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1. INTRODUCTION 

Eye movements of primates can be divided into five types: saccades, smooth pursuit 

movements, vergence movements, vestibulo-ocular movements and optokinetic 

movements. This thesis is concerned with the neural control of saccades and in particular 

with that of horizontal saccades. Saccades are short-lasting, rapid and ballistic eye 

movements that serve to fix the image of a target on the fovea of the retina. Saccade 

control is a highly complicated process and involves many centres in various parts of the 

brain. Horizontal saccades are generated by the so-called saccade generator in the 

brainstem paramedian pontine reticular formation (PPRF) (Büttner & Büttner-Ennever, 

1988; Hepp et al., 1989). The generator’s action is based on the interactions between 

various so-called burst and pause neurones. 

The output of the generator activates brainstem motoneurones including the 

ipsilateral abducens nucleus, which controls the eye muscles, thereby evoking a saccade. 

Basically, such a saccade would be very inaccurate as to latency, direction, amplitude and 

duration (as would be clear from judging a number of subsequent saccades to the same 

target). However, various brain centres outside the PPRF modulate the generator’s output 

in such a way that saccades are highly and consistently accurate. To these centres belong 

the superior colliculus (SC), which is involved in the regulation of saccade amplitude and 

direction (Robinson, 1972; Schiller & Stryker, 1972) and, to some extent, in the control of 

saccade short-latency and accuracy (Wurtz & Goldberg, 1972). The cortical frontal eye 

fields (FEF) are, in the monkey, also involved in the control of saccade amplitude and 

frequency, but only in combination with the action of the SC (Schiller & Stryker, 1982). 

A very important role in controlling saccade properties is exerted by the cerebellum. In 

the cerebellum, the vermis and especially the lobules VI and VII (the so-called 

oculomotor vermis; Yamada & Noda, 1987) regulate saccade amplitude, as appears from 

lesions of the vermis, which lead to step-size error saccade dysmetria (e.g. causing a 

saccade to overshoot its target).  

A remarkable role in saccade control is played by the cerebellar fastigial nucleus 

(FN). The caudal part of the FN lies under the cerebellar vermis, and is also called 

fastigial oculomotor region, FOR. It is well established that the FOR is crucial for saccade 

accuracy, its bursting activity being related to essential saccade aspects, viz. direction, 
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amplitude, latency and duration. However, the precise mechanism by which FOR bursting 

influences these aspects is under debate. Obviously, the proper functioning of the FOR 

requires complex inputs from various brain centres, such as the oculomotor vermis, the 

inferior olive and various brainstem nuclei (for details see 2. BACKGROUND). Whether 

these inputs include information about the initial eye position at the beginning of a 

saccade is a matter of controversy, and is one of the main subjects of this thesis research. 

Ohtsuka & Noda (1991b) have assumed that the FOR acts without receiving 

information about the initial eye position. However, because of the great variability in 

bursting activity within the FOR neurone population, it remains to be seen whether eye 

position supports saccadic control by at least some FOR neurones, the more so as some 

authors have reported that a minority of FOR neurones do react to eye position (Fuchs et 

al., 1993). In order to resolve the above controversy we here report about experiments to 

definitely determine: 

1. whether or not the initial eye position has an effect on the burst for ipsilateral and 

contralateral saccades 

2. if there is a difference between centripetal and centrifugal saccades, and 

3. if FOR neurones influence acceleration and deceleration of a saccade, and if so, in 

which way. 

For this purpose, we trained monkeys to perform horizontal saccades to various horizontal 

and vertical target positions and recorded from saccade-related FOR neurones. We 

modified and used an algorithm originally described by Hanes et al. (1995) and applied 

by Thier et al. (2000) for the oculomotor vermis, to analyse our data obtained from two 

head-restrained monkeys by single unit recording from individual neurones in the FOR 

population.  

Based on studies on 75 FOR neurones from the two monkeys, our results permit 

the conclusion that FOR neurones do not receive information about eye position that is 

relevant to saccade control. We moreover have characterized differences between 

centripetal and centrifugal saccades, and provide evidence that the FOR may play a clear 

role in regulating the acceleration and deceleration of a saccade. 
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2. BACKGROUND 

In this section the main data from the field of current interest are presented, with 

particular attention to saccadic eye movements, the anatomy of the FOR, different aspects 

of the physiology of a saccade, and the central programming of saccadic activity 

including the (possible) involvement of the FOR. 

 

A. Eye Movements 

As mentioned in the Introduction, there are five types of eye movement: saccades, smooth 

pursuit movements, vergence movements, vestibulo-ocular movements and optokinetic 

movements. Below we will concentrate on saccades. 

 

A1. What is a Saccade? 

Saccades are short, rapid and ballistic eye movements that abruptly shift the point of 

fixation to keep a moving or moved image focussed on the retina and, in primates, on the 

fovea. They reveal different amplitudes, ranging from the small movements made while 

looking at a picture, to the large movements made while gazing around. Saccades are fast 

eye movements that occur either reflexively, as a result of e.g. an optic or acoustic 

stimulus from the environment (reflexive saccade), or voluntarily, such as during gazing 

around in a new environment (intentional saccade). In fact, also the rapid eye movements 

that occur during rapid eye movement (REM) sleep are (reflexive) saccades. During 

saccades, the eyes move very rapidly and briefly. In primates, saccade velocity can 

exceed 700 deg/s and a saccade lasts between 15 and 100 ms. Saccade amplitude ranges 

from 3 arcmin to 90 degrees, but the amplitude of reflexive saccades rarely exceeds 40 

degrees. The delay (latency) between the movement of a target and the start of a saccade 

is generally 200-250 ms but can be as short as 70 ms (Fischer & Boch, 1983). During 

such a delay, the position of the target with respect to the fovea is computed, i.e., it is 

calculated how far the eye has to move to fix the target. This difference between the 

initial and intended eye position is translated into a motor command that activates the 

extra-ocular muscles to move the eye over the correct distance into the appropriate 
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direction. The brevity of a saccade maximises the number of targets that can be fixed. 

Because a saccade lasts only shortly, there is not enough time for visual feed-back to 

guide the saccade to its target during the movement. Therefore, the brain (and especially 

the brainstem saccade generator) must specify the command as exactly as possible before 

the saccade starts. The cerebellum helps to fine-tune this command using external sensory 

information, and it is essential for making a saccade highly accurate as to direction, 

amplitude, speed and duration, in a way consistent from moment-to-moment as well as on 

the long-term. The time-course of a typical saccadic eye movement is shown in Fig. 1. 

Because a saccade is ballistic, it will miss the target when the target changes its 

position during or after the latency period. Consequently, a second saccade has to be 

made to correct the error. Furthermore, the elasticity of the eye orbit requires force to 

keep the eye stable in its new position after the saccade. Therefore, at the neuronal level, 

an additional ‘step’ activation of the agonist muscle is performed to maintain the new eye 

position.  

 

 

 

Fig. 1. Time-course of a typical saccadic eye movement. The dotted line indicates the target 

position, the continuous thin line the eye position and the thick line the eye velocity. When the 

target moves, there is a latency of 70-250 ms before the saccade starts (modified after Fuchs, 

1967). 
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B. Anatomy of the FOR 

B1. Structure of the FN 

The FN is the most medial, deep cerebellar nucleus. In monkeys it is located about 2-4 

mm lateral to the midline and about 6-9 mm posterior to the interaural line. It extends 

about 4 mm rostrocaudally, 3 mm mediolaterally and 2.5 mm dorsoventrally (Gardner & 

Fuchs, 1975). 

The FN consists of two parts: a rostral and a caudal, which have different 

functions. The activity of neurones in the rostral part of the FN is modulated by vestibular 

stimulation but it does not correlate with eye movements. As a consequence, these rostral 

FN neurones are named ‘vestibular only’ neurones (Büttner et al., 1991; Siebold et al., 

1999). In contrast, neurones in the caudal part of the FN (the FOR) are not influenced by 

vestibular stimulation but their activity is related to eye movements: saccades, smooth 

pursuit eye movements (SPEM) and the visual suppression of the vestibulo-ocular reflex 

(VOR-supp) (Büttner et al., 1991; Ohtsuka & Noda, 1991a). 

 

B2. Afferents to the FOR 

Anatomical studies (Noda, 1991) have shown that the FOR receives unilateral projections 

from the Purkinje cells (P-cells) in the oculomotor vermis and from neurones in the 

inferior olivary complex (IO), i.e., mainly from the olive (MAO) but in addition from 

dorsal accessory olive (DAO) neurones. Moreover, a large number of brainstem nuclei 

innervate the FOR in a bilateral way, such as the pontine nuclei, the nucleus reticularis 

tegmenti pontis (NRTP), the PPRF, the SC, the vestibular complex (VC), the 

perihypoglossal nucleus (PHN) and the mesencephalic and medullary reticular formation 

(Noda, 1991).  

 

B3. Efferents of the FOR 

Most efferent fibres of the FOR decussate within the cerebellum, traverse to the 

contralateral FOR, and proceed via the contralateral uncinate fasciculus to terminate in 

the brainstem. Their bilateral termination sites include the vestibular nuclei, viz. mainly 

the ventral parts of the lateral vestibular nucleus (LVN) and inferior vestibular nucleus 
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(IVN), and part of the ventral lateral complex of the thalamus. Furthermore, the FOR 

projects contralaterally to the NRTP, the pontine nuclei (the dorsomedial pontine nucleus, 

DMPN, and the dorsolateral pontine nuclei, DLPN), the pontine raphe, the 

mesodiencephalic junction (rostral interstitial nucleus of the medial longitudinal 

fasciculus, riMLF, and the medial part of Forel’s H Field), the central mesencephalic 

reticular formation (cMRF), the mediodorsal portion of the medullary reticular formation 

(DMRF), the periaquaeductal gray (PAG), the posterior commissure nucleus, and to the 

SC (Noda et al., 1990). Ipsilaterally, the FOR projections are limited to a small zone of 

the reticular formation, namely the rostral end part near the pretectal area and the DMRF 

(Asanuma & Linden, 1982; Gonzalo-Ruiz & Leichnetz, 1990; Noda et al., 1990). The 

FOR also projects to the central lateral nucleus of the intralaminar complex. Contralateral 

fastigial-brainstem fibres mainly arise from the FOR, while the ipsilateral fibres originate 

mainly from the rostral part of the FOR (Walberg et al., 1962; Matsushita & Iwahori, 

1971; Walberg, 1972). 

 

C. Physiology of Saccade-related Neurones in the Cerebellum 

In this section attention will be paid to three main types of experimental studies, viz. 

single unit recordings, lesion studies and electrical stimulation experiments, which have 

provided information about the physiology of saccade-related neurones in the cerebellum. 

 

C1. Single Unit Activity  

C1.1. In the FOR 

 

There is evidence that FOR neurone burst activity is related to many aspects of saccades, 

namely saccade direction, amplitude, latency and duration. However, the precise 

relationships between bursting and these aspects are matter of debate.  

The vast majority of FOR neurones produce a burst of action potentials during 

almost every saccade. However, there is a considerable variability in burst latency, firing 

frequency and duration, even when saccades have the same direction and amplitude 

(Ohtsuka & Noda, 1991b; Fuchs et al., 1993). Bursts of FOR neurones start about 8 ms 

before the onset of a small saccade, irrespective of saccade direction. For contralateral 
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saccades, burst latency only slightly increases as saccade amplitude increases. For 

ipsilateral saccades, however, the burst occurs clearly later as saccades are larger, so that 

for a 20° saccade the burst even begins after saccade onset (though before saccade end). 

For saccades of about 10°, FOR neurones usually burst earlier for contralateral than for 

ipsilateral saccades. This pattern of burst timing suggests that the bursts are associated 

with the beginning of contralateral saccades and with the end of ipsilateral ones (Ohtsuka 

& Noda, 1990, 1991a,b; Fuchs et al., 1993).  

Whereas there is some disagreement as to whether FOR neurones do (Helmchen et 

al., 1994) or do not (Ohtsuka & Noda, 1992) respond during reflexive saccades in the 

dark, it is clear that the neurones are active during the fast phases of optokinetic 

nystagmus (Helmchen et al., 1994) and during spontaneous saccades in the light (Fuchs et 

al., 1993; Helmchen et al., 1994). Furthermore, there is also no agreement about how 

strong other aspects of burst activity are related to saccade metrics. One of such aspects is 

saccade duration. Ohtsuka & Noda (1991b) reported that FOR burst activity and saccade 

duration correlate very well (correlation coefficient: 0.85–0.97). In contrast, Fuchs et al. 

(1993) concluded that saccade-related bursts of FOR neurones are only weakly correlated 

to saccade duration (correlation coefficient: < 0.6).  

In the FOR population, the tonic level of activity shows no significant correlation 

with eye position, but in the FOR rostrally to the FOR, there are a few neurones whose 

activity closely correlates with eye position (Ohtsuka & Noda, 1990).  

 

C1.2. In the oculomotor vermis 

 

Many (71%) oculomotor vermis P-cells reveal saccade-related bursts for either ipsilateral 

or contralateral saccades or for both (Ohtsuka & Noda, 1995). For ipsilateral saccades, a 

P-cell burst stops during the second half of a saccade. This absence of inhibitory P-cell 

activity could cause a depolarisation of cerebellar nuclear neurones (Aizenman & Linden, 

1999), which might facilitate the onset of late FOR neurone bursts for controlling 

ipsilateral saccades. For contralateral saccades, P-cell bursts begin before or early during 

a saccade, peak near the middle, and continue after saccade end (Ohtsuka & Noda, 1995). 

This pattern could help produce the so-called post-burst pauses that occur in FOR 

neurones. About 18% of P-cells pause in case of contralateral saccades. Pause timing is 

variable from saccade to saccade, with an average mean lead time of 17.5 ms (Ohtsuka & 

Noda, 1995). The post-burst pauses begin sharply at the same time and could therefore, if 
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synchronised across many P-cells, trigger the early bursts of FOR neurones controlling 

contralateral saccades. 

 A few (11%) P-cells show a burst discharge during contralateral saccades 

followed by a tonic discharge that is correlated with eye position, with a burst latency 

relative to saccade onset of 9.5 + 3.9 ms. The tonic discharge rate of such ‘burst tonic 

cells’ is a nonlinear function of the eye position (Ohtsuka & Noda, 1995). Meanwhile, the 

mechanism by which FOR neurones produce bursts that take place before contralateral 

saccades, is not clear. 

 

C2. Lesion Studies 

The function of the FOR has been studied in both chemical and surgical lesion 

experiments. Impairment of the FOR and of the oculomotor vermis produces inaccurate 

saccades with an abnormally variable amplitude and speed (Robinson et al., 1993). 

Unilateral inactivation by chemical lesioning of the FOR by injecting the GABAA agonist 

muscimol produces ipsilateral saccades that are too large (gain > 1.2-1.9; normal: 1.0) and 

contralateral saccades that are too small (gain < 0.6-0.8). Moreover, gains are more 

variable than normal (e.g. standard deviations of saccades to 10° horizontal targets are 

1.2-4.8 times larger than normal). After surgical lesioning of the afferents to the 

oculomotor vermis, both leftward and rightward saccades become hypometric and the 

postlesion gains are at least twice as variable as normal (Takagi et al., 1998; Barash et al., 

1999). Saccades to vertical targets curve strongly, ending 2-9° to the left of their targets. 

In addition, both ipsilateral and contralateral saccades are slower and much more variable 

than normal saccades of the same size (Robinson et al., 1993). 

Bilateral FOR inactivation by chemical lesioning in monkeys leads to oversized 

saccades into all directions, with slow and abnormally variable velocity (Robinson et al., 

1993), and also impairs the animal’s ability to reduce the saccade gain (Robinson & 

Fuchs, 2001). The dependence of burst timing on saccade direction is fully in line with 

the results from studies on the effect of lesions on FOR activity. In case of contralateral 

saccades, a burst occurs early during saccadic eye movement, providing a contralateral 

drive to accelerate the saccade. Without this drive, the saccade falls short. Later in the 

saccade, FOR neurones ipsilaterally to the direction of the saccade produce a burst that 

delivers a drive opposite to the direction of the saccade, to slow down the speed of the 

saccade. In the absence of this late burst, the saccade does not decelerate properly and 
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overshoots its target. Somehow, the FOR burst also makes the saccades more consistent 

and more repeatable.  

The dysmetria produced by unilateral FOR inactivation suggests that each saccade 

lacks a contralateral component and that the net effect of saccade-related FOR activity at 

one side is to drive the eyes toward the contralateral side. 

 

C3. Stimulation Studies 

Consistent with the above idea that FOR activity drives the eyes to the contralateral side, 

electrical stimulation of the FOR evokes saccades with large, contralateral components 

(Noda et al., 1988). Electrical microstimulation inside the oculomotor vermis elicits 

saccades and also modifies the metrics of visually guided saccades. Contralaterally 

directed saccades are consistently slowed down in speed and become hypometric, 

whereas ipsilaterally directed saccades are not affected (Keller et al., 1983). 

Microstimulation of the cerebellar vermis evokes saccades whose direction and 

amplitude are dependent on the position of the eye in its orbit. At a few sites, even the 

presence or the absence of an evoked saccade depends on the initial eye position. 

Microstimulation also elicits postsaccadic drifts, whose presence or absence as well as 

direction are also dependent on the initial eye position (McElligott & Keller, 1984). 

In human, transcranial magnetic stimulation (TMS) of the posterior cerebellum 

produces hypermetric ipsilateral saccades followed by postsaccadic drift, with latencies of 

0, 20 and 40 ms. However, for contralateral saccades, only short latency stimuli (near to 0 

ms) have an effect, viz. evoking hypometric saccades followed by corrective saccades 

(Hashimoto & Ohtsuka, 1995). 

Microstimulation of the oculomotor vermis and of the ventromedial part of the 

FOR yields saccades with different horizontal directions, with vermal stimulation leading 

to ipsilateral saccades and fastigial stimulation eliciting contralateral saccades. 

Stimulation of the oculomotor vermis inhibits the activity of FOR neurones. Most likely, 

the cerebellar output signals are projected downstream to saccade-programming circuits 

where visual information has already been converted into motor command signals (Noda, 

1991). 
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C4. Conclusion 

Without input from the FOR, the saccade machinery produces dysmetric saccades that 

lack a normal stereotype. The hypometria as revealed by contralateral saccades and the 

hypermetria of ipsilateral saccades resulting from a unilateral lesion, suggest that FOR 

activity helps to accelerate contralateral but to decelerate ipsilateral saccades. Obviously, 

a mechanism outside the medial cerebellum slowly restores mean saccade gain to normal, 

but no outside mechanism can restore saccade consistency (Barash et al., 1999). The 

precise relationship between FOR bursting and the control of acceleration/deceleration 

processes deserves particular attention, as is another aim of this thesis research. 

 

 

D. The Central Programming of Saccadic Eye Movements 

Three directions can be distinguished in saccadic eye movements: horizontal, vertical and 

torsional. In this thesis, focus is on horizontal movements. The central programming of 

horizontal saccadic eye movement involves centres in the brainstem and in the cerebellum 

(including the FOR). Below we will treat the main models describing the central 

programming of these movements, with emphasis on the roles of these two essential brain 

territories. 

 

D1. Brainstem 

Saccadic eye movements are generated by four different types of neurone in different 

areas of the brainstem, viz. 1. the excitatory immediate premotoneurones (EBNs), 2. the 

inhibitory medium-lead burst neurones (IBNs), 3. the long-lead burst neurones (LBNs) 

and 4. the omnipause neurones (OPNs) (Horn et al., 1996). It is generally assumed that 

the PPRF is essential for the generation of horizontal saccades (Bender & Shanzer, 1964; 

Cohen et al., 1968; Goebel et al., 1971). In this nucleus EBNs deliver high-frequency 

bursts of activity to the motoneurones of the extra-ocular eye muscles, via monosynaptic 

input, 8-15 ms before and also during the saccades, but they are silent during fixation and 

slow eye movements such as the SPEM and the VOR. The IBNs are situated in the 

contralateral medullary reticular formation. They project to brainstem motoneurones that 

control contralateral eye muscles. The LBNs in the brainstem show an irregular, low-
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frequent activity (> 100 ms) before a saccade-related burst starts. They may stimulate the 

EBNs and probably do not project directly to motoneurones. The OPNs occur in the 

nucleus raphe interpositus of the pontine reticular formation. They reveal a reverse firing 

pattern compared to that of the EBNs, with a high level of tonic activity (more than 100 

Hz) being only interrupted for 10-12 ms prior to and during a saccade.  

Based on anatomical and physiological studies in monkeys, the following 

hypothesis is put forward for the roles of these four regulatory components in saccadic 

eye movement control: during slow eye movements and fixation of the target on the 

fovea, the OPNs exert a tonic inhibition on both EBNs and IBNs, blocking their firing. 

During a saccade, the OPNs are inhibited, possibly by polysynaptic inputs from the SC, 

which might influence the activity of the LBNs. In this way, the inhibition of EBNs and 

IBNs is deblocked, which allows these neurones to activate the motoneurones of the 

extra-ocular eye muscles, resulting in a saccade. 

Although a theoretical model for SC control of saccades was recently presented by 

Lefèvre et al. (1998), the exact role of the SC in the direct control of the saccade 

generator in the brainstem is unknown and not the topic of this thesis. 

 

D2. Cerebellum 

Whereas saccades are initiated by the brainstem generator, the cerebellum is crucial for 

the control (modulation and fine-tuning) of saccadic eye movements. Single-unit and 

lesion studies have shown that the posterior vermis and the FOR provide a signal to make 

horizontal saccades fast, accurate and consistent. Moreover, the FOR is also necessary for 

the recovery of saccadic accuracy after neural or muscular damage that makes horizontal 

saccades dysmetric.  

 Below, we will firstly consider the oculomotor vermis into some detail, especially 

as to the characteristics of the P-cells, and then describe the significance of the 

oculomotor vermis and the FOR for the determination of eye position. Subsequently, the 

FOR control of saccades is treated into more detail, with attention to the way FOR 

neurones influence the saccadic generator and with special emphasis on two possible 

mechanisms by which they make saccades consistent.  
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D2.1. The oculomotor vermis 

 
In the oculomotor vermis, P-cells produce bursts during saccades. From this area saccades 

can be elicited by electrical stimulation (Noda & Fujikado, 1987). The oculomotor vermis 

includes the vermal lobule VII and the two most posterior folia of lobule VI. Axons of P-

cells in the oculomotor vermis densely terminate in a small, oval region in the ipsilateral 

FOR and, less densely, in the rostral FOR (Yamada & Noda, 1987).  

 Thier et al. (2000) have gathered evidence that the P-cells act together as one 

population, which output promotes the determination of saccade duration. Furthermore, 

changing the duration of the activity of this population output influences saccade 

amplitude. 

 

D2.2. Eye position signals in oculomotor vermis and FOR 

 
Cerebellar lesions of the oculomotor vermis (Ritchie, 1976) and the FOR (Vilis & Hore, 

1981) cause saccade dysmetria with a size that depends on the starting position of the eye. 

The abnormal centrifugal saccades are smaller than the centripetal ones, a phenomenon 

that can also be seen in human patients with infarcts in the posterior vermis (Vahedi et al., 

1995). It has been proposed that the posterior medial cerebellum corrects the initial eye 

position in such a way that centrifugal and centripetal saccades have similar sizes. Fuchs 

et al. (1993) reported that after bilateral inactivation of the FOR, the size of centrifugal 

saccades to 20° targets is 79% of the size of centripetal saccades. However, others 

(Ohtsuka et al., 1994) did not find such a difference between the sizes of centrifugal 

versus centripetal saccades. To make this controversy even stronger, some authors 

conclude that the discharge of FOR neurones has only a weak (Fuchs et al., 1993) or even 

no relationship at all with the initial eye position (Ohtsuka & Noda, 1991a,b; Ohtsuka et 

al., 1994). 

 

D2.3. How does the FOR influence the saccade machinery? 

 
Electrical stimulation of the FOR and the vermal lobules V-VII produces low-threshold, 

short-latency eye movements. Possibly, the FOR projects contralaterally to EBNs, IBNs 

and OPNs (Noda et al., 1990; Scudder et al., 2000). IBNs inputs to motoneurones cross, 

but EBNs projections are ipsilateral. Therefore, FOR activity may accelerate contralateral 

eye movements via both neurone types. In this case, one would expect that there are late 
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off-direction bursts produced by IBNs and EBNs. Indeed, most EBNs and some IBNs 

exhibit a weak, late burst for off-direction saccades (Strassman et al., 1986; Scudder et 

al., 1988). It appears that FOR neurones receive timing information to produce early 

bursts for contralateral saccades and late bursts for ipsilateral saccades.  

 

D2.4. How do FOR neurones make saccades more consistent? 

 
It is clear that FOR neurone bursts make saccades more consistent, although the bursts 

themselves are very inconsistent as to onset, duration and number of spikes, even in the 

case of saccades that have very similar characteristics (Fuchs et al., 1993). The saccade-

related FOR neurones that project directly to burst neurones in the brainstem premotor 

saccade-generating network (Scudder et al., 2000) reveal a consistent relationship with 

the saccade metrics. Two models exist that aim to explain how the variable activity of 

FOR neurones diminishes the variability in saccade properties. The first model assumes 

that the saccadic system in the brainstem, including the SC, represents a burst generator 

which variable output is appropriately corrected by the FOR, resulting in consistent 

saccades (Robinson, 1995). Possibly, the FOR is able to do so because it receives an 

efferent feedback about the saccade properties that shapes exactly the FOR output to 

make all saccades consistently end on target (Lefèvre et al., 1998). The second model 

implicates that although the output of individual FOR neurones is variable, their 

combined activity adequately specifies features of each saccade. This would be similar to 

the way a population of P-cells in the oculomotor vermis accurately specifies the end of a 

saccade (Thier et al., 2000). 

Robinson & Fuchs (2001) schematically presented the central programming of 

saccadic eye movements, as shown in Fig. 2. 
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Fig. 2. Schematic representation of the central programming of saccadic eye movements by the 

brain-stem saccade burst generator (gray box). The generator receives inputs from the superior 

colliculus (SC) and the cerebellum (dashed lines). SC neurones also control the caudal fastigial 

nucleus (CFN, also called FOR) via the pontine nuclei. Cerebellar output via the CFN influences 

three groups of generator neurones, viz. excitatory burst neurones (EBN), inhibitory burst 

neurones (IBN) and omnipause neurones (OPN). As a result of the interactions between these 

three groups, motoneurones control left and right eye muscles, leading to saccades. Filled synaptic 

terminals indicate inhibitory synapses, open terminal symbols mark excitatory synapses (from 

Robinson & Fuchs, 2001). 
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3. MATERIALS & METHODS 

A. Animals 

Experiments were performed with two conscious, adolescent, male Rhesus monkeys 

(Macaca mulatta), with an age of 4 and 6 years, respectively, each weighing about 4.5 kg. 

They were fed on dry food and fresh fruits (freely and continuously available unless 

stated otherwise) and kept in a vivarium at a daily cycle of 16 hrs light / 8 hrs dark, at 20 

°C. Before an experiment the monkeys were water-deprived overnight. After the 

experiment, they were allowed to drink to satiation before going back into their cage. 

All experiments were carried out in accordance with the guidelines set by the 

German national law for animal experimentation, and had been approved by the 

University committee supervising the handling of experimental animals.  

 

B. Training  

Before surgery, monkeys learned to voluntarily come out of their cages and enter a 

primate chair. Then they were trained to acclimatise to the experimental environment and 

sit upright inside a coil frame with the head fixed to the chair by a head holder so as to 

completely immobilise the head in a painless manner while the body could move freely. 

The centre of the interpupillary line coincided with the centre of the frame.  

Monkeys were trained to follow and fixate on a video screen a small, movable 

laser light target (measuring 1 degree of visual angle) for 600 ms, which jumped at 

defined horizontal and vertical positions at unpredictable intervals (1.3 sec to 2.2 sec) 

over the screen. The distance between the centre of the screen and the eye was 50 cm. The 

midposition of the eye was determined by repeatedly attracting the monkey’s attention to 

defined fixation points. A correct saccade was recorded when the monkey’s eye entered a 

3o window area around the target site, and such a successful saccade was contingently 

rewarded with some fruit-juice.  

A 9-point horizontal start position training paradigm, consisting of a 3x3 square 

grid spaced at 16° intervals, moved the target along the horizontal meridian. In this way, 
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the monkey could make horizontal saccades ipsilaterally and contralaterally to the 

recording site, and also centripetal and centrifugal saccades at different vertical starting 

positions. The monkey’s task was to detect a sudden shift in the position of the target, and 

to make a saccade from the initial spot to the final target within a limited time. Fig. 3 

shows the paradigm and the respective eye movements. 

 

 

Fig. 3. A. Scheme of the visual guidance paradigm on the video screen. Dots show the different 

stimulus (laser spots) starting positions, with upper, middle and lower vertical levels at 16 degrees 

(deg) intervals, and arrows indicate the horizontal directions into which the spots move. B. 2-D 

eye movements (Left eye horizontal and Left eye vertical) following the onset of target 

movements (Laser horizontal and Laser vertical), at different vertical levels with 16 degrees 

intervals, in seconds (sec).  

A 

B 
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C. Surgical Procedures 

Under general pentobarbital sodium anesthesia (intravenous injection) and aseptic 

conditions, a chamber for single unit activity recording was implanted (co-ordinates: 

mediolateral: 0 mm, posterior: 7 mm; see primate atlas of Snider & Lee, 1961) through a 

trephine hole (12 mm diameter) into the skull of the monkey, to allow a vertical approach 

in the stereotaxic plane to both sides of the FOR. The endocranium was kept intact. 

Dental cement filled the space between skull and recording chamber, and small bolts were 

attached to the cranium to stabilise the implant (for details, see Boyle et al., 1985).  

To measure eye movements, a self-made dual search-coil was sewed on the sclera 

of one eye, where the extra-ocular muscles (superior, inferior, medial and lateral rectus) 

are adhered. The search-coil wires were submerged into the orbit, passed through a hole 

drilled into the parietal bones, and then showed up at the same side of the operated eye. 

They were connected to a plug that was attached to the skull with dental cement. 

Horizontal and vertical, magnetic, alternating current fields in spatial and phase 

quadrature were generated around the head, expressing gaze signals along with the target 

position signal. They were low-pass filtered (50 Hz) and sampled at 1000 Hz, and stored 

on computer hard disk for off-line analysis. For details on techniques and calibration, see 

Bartl et al. (1996). Spontaneous and visually guided saccades were recorded in darkness.  

 

 

D. Single Unit Activity Recordings  

Single-unit activity was extracellularly recorded with self-made, varnished, tungsten 

micro-electrodes with an impedance of 2.5-4 MΩ that was obtained by mechanically 

opening the isolated tip before recording. The sterilised micro-electrode, which was 

driven by a hydraulic remote-controlled stepping motor affixed to the top of the recording 

chamber in a stereotaxic plane, was perpendicularly punctured through the dura and 

inserted into the FOR by means of a guiding cannula. The position of the electrode with 

respect to the cerebellar layers was determined on the basis of the characteristic neuronal 

activity (e.g. complex spikes) as the electrode was advanced (for details, see Helmchen, 

1995).  
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 The neural signals were amplified and passed through a Schmitt-trigger which 

generated standard pulses for each discharge, and recorded at a temporal resolution of 20 

µs. They were observed with an oscilloscope and an acoustic monitor.  

 

 

E. Data Collection and Analysis  

For off-line quantitative analysis, a computer programme (Wineye; S. Glasauer, LMU, 

München) automatically identified the onset and the end of the horizontal and vertical 

components of each saccade, by using an adjustable saccade detection algorithm (speed 

threshold 50 deg/s, acceleration threshold 100 deg/s2). Only horizontal saccades were 

included that landed ‘on target’ within a 3° tolerance limit, appearing in a restricted time 

window after the target jump (80 to 500 ms), and that had a peak speed > 200 deg/s (cf. 

Robinson, 1970). 

 Subsequently, saccades with similar features (direction, initial eye position) and 

their related burst activities were quantitatively sorted, using a self-developed (J.F. 

Kleine, LMU, München) computer-routine programme written in Matlab (Math Software 

Co., Matwork, USA). The programme plots a raster diagram and a perisaccadic spike 

density histogram for the sorted saccades, by substituting for each spike a Gaussian 

function with a width of 5 ms. In each histogram at least 10 saccades were averaged. 

Histograms were used to relate features of neuronal activity (i.e., burst onset and offset, 

peak burst activity and latency) to individual saccade parameters. All data were displayed 

as x-y plots. 

The last (first) bin before (after) the time when the neuronal activity exceeded (fell 

below) the mean + one standard deviation (SD) of the background rate, as determined 

from the spike histogram in the time interval 500 - 250 ms prior to saccade onset, was 

designated as burst onset and offset, respectively. The individual saccade-related burst 

detection data were analysed with another computer routine algorithm (written in Matlab, 

modified by J.F. Kleine), using Poisson spike train analysis (α=5%). It was originally 

described by Hanes et al. (1995) and recently used by Thier et al. (2000) in an 

oculomotor vermis P-cell discharge analysis. 

Statistical significance of differences was assessed with a Mann-Whitney test or t-

test for single comparisons, and a Kruskal-Wallis test for multiple comparisons (α=5%). 
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4. RESULTS 

A. Localisation and General Characteristics of Saccade-related FOR 

Neurones  

At the time of the final version of this manuscript, both monkeys were still involved in 

other experiments. Therefore, a detailed histological reconstruction of the recording sites 

is not available. However, based on recording patterns in surrounding structures and on 

the characteristic discharge pattern of the saccade-related neurones it is felt that the 

neurones recorded were located indeed in the FOR. Rostral to the FOR, in the rostral FN, 

‘vestibular only’ neurones (Büttner et al., 1991; Siebold et al., 1999) were recorded. 

Dorsal to the rostral FN, electrodes clearly passed first through P-cell layers, and then 

went through several millimeters of white matter where typically no neurones were 

recorded. Further caudally, the white matter above the FOR became less extensive, and 

below the FOR P-cells were encountered, in accordance with Büttner et al. (1991). FOR 

saccade-related neurons were clustered in two areas of 2 mm in diameter on the left and 

right side, separated from each other by 2 – 3 mm across the midline. 

FOR neurones were investigated bilaterally, thereby recording simultaneously 

both neuronal electrical bursting activity and eye movements. In this way, neurones with 

a discharge activity related to the occurrence of saccades could be readily identified. In 

total, 75 of such saccade-related FOR neurones were studied, in two monkeys. No 

preselections were made, so that, regardless of the specific characteristics and the 

prominence of the saccade-related burst patterns, all units were included that showed a 

discernible change in their electrical activity during a saccade, provided that they were 

well isolated and located within the anatomical borders of the FOR.  

All FOR neurones were spontaneously active (mean + SD: 45.4 + 24.2 

impulses/s, imp/s), but their discharge activity was far from regular, ranging from 8.4 to 

104.3 imp/s, as described previously (Fuchs et al., 1993; Helmchen et al., 1994). 

Moreover, neurones showed obvious interindividual differences as to their relationship 

with saccades. Therefore, different classes of FOR neurones were distinguished. 
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B. FOR Saccade-related Neurone Classification  

Nearly all FOR neurones (N=74/75) showed a burst of electrical activity in relation to a 

saccade. Of these, 52 neurones exhibited a burst of activity with every saccade occurring, 

in both ipsilateral and contralateral direction, in a one-to-one fashion. Some neurones 

(N=21) showed bursts into one direction only (17 neurones bursted only during ipsilateral 

saccades, 4 neurones bursted only during contralateral saccades) while exhibiting into the 

opposite direction either a decrease in activity, a pause in activity, or no activity change at 

all, which is in accordance with previous observations (Ohtsuka & Noda, 1991). The only 

neurone that did not burst with saccades showed a saccade-related decrease in activity for 

ipsilateral saccades, but its activity was not modulated during contralateral saccades.  

 

Table 1. Distributions of discharge patterns of ipsilateral and contralateral saccade-related FOR 

neurones of two monkeys (b, burst neurone; bp, burst-pause neurone; p, pause neurone; pb, pause-

burst neurone; pbp, pause-burst-pause neurone). 

 

ipsilateral contralateral 

monkey b pb pbp bp p 
other /    

no change b pb pbp bp p 
other /    

no change 

# 60 6 34 - 3 2 - 23 5 4 - 1 1 / 11 

# 62 10 15 1 1 3 - 10 2 6 6 -  0 / 6 

Σ 16 49 1 4 5 - 33 7 10 6 1 1 / 17 
 

Quite often (N=50) neuronal bursting was preceded by a pause (pause-burst 

neurone, PB; Fig. 4A) or by a decrease in activity. Only few neurones (N=5) showed a 

burst that was followed by a pause (burst-pause neurone, BP; Fig. 4B). A decrease in 

bursting activity preceding a burst, started a considerable time before the beginning of a 

saccade (more than 100 ms), with minimal activity occurring shortly before saccade start. 

One neurone (classified as ‘other’ in Table 1) was not modulated in its activity during 

contralateral saccades but showed prominent bursts during ipsilateral saccades. Unlike 

other cells, it gradually changed its discharge frequency, starting 120 ms before the 

saccade, having a peak twice the background rate at 40 ms after saccade onset, and then 

gradually reducing its frequency to the background level within 160 ms.  
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The respective discharge patterns differed for ipsilateral and contralateral 

saccades. Contralateral saccades were more often accompanied by a ‘pure’ burst (N=34) 

or revealed no activity change (N=17), although complex discharge sequences (PB; BP; 

or PBP, 4C) were also observed. However, the most frequent combination of discharge 

patterns was a PB sequence for ipsilateral saccades. 
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A 

 
B 

 
C 

 
 

Fig. 4. Examples of different combinations of discharge patterns of saccade-related FOR burst 

neurones. A: pause-burst neurone, ipsilateral saccades; B: burst-pause neurone, contralateral 

saccades; C: pause-burst-pause neurone, contralateral saccades. Upper panel shows different 

horizontal (hor) eye positions in degrees (deg). Lower panel presents histogram of spike 

frequency in impulses/second (imp/s), where 0 milliseconds (ms) at the time axis represents 

saccade onset. The right panel shows the eye position paradigm, with arrows indicating eye 

movement direction. n = total number of saccades (above right panel). 
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C. Timing of Burst Activity: Ipsilateral versus Contralateral Saccades  

The most conspicuous feature of a FOR neurone is its capacity to change the timing of 

burst activity, which plays a major role in the determination of saccade direction. This is 

evident from our spike histogram analyses, as will be shown in the following. 

In general, FOR neurones burst earlier to a contralateral saccade than to an 

ipsilateral saccade. For all FOR neurones, the latency of their bursts (at 16o) is 11.1 + 19.8 

ms before the onset of a contralateral saccade and 3.0 + 18.8 ms before the start of an 

ipsilateral saccade, values that differ significantly (P < 0.05, Wilcoxon). So, bursts 

generally start before saccades. As a result, the burst offset time (burst end in relation to 

saccade onset) for contralateral saccades is shorter (55.2 + 26.7 ms) than for ipsilateral 

ones (64.1 + 25.1 ms). However, the burst latencies for ipsilateral as well as for 

contralateral saccades are similar for bilaterally and unilaterally bursting neurones. As to 

latency, bilaterally bursting neurones start 9.6 + 19.4 ms (contralateral) and 3.3 + 20.4 ms 

(ipsilateral) before saccades, whereas unilaterally bursting neurones have a latency of 

30.0 + 16.6 ms (contralateral) and 2.0 + 13.7 ms (ipsilateral), values that are not 

significantly different between the two classes of neurones. Fig. 5 gives a representative 

example of a FOR neurone, clearly showing the differences between ipsi- and 

contralateral saccades. 

With regard to peak latency, in all bursting neurones examined, peak activity of a 

burst, i.e., where the firing rate is maximal, is reached earlier after burst onset of 

contralateral saccades (24.4 + 22.0 ms) than of ipsilateral saccades (29.2 + 19.9 ms) (P < 

0.05, Wilcoxon). Bilaterally bursting neurones (contralateral: 25.4 + 22.5 ms; ipsilateral: 

30.2 + 20.7 ms) do not significantly differ from unilaterally bursting ones (contralateral: 

10.5 + 5.0 ms; ipsilateral: 26.4 + 17.6 ms).  

When related to burst onset (and not to saccade onset), peak burst activity and 

burst duration are similar for saccades in both directions, and also reveal no statistically 

significant difference between bilaterally and unilaterally bursting neurones. The peak 

burst amplitudes are 102.4 + 48.6 imp/s and 98.2 + 42.2 imp/s for contralateral saccades 

and ipsilateral ones, respectively. The burst discharge during contralateral saccades lasts 

86.9 + 42.5 ms, which is very similar to that during ipsilateral saccades (89.1 + 38.6 ms).  
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Fig. 5. Example of a typical FOR neurone, clearly showing the differences between contralateral 

(upper 6 graphs) and ipsilateral (lower 6 graphs) saccades. The neurone starts its bursting activity 

with the beginning of contralateral saccades. For ipsilateral saccades, the burst starts clearly after 

the onset of saccades, and the peak activity is later. In each graph, the upper trace shows saccade 

velocity (vel[o/s]), the dark solid trace presents the average velocity, and the gray traces indicate 

the velocity of individual trials. The vertical lines within the burst histogram indicate the saccade 

onset, burst onset, peak of burst and burst offset, respectively. For further explanations, see Fig. 4. 

 

These conclusions are based on spike histogram analyses. Note, however, that the 

numerical values assigned to peak discharge rates are substantially influenced by the 

particular method used to quantify them. When calculated according to the criteria 

applied in individual burst analysis, the obtained peak rates are higher (see below). 

 

D. Spike Histogram versus Individual Burst Analysis 

We compared the burst parameters obtained from the perisaccadic spike histograms with 

the average of the corresponding values obtained from burst analysis of individual trials, 

in order to validate the results obtained by the computerized burst detection routine. In 

Fig. 6 the scatter plots are given of the parameters most relevant for the analyses that will 

be presented below: burst latency, burst-peak latency and burst-peak amplitude. They are 

derived from the perisaccadic spike histograms and are plotted against the corresponding 

parameters obtained from the individual burst analyses. It is clear that the two different 

analytical approaches yield values that are strongly correlated with each other, having 

highly significant (P < 10–6) correlation coefficients: r = 0.88 (burst latency), r = 0.86 

(peak latency) and r = 0.91 (peak amplitude). While the peak latency values are lying 

fairly well around perfect correlation (Fig. 6B), in the three plots marked by the solid line 

(y = x) the two other parameters reveal obvious and systematic differences (Fig. 6A,C): in 

the spike histogram analysis the onset is assigned to earlier time values and the peak 

activity is clearly lower than in the individual burst analysis.  
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Fig. 6. Significant correlation plots for three burst parameters (A: burst latency; B: burst-peak 

latency; C: burst-peak amplitude) between data obtained from analyses of individual bursts 

(average) and corresponding values derived from perisaccadic spike histograms (y = x, marked by 

solid line). Each dot represents one FOR burst neurone that is related to ipsilateral or contralateral 

saccades. A negative value in time axis (A, B) indicates that burst or burst peak starts before the 

onset of a saccade, whereas a positive value means that these starts are after saccade onset. 

 

 

E. Relation Between Burst Parameters and Saccade Kinematics 

Although the amplitude of eye movements has been experimentally limited to 16 degrees 

(target jump amplitude), the velocity profiles of the saccades considerably varied between 

the two animals examined, their peak velocities extending the permitted range of 200 to 

800 deg/s (monkey #60: average 422.7 + 106.2 deg/s, range 200.6 to 797.3 deg/s; 

N=8170 saccades; monkey #62: average 423.3 + 117.1 deg/s, range 200.1 to 797.0 deg/s; 

N=5883 saccades). This variability, which is possibly mainly due to changes in the 

alertness level of a monkey during different recordings, enabled a comparison between 

saccade properties and burst parameters during individual trials.  

To carry out such a comparison, we computed correlation coefficients for the 

relations between saccade peak velocities on the one hand and the various burst 

parameters derived from the computer-based burst detection algorithm on the other, and 

tested these coefficients statistically (α=5%, Bonferroni-corrected for multiple 

comparison). This screening procedure provided significant correlations between saccade 

and burst properties, during ipsilateral bursts for 36/70 units neurones (51%) and during 
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contralateral bursts for 17/56 units neurones (30%). In Fig. 7 an example of such a 

correlation is given. It shows burst and peak latency and burst-peak amplitude versus 

saccade peak velocity for the neurone of Fig. 5. This neurone exhibited clear correlations 

and also illustrates the effects typically observed with increasing saccade speed: the burst 

amplitude grows, and the burst starts and peaks at shorter latencies (Figs 7, 8). These 

effects are very similar for ipsilateral and contralateral saccades, although they are more 

pronounced for the former. Nearly all (34 of the 36 ipsilaterally and 16 of the 17 

contralaterally) bursting neurones showed an analogous pattern, with the peak amplitude 

being positively and/or burst and/or peak latency being negatively correlated with saccade 

peak velocity. Of these correlations, that of the peak latency was most consistently 

observed (Fig. 9A).  

It should be noted that the above evaluation is based on rigid statistical threshold 

values applied to data derived from single neurones. This approach is rather conservative 

and almost certainly leads to an underestimation of the significance of the effects. This is 

confirmed by a number of observations. In Fig. 9B, for all bursting neurones the 

correlation coefficients of the relation between peak velocity and the various burst 

parameters have been plotted versus their respective P-values. Clearly, the statistically 

significant correlation coefficients are all negative for burst and peak latency, and almost 

all positive for peak amplitude and spikes per burst. However, correlation coefficients 

that, by themselves, do not reach statistical threshold show the same asymmetrical 

picture. For ipsilaterally bursting neurones the leftward or rightward shifts of the 

distributions were, for these four parameters, highly significant (P < 0.001), even when 

the units exhibiting statistically significant correlations were discarded. The same is true 

for contralateral bursts with respect to burst and peak latency, while the shifts are no 

longer significant for peak amplitude and spikes/burst after discarding the significant 

correlation coefficients. The mean correlation coefficients for burst duration are not 

significantly different from zero, for both ipsilateral and contralateral saccades (Fig. 9B-e)  
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Fig. 7. Scatter plots showing clear and strong correlations between saccade peak velocity (in 

deg/s) and three burst parameters, for both ipsilateral (left panels) and contralateral (right panels) 

saccades of the neurone of Fig. 5. This neurone exhibited obvious and systematic differences for 

these parameters: with increasing saccade speed (in deg/s), bursts start (A, in ms) and peak (B, in 

ms) with shorter latencies, while burst-peak amplitude grows (C, in imp/s). Open dots indicate 

saccades. Solid lines are predicted linear regression lines. Dashed lines demonstrate the 95% 

confidence interval. 
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          A 

 
 
 

            B 
 

 
 
 

Fig. 8. Same neurone as presented in Fig. 5, illustrating the strong correlation between saccade 

velocity and the burst parameters during the ipsilateral saccades. A. Bursts with low saccade 

velocities (200 - 400 deg/s). B. Bursts with high velocities (500 - 800 deg/s). When saccade 

velocity increases, burst amplitude grows, the burst starts earlier (23.4 ms after the onset of slower 

saccades, 16.1 ms after the onset of faster saccades) and the burst peak appears with shorter 

latencies. For explanations of traces and vertical lines, see Figs 4, 5. 
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Fig. 9. A. Ipsilateral (34 neurones) and contralateral (16 neurones) saccade-related bursts of FOR 

neurones, showing analogous patterns of combinations of correlations between saccades, with the 

peak amplitude being positively and/or burst and/or peak latency being negatively correlated with 

saccade peak velocity. Numbers in overlapping parts of circles indicate numbers of neurones that 

reveal significant correlations between the respective parameters. B. Correlation coefficients of 

the relations between saccade peak velocity and the various burst parameters (a, burst latency; b, 

peak latency; c, peak amplitude; d, spikes/burst; e, burst duration) plotted versus their respective 

P-values. The statistically significant correlation coefficients are all negative for burst and peak 

latency, and almost all positive for peak amplitude and spikes/burst, but they are not significantly 

different from zero for burst duration. 

 

 

F. Population Analysis  

Above, we showed results based on analyses of single cell discharges. In order to increase 

our understanding of how the entire FOR neurone population encodes saccade properties, 

we carried out a population analysis of the same data. The analysis shows that clear 

differences exist between bursts of ipsilateral and those of contralateral saccades. In 

monkey #62 (36 neurones) bursts in both directions started before the beginning of 

saccades (contralateral: -12.5 ms, ipsilateral: -7.5 ms). Subsequently, the burst activity 

patterns became markedly different. For contralateral saccades, maximal burst activity 

was observed already within 12.5 ms after saccade onset and then gradually decreased 

within 25.0 ms to baseline activity. For ipsilateral saccades, however, burst activity 

gradually increased and reached its maximum value 56.3 ms after saccade onset; baseline 

activity was reached 75.0 ms after saccade onset. These data clearly reflect the 

acceleration/deceleration profile of the saccades (Fig. 10); maximal bursting activity for 

contralateral saccades occurs aligned to the maximal acceleration and occurs for 

ipsilateral saccades aligned to the maximal deceleration. For monkey #60 (39 neurones) 

the activity patterns were largely similar.  
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Fig. 10. Peak bursting activities of the FOR neurone population during contralateral and ipsilateral 

saccades are temporally correlated with the average deceleration and acceleration profile, 

respectively, of the average saccade (indicated by arrows).Left: average responses to fast saccades 

with peak velocities from 400-600 deg/s. Right: FOR activity during slow (200-400 deg/s) 

saccades of the same amplitude. (N=36 units from monkey # 62). For further explanation, see 

Figs 4, 5. 

 
 

The above results hold for both slow-speed (200-400 deg/s) and high-speed (400-600 

deg/s) saccadic eye movements. The peak of the FOR burst coincides with the end of the 

ipsilateral saccade deceleration phase, whereas it is linked to the start of the contralateral 

saccade acceleration phase. However, the comparison of high-speed saccades with slow-

speed saccades of the same amplitude, reveals differences in burst profile. Notably, for 

both ipsilateral and contralateral saccades, during slow saccades peak burst activity is 

lower and occurs later. This corresponds with the changed acceleration profile: saccades 

last longer, and acceleration and deceleration values are smaller and occur later.  
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G. Influence of the Initial Eye Position on Saccade-related FOR 

Bursting 

G1. Bursting Activity 

Starting positions of the eye accompanying 16o saccades were presented at three vertical 

levels, viz. an upper, a middle and a lower one. A possible effect of the initial eye position 

on FOR bursting activity in relation to saccades was studied on the basis of observing 

corresponding perisaccadic spike histograms, and by statistical analysis (Kruskal-Wallis; 

non-parametric analysis of variance) of the burst parameter distributions derived from 

individual trial analyses at different starting points, sorted according to their horizontal 

and vertical components.  

As judged from both analytical approaches, most neurones (about 80%) do not 

show any clear correlation between starting position and FOR neurone bursting. This 

holds for all levels, no matter whether saccades were sorted in terms of horizontal 

(centrifugal vs centripetal), vertical or both components of the initial eye position. 

Furthermore, when not single neurones but the entire neuronal population was considered, 

the spike histograms derived from averaging the responses of all individual neurones 

were virtually identical for all starting positions (Fig. 11). However, some indications for 

the existence of such a correlation were seen in the histograms, and this existence was 

confirmed by the statistical analyses.  
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Fig. 11. ‘Population bursts‘. Spike histograms derived from averaging the responses of all 

individual neurones of the FOR neurone population reveal virtually identical patterns for all 

(horizontal and vertical) starting positions (arrows indicate direction of target movement), so that 

no evidence appears for the existence of a significant influence of the initial eye position on 

bursting activity of the FOR population. The vertical dotted line indicates saccade onset. For 

further explanation, see Figs 4, 5. (N = 36 units from monkey # 62).  
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G1.1. Horizontal Components 

In this section experiments are described to demonstrate a possible causal relationship 

between eye position and saccade-related FOR bursting activity. Only in a minority of 

FOR neurones a correlation between eye position and bursting activity appeared, showing 

differences between centripetal and centrifugal saccades for various burst parameters. 

However, as will be explained below, these differences might be caused by systematic 

differences in saccade kinematics, and no evidence for a causal relationship between eye 

position and FOR bursting could be found. 

On the basis of a threshold for statistical significance of α=5% (Bonferroni-

corrected for multiple comparison), we observed that 10 neurones (8 for ipsilateral, 2 for 

contralateral saccades) out of 75 neurones revealed differences in burst discharges 

between centripetal and centrifugal saccades. This is illustrated in Fig. 5: for contralateral 

saccades, bursts start and peak earlier and show higher peak amplitudes for centripetal 

than for centrifugal saccades; also for ipsilateral saccades, the bursts start and peak earlier 

for centripetal saccades, but here the differences are very small and can only be seen 

when burst onset and burst peak are directly observed using a reference line (see Fig. 5, 

legend). The example neurone is fairly representative for all neurones observed, as 7/10 

neurones (6 ipsilateral, 1 contralateral) show shorter burst or peak latencies or higher peak 

amplitudes for centripetal saccades than for centrifugal ones. However, it is atypical in 

that it exhibits these differences more pronounced for contralateral than for ipsilateral 

saccades.  

Thus, in a minority of FOR neurones a correlation exists between eye position and 

bursting activity. This correlation appears from the fact that most centripetal saccades 

have shorter burst and peak latencies and higher peak amplitudes than centrifugal 

saccades. This pattern clearly resembles the asymmetries in the distributions of 

correlation coefficients of these parameters (Fig. 8B). This similarity is even more 

obvious in Fig. 12, in which for each ipsilateral and contralateral bursting neurone and for 

each of the various burst parameters the differences are plotted of the respective 

parameter means of centripetal and centrifugal saccades vs the P-values of the 

corresponding analysis of variance that has been performed on the parameter 

distributions. 
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Fig. 12. Asymmetric plots showing the differences between centripetal (cp) and centrifugal (cf) 

saccades for various burst parameters (means) versus the P-values of the corresponding 

parameters as derived from the analysis of variance. A, burst latency, in milliseconds (ms); B, 

peak latency, in ms; C, peak amplitude, in impulses/second (imp/s); D, spikes/burst, in number; E, 

burst duration, in ms. Mainly for ipsilateral saccades, it can be seen that burst (A) and burst peak 

(B) start earlier for centripetal than centrifugal saccades, and peak amplitude (C) is larger for 

centripetal saccades, although in general the P-values are low. 
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In both monkeys, centripetal saccades are clearly faster than centrifugal ones (monkey # 

60: 462.1 + 92.4 deg/s for centripetal, 430.2 + 85.0 deg/s for centrifugal, P < 10-5 (t-test); 

monkey # 62: 463.7 + 102.3 deg/s for centripetal, 439.1 + 95.2 deg/s for centrifugal, P < 

10-5 (t-test; Fig. 13). This indicates that systematic differences in the saccade kinematics 

are the cause of these differences in burst discharges of centripetal versus centrifugal 

saccades. Such a relationship might mask a causal influence of eye position on FOR 

bursting activity. To unveil such a possible effect of eye position, we eliminated the 

influence of saccade speed, in two ways: firstly, we recalculated for all bursting units the 

Kruskal-Wallis-ANOVA and restricted saccade peak velocities to a mid-range of 400-600 

deg/s. Secondly, a multivariate analysis of covariance was carried out on the various burst 

parameters, for centripetal and centrifugal saccades, in which saccade peak velocity was 

taken as covariate and compared to the results of the corresponding ANOVA (in which 

the covariate is not taken into account). With respect to the “typical” eye position effect, 

both approaches yielded similar results, viz. reducing the number of neurones that 

revealed a statistically significant difference between centripetal and centrifugal saccades 

to < 3 and increasing the P-value of the respective statistics (“controlled” compared to 

“uncontrolled” condition) by at least one order of magnitude. Neither approach unveiled 

any other specific difference occurring with any consistency beyond chance level (5%) 

between bursts for centripetal and centrifugal saccades. 

          
 
Fig. 13. Plots of centrifugal and centripetal saccade peak velocities (in degrees/sec), with means 

and standard deviations (Std. Dev.) and standard error of the means (Std. Err.), in monkey #60 

(left) and #62 (right), showing that centripetal saccades are consistently faster than centrifugal 

ones.  
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In conclusion, the observed differences between centripetal and centrifugal saccades for 

various burst parameters do not appear to be caused by changes in the initial eye position. 

 

G1.2. Vertical Components 

As to a possible influence of the vertical component of the eye position, we applied 

analogous statistical procedures as for the horizontal component. Given the selected 

statistical threshold (α=5%, Bonferroni-corrected for multiple comparisons), only 7 

neurones demonstrated differences in their burst pattern at different vertical positions 

during saccades. Of these, 2 neurones showed an increased rate of peak activity and more 

spikes per saccade for lower vertical starting positions, for both contralateral and 

ipsilateral saccades. For ipsilateral saccades, three neurones exhibited a larger peak 

amplitude and more spikes/saccade at the middle or the lowest vertical starting position. 

As to the remaining 2 neurones, only during ipsilateral saccades, one showed a shorter 

burst latency and the other showed a longer burst duration, both at the upper starting 

position.  

 

G2. Background Discharge 

FOR neurones reveal tonic background activity between saccades. To study a possible 

influence of eye position, the 9 different starting positions were analysed in a saccade-free 

time interval, 500 - 250 ms before saccade onset. Analysing the data by means of multiple 

linear regression, demonstrated statistically significant effects in 31 out of 75 neurones (P 

< 0.05; t-test). The regression coefficients were symmetrically distributed, with a range of 

– 0.7 to 1.0 imp/s/deg (horizontal) and a range of – 0.92 to 0.63 imp/s/deg (vertical). 

Also, the combined horizontal and vertical regression coefficients were very evenly 

distributed and did not cluster into any direction, so that these neurones did not appear to 

form a distinct subgroup. This holds for the entire neuronal sample as well as for the 

subgroup of neurones that showed a statistically significant individual regression. The net 

effect of all neurones, calculated by multiple regression across all neurones and corrected 

for the different numbers of saccades obtained from each cell, was not statistically 

significant.  
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5. DISCUSSION  

A. Saccades in Monkeys 

This thesis research aims to elucidate the neural mechanisms that control saccadic eye 

movements. Saccades are fast, short-lasting eye movements that enable the animal to 

focus a moved target on the fovea. In this research we have used the Rhesus monkey, 

Macaca mulatta, as a test animal, because this primate species is relatively easy to handle 

and to maintain under laboratory conditions, has a strong constitution, and readily learns 

behavioural tasks. Furthermore, the eye movements of monkeys are very similar to 

humans (Becker, 1989). 

 

 

B. Analysis Software  

Often, the analysis of individual burst characteristics of FOR neurones is being carried 

out manually, by the observer (see e.g. Ohtsuka et al., 1991a, Fuchs et al., 1993). 

Obviously, a suitable software programme would improve such analysis, by making it 

more accurate, more fast and more objective, i.e., independent from the observer’s 

decisions. Here we have applied a software programme that was based on principles 

described earlier (e.g. Poisson spike train analysis; Hanes et al., 1995) and which was 

recently used by Thier et al. (2000), and modified by us (J.F. Kleine) to gain maximum, 

bias-free information about aspects of neuronal bursting that are of essential interest to 

this research, viz. about the possible relationships between saccade duration, frequency 

and latency, and saccade onset, offset, amplitude, duration and direction. 
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C. Scientific Questions being Answered 

Neuronal control of saccades is a very complicated process, in which many brain areas 

are involved, such as the brainstem, where the saccade generator is located, the cortical 

FEF, the SC, and the cerebellum, which fine-tunes saccade properties like duration and 

amplitude. Among the various cerebellar areas that are involved in this control, the FOR 

exerts a particular role as its bursting activity influences many aspects of the saccade, 

such as direction, amplitude, latency and duration. In this research we have studied these 

burst parameters, with as the main objective to resolve the mechanism by which FOR 

burst activity influences saccade properties. Experiments have been performed to answer 

the following questions: 

1. Does the initial eye position have an effect on the burst for ipsilateral and contralateral 

saccades? 

2. What is the difference between centripetal and centrifugal saccades? 

3. Do FOR neurones influence acceleration and deceleration of a saccade, and if so, in 

which way? 

 

 
D. FOR Bursting Differs between Ipsilateral and Contralateral Saccades  

We show that FOR bursts that occur during either ipsilateral or contralateral saccades, 

clearly differ in many aspects. Although burst latencies for ipsilateral as well as for 

contralateral saccades are similar for bilaterally and unilaterally bursting neurones, in 

general FOR neurones burst earlier to a contralateral saccade than to an ipsilateral 

saccade, and the burst offset time for contralateral saccades is shorter than for ipsilateral 

ones. As to latency, ipsilateral and contralateral saccades do not differ, but with regard to 

peak latency, peak activity of a burst is reached earlier after burst onset for contralateral 

saccades than for ipsilateral saccades. 

The question arises why ipsilateral and contralateral saccades are so markedly 

different in their relationship to FOR neurone bursting. The obvious reason for this 

difference is explained in the BACKGROUND section. In short, in case of a contralateral 

saccade, an early FOR burst will accelerate the saccade, without which the saccade would 

fall short. Later in the saccade, ipsilateral FOR neurones provide an opposite drive that 
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slows down the saccade. In the absence of this late burst, the saccade would overshoot its 

target. 

 

 

E. Initial Eye Position Plays no Major Role in the Control of FOR 

Neurone Activity  

E1. Various Brain Centres are Influenced by the Initial Eye Position 

 

The initial eye position has clear effects on the electrical behaviour of various neuronal 

centres in the Rhesus monkey. For instance, a majority of the neurones in the lateral 

intraparietal area (LIP) and in area 7a in the posterior parietal cortex reveal significant 

influences from the eye position (Andersen, 1990). Furthermore, in 61% of middle 

temporal area (MT) neurones and in 82% of superior temporal sulcus neurones visual 

stimulus-induced responses are modulated by the orbital eye position (Bremmer, 1997). 

For the vast majority of neurones in both the ventral premotor cortex (90%) and the 

prearcuate cortex (94%), the response to a visual stimulus greatly varies with the gaze 

angle. These results resemble those found in the posterior parietal cortex, where retinal 

image location and eye position both affect responsiveness to visual stimuli (Boussaoud, 

1993). The responsiveness to visual stimulation of about 50% of the neurones in the 

prestriate area V3 appears to be influenced by the direction of gaze (Galletti & Battaglini, 

1989). Nearly 40% of the neurones in area V6A of the parieto-occipital sulcus are 

sensitive to eye position (Nakamura, 1999). Effects of different initial eye positions on 

saccades evoked by electrical stimulation of the SC were investigated in alert monkeys 

with their head restrained. Following stimulation at 240 out of 367 sites (65%) in the 

caudal SC, the saccade direction appeared to be influenced by the initial eye position 

(Azuma, 1996). Groh (1996) recorded from somatosensory neurones in the SC of awake 

monkeys. The responses of a majority of the cells (25/34; 74%) were significantly 

affected by eye position. 

In the cerebellar vermis, about 20% of the P-cells are sensitive to eye position 

(Thier et al., 2000). When the initial eye position is changed by experimentally 

stimulating the FOR just prior to the occurrence of a visually-directed saccade, a monkey 
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can not compensate anymore for the FOR-stimulated eye movement and the saccade 

misses its target. This result indicates that FOR output impulses do not act directly on 

saccade programming circuits where visual information is being converted into motor 

commands, but project downstream from these circuits, to modulate (fine-tune) these 

commands (Noda, 1991).  

 

E2. The FOR 

 

Some years ago, Ohtsuka et al. (1991b) proposed that the FOR would function without 

receiving information about the initial eye position. Others have provided circumstantial 

evidence for an effect of eye position on saccade activity, as eye position was shown to 

influence at least a number of FOR neurones (Fuchs et al., 1993). Here, we have studied 

the possible effects of changing the initial eye position in both horizontal and vertical 

directions on the main aspects of FOR neurone bursting activity, using our sophisticated 

analysis software and an extensive behavioural paradigm. Moreover, we have performed 

population analysis as well as analyses of single neurone bursts, in view of the great 

variability in bursting activity within the FOR neurone population. As the results show, 

for most of the neurones studied no statistically significant correlation between the initial 

eye position and the various aspects of FOR neurone bursting could be detected. 

Nevertheless, both the histograms and the statistical analyses revealed that 15-20% 

of the neurones have a distinct pattern, namely that centripetal saccades mostly have 

shorter burst and peak latencies and higher peak amplitudes than centrifugal ones. The 

question arises whether this correlation is due to an effect of eye position on FOR 

bursting activity or is rather the consequence of the strong correlation between burst 

properties and saccade properties. The latter possibility is supported by our two 

approaches in which the factor ‘velocity’ was eliminated. No other specific differences 

between bursts of centrifugal and centripetal saccades showed up as a result of this 

elimination, indicating that no effect of eye position, masked by velocity, does exist. 

 We have analyzed a possible influence of the initial eye position, making both 

graphical displays and elaborate statistical analyses of FOR bursts. Decreases in saccade-

related activity and pauses between saccades have not been subjected to rigorous 

quantitative evaluations. However, the correlations that appear from the statistical 
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analyses of burst parameters (which might have been easily overlooked by visual 

examination of the discharge pattern alone) are also clearly visible in the perisaccadic 

histograms and raster diagrams, and there is good general agreement between the 

investigator’s impressions derived from the examination of these graphical displays and 

the results from the objective statistical analyses. Therefore, it is highly unlikely that we 

have missed additional relevant information that would point to an influence of eye 

position on saccade-related discharge patterns.  

 Summarizing, we have found weak but consistent and clearly significant 

differences in bursts for (ipsilateral) saccades from different horizontal starting positions, 

resulting in shorter burst and peak latencies, higher burst peak amplitude and larger 

numbers of spikes/burst for centripetal as compared to centrifugal saccades. However, 

these differences can not be attributed to an actual influence of eye position per se. 

Rather, they most likely reflect the strong correlation between burst properties and 

saccade kinematics, caused by the systematic differences in saccade velocities between 

centripetal and centrifugal saccades. There seems to be no evidence for any other 

consistent influence of the initial eye position on burst discharges, neither for horizontal 

nor for vertical position components.  

 

 
F. FOR Bursting does not Differ between Centripetal and Centrifugal 

Saccades  

Previously, Fuchs et al. (1993) reported for the Rhesus monkey that centrifugal and 

centripetal saccades differ from each other after bilateral inactivation of the FOR, as 

centrifugal saccades are smaller than centripetal ones. Similar data were reported by 

Ritchie (1976; cerebellar and oculomotor vermis) and Vilis & Hore (1981). This effect of 

bilateral FOR inactivation can also be seen in human patients with infarcts in the posterior 

vermis (Vahedi et al., 1995).  

 However, the present data, based on an elaborate paradigm involving nine 

different starting positions at three different vertical levels, show that the starting eye 

position does not influence bursting in most (96 %) of the FOR neurones, which holds for 

both centrifugal and centripetal saccades. No differences between the two directions of 



    44  

eye movement could be found, which is in accordance with results obtained by Ohtsuka et 

al. (1994). 

 

 

G. The relation between FOR bursting and Saccade Properties 

There is no consensus in the literature as to whether and to what degree FOR burst 

dynamics control saccade characteristics. Ohtsuka & Noda (1991a) supposed that FOR 

activity especially determines the temporal aspects (start, duration, end) of a saccade, an 

opinion shared by Thiers et al. (2000), but Fuchs et al. (1993) concluded that FOR 

neuronal bursting is only weakly related to saccade metrics. Our data clearly show that 

activity of FOR neurones correlates with the kinematic properties of saccades, as many 

neurones reveal statistically significant correlations between bursts and saccade properties 

and, moreover, the FOR population as a whole shows an obviously consistent pattern of 

correlations: among saccades that have the same amplitude, the faster ones correlate with 

saccades that start and peak earlier, have a higher spike frequency and show higher peak 

burst rates than slower ones. These observations strongly suggest that the FOR neurones 

accelerate contralateral and decelerate ipsilateral saccades by producing, respectively, 

early and late bursts (see also Fuchs et al., 1993; Robinson et al., 1993), the more so as 

they reflect in their shorter burst onsets and peak latencies the faster acceleration-

deceleration sequence of fast saccades and in their higher firing frequencies the increased 

acceleration drive and braking force regulating such saccades.   

 Therefore, we assume that FOR bursting activity is causally related to saccade 

velocities, pointing to a role of the FOR not only in the control of temporal but also of 

kinematic aspects of saccades. 

 
 
 
H. Acceleration and Deceleration Phenomena Depend on FOR Bursting 

Acceleration and deceleration phenomena are main aspects of a saccade. As outlined in 

the BACKGROUND, experimentally induced hypometria of ipsilateral and contralateral 

saccades suggests that the FOR helps to accelerate contralateral and to decelerate 
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ipsilateral saccades. Our data show for the first time that there is a close relationship 

between burst peak frequency and acceleration/deceleration phenomena. These data are 

derived from saccades that have the same amplitude but are grouped on the basis of high-

speed and slow-speed saccade samples. More in particular, the data show that for 

ipsilateral saccades, the peak of the FOR burst coincides with the start of the deceleration 

phase, whereas for contralateral saccades the FOR burst peak is linked to the start of the 

acceleration phase. Consequently, we can definitely conclude that acceleration and 

deceleration phenomena are controlled by FOR neuronal bursting and, more specifically, 

that they correlate with the peak of the burst discharge, in which acceleration and 

deceleration are determined by whether the saccade is either contralateral or ipsilateral, 

respectively.  

 

I. Combined Activities of FOR Neurones Adequately Specify Saccade 

Properties 

As stated in the BACKGROUND, two models theoretically explain how the variable 

activity of FOR neurones diminishes the variability in saccade properties. The first model 

implies that the FOR is able to fine-tune the accuracy of the saccadic burst generator in 

the brainstem because it receives afferent feedback information about the saccade’s 

properties (Robinson, 1995; Lefèvre et al., 1998). The present data, however, favour the 

second model, which states that in spite of the variable output of individual FOR 

neurones, their combined activity adequately specifies the properties of a saccade in order 

to make it accurate. This can be explained as follows. Neurones that reveal a possible 

influence from the initial eye position do not belong to a homogeneous population, as 

14% of them demonstrate clear and varying differences in peak discharge rate during 

ipsilateral saccades. Nevertheless, when not single neurones but the entire neuronal 

population is sampled, the resulting average spike pattern is virtually identical for all 

starting positions, which may well account for an accurate specification of saccade 

properties. This would mean that the FOR neurones control saccade accuracy in a similar 

way as the P-cells in the population of the oculomotor vermis, which accurately 

determine the end of a saccade (see Thier et al., 2000). 
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J. Spike Histogram versus Individual Burst Analysis 

We have compared the burst parameters obtained from the perisaccadic spike histograms 

with the average of the corresponding values derived from the burst detections in 

individual trials, to validate the results obtained by the computerized burst detection 

routine. Each of these different analytical approaches yields values that are strongly 

correlated, but also systematic differences occur: in the individual burst analysis, the burst 

onset is assigned to later time values and the peak activity is clearly higher than in the 

spike histograms. The appearance of these systematic deviations may not be surprising, as 

the definitions and the statistical criteria applied are not identical. In fact, the observed 

differences can be readily explained from the different characteristics of the methods. 

Within a noisy signal, as represented by a single spike train, a significant alteration of 

discharge frequency is more difficult to detect than within a less noisy spike histogram. 

Using a conservative statistical threshold, a significant change in discharge rate will 

therefore be detected later in single trials than in a spike histogram analysis, as was 

observed.  

The calculated values for the peak burst rates heavily depend on the amount of 

smoothing implicit in this particular method, and are largely determined by the bin width 

of the spike histogram and by the number of consecutive intervals averaged for peak rate 

calculation in single spike trains. In our case, this latter setting has to compromise 

between noise reduction and preservation of information, in particular with respect to the 

temporal location of the burst peak in individual trials. The resultant smoothing effect is 

therefore lower than in the spike histograms, thus explaining the generally higher 

numerical values assigned to the peak rate in single trial analysis. Therefore, the observed 

systematic differences do not disqualify the one or the other analytical approach. The 

robust correlation between them rather indicates that both methods provide substantial 

quantitative information about the neuronal discharge properties. 
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K. Perspectives 

Although FOR neurones, as we show, do not receive important information about the 

initial eye position, they do receive a large amount of neural information from various 

brain centres (see BACKGROUND). As we have also demonstrated, although the FOR 

neurone population acts as one unit in saccade control, individual FOR neurones reveal a 

high variability in their electrical activities. This variability may be due either to 

differences in their intrinsic properties or to the differential neural inputs they receive 

Neuroanatomical and pharmacological studies, especially at the cell physiological, 

immunocytochemical and ultrastructural level, might help to resolve this issue. 

Pharmacology coupled to (electron microscopic) immunocytochemistry may also 

show whether FOR neurones have all the same or rather different neurotransmitter 

contents and, hence, act on different targets. The latter issue might be, moreover, studied 

by neuronal tract tracing, on the basis of the stereotaxic coordinates used in our present 

study and intracellular (using a multibarrel electrode) dye injection (e.g. DiI or 

horseradish peroxidase) into or nearby the electrically identified neuronal somata. 

 

 

L. Conclusions 

In this thesis research we have identified main properties of a saccade, and have related 

these properties to FOR neurone bursting. It is shown that ipsilateral and contralateral 

saccades differ in many respects and that acceleration and deceleration phenomena are 

controlled by the peak of the FOR neurone burst. On the other hand, we have also 

demonstrated that the initial eye position does not play a major role in the control of the 

burst activity of FOR neurones, and centripetal and centrifugal saccades do not differ as 

to FOR bursting. Modification of the relative contributions of individual neurones to the 

total population response could provide a mechanism for adaptive control of saccade 

metrics. 
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6. SUMMARY  

A remarkable role in saccade control is played by the cerebellar caudal fastigial nucleus, 

FN  (fastigial oculomotor region, FOR), which lies under the cerebellar vermis. FOR 

bursting activity is related to many saccade properties, such as direction, amplitude and 

duration. The precise mechanism by which FOR bursting influences a saccade is under 

debate. It has been assumed on the basis of microelectrode recordings that saccade-related 

FOR neurones act without receiving information about the eye position. Similarly, 

discharge activity of P-cells in the oculomotor vermis does not reveal a prominent eye 

position-dependency. On the other hand, it is proposed that eye position supports saccadic 

control via at least some FOR neurones, as some authors found that a minority of FOR 

neurones do react to a change in horizontal eye position. Likewise, studies on saccade 

metrics in vermal oculomotor areas indicate that the effects of lesions or of electrical 

stimulations vary with the starting position of the eye. This suggests that these areas are 

involved in the neuronal compensation for non-linearities in orbital mechanics. In any 

case, it is generally agreed that there is a consistent difference in the timing of saccade-

related bursts produced by FOR neurones, resulting in shorter latencies for contralateral 

than for ipsilateral saccades. This pattern of burst timing indicates that the bursts are 

associated with the beginning of contralateral saccades and with the end of ipsilateral 

ones.  

 We have investigated (1) whether or not the initial eye position has an effect on 

bursts for ipsilateral and contralateral saccades, (2) if there is a difference between 

centripetal and centrifugal saccades, and (3) if FOR neurones influence acceleration and 

deceleration of a saccade and, if so, in what way.  

 For this purpose, a 9-point horizontal starting position training paradigm was 

applied, using a 3x3 square grid spaced at 16° intervals. Based on observations on 75 

saccade-related FOR neurones, our results permit the following conclusions. 

(1) Ipsilateral saccades clearly differ from contralateral ones. Individual neurone 

analysis as well as population burst analysis based on averaging the data across neurones, 

show that neither the vertical nor the horizontal component of the initial eye position 

substantially influences saccade-related bursting of the FOR neurone population.  

(2) Centripetal and centrifugal saccades do not differ as to FOR bursting. 
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(3) Although most FOR neurones do not receive information about eye position, 

they seem to play a crucial role in acceleration and/or deceleration of saccades. 

Finally, as the discharge patterns of individual neurones are highly variable, with 

prominent differences in both latency and amplitude, we propose that modification of the 

relative contributions of individual FOR neurones to the total FOR neurone population 

response may provide a mechanism for the adaptive control of saccade metrics in the 

Rhesus monkey.  
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7. ZUSAMMENFASSUNG 

In der Regelung einer Sakkade spielt der Nucleus fastigii (fastigial oculomotor region, 

FOR), der unter dem okulomotorischen Vermis im Kleinhirn liegt, eine bemerkenswerte 

Rolle. Das Entladungsmuster der FOR-Neurone beeinflusst mehrere Eigenschaften der 

Sakkade, wie z. B. Richtung, Amplitude und Dauer. Der präzise Mechanismus des 

Einflusses des FOR-Burstes auf die Sakkade ist bisher nicht genau bekannt. Basierend auf 

Mikroelektrodenregistrierungen hat man angenommen, dass sakkadenbezogene FOR-

Neurone aktiv sind, ohne über die initiale Augenposition informiert zu sein. Auch geben 

die Entladungsrate der Purkinje-Zellen im okulomotorischen Vermis keinen Hinweis auf 

einen deutlichen Einfluss der Augenposition. Andererseits hat man gefunden, dass eine 

gewisse Anzahl von FOR-Neuronen doch auf eine Änderung der horizontalen 

Augenposition reagiert. Auch Untersuchungen über die Sakkadenmetrik im 

okulomotorischen Vermis weisen darauf hin, dass der Einfluss elektrischer Stimulation 

sich in Abhängigkeit von der initialen Augenposition ändert. Dies könnte darauf 

hinweisen, dass diese Gebiete eine enge Beziehung zum neuronalen Ausgleich der 

nonlinearen orbitalen Mechanismen haben. Allgemein akzeptiert ist, dass es einen 

deutlichen Unterschied des sakkadenbezogenen FOR-Burstes für contralaterale und 

ipsilaterale Sakkaden gibt. Die Analyse zeigt, dass der Burst mit dem contralateralen 

Sakkadenbeginn und mit dem ipsilateralen Sakkadenende korreliert. 

 Es wurde untersucht: (1) ob die Augenposition die neuronale Entladungsrate der 

FOR-Neurone ipsilaterale und contralaterale Sakkaden beeinflusst, (2) Ob es einen 

Unterschied des Burstes gibt zwischen zentripetale und zentrifugale Sakkaden, und (3) 

Wie FOR-Neurone die Akzeleration und Deceleration der Sakkaden beeinflussen. 

 Zu diesem Zweck wurde trainierten Affen ein Lichtpunkt mit 9 Positionen auf 

einem 3x3 Gitter mit 16° horizontalen und vertikalen Intervallen dargeboten. Basierend 

auf der Analyse von 75 Neuronen ergaben sich die folgenden Ergebnisse: 

1. Die Bursts für ipsilaterale und contralaterale Sakkaden zeigten klare Unterschiede. 

Jedoch hatte weder die horizontale noch die vertikale Augenposition einen 

Einfluss auf die neuronale Entladungsrate der FOR-Neurone. 

2. Es fanden sich keine Unterschiede zwischen zentripetalen und zentrifugalen 

Sakkaden in Bezug auf die FOR-Entladungsraten. 
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3. Besonders die über mehrere Neurone gemittelten Daten (Poplulationsanalyse) 

zeigten eine klaren Bezug der neuronalen Entladungsrate zur Akzeleration und 

Deceleration der Sakkaden. 

Es wurde beobachtet, dass die Burstentladungen einzelner Neurone des FOR eine grosse 

Variablität und keine klaren Beziehungen zur Sakkakenstruktur zeigten. Erst die über 

mehrere Neurone gemittelten Daten (Populationsanalyse) zeigte einen klaren Bezug 

zwischen Beschleunigung und Verlangsamung der Sakkaden. Diese Ergebnis ist neu und 

bestätigt den Bericht andere Autoren, die früher berichteten, dass im Unterschied zu 

individuellen Purkinjezellen, die Gesamtpopulation dieser Zellen einen präzisen 

Zusammenhang von neuronaler Aktivität und dem Beginn und Ende einer Sakkade zeigt 

(Thier et al., 2000) 
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8. ABBREVIATIONS 

BP   burst-pause neurone 

cMRF    central mesencephalic reticular formation  

DAO    dorsal accessory olive  

DLPN    dorsolateral pontine nuclei 

DMPN   dorsomedial pontine nucleus 

DMRF   medullary reticular formation  

EBNs    excitatory immediate premotor neurones  

FEF    cortical frontal eye fields  

FOR   fastigial oculomotor region 

HRP    horseradish peroxidase  

IO    inferior olivary complex  

IVN    inferior vestibular nucleus  

LBNs    long-lead burst neurones  

LVN    lateral vestibular nucleus  

MAO    medial accessory olive  

NRTP    nucleus reticularis tegmenti pontis  

NSN    non-typical saccade-related neurone 

OPNs    omnipause neurones 

PAG    periaquaeductal greygray  

PB    pause-burst neurone 

PHN    perihypoglossal nucleus  

PPRF    brainstem paramedian pontine reticular formation 

REM    rapid eye movement 

riMLF    rostral interstitial nucleus of the medial longitudinal fasciculus 

SC    superior colliculus 

SPEM   smooth pursuit eye movements 

TMS    transcranial magnetic stimulation 

TSN    typical saccade-related neurones  

VC    vestibular complex 

VOR    vestibulo-ocular reflex 
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