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Zusammenfassung

Diese Arbeit beschäftigt sich mit der Bestimmung elastischer Konstanten in amorphen Ma-
terialien. Im Mittelpunkt steht die Elastizität heterogener Netzwerke aus steifen, stabar-
tigen Polymeren. Diese Netzwerke spielen eine wichtige Rolle in der Zell-Biologie, z.B.
in der Form des Zytoskeletts, welchem die Zelle einen Großteil ihrer mechanischen und
dynamischen Eigenschaften verdankt. Außerhalb der Zelle werden vergleichbare Polymer-
Netzwerke unter anderem in der Haut (Kollagen) oder bei der Wundheilung (Fibrin)
gebildet. Eingang ins Alltagsleben haben solche Faser-Systeme schon seit mehreren Jahr-
hunderten gefunden – in Form von Papier, einem Netzwerk aus langen Zellulosefasern.

In den Kapiteln 1 bis 6 der vorliegenden Arbeit wird versucht, die wichtigsten Ergebnisse
zusammenfassend darzustellen und in den Kontext der aktuellen Forschung einzuordnen.
Die Details finden sich im Kapitel 7, in dem die zugehörigen wissenschaftlichen Artikel
abgedruckt sind.

Bei der Bestimmung der elastischen Konstanten im Rahmen der Elastizitätstheorie
erhält der Begriff der “Affinität” eine besondere Bedeutung, da er das Deformationsfeld
homogener elastischer Systeme charakterisiert. Im Gegensatz dazu ist es in den hier inter-
essierenden heterogenen Materialsystemen gerade die Abwesenheit dieser affinen Deforma-
tionen, die im Mittelpunkt des Interesses steht. Im Verlauf der Arbeit wird deutlich, wie
Nichtaffinität aus einem Zusammenspiel geometrischer Eigenschaften der Mikrostruktur
und mechanischer Eigenschaften der Einzelpolymere entstehen kann. Durch die Kom-
bination von Computersimulation und analytischer Beschreibung werden wichtige As-
pekte bezüglich der Rolle der heterogenen Mikrostruktur in der Ausbildung makroskopis-
cher Elastizität geklärt. Der Berücksichtigung nicht-affiner Deformationen kommt dabei
außerordentliche Bedeutung bei der präzisen Bestimmung makroskopischer elastischer Kon-
stanten zu.

Die Modellierung setzt sich im Wesentlichen aus zwei Komponenten zusammen: der
Definition der Netzwerkstruktur und der Spezifikation der elastischen Eigenschaften der
Einzelpolymere.

Es zeigt sich, dass die Struktur der Polymer-Netzwerke im Allgemeinen durch zwei
Längenskalen beschrieben werden muss. Neben der mittleren Maschenweite a tritt eine
mesoskopische Längenskala lf � a auf, die aus der stabartigen Form der Polymere folgt.
Es wird gezeigt, dass diese “Faserlänge” – und nicht die Maschenweite – die Rolle der
Einheitszelle des Polymernetzwerkes spielt.

Neben dieser geometrischen Komponente spielen die elastischen Eigenschaften der Ein-
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zelpolymere eine wesentliche Rolle für die makroskopische Elastizität. Diese orientieren sich
zum Einen an den bekannten Kraft-Ausdehnungs-Relationen steifer Polymere und können
mit Hilfe des “worm-like chain” Modells berechnet werden. Darüber hinaus wird ein neues
“worm-like bundle” Modell entwickelt, das vergleichbare Aussagen zu statistischen und
mechanischen Eigenschaften von Polymer-Bündeln erlaubt.

Der erste Teil der Arbeit beschäftigt sich mit der athermischen Elastizität der Netz-
werke, d.h. der entropische Anteil der Kraft-Ausdehnungs-Relation wird vernachlässigt.
Eine selbst-konsistente “effective-medium” Theorie wird entwickelt, die auf der Annahme
beruht, dass die Filamente sich wie inextensible, biegesteife Stäbe verhalten. Die An-
nahme der Inextensibilität kann mit der anisotropen Elastizität steifer Polymere begründet
werden, deren Biegesteifigkeit, k⊥, im Allgemeinen sehr viel kleiner ist, als deren Streck-
steifigkeit, k‖ � k⊥. Das sich ergebende nicht-affine Deformationsfeld kann explizit kon-
struiert werden (“non-affine floppy modes”) und erlaubt eine Berechnung der elastischen
Konstanten der Netzwerke, welche mit den Ergebnissen früherer Simulationen überein-
stimmen. Desweiteren erlaubt die Theorie, in Verbindung mit dem “worm-like bundle”
Modell, eine Erklärung der rheologischen Eigenschaften eines in-vitro Modellsystems aus
verknüpften Polymerbündeln.

Der zweite Teil der Arbeit diskutiert thermische Effekte, indem die entropische Streck-
steifigkeit der Polymere in der Modellierung berücksichtigt wird. Es besteht ein charak-
teristischer Unterschied zwischen diesem entropischen Beitrag zur Strecksteifigkeit, k‖, und
einem energetischen Beitrag, ks, der sich z.B. aus der Streckung des Polymer-Rückgrats
ergibt. Dieser Unterschied betrifft die Abhängigkeit von der Länge l des betrachteten Poly-
mersegments. Die starke Abhängigkeit k‖ ∼ l−4 (im Vergleich zu ks ∼ l−1) führt dazu,
dass thermische Netzwerke steifer Polymere eine starke Sensitivität für strukturelle Un-
ordnung aufweisen, die in athermischen Netzwerken nicht vorhanden ist. Im numerischen
Modellsystem äußert sich dieser Effekt durch die Existenz einer Nichtaffinitäts-Länge und
dazugehöriger anomaler Exponenten der elastischen Konstanten. Ein Skalenargument wird
entwickelt, das den Zusammenhang aufzeigt zwischen Heterogenität des Netzwerks (hier
charakterisiert durch die Verteilung P (l)) und elastischer Eigenschaften des Einzelpolymers
(k‖(l)).



Chapter 1

Introduction

1.1 Biology and technology

Textbook pictures of eukaryotic cells quite generally convey a very colorful impression
of the crowded environment in which cellular processes have to take place. While Mito-
chondria, the Golgi complex, and other organelles are drawn in vivid colors and detailed
morphologies, the cytoskeleton, one of the largest organelles of the cell, only occupies very
little space and sometimes is not depicted at all 1. While this is possibly due to the diffi-
culty to graphically reproduce in a lucid way a structure as complex and heterogeneous as
the cytoskeleton, it certainly does not do justice to the importance of this extraordinary
organelle.

The cytoskeleton is a rigid yet flexible and dynamic network of protein filaments of
varying length and stiffness [2]. The most important components are filamentous actin (F-
actin), microtubules as well as intermediate filaments like keratin or vimentin ( 1.1). For
each of the filaments there is a range of accessory proteins which mediate their interactions
and control the properties of their assembly [84, 51]. Microtubules not only act as highways
for the transport of cargo by motor proteins, but also form e.g. the mitotic spindle that
during mitosis distributes the duplicated DNA on the daughter cells. In motile cells, actin
filaments form the lamellipodium, a dynamical sheet-like structure at the leading edge that
generates the forces necessary for moving the cell forward.

One of the principal tasks of the cytoskeleton is to impart (passive) mechanical stability
to the cell. At the same time, however, it needs to be able to actively reorganize its structure
to support as complicated tasks as cell migration or mitosis. All these processes rely on the
interplay between regulatory mechanisms and the material properties of the cytoskeleton.
Understanding the mechanical properties of the individual protein filament as well as its
higher order assemblies is therefore a pre-requisite in understanding any such biological
process.

Other examples for filamentous polymer networks may be found outside the cell, e.g.
in the form of the collagen network in the skin, or the fibrin-based structures [80] that

1See for example the search results produced by Google for the expression “eukaryotic cell”.
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Figure 1.1: (Left) A light microscopy image of fluorescently labeled actin filaments (in
mouse-embryonic osteoblasts; courtesy of Oliver Lieleg). (Right) By vapor-depositing a
small layer of metal, intermediate filaments (here vimentin) and their cytoskeletal struc-
tures can be visualized under an electron microscope (courtesy of Michael Beil).

are generated during clotting of blood in the process of wound healing (Fig. 1.2). Similar
networks made of cellulose fibers have found their ubiquitous application in modern day
society in the form of paper sheets. Finally, carbon nanotubes and their assemblies are
predicted to have important technological applications which are just beginning to be
explored [35, 33, 34].

1.2 Single filaments

The filaments comprising the cytoskeleton strongly differ by the value of their persistence
length, lp, which is defined as the length-scale at which bending energy and thermal energy
are comparable, lp = κ/kBT . Here, kBT ≈ 4pN · nm is the thermal energy at room
temperature and κ is the bending stiffness of the filament (with units Energy×Length).
Microtubules are relatively stiff, with persistence lengths in the millimeter range [18, 58],
which is much larger than the typical size of a cell. On the other hand, the persistence
length of F-actin is lp ≈ 17µm [39, 37, 24], which makes it “semiflexible” on the scale of
the cell. Intermediate filaments are even more flexible with a persistence length below the
micrometer scale [42].

The model usually adopted for a theoretical description of semiflexible polymers is the
“wormlike chain” model [64]. Within this model the polymer is described as a smooth
inextensible line r(s) of total length l parametrized in terms of the arc length s. The
mechanical properties are determined by the Hamiltonian

HWLC =
κ

2

∫ l

0

ds

(
∂t

∂s

)2

, (1.1)
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Figure 1.2: In vitro fibrin network (taken from Ref. [11] with permission). The estab-
lishment of a fibrin network is one of the first steps in the process of wound healing. The
network traps proteins and prevents further blood loss. It also provides the main structural
support until new collagen fibers are deposited.

which measures the bending energy of the particular conformation with tangent vectors
t = ∂r/∂s.

The ground-state or zero temperature properties of the WLC are well established for
more than two centuries and can be found in any text-book on elasticity/beam theory 2.
In view of the thermal environment in the cell, however, the statistical properties of the
WLC are of greater interest. One of the few exact results available is the exponential
decay of the tangent-tangent correlation function 〈t(s)t(s′)〉 = exp(−|s − s′|/lp), which
is sometimes taken as the defining relation for the persistence length. Quite frequently,
“weakly bending” approximations are adopted that allow further analytical results to be
obtained, for example the probability distribution for end-to-end distances [81], or the
linear response to forces [49, 43]. The latter is of particular interest when filaments are
imbedded into networks as it demonstrates how forces can be transmitted from one filament
to the next.

As one can infer from their extended, rodlike shape, stiff polymers are highly anisotropic
elastic objects [43]. Their force response may be characterized in terms of two qualita-
tively different deformation modes (Fig. 1.3). The linear response to longitudinal forces
(stretching) is primarily due to the presence of thermally excited undulations similar to
the (isotropic) stiffness of flexible polymers. The resulting effective spring constant,

k‖ ∼ κlp/l
4 , (1.2)

depends on the intrinsic bending stiffness of the polymer κ, as well as on the temperature-
dependent persistence length lp ∼ T−1 indicating the entropic origin of the stretching

2In fact, Leonard Euler, one of the founding fathers of beam theory was born in 1707, i.e. exactly 300
years ago.
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Figure 1.3: Illustration of the anisotropic response properties of stiff polymers as compared
to the isotropic response of flexible chains (courtesy of Erwin Frey).

response. Note, that the temperature dependence, k‖ ∼ T−1, is quite different from that
observed in flexible polymers (kflex ∼ T ), and leads to a divergence at T = 0 that reflects
the inextensibility of the polymer backbone. No such temperature dependence is present
in the resistance of the polymer to transverse forces (bending). This is predominantly an
energetic effect, leading to an increase in energy rather than to a decrease in entropy. The
corresponding spring constant

k⊥ ∼ κ/l3 , (1.3)

is independent of the persistence length lp.

1.3 F-Actin rheology

Having characterized the properties of single filaments, we proceed to discuss the properties
of their assemblies. Out of the diverse toolbox of biological stiff polymers, F-actin has
emerged as a model system, which allows precise and reproducible in vitro rheological
measurements, for example in determining the frequency-dependent shear modulus G(ω).
Already the simplest system, a one-component isotropic solution of actin filaments shows
complex viscoelastic properties and represents an interesting model-system being studied
for many years. One of the main quantities of interest is the plateau value of the shear
modulus found at intermediate timescales where single polymer bending fluctuations are
equilibrized, yet center of mass motion is negligible. The generally accepted theory [53,
31, 36, 68] for the concentration dependence of the plateau modulus is based on the free
energy change ∆F of confining a single polymer of length l to a tube of diameter d. This is
calculated as ∆F ∼ kBT l/le and defines the “deflection length” ld ∝ l

1/3
p d2/3 that specifies
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Figure 1.4: (Left) Electron micrograph of a reconstituted entangled F-Actin solution (taken
from Ref. [26] with permission). (Right) Illustration of the concept of the tube. The
deflection length ld is the length-scale over which the confined polymer collides with the
surrounding tube.

the length between two consecutive collisions of the polymer with its tube (Fig. 1.4). The
diameter d itself is a consequence of the structural arrangement of the tubes in the solution,
which is believed to be well represented by a random assembly of straight fibers (compare
with the fibrin network structure, Fig. 1.2). Even though the resulting scaling of the
modulus with concentration as G ∼ c7/5 is by now well established experimentally [32, 67,
89, 57], computer simulations to study the geometrical as well as elastic properties of this
“fibrous” network structure have only recently been realized [62, 83, 61].

Upon the addition of cross-linking proteins or other regulating agents one can induce
structural changes to modify the network architecture in many ways [46, 85, 76, 77, 75].
The detailed mechanisms that lead to a particular structure, however, are far from being
understood. In general, there will be a complex interplay of polymer kinetics, thermal
fluctuations and chemical as well as mechanical properties of the polymers and the cross-
linking agents yielding a particular architecture relevant for a given physical situation.

A common feature frequently encountered, is the bundling transition [59, 69, 74, 21,
77], where bundles start to form above a critical linker concentration that depends on
the polymer concentration as well as on the linker type. Attempts have been made to
describe this transition with a virial expansion [7], with a Flory-Huggins theory [91] or
with field theoretic methods [5], however, a detailed picture especially what regards the
role of polymer bending undulations is still missing. In this respect, actin bundled and
cross-linked with fascin may become a valuable model system. In recent experiments (see
Chapter 7.2) an increasing fascin-to-actin ratio has been shown to lead to a direct transition
between the two stable phases of an isotropic network of filaments and a network of bundles.
While the origin of the transition itself remains unclear, a consistent interpretation of the
observed rheological properties within the bundle regime is possible, as will be explained
in more detail below.
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Chapter 2

Affine and non-affine deformations

2.1 Elasticity theory and affine deformations

Classical elasticity is a continuum theory that deals with the large scale deformation prop-
erties of homogeneous solid systems. It relates stresses and strains by introducing a set
of phenomenological parameters that characterizes the elastic properties on wave lengths
large compared with any other structural length scale [45]. In linear elasticity these pa-
rameters are combined in a constant tensor C which allows to write the elastic energy
E =

∫
dre(r) as the quadratic form

e(r) =
1

2
εijCijklεkl , (2.1)

where the strain tensor εij = 1
2
(∂iuj + ∂jui) is defined as the symmetrized gradient of the

displacement field u(r). While the 81 components of the tensor C hint at the complex
mathematical structure of the theory, it may be surprising that by symmetry arguments
alone the number of independent components can be reduced to the minimum of two in
the case of isotropic materials, for which the elastic energy can be written as

e(r) = G

(
εij −

1

3
δijεll

)2

+
K

2
ε2
ll . (2.2)

Here, the only remaining components of the tensor C are the shear modulus G and the
bulk modulus K.

A minimization of the elastic energy with respect to deformations u(x) yields the actual
state of the system. The resulting equilibrium equation is most easily written in terms of
the stress tensor σij = ∂e/∂εij, as

∂σij

∂xj

= −fi , (2.3)

where an external force (density) f is added to the right-hand side.
Eq. (2.3) has to be solved together with appropriate boundary conditions to obtain the

displacement field. A particularly simple solution corresponds to the case of homogeneous
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Figure 2.1: A grid drawn in the reference configuration is not distorted by an affine shear
deformations γ0. The distance between the atoms α and β changes by the amount δrαβ =
γ0 sin2(θ)rαβ.

or affine deformations, where the strain tensor is constant and independent of the spatial
coordinates. In terms of the displacement field, u(x), this implies that a gradient expansion
with respect to an arbitrary reference point R,

ui(x) = ui(R) + (x−R) ·∇ui|R , (2.4)

terminates after the leading order. In fact, mathematically an affine transformation is
defined by the mapping x 7→ u(x) = Ax + b, where A and b are constants. As is visualized
in Fig. 2.1 affine deformations do not lead to “distortions” of a grid that is defined in the
undeformed configuration. A straight line in the reference state will still be straight after
the deformation, while the distance rαβ between two points α, β changes in proportion to
the distance itself, δrαβ ∼ rαβ.

Two important cases of affine deformations have to be distinguished that allow the
independent determination of the elastic moduli K and G.

An isotropic dilation is described by a diagonal strain tensor, εij ∼ ε0δij, where ε0 =
∆L/L corresponds to the relative change of the linear dimension L of the system. Under
this deformation the elastic energy reduces to E ∼ LdKε2

0. On the other hand, a pure
shear results in a tracelesss strain tensor and E ∼ LdGγ2

0 with the shear strain γ0. Thus,
the moduli can be determined by the global energy change upon either dilating or shearing
the system. While these relations are strictly valid only for the considered homogeneous
systems, one may use them as operational definitions of effective “macroscopic” moduli
also in the more general context of heterogeneous materials.

In fact it will be a central task of this thesis to associate macroscopic moduli to hetero-
geneous systems, where large scale inhomogeneities extend up to the scale of the system
size. Concomitant with the existence of heterogeneities we expect, and indeed will find,
that affine deformations only poorly represent the state of the system.
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2.2 The Cauchy-Born expansion and non-affine defor-

mations

While a description of heterogeneous materials may be based on a modified Eq. (2.2)
with spatially varying functions K(r) and G(r), the presence of a discrete and random
microstructure prohibits the smooth variation of the elastic moduli in the stiff polymer
networks under consideration here. Rather a direct modeling of the individual “elastic
building blocks” of the system is required.

In the context of crystal structures, where these building blocks are simply the atoms,
this description is known as the Cauchy-Born expansion [6], and consists of specifying the
potential energy of atom-atom interactions. The expansion proceeds by writing the energy
up to second order in the deviation of the atomic positions from their reference state,

E({rαβ}) = E0 +
∑ ∂E

∂rαβ

∣∣∣∣
0

δrαβ + (2.5)

+
1

2

∑ ∂2E

∂rαβ∂rγδ

∣∣∣∣
0

δrαβδrγδ .

Here, we follow Alexander [3] in using the distances rαβ between atoms α and β and their
respective changes δrαβ as the primary variables. This has the advantage of guaranteeing
rotational invariance to all orders in the expansion.

Eq. (2.5) is the microscopic counterpart to Eq. (2.1). The role of the strain tensor is
taken by the variables δrαβ, while the elastic constants are represented by the coefficients
of the second order term, ∂αβ∂γδE. In the remainder of this thesis we will frequently call
these coefficients “stiffnesses” or “spring constant” and relate to them by using the symbol
k. By minimizing the energy for given boundary conditions, the atomic displacements and
thus the macroscopic moduli are determined, quite analogously to solving Eq. (2.3).

One important distinction, however, relates to the presence of affine deformations.
While affine deformations represent a solution to Eq. (2.3) for a special class of boundary
conditions, there is no reason to expect this property in the case of the Cauchy-Born
expansion. In fact, as soon as the unit cell consists of more than one atom, even crystalline
materials, which are homogeneous on large scales, will display non-affine deformations on
the scale of the unit cell. This interplay of affine and non-affine deformations can nicely
be illustrated by the one-dimensional (1d) crystal, which admits a straightforward analytic
solution (Fig. 2.2).

We denote the size of the unit cell by a. By connecting in series the stiffnesses kµ ∼ ∂2
µE

of the interatomic potentials one can define an effective spring constant

k̄−1 =
∑

unit cell

k−1
µ , (2.6)

that relates to the stiffness of the unit cell as a whole. The bulk modulus K can then be
written as

K = ak̄ , (2.7)
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Figure 2.2: Illustration of the elasticity of a one-dimensional crystal with M = 2 atoms in
the unit cell. The changes in interatomic distances, as compared to the initial configuration
(top) are given by δr1 and δr2. (middle) If the spring constants are equal, k1 = k2 = k, all
deformations are affine and δr1 = δr2 = a/2. (bottom) In the extreme case that k1 = ∞,
the distance r1 does not change and δr1 = 0. The system can nevertheless have the same
modulus as before by taking k2 = k/2.

and thus depends on the kµ only through the combination k̄. In crystals with M atoms in
the unit cell, the “internal” stiffnesses kµ may therefore be varied, while keeping k̄ and thus
the macroscopic modulus K constant. The associated changes in interatomic distances,
which are given by δrµ = ε0ak̄/kµ, may therefore vary from affine to non-affine behaviour
depending on the distribution of the bond stiffnesses kµ. If all stiffnesses are roughly
equal, kµ ≈ k, the unit cell is effectively composed of only one atom and deformations
are affine, δr ≈ ε0a/M . In this case, the displacement of the individual atom uα at Rα

can be identified with the continuous displacement field u(Rα) defined in Eq. (2.4). If, on
the other hand, the individual kµ strongly differ in magnitude, the resulting deformations
will be non-affine and Eq. (2.4) may not be related to the exact atomic displacements,
but only to their coarse-grained version [25]. As a crystal is periodic, the scale of the
non-affine deformations and thus the scale of the coarse-graining is naturally given by the
size of the unit cell, a, which is the only length-scale of the system (besides the system-size
L). In contrast, in random or amorphous systems unit cell and system size are formally
equivalent, a ≡ L, and determining the “non-affinity scale” is a non-trivial task. For
example, it has been noted that drawing the spring constants from a distribution P (k)
will result in non-affine deformations that (in 1d) grow with the size of the system as
〈u2

na〉 ∼ L [13].

In this example the non-affinity results from polydispersity in the stiffnesses kµ of the
building blocks. A different type of non-affinity quite frequently occurs in the context
of granular media[73, 50]. Recall that affine deformations are intimately connected to a



2.2 The Cauchy-Born expansion and non-affine deformations 11

Figure 2.3: Non-affine motion resulting from the incompressibility of grains. An affine
deformation would change the distance between the grains (k‖), and is energetically much
more expensive than the rolling motion perpendicular to the line of contact (k⊥).

change in the distance between two points. In tightly packed systems of rigid grains, on
the other hand, the distance between two elements in contact can not change (Fig. 2.3).
The only motion possible is perpendicular to the line connecting the particle centers [15].
While the activation of these non-affine modes in granular systems in general results in the
yielding of the system, one can also imagine a soft restoring force to inhibit this instability.
The system will then be dominated by the transverse non-affine deformations, as long as
there is a scale separation k⊥/k‖ � 1, between the stiffness k⊥ of the non-affine transverse
mode and the stiffness k‖ of the affine compressive mode.

As we will see below both types of non-affinities will be relevant for the accurate char-
acterization of the deformation field in stiff polymer networks. The polydispersity in the
spring constants k will be encountered as consequence of the ubiquitous structural random-
ness in connection with the strong length-dependence of the entropic stretching stiffness
k‖ ∼ l−4, Eq. (1.2). The second type of non-affinity naturally occurs, as the scale separa-
tion between transverse (bending) and longitudinal (stretching) mode in stiff polymers is
already implied by their fibrous appearance.
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2.3 Stiff polymer networks

Current models [49, 43, 65] for the elasticity of stiff polymer networks (“affine models”)
are based on the assumption that the non-affinity scale is on the order of the mesh-size, a.
The modulus in this picture is simply given by the energy of the unit cell, k̄(γa)2, times the
number of cells per volume, ν ∼ a−d (in d dimensions). Similar to Eq. (2.6), the overbar
denotes that the stiffnesses have to be taken on the scale of the average mesh-size. Because
of the assumption of affine displacements no cooperativity between the elastic responses of
individual elements can be possible. The effect of the assembled structure can simply be
predicted by counting the number ν of building blocks, which are the individual meshes of
size a. Accounting for the presence of the two deformation modes one can show [41] that
the modulus is given by

G−1
aff = ad−2

(
Ak̄−1

⊥ + Bk̄−1
‖

)
, (2.8)

where the two modes act as if they were springs connected in series. This equation repre-
sents the d-dimensional equivalent of Eq. (2.7).

It appears that this model can successfully be used to rationalize data of various cross-
linked actin networks [21, 22]. Recently, extensions to the theory have been formulated to
include nonlinear elasticity [72] as well as bundle formation [21], however, still on the mean-
field level of affine segment deformations. While the details of the particular structure may
enter the prefactors A and B in an involved way, this complication is usually eliminated by
choosing the values appropriately (e.g. A = 0 in [49]). With this choice the affine theory
is essentially equivalent to the classical theory of rubber elasticity in being based solely on
the affine change of polymer end-to-end distances.

In the following we will show that these models are insufficient for several reasons.

1. As can be inferred from Figs. 1.2 and 1.4, stiff polymer networks are usually char-
acterized by the presence of a mesoscopic length lf that corresponds to the scale
over which the polymers can be assumed to be straight. For isolated filaments this
length-scale may be identified with the persistence length lp. In networks the origin
may be different and for example a consequence of the network generating processes
itself. We will see that the presence of this length-scale drastically alters the elastic
response as compared to systems where this scale is missing. In particular, it is shown
that one has to view the entire polymer fiber as a “nonlocal” equivalent of the local
unit cell of crystal structures. Thus, the entire fiber – and not just the individual
mesh – forms the elementary building block of the network.

2. Bending and stretching stiffnesses in stiff polymer networks show the scale separa-
tion, k⊥/k‖ � 1, characteristic for granular media. We will demonstrate how this
“granular limit” leads to an elastic regime where, in striking contrast to the affine
model (with A = 0), the stretching mode is fully frozen out and the elastic energy
is completely dominated by highly non-affine bending deformations. We develop a
theory that fully explains the anomalous elasticity found in this regime.
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3. The presence of structural randomness induces a broad distribution of bond stiffnesses
k, which may actually acquire polynomial tails. It will turn out that, similar to the 1d
example given above, this results in deviations from affine behaviour on scales much
larger than the mesh-size, a. We identify the microscopic mechanism that generates
this non-affinity and clarify its consequences for the macroscopic moduli.
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Chapter 3

Modelling strategy

The approach that we will adopt to model cross-linked stiff polymer networks is to ne-
glect the intricate phase behaviour of the network, and to concentrate on given network
structures and their specific influence in mediating the elastic or rheological properties. In
this respect, we have found that fibrous and cellular networks (see Fig. 3.1) can provide
two antipodal reference systems that may be used for the classification of real polymer
networks. In fibrous networks the mesoscopic scale lf is concomitant with a hierarchical
architecture where small cells are generated withing larger cells within even larger cells. In
contrast, in cellular systems this length is absent. There, the structure is usually charac-
terized quite well by only one hierarchy – that of the average unit cell. By studying both
types of systems one can therefore assess the importance of the scale lf on the macroscopic
elastic properties.

3.1 Entropic vs. energetic elasticity

An important quantity to characterize the rheological properties is the low frequency shear
modulus G0 = G(ω → 0), which takes a similar role as the plateau modulus in entan-
gled solutions, and which can be calculated from the elastic energy stored in the strained
network. In the spirit of the Cauchy-Born expansion, Eq. (2.5), the role of the atoms is
now taken by the cross-links, which are moving in a potential energy landscape provided
by the connecting polymers. While the applied macroscopic shear strain γ constrains the
cross-links on the boundary 1, those in the bulk are unconstrained to find the minimum
energy configuration. In the harmonic approximation of Eq. (2.5) the potential energy is
fully defined by “spring constants” k that characterize the linear response properties of
polymer segments to forces applied at its ends.

As biological networks of stiff polymers are immersed in a thermal environment, in ad-
dition to the standard energetic elasticity, induced by an increase in energy, also entropic
effects have to be accounted for. There are two main effects. In a thermal environment
cross-links fluctuate and thus sample the full potential energy landscape with the appro-

1In general, we employ periodic boundary conditions on all sides of the simulation volume.
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Figure 3.1: Illustration of the two different classes of network structures (2d) studied in
this thesis. (Left) A cellular, foam-like structure with only small amounts of randomness.
(Right) The random fibrous structure generated by randomly depositing fibers on a plane.

priate Boltzmann factor. Secondly, also the polymers are fluctuating and therefore the
potential energy itself.

Both effects can in principle be accounted for by using proper Monte-Carlo techniques,
which, however, goes beyond the scope of this thesis. In a first step, therefore, only the
fluctuations of the polymers are accounted for. These can easily be incorporated into the
above framework by including the conformational entropy of the polymers as an additional
contribution to the potential energy landscape, which thus becomes a free energy landscape
or a “potential of mean force”. The strategy is thereby similar to a Born-Oppenheimer
approximation. Entropic contributions from the “slow variables”, the cross-link positions,
are neglected, while the “fast” polymer degrees of freedom are assumed to be equilibrated
at all times. Formally, this corresponds to integrating the partition function Z over the
variables {rα} pertaining to the polymers, while treating the remaining cross-link degrees
of freedom {Rα} in saddle-point approximation,

Z =

∫
R,r

exp(−βH(r, R)) =

∫
R

exp(−βF (R)) (3.1)

→ exp(−βF (R̄)) ,

where R̄ is obtained as solution to the saddle-point equation ∂F/∂R|R̄ = 0.
In fact, this approach is a standard manipulation in many condensed-matter problems.

In particular it is used in the classical theory of rubber elasticity where only entropic
contributions to the free energy landscape are present [63]. In the so-called fixed junction
model, developed by Kuhn an others [44, 78, 19], one disregards the fluctuations of the
cross-links and assumes them to deterministically follow the macroscopic strain in an affine
way. The induced reduction of polymer conformational entropy is then captured by the
definition of a purely entropic spring constant, kflex ∼ T , proportional to temperature T .

In contrast, the spring constants k⊥ ∼ κ/l3 and k‖ ∼ κlp/l
4 relevant for stiff polymers

resemble the mixed energetic/entropic nature of their elastic response. While the response



3.2 Bundles 17

Figure 3.2: (Left) Electron micrograph of an F-actin bundle cross-linked by fascin (courtesy
of Mireille Claessens). (Right) Snapshot from a Monte-Carlo simulation of a cross-linked
bundle of worm-like chains (courtesy of Mark Bathe).

to forces transverse to the polymer axis is of energetic origin, the stretching response is due
to the presence of thermally excited undulations and thus an entropic effect. In addition
to these two main deformation modes, one can also include an energetic stretching stiffness
by allowing for a finite extensibility of the polymer backbone [40]. This gives rise to a third
spring constant

ks ∼ κ/lr2 , (3.2)

which depends on the polymer cross-section radius r instead of on the persistence length
lp.

Note the distinct dependence of the enthalpic stretching stiffness, ks ∼ l−1, on polymer
length l as compared to the entropic stiffness, k‖ ∼ l−4. In networks with a distribution
P (l) of lengths, the two stretching modes will thus lead to fundamentally different elastic
response properties. As indicated above, by accounting for the entropic origin, k‖, of
the single-polymer stretching elasticity, the networks acquire a strong susceptibility to
polydispersity and structural randomness that is completely absent in athermal models.

3.2 Bundles

In view of the experiments on the actin/fascin system we also study the elastic properties of
cross-linked semiflexible polymer bundles (see Fig. 3.2). A generalization of the wormlike
chain model to bundles (“wormlike bundles”, WLB) allows the discussion of the statistical
mechanics of filament bundles in much the same way as the WLC does for single filaments.
It turns out that the response of a single bundle cannot be described on the basis of the
constant bending stiffness κ introduced above. In contrast, a mode-number dependent
bending stiffness κB(q) has to be introduced that leads to a wealth of interesting and
unexpected effects already on the level of the single bundle. Within the WLB model one
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finds for a bundle of N filaments,

κB(q) = Nκ

[
1 +

(
1

N − 1
+ (qλ)2

)−1
]

, (3.3)

where the length-scale λ depends on the filament bending stiffness κ as well as on the
mechanical properties of the cross-linking proteins. As a result of the analysis the tangent-
tangent correlation function does not decay exponentially, but rather exhibits a complex
structure at intermediate distances [16]. One also finds that the effective spring constants
for stretching and bending, Eqs. (1.2) and (1.3), have to be modified as compared to the
single filament case,

kB
‖ ∼

Nκlp
lλ3

, kB
⊥ ∼

Nκ

lλ2
. (3.4)

These expressions are valid as long as the third term in Eq. (3.3) dominates. Upon com-
parison with Eqs. (1.2) and (1.3) one finds that the dependence on polymer length l is
altered. Both spring constants depend on polymer length as k ∼ l−1 similar to ks.

An interesting consequence of Eq. (3.3) is furthermore that the Euler buckling load,
Fc ∼ κB/l2, can become independent of the length of the bundle. This unique property may
well be exploited in polymerizing biological bundles such as filopodia, which may increase
their contour length against compressive loads without loss of mechanical stability.



Chapter 4

Athermal response: floppy modes

4.1 Results of simulations

In this section results are reported from the study of athermal filamentous networks (no
bundles) in which the persistence length is assumed large enough for any thermal undula-
tions to be frozen out completely. The polymer response is then characterized by the two
spring constants k⊥ and ks only. In fact, the resulting elastic element is identical to an
Euler-Bernoulli beam.

Cellular structures with this type of material properties are well known as (open cell)
foams. These materials and their closed cell analogs are ubiquitous in nature and many
areas of technology. Examples range from liquid foams and froths as part of drinks or
household detergents, to plastic and metallic foams used for insulation or shock absorp-
tion [79, 23]. The linear and nonlinear elastic as well as plastic properties of foams have
been studied for many years. Particulary interesting from the point of view of this thesis
are numerical studies to assess the influence of randomness in size and type of the unit cell
on the (magnitude of the) elastic moduli [71, 17, 90].

Quite generally, open-cell foams are characterized by rather slender beams r � a. One
thus finds that the typical bending mode is softer than the stretching mode, k̄s/k̄⊥ ∼
(a/r)2 � 1, and therefore dominates the modulus – mechanical foams are bending domi-
nated. From Eq. (2.8) one thus finds (for d = 2)

Gfoam ∼ k̄⊥ . (4.1)

The fibrous architecture, on the other hand, is a well studied model system for the elastic
properties of paper sheets, which are usually made of cellulose fibers. Quite contrary to the
thin elastic elements making a foam, the cross-section of a cellulose fiber is large enough
to make paper sheets dominated by the stretching mode [1]. Early theoretical approaches
therefore neglect the bending stiffness of the fibers [12, 4], effectively replacing them by
simple central force springs, which would lead to a modulus, G ∼ k̄s (this limit formally
corresponds to r � a).

Recent studies on the random fibrous network structure (depicted in Fig. 3.1) are more
tailored towards biological applications, however, without actually including the thermal
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fluctuations ever present in soft matter systems [20, 82, 27, 28, 29, 30, 55]. These studies,
focusing on the smaller aspect ratios appropriate for most important biological stiff poly-
mers, identified a new elastic regime, where, similar to cellular foams, the bending mode
predominates. In this regime the shear modulus was found to scale as

Gfiber ∼ k̄⊥(lf/a)µ−3 , (4.2)

which differs from Eq. (4.1) through the presence of the fiber length lf . Quite surprisingly,
the exponent µ, which specifies the susceptibility of the modulus to density changes, G ∼
ρµ, has a value as large as µ ≈ 6.7. What is more, deformations are found to be highly
non-affine, again different from the affine deformations present in regular foams. A scaling
ansatz for the shear modulus identified a length-scale ξ that takes the role of the average
cell size a in governing the cross-over from the affine stretching regime (r � ξ) to the non-
affine bending regime (r � ξ). While heuristic non-affinity measures have been devised
to quantify the absence of affine deformations [27, 55], so far little was known about the
actual nature of the deformations present in this regime.

In a first theoretical approach [4] the bending response was incorporated without ac-
counting for the fiber length-scale lf . The resulting affine theory directly leads to a modulus
given by Eq. (4.1), i.e. to an exponent µ = 3. Later Head et al. have proposed [28] to ra-
tionalize the emergent non-affinity by considering deviations from an affine reference state.
A scaling argument is developed that considers perturbations to a perfectly affine deforma-
tion field brought about by lowering the radius from r � ξ, where the affine assumption
holds, down to r = ξ. However, comparing with their simulation data the authors could
not confirm the scaling picture unambiguously and acknowledged the need for further nu-
merical as well as improved theoretical work [28]. Thus, non-affine elasticity in fibrous
networks appears to be intrinsically a non-perturbative strong-coupling phenomenon.

4.2 Granular limit

The alternative approach pursued in this thesis utilizes an analogy to granular media,
which is based on the recognition that a small value of r � ξ at the same time corresponds
to a large stretching stiffness, ks/k⊥ � 1, indicating the fact that the polymers are nearly
inextensible. The limit r → 0 may thus be viewed analogously to the limit of incompressible
grains characterized by a diverging Young’s modulus. It is reasonable to assume that the
deformation field in the non-affine regime (0 < r � ξ) reflects the inextensibility of the
segments which is strictly present only at vanishing cross-section radius r = 0. Further
indications of the relevance of this “granular limit” to the mechanics in the non-affine
regime is provided by observing the spatial distribution of fiber axial forces. Similar to
the force-chains of granular systems [38, 56] the highest axial forces are heterogeneously
distributed and localized to well defined paths. Interestingly, the probability distribution of
forces shows a universal scaling form with an intermediate power-law regime. As compared
to the already unusual exponential tail found in granular systems [47, 14] this implies the
build-up of even higher forces.
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Figure 4.1: Three examples of vibrational eigenmodes constructed by a diagonalization
of the set of local floppy modes (taken from [66], with permission). At high energies the
modes retain a local character (left). At lower energies the modes start to delocalize, albeit
in a random fashion (middle). At even lower energies spatial structures emerge in the form
of characteristic vortices (right).

To determine the displacement field in the granular limit, one has to solve the purely
geometric problem of finding those cross-link displacements that do not violate the imposed
condition of segment inextensibility. This is a central problem of rigidity theory which goes
back to the work of Maxwell [52, 8]. He argued that by increasing the number of connected
neighbors z, a network or rigid, inextensible bars undergoes a transition from a floppy to a
rigid state. For z > zc = 2d no cross-link displacements can be found without stretching the
bars. Important examples of rigid networks are triangulated structures, which are routinely
exploited in modern day steel construction, for example in building huge cantilever bridges
like that over the Firth of Forth in Scotland or towers like Eiffel’s tower in Paris.

As cross-linking proteins can only link two filaments the coordination number relevant
for biological stiff polymer networks is z < 4 and therefore below the rigidity transition
both in two and in three dimensions. The geometric network is therefore floppy and
it is possible to identify sets of cross-link displacements that keep the bars at constant
length. These modes are called the “mechanisms” or the “floppy modes” of the structure.
Their associated cross-link displacements {ȳi}i=1..Nxl

provide a direct characterization of
the deformation field in the non-affine bending dominated regime.

This concept of the rigidity transition and the associated floppy modes is of general
applicability and has, for example, been utilized to study the unfolding of proteins [60],
the glass transition in network glasses [10], as well as the jamming of soft repulsive spheres
at zero temperature [54]. This latter system is characterized by an excess density of low
frequency vibrational states (“boson peak”) [70], which is explained by spatially extended
floppy modes present just below the jamming threshold [87, 88, 86]. By increasing the
density across the transition additional contacts are generated. This stabilises the floppy
modes, albeit at low frequencies, where they contribute to the boson peak. Quite analo-
gously, the floppy modes of the polymer network are stabilized by the presence of the soft
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bending mode, and thus contribute to the macroscopic elasticity in the bending dominated
regime.

Unlike in the above mentioned systems, it is possible to explicitly construct the floppy
modes in the model fiber network. It turns out, however, that this is only possible to linear
order in the applied deformation 1. For finite deformations no floppy mode can be found
and any internal rearrangement of the cross-links necessarily leads to stretching of fibers.
In the linearized theory the floppy modes take the form of highly localized excitations
which affect only single filaments and their immediate surroundings. They may be viewed
as exotic examples of the well known elementary excitations in condensed matter systems
(“floppions”) as it is not possible to break these excitations into smaller parts. This suggests
to view the entire filament as the elementary building block (the unit cell) of the network,
and not, as is frequently done in affine theories, the much smaller segments, spanning only
the distance between two neighbouring cross-links along a filament. By orthonormalizing
the set of floppy modes one obtains the vibrational normal modes of the network (Fig.
4.1), which can either be localized (at high energies) or delocalized (at lower energies) [66].

Having characterized the deformation field the next step is to calculate the elastic
modulus. This is achieved by associating, on the level of a self-consistent effective medium
theory, a bending energy to the floppy modes. In this approach one calculates the energy
stored in the network upon imposing a floppy mode to a single fiber. The average elastic
energy W is then given as self-consistent solution to the equation

W (k) =

〈
min
y(s)

(
Wb[y(s)] +

1

2

Ncl∑
i=1

k (y(si)− ȳi)
2

)〉
, (4.3)

where the angular bracket relates to the ensemble average over the quenched random
network structure. The first contribution on the right hand side relates to the bending
energy in the fiber itself, given in terms of its transverse deflection y(s). The second term
arises from the interaction with the surrounding fibers at the locations si of the cross-links
and acts like an elastic matrix of stiffness k. For large matrix stiffness the fiber is forced
to closely follow the floppy-mode ȳi, such that its deflections y(si) ≈ ȳi. If on the other
hand the stiffness k is small, the fiber may freely deviate from the imposed floppy mode,
and minimize its own bending energy. This, in turn, must lead to deformations in the
surrounding matrix, which can only occur in the form of additional floppy modes. The
energy scales of the floppy mode, W , and the stiffness of the medium, k, must therefore
be identical and W (k) ∼ k.

In contrast to the “bare floppion” defined on the geometric network, the excitation
defined by Eq. (4.3) is “dressed” and incorporates fiber-matrix interactions on a Cayley-
tree level. In this terminology, the branches of the tree are represented by the subsequent
generations of neighbouring fibers. Since the details of the network structure only enter via
the ensemble average (angular brackets), Eq. (4.3) is sufficiently general to be applicable to
a variety of network architectures. For the specific model system studied here, it resulted in

1In the language of structural engineering, these modes are “first order infinitesimal” mechanisms [9].
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excellent confirmation of the scaling properties of the linear elastic modulus, by predicting
µ ≈ 6.75.

The competition between the two energy contributions in connection with the random
architecture of the network leads to the establishment of a length-scale lmin that on a
microscopic scale mediates the coupling of the fiber to the surrounding matrix. Since
the stiffness k⊥ ∼ l−3 of the individual segment is strongly increasing with decreasing its
length l, we found that segments with l < lmin rather deform the surrounding medium
than being deformed itself, while longer segments l > lmin are not stiff enough to deform
the medium. The scale lmin therefore plays the role of a minimal length below which
segments are stiff enough to remain undeformed. In terms of the deflections y(si) of the
fiber at the cross-links, this implies that long (and soft) segments are characterized by
y(si) ≈ ȳi, a situation where only small amounts of energy are stored in the surrounding
medium. In contrast, short (and stiff) segments have crosslinks with vanishing transverse
deflection y(si) ≈ 0 and therefore only small amounts of bending energy. Equating the
energy gain from reducing the bending energy in the short segments, with the energy
loss from deforming the neighboring fibers, the length-scale lmin can be determined as
lmin ' 1/ρ2lf . The modulus in this scaling analysis is calculated as G ∼ ρlfκ/l3min which
leads to the exponent µ = 7, consistent both with the network simulations and the solution
to Eq. (4.3).

It has been mentioned above that the floppy modes can only be constructed for the
linear elastic problem, while large deformations necessarily lead to stretching deformations
that are much more expensive in energy. This is consistent with recent non-linear sim-
ulations [55], where an increasing modulus is explained on the basis of a cross-over to a
stretching dominated regime. The floppy mode picture supports this view and provides it
with a microscopic foundation.

Combining the calculation of the linear modulus with the onset of the non-linearity,
as determined from a breakdown of the floppy-mode picture, it was possible to rationalize
the rheological data obtained for a network of actin bundles cross-linked with fascin. By
including the effects of the mode-dependent bending stiffness of Eq. (3.3), appropriate for
filament bundles, the scaling properties of the modulus with actin and fascin concentration
could be explained, as well as the critical strain, where nonlinear effects first start in (details
of the scaling relations and their derivation can be found in Appendix A).

It is widely believed that bending can not provide a mechanism for strain-stiffening.
Accordingly, experimental results both for the linear as well as the non-linear rheology are
usually attributed to stretching deformations and the non-linear force-extension relation of
a single polymer segment [21, 69]. In contrast, the picture we want to convey is that of a
linear regime which is described by non-affine bending as given by the floppy modes of the
network. The onset of strain stiffening is given by the limit of applicability of this concept,
mediated by the presence of the fiber length lf . The nonlinear elasticity is therefore due
to geometric properties of the network rather than mechanical properties of the individual
polymers. This suggests that the nonlinear rheology of stiff polymer networks reflects the
subtle interplay of mechanical as well as geometrical effects and may not be as universal
as commonly thought.
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Chapter 5

Thermal response: non-affinity
length-scale

While the previous section was dedicated to the athermal elasticity characterized by the
spring constants k⊥ and ks, here we want to incorporate thermal effects by considering in
addition the entropic spring constant k‖. As indicated above, the strong dependence of
k‖ ∼ l−4 on the length l of the element, is expected to lead to qualitatively new elasticity
in polydisperse networks.

We have quantified these effects by systematically studying cellular structures with
varying degree of randomness as well as different types of unit cells. As a result we
find that the affine prediction of Eq. (2.8) may savely be used only for highly ordered
structures. Depending on the type of the unit cell, already small amounts of randomness
strongly influence the order of magnitude of the modulus or its scaling properties. On the
other hand, the elastic regime dominated by ks ∼ l−1 only shows marginal susceptibility
to randomness, as expected from its weak length-dependence. For the interpretation of
experimental data based on the measurement of the shear modulus in thermally fluctuating
polymer networks a precise knowledge of the network architecture therefore seems to be
indispensable. For this it will be most important to develop new techniques that allow the
characterization of the microstructure and monitor its changes upon deformation [48].

Further simulations in the random fibrous system allow to characterize in detail the
interplay between network architecture and elastic properties of its constituents. In par-
ticular, we use the fiber length lf to drive the system from the simple cellular structure
with filaments as short as the mesh-size lf ≈ a, to a fully scale-invariant fibrous structure
characterized by infinitely long filaments lf →∞. Especially the latter limit allows for in-
tricate scaling behavior that impressively demonstrates the qualitative difference between
thermally fluctuating and purely mechanical, athermal elastic networks. While in principle
the non-affine bending regime discussed in the preceding section can occur here as well,
its strong dependence on fiber length leads to its suppression in the limit of infinitely long
filaments. The remaining elastic regimes are then independent of lf .

We have defined several types of networks that differ in the properties of the cross-
links. In networks, where the angles at the cross-links are not allowed to change during
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deformation, we found that the two deformation modes, (entropic) stretching and bending,
act as if they were springs connected in parallel. The modulus is approximated by

G = ak̄⊥ + bk̄‖ , (5.1)

where the prefactors a, b weakly depend on the scaling variable y ∼ k̄‖/k̄⊥ ∼ lp/a. Unlike
in the “serial connection” described by Eq. (2.8), the network elasticity in the “parallel
connection” found here is always dominated by the stiffer mode. This is qualitatively sim-
ilar to a triangulated network, where the specific geometry of the unit cell always imposes
stretching deformations on the system, no matter how soft the bending mode actually
is. The fibrous architecture with increasingly long filaments apparently also suppresses the
transition into a regime where the softer mode is dominant. By controlling the architecture
of the network, the scale of the polymer length lf therefore seems to implicitly influence
the elastic properties of the system even in parameter regions where it does not enter the
macroscopic elastic moduli explicitly.

Allowing the filaments to freely rotate at the cross-links, we also find an asymptotic
scaling regime where stretching and bending modes contribute equally to the elastic energy.
The modulus takes the form of a generalized geometric average

G ∝ k̄1−z
⊥ k̄z

‖ , (5.2)

with fractional exponent z = 0.46.
To explain this highly unusual finding it is crucial to consider the full distribution

of spring constants P (k‖) instead of just the pre-averaged k̄‖
1. Interestingly, due to the

presence in the model network of arbitrarily short polymer segments, the distribution shows
polynomial tails, P (k‖) ∼ k

−5/4
‖ , characterized by a diverging mean value. Due to their

exeedingly large stretching stiffness the small segments in the tails will resist deformation
and thus stay in their unstrained configuration. This is analogous to the athermal case,
where segments shorter than the threshold length lmin remain undeformed, when imbedding
the fiber in an elastic medium that imposes non-affine floppy mode deformations. A similar
length-scale, lc, is found here, when the polymer is imbedded in a medium that tries
to enforce an affine deformation field. While segments longer than lc follow the affine
deformations, segments shorter than lc stay relaxed and rather deform the surrounding
medium. Equating the energy gain from reducing the stretching in the short segments,
with the energy loss from deforming the neighboring polymers, results in the expression

lc ∼ l̄(lp/l̄)
1/2 and for the modulus G ∼ k̄‖

1/2
k̄⊥

1/2
, which corresponds to a value of z = 1/2

in good agreement with the result of the simulations.

1Recall, that the overbar encodes an averaging on the scale of the mesh-size.
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Conclusion

6.1 Universal aspects

In the course of this study two length-scales, lmin and lc, have been identified that, in their
respective parameter regimes, govern the macroscopic elasticity in the random fibrous
network structure. Their physical significance is to provide lower limits on the lengths of
those segments that contribute to the elastic energy. The quite unusual scaling properties of
the elastic moduli could be explained entirely in terms of these length-scales. One must be
cautious, however, in using these scales and the associated exponents in other systems, as
they are tightly connected to the Poissonian nature of the random fibrous architecture. The
distribution of segment lengths is exponential and has a finite weight on zero length, which
is quite unrealistic for in-vitro stiff polymer networks. While these networks are known to
have a broad distribution of mesh-sizes one would nevertheless expect this distribution to
be peaked at (or near) its average value.

So what has been learned if the testable predictions (the scaling properties of the
moduli) are specific to a quite unrealistic, two-dimensional model system?

In fact, the analysis presented in this thesis goes way beyond reproducing the exponents
obtained in the simulations. It does so by identifying the general physical principles that
underlie the possible microscopic response of any stiff polymer network, be it completely
random as the model system or highly regular, in two- or in three dimensions.

These principles are:

1. fiber length: The presence of a mesoscopic length-scale is probably the most impor-
tant characteristic that distinguishes the morphology of networks formed with stiff
polymers from networks with flexible polymers. As we have seen this length-scale
contributes in an essential way to the establishment of the macroscopic elasticity.
The unit cell of stiff polymer networks is not given by the scale of the mesh-size but
by the scale of the entire polymer fiber.

2. inextensibility: In cases, where there is a scale separation between bending and
stretching mode, a description in terms of the “granular limit” is possible. The



28 6. Conclusion

deformation field is non-affine on the scale of the fiber-length and can be characterized
by localized elastic excitations (“floppions”). With this concept at hand the scaling
properties of the elastic moduli can be calculated for any fibrous network architecture.
In fact, we have shown that the theory can provide an explanation for experimentally
observed rheological properties of an actin/fascin system.

3. polydispersity: In cases where the entropic stretching stiffness contributes to the
elastic response, a consideration of the structural randomness is quite essential. This
derives from the strong length-dependence of the entropic stiffness k‖ as compared
to that of the backbone stretching stiffness ks.

6.2 Outlook

While the experiments on the actin/fascin system have demonstrated the relevance of
the ideas developed in this thesis, further validation is necessary. From the theoretical
side, it would be interesting to clarify whether the floppy-mode concept, Eq. (4.3) can
describe network elasticity in a quantitative fashion. One may also hope that the theory
can be extended to finite frequencies to describe the full visco-elastic response of the
network. A limitation of the theory originates in the neglect of cross-link fluctuations.
This approximation has to be critically tested, for example with the help of Monte-Carlo
simulations.

Even though the inextensibility of the individual polymers lies at the heart of the
floppy-mode concept, one may think of extending the theory to include the finite but small
entropic extensibility of the polymers. This may proceed in analogy to the weakly bending
approximations, which make use of the small parameter ε = l/lp ∼ k⊥/k‖.

Parallel to the development of the theory the finite-element simulations should be ex-
tended to include three-dimensional network structures. Realistic computer generated
structures may, for example, become available as results of network polymerization schemes.
Experimental structures could be obtained from suitable imaging techniques like confocal
or electron microscopy. This could open the way to a combined theoretical, numerical, and
experimental approach to the elasticity of stiff polymer networks. The results of rheolog-
ical experiments could be compared with those of the computer simulations on the same
network structure as well as the theoretical description developed in this thesis. For these
studies it might become necessary to include nonlinearities in the constitutive response of
the polymers. The highly non-linear stretching response of stiff polymers is expected to
compete with the geometrical non-linearities that are a consequence of the fibrous network
structure.



Chapter 7

Publications

7.1 Bundles

The two publications “Statistical Mechanics of Semiflexible Bundles of Wormlike Poly-
mer Chains” and “Mechanics of cytoskeletal bundles” are concerned with mechanical and
statistical properties of bundles of semiflexible polymers.

The “wormlike bundle” (WLB) model is developed that generalizes the well-known
wormlike chain (WLC) model, which is applicable to single filaments. In this description
the internal degrees of freedom of the bundle, in particular the relative sliding motion of
neighboring filament pairs, give rise to a wavenumber dependent bending stiffness κB(q).
This leads to fundamentally new scaling properties of WLBs as compared to conventional
WLCs, which are characterized by a constant bending stiffness κf .



30



Statistical Mechanics of Semiflexible Bundles of Wormlike Polymer Chains

Claus Heussinger, Mark Bathe, and Erwin Frey
Arnold Sommerfeld Center for Theoretical Physics and CeNS, Department of Physics, Ludwig-Maximilians-Universität München,

Theresienstrasse 37, D-80333 München, Germany
(Received 13 February 2007; published 25 July 2007)

We demonstrate that a semiflexible bundle of wormlike chains exhibits a state-dependent bending
stiffness that alters fundamentally its scaling behavior with respect to the standard wormlike chain. We
explore the equilibrium conformational and mechanical behavior of wormlike bundles in isolation, in
cross-linked networks, and in solution.
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In recent decades, the wormlike chain (WLC) has
emerged as the standard model for the description of semi-
flexible polymers [1]. The defining property of a WLC is a
mechanical bending stiffness �f that is an intrinsic material
constant of the polymer. Within this framework, numerous
correlation and response functions have been calculated,
providing a comprehensive picture of the equilibrium and
dynamical properties of WLCs [2–4]. A number of ex-
perimental studies have demonstrated the applicability of
the WLC model to DNA [5] and F-actin [6], among other
biological and synthetic polymers. Significant progress has
also been made towards the description of the collective
properties of WLCs, for example, in the form of entangled
solutions. One of the hallmarks of this development is the
scaling of the plateau shear modulus with concentration
G� c7=5 [7–9], which is well established experimentally
[10,11].

Another important emerging class of semiflexible poly-
mers consists of bundles of WLCs [12,13]. Semiflexible
polymer bundles consisting of F-actin or microtubules are
ubiquitous in biology [14] and have unique mechanical
properties that may well be exploited in the design of
nanomaterials [13]. As shown by Bathe et al. [15,16],
wormlike bundles (WLBs) have a state-dependent bending
stiffness �B that derives from a generic interplay between
the high stiffness of individual filaments and their rather
soft relative sliding motion. In this Letter, we demonstrate
that this state dependence gives rise to fundamentally new
behavior that cannot be reproduced trivially using existing
relations for WLCs. We explore the consequences of a
state-dependent bending stiffness on the statistical me-
chanics of isolated WLBs, as well as on the scaling behav-
ior of their entangled solutions and cross-linked networks.

We consider the bending of ordered bundles with an
isotropic cross section. A bundle consists of N filaments of
length L and bending stiffness �f. Filaments are irrevers-
ibly cross-linked to their nearest neighbors by discrete
cross-links with mean axial spacing �. Cross-links are
modeled to be compliant in shear along the bundle axis
with finite shear stiffness k� and to be inextensible trans-
verse to the bundle axis, thus fixing the interfilament
distance b [17]. Bundle deformations are characterized

by the transverse deflection r?�s� of the bundle neutral
surface at axial position s along the backbone and by the
stretching deformation ui�s� of filament i. The torsional
stiffness of the bundle is assumed to be of the same order as
the bending stiffness. Thus, as long as transverse deflec-
tions remain small (‘‘weakly bending’’), the two compo-
nents of r? are decoupled, and the effects of twist are of
higher order [18]. The bundle response may then be ana-
lyzed in planar deformation, where the bending stiffness
results from the superposition of 2M �

����
N
p

bundle layers.
The WLB Hamiltonian consists of three contributions

HWLB � Hbend �Hstretch �Hshear. The first term corre-
sponds to the standard WLC Hamiltonian

 Hbend �
N�f

2

Z L

0
ds
�
@2r?
@s2

�
2
; (1)

which is the same for each of the N filaments. The second
term accounts for filament stretching

 Hstretch � Mks�
Z L

0
ds

XM�1

i��M

�
@ui
@s

�
2
; (2)

where ks is the single filament stretching stiffness on the
scale of the cross-link spacing �. No particular form for
bending and stretching stiffnesses is assumed, but one may
think of the filaments as homogeneous elastic beams with
Young’s modulus E, for which �f � Eb4 and ks � Eb2=�.
Alternatively, ks may represent the entropic elasticity of a
WLC, for which ks � �2

f=T�
4.

The third energy contribution Hshear results from the
cross-link-induced coupling of neighboring filaments. To
minimize the cross-link energy, any relative filament slip
induced by cross-sectional rotations � � @sr? � r0? must
be compensated by filament stretching (Fig. 1). This cross-
link shear energy, which simply suppresses relative sliding
motion of neighboring filaments, is given by

 Hshear �
Mk�
�

Z L

0
ds

XM�1

i��M�1

�
�ui � b

@r?
@s

�
2
; (3)

where �ui � ui � ui�1. A related model for two filaments
was introduced by Everaers, Bundschuh, and Kremer in
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Ref. [19], where special emphasis was placed on the limit
of inextensible filaments ks ! 1. In that model, the an-
isotropic bundle cross section leads to a coupling of in-
plane and out-of-plane bending modes [20] that is absent in
the present model because it has a symmetric cross section.

Functional differentiation of the Hamiltonian results in
the (overdamped) equations of motion

 N�fr0000? �
2Mk�b
�

X
i

��u0i � br
00
?� � F�r?; s�; (4)

 ks�u
00
i �

k�
�
��ui�1 � �ui� � 0; (5)

where F is a transverse force that may represent fluid drag,
random thermal noise, or other external loading. To pro-
ceed, Eq. (5) is solved together with appropriate boundary
conditions, so as to eliminate the ui in Eq. (4). The calcu-
lations are most easily performed in Fourier space, where
we write for the expansions r?�s� �

P
nrn sin�n�s=L� and

ui�s� �
P
nuin cos�n�s=L�, applicable to pinned boundary

conditions. The resulting equation of motion for rn then
takes the simple form �nq4

nrn � Fn, with a mode-number-
dependent effective bending stiffness �n. The general re-
sult for �n is obtained using the standard ansatz ui � wi,
which reduces Eq. (5) to an equation that is quadratic in w.

In the following, we present an approximate solution to
Eqs. (4) and (5) that is based on the assumption that
filament stretching increases linearly through the bundle
cross section ui � �u�i� 1=2� [21]. Although compari-
son with the exact solution demonstrates that ui, in general,
varies nonlinearly with i [22], it turns out that the effective
bending stiffness �n is insensitive to this nonlinearity. At
the same time, the linearization simplifies the formulas
substantially, so that the effective bending stiffness is given
in closed form by

 �n � N�f

�
1�

�
12�̂f
N � 1

� �qn��2
�
�1
�
; (6)

with a dimensionless bending stiffness �̂f � �f=ks�b
2 and

a length scale � � �L=
����
�
p
�
�����������������������������������
M�̂f=�M� 1=2�

q
that depends

on the shear stiffness k� via the dimensionless coupling
parameter � � k�L2=ks�2.

For any given mode number qn � n=L, three different
elastic regimes emerge as asymptotic solutions for N 	 1
and respective values of � [15,16]. For large shear stiffness
(�	 N), the fully coupled bending scenario is obtained,
where the bundle behaves like a homogeneous beam with
�n � N

2ks. For intermediate values of the shear stiffness
(1
 �
 N), the bending stiffness in the shear-
dominated regime is �n � Nk�q�2

n and the full mode-
number dependence of Eq. (6) has to be accounted for.
Finally, decoupled bending of N laterally independent, but
transversely constrained, filaments is found in the limit of
small cross-link shear stiffness (�
 1), where the bend-
ing stiffness is simply �n � N�f.

In the particular limit of N ! 1 and fixed bundle di-
ameterD � b

����
N
p

 L, Eq. (6) reduces to the Timoshenko

model for beam bending [23], which was recently used to
interpret bending stiffness measurements on microtubules
[24,25] and carbon nanotube bundles [13]. In this limit,

 �n �
N2�f

1� �qnD�
2E=12G

; (7)

where we have used the expressions of ks and �f for
homogeneous beams and defined G � k�=�. While this
limit serves as a consistency check for our mathematical
analysis, real bundles consist of a finite, and often small,
number of constituent filaments, for which Eq. (7) cannot
be applied to describe the full range of bending behavior
captured by Eq. (6). Indeed, in Eq. (7), no decoupled
bending regime exists, and the bending stiffness vanishes
as the cross-link shear stiffness approaches zero [26]. The
condition �� N delineating the remaining two regimes
can be rewritten as E=G� �L=D�2 	 1, which reempha-
sizes the small value of cross-link shear stiffness in the
intermediate regime.

For fixed values of �N;��, the bundle bending stiffness
Eq. (6) crosses over from fully coupled to decoupled
bending via the intermediate regime as the mode number
qn is increased. Thus, different modes may belong to
different elastic regimes, rendering the fluctuation proper-
ties of the bundle nontrivial and qualitatively different
from single semiflexible polymers. This crossover is me-
diated by the length scale �, which acts as a cutoff on the
fluctuation spectrum: Whereas wavelengths q�1

n 
 � be-
longing to the decoupled regime are characterized by a
constant bending stiffness, modes with q�1

n 	 � acquire a
higher stiffness �n � q

�2
n and are thereby suppressed.

Finally, for even longer wavelengths q�1
n 	 �

����
N
p

, the
bending stiffness reattains a constant, limiting value. As
an example (taken from Ref. [12]), we found � � 7 �m
for actin/fascin bundles with N � 30, L � 50 �m.

i−1

ui

ui+1

θ

θ

u
b

b

FIG. 1 (color online). Illustration of the geometry of a single
bundle layer (the full bundle consists of 2M layers that are
stacked in parallel). The bundle is deflected through the angle
� � r0?. If filament i stretches the amount ui � ui�1 � b�, the
cross-link (dashed line) remains undeformed with zero shear
energy.
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In situations where modes pertaining to the intermediate
regime are irrelevant, the q dependence of �n drops out,
and one recovers the single WLC result, albeit with a
renormalized persistence length lp ! Nlp in the de-
coupled and lp ! N2lp in the fully coupled regimes, re-
spectively. In other cases, calculation of the tangent-
tangent correlation function demonstrates that the persis-
tence length cannot be defined unambiguously. As indi-
cated in Ref. [19], the correlation function does not decay
exponentially but rather exhibits a complex structure at
intermediate distances [22]. In the following, we will there-
fore explore the consequences on the statistical mechanics
of the WLB, in particular, as regards the intermediate
regime.

First, consider the force-extension relation as cal-
culated from the end-to-end distance R�F� � L�P
nkBT=��nq

2
n � F�, where F is the force applied to the

bundle ends [27]. For small stretching forces, one may
readily calculate the linear response coefficient kentr �
F=�R�F� � R�0�
 using a Taylor series expansion. The
result in the intermediate regime is

 kentr /
�N�f�2

L�3kBT
��

����
N
p
	 L	 ��; (8)

which is inversely proportional to bundle length, like a
mechanical beam. Importantly, the strong dependence of
kentr�L� � L�4 applicable to single filaments (and the other
two regimes) is lost. This has dramatic consequences on
the plateau value of the shear modulus G in cross-linked
bundle networks, which in affine theories [28] is assumed
to be given in terms of kentr by G� kentr���=�, where the
mesh size � depends on concentration c as �� c�1=2.
Accordingly, in the intermediate regime one finds G� c,
which is a much weaker concentration dependence than
G� c5=2 [29] applicable to single filaments. It is worth-
while noting that the force-extension relation is strongly
nonlinear (see Fig. 2), rendering the linear response valid
only for very small relative extensions. In this particular
example, the linear response formula deviates from the
exact solution by 50% at only � 3% and � 0:7% strain
in the decoupled and the fully coupled limits, respectively.

Bundle behavior under compressive forces further high-
lights the unusual properties of WLBs. Because the bend-
ing stiffness in the intermediate regime scales with the
length of the bundle as �B � L2, the Euler buckling force
Fc � �B=L

2 � N�f=�
2 is independent of bundle length.

This unique property may well be exploited in polymeriz-
ing biological bundles such as filopodia, which may in-
crease their contour length against compressive loads
without loss of mechanical stability.

Complementary to the elasticity of cross-linked net-
works of WLBs, we turn next to the elasticity of their
entangled solutions. The generally accepted theory for
the concentration dependence of the plateau modulus of
entangled WLCs is based on the free energy change �F of
confining a polymer to a tube of diameter d [7,8]. The

associated change in free energy is written as �F�
kBTL=ld, which defines the deflection length ld to be the
scale at which the polymer starts to interact with its enclos-
ing tube. The deflection length itself is connected to the
tube diameter d and the filament concentration c via the
standard excluded volume argument [9] l2dd � ld=cL,
which balances the excluded volume of the tube with the
available volume per filament. All that remains is the
calculation of the tube diameter d of a single polymer
confined by the potential

 V �
N�f
2l4c

Z L

0
dsr2

?�s�; (9)

where the confinement length lc is defined as a measure of
the strength of the potential. While lc � ld in the standard
WLC, we will see shortly that this does not hold for WLBs
in the intermediate regime. First, consider the transverse
fluctuations of an unconfined bundle, in particular, the
average value d2

0 �
1
L

R
shr?�s�

2i. This is most easily cal-
culated as

 d2
0 � L�

2=Nlp ��
����
N
p
	 L	 ��; (10)

which has to be compared to the WLC result for which
d2

0 � L
3=lp. In the presence of the confining potential, the

same calculation yields

 d2 � l2c�=Nlp ��
����
N
p
	 lc 	 ��: (11)

For strong confinement lc 
 �, the potential suppresses all
modes of the intermediate regime, and one recovers the
expression valid for single filaments: d2 � l3c=lp. The gen-
eral result for the tube diameter is depicted in Fig. 3. As the

10
0

10
1

10
2

FL
2
/κf

0.96

0.98

1

R
(F

)/
L

FIG. 2 (color online). End-to-end distance R�F�=L as a
function of stretching force FL2=�f for a bundle of N � 4
filaments and L � lp. The black curves correspond to �=L �
0:01; 0:1; . . . ; 0:7. The thick (red) curves relate to
(bottom) decoupled and (top) fully coupled bending, respec-
tively. The dashed lines correspond to the respective linear
response regimes.
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contour length L of the bundle is increased, it begins to
‘‘feel’’ the presence of its enclosing tube at the deflection
length L � ld. By comparing Eq. (10) with Eq. (11), one
finds ld � l2c=�, which is valid in the intermediate regime.
At the same time, ld � lc in the decoupled and fully
coupled regimes, where the deflection and confinement
lengths are identical.

One may use these results to rewrite the deflection
length as a function of concentration c. In the intermediate
regime, the result is l3d � Nlp=��cL�

2, which replaces the
usual result l5d � Nlp=�cL�

2 valid in the decoupled regime
(strong confinement). The free energy of confinement and
the elastic plateau modulus G� �cL��F=L now depend
on � and thus on the properties and density of the cross-
links. The modulus displays a crossover that is mediated by
concentration:

 G� kBT
�
�cL�5=3�Nlp�

�1=3�2=3; c
 c?;
�cL�7=5�Nlp��1=5; c	 c?;

(12)

where we defined the crossover concentration as �cL�? ���������
Nlp

p
��5=2. Below the even smaller concentration c?? �

c?N�3=4, the fully coupled regime is entered, and the
modulus again scales as G� c7=5.

Having addressed equilibrium properties of WLBs, fur-
ther consequences of the state-dependent bending stiffness
on dynamic response functions remain to be explored,
along with the effects of nonpermanent cross-links.
Additional experiments [12,13,21,30] are required to test
the applicability of the derived results to biological and
synthetic bundles.
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FIG. 3 (color online). Tube diameter d2=�l3c=Nlp� as a function
of contour length L=lc for various �=lc and M � 20. Thick (red)
curves correspond to (top) decoupled and (bottom) fully coupled
bending, respectively. For short filaments, the intermediate re-
gime is visible through the linear slope d2 � L [see Eq. (10)].
For long filaments, the fluctuations saturate. By increasing �, the
tube is becoming wider [Eq. (11)].
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Abstract 
The mechanical properties of cytoskeletal actin bundles play an essential role in 
numerous physiological processes including hearing, fertilization, cell migration and 
growth. Cells employ a multitude of actin-binding proteins to regulate actively bundle 
dimensions and crosslinking properties to suit biological function. The mechanical 
properties of actin bundles vary by orders of magnitude depending on diameter and 
length, crosslinking protein type and concentration, and constituent filament properties. 
Despite their importance to cell function, the molecular design principles responsible for 
this mechanical behavior remain unknown. Here, we examine the mechanics of 
cytoskeletal bundles using a molecular-based model that accounts for the discrete nature 
of constituent actin filaments and their distinct crosslinking proteins. A generic 
competition between filament stretching and crosslink shearing determines three 
markedly different regimes of mechanical response that are delineated by the relative 
values of two simple design parameters, revealing the universal nature of bundle bending 
mechanics. In each regime, bundle bending stiffness displays distinct scaling behavior 
with respect to bundle dimensions and molecular composition, as observed in 
reconstituted actin bundles in vitro. This mechanical behavior has direct implications on 
the physiological bending, buckling, and entropic stretching behavior of cytoskeletal 
processes, as well as reconstituted actin systems. Results are used to predict the bending 
regime of various in vivo cytoskeletal bundles that are not easily accessible to experiment 
and to generate hypotheses regarding implications of the isolated behavior on in vivo 
bundle function. 



 2

Introduction 
Cytoskeletal actin bundles comprise numerous vital cellular processes including 

stereocilia, cytoskeletal stress fibers, the sperm acrosome, microvilli, and filopodia (Fig. 
1) (1-3). The mechanical properties of these processes play essential roles in cell 
function—the bending stiffness of stereocilia mediates the senses of hearing and 
equilibrium (4, 5), the elasticity of cytoskeletal stress fibers enhance cellular resistance to 
mechanical deformation (6-13), the buckling resistance of the sperm acrosome facilitates 
egg cell penetration during fertilization (14, 15) and filopodial buckling resistance 
facilitates filopodial protrusion (16-20) and mediates actin turnover during neuronal 
growth and wound healing (21, 22). In addition to the preceding actin-based cytoskeletal 
bundles, cells also align microtubules to actively regulate nuclear positioning during 
mitosis (23, 24) and stabilize cell shape in the neuronal axon process (21) and outer pillar 
cells in the mammalian ear (25). Thus, a quantitative understanding of the molecular 
design principles responsible for the mechanical behavior of these ubiquitous cytoskeletal 
modules is important to gaining a mechanistic understanding of cell function (21, 26). 

Bundle dimensions and internal constitution vary considerably depending on 
physiological function. Bundle length varies from several microns in microvilli and stress 
fibers to tens of microns in the sperm acrosome and hundreds of microns in neurosensory 
bristles (2, 3). Similarly, bundle diameters range from tens of filaments in filopodia to 
hundreds of filaments in stereocilia. Interestingly, actin bundle dimensions and the 
predominant crosslinking protein associated with various cytoskeletal processes are 
highly conserved across otherwise widely divergent species (27), suggesting specific and 
possibly mechanically-related functional constraints imposed during evolution (26, 28). 
Fascin is the predominant actin-binding protein (ABP) in filopodia and neurosensory 
bristles, fimbrin is prevalent in microvilli and stereocilia, scruin is present exclusively in 
the limulus sperm acrosome, and α–actinin predominates in cytoskeletal stress fibers. 
Despite the fundamental importance of actin bundle mechanical properties to cell 
function, the effects of bundle dimensions and crosslink composition on bundle 
mechanics remain poorly understood. Direct measurement of in vivo bundle mechanical 
response is limited by a number of complicating factors, rendering a systematic 
investigation of the effects of bundle dimensions and crosslinking protein composition on 
bundle mechanics impracticable. 

As an alternative, the bending stiffness of reconstituted actin bundles was recently 
measured in a controlled in vitro assay (29). This enabled the systematic and broad 
exploration of the effects of bundle dimensions and actin-binding protein type and 
concentration on the bending stiffness of actin bundles. Bundle bending stiffness is the 
fundamental mechanical property of interest for inextensible bundles because once it is 
known, other physiologically relevant mechanical properties such as the critical buckling 
load or entropic stretching stiffness may be derived. In Ref. (29), the bending stiffness 
was found to depend in a complex manner on bundle composition, varying by orders of 
magnitude depending on crosslinking protein type and concentration, and bundle 
dimensions. 

In this article, we employ a molecular-based model of crosslinked fiber bundles to 
explore the range of mechanical behavior of cytoskeletal actin bundles. The bending 
stiffness, Bκ , is found to depend on only two simple design parameters, the number of 
constituent filaments in the bundle, N, and a measure of the effectiveness of crosslinks in 
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mechanically coupling neighboring filaments, denoted α. The relative ratio of N to α is 
shown to delineate one of three distinct mechanical regimes that differ markedly in their 
dependence on bundle dimensions and internal constitution, highlighting the importance 
of the former on cytoskeletal bundle mechanics. The isolated mechanical behavior has 
direct implications on a number of disparate fields of biophysical research involving the 
physiological bending, buckling, and entropic stretching response of cytoskeletal 
processes involved in mechanosensation, fertilization, cell motility and neuronal growth, 
and may be used to predict the bending regime of in vivo cytoskeletal bundles that are not 
easily amenable to experimental measurement. 
 
Model 

We consider the linear bending response of fiber bundles of length L that consist 
of N cubically- or hexagonally-packed fibers, as is typical of highly crosslinked F-actin 
(15, 30, 31) (Fig. 2A). Each fiber is characterized geometrically at a coarse-grained 
molecular-scale by its cross-sectional dimension, 2[m ]fd , and contour length,  [m]fL . 
Fibers run the full length of the bundle ( )fL L=  and are modeled mechanically as 
extensible Euler–Bernoulli beams (or extensible wormlike polymers) with stretching 
stiffness, : /  [N/m]f f fk E A δ= , and isotropic transverse bending stiffness, 

2:  [Nm ]f f fE Iκ = . 2 [N/m ]fE  is the effective Young’s modulus of the fiber, fA  is its 

cross-sectional area, 4 [m ]fI  is the moment of inertia of its cross-sectional area with 
respect to its neutral axis,§** and [m]δ  is the mean spacing between discrete crosslinks 
with effective shear stiffness  [N/m]k× , and length, [m]t . Crosslinks are assumed to be 
irreversibly bound and inextensible, thereby constraining transverse fiber deflections to 
be equal but allowing interfiber relative slip. Bundle torsional stiffness is assumed to be 
of the same order as the bundle bending stiffness so that the effects of twist are of higher 
order and may safely be ignored in analyzing the linear bending response of stiff bundles 
for which the apparent bundle persistence length : /p B Bl k T Lκ= �  (32-35). In-plane 

bending of 2 :M N=  fiber layers crosslinked to their nearest neighbors in- and out-of-
plane may then be considered, where the corresponding 3D bundle bending stiffness is 
related to its 2D counterpart by, (2 ): 2B B DMκ κ=  (Fig. 2A).†† Various types of biological 
fiber bundles have been modeled previously along similar lines (25, 31, 36, 37). 

Bundle deformations are characterized by ( )r x⊥ , the transverse deflection of the 
bundle neutral surface at axial position x along its backbone, and internal axial extensions 
of the constituent fibers. Let ( ) ( , )ku x y�  be the axial displacement field in the kth fiber 

                                                 
§ For molecular-scale objects, fk  and fκ  are fundamental independent observables that may be measured 
experimentally, whereas, 

fE , 
fA , and fI  are continuum mechanics equivalents that are ill-defined at the 

molecular-scale and thus only effective in their nature. 
** The neutral surface of a beam is the surface on which the bending-induced axial strain is zero. The 
intersection of that surface with any beam cross-section defines the neutral axis of the beam.  
†† Effects of out-of-plane shear deformations present in hexagonally-packed bundles during planar bending, 
as well as finite-size geometric boundary effects, are ignored to leading order. 
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( ,..., 1)k M M= − −  at a distance y�  from the fiber neutral axis. The associated local strain 
field ( ) ( )

,:k k
xuε =  then consists of a linear superposition of fiber bending and stretching 

contributions, ( ) ( )
, ,

k k
xx xr y uε ⊥= − +� , where, ( ) ( )1( ) ( , )

f f

k k
fA A

u x u x y dA= ∫ � , a subscript 

comma is used to denote differentiation, and the standard small-displacement 
approximation 1

,( )xxrρ −
⊥≈  has been used for the neutral surface radius of curvature, ρ 

(Fig. 2B). 
Crosslink shear displacements, ν , result from stretching and plane-cross-section-

rotations of neighboring fibers, ( ) ( ) ( 1)
,( ) ( ) ( ) ( )k k k

j j j f x ju x u x d t r xν −
⊥= − + + , where j labels 

the crosslink at axial position jx jδ=  ( 1,2,..., / )j L δ=  and ( 1,..., 1)k M M= − + − . The 
shear displacement may be written equivalently in terms of the local fiber mean axial 

strain and inverse radius of curvature, ( ) ( ) ( 1)
,0

[ ( ) ]jxk k k
j f xxd t r dxν ε ε −

⊥= − + +∫ . 

While the enthalpic stretching and bending stiffnesses of F-actin (38-40) and MTs 
(39, 41) are experimentally known, the shear stiffness of a given crosslink is often 
unknown. One exception is provided by the recent measurements of Claessens et al., 
(29), in which an apparent k×  was inferred for the ABPs fimbrin, fascin, and α–actinin in 
thermodynamic equilibrium. In other cases, k×  may in principle be calculated directly 
using atomistic-based simulation methods or measured using micromanipulation 
techniques. The effective length of the crosslinker, t, may be approximated using crystal 
structures (15, 42, 43) and δ estimated from chemical equilibrium and fiber packing 
considerations (30). 

Biological crosslinks such as the ABPs fascin and fimbrin have finite off-rates, 
10.1 1 soffk −−∼  (44, 45), and are therefore irreversibly-bound only on loading or 

deformation time scales that are shorter than 1
offk − . On longer time scales crosslinks may 

dissociate and rebind, thereby relaxing their shear deformation energy, such as in the 
coiled packing of the F-actin bundle of the sperm acrosome in which kinking via 
crosslink unbinding and subsequent inter-filament slip occurs (46). While the effects of 
crosslink unbinding/rebinding are of interest for understanding the viscoelastic response 
of cytoskeletal bundles, the present work is limited to conditions in which the loading 
time-scale is shorter than the crosslink off-rate, which may be mediated by force. The 
model may also be applied to conditions in which thermal fluctuations excite bundle 
bending modes provided that the relaxation time of the slowest (longest) wavelength 
mode is shorter than the crosslink off-rate and the appropriate mean number of bound 
crosslinks is employed (29). Extension of the present model to include dynamic 
crosslinks, molecular motors that mediate filament sliding, and filament 
(de)polymerization provide important model extensions that will be pursued as suitable 
experimental data become available to validate such developments (47-49). 

In addition to their finite shear stiffness, crosslinks have a finite extensibility k⊥  
[N/m] that could in principle allow for peristaltic (out-of-phase) fiber bending modes. 
Typical crosslinking proteins have an extensional stiffness, 1 N/mk⊥ ∼  (50), however, 
that restricts the wavelength of these peristaltic modes to lengths at or below the typical 



 5

crosslink distance, δ, and ensuing transverse fluctuations are negligibly small.‡‡ Thus, 
actin bundles are tightly packed and ordered, as demonstrated by electron microscopy 
(30, 51), and the assumption of inextensible crosslinks is justified in analyzing their 
mechanical response. 

The three-dimensional bundle bending stiffness can in general be expressed as a 
function of all the independent parameters of the model, ( , , , , , , )B f fN L k k tκ κ δ× , which 

in dimensionless form may be written, * * 3 3( , / , / , / )B B f f fN k L k L Lκ κ κ κ δ×= , in the limit 

of small crosslinks, where * : /B B fκ κ κ= . We will demonstrate shortly, however, that *
Bκ  

depends only on the two independent dimensionless parameters, N, and the fiber coupling 
parameter, 

 
2

2:
f

k L
k

α
δ
×= , (1) 

 
which is evidently a measure of the competition between crosslink shearing and fiber 
stretching. 
 
Numerical analysis 

To elucidate the mechanics of bundle bending, we begin by examining the 
bending response of model fiber bundles subject to simple three-point bending 
computationally using the Finite Element (FE) method (Materials and Methods).§§ In 
analogy with experiment, Bκ  is evaluated as a function of increasing fiber number N, for 
bundles of fixed α, which is akin to fixing the fiber and crosslink properties (Fig. 3A). 
Decoupled bending characterized by linear scaling is observed for small α and fully 
coupled bending for large α. Interestingly, between these two limits we also observe an 
intermediate range of α that displays a smooth crossover from quadratic- to linear-scaling 
in N. This is in contrast to a bending stiffness that is characterized simply by an α-
dependent exponent a, a

B fNκ κ∼  [1 ( ) 2]a α≤ ≤  (16, 36). Re-plotting *
Bκ  as a function 

of α for a series of values for N indicates that this range is in fact part of a distinct 
intermediate regime where *

Bκ  increases with increasing α (Fig. 3B). Moreover, any 
bundle that exhibits fully coupled bending behavior at any given α  necessarily 
transitions into this regime with increasing bundle diameter. In what follows we perform 
a scaling analysis that considers the energetic competition between fiber stretching and 
crosslink shearing to elucidate the physical origin of the crossovers between each regime 

                                                 
‡‡ Crosslinks suppress fiber peristaltic modes to wavelengths, 1/ 4: ( / )max f kλ λ κ δ ⊥≤ = , where 

10 nmmaxλ ≈  for F-actin with 26 27 10  Nmfκ
−≈ ×  (38, 39). The minimum axial distance between co-

planar crosslinks in hexagonally-packed F-actin bundles is 37.5 nm (30). The associated transverse 
fluctuations are 0.1 1 nmr⊥ −∼ , which is much less than the inter-axial spacing between fibers, 

( ) 10 nmfd t+ ≥  (30). 
§§ Three-point beam bending refers to pinning or clamping a beam at its ends and applying a transverse 
point load at its center. The resultant load-deflection yields a measure of its apparent bending stiffness 
(Materials and Methods). 
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and to delineate their boundaries in ( , ) spaceN α − . 
 
Scaling analysis 

Consider a generic fiber bundle with a fixed characteristic radius of curvature, 
1

,( )xxrρ −
⊥≈ . In the decoupled limit individual fibers bend equally without stretching, 

whereas in the fully coupled limit crosslinks resist shear deformation so that fibers are 
forced to stretch and compress in addition to bend (Fig. 2B). Differences in fiber 
deformations in the decoupled, fully coupled, and intermediate regimes are thus manifest 
at fixed radius of curvature solely in differences in mean fiber stretching. 

Accordingly, to isolate the crossover from the fully coupled to the intermediate 
regime we impose an infinitesimal stretching deformation, ( )kδε , that relaxes 
extensionally the fibers and thereby reduces the total fiber stretching energy, stretchW , at 
the expense of an increase in crosslink shearing energy, shearW . ( )kδε  is a characteristic 
deformation that is constant along the bundle axis but may differ between fiber layers, k. 
The crossover between the fully coupled and intermediate regimes is then determined by 
the point at which crosslink shearing becomes favorable to fiber stretching, 

( ) ( )[ ] [ ]k k
stretch shearW Wδ δε δ δε= , where 1( ) ( ) ( )

0
[ ]

LMk k k
stretch k M

W M dxFδ δε δε−

=−
= ∑ ∫  is the 

variation in stretching energy and 1 /( ) ( ) ( )
1 1

[ ] M Lk k k
shear j jk M j

W M Fδδ δε δν−

×=− + =
= ∑ ∑  is the 

variation in crosslink shearing energy associated with the imposed relaxation ( )kδε  that 
results in the crosslink displacement, ( ) ( ) ( 1)( )k k k

j jxδν δε δε −= − . The calculation of these 

energy variations requires that the mean-fiber-stretching-, ( )kF , and crosslink-force, ( )k
jF× , 

conjugate to the deformations ( )kδε  and ( )k
jδν  be evaluated, which we turn to next. 

The mean axial force in the kth fiber is related linearly to its mean axial strain by, 
( ) ( )k k

f fF E A ε= , which in the fully coupled regime increases linearly with distance, y, 

from the bundle neutral axis, ( ) 1
, ,2( ) ( )k
xx f xxy k r k d rε ⊥ ⊥= − = − + , so that, 

( ) 1
,2( )k

f f f xxF E A k d r⊥= − + , like in a homogeneous Euler–Bernoulli beam (Fig. 2B). The 
limit of small crosslinks ( )ft d�  has been assumed here for simplicity without loss of 
generality. It is precisely this fiber stretching force that gives rise to the additional bundle 
bending moment and higher associated bundle bending stiffness in the fully coupled 
regime. The crosslink force, ( )k

jF× , is linearly related to its shear displacement via, 
( ) ( )k k
j jF k ν× ×= , which is given by, ( )

,
k

j f xx jd r xν ⊥∼ , so that, ( )
,

k
j f xx jF k d r x× × ⊥∼ , where a 

constant characteristic radius of curvature has been assumed in evaluating ν , consistent 
with the present scaling picture. Note the differences between the expressions for the 
fiber axial force and the crosslink shear force: The former increases through the bundle 
cross-section whereas the latter increases along the bundle axis. 

Variations in fiber stretching and crosslink shearing energy associated with the 
imposed relaxation ( )kδε  may now be calculated using the above results to yield, 

1 ( )
,

M k
stretch f f f xx k M

W ME A d r L kδ δε−

⊥ =−∑∼  and 
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1 /( ) ( 1) 2
, 1 1

( )M Lk k
shear f xx jk M j

W Mk d r xδδ δε δε− −
× ⊥ =− + =

−∑ ∑∼ , which may be re-written, 
13 ( ) ( 1)

, 1
( / ) ( )M k k

shear f xx k M
W Mk d r Lδ δ δε δε− −

× ⊥ =− +
−∑∼ , after evaluation of the summation 

over crosslinks. Equating the resultant increase in crosslink shear energy with the 
decrease in fiber stretching energy and imposing arbitrary ( )kδε  determines the location 
of the crossover, 2 /f fNE A k L δ×∼ , which may be re-written, Nα ∼ . Thus, the crossover 
from the fully coupled regime to the intermediate regime occurs at higher α for larger 
bundles, N. This result is due to the fact that in the fully coupled regime the fiber 
stretching energy scales with bundle diameter whereas the crosslink shearing energy 
scales with bundle length. 

A similar analysis applies to the decoupled limit except that fibers are initially 
unstressed axially in the ground state. Finite Element results indicate that axial stretching 
is first induced in fibers at the outer boundary of the bundle in order to minimize the 
associated increase in stretchWδ , because inner fibers then remain in their relaxed state. 
This leads directly to a crossover that is bundle-diameter- and thus N-independent, which 
is given by the condition, 1α ∼ . Comparison of the crossovers between the decoupled–
intermediate ( 1)α ∼  and fully-coupled–intermediate ( )Nα ∼  regimes computed with the 
Finite Element model confirms the validity of the foregoing scaling arguments (Fig. 3B 
and Fig. 3B Inset), with some deviations for small N. Introduction of the finite-size, t, of 
the crosslinks increases the absolute value of the fully coupled bending stiffness, but it 
does not affect this scaling behavior. 
 
Closed-form bundle bending stiffness expression 

The fiber bundle model admits an analytical solution employing a continuum 
energetic approach (Appendix I). As in the Finite Element model, the total elastic energy 
of the bundle, ( )[ ( ), ( )]kH r x u x⊥ , is given by fiber bending, bendH , fiber stretching, 

stretchH , and crosslink shearing, shearH , contributions. The bending contribution is given 
by a linear superposition of the standard wormlike chain bending energy for each 

independent fiber, 21
,2 0

L

bend f xxH N r dxκ ⊥= ∫ , because transverse fiber-displacements are 

equal. The fiber stretching energy is given by the axial strain energy, 

( )21 ( )
,0

LM k
stretch f f xk M

H ME A u dx−

=−
= ∑ ∫ . Finally, crosslink shear energy is associated with 

crosslink deformation that results from neighboring fiber bending and stretching, 
21 ( )

1 0
( )

LMMk k
shear k M

H x dxδ ν×
−

=− +
⎡ ⎤= ⎣ ⎦∑ ∫ . 

The theoretical model contains 2M internal stretching degrees of freedom ( )ku  in 
addition to the transverse bundle deflection, r⊥ , which is the principal observable of 
interest in measuring bundle response. Accordingly, the fiber stretching degrees of 
freedom are integrated over to obtain an effective bundle bending energy that depends 
solely on r⊥ , from which the mode-number-dependent effective bundle bending stiffness 
is (Appendix I), 
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2 ( 1)( , , ) 1

1 ( )
B j f

j

NN q N
N Nc q

χκ α κ

α

⎛ ⎞
⎜ ⎟−⎜ ⎟= +

+⎜ ⎟+⎜ ⎟
⎝ ⎠

   (2) 

 
where : ( ) /f fd t dχ = +  accounts for the finite thickness of the crosslinks. The mode-
number-dependent bending stiffness depends on the wave-numbers /jq j Lπ=  through 

the non-dimensional factor 2( ) ( ) /12j jc q q L=  and on the design parameters N and α 
isolated previously using scaling analysis. In three-point bending at zero temperature, the 
analytical solution for the bundle bending stiffness is well-approximated by Eq. (2) with a 
constant factor 1c =  for pinned ends and 4c =  for clamped ends, in quantitative 
agreement with the Finite Element results. In the limits of ( 1)α �  and ( )Nα � , Eq. (2) 
reduces to the decoupled and fully coupled bending, respectively, and in the intermediate 
regime (1 )Nα� �  exhibits the scaling, 2

B xNk Lκ ∝ , which is independent of the 
mechanical properties of the underlying fibers. This demonstrates that the intermediate 
regime is dominated by shear-deformation of the crosslinks, so that intermediate and 
shear-dominated may be used interchangeably. This is in contrast to the decoupled and 
fully coupled regimes, in which the crosslink shear stiffness is effectively equal to zero 
and infinity, respectively. 

The mode-number-dependence of Bκ  demonstrates that in addition to being state-
dependent ( , )N α , bundle bending stiffness is an apparent material property that depends 
on the nature in which the bundle is probed. This is in stark contrast to a standard 
wormlike polymer, which is defined as having an intrinsic bending stiffness that is state- 
and mode-number-independent (52, 53). Thus, inference of Bκ  from “macroscopic” 
bundle observables such as the mean-square end-to-end distance, the zero-temperature 
force-deflection relation, or the fluctuation spectrum by associating the bundle with an 
equivalent wormlike polymer will yield different apparent values for Bκ . Of course, 
cytoskeletal bundles present in cellular processes are typically stiff ( : / )p B Bl k T Lκ= �  
so that the lowest mode dominates their mechanical response. Accordingly, our primary 
interest is in the relative values of the isolated design parameters, N and α, which 
delineate the state-dependence of the bundle bending stiffness. The consequences of the 
mode-number dependence of Bκ  on the statistical mechanical properties of bundles of 
wormlike chains is examined in separate work (54). 
 
Connection to Timoshenko theory 

Fiber bundles consisting of MT protofilaments (41, 55) and SWNTs (56, 57) have 
recently been analyzed using Timoshenko beam theory.*** In this approach, the 
heterogeneous microstructure of the bundle is ignored so that the bundle can instead be 
treated as a single homogeneous medium with effective macroscopic geometric and 

                                                 
***Microtubules have been analogized to fiber bundles by treating protofilaments as individual fibers and 
inter-protofilament interactions as effective crosslinks. 
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mechanical properties. The bundle stiffness computed from Timoshenko theory for three-
point bending with pinned boundary conditions may be written (58), 

121 12 /B B B B B B B BE I E I G A Lκ β
−

⎡ ⎤= +⎣ ⎦ , where BG  is the effective bundle shear modulus 
and β  is a cross-section-dependent shear-correction factor. To make a connection with 
the microscopic fiber-bundle theory employed in this work, interlayer shear 
displacements are assumed to be constant through the bundle cross-section and related to 
the macroscopic bundle shear strain by, /B fdγ ν= , where the limit of small crosslinks is 
assumed ( )ft d� . Setting the macroscopic bundle shear stress equal to the effective 

interlayer shear stress, : /macro micro
B B fG k dτ γ τ ν δ×= = = , then yields, 

( ) 12 1 /B fN Nκ κ α −= + , which is identical to the fiber-based model result when the limit 
( 1;  1)N α� �  is applied. Thus, Timoshenko theory converges to the same fully 
coupled bundle bending stiffness as the microscopic-based theory when, ( )Nα � , and 
crosses-over to the shear-dominated regime when, ( )Nα ∼  (Fig. 3B). Unlike the 
microscopic theory, however, Timoshenko theory is only asymptotically correct in the 
intermediate regime for large bundles ( 1)N �  and it fails drastically when ( ~ 1)α  
because it does not account explicitly for the heterogeneous underlying fiber structure of 
the bundle (Fig. 3B). Moreover, consideration of the underlying molecular structure of 
cytoskeletal bundles facilitates a connection to atomistic modeling to investigate the 
source of mesoscopically-observed parameters such as the crosslinker shear stiffness, as 
well as to examine the effects of underlying structural properties of the bundle such as 
fiber fracture, which we consider next. 
 
Effect of fiber fracture 

In certain cases, such as Drosophila bristles in their developmental phase and 
cytoskeletal stress fibers (10, 11), F-actin bundles are formed from short overlapping 
segments of fractured fibers that do not run the full length of the bundle (59). We tested 
the effect of fiber fracture on Bκ  numerically by dividing each original mother-fiber in 
the Finite Element model into m daughter-fibers of equal length, fL L< , where nearest-
neighbor mother-fibers were randomly aligned with respect to one another 
(Supplementary Material). The primary mechanical consequence of fracture is that the 
fiber tension/compression propagation that is present in the fully coupled regime is 
eliminated. Instead, the pre-existing axial load carried by a fractured fiber is transferred 
to its nearest-neighbors via crosslink shear coupling. Intuitively, this transfer is most 
effective for high crosslink shear stiffnesses, low fracture densities, and large diameter 
bundles. 

Quantitatively, for any bundle size ( , )M L  we find two distinct regimes 
delineated by the critical ratio, * Mφ ≈ , where : / fL Lφ =  is the fracture number density 

per fiber. As expected, for *φ φ�  the bending response of the bundle is unaffected by 
fiber fracture. For *φ φ� , however, the bundle response is strongly affected by fiber 
fracture and characterized by a renormalized coupling parameter * 2: ( / )α α φ φ′ = . In this 
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regime, the bundle behaves like m smaller sub-bundles of length fL . While the critical 

density *φ  is derived from a planar 2D model, the fact that parallel planar fiber layers are 
assumed to bend independently implies that the same critical density applies to 3D 
bundles. This scaling behavior is also expected to apply to situations in which fractured 
segments are not monodisperse in length, as assumed here, as long as fractures are not 
aligned transversely but instead exhibit significant transverse disorder. 
 
Application to in vitro F-actin bundles 

The bending stiffness of F-actin bundles crosslinked by fascin, fimbrin, and non-
specific PEG-induced depletion forces was recently measured experimentally using an in 
vitro droplet assay in which F-actin bundles form compact stable rings (29). In that work, 
bundle bending stiffness was analyzed using an existing analytical theory that depends in 
a complex manner on the numerous bundle parameters, ( , , , , , , )B f fN L k k tκ κ δ×  (25, 29). 
Using the present analytical bending stiffness [Eq. (2)] to fit each bending stiffness data 
point, ( , , )i iN L r , at a given facin:actin concentration ratio : /fascin actinr c c=  yields a 
concentration-dependent effective interlayer shear modulus, 

/ 1097 360,  352 49, 148 54, and 27 7 Pak δ× = ± ± ± ±  for r = 0.5, 0.2, 0.05, and 0.02, 
respectively, over the range of bundle diameters (2 40)N≤ ≤  and lengths 

6 6(14 10 m 90 10 m)L− −× ≤ ≤ ×  examined. The dependence of /k δ×  on r  is consistent 
with a standard Langmuir isotherm where the equilibrium mean spacing between 
crosslinks depends on crosslinker concentration as, 1/ fascincδ ∝ , with a constant apparent 

shear stiffness of , 510  N/mk −
× ≈ , assuming a minimum in-plane axial crosslink spacing 

of 39 nm, 0t = , and c = 5 appropriate to the periodic boundary conditions used to model 
the ring-bundle examined experimentally (Appendix I). Employing a crosslinker 
dimension of 10 nmt =  results in an apparent stiffness of 610  N/mk −

× ≈ .††† The 
uncertainty in model parameters including t and δ render the estimate of k×  only valid to 
within an order of magnitude. The dependence of bundle bending stiffness on bundle 
length, L, at fixed filament number, 27 6N = ± , provides additional evidence for the 
validity of the proposed mechanical model in which 2: ( / )( / )f fk E A Lα δ×=  mediates the 
bending regime of crosslinked F-actin bundles, within the limited range of L capable of 
being probed experimentally at fixed N 6 6(24 10  m 55 10  m)L− −× ≤ ≤ ×  (Fig. 4). 

In the absence of detailed information regarding the fine structure of the actin 
bundles examined, the preceding analysis assumes fiber fracture to be below the critical 
fracture density, *φ φ� , and fibers to be ordered transversely. While the former 
assumption is consistent with the observation that phalloidin tends to anneal F-actin into 
stable, continuous filaments (61), and the latter is consistent with observations of the 
hexagonally ordered packing of fascin-actin bundles (3, 30, 62), direct examination of the 
fine structure of the in vitro ring bundles are needed to fully justify these assumptions. 

                                                 
††† The present estimate for k×  differs somewhat from that published previously due to an erroneous 
bundle-length expression employed in that work (29, 60). 
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Unlike fascin-crosslinked bundles, bundles crosslinked by fimbrin and non-
specific depletion forces exhibit a bending stiffness that is independent of the crosslinker 
concentration, where fimbrin-crosslinked bundles exhibit decoupled bending and 
depletion-force-induced bundles exhibit fully coupled over the range of bundle 
dimensions and crosslinker concentrations examined (29). While non-specific depletion-
forces are likely to induce tight uni-polar packing between helical actin filaments (42) 
that would explain the fully coupled bending observed, the decoupled bending behavior 
observed for fimbrin may be hypothesized to be due either to an enhanced F-actin shear 
compliance associated with actin monomer tilting (63) mediated by fimbrin-binding, 
facile modes of shear deformation involving the actin-fimbrin binding interface (42), or 
fimbrin-actin dissociation/association kinetics. Indeed, the unusually low shear stiffness 
observed for fascin is also likely attributable to some combination of the aforementioned 
factors, which remain under active investigation. We believe that direct bundle stiffness 
measurements using optical tweezers or AFM to probe actively the nonlinear and 
nonequilibrium bending response of F-actin bundles are required together with molecular 
modeling of crosslinked actin bundles (64, 65) to understand the origin of the observed 
behavior, as well as to further validate the presently proposed interpretation of 
cytoskeletal bundle bending mechanics. 
 
Bending stiffness state-diagram 

The bending regime of in vivo cytoskeletal bundles may be predicted by 
evaluating the design parameters N and α using the apparent values of k×  determined 
experimentally (29) and known bundle dimensions (2, 3) (Fig. 5). Maximal bundle 
compliance is achieved by decoupled bending ( 1)α � , whereas maximal bundle stiffness 
is achieved with fully coupled bending ( )Nα � . In the shear-dominated 
regime (1 )Nα� �  bundle length or crosslink concentration may be varied to tune 
bundle bending stiffness by orders of magnitude. 

The sperm acrosomal process is required to penetrate mechanically the outer jelly 
coat of the egg cell during fertilization (66, 67). The limulus (horseshoe crab) sperm 
acrosome consists of a tapered bundle of 15–80 hexagonally-packed F-actin fibers that 
are tightly crosslinked by scruin and run the full length ( 50 mL μ≈ ) of the bundle. 
Macroscopic measurements of its bending stiffness have been made using hydrodynamic 
flow (66), where it was determined that the bundle exhibits fully coupled bending. This 
independent macroscopic observation is consistent with the a priori prediction of the 
fiber-based model, in which the ranges in N and α are determined from the parameters 
probed experimentally (Fig. 5). The shear stiffness of fascin is used as a lower-bound 
estimate for scruin because the molecular structure and interfilament packing of the latter 
suggest that it is considerably stiffer (15). 

Vertebrate hair cell stereocilia are finger-like projections in the inner ear that 
serve as mechanochemical transducers for sound and motion (Fig. 1). Ranging from 1–10 
μm in length, each stereocilium consists of up to 900 hexagonally-packed F-actin 
filaments crosslinked predominantly by fimbrin (2, 3, 68). Macroscopic measurements of 
the bending stiffness of hair cell stereocilia bundles and of the root of individual 
stereocilia made using microneedle manipulation (36) yielded decoupled bending 
behavior. Together with their short length, the very low effective stiffness of fimbrin 
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places their theoretical stiffness deep in the decoupled regime, consistent with these 
independent experimental observations (Fig. 5). 

Brush-border microvilli ( 20 30;  1 5 m)N L μ≈ − ≈ −  are passive cellular processes 
that predominate in fimbrin and serve primarily to increase the apical surface area of 
intestinal epithelial cells (2, 3) (Fig. 1). Cytoskeletal stress fibers 
( 10 40;  1 10 m)N L μ≈ − ≈ −  predominant in α–actinin (29) function mechanically to 
enhance the tensile stiffness of cells. Each of these processes is predicted to exhibit 
decoupled bending due to its relatively short length. Filopodia are active F-actin bundles 
present at the leading edge of motile cells and neuronal growth cones that increase in 
length during locomotion and growth (3) (Fig. 1). Consisting of 10–30 filaments, they are 
predominantly crosslinked by fascin and typically range from 1–10 μm, but may reach 
lengths of up to 30–40 μm in certain cases such as in the sea urchin embryo (16, 69). As a 
final actin-based example, we consider the 11 fascin-crosslinked bundles constituting the 
Drosophila neurosensory bristle. Each bundle is ≈400 microns long and contains 500–
700 filaments in macrochaetes (59, 70) (Fig. 1). Using their full length, these bundles are 
predicted to lie at the interface of the fully coupled and intermediate regimes, despite 
their large diameter. Early in development, however, bristles consist of short overlapping 
bundle modules ( 3 m)fL μ≈ (59). At this early stage the fiber fracture density, 

: / 100fL Lφ = ≈ , is less than the critical fracture density, * 2 310 10Nφ −∼ ∼ , below 
which we find the fully-coupled–intermediate regime transition to be unaffected by 
fracture (Supplementary Material). Direct bending stiffness measurements would be of 
interest to verify this prediction. 

Finally, noting that the bundle model employed in this work is generic to ordered 
fiber bundles, we also include in the state diagram MT bundles from outer pillar hair cells 
for which the interlayer shear modulus has been measured using micromanipulation and a 
fiber-based model ( 1000 3000;  70 120 m; / 1 kPa)N L kμ δ×≈ − ≈ − ≈ (25). 

The bending stiffness state diagram in Figure 5 provides preliminary, ab initio 
estimates for the bending regime of in vivo cytoskeletal actin bundles based on apparent 
values for k×  that have been inferred from a single type of in vitro experimental assay 
that probes the linear, equilibrium mechanical response of F-actin bundles. As noted 
earlier, significant further experimentation on in vitro and in vivo bundles using active 
measurement probes such as optical tweezers or AFM are needed to further validate these 
predictions, as well as to explore the nonlinear and nonequilibrium mechanical response 
of F-actin bundles. For example, an F-actin bundle that exhibits fully coupled or 
intermediate bending behavior on loading time-scales that are much shorter than the 
crosslink unbinding time-scale necessarily relaxes to the decoupled bending regime as 
crosslinks dissociate. Additionally, the rate of this relaxation will be accelerated in a 
manner that depends on the degree of bundle deformation. Notwithstanding, the 
importance of the present work is to isolate the generic design parameters N and α that 
reveal the universal nature of static cytoskeletal bundle mechanics, as well as their strong 
dependence on bundle geometry and crosslinker properties. While the quantitative values 
of N and α corresponding to specific cytoskeletal processes should be refined and further 
validated in the future, as well as modified to include effects of crosslink unbinding and 
nonlinear mechanical response present in situ, the importance of N and α in mediating 
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both the regime of cytoskeletal bundle bending, as well as crossovers between these 
regimes, is expected to apply. 
 
Implications for in situ mechanical function 

The isolated mechanical behavior of cytoskeletal bundles has direct implications 
on the in situ bending, buckling, and entropic stretching behavior of cytoskeletal bundles. 

Decoupled bending exhibited by stereocilia not only maximizes the bending 
compliance of these cellular processes, but also relieves actin filament 
stretching/compression that grows linearly with distance from the bundle centerline in 
fully coupled bending, ( ) /k f f fF k d t E A ρ∝ + . Thus, fragility of actin filaments under 
axial strain that leads to filament fracture may provide an alternative criterion to design 
cytoskeletal bundles that exhibit decoupled bending in cellular processes such as 
stereocilia (71). 

In contrast, fully coupled bending maximizes the mechanical resistance of the 
sperm acrosome to axial compressive forces that lead to structural failure at the critical 
buckling load, 2~ /crit BF Lκ . The isolated crossover from fully coupled to intermediate 
bending at the critical ratio / ~ 1Nα  provides a constraint on the design of cytoskeletal 
bundles for maximal mechanical stability under compressive loading. Also subject to 
compressive loading are invadopodia and filopodia, fascin-crosslinked actin bundles 
involved in tissue invasion, cell motility and axonal growth (16, 17). The results of this 
work suggest that as the length of these processes increases they transition from 
decoupled to intermediate regime bending, where critF  becomes independent of length 
because 2

B Lκ ∝  there. This is in stark contrast to a standard wormlike chain for which 

critF  decreases strongly with increasing length. Thus, dynamic cytoskeletal processes 
such as filopodia may potentially increase their length without compromising their 
buckling stability in the intermediate regime, until they finally reach fully coupled 
bending, where critF  becomes length-dependent again. 

The entropic stretching response of F-actin bundles is suggested to play a role in 
the elasticity of reconstituted actin networks (45, 72, 73), biological tissues (74), and 
potentially cells (75, 76). Importantly, decoupled cytoskeletal actin bundles have an 
entropic stretching stiffness, 2 4/e fk N Lκ∝ , that is substantially lower than its fully 

coupled counterpart, 4 4/e fk N Lκ∝ , with a markedly different dependence on filament 
number, or bundle diameter. Additionally, the mode-number dependence of Bκ  renders 
the dependence of ek  on bundle length relatively weak ( 1/ )ek L∝   in this regime (8, 54, 
73). 

Taken together, these examples illustrate the direct implications that the state-
dependent bending stiffness of cytoskeletal actin bundles isolated in the present work has 
on their in situ biomechanical behavior. Significant further experimentation is clearly 
warranted to better understand the complex nature of cytoskeletal bundle bending 
mechanics in cells and in reconstituted actin networks, in particular under physiological 
conditions of nonlinear and nonequilibrium loading present during cell migration (77). 
Additionally, extension of the present model to include the active, nonequilibrium 
stretching response of individual cytoskeletal stress fibers as mediated by myosin, 
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tropomyosin, and α-actinin provides an important avenue of development to facilitate the 
bottom-up prediction of cellular mechanics (8, 10, 11, 78). 
 
Conclusions 

Cytoskeletal bundles of crosslinked actin filaments form key structural 
components of a broad range of cellular processes. To date, a common conception has 
been that cytoskeletal bundles display two limiting bending behaviors, namely decoupled 
or fully coupled bending. Here, we demonstrate that their bending behavior is 
considerably more intricate, depending on global bundle dimensions, the shear stiffness 
of intervening crosslinks, and the stretching stiffness and fracture density of constituent 
fibers. We isolate two generic design parameters, N and α, that delineate the three distinct 
bending regimes of cytoskeletal bundles with markedly differing scaling properties. 
Experimental bending stiffness of in vitro fascin-crosslinked F-actin bundles, as well as 
existing in vivo measurements of the bending stiffness of the limulus sperm acrosome and 
of the stereocilium, validate our interpretation of F-actin bundle mechanics. The isolated 
state-dependence of fiber bundles has important implications for the physiological 
bending, buckling, and potential entropic stretching behavior of cytoskeletal processes, 
some of which are highlighted in this work. Finally, ab initio predictions for the bending 
regime of various cytoskeletal processes are presented in the form of a bending stiffness 
state diagram, which highlights the importance of bundle dimensions on bundle 
mechanical response. 

Future experimentation using active mechanical probes will facilitate the 
extension of the present, static molecular-based model to include nonequilibrium effects 
of force-induced crosslink unbinding, filament dynamics including rupture and 
disassembly, and molecular motor mediated filament sliding and translocation as present 
in cytoskeletal stress fibers. While considerable additional experimentation in close 
collaboration with multi-scale modeling is needed to understand fully the intricate nature 
of cytoskeletal bundle mechanics, this challenging line of research should eventually 
facilitate a mechanistic, molecular-level understanding of the interplay between cellular 
mechanics and active cytoskeletal remodeling that has remained elusive to date. 
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Materials and Methods 
Finite element modeling. Fibers are discretized identically in 2D using 2-node 
Hermitian beam elements with nodal degrees of freedom, { , , }i i iu w θ , where iu  is axial 
displacement, iw  is transverse deflection, and iθ  is in-plane rotation (79). Nodes on 
adjacent fibers are constrained to have equal transverse deflection. Crosslink shear 
stiffness is modeled using a general 2-node finite element that couples beam element 
nodes on nearest-neighbor fibers with stiffness matrix, 2 /ij i jK E x x= ∂ ∂ ∂ , where ix  

denotes the nodal degree of freedom of the kth fiber, ( ) ( 1) ( ) ( 1){ : , , , }k k k k
ix u u θ θ− − . The 

crosslink shear energy function is, 
2( ) ( 1) ( ) ( 1)( / 2) ( ) ( / 2)( )k k k k

fE k u u d θ θ− −
× ⎡ ⎤= − + +⎣ ⎦ , 

where k×  is normalized properly to account for discretization. Three-point bending is 
simulated by applying pinned or clamped boundary conditions to the bundle ends and 
applying a transverse unit point load at the bundle mid-point, yielding the apparent 
wormlike chain bending stiffness, 3

/ 2: /B LPL awκ = , where 48a =  and 192a =  for 
pinned and clamped ends, respectively. Simulations are performed using the commercial 
Finite Element Software ADINA ver. 8.2.0 (Watertown, MA). 
 
Experimental methods are as described in (29). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 16

Appendix I Derivation of the mode-number-dependent bundle bending stiffness 
 
The bundle Hamiltonian, 
 

 ( )
1 12 2( ) 2 ( ) ( )1

, ,2
10

[ ( ), ( )] ( )
L M M

Mkk k k
f xx f f x

k M k M

H r x u x dx N r ME A u xδκ ν×

− −

⊥ ⊥
=− =− +

⎧ ⎫⎡ ⎤= + +⎨ ⎬⎣ ⎦⎩ ⎭
∑ ∑∫         (I1) 

 
may be simplified to depend only on r⊥  and the relative degree-of-stretching between 
fibers, uΔ , by employing the approximation that fiber-stretching varies linearly through 
the bundle cross-section (25), ( ) 1

2( )ku k u= + Δ , 
 

{
}

2 2 2 21 1
, ,2 60

2
,

[ ( ), ( )] (4 1)

(2 1)[ ( ) ]x

L

f xx f f x

k
f x

H r x u x dx N r M M E A u

M M u d t rδ

κ⊥ Δ = + − Δ + ⋅⋅⋅

⋅ ⋅⋅ + − Δ + +

∫ .       (I2) 

 
Fourier transformation of the Hamiltonian in Eq. (I2) then results in the decomposition 

/ 2jj
H H L=∑ , where the contribution of mode j to H is, 

 
 4 2 2 2 2 2 21 1

2 6 (4 1) (2 1)[ ( ) ]xk
j f j j f f j j j f j jH N q r M M E A q u M M u d t q rδκ= + − Δ + − Δ + +  (I3) 

 
and qj denotes the wave-number associated with mode j. Minimization of Eq. (I3) with 
respect to juΔ  yields the minimum value, 

 *
2

( )
( ) 2 (2 1)1

12

f j j
j

j

d t q r
u

q L M M
α

− +
Δ =

+
+

 (I4) 

 
and the corresponding reduced Hamiltonian, 
 

 
2 2 2

* 4 2 1
2 2
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f f f
j j j j f
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α
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⎢ ⎥+ −
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, (I5) 

 
which yields the mode-number-dependent effective bundle bending stiffness, 
 

 
2 ( 1)( , , ) 1

( )1 ( )
B j f

j

NN q N
N Nc q

χκ α κ

α
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= +⎢ ⎥
+⎢ ⎥+⎢ ⎥⎣ ⎦

 (I6) 
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where 2 /x f fk L E Aα δ= , 2 /12f f f fE A dκ = , 2)2( MN = , 2( ) ( ) /12j jc q q L= , and 
: ( ) /f fd t dχ = +  have been defined. 

( , , )B jN qκ α  may subsequently be employed to calculate the transverse deflection 
( )r x⊥  corresponding to transverse loading ( )F x  via back-transformation to real-space of, 

 
 4( , , )B j j j jN q q r Fκ α = −  (I7) 
 
where jF  is the jth Fourier component of the applied force. The transverse deflection is 
given by, 

 0 4
1

( )
( )

( , , )
j j

j j B j

F q x
r x R

q q N
φ

κ α

∞

⊥
=

= −∑  (I8) 

 
where the eigenfunction ( )xφ  is given by sine and cosine for hinged and clamped 
boundary conditions, respectively, and 0R  is chosen such that the transverse deflection 
vanishes at the bundle ends. 

While an exact evaluation of the sum in Eq. (I8) in general yields a complex 
analytical expression, performing the sum without the “1” in the denominator of Eq. (I6) 
and adding it back to the final result yields an approximate solution that is nearly 
identical to the exact result. The deflection of the bundle mid-point ( / 2)r x L⊥ =  may then 
be recast into the standard result from Euler–Bernouilli beam theory, 
 

 
3

/ 2

,

( / 2) L

B eff

F Lr L
βκ⊥ = −  (I9) 

 
where β = 48 and 192 for pinned and clamped ends, respectively. The effective bending 
stiffness ,B effκ  then has the same form as in Eq. (I6) except with the (mode-number 
dependent) factor c substituted by the constant factors 1 and 4, as verified by comparison 
with the FE results. 

Calculation of the equilibrium mean-square transverse displacement of the bundle 
backbone due to thermal fluctuations requires evaluation of, 
 

 2 21
40

/: ( ) 2
( , , )

L
B

L
j j B j

k T Lr r x dx
q q Nκ α⊥ ⊥= = ∑∫  (I10) 

 
where Ljq j /2π=  for periodic boundary conditions applicable to the ring-bundle 

system examined experimentally. This yields, 2 3 / 720B Br k TL κ⊥ =  (80), where the 
effective bundle bending stiffness is again given by Eq. (I6) with c = 5. 
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Figure Legends 
 
Figure 1 Fiber bundles consisting of F-actin. (A) Ciliary bundle from the sensory 
epithelium of a bullfrog saccule consisting of about 60 stereocilia. Courtesy David P. 
Corey and John A. Assad. (B) Filopodium protruding from the lamellipodium of a mouse 
melanoma cell. Reproduced from (81) by copyright permission of The Rockefeller 
University Press. (C) Epithelial microvilli. (D) Drosophila neurosensory micro- and 
macrochaete bristles. Reproduced from (82) with the permission of The American 
Society for Cell Biology. 
 
Figure 2 Theoretical bundle model. (A) Crosslinked fiber bundle with N = 16 fibers. 
Discrete crosslinks (blue) couple nearest-neighbor fibers mechanically in stretching and 
bending. (B) (left) Deformed backbone of a fiber bundle subject to in-plane bending; 
(middle) close-up view of three typical fibers showing fiber and crosslink deformations in 
(faded gray lines) decoupled and (solid black lines) fully coupled bending; (right) 
transverse distributions of fiber axial displacement, ( ) ( , )ku x y , and strain, ( ) ( , )k x yε , 
fields and (arrows) the mean axial displacement, ( ) ( )ku x , in (faded gray lines) decoupled 
and (solid black lines) fully coupled bending. 
 
Figure 3 Theoretical bundle bending stiffness. (A) Dependence of normalized bending 
stiffness, * : /B B fκ κ κ= , on filament number, N, for various constant values of the fiber 

coupling parameter, α = 1 0 1 2 3 4{10 ,10 ,10 ,10 ,10 ,10 }−  (bottom to top). Thick lines denote 

(bottom) decoupled and (top) fully coupled bending regimes. (B) Dependence of *
Bκ  on 

α at constant {4,9,16,...,100}N =  (bottom to top). Dotted lines correspond to 
Timoshenko theory predictions. 
 
Inset to Figure 3B Dependence of the crossover values, α**, of the fiber coupling 
parameter on bundle filament number, N, at the decoupled-to-intermediate (bottom 
curves) and fully-coupled-to-intermediate (top curves) regime crossovers for (squares) 
pinned and (circles) clamped boundary conditions. Solid lines indicate N-independent 
and linear-in-N scaling. Crossover values of α** are defined by the value of α at which 

Bκ  is within a factor of two of its limiting decoupled and fully coupled values. 
 
Figure 4 Experimental and theoretical bending stiffness of fascin-crosslinked F-actin 
bundles for N = 27±6. Experimental bundle stiffness (symbols) is measured using a 
microemulsion droplet system for a range of fascin concentrations with corresponding 
mean spacings, δ : (black circles) 40 nm, (blue squares) 56 nm, (red diamonds) 68 nm, 
(green triangles) 225 nm, (pink crosses) 412 nm as described in (29). Bundle length is 
varied in an uncorrelated fashion by a factor of over two. Crosslinker axial spacing is 
calculated using a simple Langmuir isotherm approximation, ( ) /min d fascin fascinK c cδ δ= +  

(83), where 37.5 nmminδ =  is the minimum in-plane spacing between ABPs in 
hexagonally-ordered F-actin bundles (30) and 0.5 MdK μ=  is the fascin-actin 
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dissociation constant (84). Theoretical bundle stiffness (bold curve) is calculated using 
Eq. (2) with c = 5 (Appendix I) assuming N = 27 and bounding curves that account for 
experimental uncertainty are calculated using N = 21 and N = 33. 
 
Figure 5 Bundle bending stiffness state-diagram for various cytoskeletal bundles. Dashed 
lines denote crossovers between (I) decoupled, (II) shear-dominated, and (III) fully 
coupled bending regimes. (a) Acrosomal process of the horseshoe crab sperm cell (66); 
(b) vertebrate hair cell stereocilia (2, 3, 68); (c) brush-border microvilli (2, 3, 85); (d) 
stress fibers; (e) filopodia (16); (f) Drosophila neurosensory bristles (59); (g) outer pillar 
hair cell MT bundles (25). Spacing between ABPs is taken to be the minimal in-plane 
value for hexagonally-packed bundles, 37.5 nmδ =  (30). Extensional stiffnesses are, 

8 74.4 10  N and 2.6 10  Nf fE A − −= × × , for F-actin (40) and MTs (39), respectively. 
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Supplementary Material: Effect of fiber fracture on bundle bending stiffness 

Each original mother-fiber in the Finite Element model is divided into m daughter-fibers of equal 
length, fL L< , where subdivisions on nearest-neighbor mother-fibers are randomly aligned with 
respect to one another. For any bundle size ( , )M L  we find two distinct regimes delineated by 
the critical ratio, * Mφ ≈ , where : / fL Lφ =  is the fracture number density per fiber. For 

*φ φ� , the bending response of the bundle is unaffected by fiber fracture (Fig. S1). For *φ φ� , 
however, the bundle response is strongly affected by fiber fracture and characterized by a 
renormalized coupling parameter * 2: ( / )α α φ φ′ = . In this regime, the bundle behaves like m 
smaller sub-bundles of length fL . Fitting Eq. (2) to the numerical data by treating c as an 

adjustable parameter allows for the determination of *φ  (Fig. S2). 
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Fig. S1. Dependence of bundle bending stiffness on the fracture density, : / fL Lφ = , and the fiber 
coupling parameter, α, for M = 8. 
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Fig. S2. Dependence of parameter c in Eq. (2) on fracture density for various bundle sizes, M. A) 
Before renormalization. B) After renormalization by * / 8Mφ = . The lack of perfect collapse in 
(B) and the presence of the small kinks in (A) for 8M =  and 16M =  are due to the fact that Eq. 
(2) is only applicable theoretically to the low-fracture-density regime, *φ φ� . Above *φ  the 
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bundle consists of many sub-bundles that effectively have different boundary conditions than the 
original, mother-bundle.  
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7.2 Athermal Response

The following publications deal with the properties of stiff polymer networks at zero tem-
perature. In “Floppy Modes and Nonaffine Deformations in Random Fiber Networks” and
“Non-affine rubber elasticity for stiff polymer networks” the concept of the floppy modes
is presented and discussed in detail. It is shown that the anomalous scaling properties
of the elastic modulus in the random fibrous architecture, as determined by Wilhelm and
Frey [82], can be reproduced with a self-consistent effective medium theory. Furthermore,
a scaling analysis is presented that isolates the governing length-scale of the network.

It is argued that the floppy-mode framework is general enough to be applicable to a
variety of network structures, both in two and three dimensions. In “Mechanics of Bundled
Semiflexible Polymer Networks” the theory is combined with the WLB model and shown
to correctly capture the macroscopic rheological properties of an experimental in-vitro
system.

The article “Force distributions and force chains in random stiff fiber networks” dis-
cusses the properties of elastic forces. It contrasts with the previous publications that
primarily deal with the properties of the elastic energy/modulus. Analogies are drawn
with “propagation” of forces in granular media.



Floppy Modes and Nonaffine Deformations in Random Fiber Networks

Claus Heussinger and Erwin Frey
Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics,

Ludwig-Maximilians-Universität München, Theresienstrasse 37, D-80333 München, Germany
(Received 26 March 2006; published 8 September 2006)

We study the elasticity of random fiber networks. Starting from a microscopic picture of the nonaffine
deformation fields, we calculate the macroscopic elastic moduli both in a scaling theory and a self-
consistent effective medium theory. By relating nonaffinity to the low-energy excitations of the network
(‘‘floppy modes’’), we achieve a detailed characterization of the nonaffine deformations present in fibrous
networks.

DOI: 10.1103/PhysRevLett.97.105501 PACS numbers: 62.25.+g, 81.05.Lg, 87.16.Ka

Materials as different as granular matter, colloidal sus-
pensions, or lithospheric block systems share the common
property that they may exist in a highly fragile state [1,2].
While, in principle, able to withstand static shear stresses,
small changes in the loading conditions may lead to large
scale structural rearrangements or even to the complete
fluidization of the material [2–4]. To understand the ex-
traordinary mechanical properties of these systems, new
concepts have to be developed that go beyond the applica-
tion of classical elasticity theory and that sufficiently re-
flect the presence of the microstructure [5]. One example is
the ‘‘stress-only’’ approach to the elasticity of granular
materials [6], where the elimination of the kinematic de-
grees of freedom accounts for the infinite stiffness of the
grains. This seems to capture the inhomogeneous distribu-
tion of stresses in the sample and their concentration along
the so-called force chains [7]. In jammed systems of soft
spheres, on the other hand, fragility has recently been
shown to directly affect the deformation response of the
system. While it may induce anomalous deformation fields
that strongly deviate from the expectations of homogene-
ous elasticity (‘‘nonaffine’’ deformations) [8], it may also
lead to a proliferation of low-frequency vibrational states
far beyond the usual Debye behavior of ordinary solids [9].
It has been argued that these low-energy vibrations derive
from a set of zero-frequency modes (floppy modes) that are
present just below the jamming threshold [10] and relate to
the ability of the structure to internally rearrange without
any change in its potential energy. This concept of floppy
modes has also been used in connection with elastic per-
colation networks where the fragile state is reached by
diluting a certain fraction of nearest-neighbor contacts. In
these systems, constraint-counting arguments may be used
to determine the percolation transition at which the system
loses its rigidity [11].

Here our focus is on a particular class of heterogeneous
networks composed of cross-linked fibers. These systems
have recently been suggested as model systems for study-
ing the mechanical properties of paper sheets [12] or
biological networks of semiflexible polymers [13,14].

While these networks are known to have a rigidity perco-
lation transition at low densities [15,16], we show here that
even networks in the high-density regime in many ways
resemble the behavior of fragile matter, despite the fact that
they are far away from the percolation threshold. We
identify the relevant floppy modes and highlight their
importance for understanding the macroscopic elasticity
of the network. In particular, we will be able to explain the
occurrence of an anomalous intermediate scaling regime
observed in recent simulations [15,17,18]. In this regime,
the shear modulus was found to depend on density (mea-
sured relative to the percolation threshold) as G� ���

with a fractional exponent as large as � � 6:67 [15]. Also,
highly nonaffine deformations [17,19] as well as inhomo-
geneous distribution of stresses in the network have been
found. Heuristic nonaffinity measures have been devised
[17,19]; however, little is known about the actual nature of
the deformations present. While the expression ‘‘nonaf-
fine’’ is exclusively used to signal the absence of conven-
tional homogeneous elasticity, scarce positive
characterization of nonaffine deformations has been
achieved up to now [20]. This Letter tries to fill this gap
by characterizing in detail the nonaffine deformation field
present in fibrous networks. By relating nonaffinity to the
floppy modes of the structure, we can, starting from a
microscopic picture, calculate the macroscopic elastic
moduli in both a scaling theory and a self-consistent ef-
fective medium theory. In analogy with the affine theory of
rubber elasticity for flexible polymer gels, our approach
might very well serve as a second paradigm to understand
the elasticity of microstructured materials. Because of the
proximity to the fragile state, it might also be of relevance
to force transmission in granular media and to the phe-
nomenon of jamming.

The two-dimensional fiber network we consider is de-
fined by randomly placing N elastic fibers of length lf on a
plane of area A � L2 such that both the position and
orientation are uniformly distributed. We consider the
fiber-fiber intersections to be perfectly rigid but freely
rotatable cross-links that do not allow for relative sliding
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of the filaments. The randomness entails a distribution of
angles ���0; �� between two intersecting filaments

 P��� �
sin���

2
; (1)

while distances between neighboring intersections, the
segment lengths ls, follow an exponential distribution [21]

 P�ls� � hlsi
�1e�ls=hlsi: (2)

The mean segment length hlsi is inversely related to the line
density � � Nlf=A as hlsi � �=2�. The segments are
modeled as classical beams with cross-section radius r
and bending rigidity �. Loaded along their axis (‘‘stretch-
ing’’), such slender rods have a rather high stiffness
kk�ls� � 4�=lsr

2, while they are much softer with respect
to transverse deformations k?�ls� � 3�=l3s (‘‘bending’’).
Numerical simulations for the effective shear modulus G
of this network have identified a crossover scaling scenario
characterized by a length scale � � lf���lf��	 and 	 �
2:84 [15] that mediates the transition between two drasti-
cally different elastic regimes. For fiber radius r	 �, the
system is in an affine regime where the elastic response is
dominated mainly by stretching deformations homogene-
ously distributed throughout the sample. The modulus in
this regime is simply proportional to the typical stretching
stiffness Gaff / kk�hlsi� and independent of the fiber length
lf. This is in marked contrast to the second regime at r

�. There, only nonaffine bending deformations are excited,
and the modulus shows a strong dependence on fiber length
Gna / k?�hlsi��lf=hlsi�

��3. Using renormalization-group
language, the parameters r and lf may be viewed as scaling
fields (measured in units of the ‘‘lattice constant’’ hlsi). The
stretching dominated regime may then be characterized by
an (affine) fixed point at lf ! 1 and finite radius r � 0.
On the other hand, the (nonaffine) fixed point of the bend-
ing dominated regime is obtained by first letting r! 0 and
then performing lf ! 1. This suggests that the elastic
properties in the latter regime may be analyzed at vanish-
ing radius r � 0, that is, by putting the system on the stable
manifold of the fixed point.

In the following, we will exploit this limit to calculate
the modulus Gna in the nonaffine regime. Central to the
analysis is the recognition that in this limit the ratio of
bending to stretching stiffness k?=kk / r2 tends to zero
and bending deformations become increasingly soft. We
thus obtain the much simpler problem of a central-force
network. However, as only two fibers may intersect at a
cross-link, the coordination is z < 4 [22] and rigid regions
may not percolate through the system [23,24]. This implies
that, on a macroscopic level, the elastic moduli will be
zero, while microscopically displacements can be chosen
such that segment lengths need not be changed. These are
the floppy modes of the structure that entail the fragility of
the network in the bending dominated regime. It has been
argued that a critical coordination of zc � 4 is necessary to

give the network rigidity [24]. This value defines the ‘‘iso-
static’’ point, which in our network corresponds to taking
the limit lf ! 1. Thus, we arrive at the conclusion that
isostaticity and the onset of rigidity seem to be intimately
connected to the fixed point governing the nonaffine re-
gime. While it is usually not possible to deduce the specific
form of the floppy modes, the fibrous architecture allows
for their straightforward construction (see Fig. 1). In a first
step, we perform an arbitrary axial displacement �z of a
given (primary) fiber as a whole. This, of course, will also
affect the crossing (secondary) fibers such that the lengths
of interconnecting segments change. In a second step,
therefore, one has to account for the length constraints on
these segments by introducing cross-link deflections �yi �
��z cot�i transverse to the contour of the primary fiber. As
a result, all segment lengths remain unchanged to first
order in �z [25]. The construction is, therefore, suitable
to describe the linear response properties of the network,
while at the same time it offers an explanation for the
stiffening behavior found in fully nonlinear simulations
[19,26]. Any finite strain necessarily leads to the energeti-
cally more expensive stretching of bonds and, therefore, to
an increase of the modulus.

The identified modes take the form of localized excita-
tions that affect only single filaments and their immediate
surroundings. By superposition, we may therefore con-
struct a displacement field that allows the calculation of
macroscopic quantities such as the elastic moduli. To
achieve this, we need to know the typical magnitude of
displacements �z of a given fiber relative to its surround-
ings, the crossing secondary fibers. Since �z is defined on
the scale of the complete fiber, we do not expect any
dependence on average segment length hlsi, such that �z /
lf remains as the only conceivable possibility. Alterna-
tively, one may obtain the same result by assuming that
the individual fiber centers follow the macroscopic strain

δz

y

θ

z

y

FIG. 1 (color online). Construction of a floppy mode by axial
displacement �z of the primary fiber (drawn horizontally) and
subsequent transverse deflection �y � ��z cot� of the cross-links
to restore the segment lengths on the secondary fibers (dashed
lines, possible to first order in �z). Initial cross-link positions are
marked as black squares, final configurations as green circles.
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field in an affine way. Then relative displacements of
centers of neighboring fibers would be proportional to their
typical distance. This is of the order filament length lf and
again �z / lf. Note, however, that the assumption of affine
displacement of the fiber centers cannot be literally true for
fibers intersecting at very small angles �! 0. To avoid a
diverging transverse deflection �yi � ��z cot�! 1, the
two fibers will most likely not experience any relative
motion at all and �z! 0. Truly affine displacements
can, therefore, be established only on scales larger than
the filament length. It should also be clear that the assump-
tion of affine displacements of the fiber centers is different
from the usual approach of assigning affine deformations
on the scale of the single segment. The latter would lead to
deformations �aff / ls, proportional to the length ls of the
segment. Instead, axial displacements of the fiber as a
whole are, by construction of the floppy mode, directly
translated into nonaffine deformations �na / lf, which do
not depend on the length of the segment.

Restoring the radius r to its finite value, the floppy
modes acquire energy and lead to bending of the fibers.
A segment of length ls will then typically store the energy
wb�ls� ’ ��

2
na=l

3
s ’ �l

2
f=l

3
s . By averaging over the segment

length distribution Eq. (2), one may calculate the average
bending energy hWbi, stored in a fiber consisting of n ’ �lf
segments,

 hWbi ’ �lf
Z 1
lmin

dlsP�ls�
��2

na

l3s
: (3)

We assume the integral to be regularized by a lower cutoff
length lmin that we now determine in a self-consistent
manner. Physically, lmin corresponds to the shortest seg-
ments along the fiber that contribute to the elastic energy.
Even though we know [see Eq. (2)] that arbitrarily short
segments do exist, their high bending stiffness k?�ls� / l�3

s
makes their deformation increasingly expensive. Segments
with length ls < lmin will, therefore, be able to relax from
their floppy mode deformation �na, thereby reducing their
bending energy from wb�lmin� to nearly zero. However, due
to the length constraints, this relaxation necessarily leads to
the movement of an entire secondary fiber and to the
excitation of a floppy mode there. By balancing wb�lmin� �
hWbi, this gives lmin ’ 1=�2lf and for the average bending
energy of a single fiber hWbi ’ �=lf��lf�6. This implies for
the modulus Gna ’ �=lfhWbi / �

7, which compares well
with the simulation result of � � 6:67. What is more, by
equating the energy hWbi with hWsi ’ �lfr

�2 valid in the
affine stretching regime, one can also infer the crossover
exponent 	 � 3.

In summary, we have succeeded in explaining the elas-
ticity of the bending dominated regime starting from the
microscopic picture of the floppy modes that characterize
directly the deformation field deep inside the nonaffine
regime. Alternatively, one might try to understand the

emergent nonaffinity in a perturbative approach that con-
siders deviations from an affine reference state. Such a line
of reasoning has recently been suggested in Ref. [18],
where nonaffine boundary layers, growing from the fila-
ment ends, are assumed to perturb the perfect affine order.
However, comparing with their simulation data, the au-
thors could not confirm the scaling picture unambiguously
and acknowledged the need for further numerical as well as
improved theoretical work [18]. Thus, nonaffine elasticity
in fibrous networks appears to be intrinsically a nonpertur-
bative strong-coupling phenomenon for which the floppy
mode picture provides the correct low-energy excitations.
As we will explicitly show next, one particular strength of
our approach is that the scaling picture can readily be
extended to a full theory that self-consistently calculates
the modulus in a nonaffine effective medium theory.

To set up the theory, we consider a single filament
together with its cross-links that provide the coupling to
the medium. The energy of this assembly consists of two
parts. First, the bending energy of the primary fiber

 Wb�y�z�� �
�
2

Z �@2y

@z2

�
2
dz; (4)

due to a transverse deflection y�z�. A second stretching
energy contribution arises whenever a cross-link deflection
yi � y�zi� differs from its prescribed value �yi � ��z cot�i
and may be written in the form of an harmonic confining
potential Ws�yi� �

1
2 ki�yi � �yi�

2 that acts individually on
each of the n ’ �lf cross-links. It allows the filament to
reduce its own energy at the cost of deforming the elastic
matrix into which it is imbedded. Performing a configura-
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FIG. 2 (color online). Graphical solution of Eqs. (5) and (6) for
various numbers n of cross-links obtained by calculating the
intersection between the left side of the equation hWilhs (bisect-
ing line, dashed curve) with the right side hWirhs (solid curves).
The different curves for a given n correspond to ensembles of
varying size. They seem to diverge in the limit hWirhs 	 hWilhs.
In fact, there (and only there) the averaging procedure is ill-
defined [26]. Inset: Resulting dependence of hWi on n.
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tional average h:i over cross-link positions zi and orienta-
tions �i, we obtain the average elastic energy stored in a
single fiber as

 hWi �
�

min
y�z�

�
Wb�y�z�� �

Xn
i�1

ki
2
�yi � �yi�2

��
: (5)

To solve the model, we further need to specify the stiff-
ness ki � k��i� of the medium that relates to the relaxation
mode of a cross-link on the primary filament from its
floppy mode deflection. As we have argued above, any
relaxation of this kind must act as axial displacement on a
secondary fiber, thus exciting a new floppy mode there.
The energy scale associated with this is hWi such that we
can write

 k��i� � 2hWi
sin2��i�

�z2 ; (6)

where the angular dependence derives from the projection
onto the axis of the secondary filament. Equations (5) and
(6) represent a closed set of equations to calculate the
configurationally averaged deformation energy hWi as a
function of the number of cross-links n. In implementing
this scheme, we have generated ensembles of filaments
with a distribution of cross-linking angles as given by
Eq. (1) and segment lengths according to Eq. (2). Note
that there is no free parameter in this calculation. The
equations are solved graphically in Fig. 2 by plotting
both sides of Eq. (5) as a function of hWi. The point of
intersection, which solves the equation, is shown in the
inset as a function of the number of cross-links n. For the
same parameter window as used in the network simulations
[15], it yields the scaling behavior of hWi / n5:75. This
implies for the modulus the exponent of � � 6:75, which
improves upon the simple scaling picture presented above
and provides a very accurate calculation of the scaling
exponent �.

In conclusion, we have succeeded in deriving the macro-
scopic elasticity of random fibrous networks starting from
a microscopic description of the displacement field in a
manner that does not rely on the notion of affine deforma-
tions. We have given a floppy mode construction that may
be applied to any two- or three-dimensional network with
fibrous architecture, for example, paper or biological net-
works of semiflexible filaments. It may also be shown to be
relevant to systems where the constraint of straight fibers is
relaxed [26]. The unusually strong density dependence of
the modulus found here is a consequence of the exponen-
tial segment length distribution Eq. (2) and the presence of
the length scale lmin. While identification of the floppy
modes has been recognized to be highly important for a
description of force transmission in granular media or the
jamming transition in colloidal systems, one can rarely
give the exact form of these zero-energy excitations. On
the contrary, we have achieved an explicit construction of

the floppy modes that can be put in the form of localized
elementary excitations affecting only single filaments and
their immediate surroundings.

It is a pleasure to acknowledge fruitful discussions with
David Nelson and Mikko Alava.
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Non-affine rubber elasticity for stiff polymer networks
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We present a theory for the elasticity of cross-linked stiff polymer networks. Stiff polymers, unlike
their flexible counterparts, are highly anisotropic elastic objects. Similar to mechanical beams
stiff polymers easily deform in bending, while they are much stiffer with respect to tensile forces
(“stretching”). Previous approaches have based network elasticity on the central-force stretching
mode, in a manner similar to classical rubber elasticity for flexible polymers. In contrast, our
theory properly accounts for the soft bending response inherent to any stiff polymer network. A
self-consistent effective medium approach is used to calculate the macroscopic elastic moduli starting
from a microscopic characterization of the deformation field in terms of “floppy modes” – low-energy
bending excitations that retain a high degree of non-affinity. The length-scale characterizing the
emergent non-affinity is given by the “fiber length” lf , defined as the scale over which the polymers
remain straight. The calculated scaling properties for the shear modulus are in excellent agreement
with the results of recent simulations obtained in two-dimensional model networks. Furthermore,
our theory can be applied to rationalize bulk rheological data in reconstituted actin networks.

PACS numbers: 62.25.+g, 87.16.Ka, 81.05.Lg

I. INTRODUCTION

The elasticity of flexible polymer gels is successfully
described by the theory of rubber elasticity [1]. It as-
cribes the resistance to deformation to a reduction of
conformational entropy induced by a changing end-to-
end distance of individual polymer strands. In the classic
approach, developed by Kuhn and others [2], the magni-
tude of the deformation of a single constituent polymer
is usually assumed to derive from the macroscopically in-
duced strain in an affine way. With this assumption the
network problem is reduced to calculating the response
of a single chain. In this sense affine deformations repre-
sent a mean-field assumption that neglects spatial corre-
lations and therefore the coupling between the network
structure (“architecture”) and the mechanical properties
of its constituents.

In recent years a different class of cross-linked net-
works made of semiflexible or stiff polymers have gained
widespread interest. Their importance for biological sys-
tems as the cytoskeleton or extra-cellular matrix makes
understanding their properties highly rewarding [3]. Out
of the variety of biological stiff polymers, F-actin has
emerged as a model system, which allows precise in vitro

rheological measurements, for example in determining
the (complex) frequency-dependent shear modulus G(ω)
and in particular its elastic component, the plateau mod-
ulus G0 at intermediate frequencies. In these experi-
ments various types of cross-linking proteins are being
used [4, 5, 6, 7] and the influence of the degree of cross-
linking on the elastic modulus is investigated.

Stiff polymers, unlike their flexible counterparts, are
highly anisotropic in their elastic response and may be
characterized in terms of two qualitatively different defor-
mation modes (see Fig. 1) [8, 9]. The linear response to

longitudinal forces acting parallel to the contour (stretch-
ing/compression), is due to the presence of thermally ex-
cited undulations similar to the (isotropic) stiffness of
flexible polymers. The resulting effective spring constant
of a stiff polymer of contour length ls, k‖ ∼ lp/l4s, de-
pends on the temperature-dependent persistence length
lp ∼ T−1, which indicates the entropic origin. On the
other hand, the resistance of the polymer to transverse

forces (bending) is predominantly an energetic effect,
leading to an increase in energy rather than to a decrease
in entropy. Subsequently, the corresponding spring con-
stant k⊥ ∼ l−3

s is independent of temperature.

lf

ls

stretching

bending

FIG. 1: Sketch of a stiff polymer network with filaments which
are straight on a scale lf and where the distances between
crosslinks (“polymer segments”) on a given filament is de-
noted by ls. The response of the constituent stiff polymers
to external forces is anisotropic with spring constants k‖ and
k⊥, characterizing their resistance to stretching and bending
deformations, respectively.

The presence of two elementary deformation modes
complicates, but also enriches, the theoretical analysis of
stiff polymer networks since it is not obvious which of the
modes, or combination thereof, will dominate the macro-
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scopic elastic response [10, 11]. Leaving aside these dif-
ficulties, recent approaches [9, 12, 13] have still adopted
straightforward extensions of rubber elasticity to stiff
polymer networks by assuming affine deformations to be
present down to the scale of the individual polymer seg-
ment – the part of a polymer filament that connects two
neighbouring cross-links (see Fig.1). In these models no
bending deformations are present, leaving the stretching
mode as the only possible source of elasticity.

In many systems of interest, however, the large value of
the persistence length lp/l ≫ 1 calls this affine approach
into question. This separation of length scales implies
that the bending mode is in fact soft as compared to the
stretching mode, since k‖/k⊥ ∼ lp/l ≫ 1. One would
therefore expect the elastic energy to be dominated by
low-energy bending deformations instead of highly ex-
pensive stretching modes [14]. Interestingly, recent sim-
ulations on random fibrous networks have shown that this
is not always the case [10, 11, 15, 16, 17]. There, it was
found that in networks with infinitely long filaments (for
fixed density) the soft bending mode is suppressed and
the elastic modulus is entirely given in terms of the stiffer
stretching mode, similar to springs connected in paral-
lel. In contrast, the same simulations performed in the
more realistic situation of finite filament length have in-
deed identified an elastic regime that is dominated by soft
bending deformations. The filament length thus strongly
influences the elastic properties and is crucial for under-
standing the observed behaviour. The affine theory, by
working on the smaller scale of the polymer segments, is
incapable of accounting for these effects.

In the present article we expand on our recent publi-
cation [18] to develop an elastic theory that works on the
scale of the whole polymer filament. The theory naturally
explains the presence of a bending dominated regime as
well as its suppression with increasing filament length. It
is expected to be applicable to a broad class of filamen-
tous networks with a soft bending mode.

Similar to the classic theory of rubber elasticity it
assumes that the cross-links adjust to the macroscop-
ically applied strain without showing thermal fluctua-
tions. In contrast to rubber elasticity, however, the cross-
link movemens are chosen such that the polymer end-to-
end distances are kept unchanged. This automatically
avoids energetically highly expensive stretching deforma-
tions and results in elastic moduli that derive from the
soft bending mode only.

In the following, we assume that stiff polymers, char-
acterized by k‖/k⊥ ≫ 1, effectively behave as if they
were strictly inextensible bars, i.e. having an infinite
stretching stiffness k‖ → ∞. Subsequently, we will con-
struct sets of “admissible” cross-link displacements that
respect this inextensibility and thus retain a highly non-
affine character. These displacement modes are referred
to as “floppy modes” [19], highlighting the fact that in
an equivalent network of central force springs they would
carry no energy. Here, the finite bending stiffness of
the polymers associates an elastic energy to each mode,

which we use to calculate the macroscopic elastic con-
stants of the network.

Section II will be concerned with the analysis of net-
works in the limit of diverging stretching stiffness k‖ →
∞, which allows us to treat stiff polymers as inextensible
bars. We will introduce the concept of the floppy modes
and give an explicit construction valid for a broad class
of network architectures.

In Section III we discuss the energy involved with ex-
citing floppy modes in networks of stiff polymers, char-
acterized by a finite, but soft, bending stiffness. Specif-
ically, we will develop a theory that allows to calculate
the network elastic constants in a self-consistent manner.

Section IV is devoted to the specific architecture of
random fibrous networks in a planar geometry (two di-
mensonal), where we check our ideas against simulations.

II. FLOPPY MODES

Here, we are concerned with some general properties
of networks of inextensible bars, so called frameworks.
While the bars are assumed to be perfectly rigid, they
are allowed to freely rotate at the cross-links (“vertices”).
In effect, both the stretching and the bending mode are
eliminated, which leaves us with a purely geometric prob-
lem. By applying methods from rigidity theory [19] we
will find that polymer networks when viewed as frame-
works are not rigid and possess zero-energy deformation
modes (“floppy modes”), for which we will give an ex-
plicit geometric construction. These modes, which may
be viewed as the analog of the zero-energy shear modes
of regular square lattices, characterize the deformation
field of the network under external strain. By account-
ing for the finite bending stiffness of the polymers, they
are used to calculate the elastic energy stored in polymer
networks and thus the elastic moduli.

A. Maxwell counting

It has first been realized by Maxwell [20] that a frame-
work, consisting of v vertices and b bars, can undergo
a transition from a floppy to a rigid state by increas-
ing the coordination number z. Assuming that each bar
represents an independent constraint for the total of dv
degrees of freedom in d spatial dimensions, Maxwell de-
rived the condition b − dv = 0 determining the rigidity
transition. As the number of vertices can be rewritten
in terms of the coordination number as v = 2b/z, this
immediately yields a critical coordination of zc = 2d.
According to this simple Maxwell counting rule, frame-
works are rigid, whenever their vertices have more than
zc neighbors, while they will be floppy and allow for in-
ternal rearrangements otherwise.

With regard to stiff polymer networks this transition
may be used to set up a classification where the elas-
tic energy is dominated by either bending or stretching
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modes. While for z < zc bending modes can stabilize
the otherwise floppy (zero-energy) central-force network,
they only provide minor contributions to the energy once
z > zc. The honeycomb lattice in 2d, for example, has
a coordination of z = 3 and is therefore bending domi-
nated, while the triangular lattice with z = 6 is clearly
rigid and therefore stretching dominated. Imposing a de-
formation necessarily leads to the stretching of bonds. A
particular case is the square lattice in two dimensions,
which has precisely the critical coordination z = zc = 4.
Although being floppy with respect to shear deforma-
tions, the network may be stabilised by introducing suit-
able boundary constraints or by adding additional bars
along the diagonals of some of the squares. It turns out
that in the limit of infinite system size a non-extensive
number of diagonal bars (which scales as the square root
of the system size) is needed to stabilise the network [21].

Maxwell-counting is only approximate, since one can
always add redundant bars that do not constrain any de-
grees of freedom. This effect is taken into account by the
modified Maxwell relation b−dv = s−m [22]. In this pic-
ture redundant bars create overconstrained regions where
a total of s states of self-equilibrated internal stresses may
exist. In general, a state of self-stress is defined as a set
of bar tensions that is in static equilibrium with zero ex-
ternal force applied. At the same time underconstrained
regions arise that allow for m zero energy deformation
modes, i.e. internal rearrangments that can be accomo-
dated without changing the lengths of any of the bars to
first order in the magnitude of the imposed strain. These
are usually referred to as mechanisms or floppy modes.

In principle, the floppy modes of a pin-jointed struc-
ture may be found by studying the kinematic matrix C

which relates vertex displacements d to segment exten-
sions e = Cd [23]. The kinematic matrix thus constitutes
a linear relation between displacements and extensions,
which is only true for infinitesimally small displacements.
The entries to the matrix can then easily be identified by
considering the extension of a single bar oriented (in two
dimensions) at an angle φ to the horizontal. For given
displacements di = (ui, vi) at the two vertices i = 1, 2
the extension is found as

e = (u2 − u1) cosφ + (v2 − v1) sin φ . (1)

The floppy modes then correspond to those vertex dis-
placements that do not lead to any extensions in the bars.
This amounts to calculating the null-space of the matrix,
i.e. Cd0 = 0.

An elementary but illustrative example of a bar/joint
network (adopted from Ref. [24]) is the “chair” shown
in Fig. 2a. Having b = 4 bars and v = 2 vertices,
Maxwell’s counting rule would imply that the structure is
marginally rigid. Actually, there is also one floppy mode
m = 1 as well as one state of self-stress s = 1. The former
corresponds to the (infinitesimal) movement of the hori-
zontal bar forming the seat, while the latter corresponds
to a tension in the two vertical bars making the back.

For regular systems it is sometimes possible to guess

S

FM

c)

b)a)

FIG. 2: Illustration of the floppy modes. The “chair” in a) has
one floppy mode (FM) corresponding to the axial movement
of the horizontal bar, as well as one state of self-stress (S)
located in the two vertical bars. The floppy modes of the
honeycomb lattice may be constructed, b) from the global
shear deformations along any of the three dashed lines (as
well as their parallels), or, c) from localized librations.

the modes. Consider, for the purpose of illustration, a
honeycomb lattice in two dimensions, where a coordi-
nation of z = 3 implies b − 2v = −v/2. There is, ac-
cordingly, half a floppy mode per vertex. These modes
are most easily identified with shear deformations along
lines of symmetry (Fig. 2b). Probing the shear response
of the honeycomb along a given direction will cause each
of the N layers of cells to be displaced by a small amount
δ, which eventually has to add up to the externally im-
posed deformation ∆ = Nδ. Thus, there is “sharing” of
the deformations between the individual cells and each
layer contributes a small amount to fulfilling the con-
straints imposed by the macroscopical strain field. In
other words, the deformation field in the honeycomb lat-
tice is affine down to the scale of the individual cell, which
experiences deformations δ = ∆/N ∝ lcell proportional
to its own size.

Another possibility to construct the floppy modes of
the honeycomb network is given by the librations of indi-
vidual hexagons [25] (see Fig. 2c). These librations are,
in contrast to the shear displacements, localized modes
that are confined to a single cell and its immediate sur-
roundings. Since there is one libration per cell and each
of the six corresponding vertices belongs to three cells,
this also makes one mode for every two vertices.
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B. Floppy modes of stiff polymer networks

Proteins used to cross-link stiff polymers into networks
often have only two heads [26] such that there can only
be two-, three- and four-fold connected vertices. The
average coordination number in stiff polymer networks is
therefore z < 4, which would place it below the rigidity
transition and render the network bending dominated.

In contrast to the very regular structures discussed
above, stiff polymer networks are usually highly random.
Nevertheless, as we will see below, the floppy modes can
be constructed quite easily on scales lf over which the
undeformed polymers can be assumed to be represented
by straight fibers. For isolated polymers the length-scale
lf can be identified with the persistence length lp, while
in networks the origin may be different and for example
a consequence of the network generating process itself.
It is the presence of the length-scale lf which renders the
structure of stiff polymer networks qualitatively different
from flexible polymer gels. The resulting fibrous appear-
ance may be inspected in the figures of Refs. [27, 28, 29].
We have recently argued that the “fiber length” lf plays
the role of the size of an effective unit cell [11]. This has
to be contrasted to flexible polymer gels, where the unit
size is set by the mesh-size. In the following we use the
word “fiber” in connection with the length lf over which
the polymer remains straight. In later sections we will in-
troduce a simple model system where fiber and polymer
length are equal.

Consider (see Fig. 3a,b) a single (primary) fiber α
of length lf , which may be part of a longer polymer.
It is imbedded into a network of other (secondary, ter-
tiary, . . .) fibers. Secondary fibers αi are assumed to in-
tersect the primary fiber α at the crosslinks i = 1 . . . ncl,
while tertiary fibers only intersect secondary fibers, e.t.c.
The floppy-mode construction proceeds in two stages
during which only the cross-links on the primary fiber
are being moved. The rest of the network, in particular
the neighbouring secondary filaments will remain static
such that the floppy mode stays highly localized similar
to the librations of the hexagons discussed above. In the
first step, we perform a small axial displacement δzα of
the primary fiber α as a whole. The axial movement of
the cross-links pertaining to this fiber induces a change in
length of all neighbouring segments on the crossing sec-
ondary fibers. In the second step, therefore, one has to
account for the length constraints on these segments by
introducing cross-link deflections ȳα,i transverse to the
primary fiber. It turns out that to first order in δzα all
segment lengths can be kept at their repose length by
choosing

ȳα,i = −δzα cot θα,i êα,i + ȳ⊥α,i , (2)

where θα,i is the angle between the two crossing fibers α
and αi at crosslink i. We denote by êα,i a unit vector
transverse to the primary fiber lying in the plane spanned
by the two fibers, and by ȳ⊥α,i an arbitrary vector per-
pendicular to this plane.

z

y

α iθ

i−1

i−1

α i+1α i

α

y

α

α i

α i

α i

α iθ

δz

δzα

y

δz

i

a)

i+1

α

c)

b)

FIG. 3: Construction of a floppy mode starting from the
initial geometry as drawn in a). In b), the horizontal fiber
is moved, while the surrounding fibers remain in their orig-
inal positions. This leads to the new cross-link positions
(green circles) with transverse deflection ȳα,i = − cot θα,i δzα

(Eq. (2)). The component ȳ⊥α,i (not drawn) is oriented per-
pendicular to the plane of the two fibers. In c), also the
secondary fiber is moved, such that the cross-link is now de-
flected according to yα,i = ȳα,i + δzαi

/ sin θα,i (Eq. (3)). The
solid green line represents the actual contour of the deformed
fiber obtained by minimizing the bending energy along the
entire fiber (see Eq. (5)).

We would like to emphasize that the construction only
works for infinitesimal δzα, while finite displacements nec-
essarily lead to changes in bond lengths and therefore to
stretching of bonds. As will be explained in more de-
tail in Section IVA this has dramatic consequences on
the nonlinear elasticity of the network, leading to strong
strain stiffening behaviour.

The construction can be performed for any of the
α = 1, . . . , Nf fibers, such that precisely Nf floppy
modes are identified this way [42]. For the mode lo-
calized around fiber α one may define a vector Yα =
(0 . . . , ȳα,1, . . . , ȳα,ncl

, 0, . . .), where the deflections of all
crosslinks in the network are combined. It has nonzero
components only at crosslinks belonging to fiber α. With
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respect to the standard vector scalar product one can
then show that the set of floppy modes {Yα} is linearly
independent, however, not orthogonal. Since a given
crosslink i always belongs to two filaments at the same
time, there is obviously a coupling between the two cor-
responding modes.

In analogy to the shear modes of the honeycomb lat-
tice one may also construct extended floppy modes for
the fibrous network by superposition of the different Yα.
This amounts to relaxing the constraint that a single fiber
moves in a static environment where neighbouring fibers
remain fixed to their initial positions. Instead, a different
δzα is assigned to each of the α = 1, . . . , Nf fibers. In this
case, we find (see Fig. 3c) that the crosslink deflection
ȳα,i of Eq. (2) has to be modified by a term δzαi

/ sin θα,i

due to the additional movement δzαi
of the neighbouring

filament αi at crosslink i. This amounts to the overall
deflection

yα,i = ȳα,i +
δzαi

sin θα,i
êα,i . (3)

For the particular architecture of a random fiber net-
work in two dimensions (2d), to be introduced below (see
Section IV), we have also obtained an orthornormal set of
floppy modes. The appropriate values of yα,i and δzα are
found by performing a singular value decomposition of
the compatibility matrix C. One of the modes is visual-
ized in Fig. 4, where the black lines indicate the floppy-
mode displacements of the crosslinks. One remarkable
property is the heterogeneous distribution of amplitudes
x, which leads to polynomial tails in the probability dis-
tribution, P (x) ∼ x−3 (see Fig. 5). The exponent is a
direct consequence of the random orientation of the fila-
ments which induces a probability distribution of angles
θ between two intersecting filaments, P (θ) ∼ sin θ [43].
By a transformation of variables to the floppy mode de-
flection ȳ ∼ cot θ (and thus to x) one finds a distribution
P (ȳ) ∼ sin3 θ(ȳ) → ȳ−3, where the latter limit corre-
sponds to large ȳ ≫ 1.

III. ENERGY OF FLOPPY MODES

Having constructed the floppy modes of the fibrous
polymer network we now proceed to determine the energy
associated with their excitation.

A. Effective medium theory

We calculate the response of the network to the axial
movement δzα of only one fiber α. This proceeds by first
calculating the energy stored in the primary fiber, given
that the surrounding fibers are not allowed to move. Sub-
sequently, we will relax this constraint and also account
for the energy induced in the secondary (tertiary, . . .)
fibers. We will find that infinitely many levels of neigh-

FIG. 4: Floppy mode of a random fiber network with 225
fibers (see Sect.IV). A fiber has the length of one third of the
system size. Grey lines represent the network, black lines the
floppy mode displacements. Note, that the overall ampitude
of the mode is arbitrary.
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FIG. 5: Normalized probability distributions of absolute val-
ues of floppy mode displacements, as shown in Fig. 4. The
distributions for different fiber numbers Nf can be rescaled
on a single master curve by changing the overall amplitude of
the modes.

boring fibers can be included by a formal resummation
of the energy terms in a Cayley-tree approximation.

Quite generally, the bending energy of a polymer fiber
with weakly undulating contour can be written as

Wb[yα] =
κ

2

∫ lf

0

(

d2yα

ds2

)2

ds , (4)

where yα = y(sα) denotes the transverse deflection at
point sα along the backbone of the polymer α. The
bending rigidity κ is related to the peristence length by
κ = lpkBT . The actual value of the energy contained in a
localized floppy mode of amplitude δzα can then be found
by minimizing Wb for the given set of crosslink positions
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y(sα,i)
!
= ȳα,i (taken from Eq. (2)), and gives

W0(δzα) = min
y(sα), y(sα,i)=ȳα,i

Wb[yα] . (5)

Technically, this is achieved by performing a cu-
bic spline interpolation through the set of points
{(sα,i, ȳα,i)}i=1,...,ncl

. This can be shown to be equiv-
alent to the minimization of the bending energy in
Eq. (4) [30]. As d3yα,i/ds3 is proportional to the trans-
verse force in the fiber, the discontinuities of the cubic
spline in its third derivative reflect the external trans-
verse force that is needed to keep the fiber in its deformed
shape.

Now, we assume that neighbouring secondary fibers are
free to react to the movement of the primary fiber. This
allows the fiber deflection yα,i to be different from ȳα,i

and may lead to a reduction of the bending energy on the
primary fiber, however, at the cost of deforming the sur-
rounding, i.e. by spreading the mode to the neighbouring
filaments. The amplitudes of the so generated secondary
floppy modes may be found from solving Eq. (3) for δzαi

.
We thus find

δzαi
= sin θα,i (yα,i − ȳα,i) · êα,i . (6)

which highlights the fact that a secondary mode of am-
plitude δzαi

occurs when the actual transverse deflec-
tion yα,i is different from the floppy-mode prescription
ȳα,i. Furthermore, due to the scalar product with êα,i,
the displacement y⊥i perpendicular to the plane defined
by the two intersecting polymers does not contribute,
y⊥α,i · êα,i = 0.

With Eq. (6) we find that Eq. (5) has to be modified
by the bending energy contribution W0 from the neigh-
bouring filaments giving

W1(δzα) = min
y(sα)

(

Wb[yα] +

ncl
∑

i=1

W0(δzαi
)

)

. (7)

Unlike in Eq. (5), where the crosslink variables on the
primary fiber were constrained to be y(sα,i) = ȳα,i, here
they remain unconstrained and move such that the to-
tal energy, deriving from both primary and secondary
fibers, is minimized. Note, however, that the deflec-
tions on the secondary fibers are still constrained and
given by Eq. (2), y(sαi,j) = ȳαi,j . This may be cor-
rected for by taking into account further levels of fila-
ments (tertiary, . . .), thus defining a sequence of energies
(W0, W1, W2, ...W∞) the fixed point of which is found by
substituting on both sides of Eq. (7) one and the same
asymptotic function W∞.

Since the resulting expression still depends on the
quenched random network structure in a complicated
way, we have recently proposed an effective medium ap-
proximation that uses the averaged 〈[W∞]〉 ≡ W in-
stead [18]. For reasons that will immediately become
apparent we have defined two averaging procedures. The
angular brackets 〈.〉 denote averaging over the random

variables on the primary fiber, the crosslink positions sα,i

and angles θα,i. The probability distributions of these
variables provide the most important characterization of
the architecture of the network. The brackets [.] denote
averaging with respect to the remaining randomness in
the subsequent hierarchies of fibers. Mathematically, the
effective medium approximation is implemented by inter-
changing this latter average with the minimization oper-
ation. Physically, this amounts to assuming that one and
the same medium (W ) is felt by all the crosslinks on the
primary fiber. One thus arrives at the final equation

W (δzα) =

〈

min
y(sα)

(

Wb[yα] +

ncl
∑

i=1

W (δzαi
)

)〉

, (8)

where δzαi
is given by Eq. (6). In principle, Eq. (8) has to

be solved self-consistently for the function W (x). Since
we are concerned with small displacements only, the en-
ergy may be expanded to harmonic order as W (x) =
kx2/2, which gives

W (δzαi
) =

1

2
k sin2 θα,i (yα,i − ȳα,i)

2
, (9)

where we defined yα,i = yα,i · êα,i and similar for ȳα,i.
With this parametrization Eq.(8) has to be solved for the
single unknown parameter k.

Eq. (8) can be interpreted as follows. The total energy
stored in the network upon axially moving a single fiber
the amount δzα has two contributions. The first term,
corresponding to the bending energy of the primary fiber,
Wb, dominates if the crosslinks follow the local floppy-
mode associated with δzα, such that δzαi

≈ 0 (yα,i ≈
ȳα,i). On the other hand, the energy is mainly stored in
the surrounding medium if the crosslinks deviate strongly
from the floppy-mode, yα,i ≈ 0, in which case the bending
energy vanishes, Wb ≈ 0. Since medium deformations
can only occur in the form of floppy-modes, the stiffness
k of the medium is the same as the stiffness of the fiber.
This allows to solve the equation self-consistently, which
can easily be done numerically as will be explained in
the appendix. There, we will also solve Eq. (8) for some
exemplary network structures.

It is worth mentioning that Eqs. (8) and (9) may be
interpreted as the zero temperature limit (or the saddle-
point approximation) to a fluctuating stiff polymer in a
random array of harmonic pinning sites with stiffnesses
given by k sin2 θα,i (see Fig. 6). Compared to the “bare
floppion” defined by the Eqs.(2)-(5), the excitation given
by Eq. (8) is “dressed” and incorporates the interactions
with the medium on a Cayley-tree level.

B. Elastic Modulus

In principle, the elastic modulus can be found by mini-
mizing the energy, consisting of contributions of the type
of Eq. (5) from each of the Nf fibers, with respect to
the variables δzα [44]. Compared to the full problem of
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having to minimize the energy with respect to all degrees
of freedom, that is all Ncl ∼ Nfncl crosslink coordinates,
this is only a minimization with respect to Nf ≪ Ncl

variables. Still, this poses a challenging quenched disor-
der problem which can only be tackled numerically.

Here we reduce the calculation to an effective single-
fiber problem, by making a simplifying assumption about
the magnitude of the individual δzα. We assume, that
the fiber centers-of-mass rα

cm = (Xα, Yα, Zα) follow the
macroscopic strain field in an affine way, just as the cen-
ters of the hexagons did in the honeycomb lattice. This
is equivalent to assuming that the displacement field is
affine on the scale of the fiber length lf . Note, how-
ever, that this does by no means imply that the elastic
elements themselves undergo affine deformations, as will
become clear below [45]. For a given macroscopic shear
γ ≡ γxy we find δr

α
cm = γYαêx and thus

δzα = γYα cosφα , (10)

which is just the projection of the affine displacement on
the fiber axis, oriented at an angle φα ∈ [−π/2, π/2] with
respect to the x-axis. Using Eqs. (10) and (2) one can
write Eq. (3) as

yα,i = −δzrel
α cot θα,iêα,i + ȳ⊥α,i , (11)

where we have defined

δzrel
α = γ

(

Yα cosφα − Yαi

cos(θα,i + φα)

cos θα,i

)

. (12)

Upon comparison of Eq. (11) with Eq. (2) one may inter-
pret δzrel

α as specifying the movement of the primary fiber
relative to its surrounding. Note, however, that this rel-
ative displacement δzrel

α depends on the orientations φα

and φα + θα,i of the primary and the secondary fibers,
as well as on the arc-length along the primary fiber (via
Yαi

). In contrast to Eq. (2), which follows from mov-
ing the primary fiber in a fixed environment, Eqs. (11)
and (12) are derived from a joint movement of all fibers.
For the following we are only interested in the typical
magnitude of δzrel

α , which may be obtained by averaging
over the angles φα and estimating the typical distance
between the center of masses of the intersecting fibers as
Yα − Yαi

∼ lf . We thus find that δzrel
α ∝ γlf .

By assuming affine displacements of the fiber centers,
we have thus succeeded in reducing the many-body prob-
lem of the movement δzα of Nf interacting fibers to the
case of a single fiber moving the amount δzrel

α ∼ γlf rela-
tive to its surrounding. The modulus can thus be calcu-
lated from the knowledge of the energy W (δzrel) calcu-
lated in the previous section. From the definition of the
modulus we find that Gγ2/2 = NfW/V , where V is the
volume of the system.

It should be made clear that the assumption of affine
displacements of the fiber centers is different from the
usual approach of assigning affine deformations on the
scale of the single polymer segment [9, 12, 13]. The latter
would lead to deformations δaff ∝ γls, proportional to the

FIG. 6: The energy in Eq. (8) is that of a stiff polymer at-
tached to springs of variable stiffness. It may therefore be in-
terpreted as a polymer in a random potential. The potential
is attractive and localized at pinning sites given by Eq. (2).

length ls of the segment. Instead, axial displacements of
the fiber as a whole are, by construction of the floppy
mode, directly translated into non-affine deformations
δna ∝ γlf , which do not depend on the length of the
segment but rather on the scale of the fiber length lf . We
would like to emphasize the subtle difference betweeen
“affine displacements” of single points (the fiber centers-
of-mass), and “affine deformations” of fiber segments of
length ls.

IV. RANDOM NETWORK IN 2D

Having presented the general concepts of the floppy
modes and their energy we now proceed to introduce a
simple model system where the ideas may be tested. The
random two-dimensional network, the “Mikado model”
[15], has the advantage that it only needs one structural
parameter, the density of fibers ρ.

The network is defined by randomly placing N elas-
tic fibers of length lf on a plane of area A = L2 such
that both position and orientation are uniformly dis-
tributed [31, 32, 33]. The fiber-fiber intersections are as-
sumed to be perfectly rigid, but freely rotatable crosslinks
that do not allow for relative sliding of the filaments. The
randomness entails a distribution of angles θ ∈ [0, π] be-
tween two intersecting filaments

P (θ) =
sin θ

2
, (13)

while distances between neighbouring intersections, the
segment lengths ls, follow an exponential distribution [34]

P (ls) = 〈ls〉
−1e−ls/〈ls〉 . (14)

The mean segment length 〈ls〉 is inversely related to the
line density ρ = Nlf/A as 〈ls〉 = π/2ρ. The segments
are modeled as classical beams with cross-section ra-
dius r and bending rigidity κ. Loaded along their axis
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(“stretching”) such slender rods have a rather high stiff-
ness k‖(ls) = 4κ/lsr

2, while they are much softer with re-

spect to transverse deformations k⊥(ls) = 3κ/l3s (“bend-
ing”).

Numerical simulations [15, 16, 17] for the effective
shear modulus G of this network have identified a cross-
over scaling scenario characterized by a length scale

ξ = lf(δρlf )−ν (15)

with ν ≈ 2.84 [16] [46] that mediates the transition be-
tween two drastically different elastic regimes. For a fiber
radius r ≫ ξ the system is in an affine regime where the
elastic response is mainly dominated by stretching defor-
mations homogeneously distributed throughout the sam-
ple. The modulus in this regime is simply proportional to
the typical stretching stiffness, Gaff ∝ k‖(〈ls〉) and inde-
pendent of the fiber length lf . This is in marked contrast
to the second regime at r ≪ ξ. There, only non-affine
bending deformations are excited and the modulus shows
a strong dependence on fiber length,

Gna ∝ k⊥(〈ls〉)

(

lf
〈ls〉

)µ−3

, (16)

and thus on density, Gna ∝ δρµ where µ = 2ν + 1 ≈ 6.67.
As this latter non-affine regime is characterized by a

ratio k‖(〈ls〉)/k⊥(〈ls〉) ∼ (〈ls〉/r)2 ≫ 1, and therefore a
bending mode that is soft as compared to the stretch-
ing mode, we may apply the floppy-mode picture de-
veloped in previous sections to calculate the exponent
µ. To this end, we numerically solve Eq. (8) for vary-
ing numbers ncl ∼ ρlf of crosslinks per fiber. The av-
erage 〈.〉 is thereby defined in terms of the probability
distributions of Eqs. (13) and (14). As a result, we find
the fiber energy to scale as W ∼ nx

clκ/l3f and x ≈ 5.75

(see Fig. 7). The shear modulus is infered from W as
G = 2ρW/lfγ2 ∼ ρ6.75, which reproduces the exponent
µ as measured in the simulation to a remarkable accu-
racy.

Based on the formalism of the preceding sections we
have also developed [18] a scaling argument that al-
lows approximate solution of Eq. (8) in terms of a sin-
gle length-scale lmin, which on a microscopic scale gov-
erns the coupling of the fiber to the matrix. Since the
stiffness k⊥ ∼ κ/l3s of the individual polymer segment
is strongly increasing with decreasing its length ls, we
assume that segments with ls < lmin rather deform the
surrounding medium than being deformed itself, while
longer segments ls > lmin are not stiff enough to deform
the medium. The scale lmin therefore plays the role of a
minimal length below which segments are stiff enough to
remain undeformed.

In terms of the crosslink deflections yi, this implies
that long (and soft) segments have yi ≈ ȳi, while short
(and stiff) segments have crosslinks that are in their orig-
inal position yi ≈ 0. Since the energy of a segment of
length ls can be written as w(ls) ∼ k⊥y2

i ∼ κy2
i /l3s, we

find that the elastic energy is reduced by the amount
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n
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FIG. 7: Solution of Eqs. (8) and (9) for various numbers
ncl of crosslinks per filament. The randomness is defined by
Eqs.(13) and (14). The different symbols at given ncl relate to
ensembles of varying size N = 100 . . . 1000. The lines W ∼ n5

cl

and W ∼ n6

cl serve to illustrate the quality of the fit.

w(lmin) ∼ κȳ2
i /l3min as compared to the situation where

also the short segments are deformed. In turn, the en-
ergy in the neighbouring fiber is increased, where a floppy
mode of amplitude δz ∼ ȳi is excited. The length-scale
lmin can therefore be determined by equating the energy
reduction in the small segments, w(lmin), with the energy
increase due to the additional floppy mode in the neigh-
bouring fiber. This latter contribution can be calculated
as an average over all segments of length ls > lmin thus
giving

W ≃ ncl

∫ ∞

lmin

dlsP (ls)w(ls)
!
= w(lmin) . (17)

As a result, we find lmin ≃ 1/ρ2lf and thus for the average
fiber energy W ≃ κ(ρlf )6/lf . This corresponds to an
exponent µ = 7, which confirms the previous analysis.

From Eq. (14) one may also induce a probabilistic
interpretation of the length-scale lmin. Segments with
lengths ls < lmin will occur on average only once along a
given fiber. This may be seen from solving the equation

∫ lmin

0

dlsP (ls) ∼
1

ncl
, (18)

stating that small segments will occur once in every
ncl ∼ ρlf crosslinks. There will therefore be typically
one segment per fiber in the undeformed configuration
yi ≈ 0, while all others follow the floppy mode.

These scaling arguments also provide additional in-
sights into a more microscopic understanding of the
crossover from affine to non-affine elasticity in random
rod networks [16]. Upon rewriting the crossover scale ξ as
ξ ∼ lf(lmin/lf)3/2 the scaling variable x = r/ξ of Eq. (2)
in [16] takes the alternative form x−2 ∼ k‖(lf )/k⊥(lmin)
such that the crossover scaling law of the modulus reads

G(r, ρ) = ρµg(k‖(lf )/k⊥(lmin)) . (19)
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The scaling argument now identifies a competition be-
tween the relative stiffness of the stretching and bending
modes on the scale of the whole polymer fiber as the driv-
ing force of the affine to non-affine crossover. For large
scaling arguments, k‖(lf ) ≫ k⊥(lmin), bending is the
weaker mode and yields a non-affine response in the form
of floppy modes. Stretching deformations become dom-
inant as soon as k‖(lf ) becomes smaller than k⊥(lmin);

this happens if the rigidity scale lmin ≤ (r2lf )1/3.
The only requirement for the presence of a bending

dominated regime (beyond the scale separation k‖/k⊥ ≫
1) is a low coordination number, which for the random
fiber network can be calculated as z = 4(1 − (ρlf )−1).
This places the network below the rigidity transition
for any finite lf , while increasing the filament length
lf → ∞ the critical coordination of zc = 4 is asymp-
totically reached. As an implication the bending mode
must eventually be suppressed.

The above analysis clearly shows that the proposed
floppy mode concept can be utilized to understand the
bending dominated elasticity in the random fibrous net-
work. It allows to extract the length-scale lmin that is ul-
timately responsible for the strong density-dependence of
the elastic modulus as found in the simulations. Most im-
portantly, the length-scale lmin is a special feature of the
random architecture studied here. Other network struc-
tures will not necessarily feature the same length-scale
even though the basic formalism of the floppy bending
modes can still be applied. The exponents characterizing
the elastic response will thus depend on network archi-
tecture, a fact which is also exemplified in the Appendix.

In Ref. [27] we have furthermore applied the theory to
explain the mechanics of reconstituted actin networks,
where filaments are crosslinked and bundled by fascin.
By taking into account the fact that bundles have to
be characterized by a length-dependent bending rigidity
κ(L) [35, 36, 37] it was possible to explain the observed
dependence of the elastic modulus on actin and fascin
concentration.

A. Nonlinear elasticity arising from geometric
effects

Here, we report on additional simulations probing the
nonlinear modulus of the structure. Note, that in these
simulations the material properties of the fibers remain
linear, such that the nonlinearities result from geomet-
rical effects only. As one can infer from Fig. 8 the net-
work is strongly stiffening already at very small values
of strain. Similar results have recently been reported
in [38], where the stiffening behaviour was attributed to
a crossover from bending to stretching dominated elastic-
ity. The floppy mode picture allows to give this crossover
a microscopic explanation. As argued in Section II B, the
floppy modes of the fibrous network are only adequate for
infinitesimally small displacements δz. The construction
embodied in Eq. (2) keeps segment lengths invariant to
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FIG. 8: Nonlinear “modulus” σ/γ in the bending dominated
regime (ρlf = 30) for various values of the aspect ratio α =
r/lf . Inset: The stress increases linearly up to a strain of
about 1%. Normal stresses quickly rise in magnitude and
eventually are of the same order and proportional to the shear
stress.

first order in δz only, such that any finite deformation
will necessarily lead to stretching of the bonds.

Note, that this stiffening mechanism is not mediated
by non-linear material properties of the fibers but rather
is of geometric origin and is due to the specific structural
arrangement in the fibrous architecture. It is therefore of
different nature than the stiffening mechanism inherent
to single semiflexible polymers, where an applied tension
can stretch the polymer only as far as there is stored
length available [39].

In the nonlinear regime we have also measured the nor-
mal stresses σxx and σyy that act perpendicular to the
principal strain direction. We found (see inset to Fig. 8)
that these stresses can become of the order of the shear
stresses σxy and have a negative sign indicating that the
network “pulls in” during the course of the deformation.
A similar effect has recently been observed in rheological
measurements on F-actin networks [40] and rationalized
in terms of the highly nonlinear entropic stretching re-
sponse of single polymers. Note, that in our simulations
the same effect occurs within a purely mechanical pic-
ture, where no material non-linearities are present. It is
explained with the fact, that the additional amount of
contour length necessary to undergo a finite floppy mode
can only come from pulling in the fiber ends. This is
equivalent to a network contraction which leads to the
observed large normal stresses.

B. Nonstraight fibers

In real networks fibers will never be perfectly straight.
We have argued above that in this case the scale of the
fiber-length lf must be viewed as the length-scale over
which the polymer remains straight. With this in mind
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our theory also holds for networks where fibers are non-
straight, as long as the undulation wavelength λ ∼ lf is
larger than the distance between crosslinks 〈ls〉.

In this section we investigate the effects of introduc-
ing undulations with wavelengths comparable to the
crosslink distance, λ ∼ 〈ls〉. To this end we have manu-
ally generated zig-zag fibers by randomly displacing the
crosslinks by some maximal amount ∆·lf . A similar anal-
ysis has been performed in Ref. [38], where a substantial
decrease in the degree of non-affinity of the deformation
field has been found. Similarly, we find that the system
develops a new crossover to a regime of affine bending
deformations (see Fig. 9), where the modulus scales as
G ∝ δρ3, a behaviour well known from bending domi-
nated cellular foams [11, 14, 41].
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FIG. 9: Shear modulus G (inset) and scaling function g of
Eq. (20) for various values of ∆. Collapse is achieved by plot-

ting G∆µ/2 as a function x = δρ∆1/2 and known exponent
µ = 6.7 [16]. The asymptotic regimes show the scaling prop-
erties of straight fibers, g(x) ∼ x6.7, and foams, g(x) ∼ x3,
respectively.

In this new regime the bending deformations come
from pulling out the zig-zags similar to the pulling of
thermally activated polymer undulations. We find that
the curves may be scaled by using the same length-scale
lmin ∼ δρ−2 that served as a lower cut-off in segment
lengths. The modulus thus takes the following scaling
form

G(∆, δρ) = ∆−µ/2g(∆/lmin) , (20)

where the scaling function has the limiting form g(x ≪
1) ∼ xµ/2 to eliminate the ∆-dependency. For large val-
ues of the scaling variable x ≫ 1 we have to recover
the scaling properties characteristic for foams, giving
g(x ≫ 1) ∼ x3/2. This analysis highlights once more
the fundamental role played by the length-scale lmin in
establishing the elastic response of the network. Here, it
acts as a crossover scale, that mediates the transition to
a foam-like bending regime at strong disorder ∆ ≫ lmin.

Note, that by introducing kinks in the contour of the
fibers, the floppy modes start to spread beyond the single

fiber to which they were confined originally. A kink is
most conveniently characterized by the angle ψ through
which the direction of the fiber changes at the location
of the kink. By displacing a crosslink by the amount
∆ one thus finds for the angle sinψ = ∆/ls, where ls
is the length of the segment that ends at the crosslink.
Exciting the fiber with a floppy mode of amplitude δz, a
finite kink-angle ψ leads to the fraction δz′ ∼ δz sin ψ ∼
δz∆/ls being coupled into the neighbouring fiber. At the
crossover, defined by x = ∆/lmin ∼ 1, we therefore find
that for a segment of length ls = lmin, δz′(lmin) ≈ δz.
In this situation the floppy mode is transmitted to the
neighbouring fiber without attenuation of its amplitude.
Since segments of length lmin statistically occur once per
filament, the crossover point also marks the onset of a
complete delocalization of the floppy modes.

V. CONCLUSION

We started our discussion with the assumption that
the elasticity of stiff polymer networks is governed by the
action of the bending mode. This assumption is based
on the recognition that in systems where the persistence
length is large, bending as compared to stretching is by
far the softer mode. The respective spring constants are
scale-separated and obey the relation k‖/k⊥ ∼ lp/l ≫ 1.

One immediate implication of this scenario is that
polymer end-to-end distances have to stay constant,
which necessitates deformations that are highly non-
affine. We have characterized this non-affine deforma-
tion field by constructing the floppy modes of the struc-
ture [18]. These are defined as the set of crosslink dis-
placements that do not lead to any stretching of bonds.
With this microscopic deformation field it is possible to
calculate the macroscopic elastic moduli on the level of a
self-consistent effective medium theory that incorporates
fiber-medium interactions within a Cayley-tree approxi-
mation.

As a result the anomalous scaling properties of the
linear shear modulus as determined by computer simula-
tions of two-dimensional random networks [16, 17] are ex-
plained. The exponents are found to be a consequence of
the special architecture of the network that features two
different length-scales. On the mesoscopic scale the fiber
length lf induces a non-affine deformation field, with seg-
ment deformations δna following the macroscopic strain γ
as δna ∼ γlf , instead of as δaff ∼ γls, which would result
from an affine deformation field. Microscopically, a sec-
ond length lmin plays the role of a minimal length below
which segments are stiff enough to remain undeformed.

We would like to emphasize that the construction of
the floppy modes only relies on the presence of the meso-
scopic length lf , which is applicable to a broad class of
networks. In the particular case of a random rod network
we have found that the anomalous scaling properties of
the shear modulus, previously found in simulations, cru-
cially depend on the presence of a second length-scale
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lmin, which is a special property of this random architec-
ture. The exponents found for random rod networks are
therefore not immediately applicable to other systems.
Having established the general theoretical framework, it
is nevertheless straightforward to calculate the exponents
for other types of networks in two and three dimensions.
Indeed, we have applied the theory to reconstituted actin
networks crosslinked and bundled with fascin, and found
that the calculated exponents are in good agreement with
the experimental results [27].

Finally, we also conducted simulations probing the
non-linear elasticity of the random fibrous network as
well as modified the network structure by introducing
kinks in the contour of the polymers. The results con-
firm the governing role of the identified length-scales and
firmly establish that the non-affine floppy mode picture
captures the essential physics of stiff polymer networks
similar in spirit to affine rubber elasticity for flexible
polymer gels. In view of this conceptual analogy, the
next step could be to assess the importance of crosslink
fluctuations, which have been neglected here (as in clas-
sical rubber elasticity). By greatly reducing the number
of fluctuating degrees of freedom to one per fiber (namely
δz), the theory developed here may very well provide a
new starting point for the analysis of the statistical me-
chanics of stiff polymer networks.
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APPENDIX A: SOLUTION OF EQ. (8) FOR
VARIOUS NETWORK STRUCTURES

In this appendix we provide some technical details on
how to solve Eq. (8) for various network architectures in
two spatial dimensions. We will measure lengths in units
of the fiber length lf and energies in units of κ/lf , where
κ is the bending stiffness of the fiber. Assuming harmonic
energies W (x) = kx2/2 we rewrite Eq. (8) symbolically
as

k = 〈f(k, ncl; {zi, θi})〉 , (A1)

where the function f is defined by

f = min
y(z)

(

2Wb

δz2
+ k

ncl
∑

i=1

sin2(θi)

(

y(zi)

δz
+ cot θi

)2
)

,

(A2)
and we used Eq. (2) to substitute ȳi = − cot θiδz.

The network structure enters Eqs.(A1) and (A2) via
the variables {zi, θi}, which relate to the locations zi

of the crosss-links on the backbone of the primary fiber
as well as the angles θi between primary and secondary
fibers. The ensemble average 〈.〉 can then be defined by
the probability distributions P ({θi}) and P ({li}), where
segment lengths are given by li = zi+1 − zi.

To illustrate the importance of structural features on
the elastic properties of the network we solve Eq. (A2)
for two types of distributions, relating to random and
regular structures, respectively. The random network
is characterized by probability distributions as given in
Eqs. (13) and (14). The regular network has only one
segment length l0 = lf/(ncl − 1) and an angular distri-
bution similar to Eq. (13) but restricted to the interval
[θmin, π − θmin].

For a given realization of the randomness the function
f is calculated by performing the minimization with re-
spect to the contour y(z). This is achieved in two steps,
where first the bending energy Wb[y] is minimized for a
given set of values {y(zi)}. As explained in the main
text, this is equivalent to a cubic spline interpolation.
The second step consists of a minimization with respect
to the remaining variables {y(zi)}.

Finally solving Eq. (A1) the fiber stiffness k⋆(ncl) is
determined as a function of the number ncl of crosslinks
per fiber. A graphical solution for ncl = 40 for various
network structures is presented in Fig. 10. The function
〈f(k)〉 is plotted as function of k. The sought after value
k⋆ is found at the point of intersection with the bisecting
curve.
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FIG. 10: Graphical solution of Eq. (A2) for a fiber with ncl =
40 crosslinks imbedded in networks of varying architectures.
〈f(k)〉 is plotted as a function of k for ensembles of varying
sizes. The solution to Eq. (A2) is found by intersecting the
curves with the bisecting line (dashed).

The different curves for a given network structure cor-
respond to ensembles of varying size. They seem to di-
verge in the limit k → ∞. In fact, in this limit only the
bending energy Wb contributes to Eq. (A2) and yi ≈ ȳi.
This may make the averaging procedure ill defined, for
example in the case of Eq. (14) where the segment lengths
ls can become arbitrarily small. The resulting segmental



12

bending energy wb ∼ l−3
s shows a divergence and does

not have a well defined average value.
As one can see from Fig. 10 the resulting fiber stiff-

ness k⋆ very sensitively depends on the randomness in
the segment lengths, while crosslink angles only play a
minor role. This is made particularly clear by comparing
the random-segment and the regular-segment network in

terms of the exponent x, which is defined by k⋆ ∼ nx
cl. As

stated in the main text the random network has x ≈ 6,
while for the regular network we find x ≈ 4. We have
shown above that the former result derives from the pres-
ence of the length-scale lmin. In contrast, the latter is
simply obtained by calculating the bending energy of ncl

segments each of length l0, Wb ∼ nclκ/l30 ∼ n4
cl.
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While actin bundles are used by living cells for structural fortification, the microscopic origin of the
elasticity of bundled networks is not understood. Here, we show that above a critical concentration of the
actin binding protein fascin, a solution of actin filaments organizes into a pure network of bundles. While
the elasticity of weakly cross-linked networks is dominated by the affine deformation of tubes, the
network of bundles can be fully understood in terms of nonaffine bending undulations.

DOI: 10.1103/PhysRevLett.99.088102 PACS numbers: 87.15.La

The mechanical properties and dynamic organization of
the cytoskeleton determine the morphology and mechani-
cal response of eukaryotic cells. To ensure adaptability of
both organization and mechanics, cells exploit the dynamic
interplay between semiflexible polymers such as micro-
tubules and actin filaments using a multitude of associated
binding proteins. In particular, the local elastic properties
are regulated by the activation of auxiliary proteins which,
e.g., cross-link and/or bundle the filamentous networks into
complex scaffolds. Given the importance of the actin cy-
toskeleton for force generation and transduction there is
much interest in understanding the mechanical properties
of different network structures and the physical origin of
the transitions between them. This is best studied in in vitro
model systems [1]. In the absence of cross-links actin
solutions are successfully described by the spatial confine-
ment of thermal bending undulations upon affine tube
deformation [2]. Cross-linked semiflexible polymer net-
works, on the other hand, are in general dominated by an
interplay between polymer stretching and bending modes,
the precise form of which, as well as the degree of non-
affinity, strongly depends on the network microstructure
[3]. So far the mechanical response of highly cross-linked
actin networks, also in the presence of bundles and com-
posite phases, has mainly been described assuming purely
affine entropic stretching deformations [4–7]. However, an
applied tension can stretch a thermally undulating polymer
only as far as there is excess contour length available. As
the maximal amount of stored length is inversely propor-
tional to the persistence length, entropic stretching is sup-
pressed in networks of stiff polymer bundles, where the
persistence length grows with bundle size [8,9]. Moreover,
the highly nonlinear nature of the force-extension relation
of semiflexible polymers implies that linear elasticity is
applicable as long as only a fraction of the total excess
length is pulled out. As an alternative the recently intro-
duced concept of the ‘‘floppy modes’’ may be better suited
to describe the polymer elasticity in situations where en-
tropic effects are suppressed [10]. These floppy modes
constitute bending excitations which, unlike the affine

stretching deformations, retain a highly nonaffine
character.

In this Letter we show that above a critical concentration
of the actin binding protein (ABP) fascin a solution of actin
filaments organizes into a homogeneous network whose
building blocks are bundles only. At low cross-linker con-
centration, the network response is dominated by the affine
deformation of reptation tubes and the ensuing changes in
confinement free energy [11]. The observed mechanical
and structural transition between both phases can be de-
scribed by a simple relation between the ABP concentra-
tion and the entanglement length. It is proposed to
rationalize the scaling of the elastic modulus in the bundled
regime in terms of the floppy mode picture. A model based
on affine stretching deformations only fits the data if addi-
tional assumptions about the bundle structure are made.

G-actin is obtained from rabbit skeletal muscle and
stored in lyophilized form at �21 �C [12]. For measure-
ments the lyophilized actin is dissolved in deionized water
and dialyzed against G-buffer (2 mM Tris, 0:2 mM adeno-
sine triphosphate (ATP), 0:2 mM CaCl2, 0:2 mM dithio-
threitol (DTT), and 0.005% NaN3, pH 8) at 4 �C. The G-
actin solutions are kept at 4 �C and used within 7 days of
preparation. The average length of the actin filaments is
controlled to 21 �m using gelsolin which is prepared from
bovine plasma serum following [13]. Recombinant human
fascin (55 kD) was prepared by a modification of the
method of [14] as described by [15]. In the experiments
the molar ratio R between fascin and actin, R � cf=ca, is
varied over almost three decades.

To resolve the structure and mechanical properties of
actin-fascin networks actin is polymerized in F-buffer
(2 mM Tris, 2 mM MgCl2, 0:2 mM CaCl2, 0:2 mM
DTT, 100 mM KCl, and 0:5 mM ATP, pH 7.5). For fluo-
rescence microscopy filaments are stabilized with tetra-
methyl rhodamine iso-thiocyanate (TRITC)-phalloidin;
either labeled reporter filaments (1 per 400) or continuous
labeling is used at distinct amounts of fascin. To avoid
photobleaching 0:6 �M glucose oxidase, 0:03 �M cata-
lase, and 0:01 M glucose are added. The samples for trans-
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mission electron microscopy (Philips EM 400T) are ad-
sorbed to glow-discharged carbon-coated formvar films on
copper grids. The samples are washed in a drop of distilled
water and negatively stained with 0.8% uranyl acetate;
excess liquid is drained with filter paper. The viscoelastic
response of actin-fascin networks is determined by mea-
suring the frequency-dependent viscoelastic moduli G0�!�
and G00�!� with a stress-controlled rheometer (Physica
MCR 301, Anton Paar, Graz, Austria) within a frequency
range of three decades. Approximately 520 �l sample
volume are loaded within 1 min into the rheometer using
a 50 mm plate-plate geometry with 160 �m plate separa-
tion. To ensure linear response small torques are applied.
Actin polymerization is carried out in situ, measurements
are taken 60 min after the polymerization was initiated.

Fluorescence images show that in the presence of high
concentrations of fascin, actin filaments organize into a
network of bundles [Fig. 1(a)] while below a critical value
R� � 0:01 no bundles can be observed. Both fluorescence
and transmission electron microscopy do not show any
signs of composite phases or microdomains as observed
in the presence of other ABPs [6,16,17]. Moreover, the
existence of a purely bundled phase is demonstrated by a
cosedimentation assay (see supplementary material [18]).
The bundles formed are very long (> 100 �m) and
straight, which is consistent with the measured bending
rigidity � [8]. TEM micrographs reveal that above R� the
actin-fascin bundle thickness D and therefore the number
of actin filaments per bundle N increases weakly with R

[Fig. 1(b)]. The bundle thicknesses are extracted from the
TEM micrographs by fitting a Gaussian to the intensity
profiles, obtaining a scaling of D� N1=2 � Rx with x �
0:27. Concomitant with the structural changes the visco-
elastic properties of the network alter: with increasing R
both the storage modulus G0�!� and the loss modulus
G00�!� increase over the whole frequency range probed.
The storage modulus G0�!� exhibits a plateau at low
frequencies, while the loss modulus G00�!� reveals a
well-defined minimum which shifts to higher frequencies
with increasing R. The plateau modulus G0�10 mHz� plot-
ted against R shows two distinct regimes in the elastic
response. At low R, G0 is only slightly dependent on R,
G0 � R0:1	0:1, while above a critical value R��, G0 in-
creases with G0 � R

1:5	0:2 (Fig. 2). This exponent fits the
data for both actin concentrations probed (ca �
0:2 mg=ml and ca � 0:4 mg=ml). The transition point
R�� agrees well with the structural transition at R� observed
in microscopy. BelowR� � R�� the plateau modulus scales
with the actin concentration as G0 � c

1:3
a suggesting that

entanglements dominate the elastic response [2]. Above R�

a different scaling regime occurs with G0 � c
2:4
a .

With the observed scaling behavior G0�R; ca� the pla-
teau modulus is parametrized in both regimes, before and
after the structural transition. At the crossover concentra-
tion R � R� these two parametrizations have to be equal.
This uniquely determines the scaling of R� with the actin
concentration, R� � c�0:79

a , which results in the constraint
cfc

�0:21
a � 1. This can be approximated to cfl

1=2
e � 1 using

the entanglement length le � c
�2=5
a . This surprisingly sim-

ple criterion for the bundling transition defies an obvious
explanation and a detailed theoretical model is still lack-
ing. It would need to account for the subtle interplay
between confinement free energy of polymers in both the

FIG. 1. (a) Fluorescence micrograph of an actin-fascin net-
work (0:1 mg=ml actin): for high fascin concentrations a purely
bundled network is formed (scale bar is 10 �m). (b) From TEM
pictures (inset, scale bar is 0:2 �m) a scaling relation for the
average bundle diameter D is obtained.

FIG. 2 (color online). Plateau modulus G0 as a function of the
molar ratio R of fascin with respect to actin for two different
concentrations of actin: 0:4 mg=ml (circles) and 0:2 mg=ml
(squares). The dependence of G0 on ca is obtained by scaling
the fits for the 0:2 mg=ml actin data upon the 0:4 mg=ml data
points. The dashed line shows the boundary separating the two
scaling regimes. The original frequency spectra for 0:4 mg=ml
actin at different cross-linker concentrations (R � 0; 0:001;
0:002; 0:005; 0:01; 0:02; 0:05; 0:1; 0:2; 0:5) are depicted in the
inset.
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bundle and the network as well as the binding enthalpy of
the cross-linking proteins.

The mechanical properties inside the bundled regime
may, on the other hand, be understood in terms of the
nonaffine floppy mode model [10], where network elastic-
ity is attributed to bending modes of wavelength compa-
rable to the distance between cross-links lc and with
stiffness k? � �=l3c. In this picture typical deformations
of the network do not follow the macroscopic strain af-
finely but scale as �na � �LB, where LB is a constant
length over which an individual bundle within the network
can be assumed to be straight. From our fluorescence and
TEM pictures, we would expect this length to be compa-
rable to the bundle length. As a consequence the linear
elastic modulus reads

 G0 � �k?�
2
na (1)

with the polymer density �� 1=�2lc. This model can be
tested by relating the structural parameters of the network,
mesh size � and lc, and the bending elasticity � of the
bundle segment to the concentration of actin and fascin
monomers (ca; cf).

The structural information obtained by TEM and fluo-
rescence microscopy justifies the assumption that the bun-
dles form an isotropic network similar to an entangled
structure of single filaments. With increasing R, filaments
and smaller bundles reorganize to form larger bundles that
are spaced farther apart. The mesh size � of this self-
similar structure therefore depends on R as �� �0N1=2,
where �0 � c

�1=2
a is the mesh size of the filamentous net-

work. Cross-linking will typically occur on the scale of the
entanglement length le, which plays the role of a distance
between bundle-bundle intersections (entanglement
points). Since on average only a fraction of those will be
occupied we can assume that distances between cross-links
along the same bundle are given by lc � R�yle [6,7].
Doubling the cross-linker concentration R should halve
the distance between them, suggesting an exponent y � 1.

For a description of the elastic properties of the bundles
it is necessary to realize that fascin only leads to loosely
coupled bundles, where bending is dominated by the shear
stiffness of the cross-linking proteins [8,9]. The key quan-
tity in this context is the bundle coupling parameter
��lc� � �lc=b�2, where the length scale b� �1=2 encodes
the properties of the ABPs inside the bundle, in particular
via the average distance � between cross-links. In general,
� will depend on the concentrations cf and ca; however,
the precise relationship is not known. From fluorescence
images the mesh size of the bundled network at R � 0:5
can be approximated which allows one to calculate le and
thus lc. From this one can estimate the coupling parameter
to be �> 1 for the whole bundle regime, implying that the
effective bundle bending stiffness � acquires a wavelength
dependence [9], leading to ���� � N�f����, where � is
the wavelength of the deformation mode. This stands in
marked contrast to what is known for single filaments or
scruin-bound bundles where a fully coupled bending re-

gime, �� N2�f, has been assumed [19]. The wavelength
dependence of the bundle stiffness has far reaching con-
sequences for the static as well as dynamic properties of
semiflexible polymer bundles [20]. In particular, it implies
that the entanglement length le has to be reevaluated. As it
derives from the suppression of long wavelength fluctua-
tions by confining a polymer into a tube [21], it is highly
sensitive to a wavelength dependent ����. This results in
l3e � �Nlp��4=b2, which is different from the usual expres-
sion l5e � lp�4 valid for single filaments, where in both
cases lp � 17 �m [22] denotes the persistence length of
a single actin filament. Combining the above results and
setting the deformation mode length � equal to lc, one
finally arrives at the following prediction

 G0 � Rzcwa ��1=3; (2)

where the exponents are given by z � 2y� 4x and w �
7=3. Thus the scaling exponent of the plateau modulus can
be related to parameters describing the microstructure such
as the scaling of the mesh size as well as the dependence of
the bundle thickness and elasticity on R. From our mea-
surements of x � 0:27 and z � 1:5, and by assuming � to
be a constant, a value of y � 1:29 is obtained, which is in
reasonable agreement with the expected y � 1. This result
is largely insensitive to the assumption of constant �, since
by assuming � to change according to simple Langmuir
kinetics an exponent y � 1:21 is obtained.

To further characterize the elastic properties in the
bundled regime, the nonlinear elasticity of the network is
investigated. For samples with R> R� a constant shear rate
is applied and the resulting stress is reported. From the
smoothed 	��� relation the numerical derivative yielding
the differential modulusK � @	=@� is calculated (Fig. 3).
For small strains of � � 1%–10% linear behavior is ob-
served, where the differential modulus follows K � R1:5 in
agreement with our oscillatory measurements. A nonlinear
response is observed above �c, which is determined as the
strain at which K deviates by 5% from its value in the

FIG. 3 (color online). Differential modulus K � d	=d� plot-
ted versus deformation � for fascin networks in the bundle phase
(ca � 0:4 mg=ml and increasing R: diamonds R � 0:02; upright
triangles: R � 0:05; circles: R � 0:1; downright triangles: R �
0:2; stars: R � 0:5). The inset shows the critical strain �c in
dependence on R.
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linear regime. Up to R � 0:1 a strain hardening occurs
while for very high values of R the linear regime is directly
followed by strain weakening. The disappearance of the
strain hardening at high concentrations of fascin might be
the result of the rupturing of fascin-actin bonds—very
similar to what was reported for rigor heavy meromyosin
(HMM) networks [7]. The floppy mode description also
has implications on the onset of the nonlinear behavior. As
has been argued in [10] large strains necessarily lead to
stretching even if the deformations were only of bending
character. The bundle stretching � is related to the trans-
verse displacement �na by simple geometric considerations
as l2c 
 �2

na � �lc 
 ��2. The floppy mode description thus
applies as long as this stretching is small compared to the
available thermal excess length ��� lcb=Nlp [20]. This
defines a critical strain �c � lc�b=N�1=2 � R�y
xb�1=6 �

R�1:0��1=12 for the onset of nonlinear effects. The scaling
with R is in excellent agreement with our measurements
(see inset of Fig. 3). The weak dependence on the cross-
linker spacing �c � ��1=12 also implies that this result is
insensitive towards any putative dependence on the fascin
concentration via � � ��cf�.

On the other hand, if one were to apply an affine stretch-
ing model, a different picture emerges, where ��cf� has to
be tuned to obtain a reasonable data fit. In such a model one
would assume the modulus to be given by Gaff � �kk�aff ,
where kk � �3=2�N�f�

2=l4c is the stretching stiffness of the
bundle [20]. The deformations are assumed to be affine,
implying �aff � �lc. The modulus thus reads as Gaff �

R2xca��3=2 [18] while the critical strain �c � �1=2R�2x is
obtained by equating �� with the affine deformation
�aff � �lc. This model can only fit the data by assuming
�� c�
f with an exponent in the range of 
 � 0:6–0:9,
such that for
 � 0:6 the R dependence of the modulus and
for 
 � 0:9 the ca dependence of the modulus is repro-
duced. To finally decide whether or not the application of
an affine stretching model is equally successful as the
floppy mode approach, ��cf� would have to be determined
by scattering experiments.

In summary, on the basis of a combined microscopy and
rheology study we have shown that the actin binding
protein fascin mediates a transition from an entangled
polymer solution to a homogeneously cross-linked bundle
phase. These phases differ both in structure and mechani-
cal properties. The location of the transition is given by a
simple relation between the ABP concentration and the
entanglement length. Moreover, this transition point seems
to be more general since it also occurs at similar ABP
concentrations in other systems such as isotropically cross-
linked networks or even composite networks [4,7,17]. The
transition is a consequence of the interplay between the
chemical kinetics of the binding proteins, the bending
rigidity of the polymers, and the entropic forces between
those components. How the concerted action of those
driving forces leads to such a structural transition is an

interesting theoretical problem. The elasticity in the
bundled phase is well explained in terms of a recently
developed floppy mode picture [10]. We have argued that
in the absence of a significant amount of stored length in
the bundles, nonaffine bending is the dominant low energy
excitation. It explains both the linear elasticity and the
onset of nonlinear behavior. This model has to be seen as
an alternative to affine models where the elastic response is
due to pulling out stored length fluctuations. While the
elasticity of isotropic networks may be predominantly
determined by such an entropic stretching of single fila-
ments between the cross-linking points, we suppose that
the elastic response of composite phases may instead be
dominated by nonaffine deformations of bundles as de-
scribed by floppy modes. The detailed understanding of the
presented purely bundled network, composed of shear
dominated bundles, provides a benchmark for addressing
the further challenge to describe the mechanics of net-
works, which are dominated by structural heterogeneities.
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Abstract. We study the elasticity of random stiff fiber networks. The elastic response of the fibers is
characterized by a central force stretching stiffness as well as a bending stiffness that acts transverse to the
fiber contour. Previous studies have shown that this model displays an anomalous elastic regime where the
stretching mode is fully frozen out and the elastic energy is completely dominated by the bending mode.
We demonstrate by simulations and scaling arguments that, in contrast to the bending dominated elastic

energy, the equally important elastic forces are to a large extent stretching dominated. By characterizing
these forces on microscopic, mesoscopic and macroscopic scales we find two mechanisms of how forces
are transmitted in the network. While forces smaller than a threshold Fc are effectively balanced by
a homogeneous background medium, forces larger than Fc are found to be heterogeneously distributed
throughout the sample, giving rise to highly localized force chains known from granular media.

PACS. 62.25.+g Mechanical properties of nanoscale materials – 87.16.Ka Filaments, microtubules, their
networks, and supramolecular assemblies

1 Introduction

It has been well known for more than a century that net-
works of central force springs lose their rigidity when the
number of connected neighbours is lower than a certain
threshold value [1]. To guarantee the rigidity of these
otherwise “floppy” networks, additional contributions to
the elastic energy, beyond central-force stretching, have to
be introduced [2]. Here our focus is on a particular class
of heterogeneous networks composed of crosslinked fibers,
whose length lf is much larger than the typical distance
ls between two fiber-fiber intersections (see Fig. 1). These
systems have recently been suggested as model systems
for studying the mechanical properties of paper sheets [3]
or biological networks of semiflexible polymers [4–6]. As
only two fibers may intersect at a given cross-link, the
average number of neighbouring cross-links is z < 4.
This places them below the rigidity transition both in
two and in three spatial dimensions. Several strategies
have been used to elastically stabilize a central-force
fiber network [7]. Here, we use an additional energy
cost for fiber “bending”. The bending mode penalizes
deformations transverse to the contour of the fiber while
to linear order the distance between cross-links, i.e. the
length of the fiber, remains unchanged.

The two-dimensional fiber network we consider is de-
fined by randomly placing N initially straight elastic fibers

a e-mail: claus.heussinger@physik.lmu.de

sl
F ||

(1)

||F (2)

fl

Klmin ext

Fig. 1. (Colour on-line) Illustration of the local network struc-
ture and the relevant length scales in the random fiber network
(drawn in the deformed configuration): the fiber length lf , the
typical segment length ls and the shortest deformed segment
of length lmin. Kext signifies the bending force that the crossing

fiber exerts in the axial direction of the horizontal fiber. F
(1)

‖

and F
(2)

‖
correspond to axial forces that are directly transmit-

ted from one fiber to a neighbouring fiber at the crosslink.
This mechanism forms the basis for the establishment of force
chains; see main text.

of length lf on a plane of area A = L2 such that both po-
sition and orientation are uniformly distributed. The fiber
density is thus defined as ρ = Nlf/A. We consider the
fiber-fiber intersections to be perfectly rigid, but freely
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rotatable cross-links that do not allow for relative sliding
of the fibers. The elastic building blocks of the network
are the fiber segments, which connect two neighbouring
cross-links. A segment of length ls is modeled as a clas-
sical beam with cross-section radius r and bending rigid-
ity κ [8]. Loaded along its axis (central force “stretch-
ing”) such a slender rod has a rather high stiffness, char-
acterized by the spring constant k‖(ls) ∼ κ/lsr

2, while
it is much softer with respect to transverse deformations
k⊥(ls) ∼ κ/l3s (“bending”).

While this random fiber network is known to have a
rigidity percolation transition at a density ρc [9–11], we
have recently shown [12,13] how the network’s inherent
fragility, induced by its low connectivity z, determines the
properties even in the high-density regime far away from
the percolation threshold, ρ ≫ ρc. In particular, it was
possible to explain the anomalous scaling properties of the
shear modulus as found in simulations [10,14]. The unusu-
ally strong density dependence of the elastic shear modu-
lus G ∼ (ρ−ρc)

6.67 [10] is found to be a consequence of the
architecture of the network that features various different
length scales [12,13] (see Fig. 1). On the mesoscopic scale
the fiber length lf induces a highly non-affine deformation
field, where segment deformations δna follow the macro-
scopic strain γ as δna ∼ γlf . This is in stark contrast to an
affine deformation field where deformations scale with the
size of the object under consideration. For a segment of
length ls the affine deformation therefore is δaff ∝ γls. Mi-
croscopically, a second length lmin governs the coupling of
a fiber segment to its neighbours on the crossing fiber [12,
13]. Due to the fact that the bending stiffness k⊥ ∼ l−3

s of
a segment is strongly increasing with shortening its length,
it is found that segments with ls < lmin rather deform
their neighbours than being deformed, while longer seg-
ments ls > lmin are not stiff enough to induce deformations
in the surrounding. Thus lmin plays the role of a rigidity
scale, below which segments are stiff enough to remain un-
deformed. As a consequence the elastic properties of the
fiber as a whole are not governed by the average segment
l̄s, but rather by the smallest loaded segment lmin.

In the observed scaling regime the elastic modulus
does originate exclusively in the bending of the individual
fibers, and thus reflects the stabilising effect of this soft
deformation mode. In contrast, stretching deformations in
this non-affine bending-dominated regime can be assumed
to be frozen out completely. In our previous articles [12,13]
we have dealt with the properties of the bending mode,
k⊥, and its implications on the elastic energy. Here we
focus on the stretching mode, k‖, and its role in the oc-
curence of elastic forces. As the non-affine bending regime
is relevant for slender fibers with a small cross-section
radius, r → 0, it is characterized by a scale separation,
k‖/k⊥ ∼ r−2 → ∞, which assures that no stretching de-
formations, δ‖, occur. Thus, the fibers effectively behave
as if they were inextensible bars. Closer inspection of the
limiting process reveals, however, that the stretching de-
formations tend to zero as δ‖ ∼ 1/k‖

1. This makes the

1 This may be seen by considering the following simplified
energy function, W = k⊥(δ − δ‖)

2 + k‖δ
2
‖, which represents

contribution to the total energy Ws ∼ k‖δ
2
‖ ∼ k−1

‖ negli-

gible, as required, but also implies that finite stretching
forces F‖ will occur:

F‖ ∼ k‖δ‖ → const . (1)

Indeed, these forces, acting axially along the backbone of
the fibers, are absolutely necessary to satisfy force-balance
at the intersection of two fibers. With two fibers intersect-
ing at a finite angle it is intuitively clear that a change in
transverse force in one fiber has to be balanced by an axial
force in the second.

For thicker fibers with a larger cross-section radius r,
a second elastic regime occurs, where the bending instead
of the stretching mode is frozen out. This regime for-
mally corresponds to the limit k‖/k⊥ ∼ r−2 → 0. It is
characterized by stretching deformations of mainly affine
character [14]. The elastic shear modulus (as well as the
Young’s modulus) have been shown to depend linearly on
density [10,15,16], G ∼ ρ, which is in striking contrast to
the strong susceptiblity to density variations found in the
non-affine bending regime.

In the following we will present results of simulations
that characterize in detail the occuring axial forces in both
elastic regimes, the non-affine bending as well as the affine
stretching regime. In the simulations we subject the net-
work to a macroscopic deformation and determine the new
equilibrium configuration by minimizing the elastic en-
ergy. The minimization procedure is performed with the
commercially available finite element solver MSC.MARC.
Further details of the simulation procedure can be found
in our previous publications [6]. Starting with the average
force profile along the fibers we then proceed by giving
the full probability distribution of forces. We show that
its tails are heterogeneously distributed throughout the
system, similar to force chains in granular media. We find
that most of the features can be understood with the help
of the two basic length scales, the filament length lf and
the rigidity scale lmin.

2 Effective medium theory

In this section we will characterize the configurationally
averaged force profile along a fiber. In the spirit of an ef-
fective medium theory, one can think of the fiber as being
imbedded in an elastic matrix that, on a coarse-grained
scale, acts continuously along the backbone. The associ-
ated force Kext, which is imposed on the fiber, leads to a
change in axial force according to [8]

∂F‖

∂s
= −Kext , (2)

where s is the arclength along the fiber backbone.

a system of two springs connected in series. Minimizing the
energy for fixed overall deformation δ, one finds δ‖ = k⊥δ/(k‖+
k⊥), which shows the reqired scaling δ‖ ∼ k−1

‖ in the limit

k‖ →∞.
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1.5
F ||

nonaffine bending
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Fig. 2. (Colour on-line) Variation of average axial force F‖
along the backbone s = [0, lf ] of the fibers (symmetrized
around s = lf/2). The symbols are the results of our simu-
lations. Towards the fiber ends the force relaxes exponentially
in the affine stretching regime (full curve is a fit to the Cox
model), and linearly in the non-affine bending regime.

A while back, Cox [17] provided a second, constitutive
equation that allows to solve for the force profile F‖(s). He
assumed the medium to be characterized by an affine de-
formation field δaff(s) ∼ γs. The external force Kext is as-
sumed to be non-vanishing only when the actual fiber de-
formation δ‖ is different from this affine deformation field,

Kext(s) = k
(

δ‖ − δaff(s)
)

. (3)

Equations (2) and (3) can easily be solved and result
in a force profile that shows a plateau in the center of the
fiber as well as boundary layers where the force decreases
exponentially, F‖(s) = a − b cosh[c(s − lf/2)], with a, b,
and c appropriately chosen constants.

Åström et al. [16] have applied this model to the affine
stretching regime and found the boundary layers to grow
as the fiber cross-section radius is decreased. Figure 2
shows results of our simulations for the force profile both
in the affine stretching regime (squares, blue on-line) and
the non-affine bending regime (circles, red on-line). Ap-
parently the Cox-model accounts very well for the force
profile in the stretching regime, while it fails completely
in the bending regime, where the simulation data clearly
show that the force increases linearly from the boundary
towards the center of the fiber.

Cox ideas can be generalized to the non-affine bend-
ing regime, where the elastic medium entirely consists of
bending modes. In this regime the axial forces in the fiber
arise due to the pulling and pushing of its crossing neigh-
bours that try to transfer their high bending load in a kind
of lever-arm effect (see Fig. 1). As explained above, the de-
formation field is non-affine and, instead of δaff , one has to
use δna ∼ γlf [13], which is proportional to the fiber length
lf . Since we are interested in the limit where stretching de-
formations vanish, δ‖ → 0, the resulting exernal force is
arclength independent, Kext = −kδna ∼ −lf and constant
along the backbone. The axial force profile F‖(s) is thus
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Fig. 3. (Colour on-line) Probability distribution P (F‖) (in-
set) and scaling function h in the non-affine bending regime
with aspect ratio r/lf = 5 · 10−6 for various densities ρlf =
20 . . . 100. The force scale used to obtain the data collapse is
Fc = κρ2

c(δρ/ρc)
5.

expected to be linearly increasing from the boundaries to-
wards the center, in agreement with the simulations.

Recently, Head et al. [14] have suggested growing
boundary layers to play a key role for the cross-over from
the affine stretching to the non-affine bending regime.
Here, we have shown that these growing boundary layers
are rather a consequence of a transition from an exponen-
tial to a linear force profile in the boundary layers. This
follows naturally from the fact that non-affine deforma-
tions, δna, scale with the fiber length lf and not with the
segment length ls. As we have analyzed in detail in ref-
erence [13], this scaling property, which originates in the
network architecture, can be understood within a “floppy
mode” concept. Therefore, the growing boundary layers
should be viewed as a consequence rather than the driv-
ing force of the affine to non-affine transition.

3 Force distribution

We now turn to a discussion of the full probability distri-
bution of axial forces, instead of just the average value as
we have done in the previous section. In Figure 3 we dis-
play the distribution function P (F‖) for various densities
ρ deep in the non-affine regime. Remarkably, the curves
for different densities collapse on a single master curve by
using the scaling ansatz

P (F‖) = F−1
c h(F‖/Fc) , (4)

with the force scale Fc = κρ2
c(δρ/ρc)

5, where δρ = ρ− ρc.

Its appearance in equation (4) indicates that Fc is the
average axial force. We now show that it is furthermore
equivalent to the average bending force Fc = 〈k⊥(ls) · δna〉
that is needed to impose the non-affine bending deforma-
tion δna on a segment of bending stiffness k⊥.
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Fig. 4. (Colour on-line) Probability distribution P (F‖) of
axial forces in the affine-stretching–dominated regime for
ρlf = 60 and aspect ratio r/lf = 0.05. The system is subject
to uniaxial stretching, as indicated in the inset. Note the linear
scale on the x-axis. The peak of the distribution is strongly
correlated with the orientation, φ, of the fiber relative to the
principal stretching direction.

The average 〈.〉 is performed over the segment-length
distribution P (ls)

2, restricted to those segments that
are longer than the rigidity scale lmin. Recall, that lmin

plays the role of the shortest deformed segment such that
shorter segments do not contribute to the averaging. The
equivalence of both expressions for the force scale becomes
evident by writing the average explicitly,

Fc =

∫ ∞

lmin

dlsP (ls)k⊥(ls)δna , (5)

and inserting k⊥ ∼ l−3
s . The integral is dominated by its

lower limit, which leads to Fc ∼ κ(ρlf )5/l2f as required.
Hence, the force scale Fc has been identified as the av-

erage force that induces the non-affine bending of a fiber.
At the same time it occurs in the probability distribution
of stretching forces as depicted in Figure 3. This two-fold
role reflects the interplay of bending and stretching in
the effective medium theory, where stretching forces
in one fiber have to be balanced by bending forces in
its neighbours. We can thus conclude that the effective
medium picture is the appropriate description for forces
up to the threshold Fc, i.e. for the “typical” properties of
the system.

Interestingly, for forces smaller than Fc the probabil-
ity distribution displays an intermediate power law tail
h(x) ∼ x−β , with an exponent β ≈ 0.55, which as yet
defies a simple explanation. For forces larger than Fc, one
may even speculate about the existence of a second power
law regime with a much higher exponent β′ ≈ 5. While
in this regime the distribution does not seem to decrease
exponentially, the available range of forces is too small to
reach any final conclusions as to the functional form.

The axial forces in the affine stretching regime follow
a completely different probability distribution, as can be

2 In the random network structure considered here, this dis-
tribution is exponential, P (ls) = ρ exp(−lsρ).

seen from Figure 4. The solid black line relates to the prob-
ability distribution of all segments, irrespective of their
orientation φ, with respect to the imposed strain field
(in this case: uniaxial extension along the y-direction).
The broken lines only include segments with orientations
φ in a particular interval, as denoted in the figure leg-
end. The tails of the distribution are exponential (as has
previously been observed in Ref. [16]), while the peak
force strongly depends on the orientation φ of the seg-
ments. The position of the peak follows naturally from
the assumption that segments undergo affine deforma-
tions with δaff = γls cos2 φ. Since the resulting affine
forces Faff(φ) = k‖(ls)δaff ∼ κγ cos2 φ do not depend
on the length of the segments, one expects only a sin-
gle, orientation-dependent force, that is a delta-function
distribution P (F, φ) ∼ δ(F − Faff(φ)). The broadening of
the distribution relative to the singular delta-function can
be rationalized with the fact that the affine strain field can
only fulfill force equilibrium if the fibers are infinitely long.
For finite fibers the force has to drop to zero at the ends
(as discussed above), leading to additional (non-affine) de-
formations and therefore to a broadening of the peak.

4 Force chains

In the preceding two sections we have characterized the oc-
curing axial forces on the scale lf of a single fiber as well as
on the smaller scale of an indivdual fiber segment ls. We
now proceed to discuss the properties of the forces on a
larger, mesoscopic scale. To this end, we probe the Green’s
function of the system and impose a localized perturba-
tion in the center of the network. Fixing the boundaries,
we displace a single crosslink and monitor the resulting

Fig. 5. Picture of a network in the non-affine-bending–
dominated regime. The grey scale is chosen according to the
axial force in the segment. Force chains are clearly visible,
and follow a zig-zag course from the center towards the lower
boundary.
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Fig. 6. Picture of a network in the affine-stretching–dominated
regime. The grey scale is chosen according to the axial force in
the segment. No force chains are present.

response of the network. Similar studies have been con-
ducted in reference [18], where ensemble averaging is used
to discuss the applicability of homogeneous elasticity the-
ory. Here, we focus on the individual network realization to
better characterize the spatial organization of the forces.

In Figures 5 and 6 we show pictures of a network,
where the grey scales of the segments are chosen according
to the magnitude of the forces they carry. The higher the
force the darker the segment. While the quenched random
structure is the same in both plots, the fiber aspect ratio
α = r/lf is chosen such that the network lies deep in
the non-affine bending (α = 10−5) or the affine stretching
regime (α = 10−1), respectively. As is clearly visible in
Figure 5 the non-affine response is characterized by well-
defined paths of high forces that extend from the center,
where the force is applied, to the boundaries. These forces
are transmitted from fiber to fiber along a zig-zag course.
Upon comparison with the distribution function for axial
forces (like those shown in Fig. 3), we find that the force
chains are constituted by forces with magnitude larger
than Fc (i.e. above the intermediate power law regime).
In contrast, in the affine regime a rather homogeneous
distribution of forces is observed (Fig. 6).

The observation that the highest occuring forces are
connected in chains, suggests a mechanism that allows di-
rect transmission of an axial load from one fiber to the
next. This has to be contrasted with the results of Sec-
tion 2, where we have developed an effective medium pic-
ture that constitutes an indirect load transfer, in which ax-
ial forces in one fiber are balanced by transverse (bending)
forces in the neighbouring fiber. The difference between
both mechanisms becomes evident by considering the load
transfer at a fiber-fiber intersection that coincides with the
end-point of one of the two fibers; see Figure 7 for an illus-

tration. An axial load F
(1)
‖ that is coupled into fiber (1) at
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F ||
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δ

Fig. 7. (Colour on-line) Illustration of the two mechanisms
of load transfer for a fiber segment (1) ending at a crossing
fiber (2). The displacement δz1 of the horizontal fiber leads
to deformations in both fibers. The indirect load transfer, b),
couples axial forces into bending deformations, while the direct
transfer, c), transmits the axial force directly into axial forces
in the neighbouring fiber.

its left end has to be taken up by the crossing fiber (2) at
the distal end of fiber (1). Assume that this applied force

in the horizontal fiber, F
(1)
‖ , is accompanied with an axial

displacement δz1, which translates the fiber along its axis.

In the indirect load transfer the axial force F
(1)
‖ is bal-

anced by bending forces F
(1,2)
⊥ oriented perpendicular to

the contour of both fibers. The force balance reads

F
(1)
‖ + F

(1)
⊥ = −F

(2)
⊥ . (6)

The angle between both fibers being θ, the associated
bending displacements are (Fig. 7b)

y1 = −δz cot θ , y2 = δz/ sin θ . (7)

This mechanism forms the basis of the effective medium
theory applied in Section 2 to explain the average force
profile along the fibers. It has also been shown to allow a
direct calculation of the macroscopic elastic moduli of the
network [12,13].

We now proceed to discuss the second mechanism. It
can immmediately be seen from the θ-dependence that the
bending displacements y1/2 of equation (7) can become in-
creasingly large, if the fibers intersect at small enough an-
gles, θ → 0. Then, the network responds in a different way.
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As can be inferred from Figure 7c the large bending con-
tributions may be avoided by additionally moving the sec-
ondary fiber along its own axial direction, δz2 = δz1 cos θ.
This leaves the primary fiber straight while the bending
displacement in the secondary fiber becomes y2 = δz1 sin θ.
The force balance must therefore be written as

F
(1)
‖ = −(F

(2)
‖ + F

(2)
⊥ ) . (8)

The smaller the angle θ the larger is the contribution of

F
(2)
‖ , which is just the forward “scattering” of forces, seen

in Figure 5.
The existence of force chains is intimately connected

to the presence of long fibers, ρlf ≫ 1. Since the coordi-
nation can be written as z = zc(1 − O(ρlf )−1) [13], the
system will become completely rigid by increasing the fiber
length, lf →∞. There, the force scale Fc diverges and ax-
ial forces imposed on a fiber will propagate along the fiber
completely uncorrelated with forces on its neighbours. As
the number of intersections ncl ∼ ρlf per fiber is pro-
portional to the fiber length, the probability distribution
for the angle between two intersecting fibers is sampled
to an increasing degree. In particular, the smallest angle
that will occur in a finite sample of ncl intersections is
calculated from

∫ θmin

0

dθP (θ) = 1/ncl , (9)

as θmin ∼ l
−1/2
f , where we have used P (θ) ∼ θ for small

values of θ. With increasing fiber length ever smaller an-
gles occur. As explained above, the presence of small an-
gles necessarily lead to forward scattering of axial forces,
and thus to the emergence of force chains. The presence
of force chains is therefore a consequence of the special
geometry of the network that allows the fibers to intersect
at arbitrarily small angles. To support this view, we have
conducted additional simulations in which the localized
perturbation is applied in varying directions. As a result,
the structure of the force chains remain unchanged while
their amplitudes are modulated.

5 Conclusion and outlook

In conclusion, we have characterized in detail the prop-
erties of forces occuring in two-dimensional random fiber
networks. We have shown that the previously identified
rigidity scale lmin, in addition to the structural scale of
the fiber length lf , governs the occurence of stretching
forces in an elastic regime, where the energy derives from
the bending mode only (k‖/k⊥ → ∞). The probability
distribution of forces shows scaling behaviour with the
force scale Fc = κρ2

c(δρ/ρc)
5 that can be identified with

the average force needed to deform a fiber segment by the
non-affine deformation δna ∼ γlf .

Two types of force transmission have been identified.
Forces up to the scale Fc are transmitted from one fiber
to the next by an indirect mechanism, where stretching

forces are balanced by bending forces and vice versa. This
is best illustrated by the action of a lever-arm that tries to
transmit its bending load to the neighbouring fiber, which
subsequently starts to stretch (see Kext in Fig. 1). This
mechanism of force transmission can be used to under-
stand the average force profile along a fiber, and also forms
the basis for the calculation of the scaling properties of
the elastic modulus [12,13]. In a second direct mechanism
axial forces are also transmitted directly to their neigh-
bours, giving rise to highly localized force chains that are
heterogeneously distributed throughout the sample. This
mechanism is only active for forces larger than Fc. In con-
trast to the indirect mechanism, which probes the center
of the force distribution and therefore typical properties of
the network, the direct mechanism reflects the properties
of the extremal values of the distribution.

The observation of force chains suggests an analogy
with granular media [19]. The scale separation k‖ ≫ k⊥
implies that the fibers behave as if they were inextensi-
ble. The network of inextensible segments may therefore
loosely be viewed as the contact network of a system of
rigid grains. Due to the low coordination number, the fiber
network has to be stabilised by the action of the bend-
ing mode directed perpendicularly to the fiber axis. This
bears some similarity to a friction force in granular sys-
tems, which is directed tangentially to the grain surfaces.
Indeed, it has been argued that stable granular systems
with a coordination as low as found here may only be
achieved if frictional forces are taken into account [20].
The occurence of force chains in our “frictional” system
is, however, due to the vicinity of the isostatic point with
regard to the frictionless system (zc = 4). Since the co-
ordination may be written as z = 4(1 − O(ρlf )−1) the
isostatic point is reached by increasing the fiber length
lf →∞.
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7.3 Thermal Response

The two articles “Stiff Polymers, Foams, Fiber Networks” and “The Role of Architecture
in the Elastic Response of Semiflexible Polymer and Fiber Networks” deal with the elastic
properties of stiff polymer networks at finite temperature.

We study a variety of network structures and discuss the influence of structural ran-
domness on the scaling properties of the elastic moduli. The fiber length lf is found to
play a decisive role in mediating the elastic response.



Stiff Polymers, Foams, and Fiber Networks

Claus Heussinger and Erwin Frey
Arnold Sommerfeld Center for Theoretical Physics and CeNS, Department of Physics, Ludwig-Maximilians-Universität München,

Theresienstrasse 37, D-80333 München, Germany
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We study the elasticity of fibrous materials composed of generalized stiff polymers. It is shown that, in
contrast to cellular foamlike structures, affine strain fields are generically unstable. Instead, a subtle
interplay between the architecture of the network and the elastic properties of its building blocks leads to
intriguing mechanical properties with intermediate asymptotic scaling regimes. We present exhaustive
numerical studies based on a finite element method complemented by scaling arguments.

DOI: 10.1103/PhysRevLett.96.017802 PACS numbers: 61.41.+e

Cellular and fibrous materials (see Fig. 1) are ubiquitous
in nature and in many areas of technology. Examples range
from solid or liquid foams over wood and bone to the
protein fiber network of cells [1–3]. On a mesoscopic level,
these materials are comprised of struts and membranes
with anisotropic elastic properties. The systems differ
widely in architecture. One finds patterns which are as
regular as a honeycomb, as sophisticated as the particular
design of a dragonfly’s wing, or simply random [4]. The
manifold combinations of architecture and elastic proper-
ties of the building blocks allow for a rich spectrum of
macroscopic elastic responses. For regular cellular struc-
tures, macroscopic elasticity can already be understood by
considering the response of a single cell [2,5]. In these
systems, local stresses acting on an individual cell are the
same as those applied on the macroscopic scale. In other
words, the local deformation � of a cell with linear dimen-
sion ls follows the macroscopic strain � in an affine way
such that it scales as � / �ls. Since in affine models there
can be no cooperativity between the elastic responses of in-
dividual cells, the effect of the assembled structure can be
predicted simply by counting the number of cells. Fibrous
networks, on the other hand, are dramatically different
already in their morphology as can be inferred from
Fig. 1. The presence of fibers introduces the additional
mesoscopic scale of the fiber length l and, by hierarchically
cutting cells into smaller and smaller compartments, gen-
erates a broad distribution of pore sizes that, in contrast to
foams, has a nonvanishing weight even for the smallest
cells [6]. This difference in architecture crucially affects
the mechanical properties. Recently, a nonaffine regime
has been identified [7] and characterized [8–10] in two-
dimensional networks of classical beams (‘‘Mikado
model’’) commonly used to model the mechanical proper-
ties of paper sheets [11–14]. The nonaffinity of the defor-
mation field necessarily implies that in these networks
cooperativity effects play an important role.

In this Letter, we will contrast the two systems of foams
and fiber networks and relate their different linear elastic
properties to their specific structural features. By system-

atically tuning the force response properties of the individ-
ual elements, we will be able to show that the hierarchical
architecture of the fiber network leads to a new length
scale, below which correlations drive the system away
from the state of affine deformations. We will, moreover,
describe the mechanism that generates this length and
calculate the resulting power law behavior of the elastic
modulus by a scaling argument.

The fiber network is defined as follows. N anisotropic
elastic elements, geometrically represented by straight
lines of length l, are placed on a plane of area A � L2

such that both the position and the orientation of the ele-
ments are uniformly randomly distributed. The length of
the segments, i.e., the distance ls between any two neigh-
boring intersections, follows an exponential distribution
[6]

P�ls� � hlsi�1e�ls=hlsi; (1)

with a mean value that is given in terms of the density � �
Nl=A as hlsi � �=2�. At any intersection, a permanent
cross-link with zero extensibility is generated. This con-
strains the relative translational motion of the two fila-
ments, while leaving the rotational degrees of freedom
independent. Not allowing for kinking, filaments are as-
sumed to remain straight at the cross-links. The simplicity
of this network structure (one parameter �) makes it an

(a) (b)

FIG. 1. Illustration of the different architecture of (a) cellular
and (b) fibrous materials. The foam in (a) is constructed by a
Voronoi tessellation from the centers of the fibers in (b).
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ideal candidate to obtain physical insight into the relation
of architecture and elastic properties of the constituents,
which we specify next. Previous studies [8,9] have consid-
ered classical beams of radius r and bending stiffness �.
Loaded along their axis (‘‘stretching’’), such slender rods
have a rather high stiffness ks � 4�=lsr2, while they are
much softer with respect to transverse deformations
k?�ls� � 3�=l3s (‘‘bending’’). Here we consider elastic
elements where, in addition to the mechanical stiffness of
beams, a more general stretching coefficient

kk�ls� � 6�
l�p
l3��s

(2)

is introduced. This may result from thermal fluctuations of
the filament immersed in a heat bath of solvent molecules.
The prefactor is chosen such that kk for � � 1 reduces to
the longitudinal entropic elasticity of a stiff polymer de-
scribed by the wormlike chain model grafted at one end
[15]. In this case, the material length lp is called the
persistence length of the polymer and quantifies the ratio
of bending to thermal energy lp � �=kBT. The phenome-
nological exponent � allows us to extend our discussion to
the broad class of systems for which kk is a monomial (with
units energy per area) involving one additional material
length lp. Having two longitudinal deformation modes, the
effective stretching stiffness is equivalent to a serial con-
nection of the ‘‘springs’’ ks and kk. Setting lp � cr, we can
write ks / kk�� � �2�. The constant c is a material prop-
erty of the specific polymer and has been chosen as c �
1:5� 104, which roughly corresponds to the biopolymer
F-actin. The precise value, however, is irrelevant with
regard to the thermal response kk and specifies only the
location of the crossover to ks. The description of a ther-
mally fluctuating network in terms of force constants kk,
ks, and k? is in the spirit of a Born-Oppenheimer approxi-
mation that neglects the fluctuations of the ‘‘slow varia-
bles,’’ the cross-link positions, while assuming the ‘‘fast’’
polymer degrees of freedom to be equilibrated. By mini-
mization of the internal energy with respect to the slow
parameters, we calculate the shear modulus G for a given
macroscopic shear strain of � � 0:01. This procedure is
performed with the commercially available finite element
solver MSC.MARC using periodic boundary conditions on
all four sides of the simulation box.

As indicated in the introduction, the complement to the
fiber network is a regular foamlike material that one can
describe by a mean-field approach [2,5]. Assuming corre-
lations between neighboring segments to be absent, the
response is fully described by the properties of an average
segment of length hlsi / ��1. Marking the force constants
of this segment by an overbar, we can express them in the
form (neglecting numerical prefactors) �k? ’ ��

3, �kk ’
�k?��lp��, and �ks ’ �k?��r��2, respectively. The deforma-
tion modes will act as springs connected in series [5] such
that the modulus takes the form

G�1
foam � a �k�1

k
� b �k�1

? � c
�k�1
s : (3)

The foam will thus show a crossover from thermal stretch-
ing to bending at lp � hlsi and to mechanical stretching at
r � hlsi. This behavior, and for illustration also that of a
completely random foam, are indicated by the dashed lines
in Figs. 2 and 3, where they can be compared with the
actual results of our numerical analysis on the fiber system.
In Fig. 2, the normalized shear modulus Gl3=� is shown as
a function of dimensionless persistence length lp=l for a set
of dimensionless densities �l for the special case of � � 1.
At large lp=l (right part of the plot), we recover purely
mechanical behavior characterized by G / �ks consistent
with the mean-field picture of Eq. (3) [8,9,11]. Our main
interest, however, lies in the regime of small lp=l (left part
of the plot), where the persistence length is small enough
for thermal fluctuations to become relevant. To analyze the
modulus in the thermal regime (ks ! 1), it will be helpful
to use dimensional analysis and write the modulus in terms
of the two remaining response coefficients �k? and �kk of an
average segment

G��; l; lp; �� � �k?g��l; �kk= �k?�: (4)

The first argument of the scaling function g, the density
x � �l, is of geometrical origin and counts the number of
cross-links per filament. The second argument, y �
�kk= �k? ’ �lp, relates to the energy balance between
stretching and bending of an average segment and marks
a crossover at y � 1 or lp � hlsi. From Fig. 2 and the inset
in Fig. 3, one infers that for low densities g � yf�x�,
implying for the modulus G � �kkf��l�. This linear depen-
dence on the ‘‘preaveraged’’ stretching compliance �kk hints
at a foamlike stretching dominated regime [10] where
correlations are absent. As one can also infer from these
figures, the domain of validity of this linear regime is

FIG. 2 (color online). Shear modulus Gl3=� as function of
persistence length lp=l for various densities �l and � � 1. The
second branch in the upper right corner (�l � 120) is obtained
by suppressing the mechanical response (‘‘ks ! 1’’). The
dashed line indicates the three regimes as obtained by Eq. (3).
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extremely narrow and confined to low densities x 	 20 and
persistence lengths y
 1. For medium and high densities,
Fig. 3 shows two nontrivial scaling regimes where g�x�
1; y� � yz becomes independent of x (and, therefore, of the
filament length l) and exhibits power law behavior with
exponents z � 0:46 and z � 0:9 for small and large values
of y, respectively. In both cases, the modulus can be written
as a generalized geometric average

G / �k1�z
?

�kz
k
; (5)

which has to be contrasted with Eq. (3), where bending and
stretching modes are assumed to superimpose linearly.
Here correlation effects between the segments induce the
nontrivial form of the modulus and distinguish the fiber
network from the ordinary foamlike behavior obtained by
single segment considerations. Whereas foams may be
considered as a limit where the number of cross-links per
fiber is small (filament length identical to the cell size), the
scaling limit of fiber networks corresponds to infinite fiber
length.

To understand the origin of the correlations, one has to
take into account the full distribution of segment lengths,
Eq. (1). This will have a pronounced effect on an affine
deformation field �aff / �ls, as can be seen by considering
the axial force fk along an affinely stretched segment of
length ls, fk � kk�aff ’ �l

�
p�=l

2��
s . In any but the purely

mechanical situation, where � � �2 (and, thus, fs ’
��=r2), fk strongly depends on the segment length. This
implies that, in general, two neighboring segments on the
same filament produce a net force at their common node
that has to be taken up by the crossing filament which then,
preferentially, will start to bend. From the exponential
distribution of segment lengths in Eq. (1), one can easily
show that the size of these residual forces �f can be
arbitrarily large. The corresponding probability distribu-
tion Q��f� shows polynomial (fat) tails

Q��f� / �f��3���=�2���P�0�; �f ! 1; (6)

and has a diverging mean value. This is due to the finite
probability P�0� � P�ls � 0� � 0 of finding segments
with zero length. As a consequence, there are always
residual forces high enough to cause significant bending
of the crossing filament. Hence, we conclude that an affine
deformation field is unstable and that the system can easily
lower its energy by redistributing the stresses to relieve
shorter segments and remove the tails of the residual force
distribution Q��f�.

This mechanism can be used to derive an expression for
the modulus in the parameter region y
 1, where the
value of the exponent z � 0:46 indicates that bending
and stretching deformations contribute equally to the elas-
tic energy. We assume that segments up to a critical length
lc—to be determined self-consistently—will fully relax
from their affine reference state to give all their energy to
the neighboring segment on the crossing filament. The
energy of segments with ls > lc will then have two con-
tributions: first, a stretching part from the imposed affine
strain field (for simplicity, we will set � � 1 in what
follows.)

ws�ls� ’ kk�
2
aff ’ ��

2
lp
l2s
; (7)

second, a bending part

wb�ls� ’ k?�02aff ’ ��
2 l
02
s

l3s
; (8)

that arises only if the segment under consideration is
neighbor to an element on the crossing filament with l0s <
lc (the prime refers to the neighboring small segment).
Adding both contributions and averaging over all seg-
ments ls > lc and l0s < lc, we arrive at the expression
w ’ ��2���lp=xc � xc�, where xc :� �lc 
 1 in the
parameter range of interest. Minimizing with respect to
xc gives the required expressions xmin

c ’ �lp��
1=2 and G ’

�2wmin=�2 ’ ��7=2l1=2
p , corresponding to a value z � 1=2

for the exponent that compares well with the measured
value z � 0:46. Repeating the calculation for general val-
ues of � gives z��� � �=�1� ��. We have verified this
result by simulations with an accuracy of about 10% [16].
The nontrivial behavior of G observed in Figs. 2 and 3 can
thus be explained by a length scale lc � hlsi�lp=hlsi�1=2,
below which the affinity of the deformation field breaks
down. The mechanism is illustrated in Fig. 4, where a
histogram for the fraction of energy stored in segments
of various lengths is shown. Increasing the persistence
length, the short segments one after the other lose their
energies in favor of additional excitations in longer
segments.

When, eventually, lc � lp � hlsi (y � 1), the affine
strain field does not serve as a reference configuration
any more, since it is strongly perturbed by a majority of
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FIG. 3 (color online). Scaling function g as a function of �lp
for various values of x � �l. For comparison, we present also
the scaling function of a random foam (dashed line).
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segments with ls < lc. Moreover, the unloading of the
smaller segments now produces significant stretching de-
formations of their neighbors on the same filament such
that the available energy for bending of the crossing fila-
ment is reduced. At this stage, one enters the second
intermediate asymptotic regime where, as in the affine
regime at low densities, stretching modes dominate the
modulus. As can be seen in Fig. 4, only the longest seg-
ments carry substantial amounts of energy such that the
displacement field must be highly nonaffine. For lp=l �
1:5� 10�2, about 90% of the energy is stored in the
longest 30% of the segments. In this parameter range,
bending is on average the softer mode y � �kk= �k? � 1
and, therefore, contributes only very little to the total
energy. Raising the density to still higher values, it is
conceivable from our data that the exponent z � 0:9 ap-
proaches z � 1, which would mean that the energy in the
bending modes is completely negligible and G� �kk as in
the affine regime. A transition into a regime dominated by
the low-energy bending modes would not be favorable,
however. As is known from the mechanical fiber model [8],
such a regime must not be characterized by the preaver-
aged force constant �k? � k?�hlsi� but by an effective stiff-
ness hk?i ’ �=�3 with a new length scale � � l��l���=3

and � � 6:7 that is highly dependent on fiber length l.
In summary, we found that, for a broad range of parame-

ters, the macroscopic shear modulus of fibrous networks is
asymptotically independent of the fiber length. Affine
stretching is energetically unstable towards a redistribution
of energies in favor of longer segments. This gives rise to a
correlation-induced elasticity that cannot be explained
within a ‘‘single cell’’ model. This physical picture is of
general validity and will apply whenever the distribution of
segment lengths is sufficiently broad. Cellular systems,
being the appropriate structures for rather flexible poly-

mers, will therefore show nonaffine behavior only if they
are highly irregular [16–18]. In the complementary case of
the fiber network with its hierarchical, scale-invariant ar-
chitecture, the nonaffinity even leads to asymptotic scaling
regimes. These networks are particularly well suited to
describe the macroscopic linear response of stiff polymer
networks. Therefore, our results may be directly relevant
for two-dimensional networks of the filamentous biopoly-
mer F-actin, assembled on top of microfabricated pillars
[19]. In addition, it might shed new light on very recent
rheological measurements on cross-linked actin networks
[20,21], which emphasize the single-polymer origin of the
measured elastic moduli. Our simulations, on the contrary,
highlight the potentially nontrivial effects of interpolymer
correlations on the macroscopic elasticity.
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The Role of Architecture in the Elastic Response of Semi-flexible Polymer and Fiber

Networks
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We study the elasticity of cross-linked networks of thermally fluctuating stiff polymers. As com-
pared to their purely mechanical counterparts, it is shown that these thermal networks have a
qualitatively different elastic response. By accounting for the entropic origin of the single-polymer
elasticity, the networks acquire a strong susceptibility to polydispersity and structural randomness
that is completely absent in athermal models. In extensive numerical studies we systematically vary
the architecture of the networks and identify a wealth of phenomena that clearly show the strong
dependence of the emergent macroscopic moduli on the underlying mesoscopic network structure.
In particular, we highlight the importance of the polymer length that to a large extent controls the
elastic response of the network, surprisingly, even in parameter regions where it does not enter the
macroscopic moduli explicitly. Understanding these subtle effects is only possible by going beyond
the conventional approach that considers the response of typical polymer segments only. Instead, we
propose to describe the elasticity in terms of a typical polymer filament and the spatial distribution
of cross-links along its backbone. We provide theoretical scaling arguments to relate the observed
macroscopic elasticity to the physical mechanisms on the microscopic and the mesoscopic scale.

PACS numbers: 87.16.Ka, 62.20.Dc, 82.35.Pq

I. INTRODUCTION

Classical elasticity is a continuum theory that deals
with the large scale deformation properties of solid sys-
tems. It relates stresses and strains by introducing a
host of phenomenological parameters, e.g. shear and bulk
modulus for isotropic media, that characterize the elas-
tic properties on wave lengths large compared with any
other material length scale [1]. Biological systems like
the cell or sub-cellular organelles are often characterized
by a highly heterogeneous structure with a multitude of
hierarchical levels of organization [2]. Due to these large
scale inhomogeneities that may extend up to the scale
of the system size, the applicability of elasticity theory
on smaller length scales has to be critically examined.
In particular, the actual deformations in the system are
expected to relate to the externally applied stresses in
a non-trivial way that crucially depends on the specific
structural details.

To shed some light on the relevance of structure to
the effective elasticity this article deals with the calcu-
lation of elastic constants in networks of semi-flexible
polymers. In eukaryotic cells these networks assemble to
form the cytoskeleton that plays a central role in many
cellular functions such as locomotion, adhesion or cell di-
vision. From the point of view of structure already a
one-component isotropic solution of semi-flexible poly-
mers represents an interesting model-system being stud-
ied for many years [3, 4, 5]. One of the main quantities of
interest is the plateau value of the shear modulus found
at intermediate timescales where single polymer bending
fluctuations are equilibrated, yet center of mass motion

is negligible. The generally accepted theory for the con-
centration dependence of the plateau modulus is based
on the free energy change of confining a polymer to a
tube [3, 6, 7, 8], the diameter of which is a consequence
of the structural organization of the tubes in the form
of a random assembly of cylinders [9]. Even though this
is well known for more than a decade, computer simula-
tions to study the geometrical as well as elastic properties
in this fibrous architecture have only recently been real-
ized [10, 11].

Upon the addition of cross-linking agents or other regu-
lating proteins one can induce structural changes to mod-
ify the network architecture in many ways [12, 13, 14,
15, 16]. There have been attempts to describe the phase-
diagram of these systems [17, 18], the detailed mecha-
nisms that lead to a particular structure, however, are
far from being understood. In general, there will be a
complex interplay of polymer kinetics, thermal fluctua-
tions and chemical as well as mechanical properties of the
polymers and the cross-linking agents yielding a partic-
ular architecture relevant for a given physical situation.

A complementary approach to describe cross-linked
networks is to neglect these intricate “dynamic” as-
pects of the network, and to concentrate on a “static”
architecture and its effect on the macroscopic elastic-
ity [19, 20, 21, 22, 23, 24]. In the structural engineering
community, for example, it is of tantamount importance
to analyze the architecture of structures made of beams
or trusses. A common way to take advantage of the
reduced weight compared to the bulk material without
suffering from a loss of stiffness is a triangulation of the
basic cells. This eliminates the soft bending modes of the
beams and makes it possible to construct huge cantilever
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bridges like that over the Firth of Forth in Scotland or
towers like Eiffel’s tower in Paris. Since the rigidity of
these structures is not due to the individual beam but
to a non-local back-coupling effect induced by the archi-
tecture of the network, the triangulation is therefore one
example on how cooperativity among the building blocks
may be possible.

To address this question of cooperativity in the context
of the elasticity of cross-linked stiff polymer networks we
will concentrate in the following on two generic struc-
tures, cellular and fibrous networks, that may serve as
reference systems for the classification of real polymer
networks. While cellular structures may be characterized
by the amount of randomness in size and type of their
unit cells (see Fig.1b-d), fibrous networks have a hierar-
chical structure, where smaller cells are generated within
lager cells within even larger cells (Fig.1a). This is a
consequence of the presence of the additional mesoscopic
scale of the fiber length. As we will see, this length-scale
is ultimately responsible for the intricate scaling proper-
ties of the elasticity of fibrous polymer networks. The
goal of this article is to identify these mechanisms, that
couple the particular network structure to the properties
of the individual polymers and effectuate the macroscopic
elasticity of the system.

In contrast to the purely mechanical systems relevant
for engineering applications [19, 20, 21, 25], the systems
we would like to study are immersed in a thermal envi-
ronment. This implies that in addition to the usual en-
thalpic polymer elasticity also entropic effects have to be
accounted for. We have published a brief account of this
study recently [23]. It will turn out that by accounting
for the entropic origin of the single-polymer elasticity, the
networks acquire a strong susceptibility to polydispersity
and structural randomness that is completely absent in
athermal models.

The article is organized as follows. In Sect.II we moti-
vate our modeling approach of thermally fluctuating net-
works of stiff polymers. This will lead us to the definition
of effective elastic properties of the “polymer segments”
that constitute the elementary building blocks of the net-
work. In Sect.III and IV these polymer segments are as-
sembled into cellular and fibrous networks, respectively.
The macroscopic elastic constants of these structures are
calculated and related to the particular architectural fea-
tures. Finally, in Sect.V we present our main conclusions
and hint at implications for experiments.

II. MODEL DEFINITION

To study the elastic properties of thermally fluctuating
cross-linked stiff polymer networks we calculate numeri-
cally the low frequency shear modulus. Assuming a time-
scale separation between the fast bending fluctuations of
the single polymer and their very slow center of mass mo-
tion, we adopt a description of the system in the spirit of
a Born-Oppenheimer approximation. This neglects en-

a b

c d

FIG. 1: Illustration of the different architectures of (a) fibrous
and (b-d) cellular materials in two dimensions. While (a)
and (b) are random structures generated by Poisson point
processes, (c) and (d) are quite regular networks based on
honeycomb and square lattices, respectively.

tropic contributions from the “slow variables”, the cross-
link positions, while assuming the “fast” polymer degrees
of freedom to be equilibrated at all times. Macroscopic
quantities will then depend parametrically on the set of
cross-link variables. A macroscopic shear strain γ con-
strains the cross-links at the boundaries, while those in
the bulk are moving freely to minimize the elastic energy
E. The shear modulus is defined as its second derivative
with respect to the shear strain, G = V −1∂2Emin/∂γ2,
where V is the system volume.

By keeping the positions of the cross-links fixed, the
energy can be written as a sum

E =
∑

α

e(δx
α) , (1)

over contributions from individual polymer segments α,
each of which connects a given pair of cross-links (see
Fig.2). The single segment energy e depends on the gen-
eralized “displacement-vector” δx

α, which incorporates
the degrees of freedom, displacements u and rotations θ,
of the two cross-links pertaining to the segment.

In the numerical section we focus on two-dimensional
systems such that a vector δx2d = (u0, θ0, ul, θl) has six
components. Those are in-plane displacements u0,l and
z-axis rotations θ0,l, at both ends 0, l of the segment with
length l (see Fig.2). Note, that the additional variable
of cross-link rotation sets our system apart from bond-
bending and related models [26] where only translational
degrees of freedom are accounted for. As a consequence
one also has to account for the presence of torques as the
conjugate variable to rotations.
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FIG. 2: Illustration of a polymer segment of length l and its
connection to the network (dashed lines) at the cross-links
(CL). The three degrees of freedom at each cross-link are de-
noted by u and θ, respectively. Identification of the three
possible modes of deformation and their stiffnesses k⊥, ks

and k‖ as defined in the text.

To leading order, in linear elasticity, the single segment
quantity e is a quadratic function of its coordinates

e(x) =
1

2
x
T
Kx , (2)

which defines the “stiffness matrix” K (spring constants)
of the polymer strand.

In models of classical beams with cross-section radius
r the matrix elements are well established and relate to
the two deformation modes of stretching (s) and bending
(⊥), respectively. While the former is characterized by
the Young’s modulus E of the material, the latter de-
pends on the bending stiffness κ = Eπr4/4, here taken
for circular cross-sections. To calculate the bending re-
sponse, standard Euler-Bernoulli beam theory [1] is used.

While we refer to Appendix A for a derivation of the
complete matrix, it turns out that the response of a beam
of length l is sufficiently characterized already by two
elements of K,

ks(l) = 4κ/lr2 , k⊥(l) = 3κ/l3 , (3)

relating to either deformation mode. Due to their small
aspect ratios r/l ≪ 1 slender rods are highly anisotropic
and much softer in bending than in stretching, k⊥/ks ∝
(r/l)2. In this approximation the two deformation modes
are decoupled such that, for example, pre-stretching does
not influence the bending response. Therefore, Euler-
buckling cannot be accounted for.

Here, we consider thermally fluctuating stiff polymers
immersed in a heat bath of solvent molecules. In these
systems, the effects of temperature on the elastic prop-
erties of the polymer can be quantified by defining the
persistence length lp as the ratio of bending stiffness to
thermal energy lp = κ/kBT . With this definition we
have, in addition to the enthalpic stiffness of the classical
beam, an entropic contribution

k‖(l) = ζ κ
lp
l4

, (4)

to the polymer’s stretching compliance that can be cal-
culated within the wormlike chain model [27, 28]. The

prefactor ζ depends on the specific boundary conditions
chosen at the ends of the polymer segment. Its value
can be absorbed in the persistence length, and therefore
only quantitatively affects the results. To avoid a large
numerical offset with respect to Eq.(3), we have chosen
ζ = 6, which corresponds to a boundary condition with
one end clamped [27]. Having two longitudinal deforma-
tion modes ks and k‖ the effective stretching stiffness is
equivalent to a serial connection

k−1
eff = k−1

s + k−1
‖ . (5)

Thus, the elastic properties of the polymer segments
are given by the classical theory of beam bending sup-
plemented by a generalized stretching stiffness, that also
includes entropic effects. While the stiffness matrix has
only been set up for the two-dimensional problem, the
governing entries in three dimensions will still be the
same Eqs.(3) and (4).

As one can infer from Eqs.(3) and (4), at a given tem-
perature T there are two length scales characterizing the
material properties of the polymers, the radius r and
the persistence length lp. Typical biological polymers
are characterized by a ratio R = lp/r ≫ 1. F-actin,
for example, a key component of the cytoskeleton has
R = O(104) (r ≈ 5nm , lp ≈ 17µm), while microtubules,
most important for cell-division and intra-cellular trans-
port, have an even larger R = O(106). For specificity, we
require in the following a constant R = 1.5 · 104, the pre-
cise value, however, is irrelevant if one is interested only
in the thermal response where the radius does not enter
and ks →∞ [45]. Occasionally, we will perform this limit
to highlight features that are independent of the mechan-
ical stretching response. On the other hand, the location
of the cross-over point, where the mechanical stretching
becomes relevant, does indeed depend on the choice of
R. By definition, it determines the relative magnitude of
the two stretching compliances ks/k‖ ≃ R2(l/lp)

3.
The dependence of the three force constants k⊥, ks and

k‖, Eqs.(3) and (4), on the ratio of persistence length
to segment length lp/l is illustrated in Fig.3. One can
clearly distinguish three regimes, in each of which one of
the spring constants is by far smaller than the remain-
ing two. The dashed line corresponds to a hypothetical
spring where the deformation modes are coupled in series
k−1 = k−1

⊥ + k−1
s + k−1

‖ . If the segment length l was rep-

resentative for the network under consideration, that is
the network was characterized by only small polydisper-
sity, then we would expect the macroscopic modulus to
be well approximated by the microscopic single segment
behavior considered here. We will later refer to this be-
havior as the “affine model”. It will be shown to be valid
only in regular cellular structures.

This completes the specification on the microscopic
scale of the elastic properties of the single polymer seg-
ments. We now proceed to assemble the segments into
networks of varying architecture to identify the physical
principles which determine the elastic response on the
macroscopic scale.
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FIG. 3: Dependence of the three spring constants k‖, k⊥ and
ks on persistence length lp/l. The dashed line corresponds
to a hypothetical spring with the three deformation modes
connected in series.

To determine the elastic shear modulus, we apply a
small shear strain of γ = 0.01 to stay in the regime of
linear elasticity and use periodic boundary conditions on
all four sides of the simulation box. The numerical proce-
dure is performed with the commercially available finite
element solver MSC.MARC. The results will be comple-
mented by scaling arguments.

We will find that in regular cellular architectures, to
be discussed next, macroscopic elasticity can trivially be
explained by the microscopic constitutive laws given in
terms of the stiffness matrix K. In sufficiently random

cellular systems, however, this picture is changed. The
macroscopic response takes up nontrivial features that
cannot be explained by single polymer elasticity. In fi-

brous architectures, subject of Sect.IV, we will find this
anomalous elasticity again but in more striking form.

III. CELLULAR ARCHITECTURE

A cellular structure is most conveniently constructed
from a Voronoi tessellation of a distribution of points
which may either be chosen regularly or by some random
process [29]. With each point we associate a Voronoi cell
that is defined to enclose that region in space which is
closer to the given point than to any of its neighbors.
This procedure is equivalent to the Wigner-Seitz con-
struction known from solid-state physics. In three dimen-
sions the elastic elements are defined to be the lines of
intersection of two neighboring cell walls, while in two di-
mensions (see Fig.1) they are represented by the cell walls
themselves. We will call these elastic building blocks of
the network polymer segments and associate to them the
material properties, respectively the stiffness matrix K,
introduced in the preceding section. By its definition, a
segment spans the distance between two vertices and is
therefore “end-linked” to the rest of the network.

Depending on the spatial distribution of Voronoi

points there will also be a distribution P (ls) of segment
lengths ls. Only in regular structures, for example the
(anisotropic) two-dimensional honeycomb structure, this
distribution will degenerate into one (or several) delta-
function peaks.

The first moment of this distribution, the average seg-
ment length l̄s, is naturally the most important quantity
to describe the geometrical aspects of a cellular struc-
ture. In d = 2, 3 dimensions this “mesh-size” may be
reparametrized in terms of the density ρ as

l̄s ∝ ρ−1/(d−1) , (6)

where we defined ρ as the total polymer length per sys-
tem size. While there are practical reasons to use ρ as a
measure for the density in the simulations, in experimen-
tal work it is sometimes easier to control the monomer
concentration c. This can be found as rc ∝ ρ, where
the cross-section radius r is assumed proportional to the
monomer size.

A. Mechanical Behavior: Beams

In the engineering literature the cellular structures de-
fined above are well known as foams and are ubiquitous
in nature and many areas of technology. Examples range
from liquid foams and froths well known from drinks
or household detergents, to plastic and metallic foams
used for insulation or shock absorption [29, 30]. It is
well known that naturally occurring foams have to obey
Plateau’s laws to reach an equilibrium state. We do not
require these laws to hold in the following, since we are
interested in the dependence of elastic properties on the
architectural features in general, and not in the specific
details of the dynamic properties of foams.

For purely mechanical cellular foams, where thermal
fluctuations are neglected altogether, the only material
length scale is the radius r of the cross-section. By iden-
tifying κ/l̄s as an energy scale, we can use dimensional
analysis to write the shear modulus G as

G =
κ

l̄d+1
s

g(r/l̄s) , (7)

where the occurrence of the spatial dimension d high-
lights the fact that the modulus has units of an energy
density. In writing this, we have not made explicit the de-
pendence on the higher moments of the probability distri-
bution P . As will become clear below, these can be used
to characterize the randomness of the structure and will
be considered separately. If one defines force-constants
at the scale of the average mesh-size

k̄⊥ ≃ κ/l̄3s , k̄s ≃ κ/l̄sr
2 , (8)

the scaling variable can alternatively be written as r/l̄s ≃
√

k̄⊥/k̄s, and therefore characterizes the relative stiffness
of the bending to the stretching mode.
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B. Regular Structures and Affine Models

Restricting our attention for the moment to regular
structures, macroscopic elasticity can already be under-
stood by considering the response of a single cell [30,
31, 32]. In these systems it seems reasonable that lo-
cal stresses acting on an individual cell are the same as
those applied on the macroscopic scale. In other words,
the local deformation δ of a cell with linear dimension l̄s
follows the macroscopic strain γ in an affine way such
that it scales as δ ∝ γl̄s. With this assumption the scal-
ing function can be calculated [31] and one generically
finds for the modulus

G−1
aff = l̄d−2

s (ak̄−1
⊥ + bk̄−1

s ) , (9)

where the details of the particular structure may enter
the numbers a and b in an involved way. The important
conclusion to be drawn is that the deformation modes act
as if they were springs connected in series. For slender
beams with r ≪ l̄s the bending mode is softer than the
stretching mode and therefore dominates the modulus –
mechanical foams are bending dominated.

While we argue here that the modulus in Eq.(9) rep-
resents the generic case, there may be special cases were
the prefactors a or b are suppressed by the specific choice
of the unit cell. The triangulated network is one example
where a = 0 and the bending mode is suppressed. Below
we will encounter another example when studying the
square lattice. For these systems the special geometry
of the unit cell, or more generally, the local architecture
has to be taken into account. This is indeed the main
focus of this article. On the other hand, by assuming
affine displacements no cooperativity between the elastic
responses of neighboring cells is possible. The macro-
scopic modulus G directly reflects the elastic properties
of the single cell. The local geometry is being hidden
in the prefactors a and b, while the effect of the assem-
bled structure may simply be predicted by counting the
numbers of cells.

C. Cell Polydispersity

We have tested the validity of the affine model in a
simple two-dimensional cellular structure with varying
degree of randomness. We have taken the seeds for
a Voronoi construction of a regular, honeycomb lattice
structure and randomly displaced them with a uniform
probability distribution of width ∆ · l̄s. The influence of
randomness on the elastic properties of mechanical (non-
fluctuating) foams has been studied extensively by var-
ious authors [33, 34, 35]. Here, we also include effects
from thermal fluctuations such that the response of a
polymer segment is characterized by three deformation
modes with stiffnesses ks, k‖ and k⊥, respectively. The
affine prediction for the modulus of this system (d = 2)
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FIG. 4: Shear modulus Gl̄3s/κ as a function of lp/l̄s for a 2d
honeycomb foam structure with varying degree of randomness
∆. The blue curve (“Random”) corresponds to a “maximally”
random foam generated from a Poisson point process. Inset:
Distribution P of segment lengths for the same systems. At
low levels of randomness (∆ = 0.3) it can be approximated
by a Gaussian probability distribution (dashed line), while it
shows significant broadening upon increasing the randomness
to ∆ = 0.6, 0.9. The peak disappears completely in the case
of the maximally random Poisson foam.

can be inferred from Eq.(9). By defining

k̄‖ ≃ κlp/l̄4s , (10)

and substituting k̄−1
s → k̄−1

s + k̄−1
‖ one finds for the mod-

ulus

G−1
aff = k̄−1

⊥ h(lp/l̄s) =
l̄3s
κ

[

a + b

(

Rl̄s
lp

)−2

+ c
l̄s
lp

]

, (11)

where we have inserted Eqs.(8) and (10) and used the
relation R = lp/r. This has to be compared with the
actual results of our numerical analysis in Fig.4. The
normalized shear modulus Gl̄3s/κ is shown as a function
of persistence length lp/l̄s expressed in units of the av-
erage segment length. The curves correspond to varying
degrees of randomness ∆.

We find that regular networks (black curve, circles)
characterized by a single mesh-size l̄s indeed display the
functional form expressed through Eq.(11). For mesh-
sizes much larger than the persistence length l̄s ≫ lp
the network deforms by pulling out thermal undulations
and G ∝ k̄⊥ ∝ l̄−4

s (left part of Fig.4). Decreasing the
mesh-size beyond l̄s ≈ r stretching of the polymer back-
bone dominates the modulus G ∝ k̄s ∝ l̄−1

s (right part
of Fig.4). The physically relevant situation for studying
stiff polymers, however, corresponds to the intermedi-
ate regime, where the persistence length is much larger
than the mesh-size, which is still much larger than the
polymer radius lp ≫ l̄s ≫ r. Typical actin networks
with lp = 17µm and r = 5nm may have mesh-sizes in
the sub-micron range l̄s ≈ 100nm. In this regime, most
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of the energy is stored in the bending modes leading to
G ∝ k̄⊥ ∝ l̄−3

s corresponding to the plateau region visible
in Fig.4.

Using the values a = 0.2, b = 0.35 and c = 0.14 we
managed to fit the scaling function of Eq.(11) to the nu-
merical data (in fact, this is the dashed line in Fig.3).
Increasing the level of randomness the presence of the
additional variable ∆ spoils the scaling property and a
fit is no longer possible. The power law regimes gradually
shrink and the cross-over regions increase in size. While
the mechanical stretching regime is hardly affected by the
randomness at all, this effect is most pronounced in the
cross-over from the bending to the thermal stretching
dominated regime. The physically most relevant inter-
mediate plateau regime disappears completely and shows
strong amplitude modulations.

We have also generated foams by Voronoi tessellation
of a fully random distribution of points, corresponding to
a Poisson process (blue curve, left triangles). For these
“maximally random foams” one could rather use an ex-

pression G ∝ l̄
−7/2
s to characterize the modulus at these

intermediate parameter values. At this point this is only
an empirical observation. Later, in the context of the fi-
brous architecture, we will see how this exponent can be
derived from a scaling argument that properly takes into
account the randomness in the system.

One may infer from the inset of Fig.4 that deviations
from the scaling form presented in Eq.(11) are indeed in-
timately connected to a broadening of the segment length
distribution P (ls). In the regular structure the distri-
bution can very well be described by a Gaussian cen-
tered around the average mesh-size l̄s (dashed line in
Fig.4). Random foams, on the contrary, display signifi-
cantly broader distributions and even have non-negligible
weight on very small segments.

We will see below that the different effect of random-
ness in the thermal and the mechanical stretching regimes
can be traced back to the unusually strong length de-
pendence of the entropic stretching stiffness k‖ ∝ l−4

s as

compared to ks ∝ l−1
s . We will find that this leads to the

breakdown of the affine model whenever there is a suffi-
ciently broad distribution of segment lengths. Thermal
networks are thus inherently more sensitive to elements
of randomness than purely mechanical systems.

It is instructive to consider yet another lattice struc-
ture as a basis for our foam model (see Fig. 1). By placing
the Voronoi points on a slightly randomized square lattice
one can generate a foam with a bimodal segment length
distribution having a second peak at some small length
l1 (see inset Fig.6). To understand this, one has to re-
alize that a generic foam structure generated by Voronoi
tessellation has only three-fold connected vertices, while
they are four-fold connected in the square network. A
small amount of randomness therefore induces a bifurca-
tion of a four-fold vertex into a short segment with three-
fold connected vertices at its ends (see Fig.5). Unlike
the honeycomb foam, the resulting structure is elastically
anisotropic and has 3 distinct moduli [36]. In addition to

s

a b

∆l

FIG. 5: (a) Pure shear deformation of the square lattice and
(b) simple shear. Illustration of the bifurcation leading from
a four-fold connected vertex to a three-fold connected one by
introducing small amounts of randomness ∆l̄s.
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Inset: Distribution of segment lengths for the same network.
The dashed line is a fit to a sum of two Gaussians centered
around l1/l̄s = 0.092 and l2/l̄s = 1.35.

the bulk modulus there are two shear moduli correspond-
ing to simple and pure shear deformations. These two
modes are schematized in Fig.5, while the correspond-
ing moduli (together with the isotropic shear modulus
of the Poisson foam) are shown in Fig.6. Pure shear
leads to deformations along the main axis of symmetry
of the unit squares and thus to stretching of the elements.
The bending regime is therefore strongly suppressed. On
the other hand, simple shear deforms the squares along
their diagonals and thus favors the bending mode. Only
when the stretching energy stored in the small segments
w‖ = k‖(l1)δaff(l1)

2 ∝ lp/l21 equals the bending energy

in the average segment w⊥ = k⊥(l̄s)δaff(l̄s)
2 ∝ l̄−1

s does
the system cross-over to a stretching dominated network.
Noting (from the inset of Fig.6) that l1 ≈ l̄s/10 we
find that this happens when lp ≈ 10−2l̄s in accord with
Fig.6. It is interesting to see that the network looses its
anisotropy at the two points l̄s = lp and l̄s = r, where
the modulus takes the same value as that of the Poisson
foam. This follows from the fact that the stiffness of the
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average polymer segments is isotropic at these parame-
ter values and either k̄‖ ≈ k̄⊥ or k̄s ≈ k̄⊥. Comparing
absolute values we find that the shear modulus in the
thermal regime, strongly influenced by the presence of
the small segments, can vary orders of magnitude while
the mechanical stretching regime is hardly affected at all.

To conclude this section we emphasize once again that
polydispersity in the segment lengths can have strong ef-
fects on the macroscopic elasticity of a cellular polymer
network. It can lead to modifications of the scaling prop-
erties, as we have found in the most random foams, as
well as to quantitative changes of the modulus by several
orders of magnitude as in the anisotropic square struc-
ture. As a consequence, experiments which are limited to
restricted parameter windows would most likely measure
effective exponents that lie in between the extremal val-
ues given by pure stretching and bending. One, therefore,
has to be cautious interpreting experimental data within
the context of the foam-model, without the knowledge of
the polydispersity of the structure.

IV. FIBROUS ARCHITECTURE

Looking at pictures of cross-linked actin networks re-
constituted in vitro [12, 15] one might wonder whether a
description in terms of a cellular architecture is actually
relevant for these systems at all. Besides having a strong
polydispersity in cell sizes, real polymer networks seem
to have a hierarchical architecture that allows for smaller
cells to be generated within larger cells within even larger
cells. On the contrary, foams only have one of these hi-
erarchies (see Fig.1). What is more, cellular structures
do not account for the effects of the polymer length lf ,
which constitutes an additional mesoscopic scale in the
problem.

In the following we want to quantify the effects of
the polydispersity in connection with the length scale
lf by studying the elastic properties of a generic two-
dimensional fibrous structure which is defined as follows.
N anisotropic elastic elements, geometrically represented
by straight lines of length lf , are placed on a plane of area
A = L2 such that both position and orientation of the
elements are uniformly random distributed. This ran-
domness entails a distribution of angles θ ǫ [0, π] between
two intersecting filaments

P (θ) =
sin(θ)

2
, (12)

which has a maximum for filaments at right angles. At
any intersection a permanent cross-link with zero exten-
sibility is generated. This constrains the relative trans-
lational motion of the two filaments. For the rotational
degree of freedom one may introduce an energy contribu-
tion Wrot = m(φ − φ0)

2 for the change of relative cross-
link angles φ from their initial values φ0. We restrict
ourselves to the study of the two limiting cases, where
the potential is either soft (m → 0) and therefore allows

for free relative rotations of the filaments (free hinges),
or infinitely stiff (m → ∞) and inhibits any change of
the angles at the cross-links (fixed angles).

The remaining elastic building blocks of the network,
the polymer segments, span the distance between two
neighboring cross-links on the same polymer. Their
length can be shown to follow an exponential distribu-
tion [37]

P (ls) = l̄−1
s e−ls/l̄s . (13)

The mean value l̄s is given in terms of the density ρ =
Nl/A as

l̄s = π/2ρ , (14)

which is a realization of Eq.(6). On average there are,
thus, x = lf/l̄s ≈ lfρ segments per polymer. The sim-
plicity of this network, which has only one structural pa-
rameter ρ, makes it an ideal candidate to obtain physical
insight into the relation between architecture and elastic
properties of the constituents. This model has frequently
been used to study the elastic and brittle properties of
athermal paper sheets [25, 38, 39, 40]. In the context
of biological networks of stiff polymers it has been in-
troduced in [24] and recently studied by various authors
[19, 20, 21]. In all this work, however, the elastic proper-
ties of the polymers are modeled by the classical theory
of Euler-Bernoulli beams. Here, we concentrate on the
effects of thermal fluctuations, a brief account of which
we have published recently [23].

A. Simulation Results

In Figs. 7 and 8 the results of our simulations are shown
for fibrous networks with a varying number x of cross-
links per polymer. The axes are the same as in previous
plots. The normalized shear modulus Gl̄3s/κ is shown as a
function of persistence length y = lp/l̄s expressed in units
of the average segment length. Short fibers with few
cross-links, corresponding to low densities are depicted
in Fig. 7, long fibers or high densities in Fig. 8. In both
figures we find a regime at large values of the persistence
length lp/l̄s (right part of the plot) where the dimension-
less shear modulus decreases as G ∝ l−2

p ∝ r−2. This cor-
responds to a purely mechanical stretching regime where
G ∝ k̄s consistent with the mean-field picture of Eq.(11)
[19, 20, 24, 25].

Our main interest, however, lies in the regime of
lp/l̄s ≤ 103, where the persistence length is small enough
for thermal fluctuations to become relevant. In this
regime one may safely neglect the mechanical stretching
stiffness and set ks →∞. Then, dimensional analysis for
the shear modulus requires

G =
κ

l̄3s
g(x, y) , (15)
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link angles, respectively. For y ≫ 1 one encounters a universal
thermal regime (U) independent of the cross-link properties
as well as a mechanical regime (M).

where we have introduced the scaling variables

x = lf/l̄s ≃ lfρ , y = lp/l̄s ≃ lpρ . (16)

Comparing to Eq.(7) there is an additional argument in
the scaling function g, the polymer length x = lf/l̄s.
This purely geometrical variable counts the number of
cross-links (or equivalently: segments) per filament. The
second argument may be written in the alternative form
y ≃ k̄‖/k̄⊥. It characterizes the relative stiffness of
stretching and bending mode for a typical segment.

From Fig. 7 one infers that for low densities g = yf(x),

implying for the modulus G = k̄‖f(ρlf). This linear de-

pendence on the “pre-averaged” stretching compliance k̄‖
hints at an entropic stretching dominated regime similar
to that found in the cellular structures discussed above.
This regime has been suggested in [21], where a scaling
argument is developed relying on the affine assumption
borrowed from the mechanical stretching regime. Our
analysis shows that the domain of validity of this linear
regime is extremely narrow and confined to short fila-
ments x ≤ 20 and persistence lengths y ≪ 1. What
is more, due to the non-trivial density-dependence ex-
pressed through the function f(x), the modulus does not
even display a power-law behavior in the density. In-
stead, we find that the modulus shows complex depen-
dence on its variables and develops a dip in the inter-
mediate parameter region where 10−3 ≤ y ≤ 102. This
is also the relevant parameter range for networks of F-
actin, where the ratio of persistence length to mesh-size
lp/l̄s ≈ 10− 100.

For medium and high densities Fig. 8 shows non-trivial
scaling regimes where the scaling function g becomes in-
dependent of x and therefore of the filament length lf .
This highly non-trivial observation has important impli-
cations and allows the system to exhibit power law be-
havior g ∝ yz. We find non-trivial fractional exponents
z = 0.46(0.07) and z = 0.9 for small and large values
of y, respectively. In the figure one can distinguish four
branches that belong to different realizations of the net-
work. While branch M (mechanical regime, G ∝ k̄s) has
been discussed already, the remaining three are obtained
by setting ks →∞. The two branches found at small val-
ues y ≪ 1 relate to networks where the cross-link angles
are either free to vary (CLfree, z = 0.46) or are perfectly
fixed to their initial values (CLfixed, z = 0.07), respec-
tively. We term this regime “cross-link dominated” since
tuning the cross-link properties may have strong effects
on the elastic modulus by driving the system from one
branch towards the other. Both branches merge at y ≈ 1
where we enter a universal regime (branch U, z = 0.9)
which is completely independent of the elasticity of the
cross-links and which therefore is termed “filament dom-
inated”.

In all cases, the modulus can be written as a general-
ized geometric average

G ∝ k̄1−z
⊥ k̄z

‖ , (17)

which has to be contrasted with Eq.(11), where bending
and stretching modes are assumed to superimpose lin-
early (see Table I for a direct comparison of the various
regimes). There, the system is described either by z = 0,
if bending dominates, or by z = 1 if stretching is the main
deformation mode. Values different from the two limit-
ing cases z = 0, 1 cannot be described by the mean-field
approach, hence the assumption of affine deformations
applied on the level of the polymer segments (or the cell
size) necessarily has to fail. This will become especially
clear in the following section, where we review the appli-
cation of affine theories to fibrous architectures. We will
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z zTheory zFoam

CLfixed r ≪ lp ≪ l̄s 0.07 0 1

CLfree r ≪ lp ≪ l̄s 0.46 1/2 –

U r ≪ l̄s ≪ lp 0.9 1 0

M l̄s ≪ r ≪ lp (1) (1) (1)

TABLE I: Compilation of the different elastic regimes of the
fibrous network. The modulus is given by G ∼ k̄1−z

⊥ k̄z
‖ with

the appropriate values for the exponent z. For comparison
also the predictions from the theoretical analysis (see below)
as well as the exponents for the foam structure are given.
The latter only for fixed cross-link angles (CLfixed), which
is necessary to make the structure stable. The mechanical
regime M corresponds to the exponent z = 1, however with
k̄‖ substituted by k̄s.

illustrate its failure and highlight the physical principles
involved. To go beyond we will introduce a model that
accounts for the spatial distribution of cross-links along
the backbone of a typical polymer filament instead of just
considering a single typical polymer segment. This new
approach will allow us to understand all the features of
the macroscopic elasticity encountered in Fig.8.

B. Affine Models in Fibrous Architectures

In some of the earlier approaches to describe the elastic
moduli of stiff polymer networks the assumption of affine
deformations has been applied on the level of the average
segment which can be characterized by “pre-averaged”
response coefficients 〈k(ls)〉 → k̄ = k(l̄s) introduced in
Eqs.(8) and (10). The characteristic fibrous structure of
stiff polymer networks is not accounted for and effectively
substituted by a highly regular cellular structure. The
modulus in the thermal regime is then obtained simply
by replacing in Eq.(9) the mechanical stretching response
k̄s with its thermal counterpart k̄‖. Several variants of
this model have been considered in the literature [27,
28, 41] that only differ in the specific (ad hoc) choice of
the prefactors a, b. The stretching dominated model [28]
(setting a = 0 in Eq.(9)) with a modulus depending on
density as

G‖ ∼ ρ(2+d)/(d−1) , (18)

and its extensions to nonlinear elasticity [42], have widely
been used to fit experimental data for the plateau modu-
lus in cross-linked F-actin networks [12, 15, 43]. Despite
this apparent success, it is not clear a priori why in the
parameter regime of interest the mesh-work should de-
form by the stretching of bonds when actually bending is
by far the softer mode (k̄‖/k̄⊥ ≃ lp/l̄s ≫ 1). In general,
such a regime can only occur if the specific architecture
suppresses the soft bending modes as in the triangulated
structure with its highly coordinated vertices. A second
approach seems to repair this deficiency by setting in
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FIG. 9: Illustration of the effects of non-zero residual forces.
The relaxation of the small segment l1 from its overly stressed
state goes to the cost of additional deformations in its neigh-
bors. Depending on the value of the persistence length the en-
ergy will mainly be stored in a) the stretching mode (lp ≫ l̄s)
or b) the bending mode (lp ≪ l̄s).

Eq.(9) b = 0. The modulus in this theory

G⊥ ∼ ρ(1+d)/(d−1) , (19)

only differs by a factor of ρ1/(d−1) from the stretching
dominated modulus of Eq.(18). However, neither the-
ory provides justification for neglecting the effects of the
polydispersity in the fibrous system. In fact, if one ex-
tends the approach to include the distribution of segment
lengths, such theories necessarily have to fail, as we will
explain in the next section.

C. Effects of the Segment Length Distribution

To understand the origin of this failure consider an
affine deformation field δaff ∝ γls being applied to a ran-
dom network of stiff polymers with a distribution P (ls)
of segment lengths ls. The axial forces f‖ generated by
such a deformation field can simply be calculated by mul-
tiplying the deformation with the stretching stiffness of
the segment

f‖ = k‖δaff ≃ κlpγ/l3s . (20)

Note that in contrast to the purely mechanical situation,
where the axial force fs = ksδaff ≃ κγ/r2 is indepen-
dent of length, f‖ strongly increases with shortening the
segment length. This implies that, in general, two neigh-
boring segments on the same filament produce a net force
δf at their common node that has to be taken up by the
crossing filament. There, it leads to additional defor-
mations that eventually destroy the affine order. This
mechanism is illustrated in Fig.9 where the relaxation of
the small segment l1 leads to bending of its neighbor on
the crossing filament (b). Also the segment l2 on the
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same filament is affected by the relaxation and experi-
ences an additional stretching contribution (a). Whether
the available energy is stored in the stretching or the
bending mode depends crucially on the value of the per-
sistence length, as is indicated in the figure.

One may calculate the probability distribution Q for
residual forces by summing over all segment lengths that
are consistent with a given force δf ,

Q(δf) =
〈

δ(|f‖(l1)− f‖(l2)| − δf)
〉

. (21)

The averaging procedure defined by the angular brackets

〈A〉 =

∫

dl1

∫

dl2P (l1, l2)A(l1, l2) , (22)

involves the two-point probability P (l1, l2) of finding
neighboring segments with lengths l1 and l2, respectively.
In the special case of the random network considered
here, there are no correlations between neighboring seg-
ment lengths such that the distribution factorizes. The
formula can thus be evaluated by substituting f‖ ∝ l−3

s

taken from Eq.(20). This inverse relationship between
forces and segment lengths translates the weight of the
probability distribution P0 = P (ls → 0) 6= 0 at small
segment lengths into polynomial (fat) tails of the corre-
sponding distribution of residual forces

Q(δf →∞) ∝ δf−4/3P0 , (23)

which has a diverging mean value. The exponent can
readily be derived from evaluating the integral measure

df‖ ∝ l−4dl ∝ f
4/3
‖ dl. As a consequence there are always

residual forces high enough to cause additional deforma-
tion of the crossing filament. Hence we conclude that an
affine deformation field is unstable and that the system
can easily lower its energy by redistributing the stresses
to relieve shorter segments and remove the tails of the
residual force distribution Q(δf).

Even though we have evaluated Eq.(21) for the spe-
cial case of an exponential segment length distribution
Eq.(13), it is important to note, that the observed sensi-
tivity is not a special feature of the fibrous architecture,
but applies to any polymer network with a broad dis-
tribution of segment lengths independent of the dimen-
sionality of the network. Due to the strong length depen-
dence of k‖(ls) the thermal response is highly sensitive to
even small polydispersity as we have already seen in the
random cellular network of Sect.III C. On the contrary,
these effects are completely absent in purely mechanical
models and also in models of flexible polymers, where the
distribution Q(δf) degenerates into a delta-function peak
at the value δf = 0, and explains the robustness of these
regimes to randomness.

If we want to include the effects of randomness into a
microscopic theory we cannot naively apply the conven-
tional picture of affine deformations on the scale of the
single segment. This can safely be done only in highly or-
dered structures like regular cellular materials. Instead,

we have to adopt a description of the deformations (at
least) on the larger scale of the complete polymer. In the
following we therefore consider a typical polymer filament,
which is composed of a sequence of segments drawn from
the distribution P (ls). To describe the elastic properties
correctly, we will also have to consider the connections
of the polymer to the surrounding network matrix, in
addition to the elastic properties of the segments them-
selves. We may now employ this picture to explain the
intricate scaling properties of the polymer network in all
the parameter regimes displayed in Fig.8.

D. Cross-link dominated Regime

1. Freely hinged cross-links

We start with the description of the system in the pa-
rameter region y ≪ 1 (lp ≪ l̄s), where the properties of
the cross-links strongly influence the system’s response.
The idea is to impose a virtual affine deformation on ev-
ery segment and calculate, as a perturbative correction,
the contribution to the elastic energy resulting from the
relaxation out of this reference state. This procedure
will lead to good predictions only when the corrections
are small and the affine deformations are only weakly
perturbed. As we will see below, this is the case in the
parameter region y ≪ 1. However, it will also become
clear, that a small perturbation for the deformations is
sufficient to generate completely different scaling prop-
erties for the macroscopic modulus. For the moment we
restrict our attention to free relative cross-link rotations
(branch CLfixed), since then the affine reference state is
particularly simple and contains stretching contributions
only.

As explained above any deviation from the affine ref-
erence state, induced by relaxation of non-zero residual
forces, will lead to additional deformations in the cross-
ing filaments. Since it is more likely that two filaments
cross each other at an angle close to 90◦, the induced non-
affine deformations will mainly be oriented transverse to
the contour of the crossing filament and are therefore of
bending character. The value of the exponent z = 0.46
supports this assumption and indicates that bending and
stretching deformations in this regime contribute equally
to the elastic energy even though the bending mode is
very stiff (k̄‖/k̄⊥ ∼ y ≪ 1). Therefore any relaxation
of residual stretching forces, will be punished by high
amounts of bending energy (see Fig. 9b). Only the small-
est segments on the polymer, corresponding to the out-
ermost tails of the residual force distribution, will have
sufficient energy to perturb the deformation field and re-
lax to a state of lower strain.

In the following, we will assume that segments up to
a critical length lc – to be determined self-consistently
– fully relax from their affine reference state to give all
their energy to the neighboring segment on the crossing
filament. The total energy of the polymer can then be
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calculated from segments with ls > lc only. There are
two contributions. First, a stretching energy

ws(ls) ≃ k‖δ
2
aff ≃ κγ2 lp

l2s
, (24)

from the imposed affine strain field δaff ∝ γls. Second, a
bending energy that is due to the relaxation of a neigh-
boring segment on the crossing filament out of its affine
reference state. This process requires that the segment

of length l̂s moves the distance δ̂aff = γl̂s, which cor-
responds to its own affine deformation. The resulting
bending energy

wb(ls) ≃ k⊥δ̂2
aff ≃ κγ2 l̂2s

l3s
, (25)

now depends on the length ls of the segment under con-

sideration as well as on the length l̂s of the neighbor-
ing (now relaxed) segment. As we have assumed above,

the second contribution wb only arises if the length l̂s
is shorter than the critical length lc. The total defor-
mation energy along the polymer is then obtained by
adding both contributions and integrating over all seg-
ments ls > lc along the filament as well as averaging over

neighbors with l̂s < lc ,

Wpol ≃ (lfρ)κγ2

∫ ∞

lc

dlsP (ls)

(

lp
l2s

+ l−3
s

∫ lc

0

dl̂sP (l̂s)l̂
2
s

)

,

(26)
where the prefactor lfρ just counts the number of seg-
ments per polymer. For simplicity, we have not consid-
ered any dependence of the deformations on the orienta-
tion relative to the macroscopic strain field. In essence,
this would only introduce some additional numerical pref-
actors that are irrelevant for the scaling picture developed
here. The integrations are reparametrized by introducing
the non-dimensional variable λ = ρls such that we arrive
at the expression for the average polymer energy

Wpol ≃ κγ2lfρ2(ρlp/λc + λc) , (27)

where numerical constants have been dropped and λc :=
ρlc ≪ 1 in the parameter range of interest. Minimizing
with respect to λc determines a new non-affinity length

lmin
c = λmin

c l̄s ≃
√

lp l̄s , (28)

that sets the maximal scale up to which the destruction
of affine deformations lead to a lowering of the elastic
energy. Inserting this length into Eq.(27) and multiplying
by the number-density of filaments ρ/lf one arrives at
an expression for the modulus G ≃ Wmin

pol · ρ/lfγ2 ≃

κρ7/2l
1/2
p . Rewriting the result as

G ≃
√

k̄⊥k̄‖ ∝ l̄−7/2
s , (29)

we immediately see that our theory reproduces the em-
pirical result of Eq.(17) with an exponent z = 1/2, which
compares well with the measured value of z = 0.46.
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FIG. 10: Fraction of energy stored in the various segment
lengths; the curves correspond to different persistence lengths
at a density of lf/l̄s = 80, equivalent to l̄s/l ≈ 2 · 10−2.

The non-trivial behavior of G observed in Fig. 8 can
thus be explained by a non-affinity length scale lmin

c ≃
√

l̄slp below which the affinity of the deformation field

breaks down. Recapitulating the results from the cellular
networks in Fig.4, we observe that the same intermediate

scaling behavior of G ∝ l̄
−7/2
s is found in both architec-

tures. We have thus established the microscopic origin
of the scaling law. It derives from a continuous unload-
ing of smaller segments driven by an interplay between
segment length distribution and elastic properties of the
single polymer. This mechanism is illustrated in Fig. 10,
where a histogram for the fraction of energy stored in
segments of various lengths is shown. For very small
persistence length, a significant fraction of the energy is
stored in the shortest segments. Affine deformations can
be seen as a good approximation. Increasing the persis-
tence length, the short segments one after the other loose
their energies in favor of additional excitations in longer
segments. This is fully consistent with the assumption of
a growing non-affinity scale lmin

c below which no energy
is stored.

It is important to realize that our derivation of the
exponent does not make use of the precise form of the
segment length distribution P (ls). In fact, there is no
need to perform the integrations explicitly and only the
limiting behavior of P (ls → 0) enters. Thus, the conclu-
sions are valid for a general class of functions that may
even be slowly vanishing at zero segment length.

We have also conducted simulations that assume a
more general form for the stretching stiffness

k‖(α) = 6κ
lαp

l3+α
s

, (30)

which reduces to the original definition for α = 1. Since
the relative stiffness of the deformation modes is now
k‖/k⊥ ∝ (lp/ls)

α we can think of the phenomenological
exponent α to tune the anisotropy of the individual seg-
ment. It allows us to extend our discussion to the broad
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as derived in the main text.

class of systems for which k‖ is a monomial (with units
energy per area) involving one additional material length
lp. Repeating the scaling theory for general values of α
gives z(α) = α/(1 + α) which is verified by the results of
the simulations presented in Fig.11. It provides further
evidence for the validity of our scaling picture.

2. Fixed Cross-link Angles

If we want to apply the same reasoning to the network
with the fixed cross-link angles, we face the problem that
even a perfectly affine displacement of all the cross-links
induces some amount of bending of the segments, in ad-
dition to the usual contribution from the stretching de-
formations. While an affine strain γ would change all
angles by an amount ∆φ ∝ γ, due to the infinite ro-
tational stiffness in the cross-links this cannot actually
occur. The segments therefore have to experience an ex-
tra bending contribution induced by cross-link rotations
(−∆φ) that restore the angles to their original values. In
the parameter regime y ≪ 1, where bending is the stiffer
mode, we therefore expect strong contributions to the
energy from the bending mode already in the affine ref-
erence state. Allowing for the relaxation of the smallest
segments from their stretched state to even stronger re-
duce the amount of stretching we might find an exponent
as low as z = 0.07, signalling nearly exclusive contribu-
tions from the bending mode, not too surprising. In fact,
we will argue below that neglecting the stretching en-
ergies, i.e. assuming an exponent of z = 0, represents a
reasonable approximation to the elasticity in this regime.

E. Universal Regime

By increasing y from its small value we soften the bend-
ing mode and therefore reduce the influence of the fixed
cross-link angles on the elastic energy. At the same time
the non-affinity scale lmin

c ∝ y1/2 increases, indicating
ever stronger deviations from the affine reference state.
When, eventually, lmin

c ≈ lp ≈ l̄s (λmin
c ≈ y ≈ 1) the

affine strain field does not serve as a reference config-
uration any more, since it is strongly perturbed by a
majority of segments with ls < lmin

c . At this stage, the
two branches, present in the cross-link dominated regime,
merge and one enters a universal filament-dominated
regime. There, the specific properties of the cross-links
do not influence the macroscopic elasticity notably.

While the scaling argument presented for the hinged
network ceases to be applicable, the remaining residual
forces δf continue to lead to a redistribution of stresses
from shorter to longer segments, albeit at higher scales.
As we have shown in [23], eventually about 90% of the
energy is stored in the longest 30% of the segments only.
The new feature as compared to the regime CLfree is that
unloading of a segment from its stretched configuration
will also lead to stretching of its immediate neighbor on
the same filament (see Fig.9a). This way, the available
energy for bending of the crossing filament, which was
the primary contribution in Eq. (26), is reduced. In the
limit y ≫ 1 we can neglect these contributions and cal-
culate the energy from the polymers’ stretching stiffness
only. The physical picture is that of a serial connection of
infinitely many segments along the backbone of a “typi-
cal” polymer. The stiffness of this polymer, and therefore
the modulus, may be obtained from the stretching spring
constants of the individual segments k‖(ls) as

G−1 =

∫

dlsP (ls)k‖(ls)
−1 ∝ k̄−1

‖ , (31)

corresponding to the exponent z = 1. For the more gen-
eral response coefficient of Eq.(30) this argument predicts
z = α, a result which is closely confirmed by the results
of the simulation as can be seen from the inset of Fig.11.
Note, that the shear modulus in this asymptotic region
takes the same form as postulated by the affine theory
in Eq.(11). However, using Eq.(31) one can resolve the
effects according to segment length to find that the con-
tribution to the total energy from segments with length
ls grows as W (ls) ∝ l4s . This strong increase is in accord
with the assumption of a large non-affinity scale, below
which no energy is stored, and in striking contrast to the
affine theory that would yield Waff(ls) ∝ k‖(ls)δ

2
aff ∝ l−2

s .

V. CONCLUSION

We have studied the macroscopic elastic properties
of networks of semi-flexible polymers. We provide ex-
haustive numerical studies supplemented by scaling ar-
guments that elucidate the subtle interplay between the
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architecture of the network and the elastic properties of
its building blocks.

The main conclusion to be drawn is that, irrespec-
tive of the specific architecture chosen, thermally fluc-
tuating stiff polymer networks are inherently more sensi-
tive to polydispersity and randomness than their purely
mechanical counterparts. This is due to their strongly
length-dependent entropic stretching response k‖(l) ∝

κ2/l4 which has to be contrasted with the mechanical
stretching stiffness ks(l) ∝ κ/l.

Although simulations have only been conducted in two-
dimensional networks, the identified mechanism by which
the structural randomness influences the elastic proper-
ties is expected to be of universal character and hold
independent of dimensionality. As we have shown, the
actual consequences of this susceptibility (e.g. scaling
behaviour of elastic moduli) may vary from system to
system and certainly also with the dimension. A precise
knowledge of the network architecture is therefore indis-
pensable for the interpretation of experimental data. For
this it will be most important to develop new techniques
that allow the characterization of the microstructure and
monitor its changes upon deformation. As exemplified by
the discussion in the universal regime Sec. IVE, where
the (non-affine) elastic modulus turns out to be similar
to that in an affine theory, we have shown that macro-
scopic measurements alone do not suffice to extract the
network mechanics also on the microscopic scale.

We have described how the polymer length lf can be
used to drive the system from a simple cellular struc-
ture with filaments as short as the mesh-size lf ≈ l̄s, to
a fully scale-invariant fibrous structure characterized by
infinitely long filaments lf → ∞. Especially the latter
limit allows for intricate scaling behavior that impres-
sively demonstrates the qualitative difference between
thermally fluctuating and purely mechanical elastic net-
works.

The elasticity of a simple cellular structure may be de-
scribed by a serial connection of their elementary defor-
mation modes bending and stretching, respectively. This
leads to the modulus of Eq.(9)

G−1 = ak̄−1
⊥ + bk̄−1

‖ . (32)

In this picture, deformations can be drawn from either
mode and it will be the softer one that dominates the
modulus. In fibrous networks with fixed cross-link angles
we have shown that the modes rather act as if they were
springs connected in parallel. The modulus can then be
approximated by

G = ak̄⊥ + bk̄‖ , (33)

where the prefactors a, b depend weakly on the scaling
variable y ∼ k̄‖/k̄⊥ ∼ lp/l̄s. The network elasticity is
therefore always dominated by the stiffer mode, qualita-
tively similar to a triangulated network, where the spe-
cific geometry of the unit cell always imposes stretch-
ing deformations on the system, no matter how soft the

bending mode actually is. The fibrous architecture ap-
parently also suppresses the transition into regimes where
the softer mode is dominant. This conclusion is consis-
tent with recent simulations on the purely mechanical
fiber model [19, 20], where a transition into a regime
dominated by soft bending modes (y ≫ 1) could only be
observed at finite values for the filament length lf . In-
creasing the length to asymptotic values lf → ∞, as we
have done here, such a “bending-soft” regime is strongly
suppressed and eventually cannot occur any more. In-
stead, the elasticity is governed by the much stiffer (me-
chanical) stretching mode. A detailed theoretical expla-
nation of how this suppression is generated in mechanical
fiber networks will appear elsewhere [44], however, it is
clear that the mechanism that leads to bending in cel-
lular structures cannot work in fibrous networks. The
fact, that any segment is part of the larger structure of
the polymer fiber leads to strong geometric correlations
and imposes very strict conditions on possible segmental
deformations.

Allowing the filaments to freely rotate at the cross-
links, a situation which may be relevant for F-actin net-
works cross-linked for example with α-actinin, we also
find an asymptotic scaling regime where stretching and
bending modes contribute equally to the elastic energy,
Eq.(17),

G ∝ k̄1−z
⊥ k̄z

‖ . (34)

By quantifying the degree of co-operation between neigh-
boring elements in the network we were able to identify
a non-affinity length-scale lc below which the state of
affine deformations is rendered unstable. A scaling ar-
gument is supplied that allows the calculation of the ef-
fective macroscopic exponents starting from this micro-
scopic picture.

It seems that the effects described above can only be
accounted for by going beyond the conventional approach
that considers typical polymer segments only. Instead,
we propose to describe the elasticity in terms of a typical

polymer filament and the spatial distribution of cross-
links along its backbone. By controlling the architecture
of the network, the scale of the polymer length lf there-
fore seems to implicitly influence the elastic properties of
the system even in parameter regions where it does not
enter the macroscopic elastic moduli explicitly.
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APPENDIX A: STIFFNESS MATRIX

This appendix derives an expression for the stiff-
ness matrix of a polymer segment imbedded in a two-
dimensional network.
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The differential equation governing the bending of a
beam of length l is given by κX(4) = 0, where the trans-
verse deflection X is induced by the forces F0, Fl as well
as the torques M0, Ml acting on both ends. The solution
can then be written as

X(s) = X0 + X ′
0s +

s2

2κ
(M0 − sF0/3) , (A1)

while equilibrium conditions require that

Fl = −F0 , Ml = −(M0 − F0l) . (A2)

Stretching the beam to the position Z is governed by
the equation

Z(s) = Z0 + s−
s

EA
T0 , (A3)

with the condition

Tl = −T0 , (A4)

balancing the axial forces T .

The two variables (X, Z) are the coordinates (in the
frame of the fiber) of the vector u introduced in the
main text. The rotation is given by θ = X ′. The four
Eqs. (A1), (A2), (A3) and (A4) can now be inverted to
yield the forces in terms of the displacements at the beam
ends (cross-links)
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


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, (A5)

where we have defined Λ = l2A/I = 4(l/r)2 The sec-
ond equality only holds for circular beam cross-sections,
where the moment of area I = πr4/4. The corresponding
matrix is called the stiffness matrix.

If, in addition to Eq.(A3), we assume that the stretch-
ing response is governed by that of a thermally fluctu-
ating stiff polymer we have to take into account k‖ of
Eq.(4). This is achieved by letting both stretching modes

act in series and substitute k−1
s → k−1

s + k−1
‖ . Equiva-

lently, one can assign an effective polymer radius

r2
pol = r2 +

4l3

ζlp
, (A6)

which now depends on the segment length l as well as on
the persistence length lp of the polymer.
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Appendix A

Fascin Networks

Above a critical concentration of the actin-binding protein fascin, a solution of actin fila-
ments organizes into a pure network of bundles. As we show here the mechanical properties
inside this bundled regime may be understood in terms of the floppy-mode theory presented
in Section 4.2.

To derive a scaling theory for the plateau modulus, we assume the network structure
to be characterized by the length-scale lc, which denotes the typical distance between
neighboring cross-links along a bundle.

Within the floppy-mode theory the linear elastic modulus reads

G ∼ ν · kB
⊥ · δ2

na , (A.1)

with the polymer density ν ∼ 1/a2lc, the bending stiffness kB
⊥ ∼ Nκ/lcλ

2, which is taken
from the worm-like bundle model, Eq.(3.4), and the non-affine deformation δna ∼ γ0lf .

The most important distinction between the non-affine theory, Eq. (A.1), and the result
of the affine theory, Eq. (2.8), is the scaling of the polymer deformation, δna ∼ γ0lf , as
compared δaff ∼ γ0a in the affine case 1.

To test this model we need to know how bundle size N , mesh-size a, and cross-link dis-
tance lc depend on the experimental control parameters, which are the actin concentration
ca and the fascin-to-actin ratio R = cf/ca.

TEM micrographs reveal that the actin/fascin bundle thickness and therefore the num-
ber of actin filaments per bundle, N , increases weakly with R as N ∼ R2x and x ≈ 0.27.
With increasing R, filaments and smaller bundles reorganize to form larger bundles that
are spaced further apart. The mesh size a of this coarsening, self-similar structure there-
fore depends on R as a ∼ a0N

1/2, where a0 ∼ c
−1/2
a is the mesh size of the filamentous

network. Cross-linking will typically occur on the scale of the deflection length ld, which
plays the role of a distance between bundle-bundle intersections. Since on average only a
fraction of those will be occupied we can assume that distances between cross-links along

1Sometimes one also finds the choice δ ∼ γ0lc. All these choices are “ad hoc” and not motivated by any
physical principles. In contrast, the non-affine scaling δna ∼ γ0lf derives directly from the assumptions of
the floppy-mode theory.
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the same bundle are given by lc = R−yld [74, 69] with an as yet undetermined exponent y.
The deflection length must be calculated with the wormlike bundle model and is found as
l3d ∼ Na4lp/λ

2.
Combining the above results one finally arrives at the following prediction

G ∼ Rzcw
a λ−2/3, (A.2)

where the exponents are given by z = 2y − 4x and w = 7/3.
The length-scale λ depends on the mechanical and geometrical properties of the cross-

linking fascin molecules, in particular on the average distance between neighbouring cross-
links and thus possibly on the fascin-to-actin ratio R. As the dependence on λ is only
weak, we can assume it to be constant in what follows 2.

The scaling with actin concentration compares well with the measured value of w ≈ 2.4.
From the measurements of x ≈ 0.27 and z ≈ 1.5 a value of y ≈ 1.29 is obtained, which can
be tested by measuring the non-linear elasticity of the network. By applying a constant
shear rate the critical strain γc, marking the onset of non-linear behaviour, is determined
as γc ∼ R−1.. We will now argue, that this critical strain is equivalent to the point where
the floppy mode description breaks down.

As has been argued in Section 4.2 large strains necessarily lead to stretching even if the
deformations were only of bending character. The bundle stretching ∆ is related to the
transverse bending displacement δna by simple geometric considerations as l2c + δ2

na = (lc +
∆)2, which for small deflections gives ∆ ∼ δ2

na/lc ∼ γ2
0/lc. The floppy mode description only

applies as long as this stretching is small compared to the available thermal stored length
∆Λ, which must again be calculated with the wormlike bundle model. The straigtforward
calculation gives ∆Λ ∼ lcλ/Nlp. By equating ∆ = ∆Λ a critical strain is defined as
γc ∼ lc(λ/N)1/2 ∼ R−y+xλ−1/6 for the onset of non-linear effects. Using the values of the
exponent as determined above one finds γc ∼ R−1.0 in agreement with the experimentally
determined exponent.

We thus conclude that the floppy mode theory, when combined with the wormlike
bundle model, is capable of explaining the observed rheological properties of an isotropic
network of actin bundles crosslinked with fascin.

2Alternatively, one could assume the cross-link distance to change according to a Langmuir-kinetic. As
expected this does not change the exponents markedly.
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Seine Fähigkeit, komplexe Sachverhalte präzise auf den Punkt zu bringen, hat mir oft
geholfen. Auch wenn er als Lehrstuhlleiter vielfältige Verpflichtungen hatte, waren die
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so muss das hier besonders gewürdigt werden. Schließlich schulde ich Erwin Frey Dank
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in Berlin buchstäblich im Nacken saß). Eine besondere Ehre war es mir, während meiner
Münchener Zeit, in Klaus’ Wohnung leben zu dürfen. Vielleicht habe ich sogar etwas vom
“wissenschaftlichen Geist” profitiert, der in der Wohnung immer zu spüren war.
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partment ich manchmal etwas unaufgeräumt verlassen habe), Sebastian und Andrea (deren
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Zum Schluß– und am allerwichtigsten – möchte ich mich bei meiner Antje und bei
meinen Eltern bedanken, ohne deren langjährige Unterstützung nichts von all dem möglich
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