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Summary 
 

Precise dendritic morphogenesis contributes to functional neuronal signaling. 

Extrinsic and intrinsic factors affecting dendritic morphology are proposed to 

converge upon cytoskeletal molecules and regulators to bring about changes in 

dendritic structures.  We used a candidate based RNAi approach to isolate 

cytoskeletal molecules involved in dendritic morphogenesis and differentiation using 

the well studied embryonic peripheral nervous system of Drosophila.  The RNAi 

assay system was standardized and used successfully to carry out a pilot screen for 

14 cytoskeletal molecules.  Many of the candidates showed no dendritic phenotype.  

However, we isolated five positive candidates- Cappuccino, Diaphanous, Kelch, 

Profilin and Quail.  Out of these, Diaphanous (dia) and profilin (chic) exhibited the 

most penetrant dendritic overbranching phenotype of dendritic arborization 

multidendritic (da-md) neurons upon RNAi.  Both these molecules are important actin 

binding molecules regulating actin dynamics depending on their binding partners, 

tissues in which they are expressed and the model system.  Moreover, dia and chic 

bind to each other as shown by in vitro and in vivo studies in yeast.  However, their 

role in dendritic morphogenesis is not explored yet.  So we chose these two 

molecules for further genetic analysis. 

Further genetic experiments with gain of function and loss of function analysis were 

done to understand the role of these two molecules in dendritic morphogenesis.  

Overexpression of different full length, fluoroscently tagged and constitutively active 

(CA-dia) constructs of dia in simple branching pattern Class I da-md neurons show a 

significant increase in the total number of dendritic branches.  However, only the CA-

dia construct showed a significant dendritic phenotype in the complex branching 

pattern Class IV da-md neurons.  This result indicates a neuronal class specific role 

for dia in dendritic mophogenesis.  Furtheron, the supernumerary dendritic branches 

formed upon CA-dia overexpression resembled filopodia.  Thus, these results may 

suggest that dia functions in the formation of filopodia-like branches which later on 

get stabilized to become dendritic branches.  However, we could not obtain a 

dendritic phenotype in class I neurons upon loss of function analysis.  The loss of 

function analysis was complicated by genomic interactions between the marker line 

used for analysis and background on dia chromosome.  The marker line per se in 

addition, turned out to have an overbranching phenotype in class I neurons.   

 xii



As a marker line for the analysis of class I neurons, I used a Gal4 insertion on the 3rd 

chromosome.  Analysis in the lab demonstrated that this Gal4 driver insertion is 

within the dystrophin (dys) gene.  By genetic analysis I showed that, though this Gal4 

insertion in the dys gene is contributing to the dendritic overbranching of the marker 

line, it is not solely responsible for it.  The dendritic phenotype seen in the marker line 

as well as in both dia null mutants appear to be a product of complicated interactions 

which are difficult to decipher in a short period. 

The gain of function analysis of profilin (chic) by using a full length construct exhibited 

a class specific dendritic phenotype with no effect on class I neurons and decreased 

dendritic branching in class IV neurons.  However, our attempts to probe into the role 

of chic by loss of function analysis using null and hypomorphic mutants and mosaic 

clonal analysis (mosaic analysis with repressible cell marker- MARCM) with null 

mutants did not answer our the questions explicitly.   Null mutants showed increased 

dendritic branching during late embryogenesis, for this corresponded to their lethal 

phase.  The MARCM analysis did not show any change in dendritic branching of 

class I neurons of null mutants and also other classes of neurons did not seem much 

affected.  This could exclude a role of Profilin in dendritogenesis in these neurons.  

Alternatively it could be due to the persistence of the protein upon induction of 

clones.  

Altogether, we have not been able to confer a definitive role for these two actin 

binding molecules, namely dia and chic, in dendritic morphogenesis at this point.  We 

need more flexible and controlled genetic tools to decipher their role.    

In this thesis, we have also tried to study dendritic morphogenesis in vivo using time-

lapse imaging.  Preliminary data on the development of class I vpda neuron in late 

third instar larvae suggests a dynamic turnover of higher order dendritic branches 

whereas the primary and secondary branches are quite stable.   

We also have examined the distribution of actin and microtubules in class I neurons 

to understand the process of dendrite branch formation.  Our primary data using GFP 

tagged constructs demonstrates that tubulin is localized in primary and some of 

secondary branches whereas actin is distributed not only in primary and secondary 

branches but some of the higher order branches also.  This is a first step of analysis 

which can be extended using time lapse study to understand formation, retraction 

and growth of dendritic branches in regards to the contribution of these cytoskeletal 

components in these processes. 
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CHAPTER 1- INTRODUCTION 

 

1.1: Dendrites and Dendritic morphology 

Dendrites are receptive processes of neurons and contribute equally to efficient 

neuronal functioning along with axons.  Dendrites receive information either from 

the external environment in the form of sensory stimuli or from axons in the form 

of synaptic inputs.  Dendrites do not simply receive signals but also actively 

participate in computation and storage of information.  The complex morphology 

of dendrites is an important determinant of how a neuron responds to multiple 

stimuli and how those stimuli get integrated (Borst and Egelhaaf, 1994; Brenman 

et al., 2001; Hausser et al., 2000).  Dendritic morphology in terms of branching 

pattern varies widely among different types of neurons and sometimes dendrites 

can be highly branched accounting for ~90% of the postsynaptic surface of the 

neuron (Sholl, 1956).  Many neuronal types show remarkably complex dendritic 

arborizations specific for each neuronal type. Each neuron can be identified 

based on its morphological aspects like branching pattern, number of branches, 

length of branches, the relative distance of different dendritic branches from the 

cell body, number and distribution of dendritic spines and synaptic composition 

(Figure 1) (Euler and Denk, 2001).  Thus, dendrites represent a sophisticated 

structure designed for efficient collection of signals and the dendritic morphology 

is a key to the functional identity of a neuron and is a hallmark of neuronal type 

(Gao et al., 1999; Jan and Jan, 2001). Therefore, an essential question in 

neurobiology is how dendrites acquire their complex and neuron-specific 

morphologies. 

1.2 Molecular players of dendritic morphology 

Although significant progress has been made in unraveling molecular 

mechanisms that regulate axonal growth and guidance, comparatively very little 
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is known about the molecular cues that govern dendritic morphogenesis.  While a 

comprehensive view is still lacking, many recent studies have identified and 

characterized some molecules involved in the establishment of dendritic patterns.   

 
[Euler and Denk, Curr Opin Neurobiol. 11(4):415-22 (2001)]  

Figure 1 Morphological diversity of dendrites: (A) Rat cerebellar Purkinje cell. 
(B) Mitral cell from zebrafish olfactory bulb. (C) Direction-selective ON/OFF ganglion cell 
from rabbit retina. Color coding indicates the depth (on the z axis) from the ganglion cell 
layer (red) to the outer border of the inner plexiform layer (green). (D) Visualization of a 
realistic model of a horizontal system north cell from fly lobular plate. (E) Retinal 
starburst cell labeled with enhanced GFP using a gene gun. Scale bars 20 μm. 

Altogether these data indicate that the differentiation of dendrites is determined 

by an interplay of external cues and internal factors.  The external cues consist of 

signaling molecules (eg. Semaphorin, BDNF), transmembrane proteins 

(receptors) and neuronal activity, and internal factors include cell-intrinsic factors 
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such as transcription factors (eg. Cut, Hamlet) and cytoplasmic signaling 

molecules (eg. GTPases) and cytoskeletal molecules (Grueber and Jan, 2004; 

Landgraf and Evers, 2005; Parrish et al., 2007). 

Among the extrinsic signaling molecules, neurotrophic factors [Neurotrophin 3, 

BDNF (Brain Derived Nerve Growth Factor) and NGF (Nerve Growth Factor)] 

affect dendritic morphology of cortical neurons in vertebrates.   The neurons in 

different cortical layers have different branching pattern specific for that particular 

layer.  Interestingly, neurons from layer 4 and layer 6 exhibit divergent responses 

to the same neurotrophic signal.  Both BDNF and NGF affect dendritic 

morphology of these neurons differentially by either inhibiting or promoting 

dendritic outgrowth in different layers (McAllister, 2000; McAllister et al., 1997).  

The axon guidance cue Semaphorin 3A acts as an attractant, guiding dendritic 

growth in the cerebral cortex in mice (Sasaki et al., 2002), whereas graded 

expression of Semaphorin-1a cell-autonomously directs dendritic targeting of 

olfactory projection neurons in Drosophila (Komiyama et al., 2007). BMPs (Bone 

Morphogenic Proteins) affect dendritic arborization in cultured neurons and 

induce dendritic growth in sympathetic neurons (Beck et al., 2001; Scott and Luo, 

2001).  

Among the transmembrane proteins, Cadherin controls dendritic extension and 

spine morphology (Togashi et al., 2002) and EphB receptors regulate dendritic 

spine morphogenesis and synapse formation in hippocampal neurons in culture 

(Henkemeyer et al., 2003).  The membrane receptor Notch has also been shown 

to inhibit dendritic growth through regulation of gene expression (Redmond and 

Ghosh, 2001).  Recently, in Drosophila, a gene encoding the cell adhesion 

molecule Dscam was demonstrated to be involved in self avoidance mechanisms 

among the dendritic branches of the same neuron.  Dscam generates 

alternatively spliced mRNAs that can be translated into thousands of different 

protein isoforms.  Isoform-specific homophilic Dscam interactions cause dendritic 

branches of the same neuron to avoid each other ensuring the correct patterning 

 3



of dendrites in the peripheral nervous system (PNS) (Hughes et al., 2007; 

Matthews et al., 2007; Soba et al., 2007). 

Among the intrinsic signaling molecules, the transcription factor Cut regulates 

distinct dendritic branching patterns of Drosophila multidendritic neurons based 

on its level of expression (Grueber et al., 2003a). The transcription factor Hamlet 

is a binary genetic switch between dendritic outgrowth and branching in sensory 

neurons of Drosophila PNS (Moore et al., 2002). Sequoia, a Tramtrack-related 

zinc finger protein, functions as a pan-neural regulator for dendrite and axon 

morphogenesis in Drosophila (Brenman et al., 2001).  Tricornered (Trc), one of 

two NDR (Nuclear Dbf2-Related) family kinases, mediates a 'like-repels-like' 

behaviour of dendrites allowing for the complete but non-overlapping coverage of 

the dendritic fields of highly complex dendritic branching pattern neurons in 

Drosophila (Emoto et al., 2004). 

Recent studies point out that some of the extrinsic factors act through signaling 

pathways like MEK [MAPK (mitogen-activated protein kinase) and ERK 

extracellular signal-regulated kinase) kinase] and CaMK pathway (Vaillant et al., 

2002).  These pathways act directly or through Rho family proteins to regulate 

cytoskeletal components and thus dendritic morphogenesis and branching (Miller 

and Kaplan, 2003).   

However, how do the intrinsic factors as well as many of the extrinsic factors 

signal and regulate dendritic construction is an open question.  It is conceivable 

that the coordinated action of intrinsic factors and external cues finally modify the 

structure of the dendritic cytoskeleton and determines the morphological 

characteristics of dendrites. Since actin and microtubule are essential structural 

components of dendrites, various signaling pathways regulating dendrite 

development must eventually end up affecting actin and/or microtubule dynamics 

(Jan and Jan, 2001). 
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1.3 Cytoskeletal molecules and dendritic morphogenesis 

Two of the major components of the cytoskeleton are represented by the actin-

based microfilaments and the microtubules, together with a number of molecules 

regulating the dynamic properties of both types of filaments. Considering the vast 

repertoire of cytoskeletal molecules, relatively few components of the actin and 

the microtubule cytoskeleton and their regulators are known to be involved in the 

establishment or remodeling of the dendritic arbor so far (Gao and Bogert, 2003; 

Landgraf and Evers, 2005; Scott and Luo, 2001) (Figure 2).  For instance, the 

Rho family of small GTPases, including RhoA, Rac1, and Cdc-42 represent 

major conserved regulators of the actin cytoskeleton controlling the growth, 

extension and branching of dendritic arbors in a range of different systems 

including Drosophila, mouse and Xenopus (Cline, 2001; Grieder et al., 2000; 

Redmond and Ghosh, 2001; Van Aelst and Cline, 2004). Although a general 

consensus is not easily identifiable, each molecule seems to have relatively 

conserved basic functions. For instance, Rho restricts dendrite growth in 

Xenopus optical tectal cells (Adams et al., 2000) and Drosophila mushroom body 

neurons (Lee et al., 2000). In contrast, the constitutively active form of Drosophila 

Cdc-42 (Dcdc-42) dramatically alters dendritic patterning in the embryonic PNS 

(Gao et al., 1999).   Non-receptor tyrosine kinase, Abl (Abelson kinase), is an 

actin-binding protein and promotes dendrogenesis by inducing actin cytoskeletal 

rearrangements at the actin cytoskeleton in cooperation with Rho family small 

GTPases in hippocampal neurons (Jones et al., 2004).  Mutations in Drosophila 

enabled, an actin regulator of the Ena/VASP family, disrupt normal dendritic 

routing in neurons of the embryonic PNS and decrease dendritic branching (Li et 

al., 2005). In the same neurons, mutations in Tropomyosin, an actin filament-

stabilizing molecule, produce increased dendritic fields (Ackermann and Matus, 

2003).  
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[Dickson BJ, Curr Opin Neurobiol. 11(1):103-110 (2001)] 

Figure 2 Cytoskeletal players: Representation of some of the cytoskeletal molecular 
players emphasizing signal transduction pathways that link Rho GTPases to the actin 
cytoskeleton.  All the three small RhoGTPases act through several downstream effectors 
to affect cytoskeletal elements. Rho GTPase pathways regulate actin dynamics at 
several points, including filament nucleation and branching (Arp2/3 complex), filament 
extension (capping protein), retrograde flow (myosin) and actin recycling (cofilin). Red 
arrows indicate points at which these pathways are likely to be regulated in response to 
extracellular guidance cues.  

More fragmented evidence is available for the role of microtubules in dendrite 

differentiation. For instance, MAP2 (microtubule associated protein 2) deficient 
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mice show reduction in microtubule density in dendrites leading to reduction in 

dendritic length (Harada et al., 2002), while inhibition of the microtubule-

associated motor protein, CHO1/MKLP1, in hippocampal neurons in culture 

suppresses dendritic differentiation (Lee et al., 2000).  Expression of the 

microtubule associated protein, MAP1A, is required for activity-dependent 

growth, branching, and stabilization of the dendritic arbor (Szebenyi et al., 2005).  

Another highly conserved protein and microtubule interactor, Lis1, has been 

implicated as a regulator of the microtubule cytoskeleton and is required in 

dendritic growth and branching in mushroom body neurons as well as in axonal 

transport (Liu et al., 2000).  For the coordination of microtubules and actin 

cytoskeleton the molecules that cross-link them, such as Kakapo, should be of 

particular importance. Indeed, kakapo mutants display reduced branching of the 

dendrites in Drosophila embryo peripheral nervous system (PNS) neurons and 

motor neurons (Gao et al., 1999; Prokop et al., 1998).  

This limited number of identified cytoskeletal factors is far below the expectations 

and does not seem to correlate with the degree of diversity of dendrite structures. 

Therefore, it is essential to identify more molecular components that will allow us 

to elucidate the mechanisms of dendrite growth, branching and stabilization.  

This question can now be addressed in detail in Drosophila, owing to 

technological advances that allow in vivo labeling of the dendrites of identifiable 

neurons. 

The aim of this project was to focus on cytoskeletal molecules by taking a 
candidate-based reverse genetics approach using RNA interference (RNAi) 
and to isolate cytoskeletal molecules affecting dendritic morphogenesis in 
the Drosophila embryonic PNS. 

1.4 Model system: Peripheral Nervous System of Drosophila melanogaster: 

The fruit fly Drosophila melanogaster has been at advantage over other model 

systems in many ways due to its well studied, elaborate classical and molecular 

 7



genetics.  Therefore it has been widely used for uncovering important aspects of 

cell biology, neurobiology and development (Reaume and Sokolowski, 2006).  D. 

melanogaster has a life cycle of 10 days at 250C, during which it undergoes 

developmental morphogenesis from embryo to larva to pupa and finally the adult 

fly (Figure 3).   

                  

(Adapted from Wolpert, L., R. Beddington, J. Brockes, T. Jessell, P. Lawrence, and E. 
Mayerowitz. 1998. P. 484 in Principles of Development. New York: Current Biology.)  

Figure 3 Life cycle of Drosophila melanogaster: The Drosophila egg is about 
half a millimeter long. Following fertilization, mitosis (nuclear division) begins. However, 
cellularization does not occur in the early Drosophila embryo till stage 5, resulting in a 
multinucleate cell called a syncytium, or syncytial blastoderm.  It takes about one day 
after fertilisation for the embryo to develop and hatch into a worm-like larva. The larva 
eats and grows continuously, moulting one day, two days, and four days after hatching 
(first, second and third instars). After two days as a third instar larva, it forms an 
immobile pupa. Over the next four days, the body is completely remodelled to give the 
adult winged form, which then hatches from the pupal case and is fertile within about 12 
hours. (timing is for 25°C; at 18°, development takes approximately twice as long.) 

 8



The larva hatches 1 day after the egg is fertilized. First, second, and third instar 

are larval stages, each ending with a molt. During pupation most of the larval 

tissues are destroyed and replaced by adult tissues derived from the imaginal 

discs that grow during the larval stages. 

                                         

 

Dorsal 
cluster 

Lateral 
cluster 

Ventral 
cluster 

 a: anterior, p: posterior, d: dorsal, v: ventral  

[(Grueber et al, Curr Biol. 13(8):618-26 (2003)] 

Figure 4 PNS organization: Arrangement of da Sensory Neurons and their dendritic 
territories in the Drosophila Peripheral Nervous System. (A) A PNS schematic of a single 
abdominal hemisegment. da neurons of the same color have been placed in the same 
morphological class. (B) Arrangement of the territories of different da neuron classes 
along the larval body wall. The pattern shown is repeated in each abdominal 
hemisegment, although only two segments are schematized in this diagram (left 
segments with cell body and dendritic field indicated, and right segment with cell body 
only). 

The peripheral nervous system (PNS) of Drosophila has been successfully used 

for studying the development of dendrites (Gao et al., 1999; Grueber et al., 

2003b).  PNS neurons of Drosophila embryos and larvae have been grouped into 

3 major types – external sensory (es) neurons, chordotonal (ch) neurons and 
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multiple dendrite (md) neurons, including the dendritic arborization (da) neurons 

(Bodmer et al., 1987).  These neurons have stereotyped dendritic morphologies 

and position in each abdominal hemi-segment of the embryo. The da neurons 

are further divided into four different groups depending on their dendritic 

complexity (Figure 4) (Grueber et al., 2002).   

 
                                                             [Grueber et al, Cell.  21;112(6):805-18 (2003)] 

Figure 5 Different morphological classes of da sensory neurons in 
Drosophila PNS: Mature morphologies of representative class I (A), class II (B), class 
III (C), and class IV (D) da neurons with the positions of other same-class neurons 
(closed diamonds) in a schematized abdominal hemisegment of the PNS. Dorsal is up 
and anterior is to the left.  

Class I neurons comprise simple dendritic arborization neurons (Figure 5) and 

there are three of them in each abdominal hemi-segment, two in the dorsal 

cluster and one in the ventral cluster (labeled in violet in figure 4A).  The four 

class II neurons (labeled in blue in figure 4A) have little more complex dendritic 

pattern and five class III neurons (labeled in green) are recognized by comb-like 
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small branches protruding from the main dendritic branches. The three class IV 

neurons (labeled in red in figure 4A) in each abdominal segment, instead, have a 

very complex arbor and altogether encompass the whole body wall on each 

hemi-segment  (Figure 5) (Grueber et al., 2002).   

The genetic programs that regulate the development and morphological 

diversification of these neurons are beginning to be elucidated.  These neurons 

are supposed to be tension-sensitive, mechanoreceptors and proprioceptors.  

Their sensory input has recently been reported to be necessary for the 

generation of Drosophila larval locomotion, a form of rhythmic behavior (Song et 

al., 2007).  As yet, however, there is no evidence of the functional relevance of 

their diverse dendritic morphologies.    The class IV neurons are hypothesized to 

be mechanosensitive from genetic studies on pickpocket gene which is 

exclusively expressed in this specific class and mutates to show 

mechanosensory dysfunction (Adams et al., 1998; Ainsley et al., 2003). On the 

other hand the class I neurons are proposed to be proprioceptive because they 

have dendrites oriented in a preferential direction relative to the body axis and 

their axons target a more dorsal region of the neuropil, which is generally a 

characteristic of proprioceptive afferents in insects (Grueber et al., 2007).   

These well characterized da neurons present a very apt model system to 

understand developmental aspects of dendrites as well as structural differences 

between classes of neurons, which result in their unique dendritic patterns. Thus, 

we have used the PNS of Drosophila for insightful analysis of dendritic 

morphology establishment.  

1.5 Assay System: RNA interference 

RNA interference (RNAi) is a process of silencing of gene expression by double 

stranded RNA molecules in the cell.  Research to date has hinted that RNAi is an 

ancient process which predates evolutionary divergence of plants and animals.  

RNAi in both plants and animals is mediated by small RNAs of approximately 21-
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23 nucleotides in length for regulation of target gene expression at multiple levels 

through partial sequence complementarities (Ma et al., 2006).  RNAi is triggered 

when a cell encounters a long double-stranded RNA (dsRNA), which might be 

produced from an introduced transgene, a viral intruder or a rogue genetic 

element (Figure 6).   An enzyme called Dicer cleaves the long dsRNA into 

siRNAs.  An RNA-induced Silencing Complex (RISC) then degrades the sense 

strand and the antisense strand is used for targeting complementary mRNA 

destruction.  The repetitive cycles of degradation of specific mRNAs, results in no 

protein made and thus effectively silences the gene from which the mRNAs were 

produced (Novina and Sharp, 2004).  

Combined with wide spread genome sequencing, experimental use of RNAi as 

an assay system has the potential to interrogate systematically all genes in a 

given organisms with respect to a particular function (Ma et al., 2006).  Thus, this 

thesis presents a small scale analysis to identify genes encoding cytoskeletal 

molecules required in dendritic morphogenesis on the basis of phenotypic 

profiles. 
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[Modified from Novina and Sharp, Nature. 430(6996):161-4 (2004)] 

Figure 6 RNAi mechanism RNAi is triggered when a cell encounters a long double-
stranded RNA (dsRNA). An enzyme called Dicer cleaves the long dsRNA into siRNAs. 
An RNA-induced silencing complex (RISC) then distinguishes between the different 
strands of the siRNA. The sense strand (blue) is degraded. The antisense strand 
(yellow) is used to target genes for silencing, and has one of several fates depending 
upon the organism. In fruitflies and mammals, the antisense strand is incorporated 
directly into RISC to target a complementary mRNA (green) for destruction. In the 
absence of siRNAs, the RISC lacks sequence-specific mRNA-binding properties. But 
when bound to the antisense strand, the now activated RISC can participate in repeated 
cycles of degradation of specific mRNAs, such that no protein is made — effectively 
silencing the gene from which the mRNAs are produced.  

RNA interference (RNAi) has been used successfully to study the role of 

molecules affecting dendrite morphology like CaMKIIβ and Hamlet (HAM).  

Introduction of dsRNA targeting CaMKIIB results in reduction of dendritic 

arborization in hippocampal neuronal cultures (Fink et al., 2003).  RNAi of ham 
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transcript abolishes all HAM protein expression in Drosophila embryo and results 

in significant increase in the number of external sensory neurons as well as 

reduction of dendritic arbors in multidendritic neurons in the PNS of Drosophila 

(Moore et al., 2002).   Thus, RNAi can be used as an effective tool to screen for 

molecules affecting dendritic morphogenesis.   

While using RNAi as a screening assay, some important facts about 

complications associated with this method should be noted.  Owing to a 

tolerance for mismatches and gaps in base-pairing with targets, small RNAs 

could have up to hundreds of potential target sequences in a genome and some 

small RNAs in mammalian systems have been shown to affect the levels of many 

messenger RNAs besides their intended targets (Ma et al., 2006).   In Drosophila 

also off target effects mediated by short homology stretches within long dsRNAs 

are prevalent leading to false positive results.  Another weak point of RNAi 

screens is that the effectiveness of dsRNA for each molecule varies depending 

on the organism, cell type or target sequence leading to differential phenotypic 

output of the knockdown of each gene (Asikainen et al., 2005).  

1.6 RNAi assay: positive products- Diaphanous and Profilin 

This thesis describes the knock down by RNAi of cytoskeletal molecules 

suspected to be involved in dendritic morphogenesis and the genetic analysis of 

positive candidates resulted from this assay.  The 2 positive candidates which 

were isolated and selected for further studies were Diaphanous and Profilin. 

1.6.1 Diaphanous 

Diaphanous is a member of the formin homology (FH) domain protein family.  

Formins are a widely expressed family of proteins that govern cell shape, 

adhesion, cytokinesis, and morphogenesis by remodeling the actin and 

microtubule cytoskeletons.  The predominant class of formins in fungi and 

animals are diaphanous-related formins (DRFs), which are regulated by 

autoinhibitory intramolecular interactions between their N and C termini.  
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Diaphanous is the founding member of the DRFs.  The DRFs include the 

Diaphanous, DRF1 and DRF2 in humans, DRF2 in mouse and Bni1, Bnr1, and 

for3p in yeast (Peng et al., 2003). 

Diaphanous is predicted to have 3 FH domains (Figure 7A), of which the FH1 

and FH2 domains and the linker between them have been implicated in the 

nucleation of actin filaments (Sagot et al., 2002). In addition, FH1 is marked by its 

high proline content and is responsible for the binding of Profilin (Chang et al., 

1997), upon which the actin elongation activity of formins can be enhanced 

(Kovar, 2006). Formin FH2 domains are involved in binding to actin and other 

actin binding molecules.  The FH2 domains have been shown to alter actin 

polymerization dynamics by accelerating de novo filament nucleation, altering 

filament elongation/depolymerization rate, and by preventing filament barbed-end 

capping by capping proteins. This effect varies between formins with varying 

potency (Higgs, 2005).  A third Formin homology domain, FH3, was reported to 

exist N-terminal to the FH1 of several formins but its true identity as a functional 

domain is doubtful.  

Other than FH domains, Diaphanous has other important domains which affect 

its activity.  The Diaphanous Autoinhibitory Domain (DAD) is a stretch of 20–30 

amino acids found C-terminal to the FH2 domain (Figure 7B) that binds with sub-

micromolar affinity to the Diaphanous inhibitor domain (DID), a ~250 residue 

region located near the N terminus.  The DAD–DID interaction is sufficient for 

auto-inhibition and to affect actin dynamics (Kovar, 2006).  RhoA competes with 

DAD for binding the mDia1 N terminus, relieving the auto-inhibitory interaction 

and enabling mDia1 to influence actin dynamics.  Based on the relative 

approximate positions of their putative GTPase binding domains and diaphanous 

inhibitory domains,  other Rho GTPases are likely to have similar activating roles 

for other Formins (Ridley, 2006).  Thus, different GTPases may regulate different 

Formins specifically. 
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[Faix and Grosse, Dev Cell. 10(6):693-706 (2006)] 

Figure 7 Domain Organization and Molecular Regulation of Diaphanous-
Related Formins: (A) Schematic representation of the domain organization of a 
representative DRF such as mDia1. Abbreviations: GBD, GTPase binding domain; DID, 
Diaphanous-inhibitory domain; DD, dimerization domain; CC, coiled coil; FH1, formin 
homology 1 domain; FH2, formin homology 2 domain; FH3 formin homology 3 domain; 
ARR, armadillo-repeat region. The loosely defined FH3 region is based on sequence 
similarities to other DRFs and does not match true domain boundaries. (B) Autoinhibition 
of DRFs, caused by the interaction of DAD with DID, is partly relieved by association of 
an active, GTP bound Rho GTPase to GBD, allowing DID to adopt a structured 
conformation that, in turn, appears to induce release of DAD, leading to a partial 
activation of the DRF.  

The connection between formins and microtubules (MT) is less well understood. 

In yeast, the MT effects appear to be dependent on the ability of formins to 

generate polarized actin cables whereas, in mammalian cells, formin signals that 

cause MT stabilization and polarization might be more direct (Wallar and Alberts, 

2003).  Recent studies have also shown that formins bind to microtubules 

through a peptide domain situated in their N-terminal region and separate from 

the FH domains (Zhou et al., 2006). 

These versatile regulators of actin nucleation, elongation and of filament stability 

have been involved in a number of cellular and morphogenic processes (Faix 
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and Grosse, 2006). The various processes include filopodia formation, cell 

adhesion and motility, endocytosis, cell polarity, etc.  in vivo studies in Drosophila 

implicate a role for Diaphanous in cell division, which is apparent by cytokinesis 

defects during spermatogenesis and oogenesis giving rise to germlineless 

phenotype (Castrillon and Wasserman, 1994).  Diaphanous also controls the 

formation of the furrow canal by directed actin assembly during Drosophila 

cellularization (Grosshans et al., 2005). 

1.6.2 Profilin 

Profilin was among the first actin-binding proteins to be characterized.  Profilins 

bind to actin monomers in 1:1 ratio.  Conflicting data suggest that Profilin might 

function to promote either actin polymerization or depolymerization in cells.  

Perhaps the most accurate description of Profilin emphasizes its ability to boost 

actin-filament dynamics, both in polymerization and in depolymerization (Figure 

8) (Yarmola and Bubb, 2006).  Profilin-bound monomers cannot nucleate.  Thus, 

Profilin inhibits spontaneous nucleation, making essential the nucleation factors 

that can overcome the high cellular concentration of Profilin.  One essential 

function of Profilin seems to be the nucleotide-exchange activity that accelerates 

the ADP–ATP exchange on G-actin 1000-fold, thereby replenishing the pool of 

ATP–actin in the cell.   Once filaments are nucleated, they can use the Profilin-

bound monomer to elongate at their barbed ends.  The filament elongates from 

both barbed and pointed ends but barbed-end elongation is favored ~10:1 over 

pointed end elongation.  Besides accelerating the nucleotide exchange on actin 

monomers, Profilin can also promote filament elongation at free barbed ends 

following the dissociation of capping proteins. The free filament ends associate 

with Profilin–actin (profilactin) complexes, and the Profilin-bound actin is released 

and added to the filament.  By this mechanism, Profilin can funnel actin 

monomers to the growing barbed end of the filament and promote actin 

polymerization.  Thus, Profilin allows barbed end but not pointed end elongation 

of bound monomers (Higgs, 2005; Witke, 2004; Yarmola and Bubb, 2006). 
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                        Actin monomer:                             Profilin bound to actin monomer:  

[Yarmola EG, Bubb MR. Trends Biochem Sci. 31(4):197-205 (2006)] 

Figure 8: Profilin in actin dynamics Acceleration of actin-filament dynamics by 
profilin. (a) The effect of profilin (P) on the rates of elongation and dissociation at the 
barbed and pointed ends at steady-state is illustrated. The width of the arrows indicates 
the relative rates of reactions at steady state. As compared with dissociation in the 
absence of profilin (i), saturation by profilin accelerates the dissociation of subunits from 
the barbed end (ii) and accelerates the association of subunits in proportion to the 
formation of profilin-actin and the fraction of filaments not capped by profilin. 

Profilin is an essential protein with cellular functions related to the actin 

cytoskeleton, including motility, development, signaling and membrane 

trafficking.  In the absence of Profilin, actin-dependent processes such as 

cytokinesis and polarized growth fail in flies, Dictyostelium, yeasts and 

mammalian cells (Witke, 2004). 

In addition to formins, several other proteins that are important to actin dynamics, 

including WASp (Wiskott-Aldrich syndrome protein) /Scar proteins and VASP 

(vasodilator-stimulated phosphoprotein), contain Profilin-binding poly-proline 

motifs.  Profilin is estimated to have more than 50 characterized ligands from 

different organisms, although this is probably only a fraction of the number of 

actual Profilin-binding partners.  The binding of Profilin to different ligands might 

provide a means of linking different pathways, by a mechanism that remains 

unclear, to cytoskeletal dynamics (perhaps in a cell-type-specific manner). 

Alternatively, the Profilin–ligand interaction might work in an actin-independent 

manner to regulate the ligands directly (Witke, 2004). 
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1.6.3 The role of Profilin in Formin function:  

Profilin can bind to an actin monomer and a poly-proline sequence 

simultaneously, and both interactions are in rapid equilibrium, binding and 

releasing multiple times per second.  Profilin binding to stretches of five or more 

prolines in the Formin homology 1 (FH1) domain brings an actin monomer in the 

vicinity of the FH2-bound barbed end. Profilin-bound monomer adds readily to 

the barbed end. For all Formins studied, Profilin accelerates barbed-end 

elongation by FH1–FH2 domain constructs (Figure 9). It is currently unclear 

whether this acceleration is due to increasing the local concentration of 

monomer, or to inducing a change in the processivity rate of the FH2 domain.   

 

 

                                       

 

                                   

 

    [Modified from Kovar et al,Nat Cell Biol. 6(12):1158-9. (2004)] 

Figure 9 Formin- Profilin interaction Profilin−actin subunits add to a filament 
associated with mouse formin mDia1(FH1FH2) (in blur) attached to a polystyrene bead. 
Mouse formin mDia1 requires profilin−actin to remain processively associated with the 
elongating barbed end, which can grow at rates 10- to 15-fold faster than the rate of free 
barbed ends. 

In contrast to its acceleration of Formin-mediated filament elongation, Profilin 

inhibits nucleation by formins. This effect is suggested by the strong inhibitory 

effect of Profilin on nucleation in the presence of mDia1 (Mouse Diaphanous 1) 

FH2 domain and the lower number of filaments generated by FH1–FH2 domains 

of mDia1, mDia2 or Bni1 in the presence of Profilin than in its absence. 
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Competition for monomer binding between the FH2 domain and Profilin might be 

the mechanism for this effect (Higgs, 2005).    

1.6.4 Neuronal role of Diaphanous and Profilin:  

The structural and molecular aspects of Diaphanous have been studied really 

well but mostly in vitro except some studies in Yeast, Drosophila and Zebrafish.  

A recent study in zebrafish reported the involvement of mDia in the regulation of 

convergence and extension movements during gastrulation and tail formation 

downstream of RhoA and Wnt signaling (Zhu et al., 2006).  However, the 

neuronal role of diaphanous in vivo still remains ambiguous.   The neuronal role 

in Drosophila has not been investigated till now. 

One of the in vitro studies found that Swiss3T3 cells can elongate prolonged 

neurite-like processes best when higher mDia activity was achieved by 

overexpression a dominant active form of mDia1.   This study uses stromal cell–

derived factor (SDF)-1(Arakawa et al.), a neural chemokine, that can turn on two 

distinct Rho-dependent pathways with opposite consequences.  A low 

concentration of the ligand stimulates a Rho-dependent pathway that mediates 

facilitation of axon elongation in culture in cerebellar granule cells.  In contrast, 

Rho/ROCK activation achieved by a higher concentration of SDF-1 causes 

repression of axon formation and induced no further increase in axon length. A 

dominant negative mDia1 mutant interferes with SDF-1– dependent axon 

elongation and initiation.  Further, mDia1 knockdown by RNAi annihilates both 

SDF-1– dependent axon elongation and axon initiation.  The same study 

describes high expression of mDia1 in the cerebellar external granule layer 

where the earliest events in axonogenesis occur during early postnatal 

development in mice.  In round cerebellar granule cells, mDia1 protein was found 

to be already colocalized with F-actin and tubulin at spots where an axon was 

likely to initiate and after axon outgrowth started, mDia1 was heavily enriched at 

the base of early initiating process and within its growth cones in close spatial 
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vicinity with actin filaments and microtubules (Arakawa et al., 2003).  This study 

hints at the neuronal role of Diaphanous in vivo. 

In case of Profilin, its functional aspects have been extensively studied in vitro as 

well as in vivo.  In mice, neurons express two independent gene products − 

Profilin I and Profilin II.  While Profilin I is ubiquitously expressed, Profilin II is 

found only in brain, skeletal muscle and kidney.  Subcellular localization analysis 

of Profilin I has revealed that Profilin I is expressed in individual subtypes of brain 

neurons with high expression levels in hippocampal pyramidal cells in brain 

sections and cultured hippocampal neurons, and it localizes at individual pre- and 

postsynaptic specializations.  Profilin I also localizes at both glutamatergic and 

GABAergic synapses and depolarization protocols significantly recruit Profilin I 

toward synaptic sites (Neuhoff et al., 2005).  Another study in primary neuronal 

cultures showed activity-dependent targeting of Profilin II in dendritic spine heads 

(Ackermann and Matus, 2003).  Interestingly, an in vitro study in neuronal cell 

cultures indicated, brain specific isoform of Profilin, Profilin II, as a negative 

regulator of neurite sprouting.  Primary cultures of hippocampal neurons of 

Profilin II null mice display an increased number of highly branched budding 

neurites, with higher mean lengths (Da Silva et al., 2003).  In flies, Profilin is 

required for motor axon outgrowth in the Drosophila embryo.  Mutations in 

Profilin display a growth cone arrest phenotype for axons of inter-segmental 

nerve indicating its function in controlling axonal outgrowth (Wills et al., 1999).  

Thus from vertebrate and invertebrate studies, Profilin is shown to have a role in 

neuronal development as well as morphological alterations.  However, its role in 

dendritic morphogenesis has not been investigated till now.  

in vivo data about the role of both molecules -Diaphanous and Profilin- in 

dendritic morphogenesis are missing.  In flies, both Profilin and Diaphanous 

mutate to germlineless phenotypes. However, their direct genetic interaction and 

binding in this system has not been demonstrated till date. 
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1.7 Analysis of dendritic branching in vivo and distribution of actin and 
microtubule in dendrites: 

While molecular players of dendritic morphogenesis have been explored, the 

exact process of dendritic morphogenesis and how the cytoskeletal molecules 

are localized in the branches in vivo is not very clear.  The Drosophila da 

neurons present a very ideal system to answer these questions.  Different 

classes of md neurons have characteristic different morphologies and they are 

postulated to preferentially transduce different sensory modalities consistent with 

their distinct dendritic morphologies.  It is conceivable that different classes of da 

neurons follow different pathways to finally attain their distinguished dendritic 

morphologies.  However, it is not clear how the cytoskeleton per se contributes to 

formation of dendritic branches and to the final morphology.  How does the 

interplay between microtubules and actin architect the dendrites? Some 

preliminary studies have been done to understand these issues.   

Initial studies in Drosophila embryos have demonstrated distinct modes of initial 

dendrite formation and branching of class I –ddaD and ddaE neurons, and of 

class IV –ddaC neuron.  In both class I -ddaD and ddaE, a first-order branch with 

a simple growing tip emerges at 13-14 hr AEL followed by one or two additional 

first-order branches.  Within 1 hr, a number of lateral/second-order branches 

sprout laterally from the first-order branches undergoing repeated cycles of 

extension and retraction until a subset gets stabilized by ~18 hr AEL (Sugimura 

et al., 2003).   On the other hand, cell bodies of ddaC are first visible at 15.5-16.5 

hr AEL due to late expression of the Gal4 line used in this study.  Every ddaC cell 

body is associated with two or three growing dendrite roots. In contrast to the 

morphologically simple tips of ddaD and ddaE, ends of ddaC dendrites look like 

growth cones with numerous filopodia.  ddaC increases in arbor complexity by 

repeated bifurcation of the ends making it difficult to distinguish first-order and 

higher-order branches. Another interesting observation of these studies was that 

ddaD and ddaE, but not ddaC, almost fixed the shape of overall dendritic arbors 

at early larval stages.  This study describes the development of dendrites at 
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earlier larval stages but not in the last larval stages.  Also, it describes 2 of the 

class I neurons but the third one- vpda neuron- remains undescribed.  It is 

possible that class I neurons have dynamic formation and withdrawal of their 

branches or branch extensions during late larval stages because the body 

surface of the larva grows very fast and so do the dendritic branches to cover the 

increased area.  

 
[Andersen et al, J Neurosci. 25(39):8878-88(2005)] 

Figure10 Localization of Actin-GFP in dendritic filopodia Drosophila da 
neurons contain actin-rich filopodia restricted to dendrite compartments. Single-neuron 
dendrite images from the ddaA neuron from the dorsal cluster of sensory neurons from 
hemi-segment A6 with anterior toward the left and dorsal toward the top. A, A second 
instar larva (yw; Gal4–109(2)80, UAS-GFP) expressing GFP in da neurons 
demonstrates strong dendritic shaft (white arrowheads) and axon fascicle (yellow 
arrowhead) labeling. B, In comparison, a second instar larva (yw; Gal4–109(2)80, UAS-
actin::GFP) expressing actin::GFP reveals actin-rich dendritic filopodia along dendrites 
(white arrows) that are absent on axonal shafts (yellow arrowhead). Actin::GFP 
demonstrates strong enrichment in dendritic filopodia with only limited fluorescence in 
dendritic shafts (inset, yellow arrows). Scale bars: (in A) A, B, 50 µm; insets, 5 µm. 

Further studies using the Gal4/UAS system to express fluorescently tagged 

proteins to assess the dendritic compartmentalization and structure of class III da 

neurons resulted in visualizing actin-rich filopodia with GFP tagged actin 

construct.  However, numerous in vivo microtubule reporters, including 

Tau::GFP, which binds microtubules in vivo, and Tubulin::GFP failed to label 

dendritic filopodia indicating that these dendritic filopodia were enriched in actin 

and devoid of microtubules (Figure 10) (Andersen et al., 2005; Grueber et al., 
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2002). The filopodial like structures mentioned in above study are a key feature 

of class III neurons and it is not clear whether other classes of neurons also 

follow similar distribution of actin and microtubules.  

in vivo live time lapse imaging could help a great deal to understand different 

events that occur during dendritic morphogenesis as well as to examine the 

cytoskeletal dynamics.  It will especially help in understanding roles of different 

molecules in dendritic morphogenesis, for example, removing one particular 

molecule can affect withdrawal of branches but not the de-novo formation of 

branches.  

This thesis describes standardization of in vivo live imaging set up to examine 

development of dendrites of PNS neurons over time.  It also describes 

preliminary efforts to visualize class I vpda neuron with tagged Actin and Tubulin 

constructs to check the localization of Actin and Tubulin in dendritic branches 

and compartments.  The latter approach will help to understand dynamic 

remodeling of cytoskeleton during dendritic branching and growth.  
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CHAPTER-2 MATERIALS AND METHODS 
 
 

 
2.1 RNA interference assay  
To generate dsRNA, we used genomic DNA from Drosophila embryos as initial 

template and amplified target DNA stretches by PCR using specific primers.  The 

amplified product was then used to make double stranded RNA by T7 

polymerase.  The entire procedure is explained below in detail. 

 
2.1.1 Genomic DNA extraction 
Genomic DNA was extracted from wild type flies (80G2) with standard methods 

using DNA extraction protocol by Sigma DNeasy Kit.  We then purified the 

genomic DNA using phenol-chloroform extraction and concentrated it by ethanol 

precipitation. The air-dried DNA pellet was suspended in water and stored at -

200C. 

2.1.2 dsRNA preparation 

Conserved sequences of around 500 bps for each candidate protein were 

chosen.  The conserved sequences were blasted against the Drosophila genome 

to check their specificity for the selected molecule.  Once assured of the 

uniqueness of the selected stretch reducing the risk of non-specific effects, we 

used it as template for RNAi assay for that particular protein.   

The procedure can be described in short as follows: 

A) Amplification of the target cDNA from genomic DNA by PCR with primers 

containing T7 promoter sequence tags at the 5’ of the specific sequence.  The 

primers were designed   based on a published primer database (Table 1) 

(Rogers et al., 2003).   
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The following PCR protocol was used for amplification with minor alterations 

whenever required depending on the set of primer pairs: 

Step1: 920C -2mis 

Step2: 920C -45 sec 

Step3: 600C -1min 

Step4: 720C -1min 

Repeat Step 2 to 4 - 35 times 

Step5: 720C -4mins 

Step6: 100C -infinite 
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Table 1: Primers used for amplification of DNA stretches: 

T7:   5’ TAA TAC GAC TCA CTA TAG GGA GA  3’
Gene 

(dsRNA length) 
 

CG Number FORWARD PRIMER REVERSE PRIMER 
 

adf/cofilin 
homologue 

CG6873 GT136 
GAAACTCTCGCTTGAGCACC 

 

GT137 
ATCTGGAATTAATTTGAGCCGC 

Aip1 
(665 bp) 

CG10724 GT19 
TTCAAGTTCAAGATGACCAAGC 

GT20 
TTCACCACATAGTCCGTGTAGG 

 
Capulet 
(464 bp) 

CG5061 GT21 
ACTGCAGTACGTGACGCTGG 

GT22 
CACTCAGATCCAGCATGGG 

 
Cappucino 

(685) 
CG3399 GT138 

ATATTGGACACGGATAGTGACG 
 

GT139 
CGTAAGGATGATGGAGAAGACC 

Cofilin (twinstar) 
(208 bp) 

CG4254 GT23 
ATGTTGTACTCCAGCTCCTTCG 

GT24 
ACAGGATACGTGTTTCCATCG 

 
Diaphanous 

(695 bp) 
CG1768 GT25 

TCGTTCTGCATTGTCTATGAGC 
GT26 

ATCTTCTTCTCGTACTCCTCCG 
 

      δ-catenine 
(269 bp) 

CG17484 GT6 
ACCTTTCATTGACGCACGA 

GT7 
CCCAGAGATCTTGTACGTTGC 

Kelch 
(668 bp) 

CG7210 GT146 
CAGATGTCAAATCCGTATGGC 

GT147 
TCGTTCAGATTATTGCTGTTGG 

 
Profilin 

(chickaddee) 
(452 bp) 

CG9553 GT31 
CTTCCGTGGTAGAGAAACTTGG 

GT32 
TTCTTAACTATTGATTGGGGCG 

 
        Quail 

(661) 
CG6433 GT150 

GTACCGAGATGCCTTACAATGG 
 

GT151 
GCATTTTGGACATAACTTTGGG 

Scar 
(562 bp) 

CG4636 GT33 
GTGTATCAGCAGGATGAGCTGC 

GT34 
TCTTCTGTTTCTTATTGCCACG 

 
Slingshot 
(622 bp) 

CG6238 GT35 
GGAGATCGATAACTTCTTTCCG 

GT36 
GTTCTCCATAGACTGGCTTTGC 

 
Sra-1 

(604 bp) 
CG4931 GT37 

GATCACGTCAAGTACATTTCGG 
GT38 

ATAGCTGAGTGGAGGAAGGTCC 
 

Twinfillin 
(591 bp) 

CG3172 GT39 
ATAGGTCCCCTACTGGAAAAGG 

GT40 
GTACGACTCAAAGTAGTCGCCC 
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B) The amplified cDNA stretches were used as templates to transcribe dsRNAs 

using T7 RNA polymerase, and let it anneal to form dsRNA.  This was done 

using MEGAscript RNAi kit from Ambion which is supplied with all the necessary 

reagents needed for reaction except for the specific primers. 

C) The dsRNA was resuspended in water and after measuring its concentration 

was stored at -200C.  This dsRNA was diluted to get 50mg/μl final concentration 

in injection buffer to inject in stage 4 embryos (syncitial blastoderm stage) before 

the process of cellularization starts to have ubiquitous uptake of the dsRNA. 

2.1.3 Injecting dsRNA in embryos 

The whole process of injection can be described in short as follows.  Cages were 

set up using 2- to 4-day-old 80G2 flies. Apple juice agar plates were alternated 

every hour to synchronize the egg collection for 1 day. The eggs were collected 

over a 30- min period for subsequent injection. The embryos of 80G2 flies were 

collected from the apple agar plate after incubation at 180C for 30 mins.  All these 

embryos were at early embryonic stage and were injected within an hour before 

they reached stage 5 when the cellularization begins.  The collected embryos 

were bleached to get rid of their chorionic membrane and were aligned in a row 

on an agar strip with their anterior tip, recognized by a micropile, facing out.  The 

embryos were aligned very close to each other to increase the injection rate and 

efficiency. These embryos were then transferred to a sticky coverslip with 

heptane glue to fix the embryos on to it.  This transfer changed the orientation of 

embryos which now had their posterior tip facing out.  The embryos were dried 

on silica gel for appropriate time (usually 13 mins) just enough to aid injections 

but letting the embryos humid enough to survive.  The embryos were then 

covered with 10S halocarbon oil to avoid more dehydration and at the same time 

allow air exchange.  These embryos were then ready for injections and were 

carefully kept on the microscope stage which aided fine tuning during injection 

procedure.   

Special 1.5mm diameter capillaries (Science products GmBH) were used for 

injections. These capillaries were pulled to get fine tapering tip.  A needle is filled 
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using a pipette by sucking injection buffer or RNAi solution from its fine tip which 

was cut wide enough just to pierce the embryos but not rupture them.  It was very 

important to have a tremendous fine control over the pressure to manipulate the 

amount of liquid injected into the embryos.  We used a FemtoJet microinjector 

(Eppendorf AG, Germany) to control the pressure, amount of solution injected 

and the speed of injections.  The resting constant (compensation) pressure was 

usually 25hPa, while the injection pressure was 91hPa.   The time of one 

injection event was 0.5 sec.  After injections, slides were stored at 180C in a 

moist chamber to prevent drying out the embryos. 

2.2 Fly genetics  

All the flies and crosses were grown and amplified at 250C in humidity controlled 

incubators. Flies were fed on fly food made using following protocol for 5 lit 

volume: 

Water 3.5 lit 

Agar 82gm 

Molasses 560gm 

Maize Flour 420gm 

Yeast 105gm 

Propionic acid 44ml 

Methyl Paraben 16.8gm 

Agar was added in boiling water with constant stirring.  Molasses, maize flour 

and yeast were added and mixed well once the agar was completely dissolved.  

This food was let cook for ~1 hr at 960C and then cooled down to 600C before 

adding and mixing propionic acid and methyl paraben to it.  This fly food was 

then immediately used to pour into food bottles and vials.  The vials and bottles 

with fly food were generally stored at 40C and allowed to dry at room temperature 

for ~2hrs before using them for fly cultures.  A dollop of yeast paste was added to 

the food for inducing egg laying. 
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Flies were fed on apple agar for embryo collection and the following protocol was 

used for making this apple agar: 

500 ml 100% Apple juice 

480 ml ddH2O 

40 gm Agar 

10.5 ml 95% Ethanol 

10 ml Glacial Acetic Acid 

The apple juice and ddH2O were boiled together and agar was added to it with 

constant stirring.   The solution was cooled to ~600C once the agar was dissolved 

completely.  Ethanol and glacial acetic acid were added and mixed well.  The pH 

was adjusted to 4.25- 4.40 with 100% NaOH.  The plates were poured and 

stored at 40C after solidifying.  
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2.2.1 Drosophila Stocks  

Flies were obtained from different labs or the fly stock center as noted below.  

Fly stock 
(Reference)

Source 
 

y1 w - ; P(w+lacW) diaK07135 cn1/ Cyo 
(Butler et al., 2001)

Bloomington stock 
center, USA 

dia5 cn/ Cyo 
(Castrillon and Wasserman, 1994)

J Grosshans, ZMBH, 
Heidelberg, Germany 

dia9 cn/ Cyo 
(Castrillon and Wasserman, 1994)

Bloomington stock 
center 

P(UAS-dia-CA)/TM6 
(Somogyi and Rorth, 2004)

P. Rorth, EMBL, 
Heidelberg, Germany 

chic221 cn1/ Cyo; ry506

(Verheyen and Cooley, 1994)
Bloomington stock 
center 

P(ry+)chic11/ Cyo; ; ry506

(Castrillon et al., 1993)
Bloomington stock 
center 

chic37/ Cyo 
(Verheyen and Cooley, 1994)

Bloomington stock 
center 

P(UAS-chic)/TM3 
(Hopmann and Miller, 2003)

L. Cooley, Yale 
University, USA 

w1118; P{w+ EP} Dys EP3397/TM6B, Tb1

                                             (van der Plas et al., 2006)
Bloomington stock 
center 

ElavGal4 UAS-mCD8GFP hs-FLP; TubGal 80 FRT 40A /Cyo 
(Moore et al., 2002)

Y N Jan, UCSF, USA 

Gal4 109(2)80-UASmCD8GFP 
(Gao et al., 1999)

Y N Jan, UCSF, USA 

Gal2-21UASmCD8GFP 
(Grueber et al., 2003b)

Y.N.Jan, UCSF, USA 

Gal2-21/ Gal2-21

(Grueber et al., 2003a)
Y.N.Jan, UCSF, USA 

Gal447UASmCD8GFP 
(Grueber et al., 2003b)

Y.N.Jan, UCSF, USA 

ppk-eGFP 
(Grueber et al., 2003a)

Y.N.Jan, UCSF, USA 

p[w+,UASp-GFP-α-tub]/ MKRS 
(Grieder et al., 2000)

Nicole Grieder, HHMI, 
Baltimore, USA 

UAS-GMA 
(Dutta et al., 2002)

Bloomington stock 
center 

w -; al1 dpov1 b1 pr1 P(neo FRT 40A)/Cyo Bloomington stock 
center 
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2.2.2 Generation of recombinants 

To obtain FRT- combining lines of dia and chic for MARCM analysis, stocks of w; 

al1 dpov1 b1 pr1 P(neo FRT 40A)/Cyo were crossed with y1 w - ; P(w+lacW) 

diaK07135 cn1/ Cyo and chic221 cn1/ Cyo; ry506 respectively and females of the 

genotype diaK07135 cn1/ al1 dpov1 b1 pr1 P(neo FRT 40A) and chic221 cn1/ al1 dpov1 

b1 pr1 P(neo FRT 40A) were selected to induce female meiotic recombination.  

Prospective recombinant lines were set up and tested for the presence of FRT 

element by neomycin resistance and for the presence of the respective mutations 

by following visible phenotypic markers [eye color (w+) in case of diaK07135 and 

loss of cn1 in case of chic221] and by lethality non-complementation with the 

original mutations.  Confirmed recombinant lines were started from a single male 

crossed to a balancer stock and amplified for further use.  

2.2.3 Transgenic flies: 

Full length cDNA of diaphanous gene was amplified from a cDNA library 

(Drosophila Genomics Research Center, Indiana, USA) by PCR using the 

following primers: 

Forward primer (GT399) 5’- ATAAGAATGGTACCAAGAATGTCTCGTCACGAGAAAAC  
Reverse primer (GT42) 3’- TATCAATCGCCGGCGCCGCGGAGCCTAGAACCTC.  

This construct was cloned into a BglII/NotI-digested pP(UASt) vector (Brand and 

Perrimon, 1993). For mRed tagged constructs, a mRed tag was fused to the N 

terminus with an ATG codon using forward primer (GT41) 5’-

CGGAATTCGAAGAATGTCTCGTCACGAGAAAAC and then cloned into the P 

(UASt) vector.  

These vectors were then amplified in bacterial cultures from which the DNA was 

purified (Plasmid Maxi kit, Quagen), and was then dissolved in water and stored 

at -200C before being used for injections.   The injections were done as per the 

procedure described above (section 2.1.3) except that a stock of w1118 flies was 

used for embryo collection.  

 32



The establishment of transgenic lines was done according to standard 

procedures (Spradling and Rubin, 1982). Two lines containing different insertion 

of the full length UAS-dia construct were used: (UAS-dia)A3-1/FM7 (X 

chromosome) and (UAS-dia)G3-1/TKG (3rd chromosome), and one for the mRed 

tagged construct: (mRed-UAS-dia)E3-1 (3rd chromosome). 

2.3 MARCM (mosaic analysis with repressible cell marker) 

To identify and characterize the peripheral dendrites of each da neuron we used 

the MARCM system (Lee and Luo, 1999). For producing clones, females of 

ElavGal4 UAS-mCD8GFP hs-FLP; TubGal 80 FRT 40A /Cyo and males of 

diaK07135 P(neo FRT 40A)/ Cyo or males of chic221 P(neo FRT 40A)/ Cyo were 

crossed with each other.  The mated flies were provided with a freshly yeasted 

apple agar plate and allowed to lay eggs for 2 hours. Developing eggs were kept 

at 25°C for 3-5 hrs after the end of the laying period before the heat shock. The 

heat shock was performed at 38°C for 45 min, followed by room temperature 

recovery for 30 min, and an additional exposure to 38°C for 30 min. The embryos 

were then incubated at 250C till they developed into larvae. We identified GFP-

labeled clones by examining living third instar larvae under a fluorescence 

microscope fitted with a 10x lens. Selected larvae were pressed carefully 

between a slide and a coverslip in 90% glycerol to restrict movement but not 

cause bursting of the body wall and imaged using confocal microscope at 20X or 

40X. 

2.4 Time Lapse Imaging 

As described in the results section (4.4.1) a round coverslip (12mm) was fixed on 

the metallic imaging slide directly over a 1 cm big and 2mm deep hole with the 

help of vaselin.  Third instar larvae of the genotype Gal4 UAS-mCD8GFP were 

covered in a small amount of Halocarbon oil that restricted movement on the 

coverslip.  An air permeable ring was pressed on top of the larvae and screwed 

on the metallic slide (Figure 36).  After imaging at confocal microscope the larva 

221
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was recovered with forceps and left to develop until the next imaging session at 

18°C on an apple juice agar plate.   

2.5 Image acquisition and processing 

Confocal images were taken using a Leica TCS SP2 confocal microscope (Leica 

Microsystems Heidelberg GmbH, Germany) by exciting GFP using the 488 nm 

line of the argon laser.  Abdominal hemi-segments A6 or A5 were imaged for all 

experiments.  Z stacks were acquired at ~1 µm intervals at 20X of 40X 

magnification with 1024 x 1024 pixels format and projected into a 2D image using 

Leica confocal software (Leica Microsystems Heidelberg GmbH).  For class I 

vpda neurons, 10-25 image stacks containing the entire neuron were collected at 

20X.  For time lapse, around 5-10 image stacks were collected for each vpda 

neuron.  For class IV vpda neurons, ~50 stacks were generated of each quarter 

of the cell at 40X.  Projection images were processed for brightness and contrast 

and assembled in Adobe Photoshop CS (Adobe Systems).  Tracings of the 

neurons for measurement of dendritic length were made in Image J (National 

Institute of Health) by tracing the arbors using a mouse.  

2.6 Quantitative analysis  

We used Image J for quantifications of dendritic branch number and length of 

class I vpda neurons.  Total number of branches was quantified by counting all 

the branch termini.  The branches arising from the cell body were counted as 

primary branches.  The branches arising from primary branches were defined as 

secondary branches and the branches arising from secondary branches were 

counted as tertiary branches and so on.   

For class IV ddaC neuron, we printed projections of each quarter of the cell, 

aligned them manually and counted the termini to marking them with a pen to 

make sure not to recount the same termini. 
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Data in graphs are presented as means ± SD (standard deviation). Statistical 

analysis was performed in Microsoft Exel. 

2.7 Immunohistochemistry 

3rd instar larvae were dissected in PBS flat on Sylgard with microscissors and 

pinned down with insect pins (Figure 11). Fixation was carried out for 30–60 min 

in 4% paraformaldehyde in PBS at room temperature, and the larvae were rinsed 

several times in PBS with 0.3% Triton X-100 (PBS-TX)  for 10-30 mins each.   

                                           

Figure 1: A cartoon showing a couple of useful ways to pin the larvae while 
dissecting 3rd instar larvae is pinned in PBS at their anterior and posterior tips with 
insect pins.  They are then cut along their long body axis with dissection scissors.   The 
body epidermis is opened with forceps and pinned to open up the entire body.  The 
interior enteric system along with CNS and trachea is removed to get just the body wall 
with body muscles and PNS.     

The fixed larvae were then unpinned and collected in an eppendorf tube in PBT.  

They were then blocked in 10% normal donkey serum or goat serum (Jackson 

Laboratories). Primary antibodies were used at a concentration of 1:5000 for 

rabbit anti-diaphanous (Grosshans et al., 2005), 1:400 for Rabbit anti-β gal 

(Molecular Probes)  (for staining diaK07135) and 1:200 for mouse anti−profilin 

(Hybridoma Bank) and incubated overnight at 40C. Secondary antibodies were 

Rhodamine goat anti-rabbit (diluted 1:200; Jackson Laboratories), Cy5- 

conjugated donkey anti-rabbit (Jackson Laboratories diluted 1:200) Cy3-

conjugated donkey anti-mouse (Jackson Laboratories diluted 1:200) and Cy3-

goat anti-mouse (Molecular Probes diluted 1:500), respectively. After overnight 
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incubation at 40C or 2hrs at room temperature in secondary antibodies, the tissue 

was rinsed for three times in PBS-TX (30 mins each) and mounted in 90% 

glycerol to examine using confocal microscope. 

2.8 Western blot analysis 
 

Third instar larvae of the following genotypes were collected using fluorescent 

microscope at 10X magnification: 

diaK07135/ diaK07135; Gal-42-21UAS-mCD8-GFP/ Gal-42-21UAS-mCD8-GFP 

dia5/ dia5; Gal-42-21UAS-mCD8-GFP/ Gal-42-21UAS-mCD8-GFP 

Gal-42-21UAS-mCD8-GFP/ Gal-42-21UAS-mCD8-GFP 

Samples were prepared from 5 larvae each for all the genotype.   Extraction of 

proteins from larvae was carried out in lysis buffer. Western blots were done with 

standard western blot protocol.  Western blots were incubated first with primary 

antibody (rabbit α-diaphanous, 1:5000 dilution) and then with a horseradish 

peroxidase-coupled goat α-rabbit secondary antibody at a 1:3000 dilution. 
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CHAPTER 3 – RESULTS (I) 
 

RNA INTERFERENCE SCREEN 
 

To identify cytoskeletal molecules involved in dendrite differentiation we took a 

candidate-based reverse genetics approach using RNA interference, RNAi.  

RNAi is a recently developed technique used widely in different model systems 

including Drosophila melanogaster (see introduction).  This technique is often 

used to have an indication of the function of a molecule. In short, it is a post-

transcriptional gene silencing process by which double stranded RNA (dsRNA) 

introduced into a cell, causes sequence-specific degradation of homologous 

mRNA sequences (Dykxhoorn et al., 2003).  

In the last few years, several in vivo as well as in vitro RNAi screens have been 

carried out in Drosophila to identify molecules involved in different processes, 

such as embryonic nervous system development or the establishment of cellular 

morphology (Koizumi et al., 2007; Rogers et al., 2003).  Taking advantage of the 

published Drosophila genome and RNAi screens in Drosophila S2 cells I 

screened a few molecules based on their known functions, phenotypes, 

expression patterns and availability of reagents.  Positive candidates from this 

screen were selected for further genetic analysis to study their role in dendritic 

morphogenesis.   

3.1  Standardizing RNAi assay system 

For the RNAi assay, Drosophila embryos were injected with dsRNAs using a 

micro-injector.  The injection set up was built using a known protocol (see details 

in materials and methods).  This set up included the following parts: 

- A micro-injector which could regulate the pressure and the time of injection 

(Figure 12).  Adjusting these parameters ensured to a certain extent that the 

amount of RNAi solution delivered in each embryo was similar.   

 37



Figure 12: Microinjection set up for RNAi assay (A) A micro-injector was used to 
control the pressure and approximate amount of solution at every injection shot. The 
injector was connected to a holder which held the injecting needle via a thin tube.  
Previously aged and carefully dried embryos were aligned on a coverslip and covered 
with 10S halocarbon oil.  This coverslip was put on a slide to be visualized at the light 
microscope for the injection process. (B) Ready to inject embryos: Embryos were 
collected for 30 mins and dechorionated by bleaching. They were then aligned on an 
apple agar strip and then transferred to a heptane glue applied coverslip in a way that 
they were stuck to the coverslip.  These embryos were then dried in on silica gel airtight 
container for ~13 mins and covered with halocarbon oil.  The coverslip was then 
mounted on a slide and the embryos were thus ready to be injected with a pulled needle 
with a slanted end.  The needle was always kept submerged in the halocarbon oil after it 
was filled with the injecting solution to avoid drying and precipitation of salts at the tip 
and thus blocking of the tip. 

                      

A 

 

injecting needle          aligned embryos covered with oil 

B 

- Glass capillaries of 1.5μm diameter were pulled using a needle puller to form 

extremely thin tapering injecting tips.  To obtain a sharp tip for easier insertion in 

the embryo, this tip was further broken to get a slanting edge using a blade. 
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- A light microscope to visualize and inject embryos. 

- Apple agar plates with the right thickness and moisture to collect embryos and 

to align them.  The apple agar plates for collecting embryos were thinner (~3-

4mm) than the ones (~7-8mm) used for aligning the embryos.   

- Drying chamber containing silica gel for drying the embryos prior to injection.  

The time of drying was carefully monitored (13 mins in most of the injection 

rounds). 

- 10S Halocarbon oil was used to cover the embryos just enough to prevent them 

from drying and making sure of air exchange. 

- A humidity controlled incubator at 180C to incubate the injected embryos till they 

develop to embryonic stage 17 after around 40-42 hrs. 

All these delicately managed elements were crucial to have a successful round of 

injections with good survival rate.  After the set up was ready, the feasibility and 

the efficiency of the RNAi approach was first tested by injecting injection buffer 

(0.1 mM NaPO4, pH 7.8/5 mM KCl) (Misquitta and Paterson, 1999) and scoring 

survival rates and the percentage of embryos that showed defective development 

simply due to the injection procedure. About 23% of the injected embryos 

(n=209) survived without any visible defect thus making them suitable for 

analysis of phenotypic changes.  

The next step was to check the functionality of RNAi in the model system.  Since 

a GFP expressing fly line was going to be used for the screen, it was possible to 

examine knock down of GFP expression by injecting ~50μg/ml siRNAs for GFP 

(Guido Pante- Personal communication).  In this experiment, a distinguishable 

reduction was observed in GFP expression of GFP-siRNA injected embryos 

(Figure 13).  This proved that we were able to knock down protein translation 

successfully with RNAi. 
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    Injection buffer                          GFP-siRNA 

Figure 13: Knock down of GFP expression in GFP-siRNA injected embryos 
Embryos of 80G2 strain were injected with either injection buffer or GFP siRNA and 
visualized at late stage 17 for GFP expression.  The embryos injected with injection 
buffer did not show any difference in the expression level of GFP (A) whereas the 
embryos injected with GFP siRNA showed a complete knockdown of GFP with almost 
no expression of GFP (B).  Scale bar: 70 μm 

We subsequently needed to standardize the final injection concentration of 

dsRNAs for all the molecules to be screened.  tramtrack (ttk) was used as a 

testing control molecule since it exhibits a well described phenotype with RNAi.  

ttk is a transcription factor expressed in the peripheral nervous system (PNS) and 

it suppresses neuronal cell fate in developing embryos, including chordotonal 

(ch) organs of the embryonic nervous system (Vervoort et al., 1997).  ttk RNAi 

gives a typical and easily recognizable neurogenic (increased number of 

neurons) phenotype in embryos, which is very similar to the one exhibited by 

mutations in the gene.  Moreover, depending on the level of injected dsRNA two 

similar phenotypes can be observed (Kennerdell and Carthew, 1998).  Wild-type 

embryos injected with ds-ttk RNA form extra neurons in the lch5 organs (sensory 

organs) of some injected embryos whereas other embryos exhibit a neurogenic 

phenotype with a highly condensed PNS containing many extra neurons.  

dsRNAs for ttk were generated to amplify the same stretches of DNA used in the 

above mentioned studies and injected to knock down specifically the transcript 

for the tramtrack gene and used as a positive control.  We tested different 

concentrations of ttk dsRNA to obtain a fairly good survival rate with a well 

defined neurogenic phenotype.  
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Figure 14: Neurogenic phenotype in tramtrack-dsRNA injected embryo Early 
embryos of 80G2 strain were injected with either injection buffer or tramtrack dsRNA 
(50μg/ml) and analyzed at late embryonic stage 17.  Embryos injected with injection 
buffer showed normal morphological features (A, C) but embryos injected with tramtrack 
dsRNA showed neurogenic phenotype (B,D).  Scale bar: A, B- 110μm and C,D- 50μm 

 

A B

C D

Table 3.1: Standardization using tramtrack RNAi 

 Injected 
embryos 

Embryos 
alive 

Embryos 
with 

injection 
defects 

Neurogenic 
defect 

Embryos 
with no 
defect 

(normal) 

Survival 
rate* 

Control: 
Injection 
buffer 

209 118 69 0 49 (23%) 56% 

Positive 
control:  
tramtrack 

277 36 20 14 2(<1%) 13% 

*Survival rate= embryos alive/ embryos injected 

Compared to the injection of buffer only, upon tramtrack injection of 50 μg/ ml 

dsRNA a reliable stronger, neurogenic phenotype was obtained in 87% of the 

surviving embryos, however, the survival rate decreased considerably (13%, 

n=277) (Figure 14, Table 3.1).  Based on the above results, it was decided that 

around 250 embryos should be injected for each candidate molecule to obtain at 

least 15 embryos that could be analyzed for eventual phenotypes and to use 50 

μg/ ml of dsRNA. 
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3.1.2. Selection of molecules 

Selection of candidate molecules is a very crucial step in any candidate gene 

based screen.  Since the Drosophila genome has been sequenced, a complete 

list of known and predicted actin binding and microtubule binding molecules was 

obtained from Flybase- a database of Drosophila genes and genome (Crosby et 

al., 2007). Altogether these represent more than 150 molecules.  While for some 

of the candidates, mutants already existed, others were simply predicted coding 

sequences identified by the Drosophila genome project- annotation project, or 

based on sequence similarity to molecules known in other model systems. Since 

the number of known cytoskeletal molecules is very large and they are very 

varied, for convenience a short list of known molecules was prepared for testing 

the efficiency and reliability of the screening assay.  The molecules were 

selected depending on their known functions and role in cytoskeletal regulation, 

availability of reagents and expression patterns (whenever possible).  The 

molecules which were selected for an initial round of screening were as follows: 

ADF (actin depolymerizing factor) / cofilin (twinstar): ADF/ cofilin is a 

member of a family of small actin severing proteins.  The actin severing activity of 

Adf/ Cofilin is critical to axon extension and growth cone motility in central and 

peripheral neurons in vertebrates (Sarmiere and Bamburg, 2004).  The 

Drosophila ADF/ Cofilin is called twinstar (tsr).  Mutations in this ubiquitously 

expressed molecule show defects in centrosome migration and cytokinesis and 

exhibit abnormal accumulation of F-actin (Gunsalus et al., 1995).  In the 

Drosophila genome there is a second predicted ADF gene called CG6873 (ADF) 

and not much information is available about it. 

Aip1: It is an actin interacting protein promoting actin turnover in living cells 

(Okada et al., 2006; Rogers et al., 2003).  It interacts with Cofilin to disassemble 

actin filaments and restricts Cofilin localization to cortical actin patches in yeast 

cells (Rodal et al., 1999).  Studies in model organisms, other than Drosophila, 

have demonstrated that Aip1 interacts genetically with ADF/Cofilin and 
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participates in several actin dependent cellular processes like cytokinesis, 

phagocytosis, cell motility in yeast and contractibility of body wall muscles in 

C.elegans (Ono, 2003).  Its function in Drosophila is not analyzed till date.  

Capulet (capt)/ act up: It is a homolog of the Adenylyl Cyclase-Associated 

Protein (CAP) that binds and regulates actin.  Consistent with a vital role in 

regulating actin structures, loss of CAP activity results in cytoskeletal defects in 

yeast, Dictyostelium, and Drosophila (Benlali et al., 2000; Gottwald et al., 1996; 

Vojtek et al., 1991).   capt is expressed in neurons at embryonic stages 12 and 

13 during axonal development in Drosophila. It is also involved in the regulation 

of cytoskeletal dynamics in axon guidance along with Abl Tyrosine Kinase 

resulting in midline crossing error mutations in CNS of Drosophila.  Furthermore, 

it also genetically interacts with important axon guidance molecules like Slit and 

Robo (Wills et al., 2002).  It suppresses the hyper assembly of actin 

microfilaments and thus prevents premature neuronal differentioation in eye disc 

(Benlali et al., 2000). 

Cappuccino: Cappuccino (capu) is one of the 6 formin homology (FH) domain 

proteins in Drosophila.  Cappucino protein acts at a functional interface between 

the tubulin- and actin based cytoskeletons (Wasserman, 1998).  Mouse 

Cappuccino is expressed exclusively in the developing and mature central 

nervous system (Leader and Leder, 2000). However its role in vertebrates is not 

yet clear.  Mutations in the capu locus of Drosophila cause females to produce 

embryos which have disorganized microtubules and lack proper anteroposterior 

and dorsoventral patterning as a result of failure to properly position mRNAs 

(Emmons et al., 1995; Manseau and Schupbach, 1989).   

Diaphanous:  The Drosophila FH domain protein Diaphanous belongs to a 

family of formin-related proteins containing repetitive polyproline stretches.  

Diaphanous has a role in actin cytoskeleton organization and is essential for 

many, if not all, actin-mediated events like membrane invagination and filopodia 

formation. Besides regulating actin cytoskeleton reorganization, mDia (mouse 
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Diaphanous) is also required for microtubule stabilization at the leading edge of 

migrating cells (Afshar et al., 2000).  Diaphanous binds to Profilin and RhoA and 

all these proteins are co-localized in the spreading lamellae of cultured 

fibroblasts.  In Drosophila, Diaphanous has an essential role during cytokinesis 

(Watanabe et al., 1997). 

δ-catenin: It belongs to the p120-δ-catenin [p120ctn] protein family, which is 

characterized by ten characteristically spaced Armadillo repeats that bind to the 

juxta-membrane segment of the classical cadherins.  Besides their junction 

localization, they are also located in nucleus and cytoplasm.  Cytoplasmic p120 

functions in Rho signaling and regulation of cytoskeletal organization and actin 

dynamics.  Targeted deletion of δ-catenin results in severe learning deficits and 

abnormal synaptic plasticity in mice (Kosik et al., 2005; Niessen and Yap, 2006). 

Recently it was found to modulate dendritic branching of a subset of sensory 

neurons in Drosophila.  Mutations in p120ctn affect the formation of spine-like 

protrusions on class III neurons but did not significantly affect dendritic branching 

of class I- vpda neurons that extend comparatively smooth dendrites (Li et al., 

2005). 

kelch: It is a member of the Kelch protein family containing Kelch repeat domain, 

which in a variety of organisms bind to actin filaments and/or have important 

roles in assembling cellular actin structures.  Kelch family proteins are diversely 

localized and are involved in varied cellular processes including cell growth, cell 

fusion and morphology, spermatocyte differentiation and cell adhesion. The 

mouse homologue, ENC-1, functions as an actin-binding protein important in the 

organization of actin cytoskeleton during neural fate specification and 

development of the nervous system (Hernandez et al., 1997).  In Drosophila 

Kelch is located in actin-rich intercellular bridges, termed ring canals, which 

connect the developing oocyte to 15 supporting nurse cells (Adams et al., 2000).   

Profilin/Chickadee:  It is an actin monomer binding molecule, which functions as 

a regulator of actin assembly. Conflicting data suggest that Profilin might function 
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to promote either actin polymerization or depolymerization in cells (see 

Introduction- 1.5.2). Profilin has been reported to be widely expressed with 

multiple functions.  Profilin is located at spines upon activity in vertebrates.  

Studies in Drosophila have established a role for Profilin in motor axon guidance 

and in cytoplasmic transport during oogenesis (Cooley et al., 1992; Wills et al., 

1999; Witke, 2004; Yarmola and Bubb, 2006). 

Quail: Quail is an actin-regulating protein with sequence homology to Villin.  Its 

homologue, Villin, induces growth of microvilli in transfected fibroblast-like CV-1 

cells and the capacity of Villin to induce growth of microvilli in cells correlates with 

its ability to bundle F-actin in vitro but not with its nucleating activity (Friederich et 

al., 1999).  Quail efficiently assembles actin filaments into bundles in nurse cells 

and maintains their stability under fluctuating free calcium levels. The abundant 

network of cytoplasmic filamentous actin is absent in quail mutant egg chambers 

(Matova et al., 1999). 

Scar (Suppressor of cAMP receptor): It is a primary Arp2/3 complex activator 

stimulating the ability of the Arp2/3 complex to nucleate actin filaments. In mice, 

expression of Scar/WAVE1 is mainly restricted to the brain whereas Scar2 is 

widely expressed.  Accordingly, the Scar1 null mice display several CNS-related 

problems, such as limb weakness, neuroanatomical malformations and 

behavioral abnormalities, which presumably lead to postnatal lethality (Dahl et 

al., 2003).  In contrast, Scar2 null mice die at embryonic day 10 to 12.5 suffering 

from haemorrhages, cardiovascular defects due to impaired angiogenesis, 

developmental delay and growth retardation (Yamazaki et al., 2003).  

Scar/WAVE2 appears to be required for leading edge extension during directed 

migration in general, whereas Scar/WAVE1 is essential for matrix-

metalloproteinase-dependent migration through the extracellular matrix 

(Vartiainen and Machesky, 2004).  In Drosophila, SCAR function is essential for 

cytoplasmic organization in the blastoderm, axon development in the central 

nervous system, egg chamber structure during oogenesis, and adult eye 

morphology (Ibarra et al., 2005; Zallen et al., 2002). 
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Slingshot: Slingshot (SSH) belongs to a family of phosphatases which 

dephosphorylates ADF cofilin leading to its activation and has the property of 

controlling actin reorganization by binding to F actin.  In mammalian cells, human 

SSH homologues (hSSHs) suppress LIMK1-induced actin reorganization and 

expression of one of these homologues, SSH1, in DRG neurons in culture 

increases growth cone motility and extension and alters the shape of the growth 

cone (Endo et al., 2003).  In Drosophila, loss of ssh function dramatically 

increases levels of both F actin and phospho-cofilin and disorganizes epidermal 

cell morphogenesis, including the bifurcation phenotypes of the bristles and wing 

hairs, after which Slingshot was named (Niwa et al., 2002).   

Sra-1 (specifically Rac1-associated protein 1): Sra-1 is part of a complex 

modulating the activity of WASP and WAVE proteins, which are important 

regulators of F-actin formation.  In tissue culture cells as well as in vivo Sra-1 

function is required for F-actin organization. Genetic analysis demonstrate that 

Sra-1 function at the membrane depends on the presence of Wasp (Bogdan et 

al., 2004).  In Drosophila embryos, it is a maternally contributed protein and later 

in development becomes concentrated in the developing nervous system (CNS). 

Sra-1 is highly expressed in growth cones and neuromuscular synapses.  It is 

required for axonal growth and also during formation and maturation of 

neuromuscular junctions (NMJ).  Expression of double stranded sra-1 RNA in 

photoreceptor neurons leads to stalling of axonal growth (Schenck et al., 2003).  

Twinfillin:  Twinfilin is a ubiquitous actin-monomer-binding protein that is 

composed of two ADF-homology domains. It forms a 1:1 complex with ADP-

actin-monomers, inhibits nucleotide exchange on actin monomers and prevents 

assembly of the monomer into filaments. In cells, Twinfilin shows diffused 

cytoplasmic localization but it is also concentrated to the cortical actin 

cytoskeleton which is dependent on a direct interaction with capping protein 

(Moseley et al., 2006).  Mouse Twinfilin is important in clathrin-mediated 

endocytosis and distribution of endocytic organelles in mammalian cells.  It has a 

role in the regulation of active actin dynamics (Helfer et al., 2006).  Available 
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Drosophila mutants show different developmental defects including aberrant 

bristle morphology and rough eye phenotype correlating with abnormal actin 

structure (Palmgren et al., 2002).   

3.1.3. RNAi assay 

For the RNAi assay, short stretches of interfering dsRNAs specific for each 

molecule were made using gemomic DNA from adult flies.  While making the 

dsRNAs, primers were selected very carefully so that  

-they were specific without affecting other molecules causing non-specific defects 

and  

-they were efficient in knocking down the specific molecule.   

To design target dsRNA sequences, primers from a published database, for 

which these sequences had been tested in S2 cell cultures successfully, were 

used (Rogers et al., 2003).  The dsRNAs were made from genomic DNA and 

were suspended in injection buffer to get the standardized concentration (50 

μg/ml) for the injection procedure (see methods).   

For the injections, early Drosophila embryos were collected, processed and 

injected before the beginning of embryonic stage 5.  Embryonic stage 5 marks 

the beginning of the cellularization process and injecting the embryos before this 

stage ensured ubiquitous distribution of injected dsRNA solution.  

For the screen, a GFP-expressing strain, 80G2 was used (Figure 15).  This strain 

highlights a subset of PNS neurons, including eight md (multi-dendritic) neurons 

expressing GFP under the control of the 109(2)80Gal4 driver [the 80G2 line 

contains the 109(2)80 driver and two UAS-eGFP reporter insertions] (Gao et al., 

1999).  Six of those are da (dendritic arborization) neurons that generate a 

complex and stereotyped arbor (see introduction).  
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Figure 15 GFP labeled PNS in 80G2 strain A late stage 17 embryo of 80G2 strain 
showing elaborate dendritic morphology of dorsal cluster neurons of PNS.   

 

 

 

 

The injected embryos were allowed to develop at 180C in an incubator with 

controlled humidity and then observed using confocal microscopy for dendritic 

defects at late embryonic stage 17 when the PNS neurons have established their 

basic dendritic arborizations.   

The results of the RNAi screen are summarized in Table 2.  Knocking down of 

most of the selected genes by RNAi considerably reduced the viability of the 

injected embryos.  The survival rate of injected embryos for different dsRNAs 

was quite varied.  This could be due to several reasons including effective knock 

down of the specific protein below its threshold level of requirement.  However, 

the low survival rate could also be associated with slight differences in either one 

or more of the parameters (eg. Needle diameter, injection pressure, and 

coverage slightly more or less halocarbon oil, etc).   
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Table 3.2: Summary of RNAi assay 

Gene name Total 
Injected 
embryos 

% Survival 
rate* 

Embryos 
with 

injection 
defects 

Embryos 
which could 
be used for 

analysis 

Embryos with 
dendritic 

phenotype 

ADF 412 51% 26% 25% No(0/104) 

Cofilin 475 42% 39% 3% No (0/15) 

ADF+cofilin 235 23% 12% 11% No(0/26) 

Aip1 540 41% 34% 7.22% No(0/39) 

Capulet 242 49% 34% 15% No(0/36) 

Cappuccino  617 19% 7% 12% Yes(5/81) 

δ-catenin 1054 26% 20% 5% No(0/54) 

Diaphanous 675 65% 44% 11% Yes (23/74) 

Kelch 385 18% 11% 7% Yes(18/45) 

Profilin 779 66% 59% 6% Yes(32/47) 

Quail 576 21% 14% 7% Yes(3/45) 

Scar 225 27% 11% 16% No(0/36) 

Slingshot 460 32% 25% 7% No(0/34) 

Sra-1 324 37% 27% 11% No(0/36) 

Twinfilin 131 18% 12% 6% No(0/8) 

*Survival rate = Embyros with injection defects + Embryos which could be used for analysis
    Total injected embryos 

Though many interesting candidates showed no effect on dendritic 

morphogenesis, there were a few candidate molecules, which showed 

significantly affected dendritic morphogenesis.  

3.1.4 Interesting candidates with no significant dendritic phenotype  

Nine of the fourteen molecules screened did not show any obvious dendritic 

phenotype in stage 17 embryos upon RNAi (Figure 16A-D).  These molecules 

were ADF, Aip1, Cofilin, Capulet, δ-catenin, SCAR, Slingshot, Sra-1, Twinfillin.  

In case of ADF and cofilin, both of them did not show any noticeable dendritic 

phenotype respectively and their combination also failed to show any defective 

phenotype.  Drosophila genome contains three homologues of ADF/cofilin known 
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till date and the absence of phenotype may be attributed to the redundancy of 

molecular functions of these 2 homologues.  In case of other molecules, the 

absence of phenotype might have happened due to various reasons which are 

explored in the discussion chapter.   

  

A B

       Injection buffer                     Capulet 

 

C D

                      Injection buffer      δ-catenin 

Figure 16: Lack of Detectable Phenotype (A,B) Dorsal cluster neurons from stage 
17 embryos injected with capulet-dsRNA (B) exhibiting overall normal dendritic 
morphology with no significant deformity compared to that of the ones injected with 
injection buffer (A).  (C,D) vpda neuron from stage 17 embryos injected with δ-catenin-
dsRNA (D) showed normal dendritic morphology compared with that of the ones injected 
with injection buffer (C). Scale bar 20 μm 

3.1.5 Interesting candidates with interesting phenotype 

From the list of 14 molecules screened, 5 molecules showed defective dendritic 

morphogenesis and they were: kelch, quail, chickadee/ Profilin and diaphanous. 
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In case of diaphanous (dia) and chickadee (chic), the knock-down of either gene 

produced a clear overbranching phenotype of Class I neurons (Figure 17). In the 

screening conditions the other neuronal classes did not seem affected. Injection 

of either dsRNA reduced the viability compared to injection of buffer only, but 

both dsRNAs produced a consistent phenotype with a convincing penetrance. 

779 embryos were injected with dsRNA specific for the chic transcript, 47 

survived without injection defects to stage 17 (6%) and out of those 32 showed a 

dendritic overbranching phenotype, whereas out of 675 embryos injected with 

dsRNA specific for the dia transcript 74 survived to stage 17 (11%), of which 23 

showed an overbranching phenotype.  

 

A B C

Figure 17:  Dendritic phenotype of Diaphanous and Profilin upon RNAi Class 
I –vpda neurons from stage 17 embryos injected with (B) Diaphanous dsRNA and (C) 
Profilin dsRNA show dendritic over branching phenotype compared with that of those 
injected with injection buffer (A). 

 Control Diaphanous Profilin

The knock down of the third candidate- kelch -produced a dendritic phenotype in 

the dorsal cluster neurons.  374 embryos were injected with dsRNA specific for 

kelch transcript.  45 embryos survived without any injection defects and 18 of 

those showed a dendritic phenotype.  Kelch expression was reported mainly in 

gonads and imaginal discs including brain tissue in developing Drosophila larvae 

(Robinson and Cooley, 1997).  However, no clear expression pattern is known in 

the nervous system and also the penetrance of the RNAi phenotype seemed 
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weaker than other candidates.  Thus, Kelch was excluded from the short list of 

positive candidates.  

The other 2 positive candidates, Cappuccino and Quail, looked very weak.  In 

case of cappuccino, only 5 embryos showed a phenotype out of 81 embryos and 

in case of quail, out of 42 surviving embryos, only 5 showed a dendritic 

phenotype.  Since the penetrance was very low compared to other positive 

candidates, cappuccino and quail were the second choices and Profilin and 

Diaphanous were selected for further analysis. 

Diaphanous and Profilin are known to be binding partners from biochemical 

studies in yeast and in HT1080 human fibrosarcoma or Swiss 3T3 cell cultures 

(Chang et al., 1997; Watanabe et al., 1997).  Profilin and Diaphanous are also 

hypothesized to interact with each other in Drosophila (Afshar et al., 2000; 

Verheyen and Cooley, 1994). Their similar dendritic phenotypes upon RNAi 

hinted at their cooperative function in dendritic morphogenesis.  Their role in 

dendritic morphogenesis was further analyzed using genetic tools.  
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CHAPTER 4- RESULTS (II) 
 

GENETIC ANALYSIS 
 

To confirm the dendritic phenotype of diaphanous and chickadee and study their 

role in detail in dendritic morphogenesis in vivo, further genetic studies were 

carried out.  The genetic analysis was done using gain of function and loss of 

function analyses with null and hypomorphic alleles of both dia (Castrillon and 

Wasserman, 1994; Spradling et al., 1999) and chic (Verheyen and Cooley, 

1994).   

4.1 Diaphanous  

Diaphanous is a Formin Homology domain protein (Figure 18) and is the 

founding member of the Diaphanous Related Formins (DRF) subfamily, with 

actin nucleating activity as well as anti-capping activity for fast growing ends of 

actin filaments (Kovar and Pollard, 2004) (see introduction 1.5.1).   

 

Figure 18: Domain structure of Diaphanous protein Diaphanous protein binds to 
actin and other actin binding molecules through its FH2 domain.  It binds to Profilin 
through its poly proline rich FH1 domain.  It binds to Rho GTPase through its N-terminal 
GTPase Binding Domain (GBD).  The FH3 domain lies between GBD and FH1 domain 
and its exact function is not clear yet.  Its auto-regulatory domain lies at its C-terminal.  

There is only one known diaphanous gene in Drosophila and it is located at 

38E7-38E8 on the left arm of the second chromosome.  The phenotypic analysis 

of diaphanous was done using both gain of function as well as loss of function 

analysis.  All the analyses were carried out in late 3rd instar larvae unless 

mentioned otherwise.  The gain of function analysis will be presented first 

followed by loss of function analysis. 
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4.1.1 Gain of function analysis 

For gain of function analysis, we obtained or made different constructs of 

diaphanous so that we could identify its role in dendritic morphogenesis.  We first 

obtained a fly stock containing a genomic rescue construct of dia, P[w+ pDC4] 

[referred to as P(dia+)] ubiquitously expressed in the endogeneous dia 

expression pattern (Castrillon and Wasserman, 1994).  It contains the entire 11 

kb genomic fragment containing the full dia gene cloned into a germline 

transformation vector.  This stock was homozygous lethal and the lethality could 

be due to insertion of the construct in some vital gene or actually due to 

ubiquitous `over-expression’ of diaphanous.  Since this construct was 

ubiquitously expressed, it did not allow us to analyze cell autonomous role of 

diaphanous.   

We generated fly lines carrying full-length un-tagged and RFP-tagged dia 

constructs under the control of UAS sequences (see Materials and Methods).  

These constructs could be expressed cell specifically under the control of any 

Gal4 driver.  We used 2 fly lines with full length untagged dia constructs on the X 

chromosome and on the 3rd chromosome respectively.  Besides these, we also 

used a RFP-tagged fly line on the 3rd chromosome for our analysis.  In addition, 

we obtained a fly stock with constitutively active (CA) dia gene under UAS 

promoter, (UAS-dia-CA),  which allowed tissue specific overexpression of the CA 

Diaphanous (Somogyi and Rorth, 2004).  In this construct the sequence 

encoding the dia N-terminal 449 amino acids (predicted Rho binding domain) is 

replaced by a short sequence encoding three HA tags, and the C-terminal amino 

acids 1029 to 1091 (predicted autoinhibitory domain, DAD) are  removed.  Since 

it lacks its N terminal Rho GTPase binding domain along with its DAD domain, it 

results in an open and active conformation of the Diaphanous molecule.  This 

construct could help us understand regulation of diaphanous by its upstream 

activator RhoA. 

4.1.1.1 Overexpression of dia in class I neurons: 
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Since class I neurons showed the most dramatic phenotype in RNAi assay and 

we had tools to observe class I neurons specifically, they were the focus for gain 

of function analysis.  For this purpose, all the dia constructs were used and 

analyzed using the Gal42-21 UASmCD8GFP driver-reporter combination to allow 

class I neuron visualization (Grueber et al., 2003a).  Most of the constructs were 

located on the 3rd chromosome and so were the marker line constructs and all 

the analysis was done only in heterozygous marker line background.   All the 

gain of function experiments were carried out in a wild type dia background.   

By adding one copy of the P(dia+) construct, the total number of dendritic 

branches of class I vpda neuron were 28.5+4.9, n=10 [Gal42-21UASmCD8GFP/ 

P(dia+)] (Figure 19D).  These were significantly more compared to the control 

(Gal42-21UASmCD8GFP/ +) 22.75+3.2, n=20, p<0.05.  Since this specific 

construct was expressing Diaphanous ubiquitously, increasing the normal level of 

the protein all over the animal, the effect could also be a non-cell autonomous 

effect.  

The UAS-dia-FL and UAS-dia-mRed constructs could be selectively 

overexpressed in class I neurons using the Gal42-21 driver, thus allowing for cell 

autonomous overexpression.  Interestingly, the total number of branches of vpda 

neuron upon overexpression of mRed-UAS-dia construct (mRed-UAS-dia)E3-1/ 

Gal42-21UASmCD8GFP, was 29.6+6.4, n=20, p<0.05 similar to the genomic 

transgene overexpression.  However, the overexpression of a full length dia 

construct resulted in almost twice the total number of dendritic branches of vpda 

neuron in case of both the fly line insertions- on X-chromosome, (UAS-dia)A3-1/ Y; 

Gal42-21UASmCD8GFP/+, (40.85+7.46, n=20, p<0.05) and 3rd chromosome, 

(UAS-dia)G3-1/ Gal42-21UASmCD8GFP, (38.8+5, n=20, p<0.05) . This result 

indicated that independent of the insertion site, this was an authentic phenotype 

owing to overexpression of dia by those individual constructs (Figure 19D).  It 

might also suggest that tagged dia is not fully functional.   
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We then overexpressed the constitutively active form of Diaphanous (UAS-dia-

CA) using the same Gal4 2-21 driver.  In this case, the total number of branches 

was increased to 33.25+3.9, n=8 compared to the control Gal4 2-21 

UASmCD8GFP/ + (Figure 19A,B).  To add to this, the overexpression of this 

construct showed many filopodia like branches emerging from the primary 

branches of vpda neurons, which was not observed with overexpression of other 

constructs of dia used till now.  Thus, the number of secondary branches was 

increased to 25.38+3.6, n=8, p<0.05 compared to control (14.9+1.9) whereas the 

number of higher order branches was decreased a bit to 6.9+2, n=8, p=0.04 

compared to control (8.9+2.6) (Figure 19C).   

Figure 19: Overexpression of dia results in dendritic over branching 
phenotype of class I –vpda neuron (A-C) vpda neuron from late 3rd instar larvae 
with overexpression of constitutively active dia constructs (B)  shows easily visible 
dendritic over branching compared to that of the control (A).  The number of secondary 
branches is significantly increased with overexpression of dia-CA, at the same time, the 
number of higher order branches is decreased compared to that of the control (C).  The 
overexpression of all the tested dia constructs show a significant increase in total 
number of branches of class I vpda neuron in late 3rd instar larva (D).                     
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Thus, all the constructs used for diaphanous overexpression exhibited an 

increase in total number of dendritic branches of class I – vpda neuron 

suggesting a role of Diaphanous in dendritic morphogenesis. 

4.1.1.2 Overexpression of diaphanous in class IV neurons 

Since overexpression of diaphanous showed dendritic over branching phenotype 

in class I neuron, it was interesting to see if the overexpression of diaphanous 

would affect the dendritic morphology of most complex branching pattern class IV 

neurons.  For this purpose, 3 constructs- genomic transgene P(dia+), 

constitutively active construct (dia-CA) and full length UAS-dia construct– were 

used.  We concentrated on class IV ddaC neuron from the dorsal cluster of 3rd 

instar larvae since the dendritic structure of class IV neurons is completely 

developed at this stage. 

Given that the overexpression was ubiquitous in the case of genomic transgene, 

P(dia+), only a class IV highlighting strain –ppk-eGFP- was needed to visualize 

the morphology of class IV neurons.  The ppk-GFP strain expresses eGFP under 

the promoter of pickpocket gene specifically in class IV neurons (Grueber et al., 

2003b).  The class IV ddaC neuron from P(dia+)/ppk-eGFP larvae showed 

264.4+31.3 (n=5) of total dendritic branches which were not significantly different 

(p=0.09) compared with that of the control, ppk-eGFP/+, with 288+18.1 (n=5) 

number of branches (data not shown).   

A strain called Gal4477 UASmCD8GFP was used for overexpression of UAS-dia 

constructs (Grueber et al., 2003a).  This strain expressed GFP under the control 

of Gal4477 driver primarily in Class IV neurons with a very light expression in 

class I neurons.  We first overexpressed the 3rd chromosome full length untagged 

construct of dia using this marker line.  No significant difference in the total 

number of dendritic branches was observed upon overexpression.  The 

overexpression of UAS-dia [(UAS-dia)G3-1/ Gal4447 UASmCD8GFP] produced 

508.75+42.2 (n=4, p=0.4) dendritic branches of class IV ddaC neuron, 
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comparably to the control Gal4477 UASmCD8GFP/+ showing 500+61.6 (n=4) 

dendritic branches (data not shown). 

 

A B

 
Gal4477UAS-mCD8GFP 
            (UAS-chic) 

Gal4447UAS-mCD8GFP Gal4447UAS-mCD8GFP 
                +        UAS-dia-CA 

Figure 20: Overexpression of (UAS-dia-CA) in class IV neurons 
Overexpression of constitutively active form of diaphanous in class IV neurons (B) 
affected the dendritic arborization pattern severely with much reduced dendritic field and 
many small filopodia like branches compared to its control (A). Scale bar 150μm. 

The same Gal4477 line was used for the overexpression of constitutively active 

form of diaphanous, UAS-dia-CA, in class IV neurons (Figure 20).  The result of 

this overexpression was remarkable!  The class IV – ddaC neuron showed a 

dramatic bushy phenotype upon UAS-dia-CA overexpression with many long 

filopodia like branches emerging from the primary branches.  The number of 

dendritic branches were so high in numbers and dense that it was not possible to 

quantify them.  However, the primary branches did not seem affected and most 

of the additional branches were either secondary or higher order branches.  This 

result may suggest that dia activity is very tightly regulated through Rho 

GTPases and dia is very important for the biological role of Diaphanous in 

dendritic morphogenesis of both, class I and class IV, neurons.   
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4.1.2 Loss of function 

Since the RNAi and the gain of function data indicated plausible function for 

diaphanous in dendritic morphogenesis, it was important to see if we could 

support these data with loss of function analysis.  For this purpose we took 

advantage of available genetic mutant alleles of diaphanous.  In Drosophila, null 

mutants of dia are lethal only at the pupal stage.  The survival of dia null animals 

through embryonic and larval stage is most likely due to maternal contribution of 

dia mRNA and/or protein.  The lethality at pupal stage occurs due to dilution of 

the maternal dia gene protein below threshold over time during development 

(Castrillon and Wasserman, 1994).  Since the lethal phase was at pupal stages 

and the embryos and larvae looked completely healthy till that stage, we studied 

the dendritic phenotype of the PNS neurons in stage-17 embryos as well as late 

third instar larvae. For observing the dendrites of PNS and to analyze any 

dendritic phenotype at different developmental stages, dia null mutants were 

generated with the required reporter combinations.  In particular, the null allele 

diaK07135 (Butler et al., 2001; Chen et al., 2004; Spradling et al., 1999), the null 

allele dia5 and a hypomorph allele dia9 (Afshar et al., 2000; Castrillon and 

Wasserman, 1994) were used for mutant analysis. 

 4.1.2.1 Dendritic phenotype of null mutant diaK07135 

The diaK07135 allele is a null allele due to a 10.691Kb P-element P (Butler et al., 

2001) insertion at position 2L:20746014-20746015 in the first coding exon  (2L: 

20745740-20746256) of dia, 174bp downstream of the ATG.  No detectable 

protein product of diaphanous gene is produced resulting in a null mutant.   

4.1.2.1.1 diaK07135 – dendritic over branching phenotype in class I neurons 

Since a clear phenotype was observed in Class I neurons upon RNAi, the initial 

phenotypic analysis of diaK07135 was carried out in Class I neurons using the Gal-

42-21UAS-mCD8-GFP driver-reporter combination.  Consistent with the dendritic 

phenotype observed upon RNAi assay, diaK07135 mutants showed significant 
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overbranching of class I neurons in the dorsal (data not shown) as well as in the 

ventral cluster.  Interestingly, the onset of the dendritic overbranching phenotype 

was evident at late embryonic stage 17, when the maternal supplement of 

Diaphanous protein is sufficient for survival of animals.  At this stage the total 

number of branch termini of the ventral cluster Class I vpda neuron in diaK07135 

homozygous embryos was slightly, but significantly increased (26.96 +4.4; n=27) 

compared to control (21.24+3.1; n=29; p<0.05) (Figure 21A-C).  However, the 

severity of the over-branching phenotype increased when the Diaphanous 

protein levels dropped in the mutants at late 3rd instar larval stage (Figure 

22A,B).   

Figure 21: Dendritic phenotype of class I vpda neuron of diaK07135 embryos 
(A,B) Class I vpda neuron of diaK07135 (B) from embryonic stage 17 shows significant 
increase in dendritic branches compared to that of control (A). C) Quantitative analysis 
showing a significant increase in total number of branches of vpda neuron in diaK07135 
compared to the control.  
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In the 3rd instar larvae, the total number of dendritic branch termini of vpda was 

more than two fold increased in mutant larvae (90.9+12.1; n=20, p<0.05) 

compared to the control (39.65+8.5; n=20).  The overbranching did not regard all 

orders of dendrites. The number of primary (one; n=20) and secondary order 

branches were unaffected in diaK07135 mutant vpda neurons (19.8+3.9, n=20) 

compared with control (18.6+3.6, n=20; p=0.16). However, the total number of 

higher order branches was increased more than three fold in mutant vpda 

neurons (69.1+10.8, n=20) compared with control (20.2+7.2, n=20; p<0.05) 

(Figure 22C).   

Figure 22 Dendritic phenotype of class I vpda neuron of diaK07135 at late 3rd 
instar laraval stage (A,B) Class I vpda neuron of diaK07135 (B) from late 3rd instar 
larvae shows significant increase in dendritic branches compared to that of control (A).  
C) Quantitative analysis showing a significant increase in the number of higher order 
branches but not in the number of primary and secondary branches in diaK07135.  D) 
Quantitative analysis showing the average length of primary, secondary and higher order 
branches being unaffected in diaK07135 compared to the control.  

 

A B 

diaK07135 ; Gal42-21 UAS-mCD8GFP 
diaK07135   Gal42-21 UAS-mCD8GFP 

Gal42-21 UAS-mCD8GFP 
Gal42-21 UAS-mCD8GFP 

                               

 62



C 

N
um

be
r o

f b
ra

nc
he

s *

Secondary 
branches p<0.05 Higher order 

branches 

 

diaK07135 ; Gal42-21 UAS-mCD8GFP
diaK07135   Gal42-21 UAS-mCD8GFP

n=20 

n=20 

Gal42-21 UAS-mCD8GFP 
Gal42-21 UAS-mCD8GFP 

 

 
 

0

100

200

300

400

 

D 

Le
ng

th
 in

 μ
m

 

Secondary 
branches 

Higher order 
branches 

Primary 
branches

diaK07135 ; Gal42-21 UAS-mCD8GFP
diaK07135   Gal42-21 UAS-mCD8GFP

n=20 

n=20 

Gal42-21 UAS-mCD8GFP 
Gal42-21 UAS-mCD8GFP  

 

 

 

Interestingly, in contrast to the effect on branching, the average dendritic length 

was not affected in the diaK07135 mutants (Figure 22D). Although a significant 

increase in total dendritic length in diaK07135 vpda neuron (2093.98 + 384.7 μm, 

n=20) was observed compared to that of the control (1577.43+ 208.3 μm, n=20), 

the mean average length of the primary (318.4+40.4 μm in control,  320.4+29 μm 

in diaK07135; n=20; p=0.43), secondary (53.83+7.8 in control, 48.55+10.9 in 

diaK07135;  n=10; p=0.11) and tertiary branches (14.87+4.4 in control, 11.6+3.7 in 
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diaK07135;  n=10; p=0.044) was not significantly affected (Figure 22D).  These 

results thus indicated that dia primarily may regulate branching but not growth of 

dendrites. 

4.1.2.1.2 diaK07135 – no dendritic phenotype in class IV neurons 

In the gain of function analysis only the constitutively active form of dia affected 

the dendritic morphology of class IV neuron unlike what was seen in class I 

neurons.  To test whether only class I neurons are affected by mutations in dia 

we furthermore analyzed the morphology of the highly complex Class IV neurons 

that we visualized by adding ppk-eGFP in the dia mutant background.  There 

was no significant effect in the total number of dendritic branches between 

diaK07135 and control (Figure 23A,B).  The total number of dendrite termini was 

448+111.6 (n=8) in mutant diaK07135 ddaC neurons compared to control ddaC 

(440.37+70, n=8, p=0.44) (Figure 23C).  

Figure 23 Absence of dendritic phenotype of class IV ddaC neuron of 
diaK07135 at late 3rd instar larval stage  (A,B) Class IV ddaC neuron of diaK07135 (B) 
from late 3rd instar larval stage shows no significant alteration in dendritic morphology 
compared to that of control (A). C) Quantitative analysis of total number of branches of 
class IV ddaC neuron showing no significant difference between diaK07135 and the 
control. 
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Thus, complex neurons are not affected by mutations in the dia gene, indicating 

that dia may not exert an important influence in regulating branching in class IV 

neurons under normal physiological conditions and may do so only when its 

regulation by RhoA or any other unknown upstream regulator is perturbed.  

4.1.2.2 Dendritic phenotype of null mutant dia5 

An additional independently generated null allele of dia, dia5 was also analyzed.  

This allele was generated when an original P-element inserted in the first exon of 

dia gene got imprecisely excised leaving a 3KB region inserted in the diaphanous 

gene causing a null mutation (Castrillon and Wasserman, 1994; Grosshans et al., 

2005).   

4.1.2.2.1 dia5 – dendritic over branching phenotype in class I neurons 

Since dia K07135 allele showed a phenotype in class I but not in class IV neurons, 

the focus of analysis were class I neurons in case of dia5 allele.  An appropriate 

stock of dia5 allele with the marker line was generated and tested for dendritic 

phenotype.  The dia5 allele also showed a very similar dendritic over branching 

phenotype (number of branches 51.1+13.6, n=20, p<0.05), although it was much 

less severe compared to the other null allele, dia K07135 (Figure 24 A,B).  The 
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penetrance of the dendritic phenotype in dia5 larvae was reduced to 50% 

compared with the ~100% penetrance observed with dia K07135 allele.   

Figure 24 Dendritic phenotype of class I vpda neuron of dia5 at late 3rd 
instar larval stage (A,B) Class I vpda neuron of dia5 (B) from late 3rd instar larvae 
shows significant increase in dendritic branches compared to that of control (A). C) 
Quantitative analysis showing a significant increase in total number of branches of vpda 
neuron in dia5 compared to the control. 
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A viable hypomorphic allele dia9 (Castrillon and Wasserman, 1994), showed no 

dendrite phenotype at late 3rd instar larval stage (data not shown). 

4.1.2.3 Dendritic phenotype in trans-allelic combination of null mutants- 
dia5 and diaK07135 

It was surprising that one of the null alleles, diaK07135, showed a much more 

severe phenotype compared to the other null allele dia5.  Therefore, the trans-

allelic combination of these two alleles was generated and analyzed for dendritic 

phenotype.  Surprisingly, in trans-allelic condition, the total number of dendritic 

branches were 47.4+11.18, n=20, p=0.0092 which was significantly more than 

the control but was less severe than the dendritic phenotype of each of the null 

alleles respectively (Figure 25).  Thus the phenotype of the trans-allelic null 

mutant combination was milder than both the null mutants respectively.  This was 

a puzzling observation and led to some more genetic experiments which are 

described and discussed further on. 
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Figure 25: Dendritic phenotype of class I vpda neuron in transallelic 
combination Quantitative analysis of total number of branches of transallelic 
combination of diaK07135/dia5 showing a milder but significant dendritic over branching of 
class I vpda neuron compared to both the null alleles respectively. 
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4.1.4 Western blot analysis: no Diaphanous protein in null mutants 

To gauge the authenticity of the null alleles, homozygous 3rd instar larvae were 

tested for Diaphanous protein using western blot analysis. The protein contents 

were quantified and equal concentrations of all the samples were loaded on the 

gel.  Rabbit antibodies raised against C-terminal (including intact FH1 and FH2 

domain) of Diaphanous were used at 1:5000 dilution to assess the presence of 

Diaphanous protein by western blot analysis (Grosshans et al., 2005).  The 

control lane, Gal-42-21UAS-mCD8-GFP, showed a distinct band for Diaphanous 

protein at ~123kD.  No Diaphanous protein was seen at the appropriate 

molecular weight in both the null alleles of diaphanous, diaK07135 and dia5, 
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compared to the control (Figure 26).  Neither of the mutant alleles should 

produce a protein of reduced molecular weight.  Thus, both the null mutant 

alleles of diaphanous used for the studies did not retain detectable amount of 

maternally contributed Diaphanous protein at late 3rd instar larval stages.   

Figure 26: Detecting Diaphanous protein on Western blot A western blot 
showing the absence of Diaphanous protein in third instar larvae of both the dia null 
alleles- diaK07135 and dia5. 

                                     

              1        2         3         4         

 
Lane 1: Protein marker 
Lane 2: dia5

Lane 3: diaK07135

Lane 4: Gal42-21 UASmCD8GFP- control 

 

4.1.5 Expression pattern  

Diaphanous is expressed in many tissues.  Since the dendritic phenotype was 

evident only in a specific class of md-da neurons, it was interesting to find out 

whether Diaphanous is particularly located in some and not all PNS md-da 

neurons.  The antibodies used for western blot analysis were used for the 

antibody staining also.  Different concentrations of the Ab were tested and a 

concentration of 1:5000 was used for most of the preparations.  The staining was 

performed in embryos and dissected 3rd instar larval fillets.  Unfortunately, 

conclusive staining could not be obtained after much of experimentation with 

conditions.  In most of the cases, the staining was seen mostly in muscles and 

trachea and some cells in CNS which resembled glia from their localization 

(covering the ventral nerve cord).  However, staining pattern could not be often 

reproduced. 
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4.1.6 MARCM- generating homozygous mutant clones in heterozygous 
animals 

The dendritic phenotype observed in diaphanous null mutants could be a 

secondary phenotype and not a cell autonomous phenotype due to some other 

primary phenotype, for example, misformation of surrounding tissues resulting in 

over branching of the dendrites of md-da neurons.  To probe into this possibility, 

MARCM (Mosaic Analysis with a Repressible Cell Marker) analysis was done.  In 

this technique, homozygous mutant mosaic clones can be induced using a heat 

shock promoter in specific tissues in a heterozygous animal.  This helps in 

analyzing the cell autonomy of the mutant phenotype in otherwise normal 

heterozygous animals (Lee and Luo, 2001). 

For producing MARCM clones, appropriate stocks of dia mutants carrying an 

FRT (Flippase recognition targets) sequence at the base of 2L chromosome 

were obtained by recombining the chromosome of dia mutant with the 

chromosome of correct FRT insertion.  FRT sequences present the target sites 

for the Flipase recombinase enabling mitotic recombination between homologous 

arms of a chromosome in presence of this enzyme (Harrison and Perrimon, 

1993).   Such a stock was available for dia5 (Grosshans et al., 2005) and it was 

generated by recombination techniques for diaK07135.  Appropriate lines were 

crossed and progeny was heat shocked as described in methods to get MARCM 

clones of mutant md-da neurons. 

Unfortunately, many rounds of MARCM experiments gave no clones in the 

nervous system although clones were produced for different tissues.  Therefore, 

no conclusion about the role of dia could be drawn from these experiments.  

4.1.7 Analysis with deficiency: 

In Drosophila genetics, the authenticity of any mutant phenotype is often tested 

using an appropriate deficiency line. A deficiency is a deletion uncovering a 

genomic region of variable lengths.  There are many such deficiency stocks for 
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different regions of different chromosomes sometimes with definite break points.  

One such deficiency, Df(2L)ED1317, uncovering the dia gene and many others 

with definite boundary 38D1-38F5, was tested in trans for both the null mutants 

of dia.   

A deficiency should behave as a null mutant for each of the genes it uncovers.  

As expected, the null mutant of dia, diaK07135 over deficiency Df(2L)ED1317 did 

not give any survivors indicating that the diaphanous gene was indeed deleted in 

the Df(2L)ED1317.  However, the 3rd instar larvae of diaK07135/ Df(2L)ED1317; 

Gal42-2 UASmCD8GFP/ Gal42-21UASmCD8GFP showed a very mildly significant 

dendritic over branching phenotype with 45.73+9.3, n=20, p=0.026 branches per 

vpda neuron compared to the control (Figure 27).  This phenotype was 

considerably milder than homozygous diaK07135. 

The other null allele, dia5, showed no dendritic over branching phenotype with 

38+11, n=20 branches per vpda neuron when tested in trans with the deficiency 

(Figure 27).  This result indicated that the dendritic over branching phenotype 

may not be a direct phenotype of mutated diaphanous gene. 

This data suggested that there is at least one more mutation in the stocks 

generated for analysis which is contributing to the phenotype.  Since we were 

using a marker line stock which had at least 2 insertions of P-elements on the 3rd 

chromosome, we decided to check where these insertions were located and 

whether they were contributing to the dendritic phenotype seen in dia null 

mutants. 
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Figure 27: Deficiency analysis of diaphanous null mutants Quantitative 
analysis of total number of branches of both the null alleles of dia with deficiency 
showing a lack of dendritic over branching phenotype seen in both the alleles in 
homozygous conditions respectively. 
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4.1.8 Dystrophin: insertion of Gal42-21 causes a dendritic phenotype! 

The marker line Gal42-21 UASmCD8GFP has at least 2 known constructs.  The 

first is Gal42-21 and the other is UASmCDGFP.  

The Gal42-21 construct insertion was mapped to the dystrophin gene which 

encodes for Dystrophin protein (unpublished data- Andre’ Reissaus).  Dystrophin 

is a scaffolding protein and members of the dystrophin family of proteins perform 

a critical but incompletely characterized role in the maintenance of membrane-

associated complexes at points of intercellular contact in many vertebrate cell 

types. They interact with, amongst others, the transmembrane laminin receptor 

dystroglycan and cytoskeletal actin (Roberts and Bobrow, 1998).  
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Drosophila melanogaster genome contains only one dystrophin gene which 

encodes for seven protein isoforms bearing a number of highly conserved 

domains.  The three large isoforms DLP1, DLP2, and DLP3 have an N-terminal 

actin-binding domain of spectrin repeats, and a C-terminal cysteine-rich domain 

speculated to interact with other dystrophin-glycoprotein complex proteins 

(Figure 28). One of the four shorter isoforms, Dp186, has a unique N-terminal 

domain appended to the pan-Dystrophin C-terminal domain.  The lack of the 

large dystrophin isoforms in the postsynaptic muscle cell leads to elevated 

evoked neurotransmitter release from the presynaptic apparatus.  However, 

absence of the large dystrophin isoforms does not lead to changes in muscle cell 

morphology or alterations in the postsynaptic electrical response to 

spontaneously released neurotransmitter (Neuman et al., 2005; van der Plas et 

al., 2006). 

Figure 28: Dystrophin gene and transcripts in Drosophila (A) There are seven 
known dystrophin isoforms, the large isoforms DLP1, DLP2, and DLP3 and the short 
Dp186 isoform have been worked upon. The position of the dysEP3397 is indicated. Exons 
are indicated as bars and introns as horizontal lines.  B) The domain structure of the 
various transcripts products, and the product-specific N-termini. The truncated products 
are named according to their molecular weights. 
 

 

 

          

   B) 

                                

[Adapted from J Neurosci. 4;26(1):333-44 (2006) and FEBS Lett. 10;579(24):5365-71 (2005)] 
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We first analyzed the phenotype of heterozygous, Gal42-21UASmCD8GFP/+ 

larvae which came as a surprise, showing 22.75+3.2 (n=20, p<0.05) dendritic 

branches of the class I vpda neuron compared to homozygous Gal42-

21UASmCD8GFP/ Gal42-21UASmCD8GFP, with 39.65+8.5 (n=20) dendritic 

branches (Figure 29).  It became clear that the control line had a phenotype on 

its own, and that in homozygous condition the control line had twice as many 

dendritic branches as the heterozygous condition.    

Figure 29: Dendritic over branching phenotype of Dystrophin Dystrophin is 
not the only molecule responsible for the dendritic phenotype of the marker line.  
Quantitative analysis of total number of branches showing a significant increase in the 
homozygous marker line compared to heterozygous condition or with heterozygous 
Gal42-21 insertion and another reporter.  Similar over branching phenotype was observed 
when the heterozygous marker line is checked with only Gal42-21 insertion or a 
dystrophin allele, DysEP3397; however, the same severity (like that of the homozygous 
marker line) is not observed indicating partial contribution of dystrophin in the dendritic 
phenotype.   
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To investigate separately the contribution of Gal42-21 insertion in the dendritic 

phenotype, Gal42-21 was analyzed in homozygous condition with heterozygous 

UASmCD8GFP insertion to visualize dendrites (Figure 29).   The 3rd instar larvae 

of Gal42-21 UASmCD8GFP/ Gal42-21 + genotype exhibited 30.9+5, n=20 dendritic 

branches which was significantly more (p<0.05) than heterozygous Gal42-21 

UASmCD8GFP/+ but still significantly less (p<0.05) than homozygous Gal42-21 

UASmCD8GFP.   This result confirmed that Gal42-21 is contributing to the 

dendritic phenotype of the control line.  However, it is only partially responsible 

for the expressivity of the phenotype.  There is some other mutation which is also 

responsible for the dendritic phenotype of the control line. 

To confirm that the dendritic phenotype was due to the insertion in dys gene, a 

dystrophin mutant allele, dysEP3397, was checked for phenotypic non-

complementation with Gal42-21.  This dys allele is a P-allele with a P element 

inserted 750 bp upstream of the DLP2 initiator codon (van der Plas et al., 2006).  

This allele was crossed with Gal42-21 UASmCD8GFP and the 3rd instar larvae of 

genotype dysEP3397/ Gal42-21UASmCD8GFP were tested for dendritic phenotype 

(Figure 29).  These larvae showed 30.38+2.71, n=20, p<0.05 branches per vpda 

neuron.  This result confirmed that the insertion in Gal42-21 was in the dystrophin 

gene because of the non-complementation of the phenotype of the dystrophin 

mutant and Gal42-21 insertion.  Further, these results indicated that dystrophin is 

not the only gene contributing the phenotype of marker line, Gal42-

21UASmCD8GFP/ Gal42-21UASmCD8GFP. 

In this case, the insertion site of the other construct UASmCD8GFP could also be 

responsible for the phenotype. To confirm this hypothesis, the Gal4 2-21 driver 

was crossed with UAS-GFP construct line.  In the progeny, the dendrites of class 

I neurons could be visualized due to expression of GFP in class I neurons.   The 

total number of branches of vpda neuron were 23+2.9, n=20 indicating that the 

insertion site of UASmCD8GFP was perhaps contributing to the phenotype of the 

marker line Gal42-21UASmCD8GFP/ Gal42-21UASmCD8GFP.  This insertion site 

was roughly mapped to one of the introns of fruitless gene on the 3rd 
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chromosome (Unpublished data- Andre’ Reissaus).  If the construct is inserted in 

the intron then it is difficult to judge its impact on mutating the gene.  However, all 

the results obtained till now have indicated that the dendritic overbranching 

phenotype observed is not solely due to mutation in dystrophin gene. 

4.1.9 Dendritic over branching phenotype of dia null mutants is lost in 
heterozygous marker condition 

Although both the null mutants of dia showed a significant dendritic over 

branching phenotype, many of these results were confusing as noted below:   

- The two null alleles of diaphanous exhibited different levels of severity of the 

dendritic over branching phenotype,  

- The transallelic combination of these two alleles showed a much milder 

dendritic phenotype and  

- Both null mutants lost their dendritic phenotype over the deficiency 

chromosome 

It was clear from the above experiments that, the marker line was interfering with 

the dendritic phenotype seen in dia null alleles.  We then set out to check the 

dendritic phenotype of diaK07135 and dia5 in the heterozygous background of the 

marker line Gal42-21UASmCD8GFP/+ and the result came as a surprise (Figure 

30).  The total number of dendritic branches of the class I vpda neuron of 

diaK07135/ diaK07135; Gal42-21 UASmCD8GFP/ + were 25+9.1, n=9 and it was 

25.3+5.7, n=8 for dia5, which were similar to the control, Gal42-21 UASmCD8GFP/ 

+, with 22.75+3.2, n=20 and   much lesser than the homozygous marker line, 

Gal42-21UASmCD8GFP/ Gal42-21UASmCD8GFP, 39.65+8.5, n=20 itself.   

When checked over the deficiency Df(2L)ED1317, both the null alleles, diaK07135 

and dia5, in heterozygous marker background showed significantly more dendritic 

branches in class I neurons (Figure 30).  diaK07135/ Df(2L)ED1317; Gal42-2 

 76



UASmCD8GFP/ + exhibited 32.6+7.4, n=20, p<0.05 dendritic branches of vpda 

neuron while dia5/ Df(2L)ED1317; Gal42-21 UASmCD8GFP/ exhibited 32.9+11.64, 

n=21, p<0.05 dendritic branches of vpda neuron compared to its control – 

heterozygous marker line, Gal42-21 UASmCD8GFP/ +, 22.75+3.2, n=20.  

However, this observation was different compared to the results obtained with 

homozygous marker background for deficiency analysis.   Since the deficiency 

deletes some more genes including diaphanous, the differences in the 

observations can be due to some unknown interactions between different 

mutations due to variability of genomic background.  

Figure 30: Dendritic phenotype of dia null mutants is lost in heterozygous marker 
line condition Quantitative analysis of total number of branches in late 3rd instar larvae. 
Both the null mutants of dia, diaK07135 and dia5, lost their over branching phenotype when 
tested in heterozygous marker line background.  Interestingly, both these allele showed 
a mildly significant dendritic over branching phenotype when tested in trans with the 
deficiency, Df(2L)ED1317. 
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Nevertheless, based on above experiments, it became evident that the dendritic 

phenotype of dia null mutants was a result of complicated interactions between at 

least 2 genes on the 3rd chromosome and 2 from the 2nd chromosome.  

Diaphanous seems not have a dendritic phenotype by itself but may contribute to 

the dendritic phenotype along with other genes. 

4.2 Profilin (chickadee) 

Profilin is a very well known actin binding molecule.  Profilin sequesters 

monomeric actin when barbed ends are capped. However in case of uncapped 

actin filaments, low Profilin concentrations increase elongation rates by adding 

actin (in complex with Profilin) to the fast growing filament ends, although high 

Profilin concentrations increase depolymerization at these ends. Profilin also 

binds to poly-proline sequences and these interactions with proline-rich ligands 

can further modulate actin polymerization (Polet et al., 2007) (see introduction 

1.5.2).  

In Drosophila, there is only a single gene for Profilin located on the 2nd 

choromosome at 26A5- 26B2 and it is called chickadee (chic).  The chic gene 

codes 2 mRNAs of 1.0 and 1.2 kb with identical open reading frames, which code 

for a small protein of 126 amino acids that is 40% identical to Profilins from 

Saccharomyces cerevisiae.  When conservative amino acid substitutions are 

considered, the homology increases to greater than 60% similarity (Cooley et al., 

1992).   

Interestingly, chickadee showed a dendritic over branching phenotype in RNAi 

assay and genetic analysis was carried out to probe into its possible role in 

dendritic morphogenesis.  We did both gain of function and loss of function 

analysis for chickadee also similar to diaphanous.   
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4.2.1 Gain of function analysis  

We used an existing UAS-chic construct for the gain of function analysis.  Since 

this construct was placed on the 3rd chromosome, it was expressed only in 

heterozygous conditions using class I or class IV neuron specific Gal4 lines 

which were also located on the 3rd chromosome.  

4.2.1.1 Overexpression of chic in class I and class IV neurons 

Overexpression of Profilin selectively in class I neurons using Gal42-21 

UASmCDGFP line did not show any significant difference in the total number of 

dendritic branches (23.85+3.2, n=20) compared to control.  This indicated that 

Profilin may not have a significant role in class I neurons.   

To test whether Profilin plays a role in regulating dendritic branching of high 

complexity Class IV neurons, we overexpressed UAS-chic using Gal4477 in those 

neurons.  Indeed, overexpression of chic reduced dendritic branching of class IV 

ddaC neuron (330.25+36.2, n=4, p<0.05) (Figure 31) compared to that of the 

control.   

Thus overexpression of Profilin affects the dendritic morphology of class IV but 

not class I neurons.  These data suggest that Profilin may have an effect on 

dendritic branching in a neuronal class specific manner in class IV neurons and 

perhaps not in class I neurons. 
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Figure 31: Dendritic phenotype of class IV ddaC neuron upon Profilin 
overexpression (A,B) Cell specific overexpression of UAS-chic (B) significantly 
reduces the total number of dendritic branches of class IV ddaC neuron compared to 
that of the control (A).     C) Quantitative analysis of total number of dendritic branches 
showing a significant reduction upon Profilin overexpression.   
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4.2.2 Loss of function analysis 

Since overexpression of Profilin showed a neuron specific effect, it was then 

interesting to analyze loss of function effects on dendritic morphology.  For this 

purpose, we obtained different alleles of chickadee.   Hypomorphic alleles of chic 

are viable and are female sterile. However, the null alleles are late embryonic or 

early larval lethal.  Null alleles of chickadee exhibit an axon growth cone arrest 

phenotype in inter-segmental nerve in late embryos.  It also plays an important 

role in axon outgrowth (Wills et al., 1999).  

4.2.2.1 Dendritic phenotype of null chic221and hypomorphic chic11 and 

chic37 alleles 

Three different alleles of chic were chosen for analysis.  The hypomorph alleles 

chic11 and chic37 are viable with female sterility whereas chic221 is a null allele.  

The null allele, chic221, did show a mild but significant increase in dendritic 

branches at stage 17, in agreement to what was observed upon RNAi.  The total 

number of dendritic branches was 24.72+3.6 (n=22, p<0.05) in chic221; Gal42-

21UASmCD8GFP/ Gal42-21UASmCD8GFP embryos compared to dendritic 

branches of control vpda from Gal42-21UASmCD8GFP/ Gal42-21UASmCD8GFP 

(21.24+3.1, n=29) (Figure 32a,b).  The phenotype was minor but significant.  

However,  chic null mutants are lethal at late embryonic / early first instar larval 

stages (Cooley et al., 1992), conclusive judgment could not be drawn from the 

phenotypic analysis carried out in chic221 homozygous mutant embryos.  The 

dendritic phenotype could have been a secondary effect due to defects in the 

surrounding tissues or the neuron itself of the embryos.  In the light of the 

experiments described in previous sections, the chic dendritic phenotype in 

embryos will need to be re-evaluated in the Gal42-21UASmCD8GFP/ + 

background. 
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Figure 32 Dendritic phenotype of class I vpda neuron of chic221 at 
embryonic stage (A,B) Class I vpda neuron of chic221 (B) from embryonic stage 17 
shows significant increase in dendritic branches compared to that of control (A). C) 
Quantitative analysis showing a significant increase in total number of branches of vpda 
neuron in chic221 compared to the control.  
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Since hypomorphic alleles of chic, chic11 and chic37, were viable, it was possible 

to assess their phenotype at 3rd instar larval stages.  The phenotypic analysis of  

chic11 and chic37 did not show any significant difference in dendritic morphology 

in these 2 hypomorphic alleles (data not shown) (Castrillon and Wasserman, 

1994; Verheyen and Cooley, 1994). 

It was conceivable to think that the transallelic combination of chic null with chic 

hypomorph could be viable till later stages of development and it could be 

possible to analyze the effect on dendritic morphology in such a combination.  
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Therefore a transallelic combination of chic221 with chic11 was made which was 

viable and when assayed at 3rd instar larval stages did not show any significant 

dendritic phenotype.  The total number of branches of vpda neuron in 

chic221/chic11 were 36.3+6.7, n=10, p>0.05.   

The class IV neuronal marker lines show GFP expression only at late embryonic 

stages resulting in very weak GFP signal in all the fine dendritic branches of 

class IV neurons and making it difficult to analyze their dendritic morphology.  

Since the null allele of chickadee was late embryonic lethal, it was not feasible to 

analyze the dendritic morphology of class IV neurons in this allele.   

4.2.3 Expression pattern using antibody staining 

Profilin is a ubiquitously expressed molecule.  However, its expression pattern in 

the PNS is not known.  Given that chic RNAi showed a dendritic phenotype in 

PNS neurons and chic null mutant did show an inconclusive dendritic over 

branching phenotype, checking its expression pattern in the PNS became an 

obvious step.  Monoclonal antibodies raised against Profilin protein were used for 

staining the embryos.  Every time, the staining was very prominent in muscles 

and because the PNS neurons lie just above the muscles, it was really difficult to 

visualize any staining in the PNS.  Thus, the expression pattern analysis using 

antibody staining was not successful. 

4.2.4 MARCM- generating homozygous mutant clones in heterozygous 
chic221 animals 

Because the null chic alleles are late embryonic lethal, I used MARCM analysis 

to address the cell autonomous role of Profilin in dendritic arborization.  The null 

allele, chic221, was recombined with appropriate FRT site construct and used for 

inducing homozygous mutant MARCM clones in heterozygous animals.  The 

MARCM mutant clones were not obviously different than the control clones for all 

different classes of neurons (Figure 33a).  The quantification of total number of 

dendritic branches of class I neuron ddaE from the dorsal cluster in both control 
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(27.5+4.8, n=11) and chic221 mutant clones (28.6+4.12, n=5, p<0.05) showed no 

significant difference (Figure 33b).  

Figure 33: MARCM Analysis Clones of chic221 (A) do not show any significant 
difference in dendritic morphology compared to that of control (B).  Quantitative analysis 
of total number of dendritic branches in class I neuron ddaE from dorsal cluster showing 
no significant difference in dendritic branching in chic221
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The absence of any obvious dendritic phenotype in the mutant clones could be 

explained by the fact that chic is not required in these neurons. Alternatively, it 

may reveal that the phenotype observed upon RNAi is non-cell autonomous, or, 

finally, there might be sufficient levels of Profilin protein in the clones to allow for 

normal dendrite differentiation.  This latter possibility is difficult to test because of 
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the high level of the protein present in the tissues in which these neurons are 

embedded that makes conclusive immuno-staining in single cell mutant clones 

very difficult. 

4.3 chickadee and diaphanous: analyzing the interaction  

Diaphanous-related-formins from yeast to mouse are known to directly bind in 

vitro to Profilin, an important regulator of actin dynamics, via their poly-proline-

rich FH1 domain  and the cdc12p formin interacts genetically with Profilin in yeast 

(Chang et al., 1997; Kovar and Pollard, 2004). The single Drosophila Profilin 

gene, chickadee is proposed to interact with dia, however no interaction has 

been shown in vivo to date (Castrillon and Wasserman, 1994; Verheyen and 

Cooley, 1994). 

Both these molecules showed a similar dendritic over branching phenotype in 

RNAi assay.  However, the overexpression of diaphanous showed an increase in 

the total number of branches whereas the overexpression of Profilin had no 

effect on class I neurons.  The Profilin loss of function data could not clearly give 

an idea about the role of these two molecules.  Since both these molecules are 

shown to interact in vitro and in vivo as well as they are hypothesized to do so in 

vivo in Drosophila, we decided to look at the double mutants of both chickadee 

and diaphanous.  

Animals heterozygous for either chic or dia null mutations or transheterozygous 

for the two mutations (diaK07135 / chic221) showed normal dendritic morphology 

with no significant changes in the total number of branches or total dendrite 

length of vpda neurons.  To study the interaction further we recombined a chic 

null mutant, chic221 (Verheyen and Cooley, 1994) with diaK07135. While 

heterozygous recombinant animals showed no phenotype (41.4+6.7, n=15) 

(Figure 34b), homozygous recombinant animals were lethal.  Using these flies 

we could eliminate one copy of chic in the dia mutant background 

(chic221diaK07135/ + diaK07135). In this condition, the dendritic overbranching 
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phenotype of diaK07135 mutant larvae was completely suppressed (Figure 34a). 

vpda neurons of chic221diaK07135/ diaK07135 third instar larvae showed normal 

number of dendritic branch termini (43.39+15.9, n=18) compared to diaK07135 

homozygous (Figure 34b).  Correspondingly, the total dendritic length was also 

restored to normal (1421.87+240, n=18) in chic221diaK07135/ diaK07135 animals.   

Considering previous results, the phenotype exhibited by diaphanous null mutant 

results from complex interactions and one of the responsible interactor may be 

placed on the second chromosome as chic and dia genes.   Hence it is possible 

that while recombining chickadee allele with dia, this particular interactor which 

was contributing to the dendritic over branching phenotype, was lost and thus the 

double mutant does not show the same dendritic phenotype anymore.  Thus, the 

suppression of dendritic phenotype may not be actually due to chickadee but it 

may be due to loss of this unknown interactor.  The possibility of the diaphanous 

chromosome harboring an interactor can be tested by crossing the dia allele out 

for many generations to lose this possible interactor and then testing the dia 

allele for dendritic phenotype.  Taken together, this data shows that the two 

genes in combination do not show a dendritic phenotype suggesting that they 

may not have a significant role in dendritic morphogenesis in this system. 
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Figure 34: chic221 genetically interacts with diaK07135 (A,B) One copy of chic221 
suppresses the dendritic phenotype of class I vpda neuron of diaK07135 in the marker line 
background.  C. Quantitative analysis of total number of branches of vpda neuron 
showing the suppression of phenotype of diaK07135 phenotype by chic221 along with 
controls.  
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4.4 Time lapse analysis: 

Dendritic branching is a very important step in dendritic morphogenesis, which 

defines the function, receptivity, connections and the coverage of the neuron.  All 

the classes of neurons which are a part of this study differ in their repertoire of 

primary, secondary and higher order branches.  How are these branches 

formed? Does a branch form once and then it is stabilized or there is a process 

of formation and retraction going on?  Are the branches formed at some 

particular time of development and do they grow as they are formed?  To answer 

several of these questions, a time lapse approach was undertaken.  A single 

vpda neuron was observed over time during larval morphogenesis.  From 

preliminary analysis, it was clear that the dendritic branches are still formed at 

the late third instar larval stages.  The total number of branches keeps 

increasing. Since most of our analyses were carried out at 3rd instar larval stages, 

the same stage was chosen for time lapse analysis.   

4.4.1 Standardizing time lapse assay 

The time lapse assay offers a very interesting possibility to look inside a live 

animal and assess the changes.  In our case, we wanted to see changing shapes 

and numbers of dendrites.  However, this assay had to be set up to working 

conditions.  Drosophila late 3rd instar larvae are called wandering larvae and as 

the name suggests, the larvae at this stage are very motile.  It is very difficult to 

keep them motionless.  Use of any anesthetic might affect the development 

and/or morphology of dendrites and that is why it was avoided.  Another 

possibility was to pin down the larvae but they would still show peristaltic 

movement.  The next options was to press them in a way that they don’t get 

squashed and die but still are not able to move.  Since the time lapse procedure 

would have taken at least few minutes, it was important to keep the larvae alive 

and breathing.  For this purpose, a metal slide was designed with a hole with 

certain depth (1mm) and diameter.  A cover-slip was fixed with Vaseline at the 

base of the hole which worked as a window for imaging (Figure 35a).  The 
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larvae, placed on the cover-slip in halocarbon oil, were covered with a ring of 

porous membrane which could be tightened on the larvae with adjustable screws 

(Figure 35b).  Different depths and diameters for the hole, different porous 

membranes and rings were tried out and finally a time lapse slide set up was 

standardized.  

Figure 35: Live imaging slide outlay (A) A metal slide with a 12mm wide hole at 
the center was used as the mounting surface.  This hole was surrounded by an 
equicentral wider circle of 18mm with a depression of 1mm in a way to fit a cover-slip in 
it. (B) A plastic rectangle fitted with a permeable ring holder of 18mm diameter was used 
to fix on top of the slide with the help of 2 adjustable screws. 

Metal slide for mounting A 

 
 B 

Air permeable membrane- ring holder with screws 

  

Airpermeable 
membrane holder Adjustable screw 

 

4.4.2 Imaging dendrites in vivo over time 

After the basic requirement of the time lapse set up was achieved, the next step 

was to actually image the larvae.  For this purpose, late 3rd instar larvae were 

selected and imaged to observe dendritic morphology of class I vpda neuron 

(Figure 36).   Previously it has been described that class I neurons from dorsal 

cluster, ddaD and ddaE, almost fixed the shape of overall dendritic arbors at 

early larval stages (Sugimura et al., 2003).  Only two to three lateral/second- or 

higher-order branches are generated per cell during the initial 13-15 hr of larval 

development and new branches are hardly seen for the next 13-15 hr.  

Particularly, ddaE achieves its final complexity possibly by 50 hr after egg laying.  
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However, class I vpda neuron shows a very dynamic branching process in case 

of higher order branches (Grueber et al., 2003a).  The 3rd instar larval vpda 

neuron exhibits shortening of branches, complete retraction of branches and de 

novo formation of branches.   

After imaging the 3rd instar larvae the first time, they were let develop further for 

additional 20-24 hours at 180C, then they were imaged again and then the 

number of new branches formed and the number of retractions were counted.  

On average, 7 novel branch formation (depicted by arrows) and 1 retraction 

events (depicted by *) were observed in vpda neurons of control Gal42-

21UASmCD8GFP/ Gal42-21UASmCD8GFP larvae (n=5). New branches are 

formed and some of them are retracted while some of them are stabilized.  At the 

same time previously stabilized branches keep growing in length.   

Figure 36: Time lapse analysis of 3rd instar larvae- visualizing dendritic 
morphogenesis in live vpda neuron from the marker line Gal42-21 UASmCDGFP 
visualized over time for 24 hrs – showing formation of new branches(marked with 
asterisk) as well as retraction of a branch (marked with arrows) 
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This analysis confirms previous observations that formation and retraction of 

branches is a constantly happening process for class I vpda neuron during late 

larval development unlike its counterpart class I neurons from dorsal cluster 
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(Sugimura et al., 2003).  Thus, time lapse imaging was successfully set up for 

further studies to understand dendritic morphogenesis. 

4.5 How do actin and microtubule contribute to dendrite formation? 

Cortical actin limits and defines processes whereas microtubules fill them up.  

How do actin and microtubule filaments act during formation of a new branch? In 

case of axons, cortical actin destabilization is necessary for microtubules to 

extend to form a new branch (Dent and Kalil, 2001).  However, axons are 

enriched in microtubules so it is conceivable that microtubules play a major role 

in axonal branch formation and extension.  Does the same principle hold for 

dendrites?  To probe into this possibility, localization of tubulin and actin were 

studied in the dendritic branches of class I vpda neuron.  UAS-controlled and 

GFP-tagged constructs were handy for visualization of both actin and tubulin.   

For tubulin, a UAS-tub-GFP construct (Grieder et al., 2000) was used whereas 

for actin, a UAS-GMA construct (Dutta et al., 2002) was used.  UAS-GMA is a 

chimeric construct that fuses the actin binding region of Drosophila moesin to the 

C-terminal of GFP.  Both the constructs were expressed using Gal42-21 driver. 

Figure 37: Localization of tubulin and actin Expression of GFP tagged Tubulin 
and actin showed distinctly different localization than one another A. Tubulin is more 
enriched in the primary branches and it becomes sparser in secondary branches and not 
seen much in higher order branches.  B, Actin is enriched not only in primary but also in 
secondary branches and sometimes in higher order branches. 
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Tubulin was mainly spotted in primary branches with a lower intensity in 

secondary branches.  The intensity dropped below detection level in higher order 

branches.  Although, actin was enriched at the base of secondary and higher 

order branches and its intensity also dropped below detection level like that of 

tubulin.  Nevertheless, the localization of actin and tubulin was distinctly different 

than one another.  The predominance of tubulin in lower order branches and 

actin in higher order branches could be established.   This localization can be 

further studied using time lapse analysis to see how the distribution of tubulin and 

actin changes during branch formation, retraction and growth. 
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CHAPTER 5- DISCUSSION 
 

 

 

Structural, functional and developmental aspects of dendritic architecture have 

been the focus of research in the field of developmental neuroscience in the last 

few years.  Dendritic morphologies form the key to neuronal connectivity and 

function. From the developmental point of view, the dendritic branching pattern is 

a hallmark of a neuronal type. Even neighboring neurons may exhibit strikingly 

different dendritic branching patterns. To appreciate the genesis of neuronal 

diversity, one has to understand how the dendritic branching pattern of individual 

neurons is controlled.  Since dendritic arborizations form an identity of every 

neuron, the topic of study of this thesis has been to understand the 

morphogenesis of dendrites.  Both extrinsic and intrinsic factors contribute to the 

sculpturing of neuronal dendritic arbors.  It is postulated that they act on 

cytoskeletal molecules and their regulators to shape dendrites (Jan and Jan 

2001).  However, the number of such cytoskeletal players known to affect 

dendritic morphogenesis is not very big considering the plethora of cytoskeletal 

molecules.  Thus, dendritic morphogenesis and cytoskeletal molecules involved 

in shaping it have been the major aim of study in this thesis.  We have used the 

well characterized embryonic and larval PNS of Drosophila as a model system 

for our studies (Gao, Brenman et al. 1999).   We have also tried to follow the 

development of dendrites in vivo over time and to examine actin and 

microtubules localization in dendritic structures. 

 

5.1 RNA interference screen 

Traditional loss of function genetic screenings in Drosophila using chemical 

mutagens or P-element have been rewarding. Although these screenings are 

sometimes complicated due to several reasons like presence of cold spots in 

DNA that are somewhat refractory to P-element insertion and loci that are less 
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susceptible to chemically induced mutations or maternal rescue of mutant 

phenotype or redundant gene functions (Koizumi, Higashida et al. 2007) and also 

the time required for achieving saturated mutagenesis. Therefore, RNA 

interference (RNAi) can be a useful tool to overcome hurdles of conventional 

genetic screens (Koizumi, Higashida et al. 2007; Parrish, Emoto et al. 2007).   

We took a candidate based reverse genetics approach using RNAi as an assay 

system to isolate prospective cytoskeletal molecules involved in dendritic 

morphogenesis.  Such approaches have been successfully used in C. elegans 

and have proven invaluable in the analysis of basic aspects of cell and 

developmental biology (Lee, Nam et al. 2004).   In past years, several such 

screens have been carried out successfully in Drosophila also to fish out 

regulating molecules for different developmental processes (Zhang, Yeromin et 

al. 2006; Koizumi, Higashida et al. 2007; Parrish, Emoto et al. 2007).  A very 

recent in vivo RNAi screening for the genes required for the development of 

embryonic nervous system has resulted in isolation of many known and novel 

genes.  This screen encompassed around 7,312 genes corresponding to 

approximately 50% of the Drosophila genes and led to isolation of around 65 

positive candidate genes.  The positive candidates include transcription factors, 

chromatin-remodeling proteins, membrane receptors, signaling molecules, and 

proteins involved in cell adhesion, RNA binding, and ion transport. Thus, it is 

possible to cover high number of genes and screen them for mutant phenotypes 

successfully.  To add to this advantage, comparison of the phenotypes identified 

from this RNAi screen with the corresponding mutant phenotypes obtained in 

genetic screens showed that RNAi-induced mutant phenotypes resemble genetic 

mutant phenotypes, indicating that RNAi can be used efficiently to identify genes 

that are involved in the development of the embryonic nervous system of 

Drosophila (Koizumi, Higashida et al. 2007).  

A latest RNAi screen to isolate transcriptional regulators of dendrite development 

has yielded many interesting candidates which control and co-ordinate various 

aspects of dendrite arborizations.  These candidates could be sorted in 3 
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different groups depending on their differential effects on dendritic branching and 

outgrowth- one group promoting or inhibiting dendritic arborization, a second 

group with opposing effects on branching and outgrowth and a third group 

affecting dendrite routing (Parrish, Emoto et al. 2007).  Thus, RNAi assay 

presented a very apt screening assay to screen for potential cytoskeletal 

molecules effectively in relatively short period.  

We took advantage of the successfully completed Drosophila genome project 

along with recently developed RNAi technique as a genetic tool to quickly assign 

a function to the selected few genes.  Such an approach on bigger scale will help 

delineate the complex web of interactions or networks linking them at the 

systemic level (Ma, Creanga et al. 2006).   The RNAi assay was successfully set 

up to give reasonable survival rate of injected embryos (Table 1).  We checked 

the reliability of the assay system by injecting GFP-siRNA in GFP expressing fly 

embryos and were able to successfully knock down the GFP expression (Figure 

12).  Though the assay was successfully set up and used, it should be noted that 

it did take much longer than one would expect -a few months- for the entire 

procedure including the standardization and the screen.  Considering the various 

limitations of RNAi as a genetic tool, it would have been advantageous to directly 

analyze genetic mutants of prospective candidates for dendritic phenotype.   

Nonetheless, a preliminary screen with 14 cytoskeletal molecules likely to have a 

role in neuronal development resulted in 5 positive candidates- Diaphanous, 

Profilin, Cappuccino, Kelch and Quail (Table 2).  Thus, the efficiency of isolating 

positive candidates was about 33% which was really impressive compared to 

other RNAi screens described above.  Although, it should be mentioned that we 

had selected prospective positive candidates for screening and considering this 

fact, it is not very surprising that the efficiency of isolating positive candidates 

from the screen was as anticipated.  Many of the screened candidates showed 

no dendritic phenotype which was surprising considering their important role in 

cytoskeletal dynamics.  However, the negative results could be due to following 

reasons.  First the Drosophila eggs contain many transcripts and protein 
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products produced by the mother during oogenesis, which may result in nullifying 

RNAi effect.  Second, dsRNA has been proven not to be completely successful 

and shows false negative results at times (Dykxhoorn, Novina et al. 2003).  The 

other possibility is that some genes may not show specific dendritic phenotype 

because of their ubiquitous expression and pleiotropic phenotype which may lead 

to lethality resulting in low survival rates.  Thus the survivors are only the 

unaffected ones. 

All the positive candidate molecules were important regulators of the actin 

cytoskeleton.  However, further analysis was focused on Diaphanous and Profilin 

because they showed more penetrance of the dendritic phenotype.  Additionally, 

both -Diaphanous and Profilin- are known to be binding partners from in vitro 

studies and in vivo studies in yeast (Chang, Drubin et al. 1997).  We, then, 

analyzed the functional role of both these molecules in dendritic morphogenesis 

with extensive genetic analysis.   

5.2 Diaphanous: Role in dendritic morphogenesis 

Diaphanous was an attractive candidate since it affects axonal initiation and 

elongation in vitro in cell cultures but its neuronal role in vivo is not explored yet.  

Similarly, its role in dendritic morphogenesis in vitro and in vivo is also unknown.  

Diaphanous nucleates actin and can affect actin turnover differentially in different 

model systems depending on its binding partners (Goode and Eck 2007).  Thus 

its role in actin dynamics appears to vary depending on different factors including 

its binding partners, upstream regulators, type of tissue and developmental stage 

and species.   

We tested the role of diaphanous in dendritic morphogenesis with profound 

genetic analysis. Gain of function analysis using different independently 

generated constructs increased the total number of dendritic branches indicating 

that diaphanous may have a role in the formation of dendritic branches (Figure 

18D).  It should be noted that overexpression of constitutively active diaphanous 
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(dia-CA) resulted in increased number of secondary branches which resembled 

long filopodia like structures (Figure 18B).  This phenotype was not exhibited by 

other full length constructs of diaphanous.  Interestingly, overexpression of only 

the same dia-CA and not of the full length form of diaphanous affected the 

dendritic morphology of class IV neurons (Figure 19).  In this case also it 

exhibited formation of numerous filopodia like branches emerging from primary or 

secondary branches suggesting that activated diaphanous is causing formation 

of these filopodia structures.  This was a particularly interesting observation since 

Diaphanous is regulated by members of the RhoGTPase family, especially 

RhoA, and withdrawing this regulation demonstrates a remarkable effect on a 

particular class of neurons, namely class IV neurons. I discuss it in detail below 

after providing some insight into filopodial structures in neuronal growth. 

Filopodia are finger-like membrane protrusions that contain parallel bundles of 

actin filaments. They are believed to be important for sensing the extracellular 

environment, either for soluble signals or for other cells (Kater and Rehder 1995). 

Cdc42 is activated at the filopodia of migrating fibroblasts and plays a crucial role 

in actin reorganisation. Cdc42 has always been thought to be the main mediator 

of filopodium extension, however, Cdc42-null fibroblastoid cells can still form 

filopodia (Czuchra, Wu et al. 2005). Interestingly, some other Rho GTPases like 

Rif/RhoF, RhoD and Wrch1 can all induce filopodium extension and might 

therefore substitute for Cdc42 in Cdc42-null cells (Ellis and Mellor 2000; 

Aspenstrom, Fransson et al. 2004; Pellegrin and Mellor 2005).  Recent evidence 

indicates that DRFs are the major controllers of actin polymerization in filopodia, 

both in mammalian cells and Dictyostelium (Schirenbeck, Arasada et al. 2005), 

and Cdc42 and Rif induce filopodia through Diaphanous (Peng, Wallar et al. 

2003; Pellegrin and Mellor 2005) (Figure 38).   
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Figure 38: Rho family proteins, actin filaments and membrane dynamics At 
the plasma membrane Rho GTPases stimulate membrane protrusions through actin 
polymerization. Rac activates the WAVE protein complex, leading to Arp2/3 complex-
mediated actin polymerization to form a branching actin filament network in lamellipodia, 
where the Arp2/3 complex induces a new filament to polymerize from the side of an 
existing filament. Cdc42 might also contribute to lamellipodial extension through WASP 
proteins, which activate the Arp2/3 complex. Cdc42 and Rif activate the DRFs Dia1 
and/or Dia2, which bind to the barbed (+) ends of filaments and induce actin 
polymerization in parallel bundles at the plasma membrane, forming filopodia. + 
indicates barbed ends, − indicates pointed ends of filaments. 

 

 

 

 

 

 

 
 

(Adapted from Ridley AJ, Trends Cell Biol. 2006 Oct;16(10):522-9.) 

Filopodia are thought to be important for steering events during neuronal growth 

cone navigation and pathfinding (Aspenstrom, Fransson et al. 2004).  It is 

proposed that filopodia are the precursors of dendritic branches which are 

stabilized during development.  The early phase of branch growth happens 

before the formation of synaptic contact and is initiated by the appearance of a 

filopodium. The filopodium protrudes to form a new branch segment, the 

stabilization of which probably involves the invasion of microtubules. As the 

neuron matures, branch growth enters the late phase. Synapses start to form 

along the dendrite and provide a new mechanism for stabilization of the dynamic 

branches.  This synaptic-contact-dependent stabilization mechanism is 

functionally selective because only dendritic branches that are contacted by the 

appropriate inputs are stabilized and, therefore, maintained (Ye and Jan 2005).   
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Indeed, in vivo imaging of synapse formation on a growing dendritic arbor in 

Zebrafish indicates that almost all synapses form initially on newly extended 

dendritic filopodia. A fraction of these nascent synapses are maintained, which in 

turn stabilizes the subset of filopodia on which they form. Stabilized filopodia 

mature into dendritic branches, and successive iterations of this process result in 

growth and branching of the arbor (Niell, Meyer et al. 2004).  For dendrites of 

sensory neurons, which do not receive synaptic input, little is known about how 

the dynamics are stabilized in the late stage, although it is conceivable that the 

target tissues of these neurons, in addition to the homotypic dendritic exclusion 

that exists in some types of sensory neuron might provide a stabilization signal 

(Ye and Jan 2005).  In this scenario, under normal conditions, upstream 

RhoGTPase/s are down regulated to facilitate formation of filopodia turning into 

dendritic branches in class IV neurons.      

When full length diaphanous is overexpressed in class IV neuron, there is not 

enough of RhoGTPase/s to activate it.  Thus, overexpressed full length dia still 

undergoes repression or it is kept under control by rationing its upstream 

regulatory RhoGTPase/s.  In this case, it may be possible to evoke the same 

filopodia like over branching phenotype with full length dia construct by over 

expressing an appropriate RhoGTPase along with it.   

Alternatively, it is possible that Diaphanous has different binding partners in 

different classes of neurons and therefore it behaves differently depending on the 

concentration, types or number of binding partners present in a particular class of 

neuron.  Another possibility is that, the dia-CA construct acts as a dominant 

negative form giving a loss-of-function-like phenotype.  Considering RhoA as an 

upstream positive regulator, the phenotype can be compared with that of RhoA 

loss of function in mushroom body neurons. It is interesting to note that in 

Drosophila mushroom body neurons, RhoA clones exhibit drastically increased 

length, frequency, and number of overextended dendrites compared with wild 

type (Lee, Winter et al. 2000).  RhoA being an upstream positive regulator of 

Diaphanous, it is very much likely that diaphanous also would mutate to show a 
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similar dendritic phenotype.  However, diaphanous has a branching phenotype 

whereas Rho has a growth and extension phenotype.  The model system which 

was used for the analysis of RhoA clones doesn’t offer an easy differentiation 

between branching and extension phenotypes.  Finally, it is possible that the dia-

CA construct is inserted in a gene which may mutate to give this dendritic 

filopodia like phenotype. Taken together, these results suggested that 

diaphanous is delicately regulated to sculpture dendritic arborizations both in 

class I as well as class IV neurons.   Our analysis did not cover other classes of 

neurons because of lack of specific markers and it will be interesting to see 

whether the Rho GTPases and Diaphanous pathway affect any of other classes 

of neurons.   

However, the loss of function analysis suggests that dia does not have a primary 

role in dendrite differentiation in class I and class IV neurons.  Both tested null 

alleles, diaK07135 and dia5, showed a dendritic over branching phenotype 

specifically of higher order branches and not the primary and secondary 

branches of class I vpda neuron (Figure 21).  Although, the transallelic 

combination of the two null alleles showed a milder dendritic over branching 

phenotype of class I- vpda neuron compared to each of them respectively (Figure 

24).  Similarly, when checked in trans-heterozygous condition with the deficiency 

chromosome, both the alleles showed either no phenotype or very mildly 

significant phenotype (Figure 29).     Western blot analysis of homozygous 3rd 

instar larvae from both the alleles did not show any Diaphanous protein indicating 

that the mutations were not lost and they indeed knocked out Diaphanous protein 

(Figure 25).  All these experiments were done in homozygous marker line 

background.  However, when checked in heterozygous marker line background 

both the dia null alleles failed to show any dendritic phenotype.  These results 

suggest the possibility that the dendritic phenotype is not caused by diaphanous 

alone or not at all by diaphanous and perhaps due to some other background 

mutations either on the marker line or on the dia chromosomes of both the null 

alleles.  Although, it is difficult to imagine that both the independently generated 
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dia alleles harbor the same mutation on their chromosome, which gives a similar 

dendritic over branching phenotype.  On the contrary, it is likely that some other 

mutations on other chromosomes (eg. the marker line chromosome) are 

contributing/ interfering with the dendritic phenotype seen in dia null alleles.  

5.3 Dystrophin 

Detailed analysis of the marker line with Gal4 and UAS-GFP insertions on the 3rd 

chromosome, Gal42-21UASmCD8GFP, which was used to analyze the dendritic 

arborizations of class I neurons in dia null alleles, showed a dendritic phenotype 

on its own (Figure 28).  The Gal4 insertion of the marker line was found to be in 

the dystrophin gene which is conserved and is found to be mutated in muscular 

dystrophy patients (Zhou, Xie et al. 2006).  The Drosophila dystrophin gene 

encodes for 7 different isoforms and they are mostly expressed throughout 

development in different tissues including muscles, gut, mesoderm, etc.  

Interestingly one of the short isoforms, Dp186, is highly expressed in embryonic 

CNS but absent from the musculature (van der Plas, Pilgram et al. 2006).  Our 

analysis using homozygous Gal4 insertion or heterozygous Gal4 insertion in 

transheterozygous condition with a dystrophin allele, dysEP3397, showed the same 

result with over branching of dendrites.  This result confirmed that the Gal4 

insertion was indeed in the dystrophin gene indicating that the phenotype 

observed was due to a mutation in dys (Figure 28).  However in both these 

cases, the over branching was not as severe as it was seen in the homozygous 

marker line and in fact it was around 50% more compared to the heterozygous 

marker line.  This result indicates that the Gal4 insertion in the dystrophin gene is 

certainly contributing to the dendritic over branching phenotype of the marker line 

but it is not solely responsible for it.  The role of dystrophin in dendritic 

morphogenesis has never been studied before and this is the first evidence 

indicating its function in dendritic branching.  However, due to complications with 

genetic backgrounds, we did not investigate this possibility further in depth.  The 

above results suggest that the other insertion of UAS-mCD8GFP construct or 

some other mutation on the particular chromosome may also contribute to the 
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marker line phenotype.  The insertion of the UAS-mCD8GFP construct is roughly 

mapped to an intron in the fruitless gene and it is not possible to estimate its 

contribution to affect the gene to much extent.  We haven’t probed much into the 

contribution of this UAS-mCD8GFP construct in the marker line phenotype.    

5.4 Diaphanous: Ambiguous results from loss of function analysis 

To rule out possible genetic interaction, we also tested for a dendritic phenotype 

in the heterozygous marker line condition.  Both the dia null alleles lost their 

phenotype in heterozygous marker condition again suggesting that diaphanous 

by itself doesn’t have a dendritic phenotype and it is contributing to or enhancing 

the dendritic over branching phenotype of the marker line.  Although, since the 

marker line phenotype is not due to a single mutation, it is difficult to comprehend 

the interaction of dia with the marker line mutation/s.  To add to this, both the null 

alleles of dia showed a mild but significant dendritic over branching phenotype in 

transheterozygous condition with the deficiency suggesting that perhaps, dia has 

a role in dendritic morphogenesis.  On the other hand, the deficiency used for the 

analysis covers ~ 400kb region with 52 known and predicted genes (Flybase).  

Since the deficiency covers many genes other than diaphanous, it is possible 

that this effect is due to the deletion of some other gene and not due to 

diaphanous itself.   It will be a very tedious task to test each of these genes for 

their role in dendritic morphogenesis considering the fact that many of them are 

just predicted genes and most of them do not have any mutants available.  We 

can test this again with a smaller deficiency which would delete fewer genes and 

a deficiency deleting only the diaphanous gene would be the best option.  

However, we do not have these resources available at this point of time and can 

test these possibilities in future if they become available.  Other possibilities 

include, testing dia null mutants for dendritic phenotype using another marker line 

for class I neurons such as IG1-1 (Sugimura, Yamamoto et al. 2003).  This, the 

only other available marker line for class I neurons, also consists of 2 insertions- 

one of Gal4 and another of UAS on the same chromosome where dia gene 

resides, making it difficult to recombine all these three loci on the same 
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chromosome.  Another possibility is to standardize the genetic background of 

both the null mutants to get rid of possible interactors by crossing them out for 

several generations and then to test these `purified’ stocks for a dendritic 

phenotype.  This process is surely time demanding and the outcome can not be 

predicted.  

Taken together, the loss of function results till now suggest that diaphanous may 

not have a dendritic phenotype on its own and perhaps acts as a homozygous 

enhancer of the dendritic over branching phenotype of the marker line.  The 

dendritic phenotype seen in null alleles of diaphanous is a result of complex 

interactions between more than two genes placed on 2nd and 3rd chromosome 

including dystrophin.  However, the gain of function analysis surely suggests that 

diaphanous may have an important function in dendritic filopodia formation.  The 

gain of function analysis also suggests a neuronal class specific role as well as a 

possible regulatory mechanisms for diaphanous.  This is a very interesting 

possibility and a systematic loss of function analysis with domain deletions will 

help to comprehend the role of diaphanous in dendritic morphogenesis.  

5.5 Profilin 

Profilin was another appealing candidate because it is a well known important 

regulator of actin dynamics playing a role in actin polymerization as well as actin 

depolymerization (Yarmola and Bubb 2006).  As mentioned above, it is also 

known to be a binding partner of Diaphanous from in vitro studies and in yeast.  

Like its binding partner Diaphanous, Profilin also can affect actin dynamics 

differently depending upon its binding partners, concentration of actin monomers 

and its own concentration.  Its in vivo role has been characterized to some extent 

- it is known to function in many actin dependent developmental processes 

including oogenesis, spermatogenesis and cell division (Witke 2004).  It also has 

a role in the nervous system, since it is supposed to affect axonal growth in 

Drosophila (Wills, Marr et al. 1999) and it is known to get localized in dendritic 

spines upon neuronal activity in mammals (Ackermann and Matus 2003).  
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However, its role in dendritic morphogenesis is not yet known.  Another point why 

it was appealing is because both Profilin and its binding partner Diaphanous 

showed a similar dendritic over branching phenotype upon RNAi.  Thus, a 

thorough genetic analysis was carried out to unravel its role in dendritic 

morphogenesis. 

Gain of function analysis of Profilin using a full length construct showed no effect 

on the dendritic morphology of class I vpda neurons.  However, it did reduce total 

number of branches of class IV –ddaC neuron in late 3rd instar larvae (Figure 31).  

This result indicates that Profilin may have a neuronal class specific effect on 

dendritic morphology.  It is also possible that it has different binding partners in 

different classes of neurons and thus its overexpression shows different results 

accordingly.   

In loss of function analysis, the null allele of chickadee showed a mild but 

significant dendritic over branching phenotype of class I neurons (Figure 32) but 

since the analysis could only be done close to the lethal phase of the animals, we 

couldn’t conclude anything from this experiment.  chic null alleles completely 

block oogenesis, preventing the use of germline mosaics for the study of zygotic 

phenotypes in the absence of maternal expression.  Further experiments using 

MARCM analysis to study cell autonomous function of Profilin resulted in null 

mutant MARCM clones with no significant alterations in dendritic phenotype of 

class I neurons (Figure 33).  Dendritic morphology of other classes of neurons 

also seemed very much unaffected in these clones.  It would have been 

interesting to see whether dendritic morphology of class IV neuron MARCM 

clones gets affected since overexpression of chic affects these neurons.  The 

negative results of MARCM experiments suggest that Profilin may not function in 

dendritic morphogenesis in md-da neurons.  Although, the negative results may 

also be due to maintenance of maternal supplement of the protein in the clones, 

leading to normal development of dendrites.  Thus, we did not have a definite 

conclusion from this experiment either.  We also tried studying the expression 

pattern of Profilin in embryonic stages and since the expression was really high 
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in muscles, it was almost impossible to see its expression in the PNS neurons 

which lay right over the muscles.  We were not able to impart any neuronal 

expression pattern for Profilin.  Taken together, we could not confirm the RNAi 

results for Profilin using genetic and immunochemical analysis.   

5.6 Higher order branches of vpda neuron are dynamic at late larval stages 

The in vivo time lapse analysis presents a great tool to actually observe the way 

processes are generated in live.  This technique has been used before to study 

dendritic branching and growth of PNS md-da neurons in vivo (Sugimura, 

Yamamoto et al. 2003).  However, it is very difficult to image the active 

processes in live samples due to movements of the animal. I have successfully 

standardized this technique and was able to use it to examine dendrite 

development in vivo.  Previous studies have demonstrated that the two class I 

neurons from the dorsal cluster stabilize their basic dendritic architecture at late 

embryonic stage and there are very few higher order branches formed afterwards 

till late larval stages (Sugimura, Yamamoto et al. 2003).  The preformed 

branches just grow in length to cover more surface area.  We followed the 

development of dendrites of class I vpda neuron in third instar larvae (Figure 36).  

In agreement with previous results we found that no primary or secondary 

branches are formed de novo at the late larval stages.  However, the higher 

order branches are dynamic with some new branches forming over a period of 

24hrs at 180C and we also saw retraction of branches.  Thus, the primary and 

secondary branches are not changed but only the higher order branches are 

formed de novo or retracted.  These observations may also explain why the 

dendritic phenotype seen in class I vpda neuron affected only higher order 

branches.  Since primary and secondary branches are already formed and 

stabilized by the time the effect of mutation sets in during development, only 

higher order branches are affected since they are dynamic at relatively later 

stages also. 

At the end, it should be noted that the strain used for time lapse analysis of class 

I vpda neuron was the same marker line Gal42-21UASmCD8GFP, which shows a 
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dendritic overbranching phenotype of these neurons.  Thus, the observations of 

our time lapse analysis could be actually due to the mutant phenotype of this 

marker line.  Therefore, it is important to find an appropriate control line for this 

analysis.  

 

5.5 Localization of actin and tubulin varies in class I vpda neuron 
Although much progress has been made in characterizing molecular players 

affecting dendritic morphogenesis, it is not clear how exactly the new branches 

are formed during dendritogenesis in vivo.  How much do actin cytoskeleton and 

microtubules contribute to this branch formation event?  How are actin and 

tubulin localized and distributed in preformed branches- primary, secondary and 

higher order branches and during branch formation?  Are the de novo branches 

formed of actin exclusively at the beginning and then are inhabited by 

microtubules or microtubules are needed to form the de novo branches at the 

beginning?  Studies till date show that class III md-da neurons show actin rich 

spike like structures which are very dynamic.  The same studies also 

demonstrate enrichment of Nod, a minus-end reporter for microtubules, using 

Nod-GFP at the tips of some of the da neuron dendrites (Andersen, Li et al. 

2005).  However, not much is known about actin and tubulin localization in class I 

neurons and their contribution to de novo branch formation.  We looked at the 

localization of actin and tubulin in class I- vpda neurons in late 3rd instar larvae 

using GFP labeled constructs to visualize both these molecules (Figure 37).  In 

preliminary experiments, we found that tubulin is mainly localized in primary 

branches and its concentration becomes faded in secondary and higher order 

branches.  This was very different than actin which was localized not only in 

primary branches but also in secondary and to some extent in higher order 

branches.  These preliminary results indicate that primary branches are richer in 

microtubules and as the order of branches keeps on increasing the concentration 

of tubulin decreases.  On the other hand, actin is more or less equally 

concentrated in first couple of orders of branches and then its concentration 

seems to drop down in higher order braches.  It will be interesting to follow the 
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distribution of tubulin and actin at higher resolution during branch formation in 

vivo using time lapse with signal to volume quantifications.   
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Concluding remarks:     

This thesis describes an attempt to investigate role of two important cytoskeletal 

regulators- Diaphanous and Profilin- in dendritic morphogenesis.  Overall genetic 

analysis along with histo-chemical analysis failed to confirm a definite function for 

both these molecules in dendritic development.  Both these molecules are 

important regulators of actin and it will be very surprising if they do not affect 

dendritic morphogenesis.  At this point, we lack appropriate genetic tools to study 

their role especially of Profilin.  However, with technological advances, it may be 

possible in the coming future to manipulate protein levels at particular time during 

development and examine the effects in vivo.  In case of Diaphanous, our results 

suggest no significant role for it in dendritic differentiation.  

Our preliminary efforts to study dendrite development in vivo over time were 

successful and this system now can be used to observe different dendritic 

mutants to see how exactly they play a role in dendritic morphogenesis.  Further 

we tried to analyze localization of Actin and Tubulin in dendritic branches of class 

I neurons.  This aspect can be studied ahead with appropriate quantifications to 

understand how the dendritic branching actually takes place with respect to 

microtubule and actin cytoskeleton interplay. 
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