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1. Introduction 
 
1.1 c-MYC oncogene 

c-MYC proto-oncogene was identified as the cellular homolog of the viral 

oncogene v-MYC encoded by the avian myelocytomatosis virus (Vennstrom et al., 

1982). c-MYC is a transcription factor which specifically binds to so-called E-boxes 

(CACGTG) and regulates expression of multiple genes involved in control of cell 

growth, proliferation, differentiation, apoptosis, angiogenesis, cellular adhesion, DNA 

metabolism and repair (Dang, 1999; Eisenman, 2001; Oster et al., 2002; Pelengaris et 

al., 2002a). 

Deregulation of c-MYC expression is observed in many human cancers and has 

been implicated in a number of cellular processes associated with tumorigenesis such 

as reduction of growth-factor requirements, immortalization, resistance to anti-

mitogenic signalling, increase of angiogenesis, changes in adhesion and genomic 

instability (Baudino et al., 2002; Lutz et al., 2002; Pelengaris et al., 2002b). The ability 

of c-MYC to induce unrestrained and autonomous cell growth and proliferation seems 

to be particularly important for tumorigenesis.  

c-MYC acts at different stages of cell cycle. c-MYC enforces transition through 

G1/S and prolongs the G2/M phase (Felsher and Bishop, 1999; Karn et al., 1989) and is 

able to overcome cell cycle arrest induced by DNA damage (Chernova et al., 1998; 

Sheen and Dickson, 2002). The effects of c-MYC on the cell cycle are mediated by 

transcriptional activation or repression of genes encoding cell cycle regulators (Daksis 

et al., 1994; Hermeking et al., 2000; Hoang et al., 1995; Yang et al., 2001; Yin et al., 

2001).  

One of the factors limiting c-MYC-dependent transformation and tumorigenesis 

is programmed cell death (apoptosis) (Meyer et al., 2006; Nilsson and Cleveland, 2003; 

Prendergast, 1999), which seems to be a cellular response to unscheduled proliferation 

and is mediated by p53 activation (Hermeking and Eick, 1994). The tumor suppressor 

p14arf mediates activation of p53 by c-MYC (Zindy et al., 1998). Furthermore, activation 

of c-MYC was shown to promote the release of cytochrom c from mitochondria, where 

it functions through activation of BAX (Mitchell et al., 2000; Soucie et al., 2001), 

induction of BIM (Egle et al., 2004) or repression of the anti-apoptotic BCL-XL and BcL2 

proteins (Eischen et al., 2001). More recently, activation of c-MYC was shown to induce 
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apoptosis via generation of DNA damage (Herold et al., 2002; Seoane et al., 2002; 

Sheen and Dickson, 2002). 

Genomic damage induced by c-MYC may involve a variety of different 

mechanisms including inappropriate cell cycle transition, perturbation of DNA 

replication, bypass of cellular check-points, suppression of DNA repair, induction of 

ROS production, chromosome and telomere remodeling (Chernova et al., 1998; 

Felsher and Bishop, 1999; Felsher et al., 2000; Karlsson et al., 2003; Li and Dang, 

1999; Mai et al., 1996b; Yin et al., 2001). c-MYC-induced genomic instability can be 

classified into two categories: abnormal chromosomal numbers (aneuploidy) and 

defects in chromosomal integrity including chromosomal breaks, fusions and 

translocations. However, the exact mechanisms and pathways, which mediate genomic 

instability after c-MYC activation have remained elusive. 

 
1.2 Genomic instability: MIN and CIN 

It was shown that genetic instability is a common characteristic of most human 

cancers (Loeb, 2001; Rajagopalan et al., 2003). Genomic instability can be subdived 

into two classes. A small fraction of cancers displays defects in mismatch repair 

(MMR) system, which result in an elevated mutation rate at the nucleotide level. These 

mutations comprise base substitutions, deletions or insertions of few nucleotides. 

Often they occur in stretches of simple mono-, di- and trinucleotide repeats (e.g. 

(CA)n) as a consequence of DNA polymerase slippage errors during DNA replication. 

As a consequence widespread expansions and contractions of short, repetitive DNA 

sequences (called microsatellites) occur. Therefore, this type of instability has been 

named microsatellite instability (MIN). The majority of other cancers display abnormal 

chromosome number (aneuploidy) or/and structure, which is referred to as 

chromosomal instability (CIN).  

Defects in mutS and mutL genes were first found to cause MMR defficiency in 

bacteria and Saccharomyces cerevisiae. Germline mutations in the human homologs 

of these genes, MSH2 and MLH1, have been implicated in the hereditary 

nonpolyposis colon cancer (HNPCC) syndrome, and predispose to a variety of 

cancers. In mouse models homozygous deletion of the mismatch repair genes Msh2, 

Msh6, Mlh1, Pms2 or double mutant Msh3/Msh6 show a high incidence of tumor 

formation. Msh3 knockout mice display a low predisposition for tumor formation, 

furthermore Msh4-/-, Msh5-/- and Pms1-/- mice do not show elevated tumor formation 
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(Wei et al., 2002). Genetic screens in Saccharomyces cerevisiae for mutations which 

cause CIN identified several candidate genes. So called ‘’CIN genes’’ are involved in 

chromosome condensation, sister-chromatid cohesion, kinetochore structure and 

function, and microtubule formation as well as in cell cycle check-points. However, 

only a small number of human CIN genes has been identified until now (Rajagopalan 

et al., 2003). Germline mutations in several of them were shown to cause aneuploidy 

(hBub1, BubR1, Mad2, APC, BRCA1 and BRCA2). 

At the beginning of the last century chromosomal instability was already 

proposed as a potential cause of cancer by the german zoologist Theodor Boveri 

(Boveri, 1914; Hansemann, 1890). He observed that sea urchin embryos undergoing 

mitosis in the presence of multipolar spindles generated aneuploid progeny. 

Furthermore, he described that tumor cells frequently display aberrant chromosome 

numbers (aneuploidy). He proposed that aneuploidy itself may be the cause of cancer. 

This proposal is still a matter of debate. Opponents argue that CIN is irrelevant to 

tumor initiation (Hahn et al., 1999), but rather contributes to tumor progression 

(Zimonjic et al., 2001). Moreover, some authors proposed that aneuploidy is a side-

effect of transformation (Marx, 2002). The detailed molecular mechanism and 

determinants of aberrant chromosome segregation, which commonly occurs in cancer 

cells, are not clearly understood. However, it is obvious that the proper function of the 

spindle checkpoint is necessary for correct segregation of chromosomes and prevents 

aneuploidy. Any deregulation of the spindle checkpoint may therefore lead to CIN and 

as a consequence promote tumorigenesis.  

It was reported that tumor-associated viruses cause genomic instability in birds 

and rodents (Rous sarcoma virus (RSV))(Nichols et al., 1965). Also human 

papillomavirus E6 and E7 (HPV) (Duensing and Munger, 2002; Munger and Howley, 

2002; White et al., 1994; zur Hausen, 1991) and the viral protein v-src and its cellular 

homologs c-src cause CIN (Nanus et al., 1991). Additionally, the activation of 

endogenous proto-oncogenes like c-MYC (Alitalo and Schwab, 1986; Tsichlis, 1987), 

Ras (Denko et al., 1994; Kim et al., 2003) and Mos (Fukasawa and Vande Woude, 

1997) by diverse mechanisms results in structural and numerical chromosomal 

changes.     
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1.3 Mechanisms of c-MYC activation in cancer 

Over-expression of c-MYC has been found in up to 50% of all human cancers 

(Alitalo and Schwab, 1986; Pompetti et al., 1996). Elevated c-MYC expression 

correlates with clinically aggressive tumors, which have a worse prognosis than 

tumors without MYC over-expression (Gamberi et al., 1998). The activation of c-MYC 

occurs mainly through genomic and transcriptional alterations. One of the common 

genomic changes in hematopoietic malignancies as Burkitt’s lymphoma are 

translocations of the c-MYC gene, which is located on chromosome 8, to the 

immunoglobulin μ heavy chain or the λ and κ light chain enhancers located on 

chromosome 2, 14 or 22, respectively (Boxer and Dang, 2001; Dalla-Favera et al., 

1982; Popescu and Zimonjic, 2002). Rearrangements of c-MYC gene were also found 

in diffuse large cell lymphoma (DLCL), acute lymphocytic leukemia (AML), multiple 

myeloma (MM), and primary plasma cell leukemia (PCL) (Avet-Loiseau et al., 2001; 

Burmeister et al., 2005; Frost et al., 2004; Miranda Peralta et al., 1991; Nesbit et al., 

1999). Rare cases of T-cell leukemia, in which the c-MYC gene is translocated to T-

cell receptor, have also been reported (Harrison, 2000).  

The transcription of c-MYC is frequently activated by mutations in pathways 

upstream of c-MYC. E.g. mutations in the APC/β-catenin pathway lead to activation of 

c-MYC in colorectal cancer (He et al., 1998). c-MYC expression in malignant 

melanoma might also be deregulated via APC/β-catenin pathway, as β-catenin 

mutations were described in some cell lines (Rubinfeld et al., 1997). 

Another mechanism of c-MYC activation in solid tumors is gene amplification 

(Vita and Henriksson, 2006). In case of malignant melanoma, extra c-MYC copies 

were found in 61% of nodular melanomas, in 28% of superficially spreading 

melanomas, and in 30% of metastatic tumors (Treszl et al., 2004). Amplification of c-

Myc was detected in 40% of tumors with over-expression of c-MYC protein in ovarian 

cancer (Baker et al., 1990). In cervical cancer, the c-Myc gene is amplified in 29% of 

abnormal epithelia compared to 8% in control tissues (Abba et al., 2004). Up to 23% 

of lung carcinoma samples displayed amplifications (Gugger et al., 2002), which were 

also found in 10% of esophageal squamous cell carcinoma (SCC) patients treated by 

surgery and in 30% of patients subjected to multimodal treatment (Bitzer et al., 2003). 

All three transforming members of the Myc family have been shown to be amplified in 

small cell lung carcinoma (SCLC), with a frequency of 10% (MycN), 13% (L-Myc), and 

20% (c-Myc) (Gugger et al., 2002; Lui et al., 2001; Nesbit et al., 1999), whereas 30% 
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of all neuroblastoma (NBL) show specific amplification of MycN (Brodeur, 1994, 1995). 

In breast cancer c-MYC is amplified in 17.1%, whereas the HER2/neu was amplified in 

18.7% of analyzed cases (Berns et al., 1992). In prostate cancer, c-MYC amplification 

was detected at a frequency of 29% (Nupponen et al., 1998). Mutational inactivation of 

the Myc-antagonist Mxi-1 may be another mechanism of c-Myc activation in prostate 

carcinoma (Eagle et al., 1995; Prochownik et al., 1998). 

 

1.4 Potential mechanisms of c-Myc-induced genomic instability 
In solid tumors abnormal c-MYC expression correlates with genomic instability. 

In vivo and in vitro models of c-MYC overexpression revealed induction of karyotypic 

changes, including alterations in copy number and chromosomal rearrangements 

(Felsher and Bishop, 1999; Louis et al., 2005; Vafa et al., 2002) or locus specific 

instability involving amplification of certain genes (Kuschak et al., 1999; Mai, 1994; 

Mai et al., 1996b) (cyclin D2, ribonucleotide reductase R2, PALA, CAD, DHFR). After 

inactivation of MYC in conditional mice models most tumors undergo proliferative 

arrest, differentiation and apoptosis (Arvanitis and Felsher, 2006). However, some of 

tumors can become independent of MYC overexpression by acquiring additional 

genetic events such as chromosomal translocations (Felsher and Bishop, 1999; 

Karlsson et al., 2003; Louis et al., 2005; Vafa et al., 2002). These observations 

suggest that c-MYC functions as dominant mutator gene by promoting CIN. Identical 

translocations were present in multiple relapsed tumors arguing that these genomic 

events may contribute to the independence from c-MYC (Arvanitis and Felsher, 2006).  

 

1.4.1 Transition into S phase 
c-MYC activation is sufficient and necessary for induction of G1/S-

transition.(Eilers et al., 1989; Trumpp et al., 2001) In Drosophila ectopic expression of 

dMYC increases both cell mass and cell number (Johnston et al., 1999). Targeted 

disruption of the c-MYC gene in rat fibroblast resulted in a significant lengthening of 

the G1 and G2 phases, whereas the duration of S phase was not affected (Iritani and 

Eisenman, 1999; Johnston et al., 1999; Mateyak et al., 1997; Trumpp et al., 2001). c-

MYC induces transcription of several target genes involved in G1/S transition such as 

ODC, Cul1, CDK4, Cdc25A and Id2 (Bello-Fernandez et al., 1993; Berns et al., 1997; 

Galaktionov et al., 1996; Hermeking et al., 2000; Lasorella et al., 2000; Leone et al., 

1997; Muller et al., 1997; O'Hagan et al., 2000; Wagner et al., 1993). Furthermore, c-
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MYC activation leads to down-regulation of inhibitors of cyclin/CDK complexes. As a 

result, c-MYC leads to activation of cyclin/CDK complexes, phosporylation of pRB and 

release of active E2F/DP transcription factors (Blagosklonny and Pardee, 2002). 

 

Cul1 Cyclin E

Cul1

Cyclin E
p27 Cdk2

Cyclin E

Cyclin E
Cdk2

Cdk2

S phase entry

?

Rb

Rb

cdc25A

cdc25A

p27

degragation

c-MYC c-MYC c-MYC

a b c

Figure 1 c-MYC overcomes restriction point (adapted from (Wade and Wahl, 2006)). 
c-MYC transactivates expression of genes involved in regulation of CycinE/Cdk2 complex activity, 
which modulate Rb function, release E2Fs and facillitate progression through S-phase. (a) Up-
regulation of Cul1, a transcriptional target of c-MYC, leads to degradation of the Cyclin/Cdk2 inhibitor, 
p27. (b) c-MYC directly activates transcription of Cyclin E. (c) c-MYC dependent inducton of cdc25A 
phosphatase activates cdk2.  
 

Under such conditions inappropriate expression of cyclin E can lead to genomic 

instability (Spruck et al., 1999). Also, excessive CDK activity influences the fidelity of 

chromosome transmission, including the licensing of replication origins, which has 

been linked to instability (Hua et al., 1997; Walter et al., 1998) (Figure 1). In addition, 

studies in yeast suggested that precocious CDK activation may cause genomic 
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instability via delayed firing of replication origins, leading to breaks during mitosis of 

incompletely replicated chromosomes (Lengronne and Schwob, 2002). 

 
1.4.2 c-MYC overcomes DNA damage-induced G1/S arrest 

When genetic material is damaged, the activated checkpoints delay replication, 

allowing the DNA repair machinery to remove brakes. If the damage is too severe 

apoptosis is initiated to permanently remove damaged cells. After DNA damage 

activation of ATM and ATR are the initial steps (Bartek and Lukas, 2001b; Kastan and 

Bartek, 2004). For the DNA damage response at G1/S transition a two-wave 

checkpoint response has been suggested (Bartek and Lukas, 2001a; Falck et al., 

2001). The initial, transient response is an inhibition of Cdk2 within 20-30 minutes, 

which is restricted to several hours (Mailand et al., 2000; Rotman and Shiloh, 1999). 

This prompt cell cycle delay is independent of p53 and transcription, and is mediated 

via dephosphorylation of CDC2 by the phosphatase Cdc25A. This early response 

temporarily slows down cell cycle progression to provide more time for DNA repair. 

The second, delayed and significantly extended response is mediated by the 

transcription factor p53, which is activated by phosphorylation of ATM/ATR (on serine 

15) and the checkpoint kinases Chk2 and Chk1 (on serine 20). These modifications 

activate p53 either by decreasing p53 binding to its negative regulator, mdm2, or by 

increasing association with transcriptional co-activator p300/CBP (Lambert et al., 

1998; Unger et al., 1999). Activated p53 regulates transcription of a large number of 

genes leading to cell cycle arrest, apoptosis or increased DNA repair (Wahl and Carr, 

2001). Among them is the p21Waf1/Cip1, which encodes an inhibtor of cyclin dependent 

kinases (CDKs), which are essential for entry into S phase (Sherr and Roberts, 1999; 

Vogelstein et al., 2000). The process of p53 modification, accumulation, activation and 

finally transcriptional induction of the effectors requires several hours and may last for 

several days (Carr, 2000).  

G1 arrest caused by ionizing radiation-induced DNA damage is compromised 

by ectopic c-MYC overexpression (Sheen and Dickson, 2002). As a result cells 

perform DNA replication in the presence of DNA strand breaks which may ultimately 

lead to the generation of dicentric chromosomes and chromosomal instability. 

Abrogation of a p53-dependent arrest by constitutive c-MYC expression may results in 

apoptosis (Hermeking and Eick, 1994), which provides a safeguard mechanism to 

prevent the persistence genomic instability caused by oncogene activation. 
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Presumably, modulation of p21 protein levels by c-MYC can determine this apoptotic 

response. For example, DNA damage-induced accumulation of p21 protein can be 

specifically blocked by c-MYC/MIZ1 (Seoane et al., 2002). This reduction of p21 levels 

may redirect the response to DNA damage from arrest to apoptosis. However, in cells 

with defects in the apoptotic signalling pathway oncogenic, constitutive c-MYC 

expression allows cells to evade from DNA damage-induced arrest and apoptosis.     

 

DNA damage

ATM activation,
re-location

p53 activation

Apoptosis
Arrest

DNA repair

p53

Cyclin E
Cdk2

p21
Proapoptotic

genes

Apoptosis

p53

p21

Rb Rb

Arrest S phase entry
Strand breakage

Chromosomal
aberations
Apoptosis

c-MYC
Miz

c-MYC

b c

a

 
Figure 2. c-MYC activation abrogates the DNA damage response (adapted from 

(Wade and Wahl, 2006)). 

(a) The scheme describes the signaling downstream of DNA damage through ATM-dependent 
activation of p53 resulting in cell-type specific apoptosis or cell-cycle arrest with following DNA repair. 
(b) Heterodimerisation of c-MYC with Miz protein can specificaly block p21 induction from it promoter 
and result in apoptosis in some cell types. (c) Miz independent c-MYC-mediated p21 inhibition through 
sequestraton of it to the other cyclin-cdk complexes leads to cell-cycle entry.  
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1.4.3 c-MYC abrogates G2/M arrest 

The error-free transmission of genomic information to the next generation of 

cells requires complete, damage-free DNA replication and faithful mitotic segregation of 

chromosomes into two daughter cells. Checkpoint mechanisms in G2- and M-phase 

ensure the proper segregation of the duplicated chromosomes. Dysfunction of both G2 

and/or mitotic checkpoints may result in karyotypic abnormalities and/or 

endoreduplication (Bates et al., 1998; Niculescu et al., 1998; Stewart et al., 1999). 

Ectopic expression of c-MYC compromises a stable G2-arrest and causes 

aneuploidy and endoreduplication (Andreassen and Margolis, 1994; Khan and Wahl, 

1998; Kung et al., 1990; Lanni and Jacks, 1998; Li and Dang, 1999). c-MYC can 

compromise a G1-like arrest of cells undergoing mitotic slippage caused by drug-

induced microtubule perturbation (Li and Dang, 1999; Yin et al., 2001) or sequestration 

of E2F transcription factors (Li and Dang, 1999; Santoni-Rugiu et al., 2000) and leads 

to reduplication. p27 suppresses c-MYC-induced endoreduplication at low, but not at 

high levels of c-MYC expression (Deb-Basu et al., 2006). In the latter case no influence 

on c-MYC dependent chromosomal breaks or fusion formation was detected. A 

possible explanation for this observation is that p27 suppresses mitotic division and 

endoreduplication or the ability of c-MYC to cause accelerated entry into the S phase.  

The DNA damage generated by c-MYC over-expression is sufficient to activate 

the G2/M checkpoint (Felsher 2000) and arrest cells with a 4N DNA content (Felsher et 

al., 2000). Nevertheless, c-MYC activation is able to enforce G2 to S transition probably 

through the re-initiation of DNA synthesis or potential leakiness of the G2/M checkpoint. 

This bypass contributes to an increase in ploidy. An explanation for such mechanism 

could be the premature activation of cyclin/CDK complexes or other factors involved in 

replication origin licensing and initiation of S-phase by c-MYC.     

 
1.4.4 c-MYC modulates replication, DNA damage response and repair pathway    

c-MYC expression was also shown to influence processes which maintain the 

integrity of the genome such as DNA repair and the response to DNA damage. 

Perturbation or attenuation of these processes may contribute to genomic instability. 

Several gene expression studies revealed that c-MYC can upregulate genes 

involved in DNA replication including: MCM4, MCM6, MCM7, Cdt1, CDC6 and TOP1 

(Fernandez et al., 2003; O'Hagan et al., 2000; Schuhmacher et al., 1999; Watson et al., 

2002). In a proteomic approach c-MYC was recently shown to directly interact with 
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MCM7, RFC and others components of DNA replication machinery (Koch et al., 2007). 

Therefore, c-MYC activation presumably interferes with or modulates DNA replication, 

which in the case of constitutively active, oncogenic c-MYC expression may lead to 

induction of DNA damage and genomic instability (Labib and Diffley, 2001; Pourquier 

and Pommier, 2001).  

c-MYC overexpression also interferes with the repair of double strand breaks 

(DSBs) and results in an increase in chromosomal breaks and translocations (Karlsson 

et al., 2003). In this context it would be interesting to know whether c-MYC is able to 

inhibit repair directly via modulation of DNA damage response or repair genes or its 

function is more indirect.  

c-MYC dependent induction of DNA repair genes (Chiang et al., 2003; Grandori 

et al., 2003; Menssen and Hermeking, 2002) might have a dual effect on c-MYC-driven 

tumorigenesis. On one hand activation of repair genes might increase fidelity of DNA 

replication and facilitate resolution of breaks arising during replication and thus ensures 

replication fork progression. On the other hand, aberrant activation of repair enzymes 

may cause unscheduled repair of replication intermediates and increase the probability 

of chromosomal aberrations (Schar, 2001).  

 

1.4.5 c-MYC increases reactive oxygen species 
c-MYC couples mitogenic signalling to transcriptional induction of genes which 

promote growth and proliferation. Furthermore, c-MYC induces a numerous target 

genes involved in glycolytic, respiratory and biosynthetic pathways (Gomez-Roman et 

al., 2003; O'Connell et al., 2003; Shim et al., 1997). Rapid elevation of metabolism 

associated with transition from quiescence to S-phase could potentially lead to 

permanent accumulation of reactive oxygen species (ROS), which may cause 

modifications and breaks of genomic DNA. Several studies suggest that c-MYC 

induces ROS which generate DNA damage (Tanaka et al., 2002; Vafa et al., 2002). 

However, other authors suggest that c-MYC induces genomic instability through 

inappropriate cell cycle entry and progression (Felsher and Bishop, 1999). 

Interestingly, c-MYC also induces oxidative stress and DNA lesions in resting cells 

(Felsher and Bishop, 1999)(Mai et al., 1996a)(Vafa et al., 2002).  
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1.4.6 c-MYC induces telomere remodeling 

Telomere organisation and behaviour appear to be cell cycle-dependent 

(Chuang et al., 2004). During the G0/G1- and S-phases of normal cells telomeres are 

widely distributed throughout the nucleus, however in G2, they change positions and 

organize in telomeric discs and align in the center of the interphase nucleus (Mai and 

Garini, 2005). Tumor cells have distorted telomeric structures and display telomeric 

aggregate formation (Chuang et al., 2004). Interestingly, c-MYC activation induces 

telomeric aggregates in immortalized cells, which are accompanied by breakage-

bridge-fusion cycles and result in unbalanced chromosomal translocations (Louis et 

al., 2005). 

 

1.5 The spindle assembly checkpoint 
The mitotic checkpoint, also known as spindle assembly checkpoint (SAC) 

prevents chromosomal missegregation by inhibiting the irreversible transition through 

anaphase. Only when each chromatide has made proper attachments to microtubules 

connected to opposite spindle poles anaphase is initiated. This mechanisms ensures 

even and accurate chromosome separation onto two daughter cells and can therefore 

be envisioned as a tumour suppressive mechanism, which prevents the acquisition of 

oncogenic chromosomal missegregations. The connection between chromosomes 

and spindle microtubules occurs on so called kinetochores, attachment sites, which 

assemble from proteins and centromeric DNA during every mitosis. The outer surface 

of unattached kinetochores acts as a catalytic site which recruits mitotic checkpoint 

proteins (Bub1, BubR1, Bub3, Mad1, Mad2, MPS1 and CENP) and converts them to 

partially diffusible complexes that comprise a ‘’wait anaphase’’ signal, which inhibits 

the anaphase promoting complex/cyclosome (APC/C), preventing premature 

chromosome segregation until each kinetochore properly attaches to the mitotic 

spindle. The function of the APC/C E3 ubiquitin ligase, on which the mitotic checkpoint 

signaling converges, is ubiquitination of mitotic substrates whose subsequent 

proteasome-mediated destruction is necessary for the onset of anaphase (securin) 

and mitotic exit (cyclin B). Activated complexes of the inhibitors Bub3, BubR1 and 

Mad2 directly bind to CDC20, a specificity factor required for recognition of mitotic 

substrates by the APC/C. As soon as both kinetochores of a sister chromatide are 

attached to microtubule of the opposite spindle poles through microtubule motors 
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(CENP-E), tension is generated by this motor, which leads to silencing of checkpoint 

inhibitor at those kinetochores (Figure 3).   
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Figure 3. The mammalian mitotic checkpoint signaling. (adapted from (Kops et al., 

2005)) 

(a) Prophase-early prometaphase. After nuclear envelope breakdown pools of spindle checkpoint 
protiens occupy kinetochors of unattached chromosomes. CENP-E protein bound to the kinetochor and 
not attached to the spindle microtubules activates BubR1 kinase activity which further facilitates 
recruitment of MAD1-MAD2 heterodimers to kinetochores for transmiting a ‘’wait anaphase signal’’. 
Presense of other essential checkpoint components leads to recruitment and conformational activation 
of MAD2 through the MAD1-MAD2 heterodimer. These events, which occur on free kinetochors, 
generate a pool of activeted MAD2 and BubR1 molecules which in combination with BUB3 deplete 
CDC20 preventing activation by APC/C. Thereby, cyclin B1 and securin degradation is inhibited (b) As 
soon as all kinetochors attach to the microtubulie spindles from opposite poles the microtubule motor 
proteins stretch the sister chromatides via microtubules, which terminates the ‘’wait anaphase signal’’. 
(c) As the ’’wait anaphase signal’’ ceases the APC/C-mediated ubiquitinitation of cyclin B1 and securin 
triggers transition into anaphase. 
 

Interestingly, mitotic checkpoint proteins are present through interphase and 

participate in additional cellular processes besides chromosomal segregation. For 

instance, MAD1 and MAD2 bind to the nuclear envelope and pores (Campbell et al., 

2001; Iouk et al., 2002), MAD2 participates in the DNA replication checkpoint 

(Sugimoto et al., 2004). Bub3 is involved in transcriptional repression via interaction 

with histone deacetylases (Yoon et al., 2004). The BubR1 protein is implicated in 

variety of processes like premature aging (Baker et al., 2004), fertility (Baker et al., 

2004), megakaryopoesis (Wang et al., 2004a), response to DNA damage (Fang et al., 

2006) and apoptosis (Baek et al., 2005; Kim et al., 2005; Shin et al., 2003). Mitotic 

checkpoint proteins are also involved in promoting of gross chromosomal 

rearrangements in yeast (Myung et al., 2004). 

Dysfunction of the spindle checkpoint machinery leads to improper propagation 

of chromosomes through mitosis and causes aneuploidy and susceptibility to 

tumorigenesis. Several mouse models were described which characterized the 

function of a particular checkpoint genes, such as mitotic arrest deficient (MAD) MAD1 

(Iwanaga et al., 2007; Kienitz et al., 2005) and MAD2 (Dobles et al., 2000; Hernando 

et al., 2004; Michel et al., 2001; Sotillo et al., 2007), budding uninhibited by 

benzimidazoles (BUB) proteins Bub3 (Babu et al., 2003; Baker et al., 2006; Kalitsis et 

al., 2005) and BubR1 (Baker et al., 2006; Dai et al., 2004), and kinesin-like motor 

CENtromere-associated Protein-E CENP-E (Weaver et al., 2007). Complete loss of 

spindle checkpoint proteins is lethal for cells (Babu et al., 2003; Dobles et al., 2000; 

Wang et al., 2004a) and leads to massive chromosome missegragation and 

catastrophic cell death (Kops et al., 2004; Michel et al., 2004). MAD1 

haploinsufficiency or down-regulation both in human and mouse cells results in 
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elevated levels of aneuploidy. In mouse models MAD1+/- littermates show a 2-fold 

higher incidence of constitutive tumors in comparison to wild-type mice and develop 

neoplasia upon vincristine treatment (Iwanaga et al., 2007). In MAD2 haploinsufficient 

models cells display elevated rates of chromosome missegregation and mice develop 

spontaneous lung tumors after long latencies (Michel et al., 2001). Interestingly, 

overexpression of MAD2 in transgenic mice leads to much higher incidences of 

aneuploidy characterized as appearance of broken chromosomes, anaphase bridges 

and whole-chromosome gains and losses, and wide spectrum of tumors with relatively 

short latencies, high incidence and aggressiveness in comparison to haploinsufficient 

MAD2 mice (Sotillo et al., 2007; van Deursen, 2007). MAD2 overexpression was 

shown to cause aneuploidy in human cells (Hernando et al., 2004). High level of 

MAD2 was detected in a set of tumors such as lymphomas and neuroblastomas 

where c-MYC and MYCN are involved in tumorigenesis, respectively (Hernando et al., 

2004; Sotillo et al., 2007). This suggests that MAD2 activation is an oncogenic event 

in these models. Haplo-insufficiency of Bub3 leads to chromosome missegragation, 

but mice do not show any spontaneous tumorigenesis. They however, exhibit 

susceptibility to chemical induced lung tumors (Babu et al., 2003; Baker et al., 2006; 

Kalitsis et al., 2005). BubR1+/- mice display elevated levels of aneuploidy and rapidly 

developed tumors upon carcinogen treatment (Baker et al., 2006; Dai et al., 2004). 

BubR1+/-ApcMin/+ mutant mice develop colonic tumors 10 times more efficient then 

ApcMin/+ mice (Rao et al., 2005). This observation supports the idea that c-MYC 

activation, caused due to Apc inactivation, leads to increased tumorigenesis due to the 

compromised spindle checkpoint caused by BubR1 haploinsufficiency. Therefore, the 

spindle checkpoint may have a tumor suppressive function. The most recently 

reported mouse model showed that down-regulation of the centromere-associated 

motor protein CENP-E leads to an increased rate of chromosomal instability and 

elevated levels of spontaneous tumors in aged animals (Weaver et al., 2007). 

Unexpectedly, chromosomal instability caused by CENP-E reduction was shown to 

rather inhibit chemically or genetically induced tumorigenesis.  

Meanwhile, it has been shown that genetic instability caused by CIN or MIN is 

an inherent feature of most cancer cells which promotes carcinogenesis by increasing 

the rate of mutations in critical genes and thereby allows unrestrained growth and 

metastasis (Lengauer, 2005; Rajagopalan and Lengauer, 2004). As mutations in 

genes encoding components of the SAC occur at a low frequency (Cahill et al., 1999; 
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Hernando et al., 2001; Wang et al., 2004b), other cancer-specific alterations are 

suspected to contribute to CIN. 
 

1.6 RNA interference  
RNA interference was discovered almost a decade ago and became a very 

elegant and effective method for probing gene function, and thereby also revolutionized 

the genetic analysis in mammalian cellular systems (Hannon, 2002; Meister and 

Tuschl, 2004; Paddison and Hannon, 2002; Paddison et al., 2004; Silva et al., 2004) 

(Figure 4). RNAi allows the modulation of gene expression at more physiological 

conditions in comparison to ecopic gene expression systems, and has advantages 

when applied to functional genetics analyses: it allows to modulate gene expression 

with high efficiency, specifically turn off gene isoforms or allelic variants, or repress 

endogenous RNA in the presence of a mutant transcript of the same gene. 

Furthermore, various loss-of-function screens were made possible by RNA 

intereference. In the last years RNAi was also applied to gene therapeutic approaches, 

where it has great potential but faces problems as efficient delivery and tissue 

specificity (Aagaard and Rossi, 2007; Kim and Rossi, 2007; Li et al., 2006; Martin and 

Caplen, 2007). In cellular systems there are several ways to achieve RNAi: (1) direct 

delivery of dsRNA (double stranded RNA) or (2) transfection of siRNA (short interfering 

RNA) duplexes and (3) stable expression of shRNA/miRNAs (short hairpin/microRNAs) 

from plasmids. These approaches function through different pathways to cause down-

regulation of protein expression (Figure 4). For a number of applications expression 

vector based systems were advantageous and have been modified in several 

directions to reach effective gene silencing, simple and effective delivery into the cells 

and stable integration. The application of conditional regulation (doxycycline- or 

ecdysone-controlled units and Cre- or Flp-dependent recombination) allows the 

analysis of ‘’off’’ and ‘’on’’ states of gene expression and the functional analysis of 

essential genes (Wiznerowicz et al., 2006). The major problem of conditional systems 

is leakiness. Even a slight basal shRNA expression might cause a pronounced 

phenotype due to the catalytic nature of RNAi. Two types of promoters driving 

transcription by Pol-III or Pol-II systems are currently available (Bernards et al., 2006; 

Dickins et al., 2005; Root et al., 2006; Wadhwa et al., 2004). The U6 and H1 based 

Polymerase III promoters have the advantage of generating small-sized shRNA  
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Figure 4. A model of post-transcriptional gene silencing by RNAi. (adapted from 

(Filipowicz et al., 2005; Meister and Tuschl, 2004)). 

dsRNA can be delivered into the cells by different ways. (a) Processing of dsRNA by Dicer produces 21-
23 nucleotide dsRNA intermediates. RNA helicase Armitage and R2D2 unwind them and incorporate 
single-stranded RNA into the RISC complex, which mediates sequence-specific mRNA cleavage. 
Primary miRNA transcipts are processed by the Drosha enzyme in the nucleus and exported into the 
cytoplasm. (b) The miRNA hairpin is further processed by Dicer, unwound and incorporated into the 
miRNP/RISC complex. Such single-stranded RNAs bound to Ago proteins mediate translational 
repression of target mRNAs. The initiation of cleavage or translation repression mechanism is 
determined by the complementarity of the miRNA with the target sequence. 

 

transcripts, high activity in most cell types and robust level of knockdown. Pol-II 

promoters were also used to express either shRNA or miRNA cassettes and achieve 

higher levels of transcript expression compared to Pol-III systems. These promoters 

were integrated into retro- or lenti-viral vectors, which allow stable integration into the 

genome. Futhermore, expression vectors can contain a number of useful features: 

antibiotic selection markers, tracking fluorescent or receptor proteins, tet repressors 

and/or activators, cDNAs of interest and bar codes for rapid identification using micro-

arrays. The currently available bar code systems are based on expression of shRNA 

and shRNAmir cassettes (Fewell and Schmitt, 2006). shRNAmir transcripts processed 

by both Drosha and Dicer have higher target specificity and produce more RNAs for 

incorporation into RISC complexes for subsequent mRNA degradation than standard 

shRNAs. Recently developed libraries of both shRNA and shRNAmir expressing 

vectors allow to perform genome-wide screens for gene functions.  
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2. Aim of the study 
 

The present study had the following aims: 
 

1. To investigate whether c-MYC activation affects the progression through mitosis. 

 

2. To identify direct c-MYC target genes which may affect mitotic progression. 

 

3. To determine whether potential effects of c-MYC on mitosis result  

    in chromosomal instability 

 

4. To develop an episomal vector system for conditional expression of microRNAs. 
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3. Materials 
 
3.1 Chemicals 

Reagent Supplier 
Antifade solution Vector Laboratories, Ltd., Peterborough 
3-Amino-1,2,4-triazole Sigma-Aldrich GmbH, Deisenhofen 
Agarose PEQLAB Biotechnologie GmbH, Erlangen 
Ampicillin Roche Diagnostics GmbH, Mannheim 
Ammonium peroxodisulfate (APS) Bio-Rad Laboratories GmbH, Munich 
Acrylamide SERVA Electrophoresis GmbH, Heidelberg 
Bradford protein assay Bio-Rad Laboratories GmbH, Munich 
Bacto® agar Becton Dickinson GmbH, Heidelberg 
Bacto® tryptone Becton Dickinson GmbH, Heidelberg 
Bacto® yeast extract Becton Dickinson GmbH, Heidelberg 
β-Mercaptoethanol Merck KGaA, Darmstadt 
Bisacrylamide Carl Roth GmbH & Co, Karlsruhe 
Bovine serum albumin (BSA) New England Biolabs GmbH, Frankfurt 
Bromphenol blue  Sigma-Aldrich GmbH, Deisenhofen 
Caffein Sigma-Aldrich GmbH, Deisenhofen 
Complete mini protease inhibitor cocktail Roche Diagnostics GmbH, Mannheim 
Coomassie G250  SERVA Electrophoresis GmbH, Heidelberg 
Chloramphenicol Sigma-Aldrich GmbH, Deisenhofen 
Chloroquine diphosphate  Sigma-Aldrich GmbH, Deisenhofen 
Carbenecillin Sigma-Aldrich GmbH, Deisenhofen 
Deoxynucleotides triphosphate (dNTPs) ABgene Deutschland, Hamburg 
DABCO (1,4-Diazabicyclo[2,2,2]octane)  Sigma-Aldrich GmbH, Deisenhofen 
DAPI (2-(4-Amidinophenyl)-6-indolecarb Sigma-Aldrich GmbH, Deisenhofen 
Dithiothreitol (DTT)  Sigma-Aldrich GmbH, Deisenhofen 
DMSO Sigma-Aldrich GmbH, Deisenhofen 
Doxycycline hydrochloride  Sigma-Aldrich GmbH, Deisenhofen 
DL-p-chlorophenylalanine Sigma-Aldrich GmbH, Deisenhofen 
DMEM (Dulbecco's modified eagle 
medium) 

Invitrogen GmbH, Karlsruhe 

Demicolcine solution Sigma-Aldrich GmbH, Deisenhofen 
DNA/RNA oligonucleotides Metabion GmbH, Martinsried 
 MWG Biotech AG, Ebersberg 
Ethidium bromide  Carl Roth GmbH & Co, Karlsruhe 
Ethanolamine Sigma-Aldrich GmbH, Deisenhofen 
Ethanol Carl Roth GmbH & Co, Karlsruhe 
FuGENE®6 transfection reagent  Roche Diagnostics GmbH, Mannheim 
Ficoll® 400  Sigma-Aldrich GmbH, Deisenhofen 
Foetal bovine serum (FBS)  Perbio Science Deutschland GmbH, Bonn 
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Glycogen from mussels  Roche Diagnostics GmbH, Mannheim 
Geneticin® (G418)  Invitrogen GmbH, Karlsruhe 
Glucose Sigma-Aldrich GmbH, Deisenhofen 
4 hydroxytamoxifen (4-OHT) Sigma-Aldrich GmbH, Deisenhofen 
Hanks' balanced salt solution (HBSS)  Invitrogen GmbH, Karlsruhe 
Hygromycin B (HygB)  Invitrogen GmbH, Karlsruhe 
Herring sperm carrier DNA  Promega GmbH, Mannheim 
HighPerefect QIAGEN GmbH, Hilden 
Isopropanol Sigma-Aldrich GmbH, Deisenhofen 
Kanamycin Sigma-Aldrich GmbH, Deisenhofen 
Lipofectamine™ 2000  Invitrogen GmbH, Karlsruhe 
L-Glutamine (200 mM)  Invitrogen GmbH, Karlsruhe 
L-arabinose Sigma-Aldrich GmbH, Deisenhofen 
L-rhamnose Sigma-Aldrich GmbH, Deisenhofen 
McCoy's 5A medium  Invitrogen GmbH, Karlsruhe 
Methanol Carl Roth GmbH & Co, Karlsruhe 
Nocodazol Sigma-Aldrich GmbH, Deisenhofen 
Nonidet-P40 (NP40)  Sigma-Aldrich GmbH, Deisenhofen 
OptiMEM®I reduced-serum medium  Invitrogen GmbH, Karlsruhe 
Paraformaldehyde Merck KGaA, Darmstadt 
Phenol/chloroform/isoamylalcohol 
(25/24/1)  

Carl Roth GmbH & Co, Karlsruhe 

Phosphatase inhibitor cocktail 1  Sigma-Aldrich GmbH, Deisenhofen 
Protein A-sepharose®  Sigma-Aldrich GmbH, Deisenhofen 
Puromycin dihydrochloride  Sigma-Aldrich GmbH, Deisenhofen 
Penicillin-streptomycin Invitrogen GmbH, Karlsruhe 
PageRuler™ prestained protein ladder Fermentas GmbH, St. Leon-Rot 
Propidium Iodid ICN Biomedicals, CA 
Sodium dodecyl sulfate (SDS)  Carl Roth GmbH & Co, Karlsruhe 
Sodium orthovanadate  Sigma-Aldrich GmbH, Deisenhofen 
Skim milk powder  Fluka Chemie AG, Buchs (CH) 
Spectinomycin Sigma-Aldrich GmbH, Deisenhofen 
Triton X-100  Carl Roth GmbH & Co, Karlsruhe 
Tetracycline Sigma-Aldrich GmbH, Deisenhofen 
Tween® 20  Sigma-Aldrich GmbH, Deisenhofen 
YPD-agar / YPD-broth  Sigma-Aldrich GmbH, Deisenhofen 
Yeast nitrogen base without amino acids Fisher Scientific GmbH, Schwerte 
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3.2 Reagents 
 

Reagent Supplier 
Alkaline phosphatase, shrimp (1 U/µl)  Roche Diagnostics GmbH, Mannheim 
DNAse I, RNAse-free (10 U/µl)  Roche Diagnostics GmbH, Mannheim 
FIREPol® DNA polymerase (5 U/µl)  Solis BioDyne, Tartu (EE) 
Platinum® Taq DNA polymerase (5 U/µl) Invitrogen GmbH, Karlsruhe 
Restriction endonucleases (3-50 U/µl)  Fermentas GmbH, St. Leon-Rot 
 New England Biolabs GmbH, Frankfurt 
 Promega GmbH, Mannheim 
RNAse A Sigma-Aldrich GmbH, Deisenhofen 
T4 DNA ligase (400 U/µl) New England Biolabs GmbH, Frankfurt 
Trypsin-EDTA  Invitrogen GmbH, Karlsruhe 
Proteinase K Sigma-Aldrich GmbH, Deisenhofen 
 

3.3 Antibodies 
3.3.1 Primary antibodies 

Antibody Supplier 
Rabbit polyclonal anti-β-actin Sigma-Aldrich GmbH, Deisenhofen 
Mouse monoclonal anti-α-tubulin Sigma-Aldrich GmbH, Deisenhofen 
Mouse monoclonal anti-γ-tubulin Sigma-Aldrich GmbH, Deisenhofen 
Mouse monoclonal anti-Mad2 BD Biosciences Pharmingen 
Mouse monoclonal anti-γ-H2AX (Ser139) 
clone JBW301 

Upstate cell signaling solutions, CA 

Mouse monoclonal [8G1] anti-BubR1 
(ab4637) 

BIOZOL Diagnostica Vertrieb GmbH, Eching 

Rabbit polyclonal anti-c-Myc (sc-764) Santa Cruz Biotechnology, California 
Rabbit anti mouse IgG (M-7023) Sigma-Aldrich GmbH, Deisenhofen 
 

3.3.2 Secondary antibodies 

Antibody Supplier 
Goat anti-mouse IgG HRP-conjugate Promega GmbH, Mannheim 
Goat anti-rabbit IgGHRP-conjugate Sigma-Aldrich GmbH, Deisenhofen 
Goat anti-mouse IgG Cy3-conjugate Jackson ImmunoResearch Laboratories, Inc. 

Newmarket 
 

3.4 DNA constructs 

Plasmid Refernce/Supplier 
pRTS-1 Bornkamm et al., 2005 
pEMI Epanchintsev et al., 2006 
pShumi Epanchintsev et al., 2006 
TOPO-TA vector (pCR®4-TOPO) Invitrogen GmbH, Karlsruhe 
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LMP Dickins et al., 2005 
TMP Dickins et al., 2005 
pPRIME Stegmeier et al., 2005 
pSMc2 Open Biosystems 
pUC19 Universety of California 
pSuper Brummelkamp et al., 2002b 
pRetroSuper Brummelkamp et al., 2002a 
pMYC-eYFP-N1 Koch et al., 2007 
pLPCX - H2B-GFP Gift from Stephen Taylor 
pcDNA3.1-H2B-YFP Gift from Dmitri Lodygin 
pMK10tTA Gift from Bert Vogelstein 
 

3.5 Bacteria strains 

Bacteria strain Genotype Reference/Supplier
DH10βF’FOT sbcC  mcrAΔ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 

ΔlacX74 deoR recA1 end A1 araΔ139 
Δ(ara,leu)7697 galU galK λ- rpsL nupG 
tonA umuC::pir116-frt F’(lac+ pro+ 
ΔoriT::Tc) sbcC::Frt 

Li et al. 2005 
 

BW28705I/pML300  LacIq rrnB3 ΔlacZ4787 hsdR514 
Δ(araBAD)567 Δ(rhaBAD)568 galU95 
ΔendA9::FRT ΔrecA635::FRT 
umuC::ParaBAD-I-SceI-FRT + 
pML300(PrhaB-γβexo Ts(ori) 
Spectinomycin resistant) 

Li et al. 2005 

E. coli XL1-Blue  endA1 gyrA96 hsdR17 lac- recA1 relA1 
supE44 thi-1 [F' lacIq Z ΔM15, proAB, Tn 
10, TetR] 

Stratagene GmbH, 
Heidelbeg 

 

3.6 Disposable kits 

Product Supplier 
TOPO-TA cloning kit for sequencing  Invitrogen GmbH, Karlsruhe 
BigDye® terminator v3.1 sequencing mix Applera Deutschland GmbH, Darmstadt 
FastStart-DNA Master SYBR Green 1 kit Roche Diagnostics GmbH, Mannheim 
RNAgent RNA isolation kit  Promega GmbH, Mannheim 
Ribomax T7 in vitro transcription kit  Promega GmbH, Mannheim 
SuperScript™ III first strand cDNA 

synthesis kit  
Invitrogen GmbH, Karlsruhe 

QIAGEN Plasmid Maxi Kit  QIAGEN GmbH, Hilden 
QIAprep Spin Miniprep Kit  QIAGEN GmbH, Hilden 
QIAquick Gel Extraction Kit  QIAGEN GmbH, Hilden 
QIAquick PCR Purification Kit  QIAGEN GmbH, Hilden 
Nucleotide removal kit  QIAGEN GmbH, Hilden 
3MM Whatman® filter paper  Whatman GmbH, Dassel 
Immobilon-P PVDF Transfer Membrane  Millipore GmbH, Schwalbach 
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Pierce ECL Western blotting substrate  Pierce Biotechnology Inc., Rockford 
Western Lightning® Western Blot 

Chemiluminescence Reagent Plus 
PerkinElmer GmbH, Cologne 

0.45 µm Millex-HV filter units  Millipore GmbH, Schwalbach 
CELLocate gridded cover slips  Eppendorf, Hamburg 
Costar® Spin-X tubes  Corning GmbH, Kaiserslautern 
Lab-Tek® II Chamber Slide™ System  Nunc GmbH & Co. KG, Wiesbaden 
Tissue culture plastic ware  Corning GmbH, Kaiserslautern 
 Greiner bio-one, Frickenhausen 
 Nunc GmbH & Co. KG, Wiesbaden 
Dual-Luciferase® Reporter Assay 

System  
Promega GmbH, Mannheim 

 

3.7 Laboratory equipment 

Reagent Supplier 
Axiovert 25 microscope  Carl Zeiss GmbH, Oberkochen 
Axiovert 200M fluorescence microscope Carl Zeiss GmbH, Oberkochen 
Microscope Temperature Control System Life Imaging Services, Reihnach 
Ludin chamber  Life Imaging Services, Reihnach 
CoolSNAP™-HQ CCD camera  Photometrics, Tucson (USA) 
DXC-390P 3CCD camera Sony Electronics Inc., Tokyo (JP) 
HyperHAD CCD camera  Sony Electronics Inc., Tokyo (JP) 
KODAK Image Station 440CF  Eastman Kodak Company, Rochester (USA) 
KODAK Molecular Imaging Software  Eastman Kodak Company, Rochester (USA) 
MetaMorph® software  Universal Imaging, Downingtown (USA) 
GeneAmp® PCR System 9700  Applied Biosystems, Foster City (USA) 
LightCycler™ real-time PCR system  Roche Diagnostics GmbH, Mannheim 
Mini-PROTEAN® electrophoresis system Bio-Rad Laboratories GmbH, Munich 
Mini Trans-Blot® cell system  Bio-Rad Laboratories GmbH, Munich 
BioPhotometer  Eppendorf, Hamburg 
Neubauer counting chamber Carl Roth GmbH & Co, Karlsruhe 
Z1™ series Coulter counter®  Coulter electronics, Beds (UK) 
Phosphoimager BAS-2500 Fuji, Tokyo 
FACScan unit  BD Biosciences, Mountain View (USA) 
Tissue culture Lamin Air®  Heraeus Sepatech GmbH, Osterode 
Incubator for cell culture  Heraeus Sepatech GmbH, Osterode 
Sonicator Bandelin Sonopuls HD 70 w.    

MS73 Sonotrode (3 mm)) 
Bandelin Electronic GmbH & Co. KG, Berlin 
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4. Methods 
 
4.1 Bacterial cell culture 
4.1.1  Propagation of bacteria strains 

E. coli XL1-Blue bacteria strain was used for all conventional cloning procedures 

and grown at 37ºC. DH10βF'FOT sbcC and BW28705I/pML300 were used as a donor 

and recipient strains for mating experiments and grown at 37 and 30ºC. Laria-Bertani 

broth was used as complex medium for cloning and for growth of donor and recipient 

plasmids. To maintain plasmids, were added antibiotics as follows: ampicilin (100 

μg/ml), kanamycin (50 μg/ml), chloramphenicol (30 μg/ml), tetracycline (25 μg/ml) and 

spectinomycin (50 μg/ml). To reduce the background on plates after recombination 

carbenecillin (100 μg/ml) as a stronger antibiotic was used instead of ampicillin. IPTG 

(0.4 mM), L-arabinose (0.2% w/v) and L-rhamnose (0.2% w/v) were used to induce the 

Plac, ParaBAD and PrheB promoters, respectively. For conventional cloning transformed E. 

coli XL1-Blue was plated on LB-agar plates. Chloramphenicol agar plates (0.5% w/v 

yeast extract, 1% w/v NaCl, 0.4% w/v glycerol, 2% w/v agar, 10 mM DL-p-Cl-Phe and 

0.2% w/v arabinose) and the appropriate amounts of antibiotics for the counterselective 

marker PheS Gly294 were used in the final selection step. 

Competent bacteria of all used strains were generated by resuspension of lag-

proliferating bacteria in TSS-buffer and further freezing in nitrogen. 

 

4.1.2  Mating-assisted genetically integrated cloning (MAGIC) 
Ligation-free gene transfer using the MAGIC system was done essentially as 

described (Li and Elledge, 2005). In brief, the donor bacterial strain (DH10βF’DOT 

sbcC, PIR1 positive) was transformed with a p53-specific pSM2c vector and grown on 

kanamycin containing LB plates at 37ºC. The recipient strain (BW287051/pML300) was 

transformed with pEMI-recipient and grown in the presence of ampecillin, 

spectinomycin and glucose on LB plates at 30ºC. Donor and recipient colonies were 

used to inoculate overnight liquid cultures. The recipient strain was washed twice with 

LB. Both donor and recipient bacteria were diluted 1:50 with LB/0.2% (w/v) L-rhamnose 

and grown at 30ºC until an OD600 of 0.15-0.25. The bacteria were mixed for conjugation 

in the presence of 0.2% (w/v) L-arabinose and incubated at 37ºC for 2 h without and for 



  

25 
 

 
2 h with agitation. Recombinant bacteria were plated on a chloramphenicol agar plates 

and incubated at 42ºC overnight. Recombination events were detected by colony PCR 

using the primers (CmR-frw: 5’-CCGTTTGTGATGGCTTCCATGTC-3’ (corresponding 

to the chloramphenicol resistance) and pEMI-rev 5’-AATCAAGGGTCCCCAAACTC-3’ 

(matching to pEMI). 

 

4.2  Generation of plasmids 
4.2.1 pSHUMI/pEMI vector construction 

For generation of the shuttle vector pSHUMI the oligos pUC19linker-fw 5’-

AATTGGGCCTCACTGGCCACCGGAGATCTGTCGACGGACGCGTACCGGTG-3’ and 

pUC19linker-rv 5’-

TCGACACCGGTACGCGTCCGTCGACAGATCTCCGGTGGCCAGTGAGGCCC-3’  

were annealed and inserted into the EcoR I/Xho I sites of pUC19 resulting in pUC19m. 

A Bgl II/Age I fragment containing miR30 sequences from the LMP plasmid(Dickins et 

al., 2005) was inserted into the Bgl II/Age I sites of pUC19m. The resulting pSHUMI 

plasmid can be used to sub-clone short hairpin sequences using the Xho I and EcoR I 

restriction sites. 

For generation of the pEMI vector, regions containing 5’miR30 and homology 

region 2 (HR2) were amplified from pSM2c(Silva et al., 2005) using the primers 

5’miR30-frw 5’-CGAGATCTTGTTTGAATGAGGCTTCAGTAC-3’ and 5’miR30-rev 5’- 

GCACCGGTGCGGCCGCCTCGAGCCTTCTGTTGGGTTAACC-3’ and HR2-frw 5’-

CGCTCGAGATCCATGGCATATGGGATCCAAGGCAGTTATTGGTGCCCTTAAAC-3’ 

HR2-rev 5’-GCACCGGTTCAGATCCTCTTCGGAGATCAG -3’ and inserted into the 

pTOPO vector (Invitrogen). The 5’miR30 part was subcloned into pSHUMI using Bgl 

II/Age I restriction sites and the HR2 region was introduced using Xho I/Age I restriction 

sites. The PheS expressing cassette was released from pBSPheS(Li and Elledge, 

2005) using Nco I/Bgl II and ligated between the 5’miR30 and HR2 sequences into the 

Nco I/BamH I sites. From the resulting vector a fragment containing the 

5’miR30/PheS/HR2 region was released by Sfi I and inserted into the Sfi I sites of 

pRTS-1 resulting in pEMI (plasmid for episomal microRNAs). 

 

4.2.2 Restriction mediated microRNA transfer 
A p53-specific hairpin was released from pSM2c (Oligo ID: v2HS_93615, current 

accession: NM_000546)(Silva et al., 2005) using Xho I / EcoR I and inserted into 
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pSHUMI. MAD2-specific microRNA were generated in 2-step PCR: the primers fw 5’-

tgctgttgacagtgagcgCTGGGAAGAGTCGGGACCACAGtagtgaagccacagatg-3’ and rv 5’-

tccgaggcagtaggcaATGGGAAGAGTCGGGACCACAGtacatctgtggcttcac-3’ were 

annealed, extended by PCR and amplified using universal miR30XhoI/EcoRI primers 

(miR30Xho I Fw: 5’-CAGAAGGCTCGAGAAGGTATATTGCTGTTGACAGTGAGCG-3’, 

miR30EcoR I Rv: 5’-CTAAAGTAGCCCCTTGAATTCCGAGGCAGTAGGCA-3’. The 

resulting fragment was cut with Xho I and EcoR I and inserted into pSHUMI. The Sfi I 

fragments from pSHUMI containing the microRNA cassettes were inserted into pRTS-1 

(Bornkamm et al., 2005).  

 
4.2.3 Subcloning shRNA constructs into pRetroSuper 

Synthetic sense and antisense oligonucleotides specifically targeting the DP1 

(target sequence: ATGGCAAAAGATGCCGGTC), MAD2 (n1-

CTGGGAAGAGTCGGGACCA, n2- TACGGACTCACCTTGCTTG) or BubR1 (n1-

AGATCCTGGCTAACTGTTC, n2- AAGGGTTCAGAGCCATCAG) mRNA and a non-

silencing control (CTCGCTTGGGCGAGAGTAA) oligonucleotides were annealed, 

subjected to one PCR cycle, restricted and ligated into the pSUPER vector backbone. 

The hairpin-containing cassette was excised with EcoR I and Xho I, and subcloned 

into pRetro-SUPER (Brummelkamp et al., 2002). The insert was confirmed by 

sequencing.   

 

4.3 Cell culture and treatment 
The human colorectal cancer cell lines HCT116 and DLD-1 were maintained in 

McCoy’s 5A supplemented with 10% fetal bovine serum, U2Os and MCF-7/PJMMR1 

in DMEM with 10% FBS, LS174-T in RPMI with 5% FBS and the 293T-derived 

packaging cell line Phoenix-A in DMEM supplemented with 5% FBS. RAT1A 

fibroblasts (TGR-1 and HO15.19) and P493-6 B-cells were maintained as described 

previously (Hermeking et al., 2000). All cell lines were cultivated in presence of 100 

units/ml penicillin and 0.1 mg/ml streptomycin. Etoposide was resolved in DMSO 

(40 mg/ml) and used at a final concentration of 20 µg/ml. Poly I:C (Sigma) was 

resolved in water (10 mg/ml) and used at a final concentration of 10 µg/ml.  
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4.4 Generation of cell lines 

DLD-1 cells stably expressing a tetracycline regulated transactivator (DLD-1-

tTA) were a kind gift from Bert Vogelstein(Yu et al., 1999). DLD-1-tTA cells were 

transfected with pBI-c-MYC-HA and pTK-Hyg and selected in hygromycin B (250 

µg/ml) and G418 (500 µg/ml). After limiting dilution the clone DLD-1-tTA-MYC was 

characterized by Western blot analysis and indirect immunofluorescence 

(supplemental Figure 4). DLD-1-tTA-MYC cells were transfected with pcDNA3.1-H2B-

YFP and cultured in the presence of G418 (1 mg/ml) for two weeks, FACS-sorted for 

YFP expression and subjected to limiting dilution to generate single cell clones 

positive for H2B-YFP expression in the presence of 500 ng/ml DOX. The generation of 

MCF-7 cell lines conditionally expressing c-MYC (PJMMR1) under control of a tet-on 

system will be described elsewhere (Jung and Hermeking, in preparation). For virus 

production Phoenix-A packaging cells were transfected either with pRetro-SUPER-

shcontrol, pRetro-SUPER-shMAD2 (n1 or n2) or pRetro-SUPER-shBubR1 (n1 or n2) 

using calcium phosphate precipitation. Twenty-four hours after transfection, retrovirus 

containing supernatants were harvested, passed through 0.45 µm filters and used to 

infect DLD-1-H2B-YFP or PJMMR1 cells in the presence of polybrene (8 µg/ml) four 

times in four hour intervals. Twenty-four hours after infection the cells were split 1:10 

and selected for 10 days in the presence of 1-2 µg/ml puromycin. To visualize 

chromatin the resulting pools of resistant PJMMR1 cells were infected with a pLPCX 

retroviral vector expressing a H2B-GFP fusion protein.  

U2OS osteosarcoma cells were transfected by lipofection with pEMI-plasmids 

using FuGene reagents according to the manufacturer. After 48 hours cells were 

selected in media containing 150 µg/ml hygromycin for 7 days. Homogenicity of the 

selected cell pools was tested by addition of 100 ng/ml doxycycline for 24 hours and 

mRFP-fluorescence detection. 

 

4.5 Western blot analysis 

Cells were lysed for 15 minutes in RIPA buffer (50 mM Tris-HCl pH 7.4, 150 

mM NaCl, 1 mM EDTA, 1% NP-40, 0.1% SDS, 0.25% Na-deoxycholate, 1 mM PMSF, 

1 mM Na3VO4, protease inhibitor mixture (Complete Mini, Roche)). After sonication 

lysates were centrifuged for 20 minutes and 30-80 µg of protein were separated by gel 

electrophoresis using 9% or 12% TRIS-glycine gels. The proteins were transferred 
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onto PVDF membranes. After drying and brief incubation in methanol, the membranes 

were blocked with 10% skim milk/TBS-T (0.1% Tween-20) for 1-2 hours. The primary 

antibody was incubated in TBS-T. The membranes were washed and after using the 

respective HRP-conjugated secondary antibodies and washing with TBS, signals were 

obtained with enhanced chemiluminescence reagent, and recorded with a 440CF 

Kodak imaging system. Primary antibodies specific for c-MYC, MAD2, BubR1, p-53, 

p21, α-tubulin and β-actin were used. 

 

4.6 DNA content analysis by FACS 
5*10^4 U2OS or MCF7 cells were plated into T25 cell culture flasks. Floating 

cells and trypsinized cells were collected by centrifugation at 1.700 rpm for 7 minutes, 

cells were fixed with ice cold 70% ethanol and stored over night on ice. After washing 

with PBS, 1 ml FACS solution (PBS, 0.1% Triton X100, 60 µg/ml propidium iodide (PI), 

0.5 mg/ml DNase free RNase) was added per sample and incubated at room 

temperature for 30 min. DNA content was determined by propidium iodide staining. 

 
4.7 Indirect immunofluorescence 

Cells were fixed in 4% paraformaldehyde/PBS for 8 min, permeabilized in 0.2% 

Triton X-100 and blocked in 100% FBS. For detection of epitopes the following 

primary antibodies were used: anti-HA and α- or γ-tubulin. Images were acquired 

using 100x and 63x oil-immersion objectives and the MetaMorph software package. 

 
4.8 Micronucleus assessment 

Cells were washed with PBS and fixed in 4% formaldehyde/PBS at room 

temperature for 10 minutes. After washing with PBS, cells were incubated for 1 h at 

37oC in PBS with 1 µg/ml 4`6-diamidino-2-phenylindole (DAPI) and then embedded in 

antifade solution supplemented with 5 µg/ml DAPI. Micronuclei were microscopically 

determined as rounded chromatin fragments located adjacent to nuclei, with a 

diameter not exceeding one third of the diameter of the neighbouring nucleus. 

Microscopic analysis was performed with a 630x magnification. 
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4.9 Quantitative real-time PCR 

qPCR was performed using the LightCycler instrument and the FastStart DNA 

Master SYBR Green 1 kit (Roche Applied Science) as described previously (Menssen 

and Hermeking, 2002). Primer pairs where in use:  

 

Primer name qPCR primer 
DKC frw CGGCTGGTTATGAAAGAC 
DKC rev TGGTCGCAGGTAGAGATG 
MAD2 frw CCTGGAAAGATGGCAGTTTG 
MAD2 rev GTAAATGAACGAAGGCGGACT 
BubR1 fwr CTCTGGCTTCTCTGGTTCTTCT 
BubR1 rw CAACTTAGGCATTGGTCTGTCTT 
PHB frw CAGGTGGCTCAGCAGGAAGC 
PHB rev TGAAGTGATTTTACCTTTATTTCC 
β-actin frw TGACATTAAGGAGAAGCTGTGCTAC 
β-actin rev GAGTTGAAGGTAGTTTCGTGGATG 
DP-1 fwr ATGGCAAAAGATGCCGGTC 
DP-1 rev GTCGTCCTCGTCATTCTCGTT 
IFIT1-frw GCCATTTTCTTTGCTTCCCCTA 
IFIT1-rev TGCCCTTTTGTAGCCTCCTTG 
Mad2-specific-microRNA-frw GATGTACTGTGGTCCCGACTCT 
Mad2-specific-microRNA-rev TCAAAGAGATAGCAAGGTATTCAGT 
    

Primer name ChIP qPCR primer 
16q22/6000+frw CTACTCACTTATCCATCCAGGCTAC 
16q22/6000+ rev ATTTCACACACTCAGACATCACAG 
CAD PCR-I frw CCGCAGTCTCTGCTGCTG 
CAD PCR-I rev ATACGGAAAACGGGAAGGAC 
CAD PCR-A frw (control) TGGGTTTGGTAGGGGACATA 
CAD PCR-A rev (control) CTGGGCTCTGCTGGCTTA 
MAD2 ebC1 frw GACATCCTCTAGCCTCATAATCTG 
MAD2 ebA rev CAGCTATAAATGACTGAACACAC 
MAD2 I4 frw GCTGGCATCACTATTCTTGTG 
MAD2 I4 rev AGGTCATTTGGCTTGGTCTC 
BubR1 fwr GACACGGCCTGGTAGGTAAT 
BubR1 rev GCAGCCTTCTTCGCTTTG 
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4.10 Chromatin immunoprecipitation 

Chromatin immunoprecipitations (ChIP) were performed as described 

previously (Frank et al., 2001). PJMMR1 cells at <70% confluence were fixed in 1% 

formaldehyde. Chromatin was sheared to an average size of 500 bp by sonication (4x 

20sec on ice with 90sec intervals) at continuous maximum power setting. After pre-

clearing with pre-blocked protein A beads for 1 hour, lysates were rotated at 4°C for 

18 hours with a polyclonal antibody specific for c-MYC or rabbit anti mouse IgG. 

Washing and reversal of cross-linking was performed as described previously(Frank et 

al., 2001). Purified DNA was first analyzed by amplification of a genomic fragment 

from chromosome 16q22 that did not display any E-boxes up to 3 kb up- and 

downstream. This amplification product was used to control for equal DNA input into 

the PCR reactions. For the analysis of c-MYC binding to the MAD2 locus equal 

amounts of DNA were analyzed by PCR with a primer pair flanking the two E-boxes in 

the first intron of the human MAD2 gene. A second primer pair spanning the exon 4 

intron 4 boundaries was used to control for specificity of localized E-box binding. For 

analysis of BubR1 a primer pair flanking an E-box in the first intron of the BubR1 

genomic region was used. All PCR reactions were analyzed in the exponential phase. 

Enrichment of DNA-fragments bound by c-MYC was documented by gel-

electrophoresis and ethidium bromide staining. For oligonucleotide sequences see 

qPCR ChIP primer list in qPCR section. 

 
4.11 Time-lapse microscopy 

H2B-YFP/GFP pools were seeded in a 6 well plate and cultured for 36 hours 

before time lapse imaging. DOX concentrations were 100 ng/ml and 1 �g/ml for DLD-

1 tTA Myc and PJMMR1 cells, respectively. Six hours before recording the cells were 

placed on inverted Axiovert 200M microscope surrounded by a chamber which 

provided a constant temperature of 37oC and a humidified atmosphere of 5% CO2. 

Images were recorded with a CCD camera and processed with the software 

MetaMorph. Digital pictures of phase contrast (100 ms) and YFP/GFP fluorescence 

(20-100 ms) were taken from four different positions of two separate wells for each 

state (with or without DOX) every 5 minutes over a period of 18 hours. Between the 

exposures cells were not exposed to halogen or UV light as it was blocked by a non-

transparent position in a motorized condenser. Allocation of individual frames to a 

particular stage of mitosis was done according to following criteria. In prophase, the 
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cell shape begins to change to rounded morphology and the chromatin condenses to 

the level of grain-like structure throughout nucleus and the nucleus itself slightly 

changes its shape before nuclear envelope breakdown. The following breakage of 

nuclear envelop determines beginning of pro-metaphase. After nuclear envelope 

completely dissolves, further condensation of chromatin is continued until distinct 

chromosomes are formed and organized in a plate. The metaphase was defined as a 

short stage, during which chromosomes clearly align in metaphase plate without any 

appearance of lagging chromosomes. The anaphase was defined as a stage when 

separation of sister chromatides to the opposite poles takes place. The duration of 

telophase was determined as time period between complete separation of 

chromatides and complete decondensation of chromatin in one of the daughter cells. 

Since sequential frames were taken in 5 minutes interval, minor changes in duration of 

specific stages were not detected.     

    

4.12 Tissue samples and immunohistochemistry 
15 consecutive cases of sporadic colorectal carcinomas were retrieved from the 

archives of the Institute of Pathology. All carcinomas were WHO grade 2 or 3. None of 

the patients had undergone cancer therapy before surgical resection of the lesions. 

For immunohistochemistry we used biopsies from diagnostic colonoscopies to ensure 

that the tumor tissue had been immediately fixed in neutral 4% buffered formalin. The 

primary antibodies applied were a c-MYC-specific (N-term) rabbit monoclonal 

(Epitomics) and a MAD2-specific mouse monoclonal (BD Transduction). Sections 

were deparaffinized and pretreated by microwave (750 W, 2 × 15 min) in TUF target 

unmasking fluid (Dako) for c-MYC and target retrieval solution (Dako) for MAD2. 

Sections were covered with hydrogen peroxide at a final concentration of 7.5% for 10 

minutes and then blocked with serum (Vector, Vectastain ABC Kit Elite Universal). 

Primary antibody (c-MYC) was used at a dilution 1:20, MAD2 1:50 for 60 min. For 

detection a biotinylated secondary antibody was used (Vector, Vectastain ABC Kit 

Elite Universal). Sections were treated with chromogen (AEC Zymed) for 10 min and 

counterstained with hematoxylin Gill’s Formula (Vector). 

 
 
 
 



  

32 
 

 
4.13 Statistical analysis 

The Chi square test was used to determine statistical significance in 

comparisons of micronucleus frequencies. In the figures, if not indicated explicitly 

columns and bars show the mean and standard deviation, respectively. 
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5. Results 
 
5.1 c-MYC directly transactivates MAD2 and BubR1 genes 

MAD2 mRNA induction was identified in a micro-array analysis of genes 

expression altered upon adenoviral expression of c-MYC in primary human endothelial 

cells (Menssen et al., data not shown). These data were independently confirmed by 

quantitative, real-time PCR (qPCR) in two additional cell types: MAD2 mRNA was 

induced after activation of a tetracycline regulated c-MYC allele in the B-cell line P493-

6 (Menssen et al., data not shown) and in the breast cancer cell line MCF-7/PJMMR1 

(Figure 5 a).  

The induction of MAD2 by c-MYC motivated us to analyze whether other 

important components of the SAC are also induced by c-MYC. CDC20, BubR1, Bub1, 

Bub3, MPS1, MAD1, Cenp-E and Cenp-J were inspected for the presence of E-boxes 

in close proximity to transcriptional start site (+/- 2 kbp) and for a significant induction 

of mRNA in the micro-array data sets of genes induced by c-MYC. Futhermore, a 

micro-array screen in PJMMR1 cells harboring an inducible c-MYC allele, revealed 

that BubR1 mRNA was up-regulated upon c-MYC activation (Jung et al., unpublished 

results). The induction of BubR1 mRNA was confirmed by qPCR analysis (Figure 5b). 
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Figure 5 Quantative real-time PCR (qPCR) analysis of MAD2 and BubR1 mRNA 
expression in PJMMR1 cell lines  
 
(a) qPCR determination of mRNA expression after activation of a conditional c-MYC allele in MCF-7 
cells. PJMMR1 cells were treated with 1 µg/ml of the anti-estrogen ICI 182,780 for 72 hours. For 
induction of ectopic c-MYC, 1 µg/ml doxycycline was added for 12 h. Fold induction of the indicated 
mRNAs was determined by qPCR relative to β-actin in biological triplicates. The induction of the known 
c-MYC target Prohibitin served as positive controls. (the analysis was performed by Dr. Antje Menssen, 
MPI of Biochemistry). (b) qPCR determination of BubR1 mRNA expression after c-MYC activation in 
MCF7 cells. PJMMR1 cells were treated as described in (a) and then stimulated with 1 μg/ml of DOX 
for the indicated periods. Relative induction of BubR1 mRNA in comparison to β-actin mRNA was 
determined by qPCR in three independent experiments. 
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Figure 6 Increase of MAD2 and BubR1 proteins level upon activation of c-MYC 
expression 
 
(a) Cells were treated as described in Figure 1 b. Lysates obtained at the indicated time points were 
subjected to Western blot analysis to detect the indicated epitopes. β-actin served as loading control. 
(the analysis was performed by Dr. Antje Menssen, MPI of Biochemestry). (b) Western blot analysis of 
BubR1 protein expression after c-MYC activation in PJMMR1 cells. Cells were treated as in (Figure 5 b) 
and lysates were subjected to Western blot analysis. The membrane was probed for c-MYC and BubR1 
epitopes, β-actin served as loading control. 
 

The increase in MAD2 and BubR1 mRNAs was accompanied by an increase in MAD2 

and BubR1 protein in PJMMR1 after activation of c-MYC (Figure 6, a and b). The 

induction of these genes was also found in the colorectal cancer cell line DLD-1 

harboring a conditional c-MYC allele (Figure 11, a and b). Taken together these 

results suggested that c-MYC may directly regulate MAD2 and BubR1 expression.  

To prove that c-MYC can directly activate MAD2 expression, and exclude 

indirect transcriptional activation through the E2F transcription machinery (Hernando 

et al., 2004; Sears et al., 1997), c-MYC dependent MAD2 induction was studied in the 
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presence of inhibition of DP-1, which heterodimerizes with E2F and is necessary for 

DNA binding. The down-regulation of DP-1 was achieved by retroviral infection of 

shRNA expressing construct directed against DP1 and confirmed on mRNA level by 

qPCR (Figure 7a).  
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Figure 7 c-MYC induces MAD2 protein expression in the presence of DP1 knockdown 

(a) Analysis of DP1 mRNA expression in PJMMR1 cell lines. Relative fold of mRNA reduction was 
measured by qPCR analysis in PJMMR1 cells infected either with non-silenced retroviral construct or 
expressing a shRNA directed against the DP1 coding region. (b) Western blot analysis of MAD2 
protein induction upon activation of a conditional c-MYC allele in PJMMR1 cells. Cells were treated as 
describe in Figure 6b. Protein lysates were harvested at the indicated time points. The membrane was 
probed against the indicated epitopes, with β-actin serving as a loading control.  
 
 
   The efficiency of the E2F pathway inactivation was confirmed by RT-PCR analysis 

for the genes controlled either by E2F1, c-MYC or not involved in transcriptional 
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regulation by them (data not shown). In the presence of a DP1 knockdown c-MYC 

activation was attenuated, but still resulted in a pronounced induction of MAD2 protein 

(Figure 7b). 

 

5.2 c-MYC binds to human MAD2 and BubR1 promoters in vivo 
Examination of the human MAD2 (MAD2L1) promoter revealed the presence of 

two canonical E-box sequences, which represent putative c-MYC binding sites, 

separated by 90 base pairs in the first intron (Figure 8a). Chromatin-

immunoprecipitation (ChIP) analysis confirmed in vivo binding of c-MYC to the E-

boxes in the first intron of the human MAD2 gene, whereas a region located ~6 kbp 

downstream in the 4th intron was not bound by c-MYC (Figure 9a). Enrichment of the 

fragment amplified from the first intron of MAD2 was detected after activation of a 

conditional c-MYC allele. As a positive control, promoter occupation by c-MYC was 

also detected for the known c-MYC target gene CAD.  

The promoter element of the BubR1 gene was also investigated for the 

presence of E-boxes, where one E-box was found in the first intron in close proximity 

to its transcriptional start site (Figure 8b). Using the same conditions as for MAD2 

ChIP analysis, it was confirmed that c-MYC occupies this site in vivo (Figure 9a), 

whereas a region located ~10 kbp upstream of the promoter was not bound by c-MYC 

(data not shown). Therefore, c-MYC directly regulates MAD2 and BubR1 expression.  

Both MAD2 and BubR1 promoter regions in mouse and rat also contain several 

E-boxes. However, positions of these E-boxes were not conserved between species 

(Figure 8, a and b). A similar divergence in the positioning of E-boxes has been 

described for bona fide c-MYC target genes (Haggerty et al., 2003).  
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Figure 8 The positions of E-boxes in the human, rat and mouse MAD2 and BubR1 

genes 

 
(a) MAD2 (=MADL1) and (b) BubR1 E-box elements are indicated relative to the transcriptional start 
site (TSS; arrow). Exons are represented by rectangles. Protein coding sequences are shaded in grey. 
Arrow heads represent the position of oligonucleotides used for ChIP analysis. 
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Fugure 9 Detection of c-MYC occupancy at the human MAD2 and BubR1 promoters 
 
(a)   Chromatin-immunoprecepitation (ChiP) of MAD2 promoter element was performed on PJMMR1 
cells. PJMMR1 cells were starved for 72 hours (0.05% FCS) and then restimulated with 15% FCS and 
doxycycline (1 µg/ml) for 16 hours. Cells were subjected to chromatin immunoprecipitation (ChIP) 
analysis. For details see Methods. Enrichment of DNA fragments bound by c-MYC was determined by 
qPCR of a region encompassing the two E-boxes in the first intron of MAD2. E-box containing 
fragments in the CAD promoter served as a positive control, MAD2 intron 4 as negative controls. (the 
analysis was performed by Dr. Berlinda Verdoot, MPI of Biochemistry). (b) Chromatin-
immunoprecepitation (ChiP) of BubR1 promoter element was performed using PJMMR1 cells. Relative 
enrichment of the E-box amplicon derived from the first BubR1 exon was determined by qPCR. As 
reference an amplicon on 16q22 devoid of E-boxes was used. Depicted is the average of two 
experiments with error bars indicating the standard error. 
 
5.3 c-MYC induces a mitotic delay 

The MAD2 and BubR1 proteins transmit a “wait signal” from kinetochores not 

properly attached to the spindle apparatus which inhibits the APC/cyclosome and 

prevents the premature onset of anaphase (Musacchio and Hardwick, 2002). To 

monitor the effects of c-MYC activation on the progression through mitosis or 

chromatin behavior two c-MYC inducible cell lines were generated (DLD-1-tTA-MYC).  
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Figure 10 Effects of c-MYC induction on mitotic phases in the presence of MAD2 or 
BubR1 knockdown 
 
Representative examples of cells progressing through mitosis in the presence or absence of c-MYC 
activation. DLD-1 cells harboring a conditional c-MYC allele and expressing H2B-YFP were monitored 
by time-lapse microscopy 36 hours after activation of c-MYC. Time points are indicated above the 
frames in minutes. Cell pools stably expressing shRNAs directed against MAD2, BubR1 or non-
silencing shRNAs (sh-control) were compared. DLD-1-tTA-MYC cells were cultured in the presence of 
100 ng/ml of DOX. For activation of c-MYC DOX was removed. 
 

(Figure 10) and PJMMR1 (data not shown) stably expressing yellow and green 

fluorescent protein (YFP/GFP)-tagged histone H2B protein, respectively. To determine 

the length of mitosis after c-MYC activation these cells were subjected to time-lapse 

microscopy (Figure 12 and 13). A large fraction of mitotic events in DLD-1-tTA-MYC 

cells displayed a significant extension after activation of c-MYC, in comparison to 

PJMMR1. A similar extension of mitosis length by c-MYC was found in DLD-1, 

PJMMR1 or hDF-MYCER cells not expressing H2B fusion proteins (data not shown) 

and in hDF constitutively expressing c-MYC (Figure 16c). In order to determine 

whether the c-MYC-induced increase in MAD2 or BubR1 expression mediates the c-

MYC-induced mitotic delay the levels of the MAD2 and BubR1 proteins were limited 

by stable expression of retroviral constructs mediating MAD2- or BubR1-specific RNA 

interference (Figure 7). These analyses were performed with two different short-

hairpin RNA (shRNA) encoding constructs targeting the same mRNA to exclude off-

target effects (n1 and n2). As a control cells expressing a non-silencing shRNA were 

generated (sh-control). 
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Figure 11 Western blot analysis of MAD2 and BubR1 protein downregulation in DLD-
1-tTA-MYC and PJMMR1 cell lines.  
 
(a)     Downregulation of MAD2 protein by stable expression of a MAD2-specific short-hairpin RNA 
(shMAD2) in DLD-1-tTA-MYC cells was confirmed by Western blot analysis. c-MYC was induced for 48 
hours. (b) Downregulation of BubR1 protein level in DLD-tTA-MYC stably expressing BubR1-specific 
short-hairpin RNA (shBubR1) cells was confirmed by Western blot analysis. c-MYC was induced for 48 
hours. PJMMR1 cells stably expressing a short RNA hairpin directed against (c) MAD2 or (d) BubR1 
were subjected to Western blot analysis. c-MYC was induced for 48 hours. 
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Figure 12 Determination of the length of different mitotic phases after activation of 
ectopic c-MYC in DLD-tTA-MYC and PJMMR1 cells 
 
After activation of c-MYC for 36 hours DLD-tTA-MYC and PJMMR1 cells were subjected to time-laps 
recording for 18 hours. Each bar represents 100 mitotic events. 
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Figure 13 Determination of mitotic length after activation of ectopic c-MYC in DLD-
tTA-MYC and PJMMR1 cell lines 
 
The evaluation of the mitotic length after c-MYC activation in DLD-tTA-MYC and PJMMR1 cells. 
Counting is based on results obtained for Figure 12. Each bar represents 100 mitotic events. 
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For each genotype and state 100 mitotic events recorded by time-lapse microscopy 

were analyzed in detail. Representative examples are shown in Figure 6. DLD-1 cells 

required on average ~65 minutes from the first signs of nuclear envelope breakdown 

until completion of cytokinesis. However, after activation of ectopic c-MYC ~95 

minutes were required for passage through mitosis. After down-regulation of MAD2 by 

constitutive shRNA expression the c-MYC-induced extension of mitosis was 

significantly reduced (Figure 12a and 13a). Therefore, the c-MYC-induced mitotic 

delay is mediated, at least in part, by the c-MYC-mediated induction of MAD2 

expression. Also the down-regulation of BubR1 diminished the c-MYC-induced mitotic 

delay by shortening the prolonged mitosis (Figure 13). We observed a higher 

efficiency in the down-regulation of BubR1 protein expression by the BubR1-specific 

shRNA n2 versus the n1 shRNA (Figure 11b). This presumably caused a more 

pronounced reversion of the c-MYC-induced delay by the n2-shRNA, indicating a 

dependence of the mitotic delay on the concentration of BubR1. The effects of c-MYC 

activation and inhibition of MAD2 and BubR1 were restricted to prometaphase (Figure 

12, a and b).  
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Figure 14 Distribution of mitotic durations after c-MYC activation 
 
Distribution of mitotic length after c-MYC activation in DLD-1-tTA-MYC cells exhibiting down-regulation 
of (a) MAD2 or (b) BubR1 by RNA interference. One graph represents 100 mitotic events. 
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Figure 15 Distribution of mitotic durations after c-MYC activation 
 
Distribution of mitotic length after c-MYC activation in PJMMR1 cells exhibiting down-regulation of (a) 
MAD2 or (b) BubR1 by RNA interference. One graph represents 100 mitotic events. 
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Figure 16 c-MYC induces MAD2 and BubR1 and mitotic delay in primary human 
diploid fibroblasts 
 
(a) Western blot analysis of c-MYC and MAD2 protein expression in primary hDFs and hDFs 
immortalized by c-MYC or hTert expression. (b) Distribution of mitotic durations in the population of 
hDFs immortalized by c-MYC or Tert in comparison to non immortal hDFs with a passage 20. For each 
cell type 25 mitotic events recorded by time-lapse video-microscopy were evaluated. (c) Evaluation of 
distribution of mitotic phases in hDF constitutively expressing the indicated genes. pro-meta: sum of the 
length of prophase, prometaphase and metaphase, ana-telo: sum of anaphase and telophase, sum: 
length of whole mitosis.  
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The number of cells displaying extremely delayed mitosis (more than 100 

minutes) was relatively low (Figure 14). When MAD2 or BubR1 was down-regulated 

by RNA interference the increased variation in the length of mitotic events observed 

after c-MYC activation was reversed towards the smaller range observed in DLD-1 

cells without c-MYC activation (Figure 14).  

Similar analyses were performed in the aneuploid breast cancer cell line MCF7. 

The MCF7-derived PJMMR1 cells showed a c-MYC-induced mitotic delay and 

reversion after knock-down of MAD2 and BubR1 (Figure 13, c and d, 14, c and d). 

However, in these cells the variations in the mitotic length as well as the reversal of 

the delay by knock-down of MAD2 or BubR1 expression were more pronounced than 

in DLD-1 cells (Figure 14, c and d, 15). 

In the population of DLD-1-tTA-MYC and PJMMR1 (data not shown) cells were 

observed a number of mitotic and chromatin abnormalities (Figure 17) which 

correlated with the duration of c-MYC activation (Figure 18, a). Initially, c-MYC 

overexpression increased abnormal meta-anaphase transition and led to distortion of 

metaphase plate formation (Figure 17, b and c). Presumably, these alterations, 

together with additional effects, like lagging chromosomes, chromatin bridges or 

micronuclei formation (Figure 17, d, e, f, g and h) resulted in the extension of mitotic 

length (Figure 18, b). Furthermore, extended mitotic events were frequently followed 

by synchronous post-mitotic apoptosis of two daughter cells (Figure 17, k, and 18, c).    
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Figure 17 c-MYC activation leads to mitotic abnormalities, chromosomal 
perturbations, genomic instability and induction of post-mitotic apoptosis 
 
(a) Example of normal meta-anaphase transition and formation of a proper metaphase plate. (b) Meta-
anaphase transition with defused metaphase plate. (c) Prometa-anaphase transition. Metaphase plate 
does not form. Lagging chromosomes in (d) meta- or in (e) anaphase. Formation of chromosomal 
bridges throughout (f) anaphase and (g) telophase. (h) Micronucleus formation. (k) Synchronous 
apoptosis of two daughter cells following of mitotic division (post-mitotic apoptosis).   
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Figure 18 c-MYC-induced chromatin abnormalities and post-mitotic apoptosis wich 
are associated with extended mitosis 
 
(a) DLD-tTA-MYC cells were recorded for 18 hours after activation of c-MYC for 24 and 48 hours. The 
graph represents the percentage of mitotic events resulting in post-mitotic apoptosis. For the 24 and 48 
hour time-point 150 and 222 mitotic events were analyzed, respectively. Distribution of mitotic length of 
cells displaying (b) chromatin abnormalities or (c) post-mitotic apoptosis after c-MYC activation in DLD-
tTA-MYC cells. Grey bars represent cells which showed a mitosis duration also found in cells without c-
MYC activation, black bars represent cells with extended mitotic durations.  
 
 
5.4 Synchronous apoptosis in cells with delayed mitosis 

The time-lapse recording allowed to distinguish different forms of c-MYC-

induced apoptosis and characterize them as random single cell apoptosis and post-

mitotic apoptosis, which represents approximately 30% and 70% of whole apoptosis 

fraction respectively (Figure 19b). Further analysis of the fraction of cells undergoing 

post-mitotic apoptosis revealed a number of interesting details. First of all, this fraction 

increased with time after c-MYC activation and reached ~15 and ~22 % of the 

population of dividing cells observed in the time-laps movies by the day 1 and 2 of c-

MYC activation respectively (Figure 18a and 19a).  

Interestingly, the time-point of apoptosis initiation was identical in the two 

daughter cells and in average has approximately four hours between the end of the 

anaphase and beginning of chromatin cleavage and condensation accepted as the 

beginning of late apoptotic processes. This synchronicity suggested that an initiating 

event took place before cell division, which primed the cells for apoptosis. Additional 

results suggest that this event could be the induction of DNA damage by c-MYC 

during S-phase in the parental cell (data not shown). This form of post-mitotic 

apoptosis was blocked by addition of a caspase 3 inhibitor (data not shown). As DLD-

1 cells express mutant p53, this c-MYC-induced post-mitotic apoptosis is p53-

independent. DLD-1 cells with RNA-interference mediated down-regulation of BubR1, 

but not cells with reduced levels of MAD2, showed a decrease of post-mitotic 

apoptosis after activation of c-MYC by ~20% (Figure 19c). Therefore, BubR1 may be 

involved in the induction of this form of apoptosis. 
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Figure 19 c-MYC-induced mitotic delay is followed by synchronous apoptosis  

(a) Representative example of a time-lapse sequence showing a post-mitotic apoptosis after activation 
of c-MYC in H2B-YFP expressing DLD-tTA-MYC cells. Time-points (minutes) are indicated above the 
frames. (b) The types of apoptosis events were observed: single cells undergoing apoptosis and 
synchronous apoptosis of two daughter cells, post-mitotic apoptosis. Observation based on evaluation 
of 100 apoptotic events acquired by time-lapse microscopy from DLD-1-tTA-MYC cells after 36 hours of 
c-MYC activation. (c) Influence of RNA interference mediated down-regulation of MAD2 or BubR1 
proteins on the frequency of mitotic events resulting in post-mitotic apoptosis after activation of c-MYC 
in DLD-tTA-MYC cells. For each genotype at least 200 mitotic events were evaluated. The frequency of 
mitosis resulting in synchronous apoptosis in cells expressing control sh-RNAs was set to 100%.  The 
average of two independent experiments is depicted.   
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5.5 c-MYC induces CIN in MIN cell lines 
DLD-1 cell are mismatch repair deficient and therefore display MIN. As most MIN cell 

lines, DLD-1 cells are diploid and have an intact SAC (Cahill et al., 1998). To 

determine extend of c-MYC-induced chromosomal instability micronuclei formation 

was quantified. Micronuclei represent acentric fragments or whole chromosomes not 

properly integrated into one of the two daughter nuclei during mitosis. After c-MYC 

activation a gradual increase in the frequency of cells with micronuclei was observed 

(Figure 20b). After eight days the frequency of cells with micronuclei had increased 

from 4% to more than 10% (p<0.001). The induction of CIN after activation of ectopic 

c-MYC was confirmed by interphase-FISH analysis of chromosome 8 and 17 (Figure 

20c). After eight days of c-MYC activation, the percentage of cells with aberrant 

number of signals had increased from 1.4% (chromosome 8) and 1.8% (chromosome 

17) to 3.9% and 4.5%, respectively (p<0.001). Therefore, the increase of numerical 

aberrations detected for chromosome 8 and 17 paralleled the increase in 

micronucleus formation. The frequency of micronuclei and the degree of CIN as 

detected by interphase FISH without c-MYC activation was in line with previously 

described basal levels of aneuploidy in DLD-1 cells (Lengauer et al., 1997).  
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Figure 20 Analysis of c-MYC-induced CIN  
 
(a) Examples of micronucleus formation (white arrows) 8 days after activation of c-MYC in DLD-tTA-
MYC cells. Some micronuclei contain centromeric signals for chromosome 8 (green) and 17 (red). (b) 
The frequencies of micronucleus formation were determined microscopically at the indicated time points 
after activation of c-MYC in DLD-1-tTA-MYC cells. For each time point at least 600 nuclei were 
analyzed and differences in micronuclei percentages between -/+ c-MYC cells were highly significant 
for each time point as determined by the Chi-square test (p < 0.005). (c) Summary of results obtained 
by FISH analysis. At least 600 nuclei were analyzed at each time point and the difference in the 
percentage of cells with aberrant signals was highly significant after eight days of c-MYC activation (p < 
0.001). (experiments were performed by Dr. Nils Hartmann, MPI of Biochemistry) (d) Determination of 
micronucleus frequencies. For each cell type ~1000 cells were evaluated. (e) FISH analysis of 
chromosome 8 and 17 using the centromeric probes shown in (c). ~600 nuclei of each cell line were 
analysed. (experiments were performed by Dr. Nils Hartmann, MPI of Biochemistry) 
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Figure 21 c-MYC-induced micronuclei formation in DLD-1-tTA-MYC and PJMMR1 
cells is not influenced by the levels of MAD2 and BubR1 expression 

Analysis of c-MYC-induced formation of micronuclei in DLD-tTA-MYC cells in the presence of RNA 
interference down-regulating MAD2 (a) or BubR1 (b) expression. Samples were fixed at the indicated 
time points. Each bar represents at least 1000 cells derived from several independent fields. Analysis of 
c-MYC-induced micronucleus formation in PJMMR1 cells in the presence of RNA interference down-
regulating MAD2 (c) or BubR1 (d) expression. Each bar represents at least 1000 cells derived from 
several independent fields. 
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An increase in the frequency of micronuclei and numerical chromosome aberrations 

was also observed after activation of c-MYC in the MCF-7 derived aneuploid breast 

cancer cell line PJMMR1 (Figure 21, c and d; data not shown) and in primary human 

diploid fibroblasts stably expressing ectopic c-MYC (Figure 20, d and e). 

  
5.6 Analysis of putative mediators of c-MYC-induced CIN  

Alterations in protein expression of both MAD2 and BubR1 and some other 

components of spindle checkpoint machinery were previously linked to chromosomal 

instability (Dobles et al., 2000; Shin et al., 2003). Stable expression of shRNA was 

used to determine whether the down-regulation of MAD2 or BubR1 by RNA 

interference would not only affect progression through mitosis, but also leads to a 

decreased number of micronuclei as a measure of CIN. However, the frequency of 

micronuclei observed after c-MYC activation in DLD-1-tTA-MYC and PJMMR1 cells 

was not significantly altered in cells with MAD2 or BubR1 down-regulation (Figure 20).  
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Figure 22 Evaluation of microtubule spindle numbers after activation of c-MYC in 

DLD-1-tTA-MYC and PJMMR1 cells 

 
(a) Determination of microtubule spindle number upon activation of c-MYC in DLD-1-tTA-MYC and 
PJMMR1 cells. Cells were cultured on cover slips in the presence or absence of DOX to control c-MYC 
expression. Then they were fixed and stained with antibody to γ-tubulin to visualize microtubule 
spindles (yellow) by immunofluorescence. (b) The percentage of spindles with 4 poles was evaluated 
in a population of mitotic cells after c-MYC activation. 
 
Furthermore, the rate of c-MYC-induced increase of aberrant microtubule spindles 

lagged behind the formation of micronuclei (Figure 22). Therefore, the increased rate 

of aneuploidy observed after activation of c-MYC was presumably not due to induction 

of aberrant spindle formation or deregulation of MAD2 or BubR1 expression. 

 

5.7 Construction of episomal vectors for RNA interference 
Recently, comprehensive libraries of microRNAs which were designed to facilitate the 

RNA interference mediated down-regulation of all human or mouse genes have been 

described (Silva et al., 2005). These microRNAs are publicly available and are 

provided in the pSHAG-MAGIC 2c (pSM2c) retroviral vector, which provides 

constitutive expression driven by a long terminal repeat (LTR). pRTS-1 was chosen as 

a basis expression vector with a number of convenient features bearing in one 

plasmid, including following: bi-directional CMV-based promoter (Ptetbi-1) expressing 

fluorescent tracing protein (RFG/GFP) and transcript of interest in DOX-dependent 

maner; bicestronic expression cassette under control of chicken beta actin promoter 

encodes for highly DOX-sensitive reverse tetracycline controlled transactivator rtTA2S-

M2 and a Tet repressor-KRAB fusion protein (tTSKRAB); selection marker 

(Hygromycin/Puromycin); oriP and EBNA-1 expressing cassette to maintain the 

plasmid episomaly.  
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Figure 23 Generation of episomal vectors for conditional expression of 
microRNAs 
 
Flow chart showing the steps necessary to generate pEMI-vectors harboring microRNA cassettes. 
Abbreviations: AmpR: ampicillin resistance; CmR: chloramphenicol resistance; EBNA-1: EBV nuclear 
antigen required for Ori P function; EBV: Epstein-Bar virus; H2R: homology 2 region; Hyg B: 
hygromycin B; LTR: long terminal repeats; MAGIC: mating-assisted genetically integrated cloning; miR-
30: precursor microRNA; mRFP: monomeric red fluorescent protein; OriP: EBV origin of replication, 
pEMI: plasmid for episomal microRNA expression; pheS: phenylalanine synthase relaxed-specificity 
allele Gly294; PPGK: PGK-promoter; pSHUMI: plasmid for shuttling of microRNAs, pSM2c: pSHAG-
MAGIC 2c retroviral vector for microRNA expression; Ptet-bi-1: bidirectional tet-responsive promoter; 
rtTA2S-M2: reverse tetracycline controlled transactivator; tTSKRAB: tetracycline repressed silencer.  
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Several microRNA cassettes have been taken from the library or were newly 

designed to transfer to the pRTS-1 vector. Since pRTS is a relatively large vector 

(~18 kbp) the intermediate pUC19-based shuttle vector pSHUMI (plasmid for shuttling 

microRNAs) is necessary for the transfer procedure (Figure 23). For a faster transfer 

of microRNAs, pRTS vector was adapted to the ligation-free MAGIC technique 

(mating-assisted genetically integrated cloning)(Baek et al., 2005). The resulting 

pEMI (plasmid for episomal microRNA expression; Figure 23) harbors a pheS Gly294 

allele encoding a tRNA synthase for phenylalanine with relaxed specificity, which 

incorporates toxic chloro-phenylalanine and thereby facilitates selection against non-

recombinant clones. Bacteria containing the pEMI-recipient vector were conjugated 

with bacteria containing a pSM2c vector encoding a p53-specific microRNA. 79 of 80 

(98.7%) of the resulting bacterial colonies harbored pEMI vectors containing the p53-

microRNA as determined by colony PCR (data not shown). Successful recombination 

was also confirmed by restriction and sequence analysis (data not shown). 

 

5.8 Functional evaluation of pEMI vectors 
The human osteosarcoma cell line U2OS was transfected with pEMI vectors 

encoding either MAD2-, p53-specific or non-silencing microRNAs, which do not 

recognize any human mRNA. Selection for cells containing the pEMI vectors with 

hygromycin B was completed within 7 days. The resulting pools of resistant cells 

were analyzed for RT-PCR analysis to determine the expression of the ectopic 

microRNA after addition of doxycycline (DOX) (Figure 24). In the absence of DOX no 

MAD2-specific microRNA was detected after 30 PCR cycles. However, 24 hours after 

addition of DOX the microRNA was expressed. By 48 hours the expression increased 

further as determined by quantitative PCR (data not shown). As no microRNA 

expression was detected in the absence of DOX, these results show that the pEMI 

vectors mediate an extremely stringent control over microRNA expression. In line with 

this observation the cell pools were consistently devoid of mRFP (monomeric red 

fluorescent protein) expression in the absence of DOX as determined by live cell 

fluorescence microscopy (Figure 24b). 
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Figure 24 Conditional microRNA expression mediated by pEMI 
 
(a) RT-PCR analysis of microRNA expression. U2OS cells stably transfected with pEMI encoding a 
Mad2-specific or non-silencing microRNA (miRNA) were treated with 200 ng/ml DOX for 24 or 48 
hours. The experiment was performed in duplicates. After 30 cycles of PCR DNA fragments were 
separated either on 15% poly-acryl-amid gels (for detection of the Mad2-specific miRNA precursor) or 
2% agarose gel (for β-actin). DNA-markers in outer lanes: 10 bp ladder (upper panel) and 100 bp 
ladder (lower panel). (b) Detection of monomeric red fluorescent protein (mRFP) expression 24 hours 
after addition of the indicated doxycycline (DOX) concentrations to U2OS cells transfected with pEMI 
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vectors encoding p53-specific miRNAs. Exposure times: 500 ms for mRFP, 50 ms for phase contrast. 
(c) Doxycycline (DOX) dose-reponse of p53 conditional knock-down: U2OS cell pools stably 
transfected with pEMI-p53miRNA plasmid were treated with the indicated DOX concentrations for 24 
hours (upper panel). Control cells are also shown (middle panel). pEMI-MAD2miRNA-mediated down-
regulation of MAD2 expression (lower panel). (Experiments with p53-specific microRNA were 
performed by Peter Jung, MPI for Biochemistry). 
 

   Within 24 hours after addition of DOX approximately half of the cells were positive 

for mRFP at 3.2 ng/ml DOX and virtually all cells were positive at 25 ng/ml (Figure 

24b). Efficiency of protein down-regulation depends on number of factors including 

stability and turnover of the targeted mRNA/protein.  
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Figure 25 MAD2 knockdown sensitizes to spindle poison.  
Fluorescence activated cell sorting (FACS) analysis of U2OS cells stably transfected with pEMI-
MAD2miRNA or pEMI non-silencing-miRNA plasmids. Cells were cultured in 100 ng/ml DOX for 4 days 
and colcemid (25 µg/ml) was added 24 hours before harvesting  
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The pEMI microRNA expressing system markedly down-regulated the level of p53 

protein already at concentrations of DOX between 0.8-1.6 ng/ml (Figure 24c). The 

most pronounce effects were observed in the range of 6.2-50 ng/ml with both MAD2 

and p53 proteins. Induction of a non-silencing microRNA did not affect the levels of 

p53 protein.  

As an example for the inactivation of an essential gene by the system 

introduced here we conditionally down-regulated the expression of the MAD2 protein, 

which was shown to result in mitotic failure and extensive cell death when 

permanently inactivated (Hernando et al., 2004; Kops et al., 2004). After introduction 

of the pEMI-plasmid encoding a MAD-specific microRNA we observed no effect on 

the viability and cell cycle distribution. Only when MAD2 was down-regulated by 

addition of DOX an increased fraction of apoptotic cells was observed. Treatment 

with colcemid, a drug depoliymerizing spindle microtubules and thereby inactivating 

spindle formation during metaphase, led to increased apoptosis. In the presence of 

MAD2 knockdown this phenotype was again more pronounced. These results show 

that the expression of microRNAs can be tightly controlled using pEMI vectors, which 

are therefore useful for studying essential genes. Another example shows that p53 

microRNA mediated knockdown prevents any significant increase in p53 and p21 

protein level after DNA damage and p53 inhibited arrest in the G1-phase, both 

caused by etoposide (Jung et al., 2007 PNAS paper). 

To rule out activation of the interferon system by the pEMI vector-driven 

microRNA expression, we analysed the expression of the IFIT1 (interferon-induced 

protein with tetratricopeptide repeats 1) gene by quantitative PCR (qPCR). Others 

have shown that expression of IFIT1 mRNA is rapidly induced upon interferon (IFN) 

treatment (Kusari and Sen, 1986). Besides interferon, double stranded RNA (dsRNA) 

and viral infection have been shown to increase the expression of IFIT1 (Guo et al., 

2000). pEMI-driven expression of a non-silencing microRNA for 2 and 4 days did not 

provoke an increased IFIT1 expression (Figure 26). Also expression of a p53-specific 

microRNA did not lead to any increase in IFIT1 expression, whereas transfection of 

U2OS cells with a synthetic double stranded RNA (poly I:C) led to a ~40-fold increase 

in IFIT1 mRNA expression within 18 h after transfection. Incubation of U2OS cells in 

media containing poly I:C also increased the level of IFIT1 up to ~7-fold (data not 

shown) indicating this cell line is in principle very sensitive towards the presence of 

dsRNA. 
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Figure 26 pEMI-driven microRNA expression does not elicit a dsRNA response 
 

qPCR analysis of IFIT1 (interferon-induced protein with tetratricopeptide repeats 1) expression after 
induction of microRNAs or treatment with poly I:C. U2OS pools were treated with 100 ng/ml DOX for 
the indicated time periods to induce non-silencing or a p53-specific microRNA driven by pEMI vector. 
As a positive control for IFIT1 gene induction, U2OS cells were transfected with poly I:C dsRNA (IC) or 
subjected to a mock transfection (C) for 18 h. Shown are the relative expression levels of IFIT1 
normalized to β-actin expression. IFIT1 expression levels in untreated or MOCK transfected cells were 
set to 1. All experiments were performed in triplicates. Error bars indicate standard deviations. 
(Analyses was performed by Peter Jung, MPI of Biochemistry). 
 
 
 
Furthermore, proliferation assays showed no significant anti-proliferative effect of 

pEMI-driven microRNA over-expression and cells were viable for several weeks when 

expressing microRNAs not targeting essential genes, whereas treatment with poly I:C 
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led to an apoptotic response 2 days post transfection presumably by activating the 

dsRNA response (data not shown). Taken together, expression of ectopic microRNA 

by pEMI vectors does not lead to a dsRNA response or other toxic side effects. 
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6. Discussion 
 
6.1 c-MYC-induced genomic instability 

The induction of genomic instability by c-MYC activation has been repeatedly 

described in the literature (Felsher and Bishop, 1999; Louis et al., 2005; Mai et al., 

1996a; Mai et al., 1996b; Vafa et al., 2002; Yin et al., 2001)). A number of 

observations suggested a pivotal role of c-MYC activation to drive cell cycle by 

exaggeration of intrinsic processes. Activation of cyclins and repression of CDK 

inhibitors together with ability to escape p53/p21 checkpoint machinery give an 

advantage for c-MYC overexpressing cells to maintain unrestricted proliferation. 

Oncogenic c-MYC expression in this context may cause DNA damage by different 

means. In the presence of oncogenically generated damaged DNA, c-MYC may drive 

cells through cell cycle by overriding p53/p21 dependent arrest (Hermeking and Eick, 

1994; Seoane et al., 2002), which may result in genomic destabilization. Such model 

describes a case of temporary activated c-MYC after first hours-days of activation 

(Bartek and Lukas, 2001b). On the later time periods of days-weeks, genomic 

instability initiated by c-MYC overexpression leads to clonal selection of cells with 

intact checkpoint pathways or acquiring genetic alteration allowing c-MYC 

independent proliferation (Karlsson et al., 2003), and has a similarity with so called 

effect of tumor relapsation after inactivation of conditional c-MYC expression (Arvanitis 

and Felsher, 2006; Pelengaris et al., 2002a). Additionally, c-MYC overactivation can 

directly lead to chromosomal structure alterations through gene amplification and 

telomere remodeling.  
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Figure 27 Exaggeration of cellular pathways and mechanisms by c-MYC 

overactivation cause genomic instability.  

(a) Common cellular pathways and mechanisms affected by c-MYC. (b) Principal cellular processes 
initiated by c-MYC overactivation. (c) c-MYC caused genomic destabilization at two distinct levels 
leading either to changes of chromosome number such as aneuploidy and endo-reduplication or 
defects in chromosomal integrity including chromosomal breaks, fusions or translocations. Genomic 
instability furthermore could give an advantage for tumor initiation or progression. 
 

In the studies presented here the activation of c-MYC expression results in 

comparable features and signs of unstable chromatin behavior. Conditional c-MYC 

activation in DLD-1 and MCF-7 cells leads to chromosomal instability measured by 

centromere probes hybridization or micronuclei counting. Furthermore, an increase of 

DNA damage as detected by γ-H2AX/53BP1 staining was observed (Menssen et al., 

2007). By time lapse imaging of living cells abnormal transition and chromosome 

behavior throughout prometa-, meta- and anaphases was observed, which was 
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accompanied by distortion of the metaphase plate. c-MYC activation leads to elevation 

of mitotic events with disorganized metaphase plate structure. On chromatin level, c-

MYC causes appearance of lagging chromosomes and chromatin bridges throughout 

anaphase and in following interphase. In some cases chromatin bridges led to fusion 

of two daughter cells and appearance of tetraploid cells. Breaks of bridges and 

improper separation of lagging chromosomes in anaphase generated daughter cells 

with unequally distributed genetic material due to loss or gains of chromosomes. Such 

c-MYC-dependent induction of chromatin abnormalities might potentially be explained 

by passaging of damaged DNA through G2 checkpoint into mitosis (Syljuasen et al., 

2006). c-MYC overexpression induces DNA damage and by abrogating the G1/S 

checkpoint may push cells with partially repaired or unrepaired DNA into the G2 phase 

(Bartek and Lukas, 2001b; Sheen and Dickson, 2002). In several cellular models c-

MYC overexpression was shown to attenuate G2 arrest (Sheen et al., 2003) and in the 

absence of active p53 pathway even efficiently overcome it (Yin et al., 2001; Yin et al., 

1999). In some cellular systems c-MYC leads to attenuation of G2 phase. In some 

cases extension exist even until beginning of prophase-like stage. Additionally we 

observed appearance of γ-H2AX foci on mitotic chromosomes, associated with c-MYC 

induction (data not shown). This might suggest that activated c-MYC allow G2 arrested 

cells with damaged DNA to proceed into mitosis or the following S-phase, initiating 

endo-reduplication (Figure 28). Furthermore, in earlier stages of mitosis damaged, 

incompletely or improperly unrepaired DNA may become packaged into the 

chromosomes, which lead to formation of breaks and chromatin bridges in the follwing 

mitosis. All chromosomes have to be rearranged throughout mitosis to give an equal 

separation of genetic material into two daughter cells. However, those damaged 

chromosomes could cause attenuation and abnormal mitotic progression observed in 

time-lapse video that finally could leads to aneuploidy (Mikhailov et al., 2002). 

Furthermore, cells with severe DNA damage or chromosomal abnormalities may be 

eliminated from the population via apoptosis (Figure 28) (Gasser and Raulet, 2006).  

How oncogenic c-MYC overexpression directly leads to DNA damage is not 

clear (Mai and Mushinski, 2003; Wade and Wahl, 2006). One potential explanation is 

the generation of ROS by c-MYC (Vafa et al., 2002) which causes DNA damage. 

Recently it was shown that c-MYC can induce double-stranded breaks, independently 

on ROS induction (Ray et al., 2006). Other potential effects of c-MYC activation might 

be the distortion of replication processes (Angus et al., 2002; Blagosklonny and 
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Pardee, 2002; Matsumura et al., 2003; Spruck et al., 1999; Walter et al., 1998), 

leading to improper replication followed by DNA breaks (Lengronne and Schwob, 

2002).          

                 

6.2 c-MYC-induced mitotic delay 
Results of this study show that c-MYC induces the expression of both BubR1 

and MAD2 on the level of RNA and protein. These proteins inhibit CDC20-APC/C and 

progression into anaphase until all kinetochore are properly attached to microtubule 

spindles of opposite poles (Kops et al., 2005). In accordance with the literature, 

upregulation of these proteins mediated by c-MYC leads to extension of mitosis length 

at specifically stage – prometaphase, where both proteins have their main function 

(Hernando et al., 2004; Li et al., 1999). Modulation of gene expression using stable 

expression of shRNA constructs against either BubR1 or MAD2 blocked efficient 

upregulation of proteins by c-MYC induction and as following, decreased average 

length of mitosis. Interestingly, MAD2 protein downregulation in the presence of 

activated c-MYC has only partial effect on mitosis length, where BubR1 knockdown 

almost completely reversed this phenotype. Downregulation of BubR1, which is a 

transducer of ‘’wait anaphase signal’’ through MAD2 and forms an inhibitory complex 

of CDC20 together with MAD2, may therefore more efficiently influence signal 

transduction then downregulation of final signalling effector MAD2 (Figure 3).  

The potential biological purpose of the activation of BubR1 and MAD2 by c-

MYC is an increased sensitivity of the spindle checkpoint machinery to recognize 

abnormal chromosomal organization and with following extension of prometaphase to 

give a time for chromosome reorganization, to ensure proper propagation of genome 

during cell division (Hernando et al., 2004). Probably due to the same reason to 

propagate intact genome c-MYC activates multiple genes involved in DNA repair when 

quiescent cells re-enter cell cycle (Menssen and Hermeking, 2002; Patel et al., 2004).   

This observation gives rise to the questions whether the induction of BubR1 

and MAD2 spindle checkpoint genes by c-MC can directly lead to lengthening of 

mitosis or depends on DNA damage passaging through G2 checkpoint into mitosis. 

From one side chromosomes which contain DNA damage lesions could directly 

activate spindle checkpoint and extend mitosis (Menssen et al, 2007). Results of this 

study show that population of cells with chromatin abnormalities in mitosis associated 

with extended mitotic length, but the average mitotic length in this population only by 
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10 minutes more in comparison to population of cells without visible alterations (data 

not shown). Therefore, the c-MYC-induced DNA damage would only partially explain 

the mitotic delay. Furthermore, it would be interesting to prove whether after active 

ATM signalling in the cells with DNA damage overcomes G2 arrest might influence on 

spindle checkpoint and if it does, how it modulate the activity. ATM signalling already 

was shown to influence mitotic progression in several ways: through downregulation of 

centrosome function (Sibon et al., 2000), Plk1 activity (Smits et al., 2000) and cyclin A 

degradation (Su and Jaklevic, 2001). 

 

6.3 BubR1/MAD2-dependent mitotic delay does not influence c-MYC-induced 
genomic instability 

Another question which arises is how the level of BubR1/MAD2 proteins might 

influence c-MYC-induced chromosomal instability. Ectopic expression of MAD2 in 

MEFs leads to multiple chromosomal abnormalities like broken chromosomes, 

anaphase bridges, and whole-chromosome gains and losses (Hernando et al., 2004; 

Sotillo et al., 2007). This is in accordance with the previous observation that MAD2 

overexpression causes a hyperactive spindle checkpoint, which could result in the 

mitotic defects and chromosomal instability (Hernando et al., 2004). MAD2 

overexpression in in vivo model leads to a wide range of tumors in more than 50% of 

the mice and was shown to accelerate lymphomagenesis in the Eμ-myc mice (Sotillo 

et al., 2007). Recently, it has been shown that deregulation of the transcription factor 

E2F activates expression of MAD2 and delays mitotic progression (Hernando et al., 

2004). c-MYC presumably activates MAD2 expression independent of E2F as we 

observed induction of MAD2 by c-MYC in cells with knock-down of DP-1. However, 

E2F and c-MYC may act synergistically to activate MAD2 expression (Sears et al., 

1997). Hernando et al. proposed that the induction of MAD2 itself is the cause for CIN 

(Hernando et al., 2004). The analysis of c-MYC-induced genomic instability in DLD-1-

tTA-MYC and PJMMR1 cells did not reveal a requirement of MAD2 induction for c-

MYC-induced CIN. Moreover, experimental down-regulation of BubR1, which has a 

similar function as MAD2, also had no influence on c-MYC-induced CIN. In the 

experiments described here, partial down-regulation of BubR1 and MAD2 by stable 

shRNA expression prevents efficient c-MYC-dependent induction of these genes and 

leads to a minor increase of basal genomic instability level observed as elevation in 

micronuclei formation. Also no significant difference in abnormal chromatin formation 
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within mitotic progression was observed in time-lapse recordings when BubR1 or 

MAD2 knockdown and control populations were compared. These observations show 

that the induced expression of BubR1 and MAD2 mitotic checkpoint genes does not 

significantly participate in formation of chromosomal instability induced by c-MYC, but 

potentially plays a role in sensitizing the mitotic checkpoint. Aneuploidy caused by 

inactivation of BubR1 or MAD2 mitotic checkpoint genes has been implicated in 

tumorigenesis and suggests that these genes may function as tumor suppressors (van 

Deursen, 2007; Weaver et al., 2007). The reduction of both BubR1 and Mad2 proteins 

expression in mouse models results in chromosome missegregation. BubR1H/H 

(hypomorphic BubR1 mutation caused of BubR1 protein reduction reduction up 10% 

of normal level) mice exhibit increased susceptibility to tumours induced by 

carcinogenesis (Dai et al., 2004). BubR1+/-ApcMin/+ compound mutant mice develop 

colorectal cancer at a 10x higher rate than ApcMin/+ mice (Rao et al., 2005). As APC 

negatively regulates c-MYC (He et al,. Science) these tumors are presumably caused, 

at least in part, by deregulation of c-MYC. Cells from these mice showed premature 

separation of sister chromatids and enhanced genomic instability. In addition, germ 

line mutations in BubR1 have been linked to the rare cancer predisposition syndrome 

mosaic variegated aneuploidy (MVA) (Hanks et al., 2004; Matsuura et al., 2006). 

MAD2+/- mice develop lung tumors at high rates after long latencies (Dobles et al., 

2000). Furthermore, the current literature supports a function of MAD2 as a tumor 

suppressor as inactivating mutations have been identified in the MAD2 gene in 

bladder, breast and gastric cancer (Baek et al., 2005; Hernando et al., 2001; Percy et 

al., 2000).  

Current cellular models (DLD-1-tTA-MYC and PJMMR1 cells) involved in this 

study in principle do not exclude a link between MAD2 overexpression and 

chromosomal instability. One of the features of these systems is the rapid induction of 

c-MYC expression, both from CMV promoter, and the occurance of pronounced c-

MYC-induced phenotypes, including a rapid increase in cells with micronuclei 

representing CIN. The percentage of these cells in population rises up within first 4 

days of c-MYC induction and reached a plateau of 10-20% where it is balanced by an 

increasing rate of apoptosis. Further ectopic expression of c-MYC leads to a strong 

degree of instability, which is accompanied by massive apoptosis in these cells. 

Potentially, chromosomal instability induced by MAD2 (or/and BubR1) overexpression 

occurs in these c-MYC-inducible systems but is masked by c-MYC-induced apoptosis. 
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In this case would be interesting to modulate apoptosis rate by pan-caspase inhibitors 

which efficiently repress c-MYC-dependent cell death.  

 

6.4 c-MYC-induced apoptosis  
DLD-1-tTA-MYC cells, as others cells ectopically expressing c-MYC, show 

induction of apoptosis after induction of c-MYC. This apoptosis increases gradually. 

Two kinds of apoptosis were distinguished in time-lapse video of DLD-1-tTA-MYC 

cells after c-MYC activation. The first type of apoptosis represents spontaneous death 

of single cells and was not connected to mitotic progression. The second type, post-

mitotic apoptosis. represents the populations of cells synchronously dying after mitosis 

with chromatin condensation observed as late apoptotic events in both daughter 

progeny. The ratio between these two kinds of apoptosis was approximately 1:3 with 

the a maximum in the post-mitotic fraction 2 days after c-MYC induction. As DLD-1 

cells express a mutant p53 allele, post-mitotic apoptosis is p53-independent. The 

average time interval between the end of telophase and beginning of apoptotic 

chromatin condensation was around 4 hours after 2 days of c-MYC activation and 

drops down to 1-2 hours with a later time points (data not shown) probably due to 

increase of c-MYC-induced genomic instability formation as main reason for this. This 

average interval does not depend on the level of BubR1 or MAD2 protein expression. 

Itself, induction of post-mitotic apoptosis directly depend on c-MYC activation and 

reach 15 and 22 percent (23 out of 150 cells after 1 day and 49 out of 222 cells after 2 

days of c-MYC induction, respectively) of mitotic cells after 1 and 2 days of induction 

respectively (Figure 14, a) and has tendency for further elevation. Unfortunately the 

16x objective resolution applied for common time-lapse video acquisition did not 

allowed to observe smaller chromatin aberrations, which easily detectable with 

objectives with 40-60x magnification. Nevertheless, in cell populations undergoing 

post-mitotic apoptosis 35-40 percent (9 out of 23 and 17 out of 49 cells) contain 

detectible chromosomal aberrations in mitosis. As was described for chromosomal 

aberrations, the average length of mitosis of the cells undergoing post-mitotic 

apoptosis was 12 minutes more comparing to average mitotic cells without any 

aberrations or apoptosis. Almost whole population of cells with post-mitotic apoptosis 

has extended mitosis although some of the cells have completely normal mitotic 

progression. Interestingly, in time-lapse movie revealed BubR1 dependent formation 

of post-mitotic apoptosis in the population of mitotic cells after c-MYC activation. 
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BubR1 expression was controlled by shRNA mediated downregulation which prevents 

efficient BubR1 mRNA induction by c-MYC (Figure 7, b). After 48 hours of c-MYC 

expression I observed 4-5 % decrease of post-mitotic apoptosis in population of cells 

representing BubR1 downregulation in comparison to control (Figure 18, c). BubR1 

dependent apoptosis was described in literature (Shin et al., 2003). No significant 

difference was observed in the presence of MAD2 knockdown. In addition, DLD-1-tTA-

MYC cells undergoing massive apoptosis upon c-MYC activation in the presence of 

microtubule inhibitor nocodozol. All these observations show that post-mitotic 

apoptosis become induced before mitosis by c-MYC and could be modulated in 

mitosis, where induction of BubR1 spindle checkpoint serves tumor suppressive, 

proapoptotic function (Figure 28). 

 

DNA damage ATM signaling
activation

Damaged
chromosomes

Active ATM
signaling

Transition into
mitosis

MAD2/BubR1
induction

Cyclin B1
induction

M
itosis

S
-phase

G2 checkpoint

G
1/S

-phase

DNA damage

p53 activation

Cyclin B1
activation

Endo-reduplication,
Aneuploidy Aneuploidy Apoptosis Correct

mitosis

Tumor
progression

Tumor
suppression

?

Oncogenic
c-MYC

Mitotic Spindle
Assembly Checkpoint

Mitotic delay

Transcription
activation

Other mitotic
targets

a

b

Figure 28 c-MYC activation alters progression through mitosis  

(a) c-MYC can directly activate genes involved in spindle checkpoint machinery or mitotic progression, 
depending on cell type and conditions leading to genome destabilization or apoptosis induction. (b) 
Indirect influence of c-MYC overactivation on mitotic progression might function through the modulation 
of spindle checkpoint machinery by generated DNA damage or active ATM signaling transmitted into 
mitosis. 
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6.5. All-in-one conditional microRNA expressing system 

A decade ago after discovery of RNA interference (RNAi) this mechanism has 

been implicated in a wide spectrum of genetic analysis and screens (Hannon, 2002; 

Meister and Tuschl, 2004; Paddison and Hannon, 2002; Paddison et al., 2004; Silva et 

al., 2004). The activation of the interference machinery involves the formation of ribo-

protein complexes guiding site-directed cleavage of the mRNA of interest by the anti-

sense ribo-sequence (Figure 4). The artificial delivery or vector-based expression of 

RNA templates in the cells allows effective and gentle manipulation of interference 

machinery. Despite simplicity and efficiency, the delivery of ssRNA or dsRNA itself by 

means of transfection approach is always limited by the efficacy of transfection and 

viability of introduced RNAs (Fewell and Schmitt, 2006). An alternative strategy is the 

expression of targeting shRNAs or miRNAs in cells achieved by vector-based 

expression. Such approaches allows its conditional regulation and co-expression of 

tracking proteins or selection markers. Furthermore, conditional regulation has a clear 

advantage of gentle physiological regulation in comparison to stable expression. 

However, the conditional systems published so far bear the necessary regulators on 

the separate plasmids, thereby complicating the generation of stable cell lines. 

Therefore our goal was to integrate all necessary components into the single plasmid 

to simplify procedures of cloning, delivery and integration of genetic elements allowing 

conditional regulation of miRNAs expression (Epanchintsev et al., 2006).   

For conditional regulation a bi-directional promoter bearing a tet-operon, which 

is based on minimal CMV-promoter region and tightly controlled by highly DOX-

sensitive reverse tetracycline trans-activator rtTA2S-M2 and tet repressor-KRAB fusion 

proteins (tTSKRAB) (Bornkamm et al., 2005). The system precisely responds to DOX 

level allowing expression of both a fluorescent protein and microRNA allele based on 

minimized version of mir30 transcript. In principle, the mir30 locus can be substituted 

by any other microRNA transcript, which broadens the flexibility of applications such 

as RNAi or translational inhibition (Figure 4). Additional features of the vector allow 

bacterial propagation and maintenance plasmid episomaly in the target cells (Li and 

Elledge, 2005). The Mir30 expression allele was constructed with possibility of either 

conventionally cloning of miRNA target sequences through the shuttle vector or magic 

recombination transfer strategy of miRNA cassettes from the microRNA library (Silva 

et al., 2005).  
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The functionality of the all-in-one pEMI system was establish using two distinct 

miRNA sequences targeted p53 tumor suppressor and MAD2, spindle checkpoint 

genes. Both systems show a fast response to the various DOX concentrations and 

represents tight off-state control. The depth of target protein knockdown gradually 

corresponds to the elevation of DOX concentration, has an effective down regulation 

at approximately 5 ng/ml of DOX and in case of MAD2 leads to almost complete 

protein depletion with already 100 ng/ml of DOX. The system also allows efficient 

knockdown restoration upon DOX withdrawl. The stability of pEMI integration was 

confirmed in different cell lines. U2OS and H1299 cell lines are susceptible to fast 

acquisition after transfection and selection procedures. Relatively long maintenance of 

the plasmid in the pool of cells last up to 4 weeks and allows preparation of 

conventionally long knockdown experiments. As well, the miRNA transcription from 

pEMI does not induce interferon pathway, confirming physiological compatibility of 

expression. 

The controlled activation of the knockdown may be useful in certain therapeutic 

regimes and prevent the potential toxicity or immunogenicity which has been 

discussed for therapeutic applications of ectopic RNA interference. As mentioned 

above the pEMI vector is compatible with recently generated microRNA libraries and 

will therefore presumably become a widely used tool for conditional RNA interference.  
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7. Summary 
 c-MYC is one of the major human oncogenes, however, the mechanisms 

involved in tumor initiation and development by c-MYC are not completely understood. 

One important function of c-MYC is the stimulation of G1/S-transition. However, the 

effects of c-MYC on G2/M progression and mitosis have not been characterized so far. 

The goal of the present study was to investigate the influence of c-MYC activation on 

the mitosis. Therefore, time-lapse microscopy of living cells was used to analyse 

mitotic progression after c-MYC activation. This analysis revealed a c-MYC-dependent 

extension of mitosis in prometaphase. This finding together with microarray analysis of 

c-MYC-regulated genes directed the attention of this work towards the spindle 

checkpoint genes. Two of them, MAD2 and BubR1, were characterized as direct c-

MYC target genes. Experimetall inactivation of MAD2 and BubR1 expression by RNA 

interference revealed that the c-MYC-induced lengthening of prometaphase is 

dependent on the induction of MAD2 and BubR1 by c-MYC. 

 Unexpectedly, further analysis did not reveal any influence of the c-MYC-

induced expression of MAD2 and BubR1 on c-MYC-induced chromosomal instability. 

These results therefore question the previously described mechanism by which the 

transcription factor E2F induces chromosomal instability. Furthermore, a synchronous 

postmitotic form of c-MYC-induced apoptosis was characterized. A minor contribution 

of the induction of BubR1 expression for type of apoptosis was detected. 

 Taken together these results show that deregulated expression of c-MYC, as it 

occurs in the majority of cancers, has drastic effects on the progression through  

mitosis: it delays mitosis in a MAD2- and BubR1-dependent manner. Furthermore, the 

effects of c-MYC on mitosis presumably provoke a cellular response which is 

manifested in post-mitotic apoptosis.  

 Recently, libraries of retroviral expression constructs encoding microRNAs 

which target most of the human and mouse genes became available. To allow the 

transfer of these microRNA cassettes into a new inducible, episomal expression 

system by homologous recombination, a new vector was generated and 

characterized. This system will allow the rapid functional and biochemical 

characterization of essential gene products by conditional RNA interference. 
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8. ABBREVIATIONS 

AML                           Acute lymphocytic leukemia 
APC                           Adenomatous polyposis coli 
APC/C                        Anaphase Promoting Complex or Cyclosome 
APS Ammonium peroxodisulfate 
ATM Ataxia telangiectasia mutated 
ATR                           ATM and Rad3-related 
BAX BCL2-associated X protein 
BCL-XL                      B-cell leukemia-x long 
BcL2                          B-cell leukemia 2 
BIM Bcl-2 interacting protein 
BRCA                        Breast cancer susceptibility gene 1/2 
Bub                            Budding uninhibited by benzimidazoles homolog 

BubR1                       Budding uninhibited by benzimidazoles 1 homolog beta; MAD3/BUB1-
related protein kinase 

c MYC v-MYC avian myelocytomatosis viral oncogene homologue 
c-src                          Rous sarcoma viral oncogene homolog 
CAD Carbamoyl-phosphate synthetase 2 
CCD                           Charge-coupled device (camera) 
CDC                           Cell division cycle 
CDK Cyclin-dependent kinase 
cDNA Complementary DNA 
Cdt1                           Chromatin licensing and DNA replication factor 1 
CENP                         Centromere protein 
Chk                            Checkpoint kinase 
ChIP Chromatin immunoprecipitation 
CIN                             Chromosome instability 
CMV Cytomegalovirus (promoter) 
CUL1 Cullin 1 
Cy3 Cyanine 3 
dMYC                         Drosophila homolog of v-MYC 
DAPI 2-(4-Amidinophenyl)-6-indolecarbamidine dihydrochloride 
DHFR                         Dihydrofolate reductase 
DLCL                         Diffuse large cell lymphoma 
DMEM Dulbecco's modified eagle medium 
DMSO Dimethylsulfoxide 
dNTP Deoxynucleotide triphosphate 
DP1 Deleted in polyposis 1 
DSB                           Double strand breaks 
dsRNA                       Double stranded RNA 
DTT        Dithiothreitol 
E-box Enhancer box 
E2F1 E2F transcription factor 1 
EBNA Epstein-Barr virus nuclear antigen 
E. coli Escherichia coli 
EDTA Ethylenediamine-tetraacetic acid 
EGTA Ethylene glycol-0,0'-bis (2-aminoethylether)-N,N,N',N'-tetraacetic acid 
FBS Foetal bovine serum 
G418 Geneticin® 
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GFP Green fluorescent protein 
HA Hemagglutinin 
H2AX                         H2A histone family, member X 
HBSS Hanks' balanced salt solution 
HNPCC                      Hereditary nonpolyposis colon cancer 
HPV                           Human papillomavirus 
HygB Hygromycin B 
ID2 Inhibitor of DNA binding 2 
IF Immunofluorescence 
Ig Immunoglobulin 
IPTG Isopropyl b-D-1-thiogalactopyranoside 
IRES Internal ribosome entry site 
IFIT1                          Interferon-induced protein with tetratricopeptide repeats 1 

LMYC Lung carcinoma-derived v-myc myelocytomatosis viral oncogene 
homologue                                                                                                       

LB Luria-Bertani 
MAD                           Mitotic arrest deficient-like 
MCM2 Minichromosome maintenance deficient  
Mdm2                        Mouse double minute 2 
MIN                            Microsatellite instability 
MIZ1 MYC-interacting zinc finger protein 1 
miRNA Micro RNA 
MLH                           MutL homolog         
MM                             Malignant melnoma 
MMR Mismatch repair  
Mos                            v-mos Moloney murine sarcoma viral oncogene homolog 
MSH MutS homologue  
NBL                           Neuroblastoma 

NMYC Neuroblastoma-derived v-myc myelocytomatosis viral oncogene 
homologue 

NP40 Nonidet-P40 
PCL                            Primary plasma cell leukemia 
p107 Retinoblastoma-like 1 
PBS Phosphate buffered saline 
PCR Polymerase chain reaction 
pRB Retinoblastoma protein 
RAS Rat sarcoma viral oncogene homologue 
RNAi                          RNA interference 
ROS Reactive oxygen species 
RSV                           Rous sarcoma virus 
S-MYC MYC-like oncogene 
SAC                           Spindle assembly checkpoint 
SAGE Serial analysis of gene expression 
siRNA                        Small interfering RNA 
shRNA                       Small interfering RNA 
SCC                           Squamous cell carcinoma 
SCLC                         Small cell lung carcinoma 
SDS Sodium dodecyl sulfate 
tTA Tetracycline-controlled transactivator 
w/v Weight per volume 
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