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KURZFASSUNG 

Im Allgemeinen wird für Deponiekörper ein homogener Aufbau angenommen. Während der 
Betriebsphase einer Deponie können jedoch in verschiedenen Bereichen Inhomogenitäten 
entstehen. Um die Wirkungsweise einer Inhomogenität beobachten und veranschaulichen zu 
können, wurden Langzeitversuche mit einer Laufzeit von maximal 25 Monaten im Labor- 
(Säulenversuche) und Feldmaßstab (4 Testfelder und 4 Großlysimeter) ausgeführt. Als 
Ausgangsmaterialien wurden Reststoffe aus der Müllverbrennung verwendet (u.a. Schlacken). 
Für die grundlegenden Versuchsanordnungen, auch als Referenzversuche bezeichnet, wurde 
als Bewässerungsmedium Leitungswasser oder natürlicher Niederschlag gewählt. Auf der 
Deponie ist jedoch durch die fortwährenden Ablagerungen frischer Reststoffe aus der 
Müllverbrennung das perkolierende Sickerwasser stets sehr salzreich. Aus diesem Grund 
wurde für die erweiterten Versuchsanordnungen eine Bewässerung mit salzreichen Lösungen 
bestimmt, z.T. ausschließlich oder zusätzlich zum natürlichen Niederschlag. Neben 
Modellsickerwässern aus dem Labor wurden für einige Versuche auch Deponiesickerwasser 
oder Konzentrat aus der Umkehrosmose verwendet. Als zweite Möglichkeit, um eine 
kontinuierliche Zufuhr salzreicher Lösungen zu gewährleisten, wurden für ausgewählte 
Versuche Rauchgasreinigungsrückstände als Deck- oder Zwischenschicht eingebaut.  
Im Allgemeinen werden Säulenversuche unter wassergesättigten Bedingungen durchgeführt. 
Für die hier vorliegenden Versuche wurden wasserungesättigte Verhältnisse gewählt, um die 
realen Bedingungen auf einer Deponie nachvollziehen zu können.  
Sämtliche Versuche wurden als Parallelversuche aufgebaut. Dabei wurde jeweils eine 
Versuchsreihe als Blindversuch mit einem homogenen Aufbau betrieben. Für den parallelen 
Versuch wurde durch den Einbau einer Sperrschicht, bestehend aus Schlacke-Feinkorn, eine 
Inhomogenität im vertikalen Profil erzielt. Der Wechsel der Korngröße sollte in diesem Bereich 
die Durchlässigkeit verringern. Zusätzlich wurde die Lage aus Schlacke-Feinkorn z.T. 
verdichtet. Die Ergebnisse der Feststoff- und Sickerwasseruntersuchungen zu den 
Langzeitversuchen im Labor sowie zu den Feldversuchen haben deutlich gezeigt, dass vor 
allem physikalische Prozesse, bedingt durch den Einbau einer Sperrschicht, innerhalb der 25 
Monate beobachtbar waren. Für die Blindversuche nahmen die Wassergehalte der 
Feststoffproben überwiegend vom Top der Versuche zur Basis hin zu. Im Gegensatz dazu 
wurde für die Versuche mit Sperrschicht folgendes beobachtet: 
 

 Stauwirkung oberhalb der Sperrschicht als Folge des Korngrößenwechsels, 
 Verlangsamung der Durchlaufzeit des Sickerwassers, 
 höheres Wasserrückhaltevermögen (kumulierter Wasserrückhalt). 

 
Vor allem innerhalb der Sperrschicht wurden im Allgemeinen die höchsten Wassergehalte 
gemessen. Auffällig war, dass besonders unterhalb der Sperre meist deutlich geringere 
Wassergehalte festgestellt wurden. Die Zugabe von salzreichen Lösungen für die erweiterten 
Versuche hat das Wasserrückhaltevermögen zusätzlich verstärkt. Darüber hinaus haben 
Modellversuche mit Kunststoffkugeln gezeigt, dass bei kleinen Bewässerungsmengen die 
Wirksamkeit der Sperre erhöht wird.  
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Die Untersuchungen zum Stofftransport entlang des vertikalen Profils ergaben, dass für die 
Blindversuche eine gleichmäßige bis graduelle Salzanreicherung in den Feststoffproben 
beobachtet werden konnten. Der Einbau einer Sperre hingegen führte dazu, dass 
Salzakkumulationen vor allem innerhalb und unterhalb der Sperre festgestellt wurden - sowohl 
für eine Bewässerung mit Leitungswasser als auch mit Modellsickerwasser. 
Die Untersuchungen veranschaulichen, dass der Einbau einer Sperrschicht in Form eines 
Korngrößenwechsels eine Verringerung der Durchlässigkeit bewirkt. Dadurch werden die 
perkolierenden Sickerwässer aufgestaut. Die Aufkonzentration der leichtlöslichen Salze im 
Sickerwasser zusammen mit dem Wechsel des Wassergehalts in den Schichten führen 
letztlich zu einer Ausfällung aus der Porenlösung. Die Ausbildung von Salzanreicherungen 
hängt sehr stark vom Faktor Zeit ab. Ein Großteil der chemischen und mineralogischen 
Entwicklungsgänge kam erst nach einer gewissen Laufzeit zum Tragen:  
 

 mehrere Trendwechsel der Sickerwasserentwicklung verschiedener Spezies (z.B. 
leichtlösliche Salze oder Schermetalle) sowie 

 pH-Wert abhängige Prozesse (z.B. Anstieg der Ca- oder Mg-Konzentration mit 
abnehmenden pH-Werten), 

 dies belegt die die große Bedeutung von Langzeitversuchen. 
 
Zusammenfassend zeigen die vorliegenden Ergebnisse, dass ungesättigte 
Wasserbedingungen zusammen mit physikalischen und chemischen Prozessen die 
Voraussetzung für eine Salzanreicherung im Bereich der Sperrschicht schaffen. Die 
Auswirkungen von Inhomogenitäten entlang des Deponieprofils bedingt durch Verdichtung 
und/oder Korngrößenwechsel, wie sie in dieser Forschungsarbeit untersucht wurden, bieten 
daher eine Erklärung für die Beobachtungen auf der Monodeponie Waldering. In einem 
Bauabschnitt der Monodeponie Waldering wurde ein mehrere Meter mächtiger Salzhorizont 
erbohrt. Diese salzreiche Schicht weist überwiegend die Mineralphasen Halit und Sylvin auf. 
Somit besteht auch in humiden Klimagebieten die Möglichkeit, Salzanreicherungen bis hin zu 
mehrere Meter mächtige Salzhorizonte zu erzielen. Insbesondere die Reststoffe aus der 
Müllverbrennung wie Schlacken und Rauchgasreinigungsrückstände bieten aufgrund ihrer 
sehr hohen Salzgehalte prinzipiell die Voraussetzung für die Bildung eines Salzhorizonts.  
Schlussfolgernd können durch den Einbau einer Sperrschicht folgende Vorteile für einen 
Deponiebetrieb abgeleitet werden: 
 

 Salzakkumulationen führen aufgrund ihrer hohen Speicherkapazität zu geringeren 
Austragsmengen an Sickerwasser, 

 das erhöhte Wasserrückhaltevermögen zusammen mit der verstärkenden Wirkung von 
Salzanreicherungen bietet bei Starkregenereignissen ein stärkeres Puffervermögen. 
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ABSTRACT 

A homogeneous design for landfill bodies is generally agreed. However the manner in which 
waste is deposited may result in a sequence of layers that causes inhomogeneity. The goal of 
this research was to investigate the influences of such inhomogeneities on long-term leaching 
of highly soluble salts and ecotoxic species. 
This long-term leaching of was observed for 25 months. Laboratory column tests and field 
experiments (test bodies and lysimeters) were performed with municipal solid waste 
incineration residues. Laboratory columns were irrigated with tap water. Control field 
experiments were exposed to natural precipitation. Due to the fact that municipal solid waste 
incineration residues are continually landfilled on monofills, the percolating landfill-leachates 
are highly saline. Therefore extended experiments were carried out and these were treated 
with saline solutions: either solely or in addition to natural precipitation. Highly saline irrigation-
media artificial leachates produced in the lab, actual landfill leachate or a concentrate from 
reverse osmosis was used, depending on the experiment. Besides irrigation, the application of 
residues, as the top or intermediate layers, provided continuous supply of highly saline 
solutions.  
Commonly, column experiments are conducted under water-saturated conditions. For this 
research however, unsaturated conditions were chosen to understand real landfill conditions.  
All experiments were performed as parallel experiments. One test had a uniform-grain setup 
and acted as a control. The application of a fine-grained bottom ash layer within a column 
filled mainly with coarse-grained bottom ash provided the inhomogeneous setup. Grain size 
changeover as a barrier layer within a column should change the permeability along the profile 
of the column. In some cases the barrier layer was compacted. The results of long-term the 
solid sample and leachate investigations pointed out that the application of a barrier layer by 
means of grain size changeover had mainly physical effects. With the control experiment, 
water contents of solid samples increased in general from the top of the experiments to the 
basis. In contrast, the following was observed for the application of a barrier layer: 
 

 impounding of leachate, 
 slowdown of leachate percolation time, 
 increased water retention capacity.  

 
Mainly the zone within the barrier layer showed the highest water content. A general 
observation was that the setting beneath the barrier layer was much drier. Another observation 
was that irrigation with saline water enhances water retention within the column. Additionally 
model experiments with plastic shots pointed out that the irrigation with small amount of water 
intensifies the physical effect of the barrier layer. Unsaturated water conditions which are 
common in landfills together with reduced permeability provide the basis for salt 
accumulations around the zone of the fine grained ash layer. An investigation on the 
distribution of the elements along the profile showed that impounding of the leachate at the 
barrier layer is linked to higher eluate soluble species concentrations: the tendency of 
accumulation was observable especially for the zone within and beneath the barrier layer and 
in the near-bottom samples for the control as well as extended experiments. 
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Concerning a uniform setup the salt distribution along the profile was homogeneous up to 
gradual. In general the observations indicated that the application of a barrier layer by means 
of grain size changeover impounds the leachate. Thus, increased concentrations of different 
species of saline solutions in combination with changing water contents within the layers 
caused precipitation of the highly soluble salts out of the pore solution. The formation of salt 
accumulations is time-dependent. Most of the chemical and mineralogical progressions 
occurred only after a longer period: 
 

 tendencies for the leachate progression changed several times during the long term, 
 different processes depend on the pH-value (e.g. if the pH-value decreases Ca-

concentrations will increase) and  
 this supports the vital importance of long term leaching.  

 
A main conclusion is that unsaturated conditions in combination with physical and chemical 
processes provide conditions conducive for salt accumulations around the zone of the barrier 
layer. The effects of inhomogeneities because of compaction and/or grain size changeover, as 
investigated in this research, furnish an explanation for actual observations at the Waldering 
monofill. In a particular filler part a salt horizon of several meters was encountered. This highly 
saline layer consists mainly of Halite and Sylvite. Hence there is the possibility that salt 
accumulations up to salt horizon are generated even in a humid climate. In principle the 
MSWI-residues afford high contents of saline species. 
Due to the application of a barrier layer the following advantages can be derived for landfill 
operations: 
 

 due to their high water retention capacity, salt accumulations cause little amounts of 
leachate, 

 high water retention capacity combined with the intensifying effect of salty crusts within 
the zone of the fine grained ash layer provides strong buffering concerning rainstorms. 
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ABKÜRZUNGSVERZEICHNIS 

Allgemein 
IC Ionenchromatographie, Analysenmethode für Anionen 
ICP-OES Induktiv gekoppeltes Plasma/ Optische Emissionsspektrometrie, Analysenmethode 

für Kationen (inductive coupled plasma) 
FT-IR Fourier-Transformations-Infrarot-Spektroskopie 
RFA Röntgenfluoreszenzanalytik 
XRD Röntgendiffraktometrie (x-ray diffraction) 
REM Rasterelektronenmikroskopie 
EDX Energiedispersive Röntgenspektroskopie (Energy-dispersive X-ray spectroscopy) 

 
MHKW Müllheizkraftwerk 
MVA Müllverwertungsanlage 
MV Müllverbrennung 
AbfAblV Abfallablagerungsverordnung 

 
pH negativer dekadischer Logarithmus der Oxonium-Konzentration  
 (pondus hydrogenii) 
Lf elektrische Leitfähigkeit mS/cm (Millisiemens pro Zentimeter) 
L/S Flüssigkeits-/ Feststoffverhältnis (Liquid-/Solid-Ratio) 
TOC gesamter organischer Kohlenstoff (total organic carbon) 
DOC gelöster organisch gebundener Kohlenstoff (dissolved organic carbon) 
µg Mikrogramm, 10-6 g 
 
Sickerwasser- und Feststoffproben 

Parameter Parameter 
Cl Chlorid (Sickerwasser) O Sauerstoff 
SO4 Sulfat (Sickerwasser) P Phosphor 
Cl Chlor (Feststoff) Pb Blei 
SO3 Sulfit (Feststoff) Si Silizium 
NH4 Ammonium Sn Zinn 
Al Aluminium Sr Strontium 
Ca Calcium V Vanadium 
Ba Barium W Wolfram 
Br Brom Zn Zink 
Co Kobalt NaOH Natronlauge 
Cr Chrom Wg Wassergehalt bei 105° C 
Cu Kupfer Gv Glühverlust bei 1050° C 
Fe Eisen LOI Glühverlust (Loss on ignition) 
Hg Quecksilber Gew.-% Gewichtsprozent 
K Kalium CO2 Kohlendioxid 
Mg Magnesium H2O Wasser 
Na Natrium k.A. keine Angabe 
Ni Nickel n.b. nicht bestimmt 
Mo Molybdän KBr Kaliumbromid 
Ti Titan BG Bestimmungsgrenze 
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Versuchsanordnungen 
BK Bohrkampagne 
BKI Bohrkampagne 1, Frühjahr 2005 
BKII Bohrkampagne 2, Herbst 2005 
BKIII Bohrkampagne 3, Herbst 2006 
BV Blindversuch, alle Versuche ohne Sperre 
SFK Schlacke-Feinkorn, Fraktion 0-4 mm 
BA Bottom Ash (MV-Schlacke) 
FGA Finegrained Ash (Schlacke-Feinkorn) 
RGR Rauchgasreinigungsrückstände 
LW Leitungswasser 
MSW Modellsickerwasser 
NS Niederschlag 
SW  Deponiesickerwasser 
UO  Umkehrosmosekonzentrat 
 
SV  Säulenversuche 
VA-A  Versuchsanordnung A, Schlacke MVA Ingolstadt, SFK  
IBV  Schlacke Ingolstadt, Blindversuch ohne Sperre 
IBV0  Referenzversuch 0, Bewässerung mit Leitungswasser 
IBV1  Zeitversuch 1 „kurz“, Bewässerung mit Modellsickerwasser 
IBV2  Zeitversuch 2 „mittel“, Bewässerung mit Modellsickerwasser 
IBV3  Zeitversuch 3 „lang“, Bewässerung mit Modellsickerwasser 
ISFK  Schlacke Ingolstadt, Versuch mit Sperre aus Schlacke-Feinkorn 
ISFK0  Referenzversuch 0, Bewässerung mit Leitungswasser 
ISFK1  Zeitversuch 1 „kurz“, Bewässerung mit Modellsickerwasser  
ISFK2  Zeitversuch 2 „mittel“, Bewässerung mit Modellsickerwasser 
ISFK3  Zeitversuch 3 „lang“, Bewässerung mit Modellsickerwasser 
 
VA-B  Versuchsanordnung B, Schlacke MHKW-Rosenheim 
BV1 Blindversuch, ohne Sperre, Versuch 1, Bewässerung mit LW und MSW 
SFK3 mit Sperre aus SFK, Versuch 3, Bewässerung mit LW und MSW 
RSFK2 mit Sperre aus SFK und RGR, Versuch 2, Bewässerung mit LW 
RSFK3 mit Sperre aus SFK und RGR, Versuch 3, Bewässerung mit LW und MSW 
 
VA-C  Versuchsanordnung C, Schlacke MVA Ingolstadt, SFK, RGR 
RBV Blindversuch, ohne Sperre, Bewässerung mit MSW und LW 
RSFK mit Sperre aus RGR und SFK, Bewässerung mit MSW und LW 
 
MoV Modellversuch mit Kunststoffkugeln  
 
FV  Feldversuche 
EB Eberstetten, Schlacke Ingolstadt 
EB1 Testfeld 1, Feldversuche Eberstetten, ohne Sperre, NS 
EB2 Testfeld 2, Feldversuche Eberstetten, mit Sperre, NS 
EB3 Testfeld 3, Feldversuche Eberstetten, mit Sperre, NS mit SW 
EB4  Testfeld 4, Feldversuche Eberstetten, mit Sperre, NS mit UO 
 
RA Raindorf, Schlacke Ingolstadt 
RA1 Großlysimeter Raindorf, ohne Sperre 
RA2 Großlysimeter Raindorf, mit Sperre 
 
WA Waldering, Schlacke Rosenheim 
WA1 Großlysimeter Waldering, ohne Sperre 
WA2 Großlysimeter Waldering, mit Sperre 
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Begriffserklärung  
 Durchlässigkeitsbeiwert( kf-Wert)1: rechnerischer Wert, der die Wasserdurchlässigkeit 

von Materialien, meist Böden oder Gesteine, beschreibt. Er hängt von Korngröße, 
Kornzusammensetzung sowie Porenvolumen des Materials ab und besitzt die Einheit 
Meter je Sekunde, also die Einheit einer Geschwindigkeit, wobei dadurch zum Ausdruck 
gebracht wird, mit welcher Geschwindigkeit Wasser in Abhängigkeit vom Druck durch 
den Stoff strömt. 

 Leitfähigkeit, elektrische2: Fähigkeit einer Flüssigkeit, in der Ionen gelöst sind, messbar 
Gleichstrom zu leiten; die el. L. ist temperaturabhängig und wird heute für eine 
Temperatur von 25° C angegeben; moderne Messgeräte haben eine autom. 
Kompensation; Einheit: [Ω-1.cm-1] oder [S.cm-1] 

 Lysimeter2: technische Anlage, die im Gelände/Boden eingelassen wird, um mit 
unterschiedlichen Substratfüllung die Verdunstung (reale, effektive) und vertikale 
Versickerungseigenschaften von Niederschlagswässern in Böden zu bestimmen 
(Wasserhaushaltsbestimmung); die Probeaufnahmebehälter können Eisen- oder 
Betonkästen mit quadratischem Grundriss oder Stahlzylinder sein; die vertikale Höhe – 
und damit Sickerstrecke – beträgt 2-4 m; die Messung der Sickerwässer erfolgt 
entweder in Auffanggefäßen unterhalb des Monoliths oder durch dauerndes Wiegen 
(wägbarer L.), da sich bei Wasseraufnahme/-abgabe das Gewicht des Monoliths ändert; 
außer den meist stationären L. gibt es auch transportable  

 Proctordichte ρ 1: ist ein Begriff aus der Geotechnik, Bauwesen und Geologie. Die P. ist 
die größte Dichte eines Bodens, die nach genormtem Versuch (Proctorversuch nach 
DIN 18127) bei optimalem Wassergehalt erreicht werden kann.  

 Quenchen: (engl. = ablöschen, abschrecken, härten); dabei werden MV-Reststoffe nach 
der Verbrennung im Wasserbad mittels Eindüsen von Wasser schockartig auf 
Sättigungstemp. abgekühlt. Die Schadstoffe gehen dabei teilweise ins Wasser über. 

 Schwermetall2: Metalle höhere Dichten zwischen 3,5 und 5 g/cm3, deren Kationen in 
natürlichen wie anthropogen beeinflussten (Grund-)Wässern enthalten sein können, 
besonders in Wässern niedrigen Redox-Potentials („reduzierende Wässer“) oder 
niedrigen pH-Werts. Ab bestimmten Konzentrationen wirken S. im Allgemeinen toxisch, 
weshalb Grenzwerte für die Nutzung eines belasteten Wassers als Trinkwasser in der 
Trinkwasserverordnung festgeschrieben sind; es handelt sich dabei um die S.: Pb, Cd, 
Cr, Ni, Hg, Cu und Zn, die in natürlichen Wässern praktisch nicht vorkommen., aber 
durch Abwässer oder Korrosion von Verbaumaterialien (z.B. Leitungen, 
Dachdeckungen, Dachrinnen) gelöst werden können.  

 Sperre: semipermeable Schicht aus feinkörniger Schlacke (Korngröße 0-4 mm), 
verdichtet oder unverdichtet, stellt einen Korngrößenwechsel im Deponiekörper dar; 
kann wie eine innere Barriere wirken und zur Ausfällung der gelösten Salze beitragen. 
Für einen Großteil der Versuche im Labor- und Feldmaßstab wurde jedoch ein 
verstärkter Austrag leicht löslicher Spezies beobachtet.  

 Umkehrosmose3:  techn. genutztes Trennverfahren, bei dem durch Anlegen eines 
äußeren Drucks, der größer als der osmotische Druck des Systems ist, Lösungsmittel 
aus einer höher konzentrierten Lösung durch eine niederkonzentrierte Lösung (auch 
reines Lösungsmittel) gepresst wird (zwangsweise Umkehrung der Osmose, 
Reversosmose). Mit der U. kann eine aufzubereitende Lösung in ein Konzentrat und ein 
weitgehend von Inhaltsstoffen befreites Permeat getrennt werden. Ein wesentliches 
Gebiet ist die Reinigung von Deponiesickerwässern (Sickerwasserbehandlung).  
 
1http://de.wikipedia.org 
2Adam Ch., Gläßer W & Hölting B. (2000): Hydrogeologisches Wörterbuch. Enke im Thieme Verlag, 
Stuttgart [u.a.], 311 S.  
3Dreyhaupt F.J. (Hrsg): VDI-Lexikon Umwelttechnik. VDI-Verlag, Düsseldorf, 1349 S.  
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1. EINLEITUNG 

1.1 AUSGANGSSITUATION 

Auf der Monodeponie Waldering (Deponieklasse III) der Stadtwerke Rosenheim wurden im 

Rahmen eines Versuchsvorhabens bis zum Dezember 2004 Rauchgasreinigungsrückstände 

(RGR) und Müllverbrennungsschlacken (im Weiteren auch vereinfacht als Schlacken 

bezeichnet) in Sandwichbauweise eingebaut. Trotz der hohen Salz- und Schwermetallgehalte 

dieser Reststoffe haben Stoffbilanzen für einen Bauabschnitt (BA1) der Deponie gezeigt, dass 

mit dem Sickerwasser erheblich geringere Salz- und Schwermetallkonzentrationen, als 

erwartet, ausgetragen wurden. Die Stadtwerke Rosenheim haben daraufhin eine 

Voruntersuchung gestartet und im Jahr 1995 in diesem Bauabschnitt (BA 1) eine Bohrung 

durchgeführt:  

 

 In den Bohrproben wurde zum Teil ein hoher Anteil des Minerals Ettringit 

[Ca6Al2(SO4)3(OH)12·26H2O] beobachtet (Picolab, 1995).  

 Daraufhin wurde angenommen, dass Ettringit als Speichermineral neben Cl zusätzlich 

Schwermetalle wie Pb immobilisieren kann und dadurch die geringe 

Sickerwasserbelastung bewirkt.  

 

Im Jahr 2000 wurde eine zweite Bohrung unmittelbar neben der ersten Bohrung abgeteuft 

(Magel et al., 2003).  

 

 Die chemische und mineralogische Auswertung zeigte, dass sich die 

Ettringitkonzentration von 25 % auf 3 % verringert hat (Heuss-Aßbichler et al., 2002).  

 Trotz dieser Gegebenheit wurde im Sickerwasseraustrag keine Konzentrationszunahme 

ökotoxischer Spezies festgestellt.  

 

Die Bohrprofile aus dem Bauabschnitt BA1 (aus den Jahren 1995 und 2000) und ein 

Bohrprofil aus dem Bauabschnitt BA2 (aus dem Jahr 2000) der Monodeponie Waldering 

wurden miteinander verglichen:  

 

 Im Bauabschnitt BA2 wurden in den Feststoffproben Cl-Gehalte zwischen 3,8 – 5,4 

Gew.-% festgestellt.  

 Innerhalb des BA1 hingegen wurde in den letzten Jahren eine bemerkenswerte 

Salzanreicherung beobachtet.  

 

Die Cl-Gehalte in der topnächsten Feststoffprobe des BA1 ist mit 0,6 Gew.-% sehr niedrig. Bis 

zu einer Bohrtiefe von sieben Metern erhöht sich der Chloranteil kontinuierlich in den RGR-
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Proben auf 15,7 Gew.-% und liegt dort vglw. höher als in frischen RGR. Mit zunehmender 

Tiefe ist der Chlorgehalt mit 3,7 Gew.-% wieder gering. Die Abbildungen A-1 bis A-8 im 

graphischen Anhang dokumentieren An- bzw. Abreicherung an verschiedenen Spezies in den 

Bohrproben entlang des Bohrprofils für BA1 und BA2. Bezüglich der Schwermetalle hat sich in 

den Feststoffproben tendenziell keine Anreicherung gezeigt. 

 

 Der Salzhorizont besteht im Wesentlichen aus den Mineralphasen Halit (NaCl) und 

Sylvin (KCl). Die großen Anteile dieser Phasen sind Beleg für Ausfällungsprozesse 

während der Deponierungsphase (Heuss-Aßbichler, 2004).  

 

Die Cl-Konzentrationen im Eluat ändern sich ebenfalls entlang des vertikalen Deponieprofils 

übereinstimmend mit den Feststoffgehalten. Ein deutliches Maximum von 12,8 g/L zeigt sich 

im Salzhorizont (in 7m Tiefe). Die Abbildungen B-1 bis B-8 im graphischen Anhang zeigen 

diese Entwicklung. Auch für SO4 ist dieses Verhalten erkennbar. Bemerkenswert ist, dass mit 

Zunahme der Cl-Konzentration auch der Anteil der Schwermetalle im Eluat steigt. Dieser 

Trend wurde für Pb und Zn und auch für Ni und sogar As beobachtet.  

Aus den Deponiejahrbüchern der Deponie Waldering konnte entnommen werden, dass etwa 

in der Höhe der jetzt vorliegenden Salzschicht während einer längeren Zeitperiode keine MV-

Reststoffe deponiert wurden und dieser Deponiebereich als Straße für schwere Baufahrzeuge 

genutzt wurde. Es ist anzunehmen, dass diese Auflast lokal eine Änderung der 

Durchlässigkeit bewirkte: 

 

 Es ist auffallend, dass die Bohrprobe oberhalb der salzreichen Schicht eine niedrige 

Porosität von etwa 47 % (i. Allg. > 52 %) aufzeigt (Abb. B-9, graphischer Anhang).  

 Zudem haben die Untersuchungen gezeigt, dass unterhalb dieser Schicht trockene 

Bedingungen mit niedrigem Wassergehalt von etwa 15 Gew.-% vorherrschen (bis zu 45 

Gew.-% für RGR-Proben und bis zu 22,5 Gew.-% für Schlacke-Proben) (Abb. B-10, 

graphischer Anhang). 

 

1.2 AUFGABENSTELLUNG UND ZIELSETZUNG 

Massive Salzanreicherungen sind für gemäßigte Klimazonen ungewöhnlich. Die 

Beobachtungen auf der Monodeponie Waldering waren Anlass einen vollständig neuen 

Ansatz im Sinne einer „Inneren Barriere“ zu erarbeiten: inwieweit bewirkt ein Salzhorizont, 

dass leichtlösliche Salze und Schwermetalle im Abfallkörper zurückgehalten werden.  

Während der Betriebsphase können in verschiedenen Bereichen einer Deponie 

Inhomogenitäten entstehen und die Durchlässigkeit für das Sickerwasser verringern. Für die 

Nachhaltigkeit einer Deponie ist es daher von großer Bedeutung, die Folgen von 
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Inhomogenitäten hinsichtlich Salzakkumulationen im Feststoff und für die Sicker-

wasserentwicklung abzuschätzen. 

 

Folgende Aufgabenstellungen wurden im vorliegenden Forschungsvorhaben bearbeitet: 

 

 Was bewirkt ein Korngrößenwechsel im vertikalen Aufbau innerhalb eines 

Deponiekörpers? 

 Was bewirkt die Verdichtung einer Schicht innerhalb eines Deponiekörpers? 

 Welche Auswirkungen hat eine Sperre auf die Sickerwasserentwicklung? 

 Welche Auswirkungen hat eine gezielte Salzzugabe? 

 Welche Prognosen können für die Langzeitüberwachung  - Dauer der Nachsorge -

erstellt werden? 

 

Folgende Ziele wurden für diese Forschungsarbeit gesetzt: 

 

 Die Wirkung einer Sperrschicht im Sinne eines Korngrößenwechsels zu untersuchen. 

 Die Wirkung einer Sperrschicht auf Lösungsprozesse und Transport leichtlöslicher 

Spezies sowie Schwermetalle zu klären.  

 Die Wirkung einer Sperrschicht hinsichtlich einer Verringerung der Durchlässigkeit und 

eines Aufstauens leichtlöslicher Phasen im Sickerwasser zu prüfen. 

 Die Wirkung einer Sperrschicht auf eine Begünstigung der Ausfällung aus der 

Porenlösung zu untersuchen. 

 

1.3 ARBEITSPROGRAMM 

Für alle Versuchsansätze gilt, dass jeweils ein homogen aufgebauter Versuch (ohne Sperre) 

als Bezugsgröße dient (Blindversuch, BV). In einem parallelen Versuch wurde Schlacke-

Feinkorn (Korngröße 0-4 mm, SFK) als Sperrschicht verdichtet eingebaut, um die Wirkung 

einer Inhomogenität infolge eines Korngrößenwechsels erarbeiten zu können. Schlacke aus 

der Müllverbrennung hat üblicherweise ein Korngrößenspektrum von 0-32 mm. Die feinkörnige 

Sperrschicht ist beschränkt auf die Fraktion 0-4 mm.  

 

Säulenversuche im Labor 

Im Labor wurden 24 Säulen mit verschiedenen Ansätzen (Versuchsanordnung A mit Schlacke 

A, Versuchsanordnung B mit Schlacke B und Versuchsanordnung C mit Schlacke A und 

RGR) als Parallelversuche angesetzt. Die Versuche wurden zu unterschiedlichen Zeitpunkten 

abgebrochen, um die zeitliche Entwicklung verfolgen zu können. Einzelne Versuche wurden 
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über eine maximale Versuchsdauer von etwa zwei Jahren betrieben und stellen somit 

Langzeitversuche dar.  

 

Feldversuche 

Die acht verschiedenen Feldversuche wurden als Langzeitversuche ausgeführt. Sie umfassen 

die Testfelder Eberstetten (vier Testfelder), sowie die Lysimeter Raindorf und Waldering 

(jeweils zwei Lysimeter). 

 

Analytik 

Die Feststoffgehalte (Massebildner und umweltrelevante Spezies) der Ausgangsmaterialien 

sowie der gealterten Feststoffproben aus den Säulen- und Feldversuchen wurden bestimmt. 

Mit Eluatuntersuchungen gemäß DIN EN 12457-4 wurde der Anteil der leichtlöslichen Spezies 

ermittelt. Die erfassten Sickerwässer aus den verschiedenen Versuchsansätzen (Labor und 

Testfelder) wurden auf Anionen- und Kationenkonzentrationen untersucht. Für jeden 

einzelnen Versuch wurden die Konzentrationsverläufe im Sickerwasser erarbeitet und 

Frachtenberechnungen zum Stoffaustrag erstellt.  

 

Modellversuch mit Kunststoffkugeln 

Die Durchführung eines Modellversuchs mit Kunststoffkugeln bietet die Möglichkeit, die 

Arbeitshypothese zu prüfen, inwiefern eine Änderung der Durchlässigkeit durch 

Korngrößenwechsel ausreicht, um eine Aufkonzentration salzreicher Lösungen innerhalb der 

Deponie zu bewirken. Der große Vorteil ist, dass die Ausgangszusammensetzung des 

eingebauten Materials nicht berücksichtigt werden muss. 
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2. KENNTNISSTAND 

2.1 THERMISCHE ABFALLBEHANDLUNG 

Nach der deutschen Gesetzeslage darf seit 1. Juni 2005 Siedlungsmüll nicht mehr 

unbehandelt deponiert werden (Abfallablagerungsverordnung, 2001). Eine Möglichkeit der 

Vorbehandlung ist die thermische Behandlung von Siedlungsmüll. Nach Auskunft des 

Umweltbundesamtes waren im Jahr 2006 in der Bundesrepublik Deutschland 67 thermische 

Anlagen in Betrieb. Der jährliche Abfalldurchsatz beträgt pro Jahr etwa 18 Mio. Tonnen 

Siedlungsmüll. Eine Übersicht zur Abfallwirtschaft in Deutschland bietet Vehlow (1996). 

Die Vorteile der Müllverbrennung liegen in der Möglichkeit die Abfallmasse um ca. 70 % und 

das Abfallvolumen um ca. 90 % zu reduzieren (Stegemann et al., 1995; Chandler et al., 1997). 

Die Mineralisierung bzw. möglichst vollständige Umsetzung der organischen 

Abfallbestandteile zu CO2 und H2O (Reimann, 1995), sowie die Umwandlung von chemischer 

Energie, die im Abfall steckt, in Elektrizität und Prozessdampf (Kirby & Rimstidt, 1993) sind 

weitere Vorzüge.  

Bei der thermischen Abfallbehandlung entstehen aus einer Tonne Hausmüll nach Thomé-

Kozmiensky (1994) je nach Verfahren: 

 

 250 – 350 kg Müllverbrennungsschlacke (MV-Schlacke), 

 20 – 40 kg Flugstaub (Filterstaub und Kesselasche), 

 8 – 45 kg Rauchgasreinigungsrückstände (RGR). 

 

Die Abbildung 1 zeigt eine Gegenüberstellung von unbehandeltem Siedlungsmüll, sowie die 

daraus entstandenen Verbrennungsprodukte: MV-Schlacke, Flugstaub, Rauchgasreinigungs-

rückstände und Eisenschrott. Sehr deutlich zu erkennen ist die Reduktion an Masse und 

Volumen. 

 

 

 

 
 
 

 

 
Abb. 1: Unbehandelter Siedlungsmüll (20 
kg) und die einzelnen volumen- und masse-
reduzierten Bestandteile (Eisenschrott, 
Schlacke, Flugstaub und RGR) nach der 
thermischen Behandlung, Höhe der großen 
Säule 120 cm und der kleinen Säulen 20 cm, 
Fotoquelle: Heuss-Aßbichler  
 

20 kg 
unbehandelter 
Siedlungsmüll 

120 cm 

Schlacke RGRFlugstaubFe-Schrott 

Verbrennungsprodukte

20 cm
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2.1.1 Rückstände aus der Müllverbrennung 
Ein sehr umfangreiches Standardwerk zu Rückständen aus der Müllverbrennung wurde von 

der International Ash Working Group (IAWG) (Chandler et al., 1997) verfasst. Arbeiten zur 

Charakterisierung und Beschreibung von Müllverbrennungsschlacke (MV-Schlacke) basieren 

u.a. auf den Forschungen von Kirby & Rimstidt (1993), Eighmy et al. (1994) oder Chimenos et 

al. (1999). Sehr ausführliche Ergebnisse zu Mineralbestand und Gefüge von MV-Schlacken 

bietet die Arbeit von Eusden et al. (1999).  

Der Mineralbestand wurde unter anderem von Pfrang-Stotz & Schneider (1995), Baccini et al. 

(1993), Kirby & Rimstidt (1993), Lichtensteiger (1996) oder Speiser et al. (2000, 2001) erfasst.  

Rauchgasreinigungsrückstände wurden speziell von Fruchter et al. (1990), Kida et al. (1996), 

Ferreira et al. (2003) und Astrup et al. (2006) untersucht.  

2.1.1.1 Mineralogische Charakterisierung von MV-Schlacken 

Makroskopisch betrachtet handelt es sich bei MV-Schlacke um graues bis schwarzes körniges 

Material, bestehend aus Schmelzprodukten, Feinanteil (Aschen), Bruchglas, Keramik, 

Metallen, Gestein, Salz, Wasser und auch einem unverbrannten Anteil (Abb. 2). Die 

Abbildung 3 gibt einen Eindruck über das makroskopische Erscheinungsbild von Schlacke aus 

der Müllverbrennung. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Abb.2: Stoffgruppenanalyse von aufbereiteter Frischschlacke, verändert nach Burg (1999),  

Angaben in Gew.-% 
 

Verschiedene chemische und mineralogische Untersuchungen charakterisieren MV-Schlacke 

als ein mit Eisen durchsetztes Calcium-Aluminium-Silikat, das zudem auch aus Oxiden und 

Carbonaten besteht (Pfrang-Stotz & Schneider, 1995). Ein vergleichbares geogenes Material 

stellen basische Vulkanite (z.B. Basalte) dar. Allerdings sind die leichtlöslichen Salze 

Schmelzprodukte
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(Chloride, Sulfate), die Schwermetalle (insbesondere Cr, Cu, Pb, Zn) und der organische 

Kohlenstoff (TOC in modernen Anlagen mit gutem Ausbrand max. 1,5 Gew.-%) in der MV-

Schlacke stark angereichert (Hirschmann, 2003, Kirby & Rimstidt, 1993).  

Als Durchläuferphasen, die im Ofen keine wesentliche Veränderung erfahren haben, sind 

Quarz und Feldspat zu nennen. Primär im Ofen gebildet werden vor allem Glas sowie 

Pyroxen, Olivin, Melilith, Eisenoxid (Hochtemperaturkorrosionsbildungen wie Magnetit und 

Hämatit), Korund, Calciumoxid, Anhydrit und Metalle/-Legierungen sowie vereinzelt Sulfide 

(Hirschmann, 2003). Zahlreiche Schwermetalle werden in diesen primären Phasen chemisch 

gebunden, z.B. Cu, Pb und Zn in der Glasphase oder Cr und Zn in Pyroxenen und Spinellen 

(ev. Magnetit).  

 

 

 

 
 
 
 
 
 
 
 
Abb.3: Makroskopisches Erscheinungsbild von Schlacke aus der Müllverbrennung,  

Durchmesser des Behälters 40 cm 

2.1.1.2 Physikalische Kenngrößen von MV-Schlacken 

MV-Schlacke ist ein schlecht sortiertes und sehr ungleichförmig zusammengesetztes Material. 

Die Korngrößen reichen vom Feinsand- zum Grobkiesbereich: 0,063 mm – 200 mm  

(Klein, 2002; Burg, 1999). Mit längerer Lagerzeit der Schlacke auf der Deponie verschiebt sich 

das Spektrum zu feineren Korngrößen hin. Der Feinstkornanteil (Durchmesser < 60 µm) 

beträgt bis zu 3,5 % (Hirschmann & Förstner, 2000). Am Bayerischen Landesamt für Umwelt 

(Marb et al., 2002) wurden während eines Versuchsvorhabens MV-Schlacken untersucht. Es 

hat sich herausgestellt, dass das Gefüge der Schlacken stark porös ist (Porosität bis zu 38 

Vol.-%). Die am Josef-Vogl-Technikum in Augsburg bestimmten Roh- und Reindichten 

(Korndichten) dieser Schlacken ergeben im Mittel Werte um 2,3 g/cm³ für die Rohdichte und 

2,9 g/cm³ für die Reindichte (Knorr et al., 1999). Bezüglich der spezifischen Oberfläche dieser 

Schlacken ergab sich, dass im Zuge der Alterung durch Ablauf von Mineralneu- und 

umbildungen sich die Werte von 2,7 auf etwa 17 m²/g erhöhen.   
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U. a. haben Reimann (1994) und Klein (2002) Angaben zu Rohdichte und Schüttdichte 

gemacht: Rohdichte mit 2,2 – 2,7 t/m3 und Schüttdichte ca. 1,2 t/m3. Die Proctordichte beläuft 

sich bei einem optimalen Wassergehalt von 11,5 – 14,8 % auf 1,45 – 1,85 t/m3 (Kluge, 1982).  

Da der Schlackeaustrag aus dem Verbrennungsraum im Allgemeinen über den 

Naßentschlacker erfolgt, liegen die Wassergehalte der frischen Rohschlacken um 20 Gew.-% 

(Simon et al., 1995).  

2.1.1.3 Charakterisierung von Rauchgasreinigungsrückständen 

Die Rauchgasreinigungsrückstände weisen je nach Reinigungsverfahren (z.B. nass, trocken 

oder quasitrocken), Abfallinput, Anlagenkonzeption und Betriebsbedingungen eine große 

Variabilität hinsichtlich der chemischen Zusammensetzung auf (Knorr et al., 1999). Im 

Vergleich zur Häufigkeit in der Erdkruste sind Schwermetalle um das 100- bis 1000-fache 

angereichert (Hundesrügge, 1990; Reimann, 1995). Je nach Reinigungsverfahren und 

abhängig von den eingesetzten Chemikalien bestehen RGR überwiegend aus leichtlöslichen 

Salzen (CaCl2, NaCl, KCl), Quarz, Calciumsulfate, -carbonate, -chloride und -hydroxide und 

verschiedene Schwermetallphasen (Chandler et al., 1997; Eighmy et al., 1995). Durch die 

hygroskopischen Eigenschaften der RGR können Calciumhydroxide bzw. -oxide zu 

sekundären Hydratphasen reagieren (Hundesrügge, 1991). Die typische 

Korngrößenverteilung reicht von 0,002 – 1 mm (Chandler et al., 1997). Generell werden 

deutschlandweit die RGR als Versatzbaustoff im Untertagebergbau eingesetzt oder unter- 

sowie obertägig deponiert (Knorr et al., 1999). 

 

2.1.2 Handhabung von MV-Schlacke 
Die konventionelle Aufbereitung der Rohschlacke (Schlacke nach dem Wasserbad) umfasst 

eine Eisenmetallabtrennung, eine Abtrennung der Nichteisenmetalle (z.B. Aluminium), des 

Überkorns (Durchmesser > 32 mm) und teilweise das Brechen des Überkorns (Hirschmann, 

2003). MV-Schlacke ist ein sehr reaktives Material. Mineralphasen, welche im 

Verbrennungsofen, unter den dort vorherrschenden Sauerstoff- und Temperaturbedingungen 

gebildet wurden, sind unter Atmosphärenbedingungen weitgehend metastabil (Johnson, 

1994). Aus diesem Grund wird nach der konventionellen Aufbereitung der Rohschlacke 

empfohlen, falls eine technische Verwertung der Schlacke (z.B. im Straßenbau) geplant ist, 

dass MV-Schlacke mindestens drei Monate gelagert wird (Reimann, 1992). Ziel dieser 

Lagerung ist es, die nach dem Kontakt mit Wasser und Luft startenden chemischen 

Reaktionen soweit wie möglich ablaufen zu lassen und damit die Raumbeständigkeit der 

Schlacken herzustellen (Hirschmann, 2003). Generell sollen mögliche Risiken, bedingt durch 

das kurz- und langzeitliches Emissionsverhalten von MV-Reststoffen, für die menschliche 

Gesundheit und für die Umwelt möglichst verhindert werden (Sabbas et al., 2003). Die 

Arbeiten von Simon et al. (1995) und Lahl (1994) haben gezeigt, dass bezüglich der Alterung 
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der Schlacken infolge von Karbonatisierung und hydraulischen Reaktionen, das Lagern von 

Schlacken auf Deponien im Freien effektiver ist als das Lagern in einer Halle. Zudem laufen 

diese Reaktionen bei Lagerung in dünner Schicht viel schneller ab.  

 

Als mengenmäßig wichtigste Alterations-Prozesse in MV-Schlacken gelten (Johnson, 1994): 

 

 Karbonatisierung,  

 Calciumsulfathydratisierung,  

 Calciumhydratisierung,  

 Silikathydratbildung,  

 Aluminiumhydratisierung,  

 Eisenhydratisierung,  

 Sulfidoxidation und  

  Abbau organischer Substanz.  

 

Der Faktor Zeit nimmt einen wesentlichen Einfluss auf die Auslaugbarkeit. Einige chemische 

Reaktionen gehen sehr rasch von statten. Auflösung einer Salzphase kann innerhalb von 

Sekunden bis Stunden ablaufen. Andere Reaktionen, wie z.B. die Auflösung von Silizium aus 

glasigen Komponenten benötigen Jahre bis Jahrzehnte, wobei ein chemisches Gleichgewicht 

unter natürlichen Umständen nur sehr langsam erreicht werden kann. Zu den sehr langsamen 

Alterungsprozessen von MV-Schlacke gehört die Verwitterung (Johnson, 1994). Die 

Karbonatisierung hängt ab von der Verfügbarkeit des CO2-Anteils. 

Infolge von Alterationsprozessen kommt es zur Wasserstoffgasbildung durch Hydratation von 

Aluminium (Magel, 2002), Volumenvergrößerung, starken Wärmeentwicklung (Klein, 2002) 

und Verfestigung (u.a. Ettringit- und Karbonatbildung). 

Speiser et al. (2000) haben gealterte MV-Schlacken morphologisch und chemisch untersucht. 

Demnach haben sich infolge der Alterations-Prozesse in erster Linie folgende Phasen 

gebildet:  

 

 Anhydrit, Portlandit, Calcit, Eisen-Oxide, Eisen-Hydroxide oder Gibbsit. 

 Diese Phasen werden stets von verschiedenen Calcium-Hydrat Phasen begleitet. 

 

2.1.2.1 Auswaschverhalten („Leaching“) von MV-Schlacke 

Verschiedene Arbeitsgruppen beschäftigen sich mit der Abschätzung zum Langzeitverhalten 

von MV-Schlacken hinsichtlich Deponierung und Verwertung (van der Sloot, 1990; Belevi & 

Baccini, 1991; Johnson, 1994; Kersten et al., 1995, van der Sloot et al., 1996 & 2001; Hjelmar, 
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1996; Chandler et al., 1997; Förstner & Hirschmann, 1997; Meima & Comans, 1999; Forteza 

et al., 2004; Polettini et al., 2004; Åberg et al., 2006 oder Mostbauer et al., 2007).  

Der Kontakt zwischen MV-Schlacke und dem perkolierenden Sickerwasser bewirkt ein 

Auswaschen („Leaching“) der Materialien. Verschiedene feste Phasen werden im Lauf der 

Deponierung über das Sickerwasser transportiert. Die folgenden Parameter sind eine 

wesentliche Grundlage für die Abschätzungen zum Auswaschverhalten:  

 

Chemische Faktoren 

Die Verfügbarkeit umweltrelevanter Spezies (Salze und Schwermetalle) aus der Schlacke 

hängt von der chemischen Zusammensetzung und der Mineralogie der Schlacke ab. Der 

Transport und die Mobilisierbarkeit werden u.a. von Temperatur, pH-Wert, Redoxpotential und 

org. Komplexbildner als Folge von Hydrolyse, Hydratation, Lösungs- und Fällungsreaktionen, 

Karbonatisierung, Komplexierung an Liganden oder an der Oberfläche, Sorption und 

Oxidation/Reduktion gesteuert (Sabbas et al., 2003). 

Ein sehr wichtiger Parameter für die Zusammensetzung des Sickerwassers ist der pH-Wert. 

Die Verfügbarkeit verschiedener Spezies zeigt z.T. eine deutliche pH-Abhängigkeit. Ein 

Großteil der Spezies (z.B. Cd) ist im sauren pH-Bereich ab < 4,5 vorhanden. Amphotere 

Metalle wie z.B. Al, Pb, Zn zeigen eine hohe Mobilisierbarkeit sowohl im sauren als auch im 

alkalischen Milieu. Elemente, die auch als Oxyanionen vorkommen können (z.B. As, Cr, Mo, 

Sb, V), sind hingegen nur im alkalischen Milieu verfügbar.  

Die Entwicklung des pH-Werts im Sickerwasser wird von der Pufferkapazität der Schlacke 

geregelt. Diese wirkt dem Säureeintrag entgegen. Als Folge einer anhaltenden Auslaugung 

von Schlacke sinken die Pufferkapazität und damit die Alkalinität. Dieser Faktor ist neben der 

Säureneutralisationskapazität ein wichtiger Indikator für die Qualität von Schlacke. Diese 

Kapazität gibt Auskunft darüber, inwiefern Schlacke von externen und internen 

Säureeinflüssen (z.B. durch Sauren Regen, Mineralisation und Abbau org. Substanz) bzgl. 

ihrer Alterung und Auslaugung beeinflussbar ist.  

 

Klimatische Faktoren 

Die Sickerwasserproduktion ist abhängig von diversen vorherrschenden klimatischen Faktoren 

(Niederschlagsmenge, Niederschlagsdauer, Sonneneinstrahlung, Temperatur, Evaporation, 

Evapotranspiration und Wind) sowie von möglicher Vegetation. Die Menge an ausgetragenem 

Sickerwasser hängt ab von der Größe und Form der Poren, von der Porenverteilung, von der 

Homogenität des Aufbaus einer Deponie, von der Durchlässigkeit, von der Feldkapazität und 

von der Wasserwegsamkeit und Ausbildung bevorzugter Sickerwege. Die Freisetzung 

umweltrelevanter Spezies ist das Ergebnis der Perkolation von Sickerwasser durch den 

Abfallkörper (Chandler et al., 1997).  
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Physikalische Faktoren 

Zu den physikalischen Faktoren werden die spezifische Oberfläche der Schlacke, die 

Korngröße, das Flüssig-/Feststoffverhältnis (L/S-ratio), die Porosität, der hydraulische 

Gradient und die hydraulische Leitfähigkeit gezählt. Eine Veränderungen der Porosität, der 

Korngrößenverteilung oder ein Korngrößenwechsel wirken sich nachhaltig auf die 

Auslaugbarkeit der MV-Schlacke aus.  

Das L/S-ratio drückt aus, wie viel Volumen an Sickerwasser auf den Feststoff appliziert wurde 

(L/kg). Das L/S-ratio ist das Resultat von klimatischen Verhältnissen und diversen zuvor 

genannten hydraulischen und physikalischen Parametern (u.a. Durchlässigkeit, Porosität). Die 

Anwendung des L/S-ratio wird für die Übertragbarkeit von Ergebnissen aus den 

verschiedenen Versuchsanordnungen mit unterschiedlichem Maßstab angewendet (Hjelmar, 

1990).  

Besonders intensiv beschäftigen sich die Arbeitsgruppen um van der Sloot, H.A., Kosson, 

D.S. und Hjelmar, O. mit dieser Problematik. Das von ihnen erarbeitete Konzept „leachXS“ 

(http://www.leachxs.com/ und http://www.leaching.net/) zielt darauf ab, mit der geeigneten 

Software eine Datengrundlage für eine breites Spektrum an Reststoffen hinsichtlich des 

Auslaugverhaltens unter Einfluss der oben genannten Faktoren zu schaffen. Als 

Datengrundlage werden Ergebnisse aus Laborversuchen (Batch-Versuche), Säulenversuchen 

und Feldversuchen herangezogen. Prognosen zum Langzeitverhalten der Reststoffe basieren 

auf geochemischen Modellierungen (Meima & Comans, 1997; Dijkstra et al., 2002).  
 

2.1.2.2 Untersuchungsmethoden im Labor- und Feldmaßstab 

Es gibt verschiedene wissenschaftliche Arbeiten auf der Basis von Säulen- und 

Lysimeterversuchen im Labor- und Feldmaßstab hinsichtlich der Verfügbarkeit und 

Mobilisierung umweltrelevanter Spezies in Schlacken und Deponien (Hjelmar, 1990; Belevi et 

al., 1992; Kirby & Rimstidt, 1994; Stegemann et al., 1995; Förstner & Hirschmann, 1997; 

Bruder-Hubscher et al., 2001). Die üblichen Versuchsanordnungen sind upflow-Tests, d.h. die 

Flüssigkeit durchströmt die Säulen von unten nach oben ohne Unterbrechung, um der Bildung 

bevorzugter Sickerwege vorbeugen zu können (Hjelmar, 1990; Chandler et al., 1997). Dabei 

stellen sich wassergesättigte Bedingungen ein. Für die Fragestellungen zur Wirkung 

klimatischer Wechselphasen, d.h. einer Unterbrechung der Bewässerungsphasen durch 

Trocknungsperioden, auf die Akkumulationen von Salzen entlang von Korngrenzen, stehen 

aber wasserungesättigte Bedingungen im Vordergrund. Wir führen die Versuche daher im 

downflow-Verfahren durch. Das Sickerwasser durchströmt die Säule von oben nach unten. 

Bei dieser Art der Versuchsdurchführung besteht zwar die Gefahr der Randgängigkeit, d.h. 

der Ausbildung einer bevorzugten Strömungsfront zwischen Säulenwand und eingefülltem 

Material. Laut Fichtl & Oeltzschner (1979) verliert dieser Aspekt aber mit zunehmendem 

Rohrdurchmesser immer mehr an Bedeutung.  
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Zur Abschätzung des Langzeitverhaltens abhängig von spezifischen Aspekten der 

Auslaugung werden zahlreiche standardisierte Auslaugverfahren eingesetzt.  

Die dabei gewonnenen Eluate beinhalten wichtige Informationen über die Verfügbarkeit von 

Salzen und Schwermetallverbindungen. Neben den Konzentrationen umweltrelevanter 

Spezies sind auch die Parameter pH-Wert oder Leitfähigkeit von großer Aussagekraft. Der in 

der Realität wirkende Zeitfaktor soll in Labortests mit Zeitraffereffekten wie z.B. erhöhtes 

Flüssigkeit/Feststoff-Verhältnis oder Materialzerkleinerung nachgestellt werden. Die Tabelle 1 

gibt eine Übersicht über die europäischen Elutionsverfahren (nach Knorr et al., 1999). 

 
Tab. 1:  Übersicht über die verschiedenen europäischen Elutionsverfahren (nach Knorr et al., 1999) 

 

DIN EN 12457-4 -  
Teil 4 

(DEV S4) 
(entsprechend LAGA) pH-stat Schweizer Eluattest AFNOR 

Verfügbarkeitstest
(NEN 7341) 

Land Deutschland Deutschland Schweiz Frankreich Niederlande 

Probenvorbereitung Originalsubstanz Originalsubstanz Originalsubstanz 
auf < 4 mm  
zerkleinert 

fein gemahlen 
(<125 µm), 
getrocknet 

Probenmenge 

mind. 100 g  
(Abh. von der 
Korngröße) 100 g 100 - 200 g 100 ± 5 g 16 g 

Elutionsflüssigkeit destilliertes Wasser 

destilliertes 
Wasser; 

während des 
Versuchs wird 

HNO3 bzw. 
NaOH 

zugegeben 

destilliertes Wasser 
(Bestimmung von Anionen, 

organ. Schadstoffen); 
destilliertes Wasser mit CO2 

gesättigt, während des 
Versuchs wird auch CO2 

eingeblasen (Bestimmung von 
Schwermetallen)  

destilliertes  
Wasser 

destilliertes 
Wasser; während 

des Versuchs 
wird Säure 

zugegeben (siehe 
pH-Wert) 

Feststoff/Flüssig- 
Verhältnis 1 : 10 1 : 10 1 : 10 1 : 10 

Schritt 1 - 1 : 50
Schritt 2 - 1 : 50 

pH-Wert unkontrolliert 
konstant pH 4 

oder pH 11 ca. pH 4 unkontrolliert 
Schritt 1 - pH 7
Schritt 2 - pH 4 

Dauer 24 h 24h zweimal 24h 

Einfachelution:  
24 ±1 h 

Mehrfachelutionen: 
jeweils 16 ± 1h 

Schritt 1 - 3h 
Schritt 2 - 3h 

 

In Deutschland ist es vorgeschrieben, dass zu deponierende Abfallproben nach dem 

Elutionsverfahren nach DIN EN 12457-4 (vormals DEV-S4) untersucht werden, um die 

Verfügbarkeit leichtlöslicher Spezies untersuchen zu können (AbfAblV, 2001). Mit diesem 

Testverfahren werden hauptsächlich leichtlösliche Bestandteile erfasst. Der sich einstellende 

alkalische pH-Wert um 10 bewirkt, dass nur geringfügig Cu, Pb, oder Zn in Lösung gehen. Um 

den max. verfügbaren Schwermetallanteil (worst case scenario) untersuchen zu können, wird 

der pHstat-Test angewendet, wobei die langsam ablaufenden chemischen und mineralogischen 

Prozesse unberücksichtigt bleiben. Während der Elution werden definierte pH-Werte 

eingestellt und oftmals das Material zerkleinert. Im Verhältnis zu den Gesamtgehalten werden 

nach 24 Stunden bei pH 4 maximal 41% Cd, 37% Zn, 24% Ni, 10% Co, 8% Pb, 3% Cu und 

0,1% Cr aus den MV-Schlacken freigesetzt (Hirschmann, 2003). Die Löslichkeit von sehr 

leicht löslichen Phasen wie Na, K, Cl und Br ist vom pH-Wert weitgehend unabhängig 

(Chandler et al., 1997). 
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2.1.2.3 Ansätze zur Immobilisierung 

Die Vorbehandlungsmethoden vor und während der Verbrennung unterteilt man in 

mechanische (Müllsortierung/ Mülltrennung) und chemische Abtrennung 

(Verfestigung/Stabilisierung) und thermische Behandlung. Für die aktive Deponierungszeit 

spielen die Konstruktion der Deponie und die Handhabung eine große Rolle.  

 

Mechanische Behandlungsmethoden 

Zu den mechanischen Behandlungsmethoden zählt man neben der Metallseparation (z.B. Fe 

für Wiederverwendungszwecke) die Siebung in unterschiedliche Kornfraktionen. Vorwiegend 

ist die feinere Fraktion angereichert an umweltrelevanten Spezies. Für geotechnische 

Anwendungen wird von der Schlacke die Feinfraktion abgetrennt, um die Belastung für die 

Umwelt möglichst zu verhindern. Schlackenwäsche zur Entfernung von leicht löslicher 

Spezies wird oft postuliert. Derie (1996) und Nzihou & Sharrock (2002) haben gezeigt, dass 

ein L/S-Verhältnis von 10 ausreicht, um etwa 90% der leichtlöslichen Spezies zu extrahieren. 

Für die Entfernung von Schwermetallen hingegen hat die Wäsche keinen Einfluss, da durch 

die Wäsche der pH-Wert kurzfristig nicht gesenkt wird (Chandler et al., 1997, Schneider et al., 

1994). Die Schlackenwäsche kann der Einfachheit halber mit dem Quenchen der Schlacke 

nach der Verbrennung verbunden werden. Um diese Methode zu optimieren, wird 

vorgeschlagen, die Wäsche mit chemischer Mobilisierung oder künstlicher Alterung zu 

verknüpfen. Speziell für RGR wird eine Wäsche empfohlen, da diese Reststoffe zu fast 20 

Gew.-% aus Salzen bestehen. Der hohe Salzgehalt ist verantwortlich für die negativen 

Eigenschaften dieser Reststoffe, wie z.B. hohe Auslaugung, großes Wasseraufnahme-

vermögen und Korrosion (Sabbas et al., 2003).  

 

Chemische Behandlungsmethoden 

Die Stabilisierung bewirkt auch eine Reduzierung des Leachings. Vorwiegend wird diese 

Maßnahme auf RGR angewendet. Dabei kommen hydraulische Bindemittel (z.B. Zement, 

Kalk, puzzolanische Materialien) zum Einsatz. Auf leichtlösliche Salze hat diese Maßnahme 

jedoch wenig Einfluss.  

Die künstliche Alterung von MV-Schlacke umfasst Hydratation, Karbonatisierung und 

Oxidation/Reduktion. Es konnte eine verringerte Verfügbarkeit von Schwermetallen (u.a. Cu, 

Mo, Pb, Zn) und eine Reduzierung der Auslaugbarkeit gezeigt werden (Meima & Comans, 

1999; Zevenberger & Comans, 1994). Als Folge der künstlichen Alterung wird der pH-Wert 

gesenkt und Schwermetalle an neu gebildeten stabileren Phasen sorbiert (Meima & Comans, 

1997; Meima & Comans, 1999; Meima et al., 2002). Die künstliche Alterung kann zu einer 

Mobilisierung von Sulfat führen (Bodénan et al., 2000). Eine mögliche Ursache ist der Zerfall 

der Mineralphase Ettringit. 
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2.1.3 Barrieresysteme 
Als Immobilisierung im Sinne einer „Inneren Barriere“ gilt die Fixierung von umweltrelevanten 

Schadstoffen in möglichst schwerlöslichen Verbindungen, um damit das Auslaugverhalten zu 

verringern. Nach Förstner & Grathwohl (2003) bieten in der Abfallwirtschaft verschiedene 

mineralogische Barrieresysteme die Möglichkeit zur Rückhaltung umweltrelevanter Spezies. 

Die Wirkungsweise der äußeren Barriere-Systeme ist, den Wasseraustausch mit der 

Umgebung zu minimieren oder zu verhindern. Das Innere Barrieresystem zielt auf eine 

sichere Einbindung von Schadstoffen. Es beruht zum Beispiel auf einer mineralogischen 

Immobilisierung von Schadstoffen innerhalb des gesamten Abfallkörpers. Dabei ist ein Ziel, 

die Mineralneubildung zu fördern. „Reservoir-Minerale“ sollen Schadstoffionen 

kristallchemisch fixieren und immobilisieren. Nach Pöllmann (1994) werden die 

Speicherminerale in zwei Verfahrensschritten gebildet: einmal als wasserfreier Minerale 

infolge thermische Reaktion oder als wasserhaltige Minerale durch Hydratationsreaktionen.  

Darüber hinaus soll durch eine entsprechende Verfestigung oder Verdichtung in den 

Mikrostrukturen die Porosität und Durchlässigkeit wesentlich verringert und damit die 

Ausbreitungsmöglichkeiten für die Schadstoffe eingeschränkt werden. Zum Teil sind diese 

Immobilisierungsmaßnahmen aber mit einem großen technischen und finanziellen Aufwand 

verbunden.  

 

2.1.4 Salzakkumulationen in natürlichen Systemen 
In natürlichen Systemen sind Versalzungen signifikant für aride und semiaride Gebiete. Die 

Versalzungen werden dokumentiert für die ungesättigte Bodenzone und in Spaltensystemen. 

Der Transport der leichtlöslichen Salzphasen in der ungesättigten Bodenzone hängt vor allem 

von Bodenfeuchte bzw. Wasserbewegung. Geregelt wird die Bodenfeuchte vom 

Wasserhaushalt: Niederschlag, Evapotranspiration und oberflächennaher Abfluss (Vengosh, 

2003). Die Versalzungsprozesse in natürlichen Systemen entstehen durch komplexe 

physikalische und chemische Prozesse u.a. Fällungsreaktionen oder Ionenaustausch. 

Salzbildungen treten an der Oberfläche auf durch Evaporation, ein Abwechseln von nassen 

und trockenen Phasen und Kapillareffekte. Diese grundlegenden Beobachtungen können 

auch auf Monodeponien für MV-Reststoffe angewendet werden. Durch die generell sehr 

hohen Salzgehalte in Schlacken sind somit Ausgangsbedingungen für die Bildung von 

Salzanreicherungen geschaffen. Die Beobachtungen auf der Monodeponie in Waldering 

haben gezeigt, dass auch in humiden Klimagebieten massive Salzanreicherungen in einer 

definierten Schicht möglich sind.  
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3. MATERIAL UND METHODIK 

3.1 AUSGANGSMATERIALIEN 

MV-Schlacken 
Für die Versuchsdurchführungen wurden MV-Schlacken von zwei verschiedenen Anlagen 

entnommen: MVA Ingolstadt und MHKW Rosenheim (Tabelle 2). Die MV-Schlacke der MVA-

Ingolstadt (im Weiteren bezeichnet als Schlacke A) wird nach der Aufbereitung direkt ohne 

Zwischenlagerung auf der Deponie abgelagert und stellt ein Beispiel für das 

Reaktionsverhalten frischer Schlacke dar. Die MV-Schlacke des MHKW-Rosenheim (im 

Weiteren bezeichnet als Schlacke B) wird auf der Deponie als Haufwerk mehrfach 

umgelagert. Dadurch ist diese MV-Schlacke ein Beispiel für ein durchgehend gealtertes 

Material. Durch die Umlagerung wird der Ablauf der verschiedenen chemischen und 

physikalischen Reaktionsprozesse forciert (Förstner & Hirschmann, 1997). Bei der 

Aufbereitung wird die Schlacke B entschrottet und in zwei Fraktionen getrennt. Die Fraktion 

0 - 4 mm, hier als Schlacke-Feinkorn (SFK) bezeichnet, wurde bei den Versuchsanordnungen 

als Sperrschicht (Sperre) eingebaut. Der Korngrößenwechsel sollte zu einer Verringerung der 

Durchlässigkeit führen.  
 
Tab. 2: Gegenüberstellung der verschiedenen Schlacken  

Schlacke A = MVA Ingolstadt Schlacke B = MHKW Rosenheim 

Körnung 0 - 32 mm Körnung 4 - 32 mm 

Lagerung keine Lagerung > 3 Monate 

Versuchsaufbau Probenbezeichnung Versuchsaufbau Probenbezeichnung 

Säulenversuche VA-A 
und VA-C Schlacke IN Säulenversuche VA-B Schlacke LOS 11/12 

Testfelder Eberstetten Schlacke EB Großlysimeter Waldering Schlacke LOS 6 

Großlysimeter Raindorf Schlacke RA Schlacke-Feinkorn (SFK) SFK 0 - 4 mm 

IN: Ingolstadt; EB: Eberstetten; RA: Raindorf 

 

Rauchgasreinigungsrückstände (RGR) 
Im MHKW Rosenheim wird eine quasitrockene Rauchgasreinigung in zwei Stufen vollzogen. 

Hierdurch fallen keine Abwässer an. Durch Zuführen von Kalkmilch (Ca(OH)2) werden die 

sauren umweltrelevanten Schadgase und die leichtflüchtigen Schwermetalle aus dem 

Rauchgas entfernt (nach 17. BImSchV, 1990). Die RGR-Produkte aus dem Gewebefilter 

wurden zusammen mit Kesselaschen bis zum Jahr 2005 auf der Monodeponie Waldering 

deponiert. Hier wurden sie schichtweise eingebracht und jeweils mit Schlacke-Feinkorn 

abgedeckt, um eine Staubverfrachtung durch Wind zu vermeiden. Die RGR fallen in einer 

Korngröße von ca. 0 - 4 mm an. Das Volumenverhältnis von Schlacke zu RGR auf der 

Monodeponie Waldering betrug etwa 1:3 (Magel, 2003).  
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3.2 UNTERSUCHUNGSMETHODEN 

Die Feststoff- und Sickerwasserproben wurden im Rahmen der vorliegenden Arbeit mit 

verschiedenen Methoden analysiert (Tab. 3). Eine detaillierte Beschreibung zu den 

Untersuchungsmethoden mit den jeweiligen Meßparametern findet sich im experimentellen 

Anhang unter Punkt D bis F. 

 
Tab. 3: Zusammenfassung der Untersuchungsmethoden  

 Bohrproben
BA I# 

Ausgangs-
materialien Laborversuche Feldversuche 

Physikalische Parameter 

Wassergehalt x#1 x x x 

Glühverlust x#1 x x x 

Korngrößenverteilung x#1 x x x 

Gesamtchemische Untersuchungen (Feststoff) 

RFA x x x x 

Untersuchungen der Eluate 

ICP-OES x#1 x x x 

IC x#1 x x x 

Phasenanalyse 

XRD x0 x x0 x0 

REM* x0 x0 x0 x0 

IR* x0 x0 x0 x0 

Sickerwasseranalytik 

ICP-OES - - x0 x 

IC - - x0 x 

Schnelltest - - x0 x0 

* Untersuchungen an Salzausblühungen, x für alle Proben, x0 nur für ausgewählte Proben 
# Bohrproben im BA I der Deponie Waldering im Jahr 2000 vor Beginn dieses Projekts 
#1 Datensätze wurden aus den Arbeiten von Heuss-Aßbichler, 2002 und 2004 bzw. Magel, 2001 übernommen 
 

Feststoffanalytik 
Die Feststoffe aus den Säulen- und Feldversuchen wurden mit Hilfe der 

Röntgenfluoreszenzanalyse (RFA) bestimmt. Zusätzlich wurden von sämtlichen 

Feststoffproben der Wassergehalt (WG) bei 30°C und 105°C sowie der Glühverlust (GV) bei 

550°C und 1050°C aus der Originalsubstanz ermittelt (nach DIN EN 12880-S2a und DIN EN 

12879-S3a). Elutionstests gemäß DIN EN 12457-4 wurden zur Beurteilung der Auslaugbarkeit 

der Schlacke-Proben durchgeführt. Bei der Präsentation der Ergebnisse ab Kapitel 4.2 werden 

für die Eluatuntersuchungen nur ausgewählte Eluatparameter (pH-Wert, Leitfähigkeit, Cl, SO4, 

Ca, Na, Cu, Mo, Pb und Zn) dargestellt.  
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Zur Bestimmung der Korngrößenverteilung wurden Proben in Anlehnung an die DIN 18123 

(1983) trocken gesiebt. Für die Untersuchungen wurden die Maschenweiten 0,125 mm und 1 

mm verwendet.  

 

Sickerwasseranalytik 
Die anfallenden Säulensickerwässer wurden mengenmäßig erfasst und auf folgende 

Eigenschaften untersucht: Geruch, Farbe, Leitfähigkeit (mS/cm) und pH-Wert. Die Chlorid- 

und Kupferkonzentrationen wurden mittels Schnelltest ermittelt, um die ungefähren 

Konzentrationsbereiche für die ICP-OES und IC-Analytik zu bestimmen und markante 

Trendabweichungen zu erkennen. Beim Schnelltest (Merck Microquant, 3 - 300 mg/L Cl bzw. 

0,3 – 10 mg/L Cu) handelt es sich um einen Farbkomparator. Mittels direktem Farbvergleich 

kann der Konzentrationsbereich abgelesen werden. Sämtliche Sickerwasser- und Eluatproben 

wurden mittels ICP-OES auf Kationen bzw. Schwermetalle (Al, Ba, Ca, Co, Cr, Cu, Fe, Hg, K, 

Mg, Mn, Mo, Na, Ni, Pb, Si, Sr, V, W, Zn) und mittels Ionenchromatographie auf die Anionen 

Chlorid und Sulfat untersucht. Die Präsentation der Ergebnisse für die 

Sickerwasserentwicklung ab Kapitel 4.2 beschränkt sich auf die aussagekräftigsten Parameter 

(Cl, SO4, Ca, Na, Cu, Mo, Pb und Zn).  

 

3.3 VERSUCHSANORDNUNGEN  

3.3.1 Säulenversuche im Labor 
Die Säulenversuche im Labor bestanden aus Plexiglassäulen mit 1m Länge und 15 cm im 

Durchmesser. Eine ausführliche Beschreibung und Bilddokumentation zum Aufbau und zur 

Befüllung der Säulen findet sich im experimentellen Anhang. Die Tabellen T-3 bis T-5 im 

tabellarischen Anhang zeigen eine vollständige Übersicht über die drei unterschiedlichen 

Versuchsanordnungen der Säulenversuche im Labor. 

 
Bewässerungsmodus 
Die sogenannten Referenzversuche wurden nur mit Leitungswasser (LW) bewässert, um die 

natürlichen Verhältnisse auf einer Deponie mit Niederschlagszutritt zu simulieren. Auf der 

Deponie ist jedoch durch die fortwährenden Ablagerungen frischer MV-Reststoffe das 

perkolierende Sickerwasser stets sehr salzreich. Aus diesem Grund wurden erweiterte 

Versuche mit salzreichen Lösungen bewässert. Die erhöhte Salzzufuhr wurde umgesetzt 

durch die Zugabe einer mit leichtlöslichen Salzen und Schwermetallen angereicherten 

Lösung, im Folgenden kurz Modellsickerwasser (MSW). Die chemische Zusammensetzung 

findet sich in Tabelle T-1 im tabellarischen Anhang. Der pH-Wert des MSW wurde mittels 

NaOH auf 11 eingestellt. 
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Als Bezugsgröße für die Bewässerungsmenge wurde die durchschnittliche Niederschlags-

menge auf der Monodeponie Waldering verwendet. Pro Jahr fallen dort etwa 1200 L/m2 

Niederschlag. Dieser Wert entspricht einer wöchentlichen Menge von 23,6 L/m2. Umgerechnet 

auf den Querschnitt der Säulen sind dies ca. 0,3 Liter pro Woche. Zur Vereinfachung wurden 

ein Mal pro Woche jeweils vormittags und nachmittags 150 mL eines Bewässerungsmediums 

(Leitungswasser oder Modellsickerwasser) bewässert. 

Abweichend von diesem Modus wurden bezüglich der Säulen aus der Versuchsanordnung B 

Verhältnisse angewendet, die vergleichbar mit Starkregenereignissen sind und den Zustand 

der maximalen Auswaschung darstellen. Hier wurde zu Beginn der Experimente zweimal pro 

Woche jeweils morgens und abends mit 500 mL eines Bewässerungsmediums (zwei Liter pro 

Woche) bewässert. Umgerechnet auf die Deponie gleicht der Anteil von zwei Litern pro 

Woche einem Betrag von 113 L/m2 pro Woche oder ca. 5.750 L/m2 pro Jahr. Zu Beginn 

wurden die Säulen aus VA-B nur mit Leitungswasser bewässert. Nach etwa 50 Versuchstagen 

wurde für ausgewählte Säulen auf Modellsickerwasser umgestellt, um mit der Zufuhr von 

salzreichen Lösungen neue Impulse für die Akkumulation von Salzen entlang des 

Säulenprofils zu setzen. Ab einem Versuchszeitraum von etwa 180 Tagen wurde die 

Bewässerungsmenge auf 0,3 Liter pro Woche reduziert, um die Verhältnisse auf einer 

Deponie nach einer möglichen Oberflächenabdeckung zu simulieren.  

 

Versuchsanordnung A (Schlacke A; unverdichtet) 
Die Tabelle 4 zeigt eine Aufstellung der Versuchsanordnung A, mit Laufzeiten zwischen 4½ 

und 25 Monaten. Bei dieser Versuchsanordnung wurde die Schlacke A, im Anhang 

gekennzeichnet mit IN, unverdichtet eingebaut, um eine möglichst homogene Verteilung zu 

erreichen. Die Referenzversuche IBV0 und ISFK0 sind grundlegende Versuche und wurden 

daher lediglich mit Leitungswasser bewässert. Ihre Laufzeit betrug 103 Wochen. Die 

erweiterten Versuche der Versuchsanordnung A wurden ausschließlich mit 

Modellsickerwasser bewässert. Zudem wurden diese Versuche als Zeitversuche durchgeführt. 

Jeweils drei Säulen mit identischem Aufbau und derselben Versuchsdurchführung wurden zu 

unterschiedlichen Zeitpunkten geöffnet. Die kürzeste Versuchszeit betrug 18 Wochen 

(Versuche „kurz“, Kennzeichnung 1), die mittlere Versuchszeit 42 Wichen (Versuche „mittel“ 

Kennzeichnung 2) und die längste Versuchsdurchführung 103 Wochen (Versuche „lang“, 

Kennzeichnung 3). Der Referenzversuch (IBV0) sowie die drei Säulen der Versuchsreihe I 

(IBV1, IBV2 und IBV3) sind Blindversuchen. Für den zweiten Referenzversuch (ISFK0) und für 

drei weitere Säulen der Versuchsreihe II (ISFK1, ISFK2 und ISFK3) wurde zusätzlich zur 

Schlacke etwa 40 cm oberhalb der Basis Schlacke-Feinkorn (SFK) verdichtet (2-3 cm 

mächtig) eingebracht.  
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Tab. 4: Übersicht über die Versuchsanordnungen A (VA-A) 

VA-
A Säule Sperre Bewässerung Dauer in 

Wochen 
Eingebaute 
Masse in kg 

Zugegebene 
Wassermenge in L 

L/S# in 
L/kg 

R◊ IBV0 LW 103 18,0 30,6 2,3 

IBV1 18 15,5 5,4 0,6 

IBV2 42 16,5 12,6 1,2 I 

IBV3 

Keine 
= 

Blind 
versuch 

MSW* 

103 16,0 30,9 2,6 

R◊ ISFK0 LW 103 13,8 30,6 2,9 

ISFK1 18 14,5 5,4 0,7 

ISFK2 42 15,6 12,6 1,2 II 

ISFK3 

SFK 
= 

Sperr 
schicht 

MSW* 

103 15,5 30,9 2,7 

*: Modellsickerwasser für Säulenversuche, Zusammensetzung vgl. Tab. T-1, tabellarischer Anhang  
#: L/S; Verhältnis Gesamtflüssigkeitsmenge (Wassergehalt zu Beginn plus zugegebenes Wasser, L) zu 
Feststoffgehalt (S) bei Versuchsende 
R◊: Referenzversuch, Bewässerung mit Leitungswasser 

 
Versuchsanordnung B (Schlacke B, gelagert, leicht verdichtet) 
Für die VA-B wurden MV-Schlacken aus unterschiedlichen Losen entnommen, LOS 11 wurde 

bis zum Einbau etwa sechs Monate und LOS 12 etwa vier Monate gelagert. Die Kennzahl ist 

Hinweis auf den Ablagerungsmonat (11: November, 12: Dezember). Bei dieser 

Versuchsanordnung wurde das Material jeweils in 10 cm mächtigen Lagen in die 

Plexiglassäulen eingebracht und mit einem Stampfer leicht verdichtet, um die Ausbildung 

größerer Porenräume zu verhindern. 

Die Tabelle 5 zeigt eine Zusammenfassung der Versuchsanordnung B mit den 

entsprechenden Laufzeiten. Bei der Versuchsreihe I aus der Versuchsanordnung B wurden 

zwei Säulen als Blindversuche (BV1 und BV2) nur mit Schlacke befüllt. Bei der Versuchsreihe 

II (SFK 1, SFK 2, SFK 3) der VA-B wurde Schlacke-Feinkorn (SFK) als Sperrschicht 

verwendet. Bei der Versuchsreihe III wurde ein Geotextil (GT) als Sperrschicht verwendet. 

Durch die große Durchlässigkeit des Geotextils ist der Versuch GT1 mit den Blindversuchen 

zu vergleichen. Bei den Versuchen GT 2 und GT 3 wurde zusätzlich oberhalb des Geotextils 

Schlacke-Feinkorn eingebracht.  

Um sehr salzreiche Bedingungen zu simulieren, wurde für die Versuchsreihen IV und V RGR 

als Abdeckschicht eingesetzt (RSFK 1, RSFK 2, RSFK 3 und RGT 1, RGT 2, RGT 3). 

Abgesehen von der Abdeckschicht entspricht der Aufbau dieser Säulen dem der 

Versuchsreihen II und III.  

Für das Kapitel 4 werden aufgrund der großen Datenmengen die Ergebnisse zu den 

Versuchen BV1 (ohne Sperre), SFK3 (mit Sperre) und RSFK2 sowie RSFK3 (beide mit Sperre 

und RGR) exemplarisch dargestellt. Die Laufzeiten betrugen 15½ bis ca. 17 Monate.  
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Tab. 5: Übersicht über die Versuchsanordnung B (VA-B) 

VA-
B Säule Sperre Einbau 

Salzschicht Bewässerung Dauer in 
Wochen 

Eingebaute 
Masse in kg

Zugegebene 
Wassermenge in L 

L/S# 
in 

L/kg

BV 1 keine keine MSW* 67 12,4 58,9 6,2 
I 

BV 2 keine keine MSW* 11 12,4 20,0 2,3 

SFK 1 SFK keine LW 9 17,5 17 1,5 

SFK 2 SFK keine MSW* 38 17,5 44,1 3,4 II 

SFK 3 SFK keine MSW* 64 17,5 51,9 4,0 

GT 1 GT keine MSW* 9 17,6 17 1,5 

GT 2 GT & SFK keine MSW* 37 19,8 43,1 3,0 III 

GT 3 GT & SFK keine LW 8 17,6 15 1,3 

RSFK 1 SFK RGR MSW* 9 17,5 17 1,5 

RSFK 2 SFK RGR LW 62 17,9 49,6 3,7 IV 

RSFK 3 SFK RGR MSW* 62 13,4 49,6 4,9 

RGT 1 GT RGR LW 9 17,6 17 1,4 

RGT 2 GT & SFK RGR LW 29 17,9 39,7 3,0 V 

RGT 3 GT & SFK RGR MSW* 29 17,9 39,7 3,0 

*: Modellsickerwasser für Säulenversuche, Zusammensetzung vgl. Tab. T-1, tabellarischer Anhang , bei einigen 
Säulenversuchen wurde nur zeitweise mit Modellsickerwasser bewässert 
#: L/S; Verhältnis Gesamtflüssigkeitsmenge (Wassergehalt zu Beginn plus zugegebenes Wasser, L) zu 
Feststoffgehalt (S) bei Versuchsende 
 
 
 
Versuchsanordnung C (Schlacke A, RGR als Sperrschicht) 
Die Versuchsanordnung C besteht aus zwei Versuchssäulen (Tab. 6). Der Blindversuch (RBV) 

verfügt über einen homogenen Aufbau und wurde lediglich mit Schlacke A (Bezeichnung IN) 

befüllt. Für die Säule mit Sperre (RSFK) wurde als Sperre Schlacke-Feinkorn (2 cm mächtig) 

verdichtet eingebaut und unmittelbar darüber eine Lage aus RGR (1 cm mächtig) eingebracht. 

Mit dieser Kombination soll eine sehr salzreiche Ausgangssituation geschaffen werden, d.h. 

bereits zu Versuchsbeginn sind die Voraussetzungen für die Sättigungsbedingungen für 

leichtlösliche Salzphasen innerhalb der Sperrschicht erreicht. Die beiden Versuchssäulen sind 

noch nicht rückgebaut. In Kapitel 4 werden daher nur die Ergebnisse zur 

Sickerwasserentwicklung präsentiert. Die aktuelle Laufzeit beträgt 19 Monate. 

 
Tab. 6: Übersicht über die Versuchsanordnungen C 

VA-
C Säule Sperre Einbau 

Salzschicht Bewässerung Dauer in 
Wochen 

Eingebaute 
Masse in kg 

Zugegebene 
Wassermenge in L

L/S# in 
L/kg 

I RBV keine keine MSW* 77 17,5 23,1 1,8 

II RSFK SFK+RGR RGR MSW* 77 16,5 23,1 1,9 

*: Modellsickerwasser für Säulenversuche, Zusammensetzung vgl. Tab. C-7, Anhang C  
#: L/S; Verhältnis Gesamtflüssigkeitsmenge (Wassergehalt zu Beginn plus zugegebenes Wasser, L) zu 
Feststoffgehalt (S) bei Versuchsende 
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Versuchsanordnung Modellversuch (MoV, mit Kunststoffkugeln) 
Schlacke ist ein inhomogenes Phasengemisch. Die im Material stattfindenden Prozesse 

werden durch verschiedene physikalisch-chemische Parameter und Ablauf unterschiedlicher 

chemischer Reaktionen (u.a. Lösung, Ausfällung, Sorption) beeinflusst. Die Durchführung 

eines Modellversuchs mit Kunststoffkugeln soll dazu dienen, die Arbeitshypothese zu prüfen, 

inwiefern eine Änderung der Durchlässigkeit allein durch Korngrößenwechsel ausreicht, um 

eine Aufkonzentration salzreicher Lösungen innerhalb des Deponiekörpers zu bewirken. 

Durch die Anwendung von Kunststoffkugeln können die komplexen Reaktionsprozesse auf 

eine rein physikalische Wirkungsweise der Sperre reduziert werden. Die Säule MoV1 simuliert 

den Blindversuch und die Säule MoV2 den Modellversuch mit Sperre. Die Abbildungen A-10 

und A-11 im experimentellen Anhang zeigen den Aufbau der beiden Versuchssäulen. 

Bewässert wurden die Säulen mit einer 3-molaren NaCl-Lösung (176 g/L NaCl). Im 

Allgemeinen hält sich eine wassergesättigte Atmosphäre innerhalb der Säulen. Nach etwa 80 

Versuchstagen wurden beide Säulen nach jeder Bewässerung mittels Pressluft getrocknet, 

um gemäß der Fragestellung zu klimatischen Wechselfolgen wasserungesättigte 

Bedingungen schaffen zu können. Um die Wirkung der Bewässerung auf Auswaschung bzw. 

Ausfällung der Salze besser erarbeiten zu können, wurde die Bewässerungsmenge während 

der Versuchsdurchführung gezielt verändert (reduziert bzw. erhöht). Die Gesamtversuchszeit 

der Modellversuche mit Kunststoffkugeln betrug 22 Monate. 

 

3.3.2 Feldversuche (FV) 
Die unterschiedlichen Feldversuche, insgesamt vier Testfelder und vier Großlysimeter, sollen, 

basierend auf den unterschiedlichen Säulenversuchen, verschiedene Versuchsbedingungen 

wiedergeben (vgl. Tab. 7). Die Tabelle T-6 im tabellarischen Anhang zeigt eine erweiterte 

Übersicht über den Aufbau der Feldversuche. Detaillierte Beschreibungen zum Aufbau der 

Feldversuche sind im experimentellen Anhang aufgeführt. Analog den Säulenversuchen 

wurden jeweils ein Feldversuch mit homogenem Aufbau als Blindversuch (ohne Sperre) und 

mindestens ein Feldversuch mit Sperre durchgeführt. Um die zeitlichen Veränderungen 

erfassen zu können, wurden während der gesamten Versuchszeit zu drei verschiedenen 

Zeitpunkten Feststoffproben genommen.  
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Tab. 7: Übersicht über die Feldversuche (FV) 

*: Modellsickerwasser für Lysimeter Raindorf; Zusammensetzung vgl. Tab. T-1, tabellarischer Anhang ; 
◊: Sickerwasser und Umkehrosmose(UO)-Konzentrat der Deponie Eberstetten; Zusammensetzung vgl. Tab. T-2, 
tabellarischer Anhang ; WA: Waldering, RA: Raindorf, EB: Eberstetten, SFK: Schlacke-Feinkorn 
#: L/S; Verhältnis Gesamtflüssigkeitsmenge (Wassergehalt zu Beginn plus zugegebenes Wasser, L) zu 
Feststoffgehalt (S) bei Versuchsende 
 
Testfelder Eberstetten (Schlacke A) 
Auf der Deponie Eberstetten wurden vier Testfelder mit Schlacke A (im Anhang als Schlacke 

EB bezeichnet) errichtet. Das freistehende Testfeld EB1 diente als Blindversuch ohne 

Sperrschicht. Um eine möglichst große Deckfläche für die einzelnen Testfelder erzielen zu 

können, wurden drei dieser Testfelder miteinander verbunden. Die Testfelder EB2 bis EB4 

verfügten über eine Sperrschicht, bestehend aus verdichtetem Schlacke-Feinkorn (SFK). 

Die Felder waren der natürlichen Witterung (Niederschlagswasser) ausgesetzt. Zusätzlich 

wurde nach 170 Versuchstagen das Testfeld EB3 mit Deponiesickerwasser und das Testfeld 

EB4 mit konzentrierter Lösung aus der Umkehrosmose bewässert. Die Menge betrug jeweils 

50 Liter pro Woche.  

Ab Anfang Juni 2005 wurde das anfallende Sickerwasser der jeweiligen Testfelder in einem 

PE-Gefäß (50 Liter Fassungsvolumen) gesammelt und wöchentlich abgemessen. Diese Werte 

dienen als Grundlage für die Abschätzung des Wasserhaushalts und somit sind die 

Ergebnisse aus der Frachtenberechnung als Richtwerte zu sehen. Der 

Untersuchungszeitraum betrug 25½ Monate. 

 

Großlysimeter Raindorf (Schlacke A) 
Auf der Sonderabfalldeponie Raindorf wurden zwei Großlysimeter (RA1 und RA2) mit 

Schlacke A (im Anhang als Schlacke RA bezeichnet) errichtet. Für die Großlysimeter wurden 

Kunststoffringe verwendet. Mittels Kunststoffdeckel konnten die Großlysimeter verschlossen 

und damit der Zutritt von Regenwasser unterbunden werden.  

Lysi-
meter  Versuch Sperre 

Einbau 
Salzschicht Bewässerung Dauer in 

Wochen
Eingebaute 
Masse in kg 

Zugegebene 
Wassermenge 

in L/m2 

L/S# in 
L/kg 

WA1 keine RGR 8.800 2.273 0,6 

I WA2 SFK RGR 
Niederschlag 103 

8.800 2.273 0,6 

RA1 keine keine 14.200 294 0,3 
II 

RA2 SFK keine 
Modellsicker-

wasser* 130 
14.200 294 0,3 

Feldver
such  Versuch Sperre 

Einbau 
Salzschicht Bewässerung Dauer in 

Wochen
Eingebaute 
Masse in kg 

Zugegebene 
Wassermenge 

in L 

L/S# in 
L/kg 

EB1 keine keine 35.200 1.350 0,6 

EB2 keine 
Niederschlag 

37.300 1.350 0,6 

EB3 keine Sickerwasser◊ 46.500 1.610 0,6 
III 

EB4 

SFK 

keine UO-Konzentrat◊

102 

40.500 1.610 0,7 
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Während der Versuchsdurchführung wurden die Bewässerungsmengen verändert. Zu Beginn 

der Versuche wurde mit 50 Litern pro Woche Leitungswasser bewässert, um eine 

gemeinsame Ausgangsbasis zu schaffen. Nach 160 Versuchstagen wurden die Großlysimeter 

ausschließlich mit Modellsickerwasser bewässert. Die Bewässerungsmenge wurde auf 10 

Liter pro Woche reduziert, um das Material gleichmäßig zu durchfeuchten. Nach 290 

Versuchstagen wurde der Bewässerungsmodus erneut umgestellt. Im doppelten Zeitraum 

wurden nun die doppelten Salzbeträge aufgegeben (20 Liter/2 Wochen), um je Zugabe mehr 

Wassermenge zur Verfügung zu haben. Die Gesamtlaufzeit bis zur dritten Bohrkampagne 

betrug 719 Tage. Danach wurde das Sickerwasser weiterhin alle 14 Tage beprobt. Nach 830 

Tagen wurde die Bewässerungsart von Modellsickerwasser auf Leitungswasser umgestellt. 

Hiermit sollte untersucht werden, inwiefern sich das Fehlen von Salzen auf die weitere 

Feststoff- und Sickerwasserentwicklung auswirkt. Der Untersuchungszeitraum betrug 32½ 

Monate. 

 

Großlysimeter Waldering (Schlacke B) 
Die Monodeponie Waldering steht klimatisch für sehr regenreiche Verhältnisse (teils über 100 

mm Niederschlag pro Monat). Hier wurden die Großlysimeter nur über natürlichen 

Niederschlag bewässert. Diese Versuchsanordnung repräsentierte den Fall verstärkter 

Auswaschung. Insgesamt wurden die Lysimeter Waldering ca. 26 Monate beprobt. 

Die Großlysimeter bestanden aus Betonringen, die innen mit Styroporplatten ausgekleidet 

wurden. Die MV-Schlacke wurde in beide Lysimeter unverdichtet eingebaut und mittels 

Leitungswasser gleichmäßig durchfeuchtet. Parallel zum Blindversuch wurde in ein Lysimeter 

Schlacke-Feinkorn verdichtet als Sperrschicht eingebaut. Am Top der Großlysimeter wurden 

20 cm Rauchgasreinigungsrückstände (RGR) aufgebracht, um konstante salzreiche 

Bedingungen zu schaffen. Um einen Richtwert für die durchschnittlichen Sickerwassermengen 

zu erhalten, wurden zu unbestimmten Zeiten etwa dreimal pro Versuchsjahr die 

Sickerwasserraten in mL/h ermittelt. 

3.4 PROBENNAHME  

3.4.1 Feststoffproben 
Säulenversuche 
Nach Beendigung der Versuche wurden die Säulen waagrecht gelegt und die beiden Hälften 

mit Hilfe einer Metallplatte getrennt. Die Blindversuche wurde in acht gleich große Proben je 

10 cm aufgeteilt (Abb. C-2, experimenteller Anhang). Das Material der Säulen mit Sperre 

wurde in zehn Proben aufgeteilt. Der Bereich ober- und unterhalb der Sperrschicht wurde 

jeweils in geringeren Abständen entnommen. Jeweils die Hälfte der mit x gekennzeichneten 

Abschnitte des Probenmaterials wurde im Trockenschrank bei 40° C getrocknet und mit einer 

WIDIA Schwingscheibenmühle gemahlen. Diese Proben wurden detaillierter analysiert: die 
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Feststoffgehalte mit Hilfe der Röntgenfluoreszenzanalyse und die Eluate mit ICP-OES und 

Ionenchromatographie. Zudem wurden für die Eluate auch der pH-Wert und die Leitfähigkeit 

gemessen.  

 

Feldversuche 
Insgesamt wurden drei Bohrungen im Zeitraum von April 2005 bis November 2006 

durchgeführt. Die Tabellen T-7 und T-8 im tabellarischen Anhang zeigen den Zeitpunkt der 

Probennahme und zudem das gewählte Bohrverfahren für die Feldversuche. Je Testfeld bzw. 

Lysimeter wurden vier bis fünf Proben gezogen und analysiert. Eine Übersicht über die 

gewonnenen Bohrkernproben mit der jeweiligen Tiefenangabe zeigt die Tabelle T-9 im 

tabellarischen Anhang.  

Die erste Bohrkampagne (BKI), nach etwa fünf Monaten im April und Mai 2005, diente als 

Referenz, um den chemischen Aufbau der Versuchsfelder in einem frühen Zustand nach dem 

Aufbau ermitteln zu können. Die Probennahme erfolgte mittels Handbohrer (Abb. C-3 bis C-5, 

graphischer Anhang) mit einem Durchmesser von 10 cm (max. Tiefe 1,7 m). Je Großlysimeter 

in Raindorf und Waldering wurde eine Bohrung abgeteuft. In Eberstetten waren alle vier 

Testfelder zum Zeitpunkt der ersten Bohrungen noch denselben Bewässerungsbedingungen  

(natürlicher Niederschlag) ausgesetzt. Aus diesem Grund wurden nur das Testfeld EB1 (ohne 

Sperre) und als ein Beispiel für Testfelder mit Sperre das Testfeld EB 2 beprobt. Erst nach 

sechs Monaten (Juni 2005) wurde mit der Zugabe von salzreichen Lösungen für die Testfelder 

EB3 und EB4 begonnen.  

Die zweite Bohrkampagne (BKII) erfolgte nach etwa 11 Monaten (September, Oktober bzw. 

November 2005). Bei der ersten Bohrkampagne zeigte sich für die Testfelder Eberstetten, 

dass eine Probennahme mittels Handbohrer nicht möglich ist. Die Probennahme während der 

zweiten Bohrkampagne erfolgte daher mit Hilfe eines motorbetriebenen 

Rammkernbohrgerätes mit einem Bohrdurchmesser von 10 cm und einer Kernlänge von ca. 

80 cm (Abb. C-6 und C-7, graphischer Anhang). Die genaue Angabe der Bohrprobentiefe 

(max. 1,65 m) ist jedoch nicht möglich, da durch die Auflast des Bohrgerätes die 

Schlackeproben stark verdichtet wurden (Abb. C-7, graphischer Anhang).  

Während der dritten Bohrkampagne (BKIII) nach etwa 23 Monaten (Oktober, November 2006) 

wurden die Großlysimeter Waldering und Raindorf mittels Handbohrer beprobt. Im Rahmen 

der Rückbaumaßnahmen der vier Testfelder Eberstetten wurden die Testfelder mittels Schurf 

beprobt. Das dabei entstandene Profil konnte exakt ausgemessen und die Probennahmetiefen 

genau bestimmt werden (Abb. C-10 und C-11, graphischer Anhang).  

 

3.4.2 Sickerwasserproben 
In den ersten 100 Tagen wurde von den Feldversuchen und den Laborversuchen der 

Versuchsreihe A und C jede Woche eine Sickerwasserprobe genommen. Nach 100 Tagen 
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Reservoir
Feststoffzusammensetzung 

in mg/kg

Gewicht Schlacke in kg

Ausgangsgehalt 
g an Spezies 

Konzentration im
Sickerwasser in g/L

Austrag an SW in L

Fracht in g

*

-

=

=

Verbleibende 
Zusammensetzung

im Feststoff
g an Spezies je Probe

Zugeführte Menge
g an Spezies MSW 

+

*

=

Reservoir
Feststoffzusammensetzung 

in mg/kg

Gewicht Schlacke in kg

Ausgangsgehalt 
g an Spezies 

Konzentration im
Sickerwasser in g/L

Austrag an SW in L

Fracht in g

**

-

==

=

Verbleibende 
Zusammensetzung

im Feststoff
g an Spezies je Probe

Zugeführte Menge
g an Spezies MSW 

++

**

==

wurde bei den Feldversuchen nur noch alle 14 Tage eine Probennahme durchgeführt. Bei den 

Säulenversuchen wurde in der Folgezeit etwa jede fünfte bis siebte Sickerwasserprobe 

analysiert. Diese Vorgehensweise galt für die Versuchsanordnung B schon zu Versuchs-

beginn.  

 

3.5 FRACHTENBERECHNUNG 

Die Abbildung 4 zeigt den rechnerischen Ablauf für die durchgeführten 

Frachtenberechnungen.  

 

Abb.4: Rechnerischer Ablauf zu Erstellung der Frachtenberechnungen je Spezies 
 

Basis ist zum einen die chemische Analyse der Ausgangsmaterialien mittels RFA (Schlacke, 

SFK, RGR). Die jeweilige Spezies im Feststoff (Reservoir der Feststoffzusammensetzung in 

mg/kg) wird mit dem Gewicht an eingebautem Material (in kg) multipliziert. Das Resultat ist der 

Ausgangsgehalt der jeweiligen Spezies, umgerechnet in g je Säule.  

Zum anderen wird die Konzentration je Spezies im auslaufenden Sickerwasser in g/L benötigt. 

Die Konzentration je Spezies wird mit der Sickerwassermenge, gemessen in Liter, 

multipliziert. Das Ergebnis ist die ausgetragene Fracht in g.  

Die Differenz zwischen den Ausgangsgehalten der jeweiligen Spezies (bzw. im weiteren 

Rechenablauf des errechneten Differenzwertes) und der ausgetragenen Fracht in g ergibt die 

verbleibende Zusammensetzung im Feststoff der jeweiligen Spezies in g je Probe.  

Bei den Versuchen mit Zugabe von Modellsickerwasser wurde jeweils die Menge an 

zugeführten Spezies in g zur Gesamtmenge der jeweiligen Spezies in der Säule addiert.  
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Um die einzelnen Versuche miteinander vergleichbar zu machen, wurde der prozentuale 

Austrag an Spezies je Probe über den gesamten Versuchszeitraum errechnet. Bezogen auf 

den gesamten Versuchszeitraum errechnet sich der prozentuale Austrag je Spezies als 

Summe der Fracht in g geteilt durch den Ausgangsgehalt in g multipliziert mit 100. Bei den 

Versuchen, die mit Modellsickerwasser bewässert wurden, wurde auch der Anteil an Spezies 

berücksichtigt, der über das MSW zugeführt wurde. Die Summe der Fracht in g wurde von der 

Summe der über das MSW zugeführten Spezies abgezogen. Der Differenzbetrag wurde dann 

durch den Ausgangsgehalt an Spezies geteilt. Ein negatives Vorzeichen besagt, dass 

prozentual insgesamt mehr Spezies aus der Säule ausgetragen wurde als innerhalb der Säule 

zurückgehalten wurde (Abreicherung). Ein positives Vorzeichen jedoch weist darauf hin, dass 

prozentuale innerhalb der Säule mehr an bestimmten Spezies zurückgehalten (Anreicherung) 

als ausgetragen wurden.  
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4. ERGEBNISSE 

4.1 AUSGANGSMATERIAL 

4.1.1 Schlacke, frisch und gealtert 
Die unterschiedliche Behandlung von Schlacke A (MVA Ingolstadt) und Schlacke B (MHKW 

Rosenheim) spiegelt sich in den chemischen Analysen wider (vgl. Kapitel 3.1.). Es wurde 

jeweils eine repräsentative Probe des Ausgangsmaterials der einzelnen Versuche als 

Bezugsgröße analysiert. Die Ergebnisse der Feststoffanalytik mittels RFA und Eluatanalytik 

für MV-Schlacken, SFK und RGR sind in den Tabellen T-10 und T-11 im tabellarischen 

Anhang dargestellt.  

 

Feststoff 
Folgende nennenswerte Unterschiede liegen vor (Tab. 8): Schlacke A weist höhere Gehalte 

an K2O, Na2O und Cl auf als Schlacke B, was auf den höheren Anteil leichtlöslicher Salze in 

der „frischen“ Schlacke A zurückzuführen ist. Erhöhte K2O-Gehalte in Schlacke A können 

auch auf Holzascheanteile zurückzuführen sein. Die Gehalte an MgO, Fe2O3, SO3, Ni und Zn 

sind in der Schlacke A niedriger als in der Schlacke B, der Gehalt an SiO2 hingegen ist höher. 

Die Gehalte der übrigen Spezies weichen nicht signifikant voneinander ab.  

 
Tab. 8: Feststoffgehalte der Schlacke frisch und gealtert, sowie SFK und RGR (Angabe der Mittelwerte und 

Standardabweichungen) 

 Schlacke A 
frisch deponiert 

Schlacke B im 
Winter gelagert

Schlacke B im 
Sommer gelagert

SFK aus Schlacke B 
im Sommer gelagert RGR 

SiO2 (%) 29,2 ± 2,2 26,7 ± 2,9 27,9 24,3 ± 1,4 4,8 ± 1,0
Al2O3 (%) 8,5 ± 0,8 8,7 ± 0,6 8,4 9,1 ± 0,8 2,8 ± 0,5
MgO (%) 2,6 ± 0,2 3,0 ± 0,1 3,1 3,3 ± 0,3 0,7 ± 0,2
CaO (%) 19,1 ± 1,2 21,1 ± 1,8 19,9 22,9 ± 1,4 44,5 ± 7,6
Na2O (%) 1,8 ± 0,2 1,5 ± 0,3 1,7 1,2 ± 0,1 1,9 ± 0,3
K2O (%) 1,3 ± 0,0 0,9 ± 0,0 0,8 0,8 ± 0,0 2,2 ± 1,8
Fe2O3 (%) 12,0 ± 0,9 15,4 ± 1,6 16,3 14,6 ± 0,2 1,0 ± 0,4
SO3 (%) 1,8 ± 0,0 2,3 ± 0,3 2,1 2,7 ± 0,3 2,9 ± 0,0
Ba (ppm) 3.691 ± 25 3.280 ± 424 3.615 4.054 ± 40 484 ± 63
Cl (ppm) 9.769 ± 535 6.425 ± 773 5.623 6.163 ± 1.069 109.238 ± 7.148
Cr (ppm) 1.067 ± 176 1.148 ± 114 1.046 1.267 ± 43 489 ± 182
Cu (ppm) 5.178 ± 242 6.250 ± 1.175 4.214 5.989 ± 907 806 ± 128
Ni (ppm) 230 ± 3 338 ± 55 288 328 ± 7 57 ± 5
Pb (ppm) 1.702 ± 246 2.740 ± 1.144 1.622 2.044 ± 266 2.468 ± 190
Sn (ppm) 208 ± 25 286 ± 105 370 209 ± 7 398 ± 4
Sr (ppm) 584 ± 0 706 ± 44 508 538 ± 0 320 ± 0
W (ppm) 126 ± 14 126 ± 19 109 146 ± 21 64 ± 29
Zn ((ppm) 6.331 ± 378 10.131 ± 994 8.038 10.340 ± 663 8.294 ± 806
 

Für die Säulenversuche der VA-B und für die Lysimeter Waldering wurde gealterte Schlacke B 

eingebaut, einmal im Winter (VA-B) und einmal im Sommer (LY-WA) zwischengelagert. Bei 
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den Feststoffanalysen lassen sich sowohl bezüglich der unterschiedlichen Lagerung als auch 

der verschiedenen Kornfraktionen der Schlacke B (Schlacke und SFK) keine markanten 

Unterschiede erkennen. 

 

Eluat 
Die alkalischen pH-Werte im Eluat der Schlacke A reichen bis max. 12,4 und für Schlacke B 

bis max. 11,2 (Tab. 9). Die Leitfähigkeit zeigt, dass im Eluat der Schlacke A deutlich mehr 

leichtlösliche Salze gelöst werden (max. 4,2 mS/cm). Die Eluat-Konzentrationen der Schlacke 

A liegen für Cl bei 366 mg/L, für Na bei 224 mg/L und für K bei 122 mg/L. Höhere 

Konzentrationen im Eluat für Schlacke A wurden auch für den Parameter Al festgestellt. Das 

Eluat der Schlacke B ist im Vergleich salzärmer mit Konzentrationen für Cl von max. 279 

mg/L, für Na von max. 163 mg/L und für K von max. 67 mg/L. Die Faktoren SO4, Mg und Si 

waren im Eluat der Schlacke A hingegen in geringeren Konzentrationen enthalten. Weiterhin 

unterscheiden sich die Materialien z.T. auch markant in den Schwermetallkonzentrationen, 

z.B. in den Cu-, Mo-, Pb- und Zn-Konzentrationen, die jeweils im Eluat der Schlacke A erhöht 

sind. 

 
Tab. 9: Eluatparameter der Schlacke frisch und gealtert, sowie SFK und RGR (Angabe der Mittelwerte und 

Standardabweichungen) 

Parameter Einheit Schlacke A frisch 
deponiert 

Schlacke B im 
Winter gelagert*

Schlacke B im 
Sommer gelagert 

SFK aus Schlacke B 
im Sommer gelagert RGR 

pH-Wert - 11,6 ± 0,8 10,6 11,0 ± 0,2 9,7 ±  2,3 12,2
Lf mS/cm 3,27 ± 0,86 1,79 1,50 ± 0,22 2,08 ± 0,36 29,6
Cl mg/L 366 ± 123 279 203 ± 43 318 ± 42 8.000
SO4 mg/L 104 ± 138 535 322 ± 58 425 ± 123 967
Al mg/L 17,8 ± 16,4 1,4 3,3 ± 2,3 0,5 ± 0,4 < 0,007
Ca mg/L 207 ± 43 218 162 ± 23 168 ± 49 4.380
K mg/L 122 ± 19 67 46 ± 9 73 ± 19 1.140
Mg mg/L 0,01 ± 0,01 0,28 0,09 ± 0,06 0,55 ± 0,78 0,01
Na mg/L 224 ± 61 163 126 ± 29 224 ± 20 1330
Cr mg/L 0,03 ± 0,03 0,03 0,02 ± 0,01 0,11 ± 0,01 0,033
Cu mg/L 0,463 ± 0,182 0,020 0,019 ± 0,004 0,038 ± 0,012 0,004
Mo mg/L 0,14 ± 0,05 0,09 0,05 ± 0,01 0,12 ± 0,01 0,09
Ni mg/L 0,004 ± 0,001 0,005 0,003 ± 0,001 < 0,001 < 0,001
Pb mg/L 0,139 ± 0,087 < 0,008 0,011 ± 0,001 0,011 ± 0,010 7,26
Si mg/L 1,14 ± 0,86 4,62 3,55 ± 1,19 6,50 ± 1,33 0,01
V mg/L 0,004 ± 0,002 0,007 0,005 ± 0,001 0,008 ± 0,004 0,001
Zn mg/L 0,165 ± 0,096 0,073 0,008 ± 0,005 0,032 ± 0,035 0,85

*: Für die Schlacke B (im Winter gelagert) wurde nur eine Eluatmessung durchgeführt, daher erfolgt keine Angabe 
der Schwankungsbreite 
 

Bezüglich der Schlacke B lassen sich etwas höhere Konzentrationen der leichtlöslichen Salze 

(Na, K und Cl) sowie von SO4, Ca und Mg im Eluat der im Winter zwischengelagerten 

Schlacke feststellen. Das SFK (Fraktion 0-4 mm) weist im Vergleich zur Fraktion  
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4-32 mm (Schlacke B) höhere Eluatkonzentrationen an leichtlöslichen Salzen auf. Die 

Eluatkonzentrationen für Cr, Cu, Mo und Si liegen ebenfalls höher im Eluat der SFK. 

 

Wassergehalt und Glühverlust 
Die Wassergehalte (ermittelt bei 30°C bzw. 105°C) und Glühverluste (ermittelt bei 550°C bzw. 

1050°C) der Ausgangsmaterialien sind in der Tab. 10 bzw. detailliert in Tabelle T-12 im 

tabellarischen Anhang dargestellt. Die Wassergehalte liegen für die Schlacke A zwischen 13,8 

und 16,5 Gew.-%, wobei zwischen 30°C und 105°C in erster Linie Feinporenwasser und 

Kristallwasser, z.B. aus Gips, abgegeben wird und der Unterschied beider Messungen bei 

lediglich knapp 3 Gew.-% liegt. Die Glühverluste zwischen 550°C und 1050°C unterscheiden 

sich um knapp 2 Gew.-%. TOC-Gehalte in der Schlacke A um 1 Gew.-% lassen jedoch nicht 

auf höhere Anteile organischer Stoffe schließen. Für Schlacke B weisen die Winterproben 

erhöhte Wassergehalte und Glühverluste auf, aber im Sommer sind diese witterungsbedingt 

deutlich geringer. Für das SFK liegen die Werte für die Wassergehalte und Glühverluste etwas 

höher als für die Gesamtfraktion (Sommerwerte). RGR weist von allen untersuchten 

Materialien die höchsten Wassergehalte und Glühverluste auf, was den hohen Anteil an 

Hydroxidphasen widerspiegelt.  

 
Tab. 10: Wassergehalts- und Glühverlustbestimmung von Schlacke frisch und gealtert, sowie SFK und RGR 

(Angabe der Mittelwerte und Standardabweichungen) 

 Einheit Schlacke A 
frisch deponiert 

Schlacke B im 
Winter gelagert 

Schlacke B im 
Sommer gelagert 

SFK aus Schlacke B 
im Sommer gelagert RGR 

bei 30 °C Gew.-% 13,81 ± 2,21 13,33 7,00 ± 0,78 8,50 ± 0,81 11,00 ± 7,90
bei 105 °C Gew.-% 16,54 ± 1,82 20,23 10,06 ± 0,79 13,35 ± 1,36 26,50 ± 4,35
bei 550 °C Gew.-% 19,14 ± 2,21 n.b. 12,87 ± 0,74 16,62 ± 2,50 47,54
bei 1050° C* Gew.-% 20,76 ± 2,69 23,31 14,94 ± 1,97 20,55 ± 4,63 53,16 ± 8,59

*: der Glühverlust wurde bei 1050° C ermittelt und bezieht sich auf die Originalsubstanz, d.h. Gv – Wg entspricht 
der Definition des Parameters Glühverlust in der AbfAblV 
 

4.1.2 Rauchgasreinigungsrückstände (RGR) 
Die RGR zeigen im Feststoff deutlich höhere Gehalte an CaO (44,5 ± 7,6 %) und Cl (109.238 

± 7.148 ppm), sowie erhöhte Gehalte an K2O (2,2 ± 1,8 %), SO3 (2,9 ± 0,0 %) und Sn (398 ± 4 

ppm). Die Gehalte an SiO2, Al2O3 und MgO sind niedriger im Vergleich zu den Schlacken A 

und B (Tab. 8). Die Schwermetalle Cr und Cu weisen im Vergleich zu den Schlacken A und B 

deutlich niedrigere Gehalte auf und Pb sowie Zn vergleichbare Werte. Der pH-Wert im Eluat 

der RGR ist mit 12,2 stark alkalisch. Die hohe Leitfähigkeit von 29,6 mS/cm spiegelt erhöhte 

Konzentrationen leichtlöslicher Salzphasen (Cl, K, Na) wider. Auch die Konzentrationen an Ca 

und SO4 sind höher als im Eluat der beiden MV-Schlacken. Bezüglich der Schwermetalle 

fallen hohe Werte für Pb (7,3 mg/L) und Zn (0,9 mg/L) im Eluat auf. Die RGR bieten aufgrund 

ihrer hohen Salz- sowie Blei- und Zinkkonzentrationen die Möglichkeit, eine kontinuierliche 

Zugabe salzreicher Lösungen zu gewährleisten. 
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4.1.3 Vergleich mit nationalen/internationalen MV-Schlackeproben 
Feststoffanalytik 
Die Tabelle 11 zeigt eine Aufstellung von Feststoffzusammensetzungen verschiedener MV-

Schlacken. Die Angaben für Schlacke B entsprechen dem Mittelwert aus den im Winter und 

im Sommer abgelagerten Schlacken. Die Schlacken A und B weisen im internationalen 

Vergleich z.T. deutlich geringere Gehalte an SiO2 und höhere Gehalte an Cl auf. Speiser 

(2001) hat ebenfalls Schlacke der MVA-Ingolstadt untersucht und SiO2-Gehalte von 42,3 

Gew.-% bestimmt. Im Vergleich dazu fallen die niedrigen SiO2-Gehalte der untersuchten 

Schlacken A und B mit max. 29,2 Gew.-% auf. In der Gegenüberstellung mit Geomaterialien 

(Lithosphäre und Boden) sind die Oxidgehalte überwiegend vergleichbar. Bezogen auf die 

Schwermetalle (v.a. Cr, Cu, Pb und Zn) weisen die Schlacken A und B oftmals erhöhte 

Gehalte im Vergleich zu den in Tabelle 11 angegebenen Literaturdaten auf. Die in den Spalten 

1 bis 11 aufgeführten Feststoffgehalte beziehen sich auf folgende Quellen: 

 
1 Speiser, C. (2001), frische Schlacke, MVA-Ingolstadt, gequencht 

2 Magel, G. (2003), frische Schlackeproben, MHKW Rosenheim 

2a Magel, G. (2003), alterierte Deponieproben, Monodeponie Waldering, Bohrung BA I (2000) 

3 Förstner, U. & Hirschmann, G. (1997), MV-Schlacken deutschlandweit 

4 Belevi, H. et al. (1992), MV-Schlacken aus Schweizer Müllverbrennungsanlagen 

5, 6 Meima, J. A. & Comans, R. N. J. (1999), MV-Schlacke einer niederländischen MVA (5: 1,5 Jahre alt und 6: 12 

Jahre alt, deponiert) 

7, 8 Shim, J. S. et al. (2005): MV-Schlacken aus Korea (7) und Japan (8) 

9 Chandler, J. et al. (1997), MV-Schlacken weltweit 

10 Lindsay, W.L. (1979) Mittelwerte von Bodenproben 

11 Lindsay, W.L. (1979) Lithosphärenzusammensetzung 

 

Eluatanalytik 
Tabelle 12 zeigt für die Schlacken A und B eine Übersicht der Eluatparameter im Vergleich mit 

Literaturdaten. Die Angaben für Schlacke B entsprechen wiederum dem Mittelwert aus den im 

Winter und im Sommer abgelagerten Schlacken. Leitfähigkeit und pH-Wert der untersuchten 

Schlacken A und B bewegen sich im Vergleich mit den Literaturdaten in einem mittleren 

Bereich. Die Cl- und SO4-Konzentrationen im Eluat sind z.T. höher als internationale 

Schlacke-Proben. Dies gilt auch für die Parameter Ca und Na. Die 

Schwermetallkonzentrationen im Eluat bewegen sich im Vergleich mit den Literaturdaten 

ebenfalls in einem mittleren Bereich. 
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Tab. 11: Feststoffgehalte untersuchter Schlacken im Vergleich mit Literaturdaten (RFA Analysen) 

Parameter Einheit Schlacke A Schlacke B 1 2 2a 3 4 5 6 7 8 9 10 11 
Al2O3 Gew.-% 8,5 ± 0,8 8,8 ± 0,3 11,4 10,8 6,2 - 11,7 3,9 - 6,6 9,4 - 12,3 7,2 7,6 5,7 - 7,6 8,9 - 10,4 4,1 - 13,8 13,4 15,3 
CaO Gew.-% 19,1 ± 1,2 21,7 ± 1,6 18,7 19,2 13,7 - 21,1 6,6 - 12,2 14,0 - 15,4 10,1 14,7 25,2 - 29,4 22,4 - 35,0 0,1 - 17,2 1,9 5,0 
Fe2O3 Gew.-% 12,0 ± 0,9 15,2 ± 1,0 14,8 15,2 11,0 - 18,5 4,8 - 7,3 7,9 - 15,7 12,4 5,5 2,1 - 4,3 1,7 - 3,9 0,6 - 21,4 5,4 7,3 
K2O Gew.-% 1,3 ± 0,0 0,8 ± 0,0 0,9 0,8 0,5 -2,2 0,3 - 0,8 1,6 - 1,8 1,1 1,5 1,8 - 2,3 1,4 - 2,5 0,1 - 1,9 1,0 3,1 
MgO Gew.-% 2,6 ± 0,2 3,1 ± 0,1 2,5 3,2 2,0 - 3,5 1,2 - 1,8 2,3 - 2,7 1,9 1,5 k.A. k.A. 0,1 - 4,3 0,8 3,5 
MnO Gew.-% 0,2 ± 0,0 0,2 ± 0,0 0,2 0,2 0,1 - 0,2 0,1 k.A. 0,1 0,1 0,1 k.A. 0,3 0,1 0,1 
Na2O Gew.-% 1,8 ± 0,2 1,4 ± 0,3 2,9 3,4 1,7 - 5,3 0,8 - 1,8 3,1 - 5,7 1,8 1,5 3,1 - 3,6 2,2 - 5,1 0,4 - 5,7 0,8 3,8 
P2O5 Gew.-% 1,4 ± 0,2 0,9 ± 0,3 1,5 1,9 0,6 - 1,0 0,7 k.A. 0,8 k.A. k.A. k.A. 0,3 - 1,5 0,1 0,3 
SiO2 Gew.-% 29,2 ± 2,2 25,4 ± 2,1 42,3 34,6 28,9 - 44,6 43,5 47,1 - 55,6 49,7 65,1 k.A. k.A. 19,5 - 65,9 68,5 59,0 
SO3 Gew.-% 1,8 ± 0,0 2,5 ± 0,3 2,9 2,0 0,5 - 2,4 1,2 k.A. 0,9 k.A. k.A. k.A. 0,2 - 1,2 0,2 0,1 
TiO2 Gew.-% 1,6 ± 0,0 1,7 ± 0,2 1,2 1,8 0,4 - 0,8 k.A. 0,7 - 1,0 k.A. k.A k.A. k.A. 0,4 - 1,6 0,7 1,0 
LOI Gew.-% 2,6  2,8  k.A. 3,38 7,9 - 18,3 k.A. k.A. k.A k.A k.A. k.A. k.A. k.A. k.A. 
Summe Gew.-% 79,5  81,7  k.A. 94,4 89,8 - 99,5 k.A. k.A. k.A k.A k.A. k.A. k.A. k.A. k.A. 
Ba ppm 3691 ± 25 3697 ± 324 3970 5000 1200 - 2200 1494 - 2586 k.A. k.A k.A k.A. k.A. 400 - 3000 430 430 
Br ppm 48 ± 8 37 ± 11 k.A. 15 56 - 440 5 - 24 k.A. k.A k.A k.A. k.A. 1 - 150 5 3 
Cl ppm 9769 ± 535 6410 ± 935 1425 5600 10000 - 56400 2535 - 4197 1000 - 4000 1560 k.A k.A. k.A. 800 - 4190 100 500 
Cr ppm 1067 ± 176 1160 ± 110 n.b.  1000 330 - 670 176 - 229 k.A. k.A k.A k.A. k.A. 23 - 3170 100 200 
Cu ppm 5178 ± 242 5528 ± 1155 391 9800 1900 - 10100 2608 - 3678 1000 - 3000 2190 1700 2500 - 5300 890 - 3300 190 - 8240 30 70 
Mo ppm 18 ± 2 17 ± 3 k.A. 49 7 - 14 5 - 10 k.A. 24 120 k.A. k.A. 3 - 276 2 2 
Ni ppm 230 ± 3 324 ± 34 139 330 65 - 290 172 - 202 k.A. k.A. k.A. 130 - 170 32 - 120 7 - 4280 40 100 
Pb ppm 1702 ± 246 2080 ± 477 988 2700 850 - 2000 924 - 2007 900 - 1400 1950 1400 750 - 1000 140 - 2700 98 - 13700 10 16 
Sn ppm 208 ± 25 297 ± 82 k.A. k.A. k.A. 264 - 384 k.A. k.A. k.A. k.A. k.A. 2 - 380 10 40 
Sr ppm 584 ± 0 604  ± 136 k.A. 550 220 - 260 212 - 221 k.A. k.A. k.A. k.A. k.A. 85 - 1000 200 150 
V ppm 79 ± 9 69 ± 4 k.A. 43 22 - 29 35 - 60 k.A. k.A. k.A. k.A. k.A. 20 - 122 100 150 
W ppm 126 ± 14 129  ± 18 k.A. 70 32 - 630 k.A. k.A. k.A. k.A. k.A. k.A. k.A. k.A. k.A. 
Zn ppm 6331 ± 378 9978 ± 1786 3016 7000 1800 - 59800 3001 - 4232 1000 - 4000 3550 3700 3100 - 3800 1500 - 5000 613 - 7770 50 80 
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Tab. 12: Eluatparameter untersuchter Schlacken im Vergleich mit Literaturdaten 

 Einheit Schlacke A Schlacke B 1 2 2a 3 4 5 6 7 

pH-Wert - 11,5 ± 0,8 10,4 ± 0,7 12,5 11,0 - 11,8 12,5 10,3 - 13,1 9,9 - 13,0 12,2 8,6 - 12,3 12,1
Lf mS/cm 3,27 ± 0,86 1,79 ± 0,29 4,62 2,40 - 15,4 7,61 1,14 - 8,91 0,19 - 8,9 k.A. k.A. 4,25
NH4

+ mg/L 0,53 ± 0,19 0,16 ± 0,00 k.A. k.A. k.A. k.A. k.A. k.A. k.A. k.A.
Cl mg/L 366 ± 123 267 ± 58 485 297 - 4993 208 57 - 175 60 - 463 206 34 - 250 310
SO4 mg/L 104 ± 138 427 ± 107 304 10 - 12,2 120 110 - 570 5 - 975 35 12 - 650 20
Al mg/L 17,81 ± 16,36 1,76 ± 1,40 k.A. k.A. k.A. 0,06 - 40,00 k.A.  k.A. k.A. k.A.
Ca mg/L 207 ± 43 183 ± 31 565 k.A. k.A. 137 - 1100 58 - 4235 k.A. k.A. k.A.
K mg/L 122 ± 19 62,0 ± 14,2 65,2 k.A. k.A. 8,6 - 48,1 k.A. k.A. k.A. k.A.
Mg mg/L 0,01 ± 0,01 0,31 ± 0,23 k.A. k.A. k.A. 0,02 - 0,09 k.A. k.A. k.A. k.A.
Na mg/L 224 ± 61 171 ± 49 k.A. k.A. k.A. 39 - 119 0,6 - 277 k.A. k.A. k.A.
Cr mg/L 0,031 ± 0,025 0,052 ± 0,052 k.A. 0,003 - 0,006 0,023 0,020 - 0,110 0,001 - 0,10 k.A. k.A. 0,200
Cu mg/L 0,46 ± 0,18 0,03 ± 0,01 1,06 0,01 - 0,13 0,89 0,01 - 0,46 0,01 - 2,4 0,70 0,03 - 0,30 0,12
Mo mg/L 0,142 ± 0,050 0,089 ± 0,035 k.A. k.A. k.A. k.A. k.A. k.A. k.A. k.A.
Ni mg/L 0,004 ± 0,001 0,004 ± 0,002 k.A. 0,006 - 0,014 0,016 0,010 - 0,030 k.A. 0,047 k.A. k.A.
Pb mg/L 0,14 ± 0,09 < 0,008 ± 0,01 0,72 0,003 - 0,095 18,3 0,01 - 2,70 0,04 – 69 4,00 0,02 - 0,20 0,07
Si mg/L 1,14 ± 0,86 4,89 ± 1,49 k.A. 0,6 - 1,3 0,52 0,18 k.A. k.A. k.A. k.A.
V mg/L 0,004 ± 0,002 0,007 ± 0,001 k.A. k.A. k.A. k.A. k.A. k.A. k.A. k.A.
Zn mg/L 0,17 ± 0,10 0,04 ± 0,03 0,73 0,007 - 0,051 1,7 0,02 - 0,49 0,02 - 1,00 0,33 0,07 - 0,20 0,07
TIC mg/L 4,60 ± 2,34 7,56 k.A. k.A. k.A. k.A. k.A. k.A. k.A. k.A.
DOC mg/L 33,70 ± 8,19 11,58 k.A. k.A. k.A. 5,8 - 19,0 k.A. k.A. k.A. k.A.
 
1 Speiser, C. (2001), frische Schlacke, MVA-Ingolstadt, gequencht 
2 Magel, G. (2003), frische Schlackeproben, MHKW Rosenheim 
2a Magel, G. (2003), alterierte Deponieproben, Monodeponie Waldering, Bohrung BA I (2000) 
3 Förstner, U. & Hirschmann, G. (1997), MV-Schlacken deutschlandweit 
4 Knorr, W. et al. (1999) 
5 Stegemann, J. A. et al. (1995) 
6 Schneider, J. et al. (1992) 
7 Burg, H. (1997), MV-Schlacke der Abfallverwertungsanlage Augsburg 
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4.2 WIRKUNG EINER SPERRSCHICHT 

4.2.1 Blindversuch im Vergleich zu Versuch mit Sperre 

4.2.1.1 Referenzversuche der Versuchsanordnung A 

Die Langzeitversuche IBV0 (ohne Sperrschicht) und ISFK0 (mit Sperrschicht) der VA-A 

wurden während der gesamten Versuchsdauer von 103 Wochen ausschließlich mit 

Leitungswasser der Stadt München (LW) bewässert. Sie dienen für die nachfolgenden 

Ergebnisse als grundlegende „Referenzversuche“ für die Simulation von Niederschlagszutritt 

(salzarme Lösung). Im Vordergrund steht die Erarbeitung der physikalischen Wirkungsweise 

einer Sperrschicht auf die Feststoff- und Sickerwasserentwicklung. Im Folgenden sind 

Wassergehalt, Glühverlust und ausgewählte Eluatparameter zu Versuchsbeginn 

(Ausgangsmaterial) und zu Versuchsende, die Konzentrationsverläufe im Sickerwasser und 

der summarische Frachtenaustrag bis zum Versuchsende kurz dargestellt. 

 

Wassergehalt und Glühverlust 
Im Vergleich zum Ausgangsmaterial (18,0 bzw. 22,8 Gew.-%) weisen die einzelnen 

Feststoffproben entlang des Profils höhere Wassergehalte bzw. Glühverluste auf. Tabelle 13 

und die Abbildung 5 veranschaulichen, dass im oberen Bereich ähnliche Werte für 

Wassergehalt (um 19,6 Gew.-%) und Glühverlust (um 25,4 Gew.%) festgestellt wurden. Im 

unteren Bereich der Säule differenziert sich das Verteilungsmuster für den Blindversuch und 

den Versuch mit Sperre. Für den Blindversuch liegen die Werte für den Wassergehalt mit 21,0 

± 0,1 Gew.-% etwas höher als für den Versuch mit Sperre (19,7 ± 1,1 Gew.-%), ebenso für 

den Glühverlust mit 26,8 ± 0,6 Gew.-% im Vergleich zu 24,9 ± 1,3 Gew.-%. Es ist gut zu 

erkennen, dass die Sperrschicht, 6f im Säulenprofil, eine aufstauende Wirkung besitzt, da hier 

der höchste Wert für Wassergehalt bzw. Glühverlust gemessen wurde (23,5 bzw. 29,3 Gew.-

%). Unmittelbar unterhalb der Sperrschicht (Probe 7f) liegt ein vglw. trockenes Milieu vor (min. 

18,0 bzw. 22,9 Gew.-%).  
 
Tab. 13: Verteilung des Wassergehalts und Glühverlusts entlang des Säulenprofils, Säule ohne Sperre (IBV0) und 

mit Sperre (ISFK0), Bewässerung mit Leitungswasser, für die Proben ober- bzw. unterhalb der 
Sperrschicht wurde jeweils ein Mittelwert gebildet 

Versuchsbezeichnung IBV0 ISFK0 IBV0 ISFK0 
Aufbau ohne Sperre mit Sperre ohne Sperre mit Sperre 

Parameter Wassergehalt Gew.-% Glühverlust* Gew.-% 
Ausgangsmaterial 18,0 22,8 

oberhalb der Sperre 19,5 ± 1,0 19,6 ± 0,4 25,2 ± 1,4 25,4 ± 1,0 
innerhalb der Sperre - 23,5 - 29,3 
unterhalb der Sperre 21,0 ± 0,1 19,7 ± 1,1 26,8 ± 0,6 24,9 ± 1,3 

* der Glühverlust wurde bei 1050° C ermittelt und bezieht sich auf die Originalsubstanz, d.h. Gv – Wg entspricht der 
Definition des Parameters Glühverlust in der AbfAblV (2001) 
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Eluate 
pH-Wert 

Gegenüber dem Eluat des Ausgangsmaterials nimmt der pH-Wert der durchströmten 

Schlackeproben geringfügig ab. Für beide Säulenversuche zeigen sich im Eluat der 

Feststoffproben ähnliche pH-Werte um 11,4 (Abb. 6).  

 

Leitfähigkeit und leichtlösliche Spezies (Cl, Na) 

Die Leitfähigkeit im Eluat (Abb. 7) ist zu Versuchsende mit ca. 1,0 mS/cm deutlich geringer als 

für das Ausgangsmaterial (~4,2 mS/cm). Für die Parameter Cl und Na (beide Abb. 8) ist 

ebenfalls eine Konzentrationsabnahme im Vergleich zum Eluat aus dem Ausgangsmaterial zu 

sehen.  

Die Leitfähigkeiten im Eluat der Proben der Versuchsanordnung mit Sperre, mit Ausnahme 

der Probe aus der Sperrschicht (0,82 mS/cm), sind geringfügig höher (0,88 – 1,05 mS/cm) im 

Vergleich zum Versuch ohne Sperre (0,85 – 0,91 mS/cm). Auffällig ist für den Versuch mit 

Sperre, dass zur Basis hin die Leitfähigkeit stärker zunimmt. Dieselbe Entwicklung kann für 

die Parameter Cl und Na beschrieben werden. Eine Konzentrationserhöhung um etwa 20 

mg/L an Na oder an Cl bewirkt eine Erhöhung in der Leitfähigkeit um 0,05 mS/cm. Für den 

Parameter Cl wurden in den Eluatproben der Säule mit Sperre höhere Konzentrationen (max. 

53 mg/L) im Vergleich zum Blindversuch (max. 30 mg/L) festgestellt. Für den Parameter Na ist 

es bemerkenswert, dass unmittelbar oberhalb und innerhalb der Sperrschicht insgesamt die 

niedrigsten Konzentrationen (min. 4,5 mg/L) gemessen wurden.  

 

Weitere Parameter 

Für Ca zeigt sich eine Konzentrationsabnahme im Vergleich zum Ausgangsmaterial (253 

mg/L) und für den Parameter SO4 konnten generell höhere Konzentrationen (überwiegend 35 

mg/L) im Vergleich zum Ausgangsmaterial (10 mg/L) festgestellt werden (beide Abb. 9). Ca 

zeigt für den Versuch mit Sperre generell niedrigere Konzentrationen (53 – 84 mg/L). 

Bezüglich SO4 sind zwischen den beiden Säulen bis auf einen Ausreißer (Probe 2f 

Blindversuch, 120 mg/L) keine Unterschiede festzustellen. Für beide Faktoren wurde entlang 

des Säulenprofils innerhalb der Sperrschicht ein geringfügig höherer Wert (für Ca 82 mg/L, für 

SO4 45 mg/L) gemessen.  

Schwermetalle sind im Vergleich zum Ausgangsmaterial mit deutlich geringeren 

Eluatkonzentrationen nachweisbar. Die Konzentrationen liegen für Cu (Abb. 10) unter 0,2 

mg/L, für Mo (Abb. 11) überwiegend unter 0,07 mg/L, sowie für Zn (Abb. 12) unter 0,01 mg/L. 

Entlang des Säulenprofils wurden für die Parameter Cu und Mo innerhalb der Sperrschicht die 

geringsten (für Cu 0,08 und für Mo 0,02 mg/L) und unmittelbar unterhalb der Sperrschicht die 

höchsten Konzentrationen (für Cu 0,17 und für Mo 0,06 mg/L) gemessen. Die Pb-
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Eluatkonzentrationen (Abb. 12) liegen für alle Feststoffproben unterhalb der 

Bestimmungsgrenze (< 0,008 mg/L).  

 

Ausgangsmaterial (BA = bottom ash); f = Feststoffprobe; Sperrschicht (Probe 6f) 
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Sickerwasserentwicklung 
Die Tabelle 14 zeigt eine Zusammenfassung der Wasserbilanz der Versuche. Für die gesamte 

Versuchsdauer (103 Wochen) betrug die kumulierte Bewässerungsmenge 30,6 Liter. Für den 

Säulenversuch ohne Sperre wurden davon 47,6 % und für den Versuch mit Sperre 50,2 % an 

Sickerwasser ausgetragen. Inklusive des in den Schlacken enthaltenen Wassers lag für den 

Blindversuch (IBV0) zu Versuchsende ein Verhältnis Bewässerungsmenge zu eingebauter 

Schlackemenge (L/S-Verhältnis) von 1,8 und für den Versuch mit Sperre (ISFK0) ein 

Verhältnis L/S von 2,9 vor. Damit waren die Materialien über die gesamte Versuchsdauer mit 

weniger Wasser in Kontakt getreten als bei den Elutionsversuchen (24 h), bei denen ein L/S 

von 10 vorliegt. Hierbei ist zu berücksichtigen, dass für IBV0 (Blindversuch) eine größere 

Menge an Schlacke eingebaut wurde (18 kg) als für den Versuch mit Sperre (14 kg). 

Berechnet man das kumulierte Wasserrückhaltevermögen, normiert auf ein kg Schlacke, dann  

kristallisiert sich heraus, dass  der Wasserrückhalt für die Säule mit Sperre (ISFK0) höher ist 

(1,6 L/kg) im Vergleich zum Blindversuch (1,3 L/kg). 

 
Tab. 14: Bewässerungs- und Austragsmengen für die Versuche aus VA-A ohne (IBV0) und  mit Sperre (ISFK0) im 

Vergleich, Bewässerung mit Leitungswasser 

Versuchsbezeichnung IBV0 
ohne Sperre 

ISFK0 
mit Sperre 

Versuchsanordnung VA-A 
Befüllung Schlacke A 
Bewässerung Leitungswasser 
Dauer in Wochen 103 
Eingebaute Schlackemenge in kg 18,0 13,8 
Bewässerungsmenge in L pro Monat 1,2 1,2 
Bewässerungsmenge insgesamt in L 30,6 30,6 
Austrag Sickerwasser in L 14,7 15,5 
kumulierter Austrag in % 47,6 50,2 
kumulierter Rückhalt in L pro kg Schlacke 1,30 1,55 
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Austrag an Sickerwasser 

Der Sickerwasseraustrag verläuft nicht konstant (Abb. 13). In den ersten 50 Tagen ist der 

Austrag gering, da Wasser vermehrt von der Schlacke aufgenommen wird. Danach pendelt 

die Menge um 150 mL/Woche. Bemerkenswert ist, dass Trendwechsel bezogen auf die 

Sickerwassermenge bei beiden Versuchen gleich verlaufen. Unter anderem werden für beide 

Versuche nach 300 Versuchstagen Austragsspitzenwerte (max. 210 mL) erreicht. In der 

Folgezeit bis etwa 475 Versuchstage liegen die Austragsmengen um 140 mL. Ab diesem 

Zeitpunkt sind jedoch die Austragsmengen beim Säulenversuch mit Sperre etwas höher 

(durchschnittlich 155 mL) als ohne Sperre (durchschnittlich 135 mL). 

 

pH-Wert 

Die Entwicklung des pH-Werts im Sickerwasser zeigt anfänglich für beide Säulen bis etwa 50 

Tage eine Zunahme von ca. pH 10 auf 12 (Abb. 14). In der Folgezeit nimmt der pH-Wert 

kontinuierlich von ca. pH 12 auf 8 ab. In einer ersten Phase bis 400 Versuchstage ist der 

Verlauf der pH-Werte annähernd gleich. Danach trennen sich die Entwicklungen für den pH-

Wert im Sickerwasser aus den beiden Säulen: im Sickerwasser aus IBV0 (ohne Sperre) 

nehmen die pH-Werte stärker ab als für ISK0 (mit Sperre).  

 

Leitfähigkeit und leichtlösliche Spezies (Cl, Na) 

Die Leitfähigkeit im Sickerwasser aus beiden Säulenversuchen nimmt, mit Ausnahme einiger 

Ausreißer, kontinuierlich von max. 70 auf ca. 2 mS/cm ab (Abb. 15). Ab einer Versuchsdauer 

von etwa 300 Tagen ist die Leitfähigkeit im Sickerwasser aus dem Versuch mit Sperre 

geringfügig höher im Vergleich zum Blindversuch.  

Die Parameter Cl und Na (beide Abb. 16) zeigen bezogen auf die Auswaschung ein 

vergleichbares Verhalten zur Leitfähigkeit. Trotz geringerer Analysendaten zeigt sich ebenfalls 

zunächst (bis etwa 225 Tage) eine starke Auswaschung leichtlöslicher Spezies. Nach 225 

Tagen wird nur noch ein geringer Anteil mobilisiert. Für den Parameter Cl sind nach 400 

Tagen die Konzentrationen für den Säulenversuch mit Sperre geringfügig höher 

(durchschnittlich 1,6 g/L) im Vergleich zum Blindversuch (durchschnittlich 1,3 g/L). Dies gilt 

auch für den Parameter Na (durchschnittlich 0,9 bzw. 0,7 g/L). 

 

Weitere Parameter 

Die Ca-Konzentrationen steigen in den Sickerwässern beider Säulen mit zunehmender 

Versuchsdauer an (Abb. 17). Zu Versuchsbeginn liegen die Ca-Konzentrationen z.T. unterhalb 

der Bestimmungsgrenze von 0,07 mg/L und zu Versuchsende nach 103 Wochen bei max. 175 

mg/L. Für den Versuch mit Sperre wurden ab einer Versuchsdauer von 400 Tagen deutlich 

geringere Ca-Konzentrationen (max. 45 mg/L) analysiert. Die SO4-Konzentrationen im 

Sickerwasser sind bereits zu Versuchsbeginn für beide Säulen mit > 1 g/L sehr hoch. Im 
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Versuchsverlauf nehmen die Konzentrationen für beide Versuche von max. 1,3 auf 0,2 g/L ab 

(Abb. 17). Nach etwa 350 Versuchstagen liegen die SO4-Konzentrationen für den Versuch mit 

Sperre bei ca. 0,4 mg/L und für den Blindversuch niedriger mit 0,3 mg/L.  

Die Schwermetallkonzentrationen sind zu Beginn insbesondere für Cu (~50 mg/L) und Mo 

(~10 mg/L) auffällig hoch (Abb. 18 und 19). Bis zu Versuchsende nehmen diese kontinuierlich 

auf ca. 1 mg/L bzw. 0,6 mg/L ab. Für den Parameter Cu sind die Unterschiede zwischen den 

beiden Säulen nur geringfügig. Für den Parameter Mo waren ab 75 Versuchstagen die 

Konzentrationen im Sickerwasser aus dem Versuch mit Sperre stets geringer (min. 0,3 mg/L) 

im Vergleich zum Blindversuch (min. 0,5 mg/L). Die Pb-Konzentrationen nehmen nach 250 

Tagen auf Werte unterhalb der Bestimmungsgrenze (< 0,08 mg/L) ab (Abb. 20). Die Zn-

Konzentrationen liegen bis 350 Tage unterhalb der Bestimmungsgrenze (< 0,02 mg/L) und 

steigen danach mit Unterbrechungen auf Werte bis max. 0,6 mg/L an.  
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Frachtenberechnung 
Die Frachtenberechnung zeigt den summarischen Austrag an Einzelstoffen zu Versuchsende 

in Bezug auf die Ausgangskonzentrationen. Die Elemente Cl, Na und zu gewissen Anteilen 

das Schwermetall Mo sind mit Austrägen von 10 bis 40 % am mobilsten (Tab. 15).  
 
Tab. 15: Zusammenfassung der Frachtenberechnung, Abreicherung in % bezogen auf die Ausgangsmenge, 

Blindversuch und Versuch mit Sperre im Vergleich, Bewässerung mit Leitungswasser 

Versuchsbezeichnung IBV0 
ohne Sperre 

ISFK0 
mit Sperre 

Versuchsanordnung VA-A 
Dauer in Wochen 103 
Bewässerung Leitungswasser 
Parameter proz. Abreicherung 
Cl -33,2 -42,2 
SO4 -1,55 -2,23 
Ca -0,011 -0,005 
Na -23,5 -31,9 
Mo -13,5 -11,4 
Cu -0,136 -0,153 
Zn -0,001 -0,001 
Pb -0,003 -0,004 
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Es ist auffällig, dass die Parameter Na und Cl für den Säulenversuch mit Sperre stärker 

ausgewaschen wurden. Die Parameter Ca und SO4 werden kaum ausgetragen, ebenso die 

restlichen Schwermetalle. Auch die Schwermetalle wurden aus dem Säulenversuch mit 

Sperre stärker ausgewaschen. Als Ausnahme sind Mo und Zn zu nennen.  

 

4.2.1.2 Referenztestfelder Eberstetten (ausschließlich Niederschlagszutritt) 

Die Testfelder EB1 (ohne Sperrschicht) und EB2 (mit Sperrschicht) auf der Deponie 

Eberstetten waren ausschließlich dem natürlichen Niederschlag ausgesetzt. Daher gelten 

auch diese Referenzversuche - analog den Säulenversuchen - als grundlegend für die 

Erarbeitung der physikalischen Wirkung einer Sperrschicht auf die Feststoff- und 

Sickerwasserentwicklung. Im Folgenden sind Wassergehalt, Glühverlust und ausgewählte 

Eluatparameter zu Versuchsbeginn (Ausgangsmaterial) und zu Versuchsende (Ergebnisse 

der 3. Bohrkampagne), die Konzentrationsverläufe im Sickerwasser und der summarische 

Frachtenaustrag bis zum Versuchsende kurz dargestellt. 

 

Wassergehalt und Glühverlust 
Tabelle 16 zeigt eine Verteilung der Wassergehalte und Glühverluste der beiden Testfelder im 

Vergleich zum Ausgangsmaterial (15 bzw. 19 Gew.-%). In den Bohrproben wurden merklich 

höhere Wassergehalte bzw. Glühverluste festgestellt (max. 27 bzw. 32 Gew .-%). Die 

Wassergehalte bzw. Glühverluste der Feststoffproben aus der dritten Bohrkampagne steigen 

für den Blindversuch (EB1) von der Oberkante bis zur Basis hin von ca. 19 auf 20 Gew.-% 

bzw. von 24 auf 27 Gew.-% an (Abb. 21). Für den Versuch mit Sperre (EB 2) liegt im oberen 

Bereich eine Diskontinuität vor, die sich durch sehr hohe Wassergehalte bzw. Glühverluste am 

Top widerspiegelt (25 bzw. 31 Gew.-%). Für Probe 2f wurden vglw. niedrige Werte bestimmt 

(19,8 bzw. 23,3 Gew.-%). Oberhalb der Sperre (Probe 3f) sind die Wassergehalte und 

Glühverluste wieder deutlich höher (ca. 23 bzw. 30 Gew.-%). Zur Basis nehmen die 

Wassergehalte bzw. Glühverluste für EB2 ab und erreichen Werte vergleichbar mit EB1. 

 
Tab. 16: Verteilung der Parameter Wassergehalt und Glühverlust entlang des Versuchsprofils der dritten 

Bohrkampagne, Blindversuch (EB1) und Testfeld mit Sperre (EB2) nach 102 Wochen Versuchsdauer; 
Niederschlagszutritt, für die Proben ober- bzw. unterhalb der Sperrschicht wurde jeweils ein Mittelwert 
gebildet 

Versuchsbezeichnung EB1 EB2 EB1 EB2 
Aufbau ohne Sperre mit Sperre ohne Sperre mit Sperre 

Parameter Wassergehalt Gew.-% Glühverlust* Gew.-% 
Ausgangsmaterial 15,1 18,8 

oberhalb der Sperre 19,0 ± 0,2 22,6 ± 2,5 24,1 ± 0,2 28,1 ± 4,0 
innerhalb der Sperre - 21,7 - 27,4 
unterhalb der Sperre 20,1  20,6 ± 0,9 26,7 26,3 ± 0,8 

* der Glühverlust wurde bei 1050° C ermittelt und bezieht sich auf die Originalsubstanz, d.h. Gv – Wg entspricht der 
Definition des Parameters Glühverlust in der AbfAblV (2001) 
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Eluate 
pH-Wert 

Die Eluate der Bohrkernproben beider Testfelder zeigen ähnliche pH-Werte um 11,6 (Abb. 

22). Einzig im Eluat der Proben aus der Oberkante und an der Basis von EB2 (mit Sperre) 

wurden niedrige pH-Werte mit 9,8 gemessen. Es ist bemerkenswert, dass die pH-Werte in den 

Eluaten der Bohrproben z.T. sogar höher sind als im Ausgangsmaterial. Im Vergleich zu 

anderen MV-Schlackeproben der MVA Ingolstadt ist hier der pH-Wert mit 10,7 jedoch auffällig 

niedrig. Für die Säulenversuche der VA-A und für Lysimeter Raindorf waren die pH-Werten im 

Eluat mit 12,0 alkalischer. 

 

Leitfähigkeit und leichtlösliche Spezies (Cl, Na)  

Die Leitfähigkeiten in den Eluaten der Bohrkernproben aus den Testfeldern sind mit Werten 

zwischen 1,1 und 2,4 mS/cm geringer als im Ausgangsmaterial (2,5 mS/cm). Die generelle 

Abnahme ist jedoch weniger deutlich ausgeprägt als bei den Säulenversuchen. Die 

Leitfähigkeiten in den Eluaten aus beiden Testfeldern sind in der Tendenz vergleichbar (Abb. 

23). Sie haben im oberen Bereich die niedrigsten Werte und nehmen zur Basis zu. Für den 

Blindversuch bewegen sich die Leitfähigkeiten im Eluat der basisnächsten Bohrproben etwa in 

der Größenordnung des Ausgangsmaterials. Für das Testfeld mit Sperre zeigt sich im 

Vergleich zum Blindversuch, dass innerhalb und unterhalb der Sperre die Anteile 

leichtlöslicher Spezies im Eluat geringer sind (max. 1,9 mS/cm).  

Für die Eluatparameter Cl und Na (beide Abb. 24) in den Bohrproben aus dem Blindversuch 

(EB1) ist die Entwicklung vergleichbar zur Leitfähigkeit, mit max. Konzentrationen für Cl und 

Na von 400 und 250 mg/L. Hingegen fällt für das Testfeld mit Sperre auf, dass die Cl- und Na-

Konzentrationen im Eluat der Proben inner- und unterhalb der Sperre im Vergleich zum 

Blindversuch deutlich abnehmen (max. Cl- und Na-Konzentrationen von 140 und 110 mg/L). 

 

Weitere Parameter 

Die Abbildung 25 zeigt, dass die Ca- und SO4-Konzentrationen in den Eluaten der 

Bohrproben beider Testfelder tendenziell niedriger sind im Vergleich zum Ausgangsmaterial 

(170 bzw. 260 mg/L). Die Bohrproben liegen für Ca überwiegend in einem Bereich zwischen 

70 – 100 mg/L und für SO4 zwischen 37 – 130 mg/L. Ausreißer sind wiederum die 

Bohrproben 1f und 5f aus dem Testfeld mit Sperre. Die z.T. sehr hohen Konzentrationen (für 

Ca max. 350 mg/L und für SO4 max. 780 mg/L) sind korrelierbar mit den niedrigen pH-Werten 

in diesen Proben. 

Schwermetalle sind nur in geringen Konzentrationen vertreten: für Cu und Mo (beide Abb. 26) 

in der Regel deutlich unter 0,12 mg/L, für Pb (Abb. 27) meist unterhalb der 

Bestimmungsgrenze (0,008 mg/L) sowie für Zn (Abb. 28) zumeist deutlich unter 0,04 mg/L. 

Für die Parameter Cu und Mo zeigen sich für den Versuch mit Sperre insbesondere innerhalb- 
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und unterhalb der Sperre geringere Eluatkonzentrationen (max. 0,04 mg/L und 0,05 mg/L) im 

Vergleich zum Blindversuch (max. 0,09 und 0,1 mg/L).  

 

Ausgangsmaterial (BA = bottom ash); f = Feststoffprobe; Sperrschicht (SFK) 
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Abb.21: Wassergehalt und Glühverlust (Gew.-%) 
entlang des Versuchsprofils, FV-EB, 
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 Abb.22: pH-Wert im Eluat entlang des 
Versuchsprofils, FV-EB, Versuche ohne 
und mit Sperre  
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 Abb.24: Cl- und Na-Konzentration im Eluat (mg/L) 
entlang des Versuchsprofils, FV-EB, 
Versuche ohne und mit Sperre 
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Abb.27: Pb-Konzentration im Eluat (mg/L) entlang 
des Versuchsprofils, FV-EB, Versuche 
ohne und mit Sperre 

 Abb.28: Zn-Konzentration im Eluat (mg/L) entlang 
des Versuchsprofils, FV-EB, Versuche 
ohne und mit Sperre 

 

Sickerwasserentwicklung 
Die Tabelle 17 zeigt eine Zusammenfassung der Wasserbilanz der zwei Feldversuche. Die 

kumulierte Bewässerungsmenge (Niederschlag) lag zu Versuchsende bei 13.500 Liter pro 

10m2. Der Querschnitt der Testfelder betrug 10 m2. Der prozentuale Austrag an Sickerwasser 

machte für den Blindversuch 10,0 % und für das Testfeld mit Sperre 13,3 % aus. Inklusive des 

in den Schlacken enthaltenen Wassers lag zu Versuchsende für den Blindversuch ein 

Verhältnis L/S von 0,65 und für das Testfeld mit Sperre ein Verhältnis L/S von 0,62 vor. Damit 

waren die Materialien über die gesamte Versuchsdauer mit deutlich weniger Wasser in 

Kontakt getreten als bei den Säulenversuchen (max.  L/S Verhältnis von 2,9) und bei den 

Elutionsversuchen (24 h), bei denen ein L/S von 10/1 vorliegt. Aufgrund einer lediglich 

abgeschätzten Austragsmenge an Sickerwasser über die ersten sechs Monate Laufzeit ist der 

kumulierte Rückhalt in L pro kg Schlacke in beiden Versuchen mit ca. 0,6 L/kg in etwa gleich 

hoch zu sehen. Die Näherungswerte der Sickerwassermengen wurden jedoch für die 

Erstellung der Wasserbilanz und für die Frachtenberechnung herangezogen. 

 
Tab. 17: Bewässerungs- und Austragsmengen für die Testfelder Eberstetten: ohne Sperre und mit Sperre im 

Vergleich, Bewässerung über Niederschlagszutritt 

Versuchsbezeichnung EB1 
ohne Sperre 

EB2 
mit Sperre 

Versuchsanordnung Testfelder Eberstetten 
Befüllung Schlacke A 
Bewässerung Niederschlag 
Dauer in Wochen 102 
Eingebaute Schlackemenge in kg 35.200 37.300 
durchschnittliche Bewässerungsmenge in L pro Monat 570 570 
Bewässerungsmenge insgesamt in L pro 10m2 13.500 13.500 
Austrag Sickerwasser in L 1.342 1.785 
kumulierter Austrag in % 10,0 13,3 
kumulierter Rückhalt in L pro kg Schlacke 0,59 0,55 
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Austrag an Sickerwasser 

Über die ersten sechs Monate wurden die Sickerwassermengen nicht erfasst. In der Folgezeit 

wurden die Mengen abgeschätzt, wobei die maximale Erfassungsmenge pro Woche lediglich 

40 Liter betrug. Die Ergebnisse zur Entwicklung der Sickerwassermenge sind daher für dieses 

Kapitel von untergeordneter Bedeutung.  

 

pH-Wert 

Bei den Säulenversuchen der Versuchsanordnung A war mit fortschreitender Versuchsdauer 

eine kontinuierliche Abnahme der pH-Werte von ca. pH 11 auf 8 festzustellen. Bei den 

Testfeldern hingegen bewegen sich die pH-Werte der Sickerwässer seit Beginn der Versuche 

zwischen pH 6,5 und pH 9,0 (Abb. 29). Als Ursache ist eine längere Verweilzeit des 

austretenden Sickerwassers im Sickerrohr und im Auffangbehälter zu sehen. Durch den 

Kontakt mit Luft kann das Sickerwasser mit Kohlendioxid aus der Luft teilweise neutralisiert 

bzw. karbonatisiert werden. Die Eluate der Bohrkernproben wiesen im Vergleich deutlich 

höhere pH-Werte auf, was den noch vorhandenen basischen Charakter der Schlacken 

bestätigt.  

 

Leitfähigkeit und leichtlösliche Spezies (Cl, Na) 

Die Leitfähigkeiten der beiden Sickerwässer schwanken im Bereich um 10 mS/cm (Abb. 30). 

Sie sind damit deutlich höher im Vergleich zu den Säulenversuchen (ca. 2 mS/cm) und den 

Eluaten der Bohrproben (ca. 1 mS/cm), was durch die geringen L/S-Verhältnisse um 0,6 bei 

den Testfeldern bedingt ist. Insgesamt sind die Leitfähigkeiten im Sickerwasser aus Testfeld 

EB2 (mit Sperre) etwas höher als die aus dem Blindversuch (EB1).  

Die Cl- und Na-Konzentrationen im Sickerwasser aus beiden Testfeldern nehmen im 

Versuchsverlauf von etwa 12,4 auf 3,8 g/L sowie 5,5 auf 1,3 mg/L ab (beide Abb. 31). 

Tendenziell zeigt sich, dass die Sickerwässer aus dem Versuch mit Sperre etwas salzreicher 

sind. 

 

Weitere Parameter 

Die Ca- und SO4-Konzentration nehmen mit zunehmender Versuchsdauer zu (beide Abb. 32): 

für den Parameter Ca durchschnittlich von 50 auf 600 mg/L und für SO4 von 0,7 auf 2,9 g/L. 

Generell wurden im Sickerwasser aus dem Testfeld mit Sperre höhere Konzentrationen 

analysiert.  

Die anfangs hohen Mo- und Cu-Konzentrationen (max. 3 mg/L) nehmen bis zum 

Versuchsende deutlich ab (< 0,3 mg/L; beide Abb. 33). Im Sickerwasser aus dem Testfeld mit 

Sperre werden insbesondere für Cu überwiegend höhere Konzentrationen festgestellt. Die Pb- 

und Zn-Konzentrationen im Sickerwasser liegen meist unterhalb der jeweiligen 
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Bestimmungsgrenzen (beide Abb. 34). Vereinzelt werden im Sickerwasser aus beiden 

Testfeldern Werte > 0,1 mg/L gemessen. 

 
 Zeitraum bis BK I;   Zeitraum bis BK II;   Zeitraum bis BK III 
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Abb.29: pH-Wert im Sickerwasser, FV-EB, 
Versuche ohne und mit Sperre 

 Abb.30: Leitfähigkeit im Sickerwasser (mS/cm), FV-
EB, Versuche ohne und mit Sperre 
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 Abb.32: Ca- und SO4-Konzentration im Sicker-
wasser (mg/L), FV-EB, Versuche ohne und 
mit Sperre 
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Frachtenberechnung 
Über die ersten acht Monate Laufzeit wurden die Sickerwassermengen nicht erfasst. In der 

Folgezeit handelt es sich bei den Austragsmengen um ungefähre Werte. Daher ist der 

berechnete Frachtenaustrag nur als Näherungswert zu betrachten (Tab. 18). Über die 

gesamte Versuchsdauer betrachtet, wurden lediglich 1 bis 2 Prozent der leichtlöslichen Salze 

ausgetragen. Der Frachtenaustrag liegt für das Testfeld mit Sperre in einer ähnlichen 

Größenordnung im Vergleich zum Blindversuch. Der Austrag leichtlöslicher Spezies liegt für 

beide Testfelder deutlich unter den berechneten Werten der beiden Säulenversuche IBV0 und 

ISFK0, wo ca. 30 bis 40 % des Natriums bzw. Chlorids ausgetragen wurden.  

 
Tab. 18: Zusammenfassung der Frachtenberechnung, Abreicherung in % bezogen auf die Ausgangsmenge, 

Blindversuch (EB1) und Versuch mit Sperre (EB2) im Vergleich 

Versuchsbezeichnung EB1 
ohne Sperre 

EB2 
mit Sperre 

Versuchsanordnung Testfelder Eberstetten 
Dauer in Wochen 102 
Bewässerung Niederschlag 
Parameter proz. Abreicherung 
Cl -1,89 -2,85 
SO4 -0,24 -0,50 
Na -0,59 -1,00 
Ca -0,006 -0,011 
Cu -0,0003 -0,0004 
Mo -0,16 -0,25 
Pb -0,0001 -0,0002 
Zn -0,00001 -0,00002 

 

4.2.1.3 Fazit zur Wirkung einer Sperrschicht 

Die Ergebnisse der Feststoffuntersuchungen zu Wassergehalt bzw. Glühverlust, der 

Eluatuntersuchungen und der Sickerwasserentwicklung bezogen auf die Wirksamkeit der 

Sperre haben Folgendes gezeigt: 

 

Feststoffentwicklung: 
 L/S-Verhältnis: Feststoffproben der Testfelder mit L/S-Verhältnisse von ca. 0,6 sind 

deutlich weniger mit Wasser in Kontakt getreten im Vergleich zu Säulenversuchen mit 

L/S zwischen 1,3 – 1,6 und Eluat mit L/S 10 

 Wassergehalt bzw. Glühverlust: generell erhöhen sich für die Blindversuche die Werte 

tendenziell vom Top bis zur Basis; für den Säulenversuche mit Sperre herrschen v.a. 

innerhalb der Sperrschicht generell die höchsten Wassergehalte bzw. Glühverluste vor 

und direkt unterhalb der Sperre liegen vergleichsweise trockene Bedingungen vor; für 

das Testfeld mit Sperre wurde ein Maximum an Wassergehalt bzw. Glühverlust am Top 

und unmittelbar oberhalb der Sperre beobachtet. Zudem liegt hier auch ein auffälliges 
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Minimum in der Probe unterhalb der Testfeldoberfläche vor, da sich vermutlich eine 

Diskontinuität an der Oberfläche gebildet hat. Als Ursache hierfür kann der Kontakt der 

MV-Schlacke mit Luft und Niederschlag angesehen werden. 

 Berechnungen zum kumulierten Wasserrückhalt: generell höhere Werte für Versuche mit 

Sperrschicht - Sperre erhöht Rückhalt (L/kg Schlacke)  

 Salzanreicherungen entlang des Profils: Einbau einer Sperre erhöht v.a. oberhalb und 

unterhalb der Sperrschicht die Eluatkonzentrationen für leichtlösliche Spezies 

(Leitfähigkeit, Cl, Na) und innerhalb der Sperre ist mit niedrigen Eluat-Konzentrationen 

auch für die Schwermetalle Cu und Mo zu rechnen; die Parametern Ca und SO4 liefern 

wenige Rückschlüsse auf die Wirksamkeit der Sperre  

 

Sickerwasserentwicklung: 
 chemische und mineralogische Zusammensetzung der Schlacke: diese Faktoren 

dominieren für die Säulenversuche im ersten Versuchsjahr die Sickerwasserentwicklung. 

Dementsprechend liegen im ersten Versuchsjahr vergleichbare Tendenzen für den 

Blindversuch und den Versuch mit Sperre vor. Im zweiten Versuchsjahr hingegen 

verstärkt sich der Beitrag durch den Korngrößenwechsel und deutliche Abweichungen in 

der Sickerwasserentwicklung wurden beobachtet – z.B. Entwicklung der Leitfähigkeit (ab 

350 Tagen Sickerwasser aus dem Versuch mit Sperre salzreicher). Im Gegensatz dazu 

wurden für die Testfelder bereits zu Versuchsbeginn signifikante Unterschiede zwischen 

Blindversuch und Testfeld mit Sperre festgestellt.  

 Frachtenberechungen: erstaunlicherweise werden sowohl für die Säule mit Sperre als 

auch für das Testfeld mit Sperre überwiegend mehr an leichtlöslicher Spezies aber auch 

an Schwermetallen ausgewaschen. 
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4.2.2 Physikalische Parameter 

4.2.2.1 Modellversuch mit Kunststoffkugeln 

Um die rein physikalischen Auswirkungen infolge des Korngrößenwechsels von 

Diskontinuitäten auf den Wasserhaushalt zu untersuchen, wurden zwei Säulen mit 

Kunststoffkugeln befüllt: eine Säule ohne Sperrschicht als Blindversuch (MoV1) und die 

andere Säule mit einer Sperrschicht aus kleineren Kugeln (MoV2). Tabelle 19 gibt eine 

Übersicht über die Wasserbilanz der beiden Säulen. Die Säulen wurden mit einer 3-molaren 

NaCl-Lösung bewässert. Die gesamte Versuchsdauer betrug 625 Tage. Dabei wurde die 

Bewässerungsmenge während der vier Zyklen mehrmals verändert: entweder 300 mL oder 

150 mL. Die Abbildungen 35 und 36 zeigen die Entwicklung für den Sickerwasseraustrag in 

mL bzw. die Durchlaufzeit in Sekunden.  

 
Tab. 19: Übersicht über die Zeitdauer der Zyklen mit der jeweiligen Bewässerungsmenge und Austragsmenge an 

Sickerwasser für die Modellversuche mit und ohne Sperre 

Versuchsbezeichnung MoV 1 (Säule 1) - ohne Sperre 
Zyklus 1. Zyklus 2. Zyklus 3. Zyklus 4. Zyklus 5. Zyklus 6. Zyklus 
Zeitdauer der Zyklen in 
Tagen 0 bis 154 

ab 154 bis 
268 

ab 268 bis 
373 

ab 373 bis 
541 

ab 541 bis 
611 

ab 611 bis 
625 

Bewässerungsmenge in mL 300 150 300 150 300 150 
Austrag (Mittelwert) in mL 156 31 102 41 166 53
Sickerwasseraustrag in % 52,0 20,5 34,1 27,3 55,3 35,3
Versuchsbezeichnung MoV2 (Säule 2) - mit Sperre 
Zyklus 1. Zyklus 2. Zyklus 3. Zyklus 4. Zyklus 5. Zyklus 6. Zyklus 
Zeitdauer der Zyklen in 
Tagen 0 bis 154 

ab 154 bis 
268 

ab 268 bis 
373 

ab 373 bis 
541 

ab 541 bis 
611 

ab 611 bis 
625 

Bewässerungsmenge in mL 300 150 300 150 300 150 
Austrag (Mittelwert) in mL 168 21 83 18 137 5
Sickerwasseraustrag in % 56,0 13,7 27,7 12,0 45,7 3,3

 

1. Zyklus 

Zu Beginn des Versuchs bis 154 Tage wurden ein Mal pro Woche vormittags und nachmittags 

150 mL Lösung aufgegeben. Es hat sich gezeigt, dass sich eine wassergesättigte Atmosphäre 

innerhalb der Säule hält. Nach etwa 80 Versuchstagen wurden beide Säulen nach jeder 

Bewässerung mit Pressluft getrocknet. Dadurch nahm der Sickerwasseraustrag für beide 

Säulen von etwa 220 auf 80 mL ab.  

 

2. Zyklus 

Nach 154 bis 268 Versuchstagen wurde nur vormittags mit 150 mL bewässert. Mit der 

Verringerung der Bewässerungsmenge nahm der Austrag kontinuierlich ab und lag nach 260 

Versuchstagen für den Blindversuch im Mittel bei 31 mL und für den Versuch mit Sperre 

lediglich bei 21 mL.  
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3. Zyklus 

Nach 268 Versuchstagen wurde die Bewässerungsmenge auf 300 mL pro Woche erhöht. Die 

Bewässerung erfolgte einmalig jeweils vormittags. Dies führte unmittelbar bei beiden 

Versuchen zu einem sprunghaften Anstieg in der Austragsmenge. In der Folgezeit lag für den 

Blindversuch der Austrag im Mittel bei 102 mL und für den Versuch mit Sperre bei etwa 83 

mL. Insgesamt war die Schwankungsbreite für den Blindversuch geringer.  

 

4. Zyklus 

Nach 373 Versuchstagen wurde die Bewässerungsmenge wieder auf 150 mL pro Woche 

reduziert. Die mittleren Austragsmengen waren mit 41 mL für den Versuch ohne Sperre etwas 

höher als beim ersten Zyklus, jedoch für den Versuch mit Sperre mit 18 mL geringer. Während 

dieser Zeit kristallisierten sich deutliche makroskopische Unterschiede in den 

Salzverkrustungen an der Oberfläche der Kugeln heraus. Beim Blindversuch ergab sich ein 

uniformes Verteilungsbild der Salzablagerungen (Abb. A-10, experimenteller Anhang). Die 

Kugeloberflächen wurden gleichmäßig mit der salzreichen Lösung benetzt. Dadurch wurden 

die Oberflächen der einzelnen Kunststoffkugeln gleichförmig mit einer Salzschicht überzogen. 

Die Kugelzwischenräume blieben dabei frei.  

Für den Versuch mit Sperre hingegen zeigte sich, dass die Kugelzwischenräume verstärkt mit 

Salzen verkrustet wurden. Dafür waren bei vielen Kugeln die Oberflächen nur in geringem 

Ausmaß ummantelt. Zusätzlich zeigte sich, dass unterhalb der Sperre die Verkrustungen der 

Kugelzwischenräume viel ausgeprägter waren (A-11, experimenteller Anhang).  

Augenscheinlich verändern die unterschiedlich ausgeprägten Salzverkrustungen innerhalb der 

beiden Säulen das Wasserrückhaltevermögen. Dieses ist für den Versuch mit Sperre größer. 

 

5. Zyklus 

Die erneute Erhöhung der Bewässerungsmenge auf 300 mL pro Woche nach 541 Tagen 

führte unmittelbar zu hohen Austragsmengen. Für den Blindversuch betrug der prozentuale 

Austrag an Sickerwasser 55% und für den Versuch mit Sperre 46%. Somit war in beiden 

Fällen die Austragsmenge höher im Vergleich zum dritten Zyklus.  

 

6. Zyklus 

Nach 611 Tagen wurde die Bewässerungsmenge ein letztes Mal auf 150 mL pro Woche 

reduziert. Während dieses Zyklus wurden je Säule noch zwei Sickerwasserproben 

genommen. Die Ergebnisse zur Austragsmenge zeigen sehr eindrücklich, dass bei geringen 

Bewässerungsmengen der prozentuale Austrag deutlich geringer wird. Für den Blindversuch 

liegt er nun bei 35 %. Im Vergleich zu den Zyklen 2 und 4 hat sich hier mit fortwährender 

Versuchsdauer der prozentuale Sickerwasseraustrag stetig erhöht. Für den Versuch mit 

Sperre hingegen ist sehr bemerkenswert, dass der prozentuale Austrag nun noch lediglich bei 
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3% liegt. Im Vergleich zu Zyklus 2 und 4 hat sich der prozentuale Sickerwasseraustrag 

deutlich verringert.  
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Abb.37: Austrag an Sickerwasser (mL) versus 
Durchlaufzeit (s) des Sickerwassers, 
MoV mit Kunststoffkugeln 

  

 

Die Sickerwasserentwicklung über den gesamten Versuchszeitraum zeigt deutlich, dass eine 

Änderung des Bewässerungsmodus unmittelbare Folgen hat. Es kristallisiert sich auch 

heraus, dass der Austrag an Sickerwasser über den gesamten Versuchszeitraum für den 

Versuch ohne Sperre höher ist (4,6 Liter) als für den Versuch mit Sperre (3,7 Liter). Die 

Abbildung 36 zeigt die Änderung der Durchlaufzeit in Sekunden in Abhängigkeit von der 

Versuchsdauer. Pro Messung wurde die Zeitdauer zwischen der Aufgabe der NaCl-Lösung 

auf die Säule bis zum Ankommen der ersten Wassertropfen im Auffanggefäß ermittelt. Der 

Unterschied zwischen den beiden Versuchsaufbauten nahm mit fortschreitender 

Versuchsdauer zu. Für den Blindversuch liegen die Durchlaufzeiten überwiegend im Bereich 

um 15 Sekunden. Für den Versuch mit Sperre zeigt sich jedoch deutlich, dass durch den 

Einbau einer Sperre die Durchlaufzeit kontinuierlich zunimmt. Zu Versuchsbeginn liegt sie 

überwiegend zwischen 10 und 30 Sekunden. Nach einer Versuchsdauer von 450 Tagen 

erhöhen sich die Durchlaufzeiten deutlich. Es wurden überwiegend Werte zwischen 20 und 

100 Sekunden beobachtet.  
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Die Abbildung 37 veranschaulicht die Kopplung der Durchlaufzeit von der Austragsmenge.  

Für den Versuch ohne Sperre zeigt sich kaum ein Unterschied für große und kleine 

Bewässerungsmengen. Ausschließlich bei sehr geringen Austragsmengen ist die 

Durchlaufzeit geringfügig erhöht. Für den Versuch mit Sperre zeigt sich viel deutlicher, dass 

sehr hohe Durchlaufzeiten mit kleinen Austragsmengen gekoppelt sind.  

Darüber hinaus wurde experimentiert, inwieweit die Bewässerungsrate einen Einfluss auf den 

Wasserrückhalt hat. Es hat sich herausgestellt, dass deutlich mehr Wasser gespeichert 

werden kann, wenn eine Bewässerungsmenge nicht einmalig appliziert wird, sondern auf 

mehrere Raten aufgeteilt wird. 

4.2.2.2 Durchlässigkeitsbeiwert (kf-Wert) 

Im Rahmen einer Diplomarbeit am Institut für Geologie an der LMU wurden an den 

Bohrproben der Bohrkampagne (BK III) aus den Lysimetern Waldering die 

Durchlässigkeitsbeiwerte (kf-Wert in m/s, Tabelle 20) ermittelt (mündliche Mitteilung).  

 
Tab. 20: kf-Werte der Bohrproben Waldering 

 Lysimeter Waldering 

 ohne Sperre mit Sperre 

Bohrtiefe kf-Werte in m/s 

50 cm 1,15.10-4 1,71.10-4

80 cm 1,23.10-4 8,60.10-4

SFK - 2,02.10-9

115 cm 9,40.10-5 1,00.10-4

140 cm  2,50.10-5 1,05.10-5

 

Die Wasserdurchlässigkeit wird laut DIN 18130 folgendermaßen definiert:  

 

- Werte > 10-2 m/s beziehen sich auf eine sehr starke,  

- Werte von 10-2 bis 10-4 m/s auf eine starke,  

- Werte von 10-4 bis 10-6 m/s auf eine mittelmäßige,  

- Werte von 10-6 bis 10-8 m/s auf eine schwache und  

- Werte < 1 0-8  m/s auf eine sehr schwache Durchlässigkeit.  

 

Bezogen auf Lockergesteine sind Werte zwischen 10-6 bis 10-9 m/s für tonigen Schluff und 

Werte < 10-9 m/s für Ton charakteristisch. Im Allgemeinen kann für MV-Schlacke mit 

Korngröße 0-32 mm ein Durchlässigkeitswert (kf-Wert) von 4 x 10-3 m/s angesetzt werden 

(Burg, 1999). Nach 26 Monaten Laufzeit zeigen sich für den Blindversuch im oberen Bereich 

des Lysimeters etwa bis zu einer Bohrtiefe von 100 cm kf-Werte von 10-4 m/s und im unteren 

Bereich des Lysimeters von 10-5 m/s. Diese Werte stehen für eine mittelmäßige 
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Durchlässigkeit der MV-Schlacke und entsprechen dem Verhalten von feinkörnigem Sand. Für 

das Lysimeter mit Sperre zeigt sich eine Diskontinuität. Für das Lysimeter mit Sperre wurden 

oberhalb der Sperre und unterhalb der Sperre im Vergleich zum Blindversuch erhöhte kf-

Werte beobachtet. Jedoch wurde innerhalb der Sperrschicht ein sehr geringer Wert von 

2,02 · 10-9 m/s gemessen. Nach DIN 18130 entspricht dies einer sehr schwachen 

Wasserdurchlässigkeit, charakteristisch für tonigen Schluff.  

 

4.2.2.3 Fazit zu den physikalischen Parametern 

Für den Modellversuch mit Kunststoffkugeln beschränken sich die Ergebnisse auf rein 

physikalische Wirkungsweisen: 

 

Sickerwasserentwicklung 
 Blindversuch: große Bewässerungsmengen von 300 mL/Woche führen zu hohen 

Sickerwasserbeträgen (35 – 55%) ohne Abhängigkeit von der Versuchsdauer 

 Blindversuch: kleine Bewässerungsmengen von 150 mL/Woche führen zu deutlich 

geringeren Sickerwasserbeträgen (20 – 35%), jedoch nehmen die Mengen mit 

fortwährender Versuchsdauer zu  

 Einbau einer Sperrschicht: große Bewässerungsmengen von 300 mL/Woche bewirken 

eine dem Blindversuch vergleichbare Entwicklung, Sperrwirkung wird aufgehoben 

 Einbau einer Sperrschicht: kleine Bewässerungsmengen von 150 mL/Woche führen zu 

sehr geringen Sickerwasserbeträgen (3 – 14%) und zudem zeigt sich mit fortwährender 

Versuchsdauer eine kontinuierliche Abnahme  

 

Ausbildung von Salzverkrustungen 
 Blindversuch: Oberflächen der Kunststoffkugeln gleichmäßig ummantelt 

 Einbau einer Sperrschicht: Oberflächen nur in geringem Ausmaß ummantelt, dafür v.a. 

unterhalb der Sperrschicht intensive Verkrustung der Kugelzwischenräume.  

 Einbau einer Sperrschicht: Aufkonzentration der leichtlöslichen Salzphasen im 

perkolierenden Sickerwasser und Hinweis auf vglw. trockene Umgebung unterhalb der 

Sperrschicht, somit Begünstigung für die Ausfällung von Salzphasen aus der 

Porenlösung  

 Salzverkrustungen: Salze vermögen, zusätzliches Kristallwasser aufzunehmen 

 

Durchlässigkeitsbeiwert 
 Blindversuch: gleichmäßige Durchlässigkeit entlang des Profils 

 Lysimeter mit Sperrschicht: Einbau des Schlacke-Feinkorns reduziert Durchlässigkeit 

stark, Bestätigung der Wirksamkeit des Korngrößenwechsels für Salzanreicherung 
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4.3 WIRKUNG VON SALZREICHEN LÖSUNGEN 

4.3.1 Wirkung von Modellsickerwasser – erweiterte Säulenversuche der 
VA-A 

Auf der Deponie ist jedoch durch die fortwährenden Ablagerungen frischer MV-Reststoffe das 

perkolierende Sickerwasser stets sehr salzreich. Aus diesem Grund wurde für erweiterte 

Versuchsanordnungen eine Bewässerung mit salzreichen Lösungen gewählt. Das 

Modellsickerwasser (MSW), mit dem die erweiterten Säulenversuche der VA-A bewässert 

wurden, ist aus folgenden Ionen zusammengesetzt: Cl, SO4, Ca, Na, K, Cu, Zn und Pb (vgl. 

Tab T-1, tabellarischer Anhang). Der Vergleich der beiden Langzeitversuche IBV3 und ISFK3, 

nachstehend kurz MSW-Säulen, steht in diesem Kapitel im Vordergrund. Um die Wirkung von 

Modellsickerwasser auf die Feststoff- und Sickerwasserentwicklung erarbeiten zu können, 

werden diese Säulen den Referenzsäulen IBV0 und ISFK0 (LW-Säulen) gegenübergestellt. 

Die Referenzversuche IBV0 und ISFK0 wurden bereits vorgestellt (vgl. Kapitel 4.2.1.1).  

Im Folgenden werden Wassergehalt, Glühverlust und ausgewählte Eluatparameter zu 

Versuchsbeginn (Ausgangsmaterialien) und zu Versuchsende nach dem Rückbau der Säulen 

erörtert. Im Anschluss finden sich eine Beschreibung zu den Konzentrationsverläufen im 

Sickerwasser und der summarische Frachtenaustrag.  

 

Wassergehalt und Glühverlust 
Im Vergleich zum Ausgangsmaterial (18,0 bzw. 22,8 Gew.-%) werden für beide MSW-Säulen 

mit wenigen Ausnahmen höhere Wassergehalte bzw. Glühverluste festgestellt (Tab. 21). Die 

Wassergehalte bzw. Glühverluste der Feststoffproben aus dem Blindversuch sind vergleichbar 

mit den Referenzversuchen und liegen überwiegend im Bereich zwischen 18 und 22 bzw. 24 

und 28 Gew.-%. Für den Säulenversuch mit Sperre (ISFK3) zeigt sich ebenfalls die 

aufstauende Wirkung der Sperrschicht (Abb. 38 und 39). Speziell unterhalb der Sperrschicht 

ist das Milieu trockener, wenn auch nicht so ausgeprägt wie für die Referenzsäule mit Sperre 

(ISFK0), die mit Leitungswasser bewässert wurde. Im Vergleich der beiden Säulen mit 

Sperrschicht zeigte sich, dass durch die zusätzliche Salzzugabe in Form von MSW höhere 

Wassergehalte bzw. Glühverluste gemessen wurden (meist > 20 bzw. 26 Gew.-%). Innerhalb 

der Sperrschicht jedoch wurden für beide Versuche mit Sperre ähnliche Werte für 

Wassergehalt (23,2 Gew.-%) bzw. Glühverlust (29,4 Gew.-%) festgestellt.  

 

 

 

 

 



Dissertation Daniela Sager  4. Ergebnisse 

- 54 - 

Tab. 21: Verteilung der Parameter Wassergehalt und Glühverlust entlang des Säulenprofils, Säule ohne Sperre 
(IBV3) und mit Sperre (ISFK3) im Vergleich, Bewässerung mit Modellsickerwasser, für die Proben ober- 
bzw. unterhalb der Sperrschicht wurde jeweils ein Mittelwert gebildet 

Versuchsbezeichnung IBV0 ISFK0 IBV3 ISFK3 IBV0 ISFK0 IBV3 ISFK3 

Aufbau ohne 
Sperre 

mit 
Sperre 

ohne 
Sperre 

mit 
Sperre 

ohne 
Sperre 

mit 
Sperre 

ohne 
Sperre 

mit 
Sperre 

Bewässerung LW MSW LW MSW 
Parameter Wassergehalt Gew.-% Glühverlust* Gew.-% 

Ausgangsmaterial 18,0 22,8 

oberhalb der Sperre 19,5 ± 
1,0 

19,6 ± 
0,4 

18,1 ± 
2,1 

19,7 ± 
2,1 25,2 ± 1,4 25,4 ± 

1,0 
24,1 ± 

1,3 
25,6 ± 

1,7 
innerhalb der Sperre - 23,5 - 23,2 - 29,3 - 29,4 

unterhalb der Sperre 21,0 ± 
0,1 

19,7 ± 
1,1 

19,8 ± 
1,3 

21,7 ± 
0,7 26,8 ± 0,6 24,9 ± 

1,3 
25,2 ± 

1,6 
27,1 ± 

0,6 
* der Glühverlust wurde bei 1050° C ermittelt und bezieht sich auf die Originalsubstanz, d.h. Gv – Wg entspricht der 
Definition des Parameters Glühverlust in der AbfAblV (2001) 
 
Eluate 
pH-Wert 

Die pH-Werte im Eluat liegen im alkalischen Bereich mit Werten um 11,6 (Abb. 40). Im Profil 

zeigt sich eine gleichmäßige Verteilung. Gegenüber dem Ausgangsmaterial hat eine 

geringfügige Abnahme stattgefunden. Die Salzzugabe (MSW) führte zu etwas geringeren pH-

Werten im Eluat im Vergleich zu den Referenzversuchen mit Leitungswasser. 

 

Leitfähigkeit und leichtlösliche Spezies (Cl, Na) 

Im Vergleich zum Ausgangsmaterial zeigt sich auch für MSW-Versuche eine deutliche 

Abnahme der Eluatkonzentrationen (von 4,2 auf 0,8 mS/cm). Trotz der Zugabe von Salzen 

durch das MSW liegen die Werte für die Säulen mit MSW niedriger bzw. nur geringfügig höher 

im Vergleich zu den LW-Referenzsäulen (Abb. 41). Der Blindversuch weist im Eluat 

Leitfähigkeiten zwischen 0,8 – 0,9 mS/cm auf, wobei sich die kleineren Werte auf den 

mittleren Bereich beziehen. Für die Säule mit Sperrschicht nimmt die Leitfähigkeit im Eluat von 

der Oberfläche zur Basis hin zu (von ca. 0,8 bis 1 mS/cm). Jedoch zeigen sich im Vergleich 

zum Blindversuch v.a. unterhalb der Sperrschicht höhere Anteile leichtlöslicher Spezies.  

Diese Entwicklung der Leitfähigkeit ist nicht auf die leichtlöslichen Spezies Cl und Na 

zurückzuführen (Abb. 42 und 43). Für beide Parameter, Cl und Na, wurden bzgl. der beiden 

MSW-Säulen höhere Konzentrationen analysiert als bei den LW-Referenzsäulen: für Cl ca. 50 

– 85 mg/L und für Na ca. 15 – 45 mg/L. Der Versuch mit Sperre zeigt zudem großteils höhere 

Cl- und Na-Konzentrationen, v.a. unterhalb der Sperrschicht. Dies gilt insbesondere für Na. 

Innerhalb der Sperrschicht lässt sich für Cl eine geringfügige Abreicherung, jedoch für Na eine 

Anreicherung beobachten.  
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Weitere Parameter 

Die Ca-Konzentrationen im Eluat der MSW-Säulenproben liegen um 100 mg/L und sind damit 

vergleichbar mit dem LW-Blindversuch (Abb. 44). Generell sind die Werte niedriger als im 

Ausgangsmaterial (253 mg/L). Die beiden MSW-Versuche sind in ihrem Verteilungsmuster 

entlang des Säulenprofils vergleichbar. Unterschiede bestehen darin, dass für den Versuch 

mit Sperre eine geringfügige Anreicherung oberhalb und eine geringfügige Abreicherung 

innerhalb der Sperre vorliegen. Unterhalb der Sperre hingegen sind geringere 

Konzentrationen im Vergleich zum MSW-Blindversuch beobachtbar. Die SO4-

Eluatkonzentrationen (Abb. 45) der MSW-Säulen sind großteils höher im Vergleich zu den 

LW-Referenzsäulen (überwiegend zwischen 40 – 65 mg/L). Im Ausgangsmaterial wurde 

lediglich ein Wert von 10 mg/L ermittelt. Für den Versuch mit Sperre wurden insbesondere im 

Bereich der Sperrschicht höhere Konzentrationen im Vergleich zum Blindversuch festgestellt. 

Unterhalb der Sperre sind die Anteile jedoch ebenfalls geringer.  

Die Bewässerung mit MSW wirkt sich kaum auf die Schwermetalle aus. Im Vergleich zu den 

Blindversuchen (mit LW und MSW) zeigt sich für beide Säulen mit Sperre (LW und MSW) eine 

Abreicherung an Cu und Mo innerhalb der Sperre (Abb. 46 und Abb. 47). Die Pb-

Eluatkonzentrationen (Abb. 48) liegen überwiegend unterhalb der Bestimmungsgrenze (< 

0,008 mg/L). Für den Parameter Zn (Abb. 49) ist für den MSW-Versuch mit Sperre 

bemerkenswert, dass innerhalb der Sperrschicht im Gegensatz zu den übrigen Säulenproben 

(max. 0,017 mg/L) eine vglw. hohe Zn-Konzentration (0,036 mg/L) gemessen wurde. Im 

Vergleich zum Ausgangsmaterial (0,23 mg/L) fand dennoch eine Abreicherung statt. 

 

Ausgangsmaterial (BA = bottom ash); f = Feststoffprobe; Sperrschicht (Probe 6f) 
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 Abb.41: Leitfähigkeit im Eluat (mS/cm) entlang des 
Versuchsprofils, VA-A, Säulen IBV0-ISFK0 
und IBV3-ISFK3 
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des Versuchsprofils, VA-A, Säulen IBV0-
ISFK0 und IBV3-ISFK3 

 Abb.49: Zn-Konzentration im Eluat (mg/L) entlang 
des Versuchsprofils, VA-A, Säulen IBV0-
ISFK0 und IBV3-ISFK3 

 
Sickerwasserentwicklung 
Die Tabelle 22 gibt einen Überblick über die Wasserbilanz der MSW-Versuche.  

 
Tab. 22: Bewässerungs- und Austragsmengen für die Versuche aus VA-A ohne (IBV3) und  mit Sperre (ISFK3) im 

Vergleich, Bewässerung mit Leitungswasser 

Versuchsbezeichnung IBV0 
ohne Sperre 

ISFK0 
mit Sperre

IBV3 
ohne Sperre 

ISFK3 
mit Sperre 

Versuchsanordnung VA-A VA-A 
Befüllung Schlacke A Schlacke A 
Bewässerung Leitungswasser Modellsickerwasser 
Dauer in Wochen 103 103 
Eingebaute Schlackemenge in kg 18,0 13,8 16,0 15,5
Bewässerungsmenge in L pro Monat 1,2 1,2 1,2 1,2
Bewässerungsmenge insgesamt in L 30,6 30,6 30,9 30,9
Austrag Sickerwasser in L 14,7 15,5 14,0 13,4
kumulierter Austrag in % 47,6 50,2 45,3 44,0
kumulierter Rückhalt in L pro kg 
Schlacke 1,30 1,55

 
1,51 1,60
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Im Vergleich zu den LW-Referenzversuchen war bei einer kumulierten Bewässerungsmenge 

von 30,9 Liter der proz. Austrag an Sickerwasser geringer: für den Blindversuch 14,0 und für 

die Säule mit Sperre 13,4 L. Das L/S-Verhältnis ist mit 2,6 bis 2,9 z.T. deutlich höher im 

Vergleich zu den LW-Referenzversuchen. Die Berechnungen zum kumulierten 

Wasserrückhalt ergaben für die MSW-Versuche höhere Werte (bis 1,60 L/kg Schlacke). Auch 

hier ist das Wasserrückhaltevermögen für die Säule mit Sperrschicht größer.  

 

Austrag an Sickerwasser 

Es ist bemerkenswert, dass die Sickerwasserentwicklung der MSW-Versuche stärkeren 

Schwankungen unterworfen ist. Die Dokumentation des Sickerwasseraustrags zeigt, dass sich 

eine Salzzugabe in Form von Modellsickerwasser auf die Austragsmenge auswirkt. Es wurde 

in allen Fällen mit 300 mL pro Woche bewässert. Auffällig ist, dass für die MSW-Versuche 

tendenziell mit durchschnittlich 133 mL weniger Sickerwasser ausgetragen wurde als für die 

LW-Versuche mit durchschnittlich 152 mL (Abb. 50). Bezogen auf die MSW-Versuche wurde 

erst in einer Schlussphase, ab etwa 600 Versuchstagen, für den Blindversuch weniger 

Sickerwasser ausgetragen.  

 

pH-Wert 

Generell zeigen beide MSW-Versuche eine Abnahme des pH-Wertes von 11 auf 8,5 (Abb. 

51). Für die Entwicklung des pH-Wertes können jedoch drei Phasen unterschieden werden. In 

einer ersten Phase - bis ca. 280 Tage - entsprechen die Werte im Sickerwasser aller vier 

Säulenversuche (MSW und LW) einander. In einer zweiten Phase - bis 550 Tage - liegen die 

pH-Werte für die LW-Versuche zwischen 9,2 und 10,0. Für die MSW-Versuche sind sie 

hingegen niedriger und liegen zwischen 8,6 und 9,6. Ausschließlich für die MSW-Versuche 

zeigt sich, dass innerhalb dieser Phase ab einer Versuchsdauer von 400 Tagen beim MSW-

Versuch mit Sperre die pH-Werte im Sickerwasser deutlich höher sind als beim MSW-

Blindversuch. In einer anschließenden letzten Phase bis Versuchsende entsprechen die 

Werte im Sickerwasser aller vier Säulenversuche wieder einander (um pH 8,5): die pH-Werte 

im Sickerwasser aus den MSW-Versuchen steigen leicht an, während sie im Sickerwasser 

aus den LW-Versuchen deutlich abfallen.  

 

Leitfähigkeit und leichtlösliche Spezies (Cl, Na) 

In der ersten Phase bis ca. 170 Versuchstage, wo die Auswaschung an leichtlöslichen 

Spezies dominiert, ist kein Unterschied zwischen den vier Säulenversuchen festzustellen 

(Abb. 52). In der Folgezeit zeigt sich, dass die Zugabe von Salzen mit dem MSW tendenziell 

höhere Leitfähigkeiten im Sickerwasser hervorruft. Nach 170 Tagen nimmt die Leitfähigkeit im 

Sickerwasser aus den MSW-Versuchen nur mehr geringfügig ab und weist höhere Werte 

zwischen 5 bis 10 mS/cm auf. Ähnlich wie beim Referenzversuch mit LW wurden für den 
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MSW-Versuch mit Sperre überwiegend salzreichere Sickerwässer erfasst. Jedoch fällt auf, 

dass die Zugabe von MSW bereits sehr viel früher (ab 150 Tagen) zu einer Differenzierung 

zwischen Blindversuch und Säule mit Sperre führt. Für die LW-Referenzversuche konnte 

dieser Trend nämlich erst nach 300 Tagen beobachtet werden. 

Der Konzentrationsverlauf der leichtlöslichen Spezies (Cl, Na) entspricht in etwa dem der 

Leitfähigkeit (Abb. 53 und 54). Auffällig sind wiederholte Spitzenwerte im Sickerwasser (10 – 

100 mg/L), insbesondere für den Versuch mit Sperre. Der Einbau einer Sperrschicht macht 

sich für den MSW-Versuch mit einer starken Konzentrationserhöhung nach 75 Tagen für 

beide Parameter (Cl, Na) bemerkbar. Für die Leitungswasser-Referenzversuche wurden erst 

nach 400 Versuchstagen für die Säule mit Sperre konzentriertere Sickerwässer festgestellt. 

 

Weitere Parameter 

Für Ca zeigt sich eine Zunahme der Konzentration mit fortschreitender Versuchsdauer (Abb. 

55). Diese Entwicklung wurde auch für die LW-Referenzversuche beobachtet. Insgesamt ist 

der Anstieg für die MSW-Versuche ausgeprägter und der Kurvenverlauf ist z.T. viel steiler. 

Maximal werden Ca-Konzentrationen von 300 mg/L erreicht. Im Gegensatz zu den LW-

Versuchen ist der Unterschied zwischen Blindversuch und Versuch mit Sperre weniger 

deutlich. Die Ca-Konzentrationen sind jedoch im Sickerwasser aus dem Versuch mit Sperre – 

analog den LW-Versuchen – geringer.  

Durch die Zugabe von MSW ändert sich auch die SO4-Konzentration im Sickerwasser (Abb. 

56). Die Salzzugabe bewirkt, dass Konzentrationsunterschiede zwischen Blindversuch und 

Säule mit Sperrschicht z.T. viel deutlicher ausfallen. Im Vergleich zu den LW-

Referenzversuchen werden hier höhere SO4-Konzentrationen analysiert, wobei die Werte für 

den Versuch mit Sperre überwiegend höher sind. Es werden Maximalwerte bis 5 mg/L 

erreicht.  

Die Zugabe von MSW macht sich jedoch für die Cu-Konzentration im Sickerwasser kaum 

bemerkbar (Abb. 57). Die Sickerwasserentwicklung ist mit den LW-Versuchen vergleichbar. 

Für Mo ist für beide Versuchsreihen (LW und MSW) eine Konzentrationsabnahme gegeben 

(Abb. 58). Aber im Gegensatz zu den Referenzversuchen mit Leitungswasser sind für die 

Versuche mit Modellsickerwasser die Mo-Konzentrationen im Sickerwasser aus dem Versuch 

mit Sperre (ISFK3) überwiegend höher als für den Versuch ohne Sperre (IBV3). Für den 

Parameter Pb (Abb. 59) wurden zu Versuchsbeginn bis etwa 470 Tage insbesondere für die 

MSW-Säule mit Sperre Werte bis 0,4 mg/L gemessen. In der Folgezeit lagen die Pb-

Konzentrationen unterhalb der Bestimmungsgrenze (< 0,08 mg/L). Die Zn-Konzentrationen im 

Sickerwasser aus den Säulen beider Versuchsreihen bewegen sich in einem vergleichbaren 

Konzentrationsbereich (Abb. 60). Zu Versuchsende nach etwa 400 Tagen werden auch für 

MSW-Säulen zunehmend erhöhte Konzentrationen analysiert (> 0,1 mg/L).  
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Abb.50: Austrag an Sickerwasser (mL), VA-A, 
Säulen IBV0-ISFK0 und IBV3-ISFK3 

 Abb.51: pH-Wert im Sickerwasser, VA-A, Säulen 
IBV0-ISFK0 und IBV3-ISFK3 
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Abb.52: Leitfähigkeit im Sickerwasser (mS/cm), 
VA-A, Säulen IBV0-ISFK0 und IBV3-ISFK3 

 Abb.53: Cl-Konzentration im Sickerwasser (g/L), 
VA-A, Säulen IBV0-ISFK0 und IBV3-ISFK3
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Abb.54: Na-Konzentration im Sickerwasser (g/L), 
VA-A, Säulen IBV0-ISFK0 und IBV3-ISFK3 

 Abb.55: Ca-Konzentration im Sickerwasser (mg/L), 
VA-A, Säulen IBV0-ISFK0 und IBV3-ISFK3



Dissertation Daniela Sager  4. Ergebnisse 

- 61 - 

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

0,1

1

VA-A

0,3 L/Woche
LW

 ohne Sperre
 mit Sperre

MSW
 ohne Sperre
 mit Sperre

 

 
SO

4,
 g

/L

Tage

 

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

1

10

10
0

VA-A

0,3 L/Woche
LW

 ohne Sperre
 mit Sperre

MSW
 ohne Sperre
 mit Sperre

 

 

C
u,

 m
g/

L

Tage

 
Abb.56: SO4-Konzentration im Sickerwasser (g/L), 

VA-A, Säulen IBV0-ISFK0 und IBV3-ISFK3 
 Abb.57: Cu-Konzentration im Sickerwasser (mg/L), 

VA-A, Säulen IBV0-ISFK0 und IBV3-ISFK3
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Abb.58: Mo-Konzentration im Sickerwasser (mg/L), 
VA-A, Säulen IBV0-ISFK0 und IBV3-ISFK3 

 Abb.59: Pb-Konzentration im Sickerwasser (mg/L), 
VA-A, Säulen IBV0-ISFK0 und IBV3-ISFK3
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Abb.60: Zn-Konzentration im Sickerwasser (mg/L), 
VA-A, Säulen IBV0-ISFK0 und IBV3-ISFK3 

 

 

Frachtenberechnung 
Die Frachtenberechnung zeigt den summarischen Austrag an Einzelstoffen zu Versuchsende 

in Bezug zur Ausgangskonzentration. Die Elemente Cl, Na und zu gewissen Anteilen das 

Schwermetall Mo sind mit Austrägen von 10 bis 34 % am mobilsten (Tab. 23). Es ist 

bemerkenswert, dass trotz der Salzzugabe in Form von MSW insgesamt prozentual weniger 

austragen wurde. Für den Blindversuch wurden im Vergleich zum Säulenversuch mit Sperre - 
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analog den LW-Versuchen - Cl und Na stärker zurückgehalten. Für die Parameter Ca und 

SO4 sowie Zn und Pb konnte durch die Salzzugabe in Form von MSW sogar eine 

Anreicherung innerhalb der Säule festgestellt werden. Das positive Vorzeichen besagt, dass 

innerhalb der Säule ein größerer Anteil an der jeweiligen Spezies zurückgehalten, als über 

das Sickerwasser ausgetragen wird. Die Zugabe von MSW wirkt sich jedoch nicht auf eine  

Anreicherung des Parameters Cu innerhalb der Säule aus.  
 
Tab. 23: Zusammenfassung der Frachtenberechnung, Abreicherung bzw. Anreicherung in % bezogen auf die 

Ausgangsmenge, Blindversuch der LW- und MSW-Versuche und LW- und MSW-Versuche mit Sperre im 
Vergleich 

Versuchsbezeichnung IBV0 
ohne Sperre 

ISFK0 
mit Sperre 

IBV3 
ohne Sperre 

ISFK3 
mit Sperre 

Versuchsanordnung VA-A VA-A 
Bewässerung Leitungswasser Modellsickerwasser 
Dauer in Wochen 103 103 
Parameter proz. Abreicherung proz. Ab-/Anreicherung 
Cl -33,2 -42,2 -31,6 -34,0 
SO4 -1,6 -2,2 +3,9 +2,8 
Na -23,5 -31,9 -26,0 -46,1 
Ca -0,011 -0,005 +0,5 +0,5 
Cu -0,14 -0,15 -0,06 -0,08 
Mo -13,5 -11,4 -7,6 -10,4 
Pb -0,003 -0,004 +0,8 +0,8 
Zn -0,001 -0,001 +0,1 +0,1 

 

4.3.2 Wirkung von salzreichen Lösungen – erweiterte Testfelder 
Eberstetten 

Im Vordergrund stehen die erweiterten Testfelder EB3 und EB4, beide mit Sperrschicht. 

Erarbeitet wurde dabei, inwieweit sich die Zugabe salzreicher Lösungen in Form von 

Deponiesickerwasser (SW) und Konzentrat aus der Umkehrosmose (UO) auf die Feststoff- 

und Sickerwasserentwicklung auswirkt. Beide Testfelder waren dem natürlichen Niederschlag 

ausgesetzt. Das Testfeld EB3 wurde nach sechs Monaten Versuchszeit zusätzlich mit 

Sickerwasser aus der Deponie bewässert und das Testfeld EB4 mit Konzentrat aus der 

Umkehrosmose (Zusammensetzung vgl. Tab. T-2, tabellarischer Anhang). Die 

Bewässerungsmenge betrug 50 Liter pro Woche.  

Im Folgenden sind Wassergehalt, Glühverlust und ausgewählte Eluatparameter zu 

Versuchsbeginn (Ausgangsmaterial) und zu Versuchsende (Ergebnisse der Bohrkampagne 

III), die Konzentrationsverläufe im Sickerwasser und der summarische Frachtenaustrag bis zu 

Versuchsende kurz dargestellt.  

 

Wassergehalt und Glühverlust 
Die Tabelle 24 zeigt die Werte für Wassergehalt und Glühverlust (1050°C) der Feststoffproben 

aus der dritten Bohrkampagne (BK III) für die Testfelder Eberstetten. Im Vergleich zum 

Ausgangsmaterial (15,1 bzw. 18,8 Gew.-%) weisen die Feststoffproben aus den 
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Bohrkernproben der Testfelder EB3 und EB4 mit fortschreitender Versuchsdauer z.T. viel 

höhere Wassergehalte bzw. Glühverluste mit max. 23,7 bzw. 29,9 Gew.-% auf (Abb. 61 und 

62). Das Verteilungsmuster im Bereich der Sperrschicht ist vergleichbar mit dem von Testfeld 

EB2 (Testfeld mit Sperre, ausschließlich Niederschlag). Insbesondere die Zugabe von 

Deponiesickerwasser erhöht das Wasserrückhaltevermögen im Bereich der Sperrschicht, d.h. 

für das Testfeld EB3 werden unmittelbar oberhalb der Sperrschicht die höchsten 

Wassergehalte bzw. Glühverluste festgestellt (23,7 bzw. 29,9 Gew.-%). Es ist auffällig, dass 

sich im Bereich unterhalb der Sperre für die Testfelder EB3 (Sperre, SW) und EB4 (Sperre, 

UO) besonders trockene Verhältnisse (min. 17,5 bzw. 22,8 Gew.-%) zeigen.  

 
Tab. 24: Verteilung der Parameter Wassergehalt und Glühverlust entlang des Versuchsprofils aus der BK III, 

Testfelder Eberstetten mit Sperre und zusätzlichem Beitrag von Salzen: EB3 – Deponiesickerwasser und 
EB4 – Konzentrat aus der Umkehrosmose, für die Proben ober- bzw. unterhalb der Sperrschicht wurde 
jeweils ein Mittelwert gebildet 

Versuchsbezeichnung EB1 EB2 EB3 EB4 EB1 EB2 EB3 EB4 

Aufbau ohne 
Sperre 

mit 
Sperre 

mit 
Sperre 

mit 
Sperre 

ohne 
Sperre 

mit 
Sperre 

mit 
Sperre 

mit 
Sperre 

Bewässerung NS# NS# NS#, SW NS#, UO NS# NS# NS#, SW NS#, UO 
Parameter Wassergehalt Gew.-% Glühverlust* Gew.-% 

Ausgangsmaterial 15,1 18,8 

oberhalb der Sperre 19,0 ± 0,2 22,6 ± 
2,5 

20,2 ± 
3,5 

20,5 ± 
2,0 

24,1 ± 
0,2 

28,1 ± 
4,0 25,6 ± 4,2 

26,4 ± 
2,8 

innerhalb der Sperre - 21,7 22,1 20,3 - 27,4 28,2 26,5 

unterhalb der Sperre 20,1 20,6 ± 
0,9 

18,9 ± 
1,3 

18,6 ± 
1,6 26,7 26,3 ± 

0,8 24,1 ± 1,9 
25,7 ± 

1,8 
* der Glühverlust wurde bei 1050° C ermittelt und bezieht sich auf die Originalsubstanz, d.h. Gv – Wg entspricht der 
Definition des Parameters Glühverlust in der AbfAblV (2001) 
# Niederschlag 
 

Eluate 
pH-Wert 

Die pH-Werte im Eluat der Feststoffproben der Testfelder EB3 (Sperre, SW) und EB4 (Sperre, 

UO) liegen zwischen 11,0 und 11,7 (Abb.63). Im Vergleich zum Ausgangsmaterial (pH 10,7) 

sind die Feststoffproben stärker alkalisch. Die Bewässerung mit Umkehrosmose für das 

Testfeld EB4 mit Sperre bewirkt im Vergleich zum Blindversuch, dass hier insbesondere an 

der Basis im Eluat der Feststoffproben geringere pH-Werte (min. pH 11,1) gemessen werden. 

Im Gegensatz zu Testfeld EB2 (Sperre, keine Salzzugabe) bleibt an der Testfeldoberfläche 

der Felder EB3 und EB4 der pH-Wert hoch. Die pH-Werte im Eluat der top- und 

basisnächsten Proben fallen hier nicht aus dem Rahmen.  

 

Leitfähigkeit und leichtlösliche Spezies (Cl, Na) 

Im Vergleich zum Ausgangsmaterial (2,5 mS/cm) zeigt sich, trotz Zugabe von salzreichen 

Lösungen für EB3 und EB4, eine Verringerung der Leitfähigkeiten in den Eluatproben (Abb. 

64). Für beide Testfelder wurde eine tendenzielle Anreicherung von der Oberkante zur Basis 

hin beobachtet (von max. 1,4 bis 2,4 mS/cm). Die niedrigsten Konzentrationen wurden 
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allerdings innerhalb der Sperrschicht analysiert (min. 1,2 mS/cm). Es ist bemerkenswert, dass 

für das Testfeld EB4 (Sperre, UO) insgesamt die höchsten Werte für die Leitfähigkeit im Eluat 

gemessen wurden und für das Testfeld EB3 (Sperre, SW) die geringsten. 

Für den Parameter Cl lässt sich für beide Testfelder EB3 und EB4 mit Sperrschicht ein 

vergleichbarer Trend beobachten (Abb. 65). Die Cl-Konzentrationen nehmen von der 

Oberkante zur Basis zu. Für das Testfeld EB4 wird hier sogar annähernd die Cl-Konzentration 

im Eluat des Ausgangsmaterials erreicht (495 mg/L). Der Trend wird von geringeren Cl-

Konzentrationen innerhalb der Sperrschicht unterbrochen. Generell wurden für das Testfeld 

EB4 für die Parameter Cl und Na die höchsten (max. 490 und 210 mg/L) und für das Testfeld 

EB3 die geringsten (max. 200 und 110 mg/L) Eluatkonzentrationen im Vergleich zu den 

übrigen Testfeldern analysiert. Für den Parameter Na zeigen sich jedoch für das Testfeld EB4 

unterhalb der Sperre niedrigere Konzentrationen (ca. 210 mg/L) im Vergleich zum 

Blindversuch (Abb. 65). Für das Testfeld EB3 wurden speziell unterhalb der Sperrschicht sehr 

geringe Na-Konzentrationen (max. 110 mg/L) analysiert.  

 

Weitere Parameter 

Die Testfelder EB3 und EB4 zeigen für den Faktor Ca nur eine Konzentrationsbreite zwischen 

30 und 150 mg/L (Abb. 66). Speziell innerhalb der Sperrschicht werden die niedrigsten 

Konzentrationen festgestellt. Für das Testfeld EB4 (Sperre, UO) werden entlang des 

Versuchsprofils nur geringfügig erhöhte Werte analysiert.  

Für den Parameter SO4 (Abb. 66) zeigen sich jedoch durch die Zugabe von Konzentrat aus 

der Umkehrosmose (4,6 g/L) für das Testfeld EB4 vergleichsweise erhöhte Werte (max. 340 

mg/L). Bezogen auf die Schwermetalle Cu und Mo (beide Abb. 67) sowie Pb und Zn (Abb. 68) 

lässt sich keine Wirkung durch die Bewässerung mit salzreichen Lösungen erkennen. Für Cu 

zeigt sich für die Testfelder mit Sperre deutlich, dass im Verlauf des Profils innerhalb der 

Sperrschicht die niedrigsten Konzentrationen vorliegen (min. 0,03 mg/L). Im Vergleich zum 

Blindversuch sind die Cu-Konzentrationen unterhalb der Sperre niedriger. Für den Parameter 

Pb wurden lediglich für den Blindversuch in Bohrproben der dritten Bohrkampagne 

Eluatkonzentrationen bis 0,02 mg/L gemessen. Ansonsten liegen die Pb-Konzentrationen 

unterhalb der Bestimmungsgrenze (< 0,008 mg/L). Für den Parameter Zn ist auffällig, dass für 

alle Feldversuche mit zunehmender Versuchszeit die Eluatkonzentrationen zunehmen. Nach 

der dritten Bohrkampagne wurden höhere Zn-Konzentrationen als im Ausgangsmaterial 

(0,001 mg/L) analysiert. Insbesondere das Testfeld EB3 (Sperre, SW) zeigt die höchste Zn-

Konzentration im Eluat der Bohrproben (max. 0,06 mg/L).  
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Ausgangsmaterial (BA = bottom ash); f = Feststoffprobe; Sperrschicht (SFK) 
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Abb.61: Wassergehalt (Gew.-%) entlang der 

Versuchsprofile der Testfelder Eberstetten 
 Abb.62: Glühverluste (Gew.-%) entlang der 

Versuchsprofile der Testfelder Eberstetten 
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Abb.63: pH-Wert im Eluat entlang der 
Versuchsprofile der Testfelder Eberstetten 

 Abb.64: Leitfähigkeit im Eluat (mS/cm) entlang der 
Versuchsprofile der Testfelder Eberstetten 
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Abb.65: Cl- und Na-Konzentration im Eluat (mg/L) 
entlang der Versuchsprofile der Testfelder 
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 Abb.66: SO4- und Ca-Konzentration im Eluat 
(mg/L) entlang der Versuchsprofile der 
Testfelder Eberstetten 
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Abb.67: Cu- und Mo-Konzentration im Eluat (mg/L) 
entlang der Versuchsprofile der Testfelder 
Eberstetten 

 Abb.68: Pb- und Zn-Konzentration im Eluat (mg/L) 
entlang der Versuchsprofile der Testfelder 
Eberstetten 

 
Sickerwasserentwicklung 
Die Tabelle 25 zeigt eine Zusammenfassung der Wasserbilanz der Testfelder Eberstetten. Die 

kumulierte Bewässerungsmenge lag zu Versuchsende bei 13.500 L/10m2 und für die 

Testfelder EB3 und EB4, mit zusätzlicher künstlicher Bewässerung, bei 16.800 L/10. Der 

prozentuale Austrag für das Testfeld EB3 mit Sperre und Deponiesickerwasser betrug 11,0 % 

und für das Testfeld EB4 mit Sperre und Umkehrosmosekonzentrat 14,2 %. Damit liegen sie 

höher im Vergleich zum Blindversuch (10,0 %). Das L/S-Verhältnis liegt für EB3 bei 0,58 L/kg 

und für EB4 bei 0,62 L/kg und damit in einem vergleichbaren Bereich zum Blindversuch (0,65 

L/kg). Die eingebauten Schlackemengen sind unterschiedlich. Bezogen auf 1 kg Schlacke ist 

der geschätzte Wasserrückhalt mit ca. 0,33 Liter für alle Testfelder ungefähr gleich hoch 

anzusetzen, zumal die Sickerwassermengen nicht kontinuierlich erfasst werden konnten (vgl. 

Kap. 3.2.2). Der Rückhalt ist für die Testfelder in erster Linie als qualitativer Vergleich 

untereinander zu sehen. 
 
Tab. 25: Bewässerungs- und Austragsmengen für die Testfelder Eberstetten mit Sperre und zusätzlichem Beitrag 

von Salzen: EB3 – Deponiesickerwasser und EB4 – Konzentrat aus der Umkehrosmose 

Versuchsbezeichnung EB1 
ohne Sperre

EB2 
mit Sperre

EB3 
mit Sperre 

EB4 
mit Sperre

Versuchsanordnung Testfelder Eberstetten 
Befüllung Schlacke A 
Dauer in Wochen 102 
Bewässerung NS NS NS, SW NS, UO 
Eingebaute Schlackemenge in kg 35.200 37.300 46.500 40.500
Bewässerungsmenge in L pro Monat 120 – 1.120 120 – 1.120 320 – 1.320 800 – 1.320
Bewässerungsmenge insgesamt in L pro 10m2 13.500 13.500 16.800 16.800
Austrag Sickerwasser in L 1.342 1.785 1.778 2.300
kumulierter Austrag in % 10,0 13,3 11,0 14,2
kumulierter Rückhalt in L pro kg Schlacke 0,59 0,55 0,56 0,60
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Austrag an Sickerwasser 

Über die ersten sechs Monate wurden die Sickerwassermengen nicht erfasst. In der Folgezeit 

wurden die Mengen abgeschätzt, da die maximale Erfassungsmenge pro Woche etwa 40 Liter 

betrug (Abb. 69). Die Ergebnisse zur Entwicklung der Sickerwassermenge sind daher für 

dieses Kapitel von untergeordneter Bedeutung. Die Näherungswerte wurden für die Erstellung 

der Wasserbilanz und für die Frachtenberechnung herangezogen. 

 

pH-Wert 

Die zusätzliche Zugabe von SW oder UO-Konzentrat wirkt sich nicht merklich auf die 

Entwicklung des pH-Werts im Sickerwasser aus (Abb. 70). Der pH-Wert im 

Deponiesickerwasser und im UO-Konzentrat liegt um 8, so dass hierdurch der pH-Wert in den 

Sickerwässern aus den Testfeldern nicht signifikant verändert wird.  

 

Leitfähigkeit und lösliche Spezies (Cl, Na) 

Die Zugabe von salzreichen Lösungen wirkt sich aber auf die leichtlöslichen Salze im 

Sickerwasser aus (Abb. 71). Der Eintrag der Leitfähigkeitsanteile nach 180 Tagen über das 

Deponiesickerwasser (Leitfähigkeit ~ 15 mS/cm) für das Testfeld EB3 wirkt sich unmittelbar 

aus. Bis zu einer Versuchsdauer von 320 Tagen sind die Leitfähigkeiten im Sickerwasser aus 

dem Testfeld EB3 am höchsten (30 – 60 mS/cm). Die Salzzugabe mittels UO-Konzentrat 

(Leitfähigkeit ~ 30 mS/cm) für das Testfeld EB4 mit Sperre ist insbesondere ab einer 

Versuchsdauer von 250 Tagen zu erkennen. Im Vergleich zum Blindversuch und zum Testfeld 

EB2 (Sperre, keine Salzzugabe) ist die Leitfähigkeit ab diesem Zeitpunkt im Sickerwasser aus 

EB4 im Mittel (25 mS/cm) deutlich erhöht, aber auch im Sickerwasser aus EB3 (Sperre, SW) 

leicht erhöht (im Mittel um 20 mS/cm).  

Die Leitfähigkeit setzt sich aus vielen Einzelbeiträgen zusammen. Die Konzentrationsbeiträge 

von Cl und Na liegen im Bereich von 1 bis 20 g/L (Abb. 72 und 73). Die 

Sickerwasserentwicklung der Parameter Cl und Na für die Testfelder EB3 und EB4 ist 

vergleichbar mit der Entwicklung der Leitfähigkeit. Es ist bemerkenswert, dass für das Testfeld 

EB4 bereits zu Beginn der Sickerwassererfassung (ab 50 Tagen) die Cl- und Na-

Konzentrationen vglw. hoch sind (ca. 13 und 7 mg/L). Die Salzzugabe bewirkt, dass die Cl- 

und Na-Konzentrationen für dieses Testfeld über den gesamten Versuchszeitraum hoch 

bleiben und zu Versuchsende im Bereich von 10 (Cl) und 5 (Na) mg/L liegen.  

 

Weitere Parameter 

Die Ca-Konzentrationen (Abb. 74) im Sickerwasser aus dem Testfeld EB3 (Sperre, SW) 

nehmen von Beginn an tendenziell zu (von ca. 54 auf 500 mg/L). Die Salzzugabe hat kaum 

einen Einfluss auf diesen Trend, da die Entwicklung auch für den Blindversuch beobachtet 

wurde. Die Ca-Konzentrationen sind jedoch höher im Vergleich zum Blindversuch. Für das 
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Testfeld EB4 sind die Ca-Konzentrationen bereits zu Beginn (ab 75 Tagen) sehr hoch (300 – 

600 mg/L) und ändern sich kaum mit fortschreitender Versuchsdauer. Zu Versuchsende nach 

720 Tagen liegen die Ca-Konzentrationen im Sickerwasser aus den vier Testfeldern in einem 

ähnlichen Konzentrationsbereich zwischen 300 – 500 mg/L.  

Bezogen auf den Parameter SO4 zeigt sich für die Testfelder EB3 und EB4 - analog dem 

Blindversuch - eine geringfügige Konzentrationszunahme (von ca. 1 auf 5 mg/L) mit 

fortwährender Versuchsdauer (Abb. 75). Wiederum wurden von Beginn an für das Testfeld 

EB4 (Sperre, UO) die höchsten Konzentrationen verzeichnet. Für das Testfeld EB3 (SW) sind 

die SO4-Konzentrationen etwas geringer und liegen in einem ähnlichen Bereich wie für das 

Testfeld EB 2 (mit Sperre, ausschließlich Niederschlag).  

Bezüglich der Parameter Cu (Abb. 76) und Mo (Abb. 77) zeigt sich auch für die Testfelder EB3 

sowie EB4 - ähnlich den Versuchen ohne Salzzugabe (Blindversuch und EB2) - eine starke 

Konzentrationsabnahme im Versuchsverlauf (Abb. 76). Insgesamt bewirkt aber die Zugabe 

von SW und UO, dass hier ab einer Versuchsdauer von 250 Tagen im Sickerwasser deutlich 

höhere Cu-Konzentrationen als ohne Salzzugabe analysiert wurden (ca. 0,7 mg/L). Bezogen 

auf den Parameter Mo wurden insbesondere im Sickerwasser aus dem Testfeld EB3 (Sperre, 

SW) generell hohe Konzentrationen gemessen (ca. 0,4 – 3 mg/L). 

Für den Parameter Pb (Abb. 78) wurden lediglich im ersten Versuchsjahr Pb-Konzentrationen 

im Sickerwasser im Bereich zwischen 0,1 bis 0,2 mg/L analysiert, danach lagen die Werte 

unterhalb der Bestimmungsgrenze (< 0,08 mg/L). Bezogen auf den Faktor Zn (Abb. 79) 

wurden für das Testfeld EB 4 (Sperre, UO) zu Versuchsbeginn vglw. hohe Zn-

Sickerwasserkonzentrationen gemessen (max. 0,2 mg/L). Bis zum Versuchsende nahmen die 

Zn-Konzentrationen tendenziell ab und lagen in einem Bereich zwischen 0,05 – 0,08 mg/L. 

Für das Testfeld EB3 (Sperre, SW) wurden meist Zn-Werte unterhalb der Bestimmungsgrenze 

(0,02 mg/L) festgestellt. Nach 200 bis 500 Versuchstage wurden Werte zwischen 0,03 – 0,08 

mg/L und ein einzelner Spitzenwert mit 1,1 mg/L erreicht.  
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 Zeitraum bis BK I;   Zeitraum bis BK II;   Zeitraum bis BK III 
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Abb.69: Austrag an Sickerwasser (L) aus den 
Testfeldern Eberstetten 

 Abb.70: pH-Wert im Sickerwasser aus den 
Testfeldern Eberstetten 
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Abb.71: Leitfähigkeit im Sickerwasser (mS/cm) aus 
den Testfeldern Eberstetten 

 Abb.72:  Cl-Konzentration im Sickerwasser (g/L) 
aus den Testfeldern Eberstetten 

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

1

10

FV-EB

Salzzugabe

 

 

N
a,

 g
/L

Tage

 ohne Sperre
 mit Sperre
 mit Sperre,

          mit SW
 mit Sperre,

          mit UO

 

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

10
0

10
00

FV-EB

Salzzugabe
 

 

C
a,

 m
g/

L

Tage

 ohne Sperre
 mit Sperre
 mit Sperre,

          mit SW
 mit Sperre,

          mit UO

Abb.73: Na-Konzentration im Sickerwasser (g/L) 
aus den Testfeldern Eberstetten 

 Abb.74: Ca-Konzentration im Sickerwasser (mg/L) 
aus den Testfeldern Eberstetten 
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Abb.75: SO4-Konzentration im Sickerwasser 
(mg/L) aus den Testfeldern Eberstetten 

 Abb.76: Cu-Konzentration im Sickerwasser (mg/L) 
aus den Testfeldern Eberstetten 
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Abb.77: Mo-Konzentration im Sickerwasser (mg/L) 
aus den Testfeldern Eberstetten 

 Abb.78: Pb-Konzentration im Sickerwasser (mg/L) 
aus den Testfeldern Eberstetten 
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Abb.79: Zn-Konzentration im Sickerwasser (mg/L) 
aus den Testfeldern Eberstetten 

  

 

Frachtenberechnung 
Aufgrund näherungsweise bestimmter Sickerwassermengen über die ersten acht Monate 

Laufzeit, ist der berechnete Frachtenaustrag nur als Näherungswert zu betrachten (Tab. 26). 

Für das Testfeld EB3 (Sperre, SW) wurden insgesamt etwa 1,5 Prozent des Cl-Gehalts und 

0,3 Prozent des Na-Gehalts ausgetragen. Für das Testfeld EB4 (Sperre, UO) zeigt sich die 
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Wirkung der Salzzugabe. Innerhalb des Testfeldes wurden mehr an leichtlöslichen Spezies 

(Cl, SO4, Na) zurückgehalten, als über das Sickerwasser ausgetragen wurden (positives 

Vorzeichen). Der Austrag an Schwermetallen ist für beide Testfelder vernachlässigbar gering.  

 
Tab. 26: Zusammenfassung der Frachtenberechnung, Abreicherung bzw. Anreicherung in % bezogen auf die 

Ausgangsmenge, für die Testfelder Eberstetten mit Sperre und zusätzlichem Beitrag von Salzen: EB3 – 
Deponiesickerwasser und EB4 – Konzentrat aus der Umkehrosmose 

Versuchsbezeichnung EB1 
ohne Sperre

EB2 
mit Sperre

EB3 
mit Sperre 

EB4 
mit Sperre 

Versuchsanordnung Testfelder Eberstetten 
Dauer in Wochen 102 
Bewässerung NS NS SW, NS UO, NS
Parameter Proz. Abreicherung Proz. Ab-/Anreicherung 
Cl -1,89 -2,85 -1,5 +3,7
SO4 -0,24 -0,50 -0,3 +0,7
Na -0,59 -1,00 -0,31 +0,25
Ca -0,006 -0,011 -0,004 -0,005
Cu -0,0003 -0,0004 -0,0003 -0,0004
Mo -0,16 -0,25 -0,20 -0,06
Pb -0,0001 -0,0002 +0,0002 +0,0005
Zn -0,00001 -0,00002 +0,0001 +0,0002

 

4.3.3 Wirkung von künstlicher Bewässerung – Lysimeter Raindorf 
Die beiden Großlysimeter in Raindorf, ein Versuch ohne Sperre (Blindversuch) und einer mit 

Sperre, wurden ausschließlich künstlich bewässert. Mit einem Kunststoffdeckel wurden die 

Lysimeter vor Niederschlagszutritt geschützt. In einer Anfangsphase bis zum Zeitpunkt der 

ersten Bohrkampagne (Laufzeit 5 Monate) wurden die beiden Lysimeter mit Leitungswasser 

(Menge 50 Liter/Woche) bewässert. Damit wurde eine Vergleichsbasis mit den anderen 

Feldversuchen geschaffen. Danach wurde die Bewässerungsmenge auf 10 Liter pro Woche 

verringert und zugleich von Leitungswasser auf Modellsickerwasser (Zusammensetzung vgl. 

Tab. T-1, tabellarischer Anhang) umgestellt. Nach 10 Monaten wurde der Modus auf die 

doppelte Bewässerungsmenge in doppelter Zeiteinheit (20 Liter/2 Wochen) umgestellt, damit 

eine größere Menge für eine gleichmäßige Bewässerung der Lysimeter zur Verfügung stand. 

Der Salzgehalt der Lösungen blieb dabei gleich. Die Gesamtlaufzeit bis zur dritten 

Bohrkampagne betrug 719 Tage. Danach wurden weiterhin alle 14 Tage Sickerwasserproben 

gezogen und chemisch analysiert. Nach 830 Tagen wurde die Bewässerungsart von 

Modellsickerwasser auf Leitungswasser umgestellt. Hiermit sollte untersucht werden, 

inwiefern sich das Fehlen von Salzen auf die weitere Feststoff- und Sickerwasserentwicklung 

auswirkt, z.B. ob sich die an den Kornoberflächen angelagerten Salzverkrustungen 

zurückbilden oder stabil bleiben. Der beobachtete Versuchszeitraum betrug insgesamt 910 

Tage.  

Im Folgenden sind Wassergehalt, Glühverlust und ausgewählte Eluatparameter zu 

Versuchsbeginn (Ausgangsmaterial), zum Zeitpunkt der jeweiligen Bohrkampagnen 
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(Ergebnisse der Bohrkampagne I und II) und zu Versuchsende (Ergebnisse der 

Bohrkampagne III) und der summarische Frachtenaustrag innerhalb von 719 Tagen 

dargestellt. Die Konzentrationsverläufe im Sickerwasser beziehen sich auf einen Zeitraum von 

910 Tagen.  

 
Wassergehalt und Glühverlust 
Die Tabelle 27 zeigt die Werte für Wassergehalt und Glühverlust (1050°C) für die Bohrproben 

der dritten Bohrkampagne der beiden Lysimeter in Raindorf.  

Im Vergleich zum Ausgangsmaterial (10,1 bzw. 14,9 Gew.-%) weisen die Feststoffproben aus 

den Bohrkernproben der drei Bohrkampagnen großteils deutlich höhere Wassergehalte und 

Glühverluste (bis max. 21,5 bzw. 27,5 Gew.-%) auf (Abb. 80 und 81). Für den Blindversuch 

nehmen die Werte für Wassergehalt und Glühverlust vom Top zur Basis hin zu. Die 

niedrigsten Wassergehalte und Glühverluste wurden an den Bohrproben der ersten 

Bohrkampagne (Laufzeit fünf Monate) gemessen (15,2 – 18,4 bzw. 18,4 – 22,7 Gew.-%). Die 

höchsten Werte für Wassergehalt und Glühverlust wurden tendenziell für die Bohrproben der 

dritten Bohrkampagne (Laufzeit ca. 26 Monate) ermittelt (max. 18 bzw. 24,5 Gew.-%). 

Generell wurden für das Lysimeter mit Sperre in den Bohrproben höhere Wassergehalte und 

Glühverluste gemessen. Hier zeigten sich insbesondere nach der ersten und zweiten 

Bohrkampagne Diskontinuitäten. Nach der ersten Bohrkampagne war speziell der Bereich 

ober- und innerhalb der Sperrschicht, aber auch an der Basis, feuchter (max. 20,5 bzw. 25,2 

Gew.-%). Der Bereich unterhalb der Sperre war vglw. trocken (17,5 bzw. 21,8 Gew.-%). Nach 

der zweiten Bohrkampagne (Laufzeit ca. 12 Monate) wurden für den Versuch mit Sperre 

unmittelbar oberhalb und unterhalb der Sperrschicht die höchsten Werte für Wassergehalt und 

Glühverlust ermittelt (21,3 bzw. 27,2 Gew.-%). Nach der dritten Bohrkampagne zeigen sich für 

den Versuch mit Sperre im Profilverlauf keinerlei Unterschiede mehr. Die Werte liegen im 

Bereich von 20 – 21 bzw. 26 – 27 Gew.-%. Der Profilverlauf ähnelt dem Blindversuch, lediglich 

die Werte für Wassergehalt und Glühverlust sind für das Lysimeter mit Sperre höher.  

 
Tab. 27: Verteilung der Parameter Wassergehalt und Glühverlust entlang des Versuchsprofils der Bohrkampagne 

III, Großlysimeter Raindorf: Lysimeter ohne Sperre (RA 1) und mit Sperre (RA 2) im Vergleich, für die 
Proben ober- bzw. unterhalb der Sperrschicht wurde jeweils ein Mittelwert gebildet 

Versuchsbezeichnung RA 1 RA 2 RA 1 RA 2 

Aufbau 
ohne 

Sperre mit Sperre 
ohne 

Sperre mit Sperre 
Parameter Wassergehalt Gew.-% Glühverlust* Gew.-% 

Ausgangsmaterial 10,1 14,9 
oberhalb der Sperre 18,3 ± 0,3 19,6 ± 0,1 23,9 ± 0,5 26,2 ± 0,3 
innerhalb der Sperre   20,1   26,0 
unterhalb der Sperre 19,3 ± 0,1 20,5 ± 0,5 24,3 ± 0,3 26,4 ± 0,1 

* der Glühverlust wurde bei 1050° C ermittelt und bezieht sich auf die Originalsubstanz, d.h. Gv – Wg entspricht der 
Definition des Parameters Glühverlust in der AbfAblV (2001) 
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Eluate 
pH-Wert 

Die pH-Werte im Eluat der Feststoffproben beider Lysimeter liegen in einem engen Band 

zwischen 11,4 und 11,7 (Abb. 82). Nach einer Versuchsdauer von ca. 26 Monaten zum 

Zeitpunkt der dritten Bohrkampagne reagieren die Eluate der Bohrproben im Vergleich zum 

Ausgangsmaterial (pH 11,9) und zu den vorangegangenen Bohrkampagnen etwas weniger 

alkalisch. 

 

Leitfähigkeit und leichtlösliche Spezies (Cl, Na) 

Im Vergleich zum Ausgangsmaterial zeigt sich zunächst für eine Laufzeit von fünf Monaten, in 

der ausschließlich mit Leitungswasser bewässert wurde, eine deutliche Verringerung der 

Leitfähigkeiten von ca. 3 (Ausgangsmaterial) auf min. 1,6 mS/cm in den Eluatproben aus 

beiden Lysimetern (Abb. 83). Für den Blindversuch nehmen die Werte vom Top zur Basis hin 

zu (von 1,6 auf 2,6 mS/cm). Für das Lysimeter mit Sperre wurde auch innerhalb der Sperre 

eine vglw. hohe Leitfähigkeit im Eluat (2,5 mS/cm) festgestellt. Unterhalb der Sperre nehmen 

die Leitfähigkeiten geringfügig ab. Die generelle Erhöhung der Leitfähigkeiten für beide 

Lysimeter bis zur zweiten Bohrkampagne ist auf die Umstellung von einer anfänglichen 

Bewässerung mit Leitungswasser auf eine Bewässerung mit Modellsickerwasser 

zurückzuführen. Der Profilverlauf der beiden Lysimeter ähnelt einander. Dennoch wurde für 

das Lysimeter mit Sperre innerhalb der Sperrschicht mit 2,6 mS/cm der höchste Wert 

gemessen. Unterhalb der Sperrschicht nehmen die Leitfähigkeiten deutlicher ab im Vergleich 

zum Blindversuch (ca. 2,4 mS/cm). In den Eluaten der dritten Bohrkampagne waren die 

Leitfähigkeiten wieder etwas rückläufig. Es ist jedoch bemerkenswert, dass für den 

Blindversuch die topnächsten Proben (1f, 2f) vglw. hohe Eluat-Leitfähigkeiten aufweisen (ca. 

2,5 mS/cm) und zur Basis hin die Werte niedriger werden (ca. 2,2 mS/cm). Für das Lysimeter 

mit Sperre hingegen zeigt sich im Profilverlauf kaum ein Unterschied und die Bohrproben sind 

weniger salzreich im Vergleich zum Blindversuch. Lediglich die basisnächste Probe (4f) weist 

einen geringfügig erhöhten Wert auf (ca. 2,3 mS/cm).  

Für den Parameter Cl (Abb. 84) zeigte sich für beide Lysimeter bis zur zweiten Bohrkampagne 

(Laufzeit ca. 12 Monate) kaum eine Differenzierung zum Ausgangsmaterial (250 mg/L). Auch 

im Profilverlauf beider Lysimeter ist kein nennenswerter Unterschied zu erkennen. Tendenziell 

wurden im basisnahen Bereich, entsprechend der natürlichen Entwicklung, höhere Cl-

Eluatkonzentrationen gemessen. Nach der dritten Bohrkampagne (Laufzeit 26 Monate) hat 

sich insbesondere für den Blindversuch eine starke Aufkonzentration herauskristallisiert. 

Analog der Leitfähigkeit wurden hier die höchsten Cl-Konzentrationen mit max. 630 mg/L in 

den topnahen Proben (1f, 2f) und geringere Werte an der Basis (min. 430 mg/L) festgestellt. 

Für den Versuch mit Sperre sind die Cl-Konzentrationen insgesamt geringer (350 – 400 mg/L). 
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Entlang des Bohrprofils nehmen die Cl-Eluatkonzentrationen vom Top zur Basis hin nur 

geringfügig zu.  

Für den Parameter Na zeigt sich für den Blindversuch ebenfalls eine Anreicherung mit der 

Zeit, infolge der Bewässerung mit Modellsickerwasser (Abb. 85). Insbesondere für die 

oberflächennächste Probe des Blindversuchs wurde eine max. Konzentration von ca. 290 

mg/L nach der dritten Bohrkampagne bestimmt. Für das Lysimeter mit Sperre zeigt sich im 

zeitlichen Verlauf kaum ein Unterschied. Die Verteilung entlang des Bohrprofils ist nach allen 

drei Bohrkampagnen ähnlich.  

 

Weitere Parameter 

Der Parameter Ca (Abb. 86) zeigt im Vergleich zum Ausgangsmaterial (200 mg/L) eine starke 

Konzentrationsabnahme mit Werten im Bereich von ca. 60 bis 110 mg/L für die Eluate aus 

beiden Lysimetern. Generell sind die Ca-Eluatkonzentrationen für den Blindversuch höher im 

Vergleich zum Versuch mit Sperre. Trotz der Zugabe von Ca mit dem Modellsickerwasser ist 

die Anreicherung mit fortwährender Versuchsdauer geringfügig. Der Verlauf entlang des 

Bohrprofils ist für beide Lysimeter für die ersten beiden Bohrkampagnen vergleichbar. Für 

beide Lysimeter zeigt sich entgegen den Parametern Cl und Na tendenziell eine 

Konzentrationsabnahme vom Top zur Basis. Für das Lysimeter mit Sperre wurden 

insbesondere innerhalb der Sperrschicht vglw. geringe Ca-Konzentrationen (ca. 63 mg/L) 

beobachtet. Nach der dritten Bohrkampagne bestätigen sich für den Blindversuch die starke 

Anreicherung am Top und eine Abnahme zur Basis hin. Für das Lysimeter mit Sperre 

hingegen fällt auf, dass die Verteilung an Ca entlang des Bohrprofils wiederum sehr 

gleichmäßig ist (Werte zwischen 75 – 80mg/L).  

Bezogen auf den Parameter SO4 (Abb. 87) nehmen die Eluatkonzentrationen der Bohrproben 

mit fortschreitender Versuchsdauer im Vergleich zum Ausgangsmaterial (40 mg/L) zu. 

Insbesondere nach der dritten Bohrkampagne (Laufzeit 26 Monate) werden vglw. hohe SO4-

Konzentrationen gemessen (ca. 50 bis 85 mg/L). Für den Blindversuch ist die Verteilung 

entlang des Profils zu diesem Zeitpunkt sehr gleichmäßig. Für das Lysimeter mit Sperre ist es 

bemerkenswert, dass sowohl nach der ersten Bohrkampagne (Laufzeit fünf Monate) als auch 

nach der dritten Bohrkampagne die Probe direkt unterhalb der Sperre besonders stark an 

Sulfat angereichert ist (max. 94 mg/L).  

Für den Parameter Cu (Abb. 88) nehmen die Eluatkonzentrationen mit fortwährender 

Versuchsdauer tendenziell ab (von max. 0,65 auf min. 0,1 mg/L). Im Ausgangsmaterial betrug 

die Cu-Konzentration 0,43 mg/L. Speziell nach der dritten Bohrkampagne wurden für den 

Versuch ohne Sperre die niedrigsten Konzentrationen bestimmt. Entlang des Bohrprofils 

nehmen jedoch die Cu-Eluatkonzentrationen vom Top zur Basis zu. Für den Versuch mit 

Sperre sind die Eluatkonzentrationen deutlich höher und speziell oberhalb der Sperre ist die 

Cu-Konzentration im Eluat hoch. Diese Tendenz wurde auch nach der zweiten Bohrkampagne 
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(Laufzeit ca. 12 Monate) sehr ausgeprägt beobachtet. Dieselbe Entwicklung wurde auch für 

Mo festgestellt (Abb. 89). Für das Lysimeter mit Sperre wurde nach der dritten Bohrkampagne 

oberhalb der Sperrschicht eine markante Erhöhung der Mo-Konzentration im Eluat festgestellt 

(max. 0,4 mg/L). Für den Blindversuch entsprechen die Mo-Konzentrationen in den topnahen 

Proben dem Ausgangsmaterial (0,11 mg/L). Die Probe an der Basis (4f) weist ebenfalls einen 

vglw. hohen Mo-Wert auf (0,33 mg/L). Bezogen auf den Parameter Pb (Abb. 90) wurde 

lediglich für den Blindversuch nach der ersten Bohrkampagne in der basisnahen Probe ein 

außergewöhnlich hoher Pb-Wert (4,5 mg/L) gemessen. Dies kann durch einzelne Partikel, z.B. 

in Form von Legierungen oder auch durch Mineralsalze wie Bleisulfat bedingt sein. Auch nach 

der zweiten Bohrkampagne waren für den Blindversuch die Pb-Konzentrationen noch leicht 

erhöht (max. 0,6 mg/L). Für das Ausgangsmaterial und die weiteren Feststoffproben lagen die 

Werte im Bereich < 0,08 mg/L. Für den Parameter Zink (Abb. 91) lagen die Werte 

überwiegend im Bereich zwischen 0,019 – 0,130 mg/L und waren somit z.T. geringer im 

Vergleich zum Ausgangsmaterial (0,097 mg/L). In einer Einzelprobe (Lysimeter mit Sperre, 

Probe 2f, Bohrkampagne 1) wurde ein Wert von 0,25 mg/L ermittelt. Zwischen Blindversuch 

und Lysimeter mit Sperre sind für die Parameter Pb und Zn keine signifikanten Unterschiede 

zu erkennen.  

 

Ausgangsmaterial (BA = bottom ash); f = Feststoffprobe; Sperrschicht (SFK) 
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Abb.80: Wassergehalt (Gew.-%) entlang des 
Versuchsprofils, Großlysimeter Raindorf 

 Abb.81: Glühverlust (Gew.-%) entlang des 
Versuchsprofils, Großlysimeter Raindorf 
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 Abb.83: Leitfähigkeit im Eluat (mS/cm) entlang des 
Versuchsprofils, Großlysimeter Raindorf 
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 Abb.85: Na-Konzentration im Eluat (mg/L) entlang 
des Versuchsprofils, Großlysimeter 
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des Versuchsprofils, Großlysimeter 
Raindorf 
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Abb.88: Cu-Konzentration im Eluat (mg/L) entlang 
des Versuchsprofils, Großlysimeter 
Raindorf 

 Abb.89: Mo-Konzentration im Eluat (mg/L) entlang 
des Versuchsprofils, Großlysimeter 
Raindorf 
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Raindorf 

 Abb.91: Zn-Konzentration im Eluat (mg/L) entlang 
des Versuchsprofils, Großlysimeter 
Raindorf 

 

Sickerwasserentwicklung 
Die Tabelle 28 gibt einen Überblick über die Wasserbilanz der beiden Lysimeter Raindorf.  

 
Tab. 28: Bewässerungs- und Austragsmengen für die Großlysimeter Raindorf ohne (RA1, Blindversuch) und mit 

Sperre (RA2) im Vergleich 

Versuchsbezeichnung RA1 RA2 
Sperrschicht ohne mit 
Befüllung Schlacke A 
Bewässerung Modellsickerwasser 
Dauer in Wochen 131 
Eingebaute Schlackemenge in kg 14.200 14.200 
Bewässerungsmenge in L pro Monat 47,7 47,7 
Bewässerungsmenge insgesamt in L 1.440 1.440 
Austrag Sickerwasser in L 408 318 
kumulierter Austrag in % 28,3 22,1 
kumulierter Rückhalt in L pro kg Schlacke 0,285 0,292 

 

In das Lysimeter ohne Sperre wurden insgesamt 14,2 Tonnen MV-Schlacke eingebaut und in 

das Lysimeter mit Sperre 13,4 Tonnen und hier zusätzlich als Sperrschicht 0,8 Tonnen 
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Schlacke-Feinkorn. Die Gesamtbewässerungsmenge über den Versuchszeitraum von 910 

Tagen betrug 1.440 Liter. Seit Versuchsbeginn wurden aus dem Lysimeter ohne Sperre 

insgesamt 408 Liter ausgetragen. Das entspricht 28,3 % der Bewässerungsmenge. Für das 

Lysimeter mit Sperre war der Austrag mit 318 Liter geringer. Das entspricht 22,1 % der 

Bewässerungsmenge. Der kumulierte Wasserrückhalt für das Lysimeter mit Sperre ist 

geringfügig höher (0,292 L/kg Schlacke) – analog den Säulenversuchen der VA-A. 

 

Austrag an Sickerwasser 

Innerhalb der ersten Phase bis 160 Versuchstage ist der Austrag an Sickerwasser fast so 

hoch wie die Bewässerungsmenge von 50 L/Woche (Abb. 92). Die Reduktion der 

Bewässerungsmenge auf 10 L/Woche führt zu einer raschen Abnahme der Austragsmenge 

auf weniger als fünf Liter, mit Sperre sogar auf weniger als zwei Liter. Der erneute Wechsel 

auf 20L/2 Wochen nach 290 Tagen führt zu einem schwankenden Sickerwasseraustrag. Es ist 

auffällig, dass die Entwicklung der Sickerwassermengen für beide Lysimeter gleich verläuft. 

Die Spitzenwerte an Austragsmengen (max. 30 Liter) nach 719 Tagen sind darauf 

zurückzuführen, dass während der dritten Bohrkampagne der Kunststoffdeckel über einige 

Tage offen blieb. Zu diesem Zeitpunkt hat es zeitweise stark geregnet und der Anteil an 

Niederschlag führte zu einem erhöhten Sickerwasseraustrag. Nachdem das 

Bewässerungsmedium von Modellsickerwasser auf Leitungswasser umgestellt wurde (nach 

825 Tagen), wurde etwas zeitverzögert deutlich weniger an Sickerwasser (min. 0,6 L) 

ausgetragen. Diese Entwicklung wurde für beide Lysimeter beobachtet. Geringe 

Austragsmengen wurden jedoch während der Versuchsdurchführung aufgrund hoher 

Verdunstung während der Sommermonate mehrmals beobachtet. 

 

pH-Wert 

Die wechselnden Bewässerungsmodi wirken sich auf die Entwicklung des pH-Wertes im 

Sickerwasser aus. Generell sind die pH-Werte im Sickerwasser aus dem Blindversuch höher 

im Vergleich zum Lysimeter mit Sperre (Abb. 93). In der ersten Phase (Bewässerung mit 

Leitungswasser - 50 L/Wo), liegen die pH-Werte für den Blindversuch bei etwa pH 12 und für 

das Lysimeter mit Sperre im Bereich zwischen pH 10 bis 11,5. Die zweite Phase umfasst den 

Zeitraum ab 160 bis 290 Versuchstage, in dem mit 10 L/Woche Modellsickerwasser bewässert 

wurde. Für den Blindversuch bleiben die pH-Werte im Sickerwasser hoch (11,5 – 12). Für das 

Lysimeter mit Sperre führt die Sickerwassermengenreduktion zu einer kontinuierlichen 

Abnahme des pH-Werts auf Minimalwerte von 8,9. Danach steigen die pH-Werte im 

Sickerwasser aber stetig an. Die dritte Phase umfasst den Zeitraum ab 290 Tagen, damit 

einher geht die Umstellung des Bewässerungsmodus auf 20 Liter alle 14 Tage. Erst diese 

Umstellung führt für den Blindversuch zu einer abrupten Abnahme des pH-Wertes auf 9,7. In 

der Folgezeit steigen die pH-Werte geringfügig an. Auf das Lysimeter mit Sperre hat diese 
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Umstellung keine Auswirkung. Es ist jedoch sehr auffällig, dass ab hier die Entwicklung der 

pH-Werte im Sickerwasser für beide Lysimeter gleich verläuft. Zum Zeitpunkt der dritten 

Bohrkampagne (ca. 720 Tage) liegen die pH-Werte im Sickerwasser aus dem Blindversuch 

bei 9,9 und für das Lysimeter mit Sperre bei 9,8. Bis zu einer Laufzeit von 830 Tagen wird ein 

Anstieg der pH-Werte beobachtet. Erst die Umstellung auf Leitungswasser führt erneut zu 

einer kurzzeitigen und geringfügigen Abnahme. In den letzten 40 Versuchstagen steigt der 

pH-Wert im Sickerwasser aus beiden Lysimetern wiederum kontinuierlich an.  

 

Leitfähigkeit und lösliche Salze (Cl, Na) 

Die Leitfähigkeiten beider Sickerwässer bewegen sich zumeist zwischen 30 bis 45 mS/cm 

(Abb. 94). Die Sickerwässer aus dem Blindversuch weisen einen geringeren Salzgehalt auf 

als für das Lysimeter mit Sperre. Es ist bemerkenswert, dass die Entwicklung der Leitfähigkeit 

im Sickerwasser für beide Lysimeter von Beginn an überwiegend gleich verläuft. Der Wechsel 

des Bewässerungsmodus von 50 L/Woche Leitungswasser auf 10 L/Woche 

Modellsickerwasser führt für den Blindversuch zu keiner unmittelbaren Änderung der 

Entwicklung der Leitfähigkeiten. Erst nach 275 Versuchstagen nimmt die Leitfähigkeit ohne 

ersichtlichen Zusammenhang abrupt ab. Dies ist auch für das Lysimeter mit Sperre deutlich zu 

erkennen. Jedoch führte hier die Sickerwassermengenreduktion unmittelbar zu einer 

geringfügigen aber kontinuierlichen Abnahme der Leitfähigkeit. Die erneute Umstellung auf 

den doppelten Salzbetrag in doppelter Zeitabfolge zeigte keine unmittelbare Wirkung. In den 

Wintermonaten (400 – 525 Tage) ist die Entwicklung der Leitfähigkeit sehr sprunghaft. Es 

kann kein offensichtlicher Zusammenhang zwischen Leitfähigkeit und Menge an 

Sickerwasseraustrag hergestellt werden. In der Folgezeit bis zum Zeitpunkt der dritten 

Bohrkampagne (Laufzeit 719 Tage) bleiben die Leitfähigkeiten im Sickerwasser auf einem 

konstanten Niveau: für den Blindversuch bei ca. 39 mS/cm und für den Versuch mit Sperre bei 

ca. 43 mS/cm. Nach der dritten Bohrkampagne steigen die Leitfähigkeiten im Sickerwasser 

aus beiden Lysimetern erneut an und erreichen beide nach 910 Tagen einen Wert von 

48 mS/cm.  

Die Entwicklung der Parameter Cl und Na im Sickerwasser korreliert bis zu einer 

Versuchsdauer von 550 Tagen sehr gut mit der Leitfähigkeit (Abb. 95 und 96). Die Cl-

Konzentrationen liegen in einem Bereich zwischen 8 – 20 g/L und die Na-Konzentrationen 

zwischen 4 – 10 g/L. Bezogen auf den Parameter Cl bleiben nach den Wintermonaten (400 – 

525 Versuchstage) für den Blindversuch die Konzentrationen auf einem konstanten Niveau, 

das sich bis zu Versuchsende (910 Tage) nur geringfügig verändert (im Mittel 13 g/L). Für den 

Versuch mit Sperre erreichen die Cl-Konzentrationen nach den Wintermonaten vglw. hohe 

Werte (max. 18 g/L). Nach 750 Tagen gleichen sich die Entwicklungen beider Lysimeter an. 

Für den Parameter Na steigen nach den Wintermonaten für beide Lysimeter die 

Konzentrationen kontinuierlich an, wobei die Na-Konzentrationen zwischen 750 und 850 
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Tagen auf einem sehr konstanten Niveau bleiben. Zu Versuchsende liegen die Na-

Konzentrationen im Bereich von 10 g/L. 

 

Weitere Parameter 

Mit fortwährender Versuchsdauer wird der Parameter Ca im Vergleich zu den 

Säulenversuchen und Testfeldern vglw. stark und kontinuierlich ausgewaschen (von max. 

400 mg/L auf ca. 1 mg/L). Die Entwicklungen der Ca-Konzentrationen in den Sickerwässern 

aus den beiden Lysimetern verlaufen gegen Versuchsende näherungsweise gleich, bei 

Werten um 1 bis 3 mg/L (Abb. 97).  

Bezogen auf den Parameter SO4 ist die Sickerwasserentwicklung für die beiden Lysimeter 

sehr unterschiedlich (Abb. 98). Für den Blindversuch liegen die SO4-Konzentrationen zu 

Beginn bei etwa 0,1 mg/L. Für das Lysimeter mit Sperre startet der Versuch bei vglw. hohen 

SO4-Werten zwischen 1 bis 2 g/L, die auch bis zu Versuchsende etwa auf diesem Niveau 

bleiben. Mit Reaktionsfortschritt nähert sich die SO4-Konzentration im Sickerwasser aus dem 

Blindversuch nur langsam diesem Niveau an. Nach 910 Tagen betrug die Konzentration 

0,5 g/L.  

Auch für den Parameter Cu, dem Schwermetall mit den höchsten Sickerwasserkonzen-

trationen (bis 10 mg/L), zeigte sich ein deutlicher Unterschied zwischen beiden Lysimetern 

(Abb. 99). Trotz anfänglich gleicher Ausgangskonzentrationen (etwa 6 mg/L) wurden im 

Versuchsverlauf im Sickerwasser aus dem Blindversuch deutlich höhere Cu-Konzentrationen 

analysiert als im Lysimeter mit Sperre. Für das Lysimeter mit Sperre waren starke zyklische 

Schwankungen der Cu-Konzentrationen sehr bemerkenswert. Die Maximalwerte fielen stets in 

den Sommermonaten an und näherten sich dann dem Niveau des Blindversuchs. In den 

Wintermonaten waren die Cu-Konzentrationen viel geringer.  

Die Mo-Konzentrationen stiegen in den Sickerwässern aus beiden Lysimetern von minimal 1,6 

(für den Blindversuch) auf etwa 4 mg/L an (Abb. 100). Die Entwicklung ist vergleichbar mit der 

der leichtlöslichen Spezies (Cl, Na). Es besteht ein Zusammenhang zwischen der Mo- und 

Ca-Konzentration. Vor allem bei geringen Ca-Konzentrationen ist das Molybdän vglw. mobil. 

Weitere Schwermetalle waren wenig auffällig. Die Pb-Konzentrationen (Abb. 101) bewegten 

sich zu Versuchsbeginn bis etwa 400 Versuchstage großteils in einem Bereich zwischen 0,09 

– 0,25 mg/L. Generell waren die Pb-Konzentrationen aus dem Lysimeter mit Sperre im 

Vergleich zum Blindversuch erhöht. In der Folgezeit lagen die Werte hauptsächlich unterhalb 

der Bestimmungsgrenze. Es ist jedoch auffällig, dass in den letzten Sickerwasserproben die 

Pb-Werte wiederum erhöht waren (ca. 0,1 mg/L). Die Salzzugabe führte über die Versuchszeit 

für den Parameter Zn zu einer geringfügigen Zunahme der Konzentration bis max. 0,4 mg/L 

(Abb. 102). Insgesamt war die Entwicklung größeren Schwankungen unterworfen. Nach der 

Umstellung von Leitungswasser auf Modellsickerwasser wurde ebenfalls deutlich mehr an Zn 

mobilisiert. Diese Tendenz war für den Blindversuch deutlicher ausgeprägt und zu 
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Versuchsende betrugen die Zn-Konzentrationen ca. 1,0 mg/L und für das Lysimeter mit 

Sperre etwa 0,3 mg/L. 

 
 Zeitraum bis BK I;   Zeitraum bis BK II;   Zeitraum bis BK III 
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Abb.92: Austrag an Sickerwasser (L) aus den 

Großlysimetern Raindorf 
 Abb.93: pH-Wert im Sickerwasser aus den 

Großlysimetern Raindorf 
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Abb.94: Leitfähigkeit im Sickerwasser (mS/cm) aus 

den Großlysimetern Raindorf 
 Abb.95: Cl-Konzentration im Sickerwasser (g/L) 

aus den Großlysimetern Raindorf 
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Abb.96: Na-Konzentration im Sickerwasser (g/L) 
aus den Großlysimetern Raindorf 

 Abb.97: Ca-Konzentration im Sickerwasser (mg/L) 
aus den Großlysimetern Raindorf 
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Abb.98: SO4-Konzentration im Sickerwasser (g/L) 
aus den Großlysimetern Raindorf  

 Abb.99: Cu-Konzentration im Sickerwasser (mg/L) 
aus den Großlysimetern Raindorf 
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Abb.100: Mo-Konzentration im Sickerwasser (mg/L) 
aus den Großlysimetern Raindorf 

 Abb.101: Pb-Konzentration im Sickerwasser (mg/L) 
aus den Großlysimetern Raindorf 
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Abb.102: Zn-Konzentration im Sickerwasser (mg/L) 
aus den Großlysimetern Raindorf 

  

 

Frachtenberechnungen 
Der Frachtenaustrag ist bei beiden Lysimetern für die leichtlöslichen Salze in etwa gleich hoch 

(Tab. 29). Die über das Sickerwasser zugegebenen Ionen Cl, SO4, Na und Ca reichern sich in 

beiden Lysimetern an. Für die Lysimeter Raindorf begünstigt das kleine L/S-Verhältnis von 0,1 

im Vergleich zu den Säulenversuchen mit L/S von 1,9 eine Anreicherung der leichtlöslichen 

Spezies. Die Anreicherung von Na und Cl im Lysimeter mit Sperre ist etwas höher als beim 
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Blindversuch, dafür ist die Anreicherung an Ca und Sulfat etwas geringer. Der Parameter Cu 

wird über Sickerwasser aus dem Lysimeter mit Sperre im Vergleich zum Blindversuch weniger 

stark ausgetragen. Die restlichen Schwermetalle werden nur zu sehr geringen Anteilen 

ausgetragen. Die ermittelten Frachtenbeträge sind meist so gering, dass sie nicht als 

signifikant anzusehen sind.  

 
Tab. 29: Zusammenfassung der Frachtenberechnung, Abreicherung bzw. Anreicherung in % bezogen auf die 

Ausgangsmenge, Blindversuch (RA1) und Versuch mit Sperre (RA2) 

Versuchsbezeichnung RA1 
ohne Sperre

RA2 
mit Sperre 

Versuchsanordnung Lysimeter Raindorf 
Dauer in Wochen 130 
Bewässerung MSW/LW 
Parameter Proz. Ab-/Anreicherung 
Cl +6,78 +7,07 
SO4 +0,50 +0,41 
Na +3,12 +3,29 
Ca +0,059 +0,058 
Cu -0,003 -0,001 
Mo -0,54 -0,53 
Pb -0,0002 -0,0001 
Zn -0,00004 -0,00002 

 

4.3.4 Fazit zur Wirkung von salzreichen Lösungen 
Die Ergebnisse zu den Säulenversuchen der VA-A, Testfelder Eberstetten und Lysimeter in 

Raindorf haben gezeigt, dass die Salzkonzentration im Bewässerungsmedium eine wichtige 

Rolle spielt. Folgende Cl-Konzentrationen wurden den einzelnen Versuchsanordnungen über 

salzreiche Lösungen zugeführt: 0,7 g/L den Säulenversuchen über das Modellsickerwasser, 

3,9 g/L dem Testfeld EB3 über das Deponiesickerwasser, 11,8 g/L dem Testfeld EB4 über das 

Konzentrat aus der Umkehrosmose sowie 20,2 g/L den Lysimetern in Raindorf über das 

Modellsickerwasser. Zusammen mit dem unterschiedlichen L/S-Verhältnis der einzelnen 

Versuchsanordnungen beeinflusst die Zusammensetzung des Bewässerungsmediums direkt 

die Feststoff- und Sickerwasserentwicklung.  

 

Feststoffentwicklung: 
 Zugabe von salzreichen Lösungen: im Vergleich zu Versuchsreihen, die mit 

Leitungswasser bewässert wurden oder dem natürlichen Niederschlag ausgesetzt 

waren, hat die Zugabe von salzreichen Lösungen generell höhere Wassergehalte in den 

Feststoffproben bewirkt, d.h. das Wasserrückhaltevermögen hat sich verstärkt und v.a. 

in Horizonten unterhalb der Sperre wurde ein vglw. trockenes Milieu begünstigt.  

 Salzakkumulationen entlang des Profils: für die Säulenversuche der VA-A wurden diese 

v.a. unterhalb der Sperrschicht sowohl für eine Bewässerung mit Leitungswasser als 

auch mit Modellsickerwasser festgestellt. Die Erhöhung der Salzkonzentration für das 
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Testfeld EB4 mit Sperre verstärkt eine Salzanreicherung und v.a. in topnahen Proben 

wurden erhöhte Eluat-Leitfähigkeiten festgestellt. Für die Großlysimeter in Raindorf mit 

Sperre wurde nach der dritten Bohrkampagne im Bohrprofil eine gleichmäßige 

Verteilung festgestellt und für den Blindversuch hingegen eine deutliche 

Salzakkumulation der topnahen Probe 

 

Sickerwasserentwicklung 
 Bewässerungsmenge: eine Wassermengenreduktion, wie sie für die Lysimeter in 

Raindorf vorgenommen wurde, hat deutlichen Einfluss auf die Sickerwasserentwicklung, 

z.B. Entwicklung des pH-Werts insbesondere für den Blindversuch drastischer Abfall im 

pH-Wert  

 Sickerwassermengen: für die Säulenversuche wurden als Folge der Bewässerung mit 

Modellsickerwasser geringere Menge an Sickerwasser ausgetragenen; für die 

Sickerwasserentwicklung der Lysimeter Raindorf haben Temperaturunterschiede die 

Mengen beeinflusst: für Dezember sowie Juni liegt generell ein Minimum an 

Sickerwasseraustrag vor 

 Temperaturunterschiede: für die Lysimeter in Raindorf zeigt sich für den Parameter Cu 

deutlich, dass die Entwicklung jahreszeitliche Schwankungen unterworfen ist - 

Minimalwerten beziehen sich auf die Sommermonate und Maximalwerte auf die 

Wintermonate; es ist erstaunlich das die Entwicklung nur Lysimeter mit Sperre betrifft 

 pH-Werte im Sickerwasser: für die Säulenversuche und die Testfelder in Eberstetten 

wurden für die Versuche mit Sperre höhere pH-Werte gemessen im Vergleich zum 

Blindversuch; für die Lysimeter in Raindorf hingegen ist es umgekehrt; für die 

Säulenversuche haben sich die pH-Werte mit fortschreitender Versuchsdauer zu deutlich 

niedrigeren Werten verlagert, eine Bewässerung mit MSW hat zudem zu niedrigeren 

Werten geführt; für die Testfelder in Eberstetten wurden pH-Werte in einem schmalen 

Band zwischen pH 6-9 gemessen und für die Lysimeter in Raindorf wurden 

Trendwechsel im Versuchsverlauf festgestellt – nach anfänglich alkalischen pH-Werten 

nehmen die pH-Werte stark ab und liegen zu Versuchsende bei pH 10 

 Salzzugabe in Form von salzreichen Lösungen: für die Säulenversuche wurde ein 

Anstieg der Leitfähigkeit im Sickerwasser verzeichnet, zudem haben sich die 

Auswaschraten mit fortschreitender Versuchszeit verringert; für die Testfelder in 

Eberstetten bewirkt die Zugabe von UO deutlich höhere Salzgehalte, für die Lysimeter in 

Raindorf steigen die Leitfähigkeiten im Sickerwasser mit zunehmender Versuchszeit an 

 Parameter Ca: für die Säulenversuche wurde mit Reaktionsfortschritt ein Anstieg an Ca 

verzeichnet; für die Testfelder in Eberstetten wurden generell sehr hohe Konzentrationen 

gemessen und die Tendenz ist ebenfalls ansteigend; für die Lysimeter in Raindorf 

hingegen wurde Ca verstärkt über das Sickerwasser ausgetragen  
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Zeitraffermaßnahmen 
 Zugabe von salzreichen Lösungen: Abweichende Entwicklungen im Sickerwasser 

zwischen Blindversuch und Versuch mit Sperrschicht treten früher ein und die 

beobachteten chemischen und mineralogischen Reaktionen kommen generell stärker 

zum Tragen, d.h. die Wirkung der Sperre kann innerhalb einer kürzeren Zeit sichtbar 

gemacht werden 

 

Frachtenberechnung: 
 Zugabe von salzreichen Lösungen: für die Säulenversuche ist bemerkenswert, dass 

trotz der Salzzugabe in Form von MSW insgesamt prozentual weniger austragen wurde. 

Für die Testfelder in Eberstetten war die Auswaschung aufgrund des kleineren L/S-

Verhältnisses deutlich schwächer und für die Lysimeter in Raindorf hat sich gezeigt, 

dass eine Auswaschung nur für die Schwermetalle stattfand 

 Anreicherung: für die Säulenversuche konnte bzgl. der Parameter Ca und SO4 sowie Zn 

und Pb durch die Salzzugabe in Form von MSW sogar eine Anreicherung innerhalb der 

Säule festgestellt werden, dies trifft auch für das Testfeld EB4 (Sperre, UO) für Cl, SO4, 

Na) und für die Lysimeter in Raindorf für Cl, Na, Ca, SO4 

 Wirkung der Sperre: für den Blindversuch wurden im Vergleich zum Säulenversuch mit 

Sperre - analog den LW-Versuchen - Cl und Na stärker zurückgehalten 
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4.4 WIRKUNG VON RAUCHGASREINIGUNGSRÜCKSTÄNDEN 

4.4.1 Versuchsanordnung C 
Die Versuchsanordnung C besteht aus einem Blindversuch (Säule ohne Sperrschicht, RBV) 

und einer Säule mit Sperrschicht (RSFK). Die Sperrschicht besteht hier aus Schlacke-

Feinkorn (2-3 cm mächtig) und unmittelbar darüber aus einer Schicht aus 

Rauchgasreinigungsrückständen (RGR, 1 cm mächtig). Mit der Versuchsanordnung C sollte 

eine sehr salzreiche Ausgangssituation (RGR als Sperrschicht) untersucht werden. Die 

Säulenversuche der Versuchsanordnung C wurden noch nicht rückgebaut. Die 

Säulenversuche der VA-C haben eine aktuelle Laufzeit von 544 Tagen. Für sie werden daher 

lediglich die Sickerwässer diskutiert. Bis zu einer Laufzeit von etwa 500 Tagen wurden beide 

Säulen mit Modellsickerwasser bewässert. Danach wurde auf Leitungswasser umgestellt.  

 

Sickerwasserentwicklung 
Die Tabelle 30 gibt einen Überblick über die Wasserbilanz der beiden Säulenversuche der 

Versuchsanordnung C. Die kumulierte Bewässerungsmenge für den beobachteten 

Versuchszeitraum betrug 23 Liter. Davon wurde in Bezug auf den Blindversuch 48% und für 

die Säule mit Sperrschicht mit 47% geringfügig weniger ausgetragen. Das L/S-Verhältnis 

betrug in etwa 1,9 L/kg und liegt damit in einem vergleichbaren Bereich mit den 

Säulenversuchen der Versuchsanordnung A. Die eingebauten Schlackemengen sind in etwa 

gleich groß. Für den Säulenversuch mit Sperrschicht (RSFK) kristallisiert sich heraus, dass 

hier im Vergleich zum Blindversuch der kumulierte Rückhalt an Wasser (in L/kg Schlacke) 

höher ist: 1,06 L/kg (RSFK) und 1,12 L/kg (RBV). 

 
Tab. 30: Bewässerungs- und Austragsmengen für die VA-C ohne (RBV) und mit Sperre (RSFK) im Vergleich 

Versuchsbezeichnung RBV RSFK 
Versuchsanordnung VA-C 
Befüllung Schlacke A 
Bewässerung Modellsickerwasser 
Dauer in Wochen 77 
Eingebaute Schlackemenge in kg 17,5  16,5 
Bewässerungsmenge in L pro Monat 1,2  1,2 
Bewässerungsmenge insgesamt in L 23,1  23,1 
Austrag Sickerwasser in L 11,1  10,9 
kumulierter Austrag in % 48,2 47,2 
kumulierter Rückhalt in L pro kg Schlacke 1,06 1,12 

 

Sickerwasseraustrag 

Der Austrag an Sickerwasser ist für beide Säulen vergleichbar (Abb. 103). Für die Säule ohne 

Sperre werden durchschnittlich 145 mL ausgetragen und für den Versuch mit Sperre und RGR 

143 mL. Phasenweise, etwa nach 100 bis 225 Tagen bzw. nach 425 Tagen, wird für die Säule 

mit Sperrschicht und RGR vglw. weniger Sickerwasser ausgetragen.  
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pH-Wert 

Im Sickerwasser aus den Säulen der VA-C nehmen die pH-Werte mit fortwährender 

Versuchsdauer ab, für den Versuch ohne Sperre von 10,7 auf 6,9 und für den Versuch mit 

Sperre und RGR von 11,5 auf 9,4 (Abb. 104). Für die Versuchsanordnung ist sehr auffällig, 

dass ab einer Versuchsdauer von 100 Tagen das Sickerwasser aus dem Blindversuch 

deutlich niedrigere pH-Werte aufweist, als der Versuch mit Sperre und RGR. Bei den zuvor 

diskutierten Versuchen (Säulenversuche der Versuchsanordnung A und Testfelder 

Eberstetten) lagen die pH-Werte immer in einem vergleichbaren Bereich bzw. in den 

Sickerwässern aus den Lysimetern Raindorf wurden für den Blindversuch höhere pH-Werte 

ermittelt.  

 

Leitfähigkeit und leichtlösliche Spezies (Cl, Na) 

Die Leitfähigkeit nimmt im Sickerwasser mit fortwährender Versuchsdauer ab (Abb. 105). Zu 

Versuchsbeginn wurden für den Blindversuch etwa 65 mS/cm und nach 19 Monaten Laufzeit 

etwa 4,5 mS/cm gemessen. Der Einbau von RGR für die Säule mit Sperre bewirkte zu 

Versuchsbeginn eine deutlich erhöhte Leitfähigkeit mit 220 mS/cm. In der Folgezeit wurden 

jedoch für die Leitfähigkeit im Sickerwasser aus den beiden Säulen ähnliche Werte 

festgestellt. Es ist bemerkenswert, dass phasenweise entweder für den Blindversuch oder für 

die Säule mit Sperre und RGR höhere Werte gemessen wurden. Ab einer Versuchsdauer von 

460 Tagen fällt auf, dass das Sickerwasser aus der Säule mit Sperre und RGR konzentrierter 

ist. Die Umstellung des Bewässerungsmodus auf Leitungswasser wirkt sich im beobachteten 

Versuchszeitraum nicht auf die Entwicklung der Leitfähigkeit aus. 

Bezogen auf den Parameter Cl ist speziell in den ersten 300 Tagen das Sickerwasser aus 

dem Versuch mit Sperre und RGR höher konzentriert als das Sickerwasser aus dem 

Blindversuch. Über die RGR werden kontinuierlich leichtlösliche Spezies dem Sickerwasser 

zugeführt (Abb. 106). Für den Versuch ohne Sperre nehmen die Cl-Konzentrationen von 24,8 

auf 1,2 mg/L ab und für den Versuch mit Sperre und RGR von 128 auf 1,4 mg/L. Die 

Bewässerung mit Leitungswasser führt zu einem deutlichen Abfall der Cl-Konzentration für 

beide Versuche.  

Durch die Wirkung der RGR ist auch die erste Sickerwasserprobe für den Versuch mit Sperre 

stark an Na angereichert (32 mg/L). Überwiegend verhält sich die Na-Konzentration ähnlich 

wie die Cl-Konzentration im Sickerwasser (Abb. 106).  

 

Weitere Parameter 

Für Ca zeigt sich beim Versuch mit Sperre deutlich die Wirkung der RGR (Abb. 107). In einer 

Anfangsphase von 50 Tagen ist die Ca-Konzentration im SW aus dem Versuch ohne Sperre 

um ein Vielfaches geringer (max. 1,5 mg/L), während für den Versuch mit Sperre die 

Konzentration von 21.000 mg/L auf 2,4 mg/L abnimmt. Ähnlich den Säulen aus der 
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Versuchsanordnung A erhöht sich auch hier die Ca-Konzentration mit fortwährender 

Versuchsdauer. Dabei ist das Sickerwasser aus dem Blindversuch überwiegend 

konzentrierter. Hohe SO4-Konzentrationen wurden nur in den ersten beiden 

Sickerwasserproben des Versuchs mit Sperre und RGR analysiert (max. 1,8 g/L). In der 

Folgezeit schwanken die SO4-Konzentrationen für den Versuch ohne Sperre zwischen 0,4 

und 1,3 mg/L und für den Versuch mit Sperre und RGR zwischen 0,1 und 1,2 mg/L (Abb. 

108). Die Umstellung auf eine Bewässerung mit Leitungswasser führte zu deutlich geringeren 

SO4-Konzentrationen. Dies gilt auch für die Parameter Cu und Mo (beide Abb. 109). Für Cu 

zeigt sich in den Sickerwässern aus beiden Säulen eine kontinuierliche Auswaschung von 

anfänglich 20 auf 1 mg/L. Das Sickerwasser aus dem Versuch mit Sperre und RGR ist 

überwiegend konzentrierter. Für den Parameter Mo nimmt die Konzentration von 12,6 auf 0,8 

mg/L ab. Lediglich zu Versuchsbeginn bis etwa 100 Tage war das Sickerwasser aus dem 

Blindversuch konzentrierter. Für den Parameter Pb (Abb. 110) liegen die Werte ab 130 Tagen 

unterhalb der Bestimmungsgrenze (<0,08 mg/L). Eine Einzelmessung für die erste 

Sickerwasserprobe aus dem Lysimeter mit Sperre und RGR ergab eine vglw. hohe Pb-

Konzentration mit 0,92 mg/L. Auch für die Säulenversuche der VA-C ist die 

Sickerwasserentwicklung für den Parameter Zn (Abb. 110) starken Schwankungen 

unterworfen. Zum Teil liegen die Werte unterhalb der Bestimmungsgrenze (< 0,02 mg/L). Es 

werden aber auch Maximalwerte um 0,31 mg/L erreicht.  
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Abb.105: Leitfähigkeit im Sickerwasser (mS/cm) aus 
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 Abb.106: Cl- und Na-Konzentration im Sickerwasser 
(g/L) aus den Säulen der VA-C 
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Abb.107: Ca-Konzentration im Sickerwasser (mg/L) 
aus den Säulen der VA-C 

 Abb.108: SO4-Konzentration im Sickerwasser (g/L) 
aus den Säulen der VA-C 
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Abb.109: Cu- und Mo-Konzentration im Sicker-
wasser (mg/L) aus den Säulen der VA-C 

 Abb.110: Pb- und Zn-Konzentration im Sickerwasser 
(mg/L) aus den Säulen der VA-C 

 

Frachtenberechnungen 
Der Frachtenaustrag für den Blindversuch entspricht dem Verlauf des zuvor diskutierten 

Blindversuch IBV3 aus der VA-A (Tab. 31). Für die Säule mit Sperre und RGR ergibt sich ein 

stärkerer Austrag für Cl und Na im Vergleich zum Säulenversuch ISFK3 der VA-A. 

Offensichtlich verstärkt der Beitrag der RGR die Auswaschung leichtlöslicher Spezies. Für 

beide Säulen der VA-C wurde als Folge der Bewässerung mit MSW die Parameter SO4 und 
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Ca innerhalb der Säulen angereichert. Mo wird in der Säule RSFK weniger stark ausgetragen, 

der Parameter Cu hingegen stärker. Eine in etwa gleich hohe Anreicherung ist für Pb und Zn 

gegeben, die über das Modellsickerwasser zugeführt wurden. 

 
Tab. 31: Zusammenfassung der Frachtenberechnung, Abreicherung bzw. Anreicherung  in % in Bezug auf die 

Ausgangsmenge, Blindversuch (RBV), und Versuch mit Sperre (RSFK) 

Versuchsbezeichnung RBV 
ohne Sperre

RSFK 
mit Sperre 

Versuchsanordnung VA-C 
Dauer in Wochen 77 
Bewässerung MSW/LW 
Parameter Proz. Ab-/Anreicherung 
Cl -30,1 -45,9 
SO4 +2,50 +3,76 
Na -19,8 -22,7 
Ca +0,35 +0,30 
Cu -0,033 -0,045 
Mo -9,81 -7,03 
Pb +0,56 +0,59 
Zn +0,067 +0,069 

 
4.4.2 Großlysimeter Waldering 
Ein Lysimeterversuch wurde als Blindversuch (WA 1, ohne Sperre) durchgeführt und in das 

Lysimeter WA2 wurde auf halber Höher eine Sperre aus Schlacke-Feinkorn verdichtet 

eingebaut. Beide Großlysimeter Waldering wurden am Top mit RGR abgedeckt. Hier wurde im 

Besonderen der kontinuierliche Einfluss der leichtlöslichen Salze aus den RGR auf 

Feststoffgehalte bzw. Eluat- und Sickerwasserkonzentrationen untersucht. Bei der 

Betrachtung der Ergebnisse muss in den Vordergrund gestellt werden, dass neben dem SFK 

in mittlerer Höhe auch die RGR in der obersten Schicht der Lysimeter eine Diskontinuität im 

Sinne eines Korngrößenwechsels entlang des vertikalen Versuchsprofils darstellen. Die 

Großlysimeter in Waldering wurden nicht abgedeckt und waren dem natürlichen Niederschlag 

ausgesetzt (min. 1000 mm/Jahr). Im Gegensatz zu den Großlysimetern Raindorf ist daher hier 

eine verstärkte Auswaschung zu erwarten. Im Folgenden sind Wassergehalt, Glühverlust und 

ausgewählte Eluatparameter zu Versuchsbeginn, zum Zeitpunkt der jeweiligen 

Bohrkampagnen (Ergebnisse der Bohrkampagnen I und II) und zu Versuchsende (Ergebnisse 

der Bohrkampagne III) sowie die Konzentrationsverläufe im Sickerwasser kurz dargestellt. Da 

es für diese Lysimeter keine Sickerwassererfassung gab, fehlen in diesem Kapitel die 

Ergebnisse zum summarischen Frachtenaustrag.  

 

Wassergehalt/Glühverlust  
Die Parameter Wassergehalt bzw. Glühverlust haben sich mit fortschreitender Versuchsdauer 

im Vergleich zum Ausgangsmaterial (10,1 bzw. 14,9 Gew.-%) erhöht (Abb. 111 und 112). Für 

den Blindversuch nehmen die Werte mit fortwährender Versuchsdauer von min. 16,3 bzw. 
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21,2 Gew.-% auf max. 22,1 bzw. 27,6 Gew.-% zu. Die Verteilung entlang des Bohrprofils ist 

sehr gleichmäßig. Im Gegensatz zum Blindversuch zeigt sich für das Lysimeter mit Sperre 

eine Diskontinuität sowohl für den Wassergehalt als auch für den Glühverlust. Im Profilverlauf 

liegen die höchsten Werte innerhalb der Sperre vor. Unmittelbar ober- und unterhalb der 

Sperre hingegen sind die Werte deutlich niedriger. Diese Tendenz wurde vor allem nach der 

ersten und dritten Bohrkampagne beobachtet. Es fällt auf, dass auch beim Blindversuch in der 

Probe 2f der dritten Bohrkampagne ein trockeneres Milieu vorliegt. Dies ist vermutlich auf die 

aufstauende Wirkung der RGR zurückzuführen. Die Tabelle 32 zeigt die Wassergehalte und 

Glühverluste der Feststoffproben aus der dritten Bohrkampagne für die beiden Großlysimeter.  

 
Tab. 32: Verteilung der Parameter Wassergehalt und Glühverlust entlang des Versuchsprofils der 3. 

Bohrkampagne, Testfeld ohne Sperre (WA 1) und Testfeld mit Sperre (WA 2) nach 102 Wochen 
Versuchsdauer; Niederschlagszutritt, für die Proben ober- bzw. unterhalb der Sperrschicht wurde jeweils 
ein Mittelwert gebildet 

Großlysimeter WA1 WA2 WA1 WA2 
Aufbau ohne Sperre mit Sperre ohne Sperre mit Sperre 

Parameter Wassergehalt Gew.-% Glühverlust* Gew.-% 
Ausgangsmaterial 10,1 ± 0,8 14,9 ± 2,0 

oberhalb der Sperre 21,3 ± 1,1 22,4 ± 1,4 26,4 ± 1,6 28,1 ± 2,3 
innerhalb der Sperre - 25,6 - 32,0 
unterhalb der Sperre 20,8 ± 0,8 21,2 ± 2,3 26,4 ± 1,6 26,6 ± 2,6 

*der Glühverlust wurde bei 1050° C ermittelt und bezieht sich auf die Originalsubstanz, d.h. Gv – Wg entspricht der 
Definition des Parameters Glühverlust in der (AbfAblV) 
 

Eluate 
pH-Wert 

Die pH-Werte im Eluat der Bohrproben nehmen mit fortwährender Versuchszeit zu. Sie sind 

höher im Vergleich zur Ausgangsschlacke, aber geringer im Vergleich zu den RGR, die einen 

pH-Wert von 12,2 aufweisen (Abb. 113). In der Zunahme des pH-Wertes zeigt sich der 

Einfluss der RGR. Insbesondere nach der dritten Bohrkampagne weisen die Eluate der 

Bohrproben aus beiden Lysimetern die höchsten pH-Werte auf. Zum diesem Zeitpunkt sind für 

das Lysimeter mit Sperre die pH-Werte (max. pH 12) alkalischer als für den Blindversuch 

(max. pH-Wert 11,6). Vom Top zur Basis nehmen die pH-Werte im Eluat für beide Lysimeter 

ab.  

 

Leitfähigkeit und leichtlösliche Salzphasen (Cl, Na) 

Bis zur zweiten Bohrkampagne (Laufzeit 46 Wochen) wird die Leitfähigkeit im Eluat der 

Bohrproben im Vergleich zum Ausgangsmaterial deutlich erhöht (Abb. 114). Dies ist auf den 

Beitrag der RGR zurückzuführen. Frische RGR haben eine Eluat-Leitfähigkeit von 

29,6 mS/cm. Bis zur zweiten Bohrkampagne sind für den Versuch mit Sperre die Eluat-

Leitfähigkeiten höher (max. 3,0 mS/cm) als für den Blindversuch (max. 2,8 mS/cm). Nach der 

dritten Bohrkampagne nimmt die Leitfähigkeit deutlich ab. Für das Lysimeter mit Sperre sind 

die Werte am geringsten (min. 0,7 mS/cm). Für den Blindversuch liegen sie bei min. 
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0,9 mS/cm. Die Verteilung entlang des Versuchsprofils hat sich mit fortwährender 

Versuchsdauer verändert. Für den Blindversuch zeichnete sich zunächst infolge der RGR eine 

Abnahme der Eluat-Leitfähigkeit vom Top zur Basis ab. Für den Versuch mit Sperre hingegen 

kristallisierte sich eine deutliche Salzanreicherung im Bereich der Sperre heraus. Nach der 

zweiten Bohrkampagne zeigte sich für beide Lysimeter indessen eine Zunahme der Eluat-

Leitfähigkeit vom Top zur Basis. Dies zeigt, dass nach 46 Wochen Laufzeit der Beitrag von 

RGR den Auswaschungseffekt nicht mehr ausgleichen konnte. Nach der dritten 

Bohrkampagne wurde für beide Lysimeter eine gleichmäßige Verteilung festgestellt mit den 

niedrigsten Eluat-Leitfähigkeiten (min. 0,7 mS/cm).  

Für die Parameter Cl und Na zeigt sich eine vergleichbare Eluat-Entwicklung wie für die 

Leitfähigkeit (Abb. 115 und 116). Mit fortwährender Versuchsdauer nehmen für den 

Blindversuch die Cl-Konzentrationen im Eluat von max. 800 auf min. 100 mg/L und die Na-

Konzentrationen von max. 225 auf min. 12 mg/L ab. Für das Lysimeter mit Sperre ist die 

Auswaschung der leichtlöslichen Spezies z.T. stärker: für Cl von max. 900 auf min. 20 mg/L 

und für Na von max. 277 auf min. 10 mg/L. Eine Anreicherung speziell innerhalb der 

Sperrschicht ist nicht festzustellen. 

 

Weitere Parameter 

Für Ca zeigt sich mit fortwährender Versuchsdauer bis zur zweiten Bohrkampagne für beide 

Versuche eine Anreicherung im Vergleich zur Ausgangsschlacke (Abb. 117). Dies ist als Folge 

des Einflusses der RGR zu sehen. Die Ca-Konzentration im Eluat für frische RGR liegt bei 

4.380 mg/L. Nach der zweiten Bohrkampagne hat sich für das Lysimeter mit Sperre eine 

deutliche Ca-Anreicherung innerhalb der Sperre gezeigt (max. 300 mg/L). Nach der dritten 

Bohrkampagne nimmt Ca infolge Auswaschung stark ab. Für beide Lysimeter – analog der 

Leitfähigkeit – wurde eine gleichmäßige Verteilung entlang des Bohrprofils festgestellt. Eine 

Anreicherung speziell innerhalb der Sperrschicht war nicht mehr zu beobachten.  

Der Parameter SO4 wurde nach der ersten Bohrkampagne für beide Lysimeter deutlich 

ausgewaschen (Abb. 118). Eine Anreicherung innerhalb der Sperrschicht konnte nicht 

festgestellt werden. In den Bohrproben der zweiten und dritten Bohrkampagne sind kaum 

noch Unterschiede in den SO4-Eluatkonzentrationen der beiden Lysimeter erkennbar.  

Für den Parameter Cu (Abb. 119) waren die Feststoffproben im Vergleich zum 

Ausgangsmaterial (0,019 mg/L) abgereichert. Die Eluatkonzentrationen lagen im Bereich 

zwischen 0,008 – 0,016 mg/L. Bei Mo zeigt sich für beide Lysimeter mit einer Ausnahme 

(Probe 3f, Blindversuch, erste Bohrkampagne) eine tendenzielle Auswaschung (Abb. 120). 

Insbesondere nach der zweiten Bohrkampagne wurde innerhalb der Sperrschicht eine 

Anreicherung an Mo beobachtet (max. 0,06 mg/L). Nach der dritten Bohrkampagne verhält 

sich die Mo-Entwicklung im Eluat für beide Lysimeter analog den leichtlöslichen Spezies. Für 

den Parameter Pb (Abb. 121) ist auffällig, dass am Top des Lysimeters mit Sperre auch nach 
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der dritten Bohrkampagne ein erhöhter Wert (0,055 mg/L) gemessen wurde. Für die übrigen 

Proben lagen die Pb-Konzentrationen großteils unterhalb der Bestimmungsgrenze (< 0,008 

mg/L) und erreichten maximale Werte um 0,03 mg/L. Für Zn ist eine Anreicherung gegenüber 

dem Ausgangsmaterial festzuhalten (Abb. 122). Die Konzentrationen sind jedoch mit max. 

0,12 mg/L gering. Nach der dritten Bohrkampagne ist im Vergleich zum Blindversuch für das 

Lysimeter mit Sperre eine deutliche Zn-Abreicherung vom Top zur Basis erkennbar.  

 

Ausgangsmaterial (BA = bottom ash); f = Feststoffprobe; Sperrschicht (SFK) 
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Abb.111: Wassergehalt (Gew.-%) entlang des 

Versuchsprofils, Großlysimeter Waldering 
 Abb.112: Glühverlust (Gew.-%) entlang des 

Versuchsprofils, Großlysimeter Waldering 
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Abb.113: pH-Wert im Eluat entlang des 

Versuchsprofils, Großlysimeter Waldering 
 Abb.114: Leitfähigkeit im Eluat (mS/cm) entlang des 

Versuchsprofils, Großlysimeter Waldering 
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Abb.115: Cl-Konzentration im Eluat (mg/L) entlang 

des Versuchsprofils, Großlysimeter 
Waldering 

 Abb.116: Na-Konzentration im Eluat (mg/L) entlang 
des Versuchsprofils, Großlysimeter 
Waldering 
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Waldering 

 Abb.118: SO4-Konzentration im Eluat (mg/L) entlang 
des Versuchsprofils, Großlysimeter 
Waldering 
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Abb.119: Cu-Konzentration im Eluat (mg/L) entlang 
des Versuchsprofils, Großlysimeter 
Waldering 

 Abb.120: Mo-Konzentration im Eluat (mg/L) entlang 
des Versuchsprofils, Großlysimeter 
Waldering 
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Abb.121: Pb-Konzentration im Eluat (mg/L) entlang 
des Versuchsprofils, Großlysimeter 
Waldering 

 Abb.122: Zn-Konzentration im Eluat (mg/L) entlang 
des Versuchsprofils, Großlysimeter 
Waldering 

 

Sickerwasserentwicklung 
Für die Großlysimeter Waldering war keine Sickerwasserfassung gegeben, daher ließ sich die 

Sickerwassermenge nur auf Basis von Einzelmessungen extrapolieren. Die kumulierte 

Sickerwassermenge aus dem Blindversuch war mit 2.251 Litern gegenüber dem Lysimeter mit 
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Sperre (2.099 Liter) leicht erhöht (Tab. 33). Aufgrund der geringen Datenbasis ist der 

Sickerwasseraustrag als näherungsweise gleich anzusetzen. Dies gilt auch für den Rückhalt 

in L pro kg Schlacke. Für beide Versuche liegt der Betrag bei etwa bei 0,4 L je kg Schlacke. 

 
Tab. 33: Bewässerungs- und Austragsmengen für die Großlysimeter Waldering ohne (WA1) und mit Sperre (WA2) 

im Vergleich 

Versuchsbezeichnung WA1 
ohne Sperre 

WA2 
mit Sperre 

Versuchsanordnung Großlysimeter Waldering 
Befüllung Schlacke B 
Bewässerung Niederschlag 
Dauer in Wochen 103 
Eingebaute Schlackemenge in kg 8.800 8.800
durchschnittliche Bewässerungsmenge in L pro Monat 170 170
Bewässerungsmenge insgesamt in L pro 1,8m2 4.092 4.092
Austrag Sickerwasser in L 2.251 2.099
kumulierter Austrag in % 55,0 51,3
kumulierter Rückhalt in L pro kg Schlacke 0,35 0,36

 

pH-Wert  

Generell ist für beide Lysimeter die Entwicklung des pH-Werts im Sickerwasser starken 

Schwankungen unterworfen. Die pH-Werte im Sickerwasser aus dem Blindversuch sind 

generell alkalischer und bewegen sich zwischen 8,3 und 12,5. Im Vergleich dazu liegen sie für 

den Versuch mit Sperre zwischen 6,6 und 12,4 (Abb. 123).  

 

Leitfähigkeit und leichtlösliche Spezies (Cl, Na) 

Die Sickerwässer der Großlysimeter Waldering weisen zunächst eine vglw. geringe 

Leitfähigkeit (ca. 23 mS/cm) auf (Abb. 124). Nach etwa 75 Versuchstagen steigt die 

Leitfähigkeit deutlich an und liegt für beide Lysimeter zwischen 40 – 80 mS/cm. Für den 

Blindversuch nimmt die Leitfähigkeit im Sickerwasser nach 400 Tagen und für das Lysimeter 

mit Sperre zeitverzögert nach 475 Tagen stark ab (auf min. 10 mS/cm). Diese Abnahme ist 

hier jahreszeitlich bedingt und die Zeitspanne fällt mit den Wintermonaten zusammen. In der 

Folgezeit ist in den Sommermonaten die Entwicklung der Leitfähigkeit Schwankungen 

unterworfen und zu Versuchsende hin steigt die Leitfähigkeit tendenziell wieder an. Während 

des beobachteten Versuchszeitraums ist das Sickerwasser aus dem Lysimeter mit Sperre 

phasenweise salzreicher im Vergleich zum Blindversuch. In den letzten 100 Versuchstagen 

wurde jedoch über das Sickerwasser aus dem Lysimeter mit Sperre weniger an leichtlöslicher 

Spezies ausgetragen.  

Für den Parameter Cl, aber auch in abgeschwächter Form für Na, zeigt sich eine 

vergleichbare Entwicklung wie bei der Leitfähigkeit (beide Abb. 125). Auffällig ist auch hier, 

dass mehrfach ein Trendwechsel in der Sickerwasserentwicklung einsetzt. Phasenweise ist 

das Sickerwasser aus dem Lysimeter mit Sperre salzreicher. Für Cl verläuft in einer ersten 

Phase bis etwa 250 Tage die Entwicklung von Blindversuch und Versuch mit Sperre parallel. 
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Für Na umfasst dieser Zeitraum jedoch lediglich 150 Tage. Dann werden im Sickerwasser aus 

dem Lysimeter mit Sperre höhere Cl- und Na-Konzentrationen analysiert. Für Cl setzt nach 

600 Tagen und für Na bereits früher nach 300 Tagen erneut ein Trendwechsel ein. Nunmehr 

sind die Cl- und Na-Konzentrationen für das Lysimeter mit Sperre niedriger.  

 

Weitere Parameter 

Für die Großlysimeter Waldering bewirken die RGR ebenfalls sehr hohe Ca-Konzentrationen 

im Sickerwasser (max. 6.580 mg/L). Anfänglich nehmen die Ca-Konzentrationen ab (Abb. 

126). Die Entwicklung ist für den Blindversuch stärker als für den Versuch mit Sperre. Nach 

etwa 100 Versuchstagen steigen die Ca-Konzentrationen für beide Versuche erneut bis max. 

6,6 g/L an. Die Ca-Konzentrationen aus dem Lysimeter mit Sperre weisen nach 250 Tagen 

höhere Werte auf. Nach 500 Versuchstagen nähern sich die Werte vergleichbaren 

Konzentrationen um 1 g/L. Bezogen auf die SO4-Konzentration sind nur geringfügige 

Unterschiede im Sickerwasser aus den beiden Lysimetern festzustellen (Abb. 126). Ein SO4-

Maximum (ca. 5 g/L) wird für beide Lysimeter nach 130 Tagen erreicht. In der Folgezeit 

nehmen die Konzentrationen ab. Gegen Ende der Versuchsdauer liegen die Konzentrationen 

deutlich unter 1 g/L.  

Für den Parameter Cu (Abb. 127) werden lediglich Maximalwerte um 0,03 mg/L erreicht. Im 

Vergleich dazu wurden im Sickerwasser aus den Lysimetern Raindorf max. 9,8 mg/L und für 

die Testfelder in Eberstetten max. 2,3 mg/L erreicht. Die Mo-Konzentrationen im Sickerwasser 

nehmen kontinuierlich von anfänglich ca. 1,35 mg/L auf 0,06 mg/L ab (Abb. 127). Die Pb-

Konzentrationen im Sickerwasser liegen nach einer Versuchszeit von 400 Tagen unterhalb 

der Bestimmungsgrenze (Abb. 128). Es ist auffallend, dass nach etwa 125 Tagen im Frühling 

eine verstärkte Mobilisierung von Pb mit Spitzenwerten von 1,1 mg/L auftrat. Die Zn-

Konzentrationen (Abb. 128) schwanken in beiden Versuchsaufbauten um 0,1 mg/L, liegen 

aber oftmals unterhalb der Bestimmungsgrenze von 0,02 mg/L. Für die 

Sickerwasserentwicklung der Schwermetalle sind zwischen den Lysimetern kaum 

Unterschiede zu erkennen.  
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 Zeitraum bis BK I;   Zeitraum bis BK II;   Zeitraum bis BK III 
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Abb.123: pH-Wert im Sickerwasser aus den Groß-
lysimetern Waldering 

 Abb.124: Leitfähigkeit im Sickerwasser (mS/cm) 
aus den Großlysimetern Waldering 
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Abb.125: Cl- und Na-Konzentration im Sickerwasser 
(g/L) aus den Großlysimetern Waldering 

 Abb.126: SO4- und Ca-Konzentration im 
Sickerwasser (mg/L) aus den 
Großlysimetern Waldering  
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Abb.127: Cu- und Mo-Konzentration im Sickerwasser 
(mg/L) aus den Großlysimetern Waldering 

 Abb.128: Pb- und Zn-Konzentration im 
Sickerwasser (mg/L) aus den 
Großlysimetern Waldering 
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4.4.3 Fazit zur Wirkung von Rauchgasreinigungsrückständen 
Der Einbau von RGR, entweder als Sperrschicht oder als Deckschicht an der Oberfläche, 

gewährleistet eine kontinuierliche Salzzugabe. Eine große Wirksamkeit haben die RGR auf 

die Sickerwasserentwicklung der Parameter Ca und Pb. Dies ist auf die hohen Gehalte an 

leichtlöslichen Verbindungen in frischen RGR zurückzuführen.  

 

Feststoffentwicklung: 
 Wassergehalt und Glühverlust: generell Zunahme mit fortschreitender Versuchsdauer, 

nach der dritten Bohrkampagne für den Blindversuch mit Sperre gleichmäßige Verteilung 

entlang des Profils, für das Lysimeter mit Sperre deutlich erhöhte Werte im Bereich der 

Sperre – Hinweis auf Stauwasser 

 Wirkung der Sperrschicht auf Salzanreicherungen: bis zu einer Versuchsdauer von 42 

Wochen; nach der letzten Bohrkampagne gleichmäßige Verteilung entlang des 

Bohrprofils; eventuell Verletzung der Sperrschicht und Verlust der Wirksamkeit für 

bestimmte Spezies wie Cl, Na oder Ca 

 

Sickerwasserentwicklung: 
 pH-Werte im Sickerwasser: die Entwicklung ist für Säulenversuche und Lysimeter sehr 

unterschiedlich; für den Säuleversuch mit Sperre und RGR sind die pH-Werte nach 100 

Tagen deutlich höher im Vergleich zum Blindversuch; für das Lysimeter Waldering mit 

Sperre hingegen sind die pH-Werte etwa ab 170 Versuchstagen großteils deutlich 

geringer im Vergleich zum Blindversuch 

 Trendwechsel: generell ist die Sickerwasserentwicklung geprägt von mehrfachen 

Trendwechsel, Wechsel je nach Element zu einer anderen Zeit  

 Cl-Konzentration im Sickerwasser: für den Säulenversuch mit Sperre und RGR sind die 

Sickerwässer in Anfangsphase bis etwa 300 Tage konzentrierter im Vergleich zum 

Blindversuch; für die Lysimeter Waldering generell niedrigere Konzentrationen und die 

Entwicklungen sind einander vergleichbar 

 Ca-Konzentration im Sickerwasser: Entwicklungen der Säulenversuche und Lysimeter 

weichen stark voneinander ab - für den Säulenversuch RSFK ist infolge der Sperrschicht 

aus SFK und RGR bis etwa 50 Versuchstage das Sickerwasser stark aufkonzentriert; in 

der Folgezeit nehmen die Ca-Konzentrationen stark ab; analog den Säulenversuchen 

der VA-A wird ab einer Versuchsdauer von ca. 350 Tagen ein Anstieg der Ca-

Konzentrationen mit fortwährender Versuchsdauer verzeichnet; für die Lysimeter 

Waldering werden ab einer Versuchsdauer von 150 Tagen generell deutlich höhere Ca-

Konzentrationen gemessen 

 SO4-Konzentrationen im Sickerwasser: für die Sickerwässer aus dem Säulenversuch mit 

Sperre und RGR von Beginn an deutlich geringer im Vergleich zum Blindversuch und es 
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werden auch deutlich geringere Konzentrationen im Vergleich zu den Lysimetern 

Waldering festgestellt, hier waren die Entwicklungen vergleichbar 

 Pb-Konzentrationen im Sickerwasser: für den Säulenversuch mit Sperre und RGR 

werden über den gesamten Versuchszeitraum mehrmals Werte > 0,1 mg/L gemessen, 

die Spitzenwerte an Pb (bis max. 1 mg/L), wie sie für die Lysimeter Waldering nach einer 

Versuchsdauer von 130 Tagen festgestellt wurden, wurden nicht erreicht 
 

Frachtenberechnung: 
 Auswaschung an leichtlöslicher Spezies (Cl): für den Säulenversuch mit Sperre und 

RGR wurden im Vergleich zum Blindversuch oder zu den Säulenversuchen der VA-A 

deutlich höhere Beträge verzeichnet 
 Anreicherung an SO4, Ca, Pb, Zn: die Beträge sind vergleichbar mit den 

Säulenversuchen der VA-A, hier wird die Entwicklung vom Modellsickerwasser 

vorgegeben und weniger von den RGR 
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4.5 WIRKUNG DER BEWÄSSERUNGSMENGE 

4.5.1 Säulenversuche der Versuchsanordnung B 
Die Laufzeiten der Säulenversuche aus der Versuchsanordnung B (VA-B) liegen zwischen 62 

und 67 Wochen. Für die Säulenversuche der VA-B wurden während der 

Versuchsdurchführung die Rahmenbedingungen (u.a. Bewässerungsmenge, 

Bewässerungsmedium) verändert. Im Folgenden werden aus der Versuchsanordnung B der 

Blindversuch (BV1) und die Versuchsanordnungen mit Sperrschicht (SFK3 und RSFK3) 

exemplarisch dargestellt. Die Säule RSFK3 wurde zusätzlich am Top der Säule mit RGR 

abgedeckt. Bereits nach 50 Versuchstagen wurde das Bewässerungsmedium von 

Leitungswasser auf Modellsickerwasser umgestellt. Zusätzlich wird die Entwicklung einer 

weiteren Säule mit Sperre und RGR am Top (RSFK2) vorgestellt. Sie wurde ausschließlich mit 

Leitungswasser bewässert. Zu Versuchsbeginn bis etwa 175 Versuchstage wurde mit einer 

Menge von zwei Litern bewässert. An zwei nicht aufeinander folgenden Tagen wurden jeweils 

morgens und abends 500 mL appliziert. In der Folgezeit wurde die Menge auf 0,3 Liter pro 

Woche reduziert, bei gleichbleibender Zusammensetzung des Modellsickerwassers. An einem 

Tag wurden morgens und abends 150 mL Sickerwasser aufgegeben. Die Säulen RSFK2 und 

RSFK3 wurden zu diesem Zeitpunkt mit frischen RGR (0,5 kg) an der Oberfläche der Säulen 

abgedeckt.  

 

Wassergehalt und Glühverlust 
Die Tabelle 34 zeigt die Werte für Wassergehalt und Glühverlust (1050°C) für den 

Blindversuch und die Versuche mit Sperre sowie RGR. Die eingebaute Schlacke B hat einen 

Wassergehalt von ca. 20 Gew.-% und einen Glühverlust von 23 Gew.-%.  

 
Tab. 34: Verteilung der Parameter Wassergehalt und Glühverlust entlang des Säulenprofils, Säule ohne Sperre 

(BV1) und mit Sperre (SFK3, RSFK2 und RSFK3) im Vergleich, für die Proben ober- bzw. unterhalb der 
Sperrschicht wurde jeweils ein Mittelwert gebildet 

* der Glühverlust wurde bei 1050° C ermittelt und bezieht sich auf die Originalsubstanz, d.h. Gv – Wg entspricht der 
Definition des Parameters Glühverlust in der AbfAblV (2001) 
 

Sowohl der Blindversuch (BV1) als auch die Säule mit Sperre (SFK3) zeigen ähnliche 

Wassergehalte zwischen 19 und 24 Gew.-% (Abb. 129a und 129b) und Glühverluste zwischen 

23 und 31 Gew.-% (Abb. 130a und 130b). In beiden Fällen ergeben die Werte einen s-

förmigen Verlauf mit niedrigen Werten im oberen Bereich und hohen Werten im unteren 

Versuchsbezeichnung BV1 SFK3 RSFK2 RSFK3 BV1 SFK3 RSFK2 RSFK3 

Aufbau 
ohne 

Sperre mit Sperre mit Sperre mit Sperre
ohne 

Sperre mit Sperre mit Sperre mit Sperre
Parameter Wassergehalt Gew.-% Glühverlust* Gew.-% 

Ausgangsmaterial 20,2 23,3 
oberhalb der Sperre 20,4 ± 1,5 20,0 ± 0,4 20,1 ± 2,1 21,6 ± 2,0 25,9 ± 2,1 26,0 ± 0,8 26,4 ± 2,2 28,3 ± 3,0
innerhalb der Sperre - 23,2 35,6 31,9 - 28,5 43,4 39,4 
unterhalb der Sperre 23,7 ± 0,5 22,1 ± 1,9 21,3 ± 3,6 21,5 ± 3,4 29,4 ± 0,9 27,2 ± 2,4 27,6 ± 3,5 26,9 ± 3,8
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Bereich. Darüber hinaus weist die Sperrschicht bei SFK3 eine aufstauende Wirkung auf, mit 

einem etwas höheren Wassergehalt (23,2 Gew.-%) innerhalb der Schicht und trockenen 

Bedingungen unterhalb der Sperrschicht (Probe 8f, 19,6 Gew.-%). Die Aufbringung von RGR 

(zu Versuchsbeginn und nach 175 Versuchstagen) an der Oberfläche der Säulen RSFK2 und 

RSFK3 machen die aufstauende Wirkung der Sperrschicht viel deutlicher (Abb. 129b und 130 

b). Für die Sperrschicht wurden sehr hohe Wassergehalte bis 36 Gew.-% bzw. Glühverluste 

bis 44 Gew.-% und trockene Verhältnisse (bis zu 17 Gew.-% bzw. 25 Gew.-%) unterhalb der 

Sperrschicht festgestellt. Zudem befindet sich auch unmittelbar oberhalb der Sperrschicht eine 

sehr trockene Zone. Diese kann auf die Aufbringung der RGR zurückgeführt werden. 

Augenscheinlich bewirkt der Korngrößenübergang von RGR zu MV-Schlacke einen ähnlichen 

Effekt wie im Bereich der Sperrschicht.  

Die basisnahen Proben weisen z.T. erhöhte Wassergehalte bzw. Glühverluste auf. Diese 

Werte sind vermutlich auf einen Aufstau des Sickerwassers an der Basis zurückzuführen.  

 

Eluate 
pH-Wert 

Die pH-Werte im Eluat der Säulenproben liegen im alkalischen Milieu zwischen 11,0 und 11,5. 

Im Vergleich zum Ausgangsmaterial (pH 10,6) sind die Werte somit alkalischer (Abb. 131). Die 

Ausgangsschlacke für die Lysimeter Waldering, die ebenfalls mit Schlacke B befüllt wurden, 

weist im Durchschnitt einen höheren pH-Wert von 11,0 im Eluat auf. Somit hat sich der pH-

Wert der Eluate der Säulenproben trotz der hohen Auswaschraten zu Beginn der 

Säulenversuche im Vergleich zum Ausgangsmaterial kaum verändert und liegt z.T. höher.  

 

Leitfähigkeit und leichtlösliche Spezies (Cl, Na) 

Das Ausgangsmaterial hat im Eluat eine Leitfähigkeit von ca. 1,8 mS/cm. Der Blindversuch 

BV1 zeigt entlang des Säulenprofils eine gleichmäßige Verteilung der Leitfähigkeit im Eluat 

(Abb. 132). Beim Säulenversuch mit Sperre (SFK3) ist die Wirksamkeit der Sperrschicht kaum 

zu erkennen. Die Werte für die Leitfähigkeit liegen für die beiden Versuche im Bereich um 0,8 

mS/cm. Durch die Zugabe von RGR kommt die Wirksamkeit der Sperrschicht deutlich zum 

Vorschein: bei RSFK2 (LW) und RSFK3 (MSW) wurden unmittelbar oberhalb und unterhalb 

der Sperrschicht für die Leitfähigkeit Minimalwerte gemessen: Leitfähigkeit ca. 0,65 mS/cm. 

Innerhalb der Sperrschicht der Säulen RSFK2 und RSFK3 hingegen sind die Werte - ähnlich 

wie in der obersten Schicht und an der Basis der Säule - deutlich erhöht (max. 0,92 mS/cm). 

Die Bewässerung mit MSW für die Säule RSFK3 bewirkt im Vergleich zur Säule RSFK2 (LW) 

eine Erhöhung der Leitfähigkeit im Eluat. Diese Entwicklung konnte auch für die Parameter Cl 

und insbesondere für Na noch deutlicher beschrieben werden. Die Eluatkonzentrationen für Cl 

und Na des Ausgangsmaterials liegen bei 280 bzw. 163 mg/L. Die Verteilung entlang des 

Säulenprofils ist für den Blindversuch und die Säule SFK3 vergleichbar mit dem Verhalten der 
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Leitfähigkeit (Abb. 133 und 134). Für die Cl- und Na-Konzentrationen wurden Werte bis max. 

30 mg/L festgestellt. Die höchsten Cl-Eluatkonzentrationen kommen für die Säule RSFK3 vor 

(max. 68 mg/L). Auch hier wurde eine Salzanreicherung am Top, innerhalb der Sperrschicht 

sowie an der Basis festgestellt. Unmittelbar ober- und unterhalb der Sperrschicht betrugen die 

Cl-Konzentrationen etwa 33 mg/L. Für die Säule RSFK2 (LW) wurden generell geringe Cl-

Konzentrationen analysiert (max. 20 mg/L). Für den Parameter Na zeigt sich für die Säule 

RSFK2 eine vergleichbare Entwicklung zur Leitfähigkeit, jedoch bleiben die Na-Werte 

tendenziell gering (zwischen 5 – 13 mg/L). Für die Säule RSFK3 wurde hier entgegen der 

Verteilung für die Leitfähigkeit innerhalb der Sperre sogar eine Abreicherung an Na deutlich 

(ca. 13 mg/L).  

 

Weitere Parameter 

Hinsichtlich der Parameter Ca und SO4 (Abb. 135 und 136) lässt sich die Wirksamkeit der 

Sperrschicht für alle drei Säulen mit Sperre (SFK3, RSFK2 und RSFK3) feststellen. Die 

Verteilung entlang des Profils ist ähnlich dem Verhalten des Parameters Cl. Jedoch sind die 

Ca- und SO4-Konzentrationen insbesondere für die Säulen mit RGR geringer im Vergleich 

zum Blindversuch. 

Bezüglich der Schwermetalle zeigt bzgl. des Parameter Cu (Abb. 137) für den Blindversuch 

und den Versuch mit Sperre (SFK3) kein Unterschied bzgl. der Verteilung entlang des 

Säulenprofils. Tendenziell nimmt die Cu-Eluatkonzentration vom Top zur Basis hin zu: für den 

Blindversuch von 0,006 auf 0,013 mg/L und für SFK3 von 0,004 auf 0,009 mg/L. Für die 

beiden Säulen mit Sperre und RGR (RSFK2 und RSFK3) hingegen hat sich eine deutliche 

Anreicherung am Top der Säulen (max. 0,021 mg/L) und innerhalb der Sperrschicht (max. 

0,014 mg/L) herauskristallisiert. Hier ist auffällig, dass insbesondere für die LW-Säule 

(RSFK2) die höchsten Werte ermittelt wurden. Für den Parameter Mo waren die 

Säulenproben im Vergleich zum Ausgangsmaterial (0,09 mg/L) abgereichert (Abb. 138). 

Tendenziell entspricht die Verteilung entlang der jeweiligen Säulenprofile dem Verhalten des 

Parameters Cu. Maximal werden Mo-Eluatkonzentrationen um 0,06 mg/L erreicht. Die 

Konzentrationen für den Parameter Pb sind in den Eluatproben großteils unterhalb der 

Bestimmungsgrenze (Abb. 139). Diese Entwicklung ist erstaunlich für die beiden Säulen mit 

RGR als Deckschicht, da in frischen RGR erhöhte Anteile an leichtlöslichen Pb-Verbindungen 

vorliegen. Auch die Entwicklung des Parameters Zn ist bemerkenswert (Abb. 140): Bei den 

Versuchsanordnungen mit Sperrschicht sind die Konzentrationen im Eluat durchwegs 

niedriger im Vergleich zum Blindversuch (0,008 – 0,014 mg/L). Für die zwei Säulenversuche 

mit Sperre und RGR fällt aber auf, dass speziell die Probe unmittelbar unterhalb der RGR-

Deckschicht (max. 0,091 mg/L) und die Probe aus der Sperrschicht (max. 0,021 mg/L) 

wiederum deutlich erhöhte Zn-Konzentrationen aufweisen.  
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Abb.129a: Wassergehalt (Gew.-%) entlang des 
Versuchsprofils, VA-B, Säulen BV1 und 
SFK3 

 Abb.129b: Wassergehalt (Gew.-%) entlang des 
Versuchsprofils, VA-B, Säulen BV1 und 
RSFK2/RSFK3 
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Abb.130a: Glühverlust (Gew.-%) entlang des 
Versuchsprofils, VA-B, Säulen BV1 und 
SFK3 

 Abb.130b: Glühverlust (Gew.-%) entlang des 
Versuchsprofils, VA-B, Säulen BV1 und 
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Abb.131: pH-Wert im Eluat entlang des 
Versuchsprofils, VA-B, Säulen BV1 und 
SFK3 sowie RSFK2/RSFK3 

 Abb.132: Leitfähigkeit im Eluat (mS/cm) entlang des 
Versuchsprofils, VA-B, Säulen BV1 und 
SFK3 sowie RSFK2/RSFK3 
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Abb.133: Cl-Konzentration im Eluat (mg/L) entlang 
des Versuchsprofils, VA-B, Säulen BV1 
und SFK3 sowie RSFK2/RSFK3 

 Abb.134: Na-Konzentration im Eluat (mg/L) entlang 
des Versuchsprofils, VA-B, Säulen BV1 
und SFK3 sowie RSFK2/RSFK3 
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Abb.135: Ca-Konzentration im Eluat (mg/L) entlang 
des Versuchsprofils, VA-B, Säulen BV1 
und SFK3 sowie RSFK2/RSFK3 

 Abb.136: SO4-Konzentration im Eluat (mg/L) entlang 
des Versuchsprofils, VA-B, Säulen BV1 
und SFK3 sowie RSFK2/RSFK3 
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Abb.137: Cu-Konzentration im Eluat (mg/L) entlang 
des Versuchsprofils, VA-B, Säulen BV1 
und SFK3 sowie RSFK2/RSFK3 

 Abb.138: Mo-Konzentration im Eluat (mg/L) entlang 
des Versuchsprofils, VA-B, Säulen BV1 
und SFK3 sowie RSFK2/RSFK3 
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Abb.139: Pb-Konzentration im Eluat (mg/L) entlang 
des Versuchsprofils, VA-B, Säulen BV1 
und SFK3 sowie RSFK2/RSFK3 

 Abb.140: Zn-Konzentration im Eluat (mg/L) entlang 
des Versuchsprofils, VA-B, Säulen BV1 
und SFK3 sowie RSFK2/RSFK3 

 

Sickerwasserentwicklung 
Die Tabelle 35 zeigt eine Übersicht über die Wasserbilanz der Säulenversuche der VA-B bei 

unterschiedlichen Bewässerungsbedingungen.  

 
Tab. 35: Mittelwerte zu Austragsmengen und proz. Austrag für die Säulenversuche der VA-B für unterschiedliche 

Bewässerungsmengen 

 BV1 SFK3 RSFK2 RSFK3 
Dauer in Wochen 67 64 62 62 
Bewässerung MSW MSW LW MSW 
Schlackenmenge in kg 12,4 17,5 17,9 13,4 
Bewässerungsmenge in 
mL pro Woche 2.000 

Zeitraum in Tagen Phase 1 
0-50 

Phase 2 
50-175 

Phase 1 
0-50 

Phase 2 
50-175 

Phase 1 
0-50 

Phase 2 
50-175 

Phase 1 
0-50 

Phase 2 
50-175 

Austrag in mL pro Woche 1.701 1.732 1.670 1.772 1.596 1.724 1.576 1.768
kumulierter Austrag in % 85% 87% 84% 87% 80% 86% 79% 88%
kumulierter Rückhalt in L 
pro kg Schlacke 0,18 0,33 0,08 0,20 0,06 0,25 0,08 0,28

Reduzierung der Sickerwassermenge 
Bewässerungsmenge in 
mL in Wochen 300 

Zeitraum in Tagen Phase 3 
175-350 

Phase 4 
350-470 

Phase 3 
175-370 

Phase 4 
370-450 

Phase 3 
175-370 

Phase 4 
370-430 

Phase 3 
175-370 

Phase 4 
370-430 

Austrag in mL pro Woche 73 83 95 70 75 110 60 72
kumulierter Austrag in % 24% 28% 32% 23% 25% 37% 20% 24%
kumulierter Rückhalt in L 
pro kg Schlacke 0,47 0,30 0,29 0,24 0,33 0,17 0,43 0,27

 

Die L/S-Verhältnisse sind insbesondere für den Blindversuch sehr hoch (6,2 L/kg). Aber auch 

für die drei Säulen mit Sperre sind die Werte im Vergleich zu den Säulenversuchen der VA-A 

und VA-C deutlich höher (3,7 – 4,9). Der Wasserrückhalt pro kg Schlacke ist bei allen 

Säulenversuchen mit insgesamt 0,81 bis 1,28 L/kg sehr hoch. Aus den Berechnungen gehen 

insbesondere für den Blindversuch (1,29) und die Säule RSFK3 (1,06) höhere Werte für das 
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Wasserrückhaltevermögen hervor. Für die Säulen mit Sperre (SFK3) und RGR (RSFK2) sind 

die Werte mit 0,81 L/kg Schlacke deutlich geringer.  

Grundsätzlich kann die Versuchsdauer der einzelnen Säulenversuche in vier verschiedene 

Phasen unterteilt werden. Die erste Phase umfasst den Zeitraum von 50 Tagen. Hier wurde 

lediglich mit Leitungswasser bewässert. Nach 50 Tagen wurde das Bewässerungsmedium auf 

Modellsickerwasser umgestellt. Eine Ausnahme ist RSFK2, da hier ausnahmslos mit 

Leitungswasser bewässert wurde. Die Phase zwei dauert von 50 bis 175 Tage. Nach diesem 

Zeitraum (175 – 350 Tage) wurde die Bewässerungsmenge von 2.000 mL pro Woche auf 300 

mL pro Woche reduziert (Phase drei). Die Phase drei ist geprägt von deutlichen 

Schwankungen in der Sickerwasserentwicklung. Innerhalb der anschließende Phase vier (350 

bis Versuchsende) verläuft die Sickerwasserentwicklung wesentlich kontinuierlicher. 

 

Sickerwasseraustrag 

Die Abb. 141a und 141b zeigen die zeitliche Entwicklung des Sickerwassers bezogen auf den 

Austrag in mL. Die Versuche wurden mit einer hohen Bewässerungsmenge von 2 x 1 Liter pro 

Woche gestartet. Innerhalb der ersten Phase betrug der Austrag an Sickerwasser für den 

Blindversuch und den Versuch mit Sperre (SFK3) etwa 84% der Bewässerungsmenge. Für 

die beiden Säulen mit Sperre und RGR war der prozentuale Austrag mit etwa 79% etwas 

geringer. Innerhalb der Phase zwei, vermutlich infolge zunehmender Wassersättigung, steigen 

die prozentualen Austräge an und liegen für alle vier Versuche zwischen 86 – 88%. Die 

Reduktion der SW-Menge auf 300 mL pro Woche nach 175 Tagen bewirkte eine Reduktion 

der Austragsmenge etwa auf 20 - 40 % der Bewässerungsmenge. In der dritten Phase bis 

etwa 350 Tage ist die Austragsmenge an Sickerwasser deutlichen Schwankungen 

unterworfen. Danach setzt ein Trendwechsel bezogen auf die Austragsmenge ein. Für den 

Blindversuch betrug die Sickerwassermenge wöchentlich durchschnittlich 73 mL. In der 

Folgezeit erhöhte sich der Betrag auf etwa 83 mL. Für die Säule mit Sperre (SFK3) wurde 

innerhalb der dritten Phase mit wöchentlich etwa 95 mL deutlich mehr Sickerwasser 

ausgetragen. Innerhalb der vierten Phase jedoch verringerte sich der Betrag auf nur noch 70 

mL. Die Zugabe von RGR hatte unterschiedliche Auswirkungen. Für die Säule RSFK2 wurden 

generell sehr hohe Beträge an Sickerwasser ausgetragen: in der dritten Phase wöchentlich 75 

mL und in der vierten deutlich mehr mit 110 mL. Für die Säule RSFK3 (MSW) hingegen ist im 

Durchschnitt sehr wenig Sickerwasser angefallen. Innerhalb der dritten Phase wurden 

wöchentlich nur ca. 60 mL und innerhalb der vierten Phase etwa 72 mL gemessen.  

 

pH-Wert  

Für den Blindversuch startete der pH-Wert bei 7,5. Innerhalb der ersten vierzehn Tage lagen 

die Werte deutlich unter pH 10. Für den Versuch mit Sperre (SFK3) ist die Entwicklung 

ähnlich. Der Versuch startete jedoch schon bei pH 9,0. In der Folgezeit bis zu einer Laufzeit 
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von 150 Tagen blieben die pH-Werte dann aber im alkalischen Bereich um pH 11 (Abb. 142a). 

Die beiden Säulen mit Sperre und RGR weichen deutlich ab (Abb. 142b). Zu Versuchsbeginn 

wurde in den Sickerwässern ein pH-Wert zwischen 8,5 bis 9,0 gemessen. Bis zum Zeitpunkt 

der Reduktion der Bewässerungsmenge stiegen die Werte lediglich bis etwa pH 10 an. 

Nachdem der Bewässerungsmodus umgestellt wurde, fielen für alle Versuche die pH-Werte 

auf Werte um 8 ab. In dieser Phase wurden für den Blindversuch generell die höchsten pH-

Werte analysiert. Zwischen dem Versuchstag 150 und 300 konnten aus technischen Gründen 

keine pH-Werte gemessen werden. Im Gegensatz zu den Säulenversuchen der VA-C 

(insbesondere RSFK) sowie der Großlysimeter Waldering wurden hier nach 300 Tagen 

deutlich geringere pH-Werte analysiert.  

 

Leitfähigkeit und leichtlösliche Spezies (Cl, Na) 

In der Anfangsphase bis etwa 50 Tage fiel durch die wöchentliche Zugabe von zwei Litern 

Leitungswasser die Leitfähigkeit im Sickerwasser aller Versuche stark ab (Abb. 143a/b). Die 

Ausgangswerte waren im Sickerwasser aus RSFK2 und RSFK3, bedingt durch die RGR, 

deutlich höher. Nach der Umstellung von Leitungswasser auf Modellsickerwasser 

(Salzzugabe) stabilisierte sich die Leitfähigkeit und stieg wieder leicht an. Die Reduzierung der 

Bewässerungsmenge führte lediglich zu einem geringfügigen Anstieg der Leitfähigkeit. Der 

stärkere Anstieg bei den Versuchen RSFK2 und RSFK3 ist auf den Einfluss der frischen RGR, 

die zu diesem Zeitpunkt erneut am Top der Säulen aufgebracht wurden, zurückzuführen. Es 

ist jedoch sehr auffällig, dass der Anstieg der Leitfähigkeit für diese beiden Säulen stark 

zeitverzögert stattfand, d.h. die Freisetzung leichtlöslicher Spezies aus den RGR erfolgte erst 

100 bis 150 Tage nach der erneuten RGR-Zugabe. Die Phase dieser neuerlichen Freisetzung 

hielt etwa 150 Tage an. Es ist bemerkenswert, dass für die Säule RSFK3 trotz Bewässerung 

mit MSW im Gegensatz zu RSFK2 (LW) diese Entwicklung später einsetzte. Zu Versuchsende 

wurde für die Säule RSFK2 sogar eine geringere Leitfähigkeit gemessen als für den 

Blindversuch. Für die Säule RSFK3 lagen die Werte nur geringfügig höher. Auch die 

leichtlöslichen Spezies Cl und Na zeigen ähnliche Tendenzen (Abb. 144a/b und 145a/b). 

Vergleicht man bzgl. Cl die Säulen BV1 und SFK3 miteinander, sieht man, dass sich trotz 

hoher Anfangskonzentration für die Säule SFK3 (> 30 g/l) und verhältnismäßig niedriger 

Anfangskonzentration für die Säule BV1 (< 10 g/l) die Sickerwasserentwicklungen nach etwa 

10 Wochen angleichen. Für die Säulen RSFK2 und RSFK3 bewirken die Reduzierung der 

Wassermenge und die Salzzugabe infolge frischer RGR ebenfalls – analog der Leitfähigkeit - 

einen zeitverzögerten Anstieg der Cl- und Na-Sickerwasserkonzentrationen. Für den 

Parameter Cl ist es überraschend, dass die Wirkung der RGR für die Säule RSFK2 (LW) 

sogar deutlicher ausfällt als für die Säule RSFK3 (MSW). Hier sind die Cl-Konzentrationen zu 

Versuchsende für RSFK3 mit ca. 8 mg/L deutlich höher im Vergleich zu RSFK2 und zum 

Blindversuch (max. 2 mg/L). 
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Weitere Parameter 

Für die Parameter SO4 und Ca lässt sich nach der anfänglichen starken Auswaschung (min. 

ca. 30 mg/L bzw. 0,25 g/L) für die Säulen BV1 und SFK3 nach der Wasserreduktion eine 

Konzentrationszunahme erkennen (Abb. 146a/b sowie 147a/b). Für die Säulen RSFK2 und 

RSFK3 zeigt sich für SO4 und Ca nach der erneuten RGR-Zugabe und der verringerten 

Wasserzugabe ein deutlicher Konzentrationsanstieg. Die Sickerwasserentwicklung für den 

Parameter Ca ist vergleichbar mit dem Parameter Cl. Dafür setzt für den Parameter SO4 die 

Freisetzung unmittelbar nach der Wassermengenreduktion und der erneuten Aufbringung von 

RGR ein. Dieser Effekt spricht für die hohe Durchlaufgeschwindigkeit dieser Spezies. Nach 

einer Versuchsdauer von etwa 300 Tagen sind die SO4-Konzentrationen für die RGR-Säulen 

jedoch deutlich geringer als für den Blindversuch.  

Die Schwermetalle Cu (max. 1,3 mg/l) und Mo (max. 3 mg/l) treten in erhöhten 

Konzentrationen auf (Abb. 148 a/b und 149a/b). Für den Parameter Cu ist ein geringfügiger 

Anstieg für alle vier Versuche als Folge der Reduktion der Sickerwassermenge zu sehen. Hier 

wird die Entwicklung nicht vom Einfluss der RGR überlagert. Für den Parameter Mo zeigt sich, 

dass eine verstärkte Freisetzung ebenfalls durch die Sickerwassermengenreduktion bewirkt 

wird. Für die Säulen mit RGR wurde zudem beobachtet, dass – analog der Entwicklung für 

SO4 – Mo infolge der erhöhten Salzzufuhr für die Säulen RSFK2 und RSFK3 durch die 

frischen RGR unmittelbar und verstärkt freigesetzt wird. Diese erhöhte Mobilisierbarkeit ist 

jedoch nur von kurzer Dauer (etwa 70 Tage). In der Folgezeit ist die Sickerwasserentwicklung 

für Mo mit dem Blindversuch vergleichbar. Die Konzentrationen der restlichen Metalle Pb 

(Abb. 150a/b) und Zn (Abb. 151a/b) erreichen max. 0,2 mg/l. Für den Blindversuch und die 

Säule mit Sperre (SFK3) bewirkt die Reduktion der Sickerwassermenge unmittelbar einen 

geringfügig höheren Impuls für die Pb-Konzentration. Erst nach etwa 300 Tagen steigt die Pb-

Konzentration im Sickerwasser kontinuierlich an. Für die beiden Säulen mit Sperre und RGR 

wird der Pb-Anstieg in erster Linie durch die hohen Gehalte an leichtlöslichem Pb in frischen 

RGR dominiert. Analog den leichtlöslichen Spezies setzt die Pb-Freisetzung hier ebenfalls 

zeitverzögert ein. Der Konzentrationsanstieg für den Parameter Zn im Sickerwasser ist 

hauptsächlich auf die Verringerung der Sickerwassermenge zurückzuführen. Einzelne erhöhte 

Zn-Konzentrationen wurden für die Säule RSFK3 (MSW) analysiert (max. 0,15 mg/L).  
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Abb.141a: Austrag an Sickerwasser (mL), VA-B, 
Säulen BV1 und SFK3  

 Abb.141b: Austrag an Sickerwasser (mL), VA-B, 
Säulen BV1 und RSFK2/RSFK3  
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Abb.142a: pH-Wert im Sickerwasser, VA-B, Säulen 
BV1 und SFK3 

 Abb.142b: pH-Wert im Sickerwasser, VA-B, Säulen 
BV1 und RSFK2/RSFK3 
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Abb.143a: Leitfähigkeit im Sickerwasser (mS/cm), VA-
B, Säulen BV1 und SFK3 

 Abb.143b: Leitfähigkeit im Sickerwasser (mS/cm), 
VA-B, Säulen BV1 und RSFK2/RSFK3 
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Abb.144a: Cl-Konzentration im Sickerwasser (g/L), 
VA-B, Säulen BV1 und SFK3  

 Abb.144b: Cl-Konzentration im Sickerwasser (g/L), 
VA-B, Säulen BV1 und RSFK2/RSFK3 
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Abb.145a: Na-Konzentration im Sickerwasser (g/L), 
VA-B, Säulen BV1 und SFK3 

 Abb.145b: Na-Konzentration im Sickerwasser (g/L), 
VA-B, Säulen BV1 und RSFK2/RSFK3 
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Abb.146a: SO4-Konzentration im Sickerwasser (g/L), 
VA-B, Säulen BV1 und SFK3 

 Abb.146b: SO4-Konzentration im Sickerwasser (g/L), 
VA-B, Säulen BV1 und RSFK2/RSFK3 
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Abb.147a: Ca-Konzentration im Sickerwasser (mg/L), 
VA-B, Säulen BV1 und SFK3 

 Abb.147b: Ca-Konzentration im Sickerwasser (mg/L), 
VA-B, Säulen BV1 und RSFK2/RSFK3 
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Abb.148a: Cu-Konzentration im Sickerwasser (mg/L), 
VA-B, Säulen BV1 und SFK3 

 Abb.148b: Cu-Konzentration im Sickerwasser (mg/L), 
VA-B, Säulen BV1 und RSFK2/RSFK3 
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Abb.149a: Mo-Konzentration im Sickerwasser (mg/L), 
VA-B, Säulen BV1 und SFK3 

 Abb.149b: Mo-Konzentration im Sickerwasser (mg/L), 
VA-B, Säulen BV1 und RSFK2/RSFK3 
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Abb.150a: Pb-Konzentration im Sickerwasser (mg/L), 
VA-B, Säulen BV1 und SFK3 

 Abb.150b: Pb-Konzentration im Sickerwasser (mg/L), 
VA-B, Säulen BV1 und RSFK2/RSFK3 
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Abb.151a: Zn-Konzentration im Sickerwasser (mg/L), 
VA-B, Säulen BV1 und SFK3 

 Abb.151b: Zn-Konzentration im Sickerwasser (mg/L), 
VA-B, Säulen BV1 und RSFK2/RSFK3 

 

Frachtenbilanzen 
Für die Säulenversuche wurden in der Anfangsphase z.T. Austräge an leichtlöslicher Spezies 

bis 80% verzeichnet. Da Analysefehler nicht ausgeschlossen werden können, wurde die 

Frachtenberechnung erst mit der 3. Versuchswoche gestartet. Die Werte sind daher lediglich 

als qualitativ zu bewerten. Nach 50 Tagen wurde die Bewässerung von Leitungswasser auf 

Modellsickerwasser umgestellt. Die Salzzugabe hat bewirkt, dass für den Blindversuch (BV1) 

und die Säule mit Sperre (SFK3) eine Anreicherung an Cl, SO4, Ca, Na (bei BV1), Cu, Pb und 

Zn festzustellen ist (Tab. 36). Die Salzfracht wird in erster Linie von NaCl getragen. Mo wird 

vor allem in BV1 ausgetragen, da hier die Wirkung einer Sperre fehlt. 

Der Beitrag der RGR für den Säulenversuchen RSFK2 mit Sperre hat gezeigt, dass hier alle 

angegebenen Parameter, v.a. Cl, ausgewaschen werden. Durch die zusätzliche Salzzugabe 

in Form von MSW für den Versuch RSFK3 wird weniger an leichtlöslicher Spezies über das 

Sickerwasser ausgetragen. Außerdem kommt es hier z.T. zu einer Anreicherung für die 

Spezies Na, Zn, Pb und Cu innerhalb der Säule.  

Neben der Wirkung der Sperrschicht wird eine Auswaschung durch den Einbau von RGR-

Schichten begünstigt.  
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Tab. 36: Zusammenfassung der Frachtenberechnung, Abreicherung bzw. Anreicherung von Spezies in % in 
Bezug auf die Ausgangsmenge, Blindversuch (BV1), Versuch mit Sperre (SFK3) und Versuch mit Sperre 
und RGR (RSFK2, RSFK3) 

Versuchsbezeichnung BV1 
ohne Sperre 

SFK3 
mit Sperre 

RSFK2 
mit Sperre & 

RGR 

RSFK3 
mit Sperre & 

RGR 
Versuchsanordnung VA-B 
Dauer in Wochen 67 64 62 62 
Bewässerung LW/MSW LW/MSW LW LW/MSW 
Parameter proz. Ab-/Anreicherung 
Cl +9,63 +5,06 -17,33 -5,89
SO4 +5,75 +1,29 -7,82 -1,99
Na +0,68 -3,86 -4,41 +0,56
Ca +0,68 +0,39 -0,72 -0,25
Cu +0,100 +0,081 -0,002 +0,110
Mo -6,24 -3,48 -2,45 -3,31
Pb +0,97 +0,84 -0,0004 +1,06
Zn +0,12 +0,08 -0,0004 +0,10

 
4.5.2 Fazit zur Wirkung der Bewässerungsmenge 
Die Änderung der Bewässerungsmenge während der Versuchslaufzeit spiegelt sich in den 

Austragsmengen wider. Die Umstellung des Bewässerungsmodus von 2 L pro Woche auf 300 

mL pro Woche zeigt deutlich, dass das Wasserrückhaltevermögen von der 

Bewässerungsmenge beeinflusst wird. Die Ergebnisse zur Versuchsanordnung B 

korrespondieren mit den Ergebnissen der Modellversuche mit Kunststoffkugeln.  

 

Wasserrückhaltevermögen: 
 Ausbildung einer Schichtung: die verschiedenen Korngrößenübergänge von RGR, MV-

Schlacke und SFK begünstigen wechselnde stark feuchte und sehr trockene Zonen 

entlang des Säulenprofils 

 Wirkung der Sperrschicht: hohe Wassergehalte innerhalb der Sperre  

 Zugabe von RGR: auffällig hohe Wassergehalte innerhalb der Sperre und vglw. trockene 

Bedingungen innerhalb und unterhalb der Sperre 

 

Wirkung der Salzzugabe auf Salzanreicherungen entlang des Profils: 
 Zugabe von Modellsickerwasser und RGR: insbesondere für die Säule RSFK3 mit 

Sperre werden deutlich höhere Cl-Eluatkonzentrationen festgestellt, im Gegensatz zur 

Säule ohne RGR-Deckschicht (SFK3) werden hier auch deutlich höhere Eluat-

Konzentrationen für Cu, Mo und Zn verzeichnet  

 Parameter Ca und SO4: weder eine Bewässerung mit MSW noch der Einbau einer 

RGR-Deckschicht haben einen Einfluss auf die Entwicklung 

 

 

 



Dissertation Daniela Sager  4. Ergebnisse 

- 114 - 

Sickerwasserentwicklung: 
 Große Bewässerungsmengen: nahezu 100 % der Bewässerungsmenge wird wieder 

ausgetragen 

 Große Bewässerungsmengen: wassergesättigte Bedingungen begünstigen einen 

starken „wash off“ der leichtlöslichen Salzphasen 

 Kleine Bewässerungsmengen: lediglich ca. 25 % der Bewässerungsmenge wird 

ausgetragen 

 Reduzierung der Sickerwassermenge: Konzentrationsanstieg für nahezu alle Parameter 

(Ausnahme Cu) für den Blindversuch und den Versuch mit Sperre (SFK3)  

 Zugabe von RGR: Sickerwasserentwicklungen werden z.T. durch die Wirkung der RGR 

unmittelbar überlagert (insbesondere für SO4 und Mo) 

 Zugabe von RGR: Freisetzung aus den frischen RGR erfolgt z.T. zeitverzögert nach 

etwa 100 – 150 Tagen (insbesondere für Cl, Na, Ca, Pb) 

 

Frachtenberechnung 
 Anreicherung an Spezies: mit Ausnahme von Mo und Na Anreicherung v.a. für den 

Blindversuch und den Versuch mit Sperre, jedoch ist für diesen Versuch die 

Anreicherung geringer 

 Bewässerung mit Leitungswasser: für die Säule RSFK2 generell Auswaschung für alle 

angeführten Parameter 

 Bewässerung mit Modellsickerwasser: für die Säule RSFK3 auch geringfügige 

Anreicherung an Na, Cu, Pb und Zn  

 RGR-Deckschicht: führt zu einer verstärkten Auswaschung an Cl, zudem werden auch 

noch die Parameter Ca und SO4 mit geringen Beträgen ausgetragen 
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4.6 WIRKUNG DER VERSUCHSZEIT  

4.6.1 Zeitversuche der Versuchsanordnung A 
Die Säulenversuche ohne Sperre (IBV1, IBV2, IBV3) und mit Sperre (ISFK1, ISFK2, ISFK3) 

der Versuchsanordnung A (VA-A) wurden als Zeitversuche mit max. zwei Jahren Laufzeit 

durchgeführt (Versuche „lang“). Die Versuche „kurz“ (IBV1 und ISFK1) haben Laufzeiten von 

18 Wochen, die Versuche „mittel“ (IBV2 und ISFK2) von 42 Wochen und die Versuche „lang“ 

(IBV3 und ISFK3) von 103 Wochen. Alle Zeitversuche wurden mit Modellsickerwasser 

bewässert. Im Folgenden wird die zeitliche Entwicklung für Wassergehalt, Glühverlust, 

ausgewählte Eluatparameter, Konzentrationsverläufe im Sickerwasser und summarischen 

Frachtenaustrag kurz dargestellt. Die detaillierten Beschreibungen zu den Versuchen „lang“ 

finden sich in Kapitel 4.3.1. In den folgenden Abbildungen sind die Blindversuche und die 

Versuche mit Sperre z.T. getrennt voneinander dargestellt.  

 

Wassergehalt und Glühverlust 
Die Tabelle 37 und die Abbildungen 152 und 153 zeigen die Werte für Wassergehalt und 

Glühverlust (1050°C) der Blindversuche und Versuche mit Sperre. Die Werte liegen zwischen 

ca. 16 und 22 bzw. 22 und 30 Gew.-%. Grundsätzlich nehmen die Werte zur Basis hin leicht 

zu. Für den Versuch „kurz“ mit Sperre (18 Wochen) ist noch kein Unterschied zum 

Blindversuch festzustellen. Die aufstauende Wirkung der Sperre zeigt sich jedoch bei ISFK2 

bereits nach einer Versuchszeit von 42 Wochen deutlich (Wassergehalt 24,7 Gew.-% und 

Glühverlust 30,6 Gew.-%). Diese Werte sind sogar höher als für den Versuch ISFK3 „lang“.  

 
Tab. 37: Verteilung der Parameter Wassergehalt und Glühverlust entlang des Säulenprofils, Säule ohne Sperre 

(IBV3) und mit Sperre (ISFK3) im Vergleich, Bewässerung mit Modellsickerwasser, für die Proben ober- 
bzw. unterhalb der Sperrschicht wurde jeweils ein Mittelwert gebildet 

Versuchsbezeichnung IBV1 IBV2 ISFK1 ISFK2 IBV1 IBV2 ISFK1 ISFK2 
Aufbau ohne Sperre mit Sperre ohne Sperre mit Sperre 

Parameter Wassergehalt Gew.-% Glühverlust* Gew.-% 
Ausgangsmaterial 18 22,8 

oberhalb der Sperre 18,4 ± 1,1 19,8 ± 1,9 18,9 ± 1,1 19,7 ± 0,9 22,9 ± 1,6 24,9 ± 1,9 24,0 ± 1,2 25,3 ± 0,8 
innerhalb der Sperre - - 19,1 24,7   - 23,2 30,6 
unterhalb der Sperre 20,8 ± 1,4 19,4 ± 2,0 19,6 ± 0,4 19,8 ± 0,8 26,9 ± 1,3 24,6 ± 3,4 24,6 ± 0,5 25,4 ± 1,0 

* der Glühverlust wurde bei 1050° C ermittelt und bezieht sich auf die Originalsubstanz, d.h. Gv – Wg entspricht der 
Definition des Parameters Glühverlust in der AbfAblV (2001) 
 
Eluate 
pH-Wert  

Bei den Blindversuchen und Versuchen mit Sperre liegen die pH-Werte im Eluat der 

Feststoffproben im alkalischen Milieu zwischen 11,2 und 11,7. Sie sind im Vergleich zum 

Ausgangsmaterial (pH-Wert 12,1) etwas niedriger (Abb. 154). Die höchsten Werte wurden für 

die Feststoffproben aus der Säule „kurz“ festgestellt.  
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Leitfähigkeit und leichtlösliche Spezies (Cl, Na) 

Für das Ausgangsmaterial betrug die Leitfähigkeit 4,22 mS/cm. Mit zunehmender Versuchs-

dauer nimmt die Leitfähigkeit ab. Am Versuchsende wurden Werte zwischen 0,75 und 1,0 

mS/cm gemessen (Abb. 155). Für die Säulen „kurz“ zeigt sich noch kein Unterschied 

zwischen der Säule mit Sperre und dem Blindversuch. Für die Säulen „mittel“ zeigen sich 

ähnlich den Versuchen „lang“ erhöhte Leitfähigkeiten für die Feststoffproben aus der Säule mit 

Sperre und insbesondere eine Salzanreicherung unterhalb der Sperre.  

Im Eluat wurde bei allen Experimenten eine deutliche zeitabhängige Abnahme der 

Konzentrationen für Cl und Na festgestellt (Abb. 156 und 157): für Cl von 352 mg/L bis zu 45 

mg/L und für Na von 232 mg/L bis zu 13 mg/L.  

 

Weitere Parameter 

Bezogen auf den Parameter Ca zeigt sich generell eine Abreicherung im Vergleich zum Aus-

gangsmaterial (253 mg/L). Im zeitlichen Verlauf der einzelnen Blindversuche zeigen sich keine 

Unterschiede (Abb. 158). Die Ca-Konzentrationen liegen zwischen 10 – 125 mg/L. Für die 

Säulenversuche mit Sperre fällt auf, dass für den Versuch „lang“ überwiegend die höchsten 

Ca-Konzentrationen festgestellt wurden (bis 110 mg/L), d.h. hier wurde Ca mit der Zeit sogar 

angereichert. Im Ausgangsmaterial wurden für SO4 niedrige Konzentrationen gemessen (10 

mg/L). In allen Feststoffproben der Versuchsanordnungen, sowohl ohne als auch mit Sperre, 

wurden höhere SO4-Gehalte ermittelt (Abb. 159). Für den Parameter SO4 zeigt sich 

wiederum eine Zeit-Abhängigkeit. Innerhalb der Sperre zeigt SO4 eine tendenzielle 

Anreicherung. In Bezug auf die Schwermetalle wurde der Parameter Cu im Vergleich zum 

Ausgangsmaterial (0,66 mg/L) abgereichert (Abb. 160). Überwiegend liegen die Cu-

Eluatkonzentrationen in einem Bereich zwischen 0,1 bis 0,35 mg/L. Lediglich für die Versuche 

„kurz“ wurden an der Basis höhere Werte gemessen: Blindversuch (0,8 mg/L) und Versuch mit 

Sperre (0,4 mg/L). Für die Versuche „lang“ wurden insgesamt die niedrigsten Cu-

Eluatkonzentrationen ermittelt. Die gilt auch für den Parameter Mo (Abb. 161). Im Vergleich zu 

Cu kommt hier die zeitliche Entwicklung noch deutlicher zum Vorschein. Für die Versuche 

„kurz“ wurden Werte zwischen 0,08 und 0,1 mg/L und für die Versuche „lang“ zwischen 0,02 

und 0,04 mg/L. Für die Parameter Pb (Abb. 162) und Zn (Abb. 163) wurden im Vergleich zum 

Ausgangsmaterial z.T. deutlich geringere Eluatkonzentrationen gemessen. Eine zeitliche 

Abhängigkeit hinsichtlich An- oder Abreicherung ist für den beobachteten Versuchszeitraum 

für beide Parameter nicht zu erkennen.  
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Ausgangsmaterial (BA = bottom ash); f = Feststoffprobe; Sperrschicht (Probe 6f) 
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Abb.152: Wassergehalt (Gew.-%) entlang des 
Versuchsprofils, VA-A Zeitversuche, 
Blindversuche und Versuche mit Sperre  

 Abb.153: Glühverlust (Gew.-%) entlang des 
Versuchsprofils, VA-A Zeitversuche, 
Blindversuche und Versuche mit Sperre  
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Abb.154: pH-Wert im Eluat entlang des 
Versuchsprofils, VA-A Zeitversuche, 
Blindversuche und Versuche mit Sperre 

 Abb.155: Leitfähigkeit im Eluat (mS/cm) entlang des 
Versuchsprofils, VA-A Zeitversuche, 
Blindversuche und Versuche mit Sperre  
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Abb.160: Cu-Konzentration im Eluat (mg/L) entlang 

des Versuchsprofils, VA-A Zeitversuche, 
Blindversuche und Versuche mit Sperre 

 Abb.161: Mo-Konzentration im Eluat (mg/L) entlang 
des Versuchsprofils, VA-A Zeitversuche, 
Blindversuche und Versuche mit Sperre 
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Abb.162: Pb-Konzentration im Eluat (mg/L) entlang 

des Versuchsprofils, VA-A Zeitversuche, 
Blindversuche und Versuche mit Sperre 

 Abb.163: Zn-Konzentration im Eluat (mg/L) entlang 
des Versuchsprofils, VA-A Zeitversuche, 
Blindversuche und Versuche mit Sperre 
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Sickerwasserentwicklung 
Die Tabelle 38 gibt eine Zusammenfassung der Wasserbilanz der Versuche. Für die Zeit-

versuche ohne Sperre lag der Austrag an Sickerwasser, bezogen auf die zugegebene Menge 

und die gesamte Versuchsdauer, zwischen 43 bis 45 %, und für die Zeitversuche mit Sperre 

zwischen 39 bis 48 %. Der Wasserrückhalt in L pro kg Schlacke ist im Vergleich zu den 

Blindversuchen bei den Versuchen mit Sperre höher (Versuch ISFK1 und ISFK3) bzw. etwa 

gleich hoch (Versuch ISFK2). Die Sperre zeigt damit eine vergleichbare Wirkung wie bei dem 

Versuchspaar IBV0 und ISFK0, das mit Leitungswasser bewässert wurde. 

 
Tab. 38: Bewässerungs- und Austragsmengen für die Zeitversuche aus VA-A ohne (IBV1, IBV2, IBV3) und mit 

Sperre (ISFK1, ISFK2, ISFK3) 

Versuchsbezeichnung IBV1 IBV2 IBV3 ISFK1 ISFK2 ISFK3 
Versuchsanordnung VA-A 
Befüllung Schlacke A 
Bewässerung Modellsickerwasser 
Dauer in Wochen 18 42 103 18 42 103
Eingebaute Schlackemenge in kg 15,5 16,5 16,0 14,5 15,6 15,5
Bewässerungsmenge in L pro Monat 1,2 1,2 1,2 1,2 1,2 1,2
Bewässerungsmenge insgesamt in L 5,4 12,6 30,9 5,4 12,6 30,9
Austrag Sickerwasser in L 2,4 5,6 14,0 2,1 6,1 13,4
kumulierter Austrag in % 43,5 44,3 45,3 38,9 48,3 44,0
kumulierter Rückhalt in L pro kg Schlacke 0,46 0,74 1,51 0,50 0,73 1,60

 

Austrag an Sickerwasser 

Bei den Blindversuchen weichen die Austräge an Sickerwasser nur wenig voneinander ab 

(Abb. 164a). Die zeitliche Entwicklung zeigt kaum Unterschiede. Generell kann festgestellt 

werden, dass nach einer anfänglichen Stabilisierungsphase von ca. 100 Tagen sich der 

Austrag des Sickerwassers für den weiteren Versuchsverlauf zwischen 100 und 200 mL pro 

Woche bewegt.  

Bei den drei Zeitversuchen mit Sperre treten im vergleichbaren Zeitabschnitt von 300 Tagen 

deutliche Abweichungen untereinander auf (Abb. 164b). Speziell für den Versuch „mittel“ 

werden ab einer Versuchsdauer von 120 Tagen höhere Austräge verzeichnet. 

 

pH-Wert 

Bei den Blindversuchen nimmt der pH-Wert nach einem anfänglichen Ansteigen bis zu einem 

Maximalwert von 11,5 auf etwa 8,5 ab (Abb. 165a). Untereinander zeigen die Blindversuche 

keinen Unterschied. 

Für die Versuche mit Sperre hingegen wurden insbesondere für den Versuch „mittel“ 

Abweichungen festgestellt (Abb. 165b). Im Vergleich zu den Versuchen mit Sperre „kurz“ und 

„lang“ sind in einer Anfangsphase ab 100 bis 200 Tagen die pH-Werte für den Versuch „mittel“ 

höher und in der Folgezeit dann geringer.  



Dissertation Daniela Sager  4. Ergebnisse 

- 120 - 

Der pH-Wert im Sickerwasser wurde aus technischen Gründen erst ab einer Laufzeit von 60 

Tagen gemessen. 

 

Leitfähigkeit und leichtlösliche Spezies (Cl, Na) 

Für die Blindversuche spiegeln die anfänglich hohen Leitfähigkeiten (max. 130 mS/cm) eine 

verstärkte Auswaschung der leichtlöslichen Salze wider (Abb. 166a). Erst für den Versuch 

„lang“ verflacht nach 350 Versuchstagen die Kurve auf Werte um 6,6 mS/cm.  

Der Verlauf der Leitfähigkeiten weicht für die Säulenversuche mit Sperre von diesem Trend ab 

(Abb. 166b). Insbesondere für den Versuch „mittel“ werden ab einer Versuchsdauer von 100 

Tagen geringere Leitfähigkeiten im Sickerwasser analysiert. Für den Versuch mit Sperre 

„lang“ ist der wellenförmige Kurvenverlauf bemerkenswert. Die Parameter Cl und Na (Abb. 

167a/b) sind mit der Entwicklung der Leitfähigkeit sehr gut vergleichbar. Für den 

Säulenversuch „lang“ mit Sperre zeigt sich nach 100 bis 300 Versuchstagen eine starke 

Aufkonzentration an Cl und Na im Sickerwasser. Diese Entwicklung konnte für den Versuch 

„mittel“ (ISFK2) nicht beobachtet werden.  

 

Weitere Parameter  

Für beide Versuchsreihen (Blindversuche sowie Versuche mit Sperre) ist die Entwicklung des 

Ca stärkeren Schwankungen unterworfen (Abb. 168a/b). Die Ca-Konzentration steigt erst 

nach 275 Tagen deutlich an. Diese Beobachtung des Ca-Anstiegs ist für die Versuche „kurz“ 

und „mittel“ noch nicht beobachtbar gewesen. Der Anstieg ist mit einer kontinuierlichen 

Abnahme des pH-Werts im Sickerwasser korrelierbar.  

Bezogen auf den Parameter SO4 korrelieren die Sickerwasserentwicklungen für die 

Blindversuche miteinander (Abb. 168a). Lediglich in einer Anfangsphase bis 100 Tage 

weichen die Konzentrationen geringfügig voneinander ab. Für die Zeitversuche mit Sperre 

weichen die einzelnen Entwicklungen stärker voneinander ab (Abb. 168b). Insbesondere für 

den Versuch „mittel“ werden nach einer Versuchsdauer von 50 Tagen deutlich geringere SO4-

Konzentrationen im Vergleich zu den Versuchen mit Sperre „kurz“ und „lang“ analysiert. Für 

die Parameter Cu und Mo (beide Abb. 169a/b) weichen für beide Versuchsanordnungen 

(Blindversuche und Versuche mit Sperre) die einzelnen Sickerwasserentwicklungen 

voneinander ab. Für die Versuche „lang“ werden überwiegend die höchsten Cu- und Mo-

Konzentrationen analysiert. Für den Versuch „mittel“ sind sie z.T. deutlich geringer. Für die 

Parameter Pb und Zn (beide Abb. 170a/b) sind die Sickerwasserentwicklungen z.T. starken 

Schwankungen unterworfen. Bezogen auf den Parameter Pb liegen die Konzentrationen für 

die Blindversuche „kurz“ und „mittel“ bereits zu Versuchsbeginn teilweise unterhalb der 

Bestimmungsgrenze (< 0,08 mg/L). Für den Blindversuch „lang“ sind die Pb-Konzentrationen 

ab einer Versuchsdauer von 300 Tagen anhaltend kleiner als die Bestimmungsgrenze. Für die 

Säulenversuche mit Sperre korrelieren die Pb-Konzentrationen in der Anfangsphase etwas 
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besser, obwohl auch hier für die Versuche „kurz“ und „mittel“ die Werte geringfügig kleiner 

sind. Für den Säulenversuch mit Sperre „lang“ liegen die Pb-Konzentrationen ab einer 

Versuchsdauer von 450 Tagen durchgehend unterhalb der Bestimmungsgrenze. Für den 

Parameter Zn weichen die Sickerwasserentwicklungen für die Blindversuche z.T. deutlich 

voneinander ab. Für die Versuche „kurz“ und „mittel“ werden z.T. sehr hohe Werte bis max. 

0,2 mg/L gemessen. Für den Blindversuch „lang“ liegen die Werte max. bei 0,03 mg/L. In der 

Folgezeit sind die Zn-Werte hauptsächlich kleiner als die Bestimmungsgrenze. Erst nach einer 

Versuchsdauer von 450 Tagen werden für den Blindversuch „lang“ Spitzenwerte bis 0,5 mg/L 

erreicht. Für die Säulenversuche mit Sperre werden zu Versuchsbeginn lediglich Zn-

Konzentrationen um 0,08 mg/L beobachtet. Eine Einzelmessung für die Säule „mittel“ zu 

Versuchsende wies 0,7 mg/L Zn auf. Für den Versuch „lang“ mit Sperre wurden nach einer 

Versuchsdauer von 450 Tagen ebenfalls Spitzenwerte bis 0,7 mg/L gemessen.  
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Abb.164a: Austrag an Sickerwasser (mL), VA-A 
Zeitversuche, Blindversuche  
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 Abb.166b: Leitfähigkeit im Sickerwasser (mS/cm), 
VA-A Zeitversuche, Versuche mit Sperre  

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

1

10

10
0

0,3 L/Woche

VA-A 
 

C
l, 

N
a 

g/
L

Tage

Cl
 ohne Sperre,

                   kurz
 ohne Sperrre,

                   mittel
 ohne Sperre,

                   lang
Na

 ohne Sperre,
                   kurz

 ohne Sperrre,
                   mittel

 ohne Sperre,
                   lang

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

1

10

10
0

0,3 L/Woche

VA-A 

 

C
l, 

N
a 

g/
L

Tage

Cl
 mit Sperre,

                 kurz
 mit Sperre,

                 mittel
 mit Sperre,

                 lang
Na

 mit Sperre,
                 kurz

 mit Sperre,
                 mittel

 mit Sperre,
                 lang

Abb.167a: Cl- und Na-Konzentration im Sickerwasser 
(g/L), VA-A Zeitversuche, Blindversuche 

 Abb.167b: Cl- und Na-Konzentration im Sickerwasser 
(g/L), VA-A Zeitversuche, Versuche mit 
Sperre 

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

0,1

1

10

10
0

10
00

10
00

0
0,3 L/Woche

VA-A

 

 

S
O

4,
 C

a 
m

g/
L

Tage

SO4
 ohne Sperre,

                   kurz
 ohne Sperrre,

                   mittel
 ohne Sperre,

                   lang

Ca
 ohne Sperre,

                   kurz
 ohne Sperrre,

                   mittel
 ohne Sperre,

                  lang

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

0,1

1

10

10
0

10
00

10
00

0

S
O

4,
 C

a 
m

g/
L

0,3 L/Woche

VA-A

 

Tage

SO4
 mit Sperre,

               kurz
 mit Sperre,

               mittel
 mit Sperre,

               lang

Ca
 mit Sperre,

               kurz
 mit Sperre,

               mittel
 mit Sperre,

               lang

Abb.168a: Ca- und SO4-Konzentration im Sicker-
wasser (mg/L), VA-A Zeitversuche, 
Blindversuche 

 Abb.168b: Ca- und SO4-Konzentration im Sicker-
wasser (mg/L), VA-A Zeitversuche, 
Versuche mit Sperre 



Dissertation Daniela Sager  4. Ergebnisse 

- 123 - 

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

0,1

1

10

10
0

VA-A

Cu
 ohne Sperre,

               kurz
 ohne Sperre,

               mittel
 ohne Sperre,

               lang
Mo

 ohne Sperre,
              kurz

 ohne Sperre,
               mittel

 ohne Sperre,
               lang

0,3 L/Woche

 

 
C

u,
 M

o 
m

g/
L

Tage

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

0,1

1

10

10
0

0,3 L/Woche

VA-A 

 

C
u,

 M
o 

m
g/

L

Tage

Cu
 mit Sperre,

               kurz
 mit Sperre,

               mittel
 mit Sperre,

               lang
Mo

 mit Sperre,
               kurz

 mit Sperre,
               mittel

 mit Sperre,
               lang

Abb.169a: Cu- und Mo-Konzentration im Sicker-
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Abb.170a: Pb- und Zn-Konzentration im Sickerwasser 
(mg/L), VA-A Zeitversuche, Blindversuche 

 Abb.170b: Pb- und Zn-Konzentration im Sickerwasser 
(mg/L), VA-A Zeitversuche, Versuche mit 
Sperre 

 

Frachtenberechnung 
Insgesamt wird bei den Versuchen „lang“ der größte Anteil an leichtlöslichen Spezies wie Cl 

und Na ausgetragen (Tab 39). Es ist bemerkenswert, dass für die leichtlösliche Spezies für 

alle Zeitversuche mit Sperre eine verstärkte Auswaschung festgestellt wurde. Durch Zugabe 

von Modellsickerwasser reichern sich für die Zeitversuche bereits ab einer Versuchsdauer von 

18 Wochen die Parameter Ca, SO4, Pb und Zn innerhalb der Säulen an. Mit fortschreitender 

Versuchsdauer verstärkt sich die Anreicherung innerhalb der Säule.  
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Tab. 39: Zusammenfassung der Frachtenberechnung, Abreicherung bzw. Anreicherung  in % bezogen auf die 
Ausgangsmenge, Blindversuche und Versuche mit Sperre im Vergleich 

Versuchsbezeichnung IBV1 IBV2 IBV3 ISFK1 ISFK2 ISFK3 
Sperre ohne mit 
Versuchsanordnung VA-A VA-A 
Dauer in Wochen 18 42 103 18 42 103 
Bewässerung MSW MSW 
Parameter Proz. Ab-/Anreicherung Proz. Ab-/Anreicherung 
Cl -19,0 -26,0 -31,6 -25,9 -27,0 -34,0 
SO4 +0,77 +1,84 +3,90 +0,50 +1,98 +2,76 
Na -11,0 -19,5 -25,9 -11,7 -19,7 -46,1 
Ca +0,097 +0,21 +0,47 +0,10 +0,22 +0,50 
Cu -0,062 -0,094 -0,060 -0,063 -0,069 -0,076 
Mo -3,08 -5,89 -7,64 -3,18 -5,62 -10,4 
Pb +0,15 +0,32 +0,82 +0,16 +0,34 +0,84 
Zn +0,018 +0,039 +0,098 +0,019 +0,041 +0,10 

 

4.6.2 Fazit zur Wirkung der Versuchszeit 
Die Zeitversuche der Versuchsanordnung A haben gezeigt, dass der Faktor Zeit für 

verschiedene Entwicklungen und Tendenzen von großer Bedeutung ist.  

 

Wasserrückhaltevermögen 
 Versuch „kurz“: keine Wirksamkeit der Sperre hinsichtlich Aufstauvermögen  

 Versuch „mittel“: Wirksamkeit einer Sperrschicht hinsichtlich Wasserrückhaltevermögen 

hier bereits sehr deutlich  

 

Salzanreicherungen entlang des Profils 
 Zugabe von Modellsickerwasser: die Anteile an leichtlöslichen Spezies sind im Feststoff 

mit fortwährender Versuchsdauer rückläufig, d.h. die Feststoffproben der Säulen „lang“ 

weisen im Vergleich zum Ausgangsmaterial großteils die niedrigsten Salzgehalte auf 

 Parameter Ca: die Ca-Gehalte nehmen mit fortwährender Versuchsdauer tendenziell zu 

(insbesondere für Zeitversuche mit Sperre) 

 Parameter SO4: keine Zeitabhängigkeit  

 

Sickerwasserentwicklung 
 Übertragbarkeit der Zeitversuche: für die Blindversuche ist die Sickerwasserentwicklung 

für einen Großteil der Parameter (Ausnahme Pb, Zn) gleich, somit kann ein Großteil der 

Tendenzen bereits ab einer Laufzeit von sechs Monaten („mittel“) abgeleitet werden; für 

die Versuche mit Sperre hingegen gibt es keine oder eine nur sehr eingeschränkte 

Korrelierbarkeit hinsichtlich aller Parameter, d.h. insbesondere Versuch „mittel“ zeigt 

abweichende Trendentwicklungen im Sickerwasser 
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 Wichtigkeit von Langzeitversuchen: anhand der Versuche „kurz“ und „mittel“ ist Anstieg 

der Ca-Konzentration nicht ableitbar, Ca-Zunahme korreliert mit einer pH-Wert Abnahme 

 

Frachtenberechnung: 
 Begünstigung einer Auswaschung: im Gegensatz zu den Blindversuchen für alle 

Zeitversuche mit Sperre eine verstärkte Auswaschung an leichtlöslicher Spezies 

 Zugabe von Modellsickerwasser: bereits ab einer Versuchsdauer von 18 Wochen 

Anreicherung an Ca, SO4, Pb und Zn innerhalb der Säulen an 
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5. MINERALOGISCHE ERGEBNISSE 
Als Vergleichsbasis dienen die die Ausgangsmaterialien Schlacke A (MVA Ingolstadt) und 

Schlacke B (MHKW Rosenheim) sowie Schlacke-Feinkorn (SFK) und Rauchgasreinigungs-

rückstände (RGR). Für die mineralogischen Untersuchungen wurden die Feststoffproben aus 

den Säulenversuchen IBV3 und ISFK3 der VA-A sowie die Bohrproben aus den 

Großlysimetern nach der dritten Bohrkampagne herangezogen. Ausschlaggebend hierfür war, 

dass es sich bei diesen Versuchen um Langzeitversuche handelt (Laufzeit 103 Wochen). 

Feststoffanalysen der Schlacke A haben gezeigt, dass v.a. durch die vglw. hohen Cl-Gehalte 

eine sehr salzreiche Ausgangssituation bestand. Zudem wurden den Versuchen über das 

Modellsickerwasser kontinuierlich Salze zugeführt. Als Beispiel für einen Zustand der 

maximalen Salzakkumulation mit hohen Gehalten an Cl und Na (Abb. B-2 im grafischen 

Anhang) wurde die Bohrprobe BA 1-15 (vgl. Kapitel 2) aus dem Salzhorizont der 

Monodeponie Waldering gewählt. Diese Gegebenheit soll als „stabiler“ Endzustand betrachtet 

werden. 

 

5.1 KORNGRÖßENVERTEILUNG 
Die getrockneten Feststoffproben wurden in drei Kornfraktionen gesiebt: < 125 µm 

(Fraktion a), 125 µm bis 1 mm (Fraktion b) und > 1 mm (Fraktion c). Bei der 

Korngrößenverteilung wurde untersucht, ob sich leichtlösliche Spezies und Schwermetalle 

bevorzugt innerhalb einer bestimmten Kornfraktion anreichern. Die Ergebnisse zu den 

Ausgangsmaterialien Schlacke A und Schlacke B, Schlacke-Feinkorn und 

Rauchgasreinigungsrückstände (RGR) wurden bereits in Kapitel 3.1 und 4.1 detailliert 

beschrieben. In diesem Kapitel wird ausschließlich die chemische Verteilung in Abhängigkeit 

von der Korngröße dargestellt. 

 
5.1.1 Ausgangsmaterialien 
In der Tabelle 40 sind für die Schlacken A und B die Feststoffanalysen (RFA) der drei 

Fraktionen im Vergleich zur Gesamtfraktion veranschaulicht.  

In der Tabelle wurde jeweils die Kornfraktion mit den höchsten Gehalten grau unterlegt. Die 

Untersuchungen zur Korngrößenverteilung haben für beide Schlacken A und B gezeigt, dass 

für die Parameter CaO, SO3 und Cl die höchsten Gehalte in der feinsten Fraktion a (< 125 µm) 

gemessen wurden. Für den Parameter Na2O fällt auf, dass insbesondere innerhalb der groben 

Fraktion c (> 1mm) vglw. hohe Werte festgestellt wurden. In der Gegenüberstellung der 

beiden Schlacken A und B bzgl. der feinsten Fraktion a lässt sich erkennen, dass die Schlacke 

A insgesamt höhere Cl- und Na-Werte aufweist. Für den Parameter Cl fällt sehr deutlich auf, 

dass für die Schlacke A in allen Fraktionen fast doppelt so hohe Gehalte festgestellt wurden 

wie für die Schlacke B. Für die Schlacke B sind hingegen die CaO- und SO3-Gehalte höher.  
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Tab. 40: Zusammenfassung chemischer Parameter der Feststoffanalysen in Abhängigkeit von der 
Korngrößenverteilung für die Schlacken A und B  

   Schlacke A Schlacke B 

Parameter 
Einheit  gesamt 

a 
< 125 µm 

b 
125 µm – 1 mm 

c 
> 1mm gesamt

a 
< 125 µm 

b 
125 µm – 1 mm

c 
> 1mm

CaO Gew.-% 18,5 24,5 22,4 18,6 18,9 29,1 22,8 16,4

Na2O Gew.-% 2,0 1,6 1,5 1,8 1,9 1,2 1,3 2,9

SO3 Gew.-% 1,8 3,3 2,5 1,6 2,0 4,0 2,8 1,2

Cl ppm 9.522 17.174 13.841 8.273 5.261 8.693 7.779 2.720

Cu ppm 5.719 6.897 6.242 5.900 4.402 5.773 6.275 3.232

Pb ppm 1.620 1.896 1.995 1.508 1.276 2.138 1.952 3.111

Zn ppm 6.651 13.007 9.806 5.945 7.850 12.660 10.759 3.148

 

Hinsichtlich der Schwermetalle hat die Untersuchung zur Korngrößenverteilung ergeben, dass 

für beide Schlacken A und B die höchsten Zn-Gehalte ebenfalls in der feinsten Fraktion a 

(< 125 µm) gemessen wurde. Die Zn-Gehalte beider Schlacken entsprechen einander.  

Für die Schlacke A ist auch der Faktor Cu in der feinsten Fraktion a angereichert. Im Vergleich 

zur Schlacke B ist der Cu-Gehalt höher. Hier weist der Parameter Cu innerhalb der Fraktion a 

und b tendenziell höhere Werte auf. Der Faktor Pb zeigt in der Korngrößenverteilung eine 

gleichmäßige Verteilung an. Es wurde lediglich innerhalb der groben Fraktion c der Schlacke 

B ein vglw. hoher Wert ermittelt (3.100 ppm).  

Die Untersuchungen der Ausgangsmaterialien hinsichtlich der chemischen 

Korngrößenverteilung haben sehr deutlich gemacht, dass eine Anreicherung speziell an 

leichtlöslicher Spezies vor allem innerhalb der feinen Fraktion a (< 125 µm) stattfindet. Aus 

diesem Grund wurde für die folgenden Untersuchungen besonders diese Fraktion beleuchtet.  

 

5.1.2 Säulenversuche (VA-A) 
In den Tabellen 41 und 42 sind die Ergebnisse der Untersuchungen zur Korngrößenverteilung 

für den Blindversuch (IBV3) und den Versuch mit Sperre (ISFK3) aufgelistet. Für den 

Blindversuch (IBV3) sowie für die Säule mit Sperre (ISFK3) wurden für die Parameter Cl, SO3 

und CaO erhöhte Werte in der feinsten Fraktion a ermittelt. 

Generell hat sich gezeigt, dass im Vergleich zum Ausgangsmaterial mit Reaktionsfortschritt 

insbesondere der Parameter Cl in den Feststoffproben stark abgereichert wurde. In der 

feinsten Fraktion a wurden die höchsten Cl-Gehalte (etwa 5.600 ppm) festgestellt. Im 

Vergleich zum Ausgangsmaterial (17.000 ppm) waren die Werte damit deutlich geringer. Für 

den Parameter Na2O wurde für die grobe Fraktion durchschnittlich ein Wert von 1,7 Gew.-% 

gemessen. Im Vergleich zum Ausgangsmaterial zeigt sich somit kein Unterschied. Es ist aber 

bemerkenswert, dass innerhalb der feinen Fraktionen a und b der Feststoffproben die Na2O-

Gehalte mit durchschnittlich 0,8 Gew.-% deutlich geringer sind im Vergleich zum 
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Ausgangsmaterial (1,6 Gew.-%). Demnach wurden über das Sickerwasser bevorzugt die 

Anteile dieser Spezies ausgetragen. Diese Entwicklungen entsprechen den Ergebnissen der 

Frachtenberechnungen. Bezogen auf die Säulenversuche wurde berechnet, dass die Zugabe 

von Salzen über das Modellsickerwasser keine Anreicherung an Cl und Na in den 

Feststoffproben bewirkt hat. Für die Parameter CaO und SO3 hingegen wurden innerhalb der 

feinsten Fraktion a zum Teil höhere Gehalte im Vergleich zum Ausgangsmaterial (24,5 Gew.-

% bzw. 3,3 Gew.-%) festgestellt: durchschnittlich für CaO 30 Gew.-% und für SO3 3,5 Gew.-

%. Diese beiden Parameter haben sich somit innerhalb der Säulen angereichert. Bezüglich 

der Schwermetalle zeigten sich keine auffälligen Änderungen im Vergleich zum 

Ausgangsmaterial.  

Eine bevorzugte Verteilung in den Feststoffproben konnte für den Blindversuch entlang des 

Säulenprofils für die Parameter Cl und SO3 festgestellt werden. Bezogen auf den Faktor Cl 

wies die basisnahe Probe (5.160 ppm) und bezogen auf SO3 die topnahe Probe (3,9 Gew.-%) 

den höchsten Gehalt auf. Durch den Einbau einer Sperrschicht ergaben sich für den Versuch 

mit Sperre im Vergleich zum Blindversuch abweichende Entwicklungen. Entlang des 

Säulenprofils wurde für den Parameter Cl in den Proben oberhalb der Sperre und 

insbesondere an der Basis eine Anreicherung (4.728 - 5.612 ppm) in der feinsten Fraktion 

festgestellt. Innerhalb der Sperrschicht jedoch wurde für Cl der geringste Wert mit nur 2.464 

ppm (Fraktion a) gemessen. Die Probe aus der Sperrschicht (SH, 6f der Säule ISFK3) weist in 

der Fraktion c einen erhöhten Wert für Cl auf.  

Für den Faktor SO3 wurden für diese Säule in der feinsten Fraktion nicht nur am Top, sondern 

auch unmittelbar unterhalb der Sperrschicht (3,7 Gew.-%) und vor allem innerhalb der 

Sperrschicht (5,1 Gew.-%) sehr hohe Anteile festgestellt. Für den Blindversuch wurde für die 

Parameter CaO und Na2O keine bevorzugte Verteilung lokalisiert. Für die Säule mit Sperre 

zeigten sich hingegen für die Parameter CaO und Na2O im Vergleich zum Blindversuch 

abweichende Verteilungen. Innerhalb der Sperrschicht wurde eine Anreicherung an CaO (32,9 

Gew.-%, Fraktion a) beobachtet. Für den Faktor Na2O ist bemerkenswert, dass speziell in der 

Probe unmittelbar oberhalb der Sperre (5f) der höchster Wert (2,1 Gew.-%) innerhalb der 

groben Fraktion c gemessen wurde.  

Bezogen auf die Schwermetalle Cu, Pb und Zn lag ebenso eine Anreicherung in der feinsten 

Fraktion a vor. Für den Blindversuch wurde für den Parameter Pb keine bevorzugte Verteilung 

beobachtet. Für die Faktoren Cu und Zn hingegen wurde in der mittleren Probe 5f (Cu: 6.712 

ppm) und in der topnahen Probe (Zn: 11.665 ppm) erhöhte Werte festgestellt. Für die Säule 

mit Sperre jedoch fällt auf, dass innerhalb der Sperrschicht die Cu-Gehalte gering (5.345 ppm) 

und speziell an der Basis in allen drei Fraktionen deutlich höher (max. 7.010 ppm) sind. Auch 

für den Parameter Zn konnten höhere Werte in den Fraktionen b oder c festgestellt werden. 

Zn wies innerhalb der Sperrschicht vergleichsweise sehr hohe Gehalte (10.539 – 15.795 ppm) 

auf. Zudem lässt sich entlang des Säulenprofils auch eine Anreicherung an der Basis und am 
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Top der Säule erkennen (11.048 – 12.333 ppm). Für den Parameter Pb weist die Säule mit 

Sperre einen abweichend hohen Wert (7.101 ppm) innerhalb der groben Fraktion c in der 

topnächsten Probe auf. Tendenziell erkennt man aber auch eine Anreicherung (1.936 – 2.321 

ppm) innerhalb der feinen Fraktion a. Der höchste Wert wurde hier innerhalb der Sperrschicht 

(2.321 ppm) festgestellt. 

 

5.1.3 Feldversuche (Großlysimeter Raindorf) 
Im Gegensatz zu den Säulenversuchen hat bezüglich der Großlysimeter Raindorf die 

Bewässerung mit Modellsickerwasser bewirkt, dass hier innerhalb der Lysimeter ein großer 

Anteil an Cl, Na, SO3 und Ca zurückgehalten wurde (Tab. 43 und 44). Generell fällt auf, dass 

insbesondere die Bohrproben aus dem Lysimeter ohne Sperre höhere Gehalte an 

leichtlöslichen Spezies und Schwermetalle aufweisen als die aus dem Versuch mit Sperre. 

Besonders deutlich zeigt sich diese Tendenz für den Parameter Cl. Während für die 

Säulenversuche eine massive Auswaschung festzustellen war, lag bezüglich der Lysimeter 

Raindorf sogar eine Anreicherung im Vergleich Ausgangsmaterial (17.200 ppm) vor. 

Insbesondere für den Blindversuch wurden in den oberflächennahen Proben in der feinsten 

Fraktion a Cl-Gehalte bis zu 19.000 ppm gemessen. Vom Top zur Basis nahmen die Gehalte 

ab. Im Vergleich zum Blindversuch war für das Lysimeter mit Sperre eine geringfügige 

Abnahme der Cl-Gehalte festzustellen mit dem niedrigsten Werte unmittelbar unterhalb der 

Sperre. Am Top dieses Lysimeters wurde lediglich ein Wert um 15.000 ppm und innerhalb der 

Sperrschicht um 13.700 ppm gemessen. In den übrigen Bohrproben schwankten die Werte 

zwischen 12.000 – 13.000 ppm. Auch für den Parameter SO3 wurden im Vergleich zum 

Ausgangsmaterial (3,3 Gew.-%) zum Teil höhere Gehalte festgestellt. In der feinen Fraktion a 

der Feststoffproben aus dem Blindversuch wiesen speziell die oberflächennahen Proben 

höhere SO3-Gehalte (ca. 3,7 Gew.-%) auf. Für das Lysimeter mit Sperre wich das 

Verteilungsmuster von dem des Blindversuchs ab. Hier wurde für den Parameter SO3 eine 

Anreicherung  vor allem unterhalb der Sperrschicht (max. 3,8 Gew.-%) beobachtet. Die Probe 

aus der Sperrschicht wies den kleinsten SO3-Wert (3,1 Gew.-%) auf.  

Der Parameter CaO stellt eine Ausnahme dar. Insgesamt wurden für den Blindversuch im 

Vergleich zum Lysimeter mit Sperre geringere Werte um 27,7 Gew.-% festgestellt. Die 

Gehalte sind damit höher im Vergleich zum Ausgangsmaterial mit 24,5 Gew.-%. Für beide 

Lysimeter reicherte sich CaO in den basisnahen Proben an. Für das Lysimeter mit Sperre 

wurden speziell unterhalb der Sperre die höchsten Werte beobachtet. 

Es ist bemerkenswert, dass im Gegensatz zum Ausgangsmaterial die grobe Fraktion c der 

Lysimeterproben durchgehend relativ hohe Na2O-Gehalte aufzeigt. Für den Blindversuch 

zeigten sich insbesondere im mittleren Bereich (Proben 2f, 3f) höhere Na2O – Werte. Für das 

Lysimeter mit Sperre ist die Verteilung entlang des Profils gleichmäßig mit Gehalten zwischen 

2,1 und 2,4 Gew.-%. Lediglich die Probe unterhalb der Sperrschicht fällt mit einem vglw. 
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geringen Wert von 1,8 Gew.-% aus dem Rahmen. Während für die Säulenversuche 

insbesondere die Fraktion a stark an Na2O abgereichert war, sind hier die Werte vergleichbar 

mit den Werten im Ausgangsmaterial. Für den Blindversuch zeigte sich sogar eine 

Anreicherung. Betreffend die Schwermetalle wurden im Vergleich zum Ausgangsmaterial zum 

Teil deutlich höhere Gehalte gemessen. Auch diese Entwicklung wich von der der 

Säulenversuche ab. Dort wurde eine Abreicherung v.a. an Cu und Zn beobachtet. Für das 

Lysimeter Raindorf mit Sperre ist auffallend, dass die Gehalte der Parameter Cu, Pb und Zn 

vom Top zur Basis hin kontinuierlich abnehmen. Für das Lysimeter mit Sperre hingegen 

waren die Parameter Cu und Pb sehr gleichmäßig entlang des Bohrprofils verteilt. Für Cu 

reichten die Werte von 4.908 bis 6.602 ppm und für Pb von 1.219 bis 2.729 ppm. Für Pb 

wurden z.T. höhere Gehalte in der groben Fraktion c festgestellt. Sehr auffällig für das 

Lysimeter mit Sperre war, dass der Parameter Zn die höchsten Werte im Bereich der 

Sperrschicht (2f, SH, 3f; 13.420 – 14.023 ppm) aufweist. Am Top und an der Basis hingegen 

waren die Werte niedriger (11.343 – 11.760 ppm).  
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Tab. 41: Zusammenfassung der Korngrößenverteilung der Feststoffproben aus der Säule ohne Sperre der VA-A 

1 g = Gesamtfraktion 
 
 
Tab. 42: Zusammenfassung der Korngrößenverteilung der Feststoffproben aus der Säule mit Sperre der VA-A 

ISFK3-2f ISFK3-5f ISFK3 – SH* ISFK3-7f ISFK3-9f 
Para-
meter  Einheit g1  a b c g1 a b c g1  a b c g1  a b c g1  a b c 

CaO Gew.-% 19,9 29,5 24,3 17,6 20,3 29,9 24,0 17,4 20,3 32,9 25,1 20,0 20,4 30,6 23,7 17,3 19,6 29,1 23,1 18,1 

Na2O Gew.-% 1,3 0,6 0,8 1,5 1,4 0,7 0,9 2,1 1,5 0,6 0,8 1,5 1,3 0,7 0,9 1,5 1,2 0,9 1,0 1,9 

SO3 Gew.-% 2,3 3,8 2,8 2,4 1,9 3,5 2,7 1,1 2,0 5,1 3,0 2,1 2,1 3,7 2,6 1,2 1,8 3,3 2,4 1,3 

Cl ppm 3.251 4.579 4.192 2.767 3.413 4.728 4.571 2.730 2.313 2.464 2.768 2.210 3.378 4.598 4.427 3.082 4.152 5.612 5.100 3.021 

Cu ppm 4.483 5.719 5.450 4.317 4.579 6.153 5.528 4.201 4.721 5.345 5.328 5.599 5.267 6.316 5.694 5.500 5.379 6.803 5.965 7.010 

Pb ppm 1.319 1.936 1.821 7.101 1.651 2.009 1.847 1.053 1.581 2.321 2.091 1.716 1.546 2.033 1.838 1.266 1.601 1.963 1.822 1.487 

Zn ppm 5.501 11.048 8.403 4.740 4.981 10.810 8.430 4.695 7.356 12.904 10.539 15.795 6.750 10.594 8.411 4.863 6.670 12.333 9.020 5.734 
1 g = Gesamtfraktion; *SH = Sperrhorizont, Sperrschicht 

IBV3-2f IBV3-4f IBV3-5f IBV3-7f 

Parameter  Einheit g1  a b c g1 a b c g1  a b c g1  a b c 

CaO Gew.-% 19,5 29,6 24,1 17,7 20,1 30,4 23,8 19,0 19,9 30,2 23,9 18,6 21,0 30,5 24,1 17,0 

Na2O Gew.-% 1,2 0,6 0,7 1,6 1,2 0,7 0,8 1,4 1,2 0,7 0,8 1,6 1,4 0,7 0,8 1,8 

SO3 Gew.-% 2,0 3,9 3,0 1,5 2,0 3,5 2,6 1,6 1,8 3,2 2,4 1,5 2,0 3,3 2,5 1,2 

Cl ppm 2.784 3.994 3.463 2.173 3.559 4.630 4.478 2.992 3.435 4.558 4.452 2.859 4.160 5.160 5.091 2.819 

Cu ppm 5.756 6.363 5.346 4.562 5.676 6.145 5.722 4.521 5.994 6.712 6.135 4.638 4.665 5.961 5.493 4.476 

Pb ppm 1.501 1.868 1.769 1.723 1.835 1.936 1.834 1.361 1.450 1.952 1.845 1.845 1.420 1.981 1.848 1.275 

Zn ppm 6.343 11.665 8.471 4.608 6.883 11.552 8.546 5.664 5.650 11.395 8.491 5.653 6.698 10.915 8.461 4.417 
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Tab. 43: Zusammenfassung der Korngrößenverteilung der Feststoffproben aus dem Lysimeter ohne Sperre der Großlysimeter Raindorf 

RA1-1f RA1-2f RA1-3f RA1-4f Para 
meter  Einheit g1 a b c g1 a b c g1  a b c g1  a b c 

CaO Gew.-% 17,1 27,1 19,5 15,0 17,7 27,0 20,6 15,7 16,6 26,8 20,3 16,1 17,8 27,7 22,8 19,0 

Na2O Gew.-% 2,1 2,2 1,9 2,2 1,9 2,1 2,0 2,5 1,9 1,8 1,8 2,6 2,2 1,8 1,8 2,2 

SO3 Gew.-% 1,8 3,6 2,1 1,1 1,7 3,7 2,3 1,2 1,5 3,4 2,2 1,3 1 3,3 2,5 1,3 

Cl ppm 11.594 19.105 14.283 7.866 11.720 18.201 15.597 8.179 8.620 15.776 12.777 7.302 8.315 15.345 13.533 7.847 

Cu ppm 7.594 7.546 7.007 8.038 6.697 7.165 7.360 5.917 6.882 6.638 6.736 6.647 5.501 6.447 5.950 4.293 

Pb ppm 4.290 3.848 3.187 1.886 2.365 3.556 2.909 2.610 1.814 2.453 2.337 2.384 1.686 1.872 1.726 1.153 

Zn ppm 9.790 16.700 11.118 8.841 9.246 15.717 11.077 6.791 6.313 13.100 9.345 8.146 7.384 12.526 9.454 6.120 
1 g = Gesamtfraktion 
 
 
Tab. 44: Zusammenfassung der Korngrößenverteilung der Feststoffproben aus dem Lysimeter mit Sperre der Großlysimeter Raindorf  

RA2-1f RA2-2f RA2-SH* RA2-3f RA2-4f   

Para-
meter  

  

Einheit g1  a b c g1 a b c g1 a b c g1 a b c g1 a b c 

CaO Gew.-% 17,9 26,6 21,9 16,3 17,0 27,4 23,3 17,2 19,9 26,7 22,3 17,7 20,5 28,3 22,7 17,3 18,9 28,1 22,5 16,6 

Na2O Gew.-% 2,0 1,7 1,6 2,4 2,0 1,6 1,6 2,1 1,9 1,7 1,6 2,4 1,5 1,6 1,5 1,8 1,9 1,7 1,5 2,4 

SO3 Gew.-% 1,3 3,2 2,4 1,1 1,5 3,3 2,6 1,2 2,0 3,1 2,5 1,2 2,2 3,8 2,6 1,6 1,6 3,6 2,4 1,1 

Cl ppm 7.123 14.974 12.104 5.861 6.750 13.106 11.578 6.017 9.034 13.722 11.063 6.698 9.144 12.131 10.657 6.821 7.811 13.156 10.930 5.730 

Cu ppm 6.602 6.436 6.024 6.423 6.400 5.912 5.670 5.799 5.399 6.189 6.397 4.908 4.910 6.341 6.122 5.151 5.177 6.337 6.169 5.215 

Pb ppm 1.219 1.929 1.791 2.275 2.627 1.781 1.739 1.514 1.522 1.718 1.652 1.253 1.750 2.180 1.970 2.729 1.353 1.897 1.788 1.438 

Zn ppm 6.003 11.343 8.686 5.773 6.509 14.023 10.374 5.107 7.087 13.420 10.109 4.865 7.697 13.456 10.750 6.916 5.824 11.760 9.074 4.941 

* SH = Sperrhorizont, Sperrschicht 
1 g = Gesamtfraktion 
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5.1.4 Salzhorizont der Monodeponie Waldering 
Die Bohrprobe BA 1-15 stammt unmittelbar aus dem beobachteten Salzhorizont der 

Monodeponie Waldering aus einer Bohrtiefe von sieben Metern (Tab. 45). Die 

Untersuchungen zur Korngrößenverteilung haben gezeigt, dass mit wenigen Ausnahmen 

(Na2O und Cl) kaum Unterschiede in den einzelnen Fraktionen feststellbar sind. Im Vergleich 

zu den Ausgangsmaterialien Schlacke A und B fallen für die Bohrprobe BA 1-15 die deutlich 

höheren CaO- und Cl-Gehalte auf: CaO (36,4 Gew.-%) und Cl (14,2 Gew.-%). Im Gegensatz 

zu den Ausgangsmaterialien werden hier die höchsten Na2O-Gehalte innerhalb der feinsten 

Fraktion a (< 125 µm) gemessen. Die Werte für Na2O (6,0 Gew.-%) und Cl sind 

außergewöhnlich hoch. Die Gehalte sind sogar höher als in frischen RGR-Proben: Na2O bei 

1,9 Gew.-% und für Cl nur bei 10,9 Gew.-%. Der Faktor SO3 ist für die Bohrprobe BA 1-15 in 

der groben Fraktion c (> 1 mm) mit einem Wert von 3,8 Gew.-% am höchsten. In der Schlacke 

B hingegen wurde in dieser Fraktion lediglich ein Wert 1,2 Gew.-% festgestellt. Bezüglich der 

feinen Fraktion a ist die Verteilung umgekehrt: hier wurde für die Schlacke B ein Gehalt von 

4,0Gew.-% und für die Bohrprobe BA 1-15 nur ein Gehalt von 3,4 Gew.-% ermittelt.  

Eine weitere markante Auffälligkeit ist, dass die Cu-Gehalte im Vergleich zu den 

Ausgangsmaterialien (max. 6.900 ppm) mit 970 ppm deutlich geringer sind. Vor allem 

innerhalb der feinsten Fraktion a (< 125 µm) der Probe BA 1-15 ist der Parameter Cu deutlich 

abgereichert. Die Pb- und Zn-Gehalte weisen in etwa dieselben Konzentrationsbereiche auf 

wie die Schlacke B. Für die Bohrprobe BA 1-15 wurden die geringsten Werte innerhalb der 

feinen Fraktion a festgestellt: für Pb 2.845 und für Zn 10.804 ppm.  

 
Tab. 45: Zusammenfassung der Korngrößenverteilung der Bohrprobe 1-15 aus dem Salzhorizont in BA 1 der 

Monodeponie Waldering 
Parameter Einheit BA 1 - 15 - Salzhorizont 

    gesamt 
a 

< 125 µm 

b 
125 µm – 1 mm

c 
> 1mm 

CaO Gew.-% 35,0 36,4 35,4 35,2 

Na2O Gew.-% 1,6 6,0 2,6 2,3 

SO3 Gew.-% 3,5 3,4 3,7 3,8 

Cl ppm 127.341 141.542 112.853 107.366 

Cu ppm 1.031 970 1.038 1.069 

Pb ppm 3.899 2.845 3.492 3.346 

Zn ppm 11.497 10.804 12.436 12.464 
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5.1.5 Fazit zur Korngrößenverteilung 
Eine bevorzugte Anreicherung an leichtlöslichen Salzen und Schwermetallen (insbesondere 

Zink) in MV-Schlacken findet sich: 

 innerhalb der feinen Fraktion a (< 125 µm), 

 eine Ausnahme ist Na2O (grobe Fraktion c > 1mm), 

 Pb zeigt keine bevorzugte Verteilung. 

 

Die wichtigsten Erkenntnisse bzgl. der Zugabe von Modellsickerwasser: 

 im Vergleich zum Ausgangsmaterial wurde für die Säulenversuche eine massive 

Auswaschung an Cl und Na2O und für die Lysimeter hingegen eine Anreicherung 

festgestellt, 

 die Salzzugabe führte für alle Versuche zu einer Anreicherung an CaO und SO3 - hier 

ist die Entwicklung für die Säulenversuche deutlicher als für die Lysimeter, 

 bezogen auf die Schwermetalle liegt im Vergleich zum Ausgangsmaterial für die 

Säulenversuche ein ähnlicher Konzentrationsbereich bzw. eine geringfügige 

Auswaschung (Cu, Zn) vor und für die Lysimeter hingegen zeigte sich eine 

Anreicherung an Cu, Pb und Zn insbesondere für den Blindversuch  

 

Der Einbau einer Sperrschicht hat zum Teil deutliche Unterschiede entlang des 

Versuchsprofils zwischen Blindversuch und Versuch mit Sperre bewirkt. Die folgenden Punkte 

spiegeln die wichtigsten Erkenntnisse wider: 

 Säulenversuche: gleichmäßige Verteilung an CaO und Pb, Anreicherung für SO3 und 

Zn am Top und für Cl, Na2O und Cu in den basisnahen Proben für den Blindversuch 

sowie Anreicherung innerhalb der Sperrschicht an CaO, SO3, Pb und Zn; zudem 

Anreicherung an Na2O unmittelbar oberhalb der Sperrschicht in der groben Fraktion c, 

Abreicherung an Cl und Cu innerhalb der Sperrschicht sowie an der Basis und für Zn 

am Top sowie an der Basis für den Säulenversuch mit Sperre.  

 Lysimeter: deutliche Anreicherung für SO3, Cl, Cu, Pb und Zn am Top und für Na2O in 

den mittleren Proben für den Blindversuch sowie Anreicherung für Cl und Zn sowie 

Abreicherung für SO3 im Bereich der Sperrschicht, zudem deutliche Anreicherung für 

CaO und SO3 an der Basis sowie für Cl am Top für das Lysimeter mit Sperre. 

 

Für die Bohrprobe BA 1-15 aus dem Salzhorizont der Monodeponie Waldering zeigen sich 

Auffälligkeiten: 

 außergewöhnlich hohe Gehalte an Cl und Na2O, 

 die Werte sind auch höher im Vergleich zu frischen RGR-Proben, 

 insbesondere der Parameter Cu ist im Vergleich zu Schlacke B stark abgereichert, vor 

allem die Probe innerhalb der Sperre weist den niedrigsten Wert auf. 
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5.2 RELATIVE ANTEILE VON MINERALPHASEN 
MV-Schlacke ist ein Multiphasengemisch. Die Röntgenpulveraufnahmen haben gezeigt, dass 

die Materialien z.T. aus mehr als 10 verschiedenen Mineralphasen bestehen. Die einzelnen 

Peaks überlagern sich z.T aufgrund der zahlreichen Mineralphasen in MV-Schlacken. 

Generell konnten etwa 7 Phasen mittels Röntgenpulverdiffraktometrie eindeutig identifiziert 

werden. Bei vielen Phasen in MV-Schlacken handelt es sich um Mischkristalle. In einzelnen 

Diffraktogrammen hat sich zudem auch ein Glasbuckel gezeigt, der auf aufgeschmolzene 

Schlackepartikel und amorphe Bestandteile hinweist. Deshalb ist eine quantitative Analyse, 

z.B. mittels Rietvelt-Methode, nicht möglich. Der zeitliche Aufwand hätte den Rahmen dieser 

Arbeit gesprengt. Aus diesem Grund wurde hier eine Abschätzung der relativen Anteile von 

Mineralphasen durchgeführt. Die Auswertung der Röntgenbeugungsdaten erfolgte mit dem 

Softwarepaket ADM V6 der Firma Dr. A Wassermann, Kempten (2001). Die Abschätzung der 

relativen Anteile einer Mineralphase wurde anhand der Peakhöhe charakteristischer Peaks im 

Diffraktogramm durchgeführt. Der relative Anteil einer Phase wird in den folgenden Tabellen 

durch die Anzahl der Kreuze (+) symbolisiert (Tab. 46). Ein Strich (-) bedeutet, dass die Phase 

nicht nachweisbar war.  

 
Tab. 46: Symbole zur Abschätzung der relativen Anteil einer Mineralphase 

Symbole Bedeutung 

++++ Sehr viel vorhanden 

+++ Viel vorhanden 

++ Wenig vorhanden 

+ Sehr wenig vorhanden 

- Röntgenographisch nicht nachgewiesen 

 

Zusätzlich zur routinemäßigen Auswertung mit ADM wurden reine Mineralphasen der 

Mineralogischen Staatssammlung am Museum „Reich der Kristalle“ in München 

röntgenographisch untersucht. Folgende Phasen konnten in den Schlacke-Proben eindeutig 

identifiziert werden: Quarz, Calcit, Gips, Anhydrit, Halit, Sylvin, Ettringit, Hydrocalumit, Fe-

Oxide (u.a. aus der Spinell-Gruppe) und Silikate (u.a. aus der Melilith-Gruppe). In einzelnen 

Diffraktogrammen hat sich zudem auch ein Glasbuckel gezeigt, der auf aufgeschmolzene 

Schlackepartikel und amorphe Bestandteile hinweist. Analysiert und ausgewertet wurden die 

Gesamtfraktion und die Fraktionen a (< 125 µm), b (125 µm - 1mm) und c (> 1 mm). Ein 

Vergleich der Gesamtfraktion und der einzelnen Fraktion hat gezeigt, dass die Gehalte für die 

Hauptphasen Quarz und Calcit sowie Spinell und Melilith in etwa vergleichbar sind. Für die 

löslichen Salzphasen wie Ettringit, Hydrocalumit, Gips, Halit oder Sylvit wurden insbesondere 

in der feinen Fraktionen a die größten Anteile beobachtet. Aufgrund dieser Beobachtungen 

sowie aufgrund der Ergebnisse zur Korngrößenverteilung, wo eine bevorzugte Anreicherung 
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der Salze und Schwermetalle innerhalb der feinen Fraktion a festgestellt wurde, wurde auch 

bei der Auswertung der Diffraktogramme das Hauptaugenmerk auf die feine Fraktion a gelegt. 

Für die Feststoffproben aus den Säulen jedoch war in der Fraktion a zu wenig Material für 

eine qualitative Analyse vorhanden, daher wurde hier die Fraktion b (125 µm – 1mm) 

detaillierter untersucht.  

 

5.2.1 Ausgangsmaterialien 
Die Tabelle 47 zeigt eine Auflistung der Mineralphasen der Ausgangsmaterialien Schlacke A 

(MVA Ingolstadt) und Schlacke B (MHKW Rosenheim) sowie Schlacke-Feinkorn (SFK) und 

Rauchgasreinigungsrückstände (RGR).  

 
Tab. 47: Relative Anteile von Mineralphasen in den Ausgangsmaterialien (feine Fraktion a) 

Mineralphasen 

Schlacke 
A 

Schlacke 
B SFK RGR 

Quarz ++++ ++++ ++++ + 

Calcit ++++ +++ +++ +++ 

Portlandit - - - ++++ 

Gips - + + + 

Anhydrit + ++ ++ - 

Halit + - + +++ 

Sylvin + - - +++ 

Ettringit ++ ++ ++ - 

Hydrocalumit ++ - + - 

Spinell - ++ ++ - 

Melilith ++ ++ + - 

 

Die Schlacken A und B weisen als Hauptphasen Calcit und Quarz auf. Zudem konnten auch 

Melilith [(Ca,Na)2(Al,Mg,Fe2+)(Si,Al)2O7] und ein Vertreter der Spinell-Gruppe Magnesioferrit 

(MgFe2
3+O4) identifiziert werden. Ein Unterschied besteht darin, dass Schlacke A höhere 

Calcit-Gehalte aufweist und Schlacke B hingegen höhere Quarz- und Melilith-Gehalte. Für 

Schlacke A konnte im Gegensatz zu Schlacke B das Mineral Hydrocalumit  

[Ca2Al(OH)6[Cl1-x(OH)x]·3H2O] nachgewiesen werden. Dafür wurden in der Schlacke B Gips- 

und Anhydrit festgestellt. Ettringit [Ca6Al2(SO4)3(OH)12·26H2O] ist in beiden Schlacken 

vorhanden. Entsprechend der chemischen Analyse wurde in der salzreichen Schlacke A 

zudem Halit und Sylvin detektiert. Das Schlacke-Feinkorn (SFK) zeigt denselben 

Mineralbestand wie die Schlacke B. Hinweise auf höhere Salzgehalte sind die Phasen Halit 

und Hydrocalumit.  

Die Rauchgasreinigungsrückstände (RGR) fallen mit ihrem relativ hohen Anteil an Portlandit 

auf. Auch die Anteile an Halit- und Sylvin sind im Vergleich zu MV-Schlacke auffällig hoch. Im 
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Vergleich zu MV-Schlacke sind die Quarz-Anteile vergleichsweise gering; die Calcit-Anteile 

hingegen sind in etwa gleich hoch.  

 

5.2.2 Säulenversuche (VA-A) 
Die Feststoffproben aus den Säulen IBV3 (ohne Sperre „lang“) und ISFK3 (mit Sperre „lang“) 

weisen im Wesentlichen dieselben Mineralphasen auf wie die Ausgangsschlacke A. Die 

Tabelle 48 zeigt eine Auflistung der Mineralphasen. Bemerkenswert ist, dass die Anteile an 

Anhydrit höher sind. Entlang der Säulenprofile variieren die Anteile an Mineralphasen. Am 

deutlichsten lassen sich die Unterschiede anhand der Mineralphasen Ettringit und 

Hydrocalumit erarbeiten. Für den Blindversuch hat die Feststoffanalyse eine topnahe 

Sulfatanreicherung ergeben. Entsprechend wurde im Diffraktogramm dieser Probe ein höherer 

Ettringit-Anteil beobachtet. Im Gegenzug dafür ist der Hydrocalumit-Peak nur sehr klein und 

schlecht ausgeformt. Zu Basis hin nimmt der Anteil an Ettringit ab und der von Hydrocalumit 

zu.  

Für die Säule mit Sperre lässt sich derselbe Mineralbestand beschreiben wie für den 

Blindversuch. Für die Proben oberhalb der Sperre sind die Ettringit- und Hydrocalumit-Gehalte 

in etwa gleich hoch. Innerhalb der Sperrschicht (ISFK3-SH) wurde mit 5,1 Gew.-% ein sehr 

hoher Sulfat-Gehalt ermittelt. Übereinstimmend war der Ettringit-Anteil deutlich höher und der 

Hydrocalumit-Anteil vernachlässigbar gering. Zudem ist auch der Calcit-Gehalt höher. Gips 

konnte eindeutig identifiziert werden. Auffällig ist hier ein geringerer Quarz-Anteil.  

 
Tab. 48: Relative Anteile von Mineralphasen in den Feststoffproben aus den Säulen IBV3 (ohne Sperre „lang“) 

und ISFK3 (mit Sperre „lang“), feine Fraktion a 
  ohne Sperre mit Sperre 

Mineralphasen IBV3-2f IBV3-4f IBV3-5f IBV3-7f
ISFK3-

2f 
ISFK3-

5f 
ISFK3-

SH 
ISFK3-

7f 
ISFK3-

9f 

Quarz +++ +++ ++++ ++++ ++++ ++++ +++ ++++ ++++ 

Calcit ++ ++ ++ ++ ++ ++ ++ ++ ++ 

Gips - - - - - - + - - 

Anhydrit + + - + + + + + - 

Halit + + + + + + + + + 

Sylvin - - - - - - - - - 

Ettringit ++ ++ + + + + ++ ++ ++ 

Hydrocalumit + + ++ ++ + + - ++ ++ 

Spinell + + + + + + + + + 

Melilith + + + + + + + + + 

 



Dissertation Daniela Sager  5. Mineralogische Ergebnisse 

- 138 - 

5.2.3 Feldversuche (Großlysimeter Raindorf) 
Die Tabelle 49 zeigt eine Übersicht über die relativen Anteile der Mineralphasen für die zwei 

Feldversuche der Großlysimeter Raindorf. Der Mineralbestand stimmt überwiegend mit dem 

der Ausgangsschlacke A überein. Auffällig ist, dass im Vergleich zu den Säulenproben die 

Bohrproben aus den Lysimeterproben z.T. sehr hohe Anteile an Hydrocalumit aufweisen. Dies 

korrespondiert mit den viel höheren Cl-Gehalten in diesen Proben. Generell wirkt sich die 

Verteilung der Parameter Cl und SO4 im Feststoff unmittelbar auf den Mineralbestand aus. 

Für den Blindversuch wurden insbesondere in den topnahen Proben hohe Gehalte an Cl und 

SO4 gemessen. Folglich sind in diesen Proben die Hydrocalumit- und Ettringit-Anteile erhöht. 

Am deutlichsten zeigen sich Unterschiede zwischen Blindversuch und Lysimeter mit Sperre in 

der basisnächsten Probe. Für das Lysimeter mit Sperre sind die Calcitanteile deutlich geringer 

als für den Blindversuch, während die Quarz-Anteile höher sind. Für das Lysimeter mit Sperre 

ist zusätzlich die Phase Gips eindeutig identifizierbar. In der Probe unmittelbar unterhalb der 

Sperrschicht ist auch der Ettringit-Anteil am höchsten. Diese Beobachtung korrespondiert mit 

höheren SO3-Werten an der Basis. Die Cl-Gehalte sind für dieses Lysimeter an der Basis 

geringer, daher konnte sich auch kaum noch Hydrocalumit ausbilden. Die Probe aus der 

Sperrschicht hingegen weist den höchsten Hydrocalumitgehalt auf. 

 
Tab. 49: Relative Anteile von Mineralphasen in den Feststoffproben aus den Lysimetern RA1 (ohne Sperre) und 

RA2 (mit Sperre) der dritten Bohrkampagne (feine Fraktion a) 
  ohne Sperre mit Sperre 

Mineralphasen RA1-1f RA1-2f RA1-3f RA1-4f RA2-1f RA2-2f RA2-SH RA2-3f RA2-4f 

Quarz ++ ++ ++ +++ +++ +++ +++ ++ ++++ 

Calcit +++ +++ +++ +++ +++ +++ +++ +++ ++ 

Gips + + - - - - - + + 

Anhydrit + + + + + + + + + 

Halit + + + + + + + + + 

Sylvin - - - - - - - - - 

Ettringit + ++ + + + + + ++ + 

Hydrocalumit +++ +++ ++ ++ ++ ++ +++ + + 

Spinell + + + + + + + + + 

Melilith + + ++ ++ + + + + + 

 

5.2.4 Salzhorizont der Monodeponie Waldering 
Die Bohrprobe BA 1-15 wurde direkt aus dem Salzhorizont aus einer Tiefe von sieben Metern 

entnommen. Auffällig sind für diese Probe die außergewöhnlich hohen Anteile an Halit (Tab. 

50). Auch Calcit, Anhydrit und Sylvin sind in relativ hohen Anteilen vertreten. Als weitere 

Phasen wurden in großen Mengen Hydrocalumit und ein Vertreter der Spinell-Gruppe (z.B. 

Magnesioferrit) bestimmt. Zudem wurde noch Quarz identifiziert. In der Arbeit von Magel 
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(2003) wurde beschrieben, dass es in den Bohrproben aus BA1 von 2000 bereits zu einem 

Ettringit-Abbau zu Gunsten von Hydrocalumit gekommen ist. Für die vorliegende Arbeit 

wurden dieselben Proben untersucht, die in Plastikeimern in Kellerräumen auf der 

Monodeponie Waldering gelagert werden. Eine weitere Alterung von vier Jahren hat dazu 

geführt, dass nunmehr nicht mehr Ettringit vorliegt, sondern viel mehr Monosulfat 

(3CaO•Al2O3•CaSO4•12H2O). 

 
Tab. 50: Relative Anteile von Mineralphasen im Salzhorizont der Monodeponie Waldering (BA1-15) 

BA 1-15 Mineralphasen  

Quarz + Gips - Hydrocalumit ++ Sylvin +++ 

Calcit +++ Anhydrit +++ Monosulfat ++ Spinell ++ 

Portlandit - Ettringit - Halit ++++ Melilith + 

 

5.2.5 Fazit zu den relativen Anteilen von Mineralphasen 
Die Röntgenpulverdiffraktometrie eine sehr empfindliche Methode. Bezüglich der 

Hauptphasen Quarz und Calcit sowie Spinelle und Melilithe zeigt sich kaum ein Unterschied 

im Profilverlauf. Jedoch können merkliche Unterschiede für leichtlösliche Mineralphasen wie 

Halit, Sylvin, Gips, Ettringit und Hydrocalumit in den einzelnen Proben entlang des vertikalen 

Versuchsprofils erarbeitet werden. 

Fazit zu den relativen Anteilen von Mineralphasen 

 Die Verteilung der Parameter im Feststoff wirkt sich unmittelbar auf den Mineralbestand 

aus. 

 Geringfügige Milieuunterschiede für Cl und SO4 reichen aus, um die Mineralverteilung 

zu ändern. 

 SO4-reiche Lösungen führen zur Bildung von Ettringit und Cl-reiche Lösungen zur 

Bildung von Hydrocalumit. 

 Aus den Ergebnissen zur Gesamtchemie lässt sich ableiten, dass eine Erhöhung im 

SO3-Gehalt um 0,5% bereits ausreicht, um die Mineralverteilung zu beeinflussen. 
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5.3 DIVERSE MINERALPHASEN IN MV-SCHLACKEPROBEN 
Verschiedenartige Salzphasen konnten in frischen (Ausgangsmaterialien) sowie in gealterten 

Schlackeproben (Feststoffproben aus Säulen- und Feldversuchen) makroskopisch festgestellt 

werden. Die Mineralbeschreibungen, Aufnahmen mit Licht- sowie Rasterelektronen-

mikroskopie und Infrarotspektroskopie (mittleren Infrarotbereich von 4000 bis 400 cm-1) finden 

sich im mineralogischen Anhang. Die Tabelle D-5.1 im experimentellen Anhang gibt eine 

generelle Übersicht über die Infrarot-Bandenverteilung wichtiger Mineralklassen, Aquo- und 

Hydroxokomplexe, Kristallwasser und Kohlendioxid.  

Für die Schlacke A wurden zahlreiche, unterschiedlich gefärbte Salze untersucht (Abb. B-1a 

bis B-2b, mineralogischer Anhang). Für die Schlacke B hingegen wurden makroskopisch 

deutlich weniger Salzphasen festgestellt (Abb. B-3a und B-3b, mineralogischer Anhang). Die 

Aufnahmen mit Lichtmikroskop und REM haben gezeigt, dass die Phasen hauptsächlich 

gelartig sind: Die Oberflächen sind zum Teil glatt, sowie brüchig bis splittrig. In wenigen Fällen 

lassen sich auch nadelige Kristalle erkennen. Generell konnten röntgenographisch keine 

schwermetallhaltigen Mineralphasen in den Feststoffproben nachgewiesen werden. Für die 

Salzphasen der Schlacke A war eine Mineralbestimmung mittels Pulverröntgendiffraktometrie 

zudem ausgeschlossen, da die Phasen röntgenamorph waren.  

Die Tabelle 51 zeigt einen Überblick über die mineralogische Phasenzusammensetzung, die 

mittels EDX-Detektion in Salzburg bestimmt wurde. Mit dieser Methode konnte kein C 

nachwiesen werden. Die Proben wurden am FES in Schwabach mit einem RBSD-Detektor 

(Robinson-Backscatter-Detektor) untersucht. Mit dieser Ausstattung konnte auch Kohlenstoff 

qualitativ analysiert werden. In sämtlichen Salzphasen wurde ein C-Peak festgestellt. Daher 

sind Karbonat- und Hydrocarbonatkomponenten denkbar. 

 
Tab. 51: Elementverteilung in den Mineralphasen in den Ausgangsmaterialien (Schlacke A und B), ermittelt mittels 

EDX-Analyse  

      Beschreibung 
 Farbe Probe  Elemente Lichtmikroskop REM 

Weiß Schlacke A Zn, O 

gelartig, muscheliger 
Bruch, durchscheinend 
z.T. auch Kristalle Nadeln 

Türkis Schlacke A Al, Cl, Ca, O, K 
gelartig, muscheliger 
Bruch, durchscheinend, glatt, muscheliger Bruch 

Türkis Schlacke B Al, O, Cl, Na, Cu 
mikrokristallin, z.T. sehr 
weich splittrig, brüchig 

 
Für die weißen Mineralphasen der Schlacke A wurden hauptsächlich die Elemente Zn und O 

festgestellt. Mit dem REM lässt sich erkennen, dass die einzelnen Kristalle bei starker 

Vergrößerung nadelig ausgebildet sind. Mittels Infrarotuntersuchung wurden neben 

Kristallwasser (3840 und 1620 cm-1) und OH-Gruppen (3640 cm-1) auch Anteile an Karbonat 

(1420 cm-1) und Sulfat (1108 cm-1) in der weißen Salzphase festgestellt. Morphologisch sieht 
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man weiße nadelige Kristalle. Aus dieser Beobachtung kommt das Mineral Brianyoungit, 

Zn3[(OH)4/(CO3),(SO4)] in Frage.  

Die Oberflächen der türkisen Mineralphasen der Schlacken A und B sind glatt ausgebildet. Ihr 

mit muscheligem Bruch oder z.T. auch stark splittrig und brüchig. Die Infrarotanalysen haben 

ergeben, dass die Salzphasen sehr wasserhaltig sind (Kristallwasser und z.T. OH-Gruppen). 

Die Elemente Al, Cl, Ca, O, K, Na und Cu wurden analysiert. Hierfür kommt Afghanit 

(Na,Ca,K)8(Si,Al)12O24(SO4,Cl,CO3)3•H2O ein Mischkristall der Cancrinit-Gruppe in Frage.  

Neben den Mineralphasen in den Ausgangsmaterialien wurde ein besonderes Augenmerk auf 

die Bohrprobe aus der Bohrkampagne 2000 im Bausabschnittes BA1 der Monodeponie 

Waldering gesetzt. In den Bohrproben aus verschiedenen Tiefen sind die Salzphasen 

besonders zahlreich und mannigfaltig ausgebildet. Die einzelnen Salzphasen waren sehr gut 

auskristallisiert und eigneten sich neben Licht- und Rasterelektronenmikroskopie und 

Infrarotspektroskopie daher auch für die Röntgenpulverdiffraktometrie. Deshalb konnten hier 

die verschiedenen Phasen detaillierter untersucht werden. Die einzelnen Salzphasen wurden 

anhand ihrer Farben (weiß, blau, türkis, beige) makroskopisch unterschieden.  

 

Weiße Salzphasen 

Die Aufnahmen mit Licht- und Rasterelektronenmikroskopie finden sich im mineralogischen 

Anhang unter Abb. C-1a bis C-4a. Die Tabelle 52 zeigt einen Überblick über die chemische 

Zusammensetzung der weißen Salzphasen in den einzelnen Bohrproben, ermittelt mittels 

EDX-Detektion.  

 
Tab. 52: Elementverteilung in den Mineralphasen aus den Bohrproben im Bauabschnitt 1 der Monodeponie 

Waldering, ermittelt mittels EDX-Analyse  

        Beschreibung 

Farbe Bohrprobe 
Bohrtiefe 

in m Elemente Lichtmikroskop REM 
BA 1-13  5,5 Ca, Cl, Al, O mikrokristallin, matt mikrokristallin 

BA 1-14 6,5 Ca, Al, Cl, O mikrokristallin, matt 
mikrokristallin, z.T. 
feine Nadeln 

BA 1-15 7 Ca, Cl, O, S, Al 
einzelne Kristalle,  
durchscheinend 

nadelig,  
z.T. verkrustet 

Weiß BA 1-17 8,5 Ca, Cl, Al, O z.T. gel-, glasartig Blättchen 
 

Im Allgemeinen besteht die chemische Zusammensetzung überwiegend aus den Elementen 

Ca, Cl, Al und O. Dieser Bestand widerspiegelt die Strukturformel von Hydrocalumit: 

Ca2Al(OH)6[Cl1-x(OH)x]•3H2O. Neben Hydrocalumit kommt aber auch Friedel’sches Salz 

(3CaO•Al2O3•CaCl2•10H2O) in Frage (Bothe et al., 2004). Für die Bohrprobe BA 1-15 aus 

dem Salzhorizont konnten zudem Gipsnadeln (CaSO4•2H2O) festgestellt werden. Die fein 

tafelige Ausbildung der Hydrocalumitkristalle in der Bohrprobe BA 1-17 zeigt besonders gut 

die Abb. C-4b im mineralogischen Anhang. Die Tabelle 53 zeigt einen Überblick über die 
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mineralogische Phasenzusammensetzung dieser weißen Salzphasen in verschiedenen 

Bohrproben, die mittels Pulverdiffraktometrie ausgewertet wurden. Es bestätigt sich, dass die 

weißen Salzphasen aus den vier Bohrproben aus unterschiedlicher Tiefe sich hauptsächlich 

aus Hydrocalumit zusammensetzten. Es wurden auch größere Anteile an Sodalith 

(Na8[Cl2/(AlSiO4)6]) detektiert. In geringen Anteilen wurden noch Gips, Halit und Sylvin 

festgestellt. Für die Probe BA 1-13 aus einer Tiefe von fünfeinhalb Metern wurde auch ein 

Calcitpeak ausgewertet. Es fällt auf, dass die beiden weißen Mineralphasen aus den 

Bohrproben BA 1-17 und 1-14 schlechter auskristallisiert sind als die in BA 1-13 und BA 1-15, 

was sich in breiten Peaks äußert. Zudem weisen sie einen deutlichen Glasbuckel im Bereich 

zwischen 15 – 20° 2θ auf.  

 
Tab. 53: Relative Anteile von Mineralphasen in den weißen Salzphasen aus den Bohrproben im Bauabschnitt 1 

der Monodeponie Waldering 
Mineralphasen aus  1-13 1-14 1-15 1-17 

Bohrtiefe in m 5,5 6,5 7 8,5 

Farbe weiß 

Calcit ++ - - - 

Gips + + + + 

Halit ++ + + + 

Sylvin + + + + 

Hydrocalumit ++++ ++++ ++++ ++++ 

Sodalith + +++ ++ +++ 

 

Die Abb. 171 zeigt eine typische Bandenverteilung im mittleren Infrarotbereich für die weiße 

Salzphase aus der Bohrprobe BA 1-13. Deutlich zu unterscheiden sind Banden für die OH-

Gruppe (3640 cm-1), Kristallwasser (3840 und 1620 cm-1) und Sulfatbande (1108 cm-1) und 

Chloridbande (bei 532 cm-1).  
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Abb. 171: Bandenverteilung im mittleren Infrarotbereich für die weiße Salzphase aus der Bohrprobe BA 1-13  
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Die weißen Salzphasen aus den Bohrproben BA 1-14, 1-15 und 1-17 weisen dasselbe 

Spektrum auf, jedoch variieren die Bandenhöhen. Für BA 1-14 und BA 1-15 ist kaum eine 

Karbonatbande identifizierbar. Auch die Sulfatbande ist mit Ausnahme von BA 1-13 nicht sehr 

stark ausgeprägt.  

 

Beige Salzphase 

Die beige Salzphase aus BA 1-13 zeigt in der REM-Aufnahme nadelige Kristalle (Abb. C-5a, 

mineralogischer Anhang). Die EDX-Analyse hat ergeben, dass die Phase aus den Elementen 

Ca, Si, Cl, O, S, Na und K besteht. Mit Hilfe der Pulverdiffraktometrie wurde in erster Linie 

Ettringit bestimmt (Tab. 55). Zusätzlich wurden noch Halit, Sylvin und Quarz analysiert. In 

geringen Anteilen konnte noch Anhydrit und Calcit festgestellt werden. Das Infrarotspektrum 

der beigen Salzphase wurde eindeutig als Ettringit identifiziert (Abb. C-5b, mineralogischer 

Anhang). Es handelt sich um ein typisches Sulfatspektrum mit einer starken Bande bei 1107 

cm-1, einer mittleren Bande bei 600 cm-1 und einer schwachen Bande bei 988 cm-1. Zusätzlich 

zeigen sich Banden für Kristallwasser (3430 und 1636 cm-1), OH-Gruppen (3540 cm-1). Die 

Bande bei 1420 cm-1 deutet auf einen CO3-Gehalt hin.  

 

Blaue und türkise Salzphasen 

Die chemische Zusammensetzung der blauen und türkisen Mineralphasen in den Proben  

1-13, 1-14, 1-15 und 1-17 stimmt großteils überein. Die Aufnahmen mit dem Lichtmikroskop 

(Abb. C-6a bis C-10a, mineralogischer Anhang) zeigen die intensiv leuchtenden Farben dieser 

Phasen. Mittels EDX-Detektor wurden folgende Elemente bestimmt (Tab. 54): 

 
Tab. 54: Elementverteilung in den Mineralphasen aus den Bohrproben im Bauabschnitt 1 der Monodeponie 

Waldering, ermittelt mittels EDX-Analyse  

        Beschreibung 

Farbe Bohrprobe 
Bohrtiefe 

in m Elemente Lichtmikroskop REM 

Blau BA 1-13 5,5 Cl, Cu, Ca, O, K 
Leuchtend blau, 
mikrokristallin schalenartig 

Türkis BA 1-13 5,5 Cu, Cl, O, Ca, K Keine Aufnahme nadelig 

Türkis BA 1-15 7 Ca, Al, Cl, S, O, Cu 
Leuchtend blau 
und türkis, nierig Blättchen 

Blau BA 1-17 8,5 Al, Cl, Cu, O, Ca, K 

Intensiv 
dunkelblau und 
hellblau, nierig splittrig 

Türkis BA 1-17 8,5 Al, Cl, Na, Ca, O, K, Cu Keine Aufnahme stengelig 
 

Es konnte jeweils eindeutig Cu nachgewiesen werden. In den Schlackeproben konnte jedoch 

mittels Röntgendiffraktometrie keine schwermetallhaltige Phase identifiziert werden. Die 

Auswertung der blauen und türkisen Salzphasen mit XRD hat sich zum Teil als sehr schwierig 

herausgestellt. Eindeutig identifiziert werden konnten Halit bzw. K-reicher Halit (Tab. 55). Bei 

der Probe 1-17 konnten in geringen Anteilen auch Hydrocalumit und Monosulfat festgestellt 
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werden. Für die türkise Mineralphase aus 1-17 konnten nur Halit, K-reicher Halit und Sylvin 

identifiziert werden. Die makroskopisch gelartigen Salzphasen hingegen sind schlecht 

auskristallisiert. Die Untersuchungen mittels Infrarotspektroskopie haben für die blauen 

Phasen ergeben, dass es sich um Salze mit Karbonatbanden handelt: eine starke Bande bei 

1426 cm-1 und eine schwache bei 875 cm-1. Zudem wurde viel Kristallwasser festgestellt bei 

3502 – 3446 cm-1 und 1618 cm-1 und weiters eine Chloridbande bei 700 cm-1.  

Als mögliche Mineralphasen mit der oben genannten chemischen Zusammensetzung und der 

auffallenden Farbgebung kommt in Betracht: ein Vertreter der Cancrinit-Gruppe (z.B. Afghanit, 

(Na,Ca,K)8(Si,Al)12O24(SO4,Cl,CO3)3•H2O).  

 
Tab. 55: Relative Anteile von Mineralphasen in den farbigen Salzphasen aus den Bohrproben im Bauabschnitt 1 

der Monodeponie Waldering 
Mineralphasen aus 1-13 1-13 1-15 1-17 1-17 1-17 

Bohrtiefe in m 5,5 5,5 7 8,5 8,5 8,5 

 Farbe beige blau blau blau türkis grün 

Quarz ++ - - - - - 

Calcit + + + + + + 

Halit ++ - +++ ++ ++ ++ 

Halit, K-reich - + +++ ++ +++ - 

Sylvin ++ - -  ++ ++ 

Hydrocalumit - ++ - ++  - 

Monosulfat - + - + ++ - 

Ettringit ++++ - - - - - 

Cancrinit-Gruppe - ++++ ++++ ++++ - - 

Kroehnkit - - - - - ++++ 

 

Grüne Salzphasen 

In der Bohrprobe 1-17 wurde eine grüne Mineralphase separiert. Mittels 

Röntgenpulverdiffraktometrie wurde neben Halit, Sylvin und Calcit zusätzlich ein Mineral 

namens Kroehnkit (Na2Cu(SO4)2·2H2O) beschrieben. Mit Infrarotspektroskopie (Abb. C-11b, 

mineralogischer Anhang) konnten neben Kristallwasser, OH-Gruppe, und Sulfatbanden auch 

Karbonatbanden nachgewiesen werden.  
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6. DISKUSSION  
Für die Diskussion aller Versuchsanordnungen müssen eine Reihe verschiedener Faktoren 

beachtet werden. Die Ergebnisse belegen insgesamt die große Bedeutung von 

Langzeitversuchen.  

Die Chemie und Mineralogie der Ausgangsmaterialien – Schlacken und RGR – beeinflussen 

direkt die Feststoff- und Sickerwasserentwicklung. Die Ergebnisse zeigen, dass ein Großteil 

der chemischen und mineralogischen Prozesse zum Teil erst nach einer Laufzeit von 12 

Monaten zum Tragen kommt. Für die einzelnen Versuchsanordnungen wurden mit 

fortschreitender Versuchsdauer mehrere Trendwechsel in der Sickerwasserentwicklung für 

verschiedene Spezies (z.B. leichtlösliche Salze oder Schermetalle) beobachtet. Verschiedene 

Prozesse sind auf sich ändernde pH-Werte zurückzuführen (z.B. Anstieg der Ca- Konzen-

tration mit abnehmenden pH-Werten).  

Auch die Menge des Bewässerungsmediums steuert die Sickerwasserentwicklung. Ein 

wichtiger Faktor ist das Verhältnis von Gesamtflüssigkeitsmenge zu eingebauter 

Schlackemenge (Tab. 56). Dieses Verhältnis in L/kg wird auch als L/S-Verhältnis (Liquid/Solid) 

bezeichnet. Die Gesamtflüssigkeitsmenge setzt sich zusammen aus Wassergehalt in der 

Schlacke zu Versuchsbeginn und Bewässerungsmenge, die über den gesamten 

Versuchszeitraum kumuliert wird.  

 
Tab. 56: L/S-Verhältnisse in L/kg Schlacke bei den unterschiedlichen Versuchsanordnungen, die weißen Zeilen 

stehen für Blindversuche, die grau hinterlegten Zeilen für Versuche mit Sperrschicht 

Versuch VA Dauer 

Schlackemenge
(inkl. Wasser- 

gehalt) Wassergehalt 
Trocken- 
masse 

Bewäs- 
serungs- 
menge 

L/S- 
Verhältnis

    Wochen kg Gew.-% kg kg L bzw. kg L/kg 
IBV0 103 18,0 18,0 3,2 14,8 30,6 2,3
IBV3 103 16 18,0 2,9 13,1 30,9 2,6
ISFK0 103 13,8 18,0 2,5 11,3 30,6 2,9
ISFK3 VA-A 103 15,5 18,0 2,8 12,7 30,9 2,7

BV1 67 12,4 20,2 2,5 9,9 58,9 6,2
SFK3 64 17,5 20,2 3,5 14,0 52,9 4,0
RSFK2 62 17,9 20,2 3,6 14,3 48,6 3,7
RSFK3 VA-B 62 13,4 20,2 2,7 10,7 49,6 4,9

RBV 77 17,5 18,0 3,2 14,4 23,1 1,8
RSFK VA-C 77 16,5 18,0 3,0 13,5 23,1 1,9

EB1# 102 35.200 15,1 5.315 29.885 13.500 0,6
EB2# 102 37.300 15,1 5.632 31.668 13.500 0,6
EB3# 102 46.500 15,1 7.022 39.479 16.800 0,6
EB4# FV-EB 102 40.500 15,1 6.116 34.385 16.800 0,7

RA1 103 14.200 16,5 2.343 11.857 1.440 0,3
RA2 LY-RA 103 14.200 16,5 2.343 11.857 1.440 0,3

WA1# 103 8.800 10,1 889 7.911 4.092 0,6
WA2# WA-LY 103 8.800 10,1 889 7.911 4.092 0,6

#: die kumulierte Bewässerungsmenge bezieht sich auf die monatliche Niederschlagsmenge für diese Region 
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Bei den Eluatversuchen liegt das L/S-Verhältnis bei 10/1 (dies entspricht 10 L/kg Schlacke). 

Für die Säulenversuche wurden im Durchschnitt etwas geringere Werte errechnet: 10/2 (VA-

B), 10/4 (VA-A) und 10/6 (VA-C). Die L/S-Verhältnisse liegen bei mehr als 1,8 L/kg Schlacke. 

Bei den Feldversuchen sind die Werte deutlich geringer. Für die Testfelder in Eberstetten 

hingegen liegt das L/S-Verhältnis durchschnittlich bei 10/16, für die Lysimeter Waldering bei 

10/17 und für die Lysimetern Raindorf bei 10/33. Das entspricht einem Wert von weniger als 

0,7 L/kg Schlacke. 

Auch die Salzkonzentration des Bewässerungsmediums spielt eine wesentliche Rolle. Mit der 

frischen Schlacke wird ein Chloridgehalt von 0,2 bis 0,5 g/L (Eluatwert) eingetragen. Folgende 

Cl-Konzentrationen wurden den einzelnen Versuchsanordnungen über salzreiche Lösungen 

zugeführt: 0,7 g/L den Säulenversuchen über das Modellsickerwasser, 3,9 g/L dem Testfeld 

EB3 über das Deponiesickerwasser, 11,8 g/L dem Testfeld EB4 über das Konzentrat aus der 

Umkehrosmose sowie 20,2 g/L den Lysimetern in Raindorf über das Modellsickerwasser. Für 

die Versuchsreihen mit RGR-Schichten kann als annähernde Bezugsgröße der Eluatwert 

frischer RGR-Proben herangezogen werden: 8 g/L Cl.  

Neben den oben genannten Faktoren beeinflussen Inhomogenitäten im Aufbau eines 

Deponiekörpers die Feststoff- und Sickerwasserentwicklung maßgebend. Besonders gut ist 

die Wirkung einer Inhomogenität für die Entwicklung des Wassergehalts sowie des 

Glühverlustes der Feststoffproben entlang des vertikalen Versuchsprofils zu sehen. Die 

Ergebnisse haben gezeigt, dass für einen homogenen Aufbau (Blindversuch) die Verteilung 

sehr gleichmäßig ist bzw. die Wassergehalte vom Top zur Basis hin zunehmen. Die maximal 

erreichten Wassergehalte liegen bei ca. 21 Gew.-%. Der Einbau einer Sperrschicht (SFK) 

bewirkt einen deutlichen Wechsel des Wassergehalts in den Schichten. Es ist sehr auffällig, 

dass im Vergleich zu den Blindversuchen die Wassergehalte tendenziell höher sind. Durch 

eine Bewässerung mit salzreichen Lösungen, wie Modell-, Deponiesickerwasser oder 

Konzentrat aus der Umkehrosmose, oder durch Einbau von RGR-Schichten wird dieser Effekt 

noch verstärkt. Vor allem im Bereich der Sperrschicht wurden Werte bis max. 36 Gew.-% 

gemessen. Die hohen Feuchtigkeiten innerhalb der Sperrschicht weisen darauf hin, dass sich 

hier Stauwasser bilden kann und das Sickerwasser nur langsam nach unten sickert. Für den 

Bereich unterhalb der Sperrschicht hingegen wurde im Allgemeinen ein trockenes Milieu 

festgestellt.  

Die Tabelle 57 zeigt eine Gegenüberstellung aller Versuche bezüglich ihres Aufbaus und ihrer 

Bewässerungsmodi. Im Folgenden werden die Versuche mit ähnlichen Laufzeiten miteinander 

verglichen. 
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Tab. 57: Verhältnis Bewässerungsmenge zu eingebauter Schlackemenge; weiße Felder stehen für Blindversuche, graue Felder stehen für Versuche mit Sperrschicht 

Versuch VA Dauer 

Schlackemenge
(inkl.Wasser- 

gehalt) 
Wassergehalt 

Ausgangsmaterialien

Schlacke 
Trocken- 
masse 

Bewäs- 
serungs- 
menge 

Sicker- 
wasser- 
austrag 

Differenz 
(Bewässerung 

- Austrag 

Restbetrag (inkl. 
Wassergehalt im 

Ausgangsmaterial)

kumulativer 
Wasser- 
rückhalt* 

    Wochen kg Gew.-% kg kg L bzw. kg L/kg 
IBV0 103 18,0 18,0 3,2 14,8 30,6 14,7 15,9 19,1 1,297 
IBV1 18 15,5 18,0 2,8 12,7 5,4 2,4 3,0 5,8 0,456 
IBV2 42 16,5 18,0 3,0 13,5 12,6 5,6 7,0 10,0 0,737 
IBV3 103 16,0 18,0 2,9 13,1 30,9 14,0 16,9 19,8 1,508 
ISFK0 103 13,8 18,0 2,5 11,3 30,6 15,5 15,1 17,6 1,554 
ISFK1 18 14,5 18,0 2,6 11,9 5,4 2,1 3,3 5,9 0,497 
ISFK2 42 15,6 18,0 2,8 12,8 12,6 6,1 6,5 9,3 0,728 
ISFK3 VA-A 103 15,5 18,0 2,8 12,7 30,9 13,4 17,5 20,3 1,596 

BV1 67 12,4 20,2 2,5 9,9 58,9 42,9 16,0 18,5 1,871 
SFK3 64 17,5 20,2 3,5 14,0 52,9 37,8 15,1 18,6 1,335 
RSFK2 62 17,9 20,2 3,6 14,3 48,6 35,9 12,7 16,3 1,143 
RSFK3 VA-B 62 13,4 20,2 2,7 10,7 49,6 34,8 14,8 17,5 1,638 

RBV 77 17,5 18,0 3,2 14,4 23,1 11,1 12,0 15,2 1,056 
RSFK VA-C 77 16,5 18,0 3,0 13,5 23,1 10,9 12,2 15,2 1,121 

EB1 102 35.200 15,1 5.315 29.885 13.500 1.342 12.158 17.473 0,585 
EB2 102 37.300 15,1 5.632 31.668 13.500 1.785 11.715 17.347 0,548 
EB3 102 46.500 15,1 7.022 39.479 16.800 1.778 15.022 22.044 0,558 
EB4 

FV-
EB 102 40.500 15,1 6.116 34.385 16.800 2.300 14.500 20.616 0,600 

RA1 103 14.200 16,5 2.343 11.857 1.440 408 1.032 3.375 0,285 
RA2 

LY-
RA 103 14.200 16,5 2.343 11.857 1.440 318 1.122 3.465 0,292 

WA1 103 8.800 10,1 889 7.911 4.092 2.251 1.841 2.730 0,345 
WA2 

WA-
LY 103 8.800 10,1 889 7.911 4.092 2.099 1.993 2.882 0,364 

* kumulativer Wasserrückhalt = (Restbetrag /Bewässerungsmenge); die verdunsteten Wassermenge wurde dabei berücksichtigt 
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Es zeigt sich, dass im Allgemeinen das berechnete Wasserrückhaltevermögen (Anteil aus 

Rückhalt und Verdunstung) in Liter pro kg Schlacke für die Versuchsreihen mit Sperrschicht 

größer ist. Dies gilt insbesondere für die Säulenversuche der Versuchsanordnungen A und C 

sowie für die Großlysimeter Raindorf und Waldering. Weiters unterstreichen die Zeitversuche 

der VA-A, dass sich mit zunehmender Laufzeit die Wirksamkeit einer Sperrschicht innerhalb 

eines Versuchsprofils steigt. Anhand der Testfelder in Eberstetten wird deutlich, dass durch 

Erhöhung der zugegebenen Salzgehalte über das Bewässerungsmedium das 

Wasserrückhaltevermögen nochmals verstärkt wird.  

Die Säulen der Versuchsanordnung B stellen eine Ausnahme dar. Für den Blindversuch und 

den Versuch mit Sperre und RGR (RSFK3) liegen im Vergleich erhöhte Werte des 

Wasserrückhalts vor: hier sind vglw. geringe Schlackemenge verwendet worden, so dass der 

Beitrag der Verdunstung stärker zum Tragen kommt.  

Die komplexe Beziehung zwischen Bewässerungsrate und Bewässerungsmenge und die 

Wirkung der Sperrschicht auf das Wasserrückhaltevermögen wird besonders eindrucksvoll 

anhand der Modellversuche mit Kunststoffkugeln deutlich. Für den Blindversuch mit 

homogenem Aufbau blieben die Austragsmengen je Zyklus konstant. Die Durchlaufzeit hat 

sich mit zunehmender Versuchszeit kaum verändert. Im Vergleich dazu waren die 

Austragsmengen an Sickerwasser für die Säule mit Sperrschicht niedriger. Bei kleinen 

Bewässerungsmengen nahmen die Austragsmengen mit der Laufzeit – trotz des relativ 

großen Schwankungsbereichs - deutlich ab. Das bedeutet, dass durch die Applikation kleiner 

Wassermengen die Wirkung der Sperrschicht verstärkt wird.  

Ein Durchlässigkeitsunterschied infolge Korngrößenwechsel verlängert die Verweilzeit des 

Sickerwassers innerhalb des Versuchskörpers. Hierdurch können die Lösungen innerhalb der 

Säule länger wechselwirken. Durch das Aufstauen des Sickerwassers im Bereich der 

Sperrschicht können die leichtlöslichen Salze aufkonzentriert werden. Die für die 

verschiedenen Versuchsanordnungen beobachteten erhöhten Salzkonzentrationen im 

Feststoff im Bereich der Sperrschicht weisen darauf hin, dass eine Aufkonzentration 

zusammen mit dem Wechsel des Wassergehalts in den Schichten letztlich zu einer Ausfällung 

von Salzen aus der Porenlösung führt.  

Ein wichtiges Fazit der Modellversuche ist, dass vor allem die Salzakkumulationen entlang 

des vertikalen Versuchsprofils sehr viel Wasser speichern können. Für die Versuche mit 

Sperrschicht führen die vermehrten Salzanlagerungen im Bereich der Sperre somit zu einer 

Vergrößerung des Wasserrückhaltevermögens. Zudem hat sich herausgestellt, dass deutlich 

mehr Wasser gespeichert werden kann, wenn eine Bewässerungsmenge nicht einmalig 

appliziert wird, sondern auf mehrere Raten aufgeteilt wird. 

Die Untersuchungen zeigen weiter, dass die oben genannten Faktoren neben der 

Feststoffentwicklung auch direkt die Entwicklung des Sickerwassers beeinflussen. Im 

Allgemeinen werden für Deponien nur wenige bestimmte Parameter kontinuierlich erfasst. Auf 
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der Monodeponie Waldering sowie der Deponie in Eberstetten zum Beispiel werden Proben 

vierteljährlich gezogen. Für Deponien liegen nur wenige Untersuchungen vor, die die zeitliche 

Entwicklung der Sickerwasserqualität aufzeichnen. Um die Sickerwasserqualität und die 

zeitliche Entwicklung des Deponiesickerwassers abschätzen zu können, werden in vielen 

Arbeiten die Ergebnisse aus Laborversuchen („Batch-Versuche“) oder Lysimeterversuchen 

herangezogen (Hjelmar, 1990; van der Sloot, 1996; Kosson et al., 1996; Förstner & 

Hirschmann, 1997). Verschiedene Abschätzungen basieren auf hydrogeochemischen 

Modellierungen (Dijkstra et al., 2003 & 2006; Meima & Comans, 1997). 

Eine klassische Vorgehensweise, um die einzelnen Versuche bezüglich ihres 

Auslaugverhaltens untereinander vergleichbar zu machen, stellt die Frachtenberechnung dar. 

Ziel der Frachtenberechnung ist es, für einen bestimmten Versuchszeitraum den prozentualen 

Austrag an leichtlöslichen Spezies und Schwermetallen zu berechnen. Als Grundlage dienen 

neben den Konzentrationen im austretenden Sickerwasser auch die sich mit der Zeit 

verändernden Feststoffgehalte. Verschiedene Studien haben gezeigt, dass mit dem ersten 

austretenden Sickerwasser hohe Konzentrationen an Salzen (Cl, SO4, Na, K, Ca) zu erwarten 

sind (Hjelmar, 1990; Mesters, 1993; Förstner & Hirschmann, 1997; Abbas et al., 2003). Diese 

Entwicklung wird auch als „wash-off“-Effekt bezeichnet. Gleichzeitig führt die Auswaschung 

von Alkali- und Erdalkalihydroxiden (u.a. Ca) zu hohen pH-Werte im Sickerwasser. Für 

Deponien wird für diesen Vorgang ein Zeitraum über einige Jahrzehnte anberaumt. Innerhalb 

dieser Phase ist mit einer weitgehenden Abreicherung der Cl- und SO4-Anteile zu rechnen. In 

der Tabelle 58 sind für alle Versuchsanordnungen die Anfangs- und Endgehalte für den 

Parameter Chlorid in g/kg Schlacke sowie der prozentuale Austrag über die Versuchsdauer 

zusammengestellt. Wie in den Abbildungen C-1 bis C-8 (Säulenversuche) und Abbildungen D-

1 bis D-8 (Feldversuche) im graphischen Anhang deutlich zu sehen ist, liegt für verschiedene 

Parameter der Versuchsanordnungen eine starke Auswaschung vor. Die Untersuchungen 

zeigen, dass unter bestimmten Umständen auch eine Anreicherung erfolgen kann.   
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Tab. 58: Chloridgehalte in g/kg Schlacke bei den unterschiedlichen Versuchsanordnungen zu Versuchsbeginn und 
Versuchsende, sowie der Austrag an Cl in mg/kg und %, die weißen Zeilen stehen für Blindversuche, die 
grau hinterlegten Zeilen für Versuche mit Sperrschicht 

Spezies Versuch VA Sperre Top Dauer Beginn Ende Austrag Austrag 
          Wochen g/kg  g/kg g/kg % 

IBV0 - - 103 10,17 6,78 -3,39 -33,20
IBV3 - - 103 10,15 6,95 -3,20 -31,60
ISFK0 SFK - 103 10,00 5,80 -4,20 -42,20
ISFK3 VA-A SFK - 103 10,01 6,63 -3,38 -34,00
BV1 -  67 5,23 5,79 +0,65 +9,63
SFK3 SFK  64 5,62 5,90 +0,28 +5,06
RSFK2 SFK RGR 62 11,40 9,43 -1,97 -17,30
RSFK3 VA-B SFK RGR 62 13,39 12,60 -0,79 -5,89
RBV - - 76 10,17 7,09 -3,09 -30,10
RSFK VA-C SFK/RGR - 76 13,03 7,03 -6,00 -45,90
EB1 - - 102 9,39 9,21 -0,18 -1,89
EB2 SFK - 102 9,24 8,98 -0,26 -2,85
EB3 SFK - 102 9,24 9,11 -0,14 -1,50
EB4 FV-EB SFK - 102 9,24 9,55 +0,31 +3,70
RA1 - - 103 9,77 10,43 -0,66 +6,78
RA2 LY-RA SFK - 103 9,56 10,23 +0,67 +7,07
WA1 - RGR 103 18,19 14,99 -3,20 -17,58

Cl WA2 WA-LY SFK RGR 103 18,24 13,93 -4,3 -23,64
 

Die Frachtenberechnung zeigt entsprechend den Prognosen, dass für die Referenzversuche, 

die mit Leitungswasser bewässert wurden (IBV0 und ISFK0) oder rein dem natürlichen 

Niederschlag ausgesetzt waren (Testfelder Eberstetten: EB1 und EB2), eine verstärkte 

Auswaschung erfolgt. Hier dominiert generell eine prozentuale Abreicherung für alle 

Parameter, d.h. sowohl für leichtlösliche Salze als auch für die Schwermetalle. Für die 

Säulenversuche wurden mit bis zu 42% deutlich mehr an Cl ausgetragen als für die Testfelder 

(max. 3 %). Dieser deutliche Unterschied kann damit erklärt werden, dass für die 

Säulenversuche das Verhältnis Bewässerungsmenge zu eingebauter Schlackemenge deutlich 

größer ist im Vergleich zu den Testfeldern. Demnach ist bei einem L/S - Verhältnis größer 1 

die Auswaschungsrate deutlich höher. Ein L/S - Verhältnis kleiner 1 bewirkt, dass im gleichen 

Zeitabschnitt die leichtlöslichen Spezies deutlich stärker zurückgehalten werden. Das 

bedeutet, dass hierdurch die Zeit, die für das Auswaschen benötigt wird um ein mehrfaches 

verlängert wird. Die Ergebnisse haben gezeigt, dass eine Sperre unter Umständen die 

Wirkung des Austrags leicht löslicher Spezies verstärken kann. Den Frachtenberechnungen 

zu Folge ist der prozentuale Austrag für verschiedene Spezies bei den Versuchsanordnungen 

mit Sperre höher. Beim Säulenversuche mit Sperre wurde prozentual mehr an Cl, Na und Cu 

ausgetragen. Für das Testfeld Eberstetten mit Sperre trifft dies auf sämtliche Parameter zu. 

Die Parameter Ca (Tab. C-12 tabellarischen Anhang) und SO4 werden generell nur wenig 

mobilisiert. 

Trotz Zufuhr zusätzlicher Salze durch die Bewässerung mit Modellsickerwasser 

(Säulenversuche der VA-A) bzw. mit Deponiesickerwasser (Testfeld EB3), überwiegt für den 
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Parameter Cl eine Auswaschung. Für die Säulen (IBV3, ISFK3, RBV) liegt der prozentuale 

Austrag im Bereich von 30% und für das Testfeld EB3 bei 1,5%.  

Durch die Salzzugabe über das Bewässerungsmedium kommt es hingegen zu einer 

Anreicherung im Feststoff für Ca. Hier ist besonders für die Säulenversuche die Anreicherung 

deutlich ausgeprägter im Vergleich zu den Feldversuchen.  

Im Falle von hochsalinaren Lösungen, wie Umkehrosmosekonzentrat, setzt der generelle 

wash-off leichtlöslicher Spezies gar nicht ein, sondern es erfolgt sogar eine Umkehrung der 

Trends. Ab einer Salzzugabe von 11,8 g/L mit diesem Bewässerungsmedium und einem L/S-

Verhältnis < 1 wurde eine Anreicherung der sehr mobilen Spezies Cl beobachtet. Das Testfeld 

EB4 verzeichnet eine prozentuale Anreicherung von 3,4%. Für die Großlysimeter Raindorf 

(Modellsickerwasser) wurde für Cl sogar eine prozentuale Anreicherung bis zu 7% festgestellt. 

Diese Entwicklung wurde auch für Na beobachtet (Abb. C-4, graphischer Anhang). 

Die Zugabe von RGR als Deckschicht bzw. als Sperrschicht führt hingegen zu vglw. hohen Cl-

Austrägen mit dem Sickerwasser (max. 46 %). Es macht offensichtlich einen merklichen 

Unterschied, ob leichtlösliche Spezies in Form von salzreichen Lösungen zugeführt werden 

oder in Form von RGR als Feststoff. Bei den Lysimetern Waldering wird trotz kleinem 

Verhältnis zwischen Bewässerungsmenge und eingebauter Schlackemenge der Parameter Cl 

stark ausgewaschen (bis zu 24 %). Es hat sich deutlich gezeigt, dass die Wirkung der RGR 

dominiert und die Auswaschung leichtlöslicher Salze verstärkt. Die Zugabe von RGR bewirkt 

jedoch nur geringfügig höhere Ca- und SO4-Anteile im Sickerwasser. Auch hier wird für das 

Lysimeter mit Sperre prozentual mehr an Cl, Na und Ca ausgetragen.  

Für die Säulenversuche der VA-B wurde festgestellt, dass vor allem sehr hohe 

Bewässerungsmengen den so genannten „wash-off“ leichtlöslicher Spezies verstärken 

können. Hier wurden für die ersten Versuchswochen z.T. Cl-Austräge bis 80% verzeichnet. Da 

ein analytischer Fehler nicht ausgeschlossen werden konnte, wurden für die 

Frachtenberechnung erst die Werte nach der dritten Versuchswoche herangezogen. Das hat 

dazu geführt, dass für den Blindversuche (BV1) und den Versuch mit Sperre (SFK3), beide 

wurden nach etwa 50 Versuchstagen mit Modellsickerwasser bewässert, trotz der großen 

Bewässerungsmengen zu Beginn der Versuche eine Anreicherung an leichtlöslicher Spezies 

(v.a. Cl) stattgefunden hat. Für die Säulen mit RGR als Deckschicht hingegen wurde dennoch 

eine Auswaschung beobachtet. Für den Säulenversuch mit RGR und mit Leitungswasser 

(RSFK2) ist die Entwicklung zudem deutlicher als für den mit RGR und mit 

Modellsickerwasser (RSFK3).  

Für die Schwermetalle wird davon ausgegangen, dass infolge der hohen Pufferkapazität (v.a. 

Karbonatpuffer) von MV-Schlacke eine Mobilisation erst nach einer Zeitdauer von mehreren 

Jahrhunderten bis Jahrtausenden stattfindet  (Förstner & Hirschmann, 1997; Lahl, 1994). Die 

vorliegende Untersuchung hat ergeben, dass von den untersuchten Parametern die Faktoren 

Cu und Mo vglw. mobil sind (Tab. C-13 und C-14, tabellarischen Anhang). Die Beträge für die 
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Schwermetalle Pb und Zn sind vernachlässigbar gering. Für diese beiden Elemente wurde 

eine geringfügige Anreicherung für die Säulenversuche IBV3 und ISFK3 sowie RBV und 

RSFK, die Testfelder EB3 und EB4 sowie für die Großlysimeter Raindorf festgestellt. 

Die bisherigen Ergebnisse haben gezeigt, dass das L/S-Verhältnis unterschiedliche 

Entwicklungen im Feststoff und im Sickerwasser bewirkt. Bei einem Verhältnis > 1 dominiert 

Auswaschung und für ein Verhältnis < 1 z.T. Anreicherung der Parameter Na und Cl.  

Verschiedene Autoren haben das L/S-Verhältnis verwendet, um die verschiedenen 

Größenanordnungen der Versuche vergleichen zu können. Dabei werden jedoch die 

Konzentrationen der gelösten Sickerwasserkomponenten (Stoffaustrag in mg/kg Schlacke) in 

Abhängigkeit von der Sickerwassermenge als Funktion des L/S -Verhältnisses beschrieben 

(Chandler et al., 1997). Im Gegensatz zur Frachtenberechnung, wo die Feststoffgehalte je 

Probe in die Berechnungen einfließen, wird für diese Darstellungsweise eine Korrektur bzgl. 

der Salzzugabe über salzreiche Lösungen nicht vorgenommen. Mit dieser Methode soll ein 

direkter Vergleich von Ergebnissen aus den Labor- und Feldversuchen und eine Extrapolation 

der Ergebnisse auf einen Deponiemaßstab möglich gemacht werden (Hjelmar, 1990). Nach 

Chandler et al. (1997) kann die Freisetzung von Spezies vier verschiedenen Typen 

zugeordnet werden (Tab. 59). 

 
Tab. 59: Verlauf der Kurven für kumulierte Freisetzung der Spezies versus L/S-Verhältnis (nach Chandler et al., 

1997)  

 

Typ I 

 
betrifft v.a. Alkalimetalle und Halogenide; ist charakterisiert durch rasche 
Freisetzung der verfügbaren Konzentration bis zu einem L/S Verhältnis von 
1 bis 2. Die Steigung der Kurve  ist dabei ≥ 1 (für L/S<1), ab L/S > 1 ist die 
Steigung annähernd 0, was vollständige Auswaschung bedeutet 

 

Typ II 

 
betrifft u.a. Pb und Zn; die Freisetzung wird von der Löslichkeit der Spezies 
in der wässrigen Phase gesteuert, dabei ist meist eine starke pH-
Abhängigkeit gegeben; es liegt ein linearer Kurvenverlauf vor 

 

Typ III 

 
betrifft u.a. SO4; die Spezies werden innerhalb der Matrix von einer weiteren 
Spezies (z.B. Ba) zurückgehalten. Die Freisetzung erfolgt zeitlich verzögert, 
erst nach Auswaschung an der zweiten Spezies. Zu Versuchsbeginn ist die 
Steigung der Freisetzung versus L/S-Verhältnis klein, aber mit zunehmender 
Reaktionszeit nimmt die Steigung exponentiell an 

 

Typ IV 

 
betrifft u.a. Cu in Gegenwart organischer Säuren; zu Beginn eine verstärkte 
Freisetzung als Folge der erhöhten Löslichkeit in Gegenwart von 
Komplexbildnern. Zu Versuchsbeginn ist die Steigung der Kurve annähernd 
linear (> 1), langfristig gesehen flacht die Kurve deutlich ab; im Gegensatz 
zu Typ 1 tritt eine Auswaschung der Spezies nicht ein  

 

Der Verlauf der Parameter Cl und Na entspricht in etwa dem Typ I (Abb. 172 und 173). Die 

Säulenversuche der VA-A, die mit Leitungswasser bewässert wurden, entsprechen diesem 

Trend. Es ist sehr auffällig, dass der Versuche mit Sperre (ISFK0) im Gegensatz zum 

Blindversuch (IBV0) den Bereich mit einer Steigung annähernd 0 noch nicht erreicht hat. 
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Innerhalb des beobachteten Versuchszeitraums wurden für ISFK0 insgesamt mehr an Cl und 

Na ausgetragen als für IBV0. Vom gesamten verfügbaren Gehalt an Cl im Feststoff (max. 

8.100 mg/kg) wurden ab einem L/S-Verhältnis 0,2 bis 0,4 aus der Säule mit Sperre etwa die 

Hälfte (Cl: 4.200 mg/kg) und vom gesamten verfügbaren Gehalt an Na im Feststoff (max. 

12.600 mg/kg) etwa ein Drittel (Na: 3.900 mg/kg) ausgetragen.  

Eine Bewässerung mit Modelsickerwasser für die Säulenversuche der VA-A hat dazu geführt, 

dass für die Blindversuche etwa ab einem L/S-Verhältnis von 0,15 und für die Versuche mit 

Sperre ab einem L/S-Verhältnis von 0,4 insgesamt mehr an leichtlöslicher Spezies 

ausgetragen wurden: für den Versuch ISFK3 4.900 mg/kg Cl und 6.400 mg/kg Na. Für das 

Testfeld Eberstetten EB1, das ausschließlich dem Niederschlag ausgesetzt war, wurde 

insgesamt am wenigsten an leichtlöslicher Spezies ausgewaschen. Durch die Vergrößerung 

der Schlackemenge hat sich hier die Auswaschung um einen Faktor 25 verlangsamt. Die 

Bewässerung mit Konzentrat aus der Umkehrosmose für das Testfeld EB4 mit Sperre hat 

geringfügig höhere kumulierte Cl-Gehalte zur Folge. Für die Lysimeter in Raindorf zeigt sich 

kaum ein Unterschied im Kurvenverlauf. Hier ist jedoch auffällig, dass bei einer anfänglich 

sehr hohen Bewässerungsmenge bis 150 Tagen nahezu ein Drittel an Cl und Na ausgetragen 

wurde. Sehr charakteristisch verhalten sich auch die Versuche der Versuchsanordnungen mit 

Schlacke B, die mit vglw. hohen Wassermengen bewässert wurden. Es ist sehr 

bemerkenswert, dass mit RGR Zugabe zwischen den Lysimetern Waldering und den 

Säulenversuchen der VA-B kein nennenswerter Unterschied besteht. Auch die 

Säulenversuche der VA-A fügen sich sehr gut diesem Trend. Für die Säulenversuche der  

VA-B belegt insbesondere die Versuchssäule mit RGR und Modellsickerwasser (RSFK3) das 

verstärkt Auslaugverhalten. Hier wurde bei einem L/S-Verhältnis von 4 etwa das größte 

Potential für Cl-Auswaschung (8.000 mg/kg Cl) innerhalb einer Versuchsdauer von 62 

Wochen erreicht. Auch für die Säule mit Sperre und RGR (RSFK) der VA-C ist der 

Kurvenverlauf ebenfalls vergleichbar. Hier wird bestätigt, dass der Einbau einer RGR-Schicht 

das Auslaugverhalten zusätzlich verstärkt.  

Die SO4-Entwicklungen (Abb. 174) der einzelnen Versuchsanordnungen mit 

unterschiedlichem Größenmaßstab sind tendenziell gut untereinander vergleichbar. Eine 

Trendentwicklung ähnlich Typ III gemäß der Klassifizierung nach Chandler et al. (1997) kann 

nicht bestätigt werden. Vielmehr zeigt sich, dass mit zunehmendem L/S-Verhältnis eine 

kontinuierliche Freisetzung an SO4 gemäß dem Typ II stattfindet. Somit kann anhand von 

Säulenversuchen in etwa der Trend für Feldversuche oder für Deponien prognostiziert 

werden. Für eine Bewässerung mit Leitungswasser der VA-A wurde bis zu einem L/S-

Verhältnis von 2 etwa 2% der gesamte verfügbare Menge (24.900 mg/kg) ausgetragen. Somit 

muss unter der Annahme, dass der Austrag langfristig in dieser Größenordnung liegt, ein 

Zeitraum von 100 Jahren bis zur vollständigen Auswaschung anberaumt werden. Für den 

Blindversuch war der Anteil geringer im Vergleich zur Säule mit Sperre (ISFK0). Eine 
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Bewässerung mit Modellsickerwasser (ISFK3: max. 1000 mg/kg) würde den Zeitraum etwa 

um die Hälfte verkürzen. Die Säulenversuche der VA-B verhalten sich ähnlich der 

Säulenversuche der VA-A, somit zeigt sich keine Wirkung der Zusammensetzung der 

Schlacke auf die Trendentwicklung. Lediglich die höhere SO4-Konzentration im 

Ausgangsmaterial (Schlacke B) verstärkt die Auswaschung. Durch den Einbau der RGR-

Schichten sind die SO4-Mengen zusätzlich höher (max. 3.500 mg/kg). Auch die Lysimeter 

Waldering entsprechen diesem Trend. Bei den Lysimetern Raindorf ist die Entwicklung 

zwischen Blindversuch und Lysimeter mit Sperre bereits zu Versuchsbeginn sehr 

unterschiedlich. Eine verhältnismäßig starke Auswaschung an SO4 in Raindorf trat vor allem 

in der Anfangsphase auf. Demnach wird durch hohe Bewässerungsmengen die Auslaugung 

deutlich verstärkt. Die Reduzierung der Wassermenge zeigt sich unmittelbar in der Änderung 

der Steigung der Kurve. Der kumulierte Austrag ist für das Lysimeter mit Sperre deutlich höher 

(max. 400 mg/kg). Die Trendentwicklung ist erstaunlicherweise vergleichbar mit den RGR-

Versuchen. Der Blindversuch liegt hingegen im Bereich von Testfeld EB1 ohne Sperre (max. 

50 mg/kg). Für das Testfeld EB4 mit Sperre und UO ist die Entwicklung vergleichbar mit den 

Säulenversuchen der VA-A.  

In Bezug auf den Parameter Ca macht sich die Wirkung der Zusammensetzung der Schlacke 

am deutlichsten bei den Säulenversuchen bemerkbar. Für die Säulenversuche der VA-A ohne 

Sperre trifft der Trend III zu (Abb.175). Zuerst wurde ein verzögerter Austrag beobachtet mit 

lediglich 0,0002 % des verfügbaren Ca (140.000 mg/kg), der dann von einem raschen Anstieg 

abgelöst wird. Bei einem L/S-Verhältnis von 2 liegt der Austrag bereits bei 0,05% des 

verfügbaren Ca. Für den Versuch mit Sperre (ISFK0), der mit Leitungswasser bewässert 

wurde, ist die Auswaschung am stärksten verzögert. Die Bewässerung mit 

Modellsickerwasser führt insgesamt zu einem höheren Austrag von Ca (max. 90 mg/kg), 

insbesondere für den Blindversuch (IBV3). Für die MSW-Säulen würde es, unter der 

Voraussetzung dass sich der Kurvenverlauf nicht ändert, etwa 3000 Jahre benötigen bis der 

gesamte Ca-Gehalt ausgewaschen wird. 

Für die Säulenversuche der VA-B wurde eine gealterte und vglw. salzarme Schlacke 

verwendet. Bei einem L/S-Verhältnis von 0,06 startet die Entwicklung bereits bei 0,2 % des 

verfügbaren Ca. Im Versuchsverlauf nimmt der Betrag nur mehr geringfügig zu.  

Vor allem die Versuchsanordnungen mit RGR-Schichten, auch Versuch mit Sperre der VA-C 

(RSFK) stellen ein stark Ca-dominierendes System dar. Für die Säulenversuche der VA-B 

zeigt sich, dass die Bewässerung mit Modellsickerwasser bzw. der Einbau von RGR-

Schichten den Austrag verstärken.  

Bezogen auf die Feldversuche wurde die beste Übereinstimmung der Trendentwicklung 

zwischen den Säulenversuchen der VA-B und den Großlysimetern in Waldering (WA1 und 

WA2) festgestellt. Im Allgemeinen zeigt sich für die Feldversuche deutlich, dass mit Sperre 
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stets mehr Ca ausgetragen wird. Für die Lysimeter Raindorf wird ab einem L/S-Verhältnis von 

etwa 0,1 ein stationärer Zustand mit 300 mg/kg erreicht.  

Betreffend die Schwermetalle zeigt einzig der Parameter Mo (Abb. 176), dass es sich hier um 

eine vglw. mobile Spezies handelt, die sich gemäß dem Typ IV verhält. Bei alkalischen 

Bedingungen (pH>5) liegt Mo als ein sehr mobile Oxy-Anion hauptsächlich als MoO4
2- vor 

(Chandler et al., 1997). Der kumulierte Austrag an Mo liegt für die Säulenversuche der VA-A 

bei einem L/S-Verhältnis von 5 in etwa im Bereich von 3 mg/kg. Es fällt auf, dass sich 

bezogen auf den Parameter Mo der Einbau einer Sperre bzw. die Zugabe von 

Modellsickerwasser nicht auswirkt. Der Abbildung 176 ist zu entnehmen, dass bei einem L/S-

Verhältnis von 1 in etwa 20 % verfügbaren Mo ausgewaschen wurde. Bei gleich bleibender 

Steigung wird nach etwas mehr als 10 Jahren Mo vollständig ausgewaschen sein. Die 

Säulenversuche der VA-A können als „worst case scenario“ herangezogen werden. Für die 

Säulenversuche der VA-B ist der Mo-Austrag etwas geringer. Auch bei Zugabe von RGR 

werden die Beträge nicht erhöht. Für die Feldversuche liegen die Verfügbarkeiten bei deutlich 

geringeren Beträgen. Für das Testfeld EB1 ohne Sperre, nur Zutritt von Niederschlag, ist der 

Austrag am geringsten. Die Salzzugabe in Form von Konzentrat aus der Umkehrosmose für 

das Testfeld EB4 führte insgesamt zu höheren Konzentrationen. Für die Testfelder in 

Eberstetten sowie für die Lysimeter Waldering wurde kaum noch Mo mobilisiert. Hier stellt sich 

ein stationäres Gleichgewicht bei einem kleineren Mo-Wert ein. Nur für die Lysimeter Raindorf 

ist die Tendenz weiterhin ansteigend. Für die Lysimeter Raindorf ist der Trend ähnlich wie bei 

VA-B. 

Für den Parameter Cu (Abb. 177) kann entsprechend der Klassifizierung nach Chandler et al. 

(1997) ein Typ IV beschrieben werden. Eine langfristige Auswaschung von Cu tritt nicht ein. 

Die Säulenversuche der VA-A zeigen die Entwicklung mit den höchsten Cu-Konzentrationen 

an. Die Säulenversuche der VA-A können auch hier als „worst case scenario“ herangezogen 

werden. Hier wurden bei einem L/S-Verhältnis von 2 ca. 8 mg/kg des gesamten verfügbaren 

Cu-Gehalt (6.000 mg/kg) ausgetragen, das entspricht 0,2%. Für die MSW-Säulen würde es, 

unter der Voraussetzung dass sich der Kurvenverlauf nicht ändert, etwa 1500 Jahre benötigen 

bis der gesamte Cu-Gehalt ausgewaschen wird. Vergleichbar dem Parameter Mo fällt auf, 

dass sich bezogen auf den Parameter Cu der Einbau einer Sperre bzw. die Zugabe von 

Modellsickerwasser nicht auswirkt. 

Für die Säulenversuche der VA-B ist der Cu-Austrag deutlich geringer (max. 0,5 mg/kg). RGR-

Schichten haben keine Wirkung auf die Cu-Mobilisation. Für die Testfelder Eberstetten und 

die Lysimeter Waldering ist insgesamt am wenigsten Cu verfügbar, wobei für das Testfeld 

EB1 der Austrag am geringsten ist. Für die Lysimeter Raindorf wurde bei einer anfänglich sehr 

hohen Bewässerungsmenge bis 150 Tagen etwa die Hälfte an mobilisierbarem Cu 

ausgewaschen. In der Folgezeit stellt sich ein stationäres Gleichgewicht bei einem Cu-Gehalt 

von 0,2 mg/kg ein.  
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 Gesamter verfügbarer Gehalt im Feststoff (Mittelwert aus Schlacken A und B) 
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Abb.172: Cl-Konzentration in mg/kg (kumuliert) im 
Sickerwasser versus L/S-Verhältnis 

 Abb.173: Na-Konzentration in mg/kg (kumuliert) im 
Sickerwasser versus L/S-Verhältnis 
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Abb.174: SO4-Konzentration in mg/kg (kumuliert) im 
Sickerwasser versus L/S-Verhältnis 

 Abb.175: Ca-Konzentration in mg/kg (kumuliert) im 
Sickerwasser versus L/S-Verhältnis 
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Abb.176: Mo-Konzentration in mg/kg (kumuliert) im 
Sickerwasser versus L/S-Verhältnis 

 Abb.177: Cu-Konzentration in mg/kg (kumuliert) im 
Sickerwasser versus L/S-Verhältnis 

 

Auffällig sind die unterschiedlichen Trends für Ca. Im Gegensatz zur Chandler et al. (1998), 

der einen linearen Trend gemäß Typ II vorgibt, zeigt dieser Parameter keine Abhängigkeit von 

der Löslichkeit. Für die Säulen- und Feldversuche wurden sowohl Trend Typ III und IV 

festgestellt. Die langfristige Freisetzung von verschiedener Spezies kann auch in Abhängigkeit 

vom pH-Wert bestimmt werden. Diese Methode wird vorrangig zur Beurteilung von Materialien 

bzgl. ihrer Verwertungs- und Ablagerungsbedingungen herangezogen (Meima & Comans, 
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1997; van der Sloot, 1996). Für die Parameter Ca- und SO4 wird angenommen, dass für die 

Sickerwasserentwicklung keine Abhängigkeit vom pH-Wert, v.a. im Bereich zwischen pH-

Werte 4-10, besteht (Chandler et al., 1997). Die verfügbaren Ca- und SO4-Konzentrationen 

orientieren sich viel mehr an der Löslichkeitskurve von Gips. Gips ist ein leicht lösliches 

Mineral und es erlaubt hohe Konzentrationen an Ca sowie SO4. Es besteht auch die 

Möglichkeit, dass Ettringit die Löslichkeit von Ca und SO4 bei sehr alkalischen pH-Werten 

steuert. Der Zusammenhang zwischen Gipslöslichkeit und Ca- sowie SO4-Konzentration kann 

man auch sehr gut vom Diagrammtyp Ca-Konzentration versus SO4-Konzentration (mol/L) 

ableitet werden. Zahlreiche Untersuchungen zum Löslichkeitsverhalten von verschiedener 

Spezies wurden von Eugster & Jones (1979) durchgeführt. Die Gips-Löslichkeit in Wasser 

beträgt ca. 2 g/L (20°C) und das errechnete Löslichkeitsprodukt 1,4.10-4 mol2/L2. Die 

Abbildungen 178 und 179 veranschaulichen, dass für die Sickerwässer aus den MSW-Säulen 

der VA-A, aus den Säulen der VA-B und VA-C sowie aus den Lysimetern Waldering und aus 

den Testfeldern Eberstetten z.T. die Sättigungsbedingungen für Gips im Sickerwasser erreicht 

wurden. Für die Lysimeter Raindorf wurde für keine Probe Sättigungsbedingungen erreicht.  

Bei pH-Werten unter 10 zerfällt Ettringit und schwerlöslicher Calcit wird in 

Calciumhydrogencarbonat umwandelt, das eine höhere Löslichkeit aufweist. Damit wird Ca 

verstärkt ins Sickerwasser freigesetzt. Für die Zeitversuche der VA-A sowie für die Säulen der 

VA-C hat sich zudem herauskristallisiert, dass bei anfänglich sehr niedrigen Ca-

Konzentrationen im Sickerwasser diese mit fortwährender Versuchsdauer und zugleich 

neutraler werdenden pH-Werten deutlich ansteigen (Abb. 180). Entgegen der Annahme, dass 

die ersten Sickerwässer als Folge der Auswaschung von Alkali- und Erdalkalihydroxiden stark 

alkalisch sind, liegen die pH-Werte für die Testfelder in Eberstetten z.T. überwiegend im 

neutralen Bereich (Abb. 181). Im Allgemeinen sind die Sickerwässer nicht im Gleichgewicht 

mit atmosphärischem CO2 (380ppm), jedoch gab es hier für die austretenden Sickerwässer 

eine längere Verweilzeit im Auffangbehälter. Durch den Kontakt mit Luft kann das 

Sickerwasser mit Kohlendioxid aus der Luft teilweise neutralisiert bzw. karbonatisiert werden. 

Für die Lysimeter in Waldering (violette Sterne) werden die höchsten Ca-Konzentrationen im 

Sickerwasser erreicht. Die Entwicklung wird von der Wirkung der RGR überlagert.  
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 Gerade mit der Steigung 1 (perfekte Löslichkeit)                     Löslichkeitsprodukt der festen Phase 
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Abb.178: Ca-Konzentration versus SO4-
Konzentration (mol/L), Vergleich der 
Sickerwässer aus den Säulenversuchen 

 Abb.179:  Ca-Konzentration versus SO4-
Konzentration (mol/L), Vergleich der 
Sickerwässer aus den Feldversuchen 

5 6 7 8 9 10 11 12 13
1E

-6
1E

-5
1E

-4
1E

-3
0,0

1

0,1

1

 IBV0
 IBV1
 IBV2
 IBV3
 ISFK0
 ISFK1
 ISFK2
 ISFK3
 RBV
 RSFK
 BV1
 SFK3
 RSFK2
 RSFK3

  

C
a 

m
ol

/L

pH-Wert

 

 

5 6 7 8 9 10 11 12 13
1E

-6
1E

-5
1E

-4
1E

-3
0,0

1

0,1

1
 EB1
 EB2
 EB3
 EB4
 RA1
 RA2
 WA1
 WA2

 

 

C
a 

m
ol

/L

pH-Wert

Abb.180: pH-Wert im Sickerwasser versus Ca-
Konzentration (mol/L) im Sickerwasser, 
Säulenversuche im Labor 

 Abb.181: pH-Wert im Sickerwasser versus Ca-
Konzentration (mol/L) im Sickerwasser, 
Feldversuche 

 

Wie zu erwarten, sind die Parameter Na und Cl generell stark löslich und werden in der 

Anfangsphase in hohen Konzentrationen aus der Ausgangsschlacke gelöst. Für die 

Säulenversuche ergibt sich eine scheinbare Konzentrationsabnahme des Cl mit 

abnehmendem pH-Wert (Abb. 182). Für die Säulenversuche der VA-B sind jedoch die L/S-

Verhältnisse viel größer als für die der VA-A. Die niedrigen Cl-Konzentrationen im 

Sickerwasser sind von einer starken Verdünnung überlagert.  

Im Allgemeinen wird angenommen, dass für leichtlösliche Spezies keine Festphase im 

Sickerwasser existiert (Chandler et al., 1997). Die NaCl-Löslichkeit in Wasser beträgt 358 g/L 

(20°C) und das errechnete Löslichkeitsprodukt 37,5 mol2/L2. Für die Anfangskonzentrationen 

in den Sickerwässern aus den Säulen der VA-A wurde die Stabilitätsgrenze für Halit nur 

geringfügig unterschritten (Abb. 183). Im zweiten Versuchsjahr sind die Konzentrationen 

deutlich geringer. (Abb. 183).  

Bei den Feldversuchen wurde – wie erwartet - keine pH-Abhängigkeit für Cl festgestellt (Abb. 

184). Es hat sich jedoch herausgestellt, dass für die Testfelder Eberstetten und die Lysimeter 

in Raindorf trotz Einbau von Schlacke A, die pH-Entwicklungen deutlich unterschiedlich sind. 
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Auffällig ist, dass pH-Werte von Eluatwert und Sickerwasserwert nicht übereinstimmen. Die 

pH-Werte in den Sickerwässern sind mit fortscheitender Versuchsdauer deutlich niedriger als 

in den Eluaten aus den Feststoffproben. Während des Rückbaus der Säulen bzw. während 

der Bohrkampagnen kommt es zur Zerstörung ausgebildeter Partikelgefüge. Auch bei der 

Elution (Überkopf-Schüttler) kommt es zu einer mechanischen Beanspruchung der 

Schlackepartikel. Durch beide Eingriffe werden neue Oberflächen geschaffen, die erneut 

alkalische Anteile frei geben, jedoch geringer als zu Versuchsbeginn. In der 

Sickerwasserentwicklung jedoch findet jedoch eine gewisse Karbonatisierung, Verwitterung 

und Alterung des Materials an der Oberfläche statt.  

Für die Sickerwasserentwicklung der Parameter Cl und Na zeigt sich – analog den 

Säulenversuchen – perfekte Löslichkeit (Abb. 185). Das heißt nicht, dass sich die Spezies 

nicht an Salzakkumulationen beteiligt, aber dieser Anteil wird über die Bewässerung wieder 

ersetzt (Eugster & Jones, 1979). Einzig die Sickerwässer aus den Lysimetern in Waldering 

(violette Sterne) weichen etwas von der idealen Löslichkeit ab, da hier der Parameter Ca 

dominiert.  
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Abb.182: pH-Wert im Sickerwasser versus Cl-

Konzentration (mol/L) im Sickerwasser, 
Säulenversuche im Labor 

 Abb.183: Na-Konzentration versus Cl-Konzentration 
(mol/L), Vergleich der Sickerwässer aus 
den Säulenversuchen 
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Abb.184: pH-Wert im Sickerwasser versus Cl-

Konzentration (mol/L) im Sickerwasser, 
Feldversuche 

 Abb.185: Na-Konzentration versus Cl-Konzentration 
(mol/L), Vergleich der Sickerwässer aus 
den Feldversuchen 
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Förstner & Hirschmann (1997) haben in ihren Studien mehrmonatige Laborlysimeterversuche 

durchgeführt. Die Untersuchungsergebnisse haben gezeigt, dass die langfristige 

Metallfreisetzung aus den MV-Schlacken in der Hauptsache von den pH-Bedingungen 

gesteuert wird. Die vorliegenden Ergebnisse haben gezeigt, dass die Auslaugung von frischer 

Schlacke generell zu sehr hohen anfänglichen Cu-Konzentrationen im Sickerwasser führt. Der 

Austrag wird aber mit der Zeit geringer. Eventuell kann Tenorit (CuO) als kontrollierende 

Phase für die Cu-Freisetzung aus der Schlacke angenommen werden (Chandler et al., 1997). 

Für den Parameter Kupfer wurde mehrfach beschrieben, dass eine Mobilisierung deutlich von 

der DOC-Konzentration abhängt (Augsburg, et al. 1997; Meima, et al. 1999). Beachtliche 

Mengen an DOC können von den unverbrannten Anteilen der Schlacken freigesetzt werden. 

Für die Säulenversuche der VA-A wurden zu Versuchsbeginn bis etwa 130 Tage wurde die 

DOC-Konzentration im Sickerwasser stichprobenartig bestimmt. Vor allem bei hohen Cl- und 

DOC-Konzentrationen besteht eine lineare Abhängigkeit (Abb. 186). Es fällt zudem auf, dass 

für die Sickerwässer aus den Säulen der VA-A zwischen hohen Cl-Konzentrationen und DOC 

ebenfalls eine lineare Abhängigkeit besteht, was sich in einer perfekten Löslichkeit für Cl und 

Cu zeigt (Abb. 187).  
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7. ZUSAMMENFASSUNG 
Die vorliegenden Untersuchungen wurden bei wasserungesättigten Bedingungen 

durchgeführt. Große Wassermengen im Sinne eines „Flushing-Konzepts“ würden einen 

allgemeinen „Wash-off“ der Salze mit entsprechendem Verdünnungseffekt des Sickerwassers 

begünstigen (Hirschmann, 2003). Hierdurch werden verstärkt Anlagerungen an den 

Kornoberflächen ausgewaschen. Die Verweilzeit des Sickerwassers innerhalb des 

Deponiekörpers wird herabgesetzt. Diese Vorgänge setzen hohe L/S-Verhältnisse (L/S > 6) 

und somit einen hohen Wasserdurchfluss voraus. Bei einem „Flushing-Konzept“ ist zu 

beachten, dass mit einer Reduzierung der zugeführten Wassermenge trotz anfänglicher 

Auswaschung und auch ohne Sperre Salze erneut mobilisiert werden können, wie es 

Säulenversuche der VA-B zeigen. Dieser Effekt kann damit erklärt werden, dass als Folge 

großer Wassermengen v.a. die großen Poren durchströmt werden. Bei einer Reduzierung der 

Bewässerungsmenge werden auch die kleinen Poren am Fließgeschehen beteiligt werden. In 

diesen kleinen Poren befindet sich der größte Teil der auslaugbaren Stoffe (Hagenau et al., 

2005).  

Eine undurchlässige Oberflächenabdichtung würde langfristig zu einer Reduzierung der 

Feuchte innerhalb des Deponiekörpers führen. Folglich findet kein Transport salzreicher 

Lösungen entlang des Deponieprofils statt und die Benetzung der Kornoberflächen mit der 

Lösung wird verringert. Die hierdurch verursachte „Mumifizierung“ der Deponie verschiebt 

lediglich eine Alteration der Schlacke auf einen späteren Zeitpunkt. 

Bisher wurde in der Praxis ein vorwiegend homogener Aufbau einer MV-Schlackedeponie, im 

Weiteren vereinfacht als Deponie bezeichnet, angestrebt, um eine möglichst gleichmäßige 

Alterung der Abfälle zu ermöglichen. Inhomogenitäten können jedoch während der 

Betriebsphase in verschiedenen Bereichen einer Deponie entstehen. Die vorliegenden 

Untersuchungen zielten daraufhin, die Folgen solcher Inhomogenitäten abzuschätzen.  

Der Einbau einer Sperrschicht hat für einen Großteil der Versuche zu einer verstärkten 

Auswaschung an leichtlöslicher Spezies sowie an Schwermetallen geführt.  

 

Wodurch kann aktuell eine Sperre entstehen? 
Die vorliegenden Untersuchungen zeigen, dass sich bereits der Übergang an der Oberfläche 

der Deponie zur umgebenden Atmosphäre (Luft) als Inhomogenität auswirkt. Diese Zone stellt 

den obersten Kontakt der Feststoffe mit Niederschlag (Regen, Schnee) und Temperatur 

(Sonne, Frost) und ist daher verstärkt der Verwitterung ausgesetzt. Die zum Teil extrem 

feinkörnigen Reaktionsprodukte können die Porenräume ausfüllen und somit eine Änderung 

der Durchlässigkeit bewirken. 

Bereits während der Betriebsphase werden verschiedene Bereiche einer Deponie als 

Anlieferungs- und Transportwege genutzt. Durch die Auflast der Baumaschinen werden diese 

Bereiche verdichtet. Dieser Vorgang trägt zu einem starken Korngrößenwechsel bei. In der 
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Folgezeit können daher diese Zonen eine Inhomogenität hinsichtlich der Durchlässigkeit 

innerhalb des Deponiekörpers darstellen. Dieser Prozess dürfte eine Ursache für den Aufbau 

einer zwei Meter mächtigen Salzschicht innerhalb des Bauabschnitts I der Monodeponie 

Waldering gewesen sein. 

Oft verstreicht eine gewisse Zeit zwischen Verfüllen einer Deponie und dem Aufbau eines 

Überhöhungs- bzw. Profilierungskörpers. Diese Grenzschicht kann sich ebenfalls 

differenzierend auf Wassergehalt und Verteilung chemischer und mineralogischer Spezies im 

Profil auswirken. Das heißt, dieser Bereich kann ebenfalls als Sperre wirksam werden.  

 

Voraussetzungen für die Wirksamkeit einer Sperre  
Material 

Jedes Material mit einem kleineren Durchlässigkeitsbeiwert (kf-Wert) als der Deponiekörper 

selber erfüllt die Voraussetzungen für eine Inhomogenität hinsichtlich Aufstauen des 

Sickerwassers. Aber auch ein Korngrößenwechsel innerhalb des gleichen Materials reicht 

aus, um eine aufstauende Wirkung zu zeigen, wie es anhand der Modellversuche mit 

Kunststoffkugeln demonstriert werden konnte. Dabei ist zu berücksichtigen, dass für den 

Kugelversuch mit Sperre als Folge des inhomogenen Aufbaus speziell im Bereich unterhalb 

der Sperre Salzakkumulationen in den Kugelhohlräumen festgestellt wurden. Daher ist die 

zurückgehaltene Wassermenge nicht nur abhängig von Porenvolumen und 

Porengrößenverteilung, sondern auch von der Intensität der Salzakkumulationen. Beide 

Faktoren erhöhen die Reaktionszeit des Sickerwassers mit dem umgebenden Material. Neben 

dem Potential, Wasser an die Matrix zu binden, ist der Beitrag des osmotischen Potentials zu 

berücksichtigen. D.h. mit Zunahme des Salzanteils in der Lösung kann Wasser in der 

salzreichen Zone auf Kosten der angrenzenden Zone angereichert werden. Damit wird die 

aufstauende Wirkung einer hydraulischen Sperre verstärkt (Scheffer & Schachtschabel, 1998).  

 

Zeit 

Die Sperre braucht eine gewisse Zeit, um seine Wirksamkeit entwickeln zu können. Die 

Untersuchungen zeigen, dass als erstes die Stauwirkung einsetzt. Die Durchlässigkeitsunter-

schiede bewirken, dass mit der erhöhten Verweilzeit des Sickerwassers die gelösten Spezies 

im Sickerwasser länger mit dem Feststoff wechselwirken können. Langfristig können dann 

innerhalb dieses Bereichs eine Aufkonzentration im Sickerwasser und die erwünschte 

Übersättigung für die Ausfällung potentieller Speicherminerale erreicht werden. Durch das 

Aufstauen des Sickerwassers entstehen unterhalb der Sperrschicht vergleichsweise trockene 

Bedingungen und begünstigen die Ausfällung aus der Porenlösung.  
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Wasserbilanz 

Bewässerungsmenge sowie Bewässerungsmodi beeinflussen die Prozesse nachhaltig. 

Wichtig dabei ist das Verhältnis zwischen Wasserzufuhr und Wasserabfluss sowie die 

Wechselfolge von Bewässerung und Trocknungsphasen durch den Beitrag der Evaporation.  

Der Modellversuch mit Kunststoffkugeln zeigte, dass vor allem bei geringen Bewässerungs-

mengen sich die Wirksamkeit der Sperre im Sinne eines Wasserrückhaltevermögens 

verstärkt. In diesem Fall wird im Vergleich deutlich weniger Sickerwasser ausgetragen.  

Im Zusammenspiel der verschiedenen Faktoren kann somit auch bei humiden Klimaver-

hältnissen eine Salzanreicherung innerhalb der Deponie erfolgen, wie sie sonst nur in 

natürlichen salzreichen Systemen in ariden und semiariden Gebieten zu erwarten sind. 

 

Beitrag salzreicher Lösungen 

Es hat sich gezeigt, dass durch die zusätzliche Zugabe von salzreichen Lösungen, in Form 

von Modell- oder Deponiesickerwasser sowie Konzentrat aus der Umkehrosmose, das 

Wasserrückhaltevermögen zusätzlich verstärkt werden kann, da nicht nur Schlacke als 

poröses Material Wasser einbauen kann, sondern über die Salzverkrustungen zusätzliches 

Wasser gespeichert wird. Zudem werden durch die Zugabe von Salzen die chemischen und 

mineralogischen Prozesse verstärkt bzw. beschleunigt. Die Alteration der Reststoffe wird 

forciert. Die Ergebnisse der Säulen- und Feldversuche haben gezeigt, dass das Verhältnis 

Bewässerungsmenge zu eingebauter Schlackemenge (L/S-Verhältnis) ausschlaggebend für 

den Stoffaustrag ist. Bei den Säulenversuchen liegt generell ein L/S-Verhältnis > 1 vor. Vor 

allem leichtlösliche Spezies (Cl, Na) werden verstärkt ausgewaschen, sowohl für eine 

Bewässerung mit Leitungswasser als auch für eine Bewässerung mit Modellsickerwasser. Für 

die Feldversuche ist das L/S-Verhältnis < 1. Bei hohen Salzkonzentrationen im 

Bewässerungsmedium kommt es hier sogar zu einer Umkehrung der Entwicklung. 

Leichtlösliche Spezies können sich innerhalb der Versuchsanordnung anreichern.  

 

Einbau einer Sperre 
Generell werden Sanierungsmaßnahmen hinsichtlich der „inneren Barrieresysteme“ als 

technisch und finanziell aufwendig angesehen. Der Einbau einer Sperrschicht während der 

Betriebsphase erfordert hingegen keinen unverhältnismäßig großen Aufwand. 

Im Rahmen dieser Untersuchungen wurde Schlacke-Feinkorn (SFK) der Körnung 0-4 mm als 

Sperrschicht verwendet. Die Ergebnisse zeigen, dass bereits dieses Material die gewünschten 

Forderungen hinsichtlich Korngrößenwechsel erfüllt. Schlacke-Feinkorn bewirkte in den 

verschiedenen Versuchsdurchführungen ein Aufstauen von Sickerwasser. In zahlreichen 

Anlagen fällt infolge der Aufbereitung Schlacke-Feinkorn als Reststoff an, der deponiert 

werden muss. Die MV-Schlacke der Körnung 4-32 mm wird meist geotechnisch verwertet. Im 

Zuge des Einbaus innerhalb des Deponiekörpers kann so SFK ebenfalls verwertet werden.  
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Generell empfiehlt sich der Einbau einer Sperrschicht mindestens fünf bis zehn Meter 

oberhalb der Basis. Die Mächtigkeit der Sperrschicht soll mindestens 30 cm betragen, um eine 

optimale Wirksamkeit hinsichtlich einer Reduzierung der Durchlässigkeit zu gewährleisten. Wir 

empfehlen zusätzlich eine maschinelle Verdichtung des Feinkorns, um einen 

Durchlässigkeitsbeiwert (kf-Wert) von kleiner gleich 10-8 m/s (schwach durchlässig) 

einzustellen. Bei sehr großen Deponien können auch mehrere Sperrschichten innerhalb des 

Deponiekörpers eingebracht werden.  

 

Position der Sperre 
Aufgrund der räumlich begrenzten Ausmaße von Labor- und Feldversuche wurde die 

Sperrschicht etwa auf halber Höhe der jeweiligen Versuchsaufbauten positioniert. Es muss 

oberhalb der Sperrschicht genügend Raum vorhanden sein, damit Salze und Schwermetalle 

durch Lösungsprozesse durchsickern bzw. mobilisiert werden können und unterhalb der 

Sperrschicht muss genügend Platz zur Ausbildung des Salzhorizonts bleiben. Der Bereich 

unterhalb der Sperrschicht muss ausreichend groß sein, damit Salze über kapillare Kräfte 

entgegen der Schwerkraft mobilisiert werden können.  

Die verschiedenen Versuchsaufbauten zeigen, dass für die Ausbildung einer hydraulischen 

Sperre eine Deponiemächtigkeit von einem Meter ausreicht. Für die Ausbildung eines 

Salzhorizontes hingegen sind wesentlich größere Mächtigkeiten (z.B. Monodeponie Waldering 

> 7 Meter) nötig. Bei geringeren Mächtigkeiten kann der gesamte Bereich unterhalb Sperre 

mit leichtlöslichen Salzen angereichert sein.  

 
Wirkungskreis einer Sperre 
Es hat sich anhand unserer Feldversuche gezeigt, dass die Auswirkung unterschiedlicher 

Sickerwasserzusammensetzungen lokal begrenzt ist. Die wechselseitige Beeinflussung durch 

laterale Diffusion ist gering. Das bedeutet, dass eine lokal begrenzte Errichtung einer 

Sperrschicht, die nicht die gesamte Fläche der Deponie umfasst, ebenfalls wirksam werden 

kann. Es ist daher zu erwarten, dass beim Großmaßstab einer Deponie auch ein Eingriff in 

den Deponiekörper, z.B. in Form einer Bohrung, die Wirksamkeit der Sperrschicht bzgl. ihres 

Aufstauvermögens nicht beeinflussen oder gar aufheben würde. 

 

Vorteile einer Sperre 

• Die Sperre führt zu einer geringeren Austragsmenge an Sickerwasser. Dieser Vorgang 

wirkt sich kostengünstig für den Deponiebetrieb aus. 

• Das erhöhte Wasserrückhaltevermögen zusammen mit der verstärkenden Wirkung von 

Salzakkumulationen (Salzhorizont) im Bereich der Sperre weist bei Starkregener-

eignissen zudem ein stärkeres Puffervermögen auf. 
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TA - 1 

TABELLARISCHER ANHANG 
 
Tab. T-1: Zusammensetzung der Modellsickerwässer aus Leitungswasser und Neutralsalzen für die Säulenversuche im 

Labor und für die Lysimeter Raindorf 

 MSW-Säulenversuche MSW-Lysimeter 
Parameter Einheit Quelle Konzentration Quelle Konzentration

pH-Wert  NaOH 10,9 unkontrolliert 8,0

Lf mS/cm 3,5 53,1

Cu mg/L CuCl2 2 n.v. n.v.

Zn mg/L ZnCl2 3 n.v. n.v.

Pb mg/L PbCl2 8 n.v. n.v.

Na mg/L Na2SO4 383 NaCl/Na2SO4 12.157

Ca mg/L CaCl2 397 CaCl2 1.830

Cl mg/L Cu/Zn/Pb/CaCl2 711 NaCl/CaCl2 20.233

SO4 mg/L Na2SO4 799 Na2SO4 2.386
 n.v. = nicht vorhanden 
 
Tab. T-2: Zusammensetzung Sickerwasser und Umkehrosmosekonzentrat  

Parameter Einheit 
Sickerwasser 

(Einzelmessung 
vom 14.06.05) 

Sickerwasser 
(Schwankungsbereich)

Umkehrosmose-
konzentrat vom 

11.05.05 
pH - 8,1 8,1 – 8,4 8

Leitfähigkeit µS/cm 14.970 7,820 – 19.600 37.000
Cl mg/L 3.930 1.280 – 4.000 11.800

SO4 mg/L 1.090 75 – 800 4.600
Al mg/L 0,1 n.b. 0,22

Ca mg/L 94 92 – 199 240
Co mg/L 0,023 n.b. < 0,02
Cr mg/L 0,32 0,16 – 0,39 0,59
Cu mg/L 0,2 0,26 – 0,45 0,25
Hg mg/L < 0,001 n.b. < 0,001

K mg/L 747 580 – 770 1. 070
Mg mg/L 55 92 – 210 106
Mo mg/L 0,28 n.b. 0,83
Na mg/L 3.260 1.850 – 3.260 4.340
Ni mg/L 0,16 0,16 – 0,17 0,24
Pb mg/L 0,12 < 0,05 – 0,12 0,2
Si mg/L 18 11 – 26 46,4
V mg/L 0,024 n.b. 0,036

Zn mg/L 0,11 0,11 – 0,65 0,25
 
Tab. T-3: Unterschiedliche Versuchsreihen der Säulenversuche: Versuchsanordnung A, Schlacke der MVA Ingolstadt 

VA-A Säule Material Sper-
re 

Position 
ab Basis

Mächtig-
keit 

Bewäs-
serung Beginn Ende Dauer in 

Wochen
IBV0 Schlacke keine  LW 11.01.05 02.01.07 103
IBV1 Schlacke keine  MSW 18.11.04 22.03.05 18
IBV2 Schlacke keine  MSW 18.11.04 06.09.05 42

I 

IBV3 Schlacke keine  MSW 18.11.04 08.11.06 103
ISFK0 SFK, Schlacke SFK ~39,5 cm 2 - 3 cm LW 11.01.05 02.01.07 103
ISFK1 SFK, Schlacke SFK ~45,5 cm 2 - 3 cm MSW 18.11.04 22.03.05 18
ISFK2 SFK, Schlacke SFK ~44,5 cm 2 - 3 cm MSW 18.11.04 06.09.05 42

II 

ISFK3 SFK, Schlacke SFK ~ 42 cm 2 - 3 cm MSW 18.11.04 08.11.06 103
SFK: Schlacke-Feinkorn, MSW: Modellsickerwasser; LW: Leitungswasser 
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Tab. T-4: Unterschiedliche Versuchsreihen der Säulenversuche: Versuchsanordnung B, Schlacke des MHKW-
Rosenheim 

VA-B Säule Material Sperre Bewäs-
serung Beginn Ende Dauer in 

Wochen
BV1 Schlacke 12 keine MSW 07.04.04 19.07.05 67I 
BV2 Schlacke 12 keine LW 07.04.04 22.06.04 11

SFK1 Schlacke 12, SFK SFK LW 19.04.04 23.06.04 9
SFK2 Schlacke 11, SFK SFK LW 29.04.04 18.01.05 38II 
SFK3 Schlacke 11, SFK SFK MSW 29.04.04 19.07.05 64
GT1 Schlacke 12, GT GT LW 23.04.04 23.06.04 9
GT2 Schlacke 11, SFK, GT GT+SFK LW 05.05.04 18.01.05 37III 
GT3 Schlacke 11, SFK, GT GT+SFK MSW 05.05.04 30.06.04 8

RSFK1 Schlacke 12, SFK, RGR SFK LW 23.04.04 25.06.04 9
RSFK2 Schlacke 11, SFK, RGR SFK LW 06.05.04 12.07.05 62IV 
RSFK3 Schlacke 11, SFK, RGR SFK MSW 06.05.04 12.07.05 62
RGT1 Schlacke 12, GT, RGR GT LW 23.04.04 25.06.04 9
RGT2 Schlacke 11, SFK, GT, RGR GT+SFK LW 06.05.04 23.11.05 29V 
RGT3 Schlacke 11, SFK, GT, RGR GT+SFK MSW 06.05.04 23.11.05 29

SFK: Schlacke-Feinkorn, GT: Geotextil, SFK: Schlacke-Feinkorn, RGR: Rauchgasreinigungsrückstände, MSW: 

Modellsickerwasser; LW: Leitungswasser; 12: LOS 12 und 11: LOS 11 

 
Tab. T-5: Unterschiedliche Versuchsreihen der Säulenversuche: Versuchsanordnung C, Schlacke der MVA Ingolstadt 

VA-C Säule Material Sperre Position 
ab Basis

Mächtig-
keit 

Bewäs-
serung Beginn Ende Dauer in 

Wochen
I RBV Schlacke keine  MSW 13.10.05 20.03.07 77
II RSFK SFK, RGR, Schlacke SFK,RGR 40 cm 2 - 3 cm MSW 13.10.05 20.03.07 77
SFK: Schlacke-Feinkorn, RGR: Rauchgasreinigungsrückstände, MSW: Modellsickerwasser 

 
Tab. T-6: Unterschiedliche Versuchsreihen der Feldversuche 

FV Versuch Material Sperrschicht Position 
ab Basis 

Mächtig-
keit 

Bewäs-
serung 

WA1 Schlacke, RGR keine   NS I WA2 Schlacke, SFK, RGR SFK 55 cm 15 cm  NS 
RA1 Schlacke keine   MSW II 
RA2 Schlacke, SFK SFK 55 cm  10 cm  MSW 
EB1 Schlacke keine   NS 
EB2 Schlacke, SFK SFK 80 cm 10 cm  NS 
EB3 Schlacke, SFK SFK 80 cm 10 cm  SW 

III 

EB4 Schlacke, SFK SFK 80 cm  10 cm  UOK 
NS: Niederschlag; MSW: Modellsickerwasser, SW: Deponiesickerwasser, UOK: Umkehrosmosekonzentrat 

 

 
Tab. T-7: Methoden der Wahl zur Gewinnung von Bohrkernen für die Feldversuche 

Versuch BK I BK II BK III 
    

WA1 Handbohrer Handbohrer Handbohrer 
WA2 Handbohrer Handbohrer Handbohrer 
RA1 Handbohrer Handbohrer Handbohrer 
RA2 Handbohrer Handbohrer Handbohrer 
EB1 Handbohrer Rammkernbohrer Schurf 
EB2 Handbohrer Rammkernbohrer Schurf 
EB3 - Rammkernbohrer Schurf 
EB4 - Rammkernbohrer Schurf 
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Tab. T-8: Termine der drei durchgeführten Bohrkampagnen  

Versuch Beginn 
der Versuche BK I Dauer in 

Wochen BK II Dauer in 
Wochen BK III Dauer in 

Wochen 
WA1 03.11.04 19.05.05 28 22.09.05 46 27.10.06 103
WA2 03.11.04 19.05.05 28 22.09.05 46 27.10.06 103
RA1 26.11.04 20.04.05 21 17.10.05 46 15.11.06 103
RA2 26.11.04 20.04.05 21 17.10.05 46 15.11.06 103
EB1 08.12.04 11.05.05 22 09.11.05 48 22.11.06 102
EB2 08.12.04 11.05.05 22 09.11.05 48 22.11.06 102
EB3 08.12.04 k.B. k.B. 09.11.05 48 22.11.06 102
EB4 08.12.04 k.B. k.B. 09.11.05 48 22.11.06 102

 k.B.: keine Bohrung abgeteuft 

 
Tab. T-9: Bezeichnungen und Entnahmetiefen für die Bohrkernproben: Die Sperrschicht aus Schlacke-Feinkorn ist die 

Probe 3f, Ausnahme BK III Eberstetten hier 4f 
 TESTFELDER EBERSTETTEN 
 EB-1 EB-2 EB-3 EB-4 
 ohne Sperre/NS mit Sperre/NS mit Sperre/NS/SW mit Sperre/NS/UO 

1 f (0 - 50) 1 f (0 - 50)
2 f (50 - 90) 2 f (50 - 90)

3 f (90 - 150) 3 f (90 - 150)
4 f (150 -200) 4 f (150 -200)

BK I 

- -

keine Bohrung 
abgeteuft 

1 f (45 – 58) 1 f (45 – 58) 1 f (45 – 58) 1 f (45 – 58)
2 f (80 – 90) 2 f (80 – 90) 2 f (80 – 90) 2 f (80 – 90)

3 f (117 – 127) 3 f (100 - 115) 3 f (100 - 115) 3 f (100 - 115)
4 f (147 -157) 4 f (117 – 127) 4 f (117 – 127) 4 f (117 – 127)

BK II 

- 5 f (147 -165) 5 f (147 -165) 5 f (147 -165)
1 f (bei 20) 1 f (bei 20) 1 f (bei 20 cm) 1 f (bei 20 cm)
2 f (bei 50) 2 f (bei 50) 2 f (bei 50cm) 2 f (bei 50cm)
3 f (bei 80) 3 f (bei 80) 3 f (bei 80) 3 f (bei 80)

4 f (bei 140) 4 f (105 - 112) 4 f (103 - 110) 4 f (105 - 110)
BK III 

- 5 f (bei 140) 5 f (bei 140) 5 f (bei 140)
 GROSSLYSIMETER 
 Waldering Raindorf 

 ohne Sperre/NS mit Sperre/NS ohne Sperre/MSW mit Sperre/MSW 
1 f (0 - 50) 1 f (0 - 50) 1 & 2 f (0 - 70) 1 & 2 f (0 - 70)

2 f (50 - 95) 2 f (50 - 95) 3 f (70 - 100) 3 f (70 - 90)
3 f (95 - 120) 3 f (95 - 120) 4 f (100 - 130) 4 f (90 - 110)

4 f (120 -165) 4 f (120 -165) 5 f (130 -165) 5 f (110 -130)
BK I 

- - - 6 f (130 - 165)
1 f (bei 50) 1 f (bei 50) 1 f (50 – 58) 1 f (48 – 52)
2 f (bei 90) 2 f (88 – 96) 2 f (95 – 99) 2 f (88- 91)

3 f (113 – 120) 3 f (95 – 110) 3 f (119 – 123) 3 f (108 – 112)
4 f (bei 140) 4 f (110 -115) 4 f (150 -159) 4 f (118 -123)

BK II 

- 5 f (bei 140) - 5 f (148 -154)
1 f (bei 50) 1 f (bei 50) 1 f (bei 50) 1 f (bei 50)
2 f (bei 90) 2 f (bei 90) 2 f (bei 90) 2 f (bei 90)

3 f (bei 115) 3 f (95 – 110) 3 f (bei 120) 3 f (105 – 110)
4 f (bei 140) 4 f (bei 115) 4 f (bei 150) 4 f (bei 120)

BK III 

- 5 f (bei 140) - 5 f (bei 150)
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Tab. T-10: Feststoffgehalte (Oxide in Gew.-% und Spurenelemente in ppm) der Ausgangsmaterialien (RFA) 

   Gew.-% 
Material Schlacke Versuch SiO2 Al2O3 MnO MgO CaO Na2O K2O TiO2 P2O5 Fe2O3 SO3 Summe 

WA LOS12 VA-B 24,2 8,8 0,2 3,0 22,7 1,3 0,8 1,8 2,0 14,9 2,5 85,8
WA LOS12 VA-B 26,1 9,3 0,2 2,9 21,6 1,4 0,9 1,7 0,9 14,0 2,4 84,5
WA LOS12 VA-B 16,2 9,7 0,2 3,2 26,2 0,8 0,7 2,1 1,2 12,6 3,5 80,7
WA LOS 11 

 
Schlacke

B 

VA-B 29,9 8,1 0,2 3,0 19,1 1,9 0,8 1,4 0,6 17,2 2,1 86,8
Mittelwert  VA-B 24,1 9,0 0,2 3,0 22,4 1,4 0,8 1,7 1,2 14,7 2,6 84,5
     

WA LOS 6 Schlacke
B WA-LY 27,9 8,4 0,2 3,1 19,9 1,7 0,8 1,5 0,6 16,3 2,1 85,0

               
Schlacke IN VA-A 27,7 8,0 0,2 2,7 20,0 1,7 1,4 1,6 1,6 11,4 1,8 80,9
Schlacke EB 

Schlacke
A FV-EB 30,8 9,1 0,2 2,5 18,3 2,0 1,3 1,7 1,3 12,7 1,8 84,4

Mittelwert  RA-LY 29,2 8,5 0,2 2,6 19,1 1,8 1,3 1,6 1,4 12,0 1,8 82,6
               
WA RGR  RGR 4,1 2,5 0,0 0,5 49,9 1,7 0,9 0,4 0,2 0,7 2,9 75,9
WA RGR  RGR 5,6 3,2 0,1 0,8 39,2 2,1 3,4 0,6 0,4 1,3 2,9 72,2
Mittelwert  RGR 4,8 2,8 0,1 0,7 44,5 1,9 2,2 0,5 0,3 1,0 2,9 74,1
               
WA SFK  SFK 23,3 8,5 0,2 3,5 23,9 1,1 0,8 1,8 0,8 14,4 2,9 84,2
WA SFK  SFK  25,3 9,6 0,2 3,1 21,9 1,2 0,8 1,8 0,9 14,7 2,5 85,1
Mittelwert  SFK  24,3 9,1 0,2 3,3 22,9 1,2 0,8 1,8 0,9 14,6 2,7 84,7
WA: Waldering; IN: Ingolstadt; EB: Eberstetten; RA: Raindorf 
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   ppm 

Material Schlacke Versuch Ba Br Cl Cr Cu Mo Ni Pb Sn Sr V W Zn 
WA LOS12 VA-B 3.616 46 6.540 1.226 7.478  n.b. 387 4.061 407 737 61 131 11.168 
WA LOS12 VA-B 3.421 44 7.134 1.201 6.136 18 350 2.052 231 675 66 141 10.037 
WA LOS12 VA-B 3.849 80 10.499 1.228 6.779 28 409 2.073 393 688 76 149 15.831 
WA LOS 11 

 
Schlacke 

B 

VA-B 2.803 25,2 5.601 1.017 5.137 21,6 278 2.108 221 n.b.- 54 105 9.187 
Mittelwert  VA-B 3.422 49 7.444 1.168 6.383 17 356 2.573 313 700 64 132 11.556 
               

WA LOS 6 Schlacke 
B WA-LY 3.615 28 5.623 1.046 4.214 14 288 1.622 370 508 70 109 8.038 

               
Schlacke IN VA-A 3.708 42 10.147 942 5.006 20 232 1.876 226 n.b. 68 136 6.599 
Schlacke EB 

Schlacke 
A FV-EB 3.673 53 9.391 1.191 5.349 17 228 1.527 190 584 81 116 6.064 

Mittelwert  RA-LY 3.691 48 9.769 1.067 5.178 18 230 1.702 208 n.b. 75 126 6.331 
               
WA RGR  RGR 439 2.905 104.184 360 716 127 53 2.333 395 320 17 84 8.864 
WA RGR  RGR 528 1.340 114.292 618 896 51 60 2.602 401 n.b. 9 43 7.725 
Mittelwert  RGR 484 2.123 109.238 489 806 89 57 2.468 398 n.b. 13 64 8.294 
               
WA SFK  SFK 4.082 38 6.918 1.236 5.347 10 333 2.231 214 538 74 131 9.871 
WA SFK  SFK  4.026 29 5.407 1.297 6.629 29 323 1.856 204 n.b. 72 160 10.809 
Mittelwert  SFK  4.054 34 6.163 1.267 5.988 19 328 2.044 209 n.b. 73 146 10.340 
WA: Waldering; IN: Ingolstadt; EB: Eberstetten; RA: Raindorf 
n.b.: nicht bestimmt 
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Tab. T-11: Eluatkonzentrationen der Ausgangsmaterialien (nach DIN EN 12457-4) 
   TR* pH-Wert Lf NH4 Cl SO4 Al Ca K Mg Na 

Material Schlacke Versuch % - mS/cm mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L 
WA LOS 12 Schlacke B VA-B 79,77 10,6 1,79 n.b. 279 535 1,435 218 66,7 0,283 163 
             
WA LOS 6 WA-LY 90,59 11,0 1,54 0,13 206 396 3,580 162 48,5 0,073 130 
WA LOS 6 WA-LY 88,83 10,7 1,66 0,13 253 317 1,250 172 54,6 0,180 159 
WA LOS 6 WA-LY 89,94 10,9 1,18 0,13 149 255 6,490 131 32,7 0,078 89 
WA LOS 6 

Schlacke B 

WA-LY 90,41 11,2 1,64 0,25 204 320 1,850 184 48,7 0,044 126 
Mittelwert LOS 6  WA-LY 89,94 11,0 1,50 0,16 203 322 3,293 162 46,1 0,094 126 
      
Schlacke IN VA-A/VA-C 81,98 12,2 4,18 0,53 313 4 16,900 269 111,0 0,003 194 
Schlacke IN VA-A/VA-C 80,97 12,1 4,42 0,95 404 12 5,160 244 157,0 0,006 279 
Schlacke IN 

Schlacke A 

VA-A/VA-C 83,20 12,1 4,06 0,51 338 16 3,280 246 131,0 0,008 224 
Mittelwert IN  VA-A/VA-C 82,05 12,1 4,22 0,66 352 10 8,447 253 133,0 0,006 232 
      
Schlacke EB Schlacke A FV-EB 88,22 10,7 2,54 n.b. 495 262 36,700 168 133,0 0,021 281 
      
Schlacke RA Schlacke A RA-LY 94,10 11,9 3,04 0,39 251 40 8,290 199 100,0 0,012 160 
      
WA SFK  SFK 85,40 10,7 1,77 n.b. 312 321 0,900 123 81,4 0,180 229 
WA SFK  SFK 84,88 7,1 1,99 n.b. 279 560 0,068 220 51,8 1,450 202 
WA SFK  SFK 85,79 11,3 2,48 n.b. 363 393 0,650 162 86,8 0,034 241 
Mittelwert SFK  SFK 85,36 9,7 2,08 n.b. 318 425 0,539 168 73,3 0,555 224 
      
WA RGR  RGR 70,42 12,2 29,60 1,11 8.000 967 < 0,007 4.380 1.140,0 0,009 1.330 
*TR: Trockenrückstand nach DIN EN 12 880 – S 2a;  WA: Waldering; IN: Ingolstadt; EB: Eberstetten; RA: Raindorf;  n.b.: nicht bestimmt 
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   Cr Cu Mo Ni Pb Si V Zn TIC* TOC* 
Material Schlacke Versuch mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L 
WA LOS 12 Schlacke B VA-B 0,029 0,020 0,092 0,005 < 0,008 4,62 0,007 0,073 n.b. n.b. 
            
WA LOS 6 WA-LY 0,005 0,018 0,054 0,003 0,010 3,36 0,004 0,010 n.b. n.b. 
WA LOS 6 WA-LY 0,024 0,021 0,058 < 0,001 0,009 4,19 0,005 0,003 n.b. n.b. 
WA LOS 6 WA-LY 0,004 0,014 0,034 < 0,001 0,012 1,96 0,006 0,006 n.b. n.b. 
WA LOS 6 

Schlacke B 

WA-LY 0,032 0,023 0,064 0,002 0,011 4,67 0,006 0,014 n.b. n.b. 
Mittelwert Los 6  WA-LY 0,016 0,019 0,053 0,003 0,011 3,55 0,005 0,008 n.b. n.b. 
     
Schlacke IN VA-A/VA-C 0,006 0,630 0,096 0,005 0,230 0,72 0,001 0,270 2,79 35,60 
Schlacke IN VA-A/VA-C 0,008 0,750 0,130 0,005 0,160 1,36 0,002 0,210 3,17 47,58 
Schlacke IN 

Schlacke A 

VA-A/VA-C 0,010 0,600 0,120 0,003 0,210 1,41 0,002 0,220 4,16 37,02 
Mittelwert IN  VA-A/VA-C 0,008 0,660 0,115 0,004 0,200 1,16 0,002 0,233 3,37 40,07 
     
Schlacke EB Schlacke A FV-EB 0,058 0,300 0,200 < 0,001 < 0,008 0,27 0,005 < 0,002 7,30 36,56 
     
Schlacke RA Schlacke A RA-LY 0,028 0,430 0,110 0,003 0,077 1,98 0,004 0,097 3,13 24,46 
     
WA SFK  SFK 0,095 0,026 0,130 < 0,001 0,014 7,91 0,009 0,003 8,58 5,94 
WA SFK  SFK 0,120 0,049 0,130 < 0,001 < 0,008 5,28 0,011 0,071 6,54 17,22 
WA SFK  SFK 0,120 0,038 0,110 < 0,001 0,020 6,30 0,004 0,022 n.b. n.b. 
Mittelwert SFK  SFK 0,112 0,038 0,123 < 0,001 0,011 6,50 0,008 0,032 7,56 11,58 
     
WA RGR  RGR 0,033 0,004 0,085 < 0,001 7,260 0,01 0,001 0,850 n.b. n.b. 

* nach DIN EN ISO 1484; n.b.: nicht bestimmt 

WA: Waldering; IN: Ingolstadt; EB: Eberstetten; RA: Raindorf 
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Tab. T-12: Wassergehalt und Glühverlust der Ausgangsmaterialien (nach DIN EN 12880-S2a und DIN EN 12879-S3a) 
   Gewichtsverlust in % 

Material Schlacke Versuch bei 30° C bei 105°C bei 550° C bei 1050° C*
Los 12 Schlacke B VA-B 13,33% 20,23% - 23,31%
       
Los 6 WA-LY 6,85% 9,41% 12,01% 12,99%
Los 6 WA-LY 8,10% 11,17% 13,80% 17,62%
Los 6 WA-LY 6,84% 10,06% 12,98% 15,01%
Los 6 

 
Schlacke B 

WA-LY 6,23% 9,59% 12,69% 14,15%
Mittelwert Los 6  WA-LY 7,00% 10,06% 12,87% 14,94%
       
Schlacke IN VA-A/VA-C 15,71% 18,02% 21,07% 23,14%
Schlacke IN VA-A/VA-C 16,62% 19,03% 22,12% 24,63%
Schlacke IN 

 
Schlacke A 

VA-A/VA-C 14,85% 16,80% 19,29% 20,48%
Mittelwert IN  VA-A/VA-C 15,73% 17,95% 20,83% 22,75%
       
Schlacke EB FV-EB 12,70% 16,07% 18,80% 19,78%
Schlacke EB FV-EB 12,50% 15,93% 18,25% 20,11%
Schlacke EB FV-EB 11,64% 14,79% 17,00% 18,62%
Schlacke EB 

 
Schlacke A 

FV-EB 10,71% 13,69% 15,74% 16,61%
Mittelwert EB  FV-EB 11,89% 15,12% 17,45% 18,78%
       
Mittelwert IN/EB Schlacke A RA-LY 13,81% 16,54% 19,14% 20,76%
       
WA SFK  SFK 8,24% 11,78% 14,86% 16,34%
WA SFK  SFK 7,84% 14,07% n.b. 25,51%
WA SFK  SFK 9,41% 14,21% 18,39% 19,80%
Mittelwert SFK  SFK 8,50% 13,35% 16,62% 20,55%
       
WA RGR  RGR 16,59% 23,43% n.b. 47,09%
WA RGR  RGR 5,42% 29,58% 47,54% 59,24%
Mittelwert RGR  RGR 11,00% 26,50% 47,54% 53,16%
*: der Glühverlust wurde bei 1050° C ermittelt und bezieht sich auf die Originalsubstanz, d.h. GV – Wg entspricht der 

Definition des Parameters Glühverlust in der AbfAblV 

n.b.: nicht bestimmt 
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Tab. T-13: Calciumgehalte in g/kg Schlacke bei den unterschiedlichen Versuchsanordnungen zu Versuchsbeginn und 
Versuchsende, sowie der Austrag in g/kg und %, die weißen Zeilen stehen für Blindversuche, die grau 
hinterlegten Zeilen für Versuche mit Sperrschicht 

Spezies Versuch VA Sperre Top Dauer Beginn Ende Austrag Austrag 
          Wochen g/kg  g/kg g/kg % 

IBV0 - - 103 142,80 142,78 -0,015 -0,011
IBV3 - - 103 142,80 143,47 +0,67 +0,47
ISFK0 SFK - 103 143,552 143,546 -0,006 -0,005
ISFK3 VA-A SFK - 103 143,39 144,10 +0,71 +0,50
EB1 - - 102 130,83 130,82 -0,01 -0,006
EB2 SFK - 102 132,33 132,30 -0,02 -0,011
EB3 SFK - 102 132,33 132,32 -0,01 -0,004
EB4 FV-EB SFK - 102 132,33 132,32 -0,01 -0,005
RA1 - - 103 136,81 136,89 -0,08 +0,06
RA2 LY-RA SFK - 103 138,39 138,46 +0,07 +0,06
RBV - - 76 142,80 143,31 +0,51 +0,35
RSFK VA-C SFK/RGR - 76 148,73 149,21 +0,49 +0,30
WA1 - RGR 103 163,40 162,85 -0,55 -0,32
WA2 WA-LY SFK RGR 103 165,34 164,70 -0,64 -0,39
BV1 -  67 158,00 159,05 +1,05 +0,68
SFK3 SFK  64 136,87 137,39 +0,51 +0,39
RSFK2 SFK RGR 62 146,57 145,40 -1,17 -0,72

Ca RSFK3 VA-B SFK RGR 62 144,42 143,97 -0,45 -0,25
 
Tab. T-14: Kupfergehalte in g/kg Schlacke bei den unterschiedlichen Versuchsanordnungen zu Versuchsbeginn und 

Versuchsende, sowie der Austrag in g/kg und %, die weißen Zeilen stehen für Blindversuche, die grau 
hinterlegten Zeilen für Versuche mit Sperrschicht 

Spezies Versuch VA Sperre Top Dauer Beginn Ende Austrag Austrag 
          Wochen g/kg  g/kg g/kg % 

IBV0 - - 103 5006,00 4999,22 -6,77 -0,14
IBV3 - - 103 5006,00 5002,81 -3,19 -0,06
ISFK0 SFK - 103 5041,60 5033,84 -7,75 -0,15
ISFK3 VA-A SFK - 103 5033,78 5029,98 -3,80 -0,08
EB1 - - 102 5349,00 5348,99 -0,01 -0,0003
EB2 SFK - 102 5378,08 5378,06 -0,02 -0,0004
EB3 SFK - 102 5378,09 5378,07 -0,02 -0,0003
EB4 FV-EB SFK - 102 5378,09 5378,07 -0,02 -0,0004
RA1 - - 103 5178,00 5177,83 -0,17 -0,003
RA2 LY-RA SFK - 103 5225,41 5225,34 -0,07 -0,001
RBV - - 76 5006,00 5004,34 -1,66 -0,03
RSFK VA-C SFK/RGR - 76 4908,48 4906,24 -2,24 -0,05
WA1 - RGR 103 3800,58 3800,56 0,02 -0,0004
WA2 WA-LY SFK RGR 103 3961,97 3961,95 -0,02 -0,0005
BV1 -  67 6806,92 6813,83 +6,92 +0,100
SFK3 SFK  64 5161,19 5165,30 +4,11 +0,080
RSFK2 SFK RGR 62 4919,19 4919,07 -0,11 -0,002

Cu RSFK3 VA-B SFK RGR 62 4844,49 4849,89 +5,39 +0,110
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Tab. T-15: Molybdängehalte in g/kg Schlacke bei den unterschiedlichen Versuchsanordnungen zu Versuchsbeginn und 
Versuchsende, sowie der Austrag in g/kg und %, die weißen Zeilen stehen für Blindversuche, die grau 
hinterlegten Zeilen für Versuche mit Sperrschicht 

Spezies Versuch VA Sperre Top Dauer Beginn Ende Austrag Austrag 
          Wochen g/kg  g/kg g/kg % 

IBV0 - - 103 20,00 17,28 -2,72 -13,50
IBV3 - - 103 20,00 18,50 -1,50 -7,60
ISFK0 SFK - 103 20,00 17,68 -2,32 -11,40
ISFK3 VA-A SFK - 103 19,99 17,86 -2,13 -10,40
EB1 - - 102 17,00 16,97 -0,02 -0,16
EB2 SFK - 102 17,09 17,05 -0,041 -0,25
EB3 SFK - 102 17,09 17,06 -0,03 -0,20
EB4 FV-EB SFK - 102 17,09 17,08 -0,01 -0,06
RA1 - - 103 18,00 17,90 -0,10 -0,54
RA2 LY-RA SFK - 103 18,06 17,96 -0,10 -0,53
RBV - - 76 20,00 18,06 -1,94 -9,81
RSFK VA-C SFK/RGR - 76 22,06 20,48 -1,58 -7,03
WA1 - RGR 103 23,09 23,01 -0,08 -0,35
WA2 WA-LY SFK RGR 103 23,55 23,44 -0,11 -0,46
BV1 -  67 17,78 16,57 -1,21 -6,24
SFK3 SFK  64 21,06 20,32 -0,74 -3,48
RSFK2 SFK RGR 62 25,04 24,37 -0,67 -2,45

Mo RSFK3 VA-B SFK RGR 62 26,29 25,39 -0,90 -3,31
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EXPERIMENTELLER ANHANG 
 

A Beschreibung der Säulenversuche im Labor 
 

Die Säulenversuche der Versuchsanordnungen VA-A, VA-B und VA-C im Labor bestehen 

aus 24 Plexiglassäulen mit einem Meter Länge und 15 cm im Durchmesser (Abb. A-1, A).  

 

Abb. A-1: A Säulenversuche im Labor (Längsschnitt)  
B Basis der Säulen im Querschnitt  

 

Die Unterseite der Säulen stellt eine Plexiglasplatte dar, die zur Mitte hin angeschrägt ist 

(Abb. A-1, B). Ein perforiertes Plättchen (3 mm Löcher) schützt das Abflussrohr (ca. 20 cm 

lang und 22,5 cm im Durchmesser) vor eventueller Verstopfung durch gröberes Korn 

(Abb. A-2). An der Basis wurden die Säulen mit grobem Material befüllt, um einen 

ungehinderten Sickerwasserabfluss zu gewährleisten (Abb. A-3). 

 

 

 

 

 

 

 
 
Abb. A-2: Abflussrohre für das Sickerwasser in 1 Liter PE-Auffanggefäße (links) 
Abb. A-3: Grobes Material an der Basis der Säule (rechts) 

A-3 A-2 
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Die Säulen wurden längsseitig halbiert. Die beiden Säulenhälften wurden mittels Profilringen 

und Klemmen dicht miteinander verbunden (Abb. A-4). Zur Bewässerung diente ein 

Kunststoffeimer, der an der Unterseite perforiert wurde, um Regentropfen simulieren zu 

können (Abb. A-5). Als Materialien für die Sperrschicht wurden Schlacke-Feinkorn (SFK) und 

z.T. auch Geotextil (GT) jeweils getrennt oder in Kombination verwendet (Abb. A-6 und A-7). 

Die Korngröße von MV-Schlacke umfasst einen Bereich [0-32 mm] und von Schlacke-

Feinkorn lediglich [0-4 mm]. Durch den Einbau des SFK wurde in Folge des 

Korngrößenwechsels eine Verringerung der Durchlässigkeit erzielt und somit eine 

Sperrwirkung erreicht.  

 

 

 

 

 

 

 

Abb. A-4: Profilringe und Klemmen, welche die beiden Plexiglashälften dicht  
   zusammenhalten (links) 
Abb. A-5: Perforierter PE-Kübel zur besseren Simulation von Regentropfen (rechts) 
 

 

 

 

 

 

 

 

 

 
Abb. A-6: Schlacke-Feinkorn (SFK) als Sperrschicht (links) 
Abb. A-7: Geotextil (GT) als Sperrschicht (rechts) 
 

Um sehr salzreiche Ausgangsbedingungen simulieren zu können, wurden einige Säulen der 

Versuchsanordnung B (VA-B) am Top der Säulen mit Rauchgasreinigungsrückständen (ca. 

3 cm mächtig) abgedeckt (Abb. A-8). Für die Versuchsanordnung C hingegen wurde als 

Sperrschicht Schlacke-Feinkorn verdichtet eingebaut (ca. 2 cm mächtig) und unmittelbar 

darüber eine 1 cm mächtige Lage RGR (Abb. A-9).  

SFK 

A-4 A-5 

A-6 

SFK 
GT 

A-7 
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Abb. A-8: RGR als Abdeckschicht bei Säulenversuchen der VA-B (links) 
Abb. A-9: RGR als Sperrschicht in Kombination mit SFK für den Säulenversuch mit Sperre der VA-C (rechts) 
 
Modellversuch mit Kunststoffkugeln 
Die beiden Plexiglassäulen MoV1 und MoV2 wurden mit 11 mm großen Kunststoffkugeln 

befüllt (Abb. A-10). In die Säule MVo2 wurde zusätzlich auf halber Höhe eine Sperrschicht 

eingebaut. Diese besteht aus kleineren Kugeln mit 2 mm im Durchmesser (A-11). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Abb. A-10: Vergleich der Säulen MoV1 (ohne Sperre) und MoV2 (mit Sperre) des Modellversuchs mit 

Kunststoffkugeln (links) 
Abb. A-11: Vergrößerter Ausschnitt der Sperre aus MoV2 (rechts) 

SFK 
RGR 

A-9 

RGR 

A-8 

A-10 

MoV2 MoV1 

A-11 
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B Beschreibung der Feldversuche 
 

Testfelder Eberstetten 
Die Abbildung B-1 zeigt einen schematischen Aufbau eines der vier Testfelder in Eberstetten 

und Abbildung B-2 eine Übersichtsphotographie der räumlichen Anordnung. Der Aufbau der 

Testfelder erfolgte vom 07.12.2004 bis 08.12.2004. Die Grundfläche für jedes Testfeld ist 

eine zusammenhängende plane Fläche (4 x 5 m). Das Gefälle nimmt jeweils zum Zentrum 

des Testfeldes hin zu, damit anfallendes Sickerwasser zentral zusammenläuft. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Abb. B-1: Skizze der Testfelder Eberstetten (links) 
Abb. B-2: Übersichtsphotographie der Testfelder Eberstetten (rechts) 
 

Auf die Grundfläche wurde für jedes Testfeld eine wasserundurchlässige Folie aufgebracht. 

Darüber erfolgte eine Kiesschüttung mit einer Mächtigkeit von etwa 15 cm (Abb. B-3). In die 

Kiesschüttung der Körnung 16 – 32 mm wurde zentral ein 5 m langes perforiertes 

Drainagerohr zum Ableiten der Sickerwässer eingebracht. Um den ausgeschwemmten 

Feinstanteil zurückzuhalten, wurde die Kiesschüttung mit einem wasserdurchlässigen 

Textilvlies abgedeckt (Abb. B-4). Die MV-Schlacke der MVA-Ingolstadt (Schlacke EB) wurde 

mit einem Bagger bis zu einer Höhe von 2,5 m aufgetürmt und zu Pyramidenstümpfen 

geformt (Abb. B-5). Das Testfeld 1 (EB1) dient als Blindversuch ohne Sperrschicht und steht 

isoliert von den übrigen Feldern. Die Testfelder EB2 bis EB4 haben getrennte 

Kunststoffbahnen (Abb. B-6), jedoch wurde ihr Aufbau zusammenhängend gewählt, damit 

eine möglichst große Oberfläche geschaffen werden konnte (Abb. B-7). 

EB3 

EB1 

EB2 

EB4 

B-2 

B-1 
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Mit Hilfe der Baggerschaufel wurde die Oberfläche der drei Testfelder mit Sperrschicht in 

regelmäßigen Abständen eingekerbt, um die Testfelder optisch voneinander trennen zu 

können (Abb. B-8 und B-9).  

 

 

 

 

 

 

 

 

 

 

Abb. B-3: Aufbringung einer Kiesschüttung auf eine Folie, in die Kiesschüttung wurde ein Drainagerohr 
eingebracht (links) 

Abb. B-4: Wasserdurchlässiges Textilvlies schützt Sickerwasser vor ausgeschwemmtem Feinstanteil (rechts) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abb. B-5: Auftürmen der MV-Schlacke zu Pyramidenstümpfen (links - oben) 
Abb. B-6: Getrennte Basisflächen der drei Testfelder mit Sperrschicht (rechts) 
Abb. B-7: Gemeinsame Oberfläche der drei Testfelder mit Sperrschicht (links - unten) 
 

 

 

 

B-3 B-4 

B-5 

B-7 B-6 
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Abb. B-8: Optische Trennung der drei Testfelder mit Sperrschicht mittels Baggerschaufel (links) 
Abb. B-9: Einkerbung zur optischen Trennung (rechts) 
 

Die 15 cm mächtige Sperrschicht aus SFK wurde mit einem Rüttler verdichtet eingebaut 

(Abb. B-10). Alle Testfelder waren dem natürlichen Niederschlag ausgesetzt, zudem wurden 

zwei Testfelder mit Sperre mit sehr salzreichen Lösungen bewässert (Abb. B-11). Das 

Testfeld EB3 wurde zusätzlich mit Sickerwasser aus der Deponie Eberstetten und das 

Testfeld EB4 mit einem Konzentrat aus der Umkehrosmose bewässert. Die Menge betrug 50 

Liter pro Woche. 

 

 

 

 

 

 

 
Abb. B-10: Verdichten des Schlacke- Feinkorns mittels Rüttler (links) 
Abb. B-11: Zusätzliche künstliche Bewässerung von zwei Testfeldern mit Sperre, Testfelder EB3 

(Deponiesickerwasser) und Testfeld EB4 (Konzentrat aus der Umkehrosmose) – (rechts) 
 
 
Großlysimeter Raindorf 
Die Abbildung B-12 zeigt eine Skizze der beiden Großlysimeter Raindorf. Die Großlysimeter 

wurden am 26.11.2004 analog den Testfelder Eberstetten folgendermaßen verfüllt: an der 

Basis mit einer etwa 2 cm mächtigen Kunststoffplatte dicht abgeschlossen, darüber 

Kiesschüttung der Körnung 16-32 mm und wasserdurchlässiges Textilvlies, befüllt mit MV-

Schlacke IN (Schlacke A der MVA-Ingolstadt). In das Lysimeter RA 2 wurde zusätzlich in 

einer Höhe von 75 cm ab der Basis eine verdichtete 10 cm mächtige Schicht Schlacke-

Feinkorn (SFK) eingebaut. Die Großlysimeter Raindorf bestehen aus Kunststoffzylindern mit 

B-8 B-9 

B-10 

EB3 - SW 

EB4 - UO

B-11 
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einer Höhe von 220 cm und einem Durchmesser von 250 cm (Abb. B-13). Die Wandstärke 

der Ringe beträgt etwa 10 cm. 

 

 
 
Abb. B-12: Skizze zu den Großlysimetern Raindorf 
 

 
 
 
 
 

 
 

 
 
 
 
Abb. B-13: Großlysimeter Raindorf, bestehend aus Kunststoffzylindern 
 

Mittels Kunststoffdeckel können die Großlysimeter verschlossen werden, damit wird der 

Zutritt von Regenwasser unterbunden (Abb. B-14). 

Durch regulierbare Abflussrohre wurde das Sickerwasser aus den Großlysimetern abgeleitet 

(Abb. B-15). Somit kann für die Frachtenberechnungen die genaue Sickerwasserabgabe für 

beide Lysimeter erfasst werden. 
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Abb. B-14:  Kunststoffdeckel zum Verschließen der Großlysimeter Raindorf (links) 
Abb. B-15:  Regulierbares Abflussrohr (rechts) 
 
Großlysimeter Waldering 
Die Abbildung B-16 zeigt eine Skizze der beiden Großlysimeter Waldering. Verfüllt wurden 

die Lysimeter am 03.11.2004. Die Lysimeter wurden von der Basis bis zum Top 

folgendermaßen verfüllt: Basis mit Kiesschüttung der Körnung 8-16 mm, darüber ein 

wasserdurchlässiges Textilvlies; befüllt mit entschrotteter Schlacke B des MHKW Rosenheim 

aus LOS 6 (seit Juni 2004 auf der Monodeponie Waldering gelagerte Schlacke). In das 

Lysimeter WA2 wurde zusätzlich im unteren Drittel eine verdichtete 15 cm mächtige Schicht 

Schlacke-Feinkorn (SFK) eingebaut. Die Großlysimeter bestehen aus Betonzylindern mit 

einem Meter Höhe und einem Durchmesser von eineinhalb Metern (Abb. B-17). Für die 

Versuche wurden zwei Zylinder übereinander gestellt und mittels PU-Schaum abgedichtet. 

An der Innenseite wurden die Betonzylinder mit 0,5 cm starken rechteckigen Styroporplatten 

ausgekleidet (Abb. B-18). Diese sollen in den Wintermonaten Temperaturunterschiede 

zwischen Beton und Schlackematerial verringern.  

 

 
 
Abb. B-16: Skizze zu den Großlysimetern Waldering 
 

B-14 B-15 
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Abb. B-17: Großlysimeter (WA1 und WA2) bestehend aus zwei Betonringen (links) 
Abb. B-18: Innenauskleidung der Betonringe mit 0,5 cm starken Styroporplatten (rechts) 
 

Am Top der Säulen wurden die Großlysimeter Waldering mit einer 20 cm mächtigen Schicht 

aus Rauchgasreinigungsrückständen (RGR) abgedeckt (Abb. B-19). Das Aufbringen der 

RGR sollte eine kontinuierliche Zuführung salzreicher Lösungen gewährleisten. Die beiden 

Lysimeter waren nur dem natürlichen Niederschlag ausgesetzt.  

 

 

 

 

 

 

 

 

 
Abb. B-19: 20 cm mächtige RGR-Schicht am Top der Großlysimeter 
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C. Probennahme 
 

Säulenversuche im Labor 
Nach Beendigung der Säulenversuche wurden die Säulen waagrecht gelegt und die 

Klemmen und Profilringe entfernt. Mit Hilfe einer Metallplatte wurde die Schlacke in den 

Plexiglasschalen in zwei Hälften getrennt (Abb. C-1). Die Schlacke-Proben aus den 

Blindversuchen wurden in 8 gleich große Proben á 10 cm aufgeteilt (Abb. C-2, oben). Die 

Feststoffproben aus den Säulen mit Sperrschicht wurden in 10 Proben aufgeteilt. Der 

Bereich ober- und unterhalb der Sperrschicht wurde jeweils in geringeren Abständen 

entnommen (Abb. C-2, unten). Jeweils die Hälfte des Probenmaterials wurde im 

Trockenschrank bei 40° C getrocknet und mittels Schwingscheibenmühle gemahlen. 

 

 

 

 

 

 

 

 

 

 

 
Abb. C-1: Säulenhälften aus Plexiglas, getrennt mittels Metallplatte (links) 
Abb. C-2: Skizze der Probeneinteilung, x an diesen Proben wurde Feststoffanalytik mittels RFA und Elution nach 

DIN EN 12457-4 (DEV-S4 Test) sowie Mineralphasenbestimmung mit XRD durchgeführt (rechts) 
 
Feldversuche 
Die erste Bohrkampagne (BK I) im April und Mai 2005 diente als Referenz, um die 

chemischen Zusammensetzung der Versuchsfelder in einem frühen Zustand nach dem 

Aufbau ermitteln zu können. Die Probennahme erfolgte mittels Handbohrer (Abb. C-3 bis C-

5) mit einem Durchmesser von 10 cm (max. Tiefe 1,7 m). Je Großlysimeter in Raindorf und 

Waldering wurde eine Bohrung abgeteuft. In Eberstetten waren bis zum Zeitpunkt der ersten 

Bohrungen noch alle vier Testfelder dem natürlichen Niederschlag ausgesetzt. Aus diesem 

Grund wurden nur das Testfeld EB1 (ohne Sperre) und als ein Beispiel für Testfelder mit 

Sperre das Testfeld EB 2 beprobt. Erst im Juni 2005 wurde mit der Zugabe von salzreichen 

Lösungen auf die Testfelder EB3 und EB4 begonnen.  

 

 

 

C-1 
C-2
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Abb. C-3: Durchführung der ersten Bohrkampagne (BK I) mittels Handbohrer (links) 
Abb. C-4: Probennahme während der ersten Bohrkampagne (Mitte) 
Abb. C-5: Bohrkopf des Handbohrers (rechts) 
 

Die zweite Bohrkampagne (BK II) erfolgte im September, Oktober und November 2005. Bei 

der ersten Bohrkampagne zeigte sich für die Testfelder Eberstetten, dass eine Probennahme 

mittels Handbohrer nicht möglich ist. Die Probennahme während der zweiten Bohrkampagne 

erfolgte daher mit Hilfe eines motorbetriebenen Rammkernbohrgerätes mit einem 

Bohrdurchmesser von 10 cm und einer Kernlänge von ca. 80 cm (Abb. C-6 und C-7).  

Durch einen Hebelmechanismus konnte die Rammkernsonde gezogen werden (Abb. C-8). 

Die genaue Angabe der Bohrprobentiefe (max. 1,65 m) ist jedoch nicht möglich, da durch die 

Auflast des Bohrgerätes die Schlackeproben stark verdichtet wurden (Abb. C-9). 

 

 

 

 

 

 

 

 

 

 
Abb. C-6: Probennahme mittels motorbetriebenem Rammkernbohrgerät (links) 
Abb. C-7: Rammkern mit einem Bohrdurchmesser von 10 cm und einer Kernlänge von ca. 80 cm (rechts) 
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Abb. C-8: Ziehen des Rammkerns durch Hebelwirkung (links) 
Abb. C-9: Bohrprobe der BK II Eberstetten (rechts) 
 

Während der dritten Bohrkampagne im Oktober und November 2006 wurden die 

Großlysimeter Waldering und Raindorf mittels Handbohrer beprobt. Im Rahmen der 

Rückbaumaßnahmen der vier Testfelder Eberstetten wurden die Testfelder mittels Schurf 

beprobt (Abb. C-10). Das dabei entstandene Profil konnte exakt ausgemessen und die 

Probennahmetiefen genau bestimmt werden (Abb. C-11).  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
Abb. C-10: Beprobung der Testfelder Eberstetten mittels Baggerschurf (links)  
Abb. C-11: Profil eines Schurfs mit einer Tiefe von etwa 1,8 Metern (rechts) 
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D. Untersuchungsmethoden Feststoffe 
Die Grundlagen zur Elementanalytik (RFA, XRD, ICP-OES, IC) wurden aus Kläntschi et al. 

(1996), Grundlagen zur Rasterelektronenmikroskopie aus Flegler et al. (1995) und 

Grundlagen zur Molekülspektroskopie aus Banwell & McCash (1999) entnommen.  

 

D-1: Röntgenfluoreszenzanalytik (RFA) 
 
Tab. D-1.1: Geräte- und Messparameter für die Röntgenfluoreszenzanalyse 
Gerät Bruker axs S4 Pioneer 

Software Spectra Release 2001 for Quantification and Evaluation  

Betriebsart Messung an fixen Spektrometerpositionen (peak und 

background) 

Analysatorkristalle PET, LiF 200, OVO-55 

Zählzeit 6-30 s pro Element (automatisch optimiert je nach Zählrate 

bis σ< 3 % erreicht ist) 

Trägermaterial Pulverpresstabletten 
 
Zur Bestimmung der Hauptelemente werden üblicherweise Schmelztabletten mit 

Lithiumtetraborat angefertigt. Durch den z.T. hohen Cl-Anteil in den Schlacke- und RGR-

Proben werden aber die Pt-Abgießschalen stark angegriffen und die Schmelztabletten 

neigen dazu, beim Abkühlen zu zerspringen (Magel, 2003). Aufgrund dieser Erfahrungen 

wurden für die vorliegenden Messungen Pulverpresstabletten angefertigt. Die 

Pulverpresstabletten bestehen aus 8 g feingemahlener und trockener Probe (< 63 µm) und 2 

g eines Tablettierungsmittels (Hoechst Wachs C, Mikropulver der Fa. Merck). Das Gemisch 

wurde 30 Minuten geschüttelt und dann bei ca. 15 Tonnen 10 Sekunden gepresst. Die 

Tabelle D.1-6 gibt eine Übersicht über die oxid- und elementspezifischen 

Geräteeinstellungen.
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Tab. D-1.2:  Messparameter je Oxid bzw. Element, Röntgenfluoreszenzanalytik 
 
 
 Linien

Analysator- 
Kristall Kollimator Detektor

Spannung/
Strom 

Nachweis- 
grenze 

Typische Fehler** für 
Schlacke A bei Konz. 
von: 

Typische Fehler** für 
Schlacke B bei Konz. 
von: 

      dg   kV/mA 
Oxide: Gew.-% 
Elemente: ppm  Konz. Gew.-% Stat. Dev. Konz. Gew.-% Stat. Dev. 

SiO2  Kα1 PET 0,46 f* 30/10  0,009 24 0,1 23 0,1 
Al2O3  Kα1 PET 0,46 f* 30/10  0,005 8 0,1 6 0,05 
MnO  Kα1 LiF 200 0,23 s* 60/50  0,002 0,2 0,002 0,2 0,001 
MgO  Kα1 OVO-55 0,46 f* 27/50  0,002 3,5 0,02 3,4 0,02 
CaO  Kα1 LiF 200 0,23 f* 50/20  0,005 20,5 0,04 21 0,04 
Na2O  Kα1 OVO-55 0,46 f* 27/111  0,001 2 0,01 1,8 0,01 
K2O  Kα1 LiF 200 0,23 f* 50/30  0,002 1 0,01 0,7 0,01 
TiO2  Kα1 LiF 200 0,23 f* 50/60  0,004 1,5 0,01 1,4 0,01 
P2O5  Kα1 PET 0,46 f* 30/100  0,002 1,5 0,1 0,5 0,004 
Fe2O3  Kβ1 LiF 200 0,23 s* 60/7  0,054 11 0,1 15 0,1 
SO3  Kα1 PET 0,46 f* 30/100  0,002 2,5 0,01 2,8 0,01 
Ba  Lα1 LiF 200 0,23 f* 50/60  90 0,3 0,003 0,2 0,003 
Br  Kα1 LiF 200 0,23 f* 60/50  45 0,005 0,0002 0,002 0,0002 
Cl  Kα1 PET 0,46 f* 30/100  21 0,7 0,003 0,4 0,003 
Cr  Kα1 LiF 200 0,23 f* 50/60  24 0,1 0,001 0,1 0,001 
Cu  Kα1 LiF 200 0,23 s* 60/50  27 0,4 0,001 0,3 0,001 
Mo  Lα1 PET 0,23 f* 27/111  11 0,002 0,001 0,004 0,001 
Ni  Kα1 LiF 200 0,23 s* 60/50  24 0,02 0,0003 0,03 0,0003 
Pb  Lβ1 LiF 200 0,23 s* 60/50  219 0,2 0,001 0,1 0,001 
Sn  Kα1 LiF 200 0,23 s* 60/50  261 0,02 0,001 0,01 0,001 
Sr  Kα1 LiF 200 0,23 s* 60/50  39 0,1 0,0003 0,05 0,0003 
V  Kα1 LiF 200 0,23 f* 50/60  23 0,01 0,001 0,01 0,001 
W  Lα1 LiF 200 0,23 s* 60/50  225 0,03 0,001 0,03 0,001 
Zn  Kα1 LiF 200 0,23 s* 60/50  29 0,7 0,002 0,9 0,002 

* f = Flow Counter; s = Scintillation Counter; ** nur bezogen auf die Zählstatistik 
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Messprogramm: 

Das Standardmessprogramm für geogene Materialien wurde speziell für die MV-Reststoffe 

adaptiert und mit international zertifizierten Standards kalibriert. Um auch die Fehler bei den 

z.T. sehr hohen Cl-Gehalten in den Proben möglichst gering zu halten, wurde im Labor ein 

eigener Standard angefertigt.  

Als Mischbasis wurde der interne Standard S1RF des Instituts für Mineralogie der Universität 

Salzburg verwendet. Dieser Standard besteht aus folgenden Oxiden und Elementen (Tab. D-

1.2): 

 
Tab. D-1.3: Zusammensetzung des Standards S1RF  Tab. D-1.4: Zusammensetzung des dotierten 
        Standards S1RF dot  

  
 

S1RF 
Oxide Elemente 

Gew.-%  ppm   ppm
SiO2 65,2 Ag 1 La 83
Al2O3 15,85 As 3 Mo 5
CaO 2,2 Ba 1100 Nb 18
P2O5 0,2 Bi 2 Ni 6
TiO2 0,65 Br 0,4 Pb 140
Fe2O3 3,9 Cd 6 Rb 221
K2O 6,2 Ce 149 Sn 1
MgO 0,9 Cl 7 Sr 191
MnO 0,05 Co 24 Th 40
Na2O 3,2 Cr 20 V 33
SO3 0,1 Cs 6 Y 40

Cu 8 Zn 680
 Ga 22 Zr 345

 

 

 

 

Dem Standard S1RF wurden Oxide und Elemente in den genannten Prozentanteilen 

zugemischt (Tab. D-1.3). Dieser Standard wurde als „S1RF dot“ benannt. Aus dieser 

Zumischung wurde die Zusammensetzung des dotierten Standards „S1RF dot“ berechnet 

(Tab. D-1.4). 

 
Tab. D-1.5: Proz. Zumischung an Oxiden und Elementen zum Standards S1RF 

     
 

 

 

 

„S1RF dot“ 

Oxide Elemente 

Gew.-% 
  

  
  

ppm 
  

  
  

ppm 
  

SiO2 46,7 Ag 1 Ga 15
Al2O3 11,4 As 2 La 58
CaO 21,6 Ba 788 Mo 4
P2O5 0,1 Bi 1 Nb 13
TiO2 0,5 Br 0 Ni 1004
Fe2O3 2,8 Cd 1004 Pb 5100
K2O 4,4 Ce 104 Rb 154
MgO 0,7 Cl 11000 Sn 1000
MnO 0,0 Co 17 Sr 133
Na2O 2,3 Cr 1271 Th 28
SO3 3,1 Cs 4 Zn 10487
 Cu 5006 Zr 247

SO3 3,0% Ni 0,1% 
CaO 20,0% Pb 0,5% 
Cd 0,1% Sn 0,1% 
Cl 1,1% W 0,1% 
Cu 0,5% Zn 1,0% 
Cr 0,1%   
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Alle Feststoffproben wurden im Trockenschrank bei 40° C getrocknet. Dadurch wurde einzig 

das oberflächlich gebundene Wasser ausgetrieben. Die Anteile an Kristallwasser, 

Hydroxiden und Karbonat bleiben noch zur Gänze in den Proben enthalten. Die Analysen mit 

der Röntgenfluoreszenz ergaben für die Feststoffproben aus den Säulen- und Feldversuchen 

aus diesem Grund niedrige prozentuale Summen an Oxiden (zwischen 70 – 90 Gew.- %). 

Unter Berücksichtigung der Wassergehalte bzw. Glühverluste dieser Proben errechnen sich 

Summen um 100 %.  

In der Tabelle D-1.5 sind die Messergebnisse der ausgewählten Standards, gemessen mit 

Bruker axs S4 Pioneer, den Literaturdaten der internationalen Standards aus dem 

Geostandards Newsletter (Govindaraju, 1994) bzw. errechneten Gehalten gegenübergestellt. 

Vor jeder Messserie wurden diese Standards gemessen. Folglich sind in der Tabelle D-1.6. 

Mittelwerte mit Standardabweichung eingetragen. Der Standard W0 besteht aus frisch 

aufbereiteter MV-Schlacke der Körnung 0 – 6 mm (Magel, 2003).  

Wie die Tabelle zeigt, ist die Reproduzierbarkeit der Messwerte für die Standardtabletten 

ausgezeichnet. Es bestehen allerdings z.T. systematische moderate Abweichungen von den 

Sollwerten, was vermutlich auf die gewählte Probenpräparation zurückzuführen ist. Aus der 

Literatur ist hinlänglich bekannt, dass RFA Daten von Pulverproben vor allem bei Elementen 

mit hoher Konzentration oft weniger genau sind als bei Gläsern, da Korngrößeneffekte und 

die Gitterstrukturen der Mineralkomponenten die Kalibrierung erschweren.  
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Tab. D-1.6:  Sollwerte (graue Spalten) und Messwerte (MW, Standardabweichung, weiße Spalten) der Standardmaterialien zur Kalibrierung der RFA, k.A. = keine Angabe 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  GXR-3 MW NIM-L MW S1RF MW S1RF dot MW W 0 MW 

SiO2 (%) 13,4 14,4 ± 0,1 52,4 54 ± 0,1 65,2 64,8 46,7 42,4 ± 0,7 34,6
31,3 ± 

0,0
Al2O3 (%) 12,1 12,0 ± 0,2 13,6 15,6 ± 0,1 15,9 15,5 11,4 10,6 ± 0,2 10,8 7,7 ± 0,1
MgO (%) 1,3 1,4 ± 0,1 0,3 0,2 ± 0,0 0,9 1,1 0,7 0,9 ± 0,0 3,2 3,2 ± 0,0

CaO (%) 19,0 18,9 ± 0,2 3,2 3,1 ± 0,0 2,2 2,1 21,6 21,8 ± 0,1 19,2
19,7 ± 

0,0
Na2O (%) 1,1 0,8 ± 0,0 8,4 8,0 ± 0,2 3,2 2,8 2,3 1,7 ± 0,1 3,4 2,3 ± 0,2
K2O (%) 0,9 1,0 ± 0,1 5,5 5,8 ± 0,0 6,2 6,5 4,4 4,5 ± 0,1 0,8 0,9 ± 0,0

Fe2O3 (%) 27,1 23,3 ± 14,3 10,0 9,8 ± 0,2 3,9 3,9 2,8 3,0 ± 0,0 15,2
10,0 ± 

6,3
SO3 (%) k.A. 0,3 ± 0,0 k.A. 0,1 ± 0,0 0,1 0,1 3,1 3,2 ± 0,1 2,0 2,1 ± 0,0

Ba (PPM) 5000 5457 ± 191 450 415 ± 1 1100 1117 788 812 ± 13 5000
4552 ± 

14

Cl (PPM) k.A. 878 ± 42 1200
1230 ± 

110 k.A. k.A. 11000
10048 ± 

221 5600
7095 ± 

23
Cr (PPM) k.A. k.A. k.A. k.A. k.A. k.A. 1271 1277 ± 7 1000 1271 ± 7
Cu (PPM) k.A. k.A. k.A. k.A. k.A. k.A. 5006 4685 ± 13 9800 5541 ± 4
Ni (PPM) k.A. k.A. k.A. k.A. k.A. k.A. 1004 958 ± 6 330 319 ± 1

Pb (PPM) k.A. k.A. k.A. k.A. 140 150 5100 5123 ± 23 2700
2866 ± 

16
Sn (PPM) k.A. k.A. k.A. k.A. k.A. k.A. 1000 1080 ± 16 k.A. 202 ± 7
W (PPM) 10700 13057 ± 28 k.A. k.A. k.A. k.A. 1000 955 ± 13 k.A. k.A.
Zn (PPM) 207 227 ± 9 400 461 ± 9 676 767 10487 10407 ± 65 7000 9548 ± 7
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D-2: Röntgenpulverdiffraktometrie (XRD) 
Für die Phasenanalytik der Feststoffproben und Salzphasen standen drei Diffraktometer zur 

Verfügung. Die Tabelle D-2.1 gibt Auskunft über Meßparameter für die 

Röntgenpulveraufnahmen der drei Geräte:  

 
Tab.D-2.1: Geräte- und Messparameter für die Röntgenpulveraufnahmen 
 Siemens D 500 Philips PW 1720 STOE STADI P 

Institut Universität Salzburg/ 

Mineralogie 

Universität München/ Mineralogie 

Schrittweite [° 2Θ] 0,02 0,02 0,01 

Betriebsart step scan step scan continuous scan 

Zählzeit [s] 5 10 5 

Röhrenspannung [kV] 40 20 30 

Anodenstrom [mA] 45 30 40 

Röntgenstrahlung CuKα1,2 CuKα1,2 bzw. CoKα1,2 CuKα1,2 

Primärmonochromator Nein Nein Ja - Germanium 

Sekundärmonochromator Ja Ja Nein 

Bereich [° 2Θ] 5-75 5-65 5-65 

Software EVA ADM ADM 

 

Die Röntgenpulverdiffraktometrie gibt Auskunft über den kristallinen Aufbau der Bestandteile 

einer Probe. Die Spektrometer wurden vor den jeweiligen Messungen mit einem Si-Standard 

kalibriert. Die MV-Schlackeproben wurden mit einem Siemens D 500 bzw. einem Philips PW 

1720 analysiert. Der Sekundärmonochromator unterdrückt die Fluoreszenzstrahlung. 

Dadurch bietet sich die Möglichkeit zur Untersuchung von eisenhaltigen mineralischen 

Proben. Für die Schlackeproben haben sich daher die Diffraktometer mit 

Sekundärmonochromator angeboten. Bei den Messungen wurde darauf geachtet, dass für 

die Auswertung ausreichend hohe Impulsraten erzeugt wurden. Zum Teil wurden schlecht 

auskristallisierte Proben auch über einen langen Zeitraum bei kleinen Schrittweiten 

gemessen.  

Für die einzelnen Salzphasen wurde ein STOE Transmissions-Pulverdiffraktometer STADI P 

verwendet. Der Vorteil eines STOE-Transmissionsdiffraktometers ist, dass infolge des 

Primärmonochromators nur die CuKα1 – Strahlung durchgelassen wird. Dadurch wird die 

Auflösung für die einzelnen Reflexe besser. Sie bietet einen großen Vorteil für die 

Strukturanalyse. Die Aufnahme von mineralogischen Proben erschwert sich jedoch, da nur 

durch den Primärmonochromator keine Fluoreszenzstrahlung unterdrückt werden kann. Die 

Aufnahme von Fe-haltigen Proben ist daher unmöglich.  
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D-3: Lichtmikroskopie und Rasterelektronenmikroskopie 
Von den einzelnen Salzphasen wurden Aufnahmen mit Hilfe eines Lichtmikroskops (Firma 

Zeiss), ausgestattet mit einer Digitalkamera LEICA DFC 480 (Auflösung 2560x1920 Pixel), 

durchgeführt.  

Für die hochauflösenden Untersuchungen standen zwei Rasterelektronenmikroskope (REM) 

zur Verfügung.  

 
Tab.D-3.1: Geräte- und Messparameter für die rasterelektronenmikroskopischen Untersuchungen 
 Mikroskop I Mikroskop II 

Gerätename Leica 430 Stereoscan LEO 1450 VP (variable pressure) 

Institut Universität Salzburg/Geologie Forschungs- und 

Entwicklungszentrum für 

Sondertechnologien (FES), 

Schwabach 

Software Leo UIF (Mikroskop) 

EDWIN Win-Tools (EDX-

Analytik) 

Noran System SIX 

Vakuum Hochvakuum 10-5 Pa Niedrigvakuum 20 – 30 Pa 

Probenvorbereitung Besputtern mit C oder Au Keine 

Atmosphäre - N2 

Anregungsspannung  7, 15 oder 20 kV 15 oder 20 kV 

Probenstrom 200 pA 200 pA 

Arbeitsabstand 25 mm 24,8 mm 

Detektoren SE & EDX (SiLi) SE, VPSE, RBSD, EDX (SiLi) 

Vergrößerungsbereich 10 – 70.000 fach 30 – 30.000 fach 

 
Bei der Rasterelektronenmikroskopie (REM) müssen die Proben wasserfrei sein und 

elektrisch leitend. Eine sehr gute Leitfähigkeit erhält man durch das sogenannte „sputter-

coating“ mit Gold (für SE-Detektion). Eine Bedampfung mit Kohlenstoff ist für die 

Elementbestimmung vorteilhaft. Der Vorteil des LEO 1450 VP (variable pressure) ist, dass 

hier die Proben nicht vorbehandelt werden müssen. Durch die Messung im Niedrigvakuum in 

Kombination mit einer N2-Atmosphäre ist es nicht erforderlich, die Probe vorher leitfähig zu 

machen. 

Im Vergleich zur Lichtmikroskopie, wo die Wellenlängen des sichtbaren Lichtes ausgenützt 

werden, verwendet man in der Rasterelektronenmikroskopie (REM) die viel kürzeren 

Wellenlängen beschleunigter Elektronen als Energiequelle. Die beschleunigten Elektronen 

bieten ein hohes Auflösungsvermögen (bis max. 1 nm). Aufgrund der ausgezeichneten 

Tiefenschärfe ermöglicht diese Methode die Abbildung dreidimensionaler Strukturen. 
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Die Elektronen eines abrasternden und feingebündelten (primären) Strahls dringen in die 

Probe ein und treten dort in Wechselwirkung mit den Probenatomen. Die Wechselwirkungen 

erzeugen eine Vielzahl von Sekundärprodukten, wie Elektronen unterschiedlicher Energie 

(u.a. sekundäre Elektronen, rückgestreute Elektronen), Röntgenstrahlen, Wärme und Licht. 

Der SE-Detektor (Elektronenfänger) registriert die Sekundärelektronen, die zur Abbildung der 

Probenoberfläche verwendet werden. Die Absorption und das Austreten von 

Sekundärelektronen sind die wichtigsten Faktoren, die in der REM dazu beitragen, ein 

vorwiegend topographisches Bild zu erzeugen. Kleine Erhebungen auf der Probenoberfläche 

haben eine kürzere Weglänge als flache Bereiche, sodass mehrere Sekundärelektronen 

austreten können. Solche Bereiche erscheinen im Bild hell. 

Mit einem angeschlossenen EDX-Detektor, der energiedispersive Röntgenspektren 

aufnimmt, ist eine Analyse der Elementzusammensetzung möglich, indem 

elementspezifische Röntgenstrahlen detektiert werden, anhand deren Energie die 

betreffenden Elemente identifiziert werden können.  

 

D-4: Infrarotspektroskopie 
Die Salzphasen wurden mit einem EQUINOX 55 Hochleistungs- FT-IR-Spektrometer von 

Bruker analysiert. Die Tabelle D-4.1 liefert detaillierte Informationen zum Gerät:  

 
Tab.D-4.1: Messparameter für die Infrarotspektroskopie 
Gerätename Bruker EQUINOX 55 

Institut Sektion Mineralogie, LMU München 

Software OPUS 

Infrarotbereich Mittleres Infrarot (MIR) Fernes Infrarot (FIR) 

Probenträgermaterial KBr PE-Pulver 

Frequenzbereich  400 – 4000 cm-1 75 – 550 cm-1 

Messung Transmission od. Absorption Transmission od. Absorption 

Strahlenquelle Globar Globar 

Strahlenteiler KBr Mylar, 6 µm 

Detektor dTGS* dTGS/PE 

Art der Detektion Wärmestrahlung Wärmenstrahlung 

Spiegelgeschwindigkeit 6; 10 kHz 6; 10 kHz 

Anzahl der Scans 32 32 

Auflösung 4 cm-1 4 cm-1 
* Pyroelektrische Detektoren aus deuteriertem Triglycinsulfat 
 

Die Infrarotspektroskopie als zusätzliche Methode wurde angewendet, da hier bereits wenige 

Milligramm Probe ausreichen, um eine Analyse durchführen zu können. Neben Aufnahmen 
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im mittleren Infrarot-Bereich (400 – 4000 cm-1) wurden auch Aufnahmen im fernen 

Infrarotbereich durchgeführt (550 – 75 cm-1). Diese Auswertungen sind jedoch weniger 

aufschlussreich als die MIR-Aufnahmen. Aus diesem Grund werden in dieser Arbeit 

ausschließlich MIR-Spektren diskutiert. Spektren bekannter Mineralphasen im 

Ausgangsmaterial oder in den Bohrproben aus dem Bauabschnitt BA 1 der Monodeponie 

Waldering, die bereits mit Pulverdiffraktometrie identifiziert wurden, anorganischer Salze aus 

dem Labor, sowie bekannter und beschriebener Proben der Mineralogischen 

Staatssammlung München und publizierte Spektren in der entsprechenden Literatur (Siebert, 

1966; Nakamoto, 1986; Suhner, 1986; Nyquist & Kagel, 1997) wurden als Vergleichsbasis 

herangezogen.  

 

Gerätebesonderheiten: 

Das Bruker Equinox 55 ist ein Zweistrahlgerät. Dabei wird die Strahlung der Quelle mit Hilfe 

eines Strahlenteilers (vgl. Tab. D-4) in zwei Strahlen aufgeteilt. Eine Hälfte (Messstrahl) 

gelangt auf einen festen Spiegel und die zweite Hälfte (Referenzstrahl) auf einen 

beweglichen Spiegel. Den Strahlenteiler und die beiden Spiegel nennt man Interferometer 

(Michelson-Interferometer). Am Strahlenteiler werden die Strahlen wieder zusammengeführt 

und sie überlagern sich dort. Je nach der Position des beweglichen Spiegels und in 

Abhängigkeit von den im Strahl enthaltenen Frequenzen kommt es im Detektor zu 

konstruktiver oder destruktiver Interferenz. So erhält man ein sogenanntes Interferogramm, 

mit einem großen Maximum dort, wo beide Spiegel gleich weit vom Strahlenteiler entfernt 

sind und somit alle Frequenzen additiv interferiert haben, und relativ flachen Ausläufern. 

Über Fourier-Transformation (math. Rechenoperation) werden aus den mit Hilfe eines 

Interferometers gemessenen Interferogrammen IR-Spektren berechnet.  

 

Probenvorbereitung: 

Für die Infrarotspektroskopie reicht eine Probenmenge von max. drei Milligramm. Die Proben 

wurden zuvor im Trockenschrank bei 40° C bis zur Gewichtskonstanz getrocknet. Die 

trockene Probe wurde fein gemahlen. Für die Aufnahmen im MIR wurden genau drei 

Milligramm der Probe mit 200 Milligramm KBr (Kaliumbromid) kurz vermengt, damit eine 

homogene Verteilung der Probe im Trägermaterial zustande kommen kann. Für den MIR-

Bereich bietet sich neben KBr auch NaCl an, da beide Mineralsalze oberhalb von ca.  400 

cm-1 durchlässig sind. Somit kann die Streuung auf ein Minimum reduziert werden. Unter 

hohem Druck wird das Trägermaterial mit der Probe zähflüssig und kann zu einer 

durchscheinenden Scheibe verpresst werden. Mit Hilfe einer Halterung wird diese direkt in 

den Infrarotstrahl eingebracht. Für die Messungen im fernen Infrarot (FIR) wurde als 

Trägermaterial Polyethylenpulver („Uvasol“) verwendet, da dieses Material ab 75 cm-1 
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transparent ist. Bei der Probenvorbereitung wurde darauf geachtet, dass drei Milligramm der 

Probe mit exakt 50 Milligramm Uvasol vermengt wurden.  

 
Tab. D-5.1: Typische Bandenverteilung wichtiger Mineralklassen, Kristallwasser, Aquo- und Hydroxokomplexe 
 

  Intensität und Bandenlage cm-1 
  Sehr stark Stark Mittel Schwach Variabel 

Karbonate 1530 - 1320 1410 - 1450
1160

890 - 800 1100 - 1020 745 - 670

Sulfate 1130 - 1080  
1200 - 1140

680 - 580
1065 - 955 

530 - 405  
Silikate 1100 - 900      

Chloride       
610 - 220
200 - 100

Oxide       1020 - 970

Kristallwasser    
3600 - 3200
1630 - 1600 600 - 300  

CO2 2349/1337/667      

Aquo-Komplexe    
3550 - 3200
1200 - 600

1630 - 1600 
600 - 300  

Hydroxo-
Komplexe 
Me – OH    

3760 - 3000
1200 - 700   900 - 300
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E. Untersuchungsmethoden Eluate und Sickerwässer 
Die Eluate und Sickerwässer wurden neben den Parametern pH-Wert und Leitfähigkeit auch 

auf ihre Kationen- und Anionenkonzentrationen untersucht: die Kationenkonzentrationen 

mittels ICP-OES und die Anionenkonzentrationen mittels Ionenchromatographie (IC).  

 

E-1: Induktiv gekoppeltes Plasma mit Atom-Emissionsspektrometer (ICP-OES) 
 
Tab.E-1.1: Messparameter für die optische Emissionsspektroskopie (OES) 
Gerätename Varian Vista CCD Simultaneous ICP-OES 

Institut Forschungs- und Entwicklungszentrum für 
Sondertechnologien (FES), Schwabach 

Software VISTA 

Schlauchmaterial Teflon, dadurch kein Memory-Effekt 

Kühlung Peltier – Element bei -35° C 

Zerstäuber Sea-Spray 

Argonfluss 18 Liter/Minute 

 

Die ICP-OES, optische Emissionsspektroskopie mit induktiv gekoppeltem Plasma, zählt zu 

den Multielementmethoden, d.h. dass zahlreiche Elemente simultan analysiert werden 

können. Als energiereiche Anregungsquelle, um nahezu alle Elemente anregen zu können, 

dient ein Argon-Plasma. Ein Plasma ist ein bei hohen Temperaturen ionisiertes Gas aus 

Atomen, Ionen und Elektronen. Die Ionisation des Gases wird beim ICP durch die 

Einkopplung induktiver, elektrischer Energie in einen Argongasstrom erreicht. Die 

Temperatur im Plasmakern beträgt 6000 – 8000°C. Simultane Spektrometer verfügen über 

einen Polychromator, wobei für jede Emissionslinie jeweils ein Detektor vorhanden sein 

muss. Die freigesetzte Strahlung enthält Informationen über Anzahl und Art der Atome im 

Plasma (beteiligte Energieniveaus), sodass die qualitative Analyse durch Messung der 

Wellenlänge der emittierten Strahlung und eine quantitative Analyse durch Messung der 

Intensität dieser Strahlung ermöglicht wird. Das Verfahren muss durch Messung von 

Bezugslösungen bekannter Konzentrationen kalibriert werden.  

Die Tabelle E-1.2 zeigt eine Übersicht über die gemessenen Elemente und die 

dazugehörigen Bestimmungsgrenzen. Die angegebenen Bestimmungsgrenzen stehen 

gleichzeitig für den analytischen Fehler des Instruments. Bei der Darstellung der 

Messergebnisse in den einzelnen Diagrammen ist der analytische Fehler kleiner als die 

eingetragenen Symbole.  

Bei der Analytik treten geringere Matrixeffekte auf, wobei beachtet wurde, dass bei sehr 

salzreicher Matrix die Proben stark verdünnt wurden. Je nach Salzgehalt, die Messbereiche 

wurden zuvor mit einem Cl-Schnelltest von Merck eingegrenzt, wurde die Ausgangsprobe 
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um den Faktor 10, 100 oder 1000 verdünnt. Durch die Verdünnung erhöhen sich 

dementsprechend auch die Bestimmungsgrenzen.  

Die Zeitversuche haben gezeigt, dass trotz heterogener Zusammensetzung der Schlacke die 

Ergebnisse sehr gut reproduzierbar sind. 

 
Tab. E-1.2: Übersicht über die Bestimmungsgrenzen (BG) der einzelnen Elemente bei unverdünnten Proben. 

Musste eine Probe aufgrund zu hoher Salzgehalte verdünnt werden, erhöhen sich die 
Bestimmungsgrenzen um den Verdünnungsfaktor. 

Parameter Bestimmungsgrenze  DIN-Norm 
Cl 1 mg/l DIN EN ISO 10304-2 
SO4 1 mg/l DIN EN ISO 10304-2 
Al 0,002 mg/l DIN EN ISO 11885 
Ba 0,001 mg/l DIN EN ISO 11885 
Ca 0,007 mg/l DIN EN ISO 11885 
Cr 0,001 mg/l DIN EN ISO 11885 
Cu 0,001 mg/l DIN EN ISO 11885 
Fe 0,003 mg/l DIN EN ISO 11885 
K 0,005 mg/l DIN EN ISO 11885 
Mg 0,002 mg/l DIN EN ISO 11885 
Mo 0,002 mg/l DIN EN ISO 11885 
Na 0,01 mg/l DIN EN ISO 11885 
Ni 0,001 mg/l DIN EN ISO 11885 
Pb 0,008 mg/l DIN EN ISO 11885 
Si 0,003 mg/l DIN EN ISO 11885 
Sr 0,001 mg/l DIN EN ISO 11885 
V 0,001 mg/l DIN EN ISO 11885 
W 0,04 mg/l DIN EN ISO 11885 
Zn 0,002 mg/l DIN EN ISO 11885 

 
E-2: Ionenchromatographie 
Sämtliche Sickerwasser- und Eluatproben wurden mittels eines „Dionex ICS 1000“ 

Ionenchromatographen untersucht. Die Analyse beruht auf dem Prinzip, dass Anionen 

zwischen einer mobilen und einer stationären Phase unterschiedlich verteilt werden, d.h. die 

Trennung erfolgt aufgrund der unterschiedlichen Affinität zur stationären Phase.  

Hier verfügen die stationären Phasen über geladene Endgruppen - organische Polymere  

(ø 5-10 µm). Die in der mobilen Phase (Eluent) vorhandenen Analytionen der Probe treten 

mit den Endgruppen in Wechselwirkung. Im Eluenten-Reservoir befindet sich die mobile 

Phase Na2CO3. Die Hochdruck-Pumpe fördert den Eluenten mit der vorgewählten Flussrate 

(1 mL/min). Bevor die zu analysierende Probe der mobilen Phase injiziert wird, wird das 

System mit Standardlösungen kalibriert. Danach werden über den Injektor 25 µl der zu 

analysierenden Probe der mobilen Phase hinzugefügt. Während die mobile Phase mit der 

Probe durch die  Trennsäule (IonPac AS9-HC) gepumpt wird, wird die Probe infolge 
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Ionenaustausches in die einzelnen Analyten aufgegliedert. Die Probenionen wandern 

abhängig von der Wechselwirkung unterschiedlich schnell durch die Trennsäule. 

Ein nachgeschalteter Suppressor enthält einen stark sauren Kationenaustauscher 

(Austauscherharz – SO3H), der mit Protonen beladen ist. Dadurch wird die Leitfähigkeit des 

Eluenten weitgehend beseitigt, so dass die elektrische Leitfähigkeit der getrennten Ionen im 

nachfolgenden Detektor mit großer Empfindlichkeit erfasst werden kann. Die Ionen werden 

anhand ihrer Retentionszeiten identifiziert und quantifiziert (Vergleich mit Standardlösung). 

 
Tab.E-2.1: Messparameter für die Ionenchromatographie 
Gerätename Dionex ICS 1000 

Institut Forschungs- und Entwicklungszentrum für 
Sondertechnologien (FES) Schwabach 

Software CHROMELEON 

Eluent 9 mmol/L Na2CO3 

Flußrate 1 mL/Minute 

Säulentemperatur 30° C  

Suppressortemperatur 35° C 

Detektor Leitfähigkeitsmeßzelle 

IonPac NG1 (Vorsäule Organik) 

IonPac AS 9 (Vorsäule) 

Säulen 

IonPac As9-HC (Trennsäule) 

 

F. Untersuchungsparameter 
 
F-1: Eluatzusammensetzung 
Elutionstests gemäß DIN EN 12457-4 wurden zur Beurteilung der Auslaugbarkeit der 

Materialien durchgeführt. Die Konzentrationen leichtlöslicher Salze und Schwermetalle 

wurden für alle Feststoffproben bestimmt. Dabei wird bei einem Flüssigkeits- zu 

Feststoffverhältnis von 10:1 (Liquid/Solid; L/S=10) das unbehandelte Material 24 Stunden 

über Kopf mit demineralisiertem Wasser geschüttelt. Der Solidanteil errechnet sich aus dem 

prozentualen Trockenrückstand. Im Verlauf des Elutionsverfahrens stellt sich spontan ein 

pH-Wert von 10 bis 11 ein, der von der chemischen Zusammensetzung der MV-Schlacke 

(v.a. durch den Ca-Anteil) erzeugt wird. Hierdurch werden mit dem Testverfahren vor allem 

leichtlösliche Bestandteile erfasst. Die Schwermetalle (Cu, Pb, Zn) werden bei einem pH-

Wert von 10 nur geringfügig gelöst. Mittels Ionenchromatographie werden die Anionen- und 

mit ICP-OES die Kationenkonzentrationen im Eluat analysiert.  
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F-2: Wassergehalt und Glühverlust 
Im Rahmen dieses Vorhabens wurden von sämtlichen Feststoffproben aus den Säulen- und 

Feldversuchen der Wassergehalt (WG) bei 30°C und 105°C sowie der Glühverlust (GV) bei 

550°C und 1050°C aus der Originalsubstanz ermittelt (nach DIN EN 12880-S2a und DIN EN 

12879-S3a), um neben dem Porenwasser auch das Kristallwasser und chemisch 

gebundenes Wasser in den Schlacken zu erfassen. Der Wert des Glühverlusts liegt damit 

stets über dem Wassergehalt, der bei 105 °C ermittelt wurde. Die Trocknung erfolgt jeweils 

bis zur Gewichtskonstanz (3 bis 5 Tage).  

Der Glühverlust, der in der Abfallablagerungsverordnung (AbfAblV, 2001) aufgeführt ist, wird 

nicht aus der Originalsubstanz sondern aus dem Trockenrückstand bei 550 °C ermittelt. Er 

soll für die Deponieklasse I einen Wert von 3 Gew.-% und für die Deponieklasse II einen 

Wert von 5% nicht überschreiten und dient zur Abschätzung des Anteils organischer 

Inhaltsstoffe. Der Glühverlust im Sinne der AbfAblV entspricht der Differenz zwischen dem 

Glühverlust aus der Originalsubstanz bei 550°C und dem Wassergehalt aus der 

Originalsubstanz bei 105 °C. Zur Ermittlung der organischen Anteile in den Schlacken wurde 

der TOC aus dem Trockenrückstand, gemäß AbfAblV, bestimmt.  

 

F-3: Korngrößenverteilung 
Zur Bestimmung der Korngrößenverteilung wurden getrocknete Proben in Anlehnung an die 

DIN 18123 (1983) gesiebt. Folgende Siebweiten wurden für die detaillierten Untersuchungen 

verwendet: 0,080 mm, 0,125 mm, 0,250 mm, 0,500 mm, 1mm, 4 mm und 16 mm. Für die 

Überblicksuntersuchungen wurden die Maschenweiten 0,125 mm und 1 mm verwendet.  
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GRAPHISCHER ANHANG 
 

A Feststoffanalytik (RFA) der Bohrkernproben auf der Deponie 

Waldering, Bauabschnitt 1 
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Abb.A-1: Feststoffgehalte an Na2O (Gew.- %) der 
Gesamtfraktion von ausgewählten 
Proben aus BA 1 

Abb.A-2: Feststoffgehalte an CaO (Gew.- %) der 
Gesamtfraktion von ausgewählten Proben 
aus BA 1 
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Abb.A-3: Feststoffgehalte an SO3 (Gew.- %) der 
Gesamtfraktion von ausgewählten 
Proben aus BA 1 

Abb.A-4: Feststoffgehalte an K2O (Gew.- %) der 
Gesamtfraktion von ausgewählten Proben 
aus BA 1 
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Abb.A-5: Feststoffgehalte an Cl (ppm) der 
Gesamtfraktion von ausgewählten 
Proben aus BA 1 

Abb.A-6: Feststoffgehalte an Cu (ppm) der 
Gesamtfraktion von ausgewählten Proben 
aus BA 1 
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Abb.A-7: Feststoffgehalte an Pb (ppm) der 
Gesamtfraktion von ausgewählten 
Proben aus BA 1 

Abb.A-8: Feststoffgehalte an Zn (ppm) der 
Gesamtfraktion von ausgewählten Proben 
aus BA 1 
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B Eluate von Bohrkernproben auf der Deponie Waldering, 

Bauabschnitt 1 
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Abb.B-1: Änderung der Leitfähigkeit (mS/cm) in 
Abh. von der Bohrtiefe, Salzhorizont in 
7m Tiefe 

Abb.B-2: Änderung der Eluatkonzentration von Cl 
(g/L) in Abh. von der Bohrtiefe, 
Salzhorizont in 7m Tiefe 
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Abb.B-3: Änderung der Eluatkonzentration von 
SO4 (mg/L) in Abh. von der Bohrtiefe, 
Salzhorizont in 7m Tiefe 

Abb.B-4: Änderung der Eluatkonzentration von Cu 
(µg/L) in Abh. von der Bohrtiefe, 
Salzhorizont in 7m Tiefe 
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Abb.B-5: Änderung der Eluatkonzentration von Ni 
(µg/L) in Abh. von der Bohrtiefe, 
Salzhorizont in 7m Tiefe 

Abb.B-6: Änderung der Eluatkonzentration von Pb 
(mg/L) in Abh. von der Bohrtiefe, 
Salzhorizont in 7m Tiefe 
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Abb.B-7: Änderung der Eluatkonzentration von Zn 
(mg/L) in Abh. von der Bohrtiefe, 
Salzhorizont in 7m Tiefe 

Abb.B-8: Änderung der Eluatkonzentration von As 
(µg/L) in Abh. von der Bohrtiefe, 
Salzhorizont in 7m Tiefe 

16

14

12

10

8

6

4

2

0

10 15 20 25 30 35 40 45 50

BA I

 

 

Wassergehalt Gew.-% (60° C)

Ti
ef

e,
 m

 Schlacke
 RGR

16

14

12

10

8

6

4

2

0

35 40 45 50 55 60 65 70 75

BA I

 

 

Porosität %

Ti
ef

e,
 m

 RGR

Abb.B-9: Änderung des Wassergehalts (Gew.-%) 
(bestimmt bei 60° C) in Abh. von der 
Bohrtiefe, Salzhorizont in 7m Tiefe 

Abb.B-10: Änderung der Porosität (%) in Abh. von 
der Bohrtiefe, Salzhorizont in 7m Tiefe 
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C Frachtenberechnungen zu den Feldversuchen 
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Abb.C-1: Proz. Ab-/Anreicherung von Cl bezogen 
zum Gesamtgehalt, Vergleich der 
unterschiedlichen Feldversuche 

Abb.C-2: Proz. Ab-/Anreicherung von SO4 bezogen 
zum Gesamtgehalt, Vergleich der 
unterschiedlichen Feldversuche 
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zum Gesamtgehalt, Vergleich der 
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Abb.C-4: Proz. Ab-/Anreicherung von Na bezogen 
zum Gesamtgehalt, Vergleich der 
unterschiedlichen Feldversuche 
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Abb.C-6: Proz. Ab-/Anreicherung von Pb bezogen 
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D Frachtenberechnung zu den Säulenversuchen der VA-A und VA-B 
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Abb.D-1a: Proz. Abreicherung von Cl bezogen zum 
Gesamtgehalt, Vergleich der 
Säulenversuche aus VA-A und VA-C 

Abb.D-1b: Proz. Ab-/Anreicherung von Cl bezogen 
zum Gesamtgehalt, Vergleich der Säulen-
versuche aus VA-B 
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Abb.D-2a: Proz. Ab-/Anreicherung von SO4 
bezogen zum Gesamtgehalt, Vergleich 
der Säulenversuche aus VA-A und VA-C 

Abb.D-2b: Proz. Ab-/Anreicherung von SO4 bezogen 
zum Gesamtgehalt, Vergleich der 
Säulenversuche aus VA-B 
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Abb.D-3a: Proz. Ab-/Anreicherung von Ca bezogen 
zum Gesamtgehalt, Vergleich der 
Säulenversuche aus VA-A und VA-C 

Abb.D-3b: Proz. Ab-/Anreicherung von Ca bezogen 
zum Gesamtgehalt, Vergleich der 
Säulenversuche aus VA-B 
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Abb.D-4a: Proz. Abreicherung von Na bezogen zum 
Gesamtgehalt, Vergleich der 
Säulenversuche aus VA-A und VA-C 

Abb.D-4b: Proz. Ab-/Anreicherung von Na bezogen 
zum Gesamtgehalt, Vergleich der 
Säulenversuche aus VA-B 
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Abb.D-5a: Proz. Ab-/Anreicherung von Zn bezogen 
zum Gesamtgehalt, Vergleich der 
Säulenversuche aus VA-A und VA-C 

Abb.D-5b: Proz. Ab-/Anreicherung von Zn bezogen 
zum Gesamtgehalt, Vergleich der 
Säulenversuche aus VA-B 
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Abb.D-6a: Proz. Ab-/Anreicherung von Pb bezogen 
zum Gesamtgehalt, Vergleich der 
Säulenversuche aus VA-A und VA-C 

Abb.D-6b: Proz. Ab-/Anreicherung von Pb bezogen 
zum Gesamtgehalt, Vergleich der 
Säulenversuche aus VA-B 
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Abb.D-7a: Proz. Abreicherung von Cu bezogen zum 
Gesamtgehalt, Vergleich der 
Säulenversuche aus VA-A und VA-C 

Abb.D-7b: Proz. Ab-/Anreicherung von Cu bezogen 
zum Gesamtgehalt, Vergleich der 
Säulenversuche aus VA-B 

-14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

VA-A
LW

 ohne Sperre
 mit Sperre

MSW
 ohne Sperre kurz
 ohne Sperre mittel
 ohne Sperre lang
 mit Sperre kurz
 mit Sperre mittel
 mit Sperre lang

VA-C
 ohne Sperre
 mit Sperre

 

 

proz. Abreicherung von Mo 
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Abb.D-8a: Proz. Abreicherung von Mo bezogen 
zum Gesamtgehalt, Vergleich der 
Säulenversuche aus VA-A und VA-C 

Abb.D-8b: Proz. Abreicherung von Mo bezogen zum 
Gesamtgehalt, Vergleich der 
Säulenversuche aus VA-B 
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Mineralogischer Anhang 
 

A Mineralphasen in Rückständen aus der Müllverbrennung 
 

1. Mineralname: Quarz 
2. Chemische Formel: SiO2 
3. Kristallsystem: trigonal; Hochquarz - über 573° C gebildet - hexagonal   
4. Morphologie: Pseudomorphosen der trigonalen nach der hexagonalen Modifikation; 

radialstrahlig, stengelig, körnig, derb, oft Zwillingsbildungen 
5. Farbe und Glanz: farblos und mannigfaltig gefärbt; Glasglanz bis Fettglanz 
6. Natürliches Vorkommen: In hydrothermalen Gängen, als Bestandteil von Graniten, Pegmatiten, 

Quarzporphyren und Gneisen, als Gangart in Erzgängen, auf alpinen 
Klüften, in Sedimentgesteinen und Böden 

7. Paragenese: Calcit, Feldspat, Fluorit, Erze, Granat und viele andere 
8. Röntgenstrukturanalyse: 3.342 (100), 4.257 (22), 1.8179 (14), 1.5418 (9), 2.457 (8), 2.282 (8), 

1.3718 (8); synthetisch 
 
 
1. Mineralname: Calcit 
2. Chemische Formel: CaCO3 
3. Kristallsystem: trigonal 
4. Morphologie: als Skalenoeder, Rhomboeder und Prisma mit Basis, prismatisch; 

linsenförmig, nadelig, tafelig, oft auch strahlig, kugelig, nierig, spätig, 
derb 

5. Farbe und Glanz: farblos, weiß, gelb, braun, durch Fremdbeimengungen vielfältig gefärbt; 
Glasglanz 

6. Natürliches Vorkommen: sehr häufiges gesteinsbildendes Mineral, in Kalkstein, Marmor, Kreide, 
als Gangart von vielen hydrothermalen Gängen, in Drusen von 
Erzgängen, in Blasenhohlräumen von vulkanischen Gesteinen 

7. Paragenese: Dolomit, Quarz, Erzminerale, uvm. 
8. Röntgenstrukturanalyse: 3.035 (100), 2.285 (18), 2.095 (18), 1.913 (17), 1.875 (17), 2.495 (14), 

3.86 (12); synthetisch 
 
 
1. Mineralname: Portlandit 
2. Chemische Formel: Ca(OH)2 
3. Kristallsystem: trigonal 
4. Morphologie: tafelig, faserig, derb 
5. Farbe und Glanz: farblos, weiß bis grünlich; Perlmuttglanz 
6. Natürliches Vorkommen: als Alterationsprodukt von Ca-Silikaten, in Fumarolen, als 

Fällungsprodukt alkalischer Quellen aus ultramafischen Gesteinen 
7. Paragenese: Afwillit, Calcit, Larnit, Spurrit, Halit, Hydrocalumit, Ettringit 
8. Röntgenstrukturanalyse: 2.628 (100), 4.90 (74), 1.927 (42), 1.796 (36), 3.112 (23), 1.687 (21), 

1.484 (13); synthetisch 
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1. Mineralname: Gips 
2. Chemische Formel: CaSO4·2H2O 
3. Kristallsystem: monoklin 
4. Morphologie: prismatisch; tafelig, auch linsenförmig, nadelig, faserig, schuppig, derb, 

körnig, rosettenförmig, oft Zwillinge mit einspringenden Winkeln 
5. Farbe und Glanz: farblos, weiß, durch Beimengungen auch alle anderen Farben möglich, 

durchsichtig bis undurchsichtig; Perlmuttglanz 
6. Natürliches Vorkommen: Sedimentgestein, auch teilweise als marine Salzablagerung, in Böden 

unmittelbar aus Evaporation entstanden oder am häufigsten durch die 
Hydratation von Anhydrit an der Erdoberfläche; in Oxidationszonen von 
Erzlagerstätten durch chemische Reaktionen zwischen Schwefelsäure 
und Karbonatgestein oder schwefelhaltiger vulkanischer Gase mit Ca-
reichem Gestein; hydrothermal ziemlich selten  

7. Paragenese: Durch Übersättigung in Paragenese mit Karbonaten (Calcit, Aragonit,…) 
und Salze (Halit), Anhydrit, 

8. Röntgenstrukturanalyse: 7.63 (100), 4.283 (100), 3.065 (75), 2.873 (45),  2.865 (35), 2.086 (25),
3.799 (17); synthetisch  

 

 

1. Mineralname: Anhydrit 
2. Chemische Formel: CaSO4 
3. Kristallsystem: orthorhombisch  
4. Morphologie: prismatisch; tafelig, körnig, spätig, derb 
5. Farbe und Glanz: farblos, weiß,  grau, blau; Glasglanz 
6. Natürliches Vorkommen: wichtiger Bestandteil in Evaporiten (Salzlagerstätten), Sedimenten, auch 

durch Dehydratation von Gips, in hydrothermalen Gängen oder auf 
alpinen Klüften 

7. Paragenese: Gips, Halit, Sylvit, Polyhalit, Karbonate 
8. Röntgenstrukturanalyse: 3.499 (100), 2.849 (29), 2.3282 (20), 2.2090 (20),  1.8692 (16), 1.6483 

(15), 1.7500 (11); synthetisch  
 

 

1. Mineralname: Halit, Steinsalz 
2. Chemische Formel: NaCl 
3. Kristallsystem: kubisch 
4. Morphologie: als Würfel oder seltener Oktaeder; häufig aufgewachsen, derb, körnig, 

faserig, dicht 
5. Farbe und Glanz: farblos, weiß, rötlich, gelb, grau, blau; Glasglanz, durchsichtig bis 

undurchsichtig 
6. Natürliches Vorkommen: Häufig in Sedimentgesteinen (Evaporite), an Austrittsstellen vulkanischer 

Gase, als Ausblühungen an der Erdoberfläche (aride, semiaride Gebiete)
7. Paragenese: Sylvin, Polyhalit, Kieserit, Carnallit, Gips 
8. Röntgenstrukturanalyse: 2.821 (100), 1.994 (55), 1.628 (15), 3.258 (13), 1.261 (11), 1.1515 (7), 

1.410 (6); synthetisch 
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1. Mineralname: Sylvin 
2. Chemische Formel: KCl 
3. Kristallsystem: kubisch 
4. Morphologie: Würfel in Kombination mit Oktaeder; körnig, derb 
5. Farbe und Glanz: Farblos, weiß, gelblich, orange, bräunlich; Glasglanz 
6. Natürliches Vorkommen: In Sedimentbecken als mächtige Salzlagen mit Halit, an Austrittsstellen 

vulkanischer Gase, als Ausblühungen in Steppen 
7. Paragenese: Halit, Carnallit, Anhydrit 
8. Röntgenstrukturanalyse: 3.146 (100), 2.224 (59), 1.816 (23), 1.407 (20), 1.284 (13), 1.573 (8), 

1.0490 (6); synthetisch 
 

1. Mineralname: Ettringit 
2. Chemische Formel: Ca6Al2(SO4)3(OH)12·26H2O 
3. Kristallsystem: hexagonal 
4. Morphologie: prismatisch; nadelig, faserig 
5. Farbe und Glanz: farblos, weiß, gelb; Glasglanz 
6. Natürliches Vorkommen: in vulkanischen Gesteinen, in umgewandeltem Kalkstein durch 

magmatischen Kontakt oder in Xenolithen 
7. Paragenese: Portlandit, Afwillit, Hydrocalumit, Phillipsit 
8. Röntgenstrukturanalyse: 9.73 (100), 5.61 (80), 3.88 (50), 2.564 (45), 2.209 (45), 2.773 (40), 4.69 

(39); synthetisch 
 

1. Mineralname: Hydrocalumit 
2. Chemische Formel: Ca2Al(OH)6[Cl1-x(OH)x] 3H2O 
3. Kristallsystem: monoklin 
4. Morphologie: pseudohexagonal; tafelig, derb 
5. Farbe und Glanz: farblos bis hellgrün; Glasglanz, durchscheinend 
6. Natürliches Vorkommen: selten, hydrothermal in Skarn, in Xenolithen 
7. Paragenese: Portlandit, Afwillit, Ettringit, Hydrogrossular, Calcit 
8. Röntgenstrukturanalyse: 7.92 (vvs), 3.99 (vs), 2.87 (s), 2.46 (s), 1.657 (ms), 2.70 (m), 2.24 (m); 

Scawt Hill (Irland) 
 

1. Mineralname: Sodalith 
2. Chemische Formel: Na8[Cl2/(AlSiO4)6] 
3. Kristallsystem: kubisch 
4. Morphologie: als Rhombendodekaeder; derb, körnig,  
5. Farbe und Glanz: farblos, weiß, grau, gelblich, grünlich, hell bis dunkelblau, rötlich; 

Glasglanz bis Fettglanz 
6. Natürliches Vorkommen: in Syeniten, Basalten, Phonolithen, Tephriten, in vulkanischen 

Auswürflingen 
7. Paragenese: Nephelin, Hämatit, Augit, Hornblende, Cancrinit 
8. Röntgenstrukturanalyse: 3.63 (100), 6.30 (80), 2.10 (80),  2.57 (70), 2.38 (70), 1.569 (60), 1.480 

(60); Ice River Canada  
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1. Mineralname und   
    Mineralgruppe: 

Cancrinit,  
Cancrinit-Gruppe 

2. Chemische Formel: Na6Ca2[(CO3)/(AlSiO4)3]2 
3. Kristallsystem: hexagonal 
4. Morphologie: prismatisch; nadelig, kurzsäulig, körnig, derb 
5. Farbe und Glanz: farblos, weiß, hellblau, honiggelb, orange, rosa; Glasglanz bis 

Perlmuttglanz  
6. Natürliches Vorkommen: als Primärmineral in alkalischen magmatischen Gesteinen, in 

Nephelinsyeniten und vulkanischen Auswürflingen 
7. Paragenese: Nephelin, Sanidin, Sodalith 
8. Röntgenstrukturanalyse: 3.21 (100), 4.64 (90), 3.64 (70), 2.099 (70), 1.488 (50), 1.447 (50), 10.92 

(40); York River Bancroft Kanada 
 

 

1. Mineralname und   
    Mineralgruppe: 

Afghanit,  
Cancrinit-Gruppe 

2. Chemische Formel: (Na,Ca,K)8(Si,Al)12O24(SO4,Cl,CO3)3 H2O 
3. Kristallsystem: trigonal 
4. Morphologie: prismatisch-bipyramidal; säulig-spindelförmig, körnig, derb 
5. Farbe und Glanz: tintenblau, hellblau; Glasglanz 
6. Natürliches Vorkommen: in vulkanischen Gesteinen, kontaktmetasomatisch, in Na-reichen 

Marmoren 
7. Paragenese: Lasurit, Sodalith, Nephelin, Olivin, Calcit, Pyrit, Cancrinit 
8. Röntgenstrukturanalyse: 3.688 (100), 3.298 (100), 4.82 (80), 3.997 (60), 2.130 (60), 1.792 (60); 

Sar-e-Sang Afghanistan 
 

 

1. Mineralname und   
    Mineralgruppe: 

Kröhnkit, 
Kröhnkit-Gruppe 

2. Chemische Formel: Na2Cu(SO4)2 2H2O 
3. Kristallsystem: monoklin 

4. Morphologie: prismatisch; pseudooktaedrische Kristalle; massive Krusten, faserige 
oder körnige Aggregate 

5. Farbe und Glanz: hellblau, grünblau, grün; Glasglanz  
6. Natürliches Vorkommen: Sekundär in Oxidationszonen von Cu-Lagerstätten; in ariden 

Wüstengebieten  
7. Paragenese: Chalkanthit, Atacamit, Antlerit, Blödit 
8. Röntgenstrukturanalyse: 6.33 (100), 3.278 (90), 2.757 (90), 2.925 (80), 3.715 (60), 4.145 (40), 

3.099 (40), Chuquicamata Chile 
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1. Mineralname: Brianyoungit 
2. Chemische Formel: Zn3[(OH)4/(CO3,SO4)] 
3. Kristallsystem: orthorhombisch oder monoklin 
4. Morphologie: blättrig, rosettenförmig 
5. Farbe und Glanz: weiß; Glasglanz 
6. Natürliches Vorkommen: selten, in Erzlagerstätten entstanden nach Bildung der Primärerze als 

Sekundärmineral, in der Oxidationszone von Pb-Zn-Erzen, umgeben von 
Kalkstein 

7. Paragenese: Gips, Smithsonit, Pyrit, Goethit 
8. Röntgenstrukturanalyse: 15.44 (100), 7.88 (100), 2.714 (40), 1.565 (30b), 5.25 (20), 2.577 (20), 

3.397 (20); Brownley Hill Mine England 
 

1. Mineralname und   
    Mineralgruppe: 

Gehlenit,  
Melilith-Gruppe 

2. Chemische Formel: Ca2Al2SiO7 
3. Kristallsystem: tetragonal 
4. Morphologie: kurzprismatisch; dicktafelig, körnig, derb 
5. Farbe und Glanz: farblos, weiß, grau, gelb, braun; Glasglanz 
6. Natürliches Vorkommen: in Ca-reichen ultramafischen Vulkaniten und in kontaktmetamorphen 

Gesteinen 
7. Paragenese: Karbonate, Stilbit, Heulandit, Natrolith 
8. Röntgenstrukturanalyse: 2.848 (100), 1.818 (75), 1.921 (64), 3.066 ((43), 2.437 (38), 1.768 (36), 

2.738 (32); Crestmore Kalifornien 
 

1. Mineralname und   
    Mineralgruppe: 

Magnesioferrit,  
Spinell-Gruppe 

2. Chemische Formel: MgFe2O4 
3. Kristallsystem: kubisch 
4. Morphologie: oktaedrisch; körnig, derb 
5. Farbe und Glanz: Schwarz bis braun oder rot; metallischer Glanz 
6. Natürliches Vorkommen: in Fumarolen, in hochmetamorphen Gesteinen, als Begleitmineral in 

Kimberliten, Karbonatiten, alkalischen Gabbros 
7. Paragenese: Hämatit, Ti-Magnetit, Fe-reicher Diopsid 
8. Röntgenstrukturanalyse: 2.525 (100), 2.96 (40), 1.481 (35), 1.612 (30), 2.094 (25), 1.709 (14), 

1.090 (12); synthetisch 
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B Mineralphasen in den Ausgangsmaterialien (Schlacke A und B) 
 

 
Abb.B-1a: Weiße Salzphase der Schlacke A, 

Vergrößerung 10-fach 
Abb.B-1b: Weiße Salzphase aus der Schlacke A, 

Vergrößerung 9.380-fach 

  
Abb.B-2a: Türkise Salzphase der Schlacke A, 

Vergrößerung 25-fach 
Abb.B-2b: Türkise Salzphase aus der Schlacke A, 

Vergrößerung 2.100-fach 

 
Abb.B-3a: Türkise Salzphase der Schlacke B, 

Vergrößerung 25-fach 
Abb.B-3b: Türkise Salzphase aus der Schlacke B, 

Vergrößerung 1.600-fach 
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C Mineralphasen in Bohrproben aus BA 1 (Monodeponie Waldering) 
 

Weiße Salzphasen 

 
Abb.C-1a: Weiße Salzphase aus einer Bohrtiefe von 

5,5 m (BA 1-13), Vergrößerung 20-fach 
Abb.C-1b: Weiße Salzphase aus einer Bohrtiefe von 

5,5 m (BA 1-13), Vergrößerung 3.000-fach 

 
Abb.C-2a: Weiße Salzphase aus einer Bohrtiefe von 

6,5 m (BA 1-14), Vergrößerung 12,5-fach 
Abb.C-2b: Weiße Salzphase aus einer Bohrtiefe von 

6,5 m (BA 1-14), Vergrößerung 1.000-fach 

 
Abb.C-3a: Weiße Salzphase aus einer Bohrtiefe von 7 

m (BA 1-15) - Salzhorizont, Vergrößerung 
20-fach 

Abb.C-3b: Weiße Salzphase aus einer Bohrtiefe von 
7 m (BA 1-15) - Salzhorizont, 
Vergrößerung 1.000-fach 
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Abb.C-4a: Weiße Salzphase aus einer Bohrtiefe von 

8,5 m (BA 1-17), Vergrößerung 20-fach 
Abb.C-4b: Weiße Salzphase aus einer Bohrtiefe von 

8,5 m (BA 1-17), Vergrößerung 3.430-fach 

 

Beige Salzphase 
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Abb.D-5a: Beige Salzphase aus einer Bohrtiefe von 

5,5 m (BA 1-13), Vergrößerung 5.500-fach 
 

Abb.D-5b: Beige Salzphase aus einer Bohrtiefe von 

5,5 m (BA 1-13), IR-Spektrum 

 

Blaue und türkise Salzphasen 

 
Abb.C-6a: Blaue und türkise Salzphase aus einer 

Bohrtiefe von 5,5 m (BA 1-13), 
Vergrößerung 8-fach 

Abb.C-6b: Blaue Salzphase aus einer Bohrtiefe von 
5,5 m (BA 1-13), Vergrößerung 2.000-fach 
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Abb.C-7a: Türkise Salzphase aus einer Bohrtiefe von 
5,5 m (BA 1-13), Vergrößerung 1.500-fach 

Abb.C-7b: Blaue Salzphase aus einer Bohrtiefe von 
5,5 m (BA 1-13), IR-Spektrum 

 
Abb.C-8a: Blaue und türkise Salzphasen aus einer 

Bohrtiefe von 7 m (BA 1-15) – Salzhorizont, 
Vergrößerung 25-fach 

Abb.C-8b: Türkise Salzphase aus einer Bohrtiefe von 
7 m (BA 1-15), Vergrößerung 2.600-fach 

 
Abb.C-9a: Blaue und türkise Salzphasen aus einer 

Bohrtiefe von 8,5 m (BA 1-17), Vergrößerung 
20-fach 

Abb.C-9b: Blaue Salzphase aus einer Bohrtiefe von 
8,5 m (BA 1-17), Vergrößerung 3.430-fach 
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Abb.C-10a: Türkise Salzphase aus einer Bohrtiefe von 
8,5 m (BA 1-17), Vergrößerung 2.500-fach 

Abb.C-10b:Türkise Salzphase aus einer Bohrtiefe        
von 8,5 m (BA 1-17), IR-Spektrum 

 

Grüne Salzphasen 
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Abb.C-11a: Grüne Salzphase aus einer Bohrtiefe von 
8,5 m (BA 1-17), Vergrößerung 3.430-fach 

Abb.D-11b: Grüne Salzphase aus einer Bohrtiefe von  
8,5 m (BA 1-17), IR-Spektrum 
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