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1. EINLEITUNG 
1.1.  Das Down-Syndrom  
 
Das Down-Syndrom (DS) ist das häufigst auftretende klinische Syndrom 

geistiger Behinderung, mit einer Inzidenz von ca. einem Fall auf 1000 

Lebendgeburten (Adams et al., 1981) und ist für etwa 17% der geistigen 

Behinderungen verantwortlich (Heller et al., 1969). 

Im Jahr 1866 veröffentlichte der Engländer John Langdon Down die erste 

klinische Beschreibung eines Krankheitsbildes, das nun seinen Namen trägt. Er 

arbeitete damals als Leiter des “Earlswood Asyl´s für Idioten“. In seinem Artikel 

„Observations on an Ethnic Classification of Idiots.“ (Down 1866) hatte er 

Patienten beschrieben, die alle durch ein ähnlich mongoloides Aussehen 

auffielen. In Down´s Originalarbeit schrieb er diese Veränderungen irrtümlich 

noch einer Erkrankung der Mutter an Tuberkulose zu.  

Erstmals diskutierte Waardenburg 1932 eine chromosomale Veränderung als 

Ursache des Down-Syndroms. Seine Behauptungen wurden 1959 durch 

Untersuchungen von Lejeune (Lejeune et al., 1959), die das Auftreten einer 

Trisomie 21 bei einer Untersuchung von neun Kindern bestätigten, gestützt.  

Bereits gut 50 Jahre zuvor gelang Fraser und Mitchel (Fraser et al., 1876) eine 

neuropathologische Beschreibung des Gehirns bei Down-Syndrom. Sie 

beschrieben dabei insbesondere die geringe Breite der superior temporalen und 

inferior frontalen Gyri sowie den möglichen Zusammenhang zwischen Down-

Syndrom und klinischer Demenz. 

Die Entdeckung, dass das Down-Syndrom aufgrund der ähnlich ablaufenden 

pathologischen Prozesse Modellcharakter für die Alzheimer Erkrankung (AD) 

hat, prädestiniert Personen mit Down-Syndrom als Risikogruppe, um die   

(Früh-)Veränderungen bei der Alzheimer Erkrankung zu untersuchen. Die 

Beschreibung der Alterungsvorgänge bei nicht-dementen Erwachsenen mit 

Down-Syndrom bietet eine Möglichkeit, die Effekte der Alzheimer Erkrankung 

vor dem Einsetzen des dementiellen Syndroms zu studieren. 
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Die Vorstellung, dass das Down-Syndrom Modellcharakter für die Demenz vom 

Alzheimer Typ haben könnte, tauchte erstmals 1948 bei Jervis (Jervis, 1948) 

auf, der die klassischen neuropathologischen Kennzeichen der Alzheimer 

Erkrankung, nämlich Senile Plaques (SP) und neurofibrilläre Bündel (NFT), bei 

drei Erwachsenen mit Down-Syndrom beschrieb. 

Heute steht fest, dass nahezu alle Personen mit Down-Syndrom, die älter als 40 

Jahre sind, neuropathologische Veränderungen aufweisen, die die Kriterien einer 

Alzheimer Erkrankung erfüllen (Mann et al., 1984; Wisniewski et al., 1985a; 

Wisniewki et al., 1985b). 

Da die Demenz vom Alzheimer Typ heute nicht mehr als ein unvermeidlicher 

Alterungsprozess begriffen wird, sondern als eine spezifische Erkrankung, 

werden Anstrengungen unternommen, die Pathogenese der Alzheimer 

Erkrankung von Alterungsprozessen abzugrenzen und spezifische Therapien zu 

entwickeln.  

Besonders vor dem Hintergrund der stetig steigenden Anzahl älterer Menschen 

in den Industrienationen erfährt die Beschäftigung mit dem Thema Demenz seit 

Mitte der 80er Jahre eine steigende Relevanz. So leiden in Deutschland etwa 1,5 

Millionen Menschen an einem dementiellen Syndrom, das in der Mehrzahl der 

Fälle (ca. 70%) durch die Demenz vom Alzheimer Typ verursacht wird (Bickel 

et al., 1995). Die Zahl der über 80jährigen hat sich seit 1910 verzehnfacht. 

Durch die steigende Lebenserwartung wird in den nächsten 20 Jahren eine 

Zunahme der Betroffenen auf über zwei Millionen prognostiziert. 

In den USA ist die Demenz vom Alzheimer Typ die vierthäufigste Todesursache 

und mindestens 2-3% der über 65jährigen sind daran erkrankt. Bei den über 

80jährigen, der am schnellsten wachsenden Bevölkerungsschicht, sind 2-3mal so 

viele betroffen. Die Gruppe der Alzheimer-Erkrankten belegt dort ca. 30-50 % 

der Pflegeheimbetten und ist somit für einen großen Teil der Aufwendungen der 

Krankenkassen verantwortlich (Terry RD et al., 1983). 
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1.1.1. Die Zytogenetik und Molekulargenetik des Down-Syndroms 

 

Das Down-Syndrom ist die häufigst auftretende Chromosomenaberration, die 

für das klinische Syndrom der geistigen Behinderung verantwortlich gemacht 

wird. 

Meistens resultiert es aus einer kompletten Trisomie des Chromosoms 21 durch 

ein fehlerhaftes Zusammenbleiben (nondisjunction) der Chromosomen während 

der Gametenbildung (Lejeune et al., 1959). Somit geraten die nicht getrennten 

Chromosomen in dieselbe Tochterzelle, die nun ein Chromosom zuviel besitzt, 

während die andere Tochterzelle eines zuwenig aufweist. Nach der Befruchtung 

entsteht in einem Fall eine Trisomie des betreffenden Chromosoms, im anderen 

eine Monosomie. Seltener tritt dieses fehlerhafte Zusammenbleiben erst auf, 

nachdem die Befruchtung abgeschlossen ist, was zu zwei verschiedenen, 

getrennten Zelllinien im selben Fetus führt (Mosaik). 

Einige wenige Fälle resultieren aus einer kompletten oder teilweisen 

Translokation des Chromosoms 21 auf ein anderes Chromosom. Gewöhnlich ist 

dabei die D- (Onodera et al., 1997; McKusick et al., 1999; Hattori et al., 2000) 

oder G- (Epstein et al., 1990; Clark et al., 1993) Gruppe betroffen. Einige 

Formen des Down-Syndroms bei Translokation zeigen ein familiäres Muster der 

Vererbung (Williams et al., 1975).  

Insgesamt sind jedoch 90-95 % aller Down-Syndrom-Fälle auf eine vollständige 

Trisomie 21 zurückzuführen, nur 2-4 % resultieren jeweils aus einem Mosaik 

bzw. aus einer Translokation (Mikkelsen et al., 1977; Hook et al., 1981). 

Das Chromosom 21 ist mit seinen 33.8 Millionen Desoxyribonukleinsäure- 

(DNA-) Basenpaaren das kleinste menschliche Autosom, wobei viele der 225 

Gene zur Pathogenese bzw. zum Phänotyp des Down-Syndroms beitragen 

(Hattori et al., 2000).  

Auch ist das Vorhandensein einer kleinen „kritischen Region“ diskutiert worden 

(Korenberg et al., 1990; Epstein et al., 1993), die für die meisten pathologischen 
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Veränderungen verantwortlich gemacht werden kann. Der kurze Arm (21p) 

dieses akrozentrischen Chromosoms besteht aus Genen, die für die ribosomale 

Ribonukleinsäure (RNA) kodieren,  sowie aus einer proximal gelegenen höchst 

repetetiven DNA-Sequenz. Diese Gene auf 21p scheinen keinen entscheidenden 

Einfluss auf die normale Entwicklung zu haben, da Duplikationen und 

Deletionen in dieser Region gewöhnlich nur geringe beobachtbare 

Auswirkungen auf den Phänotyp haben.  

Alle anderen Gene auf Chromosom 21 befinden sich auf dem langen Arm (21q), 

für den zur Zeit verschiedene Karten erstellt werden (Onodera et al., 1997; 

Antonarakis et al., 1998; McKusick et al., 1999). Diese Karten sollen dazu 

dienen, einzelne, individuelle Befunde des Down-Syndroms spezifischen 

Subregionen des Chromosoms 21 zuzuordnen. Dabei wird DNA von Patienten 

mit seltenen, segmentalen Duplikationen ( e.g. segmentaler Trisomie) von 21q 

verwendet und versucht, diese zytogenetische Information mit dem klinischen 

Bild zu korrelieren (Epstein et al., 1993).  

Die entscheidende a priori Annahme hierbei ist, dass der Phänotyp einer 

Aneuploidie aus einer erhöhten Anzahl von Genkopien des veränderten 

Chromosoms resultiert, und dass spezifische Ausprägungen des Phänotyps 

diesem Genungleichgewicht zugewiesen werden können. Dieser „Gen-Dosis-

Effekt“, verursacht durch eine Steigerung der Genmenge des triplizierten 21q 

Abschnittes, ist somit für den Phänotyp bei der Trisomie 21 verantwortlich. 

Genau betrachtet sollte eine zusätzliche Kopie eines Chromosoms zu einer 

50%igen Zunahme der entsprechenden messenger RNA (mRNA) und dessen 

Produkten (Proteinen) führen (Amano et al., 2004). Die Konsequenzen dieser 

Erhöhung korrelieren dann mit der ursprünglichen Funktion dieses Produktes 

(e.g. als Enzym, intrazelluläres Signalmolekül, Strukturprotein, 

Oberflächenprotein, etc.). Diese „Gen-Dosis-Effekt“-Theorie wird als 

Haupterklärung für das Down-Syndrom verwendet, wenn zur Zeit auch 
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konkurrierende  Theorien existieren (Epstein et al., 1995; Pritchard et al., 1999;  

Shapiro BL, 1999; van Leeuwen et al., 1999).  

Bei dem heutigen Stand der Ursachenforschung steht fest, dass nicht nur 

Veränderungen auf dem Chromosom 21 bei der Ausprägung des Down-

Syndroms allein eine entscheidende Rolle spielen, sondern auch Veränderungen 

auf anderen Chromosomen, sowie Transskriptionsfaktoren oder Protoonkogene 

(Lubec er al., 2002).  

Eines dieser verdreifachten Gene auf 21q ist das „amyloid precusor protein“ 

(APP), das sich auf dem Abschnitt q21.3-22.05 befindet. Dieses APP-Gen 

kodiert für ein großes, transmembranöses Protein in Neuronen und Astrozyten. 

Seine vermutete Funktion ist die Steuerung der Stimulation des 

Neuritenwachstums, die Synaptogenese, die Modulation der Plastizität der 

Synapsen, die Regulation der Homöostase und der Zelladhäsion sowie die 

Neuroprotektion gegen toxischen und oxidativen Stress (Mattson et al., 1993; 

Mattson et al., 1997). βAPP wird als Reaktion auf einen neuronalen Schaden 

hochreguliert und sezernierte APPs können Neurone gegen Ischämien oder 

Toxizitäten schützen, indem sie die intrazelluläre Ca2+-Konzentration 

stabilisieren (s. Abbildung S.13). Genetische Veränderungen (e.g. Trisomie 21) 

und mit dem Alterungsprozess verbundene Vorgänge im Hirnmetabolismus 

können die Produktion und Anhäufung  Ca2+-destabilisierender β-Amylopeptide 

(Aβ) verursachen und die Freisetzung neuroprotektiver APPs verhindern. 

Das erhöhte Anfallen von APP führt zur Ablagerung von Amyloid  im Kortex 

bzw. über dessen Fragmente zu früh auftretenden Formationen von senilen 

Plaques. Somit ist das vermehrte Auftreten des APP auch für ein frühes 

Auftreten des dementiellen Syndroms bei Down-Syndrom verantwortlich 

(Margallo-Lana et al., 2004). Mutationen in diesem APP-Gen sind mit der 

familiären Alzheimer Erkrankung assoziiert (Clark et al., 1993). Auch andere 

Genloci, vor allem im Zusammenhang mit der Oxidations-/Antioxidations-
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Balance, stehen im Focus der Ursachenforschung beim Down-Syndrom (de 

Haan et al., 2003). 

Der genaue Zusammenhang zwischen dem zusätzlichen Vorhandensein einer 

Genkopie q21 und der Ausbildung des klinischen Bildes des Down-Syndroms 

bzw. der Alzheimer Erkrankung ähnlichen Pathologie bleibt aber immer noch 

Gegenstand weiterer Forschungen und ist noch nicht letztendlich geklärt 

(Epstein CJ 1990).  

Es muss konstatiert werden, dass es keine schlüssige Argumentation dafür gibt, 

dass ein einzelner Genlocus auf dem Chrosom 21 allein verantwortlich für einen 

spezifischen Phänotyp dieser Erberkrankung sein soll. Mit Sicherheit wird nur 

ein multifaktorieller Ansatz der Komplexität dieses Syndroms gerecht. 
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Abbildung 1: β-APP Stoffwechselvorgänge 

 

 
                                                               Sekretasen 

βAPP                                                                                       

                                                           670, 671  *                   * 717 

 N                                                                                Aβ                                   C 

                       Zellproliferation             Kalziumregulation       Membran 

                                                                                         Alternative Verarbeitung 

 

                                                                                                              Aβ 

 

APPs                                                                                                   verbundenes 

                                                                                                                   Aβ   

 

                                       vermindertes [Ca2+]                     erhöhtes [Ca2+]                      

            Neuroprotektion, Neuronenwachstum        Toxizität, gestörtes Wachstum 

 

 

Die Struktur des β-amyloid precusor protein (βAPP). Die funktionalen Domänen, 

Mutationsorte und alternative Verarbeitungswege, die das Überleben der Neurone 

beeinflussen, ist angezeigt. Die enzymatische Verarbeitung des βAPP durch Sekretasen setzt 

sezernierbare Formen des βAPP (APPs) aus der Zelle frei, die mehrere funktionelle Domänen 

zur Zellproliferation, Ca2+-Regulation und Neuroprotektion enthalten. Eine alternative 

Verarbeitung des βAPP kann β-Amylopeptide (Aβ ) freisetzen, die potentiell neurotoxische 

Verbindungen formen können, die die Ca2+ Homöostase stören können und so die 

Vulnerabilität der Neuronen erhöhen.  

* Mutationsloci der vererbten Alzheimer Erkrankung. 

[Nach  Mattson et al., 1993] 
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1.1.2. Klinik und Epidemiologie  

 

Die klinischen Charakteristika des Down-Syndroms sind eine erhebliche, aber 

individuell verschiedene, geistige Retardierung (Oligophrenie), typische 

Dysmorphien wie Brachy- und Mikrozephalie, Epikanthus, Hypertelorismus, 

ansteigende Lidachsen, breite Nasenwurzel, Muskelhypotonie, Vierfingerfurche 

sowie oftmals (40-60%) auftretende Herzfehler.  

Die Anzahl und Ausprägung emotionaler Auffälligkeiten im Sinne eines 

depressiven Syndroms nimmt mit fortschreitendem Alter signifikant zu. 

Evenhuis findet generalisierte tonisch-klonische Anfälle bei 6 von 12 mäßig 

intellektuell eingeschränkten (IQ 35 – 55) und bei allen 5 schwer 

eingeschränkten (IQ 25 – 35) Patienten (Evenhuis HM, 1990). Das vermehrte 

Auftreten von Epilepsien (84%) und einem Parkinsnoid (20%) wird von Lai 

berichtet (Lai et al., 1989). Ropper berichtet von signifikant erhöhtem Auftreten 

von Depression und Demenz (Ropper et al., 1980). Die Down-Syndrom-

Erkrankten fallen weiterhin durch eine Verzögerung und Störung der 

Sprachentwicklung auf (Chapman et al., 2000).  

Ab einem Alter von ca. 40 Jahren erhöht sich der Anteil derer, die einen Prozess 

kognitiver Einschränkung durchlaufen, ähnlich dem, der bei der Alzheimer 

Erkrankung beobachtet wird. Die zeitliche Hierarchie der Symptome beginnt mit 

einem langsam fortschreitendem Gedächtnisverlust, und führt zu einem 

generellen Verfall der kognitiven Fähigkeiten mit begleitender Demenz und 

emotionalen Veränderungen (Lai et al., 1989; Schapiro MB et al., 1992; 

Alexander et al., 1997; Nelson et al., 2001). 

Klinische Symptome der Demenz beim Down-Syndrom sind: Gedächtnisverlust, 

Verhaltensänderungen, Sprachschwierigkeiten, neurologische Alterationen und 

Verminderung kognitiver Kompetenzen (Visser et al., 1997; Holland et al., 

1998). Der Anteil an Patienten mit Down-Syndrom, die Symptome einer 
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Demenz aufweisen, reicht von 5%-10% zwischen 40 und 49jährigen bis hin zu 

40%-50% bei über 60jährigen (Evenhuis HM, 1990).  

Die Diagnose einer Demenz vom Alzheimer Typ sicher zu stellen, wird durch 

die angeborene mentale Retardierung und durch die große Vielfalt der basalen 

kognitiven Leistungen der Erwachsenen mit Down-Syndrom erschwert.  

Postmortem Studien hingegen zeigen, dass nahezu alle Personen mit der 

Diagnose eines Down-Syndroms ab dem Alter von 40 Jahren das 

neuropathologische Muster der Alzheimer Krankheit aufweisen (Ropper et al., 

1980; Ball et al., 1980).  

 

 

1.2. Das Down-Syndrom als Studienmöglichkeit für (Früh-)Veränderungen 

bei der Alzheimer Krankheit (AD) 

 

Die verbesserte Behandlung von Herzfehlern und Infektionskrankheiten in der 

Kinder- und Jugendzeit bei Betroffenen mit Down-Syndrom hat deren 

Lebenserwartung deutlich erhöht; von ca. neun Jahren zu Anfang des 20. 

Jahrhunderts auf einen Stand heute bei dem ca. 70% der Betroffenen 50 Jahre 

oder älter wird (Dupont et al., 1986; Baird et al., 1987).  

Diese Entwicklung führt dazu, dass eine immer größere Gruppe von älteren 

Menschen mit Down-Syndrom vorhanden ist, in der nun die Probleme der 

vorzeitigen Alterung und Demenz stärker hervortreten. Zusätzlich bietet die 

Vorhersagbarkeit des Auftretens der Pathologie der Alzheimer Erkrankung bei 

diesen Betroffenen eine Möglichkeit, die ersten Veränderungen dieser Krankheit 

zu erforschen, das Fortschreiten zu beobachten und schließlich das Endstadium 

im Rahmen der Autopsie festzuhalten. Von der verbesserten Behandlung des 

dementiellen Syndroms profitieren sowohl die an einer Demenz vom Alzheimer 

Typ Erkrankten als auch die Down-Syndrom-Betroffenen. 
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1.2.1. Morphologische und funktionelle Hirnveränderungen beim Down-

Syndrom und bei der Alzheimer Erkrankung 

1.2.1.1. Befunde bei jungen und alten Down-Syndrom-Betroffenen und bei 

Patienten mit einer Alzheimer Erkrankung 

 

Eine Reduktion des Gehirngewichts ist bei den Erwachsenen mit Down-

Syndrom ein erster, auffälliger Befund. So zeigt sich in vielen Studien, dass nur 

ein Anteil von circa 20% der Betroffenen mit Down-Syndrom zwischen 8 und 

50 Jahren ein Gehirngewicht über 1200g und gleichzeitig 15% ein 

Gehirngewicht unter 1000g haben (Benda CE 1960; Solitaire et al., 1967; 

Whalley et al., 1982; Wisniewski et al., 1985; Mann et al., 1989). Bei der 

gesunden Normalbevölkerung dieses Altersspektrums hingegen lassen sich nur 

sehr wenige mit einem Gehirngewicht unter 1200g finden.  

Schapiro konnte in einer quantitativen Computertomographie (CT)-

Untersuchung eine Vergrößerung des dritten Ventrikels zusammen mit einer 

Abnahme der grauen und weißen Substanz bei älteren (> 45 Jahre), dementen 

Betroffenen mit Down-Syndrom im Vergleich zu jüngeren Erwachsenen mit 

Down-Syndrom feststellen. Eine cerebrale Atrophie zeigte sich nur bei 

Untersuchten mit Down-Syndrom, die ein dementielles Syndrom aufwiesen. 

Ältere Betroffene mit Down-Syndrom mit einer Einschränkung der kognitiven 

Leistungen allein, ohne klinische Demenz, wiesen im Vergleich zu der jüngeren 

Down-Syndrom-Gruppe keine signifikante cerebrale Atrophie auf. Er folgerte, 

dass das Auftreten einer klinischen Demenz bei älteren Untersuchten mit Down-

Syndrom von einer cerebralen Atrophie begleitet wird (Schapiro et al., 1989). 

Studienergebnisse bezüglich der cerebralen Glukoseverwertung und des 

cerebralen Blutflusses zeigten, proportional zum Gehirnvolumen, Normalwerte 

bei jungen Betroffenen mit Down-Syndrom, während bei älteren Probanden mit 

Down-Syndrom die registrierten Parameter abnahmen. Besonders betroffen 

dabei waren der Temporal- und Parietallappen, vergleichbar mit den 
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Veränderungen bei der Alzheimer Erkrankung (Schapiro et al., 1987; Pietrini et 

al., 1997; Teipel et al., 1999). Diese Resultate traten sowohl beim Vergleich mit 

jüngeren Down-Syndrom-Patienten als auch mit gesunden Probanden des 

gleichen Alters auf. 

 

 

1.2.1.2. Neurodegenerative Veränderungen 

 

Größenabnahmen oder Verlust von Neuronen innerhalb bestimmter kortikaler 

und subkortikaler Strukturen sowie projizierender Faserverbindungen sind die 

Ursachen der cerebralen Atrophie bei der Alzheimer Erkrankung. Dies betrifft 

im besonderen die großen Pyramidenzellen der Schichten III und V des 

cerebralen Kortexes sowie die Pyramidenzellschicht im Hippocampus (Mann et 

al., 1985; Hof et al., 1990; Mann DM, 1996).  

Die ersten pathologischen Veränderungen werden, chronologisch betrachtet, im 

medialen Temporallappen und besonders im Entorhinalen Kortex und 

Hippocampus registriert, was zur Atrophie der betroffenen Strukturen führt und 

im MRT sichtbar gemacht werden kann. Die Verwendung dieses Umstands als 

Früh-Diagnostikum wird diskutiert. Bei einem Lebensalter von ca. 40 Jahren der 

Betroffenen werden in einem nächsten Schritt die neokortikalen 

Assoziationsgebiete beeinträchtigt (Braak et al., 1991; Hof et al., 1995; Jack et 

al., 1998; Sadowski et al., 1999; Chan et al., 2001; Price et al., 2001; Schott et 

al., 2003; Lerch et al., 2005). Auch limbische Kerngebiete im Vorderhirn wie 

der Nucleus basalis (Meynert) sind betroffen (Arendt et al., 1985, Teipel et al., 

2005). 

Vergleichbare Veränderungen werden von älteren Patienten mit Down-Syndrom 

berichtet. Die Ergebnisse hierbei zeigen eine verringerte Anzahl pyramidaler 

und nicht-pyramidaler Nervenzellen im Bereich des Temporallappens, 
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Hippocampus und des entorhinalen Kortex (Ball et al., 1980; Mann et al., 1987; 

Hyman et al., 1991). 

Bei der Gegenüberstellung der pathologischen Veränderungen beim Down- 

Syndrom und der Alzheimer Erkrankung muss allerdings bedacht werden, dass 

Down-Syndrom-Betroffene durch ihre angeborenen Defekte nicht vom gleichen 

morphologischen Niveau starten wie Alzheimer-Patienten oder die gesunde 

Normalbevölkerung. Dementsprechend wird gefordert, die älteren Down-

Syndrom-Patienten eher mit den jüngeren Down-Syndrom-Patienten zu 

vergleichen als mit der gesunden Normalbevölkerung, um damit den Einfluss 

der angeborenen Veränderungen zu kontrollieren. Somit ließen sich die der 

Alzheimer Erkrankung ähnlichen Veränderungen im späteren Leben besser von 

den Einflüssen des Gendefektes differenzieren.  

Unter Berücksichtigung dieses Umstandes kann nachgewiesen werden, dass sich 

die qualitativen, pathologischen Veränderungen bei älteren Betroffenen mit 

Down-Syndrom parallel zu denen bei der Alzheimer Erkankung entwickeln, 

wohingegen die quantitativen Messungen in einzelnen Bereichen erhebliche 

Unterschiede aufweisen. Das Ausmaß des Nervenzellverlustes bzw. die 

Reduktion des durchschnittlichen Zellvolumens ist in vielen Gehirnregionen 

beim Down-Syndrom identisch zu dem bei der Alzheimer Krankheit (e.g.  

Hippocampus); in anderen (e.g. Temporallappen) sind diese Prozesse beim 

Down-Syndrom deutlich geringer ausgeprägt (Mann et al., 1987). 

Die Verluste an Nervenzellen führen auch zu einer Verminderung von 

Neurotransmittern und Enzymaktivitäten in den betroffenen Systemen bei der 

Alzheimer Krankheit (Mann et al., 1986). Entsprechend kommt es bei älteren 

Patienten mit Down-Syndrom zu niedrigen Transmitterniveaus verschiedener 

neurochemischer Marker (e.g. Noradrenalin, Cholin-Acetyl-Transferase, GABA 

etc.) (Yates et al., 1981; Mann et al, 1986; Godbridge et al., 1987; Reynolds et 

al., 1988). 
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1.2.1.3. Verteilungsmuster Seniler Plaques (SP) und Neurofibrillärer Bündel 

(NFT) 

 

Die Anzahl und Verteilung von Amyloidplaques (SP) sowie die Anzahl und 

Topographie der kortikalen Neurone mit Neurofibrillären Bündeln (NFT) bilden 

die Basis für die Diagnose und Differenzierung der Alzheimer Erkrankung zu 

normalen Alterungsvorgängen (National Institute on Aging, 1983; Wisniewski 

et al., 1985 c; Khachaturian ZS, 1985).  

Eine Analyse von 39 Studien hat ergeben, dass die Wahrscheinlichkeit für das 

Auftreten von SP und NFT beim Down-Syndrom bei unter 40jährigen bei 23,3% 

liegt, dann steil ansteigt, so dass bereits im 4. und 5. Lebensjahrzehnt nahezu 

alle Down-Syndrom-Betroffenen neuropathologische Läsionen aufweisen, die 

die pathologischen Kriterien einer Alzheimer Erkrankung erfüllen (Wisniewski 

et al., 1985b; Mann et al., 1984; Mann et al., 1997). Bei einigen untersuchten 

Fällen können auch schon ab dem 30. Lebensjahr erhebliche 

Amyloidablagerungen im cerebralen Kortex auftreten (Rumble et al., 1989; 

Ikeda et al., 1989). 

Die ersten Ablagerungen tauchen beim Down-Syndrom, wie bei der Alzheimer 

Erkrankung, zuerst in der Schicht II des entorhinalen Kortex auf (Vickers et al., 

1992; Hof et al., 1995; Sadowski et al., 1999); etwas später dann in den großen 

Pyramidenzellen der Schichten III und V neokortikaler Assoziationsgebiete 

(Rafalowska et al., 1988; Hof et al., 1995; Mann DM, 1996). Hierbei herrschen 

die NFT eher in den infragranulären Schichten vor, und die SP lassen sich 

vermehrt in supragranulären Schichten finden. In primär senso-motorischen 

Rindenfeldern sind diese neurofibrillären Veränderungen demgegenüber kaum 

anzutreffen.  

Der temporale bzw. frontale Kortex beim Down-Syndrom hingegen weist eine 

höhere Dichte an NFTs auf; SP sind gleichmäßiger über alle betroffenen 

kortikalen Gebiete verteilt (Hof et al., 1995). Dieses Verteilungsmuster zeigt 
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sich auch bei der Alzheimer Erkrankung (Hof et al., 1990; Arnold et al., 1992; 

Mann DM, 1996).  

Nicht nur die Topographie sondern auch die Dichte von NFT und SP beim 

Down-Syndrom entspricht weitgehend der bei der Demenz vom Alzheimer Typ, 

wenn auch Studien einige wichtige Unterschiede aufzeigen: So ist die 

Häufigkeit von NFT im temporalen Kortex beim Down-Syndrom gleich der bei 

der Demenz vom Alzheimer Typ, wohingegen SP deutlich häufiger bei 

Patienten des gleichen Alters mit einer Alzheimer Erkrankung beobachtet 

werden. Im Hippocampus hingegen übertrifft die Zahl an SP und NFT beim 

Down-Syndrom die bei der Alzheimer Erkrankung (Hof et al, 1995). 

Auch die Morphologie der NFT und SP beim Down-Syndrom entspricht 

weitgehend den Untersuchungsbefunden bei der Demenz vom Alzheimer Typ 

(Mann DM, 1988).  

Dieses gehäufte Auftreten von für die Alzheimer Erkrankung charakteristischen 

Befunden beim Down-Syndrom scheint spezifisch für das Down-Syndrom zu 

sein, und wird auch nicht bei anderen Bevölkerungsgruppen mit geistiger 

Behinderung gefunden (Malmud N, 1972).  

Nach Zusammenschau dieser Befunde erscheint es somit wahrscheinlich, dass 

man die neurodegenerativen Veränderungen beim Down-Syndrom als ein 

Modell verwenden kann, um die bei der Alzheimer Erkrankung typischen 

Vorgänge zu untersuchen und zu verstehen. 

 

 

1.2.2. Der Hippocampus als Maß für die allokortikale Degeneration  

 

Eines der ersten klinischen Zeichen bei der Alzheimer Erkrankung stellt die 

Beeinträchtigung des Gedächtnisses dar. Dieses Symptom verschlechtert sich 

langsam im Laufe der Zeit und wird von Persönlichkeitsveränderungen, Verlust 

von Sprachkompetenzen und Affektion des extrapyramidalen, motorischen 
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Systems begleitet. Die Schwere der Erkrankung wird mit der Hierarchie von 

pathologischen Vorgängen im entorhinalen Kortex, Hippocampus und Isokortex 

in Verbindung gebracht. Histopathologische Untersuchungen weisen die 

Hippocampusformation als eines der ersten und am schwersten betroffenen 

Gebiete bei der Alzheimer Erkrankung aus. Neurofibrilläre Schäden und der 

Verlust von Projektionsneuronen, verantwortlich für die afferenten und 

efferenten Verbindungen der Hippocampusformation, führen sowohl zu einer 

Diskonnektion der intrahippocampalen Verbindungen als auch zur Isolation des 

Hippocampus von anderen Anteilen des Gehirns, die für die Gedächtnisleistung 

verantwortlich sind. Der Nervenzellverlust des Hippocampus ist somit für einen 

Grossteil des Gedächtnisverlustes bei der Alzheimer Krankheit verantwortlich 

(Hyman et al., 1984; Bobinski et al., 1996; Nagy et al., 1996). 

Diese Hippocampus-Atrophie stellt, der Klinik entsprechend, die 

morphologische Frühveränderung bei der Demenz vom Alzheimer Typ dar. CT- 

und MRT-gestützte Studien haben von signifikant reduziertem Volumen des 

Hippocampus sowie angrenzender Strukturen des medialen Temporallappens 

mit zunehmendem Alter bei Down-Syndrom berichtet. Diese entsprechen den 

frühen allokortikalen Veränderungen und dem Gedächtnisverlust bei diesen 

Patienten (Kesslak et al 1994; Lawlor et al., 2001; Krasuski et al., 2002). Andere 

Studien hingegen konnten keinen signifikanten Zusammenhang zwischen 

Hippocampusvolumen und Alter bei den Untersuchten zeigen (Raz et al, 1995; 

Aylward et al., 1999). 

Die Zunahme des Volumens des III. Ventrikels mit dem Alter bei nicht 

dementen Down-Syndrom-Patienten ist das beständigste Ergebnis bei 

Untersuchungen, die sich auf Regionen außerhalb des Temporallappens 

konzentrieren (Kesslak et al., 1994; Ikeda et l., 2002). 
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1.2.3. Topologie des Corpus callosum und dessen Bedeutung für die 

neokortikale Degeneration 

1.2.3.1. Topologie des Corpus callosum 

 

Eines der Hauptaugenmerke der neurobiologischen Forschung richtet sich 

darauf, Beziehungen zwischen Strukturen und Funktionen aufzuzeigen. 

Um diese Zusammenhänge bezüglich des Corpus callosum, auch „Balken“ 

genannt, zu erforschen, werden Patienten mit fokalen kortikalen Läsionen 

untersucht, ebenso wie sogenannte „split-brain“ Patienten, bei denen eine 

komplette Callosotomie vorgenommen wurde. 

Das Corpus callosum, die größte Komissurenbahn im menschlichen Kortex, 

verbindet die homologen Teile der Rindengebiete des Endhirns in beiden 

Richtungen. Von anterior nach posterior wird das Corpus callosum in Rostrum, 

Genu, Truncus und Splenium eingeteilt (s. Abb. S. 40). 

Die Fasern dieser Komissurenbahn entspringen einer Subgruppe der großen 

intrakortikal projizierenden Pyramidenzellen, der kortikalen Schichten III und V 

des Assoziationskortex (Innocenti GM, 1986; Conti et al., 1994).  

Postmortem Untersuchungen an Menschen- und Affenhirnen haben gezeigt, 

dass das Corpus callosum topographisch organisiert ist (Pandya et al., 1971; De 

Lacoste et al., 1985). So kreuzen die Fasern des superioren Parietallappens, 

posterioren Temporallappens und des Okzipitalkortex im Splenium, während 

Fasern des Frontallappens im Rostrum und Genu passieren. Der Truncus enthält 

Verbindungen der primär sensomotorischen Areale. Die hippocampale 

Kommissur am Unterrand des Spleniums des Corpus callosum beinhaltet die 

allokortikalen Anteile des medialen Temporallappens, die somit über keine 

direkten callosalen Projektionen verfügen (Demeter et al., 1985; Demeter et al., 

1988; Gloor et al., 1993). 

Auch neuropathologische Untersuchungen bei Patienten zeigen als Folge primär 

ischämischer Läsionen kortikaler Regionen eine Schädigung der Fasersysteme 
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des Corpus callosum, deren Verteilung die anterior-posteriore Topographie 

wiederspiegelt (De Lacoste et al., 1985).  

Funnell konnte diese funktionalen Zusammenhänge bei einer MRT-

Untersuchung eines komplett callosotomierten Patienten, bei dem einige Fasern 

des rostralen und splenialen Endes erhalten geblieben waren, bestätigen (Funnell 

et al., 2000). 

Intraoperative elektrophysiologische Stimulationen des Corpus callosum bei 

Patienten mit Epilepsie haben vergleichbare Ergebnisse gebracht: Rostrum, 

Genu und rostraler Anteil des Truncus projizieren hauptsächlich in den Frontal- 

und Postero-Temporallappen. Truncus und Splenium entsenden ihre Fasern zu 

dem Parietal- und Okzipitalkortex (Yu-ling et al., 1991). 

 

 

 

1.2.3.2. Corpus-callosum-Atrophie bei der Alzheimer Erkrankung – das 

Diskonnektionssyndrom 

 

Entsprechend dem neuropathologisch gesicherten Untergang von großen 

Pyramidenzellen in den Schichten III und V des Assoziationskortex fanden 

mehrere MRT-Studien eine signifikante Atrophie des Corpus callosum bei 

Patienten mit einer Alzheimer Erkrankung (Weis et al., 1991; Biegon et al., 

1994; Vermersch et al., 1996; Lyoo et al., 1997; Pantel et al., 1998; Yamauchi et 

al., 2000). 

Die geschädigten Neurone, vornehmlich in Schicht III, sind der Ursprung 

langer, intrakortikaler Verbindungen, die das Corpus callosum in anteriorer-

posteriorer Topographie bilden (Conti et al., 1994). Weis konnte zeigen, dass 

diese, durch Verlust an Nervenzellen verursachte Atrophie des Corpus callosum 

signifikant altersbedingte Veränderungen bei nicht-dementen, älteren 

Kontrollpersonen übertrifft (Weis et al., 1991).  
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Das Diskonnektionssyndrom bei der Demenz vom Alzheimer Typ bezeichnet 

eine im Krankheitsverlauf weiter fortschreitende Abnahme der verbindenden 

Faserstränge.  

Teipel et al. wiesen dieses Diskonnektionssyndrom bei einer funktionellen 

Untersuchung mit der Positronenemissions-Tomographie (PET) nach. Die 

Ergebnisse dieser Untersuchung zeigten, dass die Atrophie spezifischer Bereiche 

des Corpus callosum mit der Abnahme des regionalen, kortikalen Metabolismus 

und neuropsychologischen Einschränkungen korreliert (Teipel et al., 1999; 

Yamauchi et al. 1993).  

Die These, dass die regionale Corpus-callosum-Atrophie als ein indirektes in-

vivo-Maß für den neokortikalen Neuronenverlust bei der Alzheimer Erkrankung 

verwendet werden kann, ist auch aufgrund dieser Ergebnisse propagiert worden. 

Der Einwand der Kritiker dieser Theorie, dass die Corpus-callosum-Atrophie 

nicht notwendigerweise einen Neuronenverlust dokumentiert, sondern auch 

durch die Degeneration der subkortikalen Fasersysteme verursacht werden kann, 

konnte in weiteren Studien widerlegt werden. So zeigten Teipel und Hampel, 

dass die regionale Corpus-callosum-Atrophie größtenteils unabhängig von 

primärer subkortikaler Faserdegeneration stattfindet (Teipel et al., 1998; Hampel 

et al., 1998).  

Das größte Ausmaß der Schädigung des Corpus callosum bei der Alzheimer 

Erkrankung lässt sich für das Rostrum und Splenium dokumentieren (Teipel et 

al., 1998; Teipel et al., 1999; Teipel et al., 2002). Andere widersprechen diesen 

Ergebnissen und berichten von differenten regionalen Verteilungen (Weis et al., 

1991; Yamauchi et al., 1993; Janowsky et al., 1996). 

Als Erklärung dieser Atrophie des Rostrums könnte der Verlust von 

Nervenzellen des Frontalkortex dienen. Die Degeneration der am stärksten 

betroffenen Region, des Spleniums, ist möglicherweise durch das bereits 

beschriebene Absterben von Pyramidenzellen in Schicht III des okkzipitalen 

bzw. parietalen Assoziationskortex bedingt. 
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1.3. Hypothesen und Untersuchungsziele 

1.3.1. Hypothesen 

 

Der Studie liegt die Hypothese zugrunde, dass sich sowohl das Hippocampus-

Volumen als auch die Fläche des Corpus callosum bei Erwachsenen mit Down-

Syndrom mit zunehmendem Alter vermindert. Dies geschieht aufgrund 

zugrundeliegender, dem Prodromalstadium der Alzheimer Erkrankung 

vergleichbarer, neuropathologischer Vorgänge. 

Darüber hinaus wird das Ausmaß der altersabhängigen Verminderung der Größe 

des Hippocampus und des Corpus callosum miteinander verglichen, basierend 

auf der Vorstellung, dass die Atrophien des Corpus callosum und des 

Hippocampus neo- und allokortikale, Alzheimer-typische Neuropathologien 

widerspiegeln. 

 

 

1.3.2. Untersuchungsziele 

 

Ab einem Lebensalter von ca. 40 Jahren entwickeln Erwachsene mit Down-

Syndrom zunehmend ein dementielles Syndrom, bestehend aus 

Gedächtnisverlust, Verhaltensänderungen, emotionalen Irritationen, 

Verminderung der Sprachkompetenz und allgemein abnehmender kognitiver 

Kompetenz, das der Phänomenologie bei der Demenz vom Alzheimer Typ 

ähnelt.  

In analytischen Untersuchungen erfüllen Gehirnbefunde bei älteren Personen 

mit Down-Syndrom nahezu immer die neuropathologischen Kriterien einer 

Alzheimer Erkrankung. Wie bei der Alzheimer Erkrankung sind auch beim 

Down-Syndrom selektiv spezifische kortikale Regionen und 

Neuronenpopulationen von der neurodegenerativen Verteilung betroffen. 



 26 

Somit hat das Down-Syndrom Modellcharakter, um die Frühveränderungen bei 

der Demenz vom Alzheimer Typ zu studieren. 

In der vorliegenden Studie wurde untersucht, ob die Ausprägung neokortikaler, 

neuronaler Veränderungen in der Prädemenz-Phase des Down-Syndroms den 

bekannten Hippocampus Veränderungen vergleichbar ist, und sich somit 

neokortikale Degeneration, repräsentiert durch die Atrophie des Corpus 

callosum, in klinisch prädementiellen Stadien Erwachsener mit Down-Syndrom 

findet. Dazu wurden folgende Untersuchungsziele formuliert:  

 

1. Verwendung zuverlässiger und reproduzierbarer Methoden zur    

Bestimmung des Volumens der linken und rechten hippocampalen 

Formation aus volumetrischen MRT-Sequenzen. 

 

2. Verwendung zuverlässiger und reproduzierbarer Methoden zur  

Berechnung regionaler Flächen des Corpus callosum aus 

volumetrischen MRT-Sequenzen. 

 

3. Ausmessung der Atrophie der Hippocampus-Formation bei jungen im  

Vergleich zu Ergebnissen bei alten, nicht-dementen Down-Syndrom-

Betroffenen und ein Vergleich der Down-Syndrom-Betroffenen mit 

gesunden Kontrollen. 

 

4. Bestimmung der regionenspezifischen Atrophie des Corpus callosum 

bei alten und jungen, nicht-dementen Down-Syndrom-Betroffenen. 

Vergleich der Atrophie bei Down-Syndrom-Betroffenen mit gesunden 

Kontrollpersonen. 

 

5. Vergleich des Ausmaßes der Atrophie zwischen Hippocampus und  

Corpus callosum. 
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6. Bestimmung der Korrelation zwischen der regionenspezifischen 

Atrophie des Corpus callosum und neuropsychologischen 

Testergebnissen. 

 

Das Erreichen dieser Untersuchungsziele würde es ermöglichen, die Atrophie 

des Corpus callosum beim Down-Syndrom als indirektes Maß für die 

Degeneration intra- und interhemisphärisch projizierender, kortikal efferenter 

Pyramidenzellen zu etablieren. Bei der Alzheimer Erkrankung ist die Atrophie 

des Corpus callosum als etabliertes Messinstrument in der Literatur beschrieben. 

Es ist festzustellen, ob die neokortikalen Degenerationen bei nicht-dementen 

Erwachsenen mit Down-Syndrom die allokortikalen Degenerationen in der 

prädemtiellen Phase des Down-Syndroms begleiten. Außerdem könnte eine 

Aussage über das Ausmass der prädementiellen Schädigung des Hippocampus 

und Corpus callosum getroffen werden. 

Aufgrund der Topologie des Corpus callosum kann über eine eventuell regional 

akzentuierte Degeneration eine Aussage über den Ursprung der Schädigung und 

damit über die beteiligten neokortikalen Anteile in der prädementiellen Phase 

des Down-Syndroms gemacht werden. 

Dies wäre wichtig, da ein verlässlicher, struktureller in-vivio Parameter für das 

Fortschreiten der neokortikalen Degeneration beim Down-Syndrom fehlt, und 

man somit auch ein potentes Werkzeug an der Hand hätte, die 

Frühveränderungen oder eventuellen Therapieerfolge nicht nur beim Down-

Syndrom sondern auch bei Alzheimer Erkrankung zu dokumentieren und zu 

verfolgen. Die Veränderungen des Corpus callosum mit dem Alter bei 

Erwachsenen mit Down-Syndrom sind bis jetzt noch nicht untersucht worden. 

Eine Übertragung der hierbei gefundenen Resultate auf das Frühstadium der 

Demenz vom Alzheimer Typ ist aufgrund des Modellcharakters des Down-

Syndroms teilweise möglich. 
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2. METHODEN 

2.1. Patienten und Kontrollpersonen 

 

Die Patienten und Kontrollpersonen dieser Arbeit wurden am „National Institute 

on Aging“ in Bethesda, USA rekrutiert. Sie nahmen an einer Longitudinalstudie 

zum Thema Down-Syndrom und Demenz teil. Die Teilnehmer meldeten sich 

entweder freiwillig, wurden von ihrem behandelnden Arzt rekrutiert oder 

wurden von ihren Familien an die Untersucher verwiesen. Die MRT-

Untersuchungen und psychologischen Tests wurden ebendort auf Englisch 

durchgeführt.  

Es wurden insgesamt 34 Patienten mit durch Karyogramm gesicherter Trisomie 

21 und 31 gesunde Kontrollpersonen untersucht. Alle Personen unterzogen sich 

MRT-Untersuchungen. Die Altersverteilung in der Down-Syndrom- 

(Mittelwert=41,6 Jahre, Standardabweichung (SD)=9.1) und Kontrollgruppe 

(Mittelwert=41,8 Jahre, SD=10,8) war vergleichbar (t=0,08, df=63, p=0.94). 

Beide Gruppen unterschieden sich auch nicht bezüglich der 

Geschlechtsverteilung: Jeweils 17 Frauen und Männer in der Down-Syndrom-

Gruppe, und 14 Frauen und 17 Männer in der Vergleichsgruppe (Chi²=0,15, 

p=0,70). 

Um den Effekt des Alters auf die Volumina des Corpus callosum und 

Hippocampus zu vergleichen, wurden die Down-Syndrom-Betroffenen in eine 

jüngere (<40 Jahre, Anzahl(N)=19, 9 Frauen und 10 Männer, Mittelwert des 

Alters=34,9 Jahre, SD=4,0) und in eine ältere Gruppe (>40 Jahre, N=15, 8 

Frauen und 7 Männer, Mittelwert des Alters=50,2 Jahre, SD=5,8) unterteilt. 

Beide Gruppen wurden bezüglich der Geschlechtsverteilung und des gesamten 

intracranialen Volumens untersucht. Wie erwartet unterschieden sich beide 

Gruppen bezüglich der Altersverteilung.  
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Tabelle 1: Klinische Charakteristika der Down-Syndrom-Betroffenen (gesamt)  

  und Kontrollen 

 

Untersuchte 

Gruppe (N) 

 

Altersbereich 

in Jahren 

Mittelwert (in Jahren) 

und SD* 

der Altersverteilung 

 f/m** 

 

Kontrollen (31) 

 

Down-Syndrom (34) 

 

 

26,2 – 64,5 

 

25,3 – 62,5 

 

 41,8           SD=10,8 

 

 41,6           SD=9,1 

 

 14/17 

 

 17/17 

* Standardabweichung (SD) 

** Zahl der weiblichen (f) und männlichen (m) Personen 

 

Tabelle 2: Klinische Charakteristika der Down-Syndrom-Subgruppen 

 

Untersuchte 

Gruppe  

Anzahl (N) Mittelwert (in Jahren) 

und SD* 

der Altersverteilung 

 f/m ** 

 

Down-Syndrom, junge 

<40 Jahre  

 

Down-Syndrom, alte  

>40 Jahre  

 

   19 

 

 

   15 

 

 34,9           SD=4,0 

 

 

 50,2           SD=5,8 

 

 9/10 

 

 

 8/7 

* Standardabweichung (SD) 

** Zahl der weiblichen (f) und männlichen (m) Personen 
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Die globalen kognitiven Fähigkeiten wurden durch den überarbeiteten „Peabody 

Picture Vocabulary Test“ (Dunn et al., 1981) geschätzt. Das mittlere Testalter in 

dem „Peabody Picture Vocabulary Test“ war 6,4 Jahre (SD=3,0) bei der 

jüngeren und 4,2 Jahre (SD=2,7) bei der älteren Down-Syndrom-Gruppe. 

Die Patienten und die Kontrollen wurden gemäß publizierter Kriterien (Duara et 

al., 1983) untersucht. Unter anderem umfasste diese Untersuchung die 

Aufnahme der medizinischen Anamnese, eine genaue körperliche 

Untersuchung, eine differenzierte Laborkontrolle, eine Echokardiographie-

Untersuchung, eine Überprüfung der Lungenfunktion und eine 

Röntgenuntersuchung der Brust (posteriore – anteriore und laterale Aufnahmen). 

Die Untersuchung umfasste weitere Untersuchungen zum Ausschluss 

extrapyramidaler Krankheiten (Kaye et al., 1988), wobei 20 Zeichen einer 

extrapyramidalen Schädigung mit einem Punktescore von 0 bis 2 bewertet 

wurden, und bei allen Personen wurde einen Hachinski-Ischämie-Score <5 

(Hachinski et al., 1975) erhoben. Der Hachinski-Ischämie-Score ist ein 

Summenscore zusammengesetzt aus einzelnen Risikofaktoren oder 

präklinischen Symptomen für eine zerebrale Ischämie (z.B. fokale, 

neurologische Symptome, Hypertension oder Schlaganfälle in der Anamnese, 

plötzlicher Beginn usw.), die mit Wertigkeiten zwischen eins und zwei versehen 

sind. 

Bei keinem Untersuchten fand sich ein Hirntrauma, Vergiftung, Diabetes oder 

Drogen- bzw. Alkoholmissbrauch in der Anamnese. Bei vier Patienten mit 

Down-Syndrom wurde die Diagnose einer psychiatrischen Störung gestellt; zwei 

hatten eine Zwangsstörung und zwei weitere hatten eine nicht näher spezifizierte 

psychotische Störung.  

12 Down-Syndrom-Patienten litten unter Hypothyreodismus, der jeweils mit 

Levothyroxin behandelt wurde. Alle 12 Patienten wiesen somit normale 

Thyroidea- stimulierende Hormon (TSH)- Werte auf. Die Urinanalyse ergab bei 

allen Untersuchten unauffällige Befunde. Eine zum Ausschluss sekundärer 
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Demenzursachen durchgeführte Routinelaboruntersuchung erbrachte bezüglich 

der Serumelektrolyt-, Blutzucker-, Lipid-, Folatspiegel-, Vitamin B12- und 

Rheumafaktor-Level Normalwerte. Die Funktionstests der Leber 

(Lebertransaminasen), Niere (Harnstoff, Kreatinin, Harnsäure) und Schilddrüse 

blieben unauffällig, ebenso wie die HIV1- und HIV2-Antikörpersuchtests und 

die Lues-Serologie.  

Mehrere Patienten mit Down-Syndrom wiesen funktionelle Herzgeräusche auf. 

Diejenigen Patienten, die nicht schon zuvor bezüglich einer 

Herzklappenerkrankung untersucht worden waren, unterzogen sich im Rahmen 

unserer Studie einer Echokardiographie-Kontrolle. Eine klinische MRT-

Screening-Untersuchung, die unabhängig von den volumetrischen Messungen 

vorgenommen wurde, ergab keinen Anhalt für einen Schlaganfall, Tumor oder 

Raumforderung bei den Teilnehmern. 

Patienten mit klinischer Demenz wurden aus der Studie ausgeschlossen. Das 

Vorhandensein einer Demenz wurde anhand der DSM-IV-Kriterien überprüft, 

das einen erworbenen, fortschreitenden Verlust kognitiver Fähigkeiten 

beschreibt, wie etwa die Einbuße von Fertigkeiten im Alltag oder Berufsleben, 

Gedächtnisminderung, Sprachverlust, verminderte Auffassungsgabe und 

Persönlichkeitsänderung. Die Diagnose wurden anhand von Interviews mit 

Sorgeberechtigten, durch in klinische Untersuchungen erhobene Befunde und 

durch Testung mit standardisierten Kriterien (Schapiro et al., 1987) gestellt. 

Dies geschah unabhängig von den Ergebnissen der neuropsychologischen Tests 

und MRT-Untersuchungen. Die abschließende Diagnose wurde in einer 

Konferenz durch ein Team von Neurologen, Psychiatern und in der Diagnose 

einer Demenz bei Down-Syndrom erfahrenen Neuropsychologen diskutiert und 

nur einstimmig festgelegt.  

Nachdem die Durchführung, Ziele und Methodik unserer Studie jedem 

Studienteilnehmer und allen Kontrollpersonen oder dem gesetzlichen Vormund 

erklärt worden waren, unterzeichneten die Beteiligten eine 
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Einverständniserklärung, an der Studie teilnehmen zu wollen. Die Zustimmung 

der lokalen Ethikkommission für die Studie lag vor. 

 

 

2.2.   Untersuchungs- und Vermessungs-Methoden 

2.2.1.   Magnetresonanztomographie(MRT) 

2.2.1.1. Grundlagen  

 

Das Phänomen der Magnetresonanz, 1946 von Bloch und Purcell entdeckt und 

1952 mit dem Nobelpreis honoriert, diente zwischen 1950 und 1970 dazu, 

Molekularanalysen in der Chemie und Biochemie vorzunehmen. Erst seit 1980 

wird diese Methode dazu verwendet, Aufnahmen des menschlichen Körpers zu 

erstellen. Edelstein benötigte damals allerdings zur Wiedergabe einer einzelnen 

Schicht circa 5 Minuten. Diese Zeit konnte in den folgenden Jahren bis auf 

wenige Sekunden verkürzt werden. Der Einsatz der Magnetresonanz-

tomographie ermöglicht gegenwärtig die Darstellung zerebraler Strukturen in 

vivo in einer sonst nicht erreichbaren Auflösung und Kontrastierung. 

Das Prinzip der MRT beruht darauf, dass das menschliche Gewebe zum größten 

Teil aus Wasser, Proteinen und Lipiden besteht, die eine große Anzahl an 

Wasserstoffatomen enthalten, deren Kerne aus einem Proton, einem positiv 

geladenen Elementarteilchen, bestehen. Atomkerne mit ungeraden 

Nukleonenzahlen (Protonen + Neutronen) haben einen Eigendrehimpuls, den 

sogenannten Kernspin. Mit den Protonen rotieren ihre elektrischen Ladungen 

und erzeugen somit ein eigenes Magnetfeld. Jeder Kern ist somit ein kleiner 

magnetischer Dipol.  

Im menschlichen Gewebe haben zum Beispiel außer Wasserstoff (H) auch noch 

Kohlenstoff (C), Natrium (Na), Phosphor (P) und Fluor (F) eine ungerade 

Nukleonenzahl. Zur Bildgebung in der MRT werden allerdings nur die 

Wasserstoffatome genutzt.  
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Ohne ein starkes, externes Magnetfeld sind diese magnetischen Dipole nur 

geringfügig im Erdmagnetfeld ausgerichtet, und erst mit dem Zuschalten eines 

starken externen Magnetfeldes richten sie sich entlang der Feldrichtung aus. Bei 

diesem äußeren Magnetfeld, das von den gängigen Kernspintomographen 

erzeugt wird, werden Magnetwirkungen benötigt, die circa 10000 mal stärker 

sind als die des Erdmagnetfeldes.  

Entlang der Feldlinien dieses Magnetfeldes richten sich die magnetischen 

Dipolmomente der Wasserstoffatome aus. Da die Wasserstoffatome einen Spin 

besitzen und sich annähernd wie ein sich drehender Kreisel verhalten, geschieht 

dabei folgendes: 

Die Kreisel reagieren mit einer Einstellungs- oder Prezessionsbewegung auf das 

Anlegen des äußeren Magnetfeldes. Diese Prezessionsbewegung vollzieht sich 

mit einer charakteristischen Frequenz, der Larmorfrequenz ((0). Auf dieser 

Larmorfrequenz beruht die MRT-Bildgebung. Sie ist proportional zur Stärke des 

äußeren Magnetfeldes (B0) ((0=( * B0 mit (= Konstante für das 

gyromagnetische Verhältnis, in diesem Fall 42,58 MHz/T für Protonen). 

Die Orientierung der Dipolmomente kann dabei parallel oder antiparallel zur 

Feldrichtung des angelegten Magnetfeldes sein. Da allerdings die parallele 

Ausrichtung den energetisch günstigeren Zustand darstellt, verläuft der 

Summenvektor der ausgerichteten Dipolmomente, der netto 

Magnetisierungsvektor (M-Vektor), in paralleler Ausrichtung zum statischen 

Magnetfeld, in z-Richtung (s. Abbildung 2, S.34). 
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Abbildung 2: Ebenen im MRT und Orientierung des Magnetfeldes B0 
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Die Z-Achse repräsentiert die Ausrichtung des äußeren Magnetdfeldes B0 und steht senkrecht 

auf der XY-Ebene. Durch das angelegte Magnetfeld richten sich die Magnetvektoren der 

Einzelspins aus und addieren sich zur Längsmagnetisierung Mz.  

 

 

Durch Einstrahlen von elektrischen Hochfrequenzwellen zwischen 15 und 80 

MHz (Radiowellen) in dieses System wird wieder Energie eingebracht, so dass 

die Spins und mit ihnen die Längsmagnetisierung aus der Z-Richtung 

herausgekippt werden. Die Resonanzbedingung ist, dass die Frequenz dabei 

genau der Larmorfrequenz des Systems entspricht.  

Beim Einschalten der Hochfrequenzenergie wird diese von den Protonen 

aufgenommen und mit einer Richtungsänderung beantwortet: Der M-Vektor 

wird unter Aufnahme von Energie aus seiner parallelen Richtung ausgelenkt. 

Die Longitudinalmagnetisierung (entlang des Magnetfeldes) nimmt ab, die 

Transversalmagnetisierung zu. Das Spin-System wird angeregt.  
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Mit einem Hochfrequenzimpuls der richtigen Leistung und Dauer kann eine 

Auslenkung um genau 90° in die XY-Ebene erreicht werden (90°-Impuls). 

Durch das angelegte Magnetfeld kreisen die Spins und mit ihnen der 

magnetische Summenvektor (Mxy) nun in der XY-Ebene, was in der 

Empfangsspule das MR-Signal erzeugt und mit Verstärkern und Computern zur 

Bildgebung weiterverarbeitet wird. 

Nach Beendigung des Hochfrequenz-Impulses klappen die Kernspins der 

Protonen in ihre Ausgangslage zurück, die Netto-Magnetisierung richtet sich 

wieder parallel aus (Kern-Relaxation). Die Longitudinalmagnetisierung nimmt 

wieder zu, wobei die durch diesen Vorgang abgegebene Energie mit Hilfe einer 

Empfängerspule (Antenne) aufgefangen werden kann.  

Die Ortskodierung dieser empfangenen Signale geschieht über Gradientenfelder. 

Der zeitliche Verlauf der Signalintensität wird durch die T1-(≅Spingitter-) und 

T2-(≅Spin-Spin)-Relaxationszeiten bestimmt. Die T1-Relaxationszeit, oder auch 

Spin-Gitter-Relaxationszeit, ist die Zeitkonstante nach der der M-Vektor zu 

seinem Ursprungswert in der z-Richtung zurückkehrt. Sie beträgt 300-2000ms. 

Nach Abschalten des Radiofrequenzimpulses nimmt auch die 

Transversalmagnetisierung wieder ab. Die T2-Zeit, bzw. Spin-Spin-

Relaxationszeit, bezeichnet die Zeitkonstante nach der das Signal in der XY-

Ebene zerfällt. Sie ist 30-150 ms lang. 

Der Einfluss der einen oder der anderen Konstante kann durch unterschiedliche 

Messsequenzen genutzt werden. So werden zur Bilderzeugung bestimmte 

Hochfrequenz-Impulse wiederholt, wobei die Zeit zwischen zwei 

Auslenkimpulsen als Repetitionszeit (TR time to repeat) bezeichnet wird. TR 

und die Echozeit TE, die Zeit zwischen Auslenkimpuls und Signalmessung (TE 

time to echo) können unterschiedlich gewählt werden, um das errechnete Bild 

mehr T1- oder T2- gewichtet erscheinen zu lassen. Unterschiedliche 

Gewebetypen können so durch ihre spezifische Protonendichte und durch die 

spezifischen T1- und T2-Zeitkonstanten voneinander differenziert werden. 
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Dabei sorgt eine kurze Repetitionszeit (unter ca. 600ms) dafür, dass der 

Bildkontrast wesentlich von T1 beeinflusst wird. Ein solches Bild enthält relativ 

viel T1-Information und wird T1-gewichtet genannt. Wird die Repetitionszeit 

lange gewählt (größer als ca. 1500ms), haben auch die Gewebe mit einem relativ 

langem T1 Zeit zu relaxieren; alle Gewebe geben dann ein relativ ähnliches 

Signal ab.  

Die Echozeit (TE) bestimmt den Einfluss von T2 auf den Bildkontrast. Wird TE 

hoch gewählt (größer als ca. 60ms), manifestieren sich die Unterschiede 

zwischen den einzelnen Geweben deutlich; das Bild ist dann T2-gewichtet. 

 

 

Tabelle 3: Synopsis der Signalintensitäten in T1/T2 gewichteten Bildern der 

 Hirnstrukturen 

 

Gewebe T1-gewichtetes Bild T2-gewichtetes Bild 

 

Liquor cerebrospinalis 

weiße Substanz 

graue Substanz  

blander Infarkt 

Ödem 

Verkalkung 

 

 

dunkel 

hell 

leicht dunkel 

dunkel 

dunkel 

intermediär/hell 

 

sehr hell 

leicht dunkel 

leicht hell 

hell 

hell 

intermediär/dunkel 

 

 

 

Zusammenfassend kann man sagen, dass die Vorteile der T1-gewichteten 

Aufnahmen in einer guten Abgrenzung zwischen grauer und weißer Substanz 

und Darstellung morphologischer Veränderungen beruhen. Außerdem 

ermöglichen sie die Beurteilung der kortikalen Atrophie. 
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T2-gewichtete Bilder hingegen zeigen sich hochsensitiv für Veränderungen im 

subkortikalen Marklager und bieten die beste Eignung zur Darstellung 

ischämischer Veränderungen und Ödeme. 

 

 

2.2.1.2. Untersuchungen 

 

Alle Probanden wurden mit einem 0,5 Tesla(T)-Scanner (Picker Instruments, 

Cleveland) und einem 1,5 T-Scanner (General Electric Signa II, Milwaukee) 

untersucht. Zur Bestimmung des intracraniellen Volumens wurden 

zusammenhängende, 6 mm-dicke coronare Schichten (TR/TE= 2000/20 ms, 

Auslenkwinkel= 45°, Sichtfeld= 25 cm, Matrix= 256x160) gemessen, die man 

durch senkrechte Projektion  zur inferioren Orbitomeatallinie auf dem 0,5 T-

Scanner erhielt. 

Zur Messung des Volumens des Hippocampus wurde eine schräge, T1-

gewichtete Sequenz (15 Schichten, Schichtdicke=5mm, TR/TE= 530/20 ms, 

Auslenkwinkel= 90°, Sichtfeld= 16 cm, Matrix= 256x256) angefertigt. Diese 

Bilder wurden senkrecht zum Sulcus lateralis Sylvii, der durch sagittale Scout-

Schichten ermittelt wurde, auf dem 1,5 T-Scanner gefahren und stellten den 

Temporallappen von seinem anterioren Pol bis zum Sulcus lateralis dar. Da 

mehrere Down-Syndrom-Patienten nicht die komplette MRT-Prozedur im 

wachen Zustand durchlaufen konnten, wurden sie, unter Aufsicht eines 

Anästhesisten, intravenös sediert. 

Zur Vermessung der Flächen des Corpus callosum wurden volumetrische, T1-

gewichtete Scans (sagittale Ausrichtung, Schichtdicke= 2mm, Auflösung in der 

Ebene  1mmx1mm, TR/TE= 20/6ms, Auslenkwinkel=45°) bei 17 Down-

Syndrom-Patienten und 17 Kontrollen auf dem 0,5 T-Scanner, bei 17 Down-

Syndrom-Patienten und 14 Kontrollpersonen auf dem 1,5 T-Scanner (coronare 

Ausrichtung, Schichtdicke= 2mm, Auflösung in der Ebene= 0,94mmx0,94mm) 
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erstellt. Diese Sequenzen wurden anschließend durch trilineare Interpolation 

ebenfalls in die sagittale Ebene transformiert. 

 

 

2.2.2. Ausmessung des Corpus callosum und des Hippocampus 

 

Ein gegen die Diagnose des Probanden verblindeter Untersucher bestimmte an 

einer Silicon Graphics Workstation (Silicon Graphics, Palo Alto, California) 

unter Verwendung des Bildbearbeitungsprogramms ANALYZE (Biomedical 

Imaging Resource, Mayo Foundation, Rochester, Minnesota) die Gesamtfläche 

des Corpus callosum, sowie dessen fünf Subregionen in der mittsagittalen 

Schicht der dreidimensionalen T1-gewichteten MRT-Sequenz (s. Abbildung 3, 

S.40). Der erste und wichtigste Schritt dabei ist die Auswahl derjenigen Schicht, 

die am besten die mittsagittale Einstellung enthält. Die entsprechende Schicht 

wird durch anatomische, hierarchisch gestaffelte Landmarken ausgesucht. Als 

erstes wird hierbei die Schicht um den Interhemisphärenspalt ausgesucht, die 

den geringsten Anschnitt an kortikaler Substanz aufweist. Sollte danach noch 

mehr als eine Schicht in der Auswahl verbleiben, was selten geschieht, dann 

wird diejenige Schicht gewählt, die den geringsten Anschnitt des Thalamus 

aufweist. Ist anhand dieses Kriteriums immer noch keine eindeutige Auswahl zu 

treffen, so entscheidet man sich schließlich für die Schicht, die den Aquäductus 

cerebri am weitesten offen zeigt (Hampel et al., 1998). Nach Durchlaufen dieser 

Prozedur war immer eine eindeutige Auswahl der am meisten mittsagittal 

gelegenen Schicht möglich.  

Danach wird die Gesamtfläche des Corpus callosum dadurch bestimmt, dass der 

Untersucher exakt die äußeren Grenzen manuell umfährt.  Die Flächen der fünf 

Subregionen des Corpus callosum werden dann durch die nächsten zwei 

aufeinanderfolgenden Schritte bestimmt. 
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Zunächst wird ein Rechteck auf das Corpus callosum gelegt, so dass die tiefsten 

Punkte des anterioren und posterioren Anteils des Corpus callosum von der 

Unterseite des Rechtecks berührt werden. Anschließend richtet man die Länge 

des Rechtecks ein. Die vordere und hintere Breitseite sollen das Corpus 

callosum jeweils an seinem vordersten und hintersten Punkt berühren. 

Im zweiten Schritt legt der Untersucher einen zehnstrahligen Stern mit gleichem 

Winkelabstand mit dem Zentrum in den Mittelpunkt der Unterseite des 

Rechtecks. Durch die vier oberen Strahlen dieses Sterns wird das Corpus 

callosum in fünf Subregionen unterteilt, die in anteriorer-posteriorer Richtung in 

C1-C5 benannt werden. Die Werte für die Flächen der einzelnen Regionen (in 

mm²) erhält man dadurch, dass man die Anzahl der Bildpunkte (Pixel) in jedem 

Bereich zählt und dann mit der bekannten Pixelgröße multipliziert. 

Auf einer Sun Workstation (Sun Microsystems, Mountain View, California) 

werden die Werte für die rechte und linke Hippocampusformation bestimmt. 

Dazu wird diese Formation unter Verwendung der Methode von Watson et al. 

(Watson et al., 1992) aufgesucht und vermessen. Dabei werden die 

volumetrischen Messungen mit einem interaktiven, halbautomatischen 

Software-Packet vorgenommen. Die Begrenzung der Strukturen wird dabei 

nicht durch den absoluten Wert eines Pixels bestimmt, sondern durch den 

kontrastierenden Unterschied von angrenzenden Pixeln. Die Umrandungen von 

Hippocampus und Amygdala werden dann manuell von dem Untersucher 

vorgenommen. Nach Bestimmung der Außengrenzen der Zielstrukturen wird die 

dabei ermittelte Fläche mit der Schichtdicke des Scans multipliziert, um das 

Volumen innerhalb einer Schicht zu ermitteln. Das Gesamtvolumen der 

betroffenen Struktur erhält man durch Addition der Volumina der einzelnen 

Schichten. Diese Messungen werden auf einem hochauflösenden Monitor mit 

etablierter Software vorgenommen (Murphy et al., 1992; DeCarli et al., 1992; 

Krasuski et al., 2002). 
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Abbildung 3: Vermessung des Corpus Callosum und der fünf Subregionen* in 

der mittsagittalen Ebene 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* Die Bezeichnung der fünf Subregionen in anteriorer-posteriorer Reihenfolge: 

  C1 Rostrum und Genu, C2 Anteriorer Truncus, C3 Medialer Truncus, C4      

   Posteriorer Truncus, Isthmus, C5 Splenium  
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C3 
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Um die Intra- und Inter-Untersucher Reliabilität der Methodik zu erfassen, 

vermaß ein Untersucher zweimal die selben zehn Scans, ohne Kenntnis davon, 

welche Datensätze ihm zum zweitenmal vorgelegt wurden. Zusätzlich vermaßen 

zwei Untersucher unabhängig voneinander die selben 10 Datensätze. 

 

 

2.2.3. Psychometrische Testverfahren 

 

Bei allen Probanden wurde der „Down Syndrome Mental Status Examination“ 

(DSMSE)-Test und der „Extended Block Design“ (EBD)-Test durchgeführt. Um 

das globale kognitive Leistungsvermögen der Down-Syndrom-Teilnehmer zu 

bestimmen, verwendeten wir zusätzlich den „Peabody Picture Vocabulary“ 

(PPVT-R)-Test.  

Diese Auswahl an Tests trafen wir aus einer bereits etablierten Testbatterie1 von 

Alexander (Alexander et al., 1997). Aus dieser Vielzahl an Einzeltest haben wir 

diejenigen herausgesucht, die in einer früheren Studie signifikante Unterschiede 

zwischen alten und jungen Down-Syndrom-Patienten aufgezeigt hatten 

(Alexander et al., 1997) – nämlich Untertests des DSMSE, eine Reihe von 

Gedächtnistests und der EBN Test. Da wegen bereits früher durchgeführten 

Untersuchungen zu erwarten war, dass die Gedächtnistests eher mit den 

Hippocampus- als mit den Corpus Callosum-Messungen korrelieren würden 

(Krasuski et al., 2002, Greicius et al., 2003) und um die Anzahl der statistischen 

Analysen im überschaubaren Rahmen zu lassen, entschieden wir uns, nur den 

DSMSE- und den EBD- Test zu berücksichtigen und mit unseren 

volumetrischen Daten in Beziehung zu setzen.  

 

                                                 
1 Die Batterie beinhaltete den überarbeiteten „Peabody Picture Vocabulary Test“ (PPVT—R) (Dunn et al., 1981), die 
„Stanford-Binet Intelligence“ Skala (S-B) (Terman et al., 1973), den „Hidden Object Memory Test“ (HOM) (Haxby JV, 
1989), „Recognition Memory for Designs“ (Haxby JV, 1989), „Extended Block Design“ (EBD) Test (Haxby JV, 1989), 
„Hiskey-Nebraska (H-N) Block Patterns“ Subtest (Hiskey MS, 1965), „Manual Expression and Grammatic closure subtests“ 
des „Illinois Tests of psycholinguistic Ability“ (Kirk et al., 1968) und „Down Syndrome Mental Status Examination“ 
(DSMSE) (Haxby JV, 1989). 
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DSMSE 

 

Haxby entwickelte den DSMSE-Test (Haxby JV, 1989), um bei Down-

Syndrom-Betroffenen das globale, neuropsychologische Funktionsniveaus zu 

ermitteln. Das maximal erreichbare Testergebnis lag bei 65, wobei es ihm 

gelang junge (Testscore: 50+/-9) von alten, nicht-dementen (Testscore: 37+/-13) 

und alten und dementen (Testscore: 13+/- 11) Down-Syndrom-Personen 

signifikant zu unterscheiden 

Der DSMSE-Test ist in Untertests aufgegliedert, die persönliche Daten der 

Testperson, Orientierung bezüglich der Jahreszeit und Wochentag, Gedächtnis, 

Sprache, räumliches Vorstellungsvermögen und praktische Fähigkeiten abrufen. 

Die persönlichen Daten werden anhand von Fragen bezüglich des Namens, 

Alters und Geburtstags der Testperson geprüft. Die zeitliche Orientierung wird 

durch Abfragen der Jahreszeit und des Wochentags festgestellt. Kurz- und 

Langzeitgedächtnis werden dadurch abgefragt, dass die Testperson drei gezeigte 

Objekte benennen muss und den Aufenthaltsort dreier versteckter Gegenstände 

erinnern soll. Verschiedene Sprachtests (Gegenstände benennen, Satz fortführen, 

Sätze wiederholen, Verständnis ein-, zwei- und dreistufiger Befehle), Aufgaben 

zur räumlichen Vorstellung (Anfertigung dreidimensionaler Gegenstände) sowie 

praktische Übungen (Bewegung der Extremitäten, Nachahmungsübungen) 

vervollständigen den Test (Haxby JV, 1989; Tyrell et al., 2001). 

 

EBD 

 

Der EBD-Test prüft die Fähigkeit des Probanden zweidimensionale 

Konstruktionen, die der Untersucher angefertigt hat, nachzubilden. Er prüft  acht 

Items und wurde ursprünglich als Ergänzung des überarbeiteten „Wechsler 

Intelligence Scale for Children“- (WISC-R) (Wechsler DA, 1974) Tests  

verfertigt. Beide Testreihen verwenden dieselben Vorlagen (Haxby JV, 1989). 
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PPVT-R 

 

Wir verwendeten diesen Test um eine Einschätzung der globalen, intellektuellen 

Fähigkeiten der Probanden zu erhalten. Dale und Reichert konnten zeigen, dass 

die Überprüfung des Vokabulars als einer der besten Einzeltests für die 

generellen, intellektuellen Fähigkeiten dient (Dale et al., 1957). Beim PPVT-R 

wird der Wortschatz des Probanden dadurch getestet, dass man ihn bittet, auf 

das Bild aus einer Auswahl von Bildern zu deuten, welches die Bedeutung eines 

ihm vorgelesenen Wortes am besten wiedergibt (z.B. „Zeigen Sie mir den 

Pfeil“). Dieser, die verbale Intelligenz messende Test, zeichnet sich dadurch aus, 

dass er sowohl sehr geringe Altersstufen und Level der geistigen Fähigkeiten als 

auch Testleistungen, die erheblich über durchschnittlichen, erwachsenen 

Anlagen liegen, erfasst. Insgesamt stehen hierzu 150 verschiedene Bildtafeln in 

aufsteigender Schwierigkeit zur Verfügung. 

 

 

2.3. Statistische Analysen 

 

Zwischen der Down-Syndrom-Gruppe und der Kontrollgruppe wurden 

Unterschiede in der Altersverteilung mit Hilfe des Student´s-t-Tests und 

Unterschiede in der Geschlechtsverteilung mit dem Chi-Quadrat-Test überprüft. 

Um eine ungleiche Geschlechtsverteilung oder Unterschiede des intracranialen 

Gesamtvolumens  innerhalb der Down-Syndrom-Subgruppen (alte und junge 

Down-Syndrom-Patienten) ausschließen zu können, wurde der Chi-Quadrat-

Test (Geschlechtsverteilung) bzw. T-Test (intracranielles Volumen) angewandt. 

Die erwartete ungleiche Altersverteilung in den Down-Syndrom-Subgruppen 

wurde mit dem T-Test überprüft. 

Um die Unterschiede im Volumen des Hippocampus und der Fläche des Corpus 

callosum zwischen Down-Syndrom-Patienten und Kontrollen zu bestimmen, 
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wurde eine Kovarianzanalyse (ANCOVA) durchgeführt. Um den Einfluss des 

Alters und des gesamten intracraniellen Volumens zu kontrollieren gingen beide 

als Kovariaten in die Analyse ein. Die Gruppenzugehörigkeit war die abhängige 

Variable. 

Wir verwendeten eine lineare Regressionsanalyse, um die Alterseffekte auf die 

regionalen Volumina voraussagen zu können. Dabei wurde der Einfluss des 

Geschlechts und des gesamten intracraniellen Volumens kontrolliert. Da das 

gesamte intracranielle Volumen und das Geschlecht ein eindeutig abhängiges 

Verhältnis voneinander in beiden Gruppen aufwiesen (mit größerem 

intracraniellen Volumen bei Männern), verwendeten wir zwei unabhängige, 

multiple Regressionsanalysen mit den regionalen Volumina als abhängige 

Variabeln. Dabei ging beim ersten Modell das Geschlecht zuerst als 

unabhängige Variable  ein, beim zweiten das intracranielle Volumen. Bei beiden 

folgte dann die Eingabe des Alters des Probanden in die Berechnung. 

Um Korrelationen zwischen neuropsychologischen Testscores und den 

regionalen Volumina des Hippocampus und Corpus callosum zu ermitteln, 

wurden partielle Korrelationskoeffizienten auf die dazu rangtransformierten 

Daten angewandt. Dabei wurde der Effekt, den das totale intracranielle Volumen 

beiträgt, kontrolliert. 

Wir verwendeten eine logistische Regressionsanalyse mit einer binären 

abhängigen Variable (Zugehörigkeit der Down-Syndrom-Betroffenen zur 

Gruppe der alten oder jungen Down-Syndrom-Subgruppe) und der dazu  

rangtransformiert unabhängigen Variable (Volumen des Hippocampus und 

Fläche des Corpus callosum), um die Odds Ratios dafür zu bestimmen, 

inwieweit das Volumen des Hippocampus bzw. die Fläche des Corpus callosum 

die Zugehörigkeit zur jungen oder alten Down-Syndrom-Subgruppe voraussagt. 

Indem man die Odds Ratios zwischen verschiedenen Messungen vergleicht, 

kann man den Unterschied in der Trennschärfe für die einzelnen Regionen 
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bestimmen. Andererseits ist diese Trennschärfe direkt vom Ausmaß der 

regionenspezifischen Atrophie beeinflusst. 

Um den Unterschied des Ausmaßes der Atrophie zwischen dem Volumen des 

Hippocampus und der Fläche des Corpus callosum zu bestimmen, verwendet 

wir eine „receiver operating characteristic“ (ROC) Kurvenanalyse (Teipel et al., 

2003) mit der Gruppenzugehörigkeit (junge Down-Syndrom-Patientengruppe 

gegenüber alter Down-Syndrom-Patientengruppe) als abhängiger Variable. 

Diese Analyse kann das Ausmaß der Atrophie beschreiben und dient dazu, 

direkt das Ausmaß der Atrophie des Hippocampus mit der des Corpus callosum 

zu vergleichen. 

Statistische Signifikanz wurde ab einem Fehlerniveau von p < 0,05 für den 

Fehler erster Art angenommen. 

Die statistischen Berechnungen wurden mit dem „Statistical Package for the 

Social Science“ für Windows Version 11.0 (SPSS Inc., Chicago, Il., USA) 

durchgeführt. 

 

 

3. ERGEBNISSE 

3.1. Gruppenparameter 

 

Die Altersverteilung in der Gruppe der Down-Syndrom-Patienten und der 

Kontrollen war gleich (Zweiseitiger T-Test: t=0.08, df=63, p=0.94). Ebenso 

ergaben sich keine statistisch auffälligen Unterschiede zwischen den Gruppen 

bezüglich der Geschlechtsverteilung (Chi-Quadart: (²=0,15, df=1, p=0,70). 

Innerhalb der jungen Down-Syndrom- und alten Down-Syndrom-Subgruppen 

zeigten sich keine statistisch signifikanten Unterschiede bezüglich der 

Geschlechtsverteilung (Chi-Quadrat: (²=0,1, df=1 p=0,73) oder des gesamten 

intracraniellen Volumens (Zweiseitiger T-Test: t=1,5, df=32, p=0,15).  
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Wie zu erwarten war, unterschieden sich die beiden Subgruppen bezüglich der 

Altersverteilung (Zweiseitiger T-Test: t=-9,2, df=32, p<0,001) mit statistisch 

signifikantem höherem Alter in der alten Down-Syndrom-Gruppe. 

 

 

3.2. Reliabilität der Messungen des Corpus callosum und des Hippocampus  

 

Es gelang immer, anhand der beschriebenen anatomischen Kriterien die Schicht, 

die der mittsagittalsten am nächsten kommt, zu bestimmen. Sowohl bei zwei 

Untersuchern als auch bei wiederholten Untersuchungen war die Auswahl 

eindeutig. Es wurden jeweils die identischen Schichten gewählt. Der 

Intraklassen-Korrelationskoeffizient lag zwischen 0,98, bei der Bestimmung der 

Fläche des gesamten Corpus callosum, der Subregionen C1 und C2 und 0,95 bei 

Erfassung der Fläche von C3. Dieser Vergleich wurde, wie bereits beschrieben, 

zwischen zwei unabhängigen Untersuchern vorgenommen. Bei der wiederholten 

Messung derselben Bilder durch den gleichen Untersucher ergab sich ein 

Intraklassen-Korrelationskoeffizient von 0,98 für die Gesamtfläche des Corpus 

callosum (Teipel et al., 2002).  

Der Intraklassen-Korrelationskoeffizient, ermittelt durch wiederholte Messung 

desselben Untersuchers bei der Messung des Volumens des Hippocampus, lag 

bei 0,96. 

 

 

3.3 Atrophie des Corpus Callosum und der Hippocampusformation 

 

In der ANCOVA fanden wir signifikante Unterschiede zwischen der Down-

Syndrom-Gruppe und den gesunden Kontrollen (siehe Tabelle 4, S.48) 

bezüglich der regionalen Hirnvolumina. Diese statistisch signifikanten 

Unterschiede betrafen die bilateralen Hippocampusformationen (p<0,001) und 
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die Gesamtfläche des Corpus callosum (p<0.05) sowie die anterioren (C1) 

(p<0,01) und posterioren (C5) (p<0,001) Subregionen des Corpus callosum. Das 

gesamte intracranielle Volumen und das Alter gingen als Kovariaten in die 

Berechnungen ein. 

Die anlagebedingte Verkleinerung des intracranielle Gesamtvolumens bei 

Down-Syndrom gegenüber den gesunden Kontrollen zeigte sich auch signifikant 

in unseren Messungen. Allerdings konnten wir einen Zusammenhang zwischen 

dem intracraniellen Gesamtvolumen und dem Alter sowohl in der Kontroll- 

(r=0,13, df=29, p=0,46) als auch in der Down-Syndrom-Gruppe (r=0,17, df=29, 

p=0,35) nicht feststellen. 
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Tabelle 4: Vergleich der Volumina des Hippocampus und der (Sub-)Fläche(n) 

des Corpus callosum bei Down-Syndrom-Betroffenen und gesunden Kontrollen 

 

 Kontrollgruppe (K)  

(n=31) 

Down-Syndrom (DS) 

(n=34) 

Verlust bei DS 

in Prozent 

Hirnstruktur Mittelwert Mittelwert  

Gesamtvolumen 

intracraniell(cm³)  

1495,1 (+/- 163,4) 1254,5 (+/- 144,5) * 16 

Hippocampus  

(cm³) 

   

Linker 3,20 (+/- 0,43) 2,33 (+/- 0,40) * 27 

Rechter 3,45 (+/- 0,46) 2,54 (+/- 0,47) * 26 

Corpus callosum 

(mm²) 

   

Gesamtfläche 493,3 (+/- 65,0) 424,2 (+/- 62,0) * 14 

Subregionen  (ant. 

nach post.) 

   

C1 142,1 (+/- 20,6) 115,3 (+/- 21.6) * 19 

C2 66,0 (+/- 16,7) 64,4 (+/- 17,6) 2,4 

C3 56,4 (+/- 14,1) 50,5 (+/- 11,7) 10 

C4 54,5 (+/- 16,2) 55,5 (+/- 17,4) 1,8+ 

C5 151,3 (+/- 28,3) 117,3 (+/- 23,1) * 22 

 

 Mittelwerte (+/- SD) der Werte der Hippocampus-Volumina, Corpus-callosum-Gesamtfläche 

und fünf Subregionen (C1 – C5). Die Analysen testen auf den Inter-Gruppen Effekt. Als 

Kovariaten gingen das Alter und das intracranielle Gesamtvolumen in das System ein. 

 Vorzeichenbereinigte Beträge, gerundet auf 2 Stellen. Prozentualer Verlust bei DS gegenüber 

K= ||||[(Volumen/Fläche DS (in mm3/mm2) - Volumen/Fläche K (in mm3/mm2))/ Volumen/Fläche 

K (in mm3/mm2)] ||||. +Hier: Fläche DS >Fläche K. 
*  signifikanter Unterschied zwischen DS-Betroffenen und Kontrollen (p<0,05) 
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Abbildung 4: Vergleich der Teilflächen des Corpus callosum bei gesunden 

Kontrollen und Down-Syndrom-Betroffenen. 

 

 

Vergleich der Corpus Callosum-Teilflächen bei 
gesunden Kontrollen und DS-Betroffenen

0

20

40

60

80

100

120

140

160

180

C1* C2 C3 C4 C5*

CC-Teilflächen

M
itt

el
w

er
te

 d
er

 F
lä

ch
en

gesunde Kontrollen
DS-Betroffene

 

Mittelwerte der Flächen in mm2 (mit Standardabweichungen) 
*  signifikanter Unterschied zwischen Down-Syndrom-Betroffenen und Kontrollen 

(p<0,05) 

 

 

3.4. Alterseffekte und regionale Unterschiede im Corpus callosum 

 

Die Ergebnisse der Regressionsanalysen bezüglich des Einflusses des Alters auf 

das Volumen des Hippocampus und die Gesamt- bzw. Teilflächen des Corpus 

callosum bei Down-Syndrom-Betroffenen und gesunden Kontrollen erbrachte 
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statistisch signifikante Ergebnisse. Dabei wurde der Einfluss des Geschlechts 

und des gesamten intracraniellen Volumen kontrolliert:  

 

1. In der Down-Syndrom-Gruppe konnten wir einen signifikanten Effekt des 

Alters auf beide Hippocapmus-Formationen und die Gesamtfläche des 

Corpus callosum nachweisen. 

2. Insbesondere ließ sich ein ausgeprägter und statistisch signifikanter Effekt 

des Alters auf die posterioren Abschnitten des Corpus callosum nachweisen 

(C3-C5 in Tabelle 5 und C4,C5 in Tabelle 6; Abbildung 4). 

3. Diese Atrophie  war nicht in den untersuchten Strukturen der gesunden 

Kontrollpersonen festzustellen, bei denen wir keine Korrelationen zwischen 

dem Alter und den Flächen des Corpus callosum finden konnten. Der einzige 

statistisch signifikante Alterseffekt bei der Kontrollgruppe war eine 

Zunahme der C5-Teilfläche mit zunehmendem Alter. 

4. Es konnte kein statistisch signifikantes Ergebnis bezüglich des Alterseffektes 

auf die anterioren Anteile des Corpus callosum bei Down-Syndrom 

gefunden werden. 
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Tabelle 5:  Gegenüberstellung des Alterseffektes bei gesunden Kontrollen und 

Down-Syndrom-Betroffenen auf das Volumen des Hippocampus und 

die Gesamtfläche des Corpus callosum unter Kontrolle des Einflusses 

des Geschlechts. 

 

 

 

Gesunde 

Kontrollpersonen  

(n=31) 

Down-Syndrom- 

Betroffene 

(n=34) 

Anatomische Struktur   Beta       r²   Beta       r² 

Hippocampus     

Linker     0,12    0,01   -0,46    0,21* 

Rechter    0,23    0,05   -0,45    0,20* 

Corpus Callosum     

Gesamtvolumen    0,17    0,03   -0,52    0,27* 

 

 

 

 

Lineare Regressionsanalyse 

Beta ist der standardisierte Regressionskoeffizient, d.h. ein Ausdruck für das Ausmaß 

des Einflusses des Alters auf das Volumen des Hippocampus, bzw. die Gesamtfläche des 

Corpus callosum und ist durch die Standardisierung vergleichbar.  

r² ist das Bestimmtheitsmaß = erklärte Streuung/Gesamtstreuung. 
* signifikantes Ergebnis (p<0,05). 
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Tabelle 6: Gegenüberstellung des Alterseffektes bei gesunden Kontrollen und 

Down-Syndrom-Betroffenen auf die Teilflächen des Corpus 

callosum (C1-C5) in anterior-posteriorer Reihenfolge unter Kontrolle 

des Einflusses des Geschlechts. 

 

 

 

Gesunde 

Kontrollpersonen  

(n=31) 

Down-Syndrom- 

Betroffene 

(n=34) 

Subregionen des Corpus 

callosum von anterior 

nach posterior 

  Beta       r²   Beta       r² 

C1   -0,03   0,001    -0,33   0,11 

C2   -0,17   0,03   -0,27   0,07 

C3    0,05   0,002   -0,35   0,12* 

C4    0,18   0,03   -0,36   0,13* 

C5    0,37   0,14*   -0,39   0,15* 

 

 

 

Lineare Regressionsanalyse 

Beta ist der standardisierte Regressionskoeffizient, d.h. ein Ausdruck für das Ausmaß 

des Einflusses des Alters auf die Teilflächen des Corpus callosum (C1-C5) und ist durch 

die Standardisierung vergleichbar.  

r² ist das Bestimmtheitsmaß = erklärte Streuung/Gesamtstreuung. 
* signifikantes Ergebnis (p<0,05). 
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Tabelle 7: Gegenüberstellung des Alterseffektes bei gesunden Kontrollen und 

Down-Syndrom-Betroffenen auf das Volumen des Hippocampus und 

die Gesamtfläche des Corpus callosum unter Kontrolle des Einflusses 

des gesamten intracraniellen Volumens. 

 

 

 

Gesunde 

Kontrollpersonen  

(n=31) 

Down-Syndrom- 

Betroffene 

(n=34) 

Anatomische Struktur   Beta       r²   Beta       r² 

Hippocampus     

Linker    0,07   0,04   -0,42   0,17* 

Rechter   0,19   0,03   -0,39   0,15* 

Corpus Callosum     

Gesamtvolumen   0,14   0,02   -0,49   0,24* 

 

 

 

Lineare Regressionsanalyse 

Beta ist der standardisierte Regressionskoeffizient, d.h. ein Ausdruck für das Ausmaß 

des Einflusses des Alters auf das Volumen des Hippocampus, bzw. die Gesamtfläche des 

Corpus callosum und ist durch die Standardisierung vergleichbar.  

r² ist das Bestimmtheitsmaß = erklärte Streuung/Gesamtstreuung. 
* signifikantes Ergebnis (p<0,05). 
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Tabelle 8: Gegenüberstellung des Alterseffektes bei gesunden Kontrollen und 

Down-Syndrom-Betroffenen auf die Teilflächen des Corpus 

callosum  (C1-C5) in anterior-posteriorer Reihenfolge unter 

Kontrolle des Einflusses des gesamten intracraniellen Volumens. 

 

 

 

Gesunde 

Kontrollpersonen  

(n=31) 

Down-Syndrom- 

Betroffene 

(n=34) 

Subregionen des Corpus 

callosum von anterior 

nach posterior 

  Beta       r²   Beta       r² 

C1   -0,06   0,004   -0,32   0,10 

C2   -0,22   0,05   -0,27   0,07 

C3   0,05   0,002   -0,28   0,08 

C4   0,17   0,03   -0,34   0,11* 

C5   0,36   0,13*   -0,38   0,14* 

 

 

 

Lineare Regressionsanalyse 

Beta ist der standardisierte Regressionskoeffizient, d.h. ein Ausdruck für das Ausmaß 

des Einflusses des Alters auf die Teilflächen des Corpus callosum (C1-C5)  und ist durch 

die Standardisierung vergleichbar.  

r² ist das Bestimmtheitsmaß = erklärte Streuung/Gesamtstreuung. 
* signifikantes Ergebnis (p<0,05). 
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3.5. Vergleich der Atrophie des Corpus callosum mit der des Hippocampus  

 

Es wird angenommen, dass die ersten messbaren pathologischen Vorgänge im 

Temporallappen sowie in der Hippocampus-Formation stattfinden. Allerdings 

sind auch sehr frühe Veränderungen im Corpus callosum und in dessen 

Subregionen beschrieben worden.  

Um das Ausmaß der Atrophie im Hippocampus mit der im Corpus callosum 

vergleichen zu können, und somit Aussagen über das zeitliche Auftreten von 

Frühveränderungen treffen zu können, verwendeten wir ein binäres logistisches 

Regressionsmodell. Es wurden dabei die Odds Ratios für jede volumetrische 

Messung abgeleitet, um zu entscheiden, ob die Down-Syndrom-Patienten 

entweder der jungen oder der alten Gruppe zuzuweisen sind. Die Odds Ratios 

ergaben 0,90 für das verminderte linke Hippocampusvolumen (95% 

Konfidenzintervall [KI]=0,83-0,98), 0,91 für das verminderte rechte 

Hippocampusvolumen (95% KI=0,84-0,99) und 0,91 für die verminderte 

Gesamtfläche des Corpus callosum (95% KI=0,84-0,99).  

Damit übereinstimmende Resultate erbrachte die Messungen der Flächen unter 

der ROC Kurve. In dieser Untersuchung, die die Down-Syndrom-Patienten 

entsprechend in eine junge und eine alte Gruppe einteilte, zeigten die Ergebnisse 

nahezu identische Werte für linken und rechten Hippocampus sowie für die 

Gesamtfläche des Corpus callosum (linker Hippocampus: 0,76 [95% KI=0,59-

0,92], rechter Hippocampus: 0,74 [95% KI=0,57-0,91], Gesamtfläche des 

Corpus callosum: 0,74 [95% KI=0,57-0,91]). Die Odds Ratios und die Fläche 

unter der ROC-Kurve für die einzelnen Subregionen des Corpus callosum 

zeigten keine statistisch signifikanten Werte. 
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3.6. Corpus callosum/Hippocampus und psychometrische Tests 

 

Die vorgenommenen psychometrischen Testverfahren zeigten Korrelationen mit 

den Einzelflächen (C1-C5) des Corpus callosum. Wir kontrollierten den Effekt 

des gesamten intracraniellen Volumens durch die Verwendung der partiellen 

Korrelation. Es ergaben sich signifikante Korrelationen zwischen der Fläche C3 

und dem Down Syndrom Mental Status Examination Test (r=0,37, p<0,05), als 

auch zwischen der Fläche C3 und den Sprach- (r=0,46, p<0,05) bzw. zeitliche 

Orientierungs- (r=0,37, p<0,05)Teiltests des DSMSE. Die Unterregion C4 

korrelierte signifikant mit den folgenden Testergebnissen: „Down Syndrom 

Mental Status Examination“ (r=0,46, p<0,05), Sprach- (r=0,41, p<0,05), 

zeitliche Orientierung- (r=0,52, p<0,01), räumliche Orientierung- (r=0,54, 

p<0,01) und Gedächtnis- (r=0,42, p<0,05) Teiltests des DSMSE. Ebenso zeigte 

der Extended Block Design Test eine statistisch signifikante Beziehung zur 

Fläche von C4 (r=0,41, p<0,05).  

Es wurden keine weiteren signifikanten Korrelationen zwischen Testergebnissen 

der neuropsychologischen Testung und Flächen des Corpus callosum 

festgestellt. 

In der Gruppe der Down-Syndrom-Erkrankten konnte keine statistisch 

signifikante Korrelation zwischen irgendeinem Volumen des Hippocampus und 

dem PPVT-R gezeigt werden. 

 

 

 

 

 

 

 

 



 57 

4. DISKUSSION 

4.1. Ergebniszusammenfassung 

 

In dieser Studie untersuchten wir mit Hilfe der MRT, ob neokortikale 

Veränderungen in der Frühphase der noch nicht von Demenz betroffenen 

Personen mit Down-Syndrom nachweisbar sind, und ob sich das Ausmaß des 

Befalls des Corpus callosum mit der Atrophie des Hippocampus vergleichen 

lässt. Die Beantwortung dieser Frage würde es ermöglichen, die Atrophie des 

Corpus callosum bei Down-Syndrom als indirektes Maß für die Schädigung 

intra- und interhemisphärisch projizierender kortikal efferenter Pyramidenzellen 

zu etablieren. Desweiteren würde gezeigt werden, dass die neokortikalen 

Veränderungen bei nicht dementen Erwachsenen mit Down-Syndrom der 

allokortikalen Degeneration vergleichbar sind, und somit neokortikaler Verlust 

zur Manifestation der Demenz auftritt.  

Es ist bekannt, dass sich bei Down-Syndrom-Betroffenen eine Korrelation 

zwischen dem Alter und dem Volumen des Hippocampus findet. Unbeantwortet 

war bis jetzt, ob sich eine solche Korrelation auch zwischen dem Alter und der 

Fläche des Corpus callosum feststellen lässt. 

Wir verglichen eine Gruppe von Down-Syndrom-Patienten mit gesunden, alters- 

und geschlechtsentsprechenden Kontrollpersonen. Dabei zeigte sich, dass sich 

die Down-Syndrom-Geschädigten von den gesunden Kontrollpersonen in den 

linken und rechten Hippocampusvolumina, der Gesamtfläche des Corpus 

callosum, sowie in den Subregionen C1 (Rostrum) und C5 (Splenium) 

unterscheiden, mit signifikant geringeren Werten in der Down-Syndrom-

Gruppe.  

Krasuski hat den statistisch signifikanten Zusammenhang zwischen 

zunehmendem Alter und abnehmendem Volumen des Hippocampus bei Down-

Syndrom bereits beschrieben (Krasuski et al., 2002). Hier wird nun erstmals 

auch von Korrelationen zwischen dem Alter und der Gesamtfläche des Corpus 



 58 

callosum, sowie den Subregionen des Corpus callosum bei Down-Syndrom 

berichtet. Die Atrophie dabei betrifft vor allem posteriore Abschnitte des Corpus 

callosum. Zusätzlich haben wir festgestellt, dass sich das Ausmaß der Atrophie 

des Corpus callosum dem der Atrophie des Hippocampus bei nicht dementen 

Erwachsenen mit Down-Syndrom vergleichen lässt. Bei der Kontrollgruppe 

konnte keine altersbedingte Volumenabnahme weder bezüglich des 

Hippocampus noch bezüglich des Corpus callosum festgestellt werden. Die 

einzige Veränderung bei dieser Gruppe war eine Vergrößerung der C5-Fläche 

mit zunehmendem Alter. 

Da das Corpus callosum aus Fasern von neokortikalen Assoziationsneuronen 

gebildet wird, legen unsere Ergebnisse nahe, dass diese projizierenden Neurone 

geschädigt oder anderweitig verändert sind. 

 

 

4.2. Die Methodik der Vermessung des Corpus callosum  

 

Es sind auf Basis von MRT-Daten einige Studienergebnisse bezüglich der Größe 

und Veränderungen des Corpus callosum veröffentlicht worden. Darin wurde 

ein sexueller Dimorphismus des Corpus callosum beschrieben, mit größerer 

Fläche des Spleniums (dem posteriorsten Anteil des Corpus callosum) (De 

Lacoste-Utamsing et al., 1982) bei Frauen bzw. einer insgesamt vergrößerten 

Fläche des Corpus callosum (Steinmetz et al., 1995). Andere konnten diese 

Ergebnisse allerdings nicht replizieren (Demeter et al., 1988).  

Verschiedene Arbeiten konnten zwischen links- und rechtshändigen Probanden 

einen Unterschied feststellen, mit größerem Corpus callosum bei Linkshändern 

(Weis et al., 1989). Ebenso haben sich bei Schizophrenie (Witelson SF, 1985), 

Epilepsie (Nasrallah et al., 1986) und Multipler Sklerose (Sass et al., 1988) 

Veränderungen eben dieser Struktur gezeigt. Atrophische Veränderungen mit 

dem Alter scheinen den anterioren und mittleren Teil des Corpus callosum zu 
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betreffen, der posteriore Sektor bleibt ausgespart (Weis et al., 1991; Teipel et al., 

1998).  

Diese angeführten Beispiele zeigen, dass ein eindeutiges, reliables und 

reproduzierbares Vermessungsprotokoll für das Corpus callosum benötigt wird, 

das die genaue Erfassung und Quantifizierung pathologischer Prozesse 

ermöglicht. Auch berichten diverse Studien von inkonsistenten Mustern der 

lokalen Atrophie des Corpus callosum, was allerdings auch in methodischen 

Mängeln dieser Arbeiten begründet liegen mag.  

So führte das von Weis et al. (Weis et al., 1991) 1991 eingeführte Vorgehen zu 

einer nicht eindeutigen Zuordnung der Flächen des Corpus callosum. Er schlägt 

vor, an das Corpus callosum ein Rechteck anzupassen, dass dann mit vier 

rechteckig verlaufenden Linien im gleichen Abstand das Corpus callosum in 

fünf Subregionen unterteilt. Dabei wird allerdings das Rostrum zweimal von der 

vordersten Trennungslinie geschnitten, und ist somit nicht eindeutig zuordenbar. 

Eine spätere Studie benutzte den anteriorsten Punkt des Corpus callosum als 

Referenzpunkt für die weiteren Messungen (Biegon et al., 1994). Dabei tritt das 

Problem auf, dass dieser Punkt mit der Positionierung des Kopfes des Patienten 

im Magnetresonanz-Tomographen differiert, also nicht eindeutig bestimmbar 

ist. 

In unserer Studie waren die Inter-Untersucher- und Intra-Untersucher-

Reliabilität der Vermessungen des Corpus callosum sehr hoch, was die 

wesentlichste Vorraussetzung für die Reproduzierbarkeit einer Methode 

darstellt. Auch können damit Gruppenunterschiede sichtbar gemacht werden 

unabhängig von einer hohen Varianz der Messwerte. Es gelang uns, der 

Anatomie des Corpus callosum Rechnung zu tragen, und somit bei jedem MRT-

Bild ein eindeutiges und reproduzierbares Ergebnis zu erhalten. Ebenso zeigte 

sich diese Art der Messung sehr sensitiv für Veränderungen im Corpus 

callosum. 
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4.3. Entwicklungsbedingte Veränderungen der betroffenen Hirnstrukturen 

 

Bei Down-Syndrom-Patienten mit einem Alter von unter 25 Jahren sind 

signifikante Volumenreduktionen des Hippocampus und der cerebralen, grauen 

Substanz beschrieben. Ebenso sind Veränderungen der Größe des Corpus 

callosum und Form bei dieser Patienten- und Altersgruppe festgestellt worden 

(Jernigan et al., 1990; Wang et al., 1992; Pinter et al., 2001a; Pinter et al., 

2001b). Auch neuere, automatisierte Techniken, wie die Voxel-basierte 

Morphometrie (VBM) (Ashburner et al., 1999) bestätigen diese Ergebnisse 

(White et al., 2003; Teipel et al., 2004). Damit übereinstimmend fanden wir ein 

signifikant geringeres Volumen des Hippocampus und signifikant reduzierte 

Flächen des Corpus callosum bei unseren Down-Syndrom-Patienten im 

Vergleich zur gesunden Kontrollgruppe. Die Atrophie betraf dabei vor allem 

den anterioren und posterioren Part des Corpus callosum mit Aussparung des 

medialen Abschnittes. Diese Resultate blieben auch auf statistisch signifikantem 

Niveau, nachdem wir die Einflüsse des Alters und des intracraniellen 

Gesamtvolumens herausgerechnet hatten.  

Es scheint so zu sein, dass der altersabhängige Abbau des Corpus callosum und 

des Hippocampus bei erwachsenen, nicht-dementen Down-Syndrom-

Geschädigten auf der Basis von entwicklungsbedingten Veränderungen 

stattfindet. 

 

 

4.4. Veränderungen mit zunehmendem Alter – degenerative Prozesse 

 

Wir konnten die Ergebnisse früherer Arbeiten (Kesslak et al., 1994; Lawlor et 

al., 2001) bestätigen, die einen Zusammenhang zwischen abnehmendem 

Volumen des Hippocampus und zunehmendem Alter bei Down-Syndrom 

feststellten. 
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Diese Verringerung des Volumens des Hippocampus stellt ein Kennzeichen der 

Alzheimer Erkrankung dar (de Leon et al., 1997). Des weiteren haben MRT-

Untersuchungen die Abnahme der Hippocampusgröße als einen relativ 

spezifischen Marker für die Vorgänge in der Frühphase der Alzheimer 

Erkrankung vorgeschlagen (Convit et al., 1997). Zusammenfassend und im 

Einklang mit neuropathologischen Studien (Hof et al., 1995) legen unsere 

Ergebnisse den Schluss nahe, dass der Verlust allokortikaler Neurone bei noch 

nicht dementen Down-Syndrom-Patienten regelhaft auftritt und ein Frühzeichen 

der eintretenden Alzheimer ähnlichen Pathologie darstellt. 

Die Neurone, deren Axone das Corpus callosum bilden, stammen aus einer 

Untergruppe der großen Pyramidenzellen in den Schichten III und V des 

Assoziationskortex (Innocenti et al., 1986; Aboitiz et al., 1992), und sie scheinen 

besonders anfällig für die neurodegenerativen Veränderungen der Alzheimer 

Erkrankung, für NFT und SP zu sein (Hof et al., 1990; Hof et al., 1991). Auch 

ist berichtet worden, dass der Befall dieser Subpopulation ein Frühsymptom der 

Alzheimer Erkrankung darstellt, wobei die altersabhängigen Veränderungen 

besonders die posterioren Anteile des Corpus callosum betreffen (Teipel et al., 

1999). Übereinstimmend mit dem frühen Befall dieser Neurone haben MRT-

Studien eine entsprechende Atrophie des Corpus callosum bei der Alzheimer 

Erkrankung gezeigt, die auch mit Ergebnissen von PET- und EEG-

Untersuchungen korreliert werden konnten. Diese Atrophie ist ein Ausdruck der 

Affektion von Neuronen und findet größtenteils unabhängig von Prozessen, die 

primär die subkortikalen Faserstränge betreffen, statt (Yamauchi et al., 1993; 

Teipel et al., 1999; Hampel et al., 2000; Hampel et al., 2002).  

Übereinstimmend mit diesen bisherigen Forschungsergebnissen fanden wir bei 

unserer Down-Syndrom-Gruppe eine statistisch signifikante Atrophie des 

Corpus callsoum, die vor allem die posterioren Anteile betraf. Somit eignet sich 

das Corpus callosum als ein in-vivo-Maß für die Integrität der neokortikalen 

Assoziationsneurone bei dieser AD-ähnlichen-Pathologie. Wir konnten somit 
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das Ausmaß der neokortikalen Beeinträchtigung in der Frühphase dieser 

Vorgänge abschätzen. 

Die von uns festgestellte Vergrößerung der Region C5 des Spleniums bei den 

gesunden Kontrollpersonen mit zunehmendem Alter wirft Fragen über die dafür 

ursächlichen Prozesse auf, die nicht endgültig beantwortet werden können.  

Im Folgenden werden einige Erklärungsansätze, die vielleicht für dieses 

Phänomen verantwortlich sind, aufgezeigt: 

Wie bereits ausgeführt, bestehen Unterschiede in der Größe des Corpus 

callosum zwischen Männern und Frauen, mit relativ größeren C5-Abschnitten 

bei den weiblichen Studienteilnehmern (De Lacoste-Utamsing et al., 1982; 

Davatzikos et al., 1996), oder mit insgesamt vergrößerter Fläche des Corpus 

callosum bei den Frauen (Steinmetz et al., 1995). Dieser Einfluss des 

Geschlechts allein kann allerdings unser Studienergebnis nicht erklären, da die 

signifikante Vergrößerung von C5 auch erhalten blieb, als im linearen 

Regressionsmodell der Einfluss des Geschlechts auf die Ergebnisse kontrolliert 

wurde. Auch verändert sich die Zusammensetzung der Faserstränge im Corpus 

callosum im Laufe der Zeit unterschiedlich bei Männern und Frauen (Aboitiz et 

al., 1996), was ebenso eine Teilerklärung darstellen kann. Weis et al. haben 

festgestellt, dass sich die Größe des Corpus callosum zwischen Links- und 

Rechtshändern unterscheidet (Weis et al., 1989).  

Bisherige Forschungsergebnisse berichteten nur von einer Abnahme der 

anterioren Fläche des Corpus callosum mit zunehmendem Alter, nicht aber von 

einer Korrelation zwischen den posterioren Abschnitten und dem Alter (Teipel 

et al., 1998; Weis et al., 1993; Salat et al., 1997). Bei einer Untersuchung von 

Teipel et al. (Teipel et al., 2002) wiesen zehn gesunde Kontrollpersonen eine 

jährliche, durchschnittliche Atrophierate für den anterioren C1-Abschnitt von    

–1,6 % auf. Im Gegensatz dazu belief sich diese jährliche Rate bei dem 

posterioren C5-Abschnitt auf +0,7%. Somit zeigte sich hier eine Abnahme der 

C1-Fläche mit dem Alter, und vielleicht sogar eine geringe Zunahme der C5-
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Region, was auch zu einer Überbewertung der posterioren Anteile gegenüber 

den anterioren führen mag.  

Alle diese Ergebnisse mögen den Umstand der vergrößerten C5-Flächen mit 

zunehmendem Alter bei gesunden Kontrollen miterklären, doch es bedarf 

weiterer Forschungsansätze, um dieser Frage auf den Grund zu gehen; so hat 

Thompson eine alternative Methode der Vermessung des Corpus callosum 

entwickelt, die den morphologischen Änderungen Rechnung trägt (Thompson et 

al., 2003). 

 

 

4.5. Bewertung des Einflusses entwicklungsbedingter und degenerativer 

Prozesse auf die Ergebnisse 

 

Wie ist nun diese eindeutige Abnahme der Größe des Corpus callosum, 

besonders der posterioren Anteile, mit steigendem Alter unserer 

Studienteilnehmer mit Down-Syndrom zu erklären? Oder anders ausgedrückt, 

sind unsere Resultate eindeutig auf einen AD-vergleichbaren Prozess 

rückzuführen? 

Man könnte argumentieren, dass die abnorme Anlage und Entwicklung des 

Corpus callosum bei Down-Syndrom-Betroffenen für unsere signifikanten 

Ergebnisse verantwortlich sind, dass also keine Alterseffekte, sonder vielmehr 

differente Anlagen und Entwicklung bei Down-Syndrom die Unterschiede in der 

Morphologie des Corpus callosum bedingen. 

Dieser Mechanismus hat sicherlich einen Einfluss auf unsere Ergebnisse, er 

kann jedoch nicht erklären, warum nun gerade das Alter einen statistisch 

signifikanten Einfluss auf das Corpus callosum und dessen Subregionen hat. 

Eher würden die angeborenen und entwicklungsbedingten Abweichungen die 

Variabilität des Corpus callosum in Größe und Form unter den Patienten 

steigern, und somit die Genauigkeit und Sensitivität der Studie Alterseffekte zu 
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erkennen, vermindern. So wie auch in unserer Studie die C1-Subregion zwar 

beim Vergleich zwischen Gesunden und Kontrollen bei der Erfassung der 

Hirnstrukturen signifikant verkleinert ist, bei der Überprüfung der Alterseffekte 

jedoch keine signifikanten Werte aufweist. Diese Region C1 wird nämlich von 

der anlagebedingten Besonderheit des Down-Syndroms am stärksten betroffen 

(Wang et al., 1992) und zeigt somit die höchste Variabilität zwischen 

Betroffenen auf, was die statistische Erfassung von Alterseffekten erschwert. 

Lässt nun die altersbedingte Veränderung der Morphologie des Corpus callosum 

eindeutig auf die Verursachung durch einen AD-ähnlichen Krankheitsprozess 

bei Down-Syndrom schließen, oder können auch Down-Syndrom-spezifische 

neurodegenerative Mechanismen eine Rolle spielen, die sich von der AD-

Pathologie unterscheiden?  

Eine eindeutige Antwort auf diese Frage kann man anhand dieser Studie nicht 

geben. Es kann nicht ausgeschlossen werden, dass es Down-Syndrom-

spezifische, pathologische Alterseinwirkungen gibt, die sich nicht mit den 

Vorgängen bei der Alzheimer Erkrankung decken. So verlaufen die 

neuropathologischen Prozesse bei Down-Syndrom und Alzheimer Krankheit 

zwar auffallend ähnlich, aber eben nicht exakt parallel. Es werden zwar bei 

beiden Krankheiten dieselben Nervenzellen in den selben Gehirnregionen 

geschädigt, das Ausmaß dabei ist allerdings nur in vielen Abschnitten (z.B. 

Hippocampus) aber nicht in allen (z.B. Temporallappen) gleich (Mann et al., 

1987). Auch berichten einige Studien von einer Überexpression neuronaler 

Strukturproteine neben dem Amyloid, die auch für einen Teil der 

neurodegenerativen Prozesse verantwortlich sein können (De la Torre et al., 

1996; Engidawork et al., 2001). Anhand unserer Studie können wir somit nicht 

ausschließen, dass ein Teil des nachgewiesenen Alterseffektes auf das Corpus 

callosum bei Down-Syndrom-Betroffenen durch Down-Syndrom-spezifische 

Pathologien zustande kommt. Weitere Studien sind nötig um diese 

Unterscheidung klar zu treffen. 
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4.6. Regionale Verteilung der Atrophie des Corpus callosum und 

Psychometrie 

 

Unsere Studie zeigt eine signifikante Atrophie der Corpus-callosum-Regionen, 

die mit dem Alter der untersuchten Studienteilnehmers mit Down-Syndrom 

korreliert. Dies betraf die Subregionen C3, C4 und C5, wenn wir den Einfluss 

des Geschlechts kontrollierten, sowie die Regionen C4 und C5, wenn wir den 

Einfluss des gesamten intracraniellen Volumens kontrollierten. Dieser 

Alterseffekt betrifft also selektiv die posterioren Anteile, die die Projektionen 

der posterior-temporalen, parietalen und okzipitalen Assoziationsgebiete 

enthalten (Schaltenbrand et al., 1970; DeLacoste et al., 1985; Pandya et al., 

1986; Moses et al., 2000). Diese selektive Bevorzugung bestimmter Regionen 

entspricht den Ergebnissen bisheriger neuroanatomischer Studien (Wisniewski 

et al., 1985a, Hyman et al., 1991). Ebenso im Einklang mit unseren Ergebnissen 

sind Untersuchungen, die berichten, dass ein verringertes Volumen der grauen 

Substanz in posterioren Hirnabschnitten mit dem Vorhandensein von SP und 

NFT bei älteren Down-Syndrom-Betroffenen korreliert (De la Monte et al., 

1990). Somit kann angenommen werden, dass die Abnahme der Fläche des 

Corpus callosum mit dem Alter bei nicht dementen Down-Syndrom-Betroffenen 

ohne primäre, subkortikale Faserdegeneration und ohne vaskuläre 

Risikofaktoren, die Auswirkungen einer mit der AD-vergleichbaren Erkrankung 

reflektiert. 

Diese Vorstellung unterstützen auch die Ergebnisse unserer 

neuropsychologischen Messungen. Mit Hilfe der Verwendung partieller 

Korrelationskoeffizienten fanden sich nämlich signifikante Beziehungen 

zwischen den Subregionen C3 und C4 und dem Gesamtergebnis des „Down 

Syndrome Mental Status Examination“, sowie mit den Teiltestwerten zu den 

Gebieten Sprache, Orientierung, räumliches Vorstellungsvermögen und 

Gedächtnis. Diese Abnahme höherer, kognitiver Funktionen mit dem Alter lässt 
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sich als Ausdruck eben dieses Verschwindens der neuronalen, intrakortikalen 

Projektionen verstehen, die durch das AD-ähnliche Krankheitsgeschehen bei 

Down-Syndrom beeinträchtigt werden. 

 

 

4.7. Vergleich des Ausmaßes der Atrophie beteiligter Hirnstrukturen in der 

Frühphase bei nicht dementen Down-Syndrom-Betroffenen 

 

Neuropathologische Studien gehen von einer spezifisch zeitlichen Abfolge der 

von der AD-Pathologie betroffenen Hirnregionen aus, wobei zuerst die 

Hippocampus-Amygdala Formation als Repräsentant für allokortikale 

Veränderungen, und erst danach das Corpus callosum als Repräsentant für 

neokortikalen Befall in Mitleidenschaft gezogen wird (Mann et al., 1988a; Braak 

et al., 1997). In einer veröffentlichten Studie konnte Teipel zeigen, dass 

Patienten in frühen Stadien der Alzheimer Erkrankung bereits ein Ausmaß der 

Atrophie des posterioren Corpus callosum aufwiesen, das vergleichbar war zu 

dem der Atrophie des Hippocampus (Teipel et al., 2003). Wir können nun dieses 

Ergebnis auch auf das Down-Syndrom, ein Vorstadium für eine AD-Pathologie, 

ausweiten. Wir verwendeten eine logistische Regressionsanalyse mit einer 

binären abhängigen Variable (Zugehörigkeit der Down-Syndrom-Betroffenen 

zur Gruppe der alten oder jungen Down-Syndrom-Subgruppe) und der dazu 

rangtransformierten, unabhängigen Variable (Volumen des Hippocampus und 

Fläche des Corpus callosum), um die Odds Ratios dafür zu bestimmen, 

inwieweit das Volumen des Hippocampus bzw. die Fläche des Corpus callosum 

die Zugehörigkeit zur jungen oder alten Down-Syndrom-Subgruppe voraussagt. 

Um den Unterschied des Ausmaßes der Atrophie zwischen dem Volumen des 

Hippocampus und der Fläche des Corpus callosum direkt zu bestimmen, 

verwendet wir eine „receiver operating charactersitic“ (ROC) Kurvenanalyse 

(Teipel et al., 2003) mit der Gruppenzugehörigkeit (junge DS-Patientengruppe 
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gegenüber alter DS-Patientengruppe) als abhängiger Variable. Diese Analyse 

kann das Ausmaß der Atrophie beschreiben und dient dazu direkt das Ausmaß 

der Atrophie des Hippocampus mit der des Corpus callosum zu vergleichen. 

Dabei zeigte das Ausmaß der Alterseffekte keinen Unterschied zwischen dem 

Hippocampus und dem Corpus callosum bei den Down-Syndrom-Betroffenen 

auf. Dieses Resultat ist ein Hinweis darauf, dass bei nicht dementen 

Untersuchungspersonen mit Down-Syndrom die neokortikalen Veränderungen 

den Prozessen, die im Allokortex ablaufen, vergleichbar sind. 

 

 

4.8. Zusammenfassung und Ausblick 

 

Zusammenfassend weisen die Ergebnisse unserer Studie darauf hin, dass mit 

zunehmendem Alter auch im prä-dementiellen Stadium der Alzheimer-

ähnlichen-Pathologie des Down-Syndroms, bereits erhebliche neuronale 

Veränderungen des Neokortex präsent sind, und dass das Ausmass dieser 

Schädigung mit denen, die im Hippocampus geschehen, vergleichbar ist. Dies 

gilt im Besonderen, wenn man die posterioren Abschnitte des Corpus callosum 

zum Vergleich heranzieht. 

Auch hat man mit dem Corpus callosum eine Möglichkeit, den Befall 

interhemisphärisch projizierender, neokortikaler Neurone zu erfassen. 

Zusammen mit der davon unabhängigen Erfassung der Atrophie des 

Hippocampus als Maß für die allokortikale Degeneration, ergibt sich somit die 

Möglichkeit, die Entwicklung von strukturellen Veränderungen im Gehirn über 

ein weites Spektrum von Erkrankungsstadien zu beobachten. 

Wenn ältere Down-Syndrom-Betroffene ohne Demenz als ein Modell für die 

Frühveränderungen bei der Alzheimer Erkrankung verwendet werden können, 

heißt das, dass bereits in diesem Stadium ein Befall der neokortikalen Neurone 

anzutreffen ist. 
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Kommende Studien sollten das Verständnis für die Zusammenhänge zwischen 

der Alzheimer Erkrankung und dem Down-Syndrom, sowie für die 

morphologischen Veränderungen bei beiden Krankheiten vertiefen und helfen, 

die Ideen, die in dieser Arbeit entwickelt worden sind, zu überprüfen und 

voranzubringen. 
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5. ZUSAMMENFASSENDE ÜBERSICHT 
 
Die Alterungsvorgänge bei Down-Syndrom sind mit der Ablagerung von senilen Plaques und 
neurofibrillären Bündeln verbunden. Der Aufbau dieser Ablagerungen, das Verteilungsmuster im 
Gehirn und der Befall spezifischer Neuronen ähnelt sehr den pathologischen Veränderungen, die bei 
der Alzheimer Krankheit vorgefunden werden. Dieser Umstand führt dazu, dass das DS als ein Modell 
für die Veränderungen in der Frühphase der AD benutzt wird.  
Auf MRT-Untersuchungen basierende Forschungen haben gezeigt, dass die bei der sporadischen und 
der DS-assoziierten AD signifikante Hippocampusatrophie als ein Maß für die allokortikale, neuronale 
Degeneration dienen kann. 
Im Neokortex sind besonders die großen Pyramidenzellen der Schichten III und V von den 
Frühveränderungen selektiv betroffen. Diese Neurone sind Ursprung der weitreichenden, 
intrakortikalen Projektionen der Hemisphären. Mehrere Untersuchungen haben damit 
übereinstimmend von einer Atrophie des Corpus callosum bei der Demenz vom Alzheimer Typ 
berichtet. 
Bisher existiert noch keine Untersuchung zum Einfluss des Alters auf den Befall des Corpus callosum 
bei DS. In dieser Studie sollte untersucht werden, ob eine Hippocampus- bzw. Corpus-callosum- 
Atrophie bei DS-Patienten ohne Demenz auftritt, und inwieweit sich das Ausmaß der Corpus-
callosum-Affektion, repräsentativ für die neokortikale Beteiligung, mit dem Ausmaß des Befalls des 
Hippocampus vergleichen lässt. 
Dazu wurde eine Methode zur reliablen Vermessung der Corpus-callosum-Regionen anhand von 
schrägen (Hippocampus) und mittsagittalen (Corpus callosum) T1-gewichteten MRT-Sequenzen 
benutzt. Mit dieser Methode wurden die hippocampalen Strukturen sowie das Corpus callosum und 
dessen fünf Subregionen zwischen einer Gruppe von DS-Patienten und der gesunden Kontrollgruppe 
verglichen. Es sollte geprüft werden, ob und wie stark sich diese Strukturen mit zunehmendem Alter 
verändern. Die Prägnanz dieses Alterseffektes wurde bezüglich der Hippocampus- und der Corpus-
callosum-Atrophie verglichen. Schließlich wurde die Frage beantwortet, ob eine Korrelation zwischen 
psychometrischen Tests und Corpus-callosum-Subregionen-Atrophie nachweisbar ist. 
Dabei konnten die folgenden Ergebnisse gefunden werden: 
1. Methodik: 
Mit unserer verwendeten Methode gelingt eine eindeutige Unterteilung des Corpus callosum in fünf 
Subregionen, und die dazugehörige Flächenbestimmung mit einer sehr hohen Inter- und Intra-
Untersucher-Reliabilität. 
2. Hippocampus- und Corpus-Callosum-Atrophie: 
Die DS-Erkrankten wiesen signifikant kleinere Hippocampusvolumen und Corpus-callosum-Flächen 
als die alters- und geschlechtsentsprechenden gesunden Kontrollen auf. 
3. Veränderungen mit dem Alter: 
Mit zunehmendem Alter zeigte sich eine Abnahme der Corpus-callosum-Flächen (besonders betont in 
den posterioren Abschnitten) und eine Volumenreduktion des Hippocampus in der DS-Gruppe. Die 
Kontrollgruppe wies diese Veränderungen nicht auf. 
4.Vergleich der Corpus-callosum- und Hippocampus-Atrophie: 
Das Ausmaß des Befalls der untersuchten Hirnregionen (Hippocampus und Corpus callosum) war 
vergleichbar. 
5. Corpus callosum und psychometrische Tests: 
Die Atrophie spezifischer Corpus-callosum-Subregionen korrelierte mit den Ergebnissen einzelner 
neuropsychologischer Tests. 
 
Die hier festgestellte Atrophie spezifischer Corpus-callosum-Regionen und Hippocampus-Flächen bei 
DS ist vergleichbar mit Ergebnissen bei der AD. Der vergleichbare Grad der Hippocampus- und 
Corpus-callosum-Atrophie mit zunehmendem Alter bei DS-Patienten ohne Demenz lässt darauf 
schließen, dass mit zunehmendem Alter beträchtliche, neokortikale, neuronale Veränderungen 
stattfinden, die den bereits beschriebenen allokortikalen Befall begleiten. 
Insofern das DS ein Modell für die Frühveränderungen bei AD darstellt, unterstützen diese Befunde 
die Annahme, dass es bei der sporadischen AD in präklinischen Stadien bereits zu neokortikalen 
Neurodegenerationen kommt. 
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8.   ABKÜRZUNGEN 
 
 
 
DS     Down-Syndrom (Trisomie 21) 
AD     Demenz vom Alzheimer Typ 
SP     Senile Plaques 
NFT     Neurofibrilläre Bündel 
CC     Corpus callosum 
MRT     Magnetresonanztomographie 
DNA                                          Desoxiribonukleinsäure  
RNA     Ribonukleinsäure 
mRNA    messenger RNA 
APP     amyloid precusor protein 
Aβ     β-Amylopeptide 
CT     Computertomographie 
e.g.     exemplum gratia 
PET     Positronenemissions Tomographie 
SD     Standardabweichung 
N     Anzahl 
Chi²     Chi-Quadrat    
df     Freiheitsgrade   
p     Wahrscheinlichkeit  
KI     Konfidenzintervall 
TSH     Thyroideastimulierendes Hormon 
DSM III  3. Auflage des diagnostischen und statistischen 

Manuals Psychischer Störungen  
MHz     Megaherz  
ms     Millisekunden  
TR     Repetitionszeit 
TE     Echozeit  
T     Tesla  
ω0     Larmorfrequenz 
MHz     Megaherz 
γ  Gyromagnetische Verhältnis für Protonen mit 

dem Wert 42,58 MHz/T 
B0     Stärke des Magnetfeldes in Tesla 
Mz     Längsmagnetisierung in z-Richtung 
m²     Quadratmeter 
m³     Kubikmeter 
PPVT—R    Peabody Picture Vocabulary Test-Revised   
S-B     Stanford-Binet Intelligence Sclae   
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HOM     Hidden Object Memory Test 
EBD     Extended Block Design Test  
H-N     Hiskey-Nebraska Block Patterns Subtest 
DSMSE    Down Syndrom Mental Status Examination 
WISC-R  Wechsler Intelligence Scale for Children, 

Revised    
ROI     Region of interest 
ROC     Receiver operating characteristic curve 
VBM     Voxel-basierte Morphometrie 
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