Regular Rooted Graph Grammars
A Web Type and Schema Language

Dissertation

zur Erlangung des akademischen Grades des
Doktors der Naturwissenschaften
an der Fakultat fur Mathematik, Informatik und Statistik
der Ludwig-Maximilians-Universitdt Miinchen

von
Sacha Berger

Dezember 2007

Erstgutachter: Prof. Dr. Frangois Bry (Universitdt Miinchen)
Zweitgutachter: Prof. Dr. Claude Kirchner (INRIA Bordeaux)
Tag der miindlichen Priifung: 4. Februar 2008

Abstract

This thesis investigates a pragmatic approach to typing, static analysis and static
optimization of Web query languages, in special the Web query language Xcerpt[43].
The approach is pragmatic in the sense, that no restriction on the types are made for
decidability or efficiency reasons, instead precision is given up if necessary. Prag-
matics on the dynamic side means to use types not only to ensure validity of objects
operating on, but also influencing query selection based on types.

A typing language for typing of graph structured data on the Web is introduced.
The Graphs in mind are based on spanning trees with references, the typing languages
is based on regular tree grammars [37, 38] with typed reference extensions. Beside
ordered data in the spirit of XML, unordered data (i.e. in the spirit of the Xcerpt
data model or RDF) can be modelled using regular expressions under unordered in-
terpretation — this approach is new. An operational semantics for ordered and un-
ordered types is given based on specialized regular tree automata[21] and counting
constraints[67] (them again based on Presburger arithmetic formulae). Static type
checking of Xcerpt query and construct terms is introduced, as well as optimization
of Xcerpt query terms based on schema information.

Zusammenfassung

In dieser Arbeit wir ein pragmatischer Ansatz zur Typisierung, statischen Analyse
und Optimierung von Web-Anfragespachen, speziell Xcerpt [43], untersucht. Prag-
matisch ist der Ansatz in dem Sinne, dass dem Benutzer keinerlei Einschrankungen
aus Entscheidbarkeits- oder Effizienzgriinden auf modellierbare Typen gestellt wer-

den. Effizienz und Entscheidbarkeit werden stattdessen, falls notig, durch Vergroberun-

gen bei der Typpriifung erkauft.

Eine Typsprache zur Typisierung von Graph-strukturierten Daten im Web wird
eingefiihrt. Modellierbare Graphen sind so genannte gewurzelte Graphen, welche aus
einem Spannbaum und Querreferenzen aufgebaut sind. Die Typsprache basiert auf
reguldre Baum Grammatiken [37, 38], welche um typisierte Referenzen erweitert wur-
de. Neben wie im Web mit XML tiblichen geordneten strukturierten Daten, sind auch
ungeordnete Daten, wie etwa in Xcerpt oder RDF tiblich, modellierbar. Der dazu ver-
wendete Ansatz—ungeordnete Interpretation Reguldrer Ausdriicke—ist neu. Eine
operationale Semantik fiir geordnete wie ungeordnete Typen wird auf Basis spezial-
isierter Baumautomaten [21] und sog. Counting Constraints [67] (welche wiederum
auf presburgerarithmetische Ausdriicke [42] basieren). Es wird ferner statische Typ
-Priifung und -Inferenz von Xcerpt Anfrage- und Konstrukttermen, wie auch Opti-
mierung von Xcerpt Anfragen auf Basis von Typinformation eingefiihrt.

III

Acknowledgements

This thesis has been developed during my four-year employment as research and teaching assis-
tant at the University of Munich. I am grateful not only for having been able to study and get
passionated about computer science at the University of Munich, but also for having an oppor-
tunity to convey this passion to the next generation of computer science students.

Especially in the course of this thesis, I would like to thank

® Francois Bry from the University of Munich, who supervised this thesis. Numerous fruitful,
sometimes heated, but always supportive conversations with him have been an important
driving force for me during all the time.

* Claude Kirchner from INRIA (Institut National de Recherche en Informatique et en Automa-
tique) France, for being the second reviewer of this thesis

* Tim Furche from the University of Munich, for spending countless hours in discussing high
level principles as well as the lowest details of Xcerpt, the value of typing and optimization
of queries and generic module systems with me.

® Norbert Eisinger from the University of Munich, for introducing me into scientific work and
for spending much time with me discussing details of automata theory and rule based
calculi.

¢ Paula-Lavinia Patranjan from the University of Munich, for being such a valuable friend and
helping me to keep the head up when times were hard for me.

* Sebastian Schaffert from Salzburg Research, not only for being the one to introduce me with
Xcerpt, also (and specially) for being a good friend.

» Wiodzimierz Drabent from the Polish Academy of Science and Linképings Universitet (LiU)
for his expertise on the topic of descriptive type systems.

e Philipp Obermeier who has worked with me on the implementation of a prototype and who
by this has been invaluable in gaining insight about how to improve understandability of
this thesis.

* Andreas Hiusler who has worked with me on the concepts of type based query optimization.

...and last but not least: most gratitude goes to my family and my friends for supporting me

patiently during the course of this thesis. Special thanks to Stefan Kollmannsberger for reviewing
text and supporting me when needed most.

This research has been partly funded by the European Commission and by the Swiss Fed-

eral Office for Education and Science within the 6th Framework Programme project REWERSE
number 506779 (cf. http://rewerse.net/).

v

Munich, 12" of December 2007

I

1

I1

Contents

Introduction and Preliminaries

Introduction

L1 Scope

1.2 Contributions e e

1.3 OutlineoftheThesis et

Preliminaries

2.1 ContextofthisResearch
211 Informationvs.Knowledge
2.1.2 Documentsand DataonTheWeb
2.1.3 Obtaining Knowledge from Information

2.2 Semistructured Data e

2.3 XML—The Extensible Markup Language

2.4 From Schema-less StructuretoValidData
241 DTD—Document Type Declarations
242 XMLSchema e e
243 Relax NG e

25 QueryingTheWeb
251 XPath. e
252 XSLT . . . e
253 XQUEry. e
254 Xcerpt e

RyGy

RyG>—Regular Rooted Graph Grammars

3.1 Regular Tree Grammars

3.2 Regular Tree Grammars for Unordered Unranked Trees

3.3 Regular Rooted Graph Grammars
3.3.1 Reference Types and Typed References
3.3.2 About (Non Tree Structured) Graphs and Tree Grammars

34 TheSyntaxof RoGa o oo
341 Core RoGoSyntax
342 BaseDataTypes.,
343 Conversion functions e
344 Basefunctions e e e
3.45 The Non-Core RoGo Constructs o v v v v v i e e

3.5 XML Serialisation of RoG5 Valid DataTerms
3.5.1 Examples and Explanations of (De-)Reference Serialisation

3.6 Semantics of RoGa . . . v o o v i e e e e e e

CONTENTS

4

From a Generic Module System to a Module System for R2G2

41 ThePurposeofModules o .

42 Modulesand XML Name Spaces

43 Modular RoGo o o e e e e e e
43.1 Syntaxof Modular RoGo L L

44 Realizing the Module System using the “Divide and Rule” approach

Use Cases—Modelling Data and Documents with RyG,

5.1 Beyond Regular Tree Grammars—The Use of Macros

52 Design Patterns—RyG Best Practiceso o 0L
521 GlobalversusLocal. e
522 Compositionvs. SubClassing
523 ‘eXtremeeXtensibility” L oo oo

IIT Automata Models

6

7

An Automaton Model for Regular Rooted Graph Languages
6.1 Introduction to Regular Tree Automata
6.1.1 HandlingRanked Trees
6.2 An Automaton Model for Unranked Regular Rooted Graph Languages
6.2.1 Labelled Directed Hyper Graphs as Non-Det. Regular Tree Automata . . .
6.2.2 Membership Test for a Tree using Hyper Graph Automata
6.2.3 Recognition of a Rooted Graph using Hyper Graph Automata
6.3 A Calculus Relating Automataand RoGe L.
6.4 Some Set Theoretic Computations on Hyper Graph Automata
641 TheEmptinessTest
6.4.2 Intersection of Regular Rooted Graph Automata
6.4.3 Automata Based Subset Test for two Regular Rooted Graph Languages

A Model for Regular Languages of Multisets

7.1 Introduction to Multisets and Multiset Languages
711 Multisets e
712 MultisetLanguages. L L

72 Counting Constraints L o

7.3 A Calculus for Translation of Regular Expressions to Counting Constraints
7.3.1 Example of a Regular Expression Translated to a Counting Constraint . . .

7.4 Some Set Theoretic Computations on Counting Constraints.

IV Type Checking

8

VI

Type Checking using Regular Rooted Graphs as Data Paradigm

8.1 Types and Query- and Programming Languages
8.1.1 Dynamic Typing and Type Checking in Programming Languages
8.1.2 Static Typing and Type Checking in Programming Languages
8.1.3 Combined Static and Dynamic Typing
8.1.4 From Typed Programming languages to typed Query Languages

82 TypeSystemsforXcerpt
8.2.1 XcerptT—Descriptive Typing for Xcerpt
8.2.2 Prescriptive typing: from CLPto Xcerpt
8.2.3 Typing with RyGo—Differences to the Former Approaches
8.2.4 TheSyntaxof RoGatyped Xcerpt. oL

8.3 Type checking and Type Inference for RoG> Typed Xcerpt Programs

67
67
68
69
69
70

75
75
76
77
79
80

85

87
87
91
92
92
94
98
100
103
103
104

. 107

113
113
113
114
116
116
118
119

CONTENTS

8.3.1 Paying Attention to Type Annotation in Queries 130

832 Typing Ordered Queries 131

8.3.3 Typing Unordered Queries 134

8.3.4 Typingof Construct Terms 136

835 TypingRules 140

83.6 TypingPrograms 140

8.3.7 Coverage of Current Xcerpt Constructs 140

V Outlook & Conclusion 143
9 Outlook 145
9.1 Type Based Querying—an Extension to Simulation Unification 145
9.1.1 Extending Ground Query Term Simulation With Active Type Querying . . 146

9.1.2 Extending Simulation Unification with Active Type Querying 146

9.2 Optimizing Xcerpt Query Evaluation Based on Type Information 147
9.3 Integrating TypesInto visXcerpt 148

10 Conclusion 151
Bibliography 154
Curriculum Vitae 158

VII

Part1

Introduction and Preliminaries

Introduction

The work in this dissertation thesis is about types and schemata for Web languages like Web
query and transformation languages.

1.1 Scope

Currently, many new application fields together with their domain specific processing and mod-
elling languages are emerging on the Web. Domain specific modelling languages are often de-
fined by standardisation consortia like W3C, ECMA, Oasis and others. Usually, definitions come
along with human language description as well as formal definitions, using grammar and schema
languages like EBNF, DTD [61], XML Schema [57] [58] [59] , or Relax NG [30].

Domain specific processing languages are often query languages defined by the same stan-
dardisation consortia issuing corresponding modelling languages. An example of such a domain
specific language is e.g. the Semantic Web query language SPARQL [62], used to query knowl-
edge modelled in the semantic web modelling language RDF.

Along with domain specific processing languages, some general purpose processing lan-
guages, like e.g. XSLT [47], XQuery [63] or Xcerpt [10][43], exist, with the rational to be used
for implementation of arbitrary web applications, applicable to any domain specific data—also
for writing inter domain applications. The processing languages on the web, either general pur-
pose or domain specific, are usually untyped or dynamically typed.

Modern Programming languages nowadays in general come along with type systems to op-
timize evaluation or memory representation, check errors or just support programmers while
programming when using sophisticated IDEs.! Type declarations in most typed languages are
usually based on the concept of grammars—while a grammar defines a languages which is a set
of words, a type declaration defines a class of objects which is a set of data instances.

Surprisingly, while many formalisms for data on the web are defined using grammars or
schemata, their potential to serve as type declaration for processing languages is hardly ex-
ploited. The goal of this work was to evaluate the use of web schemata in practise for typing
of Web query- or transformation languages.

ntegrated Development Environment—these applications integrate all kind of tools useful for programming in a
given programming language, starting from specialized text editors through re-factoring tools up to compilers.

3

1.1 SCOPE

The typing of web query languages is defined, such that types in the style of schema informa-
tion are exploited to (1) find static errors in programs with help of schema knowledge (i.e. find
errors prior to execution time, e.g. at compile time), (2) hint possible odd behaviours of programs,
that could be desired, but maybe are not (i.e. constant results of a query, independent of input
data), and (3) exploit automatic optimizations by automatically rewriting queries under given
schema constraints for input or output data to more efficient equivalent queries (this is especially
applicable under the consideration that syntactically different queries can be found for the same
task).

A first step towards typing of web query languages was to evaluate the quality of current
schema languages on the web for modelling data, from the point of view of a person willing
to use a query language with type support and willing to use the given schema languages as
type declarations. Almost all current schema languages on the web are based on so called reg-
ular tree grammars [38], with some extensions and also some restrictions. Common extensions,
as e.g. found in XML Schema, are modelling facilities from object oriented systems. Restrictions
are often very subtle trade offs in favour of simple adaption of legacy systems like SGML DTDs.
During this evaluation it turned out that some restrictions where undesirable and some further
extensions desirable. As the outcome of this step, a new type and schema language called R>G>
(short for Regular Rooted Graph Grammars) is presented.

The second step was to actually define, what kind of static properties are of interest and are
detectable when the type or schema of the queried data or the type or schema of the desired result
is known. In this part of the evaluation, properties that are related to static program analysis are
addressed. Static program analysis, e.g. static type checking and type inference for programming
languages is vital to ensure secure access of the random access memory representation of data
structures. For query languages the necessity of secure memory access is arguably not a topic—
query languages are used to select, project and construct data of a fixed data meta model. The
meta model for the Web query language XQuery is XML.?> As query languages operate ‘within
the bounds’ of their meta model, no memory access violation is possible. So, what kind of static
properties of query languages could be relevant and what impact could those properties have on
the use of query languages? Assuming a query is selecting data from a document or database and
the schema of the document is given, then some structural properties of the document are known
prior to run time. For a query to data on the Web, it could e.g. be known, that the resources to
be queried are HTML [49] documents. Assuming further, that the selection construct used as
structured in such a way, that it may match data found in an SVG [54] document, but under no
condition in an HTML document, then the query can be considered to never select anything for
valid input data—the programmer most likely did a mistake and should be informed about it
before run time.

Another static check that could be performed on a query typed with schema information is to
check the validity of results if a schema is given as type for the construction parts of the query.
A query can be considered to be ill typed, if the data that could result from query evaluation
could be invalid with respect to the given schema. While a query never selecting anything may
be in the intention of the author, a query constructing invalid data should be considered as an
error. In both cases, these are sources of valuable messages to the programmer prior to program
execution, possible hints for him, how to improve or correct the query.

The outcome of the second step is a type checking and type inference algorithm for Xcerpt
(and Web query languages in general) with type declarations in R>G». For pragmatic reasons
the notion of types is defined in such a way, that type checking and inference is still possible in
polynomial time.

The third step was to evaluate and exploit some possibilities of static optimization of typed
Xcerpt programs, under the assumption, that the queried data is always valid with respect to the

Zwhile the meta model for the query language SQL is the relational database.

given types or schemata. The static optimizations in mind are related to program or query rewrit-
ing, not to modification of the program run-time environment, program translation or query
evaluation engine. For given data there are usually different queries producing the same result.
It is for many query language implementations likely, that queries with higher selectivity at the
beginning of query evaluation evaluate faster as they sieve out irrelevant intermediate results
at an earlier state of execution. This means that less candidate elements have to be tested dur-
ing evaluation. A prerequisite for this assumption is that the programming or query language
contains constructs for expression of incompleteness. Such constructs of incompleteness are not
only more convenient for the query author, they are in many situations even indispensable due
to incompleteness of the structure and shape of data on the web. Under the assumption of more
certitude of the queried data due to given schemata or type definitions, it is often possible to
reduce incompleteness by replacing corresponding constructs of incompleteness by query con-
structs selectively restricting the query, such that it focuses early on portions of data containing
the desired results.

Achieving an optimal query by rewriting a given query, under type assumption as well as
for untyped queries, is an undecidable problem, as the optimal shape of the query depends on
the actual shape of the queried data instance. Further on, some query languages may be more
efficient under certain forms of incompleteness, as of reducing the checks in concrete evaluation
steps. A pragmatic approach to optimization is hence to try to achieve queries with usually bet-
ter behaviour, based on heuristics about the given query evaluation engine. The outcome of this
part of the thesis is a rewriting rule system, relating typed Xcerpt queries with incompleteness to
equivalent Xcerpt queries without incompleteness. The work has been presented on the First In-
ternational Conference on Web Reasoning and Rule Systems [11]. The task of evaluating possible
heuristics has not been addressed, as not sufficient knowledge about the run-time behaviour of
current Xcerpt run-time engines exist.

1.2 Contributions

The main contribution of this thesis can be summarized as

1. a Web Schema language to model (serialisations of) graph structured data, including a new
modelling approach for unordered data or multisets, based on unordered interpretations
of regular expressions, and

2. a typing approach for web query languages based on unrestricted regular tree grammars
with former extension.

The first contribution, the type and schema language R>G> has been implemented for inte-
gration, e.g. in Web query or transformation languages, but also for stand alone use as schema
language for XML or Xcerpt data terms. The modelling approach for unordered data based on
unordered interpretation of regular expressions (2) is implemented as a prototype based on con-
straint solvers in GNU Prolog [24]. Typing of Web query languages (3) has been implemented
based on (1) for the Web query language Xcerpt. Currently two implementations exist, a pro-
totypical one supporting ordered and unordered query terms, and a second implementation for
integration into the prototype of Xcerpt currently under development. The second version offers
no support for unordered data models by now.

1.3 OQOutline of the Thesis

First, the context in which typing is to be applied is introduced. This spans various Web technolo-
gies, namely XML as document and data formalism, currently existing schema languages—they
will be used as starting point for the proposed type and schema language, as well as various Web
query languages.

1.3 OUTLINE OF THE THESIS

Next, some shortcomings of the current schema languages are pointed out, and R2G», a new
type and schema formalism is presented. R2G2 has been conceived to overcome the mentioned
shortcomings. A novelty in this languages is the use of regular expressions for the modelling
of unordered data. A declarative semantics of R»Gy is presented along the syntax. The schema
language presented is conceived with modularity in mind to be not only applicable to small
examples but also to large scale projects. A generic module system (originally conceived for
R>G5 and Xcerpt) is used to modularize RoG». The part about R2G5 concludes with a use case
section which is based on the popular SML Schema authoring style guidelines “XML Schema best
practices” [22].

As basis for implementations of R2G5 as schema language as well as as type formalism, the
operational semantics are presented. Those are based on regular tree automata, as e.g. introduced
in [21] for ordered content and counting constraints [67] for unordered data. Regular tree gram-
mars are a very general model, specified for reasoning about ranked tree structures. Common
techniques for lifting unranked trees—common in the context of the Web and XML—to ranked
trees exist, as however the context of RyGs is the world of unranked trees (more precisely rooted
graphs based on spanning trees with typed references), a new automaton model dedicated to
reasoning about unranked data is presented. Using the new automaton model is arguably easier
in the context of Web schema languages, as it aggregates all necessary information used to vali-
date a node in the context of it’s graph in one place, as well as a direct representation of a type
for an XML node—transitions in this model represent node types. The automaton model is com-
bined with Presburger arithmetic expressions, so called counting constraints, where unordered
content models are needed. These constraints express relationships between the multiplicities
of elements in a multiset—multisets are an appropriate model for unordered content of an ele-
ment. Presburger arithmetic counting constraints are decidable. A calculus for deriving counting
constraints for given regular expressions is presented. Last but not least, for the the automaton
model as well as for languages of multisets declared using counting constraints, algorithms for
reasoning about some set theoretic properties—namely emptiness test, union, intersection and
subset test—are presented. These algorithms are crucial for type checking.

The next part presents a type checking algorithm for Web query languages based on the algo-
rithms and techniques presented in the part about automata and counting constraints. The type
checking is presented for the Web and Semantic Web query language Xcerpt, however, it should
be easy to adapt the techniques to other Web query languages like e.g. XPath and XQuery, as
all Web query languages share the concepts of data selection, variables, data projection and/or
result construction. The presented algorithm focuses on data selection, construction and vari-
able consistency check. The algorithm is not only suited to type checking of fully type annotated
programs, but also provides type inference for partly type annotated programs.

Preliminaries

2.1 Context of this Research

The World Wide Web (known as "WWW’, "Web” or “W3") is the universe of network-
accessible information, the embodiment of human knowledge.

[W3C, http://www.w3.0org/WAW/]

The Web is a kind of network of any information anybody around the world considers worth
while to be published, almost no boundaries for quality, quantity, style, medium and format
exists.

211 Information vs. Knowledge

A common mistake, when talking about information, is to misconceive information as knowl-
edge. In short, information exists without any context, while knowledge is the result of thinking,
understanding and solving problems. Information is useful to obtain knowledge and knowledge
can be turned into information. Knowledge is information that is accessible at the right time in
the right context to solve the right task.

The tremendous amount of information that forms the current World Wide Web, makes the
difference between knowledge and information especially clear: it is usually easy to find infor-
mation we are precisely able to name by using current search engines, but it is difficult to solve
tasks with current web technologies that can not be searched for or of which we do not know
the name. The root of the problem is, that machines are not able to understand — to know — the
information stored on the Web.

Making the web accessible and understandable to machines as well as to humans will ar-
guably be a major task in the future. While the amount of information increases vastly, it becomes
intractable for humans such that some sort of “machine assisted thinking” is needed. Steps in this
direction are taken by initiatives as the Semantic Web, that claims that machine understandable
and semantically motivated annotation of the web is necessary. Generally speaking, end users of
the Web will need general purpose tool support as it is known nowadays to programmers in the
form of programming languages, to command their machines to assist them in digging for the
right information on the web.

2.1 CONTEXT OF THIS RESEARCH

2.1.2 Documents and Data on The Web

Initially, the web was invented as a network of documents, where documents are written text
meant to be read and understood by humans. Markups for stylistically beef-up of text and for
semantic hints of text or phrase structure or content type and a reference mechanism to external
resources like pictures made the authoring of mostly any content fairly easy on the web. Further
on, the Web provided mostly a handy support for citations, that made it possible through use of
hyperlinks to access other documents in a seamless way not experienced earlier.

Shortly there after the Web document markup language, namely HTML, was extended to also
represent tables and forms.

Later on, increasing numbers of views to traditional databases were made available on the
Web, mostly as tables accessible by forms — the Data on the Web [3] was introduced interwo-
ven with the Web of documents. Currently increasing numbers of machine accessible formats
and so called Web Services extend the Web landscape with the data oriented aspect. The main
difference between data and documents can be summarized as the usually more homogeneous
structure used for data than for documents and often the lack of human language phrases —
documents are instances of natural languages while data are instances of artificial languages.
Prominent examples of database oriented content on the Web are on-line shops like Amazon (e.g.
see http://www.amazon.com/).

Both aspects of the Web are equally important to human consumers, while arguably automatic
consumption is mainly focused on data.

Recently traditional database approaches like querying data have been extended to web data
and documents as an answer to the rising demand of flexible automated access methods to the
web for end users. The interwoven nature of the Web as a Network of (mostly) structured data
with (mostly) arbitrary schemata and (mostly) unstructured documents, motivates the so called
Semistructured Data model as presented in [3] and briefly introduced in section 2.2. Arguably,
Semistructured Data are the formal foundation of current technologies around automated pro-
cessing of data and information on the Web.

Still, the current Web query languages are far from being end user friendly methods to extract
information from the Web, even further from being tools to obtain new knowledge from the Web.

2.1.3 Obtaining Knowledge from Information

Former approaches supporting users to gather new knowledge out of information are known
under the term data mining. Data mining is usually tailored towards experts of a topic, often with
heavy statistical background, that dig in a closed and very homogeneous application specific
domain database called data warehouse. The general nature of data mining in data warehouses
can be summarized as: (1) the data warehouse is a (mostly) static materialisation of (mostly)
lots of joins between data, (2) a closed world of data is queried, (3) the structure is well known.
Application of traditional data warehouse approaches to broad scale web user base is arguably
not suited for the task of extracting knowledge on the Web, for various reasons: (1) there is no
way in visiting the whole web in a feasible way from an end users point of view, (2) the amount
of data is by far too large to materialize any sort of expansion of the whole Web and (3) there is no
inherent given structure of web data as a whole, as well as there is arguably no inherent structure
of the knowledge of the humanity.

An assumption about the ways to dig for knowledge in the future web is, that classical web
searching is to be combined by the end user with automated web crawling, and deductive meth-
ods, maybe inspired from artificial intelligence research, and data querying on the web as pro-
posed for querying of Semistructured data. Combining all those methods in an end user friendly
way is a highly challenging task that is by far not solved by now.

In the following, some foundations of the current and of the future Web as standardized to
date are presented. A step towards merging two of those areas—querying and schematizing of
data—is motivated as one of many steps in achieving the high goal of the end user friendly access
to the future web. This is the step, that is addressed in this thesis. The benefits of the integration

of schematizing and querying are supporting user friendliness of query languages by
1. extended error detection support,
2. potential optimization of queries and hence increased system reactivity, and

3. potential help for authors using specialized query development environments, e.g. by gen-
erating auto-completions or copy-and-paste templates based on schema information.

2.2 Semistructured Data

“Semistructured Data” are self-explanatory (or self-describing) data with or without schema (or
data-model). The denomination “Semistructured” refers to the structure conveyed by tags com-
bined with (possibly large) unstructured portions of text. The structure in question is a node
labelled graph structure with ordered or unordered sequences of adjacent nodes. The graph
structure is serialized using so called Semistructured expressions defined as follows:

¢ A Semistructured expression is either a (quoted) textual item, a data term or a reference to
a data term.

® A data term consists of a label /, an optional unique identifier id followed by an @-sign (e.g.
i1@1{}, and a (possibly empty) sequence of sub terms t1, ..., t,, that are

— either enclosed in square brackets (i.e. [t1,...,t,] (denoting an ordered sequence of
sub terms),

— or enclosed in curly braces (i.e. {t1,...,t,} (denoting an unordered multiset of sub
terms).

¢ Areference to a data term uses the identifier of the term to reference prefixed by a ‘hat’-sign
(e.g. "1d1). Note, that reference and identifier declaration have to occur at arbitrary depth
below a common Semistructured expression.

Considering Semistructured data in databases has been first proposed and investigated in
a few research projects in the mid 90th. The book “Data on the Web” from Abiteboul et al [3]
introduces in this direction of research.

Semistructured data is an interesting abstraction of XML data as presented in section 2.3.
The Web and Semantic Web query and transformation language Xcerpt, as introduced in section
2.5.4, is syntactically strongly based on Semistructured expressions and it’s data model is graph
shaped and node labelled data with ordered or unordered sequences of adjacent nodes—just as
Semistructured data.

2.3 XML—The Extensible Markup Language

XML is a generic markup language. Markup languages are traditionally used to mark up or
annotate text, generic markup languages allow markup with arbitrary annotation elements. XML
has been developed as a simplification of SGML, a former markup language developed in the
70th [1]. The simplification was mainly motivated by simplifying the implementation of efficient
XML aware software and in supporting simpler document authoring by reducing the amount of
rarely used or obscure features. To some extend the streamlining of SGML to what became XML
was arguably inspired by the success of Java—roughly speaking a language near to a streamlined
C++ quickly gained success for it’s cleanness and simplicity compared to it’s predecessor. XML
has been introduced by the W3C and is positioned as a development towards a more generic
markup language than HTML. On of the first XML applications was a reformulation of HTML as
XML application, called XHTML.

2.3 XML—THE EXTENSIBLE MARKUP LANGUAGE

<tree>
<branch>
<fruit/>
<leaf/>
</branch>
<fruit/>
<branch>
<leaf/>
<leaf/>
</branch>
</tree>

| fruit | | leaf | | leaf | | leaf |

Figure 2.1: As an example of a document with elements, consider the apple tree modelled in this
example. Various nodes of different name and/or type can be arranged in a hierarchical manner.
The XML serialisation of the tree data structure on the right, is shown on the left.

XML is a serialisation format for tree or to some extend graph structured data (see figure 2.1
for an example of a tree structured document and it’s XML serialisation—in figure 2.3 a graph
shaped example is presented, using so called XML attributes which have not been introduced so
far). Different kinds of nodes with different properties form an XML instance. An XML instance
is called well formed when the serialisation is syntactically correct.

XML is a semi structured data model, where semi structured means, that no structure is pre-
defined or given for instances like e.g. in structured data models as known from structured pro-
gramming languages (cf. struct in C or record in Modula). On the other hand, the data is
structured by the given structure of the instances. To a certain extend the data is structured in an
abstraction of the data model that represents tree structures in general.

Another interpretation of semi structured in the context of XML is the possibility to provide
a schema for the data, yet the schema is not enforced to be used or validity upon the schema is
not enforced — instances may be structured according to a schema or they may be schema-less.
Schemata for XML are currently known under the names DTD, XML Schema and Relax-NG.

Elements are XML nodes, that are always the child of exactly one node and may contain ar-
bitrary many child nodes. See figure 2.1 for an example. The child nodes are organized in an
ordered sequence. Elements also have a textual label. In a well formed XML document elements
are serialized as an opening tag and a closing tag surrounding the serialisation of the child nodes.
An opening tag is serialized as the label in pointy braces and the closing tag as the label preceded
by a slash in pointy braces. Empty nodes can be abbreviated as the label followed by a slash
in pointy braces. As elements always have a parent node, a kind of root is needed, usually a
document node forms that root. A document node may only contain one root element.

Attributes are nodes with a textual name and a textual value which are not members of the
child node sequence of an element but of an (unordered) attribute set. Each element has one
attribute set that may also be empty. See figure 2.2 for an example of a document with elements
and attributes. In a well formed XML document instance two attributes with the same name
may not occur in one attribute set. Attribute sets are written within the opening element tag’s
pointy braces. A well formed attribute is written as it’'s name followed by an equal-sign and
the value quoted either in single or double quotes, mutually excluding the possibility to use the
other quotes in the value text. Commonly attributes are interpreted as meta information about
the element, but there is no formally dictated use for attributes. When modelling graph shaped
structures, commonly attributes are used to declare identifiers and references to identifiers, as
presented in figure 2.3.

10

<tree> |
<branch> L
<fruit color="orange" tLe
state="immature" />
<leaf color="green"/> 2
</branch> Y
<fruit color="red" branch r_ﬁﬁ_j
state="mature"/> 1 2 ix 1 E 2
<branch state="broken"> A '
<leaf color="yellow"/> [fuit | [feaf] & Y\ [leaf] i [Teaf]
<leaf color="brown" ix E E y ix
state="dead" /> ',' “‘ E ‘state bolor E ‘ ',' “‘
</branch> Y ' malue red | bmkml: b
</tree> v v
imm;ture ora'nge gre!en yeITow dead brown

Figure 2.2: This example extends the apple tree example in figure 2.1 such that the elements are
annotated using attributes. Elements may contain arbitrarily many attributes, but not two may
have the same name. Note, that attributes have no explicit order in which they occur.

<cycle>
<node id="nl" idref="n2" />
<node i1d="n2" idref="nl" />
</cycle>

Figure 2.3: This example presents the ability to model graph structures beyond tree shaped data
in XML—identifiers and references to identifiers are used in this case. Identifiers and references
are given as XML attributes. Actually, the attributes have to be declared being of identifier or
reference type, e.g. using a DTD as introduced later in section 2.4.1.

11

2.3 XML—THE EXTENSIBLE MARKUP LANGUAGE

<pamphlet>
<title>
Document Markup with XML

</title>

This pamphlet illustrates the
use of <acronym>XML</acronym>
character data, also known as Document Markup
<acronym>CDATA</acronym>, with XML
together with markup.

This pamphlet character data,

, together

<footnote> . illustrates also known as with markup.
Note, how <bold>semantical</bold> the use of
markup is used along with 5
<bold>stylistical</bold> markup. [bold| markupiéused [bold] markup.
</footnote> along with
semantical stylistical
</pamphlet>

Figure 2.4: This example presents a document centric XML instance. In this case, the serialisation
(left) is a more appropriate view on the content than the tree representation on the right, some
words or phrases are annotated with markup surrounding some parts of the text.

Character Data Character data nodes are nodes without child nodes and attributes, they consist
only of textual information. Character data nodes are members of a child node list, i.e. they
are members of the ordered nodes. In a well formed XML document instance character data
nodes are serialized just as the text they represent, without any quotation. Pointy braces! and the
ampersand sign may not occur in the well formed serialisation, they have to be substituted by
so called character entities, which are themselves general entities. Two character data nodes may
not be direct neighbours, as then they would collapse in the serialisation to one node.

Initially, eg. in the context of SGML documents, the textual content was considered to be
of major importance, while elements were mere annotation of the textual content. The lack of
quotation of character data makes XML especially convenient for document authoring, where the
major content is arguably textual content. In the context of data modelled in XML, textual content
and elements are arguably of equal importance, yet often character data nodes are ignored in
research for pragmatic reason.? See figure 2.4 for an example of an XML document with character
data.

Further Core Features Further features of XML such as

* Character encoding specifying the used character encoding for the serialisation of character
data, attributes and elements

* Processing instructions are meta information about the document. Processing instructions
are information that is considered by the application processing the serialised data. Like
character data processing instructions may not be further structured.

e Comments are not members of the tree structure neither. Like character data comments
may not be further structured.

* General entities are a macro expansion or substitution mechanism for abbreviation of
XML node sequences or special characters not expressible in the chosen document text
encoding—any Unicode character can be generated this way using a so called numerical
character entity which itself is a general entity

are not mentioned in detail, since they are not needed in this thesis.

Indeed, only the opening pointy brace may not occur in character data serialisations.
2Conceptually, there is no big difference between a leaf element and a character data node.

12

2.4 From Schema-less Structure to Valid Data

Two different interpretations of the term “Semistructured” exist for Semistructured Data, of which
XML is a representative:

¢ Data may be created without any notion of a schema declaring a structure, so it is unstruc-
tured in the sense of schema-less, while it is structured in the sense of being tree or graph
structured data that has the structure of the instance—being structured with respect to the
data meta model.

* A schema for data may exist and data can be an instance of the given schema, but data
without schema is also tractable as so called well formed data.

In both interpretations the notion of a schema is involved. In between the two extrema a
schema can be given and consequently being applied for many sections of a data instance, while
exceptions may exist for other sections, in the form of allowing elements of any type for these
sections.

For XML different schema formalisms have been introduced, partly ad-hoc or inspired by
the predecessor SGML, partly conceived from a theoretical foundation. The widely accepted
theoretical foundation of XML schema languages are so called regular tree grammars[15], [38].
Regular tree grammars are a sub category of context free languages, that provide a controlled
way of modelling the bracket structure inherent to tree serialisations, yet preserving the desirable
properties of regular languages being closed under union, intersection and difference. A well
formed XML document may be valid, if it is an instance of the language generated by the grammar
given in the form of a schema instance. In depth explanations of regular tree grammars is given
in the chapter about R2G3 (see 3).

241 DTD—Document Type Declarations

DTDs are the oldest schema mechanism for XML, inherited from XML's predecessor, SGML.
While an SGML document requires a DTD (and validity to that document), an XML document
may or may not have a DTD and may or may not be valid to that DTD. The DTD may be defined
in the XML document instance or at an external resource. Note, that every valid XML document
has to be well formed while not every well formed document has to be valid.

Element Type A DTD consists of a set of element type declarations, describing the structure
of an element. An element type declaration relates an element name to the valid content model
of elements with that name. For each element name declared in an element declaration, there
is no other element declaration with the same element name, i.e. the element declarations are
unambiguous. In a valid document instance, all elements are valid with respect to an element
type declaration.

An element type declaration for an element name [and a content model c is written as

<!ELEMENT ! c¢>

Document Type In a valid document not only all elements are valid, additionally the root el-
ement has to be of the type given by the document type declaration. The document type dec-
laration is always part of the document instance, while the element type declarations (and also
the attribute sets mentioned later) may also be in an external file. The document type declaration
also relates a set of element type declarations to a document.

One form of document type declarations relate an external set S of element type (and attribute
type) declarations to a document and to its root node with label [written as

<!DOCTYPE! S>

13

2.4 FROM SCHEMA-LESS STRUCTURE TO VALID DATA

The other form relates the root label [of the document with the element type (and attribute
type) declarations R directly in the document as

<IDOCTYPE! [R] >

In both cases the document type is declared after the document encoding
(cf. <?xml encoding="..."?>)and before the opening tag of the root element label.

Content Models A content model for an element is given as a regular expression of element
names. A valid element with respect to an element type declaration has a sequence of child nodes,
that is recognized by the regular expression, i.e. the sequence of element names of the child nodes
are recognized by the regular expression and the child nodes are valid with respect to an element
declaration for elements of their name. Regular expressions are formed by sequencing the element
names with comma, optional parts get a question mark appended to the regular expression part,
disjunctions are formed by separating two disjunctive parts with a pipe sign (vertical bar), and
repetitions are modelled by appending a star or a plus sign (star for zero to many, plus for one to
many repetitions) to a regular expression.

The following example motivates the concept of regular expressions in the context of DTD’s.
A valid article element contains first a title element, followed by an arbitrary number of
section or paragraph elements and at last an appendix element, that may also be omitted.
Note, that the repetition of section or paragraph involves a recursive composition of regular
expressions, as the disjunction is also a regular expression on its own.

<!ELEMENT article (title, (section|paragraph)x, appendix?)>

Attribute Sets Another part of the content model of an element are the attributes. Attributes
are modelled in a different way, as they do not occur in any explicit order, and because regular
expressions impose an order on the atom instances occurring in accordance to a regular expres-
sion. The attributes of an element are declared with an attribute set. An attribute set relates an
element name to some attribute definitions. An attribute definition can be optional — in terms of
DTD implied — or required. Attribute values may be arbitrary character data, a fixed value, an
(almost) arbitrary string of character data being unique in the context of attribute values of that
type, forming an unique identifier or a reference (even a sequence of references) to such unique
identifiers.

An attribute set declaration is introduced by the keyword ATTLIST. The first token in the
attribute set declaration is the name of the containing element. The declaration is followed by a
sequence of triples consisting of (1) attribute name token, (2) attribute value type declaration and
(3) attribute default declaration. As an example consider the following attribute set declaration
for leaf elements as they occurred in figure 2.2. The color is a mandatory attribute while the
state is optional.

<!ATTLIST leaf color CDATA #REQUIRED state CDATA #IMPLIED>

Types of Character Data The content of an element may also be declared to be character data.
In this case no elements may occur together with the text.

Mixed Content The content of an element may be a mixture of character data and arbitrary
elements, so called mixed content. In this case any declared element or character data may occur
in arbitrary combination.

Limitations

The document definition language DTD has some limitations. These led to the development of

its successor, the XML Schema language.

14

2.4.1 DTD—DOCUMENT TYPE DECLARATIONS

Alternative Content Models For Equally Named Elements There is no way to specify different
content models for an element, according to the context it occurs in. The example 1 of a university
schedule illustrates the problem:

<university-schedule>
<lecture>
<name>Semi Structured Data and Markup Languages</name>
<lecture>
<time>Wednesday, 10:00-13:00</time>
<location>E101</location>
</lecture>
<tutor>
<name>
<first>Benedikt</first>
<last>Linse</last>
</name>
</tutor>
<lecturer>
<name>
<title>Prof.</title>
<first>Francois</first>
<last>Bry</last>
<consultation>
<time>Tuesdays, 9:00-10:00</time>
<location>D1.03</location>
</consultation>
</lecturer>
</lecture>

</university-schedule>

Code Example1 An example of an university schedule modelled using XML. The term name is reused in
different contexts (each time meaningful, but with different meaning), however this can not be modelled in a
satisfying way using DTD.

A lecture is presented. A lecture has a name, may have arbitrary many tutors for exercise
courses and a lecturer, for the lectures. The ambiguous term lecture gives rise to the bizarre
fact, that a lecture as an administrative unit contains the information about the lecture as a time
and locational bound entity, the event of instructing. In this example the same name has been
used for the different meanings of the same term, like it is used in human language. Yet the
elements share the same name, they occur in different parent node contexts and they have a
different structure. A second example of label ambiguity is the name element, which is used once
with plain CDATA as content to represent the name of the lecture and once with structure to
model the names of the lecturer and the tutors. Again, the parent node content is essential for
the choice of the proper content model of equally named elements. The hierarchical context is
not generally for all possible XML applications the determining property of the content model
of ambiguous elements, the occurrence in the list of siblings or the attributes of an element may
also be determining the choice of the right content. When modelling data with DTDs the content
model is associated to elements with a certain name not to elements in a certain context. As there
is no way to declare concurrent element declarations and especially to refer to one alternative
of the concurrent declarations, such documents as the presented university schedule can not be
modelled properly. As a “‘work around’, usually the alternative content models are provided as a
disjunctive content model, yet allowing the use of the wrong content model in a given context.

Data Types for Atomic Values An often criticised limitation of DTDs, is the lack of integrated
data types other than character data, e.g. integers, enumeration types or similar. For text docu-
ment centric modelling, the lack of such data types is not a major topic. The first goal of XML
is, as stated by the W3C itself, that “XML is for structuring data” . For data modelling a rich set

15

2.4 FROM SCHEMA-LESS STRUCTURE TO VALID DATA

of data types is mandatory. The successor of DTDs, XML Schema, is equipped with a rich and
slightly extensible set of data types to model many restrictions of strings, lots of number formats,
date information and some other data types.

Namespaces DTDs are not namespace aware, it is not possible to model document types with
labels in a specific name space. More or less difficult workarounds exist, but they always rely on
modifying the DTD by overriding parts, e.g. special entities simulating namespace expansion, in
the document instances.

Deterministic Content Models A less often mentioned limitation of DTDs is the restriction
to so called deterministic content models. As an example of a non deterministic content model,
consider the following element declaration of a chess game with alternating moves of the black
and the white figures:

’ <!ELEMENT chessgame ((white,black),white?)> ‘

The content model allows the game to end after each move, yet modelling the alternating
colors of the moves. Intuitively speaking, when a white move instance occurs, the DTD validator
may mot be sure which part of the content model to choose (e.g. is the move valid with respect
to the (white,black) » or the white? sub-expression. It is easy to think of a deterministic
automaton representing exactly the given content model: it consists of two final states interlinked
using an “a” transition from one to the other and a “b” transition from the other to the one state’.
The W3C explains the non determinism of DTD content models in a non normative section of the

XML Recommendation (see http://www.w3.0org/TR/REC-xml/#determinism) as follows:

[..] a finite state automaton may be constructed from the content model using the
standard algorithms, e.g. algorithm 3.5 in section 3.9 of Aho, Sethi, and Ullman
[Aho/Ullman]. In many such algorithms, a follow set is constructed for each posi-
tion in the regular expression (i.e., each leaf node in the syntax tree for the regular
expression); if any position has a follow set in which more than one following posi-
tion is labeled with the same element type name, then the content model is in error
and may be reported as an error. [...]

Weak Unordered Content Support Two different notions of disorder can be addressed: (1) The
order of elements in a data instance is relevant, but from the point of view of a schema, valid data
instances may occur in arbitrary order. (2) The order of elements in data instances is irrelevant,
this applies i.e. when modelling a set or multi-set.

To be able to express that certain elements may occur in arbitrary order, in XML DTD the
author of the schema is usually forced to give all possible permutations of the order. In addition,
the deterministic content model property mentioned in the previous paragraph must be retained,
making the task even more cumbersome. With the XML predecessor SGML, the DTD formalism
had an option to model a sequence of elements with arbitrary order (an unordered sequence oper-
ator was available), but the feature has been dropped for simplification purpose. When it comes
to the necessity of modelling unordered content of elements of different type, XML DTD authors
hence tend to simplify and to state that arbitrary many elements of a choice of types are allowed
in arbitrary order—this can easily be modelled as a disjunction with a Kleene star, i.e. (A|B]|C) *
for elements of type A, B and C in arbitrary order and arbitrary multiplicity.

For modelling data without order, i.e. sets, XML provides no more than attributes, their or-
der is irrelevant as their interpretation is usually a set of name/value pairs. No way exist to
model multi-sets in XML, except by shifting the unordered interpretation of a sequence to the
application level.

3 Automata are a common way to implement recognition of instances based on regular expressions. See chapter 6
about automata for more information about that topic.

16

2.4.2 XML SCHEMA

Modelling Attributes Concerning the ways of modelling attributes, two limitations are known:
First, attributes can only be modelled as a list or a set of valid attributes with or without option-
ality. It is not possible to model dependant attributes, e.g. subsets that may only occur together,
neither choices of attributes nor subsets of attributes can be modelled. Second, attributes and
the content model of an element are modelled independently — it is not possible to have e.g. the
content of an element to be dependant of an attribute chosen.

Typed References In the context of modelling graph structured data, a new shortcoming ap-
peared: Using ID and ID-Ref typed attributes is suitable for modelling graph shaped data, an
identifiable element, annotated with an ID attribute is usually easy to get by de-referencing its ID
as found in any ID Ref attribute using common XML tools or application programming interfaces
like DOM. However, it is not possible to model data in a schema in such a way, that the reference
is a reference to an element of a special type. This virtually renders the reference mechanism a
typeless or schema-less reference mechanism. Using DTDs it is neither possible to set or restrict
the amount of references in an ID Ref attribute.

2.4.2 XML Schema

XML Schema has been introduced as successor of DTDs to overcome (most) of its limitations.
XML Schema is a W3C Recommendation. It is widely accepted, that XML Schema is by far the
most complicated recommendation currently available from the W3C. XML Schema is itself an
XML application, i.e. it has an XML syntax.

The Schema A Schema is defined in an XML document with root node label <schema> in the
namespace http://www.w3.0rg/2001/XMLSchema. A Schema contains element and type
declarations. There is no way in declaring schema parts directly in the instances, yet there is
the possibility to directly annotate instance nodes with schema or type information using the
so called [58]. The schema validation is sometimes seen as a transformation of the information
set* representing the XML document to the so called Post Schema Validation Infoset (see the W3C'’s
XML Schema recommendation part 1 [58]), where each information item of the information set is
annotated with additional type or schema information deduced from the schema.

Element and Type Declarations An element declaration declares an element with a given name
in a given namespace with a given content, where the content is also called type in terms of XML
Schema. Two different kinds of types exist in XML Schema: so called (1) simple types that rep-
resent solely character data information, and (2) complex types that may be schemata for element
sequences, character data and attribute sets. Character data as modelled using simple types may
be any XML Schema data type or derived variations. When modelling complex content, differ-
ent possibilities exist for structuring the schema: (1) Child content of a node can be modelled as
nested element declarations inside of the corresponding complex type of an element which in
turn is nested inside the element declaration. This paradigm is often referred to as Russian doll
design — all information is nested. (2) The element declarations for child content can be referred
to using an identifier (possibly different to the element label) from inside of the content model
declaration located inside of the element declaration. This paradigm is commonly referred to as
salami slices design — the element declarations are much thinner, the reference (thin as a salami
slice) points to the “beefier” part. (3) Element declarations occur nested inside of the content type
declarations, content type declarations are declared at top level and are referred from inside of
the element declarations using unique names. This paradigm is referred to as venetian blinds
design. The name is due to an arguably obscure XML Schema feature concerning namespace
exposure that can best be exploited using this design pattern. With a small change to the schema

“4The information set is a normative W3C recommendation [56] defining an abstract syntax in the spirit of a parse tree
of XML documents.

17

2.4 FROM SCHEMA-LESS STRUCTURE TO VALID DATA

big amounts of the schema can be exposed or hidden, like venetian blinds open and close with a
small trigger action.

Note, that e.g. the reference mechanism for content model references in elements helps in
removing one of the limitations of DTDs: alternative content models for equally named elements
according to the context they occur in.

Attributes may occur in complex content declarations. Attributes have to be declared after the
element declarations, they may not be declared inter-winded.

Namespaces Arguably, the most prominent advantage, that XML Schema provides over DTD
is the support of name spaces. Elements can be declared to belong to a namespace, as well as
it is possible to import and incorporate declarations of elements of another namespace in a type
declaration.

Regular Content Models in XML Schema Content models can be modelled using constructs
that are mostly inspired by regular expressions. The XML Schema elements sequence, choice
and all are used to model content models. They may be nested, roughly representing a struc-
ture similar to a parse tree of a regular expression. With sequence it is possible to give a list of
elements or content model components that have to be matched in a sequence conforming to that
content model. With choice alternatives may be specified. The all construct is a short hand
for an unordered sequence of elements that have to be matched, any sequential combination
of elements specified in an all is represented. The unordered specification is very restricted,
just elements may be child nodes of an all construct and the multiplicity of the elements al-
ways has to be exactly one. Repetitions can be modelled quite accurately using the minOccurs
and maxOccurs attributes of the regular constructs or of the element declarations. To represent
unbounded repetition as modelled in DTDs and regular expressions using the Kleene star, the
special multiplicity value unbounded is used.

Attributes Attributes are defined in a similar way as in DTDs — their name and value type is
given, and they may be declared mandatory, optional or as fixed attributes. The value type of
attributes, however, may be specified in a much richer way than possible for DTDs. Here any
simple type is possible.

Data Types XML Schema provides a fixed yet versatile set of predefined simple types for mod-
elling various number formats, Gregorian calendar data and various forms of strings and tokens.
User defined restrictions and extensions of the predefined simple types can be derived. There is
also one predefined polymorphic data type that can be user restricted: a polymorphic list of (non
list) simple data types.

Clearly this helps to overcome a limitation of DTD: DTD has no data types except strings.

XML Schema Example The example 2 illustrates the presented concepts of XML Schema. An
university database is modelled. A university contains a sequence of student elements, at least
one and as many as needed. Student elements contain a name, a matriculation number, the semester
information of the student and an element with the results of the exams of that student. All those
elements must occur, but they may occur in arbitrary order. A name consists of a first and a last
name, each represented by elements containing plain text strings, the semester information is an
element containing an integer number between 1 and 24. The exam elements contain an integer
representing the grade and a string for the name of the lecture, both information in form of an
attribute.

The content of the university element is modelled outside of the nesting focus of the element
in the spirit of the formerly mentioned salami slices paradigm, the student is mostly modelled
according to the Russian doll paradigm, where all elements are declared inside of the nesting
scope of the student element, except the name element, which has its content type declared out

18

2.4.2 XML SCHEMA

of scope. The exam element as well has the content type defined out of scope in the spirit of the
venetian blinds paradigm.

<xs:element name="university">
<xs:complexType>
<xs:sequence>
<xs:element ref="student" minOccurs="1" maxOccurs="unbound" />
</xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="student">
<xs:complexType>
<xs:all>
<xs:element name="name" type="nameType" />
<xs:element name="matriculation-number" type="xs:integer">
</xs:element>
<xs:element name="semester">
<xs:simpleType>
<xs:restriction base="xs:integer">
<xs:minInclusive value="1" />
<xs:maxInclusive value="24" />
</xs:restriction>
</xs:simpleType>
</xs:element>
</xs:element>
<xs:element name="exams">
<xs:complexType>
<xs:sequence>
<xs:element ref="exam"
minOccurs="0" maxOccurs="unbound"
type="examType" />
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:all>
</xs:complexType>
</xs:element>

<xs:complexType name="nameType">
<xs:element name="first-name" type="xs:string" />
<xs:element name="last-name" type="xs:string" />
</xs:complexType>

<xs:complexType name="examType">
<xs:attribute name="grade" type="xs:integer" />
<xs:attribute name="lecture" type="xs:string" />
</xs:complexType>

Code Example 2 A simple XML Schema modelling some aspects of administrative data found in an uni-
versity.

Extending and Restricting Declarations An XML Schema content modelling feature orthogo-
nal to the formerly presented is the extension and restriction of types. When modelling simple
(data) types, it is possible to restrict a given simple type using type specific facets. This has al-
ready been shown in the example above for the restriction of integers to integers greater than 1
and smaller than 24. Strings can be restricted in a very powerful way using regular expressions.
For complex types in addition to restriction also extension of the content model is possible. A
typical example of extending a content model is to add attributes to an already declared com-
plex type. Restriction and extension of complex types is however a mere integrity constraint on
the complex type supplied, i.e. a content type can be denoted to be an extension or restriction of
another content type, but the user (the author of the schema) has to model it according to that
constraint, otherwise the schema is invalid.

19

2.4 FROM SCHEMA-LESS STRUCTURE TO VALID DATA

Limitations of XML Schema

As presented, many of DTD’s shortcomings have been overcome in XML Schema (e.g. lack of
name space support, lack of data types and the lack of alternative content model declarations for
different element contexts), yet some remain and some new arise.

The Predefined Set of Data Types While a rich set of data types helps in modelling data types,
the predefined data types lack some flexibility. Only predefined ways of restriction exist. For
many applications different kinds of atomic data types exist, that can not be modelled using XML
Schema. As an example IP-addresses are mentioned: yet difficult to model using e.g. regular
expressions (and hence sub-typing them from plain strings) there is no way in supporting the
data type itself without further application dependant parsing (e.g. as 4 Byte quadruple). Some
kind of modularity or external interface is arguably desirable for simple data types. Another
drawback is the fixed constraints on the format of the predefined data types: the date data types
are arguably of restricted usefulness, as there is no way to allow localization of the date format
and as the calendar model is restricted to Gregorian dates (which is a nuisance e.g. in china).

Deterministic Content Models A limitation of DTDs that has been inherited by the XML Schema
language is the content model restriction to deterministic content models. Hence, the chess game
use case of the DTD limitations can not be modelled in XML Schema.

Attributes Modelling of attributes of an element has conceptually mostly been inherited from
DTDs, thus with the same limitations: attributes are declared independently of each other, it is not
possible to declare them such, that e.g. a set of attributes has to occur together or excludes another
set of attributes. The independence of content model and attributes has also been inherited from
DTDs, as attributes most be declared in the complex content model at the end after all element
declarations. Therefore it is not possible to have an element content that either depends e.g. on
the occurrence of an attribute or on a certain value of an element.

Typed References DTDs lack of typed references is roughly solved by the possibility to syntac-
tically restrict attribute values yet having them declared as identifiers or references to identifiers.
A disadvantage of this approach is, that the typed reference has to be reflected in the way in-
stances of the schema are authored, the values have to fulfill some syntactical properties (e.g.
they need a certain prefix) that are conceptually irrelevant to the instances.

Root Element A rather surprising limitation is the lack of an explicit root element declaration
when modelling using XML Schema. Each element that is valid to some element declaration of a
schema can also be the root element of a valid document. The following example document

] <bar /> |

is hence perfectly valid with respect to the following schema:

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema";
elementFormDefault="qualified"
xmlns="http://www.example.comn";
targetNamespace="http://www.example.com"; >
<xs:element name="foo">
<xs:complexType/>
</xs:element>
</xs:schema>

The document is valid, as the element “ foo” may contain arbitrary content, hence also “bar”.
Arguably, the author of the schema intended to state, that the root element has to be a “foo”
element.

20

2.4.3 RELAX NG

Unordered Content Practical applications have proved the relevance of unordered content
modelling for XML, especially for data modelling. This reflects grouping and encapsulation of
attributes® in an object oriented modelling paradigm where it is relevant e.g. to assign the right
values to the attributes, yet the order is irrelevant. While SGML DTD has some support for that
task, XML DTD lacks that feature. XML Schema reintroduced the SGML feature and thus pro-
vides a limited way of modelling unordered content using the all construct by specifying a set
of elements that has to occur in a valid content instance. When necessary to model unordered
content involving optionality, multiplicity or dependant multiplicity of attributes, XML Schema’s
all unordered content modelling facility can not be used. Arguably, the same expressiveness as
given by regular expressions for sequences, would be desirable for unordered content modelling.

Syntax and Semantics Thus XML Schema solved some of the shortcomings of DTD, some prob-
lems remain. Further on, XML Schema enjoys the questionable fame of being by far the most
complicated W3C recommendation available. The recommendation is often expressed in a way
how the validation procedure works and how it has to be implemented, rather than explaining
in a declarative way how the language has to be used. This is of advantage for XML Schema
implementing parties, yet it is very inconvenient for XML Schema users. It requires consider-
able expertise to be able to understand a W3C XML Schema correctly. Additionally, there is
no accepted or official formal description of XML Schema by now, yet a working draft “XML
Schema: Formal Description” (see http://www.w3.0org/TR/xmlschema—-formal/) last edited
in September 2001 exists.

24.3 Relax NG

Relax NG (REgular LAnguage for XML Next Generation) is a schema language for XML, based
on RELAX [29] and TREX [51]. A Relax NG schema specifies a pattern for structure and content
of XML documents. Relax NG has two syntices—an XML syntax and a textual so called compact
syntax. Compared to e.g. XML Schema, Relax NG is arguably simpler with the same expressive
power. It is defined by a committee specification of the OASIS Relax NG technical committee,
and also by part two of the international standard ISO/IEC 19757: Document Schema Definition
Languages (DSDL) [2].

Relax NG has been defined based on formal language theory, more precisely based on regular
tree grammars [21], which are considered to be an appropriate formal model for most current
XML type and schema languages [38].

Grammar A schema or type declaration in Relax NG is called a grammar. A grammar consists
of one or many grammar rules, of which one is declared to be the starting rule, the rule defining
the type of the root of valid documents.

Element Declarations A Relax NG grammar rule declares the shape of an element. As an ex-
ample, consider the grammar of a name element consisting of a first- and a last name component
(see example 3). In contrast to DTDs, there is a separation of non-terminal and terminal symbols,
i.e. it is possible to use a different label for the element instances and for the rule (we see, that an
element with label <first> is modelled, this element is called firstName in the grammar). The
separation of label and non-terminal in the grammar is essential to be able to reuse element labels
for various element declarations with different structure in e.g. different content models.

For the sake of simplicity, just the compact syntax is used in the Relax NG examples—con-
ceptually the XML Syntax and the compact syntax are equivalent.

SIn this context by ‘attributes’, attributes of an object are meant, not forcibly XML attributes.

21

2.4 FROM SCHEMA-LESS STRUCTURE TO VALID DATA

grammar {
start = element name{ firstName , lastName }
firstName = element first{ text }
lastName = element last{ text }
}
Code Example 3 A Relax NG example modelling a name element composed of a first- and a last name
component.

Regular Content Models in XML Schema The content models of elements are modelled using
regular expressions as sen for DTDs. In contrast to the DTD regular expressions, there is no
restriction on possible regular expressions to one-unambiguous expressions. It is also possible to
model data the “Russian doll” way as in XML Schema—by embedding the element declarations
anonymously in a content model declaration (see example 6 for nested element declarations and
full blown regular expression content models).

grammar {
start = element addressBook{
element card {
(firstName , lastName) | (companyName) ,
element phone{ text } ? ,
element address{ text } ?
}ox
}
firstName = element first{ text }
lastName = element last{ text }
companyName = element company{ text }
}
Code Example4 This example models a versatile address book. Some elements are defined in a nested way
in the content model declarations of their parent node, while others are declared in the traditional grammar

way—using non terminals and a declaring rule.

Named Patterns What corresponds to a complex type in XML Schema (see section 2.4.2), is
called named pattern in Relax NG. A named pattern is a regular expression, or a part of a regu-
lar expression, which name, i.e. non terminal, can be used when defining content models (see
example 5).

element card {
name ,
element phone{ text } ? ,
element address{ text } ?
}o*
name = (firstName , lastName) | (companyName)
firstName = element first{ text }
lastName = element last{ text }
companyName = element company{ text }
}
Code Example 5 The card declaration of example 6, but with the content model part declaring valid use
of names factored out as a named pattern.

To retain regularity of the content model, it is not possible to recursively refer a name in it’s
declaration. Recursion is neither allowed using intermediate named patterns.

Interleaving While XML DTD had very poor support for the modelling of unordered data,
Relax NG provides a way of modelling an unordered sequence of elements. In example 6, an
address book card was modelled as a sequence of a name, phone number and address element.
While the schema dictates an order on those elements, there is no conceptual necessity for an

22

2.4.3 RELAX NG

order in this case. When modelling the content as shown in example 7 using the interleaving
operator, the elements can be given in arbitrary order. Surprisingly, the interleaving construct
was available in XML DTD’s predecessor—in SGML DTD’s. The feature has been removed in
XML DTD for the sake of simplicity of implementation. Note, that XML Schema also provide a
way of modelling interleaved content.

element card {
(name | companyName) &
element phone{ text }? &
element address{ text }? &

}
Code Example 6 A variation of the address card for the address book in example 6—this card requires all
elements, but no order is dictated on them.

While interleaving is used to model unordered sequences of elements, some attention has to
be paid to the way it s used in regular expressions, as the interleaving is just applied to sibling
expressions in a regular expression. This is best explained along an example: let’s assume, we
have to model an unordered sequence of A, and B and C elements, or, instead of B and C, a
D element. This is nicely expressed as A & ((B & C) | D) . Unfortunately, this expression
does not fulfill the requirement, as the sequence B A C is not an instance of the given expression.
This is due to the fact, that each sub expression has to be fulfilled by a part of the word, i.e. there is
no part of the word valid with respect to the sub expression (B & C).In this case, an expression
fulfilling the requirement exist: (A & B & C) | (A & D).

Attributes An arguably special feature of Relax NG (compared to DTD and XML Schema), is
the equal treatment of attributes and elements in content model declarations Attribute occurrence
declarations get hence part of the regular expression, as shown in example 7. The advantage of
this approach is, that the occurrence of an attribute can be tightly coupled to the occurrence
of an element, which is hardly possible, when elements and attributes are declared separately.
Further, the modelling of attribute sets can benefit from the full possibilities of regular expression
modelling, like optionality and disjunctive modelling.

element addressBook {
element card {
(element name { text }
| attribute name { text }),
(element email { text }
| attribute email { text })
}*
}
Code Example 7 Another variant of the address book example—in this case cards have name and email
content, if this is modelled as attribute or element is left to the instance author. The author may even model
e.g. the name as attribute while modelling the email address as element of the card-element.

The advantages are unfortunately also tightly coupled with disadvantages: (1) Content modes
can be modelled enforcing multiple occurrences of the same attribute name, which is invalid in
XML (e.g. using the Kleene star). (2) while a regular expression of elements is modelling an
ordered sequence of elements with the known regular expression semantics, the attributes do
not occur at the positions as modelled in the content models, as they have their fixed position in
the XML syntax—inside of the opening tag of the containing element. Practically, the problems
turned out mostly irrelevant, the choice of mixing element and attribute content declarations
turned out to be a pragmatically useful decision.

Data Types Relax NG allows patterns to reference externally-defined data types. Relax NG
implementations may differ in what data types they support. Only those data types supported

23

2.4 FROM SCHEMA-LESS STRUCTURE TO VALID DATA

by the used Relax NG implementation can be used. The most commonly used data types are
those defined by W3C XML Schema Data types [59]. The data type flexibility is arguably god
and bad—maximum freedom, in this case of data types, is forward looking in an open system as
the web is, on the other hand portability of Relax NG schemata using data types is questionable.

Apart of externally defined data types, enumeration data types are included (see example 8).
An enumeration of valid strings can be defined as a data type.

element card {
attribute name { text 1},
attribute email { text 1},
attribute preferredFormat { "html" | "text" }
}
Code Example 8 An extension of an email address card, as defined (among others) in example 7. The
email address card now has an attribute for specifying the preferred formatting of emails for the recipient.
This is made using an enumeration consisting of two options: “text” and “html”.

Relax NG Example Relax NG is considered to be a clean, formally well founded, alternative
to XML Schema. The W3C, inventor of XML Schema, itself uses the “competitor” for various
normative standards as modelling language, i.e. XHTML 2.0 [55] (see appendix B and C of [55]).
A short Relax NG grammar is shown in example 9,

grammar {
university = element university{ student+ }
student = element student{
element name{ nameType } ,
element matriculation-number{ xsd:integer } ,
element semester{ xsd:integer{ minInclusive=1 maxInclusive=24 } } ,
element exams {
element exam({
attribute lecture{ xsd:integer },
attribute grade{ text}
}x
}
}
nameType = (element first-name{ text } , last—-name{ text })
}
Code Example 9 For comparability, the XML Schema example presented formerly (see section 2.4.2), is
presented here as Relax NG example. The XML Schema Data types Data types are used in this grammar,
which is a possible and existing way to integrate data types in Relax NG.

Limitations As mentioned, basic data types are not covered in Relax NG itself. To obtain
portable grammars, they can hence not be used.

Another, by now in all schema languages present, limitation, is the lack of typed graph sup-
port. Without external data type library, Relax NG does not even support ID/IDREF based refer-
ences, is hence not able to model graph structured data at all.

Unordered content is partly supported by the interlacing paradigm. As shown above in the
paragraph about interlacing, patterns using interlacing are not modelling unordered data in an
homogeneous way, sometimes “chunks” of content may not be interlaced. This happens, when
combining the interlacing operator and the other operators. It is likely, but unproven, that any
unordered content model with variable multiplicity, disjunction and arbitrary symbols, can be
modelled using regular expressions with interleave operator. However, it is highly demanding
to the schema author and error prone, possibly with exponential size complexity in the size of
the number of symbols in the worst case.®

®The assumption is unproven. It is based on the recognition, that factorization in the problem formulation has to be
unfolded, which means copying the expanded symbol as often as factors occur.

24

2.5 Querying The Web

Note, that Web Querying is to be distinguished from Web Searching: While Web Searching means
the use of search engines like http: //www.ask.comorhttp://www.msn.comand Web direc-
tories like http://dmoz.org/ or http://www.yahoo.com by typing in textual search term
or by browsing search structures, Web Querying means writing programs in Web Query lan-
guages very much in the spirit of writing database queries in SQL.

2.5.1 XPath

With XPath [48] one can localises (sets of) nodes within the tree associated with an XML docu-
ment, i.e. elements, attributes, and text. XPath has similarity with path expressions as used in
Shell or command line operating system environment, as e.g. the Bash on Unix derivations or
the command. com on Windows, however XPath is also inspired by so-called “reqular path expres-
sions” first introduced in the content of the XML query languages XML-QL [23] and Quilt [19], a
predecessor of the current XML Query language XQuery [63].

XPath [48] uses so-called “axis specifiers” and “node tests”. The axis specifier, e.g. descendant
or child, specify the traversal of the document tree. A node test correspond to a label in a regular
path expression. The axis specifiers give rise to a navigation in all directions (to the leaves, to the
root, to nodes preceding or following in “document order”) the context node.

<addressBook>
<card name="Sacha">
<phone>21809339</phone>
<email>sacha.berger@ifi.lmu.de</email>
</card>
<card name="Francois">
<phone>21809310</phone>
<email>bry@ifi.lmu.de</email>
</card>
</addressBook>
Code Example 10 An XML document representing an address book with phone numbers and email ad-
dresses. The example is used in section 2.5.1 to illustrate XPath expression usage.

As an example, consider the xpath expression descendant::email[position()=1] to
be applied to the example document 10. The result is the element

’ <email>sacha.berger@ifi.lmu.de</email> ‘

in line 4—the descendant axis indicates to search from the start element (in this case the root el-
ement) at arbitrary depth. The elements selected along the descendant axis are restricted to those
fulfilling the name test for email, but from those elements, only those fulfilling the conditions in
square brackets are taken. As the condition restricts the result to the first element in the sequence
of intermediate results, the result is as shown above the first email element.

XPath has been conceived as an embeddable selection language, not as a whole query lan-
guage. It lacks features for projection and construction of data, solely selection of data from a
given context is covered. Prominent languages incorporating XPath as selection language are
XSLT (see section 2.5.2) and XQuery (see section 2.5.3).

2.5.2 XSLT

XSLT [47] is a language for transforming XML documents. It has been conceived as a part of XSL
[50], the eXtensibme Stylesheet Language. XSLT is a (sort of) functional language with XML syn-
tax. An XSLT program consist of a set of rules expressing how to transform elements in an input
document to elements of an output document. XSLT embeds XPath in two contexts: (1) elements
from the input documents are transformed by the rule matching it's XPath expression given as

25

2.5 QUERYING THE WEB

its match expression, (2) in rules the transformation of further content is applied recursively on
the elements matching the so called select expression of the application. Consider example 11 for
a simple XSLT program:

<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="1.0">

<xsl:template match="/addressBook">
<html><body>
<table>
<tr><td>NAME</td> <td>PHONE</td> <td>EMAIL</td></tr>
<xsl:apply-templates select="card" />
</table>
</body></html>
</xsl:template>

<xsl:template match="card">
<tr>
<td><xsl:apply-templates select="Q@name" /></td>
<td><xsl:apply-templates select="phone" /></td>
<td><xsl:apply-templates select="email" /></td>
</tr>
</xsl:template>

</xsl:stylesheet>

Code Example 11 An XSLT program transforming address book documents, as e.g. seen in example 10,
into an HTML document with an address book table.

The example 11 consists of two rules, called templates in XSLT and represented by template
elements. The first rule matches addressBook elements and constructs an HTML document
with a table with the first row as header row with fixed text columns. Then, the program is
applied to all card elements that can be found in the given context. The selected card elements
are transformed using the second template, as this one matches with card elements. The second
template constructs table rows for the card element it is applied to. For the document in example
10, the resulting HTML document is shown in example 12.

<html><body>
<table>
<tr><td>NAME</td> <td>PHONE</td> <td>EMAIL</td></tr>
<tr>
<td>Sacha</td> <td>21809339</td> <td>sacha.berger@pms.ifi.lmu.de</td>
</tr>
<tr>
<td>Francois</td> <td>21809310</td> <td>bry@pms.ifi.lmu.de</td>
</tr>
</table>
</body></html>

Code Example12 The result of transforming the document in example 10 using the style sheet in example
11.

Limitations A rather surprising limitation for users of functional programming languages is,
that templates may never be applied to content that has been constructed, templates are always
applied to selected content from the input document. Common paradigms, like stepwise re-
finement of results, are not applicable to XSLT. The computation is hence solely driven by the
input document. Nevertheless, there is evidence, that the computation model of XSLT is Turing-
complete [46].

Further features of XSLT Beside the base concepts—template based content modelling and
controlled template application—further features help writing reasonably compact and under-

standable transformation programs:

26

2.5.3 XQUERY

Conditionals An if and a choose construct are used to model conditionals similar to if-then-
else and case-switch in traditional imperative programming languages like C or Java. A
test, expressed as XPath expression is performed on the current context node, if the test
selects something, it is considered successful, and the content enclosed by the conditional is
processed like regular template content.

Imperative loops Beside apply-templates, which iterates over the selected content, the for-
each construct can be used to loop over sequences of selected elements. The child content
of the for—each element is then treated like regular template content for each iteration
step. The main difference to apply-templates is, that no template selection takes place,
i.e. the selected node is applied to the child content of the for-each element.

Construction Constructs exist, to construct elements and/or attributes, if e.g. their name has to
be computed at run time

Projection Using the value-of construct, it is possible to project parts of the selected data in
the result document. This partly already happens by default, i.e. if no template catches text
nodes and apply-template is called on them, they are inserted in the result document.
value-of may also be used to calculate using built in functions for string processing and
numerical calculations. Another projection construct is copy, which copies, either deep or
flat, a selected node (with or without it’s attributes).

Variables & Parameters Variables can be used to store and reuse selected content. In the spirit
of functional programming languages, the binding of a variable may not be altered within
the invocation context of it’s containing scope. The scope of a variable may be a template,
child content of conditionals or of for-each loops. Parameters are like variables of a
template, that can be bound at application, i.e. in the apply-template construct, very
much like function parameters bound at function application. Note, that it is not possible
to bind variables or parameters to the result of constructing new content, variables can just
be bound to selected input document content. This is related to the fact, that templates may
just be applied to content from the input document(s), but never to the constructed content.

Transformation vs. Query Common definitions for query languages claim, that query lan-
guages consist of selection, construction and projection of data from a given data model to (pos-
sibly) another data model. All those properties are fulfilled by XSLT, rendering it hence by fea-
tures a query language as well as a transformation language. Indeed, the difference between
transformation language and query language is vague. XML has been proposed by the W3C as
data (meta) model to be followed by styling, transformation and query language proposals. The
transformation language XSLT was proposed before a query language. The versatility of XSLT
lead to a not so surprising reaction of it’s ‘affiliados’: when the query language XQuery was pro-
posed by the W3C, it’s reference implementation was suggested to be realized in XSLT, while
questioning the necessity of a distinct query language at the same time.

2.5.3 XQuery

The fact that with XQuery [63] and XSLT there are two expressive XML processing languages
that can be used for mainly the same purposes is somewhat surprising. While XSLT was de-
veloped by the ‘document community’, XQuery is an XML Query language originating from the
Database community, which can already be observed by its syntactical similarity to SQL. XQuery,
also called XML Query, is derived from a query language called Quilt [19]. Quilt had been con-
ceived by Jonathan Robie (Software AG), Daniela Florescu (INRIA) and Don Chamberlain (IBM
Almaden Research Center) as a query and transformation language for XML and Semistructured
data integrating most of the ideas of prototype query and transformation languages designed
since the mid 90th — hence the name Quilt.

27

2.5 QUERYING THE WEB

Like Quilt and XSLT, XQuery uses XPath for locating nodes and/or text in the input data, like
XSLT, XQuery is a sort of a functional programming language. Indeed, a plain XPath expression
is syntactically already a valid XQuery program—returning as result exactly the content selected
by the XPath expression from a context (e.g. document) passed (e.g. as command argument) to
the XQuery implementation or run-time environment.

//card/@name
Code Example 13 An XQuery program in form of an XPath expression to be applied to example 10—the
result is all the text of all the name attributes given to the card elements.

As the result of the example 13 already indicates (plain text is returned), the result of an
XQuery program is not always an XML document. The result may be an XML document, plain
text, or a sequence of XML nodes (i.e. text nodes, attributes, elements, ...). The sequence of XML
nodes is an important concept, used by many language primitives and functions in XQuery.

FLOWR-Expressions The main language construct in XQuery is the so called FLOWR expres-
sion (pronounced “flower” expression). FLOWR is an acronym for For-Let-Orderedby-Where-
Return. Explained on example 14, all parts of the FLOWR expression have been used. However,
it is possible to omit any parts in the expression (i.e. the for, the let etc.)

FOR $p in /addressBook/card/phone
LET S$c := Sp/..
WHERE not ($c/Q@confidential = "yes")
ORDER BY $p/text () ASCENDING
RETURN <card phone="{S$p/text () }">
<name>{$c/name/text () } </name>
</card>

Code Example 14 In this example a FLOWR expression is used to construct an “inverted phone list” for
non-confidential phone numbers, where the card element contains the phone number as attribute (and the
cards are ordered ascending with respect to the phone numbers) and a name element is a child node of the
card. Information about confidentiality is given in the form of an attribute for the card elements.

FLOWR expressions may also be nested, giving rise to more complex construction, especially
those, where one level of iteration is no enough. In example 15, a 2-dimensional structure, i.e. the
result of the XSLT example 11 (namely the document in example 12), is queried—an HTML table
is the input document and as a result a rotated HTML table is constructed, i.e. a table where the
columns of the input are the rows of the output and vice versa. For each dimension (first row,
then column), one level of iteration is needed.

LET S$table := S$ShtmlDocument//table
RETURN <table> {
FOR $x in S$table/tr([l]/td/position()
RETURN <tr> {
FOR $tr in Stable/tr
RETURN
FOR $td in $tr/td
WHERE $td/position() = $x
RETURN $td
}o</tr>
} </table>

Code Example 15 An example rotating an HTML table. Note, that for simplicity it is assumed, that the
table has rectangular shape, what is not enforced in HTML.

28

2.5.3 XQUERY

Functions XPath queries or parts of it can be organized in functions. Indeed, some functions
are even predefined. In contrast to XSLT, functions can construct new XML content that can be
queried or processed in the same program, e.g. in another function. Example 16 shows how a
function is used to construct data, that is then decomposed by another query. This approach
is reasonable e.g. to provide an interface to versatile data formats, i.e. hiding the complexity of
information selection and projection.

DECLARE FUNCTION harvestData(Surl) {
FOR $row IN document ($url)//table/tr[position() > 1]
RETURN <data>
<name>{S$row/td[1l] }</name>
<phone>{$row/td[2] }</phone>
<email>{S$row/td[3]}</email>
</data>
}
<addressBook>
FOR $d in harvestData("http://example.com/addresses.html")
RETURN <card name={$d/name/text () }>{
IF ($d/phone/text ())
THEN <phone>{$d/phone/text () }</phone>
ELSE ()
IF (Sd/email/text ())
THEN <email>{$d/phone/text ()}</email>
ELSE ()
}</card>

</addressBook>
Code Example16 ~ The example is based on data as shown in example 11, an HTML table of name-, phone-,
email- triples. A function, called harvestData is used to retrieve the knowledge. The query is then construct-
ing an addressBook document in the spirit of example 10. Note how, in contrast to common programming
languages like Java, the return-statement is iterated—this results in a sequence of data elements.

Types XQuery is a language with an “optional type system”, which means, that (1) availability
of the type system in implementations of the XQuery specifications are optional, and (2) the
use of types are optional for the user. Optional types for the user is in this context not to be
understood as optional type annotation of generally typed programs due to the availability of
type inference as e.g. in Haskell—untyped program fragments exist alongside with typed ones.
Typed fragments of XQuery are type annotated with XMLSchema type information, which may
be type names

XQuery (when typed) comes along with a static or a dynamic type system, when statically
typed, it also needs to be dynamically typed. Types are based on concepts like

e structured- or textual content of any type—any of the known types, sub elements of a struc-
tured element may be given again

e structured content of unknown type—mno assumption at call can be made on the type, this
corresponds to a most general type

e structured- or textual content conforming to some XML Schema type declaration.

Functions, variables and XPath selections may be typed in XQuery. If an XQuery implementa-
tion is statically typed, a type ‘error-free’ program must lead to the same result as a the execution
of the program in a dynamically typed implementation, i.e. static type information cannot lead
to a different result than dynamic type information.

Further Features of XQuery Beside FLOWR expressions and functional abstraction, further
features help writing reasonably compact and understandable queries:

29

2.5 QUERYING THE WEB

Conditionals Based on boolean operations and XPath expression evaluation (to empty or non-
empty selection), if-then-else conditionals can be formed as in common programming lan-
guages. Surprisingly, while the language description [63] puts lots of emphasize on FLOWR
expressions, the evaluation of XQuery [64] is based on rewriting programs to an (arguably)
minimal subset of XQuery and XPath mot containing FLOWR expressions anymore, but
deeply nested if-then-else expressions.

Modules Complex XQuery modules can be split up in modules, giving rise for reuse of functions
in various programs. A query is then composed of exactly one main module and arbitrary
many library modules. A main module may contain a FLOWR expression at “root” level,
i.e. not in the context of a function, and any function and variable declarations, a library
module may only contain function and variable declarations.

Limitations The expressiveness of XQuery gives rise to arbitrary computation, i.e. Turing com-
pleteness does not leave lots of space for complains about expressiveness.

The downside of the high expressiveness, is the difficulty to provide highly optimized query
evaluation. XQuery was initially conceived as an (XML) database query language with potential
for optimization—query optimization is an important field of database development. One source
of problems is the so called nested querying, where e.g. inside an iteration for result construction
another sub-query (again possibly with iteration) occur. Nested queries are unfortunately the
way of choice to implement complex grouping in XQuery. While nested querying gives rise to
writing highly hand-optimized code to the program—he gets full control over the evaluation
order of the query—automatic optimizations over the nesting levels is very hard, maybe impos-
sible in general. In many cases, more high level constructs, e.g. grouping-, ordering-, duplicate
elimination constructs, etc., would make the use of nested queries unnecessary, giving comfort-
able tools to the programmer and yielding rise to automatic optimization for XQuery run time
engines.

Another limitation of XQuery lies in its specification relating XPath: some parts of XPath (i.e.
most reverse axes) are optional in implementation. This does not restrict the expressiveness, as
the missing axes can all be simulated using other axes and constructs, but on the other hand, the
user is encumbered in the use of XPath when trying to write portable XQuery programs. As it
has been shown how to rewrite XPath expressions involving reverse axes, the rewriting could
have been included in the specification as a must for implementations without native support of
the axes in question.

2.54 Xcerpt

Xcerpt is a Web and Semantic Web query and transformation language currently in development
at the Institute for Informatics of the University of Munich [43] [17]. The main claim is, that the
use of arguably declarative programming language paradigms ease writing of programs, as well
as efficient evaluation with less need to consider optimization.

Xcerpt is conceived to query and construct XML data in special, and Semistructured Data
in general. Xcerpt has an own (syntactical and semantical) data model for Semistructured Data
called Xcerpt data terms (see example 17 for an example). Xcerpt Data terms are able to represent
tree shaped data with attributes, textual- or structural nodes, ordered or unordered sequences
of child nodes, as well as graph shaped, directed, node labelled structures with a dedicated roof
node. Graph shaped documents are syntactically represented as spanning trees with references to
nodes of the tree.

30

2.5.4 XCERPT

bibliography{
al@author{ name["Eric","van der V1list"],
publications{ “bl, "b2 } },
a2@author{ name["Jean-Jacques"," Thomason"],

publications{ "b2 } },
bl@book{ "RELAX NG" ,
authors["al] } ,
b2@book{ "XML SchA®ma (A@dition franASaise)" ,
authors|[“al, “a2 1 }

}
Code Example 17 An example of an Xcerpt data term, representing a bibliographic database. Nested
elements are represented in term syntax, where the use of square brackets indicate, that the sibling order
of the nested elements is relevant, while curly braces indicate, that the sequence of child elements can be
considered to be irrelevant. Some elements are referable using an identifier, prefixed to them with a trailing
‘at’-sign. Referable objects may be referenced using their identifier, prefixed by an ‘hat’-sign. Textual content
is quoted text and can occur along with other elements.

The general structure of an Xcerpt program can be compared to a program in logic program-
ing languages or to a database query in Datalog. The main syntactic concepts along with their
informal explanation of Xcerpt are as follows:

¢ A program consists of one to many rules that may use each others result in the construction
of new results.

* A rule consists of a query part clearly separated syntactically from a construct part.

— The query part is able to query external data on the web or internal data, constructed
by other rules.

— The construct part is able to construct result data to be used as output of a program or
as input for other rules to query

— Query and construct parts of a rule are connected using logical variables, variables are
(exclusively) bound in the query parts and multiple variable bindings are possible,like
in the spirit of variables in Prolog or Datalog.

* Query parts consist of so called query patterns, which are syntactically an extension of the
queried data model (i.e. XML or Xcerpt data terms). The extensions are (1) incompleteness
constructs to leave space for incertitude about shape, size and multiplicity of the queried
data structures and (2) variables to select data fragments from the input data.

* Construct parts of rules are so called construct patterns, a syntactic extension of XML or
Xcerpt data terms. The extensions are (2) variables, that are replaces by their bindings
at program evaluation time to construct data, (1) aggregation and grouping constructs to
aggregate and group multiple variable bindings.

The evaluation of an Xcerpt rule consists of two phases: (1) the evaluation of the query, result-
ing in a so called substitution set for the variables, (2) the evaluation of the construction, resulting
in data terms due to evaluation of aggregation and grouping constructs and substitution of the
variables according to the substitution set gathered in the query part evaluation.

Xcerpt Rule Query Evaluation is done using the so called simulation unification, a non standard
unification algorithm based on the simulation preorder of graphs. First, simulation preorder and
it’s properties are briefly presented, then the focus will pan back to simulation unification, which
yields a set of substitutions, the result of Xcerpt query evaluation.

Speaking informally, a graph simulates another graph, if each state in the second graph is
simulated by a state in the first graph. A state in the first graph simulates a state in the second
one, if each adjacent state of the state in question in the second graph is simulated by an adjacent
state to the state in question of the first graph. For labelled or attributed edges or nodes or plain

31

2.5 QUERYING THE WEB

Figure 2.5: The left graph structure is simulated by the right one—for each node of the graph on
the left hand side graph, there is a corresponding node on the right hand side graph, such that (1)
the labelling is equal and (2) the nodes following the node in question on the left hand side graph
are simulated by nodes following node in question in the graph on the right hand side. Textual
nodes on the left hand side are simulated by textual nodes on the right hand side. It is possible
that one node on the left hand side is simulated by many nodes on the right hand side (i.e. when
the left hand side node has multiple incoming edges).

textual nodes, equal labelling, attributing or text equality can be requested on simulating states
or on the traversed edges (see figure 2.5 for an example of the simulation relation between two
graphs with node label and textual nodes).

If simulation preorder holds in both directions for two graphs in question, it is called Bi-
simulation. Bi-simulation is a kind of intuitive equality between two graphs, when the graphs are
considered e.g. to be automata—both automata “behave” the same way, if behaviour of automata
is seen as a kind of graph traversal. However, Bi-simulation is a weaker equality relation than
graph isomorphism for an example of the difference, consider figure 3.1 in section 3.3.2.

Focusing back on simulation unification, the second graph in the explanation of simulation
preorder may now contain logical variables as nodes. The second graph is the query pattern,
while the first one can be considered to be a data instance. A simulation unifier is now a mapping
of variables to sub-graphs of the second graph, such that, after substituting the variables in the
second graph with the sub-graphs in question, the first graph simulates the second one. Possibly
multiple such unifiers exist, the result of simulation unification is the set of all such unifiers.
Figure 2.6 illustrates simulation unification by example.

Incompleteness in breadth (i.e. partial adjacent node sequence specification) is already ad-
dressed by the default simulation preorder, as there is just stated, that all states in the second
graph have to simulate in states in the first graph, nothing is stated about all states in the first
graph. Hence, completeness (in breadth) can be considered as a side condition, about the states
in the first graph. Incompleteness in order is addressed by standard simulation preorder, as
no conditions about the order of the simulated states is defined in common graph models, im-
plementing ordered simulation is hence a condition about the order of the simulated states in
addition to default simulation preorder. This requires some extension like numbered edges in
the graph model.

Xcerpt Rule Construct Evaluation is evaluated with a set of substitutions (i.e. the result of an
Xcerpt query part evaluation) is input. In the simplest case of a construct term, a construct term
without variables, nothing more than the construct term interpreted as data term is returned,
there are as many results as there are substitutions in the set, all identical. For a construct term
with variables (and without grouping constructs) for each substitution the resulting data term is

32

2.5.4 XCERPT

\ Y
cl]
c["tabunkel"]

Figure 2.6: A demonstration of simulation unification, where the left graph (serializable as the
Xcerpt query term a{{ b{ var X } , var Y }}) (in this case tree shaped) has two variables.
Possible bindings for the variables are indicated by grey lines, when substituting the variables
by the corresponding nodes from the right hand side (a data graph represented by the Xcerpt
data term a{ b{ Acl } , clec{} , c{ ‘tabunkel’’ } }), the graph from the left hand
side is simulated by the one on the right hand side. The result of simulation unification is a set
of unifiers, shown as a table on the right hand side—each substitution is a row in the table, each
column represents a variable.

obtained, by substituting the variables in the construct term with the data terms associated to the
corresponding variable in the substitution. Note, that all variables in the construct term need to
be substituted, otherwise the whole rule is considered ill formed—this can already be assured at
compile time, as it simply means, that each variable in the construct part has also to occur in the
query part of the same rule.

For the evaluation of construct terms with grouping (and/or aggregation), the scope of the
variables with respect to the grouping constructs is relevant: all construct terms in the scope of
a grouping construct are sequentially constructed by substituting their variables, called the vari-
ables bound by the grouping construct in question. Not all substitutions are used at once in the
constructed of the terms in the scope of the grouping construct: the grouping is performed for
each subset of the substitution set with equal free variable substitution, the free variable substi-
tutions in this subset then are used in just one construction. For each such subset, the grouping is
evaluated, resulting in the end in as many instantiations of the inner most grouped variables, as
there are substitution—just that those instantiations get grouped in different contexts. Consider
example 2.7 as a demonstration of how a substitution set is applied to a construct term.

Xcerpt Rule Evaluation. After introducing Construct- and Query evaluation, not a lot is left to
say about the evaluation of an Xcerpt rule—evaluation the rule consists of evaluating the query
part, also called body of the rule, and feeding the resulting substitution set to the construct part,
also called the head of the rule, to obtain a set of data terms as result. A query part in a rule
may be adorned by an in-construct, stating that the query is to be evaluated against an external
resource, given as argument of the in-construct. Otherwise the rule is to be evaluated against the
set of data terms constructable by all the rules in the program. Consider figure 2.8 as an example
for rule evaluation.

A special rule is the so called goal. A goal does not contribute to the set of data terms con-
structable by the program, it’s result s considered to be the result of evaluating the whole pro-
gram. As the result has to be a data term or an XML document, just one data term may be
instantiated by the goal, it is hence likely, that the head of the goal uses grouping in sch a way,
that there are no free variables.”

"The head of a goal may have free variables, it s not defined which resulting element is returned by a program
constructing multiple outputs due to more than one substitution being applied during program evaluation to the goal’s

33

2.5 QUERYING THE WEB

X | Y

cl] cl]

cl] c{"tabunkel"}
"Hhar" C[]

"bar" | c{"tabunkel"}

results|
all result[x[var X] , all var Y]]
results [
result[x[c{}] , c¢{ "tabunkel" } , c{} 1 ,
result[x["bar"] , c{ "tabunkel" } , c{} 1]]

Figure 2.7: The application of a set of substitutions (in form of a table) to an Xcerpt construct term
(shown above the line) is demonstrated here. The result is the Xcerpt data term as shown below
the line.

CONSTRUCT
html [head[title["Hyperlinks on www.google.com"]],
body [
all (a(href=var HREF) [all var CONTENT] , br([])
]
1
FROM
in resource ("http://www.google.de") (
html[[body[[a(href=var HREF) [[var CONTENT]]]] 1]
)
END
<html>
<head><title> Hyperlinks on www.google.de </title></head>
<body>
In Englisch

 Bei Google Anmelden

</body>
</html>

Figure 2.8: Above the line an Xcerpt rule is given. It is conceived to retrieve all the hyperlinks
from the start page of Google and to present them in a plain HTML document. The result of
evaluating the rule is shown below the line—this time not in Xcerpt data term syntax, but in
XML (and hence XHTML) syntax.

34

2.5.4 XCERPT

Xcerpt Program Evaluation The evaluation of an Xcerpt program is the chaining of the eval-
uation of the rules. The goal rule gives the result, the rules attached using the in-construct to
external resources get input data (which is not forcibly necessary, data can also be defined inter-
nally). All the other rules query the internal program store and feed results in this store. The
operational semantics of chaining can be define in two ways, there is no commitment about it by
now, possibly both ways will be available as choice for the programmer. In example 18 an Xcerpt
program is presented.

GOAL

TheResultOfTheCalculationThreePlusTwoIs|[var Result]
FROM

plus[three[] , two[] , var Result]
END

CONSTRUCT

var NAT

FROM

in resource "http://example.com/naturalNumbers.xml" (
naturalNumbers{{ var NAT }})

END

CONSTRUCT

plus[var X , zero[] , var X]
FROM

succ[[var X 1]

END

CONSTRUCT

plus[X , Y , RESULT]

FROM

and (
plus[X , PRE_Y , PRE_RESULT] ,
succ[PRE_Y , Y] ,
succ[PRE_RESULT , RESULT]

)
END

Code Example 18 This example illustrates an Xcerpt program for the addition of natural numbers very
much in the spirit of it’s mathematical definition. First, natural numbers are defined as a set of elements and a
binary successor relationship. The natural numbers are considered to be in an external document (theoretically
of infinite size, but for the sake of concreteness, an upper bound can be assumed). The document hence looks
somehow like this: “naturalNumbers{ succlzero[] ,one[] 1, succ[one[] , two[]l] ,

}”. The Program consists of a goal returning the sum of three and two. The addition is defined as a ternary
relation between the first and second operand and the result. The definition is recursive and based on the
successor relationship and the base case z + 0 = x.

The first kind of chaining, called forward chaining, is driven by the input data. The rules
attached to the input data are evaluated first and initially feed the internal store. The other rules
are then applied until saturation is reached, i.e. no further rule application to the internal store
produces content, that is not already in the store (the store can be seen as a set of data terms).
Then, the goal is evaluated against the store and the result is returned. This type of chaining s
very much in the spirit of Datalog. The advantage is, that, even without focusing on a goal, all
knowledge is pre-processed and rapidly accessible for various possible goals.?

The second chaining approach is called backward, or goal driven, chaining. When Xcerpt
is implemented using goal driven chaining, the query term f the goal is evaluated against the
heads of all rules, using a slightly extended version of simulation unification, able to unify a
query term with a construct term. The rules, of which the simulation unification with the head

head.
8Note, that an Xcerpt program always contains only one goal, so the pre-processing can be compared to a system
setting, where programs are seen as queries to a database system with materialized views.

35

2.5 QUERYING THE WEB

provided non empty substitution sets, are then recursively evaluated the same way as the goal
(i.e. by simulation unification with other rule heads). In substitution sets produced by this kind of
simulation unification, variables may not only be mapped to data terms, but may also be mapped
to construct terms containing variables. When a branch in the recursive process reaches an end,
the substitution sets are then applied along the branch to the goal in a similar way to applying
them to a single construct term.

In comparison to forward chaining, backward chaining may calculate less “useless’ facts, as
just facts that could contribute to the result are evaluated. The approach is especially useful,
when the set of facts to reason about or the data to query is very big, possibly infinite, but the
query is very selective. On the other hand, the backward driven approach has no mean to store
intermediate results, called materialized vies previously in the context of forward chaining. Further
on, some recursive programs on finite data can trap the evaluation in an endless loop, as there is
no inherent recognition of construction of duplicates, as in the set concept of the store in forward
chaining.

Further Constructs of Xcerpt are presented now. They are considered “further”, because they
are not essential for understanding Xcerpt’'s paradigm. Some of them can be replaced using
the base constructs, they are useful to ease programming or to ease efficient evaluation due to
optimization of higher level constructs.

Xcerpt Queries may contain

Descendant Sometimes it is desirable to state, that a certain sub-term may occur as the child term
of it’s parent, but that it may also be a grand-child, grand-grand-child or any descendant.
As a practical example, consider the case of searching for hyperlinks (like previously when
introducing Xcerpt rules, consider example 2.8) in a Web-page: actually hyperlinks may
occur at any nesting level (e.g. nested in style conditions, tables, etc.). To capture really all
hyperlinks, the descendant-construct is useful (see example 19. A term can be adorned by
the leading desc keyword, to indicate, that the desired sub-term may occur at any depth
in the document starting from subterms position.

‘ html[[desc a(href=var HREF) [[]] 1] ‘
Code Example 19 This query term can be considered as a replacement of the query term in the rule
example 2.8. Using this query pattern, not only hyperlinks that are direct children of the body-element will
be found, but also those nested at deeper level in the document structure.

As The as-construct is useful, to specify a query-(sub)-term and a variable at the same location.
This is useful, to get a variable binding restricted to terms simulated by the query term
associated to the variable. As an example (see example 20) consider the case, that in an ex-
tension of the Xcerpt rule example (see example 2.8), the list of hyperlinks found in Google
should not only retrieve the URLs, but the whole hyperlink (hence the <a>-element with
all attributes and the anchor text).

html[[desc var HYPERLINK —> a[[]]]] |
Code Example 20 This query term is an extension of the term in example 19. It is used to harvest hyper-
links in HTML documents. They are easily found using the a [[]] sub-query. Using the as-construct, those
elements are bound to a variable called HYPERLINK.

Optional A sub-term of a query can be marked as optional pattern. An optional pattern simu-
lates if possible—if the queried data contains appropriate sub-terms, they will be simulated
by the optional term, providing corresponding variable bindings for variables occurring in
the optional part, if no simulation is possible for the optional (sub)term, but for the non-
optional parts, the query term simulates as well. Assuming, that variables are in the scope

36

2.5.4 XCERPT

of an optional term not simulating data, the variables will be bound to a default value, that
can be given in the program. Example 21 presents a query term with optional parts.

university{{
student (name=var NAME) { {
optional grade{ var GRADE with-default "No Grades by now" }
b}

}}
Code Example 21 To query a university database for all the students with the grades they received, the
following query is useful. Assuming, that not all students achieved grades, the variable GRADE is only to be
bound to data, if grades are available. In the other case, a default binding is given for the variable, the text
*‘No Grades by now’’.

as-construct. It is hence also called variable restriction.

Negation A (sub)-query term may be adorned by not or without, indicating that the query term
containing the negated sub-term only matches, if there is no match for the negated sub-
term.

Position Sometimes it is necessary to either specify the position at which a term matched by
a query term has to be in it’s sequence of sibling nodes. The corresponding query term is
attributed with the position-construct which gets a number as argument. It is also possible to
use a variable as argument, in this case position is not restricting the position of the matched
sub-term, it binds the variable to the position of the sub-term.

Regular Expression Regular expressions are useful to restrict simulation of textual content, i.e.
text nodes. It is also possible, to use regular expressions for element labels, giving rise to
patterns matching various, differently named, elements.

Logical Connectors In a query is is possible to specify many query terms, connected with the
logical connectors “and” and “or”. Multiple occurrences of the same variable in a conjunc-
tion of query terms may only unify, if they have the same bindings in the simulations of
both query terms.

Where Clause The where-construct is used to specify restrictions to variables, that are not of
structural nature or not related to the query term. This can be e.g. restricting the match
of a variable to a certain value or fulfilling conditions involving function, like arithmetical
functions, for certain variables, or simply expressing relations between many variables.

37

2.5 QUERYING THE WEB

38

Part 11

RoGo

39

R;Gy—Regular Rooted Graph Grammars

For the typing of web query languages, a type declaration formalism is needed. From the point of
view of a person willing to use a query language with type support and willing to use the given
schema languages as type declarations, the shortcomings presented in section 2.4.1 and 2.4.2 are
annoying.

The new type and schema language R2G2 is a schema language for tree and graph shaped
Semistructured data like XML documents (or Xcerpt data terms). R2G> is formally based on
extensions of regular rooted tree grammars and is hence similar to existing schema languages as
DTD, XML Schema, Relax NG or the type system of XDuce. New contributions are:

¢ Handling of graph shaped data based on the simulation preorder of graphs and rational
trees.

® Unordered interpretation of regular expressions for unordered content specifications.
¢ Typed references for XML.

* Modelling of tree and reference based serializations of graph shaped data.

3.1 Regular Tree Grammars

Regular tree grammars describe sets of trees by their shape. They are precisely introduced in [21].
They are syntactically a subset of context free grammars (as shown e.g. in [25]).
As a prerequisite, let there be the definition of Trees over an alphabet X.

Definition 3.1

Let X be a set of tree node labels and ¥, C X all labels of nodes that have p direct child nodes.
The set T'(3) denotes the set of all trees that can be constructed using the symbols in 3 applying
the following rules:

e 3y C T(X), those nodes will be called leaf nodes.

e forp>1,ifie ¥,and ty,...,t, € T(X), thenl(ty,...,t,) € T(X)

41

3.1 REGULAR TREE GRAMMARS

Definition 3.2

A regular tree grammar G = (S, N, X, R) contains a so called axiom S, a set of non terminal
symbols NV, a set of terminal symbols or tree labels ¥ and a set of production rules of shape
a — fwitha € Nand 3 € T(XUN). Note, that (X U N) denotes trees where the symbols of N
all have arity 0 and the symbols of ¥ arbitrary, but fixed arity.

A (tree) grammar is sometimes called a generator for a language (of trees). A grammar G =
((S,N, %, R) generates the language L(G) consisting of all tree instances that can be derived
starting from the start axiom S of G using the rules R of G. A grammar generates trees, that can be
derived, by replacing non terminal symbols—symbols of N—in trees of T(X U N) by a right hand
side of a grammar rule of R, if the left hand side of the rule corresponds to the given non terminal
symbol. The starting non terminal symbol is always the axiom S. A non terminal replacement
step is called a derivation step. A valid data tree is generated by a sequence of derivation steps
that replace all non terminals in the intermediate tree of 7'(X U N), i.e. a successful sequence of
derivations always yields an instance of T'(X).

Example 3.1

A language of (head/tail encoded) lists of (unary encoded) nat-
ural numbers can be modelled as regular tree grammar as fol-
lows:

G = (List,{List, Nat},{0,nil, s /1, cons s}, R)

where R =

{ List — nil % y
, List — cons(Nat, List)

, Nat — 0

, Nat — s(Nat) }

An instance of the language L(G) is eg.
cons(s(s(0)), cons(0,nil))—this corresponds to the (unary
encoded) sequence of (decimal encoded) natural numbers
[2,0].

(ail) :List

Regular Tree Grammars for Unranked Trees The presented tree grammar formalism is able to
generate ranked tree languages, i.e. tree languages with symbols of fixed arities—in the example
3.1 s is of arity 1, nil of arity 0 and cons of arity 2. Semistructured data, XML and Xcerpt data
terms are data models with trees of variable arity, also called unranked trees—a tree of a given
type or label may have arbitrary many child trees. All properties of languages of regular ranked
trees can be extended to unranked trees, if a special transcription of unranked trees to ranked
trees is applied—unranked trees are decomposed in such a way, that the child trees of a tree get
sequenced in a list as presented in example 3.1.

To directly model unranked regular trees using a tree grammar formalism two extensions can
be sought of:

1. Allow additional grammar rules in the shape A — B, ¢ with A, B € N (where N is the set
of non terminals) and ¢ € T'(N U X). Further, the symbols in 3 have to be unranked, i.e. al-
lowing sequences of arbitrary many child terms. The additional grammar rules correspond
to production rules of Chomsky type III grammars and can model sequences of trees.

2. Allow regular expressions of non terminals at the position of the child non terminals in
the right hand side of production rules, e.g. A — [[re | where A € N and re is a regular
expression over N.!

I The square braces “[]” have been chosen to better distinguish unranked tree grammar rules from ranked ones for
which parenthesis “()” are used.

42

The approach with Chomsky type III production rules is arguably syntactically simpler, yet
more demanding for the author of a grammar, as it is easy to write non type IIl rules violating the
regularity constraint on the language. Further the sequence sought of is less obvious, as split up
in rules and mixed with tree structure rules—the order of element sequences is not automatically
reflected by the order of the grammar rules. The regular expression approach will be followed
in this thesis due to the shortcoming of the first approach, yet it is a bigger syntactical extension
of regular tree grammars than the Chomsky Hierarchy Type III production rule extension. The
regular expression approach is also more established than the pure tree grammar approach.

Definition 3.3

A regular unranked tree grammar G = (S, N, X, R) contains a so called axiom S, a set of non
terminal symbols IV, a set of terminal symbols or tree labels ¥ and a set of production rules R of
shape o — 3 with & € N and 3 of shape [[re | where | € ¥ and re is defined as follows:

ren=c¢

rex=a acN

re:=(re)
re i=re,re
re = re|re
re i=ret
re :=re*
re =re’

By € an empty regular expression is denoted, it accepts the empty word. In concrete syntax of
regular expression, the ¢ is omitted.

Example 3.2
A regular tree grammar for apple trees with branches containing arbitrary leafs and apples or
other branches (at least two) is presented as an example.
G = (Tree,{Tree, Branch, Leaf, Apple}, {tree,branch,leaf, apple}, R)
where R =
{ Tree — tree|Branch)|
, Branch — branch[(Branch, Branch+)|(Leaf|Apple)*]
, Leaf — leaf]]
, Apple — apple[] }

3.2 Regular Tree Grammars for Unordered Unranked Trees

In many applications of data modelling, the order of instances in some context is of minor im-
portance. Typical examples are object oriented databases or programming languages, where the
order in which the attributes of a class are defined is irrelevant e.g. for their access—the name is
the only property for accessing attributes. With XML in contrast, the document centric paradigm
always imposes an order of elements in a sequence of child nodes. However, attributes are con-
sidered to be unordered information of an element, so XML provides a limited? concept of mixed
ordered and unordered content. An example of XML documents where the order of the elements
is of high importance is e.g. an HTML document—headings and paragraphs occur in an order
absolutely relevant for the document and ignoring the order of those elements could arguably
render the document meaningless.

Many applications of XML are data centric and not document centric, e.g. more in the spirit of
Semistructured databases. For many of such applications, the order imposed by the document
is irrelevant. As an example, consider a bibliographic database: the order of the books in the
database may be completely arbitrary, e.g. if maybe the order in which the librarian grabbed the
books out of the shelves to index them. The relevant information for access of the books is e.g.

2limited, because attributes are arguably less expressive than elements, as they may not contain structured informa-
tion but only atomic values.

43

3.2 REGULAR TREE GRAMMARS FOR UNORDERED UNRANKED TREES

title, author or any information about the book suitable for indexing. For such an application,
arguably the following two databases can be considered to be equivalent yet the XML semantics
considers them to be different.

<bib>

<book>
<title>Data on the Web</title>
<authors>
S.Abiteboul,
and P.Buneman,
and D.Suciu
</authors>

</book>

<book>
<title>
Automata, Languages,
and Programming
</title>
<authors>
S.Abiteboul,
and E.Shamir
</authors>

</book>

</bib>

Code Example 22 First variation of a bibliog-
raphy with arguably irrelevant order of the book

<pib>

<book>
<title>
Automata, Languages,
and Programming
</title>
<authors>
S.Abiteboul,
and E.Shamir
</authors>

</book>

<book>
<authors>
S.Abiteboul,
and P.Buneman,
and D.Suciu
</authors>
<title>Data on the Web</title>

</book>

</bib>

Code Example 23 Other variation of bibliog-
raphy as seen in code example 22

elements

Xcerpt distinguishes ordered child sequences from unordered child multisets, to be able to re-
alize data for both application paradigms—data centric and document centric—in an appropriate
manner. Using unordered Xcerpt content specifications, the former two databases are modelled
to be semantically equivalent.

To be able to model unordered content appropriately in a grammar, a dedicated modelling
formalism is necessary. With the type checking goal in mind, a formalism needs to be decid-
able concerning membership test, emptiness check, subset test and it needs to be closed under
intersection, as it is motivated in 8.

Current Modelling Formalisms for languages of Multisets

Various formalisms for modelling languages of multisets have been proposed of which some will
be briefly presented here:

Multiplicity Lists The multiplicity lists [16] are a metalanguage for specifying decidable sets
of data terms, which are be used in later work of the authors [65] [13] as types in processing of
tree-structured data. The idea is motivated by DTDs and by XML Schema. A multiplicity list is
a regular type expression of the form sy(ny : mq) - - sg(ng : mg) where k > 0 and sy, ..., s are
distinct type names. Informally, the meaning is, that a multiset of symbols is valid with respect
to the given multiplicity list, if the symbol s; occurs at least n; times but not more than m; times.
Other symbols than the mentioned s; through s, may not occur.

Multiplicity lists are closed under intersection but not under union and complement. Mul-
tiplicity lists have been applied successfully in static type checking of Xcerpt programs as pre-
sented in [Descriptive Typing Rules for Xcerpt and their Soundness] and [A Prototype of a De-
scriptive Type System for Xcerpt.].

L-Formulae Frank Neven and Thomas Schwentick presented the L-Formulae [39] as a decid-
able formalism for unordered content models on the Web. L-Formulae are defined as ¢ ::=
true | false|a=1i|a>i|-¢]| eV ewitha € ¥ and i € N. Roughly speaking a = i means, that

44

the symbol a occurs exactly ¢ times in a valid multiset, a > i that it occurs at least i times and so
on.

L-Formulae are closed under intersection, complement and union. When typing or type
checking semi structured data queries in general and Xcerpt programs in special, an interest-
ing property emerges when querying ordered data without caring of the order, i.e. querying
the ordered data using order agnostic query constructs. As an order agnostic query construct
has unordered type semantics, the compatibility of an unordered type under ordered and typed
data has to be checked. Ordered regular expressions give rise to modelling arity dependencies of
some symbols, e.g. the regular expression “ (aab) +” states, that there are twice as many a sym-
bols than b symbols in valid data. Using Schwentwick formulae, it is not possible to express such
dependant occurrence constraints on data, as the multiplicities are always formulated absolutely.
Using linear equation systems restricted to natural number solutions gives rise to expression such
constraints. Interestingly, it is almost enough to use Presburger arithmetic [42], of which formulae
are much easier to solve under the given natural number solution constraint. This approach is
used as starting point of an unordered type specification language later on.

Presburger Arithmetics Expressions A formalism not only conceived for unordered content
models, yet formally elegant, are Presburger arithmetic formulae [42]. The approach has been
applied to unordered content models in XML by Denis Lugiez and Silvano Dal Zilio to formalize
XML Schema [67] and by Seidl, Schwentick, Muscholl, and Habermehl [45] as formal model for
unordered content models. Presburger arithmetic is the first order theory of natural numbers
with addition but without multiplication. For any given statement in Presburger arithmetic it is
decidable, if this statement is true or not and, if partially variable, with which variable bindings
the expression is true.

The relationship between languages of multisets and Presburger arithmetic is the commuta-
tivity and associativity of the addition (in Presburger arithmetic) and of the sequence operator
(in the serialisation of multisets). The commutativity and associativity of sequence operators in
serialisations of bags, multisets or sets has been presented e.g. in [18]. A multiset of symbols
can fully be characterized by the multiplicity of the occurring symbols. A Presburger arithmetic
expressions with variables could have many solutions, hence many possible natural number as-
signments for the variables. Each assignment can be interpreted as the multiplicity of a given
symbol in a multiset which is valid with respect to the given Presburger arithmetic expression.

Applications, Shortcomings and Extension of current Approaches

Yet multiplicity lists are very restricted and not closed under intersection, arguably they are an
elegant way to model multisets in the context of mixed ordered and unordered contents, as mul-
tiplicity lists are restricted regular expressions wrapped with a clear and simple interpretation of
unorder. While Presburger Arithmetic are more expressive and offer the decidability and closed-
ness properties for type checking, end users without scientific background arguably can be con-
fused by the very mathematical formalism and the need to learn two content model specification
mechanisms—regular expressions for ordered content models and Presburger arithmetic formu-
lae for unordered content models. For modelling of unordered content with the grammar for-
malism proposed later, an extension of multiplicity lists will be introduced—unrestricted regular
expressions with unordered interpretation.

As a not formally introduced consider the regular expression for a data object representing a
course in a dancing school as seen in code example 24:

DancingMaster, ((Boy, Girl)+ | BalletDancer+)

Code Example 24 A regular content model representing well balanced dancing classes for either ballet
dancers or standard couple dancers. While the regular content model implies an order, the order of the objects
are arguably not of importance for the application.

45

3.3 REGULAR ROOTED GRAPH GRAMMARS

For every course there must be a dancing master. Courses may be standard dance courses, in
which the same amount of boys and girls have to be registered so everyone always can have a
partner. Courses may be ballet dancing courses, in which case at least one ballet dancer has to
be registered. The order of the objects in a content set corresponding to this regular expression is
irrelevant, e.g. the dancing master may be assigned at the end when the kind of course is clear.
Therefore all words with a permutation of symbols that is matched by the regular expression is
member of the unordered language represented by the regular expression.

An example of a Presburger arithmetic expression representing the same constraints on a
valid dancing course is arguably more difficult to understand and to write for authors:

Let d be the multiplicity of DancingMaster objects, m the number of Boys (m for male), f of
Girls (f for female) and b for BalletDancers. A multiset of objects is in the given language, if
the multiplicities of the symbols fulfills the following formula:

d=1AN((m=fAm>1Af>1Ab=0V (m=0Af=0ADb>1))

As shown in Chapter 7 the unordered interpretation of regular expressions can always be
mapped to Presburger arithmetic constraints and is therefore decidable and closed under the
desired properties, yet no system for translation of Presburger formulas and constraints back to
regular expressions will be presented (as not strictly needed for type checking). An advantage
of this approach for type checking is, that it can also be used for type checking of unordered
queries on ordered content models (see e.g. section 2.5.4), which is valid and useful in Xcerpt as
presented in [43]

3.3 Regular Rooted Graph Grammars

In the context of the Web and the Semantic Web often graph shaped data is considered in addition
to tree shaped data. It is usually the case, that a dominant spanning tree in the graph is given and
the ‘missing’ links are added by means of some reference mechanism. XML provides an integral
reference mechanism known as ID-/ID-Ref [61] and various linking and reference based stan-
dards have been built around XML, like XML Fragment Interchange [52] , XML Linking Language
(XLink) [53] and many others. A practical example of such graph structured data is widespread
in HTML documents—the use of internal links. Consider the HTML document in code example
25 with two references modelling a kind of circular link structure between two paragraphs:

<html>
<body>
<p id:||p1">
This paragraphs refers to the next paragraph
(and is referred by it).
</p>
<p id="p2">
This paragraphs refers to the previous paragraph
(and is referred by it).

</p>
</body>
</html>
Code Example 25 An HTML document with two references modelling a kind of circular link structure
between two paragraphs.

Another example of typically graph shaped structures modelled in XML are RDF documents.

3.3.1 Reference Types and Typed References

Modelling of graph shaped structures is supported in current XML schema formalisms like DTD,
Relax-NG and XML Schema by modelling elements containing ID and ID-Ref attributes. The

46

3.3.1 REFERENCE TYPES AND TYPED REFERENCES

ID/ID-Ref mechanism is global throughout the whole document, meaning that any reference
may refer to any identifier. Unfortunately this does not permit to model typed references, e.g.
references to elements of certain type. Consider the following example for illustration of the
ID/ID-Ref mechanism:

Example 3.3

Consider a grammar using similar syntax as in example 3.2 that models books and authors in a
kind of bibliographical database. To prevent redundancy and misspelling of the author names,
the authors are kept in an index of authors and are referred to from the definition of the books
in another section of the document. The grammar uses the special type name “ ™ ” for references
and the type name “ @ ” is used to denote IDs. An element should only get one identifier,
which arguably simplifies understanding document instances. To emphasise the special role
in multiplicity of an identifier (each element may not contain more than one identifier), it is
prefixed to the element name in the type rules. An author element contains an “ @ ”, denoting
that instances of that type have an identifier and the authors list of a book has an arbitrary amount
of references to author elements. Note, that for the sake of conciseness with the syntax of RyG2
presented later on, the type names “ ™" and “ @ ” have been chosen so that they harmonize with
R>G5. In turn, the syntax of RoG has been streamlined with the syntax of Xcerpt. The mapping
to XML attributes named id and ref is given in an opaque way in this example, yet a concrete
schema or type formalism would need a way to specify such mappings. Further on the type
names Name and T'itle are synonyms for plain text, or CDATA in the sense of XML—again, a
concrete schema or type formalism needs support for atomic data types to be practically useful.

G = (Bibliography,
{7, Q, Bibliography, AuthorIndex, Author, BookIndex, Book, Authors},
{bib, authors, author, books, book},
R)
where R =
{ Bibliography — bib[AuthorIndex, BookIndex]
, AuthorIndex — authors[Author+]
, Author — Qauthor[Name]
, BookIndex — books|Book+]
Book — book[T'itle, Authors]
, Authors — authors["+] }

See code example 26 for an XML instance valid to the schema shown above.

47

3.3 REGULAR ROOTED GRAPH GRAMMARS

<bib>
<authors>
<author id="se">Shamir Eli</author>
<author id="sw">Stevens W.</author>
<author id="as">Abiteboul Serge</author>
<author id="bp">Buneman Peter</author>
<author id="sd">Suciu Dan</author>
</authors>
<books>
<book>
Automata, Languages, and Programming
<authors refs="as se"/>
</book>
<book>
Data on the Web
<authors refs="as bp sd"/>
</book>
<book>
Advanced Programming in the Unix environment
<authors refs="sw"/>
</book>
<book>
TCP_IP Illustrated
<authors refs="sw"/>
</book>
</books>
</bib>
Code Example 26 An XML document instance valid with respect to the schema shown above.

The former document could be graphically interpreted as follows:

TCP_IP lllustrated

Automata, Languages,
and Programming

Advanced Programming
in the Unix environment

’.HHE!H(;

Suciu Dan

Buneman Peter
Abiteboll Serge

Stevens W.
Shamir Eli

Now, consider the following example for illustration of problems with untyped references:

Example 3.4
In difference to the former example, books are also referable elements here, and author elements
contain references to their books. This is modelled by providing the reference type name “*” and
the identifier type name “ @ ” both in the author and book elements.
G = (Bibliography,
{,Q, Bibliography, AuthorIndex, Author, BookIndex, Book, Authors},

48

3.3.1 REFERENCE TYPES AND TYPED REFERENCES

{bib, authors, author, books, book}, R)

where R =
{ Bibliography — bib[AuthorIndex, BookIndex]

, AuthorIndex — authors|Author+]

, Author — Qauthor[Name,]

, BookIndex — books|Book+]

, Book — Qbook|Title, Authors]

, Authors — authors[+] }

The following example document illustrates a valid document with respect to the grammar.
Unfortunately, it is not possible to distinguish references to authors from references to books,

resulting in a conceptually invalid document, where a book is referred to as an author of another

book and an author contains another author in his list of published books.

<bib>
<authors>

Shamir El1i
</author>
<author id="sw" ref="apitue ti">Stevens W.</author>

<author id="bp" ref="dotw">Buneman Peter</author>
<author id="sd" ref="dotw">Suciu Dan</author>
</authors>
<books>
<book id="alap">
Automata, Languages, and Programming
<authors refs="as se"/>
</book>
<book id="dotw">
Data on the Web

</book>
<book id="apitue">
Advanced Programming in the Unix environment
<authors refs="sw"/>
</book>
<pook id="ti">
TCP_IP Illustrated
<authors refs="sw"/>
</book>
</books>
</bib>

<author id="se" ref="alap as"> <!--CONCEPTUALLY WRONG-->

<author id="as" ref="alap dotw">Abiteboul Serge</author>

<authors refs="as pb sd alap"/> <!-- CONCEPTUALLY WRONG —-—>

Code Example 27 This document is conceptually wrong with respect to the schema 3.4.

The document in code example 27 could be graphically interpreted as follows (the conceptu-

ally wrong references are denoted by flashes crossing the edges):

49

3.3 REGULAR ROOTED GRAPH GRAMMARS

\“\TCPJP llustrated’

“.Automata, Languages,
“and Programming

!+ Advanced Programming
! % in the Unix environment

D
.

— : — > author|«- -~
~—<—3[author}«-* A7
- ' Suciu Dan

Buneman Peter .

Stevens W. .
Shamir Eli e

The proposed schema language R>G2 will introduce typed references to regular tree gram-
mars to model graph shaped data in a more precise way. Syntactically, typed names are type
name extensions of references—a type name intended to be referred to is appended.

Example 3.5
This grammar is an extension of the grammar in example 3.4, such that the references to authors
and books are clearly separated. The conceptually erroneous example document of example 3.4
is invalid under this grammar:
G = (Bibliography,
{, @, Bibliography, AuthorIndex, Author, BookIndex, Book, Authors},
{bib, authors, author, books, book}, R)
where R =
{ Bibliography — bib[AuthorIndex, BookIndex]
, AuthorIndex — authors[Author+]
, Author — Qauthor[Name, "Book+]
, BookIndex — books|Book+]
, Book — @Qbook[T'itle, Authors]
, Authors — authors| "Author+] }

3.3.2 About (Non Tree Structured) Graphs and Tree Grammars

On some graph serialisation formalisms like RDF, the structure of the serialisation is semanti-
cally irrelevant in the sense, that the underlying graph semantics of different serialisations is
considered to be isomorphic. The underlying graph structure may nevertheless need some sort
of schematizing. As long as the graphs have a special node, called the root node from now
on, which is chosen as the starting point for graph traversals, a tree grammar can also be used
to model some structural properties of the graph. The root is used as starting point for graph
traversal. For a given root, the set of all possible graph traversals is unambiguously determined.
A tractable way to realize rooted graph modelling using tree grammars is based on simulation
preorder: a tree grammar is a generator for the language of all trees that can be obtained by
means of rule application and also of all rooted graphs that can be obtained by sharing of nodes
that result from the same (possibly infinite) chain of rule applications. An implication is that, con-
cerning schema validity, there is no distinction of two graphs where one of them shares one in-
stance of a node in many positions, and the other one has multiple instances with identical shape

50

Figure 3.1: Two graphs that bi-simulate but that are not isomorphic.

or value used instead of sharing. One graph is then indistinguishable from another one, if it is
simulated by the other graph. Graph isomorphism is arguably the most precise notion of equality
of indistinguishable for graphs, simulation is weaker in the sense, that graphs that are not isomor-
phic may simulate or even bi-simulate. Consider example 3.1 for two rooted directed graphs that
bi-simulate, but that are not isomorphic—the central difference between (bi)simulation and iso-
morphism is, that there is no bijection between the nodes of two bi-simulating graphs such that
the related nodes have similar in and outbound behaviour. In contrast, such a bijection is needed
for isomorphic graphs. The disadvantage of identification, distinction or recognition of objects
using graph isomorphism is, that decidability comes with exponential cost, while the simulation
preorder of two graphs can be checked in polynomial time. Arguably identification, distinction
or recognition of objects based on simulation is useful on many practical contexts on the web,
as many practical use cases with Xcerpt prove [33]. For a brief introduction of simulation and
simulation unification along with some examples, see section 2.5.4.

3.4 The Syntax of RyG»

A grammar for RyG> is given as a set of syntax graphs. The graphs are interleaved with corre-
sponding explanations.

3.4.1 Core R,G, Syntax

The core R, G4 syntax consists of all constructs necessary to model rooted graph grammars. Fea-
tures as namespace handling, modules, predefined atomic data types and the various global set-
tings of a grammar are not core syntax features. The separation of core and non core features is
roughly motivated by application of R2G> definitions for type checking or validation—non core
RG34 definitions can mostly be translated into core definitions and operations like automata con-
struction are done on the core level. To get a concise language definition, non terminals for non
core features are in the language definition rules of the core syntax, yet their definitions follow in
a later sub section.

Definition 3.4 ()

1 ~ rule
globalsetting

51

3.4 THE SYNTAX OF R2G>

A grammar contains one to many rules and relates them to root declarations. In the context of
Xcerpt a grammar as type definition will be located either in a separate file (being included using
the modularization mechanism presented later) or it may be in a special context inside the Xcerpt
program. A grammar may also contain global switches that affect the behaviour or semantics of
the whole grammar.

Definition 3.5 ()

A root declaration declares a type name as a possible type for a root element, therefore as a
possible type for a data tree or graph. The type name used has to be declared later on, otherwise
the grammar is invalid. Note that . denotes a white space, \n, \r, and \t new line, carriage
return and the tabulator character.

Definition 3.6 ()

typeterm

A rule is either introduce by the keyword element or type. The keyword type is optional
and especially useful for compatibility with type definitions as found in Xduce [28], as many
Xduce type definitions are also R2 G2 definitions with similar syntax and semantics. A rule relates
a type name (also called non terminal sometimes) and a type term. A type definition rule may
or may not be terminated using a semicolon and arbitrary spaces and new lines. The same type
name may be used in many rules involving different type terms.

Definition 3.7 ()
NMTOKEN

Definition 3.8 ()
NMTOKEN

Type names and labels are alphanumerical strings with letters as first character.

For the purpose of compatibility with XML, this can be extended to NMTOKEN as defined
in the XML recommendation [61]. The label of a type term corresponds to element labels of
data trees matching a type term. Note, that NMTOKEN allows the use of the colon sign “:”,
which allows namespace aware schema modelling. Namespaces and namespace prefixes can be
declared, as shown in section 3.4.5.

Type names and type term labels may compete, as the context determines the meaning of a

corresponding token.

Definition 3.9 ()

52

3.4.1 CORE R2G2 SYNTAX

= label

ordCntOrdSchema

ordCntUnordSchema

~ H typename

A type term may be a type declaration term, optionally prefixed with an “@"—it is a type
declaration term for referable instances, or it may be a reference type term—a type name with a
hat as prefix. A type declaration term always has a label declaration and a content model, this
content model may either be an unordered content model or an ordered content model. Label
declarations may be specified as regular (string) expression at the position of the label, regular
(string) expressions at label position are enclosed by slashes. Ordered content models can be
specified in an unordered way or in an ordered way. Optionally, a type declaration term may
have attribute type declarations in the sense of XML attributes. They are declared in parenthesis
between the label and the content specification.

While usually any data instance may be a reference to some defining instance, even if the cor-
responding type is not declared as reference type, the global grammar setting st rictreferences
can be used to restrict valid data instances such, that references may only be instances of reference
types.

A non reference type term can be prefixed by an “@”, denoting that instances of that type
must be referable, e.g. in a XML ID/ID-Ref setting they must have an identifier. While usually
any data instance may be defined using an identifier, even if te corresponding type is not declared
as referable, the global grammar setting strictreferences can be used to restrict valid data
instances such, that only referable types can and must be indexed.

Definition 3.10 (attributetype)

ﬂ enumerationDeclaration %

label e 4{ basicDataType }7
posixRegExp

Attribute types are tuples of a label and a base type (base types are explained later at 3.4.2)
that may be braced and question mark annotated for optionality in the spirit of regular expression
optionality.

53

3.4 THE SYNTAX OF R2G>

Definition 3.11 ()

The ordered content of a type term is a regular expression (of type terms and type names) sur-
rounded by square braces.

An ordered type term specifies a type such that all data tree instances of that type have or-
dered content and the child trees types match the regular expression of the content model of the
type term. This corresponds roughly to the content definitions expressible using XML Schema,
DTD and Relax NG. To specify types with empty content model, the brackets can be left empty.

Definition 3.12 (% ordCntUnordSchema P)

Some ordered content specification may be specified more comfortably in an unordered way. As
an example consider an element representing a member list of a well balanced dancing class with
the same amount of boys and girls:

<dancing-class>
<girl>Anna</girl>
<boy>Fitzgerald</boy>
<boy>Guillermo</boy>
<girl>Quibee</girl>

</dancing-class>

Code Example 28 An example document representing a well balanced dancing class—there are as many
boys as girls in the class. The order of the members is conceptually irrelevant.

The given constraint on the language is not regular—this can easily be seen, as the language con-
tains the sub language “n times <boy> followed by n times <girl>" which is well known to be
non regular. However, the language “one <boy> followed by one <girl> and this repeated n times”
is regular (e.g. (boy, girl)*). Ordered content with unordered specification uses a regular expres-
sion to model a language, but also the permutation of all words contained in the language of that
regular expression are member of the unordered specified ordered language. The order of the
data instances is considered to be relevant—e.g. in the former example we have an alphabetically
sorted lists of dancing class members—Dbut the specification does not impose an order.

Definition 3.13 ()

A type term may have unordered content specification, expressing that conforming data trees
have an (unordered) multiset of sub trees instead of an (ordered) sequence of sub trees. By mod-
elling data with unordered content, a storage or indexing system is given the freedom to ignore
the order given while data instantiation and reorder it e.g. for more efficient querying.

54

3.4.1 CORE R2G2 SYNTAX

Definition 3.14 ()

;
—{ contentMacroName }7

(regexp

-~
1]
=

()b
{0

()]

.I@ ()

T

Regular expressions as defined here have sequences, disjunctions, optionality and various
forms of repetitions. The symbols or atoms of the regular expressions may be type names or type
terms. A type name specifies a sub tree of the tree containing the current content model of that
type. A type term as atom specifies a tree of anonymous type name. Obviously type names may
only be used, if declared elsewhere, either in the grammar or imported by some matter.

In XML Schema and DTD a restriction called deterministic content model is required for the
regular expression content models. In the W3C recommendation of XML it is said:

[...]

More formally: a finite state automaton may be constructed from the content model
using the standard algorithms, e.g. algorithm 3.5 in section 3.9 of Aho, Sethi, and
Ullman [Aho/Ullman]. In many such algorithms, a follow set is constructed for each
position in the regular expression (i.e., each leaf node in the syntax tree for the regular
expression); if any position has a follow set in which more than one following position
is labeled with the same element type name, then the content model is in error and
may be reported as an error.

[...]

55

3.4 THE SYNTAX OF R2G>

As there are algorithms constructing non deterministic finite state automata out of arbitrary
regular expression, the mentioned restriction arguably is not necessary. The language class
of regular expressions with this restriction is not closed under union, which is not essential
for type checking of Xcerpt, but arguably a nuisance, hence the type of a query disjunction is
inconvenient—if not impossible—to model.

3.4.2 Base Data Types

An important part of an XML document are textual leaf nodes, that a structuring element may
contain. Often this data is the relevant information of a document, in this case the element struc-
ture wrapping it is considered to be mere markup or auxiliary information. Textual leaf data may
occur wherever any structured element is allowed (except the document root—it must be an ele-
ment) but two textual leaf nodes may not occur as direct neighbours in a sequence of nodes. The
only valid information, that an attribute may contain is also a textual node.

In XML the textual information is often called CDATA for character data. As for data oriented
applications also numerical or other data is used, such nodes will be referred to as data or data
of base type. Arguably, data can nevertheless be called character data, as in the XML world they
have a textual serialization in the corresponding XML serialisation—the proposition here is, that
the schema formalism models the data on a conceptual level, not on a syntactical level.

The versatile nature of XML and it’s query languages makes the choice of an arbitrary set of
fixed base data types questionable. For RyG» hence a generic base data type system is proposed,
that can be instantiated with various concrete base data types. A small set of base data types is
then given as a pragmatic yet simple to use and to implement set of basic data types.

The generic base type system has been conceived with the needs of the Web and Semantic Web
query language Xcerpt in mind and hence has features like functions, which are not relevant at
the given point for RyG as a schema language. Functions are an important concept for base data
types in Web query languages and are of relevance for the application of RyG as a type language
for Xcerpt, hence for Web query languages in general, in the course of this thesis for Xcerpt and
Xcerpt type checking.

Definition of the Generic (abstract) Base Data Type System

By T the set of all base types is denoted.

The set F' = F, U, F; is the set of all functions, where F; C T'x T% x ¥ x F, is the set of all func-
tions of arity ¢ with result type out of T and argument types out of 7. By ¥ the set of all function
names is denoted. By F; the set of functions with arity at implementation level is denoted. The
functions at implementation level are untyped in the sense of the discussed type system—they
may be typed at the level of the implementation language, if typed dynamic function application
is available in the hosting programming language. By F, C T' x T' x F,. aggregation functions are
denoted. They operate on a sequence or set of values of an homogeneous type, returning a value
of a (maybe) different type.

A value in an instance document is always a tuple (v, t) where ¢ € T and v is an opaque object
at the level of the type system—an implementation level representation of a value of type t.

The directed relation S C T' x T between two types t; and ¢, contains the information, that
the given transformation function (¢1,t2,¢,) € F between t; € T and ¢, € T never fails. The
reflexive transitive closure of S over all types of T is S. The relation S is defined by the user of
the general purpose type system, which is usually the creator of a new base data type. When
defining a new base data type it is hence possible to define conversion functions and to inform
the type system about convertibility, but it would be inconvenient to define convertibility for any
base data type on the web—especially for upcoming base types it is not reasonable. The subtype
concept is related to S, yet different—generally, the subtype concept implies, that instances of a
sub type have all the properties of instances of their super types and possibly further. For the
proposed base type system for Web query and schema languages, the relation S implies only one
property—instances of a type are (for sure) convertible to another type. The rational behind this

56

3.4.2 BASE DATA TYPES

is, that data objects are not representations of structures and functions as e.g. in programming
languages, but serialisations of XML documents. As an example for the difference of S and the
subtype relation as commonly known, consider the type of the natural numbers and of strings—
each natural number can be transformed into a String, but natural numbers are not a subtype
of strings in many programming languages, as they do not share common semantics—strings
have string operations like concatenation and tokenization and natural numbers have arithmetic
operations.

As counter pole to the S relation, the undirected relation D C T x T contains the information,
which type is for sure not convertible to which other type. D is the relation of types marked by
the user of the generic base type system. The relation D is the reflexive transitive closure over D.
Note, that the set 7" x T' # D U S, as some types have instances, that can be converted to another
type while not all instances are convertible to that type. These tuples are neither in S nor in D.

A pragmatic set of base types and functions

To show that the type and function framework can actually be used to extend Xcerpt reasonably,
a pragmatic set of base types and functions is presented.

string

NCName

Figure 3.2: Base type system hierarchy

Figure 3.2 shows the base type hierarchy. The types are a direct copy of a branch of the
hierarchy presented in the XML Schema data types recommendation [59]. Five of the arguably
most important types of the XML Schema recommendation are rebuilt using the generic type
system. Others are possible, but for pragmatic reasons not treated in this context.

57

3.4 THE SYNTAX OF R2G2

3.4.3 Conversion functions

The following set of conversion functions between instances of the base types are proposed. They
cover safe and unsafe functions. Note, that all functions convert retaining syntactical equivalence.
It is i.e. possible to convert the integer 12 to the rational number 12, but there is no Boolean
interpretation of e.g. the integer 12. Type conversion of syntactical equivalence is important for
Web query languages, as data of various types always gets serialized to XML character data in

the end.
string rational — — string safe conversion from rational to string
string boolean — string safe conversion from boolean to string
string IRI — string safe conversion from I RI to string
rational string — rational | conversion from string to rational
rational integer — rational | safe conversion from integer to rational
integer rational — integer conversion from rational to integer
boolean string — boolean conversion from string to boolean
IRI string — IRI conversion from string to I RI

The following set of base functions by no means claims to be exhaustive of what one may
want to do using the proposed base data types. It is however a small collection of arguably
most useful functions and operations for the given types—nothing more than a pragmatic set of

functions.

3.4.4 Base functions

string functions

string X integer

concat string X string

substr string X integer

substr string X integer X integer
lowerCase string

upperCase string

invCase string

trim string

find string X string

find string X string X integer
replace string X string X string
replace string X string X

replace All string X string X string
tokenize string X string X integer

— string
— string
— string
— string
— string
— string
— string
— integer
— integer
— string
— string
— string
— string

concatenation of two strings

extracts sub string from string
...with given length

converts string to lower case
converts string to upper case

inverts case of a string

trims string

finds search string inside of a string
...with given start position

replaces search string inside of a string
...with given start position for search
...with all occurrences being replaced
string tokenization

rational functions

abs rational
sign rational
inv rational
add rational X rational
sub rational X rational
mul rational X rational
div rational X rational
pow rational X rational
sqrt rational
round rational

— rational
— rational
— rational
— rational
— rational
— rational
— rational
— rational
— rational
— integer

calculates the absolute value of a given number
calculates the sign of a given number

calculates the (additive) inverse of a given number
addition of two numbers

subtraction of two numbers

multiplication of two numbers

(rational) division of two numbers

exponentiation of number

calculates the square root of a number

rounds a number (explicit, lossy conversion to integer)

58

3.4.5 THE NON-CORE RyG2 CONSTRUCTS

integer functions

abs : integer — integer | calculates the absolute value of a given number
sign : integer — integer | calculates the sign of a given number

inv : integer — integer | calculates the (additive) inverse of a given number
add : integer X integer — integer | addition of two numbers

sub : integer X integer — integer | subtraction of two numbers

mul : integer X integer — integer | multiplication of two numbers

intDiv : integer X integer — integer | integer division of two numbers

mod : integer X integer — integer | calculates the remainder of an integer division
pow : integer X integer — integer | exponentiation of number

intSqrt : integer — integer | calculates the square root of a number

boolean functions

and : boolean X boolean — boolean | logical conjunction of two Boolean values
or ¢ boolean x boolean ~ — boolean | logical disjunction of two Boolean values
not : boolean — boolean | logical negation of a Boolean value

3.4.5 The Non-Core R,(G5 Constructs

Definition 3.15 ()

% content H contentmacroname e m

7

Content macros are substitutions for regular expressions as used in content model specifica-
tions. A content macro is a regular expression of type names, content macro names or type terms
that is associated to the content macro name on the left hand side of the macro declaration rule.
Content macro names, data type names and element type names all share the same set of names,
e.g. they may not conflict. As content macros are expanded statically, content macro declarations
may not be circular. Note, that the non circularity is a sufficient criterion for retaining the regu-
larity property of content models, as it prevents intuitively the construction of context free like
grammar rules with a pumping circle surrounded of pumped terminal symbols.

Namespaces

From a practical point of view a very important property of XML is namespace handling. The
purpose of name space handling is to distinguish equal names by partitioning the set of labels in
sets that are likely to be named in a globally unique way. Name space handling is realized as an
extension of the naming scheme—label and attribute names are tuples of a so called local name
part and a namespace part. URIs are used as name spaces, as they arguably fulfill the necessity
of uniqueness by definition. As URIs tend to be long strings, cumbersome to repeatedly type,
a substitution mechanism called namespace prefixing is used. The user hence defines a short, yet
unique (in it’s scope, e.g. the grammar) namespace prefix for a namespace and uses this whenever
he wants to reference the namespace, the system resolves the prefix to the expected namespace
URL

Name spaces have to be reflected when modelling schemata—Tlabels of elements or attributes
have to be composed of a local and a namespace part, as instance documents may need name
spaces.

Additionally to label and attribute names, R,G contains type names, that may also need par-
titioning in different “name spaces”?, as name conflicts can occur between type names of different

3“Name space” is quoted here, as it refers to the concept of name spaces, not to XML name spaces specially.

59

3.5 XML SERIALISATION OF RyG5 VALID DATA TERMS

grammars that may interact when modelling modular grammars or grammar fragments. Name
conflicts for type names are not handled using the XML name space mechanism, but a module
system specialized for Web rule languages and presented later (see chapter 4).

Definition 3.16 (% nsPrefixDeclaration P)

{namespaceH prefix e m

7

Definition 3.17 ()

Definition 3.18 (defaultNs —)

—{ defaultnamespace | URI

A namespace prefix declaration is done by associating an URI to a prefix. Prefixes are (like
type names) tokens similar to labels. The set of prefix definitions and the set of type definitions
are not shared, e.g. prefixes and type names may be identical.* A default namespace can be
declared, concerning all definitions—element label or type names—without namespace prefix.
The default default namespace is empty.

3.5 XML Serialisation of R>(G5 Valid Data Terms

When modelling graph structured data using R»G» the typed reference mechanism is able to
conceptually reflect a graph structure, yet the XML serialisation is not able to directly reflect
this conceptual graph without further help. Modelling of graph references and identifiers leaves
unspecified how to reflect the information e.g. in ID and ID-Ref based node identities in data
instances, e.g. how ID or ID-Ref attributes have to be named and especially how references have
to be de-referenced—as ID-Ref instances are attribute values, they cannot be replaced by the
referred elements, as attributes may not contain structured information. The approach chosen to
solve this problem is to specify the structural relationship between the references, respectively
identifiers, and their de-referencing, respectively the identified constructs. R,G> provides some
special built in constructs that represent serialisations of identifiers or references of a so called
context.

The context of an identifier construct is either the document order or the nesting relation of
an identifiable element type or a reference type, more concrete:

4ideally the sentence would be “Prefix definitions and type names do not share the same namespace”—the namespace meant
here is not an XML namespace, but the definition space of names in R2G3.

60

3.5.1 EXAMPLES AND EXPLANATIONS OF (DE-)REFERENCE SERIALISATION

¢ An identifier serialisation type can occur as descendant of an identifiable element type. No
other identifiable element type may occur on the path in between identifier serialisation
location and identifiable element.

* An identifier serialisation type can occur in document order before or after an identifiable
element type. No other identifiable element type may occur in between identifier serialisa-
tion location and identifiable element in document order. Solely for easier comprehension,
the identifier serialisation location and the identifiable element must occur in the same con-
tent model definition, e.g. they may not be spread through different element definition
rules®.

¢ A reference serialisation type can occur before or after a typed reference location in doc-
ument order of an instance of a type. Multiple instances of the same reference type can
occur aggregated using the Kleene Star or Plus operator in a regular expression, if the cor-
responding reference type serialisation is also multiplied using the same regular expression
operator. This makes it possible to e.g. model an ID-refs attribute with a list of references
all reflecting objects to be linked in the content of the corresponding element.

The presented approach does not claim to completely solve the problem for all structural
possibilities of a relationship between concept and serialisation of identifiers and references. It is
a proposal of a pragmatic approach to the problem, as for practical usability of R,G> it is needed,
some useful cases can be modelled using this technique. The serialisation of the conceptual graph
structure is considered to be of minor importance in the context of this thesis, yet worth while
more investigation.

3.5.1 Examples and Explanations of (De-)Reference Serialisation

Consider the following example of how to specify reference and de-reference serialisation types
followed by explanations.

Serialisation of Referable Objects

namespace r2g2 = http://pms.ifi.lmu.de/ns/r2g2/v1.0/ ;
element Book = @book[Authors , Title , key[r2g2:ancestor-id] 1 ;
element Authors = ;
element Title = ;
Code Example 29 Using the ancestor-id type to locate an identifier in an XML serialisation of a refer-
able book type declaration.

The example 29 models an object that represents a book as it may be found in a bibliographic
database. The book element is intended to be referable, hence indexed. The index identifying the
book is contained as unique identifier text node in an element called key, that is a direct child of
the book element. This is done by using the special type name ancestor-id in the namespace
http://pms.ifi.lmu.de/ns/r2g2/v1.0/ that serves to generate a textual value that is as-
sured to be a valid identifier to the nearest ancestor node that is tagged as referable (using the @
prefix). Hence the ancestor-id has to be a descendant of the indexed book element type term.

The following instance document is valid with respect to the schema in example 29, it can
hence be parsed and transformed with an appropriate R;G3 aware graph builder to a conforming
conceptual graph, as well a conceptual graph conforming to former schema can be serialized to
that instance document.

5This should prevent the use of identifier serialisation types out of the scope of an identifiable element by mistake.

61

3.5 XML SERIALISATION OF RyG5 VALID DATA TERMS

<book> idl@book [
<authors>...</authors> authors[...],
<title>...</title> title[...],
<key>idl</key> key["id1"],
</book> 1

Code Example 30

An XML instance, given on the left, that is a serialisation of a conceptual graph, given

on the right in Xcerpt data term syntax, both valid with respect to the schema 29

The example 31 models a kind of technical report, where sections are referable. In the seri-
alisations, the identifiers of a referable section are given as a preceding node, more precisely as
named anchor in the spirit of HTML.

element
element
element
element
element

namespace r2g2 = http://pms.ifi.lmu.de/ns/r2g2/v1.0/ ;
= technical-report|[(Title, Section)x* 1];
Title = title[A, r2g2:any-text 1];
Section = (@section[(r2g2:any-text]| (Title, SubSection))+ 1;
SubSection = @sub-section[r2g2:any-text];
= a(name=r2g2:previous-id) [];

Code Example 31

Using the previous—-id type to locate an identifier in an XML serialisation of a refer-

able section declaration.

The predefined type previous—id is an identifier serialisation that occurs previous of the
referable object, in the examples case, the section or subsection. If the identifiers is to occur after
the referable object, then the predefined type following-id can be used.

The following instance document, example 32, is valid with respect to the schema in example

31.

<technical-report> technical-report [
<title> titlel
First Section a (name="s1") [],
</title> "First Section"],
<section> sl@section|
Some content ... "Some content ...",
<title> title[a(name="ssl1") [],
A Subsection "A Subsection"
</title> 1,
<subsection> ssl@subsection]|
Some sub content... "Some sub content..."
</subsection>]
</section> 1,
<title> title[a (name="s2")[],
Second Section "Second Section”
</title> 1,
<section> s2@section|[
Content in 2nd section. "Content in 2nd section."
</section>]
</technical-report>]

Code Example 32

An XML instance, given on the left, that is a serialisation of a conceptual graph, given

on the right in Xcerpt data term syntax, both valid with respect to the schema 32

Serialisation of References The book example (example 29) is extended in example 33 such that
the referable books are referenced in elements representing author information and vice versa.

62

3.5.1 EXAMPLES AND EXPLANATIONS OF (DE-)REFERENCE SERIALISATION

namespace r2g2 = http://pms.ifi.lmu.de/ns/r2g2/v1.0/ ;

element Book = @book[Authors , Title , key[r2g2:ancestor-id] 1 ;
element Author = Qauthor[Name, Books] ;

element Authors = authors[(key[r2g2:following-ref], "“Author)x];
element Books = books[("Book, key[r2g2:previous-ref])x];

element Title = title[r2g2:any-text] ;

element Name = name[r2g2:any-text] ;

Code Example 33 A schema for books and authors in e.g. a bibliography database that may refer each
other and with the reference serialisation types r2g2 :previous-ref and r2g2: following-ref.

While identifier serialisations may be descendant nodes of the identified elements, references
are atomic, i.e. have no structure, and hence may not contain content representing their serial-
isation. Therefore references have their serialisations always before or after their occurrence in
document order. The corresponding example schema 33 is providing the reference serialisations
of elements of type Author just before the reference in a key-element containing the identifier,
the references of type Book are followed by similar key elements, describing the serialisation of
those Book typed elements.

bl@book [

authors|[key["al"] , "al , key["a2"] , "a2 1,
title["..."], key["b1l"]

]

Code Example 3¢ An example instance of a bibliographic database conforming to 33.

Some regular expressions involving references and reference serialisations may however in-
troduce problems: if between the reference and its serialisation a type with non empty inter-
section to the reference serialisation occurs, the interpretation of the serialisation may get am-
biguous, especially if the intermediate type is optional or repeated. To prevent such problems,
the sequence of types in document order between the reference and its serialisation must have
empty intersection with the reference serialisation type.

In DTD’s, XML Schema and Relax NG there exist kinds of serialisations that all correspond
the DTD concept called IDREFS attribute value—an attribute with a sequence of references. As
attribute values may not represent structured values, the need of anchoring a sequence of ref-
erences in the context of a sequence of it’s serialisations arises. This obviously breaks with the
just stated condition for intermediate types with empty intersection between a reference and it’s
serialisation—a sequence of serialisations brings in ambiguity problems for any except the last
element in the sequence of serialisations. An extra condition for this purpose exists: References
may occur in uninterrupted sequence, i.e. in abstract syntax as child of a Kleene star or a plus
construct, if reference serialisation types occur as repetition sequence in the scope of exactly the
same regular repetition construct without ambiguity constraint violation in between. As an ex-
ample, consider the following modification of a bibliography database similar to example 33,
but with the authors of a book now located in a sequence of reference values in an appropriate
authorrefs-attribute.

63

3.6 SEMANTICS OF R2Go

namespace r2g2 = http://pms.ifi.lmu.de/ns/r2g2/v1.0/ ;
element Book = @book (
authorrefs=(r2g2:following-ref) *

)

[
“Author* , Title , key[r2g2:ancestor-id]
13
element Author = @author[Name, Books] ;
element Books = books[("Book, key[r2g2:previous-refl])« I;
element Title = title[r2g2:any-text] ;
element Name = name[r2g2:any-text] ;

Code Example35 A schema for books and authors in e.g. a bibliography database that may refer each other
and with the reference serialisation types, while references may occur in sequence as long as their serialisation
also occur in sequence e.g. using the r2g2: following-ref type in a sequence.

bl@book (authorrefs="al a2") [
“al, "az,
title["..."], key["bl"]

1

Code Example 36 An example instance of a bibliographic database conforming to 35.

3.6 Semantics of RG>

A declarative semantics for RyGy is presented now mostly in the spirit of the acceptance rela-
tion of sheaves automata as presented in [35]—the acceptance of a data term under a schema is
expressed. For implementation purpose and for later type checking, the declarative semantics
is arguably too vague, so an operational semantics is also given later on as the semantics on au-
tomata, that are considered to be the implementation base of RyG>. Complexity estimations are
also more convenient to be done on the operational semantics level. The declarative semantics is
however arguably easier to comprehend, as clearer related to data and schema.

The declarative semantics of RyG is given as a relation I', R - d : 7 meaning that an instance
or a list of instances of data d satisfy a regular expression 7® under the schema declarations in
I where I' is the set of all element rules. The content macros are already expanded and not
part of the schema anymore at that stage. The root declarations, more precisely the type names
of the root declarations, form the set R. T' will also be referred to as environment as common in
literature about typing, e.g. in [41] and [35]. As the environment is not altered during the process
of checking acceptance of a term, the usual extension operation on environments as in [35] is
omitted here. The empty environment is denoted as (), the empty environment is well formed.
The type name or variable is uniquely associated to one type declaration, i.e. elementX; = d;
and element Xy = dy and if X; = X, then also d; = ds in a well formed environment or schema.

In constrast to [35] the environment is considered to be fixed, the schema is the environment.
In [35] the name-schema associations are read out of the schema with an extra rule and introduced
into the environment.

The document (root) must be accepted by a root type The possible types for a document, or
better, for a root of a document are declared as root types in the R;G grammar and are there-
fore in the set R. By O, the document type, not really a type as modelled in R,G5 is denoted,
like document(.) is not a construct of the data tree neither. Document and document type are
external prerequisites to match a tree with a root type, to bootstrap the relationship. The notion
of element types is recursively define, the root type gives an entry point for the recursion—this is

67 is a regular expression of the domain of types

64

in accordance with the recursive definition of XML data as defined by the W3C e.g. in the Infoset
[56] or in the Document Object Model (short DOM) [60].

X eR
I,RH1:X
T, R+ document(t): O

(ROOTTYPE)

Types with ordered content model match nodes with ordered content The type of a node
has the same name as its type declaration term, represented by the atomic regular expression
consisting of only that type, and the content can be typed using the declaration terms content
regular expression.

I'N'REty,...,ty: T

ORDEREDNODETYPING

TyRE [ty ..., ts) : U[7] ()
elementX =7 € I’
I'REty,...,tp: T

(NAMEDTYPES)

T REIty,... ta]: X

A data tree with named type has the type declared by the type term that is associated with
the element declaration rule for the corresponding type name.

Optional Content An optional regular expression may be matched by no node or no node set,
that means, if no node (or node set) matches that regular expression, it can be ignored. The rule
is complementary to the second optional rule, that states that an optional regular expression may
match.

I''REo

m (OPTIONALL1)
IVREt:[re]
m (OPTIONAL2)

Sequence types and node sequences A sequence of nodes or sub sequences can be matched
by a sequence of regular expressions, if each node or sub sequence is matched by a (positionally)
corresponding regular expression in the regular expression type sequence.

F,R}_tl,...,tn_liTl F,R}_tn,...,tn_;,_lmng
DVREt, .oy tn—1ytn, oy tnpm - T1, T2

(SEQUENCE)

Type disjunctions A node or node sequence can be matched by a disjunctive regular expres-
sion, if any of the regular expression matches the node or sequence.

I''RHt:
T (DISJUNCTIONT1)
IV REt: 7|

I'REt:7
- (DISJUNCTION2)
IV RET: 7|

65

3.6 SEMANTICS OF R2Go

Kleene star An arbitrary repeatable regular expression—an expression in the scope of a Kleene
star—may match as many nodes or sub sequences in a sequence of nodes, as possible without
interruption of the sequence by any other data.

TREt,... ty . T D'REthg1,- o stpgn = T DVREtnxmat1y---stnxman o T

F,RFtl,...,tn,tn+1,...7tn+n7 atnxm+17--~7tn><m+n ST*
(KLEENESTAR)

Nodes with unordered content are matched by types with unordered content models Un-
ordered content models are modelled as regular expressions that have to match any permutation
of a given content sequence. Mainly this corresponds to an associative commutative interpre-
tation of the sequencing operator in regular expressions as well as for the list operator in data
instances. The semantics rule uses the auxiliary function permutations(d) which returns the set
of all permutations of a sequence of nodes d.

th,...,t, € permutations(ty,..., t,)

T,RE, ...t T

UNORDEREDNODETYPING
T,REI{ty,...,tn} : {7} ()

Matching nodes with ordered content by types with ordered content specified in an unordered
way Ordered node content can be matched by unordered specified ordered content the same
way as unordered node content.

T,REI{t1,...,tn} : {7}
T, REI[t1, ..., ta] : U{7}]

(ORDEREDUNORDEREDSPECNODETYPING)

Matching leaf nodes with basic data types Leaf data is matched by the basic data types, if the
super type matches the data and if the constraints are also fulfilled. The matching of the basic data
types, is defined in applications of the generic basic data type mechanism as introduced in section
3.4.2, hence not further treated here. Note, that some typing may also involve type coercion, e.g.
each textual leaf node is per se a string, but due to numerical typing it may be rescanned and
coerced to basic data of another type. However, coercion is an application dependant topic and
not a matter at the level of the schema declaration language. The following rule just states the
subtype condition as used for R,G5 and the delegation of basic type checking to the level where
the basic data types and a notion of their language (denoted as L(.) are defined.

66

From a Generic Module System to a Module System
for RQGQ

When many developers work on large scale grammars or if they want to reuse given languages
as e.g. HTML, all the work can conceptually be merged together in one large grammar. Such large
grammars are difficult to maintain, as the scope of type names is globally scoped over the whole
grammar. Name conflicts are likely to occur and there is no separation of concern. To overcome
the mess arising from large scale monolithic applications, modules for R,G; are introduced now.

While conceiving the module system for RG> it turned out, that the module system in mind
was more general and applicable to many rule languages only with marginal parametrization.
As Xcerpt, the rule based query language to be extended with static typing using RG>, neither
had a module system, a general purpose module system has been developed and applied in two
use cases to (1) Datalog [8] and also to (2) Xcerpt [7]. In this chapter, the general module system,
as presented in [8] and [7], is briefly introduced and applied to R2G5.

4.1 The Purpose of Modules

From a practical point of view modules are very important for various applications especially
when the data to be managed for those applications gets complex. Typical candidates of applica-
tions that need module support are query-, programming or schema languages as well as large
scale CAD programs or even ontologies. In the following, modules will be only be considered
for artificial languages like query or schema languages, yet the generalization to arbitrary appli-
cations with need for modules mostly not more than a replacement of language specific terms in
the following paragraphs.

A module is a unit of language terms like e.g. a part of a query or a part of a schema. A
module has not forcibly to be an usable instance of an application of that language, it is often a
building block, library or skeleton for other applications. A module is itself a named entity, yet
prone to (rare, maybe even intended) name conflicts. The purpose of modules is to

1. provide distinct name spaces for user defined names or symbols in terms of the language,
2. hide certain information or complexity in form of some names or symbols in the applica-

tion,

67

4.2 MODULES AND XML NAME SPACES

3. provide an easy way to integrate different units or building blocks of an application with
the goal of providing potential for reuse of code.

In the context of the Web mhtmi[32] has been proposed as a module system for HTML and
XHTML. The idea of modularization in HTML helps factoring HTML pages into reusable in
the spirit of page templates and snippets. Using mhtml means (1) declaring modules—usually
HTML documents or parts of them— and (2) combining them using the import clause referring
to a module in the including module. To realize non trivial real world scenarios, parametrization
is also needed: modules can be parametrized with named parameters that can be instantiated
when importing with other modules, that are imported into the parametrized module. The ap-
proach can be compared with parametrized macro expansion as e.g. used by the C programming
language pre processor. An implementation of mhtml exists using the TOM! pattern matching
compile developed at INRIAZ.

4.2 Modules and XML Name Spaces

Pragmatically, the XML Name Space mechanism, has a lot in common with module systems. The
purpose of name space handling is to distinguish equal names by partitioning the set of labels in
sets that are likely to be named in a globally unique way. Name spaces in XML are realized as an
extension of the naming scheme—label and attribute names are combinations of a so called local
name part and a namespace part. Concluding, name spaces are identified again using names,
yet delegating the name conflict problem to a higher level, but as one name space usually groups
many (local) names, the “name space” name space is arguably less populated and name space
identifiers may be chosen in a way less prone to ambiguity conflict—URIs are chosen as name
space identifiers. As name spaces are URIs, and may therefore be very long strings, a substitution
mechanism called namespace prefixes is used. Conceptually name space and the label name—also
called local name—can be merged to one name by concatenating namespace (after namespace
prefix expansion) and local name.

Name spaces have to be reflected when querying, constructing or schematizing data—labels
of elements or attributes have to be composed of a local and a namespace part.

To compare module systems and XML Name Spaces, the three principles of module systems
are recalled here: A module system (1) provides distinct name spaces for user defined names or
symbols in terms of the language, (2) hides complexity, and (3) provides means for integration of
components.

The common property of XML Namespaces and modules is the distinction of name spaces,
point (1) in the former enumeration, in the sense of preventing name conflicts. Arguably to some
extend point (3), integration of building blocks, is partly common to modularization and XML
Namespaces—XML name spaces facilitate the combination of various XML languages in one
document instance, modules facilitate the integration of different instance applications of a lan-
guage. The module principle (2) though has no correspondence in XML Namespaces—hiding
information in data is arguably not a reasonable property on the level of the data structure for-
malization, which XML is. However, visibility of data portions may be of interest for applications
involving XML technology, like e.g. an XML database management system, but this is already at
an application level from the “point of view” of XML. (XML related) languages or applications
with need of name spaces hence may have two sorts of user definable names that have to be
distinguished—mnames at the level of (XML) data (like element and attribute names) and names
at the level of the language or application like variable-, method-, function-, predicate-, type-
names and so on.

To a certain extend this distinction of modules and name spaces is weakened by the HTML
module system mhtml mentioned earlier, where there is no distinction between data and pro-
gram symbols and no visibility rule—it is not relevant to distinguish symbols in HTML, as there

lsee http://tom.loria.fr/ for the official project page of TOM.
2see http://www.inria.fr/ for the homepage of INRIA.

68

is no potential naming conflict in HTML data—a module is a component of hypertext which is
to be used at a given place.

4.3 Modular R>G5

A module extension to R2G is proposed. The purpose of the module system for RyGs is the
proper partitioning and integration of type names.

4.3.1 Syntax of Modular R,G,

The syntax is given as a set of EBNF grammar rules extending the current grammar rule set as
presented in section 3.4 on page 51 ff.

Note, that the former top level non terminal grammar is now not the top level anymore,
module takes the role of the top level non terminal now.

module «— grammar

A module may be used as a grammar used to be, it is then not identified as a module and not
importable in any other module.

module « visibility’ ”_module.” identifier parameter™ use® grammar

//|cc

visibility «— “public”|“private”

identifier «— URI

parameter «— “parameter” identifier
use «— “use” identifier

use «— “use” identifier “as” prefiz
prefir — label

A module is usually associated to a module identifier. A URI is used as module identifier. The
visibility given in the module declaration is the default visibility of the types defined in the mod-
ule, the visibility may be public or private, private types are not visible outside of the module.
An invisible type can not be used in content models outside of the module defining the invisible
type, it can also be called a local type. An invisible type can later on not be used for annotation
in a typed Xcerpt program by the programmer, yet the system is able to infer it internally for the
purpose of type checking.

Modules can be imported with the use-clause, they can also be imported in a qualified man-
ner, in which case the visible types are imported in a qualified manner. Qualified types can be
used in the scope of the importing module by prefixing them with the qualifier, it is up to the
module author to choose a conflict free prefix (i.e. a prefix not occurring as prefix in other types
or non terminals declared in the current module). Imported types, no matter if qualified or un-
qualified, are not reexported and are hence private in the importing module.

Parameters are used to declare prefixes, that are not bound to an imported module at the time
of writing the parametrized module, but when the parametrized module itself is imported. A
parametric module hence exposes an interface of types that the user of a module can inject into
the used module by parametrizing it.

As an example, consider a container format representing a website consisting of a hierarchy
of document containers containing just documents of a user selectable type.

69

4.4 REALIZING THE MODULE SYSTEM USING THE “Divide and Rule” APPROACH

module "WEBSITE-CONTAINER"
parameter "DOCUMENTDEF-";

element Container = container (name=String) [ContainerContent];

element ContainerContent = ((Container|Document) *);

element Document = document (name="String) [DOCUMENTDEF-DOCUMENT];

Code Example 37 This is a parametric module modelling a website of homogeneous documents. The
container may contain either (recursively) other containers or documents of the type DOCUMENT, which has to
be declared in a module passed in for the parameter DOCUMENTDEF .

The website container (see example 37) format is parametric about the type of the docu-
ments is may contain. The type of the payload document will be bound to the module pre-
fix DOCUMENTDEF~-. The interface of the module parameter is given by the types used from
DOCUMENTDEF -, in the case of example 37 this is just DOCUMENT. Note, that the author of a mod-
ule is advised to properly document the interface, there is no formal documentation mechanism.
A module using the website container (see example 38) will bind the parameter do a schema
declaring a type called DOCUMENT.

module "MY-WEBSITE"

use "WEBSITE-CONTAINER" where "DOCUMENTDEF-"="HTMLDEF";

root MySite;

element MySite = website (baseurl="http://example.com/mySite/")[Container 1];
Code Example 38 This module models a website using the parametric container model of example 37.

The parameter is set to the module HTMLDEF defined in example 39, hence modelling a website consisting of
a container with solely XHTML documents.

module "HTMLDEF"

use "XHTML";

content DOCUMENT = (HTML) ;
Code Example 39 This module is created for parametrization of the module in example 37. It is used in
example 38

)k

rule «— visibility’ ”element.” typename ”_*=_*" typeterm ”.*:'[.\n\t]"”

rule — visibility’ "type.” typename 7. *=_"" typeterm 7 _*;"[.\n\t]"”
The rule as defined earlier is extended by visibility, that is optionally to be prefixed to a type
declaration rule. If no visibility is prefixed, the default visibility as declared in the module rule is
applied.

4.4 Realizing the Module System using the “Divide and Rule”
approach

The generic module approach as presented in [8] is based on reduction semantics for module
operators, i.e. modular rule language programs are translated into non modular programs. A
necessary requirement of the rule language to be modularized is the notion of some kind of
chaining or rule dependency. In the case of Ry this is given by the dependency between right-
and left hand side occurrences of non terminal symbols or type names. The term rule dependency
as used in [8] is defined as follows:

Definition 4.1 (Rule dependency)

With a program P, a (necessarily finite) relation A C N? x N? can be associated such that
(r1,b,72, h) € Aiff the condition expressed by the b-th body part of rule r; is dependent on results
of the h-th head part of the r,-th rule in P (such as derived data, actions taken, state changes, or
triggered events), i.e., it may be affected by that head part’s evaluation.

70

When applied to R2Go, there is just one rule part in the read—the type defined by the current
rule, more precisely the type name. On the right hand side, the parts are the occurrences of type
names. Using the rule dependency quadruple, the rule parts are mapped to natural numbers.
Applied to R2G this could be according to the sequential order of the occurrence of the type
name.

In example 40 an R, G4 “program’ consisting of three rules is shown. When considering, that
the rules are counted in sequential order, starting with index 1 as well as the body parts, the
corresponding rule dependency quadruple set could be as follows:

Al = {(7’1, 1, Tro, 1), (7’2, 1,7’3, 1)7 (1"2, 277"3, 1), (7‘3, 1,7‘3, 1)}

The first rule, denoted as r; has B as the first (and only) type on it’s right hand side, and B is
declared in the second rule (i.e. r2). As all rules declare exactly one type, hence have one “part’
(i.e. non terminal or type) on the left hand side, the 4th component of the quadruples is always
1 for R2G rules. The rule ry has two parts on the right hand side (in this case both depending
on r3). this is reflected by two quadruples modelling the dependency of ry. The third rule is a
recursive rule, this is reflected by the fact, that the dependency modelled is a self-dependency.

The dependency presented in the last paragraph was a precise dependency, reflecting exactly
which rule depends on which other rules. This however, requires a precise knowledge of the
semantics of the rule language, which is not forcibly required by the generic module system.
Assuming, that 40 is a module, another possible dependency reflecting the fact, that all rules in a
module may depend on each other would be

Ag ={(ri, gy ri, DI 5) € {(1,1),(2,1),(2,2), 3, 1) A1 < k < 3}}

A, is the kind of dependency used further on for the module system.

element A
element
element C

al B 1;
b[C,C+];
cl[cc[C 1% 1]

(o]
o

Code Example 40 A simple R2G2 grammar.

A module in [8] is defined as follows:

Definition 4.2 (Module)

A module M is a triple (Rpriv, Rpup, A) € R x R x N* where R is the set of all finite sequences
over the set of permissible rules for a given rule language. We call R,,;, the private, R, the
public rules of M, and A the dependency relation for M. For the purpose of numbering rules,
we consider R = Ry © Rpub3 the sequence of all rules in M.

The application to R2 Gy, is straight forward—public rules of an R;G2 module belong to Ry,
private ones to Ry,,;,,. If a module is declared as a public module, all rules without visibility anno-
tation or with public visibility annotation are public, only rules with private visibility annotation
are private. If a module is declared as a private module, all rules without visibility annotation
or with private visibility annotation are private, only rules with public visibility annotation are
public. The dependency relation without consideration of used (or imported) modules is com-
plete with respect to the rules of the module, i.e. each part on the right hand side of a module
depends on all rules (more precise, it's head) in the module.

The use statements are treated by the so called scoped import, the one and only module com-
position operator in [8].

Definition 4.3 (Scope)

Let M = (Rpriv, Rprub, A) be a module (or program if R, is the empty sequence). Then a set of
body parts from M is called a scope in M. More precisely, a scope S in M is a set of pairs from
N? such that each pair identifies one rule and one body part within that rule.

36 denotes sequence concatenation, i.e., s1 ¢ sg returns the sequence starting with the elements of s; followed by the
elements of sz, preserving the order of each sequence.

71

4.4 REALIZING THE MODULE SYSTEM USING THE “Divide and Rule” APPROACH

Definition 4.4 (Scoped import x)

Let M = (R}, Ry, A") and M" = (R}, R}, A”) be two modules and S a scope in M.
Then

M’ Xs M" = (Rpm'v = R/

pPriv <

R// o> /! Rpub _ R/

I 1
priv O Lpup pubs Dslided U Aglided U Ainter), Where

* Aligeq = slide(A, [R),., |, [R),]5 | Bpriv]) is the dependency relation of the importing module
M’ with the public rules slided to the very end of the rule sequence of the new module (i.e.,
after the rules from M"),

* Alligeq = slide(A", 1[R[+| Ry, [Ry |) is the dependency relation of the imported mod-
ule M’ with all its rules slided between the private and the public rules of the importing
module (they have to be “between” because they are part of the private rules of the new

module),

® Ainter = {(r1,b,72,h) : (r1,b) € S ATarulein Ry, with index r; and head parth : 7 >
|R,.i| + [R5]} the inter-dependencies between rules from the importing and rules from
the imported module. We simply allow each body part in the scope to depend on all the
public rules of the imported module. This suffices for our purpose, but we could also
choose a more precise dependency relation (e.g., by testing whether a body part can at all

match with a head part).

where slide is an operator used to renumber rules. The ‘sliding’ of the rule numbering is a pure
technical tool used to get again unique numbering and fixing the dependencies, which gets nec-
essary when concatenating sets of rules. The dependency slide is defined as follows:

Given a dependency relation A, slide computes a new dependency relation by sliding all rules
in the slide window W = [s + 1, s + length + 1] in such a way that the slide window afterwards
starts at spew + 1:

slide(A, s, length, spew) = {(r1,b,75, k) : (r1,b,72,h) € A

A Snew + 1+ (11 —s) ifrieWw Al — Snew+ 1+ (ro—s) ifroeW
! 1 otherwise 2 1 otherwise

After unwinding all the formal definition, importing a module is a mere concatenation of
the rule sequences and a union of the rule dependencies, after proper re-indexing of the rules to
prevent conflicts. Further on, for a scoped import xg, the resulting dependency is extended by
new dependencies derived by the information found in ”S”, such that the addressed rule parts
of the importing rule set get dependencies to all the public rule heads declared in the imported
rule set.

public module "MAIN-MODULE"
use "SUB-MODULE"

element A = a[B, C];
element C = c[]

Code Example 41 A simple R2G2 module that uses another module called ‘SUB-MODULE'".

public module "SUB-MODULE"
element B = b[C];
private element C = ccc[];

Code Example 42 A simple RG> module with one private rule and one public (by default) rule.

As an example consider the two modules presented in the examples 41 and 42. Formally,
these modules, without considering the module use statements, can be denoted as

}%MAIN:: ({}7{172}5{(17171’1)’(17172v1)a(172’171)7(172a271)})

72

Rsys = ({2}7 {1}’ {(17 11, 1)) (17 1,2, 1)})

The use-statement of example 41 is not a scoped import. However, the scoped import is more
general as the default use-statement and it can be translated to a scoped import—each rule and
each part of the importing module gets scoped. For 41 the use-statement hence results in express-
ing a scoped import Ry X (1,1),(1,2) Rsus- Application of the scoped import operator in the end
results in one use-statement-free module as follows:

1,1,1,1
Ruaty X (1,1),(1,2) Bsup = (3,1,3,1
1,1,3,1

So, the resulting module is a concatenation of all modules with a restricted rule dependency
(compared to the plain module concatenation). A promise of the generic module system is, that
base don the reduction semantics, no change in the core module language is forcibly necessary.
How can this goal be achieved, i.e. how can the controlled rule dependency be realized? A
simple way in the case of RyG5 is the realization by rewriting: the type names on the left hand
side are rewritten such that they reflect the separation of modules, e.g. by prefixing a module
identifier, those on the right hand side are replaced by disjunctions for all modules involved in
dependencies to the body part in question, e.g. a disjunction consisting of all involved module
identifiers postfixed by the former type name. As an example, the resulting module of applying
the module system reduction to the examples 41 and 42 is presented in example 43

element MAIN_A = a[(MAIN_B|SUB_B) , MAIN_C];

element MAIN_C cl]

element SUB_B b[SUB_C 1;

element SUB_C cec g
Code Example 43 ~ An R>G> grammar resulting from the application of the generic module system to the
examples 41 and 42. The dependency modification is achieved by type renaming, i.e. by prefixing the (unique)
module identifiers to the type names. To preserve the original type names for the outside, type aliases can
easily be used. Note, that the first rule uses an undefined type name, MAIN-B, for technical reasons. Orphaned
right hand side type names are however easily detected and can always be removed from the grammar.

Further features of the module system not presented in details, i.e. not demonstrated by ex-
ample are:

qualified modules Arguably, qualified modules are exactly what the scoped import is necessary
for, as it gives rise to express that the imported rules get visible only for the body parts using
the qualifier. This can be expressed using rewriting by selectively applying the rewriting to
the qualified body parts the same way as presented in example 43 for all body parts.

parametrized module import parametrized module use is similar to qualified module use, ex-
cept that the assignment of a module to a qualifier does not occur in the declaring module,
but in the using module. As the module reduction takes place on all modules, globally and
at compile time, this is not a big deal for the generic module system—the assignment of
a module to a parameter is just postponed until bound for a module use. Note however,
that for multiple imports (in possibly different modules) of the same parametrized module,
multiple instances of the rules using the parameter have to be created during reduction,
as they possibly have dependencies to different types. Right hand side occurrences of the
type declared by the multiple instances are accordingly selecting their corresponding rule
instance.

parametric modules A parameter of a parametric module is treated exactly the same way as a
qualified module use, after binding of the parameter.

73

4.4 REALIZING THE MODULE SYSTEM USING THE “Divide and Rule” APPROACH

74

Use Cases—Modelling Data and Documents with
RQGQ

5.1 Beyond Regular Tree Grammars—The Use of Macros

Arguably in practice, especially for larger real word applications, any possibility of factoriza-
tion of code is welcome and used by programmers. When modelling content models, a way of
factoring out common content of different element types is to use content macros.

The normative Schema of XHTML! is written in Relax-NG employing a large number of
grammar rules, that correspond to the R2G2 macro rules. Macros are used to factor out content
elements as well as common attribute declarations. The XHTML draft defines different modules,
represented by different schema modules that are imported, partly overridden in sub modules
and aggregated to the complete XHTML schema. The separation of modules is useful to pro-
vide small units of XHTML that can be used in other XML schema definitions, e.g. the hyperlink
mechanism is defined as a separate module and can thus be reused e.g. for another document
markup language. The extract in example 44 of RyG'»> declarations corresponds to the parts of the
XHTML 2.0 schema draft [49] used to declare hyperlinks:

module "hypertext-module"
use "text-model-module"
use "common-attributes"

element A = a(A.AttList) [Text.Model] ;
alias A.AttList = Common-Attrib ;
alias Text.Class = Text.Class | A ;

Code Example 44 The example is mostly a transcription of the XHTML module for hyperlinks written
in Relax NG. Comprehension is rather easy, as most of the irrelevant (in this context for comprehension)
declarations are located in other modules.

The simplicity of the definition is obviously due to modularization.

IEither 1.0 or 2.0, even the HTML DTD’s share this properties.

75

5.2 DESIGN PATTERNS—R>G2 BEST PRACTICES

5.2 Design Patterns—R>G> Best Practices

In the spirit of the well known “XML Schema best practices” [22], some design patterns for RoG2
will be presented. Many of them are inspired by the XML Schema counterpart.

Design Objectives

In the style of the design objectives document of “XML Schema best practices”, three design
principles can be distilled:

¢ The instance author’s power vs. rigidness of the schema, or to which extend the most
general type is used, such that an instance author may choose which type of data to use in
certain contexts.

¢ Reusability, or to which extend may a user reuse the schema declarations for another schema
in e.g. another namespace.

¢ Extendability, or to which extend should the schema be extensible by third parties, e.g.
using parametrization.

The first principle is freedom of data and structure choice for the document author. This
can can be divided in two aspects:the freedom of choice concerning atomic data, i.e. arbitrary
CDATA in terms of XML, and the freedom of choice concerning structured data, i.e. arbitrary,
maybe untyped or schema-less XML sections of the document. The first aspect is mostly known
since DTD, by providing PCDATA as content type. In RyG> this is achieved using either a most
general regular expression at content level or by using the predefined string data type.

element AnyTextl = /.x/ ;
element AnyText2 = r2g2:String ;

To model arbitrary structured content, the R2G> schema author can use the predefined Any
type, which represents exactly one arbitrary element or text node. Defining the Any type using
R2G> is also possible and actually not complicated, as shown in the following example:

element Any = /.x/((/.x/ = /.%/)x) [Anyx]
element Any = /.x/(AnyAttrx) [Anyx*]

| /.%/(AnyAttrx){ Anyx }

| r2g2:String ;
attribute AnyAttr = /.x/ = r2g2:String ;

The second design principle is reusability. A schema author has to decide to which extend
the schema is exposed to other schema authors, such that they can easily include the schema in
their own schema declarations. In RoG5 the schema author has control over reuse of his schema
declarations by controlling the visibility of type names for users of a module. Only visible type
names can be used in other grammars or applications. A further notion of reusability is to let the
namespace of elements unspecified, thus giving users of the module the ability to fully integrate
the declarations in their own schemata, using e.g. their own namespace. Having homogeneous
name spaces in a schema is desirable from the point of view of the document authors, as it ar-
guably eases reading and authoring of a document. A disadvantage of a schema not bound to
a specific namespace, yet being bound to different name spaces of hosting schemata is that a
query author or a processing application needs to be aware of all possible hosting name spaces
to support such a variable name space document component.

The third design principle is extendability. Third party schema authors have to provide
the schemata for the components of a given schema that models a container like structure. To
achieve this in R2G> parametric modules can be used. The feature is roughly comparable to the
term dangling type as used in the XML Schema best practices” documents—dangling types are
types used but not declared in a schema (they have to be declared by the user of the schema).

76

5.2.1 GLOBAL VERSUS LOCAL

A using schema instance hence has to implement the module parameter by providing a module
with the type declarations for the type names in question. As an example, consider the website
container format examples 37, 38 and 39 presented in section 4.3.

5.2.1 Global versus Local

In the XML Schema best practices” documents, this issue is about when and how to declare
elements locally and when to declare them globally. In this context the terms local and global are
used to distinguish named types, i.e. types declared with a rule (called global types) and those
declared in-line as child type terms used in the content model of it’s parent type term (called
local types). Using R2G» the declaration of local element definitions can be achieved in two
ways: indirectly, by declaring element types using the private visibility modifier for a rule or
directly by declaring element types locally as child elements in an element declaration of another
element. For global declarations, the declared element has to be in a publicly visible rule. The
direct modelling of local definitions is similar to the way of locally defining elements in XML
Schema using the Russian doll principle, and the principle is directly applicable to RoG3. When
modelling schemata using the Russian doll paradigm, elements are declared in a nested way in
a type term.

The grammar in example 45 declares an address book in the spirit of the Russian doll paradigm.

root AddressBook;
element AddressBook = addressbook{
card{
name[/.*/ 1,
(phone[/.*/ 1
| email[/.*/]
| im-contact[typel /(icq) | (msm) | (aim) | (irc) | (yabber)/ 1 ,
user—-id[/.x/ 1 1
| address[street[/.*/ 1 ,
detaill[/.x/ 1 ,
CitY[/.x/ 1
zip-code[/.x/]
state[/.x/ 1?2 ,
country[/.x/ 172

’

’

]
) 3+
}
}i
Code Example 45 An address book modelled in the spirit of the Russian doll design principle—the child
node types of a node are declared using type terms as child terms of their corresponding parent type.

The advantage of the Russian doll paradigm is, that the schema reflects, almost like an exam-
ple, the structure of instance documents—element declarations occur in similar nesting context
as their instances. A disadvantage of the Russian doll approach is, that multiple occurrences of
the same type results in multiple declarations of that type. Note, that the Russian doll paradigm,
does not allow to model data with recursive declarations, as a circular structure referring a dec-
laration inside the declaration (possibly at deeper nesting level) is necessary, but the reference of
a type name makes it necessary to use a rule for the declaration of that type name.

The opposite of the Russian doll paradigm is the so called salami slices paradigm, where each
element type declaration is represented by an own rule, very much the traditional way of formal
tree grammars as found in section 3.1, 3.2 or [21].

Example 46 presents the same document type as for the Russian doll example (see example
45) modelled using the salami slices paradigm. Each element declaration is associated with an
own type name, hence exporting of all symbols can easily be achieved.

77

5.2 DESIGN PATTERNS—R>G2 BEST PRACTICES

root AddressBook;
element AddressBook = addressbook{ Cardx } ;

element Card = card{ Name ,
(Phone |Email | IMContact |Address) « } ;
element Name = name[/.*/ 1 ;
element Phone = phone[/.x/] ;
element Email = email[/.x/ 1 ;
element IMContact = im-contact[IMType , UMUID] ;
element IMType = type[IMTypeToken] ;
element IMTypeToken = /(icq) | (msm) | (aim) | (irc) | (yabber)/ ;
element AnyText = /.*x/ ;
element IMUID = user—-id[AnyText] ;
element Address = address|[Street , Detail ,

City , ZipCode ,
State? , Country?] ;

element Street = street[AnyText] ;
element Detail = detail[AnyText] ;
element City = city[AnyText] ;
element ZipCode = zip-code[AnyText] ;
element State = state[AnyText] ;
element Country = country[AnyText] ;

Code Example 46 ~ An address book modelled in the spirit of the salami slices design principle—all types
are declared employing rules at top level of the grammar, the child node types of a node are referenced in its
content model using the type name declared in the corresponding rule.

In the “XML Schema best practices” document, a third paradigm between Russian dolls and
salami slices is presented, the so called venetian blinds. In XML Schema, a type is not bound
to an element declaration but to a content model. An element declaration hence involves a label
declaration and a type declaration. The venetian blinds pattern consists in referencing type decla-
rations in element declarations, that occur themselves nested in type declarations. This contrasts
to the salami slices paradigm, where element declarations are referenced in type declarations.
The concept is applicable to R2G> using content non terminals.

Example 47 illustrates the same address book as used in the examples 45 and 46 in the spirit
of the venetian blinds paradigm using content macros—the only necessary explicit element dec-
laration is the root element declaration:

root AddressBook;
element AddressBook = addressbook{ card{ Card }x } ;
content Card = name[TXT] ,
(phone [Phone]
lemail[AnyText]
|im-contact [IMContact]
|address [Address]

) *

content IMContact = type[IMType] , iser-id[AnyText 1 ;
content IMType = /(icq) | (msm) | (aim) | (irc) | (Jabber)/ ;
content AnyText = /.x/ ;

content Address = street[AnyText] ,

detail[AnyText] ,
city[AnyText] ,
zip-code[AnyText] ,
state[AnyText]17? ,
country[AnyText]? ;

Code Example 47

Note, that content is a mere macro pre processing mechanism, therefore the content non
terminals are not type names, that can be accessed e.g. in validated and type annotated data
instances. Similar to the Russian doll example, only one element type is declared in this example,
hence all other implicit element declarations are anonymous and may not be exported for import
or explicit type annotation. In XML Schema the different paradigms are of essential importance
for the exposure or hiding of declaration. In R2G5 dedicated constructs for import, export and

78

5.2.2 COMPOSITION VS. SUB CLASSING

namespace handling have been introduced, rendering the exposure and hiding aspect of the
modelling style less relevant, yet leaving the freedom of taste to the schema author. On the other
hand, such structural properties of XML Schemata may be reflected in RyG» type declarations
making transitions of legacy schemata easier.

Some rules of thumb for the applications of the different paradigms are given here, yet they
only reflect the authors preferences:

¢ Introduce a new type name when the type is reused in different contexts

¢ When modelling schemata with querying in mind, use more type names, as when mod-
elling for document validation, as this exposes the possibility of type annotation to the
query programmer

e Try to expose specialized textual content types as they are most likely to be queried or
transferred to constructions. Further on, regular text expressions of characters are arguably
harder to read for document or data authors than well chosen type names.

¢ Hide type names of types that are still in development

¢ When elements with different labels always share the same content and the elements have
similar semantics, it is maybe advisable to use a label regular expression in one and the
same type declaration, instead of using one content declarations and many element type
declarations.

¢ Try to factor out common parts of content models in content declarations.

5.2.2 Composition vs. Sub Classing

In XML Schema a powerful object oriented modelling feature that is arguably orthogonal to the
grammar philosophy has been introduces—modelling by sub classing. When modelling by sub
classing, a new type can be derived of an existing type, by restricting the set of elements belong-
ing to the super class of the subclass. This feature is powerful in the sense of object oriented
modelling or programming, as it allows the programmer or modeller to specialize the behaviour
of a new class of objects based on the behaviour of a base- or super class. In XML Schema, sub
classing or restriction is merely more than a contract of a type to fulfill the subset property of its
base- or super class, i.e. the author of a sub type has to model a type in such a way, that it fulfills a
stated subset, base type or restriction property, an XML Schema validator has to check the given
type for conformance to that property. The advantage for a program operating on data structures
fulfilling the given subclass property are the same as for object oriented programming—the pro-
gram can rely on compatibility of operation on subtypes for operations designed for the super
type of the subtype. For the Schema author, no benefit exist over modelling data without the sub-
type support. However, for a query author for example it is valuable to know about the subtype
property of given types, as this ensures the applicability of queries written for a super type to
elements of the subtype. Arguably, type checking does not really need to rely on sub typing in-
formation for useful operation, as we will see in the chapter about type checking of Xcerpt—type
inference is able to deduce the super type of it’s subtypes without the information about it. When
modelling elements of a given type, the benefit of automatically being able to use the subtypes of
the given type exists. However, the base type has to be modelled from the beginning in a way to
easily be extensible, otherwise it has to be altered or widened along new sub classes.
Interestingly, even though the object oriented principle of sub classing has been introduced
to ease a separation of concern, a tight integration of complexity and so called tight coupling is
the result. Let us assume as an example a database of a camera vendor modelled following a sub
classing paradigm: starting as a vendor of cameras, there exist a type Camera with all relevant
properties. When digital cameras came to the market, some (analogue) camera properties got
irrelevant while other digital camera properties gained relevance. This logically leads to a sub
classing of camera, where some of the former camera features have to be shifted into a subclass of

79

5.2 DESIGN PATTERNS—R>G2 BEST PRACTICES

camera, AnalogCamera, while digital camera features are aggregated in the DigitalCamera
sub class. As the store may also sell tripods as non optical devices, sound recording devices
or projectors as optical device along with cameras, a consequence for the schema designer is to
provide a super class to the Camera class—the OpticalDevice class. When altering the optical
device class, potentially all camera classes may have to be adapted along with valid instances,
which is a consequence of the so called tight coupling.

An alternative approach to sub classing is called compoisition or loose coupling. When mod-
elling using composition and loose coupling, the main principle is to encapsulate the differences
instead of abstracting away the similarities of objects. In XML and related Schema languages, this
is achieved by extending the content model by adding new elements or element containers to a
given type, possibly optional to retain backward compatibility. In the camera vendor example,
the difference between digital and analogue camera could be modelled either as an alternative
between analogue and digital camera child members, or as a common abstract container for the
RecordingMedia. This way altering the data model will not affect e.g. ‘camera container struc-
tures’, as the modification is internal to the camera.

Unquestionably, design by sub classing has an important role to play in XML Schema
design. However, it is being greatly overused. Long, extended type hierarchies lead
to brittle, non-modifiable designs that are virtually impossible to understand.

Design by composition is the preferred approach. It yields simpler, robust, modifi-
able, plug-and-play designs.

”Favoring element composition over type inheritance helps you keep each element
encapsulated and focused on one task. Your type hierarchies will remain small and
will be less likely to grow into unmanageable monsters.” [22]?

As a consequence, the concept of sub typing by restriction is not included in Ry G, yet due to
the regularity of the language it is easy for external applications to ensure the subtype property
of RyGy type declarations. Sub typing is a mayor concept for type checking of query programs
using RyGo types.

5.2.3 ‘eXtreme eXtensibility’

A design pattern presented in the “XML Schema best practices” document is the ‘eXtreme eXtensi-
bility’ pattern. The concept behind is to couple a schematized, typed or structured world with
the aspect of freedom of semi structured data, such that no restriction on the structure of data
is given, except the ones already available. As a concrete example think of a schema for biblio-
graphical information: as the first party may provide a schema for data containing just author
and title along with the data, another party may provide extended information containing e.g.
the publisher and the number of pages of books. A third party again, may provide based on the
first schema an extension for e.g. a review of books.

Technically, the concept is based on the use of a type disjunction containing the most general
type in a repetition sequence to allow arbitrary elements (represented by the most general type)
along with well defined elements (the other disjunctive parts). It is however advisable to restrict
the most general type to a namespace specially devoted to the purpose of being the namespace
of arbitrary extension elements for the concrete application in mind. Third party document and
schema authors hence declare the elements they need in that name space and thus extend the
schema to their need.

The following example models the previously mentioned librarian database with first the
base schema and a document instance, second and third two derived schemata and document
instances. Last, an aggregation of all the schemata and documents is presented, which is a com-
mon usage scenario of documents and schemata applying the ‘eXtreme eXtensibility” pattern.

2In the “XML Schemas: best practices” collection of documents the cited part resides in the document “Composition
versus Subclassing” at http: //www.xfront.com/composition-versus-subclassing.html

80

5.2.3 “EXTREME EXTENSIBILITY’

default namespace http://book.ext.ext.org/ ;
namespace ex = http://bookext.ext.ext.org/ ;

root BookDB;

element BookDB = literature{ @Bookx };
element Book = book{ BookContentx };
content BookContent = (ex:AnyBookContent
[Title
[Author) ;
element Title = title[r2g2:String] ;
element Author = author[r2g2:String] ;
element ex:AnyBookContent = ex:/.x/{
r2g2:Any
b

Code Example 48 The grammar models a bibliographic database following the “eXtreme eXtensibility”
paradigm. It is a container for book-elements where no more is given, than that it contains a title and an
author element and any element, as long as it is in the namespace given by the prefix ex in this example.

use http://book.ext.ext.org/schema.r2g2 ;
namespace bdb = http://book.ext.ext.org/ ;
defaultnamespace http://bookext.ext.ext.org/ ;

root bdb:BookDB;

element NrOfPages = pages{ r2g2:Integer } ;
element Publisher = publisher{ r2g2:String } ;

Code Example 49 A grammar defining types for the number of pages of a book and for information
about a publisher. The types have been designed to be used in a bibliographic database as shown in example
48. The contract between the schemata committed to the “eXtreme eXtensibility” paradigm is to use a given
namespace.

use http://book.ext.ext.org/schema.r2g2 ;
namespace bdb = http://book.ext.ext.org/ ;
defaultnamespace http://bookext.ext.ext.org/ ;

root bdb:BookDB;

element Review = review|[r2g2:String] ;

Code Example 50 Another grammar defining a type for the extension of the grammar in example 48.

<literature>
<book 1d="isbn:0007110472">
<title>Three to See the King.</title>
<author>Magnus Mills</author>
</book>
<book id="isbn:0810117312">
<title>His Master’s Voice</title>
<author>Stanislaw Lem</author>
</book>
</literature>

Code Example 51 An instance document valid with respect to the grammar of example 48.

81

5.2 DESIGN PATTERNS—R>G2 BEST PRACTICES

<literature>
<pbook 1d="isbn:0007110472">
<pages>167</pages>
<publisher>HarperPerennial</publisher>
</book>
<pook 1d="isbn:0810117312">
<pages>199</pages>
<publisher>Northwestern University Press</publisher>
</book>
<book 1d="isbn:0863697313">
<pages>290</pages>
<publisher>Virgin Books</publisher>
</book>
</literature>

Code Example 52 An instance document valid with respect to the grammars of example 48 and 49.

<literature>
<book id="isbn:0007110472">
<title>Three to See the King.</title>
<review>
Novella-like in form, Magnus Mills’ Three
to See the King is an uneasy read that
</review>
</book>
<book i1id="isbn:0684865114">
<title>The Restraint of Beasts</title>
<review>
Building high-tension fencing with a couple
of rural Scots louts—--what could be a more
</review>
</book>
</literature>

Code Example 53 An instance valid with respect to the grammars of example 48 and 50 used together.

82

5.2.3 “EXTREME EXTENSIBILITY’

<literature>
<book id="isbn:0810117312">
<pages>199</pages>
<publisher>Northwestern University Press</publisher>
</book>
<pbook 1d="isbn:0863697313">
<title>His Master’s Voice</title>
<author>Stanislaw Lem</author>
<pages>290</pages>
<publisher>Virgin Books</publisher>
</book>
<book 1id="isbn:0007110472">
<title>Three to See the King.</title>
<pages>167</pages>
<publisher>HarperPerennial</publisher>
<review>
Novella-like in form, Magnus Mills’ Three
to See the King is an uneasy read that
</review>
</book>
<book 1d="isbn:0684865114">
<title>The Restraint of Beasts</title>
<review>
Building high-tension fencing with a couple
of rural Scots louts—-what could be a more
</review>
</book>
</literature>
Code Example 54 This instance document could have been generated by an aggregation service (e.g.
written as a web query). It is the join of all three document examples 51, 52, and53. As a consequence of
the “eXtreme eXtensibility” approach, the document is valid with respect to the union of all the involved
grammars, i.e. the examples 48, 49, and 50.

A drawback of this approach is, that name conflict may arise in the extension name space.
An advantage of this approach is the high flexibility and the ease of mering different document
instances due to common outer structure.

Relationship between ‘eXtreme eXtensibility” and RDF The application scenario presented
in the example and those of for ‘eXtreme eXtensibility” is interestingly related to RDF: using
‘eXtreme eXtensibility’, it is possible to describe different aspects of the same concept in a dis-
tributed manner, providing means of aggregating the knowledge. RDF to some extend has the
same goal—describing properties of subjects (identified using URI’s) using a triple like relation
between subject and object along a predicate. A proposed W3C recommendation—the RDF/XML
Syntax Specification—provides a very loose schema for XML documents and an interpretation in
RDF of the data of that document. The main idea is to have a kind of striping in the depth of
subject/predicate/object, such that

e the subject is an element (directly under the root element® identified, e.g. using an id at-
tribute.

e the child nodes of a subject are predicates

e the child node (just one is allowed) is the object of the subject/predicate/object relationship,
it may be CDATA.

Arguably, RDF/XML is not of high relevance in providing an RDF interpretation of legacy
XML applications, as they are very unlikely to fulfill the RDF/XML syntactic requirement and

3Subjects may also occur in other, deeper locations in the document, please refer to
http://www.w3.0rg/TR/2003/PR-rdf-syntax-grammar-20031215/.

83

5.2 DESIGN PATTERNS—R>G2 BEST PRACTICES

even less likely to provide RDF with meaningful semantic. For new applications however, RD-
F/XML provides a way to defile an XML application that at the same time yields an RDF appli-
cation, when well designed.

The presented example application fulfills the RDF /XML requirement. The data may be inter-
preted as RDF data. The schema however gives no hint about that. A Schema for data fulfilling
the RDF/XML recommendation must be the schema of a language, that is a subset of the RD-
F/XML specification. Unfortunately, due to the high freedom and flexibility of the label naming
conventions, it is neither possible to give a general schema for RDF/XML using XML Schema,
nor DTD, nor Relax NG. Using RyG} it is possible. The distinguishing feature is the regular ex-
pression based element label specification. As it is possible to check the subtype (or language
subset) relationship between two Ry G specifications, it is possible to check an R2G5 schema for
RDF/XML conformance. Note, that this does not forcibly lead to schemata or documents (con-
forming those schemata) with useful RDF interpretation, it is mere a useful tool along the step of
defining XML languages fulfilling also the RDF/ XML specification.

84

Part 111

Automata Models

85

An Automaton Model for Regular Rooted Graph
Languages

An automaton model used for validation and type checking with languages defined using R2G2
is presented. First, tree-shaped data is considered to be handled by the automaton model, then
the approach is extended to graph shaped data. The presented approach is based on specialized
non-deterministic finite state automata. The specialisation copes with unranked tree shaped data.
Graph shaped data will be treated as, possibly infinite in depth, trees.

The choice of using non-deterministic automata is motivated by complexity issues: as the
tree automata are based on regular expressions, non-deterministic automata are a necessary in-
termediate step. Arguably deterministic tree automata are more efficient on validating data, but
the derivation of such automata from non-deterministic ones comes with potentially exponen-
tial costs. As all the needed algorithms can be achieved on non-deterministic automata in sub-
exponential time and space complexity, no need to transform to deterministic automata arises.

6.1 Introduction to Regular Tree Automata

Traditionally, regular tree automata are defined as follows (cf. [21]).

Definition 6.1 (Non-deterministic Finite Tree Automata)

A non-deterministic finite tree automaton (NFTA) over X is a tuple A = (Q, %, Qr, A), where Q
is a set of (unary) states, Qr C @ is a set of final states, and A is a set of transition rules of type
f((h(xl)a © -v%L(xn)) - Q(f(:cla s ,xn)),wheren 2 O/ f € Enr 4,491, --,4n € Q/ LT1ye--3Tn S X.

The set ¥ contains the symbols or the alphabet of the tree. Note, that traditionally regular tree
automata operate on ranked trees, therefore the symbols have fixed arity—the number of child
nodes in a corresponding tree is fixed. The set ¥, C 3 is the set of all symbols in ¥ with arity p.
The set 7'(X) denotes the set of all tree that can be constructed using the symbols in ¥. Therefore

° Z() - T(Z)

e forp>1,if feX,andy,...,t, € T(X), then f(t1,...,tp) € T(X)

87

6.1 INTRODUCTION TO REGULAR TREE AUTOMATA

Example 6.1

A non-deterministic! finite tree automaton able to recognize a language containing (under many
others) the tree f(g(a,b), c, g(c)) is generated. The figure on the right of the automaton informally
illustrates the relationship between the states,? transitions and the data tree: a transition is de-
noted as a kind of tube. If some sub-trees of the data tree have been recognized the automaton is
in corresponding states. A transition is used, if the automaton is in all the corresponding input
states (in the example below the tube) and the father node of the sub-trees recognized with those
states is labeled like the tube. The automaton is then not any longer in the states below the tran-
sition, but in the target state (precisely in all the target states of all the transitions traversable in
that step). The root of the tree has to be accepted in such a way, that the resulting state is a final
state. Note, that the two instances of the c transition and the state g2 denote the same objects in
the automaton, they have been duplicated to illustrate acceptance of the input data that contains
two sub-tree accepted by the same transition.

A= { {01,9:9,9,95,9,97, 93}

) {f/s,0/0,5/070/0,9/279/1}

, {aa}

s f(@(X),q2(Y),43(2)) — qu(f(X,Y, Z))
1 9(95(X), ¢6(Y)) — q1(9(X,Y))
¢ — q2(c)
,a — gs(a)
b — qs(b)
,9(q2(X)) — g3(9(X)) }

}

Acceptance Procedure The acceptance procedure recognizes, if a given tree is member of the
tree language represented by a given automaton. A tree ¢ is in the language £(A), if it is accepted
by A. The acceptance procedure can be defined as non-deterministic algorithm expressed by a set
of rules. The rules relate so called configurations of an automaton to each other. A configuration
is a tree on which some nodes are annotated with a state, more formally ¢ € T'(X U Q)—note, that
Q is defined as unary states, e.g. a state can be seen as a (special) node in a tree with exactly one
child node.
The rules have the following general shape:

Gy

— (EXAMPLERULE)

where ¢t and ¢’ denote configurations. C; denotes constraints on the configurations, part of them
or their sub trees. The style of rules presented here is inspired by Gentzen or tableaux calculus
rules and is often used in the context of type system formalization [41]. Whenever ¢ is matched in
the current configuration, ¢ can be replaced by t'. The rules are applied until no rule is applicable
anymore resulting in a sequence of configurations. If it is possible that more than one rules
is applicable on one configuration (which is usually the case), a tree of possible configurations
exists with sequences of configurations as paths through the tree.

The use of rules to express the acceptance procedure with finite automata is not common, yet
useful to introduce the rule formalism, that will be used throughout this thesis in different places.

1Indeed it is deterministic, but the difference is not relevant at the moment.
21t corresponds loosely to what will later on be introduced as “aggregated acceptance path in the derivation tree”.

88

Rules for Acceptance Procedure based on the Finite Tree Automata A given tree ¢ is member
of a language L(A) for an automaton A = (Q, X, Qr, A), if there is a derivation of configurations
based on the following rules with at least one closed branch of the derivation tree.

q€QF
teT(%)

q(t)

(ROOT)

The first rule states, that the given tree ¢ is accepted, when a configuration is derivable such
that ¢ is accepted with a final state ¢ € Q7. A branch of configuration derivations is successfully
closed. At least one successfully closed branch is necessary to prove membership of a given tree
in the language represented by the given automaton.

JED,
fl@(X1), o qn(Xn)) — a(f(Xy, ..., X)) € A
4,491, .-.,4n GQ
flai(ur), ... gn(un))

qa(f(ur, ... upn))

(REC)

The Rec rule relates two configurations, if the tree contains a (sub)tree matching the left hand
side of a transition in A. The (sub)tree is then replaced by the sub-tree on the right side of the
transition rule with all variables (e.g. X;) substituted with the bindings of the left hand side.
The only difference in the two configurations is the annotation of nodes with states. This is due
to the nature of the transitions—left and right hand side are identical except of the change of
intermediate state labeled branch parts.

Example 6.2
Given the tree f(g(a,b),c,g(c)) and the example automaton A presented above, the following
derivation justifies the recognition of the tree as an instance of the language represented by A:

89

6.1 INTRODUCTION TO REGULAR TREE AUTOMATA

g5(a) o}
f f
TN PR
g @ g g 92(C) g
N N
g5@) g6(b) C g5(a) o C
f
TN AN
ql(@ C g g q2(C) g
SN N
a b c a5@ g6(b) C

Aggregated Acceptance Path of the Derivation Tree Given a path of rule applications that
proves the membership of a tree in the language of the corresponding automaton, the aggre-
gated acceptance path is the tree resulting, when aggregating all the configurations of the path to
one configuration such that all state annotations interlaced with the path are part of this config-
uration. This artificial configuration gives the information, which node was accepted with which
transition. The transition can then be seen as some sort of type annotation for the nodes of the
tree. Later on (see chapter 8), for type checking Xcerpt, this is used to deduce the types of nodes,
as the transitions are shown to be related to grammar rules and therefore to grammar non termi-
nal symbols which in turn represent types or type names.

e-rules It is possible to extend the non-deterministic regular tree automata with e-rules. Those
are rules of the form ¢ — ¢’. Yet e-rules are convenient in some cases (e.g. for construction of

90

6.1.1 HANDLING RANKED TREES

an automaton based on some regular expression like formalism as shown in 6.3), they do not
enhance or restrict the expressiveness of non-deterministic regular tree automata.’

deterministic finite tree automata Another common variant of non-deterministic finite tree au-
tomata are deterministic finite tree automata. A tree automaton A = (Q, X, Qy, A) is deterministic
(DFTA) if there are no two rules with the same left-hand side (and no e-rules). Many text book
approaches of standard operations on automata like intersection and union require deterministic
automata. It is always possible to get a deterministic automaton of a non deterministic one, yet
the resulting automaton may be of exponential size with respect to the input.

6.1.1 Handling Ranked Trees

For XML and any ordered Semistructured data model, using regular tree automata for ranked
trees is not possible without modification, as the data models are indeed unranked. A common
way to handle unranked trees with tree automata is to map the unranked trees to ranked coun-
terparts. A way to achieve this, is to lift tree nodes to a view, where nodes are represented e.g. by
a node 3 item with the label as one child? of node /3, the first child of the unranked tree as second
child of node,3 and the following sibling—if present—of the current node in the context of its
parent node as third child of node,3. As node 3 is always of arity 3, it is necessary to provide an
additional node type denoting the end of a branch, e.g. the end of a list of siblings or an empty
child list—this node will be called eob , for end of branch.

Example 6.3
The unranked tree f[a, bd],] is mapped to the ranked counterpart

node(f,node(a, eob, node(b, node(d, eob, eob), node(c, eob, eob))), eob)

A corresponding automaton has to recognize the ranked transcription of unranked trees the
regular way.

Example 6.4
An automaton accepting the former example could for example be:

A= { {q1,92,93,9,95,96, 7, q8,99: G10, 11}
, {node;3,a,9,b/9,c/9,e0b/0}
) {Q11}
, { node(q3(X),q5(Y),q6(Z)) — qr(node(X,Y, 7))
, a— qi(a)

’ b_)q2(b

6

((Y),46(Z)) — gqs(node(X,Y, Z))
©(X),:(Y),q7(Z)) — qo(node(X,Y, Z))

((Y),q9(2)) = quo(node(X,Y, Z))

(0)

}

3For an equivalence proof see [21], page 20.
*A label I is mapped to a node [o in the ranked mapping.

91

6.2 AN AUTOMATON MODEL FOR UNRANKED REGULAR ROOTED GRAPH LANGUAGES

6.2 An Automaton Model for Unranked Regular Rooted Graph
Languages

In this section an automaton model for RyGs is the introduced. As R>G2 models languages of
unranked trees, handling of unranked ordered trees is essential for the automaton model sought
of.

As the class of tree grammars in use can be captured solely using automata operating on
unranked tree transcriptions of ranked ones, it is useful to introduce an automaton model solely
coping with such kind of languages. A new hyper graph based formalism is introduced. This
formalism has proved useful for didactic purpose along this thesis as well as easy to implement.
All methods involving data handling (e.g. validation or typing) with automata are formulated
directly on the unranked data formalism. For this reason, the automata are considered to be
automata for unranked tree, opposed to automata for ranked trees as presented in [21].

6.2.1 Labelled Directed Hyper Graphs as Non-Deterministic Regular Tree
Automata

In the spirit of non deterministic tree automata (for ranked trees) as briefly introduced in section
6.1, a hyper graph based automaton approach is presented now. The main difference is the treat-
ment of unranked trees or graphs in the style of XML abstract syntax trees over ranked trees in
the style of classical logical terms with symbols of fixed arity. The main difference in formalisa-
tion is the use of (hyper) graph edges as transitions instead of term transitions as presented in
section 6.1 and widely used in [21].

Definition 6.2 (Labelled Directed Hyper Graphs as Non-Det. Regular Tree Automata)

A non-deterministic regular tree automaton M is a 5-tuple (Q, A, F, R, ¥) with label alphabet 3,
states @), final states F' where F' C @, transitions A where A C (QxXxQxQ) U (Q x Q) (regular
transitions are of the domain @ x ¥ x @ x @ and e-transitions are of the domain @ x @) and a
set of root transitions R with R C A.> A transition (s,e) € A will be called an “e-transition” from
now on, where s is called “start state” of the transition and e is called its “end state”. A transition
(s,l,c,e) € A is a non-e-transition, where s is called “start state”, e is called “end state”, [is
called the “label” of the transition and c is called the “content start state”. The transition may be
traversed partly, or in one dimension, where a traversal along the component from s to e is called
“horizontal transition step” and from s to ¢ “depth transition step”.

The hyper graph automata introduce e-edges as commonly used for (string, not tree) finite au-
tomata, as e.g. presented in [44] and [25]. They do not raise the expressiveness of the automaton
model, they are just more convenient for automata construction based on regular expressions.
Algorithms for e-edge removal exist, as shown in [44] and [25].

Definition 6.3 (Projection of hyper graph components)

For an automaton A = (Q, A, F, R, X)) projection of the components is defined as Q4 = Q, Ay =
A, Fy =F, R4 = Rand ¥4 = X. The union of two automata A; and A, is defined as the
pairwise union of its components, e.g. A1 U Ay = (Qa, U Qa,, A4, UA4,,Fa, UF4,,Ra, U
Ra,, X4, UX4,). The difference of two automata is defined in a similar way, yet consistency of
all transitions must be retained, e.g. all states and symbols involved in transitions are defined
in @, respectively ¥. Useful functions for the construction of automata are the addition and
subtraction of transitions to (or from) an automaton defined as follows: A; + 7 = As such that
T = (s,l,c,e)and Ay U ({s,c,e}, {7}, {},{},{l}) = A2, Ay — 7 = Az such that 7 = (s,l,¢,e) and
Ay \ ({Sa ¢ e}’ {T}7 {}a {}a {l}) = As.

For the sake of concreteness an example automaton for the following grammar G is presented:

SUsually we need just one root transition, but for technical reasons it is convenient to have a set of root transitions.

92

6.2.1 LABELLED DIRECTED HYPER GRAPHS AS NON-DET. REGULAR TREE AUTOMATA

A=({ 0,1,2,3,4,5},
{ (0,a,2,1),
(2,b,5,3),
(331)7574)7
(4,2),
(5,a,2,5)},
{ 4,5},
(0,a,2,1),
{ ab})

Figure 6.1: An example hypergraph automaton in a typical textual representation on the left and
with graphical representation on the right.

The language generated by the grammar

element A — a[(B,B)"];
element B — b[A*];

)

is accepted by the following automaton

Comparing Hyper Graph Automata and Ranked Tree Automata Applied to Unranked Data
Transcription The hyper graph automaton model is a special notation for fixed arity tree au-
tomata where fixed arity nodes of arity 3 are matched—one position represents the label of the
matched unranked node, one for the content list of this node and one for the following sibling
node in the content list in which this node is contained. This is reflected in the hyper edges of
arity 4 relating (1) the start state of the transition, (2) the label, (3) the start state of the child list
and (4) the start state of the list of following siblings. The advantage of this approach is the ar-
guably less bulky notation, as the node abstraction is not explicit. The disadvantage is the need to
redefine many operations already available for ranked tree automata to hyper graph automata.
From a practical point of view the hyper graphs are arguably well suited as automata models for
type checking on Xcerpt.

Deterministic vs. Non-Deterministic Automata It is possible to restrict tree automata to deter-
ministic tree automata—deterministic tree automata have always exactly one matching transition
from a given left hand side to a new state along a given node label, while non-deterministic
automata may have more than one matching transition. The decision procedure for member-
ship test is simpler using deterministic automata, as all possible derivations (e.g. paths of a de-
cision tree) lead to a successfully closed branch. If no derivation rule is applicable any more,
the data tree is not member of the language represented by the deterministic automaton. With
non-deterministic automata, it is still possible, that earlier in the derivation tree another decision
(e.g. another choice of a transition) leads to a successfully closed branch. A deterministic algo-
rithm checking membership using non-deterministic automata has therefore to retract choices
in dead ends of the derivation tree, if further derivations are possible and membership has not
been proved at that moment. The property of not having to retract derivation choices is called
confluence. The decision procedure for membership test on deterministic automata is a confluent
system.

While deterministic automata are favorable for membership testing, their creation from reg-
ular expressions may be of exponential complexity. Generation of non-deterministic finite au-

93

6.2 AN AUTOMATON MODEL FOR UNRANKED REGULAR ROOTED GRAPH LANGUAGES

tomata based on regular expression as language specification can be done in polynomial time.®

As RyG5 uses regular expressions to specify content models, the translation of R,G5 to determin-
istic finite automata may be of exponential complexity.

Fortunately, all necessary operations for type checking, e.g. intersection, emptiness test, sub-
set test, can be implemented in polynomial complexity directly on non-deterministic automata.
This will be shown along this chapter when introduced.

6.2.2 Membership Test for a Tree using Hyper Graph Automata

An algorithm able to test membership of unranked trees in a language represented by a hyper
graph based automaton is presented. In contrast to the standard approach for ranked tree as
shown in [21] and introduced earlier, this algorithm is able to operate directly on the unranked
tree model without prior transcription of data instances to a ranked tree representation. Calculus
rules are used to explain the algorithm in a non-deterministic way. Rules are of the following
shape:

Cq

€1 :ay Ep . Ap

(EXAMPLE)

C; denote constraints on ¢, a, ¢;, a; and e, e; are trees or content lists of trees, i.e. sequences
of trees that all share the same parent node. By a, a; either states or transitions of an automaton
are denoted. An expression e : a will also be called a configuration of the automaton. The rules
relate configurations of automata. Two different kinds of configuration exist: (1) configurations
of shape ¢ : 7 where t is a tree and 7 is a transition, (2) or [t1,...,t,] : S where [t1,...,t,] is a list
of trees and S is a state of the automaton.

TE€ RA
(s,l,c,e) =7
se € Fy
t:T
(RoOT)
The ROOT rule matches the root of the data tree, if there is a transition in the set of root
transitions from which on a whole derivation tree can be found.

ce Fy
[]:¢

The END rule accepts an empty list, if the configuration involves an empty list and a state of
the set of final states.

(END)

TEAA
T=(s,1,¢c,€)
t1,...,tn] ¢
u (NODE)
t1, .. ytn] o T
n>1
TEAA
T={(s,l,c,¢€)
tq: to, -+ ,ty:
1T [Qa 9] € (LIST)
[tl,tg,...,tn]ls

SWith respect to the size of the regular expression.

94

6.2.2 MEMBERSHIP TEST FOR A TREE USING HYPER GRAPH AUTOMATA

In a successful derivation, applications of the NODE and the LIST rule are interwoven and
all branches end with an application of the END rule while the root of the derivation tree is an

application of the ROOT rule. A tree without possible derivation is not valid with respect to the
given automaton, multiple derivations may exist.

Example of a Tree Recognition using a Hyper Graph Automaton Given the tree a[b[], ba[b]], b[]]]]

and the automaton A as presented in the former example (example 6.1, the following derivation
is a possible recognition:

95

6.2 AN AUTOMATON MODEL FOR UNRANKED REGULAR ROOTED GRAPH LANGUAGES

a- : Y
— T~ X a--
b b . —
+ + ! (0 R SO |
- : 1:5 +
b T~ b ' a--
,,,,,,,,,,,,,,,,,,,,,, | .
+ L : b:(2.b,5.3) > b--:3
. L L
g :
T~ ! a--:1
o b : —
+ + I b """""""""""" b"'\ 4
3 : 1:5 +
b — ™~ ! a--1:5
——————————————————— b———\ 1
+ L5 : b:(2.b,5,3) > b--1:3
! < €L
a |
— ' a1
o R b-- : —
+ + v b b--1:4
. . i5 |
b/\ : a:(5.a,2,5) --1:5
R s : R
: 2 2
o :
P . a1
o R b : —
L3 V , 5)_—.—5— ———————————————— b:(3.b,5.4) --:4
5 - | |
— : a--1:5
Y b , —
L5 15 ' (O T — > p--
| & ?
a-i :
/\ | a---:1
9_75’ 7777777777777777 b~ ! b:(2.b,5.3)------> b--:3
3 e
T | -
| REECTIT ORI b--1:4 ' /\
L5 1:5 I 0 JE LT SRu—— > p--
' 1 a1
g1 |
— - a:0.a,2.1)--:1
b 7777777777777777777777 1
L:5 5) | X 5)_ ———————————————— ~ p--:2
5 | |
— : a-
¢ R — b:(3.b.5.4)-1:4 —
1.:5 1 I b ,,,,,,,,,,,,,,,, - b |
I 1 e

Operational Semantics of The Recognition Rules The rules presented above give an abstract
description of a recognition algorithm. Neither the control flow nor decision in case of ambi-

96

6.2.2 MEMBERSHIP TEST FOR A TREE USING HYPER GRAPH AUTOMATA

guity are captured by the rules. It is possible, that an automaton can recognize a data tree us-
ing different derivations, a concrete algorithm should be designed to either choose one of those
derivations, maybe driven by other parameters.

Exemplary, a simple algorithm choosing one rule is sketched now:

Algorithm 6.2.1: MEMBERSHIPTEST(A = (Q, X, A, S, F),e: a,p)

comment: p denotes the set of rules
comment: e denotes either a tree or a list of trees
comment: eithera € Qora € A

comment: To check a tree ¢, call MEMBERSHIPTEST(A,t:s,R) with s € S

Gy
Cm.
e1 . a (7
for — i ——~ " eR
. p-Lp
ifCiN---NC,y, = true
if MEMBERSHIPTEST(A, e; : a1, p) = true
AN ooo A
do

then < MEMBERSHIPTEST(A, e, : an, p) = true

then return (¢rue)

return (false)

An Upper Bound Complexity for Membership Test of Tree Shaped Data Various ways of
document validation with automata have been proposed in “Tree Automata Techniques and Ap-
plications” [21]. Easily adaptable to the presented approach is the non-deterministic bottom-up
approach. The upper complexity is polynomial in the number of nodes and the number of states.
Applied to the former algorithm this can be explained as follows:

1. On each node, there may be at most all rules to apply, each with all states or edges (depend-
ing on the rule—some apply to states other to edges) to be checked. The number of rules
is constant (there are 4 rules), the number of edges is linear in the size of the grammar, as
shown in section 6.3.

2. A naive, top down, approach could easily result in a combinatorial search, yielding expo-
nential complexity. A bottom-up approach is an easy way to overcome that:

(a) Each child node is reached up in a recursive application in all possible typing. Note,
that reaching up in the recursive application corresponds to reaching

¢ the typed sequence of nodes to it’s parent node in applications of the NODE typing
rule,

¢ the typed sequence of following siblings to it’s direct preceding sibling in the ap-
plications of the LIST typing rule.

(b) Only the typed contributions, that can contribute to successful typing in a given recur-
sion are kept, at the same time, if they occur in different successful typing in the given
recursion, they can be reused without recalculating them—their validity is indepen-
dent on their context.

3. When checking a node and a type (state or transition), this type may have to be checked
against all types returned by the recursive calls (at most two of them exist—one for the
following sibling and one for the content model). As a typed node may at most have as
many types as edges exist, this step is quadratic in the number of edges.

97

6.2 AN AUTOMATON MODEL FOR UNRANKED REGULAR ROOTED GRAPH LANGUAGES

4. Hence, as consequence of (1), each node at most has ‘number of edges’ types, and as conse-
quence of (2), it is not necessary to calculate the possible types of a node more than once. As
consequence of (3) each node takes at most quadratic time in the computation—this gives
us a polynomial complexity in the order of O(N x M?) where N is the size of the tree (or
the number of nodes) and M is the size of the automaton (or the number of edges as an
upper bound).

6.2.3 Recognition of a Rooted Graph using Hyper Graph Automata

The recognition of rooted graphs is defined in analogy to the recognition of trees—a rooted graph
is recognized by an automaton, if it is in the language accepted by this automaton. There is a cer-
tain correlation of the acceptance of a word by an automaton with the recognition of equality
of two words: for each word, it is easy to obtain an automaton such that exactly this word is
accepted. Therefore, this automaton provides a way to decide about equality of two words. The
most precise way to judge about equality of two graphs is graph isomorphism. The decision pro-
cedure for graph isomorphism has exponential complexity. Assuming, that we base a recognition
procedure for graphs on graph isomorphism—a graph is accepted, if it is isomorphic to a graph
in the language accepted by the automaton—then the while process has to have exponential com-
plexity, as otherwise the graph isomorphism itself would have sub exponential complexity (e.g.
it could be reformulated by means of graph recognition)
A weaker kind of membership relation between graphs will be chosen: the simulation relation—

a graph is accepted by an automaton, if there is an instance in the language accepted by the
automaton that simulates the graph.

A simulation preorder is a relation between [graphs] associating systems which be-
have in the same way in the sense that one system simulates the other. Intuitively, a
system simulates another system if it can match all of its moves.”

A first advantage of using the simulation preorder as base of the membership test in the recog-
nition procedure is, that the decision procedure can be achieved in polynomial time. Second ad-
vantage, Xcerpt is based on a non standard unification called simulation unification, which itself is
based on simulation preorder. In [43] (especially see section 4.4 “Query Evaluation: Ground Query
Term Simulation” in [43]) the simulation preorder on so called ground query terms—of which data
trees and graphs are a subset—is presented including also complexity results. Ground Xcerpt
query term simulation has been shown to be a useful relation between trees or graphs. Arguably
simulation preorder reflects well a notion of “expected result” for many applications of querying
Web and Semantic Web data.

(Possibly Infinite) Tree Representations of Graphs As the recognition procedure is defined for
trees so far, it is arguably useful to base the handling of graph shaped data on tree recognition.
Note, that trees are a special kind of graphs, so trivially those graphs are already handled. For
directed, acyclic graphs it is always possible to find a spanning, finite tree, where nodes accessible
from one node chosen as a root using different paths are duplicated in the tree representation. In
general, a graph can be spanned by different trees, capturing different possible graph traversals.
As the root in a rooted graph is fixed, there is only one possible such spanning tree. Cyclic graphs
can conceptually be represented using infinite trees where infinite always means finite in breadth
(anode in a finite graph can only have finite many successors, so can the corresponding node in
the tree) and branches of infinite depth for cycles.

By applying the tree approach for recognition on acyclic graphs, an algorithm is achieved that
possibly checks the same nodes multiple times, but that always terminates. It is possible, that the
same node is checked multiple times using different or the same automata transitions. Arguably
it is reasonable to remember acceptance results of nodes with corresponding transitions, as not
only the testing of validity of a certain node in a context can be omitted, but also the testing of all

7From http://en.wikipedia.org/wiki/Simulation_preorder.

98

6.2.3 RECOGNITION OF A ROOTED GRAPH USING HYPER GRAPH AUTOMATA

child nodes can be skipped. The process of remembering earlier calculations in this state is called
memoization.

By applying the tree approach to cyclic graphs, the recognition process gets stuck in non
termination. However, the explained extension of memoization guarantees termination. This
is due to the fact, that any data tree node can in worst case only be tested against finite many
transitions of the automaton, as the automata are finite.

An Algorithm for the Recognition of Rooted Graphs The former algorithm for tree recognition
is now extended by memoization to recognize rooted directed graphs. A graph is recognized by
an automaton A4, if it is simulated by a graph in the language L(A). The set of rules will not be
affected by this change, but the algorithm for the application of the rules on a given data tree. This
emphasizes the declarative nature of the rules and the fact, that conceptually trees and graphs
are handled in a similar way:

Algorithm 6.2.2: MEMBERSHIPTEST(A = (Q, X, A, S, F),e: a,p)

global memo
comment: p denotes the set of rules

comment: e denotes either a graph node or an adjacency list of graph nodes
comment: eithera € Qora € A
comment: To check a graph ¢ call MEMBERSHIPTEST(A,t:s,R); s € S and memo = {}

ife:a— b€ memo
then return (b)

memo — memo U {e : a — true}
Ch
: ifCiN---NCy, = true
e Cm if MEMBERSHIPTEST(A, e : a1, p) = true
€1 :a1 €n:an VANRREIAN
for - Ep
epiap then { MEMBERSHIPTEST(A, e, : ay, p) = true
then return (true)

memo — memo \ {e: a — true}
memo — memo U {e : a — false}
return (false)

An Upper Bound Complexity for Membership Test of Graph Shaped Data So, the member-
ship test for graph shaped data presented here is an extension of the membership test for tree
shaped data—the result of the validation of nodes is memorized and used to end validation of
cyclic structures. The complexity of the membership test of a node in a graph shaped document
is hence the same as the complexity of a node validation for tree shaped data (see the end of
section 6.2) plus the costs for memorizing the each nodes validation result. If the data structure
used to represent nodes has the ability to store meta data of the validation process, the overhead
is constant, hence complexity of graph validation based on simulation has the same complexity
as validation of tree shaped data. If, as in the pseudo code example above, a look-up table is used
for memorization, the factor for updating and reading the look-up table has to be added to the
cost of the validation of a node. However, a hash table can provide this with logarithmic (over the
number of nodes in the data graph) overhead, hence the cost of graph validation with look-up
table based memorization is the same as the costs for tree shaped data (section 6.2)—polynomial
in the size of the data graph.

99

6.3 A CALCULUS RELATING AUTOMATA AND R2G>

6.3 A Calculus Relating Automata and R>G>

Yet the presented automaton model is well suited as execution model for recognition of trees and
graphs on regular rooted graph languages, it is not convenient as language definition formalism
for the end user of applications of such problems—e.g. for document schema authors and pro-
grammers. XML Schema, DTD, Relax NG and R»G;, are arguably appropriate formalisms for this
task.

The following set of rules describe an algorithm for the generation of an automaton, as for-
merly introduced, for a given RG> instance. The rules are strictly defined along the structure
of the R2G; syntax, hence an implementation could be a recursive descend function along the
abstract syntax tree of an R»G instance. Adapting the algorithm to Relax NG or DTD as input
languages is not difficult—the rules have to be adapted to the abstract syntax components of
those languages. Adapting the algorithm to XML Schema as input language requires some addi-
tional processing doe to object oriented modelling features, but application to the tree grammar
based core of XML Schema is comparable to the translation of R2G5.

The rules have a local aspect, in that they are driven by the abstract syntax tree and there is
no context sensitive property affecting the applicability of the rules. Additionally to the local be-
haviour of the rules with respect to the abstract syntax tree, two global environments are altered
and queried by the algorithm: the automaton, constructed while processing the abstract syntax
tree, accepting exactly the language generated by the grammar at the end and a relation relating
type names of the grammar to labels and start states of the automata parts implementing the
content model of the given type name. In implementation of the rules, it is possible to split the
context sensitive processing (look up of automaton components for type name definitions) and
the context free processing (i.e. the recursive descend along the abstract syntax tree of the RyG2
definitions) in different phases.

The rules have the following general structure:

Ay
Ap
t1 — (21,0 . tn, — (ip,0
1 (1, 1) n’ (n n) (EXAMPLE)
T(t1,...,tn) — (i,0)
By T'(t1,...,t,) a term of the structure of the R2G4 syntax definition is denoted, ¢; are its sub-

terms. The rules hence relate the necessary automata construction operations with the automata
construction operations of its sub-terms. Rule applications are functional, mapping to a tuple of
states, denoted by (4, 0), (i;,0;). Some states in the tuples above the line may occur in the tuple
below the line, but the tuples above the lines, i.e. the tuples of the applications of the sub-terms
t; are independent from each other. In the situations, where the states are irrelevant, the tuple €
is used. An implementation may return any tuple of states or nothing here (i.e. null values).

By A4, a condition on the automaton A is denoted. This may imply editing the automaton
in an implementation. The conditions are always of the form A’ C A—there are always positive
expressions about components of the automaton, never negative ones, hence a concrete imple-
mentation of the algorithm in an imperative programming language can implement the condition
as an addition of the components of A’ to the components of A.

By Aj, querying or altering the global environment L is denoted. L C N x ¥ x S'is a ternary
relation between non terminals as found in the R>G; instance, symbols or term labels, and au-
tomata states.

As type names on the right hand side of an R»G5 rule may be used, even if their declaration
(i.e. the rule with that type name on the left hand side) is still pending, more than one pass over
the abstract syntax tree of the RyG instance is necessary in an implementation of the algorithm.
The rule based abstraction of the algorithm neglects the necessity of multiple passes.

100

(A, Lee)t{eb, {}) € 4
L(N,) = (2 1r,cr,7)
p; = element N; —[[---]
A | P1 (i1,01) A | Pn (inaon)
A | p1,--+,pn,root =N, — (7,7)

(GRAMMAR)

The automata construction rule for grammars describe the relationship between the results of
automata construction rule applications for all R,G5 rules in a given grammar. The result state
tuple of application of this rule has no meaning and is hence undefined. An implementation may
safely return e.g. null-values or any dummy tuple here. The result state tuples of the automata
construction algorithm applied to the rules (which neither have use or meaning, as it will be
shown in automata construction rule for RyG5 rules) are not considered for any construction and
can hence be ignored. Apart of recursively applying automata construction to all rules, the root
declarations are treated in the grammar case.

({s. et {th{(s.l,sre,€)}, {}, {ere}) €A
L(N) = (I, sye)
Al re — (Spes€re)

RULE
A | element N — [[re] — (s7,€7) ()

An application of the automata construction rule to an R,G5 rule results intentionally in a
meaningless state tuple, which is no problem, as the tuple is not used—recall, that these rule
application may only occur in the context of a grammar rule application ignoring the result state
tuple nevertheless. The look-up table or global environment L relates the given type name on the
left hand side of the R2 G rule to the label of the type term on the right hand side and to the start
state of the automaton part realizing the content model of the right hand side type term. For an
application of the automaton construction rule to an R»G5 rule the automaton contains an edge
(8,1, sre, €), two states not introduced elsewhere, s and e and the state e, can be declared as final
state.

({s,e}, {1} {(s, L, sre,)}, {3 {ere}) € A

Al re — (Sre,ere)
Al llre] = (sye)

(TYPETERM)

The type term automata construction rule is similar to the previously introduced “Rule” rule,
except that the look-up table is not involved, as a type term by itself is not associated to a non
terminal or type name. Recall, that type terms may occur at the right hand side of a rule, as well
as as child terms of type terms—the first case is caught by applications if the “Rule” rule, the
second case by applications of the “Type term” rule. The result tuple consists of two new states.

{seh {3 {(s, e {1 {H) € A
L(N) = (L, ¢)
A| N — (s,e)

(TYPENAME)

The “Typename” rule is applicable to type names occurring in type terms. For each such type
name, the label and content model start state introduced by the corresponding application of the
“Rule” rule is being used to construct an edge from a new state s to a new state e. The new states
form the result tuple of the rule application.

({}a {}v {(67“61) 57“82)}) {}a {}) g A

A | rep +— (ST6176T61> A ‘ réa = (87“6276’)"82)

(RESEQ)

A | rei,reg (57‘61767“62)

The automaton construction for a sequence of two regular expressions (recursively of arbi-
trary many expressions) is being handled by a “ReSeq” rule application. The result tuples of

101

6.3 A CALCULUS RELATING AUTOMATA AND R2G>

the automaton construction rules applications to the two regular expressions to be sequenced
are used to (1) return a result tuple consisting of the first state of the first expression’s tuple and
the last state of the second expression’s tuple, and (2) to tie the two automata parts of the two
expressions together using an s-edge.

All the automata construction rules for regular expressions are similar—the result of automata
construction of sub-expressions is being connected in some way using e-edges, sometimes not
involving new states. The explanation of the rules will be presented in a graphical way from
now on—in this visualisation, the automaton part being constructed is represented as a diamond
shaped polygon, sub automata as well and contained inside of the bounds of the automaton.
The first state of the tuple is being depicted as a black circle, the second as a little black square.
e-edges are depicted by dotted arrows. The text in the graphics has mere documentary character.

({s,e}, {3 (s 8re1)s (5, 8re5)5 (€ress €), (€resr @)}, {1, {}) € A

A | rey — (srelaerel) A | reg — (ST6276T62)

REDIS
A | 7"61|7‘€2 = (3’6) (L

(O {Grerene)} (1) € 4 A
;14 | ::? : (::, e:)) (REOPT)
(0 O {lere 500} (1) € 4 A
e war V

({1 {(sresere)s (eres sre) b {1) € A

A re — (Spes€re) 4 >
(REKLEENE)
Al re* = (Spe,ere)

An Upper Bound Complexity for The Non-Deterministic Automaton Generated out of an
RyGoInstance The cost of constructing an automaton out of a grammar is polynomial in the
size of the grammar, the size of the resulting automaton, given in the number of edges, is in the
order of O(N) for N as the size of the grammar (i.e. abstract syntax items of the parsed gram-
mar), the time complexity is O(N) as well. To reason about the complexity, it is good to evaluate
the cost of each automaton generation rule. The total cost is then the sum of all generation rule
applications, as each rule application consumes a part of the input grammar, no backtracking is
needed (as the choice of the applicable rule is unambiguous).

ReDisj A disjunction of two regular expressions adds the cost of four c-edges to the cost of the
translation of the two regular expressions. It can be assumed, that construction of the edge
has constant complexity.

ReOpt An optional regular expression adds the cost of one c-edges to the cost of the translation
of the regular expression.

RePlus A plus-adorned regular expression adds the cost of one e-edges to the cost of the trans-
lation of the regular expression.

ReKleene A Kleene-star-adorned regular expression adds the cost of one c-edges to the cost of
the translation of the regular expression.

102

ReSeq Sequencing two regular expressions adds no cost to the cost of the two regular expres-
sions.

Typename Translating a type name to an automaton component costs as much as the construc-
tion of an e-edge. Looking up the target of the edge in the look-up table can be assumed
to be able in logarithmic time with respect to the number of type names in an appropriate
data structure, like e.g. a hash table.

Typeterm Translating a type term corresponds to the construction of an edge. It can be assumed,
that construction of the edge has constant complexity, which adds up to the translation of
the regular expression for the content model.

Rule A rule constructs no new content, but has to alter the look-up table—again, in an appro-
priate data structure, this can be assumed to be able in logarithmic time with respect to the
number of type names, which adds up to the translation of the right hand side type term.

Grammar Translating a grammar into an automaton costs as much as adding up the costs of the
translation of all rules.

6.4 Some Set Theoretic Computations on Hyper Graph Automata

For the purpose of static type checking, it is necessary to analyse some set properties on lan-
guages, namely (1) emptiness of a language, (2) the subset property between two languages and
to (3) calculate the intersection of two languages.

6.4.1 The Emptiness Test

The emptiness test finds out, if for an automaton, there may be any data instance accepted by this
automaton, if therefore the language accepted by the automaton is non empty. For an automaton
to accept finite trees, it is obviously necessary to find paths along the hyper edges ending in final
states. For infinite trees or graphs containing loops, this property can be relaxed, as such data
instances can be accepted by loops without final state in the automaton. Automata constructed
from R;G4 definitions arguably always accept non empty languages for three reasons: (1) As
they have a root transition by definition (based on the mandatory root declaration). (2) Along
the breadth axis of the automata there is always either an end state at the end of each path or the
path is a loop containing an end state. This is due to the fact, that the last state constructed by
regular expression decomposition is always an end state, or a looping ¢-edge is added to an end
state terminated path to express repetition. (3) Along the depth axis there is either an end state
due to empty content, or a transition to a state representing another grammar rule. This state
again is part of a non empty breadth axis and either of a final state terminated depth axis or of a
depth axis recursively fulfilling reason 3. A depth axis loop without final state can therefore only
accept infinite trees or graphs containing an appropriate loop.

Nevertheless, automata representing only empty languages exist in practise: intersection of
two automata can lead to an automaton accepting only empty languages, e.g. by construction of
an automaton without start transition or by construction of an automaton with root transitions
with all outgoing edges ending only in branches without loops and final states. Detection of
automata representing empty languages is important for type checking.

An algorithm for detection of emptiness for a given automaton is sketched now:

103

6.4 SOME SET THEORETIC COMPUTATIONS ON HYPER GRAPH AUTOMATA

Algorithm 6.4.1: ISEMPTY(A = (Q, %, A, S, F))

memoisation «—create a lookup table of truth values with index over Q)
comment: memoisation is defined in each call of ISEMPTY().

procedure RECURSIVETRANSITIONTEST(d = (s,1, ¢, ¢€))
return (DEPTHTEST(c) A BREADTHTEST(e))

procedure RECURSIVETRANSITIONTEST(d = (s, ¢€))
return (BREADTHTEST(e))comment: handling of e-transitions.

procedure BREADTHTEST(v)
if v € memoisation
then return (memoisation[v])
memoisation[v] — true
for (v,l,c,e) € A
if RECURSIVETRANSITIONTEST((v,, ¢, e)) = false
memoisation[v] — false
then < return (false)
exit

do

return (true)

procedure DEPTHTEST(v)
if v € memoisation
then return (memoisation[v])
memoisation[v] — false
for (v,l,c,e) € A
if RECURSIVETRANSITIONTEST((v,,c,€e)) = false
memoisation[v] — false
then < return (false)
exit
memoisation|[v] « true
return (true)

do

main
foro € S
if RECURSIVETRANSITIONTEST(§) = false
do ¢ en {ret.urn (false)
exit
return (true)

An Upper Bound Complexity for the Emptiness Test The complexity of the emptiness test is
linear in the size of the automaton. This is given by the fact, that the graph structure of the au-
tomaton is traversed to check if the paths in depth and breadth are closed. When graph traversal
comes to a state already visited, the memoization stops the recursion at the (apparently cyclic)
branch and returns the value of the last computation at this state. Hence, no edge is traversed
twice. The Cost for the look-up of the memoized states is logarithmic in the size of the automa-
ton, but if the states are extended with some mean of annotation of the traversal, the look-up can
be replaced by a constant check of the annotation.

6.4.2 Intersection of Regular Rooted Graph Automata

Calculating the intersection of two regular languages is a common exercise in text books about
theoretical computer science and automata theory and it is also of high practical use. Given e.g.

104

6.4.2 INTERSECTION OF REGULAR ROOTED GRAPH AUTOMATA

two language definitions for two versions of a data format, the intersection reflects a kind of
conservative transitional data format providing guaranteed backward and forward compatibil-
ity. In type checking of the Xcerpt query language, non empty intersection can play an important
role for checking selection constructs: given a query with multiple occurrences of the same vari-
able, the occurrences may have different types. If the types have empty intersection, no data
exists conforming the type constraint of the variables, therefore the selection may never select
any valid data with respect to the types and is therefore arguably useless. Note, that different
type annotations may either occur due to a query programmers annotation or due to type infer-
ence. Checking consistency of such concurrent type annotations in Xcerpt query terms can also
be handled using an emptiness test for the type intersection.

Intersection of Regular (String) Languages Using DFAs The presented approach is a classical
text book approach as found in [25] and [44]. It serves as introduction to a technique of calculating
intersection and will be modified to non-deterministic and then to regular graph automata.

It is easily possible to construct the intersection of L; and Ly, if union and complement are

defined, as generally Ly N Ly = L1 ULs holds. A direct construction is presented, as neither
union, nor complement is presented by now, and is not strictly necessary for type checking of
Xcerpt later on. A direct construction is achieved by simulating parallel execution of the two
deterministic finite automata representing L; and L. This corresponds to the construction of the
product automaton:

Let deterministic automata be defined as 5-tuples (Q, %, A, s, F) with @ as the states of the
automaton, ¥ as the alphabet of the corresponding language, s the start state and £ C @ as the
final states. The transitions A C @ x ¥ x @ are defined such that for every v € @) and for every
[€ ¥ there is a transition (v,l,v") € A and no other transition (v,l,v") € A with v/, v" € @ and
v £,

For Ly accepted by A; = (Q1, %1, A1, s1, F1) and Ly accepted by Az = (Q2, X2, Az, s2, F), the
intersection Ly N Ly is accepted by An = (Q1 X Q2 , Z1 N2, An, (s1,82), F1 x Fy) where
An((p,p'),a,(q,q)) = (A1(p,a,q), A2, a,q')).

See Figure 6.2 for an example on how to get a product of two automata.

An algorithm for the construction of an automaton An = (Qn, X, An, sn, F) from two au-
tomata A; = (Q1, 21, A1, 51, F1) and Ay = (Q2, X2, Ao, s2, Fb) is presented now:

Algorithm 6.4.2: INTERSECTIONDFA(A;, As)

Zﬂ — 21 N 22
sn <« (s1,82)
Qn — Q1 X Q2
Fr — {(Ul,vz) € Qn | v € F1 ANvgy € FQ}
for (Ul,l,Ull) € A
d {for (va,l,vh) € Ag
do {Aﬁ — ((U17v2)’lv (’Uiavé))

Extending the Approach to Non-Deterministic Finite Automata The presented approach has
the drawback to require deterministic automata, that may have exponential size of a correspond-
ing non-deterministic automaton. The automaton model focused on in this thesis are usually
non-deterministic ones. Fortunately, the approach can be extended to non-deterministic au-
tomata without exponential blowup in time or space.

The difference between deterministic and non-deterministic automata in a nutshell is (1) non-
deterministic automata may have spontaneous state transitions along so called e-edges without
consumption of an input symbol, and (2) while each symbol in ¥ has exactly one outgoing tran-
sition from each state in deterministic automata, any number of such edges may occur in the
non-deterministic case.

Let non-deterministic automata be defined as 5-tuples (Q, X, A, s, F') with @ as the states of
the automaton, 3 as the alphabet of the corresponding language, s the start state and F' C Q) as

105

6.4 SOME SET THEORETIC COMPUTATIONS ON HYPER GRAPH AUTOMATA
b :

s

©

ONO

Nozes

Figure 6.2: The product automaton on the right accepts the intersection of the language of the
two automata on the left.

the final states. The transitions are defined as A C ((Q x X x Q) UA,) with A. C (Q x Q).

To simulate the parallel execution of two automata in a product automaton with an epsilon
transition (a, e) in one automaton, it is necessary to provide an epsilon edge for any product
state (a,v) to the corresponding state (e,v). This reflects the possibility of a spontaneous tran-
sition every time the automaton with a € @ is in state a, independent of the state of the other
automaton.

To handle the arbitrary amount of edges with one label from a state, no further change is
necessary, as the deterministic algorithm already relates all edges of one automaton with all edges
of the other one, as long as the transition labels match. In the deterministic case, by definition
only one edge per state and label exists, therefore the same algorithm behaves as defined for the
deterministic case.

An algorithm for the construction of an automaton An = (Qn, Xn, An, sn, Fr) from two non-
deterministic automata A; = (Q1, X1, A1, 1, F1) and Ay = (Q2, X2, Ag, 59, Fy) is presented now:

Algorithm 6.4.3: INTERSECTIONNFA (A4, A2)

Eﬁ — 21 n 22
Sn (81382)
Qn — Q1 X Q2
Fr — {(’01,1)2) € Qn | vy € F1 Nvg € F2}
for (vq,1,v]) € Aq
do {fOI‘ (UQ,Z,U/Q) € AQ
do An Aﬂ{((vth)v 2 (Ullvvé))}
for (1)1,1}/1) ISWAN]
do for vy € Q>
do Any — An U {((01, v2), (04, 02))}
for (’L}Q,’Ué) ISWAN]
do {for v € Q1
do Am — Am @] {(('[)1,’[]2), (Ul, 'UQ))}

Extending the Approach to Graph Automata The main difference of string- and graph au-
tomata is the shape of the transitions—triples for string automata and quadruples for graph au-
tomata. Fortunately, the calculation of an automaton accepting the language intersection of two
automata, is easily derivable from the string automaton case. Informally, the only difference is
the handling of the third state.

106

6.4.3 AUTOMATA BASED SUBSET TEST FOR TWO REGULAR ROOTED GRAPH LANGUAGES

Algorithm 6.4.4: INTERSECTIONNDFTA(A,, A5)

Eﬁ — 21 N 22
let (al,ll,cl,el) = S1
let (112, lQ,CQ, 62) = S9
sn — ((a1,a2),1, (c1, c2), (€1, €2))
Qn — Q1 X Q2
Fr — {(1)1,1}2) € Qn | vy € F1 Nuvg € F2}
for (va,, 1, Ve, Ve,) € Aq
do {for (Vs by Vey, Ve,) € Ag
do Aﬁ — Aﬂ{((vanvtm)? lv (06171]62); (U617v62))}
for (vl,v'l) €A
do {for vo € Qo
do An — An U{((v1,02), (v1,02))}
for (’L}Q,’Ué) € Al
do {for v € Qq
do An — AU {((vl,vg), (Ul, 1}2))}

Figure 6.3 illustrates the cross product of two automata. The automata accept the languages
defined by the grammar (for the upper left automaton)

root A;
element A = a[Ax];

and the grammar (for the lower left automaton)

root A;
element A = a[A|IB];
element B = b[1;

The resulting automaton accepts the language represented for example by the grammar

root A;
element A = a[A];

The resulting intersection automaton contains some unreachable states and transitions, that
could easily be removed using some minimization algorithm or simply by applying a reacha-
bility algorithm. As this is not essential to the tractability of type checking later on, automata
minimization will not be considered.

An Upper Bound Complexity for Intersection of two NDFTA The complexity of calculating
the intersection corresponds to calculating the cross product of the two automata A; and A,. For
M =|A;|and N = |A,| as the sizes of the automata (e.g. the number of edges), this gives a time
and memory complexity in the order of O(M x N).

6.4.3 Automata Based Subset Test for two Regular Rooted Graph Languages

Given a regular language, testing if it is a subset of another regular language, is an important
task e.g. in type checking. If e.g. it is possible to infer the type of a variable used in the output or
construction part of a query (maybe the type is implied by a selection), this variable is well typed
with respect to a given type, if the inferred type is a subtype of the type given by the programmer.

Another very practical use case is schema checking for special document schemata: if one
wants to make a schema for HTML documents of a certain shape, e.g. a web page supporting the
corporates look and feel by using certain navigation elements, testing that this schema represents
a subset of HTML is desirable.

107

6.4 SOME SET THEORETIC COMPUTATIONS ON HYPER GRAPH AUTOMATA

OJONO

QO

©
QO
O

O
O

Figure 6.3: The product automaton on the right accepts the intersection of the graph language of
the two automata on the left.

[ONCONONONONONONONO,

108

6.4.3 AUTOMATA BASED SUBSET TEST FOR TWO REGULAR ROOTED GRAPH LANGUAGES

The approach for subset testing presented here is based on the simulation preorder between
two automata. A simulation preorder is a relation between state transition systems associating
systems which behave in the same way in the sense that one system simulates the other. Formally,
given a state transition system with states .S, a simulation preorder is a binary relation R C S x S
such that if (p,q) € R, then for each transition p % p’ there is a transition ¢ % ¢ such that
(', q) € R.

For string language automata (DFA’s or NFA’s) A; and As, simulation preorder is specialised
in such a way, that A4; and A, are in simulation preorder—written A; < A, later on— if each
initial state of A; simulates in an initial state of A, and for each final state of A; there is a final
state in A, in which it simulates. For automata defined as A = (S, T, F, so, X) where S is the set
of states, T' C S x ¥ x S is the set of transitions, sg € S is the start state and F' C S is the set of
final states, the definition of the simulation preorder over label equality can be written as:

Ay = Ay iff V(s lie) € Ta,3(s',1',€') € Tay.(s,1,e) X (s',1',€")
(s,l,e) X (s',U,e) iff 1=1U" A
V(e,1,€) € Ta,3(e',1, &) € Ta,.(e,1,6) < (¢/,1,€)

Extending the definition of automata simulation to graph automata simulation is strait for-
ward: the recursive < condition is tested along both dimensions of the hyper edges as used in
the tree automata:

A1 R Ay = V(s ce) € Ta, (8,1, e') € Tay.(s,l,c,e) < (8,1, €")
(s,l,c,e) 2 (s',1,c,e) = 1=1 A
V(e,1,¢,€) € Ta,3(e', 1, ,€) € Ta,.(c,1,6,8) < (',1,¢,&) A

V(e,77z,?) € TA13(6,77 , C ,?,) € TAQ.(677,?7€) 2,1l ,c,e)

o

An Algorithm for Subset Graph on Tree Automata

As a sketch for implementation and for complexity analysis of the presented simulation relation
on tree automata, the following algorithm is proposed. The algorithm is applied to two automata
A and As:

¢ a two dimensional matrix of truth values of size |T4,| x |T4,| is initialized in such a way,
that for each transition pair (71, 72) € Ta, X T4, the corresponding field in the matrix is
true, if the labels of 7 and 7 are identical and false otherwise.

® set each matrix field with value true to false, if ((s1,1,¢1,€1), (2,1, c2,¢e2)) is the corre-
sponding transition pair and either s;, ¢; or e; is a final state but not the corresponding s»,
Cg Or €9.

¢ modify the matrix until a fix point is reached by

- set each matrix field with value true in the matrix with corresponding transition pair
((s1,1,c1,€1), (s2,1,ca,€e2)) to false, if for any transition 7 = (eq, ! . C1. e_{) in A; there

is no corresponding transition m» = (e, 32, ;2) in As such that the field (71, 72) in the
matrix is true.

— set each true field in the matrix with corresponding transition pair
((s1,1,c15€1), (52,1, c2,€2)) to false, if for any transition 71 = (c1,/,¢1,€1) in A; there

is no corresponding transition 7, = (c2,1, ¢, €2) in As such that the field (71, 72) in the
matrix is true.

e If for any transition 7y € A; there is no corresponding transition 7, € A, such that (71, 72) in
the matrix is true, then the language accepted by A, is not a subset of the language accepted
by A2 .

109

6.4 SOME SET THEORETIC COMPUTATIONS ON HYPER GRAPH AUTOMATA

110

{ 1,2,3,4,5,6,7,8,9},

{ (17a"3’2)7
(37a,374)7 Al =
(4,a,3,6),
(6,b,6,7),
(7,¢,8,9),
(6,0,5,6),
(5,a,3,6),
(3,a,3,6)},

{ 2767) }’
(1,a,3,2),

{ a,b,c})

10,11,12,13,14, 15},
(10,a,12,11),
(12,a,12,14),
(14,b,15,14),
(15,a,12,13)},
11,13,14},
(10,a,12,11),

a,b})

Figure 6.4: Two automata used to demonstrate the sub-language test.

Figure 6.5: Visual representation of the two automata in example 6.4

6.4.3 AUTOMATA BASED SUBSET TEST FOR TWO REGULAR ROOTED GRAPH LANGUAGES

Example 6.5
The condition A; C As is to be tested using the presented algorithm.

A run of the algorithm is visualized with a table representing the matrix. The edges of A;
are used as column labels and the edges of A, as row labels. Final states are emphasized using
a bold font. The cells contain a series of ones (1) and zeros (0) representing the truth values true
and false a field has in various stages of the computation. Note, that if a 0 occurs in the cell, the
0 is the ultimate value of this cell, as the algorithm only changes true values, in case of conflicts,
to false values. 4 states of computations are represented, so either a cell contains 1,1, 1,1 and is
thereby true, or it contains less entries where the last state is 0, e.g. 1, 1, 0. The stages represented
are:

1. after performing the label check,

2. after checking, that final states in transitions of A; fall on final states of corresponding
transitions of A,

3. first iteration of checking following transitions in both dimensions (two cells changed truth
value)

4. second (and last) iteration of checking following transitions in both dimensions (no cells
changed truth value)

1Ay Ay — || (10,a,12,11) | (12,a,12,14) | (14,b,15,14) | (15,a,12,13) |

(1,a,3,2) L1,1,1 1,1,0 0 1,1,1,1
(3,a,3,4) 1,0 1,0 0 1,0
(4,a,3,6) L1,1,1 1,11 0 1,1,1,1
(6,0,7,6) 0 0 1,1,0 0
(7,¢,8,9) 0 0 0 0
(6,0,5,6) 0 0 L1,1,1 0
(5,a,3,6) L1,1,1 1,11 0 L1,1,1
(3,a,3,6) 1,11 1,1,1,1 0 1,1,1,1

After the last iteration, the columns are checked for consistency, i.e. each column should con-
tain at least one true cell, so a table cell with 1,1,1,1. As this is the case, A; is an automaton
accepting a sub-language of the language represented by A,.

An Upper Bound Complexity for Subset Test The presented algorithm shows, that the subset
test has an upper bound of polynomial time and space complexity. The space complexity is
determined by the matrix that is of the size of the product of the number of transitions of both
automata, i.e. O(]Aq| x |As]). The time complexity is the sum of initializing the matrix (including
label test and final state condition) and the iterative refinement of the matrix. The refinement
process must terminate, as either no change is made to the matrix and then the refinement is
over, or at least one cell changes truth value from true to false. Truth values are never altered
from false to true again. Assuming the worst case, that on each iteration process just one cell
is altered, we need |A;| x |Aq]| iterations, each iteration has a complexity of O(|A1| x |Az]). The
final step is the consistency check of the columns, which also takes O(|A;| X |Ag|) time. The total
costs therefore are O((k + (|A1] x |Az])) X (JA1| X |Az|)) with k as factor for initialisation cost
and consistency check of one cell.

111

6.4 SOME SET THEORETIC COMPUTATIONS ON HYPER GRAPH AUTOMATA

112

A Model for Regular Languages of Multisets

The analysis of sets of multisets in the framework of language theory as introduced by Chomsky
has first been considered in [40]. In this work Rohit J. Parink analyses properties of context free
languages when order of the symbols of words is ignored. He concludes that, under irrelevance
of symbol order, regular and context free languages are of same expressiveness, i.e. for each
context free language, there is a regular language representing the same language modulo order.
The analysis of multisets, or unordered sequences, is an important topic in the context of
this thesis, as R2G> has been conceived to model graph shaped data with ordered sequences
and unordered multisets of sibling nodes, usually as children of a parent node. The languages
without symbol order analyzed by Rohit]. Parikh are exactly the class of languages used by R2G>
for modelling multisets of nodes. Moreover, the language class in question is general enough to
capture existing models of unordered node sequences, as e.g. modelled in XML Schema.

7.1 Introduction to Multisets and Multiset Languages

7.1.1 Multisets

A multiset is a set, container or bag in which multiple occurrences of the same value may occur.
This differs from the usual set in the possibility of multiplicity of the same values.

Definition 7.1 (Syntax of Multisets)

In the following, a multiset M will be denoted in the usual set notation, as M = {vi,...,v,} with
v; € ¥ where ¥ is the set of defined values for M, and v; and v; with ¢ # j can be the same
element in . ¥ has (by now) to be a finite set of symbols.

e {}is a multiset
e if { content } is a multiset and v is a valid defined value, then { v, content } is a multiset.
Hence, M € J;cy &

Note, that M- C ¥, as M is not a set, the subset relation is not even well typed here. This is
due to the fact, that there may be ¢ # j such that v; = v; for v;,v; € M.

113

7.1 INTRODUCTION TO MULTISETS AND MULTISET LANGUAGES

As multisets do not impose an order on their elements, two multisets with different notation
according to the syntax may be considered equivalent. As an example, the multiset {v;, v2,v1}
is the same as the multiset {vs, v1,v1}. This can be defined by interpreting the multiset member
separator (in this case the comma) as an associative commutative function.

Definition 7.2 (Semantics of Multisets)
o {v,content } = { content,v}

o { vy, (vg,content) } = { (v1,v2),content }

An important property is the multiplicity of the symbols of ¥ in a given multiset. The Parikh
Mapping, see section 7.2, defines this multiplicity.

7.1.2 Multiset Languages

A multiset language is a set of multisets, hence the multiset language L over X is L € |J,cy X"
What was called “set of defined values” in the definition of multisets is often called vocabulary in
linguistics or symbols in language theory.

A language of multisets may be finite or infinite, hence a finite notation for languages of
multisets is necessary to formalize them.

Existing Approaches to Formalize Multiset Languages

Different approaches have been proposed to formalize sets of multisets, among them so called
multiplicity lists [16], L-formulae [39] and so called counting constraints [67].

Definition 7.3 (Multiplicity Lists)

A multiplicity list is a regular type expression of the form s1(ny : mq) - - - sg(ny : my) where k > 0
and si,...,s; are distinct symbols. By n; the minimum and by m; the maximum number of
occurrences is expressed.

A problem of the interval notation is, that it is not possible to express gaps in the multiplicity
of the occurrence of a symbol. It is e.g. not possible to express, that the multiplicity of a symbol
should be at least n and at most m but not p with n < p < m. Further, it is e.g. not possible to
express, that the multiplicity of the symbols should be an odd or an even number or a multiple
of a given factor.

Definition 7.4 (£ >-Formulae)
A L>-Formulae is an expression ¢ of the shape

¢ == true|falsela =ila > i|-pleV e a€XieN

and the language of varphi is L(p)) = {w|w = ¢} with w = a = ¢ iff the multiplicity of w is
i, w |= a > i iff the multiplicity of w is greater or equal i, w = ~@ iff not w = ¢, w = p1 V ¢ iff
w = @1 or w = @9, never w = false and always w |= true.

L>-Formulae are closed under union, intersection and complement.

Compared to multiplicity lists, L>-Formulae are more expressive, as they allow the expres-
sion of gaps in symbol multiplicity intervals. However, gaps have to be expressed, there is no
abstraction over the concept of the gap. If e.g. odd multiplicity has to be expressed, it is needed
to declare a gap of one after each valid symbol. Such multiplicities are commonly expressed e.g.
using regular expressions, in the case of odd multiplicity for the symbol s, the regular expression
s, (s, s)* can be used to express it.

Definition 7.5 (Counting Constraints (a.k.a. Presburger Constraints))
A counting constraint is a formula ¢ of the shape:

¢, ¢ n= (Eapr = Exp2)|~ple V |3N.pExp; :=n|N|Exp: + Exps

114

7.1.2 MULTISET LANGUAGES

where n is a natural number, N is natural number variable. Later on, ¢(Ny,..., N,,) will
denote the counting constraint with the free variables Ny, ..., N,,. Counting constraints are de-
cidable, i.e. for every ¢(Nq,. .., N,,) itis decidable, if there exists n; for all free variable such that
o(ny, ...,y is true.

In contrast to L>-Formulae, counting constraints are able to express repeating interval/gap
multiplicities by the use of variables and sums for multiplicities. As an insight, consider the odd
multiplicity of a symbol—let the multiplicity of that symbolbe S, then S =1+ N+ NAN >0
for N and S as natural numbers expresses the fact, that S is an odd number.

Yet counting constraints are decidable, the deciding complexity in general is high [26]. In
practice it turned out, that many efficient approaches based on heuristics exist [27], making type
checking using counting constraints feasible.

Motivating a new Approach

Type and schema declarations for XML based languages are usually based on regular expres-
sions, content models are ordered sequences of elements. For unordered content usually, as
introduced earlier in this section, different formalisms are used. The new approach suggested
in this thesis is to use regular expressions with unordered semantics as multiset language for-
malism. This releases the user from the burden to learn different formalisms for ordered and
unordered content. Further, it gives rise to a simple treatment of ordered types under unordered
queries as presented now:

Often, when querying, and sometimes when modelling, the order is irrelevant. When query-
ing XML using XPath it is generally possible to query data based on the sequential order (us-
ing the so called following, preceding, following-sibling and preceding-sibling
axis), but in many applications the order of the elements is ignored, especially when querying
database like documents. In Xcerpt, explicitly ordered or unordered query patterns are used to
query documents. An unordered query can be considered to have a type with unordered con-
tent specification, which itself is a language of multisets. This is motivated by the fact, that it is
arguably reasonable to interpret the type of a query as the type representing all data instances
that can be queried by the query term under the assumption of a given type or schema for the
queried data. If no type or schema is given for the queried data, the most general type may safely
be assumed. The type of a query is a subset of the type of the queried data. When a query has
multiple occurrences of the same variable, it gets necessary to calculate the variable intersection
to infer the type of a query, as shown in section 8.3.2. When constructing unordered content, e.g.
in Xcerpt, out of queries to ordered typed data, it is easy construct content that is of a type that is
the unordered interpretation of an ordered content model. As an example consider the following
Xcerpt rule:

CONSTRUCT

unorderedData{ all var C }
FROM

orderedData[[var C]]
END

To infer the type of the result of of that rule, it is necessary to give an unordered interpretation
of the type of the content queried by the query pattern orderedbata[[var C]].Unfortu-
nately, such a type may not be represented precisely using multiplicity lists or L>-Formulae. As
an example, think of a regular content of the shape (C, C))* which models a content with an even
number of elements of type C. An unordered interpretation of such a type should arguably re-
flect the even multiplicity of it's C-typed members. Neither £>-Formulae nor multiplicity lists
allow this. With counting constraints or Presburger arithmetic, the desired set of multisets can be
expressed.

RyGo uses regular expressions with unordered interpretation to model unordered content
models. For the operational semantics, counting constraints or Presburger arithmetic formulae,

115

7.3 A CALCULUS FOR TRANSLATION OF REGULAR EXPRESSIONS TO COUNTING CONSTRAINTS

very much in the spirit of Scheaves automata [67], are used. The main difference to Scheaves
automata and Scheaves logic lies on the surface—unordered content models in R2G> are not
specified using a special formalism, but with regular expressions.

7.2 Counting Constraints

Languages of Multisets A language of multisets over (finite) alphabet ¥ is defined as a (possi-
bly infinite) set of finite multisets over alphabet 3.

Parikh Mapping For a word w of a finite alphabet ¥ with m symbols (i.e. |[X| = m), the Parikh
Mapping #(w) = (n1, ..., ny) is a vector, where n; denotes the number of occurrences of the i’s
symbol of ¥ (as ¥ is finite, it is enumerable, it is hence sensible to talk of a symbol at position 1)
in the word w. For example, for ¥ = {a,b,¢,d} and w = “cabba”, the Parikh mapping #(w) =
(2,2,1,0). Alanguage of multisets can also be defined as a set of vectors as returned by the Parikh

mapping.
Counting Constraint A counting constraint is a formula ¢ of the shape:

¢, ¢ u= (Exzpr = Expa)|=ple V P|3N.¢
Exp; == n|N|Exp; + Expy

where n is a natural number, N is natural number variable. ©(Ny, ..., N,,,) denotes the count-
ing constraint with the free variables Ny, ..., N,,. Counting constraints are decidable, i.e. for
every ¢(Ny,...,Ny,) itis decidable, if there exists n; for all free variable such that ¢(n1, ..., n.y)
is true.

For a language L of multisets over ¥, a counting constraint ¢ with free variables for every
symbol in ¥ can be used to test membership of a word (or multiset) using the Parikh mapping;:
w € L, when

#(w) = (n1,...,nz) ANe(ny,...,nx)

The expression can be understood as follows: #(w) yields a Parikh mapping, which is the
multiplicity of each symbol of the language in the given word w. The given multiplicity is related
to variables (ny,...,n|x|), one for each symbol of the set of symbols of the language. The word w
is in the language modelled by ¢, if instantiating the variables (i.e. ¢(n1,...,nx|)) according
to the Parikh mapping holds.

Defining Languages of Multisets with Regular Expressions Given a regular expression r,
L({r}) is defined as the language of multisets for r such that, for a word w there exists a per-
mutation w’ € P(w) such that w’ € L(r) (w' is in the regular (string) language L(r)).

7.3 A Calculus for Translation of Regular Expressions to Count-
ing Constraints

For a given regular expression, it is possible to derive a counting constraint, such that the count-
ing constraint accepts exactly the language of multisets defined by (the permutation of) all words
accepted by the regular expression.

As an example, consider the regular expression (A, B) x, C : The language of multisets defined
by this regular expression is the set of all multisets with the same amount of As and Bs and exactly
one C for e.g. an alphabet ¥ = {4, B, C'}. A counting constraint for this language could be

JAIB3IC . A=BAC=1

116

The following set of rules describes non deterministically a simple algorithm for the transla-
tion of regular expressions interpreted as definitions of languages of multisets to counting con-
straints. The regular expression is given in curly braces (i.e. {re}) in accordance to the notation in
R>G5 and for technical reasons to distinguish the root of the abstract syntax tree of (recursively
defined) regular expressions. The domain of the rules is I', N / re — C where N is a natural
number variable or a natural number to be used in the counting constraint, re is the regular ex-
pression, C is the, maybe partially specified, counting constraint, and I' is a mapping of symbols
as used in the regular expression to sets of natural number variables. To ease the formal handling
in the rules, the mapping I' is used as a set of equations, where the equations have the symbol on
the left hand side and the set of natural number variables as the sum on the right hand side. The
role of N is a bit unconventional, as it is not a variable for a natural number, it is a meta-variable
for either a natural number (indeed, only the number 1 occurs) or for a natural number variable.
It is hence sometimes needed to construct a natural number variable—fortunately only new vari-
ables are needed, they are constructed using the symbol N"¢". The rules relate one expression of
the domain above the line with many expressions of the domain below the line, where usually
the expressions below the line are decompositions of the expression above the line.

For a regular expression with the atoms (or symbols) ai, ..., a,, the general scheme of the
resulting counting constraint is

o(Xays--r Xa,,)

Vi, Y, Y, Y,
Xoy =Y+ 4+ Y, AecAXo = Yoy 4+ Yo
No(eo Y, nn)

The variables X,, are then bound to all the variables in the mapping I' for the symbol a;.
This is formalized in the root rule (the last in the following set of rules), applied to the regular
expression, the resulting counting constraint represents the language of multisets defined by the
regular expression.

Atoms (or symbols) in regular expressions are at the leaf level of the rule based constraint con-
struction. Indeed, the rule based construction spans a tree structure equally shaped to the abstract
syntax tree of the regular expression, as there is exactly one rule for the decomposition of one ab-
stract syntax tree node. So, when an atom occurs, the multiplicity of this symbol, represented by
the natural number meta-variable IV, has to be propagated to the mapping I', which is to be used
in the end at root level.

(a,{...,N,...}) el
N /a—0

(ATOM)

For a sequence of two regular expressions, the multiplicity of the current context is passed to
the two components, the partial constraints of the two parts are connected using a conjunction,
the resulting mappings of the two regular part-expressions are also merged. This reflects the fact,
that the multiplicity of the regular expression rs implies that the expression parts r and s have to
occur also in the same multiplicity in a valid multiset.

UL, N /rs+— C. NCy
I,N/re—C, Iy, N /s+— Cs

(SEQ)

For a disjunctive regular expression it’s multiplicity has to be divided between the two op-
tions. This is reflected by the sum N = M + P, where N is the multiplicity of the disjunction, and
M and P are the multiplicity of the two components of the disjunction. The sum is a new part of
the counting constraint. Note, that A/ and P are both new variables constructed using the Ny,¢,,
constructor.

117

7.3 A CALCULUS FOR TRANSLATION OF REGULAR EXPRESSIONS TO COUNTING CONSTRAINTS

I, UL, N /r|s+— Co ACsAN =M+ P
FraM:Nne'w/r'_’Cr F&P:Nnew/s'_’Cs

(D1sy)

For an optional regular expression occurring N times, the optional sub-expression can at most
also occur N times. This is expressed using a new multiplicity variable M for the sub expression
and the inequality M < N.

N/ —CAM<N
I''M = Npew /71— C

(OrT)

The Kleene star is a bit tricky: the sub regular expression r could be repeated arbitrary often.
It's multiplicity is independent of the multiplicity of r*, the sub expression hence gets a new
multiplicity variable. On the other hand, if r* does not occur at all in the valid word, then the sub
expression r cannot occur neither. This is reflected by the new constraint part =(N = 0 A M #
N)—if N is 0 then M is also 0, otherwise anything for M and N is OK.

N /r«— CA-(N=0AM%#N)
I''M=Nyew /17— C

(KLEENE)

The regular expression plus construct has, like the Kleene star, also to consider the two cases,
that either the whole expression r+ does not occur at all in the valid word, or that it occurs. If
it does not occur, then the part expression neither occurs, otherwise the sub expression at least
occurs as often as the expression.

I'N/r+—=CA(N>0ANM>N)V(N=0AM=0))

PLUS
M= Nyew /17— C ()

The root of a regular expression—more precisely of it’s abstract syntax tree—is used to finalize
the constraint by adding the information of the symbol mapping.

The multiplicity meta-variable is set to one, as a valid word with respect to the regular ex-
pression fully fits exactly once in the regular expression.

The mapping I' is used in the previous rules to capture from all the variable expressions
the multiplicities relating them to the corresponding symbol itself. The mapping set gets new
members in the Atom rule and possibly alters the members in the sequence and disjunction rule
(whenever two occurrences of the same symbol are represented in two mappings to be merged,
the member becomes the sum of the two occurrences).

In the root rule the members of the mapping are now interpreted as sums (as which they
syntactically occur), and are all added as conjunction to the constraint. All (free) right hand side
variables are existentially bound, the symbols from the mapping (on the left hand side of the
mapping equations) are now interpreted as variables for the multiplicity of their corresponding
symbol, they are the only free variables of the constraint. Every binding of the free variables
which yields a solution of the constraint, gives the Parikh mapping of multisets in the language
modelled by the constraint.

h1/{r}=3...,Ng,....C Nar =Ny, +---+ N1y, Ao ANam = Ny + -+ Ny,

{a1 =Ny, +--+Ny,,...,0m =Np, +-+Np, },1 /7= C
(REGEXPROOT)

7.3.1 Example of a Regular Expression Translated to a Counting Constraint

The calculus for translation of regular expressions to counting constraints will be applied to the
following example expression:

((a,0), 0)l(d, €”)

118

In words, this regular expression models a language of multisets with the following proper-
ties:

¢ the set either contains a c or a d.

e If there is no c in the set, then there is neither a b.

Further, If there is no ¢ (and hence there is a d) in the set, then there is at most one a con-
tained in the set.

e if there is no d (and hence there is a ¢), there are as many bs as as in the set.
Let’s see, what kind of counting constraint the calculus produces of the regular expression:

{},1/ ((a,b)*,e)|(d,a?) +— JOIPIMIN.a =0+ PAb=PAc=MAd=NA-(M=0AM#P)AOSNALl=M+N

{a=0+Pb=Pc=Md=N}1/ ((a,0)*,c)[(d,a’) — (M =0AM#P)AOS NALl=M+N

{a=P,b=P,c=M}, M/ ((a,b)*,¢) — (M =0A M # P)

{a=Pb=P}, M/ (a,b)* — ~(M=0AM # P) {a=0,d=N} N/ (da’) —0<N
{a=P,b=P}, P/ a,b — 0 {a=0},N/a’ —»0<N
{a=P},P/a —0 {b=P},P/b —0 {c=M},M/c —0 {d=N},N/d — 0 {a=0},0/a — 0

The counting constraint is the consequence above the top line
JO3P3IM3N .a=0+PANb=PANc=MANd=NAN-(M=0AM#P)NOSNA1l=M+N

and arguably fulfills our verbal requirement.

7.4 Some Set Theoretic Computations on Counting Constraints

As for hyper graph automata, for the purpose of static type checking, it is necessary to analyse
the same set properties on languages modelled using counting constraints: (1) emptiness test, (2)
computation of language intersection, and (3) subset test.

Testing Emptiness of a Multiset Language defined by Counting Constraints Using Counting
Constraints it is possible to define empty languages due to unfulfillable constraints. The decla-
ration 3 : Aa&Bb: A= B A A < 1A B > 2) has unsatisfiable constraints and declares therefore
an empty language. Hence, the emptiness test for a language can be reduced to the satisfiabil-
ity test of the counting constraints. In the context of R2G2, the counting constraints generated
as a regular expression never models an empty language. nevertheless, in the context of type
checking, empty languages may result as intermediate step of the type checking process, i.e. the
intersection! of two languages defined using Counting Constraints, hence the emptiness check is
of practical relevance.

As solutions have to be in N (because the variables are defined variables in N—variables
represent multiplicities of symbols in the end, and non integer multiplicities of symbols make no
sense), a lower bound is always available for the variables (e.g 0 or given by a constraint n < X).
There is not necessarily an upper bound for the solutions (note, that languages can be infinite
sets of multisets), but as all multisets are finite, there are always smallest ones (e.g. with the least
amount of symbols). It is always possible to predict an upper bound for the smallest word, such
that if no solution is found within the lower and the upper bound for all variables, the language
must be empty. As a reason for this, consider, that Presburger arithmetic formulas are decidable.

Given upper and lower bounds in N for all variables, finding a solution is a finite domain
problem, that always terminates. Unfortunately, the upper bound therefore is (u — 1)IV"*! with
|V ars| for the number of variables, u as upper bound and [as lower bound. For all linear equation
parts and for some non linear ones, fortunately there exist solvers with polynomial complexity.

Hntersection of two languages defined using Counting Constraints is introduced later

119

7.4 SOME SET THEORETIC COMPUTATIONS ON COUNTING CONSTRAINTS

Combining them with search over the non tractable sub part of the problem possibly yields rea-
sonable average case behaviour.

An evidence for a non empty set is given by the multiset that results when applying the
solution to the counting constraints of the tested language.

Membership Test with Counting Constraints The membership test finds out, if a multiset w is
contained in the set of multisets defined by the counting constraints C' (the set of multisets may
also be called the language L(C')). The test can be achieved by instantiating the free variables of
C with the corresponding number of occurrences of the corresponding symbols in w.

The test can easily be expressed as a specialisation of the emptiness test: if a multiset w is in
£(C),

there must be a solution, such that w = T under C. For w = a7" ® --- ® o' and T =
M @ @ aMn, thereforew = Tisw =a @ ---®a’ =T = al @ --- @ aM which is to be
interpreted as m; = M; A --- Am,, = M,. Solving w = T' A C with the solver used for emptyness
test, yields that w is a valid multiset in £ (M), if there is a solution.

Intersection of Languages declared using Counting Constraints The intersection of two Lan-
guages L(M;) and L(Ms) is an extension of the membership test: The intersection of M; =
(T1,C1) and My = (T3, Cs) is the language, where 77 = T under C; A Cs. The problem can be
reformulated as Cy A Co A My, = My, A--- ANMy, = My whereT; = M, &--- & M, .

120

Part IV

Type Checking

121

Type Checking using Regular Rooted Graphs as Data
Paradigm

This chapter can be considered the core of this thesis. After a brief introduction about types,
programming and query languages, a typing approach for Xcerpt based on the automaton model
presented of Chapter 6 (and hence based on R>G3) is presented.

8.1 Types and Query- and Programming Languages

In Programming and Query languages types are used to give an approximation of the values
certain components and constructs of the language can obtain. Usually this approximation is
a super set of the concrete values to which the constructs are evaluated during run time. One
use of the approximations is to provide specialized and appropriate memory representations for
data instances. A dual use of those approximations is to explain, find or prevent errors due to
possibility or necessity of invalid values at run time. Different approaches to the recognition of
such errors exist:

1. The errors can be detected at run time by validating the data instances against the types.

2. The errors are detected before run time, e.g. at compile time by analysing the compatibility
of the types.

8.1.1 Dynamic Typing and Type Checking in Programming Languages

In dynamically typed languages the values have an associated type and the type correctness
is checked at run time. The type check is usually explicitly programmed in the core libraries
and, if needed or wished, implemented by the users of the given programming language in their
own programs. The concept of dynamic typing and dynamic type checking is mostly inspired
by practise—the explicit type check is easy to include in the run time system of a programming
language and no static type system has to be conceived for the programming language. Most
common scripting languages like Perl, Python, Ruby, etc. are conceived with the so called dy-
namic typing facilities. Hence, as well as static type checking, dynamic typing can prevent type

123

8.1 TYPES AND QUERY- AND PROGRAMMING LANGUAGES

related system corruption in the sense, that operations boiling down to predefined functions inter-
acting with the system are checked for type correct application at run time. This distinguishes
dynamically typed languages from untyped languages.

In contrast to statically typed languages, that prevent even execution of wrongly typed pro-
grams, the error may occur relatively late, hence arguably along the execution line, prior or parent
functions may be considered to have been applied violating types without warning.

The use of static type systems usually hinder the application of some programming tech-
niques, that may be semantically well founded and intended by the programmer, but not well
typed within the framework of the type system. By example, most type systems have a notion
of well typed lists or arrays, if they contain just elements of one type. Nevertheless, it may be
convenient to have mixed type lists for some applications. With dynamic typing the restrictions
of what can be programmed are usually lower than with common wide spread statically typed
programming languages, yet type errors can still be discovered easier than with untyped lan-
guages.

8.1.2 Static Typing and Type Checking in Programming Languages

In statically typed languages the program fragments, e.g. the variables or the data constructors
or the function invocations, have an associated type and the type correctness can be checked
prior to run time, usually at compile time. Examples of statically typed programming languages
are SML, Haskell and many others.

A common approach in many programming languages is to deny the compilation of ill typed
programs, where ill typed programs are such programs, where multiple occurrences of the same
variable have different types. The term different types is often, e.g. in object oriented languages,
relaxed to different types that are not in a subtype, i.e. subset, relationship.

If a program is not ill typed, it can be assured, that all function invocations are well typed,
hence there often no need for dynamic type checking at run time. The type information can
hence be discarded at run time, the run time system may be completely untyped yet program
evaluation will not yield any type errors. Hence a veteran of static type checking, Robin Milner
states “Well-typed programs do not go wrong” [36], many run time errors are still possible, e.g.
hanging a program in an infinite loop, division by zero and many more. A more appropriate
exclamation (yet arguably not of practical relevance) about typing has been stated by S. Kahrs:
“Well-going programs can be typed” [31].

8.1.3 Combined Static and Dynamic Typing

Some programming languages provide reflection frameworks or meta programming, enabling a
program to reason about types, values and methods at run time. In Java e.g. the reflection API
provides the ability to invoke methods, read object attributes and the type name of an object by
invoking reflection methods. This makes it necessary to keep the type information of the objects
at run time.Arguably, for late binding [5], a common feature of most object oriented languages, the
objects need to be annotated with their type, as it is necessary to dispatch method invocations at
run time according to the proper subtype an object may have.

Combined statically and dynamically typed languages as Java, C++ and C-Sharp have in
common with statically typed programming languages, that ill typed programs are detected at
compile time. With dynamically typed languages they have in common, that at rum time the
types of the values is checked when late binding is necessary. The kind of check performed
hence may never fail, it is a mere decision process which concrete implementation of a method
has to be called in the given context.

The advantage of late binding is higher extensibility of the code applying late binding, as
further object types unknown at implementation time of the code in question will be usable as
long as they fulfill the necessary interfaces. This advantage has not to be paid by sacrificing static
type safeness, as the dynamic check may never fail at run time. The disadvantage of late binding
is the higher overhead at run time.

124

8.1.4 FROM TYPED PROGRAMMING LANGUAGES TO TYPED QUERY LANGUAGES

Further dynamic features as e.g. reflection mostly share the same advantages and disadvan-
tages as late binding—they are defined in a statically typed context, using statically typed ab-
stractions of the language features. In the context of the reflection, the invocation may fail, as any
dynamic programming may fail due to type errors at run time, but in the context of the hosting
language, the failure is handled in a type safe way—e.g. in Java with appropriate exceptions.

8.1.4 From Typed Programming languages to typed Query Languages

In database theory querying is often formalized in an abstract manner as algebra of selection,
join, and projection. [4] Less formally, querying—and hence a query language—is a composi-
tion of selecting some instances of a set of given data, further combining or filtering of potential
instances by joining selections, and projecting intended parts of the selected data instances to
result instances (maybe constructing new content for the result instances).

Types, as approximations of values, can be of potential use for error detection and prevention
in query languages as well as it is of use for programming languages. The use of types in this
context can also be decomposed as the principles of queries:

Selecting of some data instances of which a common type will be assumed has to be done
in a way compatible with the data’s type. A selection can hence be given a type. A common
approach here [63][28] is to consider the type of the selection construct to be a type representing
all data instances that the selection may select from the set of all possible data instances in the
data formalism. A reasonable information about a selection under the condition of a given data
type for the queried data could hence be “may this selection yield any result?”

Joining of different selections is often involved with sharing multiple occurrences of the same
variable, hence comparing somehow the values of selected instances of multiple selections. This
may be done e.g. using equivalence relations (for example “are there equivalent values in the
selected instances of two selections?”) or using any relation and operation on values (for example
“is the sum of some values greater than a given bound?”). The idea of typing variables, functions
and operations in general purpose programming languages for error detection or prevention is
applicable in the same way here.

Projecting parts of the selected and ‘joined’ instances and construction of results yield new
data instances that form a set—the answer set—and hence a type. A typed query program could
be annotated with an intended result type, an ill typed query would hence be a query that may
produce invalid results with respect to the given result type.

A query language with the presented typing philosophy is of practical relevance. Assume
e.g. a query program in the context of a data warehouse: such queries tend to be long running
processes due to the sheer amount of data, yet the data warehouse schema is often fairly simple
(compared to the data complexity). If the query has an ill typed selection, it can quickly be re-
jected reducing development costs. The type tests of joins may hint potential run tie problems,
e.g. due to type incompatible function application, it may further reduce queries that never yield
results. As an example for the usefulness of type checking of projections and constructions, as-
sume e.g. a query producing an HTML document as result: the intended result type could be
given as HTML, a query that may produce invalid HTML would hence be ill typed.

8.2 Type Systems for Xcerpt

The query language Xcerpt exists as an untyped query language for the Web and the Semantic
Web, yet different approaches for extending Xcerpt with types have been proposed.

125

8.2 TYPE SYSTEMS FOR XCERPT

8.2.1 XcerptT—Descriptive Typing for Xcerpt

XcerptT [13] [66] is a type system for a substantial fragment of Xcerpt. The type system is called
a descriptive type system, i.e. a typing approximates the semantics of a program (in an untyped
programming language). This means finding an approximation of the semantics of the given
program. The “counterpart” of descriptive typing in typing terminology is prescriptive typing. In
prescriptive typing the types are usually defined aligned to the semantics of the language, type
checking is then not related to the language’s semantic anymore. In our case, for a given Xcerpt
program and a type of data (i.e. the set of data objects to which the program may be applied)
the type system provides a type of the program results (i.e. a super-set of the set of the program
results). This is type inference; if a type of expected results is given then type checking can be
performed by checking if the obtained type of results is a subset of the the given one.

The given types for results and for the data queried (and in the end also the internal represen-
tation of types) is a regular tree language. It is also possible to use DTDs as type definitions.

Two different algorithms are presented in the in the context of XcerptT. The first one has poly-
nomial complexity and is based on a slight restriction of regular tree grammars called “Proper Type
Definitions’. Proper type definitions are regular tree grammars where there are not two distinct
types in the regular expression content models, that model elements with identical label. The
second algorithm handles arbitrary type definitions, but has exponential worst case complexity.

In contrast to the approach presented in this thesis, the XcerptT approach always calculates
the types as precisely as possible with respect to the expressiveness of the given type declaration
formalism (i.e. proper type definitions or arbitrary regular tree grammars). The approach in this
thesis is to use unrestricted type declaration formalisms and to retain acceptable complexity—
atleast for ordered queries and ordered type declarations'—by relaxing the type checking and in-
ferences precision. Another difference of the type checking in XcerptT and this thesis is the use of
unordered content models: the modelling approach for unordered content models in XcerptT is
the co called multiplicity list, as also presented in section 7.1.2. Multiplicity lists have been shown
to be closed under intersection, which is arguably enough expressiveness for type checking in
most situations, but they are not closed under union, which is arguably desirable for schema
languages, e.g. for the creation of new schemata by uniting two given schemata.

8.2.2 Prescriptive typing: from CLP to Xcerpt

In the work of Francois Fages and Emmanuel Coquery [20], the adaption of a prescriptive type
system for Constraint Logic Programming (i.e. CLP) to Xcerpt is presented. The type system for
CLP is based on types with a sub-typing relation forming a lattice over the types with a most
general type at the top and an empty type at the bottom. As CLP is based on a normal term
concept, where terms and function symbols with a given label have fixed arity, the adaption to
Xcerpt comprises an extension for the treatment of semi structured data. So, opposed to typing
of CLP programs, where language constructs may be typed with one type along a path in the
sub type relation lattice, language constructs in Xcerpt may be typed with various types at the
same time. This is the consequence of having repetition constructs, optionality and disjunctions
in type declarations based on regular tree grammars.

In contrast to the XcerptT of section 8.2.1 approach, this approach is able to treat whole pro-
grams with rules and chaining of them, as this property has already been inherited from the
CLP typing. The specification of type checking in the adaption of CLP type checking to Xcerpt
type checking is directly based on decomposition of regular expressions. This distinguishes the
work from the approach chosen in this thesis, where type checking is made based in an automa-
ton model for ordered data and queries. Unordered type declarations are not considered in the
CLP to Xcerpt typing adaption, however the problem itself is approached, as unordered query
patterns can be type checked against)ordered) type declarations, which is comparable. The so-
lution of type checking of unordered queries is expressed in the spirit of a declarative semantics

1For unordered type declarations the approach of type checking using R2G> in this thesis has exponential complexity.

126

8.2.3 TYPING WITH R2;G2—DIFFERENCES TO THE FORMER APPROACHES

of unordered types, where typing is valid, if there is an instance of the type of which an arbitrary
permutation can be matched by the query pattern.

8.2.3 Typing with R,G,—Differences to the Former Approaches

The RyGo-based typing approach for Xcerpt? as presented in the remainder of this section, has
similarities as well as differences to the formerly presented two approaches.

A common feature of all approaches is relying on regular tree languages for ordered type
declarations. The typing algorithms however are expressed differently: while XcerpT and the
prescriptive typing of E. Coquery directly rely on the use of regular expressions and regular
grammars, the approach presented here is based on regular tree automata. Using directly gram-
mars and regular expressions in the formalization of type checking has the advantage of being
simple and ‘inexpensive in formal definitions’—no intermediate formalism that is not visible to
the user is necessary. However, when it comes to implementation, the automaton approach is
arguably an advantage, as breadth and depth are treated in similar ways—both are conceptu-
ally just traversal of transitions: The use of automata for processing of the word problem is a
standard method known to virtually any computer scientist and many programmers, extending
finite automata techniques to tree automata is a well known technique and the use of the hyper
graph based automata as presented in chapter 6 arguably makes the “knowledge transition’ from
words to trees rather smooth. When it comes to type checking, the approach presented here is
considered as an extension of the word problem, i.e. query language expressions are considered
as words that are extended by constructs of incertitude, variables and incompleteness—hence
type checking is boiled down to a beefed-up word problem test with automata.

The treatment of unordered data models, as presented in chapter 7, is different in all three
approaches: while XcerptT follows the simple and pragmatic approach of using multiplicity
lists, the prescriptive typing approach based on the adaption of CLP typing has no modelling
support for unordered data models and the approach presented here relies on unordered inter-
pretations of regular expressions. The use of multiplicity lists is computationally desirable, as
membership test and relevant set operations (i.e. subset test, intersection, emptiness test) can be
obtained in polynomial time. The downside, is the restricted expressiveness of the approach,
some constraints on languages expressible with regular expressions are not expressible using
multiplicity lists, possibly forcing the user in practice in using ordered data models where un-
ordered models would be more appropriate. The use of unordered interpretations of regular
expressions pragmatically overcomes the modelling restrictions of multiplicity lists, however at
a super-polynomial cost. In experiments the use of constraint solving techniques has shown good
results and always fast solutions of the relevant set operations, it has not been possible to find
regular expressions modelling problems to fall in the so called thick tail, the class of problems that
are indeed hard to solve with the given constraint solver.?

The approach presented in this thesis extends the former approaches further on by a mod-
elling technique for graph shaped data and for serialisations of graph shaped data by means of
spanning trees and typed references. This feature leads indeed to almost no change in to the
operational semantics of validation or type checking—no more than cycle detection and type
compatibility in the cyclic case is needed. However it is considered to be a relevant extension of
current schema languages, motivated by the availability of typed references in general purpose
programming languages.

2Note, that the typing approach for Xcerpt can easily be adapted to other Web query languages as e.g. XQuery—Web
query languages in general follow an approach of having selection, projection and construction. These features can also
be found in Xcerpt. Adaption to other query languages to the typing process could e.g. in the simplest form be achieved
by seeing Xcerpt as an intermediate language to which other query languages may be translated (Consider the work in
[34] as an example of such a translation.) and on which type checking is performed.

3A finite domain constraint solver from GNU Prolog has been used. Even if the problem is not a finite domain
problem, there is always either a solution within a finite bound or no solution, this is implied by the fact, that Presburger
arithmetic formulae are decidable. It is however an open question how to statically obtain the upper bound for the
solution space. No further investigation in this direction has been made along this thesis, as solvers for Presburger
arithmetic constraints exist, it may however be research of interest for the finite domain solving community.

127

8.2 TYPE SYSTEMS FOR XCERPT

addresses{
addr {
name [
type AddressBook=addresses{Addressx*}}| "Sacha Berger"”“String
type Address=addr{Name, Street,] " "Name,
Nr, ZzZIP?, City? }; street [
type Name=name [String]; "Oettingen" " "String
type Street=street[String];]~ "Street,
type City=city([String]; cityl[
type Nr=nr[Integer]; "Munich"”"String
type ZIP=zip-code[Integer]; 1°"City,
nr[68" "Integer]”"Nr,
zip[80639 "Integer]~ "ZIP
} ~"Address
} " "AddressBook

Figure 8.1: An example presenting a valid Xcerpt term with type annotation along with the cor-
responding type annotation.

8.2.4 The Syntax of R,(G, typed Xcerpt

A typed Xcerpt program is an Xcerpt program, where every language term may be typed. The
“may” implies, that any Xcerpt program of the current untyped syntax is also a valid program in
typed Xcerpt syntax. Programs hence to not have to be completely type annotated to benefit of
many type based services. The rational behind this is, that the programmer should not be forced
into annotating all of the program with type information, when he does not like to, types can be
inferred out of partial type annotation. A programmer may hence be willing to annotate the type
of an input resource or of the output resource, as he wants to ensure valid input or output.

Typed Data Terms

Apart of Xcerpt programs, data terms may be type annotated, hence they can be validated using
the type checking algorithm. Data terms are structurally the base of query and construct terms,
hence of Xcerpt.
data-term = (oid "@")? ns-label list (type-annotation)?
type-annotation "t (typename | type-disjunction)
type-disjunction " (" (typename | typeterm) (" |" (typename | typeterm))* ") "

ns-label = (ns-prefix ": ")? label
ns-prefix = label | * "7 iri’ "’
list = ordered-list | unordered-list

" [" data-subterms? "1 "
unordered-list " {" data-subterms? "} "
data-subterms data-subterm (", " data-subterm)*
data-subterm = data-term | ' "’ strmg " | number | "™ oid
Consider example 8 1 for type declaration in R,G syntax along with the (totally) type anno-
tated data term:

ordered-list

In example 8.1 only type names are used for annotation. If e.g. the element of type City
would have been annotated with a type term, it would be as follows:
city["Munich"”"String]°" (city[Stringl)

Typed Xcerpt Construct Terms

Xcerpt construct terms extend data terms by (1) variables, (2) grouping constructs (e.g. all) and
(3) default settings for optional parts.

128

8.2.4 THE SYNTAX OF R2G2 TYPED XCERPT

Variables are type annotated as if they would be data terms. For variables occurring in the
group-by clause of the grouping constructs, the given type may be a primitive data type imple-
menting order, hence being informative to the ordering algorithm of the grouping of constructed
results.

Grouping constructs like all or some are not type annotated, as they represent sequences of
elements, and the type annotation is inherently conceived for elements. However, the contained
term can be annotated, as well as the variables occurring in the (optional) group-by clause.

Optional parts in Xcerpt construct terms denote parts, that are only to be constructed, if there
are variable bindings for the scoped optional variable. As optional may span sequences of terms,
the optional part is not type annotated, neither the (optional) with-default clause.

addresses|[all (addr{ var N~ "Name
, var C""City
, optional (var Z~"ZIP)
with-default (zip[0""Integer]”"ZIP)
, var NR™"Nr

, var S”"Street }”~"Address
) ordered-by (var N""String)
]~ "AddressBook
Typed Xcerpt Query Terms

Query terms arguably are extensions of Construct terms, in the sense that they have constructs
for (1) incertitude and (2) negation, they are restrictions of them, in the sense that they have no (1)
grouping constructs and no (2) with-default clause for variables tagged as optional variables.

Incertitude in order or breadth s given in Xcerpt by different brace or bracket styles in terms,
they have no influence on type annotation of terms.

Incertitude in depth—the desc construct—is type annotated as a term. As it contains itself a
term and hence the type annotation lexically looks like a type annotation of a type annotation, the
descendant tagged term has to be set in parenthesis, if the descendant construct is to be typed. The
query term desc a[[]] e.g. may be used to query hyperlinks at arbitrary depth in an HTML
document. For it’s typed variant desc (a[[]]"~"A) " "A the type A is considered to be the type
of hyperlinks.

Negation in Xcerpt is expressed using the not or without constructs. Their type annotation
paradigm is the same as for the descendant construct.

Optional query parts may also span sequences and are hence not type annotated.

Typed Xcerpt Queries

Queries are query conjunctions or disjunctions of queries or query terms. Tey are term structured
themselves, they can be type annotated the same way as other terms.

and(html[[]]~"HTML ,
or (var X" "HTML,
var Y~ "HTML)~ "HTML
) " "HTML

129

8.3 TYPE CHECKING AND TYPE INFERENCE FOR RG> TYPED XCERPT PROGRAMS

Typed Xcerpt Rules

A Rule is typed (implicitly, i.e. without special syntactic construct) by the type of the query and
the type of the construct term. A rule is hence not type annotated.

Typed Xcerpt Programs

An Xcerpt program per se has no type. Each rule of a program is typed, this also holds for goal
rules. The type of a program can be seen as the disjunction of the types of all goals in the program.
A program is hence not type annotated.

8.3 Type checking and Type Inference for R,y Typed Xcerpt
Programs

Typing Rules for Query Terms The following rules describe the algorithm used to infer total
type annotation for a (possibly partly type annotated) query term. The algorithm is a function
which returns the possible types out of a given set of types for a query term under a given au-
tomaton A. The automaton itself is constructed out of RoG5 declarations as presented in section
6.3.

As a function, the algorithm’s signature is denoted as T', A|¢t,7 — 7/, where ¢ is an Xcerpt
program term, i.e. a program, a rule or a part of a rule. A is the automaton representing the types
declared to be used in the program and is constant in the whole context of the typing algorithm
application. By I' a global variable environment used to represent types of variables is denoted.
It consists of tuples (v, T") where v is the variable (or it’s name) and T the type of v.

Depending on the part of the Xcerpt program to be typed, 7, resp. 7’ is of different kind.
In general, for Xcerpt query or construct terms, 7 is a set of transitions as defined in A, more
precisely in Ax. As the type of a rule is given by the type of it's query part and it’s construct
part, the types for rules have also to be of two-folded nature—the type of a rule is a tuple of sets
of transitions representing the types for the input and for the output.* For the type inference for
sequences of query or construct terms, 7 is a set of states as found in A, more precisely in Ag, and
for sequences of construct terms in the context of a grouping construct (i.e. the all construct), 7
is a set of tuples of states as found in A, more precisely in Ag.

Note, that the functions for typing terms and those for typing sequences (ordered and un-
ordered) will rely recursively and interlaced on each other.

8.3.1 Paying Attention to Type Annotation in Queries

The typing algorithm as presented does not forcibly need type annotated programs, yet in can
consider, even incomplete, type annotation. When type annotation is available, it is propagated
to the set of assumptions about a program segment. In the case of a query term this means, that
only types inferred for that term that have non empty intersection with the type annotation are
considered to be possible types. The rational behind this is, that two types with non empty in-
tersection have common members, only such members are arguably candidates for a valid query
evaluation.

By T the user provided type annotation, i.e. the transitions realizing the type annotation in
the automaton 4, is denoted. The types of T'and T get filtered to the types of T that have non
empty intersection with a member of T, the resulting set 7" is then used for the actual typing ¢.
The result of this typing is them also the result of the typing of the type annotated term ¢ : T'. The
set T" relies on checking the non empty intersection of two languages represented by two types,
L(T)NL(1) # 0. This can be calculated with the algorithms for intersection and emptiness check

#Note, that a finer type variation would use a set of transition or type tuples to relate more precisely each input type
to an output type. pros and cons of such a rule type has not been analysed along this thesis.

130

8.3.2 TYPING ORDERED QUERIES

on automata as presented in sections 6.4.1 and 6.4.2 applied on two variations of A, varying in
the starting transitions—set to 7, resp. 7.

T ={7lr e TATETALFT)NL(T)£0}
LALT — T

T A[t:T,T — T"

(QUERYTYPEANNOTATION)

8.3.2 Typing Ordered Queries

The typing of ordered and unordered sequences of terms is inherently different—ordered data is
typed based on the use of automata as presented in chapter 6, while unordered data is typed on
the basis of counting constraints as presented in chapter 7.

Ordered Total Query Patterns

When the typing function is applied to a query term [[cnt | with ordered, total sequence of sub
terms and the type disjunction 7" consisting of a set of transitions from A, the following rule
applies:

T ={(s,l,c,e)|(s,l,c,e) e T Nce S}
lc

S={cl(-lec-)eT}
LA [ent], S — 57
D, A|l[ent], T — T (TOTORDQUERYTERM)

The result of the application of this rule is the set of transitions 77 C 7. T” consists only of
transitions with label /—as found on the query term to type, and with a content start state against
which the sequence of sub terms can be typed. This is achieved by passing the content start states
S of the transitions with matching label [to the typing of ordered total sequences with the content
sequence cnt of the query term, and using the result S’ in the restriction of T' to T”.

When the typing function for ordered sequences is applied to an ordered, total empty se-
quence with a set of states as input, the following rule applies:

S' ={s|s € SATs € {s} Ue-reachable-states(s, A) . s’ € F4 } (

FA[lS = 5 TOTORDEMPTYLIST)
) Y =

The set S’ C S is generated by checking the input states if S for their membership in Fjy, the
set of final states of A. Note, that it is common to all the rules, except the desc rule, that they
restrict the set of types used as input of the check. As the automata may contain e-transitions,
it is also necessary to traverse all possible e-transitions from the states in .S that are not final, as
they may lead to final states. The e-reachable-states(s, A) function returns a subset of Ay, such
that each state of the subset can be reached from s € As; when following paths starting at s made
up only of e-transitions. The rule has no rule application above the line, is hence not further
recursively applying typing.

Type checking non-empty sequences is achieved in a recursive divide-and-conquer way, where
the first element of the sequence is checked as well as the rest of the sequence. The typing of the
sequence [11, Na, ..., Ny,) | receives the set of states S as input and returns S’ C S. The transitions
T for checking the head n; of the sequence are those that have a state of S as start state, or that
have a start state that can be reached along e-transitions from a state found in S. Further on the
transitions in 7' need to have an (horizontal) end state in ', the set of states that an application
of the typing function to the tail of the sequence returns. This application receives S, the set of
(horizontal) end states of T”, the result of typing the first element of the sequence.

131

8.3 TYPE CHECKING AND TYPE INFERENCE FOR RG> TYPED XCERPT PROGRAMS

S'={s|se€ SATteT.tee-reachable-transitions(s, A) }
S={e|(_e)eT}
T ={(s,1,¢,e)|(s,1,c,e) € e-reachable-transitions(s, A) As € SAe e S }
LA |ng, T — T A|[n2,...,nm},§H§’
LA | [ny,n2, ... ynm)], S — 57

(TOTORDLIST)

Atafirst glance, operationally, this looks like a hopelessly recursive dependency with need for
fix-point approximation. Unfortunately, the types of elements of a sequence are not independent,
this is due to the type of the sequence. Hence, checking the type of the first element influences the
type of the rest of the sequence and the type of the rest of the sequence influences the type of the
head. Fortunately it turns out, that from an operational point of not more than one refinement of
the head is needed: The key here is, that the typing algorithm refines a given type disjunction (in
form of a set of types) by reducing the set to possible types. After performing this reduction on
the head element of the sequence, the tail of the sequence is typed with the outcome of the head
typing. The tail then may reduce the input set of possible (type) states. The typing of the head
can now be refined to just use the types represented by transitions with (horizontal) end states
that are contained in the result of the typing of the tail. Retyping the tail is now not necessary, as
it will yield exactly the same set of states. Arguably, the second typing application to the head
is not necessary, as it is already confirmed, that the input types used will succeed, a kind of type
propagation would be enough, but for the sake of briefness, the typing itself is used for the type
propagation.

Ordered Partial Query Patterns

Typing of an ordered partial query pattern I[[cnt] is very similar to the typing of an ordered
total query pattern, where the only distinction is the application of the typing rule for ordered
partial sequences for the sequence of sub terms.

T ={(s,l,c,e)|(s,l,c,e) e TAce S}
S={c|(.lc,.)eT}
LA [[ent]],S — &
LA |l ent]],T — T’

C
Cc

(PARTORDQUERYTERM)

Typing of partial ordered empty sequences is similar to typing of total ordered empty se-
quences:

S' ={s|s € SATs € {s} Ureachable — states(s, A) .s' € Ap }
LANLS = 8

(PARTORDEMPTYLIST)

The only difference is the extension of non final states—instead of just following paths made
up of e-transitions, now paths made up of e-transitions and steps along horizontal transition
steps of non-epsilon-transitions can be used to reach final states. This is given by the reachable —
states(s, A) function.

Unsurprisingly, the typing of (non-empty) ordered partial sequences is similar to the total
case. The only difference is to not just consider transitions with start states found in .S (possibly
connected using e-transitions) for the typing of the first sequence element, but any transition
reachable by horizontal traversal starting at the states of S. The rational behind this is, that an
incomplete pattern matches data terms where in between the matched (i.e. bound to query terms)
sub terms arbitrary many other sub terms may occur. These sub terms, if valid with respect to
the given type, would hence be accepted by corresponding automata transitions.

132

8.3.2 TYPING ORDERED QUERIES

S'={s|lse€ SATteT.tereachable — transitions(s, A) }
S={e|(_e)eT}
T ={(s,1,¢c,e)|(s,1,¢c,e) € reachable — transitions(s, Ay As € SAeec S}
T,A|n, T — T T, A|[[ng,....,nm],5 — 5
T A [[n1,n2,...,nm], S — S

(PARTORDLIST)

Descendants

A descendant query term consists of a term n adorned with the desc keyword. The query seman-
tics is, that it either matches a data term at the level of the term sequence that is to be simulated
by the query term sequence containing the descendant query term, or any term containing at
arbitrary nesting depth a term simulated by n. A typing strategy for this semantics is, that the
descendant term is a placeholder for any term of not only types valid for typing n, but also of the
types ¢ that contain at arbitrary depth types against which n may be typed. This is restricted by
the fact, that the type ¢ must also be valid with respect to the given position of the descendant
term, must hence be in the set of the types used as input of a typing rule application on the de-
scendant term. Note, that the descendant construct itself may not be type annotated by the user,
yet the typing process may associate type information to it, valuable for query optimization.

The typing of a descendant term receives the set of transitions 1" as input and returns a restric-
tion 7" C T such that each transition ¢ € T” either is a valid transition for n, or a valid transition
for n can be reached from the content model start state of ¢ in breadth or depth. For the typing of
n all transitions of T are used plus all transitions reachable in breadth or depth from the content
model start states of the transitions in T'.

T = T U { t|t € breadthAndDepthReachableTransitions(c, A) A (., _,¢,) € T }
T ={titeTA(teT' VI €T .(_,_c_)=tAt e breadthAndDepthReachableTransitions(c, A) }
I, A|n, T T
I, Aldescn, T — T’

(DESCENDANT)

Variables

The semantics of an unrestricted variable is to match any data term as long as this is consistent
with the positional mapping of data terms to query terms in the simulation unification. From the
typing view, positional information is considered at the level of sequences, resulting in a set of
(positionally) appropriate types in T. As a consequence of no further restricting the matching,
the result of the application of the variable typing function rule with a given set of transitions T’
is the unaltered set 7T'.

(X, Tx)eTAVrx € Tx.AreT.(tx)N (1) #0
IA|var X, T — Tx

(QUERYVARIABLE)

In addition to the structural properties of queries, variables only match data terms in a query
in such a way, that multiple occurrences of the same variable match identical data terms (where
‘identity” in this context is given, if terms bi-simulate using ground query term simulation). The
same property holds for multiple instances of the same variable in a conjunction of query terms.
A typing view to this property is, that the terms matched by different occurrences of the same
variable are forcibly of the same type. Nevertheless, the variable occurrences may have different
type annotations, as long as they have non empty intersection. The global environment I is used
for this purpose. It ensures, that all types assigned to a variable have non empty intersection
with at least one type of any other occurrence of the same variable. In implementations of the
rule, this usually means, that independently of applying structural typing to the whole rule, the
environment needs to be checked, possibly resulting in the necessity to repeat the typing phase,
as the altered type of the variable may affect sibling element types or types of elements on the

133

8.3 TYPE CHECKING AND TYPE INFERENCE FOR RG> TYPED XCERPT PROGRAMS

same path as the variable (and hence possibly the types in the whole structure). This process
can again influence the variable types, requiring a fixpoint based iteration approach. As in worst
case, each variable (not each occurrence) is typed with all possible types and in each iteration
not more than one type in one variable gets eliminated until one variable reaches an empty (and
hence invalid) state, the repetitions is in the order of the size of the automaton times the number
of variables (which is in the order of the size of the query). As however such a strong relationship
between the types of different occurrences of the same variable and of the structure are usually
quite unlikely, it can be assumed, that not more than one iteration (or a fixed small number of
iterations) is needed. A non-reached fixpoint after an iteration is e.g. worth a warning, that the
query is structurally valid, however the satisfiability of the different occurrences of a variable (the
one necessary for not reaching the fixpoint) cannot be ensured, which means, that it is possible,
that the query never matches any valid data.

Variables with variable restrictions are evaluated while querying by only binding data terms
to the variable, that match a given query term n. They are hence evaluated like regular query
terms, but in addition the matching data is bound to the given variable. As a consequence, for
typing, the type of the variable is propagated from the typing of the restricting query term.

LA, T — T I A|var X, 7" — T"
TA|lvar X = t,T — T"

(QUERYVARIABLERESTRICTED)

8.3.3 Typing Unordered Queries

When typing unordered query terms, counting constraints are used to check the consistency of
the language represented by the given types and the language of terms that the unordered (total
or partial) sequence of query terms may match. This is achieved by checking the intersection of
the two languages for emptiness.

The intersection of languages represented by counting constraints is constructed by building
a conjunction of the counting constraints representing the two languages and adding additional
constraints restricting different variables from the two languages representing multiplicities of
equal symbols to be equal.

Note, that in the following set of rules, the grammar G, on which the automaton A is based,
is also assumed to be globally available. It however has not been integrated in the rule signature,
to reduce formal buzz in the cases of ordered content.

Unordered Total Query Terms

When the typing function is applied to a query term I{ c¢nt } with unordered, total sequence of
sub terms and the type disjunction 7', the following rule applies:

T ={(s,l,c,e)|(s,l,c,e) e T Nce S}
S={cl(.le)eT)
T={(c,re)|T € T A Tirans = (-, 1,¢,-) A “elementrygme=I(re)’ € G }
TVA|{ent},T — 5
DA ent },T — T

(TOTUNORDQUERYTERM)

The term is typed with 7/ C T, which is obtained very much in the way of typing total
ordered query terms. The only addition is, that typing unordered sequences is done with a set of
types represented as tuples of a state and a regular expression, where the state is the start state of
the automaton part implementing the regular expression—the unordered sequence typing rule’s
signature is the rational for that. The regular expressions of the type declarations of the types in
T have hence to be accessible. This is not difficult, as the type name of a term is available in that

134

8.3.3 TYPING UNORDERED QUERIES

context as well as the grammar, it is hence just a look-up of the typing rule with the given type
name and extraction of the regular expression from the right hand side type term.

Typing an unordered sequence of query terms relies on the use of counting constraint based
type annotations, as mentioned at the beginning of the section. As the counting constraint lan-
guage representation, as introduced in chapter 7, are generated out of regular expressions, the
signature of the typing rule for unordered sequences needs a set of regular expressions as given
type formalism. The regular expressions are passed in along with the automaton state imple-
menting the start state of the expression, as the typing of terms—the typing rule from which
sequence typing is applied—expects those states as result of the recursive typing process. The
starting state of the automata implementation of the regular expression is hence just needed to
relate the regular expression to the type occurrence it originates from.

i, €T Are= (i AT L) T L T)
S" = { s|(s,ve) € T A countingConstraints(re) N countingConstraints(te) # 0 }
T = { T|Ttrans € e—reachable — ransitions(s) A (s,_) € T}

LA |ng, T — Ty N, T +— T}
LA {ny,....,nm },T — 5

(TOTUNORDSEQ)

The rule is applied to a sequence nq,...,n,, of query terms and a set of automaton state /
type name tuples J. The automata states in T denote starting states of the automata components
implementing the corresponding regular expressions. From those states, all reachable transitions
are gathered using the e—reachableTransitions function, the resulting set 1" of transitions is use for
typing the nodes n;. The nodes are checked against all types, as they may be at any position
in the query term, hence matching to any of the types in 7. The results of the node typing 7
are then used to construct a regular expression, by using the type names 7;, of the types T},
building a group of options (...|r;, |...) for each type T} and sequencing the option groups.
The rational behind this regular expression is, that it represents a reasonable type approximation
of sequences matched by the given query term sequence. For this regular expression (called re), a
counting constraint is then generated and checked against non-emptiness of the intersection with
the regular expressions te found in tuples in 7, the set of input types. For non-empty intersections,
the state corresponding to the regular expression te is then finally included in the result set S’.

Unordered Partial Query Term

The typing of partial unordered query terms is almost identical to the typing of total unordered
query terms, the mere difference is the application of the typing rule for partial unordered se-
quences instead of the rule for total unordered sequences:

T ={(s,l,c,e)|(s,l,c,e) eT Nce S}
S={cl(ile)eT)
T={(e,re)|T € T A Terans = (5,1, ¢,-) A\ “element Tpame = l{re)’ € G }
LA {{ent}}, T — 9
DA {{ent 3}, T — T

(PARTUNORDQUERYTERM)

The typing of partial unordered sequences is very similar to typing of of total unordered se-
quences: Instead of calculating the intersection of the two languages, another operator is used—it
is called extended intersection and defined now:

While normal language intersection of counting constraint languages are constructed by con-
junction of the two constraint sets and adding equality constraints for the variables representing
the same symbol’s multiplicities in both languages, the equality is exchanged by less-equal (<),

5The look up of the grammar rule is formalized as a pattern matching with “elementTname=I[(re)’”” where { and)
depict arbitrary braces, because it is irrelevant if the grammar rule models an ordered or an unordered data model.

135

8.3 TYPE CHECKING AND TYPE INFERENCE FOR RG> TYPED XCERPT PROGRAMS

such that the symbol’s multiplicities on the side of the partial query term’s counting constraint
language definition may be smaller, than on the side of the given type. Symbol multiplicities of
one language not matched by variables on the other side get zero multiplicity on the other side,
like for the intersection case, but again not with a less-equal relation. The ‘inequality” relation
reflects the fact, that more symbols in valid data instances may occur than in a query pattern they
match in, but not the other way round.

Ti; € j“Z’ Are = (Tllnanze c |lenu1ne | .)7 e (Tmlname | R |ijname ‘ R)
S" = { s|(s,re) € T A countingConstraints(re) N= cc(te) # 0 }
T = { 7|Ttrans € e—reachableTransitions(s) A (s,.) € T }
DA, T — T - T,A|nm,T — T,

LA {{n,.- - .snm }},T — 5

(PARTUNORDLIST)

8.3.4 Typing of Construct Terms

Typing of Xcerpt construct terms in special and data in general is comparable to typing of queries.
Similarities are, that

e structural properties of the construction is checked for validity based on the automaton
model used for internal type representation.

¢ the typing is based on the semantics of the construct terms, which manifests itself in a set
of data terms valid with respect to the given type.

Differences in the typing of construct terms to the typing of query terms are, that
* construct terms have no incompleteness.

* construct terms have grouping or repetition components.

® no typing for variables is deduced, the typing deduced in query parts is used.

* while query terms semantically represent sets of data terms® and a well typed data term is
one, with non empty intersection of this set and the set of data terms represented by the
type, a well typed construct term in contrast represents a set of data terms” that must be a
subset of the given type, as otherwise the construct term may yield invalid results.

Typing of construct terms is presented mostly with the same formalism as typing for queries.
A small formal extension is used on the rules for typing the sequence of nodes in the scope of
a grouping construct like all—the signature of such rules is A | ist,S — SE, where the only
difference to the signature of former rules is, that the result of typing is a set of tuples of states
SE C S xS where A is an automaton and S the set of states occurring in A as presented formerly
for query terms.

Ordered Total Construct Terms

Typing a construct term with label [, formalized in the rule ORDCONSTRUCTTERM, requires ! to
be the label of at least one transition in the set of transitions/types 7'. Further on, the content
model cnt of the term has to be valid with respect to the content model of one of the possible
types. The result of application of the typing rule is the set 7/ C T, consisting of all types for
which the construct term validation passes. Note, that the rule is identical to the typing rule for a

A query term can be seen as a representation of a set of data terms—of the data terms that can be matched by the
query term.

7 A construct term can be seen as a representation of a set of data terms—of the data terms that can be constructed by
the construct term for arbitrary well typed substitution sets as input. A well typed substitution set is one, where variables
are always substituted by data terms valid with respect to the type of the variable.

136

8.3.4 TYPING OF CONSTRUCT TERMS

totally ordered query term. Indeed, such a query term (without any incompleteness like descen-
dants or incomplete sub-terms at arbitrary depth and without variables, semantically represent
the same set of data terms as such a construct term—the represent a set consisting of exactly one
data term syntactically equivalent to those query and construct terms! This property is called
referential transparency[10]. Referential transparency means, that the same term within a given
context has the same meaning (or represents the same data).

T ={(s,l,c,e)|(s,l,c,e) e TAce S}
S={(lec_)eT}
VA |[ent], S — 8
LA [ent], T — T

(ORDCONSTRUCTTERM)

The ordered sequence of construct terms of a construct term are typed in a similar way as
the ordered sequence of query terms—starting with the empty sequence, it can successfully be
typed by a final state. The set of states used as input S is restricted to S’, the final states of the
automaton A (fond in F4)

S’ ={s|s e SATs € {s} Ue-reachable-states(s, A).s' € F4 }
LA[]L,S — &

(ORDCONSTRUCTEMPTYLIST)

Type checking non-empty sequences of construct terms is similar to type checking of non-
empty total sequences of query terms. It is achieved in a recursive divide-and-conquer way, where
the first element of the sequence is checked as well as the rest of the sequence. The typing of the
sequence [11, ng, . .., Ny, | receives the set of states S as input and returns S’ C S. The transitions
T for checking the head n; of the sequence are those that have a state of S as start state, or that
have a start state that can be reached along e-transitions from a state found in .S. Further on the
transitions in 7' need to have an (horizontal) end state in ', the set of states that an application
of the typing function to the tail of the sequence returns. This application receives S, the set of
(horizontal) end states of T”, the result of typing the first element of the sequence.

S’ ={s|lse SATteT.tec creachable-transitions(s, A) }
S={e|l(.,,e)eT}
T ={(s,1,¢,e)|(s,1,c,e) € e-reachable-transitions(s, A) As € SAee S}
A|ny, T — T DAl [ng,...,nm], 8 — &
LA |[ny,n2,...,nm], S — 57

(ORDCONSTRUCTLIST)

Variables are not restricted in construct terms in the sense, that multiple occurrences of the
same variable in a construct term have no influence on each other, as they receive their bindings
or typing from the query part of a rule—all occurrences of the same variable are typed equally in
the query. However, it is important to ensure, that the type of the variable in the global environ-
ment does not exceed the type propagated to the typing procedure. A variable type in I" violating
this requirement indicates, that substitutions for this variable may exist, that would result in in-
valid instances of the construct term. This requirement is considered by checking that each type
associated to the given variable is contained in the set of types propagated to the construct vari-
able rule application—hence the type for the variable X in I" has to be a subset (or equal) to
T. However, it is possible to restrict the type of the variable based in the global environment’s
type—if it is a real subset of T', it can be returned as the consequence of the rule application to
the variable.

(X,Tx) e AVTx ETX.HTET.(T)() - (7‘)
I'NA|var X,T — Tx

(ORDCONSTRUCTVARIABLE)

137

8.3 TYPE CHECKING AND TYPE INFERENCE FOR RG> TYPED XCERPT PROGRAMS

The Xcerpt grouping construct a118 is rather complex, as it involves three typing rules and
s special case in the typing rule signature—the case, where application of the typing function
returns a set of tuple of states. A grouping construct can be considered as a sequence of nodes in
another sequence (hence the grouping construct is a sub-sequence of a sequence of nodes). The
node sequence of the grouping construct is to be repeated arbitrary often, at least once. Hence,
the content model of the construct term containing a grouping construct among it’s child node
sequence needs to support repetition appropriate to capture the repeatability property of the
grouping construct. As typing in this thesis is operationally based on automata, some means of
repetition in automata has to be found for paths in automata appropriate for typing grouping
constructs. Repetition is modelled by loops in automata. A grouping construct is hence valid
with respect to a type or a state (remember, that sequences are typed using automata states in-
stead of transitions), when there is a path from this state such that the whole grouping sequence
can be validated along this path, and when the last state of this path is either as well the first
state, or the first state is reachable via e-edges from this last state. For this reason the typing of
grouping sequences returns a set of tuples of states, consisting of the (start)state with which the
grouping sequence is typed, as well as the end state. The end state is (1) used to check the cycle
to the start state, and (2) used as start state for the validation of the following sibling nodes of the
grouping construct. The start state is one, that has been reached while validating the sequence of
sibling nodes to the left of the grouping construct.

The typing rule is not applied strictly to the grouping construct, but to the sequence consisting
of the grouping construct as first element and the following siblings. Note, that the pattern this
rule applies to, hooks in in the typing of construct term sequences in general.

The grouping construct all (ni,,...,7n1,),n2,...,Ny,) is hence typed with the states S such
that the sequence of nodes (ny,,.. ., ni,)a11, which are the nodes in the context of the grouping
construct, can be typed using S. The result is the set of state tuples SE. The nodes following
the grouping construct are typed with the set of nodes S where each e € S comes from a tuple
(s,e) € SE, if s is e-reachable from e.

S ={é(s,e) € SE A& e {e} Nne-reachable-states(e, A) }
S = { s|(s,e) € SE A ({e} U e-reachable-states(e, A)) U S’ }
LAl (ny,...,n1,)ann, S — SE A | [ng....,nm],g — S
LA [all (nay,-00,m0,), M2, 05 1n) [, S = S
(ORDCONSTRUCTGROUPING)

When a grouping construct sequence is empty, the state its validation starts with is per defi-
nition also the state it ends with. Note, that an empty grouping construct sequence never occurs
in real programs, it is however a valid pattern in the recursive decomposition of a program when
typing it—the empty grouping construct sequences the recursions base case.

SE ={(s,s)|s € S}
F7A| ()alle — SE

(ORDCONSTRUCTGROUPINGLIST)

The typing of a non empty grouping construct sequence is similar to the typing of construct
term sequences. The difference lies in the return type (the set of state tuples) and how it is con-
structed. The set of tuples consists of tuples, such that the tuples (s, e) consist of a state s with
which the sequence is validated (this is identical to the typing of general sequences), and of the
state e that is propagated from the validation of the tail and which is the end state of the vali-
dation of the sequence. In contrast to general construct term sequence validation, the end state
of the validation does not have to be member of the set of final states of the automaton A, as
possibly the grouping sequence is followed by sibling nodes in it’s containing sequence of nodes.

80ther grouping constructs like some have been kept out for the sake of brevity, their typing is not substantially
different to the typing of all.

138

8.3.4 TYPING OF CONSTRUCT TERMS

SE={(s,e)lse€ SA(s,e) e SEAT(s,l,c,e) € T' . (5,1 c,e) € e-reachable-transitions(s, A) }
§: {6‘(,,,,,,8) er’ }
T ={(s,1,¢,e)|(s,1,c,e) € e-reachable-transitions(s, A) A s € S A (5,¢) € SE }
LLA|n, T — T T,A|(ng,....,npm],58 — SE
A (n1,na,. ..My)a11,S — SE
(ORDCONSTRUCTGROUPINGLIST)

Unordered Construct Terms

Briefly, typing of unordered construct terms is similar to typing of unordered total query terms,
with two differences: (1) an unordered construct term may contain grouping constructs that have
to be treated, and (2) the calculated type when type checking of a construct term has to be a
subset of the type used for annotation (in contrast to non-empty intersection between calculated
and annotated type in the case of the query). The treatment of grouping constructs (exemplary
shown on the Xcerpt grouping construct all) unfortunately introduces another modification of
the rule signature: the rule for the abstract syntax component all receives a set of types as input
and returns one regular expression.

T ={(s,l,c,e)|(s,l,c,e) e T Nce S}
S={cl(ile)eT)
T={(e,re)|T € T A Terans = (5,1, ¢,) A “elementTpame=I{re)” € G }
LA {ent},T — 5
DA ent },T — T

(UNORDCONSTRUCTTERM)

At the abstract syntax level of the unordered construct term (not at the level of it's sequence
of child terms), typing is identical to the typing of the unordered query term. It is however not
so surprising when looking at what exactly happens: The term is typed with 7" C T. Types of
T with equal label [as the construct term in question are further considered for typing of the
sequence of child terms. Recall, that my 7,,4me the type name, as used in the grammar, of a type
or transition is meant. Respectively, 74,40 Tepresents a transition for a type name.

re = re-component(ny,I7),- - - ,re-component(n,,, ;)
S’ ={ s|(s,re) € T A countingConstraints(re) C countingConstraints(te) }
T = { T|Ttrans € e-reachable-transitions(s) A (s,-) € T}
A |ny, T — T N, T +— T

F7A|{nla"'7nm}7T = S/

(UNORDCONSTRUCTLIST)

Typing an unordered sequence of child nodes of a construct term is done by first typing all
child nodes, then checking that the regular expression re, which gets constructed of the results of
typing the child terms, models an unordered language that is a subset (or equal) to the language
modelled by regular expressions provided in the set of tuples T. States from the set of tuples T are
returned as valid sequence types, only if they were associated to a regular expression modelling
an unordered super-set language to re. The regular expression re is constructed by concatenating
the results of applying the auxiliary function re-component to the consequences of typing all child
nodes n;. re-component is defined as follows:

re-component(l[--- |, {71, .., Tm}) = (Tl |Tmnwn.)
re-component(I{--- }, {m1,...,7m}) = (Ti 0l |Tmpune)
re-component(all(---),re) = re

re-component returns the regular expression associated to the typing of an all construct or
the disjunction of all types (more precisely all type names) returned as consequence of typing
any other construct term.

139

8.3 TYPE CHECKING AND TYPE INFERENCE FOR RG> TYPED XCERPT PROGRAMS

re = (re-component(ny,T}), ..., re-component(n,,, T/7))*
LA|mT — T/ A |n,T — T/
[A|all (ny,...,nm), T — re

(UNORDCONSTRUCTGROUPING)

Typing a sequence of terms enclosed by the grouping construct all is done by checking
all those sub-terms and returning a regular expression constructed similar to the one used in
the typing rule for typing sequences—the only difference is the appended “plus” to indicate,
that a grouping construct produces arbitrary many (but at least one) instances of the type of the
enclosed enclosed sequence of construct terms.

(X7Tx) el AVrx e Tx.dr € T.(Tx) - (T)

(UNORDCONSTRUCTVARIABLE)
A |var X, T — Tx

Typing of variables in unordered construct terms is identical to the typing in ordered construct
terms.

8.3.5 Typing Rules

The typing of a rule is done by connecting the typing of the query and the construct part. Con-
necting the types is mere propagation of the global environment I" as obtained by the typing of
the query to the typing of the construct part. Depending of the case, where typing of programs
and rule chaining is considered, the type of the rule itself is relevant or not—a rule is seen like a
transformation of data from the type of the query part to the type of the construct part.

A, T, — T, [Alq, T, — T,
LA ceqT. T, — T, T,

(RULE)

8.3.6 Typing Programs

For rule based languages like Xcerpt, typing of a program arguably means first typing of all rules.
However, rules interact by so called rule chaining, which means, that the query parts of a rule
is evaluated against the consequences of all rules, i.e. against the data constructed by the other
rules. Typing Xcerpt programs considering rule chaining has been conceived first in work by W.
Drabent and A.Wilk [66]. Different aspects of rule typing have been considered in this work, due
to the fact, that in some cases termination of the typing can not be ensured—if the consequence of
the rules restricts the type of the queries, the restricted queries can again restrict the consequences
of the construction and hence the query type may be further restricted. Approximations may
be defined in such a way, that termination can be guaranteed, e.g. by recognizing cyclic type
restriction and aborting after a fixed number of cycles.

8.3.7 Coverage of Current Xcerpt Constructs

The presented typing rules do not cover all of Xcerpt’s current features. As Xcerpt is in active
development, features currently come and go. The features typed in the preceding sections are
either generally useful when typing query languages for the Web or are principally new to the
way typing is done in e.g. programming languages. Features of Xcerpt currently available or
under development, that have not been covered here are:

1. conjunctive and disjunctive queries
2. resource specifiers

3. conditions (a.k.a. where-clauses)

4

. optional variable binding modifiers

140

8.3.7 COVERAGE OF CURRENT XCERPT CONSTRUCTS

5. query negation modifiers
6. function applications
7. rule chaining

Handling of conjunction and disjunction in queries (1) can be seen mostly as separate typ-
ing of the different components but sharing a common environment for the variables, where
variables occurring in different conjuncts have to have non empty intersection and variables in
different components of a disjunction get typed with the union of the types in both disjunctive
components. Resource specifications (2) occur at the root level of a query. They by this do not
have a logical impact on the contained query or construct terms. However they provide a promi-
nent place to indicate information about the type of the data intended to be queries, e.g. a resource
on where to find a schema or type declaration. From a prescriptive view, modifiers—optional (4)
and negation (5)—can be treated as regular terms, as their occurrence makes no sense, if they
are not applicable at their given occurrence. At the same time they should be treated as optional
content in the given data model, as it makes no sense to negate or treat as optional obligatory
content. In the ordered automaton model, optionality can be achieved by optionally skipping
a (non ¢) horizontal transition step, for unordered content models a corresponding optionality
has to be introduced in the expression constructed from the Xcerpt term sequence. Conditions
(3) do not use the Xcerpt term syntax, they are more in the spirit of (un)equations of variables
and function applications. As such they can be handled by traditional typing (e.g. in the spirit
of typing for functional programming languages) adapted to RG> type declarations. The nec-
essary adaption is to use type intersection instead of type equality when checking variable type
conformance in the environment. Rule chaining (7) has not been considered in this thesis. It is,
among the current Web query languages, a very special feature applicable to Xcerpt but not to
most of the common Web query languages. An important property to consider about a type sys-
tem treating chaining in Xcerpt is subject reduction: is a language with chaining well typed, or
maybe even type-able, at every stage of evaluation of the chaining. In functional and imperative
programming languages, this means usually after application of $-reduction. For logic languages
or deductive rule languages like Xcerpt, this means the application of substitutions.

141

8.3 TYPE CHECKING AND TYPE INFERENCE FOR RG> TYPED XCERPT PROGRAMS

142

Part V

Outlook & Conclusion

143

Outlook

Many promising continuations of the practical work in this thesis have shown up. Some of them
are summarized now.

9.1 Type Based Querying—an Extension to Simulation Unifica-
tion

The traditional use of types in programming- and query languages is to enhance security, perfor-
mance, documentation or verbosity of errors. For many languages it holds, that for a well typed
program the program is equivalent to what the program would be after removing all type infor-
mation and running it in a sibling language without type support. In traditional settings, types
arguably do not alter the semantics of (well typed) programs, they may just help finding ill typed
programs, the can considered to be passive at run time.

For Web querying in general, for Xcerpt in special, types on the side of selection constructs
can be used to ensure, that the query is reasonable for data of given type to query, where an
unreasonable query is one, that never matches any data of the given type. Types hence represent
a set that may not have empty intersection with the set of the data the given selection construct
matches with. As an example, the rather vague Xcerpt query term in figure 55 is expected to
query HTML Table element in its given context. As the query may query arbitrary data, it is
obviously well types. However, as nothing restricts the variable TABLE from matching with
arbitrary content, the query will most likely not fulfill the author’s desire. The type information
is very restrictive (and it can be assumed that it is not reasonable for the given query under
traditional passive type semantic) about what the query actually queries. It is possible, that in the
given situation, the programmer really expected to query HTML tables and was inspired, that
the given query would more or less fulfill his requirement.

145

9.1 TYPE BASED QUERYING—AN EXTENSION TO SIMULATION UNIFICATION

CONSTRUCT

result{ all var TABLE }
FROM

in document ("http://example.com") desc var TABLE" "Table
END

Code Example 55 An Xcerpt query querying arbitrary data in an HTML document—however the type
annotation indicates, that the author had something else in mind...

A proposed extension to the query semantic in general, and to simulation unification in the
case of Xcerpt, is to use type information of well typed queries to restrict the query, to be an active
member of the querying process. As type information is usually given and mostly designed
in an unambiguous way, sometimes involving complex rules with many details, they can be a
powerful tool for the query author to exactly specify the elements he is interested in. In the
example in figure 55, the type would hence restrict the rather generic query pattern to match
only with HTML tables, even if the untyped query would match other elements additionally (in
the given case very likely, e.g. the content of the HTML table).

9.1.1 Extending Ground Query Term Simulation With Active Type Querying

To use active types to express queries in Xcerpt, the query evaluation has to be altered. The
query evaluation in Xcerpt is based on a non standard unification, called Simulation Unification.
Simulation unification is the method binding sub-terms of queried data to variables in a query
pattern, for a query pattern matching the data. A preliminary concept of Simulation unification
is the so called ground query term simulation.

Ground query term simulation is well defined in [43]. A query term is called ground, if it does
not contain (sub-term, label, namespace, or positional) variables. 79 C J9 denotes the set of all
ground query terms, where T is the set of all query terms, and T7¢ C T9 denotes the set of all data
terms. In essence, a ground query term simulates a data term, if (1) the labels match, and (2) there
is a mapping of the child terms of the query term to the child terms of the data term, such that the
query sub-terms simulate data sub-terms. The properties of the mapping are defined according
to partiality or order specification of the query term, e.g. the mapping for a total unordered query
term to an unordered data term has to be bijective.

Ground query term simulation is extended, such that (3) for a query term with active type
annotation (which is a disjunction of types) to simulate a data term, the data term has to be valid
with respect to at least one of the given data types.

Operationally, this can be achieved by applying the type checking algorithm with the given
type of the top level query term to the incoming data term at evaluation time and then, if the data
term is valid with respect to the given type, applying the query algorithm. Type checking a data
term is reasonable, as data terms are syntactically a subset of query terms and their query term
semantics is to match exactly the data term they are. As in a query term various type annotations
may be given for the sub-terms (e.g. in form of a complete type annotation as a consequence of
type checking the query term), the type annotations of the child query terms have to be checked
against the type annotations of the data terms. For this purpose, the intersection of the disjunction
of types of query and data (sub)term are checked for non emptiness.

9.1.2 Extending Simulation Unification with Active Type Querying

Based on ground query term simulation and standard unification, simulation unification is de-
fined in [43] as the building block of Xcerpt, responsible for the evaluation of the query parts
of Xcerpt rules. Simulation Unification is an algorithm that, given two terms ¢; and ¢,, deter-
mines variable substitutions such that the ground instances of ¢; and ¢, simulate. The outcome
of Simulation Unification is a set of substitutions called simulation unifier. Informally, a simula-
tion unifier for a query term t? and a construct term ¢¢ is a set of substitutions ¥, such that each
ground instance #¢° of 7 in X simulates into a ground instance ¢ of ¢ in ¥. Each substitution is
a mapping of the free variables in ¢, and ¢. to a ground term.

146

To extend simulation unification with active type support, ground query term simulation has
to be replaced with ground query term simulation extended with active types as introduced in
section 9.1.1. Further on, the set of substitutions X has to be restricted to consist only of substi-
tutions, where each mapping of variable to ground term fulfills the requirement, that the type of
the variable has non empty intersection with the type of the ground term.

9.2 Optimizing Xcerpt Query Evaluation Based on Type Infor-
mation

This work has been published [11] and presented at The First International Conference on Web Rea-
soning and Rule Systems.

With the vast data size on the Web and Semantic Web, reducing costs of data transfer and
query evaluation for Web queries is crucial. To reduce costs, it is necessary to narrow the data
candidates to query, simplify complex queries and reduce intermediate results. This can indeed
be achieved using type information in queries and/or in the queried data. A static approach to
optimization of web queries has been has been proposed [11] based on the typing proposed in
this thesis. By static optimization the rewriting of queries, such that, under the assumption of
querying valid data (with respect to the type of the schema) the rewritten query returns the same
results as the original query. A set of rules which achieves the desired optimization by schema
and type based query rewriting is proposed. The approach consists in using schema informa-
tion for removing incompleteness (as expressed by ‘descendant’ constructs and disjunctions) from
queries. The approach is presented on the query language Xcerpt, though applicable to other
query languages like XQuery.

Incomplete query constructs have proved to be both essential tools for expressing Web queries
and a great convenience for query authors able to focus better on the parts of the query he or she is
most interested in. Though some evaluation approaches, e.g., [14] (usually limited to tree-shaped
data) can handle certain incomplete queries (viz., those involving descendant or following)
efficiently, most approaches suffer from lower performance for evaluating incomplete queries
than for evaluating queries without incompleteness. The latter is particularly true for query pro-
cessors with limited or no index support (a typical case in a Web context where query processors
are often used in scenarios where data is transient rather than persistent).

In Web queries, incompleteness occurs in three forms: breadth, depth, and order. In [11]
mostly breadth and depth have been addressed though also order incompleteness is briefly con-
sidered.

1. Incompleteness in depth allows a query to express restrictions of the form “there is a path
between the paper and the author” without specifying the path’s exact shape. The most
common construct for expressing depth incompleteness is XPath’s descendant or Xcerpt’s
desc, an unqualified, arbitrary-length path between two nodes.

2. Incompleteness in breadth allows a query to express restrictions on some children of a
node without restricting others (“there is an author child of the paper but there may be
other unspecified children”). Breadth incompleteness is an essential ability of all query lan-
guages. Indeed, in many languages breadth completeness is much harder to express than
incompleteness—a reason why many query authors prefer to write queries with breadth
incompleteness where queries with completeness would be more efficient.

3. Incompleteness in order allows a query to express that the children order of a node is irrel-
evant (“there is an author child of the paper and a title child of the same paper but don’t
care about their order”).

The approach presented in [11] however does not provide a fully applicable optimization ap-
proach. First of all, the problem of finding an equivalent optimal query under schema constraint
is undecidable. However, heuristic approaches to rewriting queries such that the resulting query

147

9.3 INTEGRATING TYPES INTO VISXCERPT

visXqui - visual XCERPT query interfac =
Datei Bearbeiten Ansicht Gehezu Lesezeichen Werkzeuge Reiter Hilfe
@ v B htewww pms ifi Imu BergerTt tved [&
ﬁfmﬁnm" SNU Gy NEEp: //Www XCerpt.org @Fé'«;'
o
| editor | templates
By | —
i
=z il
& [Frute This rule queries an HTML document to R
extract all tables.
()

result!

regexp.® | this regular expression matches
et

I

o
RESULT

@l

Fl

Figure 9.1: An example session of the visXcerpt Web and Semantic Web query editor. Queries
(i.e. their patterns or terms) are visualized as nested boxes, possibly folded in the spirit of tabs.
The editing window consists of three panels—on the left the current program being edited or
used for querying, on the right at the top a set of templates to use for copy and pasting in the
editor panel and on the bottom a parameter window for the query execution. The query results
are shown in a pop up window using a very similar term visualisation as the visXcerpt queries
use.

should be more efficient in many cases for a given query engine exist. The work in [11] presents
rewriting rules that can be used to add or remove incompleteness under schema constraints such
that the resulting query is equivalent. The current choice of rule to apply depends of a heuris-
tic which is not presented in the work, as highly dependant on the requirements of the query
execution system.

9.3 Integrating Types Into visXcerpt—an Interactive Visual De-
velopment Environment for Xcerpt

visXcerpt is a visual dialect of Xcerpt integrated with a development environment. It has first
been presented in [9] and [12]. When programming in visXcerpt, the programmer uses templates
to drag, drop, copy and paste queries, here and there editing various labels. This way a steep
learning curve is expected to be flattened, as the user may derive his work from existing work,
i.e. learning by example. Consider example 9.1 for a typical visXcerpt session

However, when constructing queries from existing example queries or documents, there is
always a restricted variety of templates available and nothing prevents combination of invalid
components. Using types in such a visual environment could be greatly beneficial. Types can be
used for two purposes:

1. Based on the current editing context and it’s type, applicable templates can be constructed
and provided for query construction.

2. Based on types invalid editing operations can be deactivated in certain contexts. As an
example pasting an invalid (or at least invalid in a given context) element into a container
can be prevented. On the other hand required attributes or content can be enforced or
alternatively incompleteness can be provided.

The use of types in programming environments is known, e.g. from well known integrated
development environments like Microsoft Visual Studio or Eclipse. Construction of valid XML

148

and SGML documents based on DTD information has also been applied in practice for some
while, e.g. in the Emacs text editor. However, schema driven query construction is a new field
hot applied in practice by now.

149

9.3 INTEGRATING TYPES INTO VISXCERPT

150

Conclusion

The contributions of this thesis can be summarized as

1. a Web Schema language to model (serialisations of) graph structured data, including a new
modelling approach for unordered data or multisets, based on unordered interpretations
of regular expressions, and

2. a typing approach for web query languages based on unrestricted regular tree grammars
with former extension.

The first contribution, the type and schema language R>G> has been implemented for inte-
gration, e.g. in Web query or transformation languages, but also for stand alone use as schema
language for XML or Xcerpt data terms. The modelling approach for unordered data based on
unordered interpretation of regular expressions (1) is implemented as a prototype based on con-
straint solvers in GNU Prolog [24]. Typing of Web query languages (2) has been implemented
based on (1) for the Web query language Xcerpt. Currently two implementations exist, a pro-
totypical one supporting ordered and unordered query terms, and a second implementation for
integration into the prototype of Xcerpt currently under development. The second version offers
no support for unordered data models by now.

The need and usefulness of an extension of current type and schema languages for the Web
arises from

¢ the lack of modelling support for graph shaped documents and their serialisations, and

e the lack of modelling techniques for unordered content models with the expressiveness of
regular expressions for ordered data.

The relevance of the need of graph shaped data on the Web is paid tribute to by prominent
movements like the Semantic Web with e.g. RDF at it’s base, a formalism arguably modelling
graph shaped data. However, many standard Web applications can benefit of modelling possi-
bilities for valid graph shaped data. Modelling of graph shaped data and their serialisations has
been achieved by adding typed references in the grammar language and cycle detection in the
automata execution.

Unordered content models are either not available in Web Schema languages (i.e. DTD) or
of less expressiveness than the modelling techniques for ordered data (i.e. XML Schema, Relax

151

10 CONCLUSION

NG). Regular expressions provide (beside the ability to model the order of elements) a power-
ful mechanism to express the inter-dependency of elements and/or their optionality in content
models. As shown in small use cases in chapter 3 this is of practical relevance. As a consequence,
many schemata of data formats on the Web dictate order, where indeed order is not relevant. It
is however difficult to give clear numbers or hard facts about the misuse of order, as the lack of
such modelling techniques leads to an “as it is” resignation of the schema developers, where the
current technical possibilities are used as they are.

As first shown in [15] unrestricted regular tree grammars are computationally expensive in
some situations for type checking. Various work [6] has shown arguably “pessimistic” results
about cost or decidability of typing of Web query languages under general regular tree language
constraints, however the approach has been followed in this thesis. It is not at all the goal to con-
tradict to the excellent theoretical results of the above mentioned work—the approach followed
in this thesis relies heavily on sacrificing precision of the typing to achieve acceptable perfor-
mance and complexity (at least in the ordered data model case). The premise was not to restrict
the expressiveness of the modelling languages, as they are then usually easier to understand—
the restrictions are often not based on syntactical properties of the grammar formalism, but on
properties of derivable automata or on features of underlying algorithms. Another advantage
of using unrestricted grammars for the user is the value as a documentation of such grammars
have—an easy to read and expressive grammar is valuable documentation about the data format.
If the grammar of a data format has to be widened, generalized or expressed in a verbose way
due to restrictions of the schema formalism used to model them, the value as a documentation of
the schema is reduced.

While the typing approach presented here has been tailored for the Web and Semantic Web
query language Xcerpt, it can easily be adapted to other Web or Semantic Web query languages
like e.g. Xquery. The main requirement is the usefulness of RG> for the given query language as
a type declaration language. A possible approach to achieve typing is the translation of the given
query language to Xcerpt for the purpose of typing (investigation in the translation of Xcerpt to
Xquery and vice versa has been done in [34]), but the rules may also easily be adapted to other
query languages—as long as the concept of construction, projection and selection is applicable
(which arguably is a central conceptualisation of all query languages).

So, what are the benefits of a (statically) typed Web query language over a non typed one?
The most obvious one is help for the developer of queries, in providing prior to run time (e.g.
compile time) information about errors. One could assume, that errors can easily be found by
test running a program, however, this may only find errors along the execution paths used while
test running—often errors may stay hidden for long time until triggered. When type checking,
only a certain class of errors may be found (i.e. errors related to type conflict), but they are all
found, as the type checking analyses the whole program. Further on types often serve as valuable
documentation about the code.

Another arguably important benefit of typed queries is potential optimization of the evalu-
ation based on type information. This can happen at run time or at compile time. As a rule of
thumb, this kind of optimization is profitable whenever the schema is quite complex and the type
information is rather selective about the data fragments, while queries are rather brief or less se-
lective. Run time optimization could e.g. rely on checking the types of validated data against the
expected results without deeply checking structures or data values in the case of type mismatch.
An approach in which brief investigation has been done along this thesis is static optimization
of queries based on type annotations (see section 9.2, as well as [11]). The idea here is to rewrite
queries based on their type annotation such that their selectivity is increased or their evaluation
cost is reduced. A set of rewriting rules for queries under schema constraints yielding semanti-
cally equivalent queries (under the assumption, that the queried data is valid with respect to the
given schema) have been proposed in this work. However, the choice of which rules to apply to
achieve optimized queries can only be based on heuristics specialized for the evaluation engine
of the query language in question. No such heuristics have been given by now.

Design of type systems is a difficult task and while this thesis gives a rather concrete guide
to building a type system for Xcerpt, many tasks can still be performed around the research for

152

typing Xcerpt and Web query languages.

153

10 CONCLUSION

154

Bibliography

[1] JTC 1/5C 34. Standard Generalized Markup Language (SGML). International Organization for
Standardization (ISO), 1986. ISO 8879:1986.

[2] JTC 1/SC 34. Document Schema Definition Languages (DSDL). International Organization for
Standardization (ISO), 2004. ISO/IEC 19757.

[3] Serge Abiteboul, Peter Buneman, and Dan Suciu. Data on the Web. From Relations to Semistruc-
tured Data and XML. Morgan Kaufmann, 2000.

[4] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley,
1995.

[5] A.V. Aho and J. D. Ullman. Principles of Compiler Design. Addison-Wesley, 1977.

[6] Noga Alon, Tova Milo, Frank Neven, Dan Suciu, and Victor Vianu. XML with data values:
Typechecking revisited. In Symposium on Principles of Database Systems, 2001.

[7] Uwe Afimann, Sacha Berger, Francois Bry, Tim Furche, Jakob Henriksson, and Jendrik Jo-
hannes. Modular Web Queries—From Rules to Stores. In Proc. Int’l. Workshop on Scalable
Semantic Web Knowledge Base Systems (SSWS), 2007.

[8] Uwe Afmann, Sacha Berger, Francois Bry, Tim Furche, Jakob Henriksson, and Paula-Lavinia
Patranjan. A Generic Module System for Web Rule Languages: Divide and Rule. In Proc.
Int’l. RuleML Symp. on Rule Interchange and Applications, 2007.

[9] Sacha Berger. Conception of a graphical interface for querying xml. Diplomarbeit/diploma
thesis, Institute of Computer Science, LMU, Munich, 2003.

[10] Sacha Berger, Francois Bry, and Tim Furche. Xcerpt and visxcerpt: Integrating web querying.
In Proceedings of Programming Language Technologies for XML, Charleston, South Carolina (14th
January 2006), 2006.

[11] Sacha Berger, Francois Bry, Tim Furche, and Andreas J. Hdusler. Completing Queries:
Rewriting of Incomplete Web Queries under Schema Constraints. In Proceedings of First
International Conference on Web Reasoning and Rule Systems, Innsbruck, Austria (7th-8th June
2007), volume 4524 of LNCS, pages 319-328, 2007.

[12] Sacha Berger, Frangois Bry, Sebastian Schaffert, and Christoph Wieser. Xcerpt and visxcerpt:
From pattern-based to visual querying of xml and semistructured data. In Proceedings of 29th
Intl. Conference on Very Large Data Bases, Berlin, Germany (9th-12th September 2003), 2003.

[13] Sacha Berger, Emmanuel Coquery, Wlodzimierz Drabent, and Artur Wilk. Descriptive Typ-
ing Rules for Xcerpt. In PPSWR, pages 85-100, 2005.

155

BIBLIOGRAPHY

[14] Peter Boncz, Torsten Grust, Maurice van Keulen, Stefan Manegold, Jan Rittinger, and Jens
Teubner. MonetDB/XQuery: a fast XQuery Processor powered by a Relational Engine.
pages 479-490, New York, NY, USA, 2006. ACM Press.

[15] A.Briiggemann-Klein. Formal Models in Document Processing. Habilitation, Institut fiir Infor-
matik, Universitdt Freiburg, Freiburg, Germany, 1993.

[16] Frangois Bry, Wlodzimierz Drabent, and Jan Maluszynski. On Subtyping of Tree-Structured
Data: A Polynomial Approach. In Principles and Practice of Semantic Web Reasoning, Second In-
ternational Workshop, PPSWR 2004, St. Malo, France, September 6-10, 2004, Proceedings, volume
3208 of Lecture Notes in Computer Science, pages 1-18. Springer, 2004.

[17] Frangois Bry and Sebastian Schaffert. A gentle introduction into xcerpt, a rule-based query
and transformation language for xml. In Proceedings of International Workshop on Rule Markup
Languages for Business Rules on the Semantic Web, Sardinia, Italy (14th June 2002), 2002.

[18] Hans-Jiirgen Biirckert, A. Herold, D. Kapur, Jorg Siekmann, M.E. Stickel, M. Tepp, and
H. Zhang and. Opening the AC-Unification Race. J. of Automated Reasoning, 4(4):465-474, 0
1989.

[19] Don Chamberlin, Jonathan Robie, and Daniela Florescu. Quilt: An XML query language for
heterogeneous data sources. Lecture Notes in Computer Science, 1997:1-25, 2001”.

[20] Horatiu Cirstea, Emmanuel Coquery, Wlodzimierz Drabent, Frangois Fages, Claude Kirch-
ner, Luigi Liquori, Benjamin Wack, and Artur Wilk. Types for REWERSE reasoning and
query languages, 2005.

[21] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and
M. Tommasi. Tree automata techniques and applications. Available on:
http://www.grappa.univ-1ille3.fr/tata, 1997. release October, 12th 2007.

[22] Roger L. Costello, Bertrand Poisson, and Melissa Utzinger. XML Schemas: Best Practices.
Technical report, xml-dev Mailinglist, 2006.

[23] Eduard Derksen, Peter Fankhauser, Ed Howland, Gerald Huck, Ingo Macherius, Makoto
Murata, Michael Resnick, and Harald Schoning. XQL (XML Query Language). Technical
report, August 1999. W3C Recommendation, http://www.w3.0org/TR/xquery/.

[24] Daniel Diaz and Philippe Codognet. The GNU prolog system and its implementation. In
SAC (2), pages 728-732, 2000.

[25] John e. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 1979.

[26] M.]. Fischer and M. O. Rabin. Super-Exponential Complexity of Presburger Arithmetic.
In SIAMAMS: Complexity of Computation: Proceedings of a Symposium in Applied Mathemat-
ics of the American Mathematical Society and the Society for Industrial and Applied Mathematics,
volume 7, pages 27-41, 1974.

[27] V. Ganesh, S. Berezin, and D. Dill. Deciding presburger arithmetic by model checking and
comparisons with other methods. In Formal Methods in Computer-Aided Design (FMCAD ’02),
LNCS 2517, number 2517 in LNCS, pages 171-186. Springer, November 2002.

[28] Haruo Hosoya and Benjamin C. Pierce. Xduce: A statically typed xml processing language.
ACM Transactions on Internet Technology (TOIT), 3(2):117-148, 2003.

[29] International Organization for Standardization. Document Description and Processing Lan-
guages — Regular Language Description for XML (RELAX) — Part 1: RELAX Core, October 2000.
ISO/IEC DTR 22250-1.

156

BIBLIOGRAPHY

[30] International Organization for Standardization. Information technology — Document Schema
Definition Language (DSDL) — Part 2: Regular-grammar-based validation —- RELAX NG, Novem-
ber 2003. ISO/IEC 19757-2:2003.

[31] Stefan Kahrs. Well-Going Programs Can Be Typed. In Martin Hofmann, editor, Typed Lambda
Calculi and Applications, number 2701 in LNCS, pages 167-179. Springer, June 2003.

[32] Claude Kirchner, Héléne Kirchner, and Anderson Santana. Anchoring modularity in HTML.
In First International Workshop on Automated Specification and Verification of Web Sites (IWWV
2005), pages 139-151, 2005.

[33] Sebastian Kraus. Use cases fiir xcerpt: Eine positionelle anfrage- und transformation-
ssprache fiir das web. Diplomarbeit/diploma thesis, Institute of Computer Science, LMU,
Munich, 2004.

[34] Benedikt Linse. Automatic translation between xquery and xcerpt. Diplomarbeit/diploma
thesis, Institute of Computer Science, LMU, Munich, 2006.

[35] Denis Lugiez and Silvano Dal Zilio. XML Schema, Tree Logic and Sheaves Automata. Ap-
plicable Algebra in Engineering, Communication and Computing, 17(5):337-377, 2006.

[36] Robin Milner. Fully abstract models of typed lambda-calculi. Theoretical Computer Science,
4(1):1-22,1977.

[37] M. Murata. Hedge Automata: a Formal Model for XML Schemata. Web page, 2000.

[38] M. Murata, D. Lee, and M. Mani. Taxonomy of XML schema languages using formal lan-
guage theory. In Extreme Markup Languages, Montreal, Canada, 2001.

[39] F. Neven and T. Schwentick. XML Schemas without Order, 1999.
[40] RohitJ. Parikh. On context-free languages. J. ACM, 13(4):570-581, 1966.

[41] Benjamin C. Pierce. Types and Programming Languages. MIT Press, Cambridge, MA, USA,
2002.

[42] Mojzesz Presburger. Uber die Vollstandigkeit eines gewissen Systems der Arithmetik ganzer
Zahlen, in welchem die Addition als einzige Operation hervortritt. In Comptes Rendus du I
congres de Mathematiciens des Pays Slaves, pages 92-101, 1929.

[43] Sebastian Schaffert. Xcerpt: A Rule-Based Query and Transformation Language for the Web. Dis-
sertation/Ph.D. thesis, Institute of Computer Science, LMU, Munich, 2004. PhD Thesis,
Institute for Informatics, University of Munich, 2004.

[44] Uwe Schoning. Theoretische Informatik — kurzgefasst. Spektrum Akademischer Verlag in Else-
vier, 1997.

[45] H. Seid], T. Schwentick, A. Muscholl, and P. Habermehl. Counting in trees for free, 2004.

[46] Unidex. Turing Machine Markup Language, March 2001.
http://www.unidex.com/turing/tmml.htm.

[47] W3 Consortium. Extensible Stylesheet Language Transformations (XSLT) Version 1.0, November
1999. W3C Recommendation, http://www.w3.0rg/TR/xslt.

[48] W3 Consortium. XML Path Language (XPath) Version 1.0, November 1999. W3C Recommen-
dation, http://www.w3.0org/TR/xpath

[49] W3 Consortium. XHTML(TM) 1.0 The Extensible HyperText Markup Language (Second Edition),
January 2000. W3C Recommendation, http://www.w3.0org/TR/xhtmll/.

157

BIBLIOGRAPHY

[50] W3 Consortium. Extensible Stylesheet Language (XSL) Version 1.0, October 2001. W3C Recom-
mendation, http://www.w3.0rg/TR/2001/REC-xs1-20011015/.

[51] W3 Consortium. TREX — Tree Regular Expressions for XML, February 2001. W3C Recom-
mendation, http://www.thaiopensource.com/trex/.

[52] W3 Consortium. XML Fragment Interchange, February 2001. W3C Recommendation,
http://www.w3.0rg/TR/xml-fragment.

[53] W3 Consortium. XML Linking Language (XLink) Version 1.0, June 2001. W3C Recommenda-
tion, http://www.w3.0rg/TR/x1link/.

[54] W3 Consortium. Scalable Vector Graphics (SVG) 1.1 Specification, January 2003. W3C Recom-
mendation, http://www.w3.0rg/TR/SVG/.

[55] W3 Consortium. XHTML(TM) 2.0, May 2003. W3C Working Draft,
http://www.w3.0rg/TR/xhtml2/.

[56] W3 Consortium. XML Information Set (Second Edition), February 2004. W3C Recommenda-
tion, http://www.w3.0org/TR/xml-infoset/.

[67] W3 Consortium. XML Schema Part 0: Primer Second Edition, October 2004. W3C Recommen-
dation, http://www.w3.0rg/TR/xmlschema—-0/.

[58] W3 Consortium. XML Schema Part 1: Structures Second Edition, October 2004. W3C Recom-
mendation, http://www.w3.0rg/TR/xmlschema-1/.

[59] W3 Consortium. XML Schema Part 2: Datatypes Second Edition, October 2004. W3C Recom-
mendation, http://www.w3.0rg/TR/xmlschema-2/.

[60] W3 Consortium. Document Object Model (DOM), January 2005. W3C Architecture domain,
http://www.w3.0rg/DOM/.

[61] W3 Consortium. Extensible Markup Language (XML) 1.0 (Fourth Edition), August 2006. W3C
Candidate Recommendation , http://www.w3.0rg/TR/xml/.

[62] W3 Consortium. SPARQL Query Language for RDF, June 2007. W3C Candidate Recommen-
dation, http://www.w3.0rg/TR/rdf-spargl-query/.

[63] W3 Consortium. XQuery 1.0: An XML Query Language, January 2007. W3C Recommenda-
tion, http://www.w3.0rg/TR/xquery/.

[64] W3 Consortium. XQuery 1.0 and XPath 2.0 Formal Semantics, January 2007. W3C Recommen-
dation, http://www.w3.0rg/TR/xquery-semantics/.

[65] Artur Wilk and Wlodzimierz Drabent. A Prototype of a Descriptive Type System for Xcerpt.
In Principles and Practice of Semantic Web Reasoning, 4th International Workshop, PPSWR 2006,
Budva, Montenegro, June 10-11, 2006, Revised Selected Papers, volume 4187 of Lecture Notes in
Computer Science, pages 262-275. Springer, 2006.

[66] Artur Wilk and Wlodzimir Drabent. On Types for XML Query Language Xcerpt. In Francois
Bry, N. Hence, and Jan Maluszynski, editors, Principles and Practice of Semantic Web Reasoning,
number 2901 in LNCS, pages 128-145. Springer, 2003.

[67] Silvano Dal Zilio, Denis Lugiez, and Charles Meyssonnier. A logic you can count on. In
POPL '04: Proceedings of the 31st ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages, pages 135-146, New York, NY, USA, 2004. ACM.

158

Curriculum Vitae

Sacha Berger was born January, 29" 1974 in Perpignan, France, near where he lived for 5
years. Since 1979 he lives in Munich, Germany. He received his high school degree (Abitur) in
1993.

From 1996 to 2002 he studied Computer Science with a minor of Computer Linguistics at the
Institute for Informatics of the University of Munich (LMU). His diploma thesis was on “Concep-
tion of a Graphical Interface for Querying XML”. He finished his studies with honours.

Since September 2003, Sacha is working as a research and teaching assistant at the research
unit for Programming and Modelling Languages headed by Prof. Dr. Frangois Bry at the Institute for
Informatics of the University of Munich. His research interests include static properties of Web
and Semantic Wen query languages.

Sacha Berger is married and has a son. Beside his professional interests, he likes Mexican
culture, photography and cooking.

159

