in the pre-

vious chapter.  

The musculature of the antebrachium, as inferred from osteology, shows no 

significant modifications relative to the basal-most sauropodomorphs (chapter 6; 

figs. 7-14, 7-16). One exception is the cranial tubercle of the radius (‘biceps tuber-

cle’), which possibly indicates the insertion of M. brachialis (chapter 5). The sig-

nificance of the modifications of this structure is discussed in the following sec-

tion.  

 

Discussion 

Osteology and bauplan 

Scapulocoracoid. Phylogenetic bracketing (with Euparkeria, Massospondylus, 

and extant Theropoda as outgroup taxa) as well as the basic similarity of the 

scapulocoracoidea implicate that the bauplan of the pectoral girdle observable in 

Massospondylus (fig. 7-2) probably also applies to all other taxa treated so far (chap-

ters 4–6). An alternative configuration with more widely spaced, laterally oriented 

coracoids may be conceivable if the clavicles were completely lost. However, fac-

ets for clavicular articulation are retained on the acromion of most basal dinosaurs 

and sauropodomorphs. This indicates that clavicles were originally present at least 

in an unossified state, but are just rarely preserved in the fossil record (see von 

Huene, 1926; Cooper, 1981; Galton, 1990; Padian, 1997b; Galton and Upchurch, 

2004; Yates and Vasconcelos, 2005; compare also Bryant and Russell, 1993). 

Moreover, even in archosaurs with reduced clavicles (i.e., crocodilians), the cora-

coids still articulate close to the midline. Instead of broadening the episternal 

process, crocodilians evolved elongate coracoids to obtain a derived, transversely 
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wide body profile. A similar phenomenon can be observed in birds, where the 

extremely elongate coracoids are still almost in contact medially on the cranial 

rim of the sternum (e.g., Bellairs and Jenkin, 1960; Baumel and Witmer, 1993). 

Possibly, this constraint of mid-line placement of the ventromedial edge of the 

coracoid constitutes a hint towards ontogenetic principles that apply to all archo-

saurs. 

As noted above, the ventral orientation of the coracoid leads to a caudolateral, 

not strictly caudal orientation of the coracoidal part of the glenoid. Therefore, the 

pectoral girdle is able to receive horizontally directed forces, while the scapular 

portion of the glenoid primarily buffers vertically directed forces. The strong but-

tress on the medial side of the scapular head in most ‘prosauropods’ demonstrates 

the ability of the pectoral girdle to resist compression, which would be exerted on 

the girdle when the limb transfers ground reaction forces during locomotion or 

standing. However, it is to note that such a buttress is also present in obligate bi-

pedal forms (e.g., Dilophosaurus, see chapter 5); therefore, it indicates only a con-

structional property, not the preferred locomotory behavior of basal sauropodo-

morphs. 

The proof that the coracoids almost contacted each other in midline implies 

that the main part of the sternum and the sternal plates were positioned caudally 

to these elements, not medially. In this position, the sternum would articulate 

with the caudomedial corners of the coracoids. In fossil specimens, a thick, rugose 

rim is usually present in this region of the coracoid (von Huene, 1926; Galton, 

1990; Galton and Upchurch, 2004). Moreover, in all extant tetrapods, the main 

axis of the sternum is oriented in parallel to the vertebral column. It is assumed 

here (and taken into account for the reconstructions) that sauropodomophs also 

possessed a spine-parallel orientation of the sternum. In Plateosaurus, sternal ribs 

articulated primarily with dorsal ribs 3 to 5, as indicated by the thickened, rugose 

distal ends of these dorsal ribs (von Huene, 1926). Although the shapes of the 

sternal ribs (and in most cases even of the dorsal ribs) are unknown in basal 

sauropodomorphs, there are no hints towards specializations where dorsal ribs are 

known, supporting a plesiomorphic position and orientation of the sternum in 

these forms. Considering the form of the coracoid and the angle between scapular 

blade and head, the cranial part of the ventral shoulder girdle curves dorsally 

away from the plane of the sternum in all known sauropodomorphs that are more 

derived than Saturnalia. This effect is the first step towards the transformations 

seen in sauropods (chapter 8), and will be discussed in length under the topic 

‘scapulocoracoid orientation’ in chapter 9.  
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The varying position of the caudal flange of the scapular blade is hard to ex-

plain. A more distal position may be related to a more caudal course of the Liga-

mentum sternoscapulare internum relative to the glenoid joint, which in turn may 

alter the origin of M. triceps brachii caput coracoscapulare. However, this as-

sumption is hard to test, and the significance of such a modification is unknown. 

Therefore, the position and size of the caudal flange may be important for taxo-

nomic and phylogenetic analyses, but its function remains a mystery. The same 

applies to the variations in the form of the distal edge of the scapular blade.  

The enormous size of the biceps tubercle on the coracoid indicates the neces-

sity of a stable bony anchor for the fibres of this muscle (see Wolff, 1892; Hoyte, 

1966; Frost, 1990), which apparently exerted strong tensional forces on its at-

tachment. A hypertrophied forearm flexor would not have been necessary for 

quadrupedal locomotion, even in a sprawling posture, since flexion occurs primar-

ily during the protraction phase of a gait (Hildebrand and Goslow, 2001; Liem et 

al., 2001), when the limb is in the air. In the support phase, when work against 

gravity has to be done, flexion would actually be counterproductive. In ‘prosauro-

pods’, the obviously strongly developed M. biceps brachii served therefore for 

powerful flexion of the forearm in bipedal stance, e.g. for manipulating tree 

branches during feeding, a behavior suggested previously by several authors 

(Galton, 1990; van Heerden, 1997; Upchurch, 1997a; Galton and Upchurch, 

2004). 

Humerus. The doming of the humeral head seen in many basal sauropodo-

morphs, including Antetonitrus, may relate to a greater maneuverability of the 

humerus. Taxa that lack a significant doming of the head (like Unaysaurus and 

Plateosaurus) seem to be considerably restricted in moving the humerus in the gle-

noid joint (Bonnan and Senter, 2007). However, the range of motion of the hume-

rus depends on many factors, including the form of the glenoid, the shape of the 

unpreserved cartilage caps of both humerus and glenoid, the configuration of the 

ligaments and articular capsule that surround the joint, and the course of the mus-

culature acting on the humerus (see Haines, 1939b, 1952).  

The conspicuous rotation of the medial tuberosity observed in Lufengosaurus 

and PVL field number 6 places the point of attachment of M. subcoracoscapularis 

somewhat dorsal to the pivot of the humerus, while in other ‘prosauropods’, the 

insertion is more or less in line with the long axis of the proximal expansion of the 

humerus. This specialization parallels a development seen in theropods (chapter 

5) and probably indicates a more parasagittal orientation of the humerus, with a 
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craniomedially directed deltopectoral crest. The unusual form of the proximal 

base of the crest, as well as the lateral shift of the caudal (developmentally dorsal) 

part of the humeral head in Lufengosaurus might also correlate to this reorienta-

tion. However, the coracoidal portion of the glenoid remains large and partly lat-

erally oriented. Therefore, it may be concluded that Lufengosaurus was able to ab-

duct the humerus significantly from the parasagittal plane (fig. 7-14), rendering 

the optimization of parasagittal retraction an additional ability that does not nec-

essarily exclude body support in semi-erect stance. The issue of humerus posture 

is strongly connected with the problem of manus pronation in ‘prosauropods’, 

which will be discussed below.  

Interestingly, the proximal end of the humerus of Antetonitrus lacks a modifica-

tion comparable to that seen in Lufengosaurus. Instead, it preserves the plesiomor-

phic, ventrally open bow that is also found in Saturnalia and Plateosauravus. On the 

other hand, the domed humeral head that extends on the developmentally ventral 

side of the shaft might correlate to a greater maneuverability, and possibly also 

allowed for a vertical orientation of the humerus. However, this depends strongly 

on the form and orientation of the coracoid and its glenoid portion, which are not 

preserved in Antetonitrus. 

On the developmentally dorsal side of the humerus, the loss of the scar for in-

sertion of the tendon of M. latissimus dorsi and M. teres major is puzzling. The 

distribution of such a scar in ‘prosauropods’ appears to be random; for example, it 

is present in Plateosauravus and Unaysaurus, but misses in the probably closely re-

lated and well-preserved Ruehleia, which nevertheless has a very similar shape of 

the humerus. The most plausible explanation is that the M. latissimus dorsi / M. 

teres major system developed a fleshy type of insertion in many basal sauropodo-

morphs, including Antetonitrus. Since these mucles are important abductors of the 

humerus and antagonists of M. coracobrachialis, a complete loss is unlikely. A 

fleshy insertion of M. latissimus dorsi / M. teres major would have been a novelty 

that is unknown in most extant non-avian diapsids (chapter 3), and probably indi-

cates an altered function of these muscles. However, the type of insertion provides 

no clues regarding mechanical advantages, if the physiological properties of the 

inserting muscles are unknown (An et al., 1984; Gans, 1988). Therefore, this evo-

lutionary novelty cannot be connected to adaptations for grasping or locomotion, 

and remains unexplained. 

The modifications of the distal end of the humerus resembles the development 

seen in theropods in two respects (see also chapter 5): first, the enlargement of the 
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distocaudal facet between ulnar condyle and entepicondylus, which possibly cor-

relates to the origin of M. flexor digitorum longus; second, the outward twist of 

the distal expansion. Like in theropods, the enlargement of the origin of M. flexor 

digitorum longus possibly indicates that this muscle was powerful, and might be 

correlated to improved grasping adaptations in the hand. The presence of huge 

flexor tubercles on the unguals (especially in digit I) supports this explanation. 

The outward (= developmentally cranial) rotation of the distal expansion inflicts  

a permanent supination of the hand if the antebrachium is in neutral position. 

Paralleling theropods, this may also be interpreted as an adaptation for effective 

grasping (von Huene, 1926; Galton, 1971b; Raath, 1977; Carpenter, 2002; Senter 

and Robins, 2005; Senter, 2006, 2007; Bonnan and Senter, 2007; chapter 5). 

However, since the grade of humeral torsion varies among basal sauropodo-

morphs, the ability to supinate the hand appears to have been differently devel-

oped. Large forms, like Lufengosaurus and Antetonitrus, exhibit a less pronounced 

twist; hence, manus pronation during quadrupedal locomotion was facilitated (see 

below).  

The different shapes of the distal articular ends of basal sauropodomorph 

humeri also relate to this issue. Radius and ulna usually do not fully articulate 

proximally in extant quadrupedal diapsids; instead, the configuration of the distal 

condyles of the humerus gives a better idea of the natural articulation of these 

bones than the form of the radial fossa on the proximal ulna (Haines, 1946; 

Landsmeer, 1983, 1984; contra Bonnan and Yates, 2007). In basal forms like 

Plateosauravus, the widely spaced ulnar and radial condyles, and the caudal deflec-

tion of the radial condyle relative to the axis of the ulnar condyle enabled the ra-

dius to rotate somewhat around the ulna. Therefore, these animals were able to 

pronate the hand to a certain degree. In Plateosaurus, the closely adjacent, equally 

sized condyles probably lessened this ability significantly (see von Huene, 1926; 

Bonnan and Senter, 2007).  

Antebrachium. Different capabilities to pronate the manus are also reflected in 

the shape of the radius. In Lufengosaurus and Antetonitrus, the acute angle between 

the proximal cotyle and the axis of the shaft places the distal end of the radius 

cranially and slightly medially to the distal end of the ulna (fig. 7-14), which is 

facilitated by the plesiomorphic form and orientation of the radial condyle (see 

above). Massospondylus exhibits comparable adaptations, albeit weakly developed. 

The meaning of these observation for the evolution of locomotion in basal sauro-

podomorphs will be discussed in length in chapter 9.  
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Figure 7-14. Different adaptations to partially pronate the hand in the basal sauropodo-
morphs Plateosauravus and Lufengosaurus, compared to Plateosaurus. Not to scale. For ex-
planations see text. 

 

The lateral shift of the cranial radial tubercle in Plateosauravus, Anchisaurus, and 

Yunnanosaurus probably represents a different solution for the problem of manus 

pronation. The difficulties of a proper reconstruction of the musculature that in-

serted on this tubercle have already been discussed in chapter 5. If the hypothesis 

were correct that the tubercle served primarily for attachment of M. brachialis, a 

lateral shift of this insertion would rotate the radius around its long axis when this 

muscle contracts, placing its distal end craniomedially to the ulna (fig. 7-14). In 

forms like Plateosaurus that have a plesiomorphic form of the radius and a narrow 

elbow joint, such a rotation is severly hampered (Bonnan and Senter, 2007). Nev-

ertheless, both pronation systems do not permit a directly cranial orientation of 

the dorsal side of the manus when the humerus is held vertically. Instead, the in-

ner digits would have touched the ground only if the humerus was held in a semi-

erect posture, and even then the main axis of the hand would have been cranio-

laterally, not strictly cranially directed. The ichnotaxon Navahopus (Baird, 1980), 

which was attributed to Anchisaurus, supports this reconstruction by exhibiting 

manual prints with a craniolateral orientation of digit III and a gauge that is sig-

nificantly wider than that of the pedal prints, despite the narrowness of the pecto-

ral girdle. Moreover, in Antetonitrus a semi-erect pose of the humerus during sup-

port is indicated by the retention of a ventral intercondylar cavity, which probably 
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served for storing synovial fluid during compression of the elbow joint (see chap-

ter 6; contra Bonnan and Yates, 2007, who assumed this cavity [‘cuboid fossa’] in 

Melanorosaurus to have received the radius during strong flexion of the forearm). 

Manus. Distally in the antebrachium, the complex form of the radioulnar ar-

ticulation probably enabled sliding articulation and simultaneously stabilized the 

wrist, if the hand was used as a grasping tool and therefore had to be supinated 

and pronated against the resistance of the manipulated matter (e.g., branches). In 

sauropodomorphs, this was especially important since radiale and ulnare do not 

ossify, but the significance of this latter adaptation is unclear. The structure of 

‘prosauropod’ hands, like the rest of the forelimb, exhibits clear adaptations to 

grasping, an issue already examined by a various authors (von Huene, 1905, 1926; 

Lull, 1953; Charig, 1965; Galton, 1984b, 1990; Upchurch, 1997; Galton and Up-

church, 2004). However, forms with adaptations for manus pronation in the ante-

brachium usually exhibit the modified manual type 2, with a wide metacarpal I, 

robust metacarpals II–IV, and block-like phalanges. These include Lufengosaurus, 

Yunnanosaurus, Antetonitrus, and also Massospondylus. Anchisaurus combines a ple-

siomorphic hand structure with a laterally displaced radial tubercle, and is there-

fore an exception from this pattern. Nevertheless, the modifications seen in Mas-

sospondylinae and more derived sauropodomorphs are clearly advantageous if the 

hand is used for locomotion, but not for grasping. This latter assessment is cor-

roborated by the discovery of obligate quadrupedal hatchlings of Massospondylus 

(Reisz et al., 2005). 

 

Myology 

With these interpretations of the osteological modifications in mind, recon-

structions of parts of the skeletomuscular system of the forelimbs of Unaysaurus, 

Lufengosaurus (fig. 7-15), Plateosaurus (fig. 7-17), and Antetonitrus (fig. 7-16) will be 

discussed in the following. 

Since the attachment sites for the cingulo-axial muscles show no significant 

modifications, it is assumed here that in all basal sauropodomorphs these muscles 

had a configuration similar to that reconstructed for Saturnalia (see fig. 6-12). One 

possible exception is the M. cucullaris / M. levator scapulae system in Antetoni-

trus: The facet that probably indicates the insertion of one or both of these muscles 

is more cranially than dorsocranially oriented, and a caudoventral course of these 

muscles would be hampered by the protruding distocranial corner of the scapular 

blade. Therefore, it is possible that the modification of the shape of the scapular 
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blade seen in Antetonitrus and more derived sauropodomorphs like Gongxianosau-

rus (and to a lesser extent also in Jingshanosaurus) is related to a modified, more 

horizontal neck posture. However, the neck of Antetonitrus is largely unknown, 

and basal eusauropods like Patagosaurus lack this modification of the scapular 

blade (see chapters 8 and 9). The evolution of the axial skeletomuscular system in 

sauropodomorphs remains a matter of future research.  

 

Figure 7-15. Comparison of the pectoral skeletomuscular system of the ‘prosauropods’ 
Unaysaurus and Lufengosaurus in lateral view. Muscles are depicted by their estimated lines 
of action, providing a gross idea of the function of each muscle. For explanations see text. 

 

The skeletomuscular system of the shoulder is relatively uniform in basal 

sauropodomorphs, including Antetonitrus (figs. 7-15, 7-16). Due to slightly differ-

ent proportions of the scapulocoracoid, the inferred courses of the deltoid and 

subcoracoscapular muscles vary in their angle relative to a vertical axis through 

the glenoid, but functional improvements of the plesiomorphic sauropodomorph 

system (like in Saturnalia and Efraasia) cannot be inferred from these patterns. In-

stead, a single skeletomuscular bauplan shared by all basal sauropodomorphs was 

adapted for different purposes by slightly altering the position of essential points 

of insertion (e.g., the medial tuberosity), or by modifying the form and orientation 

of the joints (see above). 
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Figure 7-16. Reconstruction of the pectoral skeletomuscular system of Antetonitrus in lat-
eral view. Muscles are depicted by their estimated lines of action, providing a gross idea of 
the function of each muscle. For explanations see text. 

 

 

  

Figure 7-16. Reconstruction of the skeletomuscular system of the cranial side of the ante-
brachium of Plateosaurus in dorsal view. Muscles are depicted by their estimated lines of 
action, providing a gross idea of the function of each muscle. For explanations see text. 
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In the antebrachium, the courses of many muscles are hard to infer. Their ori-

gins, the epicondyles, exhibit no unambiguous osteological correlates, and their 

plesiomorphic sites of attachment, the proximal carpals, do not ossify in sauro-

podomorphs. It may be speculated that certain tubercles on the distal expansions 

of radius and ulna might correlate to modified insertions of the carpal flexors and 

extensors, but this assumption is hard to test. In general, the courses of inferable 

forearm muscles are plesiomorphic (fig. 7-16). The robust structure of the antebra-

chial elements of most ‘prosauropods’ not only indicates increased tolerance 

against compression (i.e., in support or locomotion), but also provides enlarged 

muscular attachment sites for the manual supinators (fig. 7-16, M. supinator ma-

nus) and pronators, which may have been important both for grasping actions and 

for locomotion. However, the course of the main manual pronator, M. pronator 

quadratus, cannot be inferred, since its plesiomorphic point of attachment, the 

ulnare, is not ossified. The presence of a distinct tubercle cranially on the humeral 

midshaft in Plateosaurus and some other forms is enigmatic. This tubercle obvi-

ously indicates the attachment of an unidentified muscle (‘?’ in fig. 7-16), but its 

position seems too distant from the elbow joint to correlate to one of the ectepi-

condylar muscles. Possibly, it indicates a modified origin of M. brachialis, or even 

of M. humeroradialis, if this muscle was retained in basal sauropodomorphs (see 

chapter 6). 

In summary, most of the skeletomuscular system of the forearm and hand of 

basal sauropodomorphs cannot be reliably reconstructed, due to too many un-

knowns. Hopefully, a better understanding will be made possible by future re-

search, e.g. by utilizing computer simulations and biomechanical models. 

 

Conclusions 

The forelimbs of basal sauropodomorphs retained the skeletomuscular system 

inherited from the earliest representatives of this group. However, individual taxa 

show specializations towards improved grasping (e.g., Plateosaurus) that prevent 

efficient quadrupedal locomotion; others adapted for improved quadrupedal lo-

comotion by modifying the form of the hand, and developed advanced capabili-

ties to pronate it. The fact that there are two types of manus pronation systems 

that seem to be randomly distributed in the current topology of basal sauropodo-

morph relationships (according to Yates, 2007) possibly reflects our inadequate 

understanding of the phylogeny of the group. Another plausible explanation is 

that changes in modes of locomotion (e.g., from facultative to habitual quadru-
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pedalism, or from quadrupedalism to habitual bipedalism and vice versa) occurred 

independently at several points in basal sauropodomorph evolution. Nevertheless, 

no basal sauropodomorph, including Antetonitrus, exhibits unambiguous adapta-

tions in the skeletomuscular system that might indicate an improved, parasagittal 

stance and gait of the forelimb. Instead, the plesiomorphic protraction/retraction 

system (M. pectoralis and M. deltoideus clavicularis acting on the deltopectoral 

crest) is retained, which inflicts a significant lateral component in the movements 

of the humerus.  
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8 Functional morphology of the pectoral girdle and 

forelimb in basal sauropods 

 

Introduction 

The radiation of sauropod dinosaurs began during the Late Triassic, and the 

group soon reached global distribution. Simultaneously, the body size of sauro-

pods highly increased compared to basal sauropodomorphs, leading to gigantic 

forms already in the Rhaetian (Buffetaut et al., 2002). Naturally, this increase in 

size is also reflected in the construction of the limbs, the organs that support the 

body mass. Soon after the first discoveries of complete sauropod skeletons, it was 

recognized that sauropods possessed columnar, graviportal extremities (Osborn 

and Granger, 1901; Riggs, 1901; Hatcher, 1902; Abel, 1910; Holland, 1910; contra 

Hay, 1908, 1910, and Tornier, 1909). In recent years, the understanding of the 

constructional principles of the sauropod pectoral girdle and forelimb increased 

significantly by a number of observations in neosauropods (Bonnan, 2001, 2003, 

2004; Wilhite, 2003; Schwarz et al., 2007a,b). However, the question of morpho-

logical transformations in course of the transition from basal sauropodomorphs to 

‘true’ sauropods has only been initially explored (Bonnan and Yates, 2007). 

Therefore, this chapter describes in detail the osteology and inferred myology of 

the pectoral girdle and forelimb of basal sauropods, and provides functional inter-

pretations of these observations. The meaning of these differences from basal 

sauropodomorphs for the evolution of the sauropod bauplan will then be explored 

in length in chapter 9.  

In recent years, new discoveries in Upper Triassic and Lower Jurassic strata in 

South Africa and East Asia began to fill the morphological gap between typical 

sauropods and ‘prosauropods’ (He et al., 1998; Buffetaut et al., 2000; Yates and 

Kitching, 2003). As a consequence, the definition of the taxonomic unit ‘Sauro-

poda’ became a matter of debate. Salgado et al. (1997) proposed a node-based 

definition of this clade, including Vulcanodon karibaensis and more derived sauro-

podomorphs, while others preferred a stem-based definition, including all sauro-

podomorphs that are more closely related to Saltasaurus than to Plateosaurus (Wil-

son and Sereno, 1998; Sereno, 1999b; Upchurch et al., 2004). According to the 

latter definition, a number of taxa mentioned in the previous chapter (Jingshano-

saurus, Melanorosaurus, Antetonitrus) already belong to Sauropoda. However, the 

morphological gap between the forelimbs of these forms and those of later sauro-

pods renders a separate treatment of both baupläne more convenient. Therefore, 
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the chapter at hand deals with those basal sauropods that already show clear 

modifications of the skeletomuscular system of the forelimb. The important but 

incompletely described transitional form Gongxianosaurus, which has been briefly 

mentioned in the previous chapter, will also be addressed for comparative rea-

sons.  

Data quality 

A look at the temporal and spatial distribution of basal sauropods reveals a ma-

jor problem for the understanding of the evolution of locomotion in basal sauro-

pods (fig. 8-1). Currently, only few taxa that preserve forelimb elements are 

known from Lower Jurassic strata. Most of these are incomplete, others are taxo-

nomically or stratigraphically problematic (see below), and again others are cur-

rently in description, restricting public access to the material. The first known 

sauropods with virtually complete skeletons come from the Middle Jurassic of 

China, an area regarded as largely isolated from the rest of Pangaea during most 

of the Triassic and Jurassic (see Upchurch, 1995; Golonka, 2007; fig. 8-1). This 

scarcity of data does not prevent an analysis of morphological transformations, 

but we should be aware of certain insecurities about interpretations of the early 

record of sauropod dinosaurs. Hence, future discoveries in the Lower Jurassic will 

refine (and probably alter) our understanding of the evolution of the sauropod 

pectoral girdle and forelimb significantly. To get an overview over the reliability 

of the data analyzed here, short accounts on all relevant taxa will be given in the 

following. 

Gongxianosaurus shibeiensis from the Lower Jurassic Ziliujing Formation of Si-

chuan, China, has been erected and preliminary described by He et al. (1998), 

Lou and Wang (1999, 2000), and Lou et al. (1999). He et al. (1998) also provide a 

sketch of the pectoral girdle and forelimb as found in the field. At least four indi-

viduals of Gongxianosaurus have been excavated and brought to Yuzhou Univer-

sity, Chongqing, Sichuan (Lou and Wang, 2000), but are currently in preparation 

for a detailed account on the osteology of this taxon (Li, pers. comm. 2006). 

Gongxianosaurus could not be examined personally during this study, and may 

therefore only be assessed by means of the brief descriptions and the figure pub-

lished. Unfortunately, none of the aforementioned works gives an age for this find 

that is more precise than ‘Early Jurassic’. The Ziliujing Formation stratigraphi-

cally superposes the prosauropod-bearing Zhenzhuchong Formation (Dong et al., 

1983), which has been dated as Toarcian to Bajocian (Wang and Sun, 1983). 
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Even if the latter estimate were to young, it may be concluded from the strati-

graphic succession (Dong et al., 1983) that both formations are younger than the 

Lower Lufeng Series of Yunnan, which is Sinemurian in age (Luo and Wu, 

1994), and probably older than the sauropod-dominated Lower Shaximiao For-

mation of Sichuan, which is dated as Bathonian (Dong and Tang, 1984). Dong 

(1984) originally based the age determination of the Ziliujing Formation on the 

discovery of an isolated dentary that resembles Lufengosaurus, but recent discover-

ies from the Bathonian of Madagascar demonstrate that sauropodomorphs with 

‘prosauropod’-like teeth still existed in the Middle Jurassic (Buffetaut, 2005). 

Therefore, it is plausible that the Ziliujing Formation is at least Toarcian in age 

(rendering the Zhenzhuchong Formation Pliensbachian), and might even be 

younger. 

 

Figure 8-1. Relationships, temporal, and geographical distribution of basal sauropods. 
Cladogram combined after Upchurch et al. (2007) and Yates (2007). Note that the topol-
ogy of the basal sauropod tree is still debated, and that neosauropods are also known from 
the Bathonian of China (Abrosaurus, Bellusaurus, Daanosaurus). Klamelisaurus has not been 
incorporated in a cladistic analysis yet, but shows affinities to Mamenchisauridae (Up-
church, 1995; Upchurch et al., 2004). 

 

Isanosaurus attavipachi is based on an assembly of several vertebrae, chevrons, a 

sternal plate, a right scapula, and a left femur from the Rhaetian Nam Phong 
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Formation of Thailand (Buffetaut et al., 2000). These authors present drawings of 

the scapula in lateral view and of the sternal plate in ventral view, but do not de-

scribe these elements in detail. Due to the fragmentary nature of the holotype, 

doubts on the phylogenetic position of Isanosaurus remain, and the published fig-

ure of the scapula does not show many osteological details. Buffetaut et al. (2002) 

describe and figure an incomplete sauropod humerus from the same formation 

and discuss its significance, but this specimen cannot be assigned to Isanosaurus 

since there is no overlap. 

Vulcanodon karibaensis comes from a sandstone lens sandwiched between 

Lower Jurassic lava flows of the terminal Karoo volcanism in northern Zim-

babwe, and was described and figured by Raath (1972). The Karoo lava flows had 

not been dated precisely at that time, leading Raath (1972) to estimate the age of 

Vulcanodon as Hettangian, based on the ‘advanced’ anatomy of this taxon relative 

to ‘melanorosaurids’ (see also Olsen and Galton, 1984). However, recent studies 

determined the Karoo volcanism to be Toarcian in age, rendering Vulcanodon 20 

million years younger than previously believed (Duncan et al., 1997; Yates et al., 

2004). The semi-articulated holotype material of Vulcanodon includes a right ulna, 

a right radius, and some metacarpals and manual phalanges, all being described 

and drawn by Raath (1972). Cooper (1984) re-describes and refigures the holotype 

material plus newly collected specimens from the same locality, including two 

fragmentary humeri and a fragmentary scapular blade. The Vulcanodon material 

could not be examined personally during this study, due to political instability in 

Zimbabwe where the specimens are housed. Therefore, the information on Vul-

canodon given in this chapter is solely based on published accounts.  

Barapasaurus tagorei was erected and described by Jain et al. (1975), based on 

scattered remains that were collected from the Kota Formation of the Godavari 

Valley, central India. Jain et al. (1975) state that most elements were found iso-

lated in various localities, but some of the material was partly associated. The 

collected elements, which include a right scapula, a right coracoid, and left and 

right humeri, were used to mount a skeletal reconstruction in the Indian Statistical 

Institute in Kolkata. Jain et al. (1975, 1979) give no statement if the scapulocora-

coid and the humerus were found associated, or if these elements were found in 

the vicinity of other postcranial elements. In the same area, P. Yadagiri worked 

on a bonebed that yielded Barapasaurus-like ilia, as well as a second, more plesio-

morphic iliac type (Yadagiri et al., 1979). One of these plesiomorphic ilia was 

published as the holotype of a new genus and species, Kotasaurus yamanpalliensis 
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(Yadagiri, 1988). More material from the bonebed was assembled in form of a 

skeletal restoration in the B. M. Birla Science Center, Hyderabad, India, with 

missing parts reconstructed by plaster models. The morphology of this mount was 

recently described by Yadagiri (2001), however without clearly distinguishing 

between original fossils and plaster reconstructions. Personal examination of the 

Kotasaurus mount and of additional material from the same locality housed at 

GSI-SR revealed that at least three sauropod taxa are represented in the Kota 

Formation, rendering the current compilations of both Barapasaurus and Kotasau-

rus highly questionable. Additional to these taxonomical flaws, there are also in-

securities about the age of the Kota Formation. Originally claimed to be Liassic, 

based on a semionotid fish fauna (Jain, 1973, 1996; Bandyopadhyay and Row-

Chowdhury, 1996), recent accounts now prefer a Pliensbachian to Aalenian age 

(Bandyopadhyay, 1999; Bandyopadhyay et al., 2002). However, palynological 

data possibly indicate a much younger age (G. V. R. Prasad cited in Buffetaut et 

al., 2000). Under consideration of these taxonomical and stratigraphical uncer-

tainties, the morphology of the forelimb elements assigned to Barapasaurus and 

Kotasaurus is shortly introduced in this chapter, but no attempt of a skeletomuscu-

lar reconstruction will be made.  

Other Early Jurassic sauropods are Ohmdenosaurus liasicus from the Toarcian of 

Germany (Wild, 1978), ‘Zizhongosaurus chuanchengensis’ from the ?Toarcian (see 

above) Ziliujing Formation of Sichuan, China (Dong et al., 1983), and Tazou-

dasaurus naimi from the Toarcian of Morocco (Allain et al., 2004). None of these 

taxa preserves forelimb elements. Moreover, Barrett (1999) described a sauropod 

dentary from the Sinemurian Lower Lufeng Series of Yunnan, China. Formerly, 

this element had been attributed to ‘Kunmingosaurus wudingensis’, a taxon now 

regarded as a nomen nudum (Barrett, 1999).  

The situation improves significantly in the Middle Jurassic. A rich dinosaurian 

fauna is known from the Bathonian Lower Shaximiao Formation of Sichuan, 

China, and includes the eusauropods Shunosaurus lii, Omeisaurus junghsiensis, O. 

tianfuensis, and Mamenchisaurus (Zigongosaurus) fuxiensis, the basal macronarians 

Abrosaurus dongpoi and Daanosaurus zhangi, and the sauropod incertae sedis Da-

tousaurus bashanensis. Several species of Mamenchisaurus have also been found in 

the succeeding Upper Shaximiao and Penglaizhen Formations (e.g., He et al., 

1996), which are regarded as Oxfordian (Weishampel et al., 2004b). The forelimb 

osteology of Shunosaurus, Omeisaurus and Mamenchisaurus is comparatively well 

described in published accounts (Young, 1939, 1958; Dong et al., 1983; He, 1984; 
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He et al., 1984, 1988; Zhang et al., 1984, 1998; Zhang, 1988; Pi et al., 1996, 2002; 

Tang et al., 2001; Ye et al., 2001). However, personal examination of the Shuno-

saurus holotype (IVPP V9065) led to the recognition of fundamental differences in 

the morphology of the forelimb between the type and the referred, articulated 

specimens (ZDM 5003, 5006, 5008). The significance of this observation could 

not be resolved during this study, because the curating institution (ZDM) refused 

to grant access to most of the Dashanpu material. However, published accounts 

and the specimens in IVPP and CUT allow for a reasonable assessment of the 

anatomy of Omeisaurus and Mamenchisaurus. Regarding Shunosaurus, this work 

refers to the forelimb anatomy of the articulated specimens ZDM 5003 and 5008 

as figured by Zhang (1988) and Peng et al. (2005), since these are the only exam-

ples of a non-mamenchisaurid basal sauropod that preserve the manus. Pending 

future taxonomic works, the assignment to Shunosaurus is retained provisionally.  

Klamelisaurus gobiensis from the Bathonian Wucaiwan Formation of the Jung-

gar Basin, Xinjiang, China, was erected and described by Zhao (1993). It was 

originally classified as brachiosaurid, but Upchurch (1995) and Upchurch et al. 

(2004) noted the affinities of this taxon to Mamenchisauridae, which could be 

confirmed by personal examination. Klamelisaurus (IVPP V9492) comprises a 

well-preserved right forelimb (without manus). Under comparison to the pub-

lished accounts on Omeisaurus and Mamenchisaurus, this specimen therefore serves 

as a model for mamenchisaurid forelimbs in the anatomical descriptions and dis-

cussions below. 

Another basal sauropod taxon that comprises forelimb elements, Yuanmousau-

rus jiangyiensis from the Middle Jurassic Zhanghe Formation of Yunnan, China, 

has recently been erected by Lü et al. (2006). The age of the Zhanghe Formation 

is not entirely clear, but the presence of an advanced ‘prosauropod’ (Yunnanosau-

rus youngi; Lü et al., 2007) in the same strata might indicate a lower Middle Juras-

sic age. The Yuanmousaurus material shows affinities to Patagosaurus and seems to 

be more derived than Omeisaurus, but the phylogenetic position of Yuanmousaurus 

remains unclear (Lü et al., 2006). Due to the very recent publication of this taxon, 

the account on its forelimb anatomy below could only be based on the descrip-

tions and photographs in Lü et al. (2006). 

Patagosaurus fariasi from the Callovian Cañodon Asfalto Formation of Cerro 

Condor, Chubut, Argentina was erected and described by Bonaparte (1979, 1986). 

The same locality also yielded the basal sauropod Volkheimeria chubutensis (which 

comprises no forelimb material). The Patagosaurus material is comparatively well 
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preserved and comprises several scapulae, coracoids, and humeri, plus the com-

plete forelimb (without manus) of a subadult individual (MACN CH-932). How-

ever, the Patagosaurus hypodigm seems to contain two different taxa (Rauhut, 

2003b), and it cannot be demonstrated beyond doubt that MACN CH-932 be-

longs to the same species as the holotype (PVL 4170). Nevertheless, the specimen 

will be regarded as Patagosaurus in this work, and will serve as the main example 

for the forelimb anatomy of a basal sauropod (see section ‘Anatomy’ below).  

Finally, Cetiosaurus oxoniensis from the Bathonian Forest Marble of Oxford-

shire, England is regarded as standing close to the base of the Neosauropoda (Up-

church and Martin, 2002). The OUMNH specimen comprises a complete fore-

limb (without manus) and a fragmentary sternal plate. After a long and confused 

taxonomic history, Upchurch and Martin (2003) proposed the best-preserved C. 

oxoniensis specimen from Oxford to serve as a neotype for the genus Cetiosaurus, 

pending a petition to the ICZN. Unfortunately, not all forelimb elements could be 

examined from all sides during this study, because the scapula, humerus, radius, 

and ulna are mounted in a showcase at OUMNH.  

In summary, it becomes evident that there are currently no Jurassic sauropods 

known that definitely come from pre-Toarcian strata, with the exception of the 

dentary from the Lower Lufeng Series (Barrett, 1999). Moreover, the Toarcian 

taxa that preserve forelimb elements might be significantly younger (Gongxianosau-

rus, Barapasaurus, Kotasaurus), are taxonomically questionable (Barapasaurus, Kota-

saurus), or are incomplete (Vulcanodon). The only definite proof that sauropods 

with advanced forelimb bauplans existed prior to the Toarcian comes from the 

Rhaetian record of Thailand (Buffetaut et al., 2000, 2002). Consequently, the data 

on sauropod forelimb evolution exhibits a gap of at least 15 million years. Moreo-

ver, good data are currently only available from Bathonian and younger strata, 

virtually extending the gap to Antetonitrus to more than 40 million years (fig. 8-1). 

The ‘leap’ in forelimb morphology described in the following sections is therefore 

an artefact caused by an incomplete fossil record, and does not necessarily reflect 

a distinct evolutionary event. 
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Anatomy 

As mentioned above, in the following anatomical descriptions Patagosaurus 

fariasi (MACN CH-932) will be used as a standard model for the forelimb anat-

omy of a basal sauropod. Where necessary, comparisons to other early sauropods 

will also be incorporated. The forelimb anatomy of mamenchisaurids will be 

summarized and compared in the second part of this section. Due to the altered, 

columnar position of the sauropod forelimb, the developmentally ventral face of 

the humerus is referred to as the cranial side throughout this chapter; the orienta-

tions of the remaining surfaces are changed accordingly.  

 

Figure 8-2. Comparison of basal sauropod right scapulocoracoids. Black arrows indicate 
the clavicular articulation on the acromion. Gongxianosaurus is shown in medial view (re-
drawn after He et al., 1998), all others in lateral view. Isanosaurus redrawn after Buffetaut 
et al. (2000), Vulcanodon redrawn after Cooper (1984), Shunosaurus redrawn after Zhang 
(1988), and Yuanmousaurus redrawn after Lü et al. (2006). Scale bar = 20 cm. 
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Patagosaurus and other non-mamenchisaurid basal sauropods 

Scapulocoracoid. In Patagosaurus and most early sauropods, the scapula has a 

long, slender blade with only a slight distal expansion (figs. 8-2, 8-3). The expan-

sion is somewhat more marked in Shunosaurus and Cetiosaurus, but distinct in 

Gongxianosaurus and considerably enlarged in Yuanmousaurus. The cranial edge of 

the blade is straight or slightly concave, but distinctly concave in Cetiosaurus and 

Gongxianosaurus.  With the exception of the latter taxon, the distal edge of the 

blade is rather straight. A distinct caudal flange protrudes from the caudal edge of 

the blade. The flange is positioned distal to the proximal third of the blade in 

Patagosaurus and Barapasaurus, but proximally placed in Cetiosaurus. In Barapasau-

rus, the caudal flange exhibits seemingly pathologic, irregular bone growth that 

broadens the blade significantly in this area (fig. 8-2). The distal part of the blade 

is flat laterally, but convex proximally.  

On the cranial part of the proximal base of the blade, a narrow, subtriangular 

depression is found in Patagosaurus and Cetiosaurus, but is not well marked in other 

early sauropods. Cranial to the base of the blade, an oval to subtriangular facet on 

the acromion marks the clavicular articulation. This facet is usually craniolaterally 

directed. The scapular head, which is significantly deeper than in ‘prosauropods’, 

is entirely occupied by a large, oval ventrolateral fossa that extends caudoventrally 

to the glenoid. In Cetiosaurus, it extends even further, ending dorsal to the center of 

the glenoid rim. A distinct acromial ridge borders the ventrolateral fossa dorsally. 

One of the most marked differences to basal sauropodomorphs pertains to the 

angle between the long axis of the scapular head and the axis of the blade: usually 

accounting for 90° or more in ‘prosauropods’, this angle is well below 90° in all 

sauropods but Gongxianosaurus, and reaches only 50° in Barapasaurus. Immediately 

caudodorsal to the glenoid, an oval, caudally directed rugosity is found in all basal 

sauropods; in Cetiosaurus, this structure is more medially directed. On the medial 

side of scapula, there is an elongate facet proximomedial to the caudal flange of 

the blade, and an oval fossa cranioproximally on the base of the blade. The distal 

two thirds of the medial blade are flattened. Both the clavicular articulation and 

the supraglenoidal rugosity are visible in medial view. Dorsal to the glenoid, the 

supraglenoidal buttress is robustly developed. The scapulocoracoidal articulation 

can be observed in Barapasaurus only; in this taxon, a peg on the scapula articu-

lates with a socket on the coracoid. 

The coracoid of basal sauropods has an oval to subcircular outline, being con-

siderably less craniocaudally elongate than the coracoid of most basal sauro-
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podomorphs. The position of the coracoid foramen varies. The external side of 

the coracoid is strongly convex but bears no craniocaudal ridge; the internal side 

is strongly concave. In Barapasaurus, the external face is subdivided into three dis-

tinct facets, including a craniodorsal, a central, and a ventral facet.  

 

Figure 8-3. Osteological structures of the scapulocoracoid and humerus of Patagosaurus. 
A, right scapulocoracoid in lateral (left) and medial (right) views. B, right humerus in 
(from left to right) proximal, cranial, distal, medial, caudal, and lateral views.  
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Ventromedially near the medial edge, a slight eminence marks the attachment 

of M. biceps brachii. The subglenoid fossa has no lateral border and opens crani-

ally, except in Barapasaurus where there is a distinct, transversely rounded ridge 

lateral to this fossa. The coracoidal part of the glenoid is usually smaller than the 

scapular part, but equal in size in Barapasaurus. The articular surface of the gle-

noid slightly extends onto the external side of the coracoid. Uniquely in Bara-

pasaurus, the medial edge of the coracoid exhibits a 20 mm wide furrow that is 

bordered externally and internally by deep ridges. 

Humerus. In Patagosaurus, the humerus is broad transversely but craniocau-

dally compressed (fig. 8-3). Relative to the width of the shaft, both the proximal 

and distal ends of the humerus are only slightly expanded. The proximal end is 

curved, with a concave cranial and convex caudal side. The medial tuberosity is 

oriented in parallel with the humeral head, instead of being caudally deflected. 

The ovoid humeral head significantly protrudes over the caudal face of the shaft, 

rendering the proximal end subtriangular in proximal view. The lateral tubercle is 

clearly offset from the humeral head, but does not markedly project over the cau-

dal shaft. In cranial view, the humeral head is only slightly vaulted over the level 

of the medial tuberosity and the base of the deltopectoral crest. The deltopectoral 

crest is relatively deep (but much less so than in basal sauropodomorphs) and ex-

tends over 40% of the length of the humerus. In other basal sauropods, the crest is 

less prominent and significantly shorter. In these forms, the craniomedially-

oriented apex (which is not preserved in MACN CH-932) is distinctly offset from 

its base, producing a distinct paramarginal groove on the lateral side of the crest. 

Medial to the crest, a shallow, subtriangular fossa extends over the proximal third 

of the humerus. In medial view, the humeral shaft is slightly sigmoidal, but the 

articular surfaces of the proximal and distal ends are parallel. The proximal part of 

the caudal side of the shaft exhibits two subcircular depressions on both sides of 

the buttress that supports the humeral head, and a third, smaller facet laterally 

below the lateral tubercle. Distal to the proximal expansion, the humeral shaft is 

subdivided into elongate facets laterally and medially; however, the bone surface 

is not well preserved in MACN CH-932. On the proximal caudolateral edge of the 

shaft, a prominent ridge borders the lateral side of the deltopectoral crest.  

The distal expansion is not as wide as the proximal expansion. Cranially, there 

is no intercondylar depression. Instead, the distal cranial edge bears a pair of 

small, cranially projecting tubercles, the accessory condyles (fig. 8-3). The entepi-

condyle extends over the entire length of the distal expansion, and has the form of 
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a sharp, elevated ridge. The ectepicondyle bears a low ridge with a cranially adja-

cent, proximodistally elongate facet.  

 

Figure 8-4. Comparison of basal sauropod right humeri. A, Gongxianosaurus in medial 
view (redrawn after He et al., 1998). B, Sauropoda indet. from the Rhaetian Nam Phong 
Formation of Thailand in cranial (left) and caudal (right) views (redrawn after Buffetaut et 
al., 2002). C, Kotasaurus (BSC unnumbered) in (from left to right) cranial, lateral, and 
caudal views. D, Vulcanodon in cranial (left) and lateral (right) views (redrawn after Coo-
per, 1984). E, Barapasaurus (ISI R 86) in (from left to right) cranial, lateral, caudal, and 
medial views. F, Shunosaurus in cranial (left) and caudal (right) views (redrawn after 
Zhang, 1988). G, Yuanmousaurus in cranial (left) and caudal (right) views (redrawn after 
Lü et al., 2006). H, Patagosaurus (MACN CH-932) in (from left to right) proximal, cranial, 
distal, lateral, caudal, and medial views. I, Cetiosaurus (OUMNH J 13612) in proximal, 
cranial, and distal views. J, Klamelisaurus (IVPP V9492) in (from left to right) proximal, 
cranial, distal, lateral, caudal, and medial views. Black arrows mark the apex of the del-
topectoral crest. Scale bar = 20 cm. 

 

In distal view, the edges of the humeral condyles form a cranially open V, with 

the radial tubercle being craniolaterally, and the ulnar condyle being craniome-

dially oriented. Both condyles extend proximally onto the caudal side of the shaft. 
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Proximal to the condyles, the caudal side of the distal expansion exhibits a shal-

low but large intercondylar depression. The transverse axes of the proximal and 

distal expansions are subparallel, since there is no distinct torsion in the humeral 

shaft. 

Other basal sauropods differ in several characters (fig. 8-4). Gongxianosaurus 

and Kotasaurus lack a craniocaudal compression of the humeral shaft. In 

Gongxianosaurus, the deltopectoral crest is large and extends almost over 50% of 

the length of the humerus. Moreover, the humeral shaft is distinctly sigmoidal in 

this form. In Shunosaurus, Cetiosaurus, Kotasaurus, and Barapasaurus, the humeral 

head is vaulted over the level of the lateral condyle and medial tuberosity (but less 

prominent in the latter taxon). This character is considerably pronounced in 

Yuanmousarus, which also has an extremely slender humeral shaft (Lü et al., 

2006). In Cetiosaurus and Barapasaurus, the humeral head protrudes over the cra-

nial side of the shaft. The medial tuberosity extends far medially in Kotasaurus and 

Barapasaurus, rendering the proximal expansion wider than the distal expansion, 

and the medial side of the shaft proximodistally strongly concave. Shunosaurus is 

unusual in having a concave lateral edge of the shaft that is even more strongly 

curved than the medial edge (Zhang, 1988:fig. 46). In Kotasaurus and Cetiosaurus, 

the distal expansion is slightly cranially deflected, and lacks a distinct entepicon-

dyle. The latter character is also missing in Barapasaurus. Kotasaurus has a distinct 

cranial intercondylar depression caudally, but no accessory condyles cranially. 

Finally, Cetiosaurus lacks an extension of the humeral head onto the caudal side of 

the shaft.  

Antebrachium. In Patagosaurus and most other basal sauropods, radius and 

ulna are slender bones (fig. 8-5). Relative to the length of the humerus, the ante-

brachium is slightly elongate (see Mauersberger, 2005). The proximal end of the 

ulna is triradiate: the lateral process is enlarged and almost equals the cranial 

process in size. Both processes enclose an angle of about 100°. The cranial process 

has rotated medially relative to the central axis of the olecranon process, rendering 

the medial edge of the proximal end distinctly sigmoid in proximal view. Moreo-

ver, its proximal surface bears no distinct humeral cotyle.  

Like in most sauropodomorphs, the ulna lacks an ossified, proximally project-

ing olecranon process on its caudal side. Instead, the caudal part of the proximal 

end exhibits a circular, pitted dome that served as the base for the unossified 

epiphysis (see Discussion below). Proximally on the medial side of the shaft, an 

elongate oval fossa extends distally for one third of the length of the shaft. This 
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fossa is restricted to the caudal two thirds of the width of the shaft, unlike the 

condition found in basal sauropodomorphs where it occupies the entire medial 

side. Distal to this fossa, an elongate facet extends distocranially, followed by an-

other facet distally. An obliquely oriented, rounded ridge separates both facets 

from each other.  

 

Figure 8-5. Osteological structures on ulna and radius of Patagosaurus. A, right ulna in 
(from left to right) proximal, lateral, distal, cranial, medial, and caudal views. B, right 
radius in corresponding views.  
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Figure 8-6. Comparison of basal sauropod right ulnae. A, Gongxianosaurus in medial view 
(redrawn after He et al., 1998). B, Vulcanodon in (from left to right) proximal, lateral, cra-
nial, medial, and caudal views (redrawn after Cooper, 1984). C, Shunosaurus in lateral 
view (redrawn after Zhang, 1988). D, Patagosaurus (MACN CH-932) in (from left to right) 
proximal, lateral, distal, cranial, medial, and caudal views. E, Cetiosaurus (OUMNH J 
13611) in proximal (top), lateral (left), and caudal (right) views. F, Klamelisaurus (IVPP 
V9492) in proximal (top), lateral (left), distal (bottom), and cranial (right) views. Scale bar 
= 20 cm. 
 

The proximal third of the cranial side of the shaft is narrow. Immediately distal 

to the cranial process, a spindle-shaped tubercle is slightly offset from the cranial 

edge. The lateral side of the shaft bears a deep, triangular radial fossa with con-

spicuous longitudinal striations. Caudal to this fossa, the lateral process is sup-

ported by a short but robust buttress. An elongate facet extends distally over al-

most the entire length of the shaft. The caudal side of the shaft is thickened and 

transversely convex in its proximal part, where it exhibits strong longitudinal stria-

tions. The distal end of the ulna is expanded craniomedially, forming a triangular 

process in distal view. On the craniomedial side of the distal end, a large, oval 

rugosity marks the radial articulation. 

The radius is straight, with its caudal edge being only slightly concave in 

proximodistal direction. In proximal view, the proximal end is suboval with a 
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straight medial edge, and has no distinct caudoproximal process. Moreover, there 

is no cotyle for the humerus, but an even, pitted surface. Immediately distal to the 

proximal articular surface, a subcircular tubercle projects cranially. A similar tu-

bercle is found on the caudolateral edge of the proximal articular surface. Distal to 

the proximal third on the cranial edge of the shaft, the cranial tubercle has the 

form of a large, rugose swelling. Starting from the caudoproximal corner of the 

lateral side, a prominent intermuscular ridge runs craniodistally to the middle of 

the shaft, then curves caudodistally and ends shortly above the caudodistal corner 

of the distal expansion. The remaining sides of the shaft are subdivided into elon-

gate, proximodistally oriented facets. The distal end bears a prominent swelling 

caudomedially, indicating the contact to the ulna, and a rough pitted tubercle cra-

nially. 

 

Figure 8-7. Comparison of basal sauropod right radii. A, Gongxianosaurus in medial view 
(redrawn after He et al., 1998). B, Vulcanodon in (from left to right) proximal, lateral, cra-
nial, and medial views (redrawn after Cooper, 1984). C, Shunosaurus in lateral view (re-
drawn after Zhang, 1988). D, Patagosaurus (MACN CH-932) in (from left to right) proxi-
mal, lateral, distal, cranial, medial, and caudal views. E, Cetiosaurus (OUMNH J 13611) in 
lateral (left), and caudal (right) views. F, Klamelisaurus (IVPP V9492) in proximal (top), 
lateral (left), distal (bottom), and cranial (right) views. Scale bar = 20 cm. 
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The antebrachial elements of other basal sauropods are very similar, with the 

exception of Gongxianosaurus (figs. 8-6, 8-7). In this taxon, radius and ulna are 

very stout and robustly developed. However, the published descriptions give no 

further details on these elements. In Vulcanodon, the lateral process of the ulna is 

short and rounded in proximal view, while the cranial process is elongate and 

slender. In Cetiosaurus, both processes are elongate, but the cranial process is 

longer and transversely narrow.  

 

Figure 8-8. Hands of basal sauropods. A, right distal carpals of Shunosaurus in dorsocra-
nial view. B, right manus of Shunosaurus in dorsal view, with outlines of the metacarpals in 
proximal view. C, alternate arrangement of the right metacarpus of Shunosaurus in proxi-
mal view. D, left metacarpals IV and V, plus phalanx V.1 of Vulcanodon. A and B, re-
drawn after Zhang (1988); C, modified from Zhang (1988). D, redrawn after Raath (1972). 

 

Manus. In the course of this study, no manus of a basal sauropod could be ex-

amined personally. The only complete hand known was found articulated in a 

specimen of Shunosaurus (present catalogue number: ZDM 5003; see Peng et al., 

2005), which was figured and described by Zhang (1988). Zhang (1988:fig. 49) 

arranged the metacarpals very broad in his reconstruction, rendering the manus 

300 mm wide in transverse direction (fig. 8-8B). However, according to the figures 

in Zhang (1988), the width of the distal ends of radius and ulna in articulation 

must have been around 150 mm. This discrepancy in width between antebra-

chium and manus is unnatural: Upchurch (1994, 1998) recognized that the meta-

carpus probably articulated in a semitubular arrangement, resembling the 

neosauropod condition, and matching the size of the antebrachium (fig. 8-8C). As 

reconstructed here, the metacarpal arc of Shunosaurus extends over an circle seg-

ment of about 200°, and is therefore similar to that of the contemporaneous basal 
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neosauropod Atlasaurus (Monbaron et al., 1999). A metacarpal arc has also been 

described for Ferganasaurus, but the metacarpals of this likewise contemporaneous 

form are arranged in a circular segment of only about 90° (Alifanov and Averi-

anov, 2003). Nevertheless, sauropod tracks with semitubular hands are known 

already from the Lower Jurassic (Upchurch, 1994; Gierlinski, 1997; Wilson, 

2005). 

Zhang (1988) specified the manual phalangeal formula of Shunosaurus as 2-2-2-

2-?2, but Upchurch (1998, 1999) coded it as 2-2-2-2-1. Moreover, Upchurch et al. 

(2004) depicted the manus with a phalangeal formula of 2-2-2-2-?0 in a modified 

version of Zhang’s (1988) original figure. Peng et al. (2005:fig. 55) presented a 

novel reconstruction of the manus of a second specimen of Shunosaurus (ZDM 

5008), showing a phalangeal formula of 2-3-2-2-1, but noted a phalangeal formula 

of 2-2-2-2-?2 in the diagnosis of this genus. 

Irrespective of these uncertainties about the correct reconstruction of the ma-

nus of Shunosaurus, the published accounts allow for a brief assessment of its oste-

ology. Zhang (1988) recognized three distal carpals, but other specimens have 

four carpals ossified (Peng et al., 2005). The block-like carpals cap the metacarpals 

and become successively smaller towards the lateral side of the hand (fig. 8-8A). 

The metacarpals are robust and lack extensor or ligament pits. Metacarpal I is 

significantly longer than wide and has slightly asymmetric distal condyles. In 

proximal view, it is triradiate with slightly concave cranial and lateral edges, in-

stead of ‘keyhole-shaped’ as in many basal sauropodomorphs. In proximal view, 

metacarpals II–V are all subtriangular, and have concave cranial rims. Metacar-

pals II–IV are equal in length; metacarpal V is slightly longer than metacarpal I. 

The proximal phalanges are block-like, being about as long as wide. Phalanx I.1 is 

proximodistally compressed, rendering its shape disk-like. The first ungual is 

strongly enlarged, and almost doubles the first metacarpal in length. On digit II, a 

vestigial ungual is retained, while the remaining digits exhibit knob-like second 

phalanges.  

In comparison, the preserved metacarpals of Vulcanodon are rather slender (fig. 

8-8D). They have about the same proximal width as the corresponding elements 

in Shunosaurus, but are about 50% longer. The distal ends exhibit no differentia-

tion into separate condyles; instead, the distal articular surface is reel-like in meta-

carpal IV and ovoid in metacarpal V (Raath, 1972). Like in Shunosaurus, there are 

no extensor or ligament pits. The subtriangular first phalanx of digit V is robust 

and ends in a blunt tip (Raath, 1972). Therefore, a possible second phalanx of this 
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digit could only have been vestigial in nature. Judging from the drawings of these 

elements alone, it is impossible to reconstruct the structure of the entire manus. 

 

Mamenchisauridae 

The forelimb anatomy of the mamenchisaurids Klamelisaurus, Omeisaurus, and 

Mamenchisaurus differs from other basal sauropods in a number of specializations. 

In the following, these will be shortly summarized. For comparison, the pectoral 

girdle and forelimb elements of Klamelisaurus are shown in figs. 8-2, 8-4, 8-6, and 

8-7. 

Scapulocoracoid. Mamenchisaurids have a slender scapular blade and a con-

siderably enlarged scapular head. The angle between the dorsal border of the ac-

romion and the long axis of the scapular blade is less than 90°. Caudodorsal to the 

clavicular articular facet, a conspicuous triangular process projects dorsally. The 

coracoid is much reduced relative to the size of the enlarged scapular head: In 

Omeisaurus and Mamenchisaurus, the scapular head has almost double the size of 

the coracoid. In some specimens, the ventrolateral fossa on the scapular head ex-

hibits a slight differentiation into a deeper caudodorsal and a flattened cranioven-

tral part. The scapular part of the widely open glenoid is ventrally and slightly 

medially oriented, while the coracoidal part extends far onto the external surface 

of this element. In Mamenchisaurus, a channel-like groove runs from the scapular 

part of the coracoid in craniodorsal direction. The coracoidal part of the glenoid is 

dorsoventrally enlarged, leading to a reduction of the subglenoid fossa. A long, 

slender clavicle with a flattened, triangular proximal end has been reported for 

Omeisaurus tianfuensis (He et al., 1988:fig. 43).  

Humerus. Mamenchisaurid humeri exhibit a marked medial expansion of the 

medial tuberosity. The lateral part of the proximal end is elongate but craniocau-

dally slender. The cranial side of the humeral head extends craniodistally, forming 

an articular surface for the elongate coracoidal part of the glenoid. The deltopec-

toral crest is short, the apex ending after about 35% of the length of the humerus. 

In Klamelisaurus and M. guangyuanensis, a large, pitted tubercle is situated caudally 

to the proximal part of the apex. The distal end of the humerus is twisted cranio-

laterally at about 25° relative to the proximal end.  

The distal articular end of the humerus exhibits a complex morphology. In 

Klamelisaurus and O. tianfuensis, the epiphyses are almost fully ossified. The radial 

condyle is larger than the ulnar condyle, both being separated from each other by 

a distinct constriction. The long axis of the radial condyle stands perpendicular to 
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the long axis of the ulnar condyle, and forms an angle of about 45° with the disto-

cranial edge of the humerus. The accessory condyles are strongly enlarged. In 

Omeisaurus and Klamelisaurus, the medial accessory condyle is cone-shaped and 

projects craniolaterally almost in parallel to the long axis of the radial condyle, 

while Mamenchisaurus has two equally sized, triangular accessory condyles that 

project cranially and only slightly laterally.  

Antebrachium. The radius of mamenchisaurids is similar to that of other basal 

sauropods, but exhibits a distinct, elongate caudodistal tubercle that serves for 

articulation with the ulna. In Klamelisaurus and M. constructus, the ulna is much 

more robustly build than in most other sauropods but Gongxianosaurus. However, 

the same element is slender in Omeisaurus and M. youngi. In all mamenchisaurids, 

the cranial and lateral processes of the proximal end of the ulna are strongly elon-

gate. Standing perpendicular or in a slightly lower angle to each other, they form a 

distinct ‘L’ in proximal view.  

Manus. Elements of the hands are preserved in O. tianfuensis and M. youngi. 

Judging from the published descriptions and figures, the structure of the manus of 

Omeisaurus is similar to Shunosaurus, but the metacarpals are significantly more 

slender and elongate (He et al., 1988). In Mamenchisaurus, metacarpals II–V bear 

triangular facets medially that allow for a tight, semitubular articulation of the 

metacarpus (Pi et al., 2002). M. youngi preserves a large, disk-like distal carpal that 

caps metacarpals I and II, and another small distal carpal situated proximal to the 

caudal corners of metacarpals III and IV (Pi et al., 2002). 

 

Muscle reconstructions 

Owing to the insufficient taxonomical consistency of most basal sauropod 

taxa, muscle reconstructions are only attempted for Patagosaurus (MACN CH-

932). Since the structure of the pectoral girdle and forelimb is relatively similar in 

many basal sauropods, a comparable muscle system may be expected for these 

taxa, too. Mamenchisaurids are an exception, since this group shows many spe-

cializations of the scapulocoracoid and humerus. These osteological modifications 

are probably in part related to muscle reconfigurations. A possible functional ex-

planation for these characteristics will be given in the ‘Discussion’ section below. 
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Figure 8-9. Reconstructions of muscle attachment sites on the scapulocoracoid (A) and 
humerus (B) of Patagosaurus. A, scapulocoracoid in lateral (left) and medial (right) views. 
B, humerus in (from left to right) cranial, medial, caudal, and lateral views. For explana-
tions see text.  

 

Scapulocoracoid. In comparison to basal sauropodomorphs, the pattern of 

muscle attachments on the scapulocoracoid of Patagosaurus appears relatively ple-

siomorphic (fig. 8-9A). The flattened distal part of the scapular blade probably 

beared the origin of M. deltoideus scapularis, like in all archosaurs plesiomorphi-

cally (chapter 3). M. teres major is not reconstructed here, since the lateral face of 

the scapular blade lacks a clear differentiation into a cranial and a caudal facet, 

and the insertion of this muscle on the humerus cannot be delimited. However, 

these observations do not rule out the presence of this muscle in the living animal. 

The elongate subtriangular depression at the cranial base of the blade probably 

correlates to the insertion of M. cucullaris, as inferred for basal dinosauriforms 
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and most basal dinosaurs (chapters 4–7). Dorsal to this facet, M. levator scapulae 

might have attached to the sharp cranial edge of the scapular blade. In Patagosau-

rus, the caudal flange on the blade might indicate the attachment of a Ligamen-

tum sternoscapulare internum, but owing to the alternate configuration of the 

coracoid, the course of such a ligament is hard to infer (see Discussion below). 

Proximally, the convex base of the blade probably provided room for the attach-

ment of Mm. scapulohumerales. Like in all basal archosaurs, the large ventro-

lateral fossa on the scapular head served for the origin of M. supracoracoideus 

pars scapularis, while the prominent tubercle caudodorsal to the glenoid correlates 

to the origin of M. triceps brachii caput scapulare (chapters 3–7). On the medial 

side of the scapula, the distinct elongate facet medial to the caudal flange indicates 

the attachment of M. serratus superficialis, like in basal dinosaurs and most basal 

sauropodomorphs. The depression cranially on the medial side of the base of the 

blade probably correlates to the origin of M. subscapularis; hence, this muscle 

remains in the plesiomorphic sauropodomorph position (chapter 6). Like in all 

basal archosaurs, M. serratus profundus probably attached to the flattened distal 

part of the medial side of the blade (chapters 4–7). 

On the coracoid, muscle attachment sites are hard to delimit. Due to the rather 

plesiomorphic form of the coracoid, the inferred origins and insertions follow a 

plesiomorphic pattern. Accordingly, the external side of the coracoid bears the 

origins of M. supracoracoideus pars coracoidalis cranially, the origin of M. cora-

cobrachialis caudal to the coracoid foramen, and the relatively small insertion of 

M. costocoracoideus ventral to the glenoid. The indifferent, roughened swelling 

cranioventral to the glenoid indicates the origin of M. biceps brachii. On the me-

dial side of the coracoid, there are no distinct facets that delimit muscle attach-

ments, but striations indicate that muscles connected to the bone cranially and 

caudally. Following the plesiomorphic pattern, these are probably M. sternocora-

coideus and M. subcoracoideus, respectively.  

Humerus. As for the scapulocoracoid, the inferred pattern of muscle attach-

ment sites on the humerus of Patagosaurus is rather plesiomorphic (fig. 8-9B). The 

lateral tubercle, and possibly also the swelling distal to this tubercle, may correlate 

to the insertion of M. deltoideus scapularis. Like in all archosaurs, the medial 

tuberosity indicates the attachment of M. subcoracoscapularis. On the cranial side 

of the shaft, the proximal depression correlates to the insertion of M. coracobra-

chialis. Following the plesiomorphic pattern, M. pectoralis inserted medially, M. 

supracoracoideus cranially, and M. deltoideus clavicularis laterally on the del-

topectoral crest (as mentioned in chapter 2, these orientations are conventions: 
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actually, the ‘cranial’ side of the shaft was craniomedially directed, rendering the 

attachment for M. pectoralis on the deltopectoral crest caudomedially oriented. 

See Bonnan, 2003, and Discussion below). Distal to the deltopectoral crest, the 

wide central part of the shaft provides room for the attachment of M. brachialis. 

On the caudal face of the humerus, the oval fossae on both sides of the caudally 

projecting humeral head probably indicate the insertions of Mm. scapulohumer-

ales, like in all basal archosaurs (chapters 4–7). Since there is no distinct scar on 

the caudal side of the shaft that might correlate to the insertion of a M. latissimus 

dorsi tendon, this muscle either was lost or had a fleshy insertion. Such a fleshy 

insertion of M. latissimus dorsi would have been situated distal to the attachments 

of Mm. scapulohumerales, and proximally between the origins of Mm. triceps 

brachii capiti humerales. The caudomedial and caudolateral facets of the humeral 

shaft probably indicate the origins of these latter muscles. The distinct cau-

dolateral tubercle found in some mamenchisaurids is similar in position to the M. 

latissimus dorsi scar of many ‘prosauropods’, but considerably larger. Alternative 

explanations are that this tubercle correlates to a distally shifted insertion of M. 

deltoideus scapularis, or to a specialized part of M. deltoideus clavicularis (see 

Discussion below). As for all dinosaurs, the exact configuration of the origins of 

the epicondylar muscles cannot be inferred reliably, but in most cases this uncer-

tainty does not have much effect on the reconstructed lines of action. The elongate 

entepicondyle in Patagosaurus may indicate a more proximal placement of the 

origin of M. pronator teres, but this inference is rather speculative, especially since 

most other basal sauropods lack this distinct shape of the entepicondyle. 

Antebrachium. The ulna of Patagosaurus (fig. 8-10A) and other early sauropods 

is characterized by a relatively small proximomedial fossa, probably indicating a 

reduced origin of M. pronator quadratus. In the living animal, the radial fossa 

proximal on the lateral side of the ulna was largely filled with the proximal head 

of the radius (chapter 9), leaving not much room for muscles. Therefore, striations 

found in this area might correlate to radioulnar ligaments. The tubercle distal to 

the cranial process probably served for the insertion of the M. brachialis / M. bi-

ceps brachii system, like in most diapsids (but see Discussion below). Owing to 

the position of the radius, the origin of M. supinator manus is reconstructed here 

as somewhat distal to the proximal end of the ulna. The striated eminence on the 

caudal side of the shaft indicates the attachment of the M. triceps brachii system. 

The obliquely craniodistally oriented facets on the shaft correlate to the insertions 

of M. ectepicondylo-ulnaris laterally, M. entepicondylo-ulnaris caudomedially, 
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and the ulnar head of M. flexor digitorum longus craniodistomedially, following 

largely the plesiomorphic pattern. 

 

Figure 8-10. Reconstructions of the muscular attachments on the ulna (A) and radius (B) 
of Patagosaurus. From left to right, lateral, cranial, medial, and caudal views. For explana-
tions see text. 
 

As for the ulna, the pattern of muscle attachment sites on the radius differs 

from that of other archosaurs primarily in the course of these attachments on the 

shaft, which appears somewhat twisted. Nevertheless, the pattern is rather ple-

siomorphic: Most muscles are inferred to have attached to the elongate facets that 

extend almost over the entire length of the shaft, with M. supinator craniolater-

ally, M. supinator manus caudolaterally, M. pronator quadratus caudomedially, 

and M. pronator teres craniomedially. The slight eminence on the cranial edge, 

distal to the proximal third of the bone, is homologous to the cranial tubercle of 

other early dinosaurs and might therefore have served for the attachment of the 

M. biceps brachii / M. brachialis system or of M. brachialis alone (see chapters 5–

7 and Discussion below). The cranioproximal tubercle immediately distal to the 
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cranial process probably correlates to the insertion of M. biceps brachii, just as the 

corresponding tubercle on the ulna. Since there is no distinct facet for M. abductor 

radialis caudoproximally on the lateral side of the radius, this muscle seems to 

have been reduced or lost. The tubercle on the cranial side of the distal end of the 

radius might indicate the insertion of M. extensor carpi radialis, which possibly 

shifted from the unossified radiale onto the radius, but there is no way to test this 

assumption. 

 

Discussion 

Compared to basal sauropodomorphs, sauropods exhibit a number of modifi-

cations in all regions of the forelimb. However, the most significant changes occur 

in the ventral shoulder girdle including the muscles that move the shoulder joint, 

in the elbow joint, and in the manus.  

Osteology and bauplan 

Scapulocoracoid. The most striking transformation in the shoulder girdle is the 

reorientation of the scapular head relative to the blade, as indicated by the low 

angle enclosed by their long axes, and by the wide angle between the supraglenoi-

dal rim and the caudal edge of the blade. Most other modifications of the pectoral 

girdle are related to this key innovation, as will be shown in the following.  

During locomotion, the shoulder joint has to divert ground reaction forces 

onto the pectoral girdle, which transfers these forces via the Mm. serrati and the 

dorsal ribs to the vertebral column (Hildebrand and Goslow, 2001). To avoid dis-

location and shear stresses that would require additional muscular force to com-

pensate, a vertical orientation of the limbs is most effective for large animals 

(Gregory, 1912; Gray, 1944; Biewener, 1989a,b, 1990, 1991). The force-diverting 

joint should be primarily strengthened in line with the vector of the ground reac-

tion force, to compensate for compressive stress. This is one reason why it is most 

probable that the scapular part of the glenoid was directly ventrally oriented in 

sauropods, bringing the robust medial supraglenoidal buttress in line with the ver-

tical limb. Other factors support this reconstruction, including the necessity of 

maintaining both the costosternal and sternocoracoidal articulations, realistic lines 

of actions of the musculature (e.g., placing the protracting muscles in front of the 

shoulder joint, not above), and an effective transfer of forces to the Mm. serrati 

without exerting large torsional forces on the scapular neck. A horizontal orienta-

tion of the scapular blade, as often assumed for sauropods (e.g., as depicted in the 
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recent review by Upchurch et al., 2004), is therefore rejected (see chapter 9). With 

these factors as constraints for the orientation of the scapulocoracoid, it becomes 

evident that the angle of the scapular blade remained at about 60° relative to the 

horizontal, as is plesiomorphic for archosaurs (chapter 4). The modified angle 

between the blade and the scapular head therefore relates to a dorsocranial rota-

tion of the ventral girdle, bringing the coracoids in front of the torso (fig. 8-11). 

The significance of this modification for the muscular system will be discussed 

below (section ‘Myology’), but several other osteological novelties are causally 

connected to this alternate position of the coracoid. First, the craniocaudal length 

of the coracoid is reduced relative to that of the scapular head, rendering the ele-

ment subcircular in form. This keeps the cranial edge of the bone below the me-

dial articulation of the clavicles, avoiding interference and allowing for a normal 

(instead of subhorizontal) orientation of the clavicles. Second, and most impor-

tantly, the position of the coracoidal portion of the glenoid is no longer ventrome-

dial to the scapular portion, like in basal sauropodomorphs. This renders the gle-

noid directly ventrally, instead of caudolaterally oriented, and is therefore a cru-

cial modification for a vertical orientation of the humerus. As a consequence, the 

coracoidal part of the glenoid receives less compressional forces from the hume-

rus, leading to a reduction of its size relative to that of the scapular portion. 

Moreover, the reorientation of the glenoid allows the humerus to swing in a near-

parasagittal plane (rotating its developmentally ventral side cranially), but it can 

hardly be protracted far beyond the vertical (fig. 8-11). The extension of the gle-

noid onto the external surface of the coracoid in mamenchisaurids represents a 

special modification related to this problem, but will be discussed below together 

with the pectoral muscle system of these animals. 

The reduction of the distal expansion of the scapular blade in most sauropods 

is not easy to explain. The distal expansion forms the base for the suprascapular 

cartilage, the presence of which is indicated by the wrinkled surface texture of the 

distal edge. An expanded distal end may correlate to an enlarged suprascapular 

cartilage, but this assumption cannot be tested. If it were true, differently sized 

suprascapular cartilages may reflect differential developments of M. rhomboideus, 

a stabilizing cingulo-axial muscle that plesiomorphically inserts onto the medial 

side of the suprascapula (chapter 3). However, the extent and physiological cross-

section of M. rhomboideus (and therefore its significance for the pectoral 

skeletomuscular system) cannot be inferred (chapter 3), rendering any further in-

terpretations purely speculative.  
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Figure 8-11. Reconstruction of the pectoral skeletomuscular system of Patagosaurus in 
lateral view. Muscles are depicted by their estimated lines of action, providing a gross idea 
of the function of each muscle. 

 

Humerus. The humerus of basal sauropods exhibits many modifications of the 

plesiomorphic form, most of which can be explained by an alternate, vertical posi-

tion of the bone. Due to the curvature of the scapulocoracoid and the craniome-

dial placement of its medial border, the axis of the glenoid joint is not strictly 

parasagittally, but somewhat caudolaterally oriented. In combination with the 

form of the humeral head, this leads to an about 30° inward orientation of the 

developmentally ventral side of the humerus. This configuration has already been 

recognized in neosauropods (Bonnan, 2003), and applies also to basal forms. The 

craniocaudal compression, as well as the less sigmoidal shape, may reflect an op-

timization of the humeral form against axial compression (see Bertram and 

Biewener, 1988, 1992). The transversely broadened but craniocaudal narrow shaft 

provides support against lateral bending (which likely occurs during locomotion 

on uneven ground), but is not optimal if the humerus is retracted far beyond the 

vertical. The lack of these features in Kotasaurus (and probably Gongxianosaurus) 

possibly indicates that the graviportal stance and gait might have been not opti-
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mized in these forms, and therefore required additional protection against bending 

stresses by retaining a circular cross-section of the humeral shaft.  

As mentioned above, the configuration of the glenoid prohibits significant pro-

traction of the humerus beyond the vertical in many basal sauropods. As a conse-

quence, the humerus has to be retracted from the vertical for a certain amount in 

order to generate propulsion; this is reflected in the expansion of the humeral head 

onto the caudal side of the shaft. In taxa with an especially small coracoidal por-

tion of the glenoid, such as Cetiosaurus and Barapasaurus, the humerus had slightly 

more freedom to swing cranially; consequently, the humeral head is reduced cau-

dally but expanded onto the cranial side of the shaft. The reduction of the del-

topectoral crest and the proximal shift of its apex relate to reconfigurations of the 

muscular system and will therefore be discussed below (section ‘Myology’). 

The distal end of the humerus exhibits the strongest modifications. Its reduced 

width relates to a reduction of the intercondylar cavity, bringing both condyles 

closely together. Based on articulated specimens of neosauropods, it is widely 

accepted that in sauropods radius and ulna had modified positions relative to 

other tetrapods, with a caudally placed ulna that forms a secondary articulation 

between its lateral process and the radial condyle of the humerus. Consequently, 

the radius is placed cranial to the ulna, avoiding the necessity to cross the ulnar 

shaft to pronate the hand (Hatcher, 1902, 1903; Gilmore, 1936; Bonnan, 2001, 

2003; contra Osborn and Granger [1901] and Osborn [1904]; see Wilson and Ser-

eno [1998] for an ‘intermediate’ reconstruction). However, the evolution of the 

elbow joint in sauropodomorphs is a complex issue that will be discussed in 

length in the following chapter. Regarding its functionality, the cranially diverg-

ing, V-like configuration of the distal articular end of the humerus brings the cau-

dal side of the radial condyle closer to the lateral process of the ulna, and is there-

fore intimately related to the reorientation of the antebrachium. Hence, the acces-

sory condyles (or rather tubercles) on the cranial edge of the distal end of the 

humerus might correlate to strong ligaments that hold the radius in place, in its 

new position craniomedially to the radial condyle. The lack of all of these features 

in the humerus attributed to Kotasaurus, together with the craniocaudal strength 

and curvature of the shaft, probably indicates that such a pronation system was 

not yet developed in this form. Nevertheless, the reduction of the outward torsion 

of the distal end of the humerus in most basal sauropods, including Kotasaurus, 

renders the pronation of the hand easier than in most basal sauropodomorphs 

(chapter 7).  
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In comparison, the distal articular surface of mamenchisaurid humeri is highly 

unusual for sauropods. The wide spacing of the ulnar and radial condyles forces 

the ulna to develop especially elongate cranial and lateral processes in order to 

contact both condyles. The function of the unusually formed accessory condyles 

cannot be assessed from their form alone. Possibly all these modifications, includ-

ing the outward rotation of the distal end of the humerus relative to the proximal 

end, may reflect a greater rotational flexibility of the antebrachium against the 

humerus, which may be related to a specialized type of locomotion (see below). 

Antebrachium. An observation that has received some attention in the litera-

ture is the lack of an ossified olecranon process in sauropods (Gilmore, 1932; 

Christiansen, 1997b; Bonnan, 2003; Carrano, 2005). Usually, this is explained by 

a reduced necessity to extend the forearm in slow, graviportal animals. However, 

since a distinct olecranon is also missing in ‘prosauropods’ (animals that probably 

used their forelimbs partly for grasping and partly for slow, semi-sprawling 

locomotion), this explanation is not fully convincing. This issue will be discussed 

in detail in chapter 9, in the context of the evolution of the elbow joint in sauro-

podomorphs. The aforementioned reconfiguration of radius and ulna in the elbow 

joint is reflected in the shape of the proximal end of the ulna, which develops an 

elongate lateral process to articulate with the radial condyle, and a medially ro-

tated cranial process. These modifications bring the whole element from the me-

dial to the caudal side of the forearm. Distally on the ulna, the large, pitted tuber-

cle on the craniomedial side of the distal end may indicate the presence of a strong 

radioulnar ligament (Upchurch et al., 2004), or a cartilaginous cap that tightly fits 

into the corresponding surface of the radius. In any case, the radioulnar articula-

tion appears less flexible but more stable than in basal sauropodomorphs. The 

distal articulation exhibits no obvious specializations, except a slight reduction of 

the transverse extent of the ulna. Since both the epiphyses and the proximal car-

pals are unossified, the functionality of the wrist joint cannot be assessed. How-

ever, given the semitubular form of the manus (which was already present in 

Shunosaurus and Omeisaurus: Upchurch, 1994, 1998; Bonnan, 2003; Upchurch et 

al., 2004; fig. 8-8C), in combination with the flattened proximal ends of the meta-

carpals, there was probably not much play to extend and flex the wrist.  

The lack of distinct articular surfaces on the ends of sauropod long bones led to 

a debate about the thickness of the unossified epiphyses in living sauropods (Hot-

ton, 1980; Christiansen, 1997a; Wilson and Sereno, 1998; Holliday et al., 2002; 

Bonnan, 2003; Schwarz et al., 2007b). Unossified epiphyses are also present in 

extant archosaurs (Bellairs, 1969; Haines, 1969; Holliday et al., 2002) and other 
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vertebrates (Carter et al., 1998), rendering the indistinct articular surfaces of 

sauropod long bones not necessarily a special functional adaptation (Carter et al., 

1998; Bonnan, 2003). After the discovery of an up to 5 mm thick layer of calcified 

cartilage on the distal part of the shaft of a sauropod humerus, Schwarz et al. 

(2007b) suggested that sauropods had epiphyseal cartilage caps that were several 

centimeters thick, based on isometric scaling of the cartilage caps of extant croco-

dilians. However, it is unclear if isometric scaling of cartilage caps is plausible 

over one or two orders of magnitude, since the nutrition of hyaline cartilage de-

pends on diffusion, a process that becomes increasingly inefficient with growing 

distance (Christiansen, 1997a). Irrespective of this problem, the presence of a thick 

cartilage cap does not imply that movements of radius and ulna in the elbow joint 

were restricted to simple hinge-like movements, since the rotational freedom of 

these bones depends on the form of the caps, and on the configuration of the ar-

ticular ligaments (contra Schwarz et al., 2007b). Nevertheless, cartilaginous 

epiphyses of any thickness protect the growth zone of the bone against axial com-

pression (Parsons, 1905), which appears to have been more advantageous for 

sauropods than the evolution of fully ossified joint surfaces like in mammals. The 

reason for this may simply lie in different dynamics of these animals, which may 

have had no need for securing the joint against unexpected shear stresses that oc-

cur during fast moving and running (see Coombs, 1978a).  

Manus. Not much can be said about the functional adaptations of the manus 

in basal sauropods, since this part of the skeleton is in most cases not preserved, 

and the relevant material could not be examined during this study (see section 

‘Data quality’ above). Generally, the distal carpus of sauropods exhibits the 

strongest ossification proximal to metacarpal I, while the remaining distal carpals 

are gradually reduced towards the lateral metacarpals. This may be explained by 

the amphiaxonic structure and only semi-pronated posture of the sauropod manus 

(see Bonnan, 2003; Carrano, 2005): The highest compressive forces are exerted on 

the region proximal to digits I and II, because these are oriented in parallel to the 

vector of progression. For neosauropods, the significance of a tubular arrange-

ment of the metacarpals in combination with digit reduction has been explored in 

length previously (Bonnan, 2003; Carrano, 2005), clearly indicating that the ma-

nus changed its function to a simple weight-bearing structure that played no great 

role in exerting propulsive force on the ground. Instead, propulsion was primarily 

generated by the hind limbs (Carrano, 2005). The block-like form of the manual 

phalanges resembles the ‘prosauropod’ manual type 2 (chapter 7), demonstrating 

similar functional adaptations. However, the elongate metacarpals (especially 
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metacarpal I) of Shunosaurus and Vulcanodon resemble the ‘prosauropod’ manual 

type 1 (chapter 7). The meaning of these observations for the evolution of the 

sauropodomorph manus will be discussed in chapter 9. Regarding the function of 

elongate metacarpals in a manus that has supporting functions only (as indicated 

by the form of the metacarpus and the reduction of the digits), the most plausible 

explanation is simply a contribution to the elongation of the entire forelimb (e.g., 

Upchurch et al., 2007), a development that culminates in the exceptionally long 

and slender metacarpals of forms like Brachiosaurus (see Janensch, 1922, 1961). 

 

Figure 8-12. Reconstruction of the deep cingulo-axial skeletomuscular system and Mm. 
subcoracoscapulares in Patagosaurus (lateral view). Muscles are depicted by their estimated 
lines of action, providing a gross idea of the function of each muscle. Shaded areas and 
lines of action indicate that the muscle lies on the remote side of the bone. 
 

Myology 

The reconstructed pectoral skeletomuscular system of Patagosaurus is depicted 

in figs. 8-11 and 8-12. Many features appear plesiomorphic and resemble the pat-

tern found in basal dinosaurs, especially the configuration of the cingulo-axial 

muscles like the Mm. serrati system (fig. 8-12). The most effective lines of action 

of M. serratus profundus are found in the region of dorsal ribs 1–4. This may also 

correlate to the presence of sternal ribs and a sternum in this part of the body, 

which braced the ribcage ventrally (see Schwarz et al., 2007a). Major modifica-

tions may be recognized in connection to the dorsocranial rotation of the scapular 
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head and coracoid: The lines of action of the plesiomorphic protractors of the 

humerus, M. supracoracoideus and M. deltoideus clavicularis, had a more vertical 

orientation in basal sauropods, and run closer to the pivot. Thus, these muscles 

could not serve as effective protractors any longer. This correlates also to the form 

of the glenoid, which prevents protraction of the humerus much beyond the verti-

cal. Instead, the novel orientation makes these muscles primarily to adductors that 

stabilize the humerus against dislocations in transverse direction. The size in-

crease of the fossa for M. supracoracoideus pars scapularis on the scapular head 

may relate to this new function: more muscle mass is concentrated dorsomedially 

to the humerus, while simultaneously the area for the origin of M. supracoracoi-

deus pars coracoideus is reduced. Due to the alternate position of the humerus, 

M. pectoralis lost its significance as primary retractor, since its point of insertion 

(the internal side of the deltopectoral crest) was rather medially than caudally 

oriented. Therefore, this muscle may have adducted and slightly retracted the 

humerus, but other muscles must have generated the main retraction movement. 

Thus, the strong reduction of the deltopectoral crest in sauropods is a direct con-

sequence of the vertical orientation of the humerus, which caused a reduced sig-

nificance of M. pectoralis and M. deltoideus clavicularis. Possible candidates for 

alternate retractors are the Mm. scapulohumerales: Due to the reorientation of the 

humerus, M. scapulohumeralis caudalis inserted somewhat medially to the gle-

noid, while M. scapulohumeralis cranialis inserted laterally. The wide, flattened, 

and caudally oriented supraglenoidal facet found in many sauropods might have 

served as a sliding bearing for M. scapulohumeralis caudalis, or indicates a 

proximomedially shifted origin of this muscle. However, since the lines of action 

of Mm. scapulohumerales are relatively short and insert proximally on the hume-

rus, it is not plausible that these muscles have moved the long, heavy limb alone. 

Aid might have come from M. latissimus dorsi and M. triceps brachii caput cora-

coscapulare, the latter arising from the sternoscapular ligament (fig. 8-11). Unfor-

tunately, the courses of both muscles and the ligament cannot be inferred reliably, 

rendering these reconstructions rather speculative. Nevertheless, since the role of 

the forelimb in generating propulsion was minor in sauropods (Carrano, 2005), 

there was probably a reduced need for strong humeral retractors.  

Other characteristics of the sauropod forelimb probably relate to the vertical 

orientation of the humerus, too. The wide distance between the lateral tubercle 

and the humeral head might have been necessary to avoid inference of the insert-

ing M. deltoideus scapularis with M. scapulohumeralis cranialis. On the medial 

side, the less protruding medial tuberosity possibly indicates a reduced need to 
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rotate the humerus around its long axis, although the origin of M. subscapularis 

remains in the plesiomorphic position (fig. 8-12; chapters 6–7). The relatively 

strong development of the medial tuberosity in Kotasaurus and Barapasaurus re-

sembles the basal sauropodomorph condition, and might indicate that the 

parasagittal stance and gait was not fully improved in these forms.  

 

Figure 8-13. Reconstruction of the pectoral skeletomuscular system of Klamelisaurus in 
lateral view. Muscles are depicted by their estimated lines of action, providing a gross idea 
of the function of each muscle. 

 

A large medial tuberosity is also found in mamenchisaurids, but this is proba-

bly connected to the unusual shape of the scapular head, glenoid, and elbow joint 

in this group. The widely open glenoid, its extension onto the external side of the 

coracoid, and its large size relative to the size of the humeral head indicates an 

increased rotational freedom of the humerus in the glenoid joint. Moreover, the 

cranially extended scapular head inflicts a significant craniocaudal component in 

the course of the lines of action of M. supracoracoideus and M. deltoideus clavi-

cularis. Thus, these sauropods obviously were able to protract the humerus sig-



290 Sauropodomorph forelimb evolution REMES 

 

nificantly beyond the vertical, avoiding collison with the coracoid by rotating the 

humerus around its long axis and somewhat onto the lateral side of the coracoid 

(fig. 8-13). Therefore, the deep furrow craniodorsal to the glenoid in M. youngi 

received the lateral part of the proximal expansion of the humerus during maxi-

mum protraction. The enlarged medial tuberosity was necessary to maintain the 

connection to M. subscapularis during protraction, and to re-rotate the humerus 

during retraction. The muscle that correlates to the conspicuous tubercle cau-

dolateral to the deltopectoral crest would also have exerted a re-rotational action 

on the humerus, irrespective if M. deltoideus scapularis or M. latissimus dorsi 

inserted at this point. Finally, the unusual configuration of the elbow joint, which 

allowed for greater rotational flexibility but also contained strong ligaments (as 

indicated by the enlarged accessory tubercles), supports this interpretation. There-

fore, mamenchisaurids were adapted for protracting the humerus significantly 

beyond the vertical, which distinctly increased forelimb step length during loco-

motion. The most plausible explanation for such an adaptation is a selection to-

wards greater locomotory speed (see Grillner, 1975; Alexander, 1976; Thulborn, 

1982). In turn, this might have been advantageous for making more sources of 

nutrition accessible, due to a reduction of relative locomotory costs. 

Compared to the shoulder region, the distal part of the sauropod forelimb ex-

hibits only minor modifications. The smaller biceps tubercle on the coracoid may 

relate to a reduced significance of M. biceps brachii (see chapter 7). In fact, this 

may be expected if the forearm and hand are no longer used for grasping. Instead, 

the role of M. biceps brachii in sauropods would have been restricted to lifting the 

hand from the ground during the protraction phase of a step cycle. The loss of a 

distinct caudodistal facet on the distal end of the humerus (which would be dis-

tomedially oriented in sauropods) possibly correlates to the reduction or loss of 

M. flexor digitorum longus (see chapters 5–7). Again, reductions of the digital 

flexors and extensors may be expected from the structure of the manus. It is 

highly probable that the reduced area for the origin of M. pronator quadratus on 

the ulna, and the inferred reduction or loss of M. abductor radialis are related to 

the reconfiguration of the elbow joint in connection with the cranial placement of 

the radius. The remaining antebrachial muscles exhibit a largely plesiomorphic 

pattern, but their attachment sites are slightly twisted distomedially (fig. 8-14). 

This is a direct consequence of the reorientation of radius and ulna relative to the 

distal end of the humerus. Given the alternate position of the radius, many of the 

antebrachial muscles probably served for stabilizing the forearm. However, de-

pending on the form of the humeroradial articulation in the various basal sauro-
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pod taxa, a low degree of supination and pronation of the manus would probably 

have been possible. Finally, the configuration of the M. biceps brachii / M. bra-

chialis system cannot be reliably reconstructed, but any of the configurations pro-

posed for basal sauropodomorphs (chapters 6–7) would have changed its function 

to a simple flexion of the forearm, since in sauropods the radius is in line with the 

long axis of the humerus (fig. 8-14). 

 

Figure 8-14. Reconstruction of the antebrachial musculature of Patagosaurus in craniome-
dial (left) and caudolateral (right) views. Muscles are depicted by their estimated lines of 
action, providing a gross idea of the function of each muscle. For explanations see text. 
 

Conclusions 

Sauropods had a modified pectoral skeletomuscular system. The ventral part of 

the shoulder girdle rotated dorsocranially, allowing for a vertical orientation of the 

humerus. The plesiomorphic protractors and retractors changed their function to 

adduct and stabilize the humerus, reducing the need for a large deltopectoral crest. 

The elbow joint is also strongly modified, with a cranially placed radius and a 

caudally placed ulna that articulates with both the radial and the ulnar condyle. 

The muscular system of the antebrachium adapted to this reconfiguration, but 

shows no major changes. The function of the manus changed to pure support, 

leading to a semitubular arrangement of the metacarpus, and to a reduction of the 
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digits. Some early sauropods lack several of these adaptations (e.g., the humerus 

attributed to Kotasaurus). Mamenchisaurids exhibit a number of specializations in 

the shoulder girdle and elbow joint that are interpreted as an adaptation for in-

creased speed.  
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9 Forelimb evolution in sauropodomorphs:  

Combining functional morphology and phylogeny 

 

Introduction 

The evolutionary history of the sauropodomorph forelimb has hitherto not 

been explored in detail. Ideas about the anatomical evolution of this organ com-

plex, or of the general sauropod bauplan, were developed primarily from observa-

tions in single genera (Bonaparte, 1971; Bonaparte and Vince, 1979; Cooper, 

1984; Yates and Kitching, 2003; Yates and Vasconcelos, 2005; Bonnan and Yates, 

2007), from broader comparisons (McIntosh, 1990; Bonnan, 2003), or from the 

results of parsimony analyses of large data sets of anatomical characters (e.g., 

Wilson and Sereno, 1998; Wilson, 2002; Upchurch et al., 2007). However, the 

most parsimonious patterns found in these analyses often indicate a high number 

of reversals on the line to sauropods, and fail to give functional explanations for 

the transformations observed. Based on the analyses of the functional morphology 

of a high number forms on the line to neosauropods, which were presented in the 

previous chapters, a scenario for the evolution of the pectoral girdle and forelimb 

of this group will be developed in the chapter at hand. For this purpose, it is essen-

tial to select a phylogenetic framework that puts individual observations into an 

evolutionary context. Such a framework will be introduced and justified in the 

first section, followed by a summarizing presentation of evolutionary transforma-

tions in the sauropodomorph forelimb.   

 

Phylogeny 

Since no single analysis currently exists that covers all taxa treated in this 

work, a ‘consensus’ phylogeny was created by means of combining several pub-

lished phylogenetic hypotheses (fig. 9-1). However, the word ‘consensus’ is used 

in a subjective sense here, since no supertree has been calculated. Due to the 

highly deviant topologies published for basal sauropodomorphs (Gauffre, 1995, 

1996; Sereno, 1997, 1999; Benton et al., 2000; Yates, 2001, 2003, 2004, 2007; 

Hinic, 2002; Martínez, 2002; Yates and Kitching, 2003; Galton and Upchurch, 

2004; Pol and Powell, 2007; Upchurch et al., 2007), such an approach would 

probably result in an unresolved polytomy in this part of the tree. Instead, indi-

vidual analyses were selected and combined to a phylogenetic hypothesis of the  
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Figure 9-1. Cladogram of saurischian and outgroup taxa treated in this thesis. Combined 
after Wilson (2002), Rauhut (2003a), Benton (2004), Upchurch et al. (2004, 2007), Langer 
and Benton (2006), and Yates (2007). For explanations see text. 
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taxa covered in this thesis. Recent analyses with a high number of characters and 

taxa have been preferred, since these are assumed to be more adequate in terms of 

reflecting the osteological differences among the individual taxa, and in avoiding 

coding biases towards certain body regions. However, the optimal number of 

characters for a given set of OTUs is methodologically debated (see Rieppel, 

1999). Therefore, this approach can only be regarded as preliminary, until a 

highly resolved consensus on basal dinosaur and sauropodomorph relationships is 

established. The reasons for the selections made will briefly be discussed in the 

following.  

Euparkeria is recognized as an outgroup to crown-group Archosauria in all pub-

lished phylogenetic analyses of archosauromorphs (see Gower and Wilkinson 

[1996] and Benton [2004] for reviews), with the exception of Gauthier (1986), 

who found Euparkeria to be more closely related to Ornithodira than to Crocody-

lomorpha. Since no other archosauriforms, crurotarsans or basal ornithodirans are 

included in this analysis, the placement of Euparkeria as the sister group to Dino-

sauriformes is justified here.  

Lewisuchus has not been included in a numerical phylogenetic analysis yet. 

Based on Arcucci’s (1997) assignment of this form to Dinosauromorpha, as a pos-

sible subjective senior synonym of Pseudolagosuchus, it seems established that 

Lewisuchus is more closely related to Dinosauria than Euparkeria, but stands out-

side the ornithischian-saurischian dichotomy, as proposed for other Ladinian di-

nosauromorphs (Gauthier, 1986; Benton and Clark, 1988; Novas, 1992, 1996; 

Juul, 1994; Bennett, 1996; Fraser et al., 2002; Benton, 1999, 2004).  

The tree topology of basal dinosaurs largely follows Langer (2004) and Langer 

and Benton (2006), who analyze a matrix of 10 OTUs and 98 coded characters. 

Early examinations of basal dinosaur relationships found Herrerasauridae to fall 

outside Ornithischia+Saurischia (Gauthier, 1986; Brinkman and Sues, 1987; 

Benton, 1990; Novas, 1992), but in more recent analyses, Herrerasaurus and Eorap-

tor cluster within Saurischia (but see Fraser et al., 2002). However, opinions di-

verge if these taxa are more closely related to theropods than to sauropodomorphs 

(Novas, 1996, 1997; Sereno, 1997, 1999; Rauhut, 2003a; Benton, 2004), or stand 

outside Eusaurischia (Holtz, 1995; Langer, 2004; Langer and Benton, 2006). 

Langer (2004), Langer and Benton (2006), and Upchurch et al. (2007) provide 

analyses that include Guaibasaurus as an OTU, and consistently found this taxon 

to plot as a stem-theropod. 
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The topology within Eutheropoda is based on Rauhut (2003a), but may be re-

garded as consensus on theropod interrelationships (see Tykoski and Rowe, 2004, 

and Holtz et al., 2004, for reviews). Moreover, it is consensus that Saturnalia is the 

basal-most sauropodomorph known, since this taxon consistently plots at this 

position in almost all published analyses (Langer et al., 1999; Yates, 2001, 2003a; 

Langer, 2004; Langer and Benton, 2006; Upchurch et al., 2007). Only Galton and 

Upchurch (2004) found Saturnalia to be more derived than Thecodontosaurus.  

Admittedly, the choice of the analysis of Yates (2007) as a template for the re-

lationships within basal sauropodomorphs can only be justified by the high num-

ber of coded characters (384 characters for 46 OTUs). There is no consensus for 

basal sauropodomorph ingroup relationships among recent analyses. For instance, 

Galton and Upchurch (2004) found monophyletic Prosauropoda (137 characters, 

24 OTUs), while Upchurch et al. (2007) discovered a monophyletic cluster of 

‘core’-prosauropods. In this topology, Mussaurus and Efraasia are stem-

sauropodomorphs, and Jingshanosaurus, melanorosaurids and Antetonitrus are 

stem-sauropods (292 characters, 34 OTUs). Moreover, not a single sister-group 

relationship found in the analysis of Yates (2007) is reproduced in the analyses of 

Galton and Upchurch (2004) or Upchurch et al. (2007). Therefore, the topology of 

this part of the tree can only be regarded as a preliminary result, and is likely to 

change in future analyses. Nevertheless, one crucial consensus between Yates 

(2007) and Upchurch et al. (2007) is the placement of Melanorosaurus and Antetoni-

trus at the root of the Sauropoda. Anchisaurus has also been regarded as a basal 

sauropod (Yates and Kitching, 2003; Yates, 2004), but the support for such a 

phylogenetic position is weak (Fedak and Galton, 2007). 

The relationships within basal sauropods are combined after Wilson (2002) 

and Upchurch et al. (2004). These works differ in two aspects from Upchurch et 

al. (2007): Wilson (2002) and Upchurch et al. (2004) found Barapasaurus to be 

more closely related to Neosauropoda than Shunosaurus, but the reverse is the case 

in Upchurch et al. (2007). Moreover, Kotasaurus is regarded as more closely re-

lated to eusauropods than Vulcanodon in the former works, but both taxa again 

change places in Upchurch et al. (2007). It is probable that different focuses in the 

analyzed data matrices produce this effect, and a combined analysis of basal 

sauropodomorphs and sauropods might help to find a consensus here. For the 

moment, the results of the works that concentrate on sauropod interrelationships 

are preferred, since the level of consensus among the various published analyses is 

considerably higher than in basal sauropodomorphs. The sister group relationship 
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between Klamelisaurus and mamenchisaurids is based on own observations and 

discussions (Rauhut, pers. comm. 2006), but has not been confirmed yet in a nu-

merical cladistic analysis. Finally, the sister-group relationship between Cetiosaurus 

and Neosauropoda is supported by Upchurch and Martin (2002) and Yates 

(2007).  

 

Evolutionary transformations 

Combining the results of chapters 4 to 8 with the phylogenetic framework in-

troduced in fig. 9-1, the evolutionary history of important character complexes of 

the sauropodomorph forelimb will be described in the following. 

 

Pectoral girdle 

Structure. The pectoral girdle experienced some significant modifications on 

the line to neosauropods, but preserved a relatively conservative structure: The 

scapular blade remains caudodorsally oriented (see below), and the coracoid re-

tains a plesiomorphic, suboval shape. Basal archosaurs like Euparkeria have a ro-

bust pectoral girdle that is about as wide as high, and retain large coracoids and a 

primarily caudolaterally directed glenoid. Long, robust clavicles that connect to a 

bony interclavicle near the median line brace the girdle cranially (fig. 9-2). In di-

nosauriforms, the robustness of the girdle is reduced, and it becomes transversely 

narrow. This indicates a dorsoventrally high but transversely slender torso, which 

is probably related to increased cursoriality (however, this does not imply obligate 

bipedalism; see chapter 4). Lewisuchus represents an intermediate stage in this re-

spect, but Eoraptor and most basal sauropodomorphs have a girdle that is about 

twice as high as it is wide in cranial view. Only Saturnalia exhibits a stage that is 

intermediate between Lewisuchus and Eoraptor, with a dorsally narrow but ven-

trally wide pectoral girdle. In parallel to the advent of a transversely slender body 

profile, the interclavicle was lost. Possibly, this stands in connection to a less 

sprawling posture, which reduced the lateral pressure on the girdle during locomo-

tion. A direct midline articulation of both clavicles, dorsal to the ventral surface of 

the body, might also have been a factor that facilitated the reduction of the inter-

clavicle. This novel kind of articulation was probably brought forth by the trans-

verse narrowing of the torso.  

Clavicles. Clavicles are rarely preserved in dinosaurs, but must have been pre-

sent in all Saurischia (and therefore also in their dinosauriform ancestors), as 

demonstrated by their repeated occurrence in non-maniraptoran theropods 
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(Camp, 1936; Chure and Madsen, 1996; Makovicky and Currie, 1998; Tykoski et 

al., 2002; Carrano et al., 2005; Larson and Rigby, 2005; Rinehart et al., 2007), 

basal sauropodomorphs (von Huene, 1926; Yates and Vasconcelos, 2005), and 

sauropods (Hatcher, 1901, 1903; Dong et al., 1983; Zhang et al., 1984; He et al., 

1988; Zhang, 1988; Sereno et al., 1999). Moreover, most sauropodomorphs have 

a distinct facet on the acromion that indicates the clavicular articulation (chapters 

6–8). Possibly, there is a taphonomic bias against the preservation of clavicles, due 

to their minute structure, their weak connection to the pectoral girdle, and their 

position within a probably carnivore-attracting muscle mass between neck and 

deltoid muscles. Hence, it is inferred here that clavicles were always present on 

the evolutionary line to sauropods, bracing the pectoral girdle cranially, and serv-

ing as the site of origin of M. deltoideus clavicularis. 

Scapulocoracoid orientation. As mentioned in chapter 2, the orientation of 

the scapulocoracoid relative to the axis of the vertebral column has been a matter 

of debate. Based on an articulated specimen of Camarasaurus described by Gil-

more (1925), it was assumed for a long time that the scapular blade was rather 

horizontally than vertically oriented, leading to a terminology that described the 

acromion as projecting dorsally above the scapular blade (e.g., Upchurch, 1998; 

Upchurch et al., 2004). Parrish and Stevens (2002) suggested that facets on the 

lateral sides of the dorsal ribs of a specimen of Apatosaurus indicate the natural 

position of the scapular blade, in this case, a near-horizontal orientation. Other 

workers reconstructed the scapula inclined with 30° to the horizontal (e.g., Wil-

hite, 2005), or with 45° (e.g., Stevens and Parrish, 2005b). However, in order to 

evaluate these different models, any reconstruction should be tested in both a 

phylogenetical and a functional context. Phylogenetically, the starting point for 

the evolution of sauropods is a form like Euparkeria, being characterized by broad, 

ventrally facing coracoids that are oriented in the same plane as the caudally adja-

cent (but unossified) sternum. Based on extant Reptilia (including birds), it can be 

phylogenetically inferred that the sternum articulated via sternocostae with the 

cranial dorsal ribs, which exhibit thickened and rugose termini on their ventral 

ends for this purpose (e.g., Cong et al., 1998; Baumel and Witmer, 1993). Hence, 

there are several constraints for the reconstruction of the scapulocoracoid position 

in dinosaurs that usually have been disregarded (Schwarz et al., 2007a): 

• The coracoid has to articulate with the sternum 

• In all extant amniotes, the sternum is oriented in parallel to the distal 

ends of the dorsal ribs, which in most cases comes up to an orientation 

in parallel to the dorsal vertebral column 



REMES  Sauropodomorph forelimb evolution 299 

 

 

Figure 9-2. Cladogram of transformations of the pectoral girdle on the line to neosauro-
pods. Above, cranial view; below, ventral view. Note the cranial rotation of the ventral 
pectoral girdle in sauropods. 
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• The sternum has to be in such a position relative to the coracoid that its 

articulation with the ribcage via the sternal ribs is maintained 

A horizontal position of the scapula, like in birds and higher maniraptorans, 

has therefore only been possible by a dorsoventral elongation of the coracoid and 

a backward inclination of the scapular blade relative to the central axis of the 

coracoid (see Ostrom, 1974, 1976; Carpenter, 2002; Gatesy and Baier, 2005; Sen-

ter, 2006b). On the evolutionary line to the sauropods, none of these modifica-

tions are visible. In dinosauriforms, the coracoid is reduced in size relative to the 

scapula, and curves somewhat dorsocranially, slightly more so than in Euparkeria. 

In sauropodomorphs more derived than Saturnalia, this effect is enhanced, and the 

plesiomorphic ventromedial edge of the coracoid becomes more ventrocranially 

directed. This is made possible by a smaller angle between the long axis of the 

scapular blade and the long axis of the scapular head. In Lewisuchus, both axes 

form an angle of about 100°. The axes stand perpendicular to each other in most 

basal sauropodomorphs, but are increasingly sharply angled in basal sauropods, 

and reach 45° or less in neosauropods (fig. 9-3). The beginning of this cranial rota-

tion of the ventral part of the pectoral girdle is first visible in Isanosaurus, and 

Middle Jurassic eusauropods exhibit an intermediate stage between basal sauro-

podomorphs and neosauropods (fig. 9-3). The only alternative to this interpreta-

tion would be a cranial rotation of the scapular blade; however, this can be re-

jected because it would imply a dorsal rotation of the glenoid, and create nonfunc-

tional lines of action for Mm. serrati and M. deltoideus scapularis (fig. 9-4). 

Therefore, the inclination of the scapular blade remains plesiomorphic during the 

entire evolutionary history of the sauropodomorphs, about 60° relative to the 

horizontal. A lesser angle, i.e. a backward rotation of the entire scapulocoracoid 

in addition to the cranial rotation of the ventral part of the girdle, would create 

disarticulation either in the sternocoracoidal joint, or between the sternum and the 

sternocostae. Moreover, the clavicles would come to a horizontal orientation, 

which would be highly unusual among amniotes, and would prevent effective 

attachment of the neck musculature (fig. 9-4). Based primarily on comparisons 

with extant diapsids, Schwarz et al. (2007a) independently came to similar results 

for three neosauropod genera.  
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Figure 9-3. Cladogram of the transformations of the scapulocoracoid on the line to 
neosauropods. The cranial rotation of the ventral part of the pectoral girdle is indicated by 
arrows. For explanations see text.  
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Figure 9-4. Comparison of different interpretations of the scapulocoracoid orientation in 
sauropods. A, position based on tracking of character evolution as developed throughout 
this thesis. A 60° inclination relative to the horizontal was also found by Schwarz et al. 
(2007a), based primarily on comparisons with recent amniotes. B, alternate interpretation 
of the observed transformations. A cranial rotation of the scapula blade would bring the 
glenoid into an unlikely position, rendering the humerus caudally inclined. C, classical 
reconstruction of Gilmore (1925), causing disarticulation between coracoid and sternum 
and bringing the clavicles into an unlikely position. 
 

Sternal plates. In parallel with the beginning reorientation of the ventral part 

of the pectoral girdle, sauropodomorphs acquire ossifications within the sternum. 

The craniolateral corners of these sternal plates articulate with the caudomedial 

corners of the coracoids, as indicated by the thickened, rugose tubercles on both 

elements. It is proposed here that the ossification of sternal plates and the dor-

socranial angulation of the coracoid relative to the plane of the sternum are caus-

ally related. The ossification stabilizes the sternocoracoidal joint by forming a 

prop against shear stresses that result from the oblique orientation of the coracoid 

during locomotion. Moreover, it provides a stable base for the origin of M. sterno-

coracoideus (a plesiomorphic muscle that was lost in crocodiles but retained in 

dinosaurs, see chapter 3), which helps to keep the coracoid in place (fig. 9-5). 

With increasing angle between coracoid and sternum, the sternal plates also seem 

to increase in size, but this pattern has not been tested for neosauropods.  

Scapula. Other characters of the scapulocoracoid show no clear evolutionary 

trend. Under the tree topology applied here, the form and extent of the distal ex-

pansion of the scapular blade varies considerably, as well as the position and size 

of the caudal flange. Yunnanosaurus, Melanorosaurus and Antetonitrus, which stand 

close to the origin of sauropods, exhibit an increased craniocaudal width of the 

scapular blade relative to the width of the scapular head. However, basal sauro-

pods lack this character, and have slender scapulae that resemble those of other 

basal sauropodomorphs (fig. 9-3). Since it cannot be reconstructed reliably if one 

or more of these characters were crucial for a modified function of the forelimb 

(chapters 7, 8), these variations may contain no phylogenetic signal at all, but 
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might be due to intergeneric morphological variation that provides taxonomic 

information only. However, it is also possible that the current phylogenetic hy-

potheses of basal sauropodomorphs are still too far from the actual historical pat-

tern, and therefore fail to bring these minor modifications into the right order.  

 

Figure 9-5. Cladogram illustrating the changes in the medial shoulder girdle musculature. 
For explanations see text. 

 

Coracoid. In the course of sauropod evolution, the coracoid shows compara-

tively little changes. Due to the cranial rotation of the ventral part of the pectoral 

girdle, the craniocaudal extent of the coracoid is successively reduced, as well as 

its size relative to the scapular head (fig. 9-3). Variation can be observed in two 

other characters: First, the size of the biceps tubercle considerably increases in 

taxa that exhibit specializations towards grasping or raking (e.g., theropods, 

Unaysaurus, Plateosaurus), but also quadrupeds with semi-erect forelimbs like 

Lufengosaurus and Yunnanosaurus. In the graviportal sauropods, the biceps tubercle 

is reduced. However, the data about this character is sparse for the transitional 

forms Melanorosaurus, Antetonitrus, Isanosaurus, and Gongxianosaurus. Second, the 

subglenoid fossa (the attachment of M. costocoracoideus) is deep with a strong 

lateral ridge in Eoraptor, Herrerasaurus, Saturnalia (no clear lateral ridge), Riojasau-

rus, Coloradisaurus, Plateosaurus, Lufengosaurus, Massospondylus, and Barapasaurus, 

but reduced to a saddle-shaped facet in other sauropodomorphs. The form of this 

fossa therefore contains no obvious phylogenetic signal, but considering this pat-

tern of taxonomic distribution, it is also hard to find functional explanations.  

Glenoid joint. The cranial rotation of the ventral part of the pectoral girdle af-

fects the orientation of the glenoid, which is reoriented from a plesiomorphic ven-
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trolateral (Euparkeria) via a caudoventrolateral (basal dinosaurs) to a ventral orien-

tation in sauropods. In basal archosaurs, the coracoidal part of the glenoid is large 

relative to the scapular part. It supports the semi-erect humerus medially, and 

diverts the main component of the ground reaction forces, which are transferred 

via the humerus. In this configuration, the scapular part of the glenoid primarily 

holds the humerus in place but receives comparatively little pressure. In basal di-

nosaurs and sauropodomorphs, both parts of the glenoid become equally sized, 

indicating that the humerus was hold in a more erect position (in basal sauro-

podomorphs like Anchisaurus and Massospondylus, around 20-30° relative to the 

vertical), but a parasagittal posture was not possible prior to the cranial rotation of 

the coracoid. The coracoid rotation gave way for an erect humerus, enabling an 

almost complete transfer of the pressure exerted by ground reaction forces onto 

the scapular part of the glenoid, which in turn considerably enlarges in sauropods 

(figs. 9-3, 9-6). As a consequence, the coracoidal part of the glenoid is reduced in 

size relative to the scapular part; it mainly provides support to hold the humerus 

in place during retraction, and therefore forms a prop against the parasagittal 

component of the ground reaction forces that occur during locomotion. However, 

this system restricts the possibility to protract the humerus, leading to a short step 

length and therefore limited speed. Mamenchisaurids circumvented this disadvan-

tage by a specialized glenoid joint and shoulder muscle system that allowed the 

humerus to rotate laterally around the coracoid (chapter 8). Nevertheless, the lim-

ited ability of humerus protraction is retained in neosauropods.  

 

Humerus 

General aspects. During sauropodomorph evolution, the cranial rotation of 

the ventral part of the shoulder girdle reoriented the humerus and the cranial 

shoulder muscles that act on this bone, leading to a number of modifications. The 

general form of the humerus, with a craniocaudally wide humeral head, a large 

deltopectoral crest, a slender shaft and a dilated distal end that is rotated cranially 

with respect to the proximal expansion, is already found in Euparkeria and there-

fore plesiomorphic for archosaurs. The slender humerus and short deltopectoral 

crest of Lewisuchus may either be an autapomorphic specialization that does not 

reflect the main trend of dinosauriform forelimb evolution, or Eoraptor, Guaibasau-

rus and sauropodomorphs reversed to the plesiomorphic condition.  
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Figure 9-6. Cladogram of the changes in humeral posture due to the re-configuration of 
the pectoral girdle on the line to neosauropods. Above, cranial view; below, ventral view. 
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Given the poor record of basal dinosauriform forelimbs, the first explanation cur-

rently appears to be more parsimonious. 

In Jurassic ‘prosauropods’, Antetonitrus and basal sauropods, the humeral head 

becomes convexly vaulted over the level of the medial tuberosity and deltopec-

toral crest, probably correlating with an increased flexibility of the humerus in the 

glenoid joint. Moreover, the head develops a pronounced extension onto the de-

velopmentally dorsal side of the shaft, which may be related to a more erect posi-

tion of the humerus in the glenoid joint. Both features are reduced again in many 

neosauropods and indicate a change towards a simple hinge-like, parasagittal 

movement.  

Plesiomorphically in archosaurs, the humerus is abducted and elevated by 

Mm. scapulohumerales and M. latissimus dorsi, possibly aided by a M. teres ma-

jor that arose from the scapular blade (chapter 3). The antagonist, M. coracobra-

chialis, adducts the humerus and therefore elevates the torso relative to the ground 

when the animal stands or walks quadrupedally. A distinct scar on the dorsal side 

of the humerus marks the insertion of M. latissimus dorsi, while M. coracobrachi-

alis inserts in a large, deep fossa proximally on the ventral side of the humerus. 

This system is retained in sauropodomorphs, but the craniolateral shift of the in-

sertion of M. latissimus dorsi adds a new, rotational component to the action of 

this muscle. The evolution of this system cannot be clearly traced in Yunnanosau-

rus, Melanorosaurus, Antetonitrus, and sauropods, due to a reduction of the oste-

ological correlates, but it appears that sauropods evolved a fleshy insertion of this 

muscle and reversed its site of insertion to the plesiomorphic position, directly 

distal to the humeral head. Combined with the erect position of the humerus and 

the caudal rotation of its developmentally dorsal side, M. latissimus dorsi will 

then have acted as a humeral retractor (chapter 8). 

The presence of a distinct intercondylar pit on the developmentally ventral side 

of the humerus is a plesiomorphic trait of archosaurs that probably correlates to a 

flexed elbow during locomotion (chapters 6, 7). Such a depression is retained in 

Eoraptor, Saturnalia and most basal sauropodomorphs, but reduced in the obligate 

bipedal form Herrerasaurus, theropods, and the graviportal eusauropods (fig. 9-7). 

Together with other plesiomorphic properties (see chapter 8), the humerus attrib-

uted to Kotasaurus shares this character, possibly indicating that an erect limb was 

not yet fully developed in this form (i.e., the humerus was possibly abducted with 

5 to 10°). Moreover, most basal sauropodomorphs and early theropods develop a 

distinct facet adjacent to the ulnar condyle, which is inferred to have served for 

the origin of M. flexor digitorum longus (chapters 5–7). Since such a facet is not 
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clearly developed in Eoraptor and Herrerasaurus, its presence seems to constitute a 

grasping-related eusaurischian synapomorphy that was reduced in sauropods in 

parallel with the reconfiguration of the manus (fig. 9-7; see below).  

Other changes in the orientation and form of the distal expansion of the hume-

rus will be discussed in the section ‘Elbow joint’ below.   

Deltopectoral crest. Due to the semi-erect position of the humerus and the 

ventrolateral orientation of the glenoid, the deltopecotral crest is ventrally to cra-

nioventrally oriented in basal archosaurs (Euparkeria) and basal dinosaurs, includ-

ing Eoraptor and Saturnalia. Sauropodomorphs considerably increase the size of 

the crest, indicating the importance of the muscular system that inserts on this 

structure. This system includes M. pectoralis, M. deltoideus clavicularis, and M. 

supracoracoideus, and is the plesiomorphic protraction-retraction system in amni-

otes (Hildebrand and Goslow, 2001). The enlargement of this system in sauro-

podomorphs may in part correlate to an increase in body size without changing 

the semi-erect forelimb position, forcing the musculature to scale with positive 

allometry (Biewener, 1989a, 1990, 1991). However, the enlarged crest is already 

present in Saturnalia, a form that is not considerably larger than Eoraptor. There-

fore, the evolution of an additional forelimb function, i.e., powerful grasping and 

bending of branches and other parts of the vegetation, might be another driving 

force behind this modification. With the reorientation of the ventral part of the 

shoulder girdle and the glenoid, the lines of action of the M. pectoralis – M. del-

toideus clavicularis – M. supracoracoideus system are also reconfigured (fig. 9-8). 

These muscles largely kept their plesiomorphic orientation in basal sauropodo-

morphs, but the rotation of the ventral pectoral girdle and erect position of the 

humerus in sauropods reduces the effectiveness of M. deltoideus scapularis as a 

protractor, while M. supracoracoideus loses the function as adductor and becomes 

the new primary protractor. This is also indicated by the relative enlargement of 

the supracoracoideus fossa on the scapular head, a trend continued in neosauro-

pods. Simultaneously, adduction is taken over by M. pectoralis, and also by M. 

subscapularis.  The latter muscle has cranially shifted in sauropodomorphs ple-

siomorphically, aiding in humeral rotation (chapters 6, 7), but re-acquires a more 

vertical orientation in sauropods (fig. 9-5). 

A change to a dominance of proximal humeral retractors accompanied by a 

reduction of the forearm extensors, as predicted by Christiansen (1997a) and Car-

rano (2005) for quadrupedal, graviportal animals, cannot be unambiguously rec-

ognized on the evolutionary line to sauropods. Despite a reduction of the olecra-



308 Sauropodomorph forelimb evolution REMES 

 

non process, sauropods preserve distinct striations on the caudal face of the caudal 

ulnar process (insertion of M. triceps brachii), and the facets on the caudal 

humeral shaft provide much room for the origin of Mm. triceps brachii capiti 

humerales. As discussed in chapter 3, the size of an osteological correlate of a 

muscle is not necessarily correlated with the volume of this muscle in the living 

animal. Given that the humerus in sauropods could not be protracted far beyond 

the vertical, forearm extension and flexion may have been more important for 

locomotion than in graviportal mammals, a question worth to explore in future 

biomechanical simulations.  

 

Elbow joint 

Bonnan (2001, 2003) noted that the manus of saurischian dinosaurs plesio-

morphically could not be fully pronated, due to the elongate cranial ulnar process 

that prevents the radius to cross in front of the ulna. He found that manus prona-

tion in sauropods was only possible by a cranial rotation of the radius and a simul-

taneous elongation of the ulnar lateral process, which developed a secondary ar-

ticulation with the caudal part of the radial tubercle. Yates and Kitching (2003) 

and Bonnan and Yates (2007) described an enlarged lateral process on the ulnae 

of Antetonitrus and Melanorosaurus, respectively, and interpreted this as the begin-

ning of the development that enabled the radius to rotate cranially, and that fi-

nally led to the L-shaped proximal end of the sauropod ulna.  

With a phylogenetic perspective on the sauropodomorph elbow joint evolu-

tion, these results have to be modified to a certain degree. The argumentation of 

the works cited above is based on the assumption that the radius articulates in the 

radial fossa of the ulna, and that hence the form of the ulnar radial fossa provides 

information about possible movements of the radius. However, in extant diapsids 

and also in archosaurs plesiomorphically, the radius does not articulate with the 

ulna cranial to the lateral process, but both bones are widely separated in the el-

bow joint (Euparkeria in fig. 9-8C; Haines, 1946; Ewer, 1965; Landsmeer, 1983, 

1984). Thus, the configuration and form of the distal condyles of the humerus 

provides more accurate information about possible movements and restrictions of 

radius and ulna. However, since the humeral epiphyses are unossified, such an 

assessment can only be gross, and limits in the grade of rotation, flexion, and ex-

tension are hard to determine.  
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Figure 9-7. Cladogram of the transformations in humeral shape on the line to neosauro-
pods. The humeri are shown in ventral view. 
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Figure 9-8. Cladogram of the transformations of the deltoid, pectoralis, and supracoracoi-
deus musculature on the line to neosauropods. Above, cranial view; below, ventral view.  
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Figure 9-9. Cladogram of the transformations in the humeral joints on the line to 
neosauropods. A, humeral head in proximal view. B, distal humeral condyles in distal 
view, mirrored to bring the radial condyle below the lateral tubercle in row A. C, radius 
and ulna in proximal view with the outline of the distal end of the humerus superposed, 
showing the natural articulation.  
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Basal sauropodomorphs retained the plesiomorphic configuration of the distal 

end of the humerus (fig. 9-9), with clearly separated radial and ulnar condyles 

(one exception is Plateosaurus, see chapter 7). In combination with a semi-erect 

posture of the humerus, which places the radial condyle craniolateral to the ulnar 

condyle, partial pronation of the manus was probably possible in most basal 

sauropodomorphs. In large forms that probably acquired habitual quadrupedality, 

pronation is additionally aided by a specialized form of the radius (Lufengosaurus), 

or by modified antebrachial muscles (Yunnanosaurus) (chapter 7). Effective, per-

manent pronation of the manus in combination with a more erectly held limb was 

only possible by two modifications: First, the reduction of the outward twist of the 

distal humeral expansion, which keeps the radius craniolateral to the ulna despite 

the more vertical posture of the humerus. Second, the cranial rotation of the ra-

dius accompanied by a lateral rotation of the ulna, which further increases the 

grade of pronation of the manus. The beginnings of both processes are visible in 

Antetonitrus (fig. 9-9B,C), although the radial condyle of the humerus is missing in 

that taxon and the exact position of the radius cannot be reconstructed. Unfortu-

nately, the lack of good data from the Lower Jurassic prevents monitoring of this 

character complex (chapter 8): The neosauropod configuration is almost fully 

developed in the basal eusauropod Patagosaurus (fig. 9-9).  

 

Figure 9-10. Cladogram of different adaptations for manus pronation within Sauropodo-
morpha. Note that non-sauropod saurischians are shown in ventromedial view, which 
comes up to a craniomedial view in Patagosaurus. Dilophosaurus is shown in lateral view. 
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Antebrachium 

As shown in chapters 6 to 8, the evolutionary changes of the shafts and distal 

ends of radius and ulna are minor. Basal theropods and Herrerasaurus retain a ple-

siomorphic radius to humerus length ratio of about 0.84, a value that is identical 

to that of Euparkeria. In Eoraptor, the antebrachium is shortened to a ratio of 0.73, 

and sauropodomorphs acquire a ratio of about 0.62. Such a relatively low ratio is 

retained throughout the entire sauropodomorph evolution, and increases only 

slightly in sauropods (Mauersberger, 2005; fig. 9-10).  

Simultaneously, no clear trend in the osteological evolution of the antebra-

chium can be recognized, with the exception of the reconfiguration of the elbow 

joint described above. A distinct olecranon process is ossified in Herrerasaurus, 

basal theropods, and Saturnalia, but this is not the case in Euparkeria, Eoraptor, and 

all other sauropodomorphs. As described in chapter 7, some genera show spe-

cializations in the radius, e.g. a lateral shift of the cranial tubercle, or a oblique 

course of the shaft relative to the planes of the proximal and distal ends, which 

may both be interpreted as adaptations to pronate the manus (fig. 9-10). However, 

these systems cannot be recognized in Antetonitrus and higher sauropods, which 

have evolved a unique solution for the problem of manus pronation (see above, 

section ‘Elbow joint’). Sauropods have considerably reduced the robustness of 

radius and ulna relative to their closest outgroup taxa, but resemble early sauro-

podomorphs like Plateosauravus in this respect.  

 

Manus 

Momentarily, the evolution of the sauropodomorph manus remains poorly 

understood. Only a few taxa preserve hands, and these appear specifically adapted 

in each taxon, possibly indicating ecological specializations. No modifications of 

the hand musculature can be recognized by the method applied throughout this 

thesis, but judging from morphology, it can be assumed that the reduction of the 

digits and tubular arrangement of the metacarpus led to a reduction of the flexor 

and extensor musculature in eusauropods.  

Carpus. As demonstrated by the anatomy of Heterodontosaurus, the dinosaurian 

hand originally retained a plesiomorphic carpus, resembling the basic pattern of 

all amniotes. Ulnare and intermedium are fused, but a centrale, five distal carpals, 

and a pisiforme are preserved. In Herrerasaurus, the centrale is lost, but the pisi-

forme and all distal carpals are retained, distal carpal 5 probably being fused to 

distal carpal 4. Moreover, the radiale is enlarged, while the ulnare is compara-
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tively small, quite the opposite of the condition found in Heterodontosaurus. The 

situation in Eoraptor is not entirely clear, since the matrix proximal to metacarpals 

IV and V is broken away. However, like in other basal dinosaurs, distal carpals 1 

to 3 are equally sized and do not extend beyond the proximal surface of their re-

spective metacarpal. The proximal carpals of Eoraptor are about equal in size. Ba-

sal theropods exhibit a similar morphology, with disc-like radiale and ulnare, and 

four distal carpals (Colbert, 1989). Thus, the plesiomorphic eusaurischian carpus 

may be reconstructed as containing ossified radiale and ulnare, and at least four 

distal carpals that cap metacarpals I–IV.  

In sauropodomorphs, the proximal carpals became unossified. One might 

speculate that this led to a shift of the insertion of M. extensor carpi radialis onto 

the distal radius, forming a distinct tubercle on its cranial side (chapters 6–8). 

Nevertheless, distal carpals 1 to 3 are retained in the basal-most sauropodomorphs 

(Thecodontosaurus; Benton et al., 2000). Distal carpal 1 remains ossified in all 

sauropodomorphs, but the outer distal carpals show a trend towards reduction. 

However, this trend is broken by the unusual morphology of the carpus of Jing-

shanosaurus (chapter 7). No carpals are known from the fully articulated manus of 

Melanorosaurus (Bonnan and Yates, 2007), but Shunosaurus again has at least three 

disk-like distal carpals, with number 3 somewhat reduced in size (Zhang, 1988; 

chapter 8). Finally, mamenchisaurids and neosauropods tend to reduce the num-

ber of carpals, once more beginning with the outer carpals first. In summary, the 

pattern of ossifications in the distal carpus of sauropodomorphs is highly fluctuat-

ing, but there is a certain resemblance between the carpal morphology of the basal 

sauropod Shunosaurus, and the plesiomorphic condition as observed in Eoraptor 

and Thecodontosaurus. 

Metacarpus and digits. Eoraptor exhibits the most plesiomorphic metacarpus 

within Dinosauria, with only slightly reduced metacarpals IV and V (chapter 5). 

An asymmetric metacarpal I is plesiomorphic for dinosaurs, since it is found in 

Heterodontosaurus, Eoraptor, Herrerasaurus, basal theropods, and sauropodomorphs. 

In all non-eusauropod sauropodomorphs, metacarpal I is significantly more 

robustly developed than the remaining metacarpals. The outer metacarpals, as 

well as the digits, are plesiomorphically slender (even more so than in Eoraptor), 

but become increasingly shorter and more robust in Massospondylus and more de-

rived sauropodomorphs (chapter 7).  
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Figure 9-11. Cladogram of manus evolution on the line to neosauropods. In non-
sauropod dinosaurs, dorsal views; in sauropods, cranioproximal views. In Lufengosaurus 
and Yunnanosaurus, additionally a cranial view of the carpus is provided. 
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 With the evolution of a semitubular metacarpus in Shunosaurus (Upchurch, 

1994, 1998) and other eusauropods (Monbaron et al., 1999; but see Alifanov and 

Averianov, 2003), the trend towards shortening of the metacarpals is reversed, 

and these elements become gradually more elongate in neosauropods. Momentar-

ily, it is not clear when the first steps towards a semitubular metacarpus occurred: 

Shunosaurus already had arranged its metacarpals in a circle segment of about 200° 

(Upchurch, 1994, 1998; chapter 8), but Melanorosaurus (Bonnan and Yates, 2007) 

and Yunnanosaurus show no signs of a considerably curved metacarpus. However, 

the metacarpus of Lufengosaurus huenei (not L. magnus) exhibits a distinct curvature 

of about 140° (chapter 7; fig. 9-11), which, according to current phylogenetic hy-

potheses, probably reflects parallelism to sauropods. 

The phalangeal formula of Eoraptor cannot be reconstructed reliably, but was 

probably similar to other basal dinosaurs such as Heterodontosaurus, which counts 

2-3-4-3-2. The same phalangeal formula is found in Plateosaurus. Within basal 

sauropodomorphs, digits IV and V tend to be reduced in size and phalangeal 

count, but retain at least two phalanges in Massospondylus and Lufengosaurus. Mas-

sospondylus and more derived sauropodomorphs also evolved the ‘prosauropod’ 

manual type 2, with robust metacarpals, a metacarpal I that is wider than long, 

and short, block-like phalanges. Phalanx V.2 is probably lost in Melanorosaurus 

and more derived sauropodomorphs. With the advent of the semitubular, verti-

cally held metacarpus in eusauropods, the number of phalanges in the cranial 

digits (II and III) is reduced to 2, with the unguals of all digits except digit I being 

only rudimentarily developed. In neosauropods, this trend towards reduction of 

the phalanges is continued, leading to a complete loss of ossified manual digits in 

titanosaurs (see Upchurch et al., 2004).  

 

Conclusions 

This analysis of the evolution of the osteology, myology and functional mor-

phology in sauropodomorphs finds no evidence for secondary quadrupedalism in 

sauropods. Although some basal sauropodomorphs seem to have developed obli-

gate bipedalism (Plateosaurus), most forms retained the capability of quadrupedal 

locomotion, albeit with a plesiomorphical, semi-sprawling posture, the humerus 

being abducted about 20–30° from the vertical. In this way, ‘prosauropods’ paral-

lel other large quadrupedal dinosaurs, e.g. ceratopsians (Johnson and Ostrom, 

1995; Chapman, 2001; Thompson and Holmes, 2007). Only sauropods evolved 

an erect humerus that during locomotion swung in parasagittal direction. This 
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was made possible by gradual transformations of the ventral pectoral girdle and 

elbow joint. Aside from manifold morphological evidence, this result is also sup-

ported by rare trackways of basal sauropodomorphs, which demonstrate that ‘pro-

sauropod’ manus prints are placed distinctly laterally to the pes prints, despite a 

transversely narrow pectoral girdle and relatively short arms (fig. 9-12). Therefore, 

the original ideas of Charig et al. (1965) and Galton (1971, 1973, 1976), who de-

scribed ‘prosauropods’ as slow habitual quadrupeds that only rarely walked or run 

bipedally (e.g., in escape), are supported by this analysis. 

 

Figure 9-12. Comparison of ‘prosauropod’ and sauropod tracks. Left, Navahopus from the 
Lower Jurassic of Arizona, USA. After Baird (1980), who identified Anchisaurus as the 
trackmaker of Navahopus. Right, Sauropod trackway from the Middle Jurassic of Portugal. 
After dos Santos et al. (1994). 

 

Clear adaptations to obligate bipedality are also missing in the forelimbs of the 

basal saurischian Eoraptor, but the information about basal dinosauriforms is in-

sufficient. However, the only basal dinosauriform that preserves a rather complete 

forelimb, Silesaurus opolensis, is clearly quadrupedal (Dzik, 2003). Thus, doubts are 

evoked about the idea of plesiomorphically obligate bipedal dinosaurs (Sereno, 

1991, 1997; Carrano, 1999), and it appears more parsimonious that obligate bi-
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pedalism was developed only in Herrerasaurus, theropods, and ornithopods (see 

also Fechner, in prep.). Hopefully, future discoveries of basal saurischians and 

ornithischians from Ladinian and Carnian sediments will help to understand the 

early evolution of dinosaur locomotion in more detail.  

Concerning the evolution within Sauropodomorpha, the transformations from 

basal sauropodomorphs to eusauropods cannot be traced in all details, due to an 

incomplete fossil record and a series of autapomorphic developments in the ‘pro-

sauropod’ taxa that are currently regarded as most closely related to sauropods. 

Several reoccurrences of seemingly plesiomorphic characters in sauropod fore-

limbs support the idea that paedomorphism may have played a crucial role in the 

evolution of this group (see also Reisz et al., 2006). However, most well known 

‘prosauropods’ date much younger than the basal sauropodomorph radiation dur-

ing the Carnian, which illustrates the probability of both autapomorphic and ho-

moplastic developments with respect to sauropods.  

 

 

Figure 9-13. Temporal diagram of stages in sauropodomorph forelimb evolution (selec-
tion). The large gap in the sauropod fossil record during the Lower Jurassic is illustrated as 
the ‘Dark Age’ of sauropod evolution.  

 

Nevertheless, it becomes evident that relatively simple modifications of the ba-

sal archosaurian bauplan were sufficient to create the sauropod forelimb structure. 

The key adaptation is the cranial rotation of the ventral shoulder girdle, leading to 

a ventral orientation of the glenoid and enabling a more erect posture of the 

humerus. As a consequence, the structure of the elbow joint and the arrangement 

of radius and ulna had to be reconfigured in order to pronate the hand. Altered 

lines of action of the deltoid, pectoralis, and supracoracoideus musculature led to 

a reduction of the deltopectoral crest. However, basal sauropodomorphs and 
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sauropods lack structural or myological novelties in the forelimb that may be re-

garded as preadaptations for gigantism. On the contrary, the retention of plesio-

morphic characters in the forelimb of some basal sauropods (e.g., the scapulo-

coracoid of Isanosaurus, the humerus and antebrachium of Gongxianosaurus, and 

the humerus attributed to Kotasaurus) indicates that the optimization of the fore-

limb posture was a slow, gradual process. Thus, it appears that gigantism and 

forelimb evolution were parallel, interdependent processes, and not the former a 

consequence of the latter. The temporal and spatial sequence of these transforma-

tions is hard to reconstruct, since the gap in the fossil record between the Early 

Norian forms (Melanorosaurus and Antetonitrus) and the Toarcian and Middle Ju-

rassic sauropods is simply too large (fig. 9-13). However, the contemporaneous 

occurrence of sauropods with different ‘grades’ of forelimb improvement (e.g., in 

the Kota and Lower Shaximiao Formations) indicates that the evolution of the 

neosauropod bauplan was a long, complex, and no straightforward process. 
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10 Summary 

 

This work explores the evolution of the sauropodomorph forelimb in terms of 

osteological, myological and functional transformations that led to the origin of 

the sauropod bauplan. More than 100 individuals of about 50 fossil taxa of basal 

archosaurs, basal dinosauriforms, basal saurischians, basal theropods, and sauro-

podomorphs have been examined in detail in order to identify osteological 

changes in course of sauropod evolution, including changes in osteological corre-

lates of the musculature. Muscle reconstructions are performed by a modified 

Extant Phylogenetic Bracket approach: In a first step, all forelimb muscles of ex-

tant Reptilia are reviewed in terms of their probable phylogenetic history, nomen-

clature, and osteological correlates, enabling the inference of the muscular equip-

ment of the last common ancestor of crocodiles and birds. With this knowledge, 

muscular attachment sites on the pectoral girdle and forelimb are identified in the 

basal archosaur Euparkeria, and gross lines of action of the forelimb muscles are 

reconstructed. Changes in osteological structures and muscular attachments are 

then traced along the evolutionary line to sauropods, accompanied by functional 

interpretations of the modifications observed. This led to the following main re-

sults:  

• With the exception of the specialized form Silesaurus, Lewisuchus is the 

only basal dinosauriform that preserves comparatively good forelimb 

material. The forelimb of Marasuchus has been misidentified and proba-

bly belongs to Hesperosuchus.  

• Lewisuchus and Eoraptor show no unambiguous adaptations towards ob-

ligate bipedality. Eoraptor retains a plesiomorphic forelimb anatomy and 

may well have been able to walk quadrupedally with semi-erect humeri. 

• Herrerasaurus represents a specialized branch of early saurischians that 

shows functional parallelism to theropods, but exhibits different oste-

ological and myological adaptations that speak against a close relation-

ship with theropods 

• Basal saurischians evolve a unique tubercle cranially on the radius that 

may be correlated with a specialization of the M. biceps brachii / M. 

brachialis system that helped to pronate the hand 

• Basal sauropodomorphs exhibit a number of modifications that proba-

bly correlate with improved maneuverability of the humerus (and there-
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fore of the forearm and hand), which enabled effective grasping and 

manipulation, e.g. of tree branches  

• There are no signs of secondary quadrupedalism in sauropods, but most 

basal sauropodomorphs retained the plesiomorphic ability to walk 

quadrupedally with semi-erect, partially abducted forelimbs 

• Some basal sauropodomorphs evolve unique modifications to effec-

tively pronate the manus for locomotion, which cannot be homologized 

with the system seen in sauropods 

• The key adaptation on the evolutionary line to sauropods is a cranial ro-

tation of the ventral part of the pectoral girdle. This led to a ventral ori-

entation of the glenoid and therefore a vertical posture of the humerus, 

but the scapular blade keeps being oriented in a plesiomorphic fashion, 

about 60° to the horizontal plane 

• Nonetheless, the relatively conservative construction of the pectoral gir-

dle, with a cranially placed coracoid, largely prevents parasagittal pro-

traction of the humerus in sauropods, hence limiting step length and 

speed 

• Mamenchisaurids, including Klamelisaurus, circumvented this constraint 

by the evolution of a unique shoulder joint that allows the humerus to 

rotate laterally around the corcacoid for protraction 

• The reorientation of the humerus in sauropods led to a number of modi-

fications in the elbow region, including a reduction of the humeral twist, 

a cranial rotation of the radius, and a lateral shift of the ulna accompa-

nied by the development of an elongate lateral process that articulates 

with the caudal side of the radial condyle of the humerus. All these 

modifications at least partially serve to pronate the manus, enabling a 

reduction of the flexion in the elbow joint during locomotion 

• Altered lines of action and therefore functional changes of M. pector-

alis, M. supracoracoideus, and M. deltoideus clavicularis, caused by the 

reorientation of the humerus and ventral pectoral girdle, led to a reduc-

tion of the deltopectoral crest 

• Due to a large gap in the sauropod fossil record, many evolutionary 

steps, especially those related to the transformation of the elbow joint 

and manus, are not preserved 

• The optimization of the forelimb towards a fully erect, parasagittally-

swinging column was a long evolutionary process, and sauropods seem 

to have become gigantic prior to the end of this process. Therefore, the 
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modification of the forelimb was no preadaptation for gigantism, but 

evolved in parallel. 

With these results, this work intends to provide a fundament for future com-

parisons of archosaurian forelimb evolution, and hopes to inspire others to per-

form detailed examinations of the proposed functional aspects of sauropod fore-

limb transformations, e.g. by biomechanical analyses and computer simulations. 

Lastly, our understanding of the evolution of the sauropods will hopefully be fur-

ther improved by new discoveries in Upper Triassic and Lower Jurassic strata 

worldwide. 
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