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Abkürzungsverzeichnis 

 

A Adenin 

AMV Avian Reverse Transcriptase 

Asp Aspartat 

C Cytosin 

C. elegans Caenorhabditis elegans 

cDNA komplementäre Deoxyribonucleinsäure 

COX-2 Cyclooxigenase-2 

CP Crossing Point 

Ct Threshold Cycle 

d Tag/e 

ddH2O zweifach destilliertes Wasser 

dH2O einfach destilliertes Wasser 

DNA Desoxyribonukleinsäure 

E. coli Escherichia coli 

G Guanin 

Gly Glycin 

h Stunde/n 

HKG Housekeeping Gene 

IFAT Indirekte Fluoreszenzantikörpertechnik 

IFN-γ Interferon gamma 

IL-8 Interleukin-8 

IL-β Interleukin- β 

iNOS Stickoxid-Synthase 

IPN Infektiöse Pankreasnekrose 

IPTG Isopropyl-β-D-thiogalactopyranosid 

L Liter 

LB-Medium Luria-Bertani-Medium 

LPS Lipopolysaccharide 

M. cerebralis Myxobolus cerebralis 

M. tuberculosis Mycobacterium tuberculosis 
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MHC Haupthistokompatibilitätskomplex 

Nramp natural resistance-associated macrophage protein 

OD Optische Dichte 

OmNramp α Oncorhynchus mykiss Nramp α 

OmNramp β Oncorhynchus mykiss Nramp β 

ORF open reading frame 

p.exp. post expositionem 

PCR                   Polymerase-Kettenreaktion  

  (engl.: Polymerase Chain Reaction) 

PKD Proliferative Nierenerkrankung 

QTL Quantitative Trait Loci 

RFU RelativeFluoreszenzeinheiten 

RNA Ribonucleinsäure 

SPF Spezifisch pathogenfrei 

T Thymin 

T° Tagesgradalter 

Ta Annealingtemperatur 

TNF-α Tumornekrosefaktor alpha 

VHS Virale Hämorrhagische Septikämie 

X-Gal 5-Bromo-4-chloro-3-indolyl-β-D-galaktosid 
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1. Einleitung 

Die Drehkrankheit der Salmoniden (engl.: „Whirling Disease“) wurde erstmals 

1903 von Hofer beschrieben. Die Erkrankung wird durch Myxobolus cerebralis 

hervorgerufen, einen mehrzelligen Parasiten aus dem Stamm der Myxozoa 

(Grassé, 1970), und ist eine ursprünglich im europäischen Raum beheimatete 

Parasitose. Man findet eine erhebliche Diskrepanz bei der Resistenzlage zwi-

schen einheimischen (autochthonen) und eingeführten Fischen. So kommt es 

bei der europäischen Bachforelle (Salmo trutta fario) zwar zur Infektion, jedoch 

zu keiner Erkrankung, weswegen sie als ursprünglicher Wirt für M. cerebralis 

angesehen wird (Hoffman, 1970). Im Gegensatz dazu reagiert die nordamerika-

nische Regenbogenforelle (Oncorhynchus mykiss Walbaum), die vor ca. 150 

Jahren aufgrund ihrer Anspruchslosigkeit und Schnellwüchsigkeit in Europa ein-

geführt wurde, sehr empfindlich auf den Parasiten (Hofer, 1903; Hoffman und 

Putz, 1969). Doch auch innerhalb der verschiedenen Regenbogenforellen-Lini-

en gibt es deutliche Unterschiede in der Empfänglichkeit. 

Nach Einschleppung der Parasitenerkrankung auf den amerikanischen Konti-

nent in den 50er Jahren (Hoffman, 1990) folgte eine rasante Ausbreitung in 

Forellenzuchten und Wildgewässern in bisher 23 Staaten (Hedrick et al., 1998). 

Neben finanziellen Verlusten sind vor allem die ökologischen Auswirkungen 

enorm. 

Durch Untersuchung der Invasions- und Resistenzmechanismen erhofft man 

sich Ansatzpunkte für wirksame Bekämpfungsmaßnahmen. Ein interessanter 

Aspekt hierbei sind insbesondere die Abwehrmechanismen, die eine erhöhte 

Resistenz bei bestimmten Forellenlinien bedingen, und deren Erforschung zu 

einem besseren Verständnis der Wirt-Parasit-Interaktionen führen könnte. Da 

bei den Fischen als einer sehr alten Wirbeltiergruppe das unspezifische Im-

munsystem eine weitaus größere Rolle spielt als das erworbene, ist es wahr-

scheinlich, dass solche Resistenzmechanismen vor allem auf nichtspezifischen 

Abwehrmechanismen basieren. 

Bei Säugetieren spielt bei der ersten unspezifischen Abwehr von bestimmten 

Parasiten das Membranprotein Nramp (natural resistance-associated macro-

phage protein) eine entscheidende Rolle. Dieses Protein wird vor allem in 
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phagozytierenden Zellen exprimiert (Cellier et al., 1994; Govoni und Gros, 

1998) und kommt in allen bisher untersuchten Organismen einschließlich 

Pflanzen, Pilzen und Bakterien vor. Sequenz- und Strukturanalysen zeigen ein 

hoch konserviertes Protein, das offenbar eine überlebenswichtige Rolle in den 

verschiedensten Organismen spielt. Die genaue Funktion von Nramp bei der 

unspezifischen Abwehr von Pathogenen wirft  jedoch noch immer Fragen auf. 

Studien haben gezeigt, dass das Protein im Moment der Phagozytose in die 

Membran des Phagosoms integriert wird und dort während dessen Reifung zum 

Phagolysosom verbleibt (Gruenheid et al., 1997). Durch die Transportaktivität 

des Proteins kommt es zu einer Ausschleusung von bivalenten Kationen aus 

dem Phagolysosom (Jabado et al., 2000), womit offenbar dem phagozytierten 

Pathogen lebenswichtige Stoffe entzogen werden. Auch wird die Fähigkeit von 

Makrophagen, gegen eindringende Pathogene zu agieren, auf vielfältige Weise 

durch Nramp stimuliert (Blackwell et al., 1994; Blackwell, 1996; Radzioch et al., 

1995; Skamene, 1994; Lang et al., 1997). Bei der Regenbogenforelle wurden 

zwei Nramp-Homologe (OmNramp α und OmNramp β) isoliert (Dorschner und 

Phillips, 1999), die ebenfalls eine hohe Sequenzähnlichkeit mit dem entspre-

chenden Säugetierprotein aufweisen. In der vorliegenden Arbeit wurden 

OmNramp α und OmNramp β in unterschiedlichen Forellenstämmen durch mo-

lekularbiologische Methoden näher charakterisiert und ein möglicher Zusam-

menhang mit der erhöhten Resistenz einiger Forellenlinien gegen M. cerebralis 

untersucht. 
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2. Literaturbesprechung 

2.1. Die Drehkrankheit der Salmoniden 

2.1.1. Taxonomie 

Myxobolus cerebralis ist ein mehrzelliger Parasit, der zur Klasse Myxosporea 

(Bütschli, 1881) und damit zum Tierstamm der Myxozoa (Grassé, 1970) ge-

rechnet wird (International Comission on Protozoan Nomenclature, Levine et 

al., 1980). Hier finden sich ca. 1250 bei Fischen parasitierende Spezies (Lom 

und Dykova, 2006), darunter auch Tetracapsuloides bryosalmonae, der Erre-

ger der Proliferativen Nierenerkrankung der Salmoniden (PKD) sowie Sphaero-

spora renicola, die die Schwimmblasenentzündung der Karpfen verursacht. 

Charakteristisch für diese Parasiten ist die Ausbildung von Schalen-, Polkapsel- 

und Amöboidkeimzellen. 

Die Actinosporea stellten ursprünglich ebenfalls eine eigene Klasse innerhalb 

der Myxozoa dar, wobei die Abgrenzung zu den Myxosporea hauptsächlich 

durch die Sporenmorphologie erfolgte, welche den Actinosporen, meist durch 

Ausbildung von Fortsätzen an der Basis, eine Flotation im Wasser erlauben. 

Eine Unterscheidung der einzelnen Arten ist hier anhand der Morphologie der 

Schalenzellen wie auch der unterschiedlichen Anzahl der Amöboidkeimzellen 

möglich.  

Aufgrund der Beschreibung eines zweiwirtigen Entwicklungszyklus bei den 

Myxosporea (Wolf und Markiw, 1984) und der molekularbiologischen Zuord-

nung einiger Actinosporen zu den Myxosporidien musste eine neue taxono-

mische Einordnung vorgenommen  werden. Nach Kent et al. (1994) steht der 

Begriff „Actinosporea“ nunmehr als Synonym für die Klasse Myxosporea 

(Bütschli, 1881), und die ursprünglichen Artenbezeichnungen werden nun als 

Typbezeichnungen für die verschiedenen Sporenformen verwendet.  

Auch die Systematik der Myxozoa wird gegenwärtig neu diskutiert. Schlegel et 

al. (1996) postulieren (aufgrund der Ergebnisse der phylogenetischen Analyse 

von ribosomaler RNA) eine Zugehörigkeit zu den Bilateria, und Siddall et al. 

(1995) schlagen aufgrund der morphologischen Ähnlichkeit eine Zuordnung zu 

den Cnidaria vor. 



 

 

8 

2.1.2. Allgemeines 

Myxobolus cerebralis als Erreger der Drehkrankheit wurde erstmals 1903 in 

einer Regenbogenforellenpopulation in Deutschland von Hofer beschrieben. 

Durch den zunehmenden Handel mit lebenden und toten Fischen wurde die 

Parasitose, mit Ausnahme von Südamerika (Hedrick et al., 1998), in mittler-

weile fast alle Forellen-produzierenden  Länder verschleppt (Halliday, 1976). 

Bislang konnte M. cerebralis bei 18 Salmonidenarten der Gattungen Onco-

rhynchus (Hedrick et al., 1999b), Salmo, Salvelinus (Blazer et al., 2004) und 

Hucho nachgewiesen werden. Hinsichtlich der Empfänglichkeit gibt es jedoch 

deutliche Unterschiede. Einige Fischarten können bei erhöhten Sporendosen 

durchaus infiziert werden, wobei Krankheitssymptome jedoch stark abgemildert 

oder gar nicht auftreten (Hoffman et al., 1962; Hedrick et al., 1999a). Die aus-

geprägte Resistenz der Bachforelle (Salmo trutta fario), die als „Originalwirt“ gilt, 

wird der lang andauernden Kohabitation mit dem Parasiten im europäischen 

Ursprungsgebiet und damit einer evolutionären Anpassung zugeschrieben 

(Andree et al., 1999). Doch zeigen einige nordamerikanische Arten wie der 

Silberlachs (Oncorhynchus kisutch) ebenfalls eine erhöhte Resistenz (Hedrick 

et al., 1999b), deren Ursprung oder Ursache bis heute nicht erklärt werden 

konnte. Nach O´Grodnick (1979) erwies sich die Regenbogenforelle (Onco-

rhynchus mykiss) am empfänglichsten. Da gerade diese Art für die Aquakultur 

besonders wichtig ist, entstehen durch die Drehkrankheit auch enorme wirt-

schaftliche Schäden. Die verheerenden ökologischen Auswirkungen und Ver-

luste in den befallenen nordamerikanischen Wildfischpopulationen haben eine 

Ausweitung der internationalen Forschung bewirkt, um den bereits bestehenden 

Befall möglichst einzudämmen und eine weitere Ausbreitung zu verhindern. 

 

2.1.3. Entwicklungszyklus und Morphologie 

Die Transmission und der Entwicklungszyklus von Myxobolus cerebralis wurden 

nach ihrer Erstbeschreibung im Jahre 1903 noch einige Jahrzehnte lang kontro-

vers diskutiert. Markiw und Wolf (1983) und Wolf und Markiw (1984) zeigten, 

dass (1) Oligochäten der Art Tubifex tubifex als Zwischenwirt für den Zyklus von  
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M. cerebralis vorhanden sein müssen, und dass (2) zwei Sporenstadien ausge-

bildet werden.  

 

Entwicklung im Oligochäten 

Infektiöse Myxosporen von M. cerebralis, die sich im Knorpelgewebe des Fi-

sches entwickelt haben, werden entweder nach dem Tod des Wirtes durch Auf-

lösung des umgebenden Gewebes (El-Matbouli et al., 1992) oder eventuell 

auch schon pre mortem durch die Fäzes (Nehring et al., 2002) freigesetzt und 

von Tubifex tubifex zusammen mit der Nahrung aus dem Sediment aufgenom-

men. Infektionsstudien zeigen, dass es auch bei diesem Avertebratenwirt Unter-

schiede in der Empfänglichkeit gibt (Kerans et al., 2004). Für die weitere Ent-

wicklung des Parasiten ist also die Aufnahme durch Individuen einer suszeptib-

len T. tubifex-Linie notwendig, die dann als Endwirt im Entwicklungszyklus dient 

(El-Matbouli et al., 1992). In dessen Darmtrakt erfolgt die Adhäsion der Sporen 

durch Ausschleudern ihrer Polfilamente an die Darmwand. Die Schalenzellen 

öffnen sich entlang der Nahtlinie, und das Sporoplasma dringt interzellulär in 

das Darmepithel ein. Dort findet dann eine dreiphasige, geschlechtliche Ent-

wicklung mit Schizogonie, Gametogonie und Sporogonie statt: 

Phase 1: Schizogonie (5 – 25d p.exp.): Durch vegetative Teilung des  zwei-

kernigen Amöboidkeims entstehen ein- oder zweikernige Zellen, die ihrerseits 

durch mehrmalige Teilungen einkernige Tochterzellen produzieren. Diese 

wandern interzellulär durch die Darmepidermis und befallen benachbartes Ge-

webe. Einige von ihnen bilden durch Plasmogamie Zweikernstadien, die ca. ab 

25d p.exp. zwischen den Epithelzellen sichtbar sind (El-Matbouli et al., 1992; 

El-Matbouli, 1996; Hedrick und El-Matbouli, 2002).  

Phase 2: Gametogonie (25 - 46d p.exp.): Nach weiteren Teilungen der Zwei-

kernstadien bilden sich Pansporozysten, die aus zwei äußeren umschließenden 

somatischen Zellen und zwei inneren generativen Zellen (α und β) bestehen. 

Diese durchlaufen weitere mitotische Teilungen zu insgesamt 16 diploiden Ga-

meten, die dann nach einer meiotischen Teilung zu 16 haploiden Gameten mit 

jeweils einem Polkörper differenzieren. Dies ist die einzige haploide Phase im 

gesamten Entwicklungszyklus von M. cerebralis  (El-Matbouli et al., 1998). Ab 

50d p.exp. beginnt die sexuelle Vermehrungsphase des Parasiten, die in einer 
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Verschmelzung von je einem haploiden αααα-Gameten mit einem haploiden ββββ-Ga-

meten besteht. Dadurch entstehen acht diploide Zygoten (El-Matbouli und Hoff-

mann, 1998).  

Phase 3: Sporogonie (ab 50d p.exp.): Jede der acht Zygoten bildet durch Tei-

lungen vier Sporoblasten, wobei einer von drei weiteren umhüllt wird. Durch ei-

ne weitere Teilung der drei äußeren Zellen besteht die sich entwickelnde Spore 

nun aus sieben Zellen. Diese differenzieren sich in Polkapsel, Hülle und Spo-

roplasma, das bis zu 64 Keimzellen enthält.  

Nach etwa 90 Tagen werden durch Wanderung des Pansporozysten zur Ober-

fläche des Darmepithels und durch Ruptur der Pansporozystenwand die fer-

tigen Triactinomyxon-Sporen in das Darmlumen abgegeben. Durch die Darm-

passage gelangen sie mit dem Kot ins freie Wasser und erlangen durch osmo-

tische Wasseraufnahme ihre endgültige Form (Hedrick und El-Matbouli, 2002): 

Die Schalenzellen bilden drei Sporenfortsätze, an die sich der Sporenstiel an-

schließt. Dieser enthält den Amöboidkeim und die drei Polkapseln mit jeweils 

einem spiralförmigen Polfilament im Innern (El-Matbouli, 1996). 

Beginn und Dauer der Sporenausscheidung ist stark von äußeren Faktoren wie 

Wassertemperatur und –qualität sowie Alter und Empfänglichkeit der Oligochä-

ten abhängig. Unter Laborbedingungen, bei denen die Würmer konstant bei 

12,5°C gehalten werden, beginnt die Ausscheidung 104d p.exp. mit einem 

Maximum zwischen dem 120. und 170. Tag  (Markiw, 1986), wobei sich Was-

sertemperaturen zwischen 10°C und 15°C als optimal für eine hohe und lang-

anhaltende Sporenproduktion erwiesen haben (El-Matbouli et al., 1999b). Diese 

kann in infizierten Würmern über ein Jahr lang anhalten, wobei von einem In-

dividuum einige tausend Sporen ins Wasser entlassen werden können (Markiw, 

1986).  

 

Entwicklung im Fisch 

Die Triactinomyxon-Sporen zeigen keinerlei Eigenbewegung und flottieren mit 

Hilfe ihrer charakteristischen, ankerförmigen Morphologie frei im Wasser. Ihre 

Tenazität ist im Vergleich zu den Myxosporen sehr gering. Die Infektiosität der 

Sporen hält für etwa 60h an, d.h. innerhalb dieser Zeit muss der (zufällige) Kon-

takt mit dem Fisch erfolgen (Markiw, 1992). Die Infektion erfolgt gezielt an den 
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sekretorischen Öffnungen der Epidermisschleimzellen, die über den gesamten 

Fischkörper, Maulhöhle und Kiemen eingeschlossen, verteilt sind. Hier kommt 

es durch eine vermutlich chemotaktisch gesteuerte Reaktion zum Ausschleu-

dern der Polfilamente (Adhäsion) und zur aktiven Penetration der Haut durch 

den Amöboidkeim (El-Matbouli et al., 1999a). Es folgen eine präsporogonische 

und eine sporogonische Entwicklungsphase, deren Dauer unter anderem von 

der Wassertemperatur abhängig ist. Niedrige Temperaturen scheinen die ein-

zelnen Vorgänge zu verlangsamen (Halliday, 1973b). 

Präsporogonische Phase (bis zu 35d p.exp.): Nach ca. 1h beginnen die Zel-

len des Sporoplasmas in Epidermiszellen einzudringen und sich dort mitotisch 

zu teilen. Die daraus entstehenden Parasitenstadien dringen unter weiterer Tei-

lung, abwechselnd inter- und intrazellulär, immer tiefer in die Haut ein. Spätes-

tens nach 24h p.exp. sind kaum noch Parasiten in der Epidermis nachweisbar 

(El-Matbouli et al., 1995). Zwischen 4d und 24d p.exp. sind Parasitenstadien 

zuerst im peripheren, dann auch im Zentralnervensystem zu finden, von wo aus 

sie ins Knorpelgewebe wandern (bevorzugt Kopf- und Wirbelsäulenbereich). 

Hier finden weitere Replikationen zu mehrzelligen Parasitenstadien (Plasmo-

dien) statt, wobei durch extrazelluläre Verdauung eine Zerstörung von Knorpel-

matrix und Chondrozyten einsetzt (Hedrick und El-Matbouli, 2002).  

Sporogonische Phase (ab ca. 20d p.exp.): Diese Phase beginnt mit einer Au-

togamie, bei der sich zwei Zellen vereinigen und eine generative Zelle bilden, 

die eine sporogonische Zelle umhüllen. Dieses Stadium wird  als Pansporoblast 

bezeichnet. Aus der sporogonischen Zelle entstehen nun nach mehreren mito-

tischen Teilungen zwölf diploide Zellen, die Schalenzellen, Amöboidkeim und 

Polkapseln für zwei Myxosporen ausbilden (Halliday, 1973b). Abhängig von der 

Wassertemperatur kann man nach 52 Tagen bis 11 Monaten p.exp. die fertig 

ausgebildeten, linsenförmigen Myxosporen nahezu überall im Skelett des Fi-

sches nachweisen (Halliday, 1973b). Sie bestehen aus zwei Schalenzellen, die 

im Bereich des Äquators eine Nahtlinie bilden und zwei Polkapseln sowie den 

zweikernigen Amöboidkeim umschließen (Lom und Hoffman, 1971). Die Sporen 

besitzen eine äußerst hohe Tenazität gegenüber Umwelteinflüssen und können 

im Sediment 30 Jahre und länger infektiös bleiben (Hoffman und Putz, 1969). 

Durch den Tod des Fisches und nachfolgende Gewebsautolyse freigesetzt oder 
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bereits mit der Fäzes ausgeschieden, gelangen freie Myxosporen in die 

Umwelt. 

 

2.1.4. Pathogenese und Klinik 

Das Zielgewebe des Parasiten ist juveniler Knorpel. Das Ausmaß der Sympto-

matik hängt daher stark vom Alter der Fische zum Zeitpunkt der Infektion ab 

(Ryce et al., 2004). Zudem nimmt die klinische Ausprägung, insbesondere bei 

sehr empfänglichen Arten wie der Regenbogenforelle, proportional mit der In-

fektionsdosis zu. Ältere sowie schwach infizierte Tiere können also als symp-

tomlose Carrier der Parasiten fungieren  (Schäperclaus, 1931). 

Die Sporogenese konzentriert sich auf das Knorpelgewebe von Kopf und Wir-

belsäule und hier im Wesentlichen auf die Bereiche um die Ossifikationszentren 

(El-Matbouli et al., 1992). Hier ist eine breitflächige Zerstörung des Knorpels zu 

beobachten, die durch extrazelluläre Verdauung von Knorpelmatrix und Chon-

drozyten zustande kommt (Bechara et al., 2003; Hedrick und El-Matbouli, 

2002). Die genaue Pathogenese ist noch unklar, es wird aber eine Beteiligung 

von parasitären Proteasen vermutet (Kelley et al., 2003, 2004; Dörfler und El-

Matbouli, 2007). Die daraus folgende Störung der Ossifikation führt zu unregel-

mäßigen Knorpel-Knochen-Wucherungen, die zu den drei Leitsymptomen der 

Erkrankung führen: 

 

(1) Deformationen am Stützskelett in Form von verkürzten Kiemendeckeln, 

missgebildeten Kiefern und verkrümmter Wirbelsäule  

(2) Charakteristische spiralförmige Schwimmbewegungen, ausgelöst durch 

äußere Reize und wohl bewirkt durch fortwährende Nervenstimuli an 

den Rückenmarkseinschnürungen (Rose et al., 2000) 

(3) Schwarzfärbung des hinteren Körperdrittels, vermutlich resultierend aus 

einem Reiz von pigmentmotorischen Neuronen an deformierten Wirbel-

säulenbereichen (Schäperclaus, 1990). 

 

Diese unmittelbaren Folgen führen im weiteren Verlauf zu einer Reduktion der 

Futteraufnahme und damit einhergehender Wachstumsminderung. In Naturge-
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wässern werden befallenen Tiere zudem zur leichten Beute für Fressfeinde 

(Plehn, 1905).  

 

2.1.5. Diagnostik, Prophylaxe und Therapie 

Mikroskopische und immunologische Diagnosemethoden sind erst ab einem re-

lativ späten Zeitpunkt des Infektionsgeschehens anwendbar. Ein Nachweis mit-

tels der PCR (Polymerase-Chain-Reaction) kann dagegen schon ab 2h p.inf. 

geführt werden und ist aus diesem Grunde in den meisten Fällen als Methode 

der Wahl anzusehen. 

 

Die Diagnose der Drehkrankheit kann auch erfolgen: 

adspektorisch: Ab dem 60. Tag p.inf. kann anhand der oben genannten Symp-

tome eine Verdachtsdiagnose gestellt werden (Wolf und Markiw, 1975), wobei 

jedoch die folgenden differentialdiagnostischen Aspekte zu beachten sind: 

 - Abnormes Schwimmverhalten kann auch durch andere Erkrankungen wie  

  Infektiöse Pankreasnekrose (IPN), Virale Hämorrhagische Septikämie  

  (VHS) und Enteritiden hervorgerufen werden (Plehn, 1905). 

 -  Bei Skelettdeformationen ist auch an ernährungsbedingten Ascorbinsäure-  

  oder Tryptophanmangel zu denken (Wolf et al., 1981), ebenso an eine  

  Flexibacter psychrophila-Infektion (Margolis et al., 1996). 

mikroskopisch: Dies erfolgt durch Ausstrich von nativem Knorpelmaterial bzw. 

Histologie und Anfärbung nach Giemsa oder mit Hämatoxilin-Eosin. Hier kön-

nen auch andere Myxoboliden gefunden werden, die oft nur durch Erfahrung 

oder mittels PCR von M. cerebralis zu unterscheiden sind. 

immunologisch: Für einen immunologischen Nachweis können die Indirekte 

Fluoreszenzantikörpertechnik (IFAT; Wolf und Markiw, 1975), serologische 

Methoden (Griffin und Davis, 1978) sowie Immunperoxidase-gekoppelte Anti-

körper (Hoffmann et al., 1991) verwendet werden.  

molekularbiologisch: Für die Detektion von M. cerebralis-DNA wurden unter-

schiedliche Polymerase-Kettenreaktionen entwickelt. Neben einer single-round 

und nested PCR nach Andree et al. (1998) und einer single-round PCR nach 
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Baldwin und Myklebust (2002) steht besonders mit der real-time-PCR nach 

Cavender et al (2004) eine äußerst sensitive Nachweismethode zur Verfügung.  

Kürzlich wurde von El-Matbouli und Soliman (2005) ein Diagnostikverfahren 

namens LAMP (loop-mediated isothermal amplification) für die Detektion von M. 

cerebralis entwickelt. Mit der isothermalen Amplifikation M. cerebralis-spezifi-

scher DNA innerhalb von 1h steht hier eine kostengünstige und zeitsparende 

Methode zur Verfügung. 

 

Eine wirksame Behandlung bereits infizierter Fische ist zum jetzigen Zeitpunkt 

nicht bekannt. Zunächst vielversprechende Ergebnisse in Studien, die die Wirk-

samkeit von Fumagillin und TNP-470 untersuchten (El-Matbouli und Hoffmann, 

1991; Schott, 2002), konnten in weiteren Tests nicht bestätigt werden (Staton et 

al., 2002). Daher kommt der Prophylaxe bzw. Hygiene eine entscheidende Be-

deutung bei der Bekämpfung der Drehkrankheit in Fischzuchten zu. Betontei-

che bieten zum Beispiel, im Gegensatz zu Naturteichen, den Oligochäten keine 

Lebensgrundlage und sind daher geeignet, den Infektionsdruck zu senken. Sie 

sind zudem leichter zu reinigen und zu desinfizieren. Bei latentem Erregerein-

trag über das Zulaufwasser kann dieses durch UV-Licht bzw. Filterung dekonta-

miniert werden (Hedrick et al., 2000; Nehring et al., 2003). Nach Ausbruch der 

Drehkrankheit empfiehlt Noga (1996) für die Sanierung eines Betriebes eine un-

schädliche Beseitigung infizierter Fische und gründliche Desinfektions- und 

Reinigungsmaßnahmen mit Natronlauge, Branntkalk oder Chlorkalk. Der Wie-

deraufbau des Zuchtstammes sollte anschließend mit pathogenfreier Brut erfol-

gen.  
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2.2. Resistenz gegen Myxobolus cerebralis 

2.2.1. Selektion 

Die genannten Therapie- und Prophylaxemaßnahmen sind geeignet, den öko-

nomischen Schaden durch M. cerebralis zu begrenzen und betroffene Betriebe 

zu sanieren. Sie bedeuten aber einen erheblichen personellen und finanziellen 

Aufwand und sind zudem in Wildgewässern nicht anwendbar. Eine weitere 

Möglichkeit, Zucht- sowie Wildbestände langfristig vor Krankheiten zu schützen, 

stellt die Selektion, Zucht und Einkreuzung resistenter Linien dar. Man unter-

scheidet zwei Arten der Selektion: 

Direkte Selektion: Bei der direkten Selektion werden die Tiere nach verbesser-

ter Überlebensrate selektiert. Hierbei muss ein Einfluss durch andere Pathoge-

ne sowie durch Haltungs- und Managementprobleme ausgeschlossen werden. 

Indirekte Selektion: Hier werden Faktoren selektiert, die mit der gewünschten 

Eigenschaft (also Resistenz gegen die Krankheit) korreliert sind. Beispiele für 

solche Faktoren sind hohe Wachstumsrate, geringe Cortisolausschüttung (bei-

des korreliert mit verminderter Empfänglichkeit gegen Furunkulose (Fevolden et 

al., 1995; Gjedrem et al., 1991)) oder eine Kombination von Resistenzgenen 

(engl. „quantitative trait loci“ oder „QTL“). 

 

2.2.2. Einkreuzung 

Das Einkreuzen von resistenten Tieren wird auch im Fall der Drehkrankheit als 

Lösungsansatz für die drastischen ökologischen Auswirkungen in Wildgewäs-

sern erachtet. Zu diesem Zweck wurde im Anschluss an einen Vortrag von El-

Matbouli (2000) über seine Beobachtungen an resistenten Regenbogenforellen-

Linien das Forschungsprogramm „Resistant Trout“ von der US-amerikanischen 

„Whirling Disease Foundation“ ins Leben gerufen. In diesem Programm werden 

resistente Regenbogenforellen-Linien auf ihre Eignung für den Besatz amerika-

nischer Naturgewässer und für die Einkreuzung in dortige Populationen ge-

testet. Dafür müssen neben Infektions- und Symptomprävalenz gegen M. cere-

bralis auch die Krankheitsanfälligkeit gegen weitere Erkrankungen wie VHS und 

Rotmaulseuche untersucht werden. Des Weiteren sollen die Resistenzmecha-
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nismen untersucht werden, um ein breiteres Basiswissen über deren geneti-

sche Grundlagen zu erhalten.  

 

2.2.3. Deutsche Regenbogenforellen als Resistenzträger 

In empirischen Beobachtungen zeigten sich deutsche Regenbogenforellen-

Linien resistenter gegen M. cerebralis als amerikanische, was auch durch eine 

Reihe von Untersuchungen untermauert werden konnte (Küppers, 2003). Bei 

zwei deutschen Zuchtstämmen lag die Infektionsprävalenz signifikant niedriger 

als bei den amerikanischen. Dies mag an der bereits über 100jährigen Koevo-

lution von Wirt und Parasit in Europa liegen, wohingegen amerikanische Popu-

lationen dem Erreger erst seit ca. 50 Jahren ausgesetzt sind. Bei Kreuzungen 

zwischen empfänglicher (amerikanischer) und resistenter (deutscher) Zuchtlinie 

und anschließendem Infektionsversuch lag die Empfänglichkeit der Hybriden 

zwischen denjenigen der Elterntiere, jedoch etwas mehr angenähert der des re-

sistenten Stammes (Meixner, 2004). Allerdings wird der hohe Inzuchtgrad des 

deutschen Stammes als problematisch für den Besatz amerikanischer Natur-

gewässer angesehen. Erst seit kurzem wird eine deutsche Wildpopulation auf-

grund ihrer hohen Resistenz in die Untersuchungen mit eingeschlossen (El-

Matbouli et al., 2006). Diese Population besteht wohl aus Einkreuzungen vieler 

verschiedener Zuchtlinien und verfügt also über eine ausgeprägte Heterozygo-

tie, die grundsätzlich zu einer höheren Unempfindlichkeit gegenüber Krankhei-

ten beiträgt. Hinsichtlich einer Auswilderung wäre dies als großer Vorteil gegen-

über den gezüchteten Linien zu werten.  

 

2.2.4. Wirtsreaktionen auf Myxobolus cerebralis  

Bevor auf den in dieser Arbeit untersuchten Immunfaktor eingegangen wird, sol-

len kurz die bisher bekannten und histologisch sichtbaren Immunreaktionen bei 

einer M. cerebralis-Infektion angesprochen und die Unterschiede zwischen re-

sistenten und empfänglichen Tieren dargestellt werden. 

Haut: In der Haut werden durch Antigenaufnahme vor allem zelluläre Mecha-

nismen stimuliert (Nakanishi und Ototake, 1997); man findet hier neutrophile 

und eosinophile Granulozyten sowie Makrophagen (Anderson, 1974; Cooper et 



 

 

17 

al., 1990). Intrazellulär degenerierende Parasitenstadien in der Haut lassen auf 

Phagozytose durch die genannten Immunzellen sowie auf phagozytierende Epi-

dermiszellen schließen (El-Matbouli et al., 1995). In resistenten Tieren findet 

man 4h p.exp. nur halb so viele Parasitenstadien wie bei empfänglichen. Als 

Ursache hierfür werden Abwehrmechanismen im Schleim und Unterschiede in 

den Oberflächenmolekülen der Wirtsepidermis diskutiert. Nach 10h p.exp. sind 

dann im resistenten Stamm mehr, größtenteils degenerierte, Parasitenstadien 

zu finden als im empfänglichen Stamm. Möglicherweise wird im resistenten Wirt 

eine große Anzahl der Parasitenstadien so geschädigt, dass sie ihre Wande-

rung im Gewebe nicht fortsetzen können (Meixner, 2004).  

Nervengewebe: Bei der anschließenden Wanderung entlang der peripheren 

Nerven zum Gehirn und Rückenmark lassen sich bei der Regenbogenforelle 

keine Immunreaktionen im Gewebe nachweisen (El-Matbouli et al., 1995). Ver-

mutlich kann sich hier der Parasit dem Immunsystem des Wirtes entziehen, so 

wie dies bespielsweise bei Herpesvirus-Infektionen bekannt ist. Hedrick et al. 

(1999a) fanden in Bachforellen eine Infiltration von eosinophilen Granulozyten 

im Nervengewebe, was wohl als Hinweis auf eine Immunabwehr mit zellulärer 

Beteiligung interpretiert werden muss. 

Knorpel: Im Knorpel bilden sich granulomatöse Entzündungsherde mit Leuko-

zyteninfiltrationen um die Sporenstadien (El-Matbouli et al., 1995; Hedrick et al., 

1999a). Bei empfänglichen Regenbogenforellen fanden Hedrick et al. (1999a), 

im Gegensatz zur Bachforelle, eine Korrelation zwischen Sporenkonzentration 

und Ausprägung der Knorpelläsionen. Die Regenbogenforelle scheint den Para-

siten also trotz umfangreichen Entzündungsreaktionen nicht effektiv immunolo-

gisch bekämpfen zu können. In der Bachforelle fanden die Autoren eine gene-

rell größere Präsenz von Entzündungszellen in Nerven und Knorpel. Dies 

könnte die Ursache für eine erfolgreichere Immunabwehr sein. 

 

Das spezifische Immunsystem ist für die Abwehr der Drehkrankheit wahrschein-

lich von untergeordneter Bedeutung. Dies liegt zum einen daran, dass bei 

Fischen dem unspezifischen Immunsystem eine grundsätzlich größere Bedeu-

tung zukommt als  beim Säugetier (Ingram, 1980). Zum anderen entwickelt sich 

die Fähigkeit, spezifische Antikörper zu produzieren, im Fisch erst mit 4 – 8 
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Wochen (Ellis, 1988), die Infektion mit M. cerebralis kann aber schon wesent-

lich früher erfolgen. Eine passive Immunisierung von jungen Forellen mit M. 

cerebralis-antikörperhaltigem Serum zeigte ebenfalls nur geringe Wirkung 

(Adkinson et al., 1997). Die oben angesprochenen Befunde und Untersuchun-

gen anderer Myxobolideninfektionen (Muñoz et al., 2000) weisen auf die wich-

tige Rolle der zellulären Immunreaktion und insbesondere der Aktivität phago-

zytierender Zellen hin. Diese könnten limitierend für die Wanderung des Para-

siten im Fischkörper und Ausprägung der oben beschriebenen Symptomatik 

sein.  

In Säugetieren wird die Phagozytoseaktivität von Makrophagen und polymorph-

kernigen Zellen durch das Makrophagenprotein Nramp 1 stimuliert. Dessen 

Funktion zeigte sich bei vielen Infektionen als entscheidend für den weiteren 

Verlauf der Erkrankung.  

 

 

2.3. Nramp (natural resistance-associated macrophage protein) 

2.3.1. Geschichte (nach Buschman & Skamene, 2001) 

In den frühen 70er Jahren wurde zum ersten Mal über einen Genlocus bei Mäu-

sen berichtet, der Resistenz- und Empfänglichkeitsallele umfasst. Er teilt eine 

Auswahl von Inzucht-Mäuselinien in 2 Gruppen, wobei sich die eine Gruppe als 

resistent, die andere als empfänglich gegenüber Salmonella typhimurium zeigt 

(Plant & Glynn, 1976). Dieser Locus wurde von den Autoren als Ity bezeichnet. 

Parallel dazu wurde nachgewiesen, dass Ity eng gekoppelt an, bzw. identisch 

mit dem Locus Lsh sein musste, der eine ähnliche Kontrolle über Infektionen 

mit Leishmania donovani ausübt (Bradley, 1974).  

Gleiches gilt auch für den Bcg-Locus, der die Empfänglichkeit von Mäusen ge-

genüber verschiedenen Mykobakterien kontrolliert (Vidal et al., 1993). Alle drei 

Loci sind auf dem Chromosom 1 lokalisiert (Mock et al., 1990). 1982 wurde die 

Annahme eines identischen Genortes der drei Loci bestätigt (Plant et al., 1982; 

Skamene et al., 1982). Schon damals stellten die Autoren weitergehende Ver-

mutungen an, die in den darauffolgenden Jahren größtenteils bestätigt wurden: 
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(1) Ein einziges Gen reguliert die Empfänglichkeit gegen taxonomisch nicht 

verwandte intrazelluläre Erreger. 

(2) Dieses Gen sorgt im intrazellulären Milieu der Makrophagen durch Be-

einflussung bestimmter Wachstumsfaktoren für eine Begrenzung des 

Wachstums des Pathogens.  

(3) Aufgrund der geringen Anzahl empfänglicher Mäuselinien scheint das 

suszeptible Allel eine recht junge Mutation zu sein und keine polymor-

phe Variante.  

(4) Das menschliche Nramp-Homolog ist an der Resistenz gegen die 

mykobakteriellen Krankheiten wie Lepra und Tuberkulose beteiligt.  

 

Da weder das Protein noch die Funktion des Gens bekannt waren, erforderte 

die Bestätigung der Ein-Gen-Hypothese eine noch relativ neue Technik, das 

Positionsklonieren (engl. „positional cloning“). Hierbei geht man nicht von einem 

bekannten Protein aus und isoliert anhand der Aminosäuresequenz das Gen, 

sondern es muss zuerst der Genort bestimmt werden, um dann anhand von ge-

eigneten, mit dem entsprechenden Phänotyp verknüpften Markern das Gen 

nach und nach „aufzuspüren“. Gleichzeitig wurde die Funktion dieses Gens er-

forscht und seine Einflussnahme auf die verschiedensten Makrophagen-Aktivi-

täten beschrieben (Blackwell et al., 1991). 1993 gelang die Isolierung des muri-

nen Nramp 1 (Vidal et al., 1993), und 1994 (Cellier et al.) wurde erstmals das 

menschliche Homolog NRAMP 1 beschrieben.  

1998 (Skamene et al.) wurde endgültig nachgewiesen, dass die Resistenz ge-

gen drei intrazelluläre Pathogene tatsächlich auf ein einziges Gen auf dem 

Mäuse-Chromosom 1 zurückzuführen ist. Das suszeptible Mäuseallel zeigt eine 

einzige, in neuerer Zeit entstandene Mutation (ein Gly zu Asp Austausch in der 

Transmembran-Domäne Nr. 4), die zu einem kompletten Ausfall des Proteins 

führt. Außerdem hat man herausgefunden, dass Nramp ein intrazellulär lokali-

siertes Makrophagenprotein ist, das als Carrier für bivalente Kationen fungiert 

(Skamene et al., 1998). 

Die Tatsache, dass NRAMP 1 beim Menschen, im Gegensatz zu Mäusen, of-

fensichtlich bei der Resistenz gegen M. tuberculosis beteiligt ist (Medina und 

North, 1996), führte zu einer Vielzahl von Untersuchungen über die Gewebs-
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spezifität des Proteins. Govoni et al. (1995, 1999) konnten nachweisen, dass 

das Mäuseprotein hauptsächlich in Milz und Leber, den Zielorganen von Myco-

bacterium bovis, lepraemurium, avium, typhimurium und donovani, exprimiert 

wird. Im Gegensatz dazu wird das menschliche NRAMP 1 vor allem in der 

Lunge, dem Zielorgan des Tuberkuloseerregers M. tuberculosis, exprimiert 

(Cellier et al., 1994, 1997). Es wird daher diskutiert, ob nicht durch den evolutio-

nären Infektionsdruck von M. tuberculosis die Lunge wichtigstes Organ für die 

Exprimierung von NRAMP 1 beim Menschen geworden sein könnte.  

Mittlerweile sind Nramp-Homologe in allen weiteren untersuchten Organismen 

gefunden worden, wie in Ratten (Gunshin et al., 1997), Vögeln (Hu et al., 1995), 

Fischen (Dorschner und Phillips, 1999), Insekten (Rodrigues et al., 1995), Ne-

matoden (The C. elegans Sequencing Consortium, 1998), Pflanzen (Belouchi et 

al., 1995), Pilzen (Portnoy et al., 2000) und Bakterien (Makui et al., 2000). Das 

ubiquitäre Vorkommen und die hohe Sequenz-Konservierung weisen auf eine 

essentielle Rolle von Nramp in den verschiedensten Organismen hin. 

In Säugetieren wurde noch ein weiteres Nramp-Homologes, Nramp 2, isoliert, 

das im Gegensatz zu Nramp 1 in allen Geweben exprimiert wird. Es weist eine 

78%ige Homologie zu Nramp 1 (Gruenheid et al.,1995) auf  und wurde als ein 

Transferrin-unabhängiges Eisenaufnahme-System mit Kationentransporter-

Funktion im Säugetierdarm identifiziert (Gunshin et al., 1997). Im Mäusegenom 

sind bekanntermaßen weitere Nramp-Loci enthalten,  jedoch noch nicht isoliert 

worden (Dosik et al., 1994). 

Die heute korrekten Bezeichnungen für die murinen Proteine lauten Slc11a1 

(für Nramp 1) und Slc11a2 (für Nramp 2). Zur Vereinfachung wird jedoch in 

dieser Arbeit im Weiteren der bisher gebräuchliche Begriff Nramp verwendet. 

 

2.3.2. Nramp 1 bei Säugetieren 
 

Nramp 1 umfasst eine Gruppe von Membranproteinen, die durch die Evolution 

hoch konserviert wurden. Die Primärstruktur dieses Phosphoglykoproteins lässt 

auf 12 Transmembran-Domänen, zwei N-gebundene Glykosylierungsstellen 

und ein konserviertes Transport-Motiv schließen (Govoni et al., 1995) (Abb. 1).  
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Abbildung 1  Strukturmerkmale von Nramp 1 (abgeleitet von der Primärstruktur). Nach Jabado 

et al. (2004) 

Es ähnelt also in seiner Struktur Ionenkanälen bzw. Transportproteinen. Bei 

Säugetieren ist die Expression von Nramp 1 auf Makrophagen und polymorph-

nukleäre Zellen beschränkt und wird artspezifisch in unterschiedlichen Gewe-

ben exprimiert. Durch Nramp 1 wird der Befall und die Vermehrung taxono-

misch und antigenetisch unterschiedlicher Pathogene kontrolliert, so wie Leish-

mania, Salmonella, verschiedene Mykobakterien, Brucella abortus, Pasteurella 

pneumotropica und Candida albicans (Barthel et al., 2001; Chapes et al., 2001; 

Blackwell et al., 2001). Im Mäusemodell führt eine einzige Mutation in der 

Transmembran-Domäne Nr 4 (Gly169→Asp) zu einer Nicht-Exprimierung des 

Proteins und zu einer hohen Empfänglichkeit gegenüber den genannten Infek-

tionen (Vidal et al., 1996). Diese Mutation konnte in allen daraufhin untersuch-

ten suszeptiblen Mäuselinien nachgewiesen werden. Es ist anzunehmen, dass 

sie normalerweise durch natürliche Auslese ausgemerzt wird und sich nur in der 
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apathogene Umwelt dieser seit vielen Generationen als Versuchstiere gezüch-

teten Mäusepopulationen weitervererben konnte.  

 

Nramp 1 wird im spät-endosomalen / früh-lysosomalen Kompartiment von 

Makrophagen exprimiert. Nach Abschluss der Phagozytose wird Nramp 1 in die 

Phagosomenmembran eingebaut und verbleibt dort während des Reifungspro-

zesses des Phagosoms zum Phagolysosom (Gruenheid et al., 1997). Hier fun-

giert Nramp 1 als bivalenter Kationentransporter, wobei Metallionen (Mn2+, Fe2+, 

Zn2+) aus dem Phagosomenlumen in das Cytoplasma ausgeschleust werden 

(Abbildung 2). Dieser Transport ist pH-abhängig, d.h. je höher die H+-Konzen-

tration im Phagosomenlumen und damit die Ausprägung des pH-Gradienten ist, 

desto effizienter werden die Kationen transportiert (Jabado et al., 2000).  

Noch ungeklärt ist jedoch, inwiefern dadurch das intrazelluläre Überleben und 

Wachstum der phagozytierten Pathogene beeinflusst wird. Eine Erklärungs-

möglichkeit wäre, dass durch die Nramp 1-Aktivität den Pathogenen Metallio-

nen entzogen werden, die sie für Stoffwechselaktivitäten und auch für die Bil-

dung von Schutzenzymen wie Katalase, Peroxidase und Superoxid-Dismutase 

benötigen. Es zeigte sich, dass dadurch verschiedene Überlebensstrategien 

von Pathogenen im Phagolysosom (Blockierung der Phagolysosomenreifung, 

Blockierung der Ansäuerung) durch die Präsenz von Nramp 1 verhindert wer-

den können (Jabado et al., 2004). Wahrscheinlich findet sogar eine Art Konkur-

renzkampf um bivalente Kationen zwischen dem bakterieneigenen Nramp-

Transport und dem Wirtszell-Nramp-Transport statt (Abbildung 2). 

Wie Nramp das Wachstum von extrazellulären Krankheitserregern wie z.B. 

Candida albicans limitieren kann, ist noch ungeklärt. Es ist jedoch erwiesen, 

dass Nramp außer dem genannten Effekt an der Phagosomenmembran viele 

weitere Makrophagenaktivitäten stimuliert, wie z.B. die Regulierung von Inter-

leukin-ß (IL-ß), Stickoxid-Synthase (inducible nitric oxide synthase, iNOS), MHC 

Klasse II-Molekülen, Tumor-Necrosis-Faktor α (TNF- α), „oxidative burst“ und 

Antigenpräsentation (Blackwell et al., 1991, 1994; Blackwell 1996, Radzioch et 

al. 1995, Skamene 1994, Lang et al. 1997). Die Stimulation erfolgt durch Inter-

feron-γ (IFN- γ) und Lipopolysaccharide (LPS) (Barton et al., 1995; Barrera et 



 

 

23 

al., 1997) und könnte der Grund für eine Kontrolle nicht nur intrazellulärer, son-

dern auch extrazellulärer Krankheitserreger durch Nramp sein.  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Abbildung 2  Modell für die Wirkungsweise von Nramp an der Phagosomenmembran des 
Phagozyten. Bivalente Metallionen werden aus dem Phagosom hinaus in das Cytoplasma 
transportiert. Für den dafür notwendigen pH-Gradienten könnte z.B. eine H+/ATPase sorgen. 
Das bakterielle Nramp-Homolog konkurriert in diesem Modell mit dem Wirtszell-Nramp um das 
gleiche Substrat (bivalente Kationen wie z.B. Mn2+ oder Fe2+). Jabado et al. (2001) 

  

Zusammenfassend lässt sich sagen, dass zwar der antimikrobielle Effekt von 

Nramp im Säugetier zweifelsfrei erwiesen, die genauen Mechanismen dieser 

Wirkung jedoch noch größtenteils unbekannt sind. Insbesondere stellt sich die 

Frage, wie durch das Ausschleusen von bivalenten Metallionen aus dem Pha-

gosomenlumen das intrazelluläre Wachstum einiger Pathogene unterbunden 

werden kann, und welche Mechanismen andere Pathogene entwickelt haben, 

um dieser körpereigenen Abwehr zu entgehen.  
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2.3.3. Nramp bei Fischen 

Nramp-Homologe wurden auch in Teleosteern isoliert. Offenbar besitzen einige 

Spezies nur ein Homolog, so wie der Karpfen Cyprinus carpio (Saeij et al., 

1999), der Wels Ictalurus punctatus (Chen et al., 2001), der Zebrabärbling 

Danio rerio (Donovan et al., 2002) und der Streifenbarsch Morone saxatilis 

(Burge et al., 2004a). Dagegen konnten in der Regenbogenforelle Oncorhyn-

chus mykiss (Dorschner und Phillips, 1999) und im  Japanischen Kugelfisch 

Takifugu rubripes (Sibthorpe, 2002) zwei Nramp-Gene isoliert werden. Im 

Allgemeinen ähneln die Teleosteer-Homologen hinsichtlich Sequenz und 

gewebsspezifischer Expression eher Nramp 2 als Nramp 1. Dies ist eventuell 

ein Hinweis darauf, dass Nramp 2 ein älterer Vertreter der Nramp-Proteinfamilie 

ist.   

 

Infektionsversuche in vivo und in vitro zeigten nach Exposition mit Krankheitser-

regern oder mit Lipopolysacchariden einen Anstieg der Expression in den Ziel-

geweben. Dies zeigt, dass Nramp auch hier bei bestimmten Infektionsabläufen 

eine Rolle spielt. So konnten Chen et al. (2004) nach Infektion von Meerbras-

sen (Pagrus major) mit Vibrio anguillarum eine erhöhte Expression von Nramp 

in Leber und Milz nachweisen. Da gerade in diesen Geweben eine exzessive 

Vermehrung dieses Erregers mit umfangreichen pathologischen Veränderung-

en einhergeht, gehen die Autoren von einer bakterieninduzierten Nramp-Ex-

pression aus. Ebenso beobachteten Burge et al. (2004a, 2004b) in vitro und in 

vivo eine hochregulierte Expression von MsNramp (dem Nramp-Homologen 

des Streifenbarsches Morone saxatilis) in peritonealen Exsudat-Zellen als Re-

aktion auf eine Exposition mit LPS und mit Mycobacterium marinum. Es ist also 

anzunehmen, dass Nramp bei Fischen, ähnlich wie bei Säugetieren, ebenfalls 

an der Abwehr bestimmter Pathogene beteiligt ist. Welche Pathogene das sind, 

ob hier die gleichen Mechanismen wie beim Säugetier zugrunde liegen, und ob 

es auch bei Fischen zu suszeptiblen Mutationen kommen kann, ist zum jetzigen 

Zeitpunkt nicht bekannt. 

Bei der Regenbogenforelle wurden, wie bereits erwähnt, zwei verschiedene 

Nramp-Homologe isoliert (Dorschner & Phillips, 1999). Der Vergleich der Nuk-

leotidsequenzen zeigt eine 91%ige Übereinstimmung, weist aber zu viele Unter-
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schiede auf, um sie als zwei Allele ein und desselben Locus zu interpretieren. 

Im Mittel sind die Regenbogenforellen-Proteine zu 69% identisch und zu 84% 

ähnlich den Säugetier-Homologen, zeigen aber auch hier eine größere Ähnlich-

keit mit Nramp 2. Während OmNramp α vor allem in Pronephros und Ovar ex-

primiert wird, findet sich OmNramp β in allen daraufhin untersuchten Geweben 

(Pronephros, Milz, Leber, Herz, Muskel, Gehirn, Ovar). Die beiden Proteine zei-

gen also eine ähnlich gewebsspezifische Expression wie Nramp 1 und 2. Ange-

sichts der hohen Expression von OmNramp α und β in den Ovarien vermuten 

Dasmahapatra et al. (2000) eine Beteiligung der Proteine beim Eisenstoffwech-

sel während der Follikulogenese und Eireifung. 

 

 

2.4. Versuchsrelevante Einflüsse auf das Immunsystem bei Fischen 

2.4.1. Alter 

Die hämatopoetischen und immunkompetenten Organe des Fisches sind Thy-

mus, Kopfniere und Milz. Thymus und Kopfniere fungieren hierbei als primäre 

lymphoide Organe. Die Milz wird als sekundäres lymphatisches Organ von T- 

und B-Lymphozyten besiedelt und übernimmt in diesem Sinne auch die Rolle 

der Lymphknoten der Säugetiere (Amlacher, 1992; Ellis, 1988). Die Reifung der 

lymphoiden Organe wird anhand der Anzahl der gebildeten Lymphozyten beur-

teilt. Diese Zellen erscheinen bei der Regenbogenforelle im Thymus ca. 3 – 5 

Tage nach dem Schlupf, in der Niere nach 5 – 6 Tagen, und in der Milz nach 21 

Tagen (Angaben für 14°C Wassertemperatur). Ihre funktionelle Reife ist im 

Thymus 5 Tage, in der Niere erst 14 Tage nach dem Schlupf nachweisbar. Das 

Wachstum der lymphoiden Organe ist während der ersten zwei Monate über-

proportional zu dem des restlichen Körpers und erreicht sein Maximum bei ei-

nem Körpergewicht von 0,5 g. Danach geht das relative Gewicht kontinuierlich 

zurück. Dies scheint eher abhängig von der Wachstumsrate als vom Alter der 

Fischbrut zu sein (Ellis, 1988).  

Eine Phagozytose ist 4 Tage nach dem Schlupf nur durch Makrophagen in den 

Kiemen und im Bindegewebe von Haut und Darm möglich. Im Alter von 18 Ta-

gen sind ebenfalls Makrophagen in den Kiemen, in der Niere und in geringem 
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Maße in der Milz und im Epikard zur Phagozytose fähig. In den folgenden Wo-

chen verringert sich die Anzahl der Makrophagen in den Kiemen, und die Pha-

gozytoseaktivität erfolgt mehr und mehr in Niere, Milz und im Epicard (Tatner et 

al., 1985).  

Ein immunologische Gedächtnis und die Fähigkeit zur Produktion von Antikör-

pern gegen T-abhängige Antigene werden erst im Alter von 8 – 10 Wochen 

fertig ausgebildet (Ellis, 1988).  

 

2.4.2. Stress 

Stress kann aufgrund exogener Faktoren wie suboptimaler Haltung, häufigem 

Handling oder Krankheitserregern entstehen, aber auch durch endogene Fak-

toren wie z.B. bei der Laichanbildung. Chronischer Stress bewirkt eine erhöhte 

Glucocorticoidausschüttung durch die Nebennierenrinde, was wiederum Ein-

fluss auf die Expression verschiedener Immunfaktoren hat. Vor allem bei para-

sitären Infektionen kann bei fortgeschrittener Pathogenese häufig eine erhöhte 

Empfänglichkeit gegenüber weiteren Krankheitserregern beobachtet werden. In 

drehkranken Forellen weisen Verschiebungen von Blutparametern (u.a. eine 

erniedrigte Gesamtleukozytenzahl) auf eine erhöhte Glucocorticoidproduktion 

hin (Densmore et al., 1999). Holland et al. (2003) wiesen eine in vitro-Hemmung 

der LPS-induzierter Expression von IL-1β, IL-8, TNF-α1 und COX-2 durch Cor-

tisol in Regenbogenforellen-Leukozyten nach. Die Autoren sehen darin einen 

Grund für die höhere Infektionsanfälligkeit von an PKD erkrankten Fischen.  
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3. Zielsetzung 

Nramp hat möglicherweise einen bedeutenden Einfluss auf den Ablauf einer 

Myxobolus cerebralis-Infektion. Deshalb sollte versucht werden, die Expression 

von OmNramp α und β in resistenten Forellenlinien zu verschiedenen Zeit-

punkten während des Infektionsverlaufes zu messen, mit derjenigen nicht-

resistenter (empfänglicher) Linien zu vergleichen und so zu klären, ob (1) M. 

cerebralis überhaupt eine Expression von Nramp induziert und ob (2) diese bei 

den resistenten Forellen gegenüber den empfänglichen Tieren zu einem be-

stimmten Zeitpunkt des Infektionsverlaufes erhöht ist.  

Des Weiteren sollten Polymorphismen in der Basenpaarsequenz von OmNramp 

α in unterschiedlich resistenten Regenbogenforellenstämmen definiert und auf 

mögliche Auswirkungen auf die Proteinfunktion hin untersucht werden. 

Von den Ergebnissen erhofften wir uns Aufschluss über die Gene, die an der 

immunologischen Abwehr von M. cerebralis beteiligt sind und möglicherweise 

die Resistenz bestimmter Forellenlinien bedingen. Diesbezügliche Kenntnisse 

könnten beispielsweise die zukünftige Entwicklung genetischer Marker für Aus-

wahl und Zucht resistenter Linien wesentlich erleichtern und außerdem einen 

wichtigen Beitrag zum Verständnis von Wirt-Parasit-Wechselwirkungen liefern. 
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4. Material und Methoden 

4.1. Versuchsübersicht 

Verschiedene suszeptible und nicht-suszeptible Forellenlinien wurden mit 

Myxobolus cerebralis infiziert, die Expressionshöhe von Nramp zu jeweils 

gleichen Zeitpunkten des Infektionsverlaufes mittels effizienz-korrigierter, 

quantitativer real-time-PCR gemessen und die Stämme sowohl untereinander 

als auch mit nicht-infizierten Kontrollgruppen-Tieren verglichen. 

Dazu wurden zunächst M. cerebralis-Sporen aus dem Knorpelgewebe dreh-

kranker Forellen entnommen und damit Tubifex-Kulturen (Tubifex tubifex) 

infiziert. Nachdem diese begonnen hatten, ausreichende Mengen an Triactino-

myxon-Sporen zu bilden, wurden von jeder Fisch-Versuchslinie jeweils 20 Tiere 

des gleichen Alters für eine Stunde einer jeweils gleichen Anzahl von Sporen 

ausgesetzt. Nach dieser Exposition kamen  die einzelnen Gruppen in belüftete 

Zulaufbecken, aus denen nach jeweils 3 Stunden, 14 Tagen und 40 Tagen von 

je 5 Tieren identische Gewebeproben (Haut, Muskel, Wirbelsäulen- und Kopf-

knorpel, Niere) für die Expressionsuntersuchung entnommen wurden.  

Für diese wurde aus jeder Gewebeprobe die Gesamt-RNA extrahiert, die ent-

sprechende cDNA synthetisiert und der Infektionserfolg mit einer M. cerebralis-

spezifischen PCR verifiziert.  

Zunächst mussten für OmNramp α und β spezifische Primer entwickelt und für 

die real-time-PCR optimiert werden. Dazu wurde das PCR-Amplifikat einkloniert 

und die daraus gewonnenen Plasmide extrahiert, enzymatisch geschnitten und 

eine Verdünnungsreihe hergestellt. Aus dieser konnte dann über eine Standard-

kurve die Effizienz der real-time-PCR-Reaktion ermittelt werden. Die gemesse-

nen Expressionshöhen von OmNramp α und β jeder Probe wurden gegen ß-

Actin normalisiert und die Standardabweichungen und Signifikanzen errechnet.  

 

Für die Isolierung und Sequenzierung von OmNramp α wurde aus jeweils ei-

nem Fisch unterschiedlich resistenter Regenbogenforellenlinien die Niere ent-

nommen und daraus die Gesamt-RNA extrahiert. Für die Amplifizierung der 

ORF (open reading frame) von OmNramp α wurden spezifische Primer synthe-

tisiert und das Amplifikat in kompetente E. coli-Bakterien einkloniert. Nach Ex-
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traktion der Plasmide konnte das Insert mit vektor- und genspezifischen Pri-

mern sequenziert, die Polymorphismen der unterschiedlichen Stämme definiert 

und hinsichtlich ihrer möglichen Auswirkung auf die Funktion des Proteins un-

tersucht werden. 

 

 

 

4.2. Material 

4.2.1. Versuchstiere 

Regenbogenforellen (Oncorhynchus mykiss): Für die Expressionsversuche 

wurden zwei Regenbogenforellen-Stämme verwendet: Die hoch empfängliche 

amerikanische Zuchtlinie TL (als Eier im Augenpunktstadium direkt aus den 

U.S.A. bezogen) und der äußerst resistente deutsche Wildstamm WT. Jungtiere 

des Letzteren wurden einer Population in einem Naturgewässer im Schwarz-

wald entnommen, in der Klinik für Fische und Reptilien der LMU München bis 

zur Laichreife gehältert und dann abgestreift. Die Hälterung selbst erfolgte in 

durchströmten (0,8L/min) und belüfteten 100L-Tonnen bei einer Temperatur 

von 15 ± 2°C. Gefüttert wurde mit handelsüblichem Fertigfutter.  

Für die Isolierung und Sequenzierung des OmNramp α wurden Tiere des resis-

tenten Regenbogenforellenstammes (HO) verwendet. Hierbei handelt es sich 

um eine Linie, die seit etwa 150 Jahren in Deutschland gezüchtet wird und, 

wohl aufgrund der langen Kontaktzeit mit dem Parasiten, eine erhöhte Resis-

tenz gegenüber M. cerebralis zeigt. Die Eier dieses Stammes wurden im Au-

genpunktstadium aus einer Fischzucht bezogen. 

Bachforellen (Salmo trutta fario): Die Eier dieser Spezies wurden ebenfalls 

im Augenpunktstadium aus einer Fischzucht bei München bezogen. Die Brut 

wurde bis zum Alter von 54 Tagen unter SPF (Specific pathogenic free)-Bedin-

gungen in Brutrinnen in der Klinik für Fische und Reptilien aufgezogen, im 

Durchfluss mit Münchner Leitungswasser bei 15 ± 2°C gehältert und mit 

handelsüblichem Fertigfutter aufgezogen (eine Aufstellung des verwendeten 

Fischmaterials findet sich in Tabelle 1). Nach den Expositionsversuchen wurden 
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die Fische in belüftete 50L-Becken umgesetzt, wo sie bei ca. 15°C und einem 

Durchfluss von 1 – 1,5L/min für ca. 6 Wochen bis zum Abschluss der Probe-

nahmen verblieben.  

 

 
Forellenlinie 

 

 
Schlupfdatum 

 
Mittleres 
Gewicht 

(in g) 

 
Tagesgradalter 

(in T°)* 

 
TAM-Dosis 
pro Fisch 

 
WF 

(Wildforelle) 

 
18.05.2006 

 
0,58 

 
810 

 
5000 

 
TL 

(am. Zuchtlinie) 

 
31.05.2006 

 
0,60 

 
810 

 
5000 

 
BF 

(Bachforelle) 

 
18.12.2005 

 
0,55 

 
810 

 
5000 

 
HO 

(dt. Zuchtlinie) 

 
15.01.2006 

 
- 

 
- 

 
- 

* Lebensalter x Wassertemperatur (im Monatsmittel berechnet) 

Tabelle 1  Übersicht über Fischmaterial und Expositionsversuch 

 

 

4.2.2. Tubifex und Triactinomyxon-Sporen 

Der Lebenszyklus von Myxobolus cerebralis wird in unserem Labor unter kon-

trollierten Bedingungen vollständig nachvollzogen. Dazu werden Tubifex-Kultu-

ren in Plastikboxen von 9L Wasservolumen in einem Brutschrank bei 14°C auf 

einem 3cm hohen Sand- und Schlammgrund gehältert. Das Wasser wird über 

Kieselgurausströmer mit Luftsauerstoff angereichert und zweimal in der Woche 

gewechselt. 

Die Oligochäten werden 1-2 mal mit extrahierten Myxobolus-Sporen infiziert 

und beginnen ca. 3 - 4 Monate später mit der Produktion der Triactinomyxon-

sporen. Diese werden mit Filtergaze (Porengröße 20µm) aus dem überständi-

gen Wasser abfiltriert und damit anschließend die Regenbogenforellen-Brüt-

linge aus SPF-Beständen infiziert, aus deren Knorpelgewebe (Kopf und Wirbel-

säule) dann später die Myxobolus-Sporen gewonnen werden. Dazu wird das 

Knorpelgewebe manuell entfleischt, mit einem kleinen, küchenüblichen Mixer 

ca. 10min homogenisiert und durch Gaze filtriert, um grobes Restgewebe zu 

entfernen. Unter dem Mikroskop wird der Sporentiter des filtrierten Homogenats 
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bestimmt und dann eine Homogenatmenge mit ca. 1 Million Sporen in jedes 

Tubifex-Becken gegeben. Um eine optimale Infektion zu gewährleisten, wird 

jedes dieser Becken nach der Sporenzugabe nur vorsichtig auf zwei Drittel sei-

nes Volumens mit Wasser aufgefüllt und in den ersten beiden Wochen nur der 

Verdunstungsverlust ersetzt. Erst nach dieser Zeit wird das Wasser erstmals 

gewechselt.  

 

4.2.3. verwendete Geräte 

 
Gerät 

 
Hersteller bzw. Lieferant 

 
Thermocycler (Mastercycler Gradient) 

 
Eppendorf, Hamburg 

 
Real time Gerät (MyiQ Single-Color Real-Time 
PCR Detection System) 

 
BioRad, München 
 

 
Kühlzentrifuge (Centrifuge 5417R) 

 
BioRad, München 

 
Elektrophoresekammer (Sub-Cell® GT)  
mit Spannungsgerät (Power Pac 300) 

 
BioRad, München 
 

 
Gel-Dokumentationssystem 

 
Herolab, Wiesloch 

 
Mikrowelle (MW 7801G) 

 
MTC Medion, Mülheim/Ruhr 

 
UV/Vis-Spektrophotometer (BioPhotometer) 

 
Eppendorf, Hamburg 

 
Magnetrührer (Ikamag® Reo) 

 
Bachofer, Reutlingen 

 
pH-Meter (MultiLab P5) 

 
WTW GmbH, Weilheim 

 
temperaturgeregeltes Wasserbad  

 
Memmert, Schwabach  

 
Schüttler 

 
Heidolph, Schwabach 

 
Brutschrank 

 
Binder, Tuttlingen 

 
Sterilbänke (HeraSafe HS12) 

 
Heraeus Kulzer, Hanau 

 
Autoklav (Varioklav® Dampfsterilisator) 

 
H+P Labortechnik, Oberschleißheim 

Tabelle 2  Geräte zur Durchführung der molekularbiologischen Untersuchungen 
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4.2.4. verwendete Kits 

 
Kit 

 
Hersteller bzw. Lieferant 

 
RNeasy Mini Kit 

 
Qiagen, Hilden 

 
iScriptTM cDNA Synthesis Kit 

 
BioRad, München 

 
MinElute Gel Extraction Kit 

 
Qiagen, Hilden 

 
pGEM-T Vector System I 

 
Promega, Madison, WI, U.S.A. 

 
FastPlasmid Mini Kit 

 
Qiagen, Hilden 

 
Miniprep®-Kit 

 
Eppendorf, Hamburg 

Tabelle 3  Übersicht über die verwendeten Kits 

 

 

 

4.3. Methoden 

4.3.1. Expositionsversuch 

Die Fischbrütlinge wurden im Alter von 810 T° Tagen infiziert (Tabelle 1). 

Obwohl für die Probenentnahme nur 15 Fische je Stamm erforderlich waren, 

wurden jeweils 20 Brütlinge infiziert, um eventuelle Verluste zu kompensieren. 

Zur Gewinnung der Triactinomyxon-Sporen für den Expositionsversuch wurde 

das überstehende Wasser eines Tubifex-Beckens wie in 4.2.2 beschrieben 

durch Filtergaze filtriert und die Sporen in ca. 100mL konzentriert. Nach der 

Titerbestimmung in einer 50µL-Zählkammer unter dem Phasenkontrastmikros-

kop wurde diese Sporensuspension in Portionen von jeweils ca. 1 x 105 Sporen 

aufgeteilt und in 1L-Becken vorsichtig mit Wasser aufgefüllt. In jedes Becken 

kamen je 20 Forellenbrütlinge eines jeden Stammes (ergab eine Expositions-

dosis von ca. 5000 Sporen pro Fisch) und wurden für eine halbe Stunde darin 

belassen. Wegen der hohen mechanischen Störanfälligkeit des Infektionsvor-

gangs wurde erst nach einer halben Stunde mit der Belüftung und Frischwas-

serzufuhr begonnen und die Fische nach Ablauf einer weiteren halben Stunde 

bis zum Versuchsende in die vorbereiteten 50L- Becken gesetzt. Bei den Kon-
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trollgruppen wurden in derselben Weise vorgegangen, jedoch enthielt deren 

Wasser keine Sporen. 

 

4.3.2. Probennahme 

Die Probennahmen erfolgten jeweils 3 Stunden, 14 Tage  und 40 Tage nach 

der Sporen-Exposition. Zu diesen Zeitpunkten wurden jeweils 5 Fische einer 

jeden Gruppe, homogen in Größe und Gewicht, mit einer Überdosis MS 222® 

(5g/L) getötet und folgendermaßen präpariert: Auf Höhe des hinteren Augen-

randes wurde ein Vertikalschnitt durch das Cranium bis auf Höhe des Seiten-

linienorgans, ein zweiter Schnitt entlang der Seitenlinie bis auf die Höhe des 

Afters geführt und dabei alle inneren Organe (außer der Niere) und die Bauch-

lappen entfernt. Vor der Afterflosse wurde dann das so gewonnene Probenma-

terial vom restlichen Gewebe abgetrennt (Abbildung 3). 

 

 

 

 

 

 

 

 

Abbildung 3  Schema zur Probennahme für die quantitative Expressionsanalyse. Die dünnen 
Linien bezeichnen die Schnitte durch den Fischkörper. Die grau schraffierten Gewebe wurden 
für die RNA-Extraktion verwendet.  

 

Die so präparierten Proben wurden in 10mL-Plastikröhrchen mit dem zehnfa-

chen Volumen RNAlater® (Sigma-Aldrich, St. Louis, MO, U.S.A.) bei -80°C bis 

zur Weiterverarbeitung aufbewahrt.  

Für die Isolierung und Sequenzierung von OmNramp α wurden von je einem 

nichtinfizierten Fisch der Stämme HO, TL und WT die Niere entnommen und 

ebenfalls für die RNA-Extraktion aufbewahrt. 
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4.3.3. RNA-Extraktion 

Zur Gewinnung der Gesamt-RNA wurden die Gewebeproben mit flüssigem 

Stickstoff in einem Mörser zerkleinert, 30mg des Materials mit dem RNEasy 

Mini Kit (Qiagen, Hilden) gemäß den Anweisungen des Herstellers weiterver-

arbeitet und zur Vermeidung einer DNA-Kontamination mit DNAse I (Qiagen, 

Hilden) behandelt. Die aufgereinigte RNA wurde in 40µL RNAse-freiem Wasser 

eluiert, Menge sowie Reinheit spektrophotometrisch bei 260 bzw. 280nm ge-

messen (4.3.4) und anschließend mit 1,5µL RNAse-Inhibitor versetzt, um eine 

Lysis durch RNAsen zu verhindern. Die Aufbewahrung erfolgte in Aliquots von 

1µg bei -80°C. 

 

4.3.4. Spektrophotometrie 

Die RNA- und cDNA-Konzentrationen in wässrigen Lösungen wurden photo-

metrisch bei einer Wellenlänge von 260nm bestimmt. Die Nukleinsäurekonzen-

tration errechnet sich aus der optischen Dichte der verdünnten Probe (OD260nm) 

und einem jeweils für DNA, RNA bzw. Oligonukleotide spezifischen Multiplika-

tionsfaktor. Eine Aussage über die Reinheit der Probe erhält man aus dem Ver-

hältnis OD260nm / OD280nm. 

 

4.3.5. cDNA-Synthese 

Zur Synthese von cDNA wurde das iScriptTM cDNA Synthesis Kit der Firma Bio-

Rad (München) benutzt. Dabei wurde jeweils 1µg Gesamt-RNA in einem End-

volumen von 20µL mit Hilfe einer reversen Transkriptase in first strand-cDNA 

gemäß den Anweisungen des Herstellers umgeschrieben. Die daraus 

resultierende einsträngige cDNA wurde in  Mengen von 1µL aliquotiert, mit 9µL 

ddH2O auf ein Volumen von 10µL aufgefüllt, und bei -20°C aufbewahrt. 

Für die cDNA-Synthese zur Sequenzierung von OmNramp α wurde aufgrund 

der Länge der zu amplifizierenden Sequenz die Avian Reverse Transcriptase 

(eAMVTM RT, Sigma) gewählt.  
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Der erste Ansatz (insgesamt 10µL) bestand aus: 

 - 2µL dNTP-Mix (Gemisch aus jeweils 10mmol dATP, dCTP, dGTP, dTTP) 

 - 1µL Oligo-dT-Primer (Gemisch mit insgesamt 37,5µmol) 

 - 2µg Gesamt-RNA 

 - XµL ddH2O 

____________________ 

Zwischenvolumen: 10µL 

 

Dieser erste Reaktionsansatz wurde für 10min bei 70°C inkubiert. 

Dann wurden hinzugefügt: 

 - 1µL eAMVTM RT 

 - 2µL Puffer für eAMVTM RT (Sigma) 

 - 7µL ddH2O 

____________________ 

Endvolumen: 20µL 

 

Es folgte eine weitere 50minütige Inkubation bei 50°C, nach der die so syntheti-

sierte cDNA sofort in die PCR überführt wurde. 

 

4.3.6. Oligonukleotide und Optimierung 

Die Parameter der PCRs wurden so optimiert, dass bei maximaler Spezifität ei-

ne möglichst hohe Effizienz der Amplifikation bzw. Signalbildung erreicht wurde. 

Der erste Schritt dieser Strategie bestand in der Wahl geeigneter Primerpaare, 

wobei folgende Kriterien berücksichtigt wurden: 

 - Länge: 17-28 Basen 

 - GC-Gehalt: 40-60% 

 - G oder C am 3’-Ende 

 - nicht mehr als 3 C- bzw. G-Basen am 3’-Ende  

 - Möglichst eng beieinander liegende Annealingtemperaturen (Ta) 

 - Amplikonlänge: nicht mehr als 250bp 

 - keine selbst- oder paarweise komplementären Sequenzen 
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Die Primer zur Amplifikation von cDNA zum Transkriptnachweis sollten außer-

dem in verschiedenen Exonen des betreffenden Gens lokalisiert sein, damit ein 

fälschlicherweise direkt aus genomischer DNA amplifiziertes Fragment anhand 

seiner größeren Länge identifiziert werden kann. Für deren Design wurde das 

Programm Oligo 5.0 (National Biosciences, Plymouth) zu Hilfe genommen.  

Der nächste Schritt bestand in der Optimierung der Mg2+-Konzentration, in dem 

Effizienz und Spezifität der Produktbildung des gewählten Primerpaares unter 

verschiedenen Magnesiumionen-Konzentrationen miteinander verglichen wur-

den. Schließlich wurde im letzten Schritt die Idealtemperatur für die Hybridisie-

rung der Primer ermittelt. 

 

In den Proben aus der Bachforelle wurden mit den Regenbogenforellen-spezifi-

schen OmNramp („Oncorhynchus mykiss Nramp“) α- und OmNramp β-Primern 

ebenfalls zwei Nramp-Homologe detektiert. Der Einfachheit halber werden die-

se Bachforellen-Homologen im Folgenden in die Bezeichnungen „OmNramp α“ 

und „OmNramp β“ mit eingeschlossen. 

Zur Amplifizierung von forellenspezifischem ß-Actin wurden die Primer nach ei-

nem Vorschlag von Sigh et al. (2004) verwendet (Tabelle 4), die Detektion von 

M. cerebralis-Nukleinsäuren in den infizierten Proben wurde anhand der single-

round-PCR nach Andree et al. (1998) durchgeführt (Tabelle 6). Zur Amplifizie-

rung der kompletten ORF von OmNramp α wurde ein Primerpaar gewählt, das 

diese Zielsequenz umschloss. 

 

In den nachfolgenden Tabellen 4, 5 und 6 sind alle Zielsequenzen mit darauf 

verwendeten Primern wie auch die gewählten PCR-Programme für Thermo- 

und real-time-Cycler aufgeführt. Die Primer selbst wurden von der Firma MWG 

(Ebersberg) synthetisiert. Die Genbank-Einträge bezeichnen die Zugriffsnum-

mern auf die Datenbankeinträge (accession number) der Sequenzen in der 

Gen-Datenbank Nucleotide des National Center for Biotechnology Information 

(www.ncbi.nlm.nih.gov/): 
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Zielsequenz 
 

Länge Bezeichnung Sequenz (5’-3’) Genbank 

Real time PCR: 
     
ß-Actin 260bp Bact – F ATGGAAGGTGAAATCGCC AF157514 
  Bact – R TGCCAGATCTTCTCCATG  
     
OmNramp α 230bp OmNramp α F TTCTTCTCACCCGCTCCATCG AF048760 
  OmNramp α R CACAGACCACCAGGATGACCA  
     
OmNramp β 244bp OmNramp β F GACTTTGCTAATGGACTGGTG AF048761 
  OmNramp β R TTGTTGCTTACCCTGTTGCC  
     
     
Detektion von M. cerebralis: 
     
18S rDNA 415bp Tr5-17 GCCCTATTAACTAGTTGGTAGTATAGAAGC U96492 
  Tr3-17 GGCACACTACTCCAACACTGAATTTG  
     
     
Sequenzierung von OmNramp αααα: 
     
OmNramp α 
(ORF) 

 
1851 

 
Compl_nrampa F 

 
CTAATGAAGACAGCGCGGGA 

 
AF048760 

  Compl_nrampa R ATGAGGATGGGCACTTACGA  
     
Insert im 
pGEM-T- 
Vektor 

  
 
GATC-pUC/M13F 

 
 
CGCCAGGGTTTTCCCAGTCACGAC 

 

  GATC-pUC/M13R TCACACAGGAAACAGCTATGAC  
     
OmNramp α 
(691-1348) 

  
Nrampa_691F 

 
TGAGTATGTGATGGTACGTC 

 
AF048760 

  Nrampa_1348R GTTGAGGAAGTCGTTCATGC  
 
Tabelle 4  Übersicht über die verwendeten Oligonukleotide 
 

 

Ziel-Gen 
 

Denature Anneal Elongate Extension Cycle-Anzahl 

ß-Actin 95°C/3min - - - 1 

 94°C/45s - - - 35 

 - 58°C/45s - -  

 - - 72°C/45s -  

OmNramp α 95°C/3min - - - 1 

 95°C/30s - - - 40 

 - 68,5°C/20s - -  

 - - 72°C/20s -  

OmNramp β 95°C/3min - - - 1 

 95°C/30s - - - 40 

 - 64,6°C/20s - -  

 - - 72°C/20s -  

Tabelle 5  Übersicht über die Programme für die real time PCR 
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Ziel-Gen 
 

Denature Anneal Elongate Extension Cycle-Anzahl 

18S rDNA of 

M. cerebralis 

 

95°C/5min 

 

- 

 

- 

 

- 

 

1 

 95°C/1min - - - 35 

 - 65°C/2.5min - -  

 - - 72°C/1.5min -  

 - - - 72°C/10min 1 

OmNramp α 

(ORF) 

 

94°C/5min 

 

- 

 

- 

 

- 

 

1 

 95°C/1min - - - 30 

 - 55°C/1min - -  

 - - 72°C/2min -  

 - - - 72°C/10min 1 

Tabelle 6  Übersicht über die Programme für den Thermocycler 
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4.4. Quantitative real-time-PCR 

 

4.4.1. Polymerase-Kettenreaktion (PCR) 

Die Polymerase-Kettenreaktion (engl. Polymerase Chain Reaction, PCR) ist ein 

von Mullis et al. (1986) beschriebenes Verfahren zur Vermehrung ausgewählter  

DNS-Stücke in einem Nukleinsäuregemisch. Sollen mit diesem Verfahren be-

stimmte RNA-Sequenzen vermehrt werden, so müssen diese erst mithilfe einer 

reversen Transkriptase in die entsprechende cDNS umgeschrieben werden.  

Bei erhöhter Temperatur (ca. 95oC) trennen sich die beiden komplementären 

Einzelstränge voneinander, die DNS denaturiert („schmilzt“). Bei wieder ernie-

drigter Temperatur (ca. 55oC) können sich jetzt die zugefügten Primer komple-

mentär an die Einzelstränge binden (Hybridisierung). Bei jetzt wieder (auf 72oC) 

erhöhter Temperatur beginnt die (hitzestabile) DNS-Polymerase, weitere kom-

plementäre Nukleotide an das jeweilige 3`-Ende der gebundenen Primer anzu-

bauen, wodurch diese verlängert werden und je eine komplementäre Kopie der 

DNS-Sequenz bilden. Jede Wiederholung dieser drei Schritte verdoppelt die 

Anzahl der kopierten DNS-Moleküle, sodass man z.B. bei 20fachem Durchlauf 

dieses Zyklus von einem DNS-Molekül etwa eine Million Kopien erhält. Weil 

man diese beispielsweise durch Gelelektrophorese von weiteren vorhandenen 

DNS-Molekülen abtrennen, sichtbar machen und auch mengenmäßig bestim-

men kann, lässt sich die PCR in vielfacher Weise nutzen, z.B. zur Erkennung 

charakteristischer Sequenzen im Genom von Bakterien und Viren oder, wie in 

der vorliegenden Arbeit, zum Nachweis von Genaktivitäten. 

 

4.4.2. Real time-PCR 

Bei dieser abgewandelten Form der PCR wird nicht das Endprodukt, sondern 

die Entstehung des Produktes analysiert. Dies geschieht durch den Einsatz 

eines fluoreszierenden Farbstoffes (SYBR Green I), der sich an doppel-

strängige DNA bindet und dann bei Anregung mit Licht von etwa 520nm Wel-

lenlänge grün fluoresziert. Dieses Fluoreszenzsignal verstärkt sich mit jedem 

Verdoppelungszyklus und korreliert daher direkt mit der Menge des amplifizier-
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ten Produktes. Die Lichtemission selbst ist allerdings unspezifisch, das heißt, 

sie erlaubt keine Differenzierung zwischen unterschiedlichen PCR-Produkten. 

Allerdings kann nach Abschluss der Amplifizierung eine Schmelzkurvenanalyse 

durchgeführt werden: Bei kontrollierter Temperaturerhöhung trennen sich die 

Doppelstränge der Fragmente, abhängig von der Länge, in Einzelstränge auf, 

sie „schmelzen“, wobei der Fluoreszenzfarbstoff wieder freigesetzt wird. Eine 

Analyse der allmählichen Fluoreszenzabnahme erlaubt es dann, zwischen 

spezifischen und unspezifischen PCR-Produkten bzw. Primerdimeren zu 

differenzieren. 

 

4.4.3. Standardkurven und Effizienz 

Nur die mittlere exponentielle und damit quantifizierbare Phase der PCR ist 

mess- und auswertbar. Verglichen werden die Fluoreszenzen der Proben an-

hand des Threshold Cycles (Ct-Wert oder CP = Crossing Point), der am Anfang 

der exponentiellen Phase der PCR steht und den Wert beschreibt, bei dem die 

Fluoreszenz erstmals signifikant über die Hintergrundfluoreszenz ansteigt. Am 

CP befindet sich in allen Reaktionsgefäßen die gleiche Menge an neu syntheti-

sierter DNA. 

Zur Korrektur der Quantifizierung ist die Berechnung der Effizienz einer PCR-

Reaktion notwendig, was am einfachsten über die Erstellung einer Standard-

kurve möglich ist. Dabei steht die eingesetzte DNA-Menge in linearer, umge-

kehrt proportionaler Beziehung zum CP. Mit der Formel E=10[−1/Steigung] lässt 

sich aus der Steigung der Kurve die Effizienz berechnen.  

 

Erstellung der Standardkurven 

Herstellung von Plasmid-DNA 

Methodik: Um eine ausreichende Amplifikatmenge für die Erstellung einer real- 

time-PCR-Standardkurve zu erhalten, wurden die PCR-Produkte über einen re-

kombinanten Vektor in kompetente Bakterien einkloniert. Die Kultivierung er-

folgte auf Agarplatten, die Ampicillin, das noch farblose X-Gal (5-Bromo-4-

chloro-3-indolyl-β-D-galaktosid) und den Expressionsinduktor für das lac-Ope-
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ron IPTG (Isopropyl-β-D-thiogalactopyranosid) enthielten. Der verwendete Vek-

tor trägt das lacZ-Gen und ein Ampicillin-Resistenz-Gen. Aufgrund des Ampi-

cillin-Zusatzes in den Nährböden können deshalb nur Bakterien mit ursprüng-

lichem oder neu-rekombiniertem Plasmid auf den Platten wachsen.  

Das lacZ-Gen des Vektors bewirkt eine Wiederherstellung der enzymatischen 

Funktion von ß-Galaktosidase, welches das farblose X-Gal  in ein blaues Pro-

dukt umwandelt. Blaue Kolonien signalisieren somit die Aufnahme des ur-

sprünglichen, nicht-ligierten Vektors. Erfolgt jedoch eine Rekombination des 

Plasmids mit dem Amplifikat, so wird das lacZ-Gen zerstört und damit funktions-

unfähig – die Kolonien erscheinen weiß.  

 

Vorbereitung der Nährböden und –medien: Zum Ausstreichen und Differen-

zieren der transformierten Bakterien wurden LB/Amp/IPTG/X-Gal-Agarplatten 

verwendet. Für die Herstellung eines 200mL-Ansatzes zum Gießen der Platten 

wurden 8g LB-Agar-Pulver (Genaxxon, Biberach) in 150mL dH2O eingerührt 

und mit verd. NaOH-Lösung auf pH 7,4 eingestellt. Dann wurden die restlichen 

50mL dH2O dazugegeben und das Gemisch in einem Schnellkochtopf autokla-

viert. Nach Abkühlen auf ca. 50°C und Zugabe von Ampicillin wurde soviel Agar 

in die Petrischalen gegossen, dass der Boden mit einer 3 - 4mm hohen Schicht 

bedeckt war. Auf diese (abgekühlten) LB/Amp-Platten wurde dann verdünnte 

IPTG-Lösung gegeben und sofort mit Hilfe eines sterilen Drigalski-Spatels 

gleichmäßig verteilt. Ebenso wurde mit mit X-Gal-Lösung verfahren. Die fertigen 

Platten wurden mit dem Deckel nach unten getrocknet und bis zum Ausplattie-

ren der Zellen bei 4°C im Kühlschrank aufbewahrt.  

Für das Nährmedium wurden 2,5g LB-Medium-Pulver (Genaxxon, Biberach) 

abgewogen und in 50mL dH2O eingerührt. Der Ansatz wurde mit verd. NaOH-

Lösung auf pH 7,5 eingestellt, mit dH20 auf 100mL aufgefüllt, autoklaviert und 

ebenfalls im Kühlschrank aufbewahrt. 

 

Aufreinigung der PCR-Produkte: Die PCR mit cDNA aus Regenbogenforel-

len-Nieren wurde mit den OmNramp α- und OmNramp β-Primern durchgeführt. 

Die jeweils 50µL Reaktionsgemisch setzten sich folgendermaßen zusammen: 
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 - 46µL 1.1x ReddyMix PCR Master Mix (Abgene, Hamburg) mit folgenden  

  Einzelkomponenten: 75mmol Tris-HCl (pH 8,8), 20mmol (NH4)2SO4, 1,5  

  mmol MgCl2, 0,01% (v/v) Tween20, jeweils 0,2mmol von dATP, dCTP,  

  dGTP, dTTP, 1,25U Taq DNA Polymerase und roter Farbstoff für die  

  Elektrophorese  

 - 2µL template cDNA 

 - 2µL Forward- und Reverse-Primer (Verdünnung: 50pmol/µL) 

 

Das PCR-Produkt wurde mit dem MinElute Gel Extraction Kit (Qiagen, Hilden) 

aufgereinigt und danach sofort auf Eis gestellt. 

 

Klonieren: Die Amplifikate wurden direkt in den pGEM-T-Vektor mittels des 

pGEM-T Vector Systems (Promega, Madison, WI, U.S.A.) ligiert. Dazu wurden 

3µL der beiden aufgereinigten PCR-Produkte mit Ligationspuffer, T4 DNA-

Ligase und pGEM-T-Vektor gemischt und für 1h auf Eis inkubiert. 50µL Esche-

richia coli JM109 High Efficiency Competent Cells wurden entsprechend den 

Herstelleranweisungen mit dem Ligase-Reaktionsgemisch transformiert und 

unter Zugabe von LB-Nährmedium 1,5h auf einem Schüttler bei 37°C inkubiert. 

Danach wurden jeweils 100µL der transformierten Kulturen mit einem sterilen 

Drigalski-Spatel auf je einer der vorbereiteten LB/Amp/IPTG/X-Gal-Platten aus-

gestrichen und über Nacht bei 37°C bebrütet. 

 

Selektion von transformierten Klonen: Zunächst wurden sterile Glasröhrchen 

mit je 10mL des autoklaviertem LB-Nährmediums beschickt. Mit einer sterilen 

Pipettenspitze wurden dann von jeder Platte 3 weiße Kolonien abgenommen, 

mitsamt der Pipettenspitze einzeln in die Röhrchen gegeben und über Nacht bei 

37°C auf einem Schüttler inkubiert. 

 

Extraktion der Plasmide:  Nach spektrophotometrischer Kontrolle des Bakte-

rientiters (Messung bei OD600) wurden die Plasmide mit dem FastPlasmid Mini 

Kit (Qiagen, Hilden) gemäß den Anwesungen des Herstellers aus 1,5mL Bakte-

riensuspension extrahiert und bei -20°C bis zur weiteren Verarbeitung aufbe-

wahrt. 
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Kontrolle, Schneiden und Aufreinigen der Inserts: Zur Kontrolle der Identität 

der Inserts (in den Plasmiden) wurden diese für eine PCR vorbereitet. Hierfür 

mussten zunächst die noch ringförmigen Vektor-DNS-Moleküle mit einer pas-

senden Restriktionsendonuclease außerhalb der Inserts geschnitten (lineari-

siert) und dann aufgereinigt werden: 

Ein entsprechender 10µL-Enzymansatz war zusammengesetzt aus: 

 - 1µL Puffer (BioLabs, New England, U.S.A.),  

 - 1µg (= 2,13µL) Plasmid,  

 - 0,15µL Sca I (BioLabs, New England, U.S.A.) und  

 - 6,72µL ddH2O 

 

Dieser Ansatz wurde für 2h bei 37°C und nachfolgend bei 80°C 20min inkubiert. 

Die jetzt geschnittene, in linearer Form vorliegende DNA wurde anschießend 

mit dem Gel Extraction Kit (Qiagen, Hilden) gemäß den Anweisungen des Her-

stellers aufgereinigt und die Konzentration spektrophotometrisch gemessen. 

 

Verdünnungsreihe 

Vom Gen für β-Actin, welches als Referenzgen zur Normalisierung der Proben 

herangezogen wurde, waren in 1µL cDNA genügend Kopien enthalten, um da-

mit eine fünfstufige, logarithmische Verdünnungsreihe erstellen zu können.  Die 

Konzentration der cDNA an den anderen beiden Genen (für OmNramp α und 

OmNramp β) reichten jedoch für eine solche Verdünnungsreihe nicht aus. Des-

halb mussten von diesen, wie oben beschrieben, erst Amplifikate kloniert wer-

den. 

Für die Verdünnungsreihen selbst wurde jeweils von 0,1µg Plasmid- bzw. cDNA 

in 100µL ddH2O ausgegangen (c = 0,01µg/10µL) und daraus in aufeinanderfol-

genden 1:10 (=1+9)-Verdünnungsschritten Reihen mit logrithmisch abnehmen-

den Konzentrationen von 10-3 bzw. 10-4 bis 10-9 µg/10µL erstellt. 

 

Wichtigste Voraussetzung für die Vergleichbarkeit der Ergebnisse aus der real-

time-PCR sind jeweils gleiche Konzentrationen von Primern, dNTPs und Enzy-

men in den einzelnen Reaktionsansätzen. Da es hier selbst bei sorgfältigstem 
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Pipettieren sehr leicht zu Ungenauigkeiten kommt, wurde für jede PCR ein 

MasterMix aus handelsüblichem Premix (iQTM SYBR Green Supermix, BioRad, 

München) und Primern hergestellt, der dann auf 0,5µL-Tubes verteilt und darin 

mit der verdünnten DNA vermischt wurde. Für die Erstellung der Standardkurv-

en wurde von jeder Verdünnungsstufe ein Triplikat in 96-well-Platten pipettiert.  

 

Die 25µL-Reaktionsansätze enthielten jeweils:  

 - 12,5µL iQTM SYBR Green Supermix,  

 - 1,25µL von jeweils Forward und Reverse Primer (auf 20pmol/µL verdünnt) 

- 10µL der verdünnten DNA.  

Ein Ansatz mit reinem ddH2O an Stelle verdünnter DNA diente jeweils als 

Negativkontrolle.  

In dieser Weise wurde für alle drei Zielgene (für OmNramp α, OmNramp β und 

β-Actin) verfahren; Die jeweiligen PCR-Programme sind Tab. 4 zu entnehmen. 

Visualisiert wurde der Verlauf der real-time-PCR mit iCycler iQ Real Time 

Detection System Software (BioRad, München).  

 

4.4.4. Detektion der Genexpression 

Die quantitative Expression von OmNramp α, OmNramp β und β-Actin, das 

später zur Normalisierung der beiden Zielgene diente, wurde mittels real time-

PCR detektiert. Die Reaktionsansätze für die Genexpressionsanalyse der 

aufbereiteten Proben wurden, wie bereits oben beschrieben, hergestellt. 

Allerdings wurde hier für jede Probe statt drei (Triplikat) nur zwei (Duplikat) 

Ansätze pipettiert. Als Kontrolle für den korrekten Ablauf der Reaktion dienten 

jeweils zwei Standardverdünnungen. 

 

 

4.4.5. Effizienz-korrigierte, relative Quantifizierung 

Die Menge eines Zielgenes lässt sich in der real time PCR absolut oder relativ 

quantifizieren. Bei der absoluten Quantifizierung wird aus einer Verdünnungs-

reihe, bestehend aus exakt bekannten Zielgen-Kopieanzahlen, eine Kalibrier-

kurve erstellt. Damit können die absoluten Startkopienzahlen oder –konzentra-
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tionen bestimmt werden. Nachteilig bei dieser Methode sind der zeitliche und 

apparative Aufwand und die hohen Anforderungen an die Standardisierung der 

einzelnen Arbeitsschritte. Die relative Quantifizierung ist im Gegensatz dazu 

einfach durchzuführen und liefert – bei richtiger Vorgehensweise – sehr genaue 

Ergebnisse. Hierbei wird die Zielgen-Expression auf ein oder mehrere weitere, 

sog. „Housekeeping Gene (HKG)“ bezogen. Da die Gesamtanalyse auf dem 

Signal des HKG basiert, ist die Wahl der internen Kontrolle ein wichtiger Aspekt 

bei der real-time-Analyse. Sie hängt unter anderem von der Art des Experi-

ments und dem zu untersuchenden Material ab. Die Expression sollte möglichst 

unabhängig von äußeren Einflüssen (Temperatur, Pathogene, Medikamenten-

gabe) als auch von Alter oder Zellzyklus sein. Als HKG wurde in dieser Studie 

β-Actin gewählt.  

Der Vorteil der beschriebenen relativen Quantifizierung liegt darin, dass schwer 

standardisierbare Effekte (Gewebseffekte, Qualität der RNA, Effizienz der re-

versen Transkription) Zielgen und HKG in gleicher Weise betreffen und somit 

kompensiert werden. Noch genauer wird die Analyse, wenn man die Effizienzen 

der einzelnen PCRs in die Normalisierung mit einrechnet. 

 

Die Normalisierung gegen β-Actin und die Einrechnung der Effizienz basieren 

auf den Berechnungen von Vandesompele et al. (2002). Die jeweilige Standard-

abweichung wurde mit Hilfe der entsprechenden Funktion des Microsoft Office-

Programms Excel®, signifikante Abweichungen der infizierten Gruppen im Ver-

gleich zu den Kontrollgruppen mit Hilfe eines Mann-Whitney U-Tests (P < 0,05) 

ermittelt. 

 

 

4.5. Isolierung und Sequenzierung von OmNramp α 

 

Die ORF von OmNramp α wurde mittels spezifischer Primer isoliert und direkt 

aus dem PCR-Produkt über den pGEM-T-Vektor in kompetente E. coli-Bakte-

rien einkloniert (siehe oben). Die Plasmid-DNA wurde mit dem Miniprep®-Kit 

(Eppendorf, Hamburg) extrahiert und deren Konzentration spek-
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trophotometrisch bei 260nm gemessen. Von jedem PCR-Produkt wurden drei 

Klone folgendermaßen (von GATC Biotech AG, Konstanz) sequenziert:  

Für die Sequenzierung der 3’- und 5’-Enden wurden vektorspezifische Primer 

verwendet und die Sequenzen der Mittelstücke mit zwei weiteren genspezifi-

schen Primern ermittelt (Tabelle 4). Für einen direkten Vergleich wurden die 

einzelnen sequenzierten Fragmente wieder zusammengesetzt und miteinander 

sowie mit der publizierten OmNramp αααα-Sequenz aus der Gendatenbank 

verglichen (Acc. No. AF048760).  

 

 

 

 

5. Ergebnisse 

5.1. Verifizierung der Infektion der Forellenbrütlinge 

 

Bei der Visualisierung der PCR-Produkte der cDNA-Proben wurde in jeder Pro-

be ein 415bp-Produkt detektiert.  

 

5.2. Effizienz und Spezifität der real-time-PCR 

 

Die Effektivität der Reaktionen wurde aus den Steigungen der entsprechenden 

Standardkurven ermittelt. Für die Negativkontrollen wurde ddH2O an Stelle 

eines cDNA-Templates eingesetzt und damit in keinem Fall ein Signal erhalten. 

Die Spezifität wurde anhand einer Schmelzkurve ermittelt (Abbildungen 4, 5, 6). 
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A. PCR Amp/Cycle Graph for SYBR-490 Step 3 

 

 

 

 

 

 

 

 

 

 

 

B. Melt Curve Graph for SYBR-490 

 

 

 

 

 

 

 

 

 

 

C. Standard Curve Graph for SYBR-490 Step 3 

 

 

 

 

 

 

 

Abbildung 4  OmNramp α: A. Zweifach lineare basislinienkorrigierte Abbildung der Amplifika-
tionsreaktionen der Verdünnungsreihe zur Erstellung der Standardkurve (y-Achse: relative Fluo-
reszenzeinheiten; x-Achse: Zyklen). B. Schmelzkurvenprofil (y-Achse: -d(RFU)/dT; x-Achse: 
Temperatur (°C)). C. Standardkurve (y-Achse: Schwellenwertzyklus; x-Achse: log der Start-
menge (µg)). 
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A. PCR Amp/Cycle Graph for SYBR-490 Step 3 

 

 

 

 

 

 

 

 

 

 

 

B. Melt Curve Graph for SYBR-490 

 

 

 

 

 

 

 

 

 

 

C. Standard Curve Graph for SYBR-490 Step 3 

 

 

 

 

 

 

 

Abbildung 5  OmNramp β: A. Zweifach lineare basislinienkorrigierte Abbildung der Amplifika-
tionsreaktionen der Verdünnungsreihe zur Erstellung der Standardkurve (y-Achse: relative Fluo-
reszenzeinheiten; x-Achse: Zyklen). B. Schmelzkurvenprofil (y-Achse: -d(RFU)/dT; x-Achse: 
Temperatur (°C)). C. Standardkurve (y-Achse: Schwellenwertzyklus; x-Achse: log der Start-
menge (µg)). 
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A. PCR Amp/Cycle Graph for SYBR-490 Step 3 

 

 

 

 

 

 

 

 

 

 

 

B. Melt Curve Graph for SYBR-490 

 

 

 

 

 

 

 

 

 

 

C. Standard Curve Graph for SYBR-490 Step 3 

 

 

 

 

 

 

 

 

Abbildung 6  β-Actin: A. Zweifach lineare basislinienkorrigierte Abbildung der Amplifikations-
reaktionen der Verdünnungsreihe zur Erstellung der Standardkurve (y-Achse: relative Fluores-
zenzeinheiten; x-Achse: Zyklen). B. Schmelzkurvenprofil (y-Achse: -d(RFU)/dT; x-Achse: Tem-
peratur (°C)). C. Standardkurve (y-Achse: Schwellenwertzyklus; x-Achse: log der Startmenge 
(µg)). 
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5.3. Genexpression 

 

Die Evaluierung der real time-PCR-Ergebnisse zeigte eine variierende Grund-

expression der beiden Gene für OmNramp α und OmNramp β in allen nicht-

infizierten Gewebeproben. Nach 3h waren keine signifikanten Unterschiede 

zwischen infizierten und nicht-infizierten Gruppen zu erkennen. Nach 14h zeigt 

die infizierte TL-Gruppe eine signifikante Erniedrigung der OmNramp α-Expres-

sion, verglichen mit der Kontrollgruppe. Dieser Trend ist auch noch nach 40d zu 

erkennen, jedoch ist er hier nicht mehr signifikant. Bei der Darstellung der Ex-

pression von OmNramp β ergibt sich während der ersten beiden Zeitpunkte (3h 

und 14d) ein sehr homogenes Bild der infizierten und nicht-infizierten Gruppen. 

Nach 40d allerdings zeigt wiederum die infizierte TL-Gruppe eine signifikante 

Expressionserniedrigung im Vergleich zur Kontrollgruppe. Die Genexpressionen 

in den Gruppen BT und WT (Abbildungen 7, 8) weisen zu keinem Zeitpunkt sig-

nifikante Unterschiede zwischen infizierten und nicht-infizierten Gruppen auf. 
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Abbildung 7  Relative Genexpression von OmNramp α in der real time PCR von infizierten und 
nicht-infizierten Fischen der Linien TL, BT und WT. Die Gewebeproben enthielten Haut, Muskel, 
Wirbelsäulen- und Kopfknorpel und Niere. Die Werte repräsentieren die mittlere relative Expres-
sion (+SD; n=5 außer WT-Linie 14d: n=4; WT-Linie 40d: n=3) und die Standardabweichung. 
Expressionsunterschiede zwischen infizierter und nicht-infizierter Gruppe wurde mit einem 
Mann-Whitney U-Test berechnet. Signifikante Unterschiede (P < 0,05) sind mit einem * gekenn-
zeichnet.  
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Abbildung 8  Relative Genexpression von OmNramp β in der real time PCR von infizierten und 
nicht-infizierten Fischen der Linien TL, BT und WT. Die Gewebeproben enthielten Haut, Muskel, 
Wirbelsäulen- und Kopfknorpel und Niere. Die Werte repräsentieren die mittlere relative Expres-
sion (+SD; n=5 außer WT-Linie 14d: n=4; WT-Linie 40d: n=3) und die Standardabweichung. 
Expressionsunterschiede zwischen infizierter und nicht-infizierter Gruppe wurde mit einem 
Mann-Whitney U-Test berechnet. Signifikante Unterschiede (P < 0,05) sind mit einem * gekenn-
zeichnet.  

 

 

5.4. Sequenzierung von OmNramp α in drei Regenbogenforellen-Linien 

 

Mit den spezifischen Primern für Nramp α wurde ein 1852bp-cDNA-Fragment 

amplifiziert. Nach dem Einklonieren und Sequenzieren des Inserts mit weiteren 

gen- bzw. vektorspezifischen Primern wurden die einzelnen sequenzierten 

Fragmente wieder zusammengesetzt und miteinander sowie mit der von Dor-

schner und Phillips (1999) publizierten Sequenz (Acc. No. AF048760) ver-

glichen (Tabelle 7). Die Nummerierung der Basenpaare erfolgte anhand der 

GenBank-Sequenz. Dabei wurden die folgenden variablen Positionen detektiert: 

An Position 712 ist ein C im HO- und WT-Stamm durch ein G in der GenBank-
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Sequenz und im TL-Stamm ersetzt. Weitere Unterschiede finden sich an Posi-

tionen 1711 und 1822; hier wechseln sich A und G ab, wobei dies auch in ver-

schiedenen Klonen ein und desselben Tieres zu beobachten ist, also keine 

Stamm-spezifische Mutation darstellt. In einem Klon eines Tieres des TL-Stam-

mes findet sich eine Deletion, die einen 154bp-Abschnitt von Position 1442 bis 

1595 betrifft und die 11. und zum Teil die 12. Transmembran-Domäne mit ein-

schließt. 

 

 GenBank 
(Acc. No. AF048760) 

HO TL WT 

 
GenBank 
(Acc. No. AF048760) 

 
 
1.000 

 
 
0.996 

 
 
0.912 

 
 
0.995 

 
HO 

 
--- 

 
1.000 

 
0.913 

 
0.997 

 
TL 

 
--- 

 
--- 

 
1.000 

 
0.913 

 
WT 

 
--- 

 
--- 

 
--- 

 
1.000 

Tabelle 7  Grad der Übereinstimmung der OmNramp αααα-Sequenzen untereinander 
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6. Publikation 
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7. Diskussion 

 

Das folgende Kapitel fasst die Diskussionen des vorangegangen Kapitels 6 zu-

sammen und greift inbesonders Aspekte auf, die in der vorstehenden Publika-

tion wenig oder gar nicht berücksichtigt werden konnten.  

 

 

7.1. Relative Quantifizierung der Expression von OmNramp α und β 

 

Die Wirtsreaktion auf eindringende Pathogene ist ein kompliziertes Zusammen-

spiel der verschiedenen Faktoren des Immunsystems, und wird daher meist 

auch von mehreren Genen reguliert wird (engl.: multigenic trait). Mit Hilfe von 

Mikrosatelliten und sogenannten linkage maps versucht man, die Genloci, auf 

denen sich die involvierten Gene befinden, zu lokalisieren und spezifische Mar-

ker für ihre An- bzw. Abwesenheit zu entwickeln. Besonders in der Aquakultur 

spielt diese Methode eine große Rolle für die Selektion und Zucht krankheitsre-

sistenter Stämme. Die Kenntnis derjenigen Gene, die bei Prozessen der Im-

munabwehr eine Schlüsselrolle spielen bzw. für Resistenzen verantwortlich 

sind, ist daher nicht nur für das Verständnis grundlegender immunologischer 

Abläufe von Interesse, sondern könnte auch eine wertvolle Hilfe bei der Ent-

wicklung entsprechende Zuchtprogramme sein.  

Zwei Gene für Nramp-Homologe, OmNramp α und OmNramp β, wurden hin-

sichtlich ihrer Gewebsexpression während einer Infektion mit Myxobolus cere-

bralis untersucht. Zum einen sollte so geklärt werden, ob sich eventuell bereits 

aus dem Expressionsprofil eine Beteiligung der Nramp-Homologen bei der 

Immunreaktion gegen M. cerebralis ableiten lässt, zum anderen, ob sich die 

Expression bei unterschiedlich resistenten Forellenstämmen dahingehend un-

terscheidet, dass man daraus auf einen Zusammenhang zwischen Expres-

sionshöhe und Ausprägung der Resistenz schließen könnte.  

Einen wichtigen Arbeitsschritt stellte die Infektion der Forellenbrütlinge dar. 

Bereits während der Sporenexposition war bei allen Gruppen das charakteris-

tische Zucken zu beobachten. Dies ist (nach El-Matbouli et al., 1999a) als Ab-
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wehrverhalten auf die Injektion der Polfilamente in die Epidermis und das Ein-

dringen der Amöboidkeimzellen in die Poren der Schleimzellen zu werten. Die-

se Beobachtung weist also bereits auf das Vorhandensein infektionstüchtiger 

Triactinomyxonsporen hin. Aufgrund der frühen Entnahme-Zeitpunkte und der 

Dauer des Versuchs war eine Bewertung der Infektion anhand klinischer Symp-

tome nicht möglich. Daher diente der molekularbiologische Nachweis parasi-

tenspezifischer DNA im Fischkörper als Verifizierung der Infektion. Anhand der 

durchweg positiven Ergebnisse der mit den spezifischen Primern nach Andree 

et al. (1998) durchgeführten PCR-Untersuchung wurde die Infektion aller Fische 

als erfolgreich bewertet. 

Da gerade in den ersten Lebenswochen die Entwicklung der immunkompeten-

ten Organe und damit die Ausprägung eines funktionierenden Immunsystems 

stattfindet (siehe 2.4.1), wurde die Übereinstimmung des Alters der Versuchs-

tiere zum Infektionszeitpunkt für wichtiger erachtet als die Infektion aller Grup-

pen mit derselben Sporengeneration. Um dabei mögliche Fehlerquellen zu mini-

mieren, wurden die Sporen sorgfältig ausgezählt und jede Gruppe mit exakt 

derselben Sporenanzahl infiziert (siehe 4.3.1).   

Durchaus kritisch für die quantitative Genexpressionsanalyse war die Proben-

entnahme: Die Entnahmezeitpunkte (3h, 14d, 40d) sollten alle Gewebestadien 

(Haut, Muskel, periphere Nerven, zentrales Nervensystem, Knorpel) des Parasi-

ten umfassen. Als Ausgangsmaterial diente daher von jedem Fisch eine Probe, 

die all diese Gewebe enthielt. Die Art und Weise der Probenentnahme war ent-

scheidend für die spätere Auswertung der Ergebnisse, da für die Normalisie-

rung gegen β-Actin Menge und Art der enthaltenen Gewebe absolut vergleich-

bar sein mussten. Aus diesem Grund wurden immer nur Fische desselben Ge-

wichts und derselben Größe in den einzelnen Gruppen zusammengefasst. 

 

Allgemein ist eine recht große Streuung der Einzelergebnisse festzustellen, 

durch die eventuell einige Effekte, ausgelöst durch die Infektion, verdeckt wur-

den. Da die Tiere jedoch mit einer hohen Sporenanzahl (5000 TAMs/Fisch) 

infiziert wurden, kann man von einer deutlichen Immunreaktion ausgehen. Es 

besteht jedoch zu keinem Entnahmezeitpunkt eine signifikante Erhöhung der 

Expression in den infizierten Gruppen gegenüber der in den Kontrollgruppen. 
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Weder OmNramp α noch OmNramp β werden also bei einer Infektion mit M. 

cerebralis zu irgendeinem Zeitpunkt der Infektion hochreguliert. Dieser Befund 

legt die Annahme nahe, dass diese beiden Gene nicht an der Immunabwehr 

gegen M. cerebralis von Seiten des Wirtes beteiligt sind. Ein interessanter As-

pekt ist jedoch die Herunterregulierung der Genexpression im empfänglichen 

Stamm TL im späteren Verlauf der Infektion. In mehreren Studien zeigten 

Nramp wie auch andere immunregulatorische Gene nach Pathogenexposition 

ein ähnliches Expressionsmuster (Sadeyen et al., 2004; Sigh et al., 2004; 

Grayson et al., 2002; Overturf et al., 2006; Holland et al., 2003). Bei der Proli-

ferativen Nierenerkrankung der Salmoniden (PKD), verursacht durch Tetra-

capsula bryosalmonae, ist nachgewiesen, dass eine fortgeschrittene Erkran-

kung zu einem erhöhten Cortisolspiegel im Blut führt. Dieses hat wiederum eine 

Hemmung verschiedener Immunfaktoren und somit eine durch den Parasiten 

ausgelöste Immunsuppression zur Folge (Holland et al., 2003). Ob und inwie-

weit die in der vorliegenden Studie beobachtete Erniedrigung der Expression 

von OmNramp α und β mit vermehrter Glucocorticoidausschüttung zusammen-

hängt, muss in weiteren Untersuchungen geklärt werden. 

 

 

7.2. Sequenzierung von OmNramp α in drei Regenbogenforellenlinien 

Die Bedeutung von Nramp 1 für die Abwehr verschiedener Infektionskrankhei-

ten konnte zum einen in Knockout-Versuchen an Mäusen bewiesen werden, 

zum anderen zeigten die Sequenzanalysen von Malo et al. (1994) einen direk-

ten Zusammenhang zwischen der Funktionstüchtigkeit des Nramp-Proteins und 

der Resistenz gegen bestimmte Erreger. Vor allem Inzucht-Mäuselinien zeigen 

eine in erhöhter Häufigkeit vorkommende Mutation an einer Transmembran-Do-

mäne von Nramp 1, welche offenbar zu einer erheblichen Einschränkung der 

Funktion des Proteins führt.  

Auch bei Fischen ist in Inzuchtpopulationen, wie sie auch bei einigen der hier 

untersuchten Regenbogenforellen-Linien vorliegen, im Allgemeinen mit einer 

erhöhten Homozygotie zur rechnen. Nachteilige Mutationen werden durch die 
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pathogenarme (künstliche) Aufzucht nicht ausgemerzt und können so zu einer 

vermehrten Krankheitsanfälligkeit führen.  

Ziel des zweiten Teils dieser Arbeit war es, Nramp α auf cDNA-Ebene in zwei 

Zuchtpopulationen und einer Wildpopulation von Regenbogenforellen zu se-

quenzieren, um Ort, Art und Anzahl der Polymorphismen zu definieren und mit-

einander vergleichen zu können.  

 

Von den beiden bisher bekannten Nramp-Homologen der Regenbogenforelle 

(Nramp α und Nramp β) wurde für die Sequenzierung Nramp α gewählt. Auch 

wenn dieses Gen hinsichtlich der Sequenz mehr dem Säugetier-Homologen 

Nramp 2 ähnelt (Dorschner und Phillips, 1999), zeigen sich hinsichtlich der Ge-

websspezifität der Expression größere Gemeinsamkeiten mit Nramp 1. Aus die-

sem Grunde vermuteten wir auch eine ähnliche Rolle von Nramp α in der Im-

munabwehr der Forelle. 

Es fanden sich einige, jeweils eine Base betreffende variable Positionen, die 

sich auch innerhalb ein und desselben Tieres in den verschiedenen Klonen 

voneinander unterschieden (siehe 5.4). Da sich diese Positionen jedoch aus-

nahmslos außerhalb der funktionalen Einheiten (u.a. den Transportdomänen) 

des Gens befinden, ist die Wahrscheinlichkeit gering, dass sie eine entschei-

dende Rolle für die Expression und Funktion von Nramp α spielen.  

Wesentlich interessanter erscheint hier die Deletion, die im amerikanischen 

Zuchtstamm TL in einem Klon gefunden wurde. Da diese Aberration in keinem 

weiteren Klon festgestellt werden konnte, ist auch an einen technischen Fehler 

im Sequenziervorgang zu denken. Die flankierenden Basenpaare liegen jedoch 

innerhalb eines sequenzierten Abschnitts; ein Abbruch des Lesevorgangs bzw. 

ein „Überspringen“ des Abschnitts, beispielsweise aufgrund einer loop-Struktur, 

ist also auszuschließen. Eine weitere Erklärungsmöglichkeit besteht darin, dass 

diese Sequenz für ein weiteres Nramp-Protein codiert, das in anderen Forellen-

artigen ebenfalls vorkommt, jedoch in dieser Studie aufgrund der begrenzten 

Anzahl an Klonen nur einmal isoliert wurde. Dagegen spricht, dass der Rest der 

Sequenz fast zu 100% mit den Sequenzen der anderen Klone übereinstimmt. 

Läge hier tatsächlich ein anderes Protein vor, wäre mit einer größerer Diversität 

zu rechnen (zum Vergleich: Die Sequenzhomologie von Nramp 1 zu Nramp 2 
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beträgt 78% (Gruenheid et al., 1995), die von Nramp α zu Nramp β jedoch 91% 

(Dorschner und Phillips, 1999)). 

Aufgrund der Länge sowie der Position dieser Deletion, die zwei Transmem-

bran-Domänen ganz bzw. teilweise betrifft, ist mit einer wesentlichen Beeinflus-

sung der späteren Struktur und Funktion des Proteins zu rechnen. Um zu klä-

ren, ob diese Aberration tatsächlich regelmäßig in dieser Zuchtpopulation vor-

kommt und inwieweit dadurch immunologische Vorgänge beeinflusst werden 

könnten, sind weiterführende Untersuchungen notwendig, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

67 

8. Zusammenfassung 

 

In der vorliegenden Arbeit wurden zwei Nramp-Homologe in der Regenbogen- 

bzw. Bachforelle hinsichtlich ihrer Rolle bei der Abwehr von Myxobolus cere-

bralis, dem Erreger der Drehkrankheit der Salmoniden, untersucht. Nramp stellt 

beim Säugetier eine wichtige Komponente des unspezifischen Immunsystems 

dar, indem es die Phagozytosefähigkeit von Makrophagen beeinflusst und auf 

vielfältige Art und Weise die Immunabwehr stimuliert. Bei einigen Pathogenen 

ist es sogar allein entscheidend für den Verlauf der Infektion. Um den Einfluss 

von Nramp auf eine Infektion von Forellen mit  Myxobolus cerebralis zu unter-

suchen, wurden eine empfängliche amerikanische Regenbogenforellen-Zucht-

linie (TL), eine weniger empfängliche deutsche Wildpopulation (WT), sowie 

(gegen M. cerebralis weitgehend resistente) Bachforellen (BT) dem Erreger in 

einem Expositionsversuch ausgesetzt und danach zu verschiedenen Zeitpunk-

ten zur Gewinnung von Gewebe getötet. Nach der Extraktion der Gesamt-RNA 

und Umschreibung in die cDNA wurde mit spezifischen Primern die Höhe der 

Expression von Nramp α und ββββ mittels der real-time-PCR bestimmt und gegen 

ββββ-Actin normalisiert. Dabei wurde zu keinem Zeitpunkt ein signifikanter Anstieg 

der Nramp-Homologen in einer der Gruppen beobachtet. Bei zwei Entnahme-

zeitpunkten wurde ein Absinken des Expressionslevels im Stamm TL gemes-

sen. 

Zur Untersuchung von Aberrationen in der Sequenz von Nramp α als mögliche 

Resistenzursache wurde eine weitere Regenbogenforellen-Linie miteinbezogen 

(ein deutscher Zuchtstamm, der sich in verschiedenen Studien als relativ un-

empfindlich gegenüber M. cerebralis gezeigt hat). Mit spezifischen Primern wur-

de Nramp α aus der Niere isoliert und sequenziert. Ein Vergleich der Sequen-

zen ergab nur einige wenige variable Positionen, die stets nur ein Basenpaar 

betrafen und sich außerhalb der funktionalen Einheiten des Gens befanden. 

Eine über 154 Basenpaare reichende Deletion in einem Klon eines Fisches des 

TL-Stammes konnte in keinem weiteren Klon desselben oder eines anderen 

Tieres festgestellt werden. Inwiefern diese Aberration die Expression und Funk-

tionalität des Gens auf Proteinebene beeinflusst, und ob sie eventuell auch in 
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anderen Regenbogenforellen-Linien vorkommt, muss in weiteren Studien ge-

klärt werden. 

 

 

9. Summary 

 

In the current work, two Nramp homologs in rainbow trout and brown trout were 

studied regarding its impact on an infection with Myxobolus cerebralis, the caus-

ative agent of the Whirling Disease of Salmonids. Nramp is an important com-

ponent of the nonspecific immune system in mammals, as it improves the ability 

of macrophages to kill pathogens and stimulates the immune response in nu-

merous ways. It even is responsible for the course of infection of some patho-

gens. To study the impact of Nramp on the infection of trout with M. cerebralis, 

an infection trial was conducted with a susceptible American rainbow trout strain 

(TL), a less susceptible german wild rainbow trout population (WT), and the 

resistant brown trout (BT). Afterwards the specimen were killed at several time-

points for tissue sampling. After extraction of total RNA and synthesis of cDNA, 

the expression of Nramp α and β was measured by real time PCR with specific 

primers and normalized against β-actin. No significant elevation of expression 

was measured at any timepoint. A depression in gene expression was detected 

at two timepoints in the TL strain.  

To study aberrations in the sequence of Nramp α as a possible reason for en-

hanced or declined resistance, a further rainbow trout strain was included: a 

German hatchery strain also showing enhanced resistance to M. cerebralis in 

different studies. Using specific primers, Nramp α was isolated and sequenced 

from cDNA of kidney. Comparison of the sequences of the different strains re-

vealed several variable positions of one bp each which were located outside of 

the functional elements of the gene. A deletion reaching over 154bp was found 

in one clone of the TL strain, but couldn`t found in another clone of the same or 

another fish. It has to be clarified in a further study if this aberration has an im-

pact on expression and functionality of the protein, and if this occurs in other 

rainbow trout strains, too. 
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