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Zusammenfassung

In vorliegender Arbeit wird die Anwendung numerischer Metan hoher Ap-
proximationsordung zur Simulation seismischer Wellen amglexen Medien
mithilfe unstrukturierter Gitter untersucht. Spezieke dieuartige Diskontinuier-
liche Galerkin (DG) Finite-Elemente-Methode wird dazu aafschiedene rhe-
ologische Modelle erweitert, die viskoelastische, amggmé und poroelastische
Medien beschreiben. Zachst wird jedoch die DG-Methodéarfden rein elastis-
chen, isotropen Fall auf unstrukturiertenn Tetraedengitboehandelt. Danach
wird die Methodik auf die viskoelastische Wellenausbmaifierweitert, die auf
der Formulierung durch generalisierte Maxwelbiger basiert. Dies erlaubt die
Beschreibung eines quasi-konstanteanipfungsverhalterigber das gesamte be-
trachtete Frequenzband. Anschlieend werden anisotrogeridi@igenschaften
im allgemeinsten Fall der triklinen Symetrieklasse in damarische Verfahren
mit einbezogen und mit den Effekten der Viskoelasiiziterbunden. Abschlieend
werden auch poroelastische Mediam Wellen im hochfrequenten und nieder-
frequenten, diffusiven Bereich hesksichtigt. Fir alle rheologischen Modelle
werden Konvergenzraten hoher Ordnung sowohl im Raum als iaudbr Zeit
fur dreidimensionale Testprobleme erzielt. Die Konvergeatysen und weitere
Anwendungsbeispiele bégigen die Genauigkeit dieses neuen Ansatzes. Durch
den lokalen Charakter der DG-Methode und der Verwendung etraddergit-
tern kann das vorgestellte Verfahren auf realistischeskgimge Wellenausbre-
itungsprobleme in der Vorartsmodellierung seismischer Wellen in geometrisch
und physikalisch komplexen Medien angewandt werden.






Abstract

The possibility of using accurate numerical methods to fateuseismic wave-
fields on unstructured meshes for complex rheologies isoex@! In particular,
the Discontinuous Galerkin (DG) finite element method fasrsgc wave propa-
gation is extended to the rheological types of viscoelagt@nisotropy and poroe-
lasticity. First is presented the DG method for the elastidropic case on tetra-
hedral unstructured meshes. Then an extension to visticelzs/e propagation
based upon a Generalized Maxwell Body formulation is intoedlwhich allows
for quasi-constant attenuation through the whole frequeacge. In the follow-
ing anisotropy is incorporated in the scheme for the moseg@riclinic case,
including an approach to couple its effects with those ofegdasticity. Finally,
poroelasticity is incorporated for both the propagatoghkirequency range and
for the diffusive low-frequency range.

For all rheology types, high-order convergence is achiesiatlltaneously in
space and time for three-dimensional setups. Applicatamasconvergence tests
verify the proper accuracy of the approach. Due to the loeafacter of the DG
method and the use of tetrahedral meshes, the presentedeschee ready to be
applied for large scale problems of forward wave propagatiodeling of seismic
waves in setups highly complex both geometrically and piatsi.
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Introduction

The Earth’s interior real image is nowadays largely unknol@inect observation
and active imaging cannot reach the deep structure of onepko that we are
forced to use other indirect information to infer our plam@iner structure. The
most successful observable used to that purpose is stiligmal of the ground
motion caused by earthquakes, whose seismic waves traesksamur planet’s in-
terior. The recorded seismograms contain information eh @ad every material
the wave has traveled through.

The physics governing mechanical wave propagation are kmelvn since the
XVIII century. The fundamental laws of linear elastic megita predict that solid
bodies react to excitation by propagating energy in the fofelastic waves. The
velocity at which the waves propagate is solely dependerthematerial prop-
erties of the media, thus imposing a deterministic link leswthe travel time of
the wave from source to receiver and the mechanical preseofi the material
crossed by its ray path.

Using such simple model to describe the Earth, as is assuimngf is an elastic
isotropic and perfectly spherical body, we have retrievestof the information
on our planet’s structure we possess nowadays. The digcoi/#re Mohorovice
discontinuity in the early XX century and the existence & tAutenberg dis-
continuity or of a liquid inner core in the 1930s are some ndsalale examples.
This classical mechanical model explains such phenomeltizgeasxistence of a
variety of surface and body waves and their particular ptogse the amount of
energy transmitted and reflected at a material’s interfdeeangle of reflection
and refraction of such waves generated at an interface odiodWweir amplitudes
decrease with increasing distance from the source. A siriayered Earth
model with different elastic properties can describe torg geod extent the gen-
eral traits of the observed seismograms. However, wherethakthem in detalil,
a large amount of observed features in those seismogrametdaafitted by such
oversimplified mechanics and geometry. It has become ahetiei last decades
that a richer description of our planet is needed.

Present models of the Earth [6, 69, 103, 116] show that itshar@cal behavior
is closer to that of a viscoelastic ellipsoid which showssatropic properties in
many regions. The discontinuities’ depths vary from onepoi the planet’s sur-
face to the other. Also some parts of it behave as a liquidertithescales of up
to hours, which are relevant in seismology.
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2 INTRODUCTION

The validation of the various proposed models of Earth i$opered by solving
the forward problem in which the source and material modelessumed to be
known and one just wants to obtain a synthetic output. Maffgréint mathe-
matical approaches can be used to that goal. One could wiskatctly solve
the equations describing the physics involved in the pooésiave propagation,
but analytical or quasi-analytical solutions have beemébanly for very simple
geometries, often requiring strong symmetries. Unfortelyethe Earth models
at hand are not so simple and the results obtained by thedeodwbgies, al-
though formally exact, are of minor practical utility. A tifent approach, known
as discrete or mesh methods, is based on the discretizdtitbe space and time
dimensions thus solving the governing equations locallpighadvantage is that
heterogeneities and other geometrical complexities camddeded much more
easily, but the accuracy is decreased as a drawback.

By far, the most popular methods for solving seismic wave agagion prob-
lems are finite differences (FD) [93, 102] and finite elem¢R&s) [142]. The FD
method is a grid-point method, meaning that the unknownsoahg described
at a collection of nodes and no assumptions are made on tilegs/elsewhere.
This method can be simple to implement in some cases and@krature makes
it easy to parallelize. Additionally, most numerical medean seismology rely
on FD approaches for the time integration. This method,grbédsic form, has
the drawback of being less adaptable to complex geomeiriodkls, as the grids
are usually chosen to be of a cartesian nature. The FE methoaked upon a
variational formulation of the equations and is much moreiile geometrically
due to the usage of deformed computational cells. Additignlaoundary con-
ditions are handled more easily with FE because it uses ttalksd weak form
of the equation system. However, FE computations can bewenyeexpensive,
specially when involving high-degree polynomials. Othepplar methods like
the pseudo-spectral (PS) [34, 129] and spectral-elem&)t[65, 114, 123] have
increased a lot the accuracy with which the wavefields camlved and to some
extent can handle complex geometries by using deformedritptadal or hex-
ahedral elements in the space discretization. At preser, tihe SE method is
the only method to be applied for fully 3D simulations of thieale planet Earth.
However, when it comes to really strong topographies anerbgéneity distribu-
tion, these element types often failiia=sh our desired model properly. Standard
finite volumes (FV) [51], as well as FE, can get around thisbfgm by using
triangular or tetrahedral meshes but their accuracy igdienjcommonly first- or
second-order schemes).

The aim of this thesis is to provide solutions for the forwarddel which can be
used on completely unstructured (triangular or tetraHgdnashes withhigh —
order accuracy and beyond purely elastic and isotropic models. r@gthod will
be explored in detail: the Discontinuous Galerkin (DG) noeitf40, 115]. The
DG method has been extremely successful in the Computatduial Dynamics
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(CFD) community as it is able to solve fluid-flow problems witkry accurate
results in cases where unstructured meshing is convenidmns$. method can be
understood as a spectral version of the classic FV, meahatgdéwer elements
are required to obtain the same accuracy as a polynomiaseptation of the un-
knowns is used inside each computational cell. Althougbsitally coupled with
Runge-Kutta type time discretization schemes, a much mbogesit and arbitrary
high-order time integration based upon ADER (Arbitrarytiigrder DERivatives)
concepts [131] has been recently developed and succesafyplied to the DG
framework [52]. The resulting scheme, called ADER-DG, awtioally has the
same accuracy order in space and time without requiringgéoof sub steps of
information between one time step and the next. Consequéndyscheme has
global high-order convergence properties, an unprecedgmtoperty in mesh-
based seismic wave propagation solvers.

The application of this method to seismology problems iy vecent [55, 75]
and has shown to be able to handle most important boundadjtmors (free sur-
face, absorbing boundaries), source types (point souezésnse kinematic rup-
ture models) and intercell heterogeneity. In order to applymethod to practical
problems, complex rheologies have been accurately tr@atbd present work so
that the convergence properties of the method are cons@vedl cases. Three
major linear non-standard rheology types are exploreccogastic, anisotropic
and poroelastic. The results show that the method desdndredcan solve simple
problems with comparable or better accuracy than other cammethods, with
the advantage of being potentially able to handle geona¢ttamplexity which is
beyond reach for regular-grid based methods.

In order to cope with the size of contemporary seismologyplems, the method
has been parallelized and installed in a variety of compartat facilities, from
middle-size clusters to high-performance computers. ddlether the result of
this work is a method which is not only very accurate but alsoyvlexible in
terms of the complexity of the models that can be solved aagliysics that can
be reproduced.

This thesis is subdivided into four major parts, arrangefbbows:

In Chapter 1 the ADER-DG scheme is introduced. Some basic concepts on
merical fluxes and hyperbolic equation systems are destabd upon them the
ADER-DG method'’s algorithm is outlined. Special detail isegi to the basis
functions used and how to improve the method’s efficiencgubh quadrature-
free integration and reference element mapping. The Cakokglewski pro-
cedure [131], which allows for high-order ADER time intetya, is fully de-
scribed as well. Finally further details on computatiorsgects are given and the
method’s performance in a large-scale test is shown to atgidoth the mathe-
matical approach and its implementation.

In Chapter 2 the application of the ADER-DG method to viscoelastic rhgae

nu-



4 INTRODUCTION

is discussed. The soil is known to act as a lossy medium atalkts[1]. Energy is
dissipated as the rock shows properties slightly devidtima the elastic regime,

in a way which can be ideally described by a combination ofmaacal springs
and dashpots which mimics a viscoelastic behavior. In aveisstic material one
expects waves to be both damped and dispersive due to ensgpsl[92]. Here
we show how to incorporate realistic viscoelastic behainothe time-domain
with quasi-constanf) values by using the Generalized Maxwell Body rheology
type [63]. Additional variables (anelastic functions) ased to overcome the ap-
parition of convolutional products. A study on the accurasywell as the impact
in computational costs of the viscoelastic rheology isHertshown.

In Chapter 3the field of elastic anisotropy and its implementation wiih ADER-
DG method is explored. Rocks show often intrinsic anisotrdpg to the crys-
talline distribution of its components [22]. As a result theperties of them
are not the same in different directions. Also macroscdiyicme can observe
anisotropy due to the stacking of intermixed fine layers dffiedent materials
which are individually isotropic. When a seismic wave traviilrough such a
medium, in general, the particle motion induced becomesxadnstate of pres-
sure and shear motion, calledasi-waves. As a consequence, not only the travel
times vary with the direction of propagation of the wave bisbats polariza-
tion state [27]. In the Earth, anisotropy is present in mamas as a minor but
not-negligible effect, and as such it is in this Chapter immated for the most
general triclinic case. In the case of a method based updrughsred meshes this
is a further challenging effort as the computational eletsi@ne not aligned with
the symmetry axes of the modeled anisotropic materials.s€heme is shown to
remain high-order by convergence tests and its accura®yrifed by comparing
its results with some other methods and available analygalations.

In Chapter 4 the ADER-DG schemes are applied to the poroelastic case. This
rheology type is not observed at seismological timescaeshe globe, but can
be very important at smaller scales. Poroelasticity dessrihe properties of a
porous solid material filled completely with some fluid. Thetman of the solid
and fluid particles is then coupled and they can be treatedaseapically as a
whole single entity. Biot’s theory [12, 13] describes suchdyaor, which is in-
troduced here for the ADER-DG scheme. A new wave type $thes P-wave)
appears in this case which is successfully reproduced imrskonulations. A fun-
damental problem appears when reaching low-frequencigmtis theory, which
is the conversion of the slow wave into a diffusive mode [E2Jr time-domain ex-
plicit solvers this ends up in instability problems [24]. pase-time discontinuous
method (ADER-DG(ST)) is introduced [54], which is a localigplicit method.
This ADER-DG variant is able to avoid such instabilities byegag the conver-
gence properties of standard ADER-DG schemes, having dititktional cost in
computation terms. The ADER-DG(ST) results are comparehl tivdse obtained
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applying a fraction-step method to separate the non-aviusyperbolic equation
system from the diffusive one. It is shown with examples thatADER-DG(ST)
method successfully captures both the propagatory andfthside effects much
more accurately than classical splitting techniques.

Chapters 2 to 4 are fairly independent, and thus conclusmmhiém are written
at the end of each respective Chapter. A fidatlook will summarize the conclu-
sions of this thesis as well as considerations concernieg ppoblems and ideas
for future research.

Additionally Appendix A andB provide additional information on the basis func-
tions used and their coordinate rotation.

The results shown in this thesis have been computed makm@futhe SeisSol
software. SeisSols a strongly modified version of the origindllydSolcode de-
veloped at the IAG Stuttgart and adapted by M. Dumbser and &eKto the
seismic wave propagation problem. In order to compute theltseshown in the
present work, further modifications by the author have edpdrthe functionality
of the code to the viscoelastic, anisotropic and poroelastblems. SeisSols
programmed in Fortran90 and uses MPI libraries for paratehputation.

A variety of computing facilities have been used to perfdnegimulations shown
in the present work. A local clustdethysat Geophysics Munich has helped de-
veloping and testing the implementations while the supempding facilities at
the HLRS Stuttgart and LRZ Munich have been widely used to predoost final
results. Special attention deserves the new HLRB2 SGI shaesdony system,
whose outstanding performance has made possible to runcioifme most com-
putationally demanding applications.

The practical totality of the reference solutions used tldase the results of
this thesis is available at the SPICE Software Library (wypwes-rtn.org/library).
Further, the SPICE Code Validation (see www.nuquake.eu/SE\@E webpage
displays the results of SeisSol for the elastic and visatielapplication exam-
ples, which can be thoroughly compared online to other iegstolutions for the
same problems.






Chapter 1

The ADER-DG Method for Seismic
Wave Propagation

In this Chapter the ADER-DG method for solving the elastic wagaations in
three-dimensional media is introduced. First, an overvewumerical methods
applied to seismology is presented. Later on a discussidherlastic isotropic
wave equations, on hyperbolic partial differential equatystems and their prop-
erties and on the concept of numerical fluxes provides theined) background
for understanding the ADER-DG method. The method itself, e & the time
marching scheme, are fully developed and described in tlesving Section. The
most common boundary conditions are treated in a Sectidmeafown, followed
by some computational aspects relevant to the method’ssmmgrhtation. Finally
a large scale application is shown to verify the accuracii@scheme and we give
a brief description of some characteristics of the othehas for seismic wave
propagation on unstructured meshes which can be an altertathe ADER-DG
method. This Chapter and the whole thesis will follow [55,, &51d try to keep as
close as possible to the notation used by the authors fotigaithpurposes.

1.1 General Overview

Contemporary seismology relies heavily on numerical comatparts to understand
phenomena observed in nature. For example, the conditigmessure and tem-
perature associated with the seismogenic fault zones aeacimable in laborato-
ries. Such limitations are also present in other geophlyprogesses thus making
of computers an alternative tool to validate assumptiorgemsciences. In seis-
mic wave propagation the state has been reached in whichilsécg governing
the phenomena are fully understood, thus leaving discepsitbetween obser-
vational and computed data solely a function of two majotdiesc wrong model
assumptions or inaccurate mathematical solutions.

Despite the formal accuracy of exact solutions derivedydically, the higher
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8 CHAPTER 1. THE ADER-DG METHOD

flexibility in the model’s parametrization that offer meshsed methods is pre-
ferred for practical studies. A variety of numerical algioms to solve the elastic
wave equations using mesh methods have been developed thighiast decades.
First approaches were constrained by the limited compmutakipower available
at the time to simplified 1D and 2D cases, whereas in the lasadethe ap-
plication of fully 3D schemes has grown popular. Early atésrused the Fi-
nite Differences (FD) principles because of its easy img@etation and robust
properties. Various formulations and specific algorithrasehbeen developed,
e.g. [89, 93, 102, 136, 137], improving both accuracy andiefiicy. A summary
of recent developments in FD is given in [100]. Similarly 8de-Spectral (PS)
methods [34, 72, 129] opt for using collocation points agded to known ana-
lytical functions for achieving more precise results in sodution of the integro-
differential equations. These two methods have the drakvibhdeing badly
suited to obtain solutions for non-Cartesian geometriesth®wother hand, Finite-
Element (FE) techniques show a very good flexibility as they be applied to
many cell types other than cubes [142]. This is extremeljuligar meshing com-
plicated geometries, thus making FE a tool of choice for megis during the last
decades. Unfortunately, their accuracy is limited and gel@mount of elements
are required in order to successfully capture wave phenammaeal applications.
In addition to these methods, the Spectral Element Meth&#/)985, 114, 123]
deserves special attention. This method, essentiallyladvider FE method using
PS-like spatial integration, has proved to be extremelyte and efficient in
solving wave propagation problems. It is based upon hexaheteshes, where
the use of Gauss-Lobatto-Legendre integration points agghdre polynomials
as basis functions helps building up a method which, in adiis well suited
for parallelization and thus applicable to solve very lasgale problems. The
hexahedra forming the SEM mesh can be deformed and unsedcis FE cells
do. However, when it comes to very complex geometries, tixathedral mesh-
ing approaches (known as paving and sweeping) are not dpasecially when
compared to tetrahedra or Voronoi cell types.

The Discontinuous Galerkin (DG) method (see [39] for a neyjeon the other
hand, has been widely used for electromagnetic and fluid flmblpms. A DG
method can be understood as an FE method combined with reahécixes,
which are essential to the FV method framework. When using ani@#&od,
each element contains a local discretization of the solufar which a set of ba-
sis functions are used. The number of basis functions artplar expressions
can be many as long as they behave as good interpolants. pnebent case, the
Dubiner basis is used as it is orthogonal and complete topokate polynomials
of a desired degree. The values of the variables at the eitdroundaries are
not required to be continuous. A proper solution to the gekrdiscontinuity is
obtained by using numerical fluxes to handle the surfacgiats.

The DG method has recently been extended to the seismic wapagation prob-
lem [55, 75] in combination with the Arbitrary high-order Bivatives (ADER)
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concepts introduced by Dumbser and Munz in [52, 61, 60] feedr hyperbolic
systems with constant coefficients or for linear systemh watriable coefficients
in conservative form. The ADER approach, originally intuged by Toroet al.
[134] and further developed in [131, 121, 122] in the FV fraroek and the Dis-
continuous Galerkin finite element method, offers the uogdented possibility
of obtaining high-order explicit solutions without requig the storage of interme-
diate time stages of e.g. Runge-Kutta schemes. Additigrthymeshing process
is strongly simplified by the use of tetrahedra with no ef@tthe scheme’s ac-
curacy.

1.2 Elastic Wave Equations

The theory governing the propagation of elastic waves is dhdinear elastic-
ity [1, 7]. Although many formulations of the problem are gahble, here we
have chosen a first-order equation system, well suiteditodate the concepts of
numerical fluxes and the Cauchy-Kowalevski procedure, dbageen in the fol-
lowing Sections. The explicit expression of the first-orelastic wave equations,
essentially a combination of isotropic Hooke’s law and N&va laws of motion,
can be written in velocity-stress formulation as (see [90])

D00 — (A4 20) Zu — /\a%v ~Mw = 0,
%ayy—/\amu—()\qLQ,u)a%v—/\%w = 0,
Do —Aeu— )\a%v —(A+2p)Zw = 0,
5100y — u(a%v + 8%u) = 0,
5i0y: — 1(gv + gw) = 0, (1.1)
D0 —p(Zu+ Zw) = 0,
02— ors— Lony— Lo = 0,
P%U - a%axy - a%gyy - %Uyz = 0,
0

2] o) 2] o)
P&w - %O—xz - @O—yz - &0—22 -

where A and i, are theLamé constantsand p is the mass density of the mate-
rial. The normal stress components are givewby, o,,, ando.., and the shear
stresses are,,, 0., ando,.. The components of the particle velocitiesi) y-,
andz-direction are denoted hy, v andw, respectively.

In the following the physical properties of the material assumed to be func-
tions of space but constant in time, i.8.= \(Z), p = p(Z), andp = p(Z), in
order to describe heterogeneous material.

The system (1.1) can be now rewritten as
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% + V- (A + By + Cralt) Q= 0, (1.2)
wherei, j and/ are the unit vectors in the three Cartesian directiong andz
respectively. The expression (1.2) can be further re-gadin the more compact
form

99,
q ay

oQ
+ Gyt =0, (1.3)

00, 00,
o T A,

+ B,

where() is the vector of the unknown variables, i.e.

Q = (O'xx,O'yy,O'ZZ,O'xy,O'yz,O'xZ,U,U,UJ)T. (14)

Notice, that the homogeneous expression (1.3) could havesderms in the
right-hand side for each variabje of arbitrary shape in space and time. The
source term will be skipped in the following as it does nogefftthe discussion. A
full description on how to incorporate source terms in theERBDG framework
can be found in [55, 75, 77]. Note, that classical tensortiastas used, which im-
plies summation over each index that appears twice. Thdaestt,, = A,,(7),
B,y = Byy(Z), andC,, = C,,,(Z) are space dependent matrices of gizeg, with
p,q =1,...,9, and are given through

0 00 0 0 0 —(A+2u) 0 0
0 00 0 0 O -\ 0 0
0 00 0 0 O -\ 0 0
0O 00 0 0 O 0 —n 0
Ay = 0 00 0 0 O 0 0 0 , (1.5)
0 00 0 0 O 0 0 —pu
—% 00 0 0 0 0 0 0
0 00 —% 0 0 0 0 0
0 00 0 0 —% 0 0 0
0O 000 0 0 O -\ 0
00 0 0 0 0 0 —(A+2u) 0
0 000 0 0 O -\ 0
0 00 0 0 0 —pu 0 0
Byy=]0 0 0 0 0 0 0 0 - |, (1.6)
0O 000 0 0 O 0 0
0 0 0 —% 0 0 0 0 0
0 —% 0 0 0 0 O 0 0
0 0 0 0 —% 0 0 0 0
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00 0 0 0 0O 0 0 -\
00 0 0 0 O 0 0 -\
00 0 0 0 0 0 0 —(\A+2p
00 0 0 0 0O 0 0 0
Cpy=]00 0 0 0 0 0 —p 0 (1.7)
00 0 0 0 0 —u O 0
00 0 0 0 —,l) 0 0 0
00 0 0 —% 0 0 0 0
0 0 —/—1) 0O 0 0 0 0 0

As the equation system (1.1) can be written in the form (JaBy the matrices

Apqy Bpg, andC,, (known asJacobianmatrices) are all diagonalizable with real
eigenvalues, the system (1.1) is calledhyperbolicsystem (see [90]), and its
properties will be studied in the following Section.

1.3 Hyperbolic Equation Systems

The theory of hyperbolic equation systems tells us that mabgte information
on the propagating waves allowed by a system written as ¢ar8pe obtained by
simple eigendecomposition of the Jacobialys, 5,,, andC,,. In particular, the
possible plane-waves and their propagation velocitiesfar¢he x-direction, the
result of solving the system

AR; = o;R; (1.8)

so that they; are the Jacobiansigenvaluesind R; its correspondingeigenvec-
tors. The physical meaning of the eigenvectors is the allowedasad prop-
agation (plane waves) in the chosen propagation directidme corresponding
eigenvalues are the wave propagation velocities of eadnositallowed modes.
By imposing an increasing ordering of the eigenvalues onaiogt for the case
of (1.3), the following eigenvalues

a1 = —Cp, Qg = —Cs, Q3= —Cs,
ay =0, as =0, ag = 0, (2.9)
Q7 = Csg, Qg = Cs, Qg = Cp,

the values of which can be expressed using theé parameters as

At 2
=2 and e = 2 (1.10)
P P

which are the P-wave and S-wave velocities respectivelythEtmore, for the
isotropic case, the wave speeds in (1.9) and (1.10) do nandkpn the prop-
agation direction. The eigenvalues show, that the two Pew/igaropagate with
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speedsy; andag and the four S-waves propagate with speegsys anday, asg,
although with different polarizations. The three remagnarestatic modes and
therefore will not be further discussed. The eigenvectd(d.8), R, ..., Ry, can

be expressed in matrix notation B$ = ﬁl, 1?2, e ﬁg] , Which is explicitly

A+20 0 0 000 0 0 X+2u
A 0O 0010 O 0 A
A O 0 001 O 0 A
0 o 0000 0 pu 0

Ry = 0 00100 0 O 0 (1.11)

0 0 p© 000 p O 0
p 0O 0000 O 0 —cp
0 csc 00 00 0 —c 0
0 0O cc 00 0 —¢, O 0

The expressions (1.9) and (1.11) will be extensively useatierderivation of the
ADER-DG scheme in Section 1.5.

1.4 Fluxes

The concept of numerical fluxes is a milestone of the DG sckesné as such
deserves special attention before further developingdherae itself. Fluxes are,
first and foremost, an extension of Gauss’ theorem

/ (V- Z@®)av = / Z(#)d5. (1.12)

This theorem, also known as divergence theorem, statemtbgtals of the diver-
gence of a fieltﬁ(:ﬁ') on a given volumé’ can be substituted by surface integrals
of Z(Z) as long as the integration surfad® is the one that closes and defines
volumeV..

This purely mathematical result has clear physical relegahone, for exam-
ple, takes a look at the advection equation. This equatisordees the motion of
sometracerin a fluid moving at constant and homogeneous velatiBy a tracer
we mean a substance present in very small amount in a fluild teatits concen-
tration does not affect the motion of the fluid itself. The &tipn describing the
motion of this tracer can be written as (see [90])

o ., = L o
o) = = ¥ - [Cp(a)], (L13)

wherep(Z) is the density of tracer angithe vector of velocity of the fluid. If the
equation is integrated over an imaginary closed voldmee obtain
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—

O @i =— [ ¥ [@n@
[ Sr@av = /V V - [Ep@)] V. (1.14)

Applying (1.12) to this last result and taking out of the gri& sign the derivatives
which don’t depend odV results in

a —
a/{/p(f)d{/:—é’/ p(Z)dS. (1.15)

ov

Now the left-hand term can be identified as the temporal tianaf the mass of
tracer existing inl/. Then, conceptually, it can be understood that any change
in that mass insidé” has to be producedby flow or flux of tracer trough the
boundaries o¥/, that have been here calléd’. For the advection equation, this
physical flux of a tracer throughl” can be directly identified with the right-hand
side of (1.15). However, the result (1.15), can be extendeshy hyperbolic sys-
temasis (1.1). The meaning of the flux in these other phyprcddlems, however,
can not be identified with the intuitive conceptfbfx of a traceranymore.

The general theory of fluxes for hyperbolic systems has begaldped mainly
for Finite Volume methods [133]. The most general first-ottagperbolic system
can be expressed as

JQEn+V-F@@n) =0, (L.16)

of which (1.2) is just a particular case. By applying a simplecedure as that
shown in (1.13-1.15) the following form can be derived

o v =— | @ f(Q@ —
a/ﬂ@vt)dv— /av f(Q(&,t)dS = —F, (1.17)

where it has been explicitly separatéﬁ = dS - ni. After time-integrating the
system from¥ to ¢ + At it follows

t+At
/Q(f,t+At)dV—/Q(f,t) dV:—At/ Fdt. (1.18)
1% 1% t

A classical FV scheme would conclude that the change in theevat Q) inside

a given volumé// in a time increment¢ is only due to the time-integrated flux
At [Fdt across its boundar§V'. In actual FV schemes both sides of (1.18) are
divided byV’, so that instead of the integral value@in V one is interested in the
averagevalue of(), but this does not affect the discussion here. Note alsdtiat
flux formulation does not impose any conditions on the shdpmmputational
cell. Therefore flux-based schemes, as are FV and DG methies)ore flexible

in the choice of such computational cells than other metlumies.
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As a final remark it should be made clear that in order to comput is not re-
guired to have continuous values@fat both sides ofV'. For some given initial
conditions at both sides and hyperbolic system, solvingviilee ofF is called
solving theRiemann Problemrand many exact and approximated ways to solve it
exist in the literature (see e.g. [90, 133]). In general,dbkition of a Riemann
Problem depends both on the variables’ state and the gogelhyperbolic equa-
tion.

1.4.1 Godunov-type Fluxes

A popular flux type for hyperbolic systems is the upwindingedRiemann solver
known as Roe or Godunov flux, as given in [133]. By upwinding wamibat the
eigendecomposition of the system is used to solve the fllets remember that
the values of) at both sides of the surfa¢d” are not required to be continuous.
The states at both sides@¥ will be then called)~ andQ™, using the convention
that7i points from@Q~ towardsQ™. It is assumed in the following that fluxes are
computed for the -’ side 0V, so that fluxes fron®)~ to Q™ will be outgoing
fluxes or fluxes traveling outwards, while fluxes frépr to Q~ will be incoming
fluxes or fluxes traveling inwards. It will also be assumed thaoints in the
positive z-direction for simplicity. In the following,A* is irrelevant, and it will
therefore be used = A~.

From the theory on numerical fluxes [90] is known thatrify discontinuity exists
at a given surface, it will then generate a number of wavesrgioy the amount of
eigenvectors and eigenvalues associated with the Jacotatiix A, which have
been found in Section 1.3. In the present case this meanthtkat(a P- and two
S-) waves will propagate towards positive normal directmtine surface and other
3 will do so in the negative direction, corresponding to th6-zero eigenvalues
of A obtained in (1.9). It will prove useful now to define thé| matrix as the
absolute value of the Jacobian matdx which has the meaning of applying the
absolute value operator to the eigenvalues given in (169), i

|Ag| = RA A, (RA)™", with  |A,| = diag(|eu], |as|,...).  (1.19)

This new JacobianA| has the same physical properties thabut it only allows

for waves to propagate in the positive direction.

If the values at the outer sid&),", are let to be zero then the flux will be propor-
tional to A,,Q, , meaning propagation of the 6 waves naturally generatetidoy t
variables’ jump just created, towards both the positiversgghtive directions. On
the other handA,,,| @, would give exactly the same waves propagating outwards
but the remaining three would be shifted as to also propaméteards instead of
inwards. By averaging both processes we obtain(A,, + |4,,]) @, , thus giv-

ing us the actuadutgoingflux through the)V" interfaceonly for the case in which
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is assumed that the outer valugs are zero. Let’s invert the assumption by mak-
ing now the inner variable valugg~ zero instead of the outer ones. The process
can be repeated by now usirg 4,,| Q;, which produces waves solely traveling
inwards. Then, the average valUug2 (A4,, — |A,,|) Q7 will only leave us with

the actuaincomingflux through thedV interfaceonly for the case in which it is
assumed that the outer valu@s are zero. The case one wishes to solve, though,
is the total case in which bot)~ and@Q* have non-zero values. Then, the ad-
ditive properties of the fluxes can be used to produce a totairitegrand which
reads

1 1
fp = 5 (qu + ®pq) Qq + 5 (qu - ®pq) ;rv (1-20)

where the numerical viscosity matix,,, for the Godunov case, has the value
OS5IV — | A4, . (1.21)

This integrand has now to be inserted in (1.17), and intedraver the surface
0V to obtain the total flux®. It is noteworthy that, to compute the flux from the
-’ side, no information on the material parameters from thHeside is used, as
the A matrix’s values used in (1.19), (1.20) and (1.21) are ongsé&hof the '’
side. Further, note that the clear separation between irdtfamhoutflow makes it
remarkably easy to implement special boundary conditisnsikbe further seen
in Section 1.6.

1.4.2 Rusanov-type Fluxes

As has just been seen, the use of Godunov fluxes requires &dge/bf the eigen-
vectorsk* of the hyperbolic system, and this is not always an easy faskuch
simpler approach is that of the local Lax-Friedrichs or Rasdiuxes. One way
of looking at this flux type is trying to ask oneself the quasstof whether it would
make a change to usd| = 0 so that (1.20) is just an average flux of both sides
of the investigated surface. By doing so the method beconssalie, unless one
adds some other numerical viscosity to cancel out the spsiascillations pro-
duced. It has been shown [90] that this numerical viscositylze, in the Rusanov
case, the simple expression

@;*;S*‘”OV: max(c;) + Lg, (1.22)

being,, the identity matrix. By substituting the term in (1.22) inteetexpres-
sion (1.20) one obtains the full Rusanov-type flux. For theea#she isotropic
elastic wave equations (1.5) it holds thaix;(a;) = ¢, as the largest eigenvalue
always coincides with the P-wave propagation velocity (4e®)). It should be
clear from (1.20), (1.21) and (1.22) that the flux type cangexgied just by set-
ting the value of the numerical viscosi®y,,. Rusanov-based schemes are more
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dissipative than Godunov-based ones, but are as robusharefdre an alterna-
tive when finding the corregtd| values is difficult. For high-order DG schemes,
the choice of flux often does not pose a big difference as tberacy is driven by
the amount of inner degrees of freedom inside every cell.

1.5 The Numerical Scheme

For the construction of the numerical scheme, let's comsitegeneral linear hy-
perbolic system of equations with variable coefficientsegiin (1.3). The com-
putational domaif2 € R? is divided into conforming tetrahedral elemeft§™
being addressed by a unique index) which in general are connected to other
four tetrahedraZ ™) with j = 1,--- , 4 in a conforming way. Those tetrahedra
are supposed to have completely flat sides, in the followirtgs will mean that

a single vector defines the surface’s normal for each of tesf the tetrahedra.
Furthermore, let’s suppose the matricgs, B,,, andC,, to be piecewise con-
stant inside an elemef(™). It should be noted that these last two assumptions
are not an intrinsic limitation of this method, which haseally been extended
to cases with varying physical parameters inside the elesreerd curved-sided
tetrahedral faces (see e.g. [59]).

1.5.1 Orthogonal Basis Functions

As a standard procedure for high-order Finite Element cdatjmns, it is required
to have a basis of functions that supports the solutiondensach element. In the
following we choose to use tetrahedra as computationalexésn Each tetrahe-
dron can be defined by 4 verticés - - - , 7y with @; = (x;,y;,z;)andi = 1,--- |4
(see Figure 1.1). A particular tetrahedron is the rectaargetrahedron defined
by the 4 pointst; = (0,0,0), #, = (1,0,0), #5 = (0,1,0) andZ, = (0,0,1).
The rectangular or reference tetrahedron, referred th:aa the following, will

be used as support for the basis functions. Any point insiyetetrahedron can
be mapped in the local coordinate system of the referen@httron, denoted by
the three Cartesian coordinatgsy and(, by making use of equations (B.1) in
Appendix B. Note that < £ + 71 + ¢ < 1 inside the tetrahedron. Then the aim is
to obtain a variable vectdp, which is a numerical solution to the equation (1.3)
inside the tetrahedrof ™), so thatQ;, ~ Q beingQ defined in (1.4). In order to
build up@,, we use a linear combination of space-dependent but timeperadent
polynomial basis function$, (¢, n, ¢) of degreeN with supportZz and with only

time-dependent degrees of freedd}ﬁ”) (1):

(@) (€n.c0=Q (.0, (1.23)



1.5. THE NUMERICAL SCHEME 17

Figure 1.1: Transformation from the physical tetrahedfdi to the canonical
reference tetrahedrafn:; with nodes(0, 0, 0), (1, 0,0), (0, 1,0), and(0, 0, 1).

0o

Figure 1.2: The Dubiner’s basis functions for tNe= 2 case in two-dimensions.
The total number of basis functions for this case is six. Daisis can be used for
DG schemes of up to ordér
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The indexp stands for the—th unknown in the vectof) and! indicates the€-th
basis function. The orthogonal basis functignsused for the DG scheme pre-
sented here are those given in [39]. The basis is complete dgoren polynomial
degreeN by using a total oL = (N + 1)(N + 2)(N + 3)/6 basis functions. Itis
also a hierarchical basis in the sense that the basis funsdio a given degred/
always include the basis functions for a lesser degfeel as a subset. An exam-
ple of the shape of these functions is shown in Figure 1.ertwo-dimensional
case for clarity. Notice that in two-dimensions the requimember of basis func-
tions becomed, = (N + 1)(N + 2)/2. The approximated interpolatigrt of an
exact functiory can be performed with the linear combination

9" = §:%;, (1.24)
with the g, coefficients obtained from the projection
[ g®;av
A TE
= 1.25
I T e,0,dv (1.25)
Tg

where the integrals are performed by Gaussian integratiosufficient accu-
racy. An example of the interpolant capabilities of the basi2D can be seen
in Figure 1.3, where the exact function §¢z,y) = sin (2r(z — 0.5)/W) +
cos (2m(xz —0.5)/W) + 2 with W = 2r/3 and beingr the inradius of the tri-
angular element. In this cagé = 3 has been chosen so thdt basis functions
are used to describg. The integrations have been performed with a totalof
gaussian integration points.

It should be remarked that, although the basis is definedeimeference tetrahe-
dron 7z, a conventional linear coordinate transformation can esgithed, in
other Cartesian systems, as will further be seen in Sect®8.1.

1.5.2 Discontinuous Galerkin Method

The DG method is first and foremost a Galerkin method, so tmaffitst step
in solving (1.2) is to multiply it by a test functiofe,, which is one of the basis
functions, and integrating over a tetrahedral elenéfit’ thus giving

0 . . X R
/ Dy, éQtp av + / Dy [V . <qui + BpqJ + Cqu> Qq} dV =0. (1.26)
T(m) T(m)

Integration of equation (1.26) by parts [142] then yields

f CDk%dv + f v [q)k <qu% + quj + Cpql%) Qq} dvV—
7 (m) T(m)

- Tz[n) (V(I)k> ) [(quz + quj + Cpql%> Qq] dV = 0.

(1.27)
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Exact g(x,y)
Apprx g(x,y)

Abs error
Rel Error

0 X 0 o X

Figure 1.3: Example of interpolation fa¥ = 3 case in two-dimensions.The
exact (top left) and interpolated (top right) functions denseen, together with
the absolute error (bottom left) and relative error (bottight) committed by the

interpolation.
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Now it can be seen that the second term can be transformedGaitss’ theo-
rem (1.12) into a surface integral such as

| 0282dv+ [ 0| (A + Byj + Cok) Q] -7 dS

m orm ) (1.28)
— [ (V) [(qui + Byyj + Cqu> Qq} dV = 0.
7T (m)

At this point one can identify the second term with the flux@sdefined in (1.17).
For further clarity now the scalar products can be solveditaia the expression

[ @ %dV + [ dpfhdS—

T (m) o7 (m)
9%y 9y 9y (1.29)
- (f) <WAPqu + a_prqu + chchJ dv =0,
7 (m

where a numerical fluintegrand f has been introduced in the surface integral
since@; may be discontinuous at an element boundary. Notice thdiukes in
this case are not the only contribution to the chang@,irvalues, as in (1.17) and
in any FV scheme. In equation (1.29) there is alsdifinessterm, common to
spectral methods. In the particular case in which one ¥ses0, so that only one
basis function exists of constant value, the stiffness téisappears and a first-
order FV scheme is recovered.

As rotational invariance of the system in (1.3) is supposedife isotropic case,
the flux can be derived for a coordinate system, which is atignith the outward
pointing unit normal vectofi of an element boundary, i.e. a triangular face of a
tetrahedron. The anisotropic case will be explored in Chiegt& he coordinate
change to thei-aligned system requires the transformation (rotationthefun-
knowns in vectol), from the global Cartesian system to the veefgrin a local
normal, i.e.face-alignedcoordinate system is given by

Qp = TpQy - (1.30)

The rotation matrix used to express the variable ve@ioin a different coordinate
Cartesian system is just a combination of the rotation nmedrior tensors (stress)
and vectors (particle velocity). For the particular casespnted heré),, in (1.30)
reads as

t
T= [ TO 79 ] € R, (1.31)

whereT" € R%*¢ is the rotation matrix responsible for the stress tensatiat
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as in the purely elastic part and is given as

ni si ti 2N.S, 28t 2n,t,
nZ 52 t2 2ny 8, 25yt 2n,t,
Tt _ nz 82 tz 2n,s, 2s,t, 2n,t, (1.32)

NyNy  SySe tyle NySy + NeSy  Syty + Saty nyty + ngty,
NNy S8y t.ty n.Sy+nys., s.t,+s,t. n.t,+nyt,
NNy SpSz trly NSy +NgS, Suty + Sety Npty + Nyt

The matrixT¥ € R3*3 is the rotation matrix responsible for the velocity vector
rotation as in the purely elastic part and is given as

T =1 ny, s, t, |. (1.33)

Matrices (1.32)-(1.33) have as entries the componentseohtinmal vector; =
(1, n,,n.)T and the two tangential vectoss= (s,, s, s.)” andt = (t,,t,,t.)",
which lie in the plane determined by the boundary face ofétr@hedron and are
orthogonal to each other and the normal vectotsually the vectog'is defined
so that it points from the local face node 1 to the local facden®, see Table 1.1.
As the tetrahedra’s boundaries are flat, only @anexists per tetrahedron’s face.
The total surface integral ovefl ™ will then be the sum of the integrals over the
four triangular faces.

The flux term in (1.29) can be solved with Godunov’s or Rusamdivixes, as
described in detail in Sections 1.4.1 and 1.4.2. In this tlhsdwo sides of the
flux in (1.20) correspond to elemerifé™ and the neighbo? (™), j = 1,2, 3, 4.

As the vector defining the interfacehas an arbitrary orientation, the transforma-
tion (1.31) and its inverse are used to align the problemédaitie’s normal. Then
the numerical flux integrand becomes

o= 3T (A8 + 057 ) ()R e

P
% pq ‘(]7’) @((17“) ( ) Q ’ (I)( ])

wherng”)CDZ(m) aninTj)@l(mj) are the boundary extrapolated values of the nu-
merical solution from elemerf (™ and thej-th side neighbo? "), respectively.
The matrix(T;,) ! represents the back-transformation into the glafyatsystem.
Now, after integrating’gl over the surfacds, the flux through a given side of the
element has been computed.

Inserting (1.23) and (1.34) into (1.29) and splitting theibdary integral into the
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contributions of each facgof the tetrahedrod "™, we obtain

i, T (m) | am (m) (m)
+ Z%qu@qr +@qr)(Tﬂs)‘1Qsz / oo™ dS+
=1
! (aT<m))
4 1 i A(mj m m
s, (A o) myQl [ elraas
j=1
(o7(m). (1.35)
m 8(I)k
— AQY" / eV
o0
m k
— quQ((]l) / a—yfbldV—
T 0o
m k
— CuQY / SSedV = 0
T (m)

This is the so-called semi-discrete local Discontinuouke&an for tetrahedra, in
the particular case of using upwinding Godunov fluxes. Taiola fully discrete
solution one has still to time integrate the equation (1.&#&fore this, however,
some ways of reducing computational effort by using mappiagsformations
from general tetrahedra to a reference element will be egglo the following
Section.

1.5.3 Transformation into Reference Element

Equation (1.35) is written in the globalz-system. If each physical tetrahedron
7™ is transformed to a canonical reference tetrahedfgiin a {n¢-reference
system as shown in Figure 1.1, the method can be implementett more ef-
ficiently, since many integrals can be pre-computed betordhn this reference
system.

With respect to the coordinate transformation into {n€-reference system it
holds furthermore
dxdydz = |J|d§ dndc, (1.36)

and the transformed gradients are given by

9 o€ on 9 0

oz or Oxr Ox o

o | = 2% 9 & 9

Ay B dy Oy Oy on |- (1.37)
9 26 oy & 9

0z 92 0z 0z ¢
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Integrating in the reference system using (1.36) and (1tB&)semi-discrete DG
formulation of (1.35) in the reference eleméitreads as

2Q4 1] / &, D,dednd¢  +

¥ E T4 (A +00) @) QS IS, F? +

+ZTJ ! ( ) — e (1) Q|5 Bt -

g2

1.38
_AQ ] / e budsdndc— (1.38)

~B:,Q |J\/—<I> dgdnd¢ —

~C:. QL ]J\/ ~E@dednd¢ = 0

where|S;| denotes the area of fageand the special linear combination of the
Jacobians

. ¢ 0§ 0§
A = qua + qua + Cpq8 (1.39)
. on on on
B, = qua + qu(? + Cpqa (1.40)
. ) ) )
Cro= Ay, ac + B, ac + Gy aC (1.41)
The integrals
My = / By ydédndC, (1.42)
Tk
¢ 0Py,
K= [ ; = E@,dedndc, (1.43)
TE
P
K = / %’“@ldgdndg, (1.44)
TE
L)
K¢ = / a—(’“@,dfdndg‘. (1.45)
Tg

over the reference elemefi can be easily calculated beforehand by a computer
algebra system. Furthermore, the flux matriégs’ and F,jl’“”’ in (1.38) can
be calculated analytically once on the reference elememiilage seen in the
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Table 1.1: Face definition on tetrahedrons

Face| Points
1 |1 3 2
2 |1 2 4
3 |1 4 3
4 |2 3 4

Table 1.2: (a) 3-D volume coordinates) as function of the face parameteys
andr. (b) Transformation of the face parametgrandr of the tetrahedron’s face
to the face parametefsand7 in the neighbor tetrahedron according to the three
possible orientations of the neighbour face.

j 1 2 3 4
D01t x 0 1-x-7
(1) [ x 0 7 X
On)|0 7 x 7

(a)
1 2 3
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following.

First, one must define the local faces with their local vededering according
to Table 1.1, where the vertex numbering is strictly counteckwise in 2D as
well as in 3D (see Figure 1.1). Then, the vector of volume dtnmte{is given
on the faces via mapping functions from the face parametensd r, as shown
in Table 1.2(a). Last but not least, for flux computation othex face, one has
to integrate along the face inside the element as well aseiméighbor. This is
done consistently by the transformation from the face patarsy andr inside
the element to the corresponding face parameteasd in the neighbour face.
Whereas in 2D this transformation is always- 1 — y, in 3D the transformation
depends on the orientation of the neighbor’s face with retsfgethe local face
of the considered elemefii™), since via rotation of the triangular faces there
may be three possible orientations. The corresponding mgpmre given in
Table 1.2(b).

In three dimensions, all possible flux matrices are given by

Bl = ] & (E0) @ (69) dyar, (1.46)
8(TE)J'
wherel < j < 4, and

Fah = / ®, (gtj)) P, (gtz‘) (>~<<h>,%(h>)) dxdr, (1.47)

6(TE)]'

wherel < i <4 andl < h < 3. The left state flux matrix (superscript ’-})’,;l’j
accounts for the contribution of the elemént) itself to the fluxes over facg
and the right state flux matrix (superscript ﬂ*l”‘h accounts for the contribu-
tion of the element’s direct side neighbdr;) to the fluxes over the face Index

1 < i < Ng indicates the local number of the common face as it is sean fro
neighbor(k;) and depends on the mesh generator. Index. < 3 denotes the
number of the local node in the neighbor’s face which liesh@nlocal vertex 1 of
facej in tetrahedron numbeim). Indexh also depends on the mesh generator.
On a given tetrahedral mesh, where indicaadh are known, only four of thes
possible matrices)”"" are used per element,

The whole process of mapping to the reference elements afatipéeng the inte-
grations there makes us pre-compute and store a series tensiglepending on
the number of degrees of freedom per elemlentith . = (N + 1)(N + 2)(N +
3)/6. This amount of values to be precomputed is

n (F+) = 4.12
n(F7) = 12 L?
n(K¢+ K"+ K¢) = 3-L?
n (M) = L

(1.48)
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of which the K and F' are sparse matrices, thus involving fewer operations per
cycle to be performed. If the semi-discrete equation (1i8&)tegrated in time,

a quadrature-free DG scheme is obtained (see [3]). Difetiare-integration
schemes can be implemented for such equations but in orderei a globally
high-order scheme one must use a high-order time integratiothe following

we present the ADER time integration technique, making resitt® use of the
governing equation (1.3).

1.5.4 The ADER Time Discretization

The problem of time integrating an equation system such .83 {dr a time step
At, assuming that origin time ts= 0, can be performed in many ways. Formally,
we have

At At
/ @dt = —/ [qu% + B 96 +C 96y dt, (1.49)
0 Ot 0 ox Yy

so that the left-hand side has the trivial solution

[ % g, a0 - 0,10 (150
. ot

The integral of the right-hand side of (1.49), however, isstaaightforward and
many techniques and assumptions can be applied to solvén@.mbst obvious
assumption is to impose the integrand in the right-hand cidé.49) to be con-
stant in time for the interval = [0, At]. Then the integral can be solved trivially
and (1.49) has the form

0Q,

Pq 813

+ B 0Qq

0
by +C @

Qp (A1) = Q, (0) — At A et |

(1.51)

which is known as Euler integration. Unfortunately, it islyofirst-order accu-
rate. Other advanced time integration schemes exist whakerweaker assump-
tions and allow for higher-order time integration, as Rukggta or Leap-Frog
schemes, but they usually require the solution and storbggermediate steps.
Furthermore their efficiency decreases drastically whgndrto reach very high
orders of accuracy.

The ADER approach will be applied to the semi-discrete fofrthe DG scheme
(1.38) in order to achieve the same accuracy of the time etization as for the
space discretization. Its formulation is described in ti®¥Wing.

The main ingredients of the ADER approach are a Taylor expans time, the
solution of Derivative Riemann Problems (DRP) [132] to appraate the space
derivatives at the interface and the Cauchy-Kovalewski guiace for replacing
the time derivatives in the Taylor series by space derigativAs an example
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one might want to see what happensg)if is expanded in a Taylor series around
t = At. The expansion then takes the shape

0 1 0?
Qp (At) = Qp (O)”‘an( )At+ 2 912

In principle the values of the time derivative @f,(¢) are unknown but one could
invert the governing equation (1.3) such that we obtain

——Q, (0) At + - - (1.52)

oQ 0 0
8tp - (qua + qua pqa ) qu (1.53)
meaning that the time-derivatives can be expressed as tdniot space-derivatives.
In principle the space derivatives of the solution at a gitkere can be known, so

that by substituting (1.53) into (1.52) is obtained

0Q,(0 0Q,(0 0Q,(0
4,260, 5, 290, , 2040

Qp (At) =Q, (0) — At o 9y P } ,  (1.54)

which is the Euler time integration again. The importantésss that this pro-
cedure can be expanded as more terms of the Taylor seried ¢ab be used.
This way we successively obtain time-derivativegfas a function of the space
derivatives. In short, the general process for a polynowfiglegreeN requires
the Taylor expansion

N
tk ak
Qp(z,y,2,t) = 2 T ok

together with the generalised expression of (1.53), whectus
O Qy(r,y,2,1)
o (1.56)
= (-1)" (quax + quaa + Cpqaz> Qq(x,y,2,t).

Now, by recursively substituting the time derivatives of58) into (1.56), what
is known as theCauchy-Kovalewskprocedure, we finally obtain the high-order
expression of the time-expansion of the varialilgs

Qp(x7y7zut) =

Qp(z,y, 2,0), (1.55)

N . k (1.57)
= k=0 % (_1> (quaa; + quay + Cpqaz) Qq(%% z, 0)-

This last expression can be time integrated appears only as monomials. The
expression (1.57) is the center piece of the ADER high-aider integration pro-
cess.
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In the following this process will be applied to the partexdDG scheme presented
here. Since the basis functiofeg in (1.23) are given in thén(-system, we need

a Cauchy-Kovalewski procedure which makes use of the spigratatives with
respect tt, n, and(. Therefore, the original PDE (1.3) can be rewritten with the
use of (1.37) as

9Qp A, (55 0Qq | I 9Qq , I¢ 5Qq> n

ot oz 0 " ow on 0w oC

0£0Q, InoQ, 9ICIQ,
B (8_1/0_5 yon 8_ya_<) !

0600,  m0Q, 0000\ _
o (556 + 32 3+ e 56 =©

Rearranging this equation leads to

0Qy  0Qy (, 08 08 . 0K\ 0Q,
o T ot (qu(?x + B, +Cmaz) o+
0Q, on on on\ 0Q,
T (quax + Brg, + O ) 30t
0Q, ¢ ¢ aC\ 0Q,
ot (quaa: qu(?y C”qaz) ¢ =0

and finally, by using the definitions in (1.39), (1.40), andi(), one obtains

0y | gr 094 4 g 090 | 1w 000 _
5+ A ge + By T e =0 (1.58)

Thek-th time derivative as a function of pure space derivatingbeSn(-reference
system is the result of the Cauchy-Kovalewski proceduresjlapplied to (1.58)
and is given by

aka<£7 777 Ca t) —

otk
) (1.59)

Now, it just remains to replace the time derivatives in thgldaexpansion (1.55),
using (1.59):

QP(é-’ 7, <7 t) =
(1.60)

k
k * * *
= T B D (A% + B+ Cr ) Qul€,m,C,0).
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The Discontinuous Galerkin approximation (1.23) is tharoduced to obtain

QP<€7 n, Ca t) =
(1.61)

tk

k N
= LG D" (A5 + Brud + G ) @ilEn.OQul0).

This approximation can now be projected onto each basigiumin order to get
an approximation of the evolution of the degrees of freedanmgd one time step
from time leveln to time leveln + 1. As a result it is obtained

1.62
<<1>n,k§0;’i(—1>‘“(A;;q§’§+B;q§,,+c;q§<)k<r>m(s,n,o>A (1.62)
- (@0, ®1) @am (0)

where(a, b) = fTE a - bdV denotes the inner product over the reference tetrahe-
dron7x and the division by®,,, ;) denotes the multiplication with the inverse
of the mass matrix. This reduces indeed to division by itgaiel entries since
the mass matrix is diagonal due to the orthogonality of th&sbunctionsd;.
Equation (1.62) can be integrated analytically in time stbbtaining

—

Qu(t)dt =
0 (1.63)
<<1>n,k12v;0 ey (—l)k(A;tq§§+B;§q§7+C;q§’<)k<bm(£m,<)> R
_ = 0).
(@,,8)) Qqm(
Introducing the definition
]plqm(At) =

(1.64)

N
ag(k+1) k * 0 * 0 « 0\F
<q)n7k0 (k41)! (_1) (quaig—"_qu%—i—CpqaiC) ‘I)m(£7777C)>

<q>n7¢'l>

the time-integrated degrees of freedom in equation (1.68)e expressed as

At
/ Qui(t)dt = Lpjgm (AL)Qqm (0), (1.65)

where I, (At) is a four-dimensional tensor including the Cauchy-Kovaléws

procedure and),,,,(0) denotes the x m-matrix of the degrees of freedom at time
level n. Finally, the fully discrete ADER-DG scheme by integratidn(b.38) in



30 CHAPTER 1. THE ADER-DG METHOD

time is given by:
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(1.66)
The scheme is quadrature-free and performs high-order-ititegration from
time levelt" to t"*! in one single step. It thus needs the same memory as a first-
order explicit Euler time stepping scheme (1.51). It shdnddtressed out that the
above mentioned scheme is globally high-order and as a qgoasee possesses
superior convergence properties with respect to most camewailable solvers.
For a numerical verification of the convergence properti¢sescheme and com-
parison to other schemes, the reader is addressed to cleechritiergence tests
in [55, 75]

The stability of the explicit ADER time stepping scheme istcolled by the CFL
number, introduced by Courant, Friedrichs and Lewy in [4Z}r fhe particular
case of the scheme shown here, this means that for eldmegnt

m <o L 1™
A S CoN i
wherel is the element size, for tetrahedra the diameter of the ibesdrsphere,
andc,,.. the maximum wave speed supported by the element’s mateapep
ties. The coefficienC' has been shown [53] to have a maximum valué) Gf
being often0.5 a recommendable value. For the scheme to be stable no element
must violate (1.67). Therefore, th¥f used in the scheme presented here has to be
the minimum of the local\t™, values present in the computational mesh. For a
thorough investigation of the linear stability properti#she ADER-DG schemes
via a von Neumann analysis see [53].

(1.67)

A major breakthrough in the ADER-DG framework is the pos#pibf making

use of alocal time steppingscheme as has been shown in [58]. This scheme
type is designed to optimize the constraints induced by Gusratability crite-
rion. Basically, each of the cells in the computational domaiassigned a local
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time step value which is the maximum allowed for stabilitggens as computed
with (1.67). They also possess a local time value, mainlyr then At(™ value
times the number of times they have been updated, i.e the ewaifkheir local
iterations. Then, as time marches in the scheme, an elemepdates its vari-
ables if and only if after a (local) time step it would have adlar local time than
if any of the four direct neighbork; with j = 1,--- 4 would add a time step to
their local time. Explicitly,

t0m 4+ At < min (£5) + AtR)) V. (1.68)

Additionally and in order to synchronize the cell’s updgtinvhen an element
is updated fulfilling (1.68), the numerical fluxes between slements’ (™ and
T*i) have to be computed in the time interval

[ti:t2] = [max (£, ¢5)) ymin (¢0) + At 8 4 ArRY] 0 (1.69)

The use of local time stepping instead of a global time steppiTS and GTS
from now on) does not change the fundamental properties @fADER-DG
method nor its accuracy as is described in more detail in [§8)nly produces
an, often remarkable, reduction in the computational tieggiired when element
sizes are very different. LTS has been implemented for allrtreology types
covered in the present study and used whenever it was adesmis: in terms of
efficiency.

1.6 Boundary Conditions

As has been previously remarked in Section 1.4.1, the usajiexes simplifies
the implementation of many boundary types, as fluxes deterail the communi-
cation between neighboring cells. Therefore, any effenting from the sides of
a cell not directly connected to any other can be solved hygiaisg proper values
to aghostelement which would theoretically connect to a boundarynelet. The
ghost element does not explicitly appear in the computatganly its variable’s
values at the boundary are necessary to properly implernertesired boundary
conditions.

1.6.1 Absorbing Boundaries

At absorbing boundaries, no waves are supposed to entepthputational do-
main and the waves traveling outward should pass the boyndtrout reflec-
tions. As has been shown in (1.20), the flux can be separatad incoming
and an outgoing part, as a consequence of using an upwinditigooh A rough
approach to get absorbing boundaries can be obtained byngala inverse Rie-
mann problem. This means that the aim is to obtain the statar@bles at both
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sides of the interface such that the flux produces some efjuariables’ values
at the interface. For the absorbing boundary case one satsctbming flux values
to zero, so that waves are only allowed to flow out of the colrparial domain.
This is formally equivalent to assuming that a ghost eleninast value of zero
for all variables at the boundary. This translates into hgthe following value
for the flux in (1.66) at all those tetrahedral faces that cioi@ with an absorbing
boundary:

fAbsorbBC — lT
p

5 Lo (A +O00) (1)~ QU ™, (1.70)
which is the absorbing boundary condition we apply. Thisrapph still produces
reflections of non-negligible amplitudes and thus often @erpractical to just
enlarge the computational domain with very coarse elememisier to delay the
interference of these waves with the actual signal one wantsodel. Although
a totally non-reflecting boundary for wave propagation peots does not exist,
some approaches can get much better results. Perfectiyhbdtht@ayers (PML) [8]
are applied in [41, 84] and are very effective but are not fdlynboundary con-
ditions, in the sense that they are not exclusively appliethé boundary of the
domain. They are applied on a buffer layer of elements, wkeree physical
properties are imposed, which strongly damp waves trayéfirough it. In prac-
tice, for time-domain computations the computational c®sicreased due to the
additional elements incorporated to the model and the aser@ complexity of the
wave equations to solved in this buffer layer.

1.6.2 Free Surface Boundaries

The free-boundary condition aims at representing the cboffaan elastic mate-
rial with air or void. In finite-element based computatioims tondition is satisfied
very naturally by imposing the value of the bulk stress arehslstresses associ-
ated to the direction normal to the free surface to be zerbeabbundary. When
using numerical fluxes, the concept of inverse Riemann prnobliscussed in last
Section is recalled. The free boundary condition can behexhby assigning to
the ghost element values for these components that mirecaltbve mentioned
stresses. As a consequence the flux will assign a zero valtied®e variables at
the boundary. The rest of the variables should be the samelas inner element,
so that the fluxes don’t change its boundary extrapolatasesgallf the inner ele-
ment’s variable state 19,, then the free-surface condition’s flux function in (1.66)
can be formulated as follows,

fEeeBe— AT, (AGY 1 60 (L)1 e+
(m) (m) A (m) g (m) (£.71)
"’ %qu <Aqr - @q'r > Frs (Tst>_1Qtl (I)l ’
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where the matrix’,; = diag(—1,1,1,—1,1,—1,1,1,1) accounts for the mir-
roring of normal and shear stresses with respect to therfao@al direction. It

should be clear from (1.71) that no values are stored or ctedpior the ghost
element, but rather the condition is directly applied to ¢hestate vector of the
inner cell. The calculation (1.71) is only happening at tberdary surface and
not beyond it.

1.6.3 Inflow Boundaries

The effects of a wave entering the computational domain foaiside of its spa-
tial extent can be also successfully handled by using trea#led inflow boundary
type. Let's suppose an arbitrary function(z, y, z,t) that describes the desired
inflow wave value of each variable componenBuch function can be integrated
in space at an element’s triangular inflowing boundary u€agssian integration,

nGP
thus obtaining/"" = S~ wu (&, mi, G, t), wherenG P is the number of gaus-

=1
sian integration points required to exactly integrate fioms up to the accuracy
order of the scheme and are the corresponding integration weights. The general
shape of the inflow flux will then be

le)nflowBC — %qu (Af;T) + @éT)) (T7‘s)_1ng)+ (1 72)
+ %qu (AéT) _ @EIT)) (Trs)_lU;nﬂOW,

where it should be noticed that the outflow part of the fluxeasally the first
term of (1.34), remains the same while the second term is ngposed depend-
ing on the desired inflow wave. In the present study the istesdl be further
reduced to pure plane waves. The eigenstructure analysise dacobian matrices
allows us to find the eigenvectof%;4 related to each plane wave type. There-
fore to reproduce a P-wave traveling in thealirection it has to be chosen the
9th eigenvector, associated to the eigenvatue = ¢, (see (1.9)), thus obtaining
us(&5,mi, Gy t) = R{ES(t), beingS(t) the time shape function of the plane wave. If
the boundary is perpendicular to the plane wave propagédtreation, all spatial
dependence ai, vanishes.

In order to include this new flux into the scherpe one has tdhé&urbbtain the
projection ofU!"*" into the DG basis ag"oW = /Mflowy, "thus obtaining

tonee — 41y, (A + O () Qe .
+ 3T (AT - O (1) 10y

A final remark is that the ADER procedure cannot be appliedhéoinflow part
of this flux. Instead, we perform a high-order gaussian timtegration ofS(¢),
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which should be exact for a sufficiently samplé¢t) function. Notice that this
boundary type automatically works as an open boundary ftffogting waves
(compare to (1.70)). The analysis can be expanded to thegjersse of waves
with an arbitrary incidence angle, thus requiring a rotatbthe eigenvectorg”
associated to the wave and a time synchronization, 0f, y, z, t) to account for
the fact that now not everywhere in the boundary holds theesstate ofu,.

1.7 Computational Aspects

Besides its mathematical formulation and accuracy pragseré series of aspects
of the ADER-DG method are related to practical issues reggrdomputational
science. In the following Chapter we will discuss some of éheespects which are
relevant to the common use of the method as well as its patéatibeing applied
for large scale problems.

1.7.1 Efficiency

The usefulness of a numerical solver depends on the congnaaeffort it re-
guires in addition to its accuracy. In this Section we showwgh calculation of
the amount of operations per element to be performed by arszkach as (1.38).
One should recall that the number of degrees of freedom peregit and variable
involved in the computation i& = (N + 1)(N + 2)(N + 3)/6. The numbei©O
of operations per element and variable to be performed caiobeted, by tak-
ing into account only terms proportional I&@ with p > 1 and by separating the
computation into flux, stiffness and mass contributiongs Téads to

Ototal =4 Oﬂux +3- Ostiff + Omass (1-74)

as the flux is computed for 4 sides of the tetrahedron and iffieests for each
reference element componént; and(. One can now take a closer look at all the
O values in (1.74). The fluxes, for instance, involve a rotatbthe variables as
in (1.30) (a 9x9 matrix-vector product per each degree adoen) and the inte-
gration of the degrees of freedom as shown in (1.46-1.47)pdeseLx L matrix-
vector product per each variable). As required by the fluxesgion (1.34), this
operations will be performed once per the inflowing and omelfe outflowing
fluxes of each element’s side. The stiffness operationduavihe product of the
star jacobians (1.39-1.41) by the vector of unknowns (a 9a@irzvector product
per each degree of freedom, where a maximum of 27 entrieedtér matrices
are non-zero) and the integration of the derivatives of #greles of freedom as
shown in (1.43-1.45) (a sparge L matrix-vector product per each variable). Fi-
nally, the mass matrix is diagonal so the product of the degoé freedom by its
inverse is a simplé.-size vector-vector product per each variable. Indivityal
each of these parts has to perform a total of operations ¢gual
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Onx = 2(92™*L? 4 81L)
Ositi = 9752 4271 (1.75)
Omass = 9L7

whereZ"* and Zs' reflect the sparsity of some of the involved matrix operatjon
being the ratio between non-zero entries and total entfideed” and K’ matrices
respectively. In total, the number of operations will be

Orotal = 272" L2 + 7275 [* + 738L (1.76)

For example, in the order case { = 20) holds 75" = 0.17 and Z"* = 0.51.
Then the cost would be
Orotal = 40.6L* + 738 L. (1.77)

Additionally, we can observe that for the case of ordiehe fluxes perform ap-
proximately an 87% of the workload. Although this calcudatdoesn’t take into
account the costs of the time-integration chosen, the tepeslowed or the total
number of elements required to solve a particular probléshould give an idea
on the cost of execution of the scheme. In comparison, an Sk with a struc-
ture as SPECFEM3D [83] would requi@sgy = 18L*3 + 99L which is clearly
inferior. Taking into account that SEM works on a basis with= (p + 1)3, this
leads to a factor of 2.81 less operations per variable amdeglein favor of SEM
for the case of polynomial basis of degiedt should also be pointed out that this
is a theoretical calculation and that actual efficiencynsrsily dependant on how
is the scheme specifically programmed. Additionally, a nerdf other factors
should be taken into account for a full efficiency compariaens the size of the
timestep allowed, the number of elements required to fill lage volume, the
number of variables used in the scheme or the cost of the titagriation scheme
used. Some numerical results concerning these two metloodsdimple setup
will be seen in Chapter 3.

1.7.2 Meshing

The ADER-DG scheme works on tetrahedral meshes, which isvamtatje when
trying to discretize very complex geometrical objects. Balty a given geomet-
rical model is first discretized in volumes and surfaces rleisig the geological
and topographical features relevant for the simulations €an be done externally
using Computer Aided Design (CAD) tools. Once the geometryeal gefined,
meshing software can perform the discretization of the malsi in conforming
tetrahedra. This process is fully automated and the uséeis allowed to control
a few meshing parameters as are the average element sizal ¢don the bal-
ance between resolution and stability in wave propagatioblpms. The created
mesh can be then exported as a file containing all relevaotnvation about the
elements, including its indexing, connectivity of the mesial specific boundary
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conditions. A number of different mesh generators can bé.uJée running
algorithm then just needs to read the mesh generator’s tfifgguwhose format
depends of the generator used, to apply that mesh informedidhe simulation
process.

The use of tetrahedral elements with plane element intesfaas in the ADER-
DG algorithm, is not an intrinsic limitation of the ADER-DG thed and super-
parametric elements can be used, where the element facedsareepresented
by higher-order polynomial surfaces [59]. Of course, thergetrical precision
can be enhanced when aligning such meshes with curved alateerfaces, es-
pecially when the analytical shape of the curvature is knowa very fine grid
describing it is available. However in the present thesssilperparametric case
is not discussed.

For most of the test cases computed up to now for validatiopgaes of the
ADER-DG method, the geometry is quite simple and the use i@ftietiral meshes
does not provide any particular advantage with respecteartare popular reg-
ular or structured hexahedral meshes. However, for comtelitgeometries, the
duration of the model setup and mesh generation using egtrahinstead of hex-
ahedral elements can be reduced by more than one magni@ide [5

1.7.3 Parallelization

The parallelization of the proposed algorithm for largeesegplications is a fur-
ther key issue. The partitioning of the tetrahedral mesh enbumber of sub do-
mains is performed by the free METIS software [74]. It auttiosly performs
partitioning of meshes with several millions of elementshim seconds while
minimizing the surface to volume ratio of the resulting sumains. Roughly,
the volume of a given partition can be associated with psmemad whereas
the surface of a partition is associated to communicatidwdsen processors. As
communication is orders of magnitude slower than the coatjmnal load, the
better the volume/surface ratio for all partitions, the enefficiently the parallel
algorithm can work. In the present implementation of thehudteach partition
is handled by one processor or core. As shown in Section K& ADER-DG
method has a very local character as the update of the vasialone element
depends only on the element itself and its four direct nesghibAdditionally, the
amount of data communication between processors is smahlgs/ariables of
the elements exactly at an interface between two sub dorhawesto be passed
between processors. Recall, that the size of these interisexactly the param-
eter minimized by METIS. Furthermore, this information hase passed only
once every time step as the ADER-DG scheme is a one-step schigmoait in-
termediate stages. MPI (Message Passing Interface)iérare used to perform
the communication between processors.
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Scaling of MPI parallelization
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Figure 1.4: Graph of the scaling properties of the MPI paliathtion for an
ADER-DG 05 scheme. The problem is computed on a cube discretized by
69120 regular tetrahedral elements as used also for the convegdest in [55].

The computations are carried out on the HLRB2 supercomputtveot eibniz
Rechenzentrum in Mihchen or, 4, 8, 16, 32, 128 and256 CPUs. The dashed line

shows the theoretical optimum for comparison assuniigs MPI efficiency.

How the ADER-DG scheme scales with increasing number of gsms is dis-
played in Fig. 1.4. For this scaling analysis we use an ADER¢DIGcheme. The
computational domain is discretized by a meskdif20 tetrahedral elements. As
a reference we also plot the line of the theoretical optimuppssing 100% MPI
efficiency, meaning that the CPU time would exactly reduce fgcéor of F' if
the number of processors is increased by the same factor

1.8 Application Example

To verify the performance of the ADER-DG method we will use se¢up pro-
posed in the SPICE Code Validation (www.nuquake.eu/SPICECGval)devel-
oped by Peter Moczo, Jean Paul Ampuero, Jozef Kristek, Stdvéay, Miriam
Kristekova, Peter Pazak, Heiner Igel, Renata Tothova, andiM&alis. The
problem itself, named WP1-HSPla (Wave Propagation, Honemen Space)
aims at assessing dispersion errors and local errors atefiff distances and prop-
agation directions. The medium is described in Table 1.8 Sgismic source is a
point dislocation, represented by a double couple sourberevthe only non-zero
entries of the seismic moment tensor afe, = M,, = M, = 10"*Nm. The lo-
cation of the point source is the coordinate origif, ys, zs)=(0m, 0m,0m). The
moment-rate time history is given through the source tinmetion

t t

= ﬁexp(——), (1.78)

ST(t) T
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Figure 1.5: (a) Mesh used for the application example. (lprZof the region of
interest, where a strong refinement has been applied.

where the smoothness paraméiercontrolling the frequency content and am-
plitude of the source time function, is setto= 0.1s. The frequency window
expected is from 0.13Hz to 5Hz and the receivers are at a memigistance
of 10,000m from the source. In order to avoid boundary effects, the alorns
selected large enough so that no reflections can reach tbevees This do-
main is a cube defined by points-20000m, —20000m, —20000m,), (—20000m,
—20000m, 26000m), (—20000m, 26000m, —20000m) and(26000m, —20000m,
—20000m). The receiver list is shown in Table 1.4. The domain was diszd
by a tetrahedral mesh refined to have elemen®0f: edge size in the area be-
tween source and receivers and further coarsened in thefrtgt domain, where
accurate results are no longer needed (see Fig. 1.5). An ADGRY6 scheme
was used, meaning that polynomials of degiesere used to describe the un-
known functions. A total 0623, 920 elements was used. The simulation lasted
for less tham23 hours in128 Intel Itanium2 1.6GHz processors. A local time
stepping algorithm is used to save computational time, dsiésly outlined in
Section 1.5.4, thus concentrating the computational loathé small tetrahedra
of the area of interest. The numerical results are comparttbse obtained with
an analytical solution as outlined in [1]. The resultingss@bgrams are shown in
Figures 1.6, 1.7 and 1.8 together with the root mean squaoe @m.s) of the
numerical solution. This r.m.s. misfit is computed through

B =2 (5= s > ()" (1.79)

wheren, is the number of time samples of the seismograjis the numerical
value of the particular seismogram at sampknd s{ is the corresponding ana-
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Table 1.3: Material parameters for the WP1-HSP1 test case.

Lcolm/s] | eslm/s] [ plkg/m?] |
| 6000 | 3464 | 2700 |

Table 1.4: Location of the receivers for the WP1-HSP1 test.cas

| Receiver| z[m] | y[m] | z[m] |

0 693 0
0 5543 0
0 10392 | O
490 | 490 0
3919 | 3919 0

7348 | 7348 0
400 | 400 | 400
3200 | 3200 | 3200
6000 | 6000 | 6000
555 | 370 185
4443 | 2962 | 1481
8331 | 5554 | 2777

—_ = =
DS © 00O U W

lytical value. Notice that the numerical results are tgtaltfilteredandunscaled

The accuracy is further assessed using the concepts of phisfsieand envelope
misfit described in [87]. These misfits are then compareddedtof a Discrete
Wavenumber (DWN) solution, often considered a quasi-aitallysolution and
shown in Table 1.5. The ADER-DG method performs very well aslzaseen in
Table 1.5, specially for phase misfits, at some receivers sugpassing DWN'’s
accuracy. The computational costs are, however, very espeand clearly in-
appropriate for such a geometrically simple setup as is tleeaovered in this
example. However it should be remarked that the purposei®fipplication in
only to assess numerical accuracy.

1.9 Other Methods for the Simplex

In the following the other methods developed for wave prepiag in the sim-
plex (triangles and tetrahedra in 2D and 3D) will be brieflylioed and put in
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r—component y—component z—component

E =0.014208 E=lInf E = Inf
50| Receiver 1
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
8 E =0.014829 E=Inf E = Inf
6
4
2
0
-2
-4
-6
iy Receiver 2
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
5
4 E =0.041451 E=Inf E = Inf
3
2
1
Lt
-1
-2
-3
-4 Receiver 3
-5
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
00 E =0.0034307 i E =0.0016702 E = Inf
30
20
10
0
-10
-20
-30
—40 Receiver 4
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
15
E=0.015935 E =0.013504 E=Inf
1
05
0
-05
-1
Receiver 5
15
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

Figure 1.6: Seismograms showing particle velocities fer ADER-DG (solid)
and analytical solution (dotted) for receivar 5. The three columns correspond
to thex—, y— andz— components. The residuals (dashed) and the r.m.s drrors
are shown.



1.9. OTHER METHODS FOR THE SIMPLEX 41

r—component y—component z—component

E =0.016436 E=0.017299 E=Inf

Receiver 6

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

E =0.0034943 E =0.0030084 E =0.0069342

Receiver 7

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

3 E =0.016276 E =0.023832 E =0.013378

: /\JL /\JK/

-3 Receiver 8

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 a4 5

E =0.023678 E=0.02739 E =0.019571

Receiver 9

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

E =0.0040659 E =0.0021028 E =0.010787
10|
o i ]

Receiver 10

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

Figure 1.7: Seismograms showing particle velocities fer ADER-DG (solid)

and analytical solution (dotted) for receivérdo 10. The three columns corre-
spond to ther—, y— andz— components. The residuals (dashed) and the r.m.s
errorsk’ are shown.
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Table 1.5: Envelope and phase misfits’infor WP-HSP1a against a reference
solution. DWN results are included for comparison.

x Yy z MaX(DG) MaX(DWN)
Rec.| EM PM ‘ EM PM ‘ EM PM|EM PM|EM PM
1 27 02105 00]03 007427 02|30 0.5
2 1.7 05106 00]03 00y 17 05|15 0.3
3 22 05105 0003 0022 05|12 03
4 1.1 03711 03703 00¢ 1.1 03|12 0.3
5) 34 03|31 03|27 00|34 03|13 02
6 22 03125 0321 0025 03]08 0.1
7 07 0410 03|13 03] 13 04|10 0.5
8 16 04]20 02]21 0421 04|16 0.2
9 1.7 04113 0219 05|19 05|12 0.3
10 14 0307 03706 0114 03] 1.1 0.3
11 1.5 02121 04720 03421 0412 0.3
12 1.0 01{21 04 ]11 0321 04,09 0.3
r—component y—component z—component

E=0.012228 E =0.018793 E =0.016503

E=0.0145 E=0.0212 E =0.020147

-15
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

Figure 1.8: Seismograms showing particle velocities fer ADER-DG (solid)

and analytical solution (dotted) for receivdrsto 12. The three columns corre-
spond to ther—, y— andz— components. The residuals (dashed) and the r.m.s
errorsE are shown.
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perspective to the ADER-DG method. This is not an extenswdysbut rather
aims at pointing out the main virtues and drawbacks of thesthodologies with
particular stress on how they compare to the ADER-DG methedrieed in this
thesis.

1.9.1 Finite Elements

The FE method is a favorite for mechanical studies amongrgeeering com-
munity. As a Galerkin method, it shares many principles whith DG methods.
The elements support some polynomials which act as a basiswpich deriva-
tives are computed, usually point-wise. Continuity comais are imposed be-
tween elements and the resulting schemes are commonlysguide and compu-
tationally inexpensive. Furthermore, free boundary ctowls are natural for this
method. Most successful implementations of the FE methedyaically first- or
second-order accurate in space and thus show strong di&preperties. This
makes them sufficiently accurate for static problems buenotugh accurate for
simulating waves requiring propagation of many wavelesgtiigher-order im-
plementations exist to avoid such problems but they inctinénconstruction of a
non-diagonal mass matrix which precludes the use of sudnses for very large
scale problems. In [142] an extensive overview of the methgilven.

1.9.2 Finite Volumes

The FV method is one of the workhorses of the fluid dynamicsmamty. The
basic conceptis to treat the variable’s average valuesadsif the variables them-
selves. These average values are updated due to fluxeshhtwigurfaces sep-
arating two cells. The use of numerical fluxes allows for dretiontrol of the
method’s behavior for shock-waves or other strong disoaittes in the solu-
tions. Additionally, the method’s accuracy is often retate the choice of nu-
merical flux used for the computation more than other contjmurtal aspects and
a whole family of such fluxes has been developed in the recsnsy They are
based upon the integral form of the differential equatidheathan the differen-
tial form (also known as weak form) used by DG methods. Howéuzes are
solved in the same way for both methods. In fact, forGhecase, a DG scheme
is identical to an FV one. The method has already been usesefsmic wave
propagation for the low-order [51] and high-order [56, 5&$es. In this last pub-
lication a thorough comparison FV/DG is provided. A goodrsewf additional
information is [90].

1.9.3 Triangular Spectral Elements

Following the success of hexahedra-based SEM, a new Ti@n§pectral Ele-
ment Method (TSEM) [96, 111] has been recently developedappdied to the
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seismic wave propagation problem. TSEM shares many of teshproperties
of SEM, including the highly accurate nodal integration apdctral resolution of
the variables. These nodes are known as Fekete points, @andehpolating basis
associated is different from the Dubiner basis employe®fémethods. As with
SEM, continuity is required at all integration nodes. Farthore, the location of
the Fekete integration points at the triangular elemerdghiaries coincide with
the Gauss-Lobatto-Legendre points of SEM, thus potentadlbwing for hybrid
SEM/TSEM schemes. However the basis functions used do neider a diago-
nal mass matrix, thus increasing strongly the computatideaands which now
involve a non-trivial matrix inversion. A three-dimensarversion has not been
developed to date, but the basis and node positions to ¢etralhelements have
been already studied.

1.10 Concluding Remarks

Through the present Chapter the main aspects of the ADER-D@Gothdtave
been shown. The method has been developed by &d8eKand M. Dumbser [55,
75] and is well suited to compute very accurate synthetensegrams for highly
complex and heterogeneous media. However, in its origioiahf the method
covers the purely elastic and isotropic regime. It is the airthis thesis to show
that the ADER-DG method can be adapted to the viscoelastisptaopic and
poroelastic cases, as well as combinations of those. Thrtheynext Chapters
these different rheologies will be explored in detail. Intmalar, the schemes
developed will keep the most advantageous properties ajriggnal ADER-DG
schemes: the high-order integration in space and time anddé of tetrahedral
unstructured meshes.



Chapter 2

Viscoelasticity in ADER-DG
Schemes

In this Chapter an overview of viscoelastic mechanics forevpkopagation is
given as well as the details on its accurate implementatiotheé ADER-DG
schemes. First we present an overview on the attenuatiensshg waves and the
viscoelastic modeling. Then will be introduced the systéthethree-dimensional
anelastic wave equations in velocity-stress formulatrartuding attenuation due
to viscoelasticity. The resulting DG method is briefly expéa in the following
Section together with the ADER time integration approacle Wil also show a
discussion on the improvement of the approximation of auesgy-independent
Q-law when increasing the numbeof relaxation mechanisms of the Generalized
Maxwell Body. Furthermore, we analyse the additional CPU tiegpiirements
for different orders of accuracy of the ADER-DG schemes. IRina the last
Section we present a comparison of ADER-DG results with tludse Discrete
Wavenumber solution and discuss the method’s accuracy.méie contents of
this Chapter have been published in Masér, M. Dumbser, J. de la Puente and
H. Igel [76].

2.1 General Overview

A successful model for realistic attenuation of seismicegg the approximation
of the material as a viscoelastic medium. Viscoelastic masediffer from elastic
ones in three basic aspects: they produce energy lossessfianse to excitation
is not instantaneous and the stress state at a given timeursctdn of the strain
state at all preceding times. This behavior can be mathealigtidescribed by
allowing the wave velocities to be complex quantities. le Earth, viscoelastic
effects are observed at all scales. A particular case isdnin’g internal friction,
i.e. the measure of attenuation, is nearly constant oveda sgismic frequency
range. This is due to the composition of the Earth’s polytatlise material con-

45
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sisting of different minerals. The superposition of theserascopic physical
attenuation (relaxation) processes leads to a flat attemuaand [92, 107].

The stress-strain relation for a linear isotropic viscetamedium is given by the
so-called Boltzmann principle (causality principle), tstdtes that the stress at a
given timet depends on the entire strain history until titnevhich mathematically
is represented by a time convolution of a relaxation fumctiad the strain rate as
shown e.g. by Moczet al.[101]. As the integration of this stress-strain relation
in the time domain is intractable in a numerical computati@ay & Minster [47]
transformed the stress-strain relation in the time domaim & differential form
using a Pad approximation. They obtaineddifferential equations forn addi-
tionalinternal variables which replace the convolution integral. These equations
have to be solved in addition to the elastic wave equationghErmore, the sum
of the internal variables multiplied with anelastic coeéiits leads to additional
viscoelastic terms for the elastic stresses. This waygsar@quirements and com-
puting times were significantly increased.

Emmerich & Korn [63] improved this approach by considerihg theology of a
Generalized Maxwell Bodgnd showed that their method is superior in accuracy
and computational efficiency. They chose the relaxatiogueacies logarithmi-
cally equidistant in the frequency band of interest and aslegst-square method
to fit arbitrary quality factor laws.

Independently, a different approach [28, 30] assum&aeralized Zener Body
and introduced additional first-order differential eqaas formemory variables
After these revolutionary publications authors incorpiogrealistic viscoelastic
attenuation in time domain methods used the concepts oféhei@lized Maxwell
or Generalized Zener Body. A recent work by Moczo & Kristek][#&viewed
both models and showed that both approaches are equivalent.

After Emmerich [62] applied the viscoelastic models for B¥SV case, Moczo
et al. [98] presented a hybrid two-step method for simulating Ps&$mic mo-
tion in inhomogeneous viscoelastic structures with fraéase topography com-
bining discrete-wavenumber (DW) [18], finite element (FEY. §94] and finite-
difference (FD) methods, e.g. [97]. At first coarse spat@ahpling of the anelas-
tic functions was introduced [45, 46]. In later work [86] thasic theoretical
and algorithmic aspects of a memory-efficient implemeaotatif realistic attenu-
ation was addressed based on a viscoelastic material wigtrialadiscontinuities
mainly for the staggered-grid finite difference approach.

In the present Chapter the ADER-DG method is extended to tlceeliastic case
using the Generalized Maxwell Body rheology type. Detaildiow to obtain al-
most frequency-independent attenuation will be given, el & ways to reduce
the computational costs caused by the increased numbekobwns and equa-
tions to be solved.
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2.2 Attenuation of Seismic Waves

It is a broadly observed phenomenon that seismic waves lensgyy as they
travel through the Earth. This loss corresponds mainly ¢ofaélet that the waves
propagate through materials which are not perfectly elagts waves are cyclic
phenomena, a rough number can be used as a quantifier chmelastica ma-
terial is by accounting the amplitude losses per cycle [t the case of plane
periodic waves one can define the quality facfbas

1 1AA

0~ x4 (2.1)
whereA is the original wave’s amplitude anlA the amount by which the ampli-
tude of the wave increases per cycle. Given the minus sig2.1),(a positiveQ
value leads actually to a decrease in the amplitudes. Freralibve equation one
can find that the anelastic wave, if propagating inthalirection with velocityc,
will decrease its amplitude with time as

—wWxr
Alx)=A . 2.2
(2) oexp(zcg) 2.2)
On the other hand, observations show that the attenuataphgnomenon which
is roughly independent of frequency. One can now explore agiane wave
behaves under the assumptions just shown. Let's assumedpagation of a
delta signal such as

plr,t) =A-5(t—z/c), (2.3)

with velocity ¢ in the positivex—direction. This pulse in the frequency domain
has the shape

P(x,w) =A-exp (iwz/c) . (2.4)

Let's now assume the pulse travels through an anelasticumeduch that the
amplitude decays as in (2.2). The anelastic pulse can nowjressed again in
time domain by using the inverse Fourier transform so that

(@ t) = % 7,40 exp (;;g) expliw (z/c— ) dw.  (2.5)

—00

The result of this integration is

p(z,t) :% [ 2:Q —t)2] ) (2.6)
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Figure 2.1: (a) Comparison of non-attenuated and attenymtisés observed at
x = 1forc = 2andQ = 20 (amplitudes normalized). (b) Zoom of the early
instants of the previous plot, where a non-zero signal ever-a)s is observed.

An example of such a pulse as (2.6) can be obtained by settng andz = 1,
thus obtaining the pulse observed in Figure 2.1 which, anathgr things, vio-
lates the causality principle as it produces a non-zeraasigyen fort <= 0s. As
this is clearly unphysical, and one wish@go be frequency independent to agree
with observations, a certaivelocity dispersiommust be allowed, meaning that
¢ = c(w). As seen in Chapter 1, the value ©oflepends exclusively on the L&m
parameters of the material and, more generally, on the sgioreof Hooke’s Law.

2.3 Viscoelastic Rheological Models

Hooke’s law for elastic materials can be expressed as thgssstrain relation

o; = Myje;, (2.7)

being the stresses expressed in array férm (o,.,0,,, 022, 0uy, 042, 04.)" and
the strains® = (.4, &4y, €22, Exys €42y €22) " . The tensorM is solely dependent
on the material properties. If those, additionally, dependhe frequency, the
constitutive relation in the frequency domain

gi(w) = Mi;(w)ej(w), (2.8)

can be expressed back in the time domain, using Fourie€ssevtransformation,
as a convolutional product

3(t) = Mij(t) * €5(t) . (2.9)
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For the specific form of\/, there are many viscoelastic models available. Only
some of them can completely reproduce results of laboraxpgriments consist-
ing of measuring the response to instant stress or straaw(k®as “relaxation” and
“creep” responses). All the viscoelastic mechanical m®dah be expressed ide-
ally as combinations of fundamental Hooke’s (springs) atoté&s (dashpots) me-
chanical elements, compared to elastic models which ayed&fined by springs.
Only the Generalized Maxwell Body rheological type will beestigated in de-
tail in the following, as one of the most successful modeisvfscoelastic wave
propagation problems at present.

2.3.1 Generalized Maxwell Body

The Generalized Maxwell Body (GMB) rheology type is based upsing linear
combinations in parallel of so-called Maxwell Bodies, es$isdlly a spring and
a dashpot connected in series. These Maxwell Bodies are ¢éivasscombined
in parallel to a single spring element, as depicted in Figuga). This rheo-
logical model was proposed in the form presented here by Eroimand Korn
(1987). Then, in the frequency domain, a mechanical systarh as the one of
Figure 2.2(a) can be substituted by an “equivalent” measrélement whose
modulusM can be found by using the rules for combining mechanical efem
In particular, for a one-dimensional mechanical model cosep ofn Maxwell
Bodies one would have the following expression for a GMB vdastic mecha-
nism

M(w) = My + Xn: iMwo (2.10)

where My and M, are the springs’ elastic moduli and = M,/v, being v,
the viscosities of the dashpots. The reader should notedethie convention of
summation for repeated indices will not apply to thadices in the present work.
Sums over? will be always shown explicitly. Now, by finding the value dfet
modulusM (w) for very high-frequencies

My = lim M(w) = Mg+ » M, (2.11)
/=1

and using the definition; = M,/M; one can find the final form of the one-
dimensional GMB rheology as

M) = My (1— Y ) . (2.12)

w W
= wet
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Figure 2.2: (a) Sketch of a Generalized Maxwell Body rheaabimodel.
Hooke’s elements (springs) are associated with an elastidutas M while
Stokes’ elements (dashpots) are associated to a viscouslusod (b) Com-
parison of an elastic and viscoelastic (GMB) responses tedhee strain input, a
boxcar time function from t=0.3to t=0.6s.

The GMB model, besides allowing for attenuation of the atagks, also fits the
non-instantaneous “relaxation” observed in experimesttadies with real rocks,
thus overcoming the non-causality problems of more prumithodels as the ones
described in Section 2.2. In Figure 2.2(b) we can observeg$monse in stresses
of a single Maxwell Body to a boxcar time function fram= 0.3s to ¢t = 0.6s,
which shows the characteristic exponential decay in trexegion function, with
no response happening before the beginning of the actuadlsig strain. For
this particular case, the full amplitude of the input sigisakcovered, as happens
for the instantaneous elastic model. The reason for thisasthe used boxcar is
much wider (.3s wide) than the characteristic time of the Maxwell mechanism
used. We have used in this example a mechanism wjite= 30, meaning that
aftertpg9 = log (0.01)/(—wy) ~ 0.15s a 99% of the maximum amplitude has
been recovered. If the boxcar would have been narrower trarvalue, the full
amplitude would not be recovered, thus resulting in an atigan of the expected
elastic response. It can then be seen that the attenuatiagibe of GMB models
clearly depends on the frequency of the pulses used, uriksic elastic models
which offer instantaneous responses.
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2.4 Anelastic Wave Equations

The extension of linear viscoelasticity to three-dimenalgroblems can be writ-
ten as

gi(w) = M;j(w)ej(w), (2.13)

wherel/;; is a matrix including complex, frequency-dependent visastee mod-
uli. The natural moduli for the case of isotropic viscodlast are the bulk mod-
ulus = K(w) and the shear modulys = x(w). However, given the fact that
the moduli are defined as linear functions, one can define nesulwhich are
linear combinations of the bulk and shear ones without |ég®perality. For the
isotropic case it can be a good choice to use the twod parameters = \(w)
andu = p(w) which fully describe the medium, and are related to the butklm
ulus by the expressioki = \ + 2/3 .

Using a GMB viscoelastic model consistingoMMaxwell bodies, the frequency
dependent Lag parameters read

n A

Aw) = N (1 - ; %) , (2.14)
n m

p(w) = p” (1 - ; %) ’ (2.15)

where\Y = lim, o, A(w) andp? = lim,, .., pu(w) are the unrelaxed Laénpa-
rameters as used in purely elastic media. TheandY}" are the anelastic co-
efficients to be determined ang are the relaxation frequencies of the different
mechanisms.

In general, given a viscoelastic modulus, e.g. the sheautsd(w), the quality
factor Q(w) is defined as (e.g. [63])

_ Re(u(w))
Qu(w) = T oL (2.16)

Inserting the shear modulygw) from Equation (2.15) into (2.16) leads to

n

20-1
Q;l(w) _ Z ww +w; 9, (W)Y;. 2.17)

2 2
w; +w
P ;T

Equation (2.17) can be used to fit agfw)-law [63, 101]. Observations show,
that the quality factog is approximately constant over a large frequency range of
interest for most geophysical applications. They proptsa, good approxima-
tions can be obtained by choosingelaxation frequencies,, ¢ = 1, ..., n, that
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equidistantly cover the logarithmic frequency range oéiast. They suggest to
use2n — 1 known value (@) at frequenciesy, k = 1,...,2n— 1, with&; = w,
andw,, 1 = w, and solve the overdetermined system in (2.17) for the atielas
coefficientsY;' by the least squares method. A more detailed discussioneof th
choice of frequency ranges and the corresponding sampiaggéncies can be
found in [68].

In practice, and corresponding to the seismic P- and S-walaeiies, one has
quality factorsQpr andQ that describe the different degree of attenuation for the
different wave types. Relations as (2.17) can be also foundrelastic coeffi-
cientsY,” andY}” for viscoelastic P- and S-wave propagation and read as

n

2N—1
Q) (wy) = > Wiy (w’“)Y; (2.18)

2 2 )
P w; +wj,

with v = P, S andk = 1,...,2n — 1. In the following, however, it is more
convenient to express the anelastic coefficients in terrttseof arré parameters
and, which are obtained by the transformation

QMU U
V= (1 57 )Y - V=Y (219)

following directly from Equations (2.14) and (2.15) as tk&tion of physical pa-
rameters, e.g. elastic parameters or velocities, correlspto the purely elastic
case due to the linearity of the expressions in (2.14) aridbj2.

The final step in determining the parameters\@f) and . (w) is getting knowl-
edge of the values of their corresponding unrelaxed moxfiland 1.V, as ex-
pressed in (2.14) and (2.15). To that goal it is common pradt have knowl-
edge of the values of the wave speegdsandcg at a given reference frequency
w,. Following [101], the phase velocities(w) andcg(w) can be obtained from
the corresponding moduli using

~1/2
= Re (MV—(W)> ] with v=P S (2.20)

p

cv(w)

wherel, (w) are the viscoelastic modull/p(w) = A(w)+2u(w) for the P waves

and Mg (w) = p(w) for the S waves, ands(w) andcg(w) are the wave velocities
for the P- and S-waves respectively. The unrelaxed valugiseaf moduli have

then the values [101]

R+ 06,

T (2.21)

MU,V = pci (WT>
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Figure 2.3: Dispersion example of the wave speed for GMB ldtges with 3

mechanisms for the P-wave (a) and the S-wave (b). The umelaglocities,

or velocities at infinite frequency, are not the same as thes @t the desired
frequency oR2.5Hz.

where
R=(02+03)"*,

@1_1—2 fl

— 1+ wr/wg)

Z ” wr/wg

= 1+ (wr fwy)?

(2.22)

This way the values ofV and;.V can be determined using (2.21), once the values
of Y,” have been obtained from (2.18). In Fig. 2.3 we show an exaompl®w the
dispersion curves look like for a case wittviscoelastic mechanisms. It can be
seen how the unrelaxed moduli are always larger than thase aeference fre-
guencyw,. This example uses the material properties of the apphieathown at
the end of the present Chapter.

A set of material-independent anelastic functions intoadlby Kristek & Moczo

[86] and Moczo & Kristek [99] can be used. They are defined enfthrm 9 =
(e, 9 0%, 9 0¢ 09 )T, and contain the time history of the strain through

zz) Yyyr Y2z YVayr Yyzr Yaz
B ¢
19?(75) :wz/ gj(r)e =) dr . (2.23)

Using (2.23) and applying the inverse Fourier transfornihewviscoelastic modu-
lus M;;, as presented in detail by Kristek & Moczo [86], the stretsais relation
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(2.13) can be written in the time domain in the form

045 = Askkéij + 2,[1,81']‘ — Z()\Yz\ﬁiké‘w + 2#3@'“1?5]) s (224)

(=1

with i, j, k € [z, y, z] and where),; is the Kronecker Delta and the Einstein sum-
mation convention applies. The viscoelastic constitutelation in (2.24) repre-
sents the elastic part minus the anelastic part dependirijeoanelastic coeffi-
cientsY;* andY}* and the anelastic functiorﬁ{j. The remaining problem is the
evolution of the anelastic functiongj in (2.23) in time. In fact, (2.23) is the
solution of the partial differential equation

a&g (t) + wed(t) = weej (2.25)

which completes the linear, hyperbolic system of the atielasve equations.
However, to express the equation system in the velocigsstformulation it is
convenient to redefine the anelastic functions in the fore (01])

v = —0° . (2.26)

Finally, using the equations of motion, the definition ofstre; and Equations
(2.24), (2.25) and (2.26) one can formulate the system cdtteéastic wave equa-
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wheren is the number of mechanisms used to approximate a frequadependent
Q-law andp is the density. Note, that each mechanism atifisther equations,
i.e. one for each stress component. Therefore, the systaimedburely elas-
tic three-dimensional wave equations consisting @quations increases liy:
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equations in the anelastic case, whemechanisms are used. Furthermore, the
anelasticity adds reactive source terms on the right hateddfi(2.27).

In the following, it will be assumed that the viscoelasticteral is described
with the same numbet of mechanisms throughout the computational domain.
Therefore, the notation will be identical as the one used iapdr 1 treating the
purely elastic case.

The above system (2.27) of, = 9 + 6n variables and equations can be written in
the more compact form

0Q, < 0@,
ot + Apg ox

.0 -
+ Cpq% = EpQq- (2.28)

. 0Q
+ By, ay"

Note, that the dimensions of the variable veepithe Jacobian matrice$, B, C

and the source matrik now depend on the numberof relaxation mechanisms.
To keep the notation as simple as possible and without logemérality, in the
following it will be assumed that the order of the variables(R.28) is such, that
p,q € [1,...,9] denote the elastic part anpdg € [10, ..., n,]|, denote the anelastic
part of the system as presented in (2.27). As the Jacobiaticesatl, B andC'

as well as the source matri¥ are sparse and show some particular symmetry
pattern and as their dimensions may become impractical dtation, a block-
matrix syntax will be used.

Therefore, the Jacobian matrices are decomposed as follows

y A0 . B 0 « c 0
(A0 a2 e[S 0] e

with A, B, C € R™*™ and whered, B, C' € R*? are the Jacobians of the purely
elastic part as given in [55]. The matricds, B,, C, include the anelastic part
and exhibit themselves a block structure of the form

Aa = 5 Ba = : ) Oa = s (230)

with A,, B,, C, € R*? and where each sub-matrix,, B,, C, € R*?, with
¢ = 1,...,n, contains the relaxation frequency of the /-th mechanism in the
form

-1

o O O

Ag = Wy * s (231)

O OO O oo
SO OO oo
SO OO OO
SO OO oo
SO OO OO
SO OO OO
SO OO O
o O |
N
o O O OO

N |=
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000000 0 0 0
000000 0 -1 0
000000 0 0 0

Be=wel g 00000 -2 0 o | (2.32)
000000 0 0 -3
000000 0 0 0
000000 0 0 0
000000 0 0 O
000000 0 0 -1

o=@l 900000 0 0 0 (2:33)
000000 0 -2 0
00000O0-% 0 0

The matrixE in (2.28) representing a reaction source that couples takastic
functions to the original elastic system can be decomposed a

o { 8 g } € R, (2.34)
with E of the block structure
E=1E,..., E,) € R (2.35)

where each matrix, € R**%, with ¢ = 1, ..., n, contains the anelastic coefficients
Y;* andY}/' of the ¢-th mechanism in the form

PYP MY} AYA 0 0 0
YD PYS A} 0 0 0
AY) AY) PYP 0 0 0
0 0 0 2u} 0 0
E,=—| 0 0 0 0 2uY 0 (2.36)
0 0 0 0 0 2uyt
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

where it has been defindd = )\ + 2u. The matrixE’ in (2.34) is a diagonal
matrix and has the structure
E} 0
E = € RO<6n (2.37)
0 E!
where each matrix), € R%*6, with ¢ = 1, ..., n, is itself a diagonal matrix con-

taining only the relaxation frequency, of the /-th mechanism on its diagonal,
i.e. B, = —w, - I with I € R%%6 denoting the identity matrix.
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2.5 The Numerical Scheme

Using the expanded Jacobians defingd? andC' as well as the source matrix,
the ADER-DG scheme looks identical to the one described in @ndpfor the
elastic case (1.66), just with the addition of the reactemmt Its full expression
has the form

[(ngn))nﬂ - (%ﬁ)ﬂ || My +

+ 52 (A @5,2”) IS F L (A2) (QU) "+
) i )
= Al Kﬁl Lamn (At) (an> - B;q |1 K - Tgimn (A) (Qm>n -

= Cog WKy Luma(B0) (Q88) = 171 By L 58) (@) M

It can be seen that the total number of unknowns in the viastielcase now
depends on the number of relaxation mechanisrasdp, ¢,r,s = 1,...,n,. AS
in Chapter 1,M,, is the mass matrixF},”, F;;7*" are the flux matricesk’,,
K], and K}, are the stiffness matrices ag,,,(At) is the tensor responsible for
the high-order time integration over one time st&p A’ , B, andC;, are the
Jacobian matrices transformed into the reference tetrah&g. Furthermore|.J|
is the determinant of the Jacobian matrix of this transfdionaand|.S;| denotes
the area of thg-th face of tetrahedrof (™).

If the viscosity matrix9,, is associated to the Godunov-type fluxes, thep |
will have to be redefined in the viscoelastic case.

Similarly to (2.29) it is found that

A |A| 0 Ty XNy
A|:{A| o | ERM (2.39)

where|A| € R2*? is identical to the one of the purely elastic part seen in dsé |
Chapter and has the form

¢, 00000 00 0
)\U/(Cpp)()() 000 0 0 O
AV/(e,p) 00 000 0 0 0
0 00¢ 00 0 0 O

4| = O 000O0O0TO0OTO0OO [, (2.40)
0O 000 O0c¢ 0 0 O
0 000O0GO0G&¢ 00
0O 00000 0 ¢ O
0 00000 0 0 c
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with ¢, = ,/% andc, = ,/% representing the P- and S-wave velocities of
the unrelaxed purely elastic material.

The matrix Al includes the anelastic part and exhibits itself a blockcstne
similar to that in (2.30) of the form

A
Al =1 | e R™, (2.41)
Al
where each sub-matrix) € R®*9, with ¢ = 1, ..., n, contains the local unre-

laxed material parameters and the relaxation frequenayf the /-th relaxation
mechanism in the form

) 00 0 0 0 000

O 00 0 0 0 000

o O 00 0 0 0 000
Ap =we 0 00 1/(20) 0 0 0 0 0 (2.42)

0o 00 0 0 0 000

0 00 0 0 1/(2cp) 0 0 0

Similarly, the rotation matrixfgq in (2.38) needs to be enlarged. Skipping the
index j for the j-th face of a tetrahedral element, and recalling that théaane
tic functionsv’ are tensors like the stresses the rotation matyjxfor the full
anelastic system in (2.38) has the form

T 0 0
T=|0 10 0 | e Rwx™ (2.43)
0 0 T,

whereT" € R®*¢ js the rotation matrix responsible for the stress tensatiat
as in the purely elastic part and is given as

2 2 2

n; 55 iz 2N4Sy 28t 2n,t,
2 2 2

ng Sg t%’ 2nys, 25ty 2nyt,

n; 5% s 2n,s, 2s,t, 2n,t,

,(2.44)

NyNy  SySe tyle MNySy + NSy  Sylte + Sgly nyty + ngty,
NNy S8y Lty NSy +nys. S.t,+ syt, n.t, +nyt.
NNy 828z lily NuSy +NpSy Sily + 8zl Nty +Nals

with the components of the normal vectoe= (n,, n,, n,)" and the two tangential
VeCtorss = (s,, s,,5.)" andt = (t,,t,,t.)".

The matrix7¥ € R3*3 is the rotation matrix responsible for the velocity vector
rotation as in the purely elastic part and is given as

=1 n, s, t . (2.45)
Y Yy Yy
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The matrixT, in (2.43) is a block diagonal matrix and has the structure
T 0
T, = e RO (2.46)
0 T

where each of the sub-matrice§™ is the tensor rotation matrix given in (2.44).
Using the symmetries of, | A| andT" and the particular composition of the source
term matrix £ as given in Equations (2.34 - 2.37), one can separate theyfsH|
temin (2.28) into two parts. The firstequations will be called thelastic part
and the remaining equationi® to n, the anelastic part Therefore, the fluxes
and volume integrals appearing in the discrete formulatibthe Discontinuous
Galerkin approach in (2.38) can be computed separatelyafcin part. Further-
more, the computation of the flux and stiffness contribigiohthe anelastic part
can be reduced t6 instead of6on, as for each mechanism the corresponding ma-
trices remain the same. Only the multiplication with theaxaltion frequency,
depends on thé-th mechanism. However, both parts are still coupled via the
Cauchy-Kovalewski procedure of the ADER time integratioprapch and the
source terms? in (2.28).

In the following Section 2.5.1 we present in detail, how thasipling is accom-
plished with a new, more efficient time integration approacbrder to replace
the costly multiplication with the four-dimensional tendg,,,,,(At) in (2.38).

2.5.1 The ADER Time Discretization

One could use a similar algorithm as presented for the elaste in Chap-
ter 1 to compute the Cauchy-Kovalewski procedure expliaigyng the tensor
Luqgm (At), but for huge systems expressed through (2.28) that arise whing a
large number of relaxation mechanisms, this approach wmeitdo slow because
of the many matrix-matrix multiplications involved. Théwee, in this Section we
present a different approach that turns out to be equal tpringous one, how-
ever, itis much faster. The unrolled recursive algorithrsaded in the following
becomes especially efficient because the mattigesB,,, C,, and £, are usu-
ally very sparse as shown in Section 2.4.

As in Chapter 1, one first writes the governing PDE (2.28) inrdference system
as

0Q, «, 0Q, -, 0Q, -, 0Q, -
atp + Az, 8£q + B, 8nq +C, 85 — E, Q, =0, (2.47)
with
A;q = qua_i + qug_y + Cpq% )
B;q - qug_z + qug_z + Cqu% ) (2.48)
O;q = qu% + qua—i + Cv’pq% :
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In contrast to the approach in Chapter 1, one now immediatelggts the modi-
fied governing equation (2.47) onto the DG basis functiomsiaserts the spatial
DG approximation. As a result we obtain

(@0, @) 5Qu(t) + (@0 %) A5 Qult) + (@1, 52 ) By Qu(t)+
) o (2.49)
(@4, 52 O Quit) = (@, B1) EpgQqi(t) = 0

where(a,b) = [ a-bdV denotes the inner product over the reference tetrahedron
TE
7. Equation (2.49) can be reformulated using the definitidrtk® mass matrix

My, = (O, ®,), the stiffness matrice&’s, = <8‘I”“ <I>l> K} = <&7@z> and

K,ﬁl = <a‘bk <I>l>, as seen in equations (1.42-1.47), and the Kronecker syépbol
as follows:

9 Qlt) =

(2.50)
_ ( le A* 1K77 B* Mn_leleO;q —+ 6nlqu> qu(t) .
Equation (2.50) is a system of ordinary differential eqoiagithat governs the time
evolution of the degrees of freedof,,(¢) without taking into account effects
from the element boundaries. However, it can be used in dadestimate the
time evolution during one time step. The-th time derivative ofQ),,(t) is then
given recursively by

am
ofm Qpn( ) =
(2.51)
_ ( M KE AR, — M KB, — M KSCr + 5TLlqu) 2 Qut),
for all m > 1. The Taylor series for the degrees of freedom
N
Qpn(t) = mz::() ol o Qpn(t") | (2.52)

can be integrated analytically in time, and witlt = t"*! — ¢" the following
result is obtained:
tn+l

A m—+1 am .
/ Qpn dt ( ! )' otm Qpn(tn) : ]pnql(At) qu(tn) : (253)

Equation (2.53) together with (2.51) can be seen as a des@aichy-Kovalewski
procedure for the system (2.47). Due to the linearity of theegning system,
this new approach is equal to the use of the four-dimensiemaslor as presented
previously in Chapter 1.
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Table 2.1: Evolution of the computational effort with respt® the purely elastic
case { = 0) with increasing number of mechanismdor ADER-DG schemes
from second- to sixth-order.

02]1.00|139|146|154|1.65/1.78/1.90|1.99|2.11| 2.17| 2.31
03 ]1.00|152|1.67|1.82|1.98|2.13|2.28| 2.44| 2.61| 2.75| 2.91
041100 1.721191| 205 2.26| 2.44| 2.65| 2.83| 3.04| 3.21| 3.41
O5]1.00|1.84|204| 223 245|2.68|2.91|3.08| 3.29| 3.53| 3.73
06 |1.00|191|2.13|2.32|253|2.78| 3.01| 3.20| 3.43| 3.64| 3.84

2.6 Quality factor Approximation

Itis usual, for practical problems, to aim at modeling a diecasistantQ value at
the frequency range of interest. However, the GMB mechasisinow a strong
dependency with the frequency and one has to tune up the &eanpters to
obtain the desired approximated value, as shown in detail in (2.18). Using a
larger amount of mechanisms improved the fit between theeatksind the ap-
proximatedQ values, but they also increase dramatically the compunaticosts.
Therefore, it is necessary to perform an analysis of theceti€adding further
mechanisms, both in the quality of the fit and in the compaoitei requirements.
The additional CPU time requirements when different ordérscouracy of the
ADER-DG schemes are used in combination with an increasingpeu of such
mechanisms is further analysed. Fig. 2.4 shows, how a aun&daw can be
fitted by using (a2, (b) 3, (c) 5 or (d) 10 relaxation mechanisms on a frequency
band of(0.1, 10)Hz. It must be pointed out, that following [63] alreadyelax-
ation mechanisms approximate a constant, frequency-emEmtQ-law with a
maximum deviation of around%. Using only2 relaxation mechanisms seems
to be a too rough approximation wherégasr more mechanisms already lead to
a Q-law approximation which might not even be necessary in mases. The
influence of the number of used relaxation mechanisms omsegimams recorded
for an anelastic subsurface model is studied in Section 2.8.

Table 2.1 shows the increasing CPU time, when the numlzdrmechanisms is
increased. The CPU times are normalized with respect to tredypelastic case,
where no attenuation is incorporated, i.e.= 0. Recall, that3 mechanisms,
as typically suggested in the literature e.g. by EmmerichdrK[63] or Moczo
et al. [98], only increase the computational effort between adiaof 1.46 and
2.32 depending on the order of the used ADER-DG scheme. This efbgies
quite remarkable, in particular, as the anelastic funstior. the anelastic part
of (2.28) as described in Section 2.5, are treated with thees@dull) order of
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Figure 2.4: Approximation of frequency independéhifactors using (a2, (b) 3,
(c) 5 or (d) 10 mechanisms on a frequency band @fl, 10)Hz.
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accuracy. The results of a convergence study in the follgu@ection 2.7 confirm
that this way the scheme maintains its high-order approkangroperties.

2.7 Convergence Study

In this Section we present the results of a numerical comrerg study to con-
firm the very high accuracy of the proposed ADER-DG method trahedral
meshes considering viscoelastic attenuation. Here we sbsults from second-
to seventh-order ADER-DG schemes, which are denoted by ADERZR to
ADER-DG O7, respectively. Furthermore, the proposed ADER-DG schemes a
tomatically obtain the same order for spaceltime.

To determine the convergence orders, the three-dimensersmic wave equa-
tions (2.27) with viscoelastic attenuation are solved euhit-cube, i.e. in a com-
putational domaif2 = [—1,1] x [-1,1] x [-1,1] € R3, as sketched in Fig. 2.5.
Periodic boundary conditions are used at the boundari€s ®he homogeneous
material parameters are set to

A=2, p=1, p=1, Qp = 20, Qs = 10, (254)

throughout the computational domé&ih The O-factors are assumed to be fre-
quency independent over the frequency bénd, 10) Hz. A total of 5 relaxation
mechanisms are used, as introduced in Section 2.4, whichttea satisfying
approximation of a constar@-law as shown in Fig. 2.4(c). These material prop-
erties introduce damping and dispersion of the P- and Ssvave

For the convergence test 2 initial conditions are used. ©peesents a plane P-
wave traveling along the space diagorak (1,1,1)7 of the domain2 and the
other represents a plane S-wave traveling in oppositetdireas already shown
in [55]. The total simulation timd" is set to7" = 0.1s. The CFL number is set
in all computations ta” = 0.5 of the stability limit 21\/1+1 of Runge-Kutta DG
schemes (see (1.67)). For a thorough investigation of tieati stability proper-
ties of the ADER-DG schemes based oroa Neumanstability analysis see [53].

In the following we explain in detail how the initial conditi and the analytic
solution for the convergence test problem are found. It mkm e.g. from [107],
that the analytic solution to the plane wave problem hasdha f

Qp(x,y, 2,1) = Qp - "W hermhow=hed) o =1, (2.55)

Wherng is the initial amplitude vectot, the angular frequency to be determined
and

k= (kg ky, k)T = (m,m,m)7 . (2.56)

is the wave number vector. Equations (2.55) and (2.56) leadpteriodic, plane
sinusoidal wave in the unit-cul§ewith the wave front perpendicular to the cube’s
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Figure 2.5: Sequence of discretizations of the computatidomain(? via reg-
ularly refined tetrahedral meshes, which are used for theenigal convergence
analysis.

space diagonal.

In the following we briefly explain how the angular frequessti are determined:
With the assumption, that (2.55) is the analytic solutiorth&f governing equa-
tion (2.28), the first time and space derivatives of (2.58)aaiculated analytically
and inserted into (2.28). From there, we can derive an eigéigm of the general
form M v = av. Here, in particular, we obtain

(qukx + quky + équz —i- qu) ) Qg =W Q2> p,q=1,..,n, (2.57)

Solving an eigenproblem means finding theigenvalues:’) and eigenvectors
oY), j = 1,...,p, of the square matrix/ € RP*?. In the present case of (2.57),
one needs to find the eigenvalue@ and the matrixR,, of right eigenvectors

A0 ) e R withp =1,

It is a known fact [133], that the solution of a linear hypdibeystem, as e.g.
in (2.28), is given by a linear combination of the right eigectors. Therefore,
the analytic solutior®),(z, y, 2, t) in (2.55) can be written aQ,, = v, - R,,. The

coefficientsy, can be computed via, = R_'Q°. Now, the analytic solution

qp vp
Qp(z,y, 2, t) of the convergence test problem can be synthesized in the for

(x,y,2,t) Zl/] ) i (@) t—koz—hkyy—k:2) p=1,...n,. (2.58)

In the special case of the initial condition used here, wbereplane P-wave trav-
els along the space diagonak= (1,1,1)T and one plane S-wave travels in the
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opposite direction, only two right eigenvectors are needdte initial condition
for the convergence test problem is therefore given by j2iS8g the two right
eigenvectors’” andi”, i.e. v, = vy = 1 and zero otherwise.

To determine the convergence orders, the solution of the2 samvergence test
problem is calculated on a sequence of tetrahedral mests®as in Fig. 2.5.
The mesh sequence is obtained by dividing the computatdo@iain into a
number of subcubes, which are then subdivided into fivetietteons. It must be
remarked, that this subdivision leads to four equal tettedres with 1/6 of the
cube’s volume and one regular central tetrahedron of 1/8@fcube’s volume.
This way, the refinement level is controlled by changing theber of subcubes
in each space dimension.

Now, one can arbitrarily pick one of the variables of the vec}, of the seis-
mic wave equations (2.28) to numerically determine the eagence order of the
used ADER-DG scheme. In Table 2.2 we show the errors for tharstteess
component,.. The errors of the numerical solutigp, with respect to the exact
solution@. obtained from (2.58) is measured in th&’-norm and the continuous
L?-norm

ESs = 1Qn — Qell sz = (/Q O — Q2 dv> 3 (2.59)

where the integration is approximated by Gaussian integrathich is exact for a
polynomial degree twice that of the basis functions of theerical scheme. The
L*°-norm is approximated by the maximum error arising at anyne$é Gaussian
integration points. The convergence orders are then cadghtough

Op = log<§§; )/log(h?:) : with v=200, (2.60)

where h® indicates the mesh spacirigof mesh number in the sequence of
meshes.

The first column in Table 2.2 shows the mesh spadingpresented by the max-
imum diameter of the circumscribed spheres of the tetraimsdrThe following

four columns show the.>® and L? errors with the corresponding convergence
ordersO;~ and O determined by successively refined meshes. Furthermore,
the total numberV, of degrees of freedom is presented, which is a measure of
required storage space during run-time and is given thrdbglproduct of the
number of total mesh elements and the numeof degrees of freedom per ele-
ment. N, depends on the order of the scheme, i.e. the deyreéthe polynomial
basis functions viaV.(N) = (N + 1)(N + 2)(N + 3). In the last two columns

is given the numbefr of iterations and the CPU times in seconds needed to reach
the simulation tim&” = 0.1s on one Pentium Xeoh6 GHz processor withGB

of RAM.
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Table 2.2: Convergence rates of velocity componeritthe ADER-DGO2 up to
ADER-DG O7 schemes on tetrahedral meshes with viscoelastic attenuati

| h ] L Or= | L2 Op: | N, | I]|CPUJs]]
1.08-10° T [5.8094- 1073 — [4.8622-107° — 81920 | 24 67
7.21-1072 [ 2.5990 - 1072 2.0 | 2.1265-107% 2.0 | 276480 | 36 341

541-1072 | 1.5287-107% 1.8 | 1.1775-107% 2.1 | 655360 | 46 1043
4.33-107%]9.6624-107* 2.1 | 7.4891-10"* 2.0 | 1280000 | 58 2546

2.16-107! | 5.1803-1073  — | 3.2846-107% — 25600 | 20 12
1.08-1071 | 6.1874-107% 3.1 | 3.4224-10~% 3.3 | 204800 | 38 175
7.21-1072 | 1.6487-10"* 3.3 | 1.0294-10"%* 3.0 | 691200 | 58 857
5.41-1072 | 7.9007-107> 2.6 | 4.2568-10~° 3.1 | 1638400 | 76 2708
2.16-107% | 5.4011-107* — |3.2609-10"* — 51200 | 28 35
1.44-107% | 1.4012-107* 3.3 | 5.7198-1075 4.3 | 172800 | 40 168
1.08-107% | 4.3978 - 1075 4.0 | 1.7152-107°5 4.2 | 409600 | 54 504

7.21-1072 1 9.0642-1075% 3.9 | 3.2404-107% 4.1 | 1382400 | 80 2514

4.33-1071 [ 1.8736-1073 — [8.2689-10* — 11200 | 18 7
2.16-1071 | 7.6374- 1075 4.6 | 2.2952-107° 5.2 89600 | 36 98
1.44-1071 1 9.2562-107% 5.2 | 2.8210-107% 5.2 | 302400 | 52 482
1.08-107% | 2.4829-107% 4.6 | 6.5480-10"7 5.1 | 716800 | 70 1483
8.66-1071|22965-1072 — |55321-107% — 2240 | 12 1
4.33-1071 | 3.4744-107* 6.0 | 9.2044-107° 5.9 17920 | 22 17
2.16-1071 | 6.4859-107% 5.7 | 1.3871-107% 6.1 143360 | 42 259
1.44-107% | 5.8794-1077 5.9 | 1.1658-1077 6.1 | 483840 | 64 1318
8.66-1071 | 4.4014-10% — | 1.3209-107% — 3360 | 14 3
4.33-107' | 4.7643-107° 6.5 | 1.2218-107° 6.8 26880 | 26 43
2.88-1071 | 3.2770-107% 6.6 | 5.8054-1077 7.5 90720 | 38 213

2.16- 1071 | 4.4764-1077 6.9 | 7.6709-107% 7.0 | 215040 | 50 673
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Mesh Spacing Degrees of Freedom Computing Time
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Figure 2.6: Convergence rates of velocity componesitTable 2.2. The symbols

P1-P6 stand for the maximum polynomial degree of the basigtifons used. The

L error is plotted versus (a) the mesh spadingb) the number of degrees of
freedom/N, and (c) the CPU time.

In Fig. 2.6 one can visualize the convergence results ofeTald to demonstrate
the dependence of the™ error with respect to (a) mesh width (b) number of
degrees of freedony, and (c) CPU time. With mesh refinement, the higher-order
schemes converge faster towards the analytic solution @srsin Fig. 2.6(a).
Furthermore, Fig. 2.6(b) illustrates that higher-orddresnes reach a desired ac-
curacy requiring a lower number of total degrees of freeddhe total number of
degrees of freedom is the product of the number of mesh elsraad the degrees
of freedom per element. Therefore, obviously the increpsumber of degrees of
freedom per element is over-compensated by the dramatiease of the number
of required elements to reach a certain error level. The CRld tomparisons
in Fig. 2.6(c) also illustrate that higher accuracy, i.e.aler errors, are reached
in less computational time when using a higher-order ADER<428eme. In all
three plots of Fig. 2.6 we can clearly see, that for very higtuaacy, the higher-
order schemes pay off due to their superior convergencespiep.

2.8 Application Example

A similar problem setup to that used in Section 1.8 is usechexk the perfor-
mance of the viscoelastic ADER-DG method. This setup wagyqeed in the
SPICE Code Validation (www.nuquake.eu/SPICECVal) and deeeldyy Peter
Moczo, Jean Paul Ampuero, Jozef Kristek, Steven M. Day, avtirKristekova,
Peter Pazak, Heiner Igel, Renata Tothova, and Martin Gahe. pfoblem itself,
named WP1-HSP2a (Wave Propagation, Homogeneous SpaceeMistic) aims
at assessing dispersion errors and local errors at diffelistances and propaga-
tion directions. The medium is described in Table 1.3, arstrngly attenuative.
The seismic source, computational domain and receivetiposiare identical
to those in problem WP1-HSP1la of Section 1.8. The same medt ttus be
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re-used (see Fig. 1.5). The frequency window expected m 0dl3Hz to 5Hz
and the receivers are at a maximum distancé0o00m from the source. An
ADER-DG 06 scheme was used, meaning that polynomials‘ofdegree were
used to describe the unknowns, including the anelastic amsims. To describe
the attenuation, a total of 3 Maxwell Bodies were used to caveandwidth of
100Hz, centered a2.5Hz. The dispersive curves associated to this mechanism
for the material parameters of the present problem havadrbéeen shown in
Figure 2.3. A total 0623, 920 elements were used. The simulation lastedsfior
hours in128 Intel Itanium2 1.6GHz processors. A local timestepping&ethm is
used to save computational time, as is briefly outlined irtiSed.5.4, thus con-
centrating the computational load in the small tetrahedith® area of interest.
The numerical results are compared to Discrete Wave Nunib&N) solution.
The resulting seismograms are shown in Figures 2.7, 2.8 @&td@ether with the
root mean square error (r.m.s) between the ADER-DG numesatation and the
DWN solution. This r.m.s. misfit is computed through

B=3 (s =% D _(s5)% (2.61)

wheren, is number of time samples of the seismogramis the numerical value
of the particular seismogram at sampland s} is the corresponding analytical
value. Notice that the numerical results are totaihfilteredandunscaled The
accuracy is further assessed using the concepts of phafseamisenvelope misfit
described in [87]. For the present case, a purely analgaation is not available
and therefore the DWN solution is used as a reference. Daspiteeing a purely
analytical solution, it is often used as a reference becalube accuracy of its re-
sults. The ADER-DG method’s performance can be seen in TableP2Zoblems
arise at receivers 3, 6, 9 and 12, the farthest receivershvdrie all equidistant
to the source. At such receivers, a spurious pulse appearsad3.9s in the
DWN solution which further pollutes the error estimationhistcomparison. The
overall maxima of the errors aB6% and1.1% for the envelope and phase mis-
fits respectively, comparable to the results obtained ini@e2.3 for the purely
elastic case and having in mind that DWN is also producing aicgies in the
order of those produced by ADER-DG.

2.9 Conclusion

The incorporation of realistic attenuation of seismic vwsaiwgo the new ADER-
Discontinuous Galerkin (ADER-DG) schemes using viscomlasaterial has been
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Table 2.3: Material parameters for the WP1-HSP2a test cast, that attenua-
tion will cause dispersion of the P- and S-waves such thagithen wave speeds
refer to a reference frequengy = 2.5Hz.

L (fIm/s] | es(fr)lm/s] | pllg/m?] [ Qp | Qs |
| 6000 | 3464 | 2700 |60 |30 |

Table 2.4: Envelope and phase misfitsVinfor WP-HSP2a against a reference
solution.

T Y z MaxXpg)
Rec.| EM PM ‘ EM PM ‘ EM PM| EM PM
1.7 02102 001]02 007 17 0.2
1.3 03102 00]01 009§ 13 0.3
1.9 07101 00]01 00|19 0.7
14 02113 01]10 06114 0.6
1.1 0213 02]05 001 1.3 0.2
1.8 05126 11|13 08 26 1.1
1.1 0213 02]12 02|13 0.2
08 02108 02|12 03|12 03
1.2 04112 04|17 06 1.7 0.6
1.6 0211 01]05 01116 0.2
08 02|12 03|08 02|12 03
1.0 02120 07]10 04120 0.7

— =
NS ©00 0 Utk W~
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r—component

y—component

71

z—component

E =0.0080323 E=Inf E = Inf
40 Receiver 1
0 1 4 5 1 2 3 4 5 [ 1 2 3 4 5
4
E = 0.00094954 E=Inf E = Inf
3
2
1
-1
-2
-3
Receiver 2
-4
0 1 4 5 1 2 3 4 5 0 1 2 3 4 5
E =0.0014185 E=Inf E = Inf
-1
Receiver 3
0 1 4 5 1 2 3 4 5 0 1 2 3 4 5
40
E =0.00061415 E = 0.00063662 E = Inf
30
20
10
0
10
20
30
Receiver 4
40
0 1 4 5 1 2 3 4 5 0 1 2 3 4 5
1]
o8l E =0.00072358 E =0.00076916 E = Inf
0.6
0.4
02
0
-02
-0.4
-06
-0.8
Receiver 5
-1
0 1 4 5 1 2 3 4 5 0 1 2 3 4 5

Figure 2.7: Seismograms showing particle velocities fer ADER-DG (solid)
and analytical solution (dotted) for receivar® 5. The three columns correspond
to thex—, y— andz— components. The residuals (dashed) and the r.m.s drrors

are shown.
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r—component y—component z—component

E =0.0012595 E =0.0022655 E =Inf

Receiver 6

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

E =0.0013586 E =0.001812 E =0.0051586

Receiver 7

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

m

=0.00085295 E =0.0011842 E =0.00080854

V| BV

Receiver 8

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

m

=0.001474 E =0.0015235 E =0.00096662

Receiver 9

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

E =0.0007022 E =0.0023082 E =0.0050031

Receiver 10

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

Figure 2.8: Seismograms showing particle velocities fer ADER-DG (solid)

and analytical solution (dotted) for receiverdo 10. The three columns corre-
spond to ther—, y— andz— components. The residuals (dashed) and the r.m.s
errorsE are shown.
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r—component y—component z—component

E =0.00060045 E =0.00095813 E =0.00092714

E = 0.00069837 E =0.0014616 E =0.00099314

-0.4] Receiver 12

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

Figure 2.9: Seismograms showing particle velocities fer ADER-DG (solid)

and analytical solution (dotted) for receivarsto 12. The three columns corre-
spond to ther—, y— andz— components. The residuals (dashed) and the r.m.s
errorsk’ are shown.

presented. The additional variables, the anelastic fonstican be treated simi-
larly to the elastic ones in the case of viscoelastic mdtefiaerefore, the linear
hyperbolic system of the seismic wave equations increagbgive number of re-
laxation mechanisms and includes source terms resulimg fine approximating
viscoelastic material behaviour by a Generalized MaxweliyBoHowever, the
introduction of a new Cauchy-Kovalewski procedure for thghhorder ADER
time integration results in a more efficient implementatowl therefore does not
increase the computation time dramatically when incorpogiaviscoelastic atten-
uation. The convergence results demonstrate the highawgcof the ADER-DG
schemes on tetrahedral meshes. In addition, the detaitedtigation of the re-
quired number of relaxation mechanisms agrees with theestigags in the liter-
ature, which suggests mechanisms as sufficient for the accurate incorporation
of realistic attenuation. The solution of a demanding test the comparison
of the obtained results against quasi-analytic solutid@arly shows the remark-
able accuracy of the ADER-DG method. Therefore, the proposettiod repre-
sents a new numerical scheme simulating seismic wave patipagvith unprece-
dented accuracy on unstructured three-dimensional efrahmeshes thoroughly
including realistic attenuation due to viscoelasticity.






Chapter 3
Anisotropy in ADER-DG Schemes

In this Chapter, the ADER-DG method is extended to model theoamipic ef-
fects on the seismic wavefield. The origins and seismolbgipplications of
the anisotropic rheology are introduced in the first part.e Tinodifications of
the ADER-DG method to treat anisotropic material are themstigated, with
special attention to the coupling of anisotropic and visastee material effects,
which often is not mentioned in the literature. Convergemststwill show the
high-accuracy properties of the developed scheme and & agpbcations will
further validate it by direct comparison with analytic dsdns and others pro-
duced with the Spectral Element Method. The main conterttsi®Chapter have
been published in J. de la Puente, Magér, M. Dumbser and H. Igel [50].

3.1 General Overview

The properties of anisotropic materials show differentigalwhen measured in
different directions. For seismic waves, this means thaewavill travel at differ-
ent velocities for different directions. Furthermore, godarization of the particle
motion is in general not anymore purely parallel or perpeundr to the direc-
tion in which the energy propagates. Furthermore, anipgta@ an ubiquitous
phenomenon for seismic waves. For rocks, anisotropy caither @ microscop-
ical anisotropy, due to the crystalline symmetries of theki® constituents, or
macroscopical, being most common the case of finely layeredacked mate-
rials which, macroscopically, behave as homogeneous taoiso materials. A
number of regions in the Earth show clear anisotropic pteggerSome examples
of such regions are the basaltic ocean bottom and the D”.layer

In the past, many approaches describing anisotropic wagagation have been
developed. Early attempts aimed at the simplification o§a@tnopic effects for
some weakly anisotropic media [124, 130]. Analytical andsitanalytical so-
lutions of simplified cases exist and ray theory can handieptioblem to some
extent [35]. However, when heterogeneous materials anglesngeometrical

75
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structures are involved only three-dimensional full wéeen simulations are
able to address the problem. The most widely used methodrittiee Differ-
ence (FD) method, has successfully been extended fronoso§93, 136, 137]
to anisotropic problems using staggered [73, 104] or rdtstaggered grids [117].
However, both approaches are forced to interpolate strebstaain off-diagonal
values as they are not defined in the same grid points. Psgectosl (PS) meth-
ods [34, 65, 72, 129] have been extended to handle anisotropterial [31,
71, 128]. More recently, the Spectral Element Method (SE&Y bonsiderably
gained in popularity due to its accuracy and efficiency omdeéble hexahedral
elements [82, 85]. The method has been further developegdrédiems with
anisotropic material [80, 108] and successfully been apgb the case of global
seismic wave propagation [81]. Recent attempts to incotp@an@sotropy on fully
unstructured grids [66] represent an alternative approach

In the present Chapter we present an extension of the ADER-D@nse to
anisotropic material. Special attention will be given toeleping an exact flux
of the Godunov-type and the coupling of anisotropy and \etxsiic attenuation.
The resulting scheme keeps the high-order properties afriggnal ADER-DG
scheme and is able to model the most general triclinic amipimt case on com-
pletely unstructured tetrahedral meshes.

3.2 Elastic Anisotropy

The most general, linear and elastic stress-strain relai@m be expressed as a
tensorial constitutive law (Hooke’s Law), see e.g. [107the form

Oij = Cijkl€kl » (3.1)

The entries of the fourth-order elasticity tensgy; can be reduced to a maximum
of 21 independent real coefficients in the most general case daygrimetry con-
siderations. Using matrix notation, the stressgsand straingy, are defined as
the arrays’ = (0uu, Oyys Oszy Oyzy Ouny Ouy)’ ANAE = (€4, s €22y Eyzy Euny Eay) . s
so that one can rewrite (3.1) using an anisotropic elastitcixna/;; as

which extended in more detail reads as

Oz i1 Cci2 €13 2c14 2¢15 26 Exx

Oyy Cla Caa Co3 204 2025 206 Eyy

O | _ | C13 C23 c33 2031 2c35 2c36 Ezz (3.3)
Oyz Cla Coq C34 2044 2¢45 2cye Eyz | '
Ozz C15 Co5 C35 2045 2Cs5 2Cs6 Exz

Ozy Cl6 Co6 C36 2C46 2Cs6  2Ce6 Exy
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Whenever a material possesses more thamependent parameters defining the
entries of)M;;, the material’s properties depend on the direction and tatenal

is said to beanisotropic Considering alk1 independent coefficients if/;; a tri-
clinic material can be modelled, which is the most geners¢ @ anisotropy and
includes as special cases all other crystalline symmeassels, i.e. monoclinic,
trigonal, tetragonal, orthorhombic, hexagonal, cubicianttopic, see [106, 109].
The most important for seismic purposes are the followiray.rkonoclinic mate-
rials, considering a symmetry plage, z), one has

C11 Ci12 (13 0 2¢15 0

cig Cp c3 0 2c5 O

L. C13 C23 (33 0 2035 0
Mmonoclinic= 0 0 0 2w 0 2 |° (3.4)

ci5 Co5 c35 0 2c55 O
0 0 0 2046 0 2666

for an orthorhombic material is obtained

11 C12 (13 0
Cl2 C22 Ca23 0
0

o O O

C13 C23 C33

o O O O

Morthorhombic™= 0 0 0 24 0 ’ (3.5)
0 0 0 0 2055 0
0 0 0 0 0 2666
and, finally, for a transversely isotropic material holds
ci ci2 ¢z 0 0 0
ciz2 ¢ ¢z 0 0 0
. . Ci13 C13 C33 0 0 0
Myans.iso=| 0 0 0 2c4 0 0 , (36)
0 0 0 0 2cs5 0

0O 0 0 0 0 c¢11—c12

Therefore, isotropy can be understood as the particulay; gas/hichcy;; = o =
C33 — A + 2#, Cl2 = (C13 — C93 = )\, Cqqg = Cs5 = Co6 = W and a" Other
coefficients are equal to zero. In addition, the entries efrtratrices)/;; just
shown will change depending on the Cartesian referencemsysied to describe
them, with the notable exception of the isotropic case, Wisctotally invariant
under reference system rotation, hence its name. To vigsualisotropic behav-
ior for wave propagation, in Figure 3.1 one can see examgléiseofour most
important symmetry classes for anisotropic materials. fldneres show veloc-
ities for the compressional waves, using as example mitariasaverde clay
(transversely isotropic, values taken from [130]), oleviforthorhombic, values
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78

Orthorhombic

Transv. Isotropic

-2

-15

2 2

Triclinic

Monoclinic

Figure 3.1: Examples of velocity surfaces for materialshaf4 most frequent
anisotropic symmetry classes in seismology. All figuresadpe highest wave

velocities at each propagation direction. The figures haenlyenormalized to

show velocityl at the slowest directions ar2dat the fastest directions, to enhance

the anisotropic structure.
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from [64]), diopside (monoclinic, values from [2]) and loWbde (triclinic, values
from [20]).

Seismic waves traveling through anisotropic material mihpagate at different
velocities depending on their propagation direction arddblarization of the par-
ticle motion associated. Thus a commonly observed phenomenthe Earth’s
interior is that of an S-wave propagating through an amgut¢r material being
split into two waves orthogonally polarized and travelingli#erent speed [67].
The anisotropic properties of a material are very dependerhe scale consid-
ered. Minerals often show large anisotropic propertie® tutheir molecular
structure. However, their disposition in the Earth is rando some extent, thus
being the anisotropic properties smeared macroscopicaligual example is that
of olivine. P-waves travelling through the mineral can hpvepagation veloci-
ties up t028% different depending on the direction [5]. However, being @on
constituent of the mantle, no such large anisotropy is eeskin that region. On
the other hand, some anisotropy in the upper mantle seems teldted to an
alignment of olivine crystals with the mantle flow, and cotlién be an indicator
of the mantle flow direction [139].

The effect of large stresses in the rocks can also cause re#declarge cracked
regions, where the cracks follow similar orientations. 3d&aracks, often fluid-
filled, are also macroscopically treated as anisotropicen®f even though the
mineral constituent of the bedrock might be isotropic. Fu tase of a set of
cracks all with the same alignment, transversely isotrggrametry is expected,
although for more complex cases others might apply [138].

The oceanic lithosphere is also a largely anisotropic arkarevolivine crys-
tals tend to orient themselves in the direction of spreadliogn the mid-ocean
ridge [105]. Other major source of anisotropy is the fine fmmtal layering char-
acteristic of sedimentary basins which behaves as a tresedya@sotropic material
with the symmetry axis oriented vertically [113].

The inner core also shows signs of anisotropy, being thelttame of PKIKP
waves abouBs faster along the Earth’s rotation axis than along the egi#to
plane [126]. Finally an exotic case is that of the very fineetagt the core-mantle
boundary, known as D”, whose strong and varying anisotrepigcture is cur-
rently a major study topic in seismology [79].

3.3 Anisotropic Seismic Wave Equations

In the following, the elastic properties of anisotropic naedill be considered
with respect to the global reference coordinate systemelsatdefines the orien-
tation of stresses and strains. In a similar way to Chapter théisotropic case,
Hooke’s law (3.3) can be combined with Newton’s dynamic ¢igna to obtain
a set of 9 equations and unknowns. Those build up the stedesiy formula-
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tion of three-dimensional anisotropic wave propagatiohe Ppartial differential
equation system has the same form as the one described ineChapt

0Q), 0Q), 0Q), 0Q,
at + qu ax + qu ay + Opq az - 07 (37)
where() is the vector
Q - (Umm7Uyy7Uzz7o-zy70-yzao-zZ7uavaw)T7 (38)

of the unknown stresses and velocities. Note, that hererieriog of stresses
in the vector(@ is different from the one used for the stress-strain ratatio
Equation (3.3). This ordering is chosen in order to be coesiswvith the for-
mulation of the ADER-DG scheme used through the presentsheBne ma-
trices Ay, = Ap(2), By = Bpe(@), andCy, = Cpy(Z), Whered = (z,y, 2)

andp,q = 1,...,9, are the space dependent Jacobian matrices for the general

anisotropic case and are given through

0 00 0 0 0 —ciq1 —cig —Cip
0 00 0 0 0 —cig —Cyp —Cop
0 0 0 0 0 0 —C13 —C3¢ —C3j5
0O 00 0 0 0 =—cig —Ceg —Cs6
Ay = 0 00 0 0 0 —ciu —cp —cs5 |, (3.9)
0O 00 O O O —ci5 —cs6 —Cs5
—i 00 0 0 O 0 0 0
0 00 —% 0 0 0 0 0
0 00 0 O —/—1) 0 0 0
O 0 0 0 0 0 —cig —Ci12 —cCua
0O 0 0 o0 0 0 —cog —Cog —cCoy
O 0 0 0 0 0 —c3g —Cog —C3y
O 0 0 0 0 0 —cgg —Cog —Cap
Byy=10 0 0 0 0 0 —ci6 —Coa —Cas || (3.10)
0 0 0 0 0 0 —es6 —Co5 —Cas
0 0 0 —,% 0 0 0 0 0
0 —% 00 0 0 O 0 0
0 0 0 O —,l) 0 0 0 0
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00 0 0 O 0 —ci5 —cia —ci3
00 0 0 O 0 —cos —Coq —Cas
00 0 0 O 0 —c35 —C3q4 —cCs3
00 0 0 O 0 —cs6 —Capg —C36
Cpq = 0 0 0 0 0 0 —C45 —C4q4 —C34 , (311)
00 0 0 O 0 —cs5 —ca5 —cCss
00 0 0 O —% 0 0 0
00 0 O —/—1) 0 0 0 0
00 -0 0 0 0 0 0

with the coefficients;; as given in matrix\/;; of (3.2) and (3.3) angd as the mass
density.

The Jacobians (3.9)- (3.11) have entrgsvhich are defined in a global reference
system. However, one has often to make computations in etference systems.
Therefore itis crucial to change thg values under such rotations. For the partic-
ular case of the ADER-DG schemes, fluxes are computed in tla¢ doordinate
system aligned witleach element’s facerhis local coordinate system, as previ-
ously shown in Chapter 1, is defined by the normal vegter (n,,n,,n.)" and
the two tangential vector§ = (s,, s,,s.)” andt = (,,t,,t.)", which lie in the
plane determined by the face of the tetrahedron and aregwitiad to each other
and to the normal vectot. The rotation into this local coordinate system is done
by applying the so-called Bond’s matti¥ [17, 109]

ny  nl o nd 2n.n, 2NNy 20,
s2 S5 s 25,5, 25, 28,54
2 3 2
IV 2.1, 2.1, Mt |31

Sele  Syly  Sit.  Syl. + 8.ty Sut. + Sty Syty + Suty
teng  tyny t.n, nyt, +n.t, ngt.,+n.t, nyl,+nt,
NgSz MNySy MzSy NS, + SNy NgS, + NS NySz + NaSy

to the Hooke’s matrix’ of the global reference system

Ci1 Ci2 C13 Ci4 Ci5 Cig
Ci2 Co2 C23 Coq4 C25 Co6
C— C13 C23 C33 C34 C35 Csp (3. 13)
Cla Coq4 C34 Ca4 C45 Cy6
Ci5 Co5 C35 C45 Cs5 Csp
Ci6 C26 C36 C46 Cs6 Co6

leading to the rotated Hooke’s matiixin the local reference system of the tetra-
hedron’s boundary face

C=N-C-NT. (3.14)

Note, that in the isotropic case the maitixs invariant under coordinate transfor-
mation due to the distribution of the non-zero coefficientsi.e. C;s, = C;s,, and



82 CHAPTER 3. ANISOTROPY

therefore this rotation can be skipped for the isotropi@cas

Another necessary element of ADER-DG schemes is the knoeletithe eigen-
structure of the Jacobian matrices. For the anisotropie,dhg non-zero eigen-
valueso; with =1, --- , 6 are the roots of the polynomial

XYZ — X(Zgﬁ — YCir) — ZC%(; + 2015016056 = O, (315)

where the coefficients; are the entries of the rotated Hooke’s matfiaf (3.14).
Using the substitutionX = c;; — a?p, Y = cgs — a?p andZ = c55 — o?pit can

be seen that the roots of a polynomial of degi@®ea have to be found. However,
the substitutions ok, Y and~ tell us that there are only three different values to
search for, as (3.15) represents a cubic polynomiafofNote, that the possibility
of having complex eigenvalues, i.@? < 0, can be excluded as this would imply
the loss of hyperbolicity of the PDE system in (3.7). The sigdues can be in-
terpreted as the speed at which the different wave typesapagating in normal
direction through the element interface. This is a knownltder the anisotropic
phase wave speeds [43] and appears here naturally fromgaedscomposition
of the Jacobians of the scheme (3.9). In general the regullaves are called
quasiwavesqP, ¢S; andgS,; ordered in decreasing magnitude of their veloci-
ties [43]. For the isotropic case one would get the positive @egative P-wave
velocities and two positive and negative S-wave velocibethe same absolute
value from this analysis.

The fluxes, for the Rusanov-type case, can be then determjnetaking use of
the largest of they; eigenvalues from (3.15) as has been explained in Sectiah 1.4
However the Godunov-type fluxes can only be built if also tlgemlvectors are
known. As this is a much more difficult computation than fag gurely isotropic
case, the Godunov flux computation will be treated in thefwilhg Section 3.3.1.

3.3.1 Elastic Anisotropic Godunov Flux

The Godunov flux has been thoroughly described in the first ©hayb this the-
sis and represents an exact flux type for hyperbolic systarfisx that ensures
the theoretical minimum viscosity, and therefore the hggmesolution, using the
matrix | A| as the stabilizing term. The matrj¥| decomposes the characteristic
waves at an interface between two elements into outgoingraomning waves
and is given through

|A| = RIA|R™!, (3.16)

where the matriXA| is a diagonal matrix containing the absolute values of the
eigenvalues of the Jacobian matrx which has to be oriented in the interface’s
normal direction. The columns of matri® in equation (3.16) contain the right
eigenvectors ofd. Note, that both matrices? andA, have to have the same or-
dering, i.e. the first eigenvector in the first columnihas to correspond to the
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first eigenvalue ofA appearing in the diagonal df. It should be remarked, that
the non-zero eigenvalues df in the elastic and viscoelastic cases can be found
by solving the cubic equation (3.15). In the following, dctty descending order

of the eigenvalues i will be assumed.

Consider the9 right eigenvectorsR; = (rl,r2,r3,r4 ¢5 16 77 8 r9)", with
i = 1,..,9, and the corresponding eigenvalues that form the eigenproblem
AR; = oy R;. The eigendecomposition is then obtained by explicitlywisgj the

9 equations

7 8 9 _ 1
C117; -+ C167; + Ci5T; = Ty,
7 8 9 __ 2
0127’1» -+ 0267“1' + 0257’1» = Oéi’f’i s
cisry + csert + e = agry
7 8 9 _ 4
0167“1»7 + 0667“% + 0567"Zé = airg ,
01471‘7 + 6467"23 + C457“Zé = Oéﬂ“% 5 (3.17)
C157; + Cs6T; + Cs5T; = Ty,
rl 7
71 == airi )
rd 8
- = oy,
P
e 9
? = our;.

Due to the dependency of some equations, the solution ofgihatiens in (3.17)
can be obtained by solving the more compact homogeneouws kystem

X Cig Ci5 TZ 0
cie Y Cse 7”18 = 0 ) (3.18)
C15 Cs6 4 ;q 0

with X = ¢;; —a?p, Y = ¢ — aZp andZ = cs5 — o?p. Note that this rep-
resents the Kelvin-Christoffel equation for anisotropicdme which is also ob-
tained from plane-wave analysis by Carcione [27]. HoweVas, @équation arises
naturally through the eigendecomposition of the JacoHdianthe hyperbolic sys-
tem (3.7). In addition, the solution of the linear systemi g3.for the values”,

i,j = 1,...,9, completely defines the 9 right eigenvect(ft,s The fact that the
determinant of the matrix of the system in (3.18) is always ieensured by equa-
tion (3.15). Therefore, there will always be a non-trivialigion of (3.18). Having
determined the values of, r® andr in (3.18), one can use equations (3.17) to
obtain all other elements of the eigenvecfor Finally, the explicit form of the



84 CHAPTER 3. ANISOTROPY

matrix of right eigenvectors is given as

riory ol 000 —rl —rl —rf
2 or2 2100 —r2 —r2 —p?
Ti{’ r% rg’ 010 —rg’ —rg’ —rf
ri‘ 7‘3 r§ 0 0 O —ré —r% —7“‘1l
R=| 7 r5 73 0 0 1 —r3 —ry —rf |. (3.19)
S 8000 —r§ —r§ —1f
vl o000 Il o7
r? 7“3 r§ 0 00 7’§’ rg r%
T? 7’3 rg 0 0 O Tg rg rgf

VRV IR AP I AV A I AN I AV )

For the left eigenvectors; = (I1,12,13,14,15,15,17,18,19), the eigenproblem reads
asL;A = «;L; and the eigendecomposition leads to 9hexjuations

1 4 6 __ 7
Cllli + ClGZZ' + C15li = Oéili ,
1 4 6 __ 8
ClGZi + Cﬁﬁli -+ 056li = Oéili ,
1 4 6 9
015li + C56li -+ 05511» = Oéili s
2 _
B =0
i ) (3.20)
—
7
l] 1
ri ail;
l? l4
; Q; )
l? — l6
T Qb

which similarly to the case of the right eigenvectors leadh® more compact
homogeneous system

X ¢ Cs I} 0
C1g Y Cs6 lf = 0 . (321)
C15 Cs6 A l? 0

A symmetry between the left and right eigenvectors can berobd, namely
ri =0,k =10870 =101, rT =1}, r8 =1} andr? = I¢. This allows us to find the

left eigenvectors ofA. Furthermore, to avoid scaling problems, it is convenient
that the left eigenvectors fulfil the conditidn= R~!, which is obtained by using

the normalization
I .
' =1, 3.22

From equation (3.22) one can conclude, that p [(rff + (18 + (r9)?].
Then the matrix, = R~ of left eigenvectors can be finally written down, which
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depends exclusively on the components of the right eigéorxgdn the form

199 oo o ! v 0
2a1751 2a]851 2a1951 2a1.51 2a1.51 2151
rs 00 rS 0 ry r% r5 ro
2a2752 2a9852 20%52 2a2152 202,59 200,59
"3 T3 "3 "3 "3 "3
2353 O O 20353 0 2353 2353 2353 2353
0 1 0 0 0 0 0 0 0
L= O 01 0 0 0 o o0 0 |.@23
0 00 0 1 0 0 0 0
_ rg 00 — s 0 3 T3 3 s
2(1375’3 2a3853 20353 2a3153 2353 2353
—3 L) 00 — T2 0 ) L) T2 T2
042752 2042852 204295'2 2a2152 20959 20959
__"n 00 — Ty 0 41 Ty r{ 9

i
rt
J

Using equation (3.16) and substitutiﬁg: ~&- One gets the final expression of
|A| as

rmr, 00 7 0 0 0 0
e 000 w0 om0 00 0
000 w0 omE 00 000
s | #0070 00 000
A=Y "| mrf 00 7m0 0 0 0 (3.24)
=1 | 7877 0 0 797 0 7o) 0 0 0
0 00 0 0 0 7F F/r 7
0 00 0 0 0 wr Fre me
0 00 0 0 0 7o 7/ 7o

Note, that only the3 positive eigenvalues of the Jacobian matdxeed to be
known in order to compute all entries of the matrix in (3.24)dwlving (3.18)
and using (3.17) and (3.22). Furthermore, note that the atetipn of |A| only
depends on the material properties and therefore has taiyeuted only once for
each tetrahedral element as long as the material does nojemath time.

Note that the isotropic case can be recovered by settihg?, r{) = (1,0,0),
(rs,r5,r9) = (0,1,0) and(rs,r§,r3) = (0,0, 1).

3.4 The Numerical Scheme

The numerical scheme produced by (3.7) is very similar teethstic ADER-DG
scheme (1.66). Just the final form of the fully discrete ADER-&cheme will be
reformulated, which after transformation into the canahieference element;
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and time integration over one time sté&p from time leveln ton + 1 reads as
()™ = ()| ane +
pl pl ki
+ iy <TJ’ A1)~ 4 @Z’ﬁm)> 1S5 Fy? - Tgmn (AL < %2) +
4 ;T (m ; I,(m X Ami)\"
+ 33 (TLAR L) = 657 ) 1] Fi - Lyma (1) (1) = 29

= A VS, T A0 QS = By 1T K - Lama(A0) (QU)

=B o*

— O K L (A) (Qﬁgg:g) _ 0.

Here the matrixA(™ has the same structure as the mattiin (3.9), but with the
entriesc;; rotated from the global reference coordinate system tootte coordi-
nate system of thg-th face of tetrahedrofm) using (3.14). The tensdy,,,,,(At)
represents the high-order ADER time integration operdtat is applied to the

degrees of freedorﬁ %)) at time leveln. The matrices\/y;, Fy; and K, are

the mass, flux and stiffness matrices, respectively, anddecspace integrations
of the basis functions that can be computed beforehand amshaletail Chap-

ter 1. A;;q, By, and C;q are the Jacobian matrices transformed into the reference

tetrahedrorz. Notice, that@ij’s(m) now includes g dependence as the wave ve-
locities will vary depending on the propagation directian &nisotropic media.
Furthermore|.J| is the determinant of the Jacobian matrix of this transfdiona
and|S;| denotes the area of thjeth face of tetrahedro@ ™. The symbol|S;|
refers to the surface of the tetrahedrons fa@nd should not be confused with
the normalization coefficierfi; introduced in last Chapter.

The resulting ADER-DG scheme keeps the high-order apprdioman space and
time for anisotropic material using the proposed numefiicakes and allows us
to update the values of the unknown variables from a timd leve n + 1. Here,
we will treat the fully triclinic symmetry because, evenhitmodelled materials
could exhibit some symmetries, the element interfacesrageeneral arbitrarily
oriented within an unstructured tetrahedral mesh. It is alsrth mentioning that
treating anisotropy with the ADER-DG scheme doesn’t posgrifsgtant increase
in terms of computational costs, even while treating thaiivic case, with respect
to the isotropic case.

3.5 Viscoelastic Anisotropy

Anisotropy plays an important role as secondary effect iansie wave propa-
gation modeling. However, in realistic applications vislastic attenuation ad-
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ditionally affects the wave forms, which makes the incogbion of both effects
inevitable. In order to accurately couple both effects imithe ADER-DG frame-
work, the concepts of mean and deviatoric stresses [23]s#d and combined
with the rheological model of the Generalized Maxwell Bodye $63], as shown

in Section 2.3.1.

Introducing viscoelasticity in seismic wave propagatioolgpems leads to a sub-
stitution of Hooke’s tensor by a new tensor, whose entrie$raguency-dependent
as was shown in (2.13). In the time domain the constitutilegion (3.2) then in-
cludes the matrix\/;; depending on time resulting in convolution products. The
time dependence ad¥/;; can be expressed by a linear combination of viscoelastic
mechanisms, representing combinations of fictitious gigrand dashpots that re-
produce the physical behaviour of a viscoelastic matemial selected frequency
range. The problem of computing the expensive convolutimdycts can be
avoided by defining a set of anelastic variables [101].

The mean stress and mean strain, as well as the deviatoric streg8 and devi-
atoric straire” are defined as

1
T = 3 (Opz + Oyy +022) (3.26)
1
g = 3 (€zz +Eyy +€22) (3.27)
7P = -7, (3.28)
& = z—z, (3.29)

where it should be remarked that the mean stress and steaibodéin invariant
under coordinate transformation. As shown by Carcione [2i§ peeds a to-

tal of four attenuation moduli to model viscoelastic attathan in an anisotropic
medium: one purely dilatational modulus and three sheamutothose are asso-
ciated to the four possible viscoelastic modes allowed isadropic media, which

will be referred to as modes = 1 (dilatational) andk = 2, 3,4 (shear). It can

be shown that the mean stresslepends only on the dilatational modulus while
the deviatoric stresg” only depends on the shear moduli. The stress-strain rela-
tion can either be expressed in the frequency or in the tinneadio [101] for the
isotropic case, which in the anisotropic case [23] read as

(W)€ W), (3.30)
(1)) * (1) = Myg(t) « £5(0), (3.31)
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wherex denotes the convolution operator andlexation matrix®,;(¢) is given
by

Uy Wy Wiz 2ci4 2015 2c16
Uip Woy Wz 204 2025 206
Wiz Wz W33 2c34  2c35 236
Cla  Coa C3s 2Wyy 2045 2c46
c15  C25 €35 2045 2Vs5 26
Ci6  Ca6 C36 2046 2056 2Wee

W) = CH().  (3.32)

Here, H(t) is the Heaviside step function and the compondntst) can be ex-
pressed as

4
Ty(t)=> gx®(t)  with g eR. (3.33)
k=0

The real numbergfj’.“) are combinations of the entries; of the elastic Hooke’s
tensor and theelaxation functionsy®) contain the time functionality of the re-
laxation matrix’s entries. These are normalized such &t = 1 for ¢t =

0 and by imposing that the mode’s complex modulus, defined/&8(t) =
d(x™ (t)H (t))/dt, behaves in the frequency domainds®) (w) — 1 forw — oo.
A formulation of the normalized Generalized Maxwell Bodyasation mecha-
nisms [101] can be used to express & (t) as

(k) (+) — (k) —wgt _
xV(t) =1 YV (1—e , for £=1,2,3,4

x®(t) =1, for k=0

wheren is the number of attenuating mechanisms used.Yﬁﬁéare the anelastic
coefficients of each mechanism for the madeghich are related to the strength of
the attenuation. A general theory on viscoelasticity fasatmopic media leads to
the possibility of having anisotropy in the attenuatinggraeters themselves [27].
This means having different attenuation values for difiéngropagation direc-
tions. However, the knowledge of the quality fact@dnside the Earth is often
poor and rarely would allow us to consider any dependencheotfactors on
direction. Therefore, in the following the attenuationviié considered as an
isotropic effect, even if the medium is elastically anispic. As a consequence
only one singleQ” and Q° value are allowed. Thus, one can use only a bulk and
a shear attenuating modes by defining

Y =M

) 3.35
Y = @ = ) — @ (3.35)

Finally thew, are the relaxation frequencies of each mechanism, whichen t
following will be assumed to be the same for all the viscagasodes.
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The coeﬁicienthZ.(f) in (3.33) that ensure the separation of the dilatational and
shear modes of the attenuation [27] are

) = i~ (A 20) + (30 X 0 + Gr) 70,
V() = ey — A+ (A+30) x™) - 3mxW (),

Uyu(t) = caax™ (1), (3.36)
Uss(t) = essxW(t),
Ues(t) = ceo XV (1),

wherei, 7 < 3 and: # j. In addition, the following definitions of the average
Lameé constants have been used

1
pno= 3 (Caa + 55 + Co6) (3.37)
- 1
A= g (011 + Co9 + 033) — Qﬁ (338)

Now one can use the anelastic coefficierjfscomputed from

A+2/30 2/31
Y = ;/“Y;C / By (3.39)
A A
to obtain the viscoelastic stress-strain relation of thienfo

Oz c11 Ci2 €13 2c14 2c15 2¢56 Exx
Oyy Cl2 Co2 €23 2Caq 2Co5 206 Eyy

0. | _ | a3 cos 33 2c34 2¢35 236 €2z B
op: || cia cor can 2cu 2c45 246 Eyz
Oxz C15 Co5 C35 20C45 2Cs5 2Cs6 Exz
Oy Cl6 C26 C36 2C46 2Cs6 2Cee Exy

(3.40)

PYF AV} YY) 0 0 0 .

YY) PYP MY} 0 0 0 0,

S YA Y} PYE 0 0 0 0%,

= o 0 0 2cuY) 0 0 0L,

0 0 0 0 25/ 0 0L,

0 0 0 0 0 2c66Y) 0,

where PY," = \Y} + 2f andn is the total number of attenuation mechanisms.
The anelastic functiong? = (9% _,9¢  9°_ 9, 0°_ 9% )T are defined by

xx? TYyyr T zz) Tyz) Txz) T xy

95(t) = we gt < / t gj(r)e et dT) : (3.41)
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if using the rheological model of the Generalized Maxwell B§a3, 101]. The
anelastic coefficients’g(k) relate to the strength of the attenuation and have to be
fitted to the desire@-law over a certain frequency range. Therefore, a number of
relaxation frequencies, is used as already described in more detail in the previ-
ous Chapter.

Note, that the anisotropic elastic case can be inferred tlmrstress-strain re-
lation (3.40) by setting’, = 0 andY/" = 0, thus recovering (3.3). The vis-
coelastic isotropic case is obtained by setting = ¢ = ¢33 = A + 24,
Clag = C13 = Co3 = A and Cig = Cs55 = Cg6 = U with all other COGfﬁCiGnt&U
equal to zero. This way, is also obtainkd= \ andz = i from (3.37) and (3.38)
as a consequence.

In three space dimensions the use of the anelastic funafﬁonwuires the storage
of 6 new variables per attenuation mechanism, one for eaclsstoesponent as
shown in (3.40), that have to be updated at every time stegg.iglaccomplished
by solving an additional set @i linear partial differential equations given by

%05@) + wedti(t) = w%sj (t), (3.42)
wherej = 1,...,6. Itis worth noticing that the usage of GMB mechanisms in
the form shown in [86] for the viscoelastic anisotropy cesaa set of anelastic
variables which are independent of the local material pitoge Therefore, those
anelastic variables are also independent of the attemuadodes, bulk and shear,
unlike the analogous result obtained in [27] with a GZB roegyltype. A brief
description of the resulting coupled linear system of eilguatis given in the
following Section 3.5.2.

3.5.1 Viscoelastic Anisotropic Godunov Flux

The anelastic part ofA| can be found by a similar procedure as described in
Section 3.3.1. Let’s consider the more general case of @lastic material, in
whichn attenuating mechanisms are used to describe the visdoglagperties of

a material. For each attenuating mechanésmew eigenvectors and eigenvalues
are introduced, as shown in Chapter 2. However, these newailyes have
value zero. Following the convention of decreasing ordgrihe eigenvalues are

now given throughv; = —ag.6,, @2 = —Qgi6n, 3 = —Q746, @aNda; = 0 for
i=4,...,6+ 6n. The right and left eigenvectors now have the shape
R’ . ]%el w1l 0.0 w1 TS 0 wi 7Y wn Tl 0.0 w8 0 wn Y T
i T Ty 00 205 0 20 0 g 00 205 0 2an ) (343)

&
I

E$|7070’O7070707"‘707070’070’()) ’
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with ﬁf' = (7}, r2, 7, rd 2 ro rl S ) andLe' = (77,0,0,78,0,79, 7}, 7}, 79)
being the elastic right and left eigenvectors. The expoes€3.43) gives us the
possibility of constructing the blocks of the matfi%| for the anelastic case. The

block structure is equivalent to the one given in Chapter 8,isigiven as

A}

A |A| 0 Ty X Ty . n X
WZ{AH o | eRm Al= ; € R, (3.44)
An

where |A| € R is the matrix of the purely anisotropic elastic part as given
in (3.24) and the matrixA,| includes the block structured anelastic part where
each sub-matrid] € R6*°, with ¢ = 1, ..., n, contains the relaxation frequency
wy of the /-th attenuation mechanism in the form

r

.y
<00

T T

<.y
.o

r

D00 M0 MY o000
0 00 O 0 O 000
3
0 00 O 0 0O 000
Al@‘ = Wy Z T’_-7 r_8 7"_8 ,’,,__8 7‘_8 7"_9 ) (3 . 45)
=1 QZaz 00 ﬁ 0 ﬁ 000
0 00 O 0 O 000
rird r8r9 ror9
2y 00 550 0 522 000

Note that, again, the isotropic case can be recovered bingétt, %, ) =
(1 O O) (7“2,7"377"2) <0a170) and(T37T3,’I"3) (O O 1)

3.5.2 The Coupled Equation System

The new enlarged system of = 9 + 6n partial differential equations including
9 elastic andin anelastic variables can be written in the compact form

0Qp | & OQq n 0Qq  x 0Qq _
at +AP‘] 8 qu 8y +Opq 62’

where £ denotes the so-callegaction termand takes into account the energy
losses introduced by the viscoelastic medium. Note thadiimensions of the
variable vectorQ, the Jacobian matriced, B, C' and the source matrik now
depend on the numberof attenuation mechanisms. The Jacobians have exactly
the same shape and block-matrix structure as shown in Chaptéth the ex-
ception that the upper leftmost 9x9 blocks are now the cpaeding anisotropic
Jacobians defined in (3.9 - 3.11). The mattiin (3.46) representing the reactive
source term that couples the anelastic functions to thenaliglastic system can

be decomposed as

EpyQq (3.46)

- [0 E
E:{o E

} € R, (3.47)
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with E exhibiting the block-matrix structure
E=IE,...,E,) € R>", (3.48)

Here, each matri¥), € R%<6, with / = 1, ..., n, contains the anelastic coefficients
Y andY)" of the /-th mechanism in the form:

PYF XY} AYY 0 0 0
INZN TN 7 0 0 0
AY) YY) PYP 0 0 0
0 0 0 2cY) 0 0
EZ - 0 0 0 0 2044}/; 0 . (349)
0 0 0 0 0 2es5Y)
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

Note, that the different ordering of the entries with respged3.40) is a conse-
guence of the different order of the anelastic variableslenthe variable vector
Q. The matrixE’ in (3.47) is again identical to that defined in Chapter 2.

The discrete formulation of the ADER-DG scheme for anisatr@tastic media
as given in (3.25) is now written as

{(@;?)"“ - (@;2”))"] | M+
b3 (A @) 0 ) 15 - ha(30) () +
e (TA (T3) " - @z;ém>) 1,1 B onn (88) (Q527) " 359
— Az IV K Tmn(AY) <Qm>n — B2, || KD - L (AY) (ng})y _

- O;q ’J| Klgl ' [qlmn<At) ( A%) = ‘J’ qu : Iqlmn(At) (QSQ}L)) My )

where©,, is specified by the particular numerical flux in (1.21) or @).2The
matrix Af;n) now represents the enlarged matrix given in (3.46) with thigies
of (3.9) rotated through the Bond's transformation (3.14)3desgussed in Sec-
tion 3.4. Furthermore, the reactive source téfyp appears on the right hand side
introduced by the viscoelastic medium. Additionally, thenon-zero eigenvalues
of the enlarged Jacobian matrices remain the same in theel&stic case, as the
enlargement of these matrices introduces only new eigeesaqual to zero. All
other matrices in the scheme (3.50) are identical to thoseritbeed previously in
Chapter 2.
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Table 3.1: Coefficients for the anisotropic, orthorhombictenial given in
[N - m~2] as used in the convergence study. All other coefficients eme. ZThe
material density is given inkg - m=3.

P | Ci1 | Ci2 | C13 | C22 | C23 | €33 | C4q4 | C55 | Ce6

11192 ] 66 | 60 | 160 | 56 | 272 | 60 | 62 | 49

3.6 Convergence Study

In this section we present a numerical convergence studyegbtoposed ADER-
DG approach on tetrahedral meshes, in order to demonstsadebitrarily high-
order of convergence in the presence of anisotropic matefide procedure
is very similar to that used previously in Section 2.7. Here show results
from second- to seventh-order ADER-DG schemes denoted byRADE O2
to ADER-DGO7, respectively. It will be shown that the same order for spawt
time accuracy is obtained automatically.

Similar to Section 2.7, the convergence orders can be detedy solving the
three-dimensional, anisotropic, seismic wave equatiornfe unit-cube, i.e. on a
computational domaif® = [—1,1] x [—1, 1] x [—1, 1] € R?® with periodic bound-
ary conditions.

The homogeneous anisotropic material parameters are igiviable 3.1 and rep-
resent an anisotropic (orthorhombic) material, similartsnanisotropic proper-
ties to olivine as given in [38]. To confirm that anisotropytieated correctly,
three plane wave@g), [ =1,...,3 are superimposed. Those have the form given
in (2.55) traveling perpendicular to each other along therdinate axes, i.e. the
three wave number vectors are

NT T
k(l) _ (k§1)7 k§1)7 ki )) — (7-(’ 0, 0) , (351)
~(2 2) 1.(2) LONT T 3.52
~(3 3) 1.(3) LONT T

leading to periodic, sinusoidal waves in the unit-cube.

In the convergence test, three superimposed pidnavaves traveling perpen-
dicular to each other are used. However, the symmetry axésednisotropic,
orthorhombic material is tilted with respect to the cooedensystem, i.e. the
symmetry axes point into the directiofs, 1,1),(—1,1,0) and (-1, -1, 2), re-
spectively. The initial condition d@t= 0 is given by (2.58) using the combination

of three right eigenvector®!;, R'? andR'} with the coefficients|" = 1? =

/¥ = 100 and zero otherwise.
The total simulation timé€" is set toT" = 0.02s. The CFL number is set in all

computations t@' = 0.5 of the stability limit 2Nl+1 of Runge-Kutta DG schemes
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(see (1.67)).

As in Section 2.7, the numerical analysis to determine thee&gence orders is
performed on a sequence of tetrahedral meshes.

One of the variables of the system of the seismic wave equaf7) can be arbi-
trarily picked to numerically determine the convergenaeoof the used ADER-
DG schemes. In Tables 3.2 and 3.3 are shown the errors foettieal velocity
componenty obtained by two different flux formulations. The errors amders
of convergence are computed using (2.59) and (2.60).

The first column in both Tables 3.2 and 3.3 shows the mesh rspacirepre-
sented by the maximum diameter of the circumscribed spldrge tetrahedra.
The following four columns show thé> and L? errors with the corresponding
convergence order®;~ and O;: determined by successively refined meshes.
Additionally, we present the total numbai; of degrees of freedom, which is a
measure of required storage space during run-time andes gfwrough the prod-
uct of the number of total mesh elements and the numberf degrees of freedom
per element/N, depends on the order of the scheme, i.e. the deyyrekthe poly-
nomial basis functions vi&.(N) = ¢(N + 1)(N + 2)(N + 3). In the last two
columns we give the numbérof iterations and the CPU times in seconds needed
to reach the simulation tim& = 0.02s on a Pentium XeoB.6 GHz processor
with 4GB of RAM.

In the convergence study two different numerical fluxes ammared: the Ru-
sanov flux [90] as given in Section 1.4.2 and a Godunov flux ashegn con-
structed in Sections 3.3.1 and 3.5.1. Fig. 3.2 visualizestimvergence results of
Tables 3.2 and 3.3 to demonstrate the dependence @ftherror with respect to
(a) mesh width, (b) number of degrees of freedaiN), and (c) CPU time. With
mesh refinement, for both choices of the numerical flux thadngrder schemes
converge faster as shown in Fig. 3.2(a). Furthermore, FR(bB demonstrates
that higher-order schemes reach a desired accuracy mgjaifiower number of
total degrees of freedom. The total number of degrees afién@es the product of
the number of mesh elements and the degrees of freedom pezreleTherefore,
obviously the increasing number of degrees of freedom didnigrder schemes
is over-compensated by the dramatic decrease of the nurhisgpuored mesh ele-
ments to reach a certain error level. Also the CPU time compasi in Fig. 3.2(c)
show that the higher-order methods reach a desired errer ilevess computa-
tional time. It should be remarked that in all three plots @.F.2 is clearly
shown, that for very high accuracy, the higher-order sclsewith both, the Ru-
sanov or Godunov fluxes, pay off due to their superior coremeg properties.
Furthermore, it can be seen in all plots that the Godunov &uslightly more
accurate than the Rusanov flux, which is due to the dissipatoperty of the
Rusanov flux. Additionally, notice, that with increasing eref the scheme the
choice of the numerical flux seems to become less importaoiveMer, the Go-
dunov flux always provides slightly more accurate resulthatsame CPU time
as illustrated in Fig. 3.2. This result, shown here for theecaf anisotropic seis-
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(@) (b)

Figure 3.2: Visualization of the convergence results ofvéical velocity com-
ponentw for the Rusanov flux (dashed) of Table 3.2 and the Godunov fhlidjs
of Table 3.3. The symbols P1-P6 stand for the maximum polyabdegree of
the basis functions used. TH&® error is plotted versus (a) the mesh spading
(b) the number of degrees of freedawyy and (c) the CPU time.

mic wave propagation, can be extended to the other rheolqupstwith similar
results.

3.7 Application Examples

In this Section two applications are presented to verifyghegper implementa-
tion of anisotropy in the Discontinuous Galerkin framewofrkirst, the correct
behaviour of anisotropic heterogeneities is verified by ganmg ADER-DG re-
sults to those obtained with the SEM method. Second, a fulég@mple shows
the capability of the code to handle arbitrary anisotropyva$f as viscoelastic-
anisotropic effects.

3.7.1 Heterogeneous Anisotropic Material

To validate the proposed ADER-DG scheme for anisotropic nizdie two space
dimensions results of a heterogeneous anisotropic test mwagposed by Car-
cione [31] and Komatitsclet al. [80] are shown. The computational domain
Q = [-32.5;32.5]em x [—32.5;32.5]cm is discretized by37944 triangles with

an average edge length efcm, equal to the edge length of the square shaped
elements used by Komatitsat al. [80]. Along the boundary of2 absorbing
boundary conditions are used. The dom@irtontains two materials separated
by a straight line at: = 0. On one sideA£ < 0) there is an anisotropic (trans-
versely isotropic) zinc crystal with the symmetry axisyhgirection, whereas on
the other sideA > 0) there is an isotropic material. The corresponding mdteria
properties are given in Table 3.4. The source representmafpece at location

s = (—2,0)cm, i.e. 2cm from the material interface inside the anisotropic ma-
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Table 3.2: Convergence rates of the vertical velocity corepon of the ADER-
DG O2 up to ADER-DG O7 schemes on tetrahedral meshes with anisotropic
material and Rusanov flux.

| h \ L>® O | L? Op | Ny| 1]CPUJg]|
1.44-10°1[1.3726-100F — [7.1719-1072 — 34560 | 28 20.4
1.08-107" [ 7.9448-10"2 1.9 | 4.0897-10"2 2.0 81920 | 37 62.7
8.66-1072 | 5.1013-1072 2.0 |2.6304-1072 2.0 | 160000 | 46 | 150.4
7.21-1072 [ 3.5739-1072 2.0 |1.8280-1072 2.0 | 276480 | 55| 309.9
1.44-1071 [ 9.6109-102 — [3.0957-1073 — 86400 | 46 44.8
1.08-1071 | 4.2996 - 1073 2.8 | 1.3268-103 2.9 | 204800 | 61| 140.0
8.66-1072 | 2.0774-10% 3.3 |6.8331-10"%* 3.0 | 400000 | 76| 334.7
7.21-1072{1.2533-107% 2.8 [3.7909-10"* 3.2 | 691200 | 92| 709.4
2.16-1071 [ 2.4197-10° — [6.0996-10"% — 51200 | 43 21.5
1.44-107' | 5.6764-10* 3.6 | 1.1436-10~* 4.1 | 172800 | 64 | 104.5
1.08-107" [ 1.6407-10"* 4.3 | 3.8141-10° 3.8 | 409600 | 85| 322.6
7.21-1072 | 3.4818-107° 3.8 | 7.4515-107% 4.0 | 1382400 | 128 | 1623.5
4.33-1071[4.3718-107% — [8.3266-107* — 11200 | 28 3.4
2.16-107" | 1.3161-10"* 5.0 |2.2487-107° 5.2 89600 | 55 50.0
1.44-1071 | 1.7960 - 10> 4.9 | 2.9100-107% 5.0 | 302400 | 82| 248.7
1.08-107" [ 4.2391-107% 5.0 | 7.1098-10"7 4.9 | 716800 | 110 | 801.3
8.66-1071 | 1.7247-1072 — |[3.0907-1073 — 2240 | 17 0.5
4.33-107' | 3.6214-10"* 5.6 |5.2490-10"°> 5.9 17920 | 34 7.8
2.16-107' [ 6.1905-107¢ 59 |7.8147-10"7 6.0 | 143360 | 67| 118.8
1.44-1071 | 5.4051-107" 6.0 | 6.5986-10"% 6.1 | 483840 | 101 | 611.0
8.66-10"T[25263-10% — [4.0569-10"% — 3360 | 20 1.2
4.33-1071 | 2.5296-107° 6.6 | 2.8757-107¢ 7.1 26880 | 40 18.3
2.88-107' | 1.5502-107¢ 6.9 | 1.6396-10"7 7.0 90720 | 60 91.8
2.16-107" | 1.9551-1077 7.2 |2.1993-10"% 7.0 | 215040 | 79| 285.1
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Table 3.3: Convergence rates of the vertical velocity corepon of the ADER-
DG 02 up to ADER-DG O7 schemes on tetrahedral meshes with anisotropic
material and Godunov flux.

| h \ L>® OL | L? O, | N,| I]|CPUJs]|
1.44-107' [ 1.0041- 107" — [5.4423-107%2 — 34560 | 28 20.3
1.08-107! | 5.8267-10"2 1.9 | 3.0369-10"2 2.0 81920 | 37 63.3
8.66-1072 | 3.7871-1072 1.9 | 1.9512-10"2 2.0 | 160000 | 46 151.0
7.21-107%2{2.5901-10"2 2.1 |1.3477-1072 2.0 | 276480 | 55 310.2
1.44-10°1]8.8110-1073% — [2.7851-10"°% — 86400 | 46 45.2
1.08-107' [ 3.9071-107% 2.8 | 1.1894-10"% 3.0 | 204800 | 61 138.6
8.66-1072 | 1.8371-10~% 3.4 |6.1510-10~* 3.0 | 400000 | 76 341.2
7.21-1072 | 1.1421-10~% 2.6 |3.3983-10"* 3.3 | 691200 | 92 703.3
2.16-1071 [ 2.1082-10* — |[5.3961-10"% — 51200 | 43 21.5
1.44-107' | 4.8616-107* 3.6 | 9.8006-107> 4.2 | 172800 | 64 107.7
1.08-107' | 1.4123-107* 4.3 |3.3024-10"> 3.8 | 409600 | 85 326.0
7.21-107%2{3.0079-107° 3.8 |6.3742-1076% 4.1 | 1382400 | 128 | 1620.8
433-107' | 3.8588-107% — [7.3824-107% — 11200 | 28 3.4
2.16-107' | 1.1900-10~* 5.0 | 2.0750-107° 5.2 89600 | 55 51.0
1.44-1071 | 1.6555-107° 4.9 | 2.6735-10"% 5.0 | 302400 | 82 248.1
1.08-107' | 3.8443-107% 5.1 | 6.5261-10"7 4.9 | 716800 | 110 799.5
8.66-101]1.6633-102 — [29909-103 — 2240 | 17 0.5
4.33-107' | 3.2571-107* 5.7 | 4.7736-107° 6.0 17920 | 34 7.8
2.16-107" | 5.4583-107% 5.9 |7.0059-10"7 6.1 | 143360 | 67 123.0
1441071 | 4.7499-1077 6.0 | 5.8732-10"% 6.1 | 483840 | 101 606.7
8.66-10t | 2.0000-10—% — | 3.4171-107* — 3360 | 20 1.2
4.33-107' | 2.2341-10"° 6.5 | 2.6403-10"¢ 7.0 26880 | 40 18.1
2.88-107"' | 1.4003-10"% 6.8 | 1.5055-10"7 7.1 90720 | 60 90.2
2.16-107' | 1.7634-1077 7.2 |2.0326-10"% 7.0 | 215040 | 79 281.4

Table 3.4: Coefficients for the heterogeneous anisotropibaingiven in[101°N -
m~2] for the anisotropic and isotropic materials. All other dméénts are zero.
The material density is given in[kg - m™3].

p C11 C12 C22 Ce6
isotropic | 7100 | 16.5 | 8.58 | 16.5 | 3.96
anisotropic| 7100 | 16.5 | 5.00 | 6.2 | 3.96
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terial and is acting inj-direction. The source time function is given by a Ricker
wavelet with dominant frequencfy, = 170k H z and delayt, = 6us which acts
on the vertical velocity componentwith a maximum amplitude af - 10'3m - s 1.
Seismograms are calculated at four different locations (x;,v;), i = 1,...,4,
with z; = —10.5¢m, x5 = —3.5¢m, x3 = —1.0cm, x4 = 10.5¢cm andy; = —8cm
foralli = 1,...,4 in order to compare the results of the ADER-DG method with
those of Komatitsclet al. [80]. The simulation is carried out using an ADER-
DG O6 scheme, i.e. with polynomial basis functions of degihee= 5, and the
Rusanov flux presented in Section 3.6. The time step siz&Wa8ns such that
the final simulation tim&” = 100..s was reached aftei860 iterations.

Two snapshots illustrate the evolving wavefield for a gaéire comparison. In
Fig. 3.3(a) we show the vertical velocity componenafter 30us in a zoomed
region together with the simulation mesh. Note, that trentyular elements are
aligned with the material interface at = 0. The locations of the source and
the four receivers are also indicated by a full and emptylestcrespectively.
Fig. 3.3(b) illustrates the wavefield of the velocityafter60.s in the entire com-
putational domain) together with the source and receiver locations. This tesul
can be visually compared to the Figurehown in Komatitsclet al.[80]. One can
then observe that the ADER-DG6 scheme resolves the same wave phases. The
typical cuspidal triangular wave structures and the réécevaves at the interface
are clearly visible.

The seismograms calculated with the ADER-I0%6 scheme at the four receiver
locationsr;, i = 1, ...,4, are plotted in Fig. 3.4 (solid line). The results obtained
by Komatitschet al. [80] with the SEM of spatial ordes (spectral degree 5) were
recomputed with th6s EM2DPACK software and are superimposed (dashed
line). The agreement is excellent for all phases. The resscaetween both com-
putations have been plotted (dotted line), amplified by &ofaof 10, to show

to which extent both results produce equivalent resultsvé¥er it should be re-
marked, that for the ADER-DG computation a completely irtagtriangular grid

IS used.

3.7.2 Transversely Isotropic Material with Tilted Symmetry Axis

A computation of the test case proposed in [80] for a 3D trarsely isotropic
medium with a tilted symmetry axis is performed to verify thecuracy of the
proposed scheme for a fully three-dimensional problem.eHtre tilt angle of
30° with respect to the Cartesian coordinate axis creates addltcomplexity, as
the rotation introduces a major number of non-zero entrigbe Hooke’s tensor.
Note, that in the present case numerical fluxes are compuitbdr@spect to a
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Figure 3.3: (a) Vertical velocity and computational mesh in the zoomed region
[—0.18;0.1625] x [—0.1625;0.1625] at30us. The source location is indicated by
a full (black) circle, the four receiver locations are iratied by empty (white)
circles. (b) Vertical velocity at60u.s with the whole computational domain. A
variety of different phases can be identified. The sourcation is indicated by

a full (black) circle, the four receiver locations are iratied by empty (white)
circles.

local coordinate system each aligned with a face of a tediraimeas shown in Sec-
tion 3.4 and therefore tilted material properties do not adiditional complexity.
The computational domaif = [0;2500]m x [0;2500]m x [0;2500]m is dis-
cretized with48 x 48 x 48 cubes, each subdivided in 5 tetrahedral elements,
leading to a total 0$552960 elements. The source is a point force placed at
(x,y,2) = (1250, 1562.5,937.5) m and acting in the direction of the material’s
symmetry axis. The source time function is a Ricker wavelé¢h wominant fre-
quencyf, = 16Hz and delayt, = 0.07s. A receiver is located atr,y, z) =
(1250, 1198.05, 1568.75) m to register the propagating waves. The material is ho-
mogeneous and the material parameters given in the cotedsyatem aligned
with the anisotropic symmetry axis can be found in Table Bl6tice, that for a
transversely isotropic material, = ¢y, co3 = ¢13 @andess = cyy.

An ADER-DG O7 scheme is used, meaning that the variables are resolved with
polynomials of degreéV = 6 in space and time inside each element. Godunov
fluxes, as described in3.3.1, have been used for enhancecheg.cThe time step
size wasl66.91us such that the final simulation timié = 0.7s was reached after
4194 iterations.

In Fig. 3.5(a) we can visualized the wavefield of the normedssto,, att =
0.25s in the yz-plane atr = 1250m. A visual comparison with the result of
Komatitschet al. [80] shows the characteristic wave pattern for the case of a
tilted anisotropic material. A vector plot illustratingehotal particle velocity
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Figure 3.4: Seismograms showing vertical displacementsie ADER-DG
(solid) and SEM (dashed) computations. The good agreenfidotio solutions is
shown by the amplified residuals (dotted).
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Table 3.5: Coefficients for the transversely isotropic mat§Mesaverde clay
shale) given irf10° N - m~2]. All other coefficients are zero. The material density
pis given in[kg - m™3].

14 C11 C12 C13 Ca2 Ca3 C33 Caq Cs5 Ce6
2590 1 66.6 | 19.7 | 39.4 | 66.6 | 39.4 | 39.9 | 10.9 | 10.9 | 23.45

att = 0.25s in a zoomed region of one of the cuspidal triangles is shown in
Fig. 3.5(b) to visualize the complexity of the seismic waetefiin more detail.
The corresponding seismogram calculated at the receipéstied in Fig. 3.6 and
compared with the analytical solution [29]. We can see theekant agreement
between analytical and numerical solutions, where theg @&tiwave followed by
the stronger; SV wave can be observed. The root mean square éroetween
the analytical and the numerical solutions is given. Abswiboundaries for the
domain() are used to avoid spurious reflected waves.

Additionally, Fig. 3.6 shows the seismogram calculatedtlier same anisotropic
test case but coupled with viscoelastic attenuation asdntred in Section 3.5.
The quality factor®Q” = 80 andQ° = 40 have been used to see a strong effect
due to anelasticity. Attenuation is implemented withielaxation mechanisms
as described in detail in [76]. The frequency bandwidth@iH = is centered
at the dominant frequench6 H =z of the source. With respect to the purely elas-
tic case the damping and dispersion caused by the viscioataaterial is clearly
visible. However, an analytical solution for the coupledeavas not found and,
therefore, it can only be shown a qualitative change of thenssgram. For the
computation of the numerical solution of the anisotrogastic case the CPU
time was 14 hours oin28 Intel Xeon EM64T 64-bit 3.2-GHz processors. For the
anisotropic-viscoelastic case approximately 34 hoursewsreded on the same
computer. However, note that no special code optimizatiah &.g. exploits the
sparsity of the Jacobian matrices was used. Furthermaeezdtie is kept very
flexible to handle all types of currently treatable probleand therefore does not
provide the computational efficiency as a possible pureyrtioh code for mas-
sive applications could achieve.

3.8 Conclusion

A new high-order scheme for solving problems of anisotrggismic wave prop-
agation on unstructured tetrahedral meshes has been f@@sebhe proposed
ADER-DG method has proved to be suited to achieve highly ateuesults for
anisotropic heterogeneous media. A thorough convergemcly sonfirms the
high-order accuracy of the scheme regardless of the chéitee suggested nu-
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Figure 3.5: (a) Snapshot of the normal stressatt = 0.25s in the yz-plane at
x = 1250m (top). The source and receiver positions are indicated &yethpty
and full circles, respectively. The zoom region for Fig.(B)3s indicated by the
box. (b) Vector field of the particle velocity at= 0.25s in the zoom region.
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Figure 3.6: (a) Numerical (solid) and analytical (dashedpldcements along
the symmetry axis recorded at 728.9m from the source. The.r.ewror is also
displayed. The numerical solution is computed with an ADEKR-D7 scheme
and shows excellent agreement with the analytical soluti@Numerical elastic
(solid) and viscoelastic (dashed) seismogram shows tleetsfbf viscoelasticity
for the same receiver and computational order than in (&) elear physical
dissipation and attenuation effects.
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merical fluxes. However, the proposed Godunov type flux tawursto be the
better choice. Additionally, a formulation to couple anispic and viscoelastic
effects for seismic wave propagation has been developesepting the necessary
changes in the explicit expression of the numerical scheResults of different
application examples in 2D and 3D involvin@, ¢S, andqS; wave propagation
in both homogeneous and heterogeneous media are in veryagpeement with
analytical solutions or results obtained by the Spectrahteint Method. It can
be concluded, that the ADER-DG method represents a new ncahepproach
to solve seismic wave propagation problems, where geaoraéfiexibility and
numerical accuracy are fundamental. Therefore, the newoapp combines the
advantages of automatic unstructured mesh generatiorofoplex geometries,
which might be difficult to treat with hexahedral mesheshwvitie advantage of
high space and time accuracy. In particular, the ADER-DG mehprovides im-
portant advantages for future applications of realistieeyaropagation scenarios,
where heterogeneous material properties like anisotrapyvescoelasticity play
an important role.






Chapter 4
Poroelasticity in ADER-DG Schemes

In this Chapter the ADER-DG schemes are used to model pormelhesste prop-
agation. First an overview of Biot’s theory and its matherwatexpression are
given, as well as an introduction to the nomenclature. Aféeds the theory is
extended to the anisotropic poroelastic material and thie mgredients to incor-
porate poroelasticity into the DG framework are presentadhe following we
outline how to build the new numerical scheme for the poielaase, based on
the original explicit ADER-DG approach for tetrahedral meshThen a new time
integration schemes is presented, which is able to overtioengability issue that
arises due to the stiff source term in the viscous low-fregyease, based on the
new local space-time DG approach. The convergence behalvtbe proposed
schemes is further tested to confirm the high-order accwhitye new approach.
Additionally, a series of application examples for bothlghiiand low-frequency
cases, are presented to further validate the scheme by cogya results to an-
alytical solutions and reference solutions obtained bywotiumerical methods.
The main contents of this Chapter have been submitted in Ja éiénte, M.
Dumbser, M. Kaser and H. Igel [49].

4.1 Introduction

Wave propagation through fluid-saturated porous rock ipg tof increasing in-

terest in many fields of geosciences. The information cdulmiea seismic wave-
field includes much more than just the geometry of the geoldgitructure. Am-

plitudes and wave forms provide also information about ttegemal properties
in the subsurface and can be used in exploration geophysac)quake engi-
neering, soil mechanics and hydrology. The study of waveggation in porous
media has improved the understanding of elastic propesfiesck, its deforma-

tion characteristics, the dynamic response of structunesfeundations and its
interaction with pore-fluids. In particular, with respeaténhanced oil recovery
techniques the exploration industry faces the challengisl of extracting valu-
able information about the porosity, permeability and fis&duration from seis-

105
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mic waves. Permeability, in particular, is related to thef@rential directions of
fluid flow. As a consequence, the bedding of sedimentary $agethe alignment
of microcracks and fractures plays an important role on thheglastic properties,
which often will present a strong anisotropy. Oil reservoonitoring today is of-
ten based on time-lapse seismics where seismic measusearenepeated from
time to time to investigate the temporal variations of thekrand fluid properties
during production. The change of the structural and peysichl parameters of
the reservoir is included in the seismic signature. Theesfa profound under-
standing of the characteristics of the seismic wavefielddag developed as the
key issue is the relation between the variations in the aogas and wave forms
and the change of the subsurface properties.

A first study of the effects of mixed solid and fluid phases @s&t deformation
was formally carried out by Biot in the early 40s, leading te tonstitutive equa-
tions for anisotropic porous media in the fundamental maition of his theory
of fluid-saturated porous solids and mechanics of defoonmati porous media in
the following decade [11, 12, 13, 14]. Biot's theory appliesttnuum mechanics
to media composed of a solid rock matrix fully saturated waifffuid. The theory
assumes that the size of the pores is much smaller than thelemaths investi-
gated. In this framework the pores are supposed to be alleadet meaning that
the liquid of the pores is a continuum. Any disconnected pane part of the
solid matrix. In order to derive the corresponding wave ¢iqug, the rheology
of the porous media is combined with Darcy’s Laws which diégcthe dynamics
of the liquid system. Biot’s theory has been extensivelydatkd [9, 112] and is
now widely accepted in the field of poroelastic wave propagat

The main difference between the wavefields in a poroelastitenal and those
in an elastic one is the existence of a wa¥ehe second kindn addition to the
standard compressional and shear waves. This wave, aled slaw P-wave, is
of compressional type but propagates at a very slow speedghrthe medium.
As a further effect, the amplitudes of the wavefield are ated due to energy
losses in the presence of a viscous fluid. Finally, in the fieguency range, the
slowP-wave becomes a diffusive mode that propagates at a tirreecsmapletely
different from that of the other waves in the medium. As a eguence, this wave
is significant only very close to the source or near matee&togeneities.
Analytical solutions for wave propagation problems in pdastic media exist [19,
21, 78], but are usually limited to very simple model probdermherefore, many
studies consider the numerical solution of Biot’s equatidrie Finite-Difference
method has been one of the early methods applied for thisoparm two di-
mensions [44, 88, 140, 141] and three dimensions [127]. ®@s&pectral meth-
ods have been successfully implemented [24, 110], as welhaseflectivity
method [120, 125]. A different approach is followed, e.g.[b%7, 118], where
the micro-scale is fully taken into account by individuatliscretizing the pore
content and the solid matrix. The use of numerical simutetivas played an im-
portant role in the understanding of the effects of pordilasaterial properties
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on the seismic wave forms and frequency spectra (e.g. [16]).

4.2 Biot's Theory

The mechanical properties of a porous solid material fill&t @& fluid have been
developed in many theoretical frameworks (e.g. [48]). HaveM.A. Biot was
the first to introduce a full theory from fundamental prifeg based upon the
material properties of the solid rock constituent (solidndted by the subindex
“S” in the following), the frame including the pore struotymatrix, “M”) and the
fluid constituent (“F”). Although later extended to more qaicated setups [10,
119], the fundamentals of the theory are based upon thenfimlipassumptions:

e linear continuum mechanics can be applied.

the wavelength is significantly larger than largest dimemsif the pores.

the pores are all interconnected (unconnected pores asideoed part of
the solid matrix).

thermoelastic and chemical effects don’t apply.

the fluid fills completely the pores.

¢ the rock constituent is isotropic, although the pore stmgcmight be not.

A first analysis can be done assuming the pores to be totaltyoic. We will
use in the following the upper indices and f to refer to variables of the solid
matrix and of the fluid, respectively. To describe the meaisaof the poroelastic
material chosen, in addition to the solid matrix stresggsand straing;?, two
fluid equivalents as are the fluid’s pressprand the fluid strains{;, which don’t
support shear deformation, ue{; = 0for: # j. The quantityp, called porosity,
can be defined

=17,
T

whereVp is the volume that takes the pore space Bnds the total volume of the
material.

A poroelastic material, in Biot's theory, can be describedgisneasurable quan-
tities from the solid, matrix and fluid, which are summarizedether with their
corresponding units as follows:

(4.1)

e SOLID
K : Bulk modulus [Pa]
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ps . Density [Kg/n¥]
¢ MATRIX

Ay : Lamé parameter [Pa]
iy - Shear modulus [Pa]
¢ . Porosity
x : Permeability [m]
T : Tortuosity

e FLUID

Kr : Bulk modulus [Pa]
pr : Density [Kg/n¥]

v : Viscosity [Pa s]

Most of these quantities are well-known from fundamentalguds and elastic
mechanics, except for the permeability and tortuosity. SEntovo parameters are
related to the properties of fluid flow through conduits. Tbheuosity 7" can
be interpreted as a ratio between the diffusivity of a fluidha open space and
in a particular porous material. This quantity is relatedh® ratio between the
minimum (straight) and actual distance between two poihtiseopore space, due
to the “tortuous” path of the pore connection. The permésbil is a measure of
the ability of a porous material to transmit fluids.

4.2.1 Constitutive Equations

The most general form of the constitutive equation for a ffilidd porous mate-
rial, from energetic considerations [27], is given as

O'ZT;L = 2G (6;? - %é‘%éw) + K&Z}C&'j + Qgikéij s

4.2)
o/ = Qe + Rel, |
whereo/ = —¢p. The parameter§/, K, Q and R are unknown, although they

can be assessed by using a series of ideal experiments,psedooriginally by
Biot and Willis [15]. First of all one can subject the materigscribed in (4.2)
to a pure shear deformation, so thgt = a{j = 0 for¢ = j. It can then be seen
thato]! = 2Ge}}, so that the parametéf can be identified with the matrix’s shear
modulus:G = uy,. The two further experiments, which involve no shear buyonl

compression, are described in the following.
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The second experiment is the so-called jacketed compriggdibst. It consists of
taking a sample of fluid-filled poroelastic material and gigst in an imperme-
able, flexible jacket. The jacket is then compressed withxégreal pressurpeXt
while the pressure of the fluid is kept at zero by using a tulaé ¢bnnects it to
the atmosphere. In this case, all the external pressuransrtritted to the frame,
and therefore one can define the bulk modulus of the matrix,as= —peXt/Ezz.
Using (4.2) under the conditions just described one obtains

- = Kepioiy + Qelydy, 4.3)
0 = Qe+ Réik ,
so that one can obtain a relation betwde€gy and the still unknown poroelastic
parameters(, (Q andR
2
KM:K—%. (4.4)

The last experiment is the unjacketed compressibility fElsé whole poroelastic
sample is now immersed in a fluid so that a presgureapplied. This pressure
will distribute itself among thé — ¢ part of the frame and the fluid part of the
surface of the material. In this case (4.2) becomes

—(1=¢)p = Kepidy+ Qsl,dyj,

—¢p = Qe+ Réik .
Now it can be seen that the pressure is acting from the ingitteegorous rock,
and therefore the compressional properties deduced frigraxtperiment are those
of the rock or solid instead of those of the matrix. One cankise= —p/<}}. and
Kr = —p/e], for this particular experiment to obtain a further set of stomints
on the unknown parametefs, (Q and R as follows

(4.5)

I ¢ — K Q
Kg Kp >

— R Q
¢ —_ _I_ _S ,

which, combined with (4.4), builds up a system of three eQuatand unknowns
which can be solved as follows

(4.6)

K = (=0)(1-¢-Ku/Ks)Ks+¢KsKu/Kr
1=¢—Kn/Ks+¢Ks/Kr ’
_ (1-¢—Kn/Ks)pKs
Q = 1-¢—Kn/Ks+¢Ks/KFp ’ (47)
R = »°Ks

1-¢p—Kn/Ks+¢Ks/KF *
Now, (4.2) can be expressed by using only the material ptiggeof the solid,
matrix and fluid through (4.7). However it is convenient tdigke some new pa-
rameters. In particular, the following relations can benfdu
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K = Ky—+M(—¢)?,

Q = oM(a—9), (4.8)
R = Mg¢?,

where the fluid-solid coupling modulud is

Kg
M = , 4.9
=~ Ku/Ks 1 0Ks/Kr (4.9)
and the effective stress component
Kn

=1-—. 4.10
a s (4.10)

With this one can express the constitutive relation (4.2) as

o = 2pu (€5 — 3€Rk0i) + Kuelhi+

+ [Mla = 6Pepy + oM(a - 9)e ] 0 (4.11)

of = ¢M(a — ¢)ep + Mop*el,

whose first expression can be further simplified by adaptioghe’s law for the
solid matrix with the definition

2
Citkl = (KM - gMM) 0i50k1 + tiar (Oirdji + 0adjn) (4.12)

so that (4.11) becomes

oy = Chucn T [M(Oé — ¢)’efi + oM (o — ¢)5£k 03 »
ol = ¢M(a — ¢)ep + Mo*e], .

(4.13)

The very last transformation required to reach a useful tdotige relation for
wave propagation problems is to express (4.13) in termseotdtal stress;; =
o 4+ o/4;; and the variation of fluid content= —é(ef, — ), thus obtaining

on = dlEm — apdy;, (4.14)

which is the final form of the poroelastic constitutive lawes the isotropic case.
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4.2.2 Equations of Motion

The dynamics of the solid and the fluid need to be exploreditd bp a full set of
wave equations for the poroelastic case. For solids thisvays Newton’s laws,
while for confined fluids one uses Darcy’s laws. Biot extendethlkequations
to the poroelastic case in order to describe particle mdbothe solid and fluid
constituents. It will be convenient to define the velocitgteesv = (u, v, w) of
the solid particle velocities and: = (us, vy, wy) of the fluid particle velocities.
These last are definéd - v} = —¢ while the first follow from the standard elastic
definitions using the matrix straing”. We will use the average density of the
poroelastic material which can be computed from (1 — ¢) ps + ¢p;. Further,
the index: will be used to refer to the three cartesian directions z, y, z and
the notatiorp/0x; for the corresponding space derivatives. For a Poisetyifie-
fluid, without turbulence, one can set a combination of Bidy/samic equations
and Darcy’s law to obtain the expressions

omy _ 0w o]
R I TR

where the parameten = p,;7"/¢ has been introduced. The second expression
of (4.15) shows that the viscosity is causing energy dissipation in the sys-
tem. The expression (4.15) is not anymore valid when the §eid away from a
Poiseuille-type behavior and for that case we get

80'2']' . p@vz —|—p 81}{

ox; ot "ot

gp ov; ol (4.16)
“om PP TV e

wherex denotes a convolutional product in time. Note that (4.15u$s$ a par-
ticular case of (4.16) with(t) = md(t) + (vH(t)/x), whered(t) is the Dirac
delta function,H (¢) the Heaviside function. The consequences of this different
behavior in the propagation of waves through poroelastidianaill be further
studied in the following Sections.

At this moment, a full wave equation system for poroelastaterial can be built
from expressions (4.14) and (4.16).

4.3 Poroelastic Wave Equations

A velocity-stress formulation of the poroelastic wave @res includes the un-
knownso;; (total stress) and (matrix particle velocity) as well as the pore pres-
surep and the relative fluid velocitie8; = (uf, vy, wy), as defined in Sections
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4.2.1 and 4.2.2. Following Biot’s studies [11, 12, 13] and thatrix notation
of Carcione [26] the tensorial constitutive equation (4.@4)ended to general
anisotropic poroelastic media can be written in matrixteetorm as

0; = Mijgj s (417)
where
0i = (O_I:ra Oyys 022, O0yzs Oxzy Ogy, —p) y (418)
g = (&I:xa5yya5zz75yz75mz75xy> —§) s (419)
and
U U U U u U
11 Ci2 Ci3 C4 Ci5 e May
U U U U U U
C12 Co9 Cog Coy Co5 Cye  Mag
U U U U U U
C13 Co3 C33 C3q C35 cze  Mag
— U U U U U U
U U U U U U
C15 Cas5 C35 Cy5 Cs5 Cgs  Mas
U U U U u U
C16 Co6 C36 C46 Cr6 cge Mag

MOQ MO{Q MO{g MOZ4 MO(5 MO(G M

As entries of the matrix (4.20) apped} = cj} + Ma;a;, which are called the
components of the undrained stiffness tensfjrthe components of the elastic
Hooke’s tensor of the solid matrix, the generalized effective stress components
and), the fluid-solid coupling modulus, which are generalizedlfie anisotropic
case as

ap = 1-— (611 + ci12 + 013) / (3K8) , (421)
as = 1—(c12+coo+ca3)/(3K), (4.22)
a3 = 1—(ci3+co3+ea3)/ (3K;) (4.23)
ay = —(c1q+ coq+c3q) / (3K) (4.24)
ay = — (615 + Ca5 + 635> / (SKS) s (425)
ag = —(c16+ c26+c36) / (3Ks) (4.26)
K, .

M = (1 — K/Ks) (L= KK with (4.27)

{ = % [c11 + cao + 33 + 2 (c12 + 13 + ¢23)] - (4.28)

In order to obtain the wave equations, the dynamics of the farithe poroelastic
case are expressed by Biot's dynamic equations and Daray’$44.6), which
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can be written explicitly in the form

00 4 n 00 4y N 00, @ n %
ar oy a0z Ta TP
d0yy  Ooyy 0oy,  Ov Ovy
or oy * 0z p8t+pf ot ’
00y, 0oy, Do, Ow Owy
or oy T o:  Par TP (4.29)
dp Ou Ouy
“or = P TVt e
op ov Ovy
v _ 4 ok —L
oy Mo T e
dp Ow Owy
"o T P Yt e
The Poiseuille-type viscodynamic operator in the anigotroase is
W,(t) = md () + (v/ k) H(2), (4.30)

where we use the anisotropic permeabilityin the principal directions =
z,y,z. Furthermore, the substitution; = p;T;/¢ is applied, which includes
the anisotropic tortuosity; of the solid matrix in the principal directions.

It should be remarked, that the time-dependent funct®pbehave very dif-
ferently depending on the frequency range of the propagatiaves. Conse-
guently, Biot's equations (4.29) are frequency dependethBaot’s characteristic
frequency

fe= miin (TAV/j;f) 1=2,Y,2 (4.31)

defines the limit between the high- and low-frequency ranfjethe present the-
sis, “high” and “low” frequencies will be referred to exciusly in terms of being
above or below Biot’s frequency (4.31).

The discussed expression for thigunctions (4.30) is valid for the low-frequency
range. For high frequencies it is required to introduceedéht viscodynamic
effects [13], which will be further discussed in Section.4.3For the moment,
only the low-frequency case will be treated.

Inserting the definition ofV into equations (4.29) and combining them with the
constitutive equation (4.17) provides the governing equatfor wave propaga-
tion in porous media as an inhomogeneous linear hyperbgdites of13 first-
order partial differential equations that can be expregsdte matrix-vector form

0Q, 0Q, 0Q, 0Q),

— 4+ A + qua_y =+ Cp = quQq . (432)

ot P 0w 0
Note, that classical tensor notation is used in equatid@®2j4which implies sum-
mation over each index that appears twice. The vector

—

T
Q = (Uxx; Oyys 022, 0xy, Oyzy Oz, U, U, W, P, Uf, Vf, wf) (433)
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contains the 3 unknown variables and,,, 5,,, andC,, are the space-dependent
Jacobian matrices of dimensi@a x 13 and are explicitly given through

0O 00 O O O cty cts cis 0 Ma; 00
0O 00 O O O cfy cSs cYs 0 Maz 00
0 00 0 0 O iy s s 0 Mas 00
0 00 0 0 O s s s 0 Mag 00
0O 00 O O O cty cis CZS 0 Mag 00
0 00 O O O cts cis cys 0 Mas 00
L Fie)
<y 00 0 0 0 0 0 0 &y 0 00
Apg=—] ** ) & , (4.34)
0 00 450 0 0 0 0 0 0 00
Py
0 00 0 O ﬁ 0 0 0 0 0 00
Pz
0 00 0 0 0 —May, —Mag —Mas 0 —M 00
1 g(Q)
L. 00 0 0 O 0 0 o £< 0 00
e e
x x
0 00 -0 O 0 0 0 0 0 00
@
Py
0 00 0 O ﬁ 0 0 0 0 0 00
Pz
0o 0 0 O 0 0 cfs cty cty 0 0 Mai O
0 0 0 0 0 0 «cY %, ¥y 0 0 Mas 0
0 0 0 0 0 0 cY ¥y &y 0 0 Masg 0
0O 0 0 O 0 0 cgg c36 cis 0 0 Mag O
0O 0 0 O 0 0 cfs [N Ciy 0 0 Mayg O
0 0 0 O 0 0 «cg css cis 0 0 Mas O
0 0 0 % 0 0 0 0 0 0 0 0 0
P
Bpg= ’ 5D : (4.35)
00 0 0 0 O 0 0 2.0 0 o0
oD oD
Yy Yy
00 0 O % 0 0 0 0 0 0 0 0
Pz
0 0 0 0 0 0—-Mag —-Mag —Mag 0 0 —M O
0 0 0 ﬁ 0 0 O 0 0 0 0 0 O
P
| p 52
0-L-0 0 0 0 O 0 0o £<0 o0 o
.2 e
Yy Y
00 0 O L0 o0 0 0 00 0 0
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00 O 0 O 0 cty cty cs 0 00 Moy
00 0 0 0 O s ¥y sy 0 00 Mas
00 O 0 O 0 c3s c3y cYs 0 00 Mas
00 O 0 O 0 css cis c¥g 0 00 Mag
00 0 0 O 0 cis ciy c¥y 0 00 Moy
00 O 0 O 0 [ cis c¥y 0 00 Mas
00 0 0 O % 0 0 0 0 00 O
Px
== 00 0 o ﬁ 0 0 0 0 0 00 O (4'36)
Py
L 5
00 4;0 0 0 0 0 0 Hy 00 0
Pz Pz
00 0 0 0 0 —-Mas —Mag —Maz 0 00 —M
00 0 0 O ﬁ 0 0 0 0 00 O
Px
00 0 0 ﬁ 0 0 0 0 0 00 O
P
. y 52
00 5 0 0 0 0 0 0 P 00 0
Pz Pz

The reaction term on the right hand side of equation (4.38ivisn by

0000000000 O 0 0
0000000000 O 0 0
0000000000 O 0 0
0000000000 O 0 0
0000000000 O 0 0
0000000000 O 0 0
5D,
0000000000 2 0

Epg= T, .| (4.37)

5,
0000000000 O 0 H
RO
z z
0000000000 O 0 0
2
ooooooooooﬁz;))” 0 0
Px Kz
52y
0000000000 O ) 0
Py Ry
2
0000000000 O 0o L2

(2)

Pz Kz

Note, that for the matrix entries of,,, B,,,C,, andE,, we introduce the substi-
tutions

1 1
pé; =P p?‘/ml ) /81( ) = pf/mi ) (4.38)
pi = pr—mip/py, 8% = p/py with  i=ux,y,z.

The equation system in (4.32) describes the phenomenasutespic poroelastic
wave propagation in the framework of Biot’s theory for the {@quency case.

Concerning the eigenstructure of this system, we obsentettiealacobians in
(4.34) - (4.36) have different non-zero eigenvalues, of whidhhave the same
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value than the other four but with opposite sign. These wahre thed phase
velocities related to the different modes propagating in an inviscid poroelastic
medium. In general, there are ofest P-wave, two S-waves and orsow P-
wave. The first three are analogous to those existing inielastterials, whereas
the fourth is a compressional wave which propagates at aspeieh is generally
even lower than the S-wave speed. Hhawv P-wave is physically associated to
out-of-phase liquid and solid compressional particle orwi In the anisotropic
case theséd waves becomeguastwaves, namely P, ¢S1, ¢Sz andqP,, respec-
tively. In this case, the particle motions are generallyargtmore purely aligned
or perpendicular to the wave propagation directions.

Physically, at low frequencieg < f,., Biot's theory predicts that thelowP-wave
becomes extremely dissipative, behaving as a diffusipe-tyave. This wave
does not propagate over long distances, thus being onlyfisemt very close
to the source or to material interfaces. For homogeneousantiee wave types
propagating in a poroelastic material at low-frequencresaémost indistinguish-
able from those in a single-phase medium properly attedu&te]. However,
using Biot's theory to model poroelastic wave propagatiotha low-frequency
range poses the problem of solving a hyperbolic equatioesywith stiff source
terms [70]. The diffusive behavior induced by the existeata large reactive
source term produces wave effects at a very different tinadeshan the wave
propagation phenomenon. As a consequence traditionaicgéxjne integra-
tion schemes encounter problems of numerical stabilityn&oecent work has
avoided this by deactivating the viscous boundary layeteerpores from Biot’s
theory [95]. In Section 4.4, the DG scheme will be constrdate will discuss
two ways of overcoming the numerical stability problem gsiull Biot’s theory,
either by splitting the equation system (4.32) into a stiftla non-stiff part or
by using a new space-time Discontinuous Galerkin schemar8d#fat, a way to
introduce realistic high-frequency poroelastic wave pggdion will be shown in
the following Section.

4.3.1 High-Frequency Viscodynamic Operator

The Poiseuille flow assumption leading to (4.30) breaks datva certain fre-
guency [13] if using a study of the flow through a closed chawiti oscillatory
pressure pulses. Thus a different, more general, viscoadignaperator has to
be introduced. Unfortunately for this case the operatataal expression is very
sensitive to the pore structure and thus for each mategdidiguency dependence
might have to be analyzed separately [4]. A way around ttoblpm is using a
similar analysis as in Section 2.3 for the viscoelastic @b thus substituting
the convolutional products by a Generalized Maxwell Bodyug,la phenomeno-
logical attenuating law can be used fitted to the experinlignbdserved wave
dispersion for a given material in the high frequency rangee main difference
with respect to Section 2.3 is that one has now to face a dysamiechanism (af-
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fecting a vector quantity: velocities) instead of a stifsanechanism (affecting
a tensor quantity: strains). Through the present Sectiemttationi = z,y, z
anduy, = uy, up, = vy anduy. = w; will be used for simplicity. A general
high-frequency viscodynamic operator seen in Sectior242n be defined in the
anisotropic case as

W;(t) = mid(t) + bi(?), (4.39)

whereb;(t) will be a dissipation operator. This can be expressed as a GMB
dissipating mechanisms, similar to (3.34), in the follogvmanner

bi(t) = %X(i)(t)H(t) - % 1 iyﬁ (1—e =) | H(t). (4.40)

(=1

A series of properties of the Dirac’s delta and Heavisidefioms will be recalled
in the following:

Property 1: f&)yxo(t) = f(t)
Property 2: O — (1)
Property 3: f®)o) = f(0)i(t)

Property 4: = f@H(t—a)da = ['_ f(a)da.

Using Property 1 and the identit}(t) x (0g(t)/0t) = (0f(t)/0t) * g(t) one may
write

dp du dug; v 0 (XD (t)H(t))

“or C Pra TMiy T ot

sup;.  (4.41)

At this point the last term of (4.41) has to be examined morefodly. First, one
can apply the chain rule and Properties 2 and 3 to obtain
o(xWH() 0 ()

ot = — 5 H®) + X (0)5(). (4.42)

The equation (4.41) can be further developed and, ugii)) = 1 from (4.40)
and Property 1, we obtain

Op ou . Ouy,; LY
or — "ot ot T
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Finally one can use Property 4 to obtain

Jdp ou N Ouy,; L
- __ =, m; Ufsg
oz 1ot ot k)
Lo (4.44)
~ 25y, / wpa(r)e " dr
K; —oo
(=1

Itis now possible to introduce a set of anelastic-dynamitaesy? = (9%, 9%, )7,

x) Tyr Yz
similar to those in (2.23), as
t
() = Wg/ uf,i(T)e"”‘(t’T) dr . (4.45)
This leaves the dynamic equations as
Op ou n Ouy,; L
- - " m; Ufsg
ox P ot ot ki
no (4.46)

and the anelastic-dynamic variables evolve as (2.25), @ddéng the following
linear ordinary differential equations to the PDE system

%ﬁf (1) + wedi () = weup(t) (4.47)
Note, that the Fourier transform of (4.39) collapses int@@ forw — 0, thus
being both operators consistent in the low-frequency caseaddition, for any
frequency, (4.30) and (4.39) are identical in the invisade ¢ = 0). Vari-
ous Q-laws can be used to describe phenomenologically the obddérequency-
dependent dissipation of a given poroelastic materiahgisxpressions analogous
to (2.18). In practice it often suffices to use a single memarg. = 1) and try
to model a very narrow frequency band around a kn@walue.

By introducing (4.46) and (4.47), we now obtain = 13 + 3n new variables and
equations. Thus one can substitute (4.32) with the follgwin

0Q - 0Q - 0Q . 0Q .
o0t A+ Bu 8; + Cpy = EpgQq- (4.48)
wherep,q = 1,--- ,n,. It will be assumed thaf) contains the poroelastic 13

variables first, and the anelastic-viscodynamic variaf@letb) ordered in increas-
ing mechanism number. Thé B, C andE are enlarged matrices which contain
(4.34), (4.35), (4.36) and (4.37), as seen in Chapter 2. Téwbilansi, B, C will
only get new zero entries, while thé matrix will change as follows, using the
block structure
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. [ ELF  E

E = E" E" :| € ]Rnuxm’ (449)

where EXF is exactly the low-frequency reaction matrix (4.37) aBitthas the
block structure
E' =[E},...,E] e R (4.50)

where each matri¥, € R'**3, with ¢ = 1, ..., n, contains the anelastic-dynamic
coefficientsy,” of the ¢-th mechanism in the form

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
W, < (z
— (1)
Py "Ry
M, (2
0 0 — S5 LY
0 0
@)y «A(2)
__pi?)%ye 0 0
@)y
0 _§2)H Y*e(y) 0
y Ky @, < (s
! U [

The matrixE” in (4.49) is a diagonal matrix and has the structure

EY 0
E/// _ c R3n><3n ’ (452)
0 )kl

where each matri¥)” € R**3, with ¢ = 1,...,n, is itself a diagonal matrix con-
taining only the relaxation frequency, of the /-th mechanism on its diagonal,
i.e. B} = —w, - I with I € R3*3 denoting the identity matrix.

Finally the £” block in (4.49) has the structure
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By
E'=| : | eR™®, (4.53)
E//

where each sub-matrik; € R3*!3, with ¢ = 1,...,n, contains the relaxation
frequencyw, of the/-th mechanism in the form

0000O0OO0OO0OO0OO0OOT1O0® 0
E/=w-100000O0O0O0O0O0O0T1O0 (4.54)
000O0O0OO0OO0OO0OOO0OO0O®O01

It will later be seen that the incorporation of the high-tueqcy operator, as it
doesn't affect the entries of the Jacobian matrices, cagheréd in the com-
putation of the flux and stiffnesses. Only the ADER time inégn procedure
will have to now incorporate the new enlargedmatrix, and the reaction term of
the scheme will incorporate the additional operationsliving the enlargedbQ
products. In the rest of the present thesis, the high-frecueases studied will
be the inviscid ones, for which we showed that the low-freqydormulation can
be used. Therefore only the low-frequency equations willleesloped in detalil
in the following.

4.4 The Numerical Scheme

The numerical scheme produced by (4.32) is very similaréwitcoelastic scheme
(2.38). Let’s reformulate the final form of the fully disceedDER-DG scheme. In
this case we will refer to the reference tetrahedrofasvhere theS is to explic-
itly state that this is a reference element only in space atdhrtime. The need
to use such notation will become clear in Section 4.4.2. Tiberete ADER-DG,
after transformation into the canonical reference elerfignand time integration
over one time step\t from time leveln to the following time leveh + 1 reads

>n+1 - (Qz(;z%)Y} | J| My +

e
S
O
N
=3
=

4 y m 7\ — —_ m n
32 T (A 4 03 ) (TR) 1S B - e (A1) (QS1)
j:
4
j j,(m i " (4.55
+ 32T, (A = ™) (T IS B - T (a) (QF2) " 459
j:

3

= A LIS T (B0) (Q <,3) = By K - Lima(1) (Q) -

o C;Q|J|Kl§ lmn At ( (n) pq|J|Mkl qlmn(At) (Q( )> )
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wherel,,,(At) represents the high-order ADER time integration operdtat t
is applied to the degrees of freedc(r@%’i?) at time leveln. The matrices\/y,,

F,j’j and K, are the mass matrix, flux and stiffness matrices, respégtiaad
include space integrations of the basis functions that @aedmputed before-
hand as shown in more detail in [55};, , B;, andC;, are the Jacobian matrices

transformed into the reference tetrahedf@Gih The matrix Ay is similar to the
matrix A, in (4.34), however, with the entrie$; rotated from the global coor-
dinate system to a local coordinate system of a tetraheslfane. The rotation
to this local coordinate system is done by applying the dled¢d@ond’s matrix
(3.12), see [36]. Furthermorg]| is the determinant of the Jacobian matrix of this
transformation, see the Appendix in [55], di54l| denotes the area of theth face
of tetrahedrory ™),

In the poroelastic case, new variables are introduced argdttte rotation matrix
T, that transforms all variables @p, from the governing equation (4.32) into
the reference system associated to the tetrahedydah’éace reads differently. Its
expression, in block-matrix form, is

T 0 0 0
_ 0 T 0 0 13x13
T = 0 0 T 0 eR , (4.56)
o 0 0 17Tv

whereT" ¢ R®*¢ is the rotation matrix responsible for the stress tensatiar
as in the purely elastic part and is given as

2 2 2

n; 52 i 21,5, 28,1, 2n,t,
2 2 2

ng 832’ tg 2ny 8y 28ty 2n,t,

n; 5% 2 2n,s, 2s,t, 2n,t,

T = (4.57)

NyNg  SySz tyle NySe + NeSy  Syty + Sty Nyty + Ngty
nny, S;8, t.ly n s, +nys. s.t,+ st n.t,+nyt,
NNy 828z tile MzSe+MaSz Sile + Satz Nty + Ngt.

with the components of the normal vectoe= (n,, n,, n,)” and the two tangential
vectorss = (s,, s,,s.)” andt = (t,,t,,t.)”, which lie in the plane determined
by the boundary face of the tetrahedron and are orthogoresddb other and the
normal vectori as shown in [55].

The matrixT¥ € R3*3 is the rotation matrix responsible for the velocity vector
rotation and is given as

Ng Sy g
T =1 ny sy, t, | . (4.58)
n, S, t,

The matrix7” in equation (4.56) is responsible for the rotation of theariable,
and therefore has the simple expressién= 1.
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The resulting ADER-DG scheme (4.55) provides automaticalhgh-order ap-
proximation in space and time and allows us to update theegadfithe unknown
variables from a time stef¥ to a followingt"*! without storing any intermediate
values. The scheme (4.55) using ADER time integration plevaccurate results
for the high-frequency inviscid case, as will be shown byvesgence tests further
in this paper. However for the low-frequency case, as mgsiaitime-domain
schemes, it becomes unstable. In the following Section4 4dd 4.4.2 two ways
of avoiding these instabilities will be shown.

4.4.1 Fractional-Step Method

As discussed in previous Sections, the solution of Biot'sa¢igus for the low-
frequency range poses a problem of instability due to thetieol of a problem
which includes two largely different timescales. In matlagical terms this is un-
derstood as a “stiff” problem. In order to solve it with an kg time-integration

scheme one could strongly reduce the time step in order tiueaghe diffusive
effects, according to the stability limit of parabolic etjoas, but this would dra-
matically reduce the performance of the solver. The use afttiopn method was
suggested in [24, 32], which is formally equivalent to th&uson introduced in

the present Section.

The underlying concept of this fractional-step (FS) metkaek [90] for a de-

tailed description), also known as Godunov-splitting hie separation of a PDE
system into two separate ones, one stiff and the other nibn-Bhen both sys-

tems are solved in an alternating manner, introducing theieo of one of them

as the initial condition for the other in a sequential way.eThg advantage of
the FS method is that it allows us to use different solverseeh of the parts
and thus optimize the time step required by both methodgh&umore, it is very

easy to implement in existing explicit solvers. In the pressase the equation
system (4.32) would be split in the two following ones

0 0 0 0
% + qu 8Qq + qu aQq + Cpq% = 0,
v y 85 (4.59)
a_tp = quQq'

The first equation of (4.59) is non-stiff, as there is no neacterm, and can thus
be solved using explicit time-integration schemes. Themseécon the contrary,
is stiff when the entries of’ are large. First of all, we solve the second equation
system for aAt as large as the solver used for the first equation allows. ddns
be done analytically as it is a set of linear ordinary différ@ equations. The
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solution to this system has non-zero components

. (0@ T m, 7
u*(At) = g<2);’(1) exp (,f“TAt> — 1| us(0) +u(0),

" (1) (2) 1 1), ]
v(At) = gé)pﬁ’l) exp (LzTAt) — 1| v(0) +v(0),

Py~ L Py " ky J

. BOp2 | By ]
wi(Al) = 5 exp (42 At) = 1] ws(0) +w(0),

(4.60)

up(At) = exp <§§>H At) ur(0),

T x

(2)
vi(At) = exp (ﬁ v At) vs(0),

y
2
p?(l >“y

wi(At) = exp <£§2§:’Z At) wy(0) .
The second step is then to solve the first equation in (4.5%hsameAt but,
as requested by the FS theory, using @jevariables instead. Here, the vector
@;, includes the standard entries @f, except that the variables, v, w, uy, vy
and w; are substituted by thestar counterparts obtained in (4.60). To solve
this second step one can use the ADER-DG scheme (4.55) but itbauivthe
reaction matrixt. The solution of this last part will be then the solution oé th
full equation system (4.32) for a single time step advancegrmésize At. The
maximum size of this time step is limited to the maximukn allowed by the
standard ADER-DG scheme for the non-stiff case. In the fahgamthe combined
FS method and the ADER-DG method described in this Sectidrbeiteferred
to as ADER-DG(FS).
Note, that the splitting of the system using FS schemes l@aasolution which
is formally first-order accurate [90], although secondewrdccuracy is reached
often in practice. Higher-order convergence is not possiden by using highly
accurate time-integration for both fractional-stepsgesaslthe operators associated
to the non-stiff and stiff terms commute. In the present ¢askould hold from
equations in (4.59) that4o, + Bo, + C0,)-E = E-(AJ, + BJ, + C0,), which
is not true in the poroelastic case. In fact, when the satgtere not smooth, it is
not even clear if a FS method converges at all to the exadigo)uas the resulting
wave speeds are often wrong [91]. Its usage can give quaditagood solutions
for wave propagation models under certain conditions btdarisway from pro-
ducing quantitatively reliable results, as will be furtisrown with convergence
tests.

4.4.2 Space-Time DG Method

The local Space-Time Discontinuous Galerkin method watsfitduced in [54]
for non-linear one-dimensional stiff problems. The maieads to avoid the Tay-
lor expansion in time, commonly used for the ADER time ditzedion, and to
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use a fully discontinuous scheme in time as well as in spacgotinuities are
handled by using numerical fluxes, resulting in a schemelofrary high order.

Furthermore, and unlike FS-based methods, it is asymatiyticonsistent as will

be shown numerically in a chapter of its own. Additionaltyisia robust enough
method to work on space-time grids as coarse as the noregtitition system
would allow. In the following the scheme described in [54¢idended to three-
dimensional DG schemes and we give a brief outline on howedtisgether with

the algorithm (4.55) to develop a local space-time ADER-DGhoe, referred to
as ADER-DG(ST) in the following.

First of all one can assume, instead of the usual DG assumiptéxpression (1.23),
that the variables are represented in a space-time basis as

( Elm)>p (&m,67) = Qi xn(T)®i(€,m,€), (4.61)

so that now the degrees of freedom amee-independentl he time basis functions
Xn(T) are chosen to be Legendre polynomials. Notice, that nowotia¢ amount

of degrees of freedom & + 1 times that of a standard ADER-DG scheme. Let’s
write down the governing equation (4.32) in the refereneeneint as

8QO+A* 8QQ+B*%+ *aQq

ot S % Py <y

= E,,Qq (4.62)

beingA*, B*, C* and E* the Jacobian and reaction matrices transformed into the
space-time reference tetrahedrbfi” = 77 x 7,1, where7; is the space ref-
erence element, or reference tetrahed@h the one dimensional time reference
element andk denotes a tensorial product. As the time reference eleraetd-i
fined forr = [0, 1], for a time incremeni\¢ the star matrices appearing in the
local governing equation (4.62) are the ones for the timdicoous ADER-DG
(see [55]), multiplied byAt. The following notation for the space-time and the
purely space inner products can be used:

f.g] = / F(En.C7) - g (€, C,7) dedndCdr
TST
E (4.63)
(f,9) =/Tsf(f,n,c,f)-g(f,n,c,f)dédnd@

Then one can multiply equation (4.62) by a space-time tesition and integrate
over7;7. Instead of integrating the second term by parts as in exjae$1.29)
one can integrate by parts the first term. This way, unlikelBb], the approach
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is kept local, thus resulting in the system

Bog (s (1), x (1)) (Qg;;;))(") - 6om<xs<0)<1>T,<I>n>(Am)(T -
b [2tue] ()4

Ay |:qu)1~7>(1€5%(1)1] @gﬁ)>
By, [ o] (Q40)
)

)

+ o+ o+

C* [Xs ranaC(I)l:| (QEIZL@)
(n
E* [XSCI)T’XkCI)l] (quk)> .

A (n)
The notation(Q<m)> has been employed to denote the degrees of freedom in-

N (7=0)
side the spatial elemefit:) and time element.), and(Q(m)) thespace only

degrees of freedom evaluated at the boundary between teneeatyn — 1) and

(n). The integration by parts allows us to use the theory of nigakfluxes, not

in the spatial dimension as in any DG method, but in the tinmeetision. Due

to causality, the time fluxes at both ends of the time intejydl] are exclusively
dependent on the previous values of the variables and navbe@osterior ones.

It can be seen that all the integrals in expression (4.64pam®rmed in the refer-
ence elementg,? and7,;” and can therefore be pre-computed and stored. Now

R (n)
the matrices applied toéQ(m)) can be grouped as the tensdy,,, and the

thus obtaining

srn?

R (r=0)
matrices applied t({Q(m)> asd,m FO

o\ () C N (7=0)
}/;qsrlk (qug) 5omFsorn (Q%) (465)

and by isolating the space-time degrees of freedom ofithex (n) element we
obtain

(Q5)" = Vo)™l Q) (as0)

Notice, that if one aims at knowing the time integral of thgmes of freedom
over the intervat = [t,t + At], they can be obtained by just takikg= 1 in the
expression (4.66) and multiplying by the size of the timeredat At. One can
thus define

150 = At (Yogsrnn) ' - Som FO

qlmn srn

(4.67)
and substitutd;’, | for the standard ., in the scheme (4.55) to obtain the de-
sired fully dlscrete local ADER-DG(ST) scheme. Notice tladthough the time-
integration is locally implicit, the global scheme remaamsexplicit time-domain
method. This is the main difference to previous formulagioh space-time Dis-

continuous Galerkin methods [135]. In addition, the timgrées of freedom are
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exclusively internal to thd;" = calculation. This means that these degrees of
freedom are not stored and the running algorithm has extietlgame number of
degrees of freedom as the standard ADER-DG scheme. The tgrisdlifferent

for each elementn) and therefore its inversion has to be performed once per each
element. As its value is constant in time it can be precontpatel stored before
the actual time marching of the scheme. This is of great adgancompared to
globally implicit schemes where a linear system has to berted, whose size is
proportional to the total number of elements in the companal mesh. It should
also be noticed that the additional degrees of freedom uséuki derivation of
expression (4.65) are internal to the computafigp,;; so that they are neither
stored or evolved in time during run time. General propsrtiethe local space-
time discontinuous method applied to high-order finite wvaduschemes can be
found in [54].

4.5 Convergence Study

In this Section a numerical convergence study of the prap@ddeER-DG ap-
proaches on tetrahedral meshes is presented, in order ngémate its arbitrarily
high order of convergence in the presence of poroelastienaht Results from
second- to sixth-order DG schemes are shown, denoté®lig O6, respectively.
The schemes compared are ADER-DG, ADER-DG(FS) and ADER-DGE&T)
shown in the three last Sections.

Similar to previous Section 2.7, the convergence orderslerermined by solv-
ing the three-dimensional, poroelastic wave equationsamgutational domain
Q=[-1,1] x [-1,1] x [-1,1] € R?® with periodic boundary conditions.

Two major cases are studied: inviscid and viscous fluid eant&he first case
has high-frequency properties, while the second lies indwefrequency range.
The homogeneous poroelastic material is a brine-satusatedstone, similar to
that described in [32] for the poroacoustic case, and itarpaters are given in
Table 4.1.

To confirm that poroelasticity is treated correctly, letigperimpose three plane
Waveng), I =1,..,3, (afastP-, an S- and alowP wave) of the form given
in expression (2.55) traveling along the diagonal of theecubat is thg(1, 1, 1)
direction, i.e. one has the three wave number vectors

7(1 1 1 IN\T T
Y= (kM kD BT = (7,1, m) " (4.68)
(2 2 2 2N\T T
2 = (kP kD KT = (m, 7, 1), (4.69)
7.(3 3 3 3NT T
O = (DD K = (o7, m)" (4.70)

leading to periodic, sinusoidal waves in the unit-cube. 8y descending order
of the 13 eigenvalues of the matrices (4.34)-(4.36) is amose that the eigen-
value corresponding to the P-wave is the first, the one foBthave is the second
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Table 4.1: Coefficients for the isotropic poroelastic maidegiven inS.1. units as
used in the convergence tests. The inviscid case is idébtitavith v = 0

Ds pf )\matrix umatrix Ks Kf v ¢ K T
2500 | 1040 | 12.0e9 | 10.0e9 | 40.0e9 | 2.5¢9 | 0.001 | 0.2 | 600.0-10"1° | 3

and the one for thelow P-wave is the fourth. Note, that the chosen poroelastic
material possesses a Biot frequency for the viscous cagé/of= 1.068 - 10°H 2

and fINV = 0H z for the inviscid case. The maximum frequencies of the presen
problem arefV!® = 3459.6Hz and f'NV = 3482.4H » for the viscous and in-
viscid cases respectively, thus being both of them cleamekes of low- and
high-frequency poroelastic wave propagation. Notice, ttuatthe low-frequency
case, theslow-P wave becomes a quasi-static diffusive wave, as predigt&iot.

The total simulation timé" is set toI’ = 5.0- 10~°s. The CFL number is set in all
computations t& = 0.5 of the stability limit 57 of Runge-Kutta DG schemes
(see (1.67)). Notice that the time step used for each meslo@ied is the same
for all three methods.

The numerical analysis to determine the convergence oiggrerformed on a
sequence of tetrahedral meshes. The mesh sequence isdbbgidividing the
computational domaif2 into a number of sub cubes, which are then subdivided
into five tetrahedra.

A total of 3 series of simulations, namely convergence tests, werernpeed:

¢ Inviscid high frequency with ADER-DG,
e Viscous low frequency with ADER-DG(ST),
e Viscous low frequency with ADER-DG(FS).

For all the convergence tests we picked the variable of the gelocity compo-
nentu of the system of equations (4.32) to numerically deterntieecbnvergence
order of the used DG schemes. The errors and convergenas argecomputed
the same way as in Section 2.7. The results of the convergesteare shown
in Tables 4.2 and 4.3 and plotted in Figs. 4.1 and 4.2, derraiimgj the depen-
dence of the.> error with respect to (a) mesh width (b) number of degrees of
freedom per variablévV; and (c) CPU time. The simulations were performed on
a Pentium 1V2.8 GHz processor witGB of RAM. With mesh refinement the
higher-order schemes, in the present case the standard ARERAd ADER-
DG(ST), converge faster as shown in Figs. 4.1(a) and 4.2@) tower-order
schemes as ADER-DG(FS). Furthermore, Figs. 4.1(b) andyd2(honstrate that
higher-order schemes reach a desired accuracy requirmgea humber of total
degrees of freedom. The total number of degrees of freeddime igroduct of the
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Figure 4.1: Visualization of the convergence results fe& ADER-DG scheme
in the inviscid high-frequency case. The symbols P1-P6édstanthe maximum
polynomial degree of the basis functions used. Notice timastope of the lines
is proportional to the computed convergence order. Tieerror of variableu is
plotted versus (a) the mesh spacingb) the number of degrees of freedawy
and (c) the CPU time.

number of mesh elements and the degrees of freedom per ¢lebfhenefore, ob-
viously the increasing number of degrees of freedom of highder schemes is
over-compensated by the dramatic decrease of the numbegquifed mesh ele-
ments to reach a certain error level. Also the CPU time corapasiin Figs. 4.1(c)
and 4.2(c) show that the higher-order methods reach a desirer level in less
computational time.

It is clear from Fig. 4.2 and Tables 4.2 and 4.3 that the fometi-step method as
is ADER-DG(FS) is not well suited for the accurate simulatodiow-frequency
range poroelastic waves. Although in some cases it can =abnd order, its
convergence properties do not improve when high-ordermuohyals are used to
represent the variables. Particularly, in Table 4.3 it carséen that the method
cannot converge beyond some certain error value. In p&tideig. 4.2(a) shows
that computationally it is much more efficient to use the ADB&{ST) method
because a desired accuracy can be reached using coarserntatomal cells and
therefore less elements. This has an effect on the compuightiime as can be
seen in Fig. 4.2(c).

The computational time required by all three methods is amaipe, the high-
frequency case being slightly faster in all cases. For theftequency it can
be observed that the ADER-DG(FS) methods require less catipodl time,
mainly due to the fact that they don’t include the reactiomté’ into the time-
integration procedure. However the accuracy is consigtbetter for the ADER-
DG(ST) for all setups with the only exception of the very londer case’1. At
higher orders the increase in accuracy is more evident,rtbesebeing orders of
magnitude smaller than those obtained with the ADER-DG(F&hod.
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Table 4.2: Convergence rates of the velocity componenitthe ADER-DGO2
up to ADER-DG 06 schemes on tetrahedral meshes for the inviscid high-
frequency case.

ADER-DG

h ‘ Nd ‘ 1 L OLoo CPU[S]
1.44-1071 | 6912 68 | 3.8885-1071  — 79.7
1.08-1071 | 16384 | 91 |2.0983-10"1 2.1 251.7
8.66-1072 | 32000 | 113 | 1.3071-107Y 2.1 610.5
7.21-1072 | 55296 | 136 | 9.0967 - 1072 2.0 1268.3
1.44-1071 | 17280 | 113 | 2.5256 - 1072 — 173.9
1.08-1071 | 40960 | 151 | 1.0518-1072 3.0 550.0
8.66- 1072 | 80000 | 189 | 5.5229-1073 2.9 1340.3
7.21-1072 | 138240 | 226 | 3.3461-107% 2.7 2767.1
2.16-1071 | 10240 | 106 | 7.9373-107%  — 82.1
1.44-1071 | 34560 | 158 | 2.0592-1073 3.3 411.3
1.08-1071 | 81920 | 211 | 6.8809-10"%* 3.8 1300.8
7.21-1072 | 276480 | 316 | 1.5594 - 107* 3.7 6571.8
4.33-1071 | 2240 68 | 1.1778 - 1072 — 12.1
2.16-1071 | 17920 | 136 | 5.0270-10"%* 4.6 192.1
1.44-1071 | 60480 | 204 | 8.1186-1075 4.5 971.2
1.08 - 107! | 143360 | 271 | 2.0913-107° 4.7 3062.9
4.33-1071 | 3584 | 83 | 1.0803-107%  — 29.3
2.88-1071 | 12096 | 125 | 1.2239-10"* 5.4 147.7
2.16-1071 | 28672 | 166 | 2.3855-107° 5.7 464.7
1.44-1071 | 96768 | 249 | 2.6912-107°% 5.4 2349.5
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Table 4.3: Convergence rates of the velocity componeritthe ADER-DGO2

up to ADER-DGO6 schemes on tetrahedral meshes for the viscous low-fregjuenc
case. Values of the number of degrees of freedgpand of the iterationg are
identical to those in Table 4.2.

ADER-DG(ST) ADER-DG(FS)

h L= O~ CPUs] L= O~ CPUs]
144101 [ 2.7850- 101 — 81.0]28139-10T — 1.5
1.08 1071 | 1.5006 - 1071 2.1 256.0 | 1.5252- 1071 2.1 209.7
8.66-1072]9.3845-1072 2.1  619.7 | 9.6237-10"2 2.1 702.2
721-1072 | 6.4034-1072 2.1 1289.4 | 6.6379-10"2 2.0 14584
144-10°1 [ 21170 102 — 203.9 | 22990 - 102 — 197.6
1.08-107 | 7.3896- 1072 3.7  647.8 | 9.4670-10"3 3.1  640.5
8.66-1072 | 4.1012-1073 2.6  1577.4 | 6.1988-10"3 1.9  1525.3
721-1072 | 247811073 2.8  3259.7 | 45885-10"3 1.6  3161.1
2.16-10 ' | 6.8010- 103  — 138.1 | 8.8264-10° — 90.7
1.44-1071 | 1.6704- 1073 3.5 692.3 | 3.7300-103 2.1 4547
1.08-107 | 5.6757-10~* 3.8  2190.8 | 2.6524-1073 1.2  1461.1
721-1072 | 1.3162- 10~ 3.6 11114.1 | 2.2356-10=° 0.4  7207.7
433-10°1 88939107 — 32.0 | 1.0877-102 — 13.0
2.16-107' | 4.3880- 10~ 4.3 510.7 | 2.4746-10=° 2.1 201.2
144107 | 6.5967- 107 4.7 2587.5|2.1599-103 0.3  1018.6
1.08-1071 | 1.8116- 10~ 4.5  8122.6|2.1241-10°3 0.1 32155
433-101 86298 101 — 116.6 | 2.8564- 103 — 30.6
2.88-1071 | 9.5154-105 54  592.1 | 2.2066- 102 0.6 153.5
2.16-107' | 2.0776-107° 5.3  1860.0 | 2.1271-10=% 0.1  482.2
1441071 | 2.2545- 1076 5.5 04127 | 2.1184-1073 0.0  2441.9
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Figure 4.2: Visualization of the convergence results ferAIDER-DG(ST) (solid)

and ADER-DG(FS) (dashed) schemes in the viscous low-frexyuease. The
symbols P1-P6 stand for the maximum polynomial degree ob#sés functions
used. Notice that the slope of the lines is proportional ®dbmputed conver-
gence order. Thé> error of variableu is plotted versus (a) the mesh spacing
(b) the number of degrees of freedawyy and (c) the CPU time.

10*

4.6 Asymptotic Consistency

As a main result of the numerical convergence studies in teeiqus section, it
has already been found that the fractional-step (FS) mathiook able to achieve
the desired order of accuracy in space and time, albeit awghyorder spatial dis-
cretization was chosen and although even a high-order atectime discretization
was used in each of the FS sub-steps. However, the combirattbe individual
sub-steps of the FS scheme resulting from the splittingefthverning equations
is formally only first-order accurate for stiff systems. 38 a severe limitation of
this very simple approach to stiff partial differential @tjons. The lack of formal
order of accuracy of the FS method will also be seen in thigsi@gcwhere the
stiff asymptotic limit behavior of the governing equatiomdl be discussed.

It is well known that hyperbolic systems with stiff sourcents usually tend to
some reduced asymptotic PDE systems that may also changg/pee see [37].
The original hyperbolic system may for example become Hygéer-parabolic
or even entirely parabolic. Hence, in the asymptotic lirh& hyperbolic system
of the governing equations may tend towards a convectitinsiton or purely
diffusive system. For this reason, one calls the stiff aggtip limit also the
diffusion limit of the hyperbolic governing equations.

4.6.1 Asymptotic limit equations

In this section we study the asymptotic limit behavior of dgiations of poroe-
lasticity in one space dimension in the low-frequency raimgeonnection with
the corresponding behavior of the numerical methods ptedeabove. For no-
tational simplicity, the one-dimensional system of poasétity can be derived
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from (4.32)-(4.37) and is written with the definitioas= o,,, v = v/, - = B

o4 =
andl = pﬁ(f))” as follows:

0 0 0

JR— —_— — _— M— pu—

atcr ca$u o axv 0,

9, . 19 __ Ao _ 1.

ot p1 0x 1 axp o

0 0 0
Ep—l—on%u#—M%v = 0,

0 10 By O 1

- —— -y = . 4,71
atv P2 axa P2 8wp GQU ( )

In order to obtain the reduced asymptotic limit system o¥1J.for the case
eo — 0, standard asymptotic series expansion techniques arewb#th expand
variablev appearing in the stiff source in a power series in terms ofstnall
parametet, as

v = v + eyv1 + O(e3). (4.72)

For the present purposes it is sufficient to consider in theviing only terms up
to first order ine,, i.e. terms ofO(el). Inserting (4.72) into the last equation of
the system (4.71) one gets

0 0 10 Ba O 1

— —Uv— ——0— ——p= : 4.73

0tv0+€26tvl P2 8x0 P2 8xp €2 Yo+ 1 ( )
Since equation (4.73) must hold fanyvalue ofe,, one can collect terms of equal
powers ine; and set each individual coefficient of the resulting expamsn ¢, to
zero. The leading order tersg' immediately yields

vo = 0. (4.74)

Inserting this result into (4.73) and considering the teahthe following order

€5 one can deduce

v = —lia — @ﬁp (4.75)

Inserting the asymptotic expansion (4.72) together with riésults (4.74) and
(4.75) into the set of equations (4.71), the following restliasymptotic system is
obtained in the stiff limit, — 0:

0 0 1 02 By O
0 —c— M == == —
5% " 3t + e (pg 5227 + p 8$2p> 0,

ot \ep2 p1) 0x €1p2  P1 al“p ’

a 8 1 82 52 02
tp+0[ xu—i—eQ ( , x20’—|— , x2p> 0 ( 6)
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The reduced asymptotic limit system (4.76) is a mixed hypkeiparabolic sys-
tem of three convection-diffusion equations without seuerms, instead of the
original four hyperbolic equations with stiff source ter(dsr1).

In the following Sections we perform a comparative studyhef &ccuracy of the
proposed ADER-DG(ST) with the ADER-DG(FS) schemes. It haslseewn by
LeVeque and Yee [91] that a classical FS method for hyperisgktems with stiff
source terms is not asymptotically consistent with thé kifit of the governing
equations. More precisely, this means that the numeridatiso of a scheme
which is using standard fractional-stepping applied toseof equations (4.71)
will not converge to the correct asymptotic limit system/@). Despite this im-
portant finding by LeVeque and Yee in 1990, fractional-stegithuds still enjoy
high popularity in engineering sciences.

4.6.2 Numerical Test Case in One Space Dimension

In this Section we propose the following test case for thédasibn of numeri-
cal methods that are applied to poroelastic wave propagatithe viscous low
frequency range. For this test problem it is of great impuar¢athat the numer-
ical scheme is asymptotically consistent with the diffaslonit (4.76) of the
original hyperbolic system (4.71). The computational dimria chosen to be

2 = [-0.5;0.5] with Dirichlet boundary conditions consistent with thetikli
condition
[ (10,0,99,0) if 2 <0,
(o,u,p,v) (,0) = { (1,0,9.9,0)  if x> 0. (4.77)
The parameters for this test case are chosen in a dimenssas#éing as = 0.5,
a =025 p =1,pp = =100 M = 2, 6 = 0.1, B = 20, ¢ = 10*
ande; = —10°. The eigenvalues of the original inhomogeneous hyperbolic

system with four equations (4.71) ate€2.0074 and +0.6086, corresponding to
thefastP-waves and thslow P-waves. The eigenvalues of the hyperbolic part of
the reduced asymptotic system of three convection-ddfusiquations (4.76) are
+0.7382 and0. One immediately notes that the presence of the stiff saeroes

in (4.71) is reducing the speed of tfest P-waves and is melting the twslow
P-waves to one single diffusion wave with zero propagatipees. All the fol-
lowing computations are performed on thrgginal hyperbolic system (4.71) with
stiff source terms on a mesh with 100 elements using ADER-[3E&Rd ADER-
DG(ST) schemes of second and fourth order of accuracy iresgad time.

The first computation is done up to the final tihe- 0.5. The numerical solu-
tions obtained withD2 and©4 schemes are presented in Fig. 4.3. The reference
solution has been computed solving directly the asympliotit equations (4.76)
on a very fine mesh of 10000 elements using a standard secdad-accurate
finite volume scheme. The fourth variable of the referendétiem (v) is obtained
from the other variables using the asymptotic ansatz (4d@ther with rela-
tions (4.74) and (4.75). Looking at the structure of thenezfiee solution one can
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Figure 4.3: Numerical solutions for the stiff one-dimemsibtest case at=
obtained with ADER-DG(FS) and ADER-DG(ST)2 and04 schemes.
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clearly observe that only three waves are present: thddastd-waves as well as
the stationary diffusion wave at the origin instead of the slow P-waves of the
original governing equations (4.71). For all four variafla very good agreement
with the reference solution has been obtained using theogemhADER-DG(ST)
02 andO4.

In contrast, the ADER-DG(FS) scheme produces wrong resailispugh very
high-order accuracy in space and time is used in each of dleidnal sub-steps.
Especially the fluid and solid velocities,andv respectively, show extreme over-
shoots as well as too much diffusion. This simulation shdvas the standard FS
method is stable, but not asymptotically consistent wighlimit equations.

The final simulation time of the same test problem can be aszé ta = 100 in
order to study the behavior of the proposed numerical metholdrge time scales.
The ADER-DG(FS) and ADER-DG(ST®2 and 04 schemes are used again on
the same mesh. The obtained numerical results are depictéd.i 4.4, together
with the reference solution, computed by solving againatliyethe asymptotic
limit equations (4.76) on a mesh of 10000 elements with arsooder accurate
finite volume scheme. A remarkable disagreement can be\wabsér FS-based
solutions. First of all, an excessive amount of numerictusiion is visible for
the normal stress and the fluid pressune Second, the numerical solution of the
velocity components andv obtained via the ADER-DG(FS) approach are com-
pletely wrong. The results obtained for this test case gelautput times reveal
once again very clearly that a classical fractional timeiteg scheme, although
very popular, is not asymptotically consistent with thé &tnit of the governing
equations. In contrast, the numerical solutions obtainiid tve ADER-DG(ST)
scheme are in perfect agreement with the reference soliaial variables.
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Table 4.4: Coefficients for the material given §h/. units as used for the 3D
explosion example in Section 4.7.1.

Ds Pf )\matrix Mmatrix Ks Kf v qb K T
2500 | 1040 | 19.6e9 | 26.1e9 | 80.0e9 | 2.5¢9 | 0.0 | 0.5 | 300.0-10~1° | 2

4.7 Application Examples

In this Section we present a series of applications to véngproper implementa-
tion of Biot’s equations in the Discontinuous Galerkin framoek. Examples both
in the low- and in the high-frequency ranges are discussedguhe ADER-DG
and ADER-DG(ST) schemes introduced in this work. Results anepared to
analytical or numerical reference solutions obtained father schemes.

4.7.1 High-Frequency 3D Explosion

In this application we assess the accuracy of the propodesirsz against an an-
alytical solution proposed by [44]. The problem setup ig tifea homogeneous
poroelastic material where a point explosion is appliedadtit bhe solid frame and
the inviscid fluid. The parameter values of the material avergin Table 4.4.
The domain is a cub® = [—450;450] m x [—450;450] m x [—450;450] m. It

is discretized withd55625 regular tetrahedra, each with a side length2om.
The source is situated at the point = (—50,0,0)m and has a Ricker time sig-
nal of peak frequencgOHz and time delay).04s. The receiver is situated at
z, = (50,0,0)m. An ADER-DG O6 scheme is chosen for solving the problem,
meaning that polynomials of fifth order in space and time aedu The final
simulation time ig0.25s, with a time step ofA\t = 5.56 - 10~°s and a total num-
ber of 4500 iterations. The computation was performed2i6 Intel Itanium2
1.6GHz processors and lasted for a total of approximaitéigurs. The results are
shown in Figure 4.5(a), together with the root-mean-sq@anmes.) error. Both
P-wavesfastandslow, appear in this case as the viscositis set to zero.

4.7.2 Low-Frequency 3D Explosion

The result of the proposed scheme is compared with an acellygolution for
the case of a point explosion in the low-frequency range. 3étep is sim-
ilar to the poroacoustic problem proposed in [33] but agplie a poroelastic
material whose properties are described Table 4.1, i.e.sdh&e material as in
the convergence tests is used in the present applicatioe.ddmain is a cube
) = [-5000; 5000] m x [—5000; 5000] m x [—5000; 5000]m. Itis discretized with
625000 regular tetrahedra, with a side length26m each. The point source only
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Figure 4.5: Comparison between the analytical (dashed) antencal (solid)
solutions of the solid particle velocity componentn a homogeneous medium
with explosive sources for (a) the high-frequency inviscage and (b) the low-
frequency case. The residuals (dotted) are enlarged bya tator easier visual-
ization. Also the r.m.s. errors (E) are included.

affects the solid matrix and is situated at the coordinaigiror:, = (0,0,0)m.
The receiver is placed at. = (1000, 0,0)m. The source is a Ricker pulse with
peak frequency at.5Hz and with a time delay of - 10~*s. The simulated seis-
mograms cover a total time @f5s. The simulation is carried out with an ADER-
DG(ST)O5 scheme and the final result is reached aftai3 iterations using time
steps 0f0.54 - 10~*s. The run time of the simulation was7 hours in128 Intel
Itanium21.6GHz cores. The result is shown in Figure 4.5(b), togetheh wie
r.m.s. error. One can observe that only one P phase is olosasvhe slow wave
has become a diffusive mode, that does not appear in the @giam.

4.7.3 Anisotropic Poroelasticity

In order to assess qualitatively the capability of the méttmoinclude anisotropic
material, the results shown in [24] for brine-saturatedxgpglass and sandstone
are reproduced here with the ADER-DG scheme. The actual mlatelues used
are shown in Table 4.5. It can be seen that both materialsprasisotropy of the
transversely isotropic class in the matrix values as wedhasotropic permeability
and tortuosity. The two-dimensional domain is a square [—9.35;9.35| m x
[—9.35;9.35] m discretized in a total 618654 triangular elements with an average
side length of0.1m. The source is situated a; = (0,0)m and acts on the,,
and on the fluid pressugesimultaneously. Its source time function is given by
a Ricker wavelet with frequencied 35Hz and3730Hz for the epoxy-glass and
the sandstone respectively, with time delaysof= 4 - 10~*s. In both cases
this frequency lies well below the materials’ minimum Bioffequency. The
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simulations were carried out with an ADER-DG(S7) scheme and performed in
a2GB Pentium IV2.8GHz computer. The run-time was of approximatelyours,
reaching a maximum time df8-10~3s for the epoxy-glass ands6-10~3s for the
sandstone. The time steps used@p94 s and0.255us respectively thus leading
to a total of6123 and6118 iterations respectively to complete the simulation. The
resulting snapshots of the solid particle velocitieendv are shown in Figures 4.6
and 4.7, where the inviscid results for the same setup hase aédded to point
out the differences between the high-frequency and thefleguency regimes.
Theslowwave at low-frequencies becomes a diffusive mode centétbd aource
location which, due to its very small magnitude, cannot bseoled in the solid
particle velocity snapshots. The snapshots of Figs. 4.64andan be directly
compared to those presented in [24] obtained with a psepéchml simulation
using an FS-equivalent splitting technique. The same ghaseobserved with
both methods. Notice however that in the aforementionedigailon the time
function has a different expression, although with the speak frequency. We
can observe that, for the inviscid high-frequency casegearctlowgP-wave is
present propagating at a much lower velocity than the retfiteofvaves. As seen
in the Table 4.5, the solid matrix of the sandstone is lessati@pic than that of
the epoxy-glass. However, they both share identical aippof the permeability
and the tortuosity, which are responsible for the anisatréipw of fluid through
the pores. Comparing Figures 4.6 and 4.7 we can observe thalavgP-wave
is actually showing the same ellipticity for both materjasad is therefore more
sensitive to the anisotropy of the tortuosity and the pebitigathan to the solid
matrices’. Another interesting fact is that, for both metis; the wave forms for
the viscous and inviscid cases are almost identical for;8teand fasyP-waves.
Additionally, the typical cuspidal triangles appearinganisotropic elastic case
in the directions of the symmetry axes of the material, an& also visible for
the slowgP-wave (see Fig. 4.6). In Fig. 4.8 we show the results of tmeesa
simulation in the sandstone but now focusing on the diffeesrbetween the solid
particle velocityv and the fluid particle velocity, in the viscous case. It can be
seen how for the low-frequencies a diffusion peak appeatsatource location,
only visible for our plotting scales in the fluid particle gelty.

4.7.4 Heterogeneous Poroelastic Material

Finally we show an example to confirm that the ADER-DG methodemly
treats material heterogeneities. In the present case wa dsenain composed
of two different poroelastic materials, a shale and a samastooth filled with in-
viscid brine, as described in Table 4.6. The two-dimendidaomain is a rectangle
2 = [0; 1500] m x [0; 1400] m with an interface at thg = 700m axis. The source
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Table 4.5: Coefficients for the anisotropic, poroelasticariats given inS.7. units
as used for the 2D anisotropic example. Both are of the trassleisotropic
symmetry class.

MATERIAL | p, of ci c12 €22 C66 K
Epoxy 1815 | 1040 | 39.4€9 | 5.8¢9 | 13.1e9 | 3.0¢9 | 40.0e9
Sandstone | 2500 | 1040 | 71.8e9 | 1.2¢9 | 53.4¢9 | 26.1¢9 | 80.0e9

MATERIAL Ky v 10} Ky Ky T, | Ty
Epoxy 2.5¢9 | 1.0e —3 | 0.2 | 600.0e — 15 | 100.0e —15| 2 | 3.6
Sandstone | 2.5¢9 | 1.0e —3 | 0.2 | 600.0e — 15 | 100.0e — 15| 2 | 3.6

Figure 4.6: Snapshots showing velocity fields in an epoaggimaterial. Upper
figures show the inviscid case (= 0) and lower figures the viscous case. On
the left hand side is the solid particle velocityin the x—direction and in the
right hand side the velocity in they—direction. These snapshots can be directly
compared to those in [24].
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Figure 4.7: Snapshots showing velocity fields in a sandstoaterial. Upper
figures show the inviscid case (= 0) and lower figures the viscous case. On
the left hand side is the solid particle velocityin the x—direction and in the
right hand side the velocity in the y—direction. These snapshots can be directly
compared to those in [24].



142 CHAPTER 4. POROELASTICITY

(b)

Figure 4.8: Comparison of solid (a) and fluid (b) particle wd#ies iny—direction
in a sandstone material for the viscous low-frequency case.

is a point source situated af = (750, 900)m acting on ther,, and thep compo-
nents with equal magnitude but opposite signs. Its timeasuns a Ricker wavelet
of 50Hz peak frequency and time delay = 4 - 10~2s. The domain is meshed
with an irregular triangular mesh @82014 elements, obm average side and the
simulation time is set t0.5s. The time step of the computation is approximately
At = 2.34 - 107°s, thus leading to a total @fl390 iterations. The computation
was performed using an ADER-D@5 scheme and lasted for approximatgly
hours on 64 Intel Itanium2.6GHz cores. Three receivers are placed at points
x1 = (950, 750)m, z,2 = (950,650)m andx,.3 = (950, 500)m respectively. In
Figure 4.9 the waveforms of the solid particle velocaityenerated by such a setup
as well as the computational mesh used can be observed. Thmestescribed
above produces all 3 wave types allowed in poroelasticapatrmaterials, two
compressional and one shear wave. Those waves can be tiadsnmeflected
and refracted at the material discontinuity, thus creainrguch more complex
wavefield than those at elastic interfaces. In Figure 4.1@eovepare the result-
ing seismograms to those generated with a rotated staggeitefinite-difference
scheme [88] usindm regular grid spacing, meaning approximatelgoints per
minimum wavelength. One can observe a very satisfactoryf fitlladirect, re-
flected and refracted phases. However there is a slight plffesence in theslow
P-wave.

4.8 Conclusion

A new numerical method to simulate wave propagation in dastie material has
been introduced. The proposed method can achieve arlyitrégh approxima-
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Table 4.6: Coefficients for the isotropic poroelastic mailsrgiven inS.I. units
as used in heterogeneous material test.

1400 -
1200 |
1000 |
800 |
600 |
400 |

200 |

MATERIAL Ds pf )\matriz Mmatm’x Ks
Shale 2210 | 1040 | 3.96e9 | 3.96e9 | 7.6e9
Sandstone | 2500 | 1040 | 12.0e9 | 12.0e¢9 | 40.0e9
MATERIAL Ky v o} K T
Shale 2.5¢9 | 0.0 | 0.16 [ 1.0-1071 | 2
Sandstone | 2.5¢9 | 0.0 | 0.2 | 600.0-10"" | 2
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Figure 4.9: (a) Snapshot of the solid particle veloeaityn the y—direction at
t = 0.25s. The source location is indicated by a full circle and theeneers by
empty circles. (b) Zoomed region showing the mesh requivedgolve the slow
compressional wave.
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Figure 4.10: Seismograms recorded at the three receivéinstie ADER-DG
method (solid) and compared to the results with an FD codeh@d). The seis-
mograms on the left hand side correspond tottselid particle velocity compo-
nent while on the right hand side is plotted theolid particle velocity component.
The residuals between ADER-DG and FD are also included (@otte
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tion order in space and time on unstructured tetrahedraheseas confirmed by
numerical convergence analysis. Itis the first numerida¢ste that conserves the
high-order approximation properties for all frequencyges for poroelastic ma-
terial. In particular, the wave equations in the case of eotis pore fluid change
their character in the low-frequency range from hyperbtdiparabolic and be-
come diffusion-dominated due to a stiff source term as ptediby Biot's theory.
Therefore, the stability condition for classical explitihe stepping schemes is
very restrictive and the time step length has to be chosemsnual to perform
realistic computations of practical applications. In thegmsed approach, this
problem is overcome by introducing a local space-time Disooous Galerkin
method termed ADER-DG(ST), where the usual Cauchy-Kovalepisicedure
inside each element has been replaced by the space-timedn@\viork. This
achieves the same coupling of time and space discretizai&xDER-DG based
on the time Taylor expansion, but is able to deal with stiffiree terms. The
important fact is, that the new time discretization schessiges computational
robustness for usual hyperbolic equation systems, andsheymptotic consis-
tency in the stiff limit. 1t should be remarked, that classigplitting schemes, like
the typically used fractional-step method for such proldeto not have this prop-
erty and therefore do not achieve high-order convergende aot even converge
to the correct solution. Additionally, the most generalecag anisotropy due to
the pore structure has been included. the performance girthosed method
is confirmed by validating the results against either knonalical solutions or
reference solutions obtained by well-established nuraksichemes.






Outlook

This work has shown that a precise representation of thegsiysolved in wave
propagation is not compromised by the use of tetrahedratustared meshes
when using the novel ADER-DG method. Such tetrahedral mesteesecom-
mendable for two main reasons: they allow an optimizatiothefstability limits
posed by explicit time integration schemes by relating tleenent sizes to the
maximum velocity of wave propagation and they can be usedrtbdr refine the
resolution of interesting areas or capture more complicgeometries.

In Chapter 1 the fundamental principles of the method have b#eoduced as
well as the features that make it an exceptional technicué,is the mixture of
spectral resolution with numerical fluxes and the usage giiliiaccurate time
integration schemes.

Chapter 2 has centered the attention to the problem of repiaglthe attenuat-
ing and dispersive effects of viscoelastic rheologies. Aich has been made in
favor of the Generalized Maxwell Body description for its qgmamise between
accuracy and costs for time-domain calculations. Althoexgensive in terms of
memory and computational time required, the results show geod agreement
with reference solutions. Ways to optimize the time-inggign and flux compu-
tations taking advantage of the sparsity of the systemsuatieelr shown, which
help making the method competitive.

In Chapter 3 the problem of wave propagation through anipatnmaterial has
been explored. Although the mapping of anisotropy in thetlEainterior is a
difficult task, models are available describing zones witmarked anisotropic
behavior. While using an unstructured mesh in the modeliranafotropic wave
propagation, the problem of having elements not aligneldartaterial’s principal
axes leads to the need to solve the most general anisotiagedar each element,
as their orientation is arbitrary. This drawback doestetfthe efficiency of the
scheme, which is comparable to that for the isotropic caséagd further been
shown that the simultaneous modeling of anisotropy anceissticity requires
a careful description of the physics involved. The prinegpgoverning this cou-
pling and their effect in the equation systems to be solvedsapwn in detail,
implemented in the method and tested qualitatively.

Finally, Chapter 4 shows that the ADER-DG method is well suitedolve the
poroelastic case, where both propagatory and diffusive@inena coexist when
the filling fluid is viscous. The space-time-discontinuoession of the method

147
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has the unique robustness properties, which make it ablelve she coupled
problem with high-order accuracy, a so far unsolved problem

The method, however, is not free of drawbacks. The price todyed by the in-
creased accuracy and the meshing flexibility is a higher eaatipnal cost. Addi-
tionally, the algorithms become rather complex and cundmeesto tackle without
a strong effort by the reader, thus being it difficult for pdtal users to implement
their own codes based upon an ADER-DG method. Last but ndt teasfficient
usage of the method is strongly dependent on the qualityeofrtbshes used. At
the present moment, unfortunately, most good meshing acétve commercial
and requires some training to use it properly.

Still, the ADER-DG method poses a unified scheme to solve lisesmic wave
propagation on media of very demanding geometrical andipdlysomplexity. It
has been proved that, for this technique, accuracy is nopommsed with flex-
ibility. Other novel ideas associated with the method, &sldcal-timestepping,
have shown that even stability criteria, a burden for laiggessimulations, can
be downplayed and their effect severely reduced.

Future development of the method will aim at extending thematational do-
mains to hybrid hexahedral/tetrahedral meshes. Althoaghhedra do a better
job meshing complex structures, they are much less effitiemt hexahedra for
a given volume of space and accuracy. As a consequence, mogketrahedral
meshes there where the geometry is demanding with hexalmesirapler zones
would optimize the accuracy/efficiency ratio for large siatiwns. Another inter-
esting future application will be that of extending the ADEX method to the
problem of dynamic rupture, where the physics of the corgadiaces at a fault
are dynamically linked to those of the rock surrounding ibr this problem, the
accuracy and flexibility of the ADER-DG method could be cruaiaccurately
describing the processes involved in the seismic faultfelimon-planar and het-
erogeneous fault systems. Other developments will nexdlysaian at optimizing
computational issues as are efficient memory access andokladce between
multiple processors involved in parallel computationsthMhe constant upgrade
on computers’ performance, larger and more complex prableam be solved.
Although often the focus of researchers has lead into thgeushsuch increased
computational power for solving the same problems up todn@equencies, the
ADER-DG method opens the doors to an increase in the ambitidesms of the
detail of description and sophistication of the problens ttan be solved in seis-
mology. The present work shows a numerical methodologyyréadbe used in
the future to simulate earthquake scenarios includingngttopographies and sed-
imentary layers showing both low-velocity and high dissigaproperties. Other
problems that can be explored in forthcoming research asethelated to coastal
subduction zones, which are complex multi-component setgere solid, fluid
and partly molten phases coexist in a well constrained g&arakenvironment.
Various solid-fluid interaction phenomena in porous andoasolidated materi-
als can be further studied, as for example soil liquefaatioreservoir signature
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characterization. Also wave propagation through man-nsdestures such as
buildings can be at hand in the upcoming years. Such stegare very demand-
ing in terms of geometry as they include pillars or thin walled are attached
to soft sediments. With the capabilities of the method showthis thesis, such
problems will be handled in full three-dimensional setwpish the additional ad-
vantage of minimizing the errors introduced by the numérggproach chosen
as a solver. The combination of modern algorithms and coatiomial resources
is pushing computational seismology towards overcommgléssical limitations
and the ADER-DG method is just an example.






Appendix A

Orthogonal Basis Functions

The ADER-DG method, as implemented in this thesis, uses gotial hierar-
chical basis functions as given in [39]. The basis functiares given in terms
of the Jacobi polynomial®>* (), which are solutions of the Jacobi differential
equation:

(1-2*)y"+B—a—(a+B+2)aly +n(n+a+F+1)y=0. (Al)

They are given on the interval-1; 1] by

. _ (_1)n _ —a -3 ﬁ . at+n B4+n
Pef (@) = o (=) (L4a) [(1 2 (1 + )L (A2)
Fora = 3 = 0 the Jacobi polynomial$?? (x) reduce to the Legendre poly-
nomials. The Discontinuous Galerkin basis functions aea ttonstructed using
products of up to three primal functions, given by

o) (z) = P (), (A.3)

ey (z) = (1;‘”) Pf”l’o(:c), (A.4)
1=\ i

oa) = (F57) BT, A5)

The sets of basis functions, will then constitute an orthogonal basis systems
with respect to the inner product on the respective referetements .

151



152 APPENDIX A. BASIS FUNCTIONS

A.1 Triangular Elements

For triangles the reference elemé@ntis defined as
Te={(EnMeR0<ESTIAOS<1—E}.

The basis functiong,, (£, ) are defined on this reference element as the following
product of the primal functions:

D) (€,m) = O (r) - Oy (5) (A.6)
with

28

r = —
I—n

-1, s=2n-1. (A.7)
The mono-index = k(p, ¢) is again a function of the index couplg, ¢).

The two-dimensional basis functions up to degree three foudh order scheme
are:

D, = 1,
(I)l = _1+2€+T/7
(I)g = —1+37],

D3 = 1-6£+6&—2n+6&n+1n7,
b, = 1-26—6n+10&n+572,

d; = 1—8n+1077, (A-8)
b = —14+12€6-3062+206% +3n—24&n+308%n — 30> + 12602,

B; = —1+66—6E2+9n—48En+428%n — 150> +42&* > + 71,

Py = —1+26+13n—246n— 330 +42En* + 213,

Py = —1+15n—457n>+3513,

A.2 Tetrahedral Elements
For tetrahedrons the reference elen&nis defined as
Te={(En ) eR0<E<STIAO<S)<TI—EAO0<S(<T—E—7p).

The basis function®y, (¢, n, () are defined on this reference element as the fol-
lowing product of the primal functions:

(I)k(pa‘N") (67 n, C) = @Z (T> ’ ®gq (5> ’ @;qr (t) . (Ag)
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with

- n—1+C+2¢ S_277—1—|—C
. ¢

The mono-index = k(p, ¢, r) is again a function of the index triple, ¢, ).

t=2¢-1. (A.10)

The three-dimensional basis functions up to degree two fbird order scheme
are:

o, = 1,

¢, = —1+26+n+C,
Py, = —1+3n+¢,
Dy, = —1+4¢,

by = 1-66+682—-2n+6&n+n*—2(+6&C+2n¢+ (2,
D5 = 1-26—6n+10&n+510* —2¢+28C+6n¢+ 2,
b = 1—-8n+10n> —2¢+8n + (2,

O; = 1-26—n—TC+126C+6n¢ +6¢2,

Py = 1—-3n—T¢+18n¢ +6¢2,

Py = 1-10¢+15¢2,

(A.11)
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Coordinate Transformation

The coordinate transformation of a tetrahedron in the dj&artesiancy z-coordinate
system into th&n(-reference system as shown in Figure 1.1 is defined by

§ = ﬁ [%(9423 — y324) T x3(y124 — yaz1) + 2a(ysz1 — Y123) +
(9125 = 20) + a0 = 1) + ga(z1 = 25) ) o+
(:)3 (24 — 23) + x3(21 — 24) + w4(23 — zl)> Y+
( 1(Ys = ya) + 23(ya — v1) + zalyn — ys)) Z}
n o= & [yl(m — 2224) + Ya(r124 — 2421) + Ya(@az1 — 2122) +
(s (z >+y2<zl—z4>+y4<22—zl>)x+
(12 = 20) + 22z — 22) + 2421 — 22) )y + (8.1
( 1(ya — y2) + 22(y1 — ya) + a(y2 — y1)> Z}
¢ = ﬁ[ 1(23Y2 — ay3) + 22(21y3 — T3y1) + 23(Tayn — T1Y2) +
( 1(22 — 23) + yalzs — 21) +ys(21 — Zz)) T+
( (25 — 23) + a(21 — 25) + T3 (20 — zl)> Y+
(fvl(yz y3) + 22(ys — y1) + z3(y1 — yz)) Z}
where
Il = Ey( — 25) + a2 — 24) + a2 — Z2>§+
ol y1(zs — 2z4) + ys(za — 21) + ya(z1 — 23) )+
2 (1 (21— 2) + o1 — 20) + sl — 21) )+ ®2)
Ty <?J1(Z2 — 23) +ya(z3 — 21) + ys(21 — Z2)>,
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is the determinant of the Jacobian mat/ixf the transformation being equal o
times the volume of the tetrahedron.
The back-transformation is given through
r = I + (.’132 —l’l)f—i‘ (%3 —1‘1)77+ (%4—.’131)C,
y = nit@We—y)l+w—y)n+vs—v)¢ (B.3)
z = z1+ (20— 21)&+ (23— 21)n+ (24— 21) C.

In equations (B.1), (B.2) and (B.3) the, y; and z; denote the physical vertex
coordinates of the tetrahedron.
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