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Abstract  

The vertebrate hindlimb has frequently been used as a model for the study of 

mechanisms involved in the establishment of specific neuronal connections. To select 

a specific trajectory, motor neurons have to make a series of axon guidance decisions 

involving the evaluation of different guidance cues in the periphery. Earlier studies 

showed that the pathway taken by the lateral fraction of the lateral motor column 

(LMC(l)) axons into the dorsal limb requires the EphA4 receptor, which mediates 

repulsion to ventrally expressed ephrinA ligands. This study implicates glial-cell-

line-derived neurotrophic factor (GDNF) and its receptor, Ret, in the same axon 

guidance decision. In GDNF and Ret knockout mice, dorsally fated axons from the 

LMC(l) follow an aberrant ventral trajectory away from a GDNF-enriched dorsal 

territory, suggesting that the GDNF/Ret system provides an instructive signal for 

motor axon pathway selection. Conditional inactivation of Ret in the spinal cord 

leads to the same axon guidance phenotype, indicating a cell-autonomous function of 

Ret in motor neurons. This phenotype is enhanced in mutant mice lacking both Ret 

and EphA4 receptors, implying that signals from the two receptors cooperate to 

enforce the precision of the same binary choice in motor axon guidance. The idea of 

cooperation between Ret and EphA4 is supported by the observation that EphA4 and 

Ret receptors do not regulate the protein expression of each other. Moreover, 

preliminary experiments in transiently transfected cells have provided evidence for 

an activity-dependent interaction of the two receptors and an ability to 

phosphorylate each other. To study the sub-cellular localization in motor neurons 

and the behavior of their growth cones upon different stimuli, a culture system using 

explants or dissociated motor neurons was established.  

Because ephrinAs have reverse signaling properties, it has been suggested that 

axonal ephrinAs expressed on limb innervating motor axons are functionally 

uncoupled from EphAs and mediate attraction toward the EphA4-positive dorsal 

limb mesenchyme. To test this hypothesis, a conditional mutant of EphA4 was 

intercrossed with different Cre-lines to determine the contribution of EphA4 in the 
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dorsal hindlimb mesenchyme for the dorsal/ventral guidance decision of LMC(l) 

axons. These studies are currently in progress. 
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Abbreviations 

ACSF    artificial cerebrospinal fluid 
ACTB  β-actin (human Gen) 
ALS   amyotrophic lateral sclerosis 
Amp   ampicillin 
AP  alkaline phosphatase 
APS       Ammoniumpersulfate 
ARTN       Artemin 
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GC  growth cone 
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GFL       GDNF family ligand 
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Grb       growth-factor receptor-bound protein 
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IRES      internal ribosome entry site 
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JNK       Jun N-terminal kinase 
KD       kinase dead 
ko       knock out 
LB   Luria-Bertani  
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Lmxb1  LIM homeobox transcription factor 1, beta 
LMC      lateral motor column 
LMC(l)      lateral LMC 
LMC(m)      medial LMC 
lx  loxP 
M  Mol  
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MEN2A      multiple endocrine neoplasia type 2A 
MEN2B      multiple endocrine neoplasia type 2B 
MetOH      methanol 
min       minute 
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MN       motor neuron 
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Nes       Nestin 
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OD       optical density 
Olig2      oligodendrocyte lineage transcription factor 2 
O/N      over night 
P       postnatal day 
PAGE      polyacrylamide-gel-electrophoresis 
PBM      PDZ binding motif 
PBS       phosphate buffered saline 
PBST      PBS with Tween 
PCD      programmed cell death 
PCR      polymerase chain reaction 
PDZ      Psd95/DL/ZO1 
Pea 3      polyomavirus enhancer activator 3 
pen/strep     penicillin/streptomycin 
PFA       paraformaldehyde 
PGK  phosphoglycerat kinase 
PGT  PBS with gelatine and triton 
pH  potentium hydrogenii 
PI3-kinase     phosphatidylinositol 3-kinase 
PLAP      placental alkaline phosphatase 
PLCγ      Phospholipase γ 
PMN      progenitor motor neuron  
PNS       peripheral nervous system 
PN       peroneal nerve 
PSD-95      postsynaptic density protein 95 
PSPN      Persephin 
PVDF      polyvinylidene fluoride 
pY       phospho-tyrosine 
R       receptor 
RA       retinoic acid 
RALDH2  retinoic aldehyde dehydrogenase 2 
Ret       rearranged in transformation 
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1 Introduction 

Almost five hundred years ago, Leonardo da Vinci recognized that nerve fibers 

project throughout the body in a highly stereotyped manner. To establish this 

amazingly precise pattern, a tremendous amount (~1015) of specific neuronal 

connections is generated during development (Tessier-Lavigne and Goodman 1996). 

Thousands and thousands of neurons must selectively project to, and synapse with 

their appropriate targets, in order to perform coordinated movement and complex 

behavior (Landmesser 2001).  En route to their often distant synaptic targets, 

neuronal axons migrate in a stepwise manner performing multiple pathfinding 

decisions as they navigate through the embryonic environment (Schneider and 

Granato 2003). Studies using surgical displacement of motor neurons or muscle 

targets revealed the existence of specific guidance cues (reviewed by (Landmesser 

2001). To be able to sense and decipher these signals, growing axons are tipped with 

a specialized structure called a growth cone. Each growth cone is equipped with 

guidance receptors, which enable the axon to recognize a variety of cues presented 

by the environment and thereby find the correct target. Growth cone navigation is 

controlled by short- and long-range, attractive and repulsive cues. These guidance 

signals can be tethered to a cell surface or an extracellular matrix and thereby repel 

or attract axons in a contact-dependent manner. In contrast, diffusible signals can set 

up gradients and influence growth cones over long distances (Goodman 1996) 

(Figure 1). In the developing organism the distinction between long-range versus 

short-range is blurred and some signals can act as repulsive or attractive cues 

making it difficult to assign one molecule to a certain guidance mechanism 

(Goodman 1996; Dickson 2002). The establishment of topographically organized 

motor projections in the vertebrate hindlimb offers an easily manipulated model 

system, which can be used to better understand mechanisms involved in axon 

guidance decisions such as the interaction of different guidance cues. On the 

following pages I will give a brief introduction about motor
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neuron development. I will also introduce the GDNF/Ret and ephrin/Eph signaling 

systems and emphasize their importance in motor neurons and axon guidance. 

 

 

 

 

Figure 1   Axon guidance mechanisms 
Schematic representation of the four basic guidance mechanisms: contact-attraction, contact-
repulsion, chemoattraction and chemorepulsion. The growth cones of the two neurons are roughly 
directed by an opposing gradient of repulsive and attractive diffusible cues. Cells expressing repulsive 
or attractive guidance signals at their surface provide short-range cues giveing a more detailed path 

to grow on. Figure adapted from (Tessier-Lavigne and Goodman 1996). 
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1.1 Motor neurons 

1.1.1 The “birth” of motor neurons 

Early patterning events during neural tube closure establish the identity of neuronal 

progenitors in the spinal cord. In the dorsal spinal cord, bone morphogenic proteins (BMPs), 

which are secreted from the surface ectoderm and roof plate, control the specification of 

dorsal cell types such as neural crest cells or dorsal sensory interneurons (Lee and Jessell 

1999). In contrast, Sonic hedgehog (Shh), a glycoprotein secreted from the notochord and the 

floor plate, creates a gradient that is required to specify the pattern of ventral progenitor 

domains at the ventricular zone including the motor neuron progenitor domain (pMN) 

(Briscoe and Ericson 1999). In response to the concentration of Shh, a unique combination of 

transcription factors termed class I (repressed by Shh) and class II (induced by Shh) is 

expressed in each progenitor domain, specifying five different regions (Figure 2). In 

addition, cross-repressive interactions between neighboring class I and II transcription 

factors are believed to sharpen the boundaries of the different domains (Briscoe, Pierani et 

al. 2000). Transcription factors Nkx6.1 and Nkx6.2 are present in motor neuron progenitors 

and allow the expression of Olig2 by repressing other cell determinants. Olig2 in turn 

regulates the expression of transcription factors Ngn2 and Hb9, which are involved in motor 

neuron differentiation (Shirasaki and Pfaff 2002). The birth of motor neurons is determined 

as the exit from the cell cycle, which is dependent on the action of Olig2 and Ngn2 (Novitch, 

Wichterle et al. 2003). Although Hb9 is not required initially for the generation of motor 

neurons, it is indispensable for the progression of a normal program of motor neuron 

specification. In the absence of Hb9 function, cells produced as motor neurons upregulate 

V2 interneuron characteristics (Nornes and Carry 1978; Pfaff, Mendelsohn et al. 1996; Thaler, 

Harrison et al. 1999). Once the progenitor cells have become motor neurons, they start to 

migrate laterally towards their final positions in the ventral spinal cord. 
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Figure 2   The birth of motor neurons 
(A) The ventral spinal cord contains five progenitor domains (p0,p1,p2,pMN and p3) each giving rise 
to a certain type of interneurons (V0-V3) or motor neurons (MN), which migrate laterally to their 
stereotypic position. (B) A gradient of Shh leads to the differential expression of several transcription 
factors, which in turn determine the progenitor regions and the fate of their progeny. RP (roof plate), 
FP (floor plate), p (progenitor), MN (motor neuron), Shh (sonic hedgehog). Figure adapted from (Lee 
and Pfaff 2001). 

1.1.2 Motor neuron organization – colonization of the ventral spinal cord 

In vertebrates, each muscle fiber is contacted by a single motor neuron (MN), which can 

synapse with several muscle fibers (Kandel, 2000). Motor neurons innervating the same 

muscle are grouped together and form a MN pool. These pools are in turn organized in 

longitudinal columns in the ventral half of the spinal cord (Shirasaki and Pfaff 2002). 

Thereby, the anteroposterior and mediolateral position of a MN cell body correlates with the 

position of its target in the periphery forming a topographic neuronal map. Neurons within 

the medial motor column (MMC), which is present throughout the whole spinal cord, 

project to trunk muscles. In contrast, motor neurons innervating the limbs are located in the 

discontinuous lateral motor column (LMC), which is only present at limb levels (Lance-Jones 

and Landmesser 1981; Tsuchida, Ensini et al. 1994). Both MMC and LMC can each be further 

subdivided into a lateral and a medial part. While neurons of the medial MMC, which 

innervate axial muscles, are present throughout the whole rostro-caudal axis of the spinal 

cord, those of the lateral MMC are only found at thoracic levels projecting to  
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ventral body wall muscles (Figure 3A and B). Medial motor neurons within the LMC project 

to targets in the ventral limb, whereas cells located in the lateral fraction of the LMC only 

innervate the dorsal limb muscles (Figure 3A and C). A second column that is only present 

at thoracic levels connects with sympathetic ganglia and is termed the preganglionic motor 

column (PMC) (Figure 3A and B) (Landmesser 1978; Tsuchida, Ensini et al. 1994; Shirasaki 

and Pfaff 2002).  
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Figure 3   Organization of motor neurons in the spinal cord 
(A) Schematic drawing of a spinal cord open-book preparation. Motor neuron cell bodies are 
organized in longitudinal columns along the rostrocaudal and mediolateral axis. Cross sections at 
thoracic (B) and lumbar (C) levels indicate the target regions innervated by different motor columns. 
Axons from the discontinuous LMC(l) and LMC(m) project to dorsal (d) and ventral (v) limb 
mesenchyme, respectively. MMC(m) neurons innervate the dermomyotome (dm), while neurons of 
the MMC(l) form connections with body wall muscles (bw). The PMC projects to neurons of the 
sympathetic ganglia (sg). Figure adapted from (Shirasaki and Pfaff 2002). 
 

1.1.3 The LIM code and motor axon trajectories  

As mentioned earlier, motor neurons are born at the ventricular zone of the ventral spinal 

cord. At that time, their fate is determined by the combinatorial expression of several 

transcription factors specifying their motor neuron subtype identity. In 1994 Tsuchida et al. 

identified a family of chick LIM homeodomain (LIM-HD) transcription factors that are 

expressed in spinal motor neurons in a combinatorial and highly dynamic manner. The 

differential expression of the four members Isl1, Isl2, Lim1 and Lhx3 (Drosophila Lim3) - the 

Lim-code – defines subtypes of motor neurons that occupy different columns in the spinal 

cord and innervate distinct targets. Because future LMC(l) neurons are born after LMC(m) 

neurons, they have to travel through the population of previously born LMC(m) neurons, 

which express RALDH2 (Hollyday and Hamburger 1977). This enzyme converts vitamin A 

into retinoic acid and induces the expression of Lim1 in LMC(l) motor neurons while 

migrating through the LMC(m) population. At the same time, the expression of Isl1 is 

extinguished in LMC(l) neurons (Sockanathan and Jessell 1998). Thus, LMC(l) motor 

neurons express Isl2 and Lim1, while those in the LMC(m) express Isl1 and Isl2 (Figure 4A 

and D). Lim-HD transcription factors are thought to have key functions in activating axon 

guidance programs for specific pathway selection and target recognition (Shirasaki and Pfaff 

2002).  

Each spinal cord segment has a common exit point for the axons of all cell bodies within that 

segment – the ventral horn. A remarkable feature of axon pathfinding by motor neurons is 

that after leaving the spinal cord, they initially follow a common ventral trajectory around 

embryonic day 11 (~E11.0) before they diverge into subtype specific trajectories 

(Landmesser 1978; Tosney and Landmesser 1985). The unique combination of transcription 
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factors in each motor neuron subtype allows them to express a particular set of guidance 

receptors that enables them to decipher specific guidance cues present at exit points from the 

common pathway (Shirasaki and Pfaff 2002). In the vertebrate hindlimb, LMC axons from 

lumbar segments L3-5 share a common pathway (sciatic nerve) to the base of the limb 

(sciatic plexus). Here, axons from the lateral and medial fraction of the LMC diverge into a 

dorsal and a ventral branch termed peroneal and tibial nerve, respectively (~E11.5) (Figure 

4A). In Lim1 deficient mice, LMC(l) axons project into dorsal and ventral mesenchyme, 

randomizing dorsal/ventral-choice (Kania, Johnson et al. 2000) (Figure 4B). Mice deficient 

for another LIM-HD transcription factor, Lmx1b, which is expressed in dorsal hindlimb 

mesenchyme, have the phenotype of Lim1 knockout mice and in addition show a 

randomized dorsal/ventral–choice of LMC(m) axons (Riddle, Ensini et al. 1995; Kania, 

Johnson et al. 2000) (Figure 4C). In 2003, Kania et al. showed that LIM homeodomain 

proteins regulate the expression of the EphA4 receptor on LMC neurons and the level of 

ephrin-A protein along the dorsoventral axis of the limb mesenchyme.  

 

 

 

Figure 4   Mouse mutants and the Lim-code 
(D) The combinatorial expression of different LIM-HD transcription factors defines motor neuron 
subclasses (e.g. LMC(l) and LMC(m)) and is important for the establishment of intrinsic axon 
guidance programs specific for each subclass. (A) In the wildtype situation, LMC(l) neurons express 
Lim1 and project their axons into the dorsal region of the hindlimb. LMC(m) neurons express Isl1 and 
innervate the ventral hindlimb. (B) Absence of Lim1 randomizes the dorsal/ventral choice of LMC(l) 
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axons. (C) Embryos lacking Lmx1b expression show defects in the projection of LMC(l) and LMC(m) 
motor axons. Figure adapted from (Shirasaki and Pfaff 2002). 

 
However, the LIM-code by itself is insufficient to specify the entire range of motor neuron 

subtypes and does not alone distinguish the identity of motor pools. The clustering of motor 

neurons into pools occurs at the time when axons first invade their target muscles 

(Landmesser 1978). The allocation of neurons to specific motor pools can be revealed by the 

expression of members of the ETS gene family, notably Er81 and Pea3  (Lin, Saito et al. 1998; 

Livet, Sigrist et al. 2002). In the absence of Pea3 function, the axons of specific sets of motor 

neurons fail to branch appropriately within their target muscle, resulting in a marked defect 

in neuromuscular innervation. In addition, the cell bodies of Pea3-deficient motor neurons 

fail to cluster or to settle in their characteristic position in the LMC, suggesting that the 

peripherally regulated induction of ETS gene expression coordinates the terminal 

arborization and central positioning of specific sets of spinal motor neurons (Livet, Sigrist et 

al. 2002). 

 

1.1.4 Programmed cell death 

During normal development, large numbers of neurons in the central and peripheral 

nervous system (CNS and PNS) undergo naturally occurring cell death. About half of all 

spinal motor neurons die over a period of a few days in developing avian, rat and mouse 

embryos (Oppenheim, Houenou et al. 1995). In mice this period includes embryonic days 13-

18 with a peak at E14 (Lance-Jones 1982; Oppenheim 1986). According to the classical 

neurotrophin hypothesis, neuronal survival is regulated by limited access to target-derived 

neurotrophic substances (Giehl 2001). Neurons, generated in excess, must compete for a 

limited amount of neurotrophic factors, such as BDNF (brain-derived neurotrophic factor), 

GDNF (glial-cell-line-derived-neurotrophic factor) or NGF (nerve growth factor) produced 

by the target cells (Figure 5). In GDNF deficient mice, the loss of spinal motor neurons is 

increased, while in utero treatment with GDNF leads to increased survival rates 

(Oppenheim, Houenou et al. 2000). The trophic support of GDNF for spinal motor neurons 

is mediated by Ret, which was previously known as an orphan oncogenic receptor tyrosine 

kinase (Durbec, Marcos-Gutierrez et al. 1996).  



1 Introduction 

 19

 

 

Figure 5   Neurotrophin hypothesis 
(A) During development, neurons are produced in excess and compete with each other for target 
derived trophic support. (B) Limited amounts of neurotrophic factors leads to programmed cell death 
and to a marked reduction in the cell number. Figure adapted from (Reichardt). 

1.2 GDNF and Ret 

1.2.1 Receptor tyrosine kinase Ret and its signaling crew 

Ret (rearranged in transformation) is a member of the receptor tyrosine kinase family and was 

originally identified as a proto-oncogene (Takahashi, Ritz et al. 1985). The Ret receptor is 

composed of an extracellular domain, a transmembrane domain and an intracellular kinase 

domain, which is divided into two parts by a linker region (Iwamoto, Taniguchi et al. 1993). 

The extracellular part consists of a cadherin-related motif and a cystein-rich domain 

(Takahashi, Buma et al. 1989) (Figure 6). So far, three isoforms that are generated by 

alternative splicing in the 3` region have been cloned (Ishizaka, Itoh et al. 1989; Myers, Eng 

et al. 1995). The short and the long isoform contain 9 and 51 amino acids in the C-terminal 

tail, respectively, and are the best-characterized isoforms in vivo. The third isoform has 43 

amino acids. Monoisoformic Ret9 mice are viable and normal, whereas monoisoformic Ret51 

mice display kidney hypoplasia and lack enteric ganglia from the colon, suggesting that 
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these isoforms have different tissue-specific effects during development (de Graaff, Srinivas 

et al. 2001).  

 

 

Figure 6   Structure of the Ret receptor 
Schematic drawing of receptor tyrosine kinase Ret. The extracellular part is comprised of a cystein-
rich domain and a cadherin domain, which binds Ca2+. The cytoplasmic domain contains a tyrosine 
kinase domain, which is divided into two parts by a linker region. The short, medium and long 
isoforms have 9, 43 or 51 amino acids, respectively, and are generated by alternative splicing.  
 

Ret is the receptor for the members of the glial-cell-line-derived neurotrophic factor (GDNF) 

family of ligands (GFLs) (Baloh, Enomoto et al. 2000). This family includes GDNF, Neurturin 

(NTRN), Artemin (ARTN) and Persephin (PSPN), which are structurally related to 

transforming growth factor (TGF)-β and contain seven conserved, similarly spaced cystein 

residues (Takahashi 2001). GFLs signal through a unique multicomponent receptor complex 
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consisting of glycosyl-phosphatidylinositol (GPI) -anchored coreceptor (Gfrα1-4) as a ligand- 

binding component and Ret as a signaling component (Airaksinen, Titievsky et al. 1999).  

GDNF, NTRN, ARTN and PSPN use Gfrα1, Gfrα2, Gfrα3 and Gfrα4 as the preferred ligand-

binding receptors, respectively, although alternative ligand-coreceptor interactions are 

possible (Airaksinen, Titievsky et al. 1999; Sariola and Saarma 2003; Plaza-Menacho, 

Burzynski et al. 2006) (Figure 7).  
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Figure 7   Ret and its signaling crew 
Ret is the signaling receptor for ligands of the GDNF-family. GDNF, Neurturin (NTRN), Artemin 
(ARTN) and Persephin (PSPN) bind to the coreceptors Gfrα1, Gfrα2, Gfrα3 and Gfrα4, respectively, 
but alternative ligand-coreceptor interactions are possible. Figure adapted from (Airaksinen, Titievsky 
et al. 1999) 
 

A dimeric GDNF binds to Gfrα1 or 2 and this complex in turn interacts with Ret inducing 

homodimerization and subsequent auto-phosphorylation of its 12 tyrosine residues (Jing, 

Wen et al. 1996; Kawamoto, Takeda et al. 2004) (Figure 8).  
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Figure 8  GDNF/Gfrα1/Ret signaling complex 
A GDNF dimer binds to Gfrα1 or 2 and this complex in turn interacts with Ret inducing 
homodimerization and subsequent auto-phosphorylation of its 12 tyrosine residues (only 6 
phosphotyrosines are indicated with P on orange background). 

1.2.2. Expression pattern of Ret, Gfrα1 and GDNF 

During development, receptor tyrosine kinase Ret is present in the nervous and excretory 

systems of the mouse. While its expression is maintained during adulthood in CNS and 

PNS, it is down-regulated in the excretory system (Pachnis, Mankoo et al. 1993). Ret mRNA 

can be detected in peripheral enteric, parasympathetic, sympathetic and sensory neurons 

(Enomoto, Heuckeroth et al. 2000). In addition, Ret is found in central motor neurons, 

noradrenergic and dopaminergic neurons (Miyazaki, Asai et al. 1993; Trupp, Arenas et al. 

1996). In contrast to GDNF, which is mainly expressed in the target regions of Ret-positive 

neurons, Gfrαs are usually coexpressed with Ret (Trupp, Belluardo et al. 1997). However, 

Gfrα receptors are also present in neurons of the basal fore-brain, which lack Ret expression, 

suggesting a Ret-independent function possibly involving other transmembrane molecules 

(Trupp, Belluardo et al. 1997). Neural cell adhesion molecule (NCAM) has been shown to 

function as a signaling receptor for members of the GDNF ligand family in association with 

GFRα1 (Paratcha, Ledda et al. 2003). Conversely, there are also GDNF sensitive neurons, 

which express Ret but no Gfrα receptors. These neurons either use another co-receptor, or 

they can interact with soluble Gfrα receptor presented in trans (Trupp, Belluardo et al. 1997).  

1.2.3 Biological functions of GDNF and Ret 

As mentioned in the section on programmed cell death, GDNF, which was originally 

identified as a survival factor for embryonic dopaminergic neurons (Lin, Doherty et al. 

1993), promotes survival of Ret/Gfrα1-expressing motor neurons. Subsequently, GDNF has 

been shown to be a physiological survival signal and axon outgrowth promoting factor 

(Henderson, Phillips et al. 1994; Oppenheim, Houenou et al. 1995; Oppenheim, Houenou et 

al. 2000; Markus, Patel et al. 2002). Ectopic expression of GDNF in muscle of mouse models 

leads to local hyperinnervation (Nguyen, Parsadanian et al. 1998). In addition, GDNF was 

found to specify motor neuron identity by inducing expression of ETS transcription factor 
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Pea3, thereby modulating axon growth toward specific muscle targets (Haase, Dessaud et al. 

2002).  

Loss of Ret, GDNF or the coreceptor GFRα1 results in renal agenesis in mice, due to 

inhibition of ureteric bud growth and branching (Schuchardt, D'Agati et al. 1994; Treanor, 

Goodman et al. 1996). In the developing kidney, the ureteric bud diverticulum grows out of 

the nephric duct and invades a group of adjacent cells, the metanephric mesenchyme. This 

outgrowth is stimulated by GDNF, which is expressed in the mesenchyme and activates the 

Ret receptor tyrosine kinase on the ureteric bud epithelia through co-receptor GFRα1 (Kim 

and Dressler 2007). In cell culture, GDNF is a chemoattractant for Ret-expressing epithelial 

cells (Tang, Worley et al. 1998). Similarly, the GDNF/Ret pathway is required for migration 

of enteric neuron precursor cells into the gut, also through a chemotactic mechanism 

(Natarajan, Marcos-Gutierrez et al. 2002). Later, GDNF promotes proliferation and 

differentiation of these enteric precursor cells (Natarajan, Grigoriou et al. 1999). Thus, 

inactivating mutations of Ret, GDNF and Grfα1 result in the absence of innervation from 

enteric neurons below the stomach (Enomoto, Araki et al. 1998; Airaksinen, Titievsky et al. 

1999). In contrast, activating mutations of Ret are associated with multiple endocrine 

neoplasia type 2 (MEN2A and MEN2B) and several endocrine and neural-crest-derived 

tumors. In MEN2A, the replacement of a crucial cystein residue facilitates an inter-molecular 

instead of an intra-molecular disulfide bond resulting in a permanently dimerized, and thus 

activated, receptor. In MEN2B and familial medullary thyroid carcinoma (FMTC), patients 

have mutations located in the cytoplasmic part of Ret, resulting in altered catalytic activity 

and substrate specificity (Plaza-Menacho, Burzynski et al. 2006).  

1.3 Eph receptors and ephrin ligands 

Eph receptors constitute the largest family among receptor tyrosine kinases (RTKs) 

including 14 vertebrate members (1997; Orioli and Klein 1997). In contrast, there are only 

one Eph receptor and four ephrin ligands found in C.elegans, while Drosophila has a single 

Eph receptor and ephrin ligand (George, Simokat et al. 1998; Scully, McKeown et al. 1999). 

The family of Eph receptors has several unique features in comparison to other RTKs. First, 

Eph receptors and ephrin ligands are both membrane-bound and therefore cell-cell contact 

is required for receptor-ligand binding. Second, following activation upon binding, both Eph 
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receptors and ephrin ligands, can transduce signals into their host cells via forward and 

reverse signaling, respectively (Zimmer, Palmer et al. 2003; Poliakov, Cotrina et al. 2004). 

Third, Ephs and ephrins are able to form higher order clusters, which have been shown to be 

important for cellular responses (Stein, Lane et al. 1998; Egea, Nissen et al. 2005). In 

molecular terms, many of the signaling pathways that are downstream of Ephs and ephrins 

converge to regulate the cytoskeleton. The Rho family of small GTPases, including Cdc42, 

Rac and Rho, has a central role in the control of dynamic reorganization of the actin 

cytoskeleton (Hall and Nobes 2000). The activity of Rho family GTPases in turn is controlled 

by guanine nucleotide exchange factors (GEFs) that facilitate the exchange of GDP to GTP 

(Schmidt and Hall 2002). The ability of Eph receptors and ephrins to bind and/or activate 

such GEFs enables them to regulate the actin cytoskeleton in an extremely localized manner 

resulting in a directional response to attractive or repulsive cues (Noren and Pasquale 2004). 

Eph/ephrin modulation of Rho family GTPases in neuronal cells regulates growth cone 

dynamics, in which a shift of signaling towards RhoA results in growth cone retraction, 

while prevalence of Rac1 and Cdc42 activity stimulates neurite extension (Shamah, Lin et al. 

2001; Gallo, Yee et al. 2002; Gallo and Letourneau 2004).  

1.3.1 Eph receptor family 

Eph receptors are single-pass transmembrane molecules including a globular (ligand-

binding) domain, a cystein-rich domain and two fibronectin type-III motifs in the 

extracellular part. They can be grouped into two subclasses (A-type and B-type) on the basis 

of extracelluar domain homology (1997; Orioli and Klein 1997). The intracellular part is 

comprised of a juxtamembrane region, a kinase domain, a sterile-α-motif (SAM domain) and 

a PDZ-interaction motif at the very c-terminus (Kullander and Klein 2002) (Figure 9). The 

two latter ones appear to be involved in the dimerization and tetramerization of the receptor 

(Stapleton, Balan et al. 1999; Thanos, Goodwill et al. 1999). Interaction with ephrin ligands 

leads to auto-phosphorylation of the two juxtamembrane tyrosines, which induces the 

release of auto-inhibition ultimately resulting in “forward signaling” (Kalo and Pasquale 

1999; Himanen and Nikolov 2003).  
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Figure 9   Structure of Eph receptors 
The structure of the Eph receptor is shown in its inactive conformation on the left, with an auto-
inhibited kinase domain resulting from interaction with the juxtamembrane region. On the right side 
the Eph receptor structure is shown in its active conformation caused by oligomerisation with ephrin 
ligand (not depicted). The phosphorylated tyrosine residues are indicated with orange balls. SAM 
(sterile-α-motif), PDZ (PSD-95Disc large and ZO [Zona Occludens]-1/2) binding motif are also 
indicated. Figure adapted from (Himanen and Nikolov 2003). 

1.3.2 Ephrin ligands 

Eph receptor-binding proteins, the ephrins, are also classified into A-type or B-type 

depending on sequence conservation and their binding preferences to EphA and EphB 

receptors (1997; Orioli and Klein 1997). Typically, ephrinAs interact with EphA receptors 

and ephrinBs with EphB receptors. However, ephrinB2 and B3 can also bind to EphA4 and 

ephrinA5, which can bind to EphB2. Within each subclass binding is rather promiscuous 
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(Brambilla, Bruckner et al. 1996; Himanen and Nikolov 2003). The mammalian genome 

encodes five ephrinA and three ephrinB ligands. EphrinAs are linked to the membrane via a 

glycosylphosphatidylinositol (GPI) anchor, while ephrinBs contain a transmembrane 

domain and a short cytoplasmic tail, which includes a PDZ-binding motif and five highly 

conserved tyrosine residues (Bergemann, Zhang et al. 1998) (Figure 10). Although lacking an 

intrinsic kinase activity, ephrins can transduce signals via interactions with PDZ-binding 

proteins. Furthermore, ephrinBs become tyrosine phosphorylated upon EphB receptor 

binding (Holland, Gale et al. 1997; Bruckner and Klein 1998). Despite the absence of a 

cytoplasmic tail, ephrinAs have been shown to mediate integrin-dependent adhesion to 

laminin upon Eph receptor stimulation (Huai and Drescher 2001), presumably by recruiting 

other signaling molecules into microdomain complexes in rafts (Gauthier and Robbins 2003; 

Holmberg, Armulik et al. 2005). 

 

 

 

 

Figure 10  Structure of ephrin ligands 
EphrinAs are tethered to the membrane via a GPI anchor, while ephrinBs have a single 
transmembrane domain. Both ligands have a conserved extracellular Eph receptor binding domain. 
EphrinBs have a short cytoplasmic tail including a PDZ binding motif and five highly conserved 
tyrosine residues, which are phosphorylated upon interaction with Eph receptor (indicated as orange 
ball). 
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1.3.3 Roles of Ephs and ephrins in axon guidance 

Eph receptors and ephrin ligands are expressed in many tissues during development and 

adulthood in a sometimes overlapping, or sometimes reciprocal fashion and are therefore 

important for a vast array of different biological functions. Due to their membrane 

attachment, Ephs and ephrins are predestined for functions that require cell-cell contact such 

as tissue-border formation, cell migration, angiogenesis, segmentation or axon guidance 

(Wang and Anderson 1997; Zhang and Hughes 2006). The influence of Eph/ephrin 

activation on cell behavior depends on the cell-type, but can typically be attributed to 

repulsion, such as in preventing migrating cells or neuronal growth cones from crossing into 

ligand-expressing territory (Flanagan and Vanderhaeghen 1998; Wilkinson 2001). However, 

in a few cases, Eph/ephrin activation can lead to increased attraction or adhesion (Eberhart, 

Barr et al. 2004). While it is naturally easy to understand how membrane-bound molecules 

mediate adhesion between cells, disengagement of high affinity binding molecules such as 

Eph receptors and ephrin ligands, which is a prerequisite for repulsion, was puzzling until 

two mechanisms were discovered: (i) proteolytic cleavage of the ephrinA ectodomain by 

Kuzbanian metalloproteases, allowing the receptor expressing cell to retract (Hattori, 

Osterfield et al. 2000) and (ii) bi-directional endocytosis of the intact receptor-ligand-

complex into EphB or ephrinB-expressing cells (Zimmer, Palmer et al. 2003). 

1.3.3.1 Topographic mapping – navigating along gradients 

In topographic maps, axons from a field of neuronal cell bodies establish connections with a 

target tissue thereby maintaining nearest-neighbor relationships. Complementary 

expression of Eph receptors on navigating axons and ephrin gradients in their target areas is 

consistent with a role for these in the formation of topographic projections (Tessier-Lavigne 

1995). Indeed, the first functional evidence of a role for Eph receptors in axon guidance came 

from the purification and cloning of ephrinA5 as a tectal protein with the ability to collapse 

retinal axon growth cones (Drescher, Kremoser et al. 1995). The retinotectal projection is the 

prototypic model system for studying the development of topographic maps. Axons from 

the nasal retina project to the posterior tectum and those from the temporal retina innervate 

the anterior tectum. (Mey and Thanos 2000; Thanos and Mey 2001). In a simplified model, 
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axons expressing EphA receptors at a high density project to a region of the tectum with low 

ephrinA expression and conversely, axons with a low EphA receptor density innervate a 

region of the tectum with high ephrinA expression. In recent years this situation has become 

more complicated, because both EphA receptors and ephrinA ligands were found to be 

expressed on retinal axons and in the tectum (Knoll and Drescher 2002) (Figure 11). The 

response of retinal axons expressing high levels of EphA receptors to the tectal ephrinA 

gradient has been found to be less sensitive with increasing coexpression of ephrinAs. 

Carvalho and colleagues (2006) discovered that EphA3 and ephrinA5 can interact in cis, 

which inhibits the receptor signaling, thus resulting in a loss of sensitivity of retinal axons to 

ephrinAs in trans (Yin, Yamashita et al. 2004; Carvalho, Beutler et al. 2006). In contrast, the 

vomeronasal system (accessory olfactory system), which is involved in mating and 

aggression behavior provides a more simple model, because the expression of ephrinA 

ligand and EphA receptor is restricted to axons emerging from the vomeronasal organ 

(VNO) or the accessory olfactory bulb (AOB), respectively. Axons coming from the apical 

VNO express ephrinA6 at high density and project to the anterior AOB, which has high 

levels of EphA6, while axons from the basal VNO with low levels of ephrinA ligand connect 

to the posterior part of the AOB, which has low levels of EphA6. These results suggested a 

role for ephrinAs as receptors mediating attraction for navigation vomeronasal axons to 

their target zones (Knoll, Zarbalis et al. 2001).  

 

 

Figure 11  The retinotectal system 
Schematic representation of Eph and ephrin gradients in mouse retina and tectum. Temporal (T) 
retinal ganglion cells (RGCs) expressing low amounts of ephrin, but high amounts of Eph receptor, 
project to anterior regions of the tectum, which has high levels of Eph receptor and low levels of 
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ephrin ligand. The opposite is true for nasal (N) RGCs, which innervate posterior regions of the 
tectum. 

1.3.3.2 Ephs and ephrins – motor axon scouts in the vertebrate hindlimb 

A number of studies in mice and chick have implicated the ephrinA/EphA4 signaling 

system in repulsive guidance of LMC(l) axons to the dorsal compartment of the limb. 

LMC(l) axons express EphA4 at high density, whereas LMC(m) axons express it at low 

density, and ephrinA protein levels are higher in ventral than dorsal limb mesenchyme 

(Eberhart, Swartz et al. 2000; Helmbacher, Schneider-Maunoury et al. 2000) (Figure 12A). 

Inactivation of the ephA4 gene (ephA4lacZ allele) causes misprojection of dorsal axons 

towards a ventral trajectory, which can lead to hindlimb stiffness (club foot phenotype) 

(Helmbacher, Schneider-Maunoury et al. 2000) (Figure 12B). Moreover, ectopic expression of 

EphA4 in chick LMC(m) neurons causes dorsal rerouting of their ventrally fated axons 

indicating that EphA4 is sufficient to guide motor axons (Eberhart, Swartz et al. 2002; Kania 

and Jessell 2003) (Figure 12C). Thus, it is believed that axons expressing high levels of 

EphA4 are repelled by ventral mesenchyme expressing high levels of ephrinA. Interestingly, 

LMC(l) axons coexpressing ephrinA ligands with EphA4 receptor, and EphA4 mRNA and 

protein are expressed by dorsal limb mesenchyme (Eberhart, Swartz et al. 2000; Helmbacher, 

Schneider-Maunoury et al. 2000; Kania and Jessell 2003). A recent study showed that 

ephrinA ligands are functionally uncoupled from coexpressed EphA receptors in chick 

motor axon growth cones. Ephs and ephrins segregate laterally into distinct membrane 

domains and signal opposing effects on the growth cone: EphAs direct growth cone 

collapse/repulsion and ephrinA signaling leads to motor axon growth/attraction 

(Marquardt, Shirasaki et al. 2005). These results are contradictory to the findings in the 

retinotectal system and so far it is unknown if axonal ephrinAs on LMC(l) neurons and 

mesenchymal EphA4 in the dorsal hindlimb play a role for the guidance of  those motor 

axons. 
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Figure 12  EphrinAs and EphA4: motor axon guidance in the limb 
(A) In the wildtype situation, axons from the LMC(l), which express high levels of EphA4 are repelled 
by ventrally expressed ephrinA ligands into the dorsal compartment of the limb. (B) In the absence of 
EphA4 receptor, LMC(l) axons are insensitive to the repulsive signals and grow into ephrinA 
expressing territory. (C) In contrast, ectopic expression of EphA4 in LMC(m) neurons redirects their 
ventrally fated axons into the dorsal hindlimb mesenchyme.  

1.4 The thesis project 

As outlined in the previous chapters, genetic and biochemical studies have revealed 

important principles of axon guidance, especially using the motor neuron system. In the 

early 1990s, several conserved families of axon guidance molecules were discovered, 

including Slits, semaphorins and ephrins (Dickson 2002). Despite these major advances, 

many questions remain unanswered. For example, it is not understood, how repulsive 

ephrinAs in the ventral hindlimb mesenchyme instruct EphA4-positive axons to extend 

dorsally in the limb. Also, the severity of the ephA4 loss-of–function phenotype is somewhat 

variable depending on which ephA4 allele is studied and does not always result in stiff 

hindlimbs (Dottori, Hartley et al. 1998; Helmbacher, Schneider-Maunoury et al. 2000; 

Kullander, Croll et al. 2001; Leighton, Mitchell et al. 2001). These unsolved issues suggest the 

existence of yet unknown guidance cues that act in parallel to the established EphA4 

pathway. 

Here, I provide evidence that Ret and GDNF mediate the dorsoventral choice of limb-

innervating motor neurons. This requirement becomes evident before the period of 

programmed cell death and appears to be a true guidance decision rather than an outgrowth 
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promoting effect. In the absence of Ret or GDNF, a significant proportion of dorsally fated 

LMC(l) axons is misguided into the ventral compartment of the hindlimb. Moreover, this 

phenotype is enhanced in EphA4/Ret double mutants, suggesting that both signaling 

systems act simultaneously  and in a cooperative manner to enforce the same binary choice 

in motor axon guidance. The hypothesis of cooperation between GDNF/Ret and 

ephrinA/EphA4 signaling systems is supported by the fact that Ret and EphA4 receptor do 

not interfere with the expression of each other in motor axons. In addition, preliminary 

experiments using a biochemical approach give an indication for an activity-dependent 

interaction of the two receptors.  

 

Interestingly, EphA4 is also expressed in dorsal hindlimb mesenchyme, and ephrinAs are 

present in lumbar motor neurons. Contradicting studies provide evidence for both an 

interaction of axonal EphA receptor and ephrinA ligand in cis, resulting in a silenced 

receptor signaling (Yin, Yamashita et al. 2004; Carvalho, Beutler et al. 2006), and 

independent mediation of repulsion by EphA receptor and attraction through ephrinA 

ligand signaling in the same axon (Marquardt, Shirasaki et al. 2005). To better understand 

and dissect out the function of coexpressed EphA4 and ephrinAs in the dorsoventral choice 

of LMC(l) axons, I started to use a conditional allele of EphA4 in order to remove the protein 

selectively from motor axons or hindlimb mesenchyme.   
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2 Results 

2.1 Differential expression of Ret and GDNF in motor neurons 
and hindlimb mesenchyme 

For a signaling system to be able to coordinate topographic pathway selection of 

motor axons into the limb, differential expression of the receptors in motor axons and 

of the ligand in limb mesenchyme would be expected.  

2.1.1 Ret resembles EphA4 expression pattern on hindlimb innervating motor axons 

Previous studies have shown that differential expression of the EphA4 receptor on 

dorsal versus ventral nerve tracts is required to guide LMC(l) axons to the dorsal 

hindlimb mesenchyme (Helmbacher, Schneider-Maunoury et al. 2000; Eberhart, 

Swartz et al. 2002; Kania and Jessell 2003). Immunostainings on E11.5 mouse 

embryos with antibodies against Ret revealed a similar expression pattern as 

described for the EphA4 receptor (Fig.13 B, E, C and I). Cross sections at the level of 

the sciatic plexus showed high immunoreactivity for Ret in axons growing into the 

dorsal hindlimb mesenchyme (peroneal nerve) and lower expression of Ret in axons 

growing into the ventral hindlimb mesenchyme (tibial nerve) (Fig.13 E and I). 

Peroneal and tibial nerves contain motor and sensory axons coming from the lateral 

motor column (LMC) or the dorsal root ganglia (DRGs), respectively. To distinguish 

between the two types of axons, Ret expression was examined at the ventral roots 

proximal to the point where motor and sensory axons join a common pathway 

towards the base of the limb. Motor axons emerging from the spinal cord showed 

intense staining for Ret, whereas axons from the DRG neurons were labeled weakly 

at this stage of development (Fig.13 D). The cell bodies of LMC neurons showed a 

uniformly high immunoreactivity for Ret. To assess information about Ret protein 

levels before and during the occurrence of the dorsal/ventral (d/v) choice of 

hindlimb innervating axons, Ret immunoreactivity was monitored at early stages of 
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development, before axons choose between the two trajectories. In 40–41 somite-

stage embryos (~E10.5), when axons of LMC neurons have just reached the d/v-

choice point in the limb, Ret protein was clearly detectable on distal axons (Figure 

13G). In older embryos (45–46 somites [~E11.0]), in which two nerve bundles emerge 

from the plexus, the ventral LMC(m)- derived fraction showed lower levels of Ret 

than seen on proximal or on dorsally projecting LMC(l) axons (Figure 13H). At 

~E11.5 (~52 somites), differential Ret expression was even more pronounced (Fig. 

13I). In contrast to Ret, GFRα1 immunoreactivity was equal on both peroneal and 

tibial nerves (Figure 13F). The very strong levels on dorsal root ganglia neurons 

precluded a comparison of GFRα1 levels on motor axons versus sensory axons (data 

not shown). 
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Figure 13  Differential levels of Ret protein in hindlimb-innervating axons  
(A) Schematic drawing of limb-innervating peroneal (peroneal, PN) and tibial nerves (tibial, 
TN) in transverse sections of E11.5 mouse embryos. Spinal cord (SC), dorsal root ganglion 
(DRG), motor column (MC). (B–F) Immunohistochemical analyses on transverse vibratome 
sections of wild-type mouse embryos at the level of the sciatic plexus with antibodies against 
EphA4 (B and C), Ret (D, E, G, H and I), and GFRα1 (F) with either alkaline phosphatase (B, 
C, G, H and I) or peroxidase (D–F) substrates for stainings. In E11.5 embryos, high levels of 
EphA4 (B and C) and Ret (E and I) were detected in peroneal nerve axons innervating the 
dorsal part of the limb (arrow), whereas ventral tibial axons were weakly labeled (arrowhead). 
High levels of Ret were detected in cell bodies of LMC motor neurons and their ventral roots 
(arrows in [D]), whereas cell bodies and peripheral axons of DRG sensory neurons were 
weakly labeled (arrowhead in [D]). In a time course of Ret expression (G-I), the difference in 
protein levels on the axons appeared at ~45 somite stage. Antibodies against neurofilament 
(see Figure 17) and GFRα1 labeled dorsal and ventral axons equally well (F). All panels 
except (B) were taken at the same magnification as (C). Scale bars are 250 μm. 

2.1.2 Ret mRNA expression in lumbar motor neurons before and during the period 
of dorsoventral pathway selection 

In situ hybridisation analysis of Ret, RALDH2 and Lim1 was used to examine the 

expression pattern of Ret mRNA on transverse sections of mouse embryos at the 

level of the sciatic plexus with respect to the other motor neuron markers. RALDH2 

and Lim1 were used as markers for all LMC and LMC(l) neurons, respectively 

(Tsuchida, Ensini et al. 1994; Sockanathan and Jessell 1998). Ret mRNA was detected 

in all motor neurons with consistently higher levels in LMC(l) versus LMC(m) 

neurons, based on the comparison with RALDH2 and Lim1. In agreement with the 

immunhistochemical results, Ret mRNA expression was observed in all neurons of 

the LMC at E11.0 (Fig. 14A, D and G encircled area) matching expression of RALDH2 

(Fig. 14B, E and H). At E11.5 and E12.5, highest levels of Ret expression were found 

in subsets of LMC neurons that co-localize with expression of Lim1, a marker of 

LMC(l) neurons (Fig. 14C, F and I).  
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Figure 14  Expression of Ret mRNA in lumbar LMC neurons 
(A-I) In situ hybridization analyses on transverse vibratome sections of wildtype mouse 
embryos at the level of the sciatic plexus using probes against Ret (A,D,G), RALDH2 (B,E,H), 
and Lim1 (C,F,I). At E11.0, Ret mRNA expression was observed in neurons of the LMC 
(encircled area) matching expression of RALDH2, a marker of all LMC neurons (Sockanathan 
and Jessell 1998). At E11.5 and E12.5, the highest levels of Ret expression were found in 
subsets of LMC neurons that co-localize with expression of Lim1, a marker of LMC(l) neurons 
(C,F,I). This pattern is maintained at later stages (E12.5). Scale bar is 250 μm. 
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2.1.3 GDNF expression at the pathway selection point 

The interesting expression pattern of Ret and one of its coreceptors Gfrα1, in 

hindlimb innervating axons during the phase of dorsoventral pathway selection 

raised the question of the expression pattern of a possible ligand, GDNF. Expression 

of GDNF was analyzed using specific anti-GDNF antibodies and monitoring β-

galactosidase activity in GDNFlacZ/+ embryos (Moore, Klein et al. 1996). On E11.5 

mouse embryo sections, strong immunoreactivity for GDNF was detected in a region 

just dorsal to the pathway selection point and another more ventral source where 

axons branch off from the tibial nerve (Figure 15B encircled area). Anti-GDNF 

immunoreactivity was also detected in limb innervating axons (Figure 15A-C) 

possibly representing retrogradely transported GDNF.  

 

 

Figure 15  GDNF expression at the dorsoventral pathway selection point 
(A–C) Immunohistochemical analyses on transverse vibratome sections of wild-type E11.5 
(52 somites) embryos at the level of the sciatic plexus with antibodies against GDNF. GDNF 
immunoreactivity (stippled line) was highest in the vicinity of dorsal axons and lower near 
ventral axons (arrowhead). Some labeling of the axons was also observed (arrow in [A] and 
[B]) possibly because of uptake of GDNF. An additional ventral source of GDNF can be seen, 
where small side branches of the tibial nerve develop (stippled line in C). Scale bars are 250 
μm. 



2 Results 

 38 

To determine the exact timing and spatial distribution of GDNF expression with 

respect to axon outgrowth, a combination of neurofilament and β-gal staining was 

performed using GDNFlacZ/+ mice, which express lacZ under the GDNF promoter. In 

39–40 somite-stage embryos, no GDNF was present at the base of the limb before the 

arrival of axons (Figure 16A, E and I). In 41–42 somite-stage embryos, a highly 

localized source of GDNF was seen around and slightly dorsal to the point of nerve 

defasciculation (Figure 16 B, F and J). In older embryos (45–46 somites), both nerve 

branches had extended along their dorsal and ventral trajectories, and GDNF 

expression was increased. The bulk of GDNF expression was seen just dorsal to the 

branch point of the two nerves (Figure 16 C-L). At E11.5 (52 somites), GDNF 

expression was maintained and somewhat enlarged adjacent to the dorsal branch 

(Figure 16D, H and L). Similar to the results of GDNF immunoreactivity, an 

additional source of GDNF was detected just ventral to the tibial nerve and may be 

the source of attraction for some axon branches emerging from the tibial nerve 

(Figure 16 D, H and L and Fig. 15A-C). Together, the expression pattern raised the 

possibility that GDNF acts as a guidance signal for Ret-positive motor axons. 
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Figure 16  GDNF expression at the dorsoventral pathway selection point 
(A–L) Anti-neurofilament 160 antibody staining on whole-mount (A-D) and vibratome 
sectioned (E-L) GDNFlacZ/+ embryos at the indicated somite stages (ranging from E10.5 to 
E11.5). β-galactosidase activity (blue) reflects GDNF-producing cells. No GDNF-lacZ was 
detected in the future sciatic plexus, which the axons of lumbar motor neurons are about to 
reach (arrow in A, E and I). The only nearby source of GDNF detected was from the 
developing kidney. β-galactosidase activity was first detected at the plexus (41–42 somites [B, 
F and J]), when tibial axons (arrowhead) have already extended ventrally past the plexus, 
while few axons are seen taking a dorsal turn (arrow), just where GDNF-expressing cells are 
located. In older embryos (45–46 somites), the peroneal nerve branch splits away from the 
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tibial branch at the point of highest GDNF concentration (C, G and K), while peroneal growth 
cones have already exited the stained area. In 52 somite embryos, GDNF expression 
continues to increase as the nerves elongate (J, D, H and L). An additional ventral source of 
GDNF can be seen, where small side branches of the tibial nerve develop (H and L). Scale 
bars are 250 μm. 

2.2 Defective dorsal hindlimb innervation in Ret and GDNF 
mutant embryos 

2.2.1. Ret null embryos display a reduction of the peroneal nerve  

To test if Ret signaling was required for guidance of hindlimb innervating axons 

during development, hindlimb innervation was analyzed in Ret null mutant embryos 

(Kramer, Knott et al. 2006). The analysis was focused on the branches of the sciatic 

nerve, which innervate the distal hindlimb, since these axons showed the differential 

expression of Ret during the time of pathway selection. At E11.5, the dorsal and 

ventral hindlimb innervating axons of wild type controls have diverged from the 

sciatic plexus and formed two branches of approximately the same length (Fig. 17A). 

In stage-matched Ret null mutants, the developing tibial nerve appeared somewhat 

thicker and the peroneal nerve was reduced in length (Fig. 17C, E and G). Because 

the severity of the phenotype varied between different stage-matched mutants, 

embryos were classified into three categories (Cat I: mild, Cat II: intermediate and 

Cat III: strong [for detailed definitions see material and methods section]) according 

to the strength of peroneal nerve reduction. Most Ret null embryos fell into the 

intermediate category (Figure 17I). At E12.5, both nerves have grown considerably in 

length and became subdivided into smaller branches. In wild type mice the peroneal 

nerve developed a prominent fork-like branch at the distal end (arrow in Fig. 17B, 

B`), which was slightly reduced in diameter in Cat I mutants (Figure 17D, D`) or even 

completely absent in Cat III mutant embryos (Figure 17H, H`). At the same time, the 

tibial nerve appeared to be thicker in stage-matched Ret null embryos with a strength 

that could be correlated to the loss of thickness of the dorsal branch. Most Ret null 

embryos could be assigned to Cat II at E12.5 (Figure 17I). These results indicate that 

the expression of Ret protein is required for the topographic projection of hindlimb-

innervating axons. 
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Figure 17  Reduction of dorsal hindlimb innervation in Ret-/- mice 
Anti-neurofilament 160 whole-mount-stained hindlimbs from wildtype (wt) (A and B) and Ret-/- 
embryos (C–H) at the indicated embryonic stages. Ret-/- embryos were classified into different 
categories (I = mild, II = intermediate, or III = severe) as specified in the material and methods 
section. The images show the hindlimb with distal to the right and dorsal at the top. In E11.5 
wt embryos, the distal extensions of dorsal and ventral axons had approximately the same 
length (A). In contrast, dorsal axons (arrows) of Ret-/- embryos showed limited extension 
compared to stage-matched controls and were reduced in numbers and diameter (C, E, and 
G). At E12.5, limb nerves of wt embryos had grown in length and extended side branches in a 
stereotyped pattern (B). The corresponding schematic drawing depicts the relevant nerves in 
red, whereas other axons are drawn in grey (B`, D`, F`, and H`). Peroneal nerves of stage-
matched Ret-/- embryos were much reduced in length and complexity (arrows in [D], [F], and 
[H]). The sciatic plexus is indicated with an asterisk and the ventral axons with an arrowhead. 
Scale bars are 250 μm. (I) Distribution of different categories of phenotypes in Ret-/- mutants 
at E11.5 and E12.5 (n = number of legs). 
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2.2.2 Conditional inactivation of Ret reveals a cell-autonomous function of Ret in 
motor neurons 

To answer the question whether the hindlimb innervation phenotype reflected a cell-

autonomous function of Ret in motor neurons or is a secondary consequence of 

defects in other Ret-expressing cell types, such as sensory neurons and somite 

derivatives (Pachnis, Mankoo et al. 1993; Golden, DeMaro et al. 1999), a conditional 

allele of the Ret locus was used to delete the Ret gene in specific cell populations with 

the Cre-loxP recombination system (Kramer, Knott et al. 2006).  

2.2.2.1 Recombination of Ret using Hb9-Cre 

An Hb9-GFP promoter-driven Cre (Hb9-Cre mice) (Arber, Han et al. 1999; Yang, 

Arber et al. 2001) was used to remove Ret specifically from spinal motor neurons. 

Hb9-Retlx/lx mice were viable and fertile, but did not show a detectable peroneal 

nerve reduction at E12.5 compared to stage-matched wild type controls (Figure 18A-

C; also presented in my diploma thesis).  

 

 

Figure 18  Normal hindlimb innervation in Hb9-Retlx/lx mice 
Anti-neurofilament 160 whole-mount-stained hindlimbs from wildtype (A) and Hb9-Retlx/lx 
embryos (B) at E12.5. Peroneal (arrow) and tibial (arrowhead) nerves of mutant embryos 
show no difference to stage matched wildtype controls. Thus, all embryos fall into the wildtype 
category (C). Scale bar is 250 μm (n=number of embryos). 
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The absence of the peroneal nerve reduction in Hb9-Retlx/lx embryos could be due to 

a non-cell-autonomous function of Ret for this phenotype or be a result of ithe 

ncomplete excision of Ret in the lumbar motor column. To overhaul the 

recombination efficiency of Hb9-cre recombinase,  mice were intercrossed with a lacZ 

reporter line (Rosa26R (Soriano 1999)). In Hb9-Rosa embryos, Cre recombination can 

be monitored by activity of β-galactosidase. Although Hb9-Rosa mice showed 

specific and robust recombination in motor neurons of the brachial region (Figure 

19B), recombination in the lumbar region was more widespread and included other 

neuronal populations, but was incomplete with respect to the LMC(l) subpopulation 

at L3-L5 levels (Figure 19C-E). This result suggested that a sufficient amount of Ret 

remained in the lumbar motor column, which allowed their axons to perform a 

correct pathway selection. Since the Hb9-Cre turned out to be a suboptimal tool for 

motor neuron specific deletion of Ret, a nervous system-specific recombinase 

(Nestin-Cre (Tronche, Kellendonk et al. 1999)) was used instead. 
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Figure 19  Recombination activity of HB9-cre in lumbar spinal cord 
(A) In situ hybridization analysis of the LMC-specific marker RALDH2 to visualize the 
position of motor neurons in an open book preparation of an entire E12.5 spinal cord. 
(B-E) β-gal-stained E12.5 spinal cord from a double transgenic HB9-cre/Rosa26R embryo. 
Note the specific recombination in motor columns at brachial level (stippled box in panel B). 
At lumbar levels, many interneurons in dorsal spinal cord are labeled (B, lower stippled box). 
(C-E) Cross sections of β-gal stained E12.5 spinal cord at L3-L4 levels. HB9-cre-mediated 
recombination is widespread throughout the spinal cord (not shown) including most motor 
pools and many interneurons. Recombination appears incomplete in LMC(l), since not all 
motor neuron profiles appear stained (arrowheads point to unstained motor neurons in D). 
Scale bars are 10 μm.  

2.2.2.2 Recombination of Ret using Nestin-Cre 

Timing and efficiency of Nestin-Cre-mediated recombination was tested using the 

Rosa reporter line. LacZ stainings of whole Nes-Rosa embryos showed strong β-

galactosidase activity at E10.5 throughout the entire nervous system (Figure 20B). For 

a more detailed analysis of the recombination, sections of the lumbar spinal cord 

were examined. Robust recombination was detected in most cells of the spinal cord. 

Importantly, in early stage embryos (E10.5 and E11.5), Nestin-Cre mediated 

recombination was absent from lumbar level DRG neurons (Figure 20C and D). At 

E12.5 initiation of Nestin-Cre activity could be detected in some cells of the dorsal 

root ganglia (DRGs). Hence, in homozygous Retlx/lx mutants carrying one copy of 

Nestin-Cre (Nes-Retlx/lx mice), only limb innervating motor axons would be deficient 

for Ret protein before E12.5. 
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Figure 20  β-galactosidase activity in Nes-Rosa embryos 
β-galactosidase activity in whole mounts and sections of nestin-Cre;Rosa26R (Nes-Rosa) 
transgenic spinal cords of the indicated embryonic stages at lumbar level. Specific expression 
of Nestin-cre is detectable from E10.5 onwards (A and B). Note that in E10.5 and E11.5 
embryos, Nestin-cre-mediated recombination is very strong in spinal cord including LMC 
neurons but absent from DRGs (C and D). At E12.5, recombination starts in DRG neurons 
(E). Scale bar is 100 μm. 
 

 Western blot analysis and immunostainings were used to test the excision of Ret in 

Nes-Retlx/lx spinal cords. Protein levels in Nes-Retlx/lx spinal cords were reduced 

strongly but not entirely compared to control and Ret knockout samples (Figure 21 

A). Antibody stainings against Ret revealed a certain degree of recombination 

variability, with some animals showing complete excision and others with 

considerable Ret immunoreactivity in the motor columns (Figure 21B). In contrast to 

Ret null mutants, which die at birth due to kidney agenesis (Schuchardt, D'Agati et 

al. 1994), Nes-Retlx/lx mice were viable and fertile. Interestingly, they displayed a 

similar abnormal hindlimb position (club-foot) phenotype as the EphA4lacZ/lacZ 

mutants (Helmbacher, Schneider-Maunoury et al. 2000) (Figure 21C). Although this 

phenotype may be quite complex due to the known requirement of GDNF/Ret for 
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motor neuron survival during late embryonic development (Oppenheim, Houenou 

et al. 2000), the limb position was most consistent with misbalanced innervation of 

distal hindlimb muscles. 

 

 

Figure 21  Excision of Ret using Nestin-Cre recombinase 
(A) Western blot analysis of Ret protein levels in lysates from E12.5 spinal cords derived from 
Ret+/- and Ret-/- and from control (Retlx/+ and Nes-Retlx/+) and Nestin-cre;Retlx/lx mutants (Nes-
Retlx/lx). No signal for Ret can be detected in the Ret-/- spinal cords (lane 1). A small amount of 
protein remains in Nes-Retlx/lx spinal cords (lane 4). Immunoblots were reprobed with α-tubulin 
antibody as a loading controls. (B) Immunohistochemical analyses on transverse vibratome 
sections of wild-type and Nes-Retlx/lx E11.5 embryos at the level of the sciatic plexus with 
antibodies against Ret. Ret immunoreactivity is removed to a large extent, but some staining 
can be detected in the left motor column (arrow). Scale bar is 100 μm. (E) Picture of a 
postnatal day-21 Nes-Retlx/lx mutant with stiff hindlimb (arrow).  
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To verify the hindlimb innervation before the period of programmed cell death, 

whole-mount neurofilament stainings of Nes-Retlx/lx mutants were compared to 

stage-matched Retlx/lx controls at early embryonic stages. Control embryos displayed 

normal peroneal and tibial nerves (Figure 22A and B), while Nes-Retlx/lx mutants 

showed a reduction of the peroneal nerve in length at E11.5 and complexity at E12.5 

(Figure 22C and D). The majority of Nes-Retlx/lx mutants at E12.5 showed mild 

phenotypes, somewhat less severe than Ret null mutants, possibly because of the 

variability in Nestin-Cre recombination (Figure 23). These results demonstrate that 

removing Ret in the spinal cord is sufficient to alter the formation of the peroneal 

nerve, indicating that this phenotype reflects a cell-autonomous function of Ret in 

motor neurons. 

 

 

Figure 22  Reduction of dorsal hindlimb innervation in Nes-Retlx/lx mice 
(A-D) Anti-neurofilament 160 staining of hindlimbs from stage-matched control (Retlx/lx) (A and 
B) and Nes-Retlx/lx mutant (C and D) embryos of the indicated embryonic stages. B` and D` 
show schematic representations. Control embryos show normal peroneal and tibial nerves (A 
and B), while Nes-Retlx/lx mutants display a reduction of the peroneal nerve in length at E11.5 
and complexity at E12.5 (C and D). (E) Distribution of different categories of phenotypes in 
Nes- Retlx/lx mutants at E11.5 and E12.5. (n = number of legs) Scale bars are 250 μm. 
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Figure 23  Distribution of Ret null and Nes-Retlx/lx mutants into categories 
(A) At E11.5, both Ret null and Nes-Retlx/lx mutants show a very similar distribution. Most 
embryos display an intermediate reduction of the peroneal nerve and are assigned to 
category II. (B) The majority of Nes-Retlx/lx mutants at E12.5 show mild phenotypes, somewhat 
less severe than Ret null mutants. 

2.2.3 The hindlimb phenotype analysis 

2.2.3.1 Quantification of neurofilament stainings 

The observed peroneal nerve reduction could be a result of motor neuron death, 

disordered axonal outgrowth or redirected axon projections. Although GDNF, Gfrα1 

and Ret have been shown to be required for motor neuron survival, analyses of the 

respective mouse mutants failed to detect increased motor neuron death before the 

onset of naturally occurring cell death at E13 (lumbar levels) (Oppenheim, Houenou 

et al. 2000). Increased motor neuron cell death was therefore discarded as a possible 

reason for the phenotype at E11.5 and E12.5. To get an initial clue about the true 

cause of the hindlimb phenotype, a detailed analysis of whole-mount neurofilament 

stainings at both stages was done measuring length and thickness of the affected 

nerves (Figure 24B and C). In E11.5 embryos, the average length of the peroneal 

nerve was reduced by approximately 40% in both Nes-Retlx/lx and Ret null mutants 

(Figure 24A). In E12.5 embryos, the average thickness of the peroneal nerve was 

reduced, and the thickness of the tibial nerve was increased, in both Ret null and 

Nes-Retlx/lx mutants (Figure 24D and E). This suggested that LMC(l) axons, which 

normally project to the dorsal hindlimb mesenchyme were rerouted to a ventral 

pathway. 
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Figure 24  Quantification of neurofilament stainings 
(B and C) Schematic drawings of the peroneal (PN) and tibial nerves (TN) growing out of the 
sciatic plexus (asterisk) in E11.5 (B) and E12.5 embryos (C). (B) Reference lines (1–3) used 
for measuring the lengths of PN and TN are indicated. (A) Quantification of the nerve lengths 
in E11.5 embryos (pooling all categories) indicated as the ratio PN/TN. The average 
reductions in Nes-Retlx/lx and Ret-/- mutants were significant (p < 0.00001; Student’s t test). (C) 
The thickness of the tibial nerve was determined at reference point 4, which was located just 
distal to a characteristic dorsal branchpoint where some axons (gray) take a trajectory toward 
the posterior limb mesenchyme. To measure the thickness of the peroneal nerve, reference 
point 5 was first placed at the major distal branchpoint of the nerve, and the thickness of the 
nerve was determined at reference point 6, which was placed proximal to point 5. (D and E) 
Average thickness of TN and PN in the indicated E12.5 mutants compared to their stage-
matched wild-type controls (asterisk indicates p < 0.00001; Student’s t test). Note the 
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correlation between the increase in TN thickness and the decrease in PN thickness in all 
mutants compared to stage-matched controls. Error bars represent SEM. 

2.2.3.2 Tracing motor axons using different marker lines reveals an axon guidance 
defect of LMC(l) neurons 

The simultaneous decrease of peroneal and increase of tibial nerve thickness 

suggested a rerouting of peroneal nerve axons onto the tibial nerve trajectory. To test 

this hypothesis, mice carrying a marker for all motor axons (EphA4PLAP mice 

(Leighton, Mitchell et al. 2001)) or for LMC(l) axons only (Lim1τlacZ mice (Kania, 

Johnson et al. 2000)), were crossed with control and mutant mice. In EphA4PLAP/+ 

embryos, alkaline phosphatase staining labeled all EphA4 positive axons and 

revealed a wild type pattern for dorsal and ventral branches of the sciatic nerve 

(Figure 25A and B). Due to the absence of EphA4 from DRG neurons, nerves 

visualized with this marker exclusively contained motor axons. Serial sections from 

E11.5 Nes-Retlx/lx embryos carrying one copy of EphA4PLAP allele showed a reduction 

of the dorsal axons and an increase of the ventral axons (Figure 25C and D).  

 

 

 

Figure 25  Tracing motor axons using EphA4PLAP mice 
(A-D) Alkaline phosphatase staining of E11.5 control and mutant embryo sections at the level 
of the sciatic plexus. (A and B) In EphA4PLAP/+ embryos, hindlimb innervating motor axons 
show the typical wildtype situation with two nerve bundles diverging from the sciatic plexus 
(arrow for PN and arrowhead for TN). (C and D) In the mutant background, the peroneal 
nerve axons are much reduced, but some are still present in other sections (not shown). 
Scale bars are 250μm. 
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Although quantification of nerve thickness with this method was not possible due to 

the variation in the amount of fibers in each section, and because staining in whole-

mount preparation was impossible; this result supports the idea of misrouted motor 

axons.  

 

To circumvent these problems, another marker line (Lim1τlacZ) was used to 

specifically label LMC(l) axon projections. The expression of β-galactosidase in 

Lim1τlacZ/+ whole-mount embryos specifically labeled LMC(l) axons projecting to 

the dorsal limb (Figure 26A and C). Lim1τlacZ/+ mice were crossed with both the 

Ret null and Nes-Retlx/lx mutants and projections of β-gal-positive hindlimb axons 

were analyzed and compared to stage-matched anti-neurofilament-stained embryos 

of the same genotype. Analysis of Lim1τlacZ/+; Nes-Retlx/lx embryos at E12.5 (Cat 

III; n = 4 embryos) revealed that most detectable β-gal positive axons followed an 

aberrant ventral trajectory matching that of the tibial nerve (Figure 26B and D).  

 

 

 

Figure 26  Rerouting of Lim1-positive LMC(l) axons to a ventral pathway 
(A and B) β-galactosidase staining of E12.5 Lim1tlacZ/+ control and Lim1τlacZ/+;Nes-Retlx/lx 
embryonic hindlimbs (dorsal top, distal right) depicting the path of peroneal axons. (C and D) 
Anti-neurofilament 160 staining of genetically identical age-matched controls depicting 
peroneal and tibial nerves. The positions of peroneal (blue in [A] and [B]) and tibial 
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(unstained) axons are indicated by arrows and arrowheads, respectively. Note that the 
peroneal nerve in Lim1τlacΖ/+;Nes-Retlx/lx embryos (stained blue) is rerouted to the path of the 
tibial nerve. The remaining peroneal axons in the neurofilament-stained Lim1τlacZ/+;Nes-Retlx/lx 
embryo (D) are not β-galactosidase positive and may contain mostly sensory axons. β-
galactosidase positive axons emerging from the femoral plexus are out of focus (indicated by 
two asterisks). The small branch emerging from the rerouted Lim1-positive axons (black 
asterisk in [B]) does not match the very stereotyped trajectory of dorsally growing PN axons 
but matches the branch that exits the PN in the wild-type at this level (black asterisk in [A]). 
The branches appear different in length because the pictures are taken from whole-mount 
legs, which can have a slightly different position. Scale bars are 250 μm. 
 

Similar results were obtained with Lim1τlacZ/+; Ret-/- embryos (n = 3 embryos, data 

not shown). Despite the variability in strength of the phenotype observed by anti-

neurofilament staining, dorsally projecting β-gal positive axons were not detected, 

most likely because of the low level of lacZ expression. Because the bundle of 

ventrally projecting β-gal positive axons was comparable in length and diameter to 

those that project dorsally in control embryos, these results suggest that the absence 

of Ret protein redirects LMC(l) axons from a dorsal to a ventral trajectory without 

affecting axonal growth.   

2.2.4 GDNF null embryos resemble Ret knockout and conditional mutants 

To find out if GDNF is the ligand required for the correct selection of this specific 

motor axon pathway, whole-mount neurofilament stainings of E12.5 GDNF-/- and 

stage-matched control embryos were analyzed. GDNF-/- embryos resemble the 

hindlimb phenotype of Nes-Retlx/lx and Ret null mutants, showing a reduced 

complexity of the peroneal nerve compared to controls (Figure 27A and B). Similar to 

Ret mutants, quantification of the sciatic nerve branches revealed an increase in 

ventral and a consistent decrease of dorsal nerve thickness (Figure 27D). The 

majority of mutants fell into the most strongly affected category III when classified 

according to peroneal nerve reduction (Figure 27C). These results indicate that 

GDNF is required as a ligand for Ret in the correct pathfinding of hindlimb 

innervating axons. 
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Figure 27  GDNF is required for dorsal hindlimb innervation in vivo 
(A and B) Anti-neurofilament 160 staining of hindlimbs from stage-matched controls (wt and 
GDNFlacz/+) (A) and GDNF null mutant (B) embryos at E12.5 (Cat III, severe). Schematic 
representations in (A`) and (B`). Scale bar is 250 μm. (C) Distribution of different categories of 
phenotypes in GDNF null mutants. (D) Average thickness of tibial (TN) and peroneal (PN) 
nerves in E12.5 GDNF-/- mutants compared to their stage-matched wildtype and 
heterozygous controls (asterisk indicates p < 0.00001; Student’s t test). (E) Thickness of the 
nerves indicated as the ratio PN/TN (asterisk indicates p < 0.00001; Student’s t test). Error 
bars represent SEM. 
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2.3 Teamwork between GDNF/Ret and ephrinA/EphA4 signals 
for the guidance hindlimb innervating axons 

So far, the described results have provided strong evidence for a requirement of 

GDNF/Ret signaling in the establishment of the dorsal trajectory of LMC(l) axons in 

addition to the known EphA4/ephrinA guidance system. Maintenance of RALDH2, 

Lim1 and EphA4 mRNA expression (data not shown) in Ret mutant motor neurons 

suggests that, like EphA4, Ret acts downstream of Lim1 in the LMC(l) population. It 

would therefore, be interesting to investigate a possible cooperation between the two 

signaling systems in the guidance of LMC(l) axons into the limb. For such a 

partnership between the Ret and EphA4 receptors, several conditions would need to 

be fulfilled: (i) Ret could not regulate EphA4 protein expression on LMC motor 

axons, (ii) EphA4 could not regulate Ret protein expression on LMC axons, and (iii) 

the hindlimb phenotype (peroneal nerve reduction) would be enhanced in double 

mutant embryos. 

2.3.1 Protein expression of EphA4 and Ret receptors remains at high levels in 
misguided axons 

Anti-EphA4 immunostainings of E11.5 wild type embryos showed high levels of 

EphA4 in dorsal and lower levels in ventral axons (Figures 28A, also see 13B and C). 

In stage-matched Ret null mutant embryos, strongly EphA4-positive dorsal axons 

chose the same ventral trajectory as weakly EphA4-positive ventral axons (Figure 

28B). The level of EphA4 expression on these ectopic ventral axons was similar to the 

high level of EphA4 expression observed on the remaining dorsal axons in adjacent 

sections (data not shown), suggesting that LMC(l) axons that failed to project 

dorsally maintained the level of EphA4 expression characteristic of their LMC(l) 

identity. Because the nerve bundles did not mix with each other, these strongly 

EphA4-positive ‘‘dorsal’’ axons clearly stood out from the weakly labeled LMC(m) 

axons (Figure 28B and B`). Similar results were obtained with GDNF null mutants 

(Figure 28C and C`). These results indicate that GDNF/Ret signaling is not required 

to induce high levels of EphA4 expression. Moreover, they show that in the absence 

of GDNF/Ret, EphA4 is not sufficient to mediate the repulsive action of ventral 

ephrinAs.  



2 Results 

 55

 

Figure 28  EphA4 protein expression is not regulated by GDNF/Ret  
(A–C) Immunohistochemical analyses on E11.5 transverse vibratome sections of stage-
matched wild-type (A) of Ret-/- (B) and of GDNF-/- (C) mutant embryos with anti-EphA4 
antibodies. In this particular wt example (A), both dorsal and ventral nerve branches are 
visible on a single section. In many cases however, the sectioning angle is slightly oblique, so 
that dorsal and ventral branches are visible on adjacent sections (data not shown). The 
example shown in (C) is from a Cat III GDNF-/- embryo, in which there was no longer an 
EphA4-positive dorsal branch visible. Arrowheads: ventral (tibial) nerve; arrows: ectopic 
axons. (A`–C`) Higher magnification views of the ventral nerves of the respective boxed area 
in A-C. Note the different intensities of anti-EphA4 staining in the ventral nerves of Ret-/- (B`) 
and GDNF-/- embryos (C`). Although wt ventral nerves contained only axons expressing low 
levels of EphA4 (stippled area with arrowhead), mutant nerves contained axons bundles with 
high EphA4-staining intensity (arrow in [B`] and [C`]), similar to dorsal axons. This indicates 
rerouting of dorsal axons to a ventral pathway. Scale bar in (A) is 250μm. 
 

Since Ret protein expression resembles that of EphA4, and EphA4 knockout embryos 

also show a defective hindlimb innervation (Helmbacher, Schneider-Maunoury et al. 

2000), anti-Ret immunostainings were performed on sections of E11.5 EphA4-/- 

embryos. As previously shown, strongly Ret-positive axons chose a dorsal trajectory, 

and weakly Ret-positive axons chose a ventral trajectory in wild type control 

embryos (Figure 29A). In EphA4 null mutant embryos, a small population of strongly 
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Ret-positive axons was detected in the ventral hindlimb together with weakly Ret-

positive axons (Figure 29B and B`). The remaining dorsal nerve, seen on neighboring 

sections, still expressed high levels of Ret (Figure 29C). These results showed that 

EphA4 is not required to maintain high levels of Ret in LMC(l) axons and suggested 

that in the absence of EphA4, the subpopulation of LMC(l) axons that was rerouted 

to the ventral compartment failed to respond to GDNF, despite high levels of Ret. 

Taken together, these data show that Ret and EphA4 are dispensable for each other’s 

expression, and that one receptor per se is not sufficient to mediate the correct 

dorsoventral choice. 

 

 

Figure 29  Ret protein expression is not regulated by ephrinA/EphA4 
(A-C) Immunohistochemical analyses on E11.5 transverse vibratome sections of stage-
matched wildtype (A) and of EphA4-/- (B and C) embryos with anti-Ret antibodies. In the wt 
embryo, both dorsal and ventral branches are visible on a single section, whereas in the 
EphA4-/- embryo, ventral (arrowhead) and dorsal branches (arrow) are on adjacent sections 
(C). The mutant ventral branch contains axon bundles with high Ret staining intensity (arrow 
in [B`]), similar to the dorsal axons (C). Scale bar in (A) is 250 μm. 
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2.3.2 EphA4-Ret double mutants display an enhanced hindlimb phenotype 

The imperfect response of misguided axons to ephrinA or GDNF ligands despite 

their high receptor levels implies a parallel action of both receptors to mediate the 

choice of a dorsal trajectory by LMC(l) axons. To directly test for the presence of a 

parallel pathway in hindlimb motor axon guidance, Ret-/- mice were intercrossed 

with EphA4PLAP mice, which display all of the known loss-of-function phenotypes 

including a mild defect in hindlimb innervation (Kullander, Mather et al. 2001; 

Leighton, Mitchell et al. 2001). Similar to Ret null mutants, the majority of E11.5 

EphA4PLAP/PLAP embryos showed an intermediate (Cat II) phenotype characterized by 

a significantly shorter peroneal nerve (Figure 30E and I). Double homozygous Ret-/-; 

EphA4PLAP/PLAP neurofilament-stained embryos were all severely affected (Cat III) 

with a severely shortened and often defasciculated peroneal nerve (Figure 30G and 

I). At E12.5, EphA4PLAP/PLAP embryos showed a rather mild reduction of peroneal 

axons, whereas the phenotype of the majority of Ret null mutants was intermediate 

(Figure 30D, F, and J). The most severe guidance defects were displayed by Ret-/-; 

EphA4PLAP/PLAP embryos (Figure 30H and J). Based on their characteristic trajectories, 

the few remaining axons appear to be primarily of a sensory nature. These results 

suggest that Ret and EphA4 are both required for dorsal pathway selection of limb-

innervating axons in what appear to be parallel signaling pathways. 

 

 



2 Results 

 58 

Figure 30  Functional cooperation between Ret and EphA4 in vivo 
Representative anti-neurofilament 160 stained hindlimbs from wildtype (wt) (A and B), Ret-/- 
(C and D), EphA4PLAP/PLAP (E and F), and Ret-/-;EphA4PLAP/PLAP mutant embryos (G and H) of 
the indicated embryonic stages. For details see Figure 18. Note the severe reduction of the 
peroneal nerve in double Ret-/-;EphA4PLAP/PLAP mutant embryos (G and H). (I and J) 
Distribution (in percent) of different categories of phenotypes in single and double mutants at 
E11.5 (I) and E12.5 (J) Scale bars are 250 μm. 

2.3.3 Activity-dependent interaction of Ret and EphA4 

A biochemical approach was used to determine whether Ret and EphA4 can 

physically interact in mammalian cells. Both receptors were transiently expressed in 

HeLa cells and co-immunoprecipitations were performed. As a result of the over-

expression, unstimulated Ret and EphA4 receptors showed a degree of kinase 

activity (data not shown). However, to fully activate the receptors, formation of 

dimers or higher order clusters needed to be triggered by ligand stimulation. To 

stimulate EphA4 receptor, soluble preclustered ephrinA-Fc or control Fc were 

applied. Activation of Ret was mimicked using a mutated form of Ret (Ret-M2A), 

which is constitutively dimerized and therefore permanently phosphorylated. 

EphA4DSP (this EphA4 construct lacks the Sam domain and the PDZ-binding motif) 

was detected in anti-Ret co-immunoprecipitation (co-IP) when both receptors were 

fully active (Figure 31). In the case of a mock stimulation using Fc fragment or 

unstimulated wild type Ret, no signal was detected when probed for EphA4. This 

result suggests that the interaction of Ret and EphA4 is dependent on full activation 

of both receptors including phosphorylation of both receptors, and formation of 

dimers or higher order clusters of Ret and EphA4, respectively. 
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Figure 31  Interaction of Ret and EphA4 
Ret 9-wt (lanes 1-4) or Ret 9-M2A (lanes 5-8) constructs were transiently expressed in Hela 
cells together with EphA4DSP. Both conditions were either stimulated using Fc fragment or 
ephrinA2- and ephrinA5-Fc. TCLs (50μg protein) show equal expression levels of Ret and 
EphA4 constructs in all samples. In immunoprecipitations (IPs) of Ret, EphA4 signal can be 
detected, when both Ret (stimulation is mimicked by the constitutive active from M2A) and 
EphA4 are active (lanes 2 and 3). 

2.3.4 Trans-phosphorylation between Ret and EphA4 

Convincing evidence for a true cooperation between the GDNF/Ret and 

ephrinA/EphA4 signaling systems would be a reciprocal enhancement of their 

downstream signaling pathways. To test for a positive influence on one-another, 

trans-phosphorylation between the receptors was tested in transfected cells. A full-

length, but kinase-dead version of the EphA4 receptor (EphA4-KD) was transiently 

expressed in Hela cells together with overactive, wildtype or kinase-dead Ret 

constructs (long = Ret 51 and short = Ret 9) and empty vectors as controls. EphA4-

KD was immunoprecipitated using an antibody directed against the very c-terminal 

part of EphA4, and tyrosine phosphorylation was detected using anti-pY antibodies. 

EphA4DSP, which lacks the C-terminal part of the receptor and thus could not be 

pulled down in the IP, was used as a positive control for trans-phosphorylation of 

kinase-dead EphA4. Both the long and short isoforms of the Ret receptor trans-

phosphorylated kinase-dead EphA4, whereas wildtype or kinase-dead versions of 

Ret induced only mild or no trans-phosphorylation, respectively (Figure 32A and B).  
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Figure 32  Trans-phosphorylation between Ret and EphA4 
Kinase dead EphA4 (EphA4-KD) was transiently expressed in Hela cells with empty vectors 
(pcDNA3), constitutive active (M2A), kinase dead (KD) or wildtype (wt) Ret 51 (A) and Ret 9 
(B) constructs. Expression of the proteins was checked in 50μg of total cell lysate (TCL). IPs 
for EphA4 were probed with anti-phospho-tyrosine (pY) antibodies. Ret9-M2A (B) and Ret 51-
M2A (A) can trans-phosphorylate EphA4-KD, while Ret 9-wt (B) and Ret 51-KD (A) lead to 
mild or no phosphorylation of EphA4-KD, respectively. Two separate lysates for each 
condition were loaded. 
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Next, the opposing situation was tested. Kinase-dead Ret receptors (Ret 51-KD and 

Ret 9-M2A-KD) were co-expressed together with EphA4DSP or EphA4-KD and a 

constitutively active form of Ret as a positive control. Ret was immunoprecipitated 

and phosphorylation was detected with anti-pY antibodies. No signal for tyrosine 

phosphorylation was seen except in the positive control (Figure 33A).  

In another experiment, cells expressing kinase dead Ret and EphA4DSP were 

stimulated with ephrinA-Fc or Fc as control stimulation. To verify the functioning of 

ligand and mock stimulations, Hela cells growing on coverslips in the respective 

culture dishes were stained using EphA4 and anti-Fc antibodies. Diffuse expression 

of EphA4 but no cluster formation could be seen in Fc control stimulations (Figure 

34A). In contrast, signals from anti-Fc antibodies, which detected the Fc fragment of 

ephrinA-Fc fusion proteins binding to EphA4 receptor, co-localized nicely in clusters 

detected with the EphA4 antibody (Figure 34B). When cells expressing kinase dead 

Ret and EphA4DSP were stimulated with the ephrinA ligand, a weak trans-

phosphorylation of kinase-dead Ret could be detected (Figure 33B). These results are 

preliminary and will be repeated, but provide an initial evidence for a liaison 

between Ret and EphA4 signaling.  
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Figure 33  Trans-phosphorylation between EphA4 and Ret 
(A) Kinase dead Ret 51 was transiently expressed in Hela together with EphA4DSP, Ret 9-M2A 
or empty vectors. (B) Kinase dead Ret 9 was transiently expressed in Hela together with 
EphA4DSP, Ret 51-M2A or empty vectors. Samples expressing Ret and EphA4 were either 
stimulated with Fc-fragment or ephrinA2/A5-Fc. Mild phosphorylation of kinase dead Ret was 
only detected in the ephrinA stimulated condition.  
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Figure 34  Testing cluster formation in transiently transfected Hela cells 
In all co-IP experiments involving stimulation with ephrinA-Fc or Fc-fragment, a round cover 
slip (CVS) was applied to each condition. The cells were stained using anti-Fc and anti-
EphA4 antibodies to test for proper cluster formation and protein expression. (A) In a mock 
stimulation with Fc-fragment, EphA4 (in red) was detected in many cells showing a diffuse 
distribution throughout the cells. No signal was detected with the anti-Fc (in blue) antibody. 
(B) In the ephrinA2/A5-Fc stimulation, EphA4 and Fc-signal overlap completely and show a 
typical punctuated pattern with many clusters (arrowheads). Scale bar in (A) and inlet in (C) is 
25 μm and 5 μm, respectively. 
 

To circumvent the disadvantage of massive overexpression in cells which are 

transiently transfected with the receptors, cell lines were screened for endogenous 

expression of Ret and EphA4. Total cell lysates of an immortal motor neuron cell line 

(MN1) were probed for both receptors. Surprisingly, a promising expression for Ret, 

but no signal for EphA4 was detected (Figure 35A). A neuroblastoma cell line (SK-N-

2BE) also expressed only Ret (data not shown), but could be transfected more easily 

than MN1 cells. This cell line could be used in future experiments to transfect kinase-

dead EphA4 to thoroughly analyze trans-phosphorylation upon stimulation with 

GDNF using different concentrations and incubation times. Figure 35B shows an 

initial experiment for the induction of Ret phosphorylation. SK-N-2BE cells were 

stimulated with GDNF, immunoprecipitated and phosphorylation was detected 

using anti-pY antibodies. Basal phosphorylation was detected in the unstimulated 

case, and was enhanced strongly after stimulation with 10 ng GDNF of 30 min or 50 

ng of GDNF for 10 min. 
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Figure 35  Endogenous expression of Ret and EphA4  
(A) An immortalized motor neuron cell line (MN1) was tested for endogenous expression of 
Ret and EphA4. For positive controls, lysates from E12.5 spinal cords (SC) or transiently 
transfected Hela cells were used. Expression of Ret, but not EphA4 was seen in MN1 cells. 
(B) Ret-IP was tested for tyrosine phosphorylation upon stimulation with GDNF in SKN-2BE 
cells. No GDNF stimulation showed a low basal phosphorylation. Stimulation for 10 and 30 
min, using 10 or 50 ng of GDNF induced robust phosphorylation of endogenous Ret. 

2.3.5 Motor neuron culture system set up  

To obtain information about the subcellular localization of Ret and EphA4 in motor 

neurons, a cell culture system of dissociated motor neurons was set up following a 

protocol established by Francoise Helmbacher. Motor neurons were isolated from 

whole E12.5 spinal cords or limb innervating segments using gradient centrifugation 

and were seeded on coated cover slips. After 16-36 hrs in culture, the neurons had 

grown considerably long axons and could be used for different stainings or in vitro 

assays. Although the amount of other cell types was minimized during the motor 

neuron isolation, other neuronal cell types were growing in the culture dish, too. To 

visualize motor neurons and not other cells, Hb9-GFP mice, which express GFP 

under the motor neuron-specific promoter Hb9, were used for the culture (Figure 

36). Antibody stainings will be performed to study the subcellular localization of 

EphA4 and Ret in response to different stimulations using ephrinA ligands or GDNF 

or combinations of both. Previous studies have demonstrated that EphA4 expressing 

neurons respond with a growth cone collapse upon ephrinA stimulation (Drescher, 

Kremoser et al. 1995). These observations were also confirmed in my experiments. 

Examples of well developed growth cones can be seen in panel B, C and D in Figure 

36. The axon in Panel E has a collapsed growth cone as expected after ephrinA 

stimulation. Figure 36D and E also shows the formation of clusters using anti-Fc 
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antibodies upon ephrinA2 and A5-Fc stimulation. It will be very exciting to see how 

growth cones of co-stimulated motor neurons behave in a collapse assay, and if 

cluster formation is altered upon stimulation with ephrinAs in presence or absence of 

GDNF.  

 

 

Figure 36  Primary cell culture of motor neurons 
Culture of dissociated motor neurons (B-E) or explants form the LMC (A) from E12.5-E13.5 
Hb9-GFP embryos. (A) Low magnification image (20x) of an explant. All axons were 
visualized with anti-tubulin (in blue), among which motor neuron axons, labeled with anti-GFP 
(in red), appear pink. (B and C) Highe magnification image (100x) of well developed growth 
cones. Actin filaments were stained with Phalloidin-TexasRed (TxR) and microtubules are 
labeled with anti-tubulin antibodies (in green). Stimulation of MNs with either Fc-fragment (D) 
or ephrinA2/A5-Fc (E) (1μg/ml for 30 min) induced robust cluster formation (arrowheads) in 
the ephrin-stimulated neuron and growth cone collapse.  
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To be able to closely follow a collapse response, live cell imaging was established 

using dissociated cultures. Figure 37 shows a motor neuron observed for about 30 

min without stimulation. The arrow points to the growth cone. After approximately 

10 min the growth cone starts to collapse but at the same time new filopodia more 

proximal to the cell body begin to explore the environment (Figure 37E arrowhead). 

Seven minutes later this spot was the origin the outgrowth of two new processes 

(Figure 37G).  

 

 

Figure 37  Time lapse imaging of dissociated motor neurons  
A low-density culture of dissociated motor neurons (one day in culture) was imaged using 
time lapse microscopy at one frame/min (supplementary information on the CD-Rom, movie 
1). The growth cone of an axon explored the environment quite actively (A-C). After 12 min, a 
collapse was observed (arrow in D–F) followed by the establishment of two new growth cones 
at a more proximal position of the axon (arrowhead in E-G). Scale bars are 30 μm. 
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Dissociated motor neurons behave quite variably in culture. Figure 38 showes one 

cell, labeled with an arrow, and another, labeled with an arrowhead, displaying fast 

growth and stationary behavior, respectively. Therefore it can be quite difficult to 

decide which neuron to image. 

 

 

Figure 38  Time lapse imaging of dissociated motor neurons 
A low-density culture of dissociated motor neurons (one day in culture) was imaged using 
time lapse microscopy at one frame/min (supplementary information on the CD-Rom, movie 
2). Within 25 min, one axon (arrowhead) covered a distance of 120μm (~4.5μm/min), while 
the other one displayed stationary behavior (arrow). Scale bars are 30 μm. 
 

As mentioned before, dissociated cultures were obtained from whole spinal cords or 

limb innervating segments and therefore contained motor neurons from LMC and 

MMC. The fraction of “interesting” motor neurons belonging to the lumbar LMC(l) is 

rather small with respect to all spinal motor neurons. To restrict the culture to the 

important population of motor neurons, an explant culture following a protocol 

established by Till Marquardt was set up. Hb9-GFP mice were used to visualize the 

motor columns and allowed precise dissection of the lumbar LMC (see also Figure 

46). Small pieces of LMC(l) tissue were seeded onto coated coverslips and cultured 

for 2 days. Panel A in Figure 36 shows an example of a motor neuron explant stained 

for tubulin and GFP. Because the axons from the explants were in close contact with 

each other and grow in a radial fashion, it was easier to find a good spot for a movie. 

To test conditions for future stimulations, an explant culture was imaged before and 

after stimulation with soluble pre-clustered ephrinA2/A5-Fc. Before application of 

the ligand the observed growth cone was very actively producing and retracting 

filopodia at high frequency (Figure 39A-C). Five minutes after stimulation, the 
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monitored growth cones were still growing normal, but five more minutes later the 

growth cones started to display a less complex structure (Figure 39F). During the 

next 15 min a full growth cone collapse was observed (Figure 39G-I). In vivo this 

collapse happens upon cell-cell contact since receptor and ligand are membrane 

bound (Orioli and Klein 1997). To better mimic this situation in future experiments 

the ephrinA ligands will be presented to the growth cones from a located source (e.g. 

transiently transfected Hela cells or coated beads). In addition, antibody stainings for 

Ret and EphA4, cluster formation and growth cone behavior assays will be carried 

out.  

 

Figure 39  Live-cell imaging of a stimulated motor neuron explant culture 
An explant from the LMC (two days in culture) was imaged using time lapse microscopy at 
one frame/min (supplementary information on the CD-Rom, movie 3). Before stimulation, 
several growth cones (arrows) and other processes were observed (A-C). Shortly after 
stimulation with preclustered ephrinA2/A5-Fc (1 μg/ml) normal growth can be observed (D 
and E). About 10 min after the stimulation, the growth cones became simpler (F) and after 25 
min a full growth cone collapse was observed (G-I). Scale bar is 30 μm. 
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2.4 The requirement of axonal and mesenchymal EphA4 for 
pathway selection in the hindlimb  

As already mentioned in the introduction, inactivation of the mouse ephA4 gene can 

cause misprojection of peroneal nerve axons onto the tibial nerve pathway 

(Helmbacher, Schneider-Maunoury et al. 2000). Conversely, ectopic expression of 

EphA4 in chick LMC(m) neurons leads to misprojection of their ventrally fated axon 

onto the dorsal trajectory (Eberhart, Swartz et al. 2002; Kania and Jessell 2003). The 

current simple model holds that LMC(l) axons expressing high levels of EphA4 are 

repelled by ventral hindlimb mesenchyme expressing ephrinA ligands. Interestingly, 

ephrinA ligand is co-expressed on hindlimb innervating motor axons (Eberhart, 

Swartz et al. 2000) and EphA4 protein is found in the dorsal hindlimb mesenchyme 

(Eberhart, Swartz et al. 2000; Helmbacher, Schneider-Maunoury et al. 2000; Kania 

and Jessell 2003) (see also Figure 13B and C, 25A-D). A recent study suggested that 

axonal ephrinAs act independently from EphA4 and mediate attraction toward 

EphA4-positive dorsal mesenchyme (Marquardt, Shirasaki et al. 2005). To investigate 

the contribution of axonal and mesenchymal EphA4 to the pathfinding of LMC(l) 

axons, a conditional inactivation strategy was developed to remove EphA4 

selectively from the motor axons using Nestin-Cre or from hindlimb mesenchyme 

using Tbx4-Cre (Artur Kania, unpublished). 

2.4.1. Specific and robust recombination activity of Tbx4-Cre 

Before intercrossing Tbx4-Cre and EphA4lx/lx mice, lacZ reporter mice (Rosa26R) 

were used to visualize the onset and distribution of Tbx4-Cre activity. Robust β-

galactosidase activity was detected in the hindlimbs of E9.5 embryos (Figure 40A and 

B). The signal was even more intense at E11.5 and was maintained at later stages 

(E12.5) (Figure 40C, E and F). Nervous system tissue was completely devoid of signal 

(Figure 40D). Due to the complete and specific expression, Tbx4-Cre will be used as a 

tool to remove EphA4 from hindlimb mesenchyme tissue. To verify excision in Tbx4-

EphA4lx/lx embryos, EphA4 protein levels will be evaluated in total cell lysates of legs 

compared to lysates from spinal cords. 
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Figure 40  β-galactosidase activity in Tbx4-Cre;Rosa26R mice  
β-galactosidase activity in whole mounts and sections of Tbx4-cre;Rosa26R (Tbx4-Rosa) 
transgenic embryos of the indicated stages at lumbar level. Specific and robust expression 
was detected at E9.5 (A and B). The signal was even more robust at E11.5 and E12.5 (C, E 
and F) and was completely absent from spinal cord or DRG neurons (D). Motor column (MC) 
is indicated with a stippled circle. Scale bars are 250 μm. 
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 Figure 41 shows a preliminary test, where total cell lysates from wildtype embryo 

legs and spinal cords were probed for EphA4 and Ret. As expected, EphA4 protein 

was detected in both tissues, whereas Ret was only present in the spinal cord 

fraction. The amount of protein from the limb innervating axons can be disregarded.  

 

 

Figure 41  Spinal cord versus limb protein levels 
Protein levels of EphA4 and Ret in spinal cord (SC) and hindlimb tissue of wildtype embryos 
at the indicated stages. EphA4 can be detected in both SC and limb mesenchyme, while Ret 
is only present in the SC sample. Lysates from MN1 cells were used as a positive control for 
Ret expression. 

2.4.2 Motor neuron backfill technique allows the detection of single misguided 
axons 

A described previousely (chapter 1.4. and 2.3.2.), most EphA4 knockout embryos 

display a mild axon guidance phenotype. If both axonal and mesenchymal EphA4 

contribute to the correct pathway selection of LMC(l) axons, this phenotype would 

be expected to be even more mild in the conditional EphA4 mutants (Nes-EphA4lx/lx 

and Tbx4-EphA4lx/lx). A very elegant and extremely sensitive way to discover 

misguided axons, is the motor neuron backfill technique. This method allows the 

detection of single misguided axons, which would be below the detection threshold 

in a whole mount neurofilament staining. To discover ventrally misrouted axons, the 

tibial nerve needs to be backfilled. So far only wildtype controls were filled to 

establish the method in the laboratory. Tibial nerves of Hb9-GFP+/- embryos were 

injured and a red dye (rhodamine-dextran) was applied at the site of nerve lesion 

using a fluorescent dissecting microscope to visualize motor axons (Figure 42A). 

Embryos were incubated for 7hrs in ACSF to allow retrograde transport of the dye 

into the cell bodies of the injured axons. In wildtype embryos, cell bodies of the 

LMC(m) were labeled, which can be seen in lumbar cross sections of treated Hb9-
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GFP+/- embryos (Figure 42B, E and F). To prove that these cells indeed belong to the 

population of LMC(m), an antibody staining for Isl1 (a marker for LMC(m) neurons) 

will be done. A schematic drawing shows the expected result for mutants, displaying 

an axon guidance phenotype (Figure 42 C). Retrogradely labeled cell bodies of 

ventrally misguided LMC(l) axons will be located in the LMC(l) population and be 

devoid of Isl1 staining.  

 

 

 

 

Figure 42  Motor neuron backfill 
(A) Schematic drawing showing the injection of rhodamine-dextran dye into the axons of 
LMC(m) neurons. In wildtype embryos (B), only cell bodies of LMC(m) neurons are labeled 
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with the injected dye. Motor neurons can be visualized using Hb9-GFP+/- mice. In mutants, 
which have dorsaly-fated axons misguided into the ventral nerve branch, backfilled cell bodies 
can be detected in LMC(m) and LMC(l). The latter are well-defined by the absence of Isl1 
staining (C).  (D-F) Cryostat section of an E13.5 embryo at lumbar level showing Hb9-GFP in 
green (D and F) and backfilled cell bodies in red (E and F) in the area of the LMC(l). Scale bar 
is 100μm. 
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3 Discussion 

The studies reported here identified novel guidance signals for topographic 

projections of specific motor axons to limb muscles. The main results are as follows: 

first, LMC(l) axons express high levels of Ret and project to a dorsal territory 

enriched in GDNF. Second, in mutant mice lacking GDNF or Ret, many LMC(l) 

axons are rerouted to an aberrant ventral trajectory. As shown by the LMC(l) marker 

Lim1, this phenotype is caused by a pathfinding defect and not by misspecification, 

reduced survival, or reduced axonal growth of LMC(l) neurons. Third, the 

requirement of Ret is likely to be cell-autonomous as shown by conditional removal 

of Ret in cells of the spinal cord. Fourth, the misprojection phenotype of limb-

innervating axons is enhanced in mutant mice lacking both Ret and EphA4. Fifth, 

preliminary experiments using a biochemical approach provided evidence for an 

activity dependent interaction of EphA4 and Ret receptor and a capacity to trans-

phosphorylate each other. Moreover, in collaboration with Cathy Krull it was shown 

that Ret, when overexpressed, is sufficient to reroute some LMC(m) axons 

inappropriately into the dorsal nerve trunk (Kramer, Knott et al. 2006). Taken 

together, these results suggest that Ret and EphA4 cooperate to enforce the precision 

of the same binary choice of LMC axons at the sciatic plexus, to project dorsally 

rather than ventrally.  

In another approach, a strategy to reveal the contribution of axonal versus 

mesenchymal EphA4 for the guidance of hindlimb innervating motor neurons was 

developed.  
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3.1. Differential expression pattern of Ret and GDNF 
suggests a function in topographic mapping of hindlimb 
innervating motor axons 

Establishing the connectivity between particular motor neurons and their target 

tissue is a highly complex process that can be broken down into modular steps 

requiring simple binary decisions (Dickson 2002). One example for such a binary 

decision is the dorsoventral choice of hindlimb innervating LMC axons. Here, axons 

from the LMC(l) and LMC(m) express high and low levels of EphA4 receptor, 

respectively, and ephrinA ligands are expressed at a higher density in the ventral 

than in the dorsal compartment of the limb (Eberhart, Swartz et al. 2000; 

Helmbacher, Schneider-Maunoury et al. 2000; Kania and Jessell 2003). Inactivation of 

the mouse ephA4 gene (EphA4lacZ allele) causes misprojection of dorsal (LMC(l)) 

axons into a ventral trajectory (Helmbacher, Schneider-Maunoury et al. 2000). The 

current model is that EphA4-expressing LMC(l) axons are repelled from ephrinA-

positive ventral territory (Figure 12B). However, the severity of the EphA4-loss-of-

funtion phenotype is somewhat variable depending on which ephA4 allele is studied 

(Kullander, Mather et al. 2001; Leighton, Mitchell et al. 2001). This unsolved issue 

suggests the existence of yet unknown guidance cues that act in parallel to the 

EphA4 pathway. For a signaling system to coordinate the dorsoventral choice of 

LMC axons at the sciatic plexus, differential expression of the receptors in motor 

axons and of the ligand in hindlimb mesenchyme, similar to that which has been 

described for EphA4, would be expected.  

This study presents immunostainings on mouse embryo sections with antibodies 

against the receptor tyrosine kinase Ret, which revealed striking similarities to the 

EphA4 expression pattern (Figure 13). In contrast to EphA4, which is absent in 

sensory neurons (see Figure 25 A and C), Ret was also expressed in cells of the DRGs. 

Because strong immunoreactivity for Ret was detected on very proximal aspects of 

the sciatic nerve, where axons exit the spinal cord through the ventral horn, and only 

weak Ret signal was detected on sensory axons coming from the DRGs, which join 

the common pathway later, the differential expression on limb innervating axons 

could be attributed to motor axon origin. Consistently, Ret mRNA levels were higher 
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in LMC(l) than LMC(m) motor neurons at the same developmental stage and almost 

no signal was detected in DRGs (Figure 14).  

Analysis of GDNF expression in the hindlimb using specific antibodies and 

monitoring of β-galactosidase activity in GDNFlacZ mice revealed a differential 

distribution in the hindlimb mesenchyme. An important source of GDNF was 

detected in the territory immediately dorsal to the sciatic plexus where peroneal and 

tibial axons branch off from the common trajectory. The differential expression 

patterns raised the possibility that GDNF acts as a guidance signal for Ret-positive 

motor axons.  

3.2. GDNF/Ret signaling is required for motor axon growth 
into the dorsal hindlimb 

There is compelling evidence that the Ret receptor and GDNF family ligands mediate 

axon outgrowth in vivo and play an important role for motor neuron survival 

(Oppenheim, Houenou et al. 2000; Markus, Patel et al. 2002). Motor neurons respond 

to GDNF with robust axon outgrowth, and ectopic expression of GDNF in muscle in 

transgenic mouse models leads to local hyperinnervation of neuromuscular junctions 

(Nguyen, Parsadanian et al. 1998). More recent work has shown that GDNF in 

muscle promotes axon terminal branching that counteracts ongoing synapse 

elimination (Keller-Peck, Feng et al. 2001). Early in development, GDNF produced by 

distinct muscles induces the expression of the ETS transcription factor, PEA3, in 

specific motor neuron pools (Haase, Dessaud et al. 2002). PEA3 is required for the 

specification of motor neuron identity. In GDNF and Pea3 mutant mice, specific 

motor neuron cell bodies are mispositioned within the brachial region of the spinal 

cord and target innervation is perturbed secondarily (Livet, Sigrist et al. 2002). 

However, no previous reports have implicated GDNF in regulating topographic 

projections of motor axons. The only indirect evidence for a possible role of Ret in 

axon guidance comes from in vitro studies. It was shown that soluble GFRα1 protein 

produced by target cells can potentiate neurite outgrowth in vitro by capturing 

GDNF and presenting it to axonal Ret receptors (Ledda, Paratcha et al. 2002), 

suggesting that GFRα1 receptors can act as a chemoattractant for peripheral neurons. 

Similarly, the GDNF/Ret pathway is required for migration of enteric neuron 

precursor cells into the gut, also through a chemotactic mechanism (Natarajan, 
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Marcos-Gutierrez et al. 2002). Whether these in vitro findings have any physiological 

relevance for in vivo guidance of peripheral axons has not yet been investigated.  

The results presented in this thesis provide genetic evidence that Ret signaling 

controls the dorsoventral choice of motor axons in the hindlimb and that GDNF is an 

essential ligand for this newly assigned function. Inactivation of the ret gene in all 

cells (Ret-/-) leads to the reduction of the peroneal (dorsal) nerve. Since the amount of 

the peroneal nerve reduction varied, mutants were classified into three categories 

according to the severity of the phenotype (Cat I: mild, Cat II: intermediate and Cat 

III: strong). The majority of Ret-/- embryos fell into Cat II. Selective removal of Ret 

from the spinal cord using the conditional allele with a nervous-system-specific Cre 

(Nes-Retlx/lx) resulted in the same phenotype and showed that Ret acts in a cell-

autonomous manner in neurons of the spinal cord. The phenotype, however, was 

slightly milder than in full knockouts with the majority of embryos in category I at 

E12.5 (Figure 23). This could be due to variability in the excision of Ret with Nestin-

Cre. Indeed, a small signal for Ret could be detected in western blots of spinal cord 

lysates from Nes-Retlx/lx embryos. Consistent with this, immunostainings of Nes-

Retlx/lx embryos revealed low levels of remaining protein in a few sections (Figure 

21). In contrast to Ret null mice, which die on the day of birth due to kidney agenesis, 

Nes-Retlx/lx mice are viable and fertile. Interestingly, they show an abnormally stiff 

position of the hindlimb, similar to the club-foot-phenotype in EphA4lacZ/lacZ mice. 

The reduction of the peroneal nerve may lead to misbalanced innervation of flexor 

and extensor muscles and thereby cause the stiff hindlimb. Of course, other factors 

such as increased cell death cannot be excluded and it is most likely that the 

abnormal foot position is a result of a very complex sequence of events. 

The peroneal nerve reduction is a true axon guidance mistake, because in the absence 

of Ret, LMC(l) axon outgrowth is not diminished, but instead axons are rerouted to a 

ventral pathway as shown by Lim1-driven β-galactosidase activity, EphA4PLAP-

driven AP-staining and EphA4 immunostainings. GDNF knockout embryos display 

the same axon guidance phenotype. It must be noted that all analyses were carried 

out before the period of programmed cell death. Thus, these findings provide genetic 

evidence for a participation of the GDNF/Ret system in dorsal/ventral pathway 

selection by motor axons, although further in vitro experiments will be required to 

establish whether GDNF can directly influence the pathfinding of motor-axon 

growth cones. Although GDNF has previously been shown to induce the expression 
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of PEA3 thereby influencing neuronal specification and growth characteristics 

(Haase, Dessaud et al. 2002), the analysis of axon projections in Pea3 mutant embryos 

did not reveal dorsal/ventral pathfinding defects of hindlimb-innervating axons 

(data  presented in my diploma thesis). Thus, the possibility that GDNF has indirect 

modulatory effects on hindlimb-innervating axons via the regulation of PEA3 can be 

excluded, but it is still possible that GDNF acts indirectly through another 

transcriptional regulator. 

Further support for a requirement of GDNF/Ret in the guidance of LMC(l) axons 

comes from overexpression studies in the chick, which were carried out in 

collaboration with Cathy Krull. In the majority of cases, LMC(m) axons that 

expressed Ret ectopically projected aberrantly into the dorsal limb (Kramer, Knott et 

al. 2006).  

3.2. Cooperation between GDNF/Ret and ephrinA/EphA4 in 
motor axon guidance 

The genetic analyses of Ret and EphA4 suggest that both signals cooperate to direct 

motor axons towards a dorsal pathway (model Figure 43). Absence of either Ret or 

EphA4 produces phenotypes that vary in severity with some LMC(l) axons being 

misrouted and others reaching the dorsal compartment as in wildtype embryos. 

Absence of both Ret and EphA4 produces generally strong phenotypes with all 

LMC(l) axons misrouted into a ventral pathway (Figure 30). These findings provide a 

compelling example of true cooperation between different guidance signals to 

enforce the same pathway choice. As in the case of loss-of function mutants, the Ret 

overexpression phenotype in chick is similar to EphA4 overexpression, again 

confirming their common function in dorsal pathway selection. However, for most 

axon-guidance decisions, for which the molecular cues are beginning to be 

understood, a single required pathway is known (Williams, Mann et al. 2003). The 

observed cooperation between Ret and EphA4 in establishing proper hindlimb 

innervation raises the question whether Ret signaling can function in the absence of 

EphA4 signaling. The in vivo observations suggest that this is indeed the case. Strong 

pathfinding phenotypes were generally observed in the EphA4;Ret double knockout 

mutants, which are partially rescued in the EphA4 single mutants. Hence, the 

presence of Ret alone is sufficient for at least a fraction of peroneal axons to project 
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dorsally in a significant proportion of mutant embryos. Support for this conclusion 

also comes from the gain-of-function experiments in chick. Ectopic expression of Ret 

in LMC(m) neurons can redirect them to a dorsal pathway despite low levels of 

EphA4 that are subthreshold for mediating the repulsive effects of ephrinAs 

(Kramer, Knott et al. 2006). More definitive conclusions would, however, require in 

vitro explant growth/guidance assays with GDNF under conditions in which EphA4 

expression is (largely) eliminated.  

 

 

 

Figure 43  Model 
Schematic drawing of a cross section at the level of the sciatic plexus. Neurons of the LMC(l), 
which have high levels of Ret and EphA4 are indicated in dark blue. Neurons of the LMC(m), 
which have low levels of Ret and EphA4 are indicated in light blue. EphrinAs in the ventral 
mesenchyme (red) repel LMC(l) axons into the dorsal compartment of the hindlimb. GDNF, 
indicated in green may be an attractive source for LMC(l) axons. 
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3.4. Molecular mechanisms underlying the cooperation 
between EphA4 and Ret  

The possibility that Ret is required for maintaining EphA4 expression or vice versa 

can be excluded, because the levels of Ret and EphA4 proteins were not altered in the 

EphA4 and Ret null mutants, respectively (Figure 28 and 29). Ret may, however, be 

required for maintaining the expression of essential downstream components of 

EphA4 signaling. A candidate for such an effector could be ephexin1, a guanine 

nucleotide exchange factor (GEF), that is required for EphA4-mediated growth cone 

collapse (Sahin, Greer et al. 2005).  

The first biochemical analysis, however, points to a rather direct influence of Ret and 

EphA4 signaling on each other. Constitutively active constructs of the long and short 

isoforms of Ret can clearly phosphorylate kinase-dead EphA4 receptor, and EphA4 

can phosphorylate, although mildly, kinase-dead Ret receptor upon ephrinA ligand 

stimulation (Figure 32 and 33). Moreover, EphA4 can be detected in 

immunoprecipitations of Ret, when both receptors are fully activated (Figure 31), 

suggesting that the receptors can interact upon co-stimulation with GDNF and 

ephrinAs. Whether this interaction is direct, or indirect in a complex involving other 

molecules is so far unknown. Further experiments using a system, in which at least 

one receptor has physiological expression levels, and time-course stimulations will 

give important answers to many unsolved questions. Whatever the molecular 

interactions may be, the results suggest a positive interaction: Ret enhances and does 

not interfere with the ability of EphA4 to mediate repulsion. This would explain why 

in Ret null mutants, EphA4-positive axons turn into a ventral pathway despite the 

presence of repellent ephrinAs. Likewise, EphA4 should enhance, rather than 

interfere with, the ability of Ret to mediate an attractive activity of GDNF. This 

would be consistent with the fact that Ret-positive axons turn ventral despite the 

presence of GDNF at the branch point in EphA4 knockout mutants. Ret and EphA4 

signaling pathways may converge at some point distal to the plasma membrane at 

the level of Src kinases. Src family kinases have been shown to interact with Ret and 

Ephs and appear to enhance both the neurite growth-promoting effects of GDNF and 

the repulsive effects of ephrinAs (Encinas, Tansey et al. 2001; Knoll and Drescher 

2004). According to the preliminary biochemical results, the idea that Ret- and 



3 Discussion 

 82 

EphA4-signaling pathways act independently and in parallel, ultimately regulating 

the cytoskeleton with opposing effects on  actin and microtubule dynamics of growth 

cones appears to be less likely (Dent and Gertler 2003). 

3.5. Deciphering EphA4/Ret interaction at the cellular level 

To better understand what is going on in LMC motor neurons when they meet 

ephrinA and GDNF signals at the sciatic plexus, dissociated and explant cultures of 

motor neurons were established. With these tools in hand, antibody stainings could 

be done to trace the subcellular localization of Ret and EphA4 upon stimulation with 

ephrinAs or GDNF or both, and thereby obtain information about the mechanism 

underlying EphA4/Ret cooperation. Growth cone collapse assays using cultured 

motor neurons can give useful insights about the effect of ephrinA/GDNF 

stimulation on motor axons for example in a time course. To mimic the in vivo 

situation, only the population of neurons from the LMC will be used (explant 

cultures), and the repulsive cue will be presented as a localized source (e.g. Hela cells 

expressing ephrinAs). It will be exciting to compare the behavior of a motor neuron 

growth cone meeting an ephrinA-expressing cell in presence or absence of soluble 

GDNF using time-lapse microscopy. Is the expected growth cone collapse faster with 

co-stimulation of GDNF? Does the axon retract further, or can it recover within less 

time and thus perform better in deciphering other important guidance cues? It is 

possible that GDNF/Ret is not only necessary to support ephrinA/EphA4 signaling, 

but also to put the growth cone into an alerted state at the pathway selection point, 

and to support other so far unknown guidance signals. 
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3.6. The role of axonal and mesenchymal EphA4 in the 
dorsoventral choice of hindlimb innervating axons 

We wanted to look at whether Ret could influence ephrinA reverse signaling. 

Previous reports have shown that LMC(l) axons at hindlimb levels not only express 

EphA4 receptors but also ephrinA ligands (Iwamasa, Ohta et al. 1999; Eberhart, 

Swartz et al. 2000). These factors exert opposing effects on growth cones in vitro: 

EphAs mediate growth cone collapse/repulsion, whereas ephrinAs signal motor-

axon growth/attraction (Marquardt, Shirasaki et al. 2005). Because EphA4 is 

expressed by dorsal limb mesenchyme, it has been suggested that EphA4 interactions 

with axonal ephrinA induce reverse signaling and attract LMC(l) axons to the dorsal 

trajectory (Eberhart, Swartz et al. 2000; Eberhart, Swartz et al. 2002; Marquardt, 

Shirasaki et al. 2005). The mechanism of ephrinA-mediated growth or 

chemoattraction is not well understood. It is likely, however, that it involves ephrinA 

clustering and the tangential recruitment of other membrane proteins, possibly 

including Ret. EphrinAs and Ret may share downstream signaling components or 

even form a receptor complex that signals growth or attraction. Further genetic loss-

of-function and in vitro growth/guidance experiments must be performed to test 

these hypotheses. It may be that LMC(l) axons are guided to the hindlimb by 

multiple attractive signaling pathways that direct them toward a dorsal trajectory 

and by repulsive signaling that repels them away from a ventral trajectory. One way 

to test the contribution of axonal and mesenchymal EphA4 is the specific deletion of 

EphA4 from the two tissues with subsequent analysis of hindlimb innervation using 

very sensitive techniques. The Tbx4-Cre turned out to be a very good tool to remove 

EphA4 (EphA4lx/lx allele) specifically from the hindlimb mesenchyme, without 

disturbing the axonal expression (Figure 40). Conversely, Nestin-Cre will be used to 

remove EphA4 from motor axons. 

Mutants and control embryos will be intercrossed with Hb9-GFP mice to visualize all 

motor neurons. If both axonal EphA4 (mediating repulsion from ventral ephrinAs) 

and mesenchymal EphA4 (as attractive cue for axonal ephrinAs) contribute to the 

correct pathfinding of LMC(l) axons, a division of the already mild EphA4 hindlimb 

phenotype would be expected. Whole-mount neurofilament stainings do not provide 

enough resolution to detect such mild defects. The staining includes sensory and 
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motor axons, and changes in the diameter of peroneal and tibial nerves due to only 

one or three misguided axons would be undetectable. A very sensitive and elegant 

way to circumvent these problems is the backfill of motor neuron cell bodies. All 

axons of the ventral nerve are injured and a red dye is injected at the lesion site. The 

axons retrogradely transport the dye into their cell bodies, which are all located in 

the LMC(m) and positive for Isl1. If misguided axons have joined the ventral 

trajectory, they will also be labeled, but their cell bodies will be located in the fraction 

of the Isl1-negative LMC(l) neurons. Thus, even single misguided axons can be 

detected. In addition to Nes-EphA4lx/lx and Tbx4-EphA4lx/lx embryos, it is planned to 

additionally remove Ret from both conditional mutants to see, which of them leads 

to the enhanced “full” misguidance phenotype of LMC(l) axons.  
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4 Materials and Methods 

4.1. Materials 

4.1.1. Chemicals, enzymes and commercial kits 

Chemicals were purchased from the companies Merck, Serva, Sigma, Fluka and 

Roth. All water used to prepare solutions was filtered with the “Milli-Q-Water 

System” (Millipore). Restrictions enzymes were purchased from Roche and New 

England Biolabs (NEB). Plasmid preparations, purifications or gel-extractions were 

done using the Qiagen Plasmid Mini/Maxi kit or PCR Purification kit, respectively.  

Special supplies and kits are mentioned in detail with the according method. 

4.1.2. Bacteria  

DH5α   (Invitrogen) 

TOP10  (Invitrogen)  

4.1.3. Plasmids 

Backbone/Insert  Comment       Reference 

 

mammalian expression 

 

pcDNA3.1 

EphA4-wt   FL wt EphA4-Receptor    K. Kullander 

EphA4-KD   Kinase dead EphA4-Receptor   K. Kullander 

EphA4DSP   EphA4-Receptor without    K. Kullander 

     SAM and PBM domains 

Ret51-wt   FL wt Ret51-Receptor     C. Ibañez 

Ret51-KD   Kinase dead Ret51-Receptor   C. Ibañez 
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pJ7Ω 

Ret9-wt    FL wt Ret9-Receptor      C. Ibañez 

Ret51-M2A   Constitutively dimerized and thereby  

active Ret51-Receptor      C. Ibañez 

Ret9-M2A   Constitutively dimerized and thereby  

active  Ret9-Receptor      C. Ibañez 

Ret9-M2A-KD  Constitutively dimerized kinase dead  

Ret9-Receptor       C. Ibañez 

 

in situ probes 

 

pBSKS 

EphA4    digested XhoI; transcribed T7    F. Helmbacher 

Ret     digested NotI ; transcribed T7   V. Pachnis 

 

pBS-SK(-) 

Lim1    digested EcoRI; transcribed T7    T. Fujii 

 

pcDNA3.1 

RALDH2   digested XhoI; transcribed T7    T. Jessell 
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4.1.4. Oligonucleotides 

All small oligonucleotides were synthesized by MWG (www.mwg-biotech.com) and 

purified with HPSF.  

Table 1 Primer 

Name Sequence 

CreA 5` GCC TGC ATT ACC GGT CGA TGC AAC GA 3` 

CreB 5` GTG GCA GAT GGC GCG GCA ACA CCA TT 3` 

NesCreα 5` CGC TTC CGC TGG GTC ACT GTC G 3` 

Cre3Nes 5` TCG TTG CAT CGA CCG GTA ATG CAG GC 3` 

Rosa1 5` AAA GTC GCT CTG AGT TGT TAT 3` 

Rosa2 5` GCG AAG AGT TTG TCC TCA ACC 3` 

Rosa3 5` GGA GCG GGA GAA ATG GAT ATG 3` 

lacZ-F 5` CCA GCT GGC GTA ATA GCG AA 3` 

lacZ-R 5` CGC CCG TTG CAC CAC AGA TG 3` 

Retgeno5 5` CCA ACA GTA GCC TCT GTG TAA CCC C 3` 

Retgeno7 5` GCA GTC TCT CCA TGG ACA TGG TAG 3` 

Retgeno6 5` CGA GTA GAG AAT GGA CTG CCA TCT CCC 3` 

Ret3E 5` ATG AGC CTA TGG GGG GGT GGG CAC 3` 

tauB1 5` CTG GCG GAG GGA ATA AAA AGA T 3` 

tauB2 5` GCT GGC GAA AGG GGG ATG TGC T 3` 

A4 WT-F 5` CAATCCGCTGGATCTAAGTGCCTGTTAGC 3` 

A4WT-R 5` ACCGTTGCAAATCTAGCCAGT 3` 

GFP-F 5` GCA CGA CTT CTT CAA GTC CGC CAT 3` 

GFP-R 5` GCG GAT CTT GAA GTT CAC CTT GAT 3` 
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4.1.5. Cell lines 

HeLa: Human epithelial adenocarcinoma cell line purchased from ATCC. For more 

information see www.atcc.org. 

SK-N-BE2: Human neuroblastoma cell line from Cellzome (www.cellzome.com). 

4.1.6. Media 

4.1.6.1. Media and antibiotics for bacterial culture 

Luria-Bertani (LB) medium 

Bacto-Tryptone  10g 

Bacto-Yeast extract 5g 

NaCl    5g 

Distilled water added to mark 1l. The pH was 7.5. Solution was sterilized by autoclaving and 

stored at RT. 

 

LB plates 

LB media    1l 

Bacto-Agar   15g 

Autoclavde and stored at 4°C. 

 

Antibiotics (1000x stocks) 

Ampicillin    100mg/ml 

Kanamycin monosulfate 50mg/ml 

4.1.6.2. Media and supplements for cell lines 

Hela: DMEM, 10% FBS (1% FBS for starving medium), 1% Glutamine, 1% pen/strep 

 

SK-N-BE2: OptiMEM with Glutamax, 10% ISCS (1%ISCS for starving medium), 1%pen/strep 
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4.1.6.3. Media and reagents for primary cell culture 

Culture of dissociated mouse motor neurons 

Medium M: L15 complete medium without bicarbonate (100 ml) 

L15 medium     90 ml 

Glucose     5 ml 

Penicillin-streptomycin  1 ml 

N2 100X     1 ml 

Conalbumin    1 ml 

Horse serum    2 ml 

After preparation pH was corrected to red-orange colour using dry ice, sterile filtered (0.22 

μm), and stored for up to one month at 4°C. 

 

L15 medium with bicarbonate (250 ml)  

L15 medium    244 ml 

NaHCO3   7.5 % (Gibco)  6.25 ml 

This medium was used to coat the wells. 

 

Complete Neurobasal medium; prepared freshly (50ml) 

NeuroBasalTM (Gibco)    47.5 ml 

Glutamine    125 μl 

Glutamate    50 μl 

β-Mercaptoethanol  50 μl 

Horse serum   500 μl 

B27 supplement   500 μl 

 

BSA 4% (w/v) in L15:  

BSA   20g 

BSA was dissolved in 500 ml of L15 medium. The BSA solution was first dialysed against PBS 

using Spectra/Por membranes (MWCO: 25 000, reference: 132 127, from Spectrum) o/n. The 

membranes were rinsed thoroughly with distilled water before use and dialysed against L15 

medium for 2-3 days. The solution was then filtered and aliquoted (10 ml) and stored at -

20°C. 

 

Dnase I 1 mg/ml in L15; 500 μl aliquots; store at -20°C. A fresh aliquot was always used.  

Glucose 72 mg/ml in L15 (filter); 20 ml aliquots; stored at -20°C. 
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Horse serum 2 ml aliquots; stored at -20°C, and kept  at 4°C for no longer than a month. 

L15 medium 500 ml bottles; stored at 4°C. 

Laminin  1.5 mg/ml in PBS (500X) 50 μl aliquots; stored at  -80°C. 

 Penicillin-streptomycin (5000 μg/ml) 5 ml aliquots; store at -20°C. 

Poly-D,L-ornithine 3mg/ml 50 μl aliquots; stored at -20°C. A fresh aliquot was always used.  

Trypsin (2.5%w/v) 50 μl aliquots; stored at -20°C. 

L-Glutamine 70 μl aliquots; stored at -20°C. 

Conalbumin 0.01% (w/v) 100 mg  were dissolved in 10ml PBS.1 ml aliquots; stored at -20°C. 

B27  500 μl aliquots; store at -20°C. Thawed at 4°C. 

N2 supplement 500 μl aliquots; stored at -20°C. 

Glutamate 25mM in L15, 500 μl aliquots; stored at -20°C. 

2-mercaptoethanol 25mM in L15 500 μl aliquots; stored at  -20°C.  

Optiprep solution  10 ml aliquots; stored at -20°C. 50 ml were taken from the SIGMA bottle 

(60% w/v of iodixanol) and mixed with 450 ml of L15 medium, aliquoted and frozen.This 

aliquot can be stored for up to two weeks at 4°C. The SIGMA bottle can be stored at room 

temperature.  

 

Culture of mouse motor neuron explants  

 

MN culture medium 500ml (modified from Garces et al. 2000, J. Neurosci. 20: 4992)  

Neurobasal medium       450 ml 

B-27 supplement         to 1x from 50x stock 

L-Glutamate (Sigma-Aldrich Nr.G8415)   0.5 mM 

L-Glutamine (Invitrogen Nr. 25030-024)   25 mM 

Penicillin-Streptomycin      to 1x from 100x stock 

(optional: FCS, e.g. Invitrogen Nr. 10270106)  2% 

4.1.7. Buffers and Solutions 

Solutions for cell transfection 

1M CaCl2  

CaCl2·2H2O  2.94g 

Distilled water was added to 20 ml. Sterilized by filtration through a 0.22μm membrane and 

aliquots of 5 ml were stored at -20°C. 

 

2x BES-buffer (2xBBS) 
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50 mM BES   > BES     1.07 g 

280 mM NaCl   > NaCl     1.6 g 

1.5 mM Na2HPO4·2H2O  > Na2HPO4·2H2O  0.027 g 

Dissolved in 90 ml of distilled water. The pH was adjusted with NaOH to 6.96-7.22. The 

optional pH changed according to differences in size and preparation of the plasmid DNA. 

Then the volume was adjusted to 100 ml, sterilized through a 0.22μm membrane, aliquoted 

and stored at -20°C. 

Solutions for agarose gel electrophoresis 

50x TAE 

2M Tris acetate 

50mM EDTA  

 

Gel loading buffer 

Glycerol   25 ml 

50x TAE   1 ml 

Orange G   0.1 g 

H2O    24 ml 

Solutions and buffers for western blot analysis 

Lysis buffer 

50 mM Tris pH 7.5  > 1M Tris pH 7.5  5 ml 

150 mM NaCl    > 5M NaCl   3 ml 

1% Triton   > Triton x100    1 ml  

Distilled water was added to mark 100 ml. Store at 4°C. 

Added freshly to  30 ml: 

Protease inhibitor cocktail tablet (complete) 1 tablet 

500 mM NaF  > NaF   1.05 g in 50 ml H2O 

200 mM NaPPi  > NaPPi   4.461 g in 50 ml H2O 

1 mM vanadate  > 100 mM Na3VO4 300 μl 

 

SDS PAGE separating gel 7.5% (10 ml) 

H2O       4.85 ml 

1.5M Tris pH 8.8, 0.4% SDS  2.6 ml 

30% w/v Acrylamind/bisacrylamid 2.5 ml 
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10% APS       50 μl 

TEMED       5 μl 

Always prepared fresh. 

 

SDS PAGE stacking gel 4% (5 ml) 

H2O        3.05 ml 

1.5M Tris pH 6.8, 0.4% SDS   1.3 ml 

30% w/v Acrylamind/bisacrylamid 0.65 ml 

10% APS       50 μl 

TEMED       5 μl 

 

6x Sample buffer for reducing conditions 

12% SDS    > SDS  3.6 g 

300 mM Tris-HCl, pH 6.8 > 1.5M Tris 6 ml 

600 mM DTT   > DTT  2.77 g 

0.6% BPB    > BPB  0.18 g 

60% Glycerol   > Glycerol 18 ml 

Distilled water was added to 30 ml. Stored in 0.5 ml aliquots at -20°C. 

 

5x Electrophoresis buffer 

Tris base  154.5 g 

Glycine  721 g 

SDS   50 g 

Distilled water was added to mark 10l. Stored at RT. 

 

Protein transfer buffer 

Tris base  3.03 g 

Glycine  14.4 g 

MetOH  200 ml 

Approximately 650 ml of distilled water were added. Mixed to dissolve and made up to a 

final volume of 1l. Stored at 4°C.  

 

Sodium phosphate buffer, pH 7.2 

1M Na2HPO4 60.5 g 

1M NaH2PO4 31.6 g 

2% SDS 

Distilled water was added to mark 1l. Stored at RT. 
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PBS-Tween (PBST) 

1x PBS 

0.1% Tween®20 

Stored at RT. 

 

Blocking solution 

5% BSA  > BSA  2.5 g in 50 ml PBST 

For blocking of first antibodies 0.05% NaN3 was added. 

 

Stripping buffer 

5 mM Sodium Phosphate buffer, pH 7-7.4 

2 mM β-Mercaptoethanol 

2% SDS 

Always prepared freshly for use. 

Solutions for embedding of vibratome sections 

0.1M Acetate buffer, pH 6.5  

1M Sodium acetate  99 ml 

1M Acetic acid   960 μl 

pH adjusted and made up  to a final volume of 1l. Stored at RT. 

 

Embedding solution 

1) Ovalbumin (Sigma, #A-S253)  90 g 

 0.1M Acetate buffer     200 ml 

Albumine was dissolved in acetate buffer (needed stirring o/n) at RT. Then the solution was 

filtered through a gaze and undissolved albumin or air bubbles were removed.  

2) Gelatine     1.5 g 

 0.1M Acetate buffer   100 ml 

Gelatine was heated up in acetate buffer to dissolved. The solution was cooled down to RT 

and 1) and 2) were mixed without producing bubbles. Aliquots of 11 ml were made and 

stored at -20°C. 

Solutions for in situ hybridisation 

Proteinase K, 20mg/ml (w/v)  

Proteinase K 100mg  
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H2O   5 ml 

50μl aliquots stored at -20°C 

 

Formamide deio   

Resin (#142-6425, BioRad)  25 g 

Formamide    500ml  

Stired for 45 min, filtered and stored (50ml aliquots) at -20°C. 

 

Heparin solution, 50mg/ml (w/v) 

Heparin 500mg  

H2O  10 ml 

Stored in 500μl aliquots at -20°C. 

 

4M LiCl2  

LiCl2   169.56g 

H2O   1l 

 

5% Chaps (w/v) 1g  

Chaps (SIGMA C-3023)   0.25 g 

distilled H2O    5 ml 

Always freshly prepared for use. 

 

0.5M EDTA, pH 8.0   

Na2EDTA·2H2O   186.1g  

H2O     700ml  

Adjusted pH with 10N NaOH (~50ml) to 8.0 and made up to a final volume of 1l. 

 

20x SSC, pH4.5  

Sodium Citrate   69.2g 

Citric Acid   13.7g  

NaCl    175g  

Adjusted pH to 4.5, made up a final volume of 1l and stored at RT. 

 

Prehybridisation solution     

50% Formamide deio 

0.2% Tween 20 

0.5% Chaps  
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5mM EDTA pH 8.0 

50μg/ml Heparin  

50μg/ml t-RNA (SIGMA R-5636; Lot 082K9135) 

5x SSC pH4.5 

0.2% Blocking Reagent 

Distilled water was added to mark 50 ml, dissolved with rocking at 70°C and stored at -20°C. 

 

Solution I 

50% Formamide deio 

5x SSC pH4.5 

0.2% Tween 20 

0.5% Chaps 

Distilled water was added to mark 50 ml. Always prepared fresh. 

 

Solution II 

50% Formamide deio 

2x SSC pH4.5 

0.2% Tween 20 

0.1% Chaps 

A final volume of 50 ml was made and always prepared fresh. 

 

Solution III 

2x SSC pH4.5 

0.2% Tween 20 

0.1% Chaps 

Distilled water was added to mark 50 ml and always prepared fresh. 

 

5x Maleic acid buffer (MAB) 

Maleic acid  58g 

NaCl    44g 

Adjusted pH to 7.5: using 25-30 g NaOH pellets and then 5N NaOH. Made up a final volume 

of 1l and stored at 4°C. 

 

MAB-Tween  

1x MAB 

0.1% Tween®20 

Stored at RT. 
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Blocking solution (w/v) 

1x MABT 

0.2% Blocking Reagent (#1096 176, Roche)  

Blocking reagent was dissolved while rocking at 70° (took 4-5 h) and kept on ice. Always 

prepared fresh. 

 

NTMT (200 ml) 

5M NaCl     4ml 

1M Tris-HCl (pH 9.5)  20ml 

1M Mg Cl2     10ml 

Tween®20     200μl 

 

Developing solution (10ml) 

BCIP     11 μl 

NBT     14 μl 

NTMT    10 ml 

Solutions for lacZ stainings 

1M MgCl2  

MgCl2   50.83 g 

H2O    250 ml 

 

Solution A 

0.2% Glutaraldehyde (25%)  

5mM EGTA, pH 7.3 

2mM MgCl2 (1M)  

Mixed in Sodium phosphate buffer and adjusted to pH 7.2. Always prepared fresh. 

 

Solution B 

2mM MgCl2 (1M) 

0.02% Nonidet-P40 

Mixed in Sodium phosphate buffer. 

 

Solution C 

1mg/ml x-Gal (#1161, Bio Vectra) 

4mM Potassium ferrocyanide 
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4mM Potassium ferricyanide 

Dissolved in solution B and preserved from light. Stored at 4°C for not longer than 2 weeks. 

 

BABB 100% 

1 part Benzyl alcohol 

2 parts Benzyl benzoate 

Preserved from light and stored at RT. 

 

BABB 50% 

50% BABB 

50% MetOH 

Preserved from light and stored at RT. 

Solutions for antibody stainings 

Blocking solution 

0.2% Gelatine 

0.5% Tritonx100 

50% NCS 

in PBS. 

 

PGT and TGT buffer 

0.2% Gelatine 

0.5% Tritonx100 

in PBS or TBS, respectively. 

 

Gelvatol mounting medium 

20 g Airvol (Air products chemicals) 

80 ml H2O 

40 ml glycerol 

Optional: 3.37 g DABCO for anti fading property 

Airvol was dissolved in water by stirring 24 h at RT. Glycerol was added and continued 

stirring for 24 h. Undissolved Airvol was removed by centrifugation for 30 min at 12000rpm. 

DABCO was added if medium needed to be anti fading, otherwise aliquoted directly in 15 ml 

tubes and stored at -20°C. 

Solutions and reagents for MN backfills 
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ACSF buffer (4l) 

NaCl    29.68 g 

KCl    0.56 g 

KH2PO4   0.64 g 

MgSO4·7H2O  1.28 g 

CaCl2·2H2O  1.4 g 

NaHCO3   8.4 g 

D-glucose   7.2 g 

Dissolved in the order shown above in distilled water. Made fresh and sure each compound 

was dissolved before adding the next one. Aerated before use with carbogen (95% O2 and 5% 

CO2) at least 15 min. 

 

Dextrantetramethylrhodamine 3000MW, lysine fixable 20 mg/ml in PBS (Molecular Probes, 

#D3308) 

4.1.8. Antibodies 

Primary antibodies 

Table 2 Primary antibodies 

Antibody Species Company Dilution Appl 

anti-Tubulin mouse monoclonal Sigma 1:10000 WB, 

IF 

anti-phospho-Tyrosine mouse monoclonal, clone 

4G10 

Upstate 1to 1000 WB 

anti-EphA4 (anti-Sek) mouse monoclonal   BD Pharmingen 1to 2000 WB 

anti-EphA4 rabbit polyclonal In house 1 to 2000       

2μl 

WB     

IP 

anti-EphA4 (S20) rabbit polyclonal Santa Cruz 1 to 100         

1 to 600 

IF       

IHC 

anti-hFC goat polyclonal R&D Systems 1 to 50 IF       

IHC 

anti-GFP rabbit polyclonal Molecular Probes 1 to 1000 IF 
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anti-GFP mouse monoclonal Acris 1 to 200 IF 

anti-Ret (H300) rabbit polyclonal  Santa Cruz 1 to 50 IHC 

anti-Ret (C19) rabbit polyclonal Santa Cruz 1 to 500 WB 

anti-Ret (C20) rabbit polyclonal Santa Cruz 1 to 500 WB 

anti-Gfrα−1 goat polyclonal R&D Systems 1 to 50 IHC 

anti-GDNF goat polyclonal R&D Systems 1 to 50 IHC 

anti-Neurofilament 160 mouse monoclonal Sigma 1 to 300 IHC 

 

Secondary antibodies 

Table 3 secondary antibodies 

Antibody Species Company Dilution Appl. 

anti-mouse-HRP goat polyclonal Jackson 

ImmunoResearch 

1 to 500         

1 to 5000 

IHC    

WB 

anti-rabbit-HRP goat polyclonal Jackson 

ImmunoResearch 

1 to 5000 WB 

anti-goat-HRP rabbit polyclonal DAKO 1 to 4000 WB 

anti-mouse-Cy2 donkey polyclonal Jackson 

ImmunoResearch 

1 to 300 IF 

anti-mouse-Cy3 donkey polyclonal Jackson 

ImmunoResearch 

1 to 300 IF 

anti-rabbit-488 donkey polyclonal Molecular Probes  1 to 300 IF 

anti-rabbit-Cy3 donkey polyclonal Jackson 

ImmunoResearch 

1 to 300 IF 

anti-hFc-Cy5 donkey polyclonal Jackson 

ImmunoResearch 

1 to 100 IF 

anti-hFc-TxR donkey polyclonal Jackson 

ImmunoResearch 

1 to 100 IF 

Phalloidin-TxR  Invitrogen 1 to 100 IF 
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Phalloidin-488  Molecular Probes 1 to 100 IF 

Phalloidin-634  Molecular Probes 1 to 100 IF 

4.1.9. Mouse lines 

Retlx/lx (conditional Ret knockout) mice were generated by Edgar Kramer (Kramer, 

Knott et al. 2006) and maintained in a C57Bl6/J genetic background with 

contributions of S129/sv and CBA/J from the different Cre lines, Lim1tlz and 

EphA4PLAP transgenic crosses. Deleter-Cre mice were used to obtain Ret null mutants 

(Lallemand, Luria et al. 1998). 

 

EphA4lx/lx mice were generated by Klas Kullander (unpublished) in collaboration 

with the transgenic service of the Max-Planck Institute for Neurobiology. EphA4 

cDNA flanked with loxP sites was inserted into exon 3 of the ephA4 gene. 

Recombination using a deleter-Cre mouse line (PGK-Cre) leads to the loss of protein 

and PGK-EphA4lx/lx mice display the known EphA4 null phenotypes. The mice were 

maintained in a C57Bl6/J background.  

 

EphA4PLAP (EphA4-/-) mice were generated by Philip A. Leighton with a gene trap 

approach (Leighton, Mitchell et al. 2001). This line was used for the analysis of the 

hindlimb phenotype in EphA4 single and Ret/EphA4 double knock out mutants. 

 

Lim1tlz mice were generated by Artur Kania (Kania, Johnson et al. 2000). The mice 

were used to label LMC(l) motor axons in Ret-/- and conditional Ret mutants. 

 

GDNF-/- mice were generated by Mark Moore (Moore, Klein et al. 1996) and embryos 

were kindly prepared and provided by Eric Dessaud. GDNF-/- embryos were used 

for neurofilament stainings and GDNF+/- embryos were used to follow GDNF 

expression by staining for the transgenic lacZ activity. 

 

Hb9-GFP mice were generated by Hynek Wichterle (Wichterle, Lieberam et al. 2002) 

and received from the Jackson Laboratory. For more information see www.jax.org. 

These mice were used to visualize all motor neurons. 
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ROSA26R mice were generated by Philippe Soriano (Soriano 1999). This Cre reporter 

line was maintained in a C57Bl6/J background and used to monitor different Cre 

lines used in this study. 

 

PGK-Cre mice were generated by Yvan Lallemand (Lallemand, Luria et al. 1998). 

The mice were kept heterozygous on a C57Bl6/J background and used to obtain Ret 

null mutants. 

 

Nes-Cre mice were generated by Lyle Zimmerman (Zimmerman, Parr et al. 1994; 

Tronche, Kellendonk et al. 1999) and maintained heterozygous on a C57Bl6/J 

background. These mice were used to remove Ret or EphA4 specifically from the 

nervous system. For experiments, one parent of the intercross was chosen from a Cre 

free pedigree. 

 

Hb9-Cre mice were generated by Xia Yang (Arber, Han et al. 1999; Yang, Arber et al. 

2001) and received from Silvia Arber. These mice were used to remove Ret 

specifically from motor neurons.  

 

Tbx4-Cre mice were generated and kindly provided by Artur Kania (unpublished). 

This Cre is expressed in the developing hindlimb mesenchyme (Khan, Linkhart et al. 

2002) and was used to remove EphA4 selectively from hindlimb mesenchyme. 
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4.2. Methods 

4.2.1. Molecular Biology 

4.2.1.1. Preparation of plasmid DNA 

Plasmid DNA was purified from small-scale (5ml, minipreparation) or from large-

scale (200ml, maxipreparation) bacterial cultures. Single colonies of transformed 

bacteria were picked into LB medium containing 100μg/ml ampicillin or kanamycin 

and grown o/n shacking at 37°C. Harvesting and purification of Mini- and 

Maxipreparation was carried out according to Qiagen protocol, using Qiagen buffers. 

The DNA concentration was measured in a UV spectrometer at 260nm.  

4.2.1.2. Generation and labeling of in situ probes 

Digoxigenin-labeled RNA in situ probes were generated from plasmids containing 

RNA polymerase sites upstream and downstream of cDNA coding for the gene of 

interest. 10 μg of plasmid DNA was digested (3h to o/n at 37°C) with restriction 

enzymes cutting downstream (for sense probe) or upstream (for antisense probe) to 

linearize the plasmid. Following purification of the linearized DNA using Qiagen 

PCR purification kit, 2 μl of the DNA was incubated with 2 μl transcription buffer 

(Roche, in situ probe labeling kit), 2 μl of 0.1M DTT, 2 μl digoxigenin-conjugated 

dNTP`s, 1 μl RNAse inhibitor,  and 1 μl of the specific RNA polymerase in a total 

volume of 20 μl for 3h at 37°C. To precipitate  short RNAs, 10 μl LiCl (4m), 100 μl TE 

and 300 μl of EtOH were added to the mix and incubated for 30 min. at -20°. 

Subsequently, the mix was centrifuged for 20 min. at 4°C. The pellet was washed 

with 70% EtOH and dried on ice. After resuspending in 100 μl TE, aliquots were 

stored at -80°C. For hybridisation 10 -12 μl was used per ml of hybridisation buffer. 
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4.2.1.3. Preparation of competent E.coli 

1 l of LB medium was inoculated with 1:100 from an over night culture of Dh5α cells. 

The bacteria were grown with vigorous shaking at 37°C until the OD reached 0.5 – 

0.8 at 600nm. The flask containing the bacteria was chilled on ice for 30 min. followed 

by 15 min. centrifugation at 4000xg in a chilled centrifuge. The pellet was 

resuspended in 1l of cold water and centrifuged again. This step was repeated with 

0.5l water. Subsequently, the pellet was resuspended in 20 ml of 10% glycerol and 

centrifuged as above. Finally, the bacteria were resuspended in 3 ml of 10% glycerol. 

Aliquots of 50 μl were frozen in liquid nitrogen and stored at -80°C. 

4.2.1.4. Transformation of competent E.coli by electroporation 

50 μl of competent bacteria was thawed on ice and 0.2-2 μl of plasmid DNA was 

added. The mix was transferred into a sterile, pre-chilled 0.2 cm cuvette without 

making bubbles. The gene pulser apparatus was set to 25 μF and 2.5 kV; the pulse 

controller to 200 Ω. After drying the cuvette it was placed into the chamber slide and 

pulsed once. Immediately, 150 μl of LB medium was added to the cells, which were 

then transferred to a reaction tube and shaken for 15 to 60 min. The bacteria were 

then plated on LB plates containing the appropriate antibiotics and grown o/n at 

37°C. 

4.2.1.5. TOPO cloning 

Specific primers were used to amplify exon 12 from the Ret gene by PCR using PFU 

Turbo DNA polymerase (Invitrogen) and cloned into the pCRIITOPO vector 

according to the Invitrogen TOPO TA Cloning manual. Briefly, the TOPO mix 

contained 4 μl linearized DNA (PCR product), 1 μl 1:4 diluted salt solution and 1 μl 

TOPO vector. Following incubation at RT for 15 min. the mix was transformed into 

Dh5α cells. 

Primer 

Retseqex12  5` GTA CTG CCA CTC CCT GTC CAA G 3` 

Retex12BglIIB  5` GTA TCT TCT ACT AGA TCT AGG TCC TCA C 3` 
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PCR program 

1  = 94°C; 1 min 
2  = 94°C; 1 min  
3  = 60°C; 30 sec 
4  = 72°C; 1 min 
5  = Goto 2; 10 times 
6  = 94°C; 1 min 
7  = 60°C; 30 sec 
8  = 68°C; 1 min + 5 sec /cycle 
9  = Goto 6; 20 times 
10  = 72°C; 7 min 
11  = 10°C; for ever 
12 = end 

4.2.1.6. Tail DNA preparation and genotyping using PCR 

PCR analysis was used to determine the genotype of mice and embryos. Tail biopsies (1-

3 mm) were taken from mice at weaning age (~ 3 weeks). For genotyping embryos, the 

yolk sacks were collected and washed with PBS. The biopsies were incubated at 95°C 

three times for 20 min in 100 μl 25mM NaOH/ 0.2mM EDTA (pH 12) and vortexed 

thoroughly between heating steps. Once the samples were well digested, the remaining 

debris was pelleted and the mix neutralized with the addition of 100 μl 40mM Tris-HCl 

(pH 5) and stored at 4°C. 1 μl of DNA was used as template in the PCR reaction. The 

PCR was carried out in a total volume of 50 μl and contained 2.5 mM dNTPs, 50mM 

specific primers to amplify a sequence of genomic DNA specific for a given allele, 1x 

PCR buffer (NEB) and 0.5 μl of Taq polymerase (NEB).  

 

Agarose gel electrophoresis was used to separate PCR products. For a large 2% gel, 6 g 

of agarose (Biomol, # 9012-36-6) was dissolved in 300 ml TAE by heating in the 

microwave and frequent shaking. When the agarose solution was cooled to the touch, 15 

μl of ethidium bromide (Roth, #2218.2) was added to and poured into a gel chamber 

containing combs. Once the gel had solidified the combs were removed and the gel 

submerged in 1x TAE in an electrophoresis chamber. PCR products, RNA probes or 

products of enzymatic digestions were loaded into the wells together with gel loading 

buffer (10:1) and separated according to their size for 20- 40 min at ~ 200V. DNA was 

visualized under UV light using a gel documenting system (BioRad). 
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4.2.2. Cell culture 

4.2.2.1. Propagation and freezing of mammalian cells 

Cells were grown at 37°C with 5% CO2 in growth medium on 100 mm cell culture 

dishes (Falcon). Confluent plates were washed with warm PBS, incubated with 1 ml 

Trypsine/EDTA (Invitrogen) for ~ 2 min and then gently resuspended with new 

medium. Cells were usually seeded in a 1:10 ratio. 

HeLa cells were frozen in 10%DMSO and 90% FBS SK-N-BE2 cells were frozen in 

10% DMSO and 90% iron supplemented calf serum. The cells were kept in the -80 

freezer o/n and were then transferred to the liquid nitrogen tank. To recover cells 

from the liquid nitrogen tank, they were thawed quickly in growth medium, 

pelleted, resuspended in growth medium and seeded. 

4.2.2.2. Transfection of cell lines using calcium phosphate precipitation 

Transient transfection of cells was done using calcium phosphate precipitation. All 

solutions were pre-warmed to RT and plasmid DNA was mixed well and centrifuged 

briefly. Confluent plates of cells were split 1:10 on the evening before transfection. 

For each 100 mm dish, 5-8 μg of plasmid DNA (= x) were mixed with water (601.7 - x 

μl) and 85.8 μl Ca0Cl2 (1M). 678.5 μl BBS (2x) was added and thoroughly vortexed for 

10 sec. The reaction was incubated for 20 min at RT to allow precipitation and then 

gently applied to the cells. 12 – 16h after transfection, the medium was replaced with 

fresh growth medium several times (until precipitates were gone). Transfection 

efficiency was estimated by co-expressing GFP in each plate and checking the 

amount of fluorescent cells under the microscope. 

4.2.2.3. Primary culture of dissociated mouse motor neurons 

Coating: CVSs were treated with nitric acid for 24-36 hrs in order to smooth the 

surface. This was followed by extensive washing with water (two days). They were 

dried on a sheet of Whatman paper and baked o/n at 175°C. Time lapse chambers 

(nunc, #155380) or wells of 4 well plates (Nunc, #176740), containing CVSs, were 

coated under sterile conditions with poly-ornithin (diluted 1:1000 in water from 

stock) for 30 min at RT, air dried for another 30 min and covered with L15 medium 
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(+ bicarbonate) containing 5 μg/ml laminin. The CVSs were kept in the incubator at 

37°C and 7.5% CO2 at least 3 hrs before seeding the neurons. 

 

Spinal cord open book preparation (see Figure 44) Embryos of embryonic day E12.5 

were dissected in ice cold PBS and Hb9-GFP positive mutants were collected in 

Hibernate medium (www.siumed.edu) containing B27 (1:500) on ice. To obtain the 

whole spinal cord without DRGs and meninges, the embryos were decapitated. Then 

the spinal cord was opened along its whole length on the dorsal side and removed in 

one piece with a fast movement (similar to peeling a banana) using fine forceps. For 

one tube five – six spinal cords were pooled in HBSS and chopped in very small 

pieces of similar size.  
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Figure 44  12.5  Spinal cord (SC) open book preparation 
Panel (A) shows three embryos inside the uterus (arrows). (B) Uterus was removed and 
embryos with intact yolk sacs were separated (C). (D-F) Embryos were detached from the 
placenta and the yolk sac was retained for genotyping. (G-I) To isolate the SC, embryos were 
decapitated and turned onto the front side. Then the SC was carefully opened (arrow in H) 
with fine forceps along its whole length. (J-L) The remaining hindbrain was detached from the 
the meninges (arrows in J and K). Finally, the SC was removed by quickly pulling of the 
embryo while holding down the SC on the hindbrain area. 
 

Purification: The spinal cord pieces were transferred from HBSS into 1 ml of HAM-

F10 with a blue tip. The medium was replaced with 1 ml of fresh HAM-F10. 10 μl of 

trypsin (2.5% w/v) was added and the mix was incubated at 37°C for 10 min with 

frequent shaking. In the meantime, for each tube of cells with trypsin, a mix of  0.8 ml 

L15 complete medium without bicarbonate (medium M) + 100 μl BSA (4% w/v in 

L15) + 100 μl DNase (1 mg/ml in L15) and another 15 ml empty tube (transparent) = 

tube B was prepared. 

Next, the medium was removed with a blue tip with the cells remaining in a pellet 

on the bottom of the tube. 1 ml of the fresh prepared L15 with BSA and DNase was 

added to the pellet and agitated vigorously until the tissue fragments were 

dissociated. The tissue fragments were triturated twice (gently) with a blue tip and 

then allowed to settle for two min. The supernatant was collected without taking any 

fragment from the bottom of the tube and transferred into the empty tube B. To each 

tube containing the residual fragments 0.9 ml of L15 complete medium without 

bicarbonate + 100 μl of BSA (4% w/v) + 20 μl of DNase (1 mg/ml in L15 medium) 

was added and triturated eight times with a blue tip. After two min, the supernatant 

was again collected and transferred to tube B. The procedure was repeated once 

more, if there were still tissue fragments remaining.  

A 1.5 - 2 ml BSA (4% w/v) cushion was dispensed to the bottom of each tube 

containing the pooled supernatants using a long Pasteur pipette. The dissociated 

cells were pelleted by centrifugation for 5 min at 1500 rpm and resuspended 4 times 

with a blue tip in 1 ml medium M. Then 5 ml medium M was added and 2 ml 

Optiprep solution (final 6% w/v in L15) was gently added to the bottom of the tube 

using a long Pasteur pipette, creating a sharp interface between the two solutions. 
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The tube was centrifuged for 15 min at 2200 rpm (830 g) at room temperature. To 

reduce the vibration the brakes were switched off. After centrifugation the large 

motor neurons could be detected as a turbid band at the inter phase and were 

collected with a blue tip in 10 ml of medium M. The motor neurons were pelleted 

(always with a BSA cushion) for 5 min at 1500 rpm and resuspended in 4 ml of 

medium M. After the second washing step, the MNs were resuspended in 0.5 ml NB 

complete medium. The amount of neurons was counted on a Malassez slide and then 

multiplied by 1000 to give the noumber of cells per ml. Approximately 3000 neurons 

were seeded per CVS. Three growth factors were added to the NB complete medium 

for the seeding wells: BDNF (1 ng/ml), CNTF (10ng/ml) and GDNF (1 ng/ml). 

4.2.2.4. Explant culture of mouse motor neurons  

Coating of CVSs: Time lapse chambers or commercial (poly-D-lysine) pre-coated 

cover slips (BD, # 354086) were coated under sterile conditions with 50 μg/ml 

laminin. A drop of 30 – 40 μl laminin suspension was added to the surface of one 

CVS, which was then covered with a second CVS creating a uniform film of laminin 

suspension at the interface. The CVS “sandwiches” were incubated in a closed Petri 

dish for four -seven hrs at 37°C or alternatively o/n at 4°C. After incubation, CVSs 

were soaked in a drop of culture medium. The top CVS was removed, any excess 

laminin was washed away by repeatedly dipping into medium and placed coated 

face up into a well of a sterile tissue culture 24 well plate. 

 

Dissection of motor column explants: The spinal cord was dissected in ice cold MN 

culture medium as described for dissociated motor neuron cultures (see also Figure 

44). The whole spinal cords were collected in ice cold MN medium and then pinned 

down (ventral side facing up) with minuiten pines (FST, # 26002-10) in a silicon Petri 

dish (SYLGARD kit, # SYLG184). The excision of the LMC(l) was performed under a 

fluorescent stereomicroscope to visualize Hb9-GFP positive cells within the spinal 

cord (Figure 45). MNs were clearly visible as dense rostro-caudal columns. 2-3 mm 

cutting edge spring scissors were used to cut along the edge of the desired motor 

column. The excised column was then trimmed with a needle blade into small pieces. 

Three - six explants were seeded onto coated cover slips and incubated at 37°C and 

5% CO2.  
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Figure 45  Excision of LMC(l) 
Panel (A) shows a schematic representation of the spinal cord open book preparation. Lateral 
LMC is depicted in blue, medial LMC in green and MMC in brown columns. Top is rostral. (B) 
Open book preparation of an Hb9-GFP positive spinal cord. The boxed area in the lumbar 
region of the SC is enlarged in (C). Dashed box in (C) outlines roughly the area of the whole 
LMC, which can be cut out and dissected into several small explants. 

4.2.2.5. Stimulation of cells and cultures with ephrin ligands and GDNF 

Activation of Eph-receptors was induced with clustered multimeric ephrin ligands. 

Ephrin-Fc fusion proteins (R&D) Fc fragment as control were multimerized for 1 h at 

RT using 1:10 w/v anti-human Fc diluted in PBS. Pre-clustered ephrin-Fc was used 

at a concentration of 1 μg/ml. 

Ret-receptors are endogenously expressed together with Gfrα 1 in SK-N-BE2 cells or 

motor neurons and were stimulated with 50 ng/ml GDNF. For HeLa cells transiently 

expressing Ret but not the co-receptor, Gfrα 1 was applied in a soluble form along 

with GDNF at a concentration of 50 ng/ml.  
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4.2.2.6. Time lapse imaging 

Live-cell imaging of dissociated motor neurons or MN explants was performed using 

a Zeiss Axiovert 200M microscope equipped with a temperature controlled CO2-

incubation chamber. Temperature and humidity was set to 37°C and 5% CO2, 

respectively. Phase contrast mages were acquired using a 40x oil immersion objective 

with a CoolSNAP-fx camera at a rate of one frame per minute. Images were 

processed using MetaMorph software (Visitron, Germany).  

4.2.3. Biochemistry 

4.2.3.1. Cell lysis and immunoprecipitation of proteins 

Lysis: Previously transfected cells grown in 100 mm dishes were placed on ice, 

washed twice with 10 ml cold PBS and incubated on ice with 800 μl lysis buffer. After 

a 20 min incubation, cells were harvested using a blue tip, and transferred into a 

reaction tube and further lysed at 4°C on a rotating wheel for 30 min. Insoluble 

material was removed by centrifugation for 15 min at 13000rpm at 4°C. Spinal cords 

or other tissues were lysed in 3x volume to weight. Protein concentration was 

measured using the DC Protein Assay (BioRad) Supernatants were frozen in liquid 

nitrogen and stored at -80°C or used immediately. 

 

Immunoprecipitation: Equal amount of protein from different TCLs were each 

incubated in a final volume of 1 ml with 2 μl of a specific antibody directed against 

the protein of interest. The samples were left on a rotating wheel at 4°C for two 

hours. 80 μl Protein-A coupled sepharose beads was added to each tube and 

incubated on the rotating wheel for another hour. The supernatants were discarded 

and the beads were washed three times with lysis buffer to remove uncoupled 

proteins from the lysate. 7 μl of 6x SDS sample buffer was added to the pelleted 

beads and the samples denatured by boiling at 95°C for 3 min before loading on a 

polyacrylamide-gel.  
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4.2.3.2. Immunoblotting 

Protein samples obtained as described above were separated by SDS-PAGE on a 

7.5% gel and transferred to a PVDF membrane (Amersham, # RPN303F) by semi-dry 

blotting (1 mA per cm2 for 1 h). PVDF membranes were washed briefly with water, 

and incubated with blocking solution (5% BSA in PBST) for at least 30 min. Primary 

antibody was applied in blocking solution o/n at 4°C while rocking on a shaker. The 

membrane was washed 6 x 5 min with PBST before incubation with the secondary 

antibody for 1 h at RT. After 3 x 10 min PBST washes, the membrane was incubated 

with 1 ml of ECL solution (Santa Cruz) and exposed to X-ray films (Kodak, Biomax) 

to visualize the signal. If subsequent detection of another protein was necessary the 

membrane was incubated with stripping buffer for 30 min at 65°C and re-blotted as 

described above.  

4.2.4. Mouse work 

Mutant and control mice were maintained on a C57Bl6/J genetic background. Tail 

biopsies were taken to determine the genotype and mice were ear-tagged using 4-

digit number ear tags (Hauptner und Herberholz). For experiments with embryos, 

breedings were set up with one male and two females. Vaginal plug checks were 

done starting the next morning after the start of the breeding. The presence plug was 

counted as day 0.5 of pregnancy. Embryos were dissected as described elsewhere in 

the methods section at day E11.5 – E13.5. Neuronal cultures of Hb9-GFP embryos 

were prepared from CD1 females, because of their higher number of embryos per 

litter. Except for Hb9-GFP mutants, which could be selected by fluorescence, yolk sac 

material was used to determine the genotype of embryos. 
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4.2.5. Histology 

4.2.5.1. Vibratome sections 

The caudal part of fixed E11.5 or E12.5 embryos including the hind legs was 

embedded in a gelatine-albumine (gel-alb) mixture in a small plastic chamber (Roth). 

1 ml of gel-alb mix was polymerized with 50 μl of 25 % Glutaraldehyde. The embryo 

was placed on an ex ante prepared thin layer of gel-alb with the tail facing up. The 

embryo bud was dried thoroughly before gently pouring enough polymerizing 

gelatin-albumin mixture to cover the sample. After 5 min at RT the block was 

submersed in PBS and left at 4°C for 1 h to ensure complete polymerization. The gel-

alb block was trimmed and glued to the vibratome platform and placed into the 

vibratome chamber filled with cold PBS. Razor blades (Wilkinson) were washed with 

acetone in order to remove the oil. 40-80 μm sections were cut at low speed and high 

vibration frequency. Vibratome sections were used for in situ hybridizations, 

antibody and lacZ stainings. 

4.2.5.2. Cryostat sections 

The caudal area of PFA fixed embryos was oriented as described for vibratome 

sections on a thin layer of OCT embedding medium (Tissue Tek). More OCT 

medium was poured on top and stored on ice for several hours to harden the 

medium. Sections were cut on a Leica Cryotome with chamber and object 

temperature between -16 to -20°C. Sections were either collected into PBS for staining 

of floating sections or collected on a coated glass slides (Menzel-Gläser, 

#J1800AMNZ). If processed later, sections were stored at -20°C.  

4.2.5.3. Antibody staining 

4.2.5.3.1. Whole mount Neurofilament staining 

For whole mount anti-neurofilament stainings, embryos of embryonic day 11.5 or 

12.5 were collected and fixed overnight in Dent’s solution (1 part DMSO; 4 parts 

methanol) and genotyped from yolk sac DNA. The embryos were bleached in one 

part 30% H2O2, two parts Dent’s Solution for several hours to o/n at RT. Three 
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washing steps (one hour each at RT) in PBS containing 0.2% Gelatin and 1% Triton X-

100 (SIGMA) were followed by incubation with the primary antibody (mouse anti-

NF160) overnight at RT. The antibody was diluted 1:300 in Blocking Serum (100ml 

NCS + 25 ml DMSO). After washing five times in TBS containing 1% Triton X-100 

and 0.2% gelatin for one hour each, the embryos were incubated with the secondary 

antibody (anti-mouse-HRP) o/n at RT. The antibody was diluted 1:500 in Blocking 

Serum. Finally, embryos were washed and developed in diaminobenzidine (DAB) 

working solution. To obtain good pictures, embryos were cleared by going through 

30 min incubations steps in 50% MetOH, 100% MetOH, 50% BABB and finally 100% 

BABB.  

4.2.5.3.2. Staining of tissue sections 

For immunostaining of mouse sections, embryos were collected and fixed for 1-2 h in 

4% PFA and vibratome sectioned (40μm). To inactivate endogenous peroxidase, 

sections were dehydrated in MetOH, incubated in MetOH at -20°C for 2hrs and 

rehydrated including a step with 6% H2O2 treatment. Following three washes with 

PGT (PBS with 0.2% gelatine and 0.5% Triton) nonspecific antibody protein binding 

was blocked in 50% Serum in PGT for 1 h at RT. Primary antibodies were diluted in 

blocking solution and incubated at 4°C o/n. After several washing steps (2 x for 5 

min followed by 2 x for 2 hrs), the slices were incubated with a biotinylated 

secondary antibody. The sections were finally stained using either a Tyramide Signal 

Amplification (TSA, NEN Life Sciences) or the Vectastain ABC Kit (Vector 

Laboratories) with horseradish peroxidase (HRP) or alkaline phosphatase (AP) as 

enzymes. Sections were mounted on slides, dried at RT and covered with Gelvatol 

Mounting medium and sealed with a square glass CVS.  

4.2.5.3.3. Labeling of explant cultures and dissociated motor neurons 

For fixation, a solution of 2% PFA and 15% sucrose in PBS was pre-warmed to 37°C. 

500 μl pre-warmed fixant was added to each well containing 500 μl MN culture 

medium immediately after taking the 24 well dish from the incubator. The sucrose 

provides a gradual displacement of medium by fixant at the bottom of the wells, 

which is important to avoid morphological stress to growth cones. Following 

incubation for 30-45 min at RT, the top phase of the culture well was replaced gently 
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with another 500 ml of warm fixant and incubated 30 min to o/n at 4°C. The explants 

were washed three times for 10 min with PBS and incubated with  primary antibody 

in 1% BSA in PBST (IgG free BSA). Primary antibody incubation for 2 h at RT (e.g. for 

surface markers) or o/n at 4°C was followed by 3-4 washing steps 5 min each. All 

secondary antibodies were diluted in the same blocking solution and incubated for 1-

2 h at RT. Finally, explants were washed two – three times and mounted on a small 

drop of vectashield mounting medium (H-1000, Vector Laboratories) on glass 

microscopy slides.  

4.2.5.4. LacZ staining 

Whole embryos (E8.5 – E12.5) or whole spinal cords of E12.5 embryos were fixed in 

freshly made solution A for 30 min on ice and then washed 3 times 10 min each in 

solution B. Spinal cords and embryos were either incubated directly in solution C for 

staining or embedded in gelatin/albumin and vibratome sectioned into 40-60 μm 

thick slices before incubation in solution C. Staining was developed at RT or 37°C in 

the dark for 1 h, or o/n . Once the staining was complete, the samples were washed 3 

times 5 min in solution B and eventually postfixed in 4% PFA. Clearing, as described 

in the neurofilament staining procedure was used for whole embryos. Spinal cords 

were mounted on glass object slides by using little plasticine feet to avoid squeezing 

of the sample in a mixture of 1:1 glycerol and 4% PFA. Sections were mounted as 

described in the staining of tissue sections procedure.  

4.2.5.5. AP staining  

Placental alkaline phosphatase (PLAP) activity in EphA4PLAP mice was detected by 

AP staining. PLAP positive and control embryos (E11.5) were fixed in 4% PFA for 1 h 

on ice, washed with PBS and stored in 30% sucrose o/n at 4°C. Following 

gelatine/albumine embedding and vibratome sectioning as described before, 

sections were incubated in PBST for 2 h at 65°C to block endogenous AP activity. 

Post fixation for 1 h in 4% PFA was followed by several short washes in PBST and 

incubated in NTMT for 20 min. Finally sections were bathed in NTMT containing 

BCIP and NBT to develop the staining. Sections were mounted as described 

previously in the methods. 
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4.2.5.6. In situ hybridisation  

All solutions used in the dissection or hybridisation procedure of the embryos were 

RNAse free. Whole embryos or spinal cords were dissected in ice cold PBS and fixed 

in 4% PFA o/n or longer (Figure 46). The exact age of the embryos was determined 

by counting the somites. After 3 washes for 5 min each in PBS, embryos were 

embedded in gelatine/albumine and vibratome sectioned or whole spinal cords were 

dissected. Sections and spinal cords were dehydrated through several methanol steps 

(25% MetOH for 5 min, 50% MetOH for 5 min, 75% for 5 min) and stored in 100% 

methanol at -20°C for a minimum of 2 hrs.  

 

 

 

Figure 46  Dissection of E11.5 spinal cords (SC) for ISH 
(A) Embryos were isolated from the uterus, yolk sacs were retained for genotyping and exact 
age was determined by counting the somites before proceding with disection. (B,C) Similar to 
the SC open book preparation at E12.5, embryos were decapitated and the SC was opened 
carefully using fine forceps. The SC was then separated from surrounding tissue and 
remaining dorsal root ganglia (arrow in E) were removed (arrow in F). 
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Day 1: Samples were taken from -20°C and incubated for 1 h at RT in a solution 

made of 80% Met-OH and 20% of a 30% H2O2 solution (makes 6% H2O2 final). 

Rehydration was continued in sequential methanol steps (50% MetOH for 5 min, 25% 

MetOH for 5 min) and sections or spinal cords were washed 3 x 5 min in PBST. To 

remove proteins from RNA, samples were treated with Proteinase K (20 μg/ml in 

PBST) at RT. Time of proteinase K treatment and subsequent post fixation with 4% 

PFA, 0.2% glutaraldehyde was chosen according to tissue (see table below).  

Table 3 Time of Proteinase K treatment  

sample proteinase K treatment  time of post fixation 

Vibratome sections (80 μm) 13 min 40 min 

40-45 somite SC 20 min 1 h 

48-55 somite SC 28 min 1.5 h 

E12.5 SC 35 min 2 h 

E11.5 embryos 45 min 2 h  

E12.5 embryos 1 h 2.5 h 

 

Samples were rinsed twice in PBST and transferred to prehybridisation solution for 1 

h at 70°C with gentle rocking. Dig-labeled RNA probes were diluted in hybridisation 

solution (see probe labeling section), pre-heated to 70°C and incubated with the 

samples o/n at 70°C. 

 

Day 2: Blocking reagent was dissolved in MABT at 70°C for several hours. Samples 

were washed 3 times in solution I at 70°C, followed by three 1 h wash steps in 

solution II at 66°C and three further 1 h washing steps in solution III at 68°C. After 

washing 3 times for 5 min in MABT at RT and twice for 30 min at 70°C to avoid 

background staining, samples were incubated with blocking solution for 1.5 hrs at 

RT. To detect dig-labeled RNA, samples were incubated o/n at 4°C with an anti-dig 

antibody conjugated with alkaline phosphatase (AP).  

 

Day 3: Samples were rinsed and washed with MABT at least 8-10 times for 30 min at 

RT before incubation in NTMT. Following equilibration in NTMT for 10-20 min 
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developing solution was added. After the staining was developed, samples were 

rinsed in PBST and post fixed in 4% PFA. Sections and spinal cords were mounted on 

glass object slides as described before. 

4.2.5.7. MN backfills 

E13.5 embryos were dissected in aerated and preheated (30°C) ACSF at RT in a 

silicon Petri dish. To allow adequate diffusion of ACSF to muscle and neuronal 

tissues, embryos were eviscerated. Small spring scissors (FST, #15000-08) were used 

to open the embryo on the ventral side while pinned down lying on the back. All 

inner organs were gently removed using forceps and small scissors. Then embryos 

were fixed with the forelimbs and hindlimbs stretched to the side using minuiten 

pins. Damage of tissue was minimized to avoid possible labeling of other cells. A 

very fine glass pipette (WPI, #TW150F-6 11G S/N, pulled at heat 282) attached to 

short tubing and a mouth piece was filled with 8 μl rhodaminedextran. The tibial 

nerve of Hb9-GFP positive embryos was targeted using a fluorescent stereo 

microscope. The axons of the nerve were severed and a small amount of dye was 

injected into the ventral limb at the same time to allow the retrograde uptake into the 

cells of the injured axons. To allow the dye to travel to the motor neuron cell bodies, 

embryos were incubated in aerated ACSF at 30°C for 5 – 7 hrs in the dark. Once the 

retrograde labeling was complete, embryos were fixed in 4% PFA for 2 h at 4°C, 

washed in PBS and equilibrated in 30% sucrose o/n. Embryos were embedded and 

sectioned at 60 μm using a Cryostat. Sections were analyzed with a confocal 

microscope.   
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4.2.6. Quantifications 

Anti-neurofilament stained embryos were grouped into three different categories 

depending on the strength of the phenotype: 

E11.5 Cat I (mild):  slightly shorter and/or scattered axons; Cat II (intermediate): 

clearly shorter and/or notably defasciculated axons; Cat III (strong): very short or 

absent and/or extremely defasciculated few axons. 

E12.5 Cat I (mild): the peroneal nerve was slightly thinner and/or the fork-like 

branch at the distal end appeared atrophied; Cat II (intermediate): obvious reduction 

of the peroneal nerve structure in caliber and length and/or loss of the distal end-

branch; E12.5 Cat III (strong): length of the PN was reduced to at least half of the 

original length and distal branches were completely lost. 

 

Quantification of the PN/TN nerve phenotype was done as follows: at E11.5, a 

vertical line was drawn distal to the sciatic plexus at the branch point of the tibial and 

peroneal nerves. The distances between this line and the distal end of each nerve 

were measured using the region measurement tool of the MetaMorph program 

(Visitron). The same tool was used to quantify the thickness of tibial and peroneal 

nerves at E12.5. Landmarks on both nerves were used to ensure that the 

measurement was performed at the same position in each embryo (see Figure 24). 
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