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Abstract

Statistical relational learning analyzes the probabilistic constraints between the entities,
their attributes and relationships. It represents an area of growing interest in modern
data mining. Many leading researches are proposed with promising results. However,
there is no easily applicable recipe of how to turn a relational domain (e.g. a database)
into a probabilistic model. There are mainly two reasons. First, structural learning
in relational models is even more complex than structural learning in (non-relational)
Bayesian networks due to the exponentially many attributes an attribute might depend
on. Second, it might be difficult and expensive to obtain reliable prior knowledge for
the domains of interest. To remove these constraints, this thesis applies nonparametric
Bayesian analysis to relational learning and proposes two compelling models: Dirichlet
enhanced relational learning and infinite hidden relational learning.

Dirichlet enhanced relational learning (DERL) extends nonparametric hierarchical
Bayesian modeling to relational data. In existing relational models, the model parameters
are global, which means the conditional probability distributions are the same for each
entity and the relationships are independent of each other. To solve the limitations, we
introduce hierarchical Bayesian (HB) framework to relational learning, such that model
parameters can be personalized, i.e. owned by entities or relationships, and are coupled
via common prior distributions. Additional flexibility is introduced in a nonparametric
HB modeling, such that the learned knowledge can be truthfully represented. For infer-
ence, we develop an efficient variational method, which is motivated by the Pólya urn
representation of DP. DERL is demonstrated in a medical domain where we form a non-
parametric HB model for entities involving hospitals, patients, procedures and diagnoses.
The experiments show that the additional flexibility introduced by the nonparametric
HB modeling results in a more accurate model to represent the dependencies between
different types of relationships and gives significantly improved prediction performance
about unknown relationships.

In infinite hidden relational model (IHRM), we apply nonparametric mixture modeling
to relational data, which extends the expressiveness of a relational model by introducing
for each entity an infinite-dimensional hidden variable as part of a Dirichlet process (DP)
mixture model. There are mainly three advantages. First, this reduces the extensive
structural learning, which is particularly difficult in relational models due to the huge
number of potential probabilistic parents. Second, the information can globally propagate
in the ground network defined by the relational structure. Third, the number of mixture
components for each entity class can be optimized by the model itself based on the data.
IHRM can be applied for entity clustering and relationship/attribute prediction, which
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are two important tasks in relational data mining. For inference of IHRM, we develop
four algorithms: collapsed Gibbs sampling with the Chinese restaurant process, blocked
Gibbs sampling with the truncated stick breaking construction (SBC), and mean-field
inference with truncated SBC, as well as an empirical approximation. IHRM is evaluated
in three different domains: a recommendation system based on the MovieLens data set,
prediction of the functions of yeast genes/proteins on the data set of KDD Cup 2001, and
the medical data analysis. The experimental results show that IHRM gives significantly
improved estimates of attributes/relationships and highly interpretable entity clusters in
complex relational data.
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4.3.3 Pólya Urn Representation . . . . . . . . . . . . . . . . . . . . . . . 51
4.3.4 Other Representations . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4.1 Inference with Gibbs Sampling . . . . . . . . . . . . . . . . . . . . 54
4.4.2 Inference with Variational Method . . . . . . . . . . . . . . . . . . 56

4.5 Predictive Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Dirichlet Enhanced Relational Models 61
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.1 Hierarchical Bayes for Relational Models . . . . . . . . . . . . . . . 62
5.2.2 Nonparametric Hierarchical Bayes and Dirichlet Enhancement . . . 64
5.2.3 DERL with Multi-relationships . . . . . . . . . . . . . . . . . . . . 65
5.2.4 Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3 Approximate Inference and Learning . . . . . . . . . . . . . . . . . . . . . 67
5.4 Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.4.1 Clinical Data Description . . . . . . . . . . . . . . . . . . . . . . . 69
5.4.2 Experiment Result . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

III Relational Learning with Infinite Mixture Models 75

6 Finite Mixture Models 77
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77



CONTENTS vii

6.2 Empirical Mixture Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.2.1 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.2.2 Parameters Estimation with EM Algorithm . . . . . . . . . . . . . 79
6.2.3 Predictive Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.3 Mixture Models in Full Bayesian Framework . . . . . . . . . . . . . . . . . 82
6.3.1 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3.2 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.3.3 Parameter Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.3.4 Predictive Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7 Infinite Mixture Models 95
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.2 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.2.1 Chinese Restaurant Process . . . . . . . . . . . . . . . . . . . . . . 97
7.2.2 Stick Breaking Construction . . . . . . . . . . . . . . . . . . . . . . 98

7.3 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.3.1 Collapsed Gibbs Sampling with CRP . . . . . . . . . . . . . . . . . 100
7.3.2 Blocked Gibbs Sampling with Truncated DP . . . . . . . . . . . . . 102
7.3.3 Mean Field with Truncated DP . . . . . . . . . . . . . . . . . . . . 103

7.4 Predictive Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.4.1 Collapsed Gibbs sampling . . . . . . . . . . . . . . . . . . . . . . . 107
7.4.2 Blocked Gibbs sampling . . . . . . . . . . . . . . . . . . . . . . . . 108
7.4.3 Mean field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8 Infinite Hidden Relational Models 111
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.2 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8.2.1 Hidden Relational Model . . . . . . . . . . . . . . . . . . . . . . . . 113
8.2.2 Infinite Hidden Relational Model . . . . . . . . . . . . . . . . . . . 116
8.2.3 Generative Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8.3 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.3.1 Collapsed Gibbs Sampling with CRP . . . . . . . . . . . . . . . . . 120
8.3.2 Blocked Gibbs Sampling with Truncated SBC . . . . . . . . . . . . 121
8.3.3 Mean Field with Truncated SBC . . . . . . . . . . . . . . . . . . . 122
8.3.4 Empirical Approximation . . . . . . . . . . . . . . . . . . . . . . . 124

8.4 Predictive Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
8.4.1 Collapsed Gibbs Sampling with CRP . . . . . . . . . . . . . . . . . 125
8.4.2 Blocked Gibbs Sampling with Truncated SBC . . . . . . . . . . . . 127
8.4.3 Mean Field with Truncated SBC . . . . . . . . . . . . . . . . . . . 128
8.4.4 Empirical Approximation . . . . . . . . . . . . . . . . . . . . . . . 129

8.5 Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8.5.1 Clinical Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 131



viii CONTENTS

8.5.2 Movie Recommendation . . . . . . . . . . . . . . . . . . . . . . . . 133
8.5.3 Prediction of Functions of Genes . . . . . . . . . . . . . . . . . . . 137

8.6 Discussion and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 139
8.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

IV Conclusions 143

9 Conclusions 145
9.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Bibliography 148



List of Figures

2.1 Motivations of statistical relational learning illustrated on a school domain.
(a) The learning process of Bayesian network. (b) Ground network of
three additional records. The numbers show the procedure of probabilistic
reasoning about George’s grade at the course Geo101. . . . . . . . . . . . . 11

2.2 An example of PRM over school domain from (Getoor et al., 2001). (a) Re-
lational schema specifying the classes, descriptive attributes and reference
slots. (b) Dependency structure and local probability model. (c) An exam-
ple skeleton instantiating objects and relationships. (d) Ground Bayesian
network which is obtained by applying the PRM template in (b) to the
example skeleton in (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 An example of DAPER model on the school domain from (Heckerman et al.,
2004). (a) DAPER model. (b) Instantiated objects and relationships. (c)
Ground Bayesian network. All information propagates to the attribute of
interest, i.e. George’s grade at the course Geo101. The grey arrows show
the procedure of probabilistic inference. . . . . . . . . . . . . . . . . . . . . 15

2.4 Structure uncertainty on the paper-citation domain (Getoor et al., 2003).
(a) Reference uncertainty modeling. (b) Existence uncertainty modeling. . 17

2.5 DAPER model with structure uncertainty over medical domain. (a) Exis-
tence uncertainty modeling. The auxiliary attribute Take.Exist is modeled
as a binomial variable. θe|pc,Id denotes the parameters of the binomial dis-
tribution conditioned on Patient.PrimeComplaint and Procedure.Id. (b)
Reference uncertainty modeling. The auxiliary attribute Take.Select is
modeled as a multinomial variable with as many states as there are proce-
dures. φs|pc denotes the parameters of the multinomial distribution condi-
tioned on Patient.PrimeComplaint. . . . . . . . . . . . . . . . . . . . . . . 18

2.6 Bayesian logic programming (Kersting & Raedt, 2000) integrating domain
expert knowledge and the data into probabilistic models. . . . . . . . . . . 18

2.7 The dependency graph for the example about children’s height with con-
stants: ann, jame, mary, bill and john. . . . . . . . . . . . . . . . . . . . . 20

3.1 (a) A simple Bayesian model. (b) An equal model with a plate representation. 29

ix



x LIST OF FIGURES

3.2 The posterior distributions for three data sets with different size but iden-
tical proportion at each state. (a) Dirichlet prior with hyperparameters
α = (1, 1, 1). (b) posterior distribution given a small data set, the number
of samples at each state is (3, 5, 2). (c) posterior distribution given a middle
size of data set with 50 samples. (d) posterior distribution given a data set
with 100 samples. It is clear that the posterior distribution concentrates on
a point mass with increasing data. The phenomenon claims the expected
result that posterior distribution becomes less variable as additional infor-
mation is available. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 (a) A typical hierarchical Bayesian model. (b) An equal model with a plate
representation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 (a) An empirical object-oriented hierarchical model. (b) An equal model
with a plate representation. . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 (a) A hierarchical model in full Bayesian framework. (b) An equal model
with a plate representation. . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 (a) A set of N observations, which are i.i.d. drawn from a Gaussian dis-
tribution with unknown mean µ and known covariance matrix Σ. (b) A
conjugate prior distribution of the unknown parameter µ. (c) The learned
posterior distribution of µ. So far the Bayesian inference is performed in
an ideal situation where the data really follows Gaussian distribution as
we assume. However, in many cases, the observations are not distributed
as assumed. (d) The data is an arbitrary distribution, which can not be
represented by a Gaussian with any parameters. Then prediction based on
the Gaussian model will be divergent from the real situation. . . . . . . . . 46

4.2 (a) A parametric Bayesian model for D = {y1, y2, . . . , yN}. The obser-
vations are i.i.d. drawn from a Gaussian distribution with parameters µ
and Σ. We assume Σ is known but µ is unknown and follows a Gaussian
distribution with hyperparameters µprior and Σprior. (b) A nonparametric
Bayesian model in the same setting. In contract with the parametric model,
the likelihood is an arbitrary distribution G drawn from P (G), rather than
a distribution with specific mathematic form and unknown parameters. (c)
The equal model to (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 (a) A parametric hierarchical Bayesian (HB) model. Assume that there
are M parallel data sets D = {D1, D2, . . . , DM}, and in Dj, there are Nj

observations Dj = {yj,1, yj,2, . . . , yj,Nj
}. (b) A nonparametric HB model in

the same setting. The difference is that in the nonparametric model the
prior can be any arbitrary distribution as complex as necessary, rather than
a distribution with assumed form. (c) The equal model to (b). . . . . . . 49

4.4 An example partition {B1, . . . , B6} on a 2-dimensional continuous space
B. Let G0, G be a specific distribution and a random distribution on B.
If G ∼ DP(α0, G0), then the random vector (G(B1), . . . , G(B6)) is drawn
from a Dirichlet distribution with parameters (α0G0(B1), . . . , α0G0(B6)). . 50



LIST OF FIGURES xi

4.5 (a) Graphic representation of DP, where the random probability distribu-
tion G is explicitly drawn from the DP. (b) Graphic representation of Pólya
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Chapter 1

Introduction

There are many collections of relational data in diverse areas. The construction of statis-
tical models on this kind of data has been well studied in statistics and machine learning
communities. Generally these approaches are only capable of handling data in flat form,
i.e. each instance has the same set of attributes and is assumed as independently and
identically distributed (i.i.d.). It is obvious that there is a lack of the conceptions about
entities and relationships in these approaches. However the real-word data always consists
of multiple types of entities, their distinct attributes, and relationships between entities of
the same/different types. In recent years, researchers realize the importance of the rela-
tional natures of the data and introduce many advanced statistical models with compelling
results. Considering the central importance of relationships, these novel approaches are
called statistical relational learning (SRL).

In the preliminary researches of SRL, the relationships are explored and encoded in
an implicit way. For example, in the probabilistic relational model (PRM) introduced
in (Friedman et al., 1999; Getoor et al., 2001), the relationships are represented as the
reference slots and the information in relationships is encoded as: an attribute can prob-
abilistically depend on not only the attributes of the same entity, but also the attributes
of related entities. PRM can be viewed as a milestone in the development of SRL. In lat-
ter works, researchers start to explicitly incorporate the relationships into the statistical
models. Typically Getoor et al. (2003) introduced link uncertainty models which encode
the relationships with reference uncertainty and existence uncertainty mechanisms. Each
relationship is represented as a multinomial variable or a binomial variable and can be
involved in probabilistic models as any other attributes.

In this thesis we apply advanced Bayesian techniques to relational learning in order to
form refined statistical models to capture the probabilistic dependencies between entities
and relationships. The models are expected to be more expressive, more easily applicable
and more computationally efficient than the previous approaches. As a result, we propose
two novel and principled developments: the first one, Dirichlet enhanced relational learn-
ing (DERL), extends nonparametric hierarchical Bayesian modeling to relational learning,
the second one, infinite hidden relational model (IHRM), extends nonparametric mixture
modeling to relational learning. To perform fast computation, various inference methods
are explored. We demonstrate their performance on real-world applications and provide
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some evidence that our hope has been met.

1.1 Motivations and First Discussion of Our Models

In statistical relational learning, entities are individuals, which are distinct from one an-
other despite the common features. Thus it makes more sense to represent the model
parameters as personalized to entities, than to represent them as global. Assume a simple
medical domain, where patients take procedures conditioned on their prime complaints.
The parameters θ expressing the probability of prescribing a procedure given prime com-
plaint, are modeled as global quantities. There are two important implications in the
representation. First, the probability of a procedure is identical for all patients with the
same prime complaint. Second, procedures for a patient are modeled as independent given
his prime complaint and the global parameters θ, such that knowledge about prescribed
procedures does not influence the selection of subsequent procedures. Both implications
are not realistic. Patients are truly unique which might be obvious to the attending
physicians but which is impossible to be represented in a probabilistic model with global
parameters. Given a prime complaint, a physician might select a personalized treatment
strategy. Additionally, the procedures taken by a patient are related. The prescribed
procedures influence the selection of future procedures since the physician often make
decision of the coming procedures based on the previous ones. A typical solution for the
problem in Bayesian analysis is hierarchical Bayesian (HB) framework, i.e. each patient i
has his own parameters θi, which share a common prior distribution.

In a HB model, the parameterized prior distribution obtains central importance since
it must not only be able to represent ones’ prior belief but also be flexible enough to
represent the learned posterior, which might not be in the same family of distributions.
Thus it is advantageous to specify the prior distribution in a flexible nonparametric form,
technically as a sample distribution from a Dirichlet process (DP). Although we can still
implement our vague prior belief in form of the parameters of the DP, the learned posterior
can be very rich. Due to the central importance of DP in the model, we name it as Dirichlet
enhanced relational learning (DERL), which can be viewed as a relational extension of
nonparametric hierarchical Bayesian modeling. As an extra advantage, DERL provides an
elegant way to capture the semantic information about hierarchical classes in relational
data: the super-class can be represented as prior and sub-class can be represented as
samples drawn from its super-class, thus each subclass is distinct, but shares some common
features via the prior distribution. The class-instance semantics can be modeled in an
equivalent way.

The other model presented in the thesis is infinite hidden relational model (IHRM),
which is motivated by some constraints in existing relational models. First, there is no
easily applicable recipe of how to turn a relational domain (e.g. a database) into a prob-
abilistic model. One has to implement extensive structural learning, which is even more
expensive than in (non-relational) Bayesian networks due to the huge number of potential
parents. For example, whether I get a disease might depend on genetic disposition of my
great-grandfather. Secondly, in some statistical relational approaches it is necessary to
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have reliable prior knowledge, for example, the clauses in Markov logic networks. However
this kind of information is generally expensive and not easy to obtain. Thirdly, in present
relational approaches the inference is computationally expensive over the data with miss-
ing values, complex inference approaches are required, e.g. loopy belief propagation.

To remove these constraints, we first propose a finite hidden relational model. It
introduces for each entity a latent variable, which is the only parent of the attributes of
the entity, and is a parent of relationships the entity participates. The ground network
for the instantiated entities and relationships forms a network of latent variables, across
which information can propagate. For example, the information about genetic disposition
of my great-grandfather can propagate to me via the latent variables of my father and
my grandfather. Since each entity class has the different number of states in its latent
variable and the number varies with increasing entities, it is natural to expect the model
to determine the number of latent states in a self-organized way. This is possible by
embedding the model in Dirichlet process (DP) mixture modeling, which can be simply
interpreted as a mixture model with an infinite number of mixture components. The
term infinite does not mean there are infinite latent states for each entity class, but the
number is not specified in advance. The model, based on the data, automatically reduces
the complexity to an appropriate finite number of components. The combination of the
hidden relational model and the DP mixture model is infinite hidden relational model
(IHRM). For inference of IHRM, we first develop a collapsed Gibbs sampler with Chinese
restaurant process (CRP). Considering the slow mixing of Markov chain in CRP, we
propose other inference methods, including blocked Gibbs sampler with truncated stick-
breaking construction (SBC) and mean-field approximation with truncated SBC, as well
as a memory-based empirical method.

1.2 Thesis Overview

The thesis is organized as follows:

Part 1 deals with the preliminaries.

Chapter 1 gives a brief introduction to the thesis, including motivations, main con-
tributions, outline and so on.

Chapter 2 provides a short overview of statistical relational learning (SRL), includ-
ing: the motivations, the major types of modeling approaches, some leading frame-
works (probabilistic relational models, directed acyclic probabilistic entity relation-
ship models, Bayesian logic programming), and prime tasks (object identification,
object ranking, object classification/clustering, relationship prediction, relationship
classification and so on).

Part 2 introduces nonparametric hierarchical models to relational learning.

Chapter 3 reviews the Bayesian and hierarchical Bayesian models. We first discuss
the principles of these models. Then the differences from the classical statistical
models are introduced. The following topic is the exponential family distributions
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and their major properties. The definition of exchangeability of samples is also
introduced. Finally, some inference approaches are discussed.

Chapter 4 introduces the nonparametric hierarchical Bayesian models. First, we
discuss the limitations of parametric Bayesian modeling. Then we provide a brief
introduction to nonparametric Bayesian modeling. Next we discuss a well-known
nonparametric technology, Dirichlet process (DP), and present its application in the
hierarchial Bayesian framework. Finally, the inference methods (Gibbs sampling and
variational approximation) are described using the Pólya urn representation of DP.

Chapter 5 extends the nonparametric hierarchical Bayesian modeling to relational
learning and introduces Dirichlet enhanced relational model (DERL). We first dis-
cuss the limitations of present relational models. Then a hierarchical Bayesian mod-
eling method is introduced with the goal of removing these shortcomings. To involve
additional flexibility to the model, we embed it in a nonparametric framework in
order that the learned knowledge can be truthfully represented via nonparametric
priors. After that, we discuss the method of how to model the dependencies between
different types of relationships and introduce a smoothing technology to overcome
the issue of overfitting. Next, an efficient variational inference method is provided
for probabilistic reasoning. Finally experimental analysis on medical data is given
to evaluate the performance of DERL.

Part 3 presents nonparametric mixture models to relational learning.

Chapter 6 introduces finite mixture models. We first review the motivations of
the mixture models and their major applications. Then a finite mixture model
is introduced in empirical Bayesian framework. Parameter estimation and predic-
tive inference are discussed. After that, we introduce the finite mixture models in
full-Bayesian framework. The corresponding inference approaches are discussed, in-
cluding Gibbs sampling method and variational approximation. Finally, we discuss
parameter estimation and predictive inference methods.

Chapter 7 presents the Dirichlet process (DP) mixture model. First, we introduce
the definition of the model, and then describe the different representations of Dirich-
let process, including the Chinese restaurant process (CRP) and the stick breaking
construction (SBC). Next we discuss two Gibbs sampling algorithms for inference,
one is collapsed Gibbs sampling with CRP, the other is blocked Gibbs sampling
with SBC. To improve the computational efficiency, the mean-field based inference
method is also discussed. Finally, the prediction methods are introduced with the
corresponding inference techniques.

Chapter 8 extends nonparametric mixture modeling to relational learning and pro-
poses infinite hidden relational model (IHRM). First, we discuss the motivations.
Then, we introduce a finite hidden relation model with an example of movie rec-
ommendation system. Next, the expressive power of the finite model is enhanced
by combining it with nonparametric Bayesian modeling. After that, we present
diverse inference methods, including collapsed Gibbs sampling with CRP, blocked
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Gibbs sampling with truncated SBC, mean-field based approximation with trun-
cated SBC, and an relational memory-based approximation. The corresponding
predictive inference methods are also provided. Finally, the performance of IHRM
is demonstrated in three applications: movie recommendation system, function pre-
diction of genes and medical data analysis.

Part 4 concludes the thesis.

Chapter 9 summarizes the major results of the thesis and discusses some future
research directions.
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Chapter 2

Statistical Relational Learning

2.1 Introduction

Statistical relational learning (SRL) has recently received increasing attention (Dzeroski
& Lavrac, 2001; Raedt & Kersting, 2003) and plays an important role in modern data
mining (Wrobel, 2001). The reason is that relevant information is not only contained
in attributes describing properties of objects but also in relationships between objects.
In particular, a typical domain of interest might consist of objects, their attributes and
their relationships. Most machine learning approaches have tried to select a representa-
tion in which a relational representation could be avoided by constructing appropriate
derived features (propositionalization). It is obvious that the full information contained,
e.g. in a relational data base, could not be completely represented and exploited by propo-
sitionalization. To solve these limitations, statistical relational models are developed to
encode relational information in a principled way, which combines with various knowledge
representations to model multi-relational, heterogeneous and semi-structured data.

Statistical relational learning is the intersection of research in graphic models, logic
representations and probabilistic theories. There are mainly four categories of modeling
approaches (Getoor, 2005).

1. The first family of approaches concerns the combination of relational database mod-
els and graphical models. For example, the probabilistic relational model (PRM)
introduced in (Friedman et al., 1999; Getoor et al., 2001), formulates a probabilistic
framework for database relational model. The directed acyclic probabilistic entity
relationship model (DAPER) introduced in (Heckerman et al., 2004), integrates
Bayesian analysis with entity-relationship database representation. The relational
Markov network (RMN) introduced in (Taskar et al., 2002), proposes a discrimina-
tive model for the relational data via integrating Markov network.

2. The second family of modeling approaches deals with the combination of first-order
logic languages and graphical models. For example: the Bayesian logic program in-
troduced in (Kersting & Raedt, 2000), is an extended Bayesian network with definite
clause logic (i.e. pure Prolog). The Markov logic network proposed in (Richardson &
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Domingos, 2006), is an undirected graphical model. It can be viewed as a first-order
knowledge base, where each clause is associated with a weight.

3. The third family of approaches concerns functional programming with stochastic
execution.

4. Fourth, the combination of dynamic probabilistic models and logic representations,
e.g. the dynamic probabilistic relational model in (Sanghai et al., 2003) and the
relational Markov model in (Anderson et al., 2002).

All these modeling technologies attempt to combine knowledge representation lan-
guages with statistical models such that the full information in the domain of interest
can be modeled in an elegant way. As a result, robust and accurate probabilistic reason-
ing can be performed. These SRL approaches are widely applied in the contexts of text
mining, web mining, gene analysis, customer service, social network and natural language
processing as well as other complex domains. The major tasks of SRL include object
identification, object ranking, object classification/clustering, relationship prediction, re-
lationship classification and attribute prediction, as well as subgraph discovery, graph
classification and so on.

2.2 Motivation

There are mainly two motivations for statistical relational learning. From the data mining
point of view, typical data mining approaches look for patterns in a database only within
a single relation. However in real-world cases, the domain of interest generally consists
of many classes of objects and relations, e.g. multiple tables in a database, thus it is
necessary to integrate data from multiple relations into a single table before executing a
particular data mining approach. Unfortunately, this integration requires much thought
and effort, more important, some essential patterns may be missed after flattening the
data. Therefore it is better to analyze the data directly from a multi-relation database,
without the need to transfer the data into a single table. Secondly, from the statistical
machine learning point of view, most statistical methods assume that the data are inde-
pendently and identically distributed (except for the dynamic models, e.g. hidden Markov
model), but actually, the samples may depend on each other. For example, if a student
obtains high grade in a course (say data mining), then he very likely obtains high grade
in a related course (say machine learning). Statistical relational learning is a solution for
the two limitations, which attempts to combine knowledge representation languages with
statistical models in order to directly model the data with complex relations.

Let us illustrate via a particular example on school domain. There are three tables
in a school database: Student, Course, and Take. The table Student stores the infor-
mation about student intelligence. The table Course stores the information about the
course difficulty. The table Take stores the information about student grades. Typically,
one student takes several courses. A general machine learning approach, e.g. Bayesian
network, first combines the three tables into a single one, then the records in the table
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(a)

(b)

Figure 2.1: Motivations of statistical relational learning illustrated on a school domain.
(a) The learning process of Bayesian network. (b) Ground network of three additional
records. The numbers show the procedure of probabilistic reasoning about George’s grade
at the course Geo101.
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are viewed as i.i.d. samples and a Bayesian network is learned on the flattened data. The
procedure is shown as Figure 2.1(a). Assume that there is additional information about:
Jane takes course CS101; George takes courses CS101 and Geo101. Furthermore, assume
that Jane’s intelligence, Jane and George’s grades at the course CS101 are known, and we
are interested in George’s grade at the course Geo101. In the traditional Bayesian network
approach, it is impossible to infer the probability of George’s grade at the course Geo101,
since George’s intelligence is unknown. However, in relational learning, we notice the fact
that both Jane and George take the course CS101, thus the three records are linked in
a single network. The probabilistic inference can be implemented in the way shown as
Figure 2.1(b): from Jane’s intelligence and Jane’s grade at the course CS101, we obtain
the probability of difficulty of the course CS101. Then the information is transferred to
the right subnetwork, and the probability of intelligence of George is obtained, finally,
George’s grade at the course Geo101 is inferred via integrating all information, not only
including himself, but also including the related persons, e.g. Jane.

In a word, statistical relational learning integrates the strength of relational logic
representations such that the resulting models can perform robust and accurate reasoning
and learning in complex domains.

2.3 SRL Models

During the past decade, many SRL models are introduced in various applications. The
leading frameworks include: probabilistic relational model (Friedman et al., 1999; Getoor
et al., 2001) and its extension with link uncertainty (Getoor et al., 2003), directed acyclic
probabilistic entity relationship model (Heckerman et al., 2004), multi-relational data
mining approaches (Liu et al., 2005), Bayesian logic programming (Kersting & Raedt,
2000), and Markov logic network (Richardson & Domingos, 2006), etc. In this section,
we briefly introduce some of the leading researches.

2.3.1 Probabilistic Relational Model

Probabilistic relational model (PRM) (Friedman et al., 1999; Getoor et al., 2001) describes
a probabilistic formulation for a relational data base. It integrates Bayesian network with
the database structure representation relational model (Ullman & Widom, 1997). PRM
is a milestone in the development of statistical relational learning. Koller and Pfeffer
(1997) proposed object-oriented Bayesian network, which extends the Bayesian network
with the concepts of classes, objects, and their attributes. The model can be viewed as the
initial work of PRM. Koller and Pfeffer (1998) introduced the probabilistic frame-based
system, which combines the frame-based knowledge representation with Bayesian network
to model organizational structure of a large complex domain. It provides more expressive
power than traditional Bayesian network. With these early researches, Friedman et al.
(1999) developed probabilistic relational model, which is a compact and effective language
to describe a statistical formulation over a typed relational domain. A PRM models the
probabilistic uncertainty over the attributes of objects and relationships between objects.
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(a) (b)

(c) (d)

Figure 2.2: An example of PRM over school domain from (Getoor et al., 2001). (a)
Relational schema specifying the classes, descriptive attributes and reference slots. (b)
Dependency structure and local probability model. (c) An example skeleton instantiating
objects and relationships. (d) Ground Bayesian network which is obtained by applying
the PRM template in (b) to the example skeleton in (c).
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An attribute of an object depends on not only other attributes of the same object, but
also the attributes of related objects. PRM provides a new perspective for data mining.

Probabilistic relational model is motivated from Bayesian network (BN). A BN is a
graphical model to encode the probabilistic dependencies between variables, which pro-
vides an elegant formalism for representing and reasoning probabilistic uncertainty. The
major advantage is that it exploits the underlying structure of the domain knowledge to
represent the joint distribution in an effective way. However, BN lacks the concepts of ob-
jects and relationships. In many real-world applications, the domain of interest typically
consists of objects, their attributes and relationships between them. This kind of under-
lying information can not be captured by a traditional Bayesian network. Generally, BN
pre-processes the data into a flat representation, and then, the probabilistic dependencies
are learned and reasoned. It is obvious that some important patterns are missing in the
procedure of flattening the data. In addition, there is an important assumption in BN,
i.e. the samples are independently and identically-distributed (i.i.d.). However, in more
cases than not, the samples are linked together into a ground network via relationships.
The information about relationships is helpful in making decision/prediction. For exam-
ple, in a social network, the friendship between two persons influences the frequency and
mode of communication between them. PRM is a framework integrating relational logic
to overcome these limitations in a compact and natural way.

A probabilistic relational model consists of three components: relational schema, de-
pendency structure and local probability model. Figure 2.2 shows an example on school
domain. A relational schema describes data structure of the domain of interest. It con-
sists of a set of classes, e.g. Student and Take. Each class is associated with a set of
descriptive attributes and a set of reference slots. A descriptive attribute represents a
particular property of objects in the class, e.g. Student.Intellignce, which specifies in-
telligence of a student. A reference slot describes a relationship between two classes,
e.g. Take.Student, which specifies an instance in the class Take is related with an in-
stance in the class Student. Figure 2.2(b) shows dependency structure and local prob-
ability model for the running example. The probabilistic dependencies are specified by
the solid directed arcs, e.g. the arc from Student.Intellignce to Take.Grade specifies the
fact that student’s grade depends on his intelligence. An attribute can depend on other
attributes of the same class, or the attributes of the related classes, e.g. a probabilistic
parent of Take.Grade is Student.Intelligence, which is an attribute of the class Student
which is related to the class Take. The local probability model can be a conditional
probabilistic table for a discrete attribute, or a conditional probabilistic density func-
tion for a continuous attribute. In the school example, the local probability model is
P (Take.Grade|Student.Intelligence, Course.Difficulty).

A PRM is a probabilistic template on the domain of interest. It will be replicated on a
particular skeleton. A skeleton specifies a possible relational structure of the domain and is
an instantiation of objects and relationships for a schema. Figure 2.2(c) shows an example
skeleton. Note, that the particular values of attributes in a skeleton can be unknown.
Applying dependency structure defined by a PRM to an example skeleton, we obtain
a ground Bayesian network, e.g. Figure 2.2(d), which represents the joint probability
over all attributes and relationships in the skeleton. The probabilistic inference is finally
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(a) (b)

(c)

Figure 2.3: An example of DAPER model on the school domain from (Heckerman
et al., 2004). (a) DAPER model. (b) Instantiated objects and relationships. (c) Ground
Bayesian network. All information propagates to the attribute of interest, i.e. George’s
grade at the course Geo101. The grey arrows show the procedure of probabilistic inference.

performed on the ground network.
In summary, PRM integrates the relational database model with Bayesian network.

An attribute can probabilistically depend on not only the attributes of the same object,
but also the attributes of related objects. PRM is an important contribution in the
development of statistical relational learning.

2.3.2 Directed Acyclic Probabilistic Entity Relationship Model

Directed acyclic probabilistic entity relationship model DAPER, introduced by Hecker-
man et al. (2004), is another leading framework in statistical relational learning, which
extends Bayesian analysis with the database structure representation entity-relationship
model (Ullman & Widom, 1997). The DAPER framework — the focus of this thesis— is
particularly elegant in a Bayesian context since it encourages an explicit representation
of model parameters and hyperparameters.

DAPER formulates a probabilistic framework for an entity relationship database rep-
resentation. DAPER makes relationships first class objects in the modeling language, and
encourages an explicit representation of conditional probabilistic distributions. A DAPER
model consists of entity classes, relationship classes, attribute classes and arc classes, as
well as local distribution classes and constraint classes. Figure 2.3(a) shows an example of
a DAPER model on the school domain. The entity classes specify classes of objects in the
real world, e.g. Student and Course shown as rectangles in Figure 2.3(a). The relation-
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ship class represents interaction among entity classes. It is shown as a diamond-shaped
node with dashed lines linked to the related entity classes. For example, the relationship
class Take(s, c) indicates that a student s takes a class c. Note, that the DAPER model
assigns relationships the same importance as the entities. Attribute classes describe prop-
erties of entities or relationships. Attribute classes are connected to the corresponding
entity/relationship class by a dashed line. For example, associated with courses is the
attribute class Course.Difficulty and associated with the relationship class Take is the at-
tribute class Take.Grade. The attribute class θ in Figure 2.3(a) represents the parameters
specifying the probability of student’s grade in different configurations (i.e. difficulty of
courses and intelligence of students). It denotes a global attribute class, and is not associ-
ated with any entity class or relationship class. The arc classes shown as solid arrows from
parents to children represent probabilistic dependencies among corresponding attributes.
For example, the solid arrow from Student.Intelligence to Course.Grade specifies the fact
that student’s grade probabilistically depends on student’s intelligence. A local distri-
bution class for an attribute class is a specification from which local distributions for
the attribute class can be constructed. As an example, the probabilistic distribution of
Take.Grade conditioned on its parents is specified by a local distribution class (not shown
in the figure) with the global parameters θ.

Based on the DAPER model (e.g. Figure 2.3(a)) and the instantiated entities and rela-
tionships (e.g. Figure 2.3(b)), a ground Bayesian network (e.g. Figure 2.3(c)) is generated
in which probabilistic inference (e.g. belief propagation) can be performed. In the run-
ning example shown as Figure 2.3(c), all known information propagates to the unknown
attribute of interest, i.e. George’s grade at the course Geo101. Constraint classes specify
how to derive ground Bayesian network from the corresponding DAPER model over the
instantiated domain, e.g. the constraint course[Difficulty] = course[Grade] indicates
that in the ground network an arc should be introduced between attribute c.Difficulty
and attribute Takes(s, c′).Grade, only when c = c′. Thus it is forbidden to add a solid
arrow from CS101.Difficulty to Take(George,Geo101).Grade.

In summary, DAPER framework makes relationships first class objects in the modeling
language, and encourages an explicit representation of parameters and hyperparameters.
It is particularly suited in a Bayesian context.

2.3.3 Relational Models with Structure Uncertainty

In some real-world applications, the relational structure itself is uncertain. Thus it is
necessary to incorporate the relationships into the probabilistic models. Explicitly mod-
eling the relationships can improve the expressive power of SRL, which make possible to
build full probabilistic models on the domains of interest. We can not only predict the un-
known relationships based on the other information, but also explicitly exploit the known
relationships to predict unknown attributes of entities or other variables. Getoor et al.
(2003) proposed two mechanisms to represent the relational uncertainty: one is reference
uncertainty, the other is existence uncertainty. Figure 2.4 describes an example on the
paper-citation domain. Assume that there is a scientific paper with three references, but
the specific information about the references is unknown. Given a document collection,
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(a)

(b)

Figure 2.4: Structure uncertainty on the paper-citation domain (Getoor et al., 2003).
(a) Reference uncertainty modeling. (b) Existence uncertainty modeling.

it is natural to model each reference as a multinomial variable with as many states as the
number of papers in the document collection. The value of the reference variable speci-
fies which paper is cited. This kind of modeling strategy is called reference uncertainty.
Assume another situation that the number of references of a paper is also unknown, and
we only know that each paper can cite any other papers in a given document collection.
Thus it is natural to associate with each paper (N − 1) Bernoulli variables, where N is
the number of papers in the collection. The possible states for each variable are exist and
not-exist, which specifies whether the paper represented by the variable is cited or not.
This kind of modeling strategy is called existence uncertainty. Reference uncertainty is
generally used in situations where one part of a relationship is certain, only the other part
of the relationship is uncertainty. It is obvious that the complexity of reference uncer-
tainty is much less than existence uncertainty, but the flexibility of existence uncertainty
is much more than reference uncertainty.

Figure 2.5 describes reference uncertainty and existence uncertainty in the DAPER
framework via a medical example, where Patient.PrimeComplaint is an attribute describ-
ing the prime complaint of the patient, Procedure.Id describes the identifier of the pro-
cedure, the relationship class Take(pa, pr) represents the fact that a patient pa receives a
procedure pr. In existence uncertainty, a relationship class is associated with an auxiliary
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(a) (b)

Figure 2.5: DAPER model with structure uncertainty over medical domain. (a) Ex-
istence uncertainty modeling. The auxiliary attribute Take.Exist is modeled as a bino-
mial variable. θe|pc,Id denotes the parameters of the binomial distribution conditioned
on Patient.PrimeComplaint and Procedure.Id. (b) Reference uncertainty modeling. The
auxiliary attribute Take.Select is modeled as a multinomial variable with as many states
as there are procedures. φs|pc denotes the parameters of the multinomial distribution
conditioned on Patient.PrimeComplaint.

attribute Exist (e.g. Figure 2.5(a)) with two states, Yes/No. The attribute can be mod-
eled as a binomial variable to represent the uncertainty of whether a procedure is taken
by a patient. The global attribute θe|pc,Id represents the parameters of the distribution
of Exist conditioned on prime complaint pc and procedure Id. In reference uncertainty,
a relationship class is associated with an auxiliary attribute Select (e.g. Figure 2.5(b))
with as many states as there are possible procedures. The attribute Select is generally
modeled as a multinomial variable. The global attribute φs|pc represents the parameters
of the distribution of Select conditioned on prime complaint pc.

Existence uncertainty and reference uncertainty introduced by Getoor et al. (2003)
are two important strategies to model the uncertainty about the relational structure. By
explicitly incorporating the relationships into the probabilistic models, we can not only
predict relationships themselves, but also use the relationship information to predict other
variables of interest.

2.3.4 Bayesian Logic Programming

Figure 2.6: Bayesian logic programming (Kersting & Raedt, 2000) integrating domain
expert knowledge and the data into probabilistic models.

Bayesian logic programming (BLP), introduced by Kersting and Raedt (2000), is an-
other compelling framework to extend the expressive power of Bayesian network by intro-
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Table 2.1: Associated conditional probabilistic distributions for the example Bayesian
clause about children’s height, where h, hy and hz denote the height of X, Y and Z
(Kersting & Raedt, 2000).

mother(Y, X) father(Z, X) cpd
true true N(h, 1

2
(hy + hz), 50)

true false N(h, 1
2
(hy + 175), 50)

false true N(h, 1
2
(hz + 175), 50)

false false N(h, 175, 50)

ducing the concepts of objects and relationships. BLP integrates definite clause logic with
Bayesian network by establishing a one-to-one mapping between ground atoms and ran-
dom variables. There are mainly four advantages in BLP. First, it is easy to incorporate
domain expert knowledge and data into the model (as Figure 2.6). The prior knowledge
can be explicitly represented as pre-defined clauses. Second, BLP might have more ex-
pressive power than PRM, since the definite clause logic is able to represent more complex
relationships than the relational database logic. Third, the resulting logical structure pro-
vides a deep insight into the domain of interest. Last, the model is more comprehensible
whether in the reasoning process or in the final result.

Bayesian logic programming consists of a finite set of Bayesian clauses (BC), each of
which can be intuitively viewed as a logic clause associated with a conditional probabilistic
distribution, e.g. a Bayesian clause about children’s height consists of a logic clause

height(X)|mother(Y,X), height(Y ), father(Z,X), height(Z)

and an associated conditional probabilistic distribution shown as Table 2.1. This Bayesian
clause specifies the probability distribution of height of X conditioned on the height of
his parents Y and Z. More formally, Bayesian clauses are defined as:

A|A1, . . . , An; P (A|A1, . . . , An).

Where A and A1, . . . , An are Bayesian atoms and all atoms are (implicitly) universally
quantified. The major differences between Bayesian and definite clauses include:

1. Each Bayesian predicate/atom r has an associated domain D(r), e.g., D(father) =
D(mother) = {true, false} and D(height) = R.

2. The symbol :- in definite clause is replaced with | to capture the idea of conditional
probabilistic distribution.

Another important component in Bayesian logic programming is combining rule, which
is used to integrate a finite set of conditional probabilistic distributions into a single one.
Formally, it is defined as:
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Definition 2.1 A combining rule is an algorithm that integrates conditional probabilistic
distributions {

P (A|Ai,1, . . . , Ai,ni
)}Mi=1

associated with a finite set of Bayesian clauses into a combined conditional probabilistic
distribution

P (A|B1, . . . , BN).

Where {B1, . . . , BN} = ∪ {Ai,1, . . . , Ai,ni
}Mi=1.

Note, that the combined Bayesian clauses should have the same head atom. Combining
rules can be viewed as a generalization of the idea of canonical distributions. In summary,
a Bayesian logic program is formally defined as:

Definition 2.2 A Bayesian logic program B consists of a (finite) set of Bayesian clauses.
For each Bayesian clause c there is exactly one conditional probability distribution cpd(c)
associated, and for each Bayesian predicate r there is exactly one combining rule comb(r)
associated.

Figure 2.7: The dependency graph for the example about children’s height with con-
stants: ann, jame, mary, bill and john.

Given a Bayesian logic program B and a set of constants, the declarative semantics is
formalized using a dependency graph DB(B). DB(B) is a directed network, where

1. Each node is a ground atom in the least Herbrand model LH(B),

2. Each edge represents a direct influence relationship over the random variables in
LH(B). A direct influence relationship between random variables X and Y exists
if and only if

(a) X, Y ∈ LH(B),

(b) There is a Bayesian clause A|A1, . . . , AN in B and a substitution θ such that
X = Aθ and Y = Aiθ, i ∈ {1, . . . , N}.

For the example about children’s height, assume a Herbrand universe with constants (per-
sons) ann, jame, mary, bill and john. The ground atoms of the least Herbrand model in-
clude: father(jame, mary), mother(ann, mary), height(jame), height(ann), height(mary),
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father(bill, john), mother(mary, john), height(bill), height(john). Figure 2.7 shows its
dependency graph, over which probabilistic queries can be answered.

In summary, Bayesian logic programming integrates Bayesian network with definite
clause logic, and might provide more expressive power to model the complex relational
domains, since the definite clause logic is able to represent more delicate relationships
than the relational database logic.

2.4 SRL Tasks

In the context of statistical relational learning, the related information includes objects, at-
tributes, relationships and graphs, thus various new tasks are brought. The major tasks in
the context include: object identification, object ranking, object classification/clustering,
relationship prediction, relationship classification and attribute prediction, as well as sub-
graph discovery, graph classification and so on (Getoor & Diehl, 2005; Han & Kamber,
2006). The implementation of these tasks invokes many challenges due to the hetero-
geneity, multi-relations and semi-structure of the data. In the section, we give brief
introduction for some prime tasks.

2.4.1 Object Identification

Object identification is to find the different identifiers which map to the same real-world
object. For example, in bibliography context, the references to the same paper may be
described in different words, object identification is to find these references to build more
reasonable citation network, over which accurate and compact inference can be performed.
The problem of object identification first arises in database domain and is called entity
resolution, which happens when a real-world object is distributed in multiple databases.

Traditionally, object identification is viewed as a pair-wise resolution problem, where
each pair of references is independently resolved via comparing their attributes. In sta-
tistical relational learning, the performance of object identification is expected to be
improved via integrating the information about relationships between objects, for exam-
ple, the relationships of co-author in bibliographic data; the interaction between genes in
information extraction of biology text. In statistical relational learning, what is the most
interesting and promising might be the collective object identification strategy, which do
not make match decision independently, in contrast, one match decision is made over
others if the involved objects are related. These relationship-based object identification
approaches can be widely applied in database domain for deduplication and integration,
natural language extraction domain for co-reference resolution and object consolidation,
social network domain for actor identification.

The existing researches include (Bhattacharya & Getoor, 2004; Bhattacharya & Getoor,
2005; Dong et al., 2005; Singla & Domingos, 2005b) and so on.
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2.4.2 Object Ranking

Object ranking may be a primary focus in statistical relational learning due to the well
known PageRank algorithm and its successful application in web information retrieval.
The goal of object ranking is to order a set of objects based on their attributes, relation-
ships and all other information.

PageRank algorithm is introduced by Page et al. (1998), which is a probabilistic model
to estimate the likelihood that a user arrives a particular web page with a sequence of
random clicks. In particular, PageRank models web surfing as a random walk where the
user randomly selects the next page to browse given the structure of the network, i.e. the
outgoing links from the current page. In terms of Markov theory, the likelihood of a web
page can be computed as the steady-state probability of the random process. Then the
web pages are ranked in the order of their likelihood. Another well-known approach for
web information retrieval is HITS (Kleinberg, 1999), which divides the web pages into two
categories: hubs and authorities, and then two independent random walks are performed
in the two categories. For each web page, hub score and authority score are computed
respectively as the steady-state probabilities of the two random processes. Finally, the
web pages are ranked in the order of their values about hubs and authorities.

Another core application of object ranking is social network analysis. In the context,
object ranking is used to order individuals in a given social network based on their impor-
tance/centrality. Note, that the social network can be static or dynamic. In a dynamic
social network, additional information is available, e.g. the events between objects, in-
cluding emails, telephone calls, messages and so on. In this situation, dynamic relational
models are expected to capture the underly patterns in the complex network.

2.4.3 Object Classification/Clustering

The goal of object classification is to classify each object into a finite set of known groups.
SRL approaches have an advantage over the traditional approaches since they collectively
infer the category labels of all objects linked in a ground network. The enhanced hy-
pertext classifier introduced by Chakrabarti et al. (1998) is among the first to notice
the challenge, which explores the potential via using neighborhood class information to
improve the classification accuracy for a hypertext document. Lafferty et al. (2001) in-
troduced conditional random field to segment and label sequence data, which avoids the
fundamental limitation of maximum entropy Markov models. However the model is re-
stricted that data structure should be a chain. Taskar et al. (2002) extended the work of
Lafferty et al. (2001) to data with arbitrary topology structures and applies the model
to hypertext classification with promising results. Other related researches include (Lu &
Getoor, 2003; Neville & Jensen, 2000) and so on.

Object clustering is also called group detection. The goal of the task is to cluster
the objects into groups in terms of their attributes and relationships. A well-known
application is identification of web communities, which cluster the web pages with the
similar topics. The block modeling for social network is another well known application,
which reduces a large, potentially incoherent social network to a small and comprehensible
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structure which can be interpreted more readily.

2.4.4 Relationship Prediction

Relationship prediction is to predict existence of relationships (links) based on the at-
tributes and other relationships of the involved objects. Examples include whether there
exists a hyperlink between two web pages, whether a user buys a book, and whether two
persons make friends. The main challenge of the task is the sparsity and bias of the data.
For example, the really existent hyperlinks in the internet is considerably sparse, rela-
tive to an extremely large number of potentially existent hyperlinks (Rattigan & Jensen,
2005). The possible solutions to improve the prediction performance are to make predic-
tions collectively, or to incorporate discriminative modeling techniques into these predic-
tion approaches. There are various compelling models developed for the task, such as the
extension PRM model (Getoor et al., 2003), relational Markov network (Taskar et al.,
2002), Markov logic network (Richardson & Domingos, 2006), nonparametric Bayesian
models (Xu et al., 2005; Xu et al., 2006) and so on.

2.5 Summary

Statistical relational learning is a promising and booming research area. It explicitly
exploits and models the data with objects, attributes and relationships by integrating
various knowledge representations with probabilistic theories, such that the patterns in
multi-relational, heterogeneous and semi-structured data can be discovered in an elegant
and compact way. The related researches can be found in the following special conferences:

1. SIGKDD Workshop on Multi-Relational Data Mining (2002-2006);

2. Workshop on Mining and Learning with Graphs (ECML/PKDD 2003-2006);

3. Workshop on Learning Statistical Models from Relational Data (AAAI-2000, IJCAI
2003, and ICML 2004, ICML 2006);

4. Dagstuhl workshops on Probabilistic, Logical and Relational Learning (2005, 2007).
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Chapter 3

Bayesian and Hierarchical Bayesian
Models

3.1 Bayesian Models

3.1.1 Introduction

Bayesian data analysis is an important branch of statistical learning, which explicitly
uses probability to quantify uncertainty in inferences. Let illustrate Bayesian analysis
with a simple example. Assume that there is a set of N observations D = {y1, y2, ..., yN}.
The observation yi can be discrete or continuous. In Bayesian framework, there is an
underlying assumption that the N observations in the data set D are independently and

identically distributed, which is denoted as yi
i.i.d.∼ P (·|θ), where θ represents the unknown

parameters of the distribution. In the Bayesian framework, the unknown parameters
themselves are random variables and are drawn from a distribution P (θ|α) with hyper-
parameters α. Generally, the distribution P (θ|α) is called prior, which represents our
uncertainty about parameters θ before we see the data. Based on Bayes’ rule, we obtain
the posterior distribution of θ given data D and hyperparameters α:

P (θ|D, α) =
P (D|θ)P (θ|α)

P (D|α)
, (3.1)

which reflects our uncertainty about parameters θ is updated after seeing the observations
D. The factor P (D|θ) is referred to as likelihood, and represents the probability that the
model generates the data D given parameters θ. Due to the underlying assumption of
Bayesian analysis that each observation is i.i.d., the likelihood of the data D can be
unfolded:

P (D|θ) =
N∏

i=1

P (yi|θ). (3.2)

Another factor P (D|α) in Equation 3.1 is called marginal likelihood or evidence

P (D|α) =

∫
P (D|θ)P (θ|α)dθ, (3.3)

27
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which can be viewed as a normalization factor to ensure
∫

P (θ|D, α)dθ = 1. Note, that
with an increasing size of the data set, the posterior distribution of θ becomes increasingly
localized and eventually converges to a point mass.

For a new observation ynew, the predictive distribution about its value is computed
given data D and hyperparameters α:

P (ynew|D, α) =

∫
P (ynew|θ)P (θ|D, α)dθ

≡ EP (θ|D,α) [P (ynew|θ)] , (3.4)

where EP (θ|D,α)[P (ynew|θ)] denotes the expectation of P (ynew|θ) with respect to the poste-
rior distribution P (θ|D, α). The posterior distribution P (θ|D, α) now plays a role of the
learned prior, i.e., the available knowledge before the arrival of new data.

In summary, a Bayesian approach sets up a full probability model to learn the model
parameters given data. First, prior distributions of model parameters are assumed to
represent our initial uncertainty (knowledge) before the arrival of data, which might be
obtained from expert experience. And then the posterior distributions are computed in
terms of Bayes’ rule, which reflect that our uncertainty (knowledge) is updated after seeing
the data. With respect to the learned posteriors, we predict the variables of interest via
averaging over all possible values of model parameters.

3.1.2 Exchangeability

A tacit assumption in statistic learning is that the N observations D = {y1, y2, ..., yN} are
exchangeable, i.e. the joint distribution P (y1, . . . , yN) of the data is invariant if the indices
of the variables are permuted. Let ν = {ν(1), ν(2), . . . , ν(N)} denote a permutation of
the indies from 1 to N , the exchangeability assumption yields:

P (y1, y2, . . . , yN) = P (yν(1), yν(2), . . . , yν(N)). (3.5)

Furthermore, when the number of the variables is infinite, i.e. N → ∞, the variables
are infinite exchangeable, if any finite subset of variables are exchangeable. Based on
the exchangeability assumption, it is natural to model the data as independently and
identically distributed given model parameters θ,

P (y1, y2, . . . , yN |θ) =
N∏

i=1

P (yi|θ). (3.6)

The exchangeability relations in a model can be illustrated in a graphical representation,
referred to as plate, which is a template that allows the subgraphs can be replicated.
Figure 3.1(a) shows the model discussed in Section 3.1.1. Figure 3.1(b) shows the equal
model in a plate. In the plate language, variables (not random) are represented directly
by their names, e.g. the hyperparameters α. Random variables, e.g. θ, are represented as
circles with their names. The N exchangeable variables {y1, . . . , yN} are represented as
a single variable yi in a rectangle. The number N at the corner specifies the number of
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(a) (b)

Figure 3.1: (a) A simple Bayesian model. (b) An equal model with a plate representation.

the variables. An arrow, e.g. from α to θ denotes that the probability distribution of θ is
conditioned on α. Note, that the arrow from θ to yi specifies each of the N variables yi

depends on θ. The plate representation is often used to illustrate probability models. It
clarifies the exchangeability relations in a compact and elegant way.

3.1.3 Inference and Parameter Learning

Probabilistic inference means the computation of the probability of a quantity given a
model, potentially under some observations. We distinguish between two kinds of in-
ference. First, the computation of the probabilities of potentially observable quantities,
such as a missing observation y′, P (y′|D, α). Second, the computation of the probabilities
of quantities that are not observable, e.g. the model parameters θ, P (θ|D, α), which is
sometimes called parameter learning. Note, that in Bayesian framework what we learn is
the distributions of the unknown quantities, not the quantities themselves, since unknown
variables are random in Bayesian modeling. An exception is empirical Bayesian modeling
we will introduce in the next section.

Especially, the inference about a new observable is called predictive inference. We
consider two situations: one is to predict without any data, the other is to predict with
some known data. The former is denoted as prior predictive inference:

P (ynew|α) =

∫
P (ynew|θ)P (θ|α)dθ, (3.7)

which is conducted before the arrival of the data, thus the uncertainty about the model
parameters is represented by the prior distributions. In the latter situation when the data
D is given, we predict a new observation as:

P (ynew|D, α) =

∫
P (ynew|θ)P (θ|D, α)dθ. (3.8)

It is referred to as posterior predictive inference. The prediction is performed after the
arrival of the data, thus the uncertainty about the model parameters is represented as
posterior distributions.
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3.1.4 Exponential Family and Conjugate Prior

Regardless of parameter learning or predictive inference, the marginal distribution P (θ|D, α)
or P (ynew|D, α) is computationally expensive in more cases than not. To solve the lim-
itation, a class of distributions known as exponential family are introduced so that the
computation can be efficient and in closed form. Members of this family include discrete
and continuous distributions, such as Bernoulli, binomial, multinomial, Poisson distribu-
tions; and Gaussian, Gamma, Beta, Dirichlet distributions.

The distributions in exponential family take a certain form:

P (y|θ) = H(y) exp
[
θT T(y)− A(θ)

]
. (3.9)

Where θ denotes the parameters of the distribution and is called natural parameters.
H(y), T(y) and A(θ) are different functions. H(y) is the underlying measure with respect
to which P (y|θ) is a density function. T(y) is a sufficient statistic of the distribution.
Generally, a sufficient statistic is a function of the samples that contains all information to
estimate the natural parameters θ, e.g., for a Gaussian distribution, the mean and covari-
ance of the samples are the sufficient statistics to estimate the true mean and covariance
of the distribution. The function A(θ) is defined in terms of the other two functions:

A(θ) = log

∫
H(y) exp

[
θT T(y)

]
dy, (3.10)

which can be viewed as the logarithm of a normalization factor. A(θ) is used to ensure∫
P (y|θ)dy = 1.
Each member of exponential family has a simple conjugate prior, which is an impor-

tant property for Bayesian analysis. In Bayesian probability theory, a conjugate prior is
a prior distribution which posterior distribution also takes the same mathematic form.
For example, if the data are i.i.d. drawn from a multinomial distribution with unknown
parameters θ and a conjugate prior (i.e. Dirichlet distribution) is assumed, then the poste-
rior distribution of parameters θ is still Dirichlet. If the likelihood distribution P (D|θ) of
data D belongs to the exponential family, then there exists a conjugate prior, which is also
in the exponential family. Not all likelihood distributions are associated with conjugate
priors. In general, an arbitrary likelihood distribution, not being the exponential family,
has no conjugate prior. In the case, the computation about the posterior distribution
might be expensive and has to be approximated via numerical methods. Therefore, for
computational convenience, it is common to assume a conjugate prior for model param-
eters, since the assumption reduces the computation from the function approximation
to the parameter approximation. Table 3.1 lists the commonly-used exponential family
distributions and the corresponding conjugate priors.

3.1.5 Differences from Classical Statistical Approaches

Although Bayesian and classical statistical approaches obtain nearly identical results in
many applications, the underlying mechanisms are completely different. The major differ-
ence is that: the unknown parameters θ are viewed to be random in Bayesian approaches,
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Table 3.1: Some exponential family distributions P (y|θ) and their conjugate priors

Name Distribution Function Parameters Conjugate Prior
Bernoulli θy(1− θ)1−y, y = 0, 1 0 < θ < 1 Beta
Binomial m!

y!(m−y)!θ
y(1− θ)m−y,

y = 0, 1, . . . ,m
0 < θ < 1 Beta

Multinomial m!Q
s ys!

∏
s θys

s ,
ys = 0, 1, . . . ,m;∑

s ys = m

0 < θs < 1∑
s θs = 1

Dirichlet

Poisson θy

y! e
−θ, y = 0, 1, . . . θ > 0 Gamma

Beta


Γ(θ1+θ2)
Γ(θ1)Γ(θ2)y

θ1−1(1− y)θ2−1

if 0 ≤ y ≤ 1
0 Otherwise.

θ1 > 0
θ2 > 0

—

Dirichlet


Γ(
P

s θs)Q
s Γ(θs)

∏
s yθs−1

s

if 0 ≤ ys ≤ 1,
∑

s ys = 1
0 Otherwise.

θs > 0 —

Gamma

{
θ

θ1
2

Γ(θ1)y
θ1−1e−θ2y y ≥ 0

0 y < 0
θ1 > 0
θ2 > 0

—

Exponential
{

θe−θy y ≥ 0
0 y < 0

θ > 0 Gamma

Gaussian 1√
2πθ2

exp(− (y−θ1)2

2θ2
)

−∞ < y < +∞
θ2 > 0 θ1: Gaussian;

θ2: scaled inverse
chi square.
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but to be fixed in classical statistical approaches. In Bayesian modeling, the parameters
θ have a prior distribution, which expresses our uncertainty about the values of the pa-
rameters before the arrival of the data. Given the data, the uncertainty is still remained
but updated and represented as the posterior.

In Bayesian modeling, the predictive inference computes the following equation:

P (ynew|D, α) =

∫
P (ynew|θ)P (θ|D, α)dθ, (3.11)

which is an average over the posterior distribution of θ. In contrast, the classical statistical
approaches yield the following prediction process. First the parameters are estimated in
terms of some criteria, e.g. maximum-likelihood estimation:

θML = arg max
θ

P (D|θ). (3.12)

Then the learned parameters are viewed as the real ones, the prediction is directly per-
formed as P (ynew|θML). The classical statistical approaches do not consider the uncer-
tainty in estimating θ given data D.

3.1.6 Example

In this section, we discuss the Bayesian inference in a particular example. Assume that
there is a data set D = {y1, . . . , yN}. yi is a discrete variable with S possible states. yi = s
if the s’th state is taken. Let yi be exchangeable and follow multinomial distribution with
parameters θ = (θ1, θ2, . . . , θS), 0 < θs < 1 and

∑
s θs = 1. We have

P (yi = s|θ) = θs. (3.13)

In terms of the exchangeability assumption, the data can be summarized by the number
of observations at each state. Let Ns denote the number of observations with state s. We
have

∑
s Ns = N . The likelihood of the data D can be written as:

P (D|θ) =
N∏

i=1

P (yi|θ) =
S∏

s=1

θNs
s . (3.14)

To carry out the Bayesian inference, a prior need to be specified to the unknown
multinomial parameters θ. As discussed in Section 3.1.4, a conjugate prior is assumed,
i.e., the parameters follow a Dirichlet distribution with hyperparameters α∗, denoted as
θ ∼ Dir(·|α∗) with a density:

P (θ|α∗) =
Γ(α0)∏S

s=1 Γ(α∗
s)

S∏
s=1

θα∗s−1
s , (3.15)

where α∗
s is a positive real number and α0 =

∑S
s=1 α∗

s,
Γ(α0)

QS
s=1 Γ(α∗s)

is a normalization factor.

It is common to re-parameterize

αs =
α∗

s

α0

, s = 1, . . . , S, (3.16)
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and the hyperparameters become α = α0(α1, . . . , αS), where αs represents our prior belief
about the probability of the state P (y = s|α) = αs. α0 is a scale indicating how strongly
we believe that the prior distribution is true. The larger the value is, the more confidently
we can make claims for the prior distribution.

Based on the Bayes’ rule, the posterior distribution is computed as:

P (θ|D, α) =
P (D|θ)P (θ|α)∫
P (D|θ)P (θ|α)dθ

=

∏S
s=1 θα0αs+Ns−1

s∫ ∏S
s=1 θα0αs+Ns−1

s dθ1 · · · dθS

=
Γ(α0 + N)∏S

s=1 Γ(α0αs + Ns)

S∏
s=1

(θs)
α0αs+Ns−1. (3.17)

It is clear that the posterior distribution P (θ|D, α) is also Dirichlet distribution with new
parameters

αpost = (α0α1 + N1, . . . , α0αS + NS)

= (α0 + N)(
α0α1 + N1

α0 + N
, . . . ,

α0αS + NS

α0 + N
). (3.18)

The computation of posterior distribution is based on two components: the prior be-
lief represented as α and the known data represented as Ns. With an increasing size
of the data set, the prior plays a smaller and smaller role, the posterior distribution
P (θ|D, α) comes to be dominated by information from the data and converges to a point
distribution, when N → ∞, it becomes eventually P (θ|D, α) ≈ δθ∗(θ), where δθ∗(θ)
is a distribution with a point mass on θ∗ = (N1

N
, . . . , NS

N
). The Figure 3.2 shows the

posterior distributions for three data sets with different size but identical proportion
(0.3, 0.5, 0.2) at each state. The prior is a Dirichlet distribution with hyperparameters
α = 3(1

3
, 1

3
, 1

3
), the prior variances about model parameters θ are (0.0556, 0.0556, 0.0556).

The size of the first data set is 10, the number of samples at each state is (3, 5, 2). The
parameters of posterior distribution are α1

post = 13(0.3077, 0.4615, 0.2308). The poste-
rior variances about θ become (0.0152, 0.0178, 0.0127). The second data set has more
samples, N = 50. The number of samples at each state is (15, 25, 10). The parameters
of posterior distribution are α2

post = 53(0.3019, 0.4906, 0.2075). The posterior variances
are (0.0039, 0.0046, 0.0030). The third data set has the most samples, N = 100, the
number of samples at each state is (30, 50, 20). The parameters of posterior distribu-
tion are α3

post = 103(0.3010, 0.4951, 0.2039). The posterior variances are the smallest,
(0.0020, 0.0024, 0.0018). From the example, we first find that with the increasing number
of samples, the posterior distribution really approximates the point mass (0.3, 0.5, 0.2),
which is exactly the proportion of samples at each state, although we assume an unbiased
prior, i.e. the prior probability of taking each state s is equal. In addition, we also find
that the variances of the parameters decrease with the increasing data. It claims the ex-
pected result that posterior distribution becomes less variable as additional information
is available. There is a statement in Bayesian analysis that the posterior variances are on
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(a) (b) (c) (d)

Figure 3.2: The posterior distributions for three data sets with different size but iden-
tical proportion at each state. (a) Dirichlet prior with hyperparameters α = (1, 1, 1).
(b) posterior distribution given a small data set, the number of samples at each state is
(3, 5, 2). (c) posterior distribution given a middle size of data set with 50 samples. (d)
posterior distribution given a data set with 100 samples. It is clear that the posterior dis-
tribution concentrates on a point mass with increasing data. The phenomenon claims the
expected result that posterior distribution becomes less variable as additional information
is available.

average smaller than the prior variances. Of course, the statement is made in terms of
the expectations, and in particular situations the posterior variances might be similar or
even larger than the prior variances.

For a new observation ynew, the posterior predictive inference is performed

P (ynew = s|D, α) =

∫
P (ynew = s|θ)P (θ|D, α)dθ

=

∫
θsP (θ|D, α)dθ

≡ EP (θ|D,α)(θs) =
α0αs + Ns

α0 + N
. (3.19)

The prediction combines together the prior information represented as hyperparameters
α, and the data information represented as the sufficient statistics Ns. With an increasing
size of the data, the prediction is dominated by the information from data. When N →∞,
the predictive inference converges to P (ynew = s|D, α) = Ns/N .

3.2 Hierarchical Bayesian Models

3.2.1 Introduction

In Section 3.1, we introduce Bayesian modeling in which the hyperparameters, i.e. the
parameters of prior distribution, are known. However in many real-world applications,
the information is not available. Thus hierarchical Bayesian model (HB) is introduced to
solve the problem. From a broadest point of view, hierarchical model means a model with
many levels and structured in terms of a sequence of conditional distributions. Figure 3.3
shows a typical hierarchical Bayesian model. The observations yi for i = {1, . . . , N} are
i.i.d. drawn from a distribution with unknown parameters θ. The unknown parameters are
drawn from a prior distribution with unknown hyperparameters α, which themselves are
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random variables and are drawn from a distribution with parameters η. The observations
are modeled in a hierarchical structure, which has one more level than the Bayesian model
in Figure 3.1. The additional level represents the uncertainty about the unknown hyper-
parameters in the form α ∼ P (·|η), which is sometimes referred to as hyperprior. Given
the data D = {y1, . . . , yN}, the posterior distribution of the unknown hyperparameters α
can be written as

P (α|D, η) ∝ P (α|η)P (D|α)

= P (α|η)

∫
P (θ|α)P (D|θ)dθ. (3.20)

Equation 3.20 might be analytically intractable, but can be approximated via some ad-
vanced computational methods. Hierarchical model supplies a mechanism to estimate the
hyperparameters from the data. Many applied analysis approaches are developed under
hierarchical Bayesian framework. In this thesis, we focus on an extended object-oriented
hierarchical Bayesian modeling (OOHB), which is designed to analyze the parallel data
sources.

(a) (b)

Figure 3.3: (a) A typical hierarchical Bayesian model. (b) An equal model with a plate
representation.

Object-oriented hierarchical Bayesian modeling is specific for the situation where the
known multiple data sets are generated from different but related settings, therefore the
model parameters for each data set are also different but closely connected. The rela-
tion is modeled in a natural way that the parameters are independently sampled from a
common but unknown prior. There are two strategies to encode the unknown prior. The
first strategy assumes that the parameters of the prior (hyperparameters) are unknown,
but not random, which is sometimes referred to as empirical Bayesian method. It is how-
ever not full Bayesian treatment. In the second strategy, we assume that the unknown
hyperparameters are random variables, which uncertainty is represented as α ∼ P (α|η).

Let illustrate the object-oriented hierarchical Bayesian modeling with a movie exam-
ple. In a survey about the popularity of a movie, user ratings ranged from 1 to 5 are
investigated in different cities. Assume that we collect data sets D = {D1, . . . , DM} from
M cities. It is obvious that the data sets come from related but not identical scenarios.
A reasonable assumption is that the observations in data set Dj are drawn from a distri-
bution with parameters θj. The parameters θj for the setting j are distinct, but related
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to each other. Thus it is natural to assume that θj’s are generated from a common prior
with hyperparameters α, and the hyperparameters can be learned from the M data sets.
In empirical Bayesian strategy, we perform point estimation to approximate hyperparam-
eters α. In full Bayesian framework, the posterior distribution of α is computed. No
matter which strategy we employ, for a new data set DM+1 collected in a new city, the
posterior distribution of parameters θM+1 will be estimated not only based on the current
data set DM+1, but also based on the historical data sets from other cities. The historical
information is transferred via the common prior.

The object-oriented hierarchical Bayesian modeling is specially appropriate for the
data with hierarchical structure. It needs fewer parameters to model the common and
different properties in the parallel data sources. Each data source is distinguished via per-
sonalized parameters, but is closely connected with the common prior. A non-hierarchical
model may achieve the similar performance with more parameters, but may tend to cause
the problem of overfitting, i.e. the current data sets are modeled well but the prediction
to new data is inferior.

3.2.2 Exchangeability

In the object-oriented hierarchical models, the exchangeability is defined at each level of
elements. In the first level, each data point yj,i in a data set Dj is exchangeable. In the
second level, each data set Dj is exchangeable. Let ν = {ν(1), ν(2), . . . , ν(M)} denote a
permutation of the indies of data sets from 1 to M , and ς = {ς(1), ς(2), . . . , ς(Nj)} denote
a permutation of the indies of samples from 1 to Nj in data set Dj. The exchangeability
assumption yields:

P (Yj,1, Yj,2, . . . , Yj,Nj
) = P (Yj,ς(1), Yj,ς(2), . . . , Yj,ς(Nj)) (3.21a)

P (D1, D2, . . . , DM) = P (Dν(1), Dν(2), . . . , Dν(M)). (3.21b)

3.2.3 Empirical Bayesian Models

(a) (b)

Figure 3.4: (a) An empirical object-oriented hierarchical model. (b) An equal model
with a plate representation.

Figure 3.4 shows an example about empirical Bayesian framework for the object-
oriented hierarchical modeling. The principle idea is that the hyperparameters α are
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unknown, but not random. Although the empirical solution is not full Bayesian, it is
mathematically easier and includes major properties of object-oriented hierarchical mod-
eling. Assume that there are M parallel data sources D = {D1, . . . , DM}, and in data
set Dj, there are Nj observations Dj = {yj,1, . . . , yj,Nj

}. In the empirical Bayesian frame-
work, the unknown hyperparameters α are approximated via point estimation methods,
say maximum likelihood estimation:

αML = arg max
α

P (D|α)

= arg max
α

M∏
j=1

∫
P (θj|α)

Nj∏
i=1

P (yj,i|θj)dθj. (3.22)

This is an optimization problem, which can be solved via, e.g. gradient descent method
or Newton’s method. For more details about the related algorithms, please refer to
(Papalambros & Wilde, 2000). The computation of the marginal distribution P (D|α)
is straightforward if we assume the prior and likelihood distributions are of manageable
form. For example, when P (θj|α) is assumed a conjugate prior, then the integration is
analytically computed. If we have to calculate the integration numerically, the efficiency
depends on the dimension of θj, since the integration is over individual θj not all of θj’s.
Therefore, the computation is typically a low dimensional integral, we can consider, say
Gaussian quadrature method.

After getting the estimation αML of hyperparameters, the learned prior is viewed as
true prior, by which the information in the M historical data sets is propagated to a new
data set DM+1, which is generated from a setting M + 1. The property is clarified in
computation of posterior distribution of new parameters θM+1:

P (θM+1|DM+1, α
ML) ∝ P (DM+1|θM+1)P (θM+1|αML), (3.23)

which is proportional to the product of the likelihood P (DM+1|θM+1) and the prior
P (θM+1|αML). It is clear that the new model not only explains the current data set
DM+1, but also implicitly reflects the previous data sets. There is a practical problem in
the computation. If we want to estimate the posterior distribution of θj, j ≤M , then the
data set Dj will be used twice. First, it is used with other historical data sets to estimate
the hyperparameters αML. Second, it is used to estimate the distribution P (θj|Dj, α

ML)
for the parameters of interest. It might cause overestimation. Despite the problem, it
clearly makes more sense to first estimate the hyperparameters from all data sources and
then estimate θj, than to estimate θj separately.

For a new observation yj,new in the jth scenario, j = {1, . . . ,M + 1}, the predictive
distribution is computed as:

P (yj,new|Dj, α
ML) =

∫
P (yj,new|θj)P (θj|Dj, α

ML)dθj. (3.24)

3.2.4 Example

Now we discuss the computational details in empirical HB model with a particular exam-
ple. Assume that yj,i for j = {1, . . . ,M}, i = {1, . . . , Nj}, is a discrete variable with S
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possible states, and follows multinomial distribution with parameters θj, we have:

P (yj,i = s|θj) = θj,s. (3.25)

Where the multinomial parameters θj for each scenario are i.i.d. drawn from Dirichlet dis-

tribution with parameters α∗ = (α∗
1, . . . , α

∗
S), α∗

s > 0 and α0 =
∑S

s=1 α∗
s. In data sets Dj,

there are Nj,s samples with state s and
∑

s Nj,s = Nj. We compute the hyperparameters
α∗ with maximum log-likelihood estimation method:

αML = arg max
α∗

log

[ M∏
j=1

∫
P (θj|α∗)

Nj∏
i=1

P (yj,i|θj)dθj

]

= arg max
α∗

log

[ M∏
j=1

∫
Γ(α0)∏S

s=1 Γ(α∗
s)

S∏
s=1

θ
α∗s−1
j,s

S∏
s=1

θ
Nj,s

j,s dθj

]

= arg max
α∗

log

[ M∏
j=1

Γ(α0)∏S
s=1 Γ(α∗

s)

∫ S∏
s=1

θ
α∗s+Nj,s−1
j,s dθj

]

= arg max
α∗

[
M log Γ(α0)−

S∑
s=1

M log Γ(α∗
s) +

S∑
s=1

M∑
j=1

log Γ(α∗
s + Nj,s)

−
M∑

j=1

log Γ(α0 + Nj)

]
. (3.26)

It is not easy to get analytical solution to the optimization problem, but some numerical
methods can be considered, e.g. coordinate ascent algorithm. The optimization approach
was developed by D’Esopo (1959), which maximizes the target function by iteratively
optimizing in each of the coordinate directions. In particular, coordinate ascent algorithm
optimizes each α∗

s given all the others at one iteration, i.e.

0 =
∂

∂α∗
s

[
M log Γ(α0)−

S∑
s=1

M log Γ(α∗
s) +

S∑
s=1

M∑
j=1

log Γ(α∗
s + Nj,s)−

M∑
j=1

log Γ(α0 + Nj)

]
.

(3.27)

It yields:

0 = M

[
Ψ(α0)−Ψ(α∗

s)

]
+

M∑
j=1

[
Ψ(α∗

s + Nj,s)−Ψ(α0 + Nj)

]
. (3.28)

Where Ψ(·) is digamma function, and comes from the first derivative of the logarithm
of the gamma function Γ(·). It is clear that the equation can not be solved analyti-
cally. We consider numerical methods, say the Newton’s method, which is widely used
to approximate the roots of a function. The Equation 3.28 can be solved efficiently via
Newton’s method, since there is only a single variable α∗

s, i.e. the root-finding problem is



3.2. HIERARCHICAL BAYESIAN MODELS 39

one-dimensional. The Newton’s method yields the following equations to update α∗
s at

each iteration:

α∗(t+1)
s = α∗(t)

s − f(α
∗(t)
s )

f ′(α
∗(t)
s )

, (3.29)

where

f(α∗(t)
s ) = M

[
Ψ(α

(t)
0 )−Ψ(α∗(t)

s )

]
+

M∑
j=1

[
Ψ(α∗(t)

s + Nj,s)−Ψ(α
(t)
0 + Nj)

]
(3.30a)

f ′(α∗(t)
s ) = M

[
Ψ′(α

(t)
0 )−Ψ′(α∗(t)

s )

]
+

M∑
j=1

[
Ψ′(α∗(t)

s + Nj,s)−Ψ′(α
(t)
0 + Nj)

]
. (3.30b)

In summary, the unknown hyperparameters αML are optimized in the following steps:

1. Randomly initialize (α
∗(n)
1 , . . . , α

∗(n)
S ), n = 0.

2. Iterate the following steps for n = 1, 2, . . .

• Update α
∗(n)
s given (α

∗(n)
1 , . . . , α

∗(n)
s−1 , α

∗(n−1)
s , . . . , α

∗(n−1)
S ).

• Let α
∗(t)
s = α

∗(n−1)
s , t = 0

• Iteratively compute Equation 3.29 for t = 1, 2, . . ., where

α
(t)
0 = α

∗(n)
1 + · · ·+ α

∗(n)
s−1 + α∗(t)

s + α
∗(n−1)
s+1 + · · ·+ α

∗(n−1)
S (3.31)

• Stop until α
∗(t)
s reaches a stationary point, and let

α∗(n)
s = α∗(t)

s (3.32)

• s← s + 1, go to update the next α
∗(n)
s .

3. Stop until the convergence achieves.

Note that the optimized hyperparameters αML are not Bayesian computation, since the
empirical solution is not a full probability model, the uncertainty in estimating α∗ is not
considered. Despite the limitation, the empirical Bayesian estimation is a good starting
point from which a full Bayesian solution can be explored.

After obtaining the maximum log-likelihood estimation αML, it is straightforward to
compute the posterior distribution and the predictive distribution. For j = {1, . . . ,M+1},
the posterior distribution is derived as:

P (θj|Dj, α
ML) = Dir(·|αpost)

αpost = (αML
1 + Nj,1, . . . , α

ML
S + Nj,S), (3.33)
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the predictive distribution P (yj,new = s|Dj, α
ML) for a new observation is:∫

P (yj,new = s|θj)P (θj|Dj, α
ML)dθj

=

∫
θj,sP (θj|Dj, α

ML)dθj

≡ EP (θj |Dj ,αML)θj,s =
αML

s + Nj,s∑S
s=1 αML

s + Nj,s

. (3.34)

3.2.5 Hierarchical Models in Full Bayesian Framework

(a) (b)

Figure 3.5: (a) A hierarchical model in full Bayesian framework. (b) An equal model
with a plate representation.

The full Bayesian hierarchical model is shown as Figure 3.5. In contrate with the
empirical Bayesian hierarchical model, the unknown hyperparameters α are random vari-
ables, which uncertainty is represented as α ∼ P (·|η). The distribution is referred to as
hyperprior. In the full Bayesian framework, the samples are generated from the following
procedure:

α|η ∼ P (α|η).

θj|α ∼ P (θj|α) for j = {1, . . . ,M}.
yj,i|θj ∼ P (yj,i|θj) for i = {1, . . . , Nj}.

The joint probability is defined as:

P (α, {θj}Mj=1, D|η) = P (α|η)
M∏

j=1

P (θj|α)

Nj∏
i=1

P (yj,i|θj). (3.36)

In the full Bayesian model, the unknown parameters include α and θ1, . . . , θM . Based on
the Bayes’ rule, the joint posterior distribution is computed as:

P (α, {θj}Mj=1|D, η) ∝ P (α|η)
M∏

j=1

P (θj|α)

Nj∏
i=1

P (yj,i|θj). (3.37)
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The unnormalized distribution is a product of the hyperprior P (α|η), the prior P (θj|α)
and the likelihood P (yj,i|θj). In different situations, we may be interested in a specific
marginal posterior distribution, say P (α|D, η) or P (θj|D, η) for the parameters α or θj.
The marginal distribution can be obtained by integrating the joint posterior distribution
over α and θj’s:

P (α|D, η) =

∫
P (α, {θj}Mj=1|D, η)dθ1, . . . , dθM . (3.38a)

P (θj|D, η) =

∫
P (α, {θj}Mj=1|D, η)dαdθ1, . . . , dθj−1, dθj+1, . . . , dθM . (3.38b)

For a new scenario, the computation about the distribution of parameters θM+1 can be
performed in two different situations: first, no observations in the scenario are available;
second, some observations DM+1 are available. In the first situation, the distribution is
estimated in terms of prior knowledge and the data from other scenarios:

P (θM+1|D, η) ∝
∫

P (θM+1|α)P (α|D, η)dα, (3.39)

which can be viewed as the prior of the new parameters θM+1. In the second situation,
i.e., the observations DM+1 are available, the distribution of the parameters is computed
as:

P (θM+1|DM+1, D, η) ∝ P (DM+1|θM+1)

∫
P (θM+1|α)P (α|D, η)dα, (3.40)

which exploits not only the current data set DM+1, but also the historical data sets D =
{D1, . . . , DM}. In empirical Bayesian framework, the historical information is propagated
via the learned hyperparameters αML, in the full Bayesian framework, the propagation
is implemented via the marginal posterior distribution P (α|D, η). The full Bayesian
framework has an advantage over the empirical Bayesian framework since it considers the
uncertainty in estimating α. For a new observation yM+1,new in the scenario M + 1, the
predictive distribution is computed as:

P (yM+1,new|DM+1, D, η) =

∫
P (yM+1,new|θM+1)P (θM+1|DM+1, D, η)dθM+1. (3.41)

Now we discuss some computational details in the full Bayesian framework. The key
inference problem is the computation of the posterior distribution P (α, {θj}Mj=1|D, η),
unfortunately, it is analytically intractable with respect to a large number of unknown
parameters. A typical solution for the problem is the Markov chain Monte Carlo algo-
rithm, e.g., Gibbs sampling (GS) which is applicable when the variables have a small
finite set of states, or are easily sampled from their conditional distributions. We now
briefly introduce the main idea of the GS method. Suppose the whole of variables to be
sampled are ξ, we divide them into m subsets ξ = {ξ1, . . . ξm}. In each iteration, the
Gibbs sampler draws each subset of variables conditioned on all others. The procedure
at the iteration t is executed as:
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• Sample ξ
(t)
1 conditioned on ξ

(t−1)
2 , ξ

(t−1)
3 ,..., ξ

(t−1)
m .

• Sample ξ
(t)
2 conditioned on ξ

(t)
1 , ξ

(t−1)
3 ,..., ξ

(t−1)
m .

• ...

• Sample ξ
(t)
m conditioned on ξ

(t)
1 , ξ

(t)
2 ,..., ξ

(t)
m−1.

The above steps are performed W + w iterations. The first w iterations are discarded
as burn-in period. The last W members of the sequence are collected and are averaged
over in order to get the desired distributions. For more details about MCMC algorithms,
please refer to (Andrieu et al., 2003; Gilks et al., 1995). In the full-Bayesian hierarchical
model, the Gibbs sampler yields the following steps:

1. Draw the hyperparameters α from the distribution P (α|{θj}Mj=1, η).

2. Draw the i.i.d. parameters θj’s from P (θj|Dj, α).

3. If the predictive distribution about a new observation yj,new is desired, draw yj,new

from the distribution P (yj,new|θj).

After the procedure converges, the desired distributions, say P (α|D, η) and P (yj,new|D, η),
can be approximated as:

P (α|D, η) ≈ 1

W

W+w∑
t=w+1

P (α(t)|{θ(t−1)
j }Mj=1, η). (3.42)

P (yj,new|D, η) ≈


0, yj,new < ymin,
N`

W
, y` < yj,new < y`+1,

0, yj,new > ymax.
(3.43)

Where ymin and ymax are the minimum and maximum in the sequence of samples y
(t)
j,new.

N` is the number of samples in the interval [y` y`+1].

3.3 Summary

Bayesian analysis sets up a full probability model to fit a set of observations and to sum-
marize the results about the model parameters or other unobserved quantities. What
distinguishes Bayesian analysis from other statistic analysis is that the unknown param-
eters are represented as random variables. The advantage is that Bayesian analysis can
explicitly use the probability to quantify uncertainty in inferences. Estimation or pre-
diction is performed in terms of both prior knowledge and known data. More details
about Bayesian analysis can be obtained in (Berry, 1996; Congdon, 2001; Congdon, 2003;
Gelman et al., 2004).

Hierarchical Bayesian (HB) modeling is designed for the situations where the hyper-
parameters are unknown. An early thorough introduction to HB modeling is provided by
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Good (1965). Deely and Lindley (1981) extended empirical Bayesian framework to full
Bayesian framework. HB is widely applied to the meta analysis in machine learning area.

In Bayesian analysis, for computational efficiency, we often assume a conjugate prior,
i.e. the prior and the posterior distributions are of the same mathematic form. The ad-
vantage is that the assumption reduces the function approximation to parameter approx-
imation in computing the posterior distribution. The constraint is that the mathematic
form of the prior distribution is expected to be flexible enough not only to represent
one’s vague prior belief, but also to represent the learned posterior. However, a para-
metric model is often too strict to come up the expectation. To solve the limitation,
nonparametric Bayesian modeling is considered, which will be discussed in Chapter 4.
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Chapter 4

Nonparametric Hierarchical
Bayesian Models

4.1 Introduction

The models in Chapter 3 belong to the parametric Bayesian models, since they are strongly
dependent on the parametric assumption. However, the assumption is not always practi-
cal. For example, in more cases than not, it is not easy to known the mathematic form
of the likelihood distribution in advance, thus it is impossible to built a model with a
finite set of parameters. Furthermore, if a wrong mathematic form is specified to the
likelihood distribution, then the estimation will be completely divergent from the real
situation, since the inference methods in the parametric models are closely connected
with the specific functional forms of the distributions, if the functional forms change,
then the methods with good effect in the original models might lead to inferior result. To
remove the constraints, the nonparametric Bayesian models are developed to learn the
functions of interest directly from the data, e.g. the probability distribution in the task
of density estimation. The term nonparametric does not mean there are no parameters
in the models, but that the number and properties of the parameters are flexible and not
fixed in advance. Nonparametric models are therefore also called distribution free. The
meanings of the two terms are slightly different, but are often used interchangeably. There
are different definitions for the nonparametric Bayesian models. For example, Bernardo
and Smith (1994) defined nonparametric Bayesian models as probability models with in-
finite parameters. Mueller and Quintana (2004) defined nonparametric Bayesian models
as probability models on function spaces. The two definitions are equivalent, but focus
on the different perspectives.

Many nonparametric Bayesian models are developed for various statistical problems,
for example, density estimation, regression, survival time analysis and so on. In statis-
tic machine learning, the well-known nonparametric Bayesian models include Dirichlet
process and Gaussian process. The term process means that the degrees of freedom of
the model are infinite. Generally, Dirichlet process is used in density estimation, cluster-
ing; Gaussian process is used in regression, classification, and so on. In this chapter, we
introduce the application of Dirichlet process (DP) in the hierarchical Bayesian modeling.

45
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(a) (b)

(c) (d)

Figure 4.1: (a) A set of N observations, which are i.i.d. drawn from a Gaussian dis-
tribution with unknown mean µ and known covariance matrix Σ. (b) A conjugate prior
distribution of the unknown parameter µ. (c) The learned posterior distribution of µ.
So far the Bayesian inference is performed in an ideal situation where the data really
follows Gaussian distribution as we assume. However, in many cases, the observations are
not distributed as assumed. (d) The data is an arbitrary distribution, which can not be
represented by a Gaussian with any parameters. Then prediction based on the Gaussian
model will be divergent from the real situation.

4.2 Model Description

In this section, we will first introduce application of the nonparametric framework on
Bayesian models and then extend it to the hierarchical Bayesian (HB) models. Assume
that there are N observations D = {y1, y2, . . . , yN}. Each observation yi is a continuous
two-dimensional random variable, and the two dimensions are independent with each
other, i.e. the covariance is 0. In Bayesian modeling, we assume that the observations
are i.i.d. drawn from a multivariate Gaussian distribution with mean µ = (µ1, µ2) and

covariance matrix Σ =

[
σ2

1 0
0 σ2

2

]
. To simplify the model, we further assume that Σ

is known, but µ is unknown. As usual we assume a conjugate prior, i.e. µ is drawn
from a multivariate Gaussian distribution, µ ∼ N(µprior, Σprior). The hyperparameters
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µprior = (µprior,1, µprior,2) and Σprior =

[
σ2

prior,1 0
0 σ2

prior,2

]
are mean and covariance matrix

of the prior distribution, respectively. Given the Bayesian model and the observations D,
the computation of the posterior distribution is straightforward, which is still a Gaussian

distribution with parameters µpost = (µpost,1, µpost,2) and Σpost =

[
σ2

post,1 0
0 σ2

post,2

]
, where

µpost,1 =

µprior,1

σ2
prior,1

+
PN

i=1 y1
i

σ2
1

1
σ2

prior,1
+ N

σ2
1

; σ2
post,1 = (

1

σ2
prior,1

+
N

σ2
1

)−1,

µpost,2 and σ2
post,2 are computed in an equivalent way. Figure 4.1(a) shows the known

data, which is distributed as Gaussian. The prior and the posterior distributions of µ are
shown as Figure 4.1(b) and (c). So far the Bayesian inference is performed in an ideal
situation where the data really follows Gaussian distribution as we assume. However, in
many cases, the observations yi’s are not exactly Gaussian, but an arbitrary distribution,
e.g. a distribution shown as Figure 4.1(d), which can not be approximated by a Gaus-
sian distribution with any parameters. To solve this problem, it is nature to embed the
Bayesian model in a nonparametric framework, i.e., consider the likelihood distribution
itself, rather than the parameters, as a random variable. That means we do not specify the
functional form of the likelihood distribution in advance. Therefore, what we learn from
the data is the probability distribution itself, rather than the parameters. Note, that the
prior distribution in the nonparametric model is not a distribution over parameter space,
but a distribution over a set of distributions. Furthermore, the data in the nonparametric
model can be any arbitrary distribution without the limitation about scope and type. Fig-
ure 4.2(b) shows the nonparametric model. In contract with the parametric model shown
as Figure 4.2(a), the likelihood is an arbitrary distribution G drawn from P (G), rather
than a distribution with a specific mathematic form and unknown parameters. From the
figure, it is clear how the samples are generated in the nonparametric Bayesian model.
Given a prior P (G), specifying the probability of the likelihood, a sample distribution G
is drawn and then the samples yi are i.i.d. drawn from G.

Now we introduce how to apply the nonparametric framework to the hierarchical
Bayesian (HB) model. In HB model, the common prior of the parameters is of central
importance. It is expected to be flexible enough to represent the true situation. However,
in many cases, a parametric prior is often too strict to meet the expectation. Therefore
we consider to embed the hierarchical Bayesian modeling in the nonparametric frame-
work, i.e. the unknown prior G is a sample distribution drawn from a probability model
P (G), such that G can be of any mathematic form to truthfully represent the learned
knowledge. Assume that there are M parallel data sets D = {D1, D2, . . . , DM}, and in
the data set Dj, there are Nj observations Dj = {yj,1, yj,2, . . . , yj,Nj

}. Assume that the
likelihood distribution of each data set Dj is of the same functional form but distinct pa-
rameters θj. The θj’s share a common prior. Figure 4.3 shows a parametric HB model and
a nonparametric HB model for the example. What distinguishes nonparametric model
from parametric model is that in the nonparametric model the prior can be any arbi-
trary distribution, not a distribution with specific form. The generative process of the
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(a) (b) (c)

Figure 4.2: (a) A parametric Bayesian model for D = {y1, y2, . . . , yN}. The observations
are i.i.d. drawn from a Gaussian distribution with parameters µ and Σ. We assume Σ is
known but µ is unknown and follows a Gaussian distribution with hyperparameters µprior

and Σprior. (b) A nonparametric Bayesian model in the same setting. In contract with
the parametric model, the likelihood is an arbitrary distribution G drawn from P (G),
rather than a distribution with specific mathematic form and unknown parameters. (c)
The equal model to (b).

nonparametric HB model is as follows:

G|P (G) ∼ P (G).

θj|G ∼ G(θj) for j = {1, . . . ,M}.
yj,i|θj ∼ P (yj,i|θj) for i = {1, . . . , Nj}.

Of central importance in nonparametric framework are the unknown distribution G
and its probability model P (G). Generally G is called random probability distribution
(RPD). Ferguson (1973) and Antoniak (1974) stated two desirable properties of P (G).
First, it should be largely supported, i.e. P (G) is expected to cover most of the probability
distributions on a given sample space. Second, the posterior inference should be compu-
tationally manageable, since the integral on the infinite function space is difficult. So far,
many probabilistic models about P (G) have been developed, including Dirichlet Process
(DP), invariant DP, Pólya Trees, Bernstern Polynomials, logistic normal process and so
on, in which DP is commonly used in the area of statistic machine learning. Dirichlet
process is generally denoted as DP(α0, G0), where α0 and G0 are the parameters. The
strategy, replacing the parametric prior distribution with a sample from DP, is called
Dirichlet enhancement (Escobar & West, 1998), which extends the flexibility of the para-
metric Bayesian modeling by encoding the additional uncertainty about the functional
form of the prior. As an important result, Dirichlet enhanced models not only represent
one’s prior knowledge via the parameters of DP, i.e. α0 and G0, but also make the prior G
(i.e. a sample distribution from DP ) as complex as necessary to model the real situation.
In the next section, we introduce some detailed information about DP.
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(a) (b) (c)

Figure 4.3: (a) A parametric hierarchical Bayesian (HB) model. Assume that there
are M parallel data sets D = {D1, D2, . . . , DM}, and in Dj, there are Nj observations
Dj = {yj,1, yj,2, . . . , yj,Nj

}. (b) A nonparametric HB model in the same setting. The
difference is that in the nonparametric model the prior can be any arbitrary distribution
as complex as necessary, rather than a distribution with assumed form. (c) The equal
model to (b).

4.3 Dirichlet Process

Dirichlet process, introduced by Ferguson (1973), defines a prior for random probabil-
ity distributions. It can be viewed as an extension of Dirichlet distribution from finite
dimensions to infinite dimensions.

4.3.1 Dirichlet Distribution

Dirichlet distribution is known as a conjugate prior of a multinomial distribution. It is
closely connected with Gamma distribution. Assume that each dimension of a random
vector ν = (ν1, . . . , νK) is i.i.d. drawn from a Gamma distribution with a shape parameter
αk and a scale parameter 1, i.e. νk ∼ Gamma(αk, 1). Then the random vector θ =
(θ1, . . . , θK), where

θk =
νk∑K

k=1 νk

, (4.2)

follows Dirichlet distribution with parameters α = (α1, . . . , αK). Let α0 =
∑K

k=1 αk, the
Dirichlet distribution is defined as:

P (θ1, . . . , θK |α) =
Γ(α0)∏K

k=1 Γ(αk)

K∏
k=1

θαk−1
k . (4.3)

Note, that θ is a K − 1 dimensional random vector, since
∑K

k=1 θk = 1. When K = 2, a
Dirichlet distribution reduces to a Beta distribution. Some major properties of Dirichlet
distribution are listed as follows:

1. Let y1, . . . , yN be discrete samples with S states. yi is i.i.d. drawn from a multi-
nomial distribution with parameters θ, which prior is a Dirichlet distribution with
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Figure 4.4: An example partition {B1, . . . , B6} on a 2-dimensional continuous space B.
Let G0, G be a specific distribution and a random distribution on B. If G ∼ DP(α0, G0),
then the random vector (G(B1), . . . , G(B6)) is drawn from a Dirichlet distribution with
parameters (α0G0(B1), . . . , α0G0(B6)).

hyperparameters α. Then posterior distribution of θ given the N samples is still
Dirichlet with parameters αpost = (α1 + N1, . . . , αS + NS), where Ns is the number
of samples with state s.

2. Let random vector θ = (θ1, . . . , θK) follow Dirichlet distribution with parameters α.
I1, . . . , IL denote L integers, and 0 < I1 < · · · < IL = K, then the random vec-
tor θ′ = (

∑I1
k=1 θk,

∑I2
k=I1+1 θk, . . . ,

∑IL

k=IL−1+1 θk) is still Dirichlet with parameters

(
∑I1

k=1 αk,
∑I2

k=I1+1 αk, . . . ,
∑IL

k=IL−1+1 αk).

3. If a random vector θ = (θ1, . . . , θK) follows a Dirichlet distribution, then marginal
distribution of θk is Beta(αk, α0 − αk), and the expectation of θk is E(θk) = αk/α0.

4.3.2 Basic Properties of DP

Dirichlet process is a distribution on a set of distributions. DP is indexed by two parame-
ters: the base distribution G0 and concentration parameter α0. Let θ be random variables.
G0 is a probability distribution over the space of θ. α0 is a positive real-value scalar. A
random measure G is distributed according to a Dirichlet process with parameters G0

and α0, if for all positive integer K and any partition {B1, . . . , BK} on the space of θ, the
random probabilities (G(B1), . . . , G(BK)) follows a Dirichlet distribution:

(G(B1), . . . , G(BK)) ∼ Dir(α0G0(B1), . . . , α0G0(BK)). (4.4)

To make the definition easy to understand, we illustrate with a simple example. Assume
that there is a 2-dimensional continuous space B. G0 is a Gaussian distribution over
B. G is a random probability distribution on B and is drawn from a Dirichlet process,
G ∼ DP(α0, G0). For any partition of the space B, e.g. a partition {B1, . . . , B6} as
Figure 4.4, we have G0(B1) + · · · + G0(B6) = 1 and G(B1) + · · · + G(B6) = 1. Note,
that the vector (G(B1), . . . , G(B6)) is random due to the randomness of the distribution
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G. Since G is drawn from DP(α0, G0), the random vector (G(B1), . . . , G(B6)) follows a
Dirichlet distribution with parameters (α0G0(B1), . . . , α0G0(B6)):

(G(B1), . . . , G(B6)) ∼ Dir(α0G0(B1), . . . , α0G0(B6)).

The two parameters of DP can be explained intuitively. G0 represents one’s prior belief,
α0 measures the strength of one’s belief in G0. For large values of α0, a sampled G is
likely to be close to G0. For small values of α0, a sampled G is likely to put most of
its probability mass on just a few atoms. Walker et al. (1999) provided more detailed
discussion about the two parameters.

The properties of DP were explored by Ferguson (1973). Here we only introduce a
fundamental theorem about posterior updating, which is important for DP inference. The
theorem is comparable with the posterior computation of Dirichlet distribution.

Theorem 4.1 Given a Dirichlet process DP(α0, G0) and a set of samples θ1, . . . , θN . The
posterior Dirichlet process is DP(α0 + N, Gpost

0 ), where Gpost
0 ∝ G0 +

∑N
i=1 δθi

, and δθi
is

a point mass at θi.

4.3.3 Pólya Urn Representation

According to the definition of DP, introduced in last section, it is difficult to draw the
random probability distribution G directly, since the probability function space is infinite.
To remove the computational constraint, Blackwell and MacQueen (1973) introduced the
Pólya urn representation. Intuitively, the urn process is performed as follows. Assume
that there are many balls with different colors in an urn. One draws balls with probability
distribution G0. If a ball is drawn, one puts back the ball and an additional ball with the
same color, thus after a sequence of draws, balls with a color already encountered become
more likely to be drawn again. The essential property of urn process is that if a state is
sampled previously, the probability that the state is sampled again is increased. Note,
that there is no need to draw G directly. Formally, the urn process is defined as follows:

1. The first sample θ1 is drawn from the base distribution G0.

2. Conditioned on previous N − 1 samples θ1, . . . , θN−1, the sample θN is drawn from
the distribution:

P (θN |θ1, . . . , θN−1, α0, G0) =
α0G0 +

∑N−1
i=1 δθi

α0 + N − 1
, (4.5)

where δθi
is a distribution with a point mass on θi. The distribution can be viewed as

a mixed distribution (in analogy to a discrete or continuous distribution). It consists
of one continuous component G0 and N − 1 discrete components δθi

. At the points
{θ1, θ2, . . . , θN−1}, the distribution is discrete with probability 1

α0+N−1
, on the left space,

the distribution is continuous with density G0. Assume that in the sequence of N − 1
samples, there are K ≤ N − 1 distinct values {θ∗1, . . . , θ∗K}. Let Nk denote the number of
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(a) (b)

Figure 4.5: (a) Graphic representation of DP, where the random probability distribution
G is explicitly drawn from the DP. (b) Graphic representation of Pólya Urn process of
DP, where G is integrated out.

times the value θ∗k occurs in the sequence and
∑

k Nk = N − 1. The probability of θN is
simplified as:

P (θN |θ1, . . . , θN−1, α0, G0) =

{ Nk

α0+N−1
, if θN = θ∗k

α0

α0+N−1
, else.

(4.6)

In particular, with probability Nk

α0+N−1
, the new sample takes on an existing value θ∗k; with

probability α0

α0+N−1
, the new sample draws a new value from the distribution G0. Fig-

ure 4.5 shows the Pólya Urn process in a graphic representation, note that in Figure 4.5(b)
G is integrated out.

In terms of Equation 4.6, the effect of the concentration parameter α0 is clarified.
The larger α0 is, the more likely new atoms are drawn. In the limiting case α0 → ∞,
the distribution P (θN |θ1, . . . , θN−1, α0, G0) approaches the base distribution G0. As α0

is very small, the distribution P (θN |θ1, . . . , θN−1, α0, G0) is largely based on existing θ∗k.
Figure 4.6 shows the samples drawn from DPs with the same base distribution G0 but
different concentration parameter α0. Figure 4.6(e) is the histogram of the samples drawn
from a DP with α0 = 100000, which closely approximates to G0 shown as Figure 4.6(f).

4.3.4 Other Representations

Besides the urn representation, there are some other representations for Dirichlet process,
including Chinese restaurant process introduced by Aldous (1985) and stick breaking
construction introduced by Sethuraman (1994). The two representations focus on the
discreteness property of DP and are often applied to the mixture models, more details can
be found in Part III. Of course, the two representations are also applicable in hierarchical
models, since they are just alternative methods to draw samples from DP.

4.4 Inference

The key inferential problem in the Dirichlet enhanced HB model is to compute the
joint posterior distribution of the unknown variables given the parallel data sets D =
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: The 100000 samples drawn from DPs with the same base distribution G0

and different concentration parameter α0. G0 is a Gaussian distribution with mean 0
and standard deviation 1.5. More atoms are drawn with increasing α0: (a) α0 = 10 (b)
α0 = 100 (c) α0 = 1000 (d) α0 = 10000. (e) The histogram of the samples drawn from
a DP with α0 = 100000. (f) The base distribution G0. It is obvious that with a large
concentration parameter α0, the samples are distributed closely as G0.
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{D1, . . . , DM}. As discussed in Section 4.2, the unknown variables in the model include:
the prior G and the parameters {θ1, . . . , θM}, one for each data set. Thus the posterior
distribution is defined as:

P (G, θ1, . . . , θM |D, α0, G0) =
P (G|α0, G0)

∏M
j=1 P (θj|G)P (Dj|θj)

P (D|α0, G0)
. (4.7)

It is clear that the equation is intractable, since direct computation of hyperprior P (G|α0, G0)
is impossible. To solve the problem, we consider to integrate out G via Pólya urn repre-
sentation, such that Equation 4.7 is simplified as:

P (θ1, . . . , θM |D, α0, G0) =

∏M
j P (θj|α0, G0, {θj′}j′<j)P (Dj|θj)

P (D|α0, G0)

=
M∏
j

α0G0(θj) +
∑

j′<j δθj′
(θj)

(α0 + j − 1)P (D|α0, G0)
P (Dj|θj). (4.8)

The computation in Equation 4.8 is still analytically intractable. A typical solution for
the problem is the Markov chain Monte Carlo method, e.g. (West et al., 1994; Escobar
& West, 1998). For computational efficiency, an alternative solution is introduced by
Tresp and Yu (2004), where an approximation to P (θj|α0, G0, {θj′}j′<j) is computed via
variational inference method. Other solutions include sequential importance sampling-
based methods, predictive recursion, and so on. In this chapter, we focus on Gibbs
sampling and variational approximation algorithms. More details about other methods
please refer to, e.g., (Liu, 1996; MacEachern et al., 1999; Newton & Zhang, 1999; Quintana
& Newton, 2000).

Additionally, Equation 4.7 can also be reduced via other representations of DP, e.g. stick
breaking construction and Chinese restaurant process. The corresponding inference meth-
ods please refer to, e.g., (MacEachern, 1994; Escobar & West, 1995; Ishwaran & James,
2001; Gelfand & Kottas, 2002; Blei & Jordan, 2005).

4.4.1 Inference with Gibbs Sampling

Traditionally, posterior inference in nonparametric Bayesian models is performed via
Markov Chain Monte Carlo (MCMC) methods. There are many advanced approaches
proposed, such as (Escobar & West, 1995; Escobar & West, 1998; Tresp & Yu, 2004).
The main challenge in the sampling process is how to sample the prior G directly from
P (G|{θj}Mj=1, α0, G0). Although there is Theorem 4.1 about posterior updating of DP, the
sampling is still not easy to perform. However, if integrating out the random probabil-
ity distribution G as shown in Equation 4.8, the sampling process is simplified and the
variables to be sampled are only parameters {θ1, . . . , θM}. If θi can be easily sampled
from P (θi|G0), we appeal to Gibbs sampling (GS) method to approximate the posterior
of interest. In particular, at each iteration the GS method draws each θj conditioned on
the samples of other parameters {θj′}j′ 6=j, the distribution P (θj|{θj′}j′ 6=j, Dj, α0, G0) is
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proportional to:

P (Dj|θj)

[
α0G0(θj) +

∑
j′ 6=j

δθj′

]
. (4.9)

The equation is the product of the prior distribution P (θj|{θj′}j′ 6=j, α0, G0) represented
as urn process and the likelihood distribution P (Dj|θj). Particularly, the parameter θj is
assigned:

1. An existing value θj′ with probability proportional to

P (Dj|θj′) (4.10)

2. A new value with probability proportional to

α0

∫
G0(θj)P (Dj|θj)dθj. (4.11)

The new value is drawn from the distribution

1

C
G0(θj)P (Dj|θj), (4.12)

where C =
∫

G0(θj)P (Dj|θj)dθj is a normalization constant.

To perform the GS method, the integration
∫

G0(θj)P (Dj|θj)dθj needs to be computed.
It is tractable if P (Dj|θj) and G0(θj) are assumed to be of manageable form. For ex-
ample, we assume that P (Dj|θj) is a distribution in the exponential family and G0(θj)
is conjugated with P (Dj|θj). The assumption is widely used in Bayesian modeling. In
the nonparametric hierarchical models, the assumption is not so strong, since G0 is just a
parameter of Dirichlet process, even if the mathematic form of G0 is specified, the prior G
can be arbitrary distribution as complex as necessary. If P (Dj|θj) and G0(θj) are not of
manageable form, the integration might be difficult. A possible strategy to calculate the
integration

∫
G0(θj)P (Dj|θj)dθj is numerical method. Since there is only one variable θj,

the dimension of the integral is the dimension of θj. Therefore, it is potentially a low di-
mensional integral problem and can be performed efficiently via e.g. Gaussian quadrature
(GQ) method. For more details about GQ method, please refer to (Naylor & Smith, 1982;
Evans & Swartz, 1995). In the case that the integral can not be calculated efficiently, we
consider some alternative sampling algorithms, which perform MCMC without computing
the integral, e.g. (MacEachern & Mueller, 1998).

In summary, the unknown parameters {θ1, . . . , θM} are sampled in the following steps:

1. For each data set Dj, initialize θ
(t)
j from G0, t = 0.

2. Iterate the following steps for t = 1, 2, . . ..

• Update θ
(t)
j given {θ(t)

1 , . . . , θ
(t)
j−1, θ

(t−1)
j+1 , . . . , θ

(t−1)
M }.
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• Assign θ
(t)
j an existing value θ

(t−1)
j′ with probability proportional to

P (Dj|θ(t−1)
j′ ) (4.13)

• Instead, a new value is generated with probability proportional to

α0

∫
G0(θ

(t)
j )P (Dj|θ(t)

j )dθ
(t)
j . (4.14)

The new value is drawn from the distribution 1
C
G0(θ

(t)
j )P (Dj|θ(t)

j ), where C =∫
G0(θ

(t)
j )P (Dj|θ(t)

j )dθ
(t)
j is a normalization constant. Note, that the sampling

process might be cheaply implemented, since integration in Equation 4.14 and
normalization constant C are not changeable between iterations, thus we only
compute the value once for each data set Dj.

• j ← j + 1, go to update the next θ
(t)
j .

3. Stop until a stationary point reaches.

4.4.2 Inference with Variational Method

MCMC methods are successful solutions to approximate a conditional probability distri-
bution. Such methods are accurate, however there are two main limitations. First, the
efficiency can be low, especially when the data are large-scale, multivariate or highly-
correlated. Second, it is not easy to diagnose the convergence. To remove these con-
straints, variational inference methods are considered. There are two main classes of
variational algorithms: sequential and block. In the chapter, we focus on the block vari-
ational approaches, which are particularly suitable in the situations where the subsets of
variables are amenable to exact inference. Suppose the distribution of interest is P (ξ)
and the exact computation of P (ξ) is intractable. Thus we expect to find a distribution
q(ξ), referred to as a variational distribution, to approximate P (ξ) as close as possible.
Assume q(ξ) can be any distribution over the domain of ξ. The difference between q(ξ)
and P (ξ) can be measured via Kullback-Leibler (KL) divergence:

KL(q(ξ)||P (ξ)) =
∑

ξ

q(ξ) log q(ξ)−
∑

ξ

q(ξ) log P (ξ), (4.15)

which is sometimes referred to as variational free energy. The minimum is 0 when P (ξ) =
q(ξ). The larger the divergence is, the more different the two distributions are. Thus the
probabilistic inference problem (i.e. computing P (ξ)) is converted into an optimization
problem: minimize the KL divergence with respect to the variational distribution. It
is clear that the optimization problem is not easy to solve. Many efforts are made to
find suitable forms of q(ξ) to make the problem computationally tractable. For more
details about variational inference methods, please refer to (Jordan et al., 1998). In the
nonparametric HB model, Yu et al. (2004) and Tresp and Yu (2004) proposed a variational
method to approximate the posterior distribution of {θj}Mj=1 in Equation 4.8.
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For computational efficiency, a family of fully-factorized distributions are assumed,
q(θ1, . . . , θM) =

∏M
j=1 q(θj), and for each θj, the variational distribution is defined as:

q(θj) =
M∑

k=1

ωj,kδθML
k

, j = 1, . . . ,M ;

θML
k = arg max

θk

P (Dk|θk). (4.16)

Where θML
k denotes maximum-likelihood estimation of the parameters of the data set Dk.

It is obvious that q(θj) is a discrete distribution at points {θML
1 , . . . , θML

M }, and θj equals

θML
k with probability ωj,k, i.e. P (θj = θML

k ) = ωj,k and
∑M

k=1 ωj,k = 1. The KL divergence
between the variational distribution and real distribution is now written as:

KL(q||P ) = Eq[log
M∏

j=1

q(θj)]− Eq[log P ({Dj, θj}Mj=1|α0, G0)]

+ log P ({Dj}Mj=1|α0, G0). (4.17)

The posterior inference problem is now converted to minimize the KL divergence with
respect to the variational parameters ωj,k, j, k = {1, . . . ,M}. Permuting the above equa-
tion, we get an inequality about the log-likelihood of the data:

log P ({Dj}Mj=1|α0, G0)

= Eq[log P ({Dj, θj}Mj=1|α0, G0)]− Eq[log
M∏

j=1

q(θj)] + KL(q||P )

≥ Eq[log P ({Dj, θj}Mj=1|α0, G0)]− Eq[log
M∏

j=1

q(θj)] (4.18)

The right terms define a lower bound of the log-likelihood of the data. The difference
between the lower bound and the log-likelihood is the KL divergence. Alternatively, the
lower bound can also be derived via the Jensen’s inequality :

log P ({Dj}Mj=1|α0, G0)

= log
∑

θ1,...,θM

P ({Dj, θj}Mj=1|α0, G0)

= log
∑

θ1,...,θM

∏M
j=1 q(θj)P ({Dj, θj}Mj=1|α0, G0)∏M

j=1 q(θj)

≥
∑

θ1,...,θM

M∏
j=1

q(θj) log P ({Dj, θj}Mj=1|α0, G0)−
∑

θ1,...,θM

M∏
j=1

q(θj) log
M∏

j=1

q(θj)

= Eq

[
log P ({Dj, θj}Mj=1|α0, G0)

]
− Eq

[
log

M∏
j=1

q(θj)
]

(4.19)
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It is clear that the larger the lower bound is, the smaller the KL divergence is. Thus
the posterior inference is now converted to maximize the lower bound with respect to
the variational parameters. Many optimization approaches can be considered to solve the
problem, e.g. the coordinate ascent approach mentioned in Section 3.2.4. In particular,
the coordinate ascent algorithm optimizes each variational variable ωj,k given all the others
at one iteration. Note, that the constraint, i.e.,

∑
k ωj,k = 1 for j = {1, . . . ,M}, should

be satisfied. The coordinate ascent algorithm yields the following equation:

0 =
∂

∂ωj,k

Eq

[
log P ({Dj, θj}Mj=1|α0, G0)

]
− Eq

[
log

M∏
j=1

q(θj)
]
+ λ[

M∑
k=1

ωj,k − 1]

=
M∑

j=1

Eq[log P (Dj|θj)] +
M∑

j=1

Eq[log P (θj|{θj′}j′ 6=j, α0, G0)]

−
M∑

j=1

Eq[log q(θj)] + λ[
M∑

k=1

ωj,k − 1]. (4.20)

Where the additional term λ[
∑

k ωj,k−1] is the Lagrange multiplier λ with the constraint∑
k ωj,k = 1. Since the variational distributions q(θj) are discrete distributions at points

{θML
1 , . . . , θML

M }, the expectations in Equation 4.20 are sum over the M points. We have:

Eq[log P (θj|{θj′}j′ 6=j, α0, G0)] =
M∑

k=1

ωj,k log P (θj = θML
k |{θj′}j′ 6=j, α0, G0)

Eq[log P (Dj|θj)] =
M∑

k=1

ωj,k log P (Dj|θML
k )]

Eq[log q(θj)] =
M∑

k=1

ωj,k log ωj,k. (4.21)

Now we compute Equation 4.20 and obtain the updating expression for the variational
parameter ωj,k:

ωj,k ∝ P (Dj|θML
k )P (θj = θML

k |{θj′}j′ 6=j, α0, G0), (4.22)

where

P (θj = θML
k |{θj′}j′ 6=j, α0, G0) =

α0

α0 + M − 1
G0 +

∑
j′ 6=j

1

α0 + M − 1
δθj′

. (4.23)

Note again, that the assumed variational distributions are discrete, θj′ can only takes the
values {θML

k }Mk=1, thus:

P (θj|{θj′}j′ 6=j, α0, G0) =
α0

α0 + M − 1
G0 +

M∑
k=1

ωk

α0 + M − 1
δθML

k
, (4.24)
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where ωk =
∑

j′ 6=j ωj′,k.
In summary, the variational-inference coordinate ascent algorithm yields the updating

steps as follows:

1. For each data set Dj, compute θML
j and P (Dj|θML

k ) for j, k = {1, . . . ,M}.

2. Initialize ω
(0)
j,k with constraints

∑
k ωj,k = 1.

3. Iterate the following steps for t = 1, 2, . . ..

• Update ω
(t)
j,k given {ω(t)

1,: , . . . , ω
(t)
j−1,:, ω

(t−1)
j+1,: , . . . , ω

(t−1)
M,: }.

ω
(t)
j,k ∝ P (Dj|θML

k )

(
α0

α0 + M − 1
G0 +

M∑
k=1

ωk

α0 + M − 1
δθML

k

)
, (4.25)

where ωk = ω
(t)
1,k + . . .+ω

(t)
j−1,k +ω

(t−1)
j+1,k + . . .+ω

(t−1)
M,k . Note, that the computation

might be implemented cheaply, since many terms, such as P (Dj|θML
k ) for each

j and k, does not change in iterations.

• k ← k + 1, go to update the next ω
(t)
j,k. When all variational parameters about

θj are updated, j ← j + 1, and go to update for the next θj.

4. Stop until a stationary point reaches.

In practical computation, we need to choose appropriate starting values for the variational
parameters, since poor initialization points may lead to local extreme that yields poor
bound. To solve the problem, we can run the method several times and choose the final
result with the best bound.

4.5 Predictive Inference

In the section, we introduce how to compute the predictive distribution P (yj,new|D, α0, G0)
for a new observation yj,new based on the results of the two inference methods.

In Gibbs sampling framework, unknown parameters θj’s are drawn for j = {1, . . . ,M}
at each iteration. When the MCMC sequence converges, the predictive distribution is
approximated. In particular, the first w members of the sequence are discarded as burn-
in period, the predictive distribution is computed as the average over the last W members
of the sequence:

P (yj,new|D, α0, G0) ≈
1

W

W+w∑
t=w+1

P (yj,new|θ(t)
j ) (4.26)

In variational inference framework, we obtain optimized variational parameters when
the updating process reaches a stationary point. The corresponding variational distribu-
tion is a close approximation to the posterior of the unobservable variables {θ1, . . . , θM},
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over which the predictive distribution of yj,new is estimated as:

P (yj,new|D, α0, G0) ≈
∫

P (yj,new|θj)q(θj)dθj

=
M∑

k=1

ωj,kP (yj,new|θML
k ). (4.27)

4.6 Summary

Nonparametric Bayesian modeling extends the flexibility of the parametric Bayesian mod-
eling by encoding the additional uncertainty about the functional forms of the distribu-
tions. It makes more sense to view the distribution of interest itself as random variable
and then to learn it directly from the data, than to only learn the parameters of the
distribution with specified functional form.

Dirichlet enhanced modeling embeds the hierarchical models in nonparametric Bayesian
framework (known as Dirichlet process), so that the common prior of the parallel data
sources can be flexible enough to truthfully represent the learned knowledge. The model
not only represents one’s prior knowledge via the parameters of DP, but also makes the
prior (i.e. a sample distribution from DP) as complex as necessary to model the real
situation. The other applications of nonparametric Bayesian models please refer to (Dey
et al., 1998; Mueller & Quintana, 2004; Tresp & Yu, 2004; Tresp, 2006; Jordan, 2005).

In the next chapter, we discuss the applications of nonparametric HB model in rela-
tional learning. Relational learning plays an important role in modern data mining. It not
only encodes the information in object attributes but also models the information in rela-
tions between objects, thus the learned knowledge might be too complex to be represented
by a parametric model. To solve the problem, we apply nonparametric HB modeling to
relational learning, such that the learned models can represent rich probability structures
and parameter dependencies in complex relational domains.



Chapter 5

Dirichlet Enhanced Relational
Models

5.1 Introduction

Statistical relational learning (SRL) extends traditional machine learning methods by in-
troducing the concepts of objects, attributes and relationships. In a relational system,
objects are viewed to be distinct from each other, and are linked together in a ground
network via the relationships among them, rather than being independently and iden-
tically distributed. There are various leading models developed for relational learning
(see Chapter 2), in which the directed acyclic probabilistic entity relationship (DAPER)
framework (Heckerman et al., 2004) is particularly elegant in a Bayesian context, since
it encourages an explicit representation of parameters and hyperparameters. A Bayesian
approach is well suited for relational modeling, the reason is that parameters, instead
of being global, can be personalized to objects and relations leading to a hierarchical
Bayesian (HB) framework (Gelman et al., 2004).

In a HB framework, parameterization of the prior distribution obtains central impor-
tance since it must be able not only to represent ones prior belief but also be flexible
enough to represent the learned posterior, which might not be of the same mathematical
form as the prior. Thus it makes sense to specify the prior distribution in a flexible non-
parametric form, technically as a sample from a Dirichlet process (DP). Although we can
still implement our vague prior belief in form of the base distribution of DP, the learned
posterior can be very rich. Due to the central importance of the Dirichlet process, the
re-parameterization of a prior distribution in form of a nonparametric highly flexible rep-
resentation is sometimes referred to as Dirichlet enhancement (Escobar & West, 1998),
thus we name the proposed model Dirichlet enhanced relational learning (DERL), which
is one of main contributions in the thesis. The work was published in (Xu et al., 2005).

We apply DERL model in a medical context. Objects in the domain include hospitals,
patients, diagnoses and procedures. The existence of a diagnosis or a procedure is depen-
dent on patient attributes and hospital attributes and is modeled as reference uncertainty,
which is a mechanism to represent the uncertainty in the relational structure itself (see
(Getoor et al., 2003) and Chapter 2). The prior distributions for the multinomial param-
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eters describing the reference uncertainties are now Dirichlet enhanced and are learned in
the nonparametric HB framework. As an important result, parameters for diagnoses and
procedures depend on each other, which allows inference from diagnoses to procedures
and vice versa. We investigate the task of predicting additional procedures and diag-
noses based on hospital and patient attributes, the prime complaint and on previously
administered procedures and diagnoses, thus emulate the process of a clinical workflow.
Compared with PRM (see Chapter 2), the performance of DERL is promising.

5.2 Model Description

5.2.1 Hierarchical Bayes for Relational Models

Figure 5.1(a) shows a relational model on a medical domain, where the objects include
patients and procedures. Patient.PrimeComplaint is an attribute describing the prime
complaint of the patient. Procedure.Id specifies the identifier of the procedure. The rela-
tionship class Take models the fact that patients receive procedures. The uncertainty of
which procedure is taken by a patient is modeled as reference uncertainty (Getoor et al.,
2003), by which the relationship class Take is associated with an additional attribute
Select with as many states as there are possible procedures. The relationship attribute
Select follows multinomial distribution with global parameters θ conditioned on prime
complaint and hyperparameters h. In this relational model, parameters and hyperparam-
eters are explicitly modeled as global attributes. There are two important implications.
First, the probability for taking a procedure is identical for all patients with the same
prime complaint. Second, procedures are modeled as independent given prime complaint
such that information about prescribed procedures does not influence the selection of sub-
sequent procedures. Both implications are not realistic. Patients are truly unique, which
might be obvious to the attending physician but which is impossible to be represented in a
probabilistic model. Thus, given prime complaint a physician might select a personalized
treatment strategy. Additionally, the procedures taken by a patient are related with each
other. The prescribed procedures influence the selections of later procedures, the physi-
cian often makes decision of the next procedure based on the previous ones. A principled
approach to solve these limitations is hierarchical Bayesian modeling (Section 3.2) where
it is assumed that each patient should be an individual requiring individual procedure
probabilities. As shown in Figure 5.1(b), in HB modeling the procedure probabilities are
additional attribute of a patient i and are represented as θi. Naturally, we will almost
never have sufficient data to estimate the individual parameters for each patient; this
dilemma is solved by assuming that all parameters originate from a common prior distri-
bution which can be learned and shared between patients: the hyperparameters are still
modeled as global attributes, since they are still shared by all patients, not individual for
each patient. Thus a common prior distribution can be learned and a new patient inherits
an informed prior distribution biasing the model in a sensible manner.

To fix the HB relational model we now introduce the parameters. The relationship
attribute Select follows multinomial distribution with personalized parameters θi. For the
patient i, we have P (Select = m|θi) = θi,m, θi,m > 0 and

∑M
m=1 θi,m = 1. Where M
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(a) (b)

(c) (d)

Figure 5.1: (a) A relational model explicitly incorporating the relations into the proba-
bilistic model with reference uncertainty (see (Getoor et al., 2003) and Chapter 2). The
attribute Take.Select is modeled as a multinomial variable with as many states as there
are procedures. θ represents multinomial parameters for selecting procedures conditioned
on Patient.PrimeComplaint. h denotes parameters of prior distribution. Note, that θ’s are
global parameters, which means the probability of selecting a procedures is identical for
all patients with the same prime complaint. (b) Hierarchical Bayesian (HB) model, where
the multinomial parameters θi are owned by the patient himself. (c) Nonparametric HB
model. The prior G is a sample distribution from a Dirichlet process. (d) Nonparametric
HB model with multi-relations.
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denotes the total number of procedures, and m denotes index of a procedure. The indi-
vidual parameters θi’s share a common prior with hyperparameters h. For computational
efficiency, we assume a conjugate prior, i.e. θi’s are generated from a Dirichlet distribution
with parameters h = {β0, β}:

Dir(θi|β0, β) =
1

C

M∏
m=1

θβ0βm−1
i,m . (5.1)

Where C is a normalization constant given by integration over all possible θi. β =
(β1, . . . , βM), βm > 0,

∑
m βm = 1, which represents our prior belief about procedure

probabilities, i.e. E[P (Select = m|β0, β)] = βm. β0 > 0 is a confidence parameter. The
larger the value is, the more confident our prior belief is.

In HB relational model, each patient obtains personalized procedure probabilities and
shares a common parametric prior such that the two unrealistic assumptions are released.
In more cases than not, the learned posterior distribution will not fall into the class of
prior distributions and can not be described by P (·|hpost) for any hpost (Chapter 4). One
solution to the problem is to assume the prior distribution a very flexible nonparametric
form which leads to nonparametric Bayesian framework.

5.2.2 Nonparametric Hierarchical Bayes and Dirichlet Enhance-
ment

Figure 5.1(c) shows a nonparametric HB relational model on the medical domain. The
common prior is a sample distribution drawn from a Dirichlet process:

G ∼ DP(G0, α0), (5.2)

where G0 is the base distribution, by which we can implement our vague prior belief.
α0 > 0 is the concentration parameter specifying the degree of certainty in our prior
belief. The nice feature of this approach is that, although we can still implement our
vague prior belief in form of the parameters (G0 and α0) of the DP, the prior G can
be very rich, i.e. any arbitrary distribution in the underlying sample space. For more
details about Dirichlet process, please refer to Chapter 4. After sampling the prior G,
the multinomial parameters θi for the patient i are i.i.d. drawn from G. It is difficult to
drawn G directly from a DP given parameters α0 and G0, since the probability function
space is infinite. To remove the computational constraint, we can integrate out G and
directly sample the parameters θi via Pólya urn process (see Chapter 4):

1. For the first patient, the parameters θ1 are drawn from the base distribution G0.

2. Conditioned on parameters θ1, . . . , θN−1 of previous N − 1 patients, the parameter
θN for the patient N is drawn from the distribution:

P (θN |θ1, . . . , θN−1, α0, G0) =
α0G0 +

∑N−1
i=1 δθi

α0 + N − 1
, (5.3)
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where δθi
is a distribution concentrated at a single point θi. Assume that in the sequence

of N−1 parameters, there are K ≤ N−1 distinct values {θ∗1, . . . , θ∗K}. Let Nk denote the
number of times the value θ∗k occurs in the sequence and

∑
k Nk = N−1. The probability

of θN is simplified as:

P (θN |θ1, . . . , θN−1, α0, G0) =

{ Nk

α0+N−1
if θN = θ∗k

α0

α0+N−1
else.

(5.4)

In particular, with probability Nk

α0+N−1
, the new patient takes on existing values θ∗k; with

probability α0

α0+N−1
, the new patient draws new values from the distribution G0. Note that

despite the continuous nature of the base distribution G0 (a Dirichlet distribution in the
running example), a sample distribution G from a Dirichlet process is discrete in nature.
After sampling θi for each patient, his procedures can be i.i.d. drawn from Mult(·|θi).

5.2.3 DERL with Multi-relationships

Figure 5.1(d) shows the DERL model with multi-relations on the medical domain, where
we introduce additional objects: diagnoses. A patient not only receives procedures, but
also obtains diagnoses. The uncertainty of which diagnosis is assigned to the patient is
also modeled as reference uncertainty, where the relationship class Assign is associated
with an auxiliary relationship attribute Select with as many states as there are possible
diagnoses. Again the relationship attribute Assign.Select follows multinomial distribution.
The personalized attribute φi represents the parameters of distribution of Assign.Select
for the patient i given his prime complaint pc. The two parameters θi and φi share a prior
G, which is a sample distribution drawn from a DP. Note that the base distribution G0

of the DP is a product of two independent Dirichlet distributions:

G0 = Dir(θi|βpr
0 , βpr)×Dir(φi|βdi

0 , βdi). (5.5)

The Pólya urn process is extended as:

1. For the first patient, the parameters θ1 and φ1 are drawn from the base distribution
G0, i.e. θ1 ∼ Dir(·|βpr

0 , βpr) and φ1 ∼ Dir(·|βdi
0 , βdi).

2. For the second patient, the parameters θ2 and φ2 inherit the existing values θ1 and φ1

with probability 1
α0+1

or draw new values with probability α0

α0+1
: θ2 ∼ Dir(·|βpr

0 , βpr)

and φ2 ∼ Dir(·|βdi
0 , βdi).

3. Assume that N−1 pairs of parameters {(θ1, φ1); . . . ; (θN−1, φN−1)} are sampled, and
there are K distinct pairs {(θ∗1, φ∗1); . . . ; (θ∗K , φ∗K)}. Nk denote the number of times
the pair (θ∗k, φ

∗
k) occurs in the sequence. Then for the patient N , the parameter pair

(θN , φN) is assigned:

(a) Existing values (θ∗k, φ
∗
k) with probability Nk

α0+N−1
,

(b) New values with probability α0

α0+N−1
. The new values are drawn from the base

distribution:

θN ∼ Dir(·|βpr
0 , βpr); φN ∼ Dir(·|βdi

0 , βdi).



66 CHAPTER 5. DIRICHLET ENHANCED RELATIONAL MODELS

Figure 5.2: Nonparametric HB relational model with smoothing technique on the med-
ical example. λ is the smoothing parameter. SL is an auxiliary variable, one for each
patient, to smooth the probability.

From the sampling process, it is clear that the parameters for a patient are always coupled
together, although our prior belief is independent distributions for the two types of rela-
tions. The DERL model does represent the probabilistic dependencies between different
types of relations.

5.2.4 Smoothing

In more cases than not, the relations might be conditioned on some other attributes,
thus we need to introduce multiple prior distributions, one for each configuration of the
probabilistic parents. For example, in the medical example we have to specify separate
Gpc for each configuration of Patient.PrimeComplaint. This immediately brings up the
issue of overfitting, since for any particular state of Patient.PrimeComplaint, there might
be only few or no data in the training data set. For example, if there is no patient
with the prime complaint circulatory in training data, then we have Gcirculatory = 0,
which means the procedure probability is always zero for any new patient with prime
complaint circulatory. It is obviously incorrect. A typical solution to deal with this
problem is to smooth the probability, i.e., assigning positive value to the probability no
matter whether the configuration occurs in the training data. Thus we employ linear-
interpolation-smoothing method introduced in language modeling (Jelinek, 1997). The
probability of selecting a procedure s conditioned on prime complaint pc is:

P̂ (s|pc) = λP (s) + (1− λ)P (s|pc). (5.6)

The (conditional) probabilities P (s) and P (s|pc) are represented as separate prior distri-

butions, and the probability P̂ (s|pc) is averaged over the two distributions with mixture
weight λ. LM-smoothing can be implemented in the DERL model with an additional
hidden variable LS shown as Figure 5.2. In the running example, LS follows binomial
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distribution with a parameter λ:

P̂ (s|pc) =
∑
LS

P (LS)P (s|LS, pc)

= P (LS = 1)P (s|LS = 1, pc) + P (LS = 0)P (s|LS = 0, pc)

= λP (s) + (1− λ)P (s|pc).

5.3 Approximate Inference and Learning

Traditionally, learning in nonparametric Bayesian modeling is performed via Markov
Chain Monte Carlo (MCMC) methods. The most common samplers include the Pólya
urn or Chinese restaurant sampling approaches (Teh et al., 2004; Tresp & Yu, 2004).
Unfortunately, these approaches are computationally involved; to remove the constraint,
we focus on variational method introduced in Section 4.4.2 and extend it to relational
domain.

The key inferential problem in the DERL model is to estimate the posterior distri-
bution Ĝpc for each configuration pc of Patient.PrimeComplaint. Let Npc denote the
number of patients with prime complaint pc. spr

i,m denotes the m’th procedure taken by
patient i and Mpr

i denotes the total number of procedures received by the patient. Equiv-
alently, sdi

i,` denotes the `’th diagnosis assigned to patient i and Mdi
i denotes the total

number of diagnoses assigned to the patient. The posterior Ĝpc is proportional to:

DP(Ĝpc|G0, α0)

∫ Npc∏
i

Ĝpc(θi, φi)

Mpr
i∏

m

P (spr
i,m|θi)

Mdi
i∏
`

P (sdi
i,`|φi)dθidφi. (5.7)

Unfortunately, it is clear that the equation is analytically intractable. To solve the prob-
lem, variational inference method is considered, which target is to find a variational dis-
tribution qpc to approximate the posterior distribution Ĝpc as close as possible. For com-
putational efficiency, we assume a family of fully-factorized variational distributions

qpc(θ1, . . . , θNpc , φ1, . . . , φNpc) =
Npc∏

i

q(θi)q(φi), (5.8)

and for each θi the variational distribution is assumed as

q(θi) =
Npc∑
k=1

ωi,kδθMAP
k

, (5.9)

which is a discrete distribution at points θMAP
k , k = {1, . . . , Npc}. θi equals θMAP

k with
probability ωi,k, i.e. P (θi = θMAP

k ) = ωi,k and
∑M

k=1 ωi,k = 1. θMAP
k is the maximum a

posteriori (MAP) estimate of the parameters of patient k given his procedures,

θMAP
k = arg max

θk

Dir(θk|βpr
0 , βpr)

Mpr
k∏

m

Mult(spr
k,m|θk). (5.10)
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Equivalently, for each φi the variational distribution is assumed as

q(φi) =
Npc∑
k=1

ωi,kδφMAP
k

. (5.11)

Note, that the variational parameters ωi,k for φi are the same as θi, since θi and φi are
always coupled together.

Now the inference problem is transferred to an optimization problem, i.e. we need to
minimize the deference between the variational distribution qpc and the posterior Ĝpc with
respect to the variational parameters ωi,k, i, k = {1, . . . , Npc}. Extending the variational-
inference coordinate ascent algorithm in Section 4.4.2 to relational data, we obtain the
updating steps as follows:

1. For each patient i, compute θMAP
i and φMAP

i as Equation 5.10. And compute

P (Dpr
i |θMAP

k ) =

Mpr
i∏

m

P (spr
i,m|θMAP

k )

P (Ddi
i |φMAP

k ) =

Mdi
i∏
`

P (sdi
i,`|φMAP

k ),

where Dpr
i and Ddi

i denote the procedures and diagnoses taken by the patient i.
k = {1, . . . , Npc}.

2. Initialize ω
(0)
i,k with constraints

∑
k ω

(0)
i,k = 1. In practice, we can choose ω

(0)
i,k = 1

Npc .
If it leads to local extreme, we can run the algorithm several times with random
initialization and choose the best result.

3. Iterate the following steps for t = 1, 2, . . ..

• Update ω
(t)
i,k given {ω(t)

1,: , . . . , ω
(t)
j−1,:, ω

(t−1)
j+1,: , . . . , ω

(t−1)
N,: }:

ω
(t)
i,k ∝ P (Dpr

i |θMAP
k )P (Ddi

i |φMAP
k )×{

α0

α0 + Npc − 1
G0 +

M∑
k=1

ω
(t)
k

α0 + Npc − 1
δθMAP

k
δφMAP

k

}
, (5.12)

where ω
(t)
k = ω

(t)
1,k+. . .+ω

(t)
i−1,k+ω

(t−1)
i+1,k+. . .+ω

(t−1)
Npc,k. Note, that the computation

of Equation 5.12 might be implemented cheaply, since many terms, such as
P (Dpr

i |θMAP
k ) and P (Ddi

i |φMAP
k ), do not change in iterations.

• k ← k + 1, go to update the next ω
(t)
i,k. When all variational parameters about

patient i are updated, go to update for the next patient i← i + 1.

4. Stop until a stationary point reaches.
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Figure 5.3: The structure of a medical data base represented by entity relational model.

After convergence, the posterior distribution assumes the form

Ĝpc(θi, φi) =
α0

α0 + Npc − 1
G0 +

Npc∑
k=1

ωk

α0 + Npc − 1
δθMAP

k
δφMAP

k
. (5.13)

With α0 → ∞ the posterior corresponds to the uninformed prior. With a finite α0 we
obtain a nonparametric hierarchical Bayesian solution.

5.4 Experimental Analysis

5.4.1 Clinical Data Description

Clinical decision support system is a branch of medical informatics, which is the inter-
section of research in machine learning, data mining and clinical science. The system is
designed to assist the physicians in making diagnoses or delivering clinical care. In the
experimental analysis, we apply DERL model in the clinical decision support system to
provide the physicians case-specific suggestions. In particular, DERL model is used to
predict additional procedures and diagnoses for patients based on hospital and patient at-
tributes, the prime complaints and on previously administered procedures and diagnoses,
thus the clinical workflow is emulated.

The medical domain is shown as Figure 5.3 with entity-relationship model, which is a
commonly used representation for the structure of a database (Ullman & Widom, 1997).
The domain includes four entity classes (Hospital, Patient, Diagnosis and Procedure)
and three relationship classes (In: patient being in a hospital, Assign: patient assigning
a diagnosis and Take: patient taking a procedure). A patient i is in exactly one hos-
pital and typically has multiple procedures and diagnoses. Hospital class has attribute
classes such as hospital bedsize, teaching status (teaching/nonteaching), hospital location
(urban/rural), etc. Patient class has attribute classes including gender, age, admission
source, etc. To reduce complexity of the Figure 5.3, hospital and patient attributes are
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grouped together as HosAtt and PatAtt respectively (these attributes are not aggregated
in learning and inference). In addition, Patient class has the attribute class PrimeCom-
plaint, which states the prime complaint of the patient at the time of admission. The
procedures are codes in ICD-9-CM system, for example, 07.42 means division of nerves to
adrenal glands. We use data from 9980 patients for training and 4082 patients for testing.
In the data, there are 703 diagnoses and 367 procedures.

5.4.2 Experiment Result

The DERL model on the clinical data is shown as Figure 5.4(a). For both the hospital
attributes and patient attributes we learned multinomial mixture models using hidden
mixture attributes Hospital.Zho and Patient.Zpa. The system was optimized to have 60
patient clusters and 3 hospital clusters. Both the relations between patients and proce-
dures and the relations between patients and diagnoses are modeled as reference uncer-
tainty. Thus the two relationship classes have additional attributes Selectpr and Selectdi,
respectively. The values of Selectpr and Selectdi indicate which procedure, resp. diag-
nosis is given by the physician to the patient. Selectpr and Selectdi follow multinomial
distributions with parameters θi and φi, which are individual for each patient. The two
parameters share a prior Gpc,Zho

1, which is a sample from a Dirichlet process. Note that
the base distribution G0 of the Dirichlet process is a product of two independent Dirichlet
distributions as Equation 5.5. In the experiments we assume that

βpr = (
1

Mpr
,

1

Mpr
, . . . ,

1

Mpr
);

βdi = (
1

Mdi
,

1

Mdi
, . . . ,

1

Mdi
).

Where Mpr and Mdi denote the number of procedures and diagnoses, respectively (i.e.
367 and 703 in the case). The base distribution states unbiased priors, i.e. we believe that
each procedure, resp. diagnosis has the same probability before the arrival of the data.
It also specifies a priori, procedures and diagnoses are modeled as independent. However
a posterior learned by the Dirichlet enhanced model is able to represent dependencies
between procedures and diagnoses. The confidence parameters βpr

0 and βdi
0 for G0 are

optimized via v-folder cross-validation method. Since the relations are dependent on
Patient.PrimeComplaint and Hospital.Zho, we implement separate prior distribution
for each configuration of the parents. As mentioned in Section 5.2.4, it will bring up the
issue of overfitting. To remove the constraint we employ linear-interpolation-smoothing
technique. In this case, it yields:

P̂ (spr|Zho, pc) = λ0P (spr) + λ1P (spr|Zho) + λ2P (spr|pc) + λ3P (spr|Zho, pc)

and a corresponding expression for diagnosis selections sdi. The weights λ` > 0,
∑

` λ` = 1
can be estimated using EM algorithm. We did not show the smoothing variables in
Figure 5.4(a) due to the readability of the figure.

1Model selection showed that we obtain a better predictive model by using prime complaint as a
parent and not Zpa.
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(a)

(b)

Figure 5.4: (a) DERL model for the medical application, where the model parameters
θi and φi are owned by each patient himself. (b) PRM model for the same application,
where the model parameters are global.
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(a) (b)

Figure 5.5: (a) ROC curves for predicting procedures, given prime complaint and patient
and hospital attributes. The plots are average over all test patients. (b) ROC curves for
predicting procedures given prime complaint respiratory problem and patient and hospital
attributes.

The DERL model is compared with standard PRM, which is shown in Figure 5.4(b).
For more details about PRM, please refer to e.g. Friedman et al. (1999) and Chapter 2.
The difference from DERL model is that the multinomial distributions of selecting pro-
cedures (and diagnoses) are global, not individual for each patient.

We evaluate model performances by predicting the application of procedures. In the
first experiment we predicted any of the procedures that a patient has received given
hospital attributes, patient attributes and given prime complaint. The corresponding
ROC curve (averaged over all patients) for DERL model is shown as E2 in Figure 5.5(a). In
the experiment we selected the top C procedures recommended by the model. Sensitivity
indicates how many percents of the actually being performed procedures were correctly
proposed by the model. (1-specificity) indicates how many percents of the procedures
that were not actually performed were recommended by the model. Along the curves,
the C was varied from left to right as C = 5, 10, . . . , 50. E1 in Figure 5.5(a) shows
the experimental result of the standard PRM model given the same information as E2.
It is essentially identical to the result of E2. The situation changes when additional
information is available such as past procedures or diagnoses: the standard PRM model
would not change the proposal probabilities. In contrast, the prediction of a subsequent
procedure is improved for DERL model if the first diagnosis is available (E3) or both
the first diagnosis and the first procedure are available (E4). We can see, for example,
that if we would propose 15 procedures, after we know the prime complaint, the first
diagnosis, and the first procedure, we would cover approximately 83% of the actually
prescribed procedures. Figures 5.5(b) shows the corresponding plots for patients with
prime complaint respiratory problem exhibiting similar trends.

In the second set of experiments, we investigated how the procedure probabilities se-
quentially change when additional information becomes available. Figure 5.6(a) shows
the selection probabilities for 20 procedures which are relevant for myocardial infarction.
The top ten procedures are listed in Table 5.1. The first column indicates the predicted
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(a) (b)

Figure 5.6: (a) Procedure probabilities conditioned on increasing information. (b) Pro-
cedure probabilities for different hospital clusters.

Table 5.1: The most frequent procedures for disease No. 410.71.

Rank Code Description
1 88.56 coronary arteriography using two catheters
2 37.22 left heart cardiac catheterization
3 88.53 angiocardiography of left heart structures
4 36.06 insertion of coronary artery stent(s)
5 36.01 single vessel percutaneous transluminal coronary an-

gioplasty
6 99.20 injection or infusion of platelet inhibitor
7 36.15 single internal mammary-coronary artery bypass
8 39.61 extracorporeal circulation auxiliary to open heart

surgery
9 88.72 diagnostic ultrasound of heart
10 99.04 transfusion of packed cells
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probabilities for the case that only patient attributes and hospital attributes are available.
The second column shows the procedure probabilities when, in addition, the prime com-
plaint circulatory problem becomes available. The third column shows the situation when,
in addition, the first diagnosis acute myocardial infarction becomes available. The fourth
column shows the situation when, in addition, the procedure single vessel percutaneous
transluminal coronary angioplasty has been performed. One sees that the probabilities
for procedures relevant for myocardial infarction increase when prime complaint becomes
available. The tendency is that if more information becomes available, the model becomes
more certain about coming procedures for a patient. Figure 5.6(b) shows probabilities of
selecting procedures given the diagnosis single live-born in hospital in deferent hospital
clusters. One can see that the probabilities vary significantly. It demonstrates that hos-
pital attributes are quite relevant for the procedure prediction. In the experiment, the
hospitals are assigned to the most likely cluster based on a mixture model.

5.5 Summary

In this chapter we give some analysis how nonparametric hierarchical Bayesian modeling
can be very useful in relational learning and propose a new DERL model, which is one
of the major contributions of the thesis. In DERL, model parameters can be attributes
of entities or relations and can thus be non-global. These individual parameters share a
common nonparametric prior, technically as a sample distribution from a Dirichlet pro-
cess. As an important result, the posterior learned by DERL can exhibit a rich structure
and parameter dependencies which are impossible to be represented in a parametric for-
mulation. We demonstrated the performance of DERL model using data from a medical
database. The relations are explicitly incorporated into probabilistic models with refer-
ence uncertainty (Getoor et al., 2003) and DERL model is used to encode the dependencies
between patients and diagnoses and patients and procedures. Despite the fact that the
base distribution (prior belief) exhibits parameter independence, the learned posterior
does display parameter dependencies. The couplings between diagnoses and procedures
could truthfully be modeled.
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Chapter 6

Finite Mixture Models

6.1 Introduction

Mixture model is a very common modeling tool, which is well suited in the situations
where the samples are generated under different conditions. For example, we want to
make a survey about the reaction time of people when driving. It is better to divide
the people into two subsets in which ones do or do not drink alcohol, then the reaction
time is modeled as separate distributions conditioned on the situation of alcohol or non-
alcohol, rather than building a single bimodal distribution with two different peaks. Let
y denote the reaction time of a person, θ1 and θ2 are the distribution parameters in the
two situations, respectively. π is the probability of a person drinking alcohol. Then the
distribution of the reaction time is represented as

P (y|π, θ1, θ2) = πP (y|θ1) + (1− π)P (y|θ2). (6.1)

The atom distributions P (y|θ1) and P (y|θ2) are referred to as mixture components. When
the atom distribution is parameterized, we can directly refer to the parameters (θ1 and θ2)
as mixture components. The parameter π, referred to as mixture proportion or mixture
weight, specifies the proportion in which the atom distributions are mixed. The finite
mixture model can be viewed as a special case of a more general specification continuous
mixture model :

P (y) =

∫
π(θ)P (z|θ)dθ

=
∞∑

k=1

πkP (y|θk). (6.2)

In the running example about reaction time, if the atom distributions are conditioned on
the extent ones drink alcohol, rather than the binary variable alcohol/non-alcohol, then
we obtain a continuous mixture model. Furthermore, from the mathematical form of the
density function point of view, the hierarchical Bayesian model introduced in Chapter 4
can be thought of as a variant of the continuous mixture model. The two models are
however applied in different situations. The mixture model is applied when the samples
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(a) (b)

Figure 6.1: (a) Samples drawn from a population equally mixing 3 Gaussian dis-
tributions. (b) The graphical representation of an empirical finite mixture model.
Θ = {θ1, . . . , θK} are K mixture components, π are mixture proportions. The parame-
ters Θ and π are unknown but not random. Each observation yi is associated with an
auxiliary variable zi, which specifies the mixture component from which the observation
yi is generated.

belong to a single data set and are generated under different conditions. It is widely used
in the clustering and classification problems. In comparison, hierarchical model is widely
used in the situations where multiple parallel data sets are available and these data sets
come from different but related settings. The parameters for each data set are distinct
but share a common prior, by which the learned knowledge from previous data sets can
be transferred to the new data sets. Hierarchical model is widely used in meta-learning.

6.2 Empirical Mixture Models

6.2.1 Model Description

Mixture models supply a method to learn the population consisting of several subpopu-
lations within each of which a relatively simple distribution applies. Figure 6.1(a) shows
samples drawn from a population equally mixing 3 Gaussian distributions. It makes more
sense to build a distribution in the form of P (y) = 1

3

∑3
k=1 N(µk, σ

2
k), than to build a

single distribution with three peaks. In the section we discuss mixture model in em-
pirical Bayesian framework. Although the empirical solution is not full Bayesian, it is
mathematically easier and includes the main properties of finite mixture modeling. Fig-
ure 6.1(b) shows the empirical model in a plate representation. The model consists of
K components Θ = {θ1, . . . , θK}, which are mixed in the proportions π = (π1, . . . , πK)
and πk > 0,

∑K
k=1 πk = 1. The parameters Θ and π are unknown, but not random. For

each observation yi, an auxiliary variable zi, referred to as indicator, is introduced, which
specifies the mixture component from which the observation yi is generated. zi can be
modeled as a discrete random variable with K states and is generally assumed a multi-
nomial distribution with parameters π, i.e. P (zi = k|π) = πk. Assume that there are N
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observations D = {y1, . . . , yN}, then N hidden variables Z = {z1, . . . , zN} are associated,
one for each observation. The generative process of the empirical mixture model is defined
as:

zi|π
i.i.d.∼ Mult(·|π),

yi|zi, Θ
i.i.d.∼ P (·|zi, Θ).

The joint probability of the model is defined as:

P (D, Z|π, Θ) =
N∏
i

P (zi|π)P (yi|zi, Θ). (6.3)

In the mixture model, the auxiliary variables Z are unobservable and can be viewed as
missing data, the observations D are thus viewed as incomplete-data and the combination
{D, Z} are viewed as complete-data.

In practical computation, we need to choose an appropriate value K for the number of
mixture components. In many cases, the value is not available in advance. The simplest
solution for the problem is the v-folder cross validation method (Miloslavsky & van der
Laan, 2003). An alternative solution is to represent the number K as another unknown
parameter of the model and to learn it in the way like other parameters (Richardson &
Green, 1997).

In real-world applications, each mixture component is often viewed as a group, the
observations generated from the same component are viewed as members in the same
group. The hidden variable zi indicates the group of yi. The observations are similar in
the identical group and are dissimilar to the observations belonging to other groups. The
mixture model is commonly used in the clustering and classification problems.

6.2.2 Parameters Estimation with EM Algorithm

In the empirical mixture model, the main learning problem is to estimate the unknown
parameters Θ and π. Since they are unknown but not random, we can approximate their
values via point estimation methods, say maximum likelihood estimation. Given obser-
vations D = {y1, . . . , yN}, the maximum-(log)likelihood estimations of the parameters π
and Θ are defined as:

πML, ΘML = arg max
π, Θ

log P (D|π, Θ)

= arg max
π, Θ

N∑
i

[
log

K∑
k=1

P (zi = k|π)P (yi|zi = k, Θ)

]
. (6.4)

It is obvious that the equation is analytical intractable due to the log of the sum, which is
introduced by the missing data, i.e. the hidden variables Z = {z1, . . . , zN}. To solve the
problem, we consider elaborate techniques, e.g. Expectation-Maximization (EM) method.

EM method is introduced by Dempster et al. (1977), which is a principal method to
find the maximum-likelihood estimation of parameters given data with missing values.
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The method is mainly used in the following situations. First, there are really missing
observations in the given data set. Second, the data is complete, but there are hidden
variables introduced in modeling process, e.g. the auxiliary variables Z in the mixture
model. The latter application is more common in the data mining area. Principally,
EM method is to optimize the expected value of the complete-data log-likelihood, since
the likelihood is in fact a random variable in terms of randomness of the missing values.
In particular, the following two steps are repeated until convergence. In E step, the
expectation of the complete-data log-likelihood is calculated given the current parameter
estimations. In M step, the expectation calculated in the last step is maximized with
respect to parameters, then the optimized parameters are used in the next iteration. EM
method guarantees that the log-likelihood increases at each iteration and converges to a
local maximum of the likelihood function. For more details about EM method, please
refers to (Redner & Walker, 1984; Ghahramani & Jordan, 1994; Bishop, 1994).

For the mixture model, EM method optimizes the expectation E[log P (D, Z|π, Θ)]
with respect to the mixture proportions π and the mixture components Θ. Given the
observations D = {y1, . . . , yN}, the expected complete-data log-likelihood is computed in
the E step:

Q(t) = EP (Z|D,π(t−1),Θ(t−1))

[
log P (D, Z|π(t), Θ(t))

]
=
∑

i

∑
k

P (zi = k|yi, π
(t−1), Θ(t−1))

[
log P (zi = k|π(t)) + log P (yi|θ(t)

k )
]
. (6.5)

Where π(t−1) and Θ(t−1) denote the mixture weights and mixture components computed in
the last iteration. P (zi|yi, π

(t−1), Θ(t−1)) is the posterior distribution of hidden variable zi

given observation yi and learned parameters π(t−1) and Θ(t−1). π(t) and Θ(t) are unknown
parameters and will be optimized in M step as:

π(t)∗, Θ(t)∗ = arg max
π(t), Θ(t)

Q(t). (6.6)

Note, that the constraint
∑

k πk = 1 should be satisfied at each iteration.
Now let us use a particular example to illustrate the specification. Assume that the

observations D = {y1, . . . , yN} are discrete variables with S possible states. They are gen-
erated from K multinomial distributions. θk are the parameters of the k’th distribution.
Under the mixture modeling, the auxiliary variable zi is introduced, one for each observa-
tion yi. Then we use EM algorithm to estimate the parameters π and Θ = {θ1, . . . , θK}.
The expected complete-data log-likelihood at iteration t is written as:

Q(t) =
∑

i

∑
k

P (zi = k|yi, π
(t−1), θ(t−1))

[
log π

(t)
k + log θ

(t)
k,yi

]
. (6.7)

Thus the updating steps are defined as:

1. Take some initial value for π(0) and Θ(0), and alternatively run the E step and M
step until convergence.
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2. In the Expectation (E) step, compute the probability of zi = k, for i = {1, . . . , N},
k = {1, . . . , K}, given the estimates of the parameters optimized at last step. The
E step can be viewed as soft class assignment for each observation.

P (zi = k|yi, π
(t−1), Θ(t−1)) =

P (zi = k|π(t−1))P (yi|zi = k, Θ(t−1))∑
k P (zi = k|π(t−1))P (yi|zi = k, Θ(t−1))

=
π

(t−1)
k θ

(t−1)
k,yi∑

k π
(t−1)
k θ

(t−1)
k,yi

. (6.8)

3. In the Maximization (M) step, update the estimates of the parameters to maximize

the expected complete-data log-likelihood Q(t). Note, that the constraints
∑

k π
(t)
k =

1 and
∑

s θ
(t)
k,s = 1 should be satisfied.

0 =
∂Q(t)

∂π
(t)
k

=
∂

∂π
(t)
k

∑
i

[
P (zi = k|yi, π

(t−1), Θ(t−1)) log π
(t)
k

]
+ λ(

∑
k

π
(t)
k − 1)

⇒ π
(t)
k ∝

∑
i

P (zi = k|yi, π
(t−1), Θ(t−1)). (6.9)

Where the term λ(
∑

k π
(t)
k − 1) is the Lagrange multiplier λ with the constraint∑

k π
(t)
k = 1.

0 =
∂Q(t)

∂θ
(t)
k,s

=
∂

∂θ
(t)
k,s

∑
i

[
P (zi = k|yi, π

(t−1), Θ(t−1)) log θ
(t)
k,sδs(yi)

]
+ λ(

∑
s

θ
(t)
k,s − 1)

⇒ θ
(t)
k,s ∝

∑
i

P (zi = k|yi, π
(t−1), θ(t−1))δs(yi). (6.10)

Where δs(yi) equals to 1 if the observation yi takes the state s, and 0 otherwise.

6.2.3 Predictive Inference

In mixture model, there are mainly two prediction tasks, one is to predict a new observa-
tion P (ynew|π, Θ), the other is to predict the hidden variable given the new observation
P (znew = k|ynew, π, Θ). The two predictive inferences are performed as:

P (ynew|π, Θ) =
∑

k

P (znew = k|π)P (ynew|znew = k, Θ)

=
∑

k

πkP (ynew|θk) (6.11a)

P (znew = k|ynew, π, Θ) =
πkP (ynew|θk)∑
k πkP (ynew|θk)

. (6.11b)
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(a) (b)

Figure 6.2: (a) A finite mixture model in full Bayesian framework. (b) The graphic
representation of the variational distribution assumed to approximate the posterior dis-
tribution of the parameters. λ, τk and ηi are variational parameters.

6.3 Mixture Models in Full Bayesian Framework

6.3.1 Model Description

In empirical mixture model, the uncertainty in estimating the unknown parameters π
and Θ = {θ1, . . . , θK} is not considered. To remove the limitation, we embed the finite
mixture model in the full Bayesian framework, i.e. the unknown parameters themselves
are viewed as random variables. The mixture proportions π are multinomial parameters,
for computational efficiency, we assume a conjugate Dirichlet prior with hyperparameters
α = (α1, . . . , αK), i.e. π ∼ Dir(·|α). The mixture component θk denote the parameters of
the distribution of observations with hidden state k. All θk’s share a common prior G0.
Given the priors Dir(π|α) and G0, the generative process of full-Bayesian mixture model
is defined as follows:

π|α ∼ Dir(·|α)

θk|G0 ∼ G0(·), k = 1, . . . , K

zi|π ∼ Mult(·|π), i = 1, . . . , N

yi|zi, Θ ∼ P (·|zi, Θ), i = 1, . . . , N

The graphical representation of the full Bayesian model is shown as Figure 6.2(a), which
has one more level than the empirical model in Figure 6.1(b). The additional level repre-
sents the uncertainty about the unknown parameters Θ and π. The joint probability of
the full Bayesian model is:

P (D, Z, π, Θ|α, G0) = P (π|α)
K∏

k=1

P (θk|G0)
N∏

i=1

P (zi|π)P (yi|zi, Θ). (6.12)
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6.3.2 Inference

The key inferential problem in the full Bayesian mixture model is to compute the joint
posterior distribution of the unobservable variables given observations D = {y1, . . . , yN}.
As discussed in last section, the unobservable variables in the model include: mixture
proportions π, mixture components Θ = {θ1, . . . , θK} and the indicators Z = {z1, . . . , zN}.
Thus the joint posterior distribution is defined as:

P (π, Θ, Z|D, α, G0) =
P (π, θ, Z,D|α, G0)

P (D|α, G0)

=
P (π|α)

∏
k P (θk|G0)

∏
i P (zi|π)P (yi|zi, Θ)

P (D|α, G0)
, (6.13)

where the normalization term P (D|α, G0) is:∫
P (π|α)

∏
k

∫
P (θk|G0)

∏
i

∑
k

P (zi = k|π)P (yi|θk)dπdθ1 . . . dθK . (6.14)

Unfortunately, it is clear that the posterior distribution is analytically intractable due to
the coupling between π and Θ in the summation over the hidden variables. Although the
exact inference is impossible, many approximate inference algorithms can be considered,
e.g. Gibbs sampling and variational approximation.

Inference with Gibbs Sampling

Gibbs sampling (GS) is the simplest Markov chain Monte Carlo method, which obtains
a Markov chain via iteratively sampling each unknown variables conditioned on the data
and the previous samples of all other unknown variables. For more details about GS
method, please refer to Section 3.2.5. In the full Bayesian mixture model, if the prior
distribution G0 is assumed to be of manageable form, Gibbs sampling is straightforward.
In particular, the following three steps are repeated until convergence.

• In the first step, the indicator variable zi for each observation is sampled with the
probability

P (z
(t)
i = k|yi, π

(t−1), θ(t−1)) ∝ P (z
(t)
i = k|π(t−1))P (yi|θ(t−1)

k )

= π
(t−1)
k P (yi|θ(t−1)

k ). (6.15)

Since the number of hidden states is finite, the computation can be cheaply imple-
mented.

• In the second step, the mixture proportions π are sampled from:

π(t) ∼ P (·|Z(t), α) = Dir(·|α(t)
post)

α
(t)
post = (α1 + N (t)(1), . . . , αK + N (t)(K)). (6.16)

Where N (t)(k) is a sufficient statistic about the data, which denotes the number of
observations with hidden state k at the iteration t.
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• At last, the mixture components Θ = {θ1, . . . , θK} are drawn from:

θ
(t)
k ∼ P (·|D(t)

k , G0). (6.17)

Where P (·|D(t)
k , G0) is the posterior of mixture component θk at iteration t. D

(t)
k

denotes the observations with hidden state k at iteration t. It is clear that the com-
putation about the posterior P (θ

(t)
k |D

(t)
k , G0) is tractable if P (D

(t)
k |θ

(t)
k ) and G0(θ

(t)
k )

are assumed to be of manageable form. For example, we assume that P (D
(t)
k |θ

(t)
k ) is

a distribution in the exponential family and G0(θ
(t)
k ) is conjugated with P (D

(t)
k |θ

(t)
k ).

Inference with Variational Method

MCMC algorithms supply a successful solution to approximate the posterior distributions,
however it is computationally quite involved. To remove the constraint, many alternative
solutions are introduced, e.g. variational inference algorithms. The principle of these
algorithms is to find a variational distribution q(ξ) to approximate the distribution of
interest P (ξ), where ξ denotes a set of variables. The difference between q(ξ) and P (ξ) is
measured via Kullback-Leibler (KL) divergence. The smaller the divergence is, the more
approximate the two distributions are. For more information about variational methods,
please refer to Section 4.4.2. For the full Bayesian mixture model, we focus on the simplest
variational method, mean-field approximation, in which q(X) is restricted to a family of
fully-factorized distributions for computational efficiency (Jordan et al., 1998).

In the full Bayesian mixture model, the distribution of interest is the joint posterior
distribution of the unobservable variables, P (Z, π, Θ|D, α, G0). Let q(Z, π, Θ) denote the
variational distribution. The KL divergence between them is defined as:

∑
Z, π, Θ

q(Z, π, Θ) log q(Z, π, Θ)−
∑

Z, π, Θ

q(Z, π, Θ)P (Z, π, Θ|D, α, G0)

= Eq

[
log q(Z, Θ, π)

]
− Eq

[
log P (D, Z, Θ, π|α, G0)

]
+ log P (D|α, G0). (6.18)

We permute the equation and obtain:

log P (D|α, G0)

= Eq [log P (D, Z, Θ, π|α, G0)]− Eq [log q(Z, Θ, π)] + KL(q||P )

≥ Eq [log P (D, Z, Θ, π|α, G0)]− Eq [log q(Z, Θ, π)] . (6.19)

Equation 6.19 defines a lower bound of the log-likelihood of the observations. It can also
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be derived via the Jensen’s inequality :

log P (D|α, G0)

= log
∑

Z, π, Θ

P (D, Z, Θ, π|α, G0)

= log
∑

Z, π, Θ

q(Z, Θ, π)P (D, Z, Θ, π|α, G0)

q(Z, Θ, π)

≥
∑

Z, π, Θ

q(Z, Θ, π) log P (D, Z, Θ, π|α, G0)−
∑

Z, π, Θ

q(Z, Θ, π) log q(Z, Θ, π)

= Eq [log P (D, Z, Θ, π|α, G0)]− Eq [log q(Z, Θ, π)] . (6.20)

It is clear that the larger the lower bound is, the smaller the KL divergence is. Thus
the posterior inference problem is now converted to an optimization problem, i.e. to
maximize the lower bound with respect to the variational parameters. For computational
convenience, we select a fully-factorized family of variational distributions:

q(Z, Θ, π) = q(π|λ)
K∏
k

q(θk|τk)
N∏
i

q(zi|ηi). (6.21)

λ, τk and ηi are variational parameters. Note, that there is one τk for each mixture com-
ponent and one ηi for each observation. q(π|λ) is a Dirichlet distribution, q(θk|τk) is of
the same mathematic form as G0, q(zi|ηi) is a multinomial distribution. The variational
distributions decouple some probabilistic dependencies, e.g. the mixture components θk’s
no longer share a common prior, which is shown in Figure 6.2(b) with a plate repre-
sentation. Given the fully-factorized variational distributions, the lower bound L of the
log-likelihood of observations, i.e. Equation 6.19, is now written as:

L = Eq [log P (π|α)] +
K∑
k

Eq [log P (θk|G0)] +
N∑
i

Eq [log P (zi|π)]

+
N∑
i

Eq [log P (yi|zi, Θ)]− Eq [log q(Z, Θ, π)] . (6.22)

Many optimization approaches can be considered to maximize the equation, e.g. the
coordinate ascent approach mentioned in Section 3.2.4. In particular, the coordinate
ascent algorithm optimizes each variational variable λ, τk and ηi given all the others
at one iteration. Note that the constraints,

∑
k ηi,k = 1 for i = {1, . . . , N}, should be

satisfied.
We now illustrate the specification with an example. Assume that the observations

are discrete variables with S states and are generated from K multinomial distributions.
The prior distribution G0 is conjugate Dirichlet distribution with hyperparameters β =
β0(

1
S
, . . . , 1

S
), which represents our prior belief that each observation state appears with

equal probability. The other hyperparameters α are assumed as α = α0(
1
K

, . . . , 1
K

), which
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represents our prior belief that each hidden state appears with equal probability. α0 and
β0 indicate how strongly we believe that the prior distributions should be true. The larger
the values are, the stronger our belief is. Of course, the assumptions do not mean the
following algorithms are only applicable to the discrete variables, they are easily extended
to other situations.

Following we describe the computation of Equation 6.22. Let us start from the first
term.

Eq(π|λ) log P (π|α) = Eq

[
log Γ(α0)−

∑
k

log Γ(αk) +
∑

k

(αk − 1) log πk

]
= log Γ(α0)−

∑
k

log Γ(αk) +
∑

k

(αk − 1)Eq[log πk]. (6.23)

The computation of Eq[log πk] exploits the property of Dirichlet distribution as a mem-
ber of exponential family: the first derivative of normalization factor is the expectation
of sufficient statistic of the distribution. As an exponential family of distribution, the
variational distribution q(π|λ) can be written as:

q(π|λ) = exp

[∑
k

(λk − 1) log πk + log Γ(
∑

k

λk)−
∑

k

log Γ(λk)

]
, (6.24)

and we have:

Lebesgue-Stieltjes integrator: H(π) = 1,

Natural parameter: ζT = λ− 1,

Sufficient statistic: T (π) = log πT = (log π1, . . . , log πK)T ,

Normalization factor: A(ζ) =
∑

k

log Γ(λk)− log Γ(
∑

k

λk)

=
∑

k

log Γ(ζk + 1)− log Γ(
∑

k

ζk + K)

Thus the first derivative of normalization factor is computed as:

∂A

∂ζk

=
∂

∂ζk

[∑
k

log Γ(ζk + 1)− log Γ(
∑

k

ζk + K)

]

=
∂

∂ζk

[
log Γ(ζk + 1)− log Γ(

∑
k

ζk + K)

]
= Ψ(ζk + 1)−Ψ(

∑
k′

ζk′ + K)

= Ψ(λk)−Ψ(
∑
k′

λk′). (6.25)
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Where Ψ is the digamma function, which is the first derivative of the log Gamma function.
Then we have

Eq[log πk] = Ψ(λk)−Ψ(
∑
k′

λk′). (6.26)

Thus the first term of Equation 6.22 is computed as:

Eq(π|λ)[log P (π|α)] = log Γ(
∑

k

αk)−
∑

k

log Γ(αk)

+
∑

k

(αk − 1)

[
Ψ(λk)−Ψ(

∑
k′

λk′)

]
. (6.27)

Equivalently, the second term of Equation 6.22 is computed as:

Eq(θk|τk)[log P (θk|G0)] = log Γ(
∑

s

βs)−
∑

s

log Γ(βs)

+
∑

s

(βs − 1)

[
Ψ(τk,s)−Ψ(

∑
s′

τk,s′)

]
. (6.28)

The computation of the third term Eq[log P (Zi|π)] is different with the first two terms,
since both involved variables (zi and π) are unobservable. The expectation is computed
as:

Eq(zi|ηi)q(π|λ)[log P (zi|π)] =
∑

k

∫
q(zi = k|ηi)q(π|λ) log πkdπ

=
∑

k

ηi,kEq [log πk]

=
∑

k

ηi,k

[
Ψ(λk)−Ψ(

∑
k′

λk′)

]
. (6.29)

Equivalently, the fourth term is computed as:

Eq(zi|ηi)
Q

k q(θk|τk)[log P (yi|zi, Θ)] =
∑

k

∫
q(zi = k|ηi)q(θk|τk) log θk,yi

dθk

=
∑

k

ηi,kEq [log θk,yi
]

=
∑

k

ηi,k

[
Ψ(τk,yi

)−Ψ(
∑

s

τk,s)

]
. (6.30)
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At last, the negative entropy term is computed as:

Eq log q(Z, π, Θ)

= Eq log q(π|λ) +
∑

k

log q(θk|τk) +
∑

i

log q(zi|ηi)

= log Γ(
∑

k

λk)−
∑

k

log Γ(λk) +
∑

k

(λk − 1)

[
Ψ(λk)−Ψ(

∑
k′

λk′)

]

+
∑

k

log Γ(
∑

s

τk,s)−
∑

s

log Γ(τk,s) +
∑

s

(τk,s − 1)

[
Ψ(τk,s)−Ψ(

∑
s′

τk,s′)

]
+
∑

i

∑
k

ηi,k log ηi,k. (6.31)

After computing each term of Equation 6.22, we now optimize it with respect to the
variational parameters via a coordinate ascent algorithm, which maximizes Equation 6.22
by iteratively optimizing each variational parameter given all others. Let us start from
the optimization of λ.

0 =
∂L
∂λk

=
∂

∂λk

[
(αk − 1)Ψ(λk)−

∑
k

(αk − 1)Ψ(
∑
k′

λk′) +
∑

i

ηi,kΨ(λk)

−
∑

i

∑
k

ηi,kΨ(
∑
k′

λk′)− log Γ(
∑

k

λk) + log Γ(λk)− (λk − 1)Ψ(λk)

+
∑

k

(λk − 1)Ψ(
∑
k′

λk′)

]
. (6.32)

After simplification, it yields:

0 = Ψ′(λk)

[
αk +

∑
i

ηi,k − λk

]
−Ψ′(

∑
k′

λk′)
∑

k

[
αk +

∑
i

ηi,k − λk

]
. (6.33)

Thus the variational parameter λk is updated as:

λk =
α0

K
+
∑

i

ηi,k. (6.34)

Equivalently, τk,s is updated as:

τk,s =
β0

S
+
∑

i

ηi,kδs(yi). (6.35)

Where δs(yi) = 1 if yi = s, 0 otherwise.
At last, the lower bound is optimized with respect to ηi,k for k = 1, . . . , K and i =

1, . . . , N .

0 =
∂L
∂ηi,k

=
∂

∂ηi,k

ηi,k

[
Ψ(λk)−Ψ(

∑
k′

λk′)

]
+ ηi,k

[
Ψ(τk,xi

)−Ψ(
∑

s

τk,s)

]
− ηi,k log ηi,k + µ(

∑
k

ηi,k − 1), (6.36)
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which yields:

ηi,k ∝ exp

[
Ψ(λk)−Ψ(

∑
k′

λk′) + Ψ(τk,xi
)−Ψ(

∑
s

τk,s)

]
. (6.37)

In summary, the coordinate ascent algorithm yields the following steps:

1. Initialize variational parameters ηi,k for i = 1, . . . , N and k = 1, . . . , K. In practice,

we can assume η
(0)
i,k = 1/K. If it leads to local extreme values, we can run the

algorithm with different random initializations and choose variational parameters
with the best lower bound.

2. Repeat the following computation until convergence.

λk =
α0

K
+
∑

i

ηi,k; (6.38a)

τk,s =
β0

S
+
∑

i

ηi,kδs(yi); (6.38b)

ηi,k ∝ exp

[
Ψ(λk)−Ψ(

∑
k′

λk′) + Ψ(τk,xi
)−Ψ(

∑
s

τk,s)

]
. (6.38c)

The values for the unknown quantities must be statistically and graphically summarized
to monitor convergence. There are mainly two methods to diagnose convergence. First,
since the algorithm is to optimize the lower bound of the likelihood, we can monitor
the sequence of lower bounds. If it does not change much with updating variational
parameters, then we can say the process reaches stationary point. Alternatively, we
can directly monitor the output. If the difference of the variational parameters between
the two iterations is small enough, then we believe the convergence occurs. When the
process reaches stationary point, the variational distribution q(Z, Θ, π) with the optimized
variational parameters is an approximation to the posterior of the unobservable variables,
by which the predictive inference can be performed. In addition, with the optimized
variational parameters, Equation 6.22 provides a lower bound for the log-likelihood of the
observations.

6.3.3 Parameter Estimate

In this section, we introduce empirical Bayesian methods to estimate hyperparameters in
the finite Bayesian mixture model. In particular, given N observations D = {y1, . . . , yN},
we wish to find the unknown hyperparameters α and β which maximize the expected
complete-data log-likelihood:

αML, βML = arg max
α, β

E
[
log P (D, Z, π, Θ|α, β)

]
= arg max

α, β

∫ ∑
Z

P (Z, π, Θ|D, α, β) log P (D, Z, π, Θ|α, β)dπdΘ.
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As discussed in Section 6.3.2, the posterior distribution P (Z, π, Θ|D, α, β) is computa-
tionally intractable. To solve the problem, we introduce two solutions: stochastic EM
and variational EM.

Stochastic EM

Stochastic EM method was introduced by Celeux and Diebolt (1985) and Wei and Tanner
(1990). The main idea of the method is to approximate the intractable (log)likelihood
expectation with a sum over the samples generated from a MCMC method. If only one
sample is drawn at each iteration (Celeux & Diebolt, 1985), then it is known as stochastic
EM (SEM). If several samples are drawn (Wei & Tanner, 1990), then it is known as
Monte Carlo EM (MCEM). In this section, we focus on SEM, which repeats the following
two steps until convergence. In the S-step, a single sample is drawn for each of the
unknown variables from its posterior distribution given the current estimations of the
parameters. S-step provides us with pseudo-complete data. In the M-step, we maximize
the log likelihood of the pseudo-complete data with respect to the parameters. Iteratively
performing S-step and M-step, we obtain a Markov chain about the model parameters
which converges to a stationary point. The sequence of samples generated by Stochastic
EM method provides a region for the parameters of interest, which is often called plausible
region. The mean of the samples approximates the maximum likelihood estimations of the
parameters, and the variance intuitively implies the information loss due to the missing
data.

For the full Bayesian mixture model, stochastic EM method draws samples for the
unobservable variables Z, π and Θ in S-step, and optimizes the hyperparameters α and
β in the M-step. Let illustrate SEM method with the example in Section 6.3.2, which
yields following steps.

1. Initialize hyperparameters α
(0)
0 , β

(0)
0 and parameters π(0) and Θ(0).

2. Iterate the following steps until convergence.

(a) S step: draw samples for the unobservable variables Z(t), π(t) and Θ(t) based
on Equation 6.15, 6.16 and 6.17.

(b) M step: view the pseudo-data as the real data, and maximize the log like-
lihood of the pseudo-complete data with respect to the hyperparameters via
coordinate ascent method, i.e. alternatively optimize the two hyperparameters
α0 and β0 until convergence.

0 =
∂

∂α0

log P (D, Z, π, Θ|α0, β0) =
∂

∂α0

log P (π|α0)

= Ψ(α0)−Ψ(α0/K) + log πk (6.39)

It is obvious that the above equation can not be solved analytically. Thus we
consider the Newton’s method, which is widely used to approximate the roots
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of a function. We repeat the following computation until convergence.

α
(t′)
0 = α

(t′−1)
0 − Ψ(α

(t′−1)
0 )−Ψ(α

(t′−1)
0 /K) + log πk

Ψ′(α
(t′−1)
0 )− 1

K
Ψ′(α

(t′−1)
0 /K)

. (6.40)

Equivalently, β0 is iteratively updated as:

β
(t′)
0 = β

(t′−1)
0 − Ψ(β

(t′−1)
0 )−Ψ(β

(t′−1)
0 /S) + log θk,s

Ψ′(β
(t′−1)
0 )− 1

S
Ψ′(β

(t′−1)
0 /S)

. (6.41)

Variational EM

Due to possible low efficiency of MCMC methods, an alternative solution, variational
EM, is considered, which is introduced in (Neal & Hinton, 1998; Jordan et al., 1998).
The method combines the lower bound of incomplete-data log-likelihood with parameter
estimation via EM algorithm. As discussed in Section 6.2.2, EM algorithm maximizes
the expected complete-data log-likelihood. Let ξ denote the unobservable variables, D
denote the observations, ϕ denote the model parameters, the expected complete-data
log-likelihood is written as:

Q =
∑

ξ

P (ξ|D, ϕ) log P (D, ξ|ϕ). (6.42)

When the posterior distribution P (ξ|D, ϕ) of unobservable variables is intractable, we can
not apply EM algorithm directly. To solve the problem, variational EM is introduced.
We define the lower bound L(q, ϕ) of the incomplete-data log-likelihood via Jensen’s
inequality :

L(q, ϕ) = Eq

[
log P (D, ξ|ϕ)

]
− Eq

[
log q(ξ)

]
. (6.43)

We iterate the following two steps until convergence. In the E-step, we maximize the
lower bound with respect to the variational distribution q. As discussed in Section 4.4.2,
the step actually optimizes the variational distribution to approximate the real posterior
given the current estimation of model parameters ϕ. In the M-step, we maximize the
lower bound with respect to ϕ. The step is equivalent to the traditional presentation of
the EM algorithm, since the partial derivative of lower bound L with respect to ϕ for
fixed q equals to the partial derivative of the function

Eq

[
log P (D, ξ|ϕ)

]
,

which is the expectation of complete-data log-likelihood. More formally, the variational
EM algorithm is defined as:

1. Initialize q(0) and ϕ(0).
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2. Iterate the following steps until convergence.

E step: q(t) = arg max
q

L(q, ϕ(t−1)) (6.44)

M step: ϕ(t) = arg max
ϕ

L(q(t), ϕ), (6.45)

which can be viewed as coordinate ascent update over lower bound L.
Now we introduce the variational EM for finite Bayesian mixture model. For com-

putational efficiency, we consider the fully-factorized variational distribution defined in
Equation 6.21, thus the lower bound of the incomplete-data log-likelihood is defined as
Equation 6.22. In E-step, the lower bound is optimized with respect to the variational
parameters given the current hyperparameters α and β, which has been discussed in Sec-
tion 6.3.2. In M-step, the lower bound is optimized with respect to the hyperparameters.
Following we discuss the computation in M-step via the running example in Section 6.3.2.
In this case, the hyperparameters α and β are reduced to two positive real-value scalars, α0

and β0. We appeal to coordinate ascent algorithm to optimize the two hyperparameters.

0 =
∂L
∂α0

=
∂

∂α0

log Γ(α0)− log Γ(α0/K) + (α0/K − 1)
[
Ψ(λk)−Ψ(

∑
k′

λk′)
]

= Ψ(α0)−
1

K
Ψ(α0/K) +

1

K
[Ψ(λk)−Ψ(

∑
k′

λk′)]. (6.46)

It is obvious that the equation is not easy to solve. We again employ the Newton’s method
to find the roots. It yields:

α
(t′)
0 = α

(t′−1)
0 − f(α

(t′−1)
0 )

f ′(α
(t′−1)
0 )

(6.47)

where

f(α
(t′−1)
0 )) = Ψ(α

(t′−1)
0 )− 1

K
Ψ(α

(t′−1)
0 /K) +

1

K
[Ψ(λk)−Ψ(

∑
k′

λk′)] (6.48)

f ′(α
(t′−1)
0 ) = Ψ′(α

(t′−1)
0 )− 1

K2
Ψ′(α

(t′−1)
0 /K). (6.49)

Equivalently, β0 is updated as:

β
(t′)
0 = β

(t′−1)
0 − f(β

(t′−1)
0 )

f ′(β
(t′−1)
0 )

, (6.50)

where

f(β
(t′−1)
0 ) = K × [Ψ(β

(t′−1)
0 )−Ψ(β

(t′−1)
0 /K)] +

∑
k

[
Ψ(τk,s)−Ψ(

∑
s′

τk,s′)

]
(6.51)

f ′(β
(t′−1)
0 ) = K ×Ψ′(β

(t′−1)
0 )−Ψ′(β

(t′−1)
0 /K). (6.52)
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6.3.4 Predictive Inference

In this section, we discuss the predictive inference of mixture model in full Bayesian
framework. There are two main prediction tasks: one is to predict the new observa-
tions P (ynew|D, α, β), the other is to predict the cluster assignments of new observations
P (znew = k|ynew, D, α, β). As the unknown parameters π and Θ themselves are ran-
dom variables in full Bayesian framework, the predictive probabilities can not be directly
computed as Section 6.2.3.

Predictive inference with Gibbs sampling

At each iteration of the MCMC method zi, θk and π are drawn for i = {1, . . . , N}
and k = {1, . . . , K}. When the sequence converges, the predictive distributions are
approximated over the samples. In particular, the first w members are discarded as
burn-in period and the last W members of the sequence are collected to estimate the
distributions of interest.

P (ynew|D, α, β) =
1

W

W+w∑
t=w+1

P (ynew|π(t), Θ(t))

=
1

W

W+w∑
t=w+1

K∑
k

π
(t)
k P (ynew|θ(t)

k )

P (znew = k|ynew, D, α, β) =
1

W

W+w∑
t=w+1

π
(t)
k P (ynew|θ(t)

k )∑K
k π

(t)
k P (ynew|θ(t)

k )
(6.53)

Predictive inference with variational approximation

When the coordinate ascent procedure reaches stationary point, the variational inference
method yields the optimized variational parameters and the corresponding variational
distribution is a close approximation to the true posterior of the unobservable variables
(Z, Θ and π), over which the prediction probabilities are computed.

P (ynew|D, α, β) =
∑

znew, π, Θ

P (ynew, znew, π, Θ|D, α, β)

=
∑

k

∫
P (π, Θ|D, α, β)πkP (ynew|θk)dπdΘ

≈
∑

k

∫
πkq(π|λ)dπ

∫
P (ynew|θk)q(θk|τk)dθk

=
∑

k

Eq(πk)Eq [P (ynew|θk)] .

P (znew = k|ynew, D, α, β) =
Eq(πk)Eq [P (ynew|θk)]∑
k Eq(πk)Eq [P (ynew|θk)]

. (6.54)
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6.4 Summary

In this chapter, we introduce the finite mixture model, which is widely used to solve
the clustering/classification problems. But there is one limitation in applying mixture
models, i.e. it is difficult to decide the number of mixture components in advance. A
principal solution for the problem is to embed the finite mixture model into a nonpara-
metric Bayesian framework, such that the number of mixture components can be very
flexible and can be optimized by the model itself based on the complexity of the data.
In the next chapter we will introduce the infinite mixture models and the corresponding
inference methods.



Chapter 7

Infinite Mixture Models

7.1 Introduction

The mixture models introduced in Chapter 6 are finite models, which assume that there
are a finite number of mixture components from which the samples are generated. How-
ever the assumption is not always practical, since in more cases than not it is difficult
to known the number of components in advance. If a wrong number is specified to the
model, the estimation will be completely divergent from the real situation. To remove
the constraint, many methods are developed. For example, Richardson and Green (1997)
introduced a hierarchical Bayesian method which encodes the uncertainty about the num-
ber of components via a new random variable, and then optimizes its value via a reversible
jump MCMC sampler. Unfortunately, the method might be ineffective when new data
generated from new components are available. In this situation, the model parameters
have to be trained again, the information learned in previous analysis can not be used to
accelerate the future learning process. A possible solution for the problem is to embed
the finite mixture model in a nonparametric Bayesian framework, e.g. Dirichlet process
(DP), such as the number of mixture components is not restricted and will be optimized
with respect to the data in a self-organized way. The new model is called infinite mixture
model. The term infinite does not mean the number of mixture components are infinite,
but the number is flexible and not fixed in advance. Due to combining with Dirichlet
process, the infinite mixture model is also referred to as Dirichlet process mixture model.

In a DP mixture model, the underlying sample θi generated from a DP is treated as
the parameters of the distribution of the observation yi, i.e. yi ∼ P (·|θi). The model takes
advantage of the discreteness property of Dirichlet process, in particular, a distribution
drawn from a DP places its probability mass on a countably infinite subset of the underly-
ing sample (θi) space. The parameters θi’s are viewed as the hidden variables, one for each
observation. They are indicators to specify which components the observations are gener-
ated. The observations with identical parameter values are assumed to be the members in
the same cluster. Thus Dirichlet process provides a clustering effect for the observations.
Furthermore, the parameters for a new observation may take on existing values or new
values, i.e. the new observation is a member of an existing cluster or a member of a new
cluster. That means new mixture components continue to emerge with additional data

95
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(a) (b)

Figure 7.1: Dirichlet process mixture model.

as many as necessary. Therefore the DP mixture model might have an infinite number of
clusters and infer the structure of the data automatically and increasingly.

For inference computation in a DP mixture model, the traditional solution is Markov
chain Monte Carlo (MCMC) simulation methods, including collapsed Gibbs sampling
(Neal, 2000), blocked Gibbs sampling (Ishwaran & James, 2001) and so on. For com-
putational efficiency, Blei and Jordan (2005) introduced a variational inference method,
which is motivated by the truncated stick-breaking construction. While less accurate
than MCMC sampling methods, the variational approximation provides a fast solution
for inference in a DP mixture model.

7.2 Model Description

Dirichlet Process mixture model was introduced by Antoniak (1974), which embeds the
finite mixture model in a nonparametric Bayesian framework as shown in Figure 7.1. The
generative process of the model is defined as:

G|G0, α0 ∼ DP (G0, α0)

θi|G ∼ G(·), i = 1, . . . , N

yi|θi ∼ P (·|θi).

In particular, we draw a prior distribution G from a DP with hyperparameters α0 and G0,
draw parameters Θ = {θ1, . . . , θN} from G, and draw observations conditioned on the cor-
responding parameters. The observations with identical parameter values are generated
from the same mixture components, thus have the same cluster assignments. Suppose
there are K ≤ N distinct values {θ∗1, . . . , θ∗K} in the N parameters. Then the DP mixture
model partitions the observations into K groups in a nature way. The joint probability
of the model is defined as:

P (G|α0, G0)
N∏

i=1

P (θi|G)P (yi|θi) (7.1)
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There is a practical problem in the DP mixture model, i.e. it is difficult to drawn G
directly from a DP given hyperparameters α0 and G0, since the probability function space
is infinite. There are mainly three approaches to remove the computational constraint.
The first approach is the Pólya Urn process, we have discussed in Section 4.3.3. The second
approach is the Chinese restaurant process (CRP) (Aldous, 1985), which directly draws
the parameters θi with an auxiliary variable zi. This solution supplies an explanation
about the clustering effect of DP. The third approach is the stick breaking construction
(SBC) (Sethuraman, 1994), which explicitly draws a random distribution G from a DP
as a sum of infinite weighted components.

7.2.1 Chinese Restaurant Process

Figure 7.2: Chinese Restaurant Process (Aldous, 1985). After N customers have entered
a restaurant, K tables are occupied. Associated with the table k are parameters θ∗k.

Chinese restaurant process (CRP) was introduced by Aldous (1985), which provides
a sampling method to integrate out the random distribution G and directly draws un-
derlying samples from a DP. In Chinese restaurant process it is assumed that customers
sit down in a Chinese restaurant with an infinite number of tables. An auxiliary discrete
variable zi is introduced for each custom, the fact that zi = k means that customer i
sits at table k. Associated with each table k are parameters θ∗k, that are independently
drawn from the base distribution G0. The Chinese restaurant process can be shown as
Figure 7.2. In detail:

1. The first customer sits at the first table, z1 = 1; and θ∗1 are generated from G0 for
the table.

2. With probability 1/(1 + α0), the second customer also sits at the first table, z2 = 1,
and inherits θ∗1; with probability α0/(1 + α0) the customer sits at the second table,
z2 = 2, and new parameters are generated, θ∗2 ∼ G0, for the second table.

3. We continue this process, after N customers have entered the room, K tables are
occupied, Nk customers occupy table k.

4. Customer N + 1 enters the restaurant, he sits with probability

Nk

N + α0

(7.2)
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at a previously occupied table k and inherits θ∗k. Thus: zN+1 = k, Nk ← Nk + 1

5. With probability

α0

N + α0

(7.3)

the customer sits at a new table K + 1. Thus: zN+1 = K + 1, NK+1 = 1.

6. For the new table, new parameters are generated, θ∗K+1 ∼ G0 and K ← K + 1.

When the auxiliary variable zi is sampled for each observation (customer), their param-
eters θ∗zi

are decided, and then the observation is sampled from P (·|θ∗zi
). The Chinese

restaurant process clearly exhibits clustering effect of DP. The observations are randomly
partitioned according to their hidden variables. The observations with the identical hid-
den state are in the same cluster. With probability proportional to Nk (Equation 7.2),
a new observation is assigned to an existing cluster, with probability proportional to α0

(Equation 7.3), the new observation is assigned to a new cluster. It is obvious that the
larger α0 is, the more likely new clusters emerge. The larger the size of a cluster is, the
more likely a new observation is assigned to the cluster. From this point of view, DP
mixture model can be viewed as a flexible mixture model where the number of mixture
components is optimized by the model itself and might increase when new observations
are available.

7.2.2 Stick Breaking Construction

Stick breaking construction (SBC) is another well-known representation of DP, which was
introduced by Sethuraman (1994). The method explicitly draws the random distribution
G from DP(G0, α0) as an infinite sum:

G =
∞∑

k=1

πkδθ∗k
. (7.4)

Where δθ∗k
is a distribution with a point mass on θ∗k. πk > 0 and

∑∞
k=1 πk = 1. The

SBC representation highlights the view of infinite mixture. θ∗k can be interpreted as

mixture components, and θ∗k
i.i.d.∼ G0 are independently drawn from the base distribution

G0. π = (π1, . . . , π∞) can be viewed as mixture weights, and are generated via the stick
breaking procedure, denoted as Stick(α0):

vk ∼ Beta(1, α0); π1 = v1, πk = vk

k−1∏
k′=1

(1− vk′). (7.5)

For the DP mixture model with stick breaking representation shown as Figure 7.3, it is
convenient to introduce an auxiliary hidden variable zi with an infinite number of states for
each observation. Samples from G can now equivalently be generated by selecting a state
of zi with probability defined by Stick(α0) and by then again inherit the corresponding
mixture components specified by the state of zi. The generative model can be defined as:
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(a) (b)

(c) (d)

Figure 7.3: Dirichlet process mixture model with stick-breaking construction. (a) The
mixture weights are shown as π with infinite dimensions. (b) The mixture weights are
shown as an infinite number of vk’s. (c) The process of how to generate π from vk’s,
i.e. Equation 7.5. (d) Beta distributions with different parameters.

1. Draw mixing weights π ∼ Stick(α0) as Equation 7.5.

2. Draw i.i.d. parameters θ∗k ∼ G0, k = 1, 2, . . ..

3. For each observation yi,

(a) Draw zi ∼ Mult(π),

(b) Draw yi ∼ P (·|θ∗zi
).

Ishwaran and James (2001) developed truncated Dirichlet process (TDP), which is
equivalent to Dirichlet process except that there are only K distinct mixture components.
We can obtain TDP by setting vK = 1. The truncated DP closely approximates a true
Dirichlet process when K is large enough. The value of K is related to the number of
observations.

7.3 Inference

The key inferential problem in a DP mixture model is to compute the joint posterior
distribution of the unobservable variables given observations D = {y1, . . . , yN}. The
unobservable variables in the model include: random distribution G and parameters Θ =
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{θ1, . . . , θN}, one for each observation. Thus the joint posterior distribution is defined as:

P (G, Θ|D, α0, G0) =
P (G|α0, G0)

∏N
i=1 P (θi|G)P (yi|θi)

P (D|α0, G0)
, (7.6)

where the normalization term P (D|α0, G0) is:∫
P (G|α0, G0)

N∏
i=1

P (θi|G)P (yi|θi)dθ1, . . . , dθNdG. (7.7)

Unfortunately, the computation of the posterior is analytically intractable. To solve the
problem, we consider to represent DP via Chinese restaurant process or stick breaking
construction. Although the exact inference is impossible, many approximate methods
can be considered, e.g. collapsed Gibbs sampling with CRP (Neal, 2000), blocked Gibbs
sampling with truncated SBC (Ishwaran & James, 2001) and variational inference with
truncated SBC (Blei & Jordan, 2005). Note, that the unobservable variables are different
when using different DP representations.

In the following sections, we will illustrate these inference methods with a particular
example. Assume that there are N observations D = {y1, . . . , yN} generated from a DP
mixture model with parameters α0 and G0. yi is a discrete variable with S possible states
and follows multinomial distribution with parameters θi. For computational efficiency, we
assume G0 is a conjugate Dirichlet distribution. The assumption is not so strict, since
the prior G sampled from a DP can be of arbitrary mathematic form despite a Dirichlet
base distribution G0. The parameters of base distribution G0 are (β0, β), where β0 > 0,
β = (β1, . . . , βS), βs > 0 and

∑S
s=1 βs = 1. We assume βs = 1/S, which means we believe

that each state occurs with equal probability. Thus there are only two hyperparameters
α0 and β0 in the running example. β0 represents our confidence about the prior belief that
the multinomial parameters should be equal. α0 represents how strongly the parameters
of observations should be coupled. If α0 is chosen to be small, only few clusters are
generated and the parameters tend to be highly coupled. If α0 is chosen to be large, the
coupling is loose and more clusters are formed.

7.3.1 Collapsed Gibbs Sampling with CRP

Neal (2000) introduced a collapsed Gibbs sampling method for inference in the DP mixture
model, which integrates out all random variables except for the auxiliary variables Z =
{z1, . . . , zN}. The Markov chain of the method is thus defined only on the auxiliary
variables. The main idea of the method is to iteratively sample each hidden variables zi

conditioned on the others Z−i until the procedure reaches a stationary point. In particular,
zi is updated as follows:

1. zi = k and the observation yi inherits the parameters θ∗k assigned to the component
k:

P (zi = k|D, Z−i, α0, G0) ∝ Nk P (yi|D−i, zi = k, Z−i, G0), (7.8)

where D−i denotes all observations except for yi.
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2. Instead, a new state K + 1 is generated with probability

P (zi = K + 1|D, Z−i, α0, G0) ∝ α0 P (yi|G0). (7.9)

Accordingly, new parameters θ∗K+1 are drawn from G0.

3. Each term in Equation 7.8 and Equation 7.9 is computed as:

P (yi|D−i, zi = k, Z−i, G0) =

∫
P (θ∗k|D−i, Z−i, G0)P (yi|θ∗k)dθ∗k

= EP (θ∗k|D−i,Z−i,G0) [P (yi|θ∗k)] . (7.10)

P (yi|G0) =

∫
P (θ∗new|G0)P (yi|θ∗new)dθ∗new

= EP (θ∗new|G0) [P (yi|θ∗new)] . (7.11)

To perform the Gibbs sampling, the integrations in Equation 7.10 and 7.11 need to be
computed. It is tractable if P (θ∗k|G0) and P (yi|θ∗k) are assumed to be of manageable form.
For example, we assume that P (yi|θ∗k) is a distribution in the exponential family and
P (θ∗k|G0) is conjugated with P (yi|θ∗k). If P (θ∗k|G0) and P (yi|θ∗k) are not of manageable
form, we can consider a numerical method to implement the integrations, e.g. Gaussian
quadrature method (Naylor & Smith, 1982; Evans & Swartz, 1995).

We now discuss the computational details in the sampling process via the running
example. In detail:

1. For each observation yi, initialize z
(0)
i . In practice, we can assume that each obser-

vation in its own cluster, i.e. z
(0)
i = i.

2. Iterate the following steps for t = 1, 2, . . ..

• Update z
(t)
i conditioned on {z(t)

1 , . . . , z
(t)
i−1, z

(t−1)
i+1 , . . . , z

(t−1)
N }.

• Assign z
(t)
i an existing value with probability proportional to

N
(t)
k

∫
P (θ∗k|D−i, Z

(t)
−i , G0)P (yi|θ∗k)dθ∗k. (7.12)

Where N
(t)
k is the number of observations with hidden state k at iteration t.

P (yi|θ∗k) = θ∗k,yi
. P (θ∗k|D−i, Z

(t)
−i , G0) is the posterior distribution of θ∗k. Since we

assume a conjugate distribution for G0, P (θ∗k|D−i, Z
(t)
−i , G0) is still a Dirichlet

distribution, but the parameters become

βpost = (
β0

S
+ N (t)(k, 1), . . . ,

β0

S
+ N (t)(k, S)).
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Where N (t)(k, s) is the sufficient statistic about the observations, which is
the number of observations with hidden state k and value s at iteration t,
N

(t)
k =

∑
s N (t)(k, s). In summary, Equation 7.12 equals to

N
(t)
k

β0

S
+ N (t)(k, yi)

β0 + N
(t)
k

.

• Instead, a new value is generated with probability proportional to

α0

∫
P (θ∗new|G0)P (yi|θ∗new)dθ∗new

= α0EP (θ∗new|G0)(θ
∗
new,yi

) =
α0

S
. (7.13)

• i← i + 1, go to update the next z
(t)
i .

3. Stop until a stationary point reaches.

7.3.2 Blocked Gibbs Sampling with Truncated DP

In the collapsed Gibbs sampling method, the hidden variables are updated one at a
time which potentially slows down the method. In this section, we introduce another
Gibbs sampling method, which exploits the truncated stick breaking process (Ishwaran &
James, 2001). The method is sometimes referred to as blocked Gibbs sampler (BGS). In
BGS, the posterior distribution for hidden variables can be explicitly drawn from DP via a
truncated stick-breaking construction. The advantage is that: given the posterior, one can
independently sample the auxiliary variables in a block. In each iteration of the Markov
chain, the sampled variables include not only the hidden variables Z = {z1, . . . , zN}, but
also the parameters, π and Θ∗ = {θ∗1, . . . , θ∗K}. In detail:

1. Sample the hidden variable zi independently:

P (zi = k|D, Z−i, π, Θ, α0, G0) = P (zi = k|yi, π)

∝ πkP (yi|θ∗k). (7.14)

2. Update π as follows:

(a) Sample vk independently from the distribution Beta(λk,1, λk,2) for k = 1, . . . , K−
1 with

λk,1 = 1 +
N∑

i=1

δk(zi), λk,2 = α0 +
K∑

k′=k+1

N∑
i=1

δk′(zi), (7.15)

and set vK = 1. Where δk(zi) equals to 1 if zi = k and 0 otherwise.

(b) Compute π1 = v1; πk = vk

∏k−1
k′=1(1− vk′), k > 1.
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3. Update the parameters Θ∗ = {θ∗1, . . . , θ∗K} conditioned on Z and D:

θ∗k ∼ P (·|D, Z, G0). (7.16)

The main computation in the blocked Gibbs sampler is to compute the posterior distribu-
tion P (θ∗k|D, Z,G0) in Equation 7.16. Again if G0 and P (yi|θ∗k) are of manageable form,
the computation is analytically tractable, e.g. P (θ∗k|G0) is conjugate with P (yi|θ∗k). In
addition, the blocked Gibbs sampling method exploits the truncated Dirichlet process,
thus we need to decide the truncation parameter K in advance. When K is large enough,
the resulting distribution can be closely approximate the true distribution G. The value
of K is decided by the complexity of the data. In practice, we can set K as the number
of observations, and it will be automatically optimized in the sampling process.

For the running example, the blocked GS yields the following steps:

1. Take some initial values for Θ∗(0) and π(0). Note that the constraint
∑

k πk = 1

should be satisfied. In practice, we can assume π
(0)
k = 1/K.

2. Repeat for t = 1, 2, . . .

(a) The hidden variable zi is independently sampled with probability

P (zt
i = k|yi, π

(t), θ
∗(t)
k ) ∝ π

(t)
k P (yi|θ∗(t)k ) = π

(t)
k θ

∗(t)
k,yi

. (7.17)

(b) π(t) are updated as Equation 7.15.

(c) The parameters θ
∗(t)
k are sampled from the posterior distribution

P (θ
∗(t)
k |D, Z, G0) = Dir(·|βpost) (7.18)

Where βpost = (β0

S
+ N (t)(k, 1), . . . , β0

S
+ N (t)(k, S)). N (t)(k, s) is defined in

Section 7.3.1.

3. Stop until the joint distribution of Z, π and Θ∗ converges.

The blocked GS method for the DP mixture model is similar to the GS method for the
finite mixture model (Section 6.3.2), except for the sampling procedure of mixture weights
π. For the DP mixture model, π is sampled from a truncated stick-breaking construction
as Equation 7.15, but in the finite mixture model π are directly drawn from a posterior
Dirichlet distribution. In particular situations, the two models might give similar results,
but the underlying mechanisms are completely different.

7.3.3 Mean Field with Truncated DP

Although the blocked GS method is faster than the collapsed GS method by independently
sampling the hidden variables Z in a block, efficiency of the block GS method might be
still lower than our expectation, especially when the data is multi-variate, large-scale or
highly-correlated. Thus Blei and Jordan (2005) introduced a mean-field inference method
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(a) (b)

Figure 7.4: (a) DP mixture model with truncated stick-breaking construction. (b)
Graphic representation of the variational distribution assumed to approximate the poste-
rior of the unobservable variables in the DP mixture model. ηi, τk and λk are variational
parameters. Note, that there are one ηi for each observation, one τk and one λk for each
mixture component.

for the DP mixture model, which exploits the truncated stick-breaking construction of
DP. Mean-field is a simplest variation inference method, which assumes a fully-factorized
family of variational distributions to approximate the distribution of interest, Section 6.3.2
describes the main idea of mean field method. For more details, please refer to (Jordan
et al., 1998).

Figure 7.4(a) shows the DP mixture model with truncated stick-breaking construction,
where the unobservable variables include Z = {z1, . . . , zN}, V = {v1, . . . , vK} and Θ∗ =
{θ∗1, . . . , θ∗K}. Based on Jensen’s inequality, we obtain the lower bound of the log likelihood
of the observations:

log P (D|α0, G0) ≥ Eq

[
log P (D, Z, V, Θ∗|α0, G0)

]
− Eq [log q(Z, V, Θ∗)] , (7.19)

where q(Z, V, Θ∗) denotes the variational distribution. The larger the lower bound is,
the closer the variational distribution q(Z, V, Θ∗) approximates to the joint posterior
P (Z, V, Θ∗|D, α0, G0). Thus the posterior inference problem is now converted to an opti-
mization problem: to maximize the lower bound with respect to the variational distribu-
tion. For computational efficiency, a fully-factorized family of variational distributions is
assumed:

q(Z, V, Θ∗) =
K∏
k

q(vk|λk)q(θ
∗
k|τk)

N∏
i

q(zi|ηi). (7.20)

λk, τk and ηi are variational parameters. Note, that there is one τk and one λk for each
mixture component and one ηi for each observation. q(vk|λk) is a Beta distribution,
q(θ∗k|τk) is of the same mathematic form as G0, q(zi|ηi) is a multinomial distribution.
The variational distributions decouple some probabilistic dependencies, e.g. the hidden
variables Z = {z1, . . . , zN} are no longer drawn from a common multinomial prior, shown
as Figure 7.4(b). Given the fully-factorized variational distribution, the lower bound of
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the log-likelihood of observations is now defined as:

log P (D|α0, G0) ≥
K∑
k

Eq [log P (vk|α0)] +
K∑
k

Eq [log P (θ∗k|G0)]

+
N∑
i

Eq [log P (zi|V )] +
N∑
i

Eq [log P (yi|zi, Θ)]

− Eq [log q(Z, V, Θ)] . (7.21)

Following, we discuss computation of each term in Equation 7.21 via the running
example. Let us start from the first term.

Eq(vk|λk) [log P (vk|α0)]

= Eq(vk|λk)

[
log

Γ(1 + α0)

Γ(α0)
(1− vk)

α0−1

]
= log Γ(1 + α0)− log Γ(α0) + (α0 − 1)Eq(vk|λk) [log(1− vk)] . (7.22)

As discussed in Section 6.3.2, for an exponential family of distribution, the first derivative
of normalization factor is the expectation of sufficient statistic of the distribution. Since
the variational distribution q(vk|λk) is a Beta distribution Beta(λk,1, λk,2), we obtain:

Eq(vk|λk) [log(1− vk)] = Ψ(λk,2)−Ψ(λk,1 + λk,2). (7.23)

Thus the first term is computed as

Eq(vk|λk) [log P (vk|α0)]

= log Γ(1 + α0)− log Γ(α0) + (α0 − 1) [Ψ(λk,2)−Ψ(λk,1 + λk,2)] . (7.24)

The second and fourth terms in Equation 7.21 are computed in an equivalent way like
Section 6.3.2.

Eq(θ∗k|τk)[log P (θ∗k|G0)] = log Γ(
∑

s

βs)−
∑

s

log Γ(βs)

+
∑

s

(βs − 1)

[
Ψ(τk,s)−Ψ(

∑
s′

τk,s′)

]
. (7.25)

Eq(zi|ηi)
Q

k q(θk|τk)[log P (yi|zi, Θ)] =
∑

k

ηi,k

[
Ψ(τk,yi

)−Ψ(
∑

s

τk,s)

]
. (7.26)

The computation of the third term Eq [log P (zi|V )] is a little different from Section 6.3.2,

since the mixing weights π are a function of V in the DP mixture model, πk = vk

∏k−1
k′=1(1−
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vk′). We have

Eq [log P (zi|V )]

=
K∑

k=1

ηi,kEq [log πk]

=
K∑

k=1

ηi,k

{
Eq [log vk] +

k−1∑
k′=1

Eq[log(1− vk′)]

}

=
K∑

k=1

ηi,k

{
Ψ(λk,1)−Ψ(λk,1 + λk,2) +

k−1∑
k′=1

[Ψ(λk′,2)−Ψ(λk′,1 + λk′,2)]

}
. (7.27)

The negative entropy term Eq [log q(Z, V, Θ∗)] is computed as:

Eq

[
K∑

k=1

log q(vk|λk) +
K∑

k=1

log q(θ∗k|τk) +
N∑

i=1

log q(zi|ηi)

]

=
K∑

k=1

{
log Γ(λk,0)−

2∑
s=1

log Γ(λk,s) +
2∑

s=1

(λk,s − 1) [Ψ(λk,s)−Ψ(λk,0)]

}

+
K∑

k=1

{
log Γ(τk,0)−

S∑
s=1

log Γ(τk,s) +
S∑

s=1

(τk,s − 1) [Ψ(τk,s)−Ψ(τk,0)]

}

+
N∑

i=1

K∑
k=1

ηi,k log ηi,k. (7.28)

Where λk,0 = λk,1 + λk,2 and τk,0 =
∑S

s=1 τk,s.

After computing each term in Equation 7.21, we now discuss optimization of the
equation with respect to the variational parameters. It is obvious that the optimization
problem is analytically intractable, thus again we consider the coordinate ascent algorithm
as Section 6.3.2. It yields the following steps for the running example:

1. Randomly initialize the variational parameters. Note that the following constraints
should be satisfied. λk is Beta parameter, thus λk,1 > 0 and λk,2 > 0. τk are the
parameters of variational distribution q(θ∗k|τk) being of the same functional form as
G0. In the running example, G0 is a Dirichlet distribution, thus τk are Dirichlet
parameters and τk,s > 0. ηi are multinomial parameters, thus ηi,k ≥ 0 and

∑
k ηi,k =

1. In practice, we assume η
(0)
i,k = 1/K for i = 1, . . . , N and k = 1, . . . , K.
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2. Repeat the following computation until convergence.

λk,1 = 1 +
N∑

i=1

ηi,k, λk,2 = α0 +
N∑

i=1

K∑
k′=k+1

ηi,k′ , (7.29a)

τk,s =
β0

S
+

N∑
i=1

ηi,kδs(yi), (7.29b)

ηi,k ∝ exp

(
Eq [log vk] +

k−1∑
k′=1

Eq [log(1− vk′)] + Eq

[
log θ∗k,yi

])
. (7.29c)

Where δs(yi) equals to 1 if yi = s and 0 otherwise. The convergence is monitored
in an equivalent way like Section 6.3.2.

So far we have discussed three inference methods to approximate the posterior distri-
bution of unobservable variables in the DP mixture model. Generally, mean-field method
is much faster than the two GS methods, but GS methods provide more accurate predic-
tion results. For more comparison of the three methods, please refer to (Blei & Jordan,
2005). In this chapter we assume that the hyperparameters, α0 and G0, are known, in
some particular applications, the hyperparameters are unknown. For parameter learning
in the DP mixture model, please refer to (McAuliffe et al., 2006), which introduced an
empirical solution for the problem.

7.4 Predictive Inference

As finite mixture model, there are also two main prediction tasks in the DP mixture model,
one is to predict a new observation P (ynew|D, α0, G0), the other is to predict the cluster
assignment of a new observation P (znew = k|ynew, D, α0, G0). They can be computed in
the three inference methods introduced in the last section.

7.4.1 Collapsed Gibbs sampling

In collapsed GS method, the Markov chain consists of only the samples of hidden variables
Z(t) = {z(t)

1 , . . . , z
(t)
N }. When the sequence converges, the predictive distributions are

approximated over the samples. In particular, the first w members are discarded as burn-
in period and the last W members of the sequence are collected to estimate the predictive
distributions. Note, that the new observation yi may be generated from a new mixture
components in collapsed GS, thus znew takes a value from {1, . . . , K,K + 1}. For the
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running example, the predictive probabilities are computed as:

P (ynew|D, α0, G0)

≈ 1

W

W+w∑
t=w+1

K+1∑
k=1

∫
P (znew = k|Z(t), α0)P (ynew|θ∗k)P (θ∗k|Z(t), D, G0)dθ∗k

=
1

W

W+w∑
t=w+1

K+1∑
k=1

P (znew = k|Z(t), α0)EP (θ∗k|Z(t),D,G0) [P (ynew|θ∗k)] (7.30a)

P (znew = k|ynew, D, α0, G0)

∝ 1

W

W+w∑
t=w+1

∫
P (znew = k|Z(t), α0)P (ynew|θ∗k)P (θ∗k|Z(t), D,G0)dθ∗k

=
1

W

W+w∑
t=w+1

P (znew = k|Z(t), α0)EP (θ∗k|Z(t),D,G0) [P (ynew|θ∗k)] (7.30b)

The terms in Equation 7.30 are defined as follows:

1. If k = 1, . . . , K

P (znew = k|Z(t), α0) =
N

(t)
k

N + α0

(7.31a)

EP (θ∗k|Z(t),D,G0) [P (ynew|θ∗k)] =
β0

S
+ N (t)(k, ynew)

β0 + N
(t)
k

(7.31b)

Where N (t)(k, s) is the sufficient statistic about observations at the iteration t, which

denotes the number of observations with value s and hidden state k. N
(t)
k denotes

the number of observations with hidden state k at iteration t, N
(t)
k =

∑
s N (t)(k, s).

2. If k = K + 1

P (znew = k|Z(t), α0) =
α0

N + α0

(7.32a)

EP (θ∗k|G0) [P (ynew|θ∗k)] =
1

S
. (7.32b)

7.4.2 Blocked Gibbs sampling

In analogy to collapsed GS method, the prediction inference in block GS method is much
easier, since in each iteration the blocked sampler draws not only the hidden variables
Z(t) = {z(t)

1 , . . . , z
(t)
N }, but also the mixture weights π(t) and mixture components Θ∗(t) =
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{θ∗(t)1 , . . . , θ
∗(t)
K }. For the running example, the predictive probabilities are computed as:

P (ynew|D, α0, G0) ≈
1

W

W+w∑
t=w+1

K∑
k=1

P (znew = k|π(t))P (ynew|θ∗(t)k )

=
1

W

W+w∑
t=w+1

K∑
k=1

π
(t)
k θ

∗(t)
k,ynew

(7.33a)

P (znew = k|ynew, D, α0, G0) ≈
1

W

W+w∑
t=w+1

P (znew = k|π(t))P (ynew|θ∗(t)k )∑K
k P (znew = k|π(t))P (ynew|θ∗(t)k )

=
1

W

W+w∑
t=w+1

π
(t)
k θ

∗(t)
k,ynew∑K

k π
(t)
k θ

∗(t)
k,ynew

(7.33b)

Note, that the predictive probabilities are averaged over K (not K + 1) hidden states,
since block GS method exploits truncated stick-breaking construction of DP, the new
observation can only be generated from an existing mixture component, i.e. znew takes a
value from {1, . . . , K}.

7.4.3 Mean field

When the updating process converges, mean-field inference method yields optimized vari-
ational parameters η, τ, λ, with which the variational distribution q(Z, V, Θ∗) closely ap-
proximates the posterior distribution P (Z, V, Θ∗|D, α0, G0). Thus the prediction inference
is implemented with the optimized distribution q(Z, V, Θ∗). For the running example, the
predictive probabilities are computed as:

P (ynew|D, α0, G0)

=
K∑

k=1

∫
P (ynew, znew = k, π, Θ∗|D, α0, G0)dπdΘ∗

=
K∑

k=1

∫
πkP (π|D, α0, , G0)dπ

∫
P (ynew|θ∗k)P (θ∗k|D, α0, G0)dθ∗k

≈
K∑

k=1

∫
πkq(π)dπ

∫
P (ynew|θ∗k)q(θ∗k)dθ∗k

=
K∑

k=1

Eq(πk)Eq [P (ynew|θ∗k)] . (7.34)

The prediction of the hidden state for a new observation is computed as:

P (znew = k|ynew, D, α0, G0) ∝ Eq(πk)Eq [P (ynew|θ∗k)] . (7.35)
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Let λk,0 = λk,1 + λk,2 and τk,0 =
∑S

s=1 τk,s. Each term in Equation 7.34 and 7.35 is
computed as follows.

Eq(πk) = Eq

[
vk

k−1∏
k′=1

(1− vk′)

]
=

λk,1

λk,0

k−1∏
k′=1

λk′,2

λk′,0
. (7.36)

Since the observations are multinomial in the running example, we can compute the
expectation Eq [P (ynew|θ∗k)] as:

Eq [P (ynew|θ∗k)] = Eq(θ
∗
k,ynew

) =
τk,ynew

τk,0

. (7.37)

In summary, the predictive probability is computed as:

P (ynew|D, α0, G0) ≈
K∑

k=1

τk,ynewλk,1

τk,0λk,0

k−1∏
k′=1

λk′,2

λk′,0
(7.38)

P (znew = k|ynew, D, α0, G0) ∝
τk,ynewλk,1

τk,0λk,0

k−1∏
k′=1

λk′,2

λk′,0
. (7.39)

7.5 Summary

In this chapter we introduce Dirichlet process mixture model, which extends the flexibility
of the finite mixture model by encoding the uncertainty about the number of mixture com-
ponents in an elegant way. The DP mixture model assumes that the parameters, one for
each observation, share a common prior G drawn from a Dirichlet process DP (α0, G0).
The model can be viewed as an extension of the nonparametric hierarchical Bayesian
model introduced in Chapter 4 by focusing on the discreteness property of random distri-
bution G. The advantage of the nonparametric mixture model is that the number of states
of the hidden variables can be optimized by the model itself based on the complexity of
the data and can increase when additional data is available.

In the next chapter, we will discuss the applications of DP mixture model in relational
learning. Typically, structural model selection in a relational system is extensive due to
the exponentially many attributes an attribute might depend on. To solve the problem, we
apply DP mixture modeling to relational data, such that the attributes and relations only
depend on the corresponding hidden variables, i.e. the cluster assignments. Although the
probability structures and parameter dependencies are specified in advance, the learned
models are still flexible enough to approximate the posterior distributions of variables of
interest by propagating information in the whole ground network defined by the relational
structure.



Chapter 8

Infinite Hidden Relational Models

8.1 Introduction

Relational learning is an object oriented approach that clearly distinguishes between ob-
jects, attributes and relationships. The learned dependencies encode probabilistic con-
straints in the relational domain. A simple example of a relational system is a movie
recommendation system. There are two entity classes (User and Movie) and one relation-
ship class (Like: whether a user likes a movie). User class has attribute classes, e.g. age,
gender, occupation and so on. Movie class has attribute classes, e.g. genre, year and so
on. Like class has attribute class R, which can be yes/no, or rating (to which extent a
user likes a movie). Based on the attributes of the two entities, i.e. of the user and the
movie, a recommendation system wants to predict the relationship attribute R. Figure 8.1
shows a relational model in a directed acyclic probabilistic entity relationship (DAPER)
representation (Heckerman et al., 2004), which is our preferred representation of rela-
tional models. The table at the bottom of Figure 8.1 lists known relationships between
8 users and 7 movies. Figure 8.1(c) shows the ground Bayesian network given the model
and the relationships. It is clear that entity attributes locally predict the probability of
a relationship attribute. Whether a user likes a movie is decided by the user and movie
attributes. Thus given the parent attributes all relational attributes are independent.
That means the known ratings from the user of interest do not influence the prediction of
future ratings of the user. To solve the limitation, structural learning might be involved
to obtain non-local dependency. But structural model selection should be extensive due
to the exponentially many attributes an attribute might depend on.

From this point of view it can make sense to introduce hidden variables representing
unknown attributes of the entities, e.g. the preference of users in the movie recommenda-
tion example. Entity attributes are now children of hidden variables of the corresponding
entities and relationship attributes are children of hidden variables of the entities partic-
ipating in the relationships. Since the central importance the hidden variables are, we
refer it to hidden relational model (HRM). In HRM, the ground Bayesian network forms
a network of hidden variables via the relational structure. It can be viewed on as a direct
generalization of hidden Markov model used in speech recognition or hidden Markov ran-
dom field used in computer vision (Yedidia et al., 2005). As in those models, information
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(a) (c)

(b)

Figure 8.1: (a) A relational model on the movie recommendation system.(b) A table
about known relationships between 8 users and 7 movies. (c) Ground Bayesian network
applying the relational model (a) on the data set (b).

Figure 8.2: A ground Bayesian network about heart condition in a family. The informa-
tion about heart condition of grandfather propagates to the son via the hidden variables.
The dashed line specifies how the information flows to the variable of interest.

can propagate across the network of hidden variables. Figure 8.2 gives an example of how
information propagates. The fact that a person’s grandfather had a heart condition is
reflected in his hidden variable, which then influences the hidden variable of her father
(who might not have a heart condition) which influences her own hidden variable, which
then changes the probability for her obtaining a heart condition. HRM can also be inter-
preted as a relational mixture model, which provides clustering effect for the entities in a
natural way. The cluster assignments of entities depend not only on the entity attributes,
but also on the relationships between entities. It can be viewed on as a generalization of
co-clustering model (Hofmann & Puzicha, 1999).

Since each entity class might have the different number of states in its hidden vari-
able, it is natural to allow the model to determine the appropriate number of hidden states
in a self-organized way. This is possible by embedding HRM in Dirichlet process (DP)
mixture model, which can be interpreted as a mixture model with an infinite number
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of mixture components but where the model, based on the data, automatically reduces
the complexity to an appropriate finite number of components. The combination of the
hidden relational model and the DP mixture model is the infinite hidden relational model
(IHRM), which can be viewed as an extension of nonparametric hierarchical Bayesian
modeling to relational data. The difference from the Dirichlet enhanced relational model
introduced in Chapter 5 is that IHRM focuses on the discreteness property of DP and
incorporates the relationships into the probabilistic model by existence uncertainty mech-
anism (Getoor et al., 2003). IHRM is one of the main contributions in the thesis and was
published in (Xu et al., 2006) and (Xu et al., 2007).

As in other relational models, inference in IHRM is executed in a large interconnected
ground network. Thus being able to perform efficient inference is critical for the success
of the model. To solve the problem, we propose collapsed Gibbs sampling, blocked Gibbs
sampling, mean-field method and an empirical approximation, which can be viewed as
an relational extension of the inference methods in (Escobar & West, 1995; Escobar &
West, 1998; Ishwaran & James, 2001; Blei & Jordan, 2005). For experimental analysis,
we apply IHRM model in three domains, including: the medical recommendation system,
the movie recommendation system and the function prediction of genes. The promising
results demonstrate the performance of IHRM.

8.2 Model Description

Infinite hidden relational model (IHRM) is a new development in the thesis which tends
to set up a general and effective framework to model the relational data. An IHRM
can be viewed as a template, which specifies the probabilistic dependencies and distri-
butions for types of entities and relationships. Given an IHRM and instantiated entities
and relationships, a ground Bayesian network is formed, over which the probabilities of
variables of interest can be inferred. In this section, we first introduce the finite hidden
relational model (HRM) and then extend it to infinite version (IHRM), at last we provide
two generative models describing how to generate data given an IHRM.

8.2.1 Hidden Relational Model

Figure 8.3 shows a HRM on the movie recommendation system. (a) and (b) describe the
model in the DAPER and plate representations, respectively. The first innovation of HRM
is to introduce for each entity a hidden variable, in the example denoted as Zu and Zm.
They can be thought of as unknown attributes of the entities and are the parents of both
the entity attributes and the relationship attributes. The underlying assumption is that if
the hidden variable was known, both entity attributes and relationship attributes can be
well predicted. The most important result from introducing the hidden variables is that
now information can propagate through the ground Bayesian network via interconnected
hidden variables. For example, given a ground Bayesian network of HRM shown as
Figure 8.3(c), let us consider a predictive inference about the relationship attribute, say
R2,7 between user 2 and movie 7. The probability is calculated on the evidence about (1)
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(a)

(b)

(c)

Figure 8.3: Hidden relational model (HRM) for movie recommendation system. (a)
DAPER representation. (b) Plate representation. (c) Ground Bayesian network given
users, movies and relationships in Figure 8.1(b).



8.2. MODEL DESCRIPTION 115

the attributes of the immediately related entities, i.e. of user 2 and movie 7, (2) the other
relationships associated with the entities, i.e. the ratings R2,1, R2,2, R2,4 from the user 2
and the ratings R5,7, R7,7, R8,7 about the movie 7, (3) high-order information transferred
via the hidden variables in the ground Bayesian network, e.g., the information about Au

4

and R4,∗ propagated through Zu
4 and Zm

4 . Via collecting more evidence, HRM potentially
provides more accurate prediction results than the traditional relational models. From
the figure, it is clear that the hidden states of the entities are decided not only by their
attributes, but also by their relationships. If both the associated users and movies have
strong known attributes, those will determine the states of the hidden variables and the
prediction for relationship attribute Ri,j is mostly based on the entity attributes. In terms
of a recommender-system terminology we would obtain a content-based recommendation
system. Conversely, if the known attributes are weak, then the states of the hidden
variables for the users might be determined by the relationships to other movies and
the states of those movies’ hidden variables. With the same argument, the states of the
hidden variables for the movies might be determined by the relationships to other users
and the states of those users’ hidden variables. Again in terms of a recommender-system
terminology we would obtain a (item-based) collaborative-filtering system. As an extra
advantage, HRM provides an elegant way to combine the content-based recommendation
methods with collaborative-filtering methods.

In summary, by introducing the hidden variables, information can globally flow in the
ground Bayesian network defined by the relationship structure. This reduces the need
for extensive structural learning, which is particularly difficult in relational models due
to the huge number of potential parents. Note that a similar propagation of information
can be observed in hidden Markov models used in speech recognition or in the hidden
Markov random fields used in image analysis (Yedidia et al., 2005). In fact the HRM can
be viewed as a direct generalization of both models for relational data. Additionally, the
HRM naturally provides clustering effect as a mixture model. The assignments of hidden
variables Zu and Zm specify the clusters of the corresponding entities.

We now complete the model by introducing the variables. First we consider the vari-
ables in User class. There is a hidden variable Zu

i with Ku states for each user. The
assignment Zu

i = k specifies the mixture component of the user i. The mixing weights
πu = (πu

1 , . . . , πu
Ku) are multinomial parameters with P (Zu = k) = πu

k (πu
k > 0,

∑
k πu

k = 1)
and are drawn from a conjugated Dirichlet prior, πu ∼ Dir(·|αu

0 , α
u
1 , . . . , α

u
Ku). αu

k > 0,∑Ku

k=1 αu
k = 1. αu

k represents our prior expectation about the probability of a user taking
hidden state k. In practice, we can assume a neutral prior with αu

k = 1/Ku, which repre-
sents our prior belief in the fact that the probabilities of hidden states should be equal.
αu

0 > 0 is a confidence parameter indicating how strongly we believe that the prior brief
represented by αu

k should be true. The larger the value is, the stronger our belief is.
All user attributes are assumed to be discrete and independent given Zu. Thus a

particular user attribute Au
i with S states is a sample from a multinomial distribution

conditioned on Zu
i , P (Au

i = s|Zu
i = k) = θu

k,s (θu
k,s > 0,

∑
s θu

k,s = 1) and

(θu
k,1, . . . , θ

u
k,S) ∼ Gu

0 = Dir(·|βu
0 , βu

1 , . . . , βu
S). (8.1)∑S

s=1 βu
s = 1, βu

s > 0. Again βu
s represents our prior expectation about the probability of
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user attribute. βu
0 > 0 is a confidence parameter about our prior brief βu. The parameters

for the entity class Movie are defined in an equivalent way.
We now consider the variables in the relationship class. In the running example, the

relationship attribute R is assumed to be discrete with Sr states. A particular relationship
is a sample drawn from a multinomial distribution conditioned on Zu and Zm, P (Ri,j =
s|Zu

i = k, Zm
j = `) = φk,`,s (φk,`,s > 0,

∑
s φk,`,s = 1). Note, that there are Ku × Km

parameters φk,` and they are drawn:

(φk,`,1, . . . , φk,`,Sr) ∼ Gr
0 = Dir(·|βr

0 , β
r
1 , . . . , β

r
Sr), (8.2)

where βr
s > 0,

∑Sr

s=1 βr
s = 1 and βr

0 > 0. If the entity attribute, resp. relationship
attribute is continuous, we only need to assume the prior Gu

0 resp. Gr
0 a suitable form,

e.g. a Gaussian distribution.
From mixture model point of view, the most interesting term in HRM is φk,`, which

can be interpreted as a correlation mixture component. It makes the two distinct mixture
systems coupled. If a user i is assigned to a cluster k, i.e. Zu

i = k, then he inherits not only
θu

k , but also φk,`, ` = {1, . . . , Km}. If a new user cluster is generated, then a new mixture
component θc

Kc+1 will be sampled, and a set of new correlation mixture components will
accordingly be sampled , φKu+1,`, ` = {1, . . . , Km}.

8.2.2 Infinite Hidden Relational Model

(a) (b)

Figure 8.4: Infinite hidden relational model (IHRM) for movie recommendation system
in the plate representation. (a) and (b) describe the same model, but (b) explicitly
specifies how to generate the mixing weights π via the stick breaking construction. The
DAPER representation of IHRM looks the same as the finite hidden relational model in
Figure 8.3(a). However, the definitions of variables are different.

The hidden variables play a key role in HRM, we would expect that HRM might require
a large number of states for the hidden variables. Consider again the movie recommen-
dation system. With little information about past ratings all users might look the same
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(movies are globally liked or disliked), with more information available, one might dis-
cover certain clusters in the users (action movie aficionados, comedy aficionados, ...) but
with an increasing number of past ratings the clusters might show increasingly detailed
structure ultimately indicating that everyone is an individual. It thus makes sense to
permit an arbitrary number of hidden states by integrating with a Dirichlet process mix-
ture model. This permits the model to decide itself about the optimal number of hidden
states for each entity class. For our discussion it suffices to say that we obtain an infinite
hidden relational model by simply letting the number of hidden states approach infinity,
Ku → ∞, Km → ∞. Figure 8.4 shows the infinite model in the plate representation.
The DAPER representation of IHRM looks the same as the finite HRM in Figure 8.3.
However, the definitions of variables are different. For example, the hidden variable Zu

i

has infinite states, and thus there are infinite mixture component θu
k . The mixing weights

πu are also infinite dimensional, which are generated not from a Dirichlet prior, but from
a stick breaking construction Stick(·|αu

0) (more details in the next section). Although a
model with the infinite number of states and parameters cannot be represented, sampling
in such model is elegant and simple (see the next section). In the relational Dirichlet
process mixture model, αu

0 , resp. αm
0 determines the tendency of the model to either use a

large number or a small number of states in the hidden variables, which is apparent from
the sampling procedures described below. If αu

0 , resp. αm
0 , is chosen to be small, only few

clusters are generated and the parameters tend to be highly coupled. If αu
0 , resp. αm

0 , is
chosen to be large, the coupling is loose and more clusters are generated. From Figure 8.4,
it is clear that we introduce multiple DPs, one for each entity class, and these DPs are
coupled together by relationship attributes R and correlation mixture components φk,`.

8.2.3 Generative Models

Now we describe the generative models for IHRM. There are mainly two common methods
to generate samples from a Dirichlet process (DP) mixture model, i.e., Chinese restaurant
process (CRP) (Aldous, 1985) and stick breaking construction (SBC) (Sethuraman, 1994).
We will introduce how to extend them to IHRM. To describe the generative models, we
need some notation. Let the number of entity classes be C, and let Gc

0 and αc
0 denote the

base distribution and concentration parameter for entity class c. In an entity class c, there
are N c entities ec

i indexed by i, and Kc mixture components θc
k indexed by k. θc

k denotes
the parameters of distribution of the entity attributes. The number of relationship classes
is denoted by B. Gb

0 denotes the base distribution of a relationship class b. In order to
avoid a cluttering of notation, we only describe relationships between two entity classes.
The generalization to relationships involving multiple entity classes is straightforward. For
a relationship class b between two entity classes ci and cj, there are Kci ×Kcj correlation
mixture components φb

k,` indexed by hidden states k for ci and ` for cj. φb
k,` denotes the

parameters of distribution of relationship attributes. Here we restrict ourselves that the
entity and relationship attributes are drawn from exponential family distributions with
parameters θc

k and φb
k,`, respectively. The base distributions Gc

0 and Gb
0 are the conjugate

priors with the hyperparameters βc and βb. In the following sections, we discuss the
computation based on these assumptions, for computation in more complex situations,
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e.g. non-conjugated base distributions, please refer to (Liu, 1996; MacEachern et al.,
1999; Newton & Zhang, 1999; Quintana & Newton, 2000; Blei & Jordan, 2005).

Generative Model with Chinese Restaurant Process

Chinese restaurant process (CRP) (Aldous, 1985) integrates out the random distributions
of parameters and directly draws the underlying samples sequentially. Extending CRP to
the IHRM, the future entities are generated on previously sampled entities. In detail:

1. Initialization:

(a) The first entity ec
1 in each of C entity classes is assigned to the first cluster,

the first mixture component θc
1 is sampled, then the entity attribute is drawn.

Zc
1 = 1; θc

1 ∼ Gc
0; Ac

1 ∼ P (·|θc
1). (8.3)

(b) For each relationship class b between entity classes c and c′, the correlation
mixture component φb

1,1 is drawn from Gb
0. And then the relationship attribute

Rb
1,1 between the entities ec

1 and ec′
1 is drawn:

φb
1,1 ∼ Gb

0; Rb
1,1 ∼ P (·|φb

1,1). (8.4)

2. Iteration: for a new entity ec
i in the entity class c:

(a) Assign the new entity to an existing cluster Zc
i = k with probability N c

k/(N
c +

αc
0). The entity inherits all parameters associated with the cluster k, then its

attribute and relationships are sampled:

Ac
i ∼ P (·|θc

k); Rb′

i,j ∼ P (·|Φb′ , Zc
i , Z

cj

j ), (8.5)

where N c
k denotes the number of entities in class c with hidden state k. b′

denotes a relationship class involving entity class c. j denotes the index of an
entity possibly having a relationship of class b′ with the entity ec

i .

(b) Instead, the new entity is assigned a new cluster with probability αc
0/(N

c +
αc

0) and accordingly new parameters are sampled, conditioned on which the
attributes and relationships are sampled for the new entity:

θc
Kc+1 ∼ Gc

0; φb′

Kc+1,` ∼ Gb′

0 , (8.6a)

Ac
i ∼ P (·|θc

Kc+1); Rb′

i,j ∼ P (·|Φb′ , Zc
i , Z

cj

j ). (8.6b)

Where ` denotes the hidden state of the entity class involved in the relationship
class b′, ` = {1, . . . , Kcj}. Then Kc ← Kc + 1.

(c) i← i + 1, go to sample the next entity.
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Generative Model with Stick Breaking Construction

The stick breaking construction (SBC) (Sethuraman, 1994) is a representation of DP, by
which we can explicitly samples the distributions of attribute parameters and relationship
parameters. Following we describe the generative model of IHRM in terms of SBC.

1. For each entity class c,

(a) Draw mixing weights πc ∼ Stick(·|αc
0), where Stick(·|α0) denotes the stick

breaking construction defined as

V c
k

i.i.d.∼ Beta(1, αc
0); πc

1 = V c
1 , πc

k = V c
k

k−1∏
k′=1

(1− V c
k′), k > 1. (8.7)

(b) Draw i.i.d. mixture components θc
k ∼ Gc

0, k = 1, 2, . . .

2. For each relationship class b between two entity classes ci and cj, draw φb
k,`

i.i.d.∼ Gb
0

with component indices k for ci and ` for cj.

3. For each entity ec
i ,

(a) Draw cluster assignment Zc
i ∼ Mult(·|πc);

(b) Draw entity attributes Ac
i ∼ P (·|Θc, Zc

i ).

4. For entities eci
i and e

cj

j with a relationship of class b, draw

Rb
i,j ∼ P (·|Φb, Zci

i , Z
cj

j ). (8.8)

8.3 Inference

Markov chain Monte Carlo (MCMC) sampling methods have been used to approximate
posterior distribution with a DP mixture prior. In the section, we extend these MCMC
methods to IHRM. We first introduce a Gibbs sampler with the Chinese restaurant process
(CRP), which is a collapsed version of Pólya urn sampling. Unfortunately CRP sampler
exhibits slow mixing of the Markov chain. Blocked sampling typically shows better mix-
ing. Thus we extend the efficient blocked Gibbs sampling with truncated stick breaking
construction (TSB) to IHRM. These MCMC inference are motivated by (Escobar & West,
1995; Escobar & West, 1998; Ishwaran & James, 2001; Blei & Jordan, 2005).

While an unquestioned success, MCMC sampling methods are not expected techniques
due to the low efficiency. In particular, IHRM has multiple DPs that interact through the
relationships, the exchange of information between DPs is slow in the two Gibbs samplers,
thus it needs more time to reach stationary points. To solve the constraint, we explore
an alternative solution by variational inference method, which is motivated by (Blei &
Jordan, 2005). The method assumes a specific form for the posterior and maximizes the
lower bound of log-likelihood via coordinate ascent algorithm.

Additionally we propose an empirical approximation for the inference of IHRM, which
can be viewed as an extension of memory-based inference method to relational data.
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8.3.1 Collapsed Gibbs Sampling with CRP

The collapsed Gibbs sampling (GS) integrates out the posterior distributions of param-
eters of entity attributes and relationship attributes. The Markov chain is thus defined
only on the hidden variables of all entities. The collapsed GS iteratively samples each
hidden variable Zc

i , for c = {1, . . . , C} and i = {1, . . . , N c}, conditioned on the other
hidden variables Z−i until the procedure converges. In particular, Zc

i is updated as:

1. The entity ec
i is assigned to an existing cluster Zc

i = k and inherits the parameters
assigned to component k with probability proportional to

N c
k P (Ac

i |Ac, Zc
i = k, Zc

−i, G
c
0)
∏
b′

∏
j′

P (Rb′

i,j′|Rb′ , Zc
i = k, Z−i, G

b′

0 ), (8.9)

where b′ denotes a relationship class involving the entity class c. Ac and Rb′ de-
note the known attributes of entity class c and relationships of class b′. j′ denotes
an entity having an known relationship of class b′ with the entity ec

i . Note, that
for a binary case, the nonexistent relationships can also be considered, e.g., the
relationships that a user dislikes some movies in the running example.

2. Instead, the entity is assigned to a new cluster with probability proportional to

αc
0 P (Ac

i |Gc
0)
∏
b′

∏
j′

P (Rb′

i,j′|Gb′

0 ) (8.10)

In Equation 8.9 and Equation 8.10, we use the following definitions:

P (Ac
i |Ac, Zc

i = k, Zc
−i, G

c
0) = EP (θc

k|Ac,Zc
−i,G

c
0) [P (Ac

i |θc
k)] , (8.11)

P (Rb′

i,j′|Rb′ , Zc
i = k, Z−i, G

b′

0 ) = EP (φb′
k,`′ |R

b′ ,Z−i,Gb′
0 )

[
P (Rb′

i,j′|φb′

k,`′)
]
, (8.12)

P (Ac
i |Gc

0) = EP (θc
new|Gc

0) [P (Ac
i |θc

new)] , (8.13)

P (Rb′

i,j′|Gb′

0 ) = EP (φb′
new,`′ |G

b′
0 )

[
P (Rb′

i,j′|φb′

new,`′)
]
. (8.14)

Where `′ denotes the component assignment of the entity j′. The first two equations are
the posterior expectations of the probabilities of attributes and relationships of the entity
ec

i conditioned on the samples of hidden variables of other entities. The last two equations
are the prior expectations of the corresponding quantities. Since we assume conjugated
distributions as the base distributions Gc

0 and Gb
0, the computation can be implemented

analytically.
From the update steps, one can see that the update of Zc

i is conditioned on both
the hidden variables Zc

−i of the same entity class and the hidden variables in the related
entity classes. Via the relationships, the DPs are coupled together. When the process
converges, the predictive distributes are approximated as an average across the Monte
Carlo samples. The details are described in Section 8.4.
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8.3.2 Blocked Gibbs Sampling with Truncated SBC

In the collapsed GS, the hidden variables are updated one at a time, which potentially
slows down the method. For computational efficiency, we extend the blocked GS (Ishwaran
& James, 2001) (see also Chapter 7) to IHRM. In the method, the posterior distributions
of parameters of entity attributes and relationship attributes are explicitly sampled in
the form of truncated stick breaking construction (TSB). The advantage is that given
the posterior, we can independently sample the hidden variables in a block, which highly
accelerates the computation. The Markov chain is thus defined not only on the hidden
variables Zc

i , but also the parameters, including πc, Θc and Φb, for c = {1, . . . , C},
i = {1, . . . , N c} and b = {1, . . . , B}. Note, that there are additional parameters Kc in
block GS, which specify the positions to truncate the DPs. In practice, we set Kc as the
number of entities in class c, Kc will be automatically reduced to a suitable value based
on the data in the sampling process. Taking some initial values for the unobservable
variables Z, πc, Θc and Φb, the following steps are repeated until convergence:

1. For each entity class c,

(a) Update hidden variable Zc
i for each entity i independently:

P (Zc
i = k|Dc

i , Z−i, π
c, Θc, {Φb′}B′

b′=1)

∝ πc
kP (Ac

i |Zc
i = k, Θc)

∏
b′

∏
j′

P (Rb′

i,j′|Zc
i = k, Z

cj′

j′ , Φb′). (8.15)

Where Dc
i denotes all information about the entity i, including attributes and

relationships. cj′ denotes the class of the entity j′. Z
cj′

j′ denotes the component
assignment of j′.

(b) Update πc as follows:

i. Sample vc
k independently from Beta(λc

k,1, λ
c
k,2) for k = {1, . . . , Kc−1} with

λc
k,1 = 1 +

Nc∑
i=1

δk(Z
c
i ), λc

k,2 = αc
0 +

Kc∑
k′=k+1

Nc∑
i=1

δk′(Z
c
i ), (8.16)

and set vc
Kc = 1. Where δk(Z

c
i ) equals to 1 if Zc

i = k and 0 otherwise.

ii. Compute πc
1 = vc

1, πc
k = vc

k

∏k−1
k′=1(1− vc

k′), k > 1.

2. Update the parameters

θc
k ∼ P (·|Ac, Zc, Gc

0), φb
k,` ∼ P (·|Rb, Z, Gb

0). (8.17)

The parameters are drawn from their posteriors based on the sampled hidden states.
Again, since we assume conjugated priors as the base distributions Gc

0 and Gb
b, the

simulation can be implemented cheaply. For more complex situations, e.g. when
it is difficult to draw samples from the posterior, please refer to (Escobar & West,
1998; MacEachern & Mueller, 1998).
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8.3.3 Mean Field with Truncated SBC

Blei and Jordan (2005) introduced a variational inference method for nonparametric
Bayesian mixture model, which approximates the posterior of unobserved variables using a
factorized distribution for all the stick lengths and component parameters (see also Chap-
ter 7). We now extend it to IHRM. The unobservable variables in IHRM include Zc, V c, Θc

and Φb. The posterior distribution is P ({Zc, V c, Θc}Cc=1, {Φb}Bb=1|D, {αc
0, G

c
0}Cc=1, {Gb

0}Bb=1),
which is obviously untractable. In the variational inference framework, we first define a
variational distribution q({Zc, V c, Θc}Cc=1, {Φb}Bb=1|ξ) with variational parameters ξ, then
we minimize Kullback-Leibler (KL) divergence between q({Zc, V c, Θc}Cc=1, {Φb}Bb=1|ξ) and
true posterior distribution with respect to the variational parameters. As a result, the
variational distribution with optimized parameters ξ is an approximation to the true
posterior distribution. In IHRM, the KL divergence is defined as:

log P (D|{αc
0, G

c
0}Cc=1, {Gb

0}Bb=1) + Eq[log q({Zc, V c, Θc}Cc=1, {Φb}Bb=1|ξ)]
− Eq[log P ({Zc, V c, Θc}Cc=1, {Φb}Bb=1, D|{αc

0, G
c
0}Cc=1, {Gb

0}Bb=1)]. (8.18)

The minimization of KL divergence can be cast as the maximization of a lower bound L
of the log likelihood of the data:

log P (D|{αc
0, G

c
0}Cc=1, {Gb

0}Bb=1)

≥ Eq[log P ({Zc, V c, Θc}Cc=1, {Φb}Bb=1, D|{αc
0, G

c
0}Cc=1, {Gb

0}Bb=1)]

− Eq[log q({Zc, V c, Θc}Cc=1, {Φb}Bb=1|ξ)]. (8.19)

The Equation 8.19 can also be derived from Jensen’s inequality. For the computational
efficiency, we choose a family of fully-factorized distributions breaking all dependencies
between the unobservable variables:

q({Zc, V c, Θc}Cc=1, {Φb}Bb=1) =

[
C∏
c

Nc∏
i

q(Zc
i |ηc

i )
Kc∏
k

q(V c
k |λc

k)q(θ
c
k|τ c

k)

][
B∏
b

Kci∏
k

Kcj∏
`

q(φb
k,`|ρb

k,`)

]
.

(8.20)

Where ci and cj denote the entity classes involved in the relationship class b. k and ` denote
the component indices for ci and cj. Variational parameters are ξ = {ηc

i , λ
c
k, τ

c
k , ρ

b
k,`}. Note,

that there are one ηc
i for each entity ec

i , one λc
k and one τ c

k for each entity component, one
ρb

k,` for each correlation component. q(Zc
i |ηc

i ) is a multinomial distribution. q(V c
k |λc

k) is a

Beta distribution. q(θc
k|τ c

k) and q(φb
k,`|ρb

k,`) are the distributions with the same form as Gc
0

and Gb
0, respectively. Figure 8.5 illustrates the variational distribution via the running

example. It is clear that some probabilistic dependencies between these variables are
removed, which can be found via comparing with Figure 8.4(b).

Given the variational distribution as Equation 8.20, the lower bound of the log likeli-
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Figure 8.5: Graphical representation of the variational distribution for the movie rec-
ommendation system.

hood in Equation 8.19 is computed as:

L =
C∑
c

Kc∑
k

{
Eq[log P (V c

k |αc
0)] + Eq[log P (θc

k|Gc
0)]

}
+

B∑
b

Kci∑
k

Kcj∑
`

{
Eq[log P (φb

k,`|Gb
0)]

}

+
C∑
c

Nc∑
i

{
Eq[log P (Zc

i |V c)]

}

+
C∑
c

Nc∑
i

{
Eq[log P (Ac

i |Zc
i , θ

c)]

}
+

B∑
b

Nci∑
i

Ncj∑
j

{
Eq[log P (Rb

i,j|Z, φb)]

}
− Eq[log q({Zc, V c, Θc}Cc=1, {Φb}Bb=1)] (8.21)

The first line includes the terms related to the parameters {Φb}Bb=1 and {V c, Θc}Cc=1. The
terms in the second line is related to the hidden variables {Zc}Cc=1. The terms about the
observed attributes and relationships are in the third line, where the first sum is about
entity attributes, the second sum is about relationships. The expectation in the last line
is the entropy term.

Now we discuss the computation of Equation 8.21. Some terms, such as Eq[log P (V c
k |αc

0)],
Eq[log P (θc

k|Gc
0)] and Eq[log P (Zc

i |V c)] as well as Eq[log P (Ac
i |Zc

i , Θ
c)], involve standard

computation in Section 7.3.3. The terms Eq[log P (φb
k,`|Gb

0)] about relationship param-
eters are computed in an equivalent way like the terms Eq[log P (θc

k|Gc
0)] about entity

attribute parameters. The terms Eq[log P (Rb
i,j|Z, Φb)] about relationships are computed

in a different way, since all involved variables Zci
i , Z

cj

j and Φb are unobservable.

Eq[log P (Rb
i,j|Z, φb)] =

Kci∑
k

Kcj∑
`

∫
q(Zci

i = k|ηci
i )q(Z

cj

j = `|ηcj

j )q(φb
k,`|ρb

k,`) log P (Rb
i,j|φb

k,`)dφb
k,`

=
Kci∑
k

Kcj∑
`

ηci
i,kη

cj

j,`Eq[log P (Rb
i,j|φb

k,`)] (8.22)

After computing each term in Equation 8.21, we optimize the lower bound in a coor-
dinate ascent algorithm, which yields the following update steps:
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1. Randomly initialize the variational parameters ηc
i with the constraints

∑
k ηc

i,k = 1.

2. Iteratively update the variational parameters until convergence.

λc
k,1 = 1 +

Nc∑
i=1

ηc
i,k, λc

k,2 = αc
0 +

Nc∑
i=1

Kc∑
k′=k+1

ηc
i,k′ , (8.23)

τ c
k,1 = βc

1 +
Nc∑
i=1

ηc
i,kT(Ac

i), τ c
k,2 = βc

2 +
Nc∑
i=1

ηc
i,k, (8.24)

ρb
k,`,1 = βb

1 +
∑
i,j

ηci
i,kη

cj

j,` T(Rb
i,j), ρb

k,`,2 = βb
2 +

∑
i,j

ηci
i,kη

cj

j,`, (8.25)

ηc
i,k ∝ exp

(
Eq[log V c

k ] +
k−1∑
k′=1

Eq[log(1− V c
k′)] + Eq[log P (Ac

i |θc
k)]

+
∑

b

∑
j

∑
`

η
cj

j,`Eq[log P (Rb
i,j|φb

k,`)]

)
. (8.26)

Where λc
k denotes parameters of Beta distribution q(V c

k |λc
k), thus λc

k is a two-
dimensional vector. τ c

k denotes parameters of exponential family distributions q(θc
k|τ c

k).
We decompose τ c

k such that τ c
k,1 contains the first dim(θc

k) components and τ c
k,2 is a

scalar. ρb
k,`,1 and ρb

k,`,2 are defined equivalently. T(Ac
i) denotes the sufficient statistic

of the exponential family distribution P (Ac
i |θc

k). It is clear that Equation 8.23 and
Equation 8.24 correspond to the updates for variational parameters of entity class
c, and they follow equations in (Blei & Jordan, 2005). Equation 8.25 represents
the updates of variational parameters of relationships, which is computed on the
involved entities. The most interesting updates are Equation 8.26, where the pos-
teriors of entity assignment are coupled together. These essentially connect the DPs
together. As can be understood intuitively, in Equation 8.26 the posterior updates
for ηc

i,k include a prior term (first two expectations), the likelihood term of entity
attributes (third expectation), and the likelihood terms of relationships (last term).
To calculate the last term we need to sum over all the relationships of the entity ec

i

weighted by η
cj

j,` of assignments of the other entities involved in the relationships. At
convergence all updates in Equation 8.26 will not change the posterior assignments.

8.3.4 Empirical Approximation

In this section, a very basic inference method is proposed for IHRM. For each entity class,
we assume the number of mixture components to be the number of entities. Thus each
entity is assumed to only contribute to its own class. Based on this simplification the
parameters for the attributes and relationships can be learned very efficiently. Note that
this approximation can be interpreted as a relational memory-based learning method.
The corresponding predictive inference is introduced in Section 8.4.
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8.4 Predictive Inference

One key predictive inference in relational learning is that of predicting the relationships
between entities of interest. In this section, we will illustrate the predictive computation
with the running example. The following three situations are considered:

• Situation 1: both the user and the movie of interest are in the training set.

• Situation 2: the movie exists in the training set. The user is new, but his information
Du

new, including attribute Au
new and previous ratings Rnew,∗, is available. Rnew,j′

denotes a known rating between the new user and a known movie j′.

• Situation 3: both the user and the movie are new, the information (Du
new, Dm

new)
about new user and new movie is available, including user attribute Au

new, movie
attribute Am

new, and user ratings Rnew,∗, move ratings R∗,new. Ri′,new denotes a
known rating between a known user i′ and the new movie.

The predictive distribution P (Ri,j = s|Au, Am, R, αu
0 , α

m
0 , Gu

0 , G
m
0 , Gr

0) will be computed
in the four inference methods introduced in Section 8.3.

8.4.1 Collapsed Gibbs Sampling with CRP

At each iteration of the collapsed GS method, the hidden variables Zu, Zm are sampled for
all users and movies in training data set. After the sampling procedure reaches stationary,
the predictive distribution is approximated over the samples Zu(t) and Zm(t).

P (Ri,j = s|Au, Am, R, αu
0 , α

m
0 , Gu

0 , G
m
0 , Gr

0)

≈ 1

W

W+w∑
t=w+1

P (Ri,j = s|Au, Am, R, Zu(t), Zm(t), αu
0 , α

m
0 , Gu

0 , G
m
0 , Gr

0). (8.27)

Where the first w members of the MCMC sequence are discarded as burn-in period, the
last W members are stored to approximate the predictive distribution. In each situation,
P (Ri,j = s|Au, Am, R, Zu(t), Zm(t), αu

0 , α
m
0 , Gu

0 , G
m
0 , Gr

0) is computed in different way.

• Situation 1:

P (Ri,j = s|Au, Am, R, Zu(t), Zm(t), αu
0 , α

m
0 , Gu

0 , G
m
0 , Gr

0)

= P (Ri,j = s|R,Zu(t), Zm(t), Gr
0)

=

∫
P (Ri,j = s, φ

(t)
k∗,`∗|R,Zu(t), Zm(t), Gr

0) dφ
(t)
k∗,`∗

=

∫
φ

(t)
k∗,`∗,sP (φ

(t)
k∗,`∗|R, Zu(t), Zm(t), Gr

0) dφ
(t)
k∗,`∗ ≡ EP̂

[
φ

(t)
k∗,`∗,s

]
. (8.28)

Where k∗ and `∗ denote the component assignments of the user i and the movie
j at the iteration t. P̂ denotes the posterior of relationship parameters, P̂ =
P (φ

(t)
k∗,`∗|R,Zu(t), Zm(t), Gr

0), which is still a Dirichlet distribution with parameters

β
r(t)
post = (βr

0 × βr
1 + N r(t)(k∗, `∗, 1), . . . , βr

0 × βr
S + N r(t)(k∗, `∗, S)).
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N r(t)(k∗, `∗, s) is a sufficient statistic about the relationships at the iteration t, which
is the number of relationships with the value s, user-component assignment k∗ and
movie-component assignment `∗. N r(t)(k∗, `∗) =

∑
s N r(t)(k∗, `∗, s). We have:

P (Ri,j = s|Au, Am, R, Zu(t), Zm(t), αu
0 , α

m
0 , Gu

0 , G
m
0 , Gr

0)

= EP̂

[
φ

(t)
k∗,`∗,s

]
=

βr
0 × βr

s + N r(t)(k∗, `∗, s)

βr
0 + N r(t)(k∗, `∗)

. (8.29)

• Situation 2:

P (Ri,j = s|Du
new, Au, Am, R, Zu(t), Zm(t), αu

0 , α
m
0 , Gu

0 , G
m
0 , Gr

0)

= P (Rnew,j = s|Du
new, Au, R, Zu(t), Zm(t), αu

0 , G
u
0 , G

r
0)

∝
Ku+1∑
k=1

P (Rnew,j = s|R,Zu
new = k, Zu(t), Zm(t), Gr

0)P (Zu
new = k|Zu(t), αu

0)

× P (Au
new|Au, Zu

new = k, Zu(t), Gu
0)
∏
j′

P (Rnew,j′|R,Zu
new = k, Zu(t), Zm(t), Gr

0).

(8.30)

Note, that in collapsed GS, a new entity might be assigned into a new cluster,
thus the predictive probability is averaged over Ku + 1 clusters. The terms in
Equation 8.30 are computed as:

1. If k = 1, . . . , Ku

P (Zu
new = k|Zu(t), αu

0) =
Nu(t)(k)

αu
0 + Nu

, (8.31a)

P (Au
new|Au, Zu

new = k, Zu(t), Gu
0)

= E
P (θ

u(t)
k |Au,Zu(t),Gu

0 )

[
θ

u(t)
k,snew

]
=

βu
0 × βu

snew
+ Nu(t)(k, snew)

βu
0 + Nu(t)(k)

, (8.31b)

P (Rnew,j′|R,Zu
new = k, Zu(t), Zm(t), Gr

0)

= E
P (φ

(t)

k,`′ |R,Zu(t),Zm(t),Gr
0)

[
φ

(t)
k,`′,s′

]
=

βr
0 × βr

s′ + N r(t)(k, `′, s′)

βr
0 + N r(t)(k, `′)

. (8.31c)

Where snew and s′ denote the values of Au
new and Rnew,j′ , respectively. `′ denotes

the component assignment of the movie j′. Nu(t)(k, s) is a sufficient statistic
about user attributes at the iteration t, which represents the number of users
with attribute value s and component assignment k, Nu(t)(k) =

∑
s Nu(t)(k, s).



8.4. PREDICTIVE INFERENCE 127

2. If k = Ku + 1

P (Zu
new = k|Zu(t), αu

0) =
αu

0

αu
0 + Nu

, (8.32a)

P (Au
new|Au, Zu

new = k, Zu(t), Gu
0) = E

P (θ
u(t)
k |Gu

0 )

[
θ

u(t)
k,snew

]
= βu

snew
, (8.32b)

P (Rnew,j′|R,Zu
new = k, Zu(t), Zm(t), Gr

0) = E
P (φ

(t)

k,`′ |G
r
0)

[
φ

(t)
k,`′,s′

]
= βr

s′ . (8.32c)

• Situation 3:

P (Rnew,new = s|Du
new, Dm

new, Au, Am, R, Zu(t), Zm(t), αu
0 , α

m
0 , Gu

0 , G
m
0 , Gr

0)

∝
Ku+1∑
k=1

Km+1∑
`=1

P (Rnew,new = s|R,Zu
new = k, Zm

new = `, Zu(t), Zm(t), Gr
0)

× P (Zu
new = k|Zu(t), αu

0)P (Au
new|Au, Zu

new = k, Zu(t), Gu
0)

×
∏
j′

P (Rnew,j′|R,Zu
new = k, Zu(t), Zm(t), Gr

0)

× P (Zm
new = `|Zm(t), αm

0 )P (Am
new|Am, Zm

new = `, Zm(t), Gm
0 )

×
∏
i′

P (Ri′,new|R,Zm
new = `, Zu(t), Zm(t), Gr

0). (8.33)

Where the terms about users are computed as Equation 8.31 and 8.32. The corre-
sponding terms about movies are computed equivalently.

8.4.2 Blocked Gibbs Sampling with Truncated SBC

At each iteration of block GS, we sample not only hidden variables Zu, Zm for all users and
movies in training data set, but also the parameters πu, πm, Θu, Θm, Φ. Thus the MCMC
sequence is defined by the mixture assignments and the mixture components. After the
procedure of GS reaches stationary point, the probability of interest is approximated over
the sampled values, including Zu(t), Zm(t), πu(t), πm(t), Θu(t), Θm(t), Φ(t).

P (Ri,j = s|Au, Am, R, αu
0 , α

m
0 , Gu

0 , G
m
0 , Gr

0)

≈ 1

W

W+w∑
t=w+1

P (Ri,j = s|Zu(t), Zm(t), πu(t), πm(t), θu(t), θm(t), φ(t)). (8.34)

Where W and w are defined as Section 8.4.1. In each situation, we compute the distri-
bution P (Ri,j = s|Zu(t), Zm(t), πu(t), πm(t), θu(t), θm(t), φ(t)) in different way. In detail:

• Situation 1:

P (Ri,j = s|Zu(t), Zm(t), πu(t), πm(t), θu(t), θm(t), φ(t)) = φ
(t)
k∗,`∗,s (8.35)
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• Situation 2:

P (Ri,j = s|Du
new, Zu(t), Zm(t), πu(t), πm(t), θu(t), θm(t), φ(t))

∝
Ku∑
k=1

[
P (Rnew,j = s|Zu

new = k, Z
m(t)
j , φ(t))P (Zu

new = k|πu(t))

× P (Au
new|Zu

new = k, θu(t))
∏
j′

P (Rnew,j′|Zu
new = k, Z

m(t)
j′ , φ(t))

]

=
Ku∑
k=1

[
φ

(t)
k,`∗,sπ

u(t)
k θ

u(t)
k,snew

∏
j′

φ
(t)
k,`′,s′

]
(8.36)

• Situation 3:

P (Rnew,new = s|Du
new, Dm

new, Zu(t), Zm(t), πu(t), πm(t), θu(t), θm(t), φ(t))

∝
Ku∑
k=1

Km∑
`=1

[
P (Rnew,new = s|Zu

new = k, Zm
new = `, φ(t))

× P (Zu
new = k|πu(t))P (Au

new|θ
u(t)
k )

∏
j′

P (Rnew,j′|φ(t)
k,`′)

× P (Zm
new = `|πm(t))P (Am

new|θ
m(t)
` )

∏
i′

P (Ri′,new|φ(t)
k′,`)

]

=
Ku∑
k=1

Km∑
`=1

[
φ

(t)
k,`,sπ

u(t)
k θ

u(t)
k,snew

∏
j′

φ
(t)
k,`′,s′π

m(t)
` θ

m(t)
`,snew

∏
i′

φ
(t)
k′,`,s′

]
(8.37)

8.4.3 Mean Field with Truncated SBC

Mean field inference method minimizes the KL-divergence between the variational distri-
bution and the posterior with respect to the variational parameters. At the convergence
point, we obtain the optimized variational distribution with parameters λu, λm, ηu, ηm, τu,
τm and ρ, by which the predictive distribution P (Ri,j = s|Au, Am, R, αu

0 , α
m
0 , Gu

0 , G
m
0 , Gr

0)
is approximated.

• Situation 1:

P (Ri,j = s|Du
i , Dm

j , ηu, ηm, τu, τm, ρ)

∝
Ku∑
k=1

Km∑
`=1

[
P (Ri,j = s|ρk,`)

× P (Zu
i = k|ηu

i )P (Au
i |τu

k )
∏
j′

∑
`′

ηm
j′,`′P (Ri,j′|ρk,`′)

× P (Zm
j = `|ηm

j )P (Am
j |τm

` )
∏
i′

∑
k′

ηu
i′,k′P (Ri′,j|ρk′,`)

]
. (8.38)
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• Situation 2:
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• Situation 3:
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The main difference of the computations in the three situations is how to estimate the
probability of component assignment of the entity of interest. If the entity of interest,
e.g. a user i, exists in the training data set, the variational parameters ηu

i is available,
thus the probability can be represented as P (Zu

i = k|ηu
i ); if the user is a new one, the

probability will be represented as P (Zu
new = k|λu), which is conditioned on the variational

parameters λu for the stick lengths. The terms in above equations are computed as:

P (Zu
i = k|ηu

i ) = ηu
i,k (8.41a)

P (Zu
new = k|λu) = Eq(V u|λu)

[
V u

k

k−1∏
k′=1

(1− V u
k′)

]
(8.41b)

P (Au
i = s|τu

k ) = Eq(θu
k,s|τ

u
k )

[
θu

k,s

]
(8.41c)

P (Ri,j = s′|ρk,`) = Eq(φk,`,s′ |ρk,`) [φk,`,s] (8.41d)

The corresponding terms about movies are computed in an equivalent way.

8.4.4 Empirical Approximation

In empirical approximation, each user/movie in training data is assigned to its own cluster,
thus we compute the predictive probability directly. In detail:
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The computations in the three situations are the same except for the possible mixture
components for the entity of interest. For a new user, Zu

new can be any value between 1
and Nu. However, if the user of interest is in the training data set, then Zu

i 6= i. The
terms in above equations are computed as follows:

1. Since each training entity is of its own cluster, thus we have

P (Zu
i = k|Zu, αu

0) =
1

Nu − 1
; P (Zu

new = k|Zu, αu
0) =

1

Nu
.
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2. P (Au
i |Zu

i = k,Au) is computed over memory-based naive Bayes;

P (Au
i |Zu

i = k,Au) =
βu

0 × βu
s∗ + 1

βu
0 + 1

,

if the attributes of the user i and the user k are the same; otherwise,

P (Au
i |Zu

i = k,Au) =
βu

0 × βu
s∗

βu
0 + 1

.

Where s∗ denotes the value of Au
i .

3. P (Ri,j′|Zu
i = k,R) is also computed over memory-based naive Bayes,

P (Ri,j′|Zu
i = k,R) =

βr
0 × βr

s∗ + 1

βr
0 + 1

,

if the user i and the user k give the same ratings to the movie j′; otherwise

P (Ri,j′|Zu
i = k,R) =

βr
0 × βr

s∗
βr

0 + 1
.

Where s∗ denotes the value of Ri,j′ .

4. Similarly, we compute

P (Ri,j = s|Zu
i = k, Zm

j = `, R) =
βr

0 × βr
s + 1

βr
0 + 1

,

if the user k gives the movie ` a rating s; otherwise

P (Ri,j = s|Zu
i = k, Zm

j = `, R) =
βr

0 × βr
s

βr
0 + 1

.

5. The corresponding terms about movies are computed equivalently.

It is clear that the predictive computation of the empirical approximation (EA) method
scales in the product of the number of users and the number of movies in the training
data. When the training data is large enough, the EA method might be much slower
than the other inference methods. Mean field method might be an expected solution that
balances the computational time and prediction accuracy for an online system.

8.5 Experimental Analysis

8.5.1 Clinical Data Analysis

The first experiment is executed on a clinical database. The target of the experiment is to
demonstrate the performance of IHRM with the most simplest inference method: empir-
ical approximation (EA). The structure of the clinical database is shown as Figure 8.6(a)
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(a)

(b) (c)

Figure 8.6: (a) A clinical database represented by entity-relationship model. (b) PRM
model for the clinical database. (c) Infinite hidden relational model.

with entity-relationship representation. The domain includes three entity classes (Patient,
Diagnosis and Procedure) and two relationship classes (Assign: patients are assigned di-
agnoses. Take: patients take procedures). A patient typically has multiple procedures
and multiple diagnoses. Patient class has several attribute classes, including Age, Gender,
PrimeComplaint. To reduce the complexity of Figure 8.6, patient attributes are grouped
together as PatientAttributes (these attributes are not aggregated in learning and infer-
ence). The DiagnosisAttributes contain the category of the diagnosis as specified in the
ICD-9 code and the ProcedureAttributes contain the category of the procedure as spec-
ified in the CPT4 code. The relationships between the patients and the procedures and
the relationships between the patients and the diagnoses are modeled as existence uncer-
tainty. Rt = 1 if the patient takes the procedure and Rt = 0 otherwise. Equivalently,
Ra = 1 if the patient is assigned the diagnosis and Ra = 0 otherwise. In the data, there
are totally 14062 patients, 703 diagnoses and 367 procedures.

The infinite hidden relational model is shown in Figure 8.6(c). It contains three
DPs, one for each entity class. We compare IHRM with two models. The first one is a
relational model with reference uncertainty (Getoor et al., 2003) but without a hidden
variable structure. The model is shown as Figure 8.6(b), where each relationship class is
associated with an auxiliary variable Select. The value of Select specifies which procedure,
resp. diagnosis is chosen for a patient. In addition, the variable Select conditions on
Patient.PrimeComplaint. The parameters in the model are global, which means that
patients with the same prime complaint have the same probability of taking a procedure.
The second comparison model is a content-based Bayesian network. In this model, only
the attributes of patients and procedures determine if a procedure is prescribed.

We test model performances by predicting future procedures for patients. ROC curve
is used as evaluation criteria. In the experiment we selected the top N procedures rec-
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(a) (b)

Figure 8.7: (a) ROC curves for predicting procedures on the total data. (b) ROC curves
on a subset of patients with prime complaint respiratory problem.

ommended by the models. Sensitivity indicates how many percents of the actually being
performed procedures were correctly proposed by the model. (1-specificity) indicates how
many percent of the procedures that were not actually performed were recommended by
the model. Along the curves, the N was varied from left to right as N = 5, 10, . . . , 50.

In the experiments, we predict the following procedure of a patient given his first
procedure. The corresponding ROC curves (averaged over all patients) for the experiments
are shown in Figure 8.7(a). The infinite hidden relational model (E3) exploiting all
relational information and all attributes gave best performance. When we remove the
attributes of the entities, the performance degrades (E2). The results show that entity
attributes are a reasonable predictor, without them, the performance of the full model
cannot be achieved. If, in addition, we only consider the one-sided collaborative effect,
the performance is even worse (E1). (E5) is the pure content-based approach using the
Bayesian network. (E4) shows the results of relational model using reference uncertainty,
which gave good results but did not achieve the performance of IHRM. Figures 8.7(b)
shows the corresponding plots for a subset of patients (i.e. patients with prime complaint
respiratory problem). The results exhibit similar trends as Figure 8.7(a).

The set of experiments verifies that the predictive probabilities of relationships can
be estimated precisely by collecting all related evidence in the whole relational network.
Although we do not perform expensive structure model selection, the real probabilistic
dependency can be encoded in an elegant and compact way.

8.5.2 Movie Recommendation

Secondly, we demonstrate the performance of IHRM on the MovieLens data, which con-
tains movie ratings from a large number of users (Sarwar et al., 2000). The task of
the experiment is to evaluate the proposed inference methods. In the MovieLens data,
there are two entity classes (User and Movie) and one relationship class (Like: users like
movies). The User class has several attribute classes such as Age, Gender, Occupation.
The Movie class has attribute classes such as Published-year, Genres and so on. The
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Table 8.1: Performance of IHRM on MovieLens data.

CRPGS TSBGS TSBMF EA Pearson
Given5 65.13 65.51 65.26 63.91 57.81
Given10 65.71 66.35 65.83 64.10 60.04
Given15 66.73 67.82 66.54 64.55 61.25
Given20 68.53 68.27 67.63 64.55 62.41
Time(s) 164993 33770 2892 - -
Time(s/iter.) 109 17 19 - -
#C.u 47 59 9 - -
#C.m 77 44 6 - -

relationship class Like has an auxiliary attribute R with two states: R = 1 indicates that
the user likes the movie and R = 0 indicates otherwise. The IHRM model for the movie
recommendation system is shown as Figure 8.4. In the data set, there are totally 943 users
and 1680 movies. The ratings are originally recorded on a five-point scale, ranging from 1
to 5. We transfer the ratings to be binary, yes if a rating is higher than the average rating
of the user, and no otherwise. The performances of all inference methods are analyzed
from 3 points: prediction accuracy, convergence time and clustering effect. To evaluate
the prediction performance, we execute 4 sets of experiments with respectively 5, 10, 15
and 20 randomly selected ratings as the known ratings, and predict the remaining ratings
for each test user. These experiments are referred to as given5, given10, given15 and
given20. For testing, the relationship is predicted to exist (i.e. R = 1) if the predictive
probability is larger than a threshold ε = 0.5, and nonexist (i.e. R = 0) otherwise.

(a) (b) (c)

Figure 8.8: (a) The traces of the number of User clusters for the runs of two Gibbs
samplers. (b) The trace of the change of variational parameter matrix ηu for the run of
the mean field method. (c) The sizes of the largest User clusters of the three inference
methods.

We evaluate the following four inference methods: Gibbs sampling with Chinese
restaurant process (CRPGS), Gibbs sampling with truncated stick-breaking (TSBGS),
and the corresponding mean field method (TSBMF) as well as the empirical approxima-
tion method (EA). In TSBGS and TSBMF, the truncation parameters Ku and Km are
initially set to be the number of users and the number of movies, respectively. For TS-
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BMF we consider α0 ∈ {5, 10, 100, 1000}, and obtain the best prediction when α0 = 100.
For CRPGS and TSBGS α0 is set to 100. For the variational method, the change of
variational parameters between two iterations is monitored to determine the convergence.
For the Gibbs samplers, the convergence was analyzed using three measures: Geweke
statistic on likelihood, Geweke statistic on the number of components and autocorrela-
tion. Figure 8.8 shows the traces for the runs of the 3 inference methods. (a) shows the
traces of the number of User clusters for the runs of the 2 Gibbs samplers. (b) shows
the change of variational parameters ηu in the variational method. Table 8.1 shows that
the blocked Gibbs sampler TSBGS converges approximately by a factor 5 faster than the
CRPGS sampler. The mean field method TSBMF is again by a factor around 10 faster
than the blocked Gibbs sampler TSBGS and thus almost two orders of magnitude faster
than CRPGS. CRPGS is much slower than the blocked Gibbs sampler mainly due to the
large time cost per iteration shown as Table 8.1. The reason is that CRPGS samples
the hidden variables one by one, which causes two additional time costs. First, the ex-
pectations of attribute parameters and relationship parameters have to be updated when
sampling each user/movie assignment. Second, the posterior of hidden variables have to
be computed one by one, thus we can not use fast matrix multiplication technology to
accelerate the computation.

The prediction results are shown in Table 8.1. All methods under consideration achieve
comparably good results. The best results are achieved by the two Gibbs sampling meth-
ods. To demonstrate the performance of IHRM, we also implement a Pearson-coefficient
based collaborative filtering method (Resnick, 1994). It is clear that IHRM outperforms
the traditional CF method, especially when there are few known ratings for the test user.

IHRM provides cluster assignments for all entities involved, in our case for the users
and the movies. The columns #C.u and #C.m in Table 8.1 denote the numbers of clusters
for User class and Movie class, respectively. The Gibbs samplers converge to 47-59 clusters
for the users and 44-77 clusters for the movies. The mean field method has a tendency
to converge to a smaller number of clusters with the same value of α0. Further analysis
shows that the clustering results of the three methods are actually similar. First, the
sizes of most clusters generated by the Gibbs samplers are very small, e.g. there are
72% (75.47%) user clusters with less than 5 members in CRPGS (TSBGS). Figure 8.8(c)
shows the sizes of the 20 largest User clusters of the three methods. Intuitively, the Gibbs
samplers tend to assign the outliers to new clusters. Second, we compute the rand index
(0-1) of the clustering results of the methods, the values are 0.8071 between CRPGS and
TSBMF, 0.8221 between TSBGS and TSBMF, which also demonstrate the similarity of
the clustering results between Gibbs samplers and mean field method. Table 8.2 shows
the movies with highest posterior probabilities in the 8 largest clusters generated by
CRPGS. The values in parentheses, e.g. 161/207, means: the number (167) of coincident
movies assigned to the cluster in the last 10 iterations and the average size (207) of the
cluster.As we can see from the numerical values, there is quite some fluctuation in the
cluster assignments. In cluster 1 most movies are very new and popular (the data set
was collected from September 1997 through April 1998). Also they tend to be romance
and comedy movies. Cluster 2 includes many old movies, or movies produced by the
non-USA countries, or drama movies. Cluster 3 contains many comedies and cluster 4
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Table 8.2: Clustering result of CRP-based Gibbs sampler on MovieLens data.

Cluster 1 (161/207) Cluster 2 (76/113)
My Best Friend’s Wedding (1997)
G.I. Jane (1997) The Truth
About Cats and Dogs (1996) Phe-
nomenon (1996) Up Close and
Personal (1996) Tin Cup (1996)
Bed of Roses (1996) Sabrina
(1995) Clueless (1995)......

Big Night (1996) Antonia’s Line
(1995) Three Colors: Red (1994)
Three Colors: White (1994)
Cinema Paradiso(1989) Henry V
(1989) Jean de Florette (1986) A
Clockwork Orange (1971) Citizen
Kane (1941) Mr. Smith Goes to
Washington (1939)......

Cluster 3 (49/98) Cluster 4 (32/51)
Swingers (1996) Get Shorty
(1995) Mighty Aphrodite (1995)
Welcome to the Dollhouse
(1995) Clerks (1994) Ed Wood
(1994) The Hudsucker Proxy
(1994) What’s Eating Gilbert
Grape (1993) Groundhog Day
(1993)......

Event Horizon (1997) Batman
and Robin (1997) Escape from
L.A. (1996) Batman Forever
(1995) Batman Returns (1992)
101 Dalmatians (1996) The First
Wives Club (1996) Nine Months
(1995) Casper (1995)......

Cluster 5 (16/27) Cluster 6 (9/15)
Conspiracy Theory (1997) The
Game (1997) Air Force One
(1997) Ransom (1996) The Rock
(1996) Primal Fear (1996) Crim-
son Tide (1995) In the Line of
Fire (1993) The Abyss (1989)......

Brave Heart (1995) Forrest Gump
(1994) Fugitive (1993) Termina-
tor 2: Judgment Day (1991) Indi-
ana Jones and the Last Crusade
(1989) Die Hard (1988) Aliens
(1986) Terminator (1984) Return
of the Jedi (1983)

Cluster 7 (8/13) Cluster 8 (3/6)
Shawshank Redemption
(1994) Wrong Trousers (1993)
Schindler’s List (1993) Silence
of the Lambs (1991) One Flew
Over the Cuckoo’s Nest (1975)
Godfather (1972) Rear Window
(1954) Casablanca (1942)

Star Wars (1977) Star Wars:
The Empire Strikes Back (1980)
Raiders of the Lost Ark (1981)
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Table 8.3: An example gene.

Attribute Value
Gene ID G234070
Essential Non-Essential
Class 1, ATPases 2, Motorproteins
Complex Cytoskeleton
Phenotype Mating and sporulation defects
Motif PS00017
Chromosome 1
Function 1, Cell growth, cell division and DNA synthesis

2, Cellular organization
3, Cellular transport and transprotmechanisms

Localization Cytoskeleton

consists of comedy and sci-fi movies. In cluster 5 all the movies are relatively new and
most movies include conspiracy and government. In cluster 6 all the movies belong to
the genre of action/thriller (except for Forrest Gump). Cluster 7 are drama movies. The
three movies in cluster 8 are relatively old (from 1977 to 1981) and the main actor in the
three movies is Harrison Ford. Overall we were quite surprised by the good interpretability
of the clusters.

8.5.3 Prediction of Functions of Genes

The third evaluation is performed on the yeast genome data set of KDD Cup 2001 (Cheng
et al., 2002). The goal of the experiment is to evaluate the expressive power of IHRM on
the domain with multiple entity classes and multiple relationship classes.

The genomes in several organisms have been sequenced. Traditionally, the functions
of genes/proteins are predicted by comparing with characterized genes/proteins in se-
quence similarity. But only 52% of 6449 yeast proteins have been characterized. Of the
remaining, only 4% show strong similarity with the known ones at the sequence level. It
is therefore necessary to integrate other information to characterize genes/proteins. In
the experiment we need to predict functions of genes based on the information not only
at the gene-level but also at the protein-level. The data set provided by KDD Cup 2001
consists of two relational tables. One table specifies properties of genes or proteins. These
properties include chromosome, essential, phenotype, motif, structural-category, complex
and function. Chromosome expresses the chromosome on which the gene appears. Es-
sential specifies whether organisms with a mutation in this gene can survive. Pheno-
type represents the observed characteristics of organisms with differences in this gene.
Structural-category represents the structural category of the protein for which this gene
codes. Motif expresses the information about the amino acid sequence. Complex specifies
how the expression of the gene can complex with others to form a larger protein. The
other table in the data set contains the information about interactions between genes.
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Figure 8.9: Infinite hidden relational model for a gene data set.

A gene typically has multiple complexes, phenotypes, structural-categories, motifs and
functions, but only one chromosome and one essential value. An example gene is shown
in Table 8.3. To keep the multi-relational nature of the data, we assume that there are
six entity classes (Gene, Complex, Phenotype, Structural-category, Motif and Function)
and six relationship classes (Interact: genes interact with each other, Have: genes have
functions, Observe: phenotypes are observed for the genes, Form: which kinds of complex
is formed for the genes, Belong: genes belong to structural-categories, Contain: genes
contain characteristic motifs). Gene class has attribute classes: Essential, Chromosome.
The attributes of other entity classes are not available in the data set. The data set totally
contains 1243 genes. A subset (381 genes) is withheld for test in the KDD Cup 2001. The
remaining 862 genes are provided to participants. In the data, there are 56 complexes,
11 phenotypes, 351 motifs, 24 structural-categories and 14 functions. There are mainly
two challenges in the gene data set. First, there are many types of relationships. Second,
there are large numbers of entities, but only a small number of known relationships.

Figure 8.9 shows IHRM for the gene data. A hidden variable is added to each entity,
and all relationships are modeled as existence uncertainty. Thus each relationship class has
an auxiliary attribute R with two states: 1 if the relationship exists, and 0 otherwise. The
prediction results are shown in Table 8.4. There were 41 groups participating in the KDD
Cup 2001 contest. The algorithms include decision tree, neural network, SVM, Bayesian
network and so on. The performance of IHRM is comparable to the best results. The
winning algorithm is based on inductive logic programming. The IHRM is only slightly
worse (probably not significantly) if compared to the winning algorithm. The two Gibbs
samplers do not mix well and fail to converge to a stationary distribution despite the long
simulation time. The reason might be the sparsity and bias of the data.

Table 8.5 illustrates the clustering result of TSBMF with 8 largest clusters, which size
is shown in parentheses. We give some brief explanation about the result. For example,
for most genes in cluster 1, the structural category is transcription factors ; the complex
is transcription complexes/transcriptosome; the location is nucleus, and the function is
cellular organization and transcription. We can intuitively view genes in the cluster as
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Table 8.4: Prediction of gene functions

Methods TSBMF EA Kdd cup winner
Accuracy (%) 92.78 93.18 93.63

Table 8.5: The largest gene clusters generated by TSBMF.

Cluster 1 (12) Cluster 2 (7) Cluster 3 (6) Cluster 4 (5)
G234191 G234427
G235272 G235462
G235513 G235744
G236096 G236244
G236546 G238049
G238295 G238942

G234907 G235313
G235592 G236176
G237674 G237702
G238933

G235317 G235326
G235459 G235489
G235502 G235737

G234170 G234312
G234575 G236363
G238307

Cluster 5 (5) Cluster 6 (5) Cluster 7 (5) Cluster 8 (4)
G234393 G234768
G236406 G236869
G240048

G235300 G235390
G235828 G238527
G239640

G235259 G235499
G235597 G235672
G235872

G234341 G234458
G234523 G236084

transcription genes. In cluster 2, all genes have the function cellular organization (pro-
teins are localized to the corresponding organelle). Cluster 3 includes the genes which
have the motif PS01145, and the function cellular organization and protein synthesis. All
genes in the cluster tend to form translation complexes and locate at cytoplasm.

In the second set of experiments, we investigated the influence of a variety of relation-
ships on the prediction of functions. We perform the EA inference method by ignoring
a specific type of known relationships. The result is shown in Table 8.6. When a spe-
cific type of known relationships are ignored, the lower the prediction accuracy is, the
higher the importance of this type of relationships is. One observation is that the most
important relationship class is Complex that specifies how genes complex with another
genes to form larger proteins. The second most important relationship class is: Interact.
The result coincides with the lesson learned by KDD Cup 2001 that protein interaction
information is less important in function prediction. This lesson is somewhat surprising
since there is a general belief in biology that the knowledge about regulatory pathways is
helpful to determine the functions of genes.

8.6 Discussion and Related Work

Kemp et al. (2006) presented an extension of their previous work (Kemp et al., 2004)
which is quite close to the IHRM (they named their model infinite relational models, IRM).
There are mainly three differences between the two models. First, the IRM is based on the
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Table 8.6: The importance of relationship classes in predicting gene functions.

Ignored relationships Accuracy(%) Importance
Complex 91.13 197
Interaction 92.14 100
Structural-categories 92.61 55
Phenotype 92.71 45
Attributes of gene 93.08 10
Motif 93.12 6

predicate-based representation, whereas the IHRM is derived from the entity-relationship
model. Second, the IRM introduces a hidden variable for each object and some predi-
cates. The IHRM only introduces a hidden variable for each object. The attributes and
relations are naturally associated with the involved objects. Third, in the IHRM one can
specify any reasonable probability distribution for an attribute given its parent, whereas
the IRM would model an attribute as a unary predicate, i.e. would need to transform the
conditional distribution into a logical binary representation. This might be difficult if,
for example, the attributes are continuous valued. In particular, the IHRM could model
P (A|Z) for example in a Gaussian distribution whereas the IRM would need to introduce
an additional discrete representation. Kemp et al. (2006) described the CRPGS method
also used in this chapter, exploiting the conjugacy between base distribution and likeli-
hood distribution. Thus the blocked Gibbs sampler and its mean field solution derived
here can also be used in the context of the IRM. Also related to IHRM is the refined
probabilistic relational model with class hierarchies described in (Getoor et al., 2000),
which specializes distinct probabilistic dependency for each subclass. The author-topic
model introduced in (Rosen-Zvi et al., 2004) is another related work, which implicitly
explored the document-author and document-word relations. Carbonetto et al. (2005)
introduced the nonparametric BLOG model, which specifies nonparametric probabilistic
distributions over possible worlds defined by first-order logic. Taskar et al. (2001) intro-
duced a classification/clustering relational model, which associates a finite-dimensional
hidden variable with each entity. The probabilistic dependency can be learned from the
data or be specified in advance. Wang et al. (2005) proposed a group-topic model for
text mining, which jointly discovers the latent groups in a network as well as the latent
topics of events (or relations) between objects. Neville and Jensen (2005) developed a
latent group model for relational data, which introduces two latent variables ci and gi for
an object, and ci is conditioned on gi. The object attributes depends on ci and relations
depend on gi of the involved objects. The limitation of the model is that only relations
between members in the same group are considered. These related models demonstrate
good performance in certain applications. However, most are restricted to domains with
simple relationships.
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8.7 Summary

In this chapter, we have introduced the infinite hidden relational model (IHRM), which is a
new development in the thesis. The model extends the expressiveness of relational models
by introducing for each entity an infinite-state latent variable as part of a Dirichlet process
(DP) mixture model. We hope that IHRM will be a useful addition to relational learning
by allowing for flexible inference in a relational network reducing the need for extensive
structural model selection. In addition, IHRM also discovers the clustering structure for
the domain of interest. The cluster assignment of an entity is not independently decided
by its attributes, but is decided by its relationships with other entities. The experiment
in the movie recommendation system demonstrates the clustering effect of IHRM by
highly-interpretable results. To develop the full potential of IHRM, it is necessary to
explore fast inference methods considering the slow mixing between DPs. The collapsed
Gibbs sampling (CRPGS) is not capable of coming up to the expectation despite the
best predictive accuracy. The blocked Gibbs sampling (TSBGS) is more than a factor of
four faster than CRPGS. Another factor of 10 in speed up can be achieved by using mean
field approximation (TSBMF). Thus the inference methods presented in this chapter make
IHRM applicable to considerably larger domains. In the future work, it will be interesting
to explore even more complex relational structures, for example by focussing on domains
with hierarchical class structures (ontologies) or on domains with dynamic relationships.
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Chapter 9

Conclusions

In this chapter, we summarize the major results in the thesis and discuss some promising
research directions for the future work.

9.1 Summary

In this thesis, we applied nonparametric Bayesian analysis on statistical relational learning
and proposed two novel developments: Dirichlet enhanced relational model (DERL) and
infinite hidden relational model (IHRM). The two models explicitly incorporate the rela-
tionships into probabilistic models and is capable of expressing the complex probabilistic
dependencies with nonparametric Bayesian techniques, thus the relational information in
a domain of interest can be truthfully exploited and encoded, which not only improves the
predictive accuracy in estimating the probability of a relationship, but also improves the
accuracy in estimating the probability of attributes and classifying/clustering entities.

We first presented a nonparametric hierarchical Bayesian relational model, DERL,
which allows the parameters of conditional distributions are personalized to the entities
and relationships, instead of being global. That means the conditional distributions them-
selves can be modeled as the attributes of entities. Additional flexibility is introduced by
applying Dirichlet process (DP) as the nonparametric prior, which makes the posterior of
the parameters of the conditional distributions as complex as necessary, although we can
still implement our prior belief in the parameters of DP. As a result, the learned model can
represent a rich relational structure and parameter dependencies which are impossible to
be represented in a parametric formulation. For example, the coupling between different
types of relationships could truthfully be modeled. In addition, DERL makes possible
to represent the hierarchical class structures of entities in an elegant way: the distinct
distribution for each subclass can share a common prior defined in the upper-layer class.
For inference, we explore an efficient variational approximation method, which is moti-
vated by the Pólya urn representation of DP. The performance of DERL is demonstrated
in clinical data with promising results. We found that DERL improve the estimation
about predictive probability of a future procedure by modeling the additional dependen-
cies between physician’s diagnoses and prescribed procedures, in contrast, the relational
models with global parameters are not capable of modeling these dependencies and always
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provide the same prediction despite the increasing information.
The second model we proposed is infinite hidden relational model (IHRM), which

reduces the extensive structural learning, a typical difficulty in current relational mod-
els. IHRM introduces for each entity a hidden variable, which is the only parent of the
attributes of the entity and a parent of relationships it participates. Considering the
different complexities of the classes of entities, it is better to allow the number of states
of the hidden variables to be class-specific. In addition, the number should vary with
the increasing data. To meet these requirements, we take advantage of the discreteness
property of Dirichlet process and obtain a relational DP mixture model, which can sim-
ply be imaged as a mixture model with infinite number of states. The term infinite does
not mean the number of states is really infinite, instead, it means the number is not
specified in advance, but is decided by the data itself and as large as necessary. Given
a universe of discourse describing the entities, their attributes and relationships, IHRM
can be instantiated and results in a ground Bayesian network, across which all related
information propagates into the variables of interest. From this point of view, IHRM can
be understood as a relational generalization of hidden Markov model or hidden Markov
random field. Clustering is a natural outcome of IHRM and provides interesting in-
sight into the structure of the data. For inference, we develop four methods, including
collapsed Gibbs sampler with Chinese restaurant process, blocked Gibbs sampler with
truncated stick-breaking construction and the corresponding mean-field solution, as well
as an memory-based empirical approximation. The blocked Gibbs sampler is more than
a factor of five faster than the collapsed Gibbs sampler. Another factor of 10 in speed
up can be achieved by using mean-field approximation. These fast inference algorithms
make IHRM applicable to large and complex domains.

9.2 Future Work

There are a number of promising research directions for the future work.
First, it will be interesting to explore even more complex relational structures, for

example domains with ontology. The ontological information provides a formal description
about the domain of interest. Roughly speaking, ontology is defined by:

• A set of classes;

• A taxonomic (subclass-superclass) hierarchy;

• Slots for each class and value range for each slot.

Given ontology of a domain of interest, a knowledge base can be created by introducing
individual instances of these classes and filling in specific slot values as well as describing
additional slot restrictions. Bayesian analysis is particularly suited for a domain with
ontology since an explicit representation of parameters and hyperparameters provides a
natural way to capture the semantics about subclass-superclass and class-instance. The
preliminary researches in the direction include relational Markov networks introduced
by Taskar et al. (2002) and a PRM based model introduced by Getoor et al. (2000).
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Taskar et al. (2002) made use of the semantic information about the relational structure
of a set of web pages to improve the accuracy of link prediction/classification. Getoor
et al. (2000) provided a refined probabilistic relational model with class hierarchy, which
specializes distinct probabilistic dependency for each subclass.

Another interesting research direction is to extend discriminative modeling or hybrid
of generative and discriminative modeling to relational learning. The work in this thesis
is based on generative modeling techniques, which maximize the joint distribution of the
relational data (and unobserved variables in the model) and is well suited for the situa-
tions where the data is not sufficient. The discriminative modeling techniques optimize
the conditional likelihood of the data and typically provides excellent generalization per-
formance. For example, via integrating discriminative modeling techniques, the accuracy
of classification/prediction of IHRM might be improved. In addition, the hybrid of the
two modeling techniques is widely used for semi-supervised learning. This type of tech-
niques might be very promising in relational data due to the sparsity and unbalance of
the relationships. The related work includes: Taskar et al. (2002), Singla and Domingos
(2005a), Sutton and McCallum (2006), McCallum et al. (2006), Yu et al. (2007) and so
on.

Last but not least, the direction we feel compelling is the extension of dynamic models
to relational learning. In more cases than not, the domains of interest are naturally
dynamic. For example, in a clinical system, there are physicians, patients, complaints,
medications, diagnoses, treatments and so on. A typical workflow in the domain is a
loop: examination of complaints→ diagnoses from physicians→ treatments/medications,
which is clearly a dynamic process. Thus it makes sense to extend the dynamic models to
relational data. The existing work includes: relational reinforcement learning proposed
by Dzeroski et al. (1998), and dynamic PRM model proposed by Sanghai et al. (2003).

Nonparametric Bayesian analysis has created a revolution within the modern machine
learning. We believe that these advanced techniques are also helpful in statistical rela-
tional learning and the results achieved in this thesis open up ample directions for future
work. Our hope is that the proposed robust models can capture the probabilistic de-
pendencies in the domains with complex relational structures more accurately and more
efficiently than previous approaches.
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