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Zusammenfassung 

ZUSAMMENFASSUNG 

Fledermäuse sind in der Lage, dreidimensionale Objekte in vollkommener Dunkelheit zu 

erkennen und zu unterscheiden, indem sie die Echos ihrer ausgesandten Ultraschalllaute 

analysieren. Diese Dissertation bearbeitet die dynamische Objektanalyse in der Echoabbildung. 

Der erste Teil befasst sich mit der passiven und aktiven Echoanalyse von virtuellen Objekten. Es 

wird untersucht, ob Fledermäuse einer schnellen Aufeinanderfolge von Echos folgen können und 

wie empfindlich sie sind für spektrale oder zeitliche Veränderungen von passiv präsentierten 

Signalen oder von aktiv akquirierten Echos. Der zweite Teil behandelt die echo-akustische 

Analyse von Objektgröße und die Reaktion von Fledermäusen auf unterschiedlich große virtuelle 

Objekte in ihrer Flugbahn. 

 

Fledermäuse gewinnen detaillierte Information über ein Objekt, indem sie sich um das Objekt 

herumbewegen und es mit einer Reihe von Echoortungsrufen beschallen. Das dreidimensionale, 

echoakustische Abbild des Objekts wird durch das Aneinanderreihen relevanter Information 

gebildet, die von Echos gewonnen wird, die aus verschiedenen Beschallungswinkeln aus 

zurückkehren. Das Ziel in dem ersten Teil der Dissertation ist es, die Verhaltensstrategien der 

Fledermaus, Megaderma lyra, zu analysieren, mit denen sie die dreidimensionale Form eines 

komplexen Objekts aus Echosequenzen rekonstruiert.  

Frühere Studien weisen darauf hin, dass Fledermäuse zeitliche und spektrale Muster von Echos 

auswerten, um ihre Umwelt echo-akustisch wahrzunehmen. Wir haben in zwei getrennten 

Studien mit Hilfe des so genannten ‚two-alternative, forced-choice’ Paradigma die 

Detektionsschwellen der Fledermaus, M. lyra, für zeitliche Variationen von Signalen gemessen. 

In der ersten Studie wurden Detektionsschwellen für spektrale Modulationen gemessen. Hierzu 

wurde die Modulationstiefe von sich zeitlich verändernden, synthetischen 

Echoortungsrufsequenzen variiert. Es wurden Modulationsraten von 2 bis 16 Hz verwendet. Die 

Schwellen lagen ungefähr bei 11 % der Mittenfrequenz. Interessanterweise waren sie relativ 

unabhängig von der Modulationsrate. Die wirksame Empfindlichkeit und die 

Modulationsratenunabhängigkeit der erhaltenen Daten zeigen, dass Fledermäuse in der Lage 

sind, der spektralen Zusammensetzung von Echos zu folgen, die von komplexen Objekten von 

verschiedenen Winkeln reflektiert werden. Zu beachten ist jedoch, dass unterschiedliche 

Meinungen existieren, ob man Vergleiche zwischen aktiv- und passiv-akustischen 

Verarbeitungen ziehen kann.  
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Zusammenfassung 

In der zweiten echo-akustischen Studie haben wir die Korrelation zwischen der Bewegung der 

Fledermaus im Raum und der Wahrnehmung von Echos, die sich in Abhängigkeit von ihrer 

Position verändern untersucht. Wir haben eine Echtzeit-Technik zur Generation holographischer, 

virtueller, echoakustischer Objekte anhand eines omnidirektionalen Phantomziels entwickelt. 

Wir können zeigen, dass Fledermäuse, die diese holographischen Objekte erkunden, eine 

Amplitudenmodulation von mindestens 10 dB benötigen, um ein holographisches Objekt, das 

sich in Korrelation mit der Position der Fledermaus verändert, von einem invarianten Objekt zu 

unterscheiden.  

Die Ergebnisse erlauben erste Einblicke in die Ultraschallempfindlichkeit und die Koordination 

von Flug- und Ultraschallaktivität echoortender Fledermäuse, während sie komplexe Objekte im 

Raum erkunden. Wir konnten bestätigen, dass Fledermäuse sowohl passiv als auch aktiv echo-

akustisch imstande sind, Veränderungen der spektralen Komposition von aufeinander folgenden 

Echos zu folgen, die von einem komplexen Objekt reflektiert werden. 

 

Nachdem wir die Mechanismen der dynamischen Objektanalyse untersucht hatten, haben wir in 

dem zweiten Teil dieser Arbeit die Objektgröße in der Echoanalyse untersucht. Gefragt wurde zu 

einem, ob Fledermäuse anhand der Echoortung Unterschiede in der Größe gleich geformter 

Objekte kompensieren können. Als zweites interessierte uns, wie die Objektgröße die Flugbahn 

frei fliegender Fledermäuse beeinflusst.  

In der ersten Studie wurde untersucht, ob die Fledermaus, Phyllostomus discolor, Größen-

skalierte Versionen (Testobjekte) vorher erlernter Objekte (Standardobjekte) korrekt 

klassifizieren kann. Dazu mussten die Fledermäuse eine interne Repräsentation für jedes 

Standardobjekt bilden. Drei Fledermäuse konnten mindestens vier der sechs Testobjekte den 

entsprechenden Standardobjekten zuordnen. In einem weiteren psychophysikalischen 

Experiment haben wir getestet, ob Menschen dies auch können. Drei der Versuchspersonen 

konnten zum Großteil die Größenunterschiede kompensieren. Die Ergebnisse bestätigen, dass 

das auditorische System der Fledermaus einen festen Mechanismus besitzt, um mit 

Veränderungen der Größe von echo-akustischen Objekten umzugehen. Weiterhin ist zu 

vermuten, dass Information, die von aufeinander folgenden Echos aus verschiedenen 

Beschallungswinkeln gewonnen wird, die Normalisierung von Objekten fördert. Wir schlagen 

vor, dass die Klangfarbe der Signale von den Menschen und vermutlich von den Fledermäusen 

für die Klassifizierung verwendet wurde.  
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In einer zweiten Studie, die aufgrund der Tatsache, dass sie noch nicht abgeschlossen ist, in 

dieser Dissertation im Anhang zu finden ist, wollen wir die Korrelation zwischen der Flugbahn 

einer Fledermaus und der Größe eines echo-akustischen Objekts untersuchen. Die Tamanahöhle 

in Trinidad bietet die einzigartige Möglichkeit, die Phantomzieltechnik auf untrainierte 

Fledermäuse anzuwenden. Die hohe Anzahl der Tiere in dieser Gegend von mehreren Tausend 

und die parallele Flugbahn der Tiere aus der Höhle erleichtern die Datenaufnahme. Gleichzeitig 

dient dieses Projekt als kritischer Test der Phantomzieltechnik, die in unserem und anderen 

Laboren verwendet wird, da wir die Reaktion untrainierter Fledermäuse, die nur mit reellen 

Zielen vertraut sind, auf die Präsentation von Echos virtueller Objekte studieren können. Da die 

Datenaufnahme erst im Dezember stattfinden wird, kann sie in dieser Dissertation nicht mit 

aufgenommen werden. Ich werde eine Einleitung geben und die Methoden beschreiben, die wir 

anwenden werden. Wir hoffen, die erhaltenen Daten in einer späteren Veröffentlichung zu 

präsentieren und zu diskutieren. 
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Summary 

SUMMARY 

Bats are able to recognize and discriminate three-dimensional objects in complete darkness by 

analyzing the echoes of their ultrasonic emissions. This thesis addresses the topic of dynamic 

object analysis in echo imaging. The first part concerns passive and active echo analysis of 

virtual objects. It investigates, whether bats can track fast successions of echoes and how 

sensitive they are for spectral or temporal changes in presented signals in passive listening and 

active echolocation. The second part deals with the echo-acoustic analysis of object size. We are 

interested, if bats can compensate for size-induced variations of objects and how bats react to 

differently sized virtual objects in their flight path.  

 

Bats acquire detailed information about an object by moving around the object and scanning it 

with a series of echolocation calls. Stringing together object related information from echoes 

obtained from different observation angles will produce a three-dimensional echo-acoustic image 

of the object. Our goal in the first part of the thesis is to analyze the behavioural strategies with 

which the bat, Megaderma lyra, is able to reconstruct the three-dimensional shape of complex 

objects by perceptual integration of the information acquired through sequences of echoes. 

Previous work suggests that bats rely on both temporal and spectral cues for the echo-acoustic 

analysis of their environment. In two separate studies we measured in two-alternative, forced-

choice procedures the detection thresholds for temporal variations in returning signals in the 

echolocating bat, M. lyra. In the first passive-acoustic study, detection thresholds of spectral 

modulations were measured by varying the modulation depth of time-variant synthetic 

echolocation-call sequences for modulation rates ranging from 2 to 16 Hz. The thresholds of 

about 11 % of the centre frequency were interestingly relatively independent of modulation rate. 

Acknowledging reservations about direct comparisons of active-acoustic and passive-acoustic 

auditory processing, the effectual sensitivity and modulation-rate independency of the obtained 

results indicate that the bats are well capable of tracking changes in the spectral composition of 

echoes reflected by complex objects from different angles. 

In the second active echo-acoustic study we investigated the correlation between the bat’s 

movement in space and the perception of position-variant echoes with an omni-directional 

phantom target. We realized a real-time technique for the generation of holographic echo-

acoustic objects. We show that the bats exploring these holographic objects required an 
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amplitude modulation of at least 10 dB to be able to discriminate a space-variant, holographic 

object from an invariant object. 

The data provide first insight into the sonar sensitivity and into the coordination of flight and 

sonar activity of echolocating bats exploring complex objects in space and corroborate that bats 

are well capable of tracking changes in the spectral composition of consecutive echoes reflected 

by complex objects from different angles. 

 

In the second part of the thesis we wanted to investigate object size in echo imaging. For one, 

can bats normalize for objects which differ in size, but not in shape, through echolocation alone, 

and secondly, how does object size affect a bat’s flight path? 

In the first study, the bat, Phyllostomus discolor, was tested whether it can classify scaled 

versions (test-objects) of previously learned objects (standard-objects). In contrast to an earlier 

study, we forced the bats to generate an internal representation of each standard-object. Three 

bats correctly classified at least four of six scaled objects. In a second psychophysical experiment 

we tested whether humans have the same ability. Three listeners were able to normalize almost 

all size variations. The results corroborate that the bat’s auditory system has dedicated 

mechanisms like humans to deal with size-induced variations of echo-acoustic objects and that 

information from successive echoes from different ensonification angles probably facilitate 

object normalization. We propose that timbre may have been employed as a cue for classification 

by the human listeners and possibly by the bats.  

In a second study, which, due to the fact that the project is still in progress, is included as an 

appendix in this thesis, we want to investigate the correlation between a bat’s flight path and the 

size of echo-acoustic objects. The Tamana-Cave in Trinidad provides the unique opportunity of 

testing this correlation on untrained bats, as the number of bats active in this area mounts up to 

thousands and the bats exhibit parallel flight paths out of the cave. Simultaneously this project 

acts as a critical test for the phantom target technique used in our and other labs, as we can study 

how untrained bats familiar only with real targets react to the presentation of echoes of virtual 

objects. Data acquisition will take place in December and can therefore not be included in this 

thesis. I will give an introduction and describe the methods we will be using. We hope to present 

and discuss the obtained results in a later publication. 
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General Introduction 

GENERAL INTRODUCTION 
All living beings need to orient in their environment. Vision, hearing, touch and scent are used 

to generate an internal spatial representation of the surroundings. During evolution different 

species were forced due to their natural environment or lifestyle to specialise sensory systems. 

Some fish species discriminate and identify three-dimensional (3D) objects through 

electrolocation alone (Schwarz and von der Emde, 2000a; Schwarz and von der Emde, 2000b; 

von der Emde and Schwarz, 2000; von der Emde, 2004; Graff et al., 2004; von der Emde, 

2006). Cave dwelling spiders lost their ‘eye sight’ and developed an advanced vibration 

sensitivity (Krajick, 2007). A further specialization of cave-dwelling animals is the 

sophisticated olfactory system found for salamander species allowing the evaluation of their 

surrounding environment (Uiblein et al., 1992). Long distance travelling animals deprived of 

distinct landmarks orient with the help of the earth’s magnetic field (birds, turtles) (Edwards et 

al., 1992; Rodda and Phillips, 1992). A further advanced sensory modality in the auditory 

system is echolocation, through which bats and dolphins orient in their environment with sparse 

or no visual feedback (Neuweiler, 1990; Kalko et al., 1998; Kalko and Condon, 1998; 

Neuweiler, 2000; von Helversen and von Helversen, 2003; von Helversen, 2004). Lazzaro 

Spallanzani, the Bishop of Padua in the late eighteenth century, was the first person to 

demonstrate that bats do not need visual input to orient in space. By conducting a few 

experiments he assumed the bats were orienting by hearing, but as the bats did not produce 

sounds he himself could perceive, he was unable to determine how. Not until 1938 and 1943 did 

two scientists, Donald Griffin and Sven Dijkgraf, independently discover how the bats were 

orienting acoustically: by producing short ultrasonic calls through their mouth or nose bats 

employ the echoes produced by reflective surfaces. This auditory analysis enables them to orient 

in space, localize objects and measure distances and even evaluate complex shapes and 

structures for food localization and identification (e.g., fruit, pollen, nectar, insects, mice, fish, 

frogs) (Simmons et al., 1974; Schmidt, 1988; Kalko et al., 1998; Kalko and Condon, 1998; von 

Helversen and von Helversen, 1999; Neuweiler, 2000; Weissenbacher and Wiegrebe, 2003; von 

Helversen and von Helversen, 2003; von Helversen et al., 2003; Korine and Kalko, 2005). Bat 

species have adapted their echolocation calls to their surrounding and the context in which they 

are calling. Bats for example living and foraging near vegetation for flying insects 

predominately call with longer (10 to 100 ms), constant-frequency signals (Neuweiler, 2000). 

Gleaning bats on the other hand, which take their prey from surfaces, employ very short (0.5-
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3 ms), downward frequency-modulated pulses as their call (Neuweiler, 2000). In both cases the 

bats facilitate the separation of their prey from the background. Many studies concerning 

echolocation in bats have already investigated different parameters of echo imaging. In general, 

the intensity, temporal structure, and spectral composition of an echo provide information about 

the object’s size, shape and structure (Schmidt, 1988; Grunwald et al., 2004; Simon et al., 

2006). How a bat’s environment is internally represented echo-acoustically though is still not 

fully understood. 

When an object is ensonified, it reflects the ensonification signal in an object-specific manner, 

producing an echo. Every echo contains the acoustic image of the ensonified object. The acoustic 

image or impulse response (IR) is defined by the reflection characteristics of an object ensonified 

with an impulse with theoretically infinite duration and amplitude, containing every frequency 

with the same amplitude (Fig. 1). 

 

 
Figure 1: IR generation 
When an object is ensonified with an impulse, its surfaces reflect in a characteristic manner, generating the object’s 
impulse response, IR. 
 

When such an impulse is reflected by an object, frequency minima and maxima are generated by 

destructive and constructive interference of the reflections, generating object specific 

interference patterns which are visible in the IR’s magnitude spectrum. For example the 

interfering waveforms add up and generate a spectral peak when the difference in depth between 

8 



General Introduction 

these surfaces is 1/2 of the wavelength or a multiple of this relationship. A cancellation or notch 

within a spectrum will occur when the distance between the high and low surface points on an 

object is 1/4th of the wavelength or an uneven multiple of this relationship. Consequently 

temporal and spectral reflection patterns depend on an object’s shape, size and material. Schmidt 

(1992) showed that bats are very sensitive for such spectral features. The bat Megaderma lyra 

can detect a 7 – 9 kHz difference in the position of a spectral notch, corresponding to a depth 

difference of 0.2 mm. Figure 2 depicts the time signal of an IR and its magnitude spectrum 

sampled with a frequency of 10 kHz. The different reflections generate frequency cancellations 

and positive summations which are visible in the spectrum. 

 

 
Figure 2: Time signal and magnitude spectrum of an IR 
Panel A depicts the time signal of the IR. Plotted is the amplitude in dB as a function of time in s. Panel B 
shows the corresponding magnitude spectrum of the IR. Plotted is the magnitude in dB against the frequency 
in kHz. Visible are the frequency notches and peaks generated through the destructive and constructive 
interferences of the single reflections. 
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The echo a bat perceives, when ensonifying an object, is the result of the convolution of the bat’s 

echolocation call with the IR of the object (Fig. 3). The convolution of two signals is defined as 

the integral of the product of the two functions after one is reversed and shifted sample by 

sample. Note that when two signals are convolved temporally their magnitude spectra are 

multiplied. Consequently only frequencies existent in the ensonification signal are present in the 

reflected signal. A bat’s echolocation call is not as broadband as an impulse; therefore a bat can 

only receive spectral information about an object’s IR in the frequency range covered by the 

echolocation call. This means the object’s IR is imprinted on the bat’s echolocation call.  

 

 
Figure 3: Echo generation 
The bat’s echolocation call, emission, is convolved with the object’s IR, producing the object’s echo. 
 

When receiving an echo of an object, the bat still needs to reconstruct the information about the 

object contained in the echo. As the bat has full information about its echolocation call and an 

echo is dependent on the IR and this echolocation call, the bat can extract the IR from the 

reflected echo, by comparing its call with the returning echo (Weissenbacher and Wiegrebe, 

2003). 

We have elaborated how bats deal with echoes reflected by ensonified objects. How are such 

topics experimentally approached? For the investigation of how bats evaluate objects echo-

acoustically, many studies have presented real objects and had bats evaluate them according to 

certain behavioural tasks. However, using real objects limits presentable object types (object 
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size, design and quantity) and complicates the method of presentation and especially exchange. 

Furthermore, not only echo-acoustic, but other sensory cues might be presented. An alternative 

is the employment of virtual objects. A virtual visual object for example can be generated by 

displaying an image of an object on a computer monitor. Generating virtual acoustic objects is 

not quite as simple, but has already been established in echo-acoustic experiments with dolphins 

(Aubauer et al., 2000) and bats (Schmidt, 1988; Weissenbacher and Wiegrebe, 2003; Grunwald, 

2004; Grunwald et al., 2004; Firzlaff et al., 2006; Firzlaff et al., 2007). It is realized by a so 

called real-time playback, phantom-target technique. A virtual echo-acoustic object is presented 

by recording the animal’s echolocation calls with ultrasonic microphones, convolving the calls 

with IRs of virtual objects and playing back these computer generated echoes to the same 

animal over ultrasonic speakers. The IRs are constructed according to the echo-acoustic 

parameters of interest. The animals evaluate these ‘virtual’ echoes corresponding to a certain 

task. Using virtual objects instead of real objects eliminates confounding visual, olfactory or 

tactile cues. The technique allows complete control and easy manipulation over the object’s 

reflection characteristics. A further advantage is a quick exchange of and the potential of 

presenting numerous virtual objects without mechanical investments. Within this thesis, the 

technique of virtual-object presentation will be exploited and extended to address two different 

research areas in bat sonar: in the first part of this thesis, the virtual-object technique will be 

extended to a presentation of holographic objects whose echo-acoustic appearance changes 

dependent on the position of the bat relative to the virtual object. In the appendix of the second 

part of this thesis, a first attempt is made to carry the virtual-object technique into the field and 

study spontaneous responses of untrained bats to virtual objects. 
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Introduction 

1 INTRODUCTION 

For the generation of a visual representation of an object, our visual system compares dynamic 

changes in height and width of two-dimensional (2D) visual images between consecutive angles 

to extract the depth dimension (Bulthoff and Edelman, 1992). To achieve a 3D object 

representation from echo-acoustic information, however, is more difficult. An echo only reflects 

an object’s distance (depth dimension) to the ensonifier unambiguously. The time delay, when a 

bat receives the echo of its emitted call, depends on the distance of the ensonified object to the 

bat. The bat knowing when it had echolocated can derive the time and measure the distance the 

sound wave needed to travel to the object and back again. The height and width of an object, its 

shape, are not imaged distinctly. Therefore not only one, but two dimensions need to be 

extracted through sequential echo analysis. Figure 4 schematically depicts such an example. 

Shown are two objects with the same depth dimensions and surface area, but with different 

shapes. When the objects are ensonified once, they reflect unambiguously their depth 

dimensions in the same manner. Their shapes are not imaged distinctly, complicating object 

discrimination. 

 

 
Figure 4: Echo-acoustic object depth 
Two objects with the same depth dimensions and surface area, but with different shapes. When ensonified once, 
they only reflect their depth dimension unambiguously, not their shape. 
 
It has been shown in many behavioural studies that bats can echo-acoustically discriminate 2D 

and 3D forms and objects (Kalko and Condon, 1998; von Helversen and von Helversen, 1999; 

von Helversen and von Helversen, 2003; von Helversen et al., 2003; von Helversen, 2004; 

Korine and Kalko, 2005; Simon et al., 2006; Stich and Winter, 2006; Firzlaff et al., 2007). 

Dolphins are able to recognize simple 3D geometric shapes, i.e. cubes or tetrahedrons, 
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perceived from unknown angles (Helweg et al., 1996a; Helweg et al., 1996b) and even generate 

a modality (echo-acoustical or visual) independent internal representation of the objects (Harley 

et al., 1996; Harley et al., 2003). This is not an easy accomplishment as objects feature 

differences in shape dependent on the observation angle. So, how is this dealt with echo-

acoustically? 

Visually, object analysis and recognition is aided by translating an object’s shape from different 

view points (Logothetis and Sheinberg, 1996). Humans and monkeys recognize objects viewed 

from unknown angles, with mental translation and rotation of the object’s shape playing an 

important role (Murray et al., 1993; Logothetis and Sheinberg, 1996; Hamm and McMullen, 

1998; Willems and Wagemans, 2001; Lloyd-Jones and Luckhurst, 2002a). As in the visual 

system, an echo is dependent on the observation angle. Subsequently for obtaining echoes from 

different view points and for broadening the echo-acoustic image, ensonification with multiple 

successive calls is required. Exactly this behaviour can be seen for echolocating animals and 

echolocation-trained humans: they produce a series of short pulses, when echo-acoustically 

analysing an object (Fish et al., 1976; Au and Martin, 1989; Helweg et al., 1996a; Helweg et al., 

1996b; Schaub and Schnitzler, 2007b). Bats typically scan an object with a series of 

echolocation calls with varying ensonification angles by moving around it. This produces 

amplitude and frequency modulations in the echoes' spectral envelopes depending on the angle 

from which the object is ensonified. Stich and Winter (2006) described this echo-acoustic 

perceptual experience as resembling a visual experience caused by so-called physical or metallic 

colours: due to spectral interferences, these colours change their appearance with the angle of 

illumination and observation. It is plausible that bats extract object height and width by 

sequentially analyzing the dynamically changing echoes. By stringing together one-dimensional 

echoes a 3D acoustic image might be generated, which contains complete information about an 

object’s shape. Consequently the construction of an internal representation of a 3D object might 

be possible (Fig. 5). 
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Figure 5: Echo sequence 
By ensonifying an object, e.g. a mouse, from different angles and stringing the reflected echoes together, a 3D 
acoustic image of the object may be generated. 
 

The significance of sequential data acquisition and analysis of dynamically changing echoes has 

been shown in earlier studies about echo imaging for dolphins (Helweg et al., 1996a; Helweg et 

al., 1996b; Delong et al., 2006). Further studies showed that human divers were able to 

discriminate metal plates with different structures and thicknesses with the aid of ultrasonic 

transmitters and receivers (Fish et al., 1976; Au and Martin, 1989). Both dolphins and divers 

moved around the objects enabling an ensonification from different acoustic perspectives. This 

strategy allowed the deduction of object information from dynamic changes of the resulting 

echoes. The question addressed here is, how fast can bats track temporal changes in sequential 

echoes and how sensitive are they for these variations? This will be the topic of the following 

studies.  

Experimental animal 

Behavioural studies investigating echolocation with real or virtual targets have already been 

undertaken for many different bat species. An experimental animal which has proven itself of 

value in many behavioural studies is the tropical, gleaning bat, Megaderma lyra (Geoffroy 
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1810), the great false vampire bat (e.g. (Schmidt, 1988; Schmidt, 1992; Sedlmeier, 1992; 

Wiegrebe and Schmidt, 1996; Preisler and Schmidt, 1998; Krumbholz and Schmidt, 1999; 

Weissenbacher and Wiegrebe, 2003)). An image of this bat and its typical echolocation call can 

be seen in Figure 6. 

 

 
Figure 6: Megaderma lyra 
This bat’s echolocation call is illustrated on the left hand. The echolocation call is typically about 1 ms long and 
features multi-harmonic, downward modulated frequency sweeps with three dominant harmonics. Panel A displays 
the spectrogram of the call. Plotted is the frequency in kHz as a function of the time signal in ms. Panel B shows the 
magnitude spectrum, plotted is again the frequency in kHz as a function of the magnitude in dB. Panel C shows the 
time signal of the call; plotted is the amplitude in Volt as a function of the time signal in ms. 
 

M. lyra can be found on the Asian continent, from Sri Lanka to Northern Malaysia (Lekagul and 

McNeely, 1988). They belong to the Megadermatidae family. These bats are carnivorous and 

pick their prey up from the ground (Audet et al., 1991). For prey detection, M. lyra relies on 

prey generated rustling noises (Neuweiler, 1990), featuring very low passive hearing thresholds 

in the range of 1- 130 kHz (Schmidt et al., 1983). For the further analysis of its prey and to 

facilitate separation of prey objects from background, M. lyra employs short (0.4 – 1.2 ms), 

multi-harmonic (up to 6), downward modulated frequency sweeps as their echolocation calls, all 

sweeps in the frequency range between 120 to 18 kHz (Schmidt et al., 2000). Objects of interest 

are then typically ensonified from different aspects in flight. Furthermore, M. lyra exhibits prey 

specific changes of its echolocation call’s spectral content, showing quick echo-acoustic 

adaptations from prey detection to capture (Leippert et al., 2002). Therefore in terms of auditory 

processing, the bat’s behaviour requires tracking changes of spectral interference patterns over 

time. These criterion and the bat’s flight ability to manoeuvre in close spaces, a prerequisite for 
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the experimental setup, justifies the use of this bat species as an experimental animal in our 

behavioural paradigms. 

 

Experimental goal 

Our goal is to analyze the behavioural strategies with which the bat, M. lyra, is able to 

reconstruct the 3D shape of complex objects by perceptual integration of the information 

acquired through sequences of echoes. We measured in two behavioural studies, during passive 

listening and active echolocation, M. lyra’s capability for detection of fast changes in 

consecutive signals and sensitivity for changes in the spectral and temporal content of echoes, as 

they would be reflected by an object, when it is scanned echo-acoustically. 
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1.1 Time-variant spectral peak and notch detection in echolocation-call 

sequences in bats 

 

                          
 
This chapter has been accepted in the Journal of Experimental Biology (October the 17th, 2007) 
under the same title by Daria Genzel and Lutz Wiegrebe. 
A few supplementary figures have been added. 
 
 

In a real-target paradigm von Helversen (2004) showed that the bat Glossophaga soricina was 

able to discriminate two hollow forms, a hemisphere and a paraboloid with the same diameter 

and depth. The extracted IRs of each object generated a spectral interference pattern with 

frequency peaks and notches which varied systematically with ensonification angle. This 

variation was highly specific to the object. It is conceivable that the bats solved this task by 

evaluating the changes in the peak and notch patterns in correlation with their movement around 

the objects (Moss and Surlykke, 2001; von Helversen and von Helversen, 2003). The speed with 

which the bats auditory system can follow time-variant spectral interference patterns is 

unknown. It was therefore interesting to investigate the effect of time-variant spectral changes 

on sequential echo-acoustic object analysis. 

We decided to design the psychophysical study as a classical, passive acoustic task, which is 

nevertheless adequate as an experimental approach for questions concerning echolocation. In a 

two-alternative, forced-choice (2-AFC) experiment we investigated the auditory sensitivity of the 

bat, M. lyra, to changes in the position of spectral peaks and notches across a sequence of 

synthesized echolocation calls. These call sequences were generated to mimic the echoes as they 

would return from a 3D object whose reflection characteristics change with ensonification angle. 

Thereby, we wanted to analyze the importance of these spectral features for echo-acoustic object 

recognition. Unlike in previous studies, the changes of the peak and notch centre frequencies 

were time-variant, varying sinusoidally with a certain modulation frequency. The bats’ detection 

threshold for variations in the spectral envelope was measured by presenting a synthesized 

echolocation-call sequence filtered with time-variant filters. 
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1.1.1 Material and Methods 

1.1.1.1 Experiment 1: time-variant peak detection 

Animals 

Four adult M. lyra, one male and three females, took part in the training. One of the female bats 

died within the data-acquisition period, thus most of the data presented is from the remaining 

two females and one male. They were kept in a 12 m² room with free access to water. During 

training periods consisting of five consecutive days the bats were fed with mealworms as a 

reward. Apart from the training rewards the animals were fed one mouse per week. 

Experimental setup 

All experiments were performed in an echo attenuated chamber (3.5 m x 2.2 m x 2.2 m) with a 

wall foam coating. The setup consisted of a starting perch on one side of the room, ensuring a 

precise positioning of the bat, and two ultrasonic speakers, one in the left and one in the right 

hemi field. The two ultrasonic speakers were placed at the same distance and angle in each hemi 

field to the bat’s starting position: the distance from the speakers to the bat’s head was 1.2 m; the 

angle between the speakers and the bat’s head was 90°. A feeding dish was placed below each 

speaker. The setup is depicted in Figure 7. 
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Figure 7: Illustration of the setup for the peak and notch detection 
Panel A depicts the setup from the front, panel B from the side. Feeder (Fe), loudspeaker (Ls), starting perch (Pe) 
and touch screen (Ts) are depicted. The angle relations are indicated. 
 

Stimuli 

The source signal was a sequence of 17 synthesized echolocation calls. Each call was a multi-

harmonic frequency sweep with a duration of 1.5 ms. The fundamental frequency swept from 

23 to 19 kHz. Five harmonics were generated with attenuations of 30, 10, 5, 0, and 5 dB for 

harmonics one to five, respectively. The call was windowed with a raised-cosine window with a 

0.2 ms rise time, 1.1 ms steady state and 0.2 ms decay time. 

For the time-invariant echolocation-call sequence, a band-pass filter with a reference centre 

frequency (CF) of 60 kHz and a bandwidth of + 10% of the CF was applied to all 17 calls in the 

sequence. For the generation of the time-variant echolocation-call sequences, the CF of the band-

pass (peak) filter was sinusoidally modulated around the reference CF along a log-frequency 

axis. The filter was designed as a finite-impulse-response, band-pass filter of order 62. The 

detection threshold for variations of spectral peaks was measured by varying the modulation 

depth (in % of the CF) of the time-variant filtered echolocation-call sequence. To measure the 

bats’ sensitivity to the CF modulation, we presented modulation depths of 100, 52, 40, 30, 24, 

18, 14, 11, and 9 % of the CF. A modulation depth of 100% defined a frequency range of + one 
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octave around the CF and produced filter CFs between 30 and 120 kHz. The modulation rate of 

the CF modulation was 2, 4, 8, or 16 Hz. One echolocation-call sequence always contained two 

modulation periods. In consequence, the overall duration of the echolocation-call sequence and 

the temporal separation between the echolocation calls in the sequence decreased with increasing 

modulation rate. For a modulation rate of 2 Hz, the echolocation-call sequence was 1 s long and 

the temporal separation between the echolocation calls was about 61 ms; for a modulation rate of 

16 Hz, the echolocation-call sequence was 125 ms long and the temporal separation between the 

echolocation calls was about 6 ms. Spectrograms of an unfiltered call and time-variant and time-

invariant echolocation-call sequences are shown in Figure 8 A and B (page 25). These 

echolocation-call sequences simulate a bat moving twice around an abstract virtual acoustic 

object and ensonifying it from eight different angles. Different flight speeds are represented by 

modulation rates between 2 and 16 Hz. While this range of modulation rates is low compared to 

many auditory studies on the perception and encoding of time-variant signals, the rates are 

certainly high enough to include the speed of spectral or temporal modulations encountered by a 

bat when it moves around an object ensonifying it from different angles. 

To preclude the bats’ use of overall presentation level or absolute-frequency cues (Krumbholz 

and Schmidt, 1999), the presentation level was roved by + 6 dB and the reference CF was roved 

by + 10 % over trials. Moreover, the phase of the sinusoidal frequency modulation was roved 

over trials.  

The echolocation-call sequences were computer generated (Matlab 5.3, Mathworks, Natick, MA) 

and digital-analog converted (RX6, sampling rate 260 kHz, Tucker Davis Technologies, 

Gainesville, FI). The echolocation-call sequences were amplified (Rotel RB 976 MK II, 

Worthing, England) and presented over the ultrasonic loudspeakers (Matsushita EAS 10 TH 

800D, Osaka, Japan) at a level of 65 dB SPL (preceding the roving level). The frequency 

response of all setup components including speakers was flat within +/- 5 dB between 5 and 

100 kHz. The echolocation-call sequences were heterodyned by two real-time digital signal 

processors, DSPs, (RP2, sampling rate 200 kHz, Tucker Davis Technologies, Gainesville, FI) 

allowing the experimenter to follow the presentation acoustically via headphones. 

Procedure 

In a 2-AFC experiment, psychometric functions were obtained for variations in the spectral 

content of synthesized echolocation calls. The time-variant filtered echolocation-call sequence 

was played back by one speaker and the time-invariant filtered echolocation-call sequence by the 
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other. While hanging on the perch, the bat perceived the echolocation-call sequences alternately 

from each speaker. There was a fixed inter-stimulus interval of 500 ms between successive 

echolocation-call sequence presentations. The echolocation-call sequence presentations stopped 

as soon as the bat left the perch. The bat had to therefore make its decision at the starting 

position. On the other side of the room, opposite to the perch, the experimenter was seated, 

controlling the procedure and the data storage via touch screen (WES TS, ELT121C-7SWA-1, 

Nidderau-Heldenbergen, Germany). The experimental program was written in Matlab 5.3. 

The bats were trained to fly to the speaker from where they perceived the time-variant filtered 

echolocation-call sequence. For the initial training, the modulation depth was set to 40 % of the 

CF. As a control, one bat was trained to fly to the time-invariant filtered echolocation-call 

sequence. Whether the time-variant echolocation-call sequence was presented at the left or right 

position was determined by a pseudo-random sequence, with the same echolocation-call 

sequence never occurring more than three times in a row at the same position. As soon as the 

bats were able to solve this task with a stable performance of > 85 % correct choices over several 

days, the modulation depth of the time-variant filtered echolocation-call sequence was decreased 

and increased. 30 trials for each modulation depth were collected. The performance was 

calculated as decisions for the side of the time-variant echolocation-call sequence in percent 

correct as a function of the modulation depth. The significance level was set to 75 % correct 

choices. After evaluating the threshold modulation depth for a specific modulation rate, the bats 

were trained to the next modulation rate and the corresponding threshold was measured.  

1.1.1.2 Experiment 2: time-variant notch detection 

The animals, the experimental setup, and the procedure were the same as in Experiment 1. 

Stimuli 

The source signals were the same synthetic call sequences as in Experiment 1. The filter was 

designed as a finite-impulse-response, band-stop (notch) filter of order 64, a reference CF of 

60 kHz and a bandwidth of + 10 % of the CF. For the time-invariant echolocation-call sequence, 

this filter was applied to all 17 calls in the echolocation-call sequence.  

For the generation of the time-variant echolocation-call sequences, the CF of the band-stop filter 

was sinusoidally modulated around the reference CF along a log-frequency axis. As in 

Experiment 1, the detection threshold for variations of spectral notches was measured by varying 
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the modulation depth (in % of the CF) of the time-variant filtered echolocation-call sequence. 

The stimuli are illustrated in Figure 8 C and D. 

 

 
Figure 8: Spectrograms of the echolocation-call sequences with the time-variant peaks (A, B) and notches (C, 
D) 
To the left of A and C is the spectrogram of the unfiltered FM sweep consisting of F0 (23 to 19 kHz) and 4 
harmonics with a duration of 1.5 ms. Panels A and B show the echolocation-call sequences to be discriminated for 
the time-variant peak detection. Panels C and D show the echolocation-call sequences to be discriminated for the 
time-variant notch detection. All echolocation-call sequences have a modulation depth of 40 % of the CF and a 
modulation rate of 16 Hz which results in an overall duration of 125 ms. 
 

Figure 9 depicts modulation depth examples of 100, 40, 11 and 5 % of the CF (panel A – D, 

respectively) for the time-variant peak detection task. Plotted is the frequency in kHz as a 

function of time in ms. The applied modulation rate is 16 Hz, resulting in an overall duration of 

125 ms per echolocation-call sequence. 
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Figure 9: Spectrograms of the echolocation-call sequences with the time-variant peaks with different 
modulation depths 
Panels A, B, C and D show the echolocation-call sequences with a modulation depth of 100, 40, 11 and 9 % of the 
CF, respectively. Applied is a modulation rate of 16 Hz which results in an overall duration of 125 ms. 
 

1.1.2 Results 

1.1.2.1 Experiment 1: time-variant peak detection 

The bats’ performance in the time-variant peak detection task was very similar and thus, the 

threshold was calculated as a mean value for individuals. Psychometric functions for the 

modulation rates of 2, 4, 8, and 16 Hz for all bats are shown in the four panels of Figure 10. 

At a modulation rate of 2 Hz, the four bats were able to detect a frequency modulation depth of 

10.9 % of the CF, on average (Fig. 10 A). At a modulation rate of 4 Hz, the four bats could 

detect a modulation depth of 10.9 % of the CF, on average (Fig. 10 B). At a modulation rate of 8 

and 16 Hz, the three remaining bats could detect a modulation depth of 11.2 and 11 % of the CF, 

respectively (Fig. 10 C, D). For a CF of 60 kHz 11 % of the CF corresponds to a frequency 

bandwidth of 13 kHz. 
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Figure 10: Mean psychometric functions for all bats for the time-variant peak detection for the tested 
modulation rates (MR) 
Plotted are percent correct decisions as a function of the modulation depths, the significant threshold level was set to 
75 %. Each panel depicts the psychometrics curves for all animals as a function of modulation depth. The threshold 
is calculated as a mean value for all bats. Panels A to D show data for MRs of 2, 4, 8, and 16 Hz, respectively. 
 

Surprisingly all animals readily transferred the discrimination task from one modulation rate to 

the next, although not only the modulation rate but also the overall echolocation-call sequence 

duration changed. This is shown in an exemplary training curve for one bat in Figure 11. 
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Figure 11: Exemplary training curve for one bat during part of the data acquisition 
Plotted are percent correct decisions as a function of the number of training days, the significant threshold level was 
set to 75 %. The numbers above the curve indicate the number of trials per day. The blue fields highlight the 
beginning of threshold data acquisition, the red fields emphasize when a new MR was initiated. Note that with 
initiation of a new MR the bat’s performance is above the 75 % level, denoting that the bat readily transferred the 
discrimination task from one modulation rate to the next. 
 

The slight decrease of the bats’ performance when the modulation depth was increased from 

40 % of the CF to 100 % can be attributed to the bats being trained on a modulation depth of 

40 % and they seemed slightly irritated by the high modulation depths, allowing the assumption 

that these signals may have sounded different than the initially trained condition (40 %). 

However, the modulation depth used for the training did not affect the threshold value: as a 

control, one female bat was retrained at a modulation rate of 4 Hz to a modulation depth of 

100 % after the data acquisition for all other experimental conditions was finished. Figure 12 

depicts the psychometric function obtained after initial training to a 40 % modulation depth and 

the function obtained after initial training to a 100 % modulation depth. Although the above-

threshold performance differs somewhat between these data acquisitions, near-threshold 

performance is very similar ensuring the validity of the obtained threshold values for all animals. 
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Figure 12: Psychometric functions for the peak detection for one bat (MR = 4 Hz) 
The solid line represents the performance with an initial training at a modulation depth of 40 % of CF. The dotted 
line displays the same bat’s performance for the same experimental condition, only with an initial training at a 
modulation depth of 100 % of CF. 
 

In general we were able to observe that the spectral peaks have to vary by about 11 % of the CF 

to be discriminated from the time-invariant peaks. Furthermore, this threshold seems to be 

independent of the modulation rate in the tested range. 

 

1.1.2.2 Experiment 2: time-variant notch detection 

Psychometric functions for the detection of a time-variant spectral notch are shown in Figure 13 

in the same format as for Experiment 1. Again, the threshold was calculated as a mean value for 

three bats. For a modulation rate of 2 Hz, the threshold was 11.3 % of the CF. For modulation 

rates of 4, 8, and 16 Hz, the thresholds were 11.4, 10.9, and 11.8 % of the CF, respectively. The 

general performance was slightly worse, but all in all did not differ from that of the first 

experiment. 

As it was the case for the time-variant peak detection, the transfer to a new modulation rate did 

not require retraining and thresholds were largely independent of modulation rate.  
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Figure 13: Mean psychometric functions for all bats for the time-variant notch detection for the tested MRs 
Plotted are percent correct decisions as a function of the modulation depths, the significant threshold level was set to 
75 %. Each panel depicts the psychometrics curves for all animals as a function of modulation depth. The threshold 
is calculated as a mean value for all bats. Panels A to D show data for MRs of 2, 4, 8, and 16 Hz, respectively. 
 

1.1.3 Discussion 

The current psychoacoustical study was designed to investigate the auditory sensitivity of the 

bat, M. lyra, to time-variant spectral peaks and notches imposed on sequences of synthesized 

echolocation calls. We found that M. lyra is well able to discriminate a time-variant 

echolocation-call sequence from a time-invariant echolocation-call sequence. The detection 

threshold for the time-variant echolocation-call sequence in the tested range lies at 11 % of the 

CF independent of whether a spectral peak or notch was modulated. Furthermore the detection 

threshold seems to be unaffected by the modulation rate across the tested range from 2 to 16 Hz. 

In the following, we will discuss the obtained data in regard to these three points: the obtained 

threshold values in general, the apparent modulation rate independency and the threshold values 

of the peak and notch signals in comparison. 
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Threshold value 

The detection threshold for changes in the spectral domain lies at about 11 % of the CF, 

independent of whether the CF of a peak- or notch filter was varied. This threshold is 

comparable to frequency modulations (7 – 21 %) occurring in the active-acoustic object-

discrimination experiment of Simon et. al (2006) based on the assumption that the bats exploited 

spectral-notch changes in that experiment. In an earlier two-front, phantom-target study, Schmidt 

(1992) obtained similar threshold values for M. lyra of 6 – 13 % for spectral-notch centre 

frequency changes. Note, however, that again, these thresholds were obtained in an active-

acoustic paradigm where the bats evaluated the spectral content of echoes of their own calls. The 

frequency differences, on the other hand, were static within a trial. The current data obtained in a 

passive-acoustic paradigm with time-variant filtering corroborate these findings. 

M. lyra is a gleaning bat; it rarely actively hunts for flying insects and therefore does not have to 

detect wing flutter. Nevertheless, the current thresholds, obtained in a passive-acoustic paradigm, 

are comparable to values obtained for other bat species in active-acoustic paradigms (Mogdans 

and Schnitzler, 1990; Bartsch and Schmidt, 1993; Esser and Kiefer, 1996). Typically, M. lyra 

catches its prey from the ground, and first detects it by listening to prey-generated rustling 

noises. By first relying on passive rustling noises and then moving in to evaluate and catch 

possible prey it might not need to analyse fine modulation differences. 

Lyzenga and Carlyon (1999) measured in humans the detection of just noticeable differences for 

a sinusoidal modulation of the CF of a synthetic formant with a fixed fundamental. The 

thresholds they obtained were larger, by a factor of 2, than thresholds for the discrimination of 

(static) formant frequencies (Lyzenga and Horst, 1997). This seems to hold for starlings as well, 

which also show 2-3 times larger threshold depths for low modulation frequencies than for just 

noticeable frequency differences between pure tones (Langemann, 1991). This difference might 

explain our slightly increased thresholds in comparison to other studies, where frequency 

differences were static (Schmidt, 1992; Simon et al., 2006). 

Modulation-rate independency 

The current detection thresholds for spectral changes in the envelope were apparently 

independent of modulation rate. Temporal processing therefore does not seem to be a critical 

factor for the discrimination task. In contrary, the current data are consistent with an analysis of 

place cues along a tonotopic frequency axis. Moore and Sek (1995; 1996) and Sek and Moore 

(1995; 2000) claim that the detection threshold for frequency modulations of low-frequency pure 
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tones for humans is modulation-rate dependent, as the low-frequency tones are encoded by 

phase-locked, temporal cues. In mammals, phase locking is limited to frequencies below about 

5 kHz (Rose et al., 1968; Palmer and Russell, 1986; Oertel, 1999). Higher frequencies are 

encoded exclusively by place cues. In humans, spectral place cues provide worse frequency 

accuracy than phase-locked, temporal cues (Moore and Sek, 1995). 

In the bat, each of the presented ultrasonic calls can only be encoded by auditory place cues. 

Thus, no phase-locked, temporal information concerning the current frequency composition of 

the call is available. Consequently, the frequency acuity is limited. The phase-locking, low-pass 

filter does not impair the peripheral auditory representation of the modulation rate as all tested 

modulation rates were considerably lower than the phase-locking filter cut-off frequency; 

meaning that the fluctuations of the spectral envelope can easily be encoded through phase-

locking. In summary, the current data are consistent with the hypothesis that the spectral peaks 

and notches are encoded via place cues in the peripheral auditory system and that the bats’ 

central auditory system is fast enough to follow the changes of these place cues over time for the 

range of modulation frequencies tested. 

Several electrophysiological studies on temporal encoding in the mammalian auditory cortex 

have revealed a low-pass characteristics of synchronous cortical discharges with a cut-off 

frequency around 20 Hz (Schulze and Langner, 1997; Lu et al., 2001; Liang et al., 2002). In an 

electrophysiological study with rising and falling FM stimuli, responses of neurons in the 

primary auditory cortex of the gerbil were recorded (Ohl et al., 2000). Across the range of tested 

modulation frequencies (1 to 24 Hz), the neurons’ responses did not vary with modulation rates. 

This again fits with the modulation rate independent thresholds we obtained in this study for 

modulation rates lying in a similar range.  

In a psychophysical study in the bat Tadarida brasiliensis, Bartsch and Schmidt (1993) tested 

perceptual sensitivity to sinusoidal frequency modulation at much higher rates (10-2000 Hz, 

CF = 40 kHz). They found that threshold modulation depths deteriorated with increasing 

modulation rate. As we only tested modulation rates between 2 and 16 Hz, we are not able to 

comment on whether the bats may have showed increased thresholds for even higher modulation 

rates. Note that our stimulus trains were intended to simulate a stationary complex object 

ensonified by a bat surrounding the object twice and ensonifying it from eight different angles. 

In this context, modulation rates above 16 Hz would have represented a highly unnatural 

situation, 16 Hz already representing an extreme. 
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Comparison of peak- and notch thresholds 

In the current study, the bats were equally sensitive for time-variant peaks and notches. In the 

following, we discuss this finding in regard to the question, whether the bat M. lyra extracts pitch 

information from its harmonically structured echolocation calls or whether echo analysis is based 

on the auditory processing of spectral place profiles. 

Sedlmeier (1992) was able to show that M. lyra categorizes ultrasonic pure tones and complex 

harmonic structures with attenuated or missing fundamentals almost identically. This was 

interpreted as that the bat perceives the ‘missing fundamental’, enabling it to integrate different 

acoustic qualities to a complex perception. Sedlmeier (1992) suggested that the bats perceive a 

pitch corresponding to the fundamental frequency of a sound and categorize sounds with 

different spectral features according to their pitches. Preisler and Schmidt (1998) further 

investigated this topic, and examined whether the bat M. lyra evaluates complex harmonic 

structures according to their pitch or on the basis of overall spectral similarity. They observed 

that the tested bats differed in which of the strategies they applied to solve the task. Krumbholz 

and Schmidt (1999) showed that M. lyra spontaneously classified test signals according to their 

broadband spectral similarity, using trained signals as spectral templates, not pitch cues. 

As the slope of the filters used in the current study was rather steep (filter-order 62), an 

echolocation call filtered with a band-pass (peak) filter centred at 60 kHz will cause a pitch 

percept corresponding to 60 kHz. Due to the time-variant filtering, the bats would hear a time-

variant pitch. When the notch filters are applied, on the other hand, the bats always hear all 

harmonics except the one filtered out by the notch filter. Thus, the pitch would always 

correspond to the calls’ fundamental frequency of about 21 kHz. As pitch extraction is rather 

insensitive to amplitude modulations of higher harmonics, this percept would not be strongly 

affected by the time-variant filtering. In summary, if the bats had applied a pitch-based analysis, 

one would expect a better performance with the band-pass (peak) filters than with the band-stop 

(notch) filters. The finding that this is not the case corroborates the conclusions of Krumbholz 

and Schmidt (1999) that in most cases the bats recruit a spectral profile- rather than a pitch 

analysis for echo imaging. 

In summary, the current data show that the bat M. lyra can discriminate time-variant from time 

invariant echolocation-call sequences with good accuracy. In the range of modulation rates tested 

(2 to 16 Hz), the discrimination performance was constant. The fact that sensitivity to time-

variant spectral peaks and notches was similar argues in favour of a spectral profile analysis 

rather than a pitch-based analysis of the harmonic echolocation-call sequences. With the 
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reservation of comparing passive-acoustical and active-acoustical auditory processing, the 

current data indicate that the bats’ central auditory system is fast enough to track the changes in 

the spectral composition of returning echoes when the bat ensonifies an object while flying 

around it.  

 

1.1.4 Conclusion 

M. lyra is able to follow changes in the spectral composition of echolocation-call sequences in a 

passive acoustic task. The question now arises, whether the bat is able to detect changes in the 

composition of returning echoes, while exploring and actively ensonifying an object in space. 

This leads us to the following study, where we analyzed the correlation between the bat’s 

movement in space and the perception of position-variant echoes. We wanted to investigate 

whether M. lyra is able to acquire information about an object through perceptual integration of 

echoes and its sensitivity to temporal changes of reflected echoes in an active echo-acoustic task. 
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1.2 Evaluation of holographic echo-acoustic images by echolocating bats 

 

 
 

We have developed an experimental setup which can generate holographic echo-acoustic 

objects, i.e., the echo-acoustic image perceived by the bats depends on their echo-acoustic 

azimuthal observation angle. Previously the bat had received a static acoustic image 

independent from where the bat had echolocated. With this technical extension the real-time 

presentation of space-variant acoustic images is possible. Each echolocation call is convolved 

with a certain IR, which is determined by the bat’s position in space. The echo structure is 

therefore dependent on the echolocation call and the ensonification angle. 

Our goal is to investigate Megaderma lyra’s sensitivity for dynamic changes of the spectral and 

temporal content of IRs, while it is scanning virtual objects echo-acoustically. To analyze this 

echolocation performance we created two different virtual 3D objects defined exclusively in 

terms of their IRs. One object, made up of 36 different IRs, changes in dependence of the 

observation angle and the other, consisting of 36 identical IRs, is independent from the bat's 

observation angle. In a 2-AFC paradigm bats are trained to fly around two units each consisting 

of a microphone, loudspeaker and feeder. A high-speed video camera above these units 

determines the bat's position in space. The bat's echolocation calls are recorded with the 

microphone, filtered with one of the 36 IRs (dependent on the bat's position) and played back in 

real-time over the loudspeaker. While flying around both units the bat experiences echoes, as it 

would experience when moving around two real objects. The units therefore substitute real 

objects. The IR of one virtual object changes in dependence of the bat’s position in space, the IR 

of the second virtual object is independent of the ensonification angle. 
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1.2.1 Material and Methods 

Animals  

Five adult M. lyra, two males and three females, took part in the training. They were kept in a 

12 m² room with free access to water. During training periods of five consecutive days the bats 

were fed with mealworms as a reward. Apart from the training rewards the animals were fed one 

mouse and two crickets per week. 

Experimental setup 

All experiments were performed in an echo attenuated chamber (3.5 m x 2.2 m x 2.2 m) with a 

wall foam coating. The setup consisted of a starting perch on one side of the room, ensuring a 

precise positioning of the bat, two virtual-object units (VO unit), depicted in Figure 14 A, and a 

high-speed video camera (Basler A602f 1394 camera, Basler, Ahrensburg, Germany) above the 

VO units. The dimension of the camera’s observation field was 1x2 m. The VO units were 

placed in the centre of each hemi-field of the observation field and consisted of an ultrasonic 

¼ inch microphone (B&K 4135 microphone, B&K 2807 power supply, Brüel & Kjer 

Instruments, Nearum, Denmark), an omni-directional speaker (Elac 4piplus.2, Elac 

Electroacustic GmbH, Kiel, Germany), a landing platform and a feeding dish (Fig. 14 B). The 

bats were rewarded by opening and closing an iris diaphragm (Linos Photonics GmbH & 

Co.KG, Göttingen, Germany) above the feeding dish. The chamber was illuminated by a 40 watt 

red light bulb positioned above the camera. 
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Figure 14: Illustration of an omni-directional virtual-object (VO unit) (A) and the spatial arrangement of the 
two VO units in the experimental setup (B) 
The VO unit consists of a down-facing ultrasonic microphone centred in an omni-directional ultrasonic speaker. 
This combination is mounted above a circular landing platform with a centred feeder. The feeder could be opened 
and closed with a motorized iris diaphragm. The setup consisting of two such VO units (light-grey circles in B) was 
monitored by a high-speed video camera with an observation area as outlined by the grey area in B. The angle of the 
bat relative to the VO units is calculated by the image-processing software in real-time every 10 ms.  
 

Stimuli 

We created two different holographic 3D objects defined exclusively in terms of their IRs. All 

IRs were band-pass filtered impulses with cut-off frequencies of 20 and 120 kHz and had a filter 

order of 164. One object, made up of 36 different IRs (space-variant), changed in dependence of 

the observation angle and the other, consisting of 36 identical IRs (space-invariant), was 

independent from the bat's observation angle. The space-variant IRs were generated by 

generating a block of six IRs. The first four had an attenuation of 70 dB, the last two of 30 dB, 

thereby having a level difference of 40 dB. This spatial reflection pattern was repeated six times 

creating a cylindrical virtual object, which had 12 strong and 24 weak reflections. The space-

invariant IRs all had the same attenuation level of 35 dB (level difference of 0 dB), leading to a 

virtual cylinder. The periodicity was defined as spatial frequency cpd (cycles per degree) with a 

cpd of 1/60. For threshold measurements, seven interpolation levels were calculated. This led to 

nine spatial amplitude modulated (AM) depths of 40 – 0 dB in 5 dB steps. Both virtual objects 
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are shown in Figure 15 (panels A and D). Two interpolations (20 and 10 dB difference) are 

depicted in panels B and C. 

 

 
Figure 15: Illustration of the virtual objects presented via the VO units 
The loudness of the reflections of the rewarded virtual object (A to C) changed periodically with ensonification 
angle while the reflection loudness of the unrewarded virtual objects is independent of ensonification angle (D). The 
insets of the panels depict a visual illustration of how such objects might look like. Note, however, that due to the 
roving-level paradigm, the overall size of the object and consequently the absolute target strength could not be used 
to solve the task. Moreover, the random rotations of the virtual objects around the vertical axis prevented the bats 
from homing onto singular reflections. 
 

To preclude the bats’ use of overall presentation level or absolute-frequency cues (Krumbholz 

and Schmidt, 1999), the presentation level was roved by + 6 dB over trials. To eliminate absolute 

position cues and to force the bats to fly around the VO units, the space-variant virtual object 

was randomly rotated around the vertical axis, meaning the peak positions were rotated, but the 

overall periodicity was kept intact. 

Recorded echolocation calls were band-pass filtered (20 – 100 kHz), amplified by 80 dB 

(PM 5171, Philips, Hamburg, Germany), analog-digital converted and convolved with an IR by a 

real-time processor (RX6, sampling rate 260 kHz, Tucker Davis Technologies, Gainesville, FI). 

The space-variant and –invariant signals were computer generated (Matlab 5.3, Mathworks, 
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Natick, MA). The bat’s position in space was determined by a second computer running a 

customized program version of EyeSeeCam (EyeSeeCam, T. Dera and E. Schneider, Technical 

University Munich, Germany). This customized program converts the camera signals (100 

frames per second) by subtracting each frame from a ‘quiet’ background acquired when the 

program is initiated, calculating the centroid of the resulting darkest pixel group and converting 

this centroid into degrees. As each virtual object is defined by 36 IRs, each VO unit is divided 

into 36 10° angles, thus encoding the bat’s position to 36 possibilities around each VO unit. This 

degree calculation was sent bit-encoded to the real-time processor via an I/O-input. The outgoing 

digital-analog converted echoes were amplified (RB 976 MK II, Rotel, Worthing, England) and 

presented over the ultrasonic loudspeakers. A delay of 113 samples is generated by the analog-

digital and digital-analog conversions. The echoes were additionally heterodyned by two further 

real-time processors (RP2, sampling rate 200 kHz, Tucker Davis Technologies, Gainesville, FI) 

allowing the experimenter to follow the presentation acoustically via headphones. The technical 

setup is schematically depicted in Figure 16.  
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Figure 16: Technical setup of the VO units 
Schematic for one VO-unit: the high speed video camera sends its input to the second computer (PC2), which 
calculates the current IR-number and sends this to the real-time processor RX6. The RX6 filters the band-pass 
filtered (20 to 100 kHz) and amplified (80 dB) microphone-input with the current IR and sends this via an amplifier 
to the speaker, which plays back the echo. The RX6 output is also connected to the second real-time processor RP2, 
which heterodynes the signal and sends it to headphones for the experimenter as an acoustic control. The first 
computer (PC1) controls the two DSPs through Matlab5.3. The feeder can be opened and closed via PC1. The 
camera, microphone, feeder, speaker and filter-amplifier are positioned inside the flight chamber; all other units are 
outside of the chamber. 
 

Procedure 

In a 2-AFC experiment, psychometric functions were obtained for space-variant echoes. The bats 

were trained to fly around the VO units. Each echolocation call was filtered with the current IR. 

The camera tracking the bat’s position in space determined the IR for filtering. The space-variant 

echoes were played back by one VO unit and the space-invariant echoes by the other. Playback 

did not start until the bat left the perch. On the other side of the room, opposite to the perch, the 

experimenter was seated, controlling the procedure and the data storage via touch screen (WES 
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TS, ELT121C-7SWA-1, Nidderau-Heldenbergen, Germany). The experimental program was 

written in Matlab 5.3. 

Three conditions were determined. In the first condition, ‘ACT’, an echo a bat received was a 

convolution of the bat’s own echolocation call with the current IR. Playback was only triggered 

by call detection. In the second condition, ‘TRIG’, the bats had to echolocate as in the ACT 

condition for playback triggering, but an echo was generated by convolving a synthetic 

echolocation call with the current IR. In the third condition, ‘PAS’, playback was not triggered 

by the bats’ echolocation calls. An echo consisted of a convolution of a synthetic echolocation 

call with the current IR as in the TRIG condition, but the echoes were presented with a fixed 

interpulse interval of 100 ms. 

For conditions TRIG and PAS, the synthetic echolocation call was a multi-harmonic frequency 

sweep with a duration of 1.5 ms. The fundamental frequency swept from 23 to 19 kHz. Five 

harmonics were generated with attenuations of 30, 10, 5, 0, and 5 dB. The chirp was windowed 

with a raised-cosine window with a 0.2 ms rise time, 1.1 ms steady state and 0.2 ms decay time. 

For all three conditions the bats were trained to fly to the VO unit from where they perceived the 

space-variant echoes. The bat made a choice by landing on the platform. For correct choices the 

feeding dish was opened and the bat was rewarded with mealworms which were always present 

in both VO units. Whether the space-variant echoes were presented at the left or right VO unit 

was determined by a pseudo-random sequence, with the same signal never occurring more than 

three times in a row at the same VO unit. As soon as the bats were able to solve this task with a 

stable performance of > 80 % correct choices over several days, the absolute level difference 

between peaks and baseline was decreased. 30 trials for nine absolute level differences were 

collected. The performance was calculated as decisions for the side of the space-variant echoes 

in percent correct as a function of absolute level difference. The significance level was set to 

75 % correct choices. After evaluating the threshold absolute level for a specific condition, the 

bats were trained to the next condition and the corresponding threshold was measured. 
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Echo-acoustic Calibration 

To ensure, that the VO unit’s physical echo did not mask the echo of the virtual object, we 

additionally ensonified one VO unit with a virtual bat (VB). This enabled a visualization of the 

echoes the bats really perceived. The VB consisted of an ultrasonic ¼ inch microphone 

(B&K 4135 microphone, B&K 2610 preamplifier, Brüel & Kjer Instruments, Nearum, Denmark) 

a two-channel spectrum analyzer (SR780, Stanford Research Systems, Sunnyvale, CA), an 

integrated amplifier (RB 960 BX, Rotel, Worthing, England), and an ultrasonic speaker (EAS 10 

TH 800D, Matsushita, Osaka, Japan). The VB, positioned 20 cm away from the VO unit, was 

tracked by the high-speed camera as implemented above. The analyzer sent out over the VB’s 

speaker 16 synthetic M. lyra echolocation calls per second. The echolocation calls were dealt 

with in the same manner as the real bats’ echolocation calls. They were recorded, filtered and 

played back by the VO unit. The VB’s microphone recorded the returning echoes, which the 

analyzer cross-correlated with the echolocation calls. The cross-correlation produces the IR of 

the VO unit, weighted with the typical frequency content of an echolocation call. The IR of the 

VO unit reveals both the physical reflections generated by the VO unit and the virtual-object 

reflections which depend on the position of the VB unit relative to the VO unit. Figure 17 

illustrates the echoes extracted from the VB’s recording. In all panels the first signal responds to 

the crosstalk from the VB’s chirp, the second signal, labeled with one asterisk, corresponds to 

the real echo of the VO-unit and the last signal marked by two asterisks is the echo of the virtual 

object. Panel A and B depict a weak and strong reflection of the space-variant object with a 

spatial AM depth of 40 dB, respectively. Panel C shows the stronger reflection of the space-

variant object with a spatial AM depth of 25 dB and panel D the reflection of the space-invariant 

object (spatial AM depth 0 dB). As can be seen in these panels an interfering masking effect of 

the virtual-object reflections by the physical reflection of the VO unit were not present as both 

reflections are separated in time, and the virtual object produces in terms of loudness the more 

dominant reflection. 
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Figure 17: Physical and virtual echoes reflected by a VO unit obtained in the calibration 
In all panels the first signal responds to the crosstalk from the VB’s chirp, the second signal, labelled with one 
asterisk, corresponds to the real echo of the VO-unit and the last signal marked by two asterisks is the echo of the 
virtual object. Panel A depicts a weak and panel B and C depict a strong reflection of the space-variant object with a 
spatial AM depths of 40 and 25 dB, respectively. Panel D shows the reflection of the space-invariant object (spatial 
AM depth 0 dB). 
 

1.2.2 Results 

Psychoacoustic results 

Five bats were successfully trained to discriminate the space-variant echoes from invariant 

echoes as they would be radiated by a plain cylinder with different sized surfaces in at least one 

of the three experimental conditions. In the ACT condition, the bats had to evaluate the real-

time generated echoes of their own calls while flying around the VO units. Psychometric 

functions obtained from four bats in the ACT condition are shown in Figure 18. At a spatial AM 

depth of 40 dB, all animals perform significantly correct. At this high AM depth, the loudness 

of the reflections of the rewarded virtual object fluctuated strongly when the bat flew around it. 

Note that due to the roving-level paradigm, the rewarded virtual object was not necessarily the 

one producing the louder reflections. With decreasing modulation depth, the spatial distribution 

of echoes from the two VO units becomes more similar and consequently, performance 

decreases. Threshold spatial AM depths, derived from a sigmoidal fit to the psychometric 

functions, are given in the legend of Figure 18. Whereas one of the bats can detect a spatial AM 
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depth of only 9 dB and one bat a depth of 12 dB, the other two bats need a spatial AM depth of 

21 to 23 dB to discriminate the space-variant echoes from space-invariant echoes. 

 

 
Figure 18: Psychometric functions for the detection of space-variant virtual objects in the ACT condition 
Here the echoes generated by the VO units corresponded to exact copies of the sonar emissions. While all bats could 
reliably discriminate between a virtual object with a spatial AM depth of 40 dB, none of the bats could reliable 
detect the virtual object with a spatial AM depth of 5 dB. Individual spatial AM depth thresholds are given in the 
legend. 
 

Four of the five bats learned to discriminate echoes from the VO units in condition TRIG. Here, 

the animals’ vocalizations triggered the presentation of a synthetic echo generated by the 

convolution of a synthetic call with the same space-variant IRs. As in the ACT condition, the 

loudness of the IR depended on the position of bats relative to each VO unit. Psychometric 

functions for the bats’ performance in the TRIG condition are shown in Figure 19 in the same 

format as Figure 18. Spatial AM depth thresholds amount to 10 and 14 dB for Bats 1 and 3, 

respectively, and amount to 18 and 23 dB for Bats 2 and 4, respectively. 
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Figure 19: Psychometric functions for the detection of space-variant virtual objects in the TRIG condition 
Here the echoes generated by the VO units were generated with a synthesized, stereotyped echolocation call but the 
same impulse responses as in the ACT condition. Echo playback, however, was triggered by the bats’ sonar 
emissions. Again, individual spatial AM depth thresholds are given in the legend.  
 

Finally, three of the five bats were successfully trained in the PAS condition. Here, the bats 

were not required to trigger the playback of synthetic echoes but the synthetic echoes were 

presented at a fixed repetition rate of 9.85 Hz from both VO units. Only the echo amplitude 

depended on the bats’ position relative to the rewarded VO unit. Psychometric functions 

obtained in the PAS condition are shown in Figure 20. Thresholds for Bats 1 and 5 amounted to 

spatial AM depths of 12 and 15 dB, respectively. Bat 2 achieved a threshold of 11 dB. 
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Figure 20: Psychometric functions for the detection of space-variant virtual objects in the PAS condition 
Here the echoes generated by the VO units were generated with a synthesized, stereotyped echolocation call and the 
same impulse responses as in the ACT condition. In the PAS condition, echo playback was independent of the bats’ 
sonar emissions at a rate of 9.85 Hz. Again, individual spatial AM depth thresholds are given in the legend. 
 

Analysis of flight patterns of the bats around the VO units 

Typical flight paths are depicted in two examples for each animal in Figure 21. Shown is a flight 

path during one trial from the moment the bat left the starting perch until it made a decision by 

landing on one of the two VO units. Bats 1 (row 1) and 3 (row 3) typically flew around the VO 

units before deciding for one object. Bat 4 (row 4) displayed relative long flight paths, as it 

usually flew back and forth between both VO units.  
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Figure 21: Exemplary flight paths for each bat 
Two representative flight paths were extracted for each animal. The row numbers correspond to the bat number. 
Each flight path, grey sinuous line, was extracted during one trial; the two VO units are depicted as dark circular 
contours. Highly different flight strategies are evident. Additional flight paths for Bat 2 extracted towards the end of 
data acquisition are depicted in the last row, displaying a slight change in flight strategy in comparison to the whole 
duration of training (row 2). 
 

In a subset of recorded trials, the sequence of radial segments which were visited by the bats 

around each VO unit were recorded and analysed. The position of the bat was sampled at a rate 

of 100 Hz. As each VO unit is divided into 36 10° angles the smallest resolvable position is 10°. 

A spatial modulation period always span six such segments, i.e., an angle of 60 degrees around 

a VO unit. The average number of different segments visited by a bat for at least 25 ms is shown 

in Figure 22 for the rewarded and unrewarded VO unit. In general, the bats visited on average 

10 to 20 different segments in each trial and thus, they were well able to acquire enough spatial 

information from both the rewarded and unrewarded VO units. While the number of visited 

segments did not differ significantly between the rewarded and the unrewarded VO unit for each 
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bat, individual differences of the overall flight patterns are apparent: Specifically, Bat 4 visited 

the highest number of different segments for at least 25 ms and Bat 2 the least number of 

segments. This result confirmed the experimenter’s subjective observations. 

 

 
Figure 22: Analysis of individual flight patterns around the VO units 
The bars show for each bat the average number of 10-degree segments visited for at least 25 ms around each VO 
unit in a trial. The analysis is motivated by the assumption that the higher this number is, the higher is the 
probability that a bat can acquire information about the angle-dependent properties of a virtual object. Most bats 
moved similarly wide around both the unrewarded and the rewarded object. Bats 1 and 4 moved significantly further 
around the VO units than the other two bats. 
 

Sound analysis 

In a subset of recorded trials in the conditions ACT and TRIG, the sonar emissions were 

recorded in parallel to the phantom-target echo generation. As sound presentation in the PAS 

condition was independent of the bats’ sonar emissions, no sound analysis was conducted for 

trials acquired in the PAS condition. The output of both channels of the real-time processor 

which generated the virtual-object echoes was recorded using a firewire sound card (Phase 24, 

Terratec Electronic GmbH, Nettetal, Germany) at a sampling frequency of 192 kHz. As the 

sounds were recorded after the processor, only those sounds which were loud enough to trigger 

playback threshold are included in the analysis. The recordings were analysed off-line in terms 

of the number of calls and the average repetition period in a four-second interval preceding the 

bats’ decision in each trial. Results of the sound analysis are shown in Figure 23. Most bats 
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emitted between 10 and 20 calls towards each of the two VO units in each trial (panel A). The 

average repetition period of the calls, however, appears to be longer for Bat 1 than for the other 

bats (panel B). A detailed inspection of the recorded files shows that this result is due to a 

relatively constant call emission sequence of the bat in contrast to the more burst-like emission 

pattern of the other bats. 

 
Figure 23: Analysis of recorded sounds from the VO units in the ACT and TRIG conditions 
The bars show individual data for the average number of emitted calls (panel A) and the average call repetition 
period in the last four seconds of an experimental trial (panel B). In these four seconds, Bat 1 emitted a train about 
18 echolocation calls a relatively stable period of 300 to 400 ms. 
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1.2.3 Discussion 

The current experiments investigated the behavioural strategy and perceptual sensitivity of 

echolocating bats inspecting the 3D shape of complex objects. The presentation of holographic 

echo-acoustic objects was implemented to allow both the systematic variation of echo-acoustic 

object features and the behavioural strategies of the echolocating bats. Due to their excellent 

airborne manoeuvring capacity and their dominant recruitment of echolocation to investigate 

objects, M. lyra proved a very well suited animal model to study object-related echolocation 

strategies. The psychophysical sensitivity to the space-variant echo-acoustic properties of the 

holographic objects was described in terms of the minimum AM depth required to discriminate 

a virtual object with a spatial frequency of 0.016 cpd from an angle-invariant virtual object. The 

threshold spatial AM depth varied between 10 and 23 dB.  

Difference between the ACT and TRIG condition on the one hand and the PAS condition on the 

other hand 

In the ACT and TRIG conditions, the bats could only acquire object information when they flew 

around the objects and echolocated towards the objects. In the PAS condition, however, object 

information could be acquired by just flying around the objects. Interestingly, threshold spatial 

AM depths did not differ significantly between these conditions. This finding allows concluding 

that the call-triggered information when flying around the objects was equally good as the 

information acquired passively in the PAS condition. This means that the sonar activity of the 

animals was so high when they performed in the ACT or TRIG condition that it equalled the 

information provided passively by the synthetic calls presented passively at a repetition rate of 

9.85 Hz. The sound analysis reveals average call repetition periods between 75 and 370 ms, 

corresponding to call repetition rates between 2.7 and 13.3 Hz. In summary, these data indicate 

that the flow of object information acquired passively in the PAS condition, on the one hand, 

and the flow of information acquired actively in the ACT and TRIG conditions, on the other 

hand, was in the same order of magnitude.  

Comparison to fluttering-target investigations 

The current experiments investigated the time-variant echo information a bat receives when 

moving around a complex 3D object and ensonifying it from different angles. A 

complementary, and much more studied case of time-variant echoes is the analysis of echoes 

generated from fluttering targets like flying insects. In this case, the bat is relatively stationary 
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but the echoes are time-variant due to the time-variant nature of the ensonified object. The 

amplitude modulations in the echo sequences perceived by a bat ensonifying such a fluttering 

target are in the range of 15 to 30 dB (Roeder, 1963; Kober and Schnitzler, 1990; Moss and 

Zagaeski, 1994). Psychophysical experiments with fluttering targets have only been 

implemented with real objects, specifically rotating propellers, and the animals were trained to 

detect changes in the rotation speed. Thus, this setup allows varying the modulation frequency 

but not the modulation depth. A variation of modulation depth could only be achieved by using 

different-sized propellers, a parameter that has not been systematically investigated. In 

summary, the AM depths created by insects as fluttering targets are well in the range of spatial 

amplitude modulations used here, but modulation frequencies in the fluttering-target 

experiments are typically much higher and sensitivity to modulation depth has not been 

systematically investigated in fluttering-target experiments. 

An electrophysiological study undertaken in 1987 (Reimer, 1987) was able to show that the 

tuning curves neurons in the inferior colliculus of the bat, Rhinolophus rouxi, were modulation 

frequency dependent, when evoked with sinusoidal amplitude modulated (SAM) stimuli with 

different modulation depths. In a few neurons a 6 % modulation depth still elicited response 

synchronization. The lowest psychophysical threshold of 10 dB spatial AM depth we observed 

in this study would correspond to a modulation depth of 25 %. Rh. rouxi actively hunts flying 

insects and relies on Doppler-effects imprinted on the returning echoes. The prey being small in 

size will not reflect with great loudness differences. This bat species might therefore need to 

evaluate not only frequency, but also small amplitude differences imposed on the echoes. The 

bat M. lyra used in this study does not usually actively hunt flying prey. It relies on prey 

generated rustling noises for prey detection and will then echo-acoustically investigate the 

object of interest (Neuweiler, 1990). It is therefore not necessarily dependent on having to 

evaluate small loudness differences of echoes. 

Discussion of ensonification-correlated movements 

As outlined in the introduction, the echo-acoustic analysis of 3D objects requires movements of 

the bat around the (stationary) object. The current experimental paradigm, which included a 

rove both of the overall target strength as well as a rove of the spatial position of the ‘glints’ of 

the rewarded virtual object, forced the bats to evaluate the correlation of their own movement 

and the sequence of perceived target strengths. The cognitive analysis of this correlation is 

mandatory to create an echo-acoustic representation of the ensonified object. The movement 
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analysis, based on both exemplary video analysis and recordings of the temporal sequence of 

activated IRs, shows that the bats followed quite stereotyped but individually different flight 

paths around the VO units in the experiments. Bat 4 for example took a relatively long time to 

decide for a VO unit. This long flight duration is also represented in the high number of visited 

segments shown in Figure 22 (page 44) for this bat. Bat 2 and 5 were first trained to the PAS 

condition, where the bats did not need to echolocate and both VO units presented echoes 

simultaneously. To solve the task, both bats followed a certain strategy: usually flying in 

between both VO units and then deciding for a VO unit by turning towards the unit. Bat 2 

applied the same strategy for the ACT condition. The inferior performance of Bat 2 in the ACT 

condition appears to be related to this strategy, where the bat only exploited a relatively small 

range of angles around the VO units. It is likely that this smaller range of exploited angles 

mediated less reliable information. Specifically, if e.g., an animal exploited each VO unit just 

from one angle, the target strength it would perceive cannot be used to discriminate the space-

variant (rewarded) from the space invariant virtual object because of the roving paradigm. 

Interestingly, Bat 2 seemed to have slightly changed its flight strategy towards the end of data 

acquisition for all conditions. Every once in a while it displayed more flight movement around 

the VO units than at the beginning of training. This first sign of a possible shift in flight strategy 

is depicted in two examples in the last row of Figure 21 (page 42). 

The current experiments show that bats can be trained to evaluate holographic echo-acoustic 

objects. This technique allows quantification, in psychophysically exact terms, of the bats’ 

sensitivity to the space-variant properties of complex, three dimensional objects. At the same 

time, this technique allows the investigation of the correlation between the bats movements 

around an object and movement-correlated sonar activity. Psychophysically, we showed that the 

bats circling around the holographic object required a minimum spatial modulation depth to 10 

to 23 dB to discriminate the space-variant virtual object from the space-invariant object. 

Interestingly the psychophysical performance of the bats is not always related to the behavioural 

strategies followed by the individual bats in terms of the range of observation angles exploited 

and the echo-acoustic call density during this exploitation: Bats 2 and 4 had the worse 

psychophysical performances in the ACT and TRIG conditions. They represented the two 

extreme behaviours concerning the exploitation of observation angles around the VO units. 

Bat 2 exploited the smallest range and used an average call density, which fits to the high 

threshold the bat needed to still solve the discrimination task, whereas Bat 4 displayed the 

largest exploitation range and the highest call densities, but still needed high spatial AM depths. 
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In further experiments with this experimental technique, it appears promising to investigate the 

bats’ sensitivity to movement correlated changes in the echo delay, spectral interference pattern, 

and temporal characteristics. 

 

 

1.2.4 Outlook 

M. lyra is able to acquire echo-acoustic information about an object through perceptual 

integration of echoes and is sensitive to temporal changes of reflected echoes. 

In a further study employing the same omni-directional playback technique we will be 

investigating M. lyra’s sensitivity for movement correlated changes of the echoes’ spectral 

composition. As before the bat will have to discriminate two virtual objects defined by 36 IRs. 

One is invariant to the bat’s position and the other is position-variant. The IRs are generated by 

using the same filter banks as in the passive listening study. It will be interesting to compare 

these results with those obtained in the passive listening study; whether the bats’ threshold 

performance degrades or improves, when evaluating the same IRs. In contrast to the passive 

listening study the bats obtain the echoes through active echolocation and the frequency 

modulation is correlated with the bats’ position in the azimuthal axis. As the modulation rate is 

dependent on the bats’ movement in space, this will not be a variable parameter. Instead we will 

vary the modulation period defining the position-variant virtual object. For example a 

modulation cycle of six produces six IRs per modulation period, resulting in six times six IRs; a 

modulation cycle of one produces 36 IRs per period. Less IRs per period should be less 

informative, as less IRs define a cycle. A lower cycle rate on the other hand will produce a 

slower spectral variation with smaller changes in frequency. It will be interesting to investigate, 

whether the thresholds differ in correlation with the modulation cycle. This study will further 

help understand the behavioural (flight and echolocation) strategies with which the bat, M. lyra, 

is able to reconstruct the 3D shape of complex objects by perceptual integration of the 

information acquired through sequences of echoes. 

This concludes the first part of this thesis. Part II will lead us to a further topic relevant for echo-

acoustic object analysis: the significance of object size for echolocating bats.  
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Introduction 

2 INTRODUCTION 

Not only is the evaluation of the sensory objects necessary, but also a reliable classification. 

Object recognition is not self-evident, as objects, independent of which modality they are 

perceived with, occur in different sizes. Size-invariant object recognition has already been shown 

for many different species, e.g. humans, monkeys, fish and gerbils, using different sensory cues 

(Larsen and Bundesen, 1978; Logothetis and Sheinberg, 1996; von der Emde, 2004; Sawamura 

et al., 2005; Schebesch et al., 2007). Single objects with given shapes are perceived as members 

of given categories regardless of the size. 

Humans and monkeys spontaneously form size-invariant representations of visual objects 

(Larsen and Bundesen, 1978; Fiser and Biederman, 1995; Logothetis and Sheinberg, 1996; 

Furmanski and Engel, 2000; Sawamura et al., 2005). Visually, objects are encoded via different 

neuronal pathways in the visual cortex, processing shape, motion and colour (Hubel and Wiesel, 

1962; Hubel and Wiesel, 1977; van Essen, 1979; Zeki, 1980; Livingstone and Hubel, 1984). One 

basic for visual size-invariance is the pattern recognition process, which is achieved by 

comparing stimulus pattern with memory representations (Larsen and Bundesen, 1978) and 

evaluating an object’s shape (Lloyd-Jones and Luckhurst, 2002b). Bundesen and Larsen (1975) 

suggest in a study testing visual transformation of size, that by encoding a visual object as a 

visual image and by transforming this image to the size format of a second object, we test visual 

objects for matches in shape. 

Acoustically, objects can also show size variances. How object size is represented in the auditory 

domain is not quite understood. Several studies concerning speech processing in humans have 

showed that our auditory system easily compensates for the effect of speaker size on perceived 

speech. The same vowel when spoken by a child or adult differs in its spectral content, but is 

perceived as the same vowel, even when spoken by a speaker with an unnatural size (Ives et al., 

2005; Smith and Patterson, 2005; Smith et al., 2005).  

This holds for other acoustic stimuli as well. For example, when playing a recording of metal 

pins dropping onto a table with slower speeds, we automatically perceive falling pins increasing 

with size, until we have the notion of metal rods crashing onto a surface. The quality of the 

object, meaning the shape, and the size are processed separately, allowing a size-invariant, 

normalized object representation. 

So acoustically we can compensate for size-induced variations of sound sources, does the same 

hold for echo-acoustic sounds? As discussed in the first part of this thesis, bats can recognize 3D 
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objects in complete darkness through echolocation, but are they able to echo-acoustically 

normalize for object size, meaning is an object size-invariantly represented? To approach this 

question we need to outline what echo-acoustic parameters determine an object’s size. 

Object surface area and depth change proportionally with object size. With increasing object size 

the IR becomes louder, due to the increasing reflecting surface. It has been shown that bats are 

sensitive for loudness differences. They can perceive very fine echo sound differences of 

1 to 3 dB produced by different sized triangles (Neuweiler, 2000). Another size dependent 

parameter is the relationship of single reflections to each other. Figure 24 shows an IR scaled in 

size from left to right. An object with a large depth extension (panel C) will produce reflections 

distributed on an elongated time axis. The single surfaces are further apart from each other, 

creating longer time delays between each reflection.  

 

 
Figure 24: Illustration of a scaled IR 
Shown is an IR scaled with the increasing scaling factors. The scaling increases from left to right (panel A to C). 
Plotted is the amplitude against the time scale. With increasing object size, object surface area and depth change 
proportionally. With increasing reflecting surface size the stronger the reflection and therefore the louder the IR 
becomes. The IR is temporally expanded, resulting in an increase in the temporal delay between single reflections. 
The insets in the panels depict scaled stacks of coins which very theoretically could reflect in such a manner.  
 

This temporal expansion of the IR goes hand in hand with a compression of the spectral 

interference pattern. This can be seen in Figure 25 illustrating the magnitude spectra of a scaled 

target made up of two reflections with the same amplitude. As in Figure 24 the scaling increases 

from left to right. One can clearly see the spectral compression and the increase of magnitude 

when scaled with a bigger scaling factor. This is due to the increasing time delay between the 

single reflections. A longer delay results in a spectral ripple with a lower fundamental frequency 
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and consequently more notches. This is due to the fact that the cancellation within a spectrum is 

dependent on the relationship between the wavelength and the distance between two reflections. 

 

 
Figure 25: Illustration of the magnitude spectra of two-front targets 
Shown are the magnitude spectra of a scaled IR consisting of two reflections. The size increases from left to right 
(panel A to C). Plotted is the magnitude against the frequency. With increasing object size the spectrum is 
compressed and increases in amplitude.  
 

Whether an object is encoded temporally or spectrally is dependent on the size of an object. It 

has been shown that objects smaller than 4 to 6 cm are encoded mainly in the spectral domain 

and bigger objects in the time domain (Weissenbacher and Wiegrebe, 2003). This is dependent 

on the resolution of the cochlear filters for the single reflection peaks. Cochlear filter integration 

times measured for different bat species indicate that for two temporally separated reflection 

peaks to be encoded temporally they would have to display a delay of at least 200 µs to each 

other (Wiegrebe and Schmidt, 1996; Wittekindt et al., 2005; Schörnich and Wiegrebe, 2007). 

Successive peaks too close to each other temporally can not be resolved as single reflections, but 

are encoded in the spectral domain by analysing the spectral pattern generated by destructive and 

constructive interference of the reflections.  

By evaluating these parameters a bat should be able to determine the size of the ensonified 

object. With the assumption that a bat has a percept of the size and shape of an echo-acoustic 

object, can it transpose a size-variance onto the internal representation? This will be the topic in 

the first of the following studies. The second study, included in the appendix of this thesis, will 

be dealing with the effects of varying the combination of loudness and duration on the perception 

of object size in echolocating bats. 
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2.1 Echo-acoustic object normalization in the bat, Phyllostomus discolor, and 

in humans 

 
 

Previous studies suggest that bats are able to compensate for object size. The bat Glossophaga 

soricina correctly classified scaled versions of previously learned simple real objects (von 

Helversen, 2004). The extracted magnitude spectra of the IRs from the objects displayed highly 

characteristic directional echo patterns in dependence of the ensonification angle; indicating that 

dynamic object analysis and the thereby generated echo patterns might be significant for an 

unambiguous object categorization. One critical point is that the bats always received an object 

pair; allowing the possibility that they compared the objects to solve the task, not by evaluating 

according to an internal object representation. In a later behavioral and electrophysiological 

study the bat, Phyllostomus discolor, was able to normalize to some extent for the size of 

previously learned complex virtual objects, represented by ensonification angle independent IRs 

(Firzlaff et al., 2007). This successful classification, despite the static IRs, does not corroborate 

the hypothesis, that an object’s spectral or temporal reflection patterns produced when ensonified 

from different angles are necessary for the generation of a size-invariant internal representation 

of an object. The results though were not as unambiguous, suggesting that the perception of 

distinct echo patterns might facilitate object categorization. 

In the following study we want to investigate whether the bat P. discolor is able to extract 

general features of an object and transpose these general features to an object of the same shape, 

but of different size. We trained the bat P. discolor to discriminate two real objects (standard-

objects). Unlike the previous study (Firzlaff et al., 2007), the bats were able to move around the 

objects and collect information about the object from different angles. The reflection 

characteristics of both objects did not vary with the horizontal ensonification angle, but one 

object differed slightly along the vertical axis. Furthermore in contrast to the study by von 
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Helversen (2004) we presented only one object at a time and never both simultaneously. We 

therefore forced the bats to create an internal representation of each object, preventing correct 

performances based exclusively on comparison. As soon as their discrimination performance 

was above 80 %, scaled versions of these objects (test-objects) were interspersed, obtaining the 

bats’ spontaneous decision for size-induced variances of previously learned objects. 

In a control experiment we tested the bats’ evaluation performance for two new objects with the 

same size and shape as the standard-objects used in the first experiment, but made up of a 

different material. We expected the bats to easily segregate the shape and not to be influenced by 

the material. 

In an additional experiment we wanted to investigate how human listeners deal with the IRs of 

the real objects presented to the bats. The IRs of the objects are very short in duration, which 

impedes the evaluation temporally or spectrally (Robinson and Patterson, 1995a; Robinson and 

Patterson, 1995b). We generated an IR-train of each IR with short interpulse intervals, producing 

a spectral pattern consisting of many harmonics. This spectral composition is similar to spectral 

patterns found in human speech. The spectral shape of vowels in human speech consists of a 

fundamental frequency and formant frequencies above the fundamental. The formant frequencies 

produce a vowel specific pattern, meaning their alignment to each other is proportionally always 

the same, but their distribution along the frequency axis is dependent on gender, age and size of 

the speaker. When a child grows, the resonators in the vocal tract grow and the formant 

frequencies of the vowels decrease. Studies concerning size-induced variations of human spoken 

vowels have already shown that humans are capable of compensating for speaker size on vowel 

recognition (Ives et al., 2005; Smith and Patterson, 2005; Smith et al., 2005). Processing of 

acoustic scale and size perception of musical sounds seems to be similar (van Dinther and 

Patterson, 2006). We asked human subjects to discriminate in a psychoacoustic experiment IR-

trains of the standard-objects used in the first experiment and to spontaneously classify 

interspersed IR-trains of the test-objects. We wanted to thereby acquire the spontaneous 

evaluation of scaled acoustic objects for humans. The results obtained in the bat and human 

psychoacoustic experiments were then compared for similarities and differences. 
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2.1.1 Material and Methods 

2.1.1.1 Experiment 1: size-invariant object recognition 

Animals 

Phyllostomus discolor is a New World sub-tropical omnivorous bat, feeding on fruit, pollen and 

insects (Nowak, 1994). Figure 26 shows the bat and its typical echolocation call. It belongs to the 

Phyllostomidae family and can be found on the South-American continent. It emits short (<3 ms) 

broadband downward modulated multi-harmonic echolocation calls in the frequency range of 40 

and 90 kHz. 

 

 
Figure 26: Phyllostomus discolor 
The echolocation call is about 1.5 ms long and features multi-harmonic, downward modulated frequency sweeps 
with three dominant harmonics. Panel A displays the spectrogram of the call. Plotted is the frequency in kHz as a 
function of the time signal in ms. Panel B shows the magnitude spectrum, plotted is again the frequency in kHz as a 
function of the magnitude in dB. Panel C shows the time signal of the call; plotted is the amplitude in Volt as a 
function of the time signal in ms. 
 

Four adult male P. discolor took part in the training. They were kept in cages (80 x 40 x 50 cm) 

with free access to water. During the training periods consisting of five consecutive days the bats 

were fed with banana pulp as a reward. On days without training they were fed mealworms and a 

fruit-mix consisting of banana, melon and mango. 
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Experimental setup 

The bats were trained in a 2-AFC setup as used in former experiments with this bat species. All 

experiments were performed in an echo attenuated chamber (2.1 x 1.8 x 2.1 m) with a wall foam 

coating. The setup (Fig. 27) consisted of a Y-shaped panel, inversely mounted onto a metal 

fixture at an angle of 60°. Wire mesh was attached to the sides to ease the bats’ action on the 

setup. The panel was otherwise not enclosed. An enclosable starting box was mounted at the top 

end and a feeder was attached at the end of each leg of the Y. The angle between each leg was 

90°. The experimenter was seated next to the setup, observing the experimental procedure in 

total darkness via three small LEDs mounted onto a control panel. Three infrared-light barriers, 

positioned before each feeder and in the starting box, activated dependent on the bat’s position 

on the Y one of the three LEDs. Both feeders could be activated and deactivated manually via 

the control panel. 

 

 
Figure 27: Illustration of the setup for the real targets 
The Y-shaped setup is depicted from the front. Indicated are the feeders (Fe), the object’s position (Obj), the light 
barriers (Lb), the surrounding wire mesh (Wm) and the closable starting box (Sb). 
 

Objects 

We chose as standard-objects a sphere (Object 1) and an hourglass shaped object (Object 2) both 

with a diameter of six cm and made up of Styrofoam. Attached to the bottom of each object was 

a metal rod with a halter on the bottom end for positioning. The test-objects consisted of scaled 

versions of both objects with scaling factors of: 0.67, 1.33 and 1.67. These were also made up of 

Styrofoam and had a rod with halter attached. Consequently the diameters of the scaled objects 
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were four, eight and ten cm. This adds up to eight objects for presentation: two standard-objects 

and six test-objects. Schematics of each object can be seen in Figure 28. 

 

 
Figure 28: Real objects 
Illustrated are the standard-objects with the attached metal rod, indicated with the scaling factor 1. Object 1 is shown 
in row A and Object 2 in row B. The corresponding scaled versions are indicated with the scaling factors 0.67, 1.33 
and 1.67.  
 

Procedure 

In a 2-AFC experiment with food reward, four P. discolor were trained to discriminate the two 

standard-objects. Dependent on the presented object the bat had to crawl onto the left (Object 1) 

or right (Object 2) leg to obtain a food reward. The bats were only rewarded for correct 

decisions. After each decision the bat had to crawl back into the starting box, which was then 

closed. The experimenter exchanged the objects manually with the help of a then activated red 

lighting. An object was always removed, even when presented more then once in a row to avoid 

the bat using non echo-acoustic cues. Visual cues were excluded during object exchange due to 

the closed starting box. Test-objects were randomly interspersed with a probability of 25 %, 

when a bat’s discrimination performance for the standard-objects exceeded 80 %. In these test-

trials test-objects consisted of scaled versions of either Object 1 or Object 2. Test-objects were 

always rewarded independent of the bat’s decision to assess the bats’ spontaneous classification 

of the test-objects as either Object 1 or Object 2. During data acquisition for the test-objects it 

was ensured that the performance for the standard-objects was above 75 % correct decisions. 
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Data acquisition was stopped when at least 30 trials for each test-object had been obtained. The 

performance was calculated as the decisions for the side of the corresponding standard-object in 

percent correct as a function of the four scaling factors (0.67, 1, 1.33 and 1.67). Highly 

significant (p < 0.01) and significant (p < 0.05) correct were set to 75 and 67 % correct choices, 

respectively. 

2.1.1.2 Experiment 2: control experiment 

Three of the animals which had participated in Experiment 1 took part in the following 

experiment. Housing and feeding procedures were the same as in Experiment 1. 

The experimental setup was the same as in Experiment 1. 

Objects 

The objects had the same shape as the standard-objects used in Experiment 1. As before the 

diameter was six cm, but the objects were made up of wood (wooden standard-objects). Again 

for positioning a metal rod with halter was attached. 

Procedure 

The same 2-AFC procedure with food reward was applied as in Experiment 1. The bats had to 

crawl to the left when the wooden Object 1 and right when the wooden Object 2 was presented. 

After each decision the bat had to crawl back into the starting box, which was then closed. The 

bats were only rewarded for correct decisions. Object exchange was as in Experiment 1. Data 

acquisition was stopped when at least 30 trials for each wooden standard-object had been 

obtained. Performance was calculated as the decisions for the side of the corresponding standard-

object in percent correct. The significance level was set to 67% correct choices (p < 0.05). 

2.1.1.3 Experiment 3: size-invariant IR recognition 

Subjects 

Six human subjects (four female, two male) aged between 22 and 30, participated in the 

experiment. Four subjects had already participated in psychoacoustic experiments. 

Experimental setup 

All experiments were performed in an echo attenuated, double walled chamber (1.2 x 1.2 x 

2.2 m) built by G+H (G+H Schallschutz GmbH, Germany). The signals were presented over 
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headphones (AKG K240 Studio, Germany). The subjects controlled signal playback via touch 

screen (WES TS, ELT121C-7SWB-1, Nidderau-Heldenbergen, Germany). The experimental 

program was written in Matlab 5.3 (Mathworks, Natick, MA). 

Echo-acoustic objects 

For the presentation of the IRs each object was ensonified and the reflected echo recorded. Each 

object was placed 20 cm in front of an ultrasonic speaker (Matsushita EAS 10 TH 800D, Osaka, 

Japan) and ultrasonic ¼ inch microphone (B&K 4135 with 2610 preamplifier and 2807 power 

supply). The objects were ensonified with an amplified (Rotel RB976 MKII, Germany) 10 s 

broadband noise sent out by a real-time processor (RX6, sampling rate 260 kHz, Tucker Davis 

Technologies, Gainesville, FI). The outgoing ensonification signal was computer generated 

(Matlab 5.3, Mathworks, Natick, MA). The microphone, recording the reflected echo, was 

connected to the real-time processor, which simultaneously played back the outgoing and 

recorded the incoming signal. The computer cross-correlated the incoming echo with the 

outgoing ensonification noise, producing the object specific IR. The IRs were saved for later 

presentation. 

As seen in Figure 29 the time delays and amplitudes of the IRs of the objects are proportional to 

surface area and thus the radius. The high correlation of the temporal pattern between each 

standard-object and its scaled versions is visible. Object 1 and its scaled versions display one 

prominent amplitude peak. Object 2 and its scaled versions display two, but less prominent 

peaks. 
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Figure 29: Illustration of the IRs of the real objects 
The upper row shows the IRs of the standard and test-objects of Object 1, the bottom those of Object 2. Plotted is 
the amplitude in volt as a function of the time scale in ms. Object 1 is characterized by one prominent reflection 
peak, Object 2 displays two main reflections. The insets of the panels illustrate the objects’ shape and size relations. 
 

Stimuli 

For each IR a signal train with a duration of 0.5 s was generated consisting of an IR with a 

repetition rate of 200 Hz. This produces the same pitch for all trains equal to the repetition rate of 

200 Hz. Each IR was windowed with a raised-cosine window with a 1 ms rise time, 8.9 ms 

steady state and 1 ms decay time before generating the train. The trains were windowed with a 

raised-cosine window with a 50 ms rise time, 400 ms steady state and 50 ms decay time. All in 

all eight IR-trains were generated: one from each standard-object (standard-train) and six from 

the test-objects (test-train). Figure 30 depicts the trains for the standard objects.  

 

63 



Part II: Echo-acoustic object normalization 

 
Figure 30: Illustration of the standard IR-trains 
Panel A and C depict the IR-trains for Object 1 and Object 2, respectively. Plotted is the amplitude in Volt as a 
function of the time in s. Panels B and C show a 20 ms extract of each train. 
 

During the presentation the trains were computer generated (Matlab 5.3, Mathworks, Natick, 

MA), digital-analog converted with a soundcard (DIGI 96/8 PST, RME Synthax Audio AG, 

Haimhausen, Germany) and played back with a sampling rate of 24 kHz. Due to the chosen 

sampling rate a train was played back with about a 10x smaller sampling rate than the original IR 

was recorded with. Connected to the soundcard were the headphones in the chamber. The signals 

were presented binaurally. 

Procedure 

In a 2-AFC experiment the spontaneous classification of the test-trains as belonging to either 

Object 1 or Object 2 were obtained. In a training-program the subjects were allowed to become 

accustomed to the standard-trains. For each trial a standard-train was presented once. The subject 

then had to make a decision. The subjects received feedback, whether a correct or wrong 

decision had been made. When a subject was able to discriminate the standard-trains with more 

than 80 % correct decisions and at least 30 trials, the test-program was started. The test-trains 

were then randomly interspersed with a probability of 25 %. In these test-trials subjects always 

received a positive feedback (correct choice), independent of the decision. This allowed the 
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assessment of the subjects’ spontaneous classification of the test-trains as belonging to either 

Object 1 or Object 2. Data acquisition was stopped when at least 30 trials for each test-train had 

been obtained. Performance was calculated as the decisions for the corresponding standard-

object in percent correct as a function of the four scaling factors (0.67, 1, 1.33 and 1.67). Highly 

significant (p < 0.01) and significant (p < 0.05) correct were set to 75 and 67 % correct choices, 

respectively. 

 

2.1.2 Results 

2.1.2.1 Experiment 1: size-invariant object recognition 

Four bats were successfully trained to discriminate the sphere, standard Object 1, from the 

hourglass, standard Object 2. During data acquisition for the test-objects the performance of 

Bat 4 for both standard-objects dropped slightly under the 75 % level. As this was a criterion for 

data acquisition for the test-objects the data for Bat 4 is not included. Panel A of Figure 31 

depicts the decisions of the remaining three bats for Object 1 and its scaled versions and panel B 

the decisions of the bats for Object 2 and its scaled versions. All bats were able to significantly 

correctly classify at least four of the six test-objects as the corresponding standard-object. Highly 

significant and significant correct decisions are indicated by one or two asterisks above the plots, 

respectively. None of the bats was able to correctly classify the test-object of Object 1 with a 

scaling factor of 0.67.  
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Figure 31: Classification results for three bats for each test-object as its corresponding standard-object 
Depicted are the decisions of three bats for Object 1 and its scaled versions (panel A) and for Object 2 and its scaled 
versions (panel B). Plotted are the percent correct decisions as the corresponding standard-object as a function of the 
scaling factor. The significant level of 67 % is indicated by the dotted line. Highly significant and significant correct 
classifications are marked by two and one asterisks above the plots, respectively. 
 

2.1.2.2 Model: spectral or temporal pattern recognizer 

We developed a model which classified the echoes of the test-objects as corresponding to 

Object 1 or 2. Echoes were generated by convoluting a standard P. discolor echolocation call 

with the IRs of each object, extracted for Experiment 3. The model compares either the spectral 

or the temporal pattern of the test-echoes with the standard-echoes. For the temporal pattern 

recognition the time signal of each test-echo was shifted sample per sample along a standard-

echo, to obtain the sample point, where the cross-correlation between both echoes was maximal. 

For the spectral pattern recognition the same method was applied only using the magnitude 

spectra instead of the time signal. The time signals were additionally zero-padded at the 

beginning and end to ensure that both echoes had the same starting and end sample. A test-echo 

or spectra was then subtracted from a standard-echo or spectra. The result was squared, the mean 

calculated and the square root extracted. This resulted in a value for each test-echo or spectra 

which was divided by the sum of the values of this test-echo or spectra for each standard-echo or 
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spectra. This resulted in a percent probability of a test-echo or spectra as belonging to a 

corresponding standard-echo or spectra. The calculation in the first row shows how a value for a 

test-echo is extracted. The probabilities of this test-echo as belonging to Object 1 or 2 are shown 

in the following two rows, respectively. 

 

valtest-stand1 = sqrt(mean((stand1-test)^2)) 

ptest-stand1 = (valtest-stand1/(valtest-stand1 + valtest-stand2))x100 

ptest-stand2 = (valtest-stand2/(valtest-stand1 + valtest-stand2))x100 

 

Note that this model does not have a sense of scaling, and therefore acts as a null hypothesis for 

our behavioural experiment of size-invariant object recognition in echolocating bats. The model 

failed to significantly correctly classify the test-echoes either temporally or spectrally as the 

corresponding standard-echo (Fig. 32). Panel A and B of Figure  32 depict the probability that 

the echoes of the scaled versions of Object 1 are correctly classified as of Object 1 due to a 

spectral and temporal pattern, respectively. Panel C and D depict the same only for Object 2. In 

comparison the bats were able to correctly classify at least four of six test-objects. 
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Figure 32: Evaluation of the test-echoes by a spectral or temporal pattern recognizer 
Depicted are the evaluations of the model for each test-echo. Plotted are the correct decisions of a test-echo 
belonging to the corresponding standard-echo as a function of the scaling factor. In the panels A and C the model 
evaluated based on the similarity of the magnitude spectra, in the panels B and D based on the similarity of temporal 
spectra. Panels A and B show the results for Object 1 and its scaled versions, panels C and D show the results for 
Object 2 and its scaled versions. 
 

2.1.2.3 Experiment 2: control 

Three of the four bats were tested for the effect of an object’s material on object recognition. For 

this, objects were chosen with the same shape and size of the standard-objects used in 

Experiment 1, but with different material (wood). Before the data acquisition for the wooden 

standard-objects was started, data for the Styrofoam standard-objects, used in Experiment 1, 

were obtained. As in Experiment 1 the bats had to crawl to the left, when Object 1 was presented 

and to the right, when Object 2 was presented, to ensure a performance above 75 % correct 

decisions. When at least 30 trials for each Styrofoam standard-object had been acquired, the 

wooden standard-objects were presented instead. The obtained results are shown in Figure 33. 

Performance was calculated as percent correct decisions for the wooden standard-objects as 

corresponding to one of the two standard-objects. Panel A depicts the decisions of all bats for the 

Styrofoam and wooden Object 1 and panel B the decisions of all bats for the Styrofoam and 
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wooden Object 2. All bats easily recognized the wooden standard-objects as the previously 

learned standard-objects. 

 

 
Figure 33: Evaluation results for three bats for the wooden standard-objects as the corresponding Styrofoam 
standard-object 
Depicted are the decisions of all three bats for the Styrofoam and wooden Object 1 (panel A) and for the Styrofoam 
and wooden Object 2 (panel B). Plotted are the percent correct decisions as the corresponding standard-object as a 
function of object material. The significant level of 67 % is indicated by the dotted line. 
 

2.1.2.4 Experiment 3: size-invariant IR recognition 

Six human subjects were able to discriminate the IR-train of the sphere, standard Object 1, and 

the hourglass, standard Object 2. The obtained results are shown in Figure 34. Panel A depicts 

the decisions of all subjects for the standard-trains of Object 1 and the corresponding test-trains. 

The decisions of all subjects for the standard-trains of Object 2 and the corresponding test-trains 

are shown in panel B. All subjects were able to correctly classify at least two of the six test-IRs 

as the corresponding standard-IR. Highly significant and significant correct decisions are 

indicated by one or two asterisks above the plots, respectively. Subject 2 was able to correctly 

classify all test-trains as the corresponding standard-train. Subject 1 and 3 correctly classified all 

test-trains except the smallest scaled version of Object 1. Subject 4, 5 and 6 were only able to 

correctly classify the two bigger scaled versions of Object 1 and none of the test-trains for 
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Object 2. Subject 3 and 4 predominantly evaluated the test-IR of Object 1 with a scaling factor of 

0.67 as belonging to Object 2. 

 

 
Figure 34: Classification results for six human subjects for each test-train as its corresponding standard-train 
Depicted are the decisions of all six human listeners for the trains of Object 1 and its scaled versions in panel A and 
for Object 2 and its scaled versions in panel B. Plotted are the percent correct decisions for the test-trains as the 
corresponding standard-train as a function of the scaling factor. The significant level of 67 % is indicated by the 
dotted line. Highly significant and significant correct classifications are marked by two and one asterisks above the 
plots, respectively. 
 

2.1.3 Discussion 

In a psychophysical experiment we tested the ability of the echolocating bat P. discolor to 

normalize for real objects with the same shape, but of different sizes. The results show that the 

bats spontaneously classified most scaled objects as the corresponding standard-object. 

Furthermore, the bats easily associated a material-induced variation of each standard-object with 

the corresponding standard-object. 

A simulation based on either spectral or temporal pattern recognition was not able to correctly 

any of the test-objects as the corresponding standard-object.  

In the third psychophysical experiment we tested the ability of human subjects to normalize for 

IRs of the objects used in the first experiment. Three listeners were able to compensate for most 
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of the size-induced variations of the standard-trains. The remaining three listeners only classified 

two of the six test-trains correctly. Difficulties with discriminating between the two objects can 

not have hindered the evaluation of the test-trains, as the performance for the standard-trains is 

for almost all listeners well above 90 % correct decisions. This exceeds the performance the bats 

showed for the standard-objects. 

In the following we will discuss the obtained results in regard to three points: the analysis of 

object size in echolocation, the evaluation of scaled sounds in humans and the comparison 

between the classification results obtained for the bats and the human listeners. 

Echo-acoustic object size analysis 

When evaluating an object in nature a bat will most likely acquire echoes from different 

ensonification angles and integrate the information from successive echoes (see Part I). The 

nectar- and pollen-feeding bat, G. soricina, is dependent on the ripeness of the flowers of 

interest. Bat-pollinated flowers display a certain petal formation when ready for pollination, 

generating a distinct shape (von Helversen and von Helversen, 1999; von Helversen and von 

Helversen, 2003; von Helversen et al., 2003). The bat should therefore be specialized to evaluate 

distinct echo patterns reflected by these flowers for object categorization. Later publications 

corroborate this hypothesis (von Helversen, 2004; Simon et al., 2006), by showing that this bat 

might indeed employ spectral pattern variations obtained from successive echoes from different 

ensonification angles for object analysis. G. soricina not only was able to distinguish two real 

objects, each characterized by an ensonification angle dependent reflection pattern, but was 

furthermore able to correctly identify size-induced variations. One critical point is that the results 

had been obtained in a discrimination paradigm. The bats might have solved the task by 

comparing the echo patterns of the object pairs and not by normalizing for size-variances of an 

internal representation of an object. The later following study by Firzlaff et al. (2007) had 

successfully tested P. discolor’s echo-acoustic object normalization ability. In contrast to the 

study by von Helversen only one object, represented by one static IR, was presented in each trial, 

therefore excluding comparison possibilities. They stated that P. discolor’s performance might 

improve when allowed to evaluate echo sequences from different ensonification angles. In our 

study, the bats only perceived one object per trial and were able to ensonify the objects from 

different angles. Both objects though reflected invariantly along the horizontal axis. Object 2 

varied only along the vertical axis. The results display an improved classification performance 

for size-induced variations of objects. This corroborates the hypothesis that acquiring echoes 
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from different angles facilitates object recognition, but that these echoes not have to display 

spectral variations. Firzlaff et al. (2007) proposed neuronal candidates for encoding this size-

compensation mechanism in their study. Additionally to the behavioural experiment they 

conducted electrophysiological experiments concerning size-compensation of echo-acoustic 

objects. They state that important stages towards a neural correlate of echo-acoustic object 

recognition independent of size exist in the auditory cortex. 

The question arises, whether the bats used spectral or temporal object features for classification. 

Wiegrebe and Schmidt (Wiegrebe and Schmidt, 1996) showed that the cochlear filter integration 

time for the bat, M. lyra, is about 200 µs. This means for two temporally separated reflection 

peaks to be encoded temporally they would have to display a delay of at least 200 µs to each 

other. Schörnich and Wiegrebe (2008) calculated similar integration times for the bat P. discolor 

based on data by Wittekindt et al. (2005). Every feature in the time domain has its equivalent in 

the frequency domain (spectral pattern). Temporal peaks closer together than 200 µs are encoded 

in the spectral domain (Weissenbacher and Wiegrebe, 2003), as multiple reflections with short 

time delays cause through interference reinforcement and cancellation of the reflections, 

resulting in spectral composition patterns. The two prominent peaks of Object 2 used in our 

study scaled with a factor of 0.67 are about 60 µs apart from each other. The peaks of the 

standard have a delay of about 100 µs. This indicates that these IRs must have been encoded in 

the spectral domain. The peaks of the size-induced version of Object 2 scaled by 1.67 are 

separated by 160 µs. This is in the transition range where encoding in the spectral to in the 

temporal domain takes place. All tested bats were able to classify the size-induced versions of 

Object 2 correctly. If the bats had evaluated the standard of Object 2 and the smaller size-

induced version (scaling factor 0.67) spectrally and the version of Object 2 scaled by a factor of 

1.67 temporally, this would suggest that the bats can transfer echo-acoustic properties of an 

object encoded either spectrally or temporally into the other domain. 

Evaluation of scaled sounds in humans 

It has already been hypothesized that the human auditory system applies a scale transform to all 

sounds to segregate size information from resonator shape information, and thereby enhance 

both size perception and sound recognition. This size-compensation ability of our auditory 

system has been shown for speech in earlier psychoacoustic (Ives et al., 2005; Smith and 

Patterson, 2005; Smith et al., 2005). Neuronal candidate for the first stage of processing speaker 

size might be the auditory thalamus and of the speaker’s fundamental frequency, a further size 
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indicator, the non-primary auditory cortex (von Kriegstein et al., 2006). Size-compensation 

ability seems to apply for musical instruments. Human listeners can discriminate the scale of 

musical instrument sounds reliably and recognize the family of an instrumental sound (van 

Dinther and Patterson, 2006). Other studies have successfully investigated non-speech sounds for 

the effect of shape, material and size on the perception of the sound, e.g. judgement of length and 

material of struck bars, geometric features of struck bars, length and width of struck plates and 

size evaluation of rolling bars (Freed, 1990; Lakatos et al., 1997; Carello et al., 1998; Kunkler-

Peck and Turvey, 2000; Houben et al., 2004; Houben et al., 2005). The listeners in our study 

displayed ambiguous results concerning the size compensation of our IRs. Grassi (2005) 

conducted an experiment concerning the question whether it is possible to recover the size of an 

object from sound of an impact. Human listeners had to tell the size of a ball when dropped onto 

plates of different diameters, but were not informed of these plate differences. In this paradigm 

most of the reflection differences are produced by the plates, not by the carrier signal (ball). The 

subjects were influenced by the plate size, judging balls to be larger, when dropped onto larger 

plates. This indicates that the evaluation of the size of a sound source may be influenced by the 

expectation a listeners has towards the quality of a sound source. The listeners in our study may 

have had certain expectations towards the quality of the presented objects which may have 

impeded correct classifications. 

It has already been shown, that the spectral profile of a sound is a key feature for the 

identification of sound quality (Green, 1996; Griffiths and Warren, 2004; Warren et al., 2005). 

Other studies concerning human psychoacoustic have shown that humans are sensitive for 

spectral inference patterns (Sams and Salmelin, 1994; 1995b; Larsby and Arlinger, 1998; 

Macpherson and Middlebrooks, 2003; Alves-Pinto and Lopez-Poveda, 2005). Houben et al. 

(Houben et al., 2005) found in their study concerning the contribution of spectral and temporal 

information to the auditory perception of the size and speed of rolling balls that the judgment of 

size is dominated by spectral information. We asked the human listeners in our study what cues 

they used to evaluate the standard-trains. The standard IR-train of Object 2 was always identified 

as being quieter and higher in timbre in comparison to the standard IR-train of Object 1. The 

loudness cue though could not have been applied for the reliable classification of the test-trains, 

as loudness of the IRs depends on the object size, meaning scaling factor: the amplitude of the 

test-train of Object 1 with a scaling factor of 0.67 was lower than that of the test-train of Object 2 

with a scaling factor of 1.67. Instead of relying on loudness, some listeners stated of having 

perceived ‘darker’ or ‘lighter’ versions of the standard-IRs, indicating that they used the relative 
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spectral structure for the classification of the test-trains. The first three subjects might have 

employed different spectral structures for classifying test-trains than the latter three, leading to 

the discrepancy in performance of these two groups. Subject 6 stated that sometimes amplitude 

was used as a cue for the classification of trains, and Subject 4 and 5 stated varying between 

different spectral cues for evaluation, which might be the reason for the more inferior 

classification performance of these three listeners. Note that the subjects did not know when a 

test-trial was conducted and therefore did not necessarily recognize the presented train as a test-

train.  

Comparison between bat and human performance 

The employment of the spectral profile as a cue for classification of the test-objects might have 

been the case for bats as well. Other studies concerning bats have shown the importance of 

spectral profile analysis for object recognition in echolocation (Schmidt, 1988; Schmidt, 1992; 

Preisler and Schmidt, 1998; Krumbholz and Schmidt, 1999). The first study discussed in this 

thesis corroborated this. The earlier study by von Helversen (2004) investigating echo-acoustic 

normalization for object size indicated that the spectral profile may reflect the size of an object. 

Here studies are quoted which show that birds demonstrate a perceptual constancy for relational 

spectral structures for the generalization across objects with different sizes; meaning the birds 

transfer between signals with different timbre (Braaten and Hulse, 1991; Guttinger et al., 2002). 

Bats using the spectral profile as a cue could generalize for size-induced variations of object 

independent of the ensonification angle. A further indication for the importance of the spectral 

profile for animals was shown for identity coding within vocal signatures for lambs and ewes 

(Searby and Jouventin, 2003). Experiments with carp fish and goldfish demonstrated that fish 

learn to discriminate signals featuring differences in timbre (Chase, 2001) and that they exhibit 

timbre-like perceptual dimensions (Fay, 1995). 

Figure 35 compares the mean performance for all bats for all test-objects with the mean 

performance of all human listeners for all test-trains. In general the human listeners performed 

better than the bats for the standard-objects, but interestingly the classification results obtained in 

our study only showed slight differences between bats and humans. Both the bats and human 

listeners poorly evaluated the smaller scaled version of Object 1 (scaling factor 0.67), but 

otherwise were mostly able to compensate for object size. The human listeners were better in 

their classification performance than the bats for the two bigger versions of Object 1. The bats on 

74 



Discussion 

the other hand seemed to be better than the human subjects in classifying all scaled versions of 

Object 2.  

 

 
Figure 35: Comparison between bats and human subjects 
Plotted are the mean correct decisions as a function of the scaling factor for Object 1 and 2 in panels A and B, 
respectively. The mean performance for the bats is shown with the black bars, the same for the human listeners with 
the white bars. The 67 % level is indicated by the dotted line. 
 

We had a closer look at the spectra of the IRs to get an idea of what the bats or humans may have 

listened to. In Figure 36 and 37 the magnitude spectra in dB for all IRs are plotted as a function 

of frequency in kHz. Figure 36 shows the IRs in the frequency range presented to the human 

listeners. The trains were sampled with a 10 times slower rate (24 kHz), consequently the audible 

range is only up to 12 kHz. Note that none of the information provided by the IRs is thereby 

missing. Panel A shows the spectra for Object 1 and its scaled versions and panel B the same for 

Object 2.  
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Figure 36: Illustration of the magnitude spectra of the IRs for the human listeners 
Depicted are the magnitude spectra of all IRs for a frequency range of 100 Hz to 10 kHz. The magnitude in dB is 
plotted as a function of frequency in kHz. The left panels depict the spectra for the IRs from Object 1 and its scaled 
versions. The right panels the same for Object 2. The corresponding scaling factors (Scf) are indicated in the left 
corner. The scaling factor increases from top to bottom. 
 

Figure 37 depicts the spectra for a frequency range of 20 to 120 kHz, the range relevant for the 

bats. The panels are otherwise in the same format as in Figure 36. 
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Figure 37: Illustration of the magnitude spectra of the IRs for the bats 
Depicted are the magnitude spectra of all IRs for a frequency range of 20 to 120 kHz. The magnitude in dB is 
plotted as a function of frequency in Hz. The left panels depict the spectra for the IRs from Object 1 and its scaled 
versions. Panel B the same for Object 2. The corresponding scaling factors (Scf) are indicated in the right corner. 
The scaling factor increases from top to bottom. 
 

Visible in the spectra of both figures is the increasing amplitude and compression of the spectral 

ripple in correlation with increasing object size. This is to be expected, as with increasing object 

size the temporal expansion of the IR goes hand in hand with a compression of the spectral 

interference pattern. In general the notches produced by Object 2 and its scaled versions are 

more pronounced. A spectral cue both bats and humans may have attended to. The spectrum of 

the scaled version of Object 1 stands out in both figures, as it displays more prominent spectral 

notches, as seen by Object 2 and its scaled versions. This might explain why this test-object was 

classified so ambiguously by both bats and humans. 

One must not forget that the humans did not actively acquire a reflection signal and only 

perceived one static IR of each object as a train. The bats were allowed to freely move and 

echolocate on the setup to evaluate a presented object. Especially the reflection difference of 

Object 2 along the vertical axis may have been exploited, information missing for the human 
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listeners. This might have been an advantage for the bats for the evaluation of the test-objects. 

By being able to scan the objects from different angles the bats had the possibility to achieve a 

sequence of echoes and form a 3D acoustic image of the objects. Additionally, the bats might 

have been able to vary the frequency content of their call, pronouncing or attenuating certain 

bands, and therefore achieving more focus on certain object characteristics. Earlier studies have 

shown that bats adjust their calls to the reflection characteristics of prey or background (Kalko 

and Schnitzler, 1993; Leippert et al., 2002; Kingston et al., 2003; Macias et al., 2005; Bartonicka 

and Rehak, 2005; Holderied et al., 2006; Gillam and McCracken, 2007; Guillen-Servent and 

Ibanez, 2007).  

To summarize, the current study corroborates the hypothesis proposed in earlier studies (von 

Helversen, 2004; Simon et al., 2006; Firzlaff et al., 2007) that the bat’s auditory system has 

hard-wired mechanisms to deal with size-induced variations of echo-acoustic objects. However, 

in contrast to earlier studies the bats evaluated our test-objects according to an internal 

representation of an object. The results corroborate that information from successive echoes from 

different ensonification angles probably facilitate object normalization. We did not find that the 

acquisition of spectral pattern variations of echoes reflected from different angles is necessary 

for reliable object categorization. The investigation of the temporal and spectral features of the 

IRs suggests that bats might be capable of transferring an object’s characteristic evaluated 

spectrally onto a size-induced variation temporally and vice versa. The results obtained during 

the human psychoacoustic experiment indicate that individual human listeners attend to different 

spectral sound characteristics. We propose that timbre may have been employed as a cue for 

classification by the human listeners and possibly by the bats. 
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GENERAL DISCUSSION 

This thesis encompasses a series of psychophysical experiments which were designed to 

investigate fundamental cognitive mechanisms of echo-acoustic object recognition. Previous 

experiments have shown that bats can discriminate real and virtual objects with high fidelity 

(Simmons et al., 1974; Schmidt, 1988; Simmons et al., 1990; Schmidt, 1992; von Helversen, 

2004; Weissenbacher and Wiegrebe, 2003; Firzlaff et al., 2006). More recent work has shown 

that bats can also extract and memorize object related echo-acoustic information and use this 

extracted information to classify unknown real and virtual objects (von Helversen, 2004; 

Grunwald et al., 2004; Firzlaff et al., 2007). While these studies have provided important 

insights into the neural basis of echo-acoustic object recognition, important questions have 

remained open: first, the cognitive mechanisms underlying the integration of echo-acoustic 

object information obtained from different observation angles has not been investigated in an 

explicit psychophysical paradigm, and second, the echo-acoustic information mediating object-

size information have not been systematically characterised. In an attempt to address these 

central questions in echo-acoustic object recognition, we measured first, in a formal 

psychophysical 2-AFC experiment the capability of the bat, M. lyra, to follow rapid changes in 

the spectral composition of synthesized echolocation-call sequences as they would occur when a 

bat ensonifies a complex object while flying around the object. The data show that M. lyra is 

quite sensitive to changes in the echo spectral composition and retains this sensitivity even when 

the spectral changes occur at relatively high rates, corresponding to quite fast flight speeds 

around the object. In this passive-acoustic paradigm, however, the occurrence and repetition rate 

of echoes was defined by the experimenter. Moreover, the perception of echoes was not 

correlated with movements of the bat around an object. These echo-acoustically critical issues 

were addressed in the second set of experiments which involved an important extension of 

previous virtual-object experiments: We designed an omni-directional phantom-target technique 

for the generation of holographic echo-acoustic objects. This technique enables us for the first 

time to acquire perceptual data on the sensitivity of M. lyra to changes in target strength of a 

virtual object with an ensonification-angle dependent target strength. These data showed that, 

under highly controlled experimental conditions, the bats recruited a flight- and echolocation 

strategy which allowed them to detect observation-angle dependant changes in target strength 

down to 10 dB. While this sensitivity is inferior to the amplitude-modulation sensitivity observed 

passive-acoustically in other small mammals (Henderson et al., 1984; Cooke et al., 2007; 
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Wiegrebe and Sonnleitner, 2007) this measure encompasses the whole behavioural context 

including the requirement of flight, its correlation with sonar activity and forward masking of the 

echo by the sonar emission. These first experimental data also serve to validate the omni-

directional phantom-target technique. Future experiments involving this technique are in 

progress. These include angle dependent variations of spectral and echo-delay information. In 

summary, the omni-directional phantom-target technique allows for the first time to investigate 

the correlation of flight and sonar activity under highly controlled echo-acoustic and motion 

conditions. 

In the second part of this thesis, a topic is addressed which has already received some scientific 

attention: to what extent can echolocating bats segregate echo-acoustic size from echo-acoustic 

structure information. Unlike in a previous experiment (von Helversen, 2004), a classification 

paradigm with real objects, not a simple discrimination paradigm was used. This paradigm forces 

the bats to create an internal representation of the objects’ 3D shape and size and compare this 

internal representation with the echo-acoustic properties of the one object presented in a specific 

experimental trial. Using this refined paradigm, together with a quite different class of echo-

acoustic objects corroborates previous findings that echolocating bats can indeed segregate echo-

acoustic size from shape information: The bats spontaneously classified objects of different size 

but the same shape into the same class. The classification performance can be qualitatively 

explained under the assumption that the bats evaluated the objects IRs in terms of the presence or 

absence of a second strong reflection. In terms of spectral analysis, this corresponds to the 

evaluation of the distinctiveness of a harmonic spectral ripple in the echo spectrum irrespective 

of the absolute position and size of individual spectral peaks and notches. Those perceptual cues 

that could have mediated the performance of the bats in the study by von Helversen (2004), i.e., 

the angle-dependent changes in echo amplitude, can be excluded here because of the shape and 

orientation of the presented objects. Thus, these data, together with the virtual-object data by 

Firzlaff et al. (2007) confirm the size invariance of echo-acoustic object classification. These 

experiments however, do not clarify how size information is actually extracted from echo 

information. Specifically, object size could be deducted either from echo loudness (target 

strength) but also from spatial information, explicitly the spatial extent, of the perceived echoes. 

This differentiation is critical as, while the phantom-target technique can mediate target-strength 

information, it cannot mediate spatial-extent information. In an additional project in this thesis, 

this question is addressed in a field study with a high number of untrained echolocating bats. 

80 



General Discussion 

This project, as it is still in progress and will extend beyond the thesis as it is presented here, is 

introduced and described in terms of materials and methods in the appendix.  

To conclude, the current thesis provides both new experimental techniques and psychophysical 

data on one of the most fascinating mammalian senses, the bats’ capability to extract an internal 

image from the auditory analysis of self generated sounds which are reflected by surrounding 

objects.  
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APPENDIX I 

The effect of virtual echo-acoustic objects on free flying bats 

 
 

Earlier studies have investigated flight patterns in bats and have found that commuting bats 

display very constant flight paths every night over many years (Eisentraut, 1952; Bateman and 

Vaughan, 1974; Rieger et al., 1990; Rieger and Adler, 1993; Rieger, 1997; Rahmel and Dense, 

1997; Rahmel and Dense, 1998; Keil et al., 2005; Schaub and Schnitzler, 2007a). It is probable 

that a bat will correct for its flight when suddenly confronted with objects standing in the 

commuting flight path. The extent and the time of the correction should be correlated with the 

object’s size. As briefly discussed in the first part of the thesis, loudness and duration of an echo 

are the main parameters determining object size: the bigger the reflecting surface, the louder the 

echo and the bigger the object’s spatial extension, the longer the temporal expansion of the echo. 

Figure 38 depicts the IR of two surfaces with different distances to each other. The panels A to C 

illustrate how loudness of and temporal delay between the single reflections increase with an 

increase of the reflecting surfaces’ size and distance to each other. 
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Figure 38: Scaled surface depths 
Illustrations of two reflections scaled in size. Plotted is the amplitude as a function of time. The amplitude and 
duration of the IRs and the time delay between the two reflections increase with increasing scaling factor. The 
object’s size increases from panel A to C. The insets of the panels depict the two exemplary surfaces with different 
depths. 
 

Consequently, the extent of a bat’s flight corrections around an object should reflect the 

perceived object size. 

The exact relationship between loudness and duration for the representation of object size has 

not been explored before. We therefore wanted to investigate how the size of an object 

influences flight paths of commuting bats. As we have successfully employed the phantom target 

technique in the previous studies with laboratory bats, we are interested in how untrained wild 

bats, familiar only with real objects react to unfamiliar virtual objects. The advantage of such a 

field study is that it does not require training which takes a large amount of time and limits the 

number of animals one can test. As a location we chose a cave in Trinidad, already known to us, 

through an earlier visit and from the internet literature (Kenny, 2007; Riskin, 2007). The 

Tamana-Cave provides the unique opportunity of testing this phantom target technique on wild 

bats, as towards nightfall thousands of bats of at least 12 different species fly out of the cave 

opening for about two hours to forage in the surrounding woods. Due to the cave’s surrounding 

configuration the bats, when exiting the cave through an opening in the ground, fly about 

10 meters parallel to the ground until they fan out. This is an ideal requirement for placing the 

microphone-speaker combination into the animals’ flight path. As in the previous phantom target 

playback experiments, the microphone recorded echolocation calls are manipulated in real-time 

and played back as virtual echoes over the speaker to the calling animals. The flight paths will be 

extracted by recording the flying bats with a high speed video camera positioned on the ground 
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aimed upwards and by off-line editing of the recordings with a self-designed calculation 

software. The flight path characteristics and the high sample number of animals will allow us to 

obtain a large data size in a short time range.  

We created several IRs defined by their loudness and duration for the presentation of numerous 

size-variant objects with variable spatial (time) extensions. The IRs will be convolved with the 

bats’ echolocation calls and played back as echoes. Note that a virtual object represented by only 

one loudspeaker can only display a width and height expansion by increasing its amplitude. A 

representation of a spatial extension along the horizontal or vertical axis is not possible. The 

variations along the time axis represent size differences along the longitudinal axis away from 

the bats. This is represented by varying the number of reflecting surfaces. A parameter defining 

this echo-acoustic property is echo roughness. In a behavioural and electrophysiological study it 

has been shown that the bat P. discolor can distinguish and evaluate echoes according to their 

roughness (Grunwald et al., 2004; Firzlaff et al., 2006). Roughness is defined by the echo’s 

envelope fluctuations: higher fluctuations, generated through bigger reflection surfaces, will 

produce a rougher echo and lower fluctuations, generated through smaller reflection surfaces, a 

smoother echo. This roughness parameter is given in log10M4. Three signals with same duration 

(~7300 µs), but with different roughness, 0.5, 1.5 and 2.5 log10M4, are illustrated in the three 

panels of Figure 39, respectively. 
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Figure 39: Roughness examples 
Depicted are three signals with the same duration (7383 µs), but with different roughness values. In panel A, B and 
C the amplitude in Volt is plotted as s function of time in µs with the roughness value in log10M4 varying from 0.5 
to 1.5 to 2.5, respectively.  
 

An additional parameter which should influence the bats’ flight path should be the time of echo 

presentation. The time when the bats alter their flight path should depend on when an object is 

detected, meaning the delay between the echolocation call and the returning echo. The smaller 

the delay, the earlier a bat should correct for its flight path. We will therefore additionally vary 

the delay of echo presentation. Figure 40 depicts schematically the expected flight corrections in 

dependence of the virtual object’s size and delay. 
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Figure 40: Theoretical flight paths 
Schematic of how we expect the flight paths to be influenced. The position of loudspeaker (Ls) and microphone 
(Mi) are indicated (not true to scale). The flight path when nothing is presented is indicated in black and by the 
number 1. The bats will perceive the physical echo of the loudspeaker and will correct their flight around it. The 
blue line (nr 2) illustrates a flight correction when a simple reflector is presented. The virtual object will always be 
positioned before the loudspeaker. The red line (nr 3) reflects an increased extent of the correction when the 
reflector’s size, meaning the amplitude, is increased. The magenta coloured (nr 4) line illustrates how the flight path 
correction should extend along the longitudinal axis when the spatial extent of an object, in this case the duration, is 
increased. The green line (nr 5) depicts how the time of flight correction should be initiated earlier when the time of 
presentation is decreased.  
 

The goal of this study is to see a change in the flight paths when a virtual target compared to 

when none is presented, meaning the bats would try to avoid flying into the virtual object. The 

echoes of the virtual objects should act as objects with variable longitudinal and diagonally 

extensions into the animals’ flight path. We expect avoidance flight manoeuvres around the 

speakers in relation and correlation to the depth and width dimension of the virtual object. The 

results will deliver more insight into how the different parameters defining an object’s size play 

together. 
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Material and Methods 

Animals 

The experimental animals will consist of the different bat species dwelling in the Tamana-Cave 

(e.g., Natalus tumidirostris, Anoura geoffroyi, Carollia perspicillata, Chilonycteris personata, 

Chilonycteris rubiginos, Glossophaga soricina, Phyllostomus hastatus, Pteronotus dauyi, Myotis 

nigricans, Desmodus rotundus). The number of animals will depend on how many bats are 

active to that time and will trigger recording by flying through the camera’s observation area. 

Experimental setup 

All experiments will be performed in front of the Tamana-Cave opening. The camera’s 

observation field is with a distance of 2 m about 5x3 m. The setup consists of an ultrasonic 

microphone (CO 100k, Sanken, Germany), ultrasonic speaker (RT-3Pro, Expolinear, Berlin, 

Germany), a high-speed video camera (Basler A602f 1394 camera, Basler, Ahrensburg, 

Germany) and infra-red lightings (IR-294, Infrared Illuminator Microlight Co. Ltd, Moscow, 

Russia). Microphone and speaker are positioned in about 1 m height. The camera is placed on 

the ground between these, with about 118 cm distance to the microphone and 60 cm to the 

speaker. The lightings are positioned on the ground along the axis between microphone and 

speaker. The computer and other technical equipment are kept in a further distance to the setup, 

to avoid producing disturbing cues. 

Stimuli 

We can create several virtual echo-acoustic objects, all defined by different parameters of their 

IR. The variable parameters are loudness (attenuations: 0 to -24 dB, in 3 dB steps), duration 

(59 to 7383 µs), echo roughness (roughness values: 0.5, 1.5 and 2.5 log10M4) and time delay 

(0.01 to 10 ms). The roughness-duration combinations are limited due to the physical 

characteristic of the roughness parameter. 

Technical setup 

For the presentation of phantom targets the microphone records the emitted calls and sends them 

amplified (Quadmic, RME, Haimhausen, Germany) to a real-time processor (RX6, sampling rate 

220 kHz, Tucker Davis Technologies, Gainesville, FI). The processor high-pass filters all 

incoming signals and convolves them with an IR, determined by parameters set by the 

experimenters in a computer program (Matlab 5.3, Mathworks, Natick, MA). The high-pass 
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filter’s frequency can be adjusted in the program. This echo is amplified (TDA-7560, 

STMicroelectronics, Genf, Switzerland) and sent to the ultrasonic speaker. Camera recording is 

triggered by the incoming signals on the processor. Parameters for recording duration, frame rate 

and trigger threshold is set by the experimenters in the program. The infra-red lighting is active 

during the whole session. 

Procedure 

Control-experiments 

To be able to evaluate the flight paths while presenting phantom targets we first will have to 

extract the flight paths the bats produce in their natural environment during the commuting 

flight, meaning without positioning microphone and speaker. The camera should not influence 

the bats as it is positioned on the ground. 

As a second step we will have to record the influence our technical setup might have on the bats’ 

flight paths. Microphone and speaker will be placed as in the playback situation, but will not be 

active. A comparison of these flight paths with those acquired above will show possible 

avoidance manoeuvres due to the physical echoes of these real objects. 

As a third control experiment we will present artificial signals (e.g. constant noise, sequences of 

impulses) to evaluate, whether artificial sounds uncorrelated to the bats’ echolocation activity 

influence the animals’ flight path. 

Each of these control experiments should be completed during one night of recording. 

Test-experiments 

In a first block of test-experiments we want to study the effect several echo-acoustic parameters 

have on the flight path of bats. 

As a first test-experiment we will simulate a simple reflector (i.e. a wall) with variable loudness 

as a degree for the extent of an object. 

We will then simulate a more complex reflector with graded depth dimensions (roughness). 

Again the attenuation and additionally duration will be varied. 

In a second block of test-experiments the influence of the time delay between emitted call and 

echo, meaning the distance between bat and object, on the bats’ flight path will be studied. The 

bats should not react to the virtual object if the distance exceeds a certain value. The reasons for 

the animals to ignore this echo could be that it either is beyond a certain time window, in which 

the bats evaluate reflected echoes, or that it is perceived as too far away for the bats to have to 
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avoid it. As stimuli we will use three IRs from the IRs described in the first block, but vary the 

time delay between call and echo. 

During each session we will be recording some echolocation call sequences emitted by the bats. 

In a last experiment we will present these recordings filtered in the same manner as before and 

evaluate how the bats react to echoes uncorrelated to their own emissions. 

We are planning to complete all test-experiments in a maximum of 16 nights. 

Flight path extraction 

The camera recordings will be evaluated every night after an experimental session. With a 

computer program (Matlab 5.3, Mathworks, Natick, MA) each recorded frame is subtracted from 

the preceding frame. This produces images only depicting changes from one frame to the next, 

subtracting unvarying parameters, e.g. recordings of trees. From each subtracted image the local 

pixel-minima and maxima are calculated. Grouping the extracted peaks into one image produces 

an image depicting the minimal or maximal variations in time. This will then produce one image 

depicting flight paths and occurring flight variations over time. 

 

The experiments will be conducted from the beginning of December to about the December 20th. 

In agreement with DAAD supporting this study, the obtained results will not be elaborated and 

discussed in this dissertation. We hope to present and discuss the data in a later publication. 
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