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Abstract

This thesis is a cumulative dissertation that consists of three papers.

The first paper addresses the issue of screening of a charged dust particle suspended in the plasma-wall

transition layer of a plasma discharge. This problem is one of the fundamental issues in the physics of

complex (dusty) plasmas, because the screening of charged dust particles determines the interaction forces

between them and thus governs their dynamics. The kinetic model proposed in this paper considers a

point charge embedded in a weakly-ionized plasma with ion drift. The latter is considered to be due to

an external electric field and assumed to be mobility-limited. Here, “mobility-limited” means that the

acceleration of ions in the external field is balanced by collisions of ions with neutrals and that this balance

determines the drift velocity. The embedded point charge (i.e., a charged dust particle) perturbs the

ion drift, and the resulting potential distribution around the dust particle is calculated. The results are

proven to be in agreement with existing measurements performed in the plasma-wall transition layer of a

rf plasma discharge. One of the important applications of this work is related to the possibility of tuning

the pair interaction potential between dust particles by applying an external oscillating electric field. In

particular, such a tuning allows studying electrorheological properties of strongly coupled systems on all

relevant time scales. First experiments of this kind have already been performed onboard the International

Space Station.

The second paper deals with the dust-lattice waves — oscillations of charged dust particles forming a

crystalline structure in a plasma. The role of anisotropic screening of dust particles and variations of their

charges is investigated. It is well known that the mentioned effects lead to non-Hamiltonian dynamics of

dust particles and, as a result, can trigger an instability of the dust-lattice waves. This instability has

been already observed in experiments. The new result is that the mutual influence of particles on their

charges, not considered in the analysis of the dust-lattice waves before, is shown to be capable of making

a significant contribution to this instability.

The third paper examines whether a similar instability can be observed in a cluster formed by two or

three charged dust particles. It is found that an instability due to the non-Hamiltonian dynamics is only

possible when the interparticle separation in the cluster is such that certain cluster eigenfrequencies are

sufficiently close to each other.
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Zusammenfassung
Diese Dissertation ist eine kumulative Dissertation und besteht aus drei Arbeiten.

Die erste Arbeit beschäftigt sich mit der Abschirmung des in einer Plasmarandschicht zur Schwebe

gebrachten geladenen Staubteilchens. Dieses Problem ist von fundamentaler Bedeutung für die Physik

der komplexen (staubigen) Plasmen, weil die Abschirmung die Form der Wechselwirkungen und somit die

Dynamik der geladenen Staubteilchen bestimmt. In der Arbeit wird ein kinetisches Modell vorgeschlagen,

in welchem ein Staubteilchen als eine Punktladung betrachtet wird, die sich in einem schwach ionisierten

Plasma mit einer Ionendrift befindet. Es wird angenommen, dass die Ionendrift durch ein externes elek-

trisches Feld verursacht wird und dass diese Ionendrift der Mobilität der Ionen entspricht. Dies bedeutet,

dass die Beschleunigung der Ionen im externen elektrischen Feld durch Ionen-Neutralteilchen-Stöße aus-

geglichen wird und dass diese Kompensation die Geschwindigkeit der Ionendrift bestimmt. Die Punkt-

ladung (d.h. das Staubteilchen) stört diese Ionendrift, und in der vorliegenden Arbeit wird die resultierende

Potentialverteilung des Staubteilchens im Plasma berechnet. Zudem wird festgestellt, dass die Resultate

mit den früher in RF-Entladungen durchgeführten Experimenten konsistent sind. Die übergreifende Be-

deutung dieser Untersuchung liegt in der Möglichkeit, damit durch ein externes elektrisches Wechselfeld das

binäre Wechselwirkungspotential der Staubteilchen von außen zu steuern und somit z.B. elektrorheologis-

che Eigenschaften von stark wechselwirkenden Systemen von Partikeln sichtbar zu machen und dynamisch

auf allen relevanten Zeitskalen zu untersuchen. Erste Messungen dieser Art sind in Experimenten auf der

Internationalen Raumstation bereits erfolgreich durchgeführt worden.

Die zweite Arbeit beschäftigt sich mit den sogenannten Staub-Gitter-Wellen (dust-lattice waves). Das

sind Wellen, die durch Schwankungen der geladenen Staubteilchen, die eine Kristallstruktur im Plasma

bilden, entstehen. In der vorliegenden Arbeit wird die Rolle sowohl der Anisotropie der Abschirmung der

Staubteilchen als auch der Variation ihrer Ladungen untersucht. Wie bekannt führen diese Effekte zu nicht-

Hamiltonischer Dynamik der Staubteilchen und können daher eine Instabilität der Staub-Gitter-Wellen

auslösen. Solche Effekte sind in Experimenten bereits beobachtet worden. Das neue Ergebnis besteht

darin, dass der gegenseitige Einfluss der Staubteilchen auf ihre Ladungen, ein Effekt, welcher bisher bei

der Analyse der Staub-Gitter-Wellen noch nicht berücksichtigt wurde, einen wichtigen Beitrag zu dieser

Instabilität leisten kann.

In der dritten Arbeit wird untersucht, ob eine ähnliche Instabilität in Partikelclustern, welche nur aus

zwei oder drei Staubteilchen bestehen, beobachtet werden kann. Es wurde festgestellt, dass eine ähnliche In-

stabilität, die durch nicht-Hamiltonische Dynamik verursacht ist, nur dann möglich ist, wenn der Teilchen-

abstand so gewählt wird, dass bestimmte Eigenfrequenzen des Clusters gut miteinander übereinstimmen.



xii



Аннотация 
 
Настоящая диссертация является кумулятивной диссертацией и состоит из трех работ. 

Первая работа посвящена экранированию заряженной пылевой частицы, левитируемой в 
приэлектродном слое плазменного разряда. Эта задача является одной из фундаментальных проблем 
физики пылевой плазмы, так как экранирование заряженных пылевых частиц определяет силы 
взаимодействия между ними и поэтому определяет их динамику. В статье предложена кинетическая 
модель, в которой рассматривается точечный заряд, помещенный в слабоионизированную плазму с 
ионным дрейфом. Предполагается, что ионный дрейф вызван внешним электрическим полем и 
соответствует мобильности ионов. Последнее означает, что подразумевается баланс между ускорением 
ионов во внешнем электрическом поле и столкновениями ионов с нейтралами, который и определяет 
скорость дрейфа. Внесенный точечный заряд (т.е., заряженная пылевая частица) возмущает дрейф ионов, 
и образующееся распределение потенциала вокруг пылевой частицы вычислено в настоящей работе. 
Результаты находятся в согласии с ранее опубликованными результатами измерений, выполненными в 
приэлектродном слое радиочастотного плазменного разряда. Одно из важных приложений этой работы 
связано с возможностью регулирования потенциала парного взаимодействия пылевых частиц 
посредством приложения внешнего осциллирующего электрического поля. В частности, такое 
регулирование позволяет изучать электрореологические свойства систем, в которых потенциальная 
энергия парного взаимодействия частиц превышает их кинетическую энергию. Первые эксперименты 
такого типа уже были проведены на борту Международной Космической Станции. 

Предметом исследования второй работы являются так называемые пылекристаллические 
волны  – колебания заряженных пылевых частиц, образующих кристаллическую структуру в плазме. 
Исследована роль как анизотропии экранирования пылевых частиц, так и вариаций их зарядов. Как 
известно, эти эффекты приводят к негамильтоновой динамике пылевых частиц и поэтому могут вызвать 
неустойчивость пылекристаллических волн, которая уже была обнаружена в экспериментах. Новый 
результат заключается в том, что взаимное влияние пылевых частиц на их заряды, которое ранее не 
учитывалось при анализе пылекристаллических волн, может обеспечить значительный вклад в эту 
неустойчивость. 

В третьей работе исследовано, может ли подобная неустойчивость наблюдаться в кластере, 
состоящем из двух или трех пылевых частиц. Получено, что подобная неустойчивость из-за 
негамильтоновой динамики может возникнуть только тогда, когда расстояние между пылевыми 
частицами близко к резонансному значению, при котором определенные собственные частоты кластера 
совпадают. 
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Chapter 1

Introduction

The present cumulative thesis deals with the field of complex (dusty) plasmas and addresses

one of the fundamental issues in this field — screening/interaction of charged dust particles

levitated in the (pre)sheath region [plasma-wall transition layer] of a plasma discharge. In

addition, instabilities of dust plasma crystals and clusters, due to non-reciprocal interaction

forces between dust particles and variations of their charges, are investigated as well. These

instabilities highlight non-Hamiltonian dynamics of charged dust particles in a plasma.

This chapter provides an introduction to the papers enclosed to the present thesis. In

this chapter, very specific details and formulas are avoided. In the next chapter, it is

explained what is done in the papers enclosed. A theoretical background necessary for a

detailed reading of the papers is placed in Appendix A.

1.1 Complex plasmas

Complex (dusty) plasma is a plasma where a third charged species — the charged dust par-

ticles — is present (see, e.g., reviews [1,2,3,4]). The dust particles in complex plasmas are

electrically charged by collection of plasma electrons and ions as well as by photoemission

or secondary electron emission. In laboratory and industrial plasmas usually the collection

processes dominate and the particles acquire a high negative charge. (A typical dust grain

of a few µm in diameter in a typical glow discharge will have an equilibrium negative

charge of ∼ 104 electrons). Complex plasmas are ubiquitous in technological applications

(e.g., in microchip production, in plasma deposition techniques) as well as in astrophysical

situations (e.g., formation of stars and planetary systems, planetary rings and comet tails,
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interstellar dust clouds, dust in the Earth’s magnetosphere and ionosphere). Moreover, an

important feature of complex plasmas is the introduction of strongly coupled phenomena

into the plasma. Here, “strongly coupled” means that the interaction energy of dust parti-

cles exceeds their thermal kinetic energy. This includes observations of both liquid-like and

solid-like states in complex plasmas as well as phase transitions. The solid-like, crystalline

state — so-called “plasma (dust) crystal” — represents a two or three-dimensional lattice

structure formed by the dust particles. The fact that dynamic processes in systems of

dust particles become visible on the kinetic level makes the field of complex plasmas of

interest to neighboring disciplines such as condensed matter or material science. The field

of complex plasmas is relatively new (active investigation began in 1994 when the dust

crystals were obtained in the laboratory conditions) and rapidly evolving (approx. 200

publications per year).

1.1.1 Experimental setups

Many experiments in the field of complex plasmas are performed in radio-frequency (rf)

discharges. The so-called Gaseous Electronic Conference (GEC) cell [5] is frequently used,

with the electrode diameter of 10–15 cm and electrode separation of 2–4 cm (see Fig. 1.1).

The electrodes are placed in a vacuum chamber. Usually, the lower electrode is connected to

a rf generator (at frequency 13.56 MHz) via a blocking capacitor and a matching network,

whereas the upper electrode is grounded. The chamber is filled by a noble gas, most

frequently argon, at the room temperature and pressure of 0.5–100 Pa. Typically, the

peak-to-peak voltage applied to the powered electrode is 50–500 V.

Under these conditions, probe measurements performed near the horizontal midplane

of the discharge yield the plasma density of the order of 108–109 cm−3 (i.e., the ionization

fraction is usually of the order of 10−6–10−7) and the electron temperature of a few eV.

Because of the extremely small ionization fraction, ions collide with neutrals much more

frequently than with each other or electrons. For this reason, there exists a certain region

near the midplane of the discharge — called here the “bulk region”, or “bulk” — where

ions are in/near thermal equilibrium with neutrals. The rf frequency appears to be much

larger than the ion plasma frequency and much less than the electron plasma frequency.

Therefore, while electrons respond to the rf electric field, ions respond to the time-averaged

field only. Because in the bulk region the electrons have larger velocities than ions and the
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Figure 1.1: Principal scheme of rf experimental setup.

time-averaged current through the discharge should be zero due to the blocking capacitor,

there appears a significant time-averaged electric field near the electrodes: This field repels

electrons from the electrodes and attracts ions to the electrodes from the bulk region, thus

maintaining the balance between the ion and electron fluxes on either of the electrodes.

Because of some geometric asymmetry of the discharge, the powered electrode usually

acquires a negative time-averaged self-bias potential of 20–40% of the peak-to-peak voltage

at the powered electrode.

Then, dust particles — melamine-formaldehyde, silica, or even metallic grains, typically

of a few µm in diameter — are introduced into the discharge. The grains collect free



4 1. Introduction

ions and electrons from the plasma and thus instantaneously acquire equilibrium negative

charges determined by the balance of the ion and electron fluxes on the grain surface.

Because of the inhomogeneity of the discharge, these fluxes depend on the exact position

of the grain in the discharge. Therefore, the grain charge exhibits adjustments as the grain

moves through the discharge.

Since the grains are charged, the electric field force acts on them, in addition to gravity.

Because of their large mass, grains (and even ions, as stated above) respond to the time-

averaged electric field only. The time-averaged electric field is zero somewhere near the

horizontal midplane of the discharge and increases towards either of the electrodes (see,

e.g., simulations of Ref. [6]). Given the fact that the time-averaged electric field is directed

towards the electrode approached, the grain levitation is only possible near the lower

electrode. If the grains are not too heavy, an equilibrium levitation position exists. The

equilibrium position is stable with respect to vertical oscillations, because the time-averaged

electric field increases as the electrode approached. However, a horizontal confinement may

be necessary, otherwise the particles may escape from the space between the electrodes.

Because of the mutual electrostatic repulsion of particles, inducing a horizontal confinement

may be particularly important when many particles should be levitated simultaneously. A

horizontal confinement can be easily induced, for example, by placing a conductive ring

on the lower electrode or, alternatively, by machining a cavity in the lower electrode. The

particles are usually illuminated by a laser beam which is transformed into a sheet of

∼ 100 µm thick. The light scattered by the particles is recorded by a video camera with a

resolution sufficient to resolve individual grains.

The described experimental setup allows studying a variety of phenomena, ranging

from manipulations of a single dust particle as a fine probe in the plasma-wall transition

layer [7], to observations of wave propagation in dust crystals [8] and phase transitions [9].

In many cases, a single horizontal layer with a crystalline structure is formed by the

dust particles (two-dimensional dust crystal), with the interparticle separation of 0.1–

1 mm [10, 11] and reciprocal time scale of dust dynamics (e.g., the Einstein frequency)

of 10–100 s−1. Processes occurring on these temporal scales can be easily resolved by an

appropriate video camera.

It is necessary to note that not all experiments in the field of complex plasmas are

performed using the setup described above. In fact, there have been experiments in direct

current (dc) discharges [12] and under microgravity conditions [13], as well.
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1.2 Grain screening

The interaction between charged grains is not simply a Coulomb interaction. In fact,

the dust particles are not in vacuum — they are in the background plasma which mod-

ifies/screens the Coulomb field of a dust particle. Here, there are two important things

to realize: (i) In the plasma-wall transition layer the kinetic energies of ions and electrons

are usually high enough so that grains induce weak perturbations of the ion and electron

densities (i.e., the region of nonlinear screening around a grain is usually much smaller than

the characteristic screening length), and therefore the perturbations induced by different

grains can be considered independently and then linearly summarized, (ii) the grain masses

are high enough so that the time scale of dust dynamics and plasma time scales are far

separated (i.e., the plasma quasistatically reacts to the motion of grains), and the char-

acteristic grain velocities are negligible as compared to the characteristic ion and electron

velocities. For all these reasons, the dynamics of grains can be described by a certain pair

interaction potential determined by the distribution of the electrostatic potential around a

single stationary dust particle in a plasma, and the force on the first grain from the second

one is the product of the charge of the first grain and the gradient of the potential induced

by the second grain in the plasma. (However, the summation of these pair interaction

forces is only valid when the amount of dust is not large enough to give rise to collective

effects [14]).

Many phenomena in complex plasmas strongly depend on this pair interaction law. For

example, attractive forces between grains may give rise to spontaneous formation of dust

“molecules” comprising of a few particles [15]. Not yet observed critical point and gas to

fluid transitions are believed to be only possible in the presence of attractive forces between

grains [16]. Non-reciprocal interaction forces (actio 6= reactio) lead to non-Hamiltonian

dynamics of dust grains, as will be discussed in Subsection 1.3. Hence, the problem of

screening/interaction of grains [especially in the plasma-wall transition layer where they

are usually levitated] is one of the fundamental issues in the physics of complex plasmas.

1.2.1 Measurements

Up to now, the most precise measurements of the inter-grain interaction forces in the

typical setup described in Subsection 1.1.1 were performed by Konopka et al. [17, 18].
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During the first step of the experiment, a single particle was levitated. The horizontal

motion of the particle was activated by a horizontal electric probe introduced into the

discharge chamber. An analysis of the recorded particle trajectory in the horizontal plane

allowed to determine the horizontal confinement potential. During the second step, two

particles identical to that levitated before were levitated simultaneously. The particles

aligned themselves horizontally (i.e., perpendicular to the ion drift), approximately in the

same horizontal plane as a single particle was levitated before. Now, the electric probe

was used to activate a simultaneous horizontal motion of the two particles. During their

motion, the particles almost did not deviate from the initial horizontal plane. Analysis of

their trajectories in the horizontal plane allowed to reconstruct the energy of the “horizontal

interaction” between particles as a function of distance between them, since the horizontal

confinement potential was determined during the first step of the experiment. Within

the experimental uncertainties and considered range of distances between the particles, no

deviation from the Debye-Hückel (Yukawa) screening potential, φ = (Q/r) exp(−r/λ), was

found. (Here, r is the distance from the particle, Q is the particle charge, λ is the screening

length characterizing the Debye-Hückel potential).

Also, there have been some “indirect” measurements of the interaction forces. For

example, the analysis of the measured frequencies of particle oscillations in different clusters

formed by a few particles aligned horizontally could not reveal deviations from the Debye-

Hückel potential, as well [19, 20].

The aforementioned experiments dealt with the particles aligned horizontally. At the

same time, there have been experiments with two particles levitated at different heights

because of their different sizes/masses [21,22]. In spite of large experimental uncertainties,

these experiments revealed that the interaction forces are non-reciprocal (i.e., actio 6=
reactio). In particular, the lower particle strongly tended to occupy the position below the

upper particle, whereas the upper particle almost did not “feel” the lower one.

1.2.2 Theories

The electric field which levitates the charged grains against gravity causes ions to drift

towards the electrode and thus makes their distribution highly anisotropic: In many cases,

the drift velocity in the region of grain levitation is believed to be much larger than the

thermal velocity of neutrals. In this case, the classical Debye-Hückel screening is irrelevant
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for the description of the ion contribution to grain screening.

The problem of the electron contribution to the grain screening is even more compli-

cated, because electrons respond to the rf electric field, as stated above. Simulations [6,23]

and recent spectroscopic measurements [24] suggest that in the sheath region the electrons

may have quite different velocity distributions during different phases of the rf period and

that these distributions may be quite different from Maxwellian.

Unfortunately, there have been no convincing measurements of plasma parameters in

the region of grain levitation. In particular, the ratio of the mean kinetic energy of ions

to the mean kinetic energy of electrons and the shapes of the ion and electron velocity

distributions are not known.

As a consequence, there have been many grain screening theories [25, 26, 27, 28, 29, 30,

31, 32, 33, 34] based on quite different assumptions. Not surprisingly, the results given by

different models are different. Some models yield a series of potential minima and maxima

below the grain — the so-called “oscillatory wake potential” [25, 26, 27, 28, 29, 30]. Some

models give that two like-charged grains aligned perpendicular to the ion drift can attract

each other electrostatically [31]. A review of different models is given in Appendix A.

It is not surprising that the simplest conception which is in agreement with existing

experimental data has gained popularity. According to this conception, ions have too large

drift kinetic energy to participate in screening. Thus, the primary contribution to the

grain screening is attributed to electrons [1, 2, 35, 36]. Any effects related to either the

time variations of the electron velocity distribution or possible anisotropy of the latter are

neglected. Thus, the grain potential is assumed to be of the Debye-Hückel form with the

local electron Debye length. (At the same time, this Debye-Hückel potential is believed to

be somewhat disturbed below the grain because of the focusing of the ion drift [26,30]. This

serves as an explanation why non-reciprocal forces were observed in some experiments).

As a consequence, many phenomena in complex plasmas have been theoretically studied

by assuming the Debye-Hückel interaction potential. In this manner, waves in dust crystals

[37], waves in dust fluids [38], phase transitions [39], and dust viscosity [40] have been

investigated. Apparently, the most frequently cited evidence for the justification of the

applicability of the Debye-Hückel interaction potential is the aforementioned experiment

by Konopka et al. [17, 18].

However, the arguments for the aforementioned conception are not convincing enough.

First of all, measurements of Konopka et al. [17, 18] were performed in a limited range of
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distances between grains, 0.5–2 mm, while the deduced screening length was ∼ 0.5 mm

which is comparable with the distance range itself. Given the fact of marked experimental

uncertainties, one could argue that other theories might be not in contradiction with the

results of these measurements, as well. In this regard, a quantitative comparison of other

models with this experiment could be very helpful. Furthermore, there are some evidences

which suggest that the grain screening in the plasma-wall transition layer under typical

conditions could be primarily due to ions and not electrons. The first evidence comes

from the fact that, in the experiment by Konopka et al. [17, 18], the deduced screening

length (in the plasma-wall transition layer) turned out to be about, or in some cases

smaller than the electron Debye length measured in the bulk [18]. If the screening of

grains was primarily due to electrons, the deduced screening length would be in contrast

always significantly larger than the electron Debye length measured in the bulk, because

the electron density decreases and the mean kinetic energy of electrons increases as the

electrode approached [6]. The second evidence is related to the value of the grain charge

deduced in the experiment [17,18]. This value allows to find the electric field levitating the

grains against gravity. The obtained value of the electric field, in turn, allows to obtain

an estimate for the ion drift kinetic energy in the region of grain levitation, by assuming

a mobility-limited drift. (The assumption of the mobility-limited drift gives an upper

estimate of the ion drift kinetic energy). This upper estimate appears to be somewhat

smaller than the mean electron kinetic energy measured in the bulk. This suggests that the

mean kinetic energy of ions in the region of grain levitation is smaller than that of electrons

and, hence, ions — not electrons — should play the primary role in grain screening, at

least under conditions of the experiment [17,18].

1.3 Non-Hamiltonian dynamics of grains

The interaction forces between grains were experimentally shown to be non-reciprocal (i.e.,

actio 6= reactio) [21, 22]. Of course, the non-reciprocity of the interaction forces between

grains does not imply a violation of the third Newton’s law itself. In the presence of the

ion drift, the screening cloud around a grain is not spherically symmetric: An excess of

the positive charge — the so-called wake — is accumulated behind the grain due to ion

focusing (see Fig. 1.2). These plasma wakes behind grains act as a third body and lead to

non-reciprocal interaction forces between grains.
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Figure 1.2: Illustration of non-reciprocal interaction forces between grains G1 and G2. S1,

S2 — screening clouds around grains G1 and G2, respectively. FG1←G2 — direct Coulomb

force exerted on the grain G1 by the grain G2. FG1←S2 — sum of the Coulomb forces

exerted on the grain G1 by the charges of the screening cloud S2. The vector sum of

FG1←G2 and FG1←S2 is denoted as F1. The forces exerted on the grain G2 due to the

presence of the grain G1 are denoted in a similar manner.

Non-reciprocal interaction forces F1 6= −F2 between two particles can be regarded as if

a certain “external” force (F1 + F2)/2 would act on each of the two particles, in addition

to reciprocal forces ±(F1 − F2)/2. This “external” force (F1 + F2)/2 depends on the

relative positions of the two particles with respect to each other. If two particles return to

their initial positions after some motion, the work done by this force during this motion

is generally non-zero and, hence, energy is not conserved in this system. The physical

reason for the energy nonconservation is that such systems of grains are not closed systems

because of the presence of the plasma.

There is another effect — variations of grain charges — which also leads to the energy

non-conservation. As stated above, the grain charge is determined by the balance of the ion

and electron fluxes on the grain surface. Because of the discharge inhomogeneity, the grain

charge is a function of the exact position of the grain in the discharge [1]. Furthermore, the

ion and electrons fluxes on the grain surface and, hence, the grain charge can be influenced

by other grains [41]. Because of the charge variations, the interaction forces between the

grains are not simply functions of the relative coordinates of the grains with respect to each
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other, but rather the interaction forces are functions of the absolute positions of the grains

in the discharge. In this case, if the particles return to their initial positions after some

motion, the work done by the interaction forces during this motion is generally non-zero,

even in the case when the interaction forces are reciprocal [42]. The latter fact can be

easily realized when one considers two particles interacting via the Coulomb forces, with

the particle’s charges being a function of the height. In this case, the work done by the

interaction forces during, e.g., the following motion is obviously non-zero: (i) Initially, the

two particles are at the same height and infinitely far away from each other, then (ii)

the particles are approached to each other up to a certain distance, remaining at the same

height as initially, then (iii) the particles are simultaneously shifted to a certain new height,

and, finally, (iv) they are removed to infinite separation from each other, remaining at the

same height as at the end of the vertical shift.

Finally, there is a third factor — variations of grain screening — which also leads to

the energy nonconservation. Because of the discharge inhomogeneity, the grain screening

depends on the exact position of the grain in the discharge. This dependence leads to the

energy nonconservation in a similar manner as the grain charge variations.

Realistically, all of the three factors — non-reciprocal forces, charge variations, and

screening variations — are present simultaneously. These factors and the associated effects

should not be considered independently; in fact, some interesting effects are only possible

in the simultaneous presence of some of the three aforementioned factors [43].

However small the charge/screening variations and non-reciprocity of the interaction

forces are, they lead to the energy non-conservation, and such systems of charged dust

particles in a plasma cannot be described in terms of the Hamiltonian dynamics [1]. The

non-Hamiltonian dynamics of dust grains makes a complex plasma a convenient model

to study non-Hamiltonian dynamical systems which are of fundamental physical interest

[44,45] and have a long history in mechanics.

The non-Hamiltonian dynamics of grains was demonstrated in the experiment reported

by Ivlev et al. [11]. In this experiment, a horizontal crystalline monolayer (i.e., a two-

dimensional dust crystal) was formed by the grains in a horizontal confinement potential.

Then, additional grains were gradually injected and the interparticle distance in the mono-

layer decreased accordingly. When the interparticle distance became less than a certain

threshold, the crystal spontaneously “melted” — the amplitudes of the vertical and hor-

izontal vibrations of the particles drastically increased and became comparable with the
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interparticle distance. However, it was possible to return the system to a stable crystalline

monolayer by increasing the gas pressure. If the gas pressure was sufficiently high, the

system never melted. In the latter case, when the interparticle distance became less than a

certain threshold, the monolayer transformed into a bi-layer system. To explain the melt-

ing, Ivlev et al. [11] theoretically demonstrated that the non-reciprocity of the interaction

forces can trigger an instability of the monolayer. This instability represents a growth over

time of otherwise stable particle oscillations in a dust lattice and is only possible when

the dust-neutral friction is sufficiently small. The latter fact explains why no melting was

observed at high pressures. Lately, Yaroshenko et al. [43] pointed out that the presence of

the vertical gradient of the grain charge might significantly contribute to this instability.
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Chapter 2

Cumulative thesis

The results of this cumulative thesis are published in three papers enclosed to this thesis:

• R. Kompaneets, U. Konopka, A. V. Ivlev, V. Tsytovich, and G. Morfill, Potential

around a charged dust particle in a collisional sheath, Phys. Plasmas 14, 052108

(2007).

• R. Kompaneets, A. V. Ivlev, V. Tsytovich, and G. Morfill, Dust-lattice waves: Role of

charge variations and anisotropy of dust-dust interaction, Phys. Plasmas 12, 062107

(2005).

• R. Kompaneets, S. V. Vladimirov, A. V. Ivlev, V. Tsytovich, and G. Morfill, Dust

clusters with non-Hamiltonian particle dynamics, Phys. Plasmas 13, 072104 (2006).

The objectives, methods, results and conclusions of the papers listed above are sum-

marized below. The full list of publications, including those with results not included to

this thesis, is given separately (see Contents).

2.1 Potential around a charged dust particle in a col-

lisional sheath

2.1.1 Objective

The objective is to test the hypothesis that the grain screening in the plasma-wall transition

layer under typical conditions might be primarily due to ions and not electrons. For this
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purpose, the corresponding model of the grain screening is developed and quantitatively

compared with the experiment of Konopka et al. [17, 18].

2.1.2 Methods

As a basis of the proposed model, a recent kinetic model [32, 33] is taken. The model

[32,33] assumes a mobility-limited ion drift in a homogeneous external electric field. Here,

“mobility-limited” means that the acceleration of ions in this external electric field is

balanced by collisions with neutrals and that this balance determines the drift velocity.

A charged grain treated as a non-absorbing point charge is considered to perturb this

balance. No assumption is made about the ratio of the effective length of grain screening

to the ion-neutral collision length. Therefore, the ion drift perturbed by the grain is not

assumed to be mobility-limited.

With respect to the model [32, 33], a further improvement has been made in the

present work: While the model [32, 33] assumes a velocity-independent ion-neutral col-

lision frequency, the present work deals with the realistic case of velocity-independent

cross-section [46]. Also, in the present work, the electron density is considered to be not

perturbed by the grain and thus the screening is attributed to ions only. [The (time-

averaged) electron density is assumed to be equal to the (unperturbed by the grain) ion

density, so that the proposed model is relevant to the so-called presheath — that part of

the plasma-wall transition layer where the plasma is still (almost) quasineutral]. Further,

the velocity of the ion drift is assumed to be much larger than the thermal velocity of

neutrals, and for this reason the thermal motion of neutrals is completely excluded from

the consideration. The assumptions made allow to express the result — the potential dis-

tribution in plasma around the grain — via definite integrals. The obtained expression is

quantitatively compared with the experiment of Konopka et al. [17, 18].

2.1.3 Results

The model is found to be in a very good agreement with the experimental data. The

normalized squared deviation from the data is approximately the same as that given by

the Debye-Hückel potential (see Fig. 2.1a, b). However, outside the distance range where

the measurements [17,18] were performed, the Debye-Hückel fit and the fit by the proposed

model dramatically deviate from each other (see Fig. 2.1c). For the given experimental
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Figure 2.1: Comparison of experiment by Konopka et al. [17,18] with the proposed model of

grain screening and the Debye-Hückel potential. a, b) Vertical axis is the interaction energy

relative to infinite separation. Since the interaction energy was measured not relative to

infinite separation, an unknown constant (offset) should be added to the measured energies

as one of the fit parameters. The value of this offset is found to be not the same for both

fits. The experimental data are shown with this offset added. c) Comparison of the fits

(shown in a and b) with each other. Vertical axis is the interaction energy relative to infinite

separation, multiplied by the distance between grains. (Unscreened Coulomb interaction

would be a straight horizontal line).
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conditions [17, 18], one of the model assumptions — unperturbed drift being mobility-

limited — is found to be at the edge of applicability because of the inhomogeneity of the

vertical electric field. (The inhomogeneity length of the vertical electric field is estimated

from the measured frequency of vertical oscillations of a single particle and is found to

be about the ion-neutral collision length). All other model assumptions, including the

assumption that the ion drift velocity is much larger than the thermal velocity of neutrals,

are found to be well justified, based on the parameter values deduced from the fit.

2.1.4 Conclusion

The results demonstrate that the experiment [17, 18] cannot be used as justification of

either the applicability of the Debye-Hückel potential or the dominant role of electrons in

grain screening. Therefore, more experiments are necessary to unravel the issue. Because

of the all-importance of this problem to the field of complex plasmas, such experiments are

currently being planned at the institution of this author [47].

2.2 Dust-lattice waves: Role of charge variations and

anisotropy of dust-dust interaction

2.2.1 Objective

The objective is to investigate theoretically whether the mutual influence of particles on

their charges could significantly contribute to the monolayer instability observed in the

experiment reported by Ivlev et al. [11]. In the original paper by Ivlev et al. [11], the

instability was explained by only the non-reciprocity of the interaction forces, whereas

Yaroshenko et al. [43] pointed out that the simultaneous presence of the vertical gradient

of the grain charge might significantly increase the effect. Thus, the objective of the present

paper is to additionally include the charge variations due to change in the distances between

the particles and thus obtain the “whole picture”.
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2.2.2 Methods

Similar to papers by Ivlev et al. [11] and Yaroshenko et al. [43], the so-called chain model

is employed. The chain model considers an infinite horizontal chain of particles, instead of

a two-dimensional crystal structure. In the chain model, the particles are only allowed to

move in the longitudinal and vertical directions. Each particle is assumed to interact with

the neighboring particles only; the forces from the more distant particles are neglected. In

the present work, the grain screening potential is assumed to be an arbitrary function of

the relative coordinates of the observer with respect to the grain, which allows accounting

for the non-reciprocity of the interaction forces. The vertical gradient of the grain charge is

included as well. Concerning the mutual influence of the grains on their charges, the grain

charge is assumed to be influenced by the neighboring particles only. The “horizontal”

gradient of the grain charge, i.e., the derivative of the grain charge with respect to the

inter-particle separation in the chain, is considered as a free parameter.

In the framework of this model, the dispersion relation of the dust-lattice waves (i.e.,

oscillations of dust particles in the dust lattice) is obtained and analyzed. Then, a nu-

merical example with realistic parameter values is presented. In this numerical example,

the interaction potential is assumed to be the sum of the Debye-Hückel potential and an

additional dipole-like term which introduces the non-reciprocity of the interaction forces.

As discussed above, the applicability of the Debye-Hückel potential is not well justified

and the grain potential may be of other form. Nevertheless, a numerical example with

the Debye-Hückel potential and dipole term is useful to illustrate the general expressions

obtained.

2.2.3 Results

The parameter responsible for the instability — coefficient of coupling between the longi-

tudinal and vertical transverse modes — is found to be the sum of four important terms,

each caused by a different physical mechanism. Of these four terms, the first two were

considered earlier by Ivlev et al. [11] and Yaroshenko et al. [43], respectively. The two

remaining terms are new and are only possible in the presence of the “horizontal” gradient

of the grain charge.

Under typical conditions, the “horizontal” gradient of the grain charge is believed to be

significantly less than the vertical one. Probably for this reason the “horizontal” gradient
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of the grain charge was not accounted for before in the analysis of the dust-lattice waves.

The present study shows that, to compare the effects caused by the vertical and “horizon-

tal” gradients of the grain charge, one should compare not the gradients themselves, but

rather one should compare the product of the vertical gradient of the grain charge and

the horizontal inter-grain repulsion force with the product of the “horizontal” gradient of

the grain charge and the vertical electric field force levitating the grains against gravity.

Usually, the vertical electric field force is much larger than the horizontal inter-grain inter-

action forces. Therefore, the “horizontal” gradient of the grain charge may be important

even when it is less than the vertical one.

Furthermore, the presence of the “horizontal” gradient of the grain charge gives rise to

a new effect: When the vertical and “horizontal” gradients of the grain charge are present

simultaneously, the instability due to the non-Hamiltonian dynamics can be triggered even

when the interaction forces are reciprocal.

The instability is triggered when all of the following conditions are satisfied:

• The branches of the longitudinal and vertical transverse modes should intersect with

each other [in the (ω, k)-plane]. From the practical standpoint, this condition im-

plies that the interparticle distance in the monolayer should be less than a certain

threshold.

• The coefficient of coupling between the longitudinal and vertical transverse modes,

which is determined by the charge gradients and the “degree of non-reciprocity” of

the interaction forces, should be of the proper sign.

• The dust-neutral friction should not suppress the instability. Therefore, the gas

pressure should be not too high.

2.2.4 Conclusion

It is found that the mutual influence of particles on their charges might significantly con-

tribute to the monolayer instability observed in the experiment reported by Ivlev et al. [11].
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2.3 Dust clusters with non-Hamiltonian particle dy-

namics

2.3.1 Objective

The objective is to theoretically investigate whether a system of a few dust particles can

exhibit something similar to the monolayer instability reported by Ivlev et al. [11]. Can the

non-Hamiltonian dynamics of dust particles trigger an instability of 2- or 3-particle clusters

aligned perpendicular to the ion drift? Observation of such instability could not only

clearly demonstrate the non-Hamiltonian dynamics of dust particles but also might provide

important information about non-reciprocal interaction forces and/or charge variations.

2.3.2 Methods

Expressions for eigenfrequencies of 2- and 3-particle clusters aligned horizontally (i.e., per-

pendicular to the ion drift) are obtained. The clusters are considered to be horizontally

confined by a parabolic potential, so that the interparticle separation is determined by the

balance of the horizontal confinement and mutual repulsion of particles. In the 3-particle

cluster, the particles are considered to form an equilateral triangle — as observed in ex-

periments [19, 20] — and not a string. The grain screening potential is assumed to be an

arbitrary function of both the relative position of the observer with respect to the grain

and vertical position of the grain itself. This allows accounting for both the screening

variations and the non-reciprocity of the interaction forces. The vertical gradient of the

grain charge is included as well. However, the “horizontal” gradient of the grain charge is

not included, in order not to make the analysis too complicated.

The derived expressions are analyzed to assess the possibility of an instability. Then, a

numerical example with realistic parameter values is presented. In this numerical example,

the interaction potential is assumed to be the sum of the Debye-Hückel interaction potential

and an additional dipole-like term which introduces the non-reciprocity of the interaction

forces.



20 2. Cumulative thesis

2.3.3 Results

It is found that an instability due to the non-Hamiltonian dynamics of dust grains can

indeed be triggered, similar to a monolayer: The non-Hamiltonian dynamics of grains can

cause a gradual growth over time of otherwise stable oscillations of grains in a cluster. The

instability is triggered when all of the following conditions are satisfied:

• Two certain cluster eigenfrequencies should be sufficiently close to each other. From

the practical standpoint, this implies that the horizontal confinement should be varied

during experiment until the interparticle distance becomes close to the resonance

value.

• The “coupling coefficient” (between those modes whose eigenfrequencies are close to

each other, according to the preceding condition) determined by the charge gradient,

screening variations, and “degree of non-reciprocity” of the interaction forces should

be of the proper sign.

• The dust-neutral friction should not suppress the instability. Therefore, the gas

pressure should be not too high.

As compared with the instability condition for a monolayer [11, 43], the instability

condition for a cluster is somewhat similar. However, there is one important difference. In

the case of a cluster, the interparticle distance should be adjusted to a certain resonance

value. In the case of a monolayer, the interparticle distance should be simply less than a

certain threshold.

A numerical example is shown in Fig. 2.2.

2.3.4 Conclusion

The instability is found to be theoretically possible, but hardly “realizable” in experiments.

The main difficulty is related to the necessity of the adjustment of the interparticle distance

to a certain resonance value.
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Figure 2.2: The calculated squared eigenfrequencies of N = 2 and N = 3 clusters in a par-

abolic horizontal confinement potential. The two left graphs show the case of the Debye-Hückel

screening potential. The case shown in the two right graphs additionally includes (1) a (particle-

wake) dipole term in the grain screening potential, which is responsible for the non-reciprocal

interaction, and (2) vertical gradients of (a) the screening length, (b) particle charge, and (c)

horizontal confinement potential. The vertical axis shows the squared eigenfrequencies normal-

ized by Q2/(Mλ3), the horizontal axis is the interparticle distance in the cluster, normalized by

λ. (Here Q is the equilibrium particle charge, M is the grain mass, and λ is the screening length

characterizing the Debye-Hückel potential). All the parameter values are taken as measured

and/or estimated in experimental works by Konopka et al. [17, 18]. In all graphs, the imaginary

parts of all squared frequencies are zero except the imaginary parts shown by the dash lines (the

corresponding real parts are shown by the thick lines).
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Chapter 3

Summary and future work

The first paper enclosed to this thesis deals with one of the fundamental issues in the

physics of complex plasmas — screening/interaction of charged grains suspended in the

plasma-wall transition layer. In the complex plasma community, there exists a strong belief

that, under typical conditions, the pair interaction potential is of the Debye-Hückel form

and is determined by electrons. In part, this belief is based on direct measurements by

Konopka et al. [17, 18] who did not find noticeable deviations of the measured potential

from the Debye-Hückel form. In the present work, attention is drawn to some evidences

against this belief and it is suggested that the grain screening might be primarily due to

ions and not electrons. The present work proposes a kinetic model for the grain screening,

attributing screening to ions only. The proposed model is proven to be in full agreement

with the mentioned experiment by Konopka et al. [17,18]. At the same time, the proposed

model suggests significant deviations from the Debye-Hückel potential outside the range

of distances where the measurements [17, 18] were performed. Therefore, given the all-

importance of the problem for the field of complex plasmas, further research is necessary

to clarify the issue. This research includes but is not limited to:

• Computation and numerical analysis of the dispersion relation for the ion-acoustic

waves in the framework of the proposed kinetic model. It is necessary to assess and

prove the stability of the ion drift in a homogeneous external electric field, which is

assumed by the model. Moreover, the ion-acoustic modes in the presence of the ion

drift are of general importance for the physics of plasmas.
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• Measurements of the intergrain interaction energy in a broader range of distances may

help to clarify the issue, since the grain screening potential given by the proposed

model and the Debye-Hückel potential dramatically deviate from each other outside

the distance range where the measurements [17,18] were performed.

• Development of a model which combines both modeling of the plasma-wall transition

layer and grain screening in the plasma-wall transition layer would ideally be nec-

essary, because such approach would allow accounting for the inhomogeneity of the

electric field and plasma parameters in the plasma-wall transition layer.

• Extension of the proposed model of grain screening to the case of a finite ratio of

the ion drift velocity to the thermal velocity of neutrals is important for microgravity

experiments.

One of the important applications of this work is related to the possibility of tuning the

pair interaction potential by applying external fields [48]. The possibility to obtain and tune

an attraction between particles provides a very convenient tool to study electrorheological

properties of strongly coupled systems. With respect to “usual” electrorheological fluids,

complex plasmas have an important advantage: The particle motion in complex plasmas is

not strongly affected by the neutral gas friction, while the dynamical processes in “usual”

electrorheological fluids are strongly damped by the background fluid and thus cannot be

observed on their “original” time scales.

First experiments devoted to the study of electrorheological properties of complex plas-

mas were performed under microgravity conditions onboard the International Space Station

in January 2007 [49]. In these experiments, a linearly oscillating electric field was applied

to cause oscillations of the ion drift, with the frequency being in between the inverse ion

plasma and grain dynamics time scales. The interaction forces between grains under such

conditions are reciprocal, because non-reciprocal forces are averaged out due to oscillations

of the ion drift, and thus the non-Hamiltonian dynamical effects due to non-reciprocity of

the interaction forces are excluded. When the amplitude of the applied field exceeded a

certain threshold, the particles exhibited a phase transition: They arranged themselves

into strings aligned along the direction of oscillations of the ion drift. This suggests that

the (averaged over oscillations of the ion drift) interaction potential had an attractive part

in the direction of oscillations of the ion drift.
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Non-Hamiltonian dynamics of dust particles, considered in the second and third papers

enclosed to this thesis, is closely connected with the issue of the intergrain interaction

considered in the first paper. In particular, the proposed model of grain screening gives a

certain expression for the effective particle-wake dipole moment (see enclosed papers for

details). This effective particle-wake dipole moment is responsible for the non-reciprocity

of the interaction forces and leads to non-Hamiltonian dynamics of dust particles. How-

ever, not only the non-reciprocity of the interaction forces can lead to non-Hamiltonian

dynamics of dust particles. Charge and screening variations, each taken alone, lead to

non-Hamiltonian dynamics, as well. One of the results obtained in the second paper is

that all these three factors should not be considered separately, because the combination

of these factors gives rise to some new important effects.

As shown in the second and third papers enclosed, the non-Hamiltonian dynamics of

grains can trigger instabilities, both for monolayers and finite clusters. Such instabilities

are critical phenomena (i.e., they are either present or absent for given conditions) and can

be easily visualized. Therefore, they may be used for plasma diagnostics in the plasma-wall

transition layer.
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Appendix A

Appendix: Theoretical background

This Appendix addresses the specific details of the main topic of this cumulative thesis

— grain screening in a plasma with ion drift — and is organized in the following way.

First, various theoretical models of grain screening are reviewed. Then, the applicability

of the models is assessed by discussing both the properties of the ion-neutral collisions

and existing measurements of ion and electron velocity distributions in the plasma-wall

transition layer.

A.1 Models of grain screening

A.1.1 General approach

Almost all existing models of grain screening assume an infinite homogeneous plasma with

ion drift. Although plasma discharges are not homogeneous, this approach may be justified

when the plasma parameters do not change significantly on the characteristic length of grain

screening.

A derivation of the potential distribution around a grain generally involves the following

three steps:

1. Formulation of kinetic equations for the distribution functions of plasma species.

2. Setting of the boundary conditions far from the grain.

3. Solution.

These steps are separately discussed below.
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Kinetic equation

For ions, the steady-state kinetic equation [50] is

v
∂f

∂r
+

eE

m

∂f

∂v
= St[f ], (A.1)

where f = f(r,v) is the ion velocity distribution function, E = E(r) is the electric field,

e > 0 is the elementary charge (all ions are assumed to be singly ionized), m is the ion

mass, St[f ] is the collision operator describing the ion-neutral collisions. (The ion-ion and

ion-electron collisions, ionization, and absorption of ions on the grain are usually neglected

and thus are not included in the collision operator). For typical conditions, only binary

ion-neutral collisions should be taken into account. The velocity distribution of neutrals

(present in the collision operator) is assumed to be homogeneous Maxwellian with constant

temperature and density. The exact form of the collision operator is determined by the

expression for the differential cross-section. Such a collision operator has the following

properties:

• the collision operator conserves the number of ions, i.e.,∫
St[f(r,v)] dv = 0, (A.2)

• the collision operator is linear, i.e.,

St[αf + βg] = αSt[f ] + βSt[g] (A.3)

where f, g = f, g(r,v) and α, β = α, β(r),

• the collision operator yields zero for a Maxwellian velocity distribution of ions if the

temperature of this Maxwellian distribution is equal to the temperature of neutrals.

Some models employ the hydrodynamic (fluid) equations instead of the kinetic equation

(A.1). In fact, the hydrodynamic equations — the continuity and momentum equations —

are derived from the kinetic equation under the assumption that the ion velocity distrib-

ution f(r,v) is shifted Maxwellian, with the temperature and drift velocity dependent on

spatial coordinates [50]. This assumption is indeed applicable when the ion-ion collisions

are frequent enough to “maxwellize” the ion velocity distribution. But this is not the case

in typical complex plasmas experiments, because in these experiments ions collide with
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neutrals much more frequently than with each other, and, as a consequence, the velocity

distributions of ions in electric fields are generally not shifted Maxwellian. For this reason,

fluid models of grain screening will not be discussed here, although they are sometimes

used in literature without any justification (e.g., see Refs. [51,52]).

Concerning electrons, some models assume that the (time-averaged) electron density

is not perturbed at all by the grain [33]. However, the majority of models assume the

Boltzmann response [25,26,27,28,29,30,31,32,34],

ne = ne,0 exp

(
eφ

Te

)
, (A.4)

where ne = ne(r) is the (time-averaged) electron density, ne,0 is the (time-averaged) electron

density far from the grain, φ = φ(r) is the (time-averaged) potential induced by the grain,

and Te is the (effective) electron temperature. As will be discussed in Subsection A.2.3, such

approach is not well justified for grain screening in the plasma-wall transition layer, and,

strictly speaking, the time-dependent kinetic equation for the electron velocity distribution

function is necessary if the electron response should be taken into account.

The kinetic equations are closed by the Poisson equation,

∂E

∂r
= 4π(n− ne)e + 4πQδ(r), (A.5)

where n = n(r) =
∫

f(v, r) dv is the ion density, Q is the grain charge, δ(r) is the delta-

function. The delta-function approximation is well justified by the fact that the grain size

is typically two orders of magnitude smaller than the effective length of grain screening.

Boundary conditions far from the grain

Far from the grain (i.e., for r → ∞), a spatially homogeneous ion distribution f0 =

f0(v) and a spatially homogeneous electric field E0 are usually assumed, as stated above.

According to Eq. (A.1), the distribution f0 is given by

eE0

m

df0

dv
= St[f0]. (A.6)

The solution of Eq. (A.6) depends on the exact form of the collision operator and is gener-

ally not of the shifted Maxwellian form. Further, the plasma is assumed to be quasineutral

far from the grain [n0 = ne,0 where n0 =
∫

f0(v) dv is the ion density far from the grain],

otherwise the Poisson equation (A.5) is not satisfied.
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The question generally arises as to whether the state far from the grain, defined above,

is stable with respect to the ion-acoustic waves. The question requires a derivation of the

corresponding dispersion relation [50]. The answer may depend on parameter values and

the exact form of the collision operator. The analysis of the dispersion relation usually can

be only performed numerically and sometimes yields infinite number of solutions/modes

(e.g., the higher-order Landau modes [53,54]), which makes it difficult to assess the stability.

Because of the difficulty of proving the stability, it might be acceptable not to perform the

stability analysis when no instability mechanism is expected a priori.

Solution

Solution of the kinetic equations with the boundary conditions discussed above gives the

grain potential φ = φ(r) defined as

− ∂φ

∂r
= E− E0, φ|r→∞ = 0. (A.7)

Usually, the so-called linear approximation is used, i.e., the so-called linearized grain

potential is found. The linearized grain potential is the first term in the expansion of the

grain potential φ(r) in a series of the grain charge Q. This approach is justified when the

region of nonlinear screening around the grain is small enough. Further, the notation φ

will be understood as the linearized grain potential.

The linear approximation significantly simplifies the solution which can now be per-

formed in the following way. The Fourier transforms are considered:

φ(r) =
∫

φF(k) exp(ikr) dk, (A.8)

f(r,v) = f0(v) +
∫

f1,F(k,v) exp(ikr) dk. (A.9)

Substitution of Eqs. (A.8) and (A.9) to Eq. (A.1) and subsequent linearization give

ikvf1,F +
eE0

m

∂f1,F

∂v
− ikeφF

m

df0

dv
= St[f1,F]. (A.10)

Then, f1,F(k,v) should be expressed via k, v, and φF(k), by solving Eq. (A.10) with the

boundary condition f1,F(k,v)|v→∞ = 0. Then, the static ion susceptibility χ(k) should be

calculated according to

χ(k) = −4πe

|k|2
n1,F(k)

φF(k)
(A.11)
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where

n1,F(k) =
∫

f1,F(k,v) dv. (A.12)

Using the Fourier transform of the delta-function

δ(r) =
1

(2π)3

∫
exp(ikr) dk (A.13)

and assuming that the electron density is not perturbed by the grain, one can substitute

Eqs. (A.8), (A.9), (A.11), (A.12), and (A.13) to the Poisson equation (A.5) and thus obtain

φF(k) =
Q

2π2

1

|k|2[1 + χ(k)]
. (A.14)

Therefore, the grain potential is given by

φ(r) =
Q

2π2

∫ exp(ikr)

|k|2[1 + χ(k)]
dk. (A.15)

Including the electron Boltzmann response [Eq. (A.4)] results in adding the electron sus-

ceptibility χe(k) = (λDe|k|)−2 to the ion susceptibility χ(k) in the denominator in Eq.

(A.15). Here λDe = [Te/(4πne,0e
2)]1/2 is the electron Debye length.

A.1.2 Debye-Hückel potential

This Subsection deals with the case where (i) the electric field is absent (E0 = 0) and (ii)

the (unperturbed by the grain) velocity distribution of ions is Maxwellian,

f0(v) = n0ΦM(v, T ), (A.16)

where

ΦM(v, T ) =
(

m

2πT

)3/2

exp

(
−m|v|2

2T

)
(A.17)

is the Maxwellian distribution normalized by the ion density, T is the temperature char-

acterizing the Maxwellian distribution. In Eq. (A.16), the temperature T is considered

to be equal to the neutral temperature, so that St[f0] = 0 and, hence, condition (A.6) is

satisfied. In this case, the solution of Eq. (A.10) is

f1,F(v) = −eφF

T
n0ΦM(v, T ), (A.18)

irrespectively of the exact form of the collision operator. [This is because the equality

St[f1,F] = 0 takes place. This equality is proven by the linearity (A.3) of the collision
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operator and the fact that f0 (A.16) and f1,F (A.18) have the same velocity dependence].

Therefore, the ion susceptibility (A.11) is

χ(k) =
1

λ2
D|k|2

(A.19)

where

λD =

√
T

4πn0e2
(A.20)

is the ion Debye length (radius). For the susceptibility (A.19), the integration in Eq. (A.15)

can be performed analytically and yields

φ =
Q

|r|
exp

(
− |r|

λD

)
. (A.21)

This is the classical Debye-Hückel potential [50]. If the Boltzmann electron response is

included, then the result (A.21) will be changed as follows: The λD will be replaced by

λDλDe/
√

λ2
D + λ2

De.

A.1.3 Collisionless case: Drift in the absence of field

This Subsection deals with the case where (i) the external electric field is absent/neglected

(E0 = 0), (ii) the collision operator term in Eq. (A.1) is absent/neglected, and (iii) the

unperturbed velocity distribution of ions f0 is anisotropic (in the direction of the ion drift).

In this case, the solution of Eq. (A.10) takes the form

f1,F =
eφF

m
k

df0

dv

1

kv − i0
, (A.22)

which gives the ion susceptibility (A.11) to be

χ(k) = − 4πe2

m|k|2
∫

k
df0

dv

dv

kv − i0
. (A.23)

The term −i0 is included to avoid the singularity. The inclusion of this term can be

“justified”, e.g., by accounting for an infinitely small collision operator term St[f1,F] which

is then replaced by −0 · f1,F [50].

Existing calculations of the potential (A.15) for the susceptibility (A.23) are discussed

below.
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Isotropic distribution

If the distribution f0 is isotropic (i.e, f0 depends only on |v|), then the ion susceptibility

(A.23) is

χ(k) =
(4π)2e2

m|k|2

∞∫
0

f0(v) d|v|. (A.24)

The susceptibility (A.24) is of the same form as (A.19), with the only difference that the

λ2
D is replaced by m/[(4π)2e2

∫∞
0 f0(v) d|v|]. Therefore, the grain potential φ(r) is again

of the Debye-Hückel form. This example demonstrates that the Debye-Hückel potential is

possible not only for the Maxwellian velocity distribution.

Potential at large distances: General statement for anisotropic distribution

Montgomery et al. [55] investigated the asymptotic behavior of the potential (A.15) at

large distances, for the susceptibility (A.23). They found that the potential generally falls

off as the inverse third power of the distance |r|, i.e.,

φ(r) =
Q

|r|3
F (θ) + o

(
1

|r|3

)
, r →∞, (A.25)

where θ is the angle between r and the direction of the ion drift. Montgomery et al.

expressed F (θ) via definite integrals which contain f0.

Eq. (A.25) demonstrates that the Debye-Hückel screening is violated in anisotropic

plasmas.

Shifted Maxwellian distribution

If the distribution f0 is shifted Maxwellian,

f0(v) = n0ΦM(v − u, T ), (A.26)

where u is the ion drift velocity, T is the temperature characterizing this shifted Maxwellian

distribution, then the ion susceptibility (A.23) is

χ(k) =
1

λ2
D|k|2

1√
2π

∞∫
−∞

t

t + ku/(|k|vT )− i0
exp

(
−t2

2

)
dt, (A.27)

where λD =
√

T/(4πn0e2) is the ion Debye radius corresponding to the temperature T ,

vT =
√

T/m is the “thermal” velocity.
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Weakly shifted Maxwellian distribution. Assuming that the susceptibility is given by

Eq. (A.27), Cooper [56] derived the expansion of the potential (A.15) in a series of u, up

to the |u|2-term inclusive. In particular, he found that the function F (θ) [see Eq. (A.25)]

was

F (θ) = λ2
D

−
√

8

π

|u|
vT

cos θ −
(

π

2
− 1

) |u|2
v2

T

(1− 3 cos2 θ)

+ o(|u|2), u→ 0. (A.28)

Eq. (A.28) implies that two like-charged grains aligned perpendicular to the ion drift will

attract each other electrostatically if the distance between the particles is large enough.

Eq. (A.28) also implies that the interaction forces between particles aligned perpendicular

to the drift have non-zero components in the direction of the ion drift. The latter fact

demonstrates that the interaction forces are not reciprocal.

Strongly shifted Maxwellian distribution. In the case T → 0 (i.e., when the distribution

f0 is a shifted delta-function), the ion susceptibility (A.27) is

χ(k) = −4πn0e
2

m

1

(ku− i0)2
. (A.29)

There have been many calculations of the potential (A.15) for the susceptibility (A.29), in

most cases with the Boltzmann electron response included [25,26,27,28]. These calculations

demonstrate that a series of potential minima and maxima can be formed “behind” the

grain.

General case. Peter [57] calculated the potential (A.15) for the susceptibility (A.27)

for |u| = vT

√
2, 3vT

√
2, 7vT

√
2, 15vT

√
2. His graph for |u| = 3vT

√
2 demonstrates a series

of at least 11 potential extrema “behind” the test particle. The possibility of attraction

between like-charged particles aligned perpendicular to the drift is evident in his graphs

obtained for |u| = vT

√
2 and |u| = 3vT

√
2.

Lampe et al. [30] performed calculations with the Boltzmann electron response included.

For the considered parameter regime (Te = 15T , 0.25 < |u|/
√

Te/m < 1.5), the potential

upstream and to the side was found to be close to the Debye-Hückel potential, at least up

to several screening lengths. In figures presented by Lampe et al., at least one potential

extremum “behind” the grain was always evident. No evidence of attraction forces between

like-charged grains aligned perpendicular to the drift was demonstrated.

Benkadda et al. [31] also performed calculations with the Boltzmann electron response

included. They assumed a shifted Maxwellian distribution with different upstream, down-
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stream, and perpendicular temperatures and demonstrated the possibility of attraction

between like-charged grains aligned perpendicular to the drift.

A.1.4 Finite collisionality

To consider the case of finite collisionality, one needs to choose a certain collision operator

in Eq. (A.1). The only collision operator employed so far to calculate the grain potential is

the so-called BGK (Bhatnagar-Gross-Krook) collision operator. In the following, existing

calculations performed by using the BGK collision operator are discussed.

BGK collision operator

The BGK collision operator is based on two assumptions:

• Only the charge exchange collisions are taken into account.

• The collision frequency is velocity independent.

The applicability of the two listed assumptions will be discussed in Subsection A.2.1.

The BGK collision operator has the following form:

St[f(r,v)] = −νf(r,v) + νΦM(v, Tn)
∫

f(r,v′) dv′, (A.30)

where ν is the collision frequency, Tn is the neutral temperature.

For the BGK collision operator (A.30), Eq. (A.6) gives the unperturbed velocity dis-

tribution of ions f0 in the form [32]

f0(v) = n0

∞∫
0

ΦM

(
v − eE0t

mν
, Tn

)
e−t dt. (A.31)

Therefore, the ion velocity distribution is a superposition of shifted Maxwellian distributions

with exponential weights. Integration in Eq. (A.31) yields [58]

f0(v) =
n0

(2πv2
Tn)3/2

√
π

2

vTn

u
exp

(
− v2

⊥
2v2

Tn

+
v2

Tn

2u2
−

v‖
u

)[
1 + erf

(
v‖u− v2

Tn

vTnu
√

2

)]
, (A.32)

where vTn =
√

Tn/m is the thermal velocity of neutrals, v‖ and v⊥ are respectively the

longitudinal and perpendicular components of the velocity v with respect to the direction of

the ion drift (i.e., with respect to E0), u = e|E0|/(mν), and erf(x) = (2/
√

π)
∫ x
0 exp(−t2) dt
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Figure A.1: Longitudinal velocity distributions of ions in homogeneous electric fields, cal-

culated by using the BGK ion-neutral collision operator. Vertical axis is the ion velocity

distribution normalized by the ion density and integrated over the velocity components per-

pendicular to the direction of the electric field. Horizontal axis is the longitudinal velocity

normalized by the thermal velocity of neutrals. Different distributions shown correspond

to different electric fields. The drift velocities u corresponding to these electric fields are

indicated in units of the thermal velocity of neutrals vTn.

is the error function. The mean velocity
∫
vf0(v) dv/n0 appears to be equal to u [58] and,

hence, proportional to the applied electric field E0.

Fig. A.1 shows the distribution function (A.32) for different u/vTn. It can be seen

that the shape of the distribution function (A.32) is different from the shape of a shifted

Maxwellian distribution, particularly when the ratio u/vTn is large.

The ion susceptibility (A.11) takes the form [33,32]

χ(k) =
4πn0e

2

mν2

B(k)

1− A(k)
, (A.33)

where

A(k) =

∞∫
0

exp[−Ψ(k, η)] dη, (A.34)
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B(k) =

∞∫
0

η exp[−Ψ(k, η)]

1 + ik‖uη/ν
dη, (A.35)

Ψ(k, η) = η +
1

2

ik‖u

ν
+

(
|k|vTn

ν

)2
 η2, (A.36)

k‖ is the longitudinal component of the wave number k [i.e., k‖ = kE0/|E0|].

Schweigert et al. [34] calculated the potential (A.15) for the susceptibility (A.33), with

the Boltzmann electron response included. In the graphs presented by them, an extremum

of the potential downstream the grain is sometimes quite evident, whereas no evidence of

possibility of attraction between like-charged grains aligned perpendicular to the ion drift

can be seen.

If one considers the limit |E0|, ν → 0, u ≡ e|E0|/(mν) → const (i.e., “collisionless”

limit with finite drift velocity) and then the limit r→∞, one obtains [59]

φ(r) =
Q

|r|3
FBGK(θ) + o

(
1

|r|3

)
, r→∞. (A.37)

In the limit of small drift velocities u, the function FBGK is [59]

FBGK(θ) = λ2
D,Tn

−
√

8

π

u

vTn

cos θ +
(
2− π

2

)
u2

v2
Tn

(1− 3 cos2 θ)

+ o(u2), u → 0, (A.38)

where λD,Tn =
√

Tn/(4πn0e2). Eqs. (A.37) and (A.38) demonstrate that attraction forces

between like-charged grains aligned perpendicular to the drift are impossible in the limit

considered. This is in contrast to the case of shifted Maxwellian distribution [see Eqs.

(A.25) and (A.28)]. The reason for the difference is related to the fact that the distribution

(A.32) is different from a shifted Maxwellian distribution (A.26).

A.2 Discussion of model assumptions

As discussed above, there have been various models of grain screening with different as-

sumptions. The present Section addresses the applicability of the assumptions of the

models.
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A.2.1 Ion-neutral collisions

The exact form of the collision operator is determined by the assumptions about micro-

scopic description of the ion-neutral collisions. Therefore, to construct the correct ion-

neutral collision operator, one should understand the physics of the ion-neutral collisions.

The present Subsection addresses this issue.

There are three important processes contributing to the ion-neutral collisions [60]:

• Polarization scattering. The physics of the polarization scattering is related to the

electrostatic interaction between an ion and the dipole moment induced on a neutral

by the electric field of the ion. The corresponding transport cross-section is [60]

σp = 2π

√
αe2

ε
, (A.39)

where ε is the incident kinetic energy, α is the polarizability of the neutral. For argon,

the polarizability is α ≈ 11a3
0 where a0 = 0.529 × 10−8 cm is the Bohr radius [60].

Because of the dependence σp ∝ 1/
√

ε, the polarization scattering dominates over

other processes at small kinetic energies (e.g., for energies corresponding to the room

temperature).

• Charge exchange. A charge exchange is not a true collision. Rather, it is a quantum-

mechanical process of resonance tunneling of a single electron from a neutral to an

ion. The result of this process is a new ion moving with the incident (i.e., before the

“collision”) neutral velocity and a new neutral moving with the incident ion velocity.

For argon and incident kinetic energies of 10−1 − 10 eV, the charge exchange cross

section is ∼ 5× 10−15 cm2 and is almost velocity-independent [61]. (The theoretical

approach yields a weak logarithmic dependence [60]). The corresponding transport

cross-section is two times larger [60] and, therefore, is ∼ 10−14 cm2. The comparison

of the latter value with the cross-section (A.39) gives that the charge exchange dom-

inates over polarization scattering when incident kinetic energies ε are larger than

∼ 0.1 eV.

• Gas-kinetic collisions. The physics of the gas-kinetic collisions is the same as that of

the neutral-neutral collisions (i.e., it is related to the short-range repulsion forces).

The gas kinetic collisions can be well modeled by a hard sphere interaction. The
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Figure A.2: Measured dependence of the ion drift velocity on the applied electric field.

Vertical axis is the ratio of the drift velocity u to the thermal velocity of neutrals vTn.

Horizontal axis is the ratio of the applied electric field E0 to the neutral density nn. The

shown experimental data are taken from Ref. [62]. The measurements were performed

in argon at Tn = 300 K. The straight lines illustrate that u/vTn ∝ E0/nn and u/vTn ∝√
E0/nn for small and large u/vTn, respectively.

gas-kinetic cross-section (almost) does not depend on the velocity, similar to charge-

exchange collisions. For argon, the gas-kinetic cross-section is ≈ 4 · 10−15 cm2 [60].

(In the framework of the hard sphere model, the transport cross section is exactly

equal to the collision cross section). Therefore, for argon, the gas-kinetic collisions

are always somewhat less frequent than the charge-exchange collisions (see also Fig.

2.13 of Ref. [60]).

One should keep in mind that collisions of “mixed” types may occur. That is, an ion

and a neutral interacting with each other due to polarization may exhibit a gas kinetic

collision accompanied by the charge transfer.

From what is stated above it follows that the BGK collision operator is generally not

applicable. This is particularly evident when one analyzes the dependence of the ion

drift velocity u on the electric field E0. As stated above, the BGK collision operator

implies a linear dependence (u ∝ E0). At the same time, measurements [62,46] performed

at the room temperature demonstrate that u ∝
√

E0 at large drift velocities (see Fig.
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A.2). Nevertheless, the BGK collision operator is believed to provide (qualitatively) correct

results for the grain screening at small drift velocities [63].

A.2.2 Ion velocity distributions

This Subsection discusses measurements of ion velocity distributions in electric fields under

conditions when the drift velocity exceeds the thermal velocity of neutrals.

Zeuner and Meichsner [64] performed measurements of the ion velocity distributions

by sampling ions through an aperture in the grounded electrode of a rf discharge. They

demonstrated that the shape of the ion velocity distribution is different in two limiting

cases.

• The first limiting case occurs when the gas pressure is small enough and/or the rf

power is large enough so that the ion motion near the electrode is inertia-limited (bal-

listic). In this limiting case, in the measured velocity distribution the mean velocity

of ions was much larger than the dispersion of velocities. Therefore, the frequently

used assumption that the (unperturbed by the grain) ion velocity distribution is a

shifted delta-function (or shifted Maxwellian) is reasonable in this case.

• The second limiting case occurs when the gas pressure is large enough and/or the rf

power is small enough so that the ion motion near the electrode is mobility-limited.

In this limiting case, the shape of the measured velocity distribution was quite differ-

ent from the shape of a shifted Maxwellian distribution. In particular, the velocity

corresponding to the maximum of the velocity distribution function was much less

than the mean velocity. Note that the distribution (A.32) has the same property for

u � vTn (see Fig. A.1).

Similar observations were made by Olthoff et al. [65].

Rao et al. [66] performed precise measurements of the ion velocity distributions in the

case of mobility-limited drift. They found the longitudinal velocity distribution to be well

described by
∞∫
0

2πv⊥f0(v) dv⊥ = const× exp

(
−

σnnmv2
‖

2eE0

)
, v‖ > 0, (A.40)

whereas almost no ions were present for v‖ < 0. Here σ is a constant which was interpreted

by Rao et al. to be the charge exchange cross section, nn is the neutral density. Eq.



A.3 Summary: Which model when? 41

(A.40) shows the inapplicability of the distribution (A.32). Indeed, in the limit u � vTn

(i.e., vTn → 0 at constant u), the distribution (A.32) integrated over velocity components

perpendicular to the direction of the electric field is

∞∫
0

2πv⊥f0(v) dv⊥ =
n0

u
exp

(
−

v‖
u

)
, v‖ > 0, (A.41)

whereas f0 = 0 for v‖ < 0. The distribution (A.41) is different from the measured distri-

bution (A.40). The reason for the difference is that the BGK collision operator implies a

velocity-independent collision frequency.

A.2.3 Electron velocity distributions

By performing probe measurements, Godyak and Piejak [67] demonstrated that the veloc-

ity distribution of electrons can be not Maxwellian but rather bi-Maxwellian, even in the

bulk region.

Surendra and Graves [6] performed particle-in-cell-simulations of a rf discharge. They

found that, in the sheath region, the electron density can significantly vary during the rf

period. They also found that the mean kinetic energy of electrons significantly increases

as either of the electrodes approached.

Recently, Gans et al. [24] performed spectroscopic measurements of phase-resolved elec-

tron kinetic energy distributions in the sheath region. The fit by a shifted Maxwellian

distribution to the experimental data obtained 1–4 mm in front of the powered electrode

during the field-reversal phase yielded the temperature of a few eV and drift kinetic en-

ergy (i.e., the shift) of 10–20 eV. Similar results were obtained in simulations by Vender

and Boswell [23]. They obtained that the direction of the shift (towards or outwards the

electrode) depends on the phase of the rf period.

To conclude, the behavior of electrons in the sheath region of a rf discharge may be

rather complicated, since electrons respond to the rf electric field. This questions the

applicability of the assumption of the Boltzmann electron response [Eq. (A.4)].

A.3 Summary: Which model when?

Three limiting regimes of screening of a grain levitated in the plasma-wall transition layer

are generally possible:
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1. When the local electron Debye length is less than the effective length of grain screen-

ing due to ions (the simplest estimate for the latter is [εi/(4πnie
2)]1/2 where εi is the

local mean kinetic energy of ions and ni is the local ion density), then the screening

should be primarily due to electrons. In this case, the grain screening potential is of

the Debye-Hückel form with the local electron Debye length. However, the Debye-

Hückel potential may be violated because of the anisotropy and time variations of

the velocity distribution of electrons, since electrons respond to the rf electric field.

2. When the local electron Debye length is greater than the effective length of grain

screening due to ions, then the screening should be primarily due to ions. Here, two

limiting regimes are possible:

(a) When the ion-neutral collisions are rare enough, the ion motion in the region

of grain levitation is ballistic. In this case, the theories discussed in Subsection

A.1.3 should be relevant.

(b) When the ion-neutral collisions are frequent enough so that the inhomogeneity

length of the vertical electric field in the region of grain levitation is larger than

the ion-neutral collision length, the (unperturbed by the grain) ion motion is

mobility-limited. In this case, a theory similar to the BGK model is required, but

(especially in the case of large ion drift velocity) with assumption of velocity-

independent cross section, instead of the assumption of velocity-independent

collision frequency. Such a theory is proposed in the first paper enclosed to this

thesis.
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By employing a self-consistent kinetic approach, an analytical expression is derived for the potential
of a test charge in a weakly ionized plasma with ion drift. The drift is assumed to be due to an
external electric field, with the velocity being mobility-limited and much larger than the thermal
velocity of neutrals. The derived expression is proven to be in excellent agreement with the
measurements by Konopka et al. �Phys. Rev. Lett. 84, 891 �2000�� performed in the sheath region
of a rf discharge. © 2007 American Institute of Physics. �DOI: 10.1063/1.2730498�

I. INTRODUCTION

Many experiments in the field of complex �dusty� plas-
mas are performed in weakly ionized low-pressure radiofre-
quency �rf� discharges �gas pressure 1–10 Pa, gas tempera-
ture 300 K, frequency 13.56 MHz, and ionization fraction
10−6−10−7; see Refs. 1 and 2�. Microparticles �grains of a
few �m in diameter� embedded in a plasma acquire large
negative charges ��104e� determined by the balance of col-
lecting free ions and electrons. Under gravity conditions,
charged microparticles levitate in the sheath region near the
lower electrode, where the vertical electric field is sufficient
to compensate for gravity. This electric field causes ions to
drift toward the electrode and makes their velocity distribu-
tion highly anisotropic. The determination of the �electro-
static� interaction of grains in such conditions is one of the
fundamental issues in the physics of complex plasmas.

The issue is complicated by the fact that the values of
many relevant parameters in the region of grain levitation are
not well known. In particular, one of the most important
parameters is the ratio of the ion and electron local effective
Debye lengths, ���i /�e��ne /ni�, where �i,e and ni,e are the
local mean kinetic energies and densities, respectively. This
parameter is believed to determine the relative contribution
of ions and electrons to grain screening.3,4 In the quasineutral
bulk plasma, where ions are in equilibrium with neutrals and
the electron temperature is usually of a few eV, we have
�i /�e�10−2. Hence, grain screening in the bulk plasma is
mostly due to ions. Mean kinetic energy of ions increases
towards the electrode and can exceed the bulk electron
temperature.5 On the other hand, the ratio ne /ni decreases.6,7

Moreover, the mean kinetic energy of electrons �e can dra-
matically increase because of their response to the time
variations of the electric field,6–8 as the time variations of the

electric field can be particularly high in the sheath region.6–8

�Usually, the discharge frequency is less than the electron
plasma frequency but greater than the ion plasma frequency,
so that electrons respond to the time variations of the electric
field and ions do not.7� The resulting dependence of the
parameter ���i /�e��ne /ni� on the distance from the electrode
and, in particular, its value at the grain levitation height are
not known.

Nevertheless, the screening is often attributed to elec-
trons rather than to ions,1,2,4,9 with the resulting interaction
potential being the Yukawa �Debye-Hückel� potential with
the local electron Debye length �except for the wake region
downstream�.10,11 Apparently, the most frequently cited “evi-
dence” for the Yukawa interaction is the experiment by
Konopka et al.,12,13 who did not find deviations from the
Yukawa interaction by analyzing trajectories of two interact-
ing particles levitated at the same height from the electrode.

However, no quantitative comparison of the aforemen-
tioned experiment12,13 with other models has been performed
to exclude other possibilities. Moreover, the screening length
deduced in the experiment12,13 turned out to be about, or in
some cases smaller than, the electron Debye length measured
in the bulk;13 if the screening would be primarily due to
electrons, the former should always be larger than the latter.
Furthermore, the grain charge deduced in the experiment12,13

allows us to find the electric field, supporting the grains
against gravity; this, in turn, allows us to obtain an upper
�i.e., mobility-limited� estimate for the ion drift kinetic en-
ergy. The latter appears to be somewhat smaller than the
mean kinetic energy of electrons measured in the bulk. This
suggests that the screening could be primarily due to ions
and not electrons.

If ions indeed play the primary role in grain screening,
then an essential question is as follows: Is the ion drift in the
region of particle levitation inertia- or mobility-limited? In
the former case, the assumption that the ion velocity distri-a�Electronic mail: komp@mpe.mpg.de
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bution is a shifted delta function �or shifted Maxwellian� is
reasonable,5 which is usually employed in models for grain
screening.10,11,14–18 However, in many experiments the ion
drift in the region of grain levitation is rather mobility-
limited. This coupled with the dominating role of the charge-
exchange collisions19 can make the ion velocity distribution
quite different from the shifted delta-function/Maxwellian
form5,20–22 and change the ion response function
dramatically,21,22 which should lead to a principally different
grain screening. The model of Refs. 21 and 22 calculates the
ion response function for the case of velocity-independent
collision frequency, whereas no model has been suggested
for the realistic case of a velocity-independent cross
section.23

II. OBJECTIVE

The objective of the present paper is to derive an expres-
sion for grain screening in the sheath region with mobility-
limited ion drift, attributing screening to ions only, and to
compare the derived expression with the experiment.12,13

III. METHODS: MODEL AND EXPERIMENT

A. Model assumptions

Our model is based on the following assumptions:

�i� Only the charge-exchange collisions are taken into ac-
count, i.e., gas-kinetic and polarization collisions are
neglected.

�ii� The ion-neutral cross section is velocity-independent.
�iii� Without the grain, a mobility-limited ion drift in a

homogeneous electric field is assumed �i.e., the bal-
ance between acceleration in the electric field and col-
lisions with neutrals is assumed�; note that the time-
averaged electric field is considered, as ions are
assumed not to respond to the time variations of the
electric field.

�iv� The ion drift velocity substantially exceeds the ther-
mal velocity of neutrals �therefore, we consider the
velocity distribution of neutrals to be the delta func-
tion�.

�v� Grain is considered to be a nonabsorbing point
charge.

�vi� The nonlinear screening region near the grain is neg-
ligibly small �therefore we employ the linear-response
formalism�.

�vii� The electron response is negligible.

Note that no assumption is made about the ratio of the ion-
neutral “mean” free path to the effective length of grain
screening. Therefore, the ion drift perturbed by the grain is
not assumed to be mobility-limited.

B. Model equations

We consider a point test charge Q immersed in a weakly
ionized plasma and located in the origin of Cartesian coordi-
nates. Far from the test charge, the electric field is E0 and
directed along the z axis.

For ions, we use the steady-state kinetic equation

v
�f

�r
+

eE

m

�f

�v
= − v�−1f + ��v� � v��−1f�r,v��dv�, �1�

where f = f�r ,v� is the ion distribution function, e�0 is the
elementary charge, m is the ion/neutral mass, E=E�r� is the
electric field, �= ��nn�−1 is the ion-neutral “mean” free path,
� is the ion-neutral cross section assumed to be velocity-
independent, nn is the neutral density, and ��v� is the delta
function.

Kinetic equation �1� is coupled with the Poisson equa-
tion,

�E

�r
= 4��n − ne�e + 4�Q��r� , �2�

where n=n�r�=�f�r ,v�dv is the ion density, ne is the elec-
tron density, which is assumed to be homogeneous and not
influenced by the test charge, and ��r� is the delta function.

Far from the test charge �i.e., for r→��, we assume a
spatially homogeneous ion distribution f0= f0�v� and a spa-
tially homogeneous electric field E0 directed along the z axis.
The distribution f0 is derived from Eq. �1� to be

f0 = n0� 2m

�T	

exp
−
mvz

2

2T	

���vx���vy�, vz � 0, �3�

whereas for vz�0 we have f0=0. Here T	 =eE0� is the field-
induced “temperature” characterizing such half-Maxwellian
distribution, and n0=�f0�v�dv is the ion density far from the
test charge. �Note that similar distributions were directly
measured in experiments5,24 and obtained in simulations.20�
Also, as follows from Eq. �2�, there should be n0=ne.

We are interested in the test charge potential 	=	�r�.
Mathematically, it is defined by

−
�	

�r
= E − E0, �	�r→� = 0. �4�

In the present work, we consider the linearized test
charge potential only. The linearized test charge potential is
defined as the first term in expansion of the test charge po-
tential in a series of Q. Further, the notation 	 will be un-
derstood as the linearized test charge potential.

The described model mathematically defines the linear-
ized test charge potential 	 as a function of spatial coordi-
nates and the following parameters: �i� charge Q, �ii� “field-
induced” ion Debye length 
= �eE0� / �4�n0e2��1/2, and �iii�
ion-neutral “mean” free path �; no other parameters are re-
quired.

C. Experimental data

Although measurements12,13 were performed for differ-
ent gases, gas pressures, rf peak-to-peak voltages, and grain
sizes �see Ref. 13�, we only consider the measurements per-
formed in argon at 2.7 Pa, rf peak-to-peak voltage 145 V,
particle diameter 8.9 �m, and particle material density
1510 kg/m3. �Analysis of other measurements gives similar
results.� The gas temperature was Tn=293 K and the dis-
charge frequency was 13.56 MHz.

052108-2 Kompaneets et al. Phys. Plasmas 14, 052108 �2007�
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The interaction energy between two particles �levitated
at the same height from the lower electrode� was measured
as a function of distance between them �see Table I�. Note
that the interaction energy was measured not relative to infi-
nite separation �see caption to Table I�.

D. Fitting procedure

To fit the experimental data by our model, we first de-
termine the ion-neutral “mean” free path �= �nn��−1. We de-
termine � as follows: Eq. �3� gives the ion drift velocity
��vf0�v�dv� /n0 in the form �2e / ��m����E0 /nn, and we re-
quire that the proportionality coefficient between the ion drift
velocity and �E0 /nn should be the same as that measured
experimentally for argon in Ref. 23. This gives �6.5
�10−15 cm2 and, hence, the ion-neutral “mean” free path �
2.3 mm.

Having the “mean” free path defined, the linearized po-
tential 	 contains two unknown parameters: the particle
charge Q and “field-induced” ion Debye length 
. Therefore,
the fit to the experimental data has three degrees of freedom:
Q, 
, and the offset �W �to be added to the measured inter-
action energies given in Table I�. We find the best fit by
minimizing the normalized squared deviation,

2 =
1

N − �
�
i=1

N
1

�i
2 �Wi + �W − Wth�ri,Q,
��2, �5�

where Wi is the measured interaction energy at distance ri, �i

is the error for Wi �Table I provides the data in the format
�ri ,Wi±�i��, Wth�ri ,Q ,
� is the interaction energy �relative
to infinite separation� given by our theory �Wth=Q	, where
	 is calculated for �r�=ri and r directed perpendicular to the
z axis, i.e., perpendicular to the ion drift�, �=3 is the number
of the degrees of freedom, and N=23 is the number of ex-
perimental points.

By employing an analogous procedure, we also fit the
experimental data by the Yukawa interaction potential,
WY�ri ,QY,
Y�= �QY

2 /ri�exp�−ri /
Y�. The latter fit has three
degrees of freedom as well: QY, 
Y, and the offset �WY to
be added to the measured interaction energies.

IV. RESULTS

A. Theoretical expression

Our model gives the following analytical expression for
the linearized test charge potential:

	�r�,z� =
2Q

��
Re�

0

�

dt
exp�it�z/���

1 + ��/
�2Y�t�

� K0
 r�

�
� t2 + ��/
�2X�t�

1 + ��/
�2Y�t�
� . �6�

Here r� is the distance from the test charge in the plane
perpendicular to the ion drift, and z is the distance along the
drift. Further, K0 is the zero-order modified Bessel function
of the second kind.25 Equation �6� is expressed in terms of
two functions,

X�t� = 1 − �1 + it ,

Y�t� =
2�1 + it

it
�

0

1 d�

�1 + it�1 − �2��2 −
1

it�1 + it�
. �7�

In Eqs. �6� and �7�, the square root with positive real part is
to be taken. The mathematical derivation of Eq. �6� is given
in the Appendix.

B. Comparison with experiment

Results of the comparison with experiment are shown in
Fig. 1.

Both the fit by Eq. �6� and the fit by the Yukawa poten-
tial describe very well the experimental data. The normalized
squared deviations appear to be approximately the same for
both fits: 20.160 and 20.143 for Eq. �6� and the
Yukawa potential, respectively. Such small values of 2

�relative to unity� can be explained by possible overestima-
tion of errors.

However, outside the distance range where the measure-
ments were performed, the fit by Eq. �6� and the Yukawa fit
behave very differently �see Fig. 2�. At large distances, Eq.
�6� has power scaling �	�r�

−3� and, hence, falls off much

TABLE I. Experimentally measured interaction energy between two par-
ticles �levitated at the same height from the lower electrode� as a function of
distance between them. The table shows not the interaction energy relative
to infinite separation: To get the latter, a certain unknown constant �offset�
should be added to the given values of the energy.

Distance
�mm�

Energy
�eV�

0.5777 157.6±5.6

0.6254 129.9±5.1

0.6709 104.5±4.7

0.7261 83.8±4.3

0.7865 71.6±4.1

0.8471 54.8±5.3

0.8850 47.6±5.4

0.9357 38.5±5.1

0.9882 31.7±4.6

1.0310 28.0±5.6

1.0905 22.2±5.5

1.1280 19.3±5.6

1.1788 16.1±5.3

1.2436 11.6±4.9

1.2930 9.3±5.2

1.3312 7.0±4.8

1.3966 8.4±4.4

1.4435 9.8±3.5

1.4864 5.2±4.4

1.5429 5.3±4.3

1.5932 4.1±4.1

1.6357 3.2±3.2

1.6911 3.5±3.5

052108-3 Potential around a charged dust particle… Phys. Plasmas 14, 052108 �2007�

Downloaded 17 May 2007 to 130.183.136.159. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



slower than the Yukawa potential. At small distances, the
difference between the fits is significant as well �approxi-
mately a factor of 2�.

V. DISCUSSION

A. Determination of local plasma parameters

By fitting the measured interaction energy with our
theory, one can determine not only the particle charge Q but
also some information about the local plasma parameters.
Namely, based on the value of the “field-induced” Debye
length 
, one can obtain the ratio of the electric field to the
ion density �since 
= �eE0� / �4�n0e2��1/2�. Further informa-
tion about plasma parameters can be obtained by considering
the balance of vertical forces acting on the grains. For ex-
ample, if we neglect the ion drag force1,2 and simply use
−QE0=Mg, where M 5.6�10−10 g is the particle mass, we
obtain the electric field E017 V/cm, field-induced “tem-
perature” of ions T	 =eE0�3.8 eV, and the ion density n0

5.5�108 cm−3. The deduced ion density appears to be
about the plasma density measured in the midplane of the
discharge, 6�108 cm−3±50%.13 The ion densities in the

midplane and at the particle levitation height could indeed be
close to each other or at least be of the same order, as the
particles were levitated at the height 8.5 mm �relative to
the lower electrode� and the electrode separation was only
30 mm.

The question about the accuracy of the deduced values
of Q and 
 is essential. To estimate the accuracy, we find
numerically the region �in �Q, 
, �W� space� where the 2

exceeds the aforementioned value 0.160 no more than by a
factor of 2. Projections of this region to the Q and the 
 axis
determine the uncertainties of Q and 
, respectively. These
uncertainties appear to be about ±20%.

B. Check of the model assumptions

Let us now consider all the assumptions listed in Sec.
III A. Assumptions �i� and �ii� are justified by available ex-
perimental data.19,23 The validity of all other assumptions is
the question of particular experimental conditions. In the fol-
lowing, we check the model assumptions for the considered
experimental conditions.12,13 Concerning assumption �iii�,
the inhomogeneity length of the electric field, LE=E /E�, can
be found by LE=g /�v

2, where �v / �2��15 Hz is the mea-
sured resonance frequency of vertical oscillations of a single
particle13 and g is the acceleration of gravity. �Here, charge
variations1,2 are neglected.� This gives LE1 mm, which is
somewhat greater than the observed screening scale,
�0.5 mm, but somewhat smaller than the ion-neutral
“mean” free path, �2.3 mm. The latter fact suggests that
the conditions of this particular experiment12,13 are at the
edge of applicability of the mobility-limited drift assump-
tion. Further, assumption �iv� is justified by the fact that the
ratio of the ion drift velocity �2eE0� / ��m� to the thermal
velocity of neutrals �Tn /m is 9.8, based on the parameter
values deduced from the fit. Assumptions �v� and �vi� are

FIG. 1. Comparison of experiment with our theoretical expression �Eq. �6��
and Yukawa potential. Vertical axis is the interaction energy relative to in-
finite separation. The horizontal axis is the distance between the charged
grains. Since the interaction energy was measured not relative to infinite
separation, an unknown constant �offset� to be added to the measured ener-
gies is one of the fit parameters. The value of this offset is found to be not
the same for both fits. The experimental data are shown with this offset
added. Fit by Eq. �6� yields the grain charge Q−2.05�104e, “field-
induced” ion Debye length 
0.62 mm, and the offset �W3.4 eV �to be
added to the energies given in Table I�. Yukawa fit yields the grain charge
QY−1.66�104e, screening length 
Y0.39 mm, and the offset �WY

0.16 eV.

FIG. 2. Comparison of the fit by our theoretical expression �Eq. �6�� with
the Yukawa fit. The vertical axis is the interaction energy relative to infinite
separation, multiplied by the distance between grains. The horizontal axis is
the distance between grains. �Unscreened Coulomb interaction would be a
straight horizontal line.� Parameters of both fits are given in the caption to
Fig. 1.
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justified by the fact that both the absorption impact param-
eter min�a ,��Q�ea /T	� �see Refs. 1 and 2� and the Coulomb
radius �Q�e /T	 are of the same order as the particle radius a,
which is two orders of magnitude smaller than the observed
screening scale, �0.5 mm. Concerning assumption �vii�, the
electron temperature in the midplane of the discharge was
measured to be 2.2 eV,12,13 which corresponds to the mean
kinetic energy of 3/2�2.2 eV=3.3 eV. As mentioned in the
Introduction, the mean kinetic energy of electrons in the re-
gion of particle levitation can be even larger. At the same
time, our fit yields the mean kinetic energy of ions �in the
region of particle levitation� to be T	 /21.9 eV. Also, the
Poisson equation E /LE=4��ni−ne�e coupled with the found
values of LE, ni��n0�, and E��E0� gives ne /ni0.85. This
supports the idea that the screening should be primarily due
to ions and not electrons.

To conclude, the experiment12,13 corresponds to the edge
of applicability of the mobility-limited drift assumption �i.e.,
assumption �iii��, whereas all other assumptions are more or
less well justified. Thus, the experimental conditions12,13 are
not best suitable to check our theory, yet they provide excel-
lent agreement between experimental results and our model
within experimental uncertainties.

C. Potential at large distances

One can easily derive from Eq. �6� the asymptotic be-
havior of the potential at large distances: We introduce the
distance r from the test charge and angle � with respect to
the ion drift direction via r�=r sin � and z=r cos �. Using
the integral representation K0�x�=�0

� exp�−x cosh ��d� valid
for Re�x��0 �see Ref. 25� and employing new variable of
integration t̃= tr, we expand the integrand in a series of 1 /r.
Then we can perform integration over t̃ and � analytically,
which gives the asymptotic potential,

	 = −
Q
2

�

cos �

r2 
 2

1 + cos2 �
�3/2

+ O
 1

r3� . �8�

Thus, at large distances the test charge produces a
dipole-like field, with the dipole moment �Q�
2 /�. For a
negatively charged grain �Q�0�, this dipole moment is di-
rected along the ion drift. Note the difference from the pure
dipole field, due to the additional anisotropic factor �2/ �1
+cos2 ���3/2.

It is well known that, in a collisionless plasma with ar-
bitrary anisotropic ion velocity distribution, the potential of a
non-absorbing point charge at large distances generally has
the 1/r3 dependence.26 Hence, the collisions included in our
model are essential in the formation of the 1/r2 potential
derived above. This conclusion is supported by the results of
Stenflo et al.,27 who considered a slowly moving non-
absorbing point charge in an isotropic collisional plasma and
obtained an inverse squared dependence as well.

Unscreened dipole potentials have already been used as
model interaction potentials to investigate instabilities of
dust-lattice waves28,29 and modes of finite clusters.30 Our ex-
pression �8� not only justifies such unscreened dipole poten-
tials but also provides the value of the corresponding dipole
moment.

D. Applicability of Eq. „6…

The range of applicability of Eq. �6� is restricted by the
assumptions listed in Sec. III A. In particular, the ion drift
should be mobility-limited and, simultaneously, the drift ve-
locity should be much greater than the thermal velocity of
neutrals. Measurements5 clearly demonstrate that the two lat-
ter conditions can indeed be satisfied simultaneously with a
good margin, allowing for a certain range of applicability of
our model.

Although the present paper is rather devoted to charge
screening in rf discharges, the obtained expression �6� can be
applied to direct-current �dc� discharges as well. �Again, all
the assumptions listed in Sec. III A should be checked for
particular experimental conditions.� Measurements31 per-
formed in a dc discharge demonstrate that all our assump-
tions can be satisfied even in weakly collisional discharges:
In a weakly collisional discharge, there exists the so-called
presheath where the ion drift is mobility-limited, with the
drift kinetic energy being in between the neutral and electron
temperatures.

Our model assumes a spatially homogeneous electric
field. Realistically, inhomogeneity is always present in the
sheath region. The question naturally arises as to what is the
characteristic inhomogeneity scale of the electric field, LE

=E /E�, at which our result �6� is no longer valid. The inho-
mogeneity may also restrict the range of distances from the
grain where the derived potential �6� is valid. We emphasize
that LE should be at least greater than �, otherwise the drift is
not mobility-limited, leading to a quite different ion velocity
distribution, which, in turn, should lead to a principally dif-
ferent grain screening.

Strictly speaking, the model assumption of a homoge-
neous electric field implies a quasineutral plasma. Indeed,
the inhomogeneity length of the electric field is connected
with the degree of plasma quasineutrality via the Poisson
equation, E /LE=4��ni−ne�e, which gives LE= �
2 /��ni / �ni

−ne�. �Here, we omit the subscript “0” used throughout the
paper for E0 and n0 and assume ni�ne.� The aforementioned
condition of the drift being mobility-limited, LE��, takes
the form





�
�2 ni

ni − ne
� 1. �9�

For a quasineutral plasma region �ni−ne�ni�, condition �9�
is satisfied for a wide range of values of the ratio 
 /�. For an
essentially nonquasineutral plasma region �ni−ne�ni�, e.g.,
deep in the sheath, condition �9� is only satisfied when
�
 /��2�1. This should be taken into account by possible
applications of our model.

E. Stability

The question arises as to whether and when the equilib-
rium given by Eq. �3� is stable �with respect to ion-acoustic
waves�. �If it is not, then our approach is not justified.� To
answer the question, a derivation of the corresponding dis-
persion relation �within the model considered� is necessary.
A derivation of the dispersion relation and subsequent stabil-
ity analysis is much more difficult than the derivation of the
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static potential �6�. Note that the classical situation of the
two-stream instability—one-component collisionless plasma
with the velocity distribution being a sum of an otherwise
stable distribution and an additional term representing a
beam32—is different from our case of collisional plasma with
the half-Maxwellian velocity distribution �3� formed by the
balance of acceleration in the electric field and collisions
with neutrals. Another case of the two-stream instability—
ions and electrons flowing with respect to each other32—is
irrelevant as well, because, in our model, electron response is
neglected. Therefore, we see no physical reason for instabil-
ity and so an investigation of the dispersion relation is be-
yond the scope of the present paper.

VI. CONCLUSION

Our model attributes grain screening to ions only. As-
suming a mobility-limited ion drift with velocity much larger
than the thermal velocity of neutrals, we derived an analyti-
cal expression for grain screening �6�, which appeared to be
generally not of the Yukawa �Debye-Hückel� form. Both our
expression �6� and the Yukawa potential are in excellent
agreement with the experiment.12,13 At the same time, our
expression �6� strongly suggests that measurements per-
formed in a broader range of distances should reveal signifi-
cant deviations from the Yukawa potential. Hence, the ex-
periment of Refs. 12 and 13 cannot be used as justification
for either the Yukawa potential or the dominant role of elec-
trons in grain screening, and more experiments are necessary
to resolve the issue.
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APPENDIX: DERIVATION OF EQ. „6…

The linearized potential of the point test charge Q has
the form

	�r�,z� =
Q

�
�

−�

�

dk	�
0

�

k�dk�

J0�k�r��exp�ik	z�
�k	

2 + k�
2 ��1 + i�k	,k���

,

�A1�

where J0 is the zero-order Bessel function of the first kind,
and i�k	 ,k�� is the ion susceptibility for the wave vector
whose components along and perpendicular to the ion drift
are k	 and k�, respectively.

To derive the ion susceptibility i from Eqs. �1� and �3�,
we consider a perturbation of the potential in the form
	1 exp�ik�x+ ik	z� with 	1=const and find the resulting lin-
ear perturbation of the distribution function, f�r ,v�− f0�v�
= f1�v�exp�ik�x+ ik	z�. Substituting in Eq. �1�, we obtain

�ik�vx + ik	vz + �−1v�f1 +
eE0

m

�f1

�vz

=
ie	1

m

k�

�f0

�vx
+ k	

�f0

�vz
� + �−1��v� � f1�v��v�dv�. �A2�

Then, substitution f1�v�=A�v�exp�−m��v� / �2T	��, with
��v�= �k	vz+2k�vx�i�vz+vvz+ 1

2 �v2−vz
2�ln�v+vz�, reduces

Eq. �A2� to the equation

eE0

m

�A

�vz
= �¯�exp
m�

2T	
� , �A3�

where �¯� denotes the right-hand side of Eq. �A2�. Direct
integration of Eq. �A3� with the boundary condition
�f1�v→�=0 gives A�v�=0 for vz�0 and A�v�

=��vy� ·��vx� · ���vz�+ �m /T	�J+ ¯ �+��vy� ·���vx� · ���vz�
+��vz� ·vx+ ¯ � for vz�0, respectively, where ���vx� is the
derivative of the delta-function, functions ��vz� and ��vz�
can be expressed through elementary functions, function
��vz� can be expressed through the Fresnel sine and cosine
integrals or, alternatively, through the error function of com-
plex argument,25 J is the integral standing in the right-hand
side of Eq. �A2� �J=�f1�v��v�dv��, and the ellipsis denotes
the higher-order terms with respect to vx, which are not im-
portant for subsequent calculations because these terms are
multiplied either by ��vx� or ���vx�. Now, substitution f1�v�
=A�v�exp�−m��v� / �2T	�� �with A�v� determined above� to
J=�f1�v��v�dv� gives the value of J �here, the formula
�−�

� ���t� ·g�t�dt=−g��0� is useful�, which completes the solu-
tion of Eq. �A2�. Using the definition i=−�4�e / �k	

2

+k�
2 ��� f1�v�dv /	1, we finally derive the ion susceptibility,

i�k	,k�� =
1

�k	
2 + k�

2 �
2 �X�k	�� + k�
2 �2Y�k	��� , �A4�

where functions X and Y are defined by Eq. �7�.
For the susceptibility �A4�, the integration over k� in Eq.

�A1� can be performed analytically,25 which gives the final
expression �6�.
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Dust-lattice waves: Role of charge variations and anisotropy
of dust-dust interaction
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Dust-lattice waves are studied in the framework of the one-dimensional particle string model. The
dust-dust interaction potential is assumed to have an arbitrary dependence on the vertical and
horizontal coordinates, which allows to take into account the wake field effects. Both the vertical
and horizontal charge variations are also included into the model. The model yields the coupling
between the vertical and horizontalslongitudinald modes: the coupling coefficient is the sum of six
terms, each caused by a different physical mechanism. It is shown that the coupling can trigger the
resonance oscillatory instability, which has been already observed in experiments. It is also shown
that a nonoscillatory instability can appear at small wave numbers due to the coupling.
© 2005 American Institute of Physics. fDOI: 10.1063/1.1926650g

I. INTRODUCTION

Dust-lattice waves represent the oscillations of charged
dust particles forming crystalline structures in a plasma.
There has been a number of experiments on dust-lattice
waves in two-dimensionals2Dd dust crystals in rf discharge
plasmasssee Refs. 1–5d. In these experiments, a horizontal
layer with crystalline structure was formed by negatively
charged dust particles in the sheath at the lower electrode,
where the electrostatic force compensated for gravity. In ad-
dition, there have been experiments on dust-lattice waves in
1D dust crystalsfsee Refs. 6 and 7srf and dc discharges,
respectivelydg, where the horizontal confinement was used to
form a particle chain.

In the laboratory experiments, the motion of individual
dust particles can be easily observed, which makes the dust
crystal a convenient model to study the fundamental physical
processes such as propagation of waves in crystals and phase
transitions. On the other hand, the system of charged dust
particles in a plasma has some important features distin-
guishing it from many other physical systems. The first im-
portant feature is that the dust-dust interaction is anisotropic.
The strong electric field supporting the particles against
gravity causes ion streamingsusually, the ion flow speed is
believed to be superthermald, which leads to the anisotropy
of the electrostatic potential induced by a dust particle: an
excess of the positive charge is accumulated “behind” the
negatively charged dust particle due to ion focusingssee nu-
merical simulations,8,9 theoretical studies,10–12 and
experiments13,14d. It is important to note that the energy of
particles interacting via such a potential is not conserved.5

The second important feature which results in the energy
nonconservation is that the charge of dust particles is not
constant: the charge is given by the balance of ion and elec-

tron fluxes on the particle surfacessome models for dust
charging are discussed in Refs. 15 and 16d. Because of the
inhomogeneity of the electric field of the sheath, the ion flow
speed depends on the height, and, hence, the charge depends
on the height as well. In addition, the ion and electron fluxes
on the particle surface can be influenced by neighboring dust
particles, which also leads to dust charge variations. All these
features may induce new physical effects unusual for Cou-
lomb or Debye–HückelsYukawad systems often used as a
model to study processes in dusty plasmas.

In Ref. 17, it is shown that the anisotropy of the dust-
dust interaction leads to the coupling between the vertical
and horizontalslongitudinald modes, which can cause the
resonance oscillatory instability near the intersection point of
the modes. In Ref. 18, another mechanism of the coupling is
found. The latter is related to the simultaneous presence of
the anisotropy of the dust-dust interaction and dust charge
variations due to vertical displacements. The contribution of
the mechanism of Ref. 18 to the coupling coefficient is pro-
portional to the product of the particle-wake dipole moment
and the charge gradient in the vertical direction, while the
contribution of the mechanism of Ref. 17 is quadratic with
respect to the particle-wake dipole moment.

In the present paper, we use the 1D particle string model
with interaction between neighboring particlessas in Refs.
17 and 18d and include into the model not only the aniso-
tropy of the dust-dust interaction and dust charge variations
due to vertical displacements but also dust charge variations
due to change in the distance between particles. We show
that the resulting coupling coefficient is the sum of six terms
sincluding the two terms investigated before in Refs. 17 and
18, respectivelyd. All the six terms correspond to different
physical mechanisms of the coupling. Under typical labora-
tory conditions, two of four new terms can be comparable
with the two previously investigated terms, while two re-
maining terms are relatively small. We also investigate the
instabilities that can be caused by the coupling.

adAlso at Moscow Institute of Physics and Technology, Institutsky pereulok
9, Dolgoprudny, 141700 Moskovskaya oblast, Russia. Electronic mail:
komp@mpe.mpg.de

bdAlso at General Physics Institute of the Russian Academy of Sciences,
Vavilova 38, 117942 Moscow, Russia.
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II. THEORY

A. Model description

We consider an infinite string of dust particles with equi-
librium charges−Qd,0 and equilibrium separationL. The
equilibrium positions of dust particles are on the horizontal x
axis. The z axis is directed vertically downward. We consider
the motion of particles to be in the xz plane. The forces
acting on the dust particles are the gravity force, the force of
the electric field of the sheath, the dust-dust interaction, and
the dust-neutral friction. In the xz plane, the electric field of
the sheath is directed vertically downward and depends only
on the coordinatez: E=Eszd. As for the dust-dust interaction,
we consider only interaction with neighboring dust particles
and apply the following model: each dust particle induces the
electrostatic potential given by

fnsx,zd = s− Qndfsux − xnu,z− znd, s1d

wheres−Qnd,0 is the momentary value of the charge of the
nth particle,xn andzn are the coordinates of thenth particle,
fsux−xnu ,z−znd is some function of the specified arguments.
We use a power series expansion of this function near
ux−xnu=L, z−zn=0:

fsux − xnu,z− znd = f0 + sux − xnu − Ldfx + sz− zndfz + 1
2sux

− xnu − Ld2fxx + 1
2sz− znd2fzz+ sux − xnu

− Ldsz− zndfxz+ ¯ . s2d

Concerning the dust charge variations, we apply the follow-
ing model: the linear perturbations of the dust charge are
given by

dQn = sdxn+1 − dxn−1dQx + sdzndQz, s3d

where the symbold is used to designate the deviations from
the equilibrium values:dQn=Qn−Q is the perturbation of the
absolute value of thenth particle charge,dxn=xn−nL is the
perturbation of thex coordinate of thenth particle,dzn=zn.

Note that we do not include explicitly the ion drag force
into the model. If we include the ion drag forceQn

2fdrszd in
the downward z direction, the linear perturbation of the total
vertical force from the sheath will be given bydfQnEszd
−Qn

2fdrszdg=QfudEszd /dzuz=0−Qudfdrszd /dzuz=0gdz+fEs0d
−2Qfdrs0dgdQn. Therefore, including the ion drag force is
equivalent to replacing the values ofEs0d and udEszd /dzuz=0

by the corresponding effective values.
Also note that, in our model, the force balance in the

equilibrium reads as follows: the gravity is compensated by
the electric field of the sheath and the vertical components of
the forces from the two neighboring dust particles,

Mg = QEs0d + 2Q2fz, s4d

whereM is the dust mass,g is the gravity constant.

B. Dimensionless parameters

To normalize distances, we use some arbitrary lengthl.
This lengthl can be associated, for example, with the Debye
radius or the length of the dust-dust interaction. The set of
our dimensionless parameters is as follows:

e0 = Es0d
l2

Q
, e1 = UdEszd

dz
U

z=0

l3

Q
,

k =
L

l
, qx =

Qxl

Q
, qz =

Qzl

Q
,

s5d
sx = fxl

2, sz = fzl
2,

sxx = fxxl
3, szz= fzzl

3, sxz= fxzl
3.

C. Dispersion relation

The linearized equations take the following form:

d2sdx̃nd
dt2

= − g
dsdx̃nd

dt
+ sdx̃n+1 − 2dx̃n + dx̃n−1dsxx

− sdz̃n+1 − dz̃n−1dsxz+ sdq̃n+1 − dq̃n−1dsx, s6d

d2sdz̃nd
dt2

= − g
dsdz̃nd

dt
+ sdz̃n+1 − 2dz̃n + dz̃n−1dszz− sdx̃n+1

− dx̃n−1dsxz− sdq̃n+1 + 2dq̃n + dq̃n−1dsz

− sdq̃nde0 − sdz̃nde1, s7d

dq̃n = sdx̃n+1 − dx̃n−1dqx + sdz̃ndqz, s8d

where dq̃n=dQn/Q, dx̃n=dxn/l, dz̃n=dzn/l, the time t is
normalized byl3/2ÎM /Q, the dimensionless parameterg
.0 describes the dust-neutral friction. Assuming the pertur-
bations are proportional to expsiknk− ivtd, we obtain the dis-
persion relation

fv2 + igv − Vh
2skdgfv2 + igv − Vv

2skdg = Ucskd, s9d

where

Vh
2skd = 4fsxx sin2skk/2d + sxqx sin2skkdg, s10d

Vv
2skd = e1 + e0qz + 4szzsin2skk/2d + 4szqz cos2skk/2d,

s11d

Ucskd = 4 sin2skkdf− sxz
2 + sxzsxqz − sxzqxe0 + sxqxqze0

− 4sxzszqx cos2skk/2d + 4sxszqxqz cos2skk/2dg.

s12d

Discussion. We have two modesfcharacterized byVhskd
andVvskdg damped by the dust-neutral friction and coupled
with each other through the coupling coefficientUcskd. The
frequenciesVhskd and Vvskd are respectively the horizontal
and vertical frequencies in the following sense. If we assume
that the particles can move only along the x axissi.e., we use
dzn;0 instead of considering forces in the vertical direc-
tiond, Vhskd will be the frequency of these horizontal oscil-
lations. Analogously, if we assume that the particles can
move only verticallysi.e., we usedxn;0d, the frequency of
these vertical oscillations will beVvskd.

For the reader’s convenience, we mention what signs of
the dimensionless parametersfEq. s5dg are believed to be
relevant to the laboratory experiments. The parameterse0
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ande1 are naturally positive. It means that the electric field is
directed downward and decreases with the height. The pa-
rameterssx, sz, sxx, szz, sxz: sid sx,0 sthe horizontal com-
ponent of the interaction force is repulsived, sii d sxx.0 sthe
horizontal repulsion force decreases with the distance at hori-
zontal displacementsd, siii d sz,0 sthe vertical component of
the dust-dust interaction force in the equilibrium is directed
downward, because an excess of the positive charge is accu-
mulated “below” the particled, sivd sxz.0 sthe absolute
value of this vertical component decreases with the interpar-
ticle distance at horizontal displacementsd, andsvd szz,0 sas
for spherically symmetric repulsiond. The parametersqx and
qz can be of any sign.

Concerning the horizontal frequencyVhskd fEq. s10dg,
the first term in Eq.s10d is simply the dust-dust interaction
without dust charge variations, while the second term is re-
sponsible for the horizontal dust charge variations.

As for the vertical frequencyVvskd fEq. s11dg, the terms
e1+e0qz describe the vertical oscillations of a single dust
particle with dust charge variations. The term
4szzsin2skk /2d is simply the dust-dust interaction without
dust charge variations. The last term in Eq.s11d combines the
effects of the vertical dust charge variations and the presence
of the vertical dust-dust interaction forces in the equilibrium.

Now we discuss the coupling coefficientUcskd fEq.
s12dg. From the physical point of view, the coupling means
that the horizontal motion of particles influences the vertical
motion, and, simultaneously, the vertical motion influences
the horizontal motion—a feedback takes place. All the six
terms of expressions12d represent different physical mecha-
nisms of the feedback.

sid The first coupling term −sxz
2 is considered in Ref. 17

and is related only to the anisotropy of the dust-dust interac-
tion. The wake “behind” one particle induces the vertical
force on another particle. When the horizontal distance be-
tween the particles changes, the vertical force changes as
well. The influence of the vertical motion on the horizontal

motion is similar: when one particle is shifted vertically with
respect to another particle, it implies a variation of the hori-
zontal force from the wake of the latter particle.

sii d The physics of the second coupling termsxzsxqz is
considered in Ref. 18 and is as follows: while the influence
of the horizontal motion on the vertical motion is related to
the anisotropy of the dust-dust interactionsas in the first
termd, the influence of the vertical motion on the horizontal
motion is related to the dust charge variations due to vertical
displacements: when two particles are shifted in the vertical
direction, the charges of the particles change, and, therefore,
the horizontal repulsion forces between the two particles are
changed as well.

siii d The third coupling term −sxzqxe0 is similar to the
preceding one. Now the horizontal dust charge variations
cause the influence of the horizontal motion on the vertical
motion sthe vertical force of the electric field of the sheath is
perturbed by the horizontal charge variationsd, while the in-
fluence of the vertical motion on the horizontal motion is due
to the anisotropy of the dust-dust interactionsas in the first
termd.

sivd The physics of the fourth coupling termsxqxqze0

combines the influence of the horizontal and vertical motion
on each other due to charge variations only.

svd The fifth and sixth terms are much less than the third
and fourth terms, respectively, ife0@ uszu si.e., the force of
the electric field of the sheath is much greater than the ver-
tical component of the dust-dust interaction force in the equi-
libriumd.

D. Stability analysis

In this section, we perform the stability analysis of the
dispersion relations9d with any arbitrary real functions
Vh

2skd, Vv
2skd, Ucskd fe.g.,Vh

2skd, Vv
2skd can be negative, and

Ucskd can be largeg. We use onlyg.0. All the four solutions
of the dispersion relations9d can be written in the following
form:

v = −
ig

2
±Î− Sg

2
D2

+
1

2
fVv

2skd + Vh
2skd ± ÎfVv

2skd − Vh
2skdg2 + 4Ucskdg. s13d

The instability conditions for a givenk are as follows.
sid When fVv

2skd−Vh
2skdg2+4Ucskd,0, we have oscilla-

tory instability if

ufVv
2skd − Vh

2skdg2 + 4Ucskdu . 2g2fVv
2skd + Vh

2skdg, s14d

otherwise the system is stable;
sii d When fVv

2skd−Vh
2skdg2+4Ucskd.0, we have

nonoscillatory instability if any of the following is satisfied:

Vh
2skd + Vv

2skd , 0, s15d

Vh
2skdVv

2skd , Ucskd, s16d

otherwise the system is stable.
Discussion. We suppose that, for a givenk, Vh

2 and Vv
2

are positive. In the case of no coupling and no friction, the
eigenfrequencies of the system coincide with the horizontal
Vh and verticalVv frequencies. With increasing of the abso-
lute value of the coupling coefficientUc, the eigenfrequen-
cies change as follows: in the case of positive coupling co-
efficient sUc.0d, the lower eigenfrequency decreases, while
the upper eigenfrequency increasessthe eigenfrequencies be-
come further removed from each otherd; in the case of nega-
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tive coupling coefficientsUc,0d, the lower eigenfrequency
increases, while the upper eigenfrequency decreasessthe
eigenfrequencies become closerd. Moreover, at some value of
the negative coupling coefficientfthis value is given by
sVv

2−Vh
2d2+4Uc=0g, the eigenfrequencies become equal to

each other. Further increasing of the absolute value of the
negative coupling coefficient trigger the resonance
instability—imaginary parts of the eigenfrequencies appear
and are of opposite signs, while the real parts remain equal to
each other. Concerning the case of the positive coupling co-
efficient, the lower eigenfrequency becomes equal to zero at
Uc=Vh

2Vv
2. At further increasing of the positive coupling co-

efficient, the nonoscillatory instability of the lower eigenfre-
quency appears. From the physical point of view, the positive
feedback becomes sufficient to overcome the restoring
forces, which implies that the initial particle configuration is
no longer a ground stste.

In the case of the presence of the friction, the condition
for the resonance oscillatory instability also requires that the
friction should be small enoughfcondition s14dg. On the
other hand, the presence of the friction does not affect the
condition for the nonoscillatory instabilityfEq. s16dg.

For a system with weak coupling, the resonance oscilla-
tory instability can occur only in the case of crossing of the
horizontalVhskd and verticalVvskd frequencies at somek.
The instability condition is

Ucskcrossd , 0, uUcskcrossdu . g2Vcross
2 , s17d

where skcross, Vcrossd is the crossing point. In this case, the
oscillatory instability occurs in a small interval of wave num-
bers near the crossing point.

E. Oscillatory instability †Eq. „14…‡

In this section, we consider the following case: the an-
isotropy of the dust-dust interaction and the horizontal dust
charge variations are small corrections to the simplest model
where sid the dust-dust interaction is described by the
Debye–HückelsYukawad potential, sii d the dust charge de-
pends on the coordinatez and is not influenced by the neigh-
boring particles. We choose the lengthl used to normalize
distances in Eq.s5d to be the screening length. For the
screened Coulomb interaction fnsr d=s−Qndexps−ur
−r nu /ld / ur −r nu swhere r n is the current position of thenth
particled, we have

sxx =
k2 + 2k + 2

k3 exps− kd, s18d

szz= −
k + 1

k3 exps− kd. s19d

Thus, the horizontal and vertical modes are approximately
given respectively byVh

2skd=4sxx sin2skk /2d andVv
2skd=e1

+e0qz+4szzsin2skk /2d, wheresxx andszz are given respec-
tively by Eqs. s18d and s19d. For largek, the vertical fre-
quency is greater than the horizontal frequency at anyk. If
we inject new particles to the system in order to decrease the
interparticle distance, the following physics takes place. The
horizontal and vertical frequencies become equal to each

other at the boundary of the first Brillouin zoneskk=pd. The
corresponding value of the parameterk is given by

e1 + e0qz = 4
k2 + 3k + 3

k3 exps− kd. s20d

Note that the coupling coefficientUcskd is equal to zero at
the boundary of the first Brillouin zonefsee Eq.s12dg. Fur-
ther decreasing of the interparticle distance leads to the fol-
lowing: the crossing pointkcrossbecomes situated before the
boundary of the first Brillouin zone, therefore,Ucskcrossd be-
comes nonzero, and, therefore, the oscillatory instabilityfEq.
s17dg can occur. We write down the instability condition.
Neglecting the fifth and sixth terms in Eq.s12d se0@ uszud, we
present the coupling coefficientUcskd in the form Ucskd
=u sin2skkd, whereu is independent ofk,

u = 4s− sxz
2 + sxzsxqz − sxzqxe0 + sxqxqze0d. s21d

We find the crossing pointskcross,Vcrossd and write the insta-
bility condition fEq. s17dg in the following form:

u , 0,

s22d

uuu . g2k2 + 2k + 2

k2 + 3k + 3
se1 + e0qzd

3F1 −S1 −
k3 expskdse1 + e0qzd

2sk2 + 3k + 3d D2G−1

.

If condition s22d is not satisfied before the interparticle dis-
tance becomes too small soVv

2skd becomes negative near the
boundary of the first Brillouin zone, the nonoscillatory insta-
bility appears firstfcondition s16d becomes satisfiedg: the
particles are pushed out of the string due to mutual repulsion
exceeding the vertical confinement. The corresponding value
of the parameterk is given by

e1 + e0qz = 4
k + 1

k3 exps− kd. s23d

Numerical example. The physics described above in the
present section was observed in the experiment of Ref. 5
performed at the pressure of 2.8 Pa: while injecting new dust
particles into the 2D plasma crystal, the meltingsoscillatory
instabilityd occurred at some value of the interparticle dis-
tance. It was possible to stop the melting by increasing the
pressuresup to 5–10 Pad. If the pressure was sufficiently
high, the system never melted. In the latter case, when the
number of the particles exceeded a certain threshold, the
monolayer transformed into a bilayer system.

We substitute into our model the parameters of the ex-
periment of Ref. 5. For the pressure of 2.8 Pa, the following
measurements were made. It was found by analyzing the
horizontal trajectories of two interacting particles that the
dust-dust interaction can be approximately described by the
screened Coulomb potential with the absolute value of the
chargeQ=15 500e swheree is the absolute value of the elec-
tron charged and the screening lengthl=0.5 mm. The reso-
nance vertical frequency of a single particle was measured to
be vv /2p<15.5 Hz. The dust mass wasM <5.5310−10 g.
Thus we finde1+e0qz=vv

2l3M /Q2<11.8. Solving Eq.s20d,
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we find the parameterk at which the intersection of the
modes occurs at the boundary of the first Brillouin zone:k
<0.96. Solving Eq.s23d, we find the parameterk at which
the vertical mode becomes unstable due to mutual repulsion
of dust particles:k<0.66. Therefore, in our model, the melt-
ing can occur at 0.66,k,0.96. The pressure of 2.8 Pa cor-
responds tog=s4p /3dnnmna

2vTnl
3/2/ sQÎMd<0.095, where

nn is the neutral density,mn is the neutral masssin the ex-
periment, argon was usedd, a is the dust radiussin the ex-
periment,a<4.45mmd, vTn=Î8Tn/pmn is the mean neutral
speedsthe neutral temperatureTn is assumed to be the room
temperatureTn=300 Kd ssee Ref. 19d. The expression in the
right-hand side of Eq.s22d behaves in the range 0.66,k
,0.96 as follows: atk<0.96, the expression takes the infi-
nitely large value; with decreasingk, the value of the expres-
sion decreases; atk<0.77, the expression takes the mini-
mum value of<0.074; with further decreasingk, the value
of the expression increases; finally, atk<0.66, the expres-
sion takes the value of<0.087. Thus, in our model, the
melting at the pressure of 2.8 Pa means that, at somek from
the range 0.66,k,0.96, the parameteru is negative, and its
absolute value exceeds at least 0.074.

We discuss what terms in Eq.s21d could give a signifi-
cant contribution to the parameteru of −0.074. For estimates,
we consider the simplest model where the dust-dust interac-
tion is the sum of the screened Coulomb potential and the
nonscreened dipole field, i.e.,

fnsr d =
s− Qnd
ur − r nu

expS−
ur − r nu

l
D +

sr − r nd ·Pn

ur − r nu3
s24d

where the dipole momentPn is assumed to be directed down-
ward and proportional to the momentary value of the particle
charge. In this model, the parameterssx, sxx, and szz are
exactly the same as for the pure screened Coulomb interac-
tion fsx=−sk+1dexps−kd /k2, sxx and szz are given by re-
spectively Eqs.s18d and s19dg, while sz=−p/k3 and sxz

=3p/k4, wherep is the absolute value of the dipole moment
Pn in units of Ql. We perform estimates assuming that the
interparticle distance is as close as possiblesi.e., k<0.66d,
so that the coupling is expected to be the strongest. The first
term in Eq. s21d gives the value ofu of −0.074 for p<9
310−3. For thisp, the second term in Eq.s21d is equal to the
first term atqz<0.07. We find the parametere0 present in the
last two terms as follows:QE=Mg, which gives e0

=Mgl2/Q2<24. Assuming the parametersp and qz are as
found above, we find that atqx<6310−3 all the four terms
in Eq. s21d are equal to each other. Thus, each of the four
terms in Eq.s21d can be sufficient to trigger the resonance
oscillatory instability in the laboratory experiments.

F. Nonoscillatory instability †Eq. „16…‡

In the case of no coupling, the nonoscillatory instability
appears when any of the functionsVh

2skd, Vv
2skd is negative

at somek fsee Eqs.s15d and s16dg. When the coupling is
present, the nonoscillatory instability is possible even in the
case where both functionsVh

2skd and Vv
2skd are positive for

anyk fsee Eq.s16dg. In this section, we investigate the insta-
bility condition in the latter case. We assume the following:

sid the horizontal mode is given byVh
2skd=4sxx sin2skk /2d

fi.e., the last term in Eq.s10d can be neglectedg, wheresxx

.0, sii d the vertical mode is given byVv
2skd=e1+e0qz

+4szzsin2skk /2d fi.e., the last term in Eq.s11d can be ne-
glectedg, siii d Vv

2skd.0 for any k si.e., e1+e0qz.0 and e1

+e0qz+4szz.0d, sivd the coupling coefficient isUcskd
=u sin2skkd, whereu is independent ofk si.e., e0@ uszud. In
this case, it can be easily shown that the expression
Vv

2skdVh
2skd /sin2skkd takes the minimal value atk→0. Thus,

the instability condition takes the form

u . se1 + e0qzdsxx. s25d

Condition s25d does not depend ong, which suggests that
this is a “configurational” instability.

III. CONCLUSIONS

Using the 1D particle string model, we have shown that
the coefficient of coupling between the horizontalslongitu-
dinald and vertical modes is the sum of six terms, each
caused by a different physical mechanism. The first four are
related respectively to:s1d only anisotropy of the dust-dust
interaction; s2d anisotropy of the dust-dust interaction and
vertical dust charge variations;s3d anisotropy of the dust-
dust interaction and horizontal dust charge variations;s4d
vertical and horizontal dust charge variations. In the labora-
tory experiments, all these four terms can be comparable
with each other, while two remaining terms are negligible if
the force of the electric field of the sheath is much greater
than the vertical component of the dust-dust interaction in
the equilibrium state.

The coupling can trigger the resonance oscillatory insta-
bility. In most experiments, the coupling is assumed to be
weak, and, therefore, the instability condition actually means
sid intersection of the modes,sii d the negative sign of the
coupling coefficient, andsiii d the neutral pressure is less than
some threshold proportional to the square root of the abso-
lute value of the coupling coefficient.

If the coupling is positive and sufficiently strong, it can
trigger a nonoscillatory instability at small wave numbers.
The corresponding instability condition does not contain the
neutral pressure.
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The modes of clusters formed by two or three charged dust particles in a plasma are analyzed. The
non-Hamiltonian dynamics of the particles is taken into account, which includes �i� nonreciprocal
interaction forces due to wake effects and �ii� spatial variations of the particle charge and shielding
parameters. It is shown that these effects can trigger an oscillatory instability under realistic
experimental conditions. An experiment is suggested to observe this instability. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2212396�

I. INTRODUCTION

Systems of charged dust particles in an inhomogeneous
plasma with ion flow �e.g., in the plasma sheath� are charac-
terized by nonreciprocal interaction forces �i.e., actio
� reactio due to the so-called wake fields1–10� as well as by
spatial variations of the particle charge11–15 and shielding pa-
rameters. Such systems cannot be described by a Hamil-
tonian and, hence, energy is not conserved in such systems.
The physical reason for the energy nonconservation is that
such systems are not closed systems because of the presence
of the plasma. This makes a complex �dusty� plasma a con-
venient model to study non-Hamiltonian dynamical systems
which are of fundamental physical interest �see, e.g., Refs.
16 and 17, and references herein� and have a long history in
mechanics.18

One of the properties different from those of Hamil-
tonian systems was revealed in the experiment of Ref. 19
where the melting of particle monolayer was observed. The
dust crystal melted when the neutral friction was not suffi-
cient to suppress the oscillatory instability of coupled in-
plane longitudinal and out-of-plane dust-lattice modes.20–22

Such oscillatory instability would be impossible for a Hamil-
tonian dynamical system because of the energy conservation.

The question arises whether the same physics can be
observed in a system of a few dust particles. In the present
paper, we show that an oscillatory instability due to the non-
Hamiltonian particle dynamics is possible for 2- and
3-particle clusters and could be observed in experiments and
used for plasma diagnostics.

The paper is organized in the following way: The model

description and the equations of motion are followed by the
mode analysis performed in the case of reciprocal interaction
forces and no variations of the particle charge and shielding
parameters �i.e., in the case of Hamiltonian particle dynam-
ics�. Then, the role of charge/shielding variations and the
nonreciprocity of the interaction forces is shown: the mode
frequencies and instability conditions are obtained in analyti-
cal form and the instability mechanism is explained. A nu-
merical example is followed by conclusions where an experi-
ment is suggested.

II. THEORY

A. Model description

We consider N=2 �and, separately, N=3� dust particles
with masses m and charges −Q�z��0 dependent on the z
coordinate �the z axis is directed downward�. In equilibrium,
the particle positions are in the horizontal plane z=0. We
denote Q�0�=Q0. In equilibrium, the interparticle distance is
L �for N=3, the particle positions form an equilateral triangle
with side L�.

The forces acting on the particles are gravity, the electric
field of the sheath, the electrostatic dust-dust interaction, and
the neutral friction.

The electric field of the sheath is the sum of the vertical
field E=E�z� directed downward �we denote E�0�=E0� and
the field given by the electrostatic potential

��r,z� = − b�z� · r2 �1�

responsible for the horizontal confinement of the particles.
Here r is the distance from the z axis. We denote b�0�=b0

and introduce bz� and bzz� as the corresponding derivatives of
the function b�z� evaluated at z=0.a�Electronic mail: komp@mpe.mpg.de

PHYSICS OF PLASMAS 13, 072104 �2006�

1070-664X/2006/13�7�/072104/9/$23.00 © 2006 American Institute of Physics13, 072104-1

Downloaded 27 Dec 2006 to 130.183.136.159. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp

http://dx.doi.org/10.1063/1.2212396
http://dx.doi.org/10.1063/1.2212396


Concerning the electrostatic dust-dust interaction, we
employ the following model: each particle induces an elec-
trostatic potential given by

� = − Q�z� · f��h,�v,z� , �2�

where �h is the horizontal distance from the particle, �v is
the vertical distance from the particle in the z direction, and
z is the z coordinate of the particle. We introduce fh�, fv�, fz�,
fhh� , etc. as the corresponding derivatives of the function
f��h ,�v ,z� evaluated at �h=L, �v=0, z=0.

The neutral friction is Ffr=−Cfrv, where v is the particle
velocity.

Note that the ion drag force12 is not explicitly included
in our model. Instead of this, we can assume that E�z� is the
“effective” electric field so that the ion drag force is already
included in Q�z�E�z�.

B. Force balance in equilibrium

In equilibrium, the interaction force exerted on one par-
ticle by another has the horizontal component −Q0

2fh� directed
from the latter particle and the vertical component −Q0

2fv�
directed downward �see Eq. �2��.

The horizontal force exerted on each particle by all other
particles is balanced by the horizontal confinement potential
��r ,z�. The equation for the latter balance allows us to ex-
press b0 through the given interparticle distance L:

b0 = −
NQ0fh�

2L
, �3�

where, as it was mentioned above, N=2,3.
The vertical forces acting on each particle are gravity,

the vertical component of the electric field of the sheath and
the vertical components of the interparticle interaction
forces. Note that the z component of the electric field of the
sheath is E�z�−d��r ,z� /dz where the latter term is due to the
vertical dependence of the horizontal confinement potential
��r ,z�. Thus, the vertical force balance equation is as fol-
lows:

mg − Q0E0 − Q0bz�
�N + 1�L2

12
− �N − 1�Q0

2fv� = 0. �4�

�For N=2,3, the squared distance of the particles from the z
axis can be written as �N+1�L2 /12.�

C. Equations of motion

We use cylindrical coordinates �Fig. 1�: the distances r1,

r2 �and r3, for N=3� of the particles from the z axis, the
azimuthal angles �1, �2 �and �3� counted from a fixed radial
direction clockwise if viewed from above, and the z coordi-
nates z1, z2 �and z3�. For N=3, the particles are numbered 1,
2, 3 in the positive � direction.

In these coordinates, the equations of motion are

Fnr/m = r̈n − rn��̇n�2,

Fn�/m = rn�̈n + 2ṙn�̇n, Fnz/m = z̈n, �5�

where Fnr, Fn�, Fnz are, respectively, the radial, azimuthal,
and z components of the net force on the nth particle. These
components are defined with respect to the momentary posi-
tion of the nth particle.

The net force on the nth particle is given by
Fn=−Q�zn�En−Cfrṙn, where En is the sum of the electric
field of the sheath and the electric fields induced by all other
particles at the point rn corresponding to the momentary po-
sition of the nth particle. Thus, we obtain

Fn = − Q�zn�E�zn�ez + Q�zn�� ��

�r
�

r=rn

+ Q�zn��
k�n

� ��k�r�
�r

�
r=rn

− Cfrṙn, �6�

where ez is the unit vector in the z direction, � is the hori-
zontal confinement potential given by Eq. �1�, and �k�r� is
the electrostatic potential induced by the kth particle. Thus,
we find Fnr, Fn�, Fnz:

Fnr = − 2Q�zn�b�zn�rn − Q�zn��
k�n

Q�zk�
�fnk

�rn
− Cfrṙn,

Fn� = −
Q�zn�

rn
�
k�n

Q�zk�
�fnk

��n
− Cfrrn�̇n,

Fnz = mg − Q�zn�E�zn� − Q�zn�rn
2db�zn�

dzn

− Q�zn��
k�n

Q�zk�
�fnk

�zn
− Cfrżn, �7�

where fnk is the value of the function f �see Eq. �2�� for
�h= �rn

2+rk
2−2rnrk cos��n−�k��1/2, �v=zn−zk, z=zk.

D. Dimensionless parameters

We introduce the dimensionless parameters which are
the values of the original parameters in units where �i� Q0

=1, �ii� m=1, and �iii� distances are in units of some arbi-
trary length � �this length � can be associated, for example,
with the length of the dust-dust interaction�:

FIG. 1. Sketch of the particle coordinates.
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� =
L

�
, e0 =

E0�2

Q0
, � =

Cfr

Q0
��3

m
,

ez = �dE�z�
dz

�
z=0

�3

Q0
, qz = �dQ�z�

dz
�

z=0

�

Q0
. �8�

We also introduce the dimensionless parameters characteriz-
ing �i� the interaction potential:

	h = fh��
2, 	v = fv��

2, 	vz = fvz� �3, . . . , �9�

and �ii� the z dependence of the horizontal confinement po-
tential:


z =
bz��

b0
, 
zz =

bzz� �2

b0
. �10�

E. Linearized equations of motion

The linearized equations take the form

d2

dt2L + �
d

dt
L + ML = 0, �11�

where t is the time normalized by �m�3 /Q0,

L = �l1r,l1�,l1z, . . . ,lNr,lN�,lNz�T, �12�

lnr, ln�, lnz are the dimensionless �i.e., normalized by �� dis-
placements of the nth particle in the r, �, and z directions,
respectively, and

M = �D F
F D 	, D = 
�	hh� − 2	h�/� 0 	vh − 
z	h

0 − 	h/� 0

	vh − 
z	h 0 ez + e0qz + 	vv + qz	v − �
zqz + 
zz�	h�/4
� ,

F = 
	hh 0 qz	h + 	hz − 	vh

0 	h/� 0

	vh 0 − 	vv + qz	v + 	vz
��N = 2�, M = 
D F+ F−

F− D F+

F+ F− D � ,

D = 
�3	hh� − 5	h�/2� 0 �	vh − 
z	h��3

0 �	hh� − 3	h�/2� 0

�	vh − 
z	h��3 0 ez + e0qz + 2	vv + 2qz	v − �
zqz + 
zz�	h�/2
� ,

F± = 
 �3	hh� − 	h�/4� ±�	hh� + 	h��3/4� �	hz + qz	h − 	vh��3/2

��	hh� + 	h��3/4� �− 	hh� + 3	h�/4� ±�	vh − 	hz − qz	h�/2

	vh
�3/2 ±	vh/2 − 	vv + qz	v + 	vz

��N = 3� . �13�

All the solutions of Eq. �11� can be written as follows:

L�t� = Re �
j=1

3N

�Cj,+ exp�− i� j,+t� + Cj,− exp�− i� j,−t��L j ,

�14�

where Cj,± are arbitrary complex constants,

� j,±
2 + i�� j,± =  j

2, �15�

 j
2 are the eigenvalues of the matrix M, and L j are the

corresponding eigenvectors of the matrix M. Note that the
 j

2 are the dimensionless squared mode frequencies in the
absence of friction.

F. The case of Hamiltonian dynamics

In this subsection, we consider the case where:

• The interaction forces are reciprocal �	v=	vh=	vz=0�;

• The particle charge and shielding are independent of the
particle position �qz=	hz=0�;

• And, for simplicity, the horizontal confinement potential is
independent of the height �
z=
zz=0�.

Note that the presence/absence of the vertical dependence of
the horizontal confinement potential has nothing to do with
the system’s dynamics being Hamiltonian or not.

For N=2, we have the following modes � j
2, L j� �we

will omit the subscripts in the  j
2�:

• The “horizontal rotation” mode: 2=0;
• The two “horizontal sloshing” modes �a whole cluster

horizontal shift�: 2=−2	h /�;
• The “breathing” mode �Fig. 2�a��: 2=2�	hh−	h /��;
• The “vertical sloshing” mode �a whole cluster vertical

shift�: 2=ez;
• The “vertical shear” mode �Fig. 2�b��: 2=ez+2	vv.

For N=3, we have

072104-3 Dust clusters with non-Hamiltonian particle dynamics Phys. Plasmas 13, 072104 �2006�

Downloaded 27 Dec 2006 to 130.183.136.159. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



• The “horizontal rotation” mode: 2=0;
• The two “horizontal sloshing” modes �a whole cluster

horizontal shift�: 2=−3	h /�;
• The “breathing” mode �Fig. 2�c��: 2=3�	hh−	h /��;
• The two “kink” modes �Fig. 2�d��: 2=3�	hh−	h /�� /2;
• The “vertical sloshing” mode �a whole cluster vertical

shift�: 2=ez;
• The two “vertical shear” modes �Fig. 2�e��: 2=ez+3	vv.

G. The general case of non-Hamiltonian dynamics

Now, we consider the general case, i.e., the case where
�i� the interaction forces are nonreciprocal, �ii� the particle
charge and shielding depend on the particle position, and �iii�
the horizontal confinement potential depends on the height.
In this case, the horizontal displacements of the particles
cause vertical force variations and, simultaneously, the verti-
cal displacements cause horizontal force variations—a feed-
back takes place. As a result, some horizontal modes become
coupled with some vertical modes and, hence, some eigen-
frequencies correspond to the simultaneous in- and out-of-
plane motion.

1. Frequencies of the coupled “breathing”
and “vertical sloshing” modes

As we will see, the coupled “breathing” and “vertical
sloshing” modes are of the most interest for realistic experi-
mental conditions. The corresponding particle motion simul-
taneously satisfies the following relations:

l1r = l2r�=l3r�, l1� = l2��=l3�� = 0,

l1z = l2z�=l3z� . �16�

This gives the following equation for the  j
2:

�2 − A��2 − B� = C , �17�

where the subscripts in the  j
2 are omitted,

A = N�	hh − 	h/�� , �18�

B = ez + e0qz + 2�N − 1�qz	v + �N − 1�	vz

− �N − 1��
zqz + 
zz�	h�/4, �19�

C = �2N − 3��2	vh − 	h
z��	hz + qz	h − 
z	h� . �20�

The parameters A and B are, respectively, the squared
“horizontal” and “vertical” frequencies in the following
sense. If we assume that the particles can move only radially
�i.e., we use l1z= l2z= l3z=0 instead of considering the vertical
forces�, the parameter A will be the squared dimensionless
frequency of these radial oscillations �in the absence of fric-
tion�. Analogously, if we assume that the particles can move
only vertically �i.e., we use l1r= l2r= l3r=0�, the squared di-
mensionless frequency of these vertical oscillations will be
B. The coupling coefficient C characterizes the coupling be-
tween the radial and vertical motion.

2. Instability condition

We perform the stability analysis of Eq. �17� for arbi-
trary real parameters A, B, C, and ��0. We rewrite Eq. �17�
in the form

��2 + i�� − A���2 + i�� − B� = C �21�

�see Eq. �15��. All the four solutions � of Eq. �21� can be
easily found analytically. �We have a quadratic equation with
respect to �2+ i��. After solving it, we have to solve a qua-
dratic equation with respect to �.� The analysis of the ana-
lytic expression for all the four solutions gives the following
instability conditions:

• We have an oscillatory instability �i.e., a solution with
Im����0 and Re����0�� if

�A − B�2 + 4C � 0 �22�

and

��A − B�2 + 4C� � 2�2�A + B� . �23�

• We have a nonoscillatory instability �i.e., a solution with
Im����0 and Re���=0�� if

�A − B�2 + 4C � 0 �24�

and any of the following is satisfied:

A + B � 0 �25�

or

AB � C . �26�

3. The case of weak coupling

We assume that the parameters A, B, C, and � are some
functions of the controlling parameters. These controlling pa-
rameters can be the neutral pressure, the discharge power, the
particle size/mass, parameter�s� responsible for the horizon-
tal confinement potential �e.g., if the horizontal confinement
potential is induced by a conductive ring placed on the lower
electrode, then the radius and thickness of this ring can be
considered as controlling parameters�. We assume that, for
some range of the controlling parameters, the parameters A
and B are always positive. Then, for this range of the con-
trolling parameters, an oscillatory instability occurs when

�A − B�2 + 4C � − 2�2�A + B� �27�

and a nonoscillatory instability occurs when

FIG. 2. Modes of N=2 �a�, �b� and N=3 �c�, �d�, �e� clusters in the case
where �i� the interaction forces are reciprocal, �ii� the particle charge and
shielding are independent of the particle position, and �iii� the horizontal
confinement potential is independent of the height. The numbers represent
the relative magnitudes of the particle displacements. Trivial modes corre-
sponding to the horizontal rotation and whole cluster vertical and horizontal
shifts are not shown.
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AB � C �28�

�see Eqs. �22�–�26��.
We assume that, for the considered range of the control-

ling parameters, the absolute value of the mode coupling
coefficient C is always small and the parameters A and B are
finite �i.e., the coupling between the modes is weak�. In this
case, a nonoscillatory instability is impossible �see Eq. �28��.
Concerning oscillatory instability, the left-hand side of Eq.
�27� can be negative only in the vicinity of point�s�/
surface�s� �in the space of the controlling parameters� given
by equation A=B. If, for some point satisfying A=B, the
following is satisfied:

C � 0, �C� � �2A , �29�

then an oscillatory instability occurs in the vicinity of this
point �see Eq. �27��. Note that, in the absence of friction
��=0�,

• the only condition for the existence of oscillatory instabil-
ity near the resonance A=B is the negative sign of the
mode coupling coefficient C;

• When the mode coupling coefficient C is negative and in-
finitely small, the increment of the instability is infinitely
small as well.

4. Parameter signs relevant to the laboratory
experiments

We specify what signs of the parameters are relevant to
the laboratory experiments �see, e.g., measurements of Ref.
23�: �i� 	h�0 �the horizontal component of the force exerted
on one particle by another is repulsive�, �ii� 	hh�0 �this
horizontal repulsion force decreases with the interparticle
distance at horizontal displacements�, �iii� 	v�0 �the verti-
cal component of the force exerted on one particle by another
is directed downward �an excess of the positive charge, i.e.,
wake, is accumulated “below” the latter particle due to ion
focusing��, �iv� 	vh�0 �the absolute value of this vertical
component decreases with the interparticle distance at hori-
zontal displacements�, �v� 	vv�0 �as for spherically sym-
metric repulsion�, �vi� 	hz�0 �the ratio of the horizontal
repulsion force exerted on one particle by another to the
squared particle charge increases when both particles are si-
multaneously shifted in the downward direction, i.e., particle
charge shielding becomes weaker as the lower electrode ap-
proached�, �vii� 
z�0 �the horizontal confinement becomes
stronger as the lower electrode approached, which is typical
when the horizontal confinement potential is induced by a
conductive ring placed on the lower electrode or by a cavity
machined into the lower electrode�, and �viii� qz�0 �the
negative particle charge increases as the lower electrode ap-
proached�.

5. Physics of the instability

For simplicity of explanation of the instability mecha-
nism, we assume that the signs of the parameters are as
specified in the previous subsection.

When the particles are equally radially displaced from
their equilibrium positions to each other, the vertical force

balance becomes disturbed because of the variations of the
vertical forces exerted on each particle by �i� other particle�s�
�i.e., wakes of the other particle�s�� and �ii� the vertical elec-
tric field induced due to the vertical dependence of the hori-
zontal confinement potential ��r ,z�. Hence, there appears a
net vertical force on each particle. This force is directed
downward when the particles are shifted to each other. On
the other hand, when the particles are equally displaced from
their equilibrium positions in the downward direction, then,
according to the condition C�0 in the instability condition
�29�, there should appear a net horizontal repulsive force on
each particle. This implies that increased mutual interparticle
repulsion �due to both increased negative particle charge and
weakened shielding� should be stronger than increased hori-
zontal confinement. If it is satisfied and the resonance be-
tween the “horizontal” and “vertical” frequencies takes place
�A=B�, then the dynamics of particle motion satisfying Eq.
�16� is equivalent to the dynamics of a two-dimensional har-
monic oscillator in the field of a force whose components are
such linear combinations of the displacement components
that the lines of this force are closed elliptical lines. This
implies two modes corresponding respectively to damped
and growing rotation-like motions in opposite directions
around the equilibrium point. The condition �C � ��2A in Eq.
�29� means that the friction should be not sufficient to sup-
press this growth.

6. Other modes

The analysis of all other modes is given in the Appendix
. The main conclusion of this analysis is as follows:

• If the parameter signs are as specified in Sec. II G 4;
• 	hh�+	h�0 �i.e., the product of the horizontal repulsion

force and the interparticle distance decreases with the in-
terparticle distance at horizontal displacements�;

• the coupling between the modes is weak;

then the coupling between these modes cannot trigger an
instability �even in the absence of friction�.

H. Numerical example

We employ the following model: the particle potential is
the sum of the screened Coulomb potential �with screening
length �s�z� dependent on the particle z coordinate� and the
dipole field which is the simplest model of the wake field,
i.e.,

�n = −
Q�zn�

�r − rn�
exp−

�r − rn�
�s�zn� � +

�r − rn� · P�zn�
�r − rn�3

. �30�

The particle-wake dipole moment P�z� is assumed to be di-
rected downward �an excess of the positive charge is accu-
mulated “below” the negatively charged particle due to ion
focusing�.

This model is reasonable since the experiments of Refs.
23 and 25 show that, for plasma conditions considered be-
low, the horizontal forces between the particles levitated in
the same horizontal plane are described by the screened Cou-
lomb potential. Also, the only parameters responsible for the
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effect of nonreciprocal interaction forces and present in the
linearized equations of motion are 	v, 	vh, 	vz �see Eq. �13��.
Of these parameters, only 	vh is present in the expressions
for the mode coupling coefficients �see Eqs. �20�, �A6�,
�A13�, and �A14��. Hence, the dipole moment P�0� can be
treated as the “effective” dipole moment which gives the
same value of the parameter 	vh �for given interparticle dis-
tance� as the real wake field and, hence, gives the same con-
tributions to the mode coupling coefficients as the real wake
field.

We choose the length � used to normalize distances in
Eq. �8� to be equal to �s�0�. Thus, we obtain

	h = −
� + 1

�2 e−�, 	v = −
p

�3 ,

	hh =
��2 + 2� + 2�

�3 e−�, 	vv = −
� + 1

�3 e−�,

	vh =
3p

�4 , 	hz = − �s,ze
−�, 	vz =

pqz − pz

�3 , �31�

where

p =
�P�0��

Q0�s�0�
, �s,z = �d�s�z�

dz
�

z=0
,

pz = � 1

Q0

d�P�z��
dz

�
z=0

. �32�

We use the parameters of the experiment of Ref. 19:

• Q0=15500e �where e is the elementary charge�,
• �s�0�=0.5 mm,
• neutral �argon� pressure Pn=2.8 Pa,
• neutral temperature Tn=300 K,
• particle radius a=4.45 �m,
• m=5.5�10−10 g,
• vertical frequency of a single particle �v /2�=15.5 Hz.

We find

� =
4�

3

nnmna2vTn

Q0
��3

m
� 0.1 �33�

�the Epstein neutral friction24�, where nn= Pn /kTn is the neu-
tral density, mn is the neutral mass �the gas was argon, as
mentioned above�, vTn=�8kTn /�mn, k is the Boltzmann con-
stant.

Since the vertical forces due to �i� wake effects and �ii�
the vertical electric field induced due to the vertical depen-
dence of the horizontal confinement potential ��r ,z� are
small with respect to gravity and the electric field of the
sheath, we neglect

• all forces except mg and Q0E0 in the vertical force balance
equation for equilibrium �Eq. �4��;

• the difference between the equilibrium vertical positions of
a single particle and a cluster, as well as the corresponding
difference in the particle charge and other parameters;

• all terms except ez+e0qz in the expression for the squared
“vertical” frequency B �Eq. �19��.

Thus, we find

e0 =
mg�2

Q0
2 � 24, ez + e0qz =

�v
2�3m

Q0
2 � 12. �34�

Solving equation A=B �where A is given by Eq. �18�,
B=ez+e0qz as mentioned above, 	h and 	hh are given by Eq.
�31��, we find that the resonance A=B occurs at ��0.77 and
��0.88 for N=2 and N=3, respectively. Thus, an oscillatory
instability of the coupled “breathing” and “vertical sloshing”
modes is possible only in the vicinity of these values of �.
This instability occurs if

�17p + 1.4
z��0.5�s,z + 1.4�qz − 
z�� � 0.1�N = 2� , �35�

3�10p + 
z��0.4�s,z + �qz − 
z�� � 0.1�N = 3� , �36�

according to the instability condition �29�, the expression for
the mode coupling coefficient �20� and Eq. �31�.

The measurements of Ref. 23 performed under the same
conditions give the parameters �s,z and qz to be positive and
�0.2. Concerning the parameter 
z, the horizontal confine-
ment potential in the experiment of Ref. 23 was induced by a
copper ring placed on the lower electrode, leading to the
parameter 
z being positive and �0.2. For p, we can expect
p�0.1 �see, e.g., Fig. 2 of Ref. 8�. Thus, the conditions
concerned approximately correspond to the instability
threshold and, therefore, the instability could be observed
under similar conditions or, probably, under a smaller neutral
pressure like in the experiment of Ref. 26 on 3-, 4-, and
7-particle clusters.

In Fig. 3, all mode frequencies are shown as functions of
the interparticle distance for the parameters concerned. The
 j

2 are calculated directly from the matrix M �Eq. �13��
without neglecting any terms. We can see that, when the
interpartcle distance is large enough, the frequency of the
“vertical sloshing” mode is much larger than that of the
“breathing” mode. With decreasing the interparticle distance
�i.e., with increasing the horizontal confinement�, the latter
frequency increases so that at some distance the resonance
takes place. An oscillatory instability is possible in the vicin-
ity of this distance. At some distance less than the mentioned
resonance distance, the “vertical shear” mode becomes un-
stable and the particles are pushed out of the plane due to
mutual repulsion.

III. CONCLUSIONS

To conclude, we have shown that, under realistic experi-
mental conditions, the non-Hamiltonian dynamics of dust
particles can give rise to an oscillatory instability of 2- and
3-particle clusters when the interparticle distance is close to
the resonance value at which the frequencies of the “breath-
ing” and “vertical sloshing” modes coincide. In addition to
the mentioned resonance condition, the negative sign of the
mode coupling coefficient and the smallness of the neutral
friction are required for this instability.
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An experiment can be suggested to observe this instabil-
ity, where the interparticle distance could be varied by
changing the horizontal confinement potential. The instabil-
ity could be identified as a significant increase of particle
oscillation amplitudes �i.e., excitation of nonlinear oscilla-
tions� at some value of the interparticle distance. This would
be a clear demonstration of the non-Hamiltonian dynamics
of dust particles in a plasma. In addition, this instability can
be used for plasma diagnostics in the sheath where the dust
particles are usually levitated in the laboratory experiments.
For example, in the case of the screened Coulomb interaction
in the horizontal plane, the measured resonance interparticle
distance Lr, the vertical and horizontal frequencies of a
single particle ��v /2� and �h /2�, respectively�, and the par-
ticle mass m give the particle charge Q and the screening
length �s by solving the following system of two equations:

N
�r

2 + 3�r + 3

�r
3 exp�− �r� =

�v
2�s

3m

Q2 , �37�

N
�r + 1

�r
3 exp�− �r� =

�h
2�s

3m

Q2 , �38�

where �r=Lr /�s, N is the number of particles in the cluster
considered �N=2 or N=3�.
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APPENDIX

In this Appendix we perform the analysis of all modes in
the general case of non-Hamiltonian dynamics.

1. N=2 cluster

For N=2, we have the following modes.

• The “horizontal rotation” mode: 2=0.
• The two coupled “breathing” and “vertical sloshing”

modes considered in the main text of the present paper.
• The “horizontal transverse sloshing” mode. The corre-

sponding motion simultaneously satisfies the following re-
lations:

l1r = l2r = 0, l1� = − l2�, l1z = l2z = 0. �A1�

The frequency is given by 2=−2	h /�.
• The two coupled “horizontal longitudinal sloshing” and

“vertical shear” modes. The corresponding motion simul-
taneously satisfies the following relations:

l1r = − l2r, l1� = l2� = 0, l1z = − l2z. �A2�

The frequencies are given by

�2 − Ã��2 − B̃� = C̃ , �A3�

where

Ã = − 2	h/� , �A4�

B̃ = ez + e0qz + 2	vv − 	vz − �
zqz + 
zz�	h�/4, �A5�

and the mode coupling coefficient C̃ is given by

C̃ = �− 2	vh + 	h
z + 	hz + qz	h�	h
z. �A6�

Equation �A3� has the same form as Eq. �17� and, hence,
we can directly apply the results of the stability analysis of

Eq. �17�. In particular, in the case of small �C̃� �weak cou-

pling between the modes� and finite Ã , B̃�0, an oscillatory

instability occurs near the resonance Ã= B̃ if

FIG. 3. Squared mode frequencies �in the absence of friction�  j
2 as func-

tions of the interparticle distance �; the case where the interaction potential
is the sum of the screened Coulomb potential and the potential of a dipole
field which is taken as a model of the wake field. The units are such that the
particle mass, the absolute value of the particle charge, and the screening
length are equal to unity. Calculations are performed for e0=24, ez+e0qz

=12, which corresponds to the experiment of Ivlev et al. �Ref. 19�. The left
figures correspond to the case where �i� the interaction forces are reciprocal
�i.e., no dipole field �p=0��, �ii� the particle charge and the screening length
are independent of the particle position �qz=�s,z=0�, �iii� the horizontal
confinement potential is independent of the height �
z=
zz=0�. The modes
are denoted in accordance with Fig. 2. The modes corresponding to the
horizontal rotation and whole cluster vertical and horizontal shifts are de-
noted by �r�, �v�, �h�, respectively. In the right figures, the role of the non-
reciprocity of interaction forces, charge/shielding variations, and the vertical
dependence of the horizontal confinement potential is shown for typical
values of the corresponding parameters �p=0.1, �s,z=qz=
z=0.2, the param-
eters 
zz and pz are practically unimportant and are taken to be 
zz=0, pz

= pqz�. The nonzero imaginary parts of the  j
2 are shown by the dashed

lines. The real parts corresponding to these nonzero imaginary parts are
shown by the thick lines. It can be seen that an oscillatory instability appears
near the interparticle distance corresponding to the crossing point of the
curves of the “breathing” �a�, �c� and “vertical sloshing” �v� modes. Note
that the “vertical shear” mode �b�,�e� is still stable at this interparticle
distance.
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C̃ � 0, �C̃� � �2Ã �A7�

�see Eq. �29��. For the parameter signs relevant to the labo-

ratory experiments �see Sec. II G 4�, the parameter C̃ is al-
ways positive and, hence, the instability condition �A7� can-
not be satisfied.

2. N=3 cluster

For N=3, we have the following modes.

• The “horizontal rotation” mode: 2=0.
• The two coupled “breathing” and “vertical sloshing”

modes considered in the main text of the present paper.
• The coupled “vertical shear,” “horizontal sloshing,” and

“kink” modes. Each mode is doubly degenerated and,
hence, the matter concerns six modes. The corresponding
equation for the frequencies can be obtained by consider-
ing particle motion which simultaneously satisfies the fol-
lowing relations:

l1r = − 2l2r = − 2l3r, l1� = 0, l2� = − l3�,

l1z = − 2l2z = − 2l3z. �A8�

�Of course, the subscripts 1, 2, 3 can be rearranged.� This
gives

�2 − Whsl���2 − Wkink��2 − Wvsh� − C1� = C2, �A9�

where

Whsl = − 3	h/� , �A10�

Wvsh = ez + e0qz + 3	vv + qz	v − 	vz − �
zqz + 
zz�	h�/2,

�A11�

Wkink = 3�	hh − 	h/��/2, �A12�

C1 =
3

2
�	vh

2 − 4	h
z	vh + 2	h
2
z

2 + �	hz + qz	h�	h
z� ,

�A13�

C2 =
9

4

z	h�	hh + 	h/���2	vh − 	hz − �
z + qz�	h� .

�A14�

In contrast to Eq. �17�, Eq. �A9� is cubic with respect to
2 and, hence, it is difficult to find the solutions analytically
and analyze them. However, the stability analysis can be
easily performed in the case of weak coupling of the modes.

We assume that �C1� and �C2� are small �i.e., the coupling
between the modes is weak� and that Whsl, Wvsh, and Wkink

are finite and positive. In this case, an instability is possible
only when two of three parameters Whsl, Wvsh, Wkink are suf-
ficiently close to each other �i.e., a resonance takes place�.
�Otherwise, Eq. �A9� has three real solutions 2 slightly dif-
ferent from Whsl, Wvsh, Wkink, respectively.� We consider all
three possible resonances separately.

Resonance Whsl=Wvsh: We consider the case where Whsl

and Wvsh are close to each other and significantly different

from Wkink. In this case, the first solution of Eq. �A9� is real
and approximately equal to Wkink. Since the two remaining
solutions are close to Whsl, we replace 2−Wkink by Whsl

−Wkink in Eq. �A9� to find these solutions. Thus, we obtain

�2 − Whsl��2 − Wvsh −
C1

Whsl − Wkink
	 =

C2

Whsl − Wkink
.

�A15�

Equation �A15� has the same form as Eq. �17� and, hence,
the instability condition has the same form as Eq. �29�:

Chsl,vsh � 0, �Chsl,vsh� � �2Whsl, �A16�

where Chsl,vsh=C2 / �Whsl−Wkink�. Using Eqs. �A10�, �A12�,
and �A14�, we obtain

Chsl,vsh =
3

2
�− 2	vh + 	h
z + 	hz + qz	h�	h
z. �A17�

For the parameter signs relevant to the laboratory experi-
ments �see Sec. II G 4�, the parameter Chsl,vsh is always posi-
tive and, hence, instability condition �A16� cannot be satis-
fied.

Resonance Wkink=Wvsh: We consider the case where
Wkink and Wvsh are close to each other and significantly dif-
ferent from Whsl. In this case, the first solution of Eq. �A9� is
real and approximately equal to Whsl. Since the two remain-
ing solutions are close to Wkink, we replace 2−Whsl by
Wkink−Whsl in Eq. �A9� to find these solutions. Thus, we
obtain

�2 − Wkink��2 − Wvsh� = C1 +
C2

Wkink − Whsl
. �A18�

Equation �A18� has the same form as Eq. �17� and, hence,
the instability condition has the same form as Eq. �29�:

Ckink,vsh � 0, �Ckink,vsh� � �2Wkink, �A19�

where Ckink,vsh=C1+C2 / �Wkink−Whsl�. Using Eqs. �A10� and
�A12�–�A14�, we obtain

Ckink,vsh =
3

2
�	vh − 	h
z�2. �A20�

Thus, Ckink,vsh is always positive and, hence, the instability
condition �A19� cannot be satisfied.

Resonance Whsl=Wkink: Using the same technique, we
obtain the instability condition

Chsl,kink � 0, �Chsl,kink� � �2Whsl, �A21�

where Chsl,kink=C2 / �Wkink−Wvsh�. Note that the equation
Whsl=Wkink is equivalent to 	hh�+	h=0 �see Eqs. �A10� and
�A12��. Hence, the resonance Whsl=Wkink is impossible as
long as 	hh�+	h�0 �i.e., the product of the horizontal re-
pulsion force and the interparticle distance decreases with the
interparticle distance�.
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