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Zusammenfassung

Diese Arbeit beschéftigt sich mit verschiedenen Aspekten der K-essence-Theorien. Diese
sind skalare Feldtheorien, die sich durch allgemeinkovariante und Lorentz-invariante Wirkun-
gen mit nicht kanonischen kinetischen Termen auszeichnen. Es wird gezeigt, dass wegen
der intrinsischen Nichlinearitét diese Theorien unerwartete und ungewthnliche physikalis-
che Eigenschaften haben kénnen. Jede nichttriviale dynamische Losung der K-essence-
Bewegungsgleichungen bricht die Lorentzsymmetrie spontan genauso wie in den kanon-
ischen relativistischen Feldtheorien der Fall ist. Demzufolge breiten sich die Stérungen
um diese Losung in einem neuen Ather aus. Im Gegensatz zu den iiblichen relativistischen
Feldtheorien propagieren sich diese Stérungen in einer effektiven Metrik, welche sich von der
gewohnlichen Gravitationsmetrik unterscheidet. Diese effektive Metrik wird als die soge-
nannte emergent Raumzeit interpretiert. Es wird gezeigt, dass die Dynamik der Storungen
durch eine Wirkung beschrieben werden kann, die im Bezug auf die Reparametrisierung
dieser emergent Raumzeit allgmeinkovariant ist. Das interessanteste Artefakt dieser emer-
gent Raumzeit ist das mogliche Vorhandensein der Uberlichtgeschwindigkeiten fiir die Aus-
breitung der Stérungen. Es wird gezeigt, dass die kausalen Paradoxen trotz Ausbreitung
mit der Uberlichtgeschwindigkeit in diesen Theorien nicht auftreten, und in diesem Sinne
sind solche Theorien nicht weniger unsicher als Allgemeine Relativitatstheorie. Die Aus-
breitung der Stérungen mit der Uberlichtgeschwindigkeit hat interessante Folgen fiir Kos-
mologie und Physik der Schwarze Locher. Insbesondere ist es moglich Inflationsmodelle
mit verstarkter Produktion an Gravitationswellen zu konstruieren. Dies wiederum kann
in der nahen Zukunft durch Beobachtung der Kosmischen Hintergrundstrahlung iiberpriift
werden.

Auferdem wird gezeigt, dass es K-essence-Modelle existieren, die prinzipiell erlauben
wiirden, Informationen aus der Region hinter dem Ereignishorizont eines Schwarzen Loches
zu bekommen. Diese Informationen sind in den Stérungen um eine solche Losung imple-
mentiert, die stationdre Akretion der K-essence in das Schwarze Loch beschreibt.

Zusétzlich wird eine mogliche dynamische Verletzung der Null-Energie-Bedingung (NEB)
in den K-essence-Modellen diskutiert. Die Verletzung der NEB durch die dynamische Dun-
kle Energie (DE) ist nicht ausgeschlossen und sogar ein wenig bevorzugt bei den Beobach-
tungenﬂ. Aufserdem spielt die Verletzung der NEB eine duferst wichtige Rolle in den
Pre-Big Bang-Szenarien. Es wird gezeigt, dass im Rahmen der K-essence eine dynamische
Verletzung der NEB physikalisch nicht plausibel ist.

'Die Dunkle Energie, die die Null-Energie-Bedingung verletzt, wird manchmal als Phantom bezeichnet.
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Abstract

In this work we consider different aspects of k-essence theories, which are scalar field the-
ories described by the generally covariant and Lorentz invariant action with non-canonical
kinetic terms. It is shown that, because of the intrinsic nonlinearity, these theories can have
rather unexpected and unusual physical properties. As in the usual relativistic field theo-
ries, any nontrivial dynamical solution of the k-essence equation of motion spontaneously
breaks the Lorentz invariance. Thus the perturbations around such solutions propagate
in a new aether. In contrast to the usual relativistic field theories, these perturbations
propagate in an effective metric which is different form the usual gravitational metric.
This effective metric can be interpreted as the so-called emergent spacetime. In this thesis
we show that the dynamics of the perturbations can be described by the action which
is generally covariant with respect to the reparameterization of this emergent spacetime.
The most interesting manifestation of this emergent spacetime is that perturbations can
propagate faster than light. We show that despite the superluminal propagation the causal
paradoxes do not arise in these theories, and in this respect these theories are not less safe
than General Relativity. This superluminal propagation of perturbations has interesting
consequences for cosmology and black hole physics. In particular, it is possible to construct
models of inflation with an enhanced production of gravitational waves. This in turn can
be verified in the nearest future by the observations of the B-mode polarization of the
Cosmic Microwave Background Radiation (CMBR).

Moreover, we have shown that there exist k-essence models which in principle allow
to obtain information from the region beyond the black hole horizon. This information
is encoded in the perturbations around the solution describing the stationary accretion of
the k-essence onto the black hole.

In addition, we discuss the possible dynamical violation of the Null Energy Condition
(NEC) in the k-essence models. The violation of NEC by the dynamical Dark Energy
(DE) is not excluded and even slightly preferred by observations]. Moreover, the violation
of NEC plays a crucial role in the pre-Big-Bang scenarios. We have shown that in the
framework of general k-essence the dynamical violation of NEC is physically implausible.

2The NEC-violating Dark Energy is sometimes called Phantom.
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Chapter 1

Introduction and Discussion

During last years theories described by the action with non-standard kinetic terms, at-
tracted a considerable interest. The first theory of this kind was introduced in 1934 by M.
Born and L. Infeld [T] to avoid the infinite self-energy of the electronfl. Further in 1939
and 1952 such nonlinear scalar field theories were studied by W. Heisenberg in connection
to physics of cosmic rays [A] and meson production [5] respectively. The ideas of M. Born
and L. Infeld were further developed by P. Dirac in [6] in 1962. The non-canonical ki-
netic terms are rather common for effective field theories arising from string theory and in
particular in D-branes models e.g. [, B, @, [0, [[T]. In cosmology such theories were first
studied in the context of k-inflation [12], and then the k-essence models were suggested as
dynamical Dark Energy (DE) for solving the cosmic coincidence problem [T3] [T4], see also
[T5]. Ome can also try to describe dark matter using k-essence or tachyon fields [I0, [I6].
The ghost condensation scenario [I7)|, ghost inflation [I8] and phantom dark energy [T9Y)
can be thought of as the further developments of this ideas.

Throughout the text we will refer to general scalar field theories with non-quadratic
kinetic terms as the k-essence.

An interesting difference between the relativistic field theories with canonical kinetic
terms and k-essence is that nontrivial dynamical solutions of the k-essence equation of
motion not only spontaneously break Lorentz invariance but also change the metric for the
perturbations around these solutions. Thus the perturbations propagate not only in the
new aether determined by the background solution but also in the so-called emergent or
analogue curved spacetime [20] with the metric different from the gravitational one.

Recently spontaneous breaking of the Lorentz invariance and questions related to this
issue, such as superluminal propagation of perturbations in nontrivial backgrounds, at-
tracted renewed interest among physicists. One of the basic questions here is whether the
theories allowing superluminal velocities possess internal inconsistencies and, in particular,
inevitably lead to the causality paradoxes namely to the appearance of the Closed Causal
Curves (CCCs). Concerning this issue there exist two contradicting points of view. Some
authors (see, for instance classical textbook [21] and recent papers [22, 23, 241 25, 26, 27,

LA similar way of limiting the curvature of spacetime was considered in |2, 3]



2 1. Introduction and Discussion

28, 29, B0, BT, B2]) argue that the subluminal propagation condition should a priori be
imposed to make the theory physically acceptable. For example, in [2I] on page 60 the
authors introduce the “Postulate of Local Causality” which excludes the superluminal ve-
locities from the very beginning. The requirement of subluminality is sometimes used to
impose rather strong restrictions on the form of the admissible Lagrangians for the vector
and higher spin fields [29, B0] and gravity modifications [27, BT, B2]. The effective field
theories (EFT) allowing superluminal propagation were considered in [28], where it was
argued that in such theories global causality and analyticity of the S-matrix may be easily
violated. The main conclusion of |28] is not favorable for the theories with superluminal
propagation. In particular the authors claim that the UV-completion of such theories must
be very nontrivial if it exists at all (for a different attitude see |33, B4, 35]).

An open minded opinion concerning the superluminal propagation is expressed in [36],
where one argues that the proper change of the chronological ordering of spacetime in
non-linear field theory with superluminal propagation allows us to avoid causal paradoxes.

Recently, several cases were discussed in the literature where faster-than-light propa-
gation arises in a rather natural way. In particular we would like to mention the noncom-
mutative solitons [37, BY, B9|, Einstein aether waves [40], “superluminal” photons in the
Drummond-Hathrell effect [41) 42, 43, 44] and in the Scharnhorst effect [45, 46, 47, 48],
see also [49, B0, BT B. These last two phenomena are due to the vacuum polarization i.e.
higher-order QED corrections. It was argued that this superluminal propagation leads to
the causal paradoxes in the gedanken experiment involving either two black holes [52] or
two pairs of Casimir plates [63] moving with the high relative velocities. To avoid the
appearance of the closed causal curved in such experiments the authors of [53| invoked the
Chronology Protection Conjecture [54] (see also [55l B, B7]) and showed that the photons in
the Scharnhorst effect causally propagate in effective metric different from the Minkowski
one.

Note that the superluminal propagation cannot be the sole reason for the appearance of
Closed Causal Curves. There are numerous examples of spacetimes in General Relativity,
where the “Postulate of Local Causality” is satisfied and, nevertheless, the Closed Causal
Curves are present, see e.g. Refs. [58, B9, 60, 61, 62, 63, 64, 65, 66, 67, 6] and for the
recent review of the CCCs-time machines see [68|. Therefore an interesting question arises
whether the superluminal propagation leads to additional problems related with causality
compared to the situation in General Relativity.

In this thesis we will consider the k-essence fields [12, 13}, 14}, 69, [70, [T, 16, 2], [73, [74), [75]
and repeat our arguments from [75] that contrary to the claim of [23, 22| the causality is
not violated in generic k-essence models with superluminal propagation (this point of view
was also advocated in [0, [7, [78, [79, 80]). In particular we show that in the test field
approximation one can always describe the perturbations by the action which is generally
covariant in the curved emergent spacetime. This action correspond to the action of the

2In this work under superluminal we always mean “faster than light in usual QED vacuum in unbounded
empty space”. To avoid confusion one could say that photons propagate faster than gravitons in the
Scharnhorst effect. When this thesis was in the stage of preparation the superluminal wave-front velocity
in these effects was putted under question |35 34].



canonical Klein-Gordon scalar field in the curved spacetime and is valid for perturbations
around any solution of arbitrary k-essence in any gravitational background. Here it is
important to note that for the perfect fluid similar results were derived in [81], for details
see Appendix [Al Further we show that also in the case of superluminal propagation the
emergent spacetime is stably causal in most of the interesting cases and therefore does not
allow any causal paradoxes. Thus in this sense, in spite of the presence of superluminal
signals on nontrivial backgrounds, the k-essence theories are not less safe and legitimate
than General Relativity.

The possibility of the superluminal propagation of perturbations has interesting and
falsifiable consequences for inflationary cosmology see e.g. [82, 83, 84]. The main con-
sequence of inflation is the generation of primordial cosmological perturbations [85] and
the production of long wavelength gravitational waves (tensor perturbations) [86]. The
predicted slightly red-tilted spectrum of the scalar perturbations is at present in excel-
lent agreement with the measurements of the CMB fluctuations |87, B8|. The detection
of a small deviation of the spectrum from flat together with the observation of primordial
gravitational waves would make us completely confident in early-time cosmic acceleration.
The detection of primordial gravitational waves is not easy, but they can be seen indirectly
in the B-mode of the CMBR polarization (see, for example, [82]). In standard slow-roll
inflationary scenarios [89] the amplitude of the tensor perturbations can, in principle, be
large enough to be discovered. However, it is only on the border of detectability in future
experiments.

There is no problem to modify the inflationary scenarios in a way to suppress the tensor
component produced during inflation. In particular, in models such as new inflation [90),
9T] and hybrid inflation [92], tensor perturbations are typically small [82]. Moreover,
in the curvaton scenario [93, 04, 95, 96, 97, O8], 09 and k-inflation [12, 6Y], they can be
suppressed completely. Finally in the current string theory inspired inflationary models the
gravitational waves production is completely suppressed [T00] by the factor 10724 relatively
to chaotic inflation. Thus gravitational waves from string inflation are far beyond the
detectability in the future experiments. Therefore as it was mentioned in [T00] a possible
experimental discovery of tensor modes may present a challenge to string cosmology.

An interesting question is whether the gravitational waves can be significantly enhanced
compared to our naive expectations. Recently it was argued that the contribution of
tensor perturbations to the CMB anisotropy can be much greater than expected [T0T], T02].
However, it was found in [I03] that in the models considered in [I0T], [T02] one cannot avoid
the production of too large scalar perturbations and therefore they are in contradiction with
observations. It is also possible to produce blue-tilted spectrum of gravitational waves in
a so-called super-inflation [I04], which is, however, plagued by graceful exit problem [T05].

Before our paper [70)] there did not exist any inflationary model with graceful exit
Awhere the B-mode of polarization would exceed the value predicted by simple chaotic
inflation. In [f0] we have shown that such models can be easily constructed even within

3generically with spacetime-dependent mass.
4see however [T06].



4 1. Introduction and Discussion

the class of simple slow-roll inflationary scenarios, if we allow a nontrivial dependence of
the Lagrangian on the kinetic term. These models resemble k-inflation with only difference
that here inflation is due to the potential term in the Lagrangian.

Another natural question arising in regard to the superluminal propagation concerns

the physics of Black Holes. Can one use the superluminal propagation in order to obtain
information from the region beyond the horizon? In our papers |73 [75] we have shown
that it is possible to construct a model which allows one to send signals from the interior
of the black hole. These signals are small perturbations around the solution describing the
accretion of the k-essence onto the black hole.
The inherent nonlinearity of k-essence could theoretically account for the dynamical viola-
tion of the Null Energy Condition (NEC). This would correspond to the super-acceleration
of the universe filled with this k-essence. The recent observations in turn allow for (and,
as it is also sometimes claimed even slightly prefer) the super-acceleration of our universe
now. One of the greatest challenges in modern cosmology is understanding the nature of
the observed late-time acceleration of the universe. The present acceleration expansion
seems to be an experimental fact, now that data from supernovae type Ia [I07, 108, T09],
corroborated later by those from the cosmic microwave background [IT0] have been recently
confirmed by the observations of the largest relaxed galaxy clusters [ITT]. Although the
observations are in a good agreement with the simplest explanation given by a cosmological
constant A of order (1072eV)?, the mysterious origin of this tiny number which is about
120 orders smaller than the naive expectations, gives rise to the idea of a dynamical nature
of this energy. Possible dynamical explanations of this phenomenon are given in various
frameworks. One of them is known as quintessence (see e.g. [I12| and other references
from the reviews [IT3, [[T4]). In this framework the equation of state p = we is such that
w > —1. Another proposal is the phantom scalar fields (see e.g. [I9, [[T5]) which possess
the super-negative equation of state w < —1, usually due to the “wrong” sign before the
kinetic term in the Lagrangian. Alternatively there is a more general possibility under the
name k-essence [I3, [[4] which is an effective scalar field theory described by a Lagrangian
with a nonlinear kinetic term. For this model the equation of state w is not constrained
to be larger or smaller than —1. Allowing the dark energy to be dynamical provides an
opportunity to study the so-called coincidence problem which asks why dark energy dom-
ination begins just at the epoch when sentient beings are able to observe it. The main
advantage of k-essence is its ability to solve this problem in a generic way (for details see
[13, [14]), whereas the first two models require a fine-tuning of parameters.

Without imposing the prior constraint w > —1, the observations seem to favor the dark
energy with the present equation of state parameter w < —1 (see e.g. Ref. [I11], 109, [IT6,
117]). Moreover, recently it was argued (see Ref. [T18, [[T9] and other constraints on w(z)
obtained in Ref. [T20], 121, 122l 123, 124! 125, [126]) that the dark energy with the equation
of state parameter w(z) rapidly evolving from the dust like w ~ 0 at high redshift z ~ 1,
to phantom like —1.2 < w < —1 at present z ~ 0 provides the best fit for the supernovae
Ia data and their combinations with other currently available CMBR and 2dFGRS data
(see more also more recent 2dFGRS result [T27] where the w < —1 is not preferred but
still consistent with the data). For the recent discussion see reviews [128, [TT4].



In General Relativity, matter with w < —1 violates all classical energy conditions [2T]
see also [I29]. Therefore for such models one cannot guarantee the stability of vacuum
on the classical level. The instability can reveal itself at the quantum level as well. In
fact, it was shown that the phantom scalar fields are quantum-mechanically unstable with
respect to decay of the vacuum into gravitons and phantom particles with negative energy
130, 129, 137, 132, 21, 133]. Assuming that the phantom dark energy is an effective
theory allows one to escape this problem through the appropriate fine-tuning of the Lorentz
symmetry violating cutoff parameter. Here it is worth mentioning that quantum effects
on a locally de Sitter background could lead to the effective parameter w < —1 (see
Ref. [134, 135 [136]). If the dark energy could dynamically change its equation of state from
a phantom-like one to that with w > —1, then this transition might prevent the undesirable
particle production with less fine-tuning of the Lorentz violating cutoff mentioned above.
Sometimes this dynamical transition through w = —1 is called phantom divide crossing
[I28] or cosmological-constant boundary crossing [137].

Another fundamental physical issue where this transition could play an important role
is the cosmological singularity problem. If w < —1 in the expanding Friedmann universe,
then the positive energy density of such phantom matter generally becomes infinite in finite
time, overcoming all other forms of matter and hence leads to the late-time singularity
called the “big rip” [I15]. The transition under consideration could naturally prevent this
late-time singularity. Here it is worthwhile to mention that for a certain potentials and
initial conditions the phantom scalar fields can escape this singularity by evolving to a late

time asymptotic which is the de Sitter solution with w = —1 [I38, [[17]. Moreover, it was
argued that the quantum effects can prevent the developing of the “big-rip” singularity as
well [T39].

On the other hand, to avoid the big crunch singularity, which arises in various pre-big
bang and cyclic scenarios (see e.g. [T40), [T4T, T42]), one assumes that the universe can
bounce instead of collapsing to the singularity. The existence of a non-singular bouncing
solution in a flat (or open) Friedmann universe requires the violation of the NEC during
the bounce [T43]. If the energy density ¢ is constrained to be positive, then it follows that
NEC violation or w < —1 is the necessary condition for the bounce. But the energy density
of such phantom matter would rapidly decrease during the collapse and therefore only the
transition from w > —1 to w < —1 just before the bounce could explain the non-singular
bouncing without a fine-tuning in initial energy densities of phantom and other forms of
matter present in the universe.

It is worth noting as well that for regimes where the equation of state of the k-essence
field is greater than —1 it is possible to find a quintessence model which gives the same
cosmological evolution but behaves differently with respect to cosmological perturbations
[T44]. Hence it is interesting whether this equivalence can be broken dynamically.

Note that the models with two fields dubbed Quintom [124), 145l [T46] (see also [147])
and higher derivative models [I48, 149, [[50] can account for the phantom divide crossing
as well but they seem to suffer from the quantum-mechanical instability mentioned above.
There are more complicated models like vector fields [I51L [[52], gravity modifications (for
consistent models see Refs. [153, T[54, [T55] and references therein), some braneworld models
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e.g. [I56], which can account for the crossing without violating the stability. Moreover,
there sting field theory inspired models e.g. [T57, [158, [[32] which are inherently nonlocal
and can evolve through the phantom divide as well. Recently, it was claimed [T59, 160, [T6T],
162] that it is possible to construct higher derivative effective field theories which violate
NEC dynamically without introducing new dynamical degrees of freedom. The quantum
stability of this models seems to be at least questionable because the fluctuations have
negative energy and the instability discussed long ago in [21] in connection with Creation
field 163, 147 should take place here as well. Hovewer, this issue requires additional
consideration. Another type of instability, which is relevant for these models, and which
was used in the arguments in [I05] is associated with the negative square of the sound speed.
As we discuss in the Section Bl this correspond to Riemannian signature of the emergent
spacetime and to the elliptic equations of motion. It is well known that the Cauchy problem
for elliptic equations is ill defined see e.g. [I64]. This is the well posedness of the Cauchy
problem that forces our spacetime to have the Lorentzian signature.

Thus without proper consideration of the higher derivatives the theories |19, 60} 16T,
162] were physically meaningless. On the other hand the dynamical violation of the NEC
is generically related to the change of signature in the emergent spacetime. Thus the
hypersurfaces in the emergent spacetime where the signature changes correspond to the
curvature singularities or degeneracy of the emergent metric. One could expect therefore
that the quantum effects like vacuum polarization and particle production e.g.[165] may
became significant to modify the imposed dynamics of the system. We think that this
interesting issue requires further detailed investigation. It is important to note that there
are analogy of the signature change in the Bose-Einstein condensates [T166].

In this work we review our arguments from [I05] and show that the phantom divide
crossing is physically implausible in the framework of k-essence. Therefore in [105] we
conclude that, if future observations reveal the phantom divide crossing behaviour of DE
then it should contain at least additional degrees of freedom or higher derivatives (see also
[T47]). Thus the possible phantom divide crossing would be a “smoking gun” for the very
unusual new physics.

The thesis is organized as follows. In the Chapter [ we introduce general formalism
for k-essence. In particular in the Section EZT] we discuss general properties of the k-
essence equation of motion and energy-momentum tensor. The next Section is devoted
to the basic equations describing the dynamics of the Friedmann universe filled with k-
essence. Further in the Section we very briefly present the basic facts from the theory
of cosmological perturbations.

The next Chapter Bl deals with the causality and emergent geometry. This Chapter
is based on our paper [75]. In the Section Bl we discuss perturbations around arbitrary
k-essence solution and gravitational background in the test field approximation. Here
we present the generally covariant action for perturbations and introduce the emergent
geometry. In the Section we consider the emergent geometry and generally covariant
form of the action for cosmological perturbations. The derivation of the generalized Dirac-
Born-Infeld action from the simplicity requirement of the emergent geometry can be found
in the Section



General aspects of causality and propagation of perturbations on a nontrivial back-
ground, determining the mew aether, are discussed in the Section B4l In particular,
here we prove that no causal paradoxes arise in the cases studied in our previous works
[71), 1700, 72, [73), 13, [14].

Section is devoted to the Cauchy problem for k-essence equation of motion. We
investigate under which restrictions on the initial conditions the Cauchy problem is well
posed.

In the Section we study the Cauchy problem for small perturbations in the new
aether rest frame and in the fast moving spacecraft.

Section B.7 is focused on the Chronology Protection Conjecture, which is used to avoid
the CCCs in gedanken experiments considered in [2§].

In the Section we discuss the universal role of the gravitational metric. Namely,
we show that for the physically justified k-essence theories the boundary of the smooth
field configuration localized in Minkowski vacuum, can propagate only with the speed not
exceeding the speed of light. In agreement with this result we derive that exact solitary
waves in purely kinetic k-essence propagate in vacuum with the speed of light.

Our main conclusions concerning the causality and emergent geometry in k-essence
models are summarized in the Section B9

The next Chapter is based on our work [I05] and contains strong arguments why the
phantom divide crossing cannot be realized in the k-essence framework (without higher
derivatives).

Firs in the Section 1] we determine the properties of a general Lagrangian, which are
necessary for the smooth transition of the k-essence scalar field ¢ from the equation of
state w(¢, (b) > —1 to w(g, ¢) < —1 or vice versa. The transition obviously happens if the
system passes through the boundaries of the domains in the space (¢, (b), defined by these
inequalities. In most of this Chapter we assume that the k-essence dark energy dominates in
the spatially flat Friedmann universe. The main question is whether trajectories connecting
these domains on the phase space (¢, gb) do exist and are stable with respect to cosmological
perturbations. In the case of the phase curves which do not violate the usual stability
condition, we study their asymptotic behavior in the neighborhood of the points where the
transition could occur. To proceed with this analysis we linearize the equation of motion
in the neighborhood of these points and then use the results of the qualitative theory of
differential equations. From this analysis we infer that the solutions either change the
sign of the square of the sound speed or have measure zero. In the next Section we
perform this investigation in the linear as well as beyond the linear approximation for the
case of dark energy models described by Lagrangians linear in kinetic terms. For this class
of Lagrangians we illustrate the outcome of our analysis by numerically obtained phase
curves.

Further in the Section we generalize the results to the cases of spatially not-flat
Friedmann universes filled with a mixture or the dark energy and other forms of matter.
Our conclusions concerning the dynamical violation of NEC violation the reader can find
in the Section L4

The Chapter B is based on our works [7(), [T] and is devoted to the model of inflation
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where the production of the gravitational waves can be substantially enhanced with respect
to the usual chaotic inflation [89].

In the first Section of this Chapter Bl we discuss general properties of inflation with
potential domination and non-canonical kinetic term. Here we present the main idea of
this work. The next Section we present the a simple model based on the DBI-like
k-essence.

We briefly discuss the result of this Chapter in the Section B3

The last Chapter @ of this thesis is focused on the possibility to obtain information
from the region inside the Black Hole horizon. Here we consider the stationary spherically
symmetric accretion of the DBI-like k-essence onto the Schwarzschild Black Hole. This
section is based on our works [72 [75], [73]. In the Section we present the model based
on the DBI-like k-essence . Then we continue by studying the background solution in the
Section .2 In the next Section [B.3 we consider small perturbations and fix the integration
constants obtained for the background solution. Here we also present the formula for the
emergent geometry and derive the redshift of the acoustic signals which can be sent by the
spacecraft falling into the Black Hole together with the k-essence field. In the last Section
of this Chapter we briefly discuss our results.

All derivations of more technical nature we tried to put into Appendices. In Appendix
[Al we consider the connection between k-essence and hydrodynamics. In Appendix [Bl we
derive characteristics of the equation of motion and discuss local causality. Appendix [l is
devoted to the derivation of the generally covariant action for perturbations. In Appendix
we show how the action derived in Appendix [(]is related to the action for cosmological
perturbations from [69, 82]. The derivation of Green functions is given in Appendix [E]



Chapter 2

General Framework

2.1 Equation of motion and Energy-Momentum Tensor
for k-essence

In this thesis we consider the k-essence scalar field ¢ minimally coupled to the gravitational
field g,,,. Thus the k-essence action is:

Si[, g] = / Ao/ gL (X, 9), (2.1)

where

1
X =59"VuoV.o,

is the canonical kinetic term and by V, we always denote the covariant derivative associated
with metric g,,. We would like to stress that this action is explicitly generally covariant
and in particular this action is Lorentz invariant in the Minkowski spacetime.

The total action Sy [¢, g,,| describing dynamics of k-essence and the General Relativity
is the sum of Si[¢, g,,| and the Einstein-Hilbert action:

S0, = [ atay=g |50 R4 LX) (22)

where R is the Ricci scalar and M, = (87G, )™/ = 1.72x 10'® GeV is the reduced Planck
mass. Throughout this thesis we mostly use the units where h = ¢ = G, = 1, but in some
parts of this work we set M, = 1 or write the speed of light ¢ and the Newton constant
G, explicitly. This change of units will be always indicated.

The variation of the action (ZI) with respect to g, gives us the following energy-
momentum tensor for the k-essence scalar field:

2 68
V=g 8g9"

T, =L xV,0V,0—g.,L, (2.3)
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where (...) i is the partial derivative with respect to X. It is well-known that for timelike
field derivatives V,¢ (X > 0 in our signature) one can employ the hydrodynamic approach
to describe the system with the action (). For details see Appendix [Al To begin with
one can introduce the effective “four-velocity” as follows:

_

g

FTUVRX

where o = sign (0yp¢p). Further by using (Z4)), the energy-momentum tensor (Z3)) can be
rewritten in the perfect fluid form:

u

(2.4)

T = (g + ) upthy — PG,

where the pressure p is given by the Lagrangian density, p = L(X, ¢), and the energy
density is
e(X,9)=2XLx— L. (2.5)

It should be stressed that the energy density ¢ and pressure p introduced in this way are
scalars and correspond to Ty and —%T; only in the rest frame where u; = 0 and the scalar
field is locally isotropic. For various cosmological applications it is convenient to introduce
the equation of state parameter w

m.I@

w (2.6)

Note that w defined in this way characterizes intrinsic properties of k-essence in the co-
ordinate independent way. Sometimes we will interchange p and £ and use the function
e(X,¢) also for X < 0 when this function does not correspond to the energy density.
There are several conditions on the energy-momentum tensor which are usually supposed
to be physically reasonable and which are substantial for such important results in General
Relativity as singularity theorems, vacuum conservation theorem and black hole area the-
orem see Refs. |21, [[67], for a recent discussion see Ref. [T29] . One of these conditions is
the Null Energy Condition (NEC): T},,n#n” > 0, where n* is any null vector: g,,n*n” = 0.
This is one of the necessary conditions for the black hole area theorem and for some of
the singularity theorems. In the theory under consideration the NEC is satisfied provided
Lx > 0. For X > 0 we can use the hydrodynamical language where this inequality
corresponds to € + p > 0. The fields which violate NEC are sometimes called ghosts or
phantoms [19]. A possible violation of Null Energy Condition by a k-essence model would
imply the Hamiltonian unbounded from below and hence signifies an inherent instabil-
ity of the system [130), 129, 3T, 132]. As it follows from the action (ZII) the k-essence
field always interacts with gravity, and thus through gravity with all other matter fields.
Therefore, due to the gravitational interaction, the absolute value of the energy density
for phantom-like k-essence can grow along with the energy density of all other normal
fields. This unbounded growth corresponds to the unavoidable intrinsic instability of the
system. Long ago in [21] it was argued in connection with the so called Creation- or C-field
[163, 168, M69] that the difficulty associated with this instability is even worse from the
quantum mechanical point of view. Even if the cross-section for the creation of pairs of
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normal quanta and C-field or phantom quanta were very small, the infinite phase space
available for these positive and negative energy quanta would seem to result in an infinite
number of these pairs being produced in a finite region of spacetime. For this and other
possible instabilities in NEC-violating models see also [133), 70, [I71].

Another condition which is important for our discussion is the Dominant Energy Con-
dition (DEC): for every timelike t*, T}, t*t" > 0, and T*"t, is a non-spacelike vector i.e.
g T,at*T,5t° > 0. This may be interpreted as saying that to any observer the local en-
ergy density appears non-negative and the local energy flow vector is non-spacelike. In the
hydrodynamical language this condition is equivalent to € > |p|. This condition is used in
the vacuum conservation theorem and forbids the superluminal propagation of energy.

These conditions hold for all today known forms of matter. However, there are a lot
of self-consistent theories where at least the Dominant Energy Condition is violated. The
simplest example of such theories is the negative cosmological constant. There are also
speculations that there are might be fields for which mass renormalization could lead to
pressure being greater than the energy density 172, 173, [I'74].

The equation of motion for the scalar field is obtained by variation of the action (1)
with respect to ¢,

1 4S5k

_ - TPk A _ _
Ner kT G"V NV, +2XL x4 — L4 =0, (2.7)

where the “effective” metric is given by
GWV (¢7 V¢) = EJ(Q‘LW —+ ,C,XXV“(bV”(b. (28)

This second order differential equation is hyperbolic (that is, G* has the Lorentzian sig-
nature) and hence physically meaningful describes the time evolution of the system pro-

vided |26, 175, R0
praxExx (2.9)

L x

When this condition holds everywhere the effective metric G* determines the character-
istics (cone of influence) for k-essence, see e.g. [170, B0, 76, O, 177, 78, 25]. For the
nontrivial configurations of the k-essence field 0,¢ # 0 the metric G" is generally not
conformally equivalent to ¢g"; hence in this case the characteristics do not coincide with
those ones for canonical scalar field the Lagrangian of which depends linearly on the kinetic
term X. In turn, the characteristics determine the local causal structure of the space time
in every point of the manifold. Hence, the local causal structure for the k-essence field is
generically different from those one defined by the metric g, (see Appendix [Bl for details).
Finally by varying the total action with respect to g, one arrives to the Einstein

equations
2 08 1
_ \/__gégiy = RMV — §g/WR - 87TGNT/W = O, (210)

where R, is the Ricci tensor. For the coupled system of equations of motion for the
gravitational field Eq. (ZI0) and k-essence Eq. (Z7) the Cauchy problem is well posed
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only if the initial conditions are set on the hypersurface which is spacelike with respect to
both metrics: ¢g" and G* (see P. 251 of Ref. [167] and Refs. [I775, 179, 80| for details).
We postpone the detailed discussion of this issue until Section

2.2 k-essence in the Friedmann universe, background
dynamics

In this section we consider the dynamics of the Friedmann universe filled with k-essence.
In accordance with the standard cosmology (see e.g. [82]) we live in the universe which
is spatially homogeneous and isotropic on large scales. Moreover from the modern precise
observations of the Cosmic Microwave Background Radiation (CMBR) [110), 87, K&, [T8T]
and other measurements we know that our universe was also spatially homogeneous and
isotropic more than 13 billions years ago with the relative precision more than 10~%. To
honor Alexander Friedmann who has introduced this cosmological model for the first time
182, 183|, we will refer to this model as the Friedmann universe. There is increasing
evidence that the total energy density of the universe is equal to the critical value, and
hence in the most part of the paper we will consider the flat Friedmann universe. Thus
the background line element reads

ds? = g, da*dz” = dt* — a*(t) dx>. (2.11)

For this background metric the Einstein equations (ZI0) can be written in the following
form

i 4
87G
H? = ”3 Ne, (2.13)

where H = a/a is the Hubble parameter and a dot denotes derivative with respect to the
physical time ¢t. These equations also imply a continuity equation:

¢ = —3H(e + p), (2.14)

In general whenever a # 0 any two of these three last equations imply the third one (by
compatible initial conditions). Usually it is easier to work with the second and the third
equations (these are the Friedmann equations). Note that, from Eq. (ZI3)), € is constrained
to be nonnegative.

Because of the homogeneity and isotropy of the background, we get X = P? /2 and the
energy density is the Legendre transform of the Lagrangian
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as if € where the Hamiltonian in usual 1D classical mechanics of ¢. Expressing H from the
first Friedmann equation ([ZI3) we can rewrite Eq. (1) in the case of the homogeneous
and isotropic flat background (ZI1]) and ¢ () as follows:

de x + 20p x\/67G e + €4 = 0. (2.16)

So far as a(t) # 0 the whole information about the background dynamics of the gravity and
scalar field contains in the equation written above. Using the hydrodynamical description
from Appendix [Al this equation of motion can be also easily obtained from the continuity

equation (EZT4).

2.3 Cosmological perturbations

In this section we follow the textbook [82] and briefly summarize some results from the
cosmological perturbation theory which we will need in our forthcoming discussion. Notice
that in this section we set GG, = 1. Let us consider the spatially flat Friedmann universe
with small perturbations:

ds? = (14 20) dt* — a®(t) [(1 — 2W) 6 + hip] do’da®, (2.17)

where W = @ is the gravitational Newtonian potential characterizing scalar metric pertur-
bations and h;; is a traceless, transverse perturbations describing the gravitational waves.
Here we have used the Longitudinal (conformal-Newtonian) gauge and have neglected the
vector perturbations, because they decay as a=2. In the linear approximation the decom-
position of the cosmological perturbations into scalar, vector and tensor irreducible pieces
allows to consider their dynamics separately. For details of the cosmological perturbation
theory see |82, [[84] 69]. Further it is useful to introduce the conformal time n = [ dt/a (t)
and denote ()’ = 0,() and H = d/a. Hereafter we suppose that the k-essence is the
dominant source for the spacetime curvature. Let us assume that ¢, (¢) is a background
cosmological solution for the k-essence equation of motion (2I6) . The gauge invariant
perturbations in the k-essence field d¢ are connected with the scalar metric perturbations
U through the constraint (see Eq. (8.53) from [82])
I 2 5¢
V' +HY = 471a” (e + p) (—,) , (2.18)
Po
therefore ¥ and d¢ cannot be considered as independent variables. However, it is possible
185, 69] to construct a canonical variable

06 =00+, (2.19)

which can account for the self-consistent dynamics of the cosmological perturbations. This
canonical variable is sometimes called “scalar perturbations on the spatially flat slicing”.
Rescaling this variable in accordance with

v=(\Exa)dp (2.20)
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one arrives to the new variable v. The advantage of this variable is that the whole dynamics
of the scalar cosmological perturbations is described by the action

]_ —>
Scosm = 5 /dgxdn |:(U/)2 - Cg(V’U)Q - 777‘zosmv2 (221>
where the effective mass is .
z
mgosm = _?7 (222)
auxiliary variable z is defined as
/
z = % € xa, (2.23)
and the sound speed is
= i (2.24)

For the general k-essence this result was obtained in [69]. Note that the formula (224)
for the effective sound speed can be guessed from the effective hydrodynamical description
of the system which is described in Appendix [Al Note that the hyperbolicity requirement
E&3) reduces to the usual condition of the hydrodynamical stability with respect to the
high frequency perturbations ¢? > 0. Thus the complicated constrained dynamics of the
cosmological scalar perturbations is reduced to the intuitively much more clear dynamics
of the canonical scalar field v with the time dependent sound speed ¢, (1) and effective
mass Meosm (7). Another obvious advantage of the canonical variable v is that it allows the
quantization of the cosmological perturbations.
The gravitational waves are described by the action

1 4 . o
Sp = 6 dnd’za’ <(h;)/ (hg)/ - hékhgk) ) (2.25)

where the spatial indices are raised and lowered with the help of the unit tensor d;.



Chapter 3

Causality and Emergent Geometry

3.1 Emergent Geometry

In this chapter we follow our paper [75]. In the this Section we study to the behavior of small
perturbations 7 on a given arbitrary background g,,, and ¢ (z). Thus we consider solutions
¢ (x) = ¢o (z)+m (x) of () with the fixed g, and neglect the metric perturbations dg,,,
induced by 7. This corresponds to the test field approximation. It is convenient to rewrite
the formula (2224 for the sound speed and consider it as a function

E 71
(X, ¢) = <1 + 2X—’XX) . (3.1)

Lx
From the Section it is clear that in the case X > 0 this function plays the role of “speed
of sound” measured in the preferred reference frame, where the background is at rest and
background field configuration ¢q () is locally isotropic.

The Leray’s theorem (see P. 251 of Ref. [I67] and Ref. [I80] ) states that the per-
turbations 7 on given background ¢, () propagate causally in metric G* (¢g, Vp). In
Appendix [(d we show that performing the conformal transformation
Cs A
7 " (3:2)

X

G =

one can rewrite the equation of motion for the scalar field perturbations in the following

form .
_ 2% 2 -
mau <\/ GG 8,,7r> + MZm =0, (3.3)

here we have denoted v/—G = /—detG,} and we have introduced the inverse metric G;j
: G/XGA” = 0,, along with the effective mass

oG
<2Xﬁ7x¢¢ - £7¢¢ + —V,LV,,%) . (34)

Cs

2 _
M = V&
X

9¢
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Note that the metric G* is conformally equivalent to G* and hence describes the same
causal structure as it must be. The equation for the perturbations has exactly the same
form as equation for the massive Klein-Gordon field in the curved spacetime. Therefore
the metric G* describes the emergent or analogue spacetime where the perturbations live.
In particular this means that the action for perturbations

S = % / dav/ =G [G"d,md,m — MEn?] (3.5)

and the equation of motion (B3] are generally covariant in the geometry G*”. Introducing
the covariant derivatives D, associated with metric G* (D,G*® = 0), equation (B3)
becomes

G" D, D,m + MZm = 0. (3.6)

Using the inverse to G*” matrix

L L
Gol==% [g,w —c? (ﬂ) Vu%vz/%] , (3.7)

Cs EX

)

one can define the “emergent” interval
2 _ -1 v
ds* =G, dz"da”, (3.8)

which determines the influence cone for small perturbations of k-essence on a given back-
groundﬂ. This influence cone is larger than those one determined by the metric g,,, pro-
vided |26, 175, R0, [186, M, 177, 178, A

L xx

0 3.9
Ly <0, (3.9)

and the superluminal propagation of small perturbations becomes possible (see Appendix
Bl). It is important to note that the Dominant Energy Condition precludes the spacelike
energy flows. Whereas a stronger condition £ xx/L x > 0 guarantees the absence of
superluminal signals on a given background, see also [28]. At first glance it looks like
the theory under consideration has emergent bimetric structure. However, this theory
is inherently different from the bimetric theories of gravity [I87, [I8Y, [189] because the
emergent metric refers only to the perturbations of k-essence and is due to the non-linearity
of the theory, while in the bimetric gravity theories both metrics have fundamental origin
and are on the same footing.

The derived above form of the action and of the equation of motion for perturbations
is very useful. In particular, it simplifies the stability analysis of the background with
respect to the perturbations of arbitrary wavelengths, while the hyperbolicity condition
(Z3) guarantees this stability only with respect to the short-wavelength perturbations.

!'Note that in order to avoid confusion we will be raising and lowering the indices of tensors by gravi-
tational metric g"” (g,.) throughout the paper.
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It is important to mention that besides of the usual hyperbolicity condition (9) one
has to require that £ x is nowhere vanishes or becomes infinite. The points where £ x
vanishes or diverges, generally correspond to the singularities of the emergent geometry. It
follows from equations (B2) and (BI) that these singularities are of the true nature and
cannot be avoided by the change of the coordinate system. Therefore one can argue that
before the singularities are formed the curvature of the emergent spacetime becomes large
enough for efficient quantum production of the k-essence perturbations which will destroy
the classical background and therefore £ x cannot dynamically change its sign. Hence, if
one assumes that at some moment of time the k-essence satisfies the null energy condition,
that is, £ x > 0 everywhere in the space (or € + p > 0 in hydrodynamical language; see
Appendix [A]) then this condition can be violated only if one finds the way to pass through
the singularity in the emergent geometry with taking into account the quantum production
of the perturbations. This doubts the possibility of the smooth crossing of the equation of
state w = —1 and puts under question recently suggested models of the bouncing universe
159, 160, 162 16T]. The statements above generalize the results obtained in [I05] and re-
derived later in different ways in [137, 190, 19T, 192, 93] in cosmological context. We will
repeat the arguments from [T05] in the Chapter Bl However, this issue can be much more
involved because the models under consideration [T59, 160, 162, [T6T] relay on a stabilization
mechanism involving higher derivative terms in the Lagrangian. In this work we are not
going to address the problems involving the higher derivative terms.

If the hyperbolicity condition (229 is satisfied, then at any given point of spacetime the
metric G;Vl can always be brought to the canonical Minkowski form diag (1, —1,—1,—1)
by the appropriate coordinate transformation. However, the quadratic forms g, and G;Vl
are not positively defined and therefore for a general background there exist no coordi-
nate system where they are both simultaneously diagonal. In some cases both metrics
can be nevertheless simultaneously diagonalized at a given point, so that, e.g. gravita-
tional metric g,, is equal Minkowski metric and the induced metric G;Vl is proportional
to diag (c?, —1,—1,—1), where ¢, is the speed of sound (B]). For instance, in isotropic
homogeneous universe both metrics are always diagonal in the Friedmann coordinate frame.

3.2 Emergent geometry for cosmological perturbations

In deriving (B3) and (B6) we have assumed that the k-essence is sub-dominant component
in producing the gravitational field and consequently have neglected the metric perturba-
tions induced by the scalar field. In particular the formalism developed is applicable for
accretion of a test scalar field onto black hole [73] [[2]. For k-essence dark energy |13, [14]
action (B) can be used only when k-essence is a small fraction of the total energy density
of the universe, in particular, this action is applicable during the stage when the speed of
sound of a successful k-essence has to be larger than the speed of light [23, 22, [[9]. During
k-inflation |12, [70), 194] or DBI inflation 195, T96] the geometry g, is determined by the
scalar field itself and therefore the induced scalar metric perturbations are of the same
order of magnitude as the perturbations of the scalar field. As we discussed in the Section
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23 in this case the action for cosmological perturbations was derived in [69]. We have
shown in Appendix [[J that the correct action for perturbations in k-inflation ([22II) has,
however, the same structure of the kinetic terms as (B) or, in other words, the canonical
scalar field 0¢ = 6¢ + Uy /H plays the role of m and lives in the same emergent spacetime
with geometry G*. In fact in Appendix [Dl we have proven that the action ([ZZII) can be
written in the form

Scosm = %/d4ZL‘ Vv -G [Guyali%au% - Mgosmﬁq ; (310)

where the effective mass is given in the generally covariant form

_3 _ | € [ X I X
Mgosm = =G 35,)(1 ( XDQ = +V,In (e.x)VFIn €> . (3.11)

Note that generically M2 =~ # M2, where M2 is given by ([B4). One can expect that
this emergent geometry G*” has a much broader range of applicability and determines the
causal structure for perturbations also in the case of other backgrounds, where one cannot
neglect the induced metric perturbations.

We conclude this section with the following interesting observation. The effective metric

B0 can be expressed through the energy momentum tensor (23)) as

Gy = QG + BTy (3.12)
where
L x XX L xx
== — Le,——— d f=—c,—
«Q . Lx and [ c .

As we have pointed out the cosmological perturbations propagate in G;j even if the back-
ground field determines the dynamics of the universe. In this case the energy momentum
tensor for the scalar filed satisfies the Einstein equations (Z10) Band eventually we can
rewrite the effective metric in the following form

This looks very similar to the “metric redefinition” g, < Gljyl in string theory where the
quadratic in curvature terms in the effective action are fixed only up to “metric redefinition”
BI3) see e.g. [197, 198, 199, 200, 20T, 202]. The “metric redefinition” does not change the
light cone and hence the local causality only in the Ricci flat R, = 0 spacetimes. However,
neither in the matter dominated universe nor during inflation the local causals structures
determined by g,, and Gljyl are equivalent.

2Here we used units M,, = 1.
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3.3 Dirac-Born-Infeld Lagrangians

Here we derive the Dirac-Born-Infeld (DBI) Lagrangian by requiring that the structure of
the emergent metric G, should be as simple as it is possible for a theory which is nonlinear
in kinetic term X. An arguably simple induced metric corresponds to the case when the
additional term ¢ (£ xx/L x) V.60V, ¢ which changes the causal structure depends only
quadratically on field derivatives thus

This condition can be brought to the form
Lxx (X,0)(2Xa(¢) — 1)+ Lx (X, 0)a(p) =0. (3.14)

Integrating this differential equation with respect to X one can find the class of Lagrangians
L (¢, X) corresponding to these simple emergent geometry:

L(¢, X) = a(p)o(d)y/1+ (@)~ V(9), (3.15)

which is a generalized Born-Infeld Lagrangian [I], and is also often called Dirac-Born-Infeld
Lagrangian because of the work [6]. It is interesting to note that the theories of this type
were also studied in the papers of Heisenberg [4, 5] even before the work of Dirac [6]. We
will use the today standard notation Dirac-Born-Infeld (DBI) Lagrangian for the theories
of type (BIH). Thus the generalized DBI Lagrangian generically depends on three free
functions o (¢),V (¢) and « (¢). The sound speed in this case is given by

E=14+— (3.16)

a(¢)

From the hyperbolicity condition (Z3) we have 1+ 2X/a > 0. Note that this condition
corresponds to the condition of reality of the DBI Lagrangian (BIH). The sign of the
function o (¢) controls whether the theory respects the Null Energy Condition. Indeed if
o(¢) > 0 then £ x = 0/4/1+2X/a > 0 and the theory does not violate the NEC. The
sign of the function a (¢) is responsible for the maximal sound speed present in the theory.
If a(¢) < 0 then £ xx/Lx = —a~ ' (14+2X/a)"" > 0 and the model does not permit the
superluminal propagation, see ([B), whereas for a(¢) > 0 there is reference frame where
the sound speed always exceed the speed of light. The energy density can be calculated

from Eq. (Z3)
2x
a(¢)

While the pressure can be written in terms of ¢, as

p (9, X) = a(@)o(@)es — V(9). (3.18)

~1/2
c0X) =@ (14 25) v (o) - -2
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In the limit of small nonlinearities 2X < «(¢) in kinetic term the Lagrangian is that of
the nonlinear sigma model

L(¢,X) = 0(9)X = [V(¢) — a(d)a(¢)]-

For the emergent geometry we have

o, o V.oV, 0]
Gw,l = g guy + MT s (319)
and - Vrove]
o _ Cs | 5
G > _g a2 . (3.20)

The DBI Lagrangians are rather common in the context of string theory see e.g. [203]
2041, 205, [186], 9, 77, [I78]. Moreover, these models were rather extensively studied in the
cosmological context [206], 207, 208, 209, 210, 211, 212, 213, [T96]. We will use this kind of
models in the forthcoming Chapters B and

3.4 Causality on nontrivial backgrounds

In this section we discuss the causality issue for superluminal propagation of perturbations
on some nontrivial backgrounds, in particular, in Minkowski spacetime with the scalar
field, in Friedmann universe and for black hole surrounded by the accreting scalar field.

First, we would like to recall a well-known paradox sometimes called “tachyonic anti-
telephone” [214] arising in the presence of the superluminal hypothetical particles tachyons
possessing unbounded velocity cienyon > 1. In this case we could send a message to our
own past. Indeed, let us consider some observer, who is at rest at * = 0 with respect
to the reference frame (z,t) and sends along OR a tachyon signal to an astronaut in the
spacecraft R (see Fig. BJl). In turn, after receiving this signal, the astronaut communicates
back sending the tachyon signal, RP. As this signal propagates the astronaut proper time
t" grows. However, if the speed of the spacecraft is larger than 1/cicnyon, then the signal
RP propagates backward in time in the original rest frame of the observer. Thus, the
observers can in principle send information from “their future” to “their past”. It is clear
that such situation is unacceptable from the physical point of view.

Now let us turn to the case of the Minkowski space-time filled with the scalar field,
which allows the “superluminal” propagation of perturbations in its background. For sim-
plicity we consider a homogeneous time dependant field ¢q (). Its “velocity” 0,¢ is directed
along the timelike vector, u* = (1,0,0,0). Why does the paradox above not arise here?
This is because the superluminal propagation of the signals is possible only in the presence
of nontrivial background of scalar field which serves as the aether for sonic perturbations.
The aether selects the preferred reference frame and clearly the equation of motion for
acoustic perturbations is not invariant under the Lorentz transformations unless ¢, = 1.
In the moving frame of the astronaut the equation for perturbations has more complicated



3.4 Causality on nontrivial backgrounds 21
t/
A /

future
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Figure 3.1: This figure represents the causal paradox constructed using tachyons. Someone
living along the worldline x = 0 sends a tachyon signal to the astronaut in a fast moving
spacecraft, OR. In the spacecraft frame (2/,1"), the astronaut sends a tachyon signal back,
RP. The signal RP propagates in the direction of growing t’ as it is seen by the astronaut,
however it travels “back in time” in the rest frame. Thus it is possible to send a message
back in the own past.

form than in the rest frame and the analysis of its solutions is more involved. However,
keeping in mind that k-essence signals propagate along the characteristics which are coor-
dinate independent hypersurfaces in the spacetime we can study the propagation of sonic
perturbations, caused by the astronaut, in the rest frame of the aether and easily find that
the signal propagates always forward in time in this frame (see Fig. B2Z). Hence no closed
causal curves can arise here.

We would like to make a remark concerning the notion of “future-” and “past” directed
signals. It was argued in [23| that in order to have no CCCs for the k-essence during
the “superluminal” stage, “...the observers travelling at high speeds with respect to the
cosmological frame must send signals backwards in their time for some specific direction”.
One should remember, however, that the notion of past and future is determined by the
past and future cones in the spacetime and has nothing to do with a particular choice
of coordinates. Thus, the signals, which are future-directed in the rest-frame remain the
future-directed also in a fast-moving spacecraft, in spite of the fact that this would corre-
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light future

k—essence future

k—essence past

light past

Figure 3.2: The causality paradox is avoided when superluminal signals propagate in the
background which breaks the Lorentz symmetry (compare with Fig. Bl). The observers
cannot send a message to themselves in the past.

spond to the decreasing time coordinate t’. As we show in Section B.fl, the confusion arises
because of a poor choice of coordinates, when decreasing ' correspond to future-directed
signals and vice versa. The example shown in Fig. B4l illustrates this point: one can see
that even without involving superluminal signals, an increasing coordinate time does not
always imply the future direction.

Another potentially confusing issue is related to the question which particular velocity
must be associated with the speed of signal propagation, namely, phase, group or front
velocity. For example, in [23] an acausal paradox is designed using different superluminal
group velocities for different wavenumbers. One should remember, however, that neither
group nor phase velocities have any direct relation with the causal structure of the space-
time. Indeed the characteristic surfaces of the partial differential equations describe the
propagation of the wavefront. This front velocity coincides with the phase velocity only
in the limit of the short wavelength perturbations. Generally the wavefront corresponds
to the discontinuity of the second derivatives and therefore it moves “off-shell” (a more
detailed discussion can be found in e.g. [33]). The group velocity can be less or even larger
than the wavefront velocity. One can recall the simple examples of the canonical free scalar
field theories: for normal scalar fields the mass squared, m? > 0, is positive and the phase
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velocity is larger than ¢ while the group velocity is smaller than ¢; on the other hand for
tachyons (m? < 0) the situation is opposite. Thus, if the group velocity were the speed
of the signal transfer, one could easily build the time-machine similar to those described
in [23] using canonical scalar field with negative mass squared, m? < 0. This, however, is
impossible because the causal structure in both cases (m? > 0 and m? < 0) is governed
by the same light cones. Finally we would like to mention that the faster-than-light group
velocity has been already measured in the experiment [215, 2T6].

To prove the absence of the closed causal curves (CCC) in those known situations where
the superluminal propagation is possible, we use the theorem from Ref. [I67] (see p. 198):
A spacetime (M, g,,) is stably causal if and only if there exists a differentiable function f
on M such that V*f is a future directed timelike vector field. Here M is a manifold and
g, 1s metric with Lorentzian signature. Note, that the notion of stable causality implies
that the spacetime (M, g,,,) possesses no CCCs and thus no causal paradoxes can arise in
this case. The theorem above has a kinematic origin and does not rely on the dynamical
equations. In the case of the effective acoustic geometry the acoustic metric G;l,l plays
the role of g,, and the function f serves as the “global time” of the emergent spacetime
(M, wal) For example, in the Minkowski spacetime filled with the scalar field “aether”
one can take the Minkowski time ¢ of the rest frame, where this field is homogeneous, as
the global time function. Then we have

GM OO, = —> g (1 +2X£’ﬂ) _ 9 (3.21)

Hey £7 X £7 X £7 XCg ’ ’
Even for those cases when the speed of perturbations can exceed the speed of light, ¢ > 1,
this expression is positive, provided that £ x > 0, and the hyperbolicity condition (29) is
satisfied. Thus d,t is timelike with respect to the effective metric G,); hence the conditions
of the theorem above are met and no CCCs can exist.

Now we consider the Minkowski spacetime with an arbitrary inhomogeneous back-
ground ¢q (x) and verify under which conditions one can find a global time ¢ for both ge-
ometries g, and G;j and thus guarantee the absence of CCCs. Let us take the Minkowski
t, n"0,t0,t = 1, and check whether this time can also be used as a global time for Gljyl.
We have

v _ Cs E,XX pp 2| Cs £,XX 9
G" 9,t0,t T {1 + (—E,x ) (0,tV*pp) } Zx {1 + <—£,X )gbo] : (3.22)

and assuming that ¢, > 0, £ x > 0 we arrive to the conclusion that ¢ is a global time for
emergent spacetime provided

1+ (%) (q’so (:ﬂ*))2 >0, (3.23)

holds everywhere on the manifold M. This inequality is obviously always satisfied in the
subluminal case. It can be rewritten in the following form

1+ ¢ (%) (%0 (:70“))2 >0, (3.24)
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from where it is obvious that, if the spatial derivatives are sufficiently small then this
condition can also be satisfied even if ¢, > 1. Note that the breaking of the above condition
for some background field configuration ¢q () does not automatically mean the appearance
of the CCCs. This just tells us that the time coordinate ¢t cannot be used as the global time
coordinate. However it does not exclude the possibility that there exists another function
serving as the global time. Only, if one can prove that such global time for both metrics
does not exist at all, then there arise causal paradoxes.

In the case of the Friedmann universe with “superluminal” scalar field, one can choose
the cosmological time t as the global time function and then we again arrive to (BZI),
thus concluding that there exist no CCCs. In particular, the k-essence models, where the
superluminal propagation is the generic property of the fluctuations during some stage of
expansion of the universe |23, [79], do not lead to causal paradozes contrary to the claim
by [23, 22).

The absence of the closed causal curves in the Friedmann universe with k-essence can
also be seen directly by calculating of the “effective” line element (). Taking into account
that the Friedmann metric is given by

ds* = g, dr*dz” = dt* — a®(t)dx?, (3.25)

we find that the line element (), corresponding to the effective acoustic metric, is

ds? = G, dat'da” = £x (2dt? — a*(t)dx?) . (3.26)

Cs

The theory under consideration is generally covariant. After making redefinitions,

VL xe,dt — dt, and @*(t)L x/cs — a*(t) (3.27)

the line element (B26]) reduces to the interval for the Friedmann universe (B20), where
obviously no causality violation can occur. Thus we conclude that both the k-essence
[13, 14, 15)] and the “superluminal” inflation with large gravity waves |71}, [[()] are completely
safe and legitimate on the side of causality.

When X = % 9" 0,000, 9o is positive everywhere in the spacetime the background field
itself can be used as the global time function. Indeed for general gravitational background
9w and ¢; > 0, L x > 0 we have

9" 0,000,909 > 0 and G"0,,¢90, 9 = > 0,

‘C,Xcs
and due to the fact that X > 0 the sign in front V#¢y can be chosen so that the vector
Vg is always future directed on M. Therefore ¢ (z) or (—¢g (z) if necessary) can serve
as a global time in both spacetimes (M, g,,) and (M, G;Vl), and no causal paradoxes
arise.

In particular this is applicable for the accretion of the “superluminal” scalar field onto
the Schwarzschild black hole [73, [72]. In this case sound horizon is located inside the
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Schwarzschild radius and therefore the Schwarzschild time coordinate cannot be used as a
global time function. However, X > 0 outside the acoustic horizon (see |73, [[2] and the
Chapter ) and in accordance with the theorem and discussion above we can take ¢ as the
global time coordinate and hence the acoustic spacetime is stably causal.

In all examples above we have considered the “superluminal” acoustic metric. Thus,
if there exist no CCCs in (M, G;,,l) then there are no CCCs with respect to metric g,
because acoustic cone is larger than the light cone. It may happen that in some cases it is
not enough to prove that there no CCCs separately in (M, G;j) and (M, g,,) and one
has to use the maximal cone or introduce an artificial cone [0, [77, [78] encompassing all
cones arising in the problem. It is interesting to note that, if the k-essence realizes both
“superluminal” and subluminal speed of sound in the different regions of the manifold, then
there exist hypersurface where the k-essence metric is conformally equivalent to the g,
and one can smoothly glue the maximal cones together everywhere on M. After that one
can consider a new “artificial metric” GEV as determining the complete causal structure of
the manifold.

We would like to point out that although the theorem on stable causality allowed us
to prove that there is no causal paradoxes in those cases we considered above, it is no
guaranteed that CCCs cannot arise for some other backgrounds. Indeed, in [28] the au-
thors have found some configurations of fields possessing CCCs: one for the scalar field
with non-canonical kinetic term and another for the “wrong”-signed Euler-Heisenberg sys-
tem. In both cases the small perturbations propagate superluminally on rather non-trivial
backgrounds. We will pursue this issue further in Section B

3.5 Which initial data are allowed for the well posed
Cauchy problem?

Using the theorem on stable causality we have proven that the “superluminal” k-essence
does not lead to any causal paradoxes for cosmological solutions and for accretion onto
black hole. However, the consideration above is of a kinematic nature and it does not deal
with the question how to pose the Cauchy problem for the background field ¢ and it’s
perturbations .

It was pointed out in [28]| that in the reference frame of the spacecraft moving with
respect to nontrivial background, where ¢, > 1, with the speed v = 1/¢, the Cauchy
problem for small perturbations 7 is ill posed. This happens because the hypersurface
of the constant proper time t' of the astronaut is a null-like with respect to the acoustic
metric Gljyl Hence t' = const is tangential to the characteristic surface (or sonic cone see
Appendix [Bl) and cannot be used to formulate the Cauchy problem for perturbations which
“live” in this acoustic metric. Intuitively this happens because the perturbations propagate
instantaneously with respect to the hypersurface ¢ = const. Moreover, for v > 1/¢g, the
sonic cone deeps below the surface ¢’ = const (see Figs. and B2)) and in the spacetimes
of dimension D > 2 the Cauchy problem is ill posed as well because there always exist
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two directions along which the perturbations propagate “instantaneously” in time ¢’ (red
vectors in Fig. B3)). This tell us that not every imaginable configuration of the background
can be realized as the result of evolution of the system with the well formulated Cauchy
problem and hence not every set of initial conditions for the scalar field is allowed.

In this Section we will find under which restrictions on the initial configuration of
the scalar field the Cauchy problem for equation (Z7) is well-posed. For this purpose it
is more convenient not to split the scalar field into background and perturbations and
consider instead the total value of the field ¢ = ¢g + . The k-essence field interacts with
gravity and therefore for consistency one has to consider the coupled system of equations
for the gravitational metric g,, and the k-essence field ¢. In this case the Cauchy problem
is well posed only if the initial data are set up on a hypersurface ¥ which is simultaneously
spacelike in both metrics: g, and Gljyl (for details see P. 251 of Ref. [I67] and Refs. [I80],
75, [I79]). We will work in the synchronous coordinate system, where the metric takes
the form

ds? = dt? — yyda'da®, (3.28)

and select the spacelike in g, hypersurface > to be a constant time hypersurface ¢ = ¢,.
The 1-form d¢ = 0,tdz* vanishes on any vector R* tangential to X: RFO,t = 0 (see
Fig. B3). This 1-form is timelike with respect to the gravitational metric g, that is
g"0,td,t > 0. In case when Lagrangian for k-essence depends at maximum on the first
derivatives of scalar field the initial conditions which completely specify the unambiguous
solution of the equations of motion are the initial field configuration ¢(x) and and it’s first
time derivative ¢(x) = (9" 0,t0,¢)5. Given these initial conditions one can calculate the
metric G;j and consequently the influence cone at every point on Y. First we have to
require that for a given set of initial data the hyperbolicity condition (Z3) is not violated.
This imposes the following restriction on the allowed initial values ¢(x) and ¢(x):

=14 {(@(X)f _ (%(X)ﬂ % >0, (3.29)

- 2 .
where we have denoted (ng(x)) = v*9;00,¢. In addition we have to require that the

hypersurface ¥ is spacelike also with respect to emergent metric G*, that is, for every
vector R*, tangential to X, we have G;lR"R” <0, or

v

_ 2
1+ (w(x)) % > 0. (3.30)

If at some point on ¥ the vector R* becomes null-like with respect to G;Vl, that is,
G;}R“R” = 0, the signals propagate instantaneously (red propagation vectors from cone
B on Fig. B3) and one cannot guarantee the continuous dependence on the initial data
or even the existence and uniqueness of the solution, see e.g. [164]. Using (Bl the last

inequality can be rewritten as

¢ (1 - (cz'ﬁ(x)>2 %) > 0. (3.31)
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Figure 3.3: The Cauchy problem for the equation of motion of k-essence is set up on the
hypersurface £: ¢t = t, . The vector R* is tangential to ¥: R*0,t = 0 . For the hyperbolic
equation of motion, the Cauchy problem is well posed provided that 0,t is timelike with
respect to G* everywhere on Y, or, equivalently, the hypersurface ¥ is spacelike with
respect to G* (the cone A in the figure). The cone B represents an ill-posed Cauchy
problem for the hyperbolic equation. In particular the red propagation vectors are tangent
to 2.

Therefore, given Lagrangian £ (¢, X) and hypersurface 3 one has to restrict the initial

data ((b(x), (b(x)) by inequalities (B229) and (B30) (or equivalently ([B31])), to have a well

posed Cauchy problem. The condition (B31]) is always satisfied in the subluminal case
for which £ xx/L x > 0. In addition, we conclude that, if these conditions are satisfied
everywhere on the manifold M and the selected synchronous frame is nonsingular in M,
then time ¢ plays the role of global time and in accordance with the theorem about stable
causality no causal paradoxes arise in this case.

As a concrete application of the conditions derived let us find which restrictions should
satisfy the admissible initial conditions for the low energy effective field theory with La-

grangian £(X) ~ X — X?/u* + ..., where p is a cut off scale Ref. [28]. In this case (B31)
. 2 . 2
imply that not only X < p*, but also <¢(X)> < pt and <V¢(X)> < p*. Note that these

restrictions can be rewritten in the Lorentz invariant way: for example the first condition
takes the form (¢"*0,t0,¢)” < u*.

Finally let us note that even well-posed Cauchy problem cannot guarantee the global
existence of the unique solution for nonlinear system of the equations of motion: for ex-
ample, the solution can develop caustics [206] or can become multi-valued [217, 218)].
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3.6 How to pose the initial conditions in a fast moving
spacecraft?

In this section we resolve “paradoxes” which at first glance seems arising in the case of
superluminal propagation of perturbations [28, 23, 22| when one tries to formulate the
Cauchy problem in a fast moving spacecraft. To simplify the consideration we restrict
ourselves by purely kinetic k-essence, for which £ (¢, X) = £(X) and assume that for the
background solution Xy = const > 0 and ¢, > 1. This is a reasonable approximation for
more general backgrounds with Xy > 0 on the scales much smaller than the curvature
scale of the emergent geometry G} There is always the preferred reference frame (t, z*)
in which the background is isotropic and homogeneous. We refer to this frame as the rest
frame. In the presence of an external source d.J equation (B3) in this frame takes the
following form

Ol — 2 Ny =0, (3.32)

where ¢ = (2/L x), for details see Appendix [, equations ({C20) and (Cl). Note that
in this case we have £ x = const, c; = const and the emergent interval becomes standard
Minkowski

c
ds? = G ldada” = =% (2d? — dx?) = 1, d7"di” (3.33)

Cs

after the rescalation of the coordinates:

t= VL xet and x =

Note that our theory is generally covariant therefore we can use whatever coordinates we

want. Now let us consider a spacecraft moving in x-direction with velocity v through the

k-essence background and denote the Lorentz boosted comoving spacecraft coordinates by
(t',2"). As we have already mentioned above, if the velocity of the spacecraft is larger than

c?/c, then the Cauchy problem for 7 cannot be well posed on the hypersurface t' = const
. After Lorentz transformation to comoving spacecraft frame, equation (B332) becomes

Lx

Cs

X. (3.34)

v\ 7! c2v? c?

(1 - —) {(1 - = ) o —2v (1 - —;) OO + (v* — &) o | — 20,0,m = €68,
c c

(3.35)

where prime denotes comoving coordinates and index J = 2,3, ... stands for the spatial
directions other than z’ [note that in Ref. [28] the factor (1 —v2/c)™" in front of squire
brackets is missing]. For v = ¢/c, the second time derivative drops out of (B3H) and the
necessary conditions for applicability of the Cauchy-Kowalewski theorem are not satisfied;
hence the existence and uniqueness of the solution (B3H) are not guaranteed. For v >
c?/cs the necessary conditions of the Cauchy-Kowalewski theorem are met and the unique

3Throughout this section we explicitly write the speed of light ¢ and without loss of generality we
assume v > 0.
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solution of (B30 exists; however, this solution contains exponentially growing modes in
the spatial directions, perpendicular to z’. Indeed, substituting
T X exp (—iw't' + ikpx + ik‘JxJ) ,

in (B35) we find that in the boosted frame:

2.2\ 1 2 2 2 2.2
Wl = (1 _ ”Cfs) {km,v (% — 1> + cs\/(l — 2—2) [k:g, (1 _ 2_2) _ (Ucfs _ 1> kﬁ} } .
(3.36)
where we have denoted k; = {k;} and k% = kjk; . For D = 2, when k; = 0, the
frequencies w are always real and no instability modes exist (note that v < ¢). However, if
D > 2 and v > ¢?/c, then for

1— 2/,.2
K>k (L/C) , (3.37)

v/t —1

the general solution of (B330]) contains exponentially growing modes. Note that these are
the high frequency modes and hence the instability would imply catastrophic consequences
for the theory. At first glance, this looks like a paradox, because equation (B32)), which
has no unstable solutions in the rest frame, acquired exponentially unstable solutions in
the boosted frame. On the other hand, any solution of (B232) after performing the Lorentz
transformation with v > ¢?/c, does not contain exponentially growing modes with &2
satisfying (B31). Indeed, given (k,, k) in the rest frame one can perform the Lorentz
transformation and obtain:

(3.38)

ke ks 2
{w’,kx/,kl}:{ W+ +w'u/c }’

? 7k
V1=0v2/c2 (/1 —02/c? .

were w = tcg\/k2 + k. Expressing o’ via k. and k; we again arrive to (830). However, it
follows from (B38) that if v > ¢?/c, then the components of the Lorentz boosted wavevector

satisfy the condition
1—v?/c?

<kl | ——— 3.39
L (v%g JA—1)" ( )
and hence unstable modes are not present. This raises the question whether the unstable
modes which cannot be generated in the rest frame of k-essence, can nevertheless be exited
by any physical device in the spacecraft. We will show below that such device does not

exist. With this purpose we have to find first the Greens function in both frames.
Let us begin with two-dimensional spacetime. In this case the retarded Green’s function

for (B32) in the rest frame (rf) is (see e.g. [164]):

. 1
G(t,x) = 5 0 (cst — |z]) . (3.40)

S
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In the boosted Lorentz frame it becomes

/ 12\ |t /
Gt o) = — 9(05(t+”/c) |x+”t|>. (3.41)

2¢ \/m

For c,v < ¢, the Fourier transform of (B4) is the retarded in ¢ Green’s function:

e(t/> AP Y AP Y
rf wit il t
GR(t' k) = T <e + —e ), (3.42)

whereas for c,v > ¢? it is given by:

e(t/)ez‘w;t/ + 9(_t/)ez‘w/_t/

Galt', i) = - 2ic k!

(3.43)
This Green’s function corresponds to the Feynman’s boundary conditions in the boosted
frame. Thus, in the fast moving spacecraft, the retarded Green’s function (B43]), obtained
as a result of Lorentz transformation from (B40) looks like a mixture of the retarded
[proportional to 6(¢')] and the advanced [proportional to §(—t")] Green’s functions with
respect to the spacecraft time ¢'. In fact, the situation is even more complicated. If from
the very beginning we work in the comoving spacecraft frame (sc), then solving ([B3H) we
obtain the following expression for the retarded Green’s function,

sc ot w! t w’ t
Gt ) = 2;{/2 (e L J). (3.44)

which coincides with equation (B40), only if c,v < ¢2. However, for fast moving spacecraft,
csv > ¢, formula ([BZ4) does not coincide with formula BZ3).

The situation is more interesting in the four dimensional spacetime. Similar to the 2d
case, after we apply the Lorentz boost to the retarded (in the rest frame) Green’s function
(see e.g. [164])

. ~ 0t
G (t,2") = 20(725 (2t® — |2?) (3.45)

S

and calculate its Fourier transform (see Appendix [E] for the details) we find that for the
slowly moving spacecraft, ve, < ¢2,

/ 1 — 202 vz L
Gg(t,, k/) _ 92(75> (k?2 k’l Ccv /C ) <ezw+t . ezw_t) ) (346)

ics 1—v2/c?

That is, the resulting Green’s function is also retarded with respect to the spacecraft time
. On the other hand, for the fast moving spacecraft, ve, > ¢, we obtain:

Gt k) =~

(k2 kl%> v (e(t’) Wty (—) e ”). (3.47)

1Cs
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Similar to the 2d case formula (B47) is the Feynman Green’s function in the spacecraft
frame. Note that formula (BZ1) can be rewritten as:

1 1— 22/ 2
- (k2 B CU/C) x (3.48)

2/02

1—02/62 1—U 2/02
. / s 2 2
X exp <—zk‘m/vt 1 C?’(}Q/C‘l — 62 2/04 |t | l{? 62 2/04 k?x/ .

It is obvious from here that the modes with large k, are exponentially suppressed and
therefore very high frequency source §.J cannot excite perturbations with k% satisfying

inequality (B37).

In the spacecraft frame the retarded Green’s function calculated directly for Fourier

modes of (B30) is

sc Q(t,) 1—c¢ U2/C i iw'
GR(t/,]{]/) = 22'03 (l{]Q kJ‘liz/cz (e + — e *t> .

Gt k) =

It coincides with Green’s function (B40), obtained by applying the Lorentz transformation,
only in the case of slow motion with v < ¢?/c,. However, the results drastically differ for
the fast moving spacecraft - compare equations (BZ0) and (B4d). The function G5 (¢, k')
contains exponentially growing modes for sufficiently large k£, and it’s Fourier transform
to coordinate space G55 (t', 2') does not exist. Physically this means that we have failed to
find the Green’s function, which describes the propagation of the signal which the source
0J in the fast moving spacecraft tries to send in the direction of growing ¢'. Instead,
the response to any source in the spacecraft is always driven by (BZF) (or the Lorentz
transformed Green’s function in the rest frame ([B4H)). Because we cannot send a signal in
the direction of growing ¢’ one cannot associate growing ¢’ with the arrow of time contrary
to the claims in [22].

Now we will discuss in more details how the problem of initial conditions for perturba-
tions m must be correctly formulated in the fast moving spacecraft. The first question here
whether the fast moving astronaut can create an arbitrary initial field configurations 7 and
7 at a given moment of his proper time t] = const. This hypersurface is not space-like with
respect to the metric Gljyl and therefore as it follows from the consideration in the previous
section the Cauchy problem is not well posed on it. Hence not all possible configurations
are admissible on this hypersurface but only those which could be obtained as a result of
evolution of some initial configuration chosen on the hypersurface which is simultaneously
spacelike with respect to both metrics g,, and G;Vl If the astronaut disturbs the back-
ground with some device (source function 6.J) which he/she switches off at the moment
of time ¢/, then the resulting configuration of the field on the hypersurface ¢t} = const ob-
tained using the correct Green’s function (BZS) will always satisfy the conditions needed
for unambiguous prediction of the field configuration everywhere in the spacetime irrespec-
tive of the source .J(z). The presence of the advanced mode in this Green’s function plays
an important role in obtaining a consistent field configuration on ¢} = const. Thus we see
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that not “everything” is in the hand of the astronaut: he has no “complete freedom” in the
choice of the “initial” field configuration at time ¢}. Nonrecognition of this fact leads to the
fictitious causal paradoxes discussed in the literature [23, 22].

For a slowly moving spacecraft, v < ¢?/c,, the retarded Green’s function in the rest
frame is transformed in the retarded Green’s function in the spacecraft frame. Therefore
we can obtain any a priori given field configuration on the hypersurface t; = const by
arranging the source function ./ in the corresponding way. Thus, the choice of the initial
conditions for the perturbations at ¢} = const is entirely in the hand of the astronaut. This
is in complete agreement with our previous consideration because in the slowly moving
spacecraft the hypersurface t| = const is spacelike with respect to both metrics.

The appearance of the advance part in the correct Green’s function for the fast moving
spacecraft still looks a little bit strange because according to the clocks of the astronaut
the head of the spacecraft can “feel” signals sent at the same moment of time by a device
installed on the stern of the spacecraft. However, in this case the proper time of the
astronaut is simply not a good coordinate for the time ordering of the events at different
points of the space related by the k-essence superluminal signals. The causality is also
preserved in this case but it is determined by the superluminal k-essence cone which is
larger than the light cone and as we have already seen no causal paradoxes arise in this
case. If the astronaut synchronizes his clocks using the superluminal sonic signals then
the new time coordinate ¢ becomes a good coordinate for the time ordering of the causal
events in different points of the space. The hypersurface ¢ = const being spacelike in both
metrics can then be used as the initial hypersurface for the well posed Cauchy problem
in the fast moving spacecraft, that is, any initial configuration of the field can be freely
created by the astronaut on this hypersurface. In the “well synchronized’ reference frame
(f, Z,7, 2) the equation of motion for perturbations ([B32) takes the same form as in the
rest frame of the k-essence background:

Br—cE AT =E5] (3.49)

W+ = :ECSQ/]{Z%—F/{;‘F]{?,

and hence no exponentially growing modes exist for any kz, ky and k.
The causal Green’s function in the spacecraft frame contains only the retarded with
respect to the time ¢ part. For example, in four-dimensional spacetime it is given by

It follows from here that

01 ‘
G%(t, 1) = #5 (2 — |Z'). (3.50)

This result can be obtained either by applying the Lorentz transformation with the invari-
ant speed ¢, to (B0), or directly by solving equation ([BZ9). Thus, no paradoxes with
Green’s functions arise for the superluminal perturbations. The same conclusions are valid
in 4d spacetime.

To make the consideration above even more transparent we conclude this section by
considering analogous situation with no superluminal signals involved. Namely, we take
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Figure 3.4: It is shown how one can create a would -be “paradox” similar to that discussed
in this section, without involving any superluminal signals. The fluid is at rest and the
perturbations propagate subluminally in the fluid, ¢ < ¢. The reference frame (', z') is
connected to the rest frame by the Lorentz boost with the invariant speed c,. If the boost
speed v is such that ¢, /c < v/cs < 1, then the hypersurface of constant ¢’ is inside the light
cone and the Cauchy problem for the electromagnetic field is ill posed in this reference
frame. Instead, one should use the “correct” frame (%, &), obtained by the Lorentz boost
with the invariant fastest speed ¢ = 1. In this frame the Cauchy problem is well-posed.

a fluid at rest with a subluminal speed of sound, ¢, < ¢. Then we can make the Lorentz
transformation using the invariant speed c,:

, t—wzx/c s x — vt
V1= V1=

If the speed v is such that ¢;/c < v/c, < 1, then the hypersurface of constant ¢’ is inside the
light cone (see Fig. Bl and it is obvious that one cannot formulate the Cauchy problem
for the electromagnetic field on the hypersurface ¢ = const. Instead, the Cauchy problem
for the electromagnetic field can be well posed on the hypersurface t = const defined by
the “correct” Lorentz transformation, with the invariant speed c:

', =uxy.

t—vz/c? x — vt
T T = T xv]
V1—v%/c? V1—0v%/c?
(see Fig. BAl). This consideration is fully equivalent to those one above with the only
replacement cg < c.
Thus we have shown that no physical paradoxes arise in the case when we have super-
luminal propagation of small perturbations on the background.

t= vy =1y,



34 3. Causality and Emergent Geometry

3.7 Chronology protection

It was claimed in [28] that the theories with superluminal propagation are plagued by
closed causal curves (CCC). We will argue here that the superluminal propagation cannot
be the sole reason for the appearance of CCC and moreover this problem can be avoided
in this case in the same way as in General Relativity.

It is well know that General Relativity admits the spacetimes with the closed causal
curves without involving any superluminal fields into consideration. Among examples
of such spacetimes are: Godel’s cosmological model [B8], Stockum’s rotating dust cylinder
[219, 220)], wormbholes [66], Gott’s solution for two infinitely long strings [59] and others [60),
611, 62, 63, 64 65, 67, 68]. A prominent time-machine model was suggested recently by Ori
[60]. In this model, made solely of vacuum and dust, the spacetime evolves from a regular
normal asymptotically flat state without CCCs and only later on develops CCCs without
violating the weak, dominant and strong energy conditions. Thus, we see that initially
“good” spacetime might in principle evolve to a state where the chronology is violated and
the General Relativity does not by itself explains these strange phenomena. Therefore
one needs to invoke some additional principle(s) to avoid the pathological situations with
CCCs. With this purpose Hawking suggested the Chronology Protection Conjecture, which
states that the laws of physics must prohibit the appearance of the closed timelike curves
[B4]. In [54] it was argued that in the situation when the timelike curve is ready to close,
the vacuum polarization effects become very large and the backreaction of quantum fields
prevents the appearance of closed timelike curves.

Similarly to General Relativity, one might assume that in the case of superluminal prop-
agation the chronology protection conjecture is valid as well. For example, the chronology
protection was already invoked to exclude the causality violation in the case of two pairs
of Casimir plates [53], in which photons propagate faster than light due to the Scharnhorst
effect [45] 46l A7, 48).

Once we employ the chronology protection principle, no constructions admitting CCCs,
similar to those presented in [28], may become possible.

In fact, the first example in [28| with two finite fast moving bubbles made of superlu-
minal scalar field (see Fig. 2 in Ref. [28]) is quite similar to the “time machine”involving
two pair of Casimir plates. In the latter case the chronology protection excludes the exis-
tence of CCCs. Here the situation is a little bit more involved. In the example with the
bubbles the background is not a free solution of the equation of motion (). Indeed as
it was pointed out in [28| the fast moving bubbles have to be separated in the direction
orthogonal to the direction of motion. On the other hand they have to be connected by
light. However, if this were a free solution, then the bubbles would expand with the speed
of light and collide at the same moment of time, or even before the closed causal curve
would be formed. Thus an external source J(z) of the scalar field is required in order
to produce this acausal background. However, without clear idea about the origin of this
source and possible backreaction effects the physical interpretation of this “time machine”is
obscure. It is well known that admitting all possible sources of gravitational field one can
obtain almost any possible even acausal solutions in general relativity. Finally, generalizing
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the Hawking conjecture to the case of scalar field one can argue that the backreaction of
quantum fluctuations of perturbations 7 around ¢ become large before CCC is formed thus
destroying the classical solution imposed by the external source J(x) and preventing the
formation of CCC.

The other example considered in [28] involves non-linear electrodynamics. The elec-
tromagnetic field is created by charge currents, serving as a source. Thus, unlike the
previous example, one can control the strength of the field, simply changing the con-
figuration of charges. The electromagnetic part of the Lagrangian is the “wrong’-signed
Buler-Heisenberg Lagrangian:

L= —iFWF"” —a(F,F™)? 4 .. (3.51)
with a small positive a. For such a system the propagation of light in a non-trivial back-
ground is superluminal. As a consequence, a cylindrical capacitor with the current-carrying
solenoid leads to the appearance of the CCCs, provided the electrical and magnetic fields
inside the capacitor are large enough (see Fig. 3 in [28]). In this case one may invoke
a simplified version of the chronology protection conjecture. In fact, let us begin with
some “good” initial conditions in the capacitor, namely, with electric and magnetic fields
being not too large, so that no CCCs exist. Then we increase the current in the solenoid
and the voltage between the plates of a capacitor in order to increase the strength of the
fields. When the causal curves become almost closed, the expectation value of the energy-
momentum tensor for the “quasi-photons” on this classical electromagnetic background
becomes very large due to the quantum vacuum polarization effects. In the limit when the
causal cone becomes horizontal, the energy density of the field in the capacitor tends to
infinity and the capacitor will be broken before the CCCs will be formed.

Thus we conclude that concerning the causal paradoxes the situation in the theories
with superluminal propagation on the non-trivial backgrounds is not much worse than in
General Relativity. In fact, in this respect the similarity between these two theories goes
even much deeper than it looks at the first glance. For example, let us imagine a time
machine which is constructed with the help of superluminal propagation in non-trivial
background produced by the external source J (x), e.g., similar to those described in [28§].
Then we can identify the effective metric G* for this system with the gravitational metric
g™ of some spacetime produced by an energy-momentum tensor bei) (x). Put differently,
once having the effective metric, we can find spacetime where the gravitational metric is
G" . In this spacetime the time machine exists as well. Remarkably, now the gravitation
(or light) signals are used to make CCCs. The spacetime with the metric G*” is the solution
of Einstein equations with the energy-momentum tensor T,E,{) calculated substituting the
metric in the Einstein equations. After that one could try to find such theories and such
fields configurations on which their resulting energy momentum tensor is equal to T,Ei) (x)
consistently with equations of motion. One can, in principle, argue, that in the case when
the CCCs exist the energy-momentum tensor mights have some undesired properties, for
example, it would violate the Week Energy Condition (WEC). However, in several known
examples with CCCs the WEC is satisfied, see, e.g. Refs. [58, B9, 219, 220]. Moreover, the
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system found by A. Ori [60] possesses CCCs and satisfies the week, dominant and strong
energy conditions. Thus the violation of the energy conditions is not an inherent property
of the spacetimes with CCCs. Therefore the question, whether the spacetime constructed
by the procedure described above requires “bad” energy-momentum tensor or not, must be
studied separately in each particular case.

Moreover the correspondence G «— g*, J « bei) can also be used to learn more
about Chronology Protection Conjecture and time-machines in General Relativity with
the help of more simple theory. It is well-known that Analogue Gravity [221], 222) 20,
223| gives more simple and intuitively clear way to investigate the properties of Hawking
radiation, the effects of Lorentz symmetry breaking, transplanckian problem etc., by using
the small perturbations in the fluids instead of direct implication of General Relativity. In
a similar way, analogue time-machine or analogue Chronology Protection Conjecture may
provide one with a tool to check Chronology Projection Conjecture and the possibility of
construction of time machines in General Relativity.

3.8 Is the gravitational metric universal?

It was argued in [24] that the same causal limits apply to all fields independent of the
matter present, thus endowing the gravitational metric with the universal role. However,
in the theories under consideration the causal limit is governed not by the gravitational
metric ¢, but by the effective acoustic metric G;l,l and hence the gravity loses its universal
role in this sense. Nevertheless, here we argue, that even in the case of the spontaneously
broken Lorentz invariance with a superluminal propagation the gravitational metric g,
still keeps its universal role in the following sense. First in accordance with the discussion
in B0 we remind that the Cauchy hypersurface for the field ¢ should anyway be a spacelike
one in the gravitational metric. Thus in order to produce a background which breaks the
Lorentz invariance one has to respect the usual causality governed by the gravitational
metric g,,,. Moreover, if a clump of the scalar field is created in a finite region surrounded
by a trivial background, then the boundaries of the clump will generically propagate with
the speed of light.

Indeed, let us consider a finite lump of non-trivial field configuration with smooth

boundaries (see Fig. BXH) and assume that the initial data (gb(x),gb(x)) are specified in

some finite spatial region R. These initial data are smooth everywhere (see Fig. B) and
satisfy the conditions (B3I and (B29), in particular the first derivatives of the field ¢
are continuous everywhere including the boundaries of the clump. If the system described
by action (ZJI) has at least one trivial solution ¢ = ¢y, = const with non-pathological
acoustic geometry, then, as it follows from (1) and (B), the Lagrangian L£(¢, X) is at
least twice differentiable at (¢, X) = (¢uiv, 0) and moreover £ x(¢uiyv, 0) # 0. Thus for the
theories of this type we have

L(p, X) =V (o) + Ki()X + Ky(¢)X* + .. (3.52)
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Figure 3.5: The figure shows that the gravitational metric g, keeps its universal meaning
even if the small perturbations on the non-trivial backgrounds propagate superluminally.
If in the initial moment of time the non-trivial configuration of the field ¢ is localized in
the finite region R on a spacelike in g, hypersurface 3, and beyond this region the field ¢
is in its vacuum state ¢ = const, then the front of the solution always propagates with the
speed of light. The blue lines correspond to the light rays. The pink cones represent the
influence cones for k-essence. On the boundary of R the influence cones are equal to light
cones.

in the vicinity of the trivial solution ¢y, H And as expected we conclude that the speed of
sound for the small perturbations is equal to the speed of light in the vicinity of ¢y, because
any trivial solution and in particular a possible vacuum solution ¢ = 0 does not violate
the Lorentz invariance. Moreover, close to the boundaries of the clamp the initial data

<¢(X), qﬁ(x)) can be considered as small perturbation around the trivial background and

therefore the front of the clump propagates exactly with the speed of light in the vacuum.
Thus, without preexisting nontrivial configuration of the scalar field the maximum speed
of propagation never exceeds the speed of light and the causality is entirely determined by
the usual gravitational metric only.

If we abandon the condition of the regularity of the emergent geometry G;j, but still
require that the Lagrangian is analytic function of X in the neighborhood of X = 0, then
the speed of propagation in vacuum is always smaller than the speed of light. Indeed in
this case the speed of sound c; is:

9 1

ST Atramo1) "

where n is the power of the first non-zero kinetic term in (B52).
To demonstrate explicitly the points stated above we will find now exact solitonic
solutions in the purely kinetic k-essence theories with Lagrangian £ (X) and verify that

4In particular, it was required in |74, 224, 225] that for models allowing topological k-defects, the
asymptotic behavior near the trivial vacuum X = 0 (at the spatial infinity) is of the form (B32)
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these solitons propagate in the Minkowski spacetime with the speed of light. Assuming
that the scalar field depends only on # = x + vt and substituting ¢ = ¢ (#) in equation
(EZ0) we find that this equation reduces to

Lxpoo (v’ —1)+ »C,XXQP,GH(P?Q (v — 1)2 =0, (3.53)

This equation is trivially satisfied for v = 41, that is, there exist solitary waves ¢ (z £ t)
propagating with the speed of light. They are solutions corresponding to rather special
initial conditions ¢q () = ¢ () and ¢ (z) = +¢ (). Note that the general solutions are
not a superposition of these solitonic solutions because the equation of motion is nonlinear.
Assuming that v # £1 we find that 23] is satisfied by either nonlocalized solution
¢ = x + vt + const, or it reduces to:

£,X+£,XX(P729 (’02—1) :£7x—|—2X£7XXIO, (354)

This algebraic equation is trivially satisfied for all X if £ =f (¢) VX — V (¢). This is
the case when the perturbations propagate with the infinite speed on any background
[226], 227]. For more general Lagrangians £ (X) equation (B54) can be solved algebraically
to obtain a particular X, = %(p?g (v — 1) = const. The only solutions of this last equation
are either ¢ (x £ t) or trivial solutions ¢, = const. For the Born-Infeld Lagrangian [ the
exact solutions of this type were found in [217, 2T8| (see also [228]). For more complicated
Lagrangian, for example, of the form £ = IC(X) 4+ V(¢) there exist solitonic solutions with
v < 1 |74, 224, 225).

Thus, we have shown that under reasonable restrictions on the theory the field configu-
rations localized in trivial vacuum never propagate faster than light. Therefore the causal
limit for these localized configurations is always governed by the usual gravitational metric.

3.9 Discussion

In this Chapter we have considered the k-essence-like scalar fields with the Lorentz in-
variant action (1) and have studied the issues of causality and Cauchy problem for such
theories. These questions are non-trivial because small perturbations 7 on backgrounds ¢,
can propagate faster-than-light. The perturbations “feel” the effective metric, G given
by (B), which is different from the gravitational metric g*”, if the Lagrangian £ is a
non-linear function of X and the background is nontrivial d,¢9 # 0. We have derived
the action for the perturbations on an arbitrary background and have shown that these
perturbations “feel” the emergent geometry G}. The influence cone determined by G}
is larger than those one determined by metric g, provided £ xx/L x < 0 |26, I75, 0.
Thus perturbations can propagate with the speed exceeding the speed of light. In this
case the background serves as a new aether and preselects the preferred reference frame.
This is why the causal paradoxes arising in the presence of tachyons H (superluminal par-
ticles in the Minkowski vacuum) do not appear here. In particular, we have shown that in

5Do not confuse them with field theoretical tachyons with m? < 0.
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physically interesting situations, namely, cosmological solutions and for the case of a black
hole surrounded by an accreting fluid, the closed timelike curves are absent and hence we
cannot send the signal to our own past using the superluminal signals build out of the
“superluminal” scalar field perturbations. Thus, the k-essence models, which generically
possess the superluminal propagation, do not lead to the causal paradoxes, contrary to the
claim in [23] 22].

We have shown how to pose correctly the Cauchy problem for the k-essence fields with
superluminal propagation, which sometimes might seem problematic [28]. The correct
initial Cauchy hypersurface > must simultaneously be spacelike with respect to both grav-
itational metric g,,, and the effective metric G;,}. Because the effective metric G itself
depends on the values of the field ¢ and its first derivatives, the initial value problem must
be set up in a self-consistent manner: in addition to the usually assumed hyperbolicity
condition (), one must require that the field ¢ and its derivative on 3 must satisfy the
inequality (B330). In particular, in the case of spacecraft which has very large velocity with
respect to the homogeneous background of the k-essence, the latter conditions are violated
on the hypersurface of constant astronaut proper time. Therefore no physical devices are
able to produce an arbitrary configuration of perturbations on this hyperspace.

It was found in [28] that in the theories under consideration one can have the back-
grounds possessing the closed causal curves (CCCs). However, as we have argued above,
this is not directly related to the superluminal propagation. In fact, the situation here
is very similar to the situation in General Relativity, where one can also have the man-
ifolds with the closed causal curves although the speed of propagation is always limited
by the speed of light. In this respect the situation in the theories with the superluminal
propagation is not worse than in General Relativity. To avoid causal paradoxes in General
Relativity, Hawking suggested the Chronology Protection Conjecture, which states that the
quantum effects and, in particular, vacuum polarization effects can prevent the formation
of the closed timelike curves [54]. Similarly to Hawking one may argue that in the case of
the superluminal propagation the Chronology Protection Conjecture can be valid as well.
In fact, this conjecture was already invoked to exclude the causality violation in the case
of two pairs of Casimir plates [b3]. Once we employ the Chronology Protection Conjecture,
no constructions admitting CCCs, similar to those presented in [28|, are possible.

Sometimes the “superluminal” theories are criticized in the literature on the basis of
general, or better to say, aesthetic grounds. For example, Ref. [24] claims: “The spacetime
metric is preferred in terms of clock measurements and free fall (geodesic) motion (including
light rays), thus underlying General Relativity’s central theme of gravity being encoded
in spacetime curvature.” Although this argument is not more than the matter of taste,
we would rather prefer to have General Relativity as a theory which keeps its (restricted)
universal meaning even in the presence of superluminal propagation. We have argued that
under physically reasonable assumptions and without a preexisting nontrivial background
the causality is governed by metric g,,. Indeed, if initially the field ¢ is localized within
some finite region of space surrounded by vacuum, then the border of this region propagates
with the speed of light and it is impossible to send signals faster than light.
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Chapter 4

Dynamical violation of the Null Energy
Condition

In this Chapter we review the results from the work [105] and show that in the framework
of the generic k-essence in the Friedmann universe the dynamical violation of Null Energy
Condition (NEC) is physically implausible. For the recent discussion see Note that in this
chapter we use units where M, = (87TGN)71/2 =1.

4.1 Possible Mechanisms of the transition

As a warm up, it is worth to note that if we could consider our scalar dark energy as
an “isentropic” fluid and express the pressure p only in terms of ¢, then the the question
“whether it is possible to evolve through the point €., where w(e.) = —1” would be mean-
ingless. Indeed, in that case we could rewrite the continuity equation (ZI4]) only in terms
of e

¢ =—V3e(e +ple), (4.1)

so that the system of Einstein equations (Z12), ([ZI3) could be reduced to the only one
Eq. (1) and the values of energy density . would be the fixed points of this equation.
If, for example, p = p(X) depends only on X, then ¢ = £(X). Let us further assume that
there are some values X, where w(X,.) = —1. If Eq. (1) can be solved with respect to X
in the neighborhoods of these points X, then the transition is impossible, because in this
case one can find X (¢) and therefore p(¢) = p(X(¢)). From the theorem about the inverse
function Eq. (1) is solvable with respect to X if € x(X.) = (2Xp xx(X.) + px(X.)) # 0.
Soif X, =0and p x(X.) #0or p x(X.) =0and X.p xx(X.) # 0, then X, are fixed points
and the transition through w = —1 is forbidden. In fact, as it was shown in Refs. [229, [,
there always exists the solution X (¢) = X, and what is more it is an attractor. Thus the
transition is generally forbidden for the systems described by the purely kinetic Lagrangians
p(X). Nevertheless this easy example hints at conditions, under that the transition could
be possible. In the general case, when p = p(¢, X), the pressure cannot be expressed only
in terms of ¢, since ¢ and X are independent.
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There are two possibilities to evolve from the usual case of dark energy with w > —1to a
phantom one for such w < —1 (or vise versa), namely a continuous transition, in which the
dark energy evolves through the point w = —1 and a discontinuous transition, occurring
through the point where ¢ = 0. Assuming that the dark energy is the dominating source
of gravitation, we will restrict ourself only to a consideration of the continuous transitions.
The equation of state parameter can be rewritten in the following form, more convenient
for our purposes:

w:—l—l—gpxz—le?pé. (4.2)
If we remember that X is nonnegative and ¢ > 0, we find that w < —1 corresponds to
px <0or gbp <0Oand w > —-1topx >0or gbp > (), while at the points where either
X = 0 or px = 0 the equation of state parameter w takes the value —1. Suppose there
exists a solution ¢(t) and the moment of time ¢. such that w(t.) = w(¢., X.) = —1, where
we denote (¢, ¢o) = (B(t.), d(t.)) and 2X, = 2. As we have already seen the Values of
field ¢. and field’s time derivative qﬁc build two disjunct sets:

A) the ¢—axis of the phase plot (¢, ¢) so ¢. = 0.

B) the points U = (¢c,¢5c) where p x(¢., ¢C) = 0 and ¢. # 0. In this case the points ¥
generally build curves ()\) (may be intersecting) and isolated points in the phase

space (¢, ¢).

In the both cases p x should change the sign during the dynamical evolution from the
states (¢, ¢) where w > —1 to the sates with w < —1 (or vise versa).

As we have already learned from the example of a purely kinetic Lagrangian p(X) and
as we will see later, the following two subclasses of the candidates to the transition points
U are significant: € x(¥) # 0 (or equivalently p xx(¥) # 0) and € x (V) = 0.

4.1.1 Transition at points X. =0

Here we will analyze, whether the transition is possible in the case A) $. = 0. To begin with,
let us consider the enough differentiable function p(¢, X). We see that € x(t.) = p x(t.)
and the first derivative of equation of state parameter looks

2X 20p.x

Then we have the relations X (t.) = ¢%(.) and

dZtX = 615 <p ox T Gbp XX) (4.4)

Hence we infer that dp x/dt(t.) = 0. Due to these relations the second derivative of the
equation of state parameter reads

w(tc) = ?p,X = ?pax. (45)
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Figure 4.1: Possible phase curves in the neighborhood of the ¢—axis. Only on the curves 1
and 6 the system pass the ¢p—axis. The curves 2,3,4,7 have an attractor as a shared point
with the ¢—axis, whereas the curves 5,8 have an repulsor. These attractors and repulsors
can be a fixed point solutions or singularities as well.

Using the equation of motion (ZI6) we find

o(te)e x(te) = —c(te). (4.6)

If € 4(t.) = 0 and € x(t.) # O then from the relation written above ¢(t.) = 0. Therefore the
considered solution ¢(t) on which at time t.: w(o(t.)d(t.)) = —1, is a fixed point solution
¢(t) = ¢. = const and therefore the transition is impossible. Taking into account that
e > 0, we see that this fixed point is obviously the de Sitter solution. Provided ¢ ,4(t.) # 0
and p x(t.) # 0 then as it follows from Eq. ([3),([8) the equation of state parameter w(t)
has either minimum or maximum at the point ¢.. Thus the transition is impossible in this
case.

If, in addition, not only X, = 0 but also € x(t.) = p x(t.) = 0 then € 4(t.) = 0 and
therefore, as it follows from the formula EZ3), p 4(t.) = 0. Moreover the equation of motion
(ZT1d) is not solved with respect to the highest derivatives (namely with respect to ) ) and
therefore do not need to have an unique solution. It happens because the point (¢, 0)
on the phase plot (¢, ¢) does not directly define the <;5 via the equation of motion (. It is
clear that in this case, the point-like (on the phase plot) solution ¢(t) = ¢. = const is the
solution, but not necessary the unique one.

Below we will give the more general consideration of the phase curves geometry in the
neighborhood of the ¢p—axis. The phase flows are directed from right to left for the lower
part of the phase plot ¢ < 0 and from left to right for the upper part ¢ >0, see Fig (ED).
Therefore the system can pass the p—axis, only if the point of intersection is a turning point
(curves 1 and 6 on Fig (ETl)). Otherwise the crossing is a fixed point (or a singularity). If
there is a smooth phase curve on which the system pass the ¢p—axis, then in a sufficient
small neighborhood of the turning point ¢ ~ ¢2* ~ X™ where n > 1. But in this case the
function Xp x (¢, X) depends only on X and therefore should preserve the sign. Hence as
it follows from the formula (22) the system can not change the sign of (w + 1) passing the
¢p—axis.

If a smooth phase curve do not cross but touches the ¢—axis at a point (bc, (see Fig. (@),
trajectories 3 and 4) then the following asymptotic holds: ¢ ~ (¢ — ¢,)*", where n > 1.
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Let us find the time that the system would need to reach the tangent point (¢.,0) in this

case. We have , )
< do © dg
= o) PR 4.7

where ¢;, is a starting point on the phase curve. The last integral is obviously divergent.
Therefore the system can not reach the tangent point in finite time and the transition is
impossible.

Note that the analysis made above would also work for the such functions p(¢, X), for
that not the first X —derivative p x itself, but only the energy density ¢ (and therefore
Xp x(¢,X)) is well defined at X = 0.

Finally we come to conclusion: in the framework under consideration it is impossible
to build a model with the desirable transition through the points X, = 0.

4.1.2 Transition at points V.: p x(¥.) =0, ¢ x(¥.) # 0, X. # 0

From the theorem about the implicit function it follows that in the neighborhood of a
point W., at that the condition € x(¥.) # 0 (or equivalently the condition p xx(¥.) # 0)
holds one can find the function éc(¢c): D.x(Pes éc(qﬁc)) = 0. One would anticipate that on
the phase curves intersecting the curve ¢C(¢c) the state of the dark energy changes to the
phantom one (or vise versa). Let us express p x from Eq. ([£2) and substitute it into the
formula (Z24]) for the sound speed of perturbations:

s (w+1)e

= . 4.
=5y (48)

For the stability with respect to the general metric and matter perturbations the condition
c2 > 0 is necessary (see [69]). Indeed the increment of instability is inversely proportional
to the wavelength of the perturbations, and hence the background models for that ¢ < 0
are violently unstable and do not have any physical significance. Note that the stability
might be preserved if some higher derivative operators in the action become important, see
e.g. [I7] . Due to the continuity of ¢ x there exists a neighborhood of the point ¥, where
e x # 0. Therefore, from the above expression for the sound speed () follows that if
(w + 1) change the sign then ¢? should change the sign as well. But if this is the case then
the trajectories, realizing the transition violate the stability condition ¢2 > 0 and therefore
the model of the transition is not realistic.

4.1.3 Transition at points V.: p x(¥.) =0, ¢ x(¥.) =0, X, #0

In this case, as we have already mentioned, the equation of motion (ZI8) is not solved with
respect to the highest derivatives. Therefore the equation of motion not necessarily has a
solution @(t) such that (¢(t.), d(t.)) = ¥, at some moment of time #,. Or more harmless
variants: there exists more than one solution passing through the exceptional point ¥, or
there exists the desirable solution ¢(t) but it does not possess the second derivative with
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respect to time at the point V.. Below we will analyze the behavior of the phase curves in
the neighborhood of the points V..

The the equation of motion (ZI6) can be rewritten as a system of two differential
equations of the first order:

d¢ D x €

/3 — 22 4.9
dt ¢€,X\/_€ X ( )
do .

T

While the phase curves of this dynamical system are given by the following differential
equation

@ _ _Qﬁp,X\/%—Fé“,d)

do ¢5,X '
This equation for the phase curves follows from the system () and therefore all phase
curves corresponding to the integral curves of system (Ed) are integral curves of the dif-
ferential equation (EZIT). But the reverse statement is false, so not each integral curve of
Eq. (EI0) is necessarily a phase curve of the equation of motion (or of the system ().
In the neighborhoods of the points where € x # 0 the system (EY) is equivalent to the
T—system:

(4.10)

dg

= —ép xV3e — e, (4.11)
d .
d_f = ¢€,X’

where we have introduced a new auxiliary time variable 7 defined by
dt = ¢ xdr. (4.12)

The auxiliary time variable 7 change the direction if € x change the sign. Note that the
system (ELTT]) always possesses the same phase curves as the equation of motion &39).
In the case under consideration we have ¢. # 0 therefore from the formula

do _ ¢
d¢ ¢
follows that d¢/de(t,) should be finite, if ¢(t.) is finite. We have already assumed that

(4.13)

8,)((\1/0) = 0, p7x(\110) = 0.

As one can see from the equation determining the phase curves (EEI0), to obtain a finite
dé/de(t.) it is necessary that at least £ 4,(¥,) = 0. In the case if £ 4(¥,) # 0 the solution
¢(t) do not posses the second t-derivative at the point ¢.. Usually this can usually be seen
as unphysical situation. But nevertheless for the general Lagrangian under consideration
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this does not necessarily lead to the unphysical incontinuity in the observed quantities ¢,
p, H and ¢, ¢. So for example if we impose that there exists }LI?(&ng —¢e,4) = 0 then
e still to be differentiable. Probably one may face problems with ‘the stability of such a
solutions but let us nevertheless investigate the behavior of the phase curves in the case if
£ (V) # 0. From Eq. (EI) we obtain d¢/dé = 0 at ¥,. Further we can parameterize
the phase curve as ¢ = gb(gb) and bring the equation for phase curves (1) to the form

do

i x(6,0)F(9,0), (4.14)
where we denote: )
- ¢

F(¢,0) = —= : 4.15

R P, (4.15)

If as we have assumed ¢ 4(¥.) # 0 and £(V.) # 0 then F(¢, ) is differentiable in the
neighborhood of the point W, and F(¥.) = —¢/c 4. For the second ¢—derivative at the
point W, one obtains:

d2 (2

—Q.S = —¢—6 XX (416)

2o €
That is why the point ¥, is a minimum or a maximum for the function (b((b) In this case,
as one can see from Fig. (£2),[@3), ¥, is a such exceptional point on the phase plot, where
the continuous solution ¢(t) can not exist. But if € xx(¥.) = 0 then one can find the third
¢—derivative of ¢(¢) at the point W,

d3¢ ¢3

In this case there exists a continuous solution ¢(t) such that (¢(t.), ¢(t.)) = ¥, at some
moment of time t. and the only bad thing happening in this point is that g}g(tc) does not
exists. Let us now investigate what happens with the equation of state at this point of
time. Differentiating the both hand sides of the definition of w = p/e yields:

o
Wt = Lpo— ), (4.18)

where we have used the equation of motion (ZI6) at the point ¢. and the definition (224))
of ¢2. Thus in general if p 4(t.) # 0 the transition could occur. Applying the L’Hospital
rule for the c3(t.) = hmpx/ax we find that ¢%(t.) = 0. Moreover using the L’Hospital

rule for the derivative of ¢2 at the point W, one can find that dc?/d¢ ~ pg/c4. Thus the
transition changes the sign of the sound speed and therefore, if the stability criteria are
applicable to this case, then the transition must be unstable.

The necessary condition for the existence of ¢ during the transition is

e¢(We) = 2Xep x4(Ve) —pog(¥e) = 0. (4.19)
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This condition drastically reduces the set of the points V., where the transition is possible.
Namely they are the critical points of the function (¢, X) and on the other hand are the
fixed points of the 7—system (EZIT]). This fixed points are additional to the fixed points of
the system () defined by é = 0 and £.4(¢,0) = 0. From now on we will consider only
those phase plot points ¥ where the condition ([ETJ) holds. From the relation (EEIJ) it
follows that if p 4(¢¢, X.) = 0 then p x4(¢c, X.) = 0. Because otherwise X, = 0 and as
we have already seen the transition can not happen via the points X, = 0. Moreover,
if pgs(¥F) = 0, then the points U} are common critical points of the pressure p(¢, (b),
energy density &(¢, (b) and p x (o, (b) From the condition ([EI9) follows that the points
Ut are singular points equation (EI0) determining the phase curve of the equation of
motion. In such points there can be more than one phase curve passing through this point.
Moreover, the set of solutions ¢(t), which pass through ¥ with different é, could have a
non-zero measure. For example, if U were a nodal point (see Fig. El), there would be
a continuous amount of the solutions passing through this point and therefore there were
continuous amount of solutions on that the transition could occur. Let us investigate the
type of the singular points W}. This will tell us about the amount of the solutions on
which the transition is possible and their stability. For this analysis one can use the usual
technique described for example in [230] and consider the integral curves of the equation
(@I0). But here we will do this more intuitively, namely using the auxiliary 7—system
(ETTl). The point is that for this system the singular points ¥} are usual fixed points. As
we have already mentioned the both systems have the same phase curves an therefore the
analysis to perform is also applicable to the phase curves of the system (). The only
thing we should not forget, is the difference in the directions of the phase flows of this
systems. If e(UF) # 0 then one can linearize the right hand side of the T—system in the
neighborhood of a point W;: (¢} 4 ¢, ¢+ + d¢). The linearized 7—system (L) looks

iV =AV. (4.20)
dr

V:(?ﬁ), A:(Zz)' (4.21)

The elements of the matrix A are given by

Here we denote

a = ¢ x40, (4.22)
b= 2X€7X)(,

c=—- <3H¢.5P,X¢ + €,¢¢> )

g = —€,X¢¢57

where all quantity should be calculated at W}. Here we have used the Friedmann equation
(ZT3). If ¥ is an isolated fixed point of the T—system (EEIT]) (or equivalently the singular
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Figure 4.2: Phase curves in the neighborhood of the singular point W1 are plotted for the
case of the real A\. At the points £ the solutions ¢(t) do not exist. These points together
with ¥} build the curve I" on which ¢ x(I") = 0.

point of system (E9)) then the following condition holds

det A = ag — bc # 0. (4.23)

The type of the fixed point depends on the eigenvalues A of the matrix A (for details see
for example [231]). In the case under consideration a = —g and therefore we have

N =bc+a* = —det A. (4.24)

If bc+ a® > 0 then eigenvalues \ are real and of the opposite signs. In accordance with the
classification of the singular points, U/ is a saddle point (see Fig. [2))). Therefore the
transition is absolutely unstable, there are only two solutions ¢(¢) on which the transition
is allowed to occur.

But if bc + a* < 0 then )\ are pure imaginary. Then the situation is a little bit more
complicated: in accordance with [230)] this fixed point of the nonlinear system can be either
a focus or a center. But in this cases, as one can see from Fig. (3) there no solutions ¢(t)
passing through the point U}. Therefore, from now on we will consider only the first case
- real X\ of the opposite signs.

It is convenient to rewrite the expression for A into a simpler form. Differentiating the
continuity equation (ZI4]) yields

€. = —3H.p.. (4.25)

Here the index ¢ denote that all quantities should be taken at t. or equivalently at Ut
Differentiating the pressure p as a composite function we have p = p y¢+p x X and therefore
assuming that ¢ is finite we obtain p. = p‘y¢.. Thus the formula for & looks:

E. = —3H.p",0.. (4.26)
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Figure 4.3: Phase curves in the neighborhood of the singular point ¥} are plotted for the
case of the pure imaginary A. Her we assume that the singular point is a focus.

: ¢

Figure 4.4: If A had the eigenvalues A\; = Ay then the singular point ¥, would be a nodal
point and there would be a continuous set of trajectories passing through it. To illustrate
this we plot here the phase curves in the particular case of an degenerate nodal point. The
form of the equation of motion excludes such type of the singular points and therefore
prevents the possibility of such transitions.
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Using the condition ([ETY) and the last equation, we bring the element ¢ to the following

form: .
Ec

= —¢¢ 4.27
¢ €9 T 2X. ( )
This relation allows one to rewrite the formula ([E24) as follows:
(& 2 (& (& g (&

Here it is interesting to note that the expression %%y — (6?X¢)2 from the previous
formula is the determinant of the quadratic form arising in the Taylor set of € in the
neighborhood of the critical point ¥}. If this determinant is positive than the function
e(¢, X) has either a minimum or a maximum at the point U}. Otherwise there are either
one ore two intersecting at U} curves on which the energy density ¢ takes the same value
e(¥7) in the neighborhood of ¥} (see [232]) . On the other hand, differentiating ¢ as a
composite function we find

£ = 2X, (2% + 26 yfe + €5 x L) (4.29)

Substituting this relation into the previous formula (2] for A yields
. 2
Az = 2X, <5fxx¢c n ng¢) . (4.30)

This formula provides the relation between b at the moment of transition and \. Note
that A\ depends on ¢, only in the case when ¢ xx(t.) = 2X.p xxx(t.) # 0. Moreover,
comparing the formulas ([E26) and [2Z9) for €. one can obtain the equation on ¢,:

g,CXXQ'SCQ.b.g + 25,0)((;5@50&0 + Q'bcg,cqﬁqﬁ + 3Hcp7c¢ = 0. (431)

This equation is solvable in real numbers if the discriminant is positive. But as one can
prove the discriminant is exactly the 4)\? and therefore positive if we consider the saddle
point. The same can be seen from the relation (E30) as well.

Let us denote the positive and negative eigenvalues and the corresponding eigenvectors
of A as A\, A_ = —)\, and a,, a_ respectively.

If b # 0 ( or equivalently €%y # 0) then the eigenvectors can be chosen as a; =
(1, (Ar —a)/b) and a_ = (1, — (AL + a)/b). Therefore the separatrices build the saddle are

)\+—a
b

_)\++a
b

So, = 8¢ and dg_ = 8¢

The general solution for the phase curves in the neighborhood of ¥ looks

(&ﬁ — /\+b_ aéqﬁ) <5¢5—|— /\+b+ aéqﬁ) = const. (4.32)
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If b = 0 and additionally a > 0 then we have A\, = a = 5,X¢¢ and one can choose the
eigenvectors as a; = (1,¢/2a) and a_ = (0,1) . While for the negative a one can obtain
the eigenvectors and eigenvalues by changing Ay < A_ and a, <> a_. The separatrices
read:

56 =0 and 8¢ = —3¢p.
2a
Thus, similarly to the previous case, the phase curves are given by
Y0, <5gb - §5¢) = const. (4.33)
a

As we have already mentioned from the formula dgb/ dop= gb/ & follows that at the points
where the phase curves are parallel to the ¢— axis and where ¢ # 0 the second t—derivative
does not exists. But if we look at the equations ([E32)), (E33)) providing the phase curves
in the neighborhood of W then we find that in the first case (when £y # 0) the phase
curves lying on the right and left hand sides of the both separatrices should have a point ¢
where they are parallel to the ¢— axis (see Fig. (). Therefore each of these phase curves
consists of two solutions of the equation of motion (Z0)) and the exceptional point & where
the solution ¢(t) does not exists. The same statement holds in the case of the pure imagi-
nary A (see Fig. (E3)). This behavior is not forbidden because, as one can easily prove, the
exceptional points ¢ lie exactly on the curve I' on which € y = 0 and the equation of motion
is not solved with respect to the highest derivatives. Note that we have already assumed
A # 0 and from this condition it follows that £ y and €% can not vanish simultaneously.

Therefore in the neighborhood of the point ¥} there exists an implicit function gb(gb) (or
¢(¢)) and its plot gives the above mentioned curve I on which € x(I') = 0. But in the case
if €% x = 0 the separatrix ¢ = 0 locally coincide with I" and therefore, except the point
W this integral curve of the equation ([EEI) does not correspond to any solution ¢(t) of
the equation of motion. Nevertheless, in virtue of the existence theorem, all phase curves
obtained in the neighborhood of the separatrix d¢ = 0, correspond to the solutions of the
equation of motion. Moreover if %y = 0 and p°, # 0 then the curves on which p x =0
and € x = 0 locally coincide with each other and with the curve d¢ = 0. The only phase
curve intersecting the curve d¢ = 0 is the second separatrix 8¢ = cd¢/2a. Thus the only
one solution ¢(¢) on which the transition happens in the neighborhood of ¥}, corresponds
to the separatrix d¢ = cd¢/2a. It can be also seen from the equation (EE3T) which has the
only one root ¢, in this case. In the section @) we will illustrate this with a numerical

example (see Fig. E£H).

It is worthwhile to discuss cases fall out from the consideration made above. We have
assumed that A # 0 and therefore ¥} is an isolated singular point of the equation (EI0).
The most natural possibilities to drop out this condition are %, = 0 and either % y = 0
or ¢C3Hcpfx¢ + &%, = 0. In the first case Ut is a critical point not only of ¢ but ¢ x as
well. And this can be obtained either for a very special kind of function p namely such that
px=0,pxx =0, pxxx =0and (p—4X?p xx)s =0 at ¥} or imposing the condition
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that the point W is a critical point not only of p but also of p x and p xx: px =0, p, =0,
pxx =0,px6 =0, pxxs =0 and finally p xxx = 0 at U}, In the second case ¥/ is a
common critical point for ¢ and € 4. In terms of p this condition looks as follows: p x =0,
Po = 0, D.x¢ = 0, Pxx = 0, Pop = 0, Pxx¢ = 0 and ﬁnally D.X¢pp = 0 at \I/j . Thus the
point ¥ is a common critical point of p, p x and p x4. Of course the analysis performed
above does not work in the case if the function p(¢, X) is not differentiable enough.

Let us sum up the results obtained in this section. In the general case of linearizable
functions € x, € 4 and p x the considered transitions are either occur through the points
Ut = (¢,¢), where px =0,e x =0, 4 =0 and

g'b [(5,2X¢ — 67¢¢67X)() gb — 3H5,XXP,¢ >0

or, if ¢ dominates in the Friedmann universe, lead to an unacceptable instability with
respect to the cosmological perturbations of the background. The points U} are critical
points of the energy density and are the singular points of the equation of motion of the
field ¢ as well. These singular points are saddle points and the transition realized by
the repulsive separatrix solutions, which build the saddle. Therefore the measure of these
solutions is zero in the set of trajectories and the dynamical transitions from the states
where w > —1 to w < —1 or vise versa are physically implausible.

4.2 Lagrangians linear in X

The simplest class of models, for that one could anticipate the existence of dynamical
transitions, is the dark energy described by Lagrangians p(¢, X) linear in X:

1 1 .
p(6,X) = KX =3V = = (K(6)6* = V(). (4:34)
For this models we always have ¢? = 1 and therefore, as it follows from our analysis,

the transitions could occur only through the points where € x = 0. The energy density
associated to this Lagrangian is

(6, 8) = 5 (KOF + V(). (1.35)

If one takes K (¢) = 1 then the Lagrangian (E34)) is the usual Lagrangian density for scalar
field with a self-interaction and if we take K (¢) = —1 then we obtain the so-called Phantom
field from [T9]. The case K > 0 corresponds to w > —1, whereas K < 0 corresponds to
w < —1. The equation of motion ([ZIH) for the linear in X Lagrangians looks

0K + oK V3 +e4=0. (4.36)
While the equation determining the phase curves (EEI0) reads in this particular case

do I
i V3e + TR 0. (4.37)
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If K(¢) is a sign-preserving function one can redefine field ¢: /| K (¢)|dp = dy (see also
Ref. [I44]). The equation of motion for the new field ¢ can be obtained from Eq. (E30),
through the formal substitutions ¢ — o, V(¢) — V() = V(¢(p)) and K (@) — +1, where
the upper sign corresponds to a positive K (¢) and the lower one to a negative K (¢). After
these substitutions the equation of motion (36 looks more conventionally:

o+ cp\/g <i¢2 + f/(<p)> + % (a‘gff)> =0. (4.38)

moreover this equations is easier to dial with, because one can visualize the dynamic
determined by it, as 1D classical mechanics of a point particle in a potential :I:f/(cp) /2 with
a little bit unusual friction force. If we were able to solve the equation of motion (E38) for
all possible V((p) and initial data, we could solve the problem of cosmological evolution for
all linear on X Lagrangians with sign-preserving K (¢).

If the function K(¢) is not sign-preserving then at first sight it seems that the dark
energy, described by such a Lagrangian, can realize the desirable transition. The function
K(¢) can change the sign in the to ways: in the continuous one, then the function K(¢)
takes the value zero for some values of field ¢ or in a discontinuous pole-like way.

4.2.1 Linearizable K (¢)

Without loss of generality one can assume that K(0) = K, = 0, K(¢) < 0 for the negative
values of ¢ and K(¢) > 0 for ¢ > 0. The line ¢ = 0 on the phase plot (¢, ¢) we will call
“critical” line for the given class of Lagrangians. The phantom states (¢, qﬁ) of the scalar
field lie on the left hand side, while the usual states with w > —1 are on the right hand side
of the “critical” line. If there exists a solution ¢(t) whose phase curve passes through the
“critical” line, then the dark energy can change the sign of (w + 1) during the cosmological
evolution. From now on we will investigate the behavior of the phase curves of the system
in the neighborhood of the “critical” line.

First of all it is worth to consider the functions K(¢) such that K. > 0 (here we have
denoted K 4(0) = K!), because in this case we can directly apply the outcome of our
previous analysis made in the subsection LTIl The condition (EEI9) looks for the linear
on X Lagrangians as follows:

2K+ V! =0. (4.39)

As we have already assumed K’ > 0, therefore, if also V! > 0, then, as it follows from the
condition (EZ39), there are no twice differentiable solutions ¢(¢) whose phase curves would
intersect or touch the “critical” line. Further (see the formula (A1) and below) we will
show, that for the linear on X Lagrangians, the condition (EI9) (or in our case condition
(B39) is necessary not only for the existence of the second t—derivative ¢ at the point of
intersection with the “critical” line but for the existence of a solution ¢(¢) at this point as
well. Thus we come to conclusion that, if V! > 0, then two regions ¢ < 0, and ¢ > 0 on the
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phase plot are not connected by any phase curves and accordingly the dark energy does
not change the sign of (w + 1) during the cosmological evolution.
In the case when V! < 0 we can solve Eq. ([E39) with respect to ¢, :

Po=us = £ ——%. (4.40)

The phase curves, lying in the neighborhoods of the singular points (0, u.), are to obtain
from the relation ([E33)), which gives:

: A
10) ((b — Uy — %(b) = const, (4.41)
where V'K" — V"K'
Ay = —3H, + -—c e ¢, (4.42)
2uy (K7)

For each singular point (0, u+), there is a corresponding solution ¢ (¢) whose phase curve
is the separatrix

@z%+%¢ (4.43)

which intersects the “critical” line. These phase curves correspond to the const = 0 in the
right hand side of Eq. (EEAI]). Another curve, which corresponds to const = 0 is ¢ = 0.
But as we have already mentioned in the end of the previous subsection this curve does
not correspond to any solutions ¢(t) of the equation of motion (E36]).

Considering the phase flow in the neighborhoods of (0,uy) (see Fig. (X)), we infer
that the separatrices éi are repulsors immediately before they intersect the “critical” line
and attractors after the crossing. Hence the measure of the initial conditions (¢, gb) leading
to the transition to phantom field (or vice versa), is zero. In this sense the dark energy
cannot change the sign of K(¢) (or equivalently the sign of (w + 1)) during the cosmological
evolution.

The typical behavior of the phase curves in the neighborhood of the singular points
(0, uy), for the models under consideration (K, > 0, V! < 0), is showed in Fig. (EI).
Here, as an example, we have plotted the phase curves obtained numerically for a toy
model with the Lagranglan density p = 2¢¢2 = ((gb — 1)2 + %) For this model we have
Ui—:lzl A+—— A,——ﬁ.

Let us now Con81der such potentials V(¢) that V! = 0. If K(¢) is a differentiable
function, then, in the case under consideration, the equation of motion (E36) obviously
has the fixed-point solution ¢(¢) = 0 but this solution is not necessary the unique one.
When V! = 0 and as we have already assumed K. > 0, then, as it follows from the
condition (EEI9), the only value éﬁ, where a phase curve could have coinciding points with
the critical line, is ¢ = 0. But from the analysis made in the subsection (L), we have
already learned that the transition is impossible in this case. Nevertheless it is worth to
show explicitly, how the phase curves looks at this case. Taking into consideration only
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Figure 4.5: The typical behavior of the phase curves in the neighborhood of the “critical”
line where K(¢) = 0 (here p—axis ), is plotted for the case when K. > 0, V! < 0.
Horizontal dashed lines are the analytically obtained separatrices (ﬁi, (0, uy) are the points
of transition.

the leading order in the numerator and denominator of the equation (E31) and assuming
that V" # 0 we obtain:

d¢ v
¢ ~ - (4.44)
d¢ 20K
The solution of this equation, going through the point (0,0) on the phase plot, is
¢s = —¢* (W) : (4.45)

In Fig. (EH) we have plotted the phase curves obtained numerically for the toy model
with the Lagrangian density p = 1¢¢? — 1 (#* +2). As one can see from Fig. ([EH), the
parabola-like phase curve ¢, given by the formula (L4H), is the separatrix going through
the fixed-point solution ¢(¢) = 0. Moreover this figure confirms that there are no phase
curves intersecting the “critical” line.

4.2.2 General differentiable K (¢)

The models we discussed above, belong to the more general class of models for that the
function K (¢) has zero of an odd order 2n+1 (where n > 0) at ¢ = 0. For the linear on X
Lagrangians we have € xx = 0, therefore, if n > 0 then K| =0 and ¢,x = 0. That is why
the general analysis made in the subsection does not work for this case. Therefore it
is interesting to investigate on this simple example whether the desired transition could be
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Figure 4.6: The typical behavior of the phase curves in the neighborhood of the “critical”
line where K(¢) = 0 (here ¢p—axis ), is plotted for the case when K. >0, V! =0, V" > 0.

possible for models not covered by our former analysis. If K(¢) is an enough differentiable
function then for |¢| < 1 we have

2t

2n+1
enr1)” o (4.46)

K(¢) ~

where K™ is the (2n + 1)-th ¢—derivative of K at ¢ = 0. If there is a phase curve,
crossing the critical line at a finite nonvanishing ¢, then integrating the both hand sides
of the equation of motion (E36) we obtain:

0 0

. . €o
e — b =—3 | H(@do— | —Zdo. 4.47
Ge — @ . (¢)do Y ¢ (4.47)

Here (¢in, ¢m) is a point on the phase curve in the neighborhood of critical line. The first
integral on the right hand side of the equation (fZ47) is always finite, whereas, as it follows
from the singular behavior of 1/K given by relation (E26]), the second integral is definitely
divergent, if €, # 0. This divergence contradicts to our initial assumption: b. - finite.
Therefore we again obtain the condition (EIJ), which restricts the possible intersection
points on the “critical” line in the sense that in the other points, where the condition does
not hold, not only the second derivative gb does not exists, but there are no solutions ¢(t)
at all. Moreover, it is clear, that the condition (E39) is not enough for the existence of the
solutions intersecting the “critical” line. Thus, if the order of V'(¢) exceeds the order of
K'(¢) for |¢p| < 1, then one can neglect V'(¢) and the integral (A7) has the logarithmic
divergence (note, that we consider only the points (bc # (0 because otherwise the transitions
does not occur). When the order of V'(¢) is lower than K’(¢) (and therefore lower than the
order of K(¢)), we can neglect 32K’(¢) and the integral (E4T) has a power-low divergence.
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Finally if the functions K'(¢) and V’(¢) have the same order on ¢ for |¢p| < 1 and are
of the the opposite signs in the sufficient small neighborhood of ¢ = 0, then one can find
the appropriate finite value qﬁg # 0 for which the divergence on the right hand side of the
equation (A7) is canceled. One would expect that at this points the phase curves intersect
the “critical” line and the dark energy change the sign of (w + 1). Below we give the direct
calculation of these ¢, and the phase curves in the neighborhood of them. Suppose that the
order of the functions (V(¢) — V.) and K(¢) is (2n + 1) and there exist their derivatives
of the order (2n + 2). Then for the ¢—derivative of the energy density we have in the
neighborhood of the supposed intersection point (0, (ﬁc):

1 ¢2n
S = 5 2n)!

¢ 12 17 (2n+2) (2n+2)

<<¢3K§2n+1) X VC(QnH)) 4 QQSCKéQnH)(%

whereas the denominator ¢K (¢) of the second integral on the right hand side of Eq. (E47)
has the order (2n+1) on ¢. The only possibility to get rid of the divergence in the integral
under consideration, is to assume that the first term in the brackets in the asymptotic
(EZY) for € 4 is zero. Therefore the possible crossing points are given by

VACZas)

e = uy = 4/ — (4.49)

FentD)

Taking into account only the leading order on ¢ and §¢ in the denominator and the numer-
ator of Eq. (E317) we obtain differential equation for the phase curves in the neighborhood
of the intersection points (0, u.)

déo 5

— =A; — (2 1) — 4.50
where (2n42) 1 -(2n+1) (2n41) 1 ,(2n+2)
Kc " ‘/c " - Kc " ‘/c "
Ay = —3H.+ . (4.51)

2
9 (K§2n+1)> we

The solutions of this equation are given by the formula:

(5&5 - 27;44% 2¢) »*" 1 = const, (4.52)

that is the generalization of the formula (EZT). Similarly to the case n = 0 (K. > 0) the
solutions, on which the transition occur, have the measure zero in the phase curves set.
Therefore we infer that the dynamical transition from the phantom states with w < —1 to
the usual with w > —1 (or vice versa) is impossible.

Now we would like to mention the models, for that V’(¢) is one order higher on ¢ than
K'(¢) for small ¢. From the asymptotic expression for ¢, ([4]) and the relation, giving
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the possible values of ¢, (EZ7), we see that the only point on the critical line, which can
be reached in a finite time is g'bc = 0. Therefore, as we have seen in the subsection EETT],
the transition is impossible. And the phase curve going trough the fixed-point solution
¢(t) = 0 is a parabola given by the generalization of Eq. ([EZ3) :

K(2n+1)]

~Y ‘2
¢~ —¢ @) (4.53)

If V'(¢) is more than one order higher on ¢ than K'(¢) than as we have already mentioned
¢. = 0 and the transition is impossible as well.

4.2.3 Pole-like K(¢)

In this subsection we briefly consider the case when the function K(¢) has a pole of an
odd order, so K ~ ¢~ 21 where n > 0, for |¢| < 1. This kind of functions K(¢) are
often discussed in the literature in connection with the k-essence models (see [13, T4, [15]).
Let us keep the same notation as in the subsection EE2ZJl The potential V' (¢) can not have
a pole at the point ¢ = 0, because, if it were the case, either the energy density ¢ or the
pressure p would be infinite on the “critical” line. In order to obtain finite values of the
energy density € and pressure p it is necessary to assume that the system intersects the
“critical” line at (b = 0. But, as we have already seen in the subsection EETT], the dark
energy cannot change the the sign of (w + 1) at the points é=0.

Thus we have shown that in the particular case of the theories described by the linear
in X Lagrangians p(¢, X) = K(¢)X — V(¢), which are differentiable in the neighborhood
of UF(K(¢) and V(¢) differentiable but not necessary linearizable) the results, obtained
for linearizable functions € x, € 4 and p x, hold as well. This gives rise to hope that the
same statement is true for the general non-linear in X Lagrangians as well. Especially
we have proved that, if the construction of the Lagrangian allows the transition, then the
transitions always realize on a couple of the phase curves. One phase curve corresponds to
the transition from w > —1 to w < —1 while another one realizes the inverse transition.
This couple of phase curves obviously has the measure zero in the set of trajectories of the
system. Therefore we infer that the considered transition is physically implausible in this
case.

4.3 k-essence in k # (0 universe and in the presence of
other forms of matter
In the previous sections we have seen that the desirable transition from w > —1 tow < —1

is either impossible or dynamically unstable in the case when the scalar dark energy is
a dominating source of gravity in the flat Friedmann universe. Let us now investigate
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whether this statement is true in the presence of other forms of matter and in the cases
when the Friedmann universe has open and closed topology.

Following Ref. [69, 82] the effective sound speed ¢, is given by the same Eq. (Z2Z4) for
the flat, open and closed universes. Therefore, if the dark energy is the dominating source
of gravitation (in particular this means that the energy density of the dark energy ¢ # 0 ),
than the analysis made in the subsection is applicable to open and closed universes
as well as to the flat universe.

If the dark energy under consideration interacts with ordinary forms of matter only
through indirect gravitational-strength couplings, then the equation of motion (1) looks:

dex +30Hpx +e4=0, (4.54)

where merely the Hubble parameter depends on the spatial curvature and other forms of
matter. This dependence is given by the Friedmann equation:

H? + % = % (5 + ZsZ) (4.55)

where Y ¢; is the total energy density of all other forms of matter. It is obvious that the
points on plot (¢, ¢) considered in the most of this paper, do not define the whole dynamics
of the system anymore and therefore do not define the states of the whole system. But
the analysis made in the subsections ETTILT 3 and section leans only on the behavior
of the scalar filed ¢ and its first t—derivative ¢ in the neighborhoods of their selected
values namely such where some of the conditions p x = 0, b =0 e x = 0 etc hold. For
these conditions the contributions into the equation of motion (L4, coming from the
other forms of matter and spatial curvature would be of a higher order and therefore are
not important for the local behavior of ¢ and gb and the problem as a whole. In fact the
value of the Hubble parameter did not change the qualitative futures of the phase curves
considered in the subsections ETTIE T3 and section EE2. To illustrate this statement we
plot the trajectories of the system p = %(b(f — % ((qﬁ — 1)2 + %)(it is the same system that
we considered in previous subsection) in presence of the dust matter for various values of
the energy densities (see Fig. (). The only thing that is important is that H # 0. The
universe should not change the expansion to the collapse and the plot of the scale factor
a(t) should not have a cusp directly at the time of the transition. Thus we infer that
the most of our analysis is applicable to a more general physical situation of a Friedmann
universe filled with various kinds of matter, which interact with the dark energy only
through indirect gravitational-strength couplings. Moreover, if the interaction between the
dark energy field ¢ and other fields does not include coupling to the derivatives V¢ then
the obtained result holds as well.

4.4 Discussion

In this paper we have found that the transitions from w > —1 to w < —1 (or vice versa) of
the dark energy described by a general scalar field Lagrangian p(¢, V,¢) are either unstable
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with respect to the cosmological perturbations or realized on the trajectories of the measure
zero. If the dark energy dominates in the universe, this result is still robust in the presence
of other energy components interacting with the dark energy through non-kinetic couplings.
In particular we have shown that under this assumption about interaction, the dark energy
described by Lagrangians linear in (Vu¢)2 Lagrangian cannot yield such transitions even
if it is a sub-dominant source of gravitation.

Let us now discuss the consequences of these results. If further observations confirm the
evolution of the dark energy dominating in the universe, from w > —1 in the close past to
w < —1 to date, then it is impossible to explain this phenomenon by the classical dynamics
given by an effective scalar field Lagrangian p(¢, V,¢). In fact the models which allow such
transitions have been already proposed (see e.g. [124), 233, [Th6] and other models from the
Ref. [I13]) but they incorporate more complicated physics then the classical dynamics of
a one scalar field.

If observations reveal that w < —1 now and if we disregard the possibility of the transi-
tions, then the energy density of the dark energy should grow rapidly during the expansion
of the universe and therefore the coincidence problem becomes even more difficult. Thus
from this point of view the transitions considered in this paper would be rather desirable
for the history of the universe. But, as we have shown, to explain the transition under the
minimal assumptions of the non-kinetic interaction of dark energy and other matter one
should suppose that the dark energy was sub-dominating and described by a non-linear in
(Vugb)Q Lagrangian. Thus some non-linear (or probably quantum) physics must be invoked
to explain the value w < —1 in models with one scalar field.

The second application of our analysis is the problem of the cosmological singularity.
To obtain a bounce instead of collapse the scalar field ¢ must change its equation of state
to the phantom one before the bounce and should dominate in the universe at the moment
of transition. Otherwise, if the scalar field was sub-dominant then it is still sub-dominant
after the transition as well, because its energy density decreases during the collapse, while
the other non-phantom forms of matter increase the energy density. The disappearing
energy density of ¢ does not affect the gravitational dynamics and therefore does not lead
the bounce. On the other hand, as we have already proved, a dominant scalar field ¢
described by the action without kinetic couplings and higher derivatives, cannot smoothly
evolve to the phantom with w < —1. Therefore we infer that a smooth bounce of the
non-closed Friedmann universe cannot be realized in this framework.
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Figure 4.7: Numerically obtained trajectories of the dark energy described by a Lagrangian
linear in X are plotted for the cases 2, = 10€2,,, 2y, = ,,, and Qy = 0.1€,,,.
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Chapter 5

Enhancing the tensor-to-scalar ratio in
simple inflation

5.1 Generalized slow-roll inflation

It follows from (EZ3)) that inflation can be realized if the condition Xp x < p is satisfied for
a sufficiently long time interval. This can be done in two ways. Considering the canonical
scalar field with p = X — V (¢), one can take a flat potential V (¢) so that X < V for
more than 75 e-folds. This is the standard slow-roll inflation [89] and in this case ¢, = 1.
The other possibility is the k-inflation [T2], where p is a weakly dependent function of X
so that p x is small. Here inflation is entirely based on the kinetic term and it can take
place even if the field is running very fast (X is large); typically ¢ < 1 for k-inflation.

In this paper we consider a slow-roll inflation with a flat potential but in theories with
a nontrivial kinetic term. To best of our knowledge this possibility has been ignored in
the literature until now. However such models are very interesting because, as we will see,
they allow us to have ¢4 > 1 during inflation and thus enhance the tensor-to-scalar ratio
for the perturbations produced.

For simplicity let us consider theories with Lagrangian

p=K(X)-V(e). (5.1)

In this case
e=2XKx—-K+YV, (5.2)

and the equation for scalar field becomes

3 V4
é+3FH$+ —2 =0. (5.3)
EX

It is clear that if the slow-roll conditions

. 174
XKx <V, K<V, ’gb’ < €—¢
X
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are satisfied for at least 75 e-folds then we have a successful slow-roll inflation due to the
potential V. In contrast to ordinary slow-roll inflation one can arrange here practically any
speed of sound ¢? by taking an appropriate kinetic term. For example, for

K(X)=aX"

we obtain from (BI)

2=1/(28-1).
and if 3 — 1/2, then ¢ — oo. This limiting case correspond to a non-dynamical theory
[226], 227] which has been dubbed Cuscuton. Therefore by considering nontrivial kinetic
terms K (X) one can have, in principle, an arbitrarily large cs, which thus becomes an
additional free parameter of the theory. The crucial point is that the amplitude of the final

scalar perturbations (during the postinflationary, radiation-dominated epoch) depends on
¢s (see [82] Pages. 345 and 351):

64 €
2 — | — , 5.4
A Cxearz) I o4
while the ratio of tensor to scalar amplitudes on supercurvature scales is given by
52
%h o7 (cs (1 + 3)) . (5.5)

Here it is worthwhile reminding that all physical quantities on the right hand side of Eqgs.
(E4) and (BH) have to be calculated during inflation at the moment when perturbations
with wave number & cross corresponding Horizon: ¢k ~ Ha for (4]) and k ~ Ha for (B3)
respectively. The amplitude of the scalar perturbations d¢ is a free parameter of the theory
which is taken to fit the observations. Therefore, in models where ¢? > 1, the energy scale
of inflation must be higher than in ordinary slow-roll inflation with canonical kinetic term.
Moreover, it follows from (B3] that the tensor-to-scalar ratio can be arbitrarily enhanced
in such models.

5.2 Simple model

As a concrete example from the class of theories with enhanced tensor contribution let us
consider a simple model with the DBI-like Lagrangian

p(p, X) =« - 5

2X 1
1+ = - 1] — —m?¢?, (5.6)

where constant « is a free parameter. For 2X < « one recovers the Lagrangian for the
usual free scalar field. The function p is a monotonically growing concave function of X,

2x\ V2 1 92X\ ~¥?
pPx = (1‘1‘?) > 0, p,XX:—a (14‘?) <0,
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and the corresponding energy density,

ox\ |l 1
=a|l—(1+— —m?¢? 5.7
E=« [ ( + o ) + 2m ) (5.7)
is always positive. The effective speed of sound,
2X
2=LX_q1,22 (5.8)
EX (0%

is larger than the speed of light, approaching it as X — 0.
In the slow-roll regime and for p given in (&26), equations (Z13)), (ZI0) simplify to

4 .
H ~ 4/ %mqﬁ, 3pxHop+m?p ~ 0. (5.9)
Taking into account that gb = —v/2X, we infer that during inflation gb is constant and
2X  [12na -
— = —1 : 5.10
() (5.10)
The speed of sound
m2 -1/2
s~co = 1— 5.11
= ( 12m> (5.11)

can be arbitrarily large during inflation if we take 12ra — m?2. Note, however, that

12ma > m? is necessary for the existence of the slow-roll solution. Hereafter we will use c,
as a parameter instead of . One can easily find that during the slow-roll regime

b

mey
V12rn’

and the pressure and energy density are given by

1 2 Qﬁz 1 c ¢2
2 * 2 *
Y [ —_— Y [ —_ 5'13
p=m (1271’1—}-0* 2)’ e=m (127?1+c* 2 ’ ( )

respectively. The inflation is over when

(5.12)

€+pN Cy
e 6mg?

(5.14)

becomes of order unity, that is, at ¢ ~ /c,/6m. After that the field ¢ begins to oscillate
and decays. Here we restrict ourselves to illustration of the above analysis by a phase
diagram Fig. Bl obtained numerically.

To determine a (¢) we use (BI2) to rewrite the first equation in (BE9) as

me, dlna
, 5.15
Nivr: \/ me (5.15)




66 5. Enhancing the tensor-to-scalar ratio in simple inflation
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V2 ¢ ool oo oo\ L N

Figure 5.1: Numerically obtained phase portrait for the system with the parameters m =
1.5-1077, ¢, = 3.67. The field value ¢e,q = 0.32 corresponds to the end of acceleration
when w = —1/3.
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and obtain

0@ =aren (263 )). (5.16)

where ay and ¢y ~ \/c,/6m are the values of the scale factor and the scalar field at the
end of inflation. Given a number of e-folds before the end of inflation N, we find that at
this time

27>

Cx

~ N, (5.17)

and, hence,
E+p 1

e 3N
does not depend on c¢,. Thus, for a given scale, which crosses the Hubble scale N e-folds
before the end of inflation, the tensor-to-scalar ratio is

5]% P 9c,
e 27e, (142) = 22 5.18
62 £ N (5.18)
It is clear that by choosing a close to the critical value m?/127 we can have a very large
¢, and consequently enhance this ratio almost arbitrarily.

5.3 Discussion

We have shown above that in theories where the Lagrangian is a nontrivial, nonlinear
function of the kinetic term, the scale of inflation can be pushed to a very high energies
without coming into conflict with observations. As a result, the amount of produced
gravitational waves can be much larger than is usually expected. If such a situation were
realized in nature then the prospects for the future detection of the B-mode of CMBR
polarization are greatly improved. Of course, the theories where this happens are somewhat
“fine-tuned”. Namely, the corresponding Lagrangian p (X, ¢) must generically satisfy the
condition, p x +2Xp xx < p x, during inflation. For the particular model (6) this means
that 12ra — m? < 127«. This fine-tuning of the parameters of the theory should not be
confused, however, with the fine-tuning of the initial conditions. In fact, the true theory
of nature is unique and, for example, Lagrangian (B.6), where 127« is not very different
from m? looks even more attractive because it has fewer free parameters. Therefore, future
observations of the CMBR fluctuations are extremely important since they will restrict the
number of possible candidates for the inflaton.
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Chapter 6

Looking beyond the Horizon

In this Chapter we follow our papers [72, 75, [73] (and on the work in preparation) and show
how it is possible to obtain information from the spacetime region beyond the Schwarzschild
horizon.

6.1 Model

Let us consider the simplest k-essence of DBI type ([BIH) with the Lagrangian density

,/1+%—1], (6.1)

where « is a free parameters of the theory. Throughout this Chapter we use the natural
units in which G, = h = ¢ = 1. The kinetic part of the action is the same as in [70]
and for small derivatives, that is, in the limit 2X < «, it describes the usual massless free
scalar field. As it follows from the discussion in the Section for this theory we have
o = +1 in the generalized DBI Lagrangian (BI3) therefore the model for sure satisfies the
Null Energy Condition. Therefore the black hole area theorem from the Ref. [21] holds and
the area of the Black Hole horizon never decreases. Here we allow for both signs of the
constant «, thus we consider both: the case of the superluminal propagation o > 0 and
standard DBI with o < 0 and the sound speed ¢; less than the speed of light.

In the case of field-independent k-essence the equation of motion for the scalar field

&) is

LX)=«

G'"'V Vb = 0. (6.2)

It is convenient to write energy density (BI1) and the pressure in the following form

e=a(l—c"), p=alc—1). (6.3)
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Figure 6.1: For the background solution in the case ¢? = 5/4 the squared sound speed (red)
and the normalized energy density, £/, (blue) are shown as functions of radial coordinate
— 4

x=r/ ry. The sound horizon r, = =Ty is located inside the Schwarzschild horizon 7.

6.2 Background solution

First we will find a stationary spherically symmetric background solution for the scalar
field falling onto a Schwarzschild black hole. Keeping in mind the o« > 0 case where
the superluminal propagation is possible it is convenient to consider the problem in the
coordinates which are regular on r4- the Schwarzschild horizon (gravitational radius). To
describe the black hole we use the in-going Eddington-Finkelstein coordinates, in which
the metric takes the form:

ds* = f(r)dV? — 2dVdr — r2dQ?, (6.4)

where

dO? = df? + sin® 0dp?, (6.5)

is the line element on unit sphere and we have denoted f(r) = 1 —r,/r. The coordinate V'
is related to the Schwarzschild coordinates t and r as: V =t+r+r,ln|r/r, —1|. For our
further discussion it is convenient to introduce the rescaled radius coordinate x = r/r,.
Let us assume that the in-falling field has a negligible influence on the metric, that is, we
consider an accretion of the test fluid in the given gravitational field. The requirement of
stationarity implies the following ansatz for the solution:

S(V.2) = 6, (v +r, / F(x)dx) , (6.6)
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where

di = yJa (2 —1), (6.7)

is the field derivative with respect to the Schwarzschild time ¢ at spatial infinity and c¢;
is the speed of sound at infinity. Note that in this case the product o (c? — 1) is always
positive. The overall factor in (28) is chosen to recover the cosmological solution at infinity:
é(V,z) — ty/a(c? — 1) and r, in front of the integral is for the further convenience. The
function F'(x) must be determined by solving equations of motion (1) for appropriate
boundary conditions. Substituting () into (E2) and integrating over r we obtain the
following equation for the function F'(x):
2
(fF+ 1z _ E;, (6.5)
VI=(fF?+2F) (i -1) &

where B is the constant of integration. The solution of (£8), which is nonsingular at the
black hole horizon, is given by:

1 dii-1
F(z) = 7 (B\/f$4c§+32 Ry 1). (6.9)

The speed of sound speed can then be found using (69, (E8) and (BI):

3.8 (2
5 x2cd (xef — 1)
= . 6.10
¢ (7) (x — 1) a3 + B2(c? — 1) (6.10)

Note that the speed of sound becomes infinite at some x = x4y, and this singularity is
physical if the real regular solution () exists for all z > .

A constant of integration B, entering (G.9) and (GI0), determines the energy flux falling
onto the black hole. To fix it we have to find the solution which is non-singular on the
sound horizon and outside it. Below we consider the propagation of perturbations and find
how the position of the sound horizon depend on B. Then, given ¢;, and comparing the
positions of the singularities and the sound horizon we determine the unique value for B.

6.3 Small perturbations

Let us now consider the small perturbations around background (E8), (E3). The char-
acteristics (propagation vectors N*) for equation (E2) are null vectors in the emergent
geometry (see Appendix [Bl formula (BX9) )

G, N'N" =0, (6.11)

where G is given by Eqs. () and (ET9) calculated for the background solution Egs. (G.6)
and ([B3). For the emergent line element ([BY) dS* = G }dz"dz” we have

2as? = (= 2)av? —2avdr (1= (¢ = 1) F) + (¢ = 1) Fir® = %0 (6.12)
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From this line element one can guess that the there is sonic horizon at r, = ry/c;. In
fact the constant B and consequently F(r) and the background solution ¢ (V,r) can be
determined by the Cosmic Censorship requirement applied to the emergent spacetime
(ETA). Namely for physically meaningful solutions all possible singularities of the metric
({ET2) should be inside the sonic horizon r,.

The vector N* describes the propagation of the wave front. After lengthy, but straight-
forward calculations, we obtain from (EI1]) and ([AJ) the following differential equation
for the characteristics Ny (z) = dV/dz:

1 1
where
1 BQ 4
é}—if\/c ——%M]FB(C%ET)JC. (6.14)

It is worth mentioning that the equation £+ = dx/dt determines the propagation of wave
front in the Schwarzschild coordinates x and ¢.

Equation (EI3) does not specify the direction of the propagation completely. In addi-
tion to the value of dV/dz one has to choose a cone of future and a cone of past for every
event. However, the position of the past and the future light cones helps us to fix the past
and the future influence cones for the k-essence perturbations, or in other words, for the
"sound". Using characteristics (I3 we then select uniquely the sonic influence cones as
follows: i) the past and the future sonic cones should not have overlapping regions; ii) the
future sonic cone contains the future light cone, while the past sonic cone contains the past
light cone. This last property can be justified because it holds at the spatial infinity and
the sonic characteristics ([E13) nowhere coincide with the radial light geodesics (otherwise
for the sonic signal ds? would vanish somewhere and this is obviously not true). As a result
we conclude: a signal propagating along N, points in the positive V —direction, while a
signal corresponding to N_ points in the negative V —direction (see Fig. B.2).

Having calculated the propagation vectors we can find the sonic horizon. The sonic
horizon is defined as a surface, where the length of the spatial velocity vector is equal to
the speed of sound. Outside this surface the signals can reach the spatial infinity, while
sound cannot escape from inside because it is trapped by the supersonic motion of a fluid
(in the same way as light is trapped inside the event horizon by the gravitational field).
The acoustic signal directed out of the black hole corresponds to N, and therefore the
sound horizon is located at © = x, where N} = (dV/dx); becomes infinite (see Fig. B.2).

Now we can fix a constant of integration B, entering (G.6), (E9). We simply demand
that in the physically occurring situation there exists no singularity on the sound horizon
and outside of it. This procedure is similar to that one arising in the problem of perfect
fluid accretion where the physical solution does not diverge at the event horizon (see,
e.g. [234]). Thus, fixing B reduces to the analysis of the mutual location of xg;,, and z,.
After some calculations we find the following:
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Figure 6.2: In the Eddington-Finkelstein coordinates the emission of a sound signal from
the falling spacecraft is shown. The blue cones correspond to the future light cones and
the red cones are the future sonic cones (EI3). The black curve represents the world line
obtained numerically for the spacecraft which moves together with a falling background
field. Being between the the Schwarzschild (r = r;) and sound (r = r,) horizons the
spacecraft emits an acoustic signal (shown by red) which reaches the distant observer
in finite time. The trajectory of the signal is obtained by the numerical integration of

Eq. &13).
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e For B =# 1 either the physical singularity coincides with the sound horizon or the
speed of sound becomes imaginary (this means absolute instability) within some
region outside the singular surface, for x > x4y In both cases the solution is
nonphysical.

e For B =1 and ¢? > 4/3 the speed of sound becomes imaginary before reaching of
sound horizon or singularity. This solution is also nonphysical.

e For B=1and ¢ < 4/3 the sound horizon is located at z, = 1/c? and the singularity
is hidden inside the sound horizon, z,, < .. This is the only physically relevant
solution we are searching for.

Thus, we have to set B = 1 in (£8), (E3) and this ends the constructing of the background.
It is worthwhile mentioning that using the new Schwarzschild-like coordinates (7, 1)

AV =dr — (G,1/Gyy/) dr, (6.15)
ne can write the emergent line element dS? as

c2dS? = H(r)c2dr* — H Y (r)dr? — r2dQ?, (6.16)

where we have introduced

H(r) = (1-"2) (1 _ (%)2) / (1 — () (%)4) , (6.17)

and the sound speed is given by (EI0) with B = 1. Before we turn to the discussion of
the signals propagation in the emergent geometry we will briefly analyze the validity
of the stationarity approximation when the backreaction can be neglected. Having fixed
B the rate of the accretion can be easily evaluated as (see e.g. [235, 230]):

M = 4xM?*a (¢ — 1) /¢, (6.18)

here M is the mass of the Schwarzschild Black Hole. It is clear that for any fixed value of
¢; we can choose a small enough «, so that the energy flux onto black hole is negligible.
The propagation of perturbations ([EI3) on the background (£ does not depend on «,
but only on ¢;. Therefore, we can always take sufficiently small v in (6I) to ensure that
during the gedanken experiment with sending signals from the interior of a black hole the
background solution remains nearly unchanged.

After we have found the physically relevant background solution we will discuss whether
the acoustic signals can really escape from the interior of the black hole. This becomes
possible because in the case of a > 0 the sound horizon (z, = 1/c?) is located inside the
Schwarzschild radius. If & < 0 then ¢; < 1 and obviously z, > 1 and the sonic horizon
is outside the Schwarzschild sphere. As long as the signals are emitted at large enough x,
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namely, at © > x,, they reach the spatial infinity propagating along N,. For example, at
the Schwarzschild horizon r, we have:

N 1 £1)
T2

(6.19)
The propagation vector IV, y is positive and so signals could freely penetrate the Schwarzschild
horizon and move outside the black hole. The Fig. shows how the acoustic signals go
out from the interior of a black hole.

Let us calculate the redshift of the emitted signal. Suppose that a spacecraft moves
together with the falling background field (such that in the spacecraft’s system of coor-
dinates 0;¢9 = 0) and sends the acoustic signals with the frequency we,,. After simple
calculations one can obtain that an observer at rest at the spatial infinity will detect these
signals at the frequency wj,:

- 0O s

This expression corrects our result from [73]. Note that the ratio is finite for any r > r,
and it vanishes for r = r,. In particular at the moment as the spacecraft passes through
the Schwarzschild horizon r, we have

Wem  C/1+E+ct+ 8 (6.21)
Win f ci—1 ’ ’
It is important to note that as it can be easily checked for the background ¢ (V,r) the
derivatives are always timelike X > 0 outside the sonic horizon r,. Therefore as we
have already mentioned in the Section B4 the emergent spacetime is stably causal, and
consequently there are no causal paradoxes. Also we would like to stress that the solution
obtained above is valid for both the positive and negative o parameter of DBI-like k-
essence.

6.4 Discussion

The main result of this Chapter can be summarized as follows: if there exist a specific
DBI-like k-essence , then during accretion of these field onto black hole one can send
information from the interior of the Black Hole. We would like to stress that this result has
a classical origin and no quantum phenomena are involved. The discussed effect changes
the universal meaning of the Schwarzschild horizon as an event horizon and may have
important consequences for the thermodynamics of black holes.

We consider the present work as simply an illustration of a concept. The particular
theory examined does not have any justification from the point of view of particle physics.
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However, for a wide class of nonlinear theories the situation can be similar and therefore
it is quite possible that the information can really be send from inside the Black Hole.

Also we would like to point out that in our model the cosmic censorship hypothesis is
holds because the singularity is hidden by the sound horizon. The Null Energy Condition
is not violated as well. Hence the Schwarzschild horizon never decreases.

The recent paper [237] (see also later work [238]|) deals with thermodynamics of black
holes in the presence of superluminal propagation. The authors came to conclusion that
the Second Low of the thermodynamics can be easily violated in this case. However, the
model analyzed in this paper is completely different from ours, namely, the authors of
[237] have considered two kinetically coupled fields, one of which is the ghost condensate
[T7]. We are sure that in our case the violation of the Second Low does not occur because
the system is not closed and there is always external flux of energy entering the system
from the spatial infinity. In addition it should be mentioned that the similar possibility of
sending signals from the inside of a black hole opens in bigravity theories [I8§].
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Effective Hydrodynamics

It is well-known that for timelike V,¢ (X > 0 in our signature) one can employ the
hydrodynamic approach to describe the system with the action (Jl). To do this one
introduces an effective “four-velocity” as follows:

U EJV”¢
PTUVX

where o = sign (Jy¢). Using ([AJ) the energy momentum tensor (3 tensor can be
rewritten in the perfect fluid form:

(A.1)

T = (e + ) Upthy — PG,

where the pressure coincides with the Lagrangian density, p = L£(X, ¢), and the energy
density is

e(X,9)=2Xpx —p. (A.2)

It should be stressed that the energy density ¢ and pressure p introduced in this way are
scalars and correspond to 79 and —%TZ‘ only in the rest frame where u; = 0 and the stress
is isotropy. For various cosmological applications it is convenient to introduce the equation
of state parameter w

m_l@

w (A.3)

Note that w defined in this way characterizes intrinsic properties of k-essence in the co-
ordinate independent way. Following this hydrodynamical analogy further one can guess
that the sound speed (BI) can be expressed as

2 =LX_(22) 4)
Oe p

For the detailed derivation of this result see [69, 82]. Note that the general k-essence field
theory with the Lagrangian £ (X, ¢) , which explicitly depends on ¢, is not equivalent to the
isentropic hydrodynamics, because ¢ and X are independent and therefore the pressure
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cannot be expressed though ¢ only. However, the hydrodynamical language provides a
rather useful and physically intuitive description of the system. In particular the equation
of motion for the homogeneous field configurations ¢ (t) is equivalent to the continuity
equation (ZI4). Note that the general equation of motion () cannot be obtained in the
hydrodynamic setup for the ¢-dependent k-essence Lagrangians £ (X, ¢).

In what follows we restrict ourselves to the class of Lagrangians which do not depend
of ¢ explicitly, p = p(X) and in addition we require that X > 0. This class of models is
precisely equivalent to perfect fluid models with zero vorticity and with the pressure being
a function of the energy density only, p = p(g). Then the expressions (Bl or ([A4) coincide
with the usual definition of the sound speed for the perfect fluid: ¢? = dp/de. Apart from
the energy density € and pressure p one can also formally introduce the “concentration of

particles™
de
n = exp — | =V Xpyx.

e+ p(e)
and the enthalpy

h58+p:2\/)_(.
n

In particular the equation of motion (Z7) takes the form of the particle number conservation
law: V,, (nu*) = 0.

Using these definitions we can rewrite the induced metric metric G and its inverse in
terms of hydrodynamic quantities only:

he
pwy TS [opr T2\ B v
G = 5 g (1—c¢?)uu"], (A.5)
2
G, = h? (g — (1 = &) upuy] - (A.6)

To our best knowledge these metrics ([A.H) along with an action for the velocity potentials
were introduced for the first time in [8T], where the accretion of the perfect fluid onto black
hole was studied. As it follows from the derivation in [ the metric (CI7) and the action
([C1d) derived in our paper are applicable in the more general case of arbitrary nonlinear
scalar field theories £ (X, ¢) and for all possible (not only timelike Xy > 0) backgrounds
produced by any external sources.



Appendix B

Characteristics and superluminal
propagation

Let us consider scalar field ¢ interacting with external source J (z). The equation of motion

for the scalar field is .
G"'V,NV,0p+ey,=1J

(B.1)

where metric G* is given by &) and for brevity we use the “hydrodynamic” notation
e(X,¢) =2XL x — L. Suppose ¢y is the background solution of (B.J) in the presence of
source Jy (z) and gravitational metric g, (z). Let us consider a slightly perturbed solution
¢ = ¢o + m of (B with the source J = Jy + §J and the original unperturbed metric

guw (z). The equation of motion for 7 is then
GM'N N T A € g7 + €. 9x0X + 6GMN N g = 6,

where

oG oGH

6X = V,60V” d 6G" =
V.oV an G 96 7T+ava¢

V.

This equation can be written as

G"N N, 1+ VIN 1+ M*r = 6],

where B
" _ 0GB i
(7) = 8VM¢VO‘V6¢O +€.ox Voo,
and -
~ 0G*
M? (x) = 9 VaVsdo + € 44-

Considering the eikonal (or short wavelength) approximation [239] we have

m(z) = A(x)expiwS (x),

(B.2)

(B.3)
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where w is a large dimensionless parameter and the amplitude A (z) is a slowly varying
function. In the limit w — oo the terms containing no second derivatives, V* (z) V,m and
M? (x) 7, become unimportant and (B4 becomes

G"9,59,S = 0. (B.8)

The equation of motion in the eikonal approximation (B.S) is conformally invariant. The
surfaces of constant eikonal S (constant phase) correspond to the wave front (characteristic
surface) in spacetime. Thus the 1-form dS = 9d,Sdxz* is orthogonal to the characteristic
surface. The influence cone at point P is formed by the propagation vectors N# tangential
to the characteristic surface N*9,S = 0 and positive projection on the time direction.

Using (B.8) one can chose N* = G*¥9,S and verify that this vectors are tangential to
the characteristic surface. The metric G* has an inverse G,) due to the requirement of

hyperbolicity (Lorentzian signature of G’“”). Therefore 0,5 = é;jN # and we obtain the
equation for the influence cone in the form

G, N'N” = 0.

Thus the metric @;1,1 governs the division of acoustic spacetime into past, future and
inaccessible “spacelike” regions (or in other words this metric yields the notion of causality).
It is well known that this division is invariant under conformal transformations. From
action ([BH) for perturbations 7, which we derive in Appendix [ it follows that in four
dimensions it is natural to consider a conformally transformed metric G, = (L2 /cs) @;1,1
Using this metric from (BX) one obtains

c
G ININY = C’X Guw NNV — ¢.L xx (V,6NP)? = 0. (B.9)

S

Therefore

v = (£22) (5,007

and if £ xx/L x is negative, then g, N*N” < 0, that is, N* is spacelike and the cone of
influence on this background is larger than the light cone: the wave front (or signal) velocity
is larger then the speed of light. Note that this is a coordinate independent statement.



Appendix C

Action for perturbations in test field
approximation

Here we derive of action (BH) for 7 in the spacetime of arbitrary dimension N > 2. First
of all we would like to investigate whether there exists a metric G for which the equation
of motion for perturbations 7 takes a canonical (Klein-Gordon) form

G" D,D,r + MZm = 41, (C.1)

where D, is a covariant derivative with associated with the new metric G*: D,G*® = 0.
Note that the equations of motion ([B.2) and (CJJ) should have the same influence cone
structure. Thus the metrics G* and G* must be related by conformal transformation and
if it is really possible to rewrite (B:2) in canonical form, then there must exist Q (¢o, Xo),
such that

G = QGM . (C.2)
Therefore our first task is to find € (¢g, Xo). Note that this method makes sense for the
dimensions D > 2 only. That happens because in D = 2 all metrics are conformally
equivalent to 7,, and the wave equation is conformally invariant, see e.g. Ref. [167], P.
447. Let us define the following covariant derivative

D,A, =V, A, — L), Ay (C.3)

which is compatible with the new metric whereas V,A, = 0,4, — F/);VA)\ denotes the
standard covariant derivative associated with the gravitational metric: V,g*° = 0, as
usual. Note, that the tensor Lﬁy introduced in (C3) is the difference of the Christoffel
symbols corresponding to the effective and gravitational metrics. Comparing (B.2) and

([CT) we infer that
QG" D,D,r + Miym = QG"™V V1 — QG" L}, Vm + Mg

must be equal (up to a multiplication by a scalar function 2) to the l.h.s of (B.4l). These
can be true only if the following condition holds

G"wLy, =—-V*, (C.4)
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where V* is defined in (BF). When this condition is satisfied we can always make the
redefinition

MZ% = QM? and 61 =Q6J,

where M? is defined in (Bf). The connection L/);V depends on the unknown function 2
(and its derivatives) which has to be obtained form (C4l). To solve ([C.4) it is convenient
to multiply its both sides by €2. Then using (BH) and ((C2) this condition takes the form:

0GP
OV \¢

G‘LWL;:V = -0 ( vaVﬁ¢0 + €7¢Xv)\(]§0> . (C5)

Let us now solve (CH) with respect to 2. In complete analogy with the formula (86,6)
from Ref. [239] we have

G"IA, = —\/%_Gva (@GM) , (C.6)

where \/—G = V/—detG Ll = QP2 —deté’;é, and D is the number of dimensions of the
spacetime. Using the formula (B14) from Ref. [T6] one obtains

detG*® = (L x)" ¢;%det (¢"), and deté;é = (L x) " Adet (g) - (C.7)
Finally we arrive to the relation,
V=G = cov/=g (QL.x) "% (C.8)
It is convenient to introduce the auxiliary function
F=c,(QLx) "% (C.9)

and then using (C.0), we can rewrite equation (CH) as:

- OGP
a\) A
Va (FG ) —F ( g5 VeVt +eaxV ¢0> . (C.10)

Differentiating the metric G** from the Lh.s. of the last equation in accordance with the
chain rule we find:

- AGP oG AG*
a\ o . o . pYe"
GV aF =F ( (avkgb avﬁgb) Va Vﬂgbo <—a¢ €oxyg ) y a¢0> . (C]_l)

Further we obtain

aéa)\
a—¢va¢0 = (‘C,X¢ + QXE,XXqﬁ) V)\gbo = 5,¢XV’\¢0. (012)
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For the first term in the brackets in (C.I1]) we have:

0GP
OVap Lxx (9°7V 0 + "V 00 + gV V%0) + L xxx VOV 9V ey,  (C.13)
and therefore _ o
oG~ oG~
_ = 0. C.14
OV 8Vg¢ ( )

Thus the r.h.s. of (CIJ]) identically vanishes. Note that there exists the inverse matrix
CN?;; to G**. Therefore from (1) we conclude that Vo F = 0 or F = const on all
backgrounds and for all theories. Considering the linear case, £ (¢, X) = X — V(¢), we
infer that F' = ¢, (QE,X)J)/2 Q=1or

1/(D/2-1)
0= <c8£jXD/2) . (C.15)

Having calculated 2 we can formulate the main result of this Appendix as follows: the
action from which one can obtain the equation of motion in the canonical Klein-Gordon

form (C1)) is

1
S, = 3 /de\/ —G [G"O,m0,m — MZm* + 2wl (C.16)

where the emergent metric G* is the conformally transformed eikonal metric G, defined

in [Z3),

1/(D/2-1) _ 1/(D/2-1)
G R A

The inverse metric G;Vl can be easily calculated using the ansatz G;l,l = aguw+ BV ,00V.udo
and is given by the formula

1 c. —1/(D/2—1) y [ Loxx
G = (E,x) [9” —C (—ﬁx ) VEgeV 6150} : (C.18)
Finally the effective mass is
3 1/(D/2—1) oGV
Mgﬁ = <CS£7XN/2> [2X,C?X¢¢ - £,¢¢ + 8—¢VMVV¢0] , (019)

and the effective source for perturbations is given by

1/(D/2-1)
) 5J

51 = <cs£jXD/2 (C.20)

For the reference we also list the formula

D\ /(P
V-G =+\/g (C—2X> . (C.21)

S
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C. Action for perturbations in test field approximation




Appendix D

Action for Cosmological Perturbations

Here we compare the action (BI) with the action for scalar cosmological perturbations
from Refs. [69, 82]. In particular we show that cosmological perturbations propagate in
the metric (BX) but have an effective mass different from (BZ)). Finally we derive the
generally covariant action for the scalar cosmological perturbations.

To begin with let us consider the action () for a perturbations 7 (n,x) around a
homogeneous background ¢(n) in the spatially flat Friedmann universe

ds* = g, da'ds” = a® () (dn* — dx®) = a® (1) Ny datdz” (D.1)

where 7 is the conformal time n = [dt/a(t) and 7, is the standard Minkowski metric.
Using Eq. (B)) and Eq. () one can calculate the effective line element (BX):

ds? = G;Vldx“dx” = £x [ds2 — a’c? (Eﬁ) 2Xd772}
Cs ‘C,X

— £7X

Cs

a® (dn? — dx?) = ¢, A* (2dnp® — dx?) . (D.2)

where we have introduced the convenient variable
A= /[ xa. (D.3)

Note that for the models respecting the NEC (£ x > 0) the hyperbolicity condition (Z3)
requires € x > 0 and therefore A is always well defined. The factor V/—G can be then
calculated either from the last expression above ([L2)) or from the general expression (C.21)):

£2
Xt = 2A% (D.4)

VoG-

Cs

Using the formulas ([B2) and (BJ) we calculate the kinetic term

G" o, md,m = (csazﬁ,x)_l <(7T’)2 — ci(ﬁﬁ)2> : (D.5)
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Thus in the case when the perturbations 7 do not influence the metric g, the action (B3)
takes the form

1 2 L%
Sy = ) /dedn [an,X ((7?') - Cg(Vﬂ')2> — Mgﬁéa47r2] : (D.6)

here we have used the definitions of the sound speed (BJl) and energy density ([ZH). It is
convenient to introduce the canonical normalization for the perturbations. This is achieved
by the following field redefinition:

v = /e xar = TA. (D.7)

Finally integrating by parts and dropping the total derivative terms we obtain the following
“canonical” action

S = %/dgxdn [(y’)2 — A(Vv)? — mgﬁyﬂ ) (D.8)

where the new effective mass mg is given by the following expression

—G Al/ a2 Nuy ( 5 Xa)//
2 _ a2V _ _ _ WS
Mg = MeH—AQ i —67 €06 T+ 96 V.V, ~a (D.9)

or in other terms

( 57Xa) "

£xa

1
miy = - [e.x60" + He' Bp.xs — € x6) + €,960°| —

)

(D.10)

Now let us consider the case of cosmological perturbations in the case where the field ¢
is responsible for the dynamics of the Friedmann universe. Following Refs. [69, R2| one
introduces a canonical variable v

/ /
v =,/ xa (5¢+ﬂ\11) :A(éqﬁ—i—ﬁ\ll) , (D.11)
and a convenient auxiliary variable z
/ /
= %Maxa = %A, (D.12)

where ¢ is the gauge invariant perturbation of the scalar field, H = a’/a and ¥ = & is the
gauge invariant Newtonian potential. Using this notation the action for scalar cosmological
perturbations takes the form:

1 -
Soam = 5 [ Py ()7 = (F0)? — i 0? (D.13)

where
My = —— (D.14)
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It is easily to check that for all cases besides canonical field without potential £L(¢, X) = X

2 2
Meosm 7& Mg (D15)
However, comparing the action (L.8)) with ([L13]) one arrives to conclusion that the cosmo-
logical perturbations propagate in the same metric B32), B). Further one can introduce
the notation d¢ for the sometimes so-called “scalar perturbations on the spatially flat slic-

ing
/

For this scalar field the action for cosmological perturbations (O.13) takes the form
1 - .
Seomm = / dioV—G [Gwaﬂway(s(p - Mfosm5¢2] , (D.17)

thus the cosmological perturbations d¢ live in the emergent acoustic spacetime with the
metric (B2), B7). Similarly as we have calculated in (O.9) we have

V=G A (Vexa)’ o
M2 ~—— — = M2 a’Lxc,— YL =" D.18
cosm ™ A2 A cosm@ & xC Exa 5 ( )
after some algebra the last expression reduces to
A/
X' +2 (Z) X+ A (Mipncl) x =0 (D.19)

where we have introduced a new auxiliary field

xn)=2 = (SWZN)W JE (D.20)

The equation (19 is in turn the Klein-Gordon equation

cosm s

(O + (M2ncd)) x =0 (D.21)

for the field x in the metric g, = A1, = € xg,, conformally related to the gravitational
metric g,,,. Thus we have
M2, =—c.*x 'Oy x. (D.22)

cosm

One can rewrite this formula in terms of the gravitational metric g,,. Using the rules of
the conformal transformations we have

1 1 1
Hax = =Va <\/_@WVVX>:?TX—w/—_gVH (exv=g9""V.x) = (D.23)

= —V"xVue i +ex0gx (D.24)
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Thus the effective mass for cosmological perturbations d¢ is

/ | X | X
M2 = —03_38’}1 ( %Dg = +V,In(e x) V*In €> ) (D.25)

Note that in the case of canonical kinetic terms L£(¢, X) = X — V (¢) the last expression
for M2 the simplifies to

cosm

M? —(w+ 1720, (w+1)"2. (D.26)

cosm,canonical —

where w = p/e is the equation of state parameter. In particular for the universe filled with
the massless canonical scalar field Moem, = 0.
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Green functions for a moving spacecraft

Here we calculate the retarded Green’s function for a moving spacecraft in the case of three
spatial dimensions. First we calculate the retarded Green’s function in the preferred (rest)
frame and then we perform the Lorentz boost (with the invariant speed ¢) for the solution.
We compare the result with one obtained by the direct calculation of Green’s function for
the Eq. (B33). We will need the following formulas from Ref. [240] p.750:

e8] 2 __ b?
/ Ty <b\/x—2 - a‘z) sin (cz) = COSEZQ* C—zﬁ ) for 0<b<c (E.1)

= 0, for 0<e<bd (E.2)
/ Jo <b\/x2 — a2> cos(cr) = — , for O0<b<e (E.3)

02_b2
_ 62_2
_ eXp(;” 26), for 0<ec<b  (Ed)
C

/a Jo <b\/m> cos (cx) = | , for 0<b (E.5)

In the preferred frame the Green function is (see e.g. [164])

0(1)
Gt m) = —=6 (3t* — |z]). E.6
R( 7'17) 2057_(_ (Cs |:L‘| ) ( )
Performing the Lorentz transformation x = (' +vt'), t = (¢ +va'), where v =
(1-— UQ)_1/2 we find the Green function in the moving frame:

0 (t' 4+ va')
2c,T

GR(t,2') = ) [72 <c§ ' 4+ va')? = (¢ + vt')z) — 9y — 22] . (E.7)
We need to calculate the Fourier transform to the function (EXIJ). It is convenient to shift

2’ as follows:
1—¢?

.fll'/ =T — Ut/ <1 — CQUQ) . (ES)
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Then the argument of the delta-function in (E.7) can be rewritten as
72 (ci ' +va')’ — (2 + Ut’)2> —y? =22 =act? — a7 —y? — 22,

where

1—02

1 2,2
1—cv

a (E.9)

Now we are ready to proceed with the Fourier transform of ([E):

ip oo L ,
Gt K) = 266 - / dzdydz0 (t' +va') § (act? — a7 '7% — y? — 27) el Hihuytiks2
(E.10)

—00

where we introduced the notation:

1 — 2
o= koot (7) . (E.11)

— 292
1—civ

Step-function in the integral implies that the integration over T is made from x, to +oo:

i oo 0o oo o )
Gg(t/, k?/) _ 29 / df/ dy/ dz§ (acgta S y2 N 22) ezkz/z-i-zkyy—i—zkzz’
CS7T T —00 —0o0
E.12
o 1—c? 1= a, EE 13)
S 1 —c2v? v v \l-cn?) v’ 13)

Introducing r = /y?+ 22, ¢ as the angle between the vectors {k,, k.} and {y, z} and

ki = \/k + k2 we obtain:

ip o) e 27 o
26 / df/ drr/ dgd (acit” — o'z — r?) ehermtikireoss - (F 14)
CsT J . 0 0

Gt k) =

Integrating over r first gives:

Gt k) =

ew +oo 2m
/ df/ d¢ exp (ik:m/f +iky \/ozcgt’2 — a~17? cos gb) (E.15)
desm . 0
for

act? —a 7% >0, (E.16)

otherwise it is zero. Integrating ([EE10) over ¢ we find:

ip +o00
Gt k) = ; / dz.Jy (lﬁ \/ozcgt’2 — 04—152> exp (ikyT) , (E.17)

Cs
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where Jy(x) is the Bessel function of the zeroth order. Now we need to integrate the ex-
pression ([EE17) taking into account the condition ([EZT6]).We consider two cases separately:
the case of slow spacecraft, v2¢? < 1 (a > 0), and the case of rapid spacecraft, v3c? > 1
(a < 0).

For the slow spacecraft we easily obtain from (EJI7) and (EI0):

ew

acst!
Gg(t’, k) = Q(t’)/ dz Jy (k‘l \/acth - a—lf2) e ®

208 7CMCSt/

e /acstlm ki \/m cos (k)
CS ; 0 \/a S X .

Using ([EZH) we then find the Green’s function for slow moving spacecraft:

GH(t' k) = —6(t) i€l (e"w’\/’viﬁki/a _ gmioest /RS 4R/ a)
2e/ K + K Ja

1 — 22 -2 ) o
i+ P o). ey

1 — 2

— ()

2ic,

In the case of rapid spacecraft, v?c?> > 1 (o < 0), one can verify that o?c?t'? > z2 for
any t'. Thus (E7) along with (EJ6) can be rewritten as:

i +oo k
GR (U K) = ° / dz Jy (—L a?c2t’? — §2> (cos (kpT) +isin (kyT)). (E.19)
| vail

Cs |aest!

Using (E2) and (EZ) for k3 > |a| k% and (EJ) and ([E3J) for k3 < |a] k2 we obtain in

both cases:

ip €XD (— lacst!| /K2 |a| " — k‘i/)
e
GR(t K = : (E.20)

265 R ol = k2,

The last expression can be written as

1 1-— CQU2 -1/ ; ’ : ’
Gg(t/, ]{]/> = — 2ic (kg/ + kiﬁ) ((9 (t/) e“‘”“t +0 (—t/) e“"‘t > . (E21)
Thus the modes propagating in with
1— 2
K2 > k2 |a| = k% (C%Q%l) (E.22)

are exponentially suppressed. The singular directions k% = k2 |a| are unphysical because
they have measure zero in the integral. This directions correspond to the sufficient but
integrable singularities in the Green function.
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If the Green’s function is calculated directly from the Eq. (B30) by means of standard
approach then one can find, that the solution is:

2

1 11—\
GE(t.K) = 6(F) (k§,+kiil Czé’) (e —er), (B23)

2ic,

which coincides with the Green’s function (EIS) we calculated by applying the Lorentz
transformation to the rest Green’s function in the case of slow motion. Note, however,
that the results differs for the case of fast moving spacecraft - compare (E23)) and ([E2]).
The function G5 (¢, k') from (E23)) contains exponentially growing modes for sufficiently
high &, while correct way of calculation gave us a sensible result (E2I]) - it contains
only exponentially suppressed modes. This makes sense because the late time solution
approaches the free wave which do not contain these high k| .
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