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1 Einleitung 
 
Die Herztransplantation (HTx) ist heute ein etabliertes Verfahren zur Therapie der 

terminalen Herzinsuffizienz, welches zu einer signifikanten Prognoseverbesserung 

und zum Gewinn an Lebensqualität führt, auch wenn Eingriff und Folgen der 

Transplantation für die Patienten mit Risiken verbunden sind.  

In den ersten 30 Tagen nach Transplantation sind akutes Transplantatversagen (40%), 

Multiorganversagen (14%) und Infektionen (13%) für die meisten Todesfälle 

verantwortlich [97]. Betrachtet man einen Zeitraum von mehr als fünf Jahren, stehen 

andere Komplikationen im Vordergrund. Die häufigste Todesursache in der Gruppe 

der Langzeitüberlebenden stellt die Transplantatvaskulopathie (TVP) dar (30%), 

gefolgt von malignen Tumorerkrankungen wie Lymphomen (23%) und Infektions-

erkrankungen (10%) [97]. 

Die TVP ist gekennzeichnet durch immunologisch bedingte Veränderungen sowohl 

intramuraler als auch epikardial gelegener Arterien und Venen unterschiedlichen 

Kalibers mit diffuser teils konzentrischer Intimaverdickung und endet meist mit einer 

progredienten koronaren Herzerkrankung [110]. 

Obwohl eine partielle Re-Innervation des Transplantates möglich ist, verspüren die 

meisten Patienten keine typischen Symptome einer myokardialen Ischämie als Folge 

einer fortgeschrittenen TVP. Ventrikuläre Arrhythmien, Herzinsuffizienz oder der 

plötzliche Herztod sind nicht selten die ersten und einzigen Manifestationen der 

Erkrankung [108]. 

Die Koronarangiographie (CA) in Kombination mit dem intravaskulären Ultraschall 

(IVUS) wird als „Goldstandard“ in der morphologischen TVP-Diagnostik akzeptiert. 

Zur funktionellen Diagnostik der TVP stehen als nicht-invasiven Verfahren die 

Myokard-Perfusions-Szintigraphie (MPS) und die Stress-Echokardiographie zur 

Verfügung. Die MPS liefert Daten sowohl über die Perfusionsverhältnisse der 

epikardialen und intramuralen Gefäße als auch über die kardiale Mikrozirkulation. 
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Darüber hinaus etablierte sich die MPS als guter Prädiktor bezüglich zukünftiger 

kardialer Ereignisse bei Patienten nach HTx [16,19,31,107]. 

Mittels Dobutamin-Stressechokardiographie (DSE) können Daten über 

Wandbewegung, Wanddicke und Pumpfunktion des Herzens erhoben werden. 

Studien haben jedoch gezeigt, dass die Sensitivität dieser Analysemethode speziell im 

Falle von Patienten mit Ein-Gefäß-Erkrankungen limitiert ist [20,84]. Die Echtzeit-

Myokardkontrastechokardiographie (MCE) stellt in Ergänzung zur DSE eine neu 

entwickelte Ultraschalltechnik dar. Nach Applikation von lungengängigem Ultra-

schallkontrastmittel ermöglicht das „power pulse“-Inversionsverfahren eine zeitlich 

verlängerte Erfassung der Kontrastmittelbläschen im Myokard und somit die 

simultane Analyse von Wandbewegung und Myokardperfusion. Die ersten hierzu 

veröffentlichten Ergebnisse zeigen eine hohe Treffsicherheit bezüglich der Detektion 

von ischämischen Myokardarealen bei vorliegenden Koronarstenosen [83,98]. 

Ziel der vorliegenden Arbeit ist die Evaluation der Dobutamin-Stressechokardio-

graphie unter Anwendung der oben genannten neuen Kontrastmitteltechnik, der 

Myokardkontrastechokardiographie, in der Diagnostik der hämodynamisch relevan-

ten Transplantatvaskulopathie. Der Vergleich erfolgte zum Goldstandard, der Kombi-

nation aus Myokard-Perfusions-Szintigraphie, Koronarangiographie und intravaskulä-

rem Ultraschall. 

In diesem Zusammenhang stellen sich vier zentrale Fragen: 

1. Welche Sensitivität beziehungsweise Spezifität zeigt die Dobutamin-Stressecho-

kardiographie unter Anwendung der Myokardkontrastechokardiographie in der 

TVP-Diagnostik im Vergleich zum Goldstandard?  

2. Wie hoch ist der additive diagnostische Wert quantitativer Auswertungen bei 

Verwendung von intravenösen Ultraschallkontrastmitteln im Vergleich zur kon-

ventionellen  Dobutamin-Stressechokardiographie? 

3. Welche Parameter eignen sich für die Quantifizierung der Myokardperfusion und 

welche Schwellenwerte können eingesetzt werden? 

4. Unter welchen Voraussetzungen lässt sich dieses Verfahren in die klinische 

Nachsorgeroutine implementieren? 
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2 Krankheitsbild der Transplantatvaskulopathie 
 

2.1 Begriffsdefinition  

 

Der Begriff Transplantatvaskulopathie (TVP) wurde von verschiedenen 

Studiengruppen unterschiedlich definiert. Meist werden darunter Veränderungen 

arterieller und venöser Gefäße unterschiedlichen Kalibers nach Herztransplantation 

subsumiert, die als Folge der Auseinandersetzung des Empfängers mit dem 

Spenderorgan zu hämodynamisch wirksamen Stenosen führen und bis heute einen 

limitierenden Faktor für das Langzeitüberleben herztransplantierter Patienten 

darstellen.  

Von Scheidt et al. definieren das Geschehen als vaskuläre Verletzungen, welche 

durch eine Vielfalt von Faktoren wie z.B. Immunantwort, ischämische 

Reperfusionsschäden, virale Infektionen, immunsuppressive Medikamente und 

klassische Risikofaktoren induziert werden [110]. In einer ergänzenden Arbeit der 

selben Gruppe wird die TVP als eine verfrühte Form der Atherosklerose 

charakterisiert, welche durch immunologisch bedingte Endothelverletzungen mit 

nachfolgender entzündlicher Reparaturantwort unter Beeinflussung nicht 

immunologischer Risikofaktoren bestimmt wird [108].  

Obwohl die morphologischen und klinisch funktionellen Veränderungen der 

Transplantatvaskulopathie mittels moderner Diagnostik immer genauer dargestellt 

werden können, hat sich noch keine umfassende Definition für die Gesamtheit des 

Krankheitsbildes – einschließlich der Ätiopathogenese – durchsetzen können. 
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2.2 Pathogenese und Einflussfaktoren 

 

Charakteristisch für die Transplantatvaskulopathie sind konzentrische fibröse 

Intimaverdickungen sowie atherosklerotische Plaques und diffuse intra- und 

extrazelluläre Lipidansammlungen in Intima und Media [17,57]. Ferner finden sich 

proliferierende Muskelzellen, Makrophagen und T-Lymphozyten, welche vermuten 

lassen, dass kleinste Endothelverletzungen ursächlich mit dem Beginn der 

Erkrankung im Zusammenhang stehen [108]. 

Die physiologische Aufgabe von Endothelzellen umfasst die Regulation der 

vasomotorischen Funktion wie auch die Bildung von Thromben, die Anheftung von 

Leukozyten und das Verhindern der Proliferation glatter Muskelzellen.  

Eine Endothelschädigung kann über Entzündungsreaktionen zur Vasokonstriktion 

und zum Gefäßverschluss führen [110]. Die Ursache dieser Endothelschädigungen 

lässt sich in der humoralen und der zellulären Immunantwort des Körpers auf das 

Spenderorgan finden. CD 4 Lymphozyten implizieren die Bildung von MHC II 

Antigenen auf den Endothelzellen und lösen so eine Immunantwort aus [51]. Die 

chronifizierte Entzündungsreaktion bedingt eine Vermehrung der extrazellulären 

Matrix [4]. Im weiteren Verlauf bestimmt die Remodeling-Kapazität des Gefäßes 

maßgeblich das zeitliche Auftreten einer Lumeneinengung (siehe hierzu Punkt 2.4.1) 

[27]. 

Zu Beginn der TVP steht meist der Verschluss kleinster intrakardialer Gefäße, welche 

zu klinisch stummen und umschriebenen Infarkten führen. Erst im weiteren Verlauf  

okkludieren auch die größeren epikardialen Gefäße des Transplantates. Der Umstand, 

dass diese pathologischen Entwicklungen auf das Gefäßsystem des Transplantates 

beschränkt bleiben und nicht auf andere Organe des Empfängers übergreifen, stützt 

die Theorie einer immunologischen Pathogenese der TVP [69,108]. 

Jedoch werden auch nicht-immunologische Faktoren bezüglich ihres Einflusses auf 

das Krankheitsgeschehen diskutiert [59]: seitens des Empfängers finden sich in der 

Literatur neben Alter, Geschlecht und arteriellem Hypertonus auch eine mögliche 
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CMV-Infektion und klassische Risikofaktoren wie z.B. Hyperlipidämie, 

Glucoseintoleranz, Insulinresistenz und Hypertriglyzeridämie [29,39]. Auch eine 

präexistente Koronare Herzkrankheit (KHK) des Spenderorgans sowie Ischämie- und 

Reperfusionsschäden im Rahmen der Transplantation werden als Einflussfaktoren 

diskutiert.   

Tuzcu et al. [102] fanden mittels Intravaskulärem Ultraschall (IVUS) bei 56% der 

Empfänger atheromatöse Veränderungen schon innerhalb des ersten Monats nach 

Herztransplantation (HTx), was eine vom Spender induzierte Erkrankung vermuten 

ließ und zu der Theorie führte, dass die TVP eine zweiseitige Ätiologie besitzt: Vom 

Spender übertragene, frühzeitig auftretende fokale, nicht konzentrische Plaques in 

den proximalen Segmenten und eher diffuse, konzentrische Veränderungen in den 

distalen Bereichen. Die schnellste Progression bei der Verbreiterung der Intima fand 

sich eindeutig im ersten Jahr nach Transplantation, gefolgt von einem langsamen, 

aber stetigen Fortschreiten der Veränderungen [102]. 

Zur Verdeutlichung der pathogenetischen Zusammenhänge soll folgende Abbildung 

dienen (Abb.1) [113]: 
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Abb.1: Pathogenese der Transplantatvaskulopathie mit Einflussfaktoren 
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2.3 Ausdehnung und Morphologie 

 

Typisch für die TVP ist das heterogene Verteilungsmuster der Läsionen auf den 

gesamten Koronarbaum [24,38]. 

Es kann zum Befall der kleinen intramuralen Koronararterien kommen, welcher das 

Auftreten einer TVP ohne typische Stenosierungen der epikardialen Gefäße 

ermöglicht. Diese treten erst im weiteren Krankheitsverlauf auf, was eine frühzeitige 

Diagnostik mittels selektiver Koronarangiographie erschwert [69]. Histopathologisch 

stehen hier diffuse, konzentrische Läsionen im Vordergrund, welche sich über die 

gesamte Länge des Gefäßsystems erstrecken und von kleineren Nekrosen bis zu 

ischämischen Infarkten führen können [10,69].  

Ein Problem bei der exakten Erfassung und Beschreibung der TVP stellt neben dem 

heterogenen Verteilungsmuster das unterschiedliche zeitliche Auftreten der Läsionen 

dar. So werden frühe, exzentrische Plaques in proximalen Segmenten und 

Bifurkationen - bei denen es sich um präexistente, vom Spender stammende Läsionen 

handeln könnte - unterschieden von diffusen, konzentrischen Plaques der mittleren 

und distalen Gefäßanteile, welche eher einem immunologischen Geschehen 

zugeordnet werden [38,101,113]. 

Der Beginn der intimalen Verdickung konnte bereits 9 Tage nach HTx nachgewiesen 

werden [24]. Eine Aktivierung des Endothels sowohl der mikrovaskulären als auch 

der epikardialen Koronararterien schon kurze Zeit nach HTx wurde auch von Tanaka 

et al. beschrieben [96]. 

Dass es sich bei diesen Veränderungen post transplantationem um kein seltenes 

Phänomen handelt, zeigte unter anderem eine Studie, bei der 132 herztransplantierte 

Patienten mittels intravaskulärem Ultraschall (IVUS) untersucht wurden. Bei 80% der 

Untersuchten zeigten sich 1 bis 9 Jahre nach HTx atheromatöse Veränderungen der 

Gefäße [103,113]. 
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2.4 Diagnostik der Transplantatvaskulopathie 

 

Von zentraler Bedeutung bei der Früherkennung einer drohenden Ischämie ist die 

transplantationsbedingte Denervation des Herzens. Klinische Zeichen wie z.B. die 

Angina Pectoris fehlen häufig, so dass Herzversagen, ventrikuläre Arrhythmien oder 

der plötzliche Herztod oftmals die ersten und einzigen Manifestationen der 

ischämischen Erkrankung sind [108]. 

 

 

2.4.1 Koronarangiographie und IVUS 
 

Als diagnostischer Goldstandard wurde die selektive Koronarangiographie (CA) 

angesehen. In mehreren Studien konnte jedoch gezeigt werden, dass die alleinige 

Anwendung der CA dem heterogenen Krankheitsbild der TVP nicht gerecht wird und 

sie sich somit nicht als alleiniges Instrument zur Früherkennung eignet [38,95].  

Stenosierungen und Mikroangiopathien werden im Frühstadium der Erkrankung in 

der CA oftmals nicht erkannt oder unterschätzt [3,95,114]. Verantwortlich hierfür 

kann der Prozess des „positiven Remodeling“ sein, den Glagov et al. schon 1987 

beschrieben haben. Durch das exzentrische Wachstum atherosklerotischer Herde 

bleibt das Lumen längere Zeit annähernd unverändert. Erst ab einem Grenzwert von 

40% der von der Lamina elastica interna umschlossenen Fläche kommt es zur 

Einengung des inneren Gefäßdurchmessers. [28]. 

Läsionen, die in Zusammenhang mit einer akzelerierten TVP koronarangiographisch 

gefunden werden können, lassen sich gemäß Gao et al. in vier verschiedene Typen 

einteilen (siehe Tabelle 1, nächste Seite) [24].  
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Typ Art der Läsionen 

Typ A Direkte, tubuläre und multiple Stenosen in den proximalen, mittleren oder 
distalen Gefäßästen 

Typ B1 Proximal normale Gefäße mit abrupten distalen, konzentrischen 
Verengungen und Obliterationen 

Typ B2 Proximal verengte Gefäße mit einer zunehmenden, konzentrischen 
Verengung nach distal 

Typ C Irregulär verengte distale Gefäße mit Wandunregelmäßigkeiten und 
abrupten Gefäßabbrüchen 

 
Tabelle. 1: Koronarangiographische Typeneinteilung von Gefäßläsionen  nach Gao et al.[24] 

  

 

Einen genaueren Einblick in den Aufbau der Arterienwand gewährt der 

Intravaskuläre Ultraschall (IVUS). Über einen Führungskatheter und intrakoronaren 

Draht wird eine Ultraschallsonde eingebracht, so dass sowohl der intravasale Durch-

messer als auch die Morphologie und die Dicke von Intima und Media beurteilt 

werden können [110].  Diese gleichzeitige Erfassung von zwei Parametern – 

Lumendurchmesser und Wandbeschaffenheit – trägt den Effekten des „Remodeling“ 

Rechnung.  

Veränderungen im Sinne einer TVP werden nach der Stanford Klassifikation in fünf 

Stadien eingeteilt, wie in der folgenden Tabelle abgebildet. [104] 
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Stadium Morphologie 

Stadium 0 Keine Intimahyperplasie 

Stadium I Intimahyperplasie < 0,3mm Dicke und  
Ausbreitung < 180° des Gefäßes 

Stadium II Intimahyperplasie < 0,3mm Dicke und  
Ausbreitung > 180° des Gefäßes 

Stadium III Intimahyperplasie 0,3mm – 0,5mm Dicke und  
Ausbreitung < 180° des Gefäßes 

Stadium IV Intimahyperplasie > 0,5mm Dicke und Ausbreitung > 180° des Gefäßes 
oder > 1,0mm Dicke 

 
Tabelle.2: Stanford Klassifikation zur Einteilung der Veränderungen bei TVP [104] 

 

 

Lässt sich mittels IVUS ein positiver Befund feststellen, so verzehnfacht sich das 

Risiko kardialer Ereignisse im Vergleich zu HTx Patienten mit negativem Befund 

[61]. Das spätere Auftreten einer TVP, die dann auch mittels Koronarangiographie 

gesichert werden kann, ist bei positiven IVUS Befund (bei noch negativer 

Koronarangiographie) ebenfalls sehr wahrscheinlich [81]. 

 

 

2.4.2 Nuklearmedizinische Verfahren 
 

In den letzten Jahren etablierten sich zunehmend auch nuklearmedizinische Verfahren 

zur Funktionsbeurteilung des Herzens. Grundlage dieser Verfahren ist die Darstellung 

von Stoffwechselprozessen im lebenden Organismus. Hierfür werden geeignete 

Radiopharmaka appliziert, welche an Stoffwechselvorgängen teilnehmen, ohne diese 

(idealerweise) zu beeinflussen. Die Verteilung der radioaktiv markierten Tracer im 

Organismus wird mittels eines Kamerasystems (γ-Kamera) erfasst. 

Mittels Myokard-Perfusions-Szintigraphie (MPS), Radionuklidventrikulographie 

(RNV) oder Positronen-Emissions-Tomographie (PET) können Aussagen über die 
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hämodynamische Relevanz von Gefäßstenosen, deren Auswirkung auf die 

Wandbewegung und die Vitalität des Gewebes gemacht werden. 

Werden diese Untersuchungen in einem sinnvollen Intervall bei der Nachsorge 

herztransplantierter Patienten angewandt tragen sie maßgeblich dazu bei, den 

Zeitraum zwischen den Kontrollangiographien zu verlängern und überflüssige 

Untersuchungen zu vermeiden. In Anbetracht der Tatsache, dass HTx Patienten 

aufgrund nephrotoxischer Medikamente ein erhöhtes Risiko haben, eine Nieren-

insuffizienz zu erleiden, helfen nuklearmedizinische Verfahren jodhaltiges 

Kontrastmittel zu sparen und verbessern durch ihre geringere Invasivität die Lebens-

qualität der Patienten.  

 

 

2.4.2.1 Myokard-Perfusions-Szintigraphie 
 

Ziel der Myokard-Perfusions-Szintigraphie ist der Nachweis einer relativen oder 

absoluten Verminderung des myokardialen Blutflusses in bestimmten Arealen sowie 

der Schädigung myokardialer Zellen. Zum Einsatz kommen 
201

Tl-Chlorid und 
99m

Tc-

markierte Radiopharmazeutika (
99m

Tc-Metoxy-Isopropyl-Isonitril (MIBI) oder 
99m

Tc-

Tetrofosmin). Ihre Verteilung kann sowohl unter Ruhebedingungen als auch unter 

medikamentöser oder ergometrischer kardiovaskulärer Belastung gemessen werden.  

Für die Myokard-Perfusions-Szintigraphie wird besonders häufig 
99m

Tc-MIBI 

verwendet, da es schnell in die Zellen des Myokards gelangt, eine kurze 

Halbwertszeit hat, ein günstiges Energieniveau der γ-Strahlung besitzt und nahezu 

überall verfügbar ist [35,109]. Schon kurze Zeit nach der intravenösen Applikation 

besteht ein enger Zusammenhang zwischen Perfusion der einzelnen Myokardareale 

und Aufnahme der Substanz in die Zellen. Ferner verhindert der rasche Uptake und 

die lange Auswaschzeit des 
99m

Tc-MIBI eine Umverteilung der Substanz 

[14,35,40,67]. 
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Aufgrund des Aufnahmeverhaltens lassen sich auch Aussagen über den Zustand des 

Myokards machen. So zeigen hypoxisch geschädigte Areale eine verminderte 
99m

Tc-

MIBI Aufnahme, wohingegen nekrotische Myokardzellen kein 
99m

Tc-MIBI 

anreichern [12,66,89].  

Zum Untersuchungsstandard zählt eine Aufnahme bei kardiovaskulärer Belastung 

und eine Aufnahme in Ruhe. Belastungsinduziert steigt der Blutfluss innerhalb der 

Koronarien und somit die Anreicherung von 
99m

Tc-MIBI, welches vorher appliziert 

wurde, an. Zeigen sich Defekte in der Belastungsaufnahme wiederauffüllend, so 

spricht man von einer relativen Minderperfusion bzw. von einer belastungs-

induzierten Ischämie [48]. Persistierende Defekte unter Belastung und in Ruhe 

hingegen sprechen für das Vorliegen einer Myokardnarbe. 

 

 

2.4.2.2 Single Photon Emissions Computer Tomographie (SPECT) 
 

Grundsätzlich können sogenannte planare Aufnahmen, bei denen die 

Aktivitätsverteilung aus einer Richtung registriert wird, von tomographischen 

Verfahren wie der Single Photon Emissions Computer Tomographie (SPECT) 

unterschieden werden. Hierfür werden Aufnahmen mit einem oder mehreren 

rotierenden Kameraköpfen generiert, welche eine überlagerungsfreie Ortszuweisung 

der Signale ermöglichen. Später werden die Rohdaten der Kameras mithilfe 

geeigneter Computersoftware in Schnittbilder des Herzens umgerechnet, wodurch 

eine genaue Lokalisation der Defekte ermöglicht wird. 
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2.4.3 Dobutamin-Stressechokardiographie 

2.4.3.1 Pharmakologische Grundlagen und Wirkungsweise der 
Dobutaminbelastung 

 

Grundlage der Stressechokardiographie ist die kardiale Belastung mittels Dobutamin, 

einem synthetischen Katecholaminderivat. Dobutamin wirkt über ß1- und ß2-

Rezeptoren (ß1 > ß2) auf das Herz positiv inotrop, chronotrop und dromotrop. 

Peripher kommt es zu einer arteriellen Vasodilatation sowie zu einer Dilatation des 

Bronchialsystems [45]. Aufgrund der kurzen Plasmahalbwertszeit von zwei Minuten 

ist die klinische Wirkung gut steuerbar [90]. In Folge der erhöhten Kontraktilität 

kommt es im niedrigen Dosisbereich (<20µg/kg/min) zu einer Zunahme des kardialen 

Sauerstoffverbrauches und demzufolge zu einem Anstieg des koronaren Blutflusses. 

Der maximale koronare Blutfluss ist bei höhergradigen Stenosen jedoch limitiert [76], 

weshalb es während der Dobutaminbelastung zu einer Minderperfusion der 

korrespondierenden Myokardabschnitte kommen kann. 

Dieser Effekt wird bei höheren Dobutamindosen durch den sinkenden myokardialen 

Perfusionsdruck (Differenz zwischen diastolischem Blutdruck und linksventrikulärem 

Füllungsdruck) noch verstärkt, da Dobutamin zu einer Erniedrigung des peripheren 

Widerstandes und somit zu einem Absinken des diastolischen Blutdruckes führt [78]. 

Die so induzierten Ischämien können echokardiographisch indirekt durch Wand-

bewegungsstörungen oder eine verminderte Wanddickenzunahme sichtbar gemacht 

werden [93].  

 

2.4.3.2 Prinzip der Stressechokardiographie mit Ultraschall-
kontrastmitteln 

 

Bei diagnostischen Ultraschallverfahren werden die ausgesandten Schallwellen durch 

die Inhomogenität des Gewebes defokusiert und phasenverschoben. Die Folge ist ein 

Verlust an lateraler Auflösung und Kontrastierung der Darstellung. Beim adipösen 
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Patienten kommt es daher z.B. zu einer eingeschränkten Beurteilbarkeit des 

Myokards.  

Eine Möglichkeit der Kontrastverbesserung stellt die zusätzliche intravenöse 

Applikation von lungenkapillargängigen Ultraschallkontrastmitteln dar. Durch die 

bessere Abgrenzbarkeit von Endokard und linksventrikulärem Lumen können 

präzisere Aussagen über die Wandbewegung getroffen werden. Ferner ermöglicht die 

Signalverstärkung des intramyokardialen Blutpools die Erfassung der Perfusions-

verhältnisse des Myokards. Einen besonders hohen Stellenwert hat in diesem 

Zusammenhang die Echtzeit-Myokardkontrastechokardiographie (MCE), mit welcher 

Wandbewegung und Myokarddurchblutung gleichzeitig erfasst werden können. 

Im Rahmen dieser Arbeit wurde für die real-time MCE das Echokontrastmittel 

„SonoVue“ (Bracco-Byk Gulden, Konstanz, Deutschland) verwendet; eine wässrige 

Dispersion kleiner Gasbläschen mit einem mittleren Durchmesser von 2,5µm (90% < 

8µm). Die Hülle besteht aus einer Phospholipidmonolayer, welche die mit 

Schwefelhexafluorid gefüllten Bläschen stabilisiert. Schwefelhexafluorid ist ein 

inertes, nicht toxisches Gas, das in wässrigem Milieu schwer löslich ist. Ein Milliliter 

Dispersion, welcher aus bis zu 500 Millionen Mikrobläschen besteht, enthält ca. 8µl 

eingeschlossenes Gasvolumen. Die Osmolarität der Dispersion beträgt 294 mosm/kg, 

der pH Wert liegt zwischen 6,0 und 6,5.  

Die geringe Löslichkeit des Gases verleiht den Bläschen eine hohe Druckstabilität, 

die elastische Phospholipidmembran führt zu günstigen Reflexions- und Oszillations-

eigenschaften. Die Mikrobläschen werden in Abhängigkeit vom mechanischen Index 

der ausgesandten Schallwellen (= Schalldruck / √ Frequenz) zur nichtlinearen 

Oszillation und somit zur Reflexion harmonischer Schwingungen angeregt. 

Nichtlineare Oszillationen kommen dadurch zustande, dass die Bläschen von den 

eintreffenden Schallwellen weniger stark komprimiert werden, als sie aufgrund des 

eingeschlossenen Gases nach der Kompression expandieren. Es entsteht eine 

asymmetrische Schwankung des Bläschendurchmessers und folglich eine nichtlineare 

Reflexion der eintreffenden Schallwellen. Da die Bläschen besonders häufig in der 

doppelten Anregungsfrequenz harmonisch schwingen entstand der Begriff des 
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„Harmonic Imaging“. Hier werden bei der Registrierung der rückläufigen 

Schallwellen die harmonischen Frequenzen herausgefiltert, was eine Visualisierung 

der Kontrastmittelbläschen gegenüber dem umgebenden Gewebe ermöglicht. 

Nachteil des Harmonic Imaging ist die Notwendigkeit von hohen Schallenergien, da 

durch die Filterung der rückläufigen Wellen der intensitätsstärkste Anteil des Signals 

verloren geht. Folglich schwingen nur einige der Bläschen „harmonisch“, wo-

hingegen der Großteil zerstört wird. 

Die Zerstörung ist bedingt durch eine zunehmende Instabilität der Bläschen bei 

Schallwellen mit einem hohen mechanischen Index. Beim Platzen der Bläschen 

kommt es zur kurzzeitigen Emission eines hochenergetischen Signals, der sog. 

„stimulierten akustischen Emission“ (SAE). 

 

Eine Weiterentwicklung dieses Verfahrens ist der sogenannte „Harmonic Power 

Doppler“. Hierbei werden aufeinander folgende Echosignale analysiert und 

miteinander verglichen. Signalveränderungen werden auf Grundlage des Doppler-

Effektes als Bewegungen interpretiert. 

Wie oben bereits erwähnt werden beim Harmonic Imaging ein Großteil der 

Kontrastmittelbläschen zerstört und verursachen hierbei eine SAE. Diese starke 

Signaländerung in kurzer Zeit (SAE, dann Verschwinden) wird von der Doppler-

Technik als schnelle Bewegung interpretiert und entsprechend farblich codiert 

dargestellt. In Geweben mit geringer Blutflussgeschwindigkeit, in denen es nur wenig 

bewegungsabhängige Doppler-Signale gibt, müssen die empfangenen Signale also 

von den vorhandenen Mikrobläschen stammen und mit deren Anzahl korrelieren.  

Vorteil des Verfahrens ist die Echtzeit-Darstellung der Bläschenkonzentration bei 

gleichzeitiger Subtraktion des Hintergrundes. Nachteilig wirkt sich die Anfälligkeit 

auf Bewegungsartefakte aus. 

 

Ein weiteres Verfahren zur selektiven Darstellung des Kontrastmittels ist der 

sogenannte „Low Mechanical-Index Power Doppler“, auch Power Pulse Inversion 

genannt. Hierfür wird das oben beschriebene Harmonic Power Doppler Verfahren mit 
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der sogenannten „Wideband Harmonic Imaging“ Technik kombiniert. Es werden 

ebenfalls aufeinanderfolgende Schallwellen einer Scanlinie des Schallkopfes 

miteinander verrechnet. Da die Wellen aber phaseninvertiert abgestrahlt werden, folgt 

bei linearer Reflexion auf eine positive Welle eine negative (mit entgegengesetzter 

Amplitude), was die gegenseitige Auslöschung zur Folge hat. Die nicht linear 

reflektierenden Mikrobläschen können also durch mathematische Verrechnung ihrer 

Reflexionsmuster erkannt werden. In Kombination mit der Harmonic Power Doppler 

Technik gelingt somit eine Trennung der nicht linearen Signale der Bläschen sowohl 

von den linearen Anteilen des Gewebes als auch von den nicht linearen Anteilen, 

welche durch die Wandbewegung des Herzens hervorgerufen werden. Mit dieser 

Technik lassen sich folglich in Echtzeit Rückschlüsse auf die Bläschenanzahl im 

Untersuchungsareal und somit auf die Myokardperfusion ziehen. Bedingt durch die 

gepulste Emission der Schallwellen ergibt sich jedoch eine niedrigere Bildrate im 

Vergleich zur konventionellen Echokardiographie und die Qualität korreliert mit der 

Anzahl der vorhandenen Kontrastmittelbläschen. Moderne Ultraschallkontrastmittel 

der zweiten Generation weisen eine flexible Hülle auf und können somit bei 

niedrigem mechanischem Index lange intakt bleiben. So ergibt sich die Möglichkeit 

zur kontinuierlichen Darstellung des parenchymalen Blutflusses und der 

Wandbewegung des Herzens in Echtzeit („real time perfusion imaging“, oft auch 

bezeichnet als „real time myocard contrast echocardiography“).  

Tabelle 3 auf der nächsten Seite zeigt, wie die physikalisch möglichen Zustände der 

Kontrastmittelbläschen für die verschiedenen Untersuchungsverfahren genutzt 

werden können: 
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Schalldruck Mechanischer 
Index 

Verhalten der 
Bläschen 

Akustischer 
Effekt 

Klinische 
Anwendung 

< 100kPa < 0,1 lineare 
Oszillation 

gesteigerte 
Rückstreuung 

 
Koronararterien 

Doppler  
 

100 kPa – 
1 MPa 0,1 – 1,0 nicht lineare 

Oszillation 
harmonische 
Rückstreuung 

 
Koronararterien 

Doppler;  
real-time Verfahren 

  

> 1 MPa > 1,0 Platzen SAE 

 
Power Doppler; 
Intermittierende 

Perfusionsdarstellung
 

 

Tabelle 3: Physikalische Zustände der Kontrastmittelbläschen und ihre klinische Anwendung.  
Nach Becher & Burns; Chapter 1; S. 17 [7] 
 

 

2.4.3.3 Quantitative Auswertung von Perfusionsabweichungen 
 

Um im Rahmen einer Nachsorgeuntersuchung möglichst frühzeitig Hinweise für das 

Vorliegen einer Minderperfusion erkennen zu können, müssen Perfusions-

abweichungen bestimmter Myokardareale möglichst sicher vom umliegenden 

Gewebe differenziert werden können. Hierfür ist es von zentraler Bedeutung, die 

Kontrastmittelmenge im Untersuchungsgebiet zu quantifizieren.  

Die gängigen Verfahren beruhen zumeist auf Messungen der Kontrastmittel An– und 

Abflutung („wash-in“ und „wash-out“) nach einer Bolusinjektion. In festgelegten 

Messarealen („ROIs“ = „Regions of Interest“) werden die Intensitäten der 

reflektierten Schallwellen über die Zeit hinweg erfasst. Bei der hierbei entstehenden 

Anflutungskurve ist die Höhe der Kurve als Maß für das Blutvolumen und die 

Anflutungsgeschwindigkeit als Maß für den Blutfluss zu sehen. Bei gut durchbluteten 

Myokardarealen werden - im Gegensatz zu gleich großen minderperfundierten 

Arealen - pro Zeiteinheit mehr Bläschen mit dem Blut angeflutet. Diese erzeugen in 

der Summe eine größere Gesamtintensität der reflektierten Wellen, was im Modell 
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durch die Höhe der Kurve ausgedrückt wird und einer größeren Blutmenge pro 

Volumeneinheit entspricht. Außerdem werden die Bläschen durch den besseren 

Blutfluss schneller an- und abtransportiert, was einen steileren Kurvenanstieg zur 

Folge hat. Voraussetzung hierfür ist eine homogene Verteilung des Kontrastmittels 

im Blut.  

Als Defizit dieser „einfachen“ Bolustechnik wird die verzögerte Anflutungszeit durch 

venöses Pooling des Kontrastmittels (KM) gesehen (intravenöse Injektion). Um 

diesem Effekt entgegenzuwirken, bedarf es der kontinuierlichen Zuführung von 

Kontrastmitteln über einen längeren Zeitraum hinweg. Um trotz dauerhafter 

intravenöser Applikation von KM in Bolustechnik untersuchen zu können, bedient 

man sich der sogenannten „Negativ-Bolus Technik“, auch „Replenishment 

Technique“ genannt. 

Bei konstantem Kontrastmittelniveau werden alle vorhandenen Bläschen im 

Untersuchungsareal durch einen hochenergetischen Schallimpuls innerhalb von 

wenigen Mikrosekunden zerstört. Dieser Impuls wird auch „Flash“ genannt, da die 

platzenden Bläschen alle gleichzeitig stimulierte akustische Emissionen aussenden 

(siehe hierzu 2.4.3.2). Nach dem Flash wird nun die Wiederanflutung 

(„Replenishment“) mit intaktem KM erfasst. Die dabei errechnete Kurve beinhaltet 

verschiedene Größen wie z.B. die Zeit bis zur kompletten Wiederanflutung, die 

Steigung des Wiederanstieges oder die Fläche unter der Kurve. Eine 

Veranschaulichung der Negativ-Bolus Technik zeigt Abbildung 2.; Abbildung 3 zeigt 

ein Beispiel für ermittelte Wiederanflutungskurven, welche im Rahmen dieser Arbeit 

gemessen wurden. 

Mit der hier beschriebenen Technik lassen sich verschiedene ROIs miteinander 

vergleichen und Rückschlüsse auf das jeweilige Perfusionsniveau ziehen.  

Die Untersuchungsdaten werden digital gespeichert, was Auswertungen nach der 

Untersuchung ermöglicht („post processing“).  
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Abb. 2: Prinzip der Negativ-Bolus Technik.  
Bei konstanter Infusion des Kontrastmittels werden die Bläschen durch den hochenergetischen Impuls 
zerstört. Die Wiederanflutung wird in Echtzeit am Schallkopf registriert. 
Nach Becher & Burns; Chapter 4; S. 166 [7] 
 

 

 
 
Abb.3: Beispiel für die Wiederauffüllungskurve eines Patienten mit Verdacht auf TVP.  
Links die Kurven für das gesunde Kollektiv; rechts die Kurven für das gleiche Segment bei 
„pathologischem Befund“. Unter Belastung zeigt sich eine wesentlich langsamere Wiederanflutung 
nach Zerstörung der Kontrastmittelbläschen 
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3 Methodik 
 

3.1 Patientenkollektiv 

 

Im Rahmen der regelmäßigen Follow-Up Untersuchungen nach orthotoper 

Herztransplantation wurden über einen Zeitraum von 13 Monaten konsekutiv 

Patienten  in die Studie eingeschlossen. Dabei galten folgende Einschlusskriterien: 

- Alter > 18 Jahre 

- Immunsuppressive Kombinationstherapie: 

a.) Cyclosporin A / FK 506 

b.) MMF / Azathioprin 

c.) Steroide 

- Schriftliche Zustimmung des Patienten 

- Gute Schallbarkeit in den Voruntersuchungen 

 

Als Ausschlusskriterien wurden festgelegt: 

- Akute oder instabile Erkrankungen (z.B. Infektionen, Dialysepflicht, 

Myokardinfarkt innerhalb des letzten Monats)  

- Schwangerschaft und Stillzeit 

- Gleichzeitige Einnahme von MAO–Hemmern 

- Bekannte Kontrastmittelunverträglichkeit 

 

40 Patienten wurden in die Studie eingeschlossen.  

Alle Untersuchungen wurden gemäß der Deklaration von Helsinki des 

Weltärztebundes zu Ethischen Grundsätzen für die medizinische Forschung am 

Menschen durchgeführt [2,85]. 
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3.2 Studienprotokoll 

 

Das Studienprotokoll beinhaltete für jeden Patienten die Durchführung einer 

Dobutamin-Stressechokardiographie (DSE) und Myokard-Perfusions-Szintigraphie 

(MPS) innerhalb eines Tages sowie die zeitnahe konventionelle Koronarangiographie 

(CA) gegebenenfalls inklusive IVUS Untersuchung.  

 

3.2.1 Protokoll der Belastungsuntersuchung 
 

3.2.1.1 Applikationsaufbau 
 

Die Untersuchungen erfolgten im 1-Tages-Protokoll in der Klinik und Poliklinik für 

Nuklearmedizin.  

ß – Rezeptorenblocker durften zuletzt 48h vor Untersuchungsbeginn von den Patient-

en eingenommen werden. In Rückenlage erfolgte der Anschluss eines 12-Kanal 

EKGs sowie von drei EKG Elektroden des Ultraschallgerätes zur zeitlichen 

Zuordnung der Einzelbilder zum Herzzyklus und zur getriggerten Flash-Auslösung. 

Um neben der Infusion von Dobutamin auch die Applikation des Echokontrastmittels 

zu ermöglichen wurde eine Verweilkanüle gelegt (wenn möglich in den rechten Arm 

mit einer Größe von 18 – 20 Gauge) und daran zwei in Reihe geschaltete Drei-Wege-

Konnektoren (BD Connecta; Becton Dickinson GmbH, Heidelberg, Deutschland) 

befestigt. Zur konstanten Spülung des Zugangs wurde eine NaCl- Lösung verwendet 

(Macoflex N 0,9% NaCl Lösung; MacoPharma GmbH, Langen, Deutschland). Die 

Dobutamininfusion erfolgte über einen Perfusor (Perfusor fm; B|Braun Medical AG, 

Melsungen, Deutschland). Zur Illustration des Applikationsaufbaus dienen die 

Abbildungen 4 und 5. 
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Abb. 4: Schema für den Aufbau zur Applikation von Dobutamin und des Ultraschallkontrastmittels 
 

 

 

 

 

 
 
 
Abb. 5: Perfusor zur konstanten Kontrastmittelapplikation 
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3.2.1.2 Zeitlicher Ablauf 
 

Initial wurde in Ruhe eine Echokardiographie mit Myokardkontrastechokardiographie 

durchgeführt (siehe 3.2.2). Im Anschluss erfolgte die Dobutaminbelastung 

(Dobutamin Fresenius Liquid; Fresenius Kabi Deutschland GmbH, Homburg, 

Deutschland) unter kontinuierlicher Blutdruck- und EKG-Kontrolle, beginnend mit 

einer Dosierung von 10 µg/kg-Körpergewicht/min. Nach signifikanter Steigerung der 

Herzfrequenz erfolgte die kontinuierliche Steigerung der Dosierung in 5-Minuten 

Schritten um je 5 µg/kg/min bis zum Erreichen der Zielfrequenz [(220-Lebensalter) x 

0,85 /min] bzw. bis zur Gabe einer Maximaldosis von 40 µg/kg/min. Eine eventuelle 

zusätzliche Gabe von Atropin i.v. – wie in den meisten Belastungsprotokollen 

vorgesehen - war bei vorliegendem Patientengut aufgrund der Denervation post HTx 

nicht vorgesehen. Bei submaximaler Herzfrequenz erfolgte die konventionelle Echo-

kardiographie, bei Erreichen der Zielfrequenz eine erneute Echokardiographie mit 

zusätzlicher Kontrastmittelapplikation. Direkt im Anschluss wurde das Radio-

pharmakon für die Myokard-Perfusions-Szintigraphie appliziert (siehe unter 3.2.3).  

Neben dem Erreichen der maximalen Herzfrequenz führten folgende Kriterien zum 

Abbruch der Dobutaminbelastung [15]: 

 

- neu auftretende Angina Pectoris Beschwerden 

- ST-Senkungen > 0,2 mV 

- Signifikante ventrikuläre- oder supraventrikuläre Arrhythmien 

- Steigerung des Blutdruckes auf über 240/120 mmHg 

- Diastolischer Blutdruckabfall < 40 mmHg 

- Intolerable Nebenwirkungen durch die Dobutamingabe (z.B. Übelkeit, 

Kopfschmerz, Harndrang, Bronchospasmus, schwere Dyspnoe) 

- Deutliches subjektives Unwohlsein und Wunsch des Patienten   

- Technische Probleme 

 



 
3 Methodik        30 

 

 

 
Nach der medikamentösen Herzbelastung folgte unter kontinuierlicher EKG- und 

Blutdruckkontrolle die Erholungsphase bis zur Normalisierung der Herzfrequenz 

sowie eine abschließende Echokardiographie.  

Anschließend erhielten die Patienten eine Reizmahlzeit, um intestinale oder 

hepatobiliäre Bildartefakte bei der Myokard-Perfusions-Szintigraphie zu verringern. 

60 Minuten p.i. erfolgte die Akquisition der SPECT-Belastungsaufnahmen.  

Nach erneuter Applikation des Radiopharmakons bildete die SPECT-Ruhe-

untersuchung den Abschluss der eintägigen Belastungsuntersuchung. 

Zur Verdeutlichung des zeitlichen Ablaufes dient Abbildung 6. 

 

 

 
Abb. 6: Schema zum Untersuchungsablauf. ECHO= Echokardiographie ohne Kontrastmittel, MCE =  

Echokardiographie mit Kontrastmitte, Tc-99-m-MIBI =  Applikation des Radiopharmakons, 
SPECT = Myokard-Perfusions-Szintigraphie mit SPECT Technik 
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3.2.2 Myokardkontrastechokardiographie 

 

3.2.2.1 Durchführung 
 

Die Erhebung der Ultraschalldaten erfolgte stets durch dieselben erfahrenen 

Untersucher und Assistenten. Zum Einsatz kam ein Vingmed Vivid 5 Ultraschallgerät 

(GE Ultrasound, Milwaukee, USA) inklusive der zugehörigen  Echo-Pac 

Archivierungs- und Auswertungssoftware. 

Zur Darstellung des Echokontrastes wurde in Ruhe und bei maximaler Belastung 

SonoVue (Bracco-Byk Gulden, Konstanz, Deutschland) appliziert. Die Trocken-

substanz lag in ungeöffneten Durchstichflaschen vor und wurde zu Beginn der 

Untersuchung mit 0,9%iger NaCl Lösung rekonstituiert. Die Applikation erfolgte 

mittels Perfusor (Pilot A2, Fresenius, Deutschland) und mit konstanter Infusionsrate 

von 72 ml/h. Um eine gleichmäßige Gasbläschendichte pro Milliliter zu ge-

währleisten wurde der Perfusor vor und während der Applikation langsam manuell 

geschwenkt.  

Die Erfassung erfolgte mit einem Breitband Schallkopf (1,5 – 3.6 MHz, GE Ultra-

sound, Milwaukee, USA) unter der Verwendung der bereits beschriebenen „Power-

Pulse-Inversion-Technique“ unter der Emissionsfrequenz von 1,7 MHz und der 

Empfangsfrequenz von 3,4 MHz. Um eine möglichst lange Überlebenszeit der 

Kontrastmittelbläschen zu gewährleisten erfolgten die KM Sequenzen mit einem 

niedrigen mechanischen Index der Schallwellen von 0,12 bei einer Bild-

wiederholungsrate von 28/s. 

Nach Auslösung des EKG getriggerten „Flash“ wurden Bilder über 4 - 7 Herzzyklen 

aufgenommen. Die so gewonnenen Datensätze – Cineloops genannt - wurden mittels 

Echo-Pac Software auf Festplatte gespeichert, um die weitere Auswertung dieser 

Rohdaten zu ermöglichen. 
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3.2.2.2 Auswertung 
 

Mittels optischer Disketten wurden die gewonnenen Untersuchungsdatensätze auf 

eine zweite Workstation (Apple G4 mit Echo-Pac Software) überspielt, um eine vom 

Ultraschallgerät unabhängige Auswertung zu ermöglichen. 

Die Datenanalyse erfolgte in Übereinstimmung durch zwei erfahrene Untersucher 

nach einem dreistufigen Protokoll. Die Ergebnisse der Koronarangiographie sowie 

der Myokard-Perfusions-Szintigraphie lagen den Untersuchern nicht vor. 

Allen Auswertungen lag die Einteilung des Myokards gemäß dem 18-Segmentmodell 

zugrunde [7]. Hierfür werden die drei Schnitteinstellungen (zwei-, drei- und vier- 

Kammerblick) in jeweils 6 Segmente unterteilt. Es ergeben sich folgende 

Einteilungen: 

 

Vier-Kammer Blick 

baso-septales Segment, medio-septales Segment, apiko-septales Segment,  

apiko-laterales Segment, medio-laterales Segment, baso-laterales Segment 

 

Zwei-Kammer Blick 

baso-interiores Segment, medio-interiores Segment, apiko-interiores Segment, 

inferior-anteriores Segment, medio-anteriores Segment, baso-anteriores Segment 

 

Drei-Kammer Blick 

 baso-posteriores Segment, medio-posteriores Segment,  

 apiko-posteriores Segment, apiko-antero-septales Segment,  

 medio-antero-septales Segment, baso-antero-septales Segment 

 

Zur visuellen Verdeutlichung dient Abbildung 7 auf der nächsten Seite, welche die 

Segmenteinteilung in allen drei Blicken sowohl für die Ruhe- als auch für die 

Belastungsuntersuchung enthält.  
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  Abb. 7:  Auswertungsblatt für die Befundung gemäß dem 18-Segmentmodell 
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3.2.2.2.1 Konventionelle Auswertung 
 

In einem ersten Schritt wurden die Wandbewegung und die Wanddicke beurteilt. Die 

Wandbewegung wurde eingeteilt in „normal“, „hypokinetisch“, „akinetisch“, oder 

„dyskinetisch“. Als „abnormal“ und pathologisch wurde eine Wandbewegungs-

störung in zwei oder mehr benachbarten Segmenten gewertet. 

Diese Auswertung erfolgte gemäß den internationalen Standards [5]. 

 

 

3.2.2.2.2 Visuell quantitative Auswertung 
 

Grundlage dieses Auswertungsschrittes waren die gespeicherten Herzzyklen nach 

Kontrastmittel (KM)-Applikation und EKG getriggertem Flash gemäß dem 18-

Segmentmodell im Zwei-, Drei- und Vier-Kammer-Blick. Den einzelnen 

Myokardsegmenten wurden gemäß Tabelle 4 Werte zugewiesen: 

 

Wert Befund 

 
X 
 

Segment nicht beurteilbar (z.B. Artefakt bedingt) 

 
0 
 

Keine Kontrastmittel Anreicherung erkennbar 

1 
 

Wenig Kontrastmittel Anreicherung; inkomplette Segmentfüllung 
 

2 
 

Mittlere Kontrastmittel Anreicherung; komplette Segmentfüllung 
 

3 
 

Starke Kontrastmittel Anreicherung 
 

 
Tabelle 4: Visuelle Beurteilung der Myokardsegmente 
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Die Beurteilung der Segmente erfolgte sowohl in den Aufnahmen der Ruhe- als auch 

in den Aufnahmen der Belastungsphase. Für jedes Segment ergab sich demnach ein 

„Ruhewert“ und ein „Belastungswert“. Stimmten die Untersucher in Ihrer Beurteilung 

nicht überein wurden die fraglichen Segmente in einem zweiten Analysedurchgang 

von beiden im Konsens beurteilt. 

Zur Ermittlung von Intensitätsunterschieden (∆-Wert) wurde der „Belastungswert“ 

vom „Ruhewert“ subtrahiert. So konnte visuell zwischen Segmenten mit absinkender, 

gleichbleibender oder steigender Kontrastmittelaufnahme zwischen Ruhe- und 

Belastungsaufnahme unterschieden werden.  Segmente, die einmalig nicht beurteilbar 

waren, wurden folglich auch bei Ermittlung des ∆-Wertes als „nicht beurteilbar“ 

eingestuft. 

Als belastungsbedingte Ischämien wurden ∆-Werte ≥ 1 in mindestens zwei 

benachbarten Segmenten gewertet.  

Myokardiale Narben wurden als pathologische Werte in Ruhe und unter Belastung in 

mindestens zwei benachbarten Segmenten definiert.  

 

 

 

3.2.2.2.3 Quantitative Auswertung 
 

In einem dritten Untersuchungsschritt wurde die myokardiale Perfusion aller 18 

Segmente quantitativ erfasst. Basis der Auswertung waren dieselben Cineloops, 

welche schon für die visuell quantitative Analyse verwendet wurden. Mittels eines 

Softwaretools der Echo-Pac Einheit wurden manuell Regions of Interest (ROIs) in die 

Myokardsegmente platziert und darin die ansteigenden Signalintensitäten nach 

„Flash“ gemessen.  

Die einzelnen ROIs hatten eine standardisierte Größe, die so groß wie möglich 

gewählt wurde, um statistische Fehler innerhalb der ROI (z.B. durch Artefakte) zu 

minimieren. Da die Signalintensitäten über mehrere Herzzyklen hinweg EKG 
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getriggert enddiastolisch gemessen wurden, war strikt darauf zu achten, die ROIs im 

gesamten Cineloop innerhalb des Myokards zu halten und mit der physiologischen 

Bewegung des Herzmuskels mitzuführen. Fehlmessungen im zweidimensionalen 

Ultraschall kommen hauptsächlich durch die Messung der stark kontrastierten 

Herzkammer zustande, wenn die ROI nicht innerhalb der Endokardgrenzen gehalten 

wird [7] und  können nur durch manuelles Anpassen vermieden werden. 

Der Nachbearbeitung der einzelnen Myokardsegmente erfolgte die quantitative 

Analyse durch die Echo-Pac Software. Hierbei wurde für jede einzelne ROI – 

respektive also für jedes Myokardsegment – die erfasste Gesamtintensität innerhalb 

der ROI über die Zeit aufgetragen. Bis zur Annäherung an das Plateauniveau ergaben 

sich Kurven gemäß der Exponentialfunktion Y=A(1-e-ßt). Siehe hierzu Abbildung 8 

auf der folgenden Seite.  

Analog zur visuell quantitativen Auswertung wurden die Myokardsegmente sowohl 

in den Cineloops der Ruhe-, als auch in denen der Belastungsphase ausgewertet. 

Für jedes Segment entstanden so eine Kurve für die Ruhe- und eine für die 

Belastungsuntersuchung. Aus diesen Kurven ließen sich die Intensitätsmaxima (A-

Werte in der Einheit dB) und die Steigungskoeffizienten (ß-Werte in der Einheit 

1/Sekunde) für Ruhe und Belastung ableiten. 

Zur Beurteilung einer möglichen Veränderung wurden für alle Segmente die 

Differenzwerte (∆-Werte) für „ß“ und für „A“ von Ruhe abzüglich Belastung 

errechnet: „∆ß“ bzw. „∆A“.   

∆ß-Werte mit einem negativen Vorzeichen zeigen folglich einen verminderten 

Anstieg der Intensitätskurve unter Belastung, was im Sinne einer verlangsamten / 

verminderten Perfusion betrachtet werden kann. Siehe hierzu Abbildung 3. 

∆A-Werte mit einem negativen Vorzeichen zeigen ein vermindertes Perfusionsniveau 

unter Belastung, was folglich ebenfalls im Sinne einer Minderperfusion gewertet 

werden kann. 

 

 



 
3 Methodik        37 

 

 

 

 
 

Abb. 8: Bsp. für eine Anflutungskurve nach Flash in einem Myokardsegment. Zu bemerken ist, dass der 

Steigungskoeffizient ß hier durch den Buchstaben „k“ ausgedrückt wird. 
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Da es sich  bei dieser Arbeit um die erste Studie handelt, die dieses quantitative 

Auswertungsverfahren bei herztransplantierten Patienten anwendet, konnte auf keine 

Referenzwerte für ∆ß bzw. ∆A zur Unterscheidung zwischen „gesund“ und 

„pathologisch“ zurückgegriffen werden.  

Um die Frage nach möglichen Schwellenwerten (= Cut-off Werte) – und somit nach 

der Aussagekraft der Methodik - beantworten zu können, mussten die pathologischen 

Segmente mit dem gesunden Kollektiv verglichen werden. 

Zu diesem Zweck wurden die einzelnen Myokardsegmente in zwei Gruppen 

unterteilt: die „Gesunden“, welche gemäß Goldstandard in diesem Versorgungsareal 

keinerlei Ischämie hatten und die „Kranken“, welche gemäß Goldstandard in diesem 

Segment als pathologisch zu erwarten waren. 

Für jedes Segment, in dem mindestens ein Patient gemäß Goldstandard als 

pathologisch zu erwarten war, wurden für die ∆ß-Werte, bzw. die ∆A-Werte 

statistische ROC Analysen durchgeführt, in denen die beiden Kollektive („Gesunde“ 

und „Kranke“) einander gegenübergestellt wurden (siehe auch 3.4 Statistik). 

 

 

3.2.3 Myokard-Perfusions-Szintigraphie 
 

3.2.3.1 Durchführung 
 

Eingebettet in das Belastungsprotokoll der Echokardiographie erfolgte die Myokard-

Perfusions-Szintigraphie (Belastung/Ruhe) mit 
99m

Tc-MIBI als Radiopharma-

zeutikum. Die zu applizierenden Belastungs- und Ruheaktivitäten richteten sich nach 

dem Körpergewicht (KG) der Patienten (Belastung: 4 MBq/kg KG, mindestens 

jedoch 300 MBq; Ruhe: 10 MBq/kg KG, mindestens 700 MBq).  

Die ersten Aufnahmen erfolgten entsprechend den internationalen Empfehlungen [82] 

ca. 60 min nach Injektion an einer Picker Prism 3000 XP 3-Kopf-Kamera in SPECT-

Technik (360°-Kreisbogen), ausgestattet mit einem Low-Energy-High-Resolution 
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Parallellochkollimator. Die für die dreidimensionale Rekonstruktion notwendigen 

Rohdaten wurden schrittweise aufgezeichnet („step and shoot“-Modus, 120 

Projektionen in Winkelabständen von 3°, 10 s pro Winkelschritt). Die Ruheinjektion 

erfolgte mindestens zwei Stunden nach dem Belastungsende. Zur Vermeidung von 

prolongierten Ischämien wurde allen Patienten mit einem systolischen arteriellen 

Blutdruck > 120 mmHg 10 min vor der Ruheinjektion eine Kapsel Nitrolingual®
 

verabreicht. Zur Bildbearbeitung wurden die Rohdaten mittels gefilterter 

Rückprojektion rekonstruiert. Dieser transversal rekonstruierte Datensatz wurde nach 

Filterung mit einem 3D-Post-Filter (Low-Pass/Butterworth, Cut-off: 0,32, 8. Order) 

und Anwendung eines Off-Center Zooms (64x64 Matrix) in transversal-oblique, 

sagittale und coronare Schnitte reanguliert, so dass Schnittbilder entlang der 

Herzachse zur Beurteilung verfügbar waren. Anschließend wurden die Bildserien aus 

Belastung und Ruhe auf das Maximum im Herzen normiert. Gleiche Schichten der 

verschiedenen Schnittebenen wurden getrennt nach Belastungs- und Ruheunter-

suchung zur Auswertung zusammengefügt. 

 

 

3.2.3.2 Auswertung 
 

Die Auswertung der Szintigraphie erfolgte durch Konsens zweier erfahrener 

Nuklearmediziner. Die Ergebnisse der Koronarangiographie und der Myokard-

kontrastechokardiographie waren nicht bekannt, jedoch Größe, Gewicht und 

Geschlecht der Patienten. Das Myokard des linken Ventrikels wurde gemäß dem 

Modell von Hachamovitch et al. unterteilt [30], wie es in Abbildung 9 zu sehen ist. 

Die semiquantitative Analyse erfolgte gemäß dem Standard des „Fünfpunkt Modells“ 

[1] und beurteilte die Traceranreicherung in den einzelnen Segmenten. Die genauen 

Stufeneinteilungen finden sich in Tabelle 5. 
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Wert Befund 

 
0 
 

Normale Tracer Anreicherung 

 
1 
 

Geringfügig reduzierte Tracer Anreicherung – nicht sicher pathologisch 

2 
 

Mittelstark reduzierte Tracer Anreicherung – sicher pathologisch 
 

3 
 

Stark reduzierte Tracer Anreicherung 
 

4 
 

Keine Kontrastmittel Anreicherung 
 

 
Tabelle 5: Semiquantitative Analyse gemäß dem „Fivepoint Model“ [1] 
 
 

 
 

Abb. 9: 20-Segment-Modell nach Hachamovitch et al. [30]  
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Die Summe der Belastungswerte aller Segmente (summed stress score = SSS) und die 

Summe der Ruhewerte aller Segmente (summed rest score = SRS) wurden ermittelt. 

Die Differenz von SSS und SRS wurde als summed difference score (SDS) 

bezeichnet. Ein SDS >1 wurde als reversibler Perfusionsdefekt im Sinne einer 

Ischämie, ein SRS >1  als fixer Perfusionsdefekt im Sinne einer myokardialen Narbe 

gewertet. 

Qualitativ wurde zwischen unauffälligem Normalbefund, belastungsinduzierten 

Defekten, persistierenden Defekten und isolierten Ruheperfusionsstörungen 

unterschieden.  

 

 

3.2.4 Selektive Koronarangiographie 
 

3.2.4.1 Gerät und Materialien 
 

Die Koronarangiographie (CA) wurde an einer digitalen biplanen Röntgenanlage 

(Polydiagnost C LARC, Philips) durchgeführt. Zur Sondierung des Ostiums der 

rechten und linken Herzkranzarterie wurden in der Regel 4F diagnostische 

Koronarkatheter (Cordis Medizinische Apparate GmbH, Langenfeld, Deutschland), 

als Röntgenkontrastmittel Iobitridol (Xenetix
®

 350, Guerbet GmbH) benutzt. Wurde 

zusätzlich ein IVUS durchgeführt, kam ein 6F Führungskatheter zum Einsatz. 

 

3.2.4.2 Durchführung 
 

Nach steriler Abdeckung und lokaler Infiltrationsanästhesie der Leistenregion mit 

1%iger Xylokainlösung erfolgte im Herzkatheterlabor in der von Seldinger [88] 

beschriebenen Technik die Punktion einer Femoralarterie/-vene und das Einbringen 
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einer Schleuse (4F bzw. 6F). Nach intravenöser Applikation von 2000-5000 IE 

Heparin und sorgfältiger Entlüftung aller angeschlossenen Systeme wurde unter 

Durchleuchtungskontrolle ein rechter/linker Koronarkatheter zum Ostium der 

Koronararterien vorgeschoben. Um Koronarspasmen möglichst auszuschließen und 

eine maximale Weitstellung der Gefäße zu erreichen wurden intrakoronar 0,25 mg 

Nitroglycerin appliziert. Zur Darstellung der Gefäße wurde über den Katheter im 

Durchschnitt jeweils ca. 5-10 ml Röntgenkontrastmittel als Bolus injiziert. Durch 

multiple, standardisierte Angulationen und Rotationen der zwei möglichst 

orthogonalen Durchleuchtungsebenen wurde versucht, eine verkürzungs- und 

überlagerungsfreie Darstellung der betreffenden Koronararteriensegmente zu erzielen. 

Die so erhaltenen, über mehrere Herzzyklen andauernden Angiographiesequenzen 

wurden digital mit 25 Bildern pro Sekunde gespeichert. 

Die IVUS Aufnahmen erfolgten mit einem Motor getriebenen Rückzugssytem bei 

einer Geschwindigkeit von 0,5mm/s (2,9 Fr, 30 MHz, CVIS Inc., Sunnyvale, 

California). Zur Planimetrie und Datenauswertung wurde die Software TapeMeasure 

(INDEC Systems Inc., Capitola, California) eingesetzt. 

 

3.2.4.3 Semiquantitative angiographische Bildauswertung  
 

In die Auswertung flossen alle Koronarangiographien in unmittelbarem zeitlichen 

Zusammenhang zu Myokard-Perfusions-Szintigraphie und Kontrastechokardio-

graphie ein. 

Pro Patient wurde folglich nur die jeweils letzte CA bewertet.  

Die angiographische Bildauswertung fand geblindet und ohne Kenntnis der 

Vorbefunde statt. Die Beurteilung der Cineangiosequenzen erfolgte durch zwei 

erfahrene Untersucher. Die Graduierung der Lumeneinengung wurde anhand der am 

stärksten betroffenen Stelle der Gefäße ermittelt und auf der Basis eines fünfstufigen 

Schemas eingeteilt, wie aus Tabelle 6 ersichtlich ist. 

Abbildung 10 zeigt exemplarisch den Befund einer 90 % Stenose. 
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Grad 
 

Befund 
 

 
Grad 1 

 
Normalbefund 

 
Grad 2 

 
Geringe Wandunregelmäßigkeiten mit einer Lumenreduktion < 30% 

Grad 3 
 

Wandunregelmäßigkeiten mit einer Lumenreduktion < 50% 
 

Grad 4 
 

signifikante Gefäßstenose ≥ 50% 
 

Grad 5 
 

hochgradige Gefäßstenose ≥ 75% 
 

 
Tabelle 6: Stufenweise Einteilung von Gefäßstenosen 
 
 

 
 

Abb. 10: Beispiel einer koronarangiographisch detektierten 90%igen Stenose des Ramus circumflexus 

der linken Koronararterie (Pfeil). 
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3.3 Goldstandard 

Als Goldstandard für die Erfassung einer hämodynamisch relevanten 

Transplantatvaskulopathie wurde die Kombination aus Myokard-Perfusions-

Szintigraphie und Koronarangiographie mit oder ohne IVUS definiert. Dabei wurde 

die Kombination aus reversiblem Perfusionsdefekt in der Myokard-Perfusions-

Szintigraphie mit einer koronarangiographischen Stenose ≥50% des entsprechenden 

Versorgungsgefäßes als Ischämie und persistierende Perfusionsdefekte in 

Kombination mit einem kompletten Gefäßverschluss oder einer signifikanten Stenose 

als myokardiale Narben bezeichnet. 

 

Ein reversibler Perfusionsdefekt ohne korrelierende Stenose ≥50% wurde ebenfalls 

als Ischämie gewertet, wenn der in diesem Falle zusätzlich angefertigte IVUS eine 

Stenose Stadium III oder mehr nach Stanford aufwies (gemäß Tabelle 2) [104].  

 

 

 

3.4 Statistik 

Die Erfassung der Daten erfolgte in Microsoft Excel (Microsoft Deutschland GmbH, 

Unterschleißheim), die statistischen Analysen wurden mit der Software „Analyse It“ 

(General and Clinical Laboratory Statistics, Version 1.73, Analyse It Ltd., USA) 

erstellt. Der Vergleich der verschiedenen Auswerteverfahren mit dem Goldstandard 

erfolgte mittels zweidimensionaler Kontingenztafeln. 

Bei der quantitativen Auswertung wurden ROC Analysen zur Ermittlung der 

Schwellenwerte ∆β und ∆A für die einzelnen Segmente eingesetzt. Der Vergleich der 

untersuchten Parameter erfolgte gemäß der Methode von Hanley et al. [33]. 

In ROC Analysen werden die „Sensitivität“ und die „Spezifität“ eines diagnostischen 

Tests bei verschiedenen Cut-off Werten aufgetragen: Die Sensitivität entlang der 

Ordinate; 1-Spezifität als Ausdruck der Falsch-Positiven-Rate auf der Abszisse.  
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Die Trennschärfe des Tests liegt umso höher, je mehr die ROC Kurve von einer 

Diagonalen abweicht, die im 45°-Winkel vom Achsenschnittpunkt aus ansteigt (im 

oberen linken Eck zeigen Sensitivität und Spezifität Werte von 100%) [32,58].  

In der vorliegenden Arbeit wurden die ROC Analysen zur Beantwortung der 

folgenden Fragen herangezogen:  

1. Bei welchem ∆ß- bzw. ∆A-Wert zeigt sich eine höchstmögliche Sensitivität bzw. 

Spezifität, so dass möglichst sicher zwischen „gesunden“ und „pathologischen“ 

Segmenten unterschieden werden kann? 

2. Zeigen diese Cut-off Werte der einzelnen Segmente einen einheitlichen Trend, so 

dass sich ein einheitlicher Schwellenwert für alle Segmente postulieren lässt? 
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4 Ergebnisse 
 

4.1 Patientengut und Belastungsuntersuchung 

Von 40 Patienten lag das schriftliche Einverständnis zum Einschluss in die Studie 

vor. Aufgrund der zu erwartenden unzureichenden Schallbedingungen für die 

Erhebung quantitativer Perfusionsparameter (verkippte Herzachse des Transplantates) 

wurde nach Durchführung der „nativen“ Ruhe-Echokardiographie auf die Applikation 

des Ultraschallkontrastmittels bei sieben Patienten verzichtet. 

Von 30 der 33 verbliebenen Patienten (4w; 26m) konnten komplette Datensätze 

erhoben werden. Diese umfassten MCE und Myokard-Perfusions-Szintigraphie sowie 

die koronarangiographische Untersuchung und in drei Fällen den IVUS.  

Bei einem Patienten konnte aufgrund eines Kameradefektes die szintigraphische 

Untersuchung nicht durchgeführt werden; bei einem weiteren wurde wegen eines neu 

diagnostizierten malignen Melanoms keine Angiographie durchgeführt. Ein dritter 

Patient verweigerte die Angiographie nach einer unauffälligen Myokard-Perfusions-

Szintigraphie. 

Einen Überblick über Patientencharakteristika, Medikation und Vitalparameter 

während der Dobutaminbelastung gibt die nachfolgende Tabelle 8. 

 

 

 

 

 

Patienten 

 Alter, Jahre 58 ± 9,6 

 Weiblich, n (%) 4 (13) 

 Monate nach Herztransplantation 90 ± 56 
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Immunsuppresive Medikation 

 Azathioprin (Imurek), n 5 

 Prednison (Decortin H), n 7 

 Tacrolimus (Prograf), n 13 

 Cyclosporin (Sandimmun), n 17 

 Mycofenolatmofetil (Cellcept), n 17 

Sonstige kardiovaskuläre Medikation 

 ß – Blocker, n 5 

 ACE – Hemmer, n 28 

 Statine, n 20 

 Diuretika, n 18 

 Ca 2+ - Antagonisten 18 

Vitalparameter während der Belastungsuntersuchung 

  HF bei Ruhe 81 ± 10,5 

  HF bei maximaler Belastung 142 ± 9,2 

  Systolischer Blutdruck bei Ruhe 126 ± 14,0 

  Systolischer Blutdruck bei Belastung 146 ± 23,6 

  Diastolischer Blutdruck bei Ruhe 75 ± 9,8 

  Diastolischer Blutdruck bei Belastung 67 ± 12,7 

  DOB (µg/kg/min) 24 ± 4,9 
 

Tabelle 8: Patientencharakteristika. HF = Herzfrequenz; DOB = verwendete Dobutaminmenge  
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4.2 Goldstandard 

 
Bei sieben Patienten wurde nach dem definierten Goldstandard aus 

Koronarangiographie (plus IVUS) und Myokard-Perfusions-Szintigraphie eine 

Ischämie, bei neun eine myokardiale Narbe identifiziert. Bei vier Patienten lag 

sowohl eine Narbe als auch eine Ischämie vor. 

Zwei Patienten zeigten Perfusionsdefekte in der Myokard-Perfusions-Szintigraphie, 

jedoch eine unauffällige Koronarangiographie und keine Wandunregelmäßigkeiten 

im IVUS. Diese Defekte wurden nicht als hämodynamisch relevante 

Transplantatvaskulopathie gewertet. Fünf ischämische Myokardareale wurden dem 

Versorgungsgebiet der LAD zugeordnet, eines der RCA und eines der LCX.  In drei 

Fällen wurde eine myokardiale Narbe im Versorgungsgebiet der LAD, in zwei Fällen 

der RCX und in vier Fällen der RCA lokalisiert. 

Tabelle 9 zeigt die Verteilung der gemäß dem Goldstandard als pathologisch 

eingestuften Segmente bezüglich einer Ischämie, welche Grundlage der quantitativen 

Auswertung war. 
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Vier-Kammer Blick 

 bas.-sept. mid. sept. ap.-sept. ap.-lat. mid.-lat bas.-lat. 

Patient 1 x  x x   

Patient 2 x x     

Patient 3 x x     

Patient 4 x x     

Patient 5 x x   x  

Patient 6 x      

Patient 7 x x     

Zwei-Kammer Blick 

 bas. int mid. int ap. int ap. ant mid. ant. bas. ant 

Patient 1    x  x 

Patient 2       

Patient 3       

Patient 4     x  

Patient 5     x  

Patient 6     x x 

Patient 7       

Drei-Kammer Blick 

 bas. Post. mid. post. ap. post ap. ant. sept. mid. ant. sept. bas. ant. sept 

Patient 1    x   

Patient 2 x x     

Patient 3 x x     

Patient 4 x x     

Patient 5 x x     

Patient 6      x 

Patient 7       
 

Tabelle 9: Übertragung der gemäß Goldstandard detektierten pathologischen Myokardsegmente auf 

das 18-Segmentmodell in den drei  echokardiographischen Schnittebenen 
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4.3 Konventionelle Stressechokardiographie 

 

502 der 540 Segmente (94%) konnten ausgewertet werden, bei 38 Segmenten war 

keine Aussage aufgrund von Bildartefakten oder schlechten Schallbedingungen 

möglich. Diese Segmente wurden von allen weiteren Ultraschallauswertungen  

ausgeschlossen.  

Die konventionelle Auswertung zeigte 18 Abnormalitäten bezüglich Wandbewegung 

und Wanddicke bei 13 der 30 Patienten. Neun davon wurden als myokardiale Narbe 

und neun als Ischämie gewertet. Vier Patienten zeigten sowohl Narbe als auch 

Ischämie.  

Im Vergleich zum Goldstandard wurden fünf Ischämien und fünf Narben richtig 

erkannt.   

19 im Goldstandard unauffällige Patienten zeigten auch bei der konventionellen 

Auswertung bezüglich einer Ischämie keine Auffälligkeiten.  

Eine Übersicht der Ergebnisse zeigen Tabelle 10 und 11 für die Ischämiesuche, sowie 

Tabelle 12 und 13 bezüglich myokardialer Narben. 

 

 

Ischämie 
Konventionelle 

Auswertung 
Ja Nein 

∑ 

pathologisch 5 4 9 

nicht pathologisch 2 19 21 

∑ 7 23 n = 30 

 

 
Tabelle 10: Vergleich der konventionellen echokardiographischen Auswertung mit dem Goldstandard 

in der Detektion ischämischer Myokardareale. Kontingenztafel. 
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Konventionelle Auswertung: Ischämie 

Sensitivität 71 % 

Spezifität 83 % 

Negativ Prädiktiver Wert 90 % 

Positiv Prädiktiver Wert 56 % 

Treffsicherheit 80 % 

 

 
Tabelle 11: Vergleich der konventionellen echokardiographischen Auswertung mit dem Goldstandard 

in der Detektion ischämischer Myokardareale. Gütekriterien.  

 

 

 

 

Narbe 
Konventionelle 

Auswertung 
Ja Nein 

∑ 

pathologisch 5 4 9 

nicht pathologisch 4 17 21 

∑ 9 21 n = 30 

 

 

Tabelle 12: Vergleich der konventionellen echokardiographischen Auswertung mit dem Goldstandard 

in der Detektion myokardialer Narben. Kontingenztafel. 
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konventionelle Auswertung: Narbe 

Sensitivität 56 % 

Spezifität 81 % 

Negativ Prädiktiver Wert 81 % 

Positiv Prädiktiver Wert 56 % 

Treffsicherheit 73 % 

 
Tabelle 13: Vergleich der konventionellen echokardiographischen Auswertung mit dem Goldstandard 

in der Detektion myokardialer Narben. Gütekritertien. 

 

 

 

4.4 Quantitativ visuelle Auswertung  

 

Nach kontinuierlicher Infusion des Ultraschallkontrastmittels erfolgte die quantitativ 

visuelle Auswertung anhand des bereits besprochenen 18-Segmentmodells. 

Zwei Areale, die in der konventionellen Auswertung falsch positiv gewertet wurden, 

zeigten keine Veränderung bei der visuellen Beurteilung des Kontrastmittels im 

Vergleich von Belastung zu Ruhe. Diese Areale wurden demzufolge als nicht 

pathologisch eingestuft. Die Anzahl der falsch positiven Befunde konnte somit um 

zwei reduziert werden. Folglich ergab sich eine Sensitivität (Sens.) von 71%, 

Spezifität (Spez.) von 91%, ein negativ prädiktiver Wert (NPW) von 91%, ein 

positiver prädiktiver Wert (PPW) von 71% und eine Treffsicherheit von 87%. Eine 

Übersicht geben die Tabellen 14 und 15. 
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Ischämie 
Quantitativ visuelle 

Auswertung 
Ja Nein 

∑ 

pathologisch 5 2 7 

nicht pathologisch 2 21 23 

∑ 7 23 n = 30 

 
Tabelle 14: Vergleich der konventionellen echokardiographischen Auswertung in Kombination mit der 

quantitativ visuellen Auswertung mit dem Goldstandard in der Detektion ischämischer Myokardareale. 

Kontingenztafel. 

 

 

 

 

Quantitativ visuelle Auswertung: Ischämie 

Sensitivität 71 % 

Spezifität 91 % 

Negativ Prädiktiver Wert 91 % 

Positiv Prädiktiver Wert 71 % 

Treffsicherheit 87 % 

 
Tabelle 15: Vergleich der konventionellen echokardiographischen Auswertung in Kombination mit der 

quantitativ visuellen Auswertung mit dem Goldstandard in der Detektion ischämischer Myokardareale. 

Gütekriterien. 
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Betrachtet man die Bewertung myokardialer Narben, so zeigten sich insgesamt neun 

kontrastverminderte Areale. Davon wiesen sieben ein Korrelat im Goldstandard 

(richtig positive) auf, zwei pathologisch gewertete Areale zeigten keinerlei 

Auffälligkeiten im Goldstandard (falsch positive). Die Anzahl der richtig positiven 

und der richtig negativen Areale konnte um jeweils zwei erhöht werden. Folglich 

ergab sich eine Sensitivität von 78%, Spezifität von 90%, negativ prädiktiver Wert 

von 90%, positiver prädiktiver Wert von 78% und eine Treffsicherheit von 87%. 

Hierzu Tabellen 16 und 17. 

 

 

Narbe 
Quantitativ visuelle 

Auswertung 
Ja Nein 

∑ 

pathologisch 7 2 9 

nicht pathologisch 2 19 21 

∑ 9 21 n = 30 

 

 
Tabelle 16: Vergleich der konventionellen echokardiographischen Auswertung in Kombination mit der 

quantitativ visuellen Auswertung mit dem Goldstandard in der Detektion myokardialer Narben. 

Kontingenztafel. 
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Quantitativ visuelle Auswertung: Narbe 

Sensitivität 78 % 

Spezifität 90 % 

Negativ Prädiktiver Wert 90 % 

Positiv Prädiktiver Wert 78 % 

Treffsicherheit 87 % 

 
Tabelle 17: Vergleich der konventionellen echokardiographischen Auswertung in Kombination mit der 

quantitativ visuellen Auswertung mit dem Goldstandard in der Detektion myokardialer Narben. 

Gütekriterien. 

 

 

 

4.5 Quantitative Auswertung 

4.5.1   ROC – Analysen zur Schwellenwertberechnung 
 

Grundlage einer genauen quantitativen Analyse ist die strikte intramyokardiale 

Messung innerhalb der Regions of Interest (ROIs) über mehrere Herzzyklen hinweg.  

Die manuelle Anpassung der ROIs an die einzelnen Segmente in jedem Einzelbild der 

Rohdaten konnte bei fünf Patienten nicht suffizient durchgeführt werden, darunter 

befand sich jedoch keiner der sieben Patienten, die im Goldstandard auffällige Areale 

zeigten. Insgesamt wurden 25 Patienten quantitativ ausgewertet,  

Gemäß Tabelle 11 ergaben sich bezüglich der Ischämiediagnostik 12 Segmente, in 

denen sowohl pathologische als auch nicht pathologische Patienten zu erwarten 

waren. Für diese 12 Segmente führten wir ROC-Analysen zur Detektion der 

optimalen segmentbezogenen Schwellenwerte für ∆ß und ∆A durch, um zwischen 
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„gesunden“ und „pathologischen“ Segmenten unterscheiden zu können. Exemplarisch 

soll dieses Procedere anhand des mittleren septalen Segments des Vier-

Kammerblickes aufgezeigt werden. 

Für verschiedene ∆ß- und ∆A-Werte zeigen Tabelle 18 und 19 die zugehörige 

Sensitivität, Spezifität und die Anzahl der richtig Positiven, richtig Negativen, falsch 

Positiven und falsch Negativen. Abbildung 11 zeigt ferner die ROC-Kurven für die 

Werte aus Tabelle 18.  

In diesem Beispiel zeigte sich für den ∆ß-Wert von 0,05 /s eine Sensitivität von 80% 

bei einer Spezifität von 70%. Dieser wurde als Schwellenwert (Cut-off) für dieses 

Segment festgesetzt. 
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Abb. 11: ROC-Kurven für das mid-septale Segment im Vier-Kammerblick für ∆ß und ∆A  auf 

Grundlage der Tabellen 18  und 19. 
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∆ ß [1/s] 
(pathologisch 
unter cut-off)  

Sensitivität Spezifität RP RN FP FN 

-0,62900 0,0% 100,0% 0 20 0 5 

-0,26261 0,0% 95,0% 0 19 1 5 

-0,11592 0,0% 90,0% 0 18 2 5 

-0,10766 20,0% 90,0% 1 18 2 4 

-0,08995 20,0% 85,0% 1 17 3 4 

-0,07900 40,0% 85,0% 2 17 3 3 

-0,06428 40,0% 80,0% 2 16 4 3 

-0,00540 40,0% 75,0% 2 15 5 3 

-0,00141 60,0% 75,0% 3 15 5 2 

0,04996 60,0% 70,0% 3 14 6 2 

0,04996 80,0% 70,0% 4 14 6 1 

0,05477 80,0% 65,0% 4 13 7 1 

0,05800 80,0% 60,0% 4 12 8 1 

0,07040 80,0% 55,0% 4 11 9 1 

0,07600 80,0% 50,0% 4 10 10 1 

0,09550 80,0% 45,0% 4 9 11 1 

0,11760 80,0% 40,0% 4 8 12 1 

0,15300 80,0% 35,0% 4 7 13 1 

0,20200 80,0% 30,0% 4 6 14 1 

0,24082 80,0% 25,0% 4 5 15 1 

0,36800 80,0% 20,0% 4 4 16 1 

0,39300 80,0% 15,0% 4 3 17 1 

0,65790 80,0% 10,0% 4 2 18 1 

0,97559 80,0% 5,0% 4 1 19 1 

1,49300 100,0% 5,0% 5 1 19 0 

> 1,49300 100,0% 0,0% 5 0 20 0 

 

 

Tabelle 18: Sensitivität, Spezifität, richtig Positive (RP), richtig Negative (RN), falsch Positive (FP) 

und falsch Negative (FN) für unterschiedliche ∆ß Werte. Die markierte Zeile mit ∆ß = 0,049 entspricht 

dem festgesetzten Schwellenwert  
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A [dB]  
(pathologisch 
unter cut-off)  

Sensitivität Spezifität RP RN FP FN 

-26,55000 0,0% 100,0% 0 20 0 5 

-20,32000 0,0% 95,0% 0 19 1 5 

-11,71000 20,0% 95,0% 1 19 1 4 

-5,34000 20,0% 90,0% 1 18 2 4 

-4,50000 20,0% 85,0% 1 17 3 4 

-4,28000 20,0% 80,0% 1 16 4 4 

-3,70000 20,0% 75,0% 1 15 5 4 

-1,66000 20,0% 70,0% 1 14 6 4 

0,06000 40,0% 70,0% 2 14 6 3 

1,10000 40,0% 65,0% 2 13 7 3 

2,40000 40,0% 60,0% 2 12 8 3 

3,26000 60,0% 60,0% 3 12 8 2 

3,42000 60,0% 55,0% 3 11 9 2 

4,00000 60,0% 50,0% 3 10 10 2 

4,09000 60,0% 45,0% 3 9 11 2 

4,30000 80,0% 45,0% 4 9 11 1 

4,60000 80,0% 40,0% 4 8 12 1 

5,90000 80,0% 35,0% 4 7 13 1 

7,10000 100,0% 35,0% 5 7 13 0 

8,90000 100,0% 30,0% 5 6 14 0 

11,33000 100,0% 25,0% 5 5 15 0 

12,80000 100,0% 20,0% 5 4 16 0 

15,09000 100,0% 15,0% 5 3 17 0 

16,30000 100,0% 10,0% 5 2 18 0 

17,20000 100,0% 5,0% 5 1 19 0 

> 17,20000 100,0% 0,0% 5 0 20 0 

 
 

Tabelle 19: Sensitivität, Spezifität, richtig Positive (RP), richtig Negative (RN), falsch Positive (FP) 

und falsch Negative (FN) für aufsteigende ∆A Werte. Die markierte Zeile mit ∆A = 3,26 entspricht dem 

festgesetzten Schwellenwert  
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Analog zur exemplarisch dargestellten Auswertung erfolgte für alle 12 Segmente die 

Ermittlung optimaler Schwellenwerte für ∆ß und ∆A. 

Eine Übersicht hierzu gibt Tabelle 20. Schwellenwerte mit einem negativen 

Vorzeichen kommen zustande, wenn der Ruhewert größer als der Belastungswert ist. 

 

Segment ∆ ß [1/s] 
Schwellenwert 

∆ A [dB]  
Schwellenwert   

Vier-Kammer Blick 

bas.-sept. 0,01 - 3,11 

mid. sept. 0,05 3,26 

ap.-sept. 0,03 1,8 

ap.-lat. 0,01 6,96 

mid.-lat - 0,04 11,83 

Zwei-Kammer Blick 

ap. Ant 0,14 9,40 

mid. Ant. 0,20 3,73 

bas. Ant 0,01 1,55 

Drei-Kammer Blick 

bas. Post. 0,13 - 12,18 

mid. post. 0,14 - 4,79 

ap. ant. sept. - 0,35 1,26 

bas. ant. Sept - 0,02 - 7,31 
 
 
 

Tabelle 20: Schwellenwerte für ∆ß und ∆A für die 12 Segmente  

 
 
Mit Hilfe dieser Technik konnte zusätzlich zur visuellen Beurteilung ein weiteres 

Ischämieareal als richtig positiv erkannt werden. Dieser Patient zeigte keine 
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signifikante Stenose in der Koronarangiographie, jedoch einen reversiblen 

anteroapikalen Defekt in der Myokard-Perfusions-Szintigraphie. Die IVUS 

Untersuchung zeigte TVP-typische Veränderungen in der LAD. Siehe hierzu 

Tabellen 21 und 22.   

 

Perfusionsdefizit 
Quantitative 
Auswertung 

ja nein 
∑ 

pathologisch 6 2 8 

nicht pathologisch 1 21 22 

∑ 7 23 n = 30 

 
Tabelle 21: Vergleich der konventionellen echokardiographischen Auswertung in Kombination mit der 

quantitativ visuellen Auswertung und der rein quantitativen Analyse mit dem Goldstandard in der 

Detektion myokardialer Perfusionsdefekte. Kontingenztafel. 

 
 

Quantitative Auswertung 

Sensitivität 86 % 

Spezifität 91 % 

Negativ Prädiktiver Wert 95 % 

Positiv Prädiktiver Wert 75 % 

Treffsicherheit 90 % 

 
Tabelle 22: Vergleich der konventionellen echokardiographischen Auswertung in Kombination mit der 

quantitativ visuellen Auswertung und der rein quantitativen Analyse mit dem Goldstandard in der 

Detektion myokardialer Perfusionsdefekte. Gütekriterien. 
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Bezüglich der Identifizierung von Narben konnten mittels der ROC Analysen keine 

verwertbaren Schwellenwerte für ∆ß und ∆A gefunden werden, da eine exakte 

Positionierung der standardisierten ROIs innerhalb der narbigen und verdünnten 

Myokardabschnitte nicht immer möglich war. Artefakte des echoreichen 

linksventrikulären Cavum führten zu heterogenen Wiederauffüllungskurven.  

 

 

4.6 Quantitative Auswertung im Vergleich zum Goldstandard 

 

Gegenstand der Arbeit war nicht nur die Evaluierung des zusätzlichen Nutzens zu den 

bisher bekannten Ultraschallverfahren, sondern auch der alleinige und direkte 

Vergleich der quantitativen Auswertung mit dem Goldstandard.  

Hierfür wurde nach einen praktikablen Cut-off Wert für ∆ß gesucht, der für alle 

Segmente zur Unterscheidung zwischen „pathologisch“ und „gesund“ angewendet 

werden kann. Als Schwellenwert wurde ein ∆ß von 0,08 / s identifiziert (Tabelle 23), 

die Tabellen 24 und 25 zeigen die entsprechenden Ergebnisse.  
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∆ ß  [1/s]  Sensitivität Spezifität RP RN FP FN 

-0,634 0,0% 100,0% 0 12 0 12 

-0,102 8,3% 100,0% 1 12 0 11 

-0,067 8,3% 91,7% 1 11 1 11 

-0,047 16,7% 91,7% 2 11 1 10 

-0,047 25,0% 91,7% 3 11 1 9 

-0,030 33,3% 91,7% 4 11 1 8 

-0,025 33,3% 83,3% 4 10 2 8 

0,000 33,3% 75,0% 4 9 3 8 

0,003 41,7% 75,0% 5 9 3 7 

0,004 41,7% 66,7% 5 8 4 7 

0,009 50,0% 66,7% 6 8 4 6 

0,080 58,3% 66,7% 7 8 4 5 

0,144 58,3% 58,3% 7 7 5 5 

0,146 58,3% 50,0% 7 6 6 5 

0,148 58,3% 41,7% 7 5 7 5 

0,163 66,7% 41,7% 8 5 7 4 

0,167 75,0% 41,7% 9 5 7 3 

0,174 75,0% 33,3% 9 4 8 3 

0,194 75,0% 25,0% 9 3 9 3 

0,230 75,0% 16,7% 9 2 10 3 

0,238 75,0% 8,3% 9 1 11 3 

0,250 83,3% 8,3% 10 1 11 2 

0,342 91,7% 8,3% 11 1 11 1 

0,430 100,0% 8,3% 12 1 11 0 

>0,430 100,0% 0,0% 12 0 12 0 

 
Tabelle 23: Vergleich der quantitativen Auswertung bei unterschiedlichen ∆ß-Werten mit dem 

Goldstandard bei der Unterscheidung zwischen „gesunden“ und „pathologischen“ Segmenten. 
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Perfusionsdefizit Quantitative 
Auswertung alleine 
(Segmentanalyse) Ja Nein 

∑ 

Pathologisch 7 4 11 

nicht pathologisch 5 8 13 

∑ 12 12 n = 24 

 

 
Tabelle 24: Vergleich der quantitativen Auswertung bei der Suche nach belastungsinduzierten 

Perfusionsdefiziten im Vergleich zum Goldstandard (ohne Mitbetrachtung der bisherigen Ergebnisse). 

Kontingenztafel. 

 

 

Quantitative Auswertung alleine bei ∆ß von 0,080 /s  

Sensitivität 58 % 

Spezifität 67 % 

Negativ Prädiktiver Wert 62 % 

Positiv Prädiktiver Wert 64 % 

Treffsicherheit 63 % 

 
 

Tabelle 25: Vergleich der quantitativen Auswertung bei der Suche nach belastungsinduzierten 

Perfusionsdefiziten im Vergleich zum Goldstandard (ohne Mitbetrachtung der bisherigen Ergebnisse). 

Gütekriterien. 
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5 Diskussion 
 
 
Die vorliegende Arbeit zeigt erstmals den additiven Wert der quantitativen 

Auswertung der real-time Myokardkontrastechokardiographie (MCE) bei Patienten 

nach HTx im Vergleich zur konventionellen Dobutamin-Stress-Echokardiographie 

(DSE). 

Für die DSE, welche als klinisches Standardverfahren angesehen wird, ergab sich 

eine akzeptable Treffsicherheit von 80% bezüglich der Detektion einer 

hämodynamisch relevanten Transplantatvaskulopathie bei 30 Patienten nach 

orthotoper Herztransplantation. Unter Anwendung der real-time MCE und der 

visuellen Auswertung der einzelnen Myokardsegmente erhöhte sich die 

Treffsicherheit auf 87%, durch die zusätzliche Quantifizierung der myokardialen 

Perfusion konnte ein Anstieg auf 90% erreicht werden. Als Referenzstandard wurde 

erstmals ein kombinierter Goldstandard aus Koronarangiographie (CA), IVUS und 

Myokard-Perfusions-Szintigraphie (MPS) zugrunde gelegt.  

 

 

5.1 Dobutamin Stress Echokardiographie  

In zahlreichen Studien wurde bereits eine hohe Sensitivität der Stressechokardio-

graphie sowohl in der Diagnostik der KHK als auch in der Detektion der TVP 

nachgewiesen [20,25,56,77,87,91,92].  

Die meisten Studiengruppen benutzten zur pharmakologischen Belastung das positiv 

inotrope und chronotrope Pharmakon Dobutamin, [74,86] da das transplantierte Herz 

besonders sensitiv auf eine Katecholamin-Stimulation reagiert [11].  

Eine pharmakologische Belastung mit Adenosin wird - bei vergleichbaren 

Ergebnissen - ebenfalls durchgeführt. Lafitte et al. verglichen Dobutamin- und 

Adenosin-Kontrastechokardiographie im Tierversuch bei unterschiedlichen 

Stenosegraden. Bei beiden Substanzen zeigten sich nach kontinuierlicher intravenöser 
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Infusion signifikant verringerte Wiederauffüllungskurven bei hochgradigen Stenosen. 

Bei niedriggradigen Stenosen (häufig in früheren Stadien der TVP) zeigte sich unter 

Dobutaminbelastung jedoch ein stärkerer Einfluss auf die Wiederauffüllungskurven 

[46]. Auch wenn die Effekte beider Substanzen leicht differieren [23,53,79], kommen 

beide in der klinischen Routine zur Anwendung [46]. 

Spes et al. untersuchten 1999 in einer Studie mit 109 Patienten nach HTx  den 

prognostischen Wert der DSE im Vergleich zu CA und IVUS [93]. Das Protokoll für 

die Belastungsuntersuchung glich dem der vorliegenden Arbeit und richtete sich nach 

den gültigen Standardkriterien [74,92]. Die Autoren erzielten Werte für Sensitivität 

(82%), Spezifität (69%), positiv prädiktiven Wert (29%) und negativ prädiktiven 

Wert (96%), die mit den Ergebnissen dieser Arbeit vergleichbar sind. Insbesondere 

der hohe negative prädiktive Wert beider Arbeiten ist  für die Nachsorge nach HTx 

von Bedeutung. Liegt eine unauffällige Stressechokardiographie vor, ist die 

Wahrscheinlichkeit für das Vorliegen einer funktionell relevanten TVP gering und es 

kann gegebenenfalls auf die Durchführung einer CA verzichtet werden. 

 

 

5.2 Ultraschallkontrastmittel: Sicherheit und Arten der 

Anwendung 

 

Mit der Entwicklung von Ultraschallkontrastmitteln der zweiten Generation erfolgte 

die Anwendung dieser Substanzen in Kombination mit der herkömmlichen DSE. 

Diese zumeist als Myokardkontrastechokardiographie bezeichnete Untersuchung 

erwies in mehreren Studien ihren zusätzlichen Nutzen bei der Erfassung der 

myokardialen Perfusion in Zusammenhang mit der Ischämiediagnostik 

[20,36,44,75,100,115]. 

Trotz der unbestrittenen diagnostischen Einsatzmöglichkeiten, welche moderne 

Ultraschallkontrastmittel bieten, gilt es jedoch auch deren Einsatz kritisch zu 
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hinterfragen. Galten die Substanzen anfangs als nebenwirkungsfrei, so wurden  in 

mehreren aktuellen Studien Bedenken bezüglich ungewollter Bioeffekte der 

Mikrobläschen geäußert [80,105]. Miller et al. wiesen an 22 Hunden mikrovaskuläre 

Verletzungen sowie Kapillarblutungen nach intravenöser Infusion von 2µg/kg/min 

Kontrastmittel nach [65]. Ähnliche Ergebnisse wurden zuvor bei Studien an isolierten 

Kaninchenherzen [6] und in vivo bei Ratten [50,63,64] festgestellt. Eine Übertragung 

dieser Anwendungsrisiken auf den Menschen ist jedoch aus mehreren Gründen 

problematisch: primär aufgrund des stark unterschiedlichen Gewichtes 

(Kontrastmitteldosis / kg Körpergewicht), aber auch aufgrund der unterschiedlichen 

Organgröße und des Abstandes zwischen Organ und Schallkopf (Schallenergie) [65]. 

Dass die Mikrobläschen in proximalen Herzabschnitten (beim Menschen in vivo die 

apikalen) durch die höhere Schallenergie beeinflusst werden gilt als erwiesen und 

veranlasste Otani et al. bereits dazu, nach Korrekturwerten bei der quantitativen 

Auswertung zu suchen [73]. Der überproportionale Kontrastmittelzerfall in 

schallkopfnahen Segmenten scheint also diagnostische Probleme zu verursachen, 

gesundheitsrelevante Ausmaße dieses Effektes sind beim Menschen jedoch nicht 

bekannt. 

Tsutsui et al. untersuchten in einer groß angelegten Studie 1486 Patienten mit 

bekannter oder vermuteter KHK mittels real-time Myokardkontrastechokardiographie 

unter Dobutamin-Belastung, um die Sicherheit dieses Verfahrens zu beurteilen [99]. 

Bei diesem großen Patientenkollektiv wurden keine relevanten Nebenwirkungen oder 

Arrhythmien festgestellt. Die Autoren kamen zu dem Schluss, dass die Anwendung 

von Ultraschallkontrastmitteln eine gut durchführbare und sichere Anwendung 

darstellt, die für den Patienten einen zusätzlichen diagnostischen Gewinn bringt. Dies 

konnte in ähnlichen Studien an unterschiedlichen Patientenkollektiven ebenso gezeigt 

werden [26,41,42]. 

Ein weiterer Punkt bei der Verwendung von Ultraschallkontrastmitteln ist die Art der 

Applikation. Sie kann auf zwei unterschiedliche Weisen erfolgen: per manuellem 

Bolus oder über pumpengesteuerte kontinuierliche Infusion. Die Bolusinjektion stellt 

das anwenderfreundlichere Verfahren dar, offeriert jedoch – bedingt durch die 
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Zerstörung der Mikrobläschen während des Schallvorganges – nur ein kleines 

Zeitfenster für die Bildakquisition. Das von uns gewählte kontinuierliche Infusions-

verfahren ist zwar im initialen Aufbau komplizierter (Perfusor gesteuerte Infusion bei 

gleichzeitiger Dobutamin Applikation), ermöglicht jedoch aufgrund des steady-state 

von Kontrastmittel die plötzliche Zerstörung aller Bläschen und Messung der 

Wiederauffüllung (Replenishment Technik) und somit die von uns gewünschte 

quantitative Auswertung. Diese Applikationsart wurde von nahezu allen Studien-

gruppen für die quantitative Datenanalyse gewählt [36,73,83,84,99,116]. 

 

 

5.3 Goldstandard 

Bevor in den folgenden Punkten die einzelnen Aspekte der Quantifizierungsmethoden 

beleuchtet werden, soll zunächst - zum Zwecke der Vergleichbarkeit mit anderen 

Studien - auf den zugrunde gelegten Goldstandard eingegangen werden. Bisher 

publizierte Studien verwendeten die Koronarangiographie als alleinigen Goldstandard 

in der Detektion einer vorliegenden TVP. Eine Übersicht der aktuellen Studien an 

Patienten und Tieren gibt Tabelle 28. 
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Autor Jahr Goldstandard Verfahren n Kollektiv 

Rodrigues et al. 
[84] 2005 CA (≥50%) Quantitativ visuell 35 V. a. TVP 

Jeetley et al. [36] 2006 CA (≥50%) Quantitativ visuell 123 KHK 

Xie et al.[115] 2005 CA (≥50%) Quantitativ visuell 27 KHK 

Yip et al. [116] 2003 SPECT Quantitativ visuell 11 Kardiale Schmerzen  

Roberts et al. [83] 2005 CA (≥50%) Quantitativ visuell 38 KHK 

Elhendy et al.  [20] 2004 CA (≥50%) Quantitativ visuell 170 KHK 

Heinle et al. [34] 2000 SPECT Quantitativ visuell 123 KHK 

Fukuda et al. [22] 2004 nach CA 
Intervention Quantitativ 28 Stenose nach 

Revaskularisierung 
Korosoglou et al. 
[43] 2004 SPECT Quantitativ 50 V. a. KHK 

Leistad et al. [49] 2001 TIERVERSUCH Quantitativ visuell 8 Hund; variable Stenosen 

Masugata et al. 
[54] 2001 TIERVERSUCH Quantitativ 8 Hund; variable Stenosen 

Lafitte et al. [46] 2001 TIERVERSUCH Quantitativ 14 Hund, variable Stenosen 

 
Tabelle 28: Aktuelle Studien zur Wertigkeit der Myokardkontrastechokardiographie. CA = 

Koronarangiographie. 

 

 

Die Koronarangiographie als alleiniger Goldstandard erscheint in Anbetracht der 

heterogenen pathologischen Veränderungen bei TVP jedoch problematisch.  

Im Vordergrund steht hierbei die diffuse Intimaproliferation sowohl der epikardialen 

als auch der intramyokardialen Gefäße. Weis et al. beschrieben bereits eine 

endothelunabhängige mikrovaskuläre Dysfunktion bei Patienten nach HTx ohne 

entsprechendes koronarangiographisches Korrelat. Dies führte zu dem Konzept, 

mikrovaskuläre- und epikardiale Veränderungen als zwei unterschiedliche Entitäten 

mit verschiedenen funktionsrelevanten Veränderungen zu betrachten [111]. 

Besonders die mikroangiopathischen Gefäßveränderungen führen zu diagnostischen 

Limitationen für die CA. Hinzu kommt, dass bei der CA der Grad einer Stenose im 

Vergleich zu gesunden Gefäßabschnitten bestimmt wird. TVP typische, langstreckige 

Intimaveränderungen und das diffuse Befallsmuster erschweren somit zusätzlich die 
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koronarangiographische Diagnostik [8,9,68,94] und können zu falsch negativen 

Befunden führen [37,72]. Gleichwohl muss gesagt werden, dass Everett et al. schon 

1994 eine hohe Spezifität (81%) der CA zum Ausschluss einer TVP zeigen konnten, 

wenn sie bereits eine Lumenreduktion >10% als pathologisch definierten [21]. Die 

Risiken der CA blieben dem HTx Patienten in der Nachsorge jedoch nicht erspart. 

Mittels IVUS Untersuchung konnte nachgewiesen werden, dass die Treffsicherheit 

bei der Detektion einer TVP im Vergleich zur alleinigen Anwendung der CA weiter 

erhöht werden kann [70]. Relevante Veränderungen der Gefäßintima bei HTx 

Patienten konnten trotz unauffälliger CA in 70% - 90% gefunden werden [106], was 

zu einer Verbesserung der Prognose von kardialen Ereignissen führte [60]. 

Man darf es also als wissenschaftlichen Konsens ansehen, dass die Koronar-

angiographie bei der Detektion einer möglichen TVP  weniger sensitiv ist als die 

Untersuchung mittels IVUS Technik [62,70,106].  

Aufgrund dieser Datenlage ist es als kritisch zu betrachten, wenn mittels CA 

gefundene Stenosen ≥ 50% als einziges sicheres Erkennungsmerkmal einer be-

ginnenden TVP in Studien zugrunde gelegt werden, da Gefäßveränderungen im Sinne 

einer TVP auch ohne derartige Stenosen vorliegen können.  

Da sich diese Arbeit mit der Aussagekraft verschiedener Ultraschalltechniken 

befasste wurde zur „Erhärtung“ des Goldstandards eine Kombination der CA mit 

IVUS und Myokard-Perfusions-Szintigraphie gewählt.  

Elhendy et al. konnten bereits einen zusätzlichen diagnostischen Nutzen der MPS 

mittels SPECT Technik in der Detektion der TVP nachweisen [18].  

In der vorliegenden Arbeit wurden also nur solche Veränderungen als funktionell 

relevante TVP definiert, die sich 1. in Koronarangiographie oder IVUS und 2. in der 

Myokard-Perfusions-Szintigraphie nachweisen ließen. Eine Vereinigung der 

unterschiedlichen „Stärken“ der diversen anerkannten und in der klinischen Routine 

erprobten Untersuchungstechniken zu einem Goldstandard scheint in Anbetracht der 

vielfältigen morphologischen Ausprägungsmuster der Erkrankung besonders sinnvoll. 
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5.4 Quantitative Analyse 

5.4.1 Allgemeines 
 

Die quantitative Analyse nach Kontrastmittelinfusion teilt sich in zwei verschiedene 

Auswerteverfahren: Die quantitativ visuelle Beurteilung der Segmente einerseits und 

die rein quantitative Analyse der Segmente mittels ROI Technik und Wiederauf-

füllungskurven andererseits. Leider werden beide Techniken in der Literatur zumeist 

unpräzise als „quantitative Analyse“ bezeichnet.  

Aus Tabelle 28 geht hervor, dass sehr wohl Arbeiten zur visuellen Beurteilung 

existieren, jedoch nur eine einzige relevante zur quantitativen Analyse mit einem 

Patientenkollektiv bei Verdacht auf KHK und keine Publikation bei herz-

transplantierter Patienten. Als Ursache dafür kann die hohe Anzahl der nicht 

beurteilbaren Myokardsegmente aufgrund von Bewegungsartefakten oder schlechten 

MCE Bedingungen angesehen werden. Yip et al. berichteten von bis zu 30% nicht 

beurteilbarer Segmente bei Patienten mit TVP [116]. Im Gegensatz dazu konnten in 

der vorliegenden Arbeit nur 6% der Segmente wegen der sorgfältigen Vorauswahl 

des Patientenkollektivs nicht beurteilt werden: 7 der 40 Patienten (18%) wurden 

aufgrund zu erwartender unzureichender Schallbedingungen für eine standardisierte 

quantitative Auswertung von der Studie ausgeschlossen. Eine strenge Vorauswahl der 

Patienten sollte als Voraussetzung für die klinische Anwendung der quantitativen 

Kontrastechokardiographie angesehen werden. 
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5.4.2 Quantitativ visuelle Beurteilung 
 

In Tierversuchen an Hunden wurde bereits von mehreren Autoren die 

Durchführbarkeit und Wertigkeit der Kontrastechokardiographie gezeigt 

[46,49,54,55]. 

Elhendy et al. erreichten bei 170 unselektierten Patienten eine Zunahme der 

Treffsicherheit von 71% bei Analyse der Wandbewegungen auf 81% bei 

Durchführung einer quantitativen Kontrastechokardiographie mit visueller 

Beurteilung [20]. Die Verfahren wurden hierbei mit der Koronarangiographie als 

Goldstandard verglichen. 

Jeetley et al. fertigten von 123 Patienten mit Verdacht auf oder bereits bekannter 

KHK sowohl eine visuell quantitative MCE als auch eine SPECT an und verglichen 

die Daten mit der CA [36]. Es ergaben sich vergleichbare Werte für beide Techniken 

(MCE: Sens: 84%, Spez: 56%;  SPECT: Sens: 82%, Spez: 52%). 

Roberts et al. berichteten bei Kombination des Verfahrens mit Wandbewegungs- 

analysen sogar über eine Sensitivität von 83% und eine Spezifität von 96% bezüglich 

der Detektion relevanter Koronarstenosen im Vergleich zur CA [83].  

Die Ergebnisse der vorliegenden Arbeit (Sens: 71%; Spez: 91%; PPW: 71%; NPW: 

91%) für die quantitativ visuelle Auswertung bewegen sich in ähnlichen Bereichen, 

wenn auch einschränkend bemerkt werden muss, dass es sich bei den hier 

angeführten Studien um die Ausschlussdiagnostik der KHK handelte und nicht die 

Diagnostik einer funktionell relevanten TVP das Studienziel war. 

In einer weiteren Studie untersuchten Rodriguez et al. das Harmonic-Imaging- 

Verfahren mit quantitativ visueller Auswertung bei 35 Patienten nach orthotoper 

Herztransplantation [84]. Für die Erkennung einer TVP wurden für Sensitivität und 

Spezifität Werte von 70% bzw. 96% angegeben. Auch wenn die vorliegende Arbeit 

ähnliche Werte für diese Analysemethode aufweist, unterscheiden sich die Ergebnisse 

in drei wichtigen Punkten: 

1.  Die Verwendung eines kombinierten Goldstandards, bestehend aus CA, IVUS 

und MPS wird dem morphologischen Veränderungen der Transplantatvaskulo-
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pathie besser gerecht, wie oben bereits beschrieben. Es wäre also denkbar, dass 

Patienten mit Gefäßveränderungen im Sinne einer beginnenden TVP von der 

quantitativ visuellen Analyse richtig als pathologisch erkannt, jedoch 

fälschlicherweise wegen einer unauffälligen CA (Goldstandard) als „falsch 

positiv“ eingestuft wurden. 

2. Bei der vorliegenden Arbeit wurde zum ersten mal das real-time MCE Verfahren 

bei einem herztransplantiertem Kollektiv angewandt. Im Vergleich zum 

„Intermittend Harmonic Imaging“ können bei real-time MCE mittels Power Pulse 

Inversionsverfahren Perfusionsdaten über den kompletten Herzzyklus hinweg 

gewonnen werden, was speziell dem komplizierten anatomischen Situs der HTx 

Patienten entgegenkommt [47,115].  

3.  Der zusätzliche Einsatz von ROIs zur Erfassung der Wiederauffüllungskurven 

(siehe unten) erhöht zusätzlich die Treffsicherheit. 

 

 

5.4.3 Quantitative Analyse mittels Wiederauffüllungskurven 
 

5.4.3.1 Datenerfassung 
 

In tierexperimentellen Studien an Hunden zeigten Masugata et al., dass 

Wiederauffüllungskurven im quantitativen real-time MCE Verfahren gut mit dem 

myokardialen Blutfluss korrelieren und eine Identifizierung von Koronarstenosen 

ermöglichen [55].  

Darüber hinaus existieren bis heute weder für Tier noch Mensch allgemeingültige 

Referenz- oder Schwellenwerte, um zwischen einer normalen und einer 

pathologischen Wiederauffüllungskurve unterscheiden zu können. 

Grundlegende Problematik ist hierfür die Genauigkeit der Datenerhebung durch 

Ausrichtung der segmentbezogenen ROIs innerhalb des Myokards. Andererseits 
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entfällt der Einfluss des Befunders, wie er bei der quantitativ visuellen Beurteilung 

sicherlich bedeutend ist.  

Für die korrekte Auswertung der segmentbezogenen ROIs müssen drei 

Vorraussetzungen erfüllt sein: 

1. Eine präzise Einstellung der verschiedenen Schnittebenen über mehrere 

Herzzyklen hinweg, um eine Übereinstimmung der Segmente zwischen den 

verschiedenen Untersuchungsmethoden gewährleisten zu können. 

2. Innerhalb der Schnittebene müssen die einzelnen ROIs exakt den Segmenten 

zugeordnet werden.  

3. Die Wiederanflutung der Segmente nach dem Flash erfordert einen 

Beobachtungszeitraum über mehrere Herzzyklen hinweg. Aufgrund des 

unterschiedlichen Kontrastmittelniveaus von Myokard und Cavum müssen die 

ROIs streng intramyokardial gehalten werden.  

 

Die manuelle Anpassung ist sehr zeitintensiv, da in jedem einzelnen Bild (28 pro 

Sekunde) alle sechs ROIs (eine ROI pro Segment) der Wandbewegung nachgezogen 

werden müssen. 

Malpica et al. untersuchten 2004 verschiedene mathematische Algorithmen, um 

diesen Vorgang zu automatisieren [52]. Trotz positiver Ergebnisse – die 

Automatisierung lieferte ähnliche Ergebnisse wie ein geübter Befunder bei manueller 

Ausrichtung [52,71] – fehlt bisher die Implementierung solcher Softwarelösungen in 

die Auswertungsprogramme der Hersteller. 

Egal auf welchem Wege die Anpassung erfolgt, es bleibt ein weiteres methodisches 

Problem bestehen: Die hier angewandten Ultraschallverfahren sind allesamt 

zweidimensional, zeigen also Schnittebenen des Herzens. Da sich das Myokard 

während des Herzzyklus jedoch in allen drei Dimensionen bewegt, können Segment-

verschiebungen aus der Schnittebene „heraus“ nicht erfasst werden. Dieses Problem 

wird erst mittels 3D-Echokardiographie gelöst werden können. Initiale, 

experimentelle Studien wurden hierzu bereits erarbeitet [13]. 
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5.4.3.2 Kurvenparameter ∆ß und ∆A 
 

In der vorliegenden Arbeit zeigten sowohl die ß- als auch die A-Werte eine hohe 

Variabilität zwischen den 18 unterschiedlichen Myokardsegmenten. Unter Zuhilfe-

nahme multipler ROC Analysen ergab sich ein Schwellenwert für ∆ß von 0,08 /s zur 

Differenzierung zwischen Patienten mit und ohne TVP. Für  ∆A oder das Produkt von 

[∆A x ∆ß] konnte kein solcher Wert gefunden werden. 

Fukuda et al. untersuchten 28 Patienten vor und nach koronarangiographischer 

Intervention und verglichen die Wiederauffüllung der Segmente. Sie ermittelten einen 

Schwellenwert von 0,50 /s für ∆ß, um zwischen einer erfolglosen und erfolgreichen 

Wiedereröffnung des Gefäßes zu unterscheiden [22]. Sensitivität (71%), Spezifität 

(78%) und Treffsicherheit (75%) lagen zwar oberhalb der Ergebnisse der 

vorliegenden Arbeit (Sens: 58%; Spez: 67%; Treffsicherheit 63%); diese sind jedoch 

nur bedingt vergleichbar. 

Zum einen wurden in der vorliegenden Studie Perfusionsveränderungen auf 

Grundlage einer TVP und nicht aufgrund einer KHK untersucht. Zum anderen 

wurden in dieser Studie alle Segmente in die Analyse miteinbezogen, ohne vorher zu 

wissen, ob überhaupt eine Veränderung der Werte zu erwarten war. Weiterhin 

unterschied sich der A-Wert nicht zwischen den erfolgreichen und den erfolglosen 

Wiedereröffnungen. Analog zu diesem Ergebnis berichteten Lafitte et al. [46] in einer 

tierexperimentellen Studie bereits darüber, dass der A-Wert sich bei niedrig-

gradigeren Stenosen nicht signifikant änderte. 

Korosoglou et al. untersuchten 50 unselektierte Patienten und verglichen die 

Ergebnisse mit der Myokard-Perfusions-Szintigraphie [43]. Diese Studie kommt – 

wenn auch bei einem anderen Patientenkollektiv – der hier vorgelegten Arbeit am 

nächsten. Mittels multipler ROC Analysen der einzelnen Segmente ermittelten sie 

ebenfalls, dass sich der ß-Wert, nicht jedoch der A-Wert, zur Detektion von 

Perfusionsdefekten eignet. 

Die hohe Variabilität der Werte kann durch das intraindividuell unterschiedliche 

Niveau der Mikrobläschen verursacht sein. Ferner spielt die Nähe der Bläschen zum 
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Ultraschallkopf eine Rolle. Besonders bedeutend sind hierbei die apikalen Segmente, 

die aufgrund des geringen Bläschen–Schallkopf Abstandes einer besonders hohen 

Schallenergie ausgesetzt sind. Diesbezüglich existieren in der Literatur verschiedene 

Auffassungen. Während einige Autoren eine erhöhte Artefaktwahrscheinlichkeit 

postulieren [84,116], berichteten Elhendy et al. über eine erhöhte Treffsicherheit im 

LAD Versorgungsgebiet [20]. Otani et al. wiesen in einer tierexperimentellen Studie 

mit Hunden nach, dass die Abweichungen der ß-Werte durch einen ermittelten 

Korrekturfaktor vermindert werden konnte [73]. Für Menschen existieren solche 

Faktoren bisher nicht.  

In der vorliegenden Arbeit wurde ein ischämisches Areal mittels quantitativer MCE 

aufgrund eines signifikanten Abfalls des ß-Wertes als richtig positiv erkannt. 

 

 

5.5 Limitationen der Studie und Ausblick 

 

Der bedeutendste limitierende Faktor dieser Arbeit ist die begrenzte Anzahl der 

eingeschlossenen Patienten - trotz der großen Nachsorgeambulanz des Klinikums 

Innenstadt der LMU München. Die strengen Anforderungen an die korrekte Lage der 

Schnittebenen stellten ein weiteres Problem dar. Bei sieben Patienten war aufgrund 

schlechter Ergebnisse im „nativen“ Ruhe-Echo keine suffiziente Durchführung der 

MCE möglich. 

Die strengen Einschlusskriterien spiegeln sich zwar in der sehr niedrigen Anzahl 

nicht beurteilbarer Segmente wieder (6%), ermöglichen die Anwendung der Technik 

jedoch nur an einem eng begrenzten Patientenkollektiv. 

Eine weitere Einschränkung der Studie stellte das Fehlen mathematischer 

Algorithmen sowohl zur Justierung der „Regions of Interest“ über die Herzzyklen 

hinweg als auch zur automatischen Weiterverarbeitung der Wiederauffüllungskurven 

dar. Die Akquise der Bilder - und vor allem die manuelle Auswertung der Daten - 

macht eine Implementierung des Verfahrens in die Klinikroutine sehr schwierig. Pro 
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Patient mussten neben der visuellen Beurteilung 36 ROIs (18 in der Ruhe- und 18 in 

der Belastungsuntersuchung) manuell über sechs bis sieben Herzzyklen hinweg den 

Bewegungen des Herzmuskels angepasst werden. Aus diesen 1080 Einzelwerten 

konnten dann die jeweils 540 ∆-Werte für ß und A errechnet werden. Automatisierte 

Verfahren könnten die Nachbearbeitungszeit wesentlich verkürzen und zu einer 

besseren Vergleichbarkeit der angefertigten Studien führen. 

Eine weitere Limitation stellt die Methodik des zweidimensionalen Ultraschalls dar. 

Alle einer ROI zugeordneten Wandabschnitte, die sich nicht über mehrere 

Herzzyklen hinweg in der erfassten Schallebene befinden, können zu falschen 

Messwerten innerhalb der ROI führen. Diese bleibt für den Betrachter zwar korrekt 

innerhalb der Myokardgrenzen, jedoch verschiebt sich das zu beobachtende Segment 

mit der Herzbewegung in der dritten Dimension aus der Schnittebene heraus. 

Zuletzt muss bemerkt werden, dass die IVUS Untersuchung nur durchgeführt wurde, 

wenn Patienten bei einer unauffälligen CA eine auffällige SPECT Untersuchung 

zeigten. Demzufolge existiert die Möglichkeit, Patienten ohne Perfusionsdefekt oder 

diejenigen mit auffälligem Kontrastecho bei negativer SPECT, negativer CA und 

potentiell positivem IVUS Befund nicht erkannt zu haben. Das Ergebnis wäre eine 

höhere Anzahl falsch negativer und/oder eine niedrigere Anzahl richtig positiver 

Befunde, was die Ergebnisse dieser Arbeit beeinflusst haben könnte.  

Zur weiteren Verifizierung des hier gefundenen Schwellenwertes für ∆-ß bedarf es 

nachfolgender Studien, welche den Wert an einem größeren Patientenkollektiv und an 

anderen Ultraschallgeräten überprüfen. 
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6 Zusammenfassung 
 

 

Nach erfolgreicher Herztransplantation (HTx) stellt die Entwicklung einer 

Transplantatvaskulopathie (TVP) eine der häufigsten kardialen Spätkomplikationen 

und Todesursachen dar. Hierbei handelt es sich um eine Erkrankung mit multiplen 

Veränderungen der Koronarien sowie der intramuralen Gefäße, die von der 

konzentrischen fibrösen Intimaverdickung bis zum kompletten Verschluss des 

Gefäßes reichen. Ferner finden sich atherosklerotische Plaques und diffuse intra- und 

extrazelluläre Lipidansammlungen in Intima und Media. 

Neben Koronarangiographie (CA), intravaskulärem Ultraschall (IVUS) und 

Myokard-Perfusions-Szintigraphie (MPS) spielt die Dobutamin-Stressechokardio-

graphie (DSE) eine wichtige Rolle in der Diagnostik der TVP. Durch die zusätzliche 

Verwendung von Ultraschallkontrastmitteln (Myokardkontrastechokardiographie = 

MCE) zur Erfassung der myokardialen Perfusion konnte in Studien bereits eine 

Steigerung der Sensitivität und Spezifität im Vergleich zur herkömmlichen DSE 

gezeigt werden. 

Ziel der vorliegenden Arbeit war einerseits die Bestimmung von Sensitivität und 

Spezifität der DSE mit MCE im Vergleich zu einem Goldstandard aus CA, IVUS und 

MPS, andererseits die Ermittlung der zusätzlichen Wertigkeit der MCE mit 

Quantifizierung der myokardialen Perfusionsdaten im Vergleich zur herkömmlichen 

DSE. 

Das Patientenkollektiv (n=30) setzte sich aus 26 männlichen sowie 4 weiblichen 

herztransplantierten Patienten im Alter von 58 ± 9,6 Jahren zusammen. Der 

Beobachtungszeitpunkt betrug durchschnittlich 7,5 Jahre nach HTx. 

Alle Patienten wurden im Eintagesprotokoll mittels DSE + MCE sowie einer MPS 

untersucht und die Ergebnisse der zeitnah durchgeführten CA (gegebenenfalls 

inklusive IVUS) mit einbezogen. Als hämodynamisch relevante TVP wurden 

folgende Befunde gewertet: 
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1. Stenose (≥ 50%) in der CA und Perfusionsdefekt im korrelierenden 

Versorgungsgebiet in der MPS 

2. unauffällige CA, jedoch TVP typische Veränderungen im IVUS gemäß der 

Stanford-Klassifikation und Perfusionsdefekt im korrelierenden Versorgungs-

gebiet in der MPS 

Mit diesem „kombinierten Goldstandard“ wurden die Ergebnisse von DSE und MCE 

verglichen. Grundlage für die in drei Schritten erfolgte Auswertung der Daten bildete 

ein 18-Segmentmodell des Myokards.  

Zunächst erfolgte die visuelle Beurteilung von Wanddicke und Wandbewegung nach 

gängigen stressechokardiographischen Standards („konventionelle Auswertung“).  

Bezüglich der Ischämiediagnostik ergab sich eine Sensitivität (Sens) von 71% sowie 

eine Spezifität (Spez) von 83%, der Positiv Prädiktive Wert (PPW) errechnete sich zu 

83%, der Negativ Prädiktive Wert (NPW) zu 90%. In einem zweiten Schritt wurde 

die Wiederanflutung des Ultraschallkontrastmittels - nach völliger Zerstörung durch 

einen hochenergetischen Schallimpuls - in den einzelnen Segmenten visuell beurteilt. 

Mit diesem als „quantitativ visuell“ bezeichneten Auswerteschritt konnte die 

Spezifität der DSE mit MCE weiter erhöht werden (Sens: 71%; Spez: 91%; PPW: 

71%; NPW: 91%). Diese Ergebnisse korrelieren mit der bereits publizierten 

Datenlage.  

Basierend auf diesen Erkenntnissen folgte in einem dritten Schritt erstmals bei 

Patienten mit Zustand nach HTx eine Quantifizierung der Kontrastmittelmenge 

während der Wiederanflutungphase durch Messung der Schallintensitäten in den 

einzelnen Myokardsegmenten. Mittels ROC-Analysen wurden die statistischen 

Parameter der Wiederanflutungskurven (Steigung, Plateauwert) der pathologisch 

eingestuften Myokardsegmente mit einem gesunden Kontrollkollektiv verglichen und 

Schwellenwerte für die Diagnostik der Transplantatvaskulopathie festgelegt. 

Signifikant erniedrigte Steigungswerte der Anflutungskurven konnten bei Patienten 

mit Perfusionsdefekt gezeigt werden. Das Plateau der Perfusionskurve sowie das 

Produkt aus Steigung und Perfusionsplateau zeigten keine wertbaren Veränderungen 

zwischen Gesunden und Kranken. 
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Der Vergleich der quantitativen Auswertung mit dem Goldstandard ohne Kenntnis 

der Ergebnisse der „konventionellen Auswertung“ und der „quantitativ visuellen 

Auswertung“ ergab eine Sens. von  58%, Spez: 67%, PPW: 64% und NPW: 62%. 

In Zusammenschau mit den oben genannten Verfahren konnte jedoch gezeigt werden, 

dass die Treffsicherheit der DSE mit MCE und quantitativer Analyse der 

Myokardperfusion im Vergleich zum Goldstandard weiter erhöht werden kann (Sens:  

86%; Spez: 91%; PPW: 75%; NPW: 95%). 

Kritisch zu betrachten ist bei der quantitativen Analyse das bisherige Fehlen von 

einheitlichen Schwellenwerten, um zwischen „normaler“ und „pathologischer“ 

Myokardperfusion unterscheiden zu können. Diese können bisher nur für gut prä-

selektionierte und daher vergleichbare Patientenkollektive erstellt werden, was die 

Anwendung der Methodik limitiert. In der Follow-Up Routine nach HTx profitieren 

die Patienten, welche mittels MCE untersucht werden können, jedoch von der hohen 

Sensitivität und Spezifität der Methode, wodurch die Anzahl der routinemäßig 

durchgeführten Koronarangiographien vermindert werden könnte. 

Das Verfahren erscheint also prinzipiell geeignet, um nicht invasiv eine hämo-

dynamisch relevante TVP nach HTx zu detektieren. Zur Implementierung in die 

klinische Routine bedarf es jedoch noch der Entwicklung von Software-Algorithmen 

zur automatisierten Auswertung sowie der Etablierung von Korrekturfaktoren zum 

Ausgleich physiologischer intraindividueller Perfusionsunterschiede der einzelnen 

Myokardsegmente. 
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CA Koronarangiographie 

DSE Dobutamin-Stressechokardiographie 

HF Herzfrequenz 

HTx Herztransplantation 

IVUS Intravaskulärer Ultraschall 

KHK Koronare Herzkrankheit 

KM Kontrastmittel 

MCE Myokardkontrastechokardiographie 

MPS  Myokard-Perfusions-Szintigraphie 

NPW Negativ Prädiktiver Wert 

PET Positronen-Emissions-Tomographie 

PPW Positiv Prädiktiver Wert 

ROC Receiver Operating Characteristics 

ROI Region of Interest 

SAE Stimulierte akustische Emission 

Sens. Sensitivität 

SPECT Single Photon Emissions Computer Tomographie 

Spez. Spezifität 

TVP Transplantatvaskulopathie 
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