Evaluation der klinischen Diagnostik von craniomandibulären Dysfunktionen der Achse I nach den RDC/TMD Kriterien mit Hilfe magnetresonanztomographischer Bildgebung des Temporomandibulargelenkes als Goldstandard

Dissertation
zum Erwerb des Doktorgrades der Zahnheilkunde
an der Medizinischen Fakultät der Ludwig-Maximilians-Universität zu München

Vorgelegt von
Nicholas Alexander Roemmelt
aus München
2008
Mit Genehmigung der Medizinischen Fakultät
der Universität München

Berichterstatter Prof. Dr. Dr. W. Gernet
Mitberichterstatter Priv. Doz. Dr. B. Ertl - Wagner
Mitbetreuung durch den promovierten Mitarbeiter Dr. J.M. Pho Duc
Dekan Prof. Dr. D. Reinhardt
Tag der mündlichen Prüfung 20.02.2008
Für meine Frau
Meine Eltern
Meine Schwester und Oma
INHALTSVERZEICHNIS

1. EINLEITUNG .. 1

2. LITERATURÜBERSICHT ... 3
 2.1 Das stomatognathe System ... 3
 2.2 Das Kiefergelenk ... 3
 2.2.1 Anatomie des Kiefergelenkes .. 3
 2.2.2 Funktion des Kiefergelenkes ... 6
 2.3 Kiefergelenkserkrankungen und Klassifikationen .. 7
 2.4 Intraartikuläre Funktionsstörungen ... 9
 2.4.1 Die Diskusverlagerung ... 9
 2.4.1.1 Formen der anterioren Diskusverlagerung ... 10
 2.4.1.2 Epidemiologie ... 11
 2.4.1.3 Ätiologie ... 11
 2.4.1.4 Symptome und Verlauf der ADV ... 16
 2.4.2 Osteoarthritis und Osteoarthrose ... 18
 2.5 Kiefergelenksdiagnostik ... 19
 2.5.1 Klinische Diagnostik .. 19
 2.5.2 Validität und Reliabilität der klinischen Untersuchungsmethoden 19
 2.5.3 Bildgebende Verfahren zur Kiefergelenksdiagnostik 21
 2.5.3.1 Magnetresonanztomographie ... 22
 2.5.3.2 Validität und Reliabilität der MRT ... 25

3. ZIELSETZUNG ... 26

4. MATERIAL UND METHODE ... 27
 4.1 Untersuchungsgut .. 27
 4.2 Untersuchungsmethoden ... 27
 4.2.1 Anamnese ... 27
 4.2.2 Klinische Funktionsanalyse ... 28
 4.2.3 Klinische Diagnose ... 29
 4.2.4 MRT-Untersuchung ... 30
 4.2.4.1 Aufnahmeparameter .. 32
 4.2.4.1 Beurteilung der Aufnahmen .. 32
 4.2.5 Auswertung der Daten .. 34

5. ERGEBNISSE ... 36
 5.1 Stichprobencharakterisierung ... 36
 5.2 Einteilung der Patienten in Gruppen nach der Diskusposition aus dem MRT-Befund .. 37
 5.2.1 Unilaterale Diagnosegruppen ... 37
INHALTSVERZEICHNIS

5.2.2 Bilaterale Diagnosegruppen ... 39

5.3 Ergebnisse der Funktionsanalyse .. 41
 5.3.1 Anamnese .. 41
 5.3.1.1 Auslösende Faktoren .. 41
 5.3.1.2 Schmerzen im Bereich der Kiefergelenke 42
 5.3.1.3 Kieferorthopädische Behandlung ... 44
 5.3.1.4 Visuelle Analogskala .. 47
 5.3.1.5 Plötzliche Kieferöffnungseinschränkung 49

5.3.2 Palpationsbefunde ... 51
 5.3.2.1 Palpation der Muskulatur ... 51
 5.3.2.2 Palpation der Kiefergelenke ... 52

5.3.3 Unterkiefermobilität .. 54
 5.3.3.1 Mundöffnung .. 54
 5.3.3.2 Seitwärtsbewegungen.. 58
 5.3.3.3 Protrusion ... 62

5.3.4 Kiefergelenksgeräusche .. 64
 5.3.4.1 Differenzierung der Geräusche im Kiefergelenk 64
 5.3.4.2 Reziprokes Knacken .. 66
 5.3.4.3 Andere Geräuscheklassen ... 67

5.4 Ermittlung der Sensitivität und Spezifität der in der FAL angewandten Tests .. 68
 5.4.1 ADV mit Reposition ... 68
 5.4.2 ADV ohne Reposition ... 70

5.5 Ergebnisse der klinischen Diagnostik .. 72
 5.5.1 RDC-Gruppe I: Myogene Erkrankungen .. 72
 5.5.2 RDC-GRUPPE III: Arthralgie, aktivierte Arthrose und Arthrose 73
 5.5.2.1 Prävalenz der RDC-Gruppe-III- Diagnosen............................ 73
 5.5.2.2 Degenerative Veränderungen bei den RDC-Gruppe-III- Diagnosen .. 75
 5.5.2.3 Degenerative Veränderungen bei den MRT- Diagnosegruppen .. 76
 5.5.3 RDC-Gruppe II: Diskusverlagerungen ... 78

6. DISKUSSION .. 81
 6.1 Methodenkritik ... 81
 6.1.1 Patientenkollektiv ... 81
 6.1.2 Klinische Untersuchung .. 83
 6.1.3 MRT 85
 6.1.4 Statistische Auswertung ... 87

 6.2 Interpretation der Ergebnisse .. 87
 6.2.1 Stichprobe .. 87
 6.2.2 Anamnese ... 88
6.2.2.1 Auslöser ... 88
6.2.2.2 Arthrogene Schmerzen ... 89
6.2.2.3 Kieferorthopädische Vorbehandlung 90
6.2.2.4 Visuelle Analogskala .. 91
6.2.2.5 Plötzliche Kieferöffnungseinschränkung 93
6.2.3 Palpationsbefunde ... 94
 6.2.3.1 Palpation der Muskulatur 94
 6.2.3.2 Palpation der Kiefergelenke 95
6.2.4 Unterkiefermobilität .. 96
 6.2.4.1 Mundöffnung .. 96
 6.2.4.2 Laterotrusion .. 99
 6.2.4.3 Protrusion ... 102
6.2.5 Geräusche ... 103
6.2.6 Sensitivität und Spezifität der klinischen Tests 105
6.2.7 Übereinstimmung der klinischen Diagnostik mit den MRT-
 Diagnosen ... 108
 6.2.7.1 RDC-Gruppe-I-Diagnosen 108
 6.2.7.2 RDC-Gruppe-III-Diagnosen 109
 6.2.7.3 RDC-Gruppe-II-Diagnosen 111
7. ZUSAMMENFASSUNG UND SCHLUSSFOLGERUNG 117
8. LITERATURVERZEICHNIS ... 121
9. ABBILDUNGS- UND TABELLENVERZEICHNIS 140
 9.1 Abbildungsverzeichnis .. 140
 9.2 Tabellenverzeichnis ... 142
10. ANHANG ... 144
 10.1 Signifikanztabellen ... 144
 10.2 Formulare ... 154
 10.2.1 FAL-Bogen .. 154
 10.2.2 VAS-Bogen .. 158
 10.3 Abkürzungen .. 159
11. DANKSAGUNG .. 160
12. LEBENSLAUF ... 161
1. **EINLEITUNG**

Der klinisch tätige Zahnarzt wird in der täglichen Praxis immer wieder mit der Diagnostik und Therapie von Patienten mit schmerzhaften Funktionsstörungen konfrontiert.

Epidemiologische Studien zeigen, dass bei rund 50 % der Bevölkerung klinische Zeichen einer Funktionsstörung im stomatognathen System gefunden werden können [175,267]. 20-25 % berichten über klinische Symptome, nur 3-4 % davon konsultieren deshalb einen Arzt. Diese Funktionsstörungen, die auch als cranio-mandibuläre Dysfunktionen (CMD) bezeichnet werden, manifestieren sich durch folgende Kardinalsymptome: Schmerzen, insbesondere bei Funktion, Gelenksgeräusche und Bewegungseinschränkungen des Unterkiefers [175,267].

Die grundlegende Diagnostik von CMDs erfolgt primär anhand einer eingehenden Anamnese, der klinischen Funktionsanalyse und bildgebender Verfahren, bei einer entsprechenden Indikation durch eine klinische Verdachtsdiagnose.

Für die klinische Untersuchung stehen mehrere standardisierte Vorgehensweisen zur Verfügung [20,21,31,52].

Zur Beurteilung der Strukturen des Kiefergelenkes können mehrere Aufnahmetechnologien zum Einsatz kommen.

Mit konventionellen Röntgenbildern und der Computertomographie (CT) können knöcherne Veränderungen gut dargestellt werden. Fragestellungen hinsichtlich der Weichgewebssituation können damit aber kaum geklärt werden. Deshalb ist heute die Magnetresonanztomographie (MRT) als bildgebendes Verfahren der Wahl zu werten. Aufgrund der guten Weichgewebsdarstellung, des nicht invasiven Charakters und des Fehlens ionisierender Strahlung ist diese Schichtungstechnologie seit ein paar Jahren zum „Goldstandard“ in der Funktionsdiagnostik avanciert [57,198,279].

In der Regel wird der Patient zur Anfertigung eines MRTs in eine Praxis bzw. klinische Abteilung für radiologische Diagnostik überwiesen. Dort erfolgt meist auch eine
2. LITERATURÜBERSICHT

2.1 Das stomatognathe System

Das stomatognathe System ist eine anatomische und physiologische Einheit der Strukturen, die am Kauvorgang, der Artikulation und an vielfältigen psychomotorischen Funktionen beteiligt sind [232].

Dazu gehören die Zähne, Parodontien, Alveolarfortsätze, Ober- und Unterkiefer, Kaumuskulatur, akzessorische Muskulatur, Nervensystem, Gefäß- und Lymphbahnen, Speicheldrüsen und Schleimhäute [71,265].

Diese anatomisch benachbarten Strukturen wirken im Sinne eines biologischen Regelkreises eng zusammen. Die einzelnen Strukturen dieses Regelkreises stehen in ihrem funktionellen Zusammenspiel in gegenseitiger Wechselwirkung, d. h., eine Veränderung des Funktionszustandes eines Teils des Regelkreises wirkt sich zwangsläufig auf die anderen Teile aus und kann so die Funktion des Gesamtsystems beeinflussen [132,217].

2.2 Das Kiefergelenk

2.2.1 Anatomie des Kiefergelenkes

Die Articulatio temporomandibularis stellt die gelenkige Verbindung des Unterkiefers mit der Schädelbasis dar. Als Teil des stomatognathen Systems sind die beiden Kiefergelenke über die Spange des Unterkiefers miteinander fest verbunden und bilden als solches eine funktionelle Einheit, die sich nur zusammen bewegen kann [232].

Das Kiefergelenk setzt sich knöchern aus Anteilen des Os temporale des Schädels und dem walzenförmigen Caput mandibulae des Unterkiefers zusammen.

Die Gelenkgrube (Fossa mandibularis mit der Facies articularis) der Pars squamosa des Os temporale wird nach anterior kaudal abfallend durch das Tuberculum articulare begrenzt. Der Processus condylaris (Kondylus) steht als kraniales Ende des aufsteigenden Unterkieferastes, in Form einer querstehenden Walze, dorsokranial der Eminentia articularis in der Fossa mandibularis (bei physiologischer Ruhestellung) [145,283]. Das Caput mandibulae kann beim Erwachsenen in Form, Größe und Stellung erhebliche individuelle Variationen aufweisen [246,266]. Die Gelenkachse läuft durch den Kondylus von außen vorne nach innen hinten und schneidet sich mit
der kontralateralen Gelenkachse vor dem Foramen occipitale magnum in einem nach ventral offenen Winkel von 150-170° [23, 232].

Eine große Reparations- und Regenerationsfähigkeit wird durch die Schicht undifferenzierter Mesenchymzellen gewährleistet, da Faserknorpelzellen zur physiologischen Anpassung im Sinne eines Remodelings aus dieser Schicht reifen können [188].

Nur die Randbereiche des Diskus sind – im Gegensatz zu seinem Mittelteil – mit Gefäßen und Nerven versorgt [81, 217]. Der Diskus selbst besteht aus Faserknorpel und faserigem Bindegewebe und hat geringes Potential zur Regeneration [23].

Lateral und medial ist der Diskus durch seine Anheftung an den Polen des Kondylus begrenzt [23, 102]. Er ist an seinem anterioren und posterioren Anteil in eine obere und untere Lamelle gespalten und weist eine besonders dichte Anordnung von Kollagenfasern auf [255].
Anterior geht der Diskus mit seiner oberen Lamelle in die obere ventrale Gelenkkapsel über und mit seiner unteren Lamelle in die untere ventrale Kapsel [23]. Seit Jahren ist strittig, inwieweit der Musculus pterygoideus lateralis mit dem Diskus verbunden ist. Man ist sich aber mittlerweile einig, dass der Musculus pterygoideus lateralis, der in ein Caput superius und ein Caput inferius aufgeteilt werden kann, mit seinem Caput superius, das an der Ala major ossis sphenoidales entspringt, immer im oberen Anteil der Fovea pterygoidea und zusätzlich, in variablerem Umfang, am diskokapsulären Komplex ansetzt [11,27,93,75,159,208,255,313,320]. In 30-40 % der Fälle setzt das Caput superius ausschließlich am Kondylus an [93,154,183,320]. Der Ursprung des Caput inferius liegt an der Lamina lateralis des Processus pterygoideus, der Ansatz in der Fovea pterygoidea des Collum mandibulae. Ein Faseraustausch zwischen Caput superius und Caput inferius ist in der Literatur beschrieben worden, ebenso die Möglichkeit, dass auch Fasern des Caput inferius in den diskokapsulären Komplex einstrahlen können [38].

Posterior geht der Diskus in die sog. bilaminäre Zone über, die im retrodiskalen Raum liegt [223,242]. Dieser enthält neurovaskuläres Gewebe, das sich bei der Mundöffnung durch das Einströmen von Blut ausdehnt und bei Mundschluss durch das Ausströmen des Blutes wieder kollabiert. So wirkt das venöse retrodiskale Geflecht bei Funktionsbewegungen wie ein plastisches Polster [23,46]. Die bilaminäre Zone ist gegliedert in das fibroelastische Stratum superius und das kollagene Stratum inferius, bevor sie in die Kapselhinterwand übergeht. Das Stratum superius

Abb. 1: Makroskopisches anatomisches Präparat eines Sagittalschnittes durch das Kiefergelenk
(1) Stratum superius, (2) Stratum inferius, (3) Pars posterior, (4) Pars intermedia, (5) Pars anterior des Discus articularis; Modifikation nach Bumann und Lotzmann [23]
inseriert dorsal am Processus glenoidales, am knöchernen als auch knorpeligen
Anteil des Gehörganges und an der Faszie der Glandula parotidea
[38,46,102,200,205,242,283]. Das Stratum inferius ist am Collum mandibulae, unter-
halb der artikulierenden Gelenkfläche, fixiert [38,46,102,205,283].
Der Diskus teilt das Gelenk in ein oberes und unteres Gelenk mit einem oberen und
unteren Gelenkspalt [200].
Das Kiefergelenk ist von einer dünnen fibrösen Gelenkskapsel umhüllt [23]. Kranial
umschließt sie den Fossa-Eminentia-Komplex und setzt kaudal, sich konisch verjün-
gend, um das Collum mandibulae herum an [23,145,200,205,265]. Die mediale und
laterale Kapsel wird durch gleichnamige Ligamente zusätzlich verstärkt [153,254].
Die ventrale Kapsel ist durch eine besonders lockere Bindegewebsstruktur gekenn-
zeichnet und als solches weniger belastbar als die übrigen Gelenkskapselannteile
[108,133,255].
Die Gelenkskapsel, verstärkt durch die Ligamente, begrenzt aufgrund ihrer Beschaf-
fenheit die Beweglichkeit des Gelenkes, ohne aber gleichzeitig die Translations-
fähigkeit des Kondylus bei Mundöffnung, Mundschluss und Seitenbewegungen zu
hemmen [102]. Die Kapsel ist mit einer Synovialmembran ausgekleidet, deren Syno-
vialzellen Synovia bilden, die zur Ernährung des gefäßlosen Gelenkflächenknorpels
und als Gleitmittel zur Verringerung der Reibung dienen [23,44,45,232]. Die Be-
netzung der Gelenkflächen mit Synovia wird über zwei Mechanismen gewährleistet:
Zum einen kommt es durch die Kieferbewegungen zur gleichmäßigen Verteilung der
Synovialflüssigkeit, zum anderen kann der Knorpel in begrenztem Umfang Synovia
speichern und bei Druck wieder entlassen [192,264].

2.2.2 Funktion des Kiefergelenkes
Das menschliche Kiefergelenk ist ein Dreh-Gleit-Gelenk, das durch den Diskus in
zwei Kammern mit jeweils unterschiedlichen Aufgaben getrennt ist [200,232].
Bei der Mundöffnung, die durch die suprathyoidale Muskulatur (Rotation) und den M.
pterygoideus lateralis (Translation) ermöglicht wird, kommt es initial, in der unteren
Kammer, zu einer Rotation des Kondylus gegen die untere Fläche des Diskus, mit
einer geringen Translationskomponente [23,69,168,169]. Bei weiterer Mundöffnung
kommt es zu einer verstärkten translatorischen Komponente in der oberen Gelenk-
kammer. Der Diskus wird dabei passiv nach ventral über den hinteren Abhang des

Bei Lateralbewegungen findet auf der Mediotrusionssseite eine Translation des Kondylus auf das Tuberculum nach ventral, kaudal und medial statt. Auf der Laterotrusionssseite kommt es zu einer Rotation des Kondylus in der Gelenkgrube um eine vertikale Achse [23].

2.3 Kiefergelenkserkrankungen und Klassifikationen

Die Erkrankungen des Kiefergelenkes werden häufig in primäre und sekundäre Kiefergelenkserkrankungen eingeteilt [22,217].

leichter zu klassifizieren als die sekundären Erkrankungen des Kiefergelenkes, nicht zuletzt durch dessen oftmals offensichtliche Ätiologie und klinisch eindeutige Symptomatik, und wird bei der vorliegenden Untersuchung vernachlässigt [22,192].

Im europäischen Sprachraum hat sich eine Klassifikation der CMDs über deren Schweregrad etabliert. Anamnestische und klinische Parameter fließen hierbei in die Ermittlung des sog. Helkimoindex ein [89]. Der dadurch entstandene Summenscore führt dann zur Einteilung der Dysfunktionen in eine leichte, moderate und schwere Form. Die verwendeten Parameter zur Ermittlung des Summenscores stehen jedoch ohne Zusammenhang mit einer Wertung hinsichtlich Ätiologie und Pathogenese [111,329].

Die Arbeitsgruppe um Dworkin und LeResche hat in den „Research Diagnostic Criteria for the temporomandibular joint“ (RDC/TMD) versucht, die CMDs nur in Dys-
funktionen zu differenzieren, die diagnostisch unterschieden werden können [52]. Dieses ursprünglich für epidemiologische Studien konzipierte Klassifikationsschema teilt die CMDs anhand festgelegter Befunde in spezifische Diagnosen auf (vgl. Tab. 1, S. 31). Das RDC/TMD-Klassifikationsmodell setzte sich in den letzten Jahren international in zunehmendem Maße durch und wurde bereits in 20 Sprachen übersetzt (Stand 2007) [189,289].

In der Achse II werden schmerzassozierte, psychosoziale Faktoren mit aufgenommen.

2.4 Intraartikuläre Funktionsstörungen

2.4.1 Die Diskusverlagerung

Die anteriore Diskusverlagerung ist die wohl klinisch bedeutendste Ausprägung der intraartikulären Funktionsstörungen und lässt sich, wie weiter unten erläutert, in verschiedene Formen unterteilen [299] (Abkürzung im Folgenden als „ADV“).

Die posteriore Diskusverlagerung tritt wesentlich seltener auf und ist definiert als eine posteriore Verlagerung der posterioren Begrenzung des Diskus über den superioren Kondyluspol hinaus auf eine mindestens 13-Uhr-Position [19,299]. (Da bei vorliegender Studie kein Fall einer posterioren Diskusverlagerung vorlag, wird diese im Folgenden vernachlässigt).

Die transversale Verlagerung des Diskus kann nach lateral oder medial erfolgen und in Kombination mit oben genannten Verlagerungsrichtungen vorkommen [217,299]. Auch die transversale Diskusverlagerung kommt relativ selten vor. Die Inzidenz liegt
hier bei 1,8 % für die laterale und 0,9 % für die mediale Verlagerung, ermittelt bei einem gesunden Patientengut mit Hilfe kernspintomographischer Aufnahmen, bzw. 4,5 % für die laterale und 4,1 % für die mediale Diskusverlagerung [280]. Autopsiestudien erbrachten ähnliche Werte (3 % laterale bzw. 5 % mediale Diskusverlagerung) [30].

2.4.1.1 Formen der anterioren Diskusverlagerung

Die ADV kann aus funktionellen und prognostischen Gesichtspunkten in eine „ADV mit Reposition“ und in eine „ADV ohne Reposition“ aufgespaltet werden.

Ein Diskus gilt per definitionem (nach RDC/TMD) als nach anterior verlagert, wenn die posteriore Begrenzung des Diskus im MRT anterior der 12-Uhr-Position des Kondylus liegt [49,52,220]. Man spricht von einer partiellen ADV, wenn die posteriore Begrenzung des Diskus vor der erwähnten 12-Uhr-Position liegt, aber noch Kontakt zu der Artikulationsfläche des Kondylus besteht (ca. 9-Uhr- bis 11.30-Uhr-Position) [19,299]. Eine totale ADV liegt vor, wenn die posteriore Begrenzung des Diskus noch weiter anterior verlagert ist und kein Kontakt zur Artikulationsfläche des Kondylus mehr besteht [19,299].

werden, als histologische Folge der strukturellen Überbelastung der Gewebe \([19,124,171,242,288]\). Die derart progressiv adaptierten Gewebe werden jedoch durch die Ablagerungen polianionischer Glykosaminoglykane gegen Belastungsvektoren unempfindlicher \([14,19,242]\).

2.4.1.2 Epidemiologie

In der Literatur existieren sehr unterschiedliche Angaben in epidemiologischen Studien über die Prävalenz der ADV. Die aussagekräftigsten Ergebnisse werden von Autopsiestudien, gefolgt von klinischen Studien mit Hilfe der Arthrotomographie oder MRT geliefert.

In Autopsiestudien wurde, je nach Alter des Autopsiegutes, bei 11,6-67 \% der Gelenke eine Diskusverlagerung festgestellt \([43,266,305,306,316,324]\). Die große Varianz erklärt sich über die unterschiedlichen untersuchten Altersgruppen, bei denen die Prävalenz der Diskusverlagerung äquivalent zum steigenden Durchschnittsalter der untersuchten Altersgruppe zunimmt.

In diversen magnetresonanztomographischen Studien an einem klinischen Patientenkollektiv mit CMD konnten Prävalenzen der „ADV mit Reposition“ zwischen 18 und 48 \% sowie zwischen 17 und 53 \% der „ADV ohne Reposition“ festgestellt werden \([10,54,178,199,228,252]\). Diese Varianzen lassen sich über die unterschiedlichen Studiendesigns wie Ein- und Ausschlusskriterien sowie unterschiedlichen Definitionen der Diskusverlagerung erklären.

2.4.1.3 Ätiologie

In den letzten 70 Jahren wandelte sich das mechanistisch geprägte Modell zur Entstehung der craniomandibulären Dysfunktion von Costen \([33]\) über die Einführung psychologischer und psychophysikalischer Theorien \([114]\) bis hin zu einem biopsychosozialen Konzept \([170,286]\).

Die genauen ätiopathologischen Mechanismen für die Entstehung einer CMD sind weitgehend unbekannt, bzw. es existieren fast keine Belege hoher Evidenzstufe für die zahlreichen vorhandenen ätiologischen Theorien \([291]\).

Als allgemein anerkannt gilt jedoch eine multikausale Ätiologie zur Entstehung der craniomandibulären Dysfunktion \([53,80,98,191,217,251,269,295]\).
Das biopsychosoziale Konzept umfasst drei Hauptgruppen ätiologischer Faktoren: Okklusal-anatomische Faktoren, neuromuskuläre Faktoren und psychosoziale Faktoren [295]. Die einzelnen, diesen Hauptgruppen untergeordneten Faktoren sollen im Folgenden genauer beleuchtet werden.

A. Anatomische Faktoren

Diverse potentiell ätiopathogenetisch anatomische Faktoren werden in der Literatur diskutiert. So fanden einige Autoren einen signifikanten Zusammenhang zwischen Patienten mit einem hohen Tuberculum articulare, also mit einer steileren Gelenkbahn, und dem Vorkommen einer ADV [84,275,324]. Andere Autoren wiederum konnten keine Korrelation entdecken [73,201,215,225,252]. Schmid et al. fanden eine Korrelation zwischen der Kondylusmorphologie und der ADV. [252]

So hatten Gelenke mit einer ADV signifikant häufiger eine auffallend kleine artikulierende Kondylenoberfläche und einen signifikant kleineren anterior-posterior-Durchmesser des Kondylus [252]. Unklar blieb hier jedoch, ob diese Gegebenheit eine Folge der Erkrankung oder einen ätiopathogenetischen Faktor darstellt.

Ebenso kontrovers werden die unterschiedlichen Diskus-Morphologien diskutiert [19,100,197]. Als wichtigste Formveränderungen gelten die biplanare Abflachungsform und die keilförmig abgeflachte Form der Pars posterior [19]. Auch hier bleibt unklar, ob eine Abweichung von der physiologischen bikonkaven Form eine Folge der Erkrankung oder einen prädisponierenden Faktor darstellt.

B. Okklusale Faktoren

Der Einfluss okklusaler Faktoren auf die Entstehung einer CMD bzw. einer spezifischen Erkrankung, wie die ADV, wird in der Literatur sehr kontrovers diskutiert [109,166,272]. Nicht zuletzt aufgrund der vielen unterschiedlichen Studiendesigns lassen sich die verschiedenen Ergebnisse nur eingeschränkt vergleichen [109].

Meist wird der Okklusion für die Entstehung einer CMD eine sekundäre Rolle zugewiesen [32,258-260]. Dabei variieren die okklusalen Faktoren bei Gesunden wie bei Patienten so stark, dass oft keine klaren Zusammenhänge zur CMD oder gar spezifische Diagnosen einer CMD erkennbar sind [116,163].

Gefunden wurden jedoch Zusammenhänge zwischen okklusalen Faktoren wie „Anzahl insuffizienter Seitenzahnrestorationen in Infraokklusion“ [218], „kieferortho-
pädische Maßnahmen" [218], „fehlende Stützzonen“ [155,214], „steilere sagittale sowie transversale Okklusalkurven“ [106], „einseitiger posteriorder Kreuzbiss“ [214] und der ADV.

Abschließend lässt sich zusammenfassen, dass die Okklusion bei Prädisposition, Initiierung und Unterhaltung von funktionellen Kiefergelenkserkrankungen beteiligt sein kann [40,109,110].

C. Traumata

Traumata direkter oder indirekter Natur werden oftmals als Initiatoren einer symptomatischen Diskusverlagerung anerkannt, oder zumindest in direktem Zusammenhang mit der Diskusverlagerung gesehen [98,152,167,191,213,261,278].

Die American Academy of Orofacial Pain teilt die potentiell ätiopathologischen Traumata in drei Hauptgruppen auf: das „direkte Trauma“ durch direkte Gewalteinwirkung (z. B. durch Sturz oder Schlag), das „indirekte Trauma“ durch Akzelerations-/ Dezelerations-Unfälle und das „Mikrotrauma“ über langdauernde und wiederkehrende unphysiologische Krafteinwirkungen auf das Kiefergelenk [191].

In zahlreichen Studien wird dem Auffahrunfall bzw. Schleudertrauma als indirektem Trauma ein hoher Stellenwert als ätiopathogenetischer Faktor beigemessen [74,191,209,213,247,256].

D. Kieferorthopädie

Die verschiedenen kieferorthopädischen Behandlungen werden in der Literatur hauptsächlich als nicht ursächlich für eine CMD angesehen [42,163,164,226,287]. Dennoch existieren Studien, die einen Zusammenhang der kieferorthopädischen Behandlung und der ADV ermittelten [49,218,221].
E. Geschlechtsspezifische Faktoren

Die erhöhte Prävalenz von Frauen unter den Patienten mit CMD wird in der Literatur einheitlich angegeben [37,98,111,141,143,146,158,207,291].

Le Resche et al. diskutierten in ihrer Studie die evtl. prädisponierende Wirkung von Östrogenen als Ursache der erhöhten Prävalenz von Frauen im Patientengut mit klinisch symptomatischer CMD [141]. In ihrer Studie zeigten sie, dass eine post-menopausale Einnahme von Östrogen eine bis zu zweifach erhöhte Wahrscheinlichkeit für eine CMD zur Folge hatte, und berichteten über das bei Frauen bevorzugte Vorhandensein von Östrogenrezeptoren in der Kiefergelenkregion und der Kaumuskulatur [141].

Drobek et al. konnten eine Korrelation der Schmerzgrenze auf Palpation der Kaumuskulatur mit der menstruellen Phase aufzeigen [50], und Suenega et al. fanden eine Korrelation der Entzündungszeichen des posterioren Attachments und der menstruellen Phase [274].

In einer weiteren Studie konnten signifikant stärkere Schmerzen nach einer Kaubelastung, die auch bei Frauen länger anhielten, nachgewiesen werden [120]. Ein Zusammenhang zwischen einer ADV und dem Geschlecht konnte jedoch bisher nicht belegt werden [294,302].

F. Konstitutionelle und genetische Faktoren

Über eine erhöhte Prävalenz von muskulären Dysfunktionen bei einer CMD wird in der Literatur einheitlich berichtet [26,301-303]. Eine zentrale Rolle der Kaumuskulatur für die Entstehung einer Diskusverlagerung konnte nicht nachgewiesen werden und wird zunehmend in Frage gestellt [217].

Auch über die Bedeutung eines hypervalenten, oberen Bauches des Musculus pterygoideus lateralis ist die Literatur uneins. Einerseits wird er als begünstigender Faktor für die Entstehung einer Diskusverlagerung in Betracht gezogen, in dem er durch eine Hyperaktivität das posteriore Bandsystem überdehnen kann [149], andererseits zeigten neuere anatomische Studien, dass die Fasern des oberen Bauches des Musculus pterygoideus lateralis nicht isoliert am Diskus ansetzen [217].

Zusammenhänge orthopädischer Probleme der Wirbelsäule und der CMD werden vielfach diskutiert. Abschließende Belege konnten nicht ermittelt werden [82,296,297].

G. Psychische Faktoren

2.4.1.4 Symptome und Verlauf der ADV

Die Leitsymptome der CMD sind hauptsächlich Schmerz, Limitation der Mobilität des Unterkiefers und Knackgeräusche [190].

A. ADV mit Reposition

Patienten mit einer „ADV mit Reposition“ haben oftmals nur geringe Schmerzen [56,60,217], geben jedoch anamnestisch häufig „Episoden mit rezidivierenden Kieferklemmen“ an [217].

B. ADV ohne Reposition

Die „ADV ohne Reposition“ ist oftmals gekennzeichnet durch eine plötzliche Limitation der Mundöffnung [52,220] und wird häufig mit einer Mundöffnung < 35-40 mm definiert [52,89].

Neben dieser häufig schmerzhaften Einschränkung der Mundöffnung kommt es meist im akuten Stadium, bei einem einseitigen Befall, bei der Mundöffnungsphase zu einer Deflexion des Inzisalpunktes des Unterkiefers zur erkrankten Seite sowie zu einer Einschränkung der Laterotrusionsfähigkeit zur kontralateralen Seite [52,54,190,217,270,322,326,327].

Reziproke Kiefergelenksgeräusche sind keine Anzeichen einer „ADV ohne Reposition“. Kiefergelenksgeräusche sind generell bei dieser Erkrankung selten anzutreffen, jedoch nicht ausgeschlossen [12,190,196,217,315].

Besonders in der akuten Phase treten Schmerzen in den Gelenken bei einer „ADV ohne Reposition“ weitaus öfter auf als bei einer „ADV mit Reposition“ [56,60,190,217].

Im Verlauf der Erkrankung stellt sich meist eine wieder größere Mundöffnung als 35-40 mm ein [117,135,238,239]. Dies ist ein Zeichen einer Adaption der Gewebe
[19], die jedoch signifikant kleiner bleibt als die einer gesunden Kontrollgruppe [328].

2.4.2 Osteoarthritis und Osteoarthrose

Die primär entzündliche Osteoarthritis kann sekundär in eine Osteoarthrose übergehen.

2.5 Kiefergelenksdiagnostik

2.5.1 Klinische Diagnostik

Die klinische Diagnostik von CMD erfolgt meist durch eine ausführliche Anamnese und eine manuelle (und evtl. adjuvante intrumentielle) Funktionsanalyse mit Hilfe eines der zahlreichen standardisierten Befundbögen [4,31,52,137].

Im deutschen Sprachraum ist dabei der Funktionsanalysebogen der DGZMK oder eine Modifikation dieses Bogens weit verbreitet und gebräuchlich (siehe FAL-Bogen im Anhang S. 154).

Auch psychologische Parameter werden häufig bei diesen standardisierten Durchführungsweisen der Funktionsanalyse mit erhoben [52].

2.5.2 Validität und Reliabilität der klinischen Untersuchungsmethoden

Die unabänderbare Problematik der großen individuellen Varianz klinischer Zeichen, wie z. B. Gelenkgeräusche zu verschiedenen Untersuchungszeitpunkten [51,253,300,314], kann bei Reliabilitätsuntersuchungen nur durch eine Minimierung
des Zeitraums zwischen den verschiedenen Untersuchungen gering gehalten werden [253].

2.5.3 Bildgebende Verfahren zur Kiefergelenksdiagnostik

Bei der röntgenologischen transkraniellen Aufnahmetechnik (nach Schüller) können ebenfalls auch nur die knöchernen Strukturen des lateralen bzw. zentrolateralen Kiefergelenksanteils beurteilt werden. Diese Technik spielt heutzutage bei der Kiefergelenksdiagnostik aufgrund großer Strahlenbelastung und eingeschränkter diagnostischer Aussagekraft keine Rolle mehr [19,101].

Bei der Arthrographie kommt es nach Injektion eines Kontrastmittels in einen oder beide der Gelenkspalten zu einer transkraniellen oder tomographischen Röntgenaufnahme [87,190]. Die Weichgewebe (wie der Diskus) können so sehr gut dargestellt werden, so dass die Arthrographie der Magnetresonanztomographie sogar in der Diagnostik von Diskusperforationen und Adhäsionen überlegen ist [17,91,126,130,174,190]. Jedoch ist dieses Verfahren aufgrund der Invasivität sowie der großen Strahlenbelastung in letzter Zeit im Vergleich zur Magnetresonanztomographie in den Hintergrund geraten [190].

Die Computertomographie eignet sich hervorragend zur hochauflösenden Darstel-
LITERATURÜBERSICHT

lung der knöchernen Morphologie [19,97,325]. Der Diskus ist bei diesem Schichtungsverfahren grundsätzlich darstellbar, wenn auch wesentlich ungenauer als mit dem MRT [19,138,190]. Aufgrund dessen und wegen der großen Strahlenbelastung wird die Computertomographie aber hauptsächlich zur Darstellung von fortgeschrittenen degenerativen Veränderungen und primären Kiefergelenkerkrankungen (Tumoren, Zysten, Osteomyelitis, Hyper- und Hypoplasie, Syndromen, Frakturen) herangezogen [19].

2.5.3.1 Magnetresonanztomographie

Die Magnetresonanztomographie wird heutzutage in der Literatur aufgrund der großen Reliabilität, Validität sowie fehlender Strahlenbelastung und Invasivität des Verfahrens als „Goldstandard“ für die Kiefergelenksdiagnostik bewertet [17,19,41,115,273,310].

Da das MRT als einziges bildgebendes Verfahren Adoptionsprozesse und pathologische Veränderungen der bilaminären Zone, der faserknorpeligen Gelenkflächen und des Diskus articularis darstellen kann, hat sich das MRT zur Evaluierung von Diskusverlagerungen als Verfahren der Wahl etabliert [19,144,182,280].

Die Magnetresonanztomographie liefert nicht nur frei im Raum wählbare Schnittbilder mit detaillierter Wiedergabe von Weichteilstrukturen, sondern konnte in den letzten Jahren auch die Darstellung knöcherner Strukturen erheblich verbessern [19,85,125,190,309,310].

Dieses bildgebende Verfahren darf jedoch aufgrund des starken Magnetfeldes nicht bei Patienten mit Herzschrittmacher, zerebraler Aneurysmaclips und ferromagnetischen Fremdkörpern (KFO-App., Implantate, zahnärztliche Restaurationen ausgenommen) angewandt werden [19].

Prinzipiell können Kiefergelenksaufnahmen in allen drei Ebenen des Raumes – in der Frontalebene (Koronarebene), Sagittalebene und Horizontalebene (Axialebene) – angefertigt werden. Zu Beginn der Aufnahmesitzung wird zur Wahl der Schichtführung eine sog. Scoutaufnahme in der Axialebene durch die Gelenke angefertigt [19,263]. Dort werden dann die weiteren Schichten für die Sagittalebene (paramedian oder anguliert) bzw. für die Koronarebene (anguliert oder streng in der Frontalebene) geplant (vgl. Abb. 2 und 3, S. 24) [19].
Anschließend werden die in der Scoutaufnahme geplanten sagittalnen und koronaren Schichtungen jeweils in einer mundgeschlossenen Position (in habitueller Interkuspi-

2.5.3.2 Validität und Reliabilität der MRT

3. ZIELSETZUNG

Das Hauptziel der vorliegenden Arbeit war eine Überprüfung der Validität funktions-
diagnostischer klinischer Untersuchungsmethoden nach RDC/TMD-Kriterien bei
einem größeren klinischen Patientengut mit Hilfe der Befunde aus den magnet-
resonanztomographischen Schichtungsaufnahmen, die als Goldstandard verwendet
wurden.
Zusätzlich ging es um die Klärung der Frage nach der Sensitivität und Spezifität der
einzelnen klinischen Parameter, die zu einer Einteilung der Kiefergelenkserkrankun-
gen in der somatischen Achse I nach RDC führen.
Ferner sollten weitere gängige Untersuchungsmethoden auf ihre Validität überprüft
werden.
4. MATERIAL UND METHODE

4.1 Untersuchungsgut

Im Rahmen der vorliegenden Studie wurden 254 Patienten (206 weibliche und 48 männliche Patienten) aus der Kiefergelenkssprechstunde der Poliklinik für Zahnärztliche Prothetik der Ludwig-Maximilians-Universität München, die an jeweils beiden Kiefergelenken untersucht wurden und sich anschließend einer MRT-Untersuchung unterzogen hatten, für eine Auswertung der Ergebnisse ausgewählt. Ausschlusskriterien waren hierbei primäre Kiefergelenkerkrankungen wie Tumore oder Frakturen, systemische Erkrankungen wie Poliarthritiden, fehlende Untersuchungsergebnisse (missing values) der klinischen Funktionsanalyse sowie nicht auswertbare MRTs.

Das Alter der Patienten bei Erstvorstellung reichte von 12 bis 77 Jahren wobei der statistische Mittelwert bei 37,2 Jahren und der Medianwert bei 32,5 Jahren (SD = 16,3 Jahre) lag.

Die Patienten wurden wegen bestehender Kiefergelenksbeschwerden entweder von einem niedergelassenen Zahnarzt überwiesen oder suchten die Kiefergelenkssprechstunde des Klinikums aus Eigeninitiative auf.

4.2 Untersuchungsmethoden

4.2.1 Anamnese

In der ausführlichen Anamnese der Patienten wurden neben Fragen zur aktuell bestehenden (und vergangenen) Symptomatik auch Allgemeinerkrankungen, vorangegangene fachärztliche, zahnärztliche oder kieferorthopädische Behandlungen, Traumata, Schmerzen in den Kiefergelenken, Kopf oder anderen Körperpartien,

In einer elfstufigen visuellen Analogskala (VAS) wurden die subjektiv empfundenen Beschwerden der Patienten hinsichtlich Schmerzen und Funktionseinschränkungen notiert, wobei 0 „keine Beschwerden“ und 10 „maximal vorstellbare Beschwerden“ bedeutete. Der subjektiv empfundene Schmerz wurde unterteilt in „Schmerzen beim Kauen“, bei „Ruhe“, oder „sonstigen Bewegungen“. Die Funktionseinschränkungen wurden unterteilt in „Beschwerden beim Kauen“, „Sprechen“ oder „sonstigen Funktionen“. (vgl. VAS-Bogen, Anhang S. 158)

4.2.2 Klinische Funktionsanalyse

Die Mundöffnungsbewegung wurde anhand eines eventuell vorhandenen, spezifischen Abweichens des Inzisivenpunktes von einer gedachten perpendikulären, senkrechten Geraden durch diesen in eine Deviation, Deflexion oder geradlinige Öffnungsbewegung eingeteilt.

Vorhandene Druckdolenzen der Kaumuskulatur und der zugänglichen akzessorischen Muskulatur wurden palpatorisch mit einem aufgebrachten Druck von 2 lbs (ca. 900 g) mit zwei Fingern ermittelt. Bei der intraoralen Palpation sowie der Kiefergelenkspalpation von lateral, als auch von dorsal (über Meatus acusticus externus) wurde einem Druck von 1 lbs (ca. 450 g) mit nur einem Finger (zur Aufwendung des gleichen Druckes) angewandt und durch die Angaben des Patienten in drei Schweregrade eingeteilt (Grad 1 = leichter Schmerz, Grad 2 = mäßiger Schmerz, Grad 3 = heftiger Schmerz). Die Behandler wurden zum Zwecke einer konstanten und korrekten Druckaufwendung vor der Untersuchung anhand einer elektronischen Briefwaage kalibriert.

Ferner wurden ein Zahnstatus sowie die statischen Okklusionskontakte bei habitueller Interkuspidationsposition erhoben. Die dynamischen Okklusionskontakte bei einer evtl. möglichen Retrusion bei Laterotrusion und Protrusion wurden anschließend ermittelt.

4.2.3 Klinische Diagnose

In der RDC/TMD-Gruppe I der myogenen Erkrankungen wurden die Patienten seiten- spezifisch eingeteilt, wobei keine Unterscheidung zwischen Untergruppe Ia und Ib gemacht wurde, d. h. pro Patientenseite wurde die Diagnose „myogene Erkrankung“ oder „kein V.a. myogene Erkrankung“ gestellt.

Die Kiefergelenke wurden nach RDC/TMD-Gruppe II in drei Gruppen eingeteilt:
1. ohne Diskusverlagerung
2. anteriore Diskusverlagerung mit Reposition („ADV mit Reposition“)
3. anteriore Diskusverlagerung ohne Reposition („ADV ohne Reposition“)

Die hier erwähnte Gruppe der „ADV ohne Reposition“ repräsentierte eine Zusammenfassung der Untergruppe IIb und IIc der RDC-Gruppe II der Diskusverlagerungen. Es wurde also keine Unterscheidung innerhalb der Gruppe „ADV ohne Reposition“ getroffen hinsichtlich einer evtl. bestehenden „limitierten Mundöffnung“, da keine gesicherten Parameter in der magnetresonanztomographischen Auswertung existieren, die zur einer Differenzierung beider Subgruppen bei der MRT-Diagnose führen könnten [284].

4.2.4 MRT-Untersuchung

Von jedem der 254 Patienten wurden bilaterale MRT-Aufnahmen angefertigt. Der Zeitraum vom Termin der Erstuntersuchung bis zur MRT-Untersuchung betrug minimal 3 Tage und maximal 49 Tage, bei einem statistischen Mittelwert von 21,7 Tagen und einem Medianwert von 22 Tagen (SD = 10,43). In diesem Zeitraum erfolgte keine Behandlung der Patienten.
Tab. 1: Klassifikationsschema der RDC/TMD-Gruppe I, II, und III

<table>
<thead>
<tr>
<th>SPEZIFISCHE DIAGNOSEN</th>
<th>SYMPTOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe I: MYOGENE ERKRANKUNGEN</td>
<td></td>
</tr>
<tr>
<td>Ia MYOFASCIALER SCHMERZ</td>
<td>Schmerz im Kiefer-Gesichtsbereich in Ruhe oder bei Belastung und Schmerz auf Palpation der Kaumuskulatur bzw. Kiefergelenke, wovon mindestens ein Schmerzpunkt auf der Seite des angegebenen Schmerzes sein muss.</td>
</tr>
<tr>
<td>Ib MYOFASCIALER SCHMERZ MIT LIMITATION</td>
<td>Myofascialer Schmerz wie unter Ia und schmerzfreie aktive Kieferöffnung < 40 mm und passive Kieferöffnung mindestens 5 mm größer als aktive.</td>
</tr>
<tr>
<td>Gruppe II: DISKUSVERLAGERUNGEN</td>
<td></td>
</tr>
<tr>
<td>IIa DISKUSVERLAGERUNGEN MIT REPOSITION</td>
<td>Reziprokes Kiefergelenksknacken, wobei das Öffnungsknacken bei einer um 5 mm größeren Schneidekantendistanz als das Schließknacken auftritt. Das Knacken muss bei mindestens 2 von 3 aufeinanderfolgenden Kieferöffnungen auftreten. Oder: Kiefergelenksknacken muss bei mindestens 2 von 3 aufeinanderfolgenden Kieferöffnungen oder Schließbewegungen und während der Laterotrusion bzw. Protrusion, ebenfalls reproduzierbar bei 2 von 3 Exkursivbewegungen, auftreten.</td>
</tr>
<tr>
<td>IIb DISKUSVERLAGERUNGEN OHNE REPOSITION MIT LIMITIERTER MUNDÖFFNUNG</td>
<td>Anamnestisch vorliegende plötzliche Kieferöffnungseinschränkung, max. aktive Kieferöffnung < 35 mm und passive Kieferöffnung bis zu 4 mm größer als aktive Kieferöffnung und kontralaterale Exkursivbewegung < 7 mm und/oder Deflexion zur selben Seite und Anwesenheit von Kiefergelenksgeräuschen, die nicht den Kriterien unter IIa entsprechen.</td>
</tr>
<tr>
<td>IIc DISKUSVERLAGERUNGEN OHNE REPOSITION OHNE LIMITIERTE MUNDÖFFNUNG</td>
<td>Anamnestisch vorliegende plötzliche Kieferöffnungseinschränkung, max. aktive Kieferöffnung >= 35 mm und passive Kieferöffnung mindestens 5 mm größer als aktive Kieferöffnung und kontralaterale Exkursivbewegung >= 7 mm und/oder Deflexion zur selben Seite und Anwesenheit von Kiefergelenksgeräuschen, die nicht den Kriterien unter IIa entsprechen.</td>
</tr>
<tr>
<td>GRUPPE III: ARTHRALGIE, AKTIVIERTE ARTHROSE, ARTHROSE</td>
<td></td>
</tr>
<tr>
<td>AKTIVIERTE ARTHROSE</td>
<td>Kriterien der Arthralgie und entweder Reibegeräusche im Kiefergelenk oder folgende Befunde bei bildgebenden Verfahren: Erosionen der kortikalen Strukturen, Sklerosierung des Kondylus und am Tuberculum articulare, Abflachung der Gelenkoberflächen, Osteophytenbildung.</td>
</tr>
<tr>
<td>ARTHROSE</td>
<td>Abwesenheit aller Kriterien einer Arthralgie und entweder Reibegeräusche oder folgende Befunde bei bildgebenden Verfahren: Erosionen der kortikalen Strukturen, Sklerosierung des Kondylus und am Tuberculum articulare, Abflachung der Gelenkoberflächen, Osteophytenbildung.</td>
</tr>
</tbody>
</table>
4.2.4.1 Aufnahmeparameter

4.2.4.1 Beurteilung der Aufnahmen

als vertikaler signalarmer Streifen zwischen signalreichem hinterem Diskusband und posteriorem Attachment [49,243,244] (vgl. Abb. 4, S.33).

Abb. 4: Schematische Darstellung einer sagittalen Schichtaufnahme zur Bestimmung der Diskusposition

Anschließend wurde eine Gerade durch den Hinterrand des Diskus und den Kondylusmittelpunkt gezogen und der dadurch entstandene Winkel zwischen dieser Geraden und der 12-Uhr-Position vermessen. Lag der Diskushinterrand weiter als 10 Grad von der 12-Uhr-Position entfernt, galt der Diskus als nach anterior verlagert [49]. Der Diskus galt als repositionslos verlagert, wenn das posteriore Band sowohl bei habitueller Interkuspidationsposition als auch bei maximaler Mundöffnung mindestens 10 Grad vor der 12-Uhr-Position lag.

Dadurch wurden die Kiefergelenke in drei MRT-Diagnosegruppen unterteilt:
1. Ohne Diskusverlagerung
2. Anteriore Diskusverlagerung mit Reposition
3. Anteriore Diskusverlagerung ohne Reposition

Ferner wurde besonderes Augenmerk auf degenerative Veränderungen, wie sie bei den Diagnosegruppen „aktivierte Arthrose“ und „Osteoarthrose“ der RDC-Gruppe III
erwähnt sind, gelegt. Bei einem oder mehreren Befunden, wie Erosionen der kortikalen Strukturen, subchondraler Sklerosierung des Kondylus oder Eminentia, ausgeprägten planen Schliffflächen (flattening) an Kondylus oder Eminentia oder Osteophytenbildung, erhielt das Kiefergelenk die Diagnose „degenerative Veränderungen“. Bei einem Fehlen der oben genannten Befunde wurde „keine degenerativen Veränderungen“ diagnostiziert.

4.2.5 Auswertung der Daten

Die Sensitivität, Spezifität und die positiven als auch negativen Prädiktivwerte der einzelnen klinischen Untersuchungen sowie klinischen Diagnosen nach den RDC/TMD-Kriterien wurden mit Hilfe der Vierfelder-Tafel-Analyse berechnet. Die Sensitivität errechnete sich dabei aus dem Anteil der „richtig Positiven“ an der Gesamtzahl der „Erkrankten“:

\[
\text{SENSITIVITÄT} = \frac{\text{richtig positiv}}{\text{richtig positiv} + \text{falsch negativ}}
\]
Die Spezifität wurde durch den Anteil der „richtig Negativen“ an der Gesamtzahl der „Gesunden“ bestimmt:

\[
\text{SPEZIFITÄT} = \frac{\text{richtig negativ}}{\text{richtig negativ} + \text{falsch positiv}}
\]

Der positive Prädiktivwert, der bei einem bereits durchgeführten Test die Wahrscheinlichkeit für das Vorliegen der gesuchten „Erkrankung“ beschreibt, wurde durch den Anteil der „richtig Positiven“ an der Gesamtzahl der diagnostizierten Fälle „erkrankt“ bestimmt:

\[
\text{PPW} = \frac{\text{richtig positiv}}{\text{richtig positiv} + \text{falsch positiv}}
\]

Der negative Prädiktivwert, der bei einem bereits durchgeführten Test die Wahrscheinlichkeit für das Nichtvorliegen der gesuchten „Erkrankung“ beschreibt, wurde durch den Anteil der „richtig Negativen“ an der Gesamtzahl der diagnostizierten Fälle „gesund“ bestimmt:

\[
\text{NPW} = \frac{\text{richtig negativ}}{\text{richtig negativ} + \text{falsch negativ}}
\]

Die Übereinstimmung der kategorialen Variablen der klinischen Diagnosen mit den bildgebenden Diagnosen wurde abschließend anhand Cohens Kappa-Wert für Kreuztabellen errechnet:

\[
\text{KAPPA} = \frac{\text{Übereinstimmungen} - \text{erwartete Anzahl der Übereinstimmungen}}{\text{Gesamtzahl} - \text{erwartete Anzahl der Übereinstimmungen}}
\]
5. ERGEBNISSE

5.1 Stichprobencharakterisierung

254 Patienten bzw. 508 Kiefergelenke wurden untersucht. Die wichtigsten Eigenschaften der Stichprobe sind in der Abb. 5 ersichtlich. Die Altersgruppenverteilung präsentierte sich zweigipfelig: Patienten in der Altersgruppe „20-29 Jahre“ (26,77 %) und „50-59 Jahre“ (18,9 %) waren am stärksten vertreten und machten 45,67 % des gesamten Patientenkollektivs aus. Dabei waren die weiblichen Patienten überrepräsentativ in allen Altersgruppen, außer der Gruppe „+70 Jahre“ vertreten, im Vergleich zu den männlichen Patienten (insgesamt 206 weibliche, 48 männliche). Auffallend waren auch die große Anzahl sowie das starke Gefälle der weiblichen (N = 34; 13,39 %) zu den männlichen (N = 2; 0,79 %) Patienten in der jüngsten Altersgruppe „< 20 Jahre“.

~Abb. 5: Geschlechts- und Altersverteilung bei Erstuntersuchung~
5.2 Einteilung der Patienten in Gruppen nach der Diskusposition aus dem MRT-Befund

5.2.1 Unilaterale Diagnosegruppen

Die Auswertung der magnetresonanztomographischen Untersuchung aller 254 Patienten (508 Kiefergelenke) ergab folgende Verteilung der Patienten auf die unilateralen Diagnosegruppen (vgl. Abb. 6):

Bei 208 Kiefergelenken (40,94 %) wurden keinerlei Anzeichen einer anterioren oder posterioren Diskusverlagerung festgestellt.

151 (29,72 %) Kiefergelenke waren mit einer „anterioren Diskusverlagerung mit Reposition“ und 149 (29,33 %) Kiefergelenke mit einer „anterioren Diskusverlagerung ohne Reposition“ vergesellschaftet.

Betrachtet man die unilateralen Diagnosegruppen hinsichtlich der Geschlechtsverteilung (siehe Abb. 7, S. 38), so fällt auf, dass die Kiefergelenke von 67,71 % (65 Kiefergelenke) aller männlichen Patienten in der Diagnosegruppe der Kiefergelenke „ohne Diskusverlagerung“ zu finden sind. Die restlichen Kiefergelenke der männlichen Patienten verteilen sich zu 18,75 % (18 Kiefergelenke) in die Gruppe der „ADV mit Reposition“ und zu 13,54 % (13 Kiefergelenke) in die Gruppe der „ADV ohne
ERGEBNISSE

Reposition“. Dagegen verteilen sich die Kiefergelenke der weiblichen Patienten nahezu gleichmäßig auf die diagnostischen Untergruppen: 34,71 % (143 Kiefergelenke) der weiblichen Kiefergelenke haben keine Diskusverlagerung, 32,28 % (133 Kiefergelenke) haben eine „ADV mit Reposition“, 33,01 % (136 Kiefergelenke) eine „ADV ohne Reposition“.

Abb. 7: Geschlechtsverteilung bei den unilateralen Diagnosegruppen

Die Dauer der Beschwerdesymptomatik bezogen auf die unilateralen Diagnosegruppen ist in der Abb. 8 (S. 39) ersichtlich.

Der größte Anteil der Diagnosegruppen war nicht bei den akuten Beschwerden „bis zu 6 Monaten“, sondern bei den chronischen Beschwerden „länger als 6 Monate“ zu finden (68,75 % der Patienten „ohne Diskusverlagerung“; 82,78 % der Patienten mit einer „ADV mit Reposition“; 74,83 % der Patienten mit einer „ADV ohne Reposition“).
5.2.2 Bilaterale Diagnosegruppen

Zur exakteren Auswertung einiger klinischer Tests wurden die Kiefergelenke der Patienten zusätzlich anhand des MRT-Befundes in sechs bilaterale Diagnosegruppen (vgl. Abb. 9) eingeteilt.

Abb. 8: Die Dauer der Beschwerden bei Erstuntersuchung

Abb. 9: Verteilung der Patienten auf die bilateralen Diagnosegruppen
65 (25,59 %) Patienten hatten „bilateral keine Diskusverlagerung“. Bei 39 (15,35 %) Patienten wurde eine „unilaterale ADV mit Reposition“ diagnostiziert und bei ebenfalls 39 (15,35 %) Patienten eine „unilaterale ADV ohne Reposition“. 40 (15,75 %) Patienten hatten eine „bilaterale ADV mit Reposition“, 32 (12,60 %) Patienten eine „unilaterale ADV mit Reposition, mit kontralateraler ADV ohne Reposition“. Bei 39 (15,35 %) Patienten wurde eine „bilaterale ADV ohne Reposition“ festgestellt.
5.3 Ergebnisse der klinischen Funktionsanalyse

5.3.1 Anamnese

5.3.1.1 Auslösende Faktoren

Bei der anamnestischen Befragung der Patienten stieß man bei der Frage nach potentiell auslösenden Faktoren der bestehenden Problematik mehrfach auf zwei häufig vorkommende Angaben:

64 von 254 (25,3 %) Patienten hatten einen Unfall oder Schlag im Mund-Gesichts-Kieferbereich erlitten; 39 (15,35 %) Patienten hatten einen langdauernden Zahnarztbesuch, die Anfertigung eines neuen Zahnersatzes oder die Extraktion eines Zahnes als auslösenden Faktor von Schmerz, Limitation oder Geräuschen angegeben.

Eine weitere, häufig vorkommende Angabe in der Anamnese war die vorangegangene kieferorthopädische Behandlung. So hatten sich 136 Patienten (53,54 %) einer kieferorthopädischen Behandlung unterzogen, was jedoch nur in 10 Fällen (3,94 %) als Auslöser der Problematik angegeben worden war. (Die Ergebnisse der Auswertung der vorangegangenen kieferorthopädischen Behandlung folgen unter 5.3.1.3)

Setzt man die gefundenen subjektiven „Auslöser“ in Relation zu den im MRT gefundenen unilateralen Diskuspositions-Diagnosegruppen, so verteilen sich diese wie folgt (vgl. Abb. 10, S. 42):

5.3.1.2 Schmerzen im Bereich der Kiefergelenke

Bei der Auswertung der Daten zeigte sich eine kontinuierliche Steigerung der Angaben über „arthrogene Schmerzen“ von den Patienten mit Kiefergelenken „ohne Diskusverlagerung“ (47,6 %) über die Gruppe mit „ADV mit Reposition“ (68,75 %) bis zu den Patienten mit den Kiefergelenken mit „ADV ohne Reposition“ (76,51 %). (vgl. Abb. 11, S. 43)

Auffällig hierbei war der große Anteil von Kiefergelenken „ohne Diskusverlagerung“ mit subjektiv bestehenden Schmerzen (47,6 %). Eine nähere Untersuchung dieser Stichprobe (N = 99) nach evtl. vorhandenen, magnetresonanztomographisch bestätigten degenerativen Veränderungen der Kiefergelenke ohne eine vorliegende Diskusverlagerung ergab folgende Verteilung der Gelenke (vgl. Abb. 12, S. 43):
Abb. 11: Angaben über subjektiv arthrogene Schmerzen bei den unilateralen MRT-Diagnosegruppen

55 (55,6 %) der Kiefergelenke „ohne Diskusverlagerung“ und mit bestehenden „arthrogenen Schmerzen“ hatten magnetresonanztomographisch bestätigte degenerative Veränderungen. 9 (9,09 %) dieser Gruppe hatten die zusätzliche Diagnose „Myopathie“ erhalten. 46 (46,46 %) hatten keine Diagnose „Myopathie“.

44 (44,4 %) der Kiefergelenke „ohne Diskusverlagerung“ und bestehenden „arthrogenen Schmerzen“ hatten keine nachweisbaren degenerativen Veränderungen.

13 (13,13 %) dieser Gruppe hatten zusätzlich die Diagnose „Myopathie“. 31 (31,31 %) hatten weder nachweisbare degenerative Veränderungen noch wurde eine bestehende Myopathie diagnostiziert.

Im statistischen Vergleich mit Hilfe von Fishers exaktem Test (vgl. Tab. 3, Anhang S. 144) erwies sich die Gruppe der Kiefergelenke mit „ADV mit Reposition“ als auch „ADV ohne Reposition“ als signifikant häufiger schmerzhaft, im Vergleich zu der Gruppe der Kiefergelenke „ohne Diskusverlagerung“.

Zwischen der Gruppe „ADV mit Reposition“ und „ADV ohne Reposition“ konnte kein signifikanter Zusammenhang hergestellt werden.

5.3.1.3 Kieferorthopädische Behandlung

In der Anamnese wurden die Angaben der Patienten über eventuell in der Vergangenheit durchgeführte kieferorthopädische Behandlungen (festsitzende oder herausnehmbare Apparaturen, mit oder ohne chirurgische Maßnahmen) notiert.

Bei der Auswertung wurden diese Angaben mit den bilateralen Diagnosegruppen in Relation gesetzt. (vgl. Abb. 13)

Abb. 13: Kieferorthopädische Vorbehandlung bei den bilateralen Diagnosegruppen

Dabei zeigte sich, dass die Patienten „ohne Diskusverlagerung bilateral“ sich wesentlich seltener einer kieferorthopädischen Behandlung unterzogen hatten (35,38 %) als
ERGEBNISSE

die Patientengruppen mit „Diskusverlagerungen in mindestens einem Kiefergelenk“ (43,59-74,36 %).

Bei der statistischen Untersuchung mit Hilfe von Fishers exaktem Test (vgl. Tab. 4, Anhang S. 144) zeigte sich die Diagnosegruppe der Patienten mit „verschiedenen ADVs“ als auch die Gruppe der Patienten mit „beidseitiger ADV ohne Reposition“ signifikant häufiger „kieferorthopädisch vorbehandelt“ als die Gruppe „ohne Diskusverlagerung bilateral“. Ferner erwies sich die Gruppe mit „beidseitiger ADV ohne Reposition“ signifikant häufiger „kieferorthopädisch vorbehandelt“ als die Gruppe „einsitzige ADV mit Reposition“.

59,79 % aller Patienten mit mindestens einer „Diskusverlagerung mit oder ohne Reposition in den Gelenken“ hatten eine kieferorthopädische Vorbehandlung, im Gegensatz zu den von oben bekannten 35,38 % der Patienten „ohne Diskusverlagerungen bilateral“.

Abb. 14: Kieferorthopädische Vorbehandlung bei der zusammengefassten Diagnosegruppe der uni- oder bilateralen Diskusverlagerungen, ohne Beachtung der Reposition

Abbildung 15: Kieferorthopädische Vorbehandlung bei der zusammengefassten Diagnosegruppe der uni- oder bilateralen Diskusverlagerungen, ohne Beachtung der Reposition, bei den unterschiedlichen Altersgruppen

Statistisch signifikant häufiger kieferorthopädisch vorbehandelt erwiesen sich hierbei mit Hilfe des exakten Tests nach Fisher (vgl. Tab. 6, Anhang S. 145) auch nur noch die Patienten mit einer „Diskusverlagerung mit/ohne Reposition in mindestens einem Gelenk“ im Vergleich zu den Patienten „ohne eine Diskusverlagerung bilateral“ in der

5.3.1.4 Visuelle Analogskala

A. Schmerzen

Mit dem VAS-Fragebogen wurden die graduier ten Angaben der Patienten über subjектив empfundene Schmerzen und Funktionseinschränkungen erfasst.

Abb. 16 beschreibt die subjektive Schmerzempfindung der Patienten der verschiedenen bilateralen Diagnosegruppen anhand einer visuellen Analogskala (von 0 bis 10) für „Schmerzen beim Kauen“, beim „Sprechen“ und „Schmerzen bei sonstigen Bewegungen“.

Dabei wurde keine spezifische Unterscheidung zwischen arthrogenem und muskulärem Schmerz getroffen.

Bei der statistischen Untersuchung der subjektiv empfundenen Schmerzen mit Hilfe des Mann-Whitney-U-Tests (vgl. Tab. 7, Anhang S. 146) ergaben sich folgende signifikante Ergebnisse:

Die „Schmerzen beim Kauen“ als auch die „Schmerzen bei sonstigen Bewegungen“ waren bei den Patienten mit „einseitiger ADV ohne Reposition“, „verschiedenen ADVs“ und „beidseitiger ADV ohne Reposition“ signifikant vergrößert im Vergleich zu den Patienten „ohne Diskusverlagerungen“.

B. Funktionseinschränkungen

Abb. 17 (S. 49) beschreibt die subjektive Funktionseinschränkung der Patienten der verschiedenen bilateralen Diagnosegruppen anhand einer visuellen Analogskala (von 0 bis 10) für Funktionseinschränkungen beim „Essen“, beim „Sprechen“ und bei „sonstigen Bewegungen“.

Bei der statistischen Untersuchung der subjektiv empfundenen Funktionseinschränkungen mit Hilfe des Mann-Whitney-U-Tests (vgl. Tab. 8, Anhang S. 146) ergaben sich folgende signifikante Ergebnisse:

Die „Funktionseinschränkungen beim Essen“ waren bei den Patienten mit „einsitziger ADV ohne Reposition“, „beidseitiger ADV mit Reposition“, „verschiedenen ADVs“ und „beidseitiger ADV ohne Reposition“ signifikant größer als bei den Patienten „ohne Diskusverlagerungen“.

Bei den „Funktionseinschränkungen beim Sprechen“ konnten keine signifikanten Zusammenhänge ermittelt werden.

Nur bei den Patienten mit „beidseitiger ADV ohne Reposition“ konnte eine signifikant größere „Funktionseinschränkung bei sonstigen Bewegungen“ festgestellt werden als bei den Patienten „ohne Diskusverlagerung“.

5.3.1.5 Plötzliche Kieferöffnungseinschränkung

Die Angaben der Patienten in der Anamnese über plötzlich aufgetretene Kieferöffnungseinschränkungen, die ein wichtiges Einteilungskriterium für die RDC-Gruppen II b/c darstellen, wurden im folgenden Abschnitt in Relation zu den aus der Magnetresonanztomographie gesicherten Diagnosen gestellt.

In der Abb. 18 (S. 50) wird die Verteilung der Diagnosegruppen ersichtlich. 1,44 % (3 Gelenke) aller Kiefergelenke „ohne Diskusverlagerung“ waren mit einer plötzlichen
Mundöffnungseinschränkung vergesellschaftet. Ferner konnten 17,22 % (26 Gelenke) aller Kiefergelenke mit „ADV mit Reposition“ und 51,68 % (77 Gelenke) aller Kiefergelenke mit „ADV ohne Reposition“ mit einer anamnestisch erhobenen, plötzlichen Mundöffnungseinschränkung in Verbindung gebracht werden.

Abb. 18: Angaben über plötzlich aufgetretene Kieferöffnungseinschränkungen bei den unilateralen MRT-Diagnosengruppen

Bei der statistischen Auswertung mit Hilfe von Fishers exaktem Test (vgl. Tab. 9, Anhang S. 147) zeigten sich sowohl die Kiefergelenke mit „ADV mit Reposition“ als auch mit „ADV ohne Reposition“ signifikant häufiger mit einer plötzlichen Mundöffnungseinschränkung vergesellschaftet als die Gelenke „ohne Diskusverlagerung“. Auch ging die Gruppe der Kiefergelenke mit „ADV ohne Reposition“ signifikant häufiger mit einer plötzlichen Mundöffnungseinschränkung einher als die Gelenke mit „ADV mit Reposition“.
5.3.2 Palpationsbefunde

5.3.2.1 Palpation der Muskulatur

Die sich aus der beidseitigen Palpation der Muskulatur ergebende Anzahl positiver Befunde wurde ohne Unterscheidung der Muskel palpationsstellen mit leichtem bzw. mäßigem oder heftigem Schmerz zusammengefasst und in Relation zu den bilateralen Diagnosegruppen gestellt (vgl. Abb. 19).

Abb. 19: Anzahl der Kaumuskeln mit leichtem bzw. mäßigem oder heftigem Schmerz bei Palpation bei den verschiedenen bilateralen MRT-Diagnosegruppen

0 bis maximal 16 Palpationsstellen waren bei den verschiedenen Patientengruppen bei der Befundung mit leichten, mäßigen oder heftigen Schmerzen vergesellschaftet. Die Medianwerte der verschiedenen Patientengruppen lagen bei allen Gruppen bei 2, außer bei den Patienten mit einer „beidseitigen ADV mit Reposition“ oder „beidseitigen ADV ohne Reposition“. Hier lagen die Medianwerte etwas erhöhter, bei 3.

5.3.2.2 Palpation der Kiefergelenke

A. Palpationsempfindlichkeit allgemein

Im nächsten Test wurden die auf Palpation sensibel reagierenden Kiefergelenke erfasst und in Relation zu den verschiedenen unilateralen MRT-Diagnosegruppen gesetzt. Dabei wurden die Schmerzqualitäten auf Palpation erneut zusammengefasst und zunächst keine Unterscheidung der Druckdolenzen von lateral bzw. dorsal getroffen (vgl. Abb. 20).

Die Ergebnisse der palpatorischen Untersuchung ergaben ein Überwiegen der nicht druckdolenten Kiefergelenke in allen untersuchten Patientengruppen. Die Kiefergelenke „ohne Diskusverlagerung“ waren mit 82,69 % am wenigsten druckdolent, im Vergleich zu den Gelenken mit „ADV mit Reposition“ (59,6 %) oder „ADV ohne Reposition“ (61,7 %).

Mit 40,4 % führten die Kiefergelenke der Patienten mit „ADV mit Reposition“ die Gruppe der druckdolenten Gelenke an. Die Gruppe der Kiefergelenke mit „ADV ohne Reposition“ waren zu 38,26 % schmerzhaft. Der kleinste Anteil auf Druck schmerzender Kiefergelenke stammte aus der Gruppe „ohne Diskusverlagerung“.

Abb. 20: Druckdolenzen der Kiefergelenke in Relation zu den unilateralen MRT-Diagnosegruppen

Trotz des Überwiegens der nicht druckdolenten Kiefergelenke auf Palpation in allen Diagnosegruppen ergab die statistische Auswertung der klinisch gewonnenen Daten mit Hilfe von Fishers exaktem Test (vgl. Tab. 11, Anhang S. 147) signifikant größere
ERGEBNISSE

Druckdolenzen der Gelenke mit „ADV mit Reposition“ als auch der Gelenke mit „ADV ohne Reposition“ im Vergleich mit der Gruppe „ohne Diskusverlagerung“.

B. Laterale bzw. dorsale Schmerzen

Abb. 21: Separation der Druckdolenzen der Kiefergelenke von lateral und dorsal in Relation zu den unilateralen MRT-Diagnosegruppen

Die Kiefergelenke mit Schmerzen überwogen bei den Diagnosegruppen „ADV mit Reposition“ (29,8 %) und „ADV ohne Reposition“ (26,15 %) bei der dorsalen Palpation im Vergleich zu der lateralen Palpation (ADV mit Reposition: 22,52 %, ADV ohne Reposition: 22,15 %).

Bei Vorliegen einer Drucksensibilität waren die Kiefergelenke mit einer ADV (mit oder ohne Reposition) sowohl bei einer Palpation von lateral als auch von dorsal nach einer Auswertung mit Hilfe von Fishers exaktem Test (vgl. Tab. 12, Anhang S. 148) signifikant häufiger drucksensibel als die Kiefergelenke „ohne Diskusverlagerung“.

53
5.3.3 Unterkiefermobilität

5.3.3.1 Mundöffnung

A. Mundöffnungsbewegung

Abb. 22: Die Öffnungsbewegungen der seitenspezifischen Diagnosegruppen

Die größten Anteile an der Gruppe mit einer „Deviation nach rechts“ bei Mundöffnung stammten von den Patienten mit „ADV mit Reposition rechts, ohne Diskusverlagerung links“ (21,05 %) und „bilateraler ADV mit Reposition“ (22,5 %). Ebenso lieferten 21,05 % der Patienten mit „ADV mit Reposition rechts, ohne Diskusverlagerung links“ und 20,0 % der „bilateralen ADV mit Reposition“ den größten prozentualen Anteil an der Gruppe der Patienten mit einer „Deviation nach links“.

Die Mundöffnungsbewegung mit einer „Deflexion nach rechts“ präsentierte sich deutlich zweigipfelig: Bei 40,91 % der Patienten mit „ADV ohne Reposition rechts, ohne Diskusverlagerung“ und 38,80 % der Patienten mit „ADV mit Reposition links, ADV
B. Maximale Mundöffnung

Im metrischen Vergleich der maximalen Schneidekantendistanzen (SKD) zwischen aktiver (durch den Patienten) und passiver (durch den Behandler forcierten) Mundöffnung wurden wieder die gewohnten bilateralen Diagnosegruppen herangezogen (vgl. Abb. 23, S. 57).

Die aktive maximale Mundöffnung bei den Patienten „ohne Diskusverlagerung“ reichte von 21 mm bis 62 mm (bei einem Median von 43 mm), mit einem Ausreißer mit 13 mm. Die passive maximale Mundöffnung reichte von 22 mm bis 67 mm (bei einem Median von 46 mm). Der „Ausreißer“ mit der aktiven maximalen Mundöffnung von 13 mm hatte hierbei einen Wert von 49 mm.

Die Patienten mit „einsieitiger ADV mit Reposition“ konnten den Mund maximal zwischen 21 mm und 64 mm aktiv öffnen (bei einem Median von 43 mm) und passiv zwischen 22 mm und 69 mm (bei einem Median von 55 mm).

Deutlich geringer lag die Spannweite der maximalen aktiven und passiven Mundöffnung bei der Gruppe „einsieitige ADV ohne Reposition“: Zwischen 10 mm und 52 mm (bei einem Median von 36 mm) lagen hier die aktiven Werte, zwischen 10 mm und 56 mm (bei einem Median von 39 mm) die passiven Werte.

Die aktive maximale Mundöffnung bei den Patienten „bilateral ADV mit Reposition“ reichte von 22 mm bis 59 mm (bei einem Median von 45,5 mm), die passive maximale Mundöffnung von 24 mm bis 61 mm (bei einem Median von 47,5 mm).

Die Patienten mit „bilateraler ADV mit unterschiedlichen Repositionen“ konnten den Mund maximal zwischen 24 mm und 59 mm aktiv öffnen (bei einem Median von 35,5 mm) und passiv zwischen 25 mm und 60 mm (bei einem Median von 39,5 mm).

Bei der Gruppe „bilateraler ADV ohne Reposition“ wurden Werte zwischen 23 mm und 53 mm gemessen (bei einem Median von 35 mm) für die aktive, zwischen 29 mm und 57 mm (bei einem Median von 42 mm) für die passive.

Auch die Gruppe „beidseitige ADV ohne Reposition“ hatte eine signifikant kleinere Mundöffnung als die Gruppe „ohne Diskusverlagerung bilateral“ (aktive und passive),
„einseitige ADV mit Reposition“ (aktive) und „beidseitige ADV mit Reposition“ (aktive und passive).

Die Mundöffnung der Patienten der Gruppe „verschiedene ADVs“ war signifikant kleiner als die der Patienten der Gruppe „ohne Diskusverlagerung bilateral“ (passive), „einseitige ADV mit Reposition“ (aktive und passive) und „beidseitige ADV mit Reposition“ (aktive und passive).

Abbildungen:

Abb. 23: Aktive und passive maximale Mundöffnung (in mm)

C. Schmerzen bei Mundöffnung

Bei allen Diagnosegruppen außer bei der Gruppe der „ADV ohne Reposition“ überwog das Nichtvorhandensein von Beschwerden bei passiver maximaler Mundöffnung. Hier gaben nur weniger als die Hälfte (46,98 %) an, keinerlei Beschwerden bei der durch den Behandler forcierten maximalen Mundöffnung zu haben.

Dennoch zeigte sich sowohl bei aktiver als auch bei passiver maximaler Mundöffnung ein Anstieg der Häufigkeit von Beschwerden von den Kiefergelenken „ohne Diskusverlagerung“ (17,31 % aktiv, 29,33 % passiv) über die Gelenke mit „ADV mit
Reposition“ (20,53 % aktiv, 39,74 % passiv) bis zu den Patienten mit den Kiefergelenken „ADV ohne Reposition“ (36,91 % aktiv, 53,02 % passiv).

5.3.3.2 Seitwärtsbewegungen

A. Vermessung der Seitwärtsbewegungen

Die Patienten „ohne Diskusverlagerung“ konnten den Unterkiefer bei einer Lateralexkursion zwischen 3 mm und 16 mm frei bewegen. Diese Gruppe hatte sowohl bei einer Laterotrusion nach rechts als auch nach links die erwartungsgemäß größten
Medianwerte von 9 mm im Vergleich zu den Patienten mit mindestens einem Gelenk mit einer ADV. Gleichlauf liegende Medianwerte konnten ferner bei einer Laterotrusion nach rechts bzw. links stets bei allen gleichseitig identischen Verlagerungsarten festgestellt werden. Die geringsten Medianwerte von 8 mm waren hierbei in der Gruppe mit einer „ADV ohne Reposition beidseits“ zu find.

Abb. 25: Laterotrusion nach links und rechts (in mm)

Bei den Patienten mit einer einseitigen Verlagerung des Diskus ergaben sich immer unterschiedliche Medianwerte für die Laterotrusion nach rechts bzw. links. So hatten die Patienten mit einer einseitigen „ADV ohne Reposition“ bei der Laterotrusion kontralateral der Erkrankung geringere Medianwerte (jeweils 6 mm) und die geringsten Medianwerte der Laterotrusion aller Patientengruppen.

Für die Patienten mit einer einseitigen „ADV mit Reposition“ konnte hingegen kein symmetrisches Verhalten der Laterotrusionsfähigkeiten ermittelt werden. So hatten die Patienten der untersuchten Stichprobe sowohl bei einer „ADV mit Reposition“ im rechten als auch im linken Kiefergelenk eine im Vergleich zur Laterotrusion nach rechts eingeschränkte Laterotrusionsfähigkeit nach links.

Die Patienten mit einer bilateralen Verlagerung des Diskus und gemischten Repositionsarten hatten deutlich geringere Medianwerte bei der Laterotrusion kontralateral zur Kiefergelenksseite mit einer „ADV ohne Reposition“ (6 mm bzw. 6,5 mm).

Bei der statistischen Untersuchung mit Hilfe des Mann-Whitney-U-Tests (vgl. Tab. 16, Anhang S. 150) sowohl bei der Laterotrusion nach links als auch bei der Latero-
trusion nach rechts zeigten alle Gruppen mit der jeweils zur Laterotrusionsseite kontralateral vorkommenden „ADV ohne Reposition“ eine signifikant verringerte Seitwärtsbeweglichkeit als die Patienten „ohne bilaterale Diskusverlagerung“, d. h., die Meditrusionsfähigkeit der Patienten mit „bi- oder unilateraler ADV ohne Reposition“ war signifikant verringert im Vergleich zu den Patienten „ohne bilaterale Diskusverlagerung“.

Zwischen den Patienten mit bi- oder unilateraler „ADV mit oder ohne Reposition“ kamen verschiedene statistisch signifikante Unterschiede vor:

So war die maximale Laterotrusion nach links bei allen Patienten mit einer „ADV ohne Reposition rechts, ohne Diskusverlagerung links“ signifikant kleiner als bei der Gruppe „ADV mit Reposition links, ohne Diskusverlagerung rechts“, „ADV ohne Reposition links, ohne Diskusverlagerung rechts“, „beidseitige ADV mit Reposition“ und „ADV mit Reposition rechts, ADV ohne Reposition links“.

Auch konnten die Patienten sowohl mit einer „beidseitigen ADV ohne Reposition“ als auch mit einer „ADV mit Reposition links, ADV ohne Reposition rechts“ den Unterkiefer signifikant geringer nach links lateralisieren als die Gruppe mit „ADV mit Reposition links, ohne Diskusverlagerung rechts“.

Bei der Laterotrusion nach rechts war die Seitwärtsbeweglichkeit der Gruppe mit „ADV ohne Reposition links, ohne Diskusverlagerung rechts“ signifikant geringer als die der Patienten mit „ADV mit Reposition rechts, ohne Diskusverlagerung links“, „ADV mit Reposition links, ohne Diskusverlagerung rechts“, „ADV ohne Reposition rechts, ohne Diskusverlagerung links“, „beidseitiger ADV ohne Reposition“ und „ADV mit Reposition links, ohne Reposition rechts“.

Auch konnten die Patienten mit einer „ADV mit Reposition rechts, ohne Reposition links“ den Unterkiefer signifikant weniger weit nach rechts bewegen als die Gruppen „ADV ohne Reposition rechts, ohne Diskusverlagerung links“, „beidseitige ADV mit Reposition“ und „ADV mit Reposition links, ADV ohne Reposition rechts“.
B. Beschwerden bei Laterotrusion und Mediotrusion

Das Nichtvorhandensein von Beschwerden überwog sowohl bei Mediotrusion als auch bei der Laterotrusion. Bei vorliegenden Beschwerden war die Mediotrusion gekennzeichnet durch ein kontinuierliches Ansteigen der Häufigkeit der Beschwerden von der Diagnosegruppe „ohne Diskusverlagerungen“ (7,21 %) über „ADV mit Reposition“ (12,56 %) bis zu den Gelenken mit „ADV ohne Reposition“ (16,11 %).

Bei vorliegenden Beschwerden zeigte sich bei der Laterotrusion ein etwas anderes Bild. Hier gab es zwar ebenfalls einen Anstieg der Häufigkeit von Beschwerden von der Gruppe „ohne Diskusverlagerung“ (9,62 %) zu der Gruppe „ADV ohne Reposition“ (22,15 %). Die Kiefergelenke mit „ADV mit Reposition“ präsentierten sich hierbei allerdings als Gruppe mit den wenigsten Beschwerden (7,28 %).

Die statistische Auswertung mit Hilfe von Fishers exaktem Test (vgl. Tab. 17, Anhang S. 150) ergab sowohl für die Mediotrusion als auch für die Laterotrusion signifikant häufigere Beschwerden der Gruppe „ADV ohne Reposition“ als bei der Gruppe „ohne Diskusverlagerung“. Bei der Laterotrusion hatten nur die Gelenke mit „ADV ohne Reposition“ signifikant häufigere Beschwerden als die Gelenke mit „ADV mit Reposition“.

Abb. 26: Beschwerden bei Mediotrusion und Laterotrusion

5.3.3.3 Protrusion

A. Vermessung der Protrusion

Bei diesem Test wurde der maximal mögliche Vorschub der Patienten vermessen und in Relation zu den bilateralen MRT-Diagnosegruppen gesetzt (vgl. Abb. 27).

Die Patienten „ohne Diskusverlagerung“ hatten die größten Werte der Protrusion (4-11 mm) mit einem Median von 8 mm. Alle andere Gruppen hatten deutlich geringere Medianwerte (5-6,5 mm), wobei sich die Patienten mit einer ein- oder beidseitigen „ADV ohne Reposition“ mit den geringsten Medianwerten präsentierten (5 mm).

Abb. 27: Maximal mögliche Protrusion des Unterkiefers (in mm)

Bei der statistischen Untersuchung mit Hilfe des Mann-Whitney-U-Tests (vgl. Tab. 18, Anhang S. 151) zeigten alle Gruppen mit Diskusverlagerungen signifikant geringere Protrusionsfähigkeiten als die Patienten „ohne Diskusverlagerungen“.

B. Beschwerden bei Protrusion

Abb. 28: Beschwerden bei Protrusion des Unterkiefers

5.3.4 Kiefergelenksgeräusche

5.3.4.1 Differenzierung der Geräusche im Kiefergelenk

Abb. 29: Ermittelte Geräuscheklassen
Bei den Patienten mit „Diskusverlagerung mit Reposition“ hatten 34,44 % keinerlei Geräusche. 65,56 % dieser Gruppe hatten reproduzierbare Geräusche. Mit 49,6 % war das „reziproke Knacken“ am stärksten vertreten. Der Rest verteilte sich auf die übrigen Kategorien der Geräusche.

61,07 % der Patienten „ohne Reposition“ hatten keinerlei „Knacken“ oder „Reiben“. Bei 38,93 % dieser Patienten wurden reproduzierbare Gelenkgeräusche ermittelt. Immerhin 16,78 % dieser Gruppe hatten „reziprokes Knacken“, der Rest verteilte sich auf die übrigen Geräuscheklassen.

In einem ersten Schritt der statistischen Auswertung mit Hilfe von Fishers exaktem Test (siehe Abb. 30 und vgl. Tab. 20, Anhang S. 151) wurde auf eine Unterteilung der verschiedenen Geräuscheklassen verzichtet. So wurden die Diagnosegruppen in diesem statistischen Vergleich nur auf das Vorhandensein oder Fehlen eines Geräusches untersucht.

Hierbei zeigte sich, dass die Kiefergelenke mit „ADV mit Reposition“ signifikant häufiger Geräusche aufwiesen als die Gelenke „ohne Diskusverlagerungen“ und mit „ADV ohne Reposition“.

Abb. 30: Vorliegen von Knackgeräuschen (ohne Reibegeräusche) im Kiefergelenk
5.3.4.2 Reziprokes Knacken

Im nächsten Schritt wurden die statistischen Unterschiede der Diagnosegruppen hinsichtlich des Geräusches „reziprokes Knacken“, das einen wichtigen Parameter in der Diagnosefindung nach den RDC-Kriterien darstellt, mit Hilfe von Fishers exaktem Test (vgl. Abb. 29, S. 64 und Tab. 21, Anhang S. 151) näher untersucht. Dabei zeigten sich die Gelenke mit „ADV mit Reposition“ signifikant häufiger mit „reziprokem Knacken“ vergesellschaftet als die Kiefergelenke „ohne Diskusverlagerung“ und mit „ADV ohne Reposition“.

Alle Kiefergelenke mit „reziprokem Knacken“ (N = 128) wurden anschließend noch auf eine mögliche knackfreie Positionierbarkeit untersucht, d. h., es wurde kontrolliert, ob bei einer weiter anterior protrudierten Stellung des Unterkiefers das „reziproke Knacken“ bei Mundöffnung verhindert werden konnte.

![Graphik: MRT der Kiefergelenke](image)

Abb. 31: Knackfreie Positionierbarkeit aller Kiefergelenke mit reziprokem Knacken (N = 128) bei den verschiedenen Diagnosegruppen

In Abb. 31 wird ersichtlich, dass 78,67 % der Patienten mit reziprokem Knacken und mit einer „ADV mit Reposition“ knackfrei positioniert werden konnten. Bei den Patienten „ohne Diskusverlagerung“, die bei der Befunderhebung ein reziprokes Knacken aufwiesen, waren nur 10,71 % der Gelenke knackfrei positionierbar, bei den Gelenken mit „ADV ohne Reposition“ waren es genau 12,0 %.

5.3.4.3 Andere Geräuscheklassen

5.4 Ermittlung der Sensitivität und Spezifität der in der FAL angewandten Tests

Mit Hilfe der Vierfeldertafel-Analyse wurden anschließend Sensitivität, Spezifität, positiver und negativer Prädiktivwert für die in der Funktionsanalyse angewandten klinischen Tests errechnet. Die Ergebnisse für die „ADV mit Reposition“ sind in Tab. 24 (S. 69), die Ergebnisse für die „ADV ohne Reposition“ in Tab. 25 (S. 71) ersichtlich.

5.4.1 ADV mit Reposition

Die Sensitivität der klinischen Tests und anamnestischen Angaben zur Ermittlung der Gelenke mit „ADV mit Reposition“ reichte von 7,28 % bis 78,67 % (vgl. Tab. 24, S. 69).

Die Spezifität der jeweiligen klinischen Tests und anamnestischen Angaben reichte von 40,34 % bis 89,08 %.

Der stärkste spezifische Test („Beschwerden bei Mediotrusion“, Spezifität: 89,08 %) als auch die in der Spezifität nachfolgenden Tests korrelierten hierbei, bis auf den Test „knackfreie Repositionierbarkeit des Unterkiefers bei reziprokem Knacken“, nicht mit den ermittelten stärksten sensitiven Tests. Eben erwähnte Ausnahme hatte die zweitgrößte Spezifität von 86,68 % bei einer Sensitivität von 78,67 %.

Die positiven Prädiktivwerte reichten von 0.17 bis 0.91. Der größte positive Prädiktivwert von 0.91 wurde bei dem Test „knackfreie Repositionierbarkeit bei vorliegendem reziprokem Knacken“ ermittelt. Die negativen Prädiktivwerte reichten von 0.68 bis
0.82. Der größte negative Prädiktivwert von 0.82 wurde bei dem Test „vorhandene Knackgeräusche“ ermittelt.

Tab. 24: Sensitivität, Spezifität, positiver und negativer Prädiktivwert der klinischen Tests zur Ermittlung der Kiefergelenke mit „ADV mit Reposition“. Die Testergebnisse mit den größten Werten sind grau unterlegt (SENS > 50 %; SPEZ > 80 %).

<table>
<thead>
<tr>
<th>ADV mit Reposition</th>
<th>Sensitivität</th>
<th>Spezifität</th>
<th>pPW</th>
<th>nPW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auslöser Unfall (ja/nein)</td>
<td>19,21 %</td>
<td>72,11 %</td>
<td>0.23</td>
<td>0.68</td>
</tr>
<tr>
<td>Auslöser Zahnarztbesuch (ja/nein)</td>
<td>19,21 %</td>
<td>86,28 %</td>
<td>0.37</td>
<td>0.72</td>
</tr>
<tr>
<td>Arthrogene Schmerzen (ja/nein)</td>
<td>68,21 %</td>
<td>40,34 %</td>
<td>0.33</td>
<td>0.75</td>
</tr>
<tr>
<td>Kieferorthopädische Behandlung (ja/nein)</td>
<td>45,70 %</td>
<td>59,94 %</td>
<td>0.33</td>
<td>0.73</td>
</tr>
<tr>
<td>Plötzliche Kieferöffnungseinschränkung (ja/nein)</td>
<td>17,22 %</td>
<td>77,59 %</td>
<td>0.25</td>
<td>0.69</td>
</tr>
<tr>
<td>Palpation der Kaumuskulatur:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 1 Palpationsstelle empfindlich</td>
<td>65,56 %</td>
<td>42,01 %</td>
<td>0.32</td>
<td>0.74</td>
</tr>
<tr>
<td>> 2 Palpationsstelle empfindlich</td>
<td>41,72 %</td>
<td>60,22 %</td>
<td>0.31</td>
<td>0.71</td>
</tr>
<tr>
<td>> 3 Palpationsstelle empfindlich</td>
<td>31,13 %</td>
<td>73,67 %</td>
<td>0.31</td>
<td>0.73</td>
</tr>
<tr>
<td>> 4 Palpationsstelle empfindlich</td>
<td>19,21 %</td>
<td>83,47 %</td>
<td>0.33</td>
<td>0.71</td>
</tr>
<tr>
<td>Palpation des lateralen Kondylenpoles schmerzhaft (ja/nein)</td>
<td>22,52 %</td>
<td>84,31 %</td>
<td>0.38</td>
<td>0.72</td>
</tr>
<tr>
<td>Palpation des lateralen Kondylenpoles schmerzhaft (ja/nein)</td>
<td>29,80 %</td>
<td>81,74 %</td>
<td>0.41</td>
<td>0.73</td>
</tr>
<tr>
<td>Mundöffnungsbewegung: nicht gerade (ja/nein)</td>
<td>62,25 %</td>
<td>49,02 %</td>
<td>0.34</td>
<td>0.75</td>
</tr>
<tr>
<td>Mundöffnungsbewegung: Deflexion (ja/nein)</td>
<td>27,81 %</td>
<td>66,39 %</td>
<td>0.26</td>
<td>0.69</td>
</tr>
<tr>
<td>Mundöffnungsbewegung: Deviation (ja/nein)</td>
<td>34,43 %</td>
<td>82,63 %</td>
<td>0.46</td>
<td>0.69</td>
</tr>
<tr>
<td>Maximale Mundöffnung < 35 mm (ja/nein)</td>
<td>24,50 %</td>
<td>60,50 %</td>
<td>0.21</td>
<td>0.65</td>
</tr>
<tr>
<td>Beschwerden bei aktiver Mundöffnung (ja/nein)</td>
<td>20,53 %</td>
<td>74,51 %</td>
<td>0.25</td>
<td>0.69</td>
</tr>
<tr>
<td>Beschwerden bei passiver Mundöffnung (ja/nein)</td>
<td>39,74 %</td>
<td>60,78 %</td>
<td>0.30</td>
<td>0.71</td>
</tr>
<tr>
<td>Laterotrusion kontralateral <= 7 mm (ja/nein)</td>
<td>35,10 %</td>
<td>58,82 %</td>
<td>0.27</td>
<td>0.68</td>
</tr>
<tr>
<td>Laterotrusion ipsilateral <= 7 mm (ja/nein)</td>
<td>32,22 %</td>
<td>57,54 %</td>
<td>0.24</td>
<td>0.67</td>
</tr>
<tr>
<td>Beschwerden bei Mediotrusion (ja/nein)</td>
<td>12,58 %</td>
<td>89,08 %</td>
<td>0.33</td>
<td>0.71</td>
</tr>
<tr>
<td>Beschwerden bei Laterotrusion (ja/nein)</td>
<td>7,28 %</td>
<td>85,15 %</td>
<td>0.17</td>
<td>0.68</td>
</tr>
<tr>
<td>Protrusion <= 3 mm (ja/nein)</td>
<td>13,25 %</td>
<td>84,87 %</td>
<td>0.27</td>
<td>0.70</td>
</tr>
<tr>
<td>Protrusion <= 4 mm (ja/nein)</td>
<td>27,15 %</td>
<td>75,07 %</td>
<td>0.32</td>
<td>0.71</td>
</tr>
<tr>
<td>Protrusion <= 5 mm (ja/nein)</td>
<td>43,71 %</td>
<td>59,94 %</td>
<td>0.32</td>
<td>0.72</td>
</tr>
<tr>
<td>Protrusion <= 6 mm (ja/nein)</td>
<td>58,28 %</td>
<td>40,68 %</td>
<td>0.30</td>
<td>0.70</td>
</tr>
<tr>
<td>Beschwerden bei Protrusion (ja/nein)</td>
<td>9,27 %</td>
<td>83,75 %</td>
<td>0.19</td>
<td>0.69</td>
</tr>
<tr>
<td>Knackgeräusche (ja/nein)</td>
<td>58,28 %</td>
<td>78,15 %</td>
<td>0.53</td>
<td>0.82</td>
</tr>
<tr>
<td>Reziprokes Knacken (ja/nein)</td>
<td>49,67 %</td>
<td>85,43 %</td>
<td>0.59</td>
<td>0.80</td>
</tr>
<tr>
<td>Knackfrei repositionierbar bei vorliegendem reziprokem Knacken (ja/nein)</td>
<td>78,67 %</td>
<td>88,68 %</td>
<td>0.91</td>
<td>0.75</td>
</tr>
</tbody>
</table>
5.4.2 ADV ohne Reposition

Die Sensitivität der klinischen Tests und anamnestischen Angaben zur Ermittlung der Gelenke mit „ADV ohne Reposition“ reichte von 13,42 bis 88,00 % (vgl. Tab. 25, S. 71).

Die Spezifität der jeweiligen klinischen Tests und anamnestischen Angaben reichte von 28,41 bis 9,92 %.

Der stärkste spezifische Test („Plötzliche Kieferöffnungseinschränkung“, Spezifität: 92,88 %) als auch die in der Spezifität nachfolgenden Tests korrelierten hierbei nicht mit den ermittelten stärksten sensitiven Tests.

Die positiven Prädiktivwerte reichten von 0.17 bis 0.73. Der größte positive Prädiktivwert von 0.73 wurde bei dem Test „Angabe einer plötzlichen Kieferöffnungseinschränkung in der Anamnese“ ermittelt.

Die negativen Prädiktivwerte reichten von 0.67 bis 0.95. Der größte negative Prädiktivwert von 0.95 wurde bei dem Test „fehlende knackfreie Repositionierbarkeit bei reziprokem Knacken“ ermittelt.
Tab. 25: Sensitivität, Spezifität, positiver und negativer Prädiktivwert der klinischen Tests zur Ermittlung der Kiefergelenke mit „ADV ohne Reposition“. Die Testergebnisse mit den größten Werten sind grau unterlegt (SENS > 50%; SPEZ > 80%).

<table>
<thead>
<tr>
<th>ADV ohne Reposition</th>
<th>Sensitivität</th>
<th>Spezifität</th>
<th>ppW</th>
<th>npW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auslöser Unfall (ja/nein)</td>
<td>19,60 %</td>
<td>72,35 %</td>
<td>0.23</td>
<td>0.68</td>
</tr>
<tr>
<td>Auslöser Zahnarztbesuch (ja/nein)</td>
<td>14,09 %</td>
<td>84,12 %</td>
<td>0.27</td>
<td>0.70</td>
</tr>
<tr>
<td>Arthrogene Schmerzen (ja/nein)</td>
<td>76,51 %</td>
<td>43,25 %</td>
<td>0.36</td>
<td>0.82</td>
</tr>
<tr>
<td>Kieferorthopädische Behandlung (ja/nein)</td>
<td>44,97 %</td>
<td>59,61 %</td>
<td>0.32</td>
<td>0.72</td>
</tr>
<tr>
<td>Plötzliche Kieferöffnungseinschränkung (ja/nein)</td>
<td>51,68 %</td>
<td>91,92 %</td>
<td>0.73</td>
<td>0.82</td>
</tr>
<tr>
<td>Palpation der Kaumuskulatur:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 1 Palpationsstelle empfindlich</td>
<td>65,77 %</td>
<td>42,06 %</td>
<td>0.32</td>
<td>0.75</td>
</tr>
<tr>
<td>> 2 Palpationsstelle empfindlich</td>
<td>42,95 %</td>
<td>60,72 %</td>
<td>0.31</td>
<td>0.72</td>
</tr>
<tr>
<td>> 3 Palpationsstelle empfindlich</td>
<td>29,53 %</td>
<td>72,98 %</td>
<td>0.31</td>
<td>0.71</td>
</tr>
<tr>
<td>> 4 Palpationsstelle empfindlich</td>
<td>16,78 %</td>
<td>82,45 %</td>
<td>0.28</td>
<td>0.71</td>
</tr>
<tr>
<td>Palpation des lateralen Kondylenpoles schmerzhaf</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ja/nein)</td>
<td>22,15 %</td>
<td>84,12 %</td>
<td>0.37</td>
<td>0.72</td>
</tr>
<tr>
<td>Palpation des lateralen Kondylenpoles schmerzhaf</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ja/nein)</td>
<td>26,35 %</td>
<td>80,22 %</td>
<td>0.36</td>
<td>0.73</td>
</tr>
<tr>
<td>Mundöffnungsbewegung: nicht gerade</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ja/nein)</td>
<td>55,03 %</td>
<td>45,96 %</td>
<td>0.30</td>
<td>0.71</td>
</tr>
<tr>
<td>Mundöffnungsbewegung: Deflexion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ja/nein)</td>
<td>42,28 %</td>
<td>72,42 %</td>
<td>0.39</td>
<td>0.75</td>
</tr>
<tr>
<td>Mundöffnungsbewegung: Deviation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ja/nein)</td>
<td>12,75 %</td>
<td>73,54 %</td>
<td>0.17</td>
<td>0.67</td>
</tr>
<tr>
<td>Maximale Mundöffnung < 35 mm (ja/nein)</td>
<td>51,68 %</td>
<td>71,87 %</td>
<td>0.43</td>
<td>0.78</td>
</tr>
<tr>
<td>Beschwerden bei aktiver Mundöffnung (ja/nein)</td>
<td>36,91 %</td>
<td>81,34 %</td>
<td>0.45</td>
<td>0.76</td>
</tr>
<tr>
<td>Beschwerden bei passiver Mundöffnung (ja/nein)</td>
<td>53,02 %</td>
<td>66,30 %</td>
<td>0.40</td>
<td>0.77</td>
</tr>
<tr>
<td>Laterotrusion kontralateral +/- 7 mm (ja/nein)</td>
<td>48,99 %</td>
<td>64,62 %</td>
<td>0.37</td>
<td>0.75</td>
</tr>
<tr>
<td>Laterotrusion ipsilateral +/- 7 mm (ja/nein)</td>
<td>58,97 %</td>
<td>64,10 %</td>
<td>0.23</td>
<td>0.90</td>
</tr>
<tr>
<td>Beschwerden bei Mediotrusion (ja/nein)</td>
<td>16,11 %</td>
<td>90,34 %</td>
<td>0.41</td>
<td>0.72</td>
</tr>
<tr>
<td>Beschwerden bei Laterotrusion (ja/nein)</td>
<td>22,15 %</td>
<td>90,86 %</td>
<td>0.50</td>
<td>0.74</td>
</tr>
<tr>
<td>Protrusion +/- 3 mm (ja/nein)</td>
<td>22,15 %</td>
<td>88,60 %</td>
<td>0.45</td>
<td>0.73</td>
</tr>
<tr>
<td>Protrusion +/- 4 mm (ja/nein)</td>
<td>40,27 %</td>
<td>80,05 %</td>
<td>0.46</td>
<td>0.76</td>
</tr>
<tr>
<td>Protrusion +/- 5 mm (ja/nein)</td>
<td>63,76 %</td>
<td>68,25 %</td>
<td>0.46</td>
<td>0.82</td>
</tr>
<tr>
<td>Protrusion +/- 6 mm (ja/nein)</td>
<td>79,59 %</td>
<td>49,44 %</td>
<td>0.33</td>
<td>0.86</td>
</tr>
<tr>
<td>Beschwerden bei Protrusion (ja/nein)</td>
<td>28,86 %</td>
<td>91,92 %</td>
<td>0.60</td>
<td>0.76</td>
</tr>
<tr>
<td>Fehlende Knackgeräusche (ja/nein)</td>
<td>74,50 %</td>
<td>35,66 %</td>
<td>0.33</td>
<td>0.77</td>
</tr>
<tr>
<td>Fehlendes Reziprokes Knacken (ja/nein)</td>
<td>86,11 %</td>
<td>28,41 %</td>
<td>0.33</td>
<td>0.80</td>
</tr>
<tr>
<td>Fehlende knackfreie Repositionierbarkeit bei vor</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>liegendem reziproken Knacken (ja/nein)</td>
<td>88,00 %</td>
<td>60,19 %</td>
<td>0.35</td>
<td>0.95</td>
</tr>
<tr>
<td>Reibegeräusche (ja/nein)</td>
<td>13,42 %</td>
<td>89,41 %</td>
<td>0.35</td>
<td>0.71</td>
</tr>
</tbody>
</table>
5.5 Ergebnisse der klinischen Diagnostik

5.5.1 RDC-Gruppe I: Myogene Erkrankungen

Die nach RDC-Gruppe-I-Kriterien diagnostizierten „myogenen Erkrankungen“ verteilten sich wie folgt auf die verschiedenen unilateralen MRT-Diagnosegruppen (vgl. Abb. 32):

![Diagramm](image_url)

Abb. 32: Myogene Erkrankungen (RDC-Gruppe-I-Kriterien) bei den verschiedenen MRT-Diagnosegruppen

Mindestens zwei Drittel aller Gelenke jeder MRT-Diagnosegruppe hatten keine zusätzliche Diagnose „Myopathie“.

5.5.2 RDC-GRUPPE III: Arthralgie, aktivierte Arthrose und Arthrose

5.5.2.1 Prävalenz der RDC-Gruppe-III-Diagnosen

Bei der Betrachtung der klinischen Initialdiagnosen nach den RDC-Gruppe-III-Kriterien (Arthralgie, aktivierte Arthrose und Arthrose) zeigte sich die folgende Verteilung der Kiefergelenke (vgl. Abb. 33):

24 Gelenke (11,54 %) „ohne Diskusverlagerung“ hatten die Diagnose „Arthralgie“ erhalten. 4 (1,92 %) hatten Zeichen einer „aktivierten Arthrose“ und 23 (11,06 %) „Arthrose“. „Arthralgie“ war damit die am häufigsten vorkommende RDC-Gruppe-III-Diagnose bei den Gelenken „ohne Diskusverlagerung“.

Die häufigste RDC-Gruppe-III-Diagnose bei den Gelenken mit „ADV mit Reposition“ war ebenfalls die „Arthralgie“. So hatten 52 Gelenke (34,44 %) dieser Gruppe diese zusätzliche gelenkspezifische Diagnose, und die Diagnose „Arthralgie“ war somit prozentual gesehen die am stärksten vertretene RDC-Gruppe-III-Diagnose innerhalb
ERGEBNISSE

der unilateralen MRT-Diagnosegruppen. Bei 7 Gelenken (4,64 \%) wurde die Diagno-
se „aktivierte Arthrose“ und bei 4 (2,65 \%) die Diagnose „Arthrose“ gestellt.

Die Gruppe der Kiefergelenke mit „ADV mit Reposition“ verteilte sich wie folgt:
Bei 46 dieser Gelenke (30,87 \%) wurde die „Arthralgie“ ebenfalls zur häufigsten
Diagnose innerhalb der Gruppe. 7 (4,7 \%) hatten eine „aktivierte Arthrose“ und 13
(8,72 \%) die nicht aktivierte Form der „Arthrose“.

In einem ersten Schritt wurden die unilateralen MRT-Diagnosegruppen auf statistisch
signifikante Unterschiede hinsichtlich des Fehlens oder Vorhandenseins zusätzlicher
RDC-Gruppe-III-Diagnosen mit Hilfe von Fishers exaktem Test (vgl. Tab. 27, Anhang
S. 153) untersucht.

Dabei zeigten sich die Gelenke „ohne Diskusverlagerung“ signifikant häufiger ohne
eine zusätzliche RDC-Gruppe-III-Diagnose als die Gruppen mit „ADV mit Reposition“
sowie „ADV ohne Reposition“.

Signifikante Unterschiede bei den Gelenken mit einer zusätzlichen RDC-Gruppe-III-
Diagnose waren im nächsten Schritt der statistischen Auswertung bei folgenden
Gruppen aufgetreten:
Die Diagnose „Arthralgie“ wurde bei den Kiefergelenken „ohne Diskusverlagerung“
signifikant seltener gestellt als bei den Gruppen „ADV mit Reposition“ und „ADV ohne
Reposition“.

Bei der Diagnose „aktivierte Arthrose“ konnten keine signifikanten Unterschiede
ermittelt werden.

Eine Diagnose „Arthrose“ hatten die Gelenke „ohne Diskusverlagerung“ signifikant
häufiger erhalten als die Gruppe mit „ADV mit Reposition“. Auch konnte diese
Diagnose signifikant häufiger bei den Gelenken mit einer „ADV ohne Reposition“
gefunden werden als bei der Gruppe „ADV mit Reposition“.

Weitere signifikante Unterschiede konnten nicht ermittelt werden.
5.5.2.2 Degenerative Veränderungen bei den RDC-Gruppe-III-Diagnosen

Im nächsten Schritt wurden die RDC-Gruppe-III-Diagnosen auf im MRT verifizierte degenerative Zeichen des Kiefergelenkes (Erosionen, Sklerosierungen, Osteophyten oder Abflachungen der Gelenkoberflächen) untersucht. Da nach RDC-Gruppe-III-Kriterien die Arthrose sowohl in der aktivierten als auch nicht aktivierten Form eng mit degenerativen Veränderungen im Kiefergelenk korreliert, sollten bei der vorliegenden Studie die Zusammenhänge beider Faktoren überprüft werden (vgl. Abb. 34).

Abb. 34: Verteilung der Gelenke mit/ohne degenerative Veränderungen auf die RDC-Gruppe-III-Diagnosegruppen

So hatten mehr als die Hälfte (59,45 % bzw. 59,02 %) der Gelenke, die die Diagnose „keine RDC-Gruppe-III-Diagnose“ bzw. „Arthralgie“ erhalten hatten, auch keine nachweisbaren degenerativen Veränderungen im Kiefergelenk. 40,55 % der Gruppe der Gruppe „keine RDC-Gruppe-III-Diagnose“ hatten mindestens ein Anzeichen degenerativer Prozesse im Gelenk sowie 40,98 % der Gruppe „Arthralgie“.

Hingegen hatten 72,22 % der Gelenke mit der Diagnose „aktivierte Arthrose“ respektive 87,5 % der Gelenke mit „Arthrose“ erkennbare Anzeichen degenerativer Prozesse.

5.5.2.3 Degenerative Veränderungen bei den MRT-Diagnosegruppen

Interessant war an dieser Stelle noch die Untersuchung der Zusammenhänge der Prävalenz der degenerativen Prozesse innerhalb der unilateralen MRT-Diagnosegruppen. Die Ergebnisse sind in Abb. 35 ersichtlich:

Abb. 35: Degenerative Veränderungen im Kiefergelenk bei den unilateralen MRT-Diagnosegruppen

Den größten Anteil an Gelenken ohne erkennbare Erosionen, Sklerosierungen, Osteophyten oder Abflachungen der Gelenkoberflächen beanspruchte die Gruppe mit „ADV mit Reposition“. 125 Gelenke (82,78 %) dieser Gruppe hatten keines dieser Zeichen.

113 (75,84 %) der Kiefergelenke mit „ADV ohne Reposition“ hatten mindestens ein Anzeichen oben erwähnter degenerativer Diagnosekriterien.
Nur 26 (17,22 %) der Gruppe „ADV mit Reposition“ hatten zusätzliche degenerative Veränderungen im Kiefergelenk.

Bei den Gelenken „ohne Diskusverlagerung“ konnten bei immerhin 92 (44,23 %) Kiefergelenken Anzeichen für degenerative Prozesse gefunden werden.

Bei der statistischen Auswertung mit Hilfe von Fishers exaktem Test (vgl. Tab. 29, Anhang S. 153) zeigten sich die Gelenke „ohne Diskusverlagerungen“ signifikant häufiger mit degenerativen Prozessen vergesellschaftet als die Gruppe „ADV mit Reposition“, jedoch signifikant seltener als die Gelenke mit „ADV ohne Reposition“.

Zusätzlich hatte die Gruppe „ADV ohne Reposition“ signifikant häufiger degenerative Prozesse als die Gruppe „ADV mit Reposition“.

Bei der Betrachtung des kontralateralen Gelenkes der Patientengruppe „ohne Diskusverlagerung“, aber mit degenerativen Veränderungen zeigten sich, wie in Abb. 36 ersichtlich, 80,43 % dieser Gelenke mit einem ebenfalls nicht verlagerten kontralateralen Kiefergelenk vergesellschaftet. Nur 19,57 % dieser Gelenke standen in Kombination mit einer Diskusverlagerung im kontralateralen Gelenk.

Abb. 36: Verteilung der Gruppe „ohne Diskusverlagerung“, aber mit „degenerativen Veränderungen“ auf die Patienten mit unilateralem bzw. bilateralem Vorkommen der MRT-Diagnose „ohne Diskusverlagerung“
5.5.3 RDC-Gruppe II: Diskusverlagerungen

Abschließend wurden die initial erhobenen Verdachtsdiagnosen hinsichtlich der Diskusposition, die nach den RDC-Gruppe-II-Kriterien gestellt wurden, mit den magnetresonanztomographisch gesicherten Diagnosen verglichen (vgl. Abb. 37; Tab. 30, S. 80; Tab. 31, S. 80).

Abb. 37: Verteilung der initialen Verdachtsdiagnosen nach den RDC-Gruppe-II-Kriterien auf die Diagnosegruppen des Goldstandards „MRT“

Von den 151 Kiefergelenken mit der MRT-Diagnose „ADV mit Reposition“ wurden 89 (58,94 %) richtig erkannt, 36 (23,84 %) wurden fälschlicherweise als Gelenke mit „keinem V. a. Diskusverlagerung“ eingestuft und 26 (17,22 %) der Gruppe „V. a. ADV ohne Reposition“ zugeteilt. Das entsprach einer Sensitivität von 58,94 % für die Erkennung von Gelenken mit einer „ADV mit Reposition“ nach den RDC-Gruppe-II-Kriterien bei einer Spezifität von 84,03 %. Der berechnete Kappa-Wert für die Übereinstimmung der klinischen Diagnose „V. a. ADV mit Reposition“ mit der bildgebenden Diagnose aus dem MRT „ADV mit Reposition“ betrug hierbei 0,42.

Von den 146 klinischen Initialdiagnosen „V. a. ADV mit Reposition“ konnten 89 (60,69 %) im MRT bestätigt werden, 32 (21,92 %) waren „ohne Diskusverlagerung“ und 25 (17,12 %) mit einer „ADV ohne Reposition“. Daraus resultierte ein positiver Prädiktivwert von 0,61 für die Diagnose „ADV mit Reposition“ bei einem negativen Prädiktivwert von 0,83.
149 Kiefergelenke waren nach MRT-Diagnostik mit einer „ADV ohne Reposition“ vergesellschaftet. 99 (66,44 %) dieser Gelenke wurden klinisch korrekt diagnostiziert, 25 (16,78 %) hatten fälschlicherweise die Diagnose „keinen V. a. Diskusverlagerung“ erhalten und ebenfalls 25 (16,78 %) die Diagnose „ADV mit Reposition“. Hierbei leitete sich eine Sensitivität von 66,44 % ab für die Erkennung von einer „ADV ohne Reposition“ nach den RDC-Gruppe-II-Kriterien bei einer Spezifität von 86,63 %. Der berechnete Kappa-Wert für die Übereinstimmung der klinischen Diagnose „V. a. ADV ohne Reposition“ mit der bildgebenden Diagnose aus dem MRT „ADV ohne Reposition“ betrug hierbei 0,53.

Von den 147 klinischen Initialdiagnosen „V. a. ADV ohne Reposition“ konnten 99 (67,35 %) mit dem MRT verifiziert werden, 22 (14,97 %) waren jedoch „ohne Diskusverlagerung“ und 26 (17,69 %) dieser Initialdiagnose hatten eine „ADV mit Reposition“. Daraus resultierte ein positiver Prädiktivwert von 0.67 bei einem negativen Prädiktivwert von 0.82.

Wäre auf eine Unterscheidung der anterioren Diskusverlagerung nach der Repositionsart verzichtet worden, wie sie jedoch durch die RDC vorgegeben ist, so wären 239 Gelenke von 300 mit einer „ADV“ richtig erkannt worden. Die Sensitivität zur Erkennung der „anterioren Diskusverlagerung insgesamt“ hätte sich hierbei auf 79,67 % steigern lassen. Der positive Prädiktivwert für die gesamte Gruppe „Anteriore Diskusverlagerung“ läge hier bei 0.82 respektive der negative Prädiktivwert bei 0.72.

Von den 208 Kiefergelenken mit MRT-Diagnose „ohne Diskusverlagerung“ wurden 154 (74,04 %) Gelenke klinisch initial richtig diagnostiziert. 32 (15,38 %) Gelenke „ohne Diskusverlagerung“ wurden fälschlicherweise mit der Diagnose „V. a. ADV mit Reposition“, 22 (10,58 %) mit „V. a. ADV ohne Reposition“ versehen. Das entsprach damit einer Gesamtspezifität von 74,04 %. Der berechnete Kappa-Wert für die Übereinstimmung der klinischen Diagnose „ohne Diskusverlagerung“ mit der bildgebenden Diagnose aus dem MRT „ohne Diskusverlagerung“ betrug hierbei 0,55.

Tab. 30: Klinische Verdachtsdiagnose im Vergleich zu den MRT-Befunden (Übereinstimmende Diagnosen sind grau unterlegt)

<table>
<thead>
<tr>
<th>Initiale klinische Verdachtsdiagnose nach RDC-Kriterien</th>
<th>MRT-Diagnose der Kiefergelenke</th>
<th>Anzahl Kiefergelenke</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ohne Diskusverlagerung</td>
<td>ADV mit Reposition</td>
</tr>
<tr>
<td>kein V. a. Diskusverlagerung</td>
<td>154</td>
<td>36</td>
</tr>
<tr>
<td>V. a. ADV mit Reposition</td>
<td>32</td>
<td>89</td>
</tr>
<tr>
<td>V. a. ADV ohne Reposition</td>
<td>22</td>
<td>26</td>
</tr>
<tr>
<td>Anzahl Kiefergelenke</td>
<td>208</td>
<td>151</td>
</tr>
</tbody>
</table>

Tab. 31: Sensitivität, Spezifität, positiver Prädiktivwert (pPW), negativer Prädiktivwert (nPW) und Kappa der klinischen Diagnostik nach RDC-Gruppe-II-Kriterien

<table>
<thead>
<tr>
<th></th>
<th>Sensitivität</th>
<th>Spezifität</th>
<th>pPW</th>
<th>nPW</th>
<th>Kappa</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADV mit Reposition</td>
<td>58,94 %</td>
<td>84,03 %</td>
<td>0.61</td>
<td>0.83</td>
<td>0,42</td>
</tr>
<tr>
<td>ADV ohne Reposition</td>
<td>66,64 %</td>
<td>86,63 %</td>
<td>0.67</td>
<td>0.82</td>
<td>0,53</td>
</tr>
<tr>
<td>ADV mit/ohne Reposition</td>
<td>79,67 %</td>
<td>74,04 %</td>
<td>0.82</td>
<td>0.72</td>
<td>0,46</td>
</tr>
</tbody>
</table>
6. DISKUSSION

6.1 Methodenkritik

6.1.1 Patientenkollektiv

Das Verhältnis von weiblichen zu männlichen Patienten betrug bei vorliegender Untersuchung 4:1. Ebenso berichteten viele Studien über eine deutliche Überrepräsentation des Anteils von Frauen von 70 bis 90 % [120,121,227,278], obwohl einige epidemiologische Studien keine signifikant erhöhte Prävalenz von funktionellen Kiefergelenkserkrankungen bei Frauen finden konnten [99,156]. Einige Autoren führen den erhöhten Frauenanteil des klinischen Patientengutes bei funktionellen Kiefergelenkserkrankungen auf die größere Bereitschaft von Frauen zurück, sich aufgrund einer bestehenden Symptomatik in Behandlung zu begeben, als von Männern [79]. Ausschlusskriterien des Patientenkollektivs waren ausschließlich bekannte primäre Kiefergelenkserkrankungen oder Patienten die kein oder ein nicht auswertbares MRT
beider Kiefergelenke erhalten hatten. Da die Anwendbarkeit der RDC/TMD-Kriterien (bzw. deren Evaluation) bei einer typischen klinischen Population überprüft werden sollte, wurden weder weitere Exklusionskriterien verwendet, die sicherlich zu einem stärker selektierten Patientenkollektiv hinsichtlich der Symptomatik geführt hätten, noch wurden die Ergebnisse mit einer gesunden Vergleichgruppe eines asymptomatischen Probandenkollektivs verglichen [250].

6.1.2 Klinische Untersuchung

Da die klinische Untersuchung des Patientengutes von sieben verschiedenen Zahnärzten durchgeführt wurde, muss die Inter-Untersucher-Reliabilität der durchgeführten Untersuchungstechniken näher beleuchtet werden. Bei einer schlechten Inter-Untersucher-Übereinstimmung der Untersuchungstechniken könnte sich a priori ein systematischer Fehler einschleichen, der kontinuierlich über die ganze Studie zu einer Verfälschung der Ergebnisse führen würde.

Studien, die sich mit der Überprüfung der Übereinstimmung der Untersuchungsergebnisse zwischen den Behandlern beschäftigen, verwenden den Intra-Class-Korrelationskoeffizienten (ab ICC \(\geq 0.75 \) akzeptabel) als metrische Variable oder Cohens Kappa-Wert als kategoriale Variable zur Evaluation der Reliabilität. Der Kappa-Wert nach Cohens, der die Übereinstimmung der Untersucher über den Zufall hinaus bewertet, wurde durch Landis und Koch [136] willkürlich in eine verbale Werteskala überführt und von Altmann [5] modifiziert. Kappa-Werte \(< 0,2\) werden dabei als schlechte Übereinstimmung, Werte von 0,21-0,4 als geringe Übereinstimmung, Werte von 0,41-0,6 als mäßige Übereinstimmung, Werte von 0,61-0,80 als gute Übereinstimmung und Werte von 0,81-1,00 als exzellente Übereinstimmung bewertet.

Die beteiligten Zahnärzte wurden bei vorliegender Arbeit für die klinischen Untersuchungen nach den standardisierten RDC/TMD-Kriterien trainiert und kalibriert. Goodman et al. zeigten, dass standardisierte Untersuchungsmethoden die Reliabilität der Ergebnisse der klinischen Untersuchungen und damit die Validität beträchtlich steigern [77]. Ferner zeigten weitere Studien, dass eine Kalibrierung der Untersucher sowie ein Training der standardisierten Untersuchungsmethoden ebenfalls zur Steigerung der Reliabilität beitragen [35,51,253], aber selbst unerfahrene und
untrainierte Behandler können eine zufrieden stellende Reliabilität nach den standardisierten Untersuchungsmethoden der RDC/TMD-Kriterien erreichen [140].

Eine Studie von Leher et al. zur Untersuchung der Inter-Untersucher-Reliabilitäten der RDC/TMD-Kriterien zwischen erfahrenen und unerfahrenen, aber kalibrierten Untersuchern erbrachte eine exzellente Reliabilität für die Tests der vertikalen Bewegungsanalyse des Unterkiefers, eine akzeptable Reliabilität für die gesamte Muskelpalpation sowie eine moderate bis geringe Reliabilität für die Exkursionsbewegungen des Unterkiefers, Gelenksgeräusche und die Palpation einzelner Kaumuskeln [142]. Sie schlussfolgerten aus ihren Ergebnissen eine größere Wichtigkeit einer Kalibrierung der Untersucher als die Erfahrung derselben.

Eine weitere Studie über die Inter-Untersucher-Reliabilität der RDC/TMD-Kriterien von Schmitter et al. erbrachte bei der Untersuchung der Unterkiefermobilität akzeptable bis exzellente Reliabilitäten, bis auf das Vermessen der Laterotrusion (maximale Mundöffnung: ICC = 0,89-0,91; Protrusion: ICC = 0,75; Laterotrusion: ICC = 0,44), moderate bis akzeptable Reliabilitäten bei der Befundung der Gelenksgeräusche, bis auf die Befundung der Geräusche bei der Laterotrusion nach ipsilateral (bei Öffnung und Mundschluss: ICC= 0,59-0,60; bei Protrusion: ICC= 0,75; bei Laterotrusion nach kontralateral: ICC= 0,71; bei Laterotrusion nach ipsilateral: ICC= 0,24), und akzeptable bis große Reliabilitäten bei der Palpation der einzelnen Muskeln bzw. Kiefergelenke, bis auf die Palpation der Retro- bzw. Submandibularregion (Submandibularregion: ICC = 0,38; Retromandibularregion: ICC = 0,36) [253]. Auch die Inter-Untersucher-Reliabilität der Diagnosefindung nach den RDC/TMD-Kriterien wird in der Literatur als akzeptabel bis gut angegeben [113,253].

Die meist akzeptablen bis exzellenten Inter-Untersucher-Reliabilitäten der Befunde und Diagnosen nach den RDC/TMD-Kriterien dürfen jedoch nicht darüber hinwegtäuschen, dass mit der Anzahl der Untersucher die Gefahr der Abnahme der Übereinstimmung der Ergebnisse steigt [195]. Bei vorliegender Untersuchung sollte jedoch eine klinisch realistische Situation (mehrere Behandler führen innerhalb einer klinischen Abteilung eine funktionsanalytische Untersuchung durch) zur Evaluation der klinischen Untersuchungsmethoden nach den RDC/TMD-Kriterien generiert werden. Die kontralateral zum untersuchten Gelenk vorkommende Anatomie und Pathophysiologie des Kiefergelenkes und der umgebenden Strukturen stellen ein Problem in der klinischen Diagnostik dar. Da beide Gelenke über die Unterkieferspange verbunden sind, kann eine Erkrankung des kontralateralen Gelenkes sekundär den
Zustand und das klinische Bild (z. B. maximale Mundöffnung, Bewegungen des Unterkiefers) des ipsilateralen Gelenkes beeinflussen [196]. Eine muskuläre Störung kann indirekt diese Problematik weiterhin verstärken oder verschleieren [6,250], so dass die Diagnose der Diskusverlagerung dadurch verfälscht werden kann. Da kontinuierlich aufeinanderfolgende Patienten der Kiefergelenkssprechstunde ausgewählt worden waren, bei denen eine ein- oder möglicherweise beidseitige Erkrankung vorliegen konnte, und der klinisch tätige Zahnarzt bei der Diagnostik der Diskusverlagerung genau vor diese Problematik gestellt wird, schien eine weitere Selektion der untersuchten Stichprobe nicht sinnvoll.

Ferner ist bekannt, dass Anzeichen und Symptome einer CMD fluktuierend, ohne erkennbares Muster in Erscheinung treten können [196], so dass eine unmittelbare, sich an die klinische Untersuchung anschließende, magnetresonanztomographische Untersuchung äußerst wichtig scheint. Dies war jedoch bei der untersuchten Stichprobe nicht immer möglich, so dass ein Zeitraum von 3 bis maximal 49 Tagen zwischen der klinischen Untersuchung und der MRT-Untersuchung lag. In diesem Zeitraum erfolgte jedoch keine Behandlung der Patienten, um die Ergebnisse der bildgebenden Diagnostik nicht zu beeinflussen.

6.1.3 MRT

In Studien zur Diagnostik der Diskusposition konnte mit Hilfe der modernsten Technologie der Magnetresonanztomographie, wie sie bei allen untersuchten Kiefergelenken der vorliegenden Studie zum Einsatz kam (1,5 Tesla starkes Magnetfeld, Technik mit Oberflächenspule und ausreichend dünne Schichten von 2 mm), eine 80- bis 100%ige Übereinstimmung mit den Befunden aus einer Autopsie oder einer Operation festgestellt werden [85,86,144,280,304,310,318]. Knöcherne Veränderungen erreichten mit Hilfe der modernen Magnetresonanztomographie eine Sensitivität von 0,87 und eine Spezifität von 1,0 [280,310]. Die Intra- als auch Inter-Untersucher-Reliabilität der Diskuspositionsbestimmung erhielt bei einer Studie von Tasaki et al. sehr gute Werte (Intra-Untersucher: Kappa = 0,95; Inter-Untersucher Kappa = 0,90) [279]. Da die Befundung der MRTs bei vorliegender Studie durch mehrere kalibrierte und erfahrene Radiologen erfolgte, wurde zur Steigerung der Reliabilität die endgültige radiologische Diagnose eines jeden MRTs durch den erfahrensten Radiologen gestellt.
Da ein nicht auswertbares MRT ein Ausschlusskriterium bei vorliegender Untersuchung darstellte, konnten alle Aufnahmen bei nahezu gleicher Qualität beurteilt werden.

Trotz oben erwähnter Problematik und den Ergebnissen von Orsini et al., der vorschlug, dass die Diskuspositionsbestimmung durch die Lokalisation der intermediären Zone des Diskus eine verbesserte Inter-Untersucher-Reliabilität sowie eine exaktere Differenzierung zwischen „krank“ und „gesund“ liefern würde [195], wurde bei vorliegender Studie an der Methodik von Drace und Enzmann festgehalten, nicht zuletzt deshalb, um eine bessere Vergleichbarkeit der Ergebnisse auch mit aktuellen Studien gewährleisten zu können, die meist oben genannte und weit verbreitete Methodik verwendeten. Ferner kann die „intermediäre Zonen-Lokalisation“ des Diskus bei einem weit nach anterior verlagerten und evtl. perforierten formveränderten oder „aufgewickelten“ Diskus unmöglich werden [195].
6.1.4 Statistische Auswertung

6.2 Interpretation der Ergebnisse

6.2.1 Stichprobe

6.2.2 Anamnese

6.2.2.1 Auslöser

Anamnese einen direkten „Schlag im MKG-Bereich“ erhalten hatten, der Rest gab einen Autounfall, also ein indirektes Trauma zu Protokoll.

Das indirekte Trauma (Schleudertrauma), aber auch das direkte Trauma (Schlag im MKG-Bereich) werden in der Literatur bei der Entstehung myogener Schmerzen als potentiell ätiopathogenetischer Faktor diskutiert [98, 213]. So könnte die auffallend häufige Angabe eines „(Auto-)Unfalls oder erlittenen Schlags im MKG-Bereich“ von Patienten „ohne DV“ im Vergleich zu den restlichen Patienten auf eine myogene Beteiligung oder eine Prädisposition dieser Patienten für eine Kiefergelenksproblematik (abseits einer Diskusverlagerung) hindeuten oder könnte, wie von einigen Autoren beschrieben, als Somatisierung des psychologischen Stressors „Unfall“ gesehen werden [68, 172].

6.2.2.2 Arthrogene Schmerzen

Bei knapp der Hälfte (47,6 %) aller Gelenke „ohne eine Diskusverlagerung“ waren ebenso bei vorliegender Studie Schmerzen im Bereich der Kiefergelenke in der Anamnese angegeben worden. 55,6 % dieser Gelenke zeigten sich bei der genaue-
ren Betrachtung der MRTs als degenerativ verändert und 23,23 % hatten die Diagnose „Myopathie“ erhalten, was eine mögliche Erklärung für die angegebenen Schmerzen in der Gruppe der Gelenke „ohne Diskusverlagerung“ darstellen könnte.

6.2.2.3 Kieferorthopädische Vorbehandlung

Bei der anamnestischen Befragung hatten 59,79 % der Patienten mit einer „ADV mit oder ohne Reposition in mindestens einem Gelenk“ statistisch signifikant häufiger eine kieferorthopädische Vorbehandlung angegeben als die 35,38 % der Patienten „ohne Diskusverlagerung bilateral“. Bei der Betrachtung der diagnostischen Untergruppen zeigten sich jedoch nur die Gruppen der Patienten mit einer „beidseitigen ADV ohne Reposition“ und die Gruppe mit einer „beidseitigen ADV mit unterschiedlichen Repositionsarten“ signifikant häufiger „kieferorthopädisch vorbehandelt“ als die Gruppe der Patienten „ohne eine Diskusverlagerung bilateral“. Bei der Verteilung der Patienten auf die verschiedenen Altersgruppen zeigten sich nur noch die „20- bis 29-jährigen“ Patienten mit einer „ADV mit oder ohne Reposition in mindestens einem Gelenk“ signifikant häufiger „kieferorthopädisch vorbehandelt“ als die Patienten „ohne eine Diskusverlagerung bilateral“.

6.2.2.4 Visuelle Analogskala

Die Ergebnisse der vorliegenden Arbeit stehen im Einklang mit der in der Literatur vorherrschenden Ansicht, dass bei den Patienten mit einer „ADV ohne Reposition“ eine häufig schmerzhaft eingeschränkte Mundöffnung vorliegt [2,52,89,219], die den Funktionsspielraum des Unterkiefers deutlich einschränkt [52]. Es scheint einleuchtend, dass die betroffenen Patienten diese Funktionseinschränkung (besonders

6.2.2.5 Plötzliche Kieferöffnungseinschränkung

Die ADV ohne Reposition ist oftmals gekennzeichnet durch eine plötzliche Limitation der Mundöffnung [2,52,204,220], ausgelöst durch die repositionslose Vorverlagerung des Diskus articularis. Diese plötzlich aufgetretene Kieferöffnungseinschränkung stellt ein wichtiges anamnestisches Kriterium für die Einteilung der Gruppe IIb/Iic nach RDC/TMD dar [52] und ist zu differenzieren von der langsam eingetretenen Limitation, die auch durch andere Faktoren eintreten kann (z. B. Arthrose) [204]. Bei vorliegender Arbeit konnte gezeigt werden, dass 51,68 % der Patienten mit einer „ADV ohne Reposition“ anamnestisch eine plötzlich aufgetretene, eingeschränkte Mundöffnung zu Protokoll gegeben hatten und damit signifikant häufiger diese anamnestische Angaben gemacht hatten als die Patienten „ohne Diskusverlagerung“ oder die Patienten mit einer „ADV mit Reposition“. Immerhin 17,22 % der Patienten mit einer „ADV mit Reposition“ gaben dennoch eine plötzliche Kieferöffnungseinschränkung bei der Anamnese an und damit signifikant häufiger als die Patienten „ohne Diskusverlagerung“. Da bei Patienten mit einer „ADV mit Reposition“, wie
weiter oben bereits erwähnt, häufig anamnestische Angaben über „Episoden mit rezi-
divierenden Kieferklemmen“ gemacht werden [217], erscheint dies jedoch einleuch-
tend. Nur bei drei Kiefergelenken (1,44 %) „ohne eine Diskusverlagerung“ wurde eine
anamnestische Angabe über eine plötzlich eingeschränkte Mundöffnung gemacht.
Es kann also festgehalten werden, dass bei einer anamnestischen Angabe einer
„plötzlichen Kieferöffnungseinschränkung“, konform zu den RDC/TMD-Kriterien, mit
erhöhter Wahrscheinlichkeit eine „ADV ohne Reposition“ vorliegt. Bei einer Angabe
einer rezidivierenden Kieferklemme sollte jedoch an eine „ADV mit Reposition“ ge-
dacht werden. Ein Fehlen der anamnestischen Angabe „plötzliche Kieferöffnungsein-
schränkung“ ist jedoch kein suffizienter Garant für das Nichtvorliegen einer „ADV
ohne Reposition“.

6.2.3 Palpationsbefunde

6.2.3.1 Palpation der Muskulatur

Bei der klinischen Funktionsanalyse wird standardmäßig eine Palpation der Kau-
muskulatur und akzessorischen Kaumuskulatur durchgeführt. Die klinische Untersu-
chung nach den RDC/TMD-Kriterien sieht ebenfalls eine solche Palpation mit einer
vorgeschriebenen Kraftaufwendung von 1 lbs (450 g) für die intraorale und 2 lbs
(900 g) für die extraorale Palpation vor [52]. Bei dem Vergleich der Anzahl der positiv
reagierenden Palpationsstellen der Kaumuskulatur der unterschiedlichen bilateralen
Diagnosegruppen konnten bei vorliegender untersuchter Population keine signifikan-
ten Unterschiede ermittelt werden. Zwar konnte bei den stärksten Ausprägungen der
Diskusverlagerung („beidseitige ADV mit Reposition“ und „beidseitige ADV ohne
Reposition“) eine insgesamt erhöhte Anzahl an positiv reagierenden Palpations-
stellen ermittelt werden (hier lagen die Medianwerte bei 3 positiv reagierenden
Palpationsstellen im Vergleich zu 2 bei den restlichen Diagnosegruppen), jedoch gab
es in allen Gruppen eine große Spannweite der ermittelten positiv reagierenden
Palpationsstellen (0-16). Aughtun et al. konnten in einer vergleichbaren Studie eben-
falls keine signifikanten Zusammenhänge der Muskeldruckdolenz und der Diskus-
position ermitteln [10]. Auch Ahlers und Jackstat sehen keine Korrelation der Palpa-
tionsempfindlichkeit der Muskulatur mit der Diskusverlagerung, bis auf die Palpa-
tionsempfindlichkeit des intraoral palpierten M. pterygoideus lateralis [2]. Andere
Autoren wiederum fanden bei anatomischen Studien, dass der M. pterygoideus lateralis nicht sicher und reliabel zu palpieren ist [276].

Bei keiner MRT-Diagnosegruppe konnte eine eindeutige Korrelation zu der Anzahl der empfindlichen Palpationsstellen gefunden werden, so dass der Schluss nahe liegt, dass eine Diskusverlagerung nicht zwangsläufig als Initiator einer muskulären Dysbalance gesehen werden kann.

6.2.3.2 Palpation der Kiefergelenke

Bei einer Diskusverlagerung liegt also nicht zwingend eine laterale oder dorsale Palpationsempfindlichkeit des Kiefergelenkes vor, jedoch besteht bei einer auslösbaren Empfindlichkeit des Kiefergelenkes auf Druck eine erhöhte Wahrscheinlichkeit einer vorliegenden Diskusverlagerung, ohne dabei auf die Art der Diskusverlagerung schließen zu können.

6.2.4 Unterkiefermobilität

6.2.4.1 Mundöffnung

Bei der metrischen Vermessung der Schneidekantendistanzen bei Mundöffnung zeigten sich die Gruppen der Patienten mit einer ein- oder beidseitigen „ADV ohne Reposition“ sowohl bei der maximalen aktiven als auch passiven Schneidekantendistanz mit einer signifikant kleineren Mundöffnung vergesellschaftet (kleinste gemessene SKD bei 10 mm) als die Patienten „ohne Diskusverlagerung“ oder mit einer einseitigen oder beidseitigen „ADV mit Reposition“. Jedoch hatten jeweils ca. 50 % der Patienten mit einer „ADV ohne Reposition“ eine größere Mundöffnung als 35 mm, und bei einigen Patienten wurde sogar eine Schneidekantendistanz von bis zu 59 mm gemessen. In der Literatur schwanken die Definitionen der metrischen Grenze einer limitierten Mundöffnung zwischen 35 und 40 mm [52,89]. Nach den

Bei einer Mundöffnung < 35 mm liegt also folglich signifikant häufiger eine höchstwahrscheinlich akute „ADV ohne Reposition“ vor, ohne dass jedoch andere Erkrankungen, bei Vorliegen dieser Limitation, gänzlich ausgeschlossen werden können. Auch eine chronische „ADV ohne Reposition“ darf nicht an dieser metrischen Grenze von 35 mm festgemacht werden und kann klinisch mit einer normalen Mundöffnung imponieren. Ferner existieren offensichtlich weitere Faktoren, die eine Limitation nach sich ziehen können.

6.2.4.2 Laterotrusion

DISKUSSION

Die Patienten „ohne Diskusverlagerung“ hatten deutlich die größten Laterotrusionsstrecken durchführen können. So lagen die Medianwerte dieser Gruppe bei 9 mm, wobei 23,08-24,62 % dieser Gruppe jedoch eine geringere Seitwärtsbeweglichkeit als 7 mm hatten. Da es sich aber, wie oben erwähnt, nicht um eine gesunde Patientengruppe handelt, könnten auch bei der Laterotrusion, wie schon bei der Mundöffnungsbewegung diskutiert, andere Faktoren, wie eine Myopathie mit Bewegungseinschränkung oder eine Osteoarthrose, eine Beeinflussung der Laterotrusionsfähigkeit verursachen [52,204]. Diese Vermutung wird ferner durch die vorliegenden nahezu identischen Anteile der Patienten „ohne Diskusverlagerung“ mit einer eingeschränkten Laterotrusion (23,08-24,62 %) bzw. mit einer eingeschränkten Mundöffnung (24,62 %) unterstützt.

Bei einer eingeschränkten Seitwärtsbewegung nach kontralateral scheint also folglich ipsilateral eine „ADV ohne Reposition“ signifikant häufiger vorzuliegen, ohne dass
jedoch andere Erkrankungen bei Vorliegen dieser Limitation gänzlich ausgeschlos-
sen werden können. Auch eine „ADV ohne Reposition“ kann mit einer größeren
kontralateralen Seitwärtsbeweglichkeit als 7 mm imponieren. Ferner existieren offen-
sichtlich weitere Faktoren, die eine Limitation der Exkursivbewegungen nach sich
ziehen können.

Die Beschwerden fielen bei allen Diagnosegruppen bei den seitlichen Exkursivbewe-
gungen deutlich geringer aus als die Beschwerden bei der maximalen Mundöffnung.
So hatten wiederum die Patienten mit einer „ADV ohne Reposition“ signifikant häufi-
ger Beschwerden als die Gruppe der Patienten „ohne Diskusverlagerung“ und bei
der Laterotrusion sogar signifikant häufiger als die Patienten mit einer „ADV mit
Reposition“, jedoch gaben nur 16,11 % bzw. 22,18 % dieser Patienten überhaupt
Beschwerden zu Protokoll. So scheint die Seitwärtsbewegung des Unterkiefers von
den Patienten als weniger beschwerlich und schmerzhaft empfunden zu werden –
selbst bei eingeschränkter Beweglichkeit des Unterkiefers – als die Mundöffnungs-
bewegung. Interessanterweise wurde auch von den Patienten „ohne Diskusverlage-
rung“ die Laterotrusion häufiger schmerzhaft empfunden als die Mediotrusion. So
liegt der Schluss nahe, dass die Beschwerden bei der Seitwärtsbewegung des Unter-
kiefers nicht – oder nicht hauptsächlich – durch das „Gleithindernis“ Diskus generiert
werden. Es konnten in der Literatur keine Studien gefunden werden, die die Be-
schwerden bei den Seitwärtsbewegungen von Patienten mit Diskusverlagerungen
analysiert hatten.

Beschwerden bei der Seitwärtsbewegung lagen also folglich bei allen Patientengrup-
pen allgemein relativ selten vor, jedoch lag bei angegebenen Beschwerden eine
„ADV ohne Reposition“ signifikant häufiger vor als bei den Gelenken „ohne Diskus-
verlagerung“ und als bei den Gelenken mit „ADV mit Reposition“ (bei der Laterotru-
sion). Die Laterotrusion wurde dabei häufiger schmerzhaft empfunden als die Medio-
trusion.
6.2.4.3 Protrusion

Bei einer eingeschränkten Protrusion liegt also folglich eine „ADV ohne Reposition“ signifikant häufiger vor, ohne dass jedoch andere Erkrankungen bei Vorliegen dieser Limitation gänzlich ausgeschlossen werden können. Ferner existieren offensichtlich weitere Faktoren, die eine Limitation nach sich ziehen können.

Die Beschwerden fielen wiederum bei der Protrusion bei allen Diagnosegruppen deutlich geringer aus als die Beschwerden bei der maximalen Mundöffnung, jedoch konnten erneut die häufigsten Beschwerden bei den Patienten mit einer „ADV ohne Reposition“ gefunden werden (bei 28,86 %). Diese Patienten hatten signifikant häufiger Beschwerden als die Patienten „ohne Diskusverlagerung“ oder mit einer „ADV mit Reposition“. Es konnten in der Literatur keine Studien gefunden werden, die die Beschwerden bei der Protrusion von Patienten mit Diskusverlagerungen analysiert hatten.

Beschwerden bei der Protrusion lagen also folglich bei allen Patientengruppen allgemein relativ selten vor, jedoch lag bei angegebenen Beschwerden eine „ADV
ohne Reposition" signifikant häufiger vor als eine „ADV mit Reposition“ oder „keine Diskusverlagerung“.

6.2.5 Geräusche

Zwar wurden in dieser Studie die Patienten ebenfalls nach den RDC/TMD-Kriterien befunden, was einen Vergleich mit vorliegender Arbeit möglich macht, jedoch wurde eine nur sehr kleine Stichprobe von 40 Patienten untersucht. Dabei handelte es sich aber auch nicht um eine kontinuierlich aufeinanderfolgende, typische klinische Population aus der Kiefergelenkssprechstunde, sondern es wurden 40 Patienten mit der klinischen Diagnose „ADV mit Reposition“ in mindestens einem Kiefergelenk ausge-

Bei einem vorliegenden „reziproken Knacken“ wurde eine knackfreie Positionierbarkeit durch eine protrudierte Unterkieferstellung bei 78,67 % der Patienten mit einer „ADV mit Reposition“ erreicht und damit signifikant häufiger als bei den Patienten „ohne Diskusverlagerung“ (10,71 %) und den Patienten mit einer „ADV ohne Reposition“ (12,0 %), bei denen ebenfalls ein reziprokes Knacken festgestellt worden war. Yatani et al. konnten in einer klinischen Studie ebenfalls bei 75,7 % der Patienten mit einer „ADV mit Reposition“, die ein reziprokes Knacken hatten, eine knackfreie

6.2.6 Sensitivität und Spezifität der klinischen Tests

Karle et al. postulierten für einen validen Test für die klinische Diagnostik eine Sensitivität und Spezifität von mindestens 85-90 % [121].

Dworkin und LeResche hingegen forderten für einen diagnostischen Test zur Identifizierung einer CMD eine geringere Sensitivität von mindestens 70 % und eine höhere Spezifität von mindestens 95 %, aufgrund der geringen Prävalenz der CMD in der Gesamtbevölkerung und um falsch positive Ergebnisse zu minimieren [52,262].

Bei der Untersuchung der Sensitivitäten und Spezifitäten der klinischen Tests konnte bei vorliegender Arbeit kein Test für sich alleine die von Dworkin und LeResche geforderte Mindestsensitivität und gleichzeitig die Mindestspezifität erreichen.

Bei den Ergebnissen aus den Berechnungen der Sensitivität und Spezifität der Tests zur Identifikation der „ADV ohne Reposition“ zeigte sich ein ähnliches Bild. Kein Test erreichte hier für sich alleine die von Dworkin und LeResche geforderten Werte für Sensitivität und Spezifität. Die anamnestische Angabe des Patienten der „plötzlichen Kieferöffnungseinschränkung“ erwies sich hierbei noch als der insgesamt stärkste Test mit einer Spezifität von 91,92 % bei einer Sensitivität von 51,68 %. Bei diesem Test wurde auch der größte positive Prädiktivwert von 0,73, bei einem negativen

Vorliegende Ergebnisse werden durch die in der neueren Literatur vorherrschende Auffassung gestützt, dass einzelne klinische Parameter für sich alleine nicht aussagekräftig genug sind, um das Stadium einer Diskusverlagerung suffizient vorherzusagen [121,196]. Exakte Vergleiche der Ergebnisse der vorliegenden Arbeit mit der Literatur hinsichtlich Sensitivität und Spezifität der klinischen Untersuchungsmethoden erscheinen jedoch schwierig, da keine Studie, die die Sensitivität oder Spezifität der einzelnen durchgeführten klinischen Tests zur Funktionsanalyse errechnete, dabei bisher die standardisierten RDC/TMD-Kriterien verwendete. Orsini et al. fanden
jedoch ebenfalls sowohl für die von ihnen durchgeführten klinischen diagnostischen Tests für die „ADV mit Reposition“ als auch „ADV ohne Reposition“ keinen Test, der die geforderte Mindestspezifität oder Mindestsensitivität (siehe weiter oben) erfüllte [196]. Die „knackfreie Positionierbarkeit“ war jedoch auch hier zur Diagnostik der „ADV mit Reposition“, mit einer Sensitivität von 44,4 % und einer Spezifität von 88,0 %, einer der stärksten ermittelten Tests, wobei Orsini et al. bei der Befundung der MRTs nicht die Methode von Drace und Enzman verwendeten, sondern eine Verlagerung des Diskus mit Hilfe des „Intermediär-Zonen-Kriteriums“ diagnostizier-

6.2.7 Übereinstimmung der klinischen Diagnostik mit den MRT-Diagnosen

6.2.7.1 RDC-Gruppe-I-Diagnosen

6.2.7.2 RDC-Gruppe-III-Diagnosen

gefunden hatten [57,176,211,250,252]. Traumata, Parafunktionen, Neurititiden, eine fehlende Molarenabstützung sowie eine hypoxische Perfusion werden in der Literatur als potentielle weitere ätiologische Faktoren jenseits der „Diskusverlagerung ohne Reposition“ für eine Synovitis und Osteoarthrose diskutiert [58,218].

Degenerative Veränderungen im Kiefergelenk scheinen also folglich einerseits eine enge Korrelation zu der Erkrankung der „ADV ohne Reposition“ zu haben, jedoch andererseits – aufgrund des häufigen Vorkommens in Gelenken „ohne Diskusverlagerung“ – noch durch andere pathophysiologische Faktoren als einen repositionslos verlagerten Diskus ausgelöst werden zu können.

6.2.7.3 RDC-Gruppe-II-Diagnosen

was wiederum die Anzahl der falsch positiven Ergebnisse gesteigert und damit die Spezifität gesenkt hätte. Da es sich jedoch bei untersuchter Stichprobe um eine symptomatische Patientengruppe handelte und Rammelsberg et al. bei 50 % der von ihnen untersuchten symptomatischen Patientengruppe mit einem reziproken Knacken eine kleinere Abweichung als 20 Grad von der 12-Uhr-Position gefunden hatten, erscheint es sinnvoller, bei einer symptomatischen Patientengruppe eine kleinere Abweichung der Diskusposition von der „12-Uhr-Position“ für die Definition der „normalen Diskusposition“ zu wählen.

Paesani et al. konnten in einer Studie mit vergleichbaren angewandten klinischen Parametern sogar nur 37 % der klinischen Diagnose „ADV mit Reposition“ mit dem MRT oder der Arthrographie verifizieren [198]. Die klinische RDC/TMD-Diagnose „ADV mit Reposition“ konnte somit bei vorliegender Arbeit nicht die von Dworkin und LeResche geforderten Werte für Sensitivität und Spezifität (70 % bzw. 95 %) erfüllen [52,262].

ohne Reposition“ und symptomatischen Gelenken „ohne Diskusverlagerung“ schwierig. Unter diesem Gesichtspunkt scheint eine genaue Anamnese der Patienten bezüglich früherer Beschwerden äußerst wichtig (z. B. Knackgeräusche, die plötzlich verschwunden sind, plötzliche Mundöffnungseinschränkungen mit evtl. Schmerzen etc.).

Vergleichbare Studien, die die RDC/TMD-Kriterien verwendet hatten, sind kaum zu finden. Barclay et al. konnten in ihrer Studie keine Angaben zur Übereinstimmung der klinischen Diagnosen mit dem MRT hinsichtlich der Diagnose „ADV ohne Reposition“ machen, da sie als Auswahlkriterium nur Gelenke mit einer „ADV mit Reposition“ in mindestens einem Gelenk in der Studie eingeschlossen hatten und in nur
zwei kontralateralen Gelenken (nach der MRT-Diagnose) überhaupt eine „ADV ohne Reposition“ vorgefunden wurde. Tognini et al. verwendeten zwar ebenfalls die RDC/TMD-Kriterien, fanden aber eine geringere Übereinstimmung der klinischen Diagnose „ADV ohne Reposition“ mit dem MRT von 45 %, jedoch bei einer deutlich kleineren Stichprobe, von nur 20 im MRT bestätigten Gelenken mit einer „ADV ohne Reposition“ [284]. Emshoff et al. fanden eine mit vorliegender Arbeit nahezu identische, jedoch ebenfalls nur „mäßige“ klinische diagnostische Übereinstimmung mit der MRT-Diagnose „ADV ohne Reposition“ von 78,8 % bei einem Kappa-Wert von 0,57 [58]. Jedoch wurden bei der Studie die CDC-Kriterien und nicht die RDC/TMD-Kriterien verwendet, was einen direkten Vergleich erschwert. Frühere Studien fanden eine Übereinstimmung von 36 bis 90 %, je nach verwendeten Diagnosekriterien und angewandten bildgebenden Verfahren [95,103-105,179,198,236].

Die klinische RDC/TMD-Diagnose „ADV ohne Reposition“ konnte somit ebenfalls bei vorliegender Arbeit nicht die von Dworkin und LeResche geforderten Werte für Sensitivität und Spezifität (70 % bzw. 95 %) erfüllen [52,262].

Bei der rein klinischen Diagnose einer „anterioren Diskusverlagerung“ ohne Unterscheidung der Diskusposition bzw. der Repositionsart hätte sich die Übereinstimmung der klinischen Diagnostik mit dem MRT auf eine Sensitivität von 79,67 % steigern lassen, bei dem größten ermittelten positiven Prädiktivwert von 0,82, jedoch zu Lasten der Spezifität (74,04 %). Wie weiter oben beschrieben, ist jedoch die größere Spezifität bei einem Test für eine CMD von größerer Bedeutung als die Sensitivität.

DISKUSSION

ten, wie zu Beginn des Kapitels erwähnt, eine Gesamtübereinstimmung der klini-
schen Diagnostik mit MRT oder Arthrographie von 43 bis 90 % erzielt, jedoch
verwendete keine dieser Studien die RDC/TMD-Kriterien.
Die vorliegenden Ergebnisse präsentierten eine insgesamt mäßige Übereinstimmung
der klinischen Diagnosekriterien nach RDC/TMD, so dass geschlussfolgert werden
kann, dass die klinische Diagnostik (nach den RDC/TMD-Kriterien) bei einer typi-
schen klinischen Population mit mehreren Untersuchern zwar insgesamt prädiktiv für
eine „anteriore Diskusverlagerung“ sein kann, jedoch nicht in der Lage ist, die Dis-
kus-Kondylus-Relation bzw. die Repositionsart ausreichend exakt zu bestimmen.
Dies steht im Einklang mit der Auffassung der meisten Autoren in der Literatur
[12,57,199,284,322]. So sollten immer, wenn exakte Informationen über die Lage-
position des Diskus nötig sind (z. B. bei einer OP), neben der klinischen Diagnostik
magnetresonanztomographische Schichtungsaufnahmen zu Rate gezogen werden
[12].
7. ZUSAMMENFASSUNG UND SCHLUSSFOLGERUNG

Das Ziel der vorliegenden Arbeit war eine Evaluation der klinischen Untersuchungsmethoden nach den RDC/TMD-Kriterien mit Hilfe der Diagnosen aus den magnetresonanztomographischen Schichtungsaufnahmen, die als Goldstandard verwendet wurden.

1- „Ohne Diskusverlagerung“
2- „ADV mit Reposition“
3- „ADV ohne Reposition“

Zusätzlich konnte jedes Kiefergelenk noch die Diagnose „degenerative Veränderungen“ oder „keine degenerativen Veränderungen“ erhalten haben.

Bei der analytischen Betrachtung der häufig gemachten anamnestischen Angaben der Patienten und der einzelnen durchgeführten klinischen Tests fiel auf, dass meist signifikante Unterschiede der Gelenke mit einer im MRT nachgewiesenen Diskusverlagerung im Vergleich zu der Gruppe der Gelenke „ohne Diskusverlagerung“ gefunden werden konnten, jedoch wurden selten signifikante Unterschiede zwischen den beiden Gruppen der Diskusverlagerung (mit/ohne Reposition) gefunden, so dass nur wenige Tests als selektiver Indikator einer bestimmten Repositionsform der Diskusverlagerung gelten konnten. Die meisten der durchgeführten Tests, bis auf die Gelenksgeräusche, hatten eine stärkere Korrelation zu „ADV ohne Reposition“.

„Reibegeräusche“ waren signifikant häufiger in Gelenken mit degenerativen Veränderungen feststellbar, jedoch nur bei Gelenken mit einer stark ausgeprägten Form.

Die Evaluation der RDC-Gruppe-II-Diagnosen anhand der gestellten MRT-Diagnosen erbrachte für die untersuchte klinische Population mit mehreren Untersuchern eine nur „mäßige“ Übereinstimmung und zeigte, dass die klinische Diagnostik nicht in der Lage war, die Diskus-Kondylus-Relation bzw. die Repositionsart der Diskusverlagerung ausreichend exakt zu bestimmen, so dass neben der klinischen Funktionsanalyse eine adjuvante bildgebende Diagnostik (MRT) bei unklarer Beschwerdesymptomatik oder anhaltenden, resistenten Beschwerden unter Therapie sinnvoll und indiziert erscheint. Die schnell und mit einfachsten Mitteln durchzuführende klinische Funktionsanalyse steht jedoch weiterhin im Vordergrund der primären Funktionsdiagnostik, nicht zuletzt wegen der unter Umständen eingeschränkten Verfügbarkeit oder Kostenintensität des Verfahrens. Bei einer klinischen Population einer Kiefergelenkssprechstunde mit einem oftmals typischerweise mehrere Jahre dauern-
ZUSAMMENFASSUNG UND SCHLUSSFOLGERUNG

den Leidensweg, wie sie bei vorliegender Arbeit untersucht worden war, erscheint je-
doch eine Anfertigung eines MRTs bei einem Verdacht auf eine Gelenksbeteiligung
zur Evaluation des Gelenksstatus und sicheren Diagnostik sinnvoll und indiziert.
8. LITERATURVERZEICHNIS

(33) Costen JB. A syndrome of ear and sinus symptoms dependent upon disturbed function of the temporomandibular joint. Achieves of Otolaryngology, Rhinology & Laryngology 1934;43:15.

(49) Drace JE, and Enzmann DR. Defining the normal temporomandibular joint: closed-, partially

(85) Hansson LG, Westesson PL, Katzberg RW, Tallents RH, Kurita K, Holtas S, et al. MR imaging of the temporomandibular joint: comparison of images of autopsy specimens made at 0.3 T and 1.5

118) Kaplan AS, and Assael LA. Temporomandibular disorders: Diagnosis and treatment. Philadelphia: Saunders; 1991

121) Karle C, Kerschbaum T, Fischbach R, and Präger T. Bewertung der
LITERATURVERZEICHNIS

(177) Muller-Leisse C, Augthun M, Roth A, Bauer W, and Gunther RW. [Disk displacement of the

(192) Okeson JP. Management of temporomandibular disorders and Occlusion. St. Louis: Mosby;

(260) Seligman DA, and Pullinger AG. The role of functional occlusal relationships in

(329) van der Weele LT, and Dibbets JMH. Helkimo’s index: a scale or just a set of symptoms. J Oral Rehabil 1987;14:229.

9. ABBILDUNGS- UND TABELLENVERZEICHNIS

9.1 Abbildungsverzeichnis

Abb. 1: Makroskopisches anatomisches Präparat eines Sagittalschnittes durch das Kiefergelenk ... 5

Abb. 2: Scoutscan zur Festlegung der sagittalen Schichten: Links anguliert, rechts para-median (Abb. aus [23]) ... 24

Abb. 3: Scoutscan zur Festlegung der koronalen Schichten: Links anguliert, rechts streng in der Frontalebene (Abb. aus [23]) 24

Abb. 4: Schematische Darstellung einer sagittalen Schichtaufnahme zur Bestimmung der Diskusposition .. 33

Abb. 5: Geschlechts- und Altersverteilung bei Erstuntersuchung ... 36

Abb. 6: Einteilung der untersuchten Kiefergelenke in die diagnostischen (unilateralen) Untergruppen .. 37

Abb. 7: Geschlechtsverteilung bei den unilateralen Diagnosegruppen ... 38

Abb. 8: Die Dauer der Beschwerden bei Erstuntersuchung ... 39

Abb. 9: Verteilung der Patienten auf die bilateralen Diagnosegruppen .. 39

Abb. 10: „Unfall oder Schlag im MGK-Bereich“ bzw. „Zahnarztbesuch“ bei den unilateralen MRT-Diagnosegruppen 42

Abb. 11: Angaben über subjektiv arthrogene Schmerzen bei den unilateralen MRT-Diagnosegruppen .. 43

Abb. 13: Kieferorthopädische Vorbehandlung bei den bilateralen Diagnosegruppen .. 44

Abb. 14: Kieferorthopädische Vorbehandlung bei der zusammengefassten Diagnosegruppe der uni- oder bilateralen Diskusverlagerungen, ohne Beachtung der Reposition 45

Abb. 15: Kieferorthopädische Vorbehandlung bei der zusammengefassten Diagnosegruppe der uni- oder bilateralen Diskusverlagerungen, ohne Beachtung der Reposition, bei den unterschiedlichen Altersgruppen ... 46

Abb. 16: Schmerzwerte nach VAS .. 47

Abb. 17: Funktionseinschränkungen nach VAS ... 49

Abb. 18: Angaben über plötzlich aufgetretene Kieferöffnungseinschränkungen bei den unilateralen MRT-Diagnosegruppen 49

Abb. 19: Anzahl der Kaumuskeln mit leichtem bzw. mäßigem oder heftigem Schmerz bei Palpation bei den verschiedenen bilateralen MRT-Diagnosegruppen .. 51

Abb. 20: Druckdolenzen der Kiefergelenke in Relation zu den unilateralen MRT-Diagnosegruppen .. 52
Abb. 21: Separation der Druckdolenzonen der Kiefergelenke von lateral und dorsal in Relation zu den unilateralen MRT-Diagnosegruppen

Abb. 22: Die Öffnungsbewegungen der seitenspezifischen Diagnosegruppen

Abb. 23: Aktive und passive maximale Mundöffnung (in mm)

Abb. 24: Beschwerden bei aktiver und passiver Mundöffnung

Abb. 25: Laterotrusion nach links und rechts (in mm)

Abb. 26: Beschwerden bei Mediotrusion und Laterotrusion

Abb. 27: Maximal mögliche Protrusion des Unterkiefers (in mm)

Abb. 28: Beschwerden bei Protrusion des Unterkiefers

Abb. 29: Ermittelte Geräuschklassen

Abb. 30: Vorliegen von Knackgeräuschen (ohne Reibegeräusche) im Kiefergelenk

Abb. 31: Knackfreie Positionierbarkeit aller Kiefergelenke mit reziproken Knacken (N = 128) bei den verschiedenen Diagnosegruppen

Abb. 32: Myogene Erkrankungen (RDC-Gruppe-I-Kriterien) bei den verschiedenen MRT-Diagnosegruppen

Abb. 33: Verteilung der RDC-Gruppe-III-Diagnosen auf die unilateralen MRT-Diagnosegruppen

Abb. 34: Verteilung der Gelenke mit/ohne degenerative Veränderungen auf die RDC-Gruppe-III-Diagnosegruppen

Abb. 35: Degenerative Veränderungen im Kiefergelenk bei den unilateralen MRT-Diagnosegruppen

Abb. 36: Verteilung der Gruppe „ohne Diskusverlagerung“, aber mit „degenerativen Veränderungen“ auf die Patienten mit unilateralen bzw. bilateralem Vorkommen der MRT-Diagnose „ohne Diskusverlagerung“

Abb. 37: Verteilung der initialen Verdachtsdiagnosen nach den RDC-Gruppe-II-Kriterien auf die Diagnosegruppen des Goldstandards „MRT“
9.2 Tabellenverzeichnis

Tab. 1:	Klassifikationsschema der RDC/TMD-Gruppe I, II und III	31
Tab. 2:	Statistischer Vergleich der anamnestischen Angaben über einen evtl. erlittenen „Unfall oder Schlag im MGK-Bereich“ bzw. einen „Zahnarztbesuch“ als subjektiv auslösende Faktoren für die CMD bei den unilateralen MRT-Diagnosegruppen mit Hilfe von Fishers exaktem Test	144
Tab. 3:	Statistischer Vergleich der subjektiv arthrogenen Schmerzen der Patienten aus dem Anamnese-Fragebogen bei den unilateralen MRT-Diagnosegruppen mit Hilfe von Fishers exaktem Test	144
Tab. 4:	Statistischer Vergleich der anamnestischen Angabe „kieferorthopädische Vorbehandlung“ der Patienten bei den bilateralen MRT-Diagnosegruppen mit Hilfe von Fishers exaktem Test	144
Tab. 5:	Statistischer Vergleich der anamnestischen Angabe „kieferorthopädische Vorbehandlung“ der Patienten bei den zusammengefassten MRT-Diagnosegruppen „Diskusverlagerung mit/ohne Reposition in mindestens einem Gelenk“ und „keine Diskusverlagerung bilateral“ mit Hilfe von Fishers exaktem Test	145
Tab. 6:	Statistischer Vergleich der anamnestischen Angabe „kieferorthopädische Vorbehandlung“ der verschiedenen Altersgruppen der Patienten bei den zusammengefassten MRT-Diagnosegruppen „Diskusverlagerung mit/ohne Reposition in mindestens einem Gelenk“ und „keine Diskusverlagerung bilateral“ mit Hilfe von Fishers exaktem Test	145
Tab. 7:	Statistischer Vergleich der Schmerzen der Patienten aus dem VAS-Fragebogen bei den bilateralen MRT-Diagnosegruppen mit Hilfe des Mann-Whitney-U-Tests	146
Tab. 8:	Statistischer Vergleich der Funktionseinschränkungen der Patienten aus dem VAS-Fragebogen bei den bilateralen MRT-Diagnosegruppen, mit Hilfe des Mann-Whitney-U-Tests	146
Tab. 9:	Statistischer Vergleich der anamnestischen Angaben der Patienten über plötzliche Mundöffnungseinschränkungen bei den unilateralen MRT-Diagnosegruppen mit Hilfe von Fishers exaktem Test	147
Tab. 10:	Statistischer Vergleich der Anzahl der Kaumuskeln mit Schmerzen bei den bilateralen MRT-Diagnosegruppen mit Hilfe des Mann-Whitney-U-Tests	147
Tab. 11:	Statistischer Vergleich der Häufigkeitsverteilung der Druckdolenz der Kiefergelenke bei den unilateralen MRT-Diagnosegruppen mit Hilfe von Fishers exaktem Test	147
Tab. 12:	Statistischer Vergleich der Häufigkeitsverteilung der Druckdolenz der Kiefergelenke von lateral und dorsal bei den unilateralen MRT-Diagnosegruppen mit Hilfe von Fishers exaktem Test	148
Tab. 13:	Statistischer Vergleich der Mundöffnungsbewegung, bei den bilateralen seitenspezifischen MRT-Diagnosegruppen mit Hilfe von Fishers exaktem Test	148
Tab. 14:	Statistischer Vergleich der aktiven und passiven maximalen Mundöffnungsbewegung bei den bilateralen MRT-Diagnosegruppen mit Hilfe des Mann-Whitney-U-Tests	149
Tab. 15: Statistischer Vergleich der Häufigkeitsverteilung der Beschwerden (leichter, mäßiger oder starker Schmerz) bei aktiver und passiver Mundöffnung bei den unilateralen MRT-Diagnosegruppen mit Hilfe von Fishers exaktem Test ...149

Tab. 16: Statistischer Vergleich der Häufigkeitsverteilung der Laterotrusion nach links bzw. nach rechts bei den bilateralen seitzenspezifischen MRT-Diagnosegruppen, mit Hilfe des Mann-Whitney-U-Tests ..150

Tab. 17: Statistischer Vergleich der Häufigkeitsverteilung von Beschwerden (leichter, mäßi- ger oder starker Schmerz) im Kiefergelenk bei Mediotrusion und Laterotrusion bei den unilateralen MRT-Diagnosegruppen mit Hilfe von Fishers exaktem Test150

Tab. 18: Statistischer Vergleich der Protrusion bei den bilateralen MRT-Diagnosegruppen mit Hilfe des Mann-Whitney-U-Tests ...151

Tab. 19: Statistischer Vergleich von Beschwerden im Kiefergelenke bei Protrusion bei den unilateralen MRT-Diagnosegruppen mit Hilfe von Fishers exaktem Test151

Tab. 20: Statistischer Vergleich der Häufigkeitsverteilung von Geräuschen im Kiefergelenk bei den unilateralen MRT-Diagnosegruppen mit Hilfe von Fishers exaktem Test ..151

Tab. 21: Statistischer Vergleich des Geräusches „reziprokes Knacken“ im Kiefergelenk bei den unilateralen MRT-Diagnosegruppen mit Hilfe von Fishers exaktem Test151

Tab. 22: Statistischer Vergleich der Häufigkeitsverteilung der knackfreien Positionierbarkeit von Kiefergelenken mit reziprokem Knacken bei den unilateralen MRT-Diagnosegruppen mit Hilfe von Fishers exaktem Test ...151

Tab. 23: Statistischer Vergleich weiterer Kiefergelenksgeräusche bei den unilateralen MRT-Diagnosegruppen mit Hilfe von Fishers exaktem Test ...152

Tab. 24: Sensitivität, Spezifität, positiver und negativer Prädiktivwert der klinischen Tests zur Ermittlung der Kiefergelenke mit „ADV mit Reposition“ ...69

Tab. 25: Sensitivität, Spezifität, positiver und negativer Prädiktivwert der klinischen Tests zur Ermittlung der Kiefergelenke mit „ADV ohne Reposition“ ...71

Tab. 26: Statistischer Vergleich der Häufigkeitsverteilung von RDC Gruppe-I-Diagnosen bei den unilateralen MRT-Diagnosegruppen mit Hilfe von Fishers exaktem Test ..152

Tab. 27: Statistischer Vergleich von RDC-Gruppe-III-Diagnosen bei den unilateralen MRT-Diagnosegruppen mit Hilfe von Fishers exaktem Test ..152

Tab. 28: Statistischer Vergleich der RDC-Gruppe-III-Diagnosegruppen mit degenerativen Prozessen bei den unilateralen MRT-Diagnosegruppen mit Hilfe von Fishers exaktem Test153

Tab. 29: Statistischer Vergleich von degenerativen Veränderungen der Kiefergelenke bei den unilateralen MRT-Diagnosegruppen mit Hilfe von Fishers exaktem Test ..153

Tab. 30: Klinische Verdachtsdiagnose im Vergleich zu den MRT-Befunden ...80

Tab. 31: Sensitivität, Spezifität, positiver Prädiktivwert (pPW), negativer Prädiktivwert (nPW) und Kappa der klinischen Diagnostik nach RDC-Gruppe-II Kriterien ...80
10. ANHANG

10.1 Signifikanztabellen

Tab. 2: Statistischer Vergleich der anamnestischen Angaben über einen evtl. erlittenen „Unfall oder Schlag im MGK-Bereich“ bzw. einen „Zahnarztbesuch“ als subjektiv auslösende Faktoren für die CMD bei den unilateralen MRT-Diagnosegruppen mit Hilfe von Fishers exaktem Test. P-Werte, die das gewählte Signifikanzniveau erreichen, sind grau unterlegt. (1 = „Unfall oder Schlag im MGK-Bereich“; 2 = „Zahnarztbesuch“)

<table>
<thead>
<tr>
<th></th>
<th>ADV mit Reposition</th>
<th>ADV ohne Reposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohne Diskusverlagerung</td>
<td>p1 = 0,002</td>
<td>p1 = 0,002</td>
</tr>
<tr>
<td></td>
<td>p2 = 0,093</td>
<td>p2 = 0,491</td>
</tr>
<tr>
<td>ADV mit Reposition</td>
<td>p1 = 0,536</td>
<td></td>
</tr>
<tr>
<td></td>
<td>p2 = 0,151</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>ADV mit Reposition</th>
<th>ADV ohne Reposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohne Diskusverlagerung</td>
<td>p = 0,000</td>
<td>p = 0,000</td>
</tr>
<tr>
<td>ADV mit Reposition</td>
<td>p = 0,109</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Einseitige ADV mit Reposition</th>
<th>Einseitige ADV ohne Reposition</th>
<th>Beidseitige ADV mit Reposition</th>
<th>Verschiedene ADVs</th>
<th>Beidseitige ADV ohne Reposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohne Diskusverlagerung</td>
<td>p = 0,407</td>
<td>p = 0,010</td>
<td>p = 0,50</td>
<td>p = 0,005</td>
<td>p = 0,000</td>
</tr>
<tr>
<td>Einseitige ADV mit Reposition</td>
<td>p = 0,115</td>
<td>p = 0,314</td>
<td>p = 0,66</td>
<td>p = 0,006</td>
<td></td>
</tr>
<tr>
<td>Einseitige ADV ohne Reposition</td>
<td>p = 0,558</td>
<td>p = 0,724</td>
<td>p = 0,228</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beidseitige ADV mit Reposition</td>
<td>p = 0,364</td>
<td>p = 0,074</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verschiedene ADVs</td>
<td>p = 0,426</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diskusverlagerung mit/ohne Repo in mindestens einem Gelenk</th>
<th>Keine Diskusverlagerung bilateral</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>p = 0,001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diskusverlagerung mit/ohne Repo in mindestens einem Gelenk</th>
<th>Keine Diskusverlagerung bilateral</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>p1 = 0,535</td>
</tr>
<tr>
<td></td>
<td>p2 = 0,022</td>
</tr>
<tr>
<td></td>
<td>p3 = 0,594</td>
</tr>
<tr>
<td></td>
<td>p4 = 0,109</td>
</tr>
<tr>
<td></td>
<td>p5 = 0,286</td>
</tr>
<tr>
<td></td>
<td>p6 = 0,705</td>
</tr>
</tbody>
</table>
Tab. 7: Statistischer Vergleich der Schmerzen der Patienten aus dem VAS-Fragebogen bei den bilateralen MRT-Diagnosegruppen mit Hilfe des Mann-Whitney-U-Tests. P-Werte, die das gewählte Signifikanzniveau erreichen, sind grau unterlegt. (1 = „Schmerzen beim Kauen“; 2 = „Schmerzen bei sonstigen Bewegungen“; 3 = „Schmerzen ohne Bewegungen“)

<table>
<thead>
<tr>
<th></th>
<th>Einseitige ADV mit Reposition</th>
<th>Einseitige ADV ohne Reposition</th>
<th>Beidseitige ADV mit Reposition</th>
<th>Verschiedene ADVs</th>
<th>Beidseitige ADV ohne Reposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohne Diskus-</td>
<td>p1 = 0,734</td>
<td>p1 = 0,049</td>
<td>p1 = 0,147</td>
<td>p1 = 0,027</td>
<td>p1 = 0,008</td>
</tr>
<tr>
<td>verlagerung</td>
<td>p2 = 0,409</td>
<td>p2 = 0,004</td>
<td>p2 = 0,074</td>
<td>p2 = 0,026</td>
<td>p2 = 0,021</td>
</tr>
<tr>
<td></td>
<td>p3 = 0,733</td>
<td>p3 = 0,068</td>
<td>p3 = 0,094</td>
<td>p3 = 0,151</td>
<td>p3 = 0,085</td>
</tr>
<tr>
<td>Einseitige ADV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mit Reposition</td>
<td>p1 = 0,524</td>
<td>p1 = 0,311</td>
<td>p1 = 0,057</td>
<td>p1 = 0,240</td>
<td></td>
</tr>
<tr>
<td></td>
<td>p2 = 0,096</td>
<td>p2 = 0,428</td>
<td>p2 = 0,119</td>
<td>p2 = 0,147</td>
<td></td>
</tr>
<tr>
<td></td>
<td>p3 = 0,244</td>
<td>p3 = 0,327</td>
<td>p3 = 0,375</td>
<td>p3 = 0,261</td>
<td></td>
</tr>
<tr>
<td>Einseitige ADV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ohne Reposition</td>
<td>p1 = 0,382</td>
<td>p1 = 0,695</td>
<td>p1 = 0,747</td>
<td>p1 = 0,747</td>
<td></td>
</tr>
<tr>
<td></td>
<td>p2 = 0,398</td>
<td>p2 = 0,921</td>
<td>p2 = 0,666</td>
<td>p2 = 0,666</td>
<td></td>
</tr>
<tr>
<td></td>
<td>p3 = 0,959</td>
<td>p3 = 0,819</td>
<td>p3 = 0,860</td>
<td>p3 = 0,860</td>
<td></td>
</tr>
<tr>
<td>Beidseitige ADV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mit Reposition</td>
<td>p1 = 0,352</td>
<td>p1 = 0,352</td>
<td>p1 = 0,273</td>
<td>p1 = 0,954</td>
<td></td>
</tr>
<tr>
<td></td>
<td>p2 = 0,385</td>
<td>p2 = 0,385</td>
<td>p2 = 0,273</td>
<td>p2 = 0,954</td>
<td></td>
</tr>
<tr>
<td></td>
<td>p3 = 0,835</td>
<td>p3 = 0,835</td>
<td>p3 = 0,900</td>
<td>p3 = 0,900</td>
<td></td>
</tr>
<tr>
<td>Verschiedene ADVs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 8: Statistischer Vergleich der Funktionseinschränkungen der Patienten aus dem VAS-Fragebogen bei den bilateralen MRT-Diagnosegruppen mit Hilfe des Mann-Whitney-U-Tests. P-Werte, die das gewählte Signifikanzniveau erreichen, sind grau unterlegt. (1 = „Funktionseinschränkungen beim Essen“; 2 = „Funktionseinschränkungen beim Sprechen“; 3 = „sonstige Funktionseinschränkungen“)

<table>
<thead>
<tr>
<th></th>
<th>Einseitige ADV mit Reposition</th>
<th>Einseitige ADV ohne Reposition</th>
<th>Beidseitige ADV mit Reposition</th>
<th>Verschiedene ADVs</th>
<th>Beidseitige ADV ohne Reposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohne Diskus-</td>
<td>p1 = 0,557</td>
<td>p1 = 0,013</td>
<td>p1 = 0,040</td>
<td>p1 = 0,048</td>
<td>p1 = 0,014</td>
</tr>
<tr>
<td>verlagerung</td>
<td>p2 = 0,839</td>
<td>p2 = 0,587</td>
<td>p2 = 0,264</td>
<td>p2 = 0,362</td>
<td>p2 = 0,419</td>
</tr>
<tr>
<td></td>
<td>p3 = 0,687</td>
<td>p3 = 0,269</td>
<td>p3 = 0,058</td>
<td>p3 = 0,069</td>
<td>p3 = 0,017</td>
</tr>
<tr>
<td>Einseitige ADV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mit Reposition</td>
<td>p1 = 0,086</td>
<td>p1 = 0,190</td>
<td>p1 = 0,192</td>
<td>p1 = 0,099</td>
<td></td>
</tr>
<tr>
<td></td>
<td>p2 = 0,807</td>
<td>p2 = 0,454</td>
<td>p2 = 0,365</td>
<td>p2 = 0,578</td>
<td></td>
</tr>
<tr>
<td></td>
<td>p3 = 0,451</td>
<td>p3 = 0,119</td>
<td>p3 = 0,138</td>
<td>p3 = 0,054</td>
<td></td>
</tr>
<tr>
<td>Einseitige ADV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ohne Reposition</td>
<td>p1 = 0,763</td>
<td>p1 = 0,848</td>
<td>p1 = 0,852</td>
<td>p1 = 0,863</td>
<td></td>
</tr>
<tr>
<td></td>
<td>p2 = 0,589</td>
<td>p2 = 0,255</td>
<td>p2 = 0,837</td>
<td>p2 = 0,837</td>
<td></td>
</tr>
<tr>
<td></td>
<td>p3 = 0,283</td>
<td>p3 = 0,345</td>
<td>p3 = 0,703</td>
<td>p3 = 0,703</td>
<td></td>
</tr>
<tr>
<td>Beidseitige ADV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mit Reposition</td>
<td>p1 = 0,851</td>
<td>p1 = 0,851</td>
<td>p1 = 0,852</td>
<td>p1 = 0,912</td>
<td></td>
</tr>
<tr>
<td></td>
<td>p2 = 0,117</td>
<td>p2 = 0,117</td>
<td>p2 = 0,179</td>
<td>p2 = 0,179</td>
<td></td>
</tr>
<tr>
<td></td>
<td>p3 = 0,973</td>
<td>p3 = 0,973</td>
<td>p3 = 0,788</td>
<td>p3 = 0,788</td>
<td></td>
</tr>
</tbody>
</table>
Tab. 9: Statistischer Vergleich der anamnestischen Angaben der Patienten über plötzliche Mundöffnungseinschränkungen bei den unilateralen MRT-Diagnosegruppen mit Hilfe von Fishers exaktem Test. P-Werte, die das gewählte Signifikanzniveau erreichen, sind grau unterlegt.

<table>
<thead>
<tr>
<th></th>
<th>ADV mit Reposition</th>
<th>ADV ohne Reposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohne Diskusverlagerung</td>
<td>p = 0,000</td>
<td>p = 0,000</td>
</tr>
<tr>
<td>ADV mit Reposition</td>
<td></td>
<td>p = 0,000</td>
</tr>
</tbody>
</table>

Tab. 10: Statistischer Vergleich der Anzahl der Kaumuskeln mit Schmerzen bei den bilateralen MRT-Diagnosegruppen mit Hilfe des Mann-Whitney-U-Tests. P-Werte, die das gewählte Signifikanzniveau erreichen, sind grau unterlegt.

<table>
<thead>
<tr>
<th></th>
<th>Einseitige ADV mit Reposition</th>
<th>Einseitige ADV ohne Reposition</th>
<th>Beidseitige ADV mit Reposition</th>
<th>Verschiedene ADVs</th>
<th>Beidseitige ADV ohne Reposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohne Diskusverlagerung</td>
<td>p = 0,570</td>
<td>p = 0,946</td>
<td>p = 0,192</td>
<td>p = 0,764</td>
<td>p = 0,540</td>
</tr>
<tr>
<td>Einseitige ADV mit Reposition</td>
<td>p = 0,696</td>
<td>p = 0,093</td>
<td>p = 0,467</td>
<td>p = 0,294</td>
<td></td>
</tr>
<tr>
<td>Einseitige ADV ohne Reposition</td>
<td>p = 0,155</td>
<td>p = 0,761</td>
<td>p = 0,473</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beidseitige ADV mit Reposition</td>
<td>p = 0,328</td>
<td></td>
<td>p = 0,498</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verschiedene ADVs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>p = 0,735</td>
</tr>
</tbody>
</table>

Tab. 11: Statistischer Vergleich der Häufigkeitsverteilung der Druckdolenzen der Kiefergelenke bei den unilateralen MRT-Diagnosegruppen mit Hilfe von Fishers exaktem Test. P-Werte, die das gewählte Signifikanzniveau erreichen, sind grau unterlegt.

<table>
<thead>
<tr>
<th></th>
<th>ADV mit Reposition</th>
<th>ADV ohne Reposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohne Diskusverlagerung</td>
<td>p = 0,000</td>
<td>p = 0,000</td>
</tr>
<tr>
<td>ADV mit Reposition</td>
<td></td>
<td>p = 0,705</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>ADV mit Reposition</th>
<th>ADV ohne Reposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohne Diskusverlagerung</td>
<td>$p_1 = 0.003$</td>
<td>$p_1 = 0.005$</td>
</tr>
<tr>
<td></td>
<td>$p_2 = 0.000$</td>
<td>$p_2 = 0.000$</td>
</tr>
<tr>
<td>ADV mit Reposition</td>
<td>$p_1 = 0.939$</td>
<td>$p_2 = 0.508$</td>
</tr>
</tbody>
</table>

Tab. 13: Statistischer Vergleich der Mundöffnungsbewegung bei den bilateralen seitenspezifischen MRT-Diagnosegruppen mit Hilfe von Fishers exaktem Test. P-Werte, die das gewählte Signifikanzniveau erreichen, sind grau unterlegt. (1 = Mundöffnung gerade; 2 = Deviation nach rechts bei Mundöffnung; 3 = Deviation nach links bei Mundöffnung; 4 = Deflexion nach rechts bei Mundöffnung; 5 = Deflexion nach links bei Mundöffnung)

<table>
<thead>
<tr>
<th></th>
<th>ADV mit Reposition rechts, ohne DV links</th>
<th>ADV mit Reposition links, ohne DV rechts</th>
<th>ADV ohne Reposition rechts, ohne DV links</th>
<th>Beidseitige ADV mit Reposition links, ohne DV rechts</th>
<th>ADV ohne Reposition links, ADV ohne Reposition rechts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohne Diskusverlagerung bilateral</td>
<td>$p_1 = 0.823$</td>
<td>$p_2 = 0.827$</td>
<td>$p_3 = 0.388$</td>
<td>$p_4 = 0.418$</td>
<td>$p_5 = 0.946$</td>
</tr>
<tr>
<td>ADV mit Reposition rechts, ohne DV links</td>
<td>$p_1 = 0.987$</td>
<td>$p_2 = 0.112$</td>
<td>$p_3 = 0.052$</td>
<td>$p_4 = 0.031$</td>
<td>$p_5 = 0.841$</td>
</tr>
<tr>
<td>ADV mit Reposition links, ohne DV rechts</td>
<td>$p_1 = 0.829$</td>
<td>$p_2 = 0.255$</td>
<td>$p_3 = 0.777$</td>
<td>$p_4 = 0.148$</td>
<td>$p_5 = 0.786$</td>
</tr>
<tr>
<td>ADV ohne Reposition rechts, ohne DV links</td>
<td>$p_1 = 0.873$</td>
<td>$p_2 = 0.853$</td>
<td>$p_3 = 0.408$</td>
<td>$p_4 = 0.048$</td>
<td>$p_5 = 0.118$</td>
</tr>
<tr>
<td>ADV ohne Reposition links, ohne DV rechts</td>
<td>$p_1 = 0.685$</td>
<td>$p_2 = 0.135$</td>
<td>$p_3 = 0.459$</td>
<td>$p_4 = 0.750$</td>
<td>$p_5 = 0.062$</td>
</tr>
<tr>
<td>Beidseitige ADV mit Reposition</td>
<td>$p_1 = 0.994$</td>
<td>$p_2 = 0.008$</td>
<td>$p_3 = 0.116$</td>
<td>$p_4 = 0.725$</td>
<td>$p_5 = 0.165$</td>
</tr>
<tr>
<td>Beidseitige ADV ohne Reposition</td>
<td>$p_1 = 0.107$</td>
<td>$p_2 = 0.064$</td>
<td>$p_3 = 0.639$</td>
<td>$p_4 = 0.949$</td>
<td>$p_5 = 0.011$</td>
</tr>
<tr>
<td>ADV mit Reposition rechts, ADV ohne Reposition links</td>
<td>$p_1 = 0.961$</td>
<td>$p_2 = 0.426$</td>
<td>$p_3 = 0.791$</td>
<td>$p_4 = 0.131$</td>
<td>$p_5 = 0.033$</td>
</tr>
</tbody>
</table>
Tab. 14: Statistischer Vergleich der aktiven und passiven maximalen Mundöffnungsbewegung bei den bilateralen MRT-Diagnosegruppen mit Hilfe des Mann-Whitney-U-Tests. P-Werte, die das gewählte Signifikanzniveau erreichen, sind grau unterlegt. (1 = Maximale aktive Mundöffnung; 2 = Deviation nach rechts bei Mundöffnung)

<table>
<thead>
<tr>
<th></th>
<th>Einseitige ADV mit Reposition</th>
<th>Einseitige ADV ohne Reposition</th>
<th>Beidseitige ADV mit Reposition</th>
<th>Verschiedene ADVs</th>
<th>Beidseitige ADV ohne Reposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohne Diskusverlagerung</td>
<td>p₁ = 0,845, p₂ = 0,628</td>
<td>p₁ = 0,001, p₂ = 0,000</td>
<td>p₁ = 0,064, p₂ = 0,375</td>
<td>p₁ = 0,052, p₂ = 0,006</td>
<td>p₁ = 0,003, p₂ = 0,007</td>
</tr>
<tr>
<td>Einseitige ADV mit Reposition</td>
<td></td>
<td>p₁ = 0,002, p₂ = 0,004</td>
<td>p₁ = 0,129, p₂ = 0,139</td>
<td>p₁ = 0,038, p₂ = 0,048</td>
<td>p₁ = 0,003, p₂ = 0,067</td>
</tr>
<tr>
<td>Einseitige ADV ohne Reposition</td>
<td>p₁ = 0,000, p₂ = 0,000</td>
<td>p₁ = 0,298, p₂ = 0,295</td>
<td>p₁ = 0,582, p₂ = 0,582</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beidseitige ADV mit Reposition</td>
<td></td>
<td>p₁ = 0,001, p₂ = 0,002</td>
<td>p₁ = 0,000, p₂ = 0,001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verschiedene ADVs</td>
<td></td>
<td></td>
<td>p₁ = 0,591, p₂ = 0,559</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 15: Statistischer Vergleich der Häufigkeitsverteilung der Beschwerden (leichter, mäßiger oder starker Schmerz) bei aktiver und passiver Mundöffnung bei den unilateralen MRT-Diagnosegruppen mit Hilfe von Fishers exaktem Test. P-Werte, die das gewählte Signifikanzniveau erreichen, sind grau unterlegt. (1 = Missemfinden und Schmerz bei aktiver Mundöffnung; 2 = Missemfinden und Schmerz bei passiver Mundöffnung)

<table>
<thead>
<tr>
<th></th>
<th>ADV mit Reposition</th>
<th>ADV ohne Reposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohne Diskusverlagerung</td>
<td>p₁ = 0,440, p₂ = 0,040</td>
<td>p₁ = 0,000, p₂ = 0,000</td>
</tr>
<tr>
<td>ADV mit Reposition</td>
<td>p₁ = 0,002, p₂ = 0,021</td>
<td></td>
</tr>
</tbody>
</table>
Tab. 16: Statistischer Vergleich der Häufigkeitsverteilung der Laterotrusion nach links bzw. nach rechts bei den bilateralen seitenspezifischen MRT-Diagnosegruppen mit Hilfe des Mann-Whitney-U-Tests. P-Werte, die das gewählte Signifikanzniveau erreichen, sind grau unterlegt. (1 = Laterotrusion nach links; 2 = Laterotrusion nach rechts)

<table>
<thead>
<tr>
<th>Ohne Diskusverlagerung</th>
<th>ADV mit Reposition rechts, ohne DV links</th>
<th>ADV mit Reposition links, ohne DV rechts</th>
<th>ADV ohne Reposition rechts, ohne DV links</th>
<th>ADV ohne Reposition links, ohne DV rechts</th>
<th>Beidseitige ADV mit Reposition</th>
<th>Beidseitige ADV ohne Reposition</th>
<th>ADV mit Reposition rechts, ADV ohne Reposition links</th>
<th>ADV mit Reposition links, ADV ohne Reposition rechts</th>
</tr>
</thead>
<tbody>
<tr>
<td>bilateral</td>
<td>p1 = 0,377</td>
<td>p1 = 0,587</td>
<td>p1 = 0,541</td>
<td>p1 = 0,539</td>
<td>p1 = 0,017</td>
<td>p1 = 0,679</td>
<td>p1 = 0,019</td>
<td>p2 = 0,652</td>
</tr>
<tr>
<td>ADV mit Reposition rechts, ohne DV links</td>
<td>p1 = 0,217</td>
<td>p1 = 0,075</td>
<td>p1 = 0,811</td>
<td>p1 = 0,701</td>
<td>p1 = 0,388</td>
<td>p1 = 0,699</td>
<td>p1 = 0,263</td>
<td>p2 = 0,349</td>
</tr>
<tr>
<td>ADV mit Reposition links, ohne DV rechts</td>
<td>p1 = 0,001</td>
<td>p1 = 0,283</td>
<td>p1 = 0,355</td>
<td>p1 = 0,003</td>
<td>p1 = 0,218</td>
<td>p1 = 0,008</td>
<td>p1 = 0,008</td>
<td>p2 = 0,689</td>
</tr>
<tr>
<td>ADV ohne Reposition rechts, ohne DV links</td>
<td>p1 = 0,024</td>
<td>p1 = 0,010</td>
<td>p1 = 0,064</td>
<td>p1 = 0,007</td>
<td>p1 = 0,417</td>
<td>p1 = 0,721</td>
<td>p1 = 0,721</td>
<td>p2 = 0,721</td>
</tr>
<tr>
<td>ADV ohne Reposition links, ohne DV rechts</td>
<td>p1 = 0,916</td>
<td>p1 = 0,214</td>
<td>p1 = 0,855</td>
<td>p1 = 0,147</td>
<td>p1 = 0,087</td>
<td>p1 = 0,760</td>
<td>p1 = 0,760</td>
<td>p2 = 0,004</td>
</tr>
<tr>
<td>Beidseitige ADV mit Reposition</td>
<td>p1 = 0,082</td>
<td>p1 = 0,944</td>
<td>p1 = 0,047</td>
<td>p1 = 0,087</td>
<td>p1 = 0,079</td>
<td>p1 = 0,398</td>
<td>p1 = 0,168</td>
<td>p2 = 0,029</td>
</tr>
<tr>
<td>Beidseitige ADV ohne Reposition</td>
<td>p1 = 0,119</td>
<td>p1 = 0,017</td>
<td>p1 = 0,007</td>
<td>p1 = 0,007</td>
<td>p1 = 0,059</td>
<td>p1 = 0,059</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADV mit Reposition rechts, ADV ohne Reposition links</td>
<td>p1 = 0,017</td>
<td>p1 = 0,007</td>
<td>p1 = 0,007</td>
<td>p1 = 0,007</td>
<td>p1 = 0,079</td>
<td>p1 = 0,398</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 17: Statistischer Vergleich der Häufigkeitsverteilung von Beschwerden (leichter, mäßiger oder starker Schmerz) im Kiefergelenk bei Mediotrusion und Laterotrusion bei den unilateralen MRT-Diagnosegruppen mit Hilfe von Fishers exaktem Test. P-Werte, die das gewählte Signifikanzniveau erreichen, sind grau unterlegt. (1 = Mediotrusion; 2 = Laterotrusion)

<table>
<thead>
<tr>
<th>Ohne Diskusverlagerung</th>
<th>ADV mit Reposition</th>
<th>ADV ohne Reposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>bilateral</td>
<td>p1 = 0,087</td>
<td>p1 = 0,008</td>
</tr>
<tr>
<td>ADV mit Reposition</td>
<td>p1 = 0,438</td>
<td>p2 = 0,001</td>
</tr>
<tr>
<td>ADV ohne Reposition</td>
<td>p1 = 0,385</td>
<td>p2 = 0,000</td>
</tr>
</tbody>
</table>
Tab. 18: Statistischer Vergleich der Protrusion bei den bilateralen MRT-Diagnosegruppen mit Hilfe des Mann-Whitney-U-Tests. P-Werte, die das gewählte Signifikanzniveau erreichen, sind grau unterlegt.

<table>
<thead>
<tr>
<th></th>
<th>Einseitige ADV mit Reposition</th>
<th>Einseitige ADV ohne Reposition</th>
<th>Beidseitige ADV mit Reposition</th>
<th>Verschiedene ADVs</th>
<th>Beidseitige ADV ohne Reposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohne Diskusverlagerung</td>
<td>p = 0,000</td>
</tr>
<tr>
<td>Einseitige ADV mit Reposition</td>
<td>p = 0,020</td>
<td>p = 0,258</td>
<td>p = 0,228</td>
<td>p = 0,137</td>
<td></td>
</tr>
<tr>
<td>Einseitige ADV ohne Reposition</td>
<td>p = 0,001</td>
<td>p = 0,309</td>
<td>p = 0,448</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beidseitige ADV mit Reposition</td>
<td></td>
<td>p = 0,028</td>
<td>p = 0,008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verschiedene ADVs</td>
<td></td>
<td></td>
<td>p = 0,726</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 19: Statistischer Vergleich von Beschwerden im Kiefergelenk bei Protrusion bei den unilateralen MRT-Diagnosegruppen mit Hilfe von Fishers exaktem Test. P-Werte, die das gewählte Signifikanzniveau erreichen, sind grau unterlegt.

<table>
<thead>
<tr>
<th></th>
<th>ADV mit Reposition</th>
<th>ADV ohne Reposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohne Diskusverlagerung</td>
<td>p1 = 0,480</td>
<td>p1 = 0,000</td>
</tr>
<tr>
<td>ADV mit Reposition</td>
<td>p1 = 0,000</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 20: Statistischer Vergleich der Häufigkeitsverteilung von Geräuschen im Kiefergelenk bei den unilateralen MRT-Diagnosegruppen mit Hilfe von Fishers exaktem Test. P-Werte, die das gewählte Signifikanzniveau erreichen, sind grau unterlegt.

<table>
<thead>
<tr>
<th></th>
<th>ADV mit Reposition</th>
<th>ADV ohne Reposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohne Diskusverlagerung</td>
<td>p = 0,000</td>
<td>p = 0,115</td>
</tr>
<tr>
<td>ADV mit Reposition</td>
<td>p = 0,000</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 21: Statistischer Vergleich des Geräusches „reziprokes Knacken“ im Kiefergelenk bei den unilateralen MRT-Diagnosegruppen mit Hilfe von Fishers exaktem Test. P-Werte, die das gewählte Signifikanzniveau erreichen, sind grau unterlegt.

<table>
<thead>
<tr>
<th></th>
<th>ADV mit Reposition</th>
<th>ADV ohne Reposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohne Diskusverlagerung</td>
<td>p = 0,000</td>
<td>p = 0,197</td>
</tr>
<tr>
<td>ADV mit Reposition</td>
<td>p = 0,000</td>
<td></td>
</tr>
</tbody>
</table>
Tab. 22: Statistischer Vergleich der Häufigkeitsverteilung der knackfreien Positionierbarkeit von Kiefergelenken mit reziprokem Knacken bei den unilateralen MRT-Diagnosegruppen mit Hilfe von Fishers exaktem Test. P-Werte, die das gewählte Signifikanzniveau erreichen, sind grau unterlegt.

<table>
<thead>
<tr>
<th></th>
<th>ADV mit Reposition</th>
<th>ADV ohne Reposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohne Diskusverlagerung</td>
<td>p = 0,000</td>
<td>p = 0,609</td>
</tr>
<tr>
<td>ADV mit Reposition</td>
<td></td>
<td>p = 0,000</td>
</tr>
</tbody>
</table>

Tab. 23: Statistischer Vergleich weiterer Kiefergelenksgeräusche bei den unilateralen MRT-Diagnosegruppen mit Hilfe von Fishers exaktem Test. P-Werte, die das gewählte Signifikanzniveau erreichen, sind grau unterlegt. (1 = „Öffnungsknacken“; 2 = „Schließknacken“; 3 = „Öffnungsreiben“; 4 = „Schließreiben“; 5 = „Reziprokes Reiben“)

<table>
<thead>
<tr>
<th></th>
<th>ADV mit Reposition</th>
<th>ADV ohne Reposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohne Diskusverlagerung</td>
<td>p1 = 0,247</td>
<td>p1 = 0,444</td>
</tr>
<tr>
<td></td>
<td>p2 = 0,570</td>
<td>p2 = 0,283</td>
</tr>
<tr>
<td></td>
<td>p3 = 0,180</td>
<td>p3 = 0,556</td>
</tr>
<tr>
<td></td>
<td>p4 = 0,647</td>
<td>p4 = 0,323</td>
</tr>
<tr>
<td></td>
<td>p5 = 0,144</td>
<td>p5 = 0,515</td>
</tr>
<tr>
<td>ADV mit Reposition</td>
<td>p1 = 0,410</td>
<td></td>
</tr>
<tr>
<td></td>
<td>p2 = 0,367</td>
<td></td>
</tr>
<tr>
<td></td>
<td>p3 = 0,244</td>
<td></td>
</tr>
<tr>
<td></td>
<td>p4 = 0,336</td>
<td></td>
</tr>
<tr>
<td></td>
<td>p5 = 0,213</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 26: Statistischer Vergleich der Häufigkeitsverteilung von RDC-Gruppe-I-Diagnosen bei den unilateralen MRT-Diagnosegruppen mit Hilfe von Fishers exaktem Test. P-Werte, die das gewählte Signifikanzniveau erreichen, sind grau unterlegt.

<table>
<thead>
<tr>
<th></th>
<th>ADV mit Reposition</th>
<th>ADV ohne Reposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohne Diskusverlagerung</td>
<td>p = 0,000</td>
<td>p = 0,001</td>
</tr>
<tr>
<td>ADV mit Reposition</td>
<td></td>
<td>p = 0,124</td>
</tr>
</tbody>
</table>
Tab. 27: Statistischer Vergleich von RDC-Gruppe-III-Diagnosen bei den unilateralen MRT-Diagnosegruppen, mit Hilfe von Fishers exaktem Test. P-Werte, die das gewählte Signifikanzniveau erreichen, sind grau unterlegt. (1 = keine RDC-Gruppe-III-Diagnose; 2 = Arthralgie; 3 = Aktivierte Arthrose; 4 = Arthrose)

<table>
<thead>
<tr>
<th></th>
<th>ADV mit Reposition</th>
<th>ADV ohne Reposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohne Diskusverlagerung</td>
<td>p1 = 0,000</td>
<td>p1 = 0,000</td>
</tr>
<tr>
<td></td>
<td>p2 = 0,000</td>
<td>p2 = 0,000</td>
</tr>
<tr>
<td></td>
<td>p3 = 0,123</td>
<td>p3 = 0,119</td>
</tr>
<tr>
<td></td>
<td>p4 = 0,002</td>
<td>p4 = 0,296</td>
</tr>
</tbody>
</table>

Tab. 28: Statistischer Vergleich der RDC-Gruppe-III-Diagnosegruppen mit degenerativen Prozessen bei den unilateralen MRT-Diagnosegruppen mit Hilfe von Fishers exaktem Test. P-Werte, die das gewählte Signifikanzniveau erreichen, sind grau unterlegt.

<table>
<thead>
<tr>
<th></th>
<th>Arthralgie</th>
<th>aktivierte Arthrose</th>
<th>Arthrose</th>
</tr>
</thead>
<tbody>
<tr>
<td>ohne RDC-Gruppe-III-Diagnose</td>
<td>p = 0,509</td>
<td>p = 0,008</td>
<td>p = 0,000</td>
</tr>
<tr>
<td>Arthralgie</td>
<td>p = 0,013</td>
<td>p = 0,000</td>
<td></td>
</tr>
<tr>
<td>aktivierte Arthrose</td>
<td></td>
<td></td>
<td>p = 0,147</td>
</tr>
</tbody>
</table>

Tab. 29: Statistischer Vergleich von degenerativen Veränderungen der Kiefergelenke bei den unilateralen MRT-Diagnosegruppen mit Hilfe von Fishers exaktem Test. P-Werte, die das gewählte Signifikanzniveau erreichen, sind grau unterlegt.

<table>
<thead>
<tr>
<th></th>
<th>ADV mit Reposition</th>
<th>ADV ohne Reposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohne Diskusverlagerung</td>
<td>p = 0,000</td>
<td>p = 0,000</td>
</tr>
<tr>
<td>ADV mit Reposition</td>
<td>p = 0,000</td>
<td></td>
</tr>
</tbody>
</table>
10.2 Formulare

10.2.1 FAL-Bogen

Klinischer Funktionsstatus
der Poliklinik für Zahnärztliche Prothetik der LMU München

Name ____________________________ Geb.-Dat. __________
Vorname ____________________________ Telefon __________
Strasse ____________________________ Behandler __________
Ort ____________________________ Datum __________

Vorgeschichte

1 = ja 0 = nein

- Liegt eine Allgemeinerkrankung vor? □
- Nehmen Sie Medikamente? □
- Erleidten Sie einen Unfall oder Schlag □
- Waren Sie letztes Jahr wegen Ihrer Beschwerden bei:
 - Zahnarzt / wann? □
 - Arzt □
 - Facharzt / welcher? □
- Haben Sie Schmerzen / Beschwerden:
 - Kopf □
 - Migräne □
 - Nacken/HWS □
 - Ohrbereich □
 - Kiefergelenk rechts □
 - Kiefergelenk links □
 - Schlafen □
 - andere □
 - andere wo? □

Wie stark schätzen Sie die Schmerzintensität ein? (0-10) □
- Haben Sie Kiefergelenkgeräusche bemerkt?
 - rechts? □
 - links? □
 - seit wann? □
 - Auslöser: □

- Haben Sie Bewegungseinschränkungen des Unterkiefers?
 - seit wann? □
 - Auslöser: □

Wie stark schätzen Sie die Funktions einschränkung ein? (0-10) □
- Sind die Zähne schmerzhaft oder empfindlich?
- Kirscher oder pressen Sie mit den Zähnen?
- Hatten Sie eine Zahnsäge?

Angaben zur Anamnese:

__
__
__

Diagnose: ___

MR-Befund: KG rechts: ___
 KG links: ___

Parafunktionen

- Schlüsselzähne □
- Zahnreimplantationen □
- Wangenreimplantationen □
ANHANG

Befunde

<table>
<thead>
<tr>
<th>Kontaktbeziehungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molaren ro</td>
</tr>
<tr>
<td>IP</td>
</tr>
<tr>
<td>RP</td>
</tr>
<tr>
<td>HL</td>
</tr>
<tr>
<td>LL</td>
</tr>
<tr>
<td>P</td>
</tr>
</tbody>
</table>

Zahnstatus

px = prov. Versorgung
F = Füllung
I = Inlay
n = Knochen
DK = Doppelkronen
G = Geschiebe
B = Bördelung
E = ersetzter Zahn
x = fehlender Zahn
j = Lückenschluss

Bemerkungen:

Therapie

<table>
<thead>
<tr>
<th>Datum</th>
<th>Art der Behandlung</th>
</tr>
</thead>
</table>
| 1. Behandlung | - keine
- zentrale Schiene
- Schiene in KIP
- Positionierungschiene
- Distraktionschiene
- physikal. Maßnahmen
- Akupunktur
- Anweisung zur Selbstbeobachtung
- Anleitung zur Selbstmassage |
| 2. Behandlung |
| 3. Behandlung |
| 4. Behandlung |
| 5. Behandlung |
Untersuchungsbogen

| 1. Haben sie Schmerzen in der rechten Gesichtshälfte, in der linken oder in beiden? |
|---------------------------|-----------------------------|-------------------------------|
| 0 = keine | 1 = rechts | 2 = links | 3 = beide |
| | | | |

<table>
<thead>
<tr>
<th>2. Können Sie auf die schmerzende Stelle zulaufen?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Der Untersucher tastet die gezeigte Stelle ab, wenn unklar ist, ob es Muskel- oder Gelenkschmerzen sind)</td>
</tr>
<tr>
<td>0 = keine</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

| 3. Mundöffnungsbeugung: |
| (2 von 3) |
| 0 = gerade | 1 = seitliche Abweichung (Deflexion) nach rechts |
| 2 = „S“-förmige Abweichung (Deviation) nach rechts |
| 3 = seitliche Abweichung (Deflexion) nach links |
| 4 = „S“-förmige Abweichung (Deviation) nach links |
| 5 = anderes Muster | | | |

<table>
<thead>
<tr>
<th>4. Vertikaler Bewegungsablauf</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) akt. max. Öffnung ohne Schmerzenmm</td>
</tr>
<tr>
<td>b) akt. max. Öffnungmm</td>
</tr>
<tr>
<td>c) passive max. Öffnungmm</td>
</tr>
<tr>
<td>d) Överbit ..mm</td>
</tr>
<tr>
<td>e) Överjet ...mm</td>
</tr>
<tr>
<td>Schmerzen</td>
</tr>
<tr>
<td>0 = keine</td>
</tr>
<tr>
<td>2 = links</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. Gelenkgeräusche (Palpation, 2 von 3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Öffnung</td>
</tr>
<tr>
<td>0 = keine</td>
</tr>
<tr>
<td>Öffnungsknacken</td>
</tr>
<tr>
<td>1 = initial</td>
</tr>
<tr>
<td>Schließen</td>
</tr>
<tr>
<td>0 = keine</td>
</tr>
<tr>
<td>Schließungsknacken</td>
</tr>
<tr>
<td>1 = initial</td>
</tr>
</tbody>
</table>
ANHANG

Reziprokes Knacken, verhindert bei protrusiver Öffnung

<table>
<thead>
<tr>
<th></th>
<th>rechts</th>
<th>links</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 = nein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 = ja</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 = nicht zutreffend</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. Exkursive Bewegungen

<table>
<thead>
<tr>
<th>Bewegung</th>
<th>Schmerzen</th>
<th>Gelenk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laterotrusion rechts</td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>Laterotrusion links</td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>Protrusion</td>
<td>mm</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abweichung</th>
<th>rechts = 1</th>
<th>links = 2</th>
</tr>
</thead>
</table>

7. Gelenkgeräusche bei exkursiven Bewegungen

(2 von 3)

<table>
<thead>
<tr>
<th>Bewegung</th>
<th>rechts</th>
<th>links</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laterotrusion rechts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laterotrusion links</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8. Extraorale Muskel palpation

<table>
<thead>
<tr>
<th>Schmerzgrad</th>
<th>rechts</th>
<th>links</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 = kein Schmerz, nur Druck</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 = leichter Schmerz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 = mäßiger Schmerz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 = heftiger Schmerz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Muskel</th>
<th>rechts</th>
<th>links</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Temporalis posterioris Teil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) Temporalis mediale Teil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) Temporalis anteriores Teil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d) Masseterursprung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e) Masseterkörper</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f) Masseteransatz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>g) m. suboccipitalis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>h) Regio retromandibularis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>i) Regio submandibularis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9. Palpation des Gelenkes

<table>
<thead>
<tr>
<th>Palpation</th>
<th>rechts</th>
<th>links</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) lateraler Kondylenpol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) posteriorer Kondylenpol</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Introraale Muskelpalpation

<table>
<thead>
<tr>
<th>Muskelpalpation</th>
<th>rechts</th>
<th>links</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Pterygoideus lateralis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) Temporalissehne</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

157
10.2.2 VAS-Bogen

Name: ________________________________ Datum __.__.__

VAS-Skala zur Bewertung der Schmerzen und der Funktions einschränkungen

Bitte markieren Sie mit einem Strich auf den angegebenen Skalen von 1 bis 10, wie stark Sie Ihre Beschwerden selbst einschätzen.

1. **Schmerzintensität:**

 1.1. Schmerzen beim Kauen

 keine | sehr stark
 0 1 2 3 4 5 6 7 8 9 10

 1.2. Schmerzen bei sonst. Bewegungen

 keine | sehr stark
 0 1 2 3 4 5 6 7 8 9 10

 1.3. Schmerzen ohne Bewegung

 keine | sehr stark
 0 1 2 3 4 5 6 7 8 9 10

2. **Funktions einschränkung:**

 2.1. Beim Essen:

 keine | sehr stark
 0 1 2 3 4 5 6 7 8 9 10

 2.2. Beim Sprechen

 keine | sehr stark
 0 1 2 3 4 5 6 7 8 10

 2.3. Bei sonstigen Funktionen

 keine | sehr stark
 0 1 2 3 4 5 6 7 8 9 10
10.3 Abkürzungen

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abb</td>
<td>Abbildung</td>
</tr>
<tr>
<td>ADV</td>
<td>Anteriore Diskusverlagerung</td>
</tr>
<tr>
<td>CMD</td>
<td>Craniomandibuläre Dysfunktion</td>
</tr>
<tr>
<td>CT</td>
<td>Computertomographie</td>
</tr>
<tr>
<td>MRT</td>
<td>Magnetresonanztomographie</td>
</tr>
<tr>
<td>RDC</td>
<td>Research Diagnostic Criteria</td>
</tr>
<tr>
<td>TMD</td>
<td>Temporomandibuläre Dysfunktionen</td>
</tr>
<tr>
<td>VAS</td>
<td>Visuelle Analogskala</td>
</tr>
<tr>
<td>vgl</td>
<td>vergleiche</td>
</tr>
</tbody>
</table>
11. DANKSAGUNG

Bei Herrn Prof. Dr. Dr. W. Gernet, dem Direktor der Poliklinik für Zahnärztliche Prothesetik der LMU München, möchte ich mich für die Ermöglichung dieser Arbeit bedanken.

Bei Herrn OA Dr. J. M. Pho Duc möchte ich mich ganz herzlich für die Überlassung des Themas, seine Betreuung und die Unterstützung bedanken.
12. LEBENSLAUF

Name
Nicholas Alexander Roemmelt

Geburtsdatum
04. Juli 1973

Geburtsort
München

Eltern
Rudolf Roemmelt
Waltraud Roemmelt

Geschwister
Nina Roemmelt

Familienstand
verheiratet

Schulbildung
1980-1984 Grundschule Unterhaching
1984-1993 Gymnasium Unterhaching
1993 Abitur

Studium
1994-2001 Studium der Zahnmedizin an der
LMU München
2001 Staatsexamen

Tätigkeit
Sept. 2001 - Aug. 2007 wissenschaftlicher Mitarbeiter der
Poliklinik für Prothetik der Zahnklinik in München
Ab Nov 2007 Niederlassung in eigener Praxis in Mieming
(Österreich)