
Application of policy-based techniques
to process-oriented IT service

management

Dissertation

an der

Fakultät für Mathematik, Informatik und Statistik der
Ludwig-Maximilians-Universität München

vorgelegt von

Vitalian Danciu

Tag der Einreichung: 6. Juli 2007
Tag der mündlichen Prüfung: 27. Juli 2007

1. Berichterstatter: Prof. Dr. Heinz-Gerd Hegering
Ludwig-Maximilians-Universität München

2. Berichterstatter: Prof. Dr. Bernhard Neumair
Universität Göttingen

ii

Thanks

A thesis—like any piece of written work—is seldom the result of a
single person’s isolated efforts. Rather, it is influenced by the
culture in the surroundings where it is written and the people who
offer comments and advice on early (and not-so-early) versions of
the work.

I wrote this dissertation while working as a research and teaching
assistant at the chair of Prof. Dr. Heinz-Gerd Hegering, who
supervised my work. I am indebted to Prof. Hegering for his
committed guidance and kind advice during all phases of my work,
as much as for maintaining at his chair an extraordinary work and
learning environment.

I express a heartfelt thanks to Prof. Dr. Bernhard Neumair who
provided important suggestions and who cheerfully put up with
tight time frames for reviewing earlier versions of the text.

During my time in the MNM Team, I have enjoyed the community
and help of my team colleagues, past and present. Undoubtedly,
this thesis has profited greatly from discussions and debates within
the Team.

I am grateful to my family and friends for their support during the
preparation of this thesis and especially for their patience during the
intensive time of writing.

iii

iv

Zusammenfassung

Rechenzentren und Telekommunikationsanbieter sowie die IT-
Abteilungen der meisten größeren Organisationen setzen in im-
mer höherem Maße organisatorische Mittel ein, um den Betrieb
und die Wartung ihrer Infrastrukturen zu koordinieren. Eines der
verstärkt eingesetzten Instrumente ist das prozessorientierte IT-
Dienstmanagement, bei dem IT-Managementprozesse die Abläufe
in der IT-Organisation steuern. Diese können mittels einer der for-
malen Prozessbeschreibungssprachen festgehalten werden, wie sie für
die Dokumentation von Geschäftsprozessen bereits entwickelt wur-
den. Ein derart formalisierter Prozess kann mit Hilfe von Werkzeu-
gen unterstützt werden, wie sie für die Umsetzung von Geschäfts-
prozessen zur Verfügung stehen.

Der Spezialfall eines IT-Managementprozesses weist allerdings
Eigenschaften auf, die ihn von allgemeineren Geschäftsprozessen un-
terscheiden. Seine Prozessaktivitäten werden einerseits von tech-
nisch geschultem Personal durchgeführt, andererseits bieten die
inhärent auf den IT-Betrieb ausgerichteten Aktivitäten ein hohes
Automatisierungspotential. Eine Automatisierung ist nicht nur aus
Kostengründen wünschenswert; auch Konsistenz und Reproduzier-
barkeit der Abläufe wären dadurch in höherem Maße gewährleis-
tet. Dieses Potential kann allerdings nur ausgeschöpft werden,
wenn die technischen Verfahren im IT-Betrieb mit dem Ablauf der
Prozesse eng verbunden werden. Eine halb- oder vollautomatische
Umsetzung von Prozessaktivitäten wird prinzipiell möglich, wenn
die technischen Teilabläufe in der Prozessbeschreibung ausdrücklich
berücksichtigt werden und somit die Voraussetzung für eine in den
regulären Ablauf des Prozesses eingebundene Ausführung von Man-
agementaktionen auf der zu betreibenden Infrastruktur geschaffen
wird.

Die vorliegende Arbeit entwickelt einen Ansatz zur flexiblen Real-
isierung von IT Service Management Prozessen mittels operationaler
Management Policy. Der Ansatz berücksichtigt die Weiterverwen-
dung bereits vorhandener Managementinfrastruktur und verfolgt die
Automatisierung der Prozessausführung. Dabei wird die hohe Fre-
quenz an Änderungen (change) berücksichtigt, der heutige IT Or-
ganisationen unterliegen.

Die Konsistenz und Kosteneffizienz der Prozessrealisierung wird
durch einen musterbasierten Übersetzungsmechanismus erreicht, der

v

detailliert ausgearbeitete Spezifikationen von Prozessen, die in einer
formalen Sprache vorliegen, in Management Policy Regeln überführt.
Da das Übersetzungsverfahren eine Fragmentierung des Prozesses
zur Folge hat, wird dabei auch die Erhaltung des Informationsflusses
im Prozess berücksichtigt.

Die Übersetzungs- und Ausführungskonzepte für Managementprozesse
werden in einer funktionalen Architektur zusammengefasst, deren
Bausteine den einzelnen Bausteinen im Verfahren entsprechen. Die
Umsetzung der Architektur wird exemplarisch anhand eines Man-
agementsystems illustriert, dessen Komponenten teils in Zuge der
vorliegenden Arbeit entstanden, teils gängige Elemente einer Man-
agementinfrastruktur darstellen.

vi

Abstract

In the perpetual quest to reduce operational cost, IT centres as well
as telecommunication providers increasingly shift their IT manage-
ment focus away from the technical plane. The most important goal
today is the alignment of IT operations to the organisational or busi-
ness needs. The instrument of choice to achieve this objective is the
introduction of IT Service Management Processes, intended to gov-
ern the procedures of the IT organisation. The introduction of pro-
cesses draws on the rich assortment of practices and tools already
developed for business processes. In many cases IT management
processes are treated as an additional kind of business processes.
Although this view may be effective to some extent, it fails to ac-
knowledge the special characteristics of processes applicable to IT
management. In contrast to many a business process that is merely
supported by IT, the processes executed to manage IT itself exhibit
a number opportune details: they are executed by personnel with an
affinity to IT, whose object of management, the IT infrastructure,
offers a high automation potential.

This work presents an approach to the flexible realisation of IT Ser-
vice Management Processes by means of management policy. It
takes into account the reuse of existing management infrastructure,
targets the automation of process execution and aims to support
the high rate of change in present IT organisations. To allow consis-
tent and cost effective process realisation a pattern-based translation
mechanism has been devised that transforms detailed, formal pro-
cess specifications into management policy rules in an automated
manner. As contiguous process specifications are fragmented during
the translation procedure, special attention has been given to the
preservation of the information flow within the process.

The projection of the concepts of translation and execution of ma-
nagement processes onto a tool set is concentrated into an architec-
ture encompassing the functional building blocks necessary for the
task. The practical realisation of that architecture is illustrated by
an exemplary management system that includes components spe-
cific to this work, as well as common management infrastructure
elements.

vii

viii

Contents

Contents ix

I. Foundation 1

1. Introduction 5
1.1. Problem statement 10
1.2. Approach Outline . 13
1.3. Subproblems and results 19
1.4. Structure of this work 21

2. Scenarios and requirements analysis 25
2.1. Inter-domain application service management 26

2.1.1. Management processes and tools 26
2.1.2. Roles, relationships, and interfaces 28
2.1.3. Challenges 31

2.2. Grid management 33
2.2.1. Management arrangements 37
2.2.2. Management challenges 38
2.2.3. Summary . 41

2.3. Practical example . 42
2.3.1. Setting . 42
2.3.2. Example process partition 43
2.3.3. Automation of activities 45
2.3.4. Tools . 46
2.3.5. Challenges 47

2.4. Requirements . 47
2.4.1. Requirements catalogue 49
2.4.2. Weighting of requirements 58
2.4.3. Discussion . 59

3. Related work 61
3.1. Reference process frameworks 62

ix

CONTENTS

3.1.1. IT Infrastructure Library 63
3.1.2. Extended Telecom Operations Map 70

3.2. Formalisms for process representation 71
3.2.1. UN/CEFACT and OASIS 71
3.2.2. OMG and BPMI 72
3.2.3. Workflow Management Coalition 73
3.2.4. IDS Scheer 75
3.2.5. Interrelations of process formalisms 75
3.2.6. Process maturity 77
3.2.7. Summary . 78

3.3. Pattern in processes 78
3.4. Policy Fundamentals 80

3.4.1. Policy refinement 81
3.4.2. Policy conflicts 82
3.4.3. Architecture for policy-based management . . 83
3.4.4. Standardisation efforts 84

3.5. Policy Languages 85
3.5.1. Ponder . 85
3.5.2. Rei . 86
3.5.3. PDL . 87
3.5.4. ProPoliS . 87
3.5.5. XACML . 88

3.6. Summary and appraisement 88

II. Elaboration 91

4. Process translation 95
4.1. Analysis of process and policy formalisms 97

4.1.1. Requirements of IT Management processes . 98
4.1.2. Basic elements 98
4.1.3. Assessment of process formalisms 106
4.1.4. Analysis conclusions 113
4.1.5. Requirements for policy formalisms 115
4.1.6. Assessment of policy formalisms 120
4.1.7. Summary of analysis results 127

4.2. Meta-models of process representation 128
4.2.1. Simple meta-model for process definitions . . 129
4.2.2. Target meta-model 129

4.3. Substitution rules . 131
4.3.1. Context-free substitution 132
4.3.2. Context-sensitive substitution 135

x

CONTENTS

4.3.3. Order of application 137
4.4. Methodology for translation 137

4.4.1. Outline . 137
4.4.2. Description of steps 138
4.4.3. Discussion . 142

4.5. Fundamental patterns 142
4.5.1. Basic pattern 143
4.5.2. Condition patterns 144
4.5.3. Synchronisation pattern 149
4.5.4. Discussion . 152

4.6. Detection and translation 153
4.6.1. Fragment discrimination 153
4.6.2. Algorithms 155

4.7. The generating system 161
4.7.1. Elements and transformations 162
4.7.2. Demonstration of totality 166

4.8. Extending the pattern catalogue 167
4.8.1. Pattern substitution 168
4.8.2. Pattern extension mechanism 169

4.9. Translation example 170
4.9.1. Application of the substitution rules 172
4.9.2. Identifying patterns 173
4.9.3. Translation result 175
4.9.4. Optimisation 178

4.10. Summary . 178

5. Process data flow 181
5.1. Preservation of the information flow 182

5.1.1. Data/information items in processes 183
5.1.2. Attaching information specification to patterns 189

5.2. Requirements on information transport 190
5.2.1. Dimensions of process data flow 190
5.2.2. Policy-based process realisation 194

5.3. Realisation of process data flow 195
5.4. Summary . 196

6. Architecture 199
6.1. Management process life-cycle 200

6.1.1. Initial workflow 200
6.1.2. Implementation phase 202
6.1.3. Change and iterative refinement 203
6.1.4. Decommission and retirement 206

xi

CONTENTS

6.2. Functional components 206
6.2.1. Process management station 207
6.2.2. Management policy architecture 209
6.2.3. Process-to-policy translator 210
6.2.4. Facilities for information transport 211
6.2.5. Tools . 213
6.2.6. Abstraction layers 214

6.3. Interoperation . 215
6.3.1. Fundamental interactions 215

6.4. Summary and discussion 218

III. Proof of Concept 221

7. Exemplary design 225
7.1. Components overview 227
7.2. SLPR – A minimal process language 231

7.2.1. Language overview 232
7.2.2. Grammar . 233
7.2.3. SLPR Example 235

7.3. The Process-aware Policy System 238
7.3.1. Language . 238
7.3.2. Components 240

7.4. A facility for information aggregation 243
7.5. Summary . 247

8. Evaluation 249
8.1. Fulfilment of requirements 249
8.2. Issues and hazards 254
8.3. Applicability . 257

IV. Conclusions and Further Work 259

9. Future prospects 263
9.1. Issues for further study 263

9.1.1. Metrics for process detail 263
9.1.2. Security and privacy considerations 264
9.1.3. Independent policy 264

9.2. Applications . 265
9.2.1. Generalisation 265
9.2.2. Bottom-up assessment of tool requirements . 266

xii

CONTENTS

9.2.3. Self-management 266

10.Summary and conclusions 269

List of Figures 273

List of Tables 275

Bibliography 281

ProPoliS Schema 291

SISL Schema 301

Index 305

xiii

CONTENTS

xiv

Part I
Foundation

1

Contents – Part I

1. Introduction 5
1.1. Problem statement 10
1.2. Approach Outline . 13
1.3. Subproblems and results 19
1.4. Structure of this work 21

2. Scenarios and requirements analysis 25
2.1. Inter-domain application service management 26
2.2. Grid management 33
2.3. Practical example . 42
2.4. Requirements . 47

3. Related work 61
3.1. Reference process frameworks 62
3.2. Formalisms for process representation 71
3.3. Pattern in processes 78
3.4. Policy Fundamentals 80
3.5. Policy Languages 85
3.6. Summary and appraisement 88

CONTENTS – PART I

4

Chapter 1
Introduction

S INCE IT services are becoming commodities in recent years,
they are no longer provided within single organisations, or to

single customers: they are bought and sold in an open market sub-
ject to the same criteria as any other product: quality, price, inter-
operability, support and so on. Hence, as with any other product,
the ’manufacturers’ of IT services strive to streamline ’production’
to improve their product while at the same time reducing costs.

As organisations grow, restructure and merge, IT functions must
cope with structural change transparently. Service delivery must
therefore be adapted in such manner, that changes to the structure
or business activities of the organisation are reflected in the ma-
nagement of its supporting IT functions. In order to concentrate
on their core activities, organisations outsource IT functions to ser-
vice providers. In such cases, structural change in an outsourcing
organisation, or alteration of its focus concerns not only the organi-
sation itself, but also the providers delivering IT services. Thus, an
orchestrated effort on behalf of the changing organisation and the
providers is necessary in order to effectively adapt to any change.

At the same time, infrastructure and software technology continues
to evolve at a fast pace to meet the ever growing requirements of cus-
tomers. In consequence, IT operators upgrade their infrastructure
and software base frequently in order to keep in touch with the state
of the art. While evolution in the application domain is driven by
customer demand, it is in turn the driver of the adaption of manage-
ment infrastructure and tools, creating over time a heterogeneous en-
vironment of management facilities. Interoperability between tools
is desired in order to achieve a consistent management view of the
production systems. Great effort must be expended to realise such
interoperability, since coexisting new and legacy components must
be accommodated at the same time.

5

Chapter 1. Introduction

Network

Element

Distributed system

Service

Customer

Busi−
ness

Business−oriented

Technical

Figure 1.1.: Management pyramid

Different management disciplines, depicted in the Management Pyra-
mid in Figure 1.1 (see e.g. [HAN 99, ITU M.3010]) require different
views on the IT infrastructure and the management facilities. The
views differ in the level of abstraction and the amount of detail con-
tained. Obviously, all views refer to the same activities, executed
on the same infrastructure. To keep them consistent, translations
between the views of different disciplines are necessary.

In particular, management goals defined on higher levels of abstrac-Costly
projection of
management
goals

tion must be propagated toward the lower, more concrete levels.
Management paradigms often include their own mechanisms for the
projection of these goals onto operational management. Inherently,
this projection is semantics-bound, since it enriches the management
specification given on a more abstract layer with detail information
necessary to the more concrete layer. Consequently, this refinement
of management must be executed by persons with domain knowl-
edge, thus incurring a large cost. In many cases, such refinement
does not happen in an explicit, coordinated manner. Instead, the
operational management specification is approximated from experi-
ence. Most often it lacks documentation and remains the knowledge
of the small group of people in charge of it.

The implementation and deployment of a management system that
satisfies the requirements of the organisation can be seen as just an-
other projection step. Yet, it introduces the risk of errors and the
problem of validation of the projection. The use of off-shelf manage-
ment products facilitates short deployment time but introduces the
problems of interoperability of the different products. Customised
solutions, on the other hand, are expensive in terms of time as well
as financially.

6

Change in requirements is often reflected by ad-hoc changes to the Management
implementation
targets an
ever-changing
specification.

implementation. The addition of new management tools requires the
implementation of interoperability between the newly added compo-
nent and the installed base of tools. To deal with change in a con-
sistent manner, projection of management goals onto operational
management specification must be repeated for every change. After
that, the modified specification must be realised in the management
implementation. With each iteration, the implementation must be
validated against the modified specification.

In conclusion, the IT management efforts of today struggle to cope Key issues:
diversity;
distribution;
business,
technological
and structural
dynamics.

with frequent structural change in a heterogeneous, distributed en-
vironment. High paced technological and business model evolution,
as well as the introduction of new services and new arising customer
demands impose great challenges that are increasingly difficult to
respond to.

In addition to the efforts expended towards the technical disciplines
of element, network and systems management, an increase in the
attention given to organisational IT management has been noted in
recent years. Probably the most important aspect is the advent of
process-oriented IT Service Management (ITSM). Several best prac-
tices frameworks describe IT management reference processes that
are introduced into today’s IT centres at a quick pace. Their purpose
is to make IT operations and planning repeatable, accountable—and
of course lower their cost.

Increasingly, it is understood that IT operations need to be aligned Process
orientation: an
emerging
aspect in IT
management

to the needs of the “core” business of an organisation. In the busi-
ness domain, processes have been employed for some time in order
to specify and control the business operations of an organisation.
The introduction of defined processes (e.g. business processes for its
core operations) in an organisation implies the modelling of process
activities, the identification of relevant roles and the act of determin-
ing process artefacts (as e.g. input and output of activities). The
execution of thus modelled processes can be supported by means of
workflow management systems that track the execution of process
instances and information systems, e.g. database systems, that store
information relevant to the workflows. This allows some control over
the execution of due tasks by the persons holding the roles specified
in a process. Figure 1.2 shows the hierarchy of management concepts
after inclusion of process-oriented management. As indicated in the
diagram, processes are intended to govern the management proce-

7

Chapter 1. Introduction

dures performed by administrators and supported by a tool set, in
order to fulfil business requirements.

� �� �� �� �

� �� �� �� �
Switch

Database
System���

�
Router

influence

coordinate

rely on

Infrastructure

Management tools

Technical procedures

Management processes

Business requiremenmts

...
manipulate

$

Figure 1.2.: IT management hierarchy

The larger-scale projection of the process-oriented method onto ITBest practices
collections management is being promoted and catalysed by the availability

of reference process frameworks. As sources of “best practices” ,
they provide guidance towards specifying IT management processes.
They propose process structure, including the division of IT opera-
tions into processes and activities; they define roles associated with
these processes and their activities; and they describe generic in-
terfaces between processes, as well as artefacts of their activities.

Being targeted at a broad audience with quite varying IT manage-Process
customisation ment requirements, the best practices frameworks are inherently

kept generic and adaptable. They need to be tailored to the re-
alities of the IT organisation applying them, as shown in Figure 1.3.
In particular, an IT organisation that customises reference processes
needs to decide which processes to implement, how to populate the
roles specified in the reference, how to provide tool support for pro-
cess execution and so on. This effort produces a set of detailed IT

8

requirements
Business

Reference
processes

Workflow
definition

Model
IT managment process

Implement
workflow

Figure 1.3.: Creation of an IT management process
Bird’s eye view: Creation of an IT management process

management process definitions that the IT organisation plans to
deploy.

Being part of a fairly new concept in the IT domain, such processes High potential
for automationtend to be treated and implemented like any other business process.

In order to achieve the goals that motivate the introduction of ma-
nagement processes in the first place, the differentiation between the
characteristics of IT management processes and “other” processes is
compelling. Two obvious, generic features of IT management pro-
cesses can be identified. First, they focus on planning and operation
of their management targets: IT infrastructures and services. Sec-
ond, they are executed by personnel that is knowledgeable in the
field of IT.

These features suggest a high potential for automation in process-
oriented IT management, if only the operational procedures executed
within process activities can be integrated, seamlessly if possible,
into the management workflows. To fully exploit the benefits of Integration

with technical
IT
management

process-oriented management, its integration with technical manage-
ment procedures is a necessity; otherwise, the decisions and actions
defined within process activities will have to be manually mapped
onto technical management actions again and again. The implied
labour cost of such mappings will be supplemented by susceptibility
to (human) error and delays.

9

Chapter 1. Introduction

1.1. Problem statement

The integration of technical and process-level management faces the
challenges posed to technical management disciplines as well: they
are introduced as a consequence of linking the high-level manage-
ment workflows to technical management tasks. It is therefore neces-
sary to combine the process-level management with techniques that
address the technical issues present in operational management and
provide support for the execution of the processes themselves at the
same time.

Today, the introduction and implementation of process-oriented ma-Process
support tools
evolve

nagement techniques still maintains a certain degree of novelty. The
dedication to process-oriented management exhibited by many or-
ganisations has already resulted in development of tools and tool
sets for IT management process support. As these tools evolve and
become entrenched in the market it is probable that the heterogene-
ity found in current systems and network management tools will be-
come an issue with tools for process support. In addition to different
API and data format definitions the reliance on different reference
frameworks, different versions of those frameworks as well as diver-
gent interpretations and levels of compliance will pose problems for
the implementation of IT management processes. In essence, this
work addresses the two challenges sketched above:

� to integrate process-oriented management with the existing pro-
cedures of technical IT management; and

� to address the heterogeneity of tools emerging in the domain of
process-oriented management.

To address the coupling of technical and process-oriented manage-
ment against the background of a diverse process support landscape,
several aspects must be considered. Figure 1.4 illustrates the dimen-
sion space that envelops the management challenges.

IT management process Different processes have different affinity
to technical IT management procedures. Current reference
process frameworks specify operational, lower level processes
that can be found to have greater potential for automation
than the higher-level, tactical and strategic processes [Bren 06].
The type of process—whether it was derived from a reference
framework, or defined without their use—has, in consequence,
an impact on the degree of attainable automation support.

10

1.1. Problem statement

structure

Organisational Management

disciplines

toolsmanagement
NetworkSystem &

Service

management

tools

Processlife−cycle

Interface type

ITSM ProcessFormalisms

Figure 1.4.: Dimension space of management challenges

Management discipline Current frameworks focus on reference pro-
cesses for “service management”. They leverage the concept
of service in order to direct management activity towards the
provisioning and operation of entities chargeable to customers.
In fact, the same frameworks provide reference for activities in
the disciplines of application and networks/systems manage-
ment as well. Process-orientation has been applied in business
management for some time, though this discipline is out of the
scope of this work. In summary, the approach must consider
several of the management disciplines shown in Figure 1.1.

Process life-cycle The existence of any IT management process can
be described along a life-cycle. Beginning with its design, a
process definition (or workflow) traverses several states, in-
cluding being deployed, executed, and retired, as shown in
Figure 1.5. Process execution and automation support must

11

Chapter 1. Introduction

retirement

execution

changerefinement

deployment

design

Figure 1.5.: The life-cycle of an IT management process definition

take into account the state of a process along this life-cycle. In
particular, change administered to a process must be reflected.

Service management tools In most cases, process execution will be
supported by software tools. The nature of these tools, as de-
termined by their feature set, vendor, and capabilities impact
process automation—and in some cases limit process design.

Interface types To support the operations of an entire organisation,
many tools are typically deployed, that not only differ in scope
and feature set, but also in the type of their interfaces, e.g.,
they may use different communication middleware and differ-
ent data formats.

System & Network management tools Process activities may include
automatable, technical management procedures that are sup-
ported by specific management tools. To interface process ex-
ecution with tools for technical management, the capabilities
and interfaces of such tools must be taken into account.

12

1.2. Approach Outline

Organisational structure IT centres serve organisations that are in-
creasingly flexible in terms of geographical distribution and
intra-organisational divisions. Organisational change stresses
even well-prepared IT processes by forcing re-validation of the
assumptions used for their definition. Hence, the structure
and dynamics in an organisation generates requirements on
the handling of IT management processes.

Formalisms Processes may be documented in one of the existing
formal workflow languages in order to allow execution and au-
tomation support. These formalisms differ in scope and ex-
pressive power. Hence, the choice of formalism for process
representation may support or limit the process’s potential for
automated execution.

From the discussion of these dimensions it appears obvious that ma-
nagement systems should be constructed such, that, beside being
flexible they take into account the management processes, as well as
automatable routine procedures.

1.2. Approach Outline

One management strategy that appears flexible enough to face these
challenges is found in the specification of management policy. In
Policy-based Management (PbM) small, self-contained rules can be
specified in order to influence the state and behaviour of a system.
As a stand-alone approach, policy-based management has not been
very successful, although conceptually it can greatly ease manage-
ment endeavours at multiple levels of abstraction. The flexibility of
management policy rules is supplemented by the fairly simple execu-
tion model. Grouping and abstraction mechanisms such as role and
domain definitions can be easily supported, and the principle of ma-
nagement by means of rules is applicable to virtually any deployment
environment.

The basic approach of this work consists in the representation of Process
execution by
means of
management
policy

IT management processes by means of management policy rules. As
suggested in Figure 1.6, the approach provides a path to policy-based
process execution (i.e. automation), while bypassing the encum-
brances (see Section 3.4) that have weighed down pure policy-based
management.

13

Chapter 1. Introduction

Technical
aspects

Business
aspects

Le
ve

l o
f a

bs
tra

ct
io

n

Le
ve

l o
f d

et
ai

l

Customised process specification

Reference process

Executable process

High−level policy

Functional policy

Operational policy

Approach
refinement

refinementspecialisation

realisation

Figure 1.6.: Approach rationale

Given a certain level of detail in process specifications, technical
management procedures can be integrated into the process execu-
tion. As a side-effect, the approach allows the coexistence of process-
oriented management and policy-based management in order to com-
bine the benefits delivered by each of them. The policy-based repre-
sentation of management processes is attained by generating policy
rules from the process specification. Rule generation is achieved by
means of translation patterns developed in this thesis.

The remainder of this section sketches the core idea of and the idea
behind this work. In particular, it outlines the two topics central
to this thesis and highlights the issues to be dealt with. After dis-
cussing how the trend towards process-orientation delivers manage-
ment specification for an increasing number of organisations, we fo-
cus on how implementation of processes can be realized by employing
policy-based management.

Leveraging the success of process orientation

In recent time, the benefits of process oriented management haveOrganisations
increasingly
model their
management
processes.

become apparent to more and more organisations. These, be they
corporations, government agencies or universities, strive to improve
service level and at the same time cut costs. Experience shows that
these goals can be achieved simultaneously by modelling, document-
ing and deploying IT management processes. Cost savings are ex-
perienced when training employees since the process documentation
can be used as a reference. Also, cost savings result from less service

14

1.2. Approach Outline

down-time, since well-defined processes ensure timely, orchestrated
response to incidents in addition to more organised efforts in service
planning and deployment.

In addition, certifications are available for organisations truly ad-
hering to process reference standards. Process frameworks are avail-
able and have a high acceptance. Prominent examples include the
IT Infrastructure Library (ITIL), a general process framework and
the Enhanced Telecom Operations Map (eTOM), which is targeted
primarily at telecom providers. Both standards (see Section 3.1)
constitute collections of best practices. To be applicable to various
organisations, the process definitions are generic—in the case of the
ITIL they are even textual, abstaining from formal means.

Therefore, organisations customise the process definitions found in Generic
standards →
process
customisation

the frameworks to closely match the scope of their fields of activity
and organisational structure. The standards provide an environment
for this adaptation and customisation by defining different abstrac-
tion levels for processes; e.g. eTOM specifies strategic, tactical and
operational processes to differentiate between different levels of de-
tail. Operational processes are on the most concrete level of the
hierarchy. They specify the management processes of an organi-
sation in detail and constitute a representation of IT management
adapted to the needs of the organisation. If implemented correctly,
customised operational processes deliver “management the way the
organisation wants it”.

However, process implementation is not a trivial task – especially in Process
implementation
and change are
problematic.

the context of large organisations. Most often, a management tool
suite is adapted to fit the process requirements. Alternatively, tools
are evaluated and somehow integrated in a suite that satisfies the
process requirements. These approaches obviously constitute com-
promises between a faithful implementation of the processes defined
and an adequate level of automation, as well as fast deployment. In
addition, changes in strategy or redefinition of business goals often
result in change to management processes. Therefore, after remod-
elling the relevant process parts, the changes have to be reflected in
the implementation of the tool set. This introduces a high imple-
mentation and maintenance overhead for the deployed management
processes.

15

Chapter 1. Introduction

In conclusion, from an integrated management point of view, the
specification of operational processes constitutes merely a resource.
Substantial additional work is necessary until practical deployment
becomes effective and efficient.

Idea

Since management processes are actually defined and customised,
they can serve as a source of detailed management specification.
From operational management process definitions, operational poli-
cies can be derived by translating the representation of processes to
policy sets. By automating this translation, the effort expended to-
wards implementation and change in management can be minimised.

PDP PDP

PEP
PEP

Domain A

PEP

Domain Z

D
et

ai
l

do
main

Adm
ini

str
. Specification Implementation Operation

...

Management
requirements

processes
operational

database
Parts & Policies

...

definitions
role/domain

entity
definitions

operational
policies

additional
policies

Figure 1.7.: Phases of process-to-policy translation

An overview of the approach is depicted in Figure 1.7. From the cus-
tomisation of management processes (leftmost box in the figure), en-
tity, role and domain definitions relevant to the processes are derived.
The most detailed form of the processes is translated into operational
policy sets stored in a policy repository. The policies generated in
this way can be enforced using a PbM architecture (rightmost box
in the figure) consisting canonically of the aforementioned reposi-
tory, policy decision points (PDP) that decide which management
actions are to be executed, and policy enforcement points (PEP).
These are in principle agents designed to execute management ac-
tions on the resources targeted by the policies. Distribution of this
basic architecture can be employed to account for requirements from
organisational structure.

16

1.2. Approach Outline

Overview of process-to-policy translation

The conceptual and practical realisation of the approach does raise Evaluation of
languagesa number of issues. As a prerequisite, formal representations of pro-

cesses as well as of policies need to be evaluated, in order to find a
a common semantic mapping for translation. In particular, the ex-
pressiveness of a process language and that of a policy language must
allow mapping of process expressions onto one or more policy expres-
sions. Existing formalisms for processes and policies are presented
in Sections 3.2 and 3.5. Analysis of these formalisms in Section 4.1.2
yields common, basic formal elements that are instrumental to auto-
mated translation. Once the necessary expressiveness of languages
has been ascertained, a source language for process description as
well as a target policy language are selected. Exemplarily, these are
used to illustrate the subsequently described concepts.

A pattern based approach is used for deriving policies from pro- Pattern based
translation

myEventN

myAction()

...

Translation

policy {
event { }
action { myAction()

myEvent1,...,myEventN
}

}

Process1

myEvent1

Figure 1.8.: Simple example of pattern translation

cesses. A catalogue of process patterns pertaining to control flow
and transitions is presented in Sections 4.5. Given a formal process
specification, these patterns are matched within that specification.
When a pattern matches a process fragment, policies can be gener-
ated from that fragment, as described in Section 4.6.2.

17

Chapter 1. Introduction

Every match instance yields a number of policies that are generated
from the the process partition. To illustrate the principle, Figure 1.8
shows a very simple pattern as an UML activity diagram, and the
policy generated from it in a generic policy notation. Several events
expected within the process (myEvent1 . . .myEventN) trigger an ac-
tivity within the process (myAction()). Provided a policy formalism
that supports multiple triggering events for a policy (please refer to
Section 3.5 for a survey of policy languages), the single policy shown
in the lower box in the diagram could be generated from the pattern
instance.

In general, process activities will expect input and generate output,Event-based
data flow so that the output of one process activity may be used as input for

another. Additionally, activities are performed by, or on account of,
roles and affect entities (e.g. infrastructure resources) targeted by
the activity. Normally, policies are executed in parallel and indepen-
dently of other policies’ execution. Hence, a policy set representing
a process partition (by having been derived from that process parti-
tion’s formal specification) needs to be provided in a way to receive
that process fragment’s input and deliver the output accordingly.
An elegant solution to achieve this behaviour is achieved by exploit-
ing message-based transport of necessary data. Since most policy
implementations rely on events to trigger policies, input data can be
transmitted along with the triggering event. In the same manner,
output data can be released by having a policy generate an event in
addition to executing the specified action. These rich events differ
from system traps and other events readily generated by the in-
frastructure, in that they transport aggregated information. This
requires a facility that can handle messages carrying payload of dif-
ferent types and sizes. A prerequisite for such a facility are concepts
for correlation and aggregation of information items into the rich
events needed for process execution.

Concurrent approaches

At the time of this writing, the community around process-oriented
management is quite active, in particular with respect to the de-
sign of architectures and tools. As process frameworks attempt to
be generic, a certain amount of effort is necessary to adapt OSS
tools to local organisational needs (e.g. interfaces to existing tools,
management functions, process flow control).

18

1.3. Subproblems and results

The functionality required to implement the procedures within ma- Organisations’
specifics
determine tool
functionality

nagement process activities depends on the specific needs of an or-
ganisation and varies accordingly. Given a fast pace of change, ar-
chitecture and framework designs must exhibit a high degree of flex-
ibility. Newer design ideas such as Service Oriented Architectures
(SOA) address this issue by incorporating change in their design
philosophy. Still, modification of OSS tools’ behaviour in response
to change in the management processes or administrative procedures
incur cost and sources of faults.

One approach addressing the latter pursues the derivation of tool re- Tools can be
designed
according to
best practice
collections

quirements from best practices collections, specifically the ITIL (see
[Bren 07]). Thus, it promises to determine OSS component types
for the reference processes regarded. Hence, it focuses on support
of processes derived from a specific process framework. Automation
of management procedures within such processes is possible to the
extent that such procedures are described in the process framework.

An approach targeting process-oriented accounting realised with ma-
nagement policy is found in [Radi 02d, Radi 03]. The flexibility of
management policy for the realisation of management processes was
leveraged in this work, while accepting the cost of manually deriving
operational policy expressions.

1.3. Subproblems and results

A number of issues must be resolved in order to map process control
and data flow to policy based execution of processes. Prerequisite
issues concern process and policy representation, as well as concepts
for translation of process-equivalent policies. This section gives a
short description to each subproblem together with the conclusions
and results that ensue from their treatment in this work.

Determination of requirements on process specification. Process Criteria for
process
specifications

specifications are created by persons with domain knowledge. While
processes can be described at different levels of abstraction, the most
interesting case is that of low-level, operational process specification.
Such management processes can be automated if their specification
contains sufficient details about the process. The required level of
detail is specified in a list of criteria that can be compared to the

19

Chapter 1. Introduction

expressiveness of existing process description formalisms or used to
extends such formalisms.

Determination of required expressive power. In order to be trans-Analysis of
formalisms lated between, management policy and process formalisms must have

equivalent expressive power, or have common element subsets with
equivalent expressive power. To determine these elements and as-
certain semantic equivalence of the elements without limiting the
approach to single languages:

• Common process formalisms as well as policy languages/for-
malisms are analysed and assessed.

• The expressive power of the language elements in both groups
is determined.

• Common semantic elements of two groups (process and policy
formalisms) are identified.

• The largest possible common subset of semantic elements of
both formalism classes allowing applicability of the approach
with the largest number of languages is determined.

This element subset lays the foundation for the translation schemes
presented in this thesis.

Realisation of process control flow using management policy WhileMapping
process
partitions to
policy rules

processes are per se procedural, policies constitute rules that are ex-
ecuted in parallel, and with very little execution context. A mapping
of process control flow onto a set of policies without loss of informa-
tion requires

• examination of basic procedural constructs that are executable
with little or no execution context,

• specification of process patterns that can be detected in process
definitions,

• translation sets for process patterns, allowing automated gen-
eration of management policy rules from process parts.

Realisation of process data flow As policy execution is easily dis-
tributable and parallelisable as it typically does not require to keep

20

1.4. Structure of this work

or set state between execution of single rules. When seeking to im-
plement an IT management process by means of management policy
rules, however, some of the process’s activities will require that pro-
cess state be kept. In addition, parallel execution must be suppressed

Event/message-
based data
flow

in some cases. For this reason, an event-based approach for process
data flow is developed in this work that

• transports complex data structures, as opposed to simple named
events

• couples processes in different administrative domains.

1.4. Structure of this work

The greater part of this work is divided into three main parts: Foun-
dation, Elaboration and Proof of Concept. Figure 1.9 shows the
conceptual workflow mapped onto the structure of the thesis.

After introducing the issues at hand in this chapter, the Founda-
tion part presents scenarios (Chapter 2) that illustrate the problems
by example. Analysis of the scenarios yields a catalogue of require-
ments (Section 2.4) that are used as a benchmark of discussed work
throughout the thesis. This work contacts two different areas of ma-
nagement research, both of which are represented by a vast amount
of background work. While some requirements are found addressed
in the related work presented in Chapter 3, others are addressed by
original work presented in the second part of the thesis. An a-priori,
informal summary of the contribution has been given in Section 1.2.

The second part, Elaboration, contains the in-depth treatment
of the core contributions of the thesis. Chapter 4 deals with con-
trol flow. It analyses process and policy formalisms, to determine
a common ground necessary for the automated derivation of poli-
cies from formal process specifications. After outlining a method
for translation, a pattern catalogue is presented that constitutes the
fundament for the pattern-based process-to-policy translation mech-
anism. In contrast, Chapter 5 concerns itself with the control flow
in policy-based execution of management processes. Based on the
concepts developed in these chapters an architecture for their im-
plementation is described in Chapter 6. It includes classic elements
of policy based management architectures, as well as the building

21

Chapter 1. Introduction

3 State−of−the−Art

4 Process translation

5 Data flow

1 Introduction 2 Scenarios

6 Architecture

8 Evaluation7 Exemplary design

9 Future prospects 10 Conclusion

Process formalisms
and frameworks

Policy languages
and architecture

Analyse features of
process formalisms of policy languages

Analyse features

Develop
translation mechanism catalogue

Pattern

Cadidate policy
languages

Review
related work

catalogue
RequirementsAnalyse scenarios

Management
scenarios

Cadidate policy
languages

Analyse data flow
in mgmt. processes

process data flow
Concepts for

Architecture for
policy−based process
implementation and

execution

Combine data and

into an architecture
control flow concepts

Examine
results

Instantiate
architecture

framework
Process execution

Summarise
for future research

Identify topics
application domains
Remaining issues,

Existing process
execution approaches

Problem
statement

Requirements
for data flow

unsolved issues
Assessment,

II
I

IV
I

II
Pr

oo
f o

f
C

on
ce

pt
C

on
cl

us
io

n
E

la
bo

ra
tio

n
Fo

un
da

tio
n

Figure 1.9.: Overview of this work

22

1.4. Structure of this work

blocks necessary for the assessment of policy parts as well as the
generation of policies.

To validate the approach, the Proof of Concept part discusses
the prototypical realisation of the concepts developed in the second
Part. Chapter 7 instantiates the architecture proposed in Chapter 6,
which yields a design for an exemplary organisation of a management
system. In this context, the software components developed in this
work are discussed. Finally, Chapter 8 examines the applicability of
the concepts developed in this thesis against the background of the
requirements catalogue given in Section 2.4.

The final part of this work points out topics of future work that are
related to this thesis in Chapter 9 before concluding with a summary
in Chapter 10.

23

Chapter 1. Introduction

24

Chapter 2
Scenarios and requirements analysis

A N APPROACH in the domain of IT management should be
aligned to needs and desiderata in the practitioners’ domain.

Therefore, the applicability of the approach presented in this thesis
is asserted by relating the developed concepts to realistic manage-
ment scenarios. The scenarios discussed in this chapter are either
derived from real-life projects, or constitute common management
settings found in large organisations. The scenarios are described Management

challengesand analysed to identify the management challenges presented in
Sections 2.1.3 and 2.2.2. The process automation scheme developed
in this thesis aims to support IT organisations in coping with such
management challenges. To illustrate their manifestation in an op-
erational process, Section 2.3 discusses an exemplary process and
highlights the projection of management issues (that were extracted
from the scenarios) onto its execution.

The challenges identified in the scenarios result in requirements on Requirements
on the
approach

the process-to-policy translation procedure developed in this work,
as well as on the overall management architecture employed to re-
alise the policy-based execution of processes. The requirements are
discussed, weighted and categorised in Section 2.4. They serve as
a guideline and a benchmark. In consequence, they are referred to
throughout the thesis, and they are revisited in Chapter 8, where
the degree of their fulfilment is assessed.

The scenarios are intended to plausibly illustrate the issues arising Broad scope

from the integration of process-oriented management with technical
management. They have deliberately been selected to originate from
two different settings—commercial ASP and Grid computing—so
that management challenges in a broader scope could be gathered
for the requirements analysis. The purpose of this selection is to
foreclose an all too narrow range of applicability in the translation

25

Chapter 2. Scenarios and requirements analysis

and policy-based process execution schemes developed in the second
part of this thesis.

2.1. Inter-domain application service management

This first scenario describes the situation of a provider of application
services, from an IT management point of view. An outline of the
provider’s operations is given, before focusing on her management in-
frastructure, roles and interfaces, within and outside the provider’s
administrative domain. The assessment of these key characteris-
tics allows us to determine the management issues faced by the a
provider; they are summarised in Section 2.1.3.

This type of scenario is common, as more and more organisations
rely on an Application Service Provider (ASP) to host and operate
their business applications. This outsourcing strategy allows the
organisation in the customer role to focus on its core operations. The
burden of operating and managing application services is transferred
to the provider, and the cost for application usage is predictable for
the customer. An ASP will typically operate different applications
for multiple customers.

Consider the situation depicted in Figure 2.1. An ASP hosts a num-
ber of business applications for her customers (a single customer is
shown exemplarily in the figure). To be able to provide service, the
ASP organisation operates and maintains an IT infrastructure. A
network and a server farm, as well as system and application software
are part of this infrastructure.

A customer may access the service by means of a client applica-Customer-side
components tion. In our scenario, this is a common web browser; several ver-

sions of popular browser applications have been tested to work with
the web-services the customer subscribes to. Customers are allowed
to perform simple, predefined management actions (e.g. to allocate
resources) themselves, using a management tool.

2.1.1. Management processes and tools

As customary, the contract between the ASP and her customers in-Outsourcing of
Incident
Management
and Service
Desk

cludes telephone and email support for the customer organisation’s
employees. The support is to be claimed by means of a Single Point

26

2.1. Inter-domain application service management

In
fra

st
ru

ct
ur

e

agent

console / ASP

application

Application

Mgmt System

Mgmt. system

Application

mgmt. application

Change
Management

��

Problem
Management

Incident
Management

Provider Customer

Provider

S
er

vi
ce

S
er

vi
ce

Customer

sa
tio

n
O

rg
an

i−
R

ol
e

To
ol

s
&

 r
es

ou
rc

es
IT

 M
an

ag
em

en
t

P
ro

ce
ss

es

Call Centre
Provider

Application Service
Provider Customers

Application Service

Management

Management

Client

Ticketing

Network

Application

Ticketing

Workflow

Figure 2.1.: ASP scenario

Of Contact (SPOC) provided by the ASP’s IT Service Desk. How-
ever, the ASP lacks the resources to operate a service desk by her-
self: the number of customers varies, and the number of incidents
reported (that require intervention) is seldom uniformly distributed
over time. To control cost, the ASP decides to outsource her in-
cident management to an offshore call centre provider that offers
application-specific telephone-based support.

The ASP has established Change and Problem Management pro-
cesses. These processes are implemented, maintained and executed
within the ASP’s IT organisation. They are concerned with the pre-
vention and solution of problems, and with the controlled selection
and execution of changes to the infrastructure (see Section 3.1.1).

The problem management process of the ASP is aimed at reducing Problem
Managementthe number of incidents, and, hopefully, reducing the fees from the

outsourced service desk. Frequently encountered incident types are
diagnosed, and a permanent solution is devised, if possible. To track
the problems, the problem management staff of the ASP’s uses a
simple ticketing system.

The ASPs’ Change Management process is designed to ensure safe Change
Management

27

Chapter 2. Scenarios and requirements analysis

change procedures. In particular, it is important that changes do not
incur unplanned service outages. The change management process is
supported by a workflow management application that ensures that
the change management activities are carried out properly.

To manage applications running on behalf of customers, the ASP’s
technical staff employs a customised application management utility.
In addition, the state and load of network links and elements is
monitored and set by means of a network management system. A
management agent installed on the customer’s systems facilitates
monitoring of services with regard to availability and quality.

2.1.2. Roles, relationships, and interfaces

The relationships between the ASP, her customer and the outsourcerRoles according
to the MNM
Service Model

determine, in part, the requirements on IT management. The partic-
ipants in Figure 2.1 form a value chain that provides an application
service to the ASP’s customer. Their roles can be classified roughly
according to the MNM Service Model [GHKR 01], yielding a two-
level nesting of services. The bars in the Role part of the figure
indicate the roles assigned to a participant. This scenario focuses
on the management needs of the ASP, however the remaining two
participants define these management needs in part.

Customer The customer organisation subscribes to services pro-
vided by the ASP. The application service provisioning, as well as
its implementation is hidden from the customer; instead she is pre-
sented with a Service Access Point (SAP) accessible through the
client application, and with the management console mentioned in
the beginning of this section. Characteristics and quality of the ser-
vice are negotiated exclusively by ASP and customer1. As part of
the service, the customer is offered support from the ASP’s service
desk under the operational stipulation that the service desk shall be
the single point of contact for the application service users.

Call centre outsourcer The call centre outsourcer processes calls
from the ASP’s customer. Even though it interacts with members

1Note that, while the application service customer may provide her own ser-
vices to her own customer (relying on the ASP), this provisioning is not
visible to the other two participants (ASP and CC provider), and therefore
irrelevant to the scenario.

28

2.1. Inter-domain application service management

of the APS’s customer’s organisation, it does so on account of the
ASP and charges the latter for the service provided. Incidents and
service requests that the service desk cannot handle need to be trans-
ferred to the ASP. The outsourcer provides the data in the export
format of its ticketing tool, to be imported in the tool-set of the
ASP. As the call centre is the SPOC to the ASP’s customers, it co-
ordinates the handling of incidents and provides information to the
callers. Hence, records of escalated and subsequently resolved inci-
dents must be transferred back to the call centre for final processing
(e.g. notification of users).

Application Service Provider The ASP is in both service provider The ASP has
two roles with
corresponding
views

and customer roles. It provides service to the customer (provider
role), while relying on the service provided by the call centre out-
sourcer (customer role).

The application services offered to the customer are subject to a cer-
tain feature set and quality guarantees. These details are negotiated
with the customer and codified into an SLA. The customer is offered
a defined point of access to the service itself using a suitable client
software, as well as limited management functions with regard to the
service, by means of the management console. The ASP includes
provisions for having management agents installed in the customer’s
domain, to facilitate client-side measurement of performance. The
ASP assumes responsibility for the management these clients (in-
stallation, updates, patches, de-installation etc), but the customer
insists on authority regarding such changes. The support function
(service desk) outsourced to the call centre provider is included in
the contract.

The ASP acts as a customer towards the call centre provider. From
the ASP’s point of view, the agreements regarding the outsourcing of
the service desk function is an Underpinning Contract (UC) for the
application services it provides. Incidents reported by users of the
application service should be handled by the outsourcer where pos-
sible; they should be forwarded to the ASP’s problem management
personnel in all other cases.

In consequence, the ASP organisation needs to establish several tech- Required
technical
management
interfaces

nical management interfaces. . .

• Updates and patches to performance management agents should
be applied in an automated manner.

29

Chapter 2. Scenarios and requirements analysis

• The outsourcer should be offered a means to report unsolved,
frequent and critical incidents to the ASP.

• Incident reports should be echoed to the ASP’s technical per-
sonnel in order to allow for active improvement of the infras-
tructure.

• The outsourced service desk will need information pertaining
to user accounts, status of application servers, sessions etc.
The ASP must provide up-to-date information to the service
desk outsourcer in a manner compatible with the outsourcer’s
ticketing tool.

• Problems reported by the service desk may need to be sup-
ported by information gathered from the infrastructure. Hence,
the ASP’s ticketing tool must integrate with the application
and network management suites.

• Changes to the infrastructure are dependent on up-to-date in-
formation gathered from the infrastructure. To provide the
change workflow with this information, the application ma-
nagement and network management applications need to pass
data to the workflow management system.

• Changes to customer-domain agents will be performed in the
ASP’s change management process. Changes that are not pre-
authorised require the customer’s consent, given via the ma-
nagement console. To automate this process, the management
console system needs to interact with the ASP’s workflow ap-
plication.

. . . as well as a number of organisational management interfaces:Required
organisational
interfaces • Changes regarding the management agents in the customer’s

domain must be authorised by the customer.

• Online reporting and overview of cost with regard to the out-
sourced service desk function (e.g. number of incidents, time-
to-solve) constitute a basis for management decisions with the
ASP.

• Possible issues between the ASP’s customer and the outsourced
service desk should be escalated to the ASP, bypassing the ser-
vice desk itself (e.g. if phone support is less than satisfactory).

30

2.1. Inter-domain application service management

2.1.3. Challenges

The distribution of roles and the direction of the value chain deter-
mine some of the management challenges the ASP’s IT organisation
must face. The ASP needs to direct her management effort in a
manner that takes into account several issues that are inherent to
the scenario.

The introduction of IT management processes promises transpar- Financial
challengesent, reproducible management operations and planning. Cost and

time savings are expected to justify the introduction of new IT ma-
nagement processes, as well as the operation of existing ones. Pro-
cess implementation and execution must therefore be cost efficient.
The volume of investments necessary for the introduction of process-
oriented IT management must be kept low by reusing the existing
assets, in particular collaboration tools and IT management utilities.
A simple, consistent solution is sought, that contributes towards fi-
nancial savings with respect to staff training.

Documented processes make visible the interfaces and information Implementation
challengesflows between different management tasks. The existing tool collec-

tion assembled to support these tasks isn’t typically ’process-aware’.
Common difficulties involve different interfaces (syntactically as well
as semantically), which differ between different vendors, as well as
between different tools.

The multitude of management tools operated by the ASP is in part
a function of the application managed on behalf of her customers.
As with the IT management tools, such application will offer various
(if any) management interfaces. The policy-based process execution
scheme developed in this work allows easier integration, and thus
reuse, of existing tool sets.

An additional management challenge in the case of our ASP is the
outsourced service desk function. To provide transparent support
to her customers, the ASP needs to encapsulate it, while ensuring
proper and quick incident management. This requires not only cou-
pling of processes in the two domains (the ASP’s and the call centre
provider’s), but also a certain degree of integration between their
tool sets. Again, the issue of heterogeneity regarding interfaces and
data formats poses difficulties.

Another limiting aspect of the inter-domain management is the ad- Inter-
organisational
management
challenges

ministrative autonomy of the participating organisations. Simply

31

Chapter 2. Scenarios and requirements analysis

speaking, none of the companies will allow another to (co-)manage
its infrastructure, or its services. Hence, loosely coupled alternatives
must be sought in order to allow the necessary degree of management
process integration. Best practices collections like ITIL recommend
to insist on the use of the same tools (e.g. a compatible or identical
ticketing tool) in outsourcing scenarios. This requirement is, how-
ever, not always possible to meet without incurring additional fees.
Thus, the ASP needs to couple the outsourced incident management
functions with her in-house change and problem management pro-
cesses.

The agreement with the customer to install and operate management
agents in her domain implies a limited co-management concession,
but also entails responsibility for the proper and secure operation
of such agents. Changes to these agents need to be authorised by
the customer; hence, the ASP’s change management process must
be coupled with the the customer’s processes.

The ability to decompose process specifications, as developed in this
work, allows the distribution of process fragments to cooperation
partners. The approach presupposes that care has been taken to
specify the process in sufficient detail, and to provide sufficient in-
formation about the exchange of data between process partitions—
which, in this case, are distributed across multiple domains. Thus,
the mechanism developed in this work provides an incentive to pre-
pare the specifications of management processes carefully, in order to
attain the benefits of automation within and across administrative
domains.

The inter-domain aspect of the scenario is illustrated by the exampleAlignment of
the scenario to
a process
example

presented later in this chapter (Section 2.3). The example describes
a workflow partition that is used when urgent patches are to be
applied to a managed system.

Applied to our ASP scenario, a security issue discovered in the soft-
ware running at the customer’s site is reported to the service desk
operated by the call centre provider. The incident must be escalated
to the ASP, who in turn needs to provide a suitable solution, and
implement it. The actual change is executed on systems in the cus-
tomer’s administrative domain and requires coordination between
ASP and customer.

Similar incidents do occur at unpredictable time intervals, and as-
suming they are granted sufficient attention, the ASP’s management

32

2.2. Grid management

concept should provide for their timely resolution.

The automation mechanism proposed in this work addresses this is-
sue by allowing for a flexible specification of such management proce-
dures to be integrated within the management processes themselves.
This carries the benefits of both having specified the automation pro-
cedures as an integral part of the process, and having an adequate
means to realise them.

2.2. Grid management

The Grid is an emerging paradigm for distributed computing, stor-
age and community interaction. In an academic scenario, resources
located in different organisations’ data centres are made available to
world-wide communities of researchers in a—more or less—standardised
manner. As Foster and Kesselmann put it, the Grid aims at

“coordinated resource sharing and problem solving in dy-
namic, multi-institutional virtual organisations”[FKT 01]

In the Grid environment, such a community of users (e.g. researchers)
acts as a Virtual Organisation (VO) that is defined by its purpose,
i.e. its field of research, instead of by the Real Organisation (RO)
that employs its members. In short, real organisations are offering
services running on real infrastructure to members of virtual organ-
isations. The services may be offered cooperatively by several ROs;
hence, everything short of the SAP is being virtualised in the Grid.

Below all these layers of virtualisation, the real, physical infras-
tructure still needs to be managed. Although Grid applications
are quickly becoming more important, most sites participating in
a Grid must fulfil other, sometimes far more important, functions
at the same time. Thus, in addition to the requirements common
in the technical management disciplines, Grid management induces
new challenges originating in greater part in the virtualisation of
resources and organisations.

In the same way that Grid services are provided cooperatively by Management in
Grids requires
cooperation

several domains, management of these services—and in consequence,
of the underlying infrastructures—necessitates a cooperation aspect.
While this manifests in agreements upon specific tools (and ver-
sions thereof) when providing usage functionality, the inter-domain

33

Chapter 2. Scenarios and requirements analysis

management functions require coordinated (high-level) management
policy and coordinated procedures.

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

Site X

Site Y

Site W

Grid
GridGrid Grid

Grid	
�� �

Infrastructure

Grid

M
anagem

ent

Processes

M
anagem

ent tools

P
rocess support

Non−GridInfrastructure

InfrastructureGrid

InfrastructureNon−Grid

M
an

ag
em

en
t

Pr
oc

es
se

s

M
an

ag
em

en
t t

oo
ls

P
ro

ce
ss

 s
up

po
rt

middleware
Grid

Grid
middleware

Grid users

Figure 2.2.: Grid management scenario overview

As sketched in Figure 2.2, the Grid itself is constructed by multipleServices are
provided locally
and in the Grid

sites, each operating an IT infrastructure. A part of the latter is part
of the Grid, while the rest provides services locally, e.g. internet ser-
vices for a university campus. A site will manage its infrastructure as
a whole: while there may be special provisions for the management
of the Grid portion, identical management procedures will be applied
to the whole infrastructure. For example, management of the core
network of an organisation will be governed by a set of procedures
and policies applicable to all links and network elements—there will
be no division into “Grid-elements” and “non-Grid-elements”. That
being said, Grid applications will in most cases generate additional
requirements to the management of the infrastructure.

Even though the infrastructure is far from homogenous across sites,Grid
middleware
virtualises
usage

certain aspects of a grid tend to be agreed upon to allow effective
operation. An example is the use of grid toolkits (also known as
grid middleware) such as Globus Toolkit [GT 07], gLite [GLI 07] or
Unicore [UNI 07] that hide some of the complexity from users of
the grid. Note that the grid toolkits do not, however, provide an
integrated management of grid resources. From a technology point
of view, the preferred communication middleware is Web Services
based, and authentication of users is typically performed by means
of a Public Key Infrastructure (PKI).

Each site uses its own tool set for systems and network manage-Tools and
procedures for
management
differ between
sites

ment. They are selected according to requirements originating from

34

2.2. Grid management

“on-site-only”, as well as Grid management. Naturally, such tools
constitute an investment, and operators are trained to use the selec-
tion available at their site.

If process-oriented IT management has been implemented within a
site/organisation, process support tools are employed. In this case,
IT management processes govern the management activities at that
site. These processes, in turn, reflect the management needs of a
site: they are adapted to the site’s specific features and policies,
including financial aspects, personnel aspects, security policy, and
site-specific management objectives (e.g. goals regarding QoS). As
with technical management tools, the process support applications
employed correspond to the (specified) management workflows that
need to be supported.

Example: a Grid computing service

Router DNS

Node
1

Node
10

Router
DNS

Node
1

Node
100

Computing Service

Grid Middleware

Grid Computing Service

Local User

Grid User usage of

dependence on
Legend

Local User

In
de

p.
P

ro
vi

de
r

C
us

to
m

er
P

ro
vi

de
r

In
de

p.
C

us
to

m
er

...

Site A

. . .

Site X

...

Computing Service

re
al

is
e

Figure 2.3.: A Grid computing service

To render the management issues of Grid sites more palpable, we
consider the following outline of a single service, and the background

35

Chapter 2. Scenarios and requirements analysis

for its provisioning.

One well-known application for Grids is the execution of computa-A computing
service is a
common Grid
application

tionally intensive jobs. Ideally, a Grid user will simply submit a job
to a broker function of the Grid. The job specifies a program to be
run and data to be processed. Application examples include finite
element calculation, weather forecasting computations, simulations
etc. The Grid middleware will ensure that the job is executed: it
will identify a site that agrees to run the program, transfer the in-
put data there if necessary, schedule the job, and secure the results.
Thus, the Grid provides a computing service to its users.

The instance of the computing service sketched in Figure 2.3 de-
picts two different sites that participate in offering this service in
the Grid. (When a site-specific view is applicable, the scenario is
presented from the viewpoint of a site defined as local and placed on
a dark trapeze in the figure). Both sites operate computing clusters
that offer cycles to their local users, as well as Grid users. To ef-
fectively offer the computing service, a number of computing nodes,
a network routing function and a naming function must be pro-
vided by each operator. The sites agree to participate in providing
a Grid computing service, however they retain their administrative
sovereignty: they provide together, but they manage alone.

Several VOs require computing cycles from the Grid in which theVirtual
communities
each have
different
requirements

computing centre participates. Their members come from differ-
ent research communities, hence the computing jobs submitted to
the Grid by members of different VOs may have utterly different
properties. In general, Virtual Organisations using the grid will use
different resources and services in different ways, according to the
purpose of the VO. The requirements arising from this use apply
to different degrees in every participating Real Organisations (i.e.
providers). As VOs are disbanded and new VOs arise, management
requirements change as well.

To maintain a service level that is satisfactory to all customer VOs,
the computing service must be provided—and managed—in a corre-
sponding fashion at all participating sites. Moreover, changes must
be propagated quickly between domains in order to ensure uniform
reactions to changes in management requirements.

A large, expensive supercomputing infrastructure, operated in ad-Effective
management is
critical for
expensive
infrastructure

dition to the computing nodes, has a short lifespan (compared to
acquisition costs), thus rendering any downtime or idle time very

36

2.2. Grid management

costly, as in the example of DEISA [DEIS 05]. Another issue is the
extreme heterogeneity found in general in supercomputing grids: su-
percomputers are often customised to an institution’s needs. The
corresponding management facilities are therefore equally heteroge-
neous.

Management knowledge is found only with experts in the field, which Management
knowledge
must be
conserved

are scarce and expensive. On the other hand, many management
tasks are performed by research personnel holding time limited con-
tracts for compelling reasons originating outside the scope of IT
management. This leads to a high degree of fluctuation in the occu-
pation of administrator positions. As a consequence of the frequent
transitions between managers, management knowledge acquired by
the parting administrator is lost and must be acquired anew.

2.2.1. Management arrangements

A collection of management facilities and a team of administrators
is in place to ensure provisioning of Grid, as well as other, non-Grid
services. The management setup attempts to take into account the
issues described above.

IT management processes To conserve management knowledge,
and in order to facilitate repeatable, controlled management mea-
sures, IT management processes are defined. A workflow system is
employed to provide support for the management workflows at our
example Grid site.

The process specifications are site-specific, as they are adapted to the
local infrastructure. Thus, they are not transferable between Grid
sites, but need customised execution support instead. In addition,
processes are in a way “private” to a site; they are not published
or made generally available. Interaction between sites therefore re-
quires defined interfaces and data formats.

Management processes should not be constrained to the dedicated
Grid infrastructure, but view the infrastructure as a whole. E.g. a
Change Management process will be applied to any change required
at the site. However, in the case of changes to Grid components, a
certain amount of coordination will be necessary in addition.

37

Chapter 2. Scenarios and requirements analysis

Integrated management tools Cost savings and minimisation of
service downtime are paramount in any management setting. Com-
mon, off-shelf integrated management systems are employed to sup-
port network and systems management. They are complemented by
scripts and other tools created and maintained by the administrators
of the computing centre.

Inter-domain collaboration Collaboration between domains is nec-
essary in any Grid environment, in order to keep the Grid services
in good condition. Communication between the administrators of
our site, and IT management personnel at other sites is conducted
by simple internet email. While agreements are in place regarding
the format of some routine messaging, the information still needs to
be managed “manually” by the administrators.

Interaction with Grid and local users Operation of a service is in-
separable from a support function that faces the users of the service.
In our example, support must be given to users of local services,
as well as users of Grid services. In general, ticketing systems are
utilised to collect and track user requests and incident reports. While
the use of a set of agreed-upon tools could be enforced within any one
Grid site, different sites will in most cases employ different selections
of tools. Unfortunately, this obviates interoperability with regard to
ticket management within a Grid. In addition, different user VOs
may present different requirements with regard to user support.

For some user support functions, SPOCs are already intended, e.g. a
central authority for the distribution of digital certificates and keys.
However, solutions for many other use cases remain to be defined.

2.2.2. Management challenges

Grids, and sites that participate in Grids are entities that today pose
perhaps the greatest management challenges. We will focus on the
challenges in the context of management processes. A selection of
these is discussed in the following, divided into management chal-
lenges pertaining to the local site only, and challenges with regard
to several Grid sites.

38

2.2. Grid management

Local management

• The IT management processes being introduced require soft-
ware support. To facilitate interaction between processes, a
coupling between process support tools must be realised. This
applies to existing tools, as well as to packages introduced as
a consequence of the increased emphasis on process-oriented
management.

• Existing network and systems management tools must be made
interoperable with the process support tools in order to avoid
the need for error prone manual intervention, and in order to
quicken process execution.

• The coordination of tools must be flexible, in order to facilitate
the introduction of additional packages.

The proposition to realise management processes by means of op-
erational management policy offers the opportunity to flexibly in-
terconnect process-driven management activities (e.g. as modelled
according to a reference process collection) with the perennial op-
erational tasks. Thus, instead of deploying new, “process-aware”
management tools, the proven (and possibly customised) local tool
set can be kept in continued use.

Global management In the context of the Grid, the scope of ma-
nagement tasks will span multiple sites. The following will illustrate
the management issues that, in principle, arise from the collaborative
aspect of service provisioning in this multi-site environment.

Fault and security management

• Problems encountered with Grid applications may be local, or
they may be the result of malfunction between domains. In
the latter case, problem management needs to be performed
collaboratively.

• Grids provide SPOCs for registration/authorisation of users
and for user reports. However, effective incident management
requires distribution of such reports (e.g. incident records) to
relevant sites. To achieve this, interoperation of tools operated
centrally with the sites actually solving the incident must be
established.

39

Chapter 2. Scenarios and requirements analysis

• Reciprocal status monitoring may be implemented in Grid
middleware, in order to provide usage functionality. Even
though Grids constitute very loosely coupled distributed sys-
tems, collaboration in management (e.g. in fail-over cases) will
require similar functionality in management interfaces.

Thus, the realisation of management processes governing fault ma-
nagement (e.g. incident management or problem management pro-
cesses) is faced with challenges in organisational, as well as technical
diversity. The distributable, policy-based realisation of processes,
that is developed in this work should offer the perspective to sup-
port for automation across participating domains, and to cope with
infrastructure and tool set changes—as long as adequate agreements
(regarding IT management procedures) between organisations par-
ticipating in a Grid can be ensured.

Grid services may be targets or collaterals of attacks. To fend offCollaborative
security
management

such threats, collaboration between participating sites is paramount.
Collaborative security measures, such as a Grid-wide Intrusion De-
tection System (IDS) could be employed to recognise (possibly like-
wise cooperative, distributed) attacks that threaten the operation of
Grid services.

To allow effective collaboration, common security management pro-
cedures must be introduced among the operational agreements be-
tween Grid sites. The automated translation of a formalised process
specification should aid a site in keeping its security-relevant (sub-
)processes compliant to the local needs, as well as the requirements
of the Grid. This could be achieved by integrating the execution of
security measures (auditing, monitoring etc) into the process speci-
fications maintained by the (local) IT organisation. In this context,
automated generation of operational management policy can shorten
the time and lower the cost of implementing changes to security pro-
cedures.

Configuration and change management Several standardised soft-
ware components ensure the functioning of a Grid. Among these are
the Grid middleware itself, as well as auxiliary packages commonly
expected on standard systems.

• Collaboration in change management is required to maintain
matching (or at least compatible) versions of the middleware.

40

2.2. Grid management

The informal collaboration employed today may be replaced
by a more efficient form.

• Global (Grid-wide) notification of local changes is necessary to
facilitate tracking of problems across grid sites, in cases when
changes at one site induce side-effects.

Performance and accounting management Though Grids are used
primarily in the academic domain today, accounting of resource use
is an interesting topic. Not only would it allow charging based on
actual use, but it would also render Grid technology more attractive
for corporate operations.

• Since several sites contribute to the execution of a Grid job,
collaborative accounting and charging become a necessity. Ap-
plied to management software, accounting must be performed
across domains, and charging agreements must be constant in
a Grid.

• Availability management is a prerequisite for the specification
of SLAs for Grid services. Monitoring of service availability
in the Grid requires interoperation of monitoring facilities at
several, or all, sites.

The adoption of policy-based management techniques to process-
oriented accounting, charging and billing is not a new idea. It has
been presented in [Radi 02d] and discussed in detail in [Radi 03].
The approach presented in this thesis advances that work by in-
troducing automated generation of policy rules, directly from the
process specifications in the area accounting.

2.2.3. Summary

While grid toolkits enable the use of the pooled resources—effectively
creating the grid—a great number of management issues remain.
When introducing process-oriented management, our example Grid
operator must take into account coupling of management facilities
within her organisation, as well as outside of it. Change to processes
and tools at her site, as well as at other participating sites, may have
an impact on local management arrangements. It is therefore neces-
sary to provide an efficient way to cope with frequent changes. Au-
tomation of management procedures will not cross site boundaries,

41

Chapter 2. Scenarios and requirements analysis

since every site maintains administrative sovereignty. Coupling of
inter-domain management must be designed with this issue in mind.

Both scenarios presented in this chapter hold in common a high-level
view on the process-oriented management efforts of the respective
IT organisations. Indeed, process specifications constitute a form of
high-level management themselves. On the other hand, the trans-
lation scheme presented in this work targets process specifications
documented in detail. For this reason, the following Section 2.3 in-
troduces a fragment of a management specification that is executed
in a simplified environment applicable to both scenarios.

2.3. Practical example

The scenarios given in the preceding sections describe management
settings as found in typical IT organisations today. This section aims
to complement the high-level scenarios by showing an example pro-
cess in more detail. It is intended to illustrate the challenges arising
when the process specification described in Section 2.3.2 is employed
in order to govern an aspect of infrastructure management—in this
case, the patching of software components—while using commonly
encountered types of management tools (described in Section 2.3.4).

Thus, the technical example examined in this section aims to narrow
the gap between the management scenarios treated in the foregoing
sections (2.1 and 2.2) and the actual process translation scheme ad-
dressed in Chapter 4. Then again, due to its structure, the example
can be viewed as a third scenario, that focuses on the technical de-
tail in dealing with process-oriented management, instead of paying
attention to scale, inter-domain issues and operational complexity.

2.3.1. Setting

Consider an IT organisation like the ones presented in the scenar-Processes and
management
tools

ios. It has committed to process-oriented management, and it has
defined a number of vital IT management processes in a detailed
manner, based on the ITIL. Among these are Incident, Change and
Configuration management. The organisation uses tools to support
its processes and strives to automate process execution. It also em-
ploys a suite of systems and network management applications.

42

2.3. Practical example

A common case in any organisation operating IT infrastructure is Operative
practicethe discovery of security flaws in the deployed application software.

In recent time, when important flaws are discovered in a software,
its producer or distributor is expected to offer her customers a solu-
tion. Such solutions include patches that correct the flawed software
behaviour, work-arounds that offer a way to operate the software
without exposing to a certain risk, or new, corrective releases of the
software. Typically, periodic notifications of new threats, as well as
the solutions available are issued by email. Examples include the
bulletins sent by most Linux distributors, as well as the notifications
issued by various Computer Emergency Response Teams (CERT).
In urgent cases, supplementary notification are issued in order to
shorten the time-span during which customers are exposed.

Our example organisation takes security issues seriously and aims
to integrate the evaluation of security bulletins, the acquisition of
corrective means (e.g. patches), as well as their deployment, into its
operational IT management processes. Naturally, this task should be
accomplished using the facilities already present in the organisation,
and elicit the smallest possible amount of additional effort on the
part of the management crew.

2.3.2. Example process partition

As a first step, the handling of patches is included in the process
specification. A possible result is sketched in Figure 2.4.

1. Once the discovery of a security flaw is advertised, this infor-
mation is made available to the incident management process.
This process is responsible for handling situations that disrupt
nominal operation of services (see Section 3.1.1.1).

2. Within the incident management process, an incident record
is filed.

3. The affected Configuration Items (CI), i.e. systems, are identi-
fied by means of the organisation’s Configuration Management
Database (CMDB).

4. Based on this information, the incident can be classified ac-
cording to its severity and the expected impact on the iden-
tified CIs. Classification associates a priority, noted in the
incident record, with the security loop-hole in question.

43

Chapter 2. Scenarios and requirements analysis

Queue Incident Record Query CMDB

Classify incident

Notify Service Desk File Request for Change

Rollback change

Patch failed

Incident resolved

Manual
handling

Req. Manual Intervention

PIR success?
no

yes

Execute standard change

no
Trigger standard action ?

yes

in
ci

de
nt

 M
an

ag
em

en
t

Post implementation review

C
ha

ng
e

M
an

ag
em

en
t

Urgent patch

Figure 2.4.: Example: The handling of an urgent security patch

44

2.3. Practical example

5. The organisation’s Service Desk should be notified of the sit-
uation in order to be able to respond to customer’s queries, if
necessary.

6. Any change should be handled by the change management pro-
cess; therefore, a Request for Change (RfC). For recurring,
low-impact changes, it is common to define a class of changes
as standard change, which are pre-authorised require less effort
from the change management process.

7. The change is scheduled in a Forward Schedule of Change
(FSC) according to its priority.

8. At the appropriate point in time, given by the FSC, the patch
is actually installed on the group of machines requiring it.

9. A Post Implementation Review (PIR) ensures the continuity
of service from the machines that have been patched.

10. If the PIR is deemed successful, the incident is marked as
solved, and a message is generated to propagate the notifi-
cation of success.

11. In the contrary case, if the PIR identifies unacceptable flaws,
the change is rolled back, and the relevant parties are notified
of the failed change.

The deploying of security patches on the organisation’s machines
spans two different processes. It involves arguably two different ad-
ministrative domains: that of the software distributor advertising
the patch, and that of our example organisation.

2.3.3. Automation of activities

In our setting, several of the activities can be performed automati-
cally, without human supervision. Examples include creating an in-
cident record and placing the record in a queue, notifying the Service
Desk, classification according to formal criteria, and the installation
of the patch.

Some of the activities require human interaction. The obvious case
is the Manual Intervention action. If a patch is deemed as critical,
human supervision is necessary. Another example is the evaluation
of the installed patch within the PIR activity. Some aspects of the
change can be evaluated in an automated manner, e.g. the success

45

Chapter 2. Scenarios and requirements analysis

Vulnerable
server

Infrastructure

Mon
ito

rin
g

sy
ste

m

Workflowmanagementsystem

Trouble−

ticket

system

Package

manager

install
update

observe
function

issue
ticket

execution
trigger

information
relay

Figure 2.5.: Management tools involved in the example setting.

or failure of the installation itself, the ability of the updated software
to run, or the ability of an updated component to interact normally
with other components. Other aspects concerning the behaviour of
a component after change may be more subtle, and intervention of a
human administrator may be necessary to confirm their functioning
correctly.

2.3.4. Tools

The activities in our example can be supported by appropriate tools.
The process activities pertaining to incident management can be
supported by a ticketing tool, the deployment and rollback of a patch
can be facilitated by a packet management utility, and some of the
activities (e.g. the CMDB query) may be supported by in-house
tools designed with our example organisation’s setup in mind (e.g.
interface and schema of its CMDB).

The diagram in Figure 2.5 shows the tool setup in our example. The
outer sector contains tools for process support, while the next-inner
sector contains the tools for technical management. The managed
infrastructure resides at the core of the diagram. The arrows in-
dicate interaction between two components. Solid arrows denote
interaction which is easily achievable, as it conforms to the purpose

46

2.4. Requirements

of a component. The dashed arrows suggest interactions that are
heavily dependent on the interfaces and data exchange formats of
the interacting components.

2.3.5. Challenges

Several issues must be dealt with in order to effectively support ex-
ecution of our example workflow partition. Interoperability issues Heterogeneity

of interfacesarising from different interfaces and data formats in the tools must
solved. In our example, this applies e.g. to interoperation between
the monitoring system and the trouble-ticket system (effectively, all
dashed arrows in Figure 2.5). The solutions need to be revised ev- Dealing with

changeery time a product is exchanged or new ones are added. Changes
to the process, as well as changes in the tool-set must be handled
graciously and in a cost effective manner. The collection of tools for Distributed

process
execution

process support and technical management can itself be viewed as a
distributed system. Effective process execution, including the dele-
gation of management action to management tools (e.g. the packet
manager, in our case) must be feasible even if the components/tools
are widely distributed, and some of them reside in other administra-
tive domains.

The above challenges, as well as those ensuing from the two scenar-
ios described in Sections 2.1 and 2.2, impose requirements on the
management approach presented in this thesis. Thus, to effectively
address these challenges, the policy-based process realisation scheme
proposed in this work must satisfy the set of requirements pertaining
to the scenarios described in this chapter. This set of requirements
is introduced and discussed in the following section.

2.4. Requirements

The management challenges identified in the scenarios are a source of
requirements on the approach presented in this work. In the context
of particularly relevant management challenges, the adequacy of a
flexible mechanism for the realisation of processes has already been
noted.

In this section, we derive requirements on the solution developed
in this thesis based on the scenarios in the previous sections. The

47

Chapter 2. Scenarios and requirements analysis

resulting requirements catalogue presented in Section 2.4.1 is em-
ployed as a reference for the development of the process-to-policy
translation scheme developed in this work (Chapters 4 and 5), and
it serves as a framework of criteria for integrating the approach in a
management architecture (Chapter 6). The requirements catalogue
is revisited in Chapter 8, where it is instrumental to benchmarking
the results of this work.

The requirements presented in this section apply in part to the con-
ceptual work presented in the following chapters (e.g. to the method
for generating management policy rules from formal process specifi-
cations), but also to the actual execution mechanism for (translated)
process specifications.

Before describing the requirements in detail, we highlight manage-
ment challenges that are common to both the ASP and Grid scenar-
ios, in order to derive the requirements categories that apply to this
work. To begin with, the pervasive demand of cost reduction andCommon traits

of the scenarios cost control apply, making automation and integration of manage-
ment procedures a priority. This concerns:

• integration of process support tools among themselves,
• coupling of process support tools with (technical) management

tools, and
• integration of (technical) management tools among themselves.

To avoid negating the benefits obtained by a higher degree of in-
tegration, the volume of investment (cost) necessary for realising it
must evidently be kept low.

Another important challenge is the ability to cope with change in:

• process specification,
• the utilised tool-set, and in
• the infrastructure itself.

The above pre-requisites are flanked by the increasing trend towards
collaborative/cross-domain service provisioning that becomes evi-
dent from the scenarios. Therefore, the approach should provide
means to cope with management across administrative domains.

In summary, the conceptual components of this thesis must take
into account the challenges presented in this chapter by means of
satisfying the requirements catalogue presented in the following.

48

2.4. Requirements

2.4.1. Requirements catalogue

Being based on scenario management challenges, the requirements
enumerated in this section reflect the management necessities sketched
above, with regard to the approach presented in this work. They
concern the proposition of policy-based execution of management
processes, as well as the translation mechanism that allows the gen-
eration of operational management policy rules from process speci-
fications.

The requirements are ordered by a number of categories, to re-
flect the groups of management challenges found in the scenarios.
They do, incidentally, include requirements categories of a broader
scope. In particular these concern aspects of realisation technology,
as well as general expedient requirements applicable to most settings
in process-oriented management.

The larger part of the requirements discussed in this section re-
flect, as might be expected, the demands formulated in the sce-
narios. They concern the applicability of the approach presented in
this work to different services, infrastructures, management facilities
and processes, as well as the scalability of the approach in those ar-
eas. Further, the requirements catalogue takes into account dynamic
aspects, in particular the issue of perpetual change that appeared
pervasive in the scenario descriptions—and which today should be
expected in virtually every IT operations and management environ-
ment. The inter-domain issues noted in the scenarios are likewise
addressed by a category of requirements.

General requirements

The general requirements given in the following are assumed to apply
independently of scenario or setting. They reflect invariant criteria
on any realisation of an IT management process.

1 Compliance to process specification. Process implemen-
tation must be correct in that it corresponds to process specification.
This is a crucial requirement. If the implementation is not correct,
the process will produce unexpected results that in most cases will
be harmful to the organisation.

49

Chapter 2. Scenarios and requirements analysis

2 Deterministic results. The results of process execution should
only change when the process itself is changed. In particular, changes
in the persons involved (as opposed to the roles defined for the pro-
cess) should not affect execution.

3 Robustness. The breakdown of the processes governing IT
operations and planning may have dire consequences. Hence, the
requirement of robustness is placed on their realisation. Even though
this (robustness) is a popular criterion in any requirements list, it
normally refers to robustness of software packages. Here, in contrast,
it refers to the execution of process instances.

Applicability and scalability

Constraining a process implementation to apply only to specific
types of services, specific infrastructure layers or specific entities
would render that implementation incomplete and in need of addi-
tional tools. Striving towards a complete management solution, the
approach should be applicable to all types of infrastructure compo-
nents and layers. To support arbitrary processes, the approach must
support different entities as well as common grouping mechanisms
for entities.

4 Applicability to any service. The services provided by an
IT organisation vary with regard to the nature and purpose of the IT
organisation, as well as over time. For example, the services provided
in the two scenarios described in this chapter will be different: in
one, valued added services may be offered to the customers of an
ASP, in the other, service is provided for the users of a Grid.

To retain its value as a practical management instrument, the ap-
proach needs to be applicable independently of the concrete services
offered. In particular, the translation mechanism, as well as the pol-
icy architecture employed to effectuate process specifications should
exhibit no dependencies on the type of service(s) being managed
(technologically, e.g. web-based services, as well as regarding the
purpose of the service), nor should it be dependent on the operative
context in which the service is provided (e.g. a Grid service or a
service typical of a telecommunications provider).

50

2.4. Requirements

5 Applicability to any infrastructure. The two scenarios
obviously describe different infrastructures. In addition, infrastruc-
ture changes over time. Heterogeneity of the infrastructure is also a
common issue. Thus, the realisation of process specifications must
be able to cope with any kind and size of infrastructure. In con-
crete terms, neither the process translation mechanism, nor the the
scheme for process execution/automation may be based on assump-
tions regarding the infrastructure. Specifically, it would be counter-
productive to make assumptions regarding the existence of certain
structures (e.g. centralisation of storage facilities) or hardware/soft-
ware components (e.g. reliance on a family of operating systems).
This requirement does not, however, encompass the management
infrastructure, which is not employed for actual service delivery.

6 Applicability to any tool set. While common, off-the-
shelf management tools are available, the variety of tools employed
by one organisation is improbably equal to another’s. Therefore, the
approach to process realisation should be applicable independently
of the tool set encountered in a given IT organisation.

It should be noted, however, that an adequate management tool set
is presupposed to be in operation (how would the IT organisation
have managed their installation before, if those tools were not avail-
able?). Thus, this requirement is not intended to claim that the
methods described in this work will completely replace the existing
tools of the IT organisation—only to coordinate their work according
to a process specification.

7 Applicability to any process specification. The nature
of an IT organisation’s process specifications are impossible to pre-
dict, although best practices frameworks can be expected to be con-
sulted to aid their inception. Therefore, an approach targeting their
practical realisation must be able to deal with any process specifica-
tion. It is essential that the specification be formal and syntactically
correct.

8 Applicability to all parts of a process specification.
A process implementation that covers only parts of the defined pro-
cesses is of less value since it must be complemented with additional

51

Chapter 2. Scenarios and requirements analysis

components. This would require costly tool integration and verifica-
tion of the integrated implementation, even if the parts are verified
to comply with process definitions.

9 Applicability to any organisational structure. Today’s
organisational structures are increasingly flexible. In addition, the
assignment of roles between the IT organisation, its suppliers and its
customers may change (e.g. the local IT organisation may buy ser-
vice from one of the customer-role entities it provides to). Therefore,
this work shall make no assumptions regarding the characteristics of
the IT organisation. In particular, it should provide mechanisms to
cope with process specifications that refer to, and may pertain to,
multiple organisation parts. Likewise, the policy-based techniques
intended for process execution should be effective regardless of the
particular structure of the IT organisation employing them.

10 Scalability to any number of process specifications.
Certainly, the introduction of process-oriented IT management yields
the highest benefit to large organisations, where “process knowledge”
cannot be concentrated by one person, or by a small group of per-
sons. As the number of process specifications may increase with the
size of the organisation, the approach presented in this work is de-
signed to be invariant with respect to the number and size of the
processes employed in the IT organisation.

11 Scalability to any number of process instances. The
number of active process instances is independent of the number of
process specifications or workflows that are actually defined. To be
effective, a realisation of IT management processes should not be
encumbered by the number of process instances being executed.

12 Scalability to any number of services. The number of
services being provided in the IT organisation varies between or-
ganisations, as well as over time (as services may be introduced or
retracted). The realisation and execution of management processes
must not be encumbered by the number of services being provided,
or by the addition or retirement of services. Even with management
process specifications that (technically) depend on the number of the
number of services provided (examples include tasks in the context

52

2.4. Requirements

of accounting and charging), the process execution mechanism itself
should function independently of the (possibly fluctuating) number
of services.

13 Scalability to any size of infrastructure. Process ori-
entation is embraced primarily by large organisations managing very
large systems. To secure investment and to ensure a long lifespan,
process implementation needs to be scalable to large systems even
if their growth cannot be predicted at the time of implementation.
Ideally, both the translation procedure, as well as the policy-based
execution of the management process, as well as the integrated oper-
ational management tasks within the process should be independent
of infrastructure scale. Note that this requirements applies only to
the conceptual approach presented in this work—obviously, manage-
ment and process support tools, as well as the management archi-
tecture that realises process execution need to be scalable to satisfy
the needs imposed by the size of the local infrastructure.

Change

As new technologies become available and customer demands grow,
IT management has to cope with frequent changes to infrastructure
and services. The following requirements pertain to this aspect.

14 - Changes in services and contracts. Process implemen-
tation must gracefully cope with service change or augmentation.
Services offered to customers or used in-house are often enhanced or
otherwise changed in response to customer demand or for purposes of
optimisation. The process implementation must be adapted quickly
to the new requirements, independently of the size of changes in
management processes.

Changes to customer contracts often imply different and/or addi-
tional requirements to the management of the system. The required
changes to process implementation must be performed quickly and
correctly (as per contract with the customer).

15 Changes in infrastructure. Process implementation must
gracefully cope with changes to the infrastructure. Growth, reduc-
tion or diversification of the infrastructure is common. Adaptation

53

Chapter 2. Scenarios and requirements analysis

of processes to reflect these changes need to be implemented quickly
and at low cost.

16 Changes in tool set. Tools may be upgraded, replaced or
decommissioned. The realisation of process specifications must be
able to adapt or be adapted to such changes in the tool set.

17 Changes in process specification. There is no point in
implementing something different from process specification. If changes
need to be made they should begin at process level and not be
executed directly on the implementation. Process implementation
refactoring must be quick and cheap.

18 Graceful retirement of process specification. When
no longer necessary, the specification of a process (or a part thereof)
may be retired, thus rendering its implementation obsolete. This
implementation should be removable from the management system
without a negative impact on the overall operations.

Inter-domain management

More and more services are provided jointly by several service providers.
To submit all parts of a service to management, management pro-
cesses need to span across organisational and administrative do-
mains. The following requirements pertain to coupling of processes
in different domains.

19 Inter-domain process execution. Any human interaction
required in process coupling generates cost and slows down process
execution. Hence, it must be avoided wherever possible. The ap-
proach should provide a means to realise process coupling automa-
tion. Each domain owner needs to be aware of her responsibilities,
the data that needs to be exchanged with processes active in other
domains than the local one and the formats and protocols used to
communicate with other administrative domains.

54

2.4. Requirements

20 Resilience to changes of process specification in re-
mote domain. Any organisation should be able to apply changes
to their process implementation with justifiable impact on partner
organisations. Certainly, adaption of the local processes will be nec-
essary. Nevertheless, it is important that impromptu changes to
processes in cooperation partners’ domains can be dealt with in a
controlled manner.

21 Scalability to any number of inter-domain dependen-
cies. The number of inter-domain relationships may vary over time
(e.g. in Grid environments). Therefore, the approach should not
make assumptions regarding the number of inter-dependencies be-
tween domains.

22 Sovereignty of domain owner. Domain owners must main-
tain sovereignty regarding their systems, networks and applications.
It is unlikely that providers will agree to let their resources be man-
aged by external subjects. Therefore, it is important to respect their
sovereignty when considering process coupling.

Economy and reuse

The cost of management increases steadily due to labour and re-
engineering cost. In large scale scenarios, as those described in this
chapter, the cost of management can assumed to be high on an
absolute scale. The requirements given in the following are aligned
around the concepts of economy in management realisation efforts,
and reuse of existent solutions within the approach proposed in this
thesis.

23 Cost-efficient process realisation. One of the reasons
for employing process orientation is the attempt to save money.
Thus, it is important that the realisation of processes is cost effi-
cient, otherwise it might negate some of the benefits acquired by
process orientation. As cost in management pertains primarily to
labour, the realisation and execution of process specifications must
not be labour-intensive.

Routine decisions that need to be made in the course of IT ma-
nagement should be supported by the process implementation. A

55

Chapter 2. Scenarios and requirements analysis

mechanism should be provided to formalise a decision and apply it
in process instances.

24 Process execution without expert involvement. Pro-
cess execution should require little or no expert involvement. For
execution of a process to be efficient, routine execution steps should
be automated. Supervision should not require domain knowledge
regarding the processes.

25 Reuse of existing/deployed process support tools. The
approach should enable and support the reuse of the tools available
for process support, wherever these functionally satisfy the require-
ments of the process specification.

26 Reuse of existing/deployed management tools. The
approach should support the continued use of existing management
tools, in order to assure the continuity of management procedures
at a technical level, and to conserve investments.

27 Automation of inter-tool procedures. The approach
should provide means to automate the interactions between tools,
wherever possible, in order to reduce the amount of manual inter-
ventions. Where active support cannot be rendered, the approach
should at least not limit the endeavour to automate inter-tool pro-
cedures.

28 Automation of management actions on the infrastruc-
ture. Management processes may have impact on, or query, in-
frastructure components. Management actions and queries present
in the process specification should be performed in an automated
manner.

29 Accommodation of manual procedures. Manual steps
within IT management processes cannot be eliminated completely.
The necessary manual steps should be computer supported, where
possible. More important, they should be integrated into the overall
process. This should be supported by the approach.

56

2.4. Requirements

30 Implementation/deployment without manual steps. Han-
dling detailed process specifications is a labour-intensive task that
requires precision and, in many cases, domain-specific knowledge.
Therefore, such handling should be constrained to the development
and maintenance of the process. The realisation and deployment
treated in this approach should be automated.

Technology independence

The technology employed in different settings varies according to lo-
cal preferences and needs. In addition, the technological base avail-
able to service provisioning and management evolves constantly over
time. To maintain its current and future applicability in different
domains, the approach presented in this work must be highly inde-
pendent of concrete technologies employed for its own realisation,
the realisation of management tools, as well as the realisation of
services.

31 Independence of process formalism. A process formal-
ism can be viewed as a technology for representing processes. The
approach should be independent of the peculiarities of specific for-
malisms. This does not, however, imply that any formalism at all
should be usable. Indeed, certain capabilities must be assumed in or-
der to properly represent IT management processes in detail (please
refer to Section 4.1 for an elaboration on these capabilities).

32 Independence of reference process (best practices)
frameworks. Process design in the context of IT management,
most often denoted IT Service Management, frequently relies on
reference process definitions such as those provided by the ITIL or
the eTOM. The reliance on best practices collections of this kind
is not mandatory, however. Therefore, the approach developed in
this work should refrain from tying itself too closely to any reference
framework or best practices collection.

33 Independence of management information repository
type. IT Management is inherently dependent on accurate infor-
mation about its management targets. Hence, the collection of ma-
nagement information available to an IT organisation defines (or

57

Chapter 2. Scenarios and requirements analysis

rather: limits) its management capabilities. In consequence, a num-
ber of approaches have elected to centre around the repositories for
management information. While this method may have merit for
certain scenario types, it does make assumptions regarding the struc-
ture and technology involved in capturing and storing management
information. As suggested by the different nature of the scenarios
described in this chapter, the approach presented in this work must
maintain a high degree of independence.

34 Independence of middleware and protocols. Commu-
nication middleware and management protocols constitute power-
ful instruments to realise abstraction from concrete infrastructure
elements, systems and networks. In consequence, they are used
extensively—if not pervasively—in all but the trivial management
scenarios. The approach will maintain independence of specific mid-
dleware and specific protocols. It does not, however, purport to
renounce their use: the general function these offer will be relied
upon and endorsed in several parts of the techniques presented in
this work.

2.4.2. Weighting of requirements

The requirements listed above carry different importance with regard
to the management scenarios that they were derived from. A true,
quantitative weighting cannot be attempted, as it would require a
very high level of detail in the scenario descriptions. Unfortunately,
describing the scenarios in minute detail would commit those de-
scriptions to a narrow scope, thereby compromising their generality.
In consequence, the summary given in Table 2.1 includes a coarse,
qualitative weighting of the single requirements, using three levels of
significance.

Requirements marked with three stars (???) constitute a conditio
sine qua non on this work. Their fulfilment constitutes a critical
item for the approach presented herein. Those marked with two
stars (??) are important requirements on the approach; they consti-
tute the bulk of the requirements list, and thus they carry a “normal”
significance. Finally, the requirements marked with one star (?) can
be said to be the most forgiving ones. They will have only mild neg-
ative impact, if left unsatisfied. Nevertheless, they originate in the
management scenarios presented, thus their fulfilment is desirable.

58

2.4. Requirements

2.4.3. Discussion

Ultimately, the goal of any concept or facility in the domain of IT
management process handling is to render possible the real execu-
tion of processes. The approach presented in this work addresses
this goal from a technical perspective, but in a holistic manner. The
issues interposed between the intention to introduce effective and
efficient process-oriented management, and the actual realisation of
that intention span many different dimensions. They manifest in
every phase of the management of processes themselves: design/-
modelling, refinement, implementation etc; they are reintroduced
through the constant change affecting every aspect of a managed IT
organisation; they regard the infrastructure, the tools for managing
it, the tools for supporting process; they are even connected to the
attitude of the personnel performing the actual management tasks.
This challenge is reflected in the majority of the requirements stated
in this chapter.

Given the multitude of aspects (some of them named above, others
shown in Figure 1.4), the approach developed in this work follows
the strategy of being flexible, rather than comprehensive.

Observations regarding groups with common weight Requirements
with the same weight seem to pertain to common abstract goals. We
could argue that the requirements with the highest weight (three
stars) ensure that immutable constraints of operations are not vio-
lated (e.g., it is not likely that a domain owner will yield control over
her own domain when providing a service in a cooperation). Simi-
larly, requirements with middle weight all seem to pertain to aspects
of the approach developed in this work (e.g. the requirements re-
garding applicability or economy/reuse). In contrast, requirements
with the lowest weight target mostly technical issues, pertaining to
a concrete realisation of the concepts described in this work.

The requirements formulated in this section explicitely demand, or
imply a variety of capabilities in existing concepts and technologies
pertaining among others to process-oriented as well as policy-based
management. In the next chapter, some of the sought characteristics
are identified and brought into relation with the approach pursued in
this work. For the remainder, solutions are developed in the second
Part of this thesis.

59

Chapter 2. Scenarios and requirements analysis

Nr. Requirement title Weight

1 Compliance to process specification. ???
2 Deterministic results. ???
3 Robustness. ??
4 Applicability to any service. ??
5 Applicability to any infrastructure. ??
6 Applicability to any tool set. ??
7 Applicability to any process specification. ???
8 Applicability to all parts of a process specification. ?
9 Applicability to any organisational structure. ?

10 Scalability to any number of process specifications. ??
11 Scalability to any number of process instances. ??
12 Scalability to any number of services. ??
13 Scalability to any size of infrastructure. ??
14 Changes in services and contracts. ??
15 Changes in infrastructure. ???
16 Changes in tool set. ???
17 Changes in process specification. ???
18 Graceful retirement of process specification. ??
19 Inter-domain process execution. ??
20 Resilience to changes of process specification in re-

mote domain.
?

21 Scalability to any number of inter-domain dependen-
cies.

?

22 Sovereignty of domain owner. ???
23 Cost-efficient process realisation. ???
24 Process execution without expert involvement. ??
25 Reuse of existing/deployed process support tools. ??
26 Reuse of existing/deployed management tools. ??
27 Automation of inter-tool procedures. ?
28 Automation of management actions on the infrastruc-

ture.
??

29 Accommodation of manual procedures. ???
30 Implementation/deployment without manual steps. ??
31 Independence of process formalism. ??
32 Independence of reference process (best practices)

frameworks.
??

33 Independence of management information repository
type.

??

34 Independence of middleware and protocols. ??

Table 2.1.: Weighted summary of requirements on the approach

60

Chapter 3
Related work

T HIS chapter surveys related work in the fields of process ori-
ented management and policy based management as well as

work on patterns and code generation concepts. The management
approach presented in this thesis pursues policy-based automation of
the execution of IT management processes. Related work in each of
the areas of policy-based and process-oriented management is abun-
dant, even though these two topics constitute virtually unrelated
research domains.

Reference process collections are the premier drivers behind the Reference
process
frameworks

rapid advancement of process-oriented IT service management. The
reference process definitions they provide are intended to be used as
a starting point for the detailed, customised operational processes
treated in this work. The purpose of a reference process definition
indicates, to some extent, the potential for automation available to
customised process specifications. For this reason, two prominent
ITSM frameworks are discussed in Section 3.1.

To formalise process specifications, a number of languages/formalisms Process
languagesare available. This work relies on a suitable process formalism to be

used as an input language for the translation to management policy
rules. For this reason, an overview of process languages is given in
Section 3.2. Based on this overview, a detailed analysis of process
languages, to determine effectively suitable languages, is found in
Section 4.1.

The translation mechanism proposed in this work is pattern-based. Process
patternsProminent existing work in the domain of process pattern is dis-

cussed in Section 3.3. To allow automation, the translation pro-
cedure needs to be performed on suitably detailed process specifi-
cations. Though a conclusive metric for detail in processes is still
missing (see Sction 9.1.1), the level maturity of processes can be

61

Chapter 3. Related work

used as a guideline instead. Maturity models are therefore reviewed
in Section 3.2.6.

The proposition, to employ policy-based techniques in order to au-Policy-based
management tomate management processes, prompts a discussion of existing con-

cepts and technologies in the domain of policy-based management in
Section 3.4, including the difficulties that have hitherto encumbered
this management paradigm (e.g. in Sections 3.4.1 and 3.4.2).

As the translation procedure described in this work yields manage-Policy
languages ment policy rules, a number of policy languages are reviewed in short

in Section 3.5. To select suitable target languages for the translation
procedure, a subset of these languages is later examined in detail in
Section 4.1.

3.1. Reference process frameworks

Processes are introduced in a rapidly growing number of organisa-
tions. By documenting tasks and procedures, the high-level goals of
an organisation can be put into relation to the actions performed
at an operational level. In addition, knowledge with respect to cer-
tain tasks is no longer “owned” by individuals; instead it is made
available to the organisation as a whole. Thus, training of new or
relocated employees can be accelerated. Certain certifications (e.g.
ISO 9000, BS 15000/ISO 20000) require documentation of processes
and training of employees to execute those processes.

Apart from these obvious benefits of process orientation, organisa-Purpose and
benefits tions can profit from best practice knowledge put forth in process

frameworks. In principle, such frameworks are built either bottom
up, i.e. from experience, or top down, i.e. by analysis of general
requirements and consideration of expert knowledge.

The approach proposed in this thesis relies heavily on the continued,Relevance to
this work high speed introduction and use of IT management processes. Pro-

cess frameworks are the single most efficient promoters of process-
oriented management, as they provide a plausible starting point to
the introduction of documented, formalisable processes into the area
of IT management. In the following, two process frameworks are
discussed: the ITIL, an IT-centric collection of reference processes,
and the eTOM, which provides a holistic view on the operations of
telecommunications organisations.

62

3.1. Reference process frameworks

3.1.1. IT Infrastructure Library

The IT Infrastructure Library (ITIL) is a collection of best prac-
tices published by the UK Office of Government Commerce (OGC).
It provides definitions of reference processes that are meant to be
customised to user needs. The ITIL is quickly becoming a de-facto
standard, as adoption in the industry continues at high speed.

In its second version, the ITIL is organised into several books, each
focusing on a specific aspect of process-oriented service management.
The best known are the Service Support [ITIL 00] and Service Deliv-
ery [ITIL 01] parts that are discussed in more detail below. The ITIL
also contains material to specific aspects of service management,
such as software [ITIL 03] and application [ITIL 02b] management,
security management, as well as management of the infrastructure
[ITIL 02a]. The third version of the ITIL is presently in the making,
and it appears that changes to the current, well-known structure are
to be expected.

The ITIL reference processes provide different degrees of opportu-
nity for automation and integration with more technical manage-
ment procedures. In the following, the processes described in the
Service Support and Service Delivery books are described in short
to highlight their potentially automatable aspects. Obviously, an as-
sessment at the abstraction level of a generic IT service management
framework can only serve as a coarse indication of the applicability
of the management approach proposed in this work to single pro-
cess activities. A definitive assessment can only be conducted on
customised, organisation-specific process specifications.

3.1.1.1. Service Support processes

ITIL Service Supports treats five operational reference processes.
Each process description includes the basic workflow, activity details,
process artefacts (e.g. documents, messages), roles and interfaces to
other processes. It is thought of as being more technical a process
collection than Service Delivery is. This notion is upheld by the
larger number of integration and automation opportunities.

ITIL Incident Management describes a process for processing inci- Incident
Managementdents regarding a service and handling customer requests. A vital

function is the Service Desk. It serves as a SPOC towards cus-

63

Chapter 3. Related work

tomers and coordinates the processing of incidents. The incident
management process manages Incident Records (e.g. in the form of
trouble tickets). It requires access to the Configuration Manage-
ment Database as well as to various sources of information provided
by other processes (e.g. Known Error DB).

The incident management process exhibits a high potential for au-Incident
management
process
automation

tomation, and that automation promises to deliver substantial re-
duction of cost. Frequently, incident management must handle a
large volume of incidents and service requests by means of its ser-
vice desk function. In addition, the personnel pool charged with
incident management tasks tends to exhibit a high degree of fluctu-
ation, especially where virtual service desk scheme is employed, or a
follow-the-sun, around-the-clock incident management has been in-
stituted. In addition, important metrics for process execution qual-
ity (the Key Performance Indicator (KPI) set of the process) is the
speed of incident resolution, the number of incidents resolved per
time frame, as well as communication with other ITIL processes.

For these reasons, the incident management processes is one of the
ITIL processes that are earmarked for automation support early in
their introduction, by most of the organisations choosing to deploy
ITIL-based management processes. The process carries the same
importance in the context of this thesis: it can be viewed as one of
the most automation-affine reference processes in the ITIL collection.

The Problem Management process organises the identification andProblem
Management resolution of longer-term (when compared to incidents) issues. Re-

active problem management focuses on the resolution of issues with
great impact on the services, e.g. the correction of problems that
generate a large amount of incidents. Proactive problem manage-
ment seeks solutions to (e.g. structural) problems that may have
an impact in the future. Important outputs of the problem manage-
ment process are workarounds to incidents experienced by customers
and a collection of known errors.

Problem Management is tightly linked to Incident Management. The
reactive form of Problem Management concerns itself with issues
that manifest as incidents. Therefore, an automated, fast coupling
between the two processes is desirable. Both processes use common
databases, e.g. the Known Error DB and the list of workaround solu-
tions that are made available by the Problem Management process.
The management of problems can be performed pro-actively, by an-
ticipating issues before they provoke actual incidents. Analysis of

64

3.1. Reference process frameworks

technical management data and statistical methods are employed in
this form of Problem Management, giving opportunity for the inte-
gration of the corresponding tools into the execution of the process.

The releases of hardware and software employed in an organisation Release
Managementcan be managed within a Release Management process. Its activities

include the implementation and maintenance of a Definitive Software
Library (DSL) that centralises the storage and management of de-
ployed (as well as previously deployed) software versions, licences.
A Definitive Hardware Store (DHS) provides a centralised manage-
ment of tested and approved hardware, including components and
spare parts. The release management process defines a versioning
scheme for releasing, taking into account full releases, delta releases
(e.g. updates) and package releases. It is responsible for manag-
ing releases across intra-organisational boundaries (e.g. in different
branch offices), taking into account different needs for software local-
isation (language-wise) and legal constraints. Deployment of releases
must be reversible, which is accounted for in rollback plans.

Depending on the level of tools support for the management of soft-
ware packages and hardware assets, a variety of potential automation
and integration hotspots may be leveraged in the context of the Re-
lease Management process. Examples include integration of tools
for package management and remote, distributed installation into
the process, as well as provision for automated rollback procedures.

The Change Management process is instrumental in enforcing con- Change
Managementtrolled change within an IT organisation. All changes must be ap-

proved within this process, taking into account their business impact
(i.e. the impact on service provisioning). Their implementation
is documented and tested in a Post Implementation Review. The
change management process is triggered by a Request for Change
originating, for example, in the incident management or problem
management processes. It makes heavy use of the CMDB in deter-
mining the impact of a change. Planned changes are organised by
means of a Forward Schedule of Change(FSC), while urgent emer-
gency changes are handled along a quicker path; examples include
security-related software updates. It is important to note that the
change management process controls and authorises change; it does
not perform the actual changes to systems and components.

The Change Management process is perhaps the most complex op-
erational ITIL process, and at the same time a very important one.
Beside the interfaces offered to other processes, e.g. for submit-

65

Chapter 3. Related work

ting Requests for Change, automation support for the Impact As-
sessment and Classification activities could yield an effective per-
formance gain. In the same manner, standard changes (i.e. pre-
authorised minor changes) could be automated, provided the avail-
ability of corresponding tools.

Most management processes and administrative tasks in the IT or-Configuration
Management ganisation rely on accurate information about the IT infrastructure.

The Configuration Management process is responsible for creating
and maintaining the information about every Configuration Item. In
particular, the CIs themselves must be assigned attributes, and the
values of these attributes must be kept up-to-date. The CMDB is the
common place where information about CIs is stored. Any change
must be reflected in the CMDB in order to keep the information
current.

The Configuration Management process is traditionally the most
difficult to implement process. This is motivated by the necessity
of a current and accurate CMDB. Beside the initial modelling and
initialisation issues, any change performed on e.g. services, infras-
tructure elements, contracts (SLAs) must be recorded in the CMDB.
On the other hand, most other processes will query the CMDB in
order to retrieve data relevant to their own operation. An integra-
tion of discovery and auditing tools within the corresponding ac-
tivities of a Configuration Management process could help keep the
database current and consistent with the actually deployed infras-
tructure, while automation of responses to external queries can ease
the workload of configuration management personnel.

3.1.1.2. Service Delivery processes

The ITIL tactical processes in the Service Delivery book are con-
sidered to be less technical than the operational Service Support
processes. They are much less concerned with day-to-day opera-
tions. Instead, they focus on planning tasks that benefit the IT
organisation in time.

Services are provided to customers at a certain quality level. TheService Level
Management service comprises the purely technical part (e.g. a hosted application

accessible over a pre-defined interface), as well as non-technical as-
pects such as the daily time interval during which telephone support
is provided by the service desk. It is considered good practice to ne-

66

3.1. Reference process frameworks

gotiate these aspects in detail and to document them in an SLA. The
Service Level Management (SLM) process handles the contact with
the customer’s account managers, negotiates SLAs and supervises
compliance of the IT organisation to the service levels specified.

The policy-based automation proposed in this work could support
the SLM process on the one hand in the task of gathering infor-
mation, e.g. generated reports and measurements of specific service
level values, which often originate in other processes. On the other
hand, it offers the opportunity to integrate procedures supported
by customer service management tools into the SLM process of a
provider.

The availability of a service is often an important criterion for its Availability
Managementquality. In most cases, the availability is linked to characteristics

of the infrastructure and to the management processes governing it.
The availability management process monitors a service, measures
its availability (which can be defined differently, per service) and
indicates the need for changes.

The automatable aspects within the Availability Management pro-
cess centre around monitoring and the evaluation of monitoring data.
Monitoring tools, as well as utilities used regularly in order to assess
the availability of services can conceivably be actuated from within
the process.

An important goal of the Capacity Management process is the di- Capacity
Managementmensioning of the infrastructure in order to hold ready enough ca-

pacity for effective service provisioning, while reducing spending on
surplus capacity. Capacity management needs to take into account
the life-cycle of IT components in order to plan purchase of new and
replacement components. According to the ITIL, effective capacity
management allows an IT organisation to profit from discounts for
bulk purchases and keep its operations within budget.

Depending on the size of the IT organisation and on the frequency
of change in necessary capacity (e.g. with fluctuating level of use in
services), some automation potential can be identified in this pro-
cess. Leaving aside the scheduling of recurring purchases, the im-
plementation of the Capacity Management workflow can profit from
automated requisition of data originating in the Availability and Ser-
vice Level Management processes. Due to its nature, however, this
process is a poor candidate for both automation and the integration
with technical IT management: though it attempts to formalise the

67

Chapter 3. Related work

adaptation of capacity so that it can be performed by documented
procedures, in truth it encapsulates the domain knowledge acquired
by experienced IT managers.

For many organisations, IT services are a critical component of busi-IT Service
Continuity
Management

ness operations. Hence, disruption of the IT services for a period
of time may have ruinous consequences for the organisation. The
objective of the continuity management process is to provide appro-
priate strategies and means to deal with IT service disruption, e.g.
in the aftermath of a natural catastrophe. The measures provided
to ensure service continuity must adapt to changes in the services
and in the infrastructure. They need to be supervised (e.g. fallback
components need to be tested periodically) and maintained.

The greater part of this process is not suited for either automa-
tion, nor the integration of technical management tools. However,
two areas that constitute exceptions to this rule may benefit greatly
from a tighter coupling with technical management: the reaction to
changes in the infrastructure (with the aid of information acquired
from the Change Management process) and the automatic actuation
of fail-over actions when service continuity must be provided in the
face of massive failure. While the first ensures that the provisions
for service continuity are kept current, the second will save time in
critical situations.

An important link between business operations and ITIL processesFinancial
Management
for IT Services

is created by the Financial Management for IT Services reference
process. It can be viewed as an accounting process facing the cus-
tomer, as well as a controlling process facing IT operations.

The best candidates for automation in this process are the charging
and reporting activities. Integration of accounting/charging tools
into the process is a necessity if service usage is to be accounted
at any usable granularity. The automated generation and dispatch
of reports can, on the other hand, ease the workload of the finan-
cial management personnel. A policy-based approach to accounting
management has been presented in [Radi 03].

Increasingly, security aspects become an important part of IT op-Security
Management erations. This development is due to the increased reliance on IT

services for mission-critical business activities. ITIL’s second ver-
sion provides a collection of best practices regarding security. It is
separate from the reference processes given in Service Delivery and
Service Support.

68

3.1. Reference process frameworks

Certainly, quick reactions to security incidents are desirable (and
in many cases very important). However, security management is a
“cross section” process, that concerns every aspect of IT management—
whether process-oriented or not. In consequence, automation and in-
tegration of tools and procedures in this domain is a special concern
that is placed outside the scope of this work.

The ITIL in current research work As the ITIL continues to gain
popularity, a variety of research projects not affiliated with the OGC
are being conducted. The ITIL offer guidelines and reference process
definitions but does not provide guidance with regard to the tools
that can be used to implement processes, the integration of manage-
ment processes with an existing management base, or the facilities
required to design, model and maintain process specifications at an
adequate (for a given IT organisation) level of detail.

The work presented in this thesis carries the assumptions that detail,
formal process specifications are available. Thus, while the efforts
to formalise and reason about ITIL processes are not in the focus of
this work, they are auxiliary to its implementation in any real-life
setting.

ITIL processes are described in prose at a quite high level of de- Formalisation
of ITIL
Processes

tail. The reader of ITIL standards literature is deliberately left to
fill in the omitted details, and to create models applicable to “her”
IT organisation based on the reference models provided. To accel-
erate this procedure, efforts to provide a formal framework for ITIL
processes can be observed presently. In many cases, they are part
of tool development projects (e.g. with IDS Scheer’s ARIS toolkit).
The availability of a framework of ITIL process definitions sketched
at the level of process activities within a modelling tool can be be
used as a starting point for the creation of customised process spec-
ifications at an appropriate level of detail.

Another active area of research in the context of the ITIL is the The CMDB
issuesearch for modelling guidelines for the CMDB [BSSG 06]. The

structure (e.g. schema) and implementation of a CMDB is highly
dependent on the IT organisation where it will be used, as well as
dependent on the data repositories already being maintained. In ad-
dition, it is of critical importance to many processes specified by the
ITIL—in particular those that show the greatest potential for auto-
mated execution. Thus, any automation approach, including the one

69

Chapter 3. Related work

discussed in this work, must take into account CMDB structure. As
of yet, no conclusive solution has been devised to the CMDB prob-
lem: its design still remains an expert domain, and automation at-
tempt must take into account the variable interfaces and information
items that may be provided by any given CMDB implementation.

Presently, a number of applications are being offered to the public,Tool support
for ITIL
processes

touted to be “ITIL-compliant”, or claiming to adequately support
the ITIL processes. The nature of their compliance to the ITIL is
however unclear. As the ITIL lacks recommendations regarding tools
for process support, an important topic of current research is the
determination of requirements on such tools, including capabilities,
interfaces and architectural aspects (see e.g. [Bren 06]).

3.1.2. Extended Telecom Operations Map

Developed by the Telemanagement Forum (TM Forum), the Ex-
tended Telecom Operations Map (eTOM)[GB921] is a top-down ap-
proach to defining management processes for the telecommunica-
tions industry. eTOM specifies four levels of processes, ranging from
Level 1 (being the most abstract) down to the operational Level
4. Unlike in ITIL (3.1.1), eTOM processes are defined formally,
and eTOM is not constrained to processes for IT management. In-
stead, it attempts to provide a holistic view of a telecommunication
provider’s operations. Moreover, TM Forum has specified a Service
Information/Data (SID) model [GB922, GB922-0, ?] and an OSS
framework, the New Generation Operations Systems and Software
(NGOSS) harmonised with the eTOM process definitions.

While this would make the eTOM an ideal candidate for deriving
customised processes, the concrete process levels (especially Level 4)
are still sketchy and incomplete. For the purposes of the approach
proposed in this work, the availability of a formal process reference
framework, coupled with the definition of interfaces for software tools
would greatly ease the creation of detailed process specifications, as
well as facilitate the integration of technical management procedures
into the process specifications. Considerations regarding the poten-
tial for automation and integration of single reference processes can
be performed in analogy to the exemplary assessment of the ITIL
processes in Section 3.1.1.

70

3.2. Formalisms for process representation

3.2. Formalisms for process representation

Automated translation of process specifications requires a machine
readable format for the processes. Several languages suitable for pro-
cess definition or description have devised, most often with business
processes in mind. In addition, several formalism not necessarily
related to processes are noted in this section. To capture the pur-
pose of the specification examined, the section is structured by the
standardisation body having released the specification to reflect the
interdependencies of standardisation bodies and documents sketched
in Figure 3.2[Danc 06].

The examined formalisms have been ordered by the organisation
where they originate. A compact overview shown in Figure 3.2 shows
a significant number of relationships between standards, and suggest
a convergence of the languages in the future. A more in-depth anal-
ysis of a selection of process languages in Section 4.1 precedes the
selection of suitable source languages for process-to-policy transla-
tion.

3.2.1. UN/CEFACT and OASIS

The Organisation for the Advancement of Structured Information
Standards (OASIS) produces standardisation documents related to
process specification in collaboration with the United Nations Cen-
tre for Trade Facilitation and Electronic Business (UN/CEFACT)
under the label of Electronic Business using eXtensible Markup Lan-
guage (ebXML).

Business Process Specification Schema Among the documents jointly
released by UN/CEFACT and OASIS is the Business Process Spec-
ification Schema [BPS 01] that describes itself to be

“a standard framework by which business systems may be
configured to support execution of business collaborations
consisting of business transactions.” (from the executive
summary of [BPS 01])

The specification is focused on document flow between collaborating
parties, and complements the efforts of UN/CEFACT in the domain
of standardisation for business/trade documents.

71

Chapter 3. Related work

Business Process Execution Language The Business Process Ex-
ecution Language for Web Services (WS-BPEL, BPEL4WS) is an
XML-based language standardised by OASIS to specify executable
business processes for use with Web Service (WS) architectures.
BPEL is enjoying popularity (and adoption) due to the increasing
number of services created as generic web services or existing (non
web service) applications that are given a WS interface.

BPEL is considered to be an orchestration language since it it used to
specify a workflow using multiple web services whose interfaces must
be defined using the Web Service Definition Language (WSDL)[CCMW 01].
While BPEL is constrained to the domain of web services, it does
allow for process specification at a sufficiently technical level to allow
execution of a process (hence “Execution Language”). At the time
of this writing, BPEL is available in Version 1.1 [ACD+ 03], with
Version 2 being actively developed.

3.2.2. Object Management Group and Business Process
Management Initiative

The Business Process Management Initiative (BPMI), formerly an
independent organisation (BPMI.org) has joined the business mod-
elling efforts of the Object Management Group (OMG) as of June
2005, creating the Business Modeling & Integration Domain Task
Force (BEIDTF).

Business Process Modeling Language The Business Process Mod-
eling Language (BPML) [Arki 02] is an XML-based language pub-
lished by the BPMI aiming to

“provide[s] an abstract model for expressing business pro-
cesses and supporting entities.”

Development for BPML seems to have stopped, but the underlying
concepts have been incorporated in the Business Process Modeling
Notation (BPMN).

Business Process Modeling Notation Released by the BPMI, the
BPMN is a graphical language for process representation. It contains
graphical elements somewhat resembling Unified Modeling Language
(UML) elements although not explicitely based on UML. What is

72

3.2. Formalisms for process representation

worse, BPMN uses different semantics for a number of graphical
objects also present in the UML. On the other hand, the notation is
quite powerful while at the same time using icon metaphors to make
the diagrams more accessible to human readers. A concise source
for BPMN notation samples can be found in [Whit 04].

UML-based process modelling Due to the popularity of the Uni-
fied Modeling Language several promising approaches exist to model
business and/or management processes with UML. Most of these
make use of the extension mechanisms provided in UML versions
1.x. The latest UML version 2.0 [UML2i, UML2o, UML2s] incorpo-
rates profiles that provide support for business process modelling.
The diagram type predestined for process representation is the Ac-
tivity Diagram.

The XML Model Interchange UML models can be represented in
textual form by means of the XML Model Interchange (XMI)[OMG 02-01-01,
UML2d], which is an XML-based representation of UML. An in-
creasing number of recent tools feature at least some support for the
XMI. Thus, processes modelled in UML can be exported in a formal
textual format.

3.2.3. Workflow Management Coalition

The Workflow Management Coalition (WfMC) is an industry stan-
dardisation body established in 1993 to establish workflow standards
with respect to common terminology, interoperability and connec-
tivity.

Workflow Reference Model WfMC’s Workflow Reference Model
[Holl 95] gives a definition of workflow/process terms and concepts
and presents an abstract architecture as well as a process definition
meta-model and an overview of functional (API) requirements for
handling processes. A white paper [Holl 04] written ten years after
the 1995 release of the Workflow Reference Model summarises the
development in the field of workflow (certainly with an emphasis on
WfMC publications) and reviews the impact of the Model. A num-
ber of interesting subjects are addressed, notably a Business Process
Management (BPM) Component model is sketched (see Figure 3.1)

73

Chapter 3. Related work

and a classification of standards according to phases (process defi-
nition, process execution etc) in process development.

Process Fragments

Organisational Model
Choreography

Interfaces

Information Model

Service Specification

Service Delivery

Conceptual Model

Executable Model

Executing Instance

Service Interaction Process Interaction & Messa

Process State Notation

Service Definition

Notation

Process Specification

Process
Repository

Information
Model

Resource
Model

Audit & Query
Datadd

Service Definition

Figure 3.1.: The BPM component model
The BPM component model [Holl 04]

XML Process Definition Language The WfMC released Version 2
of the XML Process Definition Language (XPDL) [XPD 05] in late
2005. An XML-based language, XPDL provides a framework for
machine readable, textual representations of processes that is com-
patible with BPMI’s Business Process Modeling Notation. While
primarily aimed at workflow system vendors, the XPDL specifica-
tion is developed in a top-down manner, including meta-models for
processes (extended from the Workflow Reference Model) as well as
“packages”, which are seen as containers for multiple process defini-
tions together with their meta-data.

74

3.2. Formalisms for process representation

3.2.4. IDS Scheer

Unlike most other organisations issuing standards for process lan-
guages, IDS Scheer is a company with strong ties in academia. The
ARIS framework implementation marketed by IDS Scheer spans sev-
eral aspect domains of business management (to some degree appli-
cable to IT management). Workflows in the ARIS framework are
specified using event-driven process chains, which are described in
the following.

Event-driven process chains The Event-driven Process Chains (EPC)
within ARIS [Sche 99, ScTh 05] can be viewed as an established lan-
guage for process representation. Petri nets by structure, EPCs are
directed graphs containing activities, events as well as control flow
elements and exploit the idea of event-driven process execution.

ARIS, really an architecture for process oriented management, in-
cludes a specification of a graphical representation of EPCs. A more
concise description of language concepts and notation can be found
in [BKR 03]. Some parts of ARIS, some of them unrelated to process
modelling, rely on UML to represent technical information related
to classes/objects.

3.2.5. Interrelations of process formalisms

Despite their differences in scope and target audience, the process
formalisms discussed do relate to each other. The specifications cre-
ated by a standardisation body often reflect the interest of associ-
ated (industry) stakeholders. Thus, interrelationships between for-
malisms, as well as the relations between the standardisation bodies,
may allow conclusions regarding the direction of future standardis-
ation efforts.

The documents reviewed include work of the WfMC, OASIS, UN/CE-
FACT, OMG, BPMI and IDS Scheer. Figure 3.2 depicts the re-
lease of documents originating from these different organisations over
time. The horizontal swim-lanes hold documents released by the or-
ganisation shown on the left aligned along a time scale. The relations
between organisations and documents are marked in the diagram and
suggest a certain degree of convergence. On the level of organisa-
tions this has manifested in cooperations and mergers, while a higher

75

Chapter 3. Related work

<<document>>
BPML 2002

<<document>>
BPEL4WS v.1.1

<<document>>
BPSS 2003

<<document>>
BPMN

relies on

<<document>>
XPDL v.2

<<document>>
UML v.2

applies to

applies to

<<document>>
ARIS

<<organisation>>
WfMC

<<organisation>>
BPMI

<<organisation>>
OASIS

<<organisation>>
UN/CEFACT

<<organisation>>
IDS Scheer

<<organisation>>
OMG

represents
as XML

binds to

<<document>>
Wf. Ref. Model

2002 2003 2004 200519951992

A
ut

ho
rin

g
or

ga
ni

sa
tio

ns

Figure 3.2.: Standardisation in workflow and process management

76

3.2. Formalisms for process representation

alignment of the standardisation documents can be seen in recent re-
leases. While only the merger between BPMI and OMG constitutes
a strong binding between two of the standardisation organisations,
several other cooperations exist (not shown in the figure) that are
manifested in common web presences of the cooperation partners.

The relations between documents are also manifold. WfMC’s Work-
flow Reference Model has provided a common understanding of work-
flows and has been taken into account by the current versions of
BPMN and XPDL, as well as by former versions. XPDL and BPMN
are strongly related in that XPDL aims to provide a textual, ma-
chine readable format for BPMN’s graphical representation of pro-
cesses. BPMN, on the other hand, provides an explicit binding to
BPEL4WS by defining a mapping of elements and constructs into
BPEL4WS. The ARIS model family relies on UML (since former ver-
sions of the UML) in parts, though the event-driven process chains
(EPCs) discussed are based on petri net concepts.

The overall picture creates hope of a convergence of organisations as
well as of standardisation efforts. Until such a convergence becomes
reality, however, it is mandatory that the differences of the different
formalisms – regarding expressiveness and language features – are
taken into account. An analysis of several formalisms/languages
presented in this chapter is found in Section 4.1.3.

3.2.6. Process maturity

A prerequisite for formalised process definitions is the effort invested
into their analysis and documentation. A five-stage “roadmap” for
process improvement, including their documentation and formalisa-
tion, is the Capability Maturity Model (CMM) [Univ 95] developed
at Carnegie Mellon University. It describes process maturity to start
at an “initial” level (see Figure 3.3). At this stage, processes are said
to be operative in some working way. The next-higher state, “repeat-
able” implies that the (undocumented) process can be executed and
re-executed in a consistent manner. To achieve the “defined” level,
a process needs to be documented. It is considered that most well-
engineered processes remain at this level of maturity. Note: The
CMM has since evolved into the Capability Maturity Model Integra-
tion (CMMI).

Beside the Carnegie Mellon CMMI, several domain specific CMMs

77

Chapter 3. Related work

Optimising

progress

log(effort)

Managed

Repeatable

Initial

Optimising

Figure 3.3.: Levels of the Capability Maturity Model

have been developed. In particular, some target IT Management,
e.g. the System Administration Maturity Model (SAMM) and the IT
Service Capability Maturity Model (ITSCMM). In the future, such
models may yield metrics for the assessment of process specifications,
as suggested in Section 9.1.1.

3.2.7. Summary

This section gave an outline of formalisms and standards for process
modelling and representation. All textual formalisms use XML for
the definition of their grammar, while graphical languages are more
diverse, aligning to or extending UML. It should be noted that the
sources discussed either have a general scope, as with the UML,
or focus on business aspects in particular. Formalisms explicitely
supporting management process representation are missing.

3.3. Pattern in processes

Patterns have long since been introduced to the realm of software
design, e.g. through the use of patterns for object oriented design.
In a similar manner, process modelling has been studied to extract
fundamental, reusable patterns and process formalisms have been
analysed to determine their support of such pattern. An important
source of research in this domain is the group around van der Aalst at
Eindhoven University. Their research has resulted in a pattern cat-
alogue [AHK+02]. The catalogue is applied to different formalisms
to compare their expressiveness from a work-flow perspective.

78

3.3. Pattern in processes

Activity A

Activity B Activity C

Activity A

Object
Managed

Parameter
Action

Result
Action

**

*

Condition 1 Condition 2

Figure 3.4.: Pattern example: Exclusive choice pattern.

The patterns employed in this approach are abstractions of recurring
control flow in work-flows/processes. They concern themselves with
the coordination of generic actions, excluding the technical details
of actions from view. The pattern collection has been effectively em-
ployed for testing the support for a specific kind of process structure
in formalisms and architectures/products.

IT management process modelling and implementation must take
into consideration language aspects that support the mapping of
management process specification onto technical IT management.
The patterns developed at Eindhoven University can help by sup-
plying the outer, structural framework for the information associated
with an action. Figure 3.4 shows (in its lower part) the “Exclusive
Choice” pattern as an UML activity diagram congruent to the one
depicted in [Whit]. By design, it does not take into account the
inner form of its elements (in this case, actions and conditions).

The approach presented in this work employs patterns in order to
effect the translation between a detailed, operational process speci-
fication and a policy set. While the intent of the patterns given in
Chapter 4 are different, certain structural similarities exist with re-
gard to v.d. Aalst’s pattern catalogues. They, too, describe control
flow, albeit focusing strictly on the activities of the process.

79

Chapter 3. Related work

3.4. Policy Fundamentals

One of the advantages of policy-based management is that it relies
on simple concepts, architectures and expressions. This allows for
a flexible paradigm without requiring sophisticated architectures to
support it. This section reviews important concepts in policy-based
management.

In exchange for this effort PbM promises a flexible management en-Benefits of
policy based
management

vironment, since policies can be altered or exchanged at runtime.
Additionally, PbM is a concept that holds for all functional areas of
management, is applicable over complete component or service life-
cycles and can be employed in any management disciplines. Since
policies are envisioned as being more or less isolated entities dis-
tributed enforcement is facilitated. At the same time, the set of
policies specified for a domain preserve the management knowledge
present in that domain, formulated in a single policy language.

As a research topic, policies continue to gain momentum. Yet, real-Why is it
difficult to
deploy PbM?

life deployment of PbM systems does not reflect this popularity,
neither by number nor by size. While a number of management
tools purport to be policy based, they employ the PbM paradigm in
isolated areas and often cripple it by confining its use to their area
of focus. The reasons for this situation can be quickly summarised.
Full-blown deployment of PbM in an organisation requires enforce-
ment of a paradigm shift as well as re-specification of management.
To make things worse, policy refinement requires semantic mapping
between high-level policy expressions and low-level, technical policy.
While this promotes formal specification of management goals at dif-
ferent levels, it is costly and requires domain knowledge. Finally, to
really leverage the benefits offered by PbM, an all-out solution must
be pursued. This may induce the emotional issue of managers no
longer ’owning’ the knowledge regarding their systems, as well as dis-
pensing with ’legacy’ scripts’ and similar, time proven management
tools.

Several types of policy have been described as parts of the paradigmPolicy types

of policy-based management. The single type that has been adopted
widely is that of access control policy. A closely related type is that
of delegation policy, which determines how (access) rights and obli-
gations may be imparted to other parties by their original holders.
Although it is seldom explicitely named, selection policy is an emerg-
ing type of policy employed to express, based on a set of available

80

3.4. Policy Fundamentals

choices, the mechanism of selecting one of them. Finally, obligation
policy can be employed to express tasks that need to be performed
by a subject entity. This type of policy has received some attention
in the domain of privacy management. Also known under the name
of management policy, it is in the focus of this work.

3.4.1. Policy refinement

PbM has a different view on management specification and imple-
mentation. One of its core ideas is to issue isolated, high-level rules
(policies) that specify systems’ behaviour. These high-level policies
(also known as strategic policies) are then refined into operational,
executable ones.

Policy can be specified at different levels of abstraction, ranging from
high-level policy that applies to whole companies or divisions down
to technical-level policy that applies to infrastructure elements. This
raises the issue of mapping high-level policy down to the detailed,
technical policy specification.

strategic

functional

operational

refinement

refinement

Policy−Type

Number of
Policies

Technical
aspects

Business
aspects

Le
ve

l o
f a

bs
tra

ct
io

n

Le
ve

l o
f d

et
ai

l

Figure 3.5.: Policy refinement hierarchy

Approaches originating in the policy research community pursue the
traditional refinement of policies in a policy hierarchy (see [Wies 95,
Koch 96], Figure 3.5) without taking into account management pro-

81

Chapter 3. Related work

cesses. Unfortunately, large and complex systems require an accord-
ingly great number of policies to be specified; hence, a lot of effort
has to be expended towards the specification of policies.

A formal approach to policy refinement is found in [BLR 03]. It uses
event calculus (see e.g. [CCM 94]) to formalise management goals
and allow for some automation steps in policy refinement. While
being an advanced approach towards policy generation, it requires
event calculus based systems modelling as well as manual interven-
tion.

As specialisation of policy implies introduction of additional domain
knowledge in each specialisation step. Therefore, the refinement
process may not be fully automatable at all.

In the scope of this work, only operational policy, i.e. policy at
the most technical level in Figure 3.5 is of relevance. The domain
knowledge that must be added manually is extracted from the op-
erational process specifications that serve as the source of process-
to-policy translation. This does not mean that refinement has not
taken place: it is performed during the the refinement of process
specifications (see Figure 1.3).

3.4.2. Policy conflicts

Policy conflicts arise when two or more policies contradict each other.Conflict of
goals The contradiction can occur on the conceptual level, as a conflict

of management goals. When several managers or system adminis-
trators specify policies for an infrastructure, conflicts of goal can
result from different views or opinions of these managers. This is
not a problem characteristic of policy-based management; it occurs
whenever inherently conflicting decisions are made by administra-
tors. Detection of this type of conflict can yield valuable feedback
to the high-level design of management processes (it indicates is-
sues that require agreement among managers). The detection and
handling of conflicts of goal is not in the scope of this work.

In some cases, security policy contradicts management policy [LuSl 99].
This is for example the case, when an obligation specified in a pol-
icy is contradicted by a security policy that denies the fulfilment of
the obligation. In many cases, this subtype of conflict can be de-
tected by analysing the policies alone. For policy-based execution
of management processes, the set of necessary authorisations for the

82

3.4. Policy Fundamentals

actions to be taken could be extracted from the management policy
realising the process, as a measure towards conflict prevention.

On a more technical level, policies can conflict in the actions they Conflict of
actionexecute on the infrastructure. Consequences of such conflicts in-

clude inconsistencies in systems’ state. Conflicts of action can be
observed by analysing changes of state in management models prior
to policy execution. Kempter proposes the specification of con-
straints on existing, object-oriented management models in order
to detect and correct transitions of a system into invalid states
[Kemp 04, KeDa 05]. Bandara et al. propose the modelling of the
managed system as well as the policies/actions by means of event
calculus to allow reasoning. Taking into account conflict of actions
yields feedback to operational process design. In the scope of this
work, it could help in the choice of translation patterns when gener-
ating policy rules.

3.4.3. Architecture for policy-based management

la
ye

r
In

te
gr

at
io

n
st

ru
ct

ur
e

In
fr

a−
M

an
ag

em
en

t

Management
Functional

Framework

middleware
Agents,

Policy

Point
Decision tools

Management

Execution
Policy

Point

database, ...
Configuration

Policy components
Policies,

Applications
Resources,

Managed

System

Policy
Repository

Management
Information

Execution
Policy

Point
Execution

Policy

Point

...

Figure 3.6.: Canonical policy management architecture

When discussing architectures for policy-based management the ba-
sic, functional architecture is used as a foundation. It is described

83

Chapter 3. Related work

as consisting of three components fulfilling the three core tasks of a
PbM architecture: a policy repository that acts as a central store for
policies; a Policy Decision Point (PDP) that evaluates the policies;
and a Policy Execution Point (PEP) that enforces a policy (action)
on a managed object. Optionally, perhaps as a matter of implemen-
tation, a policy management console offers an interface to changing
policy, introducing new policies into the system and performing other
tasks of managing the policies themselves. It is important to note
that this canonical architecture is a functional one; it describes the
function of the components and tells little about their realisation.
For instance, the PEP may be viewed as a component, where the
effect of a policy rule happens. The actual enforcement strategy may
include a request for decision by a managed object, or the invocation
of an action on the MO by a (central) management entity.

3.4.4. Standardisation efforts

PolicyGroup

PolicyCondition

PolicyTimePeriodCondition

System

PolicyRule

PolicyRepository

PolicyAction

VendorPolicyAction

VendorPolicyCondition

*

*

*
0..1 *

*

*

*

0..1

*

1

*

1

*
*

*
*

Figure 3.7.: Selected classes in the PCIM

Policy Core Information Model In an attempt to formalise the
components of policies, the IETF released the Policy Core Infor-
mation Model (PCIM) as a CIM-derived model specialised for pol-
icy [RFC 3060]. The PCIM describes an inheritance hierarchy of
classes that correspond to policy components. Figure 3.7 gives an
overview of the most important PCIM classes. It becomes apparent
that a number of important policy components are missing, such as

84

3.5. Policy Languages

entities and events. According to [Stra 04], the features of PCIM
reflect the clash of interests of stakeholders in the working group - a
globally acceptable subset of policy representation is standardised.
In consequence, the standardised subset is too small to make a clear
statement as to how policy should be described. The PCIM has been
adopted as a base of the CIM Core Policy Model [DSP 0108b].

3.5. Policy Languages

The specification of policy by means of a formal language aims to in-
fluence the behaviour of infrastructural elements – as well as people
– according to organisational goals. Several aspects can be differen-
tiated between in this context:

• Behaviour, i.e. decisions to be taken according to a policy
are found in different domains and functional areas. Simple
examples include the busy domain of access control policy.

• Specification formalisms can differ in scope, syntax and seman-
tics. Some of the policy languages described in this section
have been designed for specific areas of use or technologies.

• Policy can be specified at different levels of abstraction. Only
the lowest, operational level allows machine supported enforce-
ment of policy.

A central aspect of the approach proposed in this thesis is the ex-
pression of low-level management processes by means of policy. The
assessment of potential target languages for policy specification is
an obvious prerequisite. The following sections introduce a number
of candidates for the assessment found in Section 4.1.6.

3.5.1. Ponder

One of the well-known policy languages originating in the academic
domain is the Ponder language created at Imperial College [DDLS 01].
Unlike most policy languages, Ponder attempts to support a wide
range of policy types. For this reason, it defines a hierarchy of pol-
icy classes that is extensible to accommodate new policy types, and
offers a corresponding extension mechanism in the language itself.
In the scope of this work, only Ponder’s management policy features
are relevant. However, the language supports natively authorisation,

85

Chapter 3. Related work

obligation and delegation policies [DDLS 00]. All of these can be
specified in two modes. For example, positive and negative authori-
sation policy can be specified, signifying a permission in the former,
and a prohibition in the latter case. The more detailed examina-
tion of the language in Section 4.1.6 is constrained to the positive
obligation policy (oblig+), which is the policy type required by the
approach of this work.

Ponder’s implementation follows the canonical policy architecture
and provides an LDAP-based policy repository, a policy compiler
that transforms rules in Ponder into code executable by a PDP,
and a management console that allows management of the policies
themselves. Agent templates are available, which can be extended
to act as PEPs for management policy.

3.5.2. Rei

An interesting policy specification language is Rei [KFJ 03], also
originating in academia. It is targeted at security/privacy policy in
the domain of ubiquitous/pervasive computing.

Rei uses logic constructs (predicates) in order to formulate policies.
The Prolog-based language provides a set of predicates that can be
used to express policy, and that can be used a base for reasoning over
policy. The predicates that are part of the language are organised in
an ontology. A singular feature of Rei is a mechanism called ’speech
act’. It allows a form of negotiation between policy system and man-
aged system—in a sense, this is a means to specify simple protocols.
The language offers obligation policy among other features. How-
ever, Rei lacks an explicit specification of triggers or events; it is
unclear (or up to an implementation), how evaluation of a policy is
launched. In addition, the predicate framework specified remains at
a high level of abstraction (from operational management), and it
lacks facilities to express e.g. obligations’ actions in sufficient detail.
A policy language instrumental to the approach presented in this
thesis should support operational management policy; these short-
comings exclude Rei from the set of candidate languages.

86

3.5. Policy Languages

3.5.3. PDL

The specification of the Policy Definition Language incorporates
most important features of management policy and presents them
in a formal manner in [LBN 99]. This language is interesting, since
it supports—and focuses on—the policy type necessary for the ap-
proach presented in this thesis. The language can be used to formu-
late management policies at the operational level using simple event-
condition-action semantics. Several important mechanisms (e.g. the
event model) are developed to be quite powerful. On the other hand,
several features that would allow deployment in an IT management
environment are missing. Obviously, PDL was developed as a study
of concepts, rather than as a tool for large-scale management. Ex-
perimental results with the language [KoLo 99] have been shown
for the domain of network element management. Although the for-
malism is spartan with regard to its feature set, PDL ’s language
elements are defined formally. A more in-depth examination of the
language is found in Section 4.1.6.

3.5.4. ProPoliS

The Process-aware Policy System (ProPoliS) incorporates an XML-
based language for modular policy specification that focuses on obli-
gation policy at an operational level. It has been designed in the
scope of this work, with process-oriented management in mind. There-
fore, it incorporates features that facilitate the management of the
policies themselves.

ProPoliS is modular in that policy rules can be composed by combin-
ing pre-defined policy components. It carries management informa-
tion in every stand-alone policy component, as well as every policy
rule. In particular, a tagging mechanism allows the association of
policy components and rules with management processes—a feature
that is directly useful to the process-to-policy translation scheme
addressed in this work. The language is among the set of suitable
target formalisms for the translation developed in this work. A de-
tailed analysis of the language is found in Section 4.1.6, while its
implementation is described in Section 7.3.

87

Chapter 3. Related work

3.5.5. XACML

The eXtensible Access Control Modeling Language (XACML) [XACML]
can be employed to specify privacy and security policy. It is stan-
dardised by OASIS. XACML supports a form of obligation policy,
however its specification is weak in that it delegates the details of
obligation to the implementation, and it applies only to access con-
trol. The language has an XML-based syntax; a reference imple-
mentation is available.

3.6. Summary and appraisement

A vast amount of valuable background work is available in the ar-
eas relevant to this thesis. Even though management approaches
comparable to the one developed herein have not been described,
scientific contributions as well as standardisation work with respect
to process-orientation, as well as in the area of policy-based manage-
ment provide a base for the mechanisms developed in the following
chapters.

The formalisms for the representation of processes yield a sufficientProcess
formalisms and
patterns

number of candidate languages for the more detailed analysis docu-
mented in Section 4.1. The existing work on patterns for process con-
trol flow provides a parallel for the pattern-based translation mecha-
nism. However, the available pattern catalogues were developed for
the assessment of the capabilities of process languages, and they do
not take into account the specific requirements of IT management
processes.

From the review of reference process frameworks we can concludeProcess
frameworks that they constitute the single most important accelerating factor to

the advancement of process-oriented management. However, they
target broad audiences and are therefore forced to remain in the ab-
stract with regard to process automation and tool support. On the
positive side, it is possible to identify the process areas, activities
and tasks that seem most suited for automated execution. In addi-
tion, the recommendations regarding management components (e.g.
the CMDB as an information repository, stipulated by the ITIL)
give valuable indications with respect to the classes of tools and
components that can be expected in an environment that employs
process-oriented management. Likewise, the specification of process

88

3.6. Summary and appraisement

artifacts (e.g. incident records, again in the ITIL) constitute deter-
mining factors in the development of the process data flow concepts
in Chapter 5.

In analogy to the survey of process formalisms, the available policy
languages yield a number of candidates suitable for a detailed as-
sessment conducted in Section 4.1.6. Most significant contributions
in the domain of policy and policy-based management seem to orig-
inate in academia—standardisation work has hitherto not produced
major results in the domain of management policy. This is also the Policy

languages and
architecture

case with respect to architectures and reference models. The well-
known three-tier policy architecture (see Figure 3.6 can, nonetheless,
be applied to the objectives of the current approach, as is reflected
in Chapters 6 and 7.

In conclusion, the state-of-the art offers a substantial amount of
relevant material to support the process translation mechanism ad-
dressed in the next chapter, as well as the realisation of data flow
and the development of an architecture suitable for the policy-based
implementation of management processes.

89

Chapter 3. Related work

90

Part II
Elaboration

91

Contents – Part II

4. Process translation 95
4.1. Analysis of process and policy formalisms 97
4.2. Meta-models of process representation 128
4.3. Substitution rules . 131
4.4. Methodology for translation 137
4.5. Fundamental patterns 142
4.6. Detection and translation 153
4.7. The generating system 161
4.8. Extending the pattern catalogue 167
4.9. Translation example 170
4.10. Summary . 178

5. Process data flow 181
5.1. Preservation of the information flow 182
5.2. Requirements on information transport 190
5.3. Realisation of process data flow 195
5.4. Summary . 196

6. Architecture 199
6.1. Management process life-cycle 200
6.2. Functional components 206
6.3. Interoperation . 215
6.4. Summary and discussion 218

CONTENTS – PART II

94

Chapter 4
Process translation

T HE approach proposed in this thesis is founded on the idea
of automated translation between formal process specifications

and operational management policy rules. This chapter presents the
conceptual framework for accomplishing this translation.

An important prerequisite for the envisioned translation mechanism Source and
target
languages

is the characterisation and selection of adequate source and target
languages. Even though the principles of the pattern-based trans-
lation mechanism developed in this work are not dependent on any
one specific language, certain criteria regarding the expressiveness
of the formalisms involved in the translation must be ensured. The
source and target languages are chosen according to two different
strategies: while the candidate list of process languages must ac-
commodate the probable choices of process designers, the constraints
placed on target policy languages refer primarily to the features rele-
vant for detailed representation of the information contained in pro-
cess specifications. Candidates for suitable process formalisms are
therefore sought among the available, preferably standardised pro-
cess languages. Thus, the analysis of process formalisms conducted
in Section 4.1 primarily takes into account candidates that originate
with well-known standardisation bodies, or that have achieved an
industry-standard status in time. In contrast, the policy languages
examined in Section 4.1.6 originate in academia.

Both process and policy languages have been evaluated using the Criteria-based
evaluationsame method. They are tested against criteria representing the needs

of the translation procedure. The criteria applied to process lan-
guages have been formulated with the representation of operational
IT management processes in mind, in particular the integration of
management tools into process-oriented management; they are sum-
marised in Section 4.1.1. In contrast, policy languages have been
assessed with the aid of the criteria set formulated in Section 4.1.5,

95

Chapter 4. Process translation

taking into account among other things that the information con-
tained in the (source) process specifications must be retained after
translation to one of the candidate languages. The outcome of the
language assessment is positive both in the case of process and in
the case of policy languages: several suitable candidates for source
and target languages can be selected from, as shown in Sections 4.1.4
and 4.1.6.

The pattern-based translation scheme described in this chapter canSubstitution
rules be reduced to transformations of the input process specification by

means of substitution rules. In turn, these substitution rules corre-
spond to the transition between two meta-models, described in Sec-
tion 4.2. The source meta-model that constitutes a common base forMeta-models

the process language candidates assessed in this work. The target
meta-model describes a more constrained form for process specifica-
tions. The main difference between the two meta-models consists in
the cardinalities of associations between process elements (i.e. the
nodes of the graph representing the process).The substitution rules,
discussed in Section 4.3, convert a process specification from its orig-
inal form into a form complying to the target meta-model.

This conversion invariably partitions the process specification, cre-Process
patterns ating process fragments that are matched to a set of patterns, as

compiled in the pattern catalogue in Section 4.5. Each pattern is
associated with one or more parametrised policy rules. In the eventTranslation

of a match between a process fragment and a pattern, the policy
rules corresponding to that pattern are instantiated using the in-
formation present in the process fragment’s nodes (e.g. the actions
specified in the process fragment are used for actions in the resulting
policies). The set of policy rules generated in this manner from a
process specification constitutes the result of the translation proce-
dure. Together with a suitable execution environment, this set of
policy rules allows the automated execution of the original process
specification. The translation procedure is illustrated by means of a
comprehensive example in Section 4.9.

The patterns presented in Section 4.5 should suffice to translate anyTotality of
translation syntactically correct process specification provided in one of the suit-

able source languages. To ensure that a remainder free translation
can be achieved in each and every case, the generating system of
processes, with respect to translation to management policy, is pre-
sented in Section 4.7.

96

4.1. Analysis of process and policy formalisms

In addition, and in order to allow optimisation, guidelines for ex- Extension
mechanismtending the existing pattern catalogue are described in Section 4.8.

This chapter focuses solely on the translation of the control flow
component of a process specification. Accommodation of the equally
important data flow aspects is addressed subsequently, in Chapter 5.

4.1. Analysis of process and policy formalisms

The strong convergence towards best practices process frameworks
like the ITIL or the eTOM promise an increase of homogeneity in the
way management will be performed in the future. However, it can be
expected that organisations will employ different process definition
languages, model their processes at different levels of detail and in-
terpret the best practices collections in different ways. Depending on Organisations

model their
processes in
different ways.

the control structures of each organisation in question, IT guidelines
may apply globally (and thus be near homogenous) or they may be
defined within its substructures and as a result be similar at best.
Additionally, some actors may have reasons to refrain from employ-
ing policy-based techniques in the realisations of their processes. In
conclusion, it is safe to assume that:

• no single formalism for process definition will become a lingua
franca of process modelling in the near future,

• the acceptance of a policy-based approach will vary over the
organisations’ acting in a management scenario,

• no single formalism for policy representation will become ubiq-
uitous,

• no totality in the use of either paradigm will be achieved.

The expressiveness of both source (process) and target (policy) for-
malisms is of crucial importance. The formalisms’ capabilities set
bounds on the feasibility and quality of the translation. To avoid
constraining the approach to single formalisms, analysis of different
source and target formalisms is treated in this chapter. From an-
other viewpoint, the analysis yields the common subset of constructs
needed to realise translation.

97

Chapter 4. Process translation

4.1.1. Requirements of IT Management processes

The process formalisms discussed were not designed with IT ma-
nagement processes in mind. They are intended for use in any
business process scenario. Although management processes are a
type of business processes themselves, they can be defined based on
specific assumptions as to the execution environment and the in-
volved personnel. At least in part, the processes introduced into
IT management are tightly adherent to the infrastructure provid-
ing IT services. Manual subprocesses are executed by persons with
knowledge about the process activities (e.g. activities pertaining to
service support) that at the same time are (typically) knowledge-
able about the function of the OSS tools employed to execute the
activities. In consequence, the knowledge “distance” between the
process activity (e.g. registering a new configuration item) and the
software supporting it (database, application server etc) is relatively
small. In contrast, knowledge about a business process (e.g. in au-
tomated manufacturing or content management) does not typically
imply knowledge about the tools utilised to support it.

This difference can be exploited to achieve a higher degree of au-
tomation and integration through adaptation of OSS tools to execute
process parts (semi-)automatically by directly interacting with the
IT infrastructure. For this purpose, automated and hybrid subpro-
cesses (as described in Section 1) require access to object databases,
coupling with monitoring tools as well as integration into facilities
for enactment of administrative measures.

In concrete terms, the process automation facility must have access
to definitions of entities (persons, components/systems, accounts
etc), roles and domains; it must be coupled to the monitoring fa-
cilities available, in order to be able to execute process parts in
response to events; and, it must be provided a means to influence
the managed objects by executing management operations.

To integrate such technical aspects in the process specification, a
certain degree of support in the formalism employed for the process
definition is required.

4.1.2. Assessment of basic language elements

A superficial survey of language elements is sufficient for identifyingSome language
elements found
in most
languages

98

4.1. Analysis of process and policy formalisms

the ones present in most of the languages assessed. These elements
create the basis for a more in-depth assessment and comparison of
the languages in question.

4.1.2.1. Actions

Due tasks in work-flow or process definitions are often called activi-
ties. On an operational, technical management level, we refer to due
tasks as management operations or actions. The following require-
ments refer to actions in the latter sense, i.e. more like function calls
against an API than human-executed procedures.

Management goals are realised by executing management actions.
Since both processes and obligation policies aim at formalising ma-
nagement goals, all formalisms contain some form of action clause.
Actions may take parameters and return values. The return values
of actions may be used as input (e.g. parameters) to other language
elements.

Unique name or identifier To be able to map an action from a
process specification to a feature of a process support tool, the pro-
cess formalism employed must allow specification of unique action
identifiers.

Input or formal parameters Many examples of (graphically) mod-
elled processes show only the due actions; the input data for the
action is neglected or implied from the context. Machine execution
of an action requires explicit specification of input data to an action.

Output or return values The output of an action, be it a value,
a document or a status code signifying success or failure, is often
needed as input of another process part. As with action input, ex-
plicit support for modelling output data is required.

Control flow Though not an intrinsic of actions themselves, lan-
guage constructs for control flow determine how actions are executed.
Common constructs include those for parallel execution (forking and
joining execution threads), and conditional branching. Actions may
thus be specified as single actions, as sequences of actions or as a

99

Chapter 4. Process translation

Element Aspect Options

Action identification by name
by reference/ID

formal parameters literal
action return value
system/runtime attribute
other source
named parameters

return value single
multiple
complex (object)

references to objects in parameters
in return values
as action target

Control action groups sequential
flow parallel

none
branching unconditional

conditional
error handling notification

handling
keep return “address”

Table 4.1.: Comparison criteria for action and control flow elements

100

4.1. Analysis of process and policy formalisms

parallelisable set. In addition, process and workflow formalisms may
specify conditional or unconditional branching statements that rep-
resent transitions into other parts of the process.

Error handling Actions may fail during execution and/or cause fur-
ther faults in the system executing them. The minimum requirement
for error handling is error detection, which suffices to ensure that a
process is executed correctly, or not at all. However, this is a quite
spartan mode of error handling. Extended requirements appropriate
for realistic process support include:

• Notification in case of error. This could mean the notification
of an operator if the system is incapable of handling the error
condition. Such notification is a criterion applied when more
sophisticated error handling (as described below) is missing.

• Error handlers. As with most programming languages, some
process formalisms include the concept of error handlers, that
are invoked when the normal control flow is interrupted by a
fault. The characteristics of such error handlers are dependent
on the way the actions themselves are specified. Hence, for the
purposes of comparing process formalisms, the mere existence
of a error handling concept remains the only criterion.

• Recovery from error handling. Upon successful error handling,
it may make sense for the process to continue at the point
of interruption, thus requiring a mechanism for storing and
retrieving that position in the process specification. As with
error handlers, the criterion in our scope is the mere existence
of a recovery mechanism.

4.1.2.2. Objects

IT management relies more and more on system and service models
based on object oriented modelling frameworks. Examples of such
frameworks include DMTF’s Common Information Model (CIM,
[CIM 05]), Telemanagement Forum’s Shared Information/Data Model
or models based directly on the UML.

Management actions may hold references to objects in different roles.
They may operate on a target object, be enforced in the responsi-
bility of a subject, take objects as input or deliver them as output.

101

Chapter 4. Process translation

Element Aspect Options

Object grouping role expressions
domain expressions
other groups

object role subject
target
process data
system object

Table 4.2.: Comparison criteria for object elements

Objects may refer to real-world entities (e.g. persons or systems
in their MO representation), groups or abstractions of such enti-
ties (roles, domain expressions) or they may denote objects of the
management or runtime system.

The modelled infrastructure and the provided services obviously
have high relevance to the management processes defined. There-
fore, a formalism used for IT management process definition should
provide a way to reference these a priori defined object collections.
At the very least, a concept of objects in the formalism could be em-
ployed to reference tailored “copies” of the (mostly object oriented)
management information in the models.

Management objects may relate to several of the expression classes
mentioned in this section. For instance, they may be referenced in
actions, either as parameters or as targets of an action; Their at-
tributes may be part of conditional expressions; and they may be
referenced when creating messages or events. Therefore, the for-
malisms examined here are checked for the following characteristics:

• Existence of the concept of process-external objects.

• References to objects in action input or output.

• References to objects in conditional expressions.

• Direct references to externally defined objects.

4.1.2.3. Events

When considering a policy-based approach, events are an important
language element, as policy system implementation often evaluate

102

4.1. Analysis of process and policy formalisms

Element Aspect Options

Event simple named
generic

compound contains data
contains references to data

operation completion successful
failed

generation simple
compound

Table 4.3.: Comparison criteria for event elements

policies as a reaction to events. Nevertheless, language elements for
expressing incoming (or outgoing) events or signals are not present
in all process and policy languages. Event implementation can range
from simple signals to more complex message passing mechanisms,
e.g. the one presented in Chapter 5. Another important concept
in the domain of events is the notification of successful of failed
operations; languages may provide mechanisms for decisions based
on such notifications.

Management processes are often invoked (or resumed) as a result of
events or messages originating from a change of state in a system
or from operator input to the process. In addition, such events may
transport information to the process. In the same way, messages
can be sent from within a process to convey information to human
or machine recipients. Some of the formalisms examined rely on
message exchange for the greater part of their control flow or for
their information exchange. The analysis criteria with regard to
messaging support are described in the following.

Ability to expect messages To be able to react to messages, fa-
cilities to specify expectance of a message need to be included in a
formalism. Optionally, the type of the message may be included in
the specification, as detailed further on in this section.

Ability to send messages Apart from notifications in case of errors,
processes may need to send messages about their progress, success-
fully performed important action etc. The specification for the send-
ing of a message may include more or less detail, such as message

103

Chapter 4. Process translation

Element Aspect Options

Condition relational operators =, 6=, <, >,≤,≥
logical operators and, or, not
arithmetic operators add, subtract, multiply,

divide, exponent

Table 4.4.: Comparison criteria for condition elements

type and instructions regarding optionally enclosed information.

Information transport in messages As with low-level mechanisms
relying on asynchronous messages (e.g. SNMP traps), it does make
sense to allow piggy-backing of process internal information in mes-
sages.

Typing and naming of messages To allow automated reaction to
messages, the format of messages must be known or accessible to
the tool supporting the process parts dealing with a certain kind
of message. Obviously, the format must also be advertised to the
recipient. Well-known means of achieving this is unique naming of
message types associated with a definition of their content.

4.1.2.4. Conditions

Control flow in processes is often realised by means of conditional
expressions. Policy languages often include a condition or constraint
clause that determines whether the policy should be enforced or not.
The language elements for conditional expressions vary in power.
Support can be found for logical expressions and arithmetic expres-
sions, nesting of expressions etc.

Requirements for conditional expressions do not originate solely from
IT management process needs. In more technical management pro-
cesses, however, a powerful conditional expression mechanism can
be leveraged to make control flow decisions based on system state
or data, thus promoting automation endeavours. For this reason,
the formalisms are examined regarding the expressiveness of their
conditional expressions, as well as regarding the language elements
where these may be included.

104

4.1. Analysis of process and policy formalisms

Values Values can be constants that are part of the process defini-
tion, they can be held in attributes of the process or of the runtime
system (e.g. process support tools) or they can originate from ac-
tions (as return values) or arithmetic expressions. Requirements
regarding values are found further on in this section.

Operators Conditional expressions require operations that can be
relational (<, ≤, =, ≥, >) to compare values, as well as logical
operators to create complex conditions, including and, not, or etc.

Arithmetic expressions Common cases of conditional expressions
include values obtained by the evaluation of arithmetic expressions
in the process definition. Hence, the formalisms are examined for
the support of basic arithmetic operators (add, subtract etc.) and
their applicability in different contexts.

4.1.2.5. Value types

Any formal language can handle a certain set of data types. These
may be numeric, logical, character values, higher-order types (e.g.
functions); languages may specify type checking or employ automatic
conversion between types. How a languages handles values influences
the way it is used while the supported data types determine its
expressiveness to a high degree.

Business work-flows have a weaker relation to typed data than is
common in IT-centric environments. Instead, data is encapsulated
in forms or “documents” and often transported in the form of charac-
ter strings. Independently of its encoding, IT management processes
interacting with IT infrastructure could take advantage of clear def-
initions of data types.

Beside facilitating the design of process-supporting applications, a
set of data types is indispensable if automation of process parts is
desired. A basic set of data types includes general purpose types
for the representation of numeric and textual data as well as special
types such as time and date representation. To summarise, process
formalisms are examined as to the support for representation of:

• Integer and floating point numbers

• Character strings

105

Chapter 4. Process translation

• Date/Time expressions

• Boolean values

4.1.3. Assessment of process formalisms

At the time of this writing, there are no established languages that
are dedicated to IT management process description. This de facto
convergence towards business process modelling formalisms suggests
that business process modelling languages and techniques are suffi-
cient for IT management process definition. Hence, in the following,
several formalisms for business process modelling and definition are
analysed according to the criteria given in Tables 4.1 through 4.4.
In addition, a number of general formalisms (such as the UML and
Petri Nets) are included in the survey.

4.1.3.1. OMG/BPMI’s Business Process Modeling Notation and
WfMC’s XML Process Definition Language

The Workflow Management Coalition’s “Process Definition Interface
– XML Process Definition Language” (commonly known as XPDL)
specifies syntax and semantics of an XML based workflow language
available in a final Version 2.0 since October 2005. The Business
Process Modeling Notation is a graphical language for process defi-
nition. It is similar in expressive power to the XPDL.

This specification combo consisting of a graphical notation and its
mapping to XML target process authors from the business domain.
For instance, the BPMN defines graphical elements designed to be
easily comprehensible by non-technical personnel, e.g. by use of icons
representing messages or stereotype actions. Nevertheless, many of
the requirements formulated for operational IT management pro-
cesses are addressed by their specifications.

Because of the equivalence in expression of these languages BPMN is
described representatively for both formalisms (with the exception of
formalism features where BPMN and XPDL differ). Its specification
includes normative text regarding the graphical representation of
language elements and the behaviour of compliant modelling tools.

106

4.1. Analysis of process and policy formalisms

Actions BPMN specifies atomic or compound actions (“activities”)
that are associated with zero or more InputSets providing data to
the action as well as zero or more OutputSets that represent the
action result. Input and output are defined as Artifacts that can
be of a DataObject type and encapsulate documents or parameters
made available to the actions.

Control flow can be modelled by means of gateways that specify
flow forks and joins as well as conditional and event-based branch-
ing. BPML specifies different control flow variants, including the
Exception Flow, that is triggered by an event (i.e. error notifica-
tion) and constitutes an alternative control flow path that can be
merged into the Normal Flow by means of the general joining mech-
anisms provided by the formalism.

Messaging The atomic actions (“tasks”) are typed and are option-
ally associated with incoming and outgoing messages. Special task
types denote acceptance and transmission of messages as alternatives
to action execution. Events can contain messages that are named
and may contain a set of Properties consisting of named strings.

Support for objects Objects can be referred to via the Participant
class that encapsulates an entity or role expression identified by a
name. A mapping to externally defined objects is not supported
explicitely in the BPMN specification, though a facility to reference
such objects is present in XPDL.

Conditional expressions Conditions can make use of relational and
logical operators. They can be associated with flow control elements
(gateways).

Data types XPDL defines basic data types including all data types
required as per Section 4.1.5, and additional data types for repre-
sentation of externally defined entities as well as participants of the
process.

Complex data types include records, arrays, unions enumerations
and lists.

107

Chapter 4. Process translation

4.1.3.2. Petri Nets

Petri Nets as such do not specifically address process definition.
They are a generic means for modelling “graph-like” structures. The
extension mechanisms for Petri Nets (colouring, annotation etc),
however, enhance the nets to be a mechanism powerful enough to
model business or management processes.

However, the criteria applied to the formalisms are bound to the
semantics required for expressing IT management processes. The
elements of Petri Nets, being a generic means of modelling flows, are
defined in a much broader scope. Extensions are often employed in
order to differentiate between nodes in a net, and such an approach
could be applied for our purposes as well. In fact, some of the
languages/formalisms (or parts thereof) analysed in this sections
originate from such extensions. Petri Nets in their pure form are
excluded from analysis.

4.1.3.3. Business Process Execution Language for Web Services
(WS-BPEL, BPEL4WS)

As its name suggests, BPEL is intended as a formalism for executable
business processes. In consequence, it addresses those requirements
aiming at enabling automation. IT management specific bindings,
however, are less prominently developed.

Actions BPEL defines actions as invocations of remote API func-
tions, typically in a business partner’s domain. The target domain
to be invoked is identified by a partnerLink and a portType expres-
sion. The action to be invoked is identified by its symbolic name.
It can receive literal formal parameters and be assigned a variable
name to be used as a container for the return value. References to
externally defined objects (e.g. MOs) are not supported.

Control flow features include parallelisation of actions and condi-
tional branching by means of switch statement. Fault signalling is
supported by an exception mechanism and facility for error handling
is provided through
compensationHandlers. The latter consist of alternative actions to
be executed when the primary action fails.

108

4.1. Analysis of process and policy formalisms

Messaging BPEL specifies event handlers capable of invoking an
operation or instantiating a process in reaction to receiving an event.
Conversely, event handlers can be invoked (remotely) to transmit an
event. Format guidelines for information transport in events are not
provided.

Support for objects Externally defined objects are not easily made
available to a BPEL process. Similarly, actions are associated with
scalar variables for parameters and result.

Conditional expressions Conditions are specified for special lan-
guage elements, such as switch constructs or execution thread join-
ing. They can be temporal conditions or expressions formulated in
XPath. Relational and arithmetic operators are supported.

Data types BPEL relies on common XML data types for user data
providing integer, string and date/time types.

4.1.3.4. Unified Modeling Language

The UML has been used for process definition before even though it
does not provide specialised means for that purpose. It does, how-
ever, provide generic means to express most of the elements noted
in Section 4.1.1. In this case, generic means are at the same time
a blessing and a curse: while conveying the ability to express all
required elements, they make necessary the introduction of conven-
tions regarding accepted ways of expressing elements. This anal-
ysis focuses on Activity Diagrams. Process representation options
available by use of other UML features and the use of extension
mechanisms have not been taken into account.

Actions The requirements formulated for management actions are
addressed by a group of activity diagram classes. Activities model
the execution of primitive functions as well as invocation behaviour,
transmission of signals and the accessing of object attributes. The
requirements regarding functional parameters of actions and return
values are satisfied by the ParameterSet/Parameter classes that al-
low the association of input/output objects to actions. Parallel ex-
ecution of actions as well as conditional branching is provided by

109

Chapter 4. Process translation

means of the well–known DecisionNode (diamond) and ForkNode

(parallelisation/synchronisation bar) elements. Error handling is
modelled explicitely by use of the
ExceptionHandler class.

Messaging Activity diagrams allow the modelling of transmitting
and expecting typed signals (events) using specialised actions (SendSignalAction,
AcceptEventAction). Similarly, event payload relaying can be ex-
pressed by means of SendObjectAction. A means for format defini-
tion is not provided explicitely; the type of the objects transmitted
can be used to map to the payload format.

Support for objects The UML’s support for object definitions in
the context of actions and events is quite good. References to ex-
ternal object definitions may be facilitated by the fact that such
definitions (e.g. deposited in a CIMOM) are mostly based on UML1

Conditional expressions The preferred way to express conditions
in the UML is the Object Constraint Language (OCL). OCL state-
ments can be associated with e.g. DecisionNodes in activity dia-
grams to implement conditional branching. Support for relational,
logical as well as arithmetic operations is included.

Data types Support for complex data types (classes) is inherently
good, while primitive types as those listed in Table 4.2 can be ex-
pressed as attributes of classes/objects. A precise primitive type
definition (e.g. including value ranges of number types), however, is
not provided.

4.1.3.5. Event-driven process chains (ARIS/EPC)

Event-driven Process Chains embrace the concept of processes be-
ing event driven. Processes or parts thereof are “invoked” by the
reception of an event and can generate events themselves if neces-
sary. EPCs are represented graphically using symbols proprietary
to ARIS.

1Note that although CIM uses a somewhat different meta-model, it is com-
patible with UML when only access to single object definition is regarded.

110

4.1. Analysis of process and policy formalisms

EPCs describe process partitions (chains) incorporating actions, con-
ditions, objects and logical connectors for control flow. The language
elements are intended for high-level, human-readable representation
of processes. To achieve a consistent machine-readable form, a set of
conventions regarding the inner structure of the elements addressed
would need to be created.

It should be noted that the event-driven process chain formalism is
embedded within the ARIS family of modelling techniques that re-
lies among others on entity-relationship modelling for data and UML
for class/object modelling. In consequence, some aspects of process
modelling are addressed by other formalisms than EPCs. An exten-
sion of EPCs termed enhanced event-driven process chains allows
reference to entities relevant to the process (e.g. organisational en-
tities).

Actions Actions in EPCs are textual descriptions of tasks and can
be associated with objects, thus allowing the modelling of action
input and output. However, support for a formal representation is
not provided. Parallelisation and joining of process threads as well
as conditional branching is supported by means of logical operators
(OR, XOR, AND).

Messaging vs. EPC events Events in EPCs serve to invoke a chain
(i.e. instantiate a process) as well as to determine a change of process
state (e.g. an altered attribute value) or a certain point in time.
Although EPCs rely heavily on events, the event concept used is
not intended for transmitting messages within or outside processes.
EPC events have a declarative nature and their semantics overlap
with those of conditions. In other words, an event can consist of a
statement (e.g. “data available”) that triggers a process partition if
deemed to be true. Readers familiar with petri nets will recognise
the origin of the EPC event/condition concept.

Support for objects EPC actions can be associated with objects
and organisational units. However, a formal representation of these
entities is not supported directly.

111

Chapter 4. Process translation

Conditional expressions Conditions and events are described using
the same graphical notation. They are not differentiated between
explicitely.

Data types Data types adhering to the requirements are not de-
fined.

4.1.3.6. ebXML Business Process Specification Schema

The Business Process Specification Schema is a quite high-level busi-
ness process description language. It has a focus on business docu-
ment exchange and can be described as a document flow language
more than a work-flow language.

Actions and control flow There are several definitions of activi-
ties/actions in BPSS, however they have quite different semantics
compared to the concept of actions as described in Table 4.1. For
instance, a BusinessAction is a named coarse description of an in-
teraction with a business partner. Its instances are associated with
DocumentEnvelopes.The BPSS describes a state–machine–like con-
cept (capturing business state) that can be employed for modelling
business interactions. The BPSS concept of activities/actions is cen-
tred around the transmission of named documents wrapped in doc-
ument envelopes. To request a (business) action, a document is sent
to a receiving party that will transmit an appropriate document
in response. The envelope of such a response document contains
a boolean attribute signifying if the requested action will be per-
formed (true) or not (false). Parallel control flow is supported. The
“BusinessState” of a workflow in progress is kept, thus supporting
recovery from error conditions.

Messaging Processes can be described as message driven but not as
event driven in the IT management sense: messages always originate
with business roles (i.e. machine or human actors from different
domains) and constitute an exchange of business documents. While
event mechanisms employed in IT management (e.g. low-level traps,
notifications from management tools) are similar in structure, the
messaging concept of BPSS has more in common with documents
exchanged by email. A BPSS BusinessDocument is a named entity

112

4.1. Analysis of process and policy formalisms

wrapped in one or more DocumentEnvelopes, which contains state
information to determine whether the document included is intended
as a request or a response. In the latter case, a simple boolean flags
a positive/negative response. Additionally, an envelope containing
a document may transport one or more attachments related to the
document.

Support for objects, roles and domains The two roles of requester
and responder are the only roles defined in BPSS. There is no appar-
ent mechanism to refine or complement these roles. Domain expres-
sions are not supported and while objects may be described inside
documents, no reference can be made to predefined objects as de-
scribed in Table 4.2. Document format or structure is not given in
the specification.

Conditional expressions Collaboration between two roles is gov-
erned by pre- and post-conditions. Conditions can be also be im-
posed on the association of a BusinessDocument to a DocumentEnvelope

in order to determine if the envelope is suitable for the document it
wraps. However, there is no formal specification of condition features
or syntax.

Data types Data types for use in process modelling are not defined.
Internally, the language relies on the common XML data types to
represent information.

4.1.4. Analysis conclusions

The suitability of the analysed process formalisms with respect to The process
formalisms
analysed were
intended for
general
business
processes.

management process modelling is quite varied. This may be at-
tributed to the different intentions, background and scope of their
authors and the releasing organisations. It is important to keep in
mind, that most of these formalism are specified for general business
workflow/process specification. While the IT management processes
in the scope of this thesis are similar to business processes for e.g.
manufacturing in a bird’s-eye view, they do differ in several impor-
tant ways.

113

Chapter 4. Process translation

C
a
tego

ry
E
lem

en
t

C
riterio

n

BPEL

BPSS

XPDL

UML

EPC

A
ctio

n
s

n
a
m

e/
ID

ex
isten

ce
o
f

√
(√

)
√

√
×

a
n
d

fo
rm

a
l
p
a
ra

m
eters

n
a
m

ed
(√

)
×

√
√

(√
)

co
n
tro

l
ty

p
ed

×
×

√
√

×
fl
o
w

retu
rn

v
a
lu

e
ex

isten
ce

o
f

√
(√

)
√

√
(√

)

co
m

p
lex

v
a
lu

e
(√

)
(√

)
√

√
(√

)

referen
ce

to
M

O
s

su
p
p
o
rt

fo
r

×
×

×
√

(√
)

a
s

ta
rg

et
×

×
×

√
(√

)

p
a
ra

llel
ex

ecu
tio

n
su

p
p
o
rt

fo
r

√
√

√
√

√

co
n
d
itio

n
a
l
b
ra

n
ch

in
g

su
p
p
o
rt

fo
r

√
√

√
√

√

erro
r

n
o
tifi

ca
tio

n
su

p
p
o
rt

fo
r

√
√

(√
)

√
×

erro
r

h
a
n
d
ler

ex
isten

ce
o
f

√
×

√
√

×
reco

v
ery

fro
m

erro
r

su
p
p
o
rt

fo
r

reen
try

×
×

√
×

×
C

o
n
d
itio

n
a
l

o
p
era

to
rs

rela
tio

n
a
l

√
×

√
√

(√
)

ex
p
ressio

n
s

lo
g
ica

l
√

×
√

√
(√

)

a
rith

m
etic

√
×

√
√

×
E

v
en

ts
m

essa
g
e

ex
p
ect

√
×

√
√

×
a
n
d

sen
d

√
×

√
√

×
m

essa
g
in

g
ty

p
in

g
n
a
m

e/
ID

×
×

(√
)

√
×

fo
rm

a
t

d
efi

n
itio

n
×

×
×

(√
)

×
in

fo
rm

a
tio

n
tra

n
sp

o
rt

su
p
p
o
rt

fo
r

√
×

√
√

×
T

y
p
es

in
teg

er
n
u
m

b
ers

in
p
ro

cess
d
efi

n
itio

n
√

×
√

(√
)

×
fl
o
a
tin

g
p
o
in

t
n
u
m

b
ers

in
p
ro

cess
d
efi

n
itio

n
×

×
√

(√
)

×
ch

a
ra

cter
strin

g
s

in
p
ro

cess
d
efi

n
itio

n
√

×
√

(√
)

×
b
o
o
lea

n
ty

p
e

in
p
ro

cess
d
efi

n
itio

n
×

×
√

(√
)

×
d
a
te/

tim
e

ex
p
ressio

n
s

in
p
ro

cess
d
efi

n
itio

n
√

×
√

(√
)

×
O

b
jects

o
b
ject

co
n
cep

t
ex

isten
ce

o
f

×
×

√
√

(√
)

referen
ce

to
o
b
jects

in
a
ctio

n
in

p
u
t

×
×

(√
)

√
(√

)

in
a
ctio

n
o
u
tp

u
t

×
×

(√
)

√
(√

)

in
co

n
d
itio

n
a
l
ex

p
ressio

n
s

×
×

(√
)

√
×

ex
tern

a
lly

d
ef.

o
b
jects

d
irect

ref.
to

×
×

√
(√

)
×

T
a
b
le

4
.5

.:
A

ssessm
en

t
criteria

a
n
d

E
va

lu
a
tio

n
resu

lts

114

4.1. Analysis of process and policy formalisms

The opportunities for automation are less than for operational IT
management processes, and there is a gap between the process sup-
port tools and the facilities used for the actual execution of a business
process. For example, a business process in the domain of manufac-
turing and logistics describes activities which to a greater part per-
tain to the physical realm. The effort required to execute any of them
in an automated manner extends to the purchase of specialised ma-
chines to actually perform the task. In contrast, activities within IT
management processes can trigger administrative actions, if only the
workflow tool tracking the process is capable of invoking the correct
actions on the targets of those actions. In addition, the personnel
modelling and executing a business process are not necessarily pro-
ficient in IT matters—which can obviously be claimed in the special
case of IT management processes.

Before this background, it is not surprising that existing business Existing
process
formalisms
need
amendments to
support
operational IT
management.

process formalisms do not support all requirements of detailed, op-
erational IT management processes. Some formalisms do provide the
needed support for operational IT management process modelling.
They do so due to their intention to be general-purpose languages
or otherwise maintain a very broad scope (e.g. XPDL) – in short:
explicit support for IT management processes is lacking.

The idea of being able to specify business as well as IT management
processes by means of the same formalism promises a tighter inte-
gration of the processes of the “core business” with those managing
the supporting IT.

4.1.5. Requirements for policy formalisms

The language employed for process representation is selected before
processes are formalised. Recommendations can be issued to assist
this choice, e.g. with respect to the integration of technical ma-
nagement procedures in the process descriptions (see Section 4.1.4).
In the context of process-to-policy translation, the target language
can be selected flexibly. Naturally, a number of criteria for target
languages are similar to those for source (i.e. process) formalisms.

The criteria employed to assess target policy languages can be di-
vided roughly into two categories. Hard criteria need to be fulfilled
for the language to allow (reasonably) loss-less translation. Optional
features of target languages may ease translation, allow translation

115

Chapter 4. Process translation

to a smaller number of constructs (e.g. smaller number of policies),
or otherwise have a beneficial effect on process translation and/or
execution. The translation approach developed in this work requires
expressions of operational management policy (obligation policy).
Therefore, any security-related policy constructs in the analysed for-
malisms are disregarded.

In this work, the ProPoliS (see Section 7.3 for details) will be em-
ployed to illustrate examples. As the language was developed with a
certain process-awareness, it allows a compact representation of the
process parts that are to be translated.

This does not mean, however, that this is the only policy language
that can be used as a target language. On the contrary, it is impor-
tant that the concepts developed herein are applicable independently
of a specific policy formalism. The examination of policy languages
conducted in the following takes into account the language elements
without which translation is not possible. Any language that offers
those elements can be employed as a target language. The number
of policies generated may be larger, and some constructs may seem
somewhat complicated; nevertheless, the result in terms of executed
management actions should be identical.

Basic ECA rules imply means to specify events that may trigger a
rule, an action to be executed, and conditions that determine the
execution of that action. In addition, target expressions can be em-
ployed to specify the object affected by the action, and, a concept
borrowed from security policy, subjects specify the entity responsible
for the action.

Action expressions Policy actions can be formulated at different
levels of abstraction (i.e. more or less system specific actions) and
with varying reference to system state. Table 4.6 gives an overview
of relevant features of policy actions.

The action(s) specified for a management policy must include, as a
minimum, the name of the function (or method) to be invoked. In
an object-oriented environment, the name of the object offering the
corresponding interface can be specified. A function/method may
take constant parameters, or names of attributes bound to runtime
attributes (known to the policy runtime system), or names bound
to external attributes pertaining to an MO representation , e.g. an
attribute of an element accessible over SNMP[CFSD 90],[RFC 3512].

116

4.1. Analysis of process and policy formalisms

Element Aspect Options

Action function call method name
object specification

parameters constant
bound runtime attribute
bound MO attribute

multiple actions sequential
parallel
selectable

fault handling detection
hook for handling

event generation simple
complex

Table 4.6.: Comparison criteria for policy action elements

A policy may be constrained to a single action specification, or of-
fer an option to specify multiple actions. The cases of sequential
execution (in the order given), and parallel execution must be dif-
ferentiated between.

Policy actions may fail. Depending on the action to be executed,
failure of an action may have consequences of varying impact. A
policy formalism may offer a mechanism for fault detection (and a
standard reaction to the fault, e.g. notifying an administrator). A
more flexible mechanism would offer hooks for fault handling.

In order to chain policies, it may be necessary to generate events/mes-
sages in order to trigger other policy rules. Such generated events
can be simple events (identified by name) or complex, parameterised,
named data records.

Event In general, the evaluation of management policy rules is trig-
gered by an event. The nature of such events can differ in several
aspects, summarised in Table 4.7. Typically, the occurrence of events
is made available to a management system by means of messages.
Such events can be typed (or named), and adhere to a data structure
that carries additional information (e.g. the origin of the message).
In addition, an information payload can be attached to an event; its
structure is dependent on the type of the event.

For some applications, certain patterns of events carry a different,

117

Chapter 4. Process translation

Element Aspect Options

Event simple named
complex structured

with payload
pattern support sequence

time frame

Table 4.7.: Comparison criteria for policy event elements

Element Aspect Options

Condition simple expressions logical operators
complex expressions nested, normal forms

arithmetics operations
reference to values runtime

managed object

Table 4.8.: Comparison criteria for policy condition elements

augmented semantics from the event messages viewed separately.
Optionally, such patterns may be constrained by a time frame, e.g.
taking into account only sequences that complete within a certain
time of the first message having been received. Although patterns
of arbitrary complexity can be conceived, we constrain this analysis
to the support for sequences of events.

Conditions Conditional expressions in policies are logical state-
ments that are evaluated when a policy is applied. Beyond the lexical
elements that are necessary to construct predicates, the language el-
ements for conditional expressions differ in how complex expressions
are supported, as well as in the origin and types of values that can
be bound (4.8).

We differentiate between simple logical expressions and more com-
plex, nested expressions. The ability to use arithmetic operations
in conditional expressions greatly augments their power, however it
does incur additional complexity in the implementation of the lan-
guage. Policy conditions will typically be formulated over attribute
values that can pertain to the runtime system (e.g. the current time,
an attribute of the event object that triggered the policy), or to the
managed system (e.g. a system attribute that is provided by an
SNMP agent).

118

4.1. Analysis of process and policy formalisms

Element Aspect Options

Target object unique
role substitution
addressable
target for action

Subject object unique
role substitution

Table 4.9.: Comparison criteria for policy meta-data elements

Element Aspect Options

Value origin runtime attribute
managed object attribute
function value

Type type checking
simple types integer

floating point
string
boolean
time

complex types arrays
objects
documents

Table 4.10.: Comparison criteria for variables and types in policy
expressions

Subject and Target Policies refer to managed entities (persons, sys-
tems etc). These may be affected by policy execution (thus being
a target of the rule) or they may be specified as responsible for an
activity (subject). With regard to management policy, the subject
role is less important than in a security policy context.

Variables, binding and types Primarily, values may occur in pol-
icy expressions as parameters to an action, or they may be part of
conditional expressions. The criteria given in Table 4.10 should not
be surprising. Support for a number of basic data types is of in-
terest. Temporal expressions may appear often, therefore they are
included in the set of ’interesting’ types. Support for more com-
plex data types and data structures is also of importance. They

119

Chapter 4. Process translation

Element Aspect Options

Meta-data Id name/id specifier
status enabled/disabled
origin author

timestamps
change log

comment policy-level
element-level
policy-group-level

reuse any element type

Table 4.11.: Comparison criteria for policy meta-data elements

include arrays, objects (remote or local) and objects that represent
documents.

Meta-data Policy rules specified for a managed system can become
numerous. To easily manage large numbers of rules, meta-data (as
listed in Table 4.11) can be added to each policy expression. In
the case of generated policies, this feature becomes more important
still: without it, the origin and purpose of a policy rule could not be
determined.

Unique identifiers for policies (e.g. symbolic names) are a prerequi-
site for the management of policies. Also, the origin of a policy rule
(written by an administrator, generated from a tool etc) as well as
a change log facilitate the use of policies, in the same manner as log
entries for configuration files.

The language elements for meta-data do not enhance (or hamper)
the function of the policy-system itself, however. Therefore, by sim-
ple, local conventions, the meta-data items could be placed in com-
ment lines or similar constructs. Finally, constructs that allow reuse
of element definitions (e.g. objects or actions) may decrease the
number of rules.

4.1.6. Assessment of policy formalisms

A number of formal policy languages have been analysed according
to the criteria described in the previous section. The languages
considered are cross-section of available policy formalisms, having

120

4.1. Analysis of process and policy formalisms

in common the ability to express operational management policy, or
obligation policy.

The rationale of this selection is that, even though obligation policy
is applied to security management, it specifies actions that need to
be taken under certain circumstances (given by a condition and/or
event specification). This mechanism could be exploited for process
implementation, if sufficient power of expression is provided by the
lexical elements for obligations. However, most languages with a
strict focus on security and privacy policy exhibit a narrow under-
standing of obligation policy, tailored to their application domain.
Effectively, this obviates their application in the scope of this work.
Detailed analysis results are omitted with respect to these languages;
a summary of relevant features is provided instead.

The compliance to the criteria given in the previous section is dis-
cussed for the remaining, most promising candidates: PDL , Ponder
and ProPoliS. Table 4.12 gives an overview of the examination re-
sults. A fulfilled criterion is indicated by √, while × indicates its
failure. Partial fulfilment is indicated by (

√
). Following, the specific

reasons for excluding some of the languages from the candidate set
are stated.

4.1.6.1. PDL

This early language was designed with management policy in mind.
While it fails the criteria for some of the more sophisticated features,
it provides a solid base of language constructs that are useful towards
process implementation.

Actions and error handling The actions of PDL policies are func-
tions of arbitrary arity that take terms as arguments. Such terms
can be constants/literals, return values of functions, or attributes
associated with the triggering events. In theory, invocation of func-
tions can address remote objects, or objects in a runtime system.
There is no explicit reference to objects hosting such functions (as
methods) in the specification. In fact, PDL ’s specification does not
take any objects (runtime, remote or other) into account.

The language lacks error detection and control. This is a short-
coming that is difficult to address by extension, since it requires
modification to the definition of actions in the language. Monitoring

121

Chapter 4. Process translation

Element Aspect Options P
D
L

P
on

de
r

P
ro
P
ol
iS

Action function call method name
√ √ √

object specification × √ √

parameters constant
√ √ √

bound runtime attribute
√ √ √

bound MO attribute (
√

)
√ √

multiple actions sequential × √ √

parallel × √ ×
selectable × √ ×

fault handling detection × √ √

hook for handling × √ √

event generation simple × × √

complex × × (×)
Event simple named

√ √ √

complex structured (
√

)
√ √

with payload × × √

pattern support sequence
√ √ ×

time frame
√

(
√

) ×
Condition simple expressions logical operators

√ √ √

complex expressions nested, normal forms
√ √ √

arithmetics operations
√ √ √

reference to values runtime
√ √ √

managed object (
√

)
√ √

Target object unique × √ √

role substitution × √ √

addressable × √ √

target for action × √ √

Subject object unique × √ √

role substitution × √ √

Value origin runtime attribute
√ √ √

managed object attribute (
√

)
√ √

function value
√ √ √

Type type checking
√ √ √

simple types integer
√ √ √

floating point
√ √ √

string
√ √ √

boolean × √ √

time × (
√

)
√

complex types arrays × (
√

)
√

objects × √ √

documents (×) (×) ×
Meta-data Id name/id specifier × √ √

status enabled/disabled × × √

origin author × × √

timestamps × × √

change log × × ×
comment policy-level × (

√
)

√

element-level × (
√

)
√

policy-group-level × (
√

)
√

reuse any element type × √ √

Table 4.12.: Results of policy language analysis

122

4.1. Analysis of process and policy formalisms

of actions’ success or failure could be performed at the point of their
execution; event sequences could be exploited to ensure the execu-
tion of corrective actions. However, a policy set generated to imple-
ment such error control would hardly represent the intent behind a
management process. If support of error handling is mandatory, a
different language must be chosen instead.

Policies in PDL contain one action. While the language specifica-
tion does not explicitly forbid multiple actions, constructs to specify
parallel or sequential execution of more than one action are missing.

The language does not support the generation of events as such. An
appropriate API could, however, given the definition of actions, sat-
isfy the generation of events in order to implement IT management
process data flow.

Events and conditions Events are viewed as the manifestation of
state changes in a system, e.g. through the transmission of trap
messages if using SNMP. The language specification differentiates
between these events, and so called policy defined events which can
be compounds of events over time. PDL provides sophisticated con-
cepts for event sequences, groups etc. The language specifies flexible
time frames called epochs for the occurrence of events.

Events are identified by symbols, i.e. named, and they may be associ-
ated with attributes; possibly, this is enough to support the transport
of structured information between the evaluation of two policies.

Conditions in PDL can be formulated as a sequence of predicates
constructed from relations between two terms (terms are defined as
the ones for function arguments). The common relational operators
are supported, while arithmetic operations are realised as functions,
again, in accordance to the definition of terms. For the same rea-
son, values referenced in conditions include attributes of the runtime
environment and, possibly, of managed objects.

Entities and values PDL appears to focus on element management.
The managed object in the scope of a given policy set is therefore
implied. There are no mechanisms to specify targets or subjects
of a policy. However, there is nothing to prevent the symbols that
identify policy actions to specify a managed object (as a target)

123

Chapter 4. Process translation

in addition to the function name. Obviously, support for common
grouping mechanisms such as domains is missing.

The language is typed. Integer, floating point, string and character
data are said to be supported; it is unclear if these are the only data
types. Complex data types, e.g. arrays, objects, and documents are
not supported.

Meta-data The language lacks constructs which could carry meta-
data for policies. Not even a comment facility is specified. This is,
however, in the spirit of PDL ’s formal, “concepts-only” approach.

4.1.6.2. Ponder

Ponder is perhaps the most versatile language of those examined
here. While it is evident that it, too, focuses on security policy, the
concepts and mechanisms included for management policy are well-
developed. This analysis takes only into account those mechanisms,
as the facilities for security policy are not in the scope of this work.

Actions and error handling Ponder provides actions and excep-
tions. A policy rule may hold multiple actions that can be specified
to be executed sequentially or in parallel. The mode of execution is
determined by means of operators provided in the language for this
specific purpose. Actions clauses are written in the style of OO lan-
guages; however, the specification is somewhat unclear on how they
are actually executed on a target. (Note: An extension to the Pon-
der1 toolkit that allows execution of obligation/management policy
is realised by means of a Java-based agent called via the Java Remote
Method Invocation (RMI).)

Events and conditions Ponder supports a similar range of event
definitions as PDL . In particular, it can define event sequences, as
well as single events (or groups of alternative events) that may trigger
evaluation of a policy. Conditional expressions can be formulated
fairly freely and can include variables bound in the policy definition.

References to entities In general, entities in Ponder are represented
by domain expressions. In turn, these assume access to a central

124

4.1. Analysis of process and policy formalisms

directory. In fact, the Ponder toolkit relies on an LDAP directory
to store policies, as well as information about managed objects.

Meta-data The Ponder specification does not specify comment con-
structs explicitly. However, most examples given by its authors in-
clude comments (preceded by double slashes). In practice, these
comments can be exploited to encode meta-data, without the need
of extensions to the language or its implementation.

Element reuse Ponder is described to be an object-oriented lan-
guage. This applies primarily to the policy types being ordered in
a inheritance tree. More important, named policy types can be de-
fined that act as templates for policy instances. Careful use of this
mechanism can help reduce the number of policies necessary for the
realisation of an IT management process.

4.1.6.3. Propolis

The ProPoliS language has been designed with a focus on manage-
ment policy, with application to process-oriented management in
mind. Therefore, it is scarcely surprising that it fits the required
criteria fairly well.

Actions and error handling Propolis supports two kinds of actions:
primary management actions, and actions to be performed if the
primary actions fail (errorAction). Each of these may describe the
invocation of a function or method on an MO, or the transmission of
an event. In practice, the latter is often the case with errorActions.
Actions may have an arbitrary number of named and typed param-
eters. Parameter values may be literals, runtime or remote object
attributes (including event objects), or return values of functions of-
fered by the runtime system or by MOs. Events transmitted as a
consequence of policy execution are named and may carry additional
information, obtained as with parameter values.

Events and conditions Any execution of Propolis policies is trig-
gered by an event. Events are expected to be named and may con-
tain structured additional information. In addition, a non-structured
payload may be attached to an event object.

125

Chapter 4. Process translation

References to entities Propolis can reference single entities, as well
as roles and domains that are resolved (lazily) to entity sets. All of
these are referenced by symbolic names.

Meta-data A descriptor block can be specified for every policy,
including the author(s) and modification times of that policy, as
well as a mandatory description. In addition, every instance of a
policy element can include a (free-form) comment clause.

Specialised language elements are provided for associating policies
and policy elements with IT management processes.

4.1.6.4. XACML

As indicated by its name, the eXtensible Access Control Markup
Language focuses on access control and privacy policy. In XACML,
it is possible to express obligations associated with permitted ac-
tions. These include data obfuscation functions to ensure privacy,
as well as e.g. erasure of data after a period of time for the same
reason. The language does not, however, provide a means to specify
exactly how such obligations are to be fulfilled. By design, it merely
includes a facility to reference obligation functions defined elsewhere.

4.1.6.5. WS-Policy

In contrast to the focus on expression of actual policies, the larger
part of WS-Policy is dedicated to policy containment and transport.
It views policy as a number of selectable options that are made
available under certain conditions. This is different from manage-
ment policy semantics in other languages. In fact, it can be said
to constitute an independent type of policy, a selection policy type.
Unfortunately, it does not provide a form that allows immediate ex-
pression of management policy. Therefore, although many of the
criteria described in Section 4.1.5 may be fulfilled by the grammar
given in WS-Policy, the different scope of this standard excludes it
from the set of eligible formalisms.

126

4.1. Analysis of process and policy formalisms

4.1.7. Summary of analysis results

The purpose of the analyses documented in this section was to iden-
tify suitable source and target languages for process translation. In
the case of source languages a number of commercially relevant, for-
mal process languages have been examined. The analysis was per-
formed on the basis of a catalogue of criteria formulated according
to the requirements on the representation of IT Management pro-
cesses. In particular, the criteria reflected the intent to effectively
automate the management processes, and to allow the integration of
infrastructure management tools into the processes.

In conclusion, two alternatives prove adequate for the task. Both
provide equivalent (in truth, near-equivalent) graphical and textual
forms. The first pair consists of the graphical modelling language
BPMN , for which XPDL 2 provides a textual notation. The second
formalism is the UML Version 2, specifically the Activity Diagram
portion of the specification. UML diagrams can be expressed in
textual, machine readable form using XRI.

Of the other examined languages, WS-BPEL and ARIS/EPC lack
important language features. They could be extended in a suitable
manner to render them adequate for representing IT management
processes in detail. In particular, future versions of the BPEL may
incorporate the desired language elements.

The BPSS is unsuitable for representation of IT management pro-
cesses. As it focuses on the document flow in business processes, the
language lacks features that are critical if management processes
are to be described in detail. Attempts to add such features would
without doubt adulterate the intent of the language.

The preselection of the languages to be included in the analysis was
founded on the their intended use. As they were designated to be
used as target languages of a translation between management pro-
cesses and policy rules, certain minimal segregation criteria could be
applied. In particular, the expressiveness of a language with respect
to obligation/management policy at an operational level was deci-
sive. A number of languages were excluded from the main analysis
procedure. In access-control centric languages such as XACML and
EPAL the obligation policy construct was determined to be insuffi-
cient. Rei has a number of interesting features, but lacks important
ones, such as the concept of events. WS-Policy is not designed to

127

Chapter 4. Process translation

express management policy; instead it provides a container that is
intended to hold policy expressions.

Finally, three languages, PDL, Ponder and Propolis were examined
in detail. As with the analysis of source languages, a catalogue of
criteria was compiled and applied to every language. All three were
found to be suitable to a satisfactory degree. The main differences
between the languages are relevant only to non-critical criteria.

In summary, we can conclude that a satisfactory selection of both
source and target languages exists. The approach presented in this
thesis is intended to remain independent of a specific language.
Therefore, for both process and policy languages, only the common
features will be relied upon.

4.2. Meta-models of process representation

In order to accommodate a wide range of formalisms for process
representation, assumptions made with regard to the structure of
process definitions must be avoided. Nevertheless, it is necessary to
describe the general structure of process definitions. In principle,
a process can be said to be a directed graph consisting of vertices
(nodes) that express e.g. activities, and edges (links) that connect
pairs of vertices in one given direction.

ProcessNode

Incoming

Outgoing

*

*

Link

EndCond. Branch StartParall./Synch Action

Event Signal

connect 1..2

Figure 4.1.: Generic, control-flow-centric process meta-model

128

4.2. Meta-models of process representation

4.2.1. Simple, generic meta-model for process definitions

Representations of a process definition exhibit (when only consid-
ering the control flow in the process) at least five types of nodes:
activities, branching/joining points, parallelisation/synchronisation
points, starting nodes and end nodes. Actions (or activities) can be
said to include the transmission of a signal (or message) as well as
the act of expecting an event (or message). This basic meta-model
for process definitions is summarised in Figure 4.1, taking into ac-
count only the control flow of the process (while signals and events
may transport information, for the purposes of the model they are
only viewed in their control-flow relevant role). Note that is does not
constrain the “wiring” of vertices in the process graph. Arbitrary
connections between nodes are allowed, as long as graph edges are
connected to at least one vertex. Arbitrary bounds to association
cardinalities may be imposed in the formalisms instantiated from
this model. For example, starting nodes typically have no precedent
nodes, while end nodes have no follower nodes.

The results of process language analysis, shown in Table 4.5 suggest
that all formalisms described in this work are instances of the meta-
model. The simple meta-model presented here factors out any detail
of the process, as well as data flow considerations. Instead, it focuses
on the control flow in a process.

The process translation approach employed in this work relies on
the recognition of patterns for which corresponding, parametrised
policy rule sets have been specified. Thus, input process specifi-
cations must be decomposed into partitions that can be matched
against the patterns. Depending on the concrete process formalis-
m/language employed to create a process specification, certain rules
and constraints inherent to that formalism will be manifested in the
process specification. However, such rules may vary across process
formalisms (see Section 4.1). Hence, any assumption made with re-
spect to the structure of a process graph would needlessly narrow
the applicability of the approach presented in this work.

4.2.2. Target meta-model

Unfortunately, freedom in the choice of formalism, combined with a
high degree of flexibility when modelling an IT management process
results in a disadvantageous starting point for pattern-based process

129

Chapter 4. Process translation

Parall./Synch

Parallelisation

Action

Event

Start

Signal

End

Conditional

JoinBranch

ProcessNode

Outgoing

Incoming

Synchronisation

Link

2..

1 1 2.. 0 1..

1 0 0

1

2..

2..

1

1

Figure 4.2.: Target meta-model

translation. Similar control flow paths may be modelled in a different
manner, depending on the concrete formalism employed, the type of
the process and the preferences of the person creating the model.
To facilitate exact pattern matches in so diverse process definitions,
the set of patterns would need to take into account these differences.
In turn, this would result in a much larger set of basic patterns,
more complex matching algorithms, as well as a higher probability
of “orphan” process parts that are not matched by existing patterns.

A viable escape from this situation is the specification of constraintsTarget
meta-model
specifies
constraints

on the process definition to be translated. The target meta-model
shown in Figure 4.2 takes into account cardinality bounds, as well
as a number of assumptions that aid in the simplification of source
process definitions. While the generic meta-model depicted in 4.1
describes the source formalisms for process representation, the target
meta-model refers to the pattern set described in 4.5.

A number of assumptions are part of the target meta-model’s design.Assumptions in
the target
meta-model

One of them allows the exclusion of start and end nodes by equating
them with event and signal nodes, respectively. Another assumption
is made with regard to process nodes that denote a branch in control
flow, be it conditional and unconditional branching, or parallelisa-
tion of process execution threads: whenever execution flow is forked,
it must be forked from a single thread. Hence, such nodes will always

130

4.3. Substitution rules

Process Node Subtype Incoming Outgoing

Action 1..N 1
Signal 1 0
Event 0 1
Start 0 1
End 1..N 0

Parallelisation 1 2..N
Synchronisation 2..N 1

Conditional branch 1 2..N
Join conditional branch 2..N 1

Table 4.13.: Summary of process nodes cardinalities

have multiple outgoing links (edges) and exactly one incoming link.
Similarly, nodes joining control flow, whether from parallel thread or
from several possible execution paths chosen by means of conditions,
will have multiple incoming links and exactly one outgoing link. The
last notable feature of the target meta-model lies in the constraints
imposed on actions. Actions need to be execution within an exe-
cution thread, hence they need at least one incoming link. A pure
view of a process action (or activity) prohibits an action node to
split or join control flow. Hence, an action will always have exactly
one outgoing link. Table 4.13 summarises by node type the number
of incoming and outgoing links a node may have.

The target meta-model can be employed to create a “pattern-friendly”
but equivalent representation of given process. Instantiating the tar-
get meta-model yields the nodes shown in Figure 4.3. In essence, a
process conforms to the target meta-model if it contains only the
nodes shown in the diagram.

4.3. Substitution rules

Process definitions described by means of a formal language are ex-
pected to conform to the much more liberal meta-model shown in
Figure 4.1, instead of to the target meta-model. They must be trans-
formed into an equivalent form conforming to the target meta-model.
This is achieved by substitution rules that translate an atomic frag-
ment of the process into a representation consistent with the target
meta-model – and thus into a form that is more amenable to pat-

131

Chapter 4. Process translation

Conditional
Joining

Parallelisation Synchronisation

Activity Expect message Transmit message

Conditional

...

...
...

...

SignalEventAction

...

Figure 4.3.: Target process elements

tern matching. At a process graph level, the substitution rules yield
production rules that may be used for node-for-node transformation
of an input process.

Substitution rules effect the elimination of superfluous nodes, the
elimination of superfluous links and the introduction of real as well
as virtual nodes. They can be divided into context-free substitu-
tion rules derived directly from the target meta-model, and context-
sensitive rules formulated with the idea of process-to-policy transla-
tion in mind.

4.3.1. Context-free substitution

The rules for context-free substitution regard a single node and the
links attached to it. The transformation they specify does not take
into account the type of the neighbouring nodes.

R1– Elimination of branching/joining nodes Branching and joining
nodes may be considered redundant if both the number of incoming
and the number of outgoing links equals zero or one (see Table 4.14).
In the former case, the node is isolated and therefore useless. In the

132

4.3. Substitution rules

Process Node Subtype In Out Verdict Action

Parallelisation/Synchr. 0 0 isolated eliminate
Parallelisation/Synchr. 0 1 fake starting node eliminate
Parallelisation/Synchr. 1 0 fake end node eliminate
Parallelisation/Synchr. 1 1 ineffective eliminate

Conditional branch/join 0 0 isolated eliminate
Conditional branch/join 0 1 fake start node eliminate
Conditional branch/join 1 0 fake end node eliminate
Conditional branch/join 1 1 may be ineffective eliminate if no

guard condition

Table 4.14.: Elimination criteria for branching/joining nodes

latter case, it is ineffective. Hence, without changing the execution
flow of the process, the node in question can be eliminated. Instead,
its predecessor and follower (if present) are connected by a link.

In a more formal manner, the rule can be written as:

{X1} → Ko → {Y1} 7−→ X1 → Y1

and

{X1} → Pa → {Y1} 7−→ X1 → Y1

where X1 and Y1 are in the precedent and follower sets of the Ko/Pa

node. Note that the formal notation only takes into account the
case where there is one precedent node and one follower node; the
remaining cases listed in Table 4.14 can be written in a similar man-
ner. The 7−→ arrow denotes the substitution, while the short →
arrows denote links between nodes. The notation {X, Y } → Z de-
notes a set of nodes consisting of X and Y , which all (both) link to
Z. If several artefacts are created on the target side of the substi-
tution, a ⊕ sign will be used to delimit them; the right hand side of
the rule can be read as “substitute this ⊕ also this”.

There is a special case in which a conditional branching node has
one incoming node guarded by a condition and one outgoing node.
Such a node is not eliminated by this particular transformation.

133

Chapter 4. Process translation

...

......
... ...

...
...

...

Figure 4.4.: Splitting conditional/parallelisation nodes

R2– Splitting conditional/parallelisation nodes In some cases, ex-
ecution threads or control paths are joined only to be split again,
perhaps according to the evaluation of conditional expressions. This
could be expressed by conditional nodes with multiple incoming and
multiple outgoing links. The same structure is conceivable for par-
allelisation/synchronisation nodes.

In such cases, the node in question can split into a branching and
a joining node without changing the execution flow. The incoming
links are connected to the joining node, while the outgoing links are
connected to the branching node. The two “new”, resulting nodes
are connected by a link starting at the joining node and pointing
towards the branching node.

{X1, X2, · · ·} → Ko → {Y1, Y2, · · ·}
7−→ {X1, X2, · · ·} → Ko1 → Ko2 → {Y1, Y2, · · ·}

{X1, X2, · · ·} → Pa → {Y1, Y2, · · ·}
7−→ {X1, X2, · · ·} → Pa1 → Pa2 → {Y1, Y2, · · ·}

Figure 4.4 illustrates this substitution rule. In the case of a condi-
tional node, the guard conditions on incoming links must, naturally,
be retained.

134

4.3. Substitution rules

4.3.2. Context-sensitive substitution

Realisation of IT management processes by means of policy rules
relies on an event-based flow control. Hence, some features of a
process that are implicit to an contiguous process definition need to
be treated in a special manner.

One of these aspects is the exit from a process node, e.g. an ac-
tion, and continuation of the control flow in another node pointed
to from that action. In a graphical representation of a process, this
seems trivial, however, to control execution, the termination of the
action must be detected, and continuation of this execution must be
facilitated.

Such events implicit to the traversal of the process graph can be
introduced as artificial but explicitely modelled events into the pro-
cess specification. The detection of such an event is signalled by a
signal node, while the corresponding process partition (that should
be notified of a change in state, e.g. the node following the action
in the former paragraph) designates its expecting the signal by an
event node.

As these are not “real” process nodes but runtime-dependent mes-
sages originating in the process execution infrastructure, they are
called virtual nodes. Hence, a virtual signal is used to signify e.g. an
action terminating, and a corresponding virtual event node can be
used to trap the signal and react to it.

The following substitution rules make use of virtual nodes to decou-
ple process partitions.

R3– Eliminating joining conditional nodes Some nodes join execu-
tion paths, without performing a synchronisation of previously par-
allelised threads of execution. They provide a common sink for mul-
tiple possible execution paths, and they are invariably represented by
Ko-nodes. After having ensured that Ko-nodes are either opening,
i.e. of the form

→ Ko → {Y1, Y2, · · ·}

or closing, i.e. of the form

{X1, X2, · · ·} → Ko →

the joining nodes always constitute closing Ko-nodes.

135

Chapter 4. Process translation

Such a node can be eliminated by attaching a virtual signal to each
of its predecessors, and creating a corresponding virtual event to link
to its (single) follower. In our formal notation, this substitution can
be written as follows:

{X1, X2, · · ·} → Ko1 → {Y }
7−→ X1 → Si, X2 → Si, · · · ⊕ Ev → Y

This substitution rule may seem awkward, since a clear, intuitive
process structure is broken up and replaced with disparate signal/event
pairs. Considering the translation target (event-driven management
policy rules), however, the rule does provide several benefits:

1. it imposes an event-driven control flow
2. a passive (read: useless) process node is eliminated
3. a step is taken towards isolating process parts from each other,

which will, in turn, be helpful to the pattern matching proce-
dure

R4– Decoupling Ko→Pa sequence One effect of the previous sub-
stitution rule is to create a more loosely coupled process specifica-
tion. The following rule has a similar scope. It aims to disconnect
Ko and Pa nodes, which sometimes can create quite complex struc-
tures. As in the previous rule, it specifies a procedure to decouple a
Pa node following a Ko rule by substituting a signal/event pair. The
following formal notation describes the substitution rule:

{X1, X2, · · ·} → Ko → {· · · , Yk−1, Pa, Yk+1, · · ·}
7−→ {X1, X2, · · ·} → Ko1 → Ko2 → · · · , Yk−1SiPa, Yk+1, · · ·}

⊕EvPa → Pa

R5– Decoupling Actions Actions can be said to be the most im-
portant nodes in a process definition. They may be followers of
conditional branch expressions, of parallelisation, or of each other.
This does often not take into account the need to detect action ter-
mination. The following, simplified, substitution rule sketches the
procedure that can be employed to retain the logical links of actions

136

4.4. Methodology for translation

to the rest of the process, while accommodating virtual signals and
events that mark their beginning and termination.

{X1, X2, · · ·} → Ac{Y1} 7−→ X1 → Si, X2 → Si, · · · ⊕ Ev → Ac

In some cases, the rule needs not be applied. Examples include the
case when an action is preceded by (an) event(s). Obviously, there
is no need to supplement that event by a virtual one; the possibly
generated signal can be matched to the already existing event node.
Another case is an action followed by a signal: there is no need to
introduce an additional virtual signal. To maintain readability, the
above form does not take these cases into account.

4.3.3. Order of application

The order in which the substitution rules are applied to a process
specification impacts upon the result. While repetitive application
of the rules in any order will result in the same target process specifi-
cation in the end, to minimise the number of passes, the rules should
be applied in the order they have been listed in this section.

4.4. Methodology for translation

The source and target models governing the translation have been
established in the previous section. This section focuses on the
methodology employed to translate a process specification, begin-
ning with its original form, via the form ensuing as a result of ap-
plication of the substitution rule, up to the point where a set of
policies has been created that represents the original process (and,
certainly, its intermediary forms). Once the translation is complete,
the management policy rules may be distributed to their intended
(sub-)domain, and provisions must be made to ensure the data flow
required by the process is realised.

4.4.1. Outline

The high-level translation procedure is explained in the following.
Details regarding some of the steps in the methodology are given in
subsequent parts of the work.

137

Chapter 4. Process translation

Step 1 – Process review In this step, the original process is

assessed, to ensure that the process specification com-
plies with the requirements imposed by the actual
pattern-based translation mechanism.

Step 2 – Substitution In this step, the substitution rules are

applied.

Step 3 – Fragment matching In this step, the process frag-

ments are matched against the pattern catalogue.

Step 4 – Data flow analysis In this step, the data flow in the

process is traced.

Step 5 – Rule generation In this step, management policy

rules are generated according to the parametrised rules
attached to each pattern.

Step 6 – Deployment Once the process specification has been

translated into a set of management policies, the latter
must be deployed in order to execute the process.

4.4.2. Description of steps

The following description of the methodology steps provides a more
in-depth view.

Step 1 Process review

The input to the translation method described in this work is a
process specification written in a formal language. The final goal
is to successfully create executable management policy rules. The
objective of the first step of the methodology is to ensure that the
process, as modelled, is suited and ready for translation. This pre-Review criteria

assessment is based on the following requirements, which must be
fulfilled by the process specification:

• Compliance to meta-model The process specification is mod-
elled by means of a language that complies to the generic meta-
model.

138

4.4. Methodology for translation

• Machine readability The process specification is available in a
machine readable form, or can be exported into such a format.

• Sufficient detail The level of detail in the process specification
provides “enough” information to be automatable. Unfortu-
nately, this criterion is difficult to substantiate enough to be
unambiguous, due to the different context in which a process
specification may be created. As a guideline, if the information
required to drive the execution of the IT management process
in question is present, the level of detail can be deemed suffi-
cient. This includes taking into account the interfaces, formats
etc. dictated by the managed infrastructure, the management
tools and the tools for process support.

• Syntactic correctness Syntactic errors in the process will lead
to undesired results, no matter how process automation and
execution are realised. In the case of the approach discussed
in this thesis, syntactic faults may lead to erroneous parti-
tioning of the process, failed pattern matches, and of course
erroneous management policy. The use of modelling tools may
help fulfil this requirement while the process specification is
in-the-making.

If the process specification fulfils the above requirements, the next Iterative
improvementstep in the methodology may be executed. If not, the formal speci-

fication needs to be revised until the demands made in this step are
met.

Step 2 Substitution

As detailed in Section 4.2, the input process specification may be
compliant to any language that is possible to instantiate from a
generic meta-model. In this step, the process specification is made
compliant with the more constrained target meta-model. For this
reason, the substitution rules described in Section 4.3 are applied to
the input process.

After this step, the process specification should have a form compli-
ant with the target meta-model. To achieve this effect, the substi-
tution rules need to applied in the proper order. In most cases, the
resulting process specification will consist of several, isolated graph
partitions (fragments). As a rule, after having applied the substitu-
tion rules, the resulting fragments tend to be small.

139

Chapter 4. Process translation

Step 3 Fragment matching

The translation mechanism employed in this work is based on the
matching of process fragments against a set of pre-defined process
patterns, like the ones described in Section 4.5. In this step, the
process fragments acquired in the previous step are matched against
the patterns in the catalogue.

Matching must be exact, i.e. the structure of the fragment in ques-
tion must exactly match the structure of a given pattern, as well as
the exact node denominations. However, for the scope of pattern
matching, virtual nodes are viewed as equal to “natural” ones. For
example, an event node occurring in a pattern can be matched by
an event that was present in the process specification reviewed in
step 1; it can also be matched by a virtual event node introduced in
step 2.

All fragments should be matched in this step. In the case of “orphan”Handling
anomalies (i.e. unmatched) fragments, human intervention becomes necessary.

A possible cause of this situation can be errors in the original pro-
cess specification. This situation also occurs when a new pattern is
encountered.

Step 4 Data flow analysis

The substitution rules, as well as the patterns, focus on control flow.
In contrast, this step ensures that every process node is provided
the information it needs in order to be effective.This includes iden-
tifying data records passed between activities. In particular, actions
need to be supplied the required parameter valued, and conditional
branching nodes need to be be provided the values required by the
guard conditions. Signals that pass control flow to another process
part need to have access to the information required in that part of
the process.

To be able to ensure that the data flow within the process is not
impeded or interrupted, the data records that are to be passed be-
tween nodes need to be identified. In addition, the information items
that some of the nodes may depend on need to be identified. If the
information to be transmitted is of a primitive data type (e.g. a
named integer or string), it can be included in an event structure.
In complex and non-translatable cases, e.g. with documents, named

140

4.4. Methodology for translation

wrappers around these data items need to be created. In such a
case, a reference to such documents can be passed within the pro-
cess. The runtime environment is responsible for de-referencing the
information objects in question.

Before generation of the rules in the next step, the information ob-
jects need to be attached to the process nodes they are referenced
by. The actual procurement of information at runtime is discussed
in detail in Chapter 5.

Some IT management process elements will include interaction with
an administrator. Examples include notifications or the request for
a decision. In this step, it must be ensured that the necessary in-
frastructure is in place to handle such cases. In simple cases, the
presence of a transfer agent for internet email could suffice.

Step 5 Rule generation

The preceding steps have ensured that every part of the process is
matched by a pattern (see Section 4.5), and that the correct infor-
mation objects have been mapped to every process node. In this
step, the parametrised templates in the patterns are specialised for
every instance of the matched process fragments.

Step 6 Deployment

Strictly speaking, deployment does not constitute a part of the trans-
lation methodology. However, deployment and commissioning of the
policy set is of great importance to the approach as a whole. After
translation has been completed in the previous step, the manage-
ment policy rules should be distributed, if possible, to their domain
of action. If a centralised policy architecture is used, the rules should
be loaded and activated. Previous rules should be deactivated (e.g.
if the process had been deployed before).

The data record definitions should be passed to the entity that gov-
erns process data flow, e.g. to the service monitoring architecture
described in this work. If necessary, data acquisition rules need to
be specified and activated.

141

Chapter 4. Process translation

4.4.3. Discussion

The above description of the methodology for translation relies on
a number of implicit assumptions. These assumptions allow the
description to be kept concise and clear. However, they also lead
to the neglect of plausible situations that will be discussed in the
following.

One of the aforementioned assumptions is that any action can be
performed by a machine. Hence, until now, we have not taken into
account the actions that will be delegated to human operators, or the
information/data items that need to be available to them. Certainly,
this issue must be resolved, lest the process will be impeded, however,
its characteristics are highly dependent on the infrastructure, tools
etc. that may be in use at a site.

Another issue may be found with the handling of irregularities in
the execution of the methodology. The general instruction provided
in the text can be seen as guidelines to resolve problems occurring
during process-to-policy translation. Nevertheless, the specific ac-
tions to be taken are, again, dependent on the actual setting, as well
as possibly on the process specification.

In conclusion, such issued cannot be effectively addressed in the
methodology. They must, unfortunately, be countered with “best
practice” knowledge originating in the domain of application of the
methodology.

As becomes apparent from the description of the translation proce-
dure, the pattern catalogue for translation is critical to the realisa-
tion of the translation. It will be described in the next sections.

4.5. Fundamental patterns

Process specifications are imperative in nature. They rely on stateProcess
execution is
stateful

(process state) as well as control on the degree of parallelism in their
execution. The sequence of actions is rigid, given by the specifica-
tion. These characteristics must be conserved by any implementa-
tion of the process.

When realising process control flow by means of management policy,Policies keep
no state a number of measures must be taken in order to ensure the correct

execution of the process. Typically, policies themselves are executed

142

4.5. Fundamental patterns

in isolation, and transferring no state information about a system
or a process. The sequence, in which policy actions are executed is
difficult to predict as there is no real dependency between the exe-
cution of the actions in one policy, and the execution of the actions
in another.

The approach described in this work takes these issues into account Pattern =
process
fragment +
parametrised
rules

by employing translation patterns. The patterns consist of a small,
generalised piece of process specification and a likewise parametrised
management policy rules.

A number of fundamental patterns can be identified. They repre- Pattern
variantssent common process fragments and include basic/ECA, condition

and synchronisation patterns. Each pattern has a number of vari-
ants that account for different possible contexts of a pattern. The
development of pattern variants yields a catalogue of patterns to
match against process specifications.

Every process activity, as well as every management policy action Dealing with
data flowdepend on information that originates inside or outside the process.

The connection between an action and this information (e.g. systems
management information, process artefacts) needs to be taken into
account by every pattern translation (i.e. rule set). However, this
can be done separately from the treatment of control flow.

4.5.1. Basic pattern

myEventN

:Entitysubj

:Entityobj

:Parameterp1

myAction_done

myAction

...

myEvent1 ...

Figure 4.5.: Basic pattern

The control flow common to every process and every policy language
is that of an event (either an explicit message being passed between
two points, or a change of state) triggers the execution of an action.

143

Chapter 4. Process translation

Though some policy languages lack the concept of events and rely
solely on conditions to determine when a policy is to be enforced,
the evaluation of such conditions must be triggered somehow – thus,
implicitly, an event concept is introduced.

The simplest patterns that can be produced with solely event and ac-
tion elements is the one depicted in Figure 4.5. Note that the pattern
allows different events to trigger the action. Translation of instances
of this process pattern yields one or more policies, depending on
the policy language used: if the language supports specification of
several triggering events for its action, a single policy will suffice.
If the policy formalism limits the number of events specified in a
policy, the translation should produce a number of policies inversely
proportional to the limit imposed, yielding at most the number of
policies corresponding to the number of events specified in the pat-
tern instance being translated.

The termination of the action is signalled by the (possibly virtual)
signal
myAction done. If, in the process specification itself, the action is
followed directly by a “real” signal or message transmission, the
virtual signal is, of course, unnecessary.

The basic pattern can be translated into a single policy as follows:

policy
{

event { myEvent1, · · ·, myEventN }
subject { subj }
target { obj }
action { myAction(p1, · · ·); }

}

4.5.2. Condition patterns

Control flow decisions in processes are often based on conditions.
A simple pattern supporting this feature is the condition pattern.
Although it is an extension of the basic pattern described above,
the condition pattern is more complex in that it can be iterated and
nested.

The condition pattern in its simplest form is shown in Figure 4.6.
As suggested in the diagram, the action is only executed if the event
occurs and the condition holds true. If the condition does not hold

144

4.5. Fundamental patterns

Action2Action1 ActionN

myEvent1

*_done

[condition2][condition1]

...

[conditionN]

Figure 4.6.: Disjunctive condition pattern

true, the control flow branch ends. This simple form constitutes,
in fact, a disjunctive condition pattern, as described below. Again,
as in the case of the basic pattern, a signal is employed in order
to mark the end of the conditional execution. Note that, according
to the substitution rule eliminating joining nodes (see Section 4.3),
this signal may be attached to each of the actions in the figure,
instead of to the joining node. This allows greater flexibility when
disjunctive condition patterns are nested within a complex control
flow; it constitutes a variant of this pattern.

If such a pattern is encountered, it will be translated into N policies,
where N is the number of branches that attach to actions. Each pol-
icy will trigger on the event (or event set) leading to the conditional
branch node (in the figure, myEvent1 occupies that role). Further-
more, it will carry the condition relevant to “its” specific branch,
as well as the action to be performed in case the condition holds
true. Thus, the translation of the pattern as shown in Figure 4.6
will generate policies of the form:

policy
{

event { myEvent1 }
action { Action1 }
condition { condition1 }}

· · ·

policy
{

event { myEvent1 }
action { ActionN }
condition { conditionN }}

145

Chapter 4. Process translation

Execution The execution of the different policies is determined by
the condition it carries. From the generated set, one rule will be
executed at most when an instance of myEvent1 is received. If none
of the conditions evaluate to true, no rule is executed.

To accommodate the possibility of default branches in processes, aUnguarded
default branch number of additional steps must be taken. A default branch is one

that is executed when the guard conditions on all other branches
are evaluated to false; it carries no condition itself. There can be a
maximum of one default branch in a pattern; otherwise, the process
would be non-deterministic (there would be several coequal branches
to select from), and that situation should be flagged as an error to
the designer of the process. If a default branch K is present in
the pattern, the policy that corresponds to that branch would carry
a condition that negates all other conditions in the set, yielding a
negated disjunctive normal form:

policy
{

event { myEvent1 }

action { ActionK }

condition { NOT (condition1 OR · · · OR conditionN) }
}

4.5.2.1. Disjunctive condition pattern

Process actions may be due for execution of any of several conditions
in a set hold true. Thus, if any in a set of conditions c1 . . . cn should
trigger the action, the conditions are in disjunctive normal form
(DNF), as shown in Figure 4.7.

Translation of such a pattern instance ideally results in a single pol-
icy, if the policy language supports a DNF in its condition field. In
the worst case, a number of policies corresponding to the number of
conditions in the set should be created, each of which contains the
same action and one of the conditions in the set. Note that, since
the condition pattern is derived from the basic pattern, the number
of policies generated also correlates to the expressiveness of the pol-
icy language with regard to events. Hence, a language allowing only
one event and only one single condition per policy would require a
total of E ∗ C policies, with E being the number of events speci-
fied in the pattern instance, and C the number of conditions. In the

146

4.5. Fundamental patterns

[condition 1] [condition 2]

myEvent

myAction1

myEvent

myAction1

[condition 1]

[condition 2]
<<OR>>

Figure 4.7.: Disjunctive condition pattern with single action

form shown in Figure 4.7, the policy generated would be of the form:

policy
{

event { myEvent }
action { myAction1 }
condition { condition1 OR · · · OR conditionN }}

The left and right box in the figure are equivalent, i.e. they corre-
spond to the same policy set.

4.5.2.2. Conjunctive condition pattern

The converse case of conditional execution of an action is to pose
a number of conditions that must all hold true (see Figure 4.8).
This corresponds to a conjunctive normal form (CNF) of the con-
ditions. Again, translating to a policy formalism allowing CNFs of
conditions will yield a single policy. Formalisms disallowing CNF
in its condition field would call for workarounds, since a CNF can-
not be emulated by simply generating more policies. The concept
of intermediate events described in Section 4.5.3 can be used to ad-
dress this problem. Similarly to the disjunctive condition pattern
the generated policy set would be of the form:

147

Chapter 4. Process translation

myAction1myAction1

[condition 2]
<<AND>>
[condition 1]

[condition 2]

[condition 1]

myEvent myEvent

Figure 4.8.: Conjunctive condition pattern

policy
{

event { myEvent }
action { myAction1 }
condition { condition1 AND · · · AND conditionN }}

4.5.2.3. Mixed condition pattern

myAction1 myAction1

myEvent

[condition 2]

[condition 1] [condition 3] ([condition 1] <<AND>>
<<OR>> [condition 3]

[condition 2])

myEvent

Figure 4.9.: Mixed condition pattern

Any combination of the above alternatives can be expected to occur
in process specifications. Figure 4.9 shows an example of nested con-
junctive and disjunctive expressions. Depending on the structure of
the pattern instance to be processed, a DNF containing conjunctive

148

4.5. Fundamental patterns

done_synch1 done_synch1

done_synch1

done_myAction2

synch1

done_myAction1

myAction2

myEvent

myAction1

Figure 4.10.: Synchronisation pattern

expressions or a CNF containing disjunctive expressions will result
as a policy condition. A pattern instance as shown in the figure
would translate into a policy rule of the form:

policy
{

event { myEvent }
action { myAction1 }
condition { (condition1 AND condition2 AND · · ·) OR (condition3
· · ·) OR · · · }}

4.5.3. Synchronisation pattern

To effectively synchronise control flow after the parallel actions have
been executed it is necessary to determine when action execution has
completed. The intermediate events shown in Figure 4.10 indicate
the points where such detection is necessary. Most communication
middleware facilitates detection of terminating actions so that pro-
grammatic realisation of intermediate events is feasible.

Parallelisation and synchronisation points in processes must be treated
separately. There is no guarantee that every parallelisation into sep-
arate execution threads corresponds to a synchronisation point some-
where in the process, or, for that matter, that they will be joined
at all. Conversely, there is no guarantee that the execution threads
to be synchronised have been parallelised at the same point in the

149

Chapter 4. Process translation

process.

Parallelisation The processing of parallelisation nodes is the eas-
ier part. Assuming parallelisation to a number of “threads”, each
node directly following the parallelisation node represents one con-
trol flow thread. In addition, each such node will be either an action
or a signal node. As management policy rules are inherently easy
to parallelise, this pattern results in a number of policy rules cor-
responding to the direct followers of the parallelisation node, in the
following manner:

policy
{

event { myEvent }
action { Action1 }}

· · ·

policy
{

event { myEvent1 }
action { ActionN }}

Those rules representing a signal node will carry the transmission of
that signal as their action.

Synchronisation Synchronisation points (denoted by synch bars in
the diagrams) can be seen as general barrier synchronisation items:
all specified incoming links must be satisfied for the control flows to
be joined, and for the synch bar to be “passed”. In particular, this
means that all actions leading to the synch bar have terminated, i.e.
that all events (virtual or not) have been observed. Depending on
the features supported by the target language, this may require an
external facility that is able to maintain the state of a synchronisa-
tion instance.

Several information items regarding state must be taken into ac-
count.

Handling of different process instances Several instances of
a process specification may be executed concurrently.
For example, several instances of the incident manage-
ment process may be simultaneously active in order to
cope with multiple, concurrent incidents or service re-
quest. The synchronisation must differentiate between
arriving events or terminated actions that pertain to
different process instances.

Detection of the synchronisation condition A synchronisa-
tion node is only useful if it possesses more than one

150

4.5. Fundamental patterns

incoming link. In fact, after having applied the sub-
stitution rules discussed in Section 4.3, this condition
should apply to all such nodes that are left in the pro-
cess specification. To account for all incoming links,
either an appropriate language construct can be used
(if available), or a synthetic, virtual signal must be
introduced. This signal can be issued to mark the
completion of all incoming links, i.e. all actions have
terminated and all events have been received. To avoid
making assumptions regarding the capabilities of the
target language, we will assume that no special lan-
guage feature for event correlation is available.

Signalling mechanisms The knowledge required to provide signalling
for the synchronisation points may be distributed over several do-
mains. In essence, the mechanism must be able to detect the termi-
nation of actions pertaining to the synchronisation node, as well as
the reception of events associated with it. In addition, the service
must be able to determine the completion of a barrier synchronisa-
tion, i.e. the point in time when all relevant action terminations and
events for a specific process instance have been detected. Detection
of the termination of actions is really an implementation issue that
can be easily solved when employing communications middleware.
Note that the pattern example in Figure 4.10 specifies only incoming
events; this is a situation that can be relied on, after the substitu-
tion rules have been applied. The correlation mechanism itself can
be realised by an architecture for message aggregation, as the one
discussed in Section 7.4.

Time limits It may be desirable to render synchronisation points
“interruptible”, i.e. prevent a process instance from halting indef-
initely in the face of a synchronisation point. This can be realised
by artificially transmitting the event following the synchronisation
bar (the one named done synch1 in Figure 4.10), e.g. by means of
a timer that is started when the first top-side event of the synchro-
nisation point (for a certain process instance) is received.

As synchronisation points’ only function is to correlate several events
into one, their execution is left to the event management mechanism
that will be employed.

151

Chapter 4. Process translation

4.5.4. Discussion

The patterns described in this section constitute a most basic set.
Together, they form a process modelling kit that could be used to
address most, perhaps all, structural modelling requirements for IT
management processes. However, unless the opposite is formally
proven, it is possible that a process specification created in a real-life
setting will employ syntactic variants which do not match any of the
patterns that have been discussed in this section. Tests conducted
on random processes indicate that this is not the case. Nevertheless,
it is important to provide the ability to deal with such cases, should
they arise.

Since it is important that processes be decomposed in their totalityTotality
ensured by
generating
system

in every case, Section 4.7 discusses the generating system for pro-
cess specifications. It provides a means to decompose any process
fragment in a manner that will allow its translation into policy rules.
Decomposition by means of the generating system will, in most cases,
incur a penalty in the number of policy rules generated, as well as in
the number of (virtual) events and signals that need to be generated
and handled by the runtime system. Therefore, it should be reserved
for cases when pattern-based translation attempts have failed.

Another issue with the fundamental pattern set is that of efficiency.Customised
patterns to
improve
efficiency

Decomposition of process specification into their smallest compo-
nents (that correspond to these patterns) may incur more commu-
nication overhead than necessary.

The techniques employed for modelling of IT management processes
are still evolving at the time of this writing. As with other modelling
and specification domains, it not unreasonable to expect best prac-
tices not only for the content of the processes, but also for the formal
model employed to describe it. In concrete terms, design pattern
catalogues like those created in the domain of software engineering
could ensue from analysis and standardisation efforts. If such de-
sign patterns for process should become available (and widely used),
it would certainly make sense to adapt the catalogue of translation
patterns accordingly. A number of techniques suitable for dealing
with the above issues are described in Section 4.8.

To effectively put into practice the pattern-based translation mech-
anism process fragments must be matched to patterns and, upon a
match, the corresponding policies generated from the information

152

4.6. Detection and translation

present in the fragment. The next section describes the procedure
to detect and translate the patterns described in this section.

4.6. Detection and translation

The identification of patterns is a prerequisite for the proposed trans-
lation scheme. Identification implies the decision whether a process
fragment matches any of the patterns in the pattern catalogue (in
the event that one is encountered that does not, the concepts in
Sections 4.7 and 4.8 may be used to “force” a match). The proce-
dure to distinguish between fragments matching different patterns
is described in Section 4.6.1.

The subsequent attribution of the process fragment to one specific
pattern allows the extraction of information from its nodes in order
to instantiate the set of policies corresponding to that pattern. Sec-
tion 4.6.2 discusses the procedure employed to achieve the generation
of policies from matched process fragments.

4.6.1. Fragment discrimination

Basically, to identify the pattern matched by a fragment, the frag-
ment is compared to every pattern in the catalogue until a match is
found or until there are no further patterns to compare to. The strat-
egy of exclusion employed to determine whether a fragment matches
leverages the structural similarities between patterns.

All patterns presented in Section 4.5 share a number of properties. Common
properties of
patterns

In every one of them, a “running direction” can be identified. The
pattern can be said to “begin” with one or multiple event nodes and
continue with nodes distinctive for one pattern or a group of related
patterns. It is important to note that event nodes are found only at
the beginning of the pattern, the beginning node(s) being defined as
not possessing inbound links.

Hence, given a process fragment F of the form

F = {Ev1, · · · , EvN} → {Y }

the value of Y determines whether the fragment matches a pattern
or not. Considering the shapes of the patterns described in Section

153

Chapter 4. Process translation

4.5, the node immediately following the {Ev1, · · · , EvN} allows a
preliminary classification of F .

To wit, an Ac node following the event(s) indicates a possible matchFirst Y node
indicates
pattern

to a basic pattern, a Ko node suggests that one of the conditional
patterns might match, and a Pa node identifies the pair of pat-
terns representing parallelisation and synchronisation as potentially
matching.

By exclusion, the only nodes not covered by the above enumera-Anomaly
treatment tion are Ev and Si nodes. These two nodes following the set of

events {Ev1, · · · , EvN} indicates an anomaly either in the process
specification (in the case {Ev1, · · · , EvN} → EvY) or in the frag-
mentation procedure (in the case {Ev1, · · · , EvN} → SiY). The
former issue cannot be corrected during translation at all; it needs
to be solved in the process specification itself, as it constitutes a
non-compliance to the source meta-model assumed for the original
process specification (see Section 4.2).

The latter case may indicate an overzealous implementation of the
substitution rules in the cases where a single virtual event is followed
by a (possibly virtual) signal. This can occur at the point where
natural signals are present in the original process, and, treated as
actions, they are decoupled from the process specification by means
of a virtual signal/event pair. In this case, the fragment can be
eliminated by reconciling the natural signal with the virtual one, i.e.
by substituting the natural signal for the faultily inserted virtual one.
All other forms in the latter case, in particular instances of a natural
signal node following a natural event, indicate non-compliance to the
assumptions underpinning the fragmentation procedure.

Algorithm for initial classification Based on the case differentiation
above, a simple algorithm for the distinction of fragments according
to patterns can be given, as outlined by the following pseudo-code:

enumeration ptype =
{ basic, condition, para, synch, fault, none } ;

ptype candidate;

switch (Y .type)
{

case Ac : candidate = basic; break;
case Ko : candidate = condition; break;
case Pa :

if (Y .inboundLinks = 1)

154

4.6. Detection and translation

candidate = para;
else

candidate = synch;
break;

case Ev : candidate = fault; break;
case Si : candidate = fault; break;
default : candidate = none; break;

}

The above algorithm performs a coarse initial classification of a frag-
ment. Its type is determined within the elements of the enumeration
given in the first line to be either that of a basic pattern (basic), a
flavour of conditional pattern (condition), a parallelisation (para)
or a synchronisation (synch). Basic and conditional patterns are
suggested plainly by the node following the event set, while paral-
lelisation and synchronisation are differentiated between according
to the number of event nodes (i.e. inbound links) of the node fol-
lowing the event set.

After execution, the variable ptype holds the notional type of the
fragment. As already noted, values of Ac, Ko and Pa suggest a valid
pattern, while values of Ev and Si indicate an anomaly.

The classification of fragments according to the algorithm given Negative
definite
classification

above can be viewed as negative definite: it is an indication of the
patterns that a given fragment cannot match, i.e. all others but the
one indicated. It does not guarantee that the fragment will match
the indicated pattern.

4.6.2. Algorithms

A positive definite match requires a pattern specific treatment of
the fragment in question. In the following, the procedures for the
confirmation of pattern identity are outlined as a requisite for the
translation algorithms presented in this section.

The illustration of the algorithms in pseudo-code assumes the defi-
nition of the following:

1. A class or structure named Node that is suitable to represent
a process node.

2. A class named Policy that contains a set of events, a set of
actions, as well as condition.

155

Chapter 4. Process translation

The purpose and function of the methods called on these classes are
obvious from their names.

Each algorithm pursues two goals: first, to ascertain that the frag-Fail fast

ment does in fact match the pattern in question. If it does, the al-
gorithm proceeds to translate the fragment into a set of policy rules.
If the fragment does not match, the algorithm fails explicitely. The
next pattern can then be tried, as suggested in Section 4.6.1. In the
following, the patterns introduced in Section 4.5 are treated in order
of the complexity of their translation.

Basic pattern The handling of the basic pattern is comparatively
simple. It consists of an event node (set), followed by an action node,
followed by a signal node. Thus, it positively matches any fragment
Fb of the form

Fb = {Ev1, · · · , EvN} → {Ac} → {Si}

where Si may be a natural or virtual signal. If the fragment adheres
to this form strictly, the identification of a basic pattern is confident.

The following algorithm matches the basic pattern (or fails explicitely)
and generates the policy ensuing from the process fragment:

Node action, signal;
action = Ev1.follower;
if (action.type 6= Ac) FAIL;
/* Make sure that all Evi connect to the same Ac node.*/
foreach Evi do

if (Evi.follower 6= action) FAIL;
/*Make sure Ac node is followed by Si node.*/
signal = action.follower;
if (signal.type 6= Si) FAIL;

/*ID positive; Ready to generate*/
Policy p;
foreach Evi do

p.event.add(Evi.name);
p.action.add(action.content);
p.action.add(sendSignal(signal.name));
/*Policy p is completed.*/

Parallelisation The parallelisation pattern matches fragments Fp of
the form

Fp = Ev → Pa → {[Ac1 →]Si1, · · · , [AcN →]SiN}

156

4.6. Detection and translation

in which the Pa node is followed by either an action node that is
followed by an (optionally virtual) signal (Acx → Six), or by a
natural signal node2. To ascertain the match to a parallelisation
pattern, every branch following the Pa node must comply to this
rule. Thus, three items must be checked in order to confidently
identify a parallelisation pattern:

1. The fragment begins with a single Ev node.
2. The Ev node is followed by a Pa node with at least two fol-

lowers.
3. Each follower of the Pa node is of the form [Ac →]Si.

To ascertain the match and generate the policy rules, we use the
following algorithm:

Node event = Ev, bar, action, signal;
bar = event.follower;
Policy p; /* Ascertain base structure */
if (bar.type 6= Pa) FAIL;
if (bar.numberOfPrecedents 6= 1) FAIL;
if (bar.numberOfFollowers < 2) FAIL;

/*Generate*/
foreach action in bar.followers do
{

p = new Policy();
switch (action.type)
{

case Ac :
signal = action.follower;
if (signal.type 6= Si) FAIL;
p.event.add(event.name);
p.action.add(action.content);
p.action.add(sendSignal(signal.name))
store p; //policy instance completed
break;

case Si :
p.event.add(event.name);
p.action.add(sendSignal(signal.name));
store p; //policy instance completed
break;

default:
FAIL;
break;

}
}

2The brackets indicate that the Ac node and the link are not mandatory.

157

Chapter 4. Process translation

The execution of the procedure above results in N policy rules that
correspond to the branches of the parallelisation pattern. Each rule
contains an action (or a signal to be transmitted) that is assigned
to a different policy rule. The rule trigger on the same event and
should therefore be executed in parallel in the policy system.

Synchronisation The synchronisation pattern matches process frag-
ments Fs of the form

Fs = {Ev1, · · · , EvN} → Pa → Si

with N ≥ 2. Unlike its sibling parallelisation pattern, the synchro-
nisation pattern has no variants. In consequence, it is sufficient to
ascertain that

1. The fragment begins with a number ≥ 2 of Ev nodes, all fol-
lowed by the Pa node.

2. The Pa node is followed by a single signal event (natural or
virtual).

A fragment matching the synchronisation pattern specifies that a
signal be transmitted when the barrier synchronisation point has
been passed. The following algorithm assumes that a suitable mech-
anism is present to ascertain that this synchronisation condition is
detected. In consequence, a single policy rule will be generated from
fragments matching this pattern; the aggregated event is specified
in the policy’s event clause.

Node bar = Ev1.follower, signal.
Policy p;
/* Make sure that all Evi connect to the same Pa node.*/
foreach Evi do

if (Evi.follower 6= bar) FAIL;
/* Make sure that the synch bar is followed by a signal*/
signal = bar.follower;
if (signal.type 6= Si) FAIL;
/*Generate*/
p.event.add(Ev1 ∧ · · · ∧ EvN); //aggregation
p.action.add(sendSignal(signal.name));
/*Policy p completed*/

Conditional patterns The conditional constructs constitute the most
multi-faceted instances in the pattern catalogue. In consequence, we

158

4.6. Detection and translation

must differentiate between the disjunctive form and the conjunctive
form (see Section 4.5.2).

The disjunctive conditional pattern represents a number of branches Disjunctive
conditionalthat are reachable by means of links guarded by mutually indepen-

dent conditions. As illustrated by Figures 4.6 and 4.7, a fragment
Fd compliant to the disjunctive conditional pattern is of the form

Fd = Ev → Ko → {Ac1[→ Si1], · · · , AcN [→ SiN]}

where each link leading to an Ai is guarded by a condition. Note that
the signal nodes in the expression are not shown in the figures. An
alternative form of the pattern has several guarded branches leading
to a single Ac node, as in:

Fd = Ev → {Ko1, · · · , KN} → Kojoin → Ac[→ Si]

Both forms rely on multiple conditions being present to make sense,
i.e. N ≥ 2, though a degenerate form with N = 1 can be con-
ceived. The identification of this pattern requires a number of case
differentiations. A fragment is determined to match the disjunctive
conditional pattern if

1. The Ev node is followed by one Ko node and
2. the Ko node possesses multiple outbound guarded links and

a) the outbound links lead to Ac nodes or
b) the outbound links lead to a (joining) Ko node that is

followed by an Ac node.

or if

1. The Ev node is followed by multiple Ko nodes with outbound
guarded links and

2. the outbound links lead to a (joining) Ko node that is followed
by an Ac node.

The conjunctive conditional patterns are the most straight-forward Conjunctive
conditionalvariants in the group of conditional patterns. As the guarded links

are in sequence, this variant is also more easily identified. A fragment
Fc matching the conjunctive conditional pattern has the form

Fc = Ev → Ko1 → · · · →, KN → Ac[→ Si]

where, as with the disjunctive variant, N ≥ 2 is expected. To identify
this pattern with confidence we need to ascertain that:

1. The initial Ev node is followed by a single Ko node.

159

Chapter 4. Process translation

2. Each Ko node is followed by a single Ko node, or by an Ac
node.

The mixed conditional pattern results from the combination of dis-Mixed
conditional junctive and conjunctive forms. For the purposes of identification,

it can be reduced to a nesting of those forms. Thus, an algorithms
that is able to handle fragments matching the mixed conditional
will be able to handle the particular cases of pure conjunctive and
disjunctive patterns.

The following recursive algorithm has been devised to handle mixed
conditional patterns of arbitrary depth. To realise recursion, a func-
tion is defined that takes as formal parameter the branch node cur-
rently being examined.

/*Ensure we examine a conditional branch pattern*/
Policy p;
Node ko = Ev.follower;
Node action;
Condition c;
if (ko.type 6= Ko) FAIL;
/*Examine one conditional level*/
function examineKo (Node koroot)
{

c.add(∧ koroot.content);
Node follower;
foreach follower in koroot.followers do
{

if (follower.type == Ko)
examineKo(follower); //recurse

else //either Ac or Si
{

p.event.add(Ev);
p.condition.add(c);
if (follower.type == Ac)

p.action.add(follower.content);
else if (follower.type == Si)

p.action.add(sendSignal(follower.name));
else FAIL;
store(p); //add rule to generated set...
p = new Policy(); //...and provide a fresh instance

}
}

}

The algorithm above relies on the function examineKo to perform
a depth-first traversal of nested conditional structures, in order to
cope with mixed (combined) conditional patterns. Each consecu-

160

4.7. The generating system

tive level of is accounted for by augmenting (using a conjunction)
an initially empty conditional expression by the condition found at
the currently examined Ko node. The follower nodes of a branch
node are processes in a sequential fashion, whereupon each non-Ko
node generates a policy whose condition contains the conjunction of
conditional expressions that have accumulated to the depth where
the non-Ko node is encountered. Since the levels of nesting are fi-
nite, the recursion will terminate when the last Ko node in the chain
(determined by having only non-Ko followers) is reached.

The matching and translation of patterns as discussed in this section
accounts for the process fragments that correspond to a pattern from
the collection presented in Section 4.5. The next section offers a
remedy for the cases where fragments are encountered that cannot
be matched.

4.7. The generating system

The ability to decompose a process completely, so that no remainder
ensues, is of utmost importance to the translation scheme proposed
in this work, as noted in Section 4.5.4. Principally, the translation
is to be performed based on the patterns presented in Section 4.5.
This section is to present a means of dealing with process fragments
where the pattern-based approach fails.

Definition of completeness Completeness of the translation can be
attained for a process if

1. A process is decomposed completely into fragments
2. For every fragment, there is a set of parametrised policy rules

a) that correspond to the fragment and
b) that allow control flow to proceed as in the original pro-

cess specification.

A sufficient means to formally ascertain that an input process speci-
fication can be decomposed and translated in its totality is to use the
generating system for processes as a starting point for decomposition
and subsequent translation.

The sought generating system contains the smallest imaginable pro-
cess fragments, together with the structural information necessary to

161

Chapter 4. Process translation

link these fragments together. Also, every fragment must be trans-
latable into management policy rules, while conserving the informa-
tion present in the process specification.

Hence, a constructive approach to the generating system for process
specifications according to our meta-model is to isolate each process
node present in the original specification, and to connect it to the
rest of the process by means of event-signal pairs.

4.7.1. Elements and transformations

The development of the generating system is guided by the principle
of isolating each and every node present in a process specification
and re-connecting that node by means of virtual events and signals
to the original process graph. In effect, this method has already
been demonstrated in connection with formulating substitution rules
in Section 4.3. However, the substitution rules were intended for
the decomposition of the process in a manner that allows larger
fragments to be created, corresponding to the patterns described in
Section 4.5.

The major difference when developing the generating system is that
the same method is applied ruthlessly. Hence, all transformations
performed on a process partition are context free, taking into account
only the type of a node, and the number of incoming and outgoing
links. The comprehensive set of elements of the generating system
are shown in Figure 4.11, each element of the generating system in a
numbered grey square of its own. The event and signal nodes in the
figure are drawn as real (as opposed to virtual) nodes. Nevertheless,
they do represent both real and virtual events/signals.

1 Conditional branching A conditional branching node encoun-
tered in the process specification is placed between one event node,
and a number of signal nodes corresponding to the number of condi-
tional branches available at the node. Thus, if an opening conditional
node follows a node X and exhibits N possible conditional branches
Y1 through YN , the preceding node, X is appended a signal node
Si0, and each of the nodes following the conditional branches are
prepended event nodes Ev1 through EvN . The connections to and
from the opening conditional node Ko are severed, and replaced by
an event node Ev0 in the former place of X and N signal nodes Si1

162

4.7. The generating system

synch1_done

par1_done parN_done

sig_par1

event

sig_parN

event

sig_branch1 sig_branchN

action_done

event1 eventN

branch_done

action

event

event

signal

...

branch

[condition1] [conditionN]

...

...

synch1

...

1 2

43

5 6

Figure 4.11.: The generating system for process graphs

163

Chapter 4. Process translation

through SiN in lieu of the respective Yi. Hence, the transformation
can be noted as:

{X} → Ko → {Y1} · · · {YN}
7−→ X → Si0

⊕Ev0 → Ko → (Si1, · · · , SiN)

⊕(Ev1 → Y1), · · · , (EvN → YN)

As shown in the box marked “1” in Figure 4.11, the result in always
of the form

Ev → Ko → (Si1, · · · , SiN)

2 Parallelisation The form required for parallelisation nodes
(opening synch bars) is analogous to that of the conditional branch-
ing node:

Ev → Pa → (Si1, · · · , SiN)

In the same manner, it is achieved by ensuring that the node is
preceded by a single event node and followed by a number of signal
nodes (rectangle marked “2” in the Figure):

{X} → Pa → {Y1} · · · {YN}
7−→ X → Si0

⊕Ev0 → Pa → (Si1, · · · , SiN)

⊕(Ev1 → Y1), · · · , (EvN → YN)

3 Action Action nodes are enclosed within an event-signal-pair
(shown in the rectangle marked “3”):

Ev → Ac → Si

To achieve this, all nodes X1 through XM preceding the action node
Ac are appended signal nodes SiX . The nodes Y1 through YN fol-
lowing the action node are prepended event nodes EvY . Finally, the
action node itself is prepended one event node EvX and appended
one signal node SiY :

164

4.7. The generating system

(X1, · · · , XM) → Ac → (Y1, · · · , YN)

7−→ (X1 → SiX), · · · , (XM → SiX)

⊕EvX → Ac → SiY

⊕(SiY → Y1), · · · , (SiY → YN)

4 Signal and Event Event nodes signifying the expectance of a
message, as well as signal nodes representing the transmission of a
message may be found embedded at odd positions within the process
specification. This element functions as a complement for orphaned
event or signal nodes; it substitutes a virtual event in the case of a
single signal node; conversely, it substitutes a signal node in the case
of a isolated event node. Hence, if a fragment

Si → (Y1, · · · , YN)

is encountered, it can be substituted by

Ev → Si → (Y1, · · · , YN)

to ensure accessibility of the fragment based on event reception. In
the same manner, if a fragment

(X1, · · · , XM) → Ev

is encountered, addition of a signal node ensures proper termination
of the fragment:

(X1, · · · , XM) → Ev → Si

5 Joining conditional Joining conditional elements are the “clos-
ing” correspondents of conditional branching elements. They are of
the form:

(Ev1, · · · , EvM) → Ko → Si

6 Synchronisation Synchronisation elements map a number of
event nodes Ei onto a single signal node. The Ei may be natural
events or, if necessary, virtual event nodes.

(Ev1, · · · , EvM) → Pa → Si

165

Chapter 4. Process translation

4.7.2. Demonstration of totality

It is possible to prove that the graphs described in Section 4.7.1
and depicted in Figure 4.11 are sufficient to decompose any process
specification adhering to the meta-model described in Section 4.2.

It is shown in the following, that a meta-model-compliant process
partition that is not decomposable into the elements of the gener-
ating system becomes empty once all the transformations described
in the previous section have been performed and all the contiguous
partitions corresponding to an element of the generating system are
removed.

Proof Let G represent a contiguous, non-empty process graph that
cannot be generated by the generating system. Let G be compliant
to the meta-model described in Section 4.2, thus containing nodes of
the types Ko, Pa, Ac, Ev and Si connected in an arbitrary manner
compliant to the meta-model.

Let Koi denote all conditional nodes, Pai denote all parallelisa-
tion/synchronisation nodes, Ai denote all action nodes, Evi denote
all event nodes and Sii denote all signal nodes in G.

Without loss of generality, let all Koi, Pai, Ai and Sii have at least
one preceding node. (In the contrary case, the nodes would not be
reached by process flow.)

Application of substitution rule R2 ensures that all conditional/par-
allelisation nodes are either opening, closing, or indeterminate (i.e.
neither having multiple incoming, nor multiple outgoing links).

Application of the rules pertaining to elements 1 (if opening) or
5 (if closing) to every Koj ensures that it is embedded in a form
compliant with that respective element. The resulting fragments
containing the Koj can be removed from G, and G may be parti-
tioned in the process. G now contains zero Ko nodes.

Application of the rules pertaining to elements 2 (if opening) or 6

(if closing) to nodes Paj is performed in analogue manner.

Application of the rules pertaining to element 3 allows removal of
all action nodes from G. G now contains at most nodes of the types
Si and Ev.

166

4.8. Extending the pattern catalogue

Partitions of the form Ev→Si match element 4 and can thus be
eliminated.

At this time, only elements of the form Si→Si, Ev→Ev, Si→Ev, and
isolated Ev or Si nodes can remain in the process graph.

Application of the substitution given in the context of 4 yields:

Si1 → Si2

7−→ Evv → Si1 ⊕ Ev1 → Si2

Ev1 → Ev2

7−→ Ev1 → Si2 ⊕ Ev2

Si1 → Ev1

7−→ Evv → Si1 ⊕ Ev1

This allows elimination of Si and Ev nodes, leaving G empty. If
G, as assumed, cannot be generated by the generating system, a
remainder should have been left.

The generating system for meta-model compliant processes offers a
means to decompose particularly intractable process fragments. It
does, however, incur a penalty due to the fine grained decomposi-
tion (one actual process node per fragment in the worst case). An
alternative approach to dealing with non-matchable fragments is the
introduction of additional patterns. In addition to the remedy use-
case of this procedure, it can be employed to optimise the translation
result with regard to the number of policies generated and the num-
ber of artificial events transmitted, as shown in the following section.

4.8. Extending the pattern catalogue

In essence, we can differentiate between two kinds of extensions to
the pattern catalogue: on one hand the creation of compound pat-
terns for the sake of optimisation, and on the other hand the in-
vention of completely new patterns. Both cases share a common
methodology, if not a common goal. This section describes the sub-
stitution of pattern sets with single, complex patterns, as well the
steps required to provide a completely new pattern.

167

Chapter 4. Process translation

4.8.1. Pattern substitution

In the following, a number of commonly encountered process frag-
ments are analysed. These fragments are chosen so that they do not
match any of the patterns. To “make them fit”, we apply one or
more of the substitution rules presented in Section 4.3. A common
trait of the substitution rules is that they structurally decompose
the process graph they are applied to. In contrast, none of the rules
ties process elements closer together than they were in the original
specification. Hence, application of these rules may result in a par-
titioning of the process graph. Matching of the patterns can thus be
attempted again in each of the partitions.

Keeping in mind that the substitution rules do not actually change
the control flow in the process, a comparison with successful pattern
matches before and after application of the rules can aid in optimis-
ing the translation procedure. This can be achieved in either one of
these cases:

1. If pattern matching is successful and total (i.e. no process
nodes are left unmatched) after application of the substitution,
a complex pattern has been found. In this case, the set of
policies generated from the substituted form can be generated
directly from the original process fragment. If the new complex
pattern is recorded, it can be added to the vocabulary of the
translation tool. Moreover, the generated set of policies can
possibly be optimised (by hand) before the optimised set can
be recorded as a suitable translation for the complex pattern.

2. Depending on the capabilities of the target (policy) language,
more advanced language constructs can be chosen for the trans-
lation of the original process fragment.

Figure 4.12 shows a process fragment consisting of a sequence of
actions. This case is not covered by the fundamental pattern set.
However, the target language for management policy may support a
sequence of actions to be specified in a single policy. This would re-
duce the process fragment to a structure similar to the basic pattern:
a management policy rule could be generated that unconditionally
executes the three actions in the given sequence upon detection of
the event.

In contrast, applying the action decoupling substitution rule will gen-
erate several instances of the basic pattern from the process fragment

168

4.8. Extending the pattern catalogue

Action 1

Action 2

Action 3

Event 1

Signal 2

Action 2

done_Action 1

done_Action 2

Action 1

done_Action 1

Signal 2

Event1

Action 1

done_Action 1

Figure 4.12.: Exemplary complex pattern

(those shown in the right part of the diagram). Translation of the re-
sulting process fragments would create three policy rules and require
the introduction of a number of virtual event and signal nodes.

Hence, the resulting policy sets will differ depending on whether the
capability to specify several action instances in one policy rule is
taken into account.

4.8.2. Pattern extension mechanism

The methodology that may be employed to introduce novel or com-
pound patterns into the pattern catalogue is the same one that was
used in creating the collection of fundamental patterns described in
this work. The following gives a summary of the required steps:

Provide graph form. The candidate pattern should be mod-
elled as a process graph.

Ensure compliance to target meta-model. To allow effective
use of the translation resources described in this work,
the candidate pattern should be contained within the
target meta-model.

Provide proposed translation. A set of parametrised manage-
ment policy rules must be attached to the pattern.

Define API extension (if required). Patterns translations that
need to keep state may require the existence of aux-
iliary services. Examples where such services are re-
quired include the synchronisation service that is nec-

169

Chapter 4. Process translation

essary for the effective translation of the synchronisa-
tion pattern.

Example The steps described above can be illustrated by means of
the compound pattern shown in Figure 4.12. A visual form of the
pattern is provided in the left side of the diagram. Formally, it can
be expressed as:

Ev → Ac1 → · · · → AcN → Si

The pattern complies to the target meta-model since it incorporates
only the node types specified there, and these nodes are associated in
a manner that does not violate the cardinalities given by the model.
An appropriate translation, given a target language that supports
several sequential actions, can be expressed as:
policy
{

event { Ev }
action { Ac1 ; · · · AcN ; Si ; }}

The new pattern imposes no requirements on a runtime API; hence,
the last step of the mechanism finds no application.

4.9. Translation example

This section illustrates the mechanisms presented in the preceding
sections by means of an example. Specifically, a formal process def-
inition is treated according to the methodology detailed in Section
4.4, including application of the substitution rules, identification of
patterns and generation of a policy rule set.

The example has been chosen to satisfy several requirements: it
should have been created as a formalisation of a real-life process,
and it should possess a level of complexity sufficient to illustrate
most of the concepts treated in this chapter. In addition, it should
be of manageable size in order to be both graphically compact and
describe a self-contained process part. The chosen example is from
[Clau 06a] and shows a part of the change management process ac-
cording to ITIL. In order to constrain the size of the process specifi-
cation, a general, non-specialised process specification is used, shown
in Figure 4.13.

170

4.9. Translation example

Ev_ResumeProcessing

Pa_Resume

Ac_AcceptRfC

Ac_CreateChangeRec

Ko_ProcessingSuspended

Ko_TimeCritical

yes

Ko_join4

no

yes no

Ko_join5

Ac_InformUser

Si_FilteringDone

Ko_NeedApproval

Ko_RfCApproved

yes

no

yes

Ac_RejectRfC

no

Ko_NeedMoreInfo

Ev_RfC

Ac_RegisterRfC

Ko_RfcFormOK

Ko_join1

no Ko_RfCDuplicated

yes

noyes

Ac_ReqMoreInfo

yes

Ko_join3

no

Ko_join2

Figure 4.13.: Handling of a Request for Change (generated)

171

Chapter 4. Process translation

The diagram depicts the general procedure to be used at the be-
ginning of a Change Management process instance, at the point in
time when a Request for Change has been issued. The figure shows
the process before any action has been taken; it can be likened to
an original, “freshly modelled” process that complies to the generic
meta-model.

In the following, the methodology developed in this work is applied
to this process specification, and the intermediate results are dis-
cussed. Note that the diagrams shown in this section diverge from
the UML activity diagram form that is otherwise used throughout
the thesis. This is due to their having been generated by the trans-
lator prototype that was created in the course of this work. As
there are no semantic, but only visual differences between the node
representations, the mapping is given in Table 4.15.

All nodes are prefixed with their type, e.g. an action named “Reg-
ister RfC” is prefixed by Ac . In addition, virtual nodes are prefixed
with a “v”, and all nodes that are generated, i.e. not present in
the original process carry suffixes to the node’s name (these can
be ignored for the purposes of this example). The nodes’ graphi-
cal representation is consistent and kept close to the UML wherever
technically convenient.

4.9.1. Application of the substitution rules

The net effect on the process specification after having applied the
substitution rules is strongly dependent on the structure of the orig-
inal process specification. In our example, the context-free rules
can be applied, but leave the process unchanged: there are neither
m:n conditional or parallelisation nodes, nor are there any 1:1 nodes
without guard conditions.

The context-sensitive rules, on the other hand, do effectively change
the process. The branch joining nodes (denoted Ko joinX in the
figure) are eliminated and signals are appended to the incoming links.
The action nodes are decoupled, as are the combinations of branch
and synchronisation nodes. These transformations yields process
fragments that are shown in Figure 4.14.

The application of the rules has the effect of breaking up loops within
the process graph. The resulting fragments are structured as trees.
The root of every tree is an event node (real or virtual) with only

172

4.9. Translation example

Element Shape UML shape Description

Action
Ac_ActionName

Action Actions are shown in
rounded rectangles

Condition
Ko_Expression [expression] Conditions are shown in

diamond-shape.

Synchbar Pa_Synch Synchbars are UML-like,
except that they carry a la-
bel.

Signal
Si_SignalName Signal Signals are octagons.

Event
Ev_EventName Event Events are hexagons.

Virtual node
vEv_EventName

N/A Virtual nodes are bordered
by a dotted line; in con-
trast “normal” nodes are
bordered by a solid line.

Table 4.15.: Comparison of node symbols

one child node, while leaf nodes are signal nodes. Exceptions are
found in closing constructs, such as that of synchronisation.

4.9.2. Identifying patterns

The fragments resulting from the previous step correspond to the
patterns described in Section 4.5. The resulting fragments for our
Request for Change example can now be matched against the pattern
catalogue using the following guidelines:

• Any fragment containing at least one branching node will match
one of the condition patterns.

• Any fragment containing a synch bar will match one side of the
synchronisation pattern. If the synch bar has more incoming
than outgoing links, then the construct is closing (synchro-
nising); if the opposite is the case, the construct is opening
(parallelising). The context-free substitution rules ensure that
all other possibilities have already been eliminated.

• If a fragment contains neither a branching node, nor a synch
bar it is either a basic pattern or an anomaly.

173

Chapter 4. Process translation

Partition 8

vEv_Ko_join2

Ko_NeedMoreInfo

Ac_ReqMoreInfo

yes

vSi_Ko_join3_j0

vSi_Ko_join3_j1

Partition 4

vEv_Pa_Resume

Ac_InformUser

Si_FilteringDone_j0

Partition 6

Ev_RfC

Ac_RegisterRfC

vSi_Ac_RegisterRfC_done

Partition 2

vEv_Ac_AcceptRfC0

Ac_CreateChangeRec

vSi_Ac_CreateChangeRec_done

Partition 7

vEv_Ko_join3

Ac_AcceptRfC

vSi_Ac_AcceptRfC0

Partition 0

vEv_Ko_TimeCritical_X7

Pa_Resume

Ev_ResumeProcessing

vSi_Pa_Resume

Partition 3

vEv_Ac_RegisterRfC_done

Ko_RfcFormOK

vEv_Ko_join1

Ac_RejectRfC

Ko_RfCDuplicated

yes

vSi_Ko_join1_j0

Ko_NeedApproval

no

vSi_Ko_join1_j1

Ko_RfCApproved

yes

vSi_Ko_join2_j1

no

vSi_Ko_join2_j0

vSiAc_RejectRfC

Partition 5

vEv_Ko_join4

Si_FilteringDone_j1

Partition 1

vEv_Ac_CreateChangeRec_done

Ko_ProcessingSuspended

Ko_TimeCritical

yes

vSi_Ko_join4_j0

vSi_Ko_join4_j1 vSi_Ko_TimeCritical_X7

Figure 4.14.: Process graph after decomposition (generated)

174

4.9. Translation example

4.9.3. Translation result

The final step in this example is the derivation of management policy
rules from the process fragments created in the preceding steps. In
the following, the policy set derived from each partition shown in
Figure 4.13 is documented.

Basic patterns Partitions 2, 4, 6 and 7 are matched by the basic
pattern. The policy rules shown in the following carry the partition
they were generated from in a related Process attribute.

policy
{

relatedProcs = ”Part. 4”

event { vEv Pa Resume }
action { Ac InformUser;

Si FilteringDone }}

policy
{

relatedProcs = ”Part. 2”

event { vEv Ac AcceptRfc }
action {

Ac CreateChangeRec; }}

policy
{

relatedProcs = ”Part. 6”

event { Ev Rfc }
action { Ac RegisterRfC }}

policy
{

relatedProcs = ”Part. 7”

event { vEv Ko join3 }
action { Ac AcceptRfC }}

Condition patterns Partitions 1, 3 and 8 represent conditional state-
ments. They are matched by the basic condition pattern (Partition
8) and the conjunctive condition pattern (Partitions 1 and 3).

Partition 8 can be translated into two policy rules:

policy
{

relatedProcs = ”Part. 8”

event { vEv Ko join2 }
action { vSi Ko join3 }
condition { NOT Ko NeedMoreInfo }}

175

Chapter 4. Process translation

policy
{

relatedProcs = ”Part. 8”

event { vEv Ko join2 }
action { Ac ReqMoreInfo; vSi Ko join3 }
condition { Ko NeedMoreInfo }}

Partition 1 yields:

policy
{

relatedProcs = ”Part. 1”

event { vEv Ac CreateChangeRec done }
action { vSi Ko join4 }
condition { Ko ProcessingSuspended AND Ko TimeCritical }}

policy
{

relatedProcs = ”Part. 1”

event { vEv Ac CreateChangeRec done }
action { vSi Ko TimeCritical }
condition { Ko ProcessingSuspended AND NOT Ko TimeCritical }}

policy
{

relatedProcs = ”Part. 1”

event { vEv Ac CreateChangeRec done }
action { vSi Ko join4 }
condition { NOT Ko ProcessingSuspended }}

Partition 3 is the most complex of the set. It translates to:

policy
{

relatedProcs = ”Part. 3”

event { vEv Ac RegisterRfC done }
action { Ac RejectRfC }
condition { Ko RfcFormOK AND NOT Ko RfCDuplicated AND

Ko NeedApproval AND NOT Ko RfCApproved }}

176

4.9. Translation example

policy
{

relatedProcs = ”Part. 3”

event { vEv Ac RegisterRfC done }
action { vSi Ko join1 }
condition { NOT Ko RfcFormOK }}

policy
{

relatedProcs = ”Part. 3”

event { vEv Ac RegisterRfC done }
action { vSi Ko join1 }
condition { Ko RfcFormOK AND Ko RfCDuplicated }}

policy
{

relatedProcs = ”Part. 3”

event { vEv Ac RegisterRfC done }
action { vSi Ko join2 }
condition { Ko RfcFormOK AND NOT Ko RfCDuplicated AND

NOT Ko NeedApproval }}

policy
{

relatedProcs = ”Part. 3”

event { vEv Ac RegisterRfC done }
action { vSi Ko join2 }
condition { Ko RfcFormOK AND NOT Ko RfCDuplicated AND

Ko NeedApproval AND Ko RfCApproved }}

policy
{

relatedProcs = ”Part. 3”

event { vEv Ko join1 }
action { Ac RejectRfC }}

Synchronisation Partition 0 contains a closing synch node. It spec-
ifies waiting until two messages have been transmitted, before execu-
tion is resumed in Partition 4. Please refer to Chapter 5 with regard
to the correlation of message reception.

177

Chapter 4. Process translation

4.9.4. Optimisation

The elementary patterns described in this chapter ensure translation
of the process specification, while disregarding the specific features
of a target policy language. The number of policies resulting from
translation can be reduced if more advanced constructs of policy
languages (as described in Section 4.1.6) are taken into account.

Another approach to optimising the result set is to apply simple
heuristics to the (already generated) set. For example:

Any two policies that execute the same action (with the same pa-
rameters!) can be combined into one by

• joining their condition clauses with an OR operator
• joining their event sets

Observations regarding the domain of virtual events/signals could
also lead to a more compact representation of processes.

Any such optimisation strategy should take into account that, while
a smaller result set could reduce size and complexity, it may at the
same time impede effective association of policy rules with different
domains or tools.

4.10. Summary

This chapter has presented the core approach to process translation.
It focused on the treatment of control flow in IT management pro-
cesses. Analysis of formalisms for the representation of management
processes, as well as of management policy has determined their re-
spective expressive capabilities with respect to the requirements of
technical IT management. The analysis has yielded a candidate set
among the process languages, as well as a candidate set among the
target policy languages.

A high-level, six-step methodology that describes the translation
procedure has been devised. The actual translation is based on
transition between two meta-models: a generic one that describes
the candidate set of process languages, and a target meta-model
that represents a set of patterns for process fragments. Transition
between the two models is achieved by applying a number of substi-
tution rules to the source process definition.

178

4.10. Summary

An catalogue of fundamental patterns has been described, that can
be matched against the result of the substitution. Each pattern
carries a parametrised translation template, that describes the set
of management policy rules that can be generated from an instance
of that pattern. Thus, every pattern match results in a number of
policies that can be instantiated from the matching pattern; the sum
of all policies created in this manner are the result of the translation
procedure.

In order to allow the accommodation of optimised or even novel
patterns, a mechanism for the extension of the pattern catalogue
has been described. Both the existing pattern catalogue, and the
extension mechanism have been specified independently of specific
features of source or target languages.

Focused on translation of the process data flow, this chapter has
disregarded the data flow within the process. One of the effects
when applying the given substitution rules to source processes is the
fragmentation of the source process, thereby interrupting the direct
connection that may carry data between process parts. The following
chapter will analyse the data flow requirements of such fragmented
process specifications and propose suitable solutions.

179

Chapter 4. Process translation

180

Chapter 5
Process data flow

T HE mechanism for control flow introduced in the previous chap-
ter presents challenges regarding the data flow to, from and be-

tween processes as well as the interaction with different data storage
facilities. Processes are data-driven in as much as they may be event
driven. The decomposition of a process specification into patterns Disruption of

data flow due
to process
decomposition

sized “chunks” will disrupt the information flow at the chunks’ bor-
ders. This makes necessary a strategy to incorporate the flow of
information pertaining to the original process specification into the
policy-based realisation of the process.

To tackle these issues, we examine the way information is attached to
nodes in a process. This examination’s results allow us to determine
how information items should be attached to process fragments being
matched to pattern, and to derive requirements on the transport
of these information items (Section 5.2). Section 5.3 describes a
means for the specification of data flow and proposes an architecture
suitable for the realisation of information transport according to
those requirements.

Processes are supplied with information from different sources (e.g.
documents, messages, user input). Similarly, they output informa-
tion to a variety of information sinks. Within a process, the output
of one process part (e.g. an activity) is frequently used as the in-
put of a subsequent one. If a centralised form of process execution
can be assumed, this intra-process communication won’t presents
difficulties. It may be realised by a central workflow management
engine. In the opposite case, when distributed control of the process
must be taken into account, the integrity of the data flow within the
process must be guaranteed by other means.

The approach proposed in this work goes beyond mere distributed Preservation of
data flowexecution of the process: the process specification is transformed,

181

Chapter 5. Process data flow

certain process nodes are eliminated while others are introduced,
and the resulting fragments are intended to be executed separately
from each other. The transformations may effectively alter the speci-
fication of process data flow itself. The nodes that will in fact process
information within the process (action, signal and condition) are pre-
served, the path by which the information is routed to its destination
is altered or interrupted. Figure 5.1 illustrates how the partitioning
of a process can interrupt the data path at pattern boundaries.

Action 1

Event 1

Action 3

Action 2

:o1

:o1’’

:o2

:o1’

:o1’’’

:o1

:o1’’

:o2

:o1’

Signal 2

Action 3

Event1

done_Action 1

Action 1

Action 2

done_Action 1

done_Action 2

:o1’’’

done_Action 2

P
ro

ce
ss

 d
ec

om
po

si
tio

n
(d

ur
in

g
tr

an
sl

at
io

n)

Signal 2

Interruption

Interruption

Contiguous graph (before translation) Isolated fragments

Figure 5.1.: Information flow
Information flow before and after control flow decomposition

5.1. Preservation of the information flow

An IT management process—or any process, for that matter—cannot
function properly if the data flow between its activities is disturbed.
Therefore, it is of critical importance to devise a mechanism that
maintains the flow of information even in a process’s decomposed
form. Two aspects need to be taken into account in constructing
this mechanism. First, the nature of the data items associated with

182

5.1. Preservation of the information flow

a process will indicate some of the capabilities necessary to a mech-
anism for process data flow. Second, the nature of the intended
distribution will provide a frame for the requirements on transport
capabilities.

5.1.1. Data/information items in processes

To devise a mechanism for the preservation of intra-process informa-
tion flow, it is necessary to identify the kinds of data items that can
be associated with a process, or process fragment. The information
that is necessary to a certain process partition is associated with
that partition in different roles.

Heuristic to classify data items Several process node types may be
associated with data items. The following distinctions were instru-
mental in determining how data is attached to nodes.

Association type. Information associated with a process node
can be attached to nodes in different manner. It can
be made available as the output of a preceding node
(e.g. the output of an action may serve as part of
the input to a following action); it can be associated
with the node as a process-external data item (e.g. as
a reference to a process artefact); and it can be made
available to the node as data originating in the runtime
system executing the process (e.g. current time and
date).

Input and output. Some nodes types are associated with input
items, as well as with output items. Others may only
receive input, or only generate output.

Immanence. Some information items are strictly part of the pro-
cess. They are created within the process, and they
find their use within its execution. Others are external
to the process. They may originate in management in-
formation systems, or they may constitute input from
an interaction with an administrator.

Transience. Information items may be persistent (e.g. informa-
tion in a database relation) or fleeting (e.g. an SNMP

183

Chapter 5. Process data flow

ArtefactParameter Return value

Input Output

Data item Value Type

Process Node

1
is of

Figure 5.2.: Abstract view on process data

trap message). Both kinds may play a role in the ex-
ecution of a process, but must be treated differently.
Transience concerns the availability of an information
item, as well as its validity. For example, the validity
of a “current time” value may suffer if considerable
time passes between its assignment and its use.

For any given node type, data items of different kinds may be as-
sociated with it in different roles. Figure 5.2 illustrates in principle
some of the relationships between a process node and the associated
data items. Process nodes may input and/or output data items, e.g.
parameters/return values or process artefacts. In the following, a
narrower, node-specific view of these relationships is described. It
serves as a starting point for the development of a mechanism for
linking process patterns and information items.

Action Naturally, actions constitute the process elements that ex-
hibit the greatest number and variety of relationships to data items
(Figure 5.3). The most obvious example are the values to formal
parameters of actions. Often, actions operate on data that consti-
tutes, or is part of, a process artefact. Artefacts may be stored in a
management information system (e.g. in a CMDB). A reference to
such an information item may be made available to an action as a
formal parameter. Actions may yield return values that can be of
relevance at another location in the process.

184

5.1. Preservation of the information flow

Action

Artefact

Return value Parameter

cr
ea

te

pa
ss

 o
n

op
er

at
e

on

0..1
*

may refer to

Figure 5.3.: Data items of an action node

Value

Function value Attribute value

Process AV Infrastructure AV Runtime AV

Constant

Figure 5.4.: Process data values

Conditional branch The evaluation of conditional expressions de-
termines the control flow path chosen in a process instance. The
expressions can refer to different data items inside, as well as out-
side of the process. Examples include attribute values acquired from
the infrastructure (e.g. values of attribute in a MIB), data originat-
ing in or constituting an process artefacts, variable values pertaining
to the runtime system (e.g. current time/date), and return values
of functions/methods.

Values employed in conditional expressions (as well as in other nodes)
may originate in different locations, as suggested in Figure 5.4. In
turn, their origin determines the manner in which the values are
extracted for use in the execution of the process.

The information needed to allow evaluation of the conditional ex-
pression is used solely in that context. The expressions evaluate to
true or false, but do not pass through data to other process nodes.

185

Chapter 5. Process data flow

Expression ValueBranch

Operator Artefact

m
ay

 re
fe

r t
o

*1..

Figure 5.5.: Data items of a conditional branch node

Normally, they do not change the state of the infrastructure1, nor
do they output data, as may happen in the case of action nodes.

Parallelisation/synchronisation points Information cannot be at-
tached to parallelisation or synchronisation nodes at the time of
formal process specification. There may be information attached,
but it is not used by the process itself. Instead, it serves to maintain
the execution of the process, by being instrumental to the proper
parallelisation/synchronisation action specified by the process node
in question. As such, it does not constitute a part of the process data
flow per se; it can be seen as signalling performed for the benefit of
the process support utilities. This signalling is implementation spe-
cific (the implementation determines what information is necessary
to effectively perform the tasks of these nodes) and will therefore
not be discussed further.

Signals and Events Signal and event nodes cater to different views
on the same abstract process element: the message. Signals specify
that the data should be transmitted at some point in the process;
conversely, events specify where it should be received. Obviously, the
relevance of these two classes of nodes to the data flow in processes
is very high. In the following we will focus on signal nodes, as they
are the active (i.e. transmitting) elements. In contrast, event (ex-
pectation) nodes symbolise the passive notion of expecting data to
be delivered, along with the specification regarding which data will
be expected—and thus available to adjacent nodes (e.g. actions).

1Changes to infrastructure state may occur as side effects, if values in a con-
ditional expression are obtained as return values from functions.

186

5.1. Preservation of the information flow

What is still missing in the specification of signals is “which” data Origin of data

should be transmitted, and where it should be procured for that pur-
pose. Similarly to actions and conditional, signals can be associated
with the entities depicted in Figure 5.4. As noted at the begin of
this section, information relevant to the process can originate within
or outside the process itself. In both cases, it is important to en- Type identifier

sure that the signal element carrying the information is matched
by corresponding event nodes. The difference in most cases will be
that, while information created and used within the process will be
bound to virtual nodes, the information items that originate out-
side the process, or those being delivered outside the process will be
bound to natural event or signal nodes. The match between signal
and event nodes can be realised by using a type identifier for these
nodes, which provides a non-ambiguous means to map the nodes to
the information items they transmit or receive. In principle, if an
information item necessary to a process fragment is thought of as a
typed object of a class, the type identifier would be the name (type)
of that class of objects. The transport of the thus marked infor-
mation items will favourably be enacted by means of a messaging
system, as addressed shortly in Section 5.2.

In practice, a process fragment may necessitate more than one infor- Aggregation of
datamation item. Thus, that the type identifiers employed to mark event

and signal nodes should accommodate the typing of aggregations of
information items—records or data structures.

In view of the issues induced by the fragmentation of process graphs, Intra-process
data transportthe one most important issue to solve is the replication of the original

data flow, as it may be implicit in pre-translation process specifica-
tions. Most breaks in the graph result in the creation of virtual
signal/event pairs (see Section 4.3). Thus, to maintain the data flow
between two nodes separated into two different fragments, the in-
formation intended to cross a connection between these two nodes
needs to be charged to the virtual nodes that represent it.

Consider the left side of Figure 5.6, which is in fact a simplified Charging
virtual nodesversion of the example in Figure 5.1. The decomposition of the pro-

cess graph into the two (upper and lower) fragments results in the
disruption of the flow between Action 1 and Action 2, as already
discussed in the introduction of this chapter. As a result, the infor-
mation item that is produced by Action 1 cannot be made available
to Action 2. By relaying the information item to the virtual signal
following Action 1, it will be transmitted and received at the point

187

Chapter 5. Process data flow

:o1’

Event1

done_Action 1

Action 1

Action 2

done_Action 1

done_Action 2

:o1

:o2

Event1

done_Action 1

Action 1

Action 2

done_Action 1

done_Action 2

:o1’

:o1’Interruption

Bridged flow

transport

Broken flow

Message

Figure 5.6.: Bridging the gap between fragments

in the process given by the corresponding event, i.e. the event node
that is marked with the same type as the the signal.

In this example, the types match, and the information item in ques-
tion can be made available to Action 2. This match is however not
accidental, or incidental to the example: it is a consequence of the
application of the substitution rules in the first place! Hence, to
maintain a proper intra-process data flow in the locations where it
might be disrupted by the decomposition of the process, it suffices
to

• identify the data items that should be transported, and
• link them to the pair of virtual signal/event nodes at the time

of its creation.

Hence, staying within the concept of projecting the intra-process flowLinking
information at
translation
time

of information onto a sequence of signals being transmitted (and cor-
responding event nodes reacting to those signals), we can conclude
that the linkage of information items to virtual nodes must occur at
the time when the substitution rules are applied. The practical ap-
proach to this task is discussed in the next section, before examining
(in Section 5.2) how the information transport can be enacted.

188

5.1. Preservation of the information flow

5.1.2. Attaching information specification to patterns

To automate the handling of data flow in the course of the translation
procedure, it is necessary to identify those information items that
are provided by process fragments, and those that are required in
(other) process fragments. By associating instructions regarding the
preservation of data flow to the patterns described in Section 4.5,
formal specifications for the flow of information within and between
process fragments can be extracted.

Among the node types occurring in a process graph, action, condi- Context of
informationtion and signal nodes are in need of information. Conversely, action

and event nodes provide information to the process.

Modification of information during process execution is solely a re-
sponsibility of action nodes, as they are the only ones effectively
creating or processing data relevant to the process. Actions may
create information, modify existing information, or pass through in-
formation (e.g. to point to a data item determined to be important
for processing in later actions). Data may be stored outside the pro-
cess, e.g. in a repository for management information. In this case,
a reference to a specific data item may be viewed as “information”
as it conveys the address of relevant data to a (subsequent) action.

In order to minimise the scope of the re-linking of information at Minimal
invasivenesstranslation time it is important to differentiate between information

items that are passed along within the process—and thus are affected
by the its fragmentation, and items that are not directly affected by
fragmentation due to their being represented by external references
in the first place.

Not all data items necessary to process execution constitute infor- Process
management
information

mation items that are relevant to the process itself. Some of them
are merely instrumental in securing the correct execution of the pro-
cess, an obvious example being the transmission of virtual signals to
trigger execution of detached process fragments.

Four steps must be taken to ensure that the data flow within the Procedure

process is replicated in accordance to the concept depicted in Figure
5.6.

1. Determine information items to be transported.

2. Determine source and target locations.

189

Chapter 5. Process data flow

3. Identify the signal and event nodes to be employed to accom-
modate the required information.

4. Adapt references to data (e.g. in actions’ arguments) to point
to the event.

The information to be transported is highly dependent on the ma-
nagement setting, the process specification and thus the selection of
information items intended to be “bridged” across fragment bound-
aries. In practice, it is impossible to predict with some generality
which information items need to be treated in the manner outlined
above. Therefore, the approach of relaying all affected data is theNeed for

aggregation only one guaranteeing a consistent result. Also, it requires the cre-
ation of “packets” of information corresponding to the collection of
items required in a process fragment.This implies beforehand aggre-
gation of the information items. A solution to specifying aggregation
clauses is proposed in Section 5.3, along with architectural consid-
erations regarding its practical realisation. Beforehand, in the next
section, we examine the requirements on the transport of informa-
tion after aggregation has been performed.

5.2. Requirements on information transport

Having determined the binding of information to process nodes, it
is forthcoming to examine the means to make available that infor-
mation during process execution. We have already noted that in-
formation relevant to a management process possessed many differ-
entiating characteristics. In this section, we examine in detail the
requirements imposed on the realisation of data flow within an IT
management process, as well as between such a process and entities
outside its scope.

5.2.1. Dimensions of process data flow

The flow of information during the execution of an IT management
process is determined by many different aspects. These, again, are
highly dependent on the kind of process that is being executed, the
available tool set, the managed infrastructure, the facilities for infor-
mation storage and the heterogeneity that can be expected in most
infrastructures.

190

5.2. Requirements on information transport

The different dimensions that need to be taken into account when
analysing information or data flow in an IT management process are
sketched in Figure 5.7. They apply to data being made available to
a process during execution, as well as to the information items that
may result from the process.

Tool level The execution of an IT management process may require
several tools of different types. We can distinguish between tools
for process support (e.g. a trouble ticket application), management
tools (e.g. for network management), as well as tools being part of
the infrastructure (e.g. a managed application).

Container type Information can be presented in different forms. It
can be made available as an attribute value (e.g. by a management
agent providing a MIB representation of a system), data records
containing a composition of data (e.g. a synopsis generated by a
security tool), or complex documents. These different information
containers can additionally be differentiated between by the level
of formalisation typically employed to encode the information they
transport.

Data type The data that represents an information item may be
of one of several types. The most simple form, and at the same time
the most easy to handle, is the primitive data type, e.g. integer or
float number, boolean values, character strings etc. Homogeneous
aggregations of primitive types (e.g. arrays) again constitute types of
their own. Heterogeneous data structures constructed from primitive
types also need to be considered separately, as well as sets of such
structures.

Number of data items A process may perform activities on several
series of data items. Also, the execution of an action may require
multiple instances of a datum.

Data source type The data required for process execution may
originate from different kinds of sources. They include repositories
for persistent data, such as database systems or directories. Data
relevant to a process can also originate in files of different formats,

191

Chapter 5. Process data flow

Tool
level

Pro
ce

ss
 su

pp
or

t to
ol

Inf
ra

str
uc

tur
e e

lem
en

t

Man
ag

em
en

t to
ol

Data
source

RDBS

Directory

File

Agent

Central repository

Distributed repository

Message bus

type
Container

Attribute

Record

Document

pr
im

itiv
e

co
mple

x

ag
gr

eg
ate

d c
om

ple
x

ag
gr

eg
ate

d p
rim

itiv
e

12
3

Data
type

Number of
data items

Transport
type

User

type

Figure 5.7.: Dimensions of data flow in processes

192

5.2. Requirements on information transport

or it can be retrieved from management agents. Finally, IT ma-
nagement processes will, in most cases, require interaction with an
administrator at some point. This interaction will most likely result
in data items that are used as input to an activity within the process,
or as a base for a branching decision.

myEventN

���
�

:Entitysubj

:Entityobj

:Parameterp1

information
management

role

myAction

...

...myEvent1

Infrastructure

Figure 5.8.: Sources of management process data

Transport type Depending on the origin of the data, several meth- Centralised

ods may employed to retrieve it and make it available to the process.
The most obvious alternative is the existence of a central repository
for information. This implies that the information can be accessed
at any time by any actor (machine or human) that participates in
process execution. This alternative will exhibit a high level of con-
sistency, but also inflexibility and the risk of creating an information
bottle-neck or a single-point-of-failure within the infrastructure. In
an inter-domain setting, the creation of a central repository may
present insurmountable difficulties, when compared to the benefit
derived from it.

A second option is the concept of distributed (e.g. federated in- Federated

formation stores). These have the benefit of scalability and may
be located in the domains where the data originates. Research on
distributed database systems and directories has made available con-
cepts and means to allow for consistent data storage and retrieval.

193

Chapter 5. Process data flow

Nevertheless, the initial effort to set up such a federation may be
high.

The third alternative is to use a message bus to transport informa-Message based

tion items to their place of destination. It has the benefit of being
very flexible, but carries a substantial risk to lose information. In
principle, an IT management process may require information along
any of these dimensions.

5.2.2. Policy-based process realisation

Realisation of IT management processes by means of policy rules
introduces several constraints to the concept of a process data flow
facility. Execution of management policies is event-driven. Hence,
asynchronous message passing may be expected to play an important
role in the control flow of the process.

It may be distributed, leading to an isolated execution of single rules.
The information needed by a specific process node must be provided
at the location of a policy rule that has been generated from that
node. As the process specification is decomposed into isolated frag-
ments, transfer of execution to another domain may occur at arbi-
trary positions in a process. Information necessary to a given process
fragment must therefore either be available in the target domain, or
be transported there whenever needed. Note that information orig-
inating in several domains may be required.

In summary, the realisation of the approach presented in this work
benefits from

• event-based information transport
• distributed or message-based information provisioning
• inter-domain collection of required information items

The following section discusses the realisation of process data flow,
taking into account aggregation requirements. In particular, a facil-
ity for the specification of event-based flow is delineated, together
with an architectural outline indicating the functional components
necessary for its projection onto existing information sources.

194

5.3. Realisation of process data flow

5.3. Realisation of process data flow

The data transport needs inherent to a process specification must
be made available to an aggregator function. This can be achieved
by means of a declarative information specification language that
allows the formal expression of aggregations. Section 5.3 gives an
outline of a suitable specification language.

Overview of the Service Information Specification Language

The SISL is a declarative, XML-based language [DgS 07] intended to
describe aggregation specification in the domain of service manage-
ment. As such, it is suited to describe the (simpler) aggregations
necessitated by the realisation of data flow in processes.

The basic SISL element is the aggregation which enables the user
to specify the data values to be collected, the sources they should
be collected from, as well as timing parameters with regard to the
frequency of sampling values.

Data sources are abstracted by means of a naming scheme that ob-
scures the physical sources in favour of named attributes. SISL in-
cludes elements for the description of preprocessing instruction such
as the computation of mean values or sums. Guard conditions can
be specified that trigger the transmission of a data packet contain-
ing the aggregated values. In particular, these configurable triggers
are very useful for use with the inherently event-driven, policy-based
process execution mechanism.

The SISL has been specified as an XML Schema grammar that is
given in Appendix 10. It is implemented in the SMONA architecture
presented in Section 7.4, according to the outline in the following
section 5.3.

Architectural outline

A facility for the aggregation and transport of process data needs to
provide the functions sketched in Figure 5.9. It should possess the
ability to acquire data from the relevant sources (platform specific
layer), to express the data (that may be acquired in different for-
mats) in one agreed-upon format (platform independent layer), and

195

Chapter 5. Process data flow

Pre−processed,

Normalised,
typed

structured
Aggregated,

different formats

Resource

Platform specific

Platform independent

(Mgmt.) Application

Integration

Architecture layer Processing stageActivity

In
fo

rm
at

io
n

of data items
Aggregation

of formats
Normalisation

Data capture and
pre−processing

Origin of
data items

Figure 5.9.: Aggregating architecture (functional view)
Functional building blocks of an aggregating architecture

aggregate data items from different sources according to pre-defined
data structures (integration layer), as needed by a process partition.
An aggregating monitoring architecture that implements the three
required layers is detailed in Section 7.4.

5.4. Summary

Due to the fragmentation of management process specifications dur-Interruption of
data flow ing translation into policy sets, the data flow between the—formerly

contiguous—fragments may be interrupted. To counter this effect,
we have devised a message-based scheme for information transport
within processes. Thus, the flow of data between process nodes, as
well as between process nodes and external entities can be realised
by means of signal/event node pairs that are already present in the
original process specification, or introduced as virtual nodes at the
time of their decomposition into fragments.

In order to allow precise specifications of the information flow, weBinding of
information
items

have analysed the way in which data items can be bound to process
elements. In particular, the preservation of the data flow at the
borders of patterns, as described in Section 4.5, has been addressed.

The formal projection of the information transport needs of a processSpecifying
information
items

196

5.4. Summary

can be realised with the Service Information Specification language
outlined in Section 5.3. Though developed for the aggregation of
information in order to create a service view onto infrastructures,
SISL is suited for the (in truth simpler) task of specifying aggrega-
tions for use with management processes. The SISL grammar can be
found in Appendix 10. The practical realisation of the thus specified Aggregating

architecturedata flow can be pursued by means of an architecture that provides
configurable data aggregation features, as outlined in Figure 5.9. An
implementation of such an architecture is discussed in Section 7.4.

The mechanisms for data flow within processes addressed in this
chapter, combined with the mechanisms for control flow treated in
Chapter 4 provide the fundament for the development of a manage-
ment architecture that actualises the vision of policy-based execu-
tion of IT management processes, as proposed in this thesis. The
following Chapter 6 describes the functional components necessary
to implement an end-to-end workflow ranging from the specification
of IT management processes up until the execution of operational
policy rules generated from the process specifications.

197

Chapter 5. Process data flow

198

Chapter 6

Architecture

S PECIALISATION and adaptation is implied by all generic ap-
proaches in order to provide operable solutions. Therefore, it

is important that such approaches provide facilities to perform such
specialisation or adaptation.

The mechanisms for process translation and preservation of the pro-
cess data flow described in the preceding chapters are generic regard-
ing process and policy languages, as well as regarding the manage-
ment framework or the process/infrastructure management tools
used. The latter are specific to the needs and resources of the in-
frastructure to be managed, while the former two constitute design
time choices. From that perspective, the approach is also indepen-
dent of the information model employed—and thus the data model
derived from it—for the description of the managed system and the
information transferred during process execution.

This chapter describes an integral architecture supporting the deriva-
tion of management policies from process definitions, taking into ac-
count the complete life-cycle of a management solution. Therefore,
the proposed architecture is based on the functional needs of the
management life-cycle phases that the approach relies on.

The architecture developed in Section 6.2 is projected onto a set of
concrete tools in Chapter 7. While the boundaries between com-
ponents are blurred by such a projection, their functional identity
remains untouched.

The interactions implied by the life-cycle phases addressed in Sec-
tion 6.1 are assigned to pairs of functional components to form a
collection of inter-component relationships in Section 6.3.

199

Chapter 6. Architecture

6.1. Management process life-cycle

The description of a life-cycle is an instrument that allows the con-
sideration of its object over time. In analogy to the life-cycles de-
scribed for software components or services, a management method
may have a life-cycle of its own—in the domain of process-oriented
management we could call it a meta-process. The following discus-
sion illustrates the phases in the existence of a process that is realised
by means of the approach proposed in this work.

6.1.1. Initial workflow

The initial workflow can be described to start with requirements
from active business processes and to finish with provision of a de-
tailed, operational IT management process. In contrast, the overall
management workflow continues until the enforcement of IT ma-
nagement policies on the infrastructure is made possible.

The first part of the workflow describes the creation of detailed op-
erational IT management processes at an operational level. This
first part (depicted in Figure 6.1) focuses on the formalisation of IT
management procedures into operational, technical processes that
take into account the business processes of the organisation, its in-
frastructure, the distribution of management roles as well as best
practices for IT management.

The core business of the organisation determines the demands re-Derive
requirements garding IT services. In more concrete terms, the organisational (cor-

porate etc) IT must support the business processes that drive the
actual core business. In consequence, these business processes are a
source of requirements to the management processes controlling the
IT infrastructure and services.

Another input to the modelling of IT management processes areModel
high-level
process

service management frameworks that have evolved from manage-
ment experience and describe generic, process-oriented best prac-
tices. Guided by a best practices framework and focused on the goals
at hand (core business support), IT managers can develop high-level
process definitions adapted to their organisation.

However, best practices frameworks tend to be generic in order to
fit all organisations and business requirements may be abstract as

200

6.1. Management process life-cycle

Derive
Requirements

Model
IT managment process

Refine
process definitionModels

Management

Practices
Best

Processes
Business

requirements
Business

Adequate
level of
detail ?

Implement
process

process definitions
High−level

process definitions
Customised

Yes

No

Evaluate
operational processes

Resulting processAuxiliary Initial workflow

Figure 6.1.: Steps to customised process definitions

well. Through iterative refinement, management processes can be
adapted to the characteristics of the the infrastructure and to the role
distribution in the organisation. This procedure results in detailed
process definitions, that are tailored to the operational requirements
of the IT organisation.

By taking into account the significance of a particular process, ide- Refined process

ally, the process definitions are minimal in that they only specify
the activities that are in fact necessary for the management of the
IT services in the organisation. A process specification at this level
can be documented in a formal language and thereby rendered ma-
chine readable, for use in a facility for tracking and/or executing the
process, e.g. a workflow engine.

Refinement of a high-level process implies the introduction of se- Fulfilment of
operational
needs

mantics specific to the IT organisation. This includes assumptions
regarding the actual workflows of real persons assigned the roles in
the process, reliance on a set of management tools, as well as prog-
noses regarding the current and future field of responsibility of the
IT organisation. These assumptions may or may not be accurate.
Speculations regarding the necessary amount of detail in a process

201

Chapter 6. Architecture

specification imply assumptions regarding the knowledge of the peo-
ple execution the process. Reliance on certain timing assumptions
is dependent on the behaviour of administrators, as well as external
parties (e.g. subproviders). Specification of interfaces, as well, is a
subject that must take into account customers’ and subproviders’
systems.

Possibly, several iterations must be performed to adjust a process
specification to the actual needs of the IT organisation. When a
process specification becomes adequate with regard to its manage-
ment goals, it is ready to be implemented.

6.1.2. Implementation phase

The process specification can be treated as proposed in the method-Translation

ology described in Section 4.4. Accordingly, the control flow of the
process is captured in a set of management policy rules, and the
data flow is ensured by deriving instructions regarding generation
and aggregation of composite events. As a prerequisite for process-
to-policy translation, the management process specification must be
available in a formal, machine readable representation. References
to roles, to entities, to management applications should be made ac-
cording to the management information databases employed by the
IT organisation.

The results of translation must be made available to the compo-Deployment

nents that evaluate the policies and those that are responsible for
data handling, respectively. This requires on one hand that a form of
policy repository be present that can accept and verify a set of poli-
cies. On the other hand, a facility for the processing of events must
be available that is capable of executing the aggregation instructions
produced by the translation.

Distributed evaluation and execution of policy rules require a strat-
egy for distributing each rule to one or more destination, according
to its scope. Likewise, instructions pertaining to data flow control
may need to be distributed, if a specific management infrastructure
requires it.

When the management policies are in place, and the informationInitiation and
execution transport facility has been successfully configured, the operational

process can be placed in operation. Its execution phase begins effec-
tively when the first process instance is launched.

202

6.1. Management process life-cycle

In analogy to the service life-cycle, the execution phase of a process
may be interrupted by the need to alter the process specification.

6.1.3. Change and iterative refinement

Operational management processes are intended to be stable over
time. Changes to the process specifications incur cost and should
not be undertaken unnecessarily. There are situations in which al-
tering the process specification is beneficial, e.g. by exploiting an
opportunity to simplify or shorten the standing management proce-
dures. External pressure, e.g. by actors in the customer role can
make necessary a review of operational processes. Internal circum-
stances in the IT organisation, e.g. organisational restructuring,
could entail changes to the management processes.

The need for modifications of process specifications often constitutes Actuators and
catalystsa consequence of change in other management disciplines. A number

of exemplary reasons for changes to process specifications are given
in the following:

Business practices or high-level policies. A change in busi-
ness strategy may force the IT organisation’s to adapt
its operations, in order to serve the business processes
as needed. Requests on the lines of “we need to serve
the customer more quickly” or “we need to provide
services more cheaply” may prompt a review and eval-
uation of management processes, which in turn may
suggest improvements to the process specifications.

Services. The introduction of new services, significant variations
in the volume of usage or the number of customers, as
well as outsourcing of parts of the service provisioning
may impact on the IT organisation’s processes. The
formal process specifications must be adapted to re-
flect that impact.

Contracts. Contracts with customers, e.g. SLAs, are subject to
modifications. Some processes are quite susceptible
to changes in operational agreements. In particular
processes (or process functions) that directly interface
with the customer/user may have to be reviewed.

Personnel situation. Fluctuations of the number of personnel

203

Chapter 6. Architecture

available to the IT organisation, as well as the loca-
tion of personnel can have great impact on the correct
functioning of the IT management processes. Changes
to the personnel situation as a consequence of organ-
isational change (e.g. mergers/fusions, establishment
or shutdown of subsidiaries) may require modification
to the IT management process specifications.

Infrastructure. Technological evolution, growth or contraction
in the infrastructure may warrant a review of the pro-
cesses governing its management. Virtualisation of
infrastructure parts, as well as re-centralisation or de-
centralisation concepts lead to different distributions
of systems and different requirements on the intercon-
necting networks. In consequence, new management
procedures may become necessary, prompting a revi-
sion of management process specifications.

In a highly automated management environment, where
infrastructure elements are manipulated directly, as
part of the execution of a process activity, smaller
changes to that infrastructure may suffice to force mod-
ifications of the process specification.

Tool set. The tool sets used for process support and for tech-
nical management tasks evolves over time. Old tools
may no longer be supported after a period of time (e.g.
being discontinued), and other tools may introduced
in their stead. Tools with novel, desirable capabilities
may be adopted. To retain the coupling between pro-
cess execution and the current tool set, the process
specification may need to be adapted.

Specification language. The process specification language pre-
ferred for the representation of operational processes
may change. Improved versions or new languages may
emerge, that warrant a migration of the process speci-
fication. Obviously, such changes have a great impact,
since every process is affected.

The above by no means constitutes a comprehensive list of the orig-
inal reasons for changes to processes’ specification. It is meant as an
overview of the categories of changes that will need to be reflected
in the process specifications.

204

6.1. Management process life-cycle

Once a process specification has passed the implementation phase,
entering its execution phase, any change to the specification must
be reflected in an already deployed implementation.

Change phase In principle, an altered process specification can be
admitted directly into the Translation phase of the life-cycle. How-
ever, as changes are made to the control of an operating management
process set, a number of issues must be taken into account.

Two obvious provisions are necessary to ensure consistence in the Issues and
requirementsexecution of processes in the context of a change to the process

specification.

Continuance permit. Running process instances must be al-
lowed to complete, lest they leave the infrastructure
or information base in an inconsistent state. A pro-
cess instance may interact with external parties (e.g.
customers). In such cases it is particularly important
to ensure a normal termination of a process instance.
However, some processes may be in execution for a
long time (compared to the time needed to alter their
specification). Even in such cases,at the very least,
process instances being executed should be aborted in
a controlled manner.

Retention of operations. In many settings, it may be unac-
ceptable to suspend operations during review and change
of process specifications. Therefore, it may be neces-
sary to allow new process instances to be created, e.g.
if such instantiation is performed as a consequence of
users’ or customers’ requests.

The above provisions seem to suggest that perhaps process specifi- Facilitating
changecations cannot be changed at all, once they are admitted into their

execution phase: running instances may not be stopped, and at any
time new instances may be created. A number of measures can be
taken to allow changes to be introduced without delay.

Execution checkpoints incorporated in the process specification can
promote rapid and controlled termination of a process instance.
However, such checkpoints may need to be set manually, in order
to ensure a known, consistent state of the infrastructure, the tools,
and the interfaces to external parties.

205

Chapter 6. Architecture

Versioning of process specifications allows the differentiation betweenProcess
versions multiple concurrent versions of a process. Version identifiers may be

propagated by means of the events linking the execution of differ-
ent process fragments. The management policy rules may evaluate
“their” version of the process in the same manner in which different
process instances are separated by an instance identifier. In conse-
quence, multiple sets of rules can exist concurrently, that represent
the same process or process fragment.

Management of process versions requires the inclusion of date clauses
in process specification documents. As changes may apply only to
small parts of a process specification, a process formalism that sup-
ports flexible timestamps for process elements will prove helpful dur-
ing the change phase.

In most change instances, only the part of a specification having beenDifferential
change altered, together with dependent parts, needs to be re-generated.

Identification of the effectively altered process fragment, and its sub-
sequent translation allows minimal modifications to the policy set
and the data provisioning instructions.

6.1.4. Decommission and retirement

Under certain circumstances it may be desirable to place a process
out of operation. This may be a temporary measure, in which case
the process is expected to be reintroduced at a later point in time.
In other cases, it may be expedient to remove the process specifica-
tion permanently. Both alternatives should be executed with care,
taking into account the active instances of the processes (see the
discussion on change in Section 6.1.3). In particular, it may prove
adverse to simply delete all traces of a process from the management
infrastructure.

6.2. Functional components

The architecture presented in the following combines the canonical
PbM architecture with facilities for process specification handling,
event transport and process-to-policy translation. In the following,
the architectural building blocks shown in Figure 6.2 are motivated
and outlined from a functional point of view. The purpose of the
each of this functional building block is illustrated by means of its

206

6.2. Functional components

role in the management life-cycle. The required functionality to be
provided is described, along with the principles for its realisation.

Monitoring

Policy decision point

Aggregator

Translation engine Process repository

Infrastructure

 Process support tools
Message bus

Policy repository

Management tools

Abstraction layers

Process formalism

Process modelling tool

Roles, infrastructure,...

Management
databases

PEP

PEP

PEP

PEP

Figure 6.2.: Functional view on architectural components

The building blocks of the architecture sketched in Figure 6.2 are
arranged with regard to their associations, i.e. connected blocks
cooperate in some way. Also, they are placed according to depen-
dencies, i.e. upper blocks tend to rely on lower blocks. Please note
that the position of a building block in relation to its neighbours
does not constitute a decisive statement regarding interoperation;
a detailed discussion of the interaction between the functional en-
tities in the Figure is found in Section 6.3. The Policy Execution
Points (hexagons) that are indicated in several building blocks are
logically functional entities, but the actual execution of a function is
performed by the “host” component. The functional entities treated
in this work are dyed grey.

6.2.1. Process management station

An IT organisation performing process-oriented management requires
facilities to design, model and maintain process specifications. The
results of this task may be of great impact on the correct function-
ing of the infrastructure and the services provided. Therefore, it is
often placed in the responsibility of a process manager (e.g. by ITIL
recommendation). The functional components required for the cre-
ation and maintenance of process specifications are subsumed in the
process management station.

207

Chapter 6. Architecture

Modelling tools Graphical modelling tools are employed in order
to design and refine the process specification. They should support
easy editing of the process and offer different views on the process.
Important distinctions of views are the levels of detail, as well as
the organisational boundaries relevant to the process. Tools that
can perform verification of process detail are advantageous, if subse-
quent translation is intended. In particular, references to elements
described in management information databases could be verified
automatically.

Repositories for management information Process specifications
concern the management of services and infrastructure. To effec-
tively adapt a process to one IT organisation in particular—which is
desirable, if it is to be employed in that organisation—it must be en-
riched with knowledge regarding the specific services being offered by
that IT organisation, regarding the specific infrastructure being used
to provide these services, and regarding the organisational structure
of the personnel manning the IT department.

Such knowledge is commonly captured in different kinds of informa-
tion repositories Knowledge about the infrastructure is formalised in
models that can be kept in a database, e.g. a Configuration Manage-
ment Database. Knowledge about services is often more disparate,
as several aspects of a service may be worth recording. Some ap-
proaches, e.g. the one described in [DgS 07], target a unified manage-
ment information base to describe services. Today, more often than
not, technical information regarding a service is spread between dif-
ferent repositories. The adoption of IT Service Management frame-
works will alleviate this problem. Finally, knowledge about entities,
persons and roles is often maintained in directories. Often, these
directories serve as an instrument for authentication and authori-
sation (e.g. Lightweight Directory Access Protocol (LDAP)-enabled
directories).

IT management process specifications constitute “recipes” for the
operation of the IT organisation. They must refer to current and
accurate information in order to produce beneficial results. Hence,
it is important to separate the information repositories from the
actual process specifications. Instead, a process should refer to in-
formation items in those repositories, thereby accessing the most
current state of information available to the IT organisation. There-
fore, the structure of the management information repositories must

208

6.2. Functional components

be accessible in the design phase of the process, thus rendering the
repositories themselves important auxiliary components of a process
management station.

Process repository When the specification of management purpose,
goals and actions is held solely in formal process descriptions it is
important to manage these descriptions for reference, as well as for
the instant when change to the processes must be reflected in their
policy-based implementation.

The most important function of a process repository is to safeguard Process
repository
duties

the IT management specifications during all phases of their life-cycle.
It should allow easy access to any of the deposited specifications
while optionally enforcing access control. Ideally, it should ensure
that process specifications are in a consistent format (e.g. in the
same process representation language), and provide validation func-
tions to ensure that only syntactically valid specification documents
are introduced into the repository.

A repository for processes will most probably be part of a process Process
repository
realisation

management tool. It may be realised by means of a specialised
data schema being implemented with the aid of a general-purpose
database system (e.g. an RDBMS) in addition to the program logic
that ensures its functions.

6.2.2. Management policy architecture

For the purposes of this work, an event-driven policy architecture.
resembling the canonical one described in Section 3.4.3 is sufficient.

Policy repository The policy repository is part of the canonical
policy architecture. It serves as a central point of storage for policies
and provides an integrated view on the base of policies available in
the system.

Policy Decision Point Evaluation of policy is performed by a policy
decision point that is specified as a part of the canonical policy
architecture. Upon receipt of events, the PDP identifies the policy
rules that are to be evaluated. It evaluates the identified set, taking
into account their condition clauses. For every policy that is deemed

209

Chapter 6. Architecture

to be enforced, i.e. its action(s) executed, the PDP is responsible
for triggering the execution of these actions at the correct Execution
Points. Implicitly, the PDP is responsible for the resolution of role,
domain and other wildcard expressions. If a certain action is to be
executed on all elements in a domain, the correct set of elements
must be determined by the PDP in order to allow proper execution
of the policy.

Policy Enforcement Point The architectural element topologically
closest to the managed infrastructure is the policy enforcement point
(sometimes denoted policy execution point). It should be seem more
as a functional, abstract component than as an actual software pack-
age: it denotes the location in a system architecture where policy
is enforced. Of course, it can be realised by agents residing on aLogical point

of policy
execution

device or system. It may also be a component or function that is
manipulated directly. Note the PEP indication in Figure 6.2, and
the absence of any independent PEP building block.

However the nature of the PEP, it is responsible for the execution
of the action or action set specified in a policy. Therfore, it must
be equipped to both comprehend the action specification given in
a policy rule, and be able to invoke the necessary functions on its
“host” component.

6.2.3. Process-to-policy translator

The translator’s duties revolve around the translation of processProcess
decomposition specification into policy expressions. Consequently, it should provide

the capabilities required by the procedures described in Chapter 4.
The translator needs to read process specification in a given process
language, parse them, and create a process graph. It must be able
to apply the substitution rules described in Section 4.3 to that graph
and acquire a fragmented form of the process specification.

The translator must be able to match patterns from a pattern cata-Pattern
matching logue against the fragments of the process specification, and it must

be able to instantiate corresponding policy sets from each matched
fragment. Conversely, it should be able to extract a specification for
data flow, as described in Chapter 5. Implicitly, it must therefore
handle expressions is the chosen policy language, as well as the for-
malism employed to specify event definitions and data aggregation

210

6.2. Functional components

instructions.

Additionally, the deployment and installation function for both kinds Deployment

of results are within the duties of the translator. It should therefore
be able to introduce policy rules in the policy repository, as well as
make available event generation and data aggregation instructions
to the respective functional components. These, in turn, should they
be distributed, should present a single (each), consistent interface to
the translator.

6.2.4. Facilities for information transport

Process execution necessitates an appropriate, uninterrupted flow of
information. Several of the architecture’s building blocks are dedi-
cated to providing it. Together, they form a chain of functions that
extracts, processes and refines data into information relevant for an
IT management process. Accordingly, they are arranged in different
layers, each with its own responsibilities regarding concentration and
transport of process-relevant data.

Monitoring facility The most basic function in any management
setting is to obtain information about the objects being manage-
ment. As an IT management process may react to changes in the
state of infrastructure elements, a monitoring facility is paramount.
Additionally, some reference process collections prescribe monitoring
as a means to acquire tactical knowledge about the infrastructure,
and about the services provided. For example, ITIL’s Availability
Management and Capacity Planning processes rely on monitoring
data to discover weaknesses in the infrastructure and propose reme-
dies.

The monitoring function can be fulfilled by a single tool, or by a One or more
monitoring
tools

whole collection of tools. However the realisation, the main require-
ment on a monitoring facility remains that it be able to provide
the information necessary to the proper execution of all processes.
This implies that the collection of monitoring tools may have to be
extended to support all information needs.

Data aggregation facility Process fragments are translated to sets
of single policies, that trigger on events. Policy actions can have pa-
rameters that reference information items in management databases

211

Chapter 6. Architecture

or managed objects’ representations. Nevertheless, it is desirable
to prepare customised bundles of information, and to make them
available to the policy rules as they are evaluated and executed.

This approach takes into account transient information (e.g. mes-Preparation of
information
bundles

sages generated in the infrastructure) that is only available a short
time after being generated. Also, it takes into account aggregation of
e.g. monitoring data. For example, a process fragment may perform
its action in dependence of statistics on a service, e.g. the average
number of transactions over the last hour.

The purpose of an aggregation function is to provide a generic meansArbitrary
composition of
data elements

to aggregate any data relevant to the process into self-contained mes-
sages that can be distributed over an adequate transport facility.
Ideally, it should accept data both from a monitoring facility, and
from the management information databases employed by the IT or-
ganisation. It should be sufficiently flexible to allow any combination
of data elements from these sources.

The structure of the aggregations produced by this functions must
correspond to the information needs of a process fragment, as deter-
mined by the translation engine. Therefore, the aggregation facility
must be flexibly configurable to fulfil those needs.

Message bus Information transport between—as well as within—
process activities can be performed by means of events, once tran-
sition to policy representation has been completed. A common way
of implementation is to use an event bus; most of the time, such a
bus employs an observer pattern and allows pushed or pulled deliv-
ery of events. Examples include the CORBA Notification Service,
the Java Messaging Service, as well as messaging facilities based on
web-services. In particular, an transport function for process infor-
mation must be able to carry information bundles, as produced by
the aggregation facility. Also, it needs the capability to ensure that
an information packet was delivered, and to be able to determine if,
for some reason, delivery failed.

The information transport facility is called a message bus, since theBroadcast
characteristics characteristics of a bus may be necessary to satisfy the transport

requirements of the policy-based implementation of IT management
processes. It may be the case, that multiple management policy
rules will need the same type of information packets. If those poli-
cies are evaluated at different physical locations, as may be the case

212

6.2. Functional components

if a distributed policy architecture is used, the required information
must be delivered to them nonetheless. A simple solution, that main-
tains the separation of concerns regarding information transport and
policy distribution, is to broadcast all messages on an information
bus. Considering that the messages transmitted consist of refined,
aggregated data, the additional signalling overhead can be kept at
reasonable levels, provided an adept configuration of the aggregation
function.

6.2.5. Tools

The approach proposed in this work strives to support the tool set al-
ready deployed within the IT organisation (see e.g the requirements

23ff listed in Section 2.4). Two categories of tools become relevant
in this context: the tools employed to support the processes them-
selves, and the management tools that are used to facilitate certain
aspects of infrastructure management.

Process support tools Several classes of tools can be effectively
used for process support. However the IT management process is
controlled, these tools are necessary to interact with the manage-
ment personnel (e.g. group-ware applications, email lists) and the
customers/users (e.g. web forms), to track the progress of processes-
in-execution (e.g. workflow management facilities) and to adminis-
trate process-related information (e.g. ticketing tools). Most often
than not, the tools for process support are stand-alone applications
whose interoperation is realised by hand—or renounced.

As a building block of the functional architecture, the tools for pro- Exploiting
process tool
functions

cess support contribute to the automation of the policy-controlled
process specification. Their capabilities can be invoked to e.g. ma-
nipulate a trouble ticket, or to send a notification to customers.

Tools to support technical management At the time of this writ-
ing, hardly any dedicated service management applications are avail-
able that truly allow management of services. However, a great va- Integration

over FCAPSriety of tools have been developed for the benefit of the disciplines of
element, systems and network management. They can be categorised
by the functional area they target. Diagnostic utilities and tools for
discovering and managing the configuration of systems and networks

213

Chapter 6. Architecture

ensure that the infrastructure is correctly configured. Benchmark-
ing and auditing applications, as well as utilities for enforcement
of quotas, and for usage accounting help control the performance
and usage of the services provided by an IT organisation, as well as
deliver a foundation for planning ahead.

Professional management tools are often fused into integrated ma-Tool suites

nagement applications that attempt to cover a great number of as-
pect of a management discipline. Some are made available as “ma-
nagement platforms”, intended to be constructed by selecting inter-
operable modules to form a management system according to the IT
organisation’s needs (HP’s OpenView and IBM’s Tivoli constitute
examples of such management application suites). Naturally, such
application suites are not customised to the exact needs of the or-
ganisation that will employ them. Instead, they offer a selection of
general-purpose functions that are useful in most environments.

In most organisations, there are specific management tasks that needHeterogeneity
and change to be supported in a highly specialised manner—in dependence of the

particularities of the IT organisation. This requirement is fulfilled
by creating “home-grown” utilities. In addition, given the cost of
off-shelf management utilities, and the effort employed to evaluate
management utilities, many managers take a pragmatic approach to
tool choice. Tool sets vary, as some tools are no-longer supported,
and others offer new, desirable functions. Such changes in the tools
set add to the heterogeneity already present in a typical enterprise
setting.

As the case may be, most IT organisations employ a diversity ofFunctional view

tools to cope with the management of their infrastructure. To allow
process-driven automation of management tasks, the use of these
tools must be embedded in the specifications of operational IT ma-
nagement process. This integration must take into account the vari-
ance in interfaces, capabilities and data formats.

6.2.6. Abstraction layers

In a way, management is the art of abstraction. Only certain details
of resources, systems, networks, and services are relevant where their
management is concerned. In order to contain complexity and scale,
various approaches have been described. A common concern is the
creation of models, information bases and software that provide an

214

6.3. Interoperation

abstract view of the concrete object of management.

Thus, it is most probable that in a given IT organisation, devices
will be in place that create simplified manageable views on its in-
frastructure and its services. The functional component entitled
“Abstraction layers” takes this into account. This is appropriate in
that a number of other architectural building block may rely on, or
profit from, the existence of such devices. Obvious examples include
monitoring facilities, as well as management utilities.

6.3. Interoperation

After having described the necessary components in the previous
section, this section focuses on the interaction between these com-
ponents along the life-cycle of management specification and imple-
mentation.

Monitoring

Policy decision point

Aggregator

Translation engine Process repository

Infrastructure

 Process support tools
Message bus

Policy repository

Management tools

Abstraction layers

Process formalism

Process modelling tool

Roles, infrastructure,...

Management
databases

PEP

19 17

PEP

15

PEP

16
PEP

13

11

1 2

34
5

6

7

8

9
10 12

14

18

20

21

Figure 6.3.: Interactions between functional building blocks

6.3.1. Fundamental interactions

The points of interaction in the functional architecture are indicated
by numbers in Figure 6.3. A number is placed between two func-
tional building blocks that interact. In general, the numbers’ se-
quence follows that of the interactions. This does not apply in every

215

Chapter 6. Architecture

case, however, and should only be considered to be a coarse indica-
tion. In the following, the individual interactions within the archi-
tecture are described in the sequence of their respective number.

1 The modelling tool must be able to issue process specification
in a representation formalism that is acceptable to the trans-
lation engine. This function may be built-in, or it may be
provided by a library or translation utility.

2 To incorporate information captured in management databases,
the modelling tool needs to access these databases. Optionally,
repositories may push notifications of changes in the manage-
ment information base to a modelling session

3 Optional. A finished process model needs to be introduced
into the process repository. This can be performed by the
modelling tool itself, or by a separate utility. In the former
case, the modelling tool needs to collaborate with the process
repository; in particular, the formalism employed to represent
the process specification within the modelling tool must be
equal, or translatable to, the one employed within the process
repository.

4 Optional. Translation of a process specification may be per-
formed after the modelling phase is complete. As an effort
towards an integrated process development and maintenance
system, the modelling tools should be able to initiate the trans-
lation procedure. Alternatively, the translation can be initi-
ated manually.

If errors (e.g. syntactic faults) are encountered in the process
specification, the translator should be able to present a notifi-
cation of the errors to the modelling tool, in order to aid the
process designer in improving the process specification.

5 To perform the translation from process specification to the
target policy set, the translation engine needs to access the
input process specification stored in the process repository.

6 The primary result output by the translation engine is the
set of policies corresponding to the input process specification.
The translator should be able to deposit the generated poli-
cies in the policy repository, or store them in a corresponding
facility.

216

6.3. Interoperation

7 The translation engine analyses data flow in the process and
generates specifications for aggregation of events. To effec-
tively enable the event-based data flow, the translator needs
to make available these specifications to the aggregator com-
ponent.

8 In response to the aggregation specification provided by the
translator, the aggregator component configures the compo-
nents that provide the monitoring function.

9 To initiate the execution phase of the process life-cycle, the
PDP reads the policies stored in the policy repository. In the
case of a distributed policy architecture, all participating PDPs
need to access the policy repository.

10 Under the circumstances specified in the data flow specification
produced by the translator, the aggregator function transmits
an information packet (rich event) to the message bus.

11 Upon receipt of an event, the PDP selects relevant policies,
and evaluates them. In particular, the condition clauses of
policies are evaluated. For this purpose, the PDP accesses the
available management information repositories (e.g. directory
services or models).

12 The PDP may decide to execute the management action(s)
specified in a policy rule whose the target is among the process
support tools. In this case, the PDP must access the interfaces
of the tool in question in order to initiate execution of the
action.

13 A policy action to be executed may target low-level manage-
ment tools. In this case, the PDP must invoke the correspond-
ing tool in order to effect the execution of the action.

14 Process support tools may rely on technical, low-level manage-
ment tools for some of their functions, in order to perform
actions that directly influence the infrastructure. If the PDP
initiates an aforementioned function on a process support tool,
that tool must be able to invoke the management tool it relies
on, in order to effectively complete the function requested by
the PDP.

15 To effectively perform their function, management tools may
need to access the management information repositories.

217

Chapter 6. Architecture

16 Management tools access the abstraction layer that provides a
management view of the infrastructure.

17 Optional. The management databases update their informa-
tion to reflect the state of the infrastructure (e.g. by using
discovery functions).

18 The abstraction layer represents the infrastructure. Thus, it
must be able to represent current infrastructure data, as well
as manipulate its state.

19 The components realising the monitoring function access the
infrastructure.

20 The monitoring components access the abstraction layer.

21 The monitoring function transmits events.

• A policy execution point issues a notification when an action
completes.

The interactions describe above suggest a number of mandatory in-
terfaces that allow the functional building blocks to interoperate. In
addition, some of the interactions rely on common data formats to
allow communication between the architectural components.

6.4. Summary and discussion

This chapter has concerned itself with the functional components
necessary to realise the management process implementation ap-
proach presented in this work. A number of functions were identified
and described, along the life-cycle of management processes. Their
specific duties and interactions were subsequently described.

The life-cycle of a management process can be broken down into twoProcess
life-cycle parts. The first, the initial workflow, is responsible for the creation

and first-hand refinement of a process into a detailed, operational
process specification. The complete life-cycle contains a number of
additional phases that are specific to this work. It encompasses
the complete process management workflow, starting with the ini-
tial workflow part, taking into account implementation, execution
and change phases, and finishing with the retirement of a process
specification. A number of suggestions are made with respect to

218

6.4. Summary and discussion

procedures applicable in some of the life-cycle phases, notably the
discussion regarding change in process specification.

The life-cycle description provides a roadmap for the introduction,
use and decommission of a process specification. It was specified to
be independent of specific languages, and, wherever possible, unen-
cumbered by technological or operational assumptions.

To project the management process life-cycle onto a functional frame- Functional
building blockswork, a number of functional building blocks have been organised

into an architecture, and their duties during the life-cycle have been
specified. Several known building blocks, originating both in policy-
based and in process-oriented management have been integrated into
the functional architecture.Other functional components are instru-
mental to the approach developed in this work, though they may
be identified as general-purpose building blocks. Others, again, are
direct products of this work.

To complement the enumeration of required functional entities, the Interactions

interaction sequences between the architectural building blocks have
been described. The interactions, naturally, follow the coarse path
indicated by the management life-cycle. However, they pertain to
pairs of functional components and can therefore be described in
more detail than the generic process life-cycle. In particular, in-
teraction points between two components can be identified, along
with the direction of a transaction (i.e. which component in a pair
delivers information to its counterpart). In a concrete embodiment
of the functional architecture, its interactions may differ from those
described in this chapter both in granularity and in sequence.

Effective interactions between functional components require that, Interfaces

in real components, interfaces are made available that support a
given interaction. Based on the interaction sequences described be-
forehand, a collection of requirements regarding the interfaces of the
architectural components are derived.

An exemplary, concrete architecture based on structural, real compo- Concretisation
of the
architecture

nents is proposed in Chapter 7. That architecture fulfils the purpose
of the more abstract, functionally specified architecture presented in
this chapter. It becomes apparent, however, that the functional
separation of the components differs between the abstract and the
concrete architectures, though the basic functional building blocks
remain invariant.

219

Chapter 6. Architecture

220

Part III
Proof of Concept

221

Contents – Part III

7. Exemplary design 225
7.1. Components overview 227
7.2. SLPR – A minimal process language 231
7.3. The Process-aware Policy System 238
7.4. A facility for information aggregation 243
7.5. Summary . 247

8. Evaluation 249
8.1. Fulfilment of requirements 249
8.2. Issues and hazards 254
8.3. Applicability . 257

CONTENTS – PART III

224

Chapter 7
Exemplary design

P RIOR chapters of this work have detailed the ideas behind
process-to-policy translation. In particular, the procedure em-

ployed to derive suitable partitions of a process and match these to a
given set of patterns has been described in Chapter 4. A functional
outline for a management architecture suitable to implement an end-
to-end workflow based on the notion of process-to-policy translation
was developed in Chapter 6. The description of the architecture
was in terms of functional components, interactions between com-
ponents, and required interfaces between functional building blocks.

In contrast, this chapter shows how these ideas can be put into prac-
tice using existing software components. To achieve that purpose,
it concerns itself with two main topics: first, the composition of
software packages to form a management system, and second, the
detailed description of the components particular to this work, i.e.
those that contribute to the translation of process specifications to
management policy rules.

As becomes apparent from the examination of process languages con- Minimal
process
language

ducted in Section 4.1, a language suitable to represent IT manage-
ment processes must support a large number of different constructs.
Thus, industry strength process languages carry a great amount of
overhead, if used only for the sake of quick experimentation with
pattern-based translation with a focus on control flow. For this rea-
son, a minimal language, SLPR, has been devised, that conforms to
the source meta-model presented in Section 4.2 and offers a concise
syntax. Details of the SLPR language definition are found in Section
7.2.

For SLPR, a parser/interpreter has been implemented, that reads Process
decompositionand validates a process specification and creates a graph data struc-

ture suitable for further processing. Based on that generated data

225

Chapter 7. Exemplary design

structure, the substitution rules denoted in Section 4.3 were imple-
mented, thus allowing transition of a process specification into the
target meta-model described in Section 4.2.2.

The management approach proposed in this thesis relies on the exis-Process-aware
policy system tence of a policy architecture that is capable to execute operational

management policy. ProPoliS (see e.g. [DaKe 04]) is an implementa-
tion of such an architecture. It has been designed and implemented
with the purpose in mind to be used in a manner consistent with
the approach proposed in this work. Section 7.3 gives a summary
overview of the ProPoliS policy language, which was also included
in the examination of policy languages in Section 4.1.6, and the im-
plementation of the ProPoliS engine.

As discussed in Chapter 5, the realisation of data flow within a de-Information
aggregation composed process can be implemented by means of a message-based

scheme that makes available the correct pieces of information to ev-
ery process fragment. The Service Oriented Monitoring Architecture
(SMONA) has been devised to allow the aggregation of information
items of different origin into messages suitable for use in conjunction
with the policy-based process execution scheme that has been devel-
oped in this thesis. It has been designed compliant to the generic
architecture presented in Section 5.3, and it is presented in Section
7.4.

Real-life correspondents of the building blocks comprised by theConcrete
architecture afore-mentioned generic architecture (see Figure 6.2) are presented

in Section 7.1. Together, they frame a management system that uses
the afore-mentioned software components and uses the SLPR lan-
guage. It is notable that in some cases, the distinctions between func-
tional areas in these components are diffuse, compared to the generic
architecture described in Chapter 6. From a functional point of view,
though, the generic and concrete architectures are equivalent. Also,Flexible

configuration it is important to keep in mind, that production implementations
would use one of the industry standard process languages examined
in this work, as well as different and varied combinations of tools,
monitoring facilities, abstraction mechanisms and so on. Indeed, to
provide the flexibility to do so has been one of the major goals of
the approach developed in this thesis.

226

7.1. Components overview

7.1. Components overview

The components that constitute the design must conform to the
functional building blocks discussed in Chapter 6. The functions
attributed to those building blocks must be provided, however their
grouping within software components need not adhere strictly to the
grouping given in the description of the functional, generic building
blocks.

The design of a management system is highly dependent on the tools
and utilities already deployed. The management system depicted in
Figure 7.1 illustrates a possible phenotype of the functional archi-
tecture described in Chapter 6. The correspondence between the
components in the figure and their generic counterparts described in
Section 6.2 is indicated by the light outline surrounding them (com-
pare Figure 6.2). The numbered circles correspond to the interac-
tions between the functional building blocks described in Section 6.3
(compare Figure 6.3). While this section provides an overview of
the components, describing the minimalist example chosen for the
purpose of demonstration, but also discussing the selection of com-
ponents for production use. A more detailed view of the building
blocks in the focus of this work is given in Sections 7.2 through 7.4.

Process modelling tool, repository and translator

SLPR has been designed so that the role of the modelling tools can Minimal
solutionbe performed by a simple text editor. The grammar of the SLPR ex-

pressions is easily proofread, and the SLPR parser will flag syntactic
errors. Hence, the process repository can be realised as a simple text
file containing a process specification conforming to the SLPR gram-
mar. A production environment modelling facility should employ a
industry strength modelling formalism. Recently BPMN seems to
eclipse stereotyped UML in the domain of process modelling by pro-
viding similar expressive power in combination with an graphical set
of stereotypes; another reason, one may speculate, could lie in the
association of UML with “technical”, software engineering matters.
At the time of this writing about fifty BPMN tools were registered Tool selection

at the overview page maintained by the OMG. As our translation
mechanism relies on a formal (hence textual) process representation,
a tool should be chosen that includes suitable export functionality,
preferably the option to output an XPDL2 version of the process.

227

Chapter 7. Exemplary design

Grammar
SLPR

SNMP Agent

CosNotification

Policy set
(XML)

SLPR
Process

POSIX
Toolset

ProPoliS
Enforcer

OTRS
Ticketing System

OpenView
NodeManager

SMONA

engine

Translation

��

Process
modelling tool

OpenLDAP
Directory

NIS/YP
Directory

CIM
OM

1

2

PEP

PEP

18

20

10

22

3

PEP

PEP

6

7

19

8

4

12

21

16

9

5

14

13

11

15

17

Figure 7.1.: Components of the exemplary design

228

7.1. Components overview

The translation engine is an extension of the SLPR implementa- XML-based
grammarstion. Hence its operations are performed directly on the SLPR code

which can be read from a file or from standard input (see Section
7.2). As most process formalisms’ textual form or counterpart (see
3.2) are specified as XML grammars, the text file approach may be
enhanced by one of the “XML-capable” database systems that have
been introduced latterly.

Obviously, the translation engine is highly dependent on its input
language, i.e. the formal, textual process specification format pro-
vided by the modelling tool. Another issue is the realisation of the
pattern library. While it may be satisfactory to include it in the
translator implementation, as was done for the SLPR translator, a
more flexible implementation that allows the inclusion of new (opti-
mised) patterns may be desired.

The target policy language selected for production deployment must
take into account the available implementations, in addition to the
criteria listed in Section 4.1.5. In particular, the ability of the policy
enforcement facility to interface with existing management compo-
nents (tools, information systems etc) constitute important selection
criteria.

Policy architecture

The concept of management policy has emerged in academia, and it
has not been widely adopted in the industry (see Section 3.4). As
a consequence, only a small number of implementations of policy
architectures are available. Beside the ProPoliS, which is described
in more detail in Section 7.3, the most notable is the Ponder toolkit.
The toolkit (see [Marc 05]) has since been superseded by the Ponder
2 implementation, which appears to be under active development at
the time of this writing.

Though policy frameworks generally use textual policy languages for Policy
repositorythe the specification and (initial) input of rules, the repository may

be realised as a text file, or implemented by means of a directory
or DB service. Both alternatives satisfy the requirements of the
architecture: policies can easily be introduced into the repository
as a result of translation, and the policy engine (PDP) can readily
access them.

The most important function in the policy architecture is that of Policy decision
function

229

Chapter 7. Exemplary design

evaluating policies and deciding whether their action clauses are to
be executed. It is performed by a Policy Decision Point (see Section
3.4). As becomes apparent from the interactions indicated in Figures
6.3 and 7.1, it is the duty of the PDP to react to events, select
the applicable policy rules, resolve references to external (i.e. not
literally in the policy rules) information items, and finally execute
the actions included in a policy rule. In the ProPoliS framework,
these duties are performed by the enforcer/executor component pair.

The execution of actions requires interaction with the PEP, whichExecution

may be an infrastructure element, a management tool and so on.
This implies the ability to communicate with these management ob-
ject using their own interfaces. Alternatively, wrapper code must be
written to make accessible the MO interfaces as PEPs.

Monitoring, aggregation and data transport

The specification of data aggregation for the benefit of detached pro-
cess fragments is performed with the SISL, and it is realised by means
of the SMONA system described in Section 7.4. The SMONA moni-
toring system generates name-value pairs that contain the necessary
process data, according to the specification aligned to the informa-
tion items required for the execution of action (e.g. parameters), the
transmission of signals (e.g. passed through data) and the evaluation
of conditional expressions (e.g. values within the expressions).

The CosNotification standard CORBA service is employed by SMONA
to distribute the aggregated information; however alternatives such
as the Java Messaging Service or Web-based Messaging can be em-
ployed instead.

The transport of events across the borders of administrative domains
require adequate agreements with regard to authorisation and tech-
nical access (e.g. agreement on open firewall ports).

Management information, tool sets and abstraction
mechanisms

The management and process support tools shown in the diagram
constitute examples of common tools that may be available in a large
number of installations.

230

7.2. SLPR – A minimal process language

It is futile to attempt a representative selection of tools, or even
a comprehensive one. The tool set employed in any IT organisa-
tion is particular to that organisation, her management needs and
investment history.

A number of tool classes can be named, however, that are likely to Standard tools

be represented in many IT organisations. In the domain of process
support tools we can expect ticketing systems to be employed (e.g.
the Open Ticket Request System, an open source trouble ticket ap-
plication), workflow engines, as well as repositories for management
information, such as RDBMS-based solutions and directory services,
as well as specialised applications for management information (e.g.
a CIM Object Manager (CIMOM)).

In the domain of more technical management tools a plethora of
monitoring tools (e.g. cacti, ganglia) and integrated management ap-
plications (e.g. Nagios, HP OpenView, the Tivoli suite) is deployed,
along with site and platform specific tools like software package man-
agers, application management utilities and network management
tools.

The SNMP Agent component acts as a placeholder for more elab- Abstraction
layerorate infrastructure abstraction mechanisms. However, in most IT

organisations, this form of abstraction mechanism is the sole one
available. The message bus is realised by means of the CORBA
Notification Service (CosNotification) to maintain middleware com-
patibility to the SMONA implementation, as well as to the ProPoliS
components.

As a selection from the building blocks described in this section, a
number of applications in the focus of this work are described in
more detail in the following sections 7.2 through 7.4

7.2. SLPR – A minimal process language

In Section 4.2 we have established the meta-model that governs com-
mon process languages. Most of these languages are either graphical
or XML-based. Both of these features can be of benefit to a pro-
duction environment, either by providing an easy-to-use modelling
facility, or by facilitating interoperability. However, to demonstrate
the applicability of the concepts developed in this work, we require a

231

Chapter 7. Exemplary design

minimal, textual, easy-to-read formalism that adheres to the meta-
model shown in Figure 4.1.

The Silly Little Process Representation (SLPR) has been developed
for precisely this purpose. It supports the node types described
in aforementioned process meta-model and offers no expressions in
excess of it. The most important design criterion for the language is
simplicity, followed by a concise syntax that should be easy to read
and to edit.

SLPR is intended to be used as a “process sketching” language.
Process specifications can be sketched quickly, and the simple in-
ternal representation of the process allows for straight-forward post-
processing of the sketch (e.g., applying the substitution rules de-
scribed in Section 4.3). While SLPR could be enhanced to represent
processes in more detail, this is not a goal of the language. Several
real-life, standardised languages exist that can accomplish detailed
representation.

7.2.1. Language overview

The central idea is that processes are in essence directed graphs. In
consequence, SLPR’s main concepts are the node (graph vertex) and
the link (graph edge). Nodes always carry a unique name, while links
may carry a guard condition if pointing to conditional branch nodes.
There are five types of nodes1, listed in Table 7.1. The nodes can
be given arguments within parentheses. All nodes take a mandatory
argument which becomes the unique name of the node. For example,
an event called HostDown could be written as Ev(HostDown). A node
is created the first time its name is encountered. Every subsequent
instance of that name references the node.

Links between action are created by means of a link operator. The
link operator is denoted by the two-character string ->. Thus, to
link an action called NotifyAdmin to the event, we could write:
Ev(HostDown) -> Ac(NotifyAdmin).

The Pa and Ko nodes can take multiple arguments that denote prede-
cessor or follower nodes. These are differentiated between by means

1Note that the condition nodes are deliberately marked Ko (instead of Co, as
one might have expected). This is to ensure that the keyword cannot be
confused with an opening parenthesis, especially when sketching a process
definition by hand.

232

7.2. SLPR – A minimal process language

Token Name Description

Ac Action A process activity/action
Ev Event An event/message is expected
Si Signal An event/message is dispatched
Pa Parallelisation A parallelising or synchronisation node
Ko Condition A conditional branch or join

Table 7.1.: Node types in the SLPR

of the link operator. However, with arguments, one of the nodes the
operator will link together is the (enclosing) Pa or Ko node. Hence,
Ev(HostDown)->Pa(par1, ->Ac(NotifyAdmin),

->Ac(AutoFailover)) denotes an event, followed by two concur-
rent actions. In Ko-expressions, guard conditions can be specified by
prepending a bracketed string to the link operator, e.g.
Ko(decision1, [condition]->Ac(action1), ->Ac(action2)).

7.2.2. Grammar

After having explained the main features of the language informally,
the following specifies the formal grammar of the SLPR.

Process A process definition consists of at least a node. A node
may be linked to another by means of the link operator. Note that
processes may consist of several, disconnected graph partitions.

〈process〉::= (〈node〉 { 〈linkop〉 〈node〉 })

Node types Nodes may be simple (i.e. actions, events and signals)
or complex (i.e. parallelisation, branching and joining nodes). A
simple node consists of a prefix denoting its type and its name in
parenthesis. In contrast, a complex node may have several argu-
ments in addition to its name. These denote “inbound” nodes, i.e.
nodes that have a link pointing towards the complex node, or “out-
bound” nodes, i.e. nodes that are pointed to by a link originating
at the complex node in question.

233

Chapter 7. Exemplary design

〈node〉::= 〈simplenode〉 | 〈complexnode〉
〈simplenode〉::= 〈sprefix〉”(”〈name〉”)”
〈complexnode〉::= 〈cprefix〉”(”〈name〉{ ”,” 〈inbound〉 | 〈outbound〉 }

”)”

〈inbound〉::= 〈node〉〈linkop〉
〈outbound〉::= [”[”〈condition〉”]”]〈linkop〉〈node〉

Any mix and number of inbound and outbound nodes is legal within
a complex node’s arguments. Note that, syntax-wise, the “in” or
“out” bound characteristic is denoted by placing the link operator
before (meaning: the current complex node is origin of the link) the
argument in the outbound case. Conversely, in the inbound case, the
link operator is placed after the argument, meaning that the node
given in the argument points to the complex node.

The type (simple or complex) of the argument nodes is arbitrary.
Of course, any complex nodes given as arguments may contain argu-
ments of their own in addition to their name. Due to the uniqueness
of node names, it is legal to only give the name of a complex node
as an argument. The arguments of that complex node may be given
in another context.

Example:

Ev(HostDown)->Pa(par1, ->Ac(NotifyAdmin),
->Ko(FailoverAvailable))
Ko(FailoverAvailable, [yes]->Ac(AutoFailover),
[no]->Si(NoFailover))

Node prefixes Node types are designated by their prefixes, as shown
in Table 7.1. Only the Pa and Ko nodes are complex; all others are
simple nodes, accepting only a name.

〈sprefix〉::= ”Ac” | ”Si” | ”Ev”

〈cprefix〉::= ”Pa” | ”Ko”

〈linkop〉::= ”-¿”

Guard conditions Argument nodes in Ko-Expressions may carry
guard condition if they are outbound, i.e. following the Ko-node.
Such conditions may be truth constants or simple expressions. The
SLPR is not intended to model conditional expressions in detail.
Thus, the following part of the grammar is only useful for constrain-
ing the syntactic forms that may be used as expressions. Often,
process definitions tend to use natural language to express truth

234

7.2. SLPR – A minimal process language

values. In consequence, the words “yes” and “no” are accepted as
synonyms for “true” and “false”.

〈condition〉::= 〈booleanvalue〉 | 〈unaryOP〉〈value〉
| 〈value〉〈binOP〉〈value〉

〈booleanvalue〉::= ”true” | ”false” | ”yes” | ”no”

〈value〉::= 〈id〉 | 〈expression〉
〈unaryOP〉::= ”!”

〈binOP〉::= ”¡” | ”¿” | ”-” | ”+” | ”*” | ”/” | ”¿=” | ”¡=” |
”&&” | ”——” | ”=”

Comments C-style comment blocks, between “/*” and “*/”, are
accepted; nesting of such comments is considered an error. C++
style comments where “//” begin a comment that encompasses the
current line can also be included in the process definition. In addition
comments introduced with a “#” (shell-style) are accepted. The
C++ style, as well as the shell-style comments may be nested within
a C-style comment block.

Whitespace SLPR tries to be lenient with regard to the use of
whitespace. In principle, space and tabulator characters as well as
line breaks are accepted anywhere in the process definition. How-
ever, operators, truth constants and node prefixes must not contain
whitespace.

7.2.3. SLPR Example

The example introduced in Section 2.3 could be formulated in SLPR
as shown in Listing 7.1.

Listing 7.1: Example process in SLPR

2 Ev(UrgentPatch)->
Pa(synch1o,

4 ->Ac(QueueIncRec),
->Ac(QueryCMDB)

6)

8 Pa(synch1c,
Ac(QueueIncRec)->,

10 Ac(QueryCMDB)->
)

12 ->Ac(ClassifyInc)

235

Chapter 7. Exemplary design

14

Pa(synch2o,
16 Ac(ClassifyInc)->,

->Ac(NotifySD),
18 ->Ac(FileRfC)

)
20

Pa(synch2c,
22 Ac(NotifySD)->,

Ac(FileRfC)->
24)

26 ->Ko(TriggerStdAction,
->Ac(ReqIntervention),

28 [yes]->Ac(ExecStdChange)
)

30

Ac(ReqIntervention)->Ac(ManualHandling)
32

Ko(joinTriggerStdAction,
34 Ac(ManualHandling)->,

Ac(ExecStdChange)->,
36 ->Ac(PostImplReview)

)
38

Ko(PIRsuccess,
40 Ac(PostImplReview)->,

[yes]->Si(IncidentResolved),
42 ->Ac(Rollback)

)
44 Ac(Rollback)->Si(PatchFailed)

Note that the names of the process nodes are contractions of the ones
in the original example, with space characters removed. Line 31 is
an example of a previously created (in Line 27) node that is linked
to a “new” node. The lines 28 and 42 show the use of (simple)
truth expressions. Figure 7.2 shows a graphical rendering2 of the
process specification in Listing 7.1. Note the striking similarity to
the example shown in Figure 2.4.

Summary

The Silly Little Process Representation is a minimal, “toy” language,
designed to quickly outline a process using a simple syntax.The lan-
guage complies to the generic meta-model for processes which was
described previously in this work. The formal grammar described in
Section 7.2.2 has been implemented as a javacc-based parser that
generates a directed graph of the process nodes.

2The graph has only been edited by hand in order to fit it on the page.

236

7.2. SLPR – A minimal process language

Ko_TriggerStdAction

Ac_ReqIntervention

Ac_ExecStdChange

yes

Ac_ManualHandling

Ko_joinTriggerStdAction

Ac_PostImplReview

Ko_PIRsuccess

Si_IncidentResolved

yes

Ac_Rollback

Si_PatchFailed

Ev_UrgentPatch

Pa_synch1o

Ac_QueueIncRec Ac_QueryCMDB

Pa_synch1c

Ac_ClassifyInc

Pa_synch2o

Ac_NotifySD Ac_FileRfC

Pa_synch2c

Figure 7.2.: SLPR process
Graphical rendering of the SLPR process from Listing 7.1

237

Chapter 7. Exemplary design

The SLPR has been used as a base for the implementation of the
substitution rules for transformation between the two meta-models
(generic and target) that offer the foundation for process partitioning
and pattern matching.

7.3. The Process-aware Policy System

The ProPoliS was conceived as a tool for evaluating and enforcing
management policy rules. Its design takes into account the case of
policy rules generated from process specifications. The system con-
sists of four separate, distributed and replicable components that
interoperate to implement the policy decision and execution task.
In particular, the ProPoliS fulfils the functions required by the ar-
chitecture described in Chapter 6 with regard to the PDP/PEP and
policy repository building blocks. Incidentally, it has also been used
for research projects unrelated to process-oriented management.

7.3.1. Language

The ProPoliS policy language was designed with management policy
in mind, and as suggested by its name, for the purpose to be used
in the context of management processes [DaKe 04]. In addition,
it seemed appropriate to facilitate extensions to the language, in
order to accommodate future needs. The concepts included in the
language’s design reflect those intents.

Representation of policy rules, as well as all of their parts, is achieved
by means of a class hierarchy rooted at the abstract class Policy.
Any policy rule consists of component sets that contain policy com-
ponents of one specific type, e.g. the action set of a policy rule will
contain the action specifications pertaining to that rule. Figure 7.3
shows a class diagram of the package that represents policy rules
and their components.

Modularity and references Policy components can be defined in
the local context of a rule, or in a global context. Component sets
can thus contain actual component specifications, or references to
components that have been defined in the global context. By means
of this modular composition of rules, component values can be sep-
arated from the composition (and thus the intent) of a policy rule.

238

7.3. The Process-aware Policy System

...
pr

op
ol

is
.p

ol
ic

y

P
ol

ic
y

<<
ab

st
ra

ct
>>P

ol
ic

yR
ul

e

G
ro

up

ja
va

.u
til

.V
ec

to
r

R
ol

e

P
ol

ic
yS

ub
je

ct S
ub

je
ct

E
nt

ity
P

ol
ic

yT
ar

ge
t Ta

rg
et

P
ol

ic
yE

ve
nt

E
ve

nt

P
ol

ic
yA

ct
io

n A
ct

io
n

G
en

er
ic

A
ct

io
n

P
ol

ic
yC

on
di

tio
n

N
or

m
al

Fo
rm

C
la

us
e

P
re

di
ca

te
<<

ab
st

ra
ct

>>
P

ol
ic

yD
es

cr
ip

to
r

P
ar

am
et

er
S

et

P
ar

am
et

er
Li

te
ra

l

A
ttr

ib
ut

eV
al

ue

V
al

ue
Fa

ct
or

y

V
al

ue
<<

in
te

rfa
ce

>>
U

na
ry

P
re

di
ca

te

B
in

ar
yP

re
di

ca
te

C
om

po
ne

nt
S

et
<<

in
te

rfa
ce

>> Fu
nc

tio
nV

al
ue

P
ol

ic
yG

ro
up

<<implements>>

<<
im

pl
em

en
ts

>>

Figure 7.3.: Classes representing ProPoliS policy components

239

Chapter 7. Exemplary design

For example, an entity definition can be varied with regard to formLocal and
global
components

or content (as a consequence of change to the database providing
such definition, or as a consequence of replacing an infrastructure
element) without concerning the policy rule itself. The chief bene-
fit, however, is that components need only be defined once, in the
ideal case. Obviously, the use of references demands the presence
of an unique identifier for every component, and that the referential
integrity of rules be maintained.

Management information The ProPoliS language provides support
for a variety of management information items pertaining to the
management of the policies themselves. In particular, every rulePolicy

descriptor carries a descriptor component that contains information about the
creation—or generation—of the rule. Comments can be added to
every component as well as every rule. To allow retracing of policiesTagging

to their origin process partition, every component can be tagged
with the identifier of the process or fragment that it was generated
from. In the current version of the grammar, these tags are free
form, though a more rigid addressing scheme could be employed.

Grammar The ProPoliS language is specified by an XML Schema
[XMLS-0, XMLS-1, XMLS-2] grammar. The grammar definition is
given in Appendix 10.

7.3.2. Components

The ProPoliS implementation consists of four components written
in the Java programming language and distributed by means of a
CORBA [OMG 04-03-12] Object Request Broker (ORB) library. The
components are outlined in Figure 7.4.

Repository The policy repository is a standalone component that
manages the policy set available at any one time. It offers an inter-
face to a componentised storage service; for the time being, only a
FileStorage version is implemented, i.e. the input policy rules are
stored in their XML form in a text file. The repository component
will read, parse and verify the rule set on request.

Successfully parsed and active (i.e. marked as enabled) policies are
made available to the enforcer component. Taking into account the

240

7.3. The Process-aware Policy System

FileStorage

XMLParser PolicyFactory

Policy

File

PolicyStorage PolicyManager

ProPoliS GUI

Executor

Evaluator

EventHandler

Constraint

notify

Event

eval

Action
exec

notify

expect

activate

parse

re
gi

st
er

cr
ea

te

read/write

PolicyEnforcer

stream

PolicyRepository

Figure 7.4.: Basic components of the ProPoliS

modularity aspects discussed beforehand in this section, beside pol-
icy rules a number of unattached components may be held in the
repository. In consequence, a snapshot of the repository can be ex-
pected to exhibit the structure shown in the instance diagram in
Figure 7.5. From the defined set of rules and components some are
assembled into policies, some are defined in-line and therefore per-
tain to the rule where they were defined, and some are neither.

Enforcer The enforcer component is responsible for selecting appli-
cable policy rules upon receipt of an event, deciding which of these
are to be executed, and executing the actual actions within those
rules. To fulfil these tasks, the Enforcer must detect the receipt of
an event, select the policies to be triggered on that event, and eval-
uate the conditional expressions of that rule set. For all conditions
evaluated to true, the actions given in the corresponding rules are
executed on the target objects specified within the rules.

The actions executed on target components are executed by means of Dynamic call
compositiondynamically composed calls. That means that all parameter values

other than constants are determined immediately before the call.
Also, domain and role values are re-read to determine the group

241

Chapter 7. Exemplary design

:Repository

:p1 Policy

procs[] = {proc1}
priority = 0
Id = 32

:e1 Entity

:ev2 Event

:e2 Entity

:a5 Action

:c2 Condition

:e3 Entity

:ev1 Event

:c1 Condition

:e4 Entity

policy parts
Local

policy parts
Referenced

policy parts
Unused

policy parts
Local

:a1 Action

type = void
params[] = { }
name = action1

:p2 Policy

procs[]={proc17}
priority = 0
Id = 42

<<subject>>

<<target>>

<<target>>

Figure 7.5.: Snapshot of policy repository

of targets that the action is to be executed upon. The CORBA
Dynamic Invocation Interface (DII) is employed to compose the calls
from information present in the policy representation.

The condition clause of a policy rule must be evaluated to true inEvaluation of
conditions order for the policy action to be executed. As indicated in Sec-

tion 5.1.1, the values used within conditional expressions may be
attribute or function values, to be retrieved when needed. Thus,
to effectively evaluate conditions, additional interaction with MOs
must be performed.

In summary, the evaluation and execution workflow follows the strat-Evaluation and
execution egy of sifting through the policies that are to be executed as a result

of the reception of an event. As suggested in the overview of the En-
forcer component in Figure 7.4 an event received by an event handler
allows the selection of the policies declared to trigger on that event.
This selection is made available to Evaluator instances that evalu-
ate the conditions given for any single of these policies. For every
evaluation that fails (i.e. yields false), the corresponding policy is
discarded. The remaining set of policies is cleared for execution, and
it is assigned to Executor instances that invoke the actions specified

242

7.4. A facility for information aggregation

in the policy rules.

The CORBA-based calls presently supported require a correspond- Accommodat-
ing additional
technologies

ing interface on the target side (i.e. on the MOs to be affected by
policy actions). The enforcer component can be extended to support
different communications middleware, such as the Simple Object Ac-
cess Protocol (SOAP)[LaMi 07, MML+ 07, KHN+ 07] for WS-based
targets, and protocols, such as the SNMP [CFSD 90] for targets pos-
sessing an Internet management agent.

Manager The manager component coordinates the interactions be-
tween the ProPoliS components. It determines the state of the
ProPoliS components (i.e. if they are available and operational),
relays user commands from the GUI as needed and tracks the evalu-
ation and execution of policies by the enforcer component. Changes Connection to

GUIin state, as well as successful or failed execution of policy actions
are echoed to the GUI, to be displayed to the user. The manager is Changes to

repositoryresponsible for registering changes to the repository and communi-
cating them to the enforcer component, whether these changes are
performed by hand or by elements of an architecture as described in
Section 7.1.

GUI Front-end The ProPoliS GUI, as shown in Figure 7.6, provides
a user view onto the state of the policy system. Policy rules, or
groups of rules, can be (de)activated by an operator (top, left part
of the screen-shot). After policies are be added to or removed from
the repository, a reload of the policy sources can be initiated by the
operator (top, right). The progress is shown in the bottom part,
detailing which policy was triggered by which event, and whether
its action(s) were in fact executed or not. The centre part of the
GUI provides a browser for the policy rules and policy components
which are available in the repository.

7.4. A facility for information aggregation

IT management processes require information from a variety of dif-
ferent sources. They include management models, management databases
(e.g. CMDB, CRM-databases), storage for process state, as well as
sources residing in the IT infrastructure. Furthermore, the informa-
tion needed by a process activity may constitute a mix of information

243

Chapter 7. Exemplary design

Figure 7.6.: Screen-shot of the ProPoliS GUI front-end

244

7.4. A facility for information aggregation

Technology specific interfaces

Vendor specific interfaces

Unified interface

Service monitoring interface

Application

Configurator

Adapter

cacti

Adapter

Nagios

Composer

Integration/
configuration

layer

layer
Application

layer

Platform
independent

Platform

layer
specific

Resource
layer

. . .
configuration
workflowdata flow

Legend

Adapter

HP−OV

Adapter

ODBC

event
delivery

Service Attribute
specification

configuration
request

Rich Event
specification

Rich Event
delivery

callback

configuration

... ...
components

Infrastructure

Management

AdapterRichEvent Extension

SISL

Figure 7.7.: Architecture for service data composition

from many such sources. For example , a comparison between the Management
information
comes from
many different
sources.

service level actually received by a customer with the value specified
in a Service Level Agreement (SLA) requires information about the
customer, the service, the SLA, as well as monitoring data pertaining
to the service.

The latter class of information sources is addressed by the lay- The Service
Monitoring
Architecture

ered architecture presented in this section. It was designed for
generic aggregation of monitoring data into useful management in-
formation [DaSa 05]. One primary objective of the architecture is
to facilitate service-oriented management efforts [DgS 07, Sail 07,
DHHS 06]. The basic data acquisition and aggregation functional-
ity will suffice for the majority of of the data flow requirements of
this work.

245

Chapter 7. Exemplary design

A basic requirement to an architecture supporting aggregation of
information is to support reuse of existing data sources, such as
already deployed management tools. Obviously, such data will be
delivered in different formats. To interact with such tools, different
APIs will have to be used, e.g. for requesting data or configuring
monitoring options. Therefore, the consistent specification noted in
SISL needs to be broken down into different “languages” according
to whatever tools are used as data sources. In addition, the data
received from all sources must be converted into a common syntax
that can be used to describe the service.

This layer encompasses infrastructure components, applications andThe resource
layer other sources of “raw” data. The data available at this layer is

specific to each resource/component, though some standardised in-
terfaces and data formats may be available.

Resources are often managed by means of more or less specialisedThe platform
specific layer management tools (including scripts and “homemade” tools) that

are found in the platform specific layer, they provide information
pertaining to the infrastructure. Typically, information extracted
from the resource layer will be processed and made available in a
variety of formats.

To overcome the heterogeneity in the data sources at the platformPlatform
independent
layer

independent level, adapters provide unification of the data format
and basic configuration options. Every adapter needs to be capable
of configuring the underlying resource (or tool) and of extracting the
required data. The adapters present a common interface towards the
higher layers.

The adapters’ main task is to harvest the data and perform pre-
processing as required by applicable function statements and de-
liver it in a common format to the RichEvent Composer component.
Delivery of aggregated data is governed by conditions that pertain
to temporal aspects, the method of delivery (push/pull) as well as
conditions regarding other events in the data gathering process. Ex-
amples include the number of samples collected and thresholds for
collected values.

To produce the service information required, as defined e.g. in a SISLIntegration and
configuration
layer

document, adapters may need to be selected and configured accord-
ingly. The task of managing the adapters, including deployment,
activation and configuration, is performed by the Adapter Configura-
tor component. The configurator uses the resource declarations to

246

7.5. Summary

determine the appropriate adapters, instantiate and configure these
according to the interval, function and source clauses (see 10).

The RichEvent Composer performs the composition of data accord-
ing to SISL specification. It gathers the (pre-processed) data from
all adapters related to a service attribute and produces data records
in accordance to aggregation specifications. The notification

clauses determine when data records are compiled and dispatched.
The resulting records (called RichEvents) can be made available to a
management application (indicated by the dashed line in Figure 7.7)
and/or relayed to other components (as . In practice a middleware
bus is used for notification transport.

The SMONA is extensible by means of downstream components, as Extensions

indicated by the extension component in the diagram. A number of
ongoing efforts in the domain of service and grid management sup-
ply specialised components in this manner, that rely on the overall
SMONA framework but perform functions specific to the intent of
the aforementioned efforts. For the purposes of this work, however,
such extensions are not necessary; the basic SMONA framework
components do suffice.

7.5. Summary

This chapter has reviewed a possible realisation of the architecture
presented in Chapter 6 with a focus on components specific to the
management approach presented in this work. The components de-
veloped in the context of this work have been examined in detail.

The ProPoliS policy language examined in Section 4.1.6 has been Developed
componentsfound suitable as a target language for the realisation of process-to-

policy translation. In this chapter, the ProPoliS implementation has
been reviewed in the context of using it as a means for automated,
policy-based execution of management processes.

A simplistic process language, SLPR, has been developed as a re-
search tool. Based on the implementation of its parser, the mech-
anisms for process decomposition and translation presented in Sec-
tion 4 have been discussed. It is emphasised that SLPR, being a
demonstration tool, should be replaced with one of the process rep-
resentation formalisms discussed in Section 4.1 when aiming for a
production implementation.

247

Chapter 7. Exemplary design

Finally, a monitoring and aggregation framework, SMONA, that cor-
responds to the generic architecture for an information processing
facility described in Section 5.3 has been presented.

As already noted, these components together with the remainingExpositive
character ones depicted in Figure 7.1, assemble an illustrative management

architecture. Its purpose is to demonstrate how an end-to-end real-
isation of the approach proposed in this work—beginning with the
specification of an IT management process and concluding with the
execution of management policies generated from that specification.
A real-life implementation of the approach would substitute some ofDependence on

legacy the components described in this chapter, as recommended in Sec-
tion 7.1. One of the core goals of the approach is to reduce the
amount of change to the management infrastructure when introduc-
ing or extending process-oriented management objectives. There-
fore, it is natural that the shape of any production deployment is
highly dependent on the existing tool set.

The illustration of an management architecture design in this chapterEvaluation

concludes the development of the approach. As it has been developed
in accordance to a set of requirements put forth in the beginning of
this text (Section 2.4), we have now the opportunity to examine the
results according to those same criteria in the following Chapter 8.

248

Chapter 8
Evaluation

T HE approach presented in this thesis may be advocated on the
grounds that the combination of process-oriented IT manage-

ment and a rising degree of inter-domain collaboration makes neces-
sary a flexible facility for process realisation. This work targets the
domain of IT management, and it must as such be judged according
to the benefits that can be reaped from its implementation. Con-
versely, the impact of its shortcomings must be estimated to allow
comparison with existing or future alternative approaches.

8.1. Fulfilment of requirements

The requirements described in Section 2.4 constitute the touchstone
for the approach developed in this work. Their degree of fulfilment,
summarised in Table 8.1 (page 251), is discussed in the following.
The rightmost column of the table indicates if, and how well, a
requirement was satisfied. A checkmark “

√
” indicates satisfactory

fulfilment of the requirement, a light checkmark in parentheses “(
√

)”
indicates partial success in fulfilling the requirement, while a cross
“×” indicates failure. The weights assigned to single requirements
have been retained for reference in the table. As in Table 2.1, the
weight increases with the number of stars.

As indicated by the results column of the table, the majority of
the important (three and two stars) requirement are satisfied by
the approach presented in this work. In particular, the constraints
imposed on the approach by the critical set of requirements, have
not been violated.

Requirements 1 and 2 are central to the translation of process
specifications to policy rules. The pattern-based approach ensures
that for a process fragment there is a corresponding set of parametrised

249

Chapter 8. Evaluation

policy rules that corresponds exactly to the fragment in question.
The results of policy-based process execution are the same as when
a process would be executed by other means. In fact, even the con-
trol flow path will be predictable, except in those process parts which
deliberately specify parallelism.

The robustness of process execution (requirement 3) is in part de-
pendent on the implementation of the architectural components that
realise the management system. Failures in components may result
in suspended flow of data and/or triggering events. Certainly, such
issues can be dealt with at the implementation level, however the
introduction of this dependency renders the fulfilment of this re-
quirement partial only.

The applicability criteria 4 , 5 and 6 are satisfied due to theApplicability

selection of management policy for the realisation of process spec-
ifications. By distributing the actions within the process over a
number of policy rules, different infrastructure and tools set pecu-
liarities (e.g. interfaces) can be catered for. Support for arbitrary
process specifications is provided 7 , as long as the specification
is syntactically correct, and the formalism used corresponds to the
meta-model described in Section 4.2, as stipulated. Experimenting
with the translation method suggests that any process specification
can be decomposed into suitable fragments, and hence every process
part will be accounted for. In addition, a extension method for the
pattern catalogue has been described, which allows the incorpora-
tion of new patterns, to handle particularly recalcitrant fragments.
However, a formal proof of totality is owing, so that requirement 8

must be considered as partially satisfied. The organisational struc-
ture of an IT organisation, or the organisation(s) that it caters for,
do not influence the approach directly. Therefore, requirement 9

can be considered to be fulfilled.

Process specifications are translated and executed separately, henceScalability

the approach is not limited by the number of specifications to be han-
dled (req. 10), nor by the number of concurrent process instances

(req. 11), or services (req. 12). A major benefit of policy-based
management is its scalability; in our context, this benefit pays off
in terms of scalability regarding infrastructure size and complexity
(req. 13).

Changes in services, contracts (req. 14), infrastructure (req. 15),Flexible
application of
changes

the tools employed to manage the infrastructure or to provide pro-

250

8.1. Fulfilment of requirements

Nr. Requirement title W
ei
gh
t

R
es
ul

t

1 Compliance to process specification. ???
√

2 Deterministic results. ???
√

3 Robustness. ?? (
√

)
4 Applicability to any service. ??

√

5 Applicability to any infrastructure. ??
√

6 Applicability to any tool set. ??
√

7 Applicability to any process specification. ???
√

8 Applicability to all parts of a process specifica-
tion.

? (
√

)

9 Applicability to any organisational structure. ?
√

10 Scalability to any number of process specifica-
tions.

??
√

11 Scalability to any number of process instances. ??
√

12 Scalability to any number of services. ??
√

13 Scalability to any size of infrastructure. ??
√

14 Changes in services and contracts. ??
√

15 Changes in infrastructure. ???
√

16 Changes in tool set. ???
√

17 Changes in process specification. ???
√

18 Graceful retirement of process specification. ?? (
√

)
19 Inter-domain process execution. ?? (

√
)

20 Resilience to changes of process spec. in remote
domain.

? ×

21 Scalability to any number of inter-domain de-
pendencies.

? (
√

)

22 Sovereignty of domain owner. ???
√

23 Cost-efficient process realisation. ???
√

24 Process execution without expert involvement. ??
√

25 Reuse of existing/deployed process support
tools.

??
√

26 Reuse of existing/deployed management tools. ??
√

27 Automation of inter-tool procedures. ? (
√

)
28 Automation of management actions on the in-

frastructure.
??

√

29 Accommodation of manual procedures. ???
√

30 Implementation/deployment without manual
steps.

?? (
√

)

31 Independence of process formalism. ??
√

32 Independence of reference process frameworks. ??
√

33 Independence of management inform. reposi-
tory type.

??
√

34 Independence of middleware and protocols. ??
√

Table 8.1.: Fulfilment of requirements 251

Chapter 8. Evaluation

cess support can be accommodated (req. 16) by altering the de-
tailed (input) process specification accordingly, and re-generating
the policy set that realises (the corresponding part of) the process.
The same argument applies when the process specification is altered
for reasons other than the execution of a change in the management
environment (req. 17). Retirement of a process is in itself a type
of change to the process specification(s). A number of provisions
have been discussed in this work, that allow the existence of retired
(but not yet terminated) process instances. While practicable, the
effectiveness of these measures, and the issues that may arise from
their use have not been examined in detail; therefore, we consider
requirement 18 to be only partially fulfilled.

Inter-domain management presupposes agreements regarding the con-
trol and data flow between domains. In simple terms, managers in
two cooperating domains must agree on the actions that may be re-
quested by one domain to be performed in the other. In addition,
they must agree on what information is to be shared or exchanged.
Thus, cooperative execution of management processes implies agree-
ments on which parts of a process is to be executed in a domain (see
e.g. the ASP scenario in Section 2.1) and which process-relevant
information set is to pass domain borders. The approach presented
in this work allows the separation of process fragments on a per-
domain basis, and the message-based mechanism for process data
flow facilitates a narrow specification of the format and content of
the information items intended to be transmitted between domains.
Hence, domain owners maintain their sovereignty—fulfilling require-Inter-domain

management ment 22 —while at the same time, the execution of processes is
possible. However, execution of processes across domains in an au-
tomated manner requires the adoption of the same (or functionally
equivalent) management facilities in all participating domains. This
condition may prove prohibitive with short-term partners and spe-
cialised subproviders, thus reducing the value of the approach regard-
ing this requirement; the partial fulfilment noted for requirement
19 reflects that constrained option. Another inter-domain issue is

the introduction of changes in remote domains’ process specifica-
tions. The approach does not in it current form provide the means
to detect and handle this situations, thus failing requirement 20 .
Likewise, interdependencies of services, networks etc. across domain
borders may change without explicit notice (req. 21). Yet, ma-
nagement procedures must adapt to these changes in environment.
While the policy-based approach employed in this work allows for

252

8.1. Fulfilment of requirements

flexible adaptation, it does not offer automation support for detec-
tion and handling. Since the frequency of change may correlate to
the number of inter-domain dependencies, this requirement must be
deemed to be only partially fulfilled.

The tools commissioned for technical as well as process management Reuse of
resourcesconstitute an investment of the IT organisation. One of the princi-

pal goals of the approach developed in this work is the protection
of that investment. This goal is achieved by the flexible enactment
of management processes: process specifications can be designed in
dependence of the available tool set. The realisation of the result-
ing specifications by means of policy rules can accommodate any
tool set, as long as the policy architecture possesses the appropriate
(technology-dependent) enforcement mechanism. This holds true for
management tools (fulfilling req. 26), as well as for process sup-

port applications (fulfilling req. 25) and information repositories.

Interactions between tools (req. 27) can only be automated if ad-
ditional “glue” software is available to translate between potentially
different data formats and protocols. Such utilities may be available
in some environments (see e.g. the gateways between accounting,
charging and billing applications described in [Radi 02d]).

Automation of management actions executed on the infrastructure Automation
and economy
of labour

can be handled directly from within a process, as long as appro-
priate management tools are available. As the execution of itera-
tive manual infrastructure management actions is prohibitive in all
but the smallest-scale environments, the presence of such tools can
be relied upon (fulfilling req. 28). The approach encourages the
creation of detailed process specification, in order to maximise the
amount of management performed automatically. Expert knowledge
is thus supposed to be incorporated in the process specification. In
all process parts covered by this conservation of know-how, the in-
volvement of specialists in the actual execution of process instances
is no longer necessary (fulfilling req. 24). In other cases, man-
ager decisions must be made during the course of a management
process. Any communication or collaboration tool (e.g. common
Internet email utilities, or the dialog facilities of a workflow manage-
ment system) can be employed to request and collect the decisions
or the input data (req. 29). As the translation of process spec-
ifications can be performed in an automated manner, most of the
implementation and deployment effort for a process can be put into
practice without manual steps. However, a number of manual steps

253

Chapter 8. Evaluation

(please see Section 4.4) must be taken, in order to ensure the in-
tegrity of the translated process, and thereby to secure the desired
result. Therefore, requirement 30 is only partially fulfilled.

Management cost is increasingly dependent on labour cost. The
cost-efficient realisation of processes (req. 23) can therefore be
deemed to be achieved, given the amount of automation that may
be introduced by means of the approach presented. In addition,
the retainment of investments in tools complements the controlled
commitment of expert time during the process design phase.

A number of process formalisms have been examined in Section 4.1.Dependence on
specific
technology

Some of these were found suitable for use in the context of the ap-
proach, while some failed the criteria employed in the examination.
Although the approach relies on the presence of some capabilities
in process languages, no elements specific to any of the formalisms
examined are indispensable (req. 31). Process frameworks that
provide reference process definitions are taken into account, but do
not limit the scope of this work (req. 32). The same is valid for
repositories for management information, as well as processes and
policies(req. 33), communications middleware and management

protocols (req. 34). While their functions are necessary, the capa-
bilities of specific products are not relied upon.

8.2. Issues and hazards

Disregarding the formal fulfilment of the scenario-derived require-
ments, the approach presented in this work cannot be evaluated
isolated from other common management issues. This section dis-
cusses the risks that can ensue from the application of the concepts
developed in this work, as well as the areas in which further study
is necessary before application is effectively possible.

Depending on its concrete implementation, the approach presented
in this work may carry hazards originating in the proposed architec-
ture, the technology selected for its realisation, as well as assump-
tions made regarding the process modelling approach.

Policy-based management is susceptible to policy conflicts, which,Policy conflicts

in the case of management policy manifest similarly to the multiple-
manager problem: several actions that pursue different goals may
be performed concurrently on the same targets (e.g. infrastructure

254

8.2. Issues and hazards

elements). Highly distributed concurrent execution makes conflicts
difficult to detect and handle, even in a single-PDP environment.
Distributed PDP schemes aggravate the issue of policy conflicts.

The issue of policy goals is not a new one, and several approaches
can be employed in order to marginalise or to eliminate this issue
(see Section 3.4.2). However, the additional effort implied by these
solutions must be weighed against the risk of conflicts actually hap-
pening: processes are essentially serialised in nature. However their
control flow is realised in practice—be it by means of policy rules—
the opportunities for conflicting actions can be assumed to be few.
Where concurrency is specified (explicitely), it is the responsibility
of the process designer to ensure that race conditions or conflict of
actions are excluded. Nevertheless, conflict situations during the
execution of a process cannot be excluded completely.

The progress of execution of a management process is dependent Single points of
failureon proper functioning of all entities performing single activities of a

process instance. Another type of hazard to the management sys-
tem can be identified in the functional building blocks that make
up the architecture described in Chapter 6 (see Figure 7.1). Some
of the components may be implemented as singletons, e.g. the Pol-
icy Decision Point, or the Message Bus. In consequence, failure of
single components can halt process execution. In other cases, fail- Local failures,

global
implications

ure may not be central, but still pertain to a component critical to
the progress of a current process instance. It may have to be de-
tected and remedied in a distributed environment. Thus, globally
perceptible problems can ensue from locally limited failures.

Put into a different perspective, however, failures in process-relevant
entities usually stop execution of a process, independently of how the
process is realised technically. Therefore, the policy-based realisation
proposed in this work does not introduce this hazard as a novel one.

The approach presupposes “correctness” of the management process. Dependence on
correct
processes

This claim applies to syntactical correctness, as well as accuracy re-
garding the representation of management goals. In simple terms,
the formal process specification must respect the grammar of the
formal language used; also, it must properly address the manage-
ment tasks that it purports to organise. In addition, the integration
of management tools into the execution of a management process
implies current and accurate consideration of (and referral to) their
interfaces, data formats, as well as knowledge of their respective
modus operandi.

255

Chapter 8. Evaluation

This premise of correctness may not always hold true. Syntactical
correctness and, to some extent, integration of management tools,
may be supported by modelling tools. The reflection of management
goals in the specification of the operational processes is, however,
always a candidate for expert evaluation.

Although, as with component failures, this is not an issue specifically
pertaining to the approach proposed herein, diagnostics of processes
realised by means of management policy rules may be encumbered
by the distributed, event-driven nature of their execution.

In a distributed, in-band management setting, security and privacySecurity

considerations must not be neglected. The policy-based process exe-
cution scheme proposed in this work results in that effective enforce-
ment of policy rules must be ascertained at different PEPs. If the
integrity of one PEP is compromised, the results of a management
process become questionable. Process data flow is routed between
many entities (origin, target and transit systems). It may be cor-
rupted, suppressed or examined along the way.

Encryption and signature systems and procedures could be employed
to maintain confidentiality, availability and integrity (CIA) of data
flow; however, such measures imply a maintenance effort for the se-
curity infrastructure and increase complexity. Common security in-
frastructures imply the deployment of a Public Key Infrastructure
to provide an unbroken chain of trust between secured components.
The installation of a PKI that is adequate to the general setting of
the mechanisms proposed in this work (see Chapter 2) may prove
difficult to establish. It requires a central point of trust (a Certi-
fication Authority (CA)) within a inter-domain setting, as well as
reliable and secure distribution and revocation of keys. In addition,
encryption and signature operations are computationally intensive
and may slow down process execution. Therefore, providing an ad-
equate security envelope for the automation approach presented in
this work constitutes an important topic for further study.

The concepts for process data flow developed in Chapter 5 allow thePrivacy

distribution of data relevant to process execution across multiple
domains. They do not take into account the protection of sensitive
information from cooperation partners. Depending on the design
of information item aggregations (e.g. in the form of rich events),
a subcontractor participating in the management processes of an
IT organisation (e.g. the call centre operator described in the ASP
scenario, Section 2.1) may receive data that discloses confidential

256

8.3. Applicability

information about the IT organisation. Apart from the general is-
sue of unnecessarily disclosing surplus information, such disclosure
may have legal implications, e.g. when information pertaining to
customers or users is involved.

To uphold a level of privacy adequate to operations and legal con-
straints, careful specification of the data flow must be ensured. In
this context, the term “careful” implies the creation of concrete
guidelines regarding the information that may be be shared across
domains. This topic has been the focus of research, e.g. within
the scope of identity management in inter-domain settings (see e.g.
[Homm 05]).

8.3. Applicability

The approach proposed in this thesis used medium and large scale
scenarios as its starting point and benchmark. It is therefore reason-
able to discuss its suitability for different types of IT management
settings. Unfortunately, it is difficult to accurately assess the appli-
cability of the concepts developed in this work with regard to the
management of IT infrastructures of different scale.

Process-oriented IT (service) management is foremost beneficial to
rather large IT organisation. Increasingly, it is being introduced
in medium-sized and small organisations. The necessity for process
support and process automation, as well as the potential for savings
increases with the number of persons (IT managers, administrators,
etc) that participate in operations and management. Smaller organ-
isations with smaller number of services, tools, and processes may
opt for more informal process specifications (i.e. textual descrip-
tion) and approximations their execution (i.e. decisions left to the
discretion of the management/operations personnel).

257

Chapter 8. Evaluation

258

Part IV
Conclusions and Further Work

259

Contents – Part IV

9. Future prospects 263
9.1. Issues for further study 263
9.2. Applications . 265

10. Summary and conclusions 269

CONTENTS – PART IV

262

Chapter 9
Future prospects

As with most theses, the present one can only solve a small number
of issues. This chapter discusses interesting issues that have been
sidetracked from the scope of this work, as well as problems that
arise because of it.

In addition, given the results presented in this thesis, a number of
follow-up ideas can be cultivated. Two of these, in the domain of
IT management and business processes, are presented in the follow-
ing sections. The first concerns itself with the generalisation of the
results of this work towards a yet more flexible realisation of IT ma-
nagement processes. The second regards the application of the ideas
developed in this work to the domain of business processes.

9.1. Issues for further study

This work concerns itself with the principles of IT management pro-
cess automation based on management policy. Several important
topics have been disregarded in order to limit the focus of the thesis
to a manageable number of problems. In the following, a selection
of topics are discussed which are of interest in real-life realisation of
management processes.

9.1.1. Metrics for process detail

One important requisite for the concepts developed in this thesis to
be effective is the creation of adequately detailed process specifica-
tions. For the purposes of this work, it has been sufficient to require
process specifications that incorporate the information necessary in

263

Chapter 9. Future prospects

order to drive management and process support tools. A more gen-
eral definition or metric of the “detailed” process specification has
not been given.

For the practical task of prepare specification documents whose levelComparability
of detail levels of detail is adequate, process modellers require guidelines and rules

that determine what information items are obligatory, i.e. what ex-
actly is, in effect, sufficient technical detail in a process specification.
Obviously, the concrete content of a process document is dependent
on the available management framework, its APIs, the “syntactic
sugar” available in the formalism etc. Reference process frameworks
are, in general, too generic as to be of assistance where technical,
site-specific issues are concerned. Therefore, a common metric is
required that allows the assessment and comparison of process spec-
ifications with regard to their level of technical detail.

9.1.2. Security and privacy considerations

IT management processes constitute critical resources to the IT or-
ganisation. Their execution influences the provisioning of services
substantially. Therfore, security breaches directly targeting process
execution may have grave consequences with a high impact on busi-
ness. As already noted in Section 8.2, the introduction of an ade-
quate security infrastructure for the approach proposed in this work
is both a challenging and an important task.

At the same time, privacy considerations need to taken into account
in an inter-domain setting. Assuring adequate protection of privacy
during distributed management process execution is an interesting
topic for further study.

9.1.3. Independent policy

The management approach presented in this work introduces a pol-
icy system as part of the proposed management architecture. A
beneficial consequence of this fact is the opportunity to specify ma-
nagement policy not originating from process-to-policy translation in
addition to the policy rules generated by the translation procedure.

Taking into consideration the potential for policy conflicts, an assess-
ment of the risk for the disruption of process execution if additional

264

9.2. Applications

policy is specified is difficult to perform. A related question is the
suitability of existing conflict handling approaches to that situation.

9.2. Applications

Based on the concepts developed in this thesis, a number of conceiv-
able research projects can be formulated, possibly in areas unrelated
to process-oriented management.

9.2.1. Generalisation

The approach presented in this thesis uses management policy rules
to drive IT management processes. As has been shown in the Elab-
oration part, several automated processing steps are performed in
order to adapt a formal process specification to the requirements of
the distributed control flow that is realised by the management pol-
icy rules. In the same manner, the data flow within the process is
realised by means of rich events that are able to transport informa-
tion to wherever a certain process fragment is actually executed.

If we generalise these terms, the sequence of actions executed at
any policy enforcement point corresponds to a program. At the
same time, the incoming and outgoing events observed at such a
point define a protocol. Hence, by performing this generalisation,
we have “gone full-circle”, back to the program-like form of an IT
management process – with the distinction that it is now effectively
distributed and much looser coupled than before applying the pro-
cedures described in this work.

What remains interesting is the observation that locally deployed
policy together with the expected and transmitted events specifica-
tion correspond to a program and protocol pair. At this level of
abstraction, it appears possible to employ other forms of enforcing
the management goals than actual policy rules. However, since the
characteristics of the program are known, it could be generated au-
tomatically from a process specification using the same techniques
as described in this work.

One possible target platform could be that of stationary or mobile Mobile agents
based
execution

agents. An agent program could correspond to a part of a process
specification, to be executed at a certain point in the infrastructure.

265

Chapter 9. Future prospects

This makes for an interesting approach to establish cooperation be-
tween sovereign domains: a contract (e.g. an SLA) could include
provisions that a jointly specified, automated process specification is
to be implemented by one of the contract parties. From the detailed
process specification, an agent could be generated and deployed to
run within that contract party’s domain.

This, of course, raises several questions, the most important ones
regarding security issues. In particular, it is necessary to ensure that
the code being executed corresponds to the process specification,
that it is not altered during transit or at the point of execution, and
that the integrity of the event flow to and from the point of execution
is maintained.

As mobile agents have once again gained attention recently in the
management domain, it is possible that a closer examination of the
possibilities they offer in this context will prove rewarding.

9.2.2. Bottom-up assessment of OSS tool requirements

The policy set applicable to a tool set may allow conclusions regard-
ing the functional requirements of that tool set. These requirements
may state what the tool does not need on the one hand, while on
the other hand opportunities to render the interface of the design of
the functions in a better manner (i.e. offer facade interfaces targeted
at a specific process activity, subsume the sequential use of several
functions into one etc).

Reference process frameworks are applied in a top-down manner, i.e.
the high-level process specifications in the framework are projected
onto operational management. Experimentation with the process
realisation approach presented in this thesis may allow conclusions
with regard to the requirements on tools and technical procedures
that are employed at a technical, operational level. As reference
process definitions refrain from detail in that domain, the technical
requirements could complement the generic process specifications
provided by ITSM guideline collections such as the ITIL.

9.2.3. Self-management

Given a distributed execution of management policy rules, a rule
set together with the components it applies to can be said to form

266

9.2. Applications

Managed element

Monitor Knowledge

PlanAnalyze

Autonomic manager

Execute

Cooperation

Policy

Figure 9.1.: Autonomic elements

a self-managed system: a stand-alone entity that reacts to sensor
input (incoming messages/events), makes decisions that lead to ac-
tion (execution of policy rules), and communicate changes in state
outward, if these are deemed to be of interest to external parties
(transmission of messages/events).

Although the approach presented in this thesis is primarily targeted
at the domain of process-oriented management, it could perhaps
be employed in the area of self-managed systems as an aid to the
specification of the behaviour of such systems. Instead of attempting
to determine the behaviour of each system by specifying policies
directly (for each system), the specification of an overall workflow
may lead to a more “harmonic” interrelationship (as suggested in
Figure 9.1) between systems that are supposed to “help themselves”.

The policies that govern single self-managed cells can originate from
a process specification intended to govern an aggregation of mul-
tiple self-managed systems with different capabilities and purpose.
The mechanisms proposed in this work may serve as a base for the
development of such an approach.

Summary

This short chapter has presented a number of issues for further study
in the context of the work presented in this thesis. Open issues
arising from the approach presented herein have been indicated as

267

Chapter 9. Future prospects

topics for further study. In addition, areas of application different
from process-oriented management have been investigated.

268

Chapter 10
Summary and conclusions

I N recent years, IT management has been undergoing a change
of focus, from the technical perspective to an organisational one.

In particular, the demand for a process-oriented view onto service
management has been growing at a quick pace. The significance
of documented processes, based on collections of best practices is
increasingly being accentuated by the advocates of process-oriented
management. In fact, the introduction of process-orientation into IT
management does offer a multitude of benefits. The workflows of IT
managers become visible, open to optimisation and re-design, and
perhaps quantifiable. However, it is important to remember that the
actual infrastructure still needs to be managed at a technical level.

This work has presented an approach to coupling the process-oriented Rationale and
prerequisitesview with a flexible means to realise IT management processes. The

starting point of the development of the approach has been given by
two scenarios that illustrate the requirements imposed by process-
oriented management of of today’s IT organisations. The scenarios
imply several plausible assumptions that can be observed to apply
to the evolution of the IT infrastructures, as well as to their manage-
ment. First, we can safely assume that IT management processes
will continue to be introduced at a quick pace. Increasingly, they are
presented in a formalised manner, i.e. written in a formal process
language. To conserve investments, the continued use of existing
tools for process support is desirable. Obviously, the continued use
of existing tools for technical management is desirable as well. As
hitherto, tool sets will change over time, and the administrator pop-
ulation will fluctuate. Services will adapt to market and business
needs, and the infrastructure will need to evolve to be able to imple-
ment them. Needless to say, the strong trend toward reduction of IT
cost is unbroken; it is improbable that it will turn in the foreseeable
future.

269

Chapter 10. Summary and conclusions

These prerequisites call for a highly flexible technical base for the
realisation of management processes. The use of management policy
rules appears to offer adequate flexibility to allow the projection of
process specifications onto actual management tasks. Therefore, this
work has pursued a translation between formal process specifications
and management policy rule sets. Processes, as well as policies, are
expressed by means of formal languages. Hence, one important part
of the problem was a method of translating a process formalised in
process language into a set of policies written in an adequate policy
language.

Formal process definitions have been used in domains other than ITAnalysis of
formalisms management for quite some time. In consequence, several languages

have been designed for the expression of processes in a broader sense.
Analysis of a number of such languages has shown that while some
of these have a strong focus on some aspects of business interaction,
others are general-purpose languages that are suitable for the repre-
sentation of IT management processes. In the same manner, policy
languages have been analysed to ensure that the information con-
tained in a process specification is retained in the target language of
the translation. A number of languages have been found to exhibit
the necessary characteristics.

The actual projection of an IT management process specificationDecomposition

onto a set of management policy rules is performed according to a
step-by-step methodology. The projection of control flow and the
preservation of the data flow within the process have been treated
separately. A meta-model pair has been devised that describes a
process in in source and target form. A set of transformations have
been specified that can be applied to a source process (i.e. one that
is modelled in one of the applicable process languages) in order to
change its structure.

Following the application of these transformations, the process spec-Patterns and
translation ification may be described by means of a collection of patterns, each

pattern describing the structure of a process fragment. This pro-
cedure preserves the control flow specified in the original (source)
process. Every pattern carries a parametrised policy set that can
be instantiated using the information present in the process frag-
ment that matches the pattern. To ensure the totality of translation
for any correct process specification, a generating system for pat-
terns has been formulated, that ensures complete decomposition of
any process graph and allows its equivalent representation by means

270

of policy rules. In addition, a procedure for extending the pattern
catalogue, e.g. for the purpose of optimisation has been devised.

The decomposition of a process specification into pattern-sized frag- Data flow in
processesments posed the challenge to preserve the information flow encoded

into the process specification. Processes transfer information be-
tween different tools, persons and domains. The information will
be transported in a variety of heterogeneous forms and data types,
by means of different transport mechanisms. In addition, as the ex-
ecution points for policies may be distributed across the sphere of
action of the process. Therefore, a mechanism was needed that will
provide the information needed to the location where it was needed.
These issues are addressed by the combination of a language sup-
porting aggregation of information items, SISL, and a corresponding
architecture designed for procurement of data from heterogeneous
sources, SMONA. Data transport is performed by means of an event
bus that propagates Rich Events, i.e. event notifications that may
be employed to trigger the execution of policy rules, enriched with
data needed by the execution of those rules. The management ar- Architecture

and workflowchitecture necessary to realise the approach in practice comprises a
modelling station where the process specifications are created using
a formal language, the translator component that generates policy
rules from the process specification, and the components employed to
execute a thus translated process. The most significant ones among
the latter include the components of the policy architecture, as well
as facilities for the acquisition and the transport of process-relevant
data. In the context of the architecture, an end-to-end workflow
has been described, ranging from the conception of the management
process specification to the execution of the corresponding policy
rules on the provisioning and management infrastructures. The dis-
cussion of this general architecture and its associated workflow was
complemented by a description of the interfaces required between
the included functional building blocks.

A concrete realisation of the above-mentioned architecture can be Process-aware
Policy Systemrealised by combining standard management components with the

building blocks that are particular to the approach presented in this
thesis. Among the latter are the Process-aware Policy System, which
is the implementation of a management policy architecture, used
in conjunction with the SMONA information aggregation facility.
A minimal process language compliant to the source process meta- Proof-of-

conceptmodel, SLPR, has been devised in order to experiment with the
control flow translation procedure. Based on the SLPR parser, the

271

Chapter 10. Summary and conclusions

decomposition of process specifications and the matching of patterns
have been implemented.

In conclusion, the implementation operational IT management pro-
cesses by means of management policy rules exhibits a high degree
of flexibility and scalability, while introducing a number of issues,
most of which are due to process decomposition—thus, the greatest
strength of the approach is at the same time a source of weakness.
Such remaining issues constitute a collection of topics for further
study, either in continuation of this work, or with regard to adjacent
topics.

The complexity of IT and telecommunications infrastructures con-Trends in IT
management tinues to increase, instead of being reduced. Every generation of

technology—whether it be truly innovative, or simply consist of
available techniques based on existing concepts—introduces new ma-
nagement challenges. Current examples include mobility aspects,
virtualisation and re-centralisation of operations centres, as well as
increasing importance of the consideration given to physical space,
and power and cooling requirements.

Fortunately, the awareness for the need of management functional-
ity in new designs, products and installations is increasing. Even so,
the techniques employed to cope with upcoming management chal-
lenges are developed and deployed long after they are actually in
demand. A general strategy towards tackling this issue may consist
in raising the degree of flexibility available to the IT manager. Sim-
ilar approach vectors exist in other domains, as well. For example,
approaches that strive to leverage the benefits of loose coupling over
those of a compact, more closely coupled system are being explored
in the domain of software engineering.

˜ ˜ ˜

272

List of Figures

1.1. Management pyramid 6
1.2. IT management hierarchy 8
1.3. Creation of an IT management process 9
1.4. Dimension space of management challenges 11
1.5. The life-cycle of an IT management process definition 12
1.6. Approach rationale 14
1.7. Phases of process-to-policy translation 16
1.8. Simple example of pattern translation 17
1.9. Overview of this work 22

2.1. ASP scenario . 27
2.2. Grid management scenario overview 34
2.3. A Grid computing service 35
2.4. Example: The handling of an urgent security patch . 44
2.5. Management tools involved in the example setting. . 46

3.1. The BPM component model 74
3.2. Standardisation in workflow and process management 76
3.3. Levels of the Capability Maturity Model 78
3.4. Pattern example: Exclusive choice pattern. 79
3.5. Policy refinement hierarchy 81
3.6. Canonical policy management architecture 83
3.7. Selected classes in the PCIM 84

4.1. Generic, control-flow-centric process meta-model . . 128
4.2. Target meta-model 130
4.3. Target process elements 132
4.4. Splitting conditional/parallelisation nodes 134
4.5. Basic pattern . 143
4.6. Disjunctive condition pattern 145
4.7. Disjunctive condition pattern with single action . . . 147
4.8. Conjunctive condition pattern 148
4.9. Mixed condition pattern 148

273

LIST OF FIGURES

4.10. Synchronisation pattern 149
4.11. The generating system for process graphs 163
4.12. Exemplary complex pattern 169
4.13. Handling of a Request for Change (generated) 171
4.14. Process graph after decomposition (generated) . . . 174

5.1. Information flow . 182
5.2. Abstract view on process data 184
5.3. Data items of an action node 185
5.4. Process data values 185
5.5. Data items of a conditional branch node 186
5.6. Bridging the gap between fragments 188
5.7. Dimensions of data flow in processes 192
5.8. Sources of management process data 193
5.9. Aggregating architecture (functional view) 196

6.1. Steps to customised process definitions 201
6.2. Functional view on architectural components 207
6.3. Interactions between functional building blocks . . . 215

7.1. Components of the exemplary design 228
7.2. SLPR process . 237
7.3. Classes representing ProPoliS policy components . . 239
7.4. Basic components of the ProPoliS 241
7.5. Snapshot of policy repository 242
7.6. Screen-shot of the ProPoliS GUI front-end 244
7.7. Architecture for service data composition 245

9.1. Autonomic elements 267

274

List of Tables

2.1. Weighted summary of requirements on the approach 60

4.1. Criteria for action and control flow 100
4.2. Comparison criteria for object elements 102
4.3. Comparison criteria for event elements 103
4.4. Comparison criteria for condition elements 104
4.5. Assessment criteria and Evaluation results 114
4.6. Comparison criteria for policy action elements . . . 117
4.7. Comparison criteria for policy event elements 118
4.8. Comparison criteria for policy condition elements . . 118
4.9. Comparison criteria for policy meta-data elements . 119
4.10. Comparison criteria for variables and types 119
4.11. Comparison criteria for policy meta-data elements . 120
4.12. Results of policy language analysis 122
4.13. Summary of process nodes cardinalities 131
4.14. Elimination criteria for branching/joining nodes . . . 133
4.15. Comparison of node symbols 173

7.1. Node types in the SLPR 233

8.1. Fulfilment of requirements 251

275

LIST OF TABLES

276

List of Abbreviations

ASP Application Service Provider

BEIDTF Business Modeling & Integration Domain Task Force

BPMI Business Process Management Initiative

BPML Business Process Modeling Language

BPMN Business Process Modeling Notation

CA Certification Authority

CI Configuration Item

CIMOM CIM Object Manager

CMDB Configuration Management Database

CMM Capability Maturity Model

CMMI Capability Maturity Model Integration

DHS Definitive Hardware Store

DII Dynamic Invocation Interface

DSL Definitive Software Library

ebXML Electronic Business using eXtensible Markup Language

eTOM Enhanced Telecom Operations Map

eTOM Extended Telecom Operations Map

FSC Forward Schedule of Change

277

LIST OF TABLES

IDS Intrusion Detection System

ITIL IT Infrastructure Library

ITSCMM IT Service Capability Maturity Model

ITSM IT Service Management

KPI Key Performance Indicator

LDAP Lightweight Directory Access Protocol

NGOSS New Generation Operations Systems and Software

OASIS Organization for the Advancement of Structured Informa-
tion Standards

OMG Object Management Group

ORB Object Request Broker

PbM Policy-based Management

PCIM Policy Core Information Model

PDP Policy Decision Point

PEP Policy Execution Point

PIR Post Implementation Review

PKI Public Key Infrastructure

RfC Request for Change

RMI Remote Method Invocation

RO Real Organisation

SAMM System Administration Maturity Model

SAP Service Access Point

SID Service Information/Data

278

LIST OF TABLES

SLA Sevice Level Agreement

SLM Service Level Management

SMONA Service Oriented Monitoring Architecture

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SPOC Single Point Of Contact

UC Underpinning Contract

UML Unified Modeling Language

UN/CEFACT United Nations Centre for Trade Facilitation and
Electronic Business

VO Virtual Organisation

WfMC Workflow Management Coalition

WS Web Service

WS-BPEL, BPEL4WS Business Process Execution Language for
Web Services

WSDL Web Service Definition Language

XACML eXtensible Access Control Modeling Language

XMI XML Model Interchange

XPDL XML Process Definition Language

279

LIST OF TABLES

280

Bibliography

[ACD+ 03] Andrews, Tony, Francisco Curbera, Hitesh
Dholakia, Yaron Goland, Johannes Klein,
Frank Leymann, Kevin Liu, Dieter Roller,
Doug Smith, Satish Thatte, Ivana Trickovic
and Sanjiva Weerawarana: Business Process
Execution Language for Web Services Version 1.1.
Technical Report, OASIS, May 2003.

[AHK+02] van der Aalst, W. M. P., A. H. M. ter Hofst-
ede, B. Kiepuszewski and A. P. Barons: Work-
flow Patterns. 2002.

[Arki 02] Arkin, Assaf: Business Process Modeling Lan-
guage. Draft, BPMI, November 2002.

[BKR 03] Becker, J., M. Kugeler and M. Rosemann (ed-
itors): Process management – A guide for the de-
sign of business processes. Springer-Verlag, 2003.

[BLR 03] Bandara, Arosha K., Emil C. Lupu and
Alessandra Russo: Using Event Calculus to For-
malise Policy Specification and Analysis. In Pro-
ceedings 4th IEEE Workshop on Policies for Dis-
tributed System and Networks (Policy 2003), Lake
Como, Italy, June 2003. .

[BPS 01] Business Process Specification Schema. Technical
Report, UN/CEFACT and OASIS, 2001.

[Bren 06] Brenner, M.: Classifying ITIL Processes — A
Taxonomy under Tool Support Aspects. In Proceed-
ings of First IEEE/IFIP International Workshop
on Business–Driven IT Management (BDIM 06),
volume 2006, pages 19–28, Vancouver, Canada,
April 2006. IEEE.

281

BIBLIOGRAPHY

[Bren 07] Brenner, Michael: Werkzeugunterstützung
für ITIL-orientiertes Dienstmanagement – ein
modellbasierter Ansatz. Dissertation, Fakultät für
Mathematik, Informatik und Statistik der Ludwig-
Maximilians-Universität München, München,
2007.

[BSSG 06] Brenner, M., M. Sailer, T. Schaaf and
M. Garschhammer: CMDB — Yet Another
MIB? On Reusing Management Model Concepts in
ITIL Configuration Management. In Large Scale
Management of Distributed Systems (Proceedings
of DSOM 2006 — 17th IFIP/IEEE International
Workshop on Distributed Systems: Operations and
Management), volume 2006 of Lecture Notes in
Computer Science, Volume 4269/2006, pages 269–
280. Springer Berlin / Heidelberg, October 2006.

[CCM 94] Cervesato, Iliano, Luca Chittaro and An-
gelo Montanari: What the Event Calculus does
and How to do it Efficiently. In Apuente, M.,
R. Barbuti and I. Ramos (editors): 1994 Joint
Conference on Declarative Programming — GULP-
PRODE’94, pages 336–350, Peñ́ıscola, Spain, 19–
22 September 1994. .

[CCMW 01] Christensen, Erik, Francisco Curbera,
Greg Meredith and Sanjiva Weerawarana:
Web Services Description Language (WSDL)
1.1. Technical Report, W3C, March 2001,
http://www.w3.org/TR/2001/NOTE-wsdl-
20010315 .

[CFSD 90] Case, J.D., M. Fedor, M.L. Schoffstall
and J. Davin: RFC 1157: Simple Network
Management Protocol (SNMP). Request For
Comments, IETF, May 1990, ftp://ftp.isi.edu/in-
notes/rfc1157.txt .

[CIM 05] Common Information Model (CIM) Version 2.9.
Specification, Distributed Management Task Force
(DMTF), June 2005.

[Clau 06a] Clauss, C.: Entwicklung und Anwendung einer
Methodik zur Verfeinerung von ITIL Prozess-

282

http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
ftp://ftp.isi.edu/in-notes/rfc1157.txt
ftp://ftp.isi.edu/in-notes/rfc1157.txt

BIBLIOGRAPHY

beschreibungen am Beispiel des ITIL Change Man-
agements. Master’s thesis, Ludwig–Maximilians–
Universität München, November 2006.

[DaKe 04] Danciu, V. and B. Kempter: From Processes
to Policies – Concepts for Large Scale Policy
Generation. In Managing Next Generation Con-
vergence Networks and Services: Proceedings
of the 2004 IEEE/IFIP Network Operations
and Management Symposium (NOMS), vol-
ume 2004, Seoul, Korea, April 2004. IEEE/IFIP,
http://www.nm.ifi.lmu.de/pub/Publikationen/dake04
.

[Danc 06] Danciu, V.: Formalisms for IT Management Pro-
cess Representation. In Information Technology
Management from a Business Perspective, pages
p. 45–54, Vancouver, Canada, April 2006. 1st
IEEE/IFIP International Workshop on Business–
Driven IT Management, IEEE.

[DaSa 05] Danciu, V. and M. Sailer: A monitoring archi-
tecture supporting service management data com-
position. In Proceedings of the 12th Annual Work-
shop of HP OpenView University Association,
number 972–9171–48–3, pages 393–396, Porto,
Portugal, July 2005. HP.

[DDLS 00] Damianou, N., N. Dulay, E. Lupu and M. Slo-
man: Ponder: A language for Specifying Security
and Management Policies for Distributed Systems.
The Language Specification Version 2.3. Impe-
rial College Research Report DoC 2000/1, Impe-
rial College of Science, Technology and Medicine,
University of London, Department of Computing,
October 2000.

[DDLS 01] Damianou, N., N. Dulay, E. Lupu and M. Slo-
man: The Ponder Policy Specification Language.
In Proceedings of the Workshop on Policies for
Distributed Systems and Networks (Policy 2001),
pages 18–39, Bristol, UK, January 2001. Springer-
Verlag.

283

http://www.nm.ifi.lmu.de/pub/Publikationen/dake04

BIBLIOGRAPHY

[DEIS 05] DEISA Konsortium: DEISA Integrated Infras-
tructure Initiative, Annex I - Description of Work.
Sixth Framework Programme (Research Infras-
tructures, Communication network Development),
Contract FP6 - 508830, December 2005.

[DgS 07] Danciu, V., N. gentschen Felde and
M. Sailer: Declarative specification of ser-
vice management attributes. In Moving From
Bits to Business Value: Proceedings of the 2007
Integrated Management Symposium, volume 2007,
München, May 2007. IFIP/IEEE.

[DHHS 06] Danciu, V., A. Hanemann, H.-G. Hegering
and M. Sailer: IT Service Management: Get-
ting the View. In Kern, E. M., Hegering, H.-G.
und Brügge, B. (Hrsg): Managing Development
and Application of Digital Technologies, volume
2006, pages 110–130. Springer–Verlag, München,
Germany, June 2006.

[DSP 0108b] DMTF Policy working group: CIM Core Pol-
icy Model White Paper. White Paper, June 2003.

[FKT 01] Foster, Ian, Carl Kesselman and Steven
Tuecke: The Anatomy of the Grid: Enabling
Scalable Virtual Organizations. International Jour-
nal of High Performance Computing Applications,
15(3):200–222, 2001.

[GB921] enhanced Telecom Operations Map (eTOM), The
Business Process Framework For The Information
and Communications Services Industry, June 2002.

[GB922-0] Shared Information/Data (SID) Addendum 0 –
SID Primer, January 2004.

[GB922] Shared Information/Data (SID) Addendum 4SO –
Service Overview Business Entity Definitions, Au-
gust 2004.

[GHKR 01] Garschhammer, M., R. Hauck, B. Kempter,
I. Radisic, H. Roelle and H. Schmidt: The
MNM Service Model — Refined Views on Generic
Service Management. Journal of Communications
and Networks, 3(4):297–306, December 2001.

284

BIBLIOGRAPHY

[GLI 07] gLite - Ligthweight Middleware for Grid Comput-
ing. http://glite.web.cern.ch/glite/, January 2007.

[GT 07] The Globus Toolkit. http://www.globus.org/, Jan-
uary 2007.

[HAN 99] Hegering, H.-G., S. Abeck and B. Neumair:
Integrated Management of Networked Systems –
Concepts, Architectures and their Operational Ap-
plication. Morgan Kaufmann Publishers, ISBN 1-
55860-571-1, 1999.

[Holl 95] Hollingsworth, David: The Workflow Refer-
ence Model. Workflow Management Coalition
Specification TC00-1003, Workflow Management
Coalition, January 1995. Issue 1.1.

[Holl 04] Hollingsworth, David: The workflow reference
model – 10 years on, pages 295–312. Future Strate-
gies Inc., Lighthouse Point, FL, USA, 2004 edition,
2004.

[Homm 05] Hommel, W.: An Architecture for Privacy–Aware
Inter–Domain Identity Management. In 16th
IFIP/IEEE International Workshop on Distributed
Systems: Operations and Management (DSOM
2005), Barcelona, Spain, October 2005. Springer.

[ITIL 00] Office of Government Commerce (OGC)
(editor): Service Support. IT Infrastructure Li-
brary (ITIL). The Stationary Office, Norwich, UK,
2000.

[ITIL 01] Office of Government Commerce (OGC)
(editor): Service Delivery. IT Infrastructure Li-
brary (ITIL). The Stationary Office, Norwich, UK,
2001.

[ITIL 02a] Office of Government Commerce (OGC)
(editor): ICT Infrastructure Management. IT In-
frastructure Library (ITIL). The Stationary Office,
Norwich, UK, 2002.

[ITIL 02b] Office of Government Commerce (OGC)
(editor): Application Management. IT Infrastruc-

285

BIBLIOGRAPHY

ture Library (ITIL). The Stationary Office, Nor-
wich, UK, 2002.

[ITIL 03] Office of Government Commerce (OGC)
(editor): Software Asset Management. IT Infras-
tructure Library (ITIL). The Stationary Office,
Norwich, UK, 2003.

[ITU M.3010] Principles for a Telecommunications management
network. Recommendation M.3010, ITU, May
1996.

[KeDa 05] Kempter, B. and V. Danciu: Generic policy con-
flict handling using a priori models. In Lecture
Notes in Computer Science, volume October 24–26,
2005 of Ambient Networks: 16th IFIP/IEEE Inter-
national Workshop on Distributed Systems: Opera-
tions and Management, DSOM 2005, pages 84–96,
Barcelona, Spain, October 2005. Springer–Verlag.

[Kemp 04] Kempter, B.: Konfliktbehandlung im policy–
basierten Management mittels a priori Mod-
ellierung. PhD thesis, Ludwig–Maximilians–
Universität München, August 2004.

[KFJ 03] Kagal, Lalana, Tim Finin and Anupam Joshi:
A Policy Language for A Pervasive Computing En-
vironment. In IEEE 4th International Workshop
on Policies for Distributed Systems and Networks,
June 2003.

[KHN+ 07] Karmarkar, Anish, Marc Hadley, Hen-
rik Frystyk Nielsen, Noah Mendelsohn,
Yves Lafon, Jean-Jacques Moreau and Mar-
tin Gudgin: SOAP Version 1.2 Part 2: Ad-
juncts (Second Edition). W3C Recommenda-
tion, World Wide Web Consortium (W3C), April
2007. http://www.w3.org/TR/2007/REC-soap12-
part2-20070427/.

[Koch 96] Koch, T.: Automated Management of Distributed
Systems. PhD thesis, 1996.

[KoLo 99] Kohli, Madhur and Jorge Lobo: Policy Based
Management of Telecommunication Networks. In
Policy Workshop 1999, Bristol, U.K., 1999. .

286

BIBLIOGRAPHY

[LaMi 07] Lafon, Yves and Nilo Mitra: SOAP Version
1.2 Part 0: Primer (Second Edition). W3C Recom-
mendation, World Wide Web Consortium (W3C),
April 2007. http://www.w3.org/TR/2007/REC-
soap12-part0-20070427/.

[LBN 99] Lobo, Jorge, Randeep Bhatia and Shamim A.
Naqvi: A Policy Description Language.
In AAAI/IAAI, pages 291–298, 1999, cite-
seer.ist.psu.edu/lobo99policy.html .

[LuSl 99] Lupu, Emil C. and Morris Sloman: Con-
flicts in Policy-Based Distributed Systems Manage-
ment. IEEE Transactions on Software Engineering,
25(6):852–869, November 1999.

[Marc 05] Marcu, P. G.: Reference Installation of the Pon-
der Policy Toolkit. Systementwicklungsprojekt,
Ludwig–Maximilians–Universität München, April
2005.

[MML+ 07] Mendelsohn, Noah, Jean-Jacques Moreau,
Yves Lafon, Marc Hadley, Martin Gud-
gin, Anish Karmarkar and Henrik Frystyk
Nielsen: SOAP Version 1.2 Part 1: Messaging
Framework (Second Edition). W3C Recommenda-
tion, World Wide Web Consortium (W3C), April
2007. http://www.w3.org/TR/2007/REC-soap12-
part1-20070427/.

[OMG 02-01-01] OMG-XML Metadata Interchange (XMI) Specifi-
cation, v1.2. OMG Specification formal/02-01-
01, Object Management Group, January 2002,
ftp://ftp.omg.org/pub/docs/formal/02-01-01.pdf .

[OMG 04-03-12] Common Object Request Broker Architecture: Core
Specification. Adopted specification, Object Ma-
nagement Group, March 2004.

[Radi 02d] Radisic, I.: Using Policy–Based Concepts to Pro-
vide Service Oriented Accounting Management. In
Stadler, R. and M. Ulema (editors): Proceed-
ings of the 8th International IFIP/IEEE Network
Operations and Management Symposium (NOMS

287

file:citeseer.ist.psu.edu/lobo99policy.html
file:citeseer.ist.psu.edu/lobo99policy.html
ftp://ftp.omg.org/pub/docs/formal/02-01-01.pdf

BIBLIOGRAPHY

2002), pages 313–326, Florence, Italy, April 2002.
IFIP/IEEE, IEEE Publishing.

[Radi 03] Radisic, I.: Ein prozessorientierter, policy–
basierter Ansatz für ein integriertes, dienstori-
entiertes Abrechnungsmanagement. PhD the-
sis, Ludwig–Maximilians–Universität München,
February 2003.

[RFC 3060] Moore, B., E. Ellesson, J. Strassner and
A. Westerinen: RFC 3060: Policy Core In-
formation Model – Version 1 Specification. Re-
quest For Comments, IETF, February 2001,
ftp://ftp.isi.edu/in-notes/rfc3060.txt .

[RFC 3512] MacFaden, M., D. Partain, J. Saperia and
W. Tackabury: RFC 3512: Configuring Net-
works and Devices with Simple Network Ma-
nagement Protocol (SNMP). Request For Com-
ments, IETF, April 2003, ftp://ftp.isi.edu/in-
notes/rfc3512.txt .

[Sail 07] Sailer, Martin: Konzeption einer Service-
MIB – Analyse und Spezifikation dienstorien-
tierter Managementinformationen. Dissertation,
Fakultät für Mathematik, Informatik und Statis-
tik der Ludwig-Maximilians-Universität München,
München, 2007.

[Sche 99] Scheer, A.-W.: ARIS – Business Process Model-
ing. Springer-Verlag, Berlin, Zweite edition, 1999.

[ScTh 05] Scheer, August-Wilhelm and O. Thomas:
Geschäftsprozessmodellierung mit der ereignisges-
teuerten Prozesskette. 34(8-9), 2005.

[Stra 04] Strassner, John: Policy based network manage-
ment. Morgan Kaufmann Publishers, 2004.

[UML2d] UML 2.0 Diagram Interchange Specification. OMG
Adopted Specification ptc/03-09-01, Object Ma-
nagement Group, September 2003.

[UML2i] UML 2.0 Infrastructure Specification. OMG
Adopted Specification 03-09-15, Object Manage-
ment Group, September 2003.

288

ftp://ftp.isi.edu/in-notes/rfc3060.txt
ftp://ftp.isi.edu/in-notes/rfc3512.txt
ftp://ftp.isi.edu/in-notes/rfc3512.txt

BIBLIOGRAPHY

[UML2o] UML 2.0 OCL Specification. Object Management
Group Adopted Specification ptc/03-10-14, Object
Management Group, October 2003.

[UML2s] UML 2.0 Superstructure Specification. OMG
Adopted Specification ptc/03-08-02, Object Ma-
nagement Group, August 2003.

[UNI 07] UNICORE - Uniform Interface to Computing Re-
sources. http://www.unicore.org/, January 2007.

[Univ 95] University, CORPORATE Carnegie Mel-
lon: The capability maturity model: guidelines for
improving the software process. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA,
1995.

[Whit] White, Stephen A.: Process Modeling Notations
and Workflow Patterns. White paper.

[Whit 04] White, Stephen A.: Business Process Model-
ing Notation (BPMN) Version 1.0. Technical
Report, Business Process Management Initiative,
May 2004.

[Wiel 03] Wielemaker, Jan: An overview of the SWI-
Prolog Programming Environment. In Mesnard,
Fred and Alexander Serebenik (editors): Pro-
ceedings of the 13th International Workshop on
Logic Programming Environments, pages 1–16,
Heverlee, Belgium, December 2003. Katholieke
Universiteit Leuven.

[Wies 95] Wies, R.: Policies in Integrated Network and Sys-
tems Management: Methodologies for the Defini-
tion, Transformation, and Application of Manage-
ment Policies. PhD thesis, Ludwig–Maximilians–
Universität München, June 1995.

[XACML] Moses, Tim (Ed.): eXtensible Access Control
Markup Language (XACML) Version 2.0. OASIS
Standard oasis-access control-xacml-2.0-core-spec-
os, OASIS, February 2005.

[XMLS-0] Fallside, D. C. (Editor): XML Schema Part 0:
Primer. W3C Recommendation REC-xmlschema-

289

BIBLIOGRAPHY

0-20010502, World Wide Web Consortium (W3C),
May 2001, http://www.w3.org/TR/xmlschema-0/
.

[XMLS-1] Thompson, H. S., D. Beech, M. Mal-
oney and N. (Eds.) Mehdelsohn: XML
Schema Part 1: Structures. W3C Recom-
mendation REC-xmlschema-1-20010502, World
Wide Web Consortium (W3C), May 2001,
http://www.w3.org/TR/xmlschema-1/ .

[XMLS-2] Biron, P. V. and A. (Eds.) Malhotra:
XML Schema Part 2: Datatypes. W3C Rec-
ommendation REC-xmlschema-2-20010502, World
Wide Web Consortium (W3C), May 2001,
http://www.w3.org/TR/xmlschema-2/ .

[XPD 05] Process Definition Interface – XML Process Def-
inition Language. Workflow Management Coali-
tion Workflow Standard WFMC-TC-1025, Work-
flow Management Coalition, October 2005. Version
2.0.

290

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/

XML-based grammar of the ProPoliS
language

This appendix contains the XML schema of the ProPoliS policy lan-
guage. Though the language has been analysed in Chapter 4, a
complete grammar was not given there. In the following, the schema
elements are defined.

Listing 1: ProPoliS Language Schema

<?xml version="1.0" encoding="UTF-8"?>
2

<xsd:schema
4 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

targetNamespace="pdl"
6 xmlns:pdl="http://www.nm.informatik.uni-muenchen.de/pdl">

<xsd:annotation>
8 <xsd:documentation xml:lang="de">

Sprache zur Definition von Policies.
10 Vitalian A. Danciu, 2002

Version 0.7
12 </xsd:documentation>

</xsd:annotation>
14

16 <!-- ROOT ELEMENTS AND THEIR TYPES -->
<xsd:element name="policySet" type="policySetType"/>

18 <xsd:element name="comment" type="xsd:string"/>

20 <!-- The elements that MAY be defined standalone in document instances -->
<xsd:complexType name="policySetType">

22 <xsd:sequence>
<xsd:element name="policy" type="policyType"

24 minOccurs="1" maxOccurs="unbounded"/>
<xsd:element name="roleDefinition" type="roleDefinitionType"

26 minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="subject" type="entityContainer"

28 minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="target" type="entityContainer"

30 minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="event" type="eventType"

32 minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="action" type="actionType"

34 minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="constraint" type="constraintType"

291

ProPoliS Schema

36 minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="policyGroup" type="group"

38 minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="comment" minOccurs="0"/>

40 </xsd:sequence>
</xsd:complexType>

42

<!-- END ROOT ELEMENTS AND THEIR TYPES -->
44

46 <!-- BASE TYPES -->

48 <!-- Abstract base type for all nodes that are referable by ID.
These MAY be library items. -->

50 <xsd:complexType name="referable" abstract="true">
<xsd:sequence>

52 <xsd:element name="id" type="xsd:ID"/>
<xsd:element ref="comment" />

54 <xsd:attribute name="libraryItem" type="xsd:boolean"
use="optional" default="false"/>

56 </xsd:sequence>
</xsd:complexType>

58

<!-- Referable items can be assigned to one or more processes.
60 A list of valid process names is embedded into the type definition. -->

<xsd:complexType name="processAssignable" abstract="true">
62 <xsd:complexContent>

<xsd:extension base="pdl:referable">
64 <xsd:sequence>

<xsd:element name="relatedProcess">
66 <xsd:simpleType>

<xsd:union>
68

<!-- A list of processes that apply.
70 Process names MUST NOT contain whitespace. -->

<xsd:simpleType>
72 <xsd:list itemType="xsd:String">

<xsd:restriction base="xsd:string">
74 <xsd:enumeration value="accounting"/>

<xsd:enumeration value="charging"/>
76 <xsd:enumeration value="billing"/>

<xsd:enumeration value="change"/>
78 <xsd:enumeration value="deployMeters"

/>
<xsd:enumeration value="

pushmanagement"/>
80 <!-- TODO: complete list -->

</xsd:restriction>
82 </xsd:list>

</xsd:simpleType>
84

<!-- MEANING: this item is related to all processes -->
86 <xsd:simpleType>

<xsd:restriction base="xsd:string">
88 <xsd:enumeration value="ALL"/>

</xsd:restriction>
90 </xsd:simpleType>

292

<xsd:simpleType>
92 <xsd:restriction base="xsd:string">

<xsd:enumeration value="OTHER"/>
94 </xsd:restriction>

</xsd:simpleType>
96 </xsd:union>

</xsd:simpleType>
98 </xsd:element>

</xsd:sequence>
100 </xsd:extension>

</xsd:complexContent>
102 </xsd:complexType>

104

106

<xsd:complexType name="abstractValueType" abstract="true">
108 <xsd:attribute name="type">

<xsd:simpleType>
110 <xsd:restriction base="xsd:token">

<xsd:enumeration value="float"/>
112 <xsd:enumeration value="integer"/>

<xsd:enumeration value="string"/>
114 <xsd:enumeration value="boolean"/>

<xsd:enumeration value="dateTime"/>
116 </xsd:restriction>

</xsd:simpleType>
118 </xsd:attribute>

</xsd:complexType>
120

<!-- END BASE TYPES -->
122

124 <!-- STANDALONE COMPONENT TYPES -->

126 <!-- A group is a list of references to items of the same type.
Groups themselves CANNOT be referenced.

128

There is one generic group defined for grouping all
130 sorts of elements like policies, targets, events etc.

Beware: this implies that the consistency of the group
132 content CANNOT be assured by the parser, i. e. a targetSet

containig a group consisting of actions and events
134 DOES NOT violate this schema !!

Such anomalies MUST be checked by the interpreter. -->
136 <xsd:complexType name="group">

<xsd:sequence>
138 <xsd:element name="groupItems" type="xsd:IDREFS"/>

<xsd:attribute name="itemsType" use="required">
140 <xsd:simpleType>

<xsd:restriction base="xsd:string">
142 <xsd:enumeration value="target"/>

<xsd:enumeration value="event"/>
144 <xsd:enumeration value="action"/>

<xsd:enumeration value="policy"/>
146 </xsd:restriction>

</xsd:simpleType>

293

ProPoliS Schema

148 </xsd:attribute>
</xsd:sequence>

150 </xsd:complexType>

152

<!-- This complexType is defined for the SUBJECT and
154 TARGET elements that have many similarities -->

<xsd:complexType name="entityContainer">
156 <xsd:sequence>

<xsd:choice>
158 <xsd:sequence>

<xsd:element name ="domain" type="domainType
"/>

160 <xsd:element name="entity" type="xsd:string"
/>

</xsd:sequence>
162 <xsd:element name="role" type="xsd:IDREF"/>

</xsd:choice>
164 </xsd:sequence>

</xsd:complexType>
166

168 <!-- The domain type is just a string containing an absolute
or relative path e.g. "/a/bxx/cx" or "axxx/bx/cxx".

170 It is encapsulated in a named type of its own to allow for extensibility
. -->

<xsd:simpleType name="domainType">
172 <xsd:restriction base="xsd:token">

<xsd:pattern value="/?([0-9a-zA-Z]/){1,}"/>
174 <!--

In EBNF:
176 pattern ::= [’/’]{(’0’|’1’|..|’9’|’a’|’b’|..|’z’|’A’|’B’|..|’Z’)’/’}

-->
178 </xsd:restriction>

</xsd:simpleType>
180

<!-- Roles are to be defined separately using this type.
182 When actually used, an existing role MUST be referenced

using an element of the type roleType -->
184 <xsd:complexType name="roleDefinitionType">

<xsd:complexContent>
186 <xsd:extension base="pdl:referable">

<xsd:sequence>
188 <xsd:element name="name" type="xsd:token"/>

<xsd:element name="description" type="xsd:string"/>
190 </xsd:sequence>

</xsd:extension>
192 </xsd:complexContent>

</xsd:complexType>
194

<!-- When assigning a role to an item, the role MUST already
196 be defined so it can be assigned by using its ID-reference.

One or more roles can be assigned to the same item. -->
198 <xsd:simpleType name="roleType">

<xsd:restriction base="xsd:IDREFS"/>
200 </xsd:simpleType>

294

202 <!-- Targets can be single ones or reference to a group of targets. -->
<xsd:complexType name="targetSetType">

204 <xsd:sequence>
<xsd:choice>

206 <xsd:element name="target" type="entityContainer"/>
<xsd:element name="targetRef" type="xsd:IDREF"/>

208 <xsd:element name="targetGroup" type="group" />
</xsd:choice>

210 </xsd:sequence>
</xsd:complexType>

212

<!-- Events can be single ones or a reference to a group of events -->
214 <xsd:complexType name="eventSetType">

<xsd:sequence>
216 <xsd:choice>

<xsd:element name="event" type="eventType"/>
218 <xsd:element name="eventRef" type="xsd:IDREF"/>

<xsd:element name="eventGroup" type="group"/>
220 </xsd:choice>

</xsd:sequence>
222 </xsd:complexType>

224 <!-- A single event with a name -->
<xsd:complexType name="eventType">

226 <xsd:complexContent>
<xsd:extension base="pdl:processAssignable">

228 <xsd:sequence>
<xsd:element name="eventName" type="xsd:Name"/>

230 </xsd:sequence>
</xsd:extension>

232 </xsd:complexContent>
</xsd:complexType>

234

<!-- An action set contains one action or a group of actions. -->
236 <xsd:complexType name="actionSetType">

<xsd:sequence>
238 <xsd:choice>

<xsd:element name="action" type="actionType"/>
240 <xsd:element name="actionRef" type="xsd:IDREF"/>

<xsd:element name="actionGroup" type="group"/>
242 </xsd:choice>

</xsd:sequence>
244 </xsd:complexType>

246 <!-- An action consists of a generic action to be executed
and an optional error action to be executed if the genericAction fails.

248 Alternatively, an event can be generated and propagated -->
<xsd:complexType name="actionType">

250 <xsd:complexContent>
<xsd:extension base="pdl:processAssignable">

252 <xsd:sequence>
<xsd:choice>

254 <xsd:sequence>
<xsd:element name="default" type="genericActionType"

/>
256 <xsd:element name="error" type="genericActionType"

minOccurs="0"/>

295

ProPoliS Schema

258 </xsd:sequence>
</xsd:choice>

260 </xsd:sequence>
</xsd:extension>

262 </xsd:complexContent>
</xsd:complexType>

264

266 <!-- END STANDALONE COMPONENT TYPES -->

268 <!-- BUILDING BLOCKS FOR STANDALONE COMPONENTS -->

270

<xsd:complexType name="binaryLogicalOperator">
272 <xsd:sequence>

<xsd:element name="constraint" type="constraintType"
274 maxOccurs="unbounded"/>

</xsd:sequence>
276 </xsd:complexType>

278 <!-- A constraint set contains either a single condition or
an expression in either conjunctive or disjuctive normal form.

280 -->
<xsd:complexType name="constraintSetType">

282 <xsd:sequence>
<xsd:choice>

284

<xsd:element name="constraintCNF">
286 <xsd:complexType>

<xsd:sequence>
288 <xsd:element name="or" type="

binaryLogicalOperator"
maxOccurs="unbounded"/>

290 </xsd:sequence>
</xsd:complexType>

292 </xsd:element>

294 <xsd:element name="constraintDNF">
<xsd:complexType>

296 <xsd:sequence>
<xsd:element name="and" type="

binaryLogicalOperator"
298 maxOccurs="unbounded"/>

</xsd:sequence>
300 </xsd:complexType>

</xsd:element>
302

<xsd:element name="constraint" type="constraintType" />
304 <xsd:element name="constraintRef" type="xsd:IDREF"/>

</xsd:choice>
306 </xsd:sequence>

</xsd:complexType>
308

<!-- A constraint is an expression that can be a unary or binary predicate
. -->

310 <xsd:complexType name="constraintType">
<xsd:choice>

296

312 <xsd:element name="equal" type="binaryPredicate"/>
<xsd:element name="smaller" type="binaryPredicate"/>

314 <xsd:element name="greater" type="binaryPredicate"/>
<xsd:element name="greaterEqual" type="binaryPredicate"/>

316 <xsd:element name="smallerEqual" type="binaryPredicate"/>
<xsd:element name="predicate" type="valueType"/>

318 <xsd:element name="negatedPredicate" type="valueType"/>
</xsd:choice>

320 </xsd:complexType>

322 <xsd:complexType name="binaryPredicate">
<xsd:sequence>

324 <xsd:element name="value" type="valueType"
minOccurs="2" maxOccurs="2"/>

326 </xsd:sequence>
</xsd:complexType>

328

<xsd:complexType name="genericActionType">
330 <xsd:sequence>

<xsd:choice>
332 <xsd:element name ="invoke" type="invocation"/>

<xsd:element name="generateEvent">
334 <xsd:complexType>

<xsd:sequence>
336 <xsd:element name="eventName" type="

xsd:string"/>
<xsd:element name="parameterSet" type

="parameterSetType"
338 minOccurs="0"/>

</xsd:sequence>
340 </xsd:complexType>

</xsd:element>
342 <!--</xsd:sequence>-->

</xsd:choice>
344 </xsd:sequence>

</xsd:complexType>
346

348 <!-- A method invocation consists of an optional object,
a method name and an optional parameterSet.

350 The object can either be a Name or a <subject/> element;
if it is omitted, the targets of the policy are used as object. -->

352 <xsd:complexType name="invocation">
<xsd:sequence>

354 <xsd:choice>
<xsd:element name="object" type="xsd:Name" minOccurs

="0"/>
356 <xsd:element name="object">

<xsd:complexType>
358 <element name="subject" empty="true"

minOccurs="0" />
</xsd:complexType>

360 </xsd:element>
<xsd:element name="method" type="xsd:Name"/>

362 <xsd:element name="parameterSet" type="parameterSetType"
minOccurs="0"/>

</xsd:choice>

297

ProPoliS Schema

364 </xsd:sequence>
</xsd:complexType>

366

<!-- A parameter set is a set of name-value pairs. -->
368 <xsd:complexType name ="parameterSetType">

<xsd:element name ="parameter">
370 <xsd:complexType>

<xsd:element name="paramName" type = "xsd:token"/>
372 <xsd:element name="value" type="valueType"/>

</xsd:complexType>
374 </xsd:element>

</xsd:complexType>
376

<!-- A value is one of float, int, string, boolean or ISO dateTime.
378 It can be either

- a constant/literal, or
380 - a value retrieved from an attribute of an object, or

- a return value of a method invocation
382 Arrays of constants are also values.

-->
384 <xsd:complexType name="valueType">

<xsd:complexContent>
386 <xsd:extension base="abstractValueType">

<xsd:choice>
388 <xsd:element name="literal">

<xsd:simpleType>
390 <xsd:union memberTypes="xsd:float xsd:integer xsd:string

xsd:boolean xsd:dateTime"/>
</xsd:simpleType>

392 </xsd:element>
<xsd:element name="array" type="arrayType"/>

394 <xsd:element name="functionValue" type="genericActionType"
/>

396 <xsd:element name="attributeValue">
<xsd:complexType>

398 <xsd:sequence>
<xsd:element name="object" type="xsd:

Name"/>
400 <xsd:element name="attribute" type="

xsd:Name"/>
</xsd:sequence>

402 </xsd:complexType>
</xsd:element>

404 </xsd:choice>
</xsd:extension>

406 </xsd:complexContent>
</xsd:complexType>

408

<!-- An array is a list of items of the same type.
410 A string array is a whitespace delimited list of strings. -->

<xsd:complexType name="arrayType">
412 <xsd:sequence>

<xsd:element name="arrayContent">
414 <xsd:simpleType>

<xsd:union>
416 <xsd:simpleType><xsd:list itemType="xsd:float"/></xsd:

298

simpleType>
<xsd:simpleType><xsd:list itemType="xsd:integer"/></xsd:

simpleType>
418 <xsd:simpleType><xsd:list itemType="xsd:string"/></xsd:

simpleType>
<xsd:simpleType><xsd:list itemType="xsd:boolean"/></xsd:

simpleType>
420 <xsd:simpleType><xsd:list itemType="xsd:dateTime"/></xsd:

simpleType>
<xsd:simpleType>

422 <xsd:restriction base="xsd:string">
<xsd:enumeration value="null"/>

424 </xsd:restriction>
</xsd:simpleType>

426 </xsd:union>
</xsd:simpleType>

428 </xsd:element>
</xsd:sequence>

430

</xsd:complexType>
432

<!-- END BUILDING BLOCKS FOR STANDALONE COMPONENTS -->
434

436

<!-- POLICY -->
438

440 <xsd:complexType name="policyType">
<xsd:complexContent>

442 <xsd:extension base="pdl:processAssignable">
<xsd:sequence>

444 <xsd:element name="policyDomain" type="domainType" minOccurs="0"
/>

<xsd:element name="subject" type="entityContainer" minOccurs="0"
/>

446 <xsd:element name="targetSet" type="targetSetType"/>
<xsd:element name="eventSet" type="eventSetType"/>

448 <xsd:element name="constraintSet" type="constraintSetType"
minOccurs="0"/>

<xsd:element name="actionSet" type="actionSetType"/>
450 <xsd:element name="policyDescriptor">

<xsd:complexType>
452 <xsd:sequence>

<xsd:element name="createdBy" type="xsd:token" minOccurs="
0"/>

454 <xsd:element name="dateOfCreation" type="xsd:date"
minOccurs="0"/>

<xsd:element name="lastModified" type="xsd:dateTime"
minOccurs="0"/>

456 <xsd:element name="lastModifiedBy" type="xsd:token"
minOccurs="0"/>

<xsd:element name="expires" type="xsd:dateTime" minOccurs="
0"/>

458 </xsd:sequence>
</xsd:complexType>

460 </xsd:element>

299

ProPoliS Schema

</xsd:sequence>
462

<xsd:attribute name="isEnabled" type="xsd:boolean"
464 use="optional" default="true"/>

<xsd:attribute name="priority" use="optional" default="0">
466 <xsd:simpleType>

<xsd:restriction base="xsd:integer">
468 <xsd:minInclusive value="0"/>

<xsd:maxInclusive value="99"/>
470 </xsd:restriction>

</xsd:simpleType>
472 </xsd:attribute>

<xsd:attribute name="version" type="xsd:float"
474 use="optional" default="1.0"/>

</xsd:extension>
476 </xsd:complexContent>

</xsd:complexType>
478

</xsd:schema>

300

Grammar of the Service Information
Specification Language (SISL)

The necessity of a formalism to specify information items within
the data flow of a process has been discussed in Chapter 5. The
SISL has been identified as a candidate that fulfils the requirements
imposed by the message-based information transport employed in
distributed, policy-based process execution. However, SISL has only
been outlined in that context. This annex provides the specification
of its XML-based grammar.

Listing 2: SISL Schema

<?xml version="1.0" encoding="ISO-8859-1"?>
2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="resource" type="resource"/>
4 <xs:complexType name="resource">

<xs:sequence>
6 <xs:element name="source" type="xs:string"/>

<xs:element name="identifier" type="identifier"/>
8 <xs:element name="description" type="description"/>

<xs:element name="sourceAttrib" type="sourceAttrib"
/>

10 </xs:sequence>
</xs:complexType>

12 <xs:element name="function" type="function"/>
<xs:complexType name="function">

14 <xs:sequence>
<xs:element name="method" type="xs:string"/>

16 <xs:element name="return" type="xs:string"/>
<xs:element name="identifier" type="identifier"/>

18 <xs:element name="description" type="description"/>
<xs:element name="parameters" type="parameters"/>

20 </xs:sequence>
</xs:complexType>

22 <xs:element name="identifier" type="identifier"/>
<xs:complexType name="identifier">

24 <xs:sequence>
<xs:element name="id" type="xs:string"/>

26 </xs:sequence>
</xs:complexType>

28 <xs:element name="sourceAttrib" type="sourceAttrib"/>
<xs:complexType name="sourceAttrib">

30 <xs:sequence>

301

SISL Schema

<xs:element name="interval" type="xs:float"/>
32 <xs:element name="return" type="xs:string"/>

<xs:element name="identifier" type="identifier"/>
34 </xs:sequence>

</xs:complexType>
36 <xs:element name="parameters" type="parameters"/>

<xs:complexType name="parameters">
38 <xs:sequence>

<xs:element name="valueset" type="valueset"/>
40 </xs:sequence>

</xs:complexType>
42 <xs:element name="valueset" type="valueset"/>

<xs:complexType name="valueset">
44 <xs:sequence>

<xs:element name="resourceRef" type="resourceRef"/>
46 <xs:element name="functionRef" type="functionRef"/>

</xs:sequence>
48 </xs:complexType>

<xs:element name="resourceRef" type="resourceRef"/>
50 <xs:complexType name="resourceRef">

<xs:sequence>
52 <xs:element name="id" type="xs:string"/>

</xs:sequence>
54 </xs:complexType>

<xs:element name="functionRef" type="functionRef"/>
56 <xs:complexType name="functionRef">

<xs:sequence>
58 <xs:element name="id" type="xs:string"/>

</xs:sequence>
60 </xs:complexType>

<xs:element name="condition" type="condition"/>
62 <xs:complexType name="condition">

<xs:sequence>
64 <xs:element name="identifier" type="identifier"/>

<xs:element name="description" type="description"/>
66 <xs:element name="boolExpression" type="

boolExpression"/>
</xs:sequence>

68 </xs:complexType>
<xs:element name="declaration" type="declaration"/>

70 <xs:complexType name="declaration">
<xs:sequence>

72 <xs:element name="valueset" type="valueset"/>
</xs:sequence>

74 </xs:complexType>
<xs:element name="boolExpression" type="boolExpression"/>

76 <xs:complexType name="boolExpression">
<xs:sequence>

78 <xs:element name="expression" type="xs:string"/>
</xs:sequence>

80 </xs:complexType>
<xs:element name="aggregation" type="aggregation"/>

82 <xs:complexType name="aggregation">
<xs:sequence>

84 <xs:element name="resource" type="resource"/>
<xs:element name="function" type="function"/>

86 <xs:element name="description" type="description"/>

302

<xs:element name="notification" type="notification"
/>

88 <xs:element name="identifier" type="identifier"/>
</xs:sequence>

90 </xs:complexType>
<xs:element name="description" type="description"/>

92 <xs:complexType name="description">
<xs:sequence>

94 <xs:element name="author" type="xs:string"/>
<xs:element name="date" type="xs:string"/>

96 <xs:element name="text" type="xs:string"/>
</xs:sequence>

98 </xs:complexType>
<xs:element name="notification" type="notification"/>

100 <xs:complexType name="notification">
<xs:sequence>

102 <xs:element name="condition" type="condition"/>
<xs:element name="declaration" type="declaration"/>

104 <xs:element name="description" type="description"/>
</xs:sequence>

106 </xs:complexType>
</xs:schema>

303

SISL Schema

304

Index

A
activity diagram 73
agent . 16

in customer domain. 30
mail transfer 141
management 28, 29
mobile 265
performance management . 29
SNMP. 118

Application Service Provider . . . 26
architecture

components. 207, 227
interoperation 215

ASP . 26
Availability Management 67

B
BEIDTF . 72
BPMI. 72
BPML . 72
BPMN. 72
Business Modeling & Integration Do-

main Task Force.
72

business process 9
Business Process Execution Language

for Web Services 72
Business Process Management Ini-

tiative
72

Business Process Modeling Language
72

Business Process Modeling Notation
72

C
CA . 256
Capability Maturity Model 77
Capability Maturity Model Integra-

tion .
77

Capacity Management 67
Certification Authority. 256
Change Management 65
CI . 43
CIM Object Manager 231
CIMOM . 231
CMDB 43, 64, 69
CMM. 77
CMMI . 77
Configuration Item. 43
configuration item 66
Configuration Management. 66
Configuration Management Database

43, 64, 69

D
Definitive Hardware Store 65
Definitive Software Library. 65
DHS . 65
DII . 242
DSL . 65
Dynamic Invocation Interface . 242

E
ebXML . 71
Electronic Business using eXtensi-

ble Markup Language . .
71

emergency change 65
Enhanced Telecom Operations Map

15
eTOM . 15, 70
Extended Telecom Operations Map

70
eXtensible Access Control Modeling

Language 87

F
Financial Management for IT Ser-

vices
68

305

INDEX

Forward Schedule of Change . . . 45
FSC . 45

G
generating system 96, 152, 161, 163

I
IDS . 40
IDS Scheer . 75
Incident Management 63
Intrusion Detection System 40
IT Infrastructure Library 15
IT management process 10
IT Service Capability Maturity Model

78
IT Service Continuity Management

68
IT Service Management 7
ITIL . 15, 63

process formalisation 69
service delivery 66
service support 63

ITSCMM . 78
ITSM . 7

K
Key Performance Indicator 64
known error . 64
KPI. 64

L
LDAP 125, 208
Lightweight Directory Access Pro-

tocol
208

M
mail transfer agent 141
management

autonomic 267
discipline 11
self- . 267

maturity model 77
mobile agent 265
MTA . 141

N
New Generation Operations Systems

and Software 70
NGOSS . 70

O
OASIS . 71
Object Management Group 72
Object Request Broker 240
OMG . 72
ORB . 240
Organization for the Advancement

of Structured Information
Standards 71

outsourcing . 26

P
pattern. 78, 173

basic pattern 143
catalogue 143
condition pattern 144

conjunctive 147
disjunctive 146
mixed 148

synchronisation pattern . . 149
variants 143

PbM . 13, 80
PCIM. 84
PDP . 83
PEP . 84
PIR . 45, 65
PKI . 34, 256
policy

architecture 84, 209
conflict 82
hierarchy 81
language. 85
refinement 82
standardisation 84
type . 81

Policy Core Information Model . 84
Policy Decision Point 83
Policy Execution Point 84
Policy-based Management . . 13, 62
Post Implementation Review 45, 65
privacy . 264
Problem Management 64
process

change 205
data flow 181
detail metric. 264
formalism 13, 61, 71, 106
framework 15, 61
implementation 202
language 61, 106

306

INDEX

life-cycle 11, 200
maturity. 77
operational 63
oriented 14
pattern 61, 78
refinement 203
support tool 10, 266

profile . 73
ProPoliS . 238
Public Key Infrastructure . 34, 256

R
Real Organisation 33
Release Management 65
Remote Method Invocation . . . 124
Request for Change 45, 65
RfC . 45, 65
RMI . 124
RO . 33
rollback plan 65

S
SAMM. 78
SAP . 28
security . 264
Security Management 68
Service Access Point 28
service desk . 63

virtual . 64
Service Information/Data 70
Service Level Management 67
Service Oriented Architecture . . 19
Service Oriented Monitoring Archi-

tecture
226

service request 64
Sevice Level Agreement 245
SID . 70
Simple Object Access Protocol 243
Single Point Of Contact 26
SLA . 66, 245
SLM . 67
SMONA . 226
SNMP. 116, 123, 183, 243

agent . 118
SOA . 19
SOAP . 243
SPOC. 26, 63
substitution rule 172
System Administration Maturity Model

78

T
tool

interface 12
OSS . 266
process support 10
service management 12
system & network management

12
translation pattern 143

U
UC . 29
UML . 72

activity diagram 73
profile . 73

UN/CEFACT. 71
Underpinning Contract. 29
Unified Modeling Language 72
United Nations Centre for Trade Fa-

cilitation and Electronic
Business 71

V
variants . 143
Virtual Organisation 33
VO . 33

W
Web Service 72
Web Service Definition Language . .

72
WfMC . 73
workaround . 64
workflow

language see
process formalism

Workflow Management Coalition . .
73

WS . 72
WS-BPEL, BPEL4WS 72
WSDL . 72

X
XACML . 87
XMI . 73
XML Model Interchange 73
XML Process Definition Language

74
XPDL . 74

307

	Contents
	I Foundation
	1 Introduction
	1.1 Problem statement
	1.2 Approach Outline
	1.3 Subproblems and results
	1.4 Structure of this work

	2 Scenarios and requirements analysis
	2.1 Inter-domain application service management
	2.1.1 Management processes and tools
	2.1.2 Roles, relationships, and interfaces
	2.1.3 Challenges

	2.2 Grid management
	2.2.1 Management arrangements
	2.2.2 Management challenges
	2.2.3 Summary

	2.3 Practical example
	2.3.1 Setting
	2.3.2 Example process partition
	2.3.3 Automation of activities
	2.3.4 Tools
	2.3.5 Challenges

	2.4 Requirements
	2.4.1 Requirements catalogue
	2.4.2 Weighting of requirements
	2.4.3 Discussion

	3 Related work
	3.1 Reference process frameworks
	3.1.1 IT Infrastructure Library
	3.1.2 Extended Telecom Operations Map

	3.2 Formalisms for process representation
	3.2.1 UN/CEFACT and OASIS
	3.2.2 OMG and BPMI
	3.2.3 Workflow Management Coalition
	3.2.4 IDS Scheer
	3.2.5 Interrelations of process formalisms
	3.2.6 Process maturity
	3.2.7 Summary

	3.3 Pattern in processes
	3.4 Policy Fundamentals
	3.4.1 Policy refinement
	3.4.2 Policy conflicts
	3.4.3 Architecture for policy-based management
	3.4.4 Standardisation efforts

	3.5 Policy Languages
	3.5.1 Ponder
	3.5.2 Rei
	3.5.3 PDL
	3.5.4 ProPoliS
	3.5.5 XACML

	3.6 Summary and appraisement

	II Elaboration
	4 Process translation
	4.1 Analysis of process and policy formalisms
	4.1.1 Requirements of IT Management processes
	4.1.2 Basic elements
	4.1.3 Assessment of process formalisms
	4.1.4 Analysis conclusions
	4.1.5 Requirements for policy formalisms
	4.1.6 Assessment of policy formalisms
	4.1.7 Summary of analysis results

	4.2 Meta-models of process representation
	4.2.1 Simple meta-model for process definitions
	4.2.2 Target meta-model

	4.3 Substitution rules
	4.3.1 Context-free substitution
	4.3.2 Context-sensitive substitution
	4.3.3 Order of application

	4.4 Methodology for translation
	4.4.1 Outline
	4.4.2 Description of steps
	4.4.3 Discussion

	4.5 Fundamental patterns
	4.5.1 Basic pattern
	4.5.2 Condition patterns
	4.5.3 Synchronisation pattern
	4.5.4 Discussion

	4.6 Detection and translation
	4.6.1 Fragment discrimination
	4.6.2 Algorithms

	4.7 The generating system
	4.7.1 Elements and transformations
	4.7.2 Demonstration of totality

	4.8 Extending the pattern catalogue
	4.8.1 Pattern substitution
	4.8.2 Pattern extension mechanism

	4.9 Translation example
	4.9.1 Application of the substitution rules
	4.9.2 Identifying patterns
	4.9.3 Translation result
	4.9.4 Optimisation

	4.10 Summary

	5 Process data flow
	5.1 Preservation of the information flow
	5.1.1 Data/information items in processes
	5.1.2 Attaching information specification to patterns

	5.2 Requirements on information transport
	5.2.1 Dimensions of process data flow
	5.2.2 Policy-based process realisation

	5.3 Realisation of process data flow
	5.4 Summary

	6 Architecture
	6.1 Management process life-cycle
	6.1.1 Initial workflow
	6.1.2 Implementation phase
	6.1.3 Change and iterative refinement
	6.1.4 Decommission and retirement

	6.2 Functional components
	6.2.1 Process management station
	6.2.2 Management policy architecture
	6.2.3 Process-to-policy translator
	6.2.4 Facilities for information transport
	6.2.5 Tools
	6.2.6 Abstraction layers

	6.3 Interoperation
	6.3.1 Fundamental interactions

	6.4 Summary and discussion

	III Proof of Concept
	7 Exemplary design
	7.1 Components overview
	7.2 SLPR -- A minimal process language
	7.2.1 Language overview
	7.2.2 Grammar
	7.2.3 SLPR Example

	7.3 The Process-aware Policy System
	7.3.1 Language
	7.3.2 Components

	7.4 A facility for information aggregation
	7.5 Summary

	8 Evaluation
	8.1 Fulfilment of requirements
	8.2 Issues and hazards
	8.3 Applicability

	IV Conclusions and Further Work
	9 Future prospects
	9.1 Issues for further study
	9.1.1 Metrics for process detail
	9.1.2 Security and privacy considerations
	9.1.3 Independent policy

	9.2 Applications
	9.2.1 Generalisation
	9.2.2 Bottom-up assessment of tool requirements
	9.2.3 Self-management

	10 Summary and conclusions
	List of Figures
	List of Tables
	List of Abbreviations
	Bibliography
	ProPoliS Schema
	SISL Schema
	Index

