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Summary 
Moderate resolution optical remote sensing sensors bare the potential of imaging the entire 
globe multiple times a day. They provide one of the most fundamental tools to monitor the 
earth’s surface on a regular, operational basis as their measurements are used to derive surface 
properties such as albedo, surface cover and leaf area. With spatial resolution of a few 
hundred meters to a kilometer they capture the vital signs of the earth and provide insight into 
processes and changes of an ever more changing planet. While this type of monitoring 
devices deliver invaluable information on regional and global scales, many facets of 
ecosystem dynamics take place on spatial extent smaller than what these devices may capture. 
Thus, remote sensing instruments of much higher resolution have been established to be able 
to focus on the exploration of the finer structures of surface features and take a closer look. 
This closer look, however, is achieved only by surrendering the advantage of dense temporal 
coverage and is due to narrower swaths of the instruments and subsequently less frequent 
overpasses of the spaceborne instrument. While at moderate resolution a mid latitude central 
European site will be observed multiple times a day on every cloud free occasion, the 
matching of overpass and non-cloudiness can be expected to occur about 3-6 times per season 
for today’s operational high resolution sensors. It is the objective of this thesis to tackle this 
dilemma of optical satellite remote sensing data of scarce high-resolution spatial information 
on the one hand and abundant coarser resolution data on the other. It presents a method that 
aims at linking bits of information of both available data sources. These data from the two 
sources are combined with a priori expert knowledge. The method is implemented as a value 
adding chain to provide leaf area index (LAI) as a surface parameter in improved form to be 
used in the driving of numerical environmental process models in the wake of global change 
research. 

Along with the implementation of the method field measurements were carried out in order to 
achieve a better understanding of LAI and its temporal development. The Licor LAI-2000 
optical sampling device was used for the measurement of in situ leaf area. During the growing 
seasons of 2002 through 2004 field campaigns were conducted to sample maize, rape and 
wheat fields on a biweekly basis. Additionally, deciduous and coniferous forest types were 
sampled on an irregular basis. The irregularity is due to the great dependency on weather 
conditions when sampling forest sites. 

The layout of the algorithm connects to concepts of the GLOWA-Danube project (Global 
Change of the water cycle) by which this research was initiated and funded. The principal 
goal of this project is the development of the integrated decision support system DANUBIA. 
This system is a raster based, object-oriented compound of interacting expert numerical 
models capable of describing the processes involved in the hydrologic cycle. Static and 
dynamic land surface parameters are key quantities in these process descriptions. Remote 
sensing data are apt to be used as an input source for DANUBIA and other environmental 
models alike. 
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The study area for this thesis is located within the upper Danube catchment, which is the test 
site for the GLOWA-Danube project and DANUBIA. The area is a 144km square that 
includes the variety of the major natural environments represented in the encompassing upper 
Danube catchment. It stretches from lower river valley plains in its northern part through the 
alpine foreland to the Alps in the south. The area covers approximately 21.000 km² and 
includes fertile agriculturally used plains, large forested areas of different type as well as 
extended urban areas. 

Data of two remote sensing instruments of high and low resolution are applied: the Moderate 
Resolution Imaging Spectroradiometer MODIS delivers data at up to 250m spatial resolution. 
It is used as the device capable of frequent monitoring. The Landsat Thematic Mapper (TM) 
instrument takes measurements at 30m spatial resolution. It is used to derive information on 
static land surface properties at high spatial resolution. Together with the target resolution of 
1km of the DANUBIA raster three different scales are addressed. Further, within DANUBIA 
the concept of geocomplexes was developed to account for the heterogeneities observed on 1 
km grid cells. It is used as a scaling instrument and common ground to bring the three scales 
of the two sensors and the model together. Due to the ambiguity of the scale term and its 
implications for remote sensing and environmental modeling, the study expands upon some 
relevant perspectives of scale for clarification. 

With geocomplexes a single grid cell is conceptualized as an area composed of a set of 
fractions with homogeneous properties rather than a single homogeneous entity. Each square 
raster cell is thought to be made up of a number of geocomplexes that describe homogeneous 
properties of a fraction of the cell. This approach of maintaining land cover types fractions on 
a pixel has proven to be of great benefit to the quality of environmental model results when 
the model is run for each of the homogeneous subscale fractions. The fact that the generation 
of geocomplexes relies on land cover type as the prime criteria of separation of homogeneous 
fractions harmonizes with the fact that land cover type is also fundamental in the derivation of 
many land surface properties. This raises the question if also the retrieval of surface 
parameters from remote sensing can be based on these subscale homogeneous fractions. 

When applying parameter retrieval algorithms to moderate resolution remote sensing data, 
usually the full pixel is assigned a land cover type. However, in many natural environments 
pixels at moderate scale will rarely represent homogeneous land cover. In the study area, an 
investigation of the areal fraction of majority cover types on 250m pixel results in the 
observation that on half of the pixels that majority land cover type represents less than 65% of 
the pixels area. In some cases it may even be lower than 20%. This makes it obvious that the 
generalization of the pixel as homogeneously covered introduces substantial error to any 
parameter retrieval that relies on pixel land cover type. 

The method that is being developed tries to overcome the error resulting from the assumption 
of pixel homogeneity and seeks a better answer to the question of the true leaf area on a raster 
cell of heterogeneous surface. The reliable quantification of LAI is coupled to the knowledge 
of the land cover type producing the leaf area. At the same time the use of subscale fractional 
land cover information is valuable and in practice in environmental modeling. Therefore a 
method was developed to determine LAI for fractions of equal land cover on a pixel. 
However, a paradox lies within the notion of splitting up a moderate resolution raster cell’s 
LAI to a set of different underlying land cover fractions: If the deduction of an LAI value 
requires land cover type information, such a value may not be broken up to other land cover 
types. Because of this paradox the endeavor of focusing on segments of the pixel has to be 
broken down to the most basic input for the retrieval algorithm: the pixel reflectance. The 
charming effect of this necessity is the fact that such segmented reflectances would be 
available for other application than LAI retrieval as well. 
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The segmentation of moderate scale pixel reflectances is achieved based on three inputs. First, 
there are the reflectances obtained from the measurements of the moderate scale sensor 
(MODIS). Second, there is information on fractional land cover type within the moderate 
resolution pixels. This information is deduced from land cover type raster data of spatial 
resolution exceeding the moderate scale to a degree that allows the computation of reasonable 
precision of the fractions. It is achieved by the classification of land cover types from Landsat 
TM data at fine spatial resolution. The third input for the algorithm for reflectance 
segmentation is of fuzzy nature. It is based on the fact that good knowledge exists about what 
kind of reflectance properties can be expected from land surfaces as a function of time. For 
example, it is well explored and to a certain degree predictable of how for instance a maize 
field or a deciduous forest will reflect radiance at a certain time of the year. This information 
is formalized as reflectance probabilities in functions that correspond to the time of 
acquisition of the first input, the moderate resolution reflectances. 

The subscale land cover type information of a pixel connects to the fuzzy formalization of 
each land cover types possible reflectance that is expectable for the day of the year of the 
moderate resolution satellite measurement. Constrained by that measurement the algorithm is 
set out to determine an optimized distribution of reflectance for each pixels subscale land 
cover types. It is based on the multi-dimensional Newton-Raphson method and is 
implemented in the Java programming language. As the result, each land cover type present 
on the pixel will be assigned the most probable segment of the observed total reflectance. 
These reflectances of land cover types are used in the retrieval of LAI. 

In remote sensing, geometric and radiometric preparation of data is a prerequisite for its use. 
In order to prototype and test the algorithm and to derive the fuzzy input data, satellite 
imagery of MODIS and Landsat TM are carefully prepared and analyzed. Two datasets are 
sought. One consists of coincident data of MODIS and TM and dates to June 19th 2001. This 
dataset is used in the development and prototyping of the algorithm. The other is a time series 
of MODIS imagery acquired during the growing season of 2003. It consists of the 19 best 
cloud free scenes of that season and is used to apply the algorithm. After the geocoding of the 
imagery, surface reflectances are derived from the data and atmospheric smearing is removed. 
It is shown that reflectances derived from both sensors agree well when comparing data of the 
temporally close acquisitions. Angular effects in the wide swath MODIS data however may 
seriously deteriorate the quality of the imagery. 

Prototyping of the algorithm is performed on aggregated data of Landsat TM. In combination 
with the land cover type classification the high-resolution TM reflectances are used to derive 
the characteristics of 12 land cover types reflectances at the time of the TM acquisition. 
Additionally, a bidirectional canopy spectral reflectance model is used to develop an 
understanding of temporal reflectance behavior of the dynamic vegetation cover types. Fuzzy 
descriptions of expectable reflectances are deduced. It is shown that Gaussian functions 
suffice for a fuzzy description of the probabilities of reflectances for the land cover types. The 
algorithm is tested and thoroughly analyzed on the consistent set of input data derived from 
one data source. Because high-resolution reflectances are available for the aggregated 
synthetic moderate scale data, the land cover specific reflectances obtained from the 
reflectance segmentation algorithm can be compared to a reference dataset derived from this 
original high-resolution data. Reflectance segmentation is performed for the red (RED) and 
near infrared (NIR) bands of the data. In a second step, the land cover specific reflectances are 
used to derive LAI for the homogeneous fractions of pixels. Approved regression equations 
that relate LAI to normalized difference vegetation index (NDVI) computed from RED and 
NIR reflectances are applied to obtain LAI estimates.  

The results from the prototyping are presented for the segmented reflectances and for the LAI 
derived from the reflectances. In the reflectances assigned to the 12 land cover types, a 
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tremendous reduction of variance can be observed as opposed to the reference data. The 
segmented reflectances are closely dispersed around mean land cover types reflectances. The 
reference data are only modestly reproduced. Maximum error of up to 50% in reflectance 
occurs. Error analysis, however, shows that the cover types area fraction plays a role in the 
deviation from the reference data with the smallest fractions exhibiting the largest error. 

Despite rather discouraging results in the reflectance segmentation, the subsequent production 
of LAI values from the reflectances reveals some interesting results. LAI was elaborated for 
all land cover types fractions and then lumped to produce a single LAI value for the moderate 
scale pixel. While the fractional LAI can only be compared to the reference data set to assess 
error, the lumped single value is also compared to the alternative of deriving LAI using the 
majority land cover type. The data are analyzed for three agriculturally dominated sites in the 
northern part of the study area and one site in the alpine part. 

In the fractional LAI results the extreme error observed in the segmented reflectances is 
preserved. When removing the 5% of the fractions with the largest error that needs to be 
judged as unacceptable, a 25% mean relative error remains in the data of the agricultural sites. 
Here, mean absolute error is around 0.65 units of LAI (m²/m²). In the alpine area mean 
relative error is as high as 50% and mean absolute error is 1.36 units of LAI. 

For the moderate scale LAI, it is shown that the LAI produced separately for each land cover 
type and then summed to the pixel area correlates slightly better with the reference dataset 
than the LAI derived from majority land cover. This is the case despite the extreme error on 
some fractions that is introduced by the segmentation method. The statistical analysis reveals 
that mean absolute error computed against the reference data is lower when deriving LAI 
from reflectance segments for all tested sites outside the alpine environment. This applies to 
the full data without the removal of the 5% most extreme error. With the largest 5% errors 
removed, mean relative error on the lumped mesoscale pixel is 12.9% with a mean absolute 
error amounting to 0.26 units of LAI in the worst case observed. With these results of the 
prototyping experiment, the hypothesis can be confirmed that LAI retrieval will benefit from 
accounting for subscale pixel heterogeneities. 

After the prototyping with synthetic data the method is applied to operational MODIS data in 
two experiments. First, MODIS reflectance data of two consecutive days are segmented and 
compared to reference data derived from coincident Landsat acquisitions on the second day. 
Then, the time series of MODIS reflectance data from 2003 is segmented. Both these 
experiments revealed that the presented implementation of the method is not ready for 
application. In the first application experiment it is discovered that the randomness in the 
produced reflectance segments is very large. While the regression coefficient of 0.75 between 
the original consecutive MODIS scenes is high in both the RED and NIR bands, pixel 
fractions accordance in the land cover types reflectances is equivocal. However, agreement 
with the reference dataset is commensurate for both scenes. The same applies to the LAI 
derived from the reflectance segmentation results. When LAI is derived for the MODIS time 
series data erroneous up- and downturns of the leaf area development are contained in the 
results. These fluctuations are strong in the fractional LAI and are little mitigated in the LAI 
time series lumped to the pixel area. With this finding the miscarriage of the second 
application experiment needs to be reported. The derivation of LAI time series for 
homogeneous land cover fractions of pixels is not feasible in the state of development of the 
approach. 

The study concludes that the concept to derive land surface parameters based on fractional 
land cover type is auspicious and promising but with the presented method for reflectance 
segmentation not ready for application. In its current form it can be useful in the case where a 
surface feature like LAI is desired for a single instance in time. Although estimates for 
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subscale fractions of land cover types may contain large error, the leaf area estimate for the 
mesoscale pixel shows improvement when compared to the conventional majority type 
alternative. The current implementation will not be beneficial for the retrieval of temporally 
continuous land surface properties and their propagation. 
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1 Introduction 
Only recently the beauty of imagery produced by remote sensing instruments has become 
readily available to everyone through easily accessible public Internet tools. Images collected 
from all over the globe are gathered to bring the layman the pleasure of the view from above, 
a sense of flight over his country, city and even backyard. Zooming in and out of the scene is 
but a click away and seems dead easy. For a simple view of a scenery this may today be 
veritable, for the vast information that is actually contained in the data sources of those 
images it is not. 

Remote sensing science has emerged with a variety of instruments that not only produce 
much more than simply colorful pictures but covers a large quantum of different resolutions 
or scales. This “resolution” already is an ambiguous term (Quattrochi and Goodchild, 1997, 
Wu and Li, 2006). It may connect to what the user of the Internet tool sees as a zoom factor, 
that is, a spatial resolution. In the context of remote sensing data, however, it may also be 
interpreted as a temporal resolution or repetition of data collection and, additionally, the 
number and characteristics of simultaneous measurements made is addressed as spectral 
resolution. Also, the zooming in and out on the scientific datasets alone is by far a more 
complicated task in remote sensing and the environmental scientists use of such data 
(Quattrochi and Goodchild, 1997). Furthermore, such a change of spatial resolution is not 
independent of a temporal resolution factor.  

The work presented in this study is concerned with some of the difficulties that occur when 
the information of satellite imagery shall be utilized for more than beautiful pictures. Remote 
sensing data has long been a major source for environmental data that is available for the 
entire surface of the earth on a regular and consistent basis. One of the prominent applications 
of the data is their use to derive land surface parameters (Asrar, 1989, Myneni and Ross, 
1991, Lillesand and Kiefer, 2000). These parameters, that can be produced for large areas and 
at different resolutions have been a major source for the input requirements of many types of 
environmental models (Bach and Mauser, 2003). Especially in the field of global change 
research, outstanding contributions have been made by remote sensing in both, the detection 
of changes of the environments on this planet as well as in the fields of modeling future 
development scenarios and in decision support. Environmental modeling and remote sensing 
have become intertwined scientific activities and the handling of the interfaces of the two 
fields is a challenging task to both (Schultz and Engman, 2000). What data do the models 
need? How can these be produced? What benefit of modeling environmental processes 
emerges for the remote sensing scientist? What needs to be done for the possibilities and 
requirements of the two to harmonize? In many cases these questions have been answered 
successfully and the synergies have been proven repeatedly (Schultz and Engman, 2000, 
Lakshmi et al. 2001, Schneider, 2003). Nevertheless, questions remain unanswered. It is the 
attempt in this thesis to bridge a gap between spatial and temporal resolution requirements of 
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an environmental research model and the propositions of a new generation of remote sensing 
satellites. 

The model that this work is focused on is the model developed in the framework of the 
GLOWA-Danube project (Mauser, 2000, Mauser and Ludwig, 2002, Ludwig et al., 2003a). 
The project and the DANUBIA model developed in the project are briefly described in the 
next section. The remote sensing instrument in focus of this work is the Moderate Resolution 
Imaging Spectroradiometer MODIS (Justice et al., 1998, Justice and Townshend, 2002, 
NASA, http://modis.gsfc.nasa.gov/). The model as well as the satellite sensor operate at 
intrinsic scales. Bringing together the spatial and temporal characteristics and requirements of 
the model and the remote sensing instrument is trivial when considering their identical spatial 
resolution capabilities of 1km. However, the DANUBIA model as well as other 
environmental models are laid out to enhance their performance by processing information 
that is maintained below this resolution (Mauser and Schädlich, 1998). MODIS on the other 
hand, provides some of its information at higher resolution as well. Thus, both systems have a 
potential of moving to a state of higher information content. The model thereby improves its 
representation of processes. The remote sensing imagery reveals more detail. 

The methods of how this greater detail is introduced to the model and the remote sensing 
imagery, however, are different. The remote sensing device of higher resolution simply 
produces more pixels, where each pixel represents a smaller area of the surface sensed. It 
refines the scale. The model, in contrast, conceptualizes the pixel of the same size as a 
composite of different characteristics. The scale remains the same, but subscale characteristics 
are taken into account. It is this antagonism in data storage concepts that shall be tackled by 
the method for reflectance segmentation developed in this study. 

One of the key parameters in environmental process models like DANUBIA is the area of 
leaves produced by plants. It plays a vital role in numerous processes such as 
evapotranspiration, radiative transfer, gas exchange, biomass production and generation of 
runoff (Schultz and Engman, 2000, Lakshmi et al. 2001). Leaf area is processed as leaf area 
index (LAI) in environmental models. LAI is also a parameter that can be derived from the 
surface reflectances obtained from remote sensing imagery (Asrar, 1989, Campbell, 1996, 
Lillesand and Kiefer, 2000, Myneni et al. 1997). It was chosen as the quantity to test and 
validate the method for reflectance segmentation. 

1.1 GLOWA Danube – Global Change in the Hydrologic Cycle 

The background and trigger for this thesis study was the GLOWA-initiative (Global Change 
of the water cycle), funded by the German Ministry of Research and Education (BMBF). 
Within this framework the GLOWA-Danube project focuses on the temperate mid-latitude 
catchment of the upper Danube area (see chapter 2). It serves as a test site for the 
development and testing of the integrated decision support system DANUBIA. This system is 
a distributed, web based, object-oriented and raster based compound of expert numerical 
modeling systems involved in the processes of the hydrologic cycle. Its objective is to 
identify, examine and develop new techniques of coupled integrated modeling. The system 
includes models from fields of natural and socio-economic sciences that are coupled to 
investigate the sustainability of future water use on an exhaustive scientific basis. It is 
developed by a network of experts from water related sciences. Integration of natural and 
socio-economic research is a key issue in the project, which is addressed by an integration 
concept based on the industry standard of the unified modeling language UML (Booch et al., 
2005). This standard unites all contributors on a common platform-independent notation of 
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computational methods and data exchange procedures. The dialog with stakeholders in water 
resource management is sought to assure practical issues and future water related problems to 
be addressed (Ludwig, et al. 2003a). 

The basic object in the system is the “proxel” (process-pixel) on which processes are 
described. A proxel is connected to its environment and may be adjusted in size for the 
system to operate on different scales. The 1km scale was agreed upon for the current 
development and testing of DANUBIA. The processes interconnect on the proxel and include 
atmospheric impact, energy exchange at the surface, plant growth, runoff formation, soil 
water movement, snowmelt, water uptake by water suppliers, household water use as well as 
economic, tourism and farming activities. All proxels are organized in a raster grid that 
defines the spatial context of the proxels (see Figure 1.1). The proxel itself is not assumed as 
an homogeneous entity, but may be subdivided into homogeneous static units of land cover 
type, soil type, topography etc. by the concept of geocomplexes (see chapter 3) 

 
Figure 1.1: The proxel concept of DANUBIA for raster based modeling (Ludwig, 
et al., 2003a) 

A standardized framework is set up to manage the connectivity of the individual models and 
to spatially and temporally control the interaction of the model compounds. This framework is 
open to plug in individually maintained models as well as new components. The system is 
implemented in the Java programming language using standards for data exchange and 
method invocation. 

The use of remote sensing data is an important integrative component in the project. The 
possibilities of remote sensing to monitor processes and supply data and parameters at a range 
of scales play a major role for all project partners. The multiscale nature of remote sensing 
data make it an important matter of research within the project in terms of run-time 
assimilation of up to date information and improvement of parameter retrieval (Ludwig et al., 
2003a). The latter is the subject of this research. 

1.2 Scientific Objective and Outline of the Thesis  

The MODIS sensor provides spectral measurements at 250m, 500m and 1km spatial 
resolution. With two instruments in orbit and the coverage of the scanner, multiple 
observations are available per day. Alternative sensors with higher spatial resolution such as 
Landsat Thematic Mapper cannot compete with this data rate and coverage. However, at any 
of its resolutions, MODIS will mostly capture heterogeneous surfaces on a pixel in a 
diversified area like the upper Danube catchment. The majority of the pixels are mixed pixels. 
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The application of remote sensing signals to derive parameters like leaf area index (LAI) is 
closely tied to the type of vegetation producing a pixels signal. Thus, land cover type is an 
important input in the retrieval algorithm for LAI from satellite data. This holds for other 
algorithms as well, and also applies to many processes described in land surface models. In 
either case land cover heterogeneity on a pixel greatly disturbs the applicability of the 
algorithms. 

Like in DANUBIA, this problem of heterogeneity has led to the stratification of the pixel into 
units of homogeneous character. Stratification by land cover type has been explored earlier at 
the Department of Geography of the University of Munich (Mauser and Schädlich, 1998, 
Ludwig et al. 2003c, Reichert et al., 2004b). Such subdivision of the pixel contradicts with a 
straightforward use of remote sensing data that delivers a measurement that integrates over 
the homogeneous units contained in the area of the pixel. However, by introducing ancillary 
knowledge, two kinds of information may be provided for the remote sensing pixels 
measurement. The first is a land cover classification at higher resolution than the satellite 
sensors scale. It will give evidence of the surfaces that contributed to produce the signal 
collected by the sensor. The second is a reasonable guess about the spectral properties of the 
surfaces under concern. In respect of the knowledge about various surfaces and their spectral 
reflectance behavior, reasonable expectances about different surfaces reflectance can be 
brought forward. From the expertise and experience in remote sensing it is at least roughly 
known how surfaces reflect radiation and how they change their reflectance characteristics 
over time. In other words, prior to a spectral measurement, a fuzzy statement can be made 
about what the signal will look like. This especially applies to the seasonal progression of 
vegetation surfaces of different types. A forested or agriculturally used surface is well known 
to exhibit different reflectance properties at different times of the growing season. 

It is the objective of this thesis to explore the possibilities of producing this ancillary 
knowledge and using it to decompose a pixels remote sensing signal into the underlying land 
cover types specific contributions. A method to achieve this goal is developed and presented. 
It is an approach for scale independent derivation of subscale land surface reflectances from 
mesoscale remote sensing data. The procedure is tested and investigated on different datasets 
from a range of scales. It is used to stratify the reflectance on a moderate scale remote sensing 
pixel and assign the obtained segments to the land cover types that produced it. As a result, 
reflectances of the homogeneous units that a pixel is composed of are obtained. Based on 
these results, for the homogeneous fractions of the pixel LAI can be derived. Both, 
reflectances and LAI are validated against a reference dataset deduced from higher resolution 
imagery of the Landsat Thematic Mapper sensor. The fractional values of LAI are compared 
to the conventional approach of ignoring pixel heterogeneity in the production of the LAI 
parameter. The investigation makes use of the advantage of coincident data from the MODIS 
and the Thematic Mapper remote sensing instruments. 

 

 

The chapter following this introduction provides insight into the characteristics of the upper 
Danube catchment. A brief overview of the natural and socio-economic features is given and 
the study area used in the testing of the method for reflectance segmentation is delineated. 

In chapter 3 the issue of scale is discussed in detail and the consequences of scale for data and 
modeling are explored. Because scale is directly connected to data storage, ways of data 
representation are viewed in relation to scale. The chapter then casts a view on the factor of 
scale in GLOWA, in remote sensing data and how scale connects to the LAI parameter. The 
final section argues about the benefit for scaling that lies in the method for reflectance 
segmentation. 
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The 4th  chapter introduces the sensors that collected the data used in this study and describes 
the preparation of the data. After the geocoding of the imagery, a localized atmospheric 
correction was applied to data of both images. The results are presented and compared to the 
operational atmospheric correction product (MOD09) issued by the MODIS Land Science 
Team (MODLAND). The chapter concludes with a presentation of all MODIS and Thematic 
Mapper data sought for this work. 

As stated above, leaf area index is an important process variable in the environment. It is 
discussed in chapter 5. A thorough definition of the quantity is given and a summary of the 
role of leaf area in the environment is sought. The difficulties of determining canopy optical 
properties as opposed to leaf optical properties is addressed. Both play a vital role when 
optical remote sensing measurements shall be used to derive leaf area index. Alternatives and 
difficulties of determining leaf area index are subsequently highlighted. The chapter 
concludes with a presentation and critical discussion of available LAI data. 

In chapter 6 the method for reflectance segmentation is introduced. The conception of the 
algorithm is outlined before the methods for the optimization of fractional reflectances are 
described. 

The application of the method to the MODIS data is described in chapter 7. The algorithm 
was first prototyped on a synthetic dataset. A detailed analysis illuminates the characteristics 
and capabilities of the approach. Then it is used on actual MODIS data. It is applied to 
segment the reflectances of two MODIS scenes that coincide with high resolution Landsat 
Thematic Mapper data. Finally, the effects of applying the algorithm to a time series of 
MODIS data are shown. 

Chapter 8 discusses the observations from the prototyping and the application of the method. 
A critical view is cast on the results and the usability of the method. 

The thesis concludes in chapter 9 with a summary of the findings made and an outlook to 
possible improvements and future research in conjunction with the presented method. 
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2 Study Area 
The issues addressed in this study are aimed at the requirements and the objectives of the 
GLOWA-Danube project. It focuses on the upper part of the river Danube catchment. This 
area was chosen for various reasons including its diversity in terms of natural environment 
and socio-economic characteristics. The investigations in the scientific context pursued in this 
thesis, however, were performed on an area that covers somewhat more than a third of the full 
GLOWA Danube catchment. Nevertheless this third exhibits most of the properties and 
characteristics observed in the whole of the catchment. The hydrologic aspect of the GLOWA 
Danube project called for a hydrologic entity as a test area. The remote sensing aspect of this 
study neglects this hydrologic demand but retains the diversity of the area in a subset. In order 
to support this approach, first the characteristics of the upper Danube catchment are described 
in the following. The subsequent section delineates the study area within the catchments area. 
It was used in all the following and localizes a number of test sites that were investigated in 
detail in order to evaluate the method presented. 

2.1 The upper Danube catchment 

Among the great rivers of Europe, the Danube has the distinct feature of flowing over a great 
distance in an east-west direction. Its great historic and economic significance are due to this 
outstanding characteristic. Being the second largest river in Europe with a length of 2,857km 
from wellspring to mouth it extends from 8°09’E to 29°45’E. In a total area of 817,000km² it 
unites a variety of landscapes including large parts of the Alps including glaciered mountains, 
forested low mountain ranges, hill countries and vast plains. The full catchment stretches 
across 18 European countries (RZD, 1986). 

The upper part of the catchment, called the “upper Danube” in the following, is delineated at 
the gauge at Achleiten (287m asl) shortly below the city of Passau and the mouths of the 
tributaries of the Inn and the Ilz (see Figure 2.1 and Figure 2.2). The catchment above this 
point covers an area of 76,653km² with a river length of some 580km (BLfW, 1999). The 
larger parts of the landscapes in the area are the Black Forest to the west, the Swabian and the 
Franconian Alb to the north, the Bavarian and Bohemian Forest in the east and the Alpine 
Foreland and the Alps in the south. In the center part some of the large Basins are found, such 
as the Donauried, the Donaumoos and the Dungau. 

The upper Danube encompasses territories of five European countries. The largest part is 
situated in Germany in the states of Bavaria (62%) and Baden-Württemberg (11%). The 
headwaters of the Inn are located in Austria (24%) with minor parts in Switzerland and Italy. 
Additionally, a small part in the east of the catchment belongs to Czech Republic (BLfW, 
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1999). The divides of the basin border to the river Rhine in the west and north, to the Elbe to 
the north, and the rivers Po and Etsch in the Italian Alps towards the south. The eastern basins 
belong to the center part of the Danube catchment itself. Within the basin, the main sinistral 
tributary rivers include the Wörnitz, the Altmühl, the Naab and the Regen and the dextral 
comprise the Iller, the Lech, the Isar and the Inn. The latter is the largest of the feeders to the 
Danube, covering 26,130km². It is this part of the catchment that reaches farthest into the Alps 
to include high alpine territory including the highest point at Piz Bernina at 4,049m asl (RZD, 
1986, BLfW, 1999). An overview of the location of the catchment in the context of central 
Europe is given in Figure 2.1. The catchment itself is shown in Figure 2.2. 

 
Figure 2.1: The location of the catchment area of the upper Danube in relation to 
the whole river system. 

Geology and Geomorphology 
A simple geographical breakdown of the area, which is marked by a multitude of geological 
media, would divide it into an alpine part, the alpine foreland and the region of the low 
mountain ranges of the Swabian and Franconian Albs. Crystalline shale and granite mostly 
form the central part of the Alps, the northern rim is made up of limestone with typical carst 
formations. At the outskirts of the mountains follow the clastic sedimentations of the flysch 
zone and a narrow band of the helvetic nappes. The southern alpine foreland is formed by the 
large deposits of the folded molasse sediments, mainly covered by quarternary sediments of 
the Würm glacial period and in parts by unconsolidated loess. The melting ice cover left it 
with the typical fluvial and fluvio-glacial landforms. The large lakes Ammersee and 
Starnberger See are some of the more outstanding remainders of that period. To the north of 
the terminal moraines the molasse basin continues forming the tertiary hill country, partially 
divided by gravel plains of the larger rivers. The valley of the Danube river takes its course 
between these tertiary deposits and the Jurassic plateaus of the Swabian Jura and the 
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Franconian Jura to the north and the crystalline mountains of the Bavarian Forest in the 
northeast (Jerz, 1993). 

 

 
Figure 2.2: Satellite image with map overlay of the upper Danube catchment 
area.  

Climate 
Located in the northern mid-latitude temperate zone, the weather in the entire upper Danube 
area is dominated by the prevailing westerlies. The summer is characterized by northwesterly 
and westerly winds that turn to mostly southwestern winds in the winter. Advection currents 
originating in the northern Atlantic tend to bring enduring and yielding precipitation. In the 
lee of the Alps, during southerly winds foehn is a common feature in the area’s weather that 
may reach as far north as the Danube valley. 

Mean annual precipitation ranges from approximately 700mm in the valley of the Danube to 
1500mm at the northern rim of the Alps. In the mountain areas, peaks notably above 2000mm 
are reached at higher elevations. Accumulation during northerly meteorological conditions 
along the mountain range greatly contributes to this increase from north to south. The more 
elevated parts of the Black and the Bavarian forest will also reach annual precipitation up to 
1500mm. While the plateaus of the Swabian and Franconian Albs tend to exceed 1000mm/a 
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the lowest precipitation are recorded in some of the basins of Altmühl, Naab and the Miocene 
impact crater of the Nördlinger Ries (Bundesministerium für Umwelt, Naturschutz und 
Reaktorsicherheit, 2003). Also, some of the central alpine valleys report quite low annual 
rainfall. The overall mean of the German part of the catchment, which amounts to 73% of the 
total area, reaches 950mm with a maximum in the summer. Especially in the alpine foreland, 
extreme events may bring up to 200mm of precipitation per day (RZD, 1986). 

Another important climatic factor is the duration of snow cover. While large parts of the 
catchment area are reported to have 40-60 days of annual snow cover it may exceed 100 days 
in the higher elevations of the mountainous parts. In the Alps at elevations of 2000m asl snow 
cover may last around six to eight months of the year. With a rise from the rim to the central 
Alps, the elevation of perennial snow cover lies between 2900-3200m asl (RZD, 1986). 

Mean annual temperatures in the upper Danube region again are greatly influenced by the 
orography of the area. While means in large portions of the alpine foreland reside around 7-
8°C, favored locations along the Danube River and in the lower parts of its tributaries may 
have mean annual temperatures between 8 to 10°C. In the mountains annual means below 
freezing are common. In July the highest monthly mean at 16-18°C is observed, in the coldest 
month January mean temperatures are between –2 to –3°C. Temperatures in the mountainous 
parts of the catchment decline with altitude at a rate of 0.5-0.7K/100m in the summer and due 
to frequent atmospheric inversion at 0.2-0.4 in the winter (RZD, 1986). In the Alps, 
pronounced small-scale variations in climate often occur due to local radiation budget, air 
temperature, cloud cover, wind conditions and precipitation. 

Hydrology 
With its route parallel to the mountain range of the Alps, the Danube is the receiving 
watercourse for a large number of rivers exiting the eastern Alps to the north. However, since 
its formation in the Pliocene, it had to release numerous tributary rivers and streams to the 
faster and stronger eroding Rhine river system. This surrendering of territory is ongoing along 
the northern rim of the Swabian and Franconian Jura in the north of the basin. 

The Danube’s flow regime is greatly influenced by the many tributaries. It changes several 
times due to the influences of the flow regimes of its affluents. While the rivers coming from 
the north exhibit a pluvial regime type with maxima in the winter, the tributaries coming from 
the Alps are characterized by strong influences of snow melt and glacier runoff with 
maximum discharge in the summer. High precipitation along the northern rim of the Alps in 
the early summer leads to frequent floods during that time of the year. Somewhat more than 
half of the mean runoff of 1420m³/s gauged at Achleiten near Passau is contributed by the 
Inn’s catchment that reaches far into the Alps (BLfW, 1999). Many rivers have been regulated 
by dams and hydropower stations so that a natural condition of discharge and sediment 
transportation is rarely present in today’s watercourses of the basin. 

An important factor in the water balance of the catchment are the numerous lakes that 
mitigate the dynamics of the runoff by their retention effect. They are almost exclusively 
located to the south of the Danube and are formations of the Pleistocene glaciation of the area.  

Soils 
Due to the great differences in the factors and processes of soil formation a multitude of soils 
may be found in the area of the upper Danube. Regional variations in bedrock, terrain, 
climate, vegetation and time for soil formation result in soil types ranging from weakly 
developed leptosols in the mountain regions to fertile luvisols that formed on loess sediments. 
Soil texture ranges from loamy clays to grainy sand. In the Alps, the young soils are 
organized according to climatic factors and the type of bedrock. Lithics, rendzic and umbric 
leptosols make up the soils of the slopes of the mountains. In the forested altitudinal belts, 



Study Area 10 

regosols and some chromic cambisols developed on carbonate rocks while umbric leptosols 
and albic luvisols are found in the crystalline bedrock regions of the central Alps. Locally, 
eutric leptosols, luvisols, cambisols as well as gleyic luvisols and gleysols occur, especially 
along the valley floors. 

In the alpine foreland, mainly luvisols are developed on coarse permeable gravel-sheeted 
plains and on moraines. In the large basin around Munich some rendzic leptosols are found. 
Luvisols and cambisols are also predominant on the loess eolian sediments in the tertiary hill 
country, and, depending on the substrate and ground water level, gleyic luvisols and gleysols 
are frequent. Fluvisols are found throughout the upper Danube area along the numerous 
watercourses. Extended bog lands with peaty soils are also common, especially along the 
northern rim of the Alps. 

On the Jurassic bedrock of the Swabian and Franconian Alps, rendzic leptosols and chromic 
cambisols are predominant on the upper Jurassic, while vertisols and gleyic luvisols are found 
on brown and lower Jurassic. On the crystalline rock formations of the Bavarian, Bohemian 
and the Black Forest, umbric leptosols and fertile cambisols dominate which tend to podzolize 
on granite and gneissic rock (Kuntze, et al., 1994, Hintermaier-Erhard and Zech, 1997). 

Vegetation 
Vegetation in the basin of the upper Danube is a product of the climatic, geologic and 
geomorphologic properties of the catchment and the anthropogenic influence over the 
centuries. The potential natural vegetation would be forest in almost all of the area (RZD, 
1986). Under undisturbed natural conditions, deciduous forests dominated by beech (fagus 
silvatica) and oak (quercus robur and quercus petrea) would inhabit the land, excluding those 
elevated zones were climatic conditions inhibit the spread of the species. However, today man 
has claimed most of the territory that may be used agriculturally, repelling forest stands to 
unfavorable sites. Only few pure deciduous forests remain for forestry has substituted the 
natural vegetation by large plantings of spruce (picea abies). Unique and rich in species 
remain the extrazonal alluvial forests that stretch along the Danube and its tributaries 
wherever lack of human impact allows for a natural development of these biomes. 

In the more elevated montane and subalpine altitudinal belts of the mountainous areas, mixed 
mountain forests and coniferous forests are situated. The mixed forests are made up of spruce 
(picea abies), white fir (abies alba) and beech (fagus silvatica). Due to anthropogenic 
influence spruce is the dominating tree in these surroundings as well and it is spruce that is 
found at the timberline at about 1800-1900m. In the climatically dryer central part of the Alps, 
the mixed forests are replaced by spruce in the lower stands while larch (larix decidua) and 
more scarcely Swiss stone pine (pinus cembra) and mountain pine (pinus mugo) reach up to 
the somewhat higher timberline at 2400m. Above this altitude grasses (carex curvula) and 
ericaceae (calluna vulgaris) are the native species adapted to that environment (Ellenberg, 
1996). In the south of Bavaria, some of once widespread moorlands have been preserved in 
their natural state. 

Socio-economic aspects 
The area of the upper Danube catchment has been greatly formed and influenced by the 
activity of man. Intensely used and densely populated it is the home to about 8 Mio people. 
The largest settlements of the area are the agglomerations of Munich, Augsburg and 
Ingolstadt. Important industries have been established here and wherever feasible, the land is 
cultivated or used as pastures, even in the high and remote areas of the mountains. Common 
crops include winter and summer grains (mainly triticum L., hordeum vulgare L., secale 
cereale L.) maize (zea mays L.), sugar-beet (beta vulgaris), potatoes (solanum tuberosum L.), 
canola (brassica napus L.) as well as specialized crops like hops (humulus L.) and asparagus 
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(asparagus L.) are grown. Preferred sites are the low and climatically favorable basins along 
the river Danube itself. Above the climatic limits of agricultural productivity extended 
pastures and grasslands are extensively used. Many areas in the upper Danube, especially in 
the region of the Alps and the Bavarian forest, are attractive to tourism, which has developed 
into an economic branch of substantial size. 

Various public and private institutions pursue water management in the catchment of the 
upper Danube. Besides the water supply for the people, trade and industries, it includes flood 
protection, low water management, operation of hydropower facilities and navigation. The 
necessities emerging from these tasks have early led to profound transfigurations of 
watercourses by measures of hydraulic engineering. Reclaiming land for settlements and 
farming as well as flood protection and hydro power production have led to river regulations 
and the construction of dams and storage reservoirs throughout the catchment area. This 
implies substantial shortening of river courses and loss of retention basins. Today, the Danube 
and its tributaries are vastly regulated with numerous flow and reservoir power stations. The 
Danube is navigable below the mouth of the Altmühl and is connected to the Rhine-Main 
river system via the Rhine-Main-Danube-Channel. It is through this system that water is 
exported from the Danube basin to the Rhine-Main basin (Ludwig et al., 2003a). 

2.2 Delineation of study area and test sites 

For the purposes of this study a subarea of the upper Danube catchment was selected as the 
study area. Concerning the dataset, it was chosen as a square area that does not intersect with 
the border of the catchment, i.e. that is a true subset that lies fully within the catchment area. 
This not only yields a dataset that is filled with data over the entire cutout but also avoids a 
number of difficulties in data processing that occur when parts of a rectangular raster dataset 
are filled with invalid or missing values. The size of the square was chosen such that it will 
evenly divide by a number of different spatial resolutions. This will assure that the dataset 
could easily be worked with at different pixel sizes without conflicting with pixel fractions at 
either edge of the area. It also provides the possibility to work with a hierarchical scaling 
pyramid where each coarser resolution pixel will divide up into an integer number of higher 
resolution pixels (see chapter 3). 

Concerning the location and extent of the area, the square was positioned such that it would 
include most of the natural and man made features observed in the whole of the basin of the 
upper Danube. Only a short section of the Danube itself cuts through the square, nevertheless 
different environments such as fertile agriculturally used plains, forests of different type, 
mountainous terrain with forests and pastures, water bodies and urban areas are contained in 
the subset of the upper Danube. The extend of the cutout includes most of the variation in 
climate, vegetation, soils, terrain and land cover that is observed in the whole of the upper 
Danube catchment. The location, size and characteristics of this study area are illustrated in 
Figure 2.3. 
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Figure 2.3: Location of the study area within the catchment of the upper Danube. 

While the preparation of data (chapter 4) was carried out for the entire upper Danube area, all 
processing of data in the context of this study was performed on this subset area described 
above. The area has the additional advantage of being a cloud free part of the applied satellite 
imagery. Furtherly, by focusing on this sub area, data amounts are kept at reasonable size and 
computational cost is reduced. 

For the analysis of data four test areas were chosen within the study area. For reasons of 
scaling of the data and capturing the sites at different scales, again these areas were selected to 
be square cutouts of the study areas frame. Two smaller areas, Gut Huell and Hochstadt, were 
selected in the southwest of Munich. Two larger areas, Landsberg and Wetterstein were 
selected to investigate a lowland and a mountainous cutout of the area. The location of these 
test areas is illustrated in Figure 2.4. Further detail on these sites along with the analysis is 
provided in chapter 6. 
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Figure 2.4: Location of the test areas Landsberg, Wetterstein, Gut Huell and 
Hochstadt within the study area. 
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3 Perspectives of Scale 
The method presented later in this study is an approach to address scale in the context of 
remote sensing and environmental modeling. This chapter is to address issues connected to 
scale and to the method developed. 

The general term of scale is widely used but it is highly ambiguous. It appears across 
scientific fields such as economic sciences (“economy of scale”), computer sciences 
(“scalability of hardware and software systems”) or social sciences, where the term “scale” is 
often associated with groups of individuals and their sizes. Any measured value such as 
temperature or length is referenced to some type of ordered system of marks of fixed intervals 
and this system is referred to as a scale (Stevens, 1946). A general theory on scaling, 
measurements, and scaling methods has been provided by Torgerson, 1958. However, in 
many scientific fields scale is linked to location, position, space, area or time period (Curran 
et al., 1997). This notion of scale is addressed more precisely by geographic information 
scale. It is specifically associated with all sorts of spatially distributed information. 

Geographic information scale plays a vital role in all applications in geosciences. Its 
significance in ecological process modeling, GIS applications and remote sensing has been 
widely discussed (Woodcock and Strahler, 1987, Quattrochi and Goodchild, 1997, Van 
Gardingen et al., 1997, Tate and Atkinson, 2001, Lam et al. 2004, Wu et al., 2006). Scientists 
from a number of geographic and other disciplines have ventured into the scale issue. Wu and 
Qi, (2000) revealed an exponential increase of studies on the topic in ecological sciences and 
that this increase can be observed across disciplines. A variety of studies have evaluated 
methods of scaling, the impact of scale on data information content and quality and the role of 
scale in process description and modelling (see also chapter 5). However, even within the 
field of geosciences the terms scale and scaling remain ambiguous. The same term may be 
used to describe varying aspects of scale while a ubiquitous definition of scale does not exist 
(Schneider, 1994, Quattrochi, 1993, Blöschl and Sivapalan, 1995, Bian, 1997, Lam et al., 
2004). The following sections will cast a light on the significance of the scale term for this 
study, how the term scale is used and discuss the ways scales interfere with the methods and 
data presented. 

The method for contextual segmentation of land surface reflectances presented in chapter 6 is 
designed and developed to ingest data of different scales and data models and can produce 
information content of scale invariant type. Bringing together various aspects of scale 
triggered and drove the development of the present study. Finding a way for a sophisticated 
representation of remote sensing data on arbitrary scales is a key issue in this work.  
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3.1 What is Scale? – A Definition of scale terms 

In order to avoid confusion of terms related to scale in the subsequent chapters it is necessary 
to clarify the different conceptions of scale and scaling. The conceptualizations given below 
are linked to the meaning of scale and scaling in geographic information science, 
environmental and ecological studies. The terms and explanations are derived from more 
profound discussions on the issue by Lam et al. (2004) and Wu and Li (2006). 

3.1.1 Scale 

Based on earlier work by Lam and Quattrochi (1992) and Cao and Lam (1997), Lam et al. 
(2004) propose four major meanings of scale that address different aspects of the matter: 
observational scale, operational scale, measurement scale and cartographic scale. All four 
are prevalent in the topics discussed in this thesis and shall provide a guideline to the issues 
related to scale. According to the authors, they apply to both the spatial and temporal domain 
as well as spatial-temporal domains. 

Observational scale or geographic scale refers to the spatial extend or size of a geographic 
area under investigation. With this notion a large scale study encompasses a larger study area, 
a small-scale study focuses on a smaller area. In this study, the area under investigation is a 
subsection of the larger study area of the GLOWA-Danube catchment of the upper Danube 
(see section 2.1). 

The operational scale is the scale at which processes or natural phenomena operate in the 
environment. It denotes the distance (or time span) at which spatial patterns exhibit maximum 
variability. Knowing the operational scale of a phenomenon is important for researchers as 
determining appropriate observational scale is dependent on the extend of the action of the 
object under study. Measuring and Modelling LAI requires some thought on the operational 
scale of LAI and is discussed in chapter 5. 

Measurement scale refers to the size of sampling intervals and is commonly called resolution. 
In applications involving uniform raster data it is equivalent to grid size or pixel (proxel) size. 
Due to storage and computational capacities, measurement scale is often connected to 
observational scale: A large-scale study sets a limit to the number of individual samples that 
can be stored or processed. Usually, the smaller the observational scale, the finer a grid or 
resolution of samples can be deployed. Decreasing cost and increasing efficiency of computer 
facilities however, allow for an increase of measurement scale in relation to observational 
scale. Measurement scale is also related to the operational scale. In order to assess a 
phenomenon the sampling interval needs to be smaller than the operational scale of the 
phenomenon. 

The cartographic scale or map scale refers to the size of objects on a map in relation to the 
real world size of the objects. A large-scale map usually covers a smaller area and exhibits 
more detail than a small-scale map. Other than the previous denotations of scale, which refer 
to data characteristics, cartographic scale is coupled to graphical data representations. It 
provides information on how data is displayed. Any depiction of spatial data should provide 
information on the cartographic scale it is presented at. 

The four meanings of scale are closely related. In the context of a spatial or temporal study, 
they can be ordered: The observational scale is largest, so that it can cover the operational 
scale of the phenomenon under study. Data on the subject should be sampled at intervals with 
a smaller scale than the operational scale. Presentation of the data will finally be at some 
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cartographic scale, which people will rely on for interpretation, conclusion or policy making 
(Lam et al., 2004). 

The above definitions stem from authors with a strictly geographical background. They 
appear to be focused on GIS and remote sensing applications with an emphasis on rastered 
information. A different notion of the issue of defining scale was presented by Wu and Li 
(2006). They propose a three-tiered conceptualization of scale that organizes scale definitions 
into a conceptual hierarchy that consists of the dimensions, kinds, and components of scale. It 
encompasses the four meanings given above, but emphasizes related terms and points out 
synonymically used perceptions of scale. From their perspective of ecological sciences, some 
additional meaningful concepts shall be presented here. 

 
Figure 3.1: Physical and ecological phenomena tend to maintain a constant ratio 
in their spatial and temporal scale (Wu, 1999) 

Scale is defined in terms of time and space. It is well understood, that the characteristic scales 
of many physical and ecological phenomena are related in space versus time. The ratio 
between temporal and spatial scales of phenomena tends to be invariant over a range of 
scales, which is illustrated for a number of different natural processes in Figure 3.1 (Wu, 
1999). Together with an organizational level, time and space make up the three dimensions of 
scale (Wu and Li, 2006). 

The kinds of scale encompass the observational and operational scales defined above. Wu and 
Li use the term intrinsic scale to address the scale at which a pattern or process actually 
operates. It expresses the same notion of a scale immanent to a phenomenon as operational 
scale. Yet, they award intrinsic scale a broader notion than the term process scale. The two 
notations are used synonymical in this study. 



Perspectives of Scale 18 

Confusion arises with observational scale. Wu and Li use observational scale as a synonym of 
measurement scale and sampling scale. While sampling scale denotes the same as the 
measurement scale, the separation of observational scale and measurement scale as defined 
above seems more adequate and is pursued in the following. 

More kinds of scale are given by the experimental scale referring to the extend of 
experimentation, the analysis or modeling scale which refers to statistical analysis and 
modeling and the policy scale which is influenced by economic, political and social factors. 
Policy scale arises in the context of management and planning and is dependent on regional 
and national legislation. Although important differentiations of the definition of scale, these 
scale terms are not relevant in the presented study. In the wake of general definitions, the 
author thinks that these latter scale terms are contained in the definitions above. Any 
experiments scale is encompassed by an observational scale; analysis and modeling depend 
on the data’s scale, which is defined by the above notions of scale. When policy scale plays a 
role in a research it will provide one notion of operational scale and set rules for observational 
or measurement scale as defined above. 

The components of scale defined by Wu and Li (2006) are cartographic scale, grain, extend, 
coverage and spacing. Their concept of cartographic scale agrees with the definition given 
above. Grain is what has been termed resolution or measurement scale earlier in this section. 
Extend is equivalent to the observational scale defined by Lam et al. (2004). Yet, coverage 
and spacing add two more terms in relation to scale. Coverage is the intensity of sampling in 
space and time. Spacing refers to the interval between two adjacent samples or lag (Wu and 
Li, 2006). 

The four definitions by Lam et al. (2004) suffice for the conceptualizations of scale in this 
study. Important aspects and clarification of terms were added from the hierarchical definition 
by Wu and Li (2006). Still, other lexical meanings of scale and related terms may exist and be 
defined, yet it has been stressed repeatedly, that for a progress of a “science of scale” 
agreement on scale terms is a fundamental step (Quattrochi, 1993). 

The dimension of a scale is often roughly classified by terms like micro, meso, macro, 
moderate, continental or the like. In the context of this study, the term micro scale is 
understood as a dimension smaller than 100m. The terms moderate and meso scale refer to 
scales of 100m to 1000m, which contains the three resolutions of the MODIS sensor (Table 
3.1). The items are mainly used to describe the resolution of data. 

Table 3.1: Scale terms used in this study and the dimensions attributed 
Scale Dimension 
micro < 100m 
meso, moderate 100 to 1000m
macro > 1000m 

 

3.1.2 Scaling 

The item scaling is closely related to scale and just as the scale term may have different 
signification in different scientific disciplines. In the context of geographical information and 
earth science and in connection with the above definitions scaling is the translation of 
information between or across temporal or spatial scales (Turner et al. 1989, Blöschl and 
Sivapalan, 1995, Curran et al., 1997, Marceau 1999, Wu 1999, Wu and Li, 2006). A lot of 
research has been completed on the question of how scaling or the transfer across scales can 
be achieved. The question may apply to data on the one hand and to the description and 
definition of processes on the other. Scaling may be further distinguished by the direction the 
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transformation is performed in. In the GLOWA-Danube community agreement was achieved 
that upscaling or scaling-up is the process of moving from a small scale to a large scale. In 
connection with process descriptions, the term bottom-up is linked to the transfer from a small 
scale to a large scale. Upscaling of data usually goes along with aggregation and data 
reduction. Conversely, downscaling or scaling-down is associated with moving from a large 
scale to a small scale. Transferring a process in that direction is referred to as top-down. 
Downscaling of data will require disaggregation of parameters or data values and will 
increase data amounts. 

3.2 Implications of Scale 

Scales and scaling cover a large range. From the point in space and microscopic dimensions 
to micro, meso and macro scales up to global consideration of environmental phenomena 
research may be conducted. Focusing in on one particular scale of interest will reveal a 
distinct picture and perception of a topic (Levin, 1992). Changing scales impacts on data as 
well as on process description models and numerical models that reproduce environmental 
processes. 

Looking at the same subject at a different scale may result in a significantly altered 
impression of the subject. Changing the scale of data will pose questions on whether the data 
at the new scale will be commensurate with the original dataset. Using data at different 
resolutions as input to a numerical model begs the question if the model valid at one scale will 
still provide useful results at another. Yet, the process of changing scales itself imposes 
continual asking on how this can be done. Both, scaling of information and scaling of 
processes are subject to scientific interest. Once different scales have been established and 
transgression of scales is feasible, instrumentality is desirable to measure and describe what 
we gain or loose along the way. These implications of scale and scaling have been addressed 
in numerous studies in earth system sciences with strong recommendations for establishing a 
science of scale (Quattrochi and Goodchild, 1997, Quattrochi, 1993, Wu and Li, 2006) 

The following highlights aspects of scaling data and process models and discusses methods of 
how scale of spatial data and the scaling process can be described. In scaling data and models, 
all of the definitions of scale given above may layout the sense of scaling. Changing extent 
(observational scale) and changing resolution (measurement scale) denote different senses of 
modifying scale. Intrinsic scales of patterns and processes are reflected in the data or 
described by a model. Changing the extent or the resolution of data may result in the 
recognition of a different process or pattern but might shroud them as well. Applying a model 
on a different area or resolution may yield different results and may call for changes to the 
model or process description (VanGardingen et al., 1997, Mauser and Schädlich, 1998, 
Marceau and Hay, 1999). Finally the scale of processes themselves, i.e. the operational scale, 
may be changed dramatically (Wu and Li, 2006). 

Cartographic scale of course may be changed and has a loose tie to the other aspects of 
scaling. It is connected to the form of graphic output of information. Changing the scale of a 
map is a particular issue and is discussed extensively in the literature (Hake and Grünreich, 
1994, Kraak and Ormeling, 2003). Maps are used in this work, nevertheless changes of map 
scale and their implications for graphic output are not detailed on. 
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3.2.1 Scaling Data 

When transforming data in a way that the new dataset has a different scale than the original, 
some form of aggregation or disaggregation is applied. It will change the grain or resolution 
size by fine- or coarse-graining and will involve the processes of interpolation or 
extrapolation (Wu and Li, 2006). 

Disaggregation of data requires a method for finding estimates of information on a scale 
smaller than the original. This process requires careful assessment as it involves the difficult 
issue of deriving information for spaces where no information is available. Methods for 
finding good estimates for these spaces have been investigated (Lam 1983, Friedl, 1997, 
Atkinson, 1997).  

Aggregation of data reduces the original data to a smaller number of data units. The method 
of aggregation plays a vital role in the effects of the lumping of data. Mean and median values 
are usually retained in the scaling process, but standard deviation and variance in the data may 
change significantly (Bian, 1997, Bian and Butler, 1999). 

Techniques and methods for scaling or resampling data are numerous in the literature. Yet, 
many are not readily available to the user and judgement of appropriateness to an application 
is difficult. Simple aggregation or disaggregation procedures derived from classical image 
processing are most likely to be applied (Hay et al. 1997). Lam et al. (2004) stress that in 
existing scale studies that heavily rely on resampling methods to generate multiscale data 
layers, the observations made may be attributable to the resampling rather than scale. 

The difficulties that occur when data at different scales is sought, has early been identified as 
the modifiable areal unit problem or MAUP (Openshaw, 1984, Cao and Lam, 1997, Marceau 
1999). It is endemic to all spatially aggregated data and states that variations occur when data 
from one scale of areal units is aggregated into more or less areal units. It is a “problem 
arising from the imposition of artificial units of spatial reporting on continuous geographical 
phenomenon resulting in the generation of artificial spatial patterns” (Heywood et al. 1998). 
The MAUP is divided into two components: the scale effect and the zonation or aggregation 
effect. The former is the variation in results that may be observed when data collected at one 
scale are progressively aggregated into fewer larger units for analysis. The latter is the 
variation in results generated by the use of alternative combinations of areal units at the same 
scale (Marceau 1999). 

The MAUP applies to both vector and raster data. However, the context of this study as well 
as the conception of the DANUBIA model of the GLOWA Danube project has a strong focus 
on rastered data both from the modelling perspective as the remote sensing side (see section 
3.4). The acquisition of remote sensing data has been identified as a particular case of the 
modifiable areal unit problem (Marceau et al. 1999). Information on units that form a uniform 
spatial sampling grid is subject to the same above-mentioned problems when different scales 
are addressed. A number of solutions to the MAUP have been suggested in the literature. A 
review of approaches to tackle the MAUP is provided by Marceau and Hay (1999). 

When analyzing data of different aggregation levels, relationships that can be observed at a 
coarse scale may not be brought forward to finer scale. This observation has been termed the 
ecological fallacy problem (Cao and Lam, 1997, Marceau, 1999). It stresses the urge to 
carefully select the scale at which analysis results are produced and suggests expanding 
analysis to a host of scales in order to dodge the ecological fallacy. 

A stack of data at different measurement scales (resolutions) has been described as a data 
pyramid or scaling ladder (Csillag, 1997, De Cola, 1997, Wu, 1999). A data pyramid is a 
nested hierarchy in which each level precisely covers the other by a multiple of its raster cells. 
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Along such a data pyramid or scaling ladder the data amount on each level changes. In the 
case of square nested raster cells, doubling resolution results in a quadratic reduction of data 
volume. This aspect of scaling is often an important argument in selecting a scale as storage 
capacities and computational cost play a vital role in the realization of a study (DeFries et al. 
1997, Mauser and Schädlich, 1998). 

3.2.2 Scaling Environmental Models 

The issue of scaling has a profound impact on the applicability of environmental models. On 
the one hand the scaling of data impacts directly on the feasibility of a model. The differences 
in data on different scales will reflect in the results a model can provide (Marceau and Hay, 
1999). Often the application of a model is simply limited by the availability of data with 
sufficient detail or extent at a different scale than the scale the model was developed at 
(Russel and Van Gardingen, 1997, Mauser and Schädlich, 1998). 

On the other hand the process described by a model may apply to a distinct scale and may not 
be applicable on another (Bian, 1997, Marceau et al. 1999). The non-linear response of 
environmental processes prohibits a simple transfer of a model to a new scale. Meteorological 
variables, fluxes of water and gases as well as vegetation canopy attributes cannot readily be 
averaged to represent a new scale. Computing average fluxes from mean or average surface 
conditions commonly results in significant bias (Lammers et al. 1997) and can be formalized 
as: 

 ))(())(( xEpxpE ≠          (3.1) 

where x is a vector of surface parameters and p is a process model at a fine spatial scale. 
E(p(x)) expresses the averaging of results of the model at the fine scale or small area. To 
obtain an unbiased estimate of a larger area some functional relationship needs to be 
established to account for non-linearities. With f(x) as a joint distribution function of x, a 
solution to E(p(x)) could be 

∫=
x

dxxfxpxpE )()())((          (3.2) 

Finding the distributional information is a key problem in migrating environmental models 
across scales (Lammers et al., 1997). 

Taking a validated model to a different environment may result in inaccurate predictions 
because processes are omitted or inadequately represented (Russel and Van Gardingen, 1997). 
This may be the case by merely changing the extent of the model. By encompassing 
previously unpresent conditions into the modeled area, model results may be tampered. 

The elements to be addressed when a model is applied on high and low resolution data are 
summarized in Figure 3.2. The illustration applies to both environmental models as well as 
remote sensing models. On the level of input data as well as on the model level questions of 
scaling are prevalent. If the problems are not adequately addressed the resulting parameters at 
different scales will not be commensurate. 
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Figure 3.2: Elements to be addressed in scaling environmental and remote 
sensing models (Pelgrum, 2000, Kellenberger, 2001, modified) 

A lot of research has been completed to scale models or assess their abilities to be scaled. For 
example Bruneau et al. (1995) conducted a sensitivity analysis on the space and time 
resolutions of TOPMODEL, a catchment water discharge and soil water model. They 
concluded that the modelling results are constant inside a relevant domain of space and time 
resolutions and that working outside this domain induces a strong decrease of modelling 
efficiency. Asner and Wessman (1997) scaled a model for simulating photosynthetically 
active radiation (PAR) from the leaf level to the canopy level and discovered that landscape 
characteristics have a strong influence on PAR beyond the effects observed at the leaf level. 

Land cover type heterogeneities at the coarse resolution scale are often an important factor for 
unreliable results in modelling. Taking into account these heterogeneities has been addressed 
in remote sensing models (Friedl, 1997, Tian et al., 2002, Simic et al., 2004), global 
atmosphere-biosphere models (DeFries et al. 1997) as well as in modelling of soil-vegetation-
atmosphere-transfer (Mauser and Schädlich, 1998). A method for scaling ecosystem 
productivity from the local to the continental level was presented by Moorcroft et al. (2001). 
The importance of omitting land cover type heterogeneities in model application is stressed in 
the method presented in this study. 

3.2.3 Measuring and Description of Scale 

The recognition of the variation in operational scales of processes, the possible gain and loss 
of information when moving along a scaling ladder and the problems of scaling 
environmental and remote sensing models, has led to the development of methods that are 
capable of measuring or describing scales. Most of such studies were focused on regular grid 
data sets derived from raster GIS (e.g. digital elevation models), remote sensing imagery or 
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synthesized imagery (Lam and Quattrochi, 1992, Bian, 1997). The inherent characteristics 
and abundance of remote sensing data at varying resolution have led to the widespread 
recognition of remote sensing as a significant contributor to the scale issue (Simmons et al., 
1992, Marceau 1999, Lam et al. 2004). Hence, many efforts to measure and describe scale 
were undertaken by remote sensing scientists. 

The analysis of multiscale datasets aims at different aspects of scale. First, methods have been 
developed to determine appropriate or optimal scales to represent processes, parameters and 
patterns. Second, the awareness of the existence of appropriate scales lead to the development 
of finding domains of scales and scale breaks. Finally, methods for scaling and approaches to 
overcome the MAUP have been presented. 

Woodcock and Strahler (1987) developed a measure of local image variance to help finding 
an appropriate scale retaining information for a forested, an agricultural and a suburban 
environment. Later, the same authors used variograms as a measure of spatial variation to 
improve the understanding of the information content in remote sensing imagery (Woodcock 
et al. 1988a/b). A number of recent studies base on the qualities of variogram analysis and 
used this approach for evaluating scale (Artan et al., 2000, Oliver, 2001, Treitz, P, 2001, Tian 
et al. 2002b, Colombo et al. 2004, Zawadzki et al. 2005). 

As a mean to assess autocorrelation and self-similarity in data of different scales, fractals have 
been widely used in geosciences and remote sensing analysis (Quattrochi and Goodchild, 
1997, Cao and Lam 1997). Fractals were introduced to geography to overcome the difficulties 
in spatial analysis using conventional statistics and geometry (Lam and Quattrochi, 1992). 
They mathematically relate complexity and scale and can be used in the detection of 
characteristics scales and scale breaks. Computation of the fractal dimension of phenomena 
can reveal abrupt changes in autocorrelation and help in the identification of the scale where 
information or patterns vanish in the data (Emerson et al., 1999). They provide a robust tool 
for both measuring variability at different scales as well as quantification of homogeneity and 
heterogeneity of land surface and environmental attributes (Lam et al. 1998).  

Another more recent method to address scale and scaling has been the application of wavelet 
transformation (Goodchild and Quattrochi, 1997). A study using the Haar wavelet to derive 
the length scale of land surface characteristics was presented by Pelgrum (2000). He showed 
that the wavelet approach provides a valid measure to determine the resolution of remote 
sensing imagery from three different landscapes. 

In search for generalizing rules for scaling and scale characteristics attempts have been made 
to build frameworks as guidance to scaling. As a multiscale approach to reduce the effects of 
MAUP, Hay et al. developed an object specific framework to assist in defining landscape 
thresholds, domains of scale, ecotone boundaries and grain and extend for the application of 
ecological models (Hay et al. 2001). Another framework presented aims at testing the 
aggregation and disaggregation properties of remote sensing algorithms (Hu and Islam, 1997).  

3.3 Methods of data representation 

The issue of scale is ultimately tied to the data model used. In geographic information 
technology, GIS and environmental modeling two general concepts of data representation 
dominate: the vector data model and the raster data model (Longley et al. 1999). In the 
context of this study vector data play a marginal role and are used only in the presented maps. 
They are omitted in the discussion. Yet, the focus lies on raster data, both in view of the 
integrated environmental model compound DANUBIA (section 3.4) as well as in the 
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perspective of remote sensing data (section 3.6). In the following sections concepts of 
representing data in a rastered modeling environment are discussed. 

3.3.1 Raster Data 

Raster data structure is a compellingly simple concept. In raster data, cells of a regular pattern 
represent information. The notion of raster data includes all types of digital imagery but 
focuses on real world abstraction in the context of this study. In a raster, a surface and its 
geometry are captured by a cellular decomposition into regular shapes. Although these shapes 
may be hexagonal or triangular and even irregular (Rigaux et al. 2002), most commonly raster 
or grid data are associated with an arrangement of square boxes of equal size. These boxes are 
conceptually organized in a matrix of rows and columns. The geometry of the raster is defined 
by an origin, the directions of two perpendicular axes along the row and column direction and 
the spacing of the raster cells (Bernhardsen, 2002). 

The origin is most typically located in the upper left corner although some systems to manage 
raster data have chosen the lower left corner. It provides a relative system for positioning cells 
in terms of numbers of rows and columns but may represent absolute position in an 
orthogonal geographic reference system in the case of georeferenced data. In the latter case 
absolute positions of cells can be derived from the origins absolute position and the cells 
relative position and raster spacing. The number of rows and columns provide the total area or 
extend of a raster data set. 

A spatial Raster data can be visualized as a grid superimposed on a landscape. Each raster cell 
represents an area, depending in size on the raster resolution size. It provides a spatially 
continuous model of a surface where a numerical value is attributed to each cell. These values 
may be physical quantities such as amount of precipitation or terrain elevation or, in the case 
of remote sensing raster data, measures of energy of electromagnetic waves in a given 
wavelength domain. Data may be categorized or classified. In this case a cell value 
corresponds for example to administrative entities, a land cover class or a soil type. Thirdly, 
cell values may reference to attribute tables or distances to other cells or objects 
(Bernhardsen, 2002). 

A single cell is assigned one single value and is treated as a homogeneous area. To use rasters 
to represent multiple thematic topics the concept of single valued rasters is expanded to stacks 
or multi layered rasters (Nebiker, 1997, Bernhardsen, 2002). Such a stack of multiple layers 
requires that the grids of all layers be aligned such, that the information of corresponding grid 
cells correspond to the same spatial entity (see section 4.3). A vertical arrow through a 
multiple layer stack of gridded data should pierce through different information features of 
the same point in space (Walford, 2002). 

The way of how a cell is attributed a value becomes a question of scale when the attribute 
does not cover the entire cell. Imprecision may be the consequence. Yet, to build up a raster 
data layer, the cells need values. Three ways of attributing values have been proposed. The 
first option is to give the cell the value that lies in the center of the area of the cell. Secondly, 
the attribute that covers most of the area of the cell is attributed to the cell and thirdly the 
attributed value is obtained by some way of averaging the multiple attributes of the cells area 
(Bernhardsen, 2002). The validity of these approaches varies with the type of cell value under 
consideration and is highly dependent on the size of the cell, i.e. the measurement scale of the 
used grid. 

Raster data are digitally coded depending on the range of values that need to be stored. 
Common data types range from 8bit integer types per raster cell to 64bit double precision 
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floating point values. For GIS applications it is highly desirable that different data types may 
be stored and managed in a processing system (Mauser and Bach, 1993, NCSA, 2003). With 
given origin along with row and column count, no spatial attributes need to be stored with 
raster data, which reduces storage requirements. Another advantage of raster data is that they 
can readily be compressed by run-length encoding or chain codes (Bernhardsen, 2002). A 
comprehensive study on raster data, managing raster data mosaics and raster pyramids and 
georeferencing of raster objects in a data base management system has been compiled by 
Nebiker (1997). 

3.3.2 Subscale Gridded Data 

Assuming homogeneity of a raster cell is not a valid concept in many cases when representing 
natural phenomena in a raster data model. The resolution of the raster has paramount 
influence on the quality at which a raster cells value represents its area. Features smaller than 
the sampling interval or resolution of a raster grid fail to be adequately captured by a simple 
raster of single value cells. Concepts have emerged that are able to include information below 
the grid level of resolution. They break up the single value concept of raster data and expand 
the information to multiple layers on a cell. 

A concept that is designed to preserve the spatial organization of subgrid information and 
details over multiple levels of resolution is the organization of data in a quadtree model. It is a 
space driven data structure that uses varying cell size. Large cells are used to represent larger 
homogeneous areas while finer spatial detail is captured with smaller cells (Ju et al. 2005). 
Starting from a coarse quadratic cell size, cells are quartered into four smaller cells if 
heterogeneity is prevalent on the coarse cell. This procedure is repeated down to a suitable 
level where a square is of homogeneous properties. The structure emerging from this principle 
resembles a tree subdividing into four leaves at each level (see Figure 3.3) (Rigaux et al. 
2002, Csillag, 1997). With large portions of homogeneous areas, substantial reduction in data 
volume may be achieved while spatial context and detail are retained. Rapid search and data 
manipulation are further advantages of the quadtree structure as homogeneous areas are 
treated as one entity rather than many equivalent cells. Yet, establishing the structure requires 
considerable processing and/or programming time (Bernhardsen, 2002). Regrettably, few 
available off-the-shelf geographic data manipulation software packages have implemented 
quadtree data management. Also, complex data may not result in much compaction of data 
volume. 
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Figure 3.3: The concept of quadtree data representation. An area is repeatedly 
subdivided into quarters until a subscale feature can be captured (left). The 
highest and the lowest level in the example are marked with numbers, the 
moderate level is marked with letters. In a regular raster capable of capturing a 
feature like the area marked dark, 8x8 raster cells would be stored. In the 
quadtree (right) only values for the 19 squares need to be stored (Bernhardsen 
2002, modified). 

A simpler method to preserving information below the grid resolution has been widely used to 
overcome the MAUPs implications. It is based on the assumption that the heterogeneity of a 
raster element is made up of multiple areas that can be grouped or categorized into a number 
of entities with equal characteristics. Each of these entities covers an areal fraction of the 
raster element. By retaining the areal fraction to the raster cell of each entity along with the 
properties of the entity, the raster elements are stratified into parts of homogeneous 
characteristics (see Figure 3.4). The raster cell is conceptualized as a composite of non-
modifiable areal units. While the properties of those homogeneous units are preserved, the 
spatial organization is not. For a raster cell, attributes may be linearly lumped from the area-
weighted sum of the subscale homogeneous fractions. 
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Figure 3.4: Subscale information on a pixel. The properties 2,3,5 and 6 are 
present on the pixel. Their attributes are stored in the corresponding layers. The 
other properties are not present on this pixel but may be on others.  A prominent 
example would be the property “land cover type” with the attribute “area 
fraction”. 

The data volume of this data model is substantially reduced in comparison to higher 
resolution data that captures the subscale entities on homogeneous pixels. Naturally, data 
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volume is increased as compared to a single data layer, depending on the number of 
homogeneous entities identified. 

While application of the quadtree concept has been scarce, subscale stratification data models 
have been widely used. A prominent example is the stratification of pixels according to 
underlying land cover types. Ignoring the exact location of a land cover type within a low-
resolution raster cell goes along with resolving the heterogeneity of the cell. The approach has 
been successfully applied in environmental models (Mauser and Schädlich, 1998, Ludwig et 
al. 2003b, Simic et al., 2004) and has been the objective in remote sensing applications aimed 
at the identification of subpixel land cover composition (Strasser et al. 1999, Bateson et al., 
2000, Braswell et al. 2003, Lobell and Asner, 2004, Liu and Wu, 2005, Song 2005) 

3.3.3 Geocomplexes 

Geocomplexes offer a method for scaling both data and process models ingesting the data 
from detailed high-resolution grids to moderate resolution representations used in regional 
integrated models like the DANUBIA Decision support system.  

A hydrologic process model transferred from the microscale (~100m grid spacing) to the 
mesoscale (~1000m grid spacing) will change results due to the effects of MAUP on the 
ingested data. At the coarser resolution much of the hydrologically relevant land surface 
heterogeneity is lost that is captured by some 100 samples at the micro scale. Means or 
majorities of high-resolution input may dramatically change the mesoscale modeling results 
as compared to lumped microscale results (section 3.2.2). 

In the framework of the GLOWA Danube project the concept of geocomplexes was 
developed and validated to provide an effective way to apply detailed process models of 
evapotranspiration and groundwater recharge in mesoscale catchments on a 1km² grid. 
Similar to the subscale stratification described in the previous chapter, geocomplexes attempt 
to reduce the data amount of the microscale while maintaining its heterogeneities. A 
geocomplex is designed to account for those heterogeneities that are hydrologically relevant. 
A set of parameters is intelligently bundled to form multiple information entities that 
represent the area of the mesoscale raster cell. The parameters are aimed at solving the 
Penman-Monteith equation in soil-vegetation-atmosphere-transfer process simulations. 

The parameters hosted by a Geocomplex are comparably stable in time and space such as land 
cover, soil type and terrain attributes. High-resolution data is a prerequisite to produce the 
geocomplexes for each raster cell on the mesoscale. In the generation of geocomplexes, a 
hierarchical aggregation scheme follows rules, which rank spatial parameters according to 
their priorities in the hydrologic processes. 

Land cover has been identified as the predominant factor influencing these processes. In 
natural and agricultural environments, land cover is often determined by and related to 
underlying soil type and topography. It is a driving force in boundary layer interactions 
(Ludwig et al., 2003c). As a consequence each geocomplex represents a land cover type as an 
areal fraction of a mesoscale raster cell. The dominant soil type, mean elevation and slope as 
well as dominant aspect are assigned to the geocomplex (Reichert et al., 2004b). In Figure 3.5 
a geocomplex is visualized as a barrel of parameters, derived from the fine resolution 
information of the area of a mesoscale pixel. 
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Figure 3.5: The concept of geocomplexes. Derived from high-resolution input, 
each of n geocomplexes on a mesoscale resolution cell is ingested in a run of a 
hydrologic model. Mesoscale results are generated by areal weighting of 
geocomplex based model output. 

Hydrologic modeling on the mesoscale can then be performed for each of n ≥ 1 geocomplexes 
on the mesoscale pixel. For the homogeneous area fractions the hydrologic processes can be 
modeled omitting the MAUP by avoiding generalization. Lumping of results from n model 
runs produces a mesoscale model output (compare Figure 3.5). 

The Geocomplex approach has demonstrated its effectiveness in sensitivity analysis and 
distributed modeling using the GIS-based SVAT modeling environment PROMET. The 
PROMET model has been applied and validated in a number of earlier studies (Mauser, 1989, 
Mauser and Schädlich, 1998, Bach et al., 2000, Bach et al. 2003, Taschner, 2003). Using the 
SVAT scheme with geocomplexes exhibited a dramatic improvement in the modeling of 
mesoscale hydrologic variables like soil water content, evapotranspiration and suction power 
(Reichert et al., 2003, Reichert et al. 2004a). It demonstrated the significant contribution of 
the geocomplex concept to scaling sets of related parameters for hydrologic processes. An 
example of the reduced deviation from the microscale reference is given in Figure 3.6. 
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Figure 3.6: Example of the deviation of mesoscale model results from microscale 
results using geocomplexes (red) and on regular mesoscale data (blue). The plot 
shows the evapotranspiration of a mixed forest modeled for 1996 (courtesy of D. 
Reichert) 

3.4 Scale in GLOWA-Danube 

In the GLOWA-Danube project, scale is addressed from various perspectives. While the 
observational scale and measurement scale seem readily defined, the interdisciplinary 
approach and the requirements of individual components of the DANUBIA model reveal 
different needs for scale and scaling depending on the background of the contributing models. 

The extent of the area investigated and modeled in DANUBIA is clearly defined by the 
delineation of the catchment of the upper Danube (chapter 2). Yet, the observational scale of 
some models is reduced to only a subset of all DANUBIA proxels. The river routing 
component, for example focuses on those raster cells only that contain water channels. 

For the development of the model, the resolution of the DANUBIA system was set to a 1km 
grid scale. Every contributing model in the system agrees to provide values at that scale. 
Fixation of the measurement scale to 1km resolution is a fundamental step for integration in 
DANUBIA. The 1km proxel is the entity for which all processes described in the compound 
are forced to provide their parameters. Exchange of data between components takes place on 
that platform irrespective of the process scales and the scale at which the individual models 
operate. Some of the processes reflected in the entire system operate on larger scales than the 
1km grid, others take place at dimensions smaller than the proxel size. Hence, both upscaling 
and downscaling of processes and data need to be addressed in GLOWA Danube. 

For some, the 1km proxel is a very small item. Particularly, models administered by social 
science partners involve information collected in census units or other administratively 
delineated areas that are much larger than 1km squares. In these fields downscaling 
approaches were addressed to distribute available data from larger administrative entities to 
the proxel scale by disaggregation (Mauser, 2000, Herrmann, 2002, Schuster et al. 2004). In 
the natural science section, the atmosphere component of DANUBIA is confronted with the 
problem of dispersing information to the proxel resolution. Weather observations as well as 
atmospheric circulation model output are available at coarser scales only. The former required 
a method for spatial interpolation of point type information as weather stations are scattered 
and scarce (Mauser, 2002). The latter provides output that is continuous in space but at 
resolutions coarser than the DANUBIA scale. For the preparation of precipitation data, 



Perspectives of Scale 30 

downscaling of 45km resolution continental scale model results to the mesoscale was 
conducted (Schipper, 2005, Früh et al. 2006). 

In contrast, many processes addressed in the DANUBIA system operate at scales below the 
proxel scale. From their perspective the 1km cell may become a very large unit. For example, 
in the ground water model component, aquifers are known to have bottlenecks smaller than 
the DANUBIA resolution. For the modeling of ground water flow, concepts had to emerge 
that allow the upscaling of this higher resolution information and process to the proxel 
(Barthel, et al., 2002). Undoubtedly, the pattern of land cover is another such item that 
operates at finer scale. Areas of homogeneous cover type of the size of a square kilometer are 
rare in the upper Danube catchment. An analysis of the number of land cover types on pixels 
of the study area was conducted for a resolution of 240m and is shown in Figure 3.7. It 
implies more pronounced heterogeneity for the 1km scale. Noticing this heterogeneity of the 
proxel is of paramount significance for DANUBIA as it simulates many processes where the 
land cover type is a driving force in the process. 
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Figure 3.7: Frequencies of the number of land cover types on 240m resolution 
pixels of the study area cutout of the DANUBIA catchment. 

As of the time of this writing, DANUBIA is operated assuming homogeneity for the proxel. 
However, the framework of the model compound has been laid out to operate on subscale 
data at an early stage. A concept for land cover collections for a proxel is implemented in the 
system framework. It aims at the incorporation of subscale concepts such as the stratification 
of raster cells by land cover type or the ingestion of geocomplexes. 

The 1km grid for DANUBIA was agreed upon before the project was even initiated. 
Especially for the natural scientists involved, using a simple grid was the data model of 
choice. Interestingly, it were staff members from the GLOWA-Danube computer science 
project that questioned whether that data model would be a wide enough conception for data 
storage in a complex modeling environment. In the discussions for the DANUBIA 
computational framework they suggested that tree structures are an option for keeping data. 
Although it remained undiscussed, basing a model on a concept like quadtrees would be an 
exciting undertaking, opening new ways out of the various scaling dilemmas. The 
programming complexities of such an approach would put new emphasis on the fruitful 
integrative cooperation between computer scientists and environmental modelers. 
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3.5 Scales of Leaves and Leaf Area 

When focusing on the parameter under study in this thesis some of the aspects of scale can be 
illustrated. The issue of leaves and leaf area can be inspected at a number of scales itself. 
When looking at individual stomata of a leaf and its activity, the process of gas exchange at 
the leaf surface has a very small spatial scale. This activity may change very rapidly within 
seconds or minutes at a small temporal scale and as a function of the environment. 

Backing out and viewing that whole leaf may expose the leaf as a storage device for 
precipitated water. The process of wetting the leaf, i.e. the rainfall, as well as the drying of the 
leaf depending on temperature, air humidity and radiation budget takes place at the spatial 
scale of the leaf size and has a temporal extend of a few minutes to several hours. 

Looking at all leaves of a plant again enlarges the observational scale. The cycle of the 
unfurling of fresh leaves to senescence and litterfall could be observed at this scale and would 
exhibit a few months to multiple years depending on plant, biome and latitude. Observing an 
entire forest again would yield a different picture. In the GLOWA-Danube catchment, outside 
the alpine range, the extent would be from a few hundred meters to several kilometers. Along 
the northern rim of the Alps extended forests sprawl over several tens of kilometers. The time 
span it takes for such a forest to grow will be larger accordingly. Half a century may be a 
good estimate for the temporal scale of the process of growing a forest. 

Leaf area may be viewed as a spatial process as well. When moving along a landscape leaf 
area is changing. Stepping out of the coniferous forest, that little will change its leaf area over 
the course of the year, a cornfield may be almost barren land with little or no leaf area at all. 
Here, highest variation in the spatial process of leaf area occurs. 

The scale, at which leaf area needs to be captured in the context of the DANUBIA modeling 
effort, is the defined 1km grid. At this scale individual leaves may not be detected, but the leaf 
area at the canopy level will. However, leaf area and its spatial and temporal behavior is 
closely linked to the biome or plant species producing the leaves, i.e. the type of land cover. 
At the landscape scale, leaf area pattern has to be interpreted as a function of cover type both 
in terms of distribution and time. Thus, the issue of providing leaf area at the scale aspired is 
directly linked to the question of land cover type representation on a 1km grid. 

More detail on leaf area and the methods to measure and model leaf area index is provided in 
chapter 5. It also expands on the problems of non-linearity in scaling models as outlined in 
Section 3.2.2 in regard of modeling of LAI from remote sensing data. 

3.6 Scale in Remote Sensing Data 

In remote sensing, both observational scale and measurement scale are prominent 
characteristics. Any particular imaging device is specifically designed to make observations 
of a defined extent and resolution. The scales range from high-resolution imagery with a 
sampling size of several centimeters to several kilometers and from local observations to 
global coverage. In the process of image acquisition in optical remote sensing, the two notions 
of scale are inextricably interconnected: an image of high resolution covers an area of small 
extend while lower resolution data cover a larger area. Especially the characteristic of varying 
resolution and the abundance of remote sensing data have fostered the exertion of scale 
studies using remote sensing data (Marceau, 1999). Thus, a multitude of research has been 
conducted in regard of scales and scaling under different aspects (for example Friedl et al., 
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1995, Friedl 1997, Hay et al. 1997, Pax-Lenney and Woodcock, 1997, Pelgrum, 2000, Treitz 
and Howard, 2000, Tian et al. 2002, Garrigues et al. 2002, Ju et al. 2005)   

The issue of spatial sampling resolution in remote sensing data is additionally linked to the 
aspect of temporal resolution. Data of highest resolution are mostly collected from airborne 
instrumentation and are limited to localized and infrequent campaigns. In contrast, most 
spaceborne imagers are designed to continuously collect data, yet the frequency of 
observation diminishes with resolution increase. These conditions are decisive when remote 
sensing data are to be operationally used. They are also important in the attempt to 
incorporate remote sensing data into process models like the DANUBIA modeling compound. 
In this study the focus lies exclusively on spaceborne remote sensing data. 

The modifiability of areal units in remote sensing data is prevalent in several ways. First, it 
should be noted, that two different observations of a remote sensing instrument of the same 
spot may be dislocated with respect to each other due to altered orbit or orientation of the 
spacecraft. Thus, two successively collected measurements may be mutually shifted. In this 
case apparently comparable pixels capture different areas, even after georeferencing. When 
focusing in on a single pixel it has to be recognized that the observed region on the ground is 
of round or oval shape while the resulting measurement is abstracted as a square box. When 
comparing data of different resolution this will result in areas sampled at one resolution that 
are omitted at another (Figure 3.8). Yet it is common practice to assume identity of the 
observed areas taken as square raster elements. Thirdly, remote sensing scanners collect data 
by viewing across their flight track to each side of the nadir direction. Depending on the scan 
angle and the IFOV of a sensor, the size of the ground area sampled changes. Thus, nominal 
resolution of a sensor may be substantially deteriorated within a scan line while the pixel size 
attributed to an image remains constant. An example of this deterioration of resolution within 
the same scan lines is given in Figure 3.9. 

 

 
Figure 3.8: Discrepancy between actual measured area of a sensor and the 
abstraction as pixels. The small circles and squares correspond to a high-
resolution sensor; the large circle and square correspond to a low-resolution 
sensor. The pale shapes in the background illustrate dislocation of a measurement 
and pixel in data from another orbit for the low-resolution sensor. 
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Figure 3.9: Effect of viewing angle on resolution in MODIS imagery; left: close to 
nadir viewing image; right: off nadir view of the same area at a scan angle of 
~40° 

In the context of this study data of two sensors is sought. High-resolution data at 30m ground 
resolution is used from the Landsat Thematic Mapper TM sensor. Low-resolution data was 
collected by the Moderate Resolution Imaging Spectrometer MODIS. This instrument collects 
data for land surface applications at 250m and 500m sampling intervals depending on 
wavelength. Furthermore, the 1km domain is covered by MODIS. Data are distributed 
aggregated to that pixel spacing and a host of ready to use products derived at that resolution 
are available (e.g. Leaf Area Index). The issue of the sensors and imageries detailed 
characteristics is expanded on in chapter 4. 

In order to use these remote sensing data and derived parameters as input for DANUBIA or 
comparable process models, both spatial as well as temporal resolution have to be reflected. 
At first glance using high-resolution data of 30m resolution seems enticing. Operation at 
subscale precision would be at hand for parameter retrieval as well as process modeling. 
However, temporal availability of these high-resolution data is low and so is spatial coverage. 
Landsat TM collects data of the same area at repetitive intervals of 16 days. Taking into 
account frequent cloud cover in mid latitudes, not more than 5-10 cloud free observations per 
annum can be expected. Additionally, the extent of a mesoscale catchment like the upper 
Danube requires eight TM images to be fully covered (compare Figure 4.7). Thus, providing 
regular datasets from this remote sensing device is not feasible. Contrarily, MODIS data will 
cover the upper Danube basin entirely at least once every day. It is obvious that the attempt to 
provide frequent parameter retrievals for DANUBIA has to focus on moderate resolution 
data. 

Deriving single data values at the scale level of the 1km proxel would be straightforward. 
Applying the various MODIS products is the simplest option. However, the scale issues of 
processes below the proxel scale could not be addressed in this manner. On the other hand 
MODIS and other environmental optical remote sensing instruments like MERIS do provide 
samplings at higher levels of resolution. Yet, is the MODIS 500m or 250m resolution 
appropriate to comply with subscale parameterizations as discussed in Section 3.3? An error 
would be introduced to subscale parameters even if the higher resolution 250m data were 
applied. Geocomplexes or stratification of land cover would be derived at precision of at least 
1%. Creating subscale information from 250m MODIS resolution however, would provide a 
precision of only 6.25%. Hence, a substantial possible error would be built into the 
stratification. It would be desirable to find another way of segmenting moderate scale remote 
sensing measurements in order to provide more precise subscale stratification. 
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Mining into the sub-pixel content of remote sensing data is common in remote sensing 
science. It emerges from the knowledge that moderate resolution sensors will not capture 
homogeneous surfaces. Heterogeneity prevails in the measurement targets. The analysis of the 
spectral mixture in mesoscale remote sensing data has been addressed in various studies with 
many recent advances into the field (Ludwig et al. 2003, Braswell et al. 2003, Lobel and 
Asner, 2004, Liu and Wu, 2005). The aim of such approaches is to derive the land cover types 
or surfaces that contribute to the mixed signal received at moderate resolution sensors. 

3.7 Scaling by Reflectance Segmentation 

In chapter 6 and 7 of this thesis a method is presented that aims at dealing with the difficulties 
imposed on parameter retrieval by remote sensing models and the incorporation of such 
parameters in process models. It resolves the MAUP by focusing on homogeneous fractions 
of mesoscale remote sensing image pixels. With this approach it integrates with the subscale 
data representation and process modeling described in sections 3.3.2 and 3.3.3. 

The method provides estimates of the reflectances of land cover types. A mesoscale 
reflectance value of a pixel is stacked with the fractions of land covers on that pixel. The 
fractional land cover information is derived from higher resolution data. In an algorithm 
ingesting fuzzy a priori expert knowledge, the reflectance value is segmented into the 
reflectances of the underlying land covers on the pixel. After the process the reflectance of 
each land cover represented on the pixel is available. 

Knowing the reflectance of the land cover types present on a mesoscale cell is especially 
useful because land cover is used in algorithms such as the retrieval of leaf area index as well 
as in other algorithms for land surface parameter retrieval. The approach is expected to be 
helpful whenever the assumption of homogeneous land cover thwarts the application of a 
remote sensing model.  

Figure 3.10 illustrates how the method can be used for scaling in the context of the 
DANUBIA model. Once the mesoscale reflectance has been processed to individual land 
cover types reflectances, a land cover dependent model to derive parameters can be applied. 
These parameters may in turn be lumped together to the mesoscale or be ingested in a process 
model that is stratified by land cover or using geocomplexes. The method is detailed on in 
Chapter 6. 
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Figure 3.10: Schematic of the scaling of moderate resolution remote sensing data 
to geocomplexes using reflectance segmentation. LAI algorithms may be applied 
to fractional reflectances of land cover types. The approach is detailed in Chapter 
6.  

The charming aspect of the approach is that it is independent of the scale of the 
measurements. Concerning MODIS, it can be applied to any of the three spatial resolutions 
provided by the sensor. The fractional subscale output of the algorithm may easily be 
aggregated to the 1km grid of DANUBIA. Also, translation to other moderate resolution 
remote sensing instruments is straightforward. 
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4 Remote Sensing Data and Data Preparation 
This chapter provides information on the remote sensing data used in this study. With a focus 
on the more recent MODIS instrument, the two sensors of which data was sought are 
presented. Application of remote sensing data requires careful preparation of the data in terms 
of geometric and radiometric properties. The procedures applied to the data are presented and 
the results are discussed. The end of this chapter summarizes the datasets used in the study. 

4.1 Sensors 

The two remote sensing devices, the MODIS instrument and the Landsat Thematic Mapper 
are designed as whiskbroom scanners. This concept of remotely detecting radiometric surface 
properties is based on repetitive scanning of stripes of the earth’s surface perpendicular to the 
direction of motion of the spacecraft. Both sensors realize this by a rotating mirror that 
reflects the sensed radiation into the optical system of the instrument. In the following, the 
MODIS instrument is expatiated upon in more detail, since it is the newer device than the 
Landsat Thematic Mapper. Based on habitual language use, Landsat (actually the spacecraft) 
and Thematic Mapper or TM (the sensor mounted on Landsat) are used synonymously in the 
following.  

4.1.1 MODIS 

The Instrument 
The MODIS instrument, the Moderate Resolution Imaging Spectroradiometer, continues a 
series of spaceborne remote sensing devices that have been used for monitoring the earth at 
moderate spatial resolution for more than the last two decades. Together with four other earth-
observing instruments (ASTER, MISR, MOPITT, CERES), the first MODIS was launched 
aboard the Terra Spacecraft on December 18, 1999. Terra was the first satellite to be launched 
as part of the Earth Observation System (EOS) program initiated by the U.S. National 
Aeronautic and Space Administration (NASA). The EOS program is designed to provide 
observations of the earth to enable a better understanding of the earth’s system and the 
underlying processes. The effort comprises (i) a coordinated series of Earth-observing 
satellites, (ii) an advanced data system designed to support the production, archival, and 
dissemination of satellite derived data products, (iii) teams of scientists who are developing 
the science algorithms to make the data products (Justice et al. 2002). A second MODIS 
device was successfully launched on the successor to Terra, the Aqua platform, on May 4, 
2002. The two almost identical instruments on differently orbiting spacecraft are 



Remote Sensing Data and Data Preparation 38 

complementary in the collection of morning data by MODIS-Terra and afternoon data by 
MODIS-Aqua. The afternoon/morning contrast was initially reflected in naming the Terra and 
Aqua missions EOS-AM-1 and EOS-PM-2 respectively. In this constellation, MODIS is a key 
instrument to the goals of the EOS program providing data for terrestrial, oceanic and 
atmospheric earth system sciences. Its heritage comes from the experience from a number of 
previous satellite systems, namely the NOAA Advanced Very High Resolution Radiometer 
(AVHRR), the Nimbus Coastal Zone Color Scanner (CZCS) and the SeaWiFS sensor, the 
NOAA High-resolution Infrared Sounder (HIRS), and the Landsat Series Thematic Mapper 
(TM) (King and Greenstone, 1999, Justice et al. 2002). MODIS was designed as an 
experimental satellite system in order to address questions related to: atmospheric variables 
such as cloud properties, radiative fluxes, and aerosol properties; land variables such as land 
cover and land use change, vegetation dynamics, surface temperature, fire occurrence, 
volcanic effects, snow cover and ocean variables such as sea surface temperature, and ocean 
color related to phytoplankton distribution and dynamics and photosynthetic efficiency 
(Guenther et al. 2002). A novice feature of the MODIS program is the production of a wide 
array of ready to use global remote sensing products (see below) that have been developed by 
a large science community in parallel to the planning and design of the instrument itself. 
Operational processing of these products has been initiated shortly after the launch of the 
imaging radiometer and validation and improvement of the products has been ongoing since 
(Justice and Townshend, 2002). 

Specifications 
Compared to earlier instrumentation, MODIS provides the science community with data of 
unprecedented ubiquity and quality. It continuously collects data in 36 spectral bands in the 
visible, near infrared and thermal infrared of the electromagnetic spectrum and provides three 
different spatial resolutions of 250m, 500m and 1km at nadir, depending on waveband. The 
large swath of the sensor makes a single MODIS capable of viewing every single point on 
earth 1-2 times daily, depending on latitude. Thereby the two MODIS track a huge array of 
the earth’s vital signs multiple times every day. The spacecraft the two MODIS are mounted 
on are flown at an altitude of 705km in a sun-synchronous, near polar, circular orbit. Equator 
crossing is at 10:30 for MODIS-Terra on a southbound track (descending mode) and at 1:30 
for MODIS-Aqua on a northbound track (ascending mode). The repeat cycle of the orbits is 
16 days. MODIS relies on a rotating cross-track double-sided scan mirror to reflect radiance 
into a collecting optical system and onto four focal plane assemblies (FPA). Each FPA is 
designed for the detection of a section of the electromagnetic spectrum with wavelengths 
between 0.4 and 0.6 µm collected on the VIS FPA, 0.6–1.0 µm on the NIR FPA, 1.0–5.0 µm 
on the SWIR/MWIR FPA and 5.0–15.0 µm on the LWIR FPA. The area MODIS views in a 
single swath (each half revolution of the scan mirror) is 2330km across track and 10km along 
track at nadir. The 10km along track are sensed by arrays of 10, 20 and 40 detectors for the 
1km, 500km and 250m bands respectively. The bands are numbered by spatial resolution 
rather than wavelength: band 1 and 2 (0.6µm - 0.9µm) have a 250m spatial resolution, bands 
3 to 7 (0.4µm - 2.1µm) 500m and bands 8 to 36 (0.4µm - 14.4µm) are the 1km bands. The 
specifications of the individual bands are listed in Table 4.1. 

Table 4.1: MODIS Technical Specifications (NASA, http://modis.gsfc.nasa.gov, King et al., 
2004) 
Orbit: 705 km, 10:30 a.m. descending mode (Terra) or 1:30 p.m. ascending mode 

(Aqua), sun-synchronous, near-polar, circular 
Scan Rate: 20.3 rpm, cross track 
Swath Dimensions: 2330 km (cross track) by 10 km (along track at nadir) 
Telescope: 17.78 cm diam. off-axis, afocal (collimated), with intermediate field stop 
Size: 1.0 x 1.6 x 1.0 m 
Weight: 228.7 kg 
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Power: 162.5 W (single orbit average) 
Data Rate: 10.6 Mbps (peak daytime); 6.1 Mbps (orbital average) 
Quantization: 12 bits 
Spatial Resolution: 250 m (bands 1-2) 
 500 m (bands 3-7) 
 1000 m (bands 8-36) 
Design Life: 6 years 
 

Primary Use Band Bandwidth1 Spectral 
Radiance2

Required 
SNR3 

1 620 - 670 21.8 128 Land/Cloud/Aerosols 
Boundaries 2 841 - 876 24.7 201 

3 459 - 479 35.3 243 
4 545 - 565 29.0 228 
5 1230 - 1250 5.4 74 
6 1628 - 1652 7.3 275 

Land/Cloud/Aerosols 
Properties 

7 2105 - 2155 1.0 110 
8 405 - 420 44.9 880 
9 438 - 448 41.9 838 
10 483 - 493 32.1 802 
11 526 - 536 27.9 754 
12 546 - 556 21.0 750 
13 662 - 672 9.5 910 
14 673 - 683 8.7 1087 
15 743 - 753 10.2 586 

Ocean Color/ 
Phytoplankton/ 
Biogeochemistry 

16 862 - 877 6.2 516 
17 890 - 920 10.0 167 
18 931 - 941 3.6 57 

Atmospheric 
Water Vapor 

19 915 - 965 15.0 250 
 
Primary Use Band Bandwidth1 Spectral 

Radiance2
Required 
NE[delta]T(K)4 

20 3.660 - 3.840 0.45(300K) 0.05 
21 3.929 - 3.989 2.38(335K) 2.00 
22 3.929 - 3.989 0.67(300K) 0.07 

Surface/Cloud 
Temperature 

23 4.020 - 4.080 0.79(300K) 0.07 
24 4.433 - 4.498 0.17(250K) 0.25 Atmospheric 

Temperature 25 4.482 - 4.549 0.59(275K) 0.25 
26 1.360 - 1.390 6.00 150(SNR) 
27 6.535 - 6.895 1.16(240K) 0.25 

Cirrus Clouds 
Water Vapor 

28 7.175 - 7.475 2.18(250K) 0.25 
Cloud Properties 29 8.400 - 8.700 9.58(300K) 0.05 
Ozone 30 9.580 - 9.880 3.69(250K) 0.25 

31 10.780 - 11.280 9.55(300K) 0.05 Surface/Cloud 
Temperature 32 11.770 - 12.270 8.94(300K) 0.05 

33 13.185 - 13.485 4.52(260K) 0.25 
34 13.485 - 13.785 3.76(250K) 0.25 
35 13.785 - 14.085 3.11(240K) 0.25 

Cloud Top 
Altitude 

36 14.085 - 14.385 2.08(220K) 0.35 
1 Bands 1 to 19 are in nm; Bands 20 to 36 are in µm 
2 Spectral Radiance values are (W/m2 µm sr) 
3 SNR = Signal-to-noise ratio 
4 NE(delta)T = Noise-equivalent temperature difference  

 

The VIS and NIR bands for land remote sensing with MODIS were designed from the 
experience from the Landsat Thematic Mapper mission, yet they have smaller bandwidths and 
a new band centered at 1.24µm on the NIR plateau was introduced (compare Figure 4.1). 
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Another unprecedented channel centered at 1.375µm (Band 26) was added for the detection of 
cirrus clouds. For land surface remote sensing purposes in the VIS and NIR, only the first 7 
bands are feasible although bands 8 through 19 are also located in the VIS/NIR domain. The 
latter bands are high gain for ocean color remote sensing and will saturate over land surfaces. 
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Figure 4.1: Relative spectral response functions of MODIS, ETM+ and TM in the 
VIS to SWIR region  

The 12bit radiometric resolution of data from MODIS overcomes the problem of narrow 
rages of DNs (digital numbers), which often resulted in sensor saturation over bright targets 
such as snow or cloud (Price, 2003). The prelaunch specifications concerning Signal-to-noise-
ratios (SNRs) for the reflected solar radiation bands (RSB-Bands 1–19 and 26) and noise-
equivalent radiance (NEdLs) for the thermal infrared bands (TEB—Bands 20–25 and 27–36) 
have been examined to be met by the orbiting instruments (Guenther et al., 2002). 

In the design of MODIS, calibration and characterization was given substantial emphasis as 
these are most critical in the generation of a long-term consistent record of remote sensing 
data (Justice et. al 2002). As a result MODIS is equipped with a sophisticated calibration unit 
consisting of four On-Board Calibrators used for radiometric, spectral and spatial calibration: 
the Blackbody, the Solar Diffusor, the Solar Diffusor Stability Monitor and the 
Spectroradiometric Calibration Assembly. The Blackbody is the calibration source for the 
mid- and longwave infrared bands from 3.5µm to 14.4µm, the Solar Diffusor provides a 
diffuse calibration source for the VIS, NIR and MIR bands from 0.4µm to 2.2µm and works 
together with the Solar Diffusor Stability Monitor. The latter tracks changes in the Solar 
Diffusors reflectance via reference to the sun to ensure that observed instrument changes are 
not simply changes to the calibration system itself. Finally, the Spectroradiometric Calibration 
Assembly provides inflight spectral, radiometric and spatial calibration using internal sources, 
optics, mechanisms, and electronics that enable it to generate and modify input stimuli to 
MODIS in three modes without interfering with the normal operation of the main sensor. 
Looking at the moon and into deep space are additional techniques used in the calibration 
effort for MODIS. A detailed description of the calibration system and its interactions as well 
as measured system degradation can be found in Guenther et al., 2002. The precise calibration 
of MODIS can be observed over time in the changes of the calibration factors used in the 
reflectance calibration of the Level 1B data used in this study. 
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MODIS data products 
One of the outstanding features of the MODIS mission is the production of a whole suite of 
parameter estimates derived from the measurements made by the sensor. The suite of MODIS 
data products comprises some 44 standard products with exciting possibilities for different 
scientific fields to study global change, providing the first state distribution of the main Earth-
atmosphere coupled parameters. The products can be classified as calibration products, land, 
atmosphere, cryosphere and ocean products. Table 4.2 summarizes the products currently 
available to the user community. These products can be ordered and downloaded at the 
Distributed Active Archive Center (DAAC) free of charge. A more detailed description of the 
products used in this work follows in Section 4.6.  

Table 4.2: MODIS data products (NASA, http://modarch.gsfc.nasa.gov/data/dataprod, King 
et al., 2004) 

Calibration MOD 01 - Level-1A Radiance Counts 
MOD 02 - Level-1B Calibrated Geolocated Radiances 
MOD 03 - Geolocation Data Set 

Atmosphere MOD 04 - Aerosol Product 
MOD 05 - Total Precipitable Water (Water Vapor) 
MOD 06 - Cloud Product 
MOD 07 - Atmospheric Profiles 
MOD 08 - Gridded Atmospheric Product 
MOD 35 - Cloud Mask 

Land 
 

MOD 09 - Surface Reflectance 
MOD 11 - Land Surface Temperature & Emissivity 
MOD 12 - Land Cover/Land Cover Change 
MOD 13 - Gridded Vegetation Indices (Max NDVI & Integrated MVI) 
MOD 14 - Thermal Anomalies, Fires & Biomass Burning 
MOD 15 - Leaf Area Index & FPAR 
MOD 16 - Evapotranspiration 
MOD 17 - Net Photosynthesis and Primary Productivity 
MOD 43 - Surface Reflectance 
MOD 44 - Vegetation Cover Conversion 

Cryosphere 
 

MOD 10 - Snow Cover 
MOD 29 - Sea Ice Cover 

Ocean MOD 18 - Normalized Water-leaving Radiance 
MOD 19 - Pigment Concentration 
MOD 20 - Chlorophyll Fluorescence 
MOD 21 - Chlorophyll_a Pigment Concentration 
MOD 22 - Photosynthetically Available Radiation (PAR) 
MOD 23 - Suspended-Solids Concentration 
MOD 24 - Organic Matter Concentration 
MOD 25 - Coccolith Concentration 
MOD 26 - Ocean Water Attenuation Coefficient 
MOD 27 - Ocean Primary Productivity 
MOD 28 - Sea Surface Temperature 
MOD 31 - Phycoerythrin Concentration 
MOD 36 - Total Absorption Coefficient 
MOD 37 - Ocean Aerosol Properties 
MOD 39 - Clear Water Epsilon 

 

The data processed from MODIS is categorized in data levels ranging from raw data, the 
stream received from the observer, to Level 4 where data has been used in models or analysis 
(Appendix 1). Level 1B data are the data processed to sensor units, that have been geolocated 
and radiometrically corrected. Higher-level data like the MOD09 Reflectance product (Level 
2 Gridded) and the MOD15 LAI/FPAR Product are rastered to a geodetic reference system or 
map projection and have been produced in interdependent processing chains. For the land 
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products processing, a description of the data flow can be found in Justice et al. 2002. The 
production levels and data flow for all products can be found in the EOS Data Products 
Handbook (Peterson and Greenbelt, 2000, King et al., 2004). 

Because of the large swath and number of bands the volume of data produced by MODIS 
exceeds by far the amount produced by earlier sensors. The 20-year record of AVHRR Level 
1B data is approximately equivalent to 7 weeks of MODIS L1B data, an amount of 4 
terabytes (Townshend and Justice, 2002). In the processing of these data, hardware and 
storage requirements are vast and in the early stages the flow of data processing was only 
capable of processing one days amount of data in one day. At times land product production 
lagged behind production of L1B data for up to two month while by 2002 it took only 1 to 3 
days from acquisition to processed and access ready L1B data. The whole suite of MODIS 
products was online another 2 to 7 days later (Justice et al. 2002). 

The algorithms for the processing were undergoing changes in the first years of MODIS and 
data products were reprocessed to the maturity of the algorithms (Justice et al. 2002, 
Townshend and Justice, 2002). The versions of data in this study is 004, the production of 005 
was ongoing at the time of this writing. The development stages in MODIS algorithm 
maturity is distinguished as Beta, Provisional and Validated. Version 001 was designated as 
Beta, version 003 and 004 contain both Provisional and Validated data (version 002 was 
never produced) (see http://daac.gsfc.nasa.gov/MODIS/ Terra/data_versioning.shtml). The 
PGE-Version of a dataset denoted in each products metadata contains the exact processing 
version. The versions are listed in the Product Quality History of MODIS products on the 
Internet (http://modis.gsfc.nasa.gov/data/dataprod/index.php)   

4.1.2 Landsat Thematic Mapper 

The Landsat satellites have been a long serving series of continuously improved orbiters, the 
latest carrying the Enhanced Thematic Mapper Plus (ETM+) as the prominent earth observing 
instrument. The Landsat Project was initiated in 1972 with the launch of Landsat 1 and is the 
longest running enterprise in imaging of the earth from space. It sent the first unmanned 
satellite to space that was specifically designed for systematically collecting multispectral 
data at unprecedented resolution. The instrumentation and orbit of early Landsat 1-3 was 
changed with Landsat 4 and 5, the inception of the generation of Landsat spacecraft carrying 
the Thematic Mapper. Landsat 6 was to introduce the Enhanced Thematic Mapper (ETM) but 
was lost at launch. As of the time of this writing, Landsat 7 was in operation, delivering data 
from the Enhanced Thematic Mapper Plus (ETM+), the successor of the earlier Thematic 
Mapper (TM) Instrument. The Thematic Mapper was first mounted on Landsat 4 launched in 
1982 (data transmission failure in 1993) and a second TM has been flown on Landsat 5 since 
1984. After over 20 years of service, TM 5 although deteriorating, is still delivering data. The 
single ETM+ that reached orbit on Landsat 7 suffered a permanent failure of the Scan Line 
Corrector (SLC) on May 31, 2003. The instrument is now collecting data in “SLC-off” mode, 
which exhibit gaps due to the disturbed scan process (see web page 
http://landsat.usgs.gov/dataprod.php for details). A good overview of the full Landsat 
Program and a description of the sensors can be found in Lillesand and Kiefer, 2000 and on 
the USGS Landsat web page (http://landsat.usgs.gov). 

The TM and ETM+ multispectral scanner instruments share six reflective bands ranging from 
0.45µm to 2.35µm and one emissive band centered at 11µm with at nadir ground resolution of 
30m and 120m respectively (see Table 4.3 and Figure 4.1). New to ETM+ is a panchromatic 
band (0.50-0.90µm) with 15m ground resolution, low and high gain acquisition, the thermal 
band at 60m ground resolution and an enhanced geometric and radiometric calibration 
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system. Both instruments are equipped with an oscillating mirror in the Scan Mirror 
Assembly, which reflects radiation through a telescope onto the Primary Focal Plane (Band 1-
4, 8) and the Cold Focal Plane (Band 5-7). On the focal planes 16 detectors (for the 30m 
bands) are mounted to collect data simultaneously with each scan. The surface swath of the 
instrument is nominally 480m along track, covering 185km across track. Landsat is in a near 
polar, sun-synchronous and circular orbit at a 705 km nominal altitude, with an orbit 
inclination of 98.2 degrees. The repeat cycle of Landsat orbits and ground tracks is 16 days. 
The orbits of the currently available Landsats 5 and 7 are identical to each other and to the 
orbit of MODIS on the Terra spacecraft. The time offset between Landsat 5 and 7 orbits is 8 
days and Landsat 7 flies 15 minutes ahead of the Terra spacecraft.  

Table 4.3: Landsat Thematic Mapper Technical Specifications (NASA, 2006, King and 
Greenstone, 1999, Lillesand and Kiefer, 2000) 
Orbit: 705km, 10:00 a.m. descending mode, 98.8min, sun-synchronous, near-polar 

circular, inclination 99.2° 
Swath Dimensions: 185 km (cross track) by 480 m (along track at nadir) 
Data Rate: 85 Mbps (TM); 150 Mbps (ETM+) 
Quantization: 8 bits 
Spatial Resolution: 15 m (pan, ETM+ only) 

30 m (bands 1-5, 7) 
60 m (band 6 on ETM+) 
120 m (band 6 on TM)  

Design Life: 5 years 
 

Thematic Mapper (TM) Enhanced Thematic Mapper Plus (ETM+)Band wavelength [µm] ground resolution [m] wavelength [µm] ground resolution [m]
1 0.45 – 0.53 30 0.45 – 0.515 30 
2 0.52 – 0.60 30 0.525 – 0.605 30 
3 0.63 – 0.69 30 0.63 – 0.690 30 
4 0.76 – 0.90 30 0.75 - 0.90 30 
5 1.55 – 1.75 30 1.55 - 1.75 30 
6 10.40 - 12.50 120 10.40 - 12.50 60 
7 2.08 – 2.35 30 2.09 - 2.35 30 

PAN - - 0.52 - 0.90 15 
 

The product used from Landsat Thematic Mappers is usually the system corrected imagery 
roughly projected to a WRS-2 based geometry. Systematic errors corrected in this imagery 
include the panoramic distortion (tangential distortion), earth curvature and rotation, 
spacecraft ephemeris and scan mirror motion. The data are resampled to 30m ground 
resolution. Data are distributed in various map projections and geocoded with a residual error 
of 250m (Eurimage, 2005). The standard data products data lack a correction of the one 
dimensional relief displacement (see Geometric Correction of data, Section 4.3.2). 

Level 1 system corrected (Level 1G) Thematic Mapper imagery is the standard product 
distributed to the general public. These data are radiometrically and geometrically corrected. 
The lower level products Level ∅ Reformatted (Level ∅R) and Level 1 Radiometrically 
Corrected (Level 1R) contain pixels not aligned per scanline. The Systematic Correction 
(Level 1G) Gap-filled is a workaround for the permanent failure of the Scan Line Corrector 
(SLC) to fill the gaps in the imagery collected by ETM+ in SLC-off mode. Level 1 SLC-off 
data are distributed containing stripes (gaps) of no data in the images. At USGS, higher data 
levels Precision Correction (Level 1P) and Terrain Correction (Level 1T) are available to 
Approved U.S. Government and its Affiliated Users (USGAU) only (http://edc.usgs.gov/ 
products/satellite/tm.html, http://edc.usgs.gov/products/satellite/landsat7.html). From Eur-
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image higher-level data processing services such as mosaicing, pansharpening and 
orthorectification are available. 

Data are distributed in CEOS, FAST, NLAPS, GeoTIFF, NDF or HDF format, depending on 
the distributor. Data format descriptions are available in the Data Format Control Books 
(USGS, 1999 and USGS, 2000). 

4.2 Data Formats 

Storage and distribution of all of NASA’s Earth Observing System (EOS) data products relies 
on the Hierarchical Data Format (HDF). Any MODIS product and, optionally, Landsat data 
will be delivered in HDF. Due to its complexity, the establishment of this new format has 
been one of the largest obstacles to MODIS data use. During its onset, available software 
capable of handling HDF-EOS files has been scarce (Justice, et. al 2002, Townshend and 
Justice, 2002, Schaaf, C. B., personal communication). For this study the handling of data 
formatted to HDF-EOS was explored to integrate it with the FAP Areal Data Analysis 
Software developed and used at the Department of Geography, Chair of Geography and 
Geographical Remote Sensing (IGGF) at the Ludwig-Maximilians-Universität Munich 
(Mauser and Bach, 1993). The FAP data format and FAP Image Processing Software was 
used in all higher processing of the raw data received from the distributor. This chapter 
summarizes information about the formats, software tools and access to the data. 

4.2.1 HDF and HDF-EOS Format 

The Hierarchical Data Format (HDF) was developed at the National Center for 
Supercomputing Applications (NCSA) to address the need for a format suitable for the 
transfer and manipulation of scientific data across computer platforms and operating systems. 
The projects mission is to develop, promote, deploy, and support open and free technologies 
that facilitate scientific data exchange, access, analysis, archiving and discovery (NCSA, 
2003). HDF encapsulates a multi-object file structure, which resembles a file system tree 
within the file. A variety of data types can be stored and grouped in one HDF file: n-
dimensional scientific data arrays, a variety of raster images including associated color 
palettes, tables, text annotations and metadata. HDF has been termed self-describing, as for 
each data structure in a HDF file there is comprehensive information about the data. But HDF 
is more than a format to a file. HDF can be viewed as several interactive levels. Only at its 
lowest level, HDF is simply a physical file format for storing scientific data. At its highest 
level, HDF is a collection of applications and utilities for working with the data stored in HDF 
files. Between these levels, HDF provides a software library that has high-level and low-level 
programming interfaces. See Figure 4.2 for an illustration of the interface levels. 
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Figure 4.2: Levels of interaction with HDF files (from: NCSA HDF User Guide 
2003) 

The application programming interface (API) of HDF can be accessed in the programming 
languages FORTRAN, C and Java. All source code and documentation of the HDF libraries is 
freely available from the NCSA server at http://hdf.ncsa.uiuc.edu. 

Many of the data products and data types that result from the EOS missions do not map 
directly to NCSA/HDF data types. This resulted in an extension of HDF, the HDF-EOS 
(Hierarchical Data Format-Earth Observing System) software library that was created for the 
EOSDIS Core System (ECS) by the Raytheon Systems Company (RSC) to fully and 
optimally support geographical datasets and their requirements regarding temporal or 
geolocation information. HDF-EOS files support three additional data types, namely grid, 
swath and point. They allow the file contents to be queried by Earth coordinates and time. 
These data types can be viewed as a defined structure and organization of data rather than 
completely new data types. They are constructed using conventions for combining standard 
HDF data types (Knauss and Klein, 2000). This implies that an HDF-EOS file can be 
accessed by using the HDF library alone. The application of the HDF-EOS library add-on 
allows for the subsetting of point, swath, and gridded data sets in terms of time and 
geolocation (latitude, longitude) additionally to querying image rows and columns like in 
HDF. 

The HDF library comes with a set of command line utilities to extract information from HDF 
files. One useful tool for dumping data elements is called hdp. It can produce plain binary 
files from HDF objects. All command line utilities are listed in detail in the HDF User’s 
Guide (NCSA, 2003). A convenient and graphical way to browsing HDF is the free 
HDFView software. All tools are available from the NCSA HDF web pages. 

To convert data from HDF to the FAP format, two tools were developed. HDF2FAP has a 
simple graphical user interface that will list all scientific data sets (SDS) for selection 
including tag and reference numbers, dimensions and data type. Selected SDS can be 
converted to FAP format or flat binary files. For the need of batch processing a command line 
tool called HDF2PIC was written. It ingests HDF input file and FAP output filename along 
with a list of SDS names as arguments and produces FAP *.pic files. See Appendix 2 for 
details on these software. 
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The current version of HDF is HDF 4. It is compatible with all earlier versions, yet HDF 5 is 
a completely new product with a new library. Although conceptionally related, HDF 5 is 
incompatible to HDF 4. Both, HDF 4 and HDF 5 are supported and maintained by the HDF 
Group at NCSA (NCSA, 2003). Currently as of summer 2006 all EOS data are HDF 4. HDF-
EOS for HDF 5 is under development. 

4.2.2 FAP Format 

The FAP data format was originally developed at the University of Freiburg, Germany and 
has been extensively used in many studies at the Department of Geography, Chair of 
Geography and Geographical Remote Sensing (IGGF) at the Ludwig-Maximilians-Universität 
Munich (LMU). In the conception of the format the idea of a format capable of uniting 
numerous data types in one file was crucial. This ability of the format results in a very 
versatile way of data storage and allows the combination of data from a variety of sources in 
one file. This feature was especially useful and desirable for the data processing in this study, 
where the integration of multiple source data was required. By discriminating the most 
significant bit (MSB) of the little endian data types, six different data types can be stored in a 
FAP file as listed in Table 4.4.  

Table 4.4: Data types available for data stored in a FAP image file. 
Name of data type Data type size Description 
Byte-positive Type 1 8-bit 8 bit little endian unsigned integer type 
Byte-negative Type 6 8-bit 8 bit little endian signed integer type 
Integer*2-positive Type 2 16-bit  16 bit little endian unsigned integer type 
Integer*2-negative Type 7 16-bit 16 bit little endian signed integer type 
Integer*4 32-bit 32 bit little endian signed integer type 
Real*4 32-bit 32 bit little endian floating point type 

 

The FAP file has a file header containing the metadata to the image, including its size in rows 
and columns, number of bands, data types of bands and a text description of the file. The data 
itself is stored in a line-interleaved pattern, i. e. one row of the image including all bands is 
fully written, followed by the next row. Because of the capability of storing different data 
types, a system was developed to use disc space efficiently. Depending on the size of the 
image, a record length is determined and a band will use records according to its data size. 
For example an 8-bit band will use one record, a 32-bit band will use four. The advantage of 
this way of storing data lies in fast and convenient processing and handling of data from these 
files (Mauser and Bach, 1993). 

The programming for this study was done in the Java programming language. In order to 
access FAP data files in a Java Program, a library was developed to extract data from this data 
format. This library makes use of the fast byte oriented java.nio package. It allows flexible 
access to Pixels of a FAP file or any arbitrary subset of the file. See Appendix 2 for details on 
this library. 

4.3 Geometric Correction 

In many applications of remote sensing, the data need to be matched and compared to other 
sources of data. Whenever spatial data of different origin are to be processed together, there is 
a need for common ground concerning the geometry of the data: The different layers of 
information need to be stacked such, that a unique plot in space is attributed the correct 
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information regardless of the layer. In the context of this study, this matching is necessary in 
multiple terms. Not only data from different sources are being matched, but also data of 
different acquisition times are compared. Thus, precise geocoding of all data involved is 
critical. Usually, some type of orthogonal grid is used to address position in two-dimensional 
space. Many of such grids or geodetic systems are available and different types may be 
adequate depending on the area under study. In any case, the curved surface of the earth must 
be transformed or projected such that it may be represented as a flat plane. 

The raw data collected by earth satellite observations are also represented in an orthogonal 
image raster. Nevertheless, because these data have been projected to the image plane in the 
process of acquisition, they do not match any geodetic system. They contain systematic and 
random errors induced by satellite and earth motion, by earth curvature and relief as well as 
the sensing system itself (Lillesand and Kiefer 2000, Wolfe et al. 2002). The following 
describes the process of geometrically correcting the remote sensing data of the two sensors 
involved. 

Both, system dependent and system independent errors can be corrected using nonparametric 
and/or parametric approaches. Nonparametric approaches require a series of ground control 
points (GCPs) to drive a coordinate transformation for the rectification of the image. 
Parametric approaches require information concerning the sensing geometry (interior 
orientation) and the sensor attitude and position (exterior orientation). They describe the 
circumstances that produced the sensed image. The correction of the Landsat imagery relies 
on the determination of GCP in the system corrected imagery. MODIS data can be geocoded 
using the geolocation parameters delivered with the image data 

The geodetic system for the GLOWA-Danube model is a Lambert Conformal Conical (LCC) 
projection based on the Hayford International 1924 ellipsoid. The geodetic datum is DHDN. 
This is the same projection as it has been specified for the Hydrologischer Atlas Deutschland 
(HAD) (BMU, 2003). As this projection is somewhat difficult to handle, the processing of the 
data for this study was done using the Universal Transversal Mercator (UTM) projection 
based on the WGS84 ellipsoid and geodetic datum. However, reprojection of the data to the 
GLOWA-Danube geometry is possible. 

4.3.1 MODIS 

One of the new features of the MODIS instrument is the high quality geolocation information 
delivered for all MODIS data. This geolocation information is produced by using the 
spacecraft ephemeris data and the interior coordinate systems of the sensor to derive a 
viewing vector for each observation. As a result, each 1km sample of the sensor is attributed a 
pair of latitude and longitude values derived from real time measurements of the exterior 
orientation of the Terra spacecraft. 

On board an inertial gyro and star-tracking sensors are used to determine the attitude. The 
position is determined by the Tracking Data Relay Satellite System On-board Navigation 
System (TONS) (Wolfe et al. 2002). During acquisition, the interior orientation of MODIS 
detectors and mirror results in a complex spatial and temporal relationship for the alignment 
of the different spectral bands. The various coordinate systems and ephemeris measurements 
are used to determine longitude and latitude values for all pixels of the 1km bands (Nishihama 
et al., 1997, Wolfe et al. 2002). The 1km samples need to be interpolated when geolocation 
for the 500m and 250m bands are required. 

Due to the simultaneous sensing of 10km along track in one scan, a phenomenon called the 
“bow-tie” effect is very pronounced in MODIS imagery. The effect is common in wide-field-
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of-view whiskbroom scanner devices. It describes the increase in overlap of consecutive scans 
with increasing scan angle. In Figure 4.3 a schematic illustration of this effect is given. 

 
Figure 4.3: Schematic illustration of the ground projection of MODIS scans. The 
central scan (scan 2, gray) is overlapping with the previous (scan 1) and 
following scan as the scan angle increases (Wolfe et al. 2002). 

Near nadir, across-track scan velocity and along-track spacecraft motion are designed such 
that one scan abuts on the next, but overlap may be up to 50% at the scans edges. Under large 
scan angles, an object may be viewed up to three times by three consecutive scans (Wolfe et 
al. 2002). Figure 4.4 provides an illustration of the effect as it appears in actual swath 
imagery, showing a coastline section of a MODIS scene. 

 
Figure 4.4: Coastline near Mont St. Michel, France as seen by MODIS under 
high scan angle (approx. 50°) in three consecutive scans at 250m resolution. A 
scan has 40 rows in 250m MODIS imagery. 

MODIS Level 1 and 2 data will contain this bow-tie effect. They are distributed as data - 
granules, defined as about 5min of MODIS surface observation. Within this time span, 
MODIS will cover about 2340km across-track (the swath width) and 2030km along-track. In 
the geometric rectification of the Level 1B data used in this study the geolocation information 
distributed with the data was used. These geolocation layers, contained as Scientific Data Sets 
(SDS) of longitude and latitude in the HDF-EOS files, are produced using the global 1km 
Platte Carre EOS Digital Elevation Model (DEM) (Nishihama et al., 1997). The DEM is 
applied in order to compensate for the relief displacement effect (Itten et al., 1992, Itten and 
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Meyer, 1993, Lillesand and Kiefer, 2000). Without this terrain correction, location errors up 
to tens of kilometers may result due to the high scan angle of MODIS (Nishihama et al., 
1997). 

Data from Levels 2G, Level 3 and Level 4 are processed to the Integerized Sinusoidal (ISIN) 
projection for the MODIS data collections 001 through 003. In collection 004 the Sinusoidal 
(SIN) Projection was applied (Department of Mathematics and Computer Science South 
Dakota School of Mines and Technology, 2004). The ISIN projection is unique to the MODIS 
land products, and analogous to the SIN projection except that the ISIN projection is centered 
about 0° longitude. Special coefficients are used to flatten the WGS84 ellipsoid. In these 
projected products the bowtie effect has been removed. The data are distributed in tiles 
covering an area of 10 by 10 degrees along the equator. The tessellation of the earth is 
organized in a tile coordinate system, which starts at (0,0) (horizontal tile number, vertical tile 
number) in the upper left corner and proceeds rightward (horizontal) and downward (vertical). 
Figure 4.5 depicts the globe in the ISIN/Sinusoidal projection. It shows that not all tiles 
contain earth data and some will only contain water (see MODLAND developers web page 
for details) 

 
Figure 4.5: Tile coordinate system for MODIS products of Level 2G, Level 3 and 
Level 4 (Image taken from the National Snow and Ice Data Center (NSIDC) web 
page, http://nsidc.org/data/docs/daac/mod10_modis_snow/landgrid.html) 

The area of the GLOWA catchment upper Danube is located in tile h18 v04. Browsing the 
DAAC for the GLOWA test sites area will return data on this tile. Data from Level 2G and 
higher will contain this location in the name of the HDF file. Already projected to a standard 
projection, these data require reprojection only. 

In data granules in swath geometry (Level 1B) the area of the upper Danube catchment is 
located depending on the path of the satellite and the viewing angle of the system. Thus, 
location is a function of time of acquisition determined by orbit and overpass and granules are 
categorized by year, day of year (DOY) and time (UTC). Data granules containing the 
GLOWA catchment at daytime overpasses are acquired in a time window from about 9:30 
UTC to 11:15 UTC. The best geometric conditions for this area are in data with an overpass 
approximately centered over the catchment. This occurs on days when the acquisition time of 
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the granule that contains the GLOWA catchment is around 10:20 UTC. On the 7th, 9th and 14th 
day in the 16-day orbital cycle from such central overpasses at 10:20 UTC, geometric 
conditions are still considerably better than on all other days, when the ground track does not 
intersect with the GLOWA catchment and MODIS observes the area under large scan angles. 
Three cases of overpass patterns of MODIS are shown in Figure 4.6. Data for this study were 
selected primarily from this subset of preferable geometric conditions for acquisition. 

 
Figure 4.6: Three cases of overpass times and orbit ground tracks for coverage of 
the upper Danube catchment (red circle) by Terra/MODIS (descending). Best 
geometric conditions are present when the overpass is intersecting with the 
catchment around 10:20 UTC (left), moderate conditions for orbits close to the 
catchment (about 10:05 UTC, center), unfavorable conditions are met around 
11:25 UTC with an orbit far to the west of the catchment (right). Note that 
daytime descending orbits run in a NE to SW direction (Space science and 
Engineering data center, http://www.ssec.wisc.edu/datacenter/terra/, modified) 

For the georectification of MODIS HDF-EOS data on Windows platforms three tools were 
applied in this study: The HDF-EOS to GeoTIFF Tool (HEG-Tool), the MODIS Reprojection 
Tool (MRT) and the MODIS Reprojection Tool Swath (MRT-Swath). While the first two will 
handle the gridded MODIS products (Level 2G, Level 3, Level 4), the latter is especially 
designed for reprojecting data in the swath geometry (Level 1, Level 2). All tools can be used 
through a graphical user interface or in command line mode. The tools are available free of 
charge from the HDF-EOS tools and information center. 

The tools were applied to reproject all MODIS data to a UTM frame containing the catchment 
of the upper Danube. For the Level 1B swath data the MRT-Swath tool was used to remove 
the bowtie-effect. Gridded data were reprojected to UTM in order to match with all other data. 
Details on the application of the tools can be found in the corresponding user’s manuals. The 
parameters for the reprojection are given in Table 4.5. 

Table 4.5: Parameters used in the reprojection of MODIS data 
Projection  Universal Transversal Mercator 
Zone 32 
Upper left corner (x, y) 434928.76, 5548806.0 
Lower right corner (x, y) 871278.76 5180376.0 
Ellipsoid WGS 84 
Datum WGS 84 
Interpolation bilinear 

 

The spatial accuracy specification for MODIS is 150m, with an operational goal of 50m. 
However, actual operational geolocation accuracy is reported to reach 18 ± 38 m along-track 
and 4 ± 40 m across track (Rojas et al., 2002, Wolfe et al., 2002). 
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4.3.2 Landsat 

Landsat Thematic Mapper scenes are spatially organized in a preplanned ground track system, 
the worldwide reference system (WRS). An individual acquisition is localized on the globe in 
a system of 233 indexed orbits (paths) of the 16-day earth coverage cycle of the satellite and 
248 scene centers (rows) along each orbit. To cover the entire extend of the upper Danube 
basin a total of eight scenes is needed. These scenes are on path 192 to 194 and from row 25 
to 28. At the given latitude scenes of adjacent swaths overlap by about 35% (USGS, 1999, 
USGS, 2000, NASA, 2006). Figure 4.7 provides an overview of the scenes acquired for this 
study. 

 
Figure 4.7: Overview of the Landsat TM scenes to cover the GLOWA-Danube 
catchment.  

Landsat scenes were acquired as Level 1G data, which has the systematic errors removed. 
However, the data are not rotated to northerly orientation and the projection is only a rough 
approximation of a geodetic system. Data at this processing level need further correction. 
Nevertheless, this processing level is a prerequisite for the correction of the terrain induced 
error applied on TM data: In these data, pixels are aligned the way the sensor collected them 
in each swath, i.e. the samples of a swath form 16 rows of the image. The displacement of 
pixels induced by rugged terrain will be along the scan line the data is collected in. Thus 
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correction of this error is only feasible as long as the ordering of samples along the swath 
(=across-track) is undisturbed and retained along an image row of the unrotated scene. A 
schematic illustration of the terrain-induced effect in scanner imagery is given in Figure 4.8. 

 

 

image plane T’ 
P’ 

T 

P Nadir view 
 

Figure 4.8: Schematic illustration of the terrain induced effect in scanner 
imagery: Viewing at large angles in scanning direction, a scanner will record a 
mountaintop T at T’ on the image plane. The true location of T is viewed in the 
direction of P and is mapped to P’ on the image plane. The distance T’P’ is the 
terrain induced displacement in scanner imagery. 

As stated above, the removal of this error is essential for data of areas with high variation in 
elevation as it is present in the alpine areas of the Danube catchment. The geocoding of the 
Landsat imagery was performed by a nonparametric approach with a set of GCPs for each 
scene used. To remove the relief displacement of pixels, a DTM in UTM32 projection of the 
area was applied, providing the elevation of each pixel at 30m spatial resolution. The 
approach for the correction of the data uses terrain corrected GCPs and combines the removal 
of the terrain error with a polynomial transformation of the scenes to the geometry of the 
DTM. A detailed description of the algorithm can be found in Itten et al., 1992, Itten and 
Meyer 1993 and Braun, 1998. 

The error in the geometric correction was specified in both, the row and column direction and 
is well below one Pixel in all cases. Table 4.6 summarizes the error from the polynomial 
transformation of the images. 

Table 4.6: Vertical and horizontal RMS of the geometric correction over all corrected TM 
images 

 RMS vertical 
[pixels] 

RMS vertical 
[m] 

RMS horizontal
[pixels] 

RMS horizontal
[m] 

Mean 0.638 19.125 0.676 20.293 
STD 0.053 01.586 0.061 1.838 
Min 0.537 16.113 0.607 18.216 
Max 0.707 21.207 0.831 24.936 

 

In order to countercheck the quality of the geocoding process, a second set of GCP was 
elaborated from the images rectified to UTM geometry and compared to UTM coordinates 
taken from digital topographic maps (Bayerisches Landesvermessungsamt, 2003). This check 
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was performed for about 150 Points, 50 on each of the 3 Landsat paths. The results from this 
final quality check are presented in Table 4.7. 

Table 4.7: Average absolute vertical and horizontal deviation in [m] from the topographic 
map within each of the three Landsat paths.  

Path 192 Path 193 Path 194  northing easting northing easting northing easting 
Mean 22.90 18.53 19.04 18.63 17.27 22.69 
STD 17.04 17.57 13.94 16.12 14.98 19.12 

 

With some exceptions, dislocation of features in the corrected imagery was below one pixel. 
With this result the quality of the geometric correction of the Landsat imagery can be 
considered very high. The good spatial agreement was also observed when adjacent images of 
the same path were merged. Such images overlap by a few scans of the sensor and pixel 
values are the same when acquired on the same overpass. Checking these pixel values showed 
that individually corrected scenes resulted in an exact match of pixel values along the 
overlapping stretch of imagery. This indicates that individually corrected scenes appear in the 
exact same geometry after the correction sequence. 

4.4 Radiometric Correction 

Radiometric correction of remotely sensed imagery is a fundamental processing step if 
radiances captured by measurement devices in outer space are to be translated to surface 
physical quantities (Teillet, 1986, Lillesand and Kiefer, 2000). The spectral signature of a 
surface feature observed by a remote sensing device is altered by influences of the atmosphere 
(Raleigh- and Mie scattering) and topography and is further dependent on sensor 
characteristics, path lengths and directions as well as illumination conditions. Although not 
explicitly compelling for all remote sensing applications, the intercomparison and fusion of 
data of different dates and sensors in this study makes this step indispensable. The process 
comprises the quantification and correction of atmospheric influences, variations in scene 
illumination, viewing geometry and translates spectral radiances to spectral reflectances. 

A number of algorithms have been developed to perform this task such as the 5S-Code (Tanré 
et al., 1990) and the SMAC-Algorithm (Rahman and Dedieu, 1994) both being methods for 
simple and fast atmospheric correction. A physically based radiometric correction model was 
presented by Sandmaier (1995), who uses the 6S-Code (Vermote et al. 1994) to model 
radiative transfer. Proy et al. (1989) modeled and evaluated the influence of the topography 
on the downward direct and diffuse radiation in remote sensing data. Bach (1995) presented a 
Procedure to Use LOWTRAN-7 for Reflectance Calibration (PULREF). PULREF uses the 
results of the physically based radiative transfer model LOWTRAN 7 (Kneizys et al. 1988) to 
efficiently determine surface reflectances from sensor radiance counts. It can account for 
topography effects in remote sensing imagery and the adjacency effects as described by Tanré 
et al. (1987). 

For the generation of the MODIS reflectance product, a new atmospheric correction algorithm 
was developed, again based on the 6S radiative transfer code. It uses novice features of 
MODIS itself, such as cirrus cloud detection (1.38µm channel) and the determination of 
aerosol optical thickness (3.75µm channel) to provide an automated global dataset at scales 
exceeding 250m (Vermote and Vermeulen, 1999, Vermote et al. 2002). As this procedure is 
designed to run on an operational, automated basis for global coverage, locally available data 
on atmospheric state cannot be ingested. Consequently, the Algorithm Theoretical Basis 
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Document (Vermote and Vermeulen, 1999) states that it is not intended to replace the need 
for localized atmospheric correction for individualized field studies.  

Care has to be taken when differently processed reflectance data are sought. Biases between 
the different approaches to determining surface reflectance are to be expected. Regrettably, as 
of the time of this writing there is no intercomparison of the performance of the various 
approaches mentioned above. Uncertainties in the modeling contribute to the probable 
variations in differently processed data. To avoid these uncertainties in the radiometric 
correction of data for this study, instead of using the readily available MODIS reflectance 
product (MOD09), data of both sensors were procured as Level 1 raw radiance counts data. 
They were then calibrated using the Procedure to Use LOWTRAN for REFlectance 
Calibration (PULREF) (Bach, 1995) with the procedure customized for each sensor. 
Localized input data was applied in the correction. Originally this algorithm had been 
developed for the radiometric correction of various hyperspectral spectrometer data. It was 
successfully applied in earlier studies and to different sensor systems (Bach and Mauser, 
1994, Stolz, 1998, Braun, 1998, Oppelt, 2002, Bach et al., 2003). The implementation of 
PULREF proved to be very flexible and was easily adapted to MODIS Level 1B data. 

4.4.1 Methodology 

The application of the Procedure to Use LOWTRAN for REFlectance Calibration (PULREF) 
(Bach, 1995) of a satellite image grounds on a simulation of atmospheric transmission 
assuming four different surface reflectances of 0%, 10%, 30% and 60%. Four runs of the 
LOWTRAN 7 radiative transfer code (Kneizys et al. 1988) result in top of atmosphere (TOA) 
radiances that correspond to the four assumed surface reflectances at wavelengths ranging 
from 0.25 to 28.5µm. These simulations are customized to the atmospheric conditions at the 
time of the image acquisition. Their results discriminate fractions of direct and diffuse 
radiance as well as atmospheric path radiance. The model takes into account: 

- solar irradiance 

- molecular absorption of irradiance 

- aerosol absorption of irradiance 

- single and multiple scattering by molecules 

- single and multiple scattering by aerosols 

- emitted thermal radiance 

When radiative transfer is simulated, an atmospheric model is ingested to specify regional and 
seasonal atmospheric properties. For the determination of the phase function an aerosol model 
is used and layers of varying aerosol types are assumed. In the calculation of solar irradiance a 
lat/lon position, time and elevation is needed. Optionally, measurements of atmospheric 
profiles as well as horizontal visibility can be incorporated into the model (Bach, 1995). 

In order to use the model output from the LOWTRAN simulations for atmospheric correction 
of satellite imagery, the characteristics of the sensor are required. The information inquired by 
the model is (i) the sensor response in the individual wavebands of the imager and (ii) 
parameters for the calibration of the gray values of the image to physical unit. The sensor 
response specifies the sensitivity of the sensor and is ingested by PULREF as sensor response 
functions for each band of the sensor at a resolution of 2nm. The calibration is a linear 
transformation of digital dimensionless values to the corresponding physical quantity of 
irradiance (W/m² µm sr) measured at the sensor. Band specific gain and offset parameters are 
usually available from the literature (TM) or distributed with the data (ETM+, MODIS). 
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For the application of the atmospheric correction to data in mountainous terrain PULREF will 
call LOWTRAN to be run for 6 different ground elevations. Each run at 0km, 0.5km, 1km, 
2km, 3km and 5km asl will ingest a unique value for the horizontal visibility in order to 
account for the vertical change of atmospheric properties and path lengths. At each elevation 
total irradiance, direct and diffuse components and path radiance are modeled for the four 
assumed targets of 0%, 10%, 30%, 60% albedo. Then the sensor response is used in a 
convolution with the LOWTRAN output. The result is the radiance that the specified sensor 
would receive in each waveband had it observed targets at 6 different elevations. The radiance 
components are given at each of these pivots. 

By linear interpolation, these pivots allow for the calculation of the radiance components of a 
signal received at the sensor from arbitrary elevations. DTM elevation data is used for each 
pixel to interpolate radiances at that elevation. To compensate for varying terrain illumination, 
radiance over an inclined surface is modeled by a four component weighting function, taking 
into account terrain slope, the local solar incidence angle and terrain radiance (Bach et al. 
2003) The four pivots for radiance at 0%, 10%, 30% and 60% reflection over an inclined 
surface are finally used to make a distinction between the irradiance received by the sensor 
and the actually reflected radiance of the target. The inversion determines by interpolation the 
reflectance of a pixel from the radiance actually measured at the sensor. Bach showed that the 
interpolation error from the four pivots is below 0.5% at albedos below 70% (Bach, 1995). 

4.4.2 MODIS 

Atmospheric correction of MODIS data was performed for 250m data (QKM = quarter 
kilometer) and the 500m data (HKM = half kilometer) of the same acquisition time and date. 
Equal parameters were applied in the processing of the datasets. Both datasets were processed 
because the two bands of the QKM data (RED, NIR) are, although aggregated, contained 
amongst the 7 bands of the HKM data. The two bands of the QKM data alone hardly admit an 
evaluation of the reflectance spectra after the atmospheric correction. With the seven bands of 
the HKM data, reflectance spectra provide a better impression of the output from the 
PULREF algorithm and allow the comparison to TM data and the MODIS Reflectance 
Product MOD09. 

The bands of the HKM data were processed sorted by wavelength rather than band number. 
This results in the sequence 3-4-1-2-5-6-7 of the MODIS bands after processing. Each 
MODIS L1B calibrated radiances data granule is distributed with calibration factors included 
in the HDF file. These calibration factors were used in the calibration of the grayvalues to 
radiance units prior to the atmospheric correction. During the time series of 2003 used in this 
study a slight change in the calibration factors of the sensor could be observed. While the 
bands in the visible part of the spectrum (band 3, 4, 1) exhibit a rise in gain factors, the bands 
in the near and middle infrared section of the electromagnetic spectrum (band 2, 5, 6, 7) have 
a trend of decreasing gain values. 

In order to parameterize PULREF, a set of input information is required. The following table 
(Table 4.8) lists the parameterizations that were applied to all MODIS imagery alike.  

Table 4.8: Parameters set for all images in the processing of MODIS imagery for 
atmospheric correction 

Atmospheric Model mid-latitude, summer 
Specification of Radiosonde Profile no 
Aerosol Model rural, horizontal visibility 23km 
Seasonal Aerosol Type spring/summer 
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The available 30m DTM was aggregated to 250m and 500m for the QKM and HKM data 
respectively. For each image the DTM was used to calculate the local incidence angle of the 
sun. This angle was approximated for each pixel by using a central lon/lat position (E 11.0°, 
N 48.0°) for all pixels and the unique acquisition time of the image in order to derive the 
position of the sun. 

The horizontal visibility is a crucial value in the parameterization of the reflectance 
calibration. To determine valid parameters for the six elevation layers distinguished by 
PULREF, horizontal visibilities from synoptic weather observations by the Deutscher 
Wetterdienst (DWD, German Weather Service) were used. The data from synoptic stations 
have the advantage that a value in meter units is given, while DWD climate stations only 
provide a scheme of 10 classes of horizontal visibility. The data was collected at the airports 
at Augsburg-Mühlhausen (463m asl), Erdinger Moos (444m asl) and Altenstadt (756m asl). 
Observations at these stations at 9:00 am, 10:00 am, and 11:00 am were interpolated to the 
time of the satellite acquisition. These interpolated values were then used to determine 
corresponding horizontal visibilities at the required six elevations. This was achieved by 
application of a formula by Elterman (1964), which provides a functional dependence of 
horizontal visibility to elevation. The same function has been used earlier by Sandmaier 
(1995) and Bach et al. (2003) 

4.4.3 Landsat 

Atmospheric Correction and preparation of Landsat TM data was performed very much 
analogous to the preparation of MODIS data. Unlike the application of PULREF to MODIS 
data, the procedure had previously been applied to Landsat TM data, thus, existing spectral 
response functions for both, TM and ETM+ could be used. Calibration values for Landsat 
data were taken from the literature (TM) and the values delivered with the data (ETM+). For 
the parameterization of the atmosphere the same general settings applied to Landsat data as 
those listed in Table 4.8 for the MODIS correction. Because of the only partial coverage of 
the GLOWA catchment by each of the Landsat scenes, the specification of horizontal 
visibilities was done by selecting adequate weather stations individually for each scene. Data 
were taken from stations located within the scene. This included data from climate stations in 
some cases. For the dates on which data from Landsat coincides with MODIS data, equal 
parameters were applied to the datasets of both sensors. 

Parts of the DTM used in the correction were available at a horizontal resolution of 75m only. 
Interpolation of this section of the DTM to the 30m resolution required in the atmospheric 
correction of Landsat data resulted in artifacts in the data. These artifacts will be visible in 
derivatives of the data such as the dataset of the local incidence angle of the sun. Visualized, 
it resembles a waffle-like structure and will be contained in the reflectance data if applied in 
the atmospheric correction. To avoid this, interpolation to 30m was not performed on the 
DTM but on the derived data, i.e. the calculation of the local incidence angle was performed 
on the 75m DTM data and the resulting data was interpolated. This prevents the artifact from 
appearing in the desired reflectance data at 30m resolution. The effect is illustrated in Figure 
4.9. The image shows a portion where the 75m resolution DTM of Tyrol abuts the 30m DTM 
of Bavaria. 
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Figure 4.9: Artifacts in the data derived from the DTM. The images show a 
visualization of the cosine of the local solar incidence in an area where the 75m 
DTM of Tyrol (southeast section) abuts the 30m resolution DTM of Bavaria 
(northwest section). In the left image, the calculation was performed on 
interpolated data at 30m. In the right image the calculation was performed on the 
75m data and the local solar incidence angle was interpolated and merged with 
the 30m data. 

4.4.4 Validation of the Reflectance Calibration 

The validation of atmospheric correction of the MODIS and TM data for this work has to rely 
on a qualitative approach. The mesoscale resolution of the data makes it unfeasible to collect 
ground truth information in the form of in situ measurements of reflectances. Nevertheless the 
context of this study allows a relative validation of the results of the reflectance calibration by 
comparing reflectances obtained from TM and MODIS on the same date. These coincident 
datasets should exhibit equivalent properties when compared to each other, which is also a 
prerequisite for the reliable development of the process of reflectance segmentation presented 
in chapter 6. Additionally, the results were compared to the MODIS Reflectance Product 
MOD09. 

Absolute values of reflection properties of land surfaces will always be erroneous to some 5 
to 10 percent. This error will be function of a number of influences on the data, such as the 
truth in the parameterization of the atmosphere, the heterogeneity of the atmosphere across 
the area of the satellite observation, the quality of ancillary data such as the DTM and the 
quality of the input data itself. However, data that was collected on the same day with a time 
lag of only 40 minutes and processed with the same ancillary information should yield a high 
level of correlation if atmospheric correction was successful. Thus, this validation focuses on 
the intercomparison of reflectances derived from data of two different sensors. 

The high performance of the atmospheric correction procedure itself has been proven in 
various other studies, including the investigation of the quality of the illumination 
compensation (Braun, 1998, Bach et al., 2003) and its validation by means of contemporal 
collection of ground truth (Oppelt, 2002). This matured state of PULREF allows the 
application of the procedure to a full dataset of MODIS imagery where the validity relies on 
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the expertise in the data processing, but validation of individual scenes processed is not 
feasible.     

Six datasets will be compared in this validation as listed in Table 4.9. The focus lies on 
elaborating the observations of MODIS and TM with highest similarities. They are greatly 
influenced by (i) time of acquisition and (ii) observation geometry. First, observations on 
DOY 171 are compared. On that day an observation made by Landsat TM is preceded and 
followed by observations by MODIS by about an hour each. However, the MODIS 
observations on this day regrettably both have the lowest geometrical quality possible: They 
were acquired under high scan angles from orbits far to the east and west of the study area, 
with ground tracks of the satellite cutting through western Russia and Greece around 9:45 and 
through Wales and Brittany around 11:25 (compare Figure 4.6). One day earlier (DOY 170) a 
MODIS observation with very good geometrical properties is available where the area is 
observed almost nadir looking. This image is also addressed in this validation, assuming that 
changes to reflectance properties of the surface are minimal during some 24 hours. The period 
under address had no precipitation and cloud free skies over most of Europe. Finally, the 
Surface Reflectance product MOD09 was sought for both days to compare the product to the 
MODIS reflectances obtained by calibration using PULREF. 

Table 4.9: Datasets compared in the validation of the atmospheric correction 

Dataset Date of 
Acquisition 

Time of 
Acquisition 

Spatial 
Resolution Short Name 

Landsat TM5 PULREF 
corrected 

19.06.2000 
DOY 171 10:40 30m agg. to 

500m 
TM 

(TMsimMOD_171) 
MOD02 HKM PULREF 
corrected 

18.06.2000 
DOY 170 10:40 500m MOD02PUL_170 

MOD02 HKM PULREF 
corrected 

19.06.2000 
DOY 171 09:45 500m MOD02PUL_171east

MOD02 HKM PULREF 
corrected 

19.06.2000 
DOY 171 11:25 500m MOD02PUL_171west

MOD09 Reflectance 18.06.2000 
DOY 170 unspecified 500m MOD09_170 

MOD09 Reflectance 19.06.2000 
DOY 171 unspecified 500m MOD09_171 

 

The Landsat TM data was aggregated to 500m resolution to match with the coarser MODIS 
datasets. In order to compare TM reflectances to MODIS reflectances a linear transformation 
was applied to the TM data. This transformation developed by Liang et al. (2002) is based on 
simple linear regression and uses the 6 TM bands reflectances to derive the 7 MODIS bands 
reflectances. The formulae for the transformation are given in Table 4.10. The transformation 
allows for a direct comparison of the reflectances without the differences in wavelength and 
spectral response between the TM bands and the MODIS bands. The resulting synthetic data 
is referred to as TMsimMOD_171. 

 

Table 4.10: Formulae for predicting MODIS reflectances (Ri) from Landsat TM reflectances 
(ri) (Liang et al., 2002) 

R1 = 0.0798r2 + 0.9209r3 

R2 = 0.1711r1 - 0.2007r2 + 1.0107r4 + 0.0427r5 

R3 = 1.0848r1 - 0.1115r2 + 0.0186r3 + 0.0102r4 - 0.0138r5 

R4 = 1.1592r2 - 0.1783r3 + 0.0191r4 
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R5 = 0.5191r1 - 0.7254r2 + 0.7126r4 + 0.5719r5 

R6 = -0.0246r4 + 1.1889r5 - 0.1846r7 

R7 = -0.1061r1 + 0.1145r2 - 0.0554r4 + 0.0944r5 + 0.9582r7 

 

In Figure 4.10, spectra of three surface types from the six datasets are plotted. The plots 
display average reflectances of 3x3 boxes of corresponding pixels in the different images. By 
averaging 9 pixels, differences resulting from remaining co registration errors as well as local 
deviations on single pixels are mitigated. Nevertheless the plots display a general trend in the 
relation of the reflectances of the six images and will be found for most individual pixels 
alike. 
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Figure 4.10: Spectra of surfaces in the six images compared in the validation of 
the reflectance calibration. The spectra are averaged from 3x3 boxes of 
homogeneous land cover. 

First the images corrected with PULREF shall be discussed. Plots for MODIS are in green, 
plots for TM are in red. Most evident in the plots is the extreme overestimation of reflectances 
from the early image at 9:45 from DOY 171 (MOD02PUL_171east). Not only are the 
reflectances in the NIR and MIR bands higher than the rest of the images but also an 
unreasonable deviation in the VIS bands can be observed. On the other hand the later image 
from that day, MOD02PUL_171west, exhibits a lower spectral curve for the coniferous forest 
plot and the urban plot. In the grassland plot this image agrees well with the general trend of 
the other spectra. The curve of the MODIS spectra simulated from the TM image 
(TMsimMOD_171) has reflectance values between the two MODIS scenes from that same 
day. Comparing TMsimMOD_171 to the MODIS scene from one day earlier 



Remote Sensing Data and Data Preparation 60 

(MOD02PUL_170) shows very good agreement in all bands and for all surfaces. In the figure 
the markers of TMsimMOD_171 mostly hide the markers of MOD02PUL_170. 

Comparing the PULREF corrected scenes to the MOD09 imagery (plots in blue) shows poor 
agreement of the DOY 171 product (MOD09_171), which exhibits substantially higher 
reflectances in the NIR bands and higher values in the VIS bands. Nevertheless, this images 
spectra are more similar to the TMsimMOD_171 image than the PULREF corrected images 
of DOY 171. The DOY 171 product also deviates from the DOY 170 product (MOD09_170). 
The spectra from the earlier date DOY 170 show best agreement with the MODIS simulation 
from TM from the later date and also agree very well with the reflectances obtained from 
PULREF on DOY 170. 

For a further comparison of the images, pixel values of individual bands of the scenes were 
plotted against each other and mean differences as well as the standard deviation of the 
difference were computed. A linear correlation indicates how close the image pairs are 
related. Comparing the images of DOY 171 it can be concluded that the MOD09 product is 
the most similar to the TM image. The coefficient of determination of the correlation for the 7 
spectral bands is highest between those two images and the mean difference is lowest for 
most bands. The values calculated for the pairs MOD02PUL_171west-TMsimMOD_171, 
MOD02PUL_171east-TMsimMOD_171 and MOD09_171-TMsimMOD_171 are listed in 
Table 4.11. Generally correlation between those images is low and coefficients of 
determination range between 0.4 and 0.7 and standard deviation of differences may exceed 
6%. 

Table 4.11: Coefficient of determination, mean difference and standard deviation of mean 
difference for the seven bands comparing MODIS simulated from TM to MODIS reflectances 
of PULREF corrected imagery and MOD09 product on DOY 171 

TMsim 
MOD_171 
compared 

to 
MOD09_171 MOD02PUL_171west MOD02PUL_171east 

Band R² mean 
diff std diff R² mean 

diff std diff R² mean 
diff std diff

3 0.7067 -0.0012 0.0168 0.7093 0.0231 0.0171 0.6752 0.0921 0.0191 
4 0.6933 0.0102 0.0201 0.6698 0.0002 0.0211 0.6383 0.0535 0.0228 
1 0.7140 -0.0067 0.0235 0.7216 -0.0139 0.0266 0.6953 0.0223 0.0249 
2 0.6526 0.0477 0.0514 0.6268 -0.0238 0.0526 0.5299 0.0992 0.0644 
5 0.6402 0.0226 0.0450 0.5785 -0.0365 0.0499 0.4403 0.0750 0.0616 
6 0.5822 0.0041 0.0381 0.4856 -0.0325 0.0417 0.4370 0.0408 0.0472 
7 0.5883 -0.0124 0.0321 0.5472 -0.0304 0.0353 0.5222 0.0076 0.0354 

 

The same comparison was performed for the simulated MODIS bands and the imagery of 
DOY 170. Although the comparison here is for images that were collected with a time lag of 
about 24 hours, it shall be noted that the acquisition geometry of these image pairs are closer 
than the imagery acquired on the same date on DOY 171. Table 4.12 summarizes the 
comparison of the image pairs MOD02PUL_170-TMsimMOD_171 and MOD09_170-
TMsimMOD_171. For these pairs coefficients of determination are above 0.7 and standard 
deviation of differences is well below 5% in all cases. 
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Table 4.12: Coefficient of determination, mean difference and standard deviation of mean 
difference for the seven bands comparing MODIS simulated from TM on DOY 171 to MODIS 
reflectances of PULREF corrected imagery and MOD09 product on DOY 170 

TMsim 
MOD_171 
compared 

to 
MOD09_170 MOD02PUL_170 

Band R² mean 
diff std diff R² mean 

diff std diff 

3 0.7806 -0.0003 0.0153 0.8324 0.0144 0.0133 
4 0.7941 0.0036 0.0169 0.8063 0.0094 0.0156 
1 0.8072 -0.0081 0.0194 0.8256 -0.0036 0.0182 
2 0.7799 -0.0083 0.0385 0.7188 0.0184 0.0436 
5 0.7463 -0.0119 0.0377 0.6454 0.0175 0.0453 
6 0.7213 -0.0111 0.0306 0.6337 0.0089 0.0353 
7 0.7457 -0.0156 0.0256 0.6631 -0.0011 0.0289 

 

The results of the reflectance calibration indicate that the highest similarities between the 
Thematic Mapper image and the MODIS images is evident for the two MODIS scenes from a 
day earlier than the Thematic Mapper image. This may be astounding at first glance but can 
be explained by the geometric properties during acquisition. MODIS imagery of DOY 171 
was collected under high scanning angles. This fact substantially deteriorates the quality of 
the image frame under observation for both images from that day that were corrected using 
PULREF. In the production of the MOD09 reflectance product both images from that date 
may be processed (Vermote and Vermeulen, 1999) but the overall quality cannot be 
meliorated. Nevertheless, the MOD09 product exhibits closer agreement with the “good” 
images than the individual correction of MOD02 by application of PULREF. The extreme 
scanning angle looking westward at 9:45 on DOY 171 and eastward at 11:25 implies strong 
bidirectional effects in the scanning process. Looking at the surface from about the direction 
of the sun at 9:25 results in very bright targets caused by a high proportion of directly 
reflected radiance and little visible shadow. This is reflected in the overestimation of 
reflectances for that image. On the other hand, at 11:25, the scanner is looking in the opposite 
direction, viewing a larger portion of shadow on the surface observed. A higher sun zenith 
angle closer to midday may be responsible for the better quality of the 11:25 image on DOY 
171. The design of the PULREF algorithm does not account for these extremes in viewing 
geometry, which implies longer paths through the atmosphere. Also, bidirectional reflectance 
distribution is not parameterized. The MOD09 algorithm, designed for MODIS, does take into 
account the shape of the bidirectional reflectance distribution function (BRDF) and will 
parameterize path lengths through the atmosphere (Vermote and Vermeulen, 1999). This 
explains the better calibration of MOD09 for the imagery for high viewing angles. 

When viewing conditions are better, i.e. the target objects are close to the nadir viewing 
direction, PULREF performs very well. The results of the atmospheric correction show that 
PULREF correctly calibrates the data from both, TM/ETM+ and MODIS. When comparing 
PULREF results with the reflectance product MOD09 the derived reflectances are highly 
correlated. This can be observed for all three images under comparable viewing conditions: 
TMsimMOD_171, MOD02PUL_170 and MOD09_170. Figure 4.11 shows the correlation 
between the PULREF corrected image MOD02PUL_170 and the MOD09 reflectance 
product, illustrating the profound similarities in the results from the two approaches to 
reflectance calibration.  



Remote Sensing Data and Data Preparation 62 

Band 3

y = 0.9109x + 0.017
R2 = 0.8396
meanDiff = -0.0146
stdDiff = 0.0133

0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5
MOD09_170

M
O

D
02

P
UL

_1
70

Band 4

y = 0.8456x + 0.0154
R2 = 0.8313
meanDiff = -0.0058
stdDif f = 0.0153

0

0.1

0.2

0.3

0 0.1 0.2 0.3
MOD09_170

M
O

D
02

P
UL

_1
70

Band 1

y = 0.8592x + 0.0112
R2 = 0.8403
meanDiff  = -0.0045
stdDiff = 0.0168

0

0.1

0.2

0.3

0.4

0 0.1 0.2 0.3 0.4
MOD09_170

M
O

D0
2P

U
L_

17
0

Band 2

y = 0.8376x + 0.0783
R2 = 0.703
meanDiff = -0.0267
stdDiff = 0.0453

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
MOD09_170

M
O

D0
2P

U
L_

17
0

Band 5

y = 0.8356x + 0.0781
R2 = 0.6689
meanDiff = -0.0294
stdDif f = 0.0411

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6
MOD09_170

M
O

D0
2P

U
L_

17
0

Band 6

y = 0.8385x + 0.0486
R2 = 0.6887
meanDiff = -0.0200
stdDiff = 0.0289

0

0.1

0.2

0.3

0.4

0 0.1 0.2 0.3 0.4
MOD09_170

M
O

D0
2P

U
L_

17
0

Band 7

y = 0.9208x + 0.0213
R2 = 0.7587
meanDiff = -0.0145
stdDif f = 0.0199

0

0.1

0.2

0.3

0.4

0 0.1 0.2 0.3 0.4
MOD09_170

M
O

D0
2P

U
L_

17
0

 
Figure 4.11: Correlations of MODIS reflectances for band 1-7 from PULREF 
corrected imagery versus the reflectances from the MOD09 reflectance product 
on DOY 170 year 2000 

It may be concluded that viewing geometry has a substantial impact on image quality when 
data from wide swath remote sensing instrumentation like MODIS is sought. Imagery with a 
time lag may, as it is the case for the data used in this study, be closer related than coincident 
imagery exhibiting geometric discrepancies. This observation should be kept in mind 
whenever time series of wide swath instrumentation are applicable. Consecutive imagery 
acquired under varying geometric conditions may disturb the consistency of a time series 
profoundly. For the MODIS instruments, advantage may be taken from the AM and PM 
instruments and the sequences of appropriate viewing conditions, which can be elaborated 
from the orbit locations of MODIS within the 16-day orbital cycle. These can be found on the 
Internet for both the Terra and Aqua spacecraft (http://www.ssec.wisc.edu/datacenter/terra/). 
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4.5 Land Cover Classification derived from Landsat data 

In the course of the GLOWA-Danube project, a vast effort was made to produce a high 
resolution, up to date land cover classification. Landsat imagery from the 8 scenes outlined in 
Figure 4.7 were processed in a fuzzy logic based classification scheme that ingests remote 
sensing data together with other GIS data (Stolz, 1998, Stolz, et al. 1999). Classifiers 
combining remote sensing data with ancillary geographic knowledge are very effective in the 
separation of land use classes in heterogeneous environments (Binaghi, 1997, Stuckens et al. 
2000, Bach, et al. 2003, Sun et al., 2003). The extent of the area and the variety of geographic 
zones in the area required a new approach to land use classification. This approach includes a 
separate identification of settlement and urban areas using a multisensor data fusion method 
as well as a stratification of the data based on physiogeograpically similar units. The applied 
Environmental Possibility Classifier (ENPOC) ingests a large set of ancillary GIS data along 
with a geographical knowledge base. It contains a highly diversified set of fuzzy descriptions 
to the desired final classes. The merits of the approach are the separability of a large number 
of land cover classes and a reasonably high classification accuracy (88%) in the classification 
of a highly heterogeneous area (Stolz et al., 2005). 

The classification delivered a land use map indicating 27 classes (Stolz et al., 2005). For the 
application in this study these 27 classes were condensed to 13 classes including a class for 
unclassified pixels. This reduction was achieved by summarizing specialized differentiations 
to one class. For example, alpine pastures and meadows, lowland pastures and meadows and 
moorland were aggregated to a single grassland class. Other aggregations include the 
summarizing of different types of winter crops and other springtime active crops, mountain 
forest and lowland forests or different types of rocky surfaces. Some classes of the original 
classification with very low areal percentages, such as hops or potatoes were added to the 
maize class. In the context of this study this was justified by high spectral similarity of those 
classes. The section of the study area of the land cover map is shown in Figure 4.12. The 12 
classes are listed in the legend to the figure. 
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 deciduous forest  grassland  maize  urban fabric 
        

 mixed forest  summer crops  rock/gravel  snow and ice 
        

 coniferous forest  winter crops  bare soil  water 
 

Figure 4.12: Classification of land covers for the study area and detail. 
Unclassified pixels are shown in black. The little black square in the detail 
indicates an area of 1km by 1km 

The enhanced frame in Figure 4.12 shows the detail of the classification dataset, as it appears 
when all pixels are displayed. In this accuracy it reveals objects such as a watercourse with 
barrage water management facilities, the changes in tree types in a nearby forest, the spatial 
alignment of agriculture fields or the layout of settlements and their structures. The frame 
does contain errors such as the missing values (pixels in black), which accumulate along the 
river shore and appear singled throughout the image. At some narrow stretches the river is 
disrupted by forest or even settlement pixels. Although single settlement pixels derived from 
RS data often do indeed indicate built up structures of only one or two buildings, some pixels 
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along the river may fail to be attributable to the water energy management effort in the area. 
The small black frame on the detail frame indicates an area of 1km² to provide an idea of what 
section of this detail may be understood as aggregated to one single information in data 
gridded by 1km. It illustrates the change in land cover within a 1km pixel. 

A drawback of the land cover classification is not visible in this dataset and remained 
undetected at first. It derives from the separate classification of physiologically differing units 
and will appear as a horizontal divide. For some classes frequency changes along this line, 
disclosing discrepancies in the results of a northern physiological unit and a southern. This 
issue was unknown until further processing of the dataset was undertaken. It is discussed 
more detailed in Chapter 8. 

4.6 Datasets 

A large amount of datasets were sought and acquired in this study. Many were dismissed in 
the course of this research, largely because newer collection versions of the data became 
available. The following sections provide a brief description of the datasets that were used 
and summarize the purpose and application of those datasets. 

MODIS products filenames follow conventions to provide necessary information on each file. 
For data in swath geometry and in gridded SIN projection the conventions are summarized in 
Table 4.13. 

Table 4.13: File naming conventions for MODIS products of production Level 1 and 2 (swath 
geometry) and production Level 2G, 3 and 4 (SIN projected grids) 

Swath geometry example: 
MODIS/Terra: MOD02HKM.AYYYYDDD.HHMM.VVV.YYYYDDDHHMMSS.hdf 
MODIS/Aqua: MYD02HKM.AYYYYDDD.HHMM.VVV.YYYYDDDHHMMSS.hdf 
SIN projected grids example: 
MODIS/Terra: MOD15A2.AYYYYDDD.hHHvVV.VVV.YYYYDDDHHMMSS.hdf 
MODIS/Aqua: MYD15A2.AYYYYDDD.hHHvVV.VVV.YYYYDDDHHMMSS.hdf 
Definitions:  

MOD02HKM = Earth Science Data Type Name 
A = Acquisition Date 

YYYYDDD = Data Year and Julian Date 
HHMM = Data Hour and Minute Start Time 

hHHvVV = horizontal and vertical tile index of SIN grid 
VVV = Collection Version 

YYYYDDDHHMMSS = Processing Date and Time 
hdf = Suffix denoting HDF file 

 

4.6.1 MODIS Calibrated, Geolocated Radiances (MOD02) 

The Level 1B data set contains calibrated and geolocated at-aperture radiances for 36 bands. It 
is generated from the raw dataset of MODIS Level 1A sensor counts (MOD01). The 
radiances are in W/(m² µm sr). The datasets provide additional information about the data, 
including quality flags, error estimates, and calibration data. Also, Geolocation latitude and 
longitude at 1km resolution are contained with the data. During daytime, visible, SWIR, and 
NIR measurements are made, while radiances for TIR are measured continuously. 

Three different datasets are available, varying in spatial resolution. Band 1 and 2 at 250m 
resolution (MOD02QKM), Bands 1 through 7 at 500m (MOD02HKM) and all 36 Bands at 
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1km (MOD021KM). The 250m Bands will be contained aggregated to appear at 500m in the 
HKM product and 250m and 500m bands will be contained aggregated to appear at 1000m 
resolution in the 1km dataset. The size of MOD02 files is between 270 and 350 megabyte. 
Each granule contains 203 scans of the MODIS instrument. At 1km/500m/250m resolution, 
this is equivalent to 1354/2708/5416 measurements along scan (image columns) and 
2030/4060/8120 measurements along track (image rows). Global coverage is provided for this 
product and 288 files are produced daily for the MOD021KM and 144 for MOD02QKM and 
MOD02HKM (Troller et al., 2003, Parkinson and Greenstone, 2000). The data are available 
at the Distributed Active Archive Center (DAAC) free of charge. 

The data sought for this study are from collection version 004. At the time of this writing 
v005 was being produced. The times from which data was acquired are from year 2000 and 
2003. For 2000, the data used dates from DOY 170 and 171 (June 18 and 19). For 2003 a time 
series of 19 cloud free scenes was elaborated, with most of them collected from orbits above 
or close to the upper Danube catchment. The MODIS Atmosphere Quicklook Archive 
(http://modis-atmos.gsfc.nasa.gov/IMAGES/index.html) was helpful in browsing MODIS 
imagery for cloud state and overpass geometry. All dates of the scenes used are listed in Table 
4.14. 

Table 4.14: Table of dates of year 2003 MODIS imagery time series. 
DOY Date DOY Date DOY Date DOY Date 

91 04/01/2003 139 05/19/2003 215 08/03/2003 258 09/15/2003 
98  04/08/2003 153 06/02/2003 219 08/07/2003 262 09/19/2003 

105 04/15/2003 173 06/22/2003 225 08/13/2003 265 09/22/2003 
107 04/17/2003 196 07/15/2003 235 08/23/2003 290 10/17/2003 
125 05/05/2003 201 07/20/2003 247 09/04/2003  

 

The time series covers the vegetation period from April to mid October with approximate 
intervals of observations of 2 weeks. The average time between observations is 11 days. The 
images selected represent only the best observations available during that period. 

The MOD02 data represent the most important dataset in this study. These data were used in 
(i) the first evaluation of the algorithm for reflectance segmentation and (ii) in the production 
of a time series of subscale leaf area index estimates over the vegetation period 2003. 

4.6.2 MODIS Geolocation Data Set (MOD03) 

The Level 1B MODIS Geolocation product contains geodetic coordinates, ground elevation, 
and solar and satellite zenith, and azimuth angle for each MODIS 1-km sample. These data 
are affiliate to the Level 1B calibrated radiances and the Level 2 data sets to enable further 
processing. The geolocation fields are derived from spacecraft attitude and orbit during 
acquisition, instrument telemetry, and a digital elevation model. 

Although geolocation at the same resolution is contained in all MOD02 data, these datasets 
were needed in the processing of the MOD02 swath data. The MODIS Swath Reprojection 
Tool (MRT Swath) requires the MOD03 file associated with a MOD02 file to perform 
projection (Parkinson and Greenstone, 2000, Nishihama et al., 1997, Land Processes DAAC, 
2006) Sensor and solar zenith and azimuth angles were retrieved from the data to gain insight 
into these properties for the simulation of reflectances as described in Section 6.2.2. 
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4.6.3 MODIS Surface Reflectance: Atmospheric Correction Algorithm Product 
(MOD09) 

The MODIS Surface-Reflectance Product (MOD09) is calculated from the MODIS Level 1B 
land bands 1 through 7, centered at 648nm, 858nm, 470nm, 555nm, 1240nm, 1640nm, and 
2130nm. The product is an estimate of the surface spectral reflectance for each of the seven 
bands as it would have been measured at ground level if there were no atmospheric scattering 
or absorption. 

In the algorithm the effects of atmospheric gases, aerosols, and thin cirrus clouds are 
corrected. It is applied to all non-cloudy MOD35 (see 4.6.6) Level 1B pixels that pass the 
Level 1B quality control. To detect cirrus cloud, the correction uses band 26, water vapor is 
derived from MOD05 (Total Precipitable Water / Water Vapor), aerosol from MOD04 
(Aerosol Product), and ozone from MOD07 (Atmospheric Profiles). If these products are 
unavailable, best available climate data are used. Finally, the correction uses MOD43 (BRDF) 
without topography, from the previous 16-day time period for the atmosphere-BRDF coupling 
term (Vermote and Vermeulen, 1999). 

The surface reflectance product serves as input for the generation of a number of land 
products such as the vegetation indices product (MOD13), BRDF (MOD43), thermal anomaly 
(MOD14), snow and ice cover (MOD10), and Fraction of Photosynthetically Active 
Radiation/Leaf Area Index (FPAR/LAI; MOD15). It is applicable in fields such as global and 
regional climate modeling or surface energy balance modeling. MOD09 can be seen as the 
most essential of a series of products as it forms the root of the processing chain. 

Surface Reflectance is produced for the global land surface. It is a Level 2G gridded product, 
produced as tiles in the Sinusoidal Projection (SIN). The MOD09GQK at 250m resolution 
provides band 1 and 2 reflectances, the MOD09GHK delivers bands 1-7 reflectances at 500m. 
File size varies and may be up to over 400MB (Parkinson and Greenstone, 2000). 

For this study MOD09 data were applied in the validation of the localized atmospheric 
correction performed with PULREF on the Landsat dataset and on the MOD02 calibrated 
radiances. The results of the validation presented in section 4.4 showed that the root mean 
square deviation of the differing procedures was 1.5-4.5% depending on waveband. 

4.6.4 MODIS Land Cover Type (MOD12) 

The Level 3 MODIS Land Cover Type Product contains land cover type and land cover 
change parameters, which are produced at 1-km resolution. The product identifies 5 different 
land cover classifications, the most prominent being the 17 categories of land cover following 
the International Geosphere-Biosphere Programme (IGBP) global vegetation classification 
scheme (LC Type 1). The other dataset layers include the University of Maryland 
modification of the IGBP scheme (LC Type 2), the MODIS LAI/FPAR MOD15 scheme (LC 
Type 3), the MODIS Net Primary Production scheme (LC Type 4), and the Plant Functional 
Types (LC Type 5). The classification is based on a supervised decision tree classification 
method that draws from a number of information domains including directional surface 
reflectance, texture, land-water masks, vegetation index, snow cover, land surface temperature 
and elevation (Strahler et al., 1999). 

The Land Cover Type 3, the MODIS LAI/FPAR scheme was relevant in the context of this 
study. It was used to analyze the MOD15 LAI Product to determine the land cover type of 
LAI pixels. The classes of that scheme are listed in Table 4.15 



Remote Sensing Data and Data Preparation 68 

Table 4.15: Land Cover Type 3 from MOD12 Land Cover Types. This is the classification 
scheme used in the production of the MOD15 LAI/FPAR dataset (Strahler et al., 1999, HDF-
EOS metadata) 

Class LAI/FPAR Type Class LAI/FPAR Type
0 water 5 broadleaf forest 
1 grasses/cereal crops 6 needleleaf forest
2 shrubs 7 unvegetated 
3 broadleaf crops 8 urban 
4 savannah 254 unclassified 

 

Although the descriptions of the dataset claim a new land cover classification every 96 days 
(Parkinson and Greenstone, 2000, MODIS Products related website), the availability of 
MOD12 Land Cover Types for the area of the upper Danube catchment is very limited on the 
DAAC database. Datasets for 2002 and 2003 were added in March 2006. Until then, only two 
MOD12Q1 datasets were available from Julian day 289 in 2000 (Collection Version 003) and 
from Julian day 1 in 2001 (Collection Version 004). In the production of the Collection 
Version 004 MOD15 product, the MODIS Leaf Area Index (LAI) and the Fraction of 
Photosynthetically Active Radiation (FPAR), the year 2000 Collection Version 003 product 
was used (Yang, W., Myneni, R. personal communication). 

Generally, these data are available for the global extent of land area as Level 3 gridded data in 
the Sinusoidal Grid projection (SIN). 

4.6.5 MODIS Leaf Area Index Product (MOD15) 

The MOD15 product combines Leaf Area Index (LAI) and Fraction of Photosynthetically 
Active Radiation absorbed by vegetation (FPAR) in one file. The 1-km resolution Level 4 
product is provided on an 8-day basis. LAI represents an important structural property of a 
plant canopy, namely the one-sided leaf area per unit ground area (see chapter 5). FPAR is 
defined as the proportion of available radiation in the photosynthetically active wavelengths 
(400 to 700 nm) that is absorbed by a canopy. The LAI product contains LAI values between 
0 and 8 on the global gridded database. The FPAR product will be an FPAR value between 
0.0 and 1.0 assigned to each 1-km cell (Parkinson and Greenstone, 2000). All valid pixels of 
an 8-day period from the MOD09 Surface Reflectance product of both MODIS instruments 
are ingested. Composition is based on the selection of the maximum FPAR in the compositing 
period. The same day chosen for the computation of the FPAR measure also contributes the 
pixels LAI value (Knyazikhin et al., 1999). 

Besides MOD09 Surface Reflectance the Land Cover Type product (MOD12), and ancillary 
information on surface characteristics such as land cover type and background is vital in the 
LAI/FPAR algorithms. The LAI/FPAR algorithm uses a three-dimensional formulation of the 
radiative transfer to compute spectral and angular biome-specific signatures of vegetation 
canopies. If the main algorithm fails, a back-up algorithm is triggered to estimate LAI and 
FPAR using regressions to the Normalized Difference Vegetation Index (NDVI). The 
procedure for global LAI products is further detailed in section 5.4.2. 

In this study MODIS LAI was sought to evaluate its performance in the area of the GLOWA 
catchment of the upper Danube and to compare it to the results from the subscale LAI 
research conducted here. The difficulties arising from the scale of 1km of the product are 
discussed. The datasets of the Level 4 gridded product that were acquired comprise all 
MOD15A2 and MYD15A2 files of the h18v04 tile that were produced until the end of 2004. 
All LAI data are from collection version 004. 
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4.6.6 MODIS Cloud Mask (MOD35) 

The MODIS Cloud Mask product provides daily, global Level 2 information on cloud cover 
at 1km and 250m spatial resolutions. The algorithm is based on a series of visible and infrared 
threshold and consistency tests to determine confidence that an unobstructed view of the 
Earth’s surface is possible. Also, an indication of shadows in the scene is provided. The 250m 
cloud-mask is provided as a 16-bit cloud non-cloud indicator for each 1km pixel. 

The Product information is stored as bit flags not readily accessible by common HDF-EOS 
software. Bitflags need to be extracted. This can be achieved using the unpack_sds_bits tool 
available from the MODIS Land Data Operational Product Evaluation (LDOPE) software 
tools website. 

MOD35 Cloud Mask was acquired and unpacked for all MOD09 scenes. It is used to mask 
out cloudy pixel in the MOD09 Surface Reflectance datasets.   

4.6.7 Landsat Data 

Landsat Thematic Mapper and Enhanced Thematic Mapper data were acquired as Level 1G 
data. They contain the at-aperture spectral radiances of 6 bands centered at 480nm, 570nm, 
660nm, 830nm, 1670nm and 2210nm. The imagery is system corrected including the 
alignment of scans. Radiances are provided as W/(m² µm sr). The thermal band contained in 
the dataset was not used. 

Multitemporal scenes were used in the land cover classification for the upper Danube 
catchment that were sensed from three Landsat paths 192, 193 and 194. In the development of 
the reflectance segmentation algorithm for this study a frame from the imagery from the 
central path 193 covering row 26 and 27 was used. It was collected on June 19, 2000 by the 
Thematic Mapper on Landsat 5 (see chapter 2). 

Together with the MODIS MOD02 radiance counts data this is the most important dataset in 
this study. The high-resolution data was used for deriving surface specific reflectance 
characteristics and in the validation of coarse scale results. Finally the high-resolution land 
cover was produced using the Landsat data. 





Plant Leaves, Leaf Area and Leaf Area Index - LAI 71

5 Plant Leaves, Leaf Area and 
Leaf Area Index - LAI 

This chapter gives an introduction to the quantity which has the focus in the research 
presented in this thesis and the underlying biophysical and biochemical processes. A thorough 
review of the various aspects and considerations concerning the concept of the highly 
alternating physiological variable “Leaf Area Index” is given. This review includes a 
definition of the leaf area index for this work, a discussion of measurement techniques as well 
as available measurements. The physiological and physical significance of leaves in a 
landscape is stressed and a summary of the role of LAI in physically based environmental 
modeling is presented. A section on the derivation of LAI from remote sensing data discusses 
methods and introduces algorithms used in the derivation of LAI values for this research. 
Finally, a view is cast on the validity, availability and feasibility of existing LAI datasets for 
incorporation into the decision support system DANUBIA. 

5.1 Defining Leaf Area Index 

As a theoretical concept, the Leaf Area Index (LAI) is the total area of all leaves over a unit of 
ground area and can be described as: 

 

 
areaground

arealeafLAI =          (5.1) 

 

where both leaf area and ground area are commonly taken as [m²]. This results in LAI having 
no explicit dimension while the dimension [m²/m²] is often used to emphasize the physical 
context of the index. This simple definition, however, leaves space for a number of variations 
and influences that may or may not be reflected in an actual given value of LAI. The 
following discusses possible biases whenever a value of LAI is considered. 

First, LAI has been understood in two different ways: as the one-sided leaf area or the double 
(all-) sided leaf area. While the first is quite straightforward at glance it implies another 
conceptual variability when considering the different approaches of seeing one side as (i) the 
actual spread out area of leaves on a plane or (ii) the projection of live leaves on a plant. From 
the latter perspective the three-dimensional organization of leaves in a canopy becomes 
reflected in an LAI value, as most leaves would have an inclined position. This also means 
that the orientation of the axis along which projection is done will alter the resulting LAI 
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value. Finally, the non-leaf structure of the canopy – trunks, stems, branches, blossoms – will 
be most difficult to exclude as contributors to a projection of naturally organized leaves. 
Conceptualizing LAI as the double sided or total outside area will result in doubling of LAI 
when considering flat leaves in a simple model and will result in more than doubling LAI 
when considering needle-shaped and succulent leaves. 

This leads to the second contextual influence on a LAI value, the question of what is being 
addressed by that value. What is actually meant when saying “LAI” may be the LAI of a 
single plant as well as a whole canopy, it may comprise but a single species as for example a 
specific crop while excluding potential undergrowth, weeds or the like. In natural ecosystems, 
most likely a variety of species in often more than one vegetation story will be intertwined in 
providing the area of leaves over an area of ground. This results in the necessity that a value 
of LAI should be attributable to (i) either plant or canopy and (ii) a single species or biome as 
a 3-dimensional space between the ground surface and the top of the canopy (TOC). Which of 
the mentioned LAI is actually used is often determined by the type of the study encountered. 
A study of a single plant may require that plants LAI while a global model may call for 
distributed LAI fields expanding across vegetation zones. 

Often, the application of LAI is closely coupled with the functionality of leaves in landscape 
metabolism, including for instance fluxes of water and matter, generation of biomass or 
interception of radiation. This functionality is greatly determined by the lifecycle of leaves. 
From the growth of new leaves through senescence to fallen litter leaves change their 
physiological and physical properties. These changes may also be due to various types of 
stresses. This has often been accounted for by defining leaf area index as green or brown leaf 
area index. In many cases, however, depending on methodology of acquisition of LAI this 
differentiation is not made and LAI will be simply the area of all leaves on plants, regardless 
of their physical or phenological state. 

Viewing the leaves of a canopy or plant as important parts involved in the phenological 
processes brings the factor of time into the discussion of variables influencing a LAI value. 
Therefore, another mandatory attribute to LAI values is the point in time it refers to. This 
point in time may be an absolute value depending on the age of the plant or canopy, thus 
describing for example the age and therefore size of a tree or a tree canopy. Nevertheless, in 
most cases it is more suitable to use the relative time of the year or phenological stage to 
account for the annual development of LAI. This could apply for trees as well as for annual 
and perennial plants, natural or agricultural the like. 

Finally the location in space for which a given LAI value was determined is of great 
significance to its interpretation. The sensitivity of plants to environmental factors such as the 
radiation regime, nutrient availability or climatological impacts is directly reflected in the 
development of a canopy. Thus, environmental factors changing across space will have an 
impact on LAI. For instance, the same species of trees may exhibit different features and 
phenological development depending on the elevation at which it grows. The attribute “point 
in space” is especially desirable when LAI is considered in areas of great natural gradients. 

Taking into account the different aspects that impact on any LAI value, a definition of LAI 
would require to mark these aspects in the definition: 
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Where ψ is the functional leaf area depending on its definition def as one-sided, double-sided, 
brown or green leaf area, the species or biome of plants P, the point in time T and the point in 
space S. 

This definition makes a precise differentiation of what exactly is addressed by an arbitrary 
LAI value. Nevertheless, LAI remains a continuum in the landscape. To any plot, area or 
region, a value of LAI can be ascribed, no matter what land cover, canopy, biome or species is 
present. This means that LAI will range from the highest possible values down to 0 where no 
vegetation is present. 

The thorough consideration of the attributed influences on LAI make it necessary to take 
caution when making comparisons between LAI determinations, for they may not necessarily 
use the same methodology in acquisition and/or even the same definition of LAI. Regrettably 
many reports of LAI in the literature do not provide details of the definition assumed 
(Scurlock et al. 2001b). 

The definition of LAI for the work presented here is based on the simple definition in its 
sense that for any section of land surface an area of leaves will be present. LAI is understood 
as the single-sided inclined projected LAI. Nevertheless the second definition plays a vital 
role in the effort of retrieving LAI from remote sensing data, which “sees” all surface of the 
earth and is available through time. 

5.2 Leaf Area as an agent in the Environment 

The area or amount of leaves present in a stretch of land surface or landscape is of paramount 
significance for a number of biological and physical processes and interactions taking place 
on the interface between the solid earth and the atmosphere. As stressed in the definition 
above, temporal and spatial variation in leaf area is one of the key factors that influences 
many of these processes and interactions. Nevertheless, on a global scale, leaf area will not 
vary significantly given abundance of nutrients and water, for instance between temperate 
deciduous forest and tropical evergreen forest (Winkler, 1980). 

For most plants, leaves are the driving force of plant metabolism, responsible for 
photosynthetic carbon assimilation. This involves gas exchange at the leaves surface as well 
as fluxes of energy and matter and momentum between the surface and the planetary 
boundary layer. Thereby, leaves control the water and nutrient uptake of the plant from the 
underlying soil, leaves respirate to turn over carbon dioxide and oxygen with the atmosphere 
and leaves absorb fractions of incoming radiation for photosynthesis (Peterson and Running, 
1989, Knyazikhin, Martonchik, Myneni et al., 1998). This causes leaves to be the “power 
plant” of vegetation for the production of biomass. In this role, the biochemistry of canopy 
leaves has a significant impact on the radiation regime within the canopy itself and the albedo 
of the land surface in total, the carbon budget and water balance. Thus, leaf area influences 
not only the chemical composition of the atmosphere, but also the local and global climate as 
well as the water cycle. 

The state of leaf area as a biophysiological quantity will attenuate air fluxes, and act as 
storage for precipitation water by interception. By shading the underlying ground, leaf area 
reduces evaporation from the surface, which again is critical in the hydrologic cycle. Finally, 
leaves themselves are a nutrient for all kinds of other living creatures and leaf area is highly 
correlated to biomass and crop yield. 

Leaf area, expressed by leaf area index, has been established as the most common and most 
useful comparative measure of foliage quantity (Peterson and Running, 1989, Thomas and 
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Winner, 2000, Scurlock et al., 2001b). It is widely used in ecological models describing the 
energy and mass balance and transfer at the soil-vegetation-atmosphere interface (SVAT-
Models). The estimation of LAI provides an indicator of growth potential and biomass 
production and has been used in stand management, yield prediction and precision farming 
(Demircan and Mauser 1996). 

Depending on canopy closure, leaf area is the central agent in light interception and reflection 
of vegetated surfaces, making it a main link between remote sensing data and ecosystem 
functioning. In ecological and biochemical modeling, LAI can be used to include parameters 
such as leaf life span, litterfall rate, leaf carbon to nitrogen ration, and canopy nitrogen 
content (Lymburner et al., 2000). 

5.3 Optical Properties of Vegetation 

5.3.1 Leaf Optical Properties 

Many studies have focused on the exploration of optical properties of absorption, reflection 
and transmittance of radiation on individual plant leaves (e.g. Woolley 1971, Gausman 1974, 
Gausman 1977, Wessman 1988, Verdebout et al. 1994, Govaerts 1996, Jacquemoud and 
Ustin 2001) and how these optical properties can be interpreted in terms of physical and 
chemical properties of the leaf (Curran 1989, Baret and Fourty, 1997, Fourty et al. 1996). For 
the context of this study, only a brief overview over the optical properties and characteristics 
of plant leaves shall be given. 

Generally, the reaction of a plant leaf to incident radiation is a function of leaf structure, water 
content and concentration of biochemicals within the leaf. Reflection at the leaf surface 
results from a combination of specular and diffuse reflection at the leaves outer skin and in 
the cell walls of the spongy mesophyll within the leaf, respectively. Leaf morphology, cell 
size and amount of intercellular space (i.e. air-cell interfaces) are critical in the reflectance 
characteristics of plant leaves. 

The amount of electromagnetic radiation absorbed by a leaf is due to two processes, electronic 
transitions and vibrations of polyatomic molecules. The first is vital in the foliar pigments 
chlorophyll a and b, carotenoids and brown pigments. The latter takes place in leaf 
compounds like water, cellulose, lignin, starch, pectins, waxes, tannins and nitrogens. A 
portion of radiation is able to transmit the leaf, exiting the leaf as diffuse radiation 
(Kneubühler, 2002). 

In the following discussion, three regions of the reflective part of electromagnetic spectrum 
are addressed separately. Figure 5.1 presents a typical reflectance spectrum of live green 
vegetation that is divided up into 3 sections: The visible range (VIS), the near infrared range 
(NIR) and the middle infrared range (MIR). 
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Figure 5.1: Parameters determining the reflectance properties of plant leaves 
(taken from Oppelt, 2002) 

The visible range (400-700nm) 

Foliar pigments dominate the strong absorption of radiation by plant leaves in the visible 
range of the solar spectrum with absorption maxima between 300-500nm. Mainly chlorophyll 
a and b sign responsible for the low reflectance and transmittance of in vivo vegetation in 
these wavelengths. Carotenoids with an approximately ten times lower concentration than 
chlorophylls exhibit overlapping absorption features, but these normally are masked by more 
pronounced features of chlorophyll a and b. Nevertheless, the carotenoids contribution will 
become visible during senescence, when chlorophylls degrade faster than carotenoids. At 
wavelength beyond about 670nm, absorption of chlorophylls rapidly decreases, causing a 
strong increase of reflectance in the region between 670-780nm known as the “red edge” of 
vegetation reflectance. 

 

The near infrared range (700-1300nm) 

In the NIR range beyond the red edge, green vegetation exhibits high reflectance and 
transmittance while absorption is low. This characteristic is connected to internal leaf 
structure, the size and distribution of cells and the cell-air interfaces within the mesophyll 
(Gates et al., 1965). Small water absorption features are present around 975nm and 1175nm, 
caused by agitation of water molecules and varying as a function of cellular arrangement and 
water content of the leaf. The interaction of high chlorophyll absorption in the visible range 
and high reflectance in the NIR range is a primary feature for the distinction of type as well as 
the state of vegetation (Gates et al. 1965, Horler et al. 1985, Oppelt 2002).  

 

The middle infrared range (1300-2500nm) 

In this range of the electromagnetic spectrum, water content is the critical parameter 
determining the spectral behavior of plant leaves. Other foliar biochemical components do 
affect the reflectance properties, but the main water absorption bands around 1450nm, 
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1940nm, and 2500nm form the shape of live leaf reflectance spectra of this wavelength 
region. In a dehydrating leaf, the reflectance and transmittance in the MIR region will 
increase and the spectral characteristics of foliar constituents like cellulose, lignin and starch 
appear. This makes this wavelength region sensitive to standing litter in vegetation canopies 
(Asner, 1998). 

5.3.2 Canopy Optical Properties 

Obviously, leaf optical properties established under laboratory conditions cannot readily be 
extrapolated to the spectral characteristics of a natural vegetation canopy. Compared to 
observing the radiation exiting a canopy, the mere measurement and description of single 
leaves omits the contributing elements such as stems or bark, branches, flowers, standing 
litter, understory vegetation, underlying soil or litter, but most importantly leaf orientation and 
spatial organization as well as shaded areas within the canopy or on the ground (Goel, 1989, 
Ross, 1981, van Leeuwen and Huete, 1996, Asner, 1998, Blackburn, 1998, Hurcom et al. 
1996, Huete et al. 1985, Huete, 1988). Although leaves represent the main surface of plant 
canopies (Jacquemoud and Ustin, 2001) these other factors will contribute to any integrative 
measurement of canopy spectral properties from above the canopy. Additionally, incident 
radiation angles and view angles of instrumentation have an effect on the exiting radiation 
field observed over vegetation canopies. However, according to Jacquemoud and Ustin, 2001 
the understanding of leaf and canopy bidirectional properties and their Bidirectional 
Reflectance Distribution Function (BRDF) is still in its infancy. 

Directing the focus from leaf optical properties to the canopy level is a substantial step in 
scaling. In this step, not only observational scale is changed but also the process observed. 
The operational scale of canopy reflective behavior has to be distinguished from the leaf level 
scale. Quantification and analysis of the contributors to canopy reflectance is very demanding, 
yet clearly, it is a fundamental step in scaling from leaf to canopy, to regional and continental 
scales. 

A combination of field measurements and radiative transfer modeling has been used by 
Asner, 1998 to establish a finer knowledge of causes of variability of canopy reflectance. 
Based on Kuusk, 1991, he proposes the following equation to fully describe the reflectance of 
a vegetation canopy. It accounts for structural parameters (leaf area index (LAI), 
nonphotosynthetic vegetation area index (NPVAI), leaf angle distribution (LAD), 
nonphotosynthetic vegetation angle distribution (NPVAD)), leaf and NPV hemispherical 
reflectance (ρ) and transmittance (τ), soil reflectance, sun and sensor geometry (θsun, φsun, 
θview, φview) and a hot spot parameter for leaf and NPV (Hleaf, Hnpv): 

 

R(λ) =  f(GEOMETRY, STRUCTURE, TISSUES, ρsoil(λ))    (5.3) 

 

where 

 

GEOMETRY=(θsun, φsun, θview), 

STRUCTURE=(LAI, NPVAI, LAD, NPVAD), φview, Hleaf, Hnpv, 

TISSUES=( ρleaf(λ), τleaf(λ), ρnpv(λ), τnpv(λ)). 
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Several studies have shown, that the structural parameter LAI in combination with LAD is the 
main control on the reflectance of a canopy, dominating over actual leaf optical properties 
(Asner, 1998, Jacquemoud and Ustin, 2001, Kneubühler, 2002). This is true for high LAI 
canopies but cannot hold when the variability of LAI through phenological stages is 
considered. Seedlings of a cornfield, for example contribute to a neglectable part to the 
reflectance of the previously ploughed field, which therefore will predominantly exhibit soil 
spectral properties with a neglectable contribution of plant or leaf area reflectance. As the 
crop matures (or a deciduous forest grows fresh leaves in spring), the expanding leaf area 
establishes the complex radiation regime of a canopy which results from refraction, 
transmittance, absorption and reflectance of incoming radiation within the canopy. 

 
Figure 5.2: Relationship between leaf single scattering albedo 
(ω=reflectance+transmittance) and canopy reflectance with A) changing LAI and 
B) changing mean leaf angle of an ellipsoidal distribution. The best translation of 
leaf optical properties to the canopy level occurred when ω>0.9 which 
corresponds to NIR reflectance (taken from Asner, 1998) 

Single leaf optical properties translation to canopy optical properties largely depends on the 
structure of the foliage, i. e. LAI and LAD. As Figure 5.2 A illustrates, high values of LAI 
translate the most leaf level information to the canopy while with low LAI other factors 
dominate canopy reflectance. Figure B shows how in a canopy with mainly horizontally 
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oriented leaves, leaf-level optical information is more directly resolved at canopy scales 
(Asner, 1998). 

When addressing canopy optical properties from a remote sensing perspective it can be stated 
that (i) strong relationships can be established between LAI and canopy reflectance, especially 
in the NIR region (ii) viewing geometry is critical in these relationships and (iii) fractional 
vegetation cover (background influence) plays an important role in canopy reflectance. Thus, 
extraction of LAI from reflectance information appears to be a much simpler task than the 
extraction of other canopy biophysical or biochemical attributes, but at the same time this is 
heavily dependent on foliage amount. 

The influence of structural and biochemical factors on canopy reflectance is wavelength 
dependent. When focusing on the three wavelength regions discriminated above for the 
address of leaf optical properties, different reaction to changes in leaf area can be observed for 
canopy optical properties. In the visible wavelength region, variation of LAI has only a small 
effect on canopy exitant radiation. Highest sensitivity within a narrow dynamic range is 
reported with LAI between 0.5-1.0 and must be attributed to canopy closure. An almost 
exponential decrease is observed, reaching saturation at around LAI 2-3 (Goel, 1989). 
Standing litter in the canopy will have a strong effect on VIS reflectance (Asner, 1998). 

The near infrared wavelength region generally exhibits the highest sensitivity to LAI, with an 
again almost exponential positive relationship of reflectance with LAI. Due to the high 
transmissivity of the scatterers (leaves) in this spectral domain, photons penetrate deep into 
the canopy and strongest multiple scattering occurs. Thus, near infrared canopy reflectance is 
sensitive to changes in LAI in the vertical of the entire canopy (Demircan, 1995). Sensitivity 
decreases with increasing LAI and saturation is reached at LAI between 6 and 8 (Peterson and 
Running, 1989). With high LAI, leaf optical properties and leaf biochemistry are very directly 
expressed at canopy scale and as photons interact with multiple layers of the canopy, higher 
water content of capacious leaf area is reflected in more pronounced water absorption features 
(Asner, 1998, Goel, 1989). The effect of standing litter and woody stem material in the NIR is 
reported to be low but dependent on total leaf area. 

The middle infrared region is only moderately sensitive to LAI. Here, the strong influence of 
water absorption in green foliage dominates the reflectance characteristics. Hence, standing 
litter with low water content causes higher variations than in the VIS and NIR but sensitivity 
to woody stem material is low (Asner, 1998) 

Leaf angle distribution (LAD) is an important factor in canopy reflectance. High angles will 
allow more photons to travel uncollided into the canopy, giving space for other than leaf 
material to contribute to the reflectance signal. Generally, a canopy with mostly horizontally 
inclined leaves will exhibit less variability in reflectance than a canopy of erectophile plants. 
Any measurement of live canopy reflectance may additionally be affected by the presence of 
stochastic elements such as wind and dew (Goel, 1989) and clumping and gaps in the canopy 
drive spatial variance of above canopy reflectance. Along with LAD, the bidirectional 
behavior of vegetation canopies has been observed to be driven mainly by the first layer of 
scatterers at the top of the canopy (Myneni et al., 1989). Finally, the structural factors such as 
foliar density and orientation of a canopy strongly depend on the ecosystem or biome under 
consideration. 

Most of the knowledge in this field has been derived from studies with hyperspectral remote 
sensing instrumentation and high-resolution models. An issue rarely addressed in this context 
is the actual placement of materials in the canopy (van Leeuwen and Huete, 1996, Asner, 
1998) The information derived from broadband remote sensing from space as applied in this 
study will not provide the detail both in spectral and spatial resolution. 
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5.4 Measuring Leaf Area and Leaf Area Index 

Measuring leaf area or leaf area index can be achieved in several ways. The approaches may 
be divided in ground based measurements and estimates from remote sensing. Some general 
concepts of measuring leaf area are provided in this section for both approaches. A 
fundamental difference between the two, however, is their scale. Ground based estimates are 
rudimental in regard of observational as well as measurement scale when compared to remote 
sensing estimates. When derived from spaceborne sensor devices, spatial continuity and 
extent is undisputed and favorable in regard of environmental research needs.  

5.4.1 Ground based estimates 

A number of methodologies have been introduced for the ground-based estimation of LAI. 
Scurlock et al. (2001b) summarize the following approaches for determining LAI: 

 

(i) destructive harvesting and direct determination of one-sided leaf area, using squared grid 
paper, weighing of paper replicates, or an optically based automatic area measurement 
system; 

(ii) collection and weighing of total leaf litterfall, converted to leaf are by determining specific 
leaf area (leaf area/leaf mass) for sub-samples; 

(iii) allometry (based on simple physical dimensions, such as stem diameter at breast height), 
using species-specific or stand specific relationships based on detailed destructive 
measurement of a subsample of leaves, branches, or whole individuals; 

(iv) indirect contact methods, such as plumb lines and inclined point quadrats; 

(v) indirect noncontact methods, such as the Decagon Ceptometer (Decagon Devices, Inc., 
Pullman, Washington), the LICOR LAI-2000 (Li-Cor, Inc., Lincoln, Nebraska), and analysis 
of hemispheric photographs. 

 

Any methodology applied will be closely coupled to the way the resulting LAI is defined. 
While methods (i) and (ii) will commonly result in one-sided LAI, method (iv) and (v) will 
give horizontally projected and inclined projected LAI values, respectively. Allometric 
determination of LAI may provide single or double-sided LAI depending on the calibration of 
allometric equations. The individual methods may be calibrated to obtain measurements of 
individual plants or canopies.  

Usually, the choice of methodology is a matter of applicability and cost involved. Direct 
measurements tend to require great effort and manpower. Especially destructive methods will 
often conflict with economic interests of owners of cultivated land and allometric methods are 
difficult to apply on crops and pastures. The most convenient method to obtain ground 
measurements of LAI for this study was to apply the LICOR LAI-2000 instrument for 
measuring different types of crops and forests. The measuring campaign undertaken and the 
obtained LAI estimates are described in section 5.6.1. Generally, measurements taken in the 
field will have an error attributed to the obtained LAI values. This error has been reported to 
amount to an order of 10% (Asner, 1998). 
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5.4.2 Remote Sensing based estimates 

Measurements of LAI in the field yield estimates at very localized scale and for rather discrete 
plots. The cost and effort involved constrain the extent to which LAI can be assessed by the 
addressed methods. The close relationship of leaf area and spectral properties of a surface 
have early led to the advent of attempts to use remote sensing for the retrieval of LAI 
estimates. The spatial continuity of remote sensing data provide the only feasible way for 
obtaining continuous fields of LAI values (Verstraete et al. 1996) 

Three approaches can be identified for deriving LAI from remote sensing imagery. First, there 
is a strong correlation between transforms of reflectances called vegetation indices (VI) and 
vegetation leaf area (Myneni et al. 1995). From empirical studies, relationships have been 
derived for a variety of vegetation cover types and for different vegetation indices (e.g. 
Spanner, 1990, Demircan, 1995, Gregoire and Raffy, 1997). These relationships have been 
used for the successful retrieval and investigation of LAI (Baret and Guyot, 1991, Carlson and 
Ripley, 1997, Chen and Cihlar, 1996, Turner et al., 1999, Bach et al., 2003, Schneider, 2003). 
Among other vegetation indices, application of the normalized difference vegetation index 
(NDVI) has been a very prominent approach to correlating vegetation index to LAI. NDVI 
can easily be calculated from the RED and NIR bands of many remote sensing sensors: 
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+
−

=          (5.4) 

 

The performance of NDVI in correlating it to LAI has shown to provide better estimates than 
the application of simple ratio VI. Non-linear relationships provide more accurate models 
than linear regressions (Gross, 1989). Other indices have been developed and used such as the 
soil adjusted vegetation index (SAVI) (Huete 1988), the transformed soil adjusted vegetation 
index (TSAVI) (Baret et al. 1989, Baret and Guyot, 1990), the weighted difference vegetation 
index (WDVI) (Clevers, 1989, Kneubühler 2002) or the modified normalized difference 
vegetation index (MNDVI) (Liu and Huete 1995, van Leeuwen and Huete 1996). These VIs 
were designed to account for the background and atmospheric influences contaminating 
simpler indices. Removing atmospheric bias from NDVI has been achieved by using 
atmospherically corrected input to obtain absolute reflectance NDVI (arNDVI) (Bach 1995, 
Demircan 1995, Spanner et al. 1990, Carlson and Ripley 1997, Schneider 2003). Along with 
arNDVI, the more recently developed enhanced vegetation index (EVI) is operationally 
available from the MODIS Vegetation Indices Product MOD13 (Huete et al. 1999). A 
comparative study of NDVI and EVI was conducted by Huete et al. (2002). 

Empirical regressions between LAI and NDVI tend to represent local particularities of 
vegetation and have been developed from numerous field experiments for various vegetation 
covers. Some collected NDVI-LAI equations for different cover types can be found in 
Schneider (2003) or Wang et al. (2004). A set of such equations was used in this study and is 
presented in section 6.2.4. 

In order to establish a physical basis for deriving LAI from remote sensing, the theoretical 
background of the large body of empirical relations of vegetation indices and biophysical 
parameters such as LAI has been formulated. The relations can be used to decode the 
information of reflectance spectra of vegetation. Myneni et al. (1995) showed that VIs can be 
generalized to show a derivative of spectral reflectances, which is a function of leaves and soil 
background. This derivative is an indicator of abundance and activity of the absorbers in the 
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canopy. The theory was used to derive cover type specific NDVI-LAI relations in a 
subsequent study (Myneni et al. 1997). For the application of the theory, global land cover 
was classified into six structural cover types, or biomes. For each biome, 3D radiative transfer 
is modeled to simulate scattering and absorption in the canopy and the results are used to 
derive NDVI-LAI relationships for each biome (Myneni et al. 1997).  

A third alternative for LAI retrieval from remote sensing data is the inversion of radiative 
transfer models (Knyazikhin, Martonchik, Myneni et al. 1998). However, the remotely sensed 
spectral signatures will not suffice to solve the inversion problem. For example, different 
three-dimensional canopy structure essentially influences the exitant radiation while LAI may 
remain unchanged. In order to simplify the problem, a vegetation cover classification is used 
that is parameterized by variables relevant in photon transport theory (Myneni et al. 1997). 
This classification distinguishes biome types that may be represented by individual tree 
architecture (leaf orientation, stem-trunk-branch area fractions, leaf size, crown size) and 
canopy topography, soil and/or understory background. Further characteristics of the biomes 
are patterns of spectral reflectance and transmittance of vegetation elements and the 
distribution of leaves in the canopy. The six biomes are grasses/cereal crops, shrubs, broadleaf 
crops, savannas, broadleaf forest and needleleaf forest (Myneni et al. 1997, Knyazikhin, 
Martonchik, Myneni et al. 1998) 

These attributes are used to parameterize the radiative transfer model. Solutions of the three-
dimensional radiative transfer equation are used to model bi-directional reflectance factors 
(BRF) of each biome for varying sun-view geometry and canopy/soil patterns. Thereby, the 
biome is characterized by the basic components of the energy conservation law, canopy 
transmittance, reflectance and absorptance. The results are stored in a look up table 
(Knyazikhin, Martonchik, Myneni et al. 1998). The retrieval algorithm interacts with this 
lookup table only and compares observed and modeled BRFs for a suite of canopy structures 
and soil realizations. All possible results not exceeding uncertainties are used in averaging to 
obtain final LAI (Knyazikhin, Martonchik, Myneni et al. 1998, Knyazikhin, Martonchik, 
Diner et al. 1998). The approach of producing a lookup table is used with the advantage of 
keeping the LAI retrieval algorithm independent from the radiative transfer code applied for 
the physical modeling of reflectances. 

The last approach described is implemented in the operational production of the MOD15 LAI 
Product. In the processing the NDVI-LAI relations derived from the spectral derivative 
(Myneni et al. 1997) are used as a backup algorithm. Data from the MOD12 Land cover 
product and the MOD09 Reflectance Product are ingested in the processing (Knyazikhin, 
Glassy et al. 1999). The product and the algorithm have been prototyped (Tian, Zhang et al. 
2000, Zhang et al. 2000) and validated (Tian et al. 2002a/b, Privette et al. 2002, Cohen et al. 
2003, Wang et al. 2004) as well as investigated as a scale invariant approach to LAI retrieval 
(Tian, et al. 2002). 

All approaches have an important feature in common: reliable retrieval of LAI from remote 
sensing is directly coupled to a land cover classification. The variation in model descriptions 
to derive estimates of LAI is tied to the cover type producing the leaf area. Thus, the cover 
type as a representative of canopy structure is most decisive in LAI retrieval from remote 
sensing data. 

5.5 Leaf Area in Environmental Modeling 

The modeling of environmental phenomena involves the leaf area in various ways as 
indicated by the interaction of leaves with their environment (see section 5.2). The importance 
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of the incorporation of leaf area state variable into environmental models is based on its 
prominent influence on the interaction of leaves with solar radiation and their responsibility 
for carbon absorption and exchange with the atmosphere. Two general directions may be 
distinguished in which leaf area is prevalent in models: as an active quantity influencing the 
described process being modeled or as a target quantity of the model. 

As an active quantity in a model LAI is vital in canopy radiative transfer models, in 
hydrologic models at the soil-vegetation-atmosphere interface (SVAT-Models) and in 
modeling biomass productivity models or crop models. A radiative transfer model for 
vegetated canopy uses leaf area as the driving dynamic variable to describe radiative 
processes of transmission, absorption and reflection in the canopy. In hydrologic models the 
leaf area determines the surface for evaporation, transpiration and interception. When 
modeling plant productivity a positive feedback on leaf area exists so that leaf area will be 
both a parameter going into the model as well as an output variable changed by the modeling 
process. Thus, plant productivity models may provide leaf area estimates as the model 
progresses over time. 

Except for the direct and destructive methods for ground measurement of leaf area, some 
model is always involved to derive LAI as a target quantity. Allometric equations model LAI 
from stem diameter and optical measuring devices such as the Licor LAI-2000 compute leaf 
area from detected canopy gap fraction (see Section 5.6.1). As in remote sensing, this non-
contact method requires a model to describe the correlation between the measured quantity 
and leaf area. The most sophisticated way of inferring leaf area from a related measure is by 
the inversion the radiative transfer process. One such method has been addressed in the 
previous section as the procedure implemented for the operational production of the MOD15 
LAI Product from MODIS imagery. 

Each category of models involving LAI knows many implementations of which some 
prominent examples are used here. A model used extensively in the remote sensing 
community to determine reflectance spectra of reflectance and transmittance of single leaves 
is the PROSPECT model (Jacquemoud and Baret, 1990). It samples spectra at a spectral range 
from 400 to 2400nm at 1nm intervals from chlorophyll concentration, water content, dry 
matter and structural parameters. The plate model takes the leaf as several absorbing plates 
with rough surfaces giving rise to scattering of light. Since 1990 it has experienced 
widespread use and additional improvements in the representation of leaf biochemistry 
(Jacquemoud and Ustin, 2001). 

The PROSPECT model has repeatedly been coupled to the SAIL model (Verhoef, 1984) to 
describe the scattering of arbitrarily inclined leaves. SAIL is a four stream turbid medium 
radiative transfer model that estimates spectral bidirectional reflectance from a canopy. The 
model appeals due to its simplicity of a two-layer abstraction of the canopy and limited 
number of input variables and compromises between computational cost and realism of the 
simulation. LAI and LAD along with a hot-spot parameter go into the model as canopy 
structural input. Together with leaf and soil reflectance properties, sun position and viewing 
geometry, the radiation regime is determined. In coupling the two models, leaf hemispherical 
reflectance and transmittance may be taken from PROSPECT to be ingested by SAIL. Such a 
combination of the two models has been approached in various studies to predict BRDF of 
canopies (Weiss and Baret, 1999) and to produce look up tables (LUT) for inverse parameter 
retrieval (Combal et al., 2001, Atzberger, 2004, Fang and Liang, 2005). Recently, the models 
have been used to simulate hyperspectral images to prototype future remote sensing sensors 
(Verhoef and Bach, 2003). 

A further step of sophistication in modeling with LAI involved is the integration of a radiative 
transfer model with a land surface process model as proposed by Bach, Verhoef et al. (2000). 
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The Process-oriented Modular Environment and Vegetation model PROMET-V (Mauser and 
Schädlich, 1998, Schneider, 2003) is run to calculate plant growth, water, and nitrogen fluxes 
using meteorological and environmental data. PROMET-V generates LAI, fraction of brown 
leaves and surface soil moisture to be ingested by GeoSAIL, an extended version of the SAIL 
model (Bach, Verhoef et al. 2000). By minimizing the difference between actual remote 
sensing data and the reflectances modeled by GeoSAIL, biophysical parameters retrieved 
from Thematic Mapper imagery could be improved. 

In an advanced combination of the PROMET-V surface process model and GeoSAIL, the 
canopy reflectance model is used in forward mode to simulate satellite data and in an inverse 
mode to retrieve bio-geophysical parameters from different remote sensing sensors (Bach et 
al., 2001). The two models are coupled by two feedback-loops that enable the derivation of 
LAI, fraction of brown leaves and surface soil moisture from optical satellite imagery and 
allow the adjustment of the land surface model to improve simulation of biomass, canopy 
height and yield (Bach and Mauser, 2003). 

In the GLOWA-Danube model compound DANUBIA, LAI is a decisive quantity in a number 
of contributing models. Leaf area is produced by the Biological component as plant growth 
progresses. The Biological model ingests input of meteorological, soil and management 
parameters and computes LAI, leaf biomass, transpiration, fraction of brown leaves, leaf 
transmissivity and leaf temperatures. The model abstracts the canopy into canopy layers, each 
having its own value for LAI. These layers are provided to other components as canopy layer 
stacks containing the canopy layers distinguished in the model (Lenz et al., 2006). The 
receiving components are the one modeling the radiation regime in the canopy called 
RadiationBalance, and the Surface component. In the former all layers LAI is accumulated to 
a total LAI, which is then used to compute shaded area, absorbed radiation and attenuation of 
wind speed (Niemeyer, 2002a). In the surface model, LAI is the quantity involved in a term to 
compute interception. The amount of precipitation reaching the soil is reduced by the present 
leaf area (Niemeyer, 2002b). 

In this study models involving LAI are used in three ways. To produce LAI estimates from 
remote sensing data regression models of LAI with NDVI are applied. A host of land cover 
type specific LAI-NDIV relations is used to model LAI from the satellite imagery introduced 
in chapter 4. The functions listed in section 6.2.4 are used in retrieving LAI from both, regular 
VIS/NIR satellite imagery and from segmented VIS/NIR reflectances from the unmixing 
process presented in this work. The advantages of advanced process modeling, namely control 
of input and temporal continuity, are sought in both ways described:  producing LAI estimates 
and driving the model with LAI. To support a database of temporal change of LAI, results 
from the land surface model PROMET-V were used. They provide annual progression of LAI 
for a number of cover types (see section 5.6.2). A version of GeoSAIL was run to estimate 
valid ranges of reflectance values from ranges of LAI (see section 6.2.2). 

5.6 LAI Data 

Examination of the temporal dynamics of LAI is a key issue in this work. Prior knowledge on 
the development of cover type specific LAI was sought by elaboration of a database of 
multitemporal LAI estimates. It provides an impression of different cover types temporal 
behavior and substantiates the theory for the algorithm developed in chapter 6. This section 
presents the various sources of LAI data. 
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5.6.1 LAI Measurements using Li-Cor LAI-2000 

Measurement campaigns to assess LAI of sites located in the study area were conducted 
during the vegetation periods of 2002, 2003 and 2004. Different types of crops and forest 
were addressed in the measurements of weekly to two-weekly intervals. The instrument used 
for the measurements was the Licor LAI-2000 plant canopy analyzer (Li-Cor, Inc., 1992). 

Measuring with the LAI-2000 Instrument 
The LAI-2000 plant canopy analyzer consists of a LAI-2070 control unit that collects and 
computes the measured data and the LAI-2050 sensor head. The instruments sensor 
incorporates a fisheye optic with a 148° field of view that projects its almost hemispheric 
image onto five silicon detectors arranged in concentric rings. A filter restricts the sensed 
radiation to wavelengths below 490nm to minimize the amount of transmitted and reflected 
radiation (Li-Cor, Inc., 1992). 

A single measurement consists of at least two readings directed skyward, one above and one 
below the canopy. The canopy volume captured by the instrument resembles an inverted cone 
or a segment of it if the lens is covered with a viewcap to exclude part of the field of view. 
Each sensor ring’s samplings are taken as equivalent to the canopy’s gap fraction. From the 
ratio of the received radiation of the two measurements foliage amount (LAI) and mean 
foliage tilt angle (MTA) are computed. Four assumptions for the calculations to be correct 
must be met, (i) only sky radiation reaches the sensor (ii) foliage is randomly positioned in the 
canopy (iii) foliage elements are small and (iv) foliage inclination is not important but the 
leaves are facing in azimuthally randomly oriented directions (Welles and Norman, 1991). 

In practice, these assumptions require some aspects to be considered when taking 
measurements. To ensure only sky radiance entering the sensor, measurements were taken 
preferably under overcast weather conditions. Rejecting direct irradiance can also be achieved 
by shading the sensor and the canopy with a large cardboard. This, however works for low 
canopies only, not simply because tall canopy may not be reached to shade it, but also 
because the radius sensed by LAI-2000 is approximated by three times the canopy height (Li-
Cor, Inc, 1992, Welles and Norman, 1991). Evening hours until 15 minutes after sunset have 
been found to be a good time for measurements due to radiation conditions (Holzhauser, 
2002). At this time, shading of larger areas is also simplified by high solar zenith angles. 
Measurements were always directed away from the sun. 

Random distribution is given for row crops and forest (Li-Cor, Inc, 1992) and is ensured by 
selecting plots for measurements well within the agricultural fields. Forest sites were selected 
to exhibit homogeneous cover and understory vegetation. In order to keep foliar elements 
small, the sensor is kept at least four times the leaf width apart from the nearest leaf over it. 
Assumption four is met by making multiple measurements below the canopy. For each plot 
four below canopy measurements were made, each moved slightly as compared to the 
previous. This ensures a wide range of measuring directions keeping the random orientation 
assumption in effect. A scheme of placing multiple below canopy measurements in a row 
diagonal to the planting direction is suggested for row crops (Li-Cor, Inc, 1992). In the 
campaign, 180° viewcaps were used to exclude the operator and the direction of the sun from 
the view. This leaves the view wide enough for a large portion of the canopy to be sampled so 
that many leaf orientations are included. 

Two Li-Cor LAI-2000 devices were available for the measurements. They were used in one 
sensor mode for all crop types, using single instruments to take above canopy and below 
canopy readings. For sampling forest two sensor mode was used. In this mode one sensor is 
mounted on a tripod positioned on open field to sample the sky radiation every few seconds. 
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These measurements deliver the above canopy estimates. The other sensor is taken to the 
forest to take below canopy readings. The samplings from the two sensors can be 
synchronized using the PC software distributed with the instrument. 

Sites 

During the three years of measurements, different crops and forest sites were sampled. All are 
located in the center of the study area, about 20km to the southwest of Munich. Some sites 
changed from year to year. The sites and cover types for each year are listed in Table 5.1. 

Table 5.1: Sites of leaf area index measurement campaign 2002-2004. 
Year Maize Wheat Triticale Rape Broadleaf Forest Needleleaf Forest
2002 DLR 

St.Gilgen 
Wastian 

DLR 
Mitterwies 
Stuerzer 

- - Meiling 1 
Meiling 2 
Neuhochstadt 

Oberbrunn 1 
Oberbrunn 2 

2003 Argelsried 
Tiefenbrunn

Stuerzer Stuerzer Stuerzer Muehltalerleiten 
Weiherbuchet 

Bocksfeld 
Reissmuehlweg 

2004 Argelsried Stuerzer - - - - 
 

The measurements were attempted to be made every two weeks. However, weather and 
lighting conditions may seriously disturb the measurement plan. While measuring crops could 
be performed quite regularly and apace applying both instruments, forest measurements took 
longer effort. While lighting conditions could be compensated by shading crop canopy with 
cardboards, forest measurements have to rely on uniform overcast conditions but no rain. 
These conditions were very difficult to nab. 
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Figure 5.3: Temporal development of four sites sampled in the LAI field 
measurement campaign. 

Examples of the measurements are given in Figure 5.3 for four selected sites. With the 
reduction of fields sampled, the 2004 campaign concentrated on only two fields with a higher 
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sampling interval. Measurements of the forest sites were scarce but could capture the onset of 
leaves in spring. All measured values are provided in Appendix 3. 

5.6.2 Modeled LAI 

A dataset of LAI development was extracted from a model run of PROMET-V (Schneider, 
2003) for the hydrological year 2000. As Figure 5.4 illustrates, the advantage of these 
progressions of LAI over the year lies in the continuity of the information for individual land 
cover types. Each step in the model provides a dataset of LAI. The data were modeled for an 
area in the alpine foreland southwest of Munich. The area covers about 4000km² around the 
two large lakes in southern Bavaria, Ammersee and Starnberger See. It lies fully within the 
GLOWA Danube catchment and the study area. The plots shown below include the standard 
deviation of LAI values over the area with the mean values. Courses of maximum and 
minimum LAI are also provided. The plots were created from 10-day intervals selected from 
daily data. 
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Figure 5.4: Seasonal development of LAI as modeled by PROMET-V for six cover 
types. Mean values of model results including standard deviation are in black, 
maximum values in green and minimum values in red. 
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5.6.3 LAI from the Literature 

A review of available LAI data in the literature was undertaken to assess this possible source 
of data. Scurlock et al. (2001b) have compiled a comprehensive collection of LAI field data 
sets from 1932-2000 (Scurlock et al. 2001a). This database contains about 1000 estimates of 
LAI from 400 unique field sites. The database provides quite unique insight into the 
development of LAI measurement effort. However, most of these data are one-time 
measurements of leaf area. Although, with most data the year of the measurement is provided, 
80% of the data do not give any information on the date of measurement and many mention 
merely the month or season when the measurement was conducted. Sites including lat/lon 
position and biomes are given with the data. Species are listed where available and about half 
of the datasets provide the methodology of measurement including the definition of LAI. 
Thus, the layout of the database meets the requirements of the more detailed definition given 
above (Equation (5.2)), but with large gaps in the data many individual records will not 
provide the full information desirable. From the dataset, LAI data of only four grassland sites 
could be exploited, each with 3 measurements at different times of the year (Appendix 4). 

An exhaustive acquisition of LAI of maize, various types of grain and soja providing seasonal 
development of LAI was conducted by Demircan, 1995 (see Figure 5.5). Destructive 
harvesting and measurement of leaf area was performed from 1990 through 1993. While the 
estimates from the database described above stem from sites around the world, this dataset 
was elaborated in the southwest of Germany. Although not located directly within the 
GLOWA-Danube basin, the estimates are from an area with quite comparable environmental 
conditions. 
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Figure 5.5: Field estimates of LAI from the literature (Demircan, 1995, 
Kneubühler, 2002) 

Another source of LAI data for agricultural crops was the work by Kneubühler (2002). He 
provides data of spring wheat and winter barley from two fields located in the north of 
Switzerland. In the assessment the Li-Cor LAI-2000 was used to measure LAI. Extracts from 
the data from the two previous mentioned sources are given in Figure 5.5. All data are shown 
in Appendix 3 and 4.   

For forest sites, seasonal development of LAI could not be derived from the literature. This is 
probably due to the difficulties in measuring forest LAI as was experienced in the 
measurement campaign for this study.  
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5.6.4 LAI derived from Remote Sensing Data 

Operational production of leaf area index has emerged with the MODIS 1km MOD15 LAI 
Product. Since MOD15 LAI values are derived based on a biome classification, cover type 
specific LAI may be extracted from the product (see section 4.6.5). The temporal 
development of LAI for four cover types is shown in Figure 5.6. Data were taken from five 
years of MOD15 LAI Product from the collection version 004. 
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Figure 5.6: Seasonal development of LAI derived from the MOD15 LAI Product 
2000-2004 for four cover types/biomes. Plots are based on averages from 3x3 
boxes of homogeneous land cover. 

The same MOD12 Land Cover product that went into the production of the LAI fields was 
used to identify cover types within the area of the GLOWA-Danube catchment. The data are 
taken from homogeneous areas of the specified cover type. The plots represent average values 
of the 9 pixels of homogeneous 3x3 boxes. For each year between 37 and 45 datasets were 
available. If LAI was not produced on a pixel the value was omitted in the averaging. 
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5.7 Discussion of available LAI data 

5.7.1 Applicability of data 

The most continuous data in the LAI data presented above stem from the results of an 
environmental model. Daily data may be provided for all land cover types present in the 
model. But the values computed in the model need to be counterchecked. In the context of 
distributed environmental modeling, LAI measurements are desirable to update the model 
state variable. This can be performed if the measurements are up to date and availability is 
given for the area modeled. Distributed data can not be achieved with point measurements on 
the ground. The effort is simply not manageable. The only feasible way to obtain data for an 
area as large as the GLOWA-Danube catchment is through the derivation of LAI from remote 
sensing data. 

The MODIS MOD15 LAI product is readily available as a global dataset and would cover the 
area of the GLOWA-Danube basin on a regular temporal basis. Also, the resolution of the 
dataset of 1km matches the resolution of the current implementation of the decision support 
system DANUBIA. However, the land cover classification used in the production of MOD15 
is quite different from the land cover applied in DANUBIA. For example, the MOD12 Land 
Cover Type 3, the biome classification used to derive MOD15 LAI, contains a class 
“savanna” which also appears in the area of the GLOWA-Danube catchment. This seems 
irritating at first glance, as savanna is a land cover not readily expected in central Europe. 
This class becomes more reasonable when realizing that the biome type of MOD12 Land 
Cover Type 3 is attributable to a structural type of vegetation cover rather than a biological 
composition. Understanding “savanna” as a grassed cover with dispersed trees explains how 
this cover type can appear in the upper Danube basin. Still, translating this conception of land 
covers to the cover types present in the DANUBIA model compound is a difficult task. 

When inspecting the temporal development of LAI from MOD15 in the previous section the 
pronounced zigzag of the plot strikes. LAI from one 8-day interval may drop to the next by 
several units of LAI and then rise to the previous level on the following date of a LAI 
estimate. This is not the development the LAI of land covers is expected to exhibit. The 
measurements provided in the previous section as well as pure common sense indicate that 
these courses of LAI as derived from the MODIS product are not reasonable. This is the case 
although averages of areas larger than a single pixel were examined. The fact that a single 
pixel of the MOD15 LAI product may exhibit significant bias compared to higher resolution 
remote sensing estimates and ground truth has been reported earlier (Tian et al. 2002, Wang et 
al. 2005). The application of error prone single pixel values of MOD15 in a land surface 
model would be an equivocal undertaking. 

Finally, the DANUBIA model is laid out to operate on subscale fractional entities, based on 
land cover types. The 1km MOD15 product cannot provide information on a subscale basis. A 
concept of dividing up a 1km LAI value to subscale fractions as proposed for reflectances will 
not hold as is shown in the next section.  

5.7.2 The paradox in scaling LAI from remote sensing 

It has been stated earlier that any surface may be attributed a value of LAI. Thus at any 
resolution a dataset may provide a spatially continuous field of LAI values. A paradox arises 
when comparison of LAI values of different scales is sought and if those values were derived 
from remote sensing data in either fashion mentioned above. The problem lies in the land 
cover dependence of LAI retrieval. If any surface has a LAI value, areal units may be lumped 
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to provide a LAI value on a coarser scale. However, if this aggregated value is to be compared 
to a LAI value derived at the coarse scale, this coarse scale value is attributed to a certain land 
cover type that specified the retrieval algorithm. In many cases, homogeneity of the coarse 
pixel is not given. The LAI value lumped from (assumably) homogeneous finer scale units is 
the true LAI value attributable to the lumped area. But then, the coarse scale derivation of 
LAI is the LAI that is attributable to the area were it of the land cover type used in the 
derivation of the LAI. Consequently, a comparison of such LAI from different scales is not 
feasible. 

The same problem occurs if a coarse scale LAI value were to be disaggregated to a finer 
scale. Again, the coarse scale value of LAI would be linked to the land cover type that was 
used in the retrieval. If the finer scale segmentation of the coarse scale areal unit is not 
homogeneous, a value derived from an algorithm specific to one land cover type would be 
attributed to another. This again, does not withstand to logic. Subsequently, it becomes a 
serious dilemma when a model ingests LAI and land cover and links the two in process 
description. 

As a consequence, no scaling of LAI is admissible if land cover type was involved in the 
retrieval of the LAI value. What needs to be scaled is the algorithm for the retrieval and as 
reliable remote sensing models rely on land cover, the land cover as a fundamental element in 
the algorithms needs to be scaled. 
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6 A Method for Reflectance Segmentation 
Bringing together the statements from the previous chapters leads to the conception of a 
method to reasonably divide a single remote sensing measurement into its contributing 
segments. From the previously said, some conclusions can be drawn. The first is related to 
scale and is based on the cognition that properties and processes of the environment operate 
on specific scales (chapter 3). In order to measure or mimic these properties and processes, 
adequacy of the scale at which they are captured is required. Regional landscape models are 
tuned to scales at which they are capable of appropriately representing the processes and 
parameters they describe. In this context, the size of patches is most often tied to the type of 
surface cover type or land use. Consequently, parameter provision for process models needs 
to be oriented at the scale of the model and most likely coincides with the land cover types’ 
spatial representation. For land surface process models it has been shown, that subscale 
fractional land cover may be applied to substantially improve model results at moderate scale 
resolution (~1000m). 

The second conclusion is connected to the role of remote sensing and its capabilities of being 
used in conjunction with process models. Remote sensing, on the one hand is the only feasible 
measurement technique to provide distributed data over large areas at operational temporal 
and spatial sampling intervals. On the other hand, today’s available remote sensing devices 
fail to meet the observation scale requirements of regional landscape models (Mauser et al. 
1999). In optical remote sensing, spatial resolution is inversely proportional to temporal 
resolution. Thus, high spatial resolution data is not available at reasonable temporal intervals 
while data available at high frequencies come in lower spatial resolution. Also, the areal 
extent covered by high resolution imagery is lower than the area sensed with low-resolution 
sensors (section 3.6 and chapter 4). Consequently, one needs to compromise between high 
spatial and high temporal resolution. Using the frequently available low-resolution conflicts 
with the scale requirements stated above. High-resolution imagery is not available at 
sufficient temporal intervals. Ways need to be established to overcome this dichotomy. This 
could be achieved by installing more high-resolution imagers that fill the temporal gaps 
between acquisitions or by a way of spatial data enhancement of coarse resolution data. The 
latter is what is sought with the method presented here. 

Thirdly, the parameter models to derive physical quantities such as leaf area index from 
remote sensing data take into account the land cover type in the retrieval algorithms (section 
5.4.2). Land cover type is a parameter that is (i) comparably stable in time and (ii) is available 
at spatial resolution exceeding the pixel spacing of coarse resolution imagers. Due to its 
temporal stability it may be derived from temporally sparse high-resolution imagery. To 
obtain fractional land cover at the pixel resolution of coarse resolution satellite data, means of 
spectral unmixing of coarse spatial resolution data may also be applied. The method presented 
here relies on such fractional information only. Also, for Europe the publicly available Corine 
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Land Cover 2000 is produced at 100m spatial resolution which is finer than the wide swath 
moderate resolution remote sensing data. Consequently, the input postulates are met to 
potentially derive surface parameters tied to land cover at scales finer than the frequently 
available satellite data. 

It may be argued that a surface parameter at a coarse scale may be downscaled to higher 
resolution. However, due to two facts it is not feasible to first derive such a parameter at a 
coarse scale with the intention to then downscale the parameter to a finer scale. One is the 
land cover often involved in the derivation of land surface parameters. Scaling that parameter 
contains the risk of transferring values obtained for a certain land cover type to a land cover it 
was not derived for (see Section 5.7.2). The other lies in non-linearity that may be involved in 
the parameter models applied in the retrieval. Both are true for the derivation of LAI from 
remote sensing data. Thus, if segmentation of a measure on a pixel is sought, the 
segmentation needs to be performed prior to the application of a non-linear model and prior to 
the incorporation of additional unsegmented information such as a land cover type. This 
means that the segmentation may only be applied to the “raw” data that serves as input to a 
parameter retrieval model. The raw data are the reflectances on a pixel in a single band. The 
method for segmentation presented below seeks to determine how fractions of the pixel area 
contribute to the integrated reflectance value available for a coarse pixel.  

6.1 Conception of the Algorithm 

The basic idea behind the algorithm presented here can be described by a short story. Imagine 
taking your dog for a longer walk every week or so. You would stroll along the pastures 
beside the creek, take a left up through the beech forest and then follow the trail along the 
wheat and cornfields. The forest would be bald, the soils bare along the winter and you know, 
some week in spring you will come back through the wood and the leaves will be out and 
shading the undergrowth. When you notice the first thick leaves of maize sprouts, the wheat 
on the next field will look much like the pastures down by the creek, yet smoother and all 
lined up. Later in the summer you find the wheat matured and one day the field harvested and 
ploughed. The maize then is a thicket of tall sturdy plants inside dim and damp under multiple 
layers of large leaves. About the time when the beech will lose their leaves you expect the 
maize field to disappear…a long story could be told here. But: You’d be surprised to find new 
maize sprouts in November. And something would seem wrong if the maize stood 3 meters 
tall in mid May. 

In other words: When we go out there to look at landscape phenomena we have an idea of 
what to expect. In a scientific sense: When we take measurements, we have a range of values 
in mind that appear reasonable. We have expectations and these expectations change over 
time and they change with the subject we’re looking at. Expectations are valuable when they 
allow us for example to judge errors in data or measurements. And they provide us with a 
fuzzy knowledge about the current state of a current subject. 

The subject here is the land surface and the properties of its land covers. About these land 
covers and their properties, fuzzy knowledge can be found. For example for the land cover 
type “cornfield” a reasonable semantic approach to some fuzzy knowledge would be a simple 
statement like: On May 18, maize fields in the GLOWA-Danube catchment are no taller than 
45cm but at least 15cm. This would give a fuzzy parameterization of the height of a maize 
field in May. A realistic range is set and its limits are provided. This kind of knowledge is not 
only valuable in ecological modeling, where it is important that parameters are within realistic 
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expected ranges (Asner, 1998) but can itself be ingested in numerical modeling based on the 
fuzzy set theory established by Zadeh (1965). 

In the study pursued here, very similar fuzzy statements are applied. When translating the idea 
of prior expectations to the field of remote sensing, plant height is not a feasible parameter. 
What a remote sensing device measures is radiation that can be translated to surface 
reflectance properties. Reflectance properties change simultaneously with the changes in 
natural phenomena, i.e. plant height, leaf development and senescence. Thus, reflectance 
properties of a land cover type will be within a certain range at a certain time. They can, just 
like plant height, be described as within realistic expected ranges. These realistic expected 
ranges are used in the algorithm for the segmentation of moderate resolution remote sensing 
imagery. 

A pixel of a moderate resolution image scene is very likely to integrate over a number of land 
covers. A reflectance value of that pixel will represent the reflectance properties of a 
heterogeneous surface, combining the reflectance properties of all underlying surface types. 
For the moderate resolution pixel, the underlying surface types are available at very good 
resolution. Precise area fractions of land covers on a pixel can be computed. Thus we know, 
what surface types contribute on what area to the reflectance of a coarse pixel. Considering 
the above said, additional but vague knowledge exists about how much a land cover type 
contributes to the reflectance of the pixel. Yet, it is not known in which way all those 
contributing land covers make up the reflected radiation measured at the imaging sensor. 
Figure 6.1 illustrates the components involved in this question. 

If a true constellation is found of how much each of the land covers contributes to the 
moderate scale reflectance, the reflectance of the individual land covers will be available. The 
method for reflectance segmentation presented here was developed to find such a 
constellation. It aims at computing a solution for the reflectance of each land cover type. This 
is accomplished by combining fuzzy descriptions of expected reflectances of contributing 
land cover types with the fractional area of these land cover types. The algorithm is 
constrained by the moderate resolution measurement. An optimization procedure is 
established to find the most probable reflectances of land cover types that sum to the 
measured coarse pixels value.  
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Figure 6.1: Schematic view of a set of land covers contributing to the reflectance 
value of a moderate resolution spectral measurement. For the algorithm, fractions 
of land covers are known and a fuzzy description of each land cover types current 
reflectance properties is provided. The blue upward pointing arrows indicate the 
unknown reflectance of the land cover types. 

The illustration of Figure 6.1 refers to a single moderate resolution sample in a single band. 
The resulting reflectance values associated with the land cover types refer to the bandwidth of 
that band. The procedure can be transformed to any remote sensing bandwidth, given that the 
provided ranges for fuzzy reflectance description apply to that bandwidth. All spectral bands 
can be subject to the segmentation of the reflectance in that band. As a prerequisite, 
knowledge about land covers expected reflectances in the bandwidth is in demand. 
Segmentation of multispectral moderate resolution imagery should result in land cover 
specific spectra on a subscale basis.  

All of the calculations described in the following were performed for the RED and NIR 
wavelength regions.  

6.2 Methods 

In this section the algorithm and the data essentials for the segmentation of moderate scale 
reflectances are introduced. First, details on the mathematics of the algorithm are presented. 
Then, the input data are described and how this data may be generated. Finally, the LAI 
retrieval algorithm is provided. 

The first dataset is the digital land cover map that needs to be processed to area fractions of a 
coarse scale pixel. Next, the core of the algorithm relies on the fuzzy parameterization of 
reflectance properties of the land cover types under address. Land cover types were analyzed 
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using the high resolution Landsat imagery. From this analysis, a fuzzy description of land 
covers reflectance properties was derived. 

A schematic idea of the inputs and outputs of the algorithm is given in Figure 6.2. The figure 
also suggests that the amount of data that goes into the computation as well as the output is a 
function of the detail of the land cover used. 
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Figure 6.2: Inputs and outputs of the algorithm for reflectance segmentation 

The more land cover types are addressed in the land cover data set the more layers of data 
need to be processed. Thereby the complexity of the algorithm itself varies with the structure 
of the land cover, i.e. the number of land cover types that are present on each moderate scale 
pixel. Computational cost depends on how many land cover types are ingested in the 
assessment of reflectances for each of the land cover types. Land cover types not present on a 
pixel consequently will have zero reflectance in the result. 

6.2.1 Optimization of land cover specific reflectances on pixels of multiple land 
cover  

The core of the algorithm for the computation of land cover specific reflectances from a 
moderate resolution pixel lies in the concept of fuzzy description of land cover reflectance. It 
is based on the notion, that for a point in time a certain degree of reflection can be expected 
from categorized natural surfaces. A way to mathematically describe such an imprecise notion 
has been established by the concept of fuzzy sets (Zadeh, 1965, Zimmermann, 1987, 
Zimmermann, 1991). Contrary to Boolean algebra where membership to a set is either true or 
false, fuzzy set theory provides a mathematical logical approach to membership to a set that is 
gradual in nature. A fuzzy set A is given by a membership function defined over a domain X. 

 

mA : X → [0,1]         (6.1) 

 

The value of the function mA(xi) where xi ∈ X is the degree of membership to the set A. In 
order to describe a fuzzy set or imprecise knowledge a membership function is needed. The 
translation of linguistic approaches to fuzzy knowledge as stated above has been termed the 
semantic import model (Burrough, 1989). Membership functions can exhibit various shapes 
and can be expressed as a function term, a table or a graph of mA. Their shape and properties 
are as numerous as the fields of application and so are the ways to derive membership 
functions (Hootsmans, 1996, Civanlar and Trussel, 1986). They may be monotonically 
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increasing or decreasing or both, linear or curved, even waveforms are imaginable, depending 
on application. 

In the application for reflectance segmentation the purpose of the membership functions is to 
provide an idea of how probable a certain degree of reflectance is for a certain land cover. 
Each land cover has its membership function assigning a grade of membership to a 
reflectance domain. The reflectance domain and the membership function are specific for a 
point in time. A high grade of membership indicates that the degree of reflectance of the land 
cover has a high probability to be true at a certain time of the year. The membership functions 
describe how likely it is that a land cover is in a certain state of reflectivity. 

Two natural surfaces of the same type or class will be very unlikely to exhibit the same 
properties. Both pasture fields we look at may be green (or have a high reflectance in the 
green portion of the electromagnetic spectrum), but still one may be “greener” than the other. 
Thus, the perception of a green field is disturbed by a certain fuzziness in the notion. The 
application of membership functions takes into consideration that environmental phenomena 
are fuzzy in nature. 

The optimization applied for the segmentation of reflectances requires that the membership 
functions providing the fuzzy knowledge are at least two times differentiable. A function was 
developed that fulfills this requirement and that prove adequate to describe the reflectance 
domains of all land covers under address in the RED and NIR spectral domains. The function 
has the form 
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and was derived from the Gaussian peak distribution form 
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In  Equation (6.2) the parameter a, b and c add the capability of the function to exhibit a right 
or left skewness of the curve in addition to uniform distribution. The parameter µ determines 
the maximum of the curve, σ will control the left and right convergence to zero. 

In Figure 6.3 three functions of type (6.2) are shown. They describe the probability of 
reflectance in the NIR region for different cover types. Note the skewness of the urban type 
function as well as the different shapes for the land covers achieved by changing the 
parameterization (a, b, c, µ, σ).  
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Figure 6.3: Multiple differentiable functions ψi for fuzzy description of the 
probability of the degree of reflectance in the NIR region for three surface types 
on June 18: Urban (red), Maize (green) and grassland (blue) 

Assuming a coarse resolution pixel whose area is made up by n land cover types, there need 
to be n functions ψi available. They provide probability densities of the reflectance value 
attributable to each land cover type at a certain time. 

All reflectances Ri of all n land covers need to be weighted by their fractional area ai of the 
pixel to sum up to the total reflectance Rtotal of the pixel: 

 

nntotal aRaRaRaRR ⋅++⋅+⋅+⋅= ...332211        (6.4) 

 

Here, Rtotal is the reflectance given by a coarse scale pixel. Although in physical terms not 
precisely correct, this linear totaling of areal partitions of a pixel is common practice in 
remote sensing applications dealing with subscale parameterizations. Equation (6.4) can be 
rewritten as 

 

)...(1
11332211 −− ⋅−−⋅−⋅−⋅−⋅= nntotal

n
n aRaRaRaRR

a
R     (6.5) 

 

In this form Equation (6.5) delivers the constraint in the multicriteria decision making 
process. Any solution to the reflectances of contributing land covers have to comply to the 
requirement of (6.4) in order to meet this simplification of the energy conservation law. 

Given n land covers, the combined probabilities ψi of reflectances Ri of those land covers can 
be written as 

 

)(...)()()( 332211 nntotal RRRR ψψψψψ ⋅⋅⋅⋅=       (6.6) 
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ψtotal is a measure for the likeliness that the whole host of land covers on a coarse scale pixel 
together reflects a certain amount of radiation in the given wavelength. This likeliness 
changes with the reflectances of individual land covers R1, R2,…, Rn and is valid at a given 
point in time. 

In order to assure that the host of land covers together does reflect the given amount of 
radiation measured by a moderate resolution imager, equation (6.6) is constrained using 
equation (6.5) and is written as 

 

)),...,,(()(...)()( 121112211 −−− ⋅⋅⋅⋅= nnnnntotal RRRRRRR ψψψψψ    (6.7) 

 

In this form, ψtotal is a measure for the likeliness that the whole host of land covers on a 
coarse pixel together reflects the amount of radiation measured as Rtotal. Many solutions are 
possible for this constrained equation, yet the probability for the solution changes. The 
solution with the highest probability can be found by maximization of (6.7). 

An efficient way to the maximization of ψtotal is the Newton-Raphson Algorithm (Bronstein 
et al. 2001, Quinn, 2001). It will iteratively walk to the next peak of the function. The 
algorithm is used in many fields such as Chemical Engineering, Physics and Economic 
Sciences for the solution of optimization problems. One iteration from 0xv to 1xv  is given by 
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with totalψ∇  being the vector of the first partial derivatives of  ψtotal: 
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and ( )( ) 1
0

−Η χψ v
total  is the inverse of the Hessian matrix  at 0χ

v . The Hessian is defined as the 
matrix of second order partial derivatives: 
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The matrix is symmetrical because the second partials are continuous. This reduces the cost of 
solving the matrix. With a quadratic convergence rate the algorithm is very quick to find a 
solution and computational effort is kept low. 

The algorithm has to be triggered at some point in the n-dimensional space. A position close 
to the expected solution can be established by selecting the maxima of the reflectance 
distributions functions of type (6.2) from land cover 1 to land cover n-1 and determining a 
reflectance for land cover n using equation (6.5). If this reflectance of land cover n is not 
within the interval [0,1] computation is aborted and the land covers are resorted. Changing the 
order of land covers changes the starting position. This procedure eventually finds a good 
position to trigger the algorithm. 

A solution for the reflectances of land covers 1 through n-1 is found when the square root of 
the Euclidean norm of the gradient of ψtotal is smaller than a predefined threshold ε. The 
reflectance for the n-th land cover will be computed using equation (6.5). Any solution needs 
to be tested for plausibility. In the n-dimensional space many mathematically correct solutions 
are possible but a solution may be false in the context of the physical quantity of reflectance. 
Reflectance values are accepted if all reflectances are within the interval [0,1]. If this 
requirement is not met, the algorithm is triggered again after resorting of land covers. 
Resorting sets the algorithm off at a different position leading it to a different extremum. 

Triggered in a wrong direction the iteration may never find a solution. To avoid the algorithm 
to get caught in an endless loop, the number of iterations is limited to 25. With this limit 
exceeded, again the algorithm is stopped and retriggered after resorting the land covers. The 
number of 25 iterations is large enough to always find a solution in the well-defined interval 
[0,1]. In most cases a solution is found after less than 10 iterations with a threshold of ε = 
1.0E-09. 
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Figure 6.4: A graphical representation of the function ψtotal (psi). The 
optimization using the Newton-Raphson iteration will find the position of the peak 
of the surface. In the example shown a pixel with the land covers grassland, maize 
and urban fabric was simulated. The urban fabric land cover type is contained in 
the constraint of ψtotal. 

In Figure 6.4 a 3D graphical representation of the function that is optimized to find the 
solution of the algorithm is shown. With three land cover types on a pixel, the surface 
representing ψtotal can be plotted and visualized. As the function ψtotal is constraind by 
Equation (6.5), only two of the three underlying land cover types appear in the graph. The 
third is contained in the constraint. The surface represents the probabilities of different 
solutions to the various combinations of reflectance contributions of the 3 land cover types on 
the coarse pixel that sum to the measured reflectance. The algorithm will “crawl” along this 
surface until it reaches the peak of the surface and identifies the reflectances with the highest 
probability. This kind of graphic illustration is not possible if more than 3 land cover types are 
involved in the calculation. 

6.2.2 Fuzzy Representation of Reflectance Properties of Land Cover Types 

A fundamental principle of remote sensing lies in the physical fact that materials exhibit 
explicit spectral reflectance properties. When similar surfaces are grouped into classes as in 
land surface classification, spectral properties of the members of each class will show spectral 
similarities. The distribution of the within class variation of these spectral properties is 
expected to be a single peak distribution close to a Gaussian distribution (Lillesand and 
Kiefer, 2000). More peaks usually indicate class contamination or heterogeneity. Thus, 
spectral reflectances of homogeneous land cover type classes may be approximated as single 
peak probability density functions such as the Gaussian distribution given in Equation (6.3) 
and the more flexible peak distribution of Equation (6.2). 

In order to conceptualize the reflectance properties of land covers in a fuzzy manner, the land 
covers were analyzed regarding their statistical properties. This was done by superimposing 
the land cover classification on the reflective bands of the Landsat image from June 19th, 



A Method for Reflectance Segmentation 101

2000. For the NIR and RED bands, histograms of the land cover types were computed to gain 
insight into the ranges of reflectances that are characteristic for each land cover on that day. 
The histograms were normalized to the maximum value in the class. In a preliminary analysis, 
the reflectance domains of all 30 classes were analyzed. This analysis was used to cluster the 
30 land cover classes and reduce the number of classes to 12. The ENPOC classifier used in 
the production of the 30 class land cover classification is capable of distinguishing land cover 
types that exhibit quite similar spectral properties. For the segmentation of reflectances these 
similar classes were grouped together again based on structural and spectral properties. For 
needleleaf forest and grassland, examples of this bundling of classes are given in Figure 6.5. 
The ranges of the histograms of the classes of each plot are very close so that the classes can 
be bundled into one class. 
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Figure 6.5: Histograms of NIR Reflectances of similar cover types. For 
comparison a differing land cover (deciduous forest, rock) is provided in each 
plot. The similar classes were combined to a class “needleleaf forest” and 
“grassland”. 

For the 12 remaining classes new histograms were computed and the functions of Equation 
(6.2) and (6.3) were fitted to the frequencies. This was done for both VIS and NIR 
reflectances. As a result, for each land cover type functions were derived that provide the 
probability of the cover type to reflect radiation to a certain degree. Each function covers the 
domain of reflectance that is characteristic for that cover type at the date of the Landsat scene, 
June 19th, 2000 and is a fuzzy description of that reflectance. The results from these fits are 
shown in Figure 6.6 for RED reflectances and Figure 6.7 for NIR reflectances. 

While the modified Gaussian function (6.2) was more difficult to fit to the histograms than the 
standard Gaussian function (6.3), the former displayed slightly better R² values in the 
regression than the latter. However, most fits to the histograms of both reflective bands of the 
Landsat scene showed very high coefficients of determination indicating the good quality of 
representation of the histograms by the peak distribution functions. All coefficients of 
determination for both functions are listed in Table 6.1. The function parameters are provided 
in Appendix 5. 
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Figure 6.6: Histograms of the RED reflective Landsat band and fitted modified 
Gaussian function and Gaussian function for the 12 land cover types. 
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Figure 6.7: Histograms of the NIR reflective Landsat band and fitted modified 
Gaussian function and Gaussian function for the 12 land cover types.  
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Table 6.1: Coefficients of determination of the regression of land cover types histograms with 
the peak distribution functions. 

modified 
Gaussian 

(5 parameter) 

Gaussian 
(3 parameter) Land Cover Type 

RED NIR RED NIR 
Deciduous Forest 0.993 0.895 0.965 0.877 
Mixed Forest 0.983 0.986 0.974 0.927 
Needleleaf Forest 0.997 0.988 0.985 0.891 
Grassland 0.983 0.973 0.903 0.964 
Spring Grain 0.714 0.948 0.621 0.945 
Winter Grain 0.902 0.787 0.575 0.913 
Maize 0.971 0.967 0.948 0.925 
Rock 0.986 0.990 0.943 0.990 
Soil 0.966 0.939 0.945 0.885 
Urban Fabric 0.970 0.984 0.955 0.970 
Snow 0.940 0.970 0.892 0.952 
Water 0.835 0.993 0.828 0.964 
Mean 0.937 0.952 0.878 0.934 

 

The land cover reflectance possibilities are represented almost equally well with either 
function type. Since their objective is to provide an imprecise approximation of ranges of 
valid reflectance of the land cover types, both are well suited to provide fuzzy reflectance 
properties. Because the algorithm needs to compute function values and first and second order 
derivatives of the functions, computational cost is reduced with simplicity of the applied 
fuzzy reflectance description. This makes the simple Gaussian function the preferable 
candidate for the execution of the algorithm. 

The functions given above are best estimates of fuzzy reflectance properties for the 12 land 
cover types for the date they were derived for (June 19th, 2000). They are most suitable for the 
application in the prototyping of the algorithm with synthetic data (see section 7.1) and also 
for the application to the MODIS imagery best related to that date. However, for different 
dates these functions are not applicable as the reflectance properties change dynamically with 
time. The peak position as well as the width of the curves are subject to change during the 
vegetation period. For the application of the method to a time series of MODIS images 
availability of these functions is fundamental. 

These functions, however fuzzy in nature, are not readily available. While they could be 
derived for a date where high-resolution reflectance data are available, this approach to obtain 
fuzzy land cover reflectance descriptions is not feasible for most other times. In order to 
derive functions to fuzzily describe the reflectance properties of land cover types for arbitrary 
dates, simulations of reflectances of the cover types under address were performed using a 
version of the GeoSAIL model (Verhoef and Bach, 2003, Bach and Mauser, 2003). This 
model was used to simulate bottom of atmosphere (BOA) reflectances, as they would be 
obtained from arbitrary remote sensing sensors measurements. The simulations are based on a 
set of surface properties that determine the reflectance characteristics. The model was run to 
obtain estimates of mean minimum and maximum reflectances of the land cover types as a 
function of changing LAI. These reflectances were taken as pivots to generate Gaussian 
functions for the reflectance segmentation of mesoscale remote sensing data. 

The inputs required for the simulations are cover type, soil type and soil moisture, percent 
surface cover, chlorophyll content, phenology, along with green and brown LAI. Also, the sun 
and viewing geometry, time of day and the sensor response functions are taken into account in 
the simulation. 
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Simulations were run for 365 days of the year with the only surface parameter changed in the 
simulations being the LAI values. Except for the sun geometry, all other parameters were set 
to fixed values. Simulations were run three times for each land cover type namely for the 
minimum, maximum and mean LAI. The temporal progressions of minimum, maximum and 
mean LAI for the vegetation period were approximated from the available measurements of 
LAI. As the overall conception of the required functions is fuzzy, a mean trajectory and upper 
and lower hulls were created in an imprecise interactive manner. They will capture the host of 
LAI development curves as described by all the available data collected in section 5.6. An 
example of the development of LAI is given in Figure 6.8. The development of all vegetation 
land cover types are listed in Appendix 4. 

Maize

0

1

2

3

4

5

6

7

100 120 140 160 180 200 220 240 260 280 300
Day of Year

LA
I

Winter Grain

0

1

2

3

4

5

6

7

100 120 140 160 180 200 220 240 260 280 300
DOY

LA
I

 
Figure 6.8: Approximations of mean (blue), maximum (green) and minimum (red) 
leaf area index derived from hosts of available measurements of LAI (black) for 
maize and winter grain. 

To generate a Gaussian function (Equation (6.3)) that provides a fuzzy description of 
reflectance properties for a day of the year in a band, the mean reflectance in the band was 
taken as the µ parameter in the function. The σ  parameter was approximated by quartering 
the difference of the minimum and maximum reflectance. This procedure results in functions 
that include the minimum and maximum reflectance as very low possibilities in the fuzzy 
description. The scaling parameter a was set to 1 as the algorithm is insensitive to the 
amplitude of the functions. 

Functions derived in this manner are shown in Figure 6.9. The trajectories for mean, 
minimum and maximum from Figure 6.8 went into the generation of the functions. Days of 
year 139, 153 and 201 are plotted. They indicate how reflectance continuously increases 
during that period for maize, but is already in a decreasing phase for the cereal crops on the 
last day of the time series. 
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Figure 6.9: Reflectance probability functions generated from GeoSAIL model 
results. Possible reflectance values change with the temporal development of the 
vegetated surfaces.  

The unvegetated land cover types, namely rock, bare soil, urban fabric, snow/ice and water 
bodies are assumed to retain constant fuzzy reflectance properties over time within the ranges 
elaborated from the image analysis described above. The functions derived for these surfaces 
from the high resolution Landsat image were used in all runs of the reflectance segmentation 
algorithm. 

6.2.3 Subscale Land Cover 

The algorithm for reflectance segmentation requires the land cover map to be stratified into 
percentages of each land cover types proportion on the mesoscale pixel. With the land cover 
types mapped from the Landsat Thematic Mapper imagery, land cover types were available at 
30m spatial resolution. However, to derive the percentages of land cover types on coarser 
scale pixels, the spatial resolution of the coarse pixel has to be divisible without remainder by 
the resolution of the high-resolution land cover. This is not the case for either of the MODIS 
bands. To overcome this problem, the 30m resolution land cover was resampled to 10m 
resolution in a fashion that each 30m pixel would be represented by 3x3 10m pixels. From 
this 10m resolution grid, percentages for all pixel sizes that are multiples of 10 can easily be 
computed. 

The land cover classification contains pixels that are unclassified. A fuzzy description of 
unclassified pixels is not possible. Thus, unclassified fractions on the coarse pixel need to be 
eradicated. This was achieved by distributing any unclassified fraction on a pixel to the other 
classes present on that pixel according to their fractional area on the pixel. This procedure 
produces pixels that are fully covered by a combination of a subset of the 12 possible land 
cover types. 

6.2.4 LAI Algorithm 

Approaches to deriving LAI from remote sensing data were discussed above in section 5.4.2. 
To produce LAI estimates from reflectances, the simple approach of NDVI-LAI relation was 
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used. In the aforesaid, a key factor for the derivation of leaf area was identified to be the 
structure of the canopy. Structure is closely interconnected with type of land cover. To 
account for this important influence on LAI, a host of absolute reflectance NDVI-LAI 
relations was applied, depending on land cover type. These relations were carefully selected 
from the literature. Each relation has been used in earlier studies and has proven to deliver 
reasonable estimates in environments as the upper Danube catchment. Some have been 
derived and developed in parts of the catchment itself. The relations are listed in Table 6.2. 

Table 6.2: Land cover type specific functions to derive LAI from arNDVI  
Land cover type Function  Authors 
deciduous forest LAI = (1.63*NDVI)**4.7 Bach et al., 2003 
mixed forest LAI = (NDVI*1.75)**5.4 Bach et al., 2003 
needleleaf forest LAI = (NDVI*1.859)**6.061 Bach et al., 2003 
grassland LAI = (NDVI * 1.6)**3.0 Ludwig et al., 1998 
spring grain LAI = 4.07*NDVI**2.3 Schneider, 2003 
winter grain LAI = 4.07*NDVI**2.3 Schneider, 2003 
maize LAI = 6.1 * NDVI ** 1.97 - 0.28 Demircan, 1995 

 

In the processing, arNDVI was computed from the RED and NIR bands. In the cases of the 
assumption of homogeneous land cover on pixels, the land cover classification was used in 
selecting the appropriate function for LAI. In the case of subscale fractional reflectances, the 
layer of the dataset indicated the land cover type and determined the function to be applied. 
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7 Application of the Algorithm 
This Chapter is concerned with the practical use of the algorithm for reflectance 
segmentation. Before the algorithm is applied to real moderate resolution MODIS data it is 
investigated and tested for plausibility and used on synthetic data derived from the Landsat 
Thematic Mapper dataset. Thus, all in section 7.1 applies to the conditions on the date of 
acquisition of the TM images from June 19th, 2000 (DOY 171). The application to an 
artificially constructed coarse resolution dataset allows for a verification of the performance 
of the algorithm as compared to its source or high resolution “truth”. The reflectances of land 
cover types obtained as results from the segmentation of the coarse synthetic data can be 
evaluated against averaged values computed from the high-resolution data. With this 
approach datasets from different scales are generated that are directly comparable because the 
fine resolution data were used to produce the synthetic coarse data. Additionally, the results 
from reflectance segmentation are compared to data directly derived at the coarse scale. This 
will show the difference between the reflectance segmentation approach and the alternative 
assumption of homogeneous pixels.  

The method for reflectance segmentation was designed and developed to support the use of 
data of current mesoscale optical imagers like the MODIS and MERIS instrument in 
conjunction with numerical environmental models. After the profound exploration of the 
behavior and capabilities of the algorithm in the first subsection of this chapter, sections 7.2 
and 7.3 expose the method to its application to actual moderate scale data from MODIS. The 
aspects brought into focus are connected to spatial and temporal effects of the application of 
the methodology. 

In chapters 3 and 4 scale and resolution effects of MODIS data were expounded, showing that 
data collected under varying viewing conditions may exhibit substantial differences in 
resolution and radiometric quality. This issue is addressed in the investigation of reflectance 
segmentation applied to the MODIS data presented above that stem from two consecutive 
days of acquisition. The investigation takes advantage of the coincident Thematic Mapper 
data. 

Fruitful application of an algorithm to derive surface parameters for the ingestion in 
environmental models requires that the resulting quantities are consistent over time. While 
moderate bias between consecutive acquisitions of data may be inevitable in measurements 
and parameter retrieval, general plausible trends should not be violated. This issue is 
addressed in the application of reflectance segmentation to a time series of MODIS data from 
the growing season of the year 2003. 
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7.1 Prototyping of the Algorithm 

7.1.1 Simulation of possible Results 

In a first step to verify the plausibility of the approach, all possible values that could result 
from the computations were evaluated. This was done by generating matrices to produce the 
full range of potential values of NDVI and LAI that may result from the reflectance 
segmentation. Because each band is segmented separately, extreme values of high and low 
reflectance may result for a land cover type from the segmentation. This begs the question if 
computation of LAI from these extremes will still produce reasonable estimates. 

To produce a matrix of possible results for a land cover type, ranges of RED and NIR 
reflectances were derived from the functions of Figure 6.6 and Figure 6.7 respectively. The 
ranges were taken by selecting the interval of the function where the possibility ψ > 0.2. It is 
within this range that the algorithm most likely will produce the reflectance result. Lower and 
higher reflectances are very unlikely to result from the optimization that seeks the highest 
possible general possibilities for all land cover types involved on a pixel. From these ranges, 
NDVI was computed resulting in a range of NDVI values. Different combinations of RED 
and NIR reflectance may yield the same NDVI. This is illustrated for possible NDVI for 
maize in Figure 7.1. The 3D plot of the NDVI shows the surface produced for all possible 
combinations of RED and NIR reflectance. Only a small area of the whole surface contains 
the NDVI that may potentially be produced from values from within valid RED and NIR 
ranges that stem from land cover type specific histograms. 
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Figure 7.1: The surface formed by possible NDVI values viewed from two angles 
(the graph to the right is rotated 90° to the right as compared to the graph on the 
left). The solid green part of the surface is the NDVI that may result from valid 
ranges of RED and NIR reflectances of maize on June 19th. A horizontal plane 
intersecting the surface would cut along equal values of NDVI obtained from 
different combinations of RED and NIR reflectances. 
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The tetragons formed by the clipping of RED and NIR reflectances according to land cover 
specific properties contain the NDVI for the application of the land cover specific LAI 
algorithms. Analysis results of the obtained LAI are presented in Table 7.1. 

Table 7.1: Statistics of LAI values obtained when possible NDVI are applied in land cover 
specific LAI algorithms of Table 6.2. 
Land 
Cover 
Type 

Deciduous 
Forest 

Mixed 
Forest 

Needleleaf 
Forest 

Grassland Spring 
Grain 

Winter 
Grain 

Maize 

NDVI 
RED range 0.001-0.079 0.008-

0.034 
0.004- 
0.040 

0.014-
0.900 

0.020-
0.060 

0.022-
0.060 

0.030-
0.080 

NIR range 0.22-0.60 0.15-0.35 0.12-0.25 0.25-0.52 0.39-0.51 0.28-0.48 0.30-
0.45 

NDVI min 0.47 0.63 0.50 0.47 0.73 0.65 0.58 
NDVI max 0.99 0.95 0.97 0.95 0.92 0.91 0.88 

LAI 
LAI mean 4.45 6.87 6.61 1.89 5.41 4.77 3.71 
LAI min 0.29 1.70 0.64 0.43 3.52 2.35 2.36 
LAI max 9.78 8.00 8.00 3.48 7.31 7.01 4.97 
stddev 2.52 1.63 2.10 0.73 0.95 1.06 0.60 
 

The values indicate a general applicability of results from the segmentation of reflectances to 
be used for the computation of LAI. No extreme values occur that are not within reasonable 
expected intervals of LAI. Only the LAI algorithms for forest classes of mixed and needleleaf 
forest lead to very high values in the saturation domain of the NDVI. This however is 
conditional upon the exponential nature of the LAI algorithm and possibly very low RED 
reflectances of needleleaf canopies. With the very steep slope of the functions for RED 
reflectances towards the lower margin, very low RED reflectances are rather unlikely to 
occur. This leads to an overestimation of very high values in this simulation. In order to avoid 
this extreme overestimation of LAI, the algorithms of needleleaf forest and mixed forest were 
restricted to producing no values greater than LAI = 12.5. The validity of the ranges is 
supported by the fact that even without this restriction, the most frequent values are around 
LAI = 7 and LAI = 5.5 for mixed and needleleaf forest, respectively. 

7.1.2 Application to a synthetic data pyramid 

A first application of the method for reflectance segmentation was conducted using a 
synthetic dataset generated from high resolution 30m Thematic Mapper reflectance data and 
the land cover classification produced from this data. The generated dataset is a data pyramid 
ranging from the 30m TM resolution to 3 aggregated resolutions at 240m, 480m, 960m. These 
aggregation levels were chosen in order to obtain a data pyramid of resolutions comparable to 
available MODIS resolutions on the one hand and, at the coarsest level, resemble the 1km 
resolution of the DANUBIA model on the other. The original 30m resolution data also serves 
as the reference or “truth” dataset. 

Within this data pyramid the two components of the Modifiable Areal Unit Problem (MAUP) 
are addressed. In the raster data the zoning scheme is predefined for each aggregation level 
and hierarchical across aggregation levels. Thus, the effect of varying zonation does not 
occur. The scale effect on coarser pixel resolution is mitigated by the approach of holding 
subscale fractional land cover information for each aggregation level. Topical characteristics 
are maintained across scales to reduce the effect on model results at different aggregations. 

For each of the three coarse resolutions, the following datasets were computed: 
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- aggregated reflectances of the RED and NIR bands (Landsat channels 3 and 4) 
- fractions of 12 land cover types on the coarse pixels (from 13 classes of 30m land 

cover classification, removing unclassified areas, see section 6.2.3) 
- majority land cover type derived from the largest fraction in the fractional land 

cover types 
- segmentation of reflectances of the RED and NIR bands using the aggregated 

reflectances, the fractional land cover dataset and the reflectance possibility 
functions. 

- true average reflectances of each land cover type on the coarse pixels area for RED 
and NIR bands. These were derived by averaging the 30m resolution pixels 
reflectances within the coarse pixels area that belong to the same land cover type. 
Subsequently, this dataset is referred to as the “truth dataset” or simply “truth”  

- LAI for each vegetation land cover type on a pixel, computed from the 
segmentation of reflectances and the true average reflectances as a reference  

- LAI for the homogeneous coarse resolution pixels using the aggregated 
reflectances and the majority land cover type 

- Aggregation of the land cover specific fractional LAI to the fractional land cover 
specific LAI at the coarser levels (i.e. land cover specific fractional LAI 
aggregated from 240m to 480m/960m and 480m to 960m) 

- Total LAI on a pixel computed as the area weighted sum of all fractional LAI of 
all land cover types on the pixel 

 

The average reflectance dataset was produced by averaging the reflectances of a 30m 
resolution band over 8x8, 16x16 and 32x32 boxes for the 240m, 480m and 960m respectively. 
Fractional land cover is derived from the high-resolution land cover classification applying 
the same box sizes and computing fractional area of the land cover types present. The output 
from this operation is a 12 layer stack, each layer representing a land cover type. Finding the 
layer with the maximum fraction on a pixel provided the majority land cover type for that 
pixel, i.e. the aggregated land cover at each coarse level. 

The high-resolution 30m reflectances were used in combination with the high-resolution 30m 
land cover classification to produce a reference dataset. This “truth dataset” contains the 
average reflectance of all high-resolution pixels of the same land cover type on the area of a 
coarse pixel. The true reflectance Rt of a land cover type i on a coarse pixel is given by: 

  

∑
=

=
in

p
ip

i
i R

n
Rt

1

1         (7.1) 

 

where ni is the number of pixels of land cover i on the area of the coarse pixel and Rip is the 
reflectance of a single high-resolution pixel of land cover i. Figure 7.2 illustrates how this 
dataset compares to the subscale fractional data. 
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Figure 7.2: Illustration of the truth dataset for a single reflective band. It allows 
the comparison of information contained in high-resolution 30m data (left) and 
results from reflectance segmentation (right). 

Land cover specific RED and NIR reflectances Rt were used to compute land cover specific 
NDVI and subsequently LAI by applying land cover specific NDVI-LAI relations (listed in 
Table 6.2). 

Aggregation of land cover specific fractional LAI to a coarser scale fractional LAI (LAIfrac) 
was conducted by computing the area weighted sum of all pixels p containing fractional LAI 

values of land cover type i at the the fine scale (∑
=

⋅
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p
ii alai

1
) and relating these to their total 
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p
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1
 on the coarser pixel: 
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where ni is the number of pixels p containing land cover type i. Equation (7.2) provides the 
way of scaling a quantity provided as a fractional value to a larger scale. 

The total single value LAI on a coarse pixel is given by the area weighted sum of the LAI of 
all land cover types present on the pixel. 
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7.1.3 Results of reflectance segmentation at 240m 

To assess the quality of the results from the reflectance segmentation for both RED and NIR 
reflectances, they are compared to the “truth” reflectance dataset obtained from averaging the 
reflectances of high-resolution pixels of the same land cover type. The results presented in 
this section are based on the 240m resolution data. Figure 7.3 shows the histograms obtained 
from the two datasets for each of the 12 land cover types and for the RED and NIR bands. As 
a general trend for all land cover types it can be observed that the peaks of the distributions in 
the reflectance segmentation (dotted line) agree well with the location of the peaks in the truth 
dataset in most cases (solid line). This however does not apply to the magnitude. The 
distributions of the reflectances from the reflectance segmentation are grouped very much 
closer around the maximum occurrence. Also the shapes of the distributions change from a 
convex normal distribution form to a concave characteristic. In some cases the location of the 
most frequent reflectances in the results from the reflectance segmentation is shifted 
compared to the highest frequencies in the truth dataset. This applies for example to the RED 
reflectance of rock and for the RED and NIR reflectances of snow and ice. When comparing 
the location of these shifted peaks with the Gaussian probability functions used in the 
algorithm (see Figure 6.6 and Figure 6.7) a very similar shift of the peaks of the functions in 
relation to the histograms can be observed. This indicates the strong influence of the position 
of the peak of the probability functions along the abscissa for the resulting reflectances. 
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Figure 7.3: Histograms of the RED and NIR reflectances of each of the 12 land 
cover types. Histograms are for the full test site at 240m resolution. Results from 
the reflectance segmentation are shown as dotted lines, the histograms from the 
truth dataset are the solid lines 
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Figure 7.3 (continued) 
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Figure 7.3 (continued) 
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Some of the histograms from the reflectance segmentation agree quite well with the 
histograms of the truth dataset, namely those that belong to the classes mixed forest, 
needleleaf forest and grassland. When comparing these with the portion of these land cover 
types in the full image frame processed (see Figure 7.4), a connection between the frequency 
of the land cover type and the quality of the result of the reflectance segmentation can be 
deduced. 
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Figure 7.4: Area fractions of the 12 land cover types for the frame of the entire 
study area derived from the 30m land cover classification. 

The histograms do not provide the information how well the absolute reflectance values 
obtained from the reflectance segmentation meet the true reflectances of the individual land 
cover types. This information is provided by relating the reflectance values of each land cover 
type from the 240m reflectance segmentation and the truth dataset on a pixel-by-pixel basis. 
The scatter plots are shown for RED and NIR reflectances in Figure 7.5 and Figure 7.6 
respectively. The plots indicate but a low connection between the truth dataset and the result 
from the reflectance segmentation. Also, the extreme outliers do not allow the computation of 
coefficients of correlation. The scatter plots show a strong grouping of the results from the 
reflectance segmentation around a mean value indicated by a horizontal orientation of a large 
portion of the samples. However, in some plots a strong second “axis” along the 1:1 line can 
be observed. This again is the case with the land cover types taking up the larger area 
fractions of the test area. All of these classes also exhibit a grouped set of extreme outliers, 
most pronounced in the grassland class. 
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Figure 7.5: Scatter plots on a pixel by pixel basis of the 12 land cover types 
comparing the RED reflectances obtained from the reflectance segmentation 
(RED RefSeg) to the true RED reflectances obtained from the high resolution 
Landsat TM image (RED Truth). Data are from the full test area at 240m 
resolution. The diagonal dotted line is the 1:1 line. 
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Figure 7.6: Scatter plots on a pixel by pixel basis of the 12 land cover types 
comparing the NIR reflectances obtained from the reflectance segmentation (NIR 
RefSeg) to the true NIR reflectances obtained from the high resolution Landsat 
TM image (NIR Truth). Data are from the full test area at 240m resolution. The 
diagonal dotted line is the 1:1 line. 
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Figure 7.7: Absolute error between land cover types 240m RED reflectances in 
the truth dataset and the reflectance segmentation result depending on the area 
fraction of the land cover type. 
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Figure 7.8: Absolute error between land cover types 240m NIR reflectances in the 
truth dataset and the reflectance segmentation result depending on the area 
fraction of the land cover type. 
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On a homogeneous pixel, the algorithm will not change the reflectance for the single land 
cover type. Thus, no error will result for these cases. The above said suggests a dependency 
between the error introduced by the reflectance segmentation algorithm and the area fraction 
of the land cover type. This dependency is investigated in Figure 7.7 and Figure 7.8 for the 
RED and NIR bands respectively. The plots show a mitigation of error with the increase of 
area fraction on a pixel for all land cover types. The smaller the land cover types fraction on a 
pixel the larger the error observed. In the reflectance segmentation of the RED band 
underestimation of the true reflectance is dominant (Figure 7.7). In the reflectance 
segmentation of the NIR band both under- and overestimation of the true reflectance occur 
(Figure 7.8). 

Another characteristic of the reflectance segmentation algorithm can be observed in Figure 
7.7 and Figure 7.8: There seems to be a gap between smaller error and larger error. Lesser 
“moderate” error in between occurs. This phenomenon is most pronounced in the NIR 
reflectance error of the needleleaf class (Figure 7.8) but can be observed in the error of 
numerous other land cover types. 

The vertical striping in the plots of Figure 7.7 and Figure 7.8 is due to the fact that land cover 
fractions in the datasets examined are multiples of 1/64. This is a result from the aggregation 
of the 8x8 boxes of 30m pixels to the 240m pixels. 

The results from the reflectance segmentation can be summarized in three points: 

- the reflectance segmentation greatly reduces the variance of the true reflectances, 
putting an emphasis on the mean values of a land cover type. A smoothing of the 
images occurs (see also the visual interpretation in section 7.1.5).  

- this results in poor reproduction of the true reflectances in the results from the 
reflectance segmentation of all land cover types. 

- errors in the reflectance segmentation are greater where the fractional area of a 
land cover type is small. Error is zero whenever a pixel is homogeneously covered 
by a single cover type. 

A random factor that can not be specified more precisely drives the results of the reflectance 
segmentation. Extreme deviations of reflectances from the mean are only met by chance in the 
results of the reflectance segmentation. However, the information content on a single pixel is 
greatly enhanced as compared to generally assumed homogeneity of pixels. This allows for a 
further investigation and comparison of the results of the reflectance segmentation to the 
single pixel value alternative when LAI algorithms are applied to the data. 

7.1.4 Results of LAI retrievals based on reflectance segments at 240m 

The layers of RED and NIR reflectances of the individual land cover types were used to 
compute NDVI and subsequently LAI for the vegetation cover types. This was performed for 
both, the truth dataset and the results from the reflectance segmentation. Using the true 
average land cover type specific reflectances to compute land cover type specific LAI is one 
way of generating a LAI reference dataset. Another way is the computation of LAI from the 
original 30m resolution data and subsequent averaging of this high resolution LAI for each 
land cover type on a coarse pixel. However, the two ways of deriving a truth dataset for LAI 
are on a par with each other as illustrated in Figure 7.9. The regression line is close to 
identical with the 1:1 line and r² = 0.9964. The LAI dataset derived from the averaged high-
resolution reflectances was preferred in the comparison with the results from the reflectance 
segmentation because with this method, the procedure of parameter retrieval is equivalent to 
the method applicable to the data obtained from reflectance segmentation. The high 
correlation of the two options of a truth dataset is a strong indicator for the plausibility of the 
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approach of the derivation of a land surface parameter like LAI based on homogeneous land 
cover type units. 

 
Figure 7.9: Correlation of the two options of generating a reference dataset for 
land cover type specific LAI at 240m. LAI micro is the 30m resolution LAI 
averaged per land cover type. LAI truth is derived from average reflectances of 
land cover types. 

The following of this section focuses on four areas of the 240m dataset to directly compare 
the LAI values obtained from true land cover types reflectances, the segmented reflectances 
and the mesoscale LAI for the homogeneity assumption. Two small areas, Hochstadt and Gut 
Huell, are typical rural landscapes. Their land cover types are shown in Figure 7.10. A grid 
superimposed on the land cover classification cutouts suggests the areas of the corresponding 
240m pixels. Each grid cell represents a pixel whose single reflectance value goes into the 
reflectance segmentation. While the Hochstadt area has rather rapidly changing cover types 
and smaller homogeneous areas, the Gut Huell area exhibits larger patches of homogeneous 
cover type resulting in a larger number of homogeneous 240m pixels. Both areas are used in a 
pixel-by-pixel analysis of LAI derived from reflectance segmentation. Their size is 
1920x1920m. 
 

   
 

 deciduous forest  grassland  maize  urban fabric 
        

 mixed forest  summer crops  rock/gravel  snow and ice 
        

 coniferous forest  winter crops  bare soil  water 

Figure 7.10: Test areas Hochstadt (left) and Gut Huell (right) used in the 
investigation of LAI values obtained from reflectance segmentation. The images 
show the land cover types at 30m resolution with a 240m grid superimposed. 
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Figure 7.11: Test areas Landsberg (above) and Wetterstein (below) used in the 
investigation of LAI values obtained from reflectance segmentation. Size: 640x640 
pixel at 30m resolution; 19.2x19.2 km. Legend see Figure 7.10. 
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Two larger areas shown in Figure 7.11 were chosen to obtain a statistically significant amount 
of data. The first, named Landsberg is structurally very much similar to the smaller areas of 
Hochstadt and Gut Huell. It characterizes the northern part of the study area and is made up of 
the different types of agricultural crops, grassland, forests and urban areas. The second, 
named Wetterstein is located in the southern part of the test area and resembles a typical 
alpine landscape. It is made up of large mixed and needleleaf forests, rock and snow surfaces 
and grassland as well as some settlements and agricultural fields on the valley floors. The size 
of the larger areas is 19.2x19.2 km. UTM Coordinates of all four areas are listed in Table 7.2. 

Table 7.2: Corner Coordinates (UL, UR, LR, LL) of the test areas used in the analysis of LAI 
results from reflectance segmentation. 

Area name UL UTM32 
(easting/northing) 

UR UTM32 
(easting/northing)

LR UTM32 
(easting/northing)

LL UTM32 
(easting/northing)

Hochstadt 668808.76 
5325726.00 

670728.76
5325726.00

670728.76
5323806.00

668808.76
5323806.00

Gut Huell 671688.76 
5329566.00 

673608.76
5329566.00

673608.76
5327646.00

671688.76
5327646.00

Landsberg 629928.76 
5340606.00 

649128.76
5340606.00

649128.76
5321406.00

629928.76
5321406.00

Wetterstein 654408.76 
5258526.00 

673608.76
5258526.00

673608.76
5239326.00

654408.76
5239326.00

 

 
Analysis of single segmented Pixels 
Table 7.3 presents a selection of the results of LAI computation on single moderate resolution 
pixels from the Hochstadt and Gut Huell areas. From either area six pixels were chosen 
showing two examples of each, good, moderate and poor results. Additionally two 
homogeneous pixels from the Gut Huell area were added. The latter only demonstrate the 
100% agreement of reflectance segmentation results with the majority on homogeneous 
pixels. 

The first two pixels in the Hochstadt part of the table (197/320 and 193/317) are examples of 
good results of reflectance segmentation. In the first pixel two almost equally sized fractions 
(mixed forest, winter grain) make up more than 70% of the pixel area. All fractional land 
cover types show little error in the RED and NIR reflectances as well as in the LAI estimates. 
Consequently, the LAI sum on the pixel of reflectance segmentation shows much better 
agreement with the truth than the LAI derived from majority land cover and moderate scale 
reflectance. In the second pixel the mixed forest class dominates the area of the pixel. The 
segment of this class is modeled quite well while the classes with minor fractions exhibit 
much larger error. When validated against the majority alternative however, the total LAI on 
the pixel is still closer to truth when computed by reflectance segmentation than by majority 
assumption. 

Two pixels with moderate error follow in the table (200/317 and 199/319). Again, the 
distribution of areas is dominated by one class in the first case and well spread to four classes 
in the second. Both pixels show a very large relative error in one of the minor fractions and 
large relative error in most other fractions. This leads to a relative error on the moderate pixel 
LAI of approximately 20%. In the first case this result may be still be close to the truth but is 
outperformed by the majority LAI. In the second the 20% error amounts to less than half the 
absolute error of LAI from the majority data leading to a still better estimate of LAI from the 
reflectance segmentation. Land cover type specific fractional LAI is substantially error prone 
on these pixels. 
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Table 7.3: Examples of the results on single 240m pixels from the Hochtstadt and the Gut 
Huell areas. The table lists fractional (left) and aggregated values (right). Majority land 
cover types on a pixel are in bold type. Date: June 19, 2000, doy 171 (full tables see Appendix 
6) 

fractional values aggregated moderate scale values (240m)
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Hochstadt 
Mixed Forest 197/  320 0.3440 0.0221 0.0234 0.2721 0.2774 5.6 1.9 8.50 8.20 3.7 0.3 4.75 4.65 2.60 2.2 44.1 0.10 2.05
Grassland 197/  320 0.0940 0.0551 0.0611 0.3976 0.3636 9.8 9.4 1.75 1.45 20.7 0.3     
Spring Grain 197/  320 0.0160 0.0353 0.0330 0.4490 0.4362 7.0 2.9 2.80 2.85 1.8 0.1     
Winter Grain 197/  320 0.3590 0.0307 0.0268 0.3996 0.4179 14.6 4.4 2.85 3.00 5.0 0.2     
Maize 197/  320 0.1880 0.0470 0.0490 0.3632 0.3366 4.1 7.9 3.35 3.10 8.1 0.3          
Mixed Forest 193/  317 0.7810 0.0191 0.0190 0.2440 0.2456 0.5 0.7 8.80 8.85 0.6 0.0 7.50 7.55 8.30 0.7 9.9 0.05 0.75
Grassland 193/  317 0.0160 0.0511 0.0391 0.3869 0.4057 30.7 4.6 1.80 2.25 20.0 0.5     
Spring Grain 193/  317 0.1090 0.0343 0.0452 0.4483 0.4419 24.1 1.4 2.85 2.50 14.0 0.4     
Winter Grain 193/  317 0.0160 0.0283 0.0393 0.3807 0.4044 28.0 5.9 2.85 2.55 11.8 0.3     
Maize 193/  317 0.0780 0.0426 0.0289 0.3591 0.3440 47.4 4.4 3.50 4.05 13.6 0.6          
Grassland 200/  317 0.1250 0.2149 0.0658 0.3937 0.3895 226.6 1.1 0.10 1.45 93.1 1.4 2.75 2.30 2.30 19.6 0.0 0.45 0.00
Spring Grain 200/  317 0.1250 0.0325 0.0433 0.4498 0.4281 24.9 5.1 2.90 2.55 13.7 0.4     
Winter Grain 200/  317 0.7030 0.0211 0.0443 0.3980 0.4022 52.4 1.0 3.15 2.40 31.3 0.8     
Maize 200/  317 0.0470 0.0420 0.0619 0.3599 0.3650 32.1 1.4 3.55 2.80 26.8 0.8          
Mixed Forest 199/  319 0.2340 0.0180 0.0243 0.2308 0.2207 25.9 4.6 8.80 6.20 41.9 2.6 3.75 4.80 2.40 21.9 50.0 1.05 2.40
Needleleaf Forest 199/  319 0.2030 0.0843 0.0208 0.1796 0.1751 305.3 2.6 0.05 10.05 99.5 10.0     
Spring Grain 199/  319 0.2340 0.0253 0.0341 0.4414 0.4507 25.8 2.1 3.10 2.85 8.8 0.3     
Winter Grain 199/  319 0.3280 0.0222 0.0507 0.3511 0.3546 56.2 1.0 3.00 2.05 46.3 1.0          
Mixed Forest 199/  313 0.1090 0.0201 0.0222 0.2749 0.2344 9.5 17.3 9.30 7.35 26.5 2.0 4.95 3.00 3.10 65.0 3.3 1.95 0.10
Needleleaf Forest 199/  313 0.0160 0.0219 0.0171 0.1859 0.1923 28.1 3.3 10.20 12.50 18.4 2.3     
Grassland 199/  313 0.2340 0.0369 0.0648 0.6716 0.3502 43.1 91.8 2.90 1.30 123.1 1.6     
Winter Grain 199/  313 0.2810 0.0947 0.0438 0.0246 0.3628 116.2 93.2 6.00 2.30 160.9 3.7     
Maize 199/  313 0.3590 0.0326 0.0540 0.3883 0.3453 39.6 12.5 4.05 2.95 37.3 1.1          
Grassland 195/  320 0.0310 0.0524 0.0902 0.3881 0.2944 41.9 31.8 1.80 0.60 200.0 1.2 1.15 0.30 0.00 283.3 100.0 0.85 0.30
Winter Grain 195/  320 0.1880 0.0293 0.1247 0.3833 0.3019 76.5 27.0 2.85 0.50 470.0 2.4     
Maize 195/  320 0.1720 0.0459 0.1047 0.3603 0.3149 56.2 14.4 3.40 1.25 172.0 2.2     
Rock 195/  320 0.5310 0.2732 0.2151 0.2710 0.3174 27.0 14.6 0.00 0.00 0.0 0.0     
Bare Soil 195/  320 0.0470 0.1525 0.1404 0.3184 0.3520 8.6 9.5 0.00 0.00 0.0 0.0     
Urban Fabric 195/  320 0.0310 0.0915 0.1625 0.2477 0.2394 43.7 3.5 0.00 0.00 0.0 0.0          

Gut Huell 
Mixed Forest 178/  327 0.3750 0.0231 0.0286 0.2795 0.3576 19.2 21.8 8.35 8.60 2.9 0.25 4.80 4.85 2.75 1.0 76.4 0.05 2.10
Grassland 178/  327 0.0310 0.0534 0.0389 0.3917 0.3844 37.3 1.9 1.75 2.20 20.5 0.45     
Winter Grain 178/  327 0.5940 0.0344 0.0316 0.4204 0.3715 8.9 13.2 2.75 2.70 1.9 0.05     
Mixed Forest 183/  326 0.5780 0.0170 0.0179 0.2365 0.2318 5.0 2.0 9.40 8.90 5.6 0.50 10.70 10.40 8.45 2.9 23.1 0.30 1.95
Needleleaf Forest 183/  326 0.4220 0.0181 0.0168 0.1816 0.1881 7.7 3.5 12.50 12.50 0.0 0.00     
Grassland 182/  332 0.2340 0.0226 0.0532 0.3675 0.3877 57.5 5.2 2.80 1.75 60.0 1.05 2.50 2.20 2.10 13.6 4.8 0.30 0.10
Winter Grain 182/  332 0.5310 0.0181 0.0482 0.3595 0.3444 62.4 4.4 3.20 2.10 52.4 1.10     
Maize 182/  332 0.2340 0.1542 0.0553 0.3559 0.3703 178.8 3.9 0.70 3.05 77.0 2.35     
Grassland 183/  332 0.5650 0.0515 0.0735 0.3579 0.3596 29.9 0.5 1.70 1.15 47.8 0.55 1.20 1.05 1.05 14.3 0.0 0.15 0.00
Winter Grain 183/  332 0.1770 0.1286 0.0555 0.3765 0.3815 131.7 1.3 0.75 2.05 63.4 1.30     
Maize 183/  332 0.0320 0.0434 0.0618 0.3591 0.3422 29.8 4.9 3.50 2.65 32.1 0.85     
Urban Fabric 183/  332 0.2260 0.0893 0.0877 0.2441 0.2480 1.8 1.6 0.00 0.00 0.0 0.00     
Grassland 184/  332 0.6250 0.0057 0.0902 0.3945 0.3699 93.7 6.7 3.75 0.90 316.7 2.85 2.80 0.95 0.80 194.7 18.8 1.85 0.15
Spring Grain 184/  332 0.0160 0.0347 0.0766 0.4488 0.3963 54.7 13.2 2.80 1.65 69.7 1.15     
Winter Grain 184/  332 0.1560 0.0266 0.0399 0.3817 0.4123 33.3 7.4 2.95 2.60 13.5 0.35     
Bare Soil 184/  332 0.2030 0.4401 0.1668 0.3191 0.3757 163.8 15.1 0.00 0.00 0.0 0.00     
Deciduous Forest 179/  328 0.0160 0.0269 0.0293 0.3940 0.4646 8.2 15.2 5.20 5.45 4.6 0.25 9.85 5.65 6.75 74.3 16.3 4.20 1.10
Mixed Forest 179/  328 0.6410 0.0208 0.0386 0.5499 0.4197 46.1 31.0 12.50 7.55 65.6 4.95     
Grassland 179/  328 0.0470 0.0515 0.0412 0.3750 0.4263 25.0 12.0 1.75 2.25 22.2 0.50     
Spring Grain 179/  328 0.0310 0.0351 0.0472 0.4473 0.4502 25.6 0.6 2.80 2.50 12.0 0.30     
Winter Grain 179/  328 0.2660 0.0949 0.0521 0.0927 0.3932 82.1 76.4 6.00 2.20 172.7 3.80     
Winter Grain 178/  325 1.0000 0.0502 0.0502 0.3590 0.3591 0.0 0.0 2.10 2.10 0.0 0.00 2.10 2.10 2.10 0.0 0.0 0.00 0.00
Mixed Forest 180/  327 1.0000 0.0293 0.0292 0.3509 0.3508 0.3 0.0 8.30 8.30 0.0 0.00 8.30 8.30 8.30 0.0 0.0 0.00 0.00

 

The last two cases of the Hochstadt area (199/313 and 195/320) greatly miss the true value of 
LAI in both fractional cover types as well as the moderate scale sum. The homogeneity model 
yields results much closer to the truth data in both cases. Relative errors are unacceptable. 
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However, in the last case the majority land cover type rock predicts zero LAI for the pixel. 
This is the case although about 40% of the pixel are covered by vegetation. Thus, the 
relatively better result of the homogeneity model does remain questionable. 

In the Gut Huell section of the table, pixels with fewer cover types present on the pixel are 
shown. Again the first two pixels listed (178/327 and 183/326) show good fractional results 
whose sum is a better estimate than the majority LAI. In the first pixel, largest error occurs on 
the grassland fraction of the pixel. This fraction however is only 3% of the pixel area. 
Neglecting the second largest fraction on the pixel, mixed forest, leads to substantial error in 
the LAI derived from the majority dataset. The result from reflectance segmentation is closer 
to truth even though its error (relative error of RED/NIR reflectances) is up to 37%. In the 
second pixel the influence of neglecting a land cover type on the pixel is less pronounced, 
mainly because of the higher similarity of LAI amount of the two forest classes. But also, for 
both classes’ fractions, error is low in the reflectances as well as in LAI. 

On the pixels with moderate result (182/332 and 183/332), large error in the reflectance 
segmentation of the RED band results in error exceeding 50% on the LAI of the land cover 
types. The lumped value on the mesoscale pixel may still be acceptable when compared to the 
truth dataset, but the homogeneity model yields better estimates in both cases. In both pixels 
the largest fraction holds the majority of the pixel area, which may support a good estimate 
from the majority dataset. The absolute error of 0.3 and 0.15 units of LAI from reflectance 
segmentation remains quite close to the truth values. In the two cases, aggregation to the 
mesoscale mitigates error to a moderate degree. Land cover type specific values, however, are 
examples of failure of the prediction of LAI. 

The next two cases are examples of poor results in the Gut Huell area (184/332 and 179/328). 
In both cases, the larger area fraction cover types exhibit the largest error. Here, the error 
results from both, the reflectance segmentation of the RED band and the NIR band. Absolute 
error is tremendous in the fractional LAI estimates as well as in the moderate scale lumped 
value. These larger errors occur on pixel samples with a larger host of land cover types, while 
most cases of fewer land cover types exhibit better estimates. In both cases the majority 
model yields LAI closer to the truth reference values. 

The last two pixels are cases of homogeneous cover type on the pixel. In both cases results 
from reflectance segmentation are equivalent to the majority model results. The small 
deviation of RED and NIR reflectances in the second example (180/327) are due to rounding 
errors in the reflectance segmentation computation and the precision of data storage. 

 

Comparison with the truth dataset 
Regression analysis was conducted for all four test areas. For each site, the fractional land 
cover type specific LAI values (LAI refseg) were validated against the truth dataset (LAI 
truth). Land cover types with zero area fraction were omitted in the statistic. On the lumped 
240m level, the area weighted sum of reflectance segmentation derived LAI (LAI sum refseg) 
and the result of the majority LAI model (LAI majority) were compared with the sum of the 
fractional LAI from the truth dataset (LAI sum truth). Pixels with zero LAI were omitted in 
this comparison. 

The result from the regression analysis of all fractional LAI for all land cover types are shown 
in Figure 7.12. The coefficient of determination of the Hochstadt, Gut Huell and the 
Landsberg areas of 0.76, 0.83 and 0.74 respectively, suggest a fairly good explanation of the 
true LAI. In the Wetterstein area the coefficient is only 0.54 showing poorer agreement with 
the truth dataset. The plots in Figure 7.12, however uncover a similar striping or layering in 
the data as it was observed in the analysis of the reflectances. This is best observed in the 
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plots of Landsberg and Wetterstein with a much larger number of samples (~250 in the small 
test areas, ~20.000 in the larger areas). The striping is a result from the strong concentration 
of reflectances around a mean value that is reflected in the LAI retrievals. Each layer of dense 
grouping of samples corresponds to a land cover type. The quite frequent values close to the 
mean of RED and NIR reflectances that go into the land cover specific LAI algorithms 
produce this effect. It can be interpreted as the low variance that results from reflectance 
segmentation and that is transported to LAI by the algorithms. It needs to be stated that for 
this kind of distribution regression analysis is an inadequate tool so that the coefficients of 
correlation are questionable for the Landsberg and Wetterstein areas.  

 
 

Figure 7.12: Results from regression analysis of all fractional LAI values for all 
land cover types in the four test areas. LAI from reflectance segmentation (LAI 
refseg) is plotted against LAI from the truth dataset (LAI truth). Spatial resolution 
is 240m. 

The striping is no longer prevalent when LAI is aggregated to the 240m scale. The lumping of 
all land cover types LAI on a 240m pixel allows to compare the results to the alternative of 
deriving LAI on homogeneous pixels. In Figure 7.13 the plots from this analysis are shown. 
The regressions of all areas except the Wetterstein area show that the lumped LAI from 
reflectance segmentation correlates to the truth dataset to about the same degree as the LAI 
from the majority data (r² ≈ 0.9). This is cut back in the Wetterstein area with a regression of 
only 0.71. A frequent overestimation of LAI is observed for this area. In conjunction with the 
poor regression of that area in the comparison of the land cover type specific LAI these results 
suggest a much lower performance of the algorithm in the mountainous environment. Reasons 
for this shall be addressed later in the discussion of the results. 
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Figure 7.13: Regressions of the lumped values of LAI on 240m pixels. The left 
column compares the area-weighted sums of different land cover types LAI from 
reflectance segmentation (LAI sum refseg) to the area-weighted sums of LAI from 
the truth dataset (LAI sum truth). The right column compares the LAI obtained 
from the homogeneity method (LAI majority) to the truth dataset. 
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Statistics of the test areas 
Statistics of the relative and absolute error of the results of the reflectance segmentation were 
assessed for the fractional land cover type specific LAI and the aggregation to the 
homogeneous 240m scale. The error was computed against the truth dataset and the 
aggregation of these data. The result from the majority dataset was again used as a 
comparative measure on the 240m scale. This comparison may provide an estimate of the 
inherent quality of the results from the reflectance segmentation algorithm when considering a 
representative value of LAI for the (in most cases) heterogeneous area of a 240m pixel. All 
statistics were derived excluding land cover types with no fractions on a pixel (i.e. zero 
values) and 240m pixels exhibiting zero LAI. 

As can already be concluded from the aforesaid, extreme maximum values occur in the data. 
These unacceptably high maxima adulterate the mean and the standard deviation, drawing an 
inappropriate picture of the results. This can best be observed in the maximum relative error 
of the two larger test sites Landsberg and Wetterstein with errors of several thousand percent 
(see Table 7.4). In order to correct this false impression, the 95th percentile of each error data 
set was taken and mean maxima and standard deviation was computed for this percentile. 
This removal of the 5% of maximal error excludes the values that are positively inappropriate. 

In the fractional LAI results, the three areas of Hochstadt, Gut Huell and Landsberg show 
absolute error around 0.6 units of LAI in the 95th percentile and still below one in the mean of 
the full dataset. The value of the error at the 95th percentile ranges around three units of LAI. 
This maximum error is a large deviation, but greatly reduced as compared to the statistics of 
the full dataset. Standard deviations smaller than one unit of LAI suggest a reasonable amount 
of error in the data. Relative error however may still be large and depends greatly on the land 
cover type because each cover type has a different appearance concerning the possible 
maximal leaf area. In the three agriculturally dominated sites mean relative error remains 
between 20% and 30%.  

The results in the mountainous Wetterstein area exhibit errors that amount to approximately 
double the values as compared to the other sites. 

Table 7.4: Statistics of the relative and absolute error in the land cover type specific 
fractional LAI from reflectance segmentation for the four test areas. Error was assessed 
against the truth dataset. 

 relative error LAI refseg [%] absolute error LAI refseg [m²/m²] 
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mean 37.7 27.5 44.4 124.5 0.86 0.91 0.80 1.78 
median 13.5 3.0 14.6 10.5 0.43 2.78 0.45 0.35 
max 470.0 338.5 16700.0 24900.0 10.00 7.35 12.50 12.50 
min 0.0 0.0 0.0 0.0 0.00 0.00 0.00 0.00 
stdev 62.3 46.1 175.3 514.9 1.32 1.28 1.09 2.75 

95th  percentile 
value 148.8 94.3 171.4 534.5 2.79 3.30 2.65 7.85 
mean 26.8 19.4 27.2 54.8 0.63 0.69 0.61 1.36 
max 147.8 93.0 171.0 534.4 2.75 3.25 2.60 7.80 
min 0.0 0.0 0.0 0.0 0.00 0.00 0.00 0.00 
stddev 33.6 22.5 34.5 100.6 0.67 0.78 0.65 2.09 
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The aggregation of LAI from the land cover type fractions to the homogeneous 240m level 
greatly reduces the error in the data. Even without removing very large error by focusing on 
the 95th percentile, the mean absolute error is 0.53, 0.40 and 0.39 in the Hochstadt, the Gut 
Huell and the Landsberg area, respectively. Again, the mountainous Wetterstein area exhibits 
poorer results. These mean absolute errors are all lower than the error introduced in the 
homogeneity assumption alternative. While standard deviations are close to equivalent in the 
absolute errors observed in lumped results from reflectance segmentation and the majority 
LAI, maxima from the reflectance segmentation exceed the extremes in the majority data. 
Looking at the 95th percentile of the data, the mean absolute error of the lumped reflectance 
segmentation results remains lower than the majority LAI's error. It is well below 0.3 units of 
LAI, even in the larger dataset of the Landsberg area. Remarkably, the maximal absolute error 
is also lower in the results from the reflectance segmentation data, when the top 5% of the 
largest error is removed. However, in the small test areas, standard deviations are reduced, 
reflecting the reduced dynamics in the results from reflectance segmentation. In the larger 
Landsberg areas data, standard deviation retains a level commensurate to the majority LAI 
error. However, from the aforementioned it remains questionable if the dispersion in the 
reflectance segmentation results has comparable bias as the truth data. 

In the small agricultural test areas, mean relative error in the data is very low in the 95th 
percentile for the smaller test areas and always lower than the error in the majority LAI. A 
mean 22% error in the full dataset of the more representative Landsberg area is almost halved 
to 13% when removing the largest 5% in the error. The maximum relative error, however, is 
lower than in the majority LAI only in the results of the Gut Huell area. 

The results of the Wetterstein area are much less convincing, even when focusing on the data 
lumped to the 240m scale. While the mean absolute error is below one unit of LAI, maximum 
error of 5.4 m²/m² is almost twice the maximum error observed when deriving LAI on 
homogeneous pixels after the removal of the most extreme error. Then, the relative error in 
this area still amounts to 50% and can be over 300% in the most extreme cases. Although the 
LAI derived by the majority method on 240m pixels is the most error prone of all four areas, 
the estimates from aggregating the reflectance segmentation results are of still lower quality.  

Table 7.5: Statistics of the relative and absolute error in the summed LAI from reflectance 
segmentation on 240m pixels and the LAI from the majority data for the four test areas. Error 
was assessed against the sums of LAI from the truth dataset. 
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 refseg major refseg major refseg major refseg major 
mean 25.8 26.5 12.7 22.7 21.7 19.3 73.91 29.01 
median 8.3 17.2 2.2 11.0 5.9 10.7 12.9 15.1 
max 283.3 100.0 194.7 253.3 983.3 128.6 1842.9 113.3 
min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
stdev 50.5 27.9 28.2 42.8 50.5 25.1 143.0 33.4 

95th percentile 
value 84.8 100.0 44.3 74.5 93.2 100.0 350.0 100.0 
mean 3.5 4.3 1.9 3.6 12.9 13.7 49.0 18.3 
max 84.6 70.5 43.8 63.8 93.1 85.2 346.2 99.1 
min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
stddev 11.6 11.4 6.7 10.0 18.5 13.9 76.3 20.3 
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 refseg major refseg major refseg major refseg major 
mean 0.53 0.69 0.40 0.71 0.39 0.44 1.22 0.80 
median 0.20 0.30 0.10 0.38 0.15 0.20 0.50 0.45 
max 4.40 3.95 4.20 3.20 8.75 5.65 10.30 6.50 
stdev 0.89 0.88 0.71 0.76 0.68 0.62 1.75 0.97 

95th percentile 
value 2.37 2.63 1.74 1.94 1.80 1.82 5.45 2.90 
mean 0.08 0.12 0.07 0.16 0.26 0.33 0.92 0.64 
max 1.95 2.40 1.65 1.90 1.75 1.80 5.40 2.85 
stddev 0.24 0.35 0.22 0.41 0.35 0.39 1.19 0.68 

 

The removal of the top 5% of the largest error raises the question of how much of the area is 
affected by these large errors. The mean size of area fractions charged with highest error is 
always smaller than the mean of all area fraction’s sizes. Thus, the error extremes tend to 
occur on rather small area fractions. This is observed in all four test areas. Total area of the 
removed highest error depends on whether the assessment of this measure is performed for 
relative or absolute error. Generally, areas are smaller when the area of the highest relative 
error is sought. The area of the largest errors ranges from 1.5-5% of the test sites. 

Further investigation of the results was conducted concerning the statistics of individual land 
cover types. Here, the areal fraction of the individual land cover type burdened with the 5% of 
the largest errors may exceed 40% of the total area of a land cover type in the test site. This 
observation was made for the small test areas Gut Huell and Hochstadt. The land cover types 
affected are those with the smallest portions in the test area so that it is always less than 1% of 
the total test area exhibiting these extreme errors. In the larger test sites Landsberg and 
Wetterstein, the areal extend of these extreme errors is smaller. The area fraction of a land 
cover type that shows the 5% largest error is usually below 5% in the larger test sites but is 
larger than 10% in the case of some cover types. These latter cases occur for the land cover 
types which are the most weakly represented in the test area. Again, for each land cover type, 
the portion of the error-burdened area is rarely more than 1% of the total area of the test site. 
This once more supports the notion that larger error occurs on smaller areas. The land cover 
type specific statistics do not yield any more significant information. Error can not explicitly 
be attributed to any specific land cover type in the survey of the four test areas. 

7.1.5 Visual Interpretation of results at 240m 

The visual display of the results from the reflectance segmentation and the subsequent 
computation of LAI from the land cover specific reflectances reveals the spatial component of 
the methodology. The images shown here comprise the full study area as delineated in chapter 
2. This section displays and describes a selection of the 12 land cover types under address. 
Images of all land cover types are provided in the galleries in Appendix 7. 

The figures show the relation between the reflectances/LAI if derived from the homogeneous 
majority data at 240m and the fractional data on that scale on the one hand. The difference 
between the reflectance segmentation and the truth dataset are illustrated on the other. Images 
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of the datasets are shown in the order majority-reflectance segmentation-truth from top to 
bottom. 

Figure 7.14 shows the results from the reflectance segmentation of the NIR band of the land 
cover types needleleaf forest, winter grain and urban fabric. In the following, aspects of the 
results of these three land cover types are discussed. 

In the needleleaf forest imagery, a belt of higher reflectances is observed along the northern 
fringe of the Alps and some patches of higher reflectance are dispersed in the northern and 
western part. Comparing the result from the reflectance segmentation to the truth image 
reveals that reflectance segmentation will capture these general large-scale changes in 
reflectivity. However, when focusing in on the needleleaf forests on the valley slopes in the 
southern mountainous area and also in the larger patches around the Munich area it can be 
observed that some of the dynamics in the reflectances is lost in the land cover types 
reflectances derived by reflectance segmentation. In comparison to the reflectance of 
needleleaf forest in the majority image a small change in the total number of pixels containing 
needleleaf forest is prevalent. This does not signify a change in area of needleleaf forest as the 
portion of the cover type is close to 15% of the total area in both datasets. In the extended 
needleleaf forest areas in the mountainous part to the south as well as in the dispersed pixels 
of needleleaf forest in the northern two thirds of the image the dispersion of the forest type is 
increased. Especially the needleleaf forest pixels in the mountains, though, exhibit more 
pronounced changes in gray values in the majority image’s forest pixels. 

In the reflectances of the winter grain land cover type the change in dissemination of the areas 
is most conspicuous. While the entire northern half of the images of fractional data contain 
this class, much lesser pixels are assigned to that class in the majority dataset. In this case, a 
change from 4.8% to 5.4% of the total area is observed when moving from the fractions 
derived from 30m data to the 240m scale. Again, in the fractional data the reduction of 
dynamics from the truth dataset to the reflectance segmentation data is obvious. Although in 
some parts of the area, such as southeast of Munich, in the very northwest of the frame and 
between the two urban centers of Augsburg and Munich, increased reflectivity of the winter 
grain land cover type is captured, the overall impression of the reflectance segmentation 
image is a reduced contrast in grayvalues. To the south, cultivation of winter grain is impeded 
by higher precipitation and elevation. It diminishes approximately south of the latitude of the 
large lakes, the Ammersee and Starnberger See. Only along some of the larger valleys such as 
the Inn valley, winter grain was classified. It is very noticeable that lower reflectance of the 
crop in this southern part is not captured by reflectance segmentation. 

The imagery of the urban fabric land cover type is an impressive example of spatial detail that 
is retained in the fractional data representation. While the urban fabric areas in the majority 
data comprise the larger towns only and, by chance of the aggregation, some smaller villages, 
the fractional data reveals the general density of settlement in the area. This is quite well 
observed in the southern part of the frame, where settlement along the valley floors in the 
mountains is omitted in the majority data but retained in the fractional data. Another detail 
contained in the fractional data is the linear structures of transportation infrastructure. Larger 
roads that are detected in the 30m TM data are conserved in the images of the truth data and 
the reflectance segmentation. An interesting features lies in the change of reflectance in the 
large urban centers. Obviously, higher reflectances occur at the outskirts of the cities. As this 
can be observed in all three images, it may be attributable to increased contamination of the 
class with vegetated patches as distance from the city center increases. This contamination 
transports to the fractional land cover by the generation from the 30m land cover 
classification and is increased in the majority land cover at 240m resolution.  
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NIR reflectance of LCT3: Needleleaf Forest  0  max 

 

 

Figure 7.14: Reflectances of the 
NIR band of the land cover types 
needleleaf forest (this page), 
winter grain (next page left) and 
urban fabric (next page right). Top 
to bottom: majority dataset, 
reflectance segmentation result, 
truth dataset. 
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NIR reflectance of LCT6: Winter Grain (left) and LCT10: Urban Fabric (right) 

0  max 
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LAI of LCT 2: Mixed Forest  0  >12.5 

 

 

 

Figure 7.15: LAI of the land cover 
types mixed forest (this page), 
grassland (next page left) and 
maize (next page right). Top to 
bottom: majority LAI, LAI derived 
from reflectance segmentation 
result, LAI derived from the truth 
dataset. 
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LAI of LCT 4: Grassland         LAI of LCT 7: Maize 
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In Figure 7.15 the results of the LAI retrieval from the reflectance datasets are presented. The 
land cover types shown are mixed forest, grassland and maize. As can be expected from the 
previous results, the LAI derived from the reflectance segmentation suffers losses in 
dynamics when compared to the LAI computed from the truth dataset. On the other hand, 
spatial coverage and detail is equivalent to the truth dataset and more explicit than the 
dispersion in the majority data. For this presentation of LAI, other land cover types were 
chosen than for the presentation of the reflectance results with the advantage of showing the 
spatial distribution of another three cover types. As with the reflectance dataset, all images of 
the LAI are provided in Appendix 7. 

In the data of the mixed forest land cover type a dramatic change in the number of pixels 
containing that cover type is prevalent. The class is attributed to many more pixels in the 
fractional data, even though the portion of mixed forest in the image frame is 1.5% larger in 
the majority data. Most obvious in the LAI of this land cover type is the failure of the 
reflectance segmentation to detect the pronounced decrease in LAI in the southern half of the 
image frame. In the truth data’s image, a continuous attenuation of LAI can be observed 
especially from the valley floors to the higher elevation forest stands (blue colors in the truth 
data set image). In the LAI derived from the majority dataset this decrease can also be 
detected. These higher elevation areas do not exhibit lower LAI values in the LAI derived 
from reflectance segmentation. However, in the larger continuous forested areas some of the 
dynamics in LAI observable in the truth image will also be reflected in the reflectance 
segmentation image. Also, a general trend over the entire image frame of higher LAI in the 
north and northeast to lower LAI in the southwest is well contained in the LAI from 
reflectance segmentation. 

The grassland class is the class with the largest proportion of the total area. Also, that land 
cover type experiences the largest modification of all 12 types in absolute change in area 
fraction from 38.5% in the 30m and fractional data to 43.1% in the majority land cover. 
Nevertheless, as in all fractional data, the number of pixels containing the class is larger in the 
fractional data. The spatial pattern of higher and lower LAI of grassland in the truth data is 
characterized by some darker shaded patches of higher LAI in the surroundings of the Munich 
area, along the northern fringe of the mountains and a triangle of higher LAI in the central 
western part of the image frame. Analogously to the mixed forest, LAI of grassland is lower 
in the elevated areas of the alpine part of the study area. This pattern is much weaker in the 
result from the reflectance segmentation but remains observable. Especially, the areas of 
higher LAI along the northern part of the Alps as well as the darker shadings around Munich 
and in the west are documented. However, the decrease of LAI with elevation is not 
reconstructed by reflectance segmentation. Also a spotty, grainy appearance of the image, 
especially in the northernmost and southernmost thirds coats the spatial structures when 
compared to the truth image. This is attributable to the previously mentioned random 
component in the results from the reflectance segmentation. In the southeastern corner of the 
grassland image of the reflectance segmentation results it is noticeable that lower LAI in the 
areas of higher elevation is detected while this is barely the case in the rest of the 
mountainous parts. This feature can be explained by numerous homogeneous grassland pixels 
in this area where segmented reflectances are equivalent to the majority or truth dataset and 
consequently so is LAI. 

Most striking in the imagery of the maize land cover type is the extreme difference of 
dispersion of maize in the majority type and the fractional data of the truth dataset as well as 
the reflectance segmentation results. In this case it is a fact, that the generation of majority 
land cover reduces the 4.3% area of maize fields of the high resolution and fractional data to 
2.6%. In the scattered pixels of the majority type a pattern is hardly observed. However, the 
truth dataset does show spatial variability in the LAI of the maize plants. In comparison, the 
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LAI of maize from the segmented reflectances rarely contains any of that spatial variability. 
Merely some of the spots of extremely high LAI are mirrored in the LAI from reflectance 
segmentation. In the case of maize, a benefit of the methodology may lie in the improved 
spatial representation of the land cover type only.  

7.1.6 Effects of varying scale 

As a final examination of the prototyping of the methodology with the synthetic data pyramid, 
the results from the computations at lower resolutions of 480m and 960m are analyzed. This 
analysis focuses on the results of LAI only. As in the previous statistical results, two different 
aspects are addressed: the fractional data and the data lumped to homogeneous pixel 
information. Analysis for this section is based on the test area Landsberg only. 

In view of three different scales, the 240m, 480m and 960m resolution, another comparison 
may be conducted: the aggregation of land cover specific fractional LAI of the finer scale may 
be compared to the coarser scale results. In the aggregation of the finer resolution, the results 
specific to each fractional land cover type are merged to produce fractional information on the 
coarser scale. The aggregation was described earlier in this chapter in Equation (7.2).  

The method for the segmentation of reflectances based on fuzzy a priori knowledge of 
reflectances can be applied to any scale as long as the land cover types resolution is 
sufficiently higher than the reflectance to be segmented. In any case, a land cover type will be 
assigned reflectance values in each band undergoing the algorithm. Changing the scale will 
change but the absolute area of each cover type and the area to which the single reflectance 
value that is segmented refers to. However, the larger the area represented by the single 
reflectance value the more variability within a cover types reflectance characteristics and 
subsequently retrieved parameters will be hidden by the values attributed to the cover type. 
This section casts a brief view on accuracy and consistency of results from varying scales. 

When comparing the statistics of the error of LAI in fractional results from different 
resolutions a decrease in absolute and relative error can be observed with decrease in 
resolution.  The LAI derived from the truth dataset at each scale is met better, the coarser the 
resolution selected. On the other hand, in all cases the aggregation of fractional results to 
coarser fractional results yields still lower mean errors when compared to the truth dataset at 
the aggregation scale. The results from this analysis are given in Table 7.6. 

Table 7.6: Statistics of relative and absolute error of fractional LAI derived at different scales 
and aggregations of fractional LAI in the Landsberg test area. 

relative error in LAI on 
land cover specific fractions 
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mean 44.4 38.2 32.4 28.1 23.3 19.5 0.80 0.77 0.65 0.73 0.64 0.55
max 16700.0 16700.0 16700.0 1013.3 993.3 1000.0 12.50 12.40 11.50 12.50 9.95 8.85
min 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 0.00 0.00 0.00 0.00
stddev 175.3 200.4 202.9 53.0 47.4 47.1 1.09 1.12 0.99 1.14 1.03 0.97
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When fractional LAI values are summed to a single value of LAI on a pixel, error is also 
reduced with higher aggregation levels. Mean absolute error is always smaller than the error 
produced by application of the majority method. Also the maximal error in the single value 
LAI derived from reflectance segmentation is reduced to a level close to the maximal error in 
the majority method in the lower resolution pixels. A very convincing result is achieved, 
when results from reflectance segmentation at the 240m scale are lumped to a single value of 
LAI at the 960m level. Results of the error in the LAI sums on different scales are shown in 
Table 7.7. 

Table 7.7: Statistics of relative and absolute error of lumped single value LAI on different 
scales and the error of the majority method for LAI retrieval. 

relative error absolute error 
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re
fs

eg
 s

um
 

m
aj

or
ity

 

re
fs

eg
 s

um
 

m
aj

or
ity

 

re
fs

eg
 s

um
 

m
aj

or
ity

 

re
fs

eg
 2

40
m

 a
gg

. s
um

 

re
fs

eg
 s

um
 

m
aj

or
ity

 

re
fs

eg
 s

um
 

m
aj

or
ity

 

re
fs

eg
 s

um
 

m
aj

or
ity

 

re
fs

eg
 2

40
m

 a
gg

. s
um

 

mean 21.7 19.3 19.4 21.6 16.8 23.8 11.9 0.39 0.44 0.42 0.52 0.44 0.60 0.25
max 983.3 128.6 400.0 100.0 210.5 100.0 93.8 8.75 5.65 4.85 5.20 3.90 3.55 1.85
min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00
stddev 50.5 25.1 32.9 23.5 23.5 22.7 12.9 0.68 0.62 0.66 0.64 0.67 0.65 0.25

 

7.2 Application to coincident data of high and low resolution 

The data from the MODIS instrument prepared and compared in the validation of the 
atmospheric correction in chapter 4 are brought to bear in this section. Reflectance 
segmentation was applied to two of the MODIS images taken in the year 2000, namely the 
image from doy 170 and the image from doy 171 acquired at 11:25 UTC, both radiometrically 
prepared by application of PULREF. The latter scene is one of two images collected on the 
same day and contains the data that was imaged from an orbit west of the study area (above 
named MOD02PUL_171west). It exhibited much better agreement with the rest of the 
datasets in the validation of section 4.4.4 than the second image from that date that was 
produced from an orbit to the east of the catchment of the river Danube. 

As stated above, the validation of the reflectance calibration was conducted using the 500m 
(HKM) MODIS dataset. This dataset contains aggregated reflectances from the 250m (QKM) 
dataset in MODIS bands 1 and 2. The application of reflectance segmentation was performed 
on the analogously prepared MOD02QKM data that contain the RED and NIR bands at 250m 
spatial resolution. These are the bands that are required for the retrieval algorithm for LAI. 

The images collected with a time lag of about 24 hours are assumed to be radiometrically 
close to equivalent. It was argued above that, besides some radiometric disagreement of the 
two images, the most substantial difference of the two images is their spatial characteristics. 
Although both images used are labeled with the 250m spatial resolution, Figure 7.16 reveals 
their quite different appearance. It is the effect of viewing angle in the data. The image from 
doy 171 collected under a large viewing angle appears blurred and out of focus when 
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compared to the image from one day earlier. Substantial detail is lost in delineation of features 
as well as in contrast. 

 
Figure 7.16: MODIS imagery from doy 170 (left) and doy 171 (right) of year 
2000 acquired under different viewing angles. The images shown are NIR band 
cutouts of the northwestern quarter from the study area. Images are displayed 
without a reduction factor. 

A reference dataset was produced for the MODIS imagery. This reference dataset 
representing the “true” reflectances could be derived because of the availability of coincident 
Thematic Mapper imagery collected 45min before the MODIS data on doy 171. First, the 
aforementioned formulae of Table 4.10 (Liang et al., 2002) were applied to produce a 
synthetic 30m spatial resolution image with MODIS-like bandwidths reflectances. These 
reflectances were used to compute another “truth” dataset, similar to the truth data used in the 
prototyping of the algorithm. High-resolution pixels reflectances of the same land cover type 
were averaged over the area of 250m pixels resulting in the land cover type specific 
reflectance for the coarse pixel. 

The complete frame of the study area was processed for both images. The fractional land 
cover was computed for the 250m MODIS resolution as described in the previous chapter. 
The same functions to approximate expected reflectances that were used in the prototyping of 
doy 171 were applied to both datasets. The notion of fuzziness in the functions justifies their 
application to (i) MODIS data of slightly different radiometric properties than the synthetic 
data derived from TM data and (ii) two consecutive days of imagery. 

The following analysis focuses on the Landsberg test area delineated in the previous chapter. 
It is representative for the northern part of the study area and significantly large to supply 
statistically valid amounts of data (6,400 pixels, ~27,000 area fractions). Due to the different 
resolution, the area is not exactly the same as in the prototyping. It is slightly shifted and 
altered in size. 

Note that in the comparison of these datasets additional scaling effects in remote sensing data 
are present. Pixels of the three acquisitions will most likely match spatially only to a limited 
degree. Although, geometric correction was applied carefully, resampling to the defined 
spatial grid provides no guaranty of exact stapling of the data. Different orbits in the 
collection of the data result in a modified alignment of the picture elements. Moreover, 
distinct IFOVs of the two sensors will alter the actual areas sensed by the instruments 
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(compare Figure 3.8 in section 3.6). Error is introduced by this modification of areal units. It 
is subject to the modifiable areal unit problem (MAUP) in remote sensing data and the 
characteristics of satellite imagery of different resolutions (see chapter 3). These features are 
contained in the differences observed between MODIS data of different acquisitions as well 
as in any comparison with the Thematic Mapper data. An identification of this error is most 
challenging and will not be addressed in the context of this study. However, in regard of the 
errors produced by the processing of the data in reflectance segmentation, acquisition and 
sensor discrepancies can be neglected. 

7.2.1 Reflectances 

In a first step, reflectances were analyzed. In order to understand the differences in the results 
from the segmentation of commensurate 250m MODIS data, a view must be cast on the 
differences of the image frame under investigation before the algorithm is applied. Figure 
7.17 shows the relations of MODIS bands 1 and 2 of the two acquisitions. Coefficients of 
determination in the regression of the two images are almost equivalent in both bands, 
however lower variance and lower values are contained in the RED band of the blurry image 
of doy 171. The reason for this effect is to be found in the stronger atmospheric influence in 
the visible band in an acquisition under high scan angles. Potentially lower values in RED 
reflectance will provoke higher NDVI and consequently higher LAI. 

 

Figure 7.17: Reflectance of the RED and NIR MODIS bands of doy 170 and doy 
171 in the Landsberg test area. 

The quality of the land cover types reflectances after the reflectance segmentation are similar 
to the results observed in the prototyping of the algorithm. Due to the distribution of the data 
no computation of regressions is allowed. A random scatter in the results is observed in all 
possible combinations of comparison, i.e. the relation of each image to the truth dataset as 
well as between the two images themselves. In the latter case, after the reflectance 
segmentation no regression may compare to the interrelation of the two original images of 
Figure 7.17. As an example of the poor agreement, the NIR band plots of land cover type 
specific reflectances from the reflectance segmentation of the images from the two dates are 
shown in Figure 7.18.  
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Figure 7.18: Distribution of results from the segmentation of NIR reflectances of 
the two MODIS images from doy 170 and doy 170, 2000  in the Landsberg test 
area. The regression lines and coefficients of correlation are equivocal.  

While the reflectances of the unsegmented data of doy 170 and doy 171 exhibit but a slight 
deviation, the reflectances from the reflectance segmentation reveal equivocal agreement. The 
clear correlation of the original data is not preserved in the segmentation process. Arbitrary 
scattering dominates the comparison of land cover type’s reflectances. Contingently, the 
gradient smaller than 1 in all regressions may be interpreted as resulting from the same trend 
in the original data. 

7.2.2 Leaf Area Index 

Generation of LAI from the reflectances was performed for the two images. As in the 
prototyping of the algorithm, fractional LAI results are (i) compared to the land cover type 
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specific LAI derived from the truth dataset and (ii) results are lumped to the 250m scale and 
compared to the results from the majority type data. 

Results from the regression analysis of the pixel fractions LAI in the Landsberg area are 
shown in Figure 7.19. They reveal the same stratification of the LAI from reflectance 
segmentation that was observed in the prototyping of the algorithm. The horizontal 
alignments of fractional LAI values in the plots are grouped around the LAI obtained from the 
most frequent results of reflectance segmentation of the RED and NIR bands. Results of the 
two dates of MODIS data are very much alike with an only slightly lower explanation of the 
true variance in the LAI derived from the reflectance segmentation of the poorer image of doy 
171. In the case of zero LAI on fractions of the land cover types, these may not be taken out 
of the statistics as they do represent either a non vegetation land cover type or no leaves. If 
only the fractions of vegetation land cover types are used in the regression, r² is only slightly 
reduced from 0.70 to 0.67 on doy 170 and from 0.67 to 0.63 on doy 171. Again, however, 
regressions are equivocal considering the distribution of the samples. 

 
Figure 7.19: Results from the regression analysis of land cover type specific 
fractional LAI versus the truth dataset of the Landsberg test area of the two 
MODIS scenes of doy 170 and doy 171, 2000. 

The distribution indicates that large errors are contained in the data. In the application to 
MODIS data, these are quite on a level with the mean error observed for the Landsat test area 
in the prototyping. Differences in the magnitudes of relative and absolute error in the two 
MODIS images are marginal. As in the prototyping of the algorithm, mean and maximum 
error is reduced to reasonable amounts in the 95th percentile. Table 7.8 summarizes the 
statistics of fractional LAI for the two days MODIS images. 
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Table 7.8: Statistics of the error of LAI derived from reflectance segments for the MODIS 
imagery of doy 170 and doy 171, 2000 compared to the truth dataset. 
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mean 46.5 0.91 49.7 0.94
max 16700.0 12.50 16900.0 12.50
min 0.0 0.00 0.0 0.00
stddev 211.7 1.23 225.9 1.29

95th percentile 
value 171.4 3.00 187.4 3.10
mean 30.1 0.70 31.9 0.71
max 171.2 2.95 187.4 3.05
min 0.0 0.00 0.0 0.00
std 35.3 0.71 38.7 0.73

 

A comparison of the refseg results for LAI of the two MODIS scenes (Figure 7.20) reveals 
once more that the algorithm produces a random scatter in the results. LAI from the two days 
is rarely aligned along the 1:1 line. The gradient of the regression line suggests a slightly 
lower LAI from the blurry image of doy 171. Although r² is 0.73 the results do not appear to 
be interchangable and the number of outliers is large. 

 
Figure 7.20: Regression of the fractional land cover type specific LAI deduced 
from the reflectance segmentation of MODIS images of doy 170 and 171 

When fractional LAI results are lumped to the 250m pixel, parity persists between the two 
datasets. While in the prototyping, fractional LAI lumped to the coarse pixel was somewhat 
closer to the truth dataset, this is less emphasized in the results from the MODIS data of doy 
170. On doy 171 the LAI derived from the majority dataset is closer to the truth data. 

Comparison of the lumped LAI and the majority LAI versus the truth dataset are shown in 
Figure 7.21 for both days of MODIS data. 
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Figure 7.21: Results from the regression analysis of the lumped LAI derived from 
reflectance segmentation and the majority LAI produced from MODIS data of doy 
170 (upper row) and doy 171 (lower row) versus the lumped LAI from the truth 
dataset. 

The LAI for the 250m pixel derived by reflectance segmentation from MODIS data of doy 
170 exhibits the best regression with the truth dataset. Table 7.9 reveals that this dataset also 
contains the lowest mean absolute error. Mean relative error is slightly lower in the majority 
type LAI. The 95th percentile is not shown in Table 7.9 as the relation of the error estimates 
does not change in this case of LAI on 250m pixels. 

Table 7.9: Statistics of the error of LAI at 250m in the Landsberg test area. Data were lumped 
from the fractional LAI and derived from majority data and compared to lumped LAI of the 
truth dataset. 
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refseg major refseg major refseg major refseg major 
mean 31.5 29.7 0.70 0.71 39.9 35.1 0.76 0.72 
max 600.0 233.3 7.80 7.30 583.3 566.7 7.15 6.40 
min 0.0 0.0 0.00 0.00 0.0 0.0 0.00 0.00 
stddev 40.0 29.6 0.85 0.86 52.1 37.9 0.86 0.76 
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7.3 Application to a time series of the 2003 growing season 

MODIS data of the growing season 2003 were processed in the attempt to elaborate the 
capabilities of the reflectance segmentation algorithm to produce a reliable time series of leaf 
area index. The dataset were introduced earlier as MOD02 raw radiance counts in Section 
4.6.1. All 19 scenes available were processed using the PULREF algorithm to produce 
reflectance datasets. Figure 7.22 marks the temporal distribution of the images. For each day, 
reflectance probabilities were determined from the GeoSAIL model results and formulated as 
Gaussian functions as described in section 6.2.2. Parameters of all functions are listed in 
Appendix 5. Consistency of the functions with reflectances of the MODIS bands is provided 
for the computations by parameterization of the GeoSAIL model with the MODIS 
bandwidths. The 250m fractional land cover derived for the processing of MODIS data 
described in the previous section was ingested in the algorithm for the computation of land 
cover type specific reflectances for the time series. 

90 110 130 150 170 190 210 230 250 270 290

 
Figure 7.22: Time scale indicating the dates of acquisition (doy) of the 19 MODIS 
scenes of the time series of 2003 

LAI algorithms were applied to the land cover types reflectances to derive land cover type 
specific LAI. Each dates fractional LAI values were summed to produce a single 250m scale 
LAI value. Also, for comparison the majority types LAI was computed. 

The findings from the previous section suggest that consistency of results may not be given 
when applying the proposed method for reflectance segmentation. The differences between 
the two consecutive scenes were too large. Thus, results from the application of the algorithm 
to a time series are devastating. No continuous development of LAI could be derived from the 
reflectance segments of the time series. Examples of LAI progressions on four pixels taken 
from the test areas Landsberg and Hochstadt are shown in Figure 7.23. 
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Figure 7.23: Temporal development of LAI on four pixels derived from the time 
series of reflectance segments of the 19 MODIS scenes. 

None of the examples exhibits a convincing rise and fall of leaf area during the growing 
season. On all pixels each land covers trajectory shows abrupt changes in LAI. Especially the 
high values of LAI of the grain land cover types after mid August (~doy 225) or the extremely 
high LAI estimates for maize at the start of the growing period document deficiencies of the 
approach to obtain land cover type specific LAI time series. Pixel 190,200 may be judged as 
the single example of fairly decent LAI development when ignoring the rise in LAI at the end 
of the vegetation period. 

The aggregation of land cover types LAI to a single LAI value on the 250m pixels are shown 
in Figure 7.24 (left). Aggregating the fractional LAI smoothes the curves of LAI development 
to a limited degree only. Peaks that are impossible to be explained by natural phenomena 
remain in the data. 

The pixel labeled with the Maize majority (86%) suggests that maize plants LAI peaks in 
May with subsequent decline until mid August. Three more peaks to be reached in late 
summer and early fall appear unreasonable. This is even more the case when taking into 
account the remaining 10% of grain and 4% grassland land cover types on that pixel. 

The plot of the pixel with a majority cover of winter grain (60%) appears to adequately 
describe a rise and maybe too early decline of LAI until a date of harvesting around doy 200. 
Extremely dry conditions of the summer of 2003 may explain an early decline of LAI. 
However, the immediately following peak and a plateau of high LAI in September are 
unlikely to be caused by the remaining land cover types on the pixel made up of 23% maize, 
14% grassland and 4% deciduous forest. 
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The pixel with the mixed forest classes majority (58%) may almost be accepted with a quite 
continuous LAI around reasonable 4m²/m². The trajectory however starts out with a value 
around 3m²/m² followed by a decline and peaks at the end of the vegetation period after doy 
240. The gap induced by a very low LAI around doy 260 is another unrealistic feature in this 
LAI development. This is hard to explain, even when noticing that 14% of the pixel are 
grassland, 23% belong to the maize class while 21% are covered by urban fabric. 

The behavior of grassland LAI seems acceptable except the high rise in September (after doy 
240). However, only 40% of the pixel actually are covered by grassland, while the rest is 
made up of crops and 16% of urban fabric. These remaining cover types may not explain a 
rise in LAI in late summer. 
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Figure 7.24: Seasonal development of LAI at the 250m scale. LAI from the area 
weighted sum of fractional land cover type specific LAI (left) and LAI derived 
based on the majority land cover type (right). Pixel coordinates: Maize (188,305), 
winter grain (190,305), mixed forest (190,205), grassland (190,200). 

The depiction of Figure 7.24 (right) compares these results to the LAI development obtained 
from majority type estimates. The courses of the plots for the majority type LAI are more 
convincing than the fractional and lumped results from the segmented reflectances. However, 
discrepancies are contained in these results as well. LAI of maize starts out far too high in 
April at 2m²/m², and just as all other cover types, rises at the end of the growing season. 
Lowering of LAI of maize during the summer with a new rise in August is unlikely but may 
be induced by the dry conditions of 2003. Winter grain and grassland show plausible courses 
until doy 240 after which a rise in LAI occurs. The remaining LAI in the winter grain class 
after harvesting around doy 200 must be attributed to the actual impurity of the pixel. The 
mixed forests LAI development exhibits a similar dip as the maize class. In the case of forest 
however this is unlikely to be attributable to the hot summer. The extreme rise and fall in the 
last third of the growing season suggests that other reasons are responsible for these 
unreasonable courses of the plots. 

A general feature of all above observations are values of unreasonably high LAI at the end of 
the growing season. These are most likely to be ascribed to errors in the atmospheric 
correction of the data or other artifacts contained in the imagery. 
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8 Discussion 
The method for the segmentation of moderate scale reflectances from optical remote sensing 
imagery was developed in consideration of three boundary conditions. First, the development 
and operation of numerical environmental models on moderate and large scales imperatively 
needs to take into account the operational scales of the processes they describe (Blöschl, 
1996, Stewart et al. 1996, Van Gardingen et al. 1997). These models require distributed 
spatial input data that can best be provided by remote sensing measurements (Schultz and 
Engman, 2000, Lakshmi et al. 2001). Secondly however, there is the physical limitation of 
today’s spaceborne operational optical remote sensing devices that prohibits temporally 
frequent and at the same time spatially high resolution imagery. In order to reproduce the 
environmental processes that are addressed in models like the DANUBIA compound of the 
GLOWA-Danube project, for many of these processes sufficient temporal resolution is a vital 
concern. Yet, if remote sensing data is to be used, this implies low spatial resolution for these 
data. Low spatial resolution data again causes individual measurements (pixels) to integrate 
over more than one process or entity that an environmental model needs to distinguish. Then 
thirdly, knowledge may be brought forward about the surface features the coarser satellite 
image pixel integrates over. This knowledge includes information about temporally static 
features contained in the imagery and fuzzy knowledge about what will be sensed by a 
recurring imager at different times of observation. Virtually static features like land cover 
type may be derived at high resolution from infrequent high resolution remote sensing 
observations. Fuzzy knowledge like expectable reflectance characteristics may be formalized 
and used by adequate mathematical methods. 

Bringing together these findings resulted in the development of the method presented above. 
One key static feature in environmental models has been identified to be the information on 
land cover types. The quest for an improvement of land cover type information led to the idea 
of stratification of pixel information in order to represent subscale land cover types. The 
conception of Geocomplexes described above, which is based on subscale fractional land 
cover, has proven to substantially advance the possibilities for process description (Reichert et 
al. 2004a). In order to enable parameter retrieval from remote sensing data with the same kind 
of data representation, such subscale fractional land cover is used in the method for 
reflectance segmentation. 

From the remote sensing perspective, the prime process under observation is the reflectance 
characteristics of the surface sensed. It is the base process for the deduction of other 
interconnected physical properties. This prime process, in turn, is substantially dependent on 
land cover type. Consequently, the deduction of land cover type from remote sensing data is a 
common operational application of satellite imagery. 

In remote sensing natural surfaces, land cover type is one decisive driving variable for 
reflectance. Another is time. Many land cover types considerably change their reflectance 
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characteristics over time and these changes are mainly due to phenology. Phenological 
development is well documented yet these changes are gradual in nature and depend on 
influences, like location, weather conditions or agricultural practice. Thus, no hard facts may 
be provided about the state of the reflectance characteristics of a cover type at any given time. 
Nevertheless, a reasonable guess, an imprecise estimate may be given. If a land cover type is 
provided as a hard fact at a point in time, a fuzzy prediction of its reflectance is possible. 

If high resolution information on surface reflectances were available in which homogeneous 
surfaces of individual land cover types are identified, no fuzzy prediction of reflectance would 
be of any interest. The reality of today’s remote sensing, however, provides us with coarse 
resolution surface reflectances. In these available data, the sensed reflectances are a mixture 
of signals from a set of different land cover types. In this case, the segmentation of the 
reflectance of the coarse pixel by making use of the hard fact of subscale land cover type and 
the fuzzy estimate of expected land cover type specific signals, becomes a well-founded 
option.  

The feasibility of this option was explored in the previous sections. The method developed 
was tested on an artificially produced data pyramid and applied to real coarse scale MODIS 
imagery. It was shown that the method is capable of computing a result for specific 
reflectances for 12 land cover types at different resolutions. The computation of land cover 
types reflectances is independent of pixel resolution, but the fractional land cover information 
is required at the resolution under address. Fuzzy information about the probabilities of 
reflectances for each cover type needs to be furnished in the form of a two times differentiable 
function. The method only acts on pixels with multiple land cover types and does not alter the 
reflectance of homogeneous pixels. The segmentation algorithm runs on individual spectral 
bands and may be set up for each band of multispectral data. 

The presented method delivers reflectances attributable to land cover types of subscale pixel 
fractions. This output bears the potential to be used with arbitrary remote sensing models that 
require reflectances as input. With this, parameters like vegetation indices, FPAR, net 
photosynthesis or primary productivity could be deduced on a subscale basis. In this study it 
was the objective to derive LAI based on the simple NDVI-LAI model. For this it was 
necessary to apply the algorithm for reflectance segmentation to RED and NIR band 
reflectances of the test data. The results were evaluated against a dataset that was produced 
from the highest available spatial resolution data and that served as a reference. 

The results obtained from the above investigations are equivocal. On the one hand, analysis of 
the single date synthetic data pyramid appear promising in the prototyping experiment. On the 
other hand, the testing of the algorithm on MODIS data clearly revealed that consistency of 
results is scant when used on real data. In the application to two very similar MODIS scenes 
the current implementation of the algorithm was not able to produce results that would 
approximate the good correlation of the input data. In the attempt to derive seasonal 
development of leaf area for land cover fractions from a time series of MODIS data, extreme 
outliers produce an unrealistic discontinuous image of the progression of leaf area. The same 
problem, however, was also identified in the operational MODIS LAI product, which in the 
current implementation will produce extreme artifacts in an LAI progression, even on the full 
pixel scale (Wang et al. 2005). 

The reflectances of a land cover type obtained from reflectance segmentation contain little of 
the variance that is contained in the comparable “truth” dataset. Most reflectances obtained 
are very close to the mean true reflectance, which is greatly determined by the peak of the 
reflectance probability functions used in the computation. The scattering around that peak that 
does occur in the results is error-prone. A lower or higher reflectance value for a land cover 
type does not coincide with a similar deviation in the truth dataset. The histograms 
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investigated in Section 7.1.3 agree well with the truth data only if large areas of the land cover 
type lie on homogeneous pixels because on these the truth dataset is exactly reproduced. Error 
of 20% reflectance and above is common in the reflectance segments. These large errors tend 
to concentrate on the smaller area fractions. It may be argued that this observation reduces the 
overall error produced by the method. However, even if only a part of a pixel is burdened 
with 20% error in reflectance it is questionable that a quantity derived from that error loaded 
reflectance will be useful considering that most models ingesting reflectances will add further 
artifacts. 

The method has shown to produce reflectances that, if they deviate from the mean, are mainly 
chosen on a random basis. In order to meet the constraint that all land cover types reflectances 
on the pixel sum to the measured value, the algorithm often tends to shift one of the 
reflectances away from the mean until the constraint is met. This explains the observation that 
the error of the resulting reflectances of many land cover types is either low or very high. This 
is reflected in the striped distribution of the error plots in the analysis of the relation of error 
to the area fractions (Figure 7.7 and Figure 7.8). In the implemented form of the optimization 
algorithm, in many cases the error is not kept small by splitting it to different land cover types 
on the pixel, but exaggerated on one of the land cover types. Although, some reflectances are 
very well reproduced, this deteriorates the validity of the method. 

Despite these discouraging results, the segmented reflectances were applied to produce land 
cover type specific LAI. This experiment is justified because having subscale reflectance 
information available for the land cover types on a pixel corresponds to the driving force of 
the LAI process. This is expected to improve LAI estimates. Also, in the computation of 
NDVI the results of two runs of reflectance segmentation for the RED and NIR bands are 
combined. If the error is related to area fractions, the relation of the two bands may be 
preserved in the segmented reflectances. The function of NDVI may be less affected. The 
application of LAI algorithms may benefit from this fact. Nevertheless, the occurrence of 
simultaneous error in the RED and NIR band are equally coincidental as the error in a single 
run. An improvement to this could lie in finding a way of linking the reflectance segmentation 
of RED and NIR bands in order to avoid extreme outliers.  

With the randomness in mind, the results of the LAI derivation from the data of the synthetic 
data pyramid appear quite surprising. They suggest that, (i) even though individual pixel 
fractions reflectance is radically error prone, reasonable agreement with the reference data set 
with coefficients of determination between 0.5 and 0.8 are possible for land cover type 
specific LAI derived for the pixel fractions and that (ii) the correlation of the aggregation of 
this fractional LAI yields better results than the alternative of deriving LAI from coarse scale 
majority type land cover and coarse scale reflectances. The fact that an assumed majority land 
cover type on a pixel is in most cases contaminated by other types, produces larger absolute 
mean error in LAI than the application of the same LAI algorithms to vastly error-burdened 
reflectances of the fractions of multiple pure land cover types on the pixel. This was observed 
in three out of four test areas. It is a strong indication for the importance of taking into 
account the process scale in the retrieval of land surface parameters from remote sensing data. 

The display of the reflectances and there from derived LAI reveals the great differences 
between the spatial representation of either quantity in the two opposing concepts of data 
storage, that is, the single pixel values that correspond to a land cover majority type and the 
values that correspond to a subscale areal fraction. Although overall percentages of the land 
cover types remain almost constant in both data representations, distributions are substantially 
different. The concept of storing subscale land cover information on a pixel reveals much 
more detail in distribution although the localization within the pixel is elided. This detail is 
lost in storing single majority types values. The measurement scale and pixel size in both 
cases remains the same, however data amount is expanded in the case of storage of each land 
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cover types value by a factor equal to the number of land cover type. The information about 
the corresponding area fractions of land cover types is but a single static dataset. 

The majority of the data amount required for this data model is filled with zeros, an obvious 
dissipation of storage capacities. This is due to the fact that in most cases 2-5 land cover types 
out of 12 are present on a pixel. Only for these, actual information is stored. The remaining 
positions hold fill values to hold up the structure of the data grid. In this context the 
conception of quadtrees comes to mind again, where higher scale information is only stored 
where necessary. The definition of quadtrees however, does not conceptualize subscale 
fractional information. Exploring possibilities of combining quadtree data structure with 
subscale fractional information appears to be a challenging task. 

The application of reflectance segmentation brings the benefit of enhanced spatial detail and 
the supposed higher reliability of the remote sensing model by working it on pure land cover. 
On the other hand artifacts are produced in the data and variance is greatly reduced. 
Judgement is difficult in pondering upon what we get and what we loose along the way, for 
the two effects of the approach – spatial advantage and loss in variance and reliability – may 
not be readily compared. A way to address the loss in variance could be a more diversified 
application of fuzzy reflectance description. This can best be exemplified with the results in 
the mountainous Wetterstein test area. Results were the poorest in this test site, which is 
attributable to the generalization of land cover types of the area. Forests as well as grasslands 
are subject to quite different environmental conditions in the mountainous part of the study 
area. However, mountain forest types and mountain pastures were united with structurally 
similar types of the lowland test sites. Application of the same fuzzy reflectance description to 
these land cover types in both environments lead to the larger error in the Wetterstein area. 
This can well be observed in the altered reflectances and lower LAI in the high regions in the 
south of the study area. A more sophisticated approach may take into account these 
differences. It could be achieved for example by introducing additional information such as 
elevation in the algorithm and using it in selecting appropriate fuzzy reflectance descriptions. 

A final investigation of the effect of scale on the method showed that the error produced by 
the method declines with increasing pixel resolution of the ingested data. This seems 
astonishing at first. It is, however, explicable when considering that the method produces 
reflectances for a land cover type that concentrate around a mean value. The larger the area of 
a pixel and the larger the fraction of a land cover on that pixel the lesser the effect of varying 
reflectance within the land cover types area. Thus, results improve with coarsening of the 
spatial resolution of the data. This agrees with the findings of the effect of aggregation of 
different scales (Bian, 1996, Bian and Butler, 1999)  

As promising as some of the results of the prototyping are, the disappointing is the outcome 
of actual application of the method. The attempt to positively validate the results on 
coincident data of high and low resolution failed with the presented implementation of the 
method. While the two MODIS scenes in this investigation show almost equal relation to the 
truth dataset, the intercomparison of the results of the two acquisitions reveals some 
shortcomings of the approach. If the method was already sound, results of highly correlated 
images should yield comparable results. This could not be confirmed. The investigation using 
two images of different characteristics also indicates that the image itself has too little an 
effect on the computation of the current algorithm after all. The strongest components in the 
method remain the functions for the fuzzy description of expected reflectances and a 
randomness in the assignment of more extreme values of reflectance to the land cover types. 
In this context, it needs to be considered that the functions used in this application were 
derived from the statistics of imagery of the same date. Consequently, in this case, the means 
of the land cover types are quite precisely met. This is unlikely to be achieved when the 
functions are produced by approximation from model results. 
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Thus, the application of the method to the MODIS time series did not deliver satisfying 
results either. Neither the seasonal development of individual land cover types on fractions of 
pixels could be deduced in a convincing manner, nor would the aggregation to pixel-wide 
LAI mitigate the errors in the temporal development. Note that in the latter, the paradox of 
scaling LAI comes to effect. Lumping different land cover types LAI to a pixels area is valid. 
Yet, the claim that this lumped LAI describes the seasonal development of a land cover type 
is not. It is contained in the above illustrations of seasonal development of LAI at the 250m 
scale. The LAI generated from majority type land cover and 250m reflectances does also not 
show a convincing course. This may be attributed to errors induced by the atmospheric 
correction and other artifacts in the data and a more thoroughgoing preparation of the data of 
the time series may improve the result. In regard of the substantially larger error produced by 
the segmentation of reflectances, however, this attempt of improvement of data preparation 
was not pursued. Also a comparison with the data of the MOD09 reflectance product may be 
an interesting task, but was not conducted in the context of this work. 

An unresolved issue remains with the final feasibility of the approach of using the simple 
regression models for deriving LAI from VIS/NIR remote sensing data. In the study, they 
were used in consistent relative comparison and their specification by land cover was a key 
factor in the presented approach. This was sufficient for the experiments conducted with the 
reflectance segmentation results. Absolute validation, however, was not sought. Such 
validation is greatly hindered by lack of adequate methods for achieving LAI data in the field 
that could be compared to the computed fractional LAI. Thus, absolute quantities derived in 
the computations may deviate from real observations depending on the regression model. 
Exploration of these models at the land cover types level would be needed for an 
advancement of the regression model approach for LAI retrieval.   

Some additional interesting observations were made in the context of this study. One is 
connected to the generation of the dataset used as the “truth” reference. The production of 
LAI on homogeneous land cover type fractions produced almost equivalent results as the 
averaging of high resolution pixels LAI of the same land cover type. This supports the 
hypothesis that concentrating on land cover homogeneity on pixel fractions can serve as an 
excellent surrogate for actual higher resolution data grids. The approach may be interpreted as 
a scaling function for land cover related processes. 

Another observation resulted from the modeling of reflectances using the GeoSAIL model 
(Verhoef and Bach, 2003). Internally the model makes plants grow, ripen and decay over the 
season with LAI being an internal variable. The models output provided diurnal reflectances 
that result from the states of the plant modeled. A plot of the models LAI against the NDVI 
deduced from the diurnal reflectances revealed that, according to the model, the NDVI-LAI 
relation is different for the greening period as opposed to the senescing period. An 
investigation of this output of the model may be fruitful for an improvement of the hosts of 
available vegetation indexes relation to leaf area. 

Finally, the way the land cover used in this study disclosed a way of detecting inconsistencies 
in such data that are a compound from different sources. In the case of the land cover used, 
the classification of the study area was (i) derived from two Thematic Mapper scenes that 
were independently prepared and (ii) was composed from two parts that were the result of two 
separate runs of the ENPOC classifier. Atmospheric correction was performed prior to the 
stitching of the images and the separate classifications were parameterized differently due to 
regional variations of the areas. The borders of both of the stitching of the data are not 
detectable in the classification (see Figure 4.12). However, the computation of fractional land 
cover revealed that frequencies of some of the land cover classes change along these lines 
where the different datasets were put together. While the differences that stem from the 
different TM scenes are rarely recognizable as a diagonal line, the horizontal break in 
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frequencies is dramatic for some cover types. This effect can best be observed in the 
deciduous forest, spring grain and rock classes and is due to the need of different fuzzy 
characterization of the classes in the runs of the ENPOC classifier. Images that illustrate the 
described inconsistencies for these classes are contained in the galleries of Appendix 7. For 
the purpose of this study, however, they were disregarded. The lines where these frequencies 
change are most definitely errors in the data but they will not affect the pixelwise 
computations performed. 
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9 Conclusion 
The success of the method presented in this study is ambiguous. Some of the results in the 
investigations presented indicate a potential of the method to provide estimates of land cover 
type specific reflectances that are useful for the retrieval of leaf area index. This applies 
although the individual bands reflectances used for the computation of NDVI are not 
correlated to corresponding reflectances deduced from high-resolution data. In the case of a 
single date dataset good correlation of the retrieved parameter with the reference data set is 
achieved. The result seems even more reliable when the subscale assignment of LAI is given 
up and the mesoscale information is regained by lumping the results of the subscale 
homogeneous units. In the sense of a mesoscale LAI this is a success for the method. 
Apparently, the method gains ground by avoiding the false assumption of homogeneity. 

The intended benefit of subscale parameter retrieval, however, is much less granted. The 
choice for the LAI values obtained appears to be either “close to the mean” or “burdened with 
large error”. The former is a result of the optimization that seeks highest probabilities that are 
achieved by their definition via the reflectance probability functions. The latter is subject to 
rather undetermined arbitrary behavior of the algorithm. It was mentioned in the discussion 
that the assessment of usefulness would need to balance between the advantage of the 
improved spatial representation of LAI and the obviously introduced error. However, this 
ambiguity would justify the experiment of actually using the information in hydrologic or 
other environmental modeling. 

The ingestion into a hydrologic model may be successful in the case of the application to 
short term events for flood modeling. The observation that larger error occurs on smaller area 
fractions could lead to a mitigation of the negative effect of the artifacts in the segmented 
parameter. The long term runs of the DANUBIA model for periods of one or several years, 
however, would require time series information in order to capture the effect of LAI on the 
water balance. The experiment of deriving LAI time series from the MODIS data of 2003 
indicated that these time series are inadequate. The method for reflectance segmentation as 
presented does not operate effectively in this case. Continuity of leaf area as exhibited by 
natural plants is not achieved with neither the subscale LAI nor the aggregation to the 
moderate scale. At this point it shall be noted that time series from the MOD15 product are 
similarly ambiguous (Figure 5.6) 

The results from the derivation of LAI on the basis of NDVI from the segmentation of 
reflectances by the presented method disprove the above claim that arbitrary remote sensing 
models may be applied on the results. Although retrieval of LAI by the simple algorithms 
applied works to a certain extend, the retrieval of subscale reflectances is not robust. Even if 
the fractional LAI would withstand the test in an environmental model, it is questionable that 
the same applies to another algorithm that may require different bands reflectances to be 
segmented. 
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One of the advantages of remote sensing data is the timeliness of information. Radical 
changes on the surface like the cutting of grasslands fire or flooding can be detected and 
provided to a model. These kinds of changes will not at all appear in segmented reflectances. 
It shall be noted though, that flooding or fire may not interpreted as actual development of the 
land cover, but rather are changes to the land cover. It corrodes the assumption of static land 
cover. 

Nevertheless it is worthwhile to ponder upon possibilities to improve the method. Two 
approaches were already addressed in the context of the above discussion. One was concerned 
with the lack of control over the relation of the bands undergoing the process of reflectance 
segmentation. This relation may be fully disturbed by the separate segmentation of the RED 
and NIR bands used for the subsequent LAI algorithms. Establishing a way of connecting the 
segmentation of individual bands may yield an improvement of the method. Another thought 
was directed at the idea of more precisely controlling the functions used in the segmentation. 
If the a priori knowledge put into the algorithm becomes less fuzzy so that the degrees of 
freedom are reduced the result should become more accurate. This approach, however, begs 
the question of how much remote sensing remains in the result. 

More promising appears the conception of installing a feedback loop between the estimation 
of fractional reflectances and an environmental model, similar to the four-dimensional data 
assimilation approach proposed by Bach and Mauser (2003). If an environmental model 
provided the required input variables around the time of the acquisition of the scene 
undergoing segmentation, actual reflectances ranges could be derived by feeding an inverse 
radiative transfer model. This resembles the procedure conducted in the derivation of the 
reflectance probability functions for the time series experiment. Yet still, the question remains 
of how much of the information of the remote sensing image drives the result. 

It can be concluded that the aspired derivation of subscale LAI from remote sensing as a 
temporally changing quantity remains a challenging task. The same holds for LAI on the 
moderate scale as indicated by the time series derived on the basis of majority land cover as 
well as from the MOD15 LAI product. In the wake of the latter findings, however, the attempt 
of decomposing moderate scale reflectances to fractional information remains an exciting 
experiment. 
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Appendix 

Appendix 1: MODIS Data Levels 

Raw data - Data in their original packets, as received from the observer.  

Level 0 - Raw instrument data at original resolution, time ordered, with duplicate 
   packets removed.  

Level 1A - Reconstructed unprocessed instrument/payload data at full resolution; 
   any and all communications artifacts (e.g. synchronization frames, 
   communications headers) removed.  

Level 1B - Level 1A data that have been processed to sensor units and   
   radiometrically corrected and geolocated.  

Level 2 - Derived geophysical variables at the same resolution and location as the 
   Level 1 source data.  

Level 3 - Variables mapped on uniform space-time grid scales, usually with some 
   completeness and consistency.  

Level 4 - Model output or results from analyses of lower level data (i.e., variables 
   derived from multiple measurements).  

 

Taken from the Parameter Data Product Glossary web page at Goddard Earth Sciences (GES) 
Data and Information Services Center (DISC), GES DAAC 
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Appendix 2: Software 

This Appendix summarizes the coding work conducted for this study. The purpose and 
object-oriented layout of the software is documented. It comprises a codec for access to the 
FAP file format in the java programming language. An object oriented structure was sought to 
provide simple programming interfaces for arbitrary manipulation of FAP format files. This 
codec is used in the software for reflectance segmentation and for a converter to transform 
HDF Scientific datasets to the FAP format.  

Codec FapPicIO 

This java package contains a codec for reading and writing data to and from FAP *.pic files 
providing a flexible interface to file information and data extraction. The structure is designed 
to allow processing of FAP format files by usage and/or implementation of existing 
interfaces. It contains the packages iggf.io, iggf.io.pic and iggf.io.pic.example. 
Its main concept is an inheritance tree of which the main classes are PicFile, Band, Pixel 
and Scan. All are implementations of the PicElement interface to provide a common basis 
for iteration operations and the manipulation of instances of PicElement (see Figure A1). 

 

ReflectanceSegmentationPEVSamplePicElementVisitor

PicElementIterator PicElementVisitor

PixelIterator

Scan Pixel

TileIterator

BandPicFile

PicElement
Datatype

FAPPath

  
 

Figure A1: UML Class diagram of the FapPicIO codec, Iterators and Visitors. 

The IO-Operations are based on the java.nio package for execution speed. Each 
PicElement is backed by one or more instances of type java.nio.ByteBuffer so that 
operations for data reading and writing can be performed by effective operating system's 
native I/O operations. For information on using the ByteBuffer class see the Java language 
API. 

While the PicFile class abstracts the full physical file and provides primary access to all 
information, Band, Scan and Pixel are portions of the file and associated with a PicFile 
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object. A Band is one horizontal layer in the file and stores the layers header information (e.g. 
name, data type, data type size, position in file) and data. A Pixel is the stack of the values 
of all bands or a portion of them at one unique raster position. A Scan is an arbitrary 
rectangular subset of the PicFile containing a selection of the bands of the file. The 
PicFile class interface provides access to metadata and its PicElements. The key I/O 
funcionality is implemented in a method to retrieve or insert a Scan object specified by 
position and size as well as a selection of Bands. The overloaded PicFile.getScan() 
method provides access to common “scans” such as the data of all bands of one full row.  

This method is accessed when using the Iterator pattern (Gamma et al., 1995) to iterate over 
the collection of a PicElement. The implementations of the PicElementIterator 
interface provide functionality to iterate over the pixels of a PicFile, a Scan or a Band 
(PixelIterator) or over equally sized square tiles returned as instances of Scan of the 
underlying PicFile (TileIterator). The core functionality to process 
PicFileElements is provided as a Visitor-pattern (Gamma, et al., 1995). PicElements 
can interact with implementations of PicElementsVisitor. A PicElementVistor is 
designed to perform operations on a PicElement (visit it). It may be used to consecutively 
process each Pixel or Scan returned by either PicElementIterator. Two 
implementations of PicElementVistor are shown in Figure A1.   

To provide functionality for reading ancillary data from ASCII-files, the abstract 
DataBuilder class from the iggf.io package is provided (Builder-pattern). The 
DataBuilders functionality of extracting ASCII file records as strings can be extended to 
build any desired data structure such as implemented in the PixelBuilderFloat extension 
of DataBuilder to produce instances of Pixel from a text file. The package also contains a 
class with the static functionality to read out the FAP path set on a system (FAPPath). 

Details on the implementation and usage are given in the javadoc documentation and in the 
code of the package iggf.io.pic.example. 

Reflectance Segmentation 

The algorithm for reflectance segmentation is realized as an implementation of 
PicElementVisitor, the ReflectanceSegmentationPEV. It uses a number of other 
classes for the calculations (see Figure A2). The main computations are carried out by 
implementations of an interface Function to compute Gaussian function values 
(GaussFunction), the area weighted sum of land cover reflectances 
(LandcoverReflectanceSum) and the function that is optimized in the Newton-Raphson 
method (OptimizationFunction). The Function interface provides access to retrieve the 
derivative Function objects of the functions which are required in the Newton-Raphson 
method. The ReflectanceSegmentationPEV reads initial GaussFunctions parameters 
from file via a GaussFunctionBuilder. The computation of reflectance segmentation and 
selection of the final best result is conducted within the visitor based on the input from the 
visited Pixel. Output is stored to a new Pixel that can be retrieved from the 
ReflectanceSegmentationPEV-object after the visit. 
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Function
+getDerivative( wrespectTo : int ) : Function
+getName() : String
+getNVariables() : int
+getValueAt( xn : double[] ) : double
+setParams( params : double[] ) : void

ReflectanceSegmentationPEV

GaussFunction

Gauss1stDerivF

LandcoverReflectanceSum

OptimizationFunction

Optimization1stDerivF

Gauss2ndDerivF

Optimization2ndDerivF

GaussFunctionBuilder

NewtonRaphson

AbstractFunction

Pixel

<<use>>

<<use>>

<<use>>

1

<<use>>

1..*

visit

1

1

1

1

 
Figure A2: UML Class diagram of the algorithm for reflectance segmentation 
implemented as  ReflectanceSegmentationPEV. 

The matrix computations within the NewtonRaphson class are based on the software from 
the Colt project (Copyright © 1999 CERN - European Organization for Nuclear Research, see 
copyright and permission notice below). The cern.colt.matrix* package from the Colt 
library and the cern.jet.math* package from the Jet library contain the components that 
are in use in the optimization iteration. The version of the library is Colt 1.2.0 from 
September 2004 which was still the latest at the time of this writing and is available on the 
Internet at http://dsd.lbl.gov/~hoschek/colt/. The colt.jar archive is required in the classpath 
for the execution of reflectance segmentation. 

 

Colt License Agreement - Packages cern.colt* , cern.jet*, cern.clhep 

Copyright (c) 1999 CERN - European Organization for Nuclear Research. 

Permission to use, copy, modify, distribute and sell this software and its documentation for 
any purpose is hereby granted without fee, provided that the above copyright notice appear in 
all copies and that both that copyright notice and this permission notice appear in supporting 
documentation. CERN makes no representations about the suitability of this software for any 
purpose. It is provided "as is" without expressed or implied warranty. 
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Converter HDF2FAP/HDF2PIC 

The FAPPicIO library is used in two versions of a tool to convert a selection of the scientific 
datasets (SDS) contained in a HDF file to bands of files in the FAP format. HDF2FAP has a 
simple graphical interface to select SDS and dump them to either FAP format or flat binary 
files (see Figure A3). The HDF2PIC version is a command line tool for the same purpose 
allowing batch conversion of HDF files (Figure A4). 

 

 
Figure A3: HDF2FAP converter, surface reflectance bands 1-7 of a MOD09 
Reflectance file selected for conversion. 

 
Figure A4: HDF2PIC converter, help displayed when no arguments are provided. 
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Appendix 3: LAI Measurements 

Needleleaf forest: 
Date DOY Measurements mean stddev min max 

Needleleaf forest Oberbrunn 2002, old stand 
03.05.2002 123 4.11 3.91 3.80 3.79 3.88 6.24 0.21 6.06 6.58 
15.05.2002 135 4.72 4.67 4.56 4.43 4.97 7.47 0.32 7.09 7.95 
23.05.2002 143 4.37 4.12 3.99 4.17 4.39 6.73 0.27 6.38 7.02 
Needleleaf forest Oberbrunn 2002, young stand 
03.05.2002 123 4.65 5.26 4.56 4.85 4.65 7.67 0.45 7.30 8.42 
15.05.2002 135 4.95 5.21 4.92 4.69 4.03 7.62 0.72 6.45 8.34 
23.05.2002 143 5.35 5.00 4.42 4.44 5.18 7.80 0.68 7.07 8.56 
Needleleaf forest Reißmühlenweg 2003, old stand 
30.04.2003 120 3.26 3.47 3.29 3.31 3.46 3.34 3.54 5.37 0.16 5.22 5.55 
12.05.2003 132 3.30 3.29 3.38 3.32 3.35 3.33 5.32 0.06 5.26 5.41 
11.08.2003 223 2.95 3.57 2.77 3.00 3.16 4.94 0.48 4.43 5.71 
10.09.2003 253 3.31 3.49 3.68 3.69 3.60 3.32 3.86 5.69 0.25 5.30 5.90 
Needleleaf forest Bocksfeld 2003, young stand 
30.04.2003 120 3.67 3.83 3.91 4.01 4.19 4.23  6.28 0.31 5.87 6.70 
12.05.2003 132 4.57 4.26 4.11 4.14 4.09 4.45 4.43 6.77 0.32 6.54 7.31 
11.08.2003 223 3.90 4.00 4.08 4.11 4.15 4.34  6.48 0.16 6.24 6.64 
10.09.2003 253 4.43 4.70 4.84 4.59 4.99 5.03  7.54 0.35 7.09 7.98 

Deciduous forest: 
Date DOY Measurements mean stddev min max 

Deciduous forest Neuhöchstadt 2002, old stand 
26.04.2002 116 1.32 1.49 1.45 1.53 1.49 1.46 0.08 1.32 1.53 
03.05.2002 123 2.36 2.56 2.72 2.30 2.41 2.68 2.56 2.68 2.53 0.16 2.3 2.72 
14.05.2002 134 4.78 4.47 4.96 4.86 5.29 4.87 0.30 4.47 5.29 
23.05.2002 143 5.27 5.46 5.35 5.02 5.43 5.31 0.18 5.02 5.46 
Deciduous forest Meiling 2002, old stand 
26.04.2002 116 1.71 1.78 1.59 1.63 1.59 1.66 0.08 1.59 1.78 
03.05.2002 123 3.10 2.95 2.95 2.78 2.80 2.92 0.13 2.78 3.1 
15.05.2002 135 3.69 4.78 4.63 5.05 4.52 4.53 0.51 3.69 5.05 
23.05.2002 143 4.72 5.43 5.79 5.85 5.19 5.40 0.46 4.72 5.85 
Deciduous forest Meiling 2002, young stand 
26.04.2002 116 1.56 1.93 2.01 1.81 1.68 1.80 0.18 1.56 2.01 
03.05.2002 123 2.28 2.27 2.40 2.58 2.55 2.49 2.43 0.13 2.27 2.58 
15.05.2002 135 4.92 4.97 4.67 4.47 4.39 4.68 0.26 4.39 4.97 
23.05.2002 143 6.26 5.99 5.64 5.48 5.33 5.74 0.38 5.33 6.26 
Deciduous forest Mühltalerleiten 2003, old stand 
30.04.2003 120 1.95 2.12 2.51 2.83 2.76 2.98 1.73 2.41 0.48 1.73 2.98 
12.05.2003 132 4.98 4.92 3.19 3.10 3.20 2.94 2.94 3.61 0.92 2.94 4.98 
23.05.2003 143 3.01 3.13 3.05 4.30 4.85 4.47 3.80 0.83 3.01 4.85 
03.09.2003 246 3.28 3.09 3.29 4.53 4.61 3.76 0.74 3.09 4.61 
10.09.2003 253 2.69 2.52 2.46 3.87 4.08 3.87 3.25 0.77 2.46 4.08 
Deciduous forest Weiherbuchet 2003, old stand 
30.04.2003 120 2.93 2.98 2.89 2.66 3.23 2.56 3.11 2.97 2.92 0.22 2.56 3.23 
12.05.2003 132 4.28 4.68 5.44 4.52 6.38 6.03 5.22 0.86 4.28 6.38 
23.05.2003 143 5.00 5.00 4.38 5.37 4.68 4.80 4.87 0.34 4.38 5.37 
03.09.2003 246 4.15 4.31 4.34 3.88 4.49 4.23 0.23 3.88 4.49 
10.09.2003 253 3.95 4.06 4.14 3.71 3.94  3.96 0.16 3.71 4.14 
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Winter grain 
erroneous measurements are in brackets and omitted in the statistics: 

Date DOY Measurements Plot 1 Measurements Plot 2 Measurements Plot 3 mean stddev min max
Winter wheat DLR, 2002 
03.05.2002 123 1.93 1.88 1.78 2.23 2.57 2.74 2.00 2.08 1.73 2.56 2.51 1.70 2.14 0.368 1.70 2.74
14.05.2002 134 4.13 4.10 4.35 4.15 3.23 3.34 3.76 3.58 2.56 2.54 2.81 3.00 3.46 0.646 2.54 4.35
23.05.2002 143 4.43 4.15 3.92 4.12 3.52 3.52 4.14 4.01 3.14 3.24 3.49 3.31 3.75 0.427 3.14 4.43
29.05.2002 149 5.20 5.09 4.45 5.32 3.69 3.72 3.80 3.88 3.72 3.63 3.94 4.03 4.21 0.641 3.63 5.32
05.06.2002 156 4.36 4.32 4.42 4.44 4.36 4.54 4.36 4.32 4.31 3.95 4.37 4.27 4.34 0.140 3.95 4.54
17.06.2002 168 4.69 4.05 4.11 4.19 3.69 3.80 3.70 3.55 4.11 3.28 3.40 3.56 3.84 0.399 3.28 4.69
27.06.2002 178 3.74 3.69 4.06 3.85 4.26 4.30 4.02 4.01 3.51 3.78 3.54 3.72 3.87 0.258 3.51 4.30
11.07.2002 192 3.53 4.02 3.96 3.58 3.42 3.39 3.16 3.02 2.97 3.02 3.16 3.20 3.37 0.352 2.97 4.02
22.07.2002 203 2.77 2.99 3.03 2.97 2.44 2.59 2.49 2.43 2.75 2.95 2.59 2.52 2.71 0.229 2.43 3.03
08.08.2002 220 2.70 2.68 2.69 2.66 2.77 2.77 2.92 2.84 2.26 2.23 2.32 2.17 2.58 0.263 2.17 2.92
Winter wheat Mitterwies, 2002 
03.05.2002 123 2.03 1.82 2.02 1.73 1.76 1.94 1.98 1.95 1.71 1.78 1.72 1.85 1.86 0.121 1.71 2.03
14.05.2002 134 3.01 2.88 2.80 2.38 2.95 3.16 2.53 2.59 2.62 2.52 2.9 2.72 2.76 0.233 2.38 3.16
23.05.2002 143 2.97 2.94 3.11 2.99 3.27 3.28 3.36 3.23 3.32 3.21 3.23 3.08 3.17 0.143 2.94 3.36
29.05.2002 149 3.37 3.56 3.55 3.47 3.46 3.61 3.59 3.54 2.79 3.23 3.09 3.38 3.39 0.244 2.79 3.61
05.06.2002 156 [4,14] 5.00 5.00 5.18 4.52 4.21 3.76 3.95 4.21 3.98 3.27 3.39 4.22 0.645 3.27 5.18
17.06.2002 168 3.70 4.73 4.41 4.60 5.12 4.37 4.33 4.61 4.05 4.46 4.42 4.21 4.42 0.352 3.70 5.12
27.06.2002 178 4.14 4.17 4.29 4.23 3.84 3.46 4.19 3.99 4.04 3.87 3.76 3.57 3.96 0.267 3.46 4.29
11.07.2002 192 3.17 3.51 3.69 3.69 3.5 3.44 3.52 3.66 3.34 3.27 3.25 3.28 3.44 0.181 3.17 3.69
22.07.2002 203 2.43 2.48 2.66 2.37 2.66 2.82 2.63 2.59 2.46 2.27 2.15 2.91 2.54 0.220 2.15 2.91
08.08.2002 220 2.10 2.28 1.88 1.91 2.3 2.34 2.34 2.26 2.35 2.36 2.72 2.78 2.30 0.267 1.88 2.78
Winter wheat Stürzer, 2002 
03.05.2002 123 1.67 1.82 2.09 1.87 1.99 1.87 2.08 2.20 2.21 2.06 2.20 1.72 1.98 0.189 1.67 2.21
15.05.2002 135 3.43 3.54 3.84 3.68 3.76 4.07 3.40 3.45 2.21 2.06 2.64 2.65 3.23 0.665 2.06 4.07
23.05.2002 143 3.22 3.21 3.06 3.06 3.84 3.82 3.96 4.39 3.33 2.73 2.97 3.28 3.41 0.488 2.73 4.39
29.05.2002 149 3.92 4.12 3.99 3.90 3.95 4.00 4.42 4.38 3.42 3.42 3.41 3.71 3.89 0.344 3.41 4.42
05.06.2002 156 3.85 3.76 3.55 3.38 3.27 3.29 3.39 3.31 3.48 0.223 3.27 3.85
17.06.2002 168 4.51 4.59 4.42 4.30 5.13 5.14 5.26 5.28 3.92 3.06 3.24 3.24 4.34 0.816 3.06 5.28
27.06.2002 178 4.14 3.99 3.90 3.90 4.82 4.65 4.58 4.71 3.48 3.90 4.63 3.77 4.21 0.447 3.48 4.82
11.07.2002 192 3.47 3.52 3.34 3.52 3.67 3.82 3.80 3.95 3.52 3.64 2.97 3.14 3.51 0.265 2.97 3.95
23.07.2002 204 3.47 3.19 4.03 4.13 2.32 2.45 2.31 2.69 2.66 2.72 2.61 2.56 3.00 0.635 2.31 4.13
08.08.2002 220 2.11 2.14 2.43 2.79 2.31 2.03 2.00 1.69 2.86 2.79 2.37 2.53 2.34 0.363 1.69 2.86
Winter wheat Stürzer, 2003 
23.04.2003 113 0.60 0.54 0.74 0.51 0.47 0.43 0.23 0.22 0.18 0.15 0.10 0.23 0.37 0.207 0.10 0.74
06.05.2003 126 1.15 1.28 1.59 1.57 1.96 1.69 1.94 2.06 1.23 1.15 0.92 1.24 1.48 0.373 0.92 2.06
19.05.2003 139 3.32 3.39 3.38 3.57 2.62 2.70 3.17 3.20 2.45 2.58 2.35 2.40 2.93 0.45 2.35 3.57
02.06.2003 153 4.16 4.29 4.57 4.52 5.17 5.03 5.13 5.12 4.62 4.51 4.25 4.12 4.62 0.395 4.12 5.17
16.06.2003 167 5.67 [3,87] 5.43 4.99 5.10 5.00 5.17 5.13 4.44 4.57 4.21 4.23 4.90 0.48 4.21 5.67
08.07.2003 189 3.78 3.77 3.99 3.89 3.74 3.48 3.36 3.34 3.17 3.22 3.54 3.50 3.57 0.267 3.17 3.99
28.07.2003 209 3.84 3.74 3.11 3.30 2.57 2.27 2.69 2.44 3.10 3.02 2.85 2.98 2.99 0.478 2.27 3.84
Triticale Stürzer, 2003 
23.04.2003 113 0.49 0.18 0.30 0.49 0.46 0.44 0.67 0.65 0.89 0.98 0.97 1.09 0.59 0.266 0.18 0.98
06.05.2003 126 1.84 [0.23] 1.47 1.40 1.76 1.74 1.50 1.66 1.95 1.95 2.04 2.09 1.73 0.221 1.40 2.04
19.05.2003 139 2.40 2.27 2.27 2.32 2.23 2.25 2.77 2.83 2.39 2.23 2.72 2.58 2.43 0.232 2.23 2.83
02.06.2003 153 3.75 3.76 3.85 3.69 3.54 3.38 3.72 3.57 3.82 3.73 3.72 3.63 3.68 0.137 3.38 3.85
16.06.2003 167 4.34 4.55 4.41 4.36 3.14 3.12 3.50 3.50 3.38 3.38 3.91 3.65 3.78 0.546 3.12 4.55
08.07.2003 189 2.38 2.39 2.15 2.16 2.60 2.63 2.73 2.77 2.66 2.69 2.95 3.03 2.56 0.254 2.15 2.95
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Winter wheat Stürzer, 2004 
Date DOY Measurements Plot 1 Measurements Plot 2 Measurements Plot 3 

29.04.2004 120 1.67 1.73 1.58 1.65 1.60 1.55 1.87 1.84    

06.05.2004 127 1.81 1.86 1.44 1.36   2.34 2.35 2.60 2.07 1.92 2.34 2.23 1.85 1.75  

13.05.2004 134 3.40 2.96 3.12 3.37   3.89 3.95 3.16 [2,87] 3.03 2.21 2.36 [2,61] 2.44 2.36 

25.05.2004 146 3.21 3.43 3.43 3.52 3.49 3.77 4.14 4.31 3.87 3.79 4.29 4.26 [4,22] [4,43] [4,67] [4,66] [5,14] [5,22] [5,33] [5,43]

01.06.2004 153 3.01 3.29 3.58 3.55   3.46 3.28 3.53 3.45 3.97 3.73 4.16 4.14  

07.06.2004 159 3.28 3.36 3.86 3.76 4.41 4.24 4.08 4.37 4.53 4.73 4.94 4.67 [5,36] [4,38] [5,39] [5,51] [6,07] [5,52] [4,42] [4,89]

11.06.2004 163 4.59 4.55 3.79 3.48   4.97 4.90 [5,82] [5,70] 5.35 5.23 4.45 4.51 4.48 4.53  

17.06.2004 169 5.50 5.80 5.39 5.49   5.75 6.07 5.55 5.16 5.27 5.28 5.60 5.32  

24.06.2004 176 4.12 4.43 4.94 5.11   5.08 5.22 4.35 4.27 [5,95] [6,00] [6,64] [6,77]  

05.07.2004 187       4.92 4.96 5.33    

15.07.2004 197 5.03 5.00 4.41 4.25 4.56 4.66 4.80 4.80 4.76 4.65 5.61 5.56 6.38 6.45 5.65 5.65

22.07.2004 204 5.18 5.39 5.30 5.50   4.67 4.60 4.64 4.84 5.30 5.64 5.09 4.99  

29.07.2004 211 5.18 5.22 5.25 5.32   4.82 4.72 4.96 5.08 4.56 4.56 4.83 4.78  

05.08.2004 218 4.78 4.62 4.80 4.63   3.33 3.28 3.40 3.41 4.07 4.05 4.12 4.30  

12.08.2004 225 4.22 4.29 4.22 4.37   3.84 3.92 3.78 3.83 4.21 4.37 4.11 3.95  

19.08.2004 231 3.03 3.01 2.86 2.78   3.09 3.21 3.28 3.25 3.06 3.25 3.31 3.32  

 
Winter wheat Stürzer, 2004 (continued) 

Date DOY Measurements Plot 4 Measurements Plot 5 mean stddev min max 
29.04.2004 120 0.99 1.01 1.05 0.90  0.75 1.10 1.73 1.65 1.42 0.38 0.75 1.87 
06.05.2004 127 1.85 1.67 1.51 1.32 1.40 1.78 2.18 1.90 2.59 2.10 2.34 1.94 0.38 1.32 2.60 
13.05.2004 134 2.44 2.36 2.26 2.08  2.27 2.62 2.58 2.97 2.35 2.45 2.76 0.54 2.08 3.95 
25.05.2004 146 3.29 3.42 3.64 3.54 3.52 3.50 3.90 4.08 3.88 3.83 4.23 4.02 3.77 0.34 3.21 4.31 
01.06.2004 153 3.13 3.10 3.11 3.11  5.12 4.93 5.06 [5,42] 4.63 3.77 0.69 3.01 5.12 
07.06.2004 159 4.45 4.58 4.48 4.53 3.81 3.99 4.87 4.74 4.86 4.76 4.84 4.61 4.36 0.47 3.28 4.94 
11.06.2004 163 4.58 4.38 4.31 4.42  4.24 4.30 4.51 4.68 4.51 0.42 3.48 5.35 
17.06.2004 169 4.83 4.79 4.05 4.28  4.89 5.07 4.91 5.29 5.21 0.49 4.05 6.07 
24.06.2004 176 5.68 5.64 5.35 5.21  5.40 5.39 5.28 5.33 5.05 0.49 4.12 5.68 
05.07.2004 187 5.04 5.24 4.86 4.71  4.87 5.35 4.91 5.31 5.05 0.22 4.71 5.35 
15.07.2004 197 4.48 4.38 4.32 4.38  4.97 4.94 5.06 5.05 4.99 0.61 4.25 6.45 
22.07.2004 204 [2,98] [3,10] [3,15] [3,31]  4.21 4.26 4.02 4.00 4.85 0.53 4.00 5.64 
29.07.2004 211 4.20 4.30 4.22 4.32  3.99 4.07 [4,59] [4,52] 4.69 0.43 3.99 5.32 
05.08.2004 218 3.50 3.54 3.72 3.76  3.84 3.76 3.92 3.93 3.94 0.48 3.28 4.80 
12.08.2004 225 3.68 3.63 3.64 3.91  3.76 3.79 3.86 3.76 3.96 0.25 3.63 4.37 
19.08.2004 231 3.35 3.41 3.47 3.48  3.42 3.38 3.33 3.36 3.23 0.20 2.78 3.48 
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Maize 
erroneous measurements are in brackets and omitted in the statistics: 

Date DOY Measurements Plot 1 Measurements Plot 2 Measurements Plot 3 mean stddev min max
Maize Argelsried, 2003 
16.06.2003 167 2.11 2.16 2.23 2.22 2.10 2.07 2.05 2.08 2.25 2.34 2.25 2.24   2.18 0.09 2.05 2.34
09.07.2003 190 3.97 3.97 4.16 4.25 4.03 4.19 4.23 4.19 4.32 4.31 4.22 3.98   4.15 0.13 3.97 4.32
28.07.2003 209 3.84 3.73 3.76 3.88 2.63 2.75 2.78 4.13 3.09 4.29 4.07   3.54 0.61 2.63 4.29
11.08.2003 223 2.95 2.90 2.89 2.91 4.09 4.06 2.31 2.42   3.07 0.67 2.31 4.09
Maize Teifenbrunn, 2003 
16.06.2003 167 1.01 1.02 0.86 0.87 1.77 1.62 1.86 1.82 1.31 1.43 1.22 1.19   1.33 0.37 0.86 1.86
08.07.2003 189 2.32 2.36 2.58 2.56 2.65 2.74 2.82 2.69 2.88 3.12 3.04 2.96   2.73 0.25 2.32 3.12
28.07.2003 209 2.50 2.66 2.81 2.78 3.05 2.58 2.51 2.14 3.36 3.32 3.56 3.77   2.92 0.49 2.14 3.77
11.08.2003 223 1.51 1.48   1.69 1.65 2.50 2.61   1.91 0.51 1.48 2.61
28.08.2003 240 1.65 1.61 1.96 2.08 1.45 1.38 1.56 1.57 1.62 1.55 1.49 1.48   1.62 0.20 1.38 2.08
10.09.2003 253 1.51 1.46 1.39 1.44 1.48 1.42 1.64 1.67 1.77 1.78 1.68 1.70   1.58 0.14 1.39 1.78
Maize DLR,  2002 
17.06.2002 168 1.07 1.1 0.99 0.92 0.82 0.96 0.86 0.83 0.80 0.83 0.74 0.79   0.89 0.12 0.74 1.10
27.06.2002 178 2.59 2.53 2.5 2.85 2.46 2.48 2.31 2.33 3.38 3.36 3.25 3.22   2.77 0.42 2.31 3.38
12.07.2002 193 [0,9] [0,66] [1,74] [0,55] [0] [0] [0] [0] [0,29] [1,1] 4.30 4.08 4.19 4.07   4.16 0.11 4.07 4.30
23.07.2002 204 4.03 4.24 3.85 3.82 4.08 3.92 4.71 4.73 3.36 4.35 3.26 3.45 4.00 3.40 3.94 0.47 3.26 4.73
08.08.2002 220 4.45 4.45 3.65 3.79 3.54 3.61 3.87 3.87 4.56 4.34 5.09 5.18   4.20 0.56 3.54 5.18
21.08.2002 233 3.95 4.46 4.53 4.72  5.79 5.20 4.80 4.73   4.77 0.54 3.95 5.79
Maize St. Gilgen, 2002 
17.06.2002 168 0.93 0.97 0.9 0.87 0.9 0.88 0.9 0.87 1.04 1.22 1.41 1.49 1.48 0.97 1.06 0.24 0.87 1.49
27.06.2002 178 2.25 2.38 2.17 2.21 2.36 2.42 2.34 2.5 2.1 2.21 2.33 2.33   2.30 0.11 2.10 2.50
12.07.2002 193 3.52 4.21 3.39 2,74 3.91 3.83 3.63 3.56 3.12 3.18 2.97 2.95   3.48 0.40 2.95 4.21
23.07.2002 204 3.24 3.39 3.24 2.94 3.65 3.67 3.59 3.4 3.72 3.5 3.6 3.56   3.46 0.23 2.94 3.72
08.08.2002 220 3.6 3.47 3.16 3,21 3.32 3.24 3.28 3.3 2.94 2.84 3.42 3.34   3.26 0.22 2.84 3.60
21.08.2002 233 3.41 3.35 3.14 3.22 3.22 3.28 3.52 3.64 4.04 4.01 4.7 4.31   3.65 0.50 3.14 4.70
Maize Wastian, 2002 
17.06.2002 168 0.63 0.58 0.65 0.6 0.6 0.74 0.77 0.93 0.59 0.58 0.68 0.70   0.67 0.10 0.58 0.93
27.06.2002 178 1.92 1.85 1.74 1.61 1.28 1.27 1.57 1.51 1.46 1.50 1.44 1.53   1.56 0.20 1.27 1.92
11.07.2002 192 3.4 3.38 3.49 3.15 2.76 2.94 2.92 2.57 3.26 3.19 2.66 2.68   3.03 0.32 2.57 3.49
23.07.2002 204 3.56 3.16 3.42 3.14 3.34 3.2 3.32 3.32 4.27 3.56 3.75 4.31 4.00 3.68 3.57 0.39 3.14 4.31
08.08.2002 220 3.92 4.04 4.02 3.88 3.31 3.08 3.1 3.22 3.58 3.70 3.49 3.64   3.58 0.35 3.08 4.04
21.08.2002 233 3.73 3.68 3.39 3.53 4.03 4.25 3.59 3.34 3.56 3.45 3.43 3.23   3.60 0.29 3.23 4.25
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Maize Argelsried, 2004 

Date DOY Measurements Plot 1 Measurements Plot 2 Measurements Plot 3 
17.06.2004 169 0.23 0.30 0.33 0.30               0.36 0.35 0.43 0.36      

24.06.2004 176 0.56 0.55 0.59 0.61      0.51 0.61 0.84 0.68 0.54 0.60    0.73 0.78 0.83 0.76      

01.07.2004 183 1.14 1.09 1.05 1.04      1.43 1.42 1.35 1.37      1.75 1.70 1.69 1.68      

15.07.2004 197 2.42 2.42 2.45 2.48      2.57 2.50 2.27 2.29 2.28 2.28    2.53 2.62 2.87 2.80 2.79 2.74    

22.07.2004 204 2.90 2.80 2.90 3.07      3.27 3.02 3.04 2.80      3.48 3.10 3.15 3.08      

29.07.2004 211 3.34         3.28 3.45 4.06 3.40 4.55 3.40    3.91 4.73 3.79 3.86      

05.08.2004 218 3.61 3.50 3.61 3.60      4.26 4.22 4.29 4.02      4.05 4.28 3.94 4.16      

12.08.2004 225 4.34 4.15 3.90 3.93      4.47 4.38 4.30 4.16      3.81 3.76 3.88 3.76      

19.08.2004 232 3.45 3.47 3.36 3.45      3.88 3.97 4.19 4.24      3.43 3.38 3.16 3.18      

26.08.2004 239 3.60 3.65 3.35 3.45               4.19 4.12 3.94 3.91      

02.09.2004 246 3.70 3.78 3.74 3.71      4.09 4.06 4.15 4.06         3.84 3.83 4.01 3.92    

09.09.2004 253 3.58 3.63 3.55 3.49      3.95 4.02 3.99 3.99         3.91 3.97 3.88 3.73    

16.09.2004 260 3.18 3.16 3.08 3.03 3.34 3.30 3.30 3.37 3.29 3.36 3.63 3.76 3.63 3.65 3.35 3.31 3.27 3.25 3.47 3.54 3.74 3.71 3.75 3.70

23.09.2004 267 2.94  3.00 3.01 2.91 2.78    3.22 3.30 2.96 3.32 2.51 2.87    3.12 3.18 3.47 3.42      

30.09.2004 274 2.91 2.89 2.80 2.77      2.94 2.93 3.15 3.13      3.41 3.35 3.55 3.41      

 
Maize Argelsried, 2004 (continued) 

Date DOY Measurements Plot 4 Measurements Plot 5 mean stddev min max
17.06.2004 169         0.38 0.4 0.4 0.4     0.35 0.06 0.23 0.43

24.06.2004 176 0.88 0.88 0.9 0.83     0.81 0.76 0.68 0.68     0.71 0.12 0.51 0.90

01.07.2004 183 1.46 1.39 1.39 1.31     1.54 1.44 1.55 1.64     1.42 0.22 1.04 1.75

15.07.2004 197 2.67 2.57 2.72 2.79 2.83 2.8   2.38 2.25 2.28 2.27     2.53 0.21 2.25 2.87

22.07.2004 204 3.07 2.92 3.14 2.94     3.17 3.2 3.36 3.24     3.08 0.18 2.80 3.48

29.07.2004 211 3.99 3.39 3.58 3.30     3.80 3.52 3.66 4.09     3.74 0.41 3.28 4.73

05.08.2004 218 3.99 3.87 3.79 3.62     3.79 3.48 3.47 3.3     3.84 0.31 3.30 4.29

12.08.2004 225 3.5 3.56 3.48 3.43     4.28 3.99 4.11 4.48     3.98 0.34 3.43 4.48

19.08.2004 232 3.73 3.54 3.73 3.74     3.90 4.00 3.49 3.58     3.64 0.31 3.16 4.24

26.08.2004 239 3.01 2.98 3.06 3.04     3.18 3.26 3.34 3.40     3.47 0.40 2.98 4.19

02.09.2004 246 3.14 3.1 2.99 2.89     3.49 3.56 3.51 3.50     3.65 0.38 2.89 4.15

09.09.2004 253         3.27 3.24 3.30 3.27     3.67 0.29 3.24 4.02

16.09.2004 260 1.98 2.04 2.20 2.23 2.11 2.19 2.44 2.32 3.38 3.33 3.41 3.50 3.29 3.40 3.33 3.37 3.17 0.53 1.98 3.76

23.09.2004 267 1.90 1.93 1.89 2.06     2.65 2.93 3.02 3.02 3.02 3.12   2.86 0.46 1.89 3.47

30.09.2004 274 1.83 1.83 1.79 1.82     2.97 2.93 2.86 2.92     2.81 0.55 1.79 3.55
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Appendix 4: Generalized Seasonal Development of LAI 

The following plots and tables provide the generalizations of mean, minimum and maximum 
LAI estimated from the host of available LAI data. The generalization of the land cover type 
of mixed forest was approximated from the needleleaf forest and the deciduous forest 
generalizations. With the assumption of equal portions of both tree types in mixed forest the 
mean from the two forest types was taken as the generalization for mixed forest. No plot and 
values are provided for this land cover type. 
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Bocksfeld 2003 mean
Bocksfeld 2003 min
Bocksfeld 2003 max
Reißmühlenw eg 2003 mean
Reißmühlenw eg 2003 min
Reißmühlenw eg 2003 max
Oberbrunn 2002 young
Oberbrunn 2002 old
PROMET-V mean
PROMET-V min
PROMET-V max
Generalization Needleleaf forest mean
Generalization Needleleaf forest min
Generalization Needleleaf forest max

 
Needleleaf forest Generalization 
doy mean min max doy mean min max doy mean min max 
1 6.16 5.62 7.02 130 6.12 5.20 7.22 260 7.33 5.70 8.10 
10 6.12 5.62 6.98 140 6.47 5.17 7.49 270 7.35 5.73 8.18 
20 6.07 5.58 6.90 150 6.63 5.18 7.54 280 7.40 5.73 8.18 
30 6.04 5.54 6.86 160 6.63 5.14 7.60 290 7.43 5.75 8.18 
40 6.00 5.50 6.82 170 6.66 5.14 7.65 300 7.30 5.75 8.10 
50 5.98 5.46 6.74 180 6.68 5.10 7.65 305 7.03 5.78 7.83 
60 5.93 5.46 6.70 190 6.71 5.14 7.67 315 6.67 5.80 7.49 
70 5.88 5.42 6.66 200 6.76 5.30 7.67 325 6.50 5.78 7.18 
80 5.86 5.38 6.58 210 6.76 5.42 7.70 335 6.35 5.74 7.10 
90 5.83 5.34 6.54 220 6.80 5.50 7.73 345 6.30 5.70 7.10 
100 5.79 5.34 6.50 230 6.90 5.54 7.75 355 6.20 5.66 7.10 
110 5.83 5.30 6.50 240 7.03 5.66 7.83 365 6.16 5.62 7.02 
120 5.88 5.26 6.84 250 7.22 5.68 8.02     
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Deciduous Forest 

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

DOY

LA
I [

m
²/m

²]

Weiherbuchet 2003 mean
Weiherbuchet 2003 min
Weiherbuchet 2003 max
Mühltalerleiten 2003 mean
Mühltalerleiten 2003 min
Mühltalerleiten 2003 max
Meiling young 2002
Meiling old 2002
Neuhöchstadt 2002
PROMET-V mean
PROMET-V 2000 min
PROMET-V 2000 max
Generalization decid. forest mean
Generalization decid. forest min
Generalization decid. forest max

 
Deciduous forest Generalization 
doy mean min max doy mean min max doy mean min max 
86 0.00 0.00 0.00 170 5.58 3.73 6.80 261 4.56 1.51 6.20 
93 0.00 0.00 0.00 177 5.54 3.70 6.76 268 3.80 0.57 6.03 
100 0.00 0.00 0.00 184 5.50 3.72 6.72 277 2.98 0.04 5.92 
107 0.00 0.00 0.00 191 5.46 3.68 6.68 282 2.00 0.00 5.67 
114 0.65 0.00 1.43 198 5.42 3.64 6.64 289 0.97 0.00 5.17 
118 1.54 0.18 2.76 205 5.38 3.60 6.60 296 0.11 0.00 4.09 
121 2.04 0.60 3.55 212 5.34 3.56 6.56 303 0.00 0.00 2.87 
128 3.80 2.20 5.24 219 5.30 3.52 6.52 310 0.00 0.00 1.36 
135 5.06 3.26 6.31 226 5.26 3.48 6.48 317 0.00 0.00 0.54 
142 5.74 3.60 6.74 233 5.22 3.44 6.44 324 0.00 0.00 0.00 
149 5.70 3.66 6.92 240 5.18 3.40 6.40 331 0.00 0.00 0.00 
156 5.66 3.70 6.88 247 5.09 3.12 6.31 338 0.00 0.00 0.00 
163 5.62 3.73 6.84 254 5.00 2.48 6.28     
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Grassland 
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Grasland Generalization 
doy mean min max doy mean min max doy mean min max 
1 0.44 0.40 0.80 130 1.63 0.69 2.87 260 1.05 0.73 3.68 
10 0.44 0.40 0.80 140 2.36 0.83 4.54 270 1.06 0.60 3.32 
20 0.44 0.40 0.80 150 3.66 0.92 5.17 280 0.80 0.49 2.20 
30 0.44 0.40 0.80 160 1.61 1.00 5.51 290 0.71 0.43 1.24 
40 0.44 0.40 0.80 170 1.28 1.00 5.68 300 0.60 0.36 0.92 
50 0.44 0.40 0.80 180 1.46 1.00 5.80 310 0.51 0.36 0.80 
60 0.44 0.40 0.80 190 1.85 1.00 5.54 320 0.44 0.36 0.80 
70 0.44 0.40 0.80 200 2.46 1.00 5.25 330 0.44 0.36 0.80 
80 0.44 0.40 0.80 210 2.59 1.00 4.76 340 0.44 0.36 0.80 
90 0.45 0.40 0.80 220 1.89 1.00 4.16 350 0.44 0.36 0.80 
100 0.59 0.40 0.80 230 1.57 0.92 3.92 360 0.44 0.36 0.80 
110 0.78 0.36 1.24 240 1.09 0.85 4.80 260 1.05 0.73 3.68 
120 1.10 0.49 1.83 250 0.92 0.79 4.35     
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Spring Grain 
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Spring Grain Generalization 
doy mean min max doy mean min max
100 0.00 0.00 0.00 163 3.49 2.62 4.64
107 0.00 0.00 0.00 170 3.08 1.91 4.18
114 0.00 0.00 0.07 177 1.78 0.99 2.81
118 0.20 0.00 0.26 184 0.53 0.09 1.20
121 0.70 0.37 0.92 191 0.00 0.00 0.07
128 1.85 1.38 2.44 198 0.00 0.00 0.00
135 2.95 2.20 3.63 205 0.00 0.00 0.00
142 3.52 2.68 4.68 212 0.00 0.00 0.00
149 3.65 2.75 4.94 219 0.00 0.00 0.00
156 3.60 2.77 4.92     
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Winter Grain 
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Stürzer 2004 min
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PROMET-V 2000 max
Generalization Winter grain mean
Generalization Winter grain min
Generalization Winter grain max

 
Winter Grain Generalization 
doy mean min max doy mean min max doy mean min max 
1 0.10 0.00 0.20 177 4.44 2.80 5.82 275 0.00 0.00 0.00 
86 0.10 0.00 0.20 184 3.89 2.48 5.75 282 0.00 0.00 0.00 
93 0.10 0.00 0.20 191 3.56 2.04 5.75 289 0.00 0.00 0.00 
100 0.10 0.00 0.20 198 3.15 1.67 5.63 296 0.00 0.00 0.00 
107 0.15 0.00 0.20 205 2.74 1.15 5.48 303 0.10 0.00 0.20 
114 0.52 0.04 1.00 212 2.48 0.00 5.17 310 0.10 0.00 0.20 
118 0.93 0.26 1.53 219 2.00 0.00 4.75 317 0.10 0.00 0.20 
121 1.22 0.56 2.07 226 0.00 0.00 4.25 324 0.10 0.00 0.20 
128 2.11 1.38 3.10 233 0.00 0.00 3.50 331 0.10 0.00 0.20 
135 2.89 2.20 4.37 236 0.00 0.00 0.00 338 0.10 0.00 0.20 
142 3.44 2.68 5.10 240 0.00 0.00 0.00 345 0.10 0.00 0.20 
149 3.93 2.89 5.52 247 0.00 0.00 0.00 352 0.10 0.00 0.20 
156 4.37 3.00 5.90 254 0.00 0.00 0.00 359 0.10 0.00 0.20 
163 4.67 3.07 6.05 261 0.00 0.00 0.00 365 0.10 0.00 0.20 
170 4.70 3.04 5.90 268 0.00 0.00 0.00     
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Maize 
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Maize Generalization 
doy mean min max doy mean min max doy mean min max 
86 0.00 0.00 0.00 163 0.98 0.25 1.76 247 3.24 2.01 4.57 
93 0.00 0.00 0.00 170 1.47 0.33 2.60 254 3.00 1.91 4.34 
100 0.00 0.00 0.00 177 2.11 0.60 3.26 261 2.80 1.76 4.07 
107 0.00 0.00 0.00 184 2.72 1.22 3.82 268 2.56 1.55 3.82 
114 0.00 0.00 0.00 191 3.20 1.79 4.32 275 2.20 0.80 3.57 
118 0.00 0.00 0.00 198 3.57 2.30 4.53 282 0.06 0.00 3.12 
121 0.00 0.00 0.00 205 3.69 2.53 4.65 289 0.00 0.00 0.00 
128 0.04 0.00 0.06 212 3.85 2.58 4.76 296 0.00 0.00 0.00 
135 0.09 0.03 0.25 219 3.91 2.53 4.84 303 0.00 0.00 0.00 
142 0.20 0.04 0.45 226 3.88 2.39 4.90 247 3.24 2.01 4.57 
149 0.40 0.11 0.70 233 3.73 2.28 4.90 254 3.00 1.91 4.34 
156 0.64 0.17 1.18 240 3.47 2.16 4.78 261 2.80 1.76 4.07 
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Appendix 5: Reflectance Probability Functions 

The functions that were used in the reflectance segmentation prototyping and application are 
listed in the following tables. They contain the contents of the files that were read by the 
software for reflectance segmentation. First the functions that were derived directly from the 
high-resolution reflectance data are given (used in the prototyping and the application to 
coincident data of high and low resolution doy 170/171, 2000). The second table summarizes 
the functions that were generated from the GeoSAIL simulations of reflectances. They were 
used in the reflectance segmentation of the 19 MODIS scenes of 2003. 

 
Reflectance Probability Gaussian Function Parameters for DOY 171, 2000 (generated from high resolution reflectance 

histograms) 
RED NIR 

# k3 - Parameters for 3 param Gauss function a*exp(-.5*((x-
x0)/b)^2), DOY 171 (from fits to high res histograms) 
# land cover type, a, x0, b 
Deciduous, 0.916009848765501, 0.026972877532762, 
0.009290284653843 
Mixed Forest, 0.943244118752844, 0.020822279789494, 
0.007007655772883 
Coniferous, 0.958186545410539, 0.022047329555344, 
0.008372575873238 
Grassland, 0.908945797880119, 0.051524606695294, 
0.021932331428066 
Summercereals, 0.614573859764575, 0.035119001005268, 
0.012441441143867 
Wintercereals, 0.963803953208957, 0.028431421042494, 
0.008876930983400 
Maize, 0.960875045204768, 0.043468548992129, 
0.015285994224823 
Rock, 0.879742776080572, 0.125587645480524, 
0.067445657811590 
Soil, 0.776590204414268, 0.147582280504454, 
0.041459034624869 
Urban, 0.872273724761920, 0.089376044870024, 
0.033573239985266 
Snow, 0.964109614398773, 0.424754724491972, 
0.192778173027072 
Water, 0.597639978395613, 0.012043722079445, 
0.016003608057608 

# k4 - Parameters for 3 param Gauss function a*exp(-.5*((x-
x0)/b)^2), DOY 171 (from fits to high res histograms) 
# land cover type, a, x0, b 
Deciduous, 0.906720883146173, 0.396638760519374, 
0.063146059912161 
Mixed Forest, 0.952875841836687, 0.253237828421860, 
0.058681932455725 
Coniferous, 0.903726249713775, 0.185082401930564, 
0.031099787628804 
Grassland, 0.818790472978434, 0.387338791298971, 
0.082788500540283 
Summercereals, 1.034794840269490, 0.448807157304024, 
0.033524909314332 
Wintercereals, 0.860384140305015, 0.380917006709728, 
0.057114661833012 
Maize, 0.865994355178323, 0.359503639189477, 
0.035304455689847 
Rock, 0.995001685494205, 0.261116193588741, 
0.068872416570309 
Soil, 0.828718992056425, 0.317648370690618, 
0.067155723404204 
Urban, 0.915678852836465, 0.247493093668613, 
0.044377835838129 
Snow, 0.989611898315982, 0.445017393220418, 
0.131588002756347 
Water, 1.022848677464220, 0.009691636089728, 
0.005577309148914 
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Reflectance Probability Gaussian Functions for the 2003 MODIS time series 

DOY RED NIR 

091 

# doy 91 
# Parameter for Gauss-Function: name, a, µ, sigma
 
Deciduous, 1, 0.1536, 0.00001 
Mixed Forest, 1, 0.0326, -0.0012 
Coniferous, 1, 0.025, -0.000475 
Grasland, 1, 0.0976, -0.007125 
Spring Grain, 1, 0.1536, 0.00001 
Winter Grain, 1, 0.1423, -0.0054 
Maize, 1, 0.1536, 0.00001 
Rock, 1, 0.125490819, 0.067977773 
Bare Soil, 1, 0.148090847, 0.042050528 
Urban, 1, 0.089063198, 0.033701723 
Snow and Ice, 1, 0.424729869, 0.194526916 
Water, 1, 0.012074216, 0.015997301 

# doy 91 
# Parameter for Gauss-Function: name, a, µ, sigma
 
Deciduous, 1, 0.2123, 0.00001 
Mixed Forest, 1, 0.2403, 0.00135 
Coniferous, 1, 0.1715, -5.24999999999998E-04 
Grasland, 1, 0.2681, 0.010625 
Spring Grain, 1, 0.2123, 0.00001 
Winter Grain, 1, 0.2178, 0.002775 
Maize, 1, 0.2123, 0.00001 
Rock, 1, 0.260757632, 0.069086984 
Bare Soil, 1, 0.318273003, 0.067003789 
Urban, 1, 0.249085185, 0.045946432 
Snow and Ice, 1, 0.44491274, 0.132559209 
Water, 1, 0.009699672, 0.005585239 

098 

# doy 98 
# Parameter for Gauss-Function: name, a, µ, sigma
 
Deciduous, 1, 0.1562, 0.00001 
Mixed Forest, 1, 0.0343, -0.0013 
Coniferous, 1, 0.0262, -0.00055 
Grasland, 1, 0.0915, -0.007275 
Spring Grain, 1, 0.1562, 0.00001 
Winter Grain, 1, 0.1451, -0.005325 
Maize, 1, 0.1562, 0.00001 
Rock, 1, 0.125490819, 0.067977773 
Bare Soil, 1, 0.148090847, 0.042050528 
Urban, 1, 0.089063198, 0.033701723 
Snow and Ice, 1, 0.424729869, 0.194526916 
Water, 1, 0.012074216, 0.015997301 

# doy 91 
# Parameter for Gauss-Function: name, a, µ, sigma
 
Deciduous, 1, 0.2123, 0.00001 
Mixed Forest, 1, 0.2403, 0.00135 
Coniferous, 1, 0.1715, -5.24999999999998E-04 
Grasland, 1, 0.2681, 0.010625 
Spring Grain, 1, 0.2123, 0.00001 
Winter Grain, 1, 0.2178, 0.002775 
Maize, 1, 0.2123, 0.00001 
Rock, 1, 0.260757632, 0.069086984 
Bare Soil, 1, 0.318273003, 0.067003789 
Urban, 1, 0.249085185, 0.045946432 
Snow and Ice, 1, 0.44491274, 0.132559209 
Water, 1, 0.009699672, 0.005585239 

105 

# doy 105 
# Parameter for Gauss-Function: name, a, µ, sigma
 
Deciduous, 1, 0.1587, 0.00001 
Mixed Forest, 1, 0.0359, -0.001425 
Coniferous, 1, 0.0273, -6.00000000000001E-04 
Grasland, 1, 0.0843, -0.009525 
Spring Grain, 1, 0.1587, 0.00001 
Winter Grain, 1, 0.1441, -0.005225 
Maize, 1, 0.1587, 0.00001 
Rock, 1, 0.125490819, 0.067977773 
Bare Soil, 1, 0.148090847, 0.042050528 
Urban, 1, 0.089063198, 0.033701723 
Snow and Ice, 1, 0.424729869, 0.194526916 
Water, 1, 0.012074216, 0.015997301 

# doy 105 
# Parameter for Gauss-Function: name, a, µ, sigma
 
Deciduous, 1, 0.2192, 0.00001 
Mixed Forest, 1, 0.2398, 1.22499999999999E-03 
Coniferous, 1, 0.1728, -6.49999999999998E-04 
Grasland, 1, 0.2932, 0.014575 
Spring Grain, 1, 0.2192, 0.00001 
Winter Grain, 1, 0.2259, 0.0025 
Maize, 1, 0.2192, 0.00001 
Rock, 1, 0.260757632, 0.069086984 
Bare Soil, 1, 0.318273003, 0.067003789 
Urban, 1, 0.249085185, 0.045946432 
Snow and Ice, 1, 0.44491274, 0.132559209 
Water, 1, 0.009699672, 0.005585239 

107 

# doy 107 
# Parameter for Gauss-Function: name, a, µ, sigma
 
Deciduous, 1, 0.1594, 0.00001 
Mixed Forest, 1, 0.0363, -0.001425 
Coniferous, 1, 0.0277, -0.000625 
Grasland, 1, 0.0822, -0.010225 
Spring Grain, 1, 0.1594, 0.00001 
Winter Grain, 1, 0.1434, -5.22499999999999E-03 
Maize, 1, 0.1594, 0.00001 
Rock, 1, 0.125490819, 0.067977773 
Bare Soil, 1, 0.148090847, 0.042050528 
Urban, 1, 0.089063198, 0.033701723 
Snow and Ice, 1, 0.424729869, 0.194526916 
Water, 1, 0.012074216, 0.015997301 

# doy 107 
# Parameter for Gauss-Function: name, a, µ, sigma
 
Deciduous, 1, 0.2201, 0.00001 
Mixed Forest, 1, 0.2398, 1.22499999999999E-03 
Coniferous, 1, 0.1731, -6.75000000000002E-04 
Grasland, 1, 0.2972, 0.016175 
Spring Grain, 1, 0.2201, 0.00001 
Winter Grain, 1, 0.2274, 2.44999999999999E-03 
Maize, 1, 0.2201, 0.00001 
Rock, 1, 0.260757632, 0.069086984 
Bare Soil, 1, 0.318273003, 0.067003789 
Urban, 1, 0.249085185, 0.045946432 
Snow and Ice, 1, 0.44491274, 0.132559209 
Water, 1, 0.009699672, 0.005585239 
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Reflectance Probability Gaussian Functions for the 2003 MODIS time series 

DOY RED NIR 

125 

# doy 125 
# Parameter for Gauss-Function: name, a, µ, sigma
 
Deciduous, 1, 0.0319, -0.00805 
Mixed Forest, 1, 0.0295, -0.00235 
Coniferous, 1, 0.0303, -0.001125 
Grasland, 1, 0.0577, -0.0126 
Spring Grain, 1, 0.0728, -0.02665 
Winter Grain, 1, 0.059, -0.012075 
Maize, 1, 0.1624, -9.24999999999995E-04 
Rock, 1, 0.125490819, 0.067977773 
Bare Soil, 1, 0.148090847, 0.042050528 
Urban, 1, 0.089063198, 0.033701723 
Snow and Ice, 1, 0.424729869, 0.194526916 
Water, 1, 0.012074216, 0.015997301 

# doy 125 
# Parameter for Gauss-Function: name, a, µ, sigma
 
Deciduous, 1, 0.3054, 0.016725 
Mixed Forest, 1, 0.2493, 2.12499999999999E-03 
Coniferous, 1, 0.1753, -1.12499999999999E-03 
Grasland, 1, 0.3533, 0.0314 
Spring Grain, 1, 0.315, 0.027725 
Winter Grain, 1, 0.3105, 0.01855 
Maize, 1, 0.2281, 2.75000000000004E-04 
Rock, 1, 0.260757632, 0.069086984 
Bare Soil, 1, 0.318273003, 0.067003789 
Urban, 1, 0.249085185, 0.045946432 
Snow and Ice, 1, 0.44491274, 0.132559209 
Water, 1, 0.009699672, 0.005585239 

139 

# doy 139 
# Parameter for Gauss-Function: name, a, µ, sigma
 
Deciduous, 1, 0.0249, -0.00155 
Mixed Forest, 1, 0.0275, -0.00145 
Coniferous, 1, 0.0313, -0.001475 
Grasland, 1, 0.0448, -0.01005 
Spring Grain, 1, 0.0383, -0.032575 
Winter Grain, 1, 0.0358, -0.004175 
Maize, 1, 0.1528, -0.00745 
Rock, 1, 0.125490819, 0.067977773 
Bare Soil, 1, 0.148090847, 0.042050528 
Urban, 1, 0.089063198, 0.033701723 
Snow and Ice, 1, 0.424729869, 0.194526916 
Water, 1, 0.012074216, 0.015997301 

# doy 139 
# Parameter for Gauss-Function: name, a, µ, sigma
 
Deciduous, 1, 0.34, 0.00835 
Mixed Forest, 1, 0.2532, 0.001175 
Coniferous, 1, 0.1764, -0.001475 
Grasland, 1, 0.4103, 0.0412 
Spring Grain, 1, 0.4119, 0.053575 
Winter Grain, 1, 0.3775, 0.022175 
Maize, 1, 0.2366, 0.0029 
Rock, 1, 0.260757632, 0.069086984 
Bare Soil, 1, 0.318273003, 0.067003789 
Urban, 1, 0.249085185, 0.045946432 
Snow and Ice, 1, 0.44491274, 0.132559209 
Water, 1, 0.009699672, 0.005585239 

153 

# doy 153 
# Parameter for Gauss-Function: name, a, µ, sigma
 
Deciduous, 1, 0.0253, -0.001375 
Mixed Forest, 1, 0.0281, -0.00145 
Coniferous, 1, 0.0323, -0.0016 
Grasland, 1, 0.0418, -0.008475 
Spring Grain, 1, 0.0355, -0.031375 
Winter Grain, 1, 0.0307, -0.0031 
Maize, 1, 0.1242, -0.01445 
Rock, 1, 0.125490819, 0.067977773 
Bare Soil, 1, 0.148090847, 0.042050528 
Urban, 1, 0.089063198, 0.033701723 
Snow and Ice, 1, 0.424729869, 0.194526916 
Water, 1, 0.012074216, 0.015997301 

# doy 153 
# Parameter for Gauss-Function: name, a, µ, sigma
 
Deciduous, 1, 0.3377, 7.35000000000002E-03 
Mixed Forest, 1, 0.253, 0.001 
Coniferous, 1, 0.1777, -0.0016 
Grasland, 1, 0.4423, 0.041625 
Spring Grain, 1, 0.3824, 0.045425 
Winter Grain, 1, 0.4148, 0.02305 
Maize, 1, 0.2537, 8.50000000000001E-03 
Rock, 1, 0.260757632, 0.069086984 
Bare Soil, 1, 0.318273003, 0.067003789 
Urban, 1, 0.249085185, 0.045946432 
Snow and Ice, 1, 0.44491274, 0.132559209 
Water, 1, 0.009699672, 0.005585239 

173 

# doy 173 
# Parameter for Gauss-Function: name, a, µ, sigma
 
Deciduous, 1, 0.0256, -0.001325 
Mixed Forest, 1, 0.0286, -0.001475 
Coniferous, 1, 0.0329, -0.00175 
Grasland, 1, 0.0603, -0.007825 
Spring Grain, 1, 0.0404, -0.024375 
Winter Grain, 1, 0.0319, -0.0025 
Maize, 1, 0.0644, -0.023125 
Rock, 1, 0.125490819, 0.067977773 
Bare Soil, 1, 0.148090847, 0.042050528 
Urban, 1, 0.089063198, 0.033701723 
Snow and Ice, 1, 0.424729869, 0.194526916 
Water, 1, 0.012074216, 0.015997301 

# doy 173 
# Parameter for Gauss-Function: name, a, µ, sigma
 
Deciduous, 1, 0.3294, 0.0055 
Mixed Forest, 1, 0.2512, 5.74999999999992E-04 
Coniferous, 1, 0.1784, -0.0017 
Grasland, 1, 0.3528, 0.041625 
Spring Grain, 1, 0.3087, 0.0211 
Winter Grain, 1, 0.4577, 0.023925 
Maize, 1, 0.3026, 0.025675 
Rock, 1, 0.260757632, 0.069086984 
Bare Soil, 1, 0.318273003, 0.067003789 
Urban, 1, 0.249085185, 0.045946432 
Snow and Ice, 1, 0.44491274, 0.132559209 
Water, 1, 0.009699672, 0.005585239 
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Reflectance Probability Gaussian Functions for the 2003 MODIS time series 

DOY RED NIR 

196 

# doy 196 
# Parameter for Gauss-Function: name, a, µ, sigma
 
Deciduous, 1, 0.0251, -0.001275 
Mixed Forest, 1, 0.0278, -0.00135 
Coniferous, 1, 0.0314, -0.00155 
Grasland, 1, 0.0455, -0.00775 
Spring Grain, 1, 0.169, 0.00225 
Winter Grain, 1, 0.0355, -0.00455 
Maize, 1, 0.0322, -0.006075 
Rock, 1, 0.125490819, 0.067977773 
Bare Soil, 1, 0.148090847, 0.042050528 
Urban, 1, 0.089063198, 0.033701723 
Snow and Ice, 1, 0.424729869, 0.194526916 
Water, 1, 0.012074216, 0.015997301 

# doy 196 
# Parameter for Gauss-Function: name, a, µ, sigma
 
Deciduous, 1, 0.3192, 4.72499999999999E-03 
Mixed Forest, 1, 0.2477, 3.24999999999999E-04 
Coniferous, 1, 0.1765, -0.00155 
Grasland, 1, 0.407, 0.040625 
Spring Grain, 1, 0.233, -0.05355 
Winter Grain, 1, 0.3897, 0.0408 
Maize, 1, 0.3809, 0.025575 
Rock, 1, 0.260757632, 0.069086984 
Bare Soil, 1, 0.318273003, 0.067003789 
Urban, 1, 0.249085185, 0.045946432 
Snow and Ice, 1, 0.44491274, 0.132559209 
Water, 1, 0.009699672, 0.005585239 

201 

# doy 201 
# Parameter for Gauss-Function: name, a, µ, sigma
 
Deciduous, 1, 0.0249, -0.00125 
Mixed Forest, 1, 0.0275, -0.001275 
Coniferous, 1, 0.0308, -0.0014 
Grasland, 1, 0.0437, -0.0077 
Spring Grain, 1, 0.1683, 0.03005 
Winter Grain, 1, 0.0365, -0.0054 
Maize, 1, 0.0307, -0.004775 
Rock, 1, 0.125490819, 0.067977773 
Bare Soil, 1, 0.148090847, 0.042050528 
Urban, 1, 0.089063198, 0.033701723 
Snow and Ice, 1, 0.424729869, 0.194526916 
Water, 1, 0.012074216, 0.015997301 

# doy 201 
# Parameter for Gauss-Function: name, a, µ, sigma
 
Deciduous, 1, 0.317, 0.004875 
Mixed Forest, 1, 0.2469, 3.50000000000003E-04 
Coniferous, 1, 0.1758, -0.001475 
Grasland, 1, 0.419, 0.04015 
Spring Grain, 1, 0.232, -0.0348 
Winter Grain, 1, 0.3738, 0.045375 
Maize, 1, 0.3883, 0.023875 
Rock, 1, 0.260757632, 0.069086984 
Bare Soil, 1, 0.318273003, 0.067003789 
Urban, 1, 0.249085185, 0.045946432 
Snow and Ice, 1, 0.44491274, 0.132559209 
Water, 1, 0.009699672, 0.005585239 

215 

# doy 215 
# Parameter for Gauss-Function: name, a, µ, sigma
 
Deciduous, 1, 0.0243, -0.00115 
Mixed Forest, 1, 0.0264, -0.0011 
Coniferous, 1, 0.0291, -0.00115 
Grasland, 1, 0.0448, -0.007525 
Spring Grain, 1, 0.1655, 0.030475 
Winter Grain, 1, 0.0394, -0.033675 
Maize, 1, 0.0281, -0.003825 
Rock, 1, 0.125490819, 0.067977773 
Bare Soil, 1, 0.148090847, 0.042050528 
Urban, 1, 0.089063198, 0.033701723 
Snow and Ice, 1, 0.424729869, 0.194526916 
Water, 1, 0.012074216, 0.015997301 

# doy 215 
# Parameter for Gauss-Function: name, a, µ, sigma
 
Deciduous, 1, 0.3111, 5.24999999999999E-03 
Mixed Forest, 1, 0.2446, 4.24999999999995E-04 
Coniferous, 1, 0.1738, -0.0013 
Grasland, 1, 0.4075, 0.037525 
Spring Grain, 1, 0.2283, -0.027775 
Winter Grain, 1, 0.3345, 0.055925 
Maize, 1, 0.4011, 0.02435 
Rock, 1, 0.260757632, 0.069086984 
Bare Soil, 1, 0.318273003, 0.067003789 
Urban, 1, 0.249085185, 0.045946432 
Snow and Ice, 1, 0.44491274, 0.132559209 
Water, 1, 0.009699672, 0.005585239 

219 

# doy 219 
# Parameter for Gauss-Function: name, a, µ, sigma
 
Deciduous, 1, 0.0241, -0.001125 
Mixed Forest, 1, 0.0261, -0.001075 
Coniferous, 1, 0.0285, -0.0011 
Grasland, 1, 0.0472, -0.00745 
Spring Grain, 1, 0.1646, 0.030375 
Winter Grain, 1, 0.041, -0.0334 
Maize, 1, 0.0276, -0.00375 
Rock, 1, 0.125490819, 0.067977773 
Bare Soil, 1, 0.148090847, 0.042050528 
Urban, 1, 0.089063198, 0.033701723 
Snow and Ice, 1, 0.424729869, 0.194526916 
Water, 1, 0.012074216, 0.015997301 

# doy 219 
# Parameter for Gauss-Function: name, a, µ, sigma
 
Deciduous, 1, 0.3096, 5.37499999999999E-03 
Mixed Forest, 1, 0.244, 4.25000000000002E-04 
Coniferous, 1, 0.1733, -0.00125 
Grasland, 1, 0.3923, 0.036475 
Spring Grain, 1, 0.227, -0.0275 
Winter Grain, 1, 0.3184, 0.05375 
Maize, 1, 0.4033, 0.025425 
Rock, 1, 0.260757632, 0.069086984 
Bare Soil, 1, 0.318273003, 0.067003789 
Urban, 1, 0.249085185, 0.045946432 
Snow and Ice, 1, 0.44491274, 0.132559209 
Water, 1, 0.009699672, 0.005585239 
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Reflectance Probability Gaussian Functions for the 2003 MODIS time series 

DOY RED NIR 

225 

# doy 225 
# Parameter for Gauss-Function: name, a, µ, sigma
 
Deciduous, 1, 0.0238, -0.0011 
Mixed Forest, 1, 0.0256, -0.001025 
Coniferous, 1, 0.0276, -0.001025 
Grasland, 1, 0.0499, -0.0078 
Spring Grain, 1, 0.1631, 0.030125 
Winter Grain, 1, 0.07, -0.032875 
Maize, 1, 0.0271, -0.00365 
Rock, 1, 0.125490819, 0.067977773 
Bare Soil, 1, 0.148090847, 0.042050528 
Urban, 1, 0.089063198, 0.033701723 
Snow and Ice, 1, 0.424729869, 0.194526916 
Water, 1, 0.012074216, 0.015997301 

# doy 225 
# Parameter for Gauss-Function: name, a, µ, sigma
 
Deciduous, 1, 0.3074, 0.005525 
Mixed Forest, 1, 0.2433, 4.75000000000003E-04 
Coniferous, 1, 0.1724, -0.0012 
Grasland, 1, 0.3782, 0.036475 
Spring Grain, 1, 0.225, -0.025625 
Winter Grain, 1, 0.2062, 0.049775 
Maize, 1, 0.4023, 0.0286 
Rock, 1, 0.260757632, 0.069086984 
Bare Soil, 1, 0.318273003, 0.067003789 
Urban, 1, 0.249085185, 0.045946432 
Snow and Ice, 1, 0.44491274, 0.132559209 
Water, 1, 0.009699672, 0.005585239 

235 

# doy 235 
# Parameter for Gauss-Function: name, a, µ, sigma
 
Deciduous, 1, 0.0234, -0.000975 
Mixed Forest, 1, 0.0247, -0.0009 
Coniferous, 1, 0.0261, -0.00085 
Grasland, 1, 0.0572, -0.008475 
Spring Grain, 1, 0.1603, 0.029675 
Winter Grain, 1, 0.1603, -0.02795 
Maize, 1, 0.0264, -0.00335 
Rock, 1, 0.125490819, 0.067977773 
Bare Soil, 1, 0.148090847, 0.042050528 
Urban, 1, 0.089063198, 0.033701723 
Snow and Ice, 1, 0.424729869, 0.194526916 
Water, 1, 0.012074216, 0.015997301 

# doy 235 
# Parameter for Gauss-Function: name, a, µ, sigma
 
Deciduous, 1, 0.3042, 0.005825 
Mixed Forest, 1, 0.2424, 5.75000000000006E-04 
Coniferous, 1, 0.171, -0.001075 
Grasland, 1, 0.3502, 0.039575 
Spring Grain, 1, 0.2212, -0.0234 
Winter Grain, 1, 0.2212, 0.010675 
Maize, 1, 0.3869, 0.03175 
Rock, 1, 0.260757632, 0.069086984 
Bare Soil, 1, 0.318273003, 0.067003789 
Urban, 1, 0.249085185, 0.045946432 
Snow and Ice, 1, 0.44491274, 0.132559209 
Water, 1, 0.009699672, 0.005585239 

247 

# doy 247 
# Parameter for Gauss-Function: name, a, µ, sigma
 
Deciduous, 1, 0.0229, -0.000925 
Mixed Forest, 1, 0.0238, -8.00000000000001E-04 
Coniferous, 1, 0.0244, -6.99999999999999E-04 
Grasland, 1, 0.0678, -0.009075 
Spring Grain, 1, 0.1565, 0.029 
Winter Grain, 1, 0.1565, 0.00001 
Maize, 1, 0.0257, -0.00295 
Rock, 1, 0.125490819, 0.067977773 
Bare Soil, 1, 0.148090847, 0.042050528 
Urban, 1, 0.089063198, 0.033701723 
Snow and Ice, 1, 0.424729869, 0.194526916 
Water, 1, 0.012074216, 0.015997301 

# doy 247 
# Parameter for Gauss-Function: name, a, µ, sigma
 
Deciduous, 1, 0.2979, 0.010125 
Mixed Forest, 1, 0.241, 0.001925 
Coniferous, 1, 0.1698, -9.75000000000004E-04 
Grasland, 1, 0.3202, 0.0419 
Spring Grain, 1, 0.2162, -0.0202 
Winter Grain, 1, 0.2162, 0.00001 
Maize, 1, 0.3595, 0.0318 
Rock, 1, 0.260757632, 0.069086984 
Bare Soil, 1, 0.318273003, 0.067003789 
Urban, 1, 0.249085185, 0.045946432 
Snow and Ice, 1, 0.44491274, 0.132559209 
Water, 1, 0.009699672, 0.005585239 

258 

# doy 258 
# Parameter for Gauss-Function: name, a, µ, sigma
 
Deciduous, 1, 0.0228, -0.00105 
Mixed Forest, 1, 0.0234, -0.001075 
Coniferous, 1, 0.023, -6.00000000000001E-04 
Grasland, 1, 0.0641, -0.00955 
Spring Grain, 1, 0.1527, 0.02835 
Winter Grain, 1, 0.1527, 0.00001 
Maize, 1, 0.0251, -0.002575 
Rock, 1, 0.125490819, 0.067977773 
Bare Soil, 1, 0.148090847, 0.042050528 
Urban, 1, 0.089063198, 0.033701723 
Snow and Ice, 1, 0.424729869, 0.194526916 
Water, 1, 0.012074216, 0.015997301 

# doy 258 
# Parameter for Gauss-Function: name, a, µ, sigma
 
Deciduous, 1, 0.2789, 0.027475 
Mixed Forest, 1, 0.2359, 0.00795 
Coniferous, 1, 0.1691, -8.49999999999997E-04 
Grasland, 1, 0.3246, 0.040575 
Spring Grain, 1, 0.2111, -0.0181 
Winter Grain, 1, 0.2111, 0.00001 
Maize, 1, 0.3378, 0.029475 
Rock, 1, 0.260757632, 0.069086984 
Bare Soil, 1, 0.318273003, 0.067003789 
Urban, 1, 0.249085185, 0.045946432 
Snow and Ice, 1, 0.44491274, 0.132559209 
Water, 1, 0.009699672, 0.005585239 
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Reflectance Probability Gaussian Functions for the 2003 MODIS time series 

DOY RED NIR 

262 

# doy 262 
# Parameter for Gauss-Function: name, a, µ, sigma
 
Deciduous, 1, 0.0229, -0.00115 
Mixed Forest, 1, 0.0234, -0.001225 
Coniferous, 1, 0.0226, -0.00055 
Grasland, 1, 0.0625, -0.00995 
Spring Grain, 1, 0.1513, 0.02805 
Winter Grain, 1, 0.1513, 0.00001 
Maize, 1, 0.0249, -0.002425 
Rock, 1, 0.125490819, 0.067977773 
Bare Soil, 1, 0.148090847, 0.042050528 
Urban, 1, 0.089063198, 0.033701723 
Snow and Ice, 1, 0.424729869, 0.194526916 
Water, 1, 0.012074216, 0.015997301 

# doy 262 
# Parameter for Gauss-Function: name, a, µ, sigma
 
Deciduous, 1, 0.2633, 0.0332 
Mixed Forest, 1, 0.2312, 0.01035 
Coniferous, 1, 0.1689, -7.99999999999995E-04 
Grasland, 1, 0.3272, 0.040475 
Spring Grain, 1, 0.2092, -0.016875 
Winter Grain, 1, 0.2092, 0.00001 
Maize, 1, 0.3309, 0.02905 
Rock, 1, 0.260757632, 0.069086984 
Bare Soil, 1, 0.318273003, 0.067003789 
Urban, 1, 0.249085185, 0.045946432 
Snow and Ice, 1, 0.44491274, 0.132559209 
Water, 1, 0.009699672, 0.005585239 

265 

# doy 265 
# Parameter for Gauss-Function: name, a, µ, sigma
 
Deciduous, 1, 0.0231, -0.001225 
Mixed Forest, 1, 0.0236, -0.001325 
Coniferous, 1, 0.0223, -0.0005 
Grasland, 1, 0.062, -0.010375 
Spring Grain, 1, 0.1502, 0.027775 
Winter Grain, 1, 0.1502, 0.00001 
Maize, 1, 0.0248, -0.00235 
Rock, 1, 0.125490819, 0.067977773 
Bare Soil, 1, 0.148090847, 0.042050528 
Urban, 1, 0.089063198, 0.033701723 
Snow and Ice, 1, 0.424729869, 0.194526916 
Water, 1, 0.012074216, 0.015997301 

# doy 265 
# Parameter for Gauss-Function: name, a, µ, sigma
 
Deciduous, 1, 0.2476, 0.0363 
Mixed Forest, 1, 0.226, 0.01175 
Coniferous, 1, 0.1689, -7.74999999999998E-04 
Grasland, 1, 0.3276, 0.0409 
Spring Grain, 1, 0.2078, -0.0156 
Winter Grain, 1, 0.2078, 0.00001 
Maize, 1, 0.3249, 0.02925 
Rock, 1, 0.260757632, 0.069086984 
Bare Soil, 1, 0.318273003, 0.067003789 
Urban, 1, 0.249085185, 0.045946432 
Snow and Ice, 1, 0.44491274, 0.132559209 
Water, 1, 0.009699672, 0.005585239 

290 

# doy 290 
# Parameter for Gauss-Function: name, a, µ, sigma
 
Deciduous, 1, 0.0252, -0.029625 
Mixed Forest, 1, 0.026, -0.0009 
Coniferous, 1, 0.0203, -0.000275 
Grasland, 1, 0.0724, -0.009575 
Spring Grain, 1, 0.1413, 0.00001 
Winter Grain, 1, 0.1413, 0.00001 
Maize, 1, 0.1413, 0.00001 
Rock, 1, 0.125490819, 0.067977773 
Bare Soil, 1, 0.148090847, 0.042050528 
Urban, 1, 0.089063198, 0.033701723 
Snow and Ice, 1, 0.424729869, 0.194526916 
Water, 1, 0.012074216, 0.015997301 

# doy 290 
# Parameter for Gauss-Function: name, a, µ, sigma
 
Deciduous, 1, 0.1421, 0.0148 
Mixed Forest, 1, 0.1846, -0.003675 
Coniferous, 1, 0.1685, -4.74999999999996E-04 
Grasland, 1, 0.2946, 0.02165 
Spring Grain, 1, 0.1959, 0.00001 
Winter Grain, 1, 0.1959, 0.00001 
Maize, 1, 0.1959, 0.00001 
Rock, 1, 0.260757632, 0.069086984 
Bare Soil, 1, 0.318273003, 0.067003789 
Urban, 1, 0.249085185, 0.045946432 
Snow and Ice, 1, 0.44491274, 0.132559209 
Water, 1, 0.009699672, 0.005585239 
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Appendix 6: Pixel by Pixel Analysis of LAI from reflectance 
segmentation 

This appendix lists all 64 pixel of each of the 240m scale validation sites, the Hochstadt and 
the Gut Huell area. All the land cover types sharing the pixel are listed (majority type in bold 
print). For each land cover type, the area fraction, the true reflectances of the truth dataset and 
the result from the reflectance segmentation, the relative error in each band, the LAI derived 
from the truth dataset and the reflectance segmentation, is given. This latter section shows the 
subscale fractional information for each cover type and evaluates the error of reflectance 
segmentation. The subscale results from the LAI algorithms were summed to find LAI as a 
single value for the 240m pixel. That section of the tables compares 240m scale values. Sums 
of land cover specific LAI from the truth dataset (LAI sum truth) and from the reflectance 
segmentation (LAI sum refseg) are provided along with majority LAI computed under the 
assumption of a homogeneous pixel. Relative and absolute error of LAI sum refseg and LAI 
majority in relation to LAI sum truth are compared. At the bottom of the table mean and 
maximum errors of all pixels are given. (see Section 7.1.4) 

 
Hochstadt area 
(resolution 240m, row 193-200, col 313-320, one-based index) 
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Mixed Forest 193/  313 0.0500 0.0213 0.0332 0.2517 0.2910 35.8 13.5 8.20 5.95 37.8 2.3 1.65 1.40 0.95 17.9 32.1 0.25 0.45
Grassland 193/  313 0.6170 0.1100 0.0800 0.3514 0.3919 37.5 10.3 0.55 1.15 52.2 0.6     
Winter Grain 193/  313 0.2330 0.0320 0.0960 0.3744 0.3275 66.7 14.3 2.70 1.00 170.0 1.7     
Maize 193/  313 0.0830 0.0473 0.0729 0.3586 0.2921 35.1 22.8 3.30 1.95 69.2 1.4     
Urban Fabric 193/  313 0.0170 0.0930 0.1035 0.2472 0.2189 10.1 12.9 0.00 0.00 0.0 0.0          
Deciduous Forest 193/  314 0.0160 0.0271 0.0297 0.3965 0.4478 8.8 11.5 5.20 5.30 1.9 0.1 2.35 2.30 1.40 2.2 39.1 0.05 0.90
Mixed Forest 193/  314 0.0940 0.0212 0.0263 0.2525 0.2889 19.4 12.6 8.25 7.65 7.8 0.6     
Grassland 193/  314 0.5780 0.0787 0.0723 0.3787 0.3859 8.9 1.9 1.15 1.30 11.5 0.2     
Winter Grain 193/  314 0.1250 0.0293 0.0689 0.3800 0.3462 57.5 9.8 2.85 1.60 78.1 1.3     
Maize 193/  314 0.1560 0.0470 0.0386 0.3590 0.3311 21.8 8.4 3.35 3.55 5.6 0.2     
Urban Fabric 193/  314 0.0310 0.0928 0.0801 0.2473 0.2543 15.9 2.8 0.00 0.00 0.0 0.0          
Grassland 193/  315 0.4530 0.0276 0.0782 0.3911 0.3975 64.7 1.6 2.65 1.20 120.8 1.5 1.85 1.60 1.10 15.6 31.3 0.25 0.50
Winter Grain 193/  315 0.1410 0.0272 0.0899 0.3814 0.3506 69.7 8.8 2.90 1.20 141.7 1.7     
Maize 193/  315 0.4060 0.1564 0.0782 0.3601 0.3637 100.0 1.0 0.65 2.25 71.1 1.6          
Mixed Forest 193/  316 0.2030 0.0210 0.0206 0.2563 0.2526 1.9 1.5 8.45 8.45 0.0 0.0 3.70 3.70 1.95 0.0 47.3 0.00 1.75
Grassland 193/  316 0.3750 0.0562 0.0542 0.3987 0.3929 3.7 1.5 1.70 1.75 2.9 0.1     
Spring Grain 193/  316 0.0780 0.0354 0.0426 0.4491 0.4393 16.9 2.2 2.80 2.60 7.7 0.2     
Winter Grain 193/  316 0.0310 0.0284 0.0367 0.3813 0.3743 22.6 1.9 2.85 2.55 11.8 0.3     
Maize 193/  316 0.3120 0.0453 0.0452 0.3612 0.3738 0.2 3.4 3.40 3.45 1.4 0.1          
Mixed Forest 193/  317 0.7810 0.0191 0.0190 0.2440 0.2456 0.5 0.7 8.80 8.85 0.6 0.0 7.50 7.55 8.30 0.7 9.9 0.05 0.75
Grassland 193/  317 0.0160 0.0511 0.0391 0.3869 0.4057 30.7 4.6 1.80 2.25 20.0 0.5     
Spring Grain 193/  317 0.1090 0.0343 0.0452 0.4483 0.4419 24.1 1.4 2.85 2.50 14.0 0.4     
Winter Grain 193/  317 0.0160 0.0283 0.0393 0.3807 0.4044 28.0 5.9 2.85 2.55 11.8 0.3     
Maize 193/  317 0.0780 0.0426 0.0289 0.3591 0.3440 47.4 4.4 3.50 4.05 13.6 0.6          
Mixed Forest 193/  318 0.6030 0.0706 0.0217 0.2691 0.2752 225.3 2.2 1.10 8.70 87.4 7.6 1.20 5.60 1.65 78.6 70.5 4.40 3.95
Grassland 193/  318 0.0950 0.0425 0.0879 0.3923 0.3829 51.6 2.5 2.10 1.00 110.0 1.1     
Spring Grain 193/  318 0.0320 0.0341 0.0435 0.4490 0.4129 21.6 8.7 2.85 2.50 14.0 0.4     
Winter Grain 193/  318 0.0320 0.0279 0.0545 0.3817 0.3690 48.8 3.4 2.90 2.05 41.5 0.9     
Maize 193/  318 0.0480 0.0413 0.0481 0.3599 0.3454 14.1 4.2 3.55 3.20 10.9 0.4     
Rock 193/  318 0.0630 0.0679 0.2373 0.2634 0.2851 71.4 7.6 0.00 0.00 0.0 0.0     
Bare Soil 193/  318 0.1110 0.1074 0.2003 0.3214 0.2945 46.4 9.1 0.00 0.00 0.0 0.0     
Urban Fabric 193/  318 0.0160 0.0859 0.1977 0.2477 0.2532 56.6 2.2 0.00 0.00 0.0 0.0          
Grassland 193/  319 0.3590 0.2084 0.0514 0.3987 0.3949 305.4 1.0 0.10 1.85 94.6 1.8 0.70 1.15 0.00 39.1 100.0 0.45 1.15
Winter Grain 193/  319 0.1880 0.0273 0.0601 0.3837 0.3623 54.6 5.9 2.90 1.85 56.8 1.1     
Maize 193/  319 0.0470 0.0426 0.0474 0.3597 0.3721 10.1 3.3 3.50 3.40 2.9 0.1     
Rock 193/  319 0.0160 0.1203 0.2257 0.2614 0.3111 46.7 16.0 0.00 0.00 0.0 0.0     
Bare Soil 193/  319 0.3910 0.0905 0.2145 0.3258 0.3360 57.8 3.0 0.00 0.00 0.0 0.0          
Deciduous Forest 193/  320 0.0160 0.0267 0.0330 0.3958 0.4553 19.1 13.1 5.25 5.00 5.0 0.3 2.05 1.90 1.90 7.9 0.0 0.15 0.00
Grassland 193/  320 0.2970 0.0283 0.0658 0.3615 0.4034 57.0 10.4 2.55 1.50 70.0 1.1     
Spring Grain 193/  320 0.1410 0.0316 0.0402 0.4468 0.4399 21.4 1.6 2.90 2.65 9.4 0.3     
Winter Grain 193/  320 0.4690 0.0926 0.0629 0.3615 0.3355 47.2 7.7 1.20 1.70 29.4 0.5     
Maize 193/  320 0.0780 0.0405 0.0593 0.3582 0.3550 31.7 0.9 3.60 2.85 26.3 0.8          
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Grassland 194/  313 0.6560 0.0572 0.0644 0.3967 0.3835 11.2 3.4 1.70 1.45 17.2 0.3 1.20 1.00 1.20 20.0 20.0 0.20 0.20
Winter Grain 194/  313 0.0160 0.0284 0.0861 0.3810 0.3244 67.0 17.4 2.85 1.15 147.8 1.7     
Maize 194/  313 0.0160 0.0435 0.0729 0.3595 0.3437 40.3 4.6 3.45 2.30 50.0 1.2     
Urban Fabric 194/  313 0.3120 0.0957 0.0763 0.2487 0.2803 25.4 11.3 0.00 0.00 0.0 0.0          
Grassland 194/  314 0.5470 0.0747 0.0574 0.4617 0.4435 30.1 4.1 1.50 1.85 18.9 0.4 1.60 1.35 1.45 18.5 7.4 0.25 0.10
Winter Grain 194/  314 0.2660 0.0302 0.0920 0.3981 0.3374 67.2 18.0 2.85 1.10 159.1 1.8     
Maize 194/  314 0.0160 0.0437 0.0302 0.3598 0.3109 44.7 15.7 3.45 3.85 10.4 0.4     
Urban Fabric 194/  314 0.1720 0.1064 0.0676 0.2542 0.4103 57.4 38.0 0.00 0.00 0.0 0.0          
Mixed Forest 194/  315 0.1090 0.0196 0.0232 0.2582 0.3235 15.5 20.2 9.00 9.45 4.8 0.4 3.10 2.85 2.25 8.8 21.1 0.25 0.60
Grassland 194/  315 0.3590 0.0106 0.0562 0.4200 0.4229 81.1 0.7 3.50 1.80 94.4 1.7     
Spring Grain 194/  315 0.0470 0.0335 0.0548 0.4495 0.4295 38.9 4.7 2.85 2.25 26.7 0.6     
Winter Grain 194/  315 0.4380 0.0914 0.0481 0.3998 0.3819 90.0 4.7 1.35 2.25 40.0 0.9     
Maize 194/  315 0.0470 0.0411 0.0654 0.3602 0.3726 37.2 3.3 3.60 2.75 30.9 0.9          
Mixed Forest 194/  316 0.4530 0.0217 0.0286 0.2799 0.2799 24.1 0.0 8.85 6.75 31.1 2.1 5.05 4.25 6.05 18.8 42.4 0.80 1.80
Grassland 194/  316 0.4530 0.0601 0.0546 0.4406 0.4456 10.1 1.1 1.75 1.95 10.3 0.2     
Winter Grain 194/  316 0.0470 0.0285 0.0282 0.3835 0.3728 1.1 2.9 2.85 2.85 0.0 0.0     
Maize 194/  316 0.0470 0.0439 0.0307 0.3605 0.3228 43.0 11.7 3.45 3.90 11.5 0.5          
Deciduous Forest 194/  317 0.2060 0.0000 0.0231 0.4124 0.4548 100.0 9.3 9.90 6.15 61.0 3.8 10.35 7.75 10.50 33.5 35.5 2.60 2.75
Mixed Forest 194/  317 0.6030 0.0000 0.0188 0.2932 0.2758 100.0 6.3 12.50 9.80 27.6 2.7     
Grassland 194/  317 0.1110 0.0000 0.0263 0.4020 0.4091 100.0 1.7 4.05 2.75 47.3 1.3     
Spring Grain 194/  317 0.0160 0.0000 0.0191 0.4491 0.4026 100.0 11.5 4.05 3.25 24.6 0.8     
Winter Grain 194/  317 0.0480 0.0000 0.0215 0.3839 0.3949 100.0 2.8 4.05 3.15 28.6 0.9     
Maize 194/  317 0.0160 0.0000 0.0195 0.3598 0.4161 100.0 13.5 5.80 4.75 22.1 1.1          
Mixed Forest 194/  318 0.0490 0.0201 0.0194 0.2549 0.3131 3.6 18.6 8.70 10.50 17.1 1.8 3.25 2.40 1.55 35.4 35.4 0.85 0.85
Grassland 194/  318 0.2950 0.0077 0.0554 0.4077 0.4018 86.1 1.5 3.65 1.75 108.6 1.9     
Spring Grain 194/  318 0.0490 0.0329 0.0361 0.4493 0.4135 8.9 8.7 2.90 2.70 7.4 0.2     
Winter Grain 194/  318 0.4260 0.0189 0.0442 0.3949 0.3819 57.2 3.4 3.25 2.35 38.3 0.9     
Maize 194/  318 0.0660 0.0391 0.0415 0.3603 0.3666 5.8 1.7 3.65 3.60 1.4 0.0     
Rock 194/  318 0.0980 0.5913 0.2596 0.2658 0.3171 127.8 16.2 0.00 0.00 0.0 0.0     
Bare Soil 194/  318 0.0160 0.1396 0.1560 0.3183 0.3907 10.5 18.5 0.00 0.00 0.0 0.0          
Grassland 194/  319 0.5000 0.0446 0.0711 0.3873 0.3878 37.3 0.1 2.00 1.30 53.8 0.7 1.95 1.30 0.85 50.0 34.6 0.65 0.45
Winter Grain 194/  319 0.3120 0.0277 0.0580 0.3809 0.3578 52.2 6.5 2.90 1.90 52.6 1.0     
Maize 194/  319 0.0160 0.0433 0.0360 0.3595 0.3670 20.3 2.0 3.50 3.85 9.1 0.4     
Rock 194/  319 0.0780 0.6200 0.2449 0.2611 0.3297 153.2 20.8 0.00 0.00 0.0 0.0     
Bare Soil 194/  319 0.0940 0.1429 0.2145 0.3176 0.3330 33.4 4.6 0.00 0.00 0.0 0.0          
Grassland 194/  320 0.3750 0.1983 0.0788 0.3499 0.3754 151.6 6.8 0.05 1.10 95.5 1.1 2.40 1.30 1.40 84.6 7.7 1.10 0.10
Winter Grain 194/  320 0.5470 0.0006 0.0814 0.3549 0.3358 99.3 5.7 4.00 1.30 207.7 2.7     
Maize 194/  320 0.0630 0.0350 0.0552 0.3583 0.3436 36.6 4.3 3.85 2.90 32.8 1.0     
Rock 194/  320 0.0160 0.0840 0.0449 0.2600 0.3718 87.1 30.1 0.00 0.00 0.0 0.0          
Grassland 195/  313 0.1720 0.0515 0.0783 0.4201 0.3243 34.2 29.5 1.95 0.90 116.7 1.1 0.40 0.20 0.00 100.0 100.0 0.20 0.20
Winter Grain 195/  313 0.0160 0.0284 0.0950 0.3823 0.3167 70.1 20.7 2.85 0.95 200.0 1.9     
Maize 195/  313 0.0160 0.0434 0.0654 0.3600 0.3185 33.6 13.0 3.50 2.40 45.8 1.1     
Bare Soil 195/  313 0.0310 0.1476 0.1041 0.3215 0.3298 41.8 2.5 0.00 0.00 0.0 0.0     
Urban Fabric 195/  313 0.7660 0.0901 0.0841 0.2894 0.3128 7.1 7.5 0.00 0.00 0.0 0.0          
Grassland 195/  314 0.0780 0.0516 0.0544 0.4067 0.4158 5.1 2.2 1.90 1.85 2.7 0.0 0.15 0.15 0.00 0.0 100.0 0.00 0.15
Winter Grain 195/  314 0.0160 0.0284 0.1099 0.3827 0.2956 74.2 29.5 2.85 0.65 338.5 2.2     
Bare Soil 195/  314 0.0160 0.1476 0.1071 0.3202 0.3589 37.8 10.8 0.00 0.00 0.0 0.0     
Urban Fabric 195/  314 0.8910 0.0937 0.0928 0.3110 0.3111 1.0 0.0 0.00 0.00 0.0 0.0          
Mixed Forest 195/  315 0.1430 0.0204 0.0251 0.2673 0.3085 18.7 13.4 8.95 8.50 5.3 0.4 2.45 2.15 1.85 14.0 14.0 0.30 0.30
Grassland 195/  315 0.3970 0.0404 0.0496 0.4654 0.3729 18.5 24.8 2.40 1.80 33.3 0.6     
Spring Grain 195/  315 0.0320 0.0348 0.0323 0.4498 0.4542 7.7 1.0 2.80 2.90 3.4 0.1     
Winter Grain 195/  315 0.0160 0.0283 0.0386 0.3824 0.3996 26.7 4.3 2.85 2.60 9.6 0.3     
Maize 195/  315 0.0320 0.0430 0.0327 0.3606 0.3501 31.5 3.0 3.50 3.90 10.3 0.4     
Urban Fabric 195/  315 0.3810 0.0643 0.0547 0.2690 0.3492 17.6 23.0 0.00 0.00 0.0 0.0          
Mixed Forest 195/  316 0.2740 0.0211 0.0210 0.2569 0.2804 0.5 8.4 8.40 9.10 7.7 0.7 3.65 3.85 1.85 5.2 51.9 0.20 2.00
Grassland 195/  316 0.6450 0.0580 0.0612 0.4047 0.4007 5.2 1.0 1.70 1.60 6.2 0.1     
Maize 195/  316 0.0810 0.0438 0.0237 0.3598 0.3141 84.8 14.5 3.45 4.20 17.9 0.8          
Deciduous Forest 195/  317 0.0160 0.0271 0.0256 0.3963 0.4640 5.9 14.6 5.20 5.90 11.9 0.7 2.20 2.15 1.25 2.3 41.9 0.05 0.90
Mixed Forest 195/  317 0.1090 0.0215 0.0205 0.2514 0.2450 4.9 2.6 8.10 8.25 1.8 0.2     
Grassland 195/  317 0.6250 0.0911 0.0780 0.3664 0.3761 16.8 2.6 0.85 1.15 26.1 0.3     
Winter Grain 195/  317 0.1720 0.0302 0.0702 0.3781 0.3397 57.0 11.3 2.80 1.55 80.6 1.3     
Maize 195/  317 0.0780 0.0458 0.0635 0.3590 0.3611 27.9 0.6 3.35 2.70 24.1 0.7          
Grassland 195/  318 0.5780 0.0210 0.0732 0.3701 0.3774 71.3 1.9 2.90 1.25 132.0 1.7 2.00 1.65 1.20 21.2 27.3 0.35 0.45
Winter Grain 195/  318 0.0310 0.0297 0.0616 0.3804 0.3512 51.8 8.3 2.80 1.80 55.6 1.0     
Maize 195/  318 0.3910 0.1533 0.0735 0.3573 0.3488 108.6 2.4 0.70 2.30 69.6 1.6          
Grassland 195/  319 0.5620 0.0799 0.0699 0.3753 0.3814 14.3 1.6 1.10 1.30 15.4 0.2 1.90 1.85 1.40 2.7 24.3 0.05 0.45
Winter Grain 195/  319 0.1410 0.0295 0.0573 0.3794 0.3977 48.5 4.6 2.80 2.05 36.6 0.8     
Maize 195/  319 0.2970 0.0507 0.0566 0.3583 0.3380 10.4 6.0 3.15 2.85 10.5 0.3          
Grassland 195/  320 0.0310 0.0524 0.0902 0.3881 0.2944 41.9 31.8 1.80 0.60 200.0 1.2 1.15 0.30 0.00 283.3 100.0 0.85 0.30
Winter Grain 195/  320 0.1880 0.0293 0.1247 0.3833 0.3019 76.5 27.0 2.85 0.50 470.0 2.4     
Maize 195/  320 0.1720 0.0459 0.1047 0.3603 0.3149 56.2 14.4 3.40 1.25 172.0 2.2     
Rock 195/  320 0.5310 0.2732 0.2151 0.2710 0.3174 27.0 14.6 0.00 0.00 0.0 0.0     
Bare Soil 195/  320 0.0470 0.1525 0.1404 0.3184 0.3520 8.6 9.5 0.00 0.00 0.0 0.0     
Urban Fabric 195/  320 0.0310 0.0915 0.1625 0.2477 0.2394 43.7 3.5 0.00 0.00 0.0 0.0          
Grassland 196/  313 0.3230 0.0523 0.0668 0.4128 0.3881 21.7 6.4 1.90 1.40 35.7 0.5 0.75 0.55 0.00 36.4 100.0 0.20 0.55
Maize 196/  313 0.0480 0.0435 0.0600 0.3602 0.3306 27.5 9.0 3.50 2.65 32.1 0.9     
Urban Fabric 196/  313 0.6290 0.0931 0.0831 0.2618 0.2772 12.0 5.6 0.00 0.00 0.0 0.0          
Grassland 196/  314 0.3900 0.0226 0.0721 0.3569 0.3648 68.7 2.2 2.75 1.20 129.2 1.6 2.30 1.35 1.10 70.4 18.5 0.95 0.25
Winter Grain 196/  314 0.3560 0.0242 0.0477 0.3676 0.3687 49.3 0.3 3.00 2.20 36.4 0.8     
Maize 196/  314 0.0510 0.0417 0.0585 0.3587 0.3447 28.7 4.1 3.55 2.80 26.8 0.8     
Bare Soil 196/  314 0.0680 0.1300 0.1181 0.3141 0.2549 10.1 23.2 0.00 0.00 0.0 0.0     
Urban Fabric 196/  314 0.1360 0.3318 0.1081 0.2444 0.2936 206.9 16.8 0.00 0.00 0.0 0.0          
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Mixed Forest 196/  315 0.0490 0.0210 0.0403 0.2529 0.1910 47.9 32.4 8.35 2.00 317.5 6.4 1.70 1.40 1.20 21.4 14.3 0.30 0.20
Grassland 196/  315 0.7050 0.0799 0.0699 0.3792 0.3934 14.3 3.6 1.10 1.35 18.5 0.3     
Winter Grain 196/  315 0.1310 0.0292 0.0765 0.3802 0.3653 61.8 4.1 2.85 1.50 90.0 1.4     
Maize 196/  315 0.0490 0.0444 0.0443 0.3594 0.3529 0.2 1.8 3.45 3.40 1.5 0.1     
Bare Soil 196/  315 0.0490 0.1546 0.1518 0.3172 0.2811 1.8 12.8 0.00 0.00 0.0 0.0     
Water 196/  315 0.0160 0.0123 0.0326 0.0096 0.2187 62.3 95.6 0.00 0.00 0.0 0.0          
Grassland 196/  316 0.6250 0.1005 0.0770 0.4223 0.4138 30.5 2.1 0.95 1.30 26.9 0.4 1.60 1.45 1.30 10.3 10.3 0.15 0.15
Winter Grain 196/  316 0.3440 0.0328 0.0727 0.3900 0.4040 54.9 3.5 2.75 1.75 57.1 1.0     
Maize 196/  316 0.0310 0.0446 0.0743 0.3598 0.3761 40.0 4.3 3.45 2.45 40.8 1.0     
Grassland 196/  317 0.2190 0.0506 0.0726 0.3889 0.3736 30.3 4.1 1.85 1.25 48.0 0.6 2.20 2.05 1.80 7.3 12.2 0.15 0.25
Spring Grain 196/  317 0.0160 0.0350 0.0451 0.4488 0.4141 22.4 8.4 2.80 2.45 14.3 0.4     
Winter Grain 196/  317 0.3910 0.0938 0.0564 0.3822 0.3845 66.3 0.6 1.25 2.05 39.0 0.8     
Maize 196/  317 0.3750 0.0427 0.0685 0.3599 0.3678 37.7 2.1 3.50 2.60 34.6 0.9          
Maize 196/  318 1.0000 0.0583 0.0583 0.3449 0.3450 0.0 0.0 2.80 2.80 0.0 0.0 2.80 2.80 2.80 0.0 0.0 0.00 0.00
Grassland 196/  319 0.1720 0.0119 0.0526 0.4113 0.4082 77.4 0.8 3.40 1.85 83.8 1.6 3.05 2.55 2.30 19.6 9.8 0.50 0.25
Spring Grain 196/  319 0.0160 0.0340 0.0362 0.4491 0.4362 6.1 3.0 2.85 2.75 3.6 0.1     
Winter Grain 196/  319 0.4840 0.0890 0.0440 0.4130 0.4122 102.3 0.2 1.45 2.45 40.8 1.0     
Maize 196/  319 0.3280 0.0081 0.0532 0.3678 0.3711 84.8 0.9 5.30 3.15 68.3 2.2          
Mixed Forest 196/  320 0.0630 0.0208 0.0240 0.2529 0.3018 13.3 16.2 8.40 8.65 2.9 0.3 2.10 1.90 1.25 10.5 34.2 0.20 0.65
Grassland 196/  320 0.5080 0.0515 0.0938 0.3832 0.3725 45.1 2.9 1.80 0.85 111.8 1.0     
Spring Grain 196/  320 0.1110 0.0351 0.0488 0.4486 0.4283 28.1 4.7 2.80 2.40 16.7 0.4     
Winter Grain 196/  320 0.2540 0.1525 0.0444 0.3799 0.4124 243.5 7.9 0.55 2.45 77.6 1.9     
Maize 196/  320 0.0630 0.0434 0.1077 0.3594 0.3167 59.7 13.5 3.50 1.20 191.7 2.3          
Grassland 197/  313 0.7190 0.0722 0.0651 0.3729 0.3763 10.9 0.9 1.25 1.40 10.7 0.2 1.70 1.60 1.50 6.2 6.3 0.10 0.10
Winter Grain 197/  313 0.2500 0.0296 0.0474 0.3785 0.3749 37.6 1.0 2.80 2.25 24.4 0.6     
Maize 197/  313 0.0310 0.0439 0.0638 0.3593 0.3096 31.2 16.1 3.45 2.35 46.8 1.1          
Grassland 197/  314 0.7500 0.0737 0.0715 0.3780 0.3767 3.1 0.3 1.25 1.25 0.0 0.0 1.60 1.60 1.45 0.0 9.4 0.00 0.15
Winter Grain 197/  314 0.2340 0.0295 0.0354 0.3795 0.3825 16.7 0.8 2.80 2.65 5.7 0.2     
Maize 197/  314 0.0160 0.0436 0.0626 0.3594 0.3729 30.4 3.6 3.45 2.80 23.2 0.7          
Grassland 197/  315 0.8750 0.0795 0.0794 0.3909 0.3909 0.1 0.0 1.15 1.15 0.0 0.0 1.35 1.35 1.30 0.0 3.7 0.00 0.05
Winter Grain 197/  315 0.1250 0.0290 0.0294 0.3811 0.3815 1.4 0.1 2.85 2.85 0.0 0.0          
Mixed Forest 197/  316 0.0160 0.0209 0.0450 0.2532 0.2726 53.6 7.1 8.40 3.35 150.7 5.1 1.60 1.55 1.30 3.2 16.1 0.05 0.25
Grassland 197/  316 0.6610 0.0936 0.0903 0.3874 0.3812 3.7 1.6 0.90 0.95 5.3 0.0     
Spring Grain 197/  316 0.2100 0.0394 0.0318 0.4488 0.4662 23.9 3.7 2.70 2.95 8.5 0.3     
Winter Grain 197/  316 0.0970 0.0294 0.0503 0.3809 0.4087 41.6 6.8 2.85 2.30 23.9 0.6     
Maize 197/  316 0.0160 0.0439 0.0729 0.3595 0.3732 39.8 3.7 3.45 2.50 38.0 1.0          
Grassland 197/  317 0.1090 0.0641 0.0835 0.4215 0.4136 23.2 1.9 1.60 1.15 39.1 0.5 2.25 2.25 2.55 0.0 13.3 0.00 0.30
Spring Grain 197/  317 0.0940 0.0385 0.0423 0.4536 0.4659 9.0 2.6 2.75 2.65 3.8 0.1     
Winter Grain 197/  317 0.0310 0.0290 0.0378 0.3855 0.4178 23.3 7.7 2.85 2.65 7.5 0.2     
Maize 197/  317 0.7660 0.0862 0.0826 0.4030 0.4013 4.4 0.4 2.30 2.35 2.1 0.1          
Deciduous Forest 197/  318 0.0310 0.0273 0.0329 0.3960 0.4722 17.0 16.1 5.15 5.15 0.0 0.0 3.70 2.40 2.80 54.2 16.7 1.30 0.40
Grassland 197/  318 0.2500 0.2055 0.0551 0.3793 0.3879 273.0 2.2 0.10 1.70 94.1 1.6     
Winter Grain 197/  318 0.0310 0.0288 0.0344 0.3804 0.3835 16.3 0.8 2.85 2.65 7.5 0.2     
Maize 197/  318 0.6880 0.0121 0.0663 0.3554 0.3487 81.7 1.9 5.05 2.55 98.0 2.5          
Grassland 197/  319 0.6410 0.0817 0.0785 0.3473 0.3322 4.1 4.5 0.95 0.95 0.0 0.0 1.60 1.55 1.40 3.2 9.7 0.05 0.15
Spring Grain 197/  319 0.0780 0.0363 0.0328 0.4480 0.4290 10.7 4.4 2.80 2.85 1.8 0.1     
Winter Grain 197/  319 0.2660 0.0304 0.0398 0.3730 0.4126 23.6 9.6 2.75 2.60 5.8 0.2     
Maize 197/  319 0.0160 0.0438 0.0392 0.3593 0.4003 11.7 10.2 3.45 3.85 10.4 0.4          
Mixed Forest 197/  320 0.3440 0.0221 0.0234 0.2721 0.2774 5.6 1.9 8.50 8.20 3.7 0.3 4.75 4.65 2.60 2.2 44.1 0.10 2.05
Grassland 197/  320 0.0940 0.0551 0.0611 0.3976 0.3636 9.8 9.4 1.75 1.45 20.7 0.3     
Spring Grain 197/  320 0.0160 0.0353 0.0330 0.4490 0.4362 7.0 2.9 2.80 2.85 1.8 0.1     
Winter Grain 197/  320 0.3590 0.0307 0.0268 0.3996 0.4179 14.6 4.4 2.85 3.00 5.0 0.2     
Maize 197/  320 0.1880 0.0470 0.0490 0.3632 0.3366 4.1 7.9 3.35 3.10 8.1 0.3          
Grassland 198/  313 0.0470 0.0424 0.0389 0.3909 0.4431 9.0 11.8 2.10 2.40 12.5 0.3 2.85 2.55 2.35 11.8 7.8 0.30 0.20
Spring Grain 198/  313 0.0630 0.0311 0.0326 0.4496 0.4424 4.6 1.6 2.95 2.85 3.5 0.1     
Winter Grain 198/  313 0.6410 0.0066 0.0442 0.4046 0.4002 85.1 1.1 3.75 2.40 56.3 1.4     
Maize 198/  313 0.2500 0.1515 0.0555 0.3630 0.3661 173.0 0.8 0.75 3.05 75.4 2.3          
Grassland 198/  314 0.7500 0.0794 0.0706 0.3721 0.3715 12.5 0.2 1.10 1.25 12.0 0.2 1.55 1.45 1.35 6.9 6.9 0.10 0.10
Spring Grain 198/  314 0.0470 0.0356 0.0408 0.4486 0.4382 12.7 2.4 2.80 2.60 7.7 0.2     
Winter Grain 198/  314 0.1560 0.0293 0.0679 0.3794 0.3788 56.8 0.2 2.85 1.75 62.9 1.1     
Maize 198/  314 0.0470 0.0443 0.0516 0.3593 0.3813 14.1 5.8 3.45 3.25 6.2 0.2          
Grassland 198/  315 0.8910 0.0625 0.0605 0.3986 0.3997 3.3 0.3 1.55 1.60 3.1 0.1 1.70 1.70 1.65 0.0 2.9 0.00 0.05
Winter Grain 198/  315 0.0780 0.0285 0.0537 0.3813 0.3584 46.9 6.4 2.85 2.00 42.5 0.9     
Maize 198/  315 0.0310 0.0436 0.0357 0.3595 0.3872 22.1 7.2 3.45 3.95 12.7 0.5          
Deciduous Forest 198/  316 0.0310 0.0270 0.0323 0.3965 0.4623 16.4 14.2 5.20 5.10 2.0 0.1 1.90 1.85 1.70 2.7 8.1 0.05 0.15
Grassland 198/  316 0.6880 0.0666 0.0653 0.3832 0.3688 2.0 3.9 1.40 1.35 3.7 0.0     
Spring Grain 198/  316 0.0470 0.0354 0.0314 0.4487 0.4637 12.7 3.2 2.80 2.95 5.1 0.2     
Winter Grain 198/  316 0.2190 0.0292 0.0330 0.3802 0.4105 11.5 7.4 2.85 2.80 1.8 0.1     
Maize 198/  316 0.0160 0.0436 0.0515 0.3594 0.3922 15.3 8.4 3.45 3.30 4.5 0.2          
Spring Grain 198/  317 0.0630 0.0361 0.0338 0.4494 0.4584 6.8 2.0 2.80 2.85 1.8 0.1 2.80 2.75 2.60 1.8 5.5 0.05 0.15
Winter Grain 198/  317 0.7810 0.0352 0.0349 0.4035 0.4021 0.9 0.3 2.70 2.70 0.0 0.0     
Maize 198/  317 0.1560 0.0474 0.0496 0.3612 0.3645 4.4 0.9 3.30 3.25 1.5 0.0          
Deciduous Forest 198/  318 0.0470 0.0270 0.0329 0.3998 0.4667 17.9 14.3 5.25 5.10 2.9 0.2 2.95 2.95 2.85 0.0 3.4 0.00 0.10
Grassland 198/  318 0.0940 0.0519 0.0313 0.3982 0.5072 65.8 21.5 1.85 2.80 33.9 1.0     
Winter Grain 198/  318 0.8120 0.0290 0.0311 0.4257 0.4091 6.8 4.1 2.95 2.85 3.5 0.1     
Maize 198/  318 0.0470 0.0435 0.0427 0.3604 0.3621 1.9 0.5 3.50 3.50 0.0 0.0          
Mixed Forest 198/  319 0.2380 0.0230 0.0222 0.2588 0.2537 3.6 2.0 7.80 7.95 1.9 0.2 3.80 3.85 2.60 1.3 32.5 0.05 1.25
Grassland 198/  319 0.0480 0.0558 0.0649 0.3895 0.3918 14.0 0.6 1.70 1.50 13.3 0.2     
Spring Grain 198/  319 0.1750 0.0402 0.0344 0.4501 0.4287 16.9 5.0 2.65 2.80 5.4 0.2     
Winter Grain 198/  319 0.5240 0.0363 0.0378 0.3925 0.4035 4.0 2.7 2.65 2.60 1.9 0.0     
Maize 198/  319 0.0160 0.0441 0.0459 0.3596 0.3613 3.9 0.5 3.45 3.40 1.5 0.1          
Mixed Forest 198/  320 0.8590 0.0270 0.0238 0.2754 0.2778 13.4 0.9 7.05 8.10 13.0 1.1 6.40 7.25 7.25 11.7 0.0 0.85 0.00
Grassland 198/  320 0.0160 0.0526 0.0989 0.3881 0.3591 46.8 8.1 1.80 0.75 140.0 1.1     
Spring Grain 198/  320 0.0940 0.0372 0.0498 0.4495 0.4441 25.3 1.2 2.75 2.40 14.6 0.4     
Winter Grain 198/  320 0.0310 0.0287 0.0568 0.3816 0.3474 49.5 9.8 2.85 1.90 50.0 1.0          
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Mixed Forest 199/  313 0.1090 0.0201 0.0222 0.2749 0.2344 9.5 17.3 9.30 7.35 26.5 2.0 4.95 3.00 3.10 65.0 3.3 1.95 0.10
Needleleaf Forest 199/  313 0.0160 0.0219 0.0171 0.1859 0.1923 28.1 3.3 10.20 12.50 18.4 2.3     
Grassland 199/  313 0.2340 0.0369 0.0648 0.6716 0.3502 43.1 91.8 2.90 1.30 123.1 1.6     
Winter Grain 199/  313 0.2810 0.0947 0.0438 0.0246 0.3628 116.2 93.2 6.00 2.30 160.9 3.7     
Maize 199/  313 0.3590 0.0326 0.0540 0.3883 0.3453 39.6 12.5 4.05 2.95 37.3 1.1          
Mixed Forest 199/  314 0.2030 0.0212 0.0226 0.2496 0.2417 6.2 3.3 8.15 7.45 9.4 0.7 4.35 4.65 1.75 6.5 62.4 0.30 2.90
Needleleaf Forest 199/  314 0.1560 0.0225 0.0196 0.1843 0.1940 14.8 5.0 9.65 12.50 22.8 2.9     
Grassland 199/  314 0.4840 0.0613 0.0615 0.3703 0.3829 0.3 3.3 1.50 1.50 0.0 0.0     
Winter Grain 199/  314 0.0630 0.0286 0.0374 0.3798 0.3739 23.5 1.6 2.85 2.55 11.8 0.3     
Maize 199/  314 0.0940 0.0443 0.0393 0.3589 0.2989 12.7 20.1 3.45 3.30 4.5 0.2          
Mixed Forest 199/  315 0.2660 0.0226 0.0231 0.0000 0.2472 2.2 100.0 12.50 7.45 67.8 5.1 6.75 3.65 2.90 84.9 20.5 3.10 0.75
Grassland 199/  315 0.1560 0.0618 0.0491 0.0000 0.3944 25.9 100.0 0.00 1.90 100.0 1.9     
Winter Grain 199/  315 0.0310 0.0287 0.0271 0.0000 0.4227 5.9 100.0 6.00 3.00 100.0 3.0     
Maize 199/  315 0.5470 0.0609 0.0644 0.0000 0.3122 5.4 100.0 6.00 2.35 155.3 3.7          
Grassland 199/  316 0.1090 0.0584 0.0416 0.3964 0.4025 40.4 1.5 1.65 2.15 23.3 0.5 2.70 2.65 3.40 1.9 28.3 0.05 0.75
Spring Grain 199/  316 0.0160 0.0354 0.0331 0.4490 0.4211 6.9 6.6 2.80 2.80 0.0 0.0     
Winter Grain 199/  316 0.3910 0.0324 0.0320 0.3963 0.4131 1.2 4.1 2.75 2.80 1.8 0.0     
Maize 199/  316 0.4840 0.0583 0.0626 0.3668 0.3528 6.9 4.0 2.95 2.70 9.3 0.3          
Spring Grain 199/  317 0.0470 0.0356 0.0425 0.4493 0.4129 16.2 8.8 2.80 2.50 12.0 0.3 2.75 2.70 2.75 1.9 1.9 0.05 0.05
Winter Grain 199/  317 0.9530 0.0341 0.0337 0.4113 0.4131 1.2 0.4 2.75 2.75 0.0 0.0          
Needleleaf Forest 199/  318 0.0160 0.0223 0.0327 0.1849 0.1714 31.8 7.9 9.85 4.10 140.2 5.8 2.20 2.10 2.10 4.8 0.0 0.10 0.00
Winter Grain 199/  318 0.9840 0.0493 0.0491 0.3494 0.3497 0.4 0.1 2.10 2.10 0.0 0.0          
Mixed Forest 199/  319 0.2340 0.0180 0.0243 0.2308 0.2207 25.9 4.6 8.80 6.20 41.9 2.6 3.75 4.80 2.40 21.9 50.0 1.05 2.40
Needleleaf Forest 199/  319 0.2030 0.0843 0.0208 0.1796 0.1751 305.3 2.6 0.05 10.05 99.5 10.0     
Spring Grain 199/  319 0.2340 0.0253 0.0341 0.4414 0.4507 25.8 2.1 3.10 2.85 8.8 0.3     
Winter Grain 199/  319 0.3280 0.0222 0.0507 0.3511 0.3546 56.2 1.0 3.00 2.05 46.3 1.0          
Mixed Forest 199/  320 0.4530 0.0000 0.0187 0.2673 0.2725 100.0 1.9 12.50 9.75 28.2 2.8 9.80 8.15 9.60 20.2 17.8 1.65 1.45
Needleleaf Forest 199/  320 0.2190 0.0000 0.0150 0.1869 0.1811 100.0 3.2 12.50 12.50 0.0 0.0     
Grassland 199/  320 0.0160 0.0000 0.0233 0.3883 0.4040 100.0 3.9 4.05 2.85 42.1 1.2     
Spring Grain 199/  320 0.1720 0.0000 0.0323 0.4505 0.4340 100.0 3.8 4.05 2.85 42.1 1.2     
Winter Grain 199/  320 0.0940 0.0000 0.0238 0.3836 0.4062 100.0 5.6 4.05 3.10 30.6 1.0     
Maize 199/  320 0.0470 0.0000 0.0212 0.3600 0.3477 100.0 3.5 5.80 4.50 28.9 1.3          
Deciduous Forest 200/  313 0.0310 0.0265 0.0264 0.4018 0.4456 0.4 9.8 5.30 5.65 6.2 0.4 10.60 9.90 9.95 7.1 0.5 0.70 0.05
Mixed Forest 200/  313 0.5940 0.0166 0.0197 0.3380 0.3311 15.7 2.1 12.05 10.75 12.1 1.3     
Needleleaf Forest 200/  313 0.2340 0.0196 0.0180 0.1944 0.1969 8.9 1.3 12.50 12.50 0.0 0.0     
Grassland 200/  313 0.0630 0.0471 0.0347 0.4051 0.4422 35.7 8.4 2.00 2.55 21.6 0.6     
Spring Grain 200/  313 0.0310 0.0344 0.0361 0.4502 0.4446 4.7 1.3 2.85 2.75 3.6 0.1     
Winter Grain 200/  313 0.0160 0.0282 0.0142 0.3830 0.3587 98.6 6.8 2.85 3.35 14.9 0.5     
Maize 200/  313 0.0310 0.0424 0.0238 0.3611 0.3741 78.2 3.5 3.55 4.45 20.2 0.9          
Deciduous Forest 200/  314 0.1560 0.0289 0.0246 0.4075 0.4768 17.5 14.5 5.05 6.10 17.2 1.1 4.75 5.15 3.50 7.8 32.0 0.40 1.65
Mixed Forest 200/  314 0.3120 0.0230 0.0220 0.2720 0.3014 4.5 9.8 8.20 9.30 11.8 1.1     
Grassland 200/  314 0.1090 0.0592 0.0683 0.4004 0.3321 13.3 20.6 1.65 1.15 43.5 0.5     
Winter Grain 200/  314 0.0160 0.0286 0.0348 0.3818 0.3654 17.8 4.5 2.85 2.60 9.6 0.3     
Maize 200/  314 0.4060 0.0574 0.0571 0.3683 0.3381 0.5 8.9 3.00 2.80 7.1 0.2          
Maize 200/  315 1.0000 0.0736 0.0736 0.3163 0.3163 0.0 0.0 2.10 2.10 0.0 0.0 2.10 2.10 2.10 0.0 0.0 0.00 0.00
Grassland 200/  316 0.0630 0.0580 0.0792 0.3694 0.3336 26.8 10.7 1.55 0.95 63.2 0.6 1.80 1.85 2.05 2.7 10.8 0.05 0.20
Spring Grain 200/  316 0.0630 0.0372 0.0409 0.4458 0.4350 9.0 2.5 2.75 2.60 5.8 0.2     
Winter Grain 200/  316 0.0470 0.0292 0.0541 0.3745 0.3902 46.0 4.0 2.80 2.10 33.3 0.7     
Maize 200/  316 0.8280 0.0855 0.0823 0.3163 0.3189 3.9 0.8 1.75 1.85 5.4 0.1          
Grassland 200/  317 0.1250 0.2149 0.0658 0.3937 0.3895 226.6 1.1 0.10 1.45 93.1 1.4 2.75 2.30 2.30 19.6 0.0 0.45 0.00
Spring Grain 200/  317 0.1250 0.0325 0.0433 0.4498 0.4281 24.9 5.1 2.90 2.55 13.7 0.4     
Winter Grain 200/  317 0.7030 0.0211 0.0443 0.3980 0.4022 52.4 1.0 3.15 2.40 31.3 0.8     
Maize 200/  317 0.0470 0.0420 0.0619 0.3599 0.3650 32.1 1.4 3.55 2.80 26.8 0.8          
Mixed Forest 200/  318 0.2030 0.0697 0.0376 0.2420 0.2380 85.4 1.7 0.80 3.65 78.1 2.9 2.00 2.55 1.90 21.6 25.5 0.55 0.65
Needleleaf Forest 200/  318 0.0310 0.0253 0.0186 0.1846 0.1791 36.0 3.1 8.05 12.10 33.5 4.1     
Spring Grain 200/  318 0.0160 0.0387 0.0331 0.4485 0.4359 16.9 2.9 2.70 2.85 5.3 0.2     
Winter Grain 200/  318 0.7500 0.0485 0.0577 0.3419 0.3435 15.9 0.5 2.10 1.85 13.5 0.3          
Mixed Forest 200/  319 0.7810 0.0184 0.0190 0.2354 0.2367 3.2 0.5 8.80 8.60 2.3 0.2 9.15 9.30 8.15 1.6 12.4 0.15 1.15
Needleleaf Forest 200/  319 0.2190 0.0210 0.0189 0.1836 0.1790 11.1 2.6 10.60 11.85 10.5 1.3          
Mixed Forest 200/  320 0.2190 0.0195 0.0169 0.2582 0.2568 15.4 0.5 9.05 10.05 10.0 1.0 11.70 11.95 12.50 2.1 4.6 0.25 0.55
Needleleaf Forest 200/  320 0.7810 0.0153 0.0161 0.1900 0.1904 5.0 0.2 12.50 12.50 0.0 0.0          
      Mean 40.3 8.9 36.2 0.8  22.0 25.8 0.48 0.65
     Max 305.4 100.0 470.0 10.0  283.3 100.0 4.40 3.95
     Min 0.0 0.0 0.0 0.0  0.0 0.0 0.00 0.00
     Std 47.9 15.9 56.9 1.2  40.6 27.1 0.8 0.8
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Gut Huell area 
(resolution 240m, row 177-184, col 325-333, one-based index) 

La
nd

 C
ov

er
 T

yp
e 

P
ix

el
 ro

w
/c

ol
 

ar
ea

 fr
ac

tio
n 

R
E

D
 re

fs
eg

 

R
E

D
 tr

ut
h 

N
IR

 re
fs

eg
 

N
IR

 tr
ut

h 

re
lE

rr 
R

E
D

 [%
] 

re
lE

rr 
N

IR
 [%

] 

LA
I r

ef
se

g 
[m

²/m
²] 

LA
I t

ru
th

 [m
²/m

²] 

re
lE

rr 
LA

I [
%

] 

ab
sE

rr 
LA

I [
m

²/m
²] 

LA
I s

um
 re

fs
eg

 [m
²/m

²] 

LA
I s

um
 tr

ut
h 

[m
²/m

²] 

LA
I m

aj
or

ity
 [m

²/m
²] 

re
lE

rr 
LA

I s
um

 re
fs

eg
 [%

] 

re
lE

rr 
LA

I s
um

 m
aj

or
ity

 [%
] 

ab
sE

rr 
re

fs
eg

 [m
²/m

²] 

ab
sE

rr 
m

aj
or

ity
 [m

²/m
²] 

Grassland 177/  325 0.0630 0.0515 0.0597 0.3737 0.3104 13.7 20.4 1.75 1.25 40.0 0.50 2.10 1.50 1.45 40.0 3.4 0.60 0.05
Winter Grain 177/  325 0.7810 0.0284 0.0674 0.2998 0.3061 57.9 2.1 2.60 1.45 79.3 1.15     
Maize 177/  325 0.1090 0.3435 0.0622 0.3551 0.3381 452.3 5.0 0.00 2.65 100.0 2.65     
Urban Fabric 177/  325 0.0470 0.0893 0.0845 0.2445 0.2642 5.7 7.5 0.00 0.00 0.0 0.00     
Winter Grain 177/  326 1.0000 0.0406 0.0406 0.3179 0.3179 0.0 0.0 2.25 2.25 0.0 0.00 2.25 2.25 2.25 0.0 0.0 0.00 0.00
Grassland 177/  327 0.0630 0.0582 0.0593 0.3862 0.3654 1.9 5.7 1.60 1.50 6.7 0.10 2.35 2.30 2.30 2.2 0.0 0.05 0.00
Winter Grain 177/  327 0.8750 0.0439 0.0429 0.3734 0.3746 2.3 0.3 2.35 2.35 0.0 0.00     
Maize 177/  327 0.0630 0.0467 0.0593 0.3593 0.3638 21.2 1.2 3.35 2.90 15.5 0.45     
Winter Grain 177/  328 1.0000 0.0302 0.0301 0.4286 0.4285 0.3 0.0 2.90 2.90 0.0 0.00 2.90 2.90 2.90 0.0 0.0 0.00 0.00
Grassland 177/  329 0.0160 0.0526 0.0646 0.3879 0.3040 18.6 27.6 1.80 1.10 63.6 0.70 2.55 2.50 2.55 2.0 2.0 0.05 0.05
Spring Grain 177/  329 0.0160 0.0354 0.0532 0.4489 0.4732 33.5 5.1 2.80 2.40 16.7 0.40     
Winter Grain 177/  329 0.9530 0.0399 0.0394 0.3978 0.4006 1.3 0.7 2.55 2.55 0.0 0.00     
Maize 177/  329 0.0160 0.0440 0.0450 0.3596 0.2487 2.2 44.6 3.45 2.65 30.2 0.80     
Mixed Forest 177/  330 0.0330 0.0206 0.0372 0.2530 0.2727 44.6 7.2 8.50 4.65 82.8 3.85 2.30 1.60 1.40 43.8 14.3 0.70 0.20
Grassland 177/  330 0.1480 0.0438 0.0692 0.3860 0.3990 36.7 3.3 2.05 1.40 46.4 0.65     
Spring Grain 177/  330 0.0980 0.0334 0.0591 0.4486 0.4347 43.5 3.2 2.85 2.15 32.6 0.70     
Winter Grain 177/  330 0.3440 0.0255 0.0595 0.3794 0.3846 57.1 1.4 2.95 1.95 51.3 1.00     
Maize 177/  330 0.1310 0.0401 0.0572 0.3592 0.3648 29.9 1.5 3.60 2.95 22.0 0.65     
Bare Soil 177/  330 0.0980 0.4471 0.1596 0.3170 0.3039 180.1 4.3 0.00 0.00 0.0 0.00     
Urban Fabric 177/  330 0.1480 0.0713 0.1202 0.2471 0.2528 40.7 2.3 0.00 0.00 0.0 0.00     
Mixed Forest 177/  331 0.0160 0.0208 0.0291 0.2539 0.3340 28.5 24.0 8.45 7.95 6.3 0.50 2.85 2.55 2.50 11.8 2.0 0.30 0.05
Grassland 177/  331 0.0310 0.4302 0.0308 0.3903 0.6039 1296.8 35.4 0.00 3.00 100.0 3.00     
Spring Grain 177/  331 0.4530 0.0351 0.0478 0.4559 0.4439 26.6 2.7 2.85 2.45 16.3 0.40     
Winter Grain 177/  331 0.5000 0.0284 0.0416 0.4038 0.3988 31.7 1.3 2.90 2.50 16.0 0.40     
Deciduous Forest 177/  332 0.0350 0.0000 0.0179 0.3957 0.4240 100.0 6.7 9.90 6.65 48.9 3.25 9.65 7.90 9.70 22.2 18.6 1.75 1.80
Mixed Forest 177/  332 0.3510 0.0000 0.0194 0.5492 0.2652 100.0 107.1 12.50 9.30 34.4 3.20     
Needleleaf Forest 177/  332 0.2810 0.0000 0.0118 0.1842 0.1661 100.0 10.9 12.50 12.50 0.0 0.00     
Grassland 177/  332 0.0700 0.0000 0.0305 0.3856 0.5285 100.0 27.0 4.05 2.85 42.1 1.20     
Spring Grain 177/  332 0.0350 0.0000 0.0442 0.4485 0.4444 100.0 0.9 4.05 2.55 58.8 1.50     
Winter Grain 177/  332 0.1930 0.0000 0.0380 0.0942 0.3975 100.0 76.3 4.05 2.60 55.8 1.45     
Maize 177/  332 0.0350 0.0000 0.0232 0.3592 0.2867 100.0 25.3 5.80 4.15 39.8 1.65     
Winter Grain 178/  325 1.0000 0.0502 0.0502 0.3590 0.3591 0.0 0.0 2.10 2.10 0.0 0.00 2.10 2.10 2.10 0.0 0.0 0.00 0.00
Winter Grain 178/  326 1.0000 0.0325 0.0324 0.3481 0.3480 0.3 0.0 2.60 2.60 0.0 0.00 2.60 2.60 2.60 0.0 0.0 0.00 0.00
Mixed Forest 178/  327 0.3750 0.0231 0.0286 0.2795 0.3576 19.2 21.8 8.35 8.60 2.9 0.25 4.80 4.85 2.75 1.0 76.4 0.05 2.10
Grassland 178/  327 0.0310 0.0534 0.0389 0.3917 0.3844 37.3 1.9 1.75 2.20 20.5 0.45     
Winter Grain 178/  327 0.5940 0.0344 0.0316 0.4204 0.3715 8.9 13.2 2.75 2.70 1.9 0.05     
Mixed Forest 178/  328 0.2660 0.0197 0.0359 0.6594 0.4047 45.1 62.9 12.50 7.85 59.2 4.65 5.10 3.95 2.55 29.1 54.9 1.15 1.40
Grassland 178/  328 0.0780 0.2157 0.0408 0.3562 0.4169 428.7 14.6 0.05 2.25 97.8 2.20     
Spring Grain 178/  328 0.1250 0.0334 0.0553 0.4407 0.4057 39.6 8.6 2.85 2.15 32.6 0.70     
Winter Grain 178/  328 0.4840 0.0252 0.0387 0.2710 0.4090 34.9 33.7 2.65 2.60 1.9 0.05     
Maize 178/  328 0.0470 0.0425 0.0432 0.3561 0.3653 1.6 2.5 3.50 3.50 0.0 0.00     
Spring Grain 178/  329 0.4530 0.0000 0.0482 0.4488 0.4170 100.0 7.6 4.05 2.35 72.3 1.70 4.05 2.40 2.45 68.8 2.0 1.65 0.05
Winter Grain 178/  329 0.5470 0.0000 0.0425 0.3809 0.4072 100.0 6.5 4.05 2.50 62.0 1.55     
Winter Grain 178/  330 0.9520 0.0332 0.0351 0.3731 0.3730 5.4 0.0 2.65 2.60 1.9 0.05 2.60 2.55 2.60 2.0 1.9 0.05 0.05
Maize 178/  330 0.0320 0.0439 0.0388 0.3594 0.3504 13.1 2.6 3.45 3.65 5.5 0.20     
Bare Soil 178/  330 0.0160 0.1493 0.0390 0.3174 0.3561 282.8 10.9 0.00 0.00 0.0 0.00     
Spring Grain 178/  331 0.1410 0.0381 0.0483 0.4480 0.4062 21.1 10.3 2.70 2.30 17.4 0.40 2.50 2.55 2.55 2.0 0.0 0.05 0.00
Winter Grain 178/  331 0.8590 0.0377 0.0360 0.3673 0.3742 4.7 1.8 2.50 2.60 3.8 0.10     
Mixed Forest 178/  332 0.3440 0.0241 0.0213 0.2620 0.2601 13.1 0.7 7.55 8.45 10.7 0.90 5.15 5.80 2.60 11.2 123.1 0.65 3.20
Needleleaf Forest 178/  332 0.1250 0.0237 0.0190 0.1859 0.1856 24.7 0.2 9.05 12.30 26.4 3.25     
Winter Grain 178/  332 0.4840 0.0359 0.0402 0.3926 0.3966 10.7 1.0 2.65 2.50 6.0 0.15     
Maize 178/  332 0.0470 0.0456 0.0346 0.3599 0.3339 31.8 7.8 3.40 3.75 9.3 0.35     
Mixed Forest 179/  325 0.1250 0.0224 0.0218 0.2528 0.2372 2.8 6.6 7.85 7.55 4.0 0.30 3.20 3.25 2.35 1.5 38.3 0.05 0.90
Needleleaf Forest 179/  325 0.0310 0.0226 0.0182 0.1850 0.1864 24.2 0.8 9.65 12.50 22.8 2.85     
Grassland 179/  325 0.0160 0.0535 0.0357 0.3872 0.3863 49.9 0.2 1.75 2.30 23.9 0.55     
Spring Grain 179/  325 0.0310 0.0364 0.0405 0.4487 0.4142 10.1 8.3 2.80 2.55 9.8 0.25     
Winter Grain 179/  325 0.7970 0.0453 0.0457 0.3782 0.3820 0.9 1.0 2.30 2.30 0.0 0.00     
Grassland 179/  326 0.0160 0.0539 0.0587 0.3880 0.4209 8.2 7.8 1.75 1.75 0.0 0.00 2.20 2.15 2.20 2.3 2.3 0.05 0.05
Spring Grain 179/  326 0.0310 0.0367 0.0631 0.4490 0.4041 41.8 11.1 2.75 1.95 41.0 0.80     
Winter Grain 179/  326 0.9380 0.0525 0.0514 0.4001 0.4010 2.1 0.2 2.20 2.20 0.0 0.00     
Maize 179/  326 0.0160 0.0446 0.0552 0.3596 0.3659 19.2 1.7 3.45 3.05 13.1 0.40     
Mixed Forest 179/  327 0.0780 0.0227 0.0429 0.2572 0.3700 47.1 30.5 7.85 5.80 35.3 2.05 2.50 2.35 2.10 6.4 11.9 0.15 0.25
Grassland 179/  327 0.0310 0.0590 0.0647 0.3905 0.4003 8.8 2.4 1.60 1.50 6.7 0.10     
Spring Grain 179/  327 0.0160 0.0363 0.0613 0.4490 0.4310 40.8 4.2 2.80 2.10 33.3 0.70     
Winter Grain 179/  327 0.8440 0.0615 0.0589 0.4216 0.4112 4.4 2.5 2.05 2.05 0.0 0.00     
Maize 179/  327 0.0310 0.0471 0.0473 0.3600 0.3558 0.4 1.2 3.35 3.30 1.5 0.05     
Deciduous Forest 179/  328 0.0160 0.0269 0.0293 0.3940 0.4646 8.2 15.2 5.20 5.45 4.6 0.25 9.85 5.65 6.75 74.3 16.3 4.20 1.10
Mixed Forest 179/  328 0.6410 0.0208 0.0386 0.5499 0.4197 46.1 31.0 12.50 7.55 65.6 4.95     
Grassland 179/  328 0.0470 0.0515 0.0412 0.3750 0.4263 25.0 12.0 1.75 2.25 22.2 0.50     
Spring Grain 179/  328 0.0310 0.0351 0.0472 0.4473 0.4502 25.6 0.6 2.80 2.50 12.0 0.30     
Winter Grain 179/  328 0.2660 0.0949 0.0521 0.0927 0.3932 82.1 76.4 6.00 2.20 172.7 3.80     
Mixed Forest 179/  329 0.5470 0.0054 0.0291 0.1147 0.3302 81.4 65.3 12.30 7.90 55.7 4.40 8.00 5.60 7.05 42.9 20.6 2.40 1.45
Needleleaf Forest 179/  329 0.0160 0.0214 0.0167 0.1892 0.1824 28.1 3.7 10.80 12.50 13.6 1.70     
Spring Grain 179/  329 0.0940 0.0268 0.0463 0.4780 0.4199 42.1 13.8 3.10 2.40 29.2 0.70     
Winter Grain 179/  329 0.3120 0.0910 0.0433 0.7660 0.4101 110.2 86.8 2.35 2.45 4.1 0.10     
Maize 179/  329 0.0310 0.0396 0.0459 0.3703 0.3379 13.7 9.6 3.70 3.25 13.8 0.45     
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Mixed Forest 179/  330 0.6410 0.0251 0.0215 0.2775 0.2759 16.7 0.6 7.70 8.80 12.5 1.10 5.90 6.55 7.80 9.9 16.0 0.65 1.25
Grassland 179/  330 0.0160 0.0525 0.0461 0.3885 0.3892 13.9 0.2 1.80 2.00 10.0 0.20     
Spring Grain 179/  330 0.0160 0.0354 0.0428 0.4490 0.4158 17.3 8.0 2.80 2.50 12.0 0.30     
Winter Grain 179/  330 0.2970 0.0316 0.0397 0.3915 0.3989 20.4 1.9 2.80 2.55 9.8 0.25     
Maize 179/  330 0.0310 0.0444 0.0412 0.3599 0.3410 7.8 5.5 3.45 3.50 1.4 0.05     
Mixed Forest 179/  331 0.1410 0.0201 0.0254 0.2488 0.2588 20.9 3.9 8.55 7.05 21.3 1.50 3.40 2.75 2.00 23.6 37.5 0.65 0.75
Grassland 179/  331 0.1410 0.2153 0.0775 0.3786 0.3863 177.8 2.0 0.05 1.20 95.8 1.15     
Winter Grain 179/  331 0.6090 0.0236 0.0544 0.3629 0.3634 56.6 0.1 3.00 2.00 50.0 1.00     
Maize 179/  331 0.1090 0.0409 0.0392 0.3582 0.3330 4.3 7.6 3.60 3.50 2.9 0.10     
Mixed Forest 179/  332 0.7500 0.0188 0.0206 0.2835 0.2837 8.7 0.1 10.00 9.35 7.0 0.65 8.20 7.75 9.35 5.8 17.1 0.45 1.60
Grassland 179/  332 0.0310 0.0507 0.0418 0.3898 0.4198 21.3 7.1 1.85 2.20 15.9 0.35     
Spring Grain 179/  332 0.0160 0.0349 0.0291 0.4490 0.4701 19.9 4.5 2.80 3.05 8.2 0.25     
Winter Grain 179/  332 0.1720 0.0277 0.0244 0.3874 0.3868 13.5 0.2 2.90 3.00 3.3 0.10     
Maize 179/  332 0.0310 0.0430 0.0305 0.3599 0.3172 41.0 13.5 3.50 3.85 9.1 0.35     
Mixed Forest 180/  325 0.2030 0.0674 0.0245 0.2689 0.2801 175.1 4.0 1.25 7.95 84.3 6.70 2.55 3.85 2.35 33.8 63.8 1.30 1.50
Needleleaf Forest 180/  325 0.0470 0.0293 0.0209 0.1861 0.1831 40.2 1.6 6.25 10.65 41.3 4.40     
Spring Grain 180/  325 0.0630 0.0683 0.0502 0.4503 0.4377 36.1 2.9 2.00 2.35 14.9 0.35     
Winter Grain 180/  325 0.6410 0.0345 0.0525 0.4279 0.4253 34.3 0.6 2.80 2.25 24.4 0.55     
Maize 180/  325 0.0470 0.0667 0.0390 0.3608 0.3695 71.0 2.4 2.60 3.70 29.7 1.10     
Mixed Forest 180/  326 0.2660 0.0923 0.0285 0.2797 0.2912 223.9 3.9 0.50 7.10 93.0 6.60 2.25 3.55 2.35 36.6 51.1 1.30 1.20
Grassland 180/  326 0.0160 0.0515 0.0295 0.3904 0.4146 74.6 5.8 1.80 2.65 32.1 0.85     
Spring Grain 180/  326 0.0940 0.0351 0.0493 0.4518 0.4452 28.8 1.5 2.80 2.40 16.7 0.40     
Winter Grain 180/  326 0.6250 0.0284 0.0539 0.4400 0.4355 47.3 1.0 3.00 2.25 33.3 0.75     
Mixed Forest 180/  327 1.0000 0.0293 0.0292 0.3509 0.3508 0.3 0.0 8.30 8.30 0.0 0.00 8.30 8.30 8.30 0.0 0.0 0.00 0.00
Mixed Forest 180/  328 0.8440 0.0239 0.0249 0.2866 0.2892 4.0 0.9 8.30 8.05 3.1 0.25 8.15 8.25 7.80 1.2 5.8 0.10 0.45
Needleleaf Forest 180/  328 0.1090 0.0226 0.0181 0.1862 0.1889 24.9 1.4 9.75 12.50 22.0 2.75     
Grassland 180/  328 0.0310 0.0526 0.0511 0.3897 0.3370 2.9 15.6 1.80 1.60 12.5 0.20     
Maize 180/  328 0.0160 0.0437 0.0233 0.3597 0.3078 87.6 16.9 3.45 4.20 17.9 0.75     
Mixed Forest 180/  329 0.2340 0.0200 0.0206 0.2556 0.2451 2.9 4.3 8.80 8.25 6.7 0.55 11.60 11.50 12.50 0.9 8.0 0.10 1.00
Needleleaf Forest 180/  329 0.7660 0.0182 0.0181 0.1872 0.1905 0.6 1.7 12.50 12.50 0.0 0.00     
Mixed Forest 180/  330 0.9690 0.0242 0.0238 0.2508 0.2519 1.7 0.4 7.20 7.35 2.0 0.15 7.15 7.30 7.20 2.1 1.4 0.15 0.10
Needleleaf Forest 180/  330 0.0160 0.0221 0.0203 0.1850 0.1923 8.9 3.8 10.00 11.85 15.6 1.85     
Winter Grain 180/  330 0.0160 0.0285 0.0602 0.3808 0.3071 52.7 24.0 2.85 1.60 78.1 1.25     
Mixed Forest 180/  331 0.2810 0.1676 0.0251 0.2439 0.2655 567.7 8.1 0.00 7.35 100.0 7.35 1.50 2.70 0.90 44.4 200.0 1.20 1.80
Grassland 180/  331 0.4840 0.0515 0.0985 0.3555 0.3550 47.7 0.1 1.70 0.70 142.9 1.00     
Winter Grain 180/  331 0.1720 0.0284 0.1315 0.3755 0.3556 78.4 5.6 2.85 0.65 338.5 2.20     
Maize 180/  331 0.0630 0.0434 0.0362 0.3587 0.3206 19.9 11.9 3.45 3.60 4.2 0.15     
Mixed Forest 180/  332 0.7810 0.0193 0.0204 0.2931 0.2913 5.4 0.6 10.05 9.60 4.7 0.45 10.15 10.20 9.25 0.5 10.3 0.05 0.95
Needleleaf Forest 180/  332 0.2190 0.0214 0.0174 0.1882 0.1944 23.0 3.2 10.70 12.50 14.4 1.80     
Mixed Forest 181/  325 0.5470 0.0217 0.0233 0.3136 0.3115 6.9 0.7 9.70 9.10 6.6 0.60 9.35 9.85 8.25 5.1 19.4 0.50 1.60
Needleleaf Forest 181/  325 0.3750 0.0229 0.0190 0.1967 0.1951 20.5 0.8 10.35 12.50 17.2 2.15     
Grassland 181/  325 0.0160 0.0517 0.0262 0.3907 0.4011 97.3 2.6 1.80 2.75 34.5 0.95     
Spring Grain 181/  325 0.0160 0.0352 0.0422 0.4493 0.4457 16.6 0.8 2.80 2.60 7.7 0.20     
Winter Grain 181/  325 0.0470 0.0285 0.0475 0.3858 0.4217 40.0 8.5 2.85 2.40 18.8 0.45     
Deciduous Forest 181/  326 0.0310 0.0276 0.0232 0.4004 0.4434 19.0 9.7 5.15 6.05 14.9 0.90 6.70 6.60 7.65 1.5 13.7 0.10 1.05
Mixed Forest 181/  326 0.7970 0.0310 0.0315 0.3382 0.3375 1.6 0.2 7.60 7.45 2.0 0.15     
Grassland 181/  326 0.0160 0.0534 0.0294 0.3906 0.3042 81.6 28.4 1.75 2.25 22.2 0.50     
Winter Grain 181/  326 0.1250 0.0309 0.0358 0.3935 0.4158 13.7 5.4 2.80 2.70 3.7 0.10     
Maize 181/  326 0.0310 0.0453 0.0278 0.3607 0.2899 62.9 24.4 3.40 3.85 11.7 0.45     
Mixed Forest 181/  327 0.9530 0.0248 0.0254 0.3102 0.3124 2.4 0.7 8.60 8.50 1.2 0.10 8.55 8.55 8.45 0.0 1.2 0.00 0.10
Needleleaf Forest 181/  327 0.0310 0.0222 0.0168 0.1856 0.1906 32.1 2.6 9.95 12.50 20.4 2.55     
Maize 181/  327 0.0160 0.0437 0.0203 0.3598 0.2154 115.3 67.0 3.45 3.90 11.5 0.45     
Mixed Forest 181/  328 0.9690 0.0267 0.0274 0.3634 0.3649 2.6 0.4 9.25 9.10 1.6 0.15 9.05 8.95 9.10 1.1 1.6 0.10 0.15
Maize 181/  328 0.0310 0.0443 0.0218 0.3607 0.3155 103.2 14.3 3.45 4.35 20.7 0.90     
Mixed Forest 181/  329 0.7500 0.0184 0.0194 0.2513 0.2501 5.2 0.5 9.25 8.85 4.5 0.40 9.50 9.60 8.55 1.0 12.3 0.10 1.05
Needleleaf Forest 181/  329 0.2340 0.0209 0.0175 0.1849 0.1875 19.4 1.4 10.80 12.50 13.6 1.70     
Winter Grain 181/  329 0.0160 0.0283 0.0328 0.3808 0.3954 13.7 3.7 2.85 2.75 3.6 0.10     
Mixed Forest 181/  330 0.5970 0.0205 0.0211 0.2502 0.2578 2.8 2.9 8.45 8.45 0.0 0.00 7.40 7.75 4.80 4.5 61.5 0.35 2.95
Needleleaf Forest 181/  330 0.1940 0.0219 0.0178 0.1848 0.1881 23.0 1.8 10.10 12.50 19.2 2.40     
Grassland 181/  330 0.0650 0.2180 0.1174 0.3866 0.3538 85.7 9.3 0.05 0.50 90.0 0.45     
Winter Grain 181/  330 0.1130 0.0283 0.0699 0.3803 0.3416 59.5 11.3 2.85 1.55 83.9 1.30     
Maize 181/  330 0.0320 0.0434 0.0604 0.3594 0.3276 28.1 9.7 3.50 2.60 34.6 0.90     
Mixed Forest 181/  331 0.1720 0.0231 0.0247 0.2428 0.2043 6.5 18.8 7.30 5.50 32.7 1.80 2.75 2.65 0.75 3.8 253.3 0.10 1.90
Needleleaf Forest 181/  331 0.0940 0.0238 0.0187 0.1834 0.1829 27.3 0.3 8.80 12.35 28.7 3.55     
Grassland 181/  331 0.5470 0.1251 0.1016 0.3215 0.3388 23.1 5.1 0.30 0.60 50.0 0.30     
Winter Grain 181/  331 0.1720 0.0322 0.1099 0.3710 0.3597 70.7 3.1 2.70 0.95 184.2 1.75     
Maize 181/  331 0.0160 0.0444 0.0259 0.3591 0.3030 71.4 18.5 3.45 4.05 14.8 0.60     
Mixed Forest 181/  332 0.4380 0.0215 0.0195 0.2540 0.2474 10.3 2.7 8.20 8.70 5.7 0.50 5.00 5.25 5.95 4.8 11.8 0.25 0.70
Needleleaf Forest 181/  332 0.0310 0.0221 0.0193 0.1850 0.1784 14.5 3.7 10.00 11.45 12.7 1.45     
Grassland 181/  332 0.3590 0.0570 0.0416 0.3887 0.3977 37.0 2.3 1.65 2.15 23.3 0.50     
Winter Grain 181/  332 0.1090 0.0287 0.0776 0.3811 0.3710 63.0 2.7 2.85 1.50 90.0 1.35     
Maize 181/  332 0.0630 0.0439 0.0614 0.3595 0.3750 28.5 4.1 3.45 2.90 19.0 0.55     
Mixed Forest 182/  325 1.0000 0.0277 0.0276 0.3149 0.3149 0.4 0.0 7.90 7.90 0.0 0.00 7.90 7.90 7.90 0.0 0.0 0.00 0.00
Mixed Forest 182/  326 0.6250 0.0210 0.0249 0.3183 0.3256 15.7 2.2 10.05 8.95 12.3 1.10 9.80 9.70 8.55 1.0 13.5 0.10 1.15
Needleleaf Forest 182/  326 0.3120 0.0221 0.0167 0.1942 0.1876 32.3 3.5 10.70 12.50 14.4 1.80     
Maize 182/  326 0.0630 0.0435 0.0301 0.3618 0.3213 44.5 12.6 3.50 3.90 10.3 0.40     
Mixed Forest 182/  327 0.2340 0.0199 0.0206 0.2527 0.2619 3.4 3.5 8.75 8.75 0.0 0.00 11.60 11.60 12.50 0.0 7.2 0.00 0.90
Needleleaf Forest 182/  327 0.7660 0.0180 0.0177 0.1846 0.1817 1.7 1.6 12.50 12.50 0.0 0.00     
Mixed Forest 182/  328 0.9370 0.0200 0.0203 0.2543 0.2526 1.5 0.7 8.75 8.60 1.7 0.15 8.55 8.50 8.40 0.6 1.2 0.05 0.10
Needleleaf Forest 182/  328 0.0320 0.0220 0.0183 0.1850 0.1944 20.2 4.8 10.05 12.50 19.6 2.45     
Grassland 182/  328 0.0320 0.0512 0.0320 0.3874 0.4119 60.0 5.9 1.80 2.55 29.4 0.75     
Mixed Forest 182/  329 0.1720 0.0215 0.0218 0.2563 0.2622 1.4 2.3 8.25 8.30 0.6 0.05 3.60 3.60 2.65 0.0 35.8 0.00 0.95
Grassland 182/  329 0.1090 0.0560 0.0557 0.3912 0.3929 0.5 0.4 1.70 1.70 0.0 0.00     
Spring Grain 182/  329 0.0160 0.0353 0.0388 0.4488 0.4022 9.0 11.6 2.80 2.60 7.7 0.20     
Winter Grain 182/  329 0.6720 0.0329 0.0330 0.3923 0.3938 0.3 0.4 2.75 2.75 0.0 0.00     
Maize 182/  329 0.0310 0.0440 0.0385 0.3597 0.3118 14.3 15.4 3.45 3.45 0.0 0.00     
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Mixed Forest 182/  330 0.0160 0.0209 0.0228 0.2541 0.2228 8.3 14.0 8.40 6.75 24.4 1.65 2.20 2.15 1.70 2.3 26.5 0.05 0.45
Needleleaf Forest 182/  330 0.0160 0.0222 0.0197 0.1853 0.1968 12.7 5.8 9.95 12.50 20.4 2.55     
Grassland 182/  330 0.4690 0.0893 0.0681 0.4415 0.4547 31.1 2.9 1.15 1.65 30.3 0.50     
Spring Grain 182/  330 0.0780 0.0371 0.0356 0.4502 0.4322 4.2 4.2 2.75 2.75 0.0 0.00     
Winter Grain 182/  330 0.4060 0.0338 0.0583 0.4032 0.3913 42.0 3.0 2.75 2.00 37.5 0.75     
Maize 182/  330 0.0160 0.0440 0.0539 0.3598 0.3886 18.4 7.4 3.45 3.20 7.8 0.25     
Grassland 182/  331 0.5310 0.0688 0.0398 0.4554 0.4845 72.9 6.0 1.60 2.45 34.7 0.85 2.20 2.20 1.95 0.0 12.8 0.00 0.25
Spring Grain 182/  331 0.0310 0.0354 0.0358 0.4494 0.4433 1.1 1.4 2.80 2.80 0.0 0.00     
Winter Grain 182/  331 0.3590 0.0303 0.0737 0.4028 0.3621 58.9 11.2 2.85 1.55 83.9 1.30     
Maize 182/  331 0.0780 0.0447 0.0417 0.3613 0.3530 7.2 2.4 3.45 3.50 1.4 0.05     
Grassland 182/  332 0.2340 0.0226 0.0532 0.3675 0.3877 57.5 5.2 2.80 1.75 60.0 1.05 2.50 2.20 2.10 13.6 4.8 0.30 0.10
Winter Grain 182/  332 0.5310 0.0181 0.0482 0.3595 0.3444 62.4 4.4 3.20 2.10 52.4 1.10     
Maize 182/  332 0.2340 0.1542 0.0553 0.3559 0.3703 178.8 3.9 0.70 3.05 77.0 2.35     
Mixed Forest 183/  325 0.9690 0.0212 0.0214 0.2585 0.2582 0.9 0.1 8.45 8.35 1.2 0.10 8.50 8.45 8.35 0.6 1.2 0.05 0.10
Needleleaf Forest 183/  325 0.0310 0.0220 0.0182 0.1851 0.1933 20.9 4.2 10.05 12.50 19.6 2.45     
Mixed Forest 183/  326 0.5780 0.0170 0.0179 0.2365 0.2318 5.0 2.0 9.40 8.90 5.6 0.50 10.70 10.40 8.45 2.9 23.1 0.30 1.95
Needleleaf Forest 183/  326 0.4220 0.0181 0.0168 0.1816 0.1881 7.7 3.5 12.50 12.50 0.0 0.00     
Mixed Forest 183/  327 0.4690 0.0182 0.0189 0.2726 0.2796 3.7 2.5 9.95 9.85 1.0 0.10 11.30 11.25 12.50 0.4 10.0 0.05 1.25
Needleleaf Forest 183/  327 0.5310 0.0179 0.0173 0.1912 0.1849 3.5 3.4 12.50 12.50 0.0 0.00     
Mixed Forest 183/  328 0.7810 0.0185 0.0197 0.2691 0.2664 6.1 1.0 9.75 9.20 6.0 0.55 9.55 9.45 9.10 1.1 3.8 0.10 0.35
Needleleaf Forest 183/  328 0.1720 0.0213 0.0163 0.1860 0.1990 30.7 6.5 10.60 12.50 15.2 1.90     
Spring Grain 183/  328 0.0160 0.0349 0.0350 0.4489 0.4160 0.3 7.9 2.80 2.75 1.8 0.05     
Winter Grain 183/  328 0.0310 0.0282 0.0255 0.3815 0.3950 10.6 3.4 2.85 3.00 5.0 0.15     
Mixed Forest 183/  329 0.0790 0.0210 0.0325 0.2558 0.2517 35.4 1.6 8.40 5.05 66.3 3.35 2.60 2.35 1.95 10.6 20.5 0.25 0.40
Grassland 183/  329 0.5400 0.0644 0.0606 0.4220 0.4234 6.3 0.3 1.60 1.70 5.9 0.10     
Spring Grain 183/  329 0.0320 0.0353 0.0431 0.4491 0.4300 18.1 4.4 2.80 2.55 9.8 0.25     
Winter Grain 183/  329 0.3170 0.0296 0.0322 0.3906 0.3966 8.1 1.5 2.85 2.75 3.6 0.10     
Maize 183/  329 0.0320 0.0438 0.0467 0.3598 0.3551 6.2 1.3 3.45 3.30 4.5 0.15     
Grassland 183/  330 0.6720 0.0474 0.0448 0.4458 0.4421 5.8 0.8 2.15 2.20 2.3 0.05 2.40 2.35 2.25 2.1 4.4 0.05 0.10
Spring Grain 183/  330 0.0630 0.0349 0.0377 0.4497 0.4423 7.4 1.7 2.80 2.70 3.7 0.10     
Winter Grain 183/  330 0.2340 0.0281 0.0344 0.3906 0.3966 18.3 1.5 2.90 2.70 7.4 0.20     
Maize 183/  330 0.0310 0.0433 0.0476 0.3599 0.4082 9.0 11.8 3.50 3.55 1.4 0.05     
Grassland 183/  331 0.6510 0.0572 0.0507 0.4321 0.4330 12.8 0.2 1.80 2.00 10.0 0.20 1.90 1.95 1.70 2.6 14.7 0.05 0.25
Spring Grain 183/  331 0.0320 0.0352 0.0437 0.4491 0.4526 19.5 0.8 2.80 2.60 7.7 0.20     
Winter Grain 183/  331 0.0630 0.0285 0.0623 0.3829 0.3333 54.3 14.9 2.85 1.70 67.6 1.15     
Maize 183/  331 0.1430 0.0440 0.0491 0.3612 0.3945 10.4 8.4 3.45 3.40 1.5 0.05     
Urban Fabric 183/  331 0.1110 0.0916 0.0974 0.2496 0.2444 6.0 2.1 0.00 0.00 0.0 0.00     
Grassland 183/  332 0.5650 0.0515 0.0735 0.3579 0.3596 29.9 0.5 1.70 1.15 47.8 0.55 1.20 1.05 1.05 14.3 0.0 0.15 0.00
Winter Grain 183/  332 0.1770 0.1286 0.0555 0.3765 0.3815 131.7 1.3 0.75 2.05 63.4 1.30     
Maize 183/  332 0.0320 0.0434 0.0618 0.3591 0.3422 29.8 4.9 3.50 2.65 32.1 0.85     
Urban Fabric 183/  332 0.2260 0.0893 0.0877 0.2441 0.2480 1.8 1.6 0.00 0.00 0.0 0.00     
Mixed Forest 184/  325 0.8750 0.0209 0.0213 0.2426 0.2404 1.9 0.9 8.05 7.85 2.5 0.20 8.25 8.40 7.75 1.8 8.4 0.15 0.65
Needleleaf Forest 184/  325 0.1250 0.0220 0.0190 0.1846 0.2001 15.8 7.7 10.00 12.50 20.0 2.50     
Mixed Forest 184/  326 1.0000 0.0258 0.0257 0.3172 0.3172 0.4 0.0 8.50 8.50 0.0 0.00 8.50 8.50 8.50 0.0 0.0 0.00 0.00
Mixed Forest 184/  327 0.7970 0.0207 0.0217 0.2741 0.2756 4.6 0.5 9.05 8.75 3.4 0.30 9.25 9.50 8.45 2.6 12.4 0.25 1.05
Needleleaf Forest 184/  327 0.2030 0.0220 0.0179 0.1865 0.1810 22.9 3.0 10.15 12.50 18.8 2.35     
Mixed Forest 184/  328 0.8750 0.0209 0.0216 0.2780 0.2774 3.2 0.2 9.10 8.80 3.4 0.30 8.25 8.00 8.35 3.1 4.2 0.25 0.35
Grassland 184/  328 0.0630 0.0515 0.0311 0.3908 0.4096 65.6 4.6 1.80 2.55 29.4 0.75     
Spring Grain 184/  328 0.0160 0.0351 0.0294 0.4489 0.4197 19.4 7.0 2.80 2.90 3.4 0.10     
Maize 184/  328 0.0470 0.0434 0.0598 0.3599 0.3555 27.4 1.2 3.50 2.80 25.0 0.70     
Mixed Forest 184/  329 0.3910 0.0212 0.0225 0.2704 0.2708 5.8 0.1 8.75 8.35 4.8 0.40 4.80 4.65 6.50 3.2 28.5 0.15 1.85
Grassland 184/  329 0.3910 0.0554 0.0507 0.4216 0.4161 9.3 1.3 1.85 1.95 5.1 0.10     
Spring Grain 184/  329 0.0160 0.0351 0.0262 0.4490 0.4532 34.0 0.9 2.80 3.10 9.7 0.30     
Winter Grain 184/  329 0.1250 0.0286 0.0332 0.3861 0.3795 13.9 1.7 2.85 2.70 5.6 0.15     
Maize 184/  329 0.0780 0.0438 0.0547 0.3607 0.3951 19.9 8.7 3.45 3.20 7.8 0.25     
Grassland 184/  330 0.4690 0.0552 0.0489 0.4138 0.4430 12.9 6.6 1.80 2.10 14.3 0.30 2.35 2.35 2.50 0.0 6.0 0.00 0.15
Winter Grain 184/  330 0.5160 0.0291 0.0346 0.3948 0.3674 15.9 7.5 2.85 2.60 9.6 0.25     
Maize 184/  330 0.0160 0.0435 0.0496 0.3596 0.3875 12.3 7.2 3.45 3.35 3.0 0.10     
Grassland 184/  331 0.4440 0.0310 0.0809 0.3980 0.4130 61.7 3.6 2.55 1.20 112.5 1.35 1.95 1.80 1.45 8.3 24.1 0.15 0.35
Winter Grain 184/  331 0.3650 0.0894 0.0425 0.3851 0.3661 110.4 5.2 1.35 2.35 42.6 1.00     
Maize 184/  331 0.1590 0.0830 0.0621 0.3602 0.3676 33.7 2.0 2.10 2.80 25.0 0.70     
Bare Soil 184/  331 0.0320 0.1753 0.1292 0.3181 0.2971 35.7 7.1 0.00 0.00 0.0 0.00     
Grassland 184/  332 0.6250 0.0057 0.0902 0.3945 0.3699 93.7 6.7 3.75 0.90 316.7 2.85 2.80 0.95 0.80 194.7 18.8 1.85 0.15
Spring Grain 184/  332 0.0160 0.0347 0.0766 0.4488 0.3963 54.7 13.2 2.80 1.65 69.7 1.15     
Winter Grain 184/  332 0.1560 0.0266 0.0399 0.3817 0.4123 33.3 7.4 2.95 2.60 13.5 0.35     
Bare Soil 184/  332 0.2030 0.4401 0.1668 0.3191 0.3757 163.8 15.1 0.00 0.00 0.0 0.00     
           Mean 46.1 8.2   26.2 0.9     12.7 22.7 0.4 0.7
     Max 1296.8 107.1 338.5 7.4  194.7 253.3 4.2 3.2
     Min 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0
     Std 106.1 14.5 41.6 1.2  28.2 42.8 0.7 0.8
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Appendix 7: Gallery of results from reflectance segmentation / LAI 
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Reflectance of LCT1: Deciduous Forest  0  max 
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Reflectance of LCT2: Mixed Forest  0  max 
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Reflectance of LCT3: Needleleaf Forest  0  max 
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