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1. Introduction 
 
The blood vessel development, comprising vasculogenesis and angiogenesis, 

establishes the vascular network during embryogenesis for supporting the outgrowing 

tissues with nutrients and oxygen. The same is the case in the adult organism. An 

intact vascular network is therefore important for keeping a healthy state, and its 

genetic pathways need to be tightly regulated. This is especially important for the two 

cell types, mainly composing the vascular wall, the endothelial cells and the vascular 

smooth muscle cells (VSMCs), the latter one being important for the stability of the 

blood vessel and regulating the blood pressure. As proliferation of VSMCs, e.g. in 

response to the growth factor PDGF-BB (Platelet derived growth factor-BB) or as 

consequence of high LDL (Low density lipoprotein) concentrations in the blood, is 

associated with severe vascular diseases, like atherosclerosis, the transcriptional 

regulations of these processes become more and more the focus for the 

development of therapeutical interventions. Therefore, transcription factors which 

respond to PDGF-BB and LDL in VSMCs, like it is known to be the case for Egr-1 

and Klf4, are preferred candidates for further examinations. During the progression of 

this thesis, it appeared that the transcription factor Sox17, so far known as 

endodermal marker, is expressed in VSMCs in human and mice, and is moreover 

inducible by PDGF-BB and LDL. By this, Sox17 is a new candidate for having a 

regulatory transcriptional function in this cell context. 

 

1.1. The vascular network 
 
1.1.1. The structure of blood vessels 
 

In humans and other organisms, one can mainly recognize three different types of 

blood vessels: 1) arteries, which transport the high oxygen concentrated blood to the 

periphery; 2) veins, which are responsible for the return of the blood to the lung and 

the heart; and, 3) the capillaries, which are the smallest vessels, connecting arteries 

and veins. As the capillaries consist of one layer of endothelial cells, they are in direct 

contact with the surrounding tissue and are able to promote the exchange of 

nutrients, oxygen and carbon dioxide. All types of vessels have one layer of 

endothelial cells (Intima). This layer is, in the case of the bigger vessels, the arteries 

and veins, surrounded by multiple layers of smooth muscle cells (Media). In form of 
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fiber and collagen, the adventitia connects as third layer the blood vessel with the 

surrounding tissue.  

 

1.1.2. Vasculogenesis 

 

One of the earliest events arising in organogenesis is the development of the 

vascular system. For the support of the developing organs during embryogenesis, 

oxygen and nutrients are transported by de novo formed blood vessels. The process 

of forming primitive vascular networks from endothelial progenitor cells (angioblasts) 

is called vasculogenesis (Risau et al., 1995). Already in this state, the determination 

of the vessel, becoming a vein or an artery is made, indicating that this is genetically 

determined. Later, this first primitive vascular network differentiates by enforcement 

of some vessels on the one hand, and degradation of some other vessels on the 

other hand ("branching and pruning"). Vasculogenesis mainly occurs in the embryo, 

but also in the adult organism, as one often finds in case of tumor-induced 

angiogenesis or ischemic injury a combination of vasculogenesis (postnatal 

vasculogenesis) and angiogenesis (neoangiogenesis). In this case, endothelial 

progenitor cells are recruited from the bone marrow and differentiate in the tumor 

tissue into mature endothelial cells (Asahara et al., 1997; Folkman et al., 1995; 

Vajkoczy et al., 2003). 

 

1.1.3. Angiogenesis 

 

This process describes the outgrowth of new vessels from preexisting ones, a 

process comprising basement degradation, migration and proliferation of endothelial 

cells, which form a vascular tube (Risau et al., 1997). Afterwards, pericytes and 

vascular smooth muscle cells are recruited. These cells settle in multiple layers 

surrounding the endothelial cell layer. The communication between endothelial cells 

and vascular smooth muscle cells/pericytes is critical for the formation of a functional 

vasculature (Hirschi et al., 1996; Hungerford et al., 1999) as disruptions of the 

interaction of both cell types is associated with severe and often lethal vascular 

defects (Armulik et al., 2005). Angiogenesis is an invasive cellular process, which 

requires the activity of growth factors (e.g. VEGF, FGF), proteolytic enzymes, 

extracellular matrix proteins (e.g. MMP-9) and adhesion receptors (e.g. ICAM-1, 
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VCAM-1, Pecam-1). These processes have to be tightly regulated. An angiogenic 

stimulus is followed by the enlargement of the vessel and a decrease of cell-cell 

contacts. Proteases of the surrounding tissue degrade parts of the stroma as well as 

of the basement membrane. This enables the activated endothelial cells to proliferate 

and migrate to form a tube structure. The same is true for the vascular smooth 

muscle cells or the pericytes, which also proliferate and migrate in response to 

different stimuli (e.g., PDGF-BB = platelet derived growth factor) and complete the 

formation of the new vessels (Majak et al., 1990). Both cell types still have to 

differentiate afterwards. Physiological angiogenesis occurs in the adult organism only 

during the reproductive cycle, in the placenta during pregnancy and during injury 

repair (Goede et al., 1998). In contrast, pathological angiogenesis occurs during 

tumor growth and the forming of metastases, proliferative retinopathies, chronic 

inflammatory diseases like psoriasis and after ischemic injury (Folkman et al., 1995; 

Garner et al., Vasular diseases in Pathobiology of ocular disease, 2nd edn.; Marcel 

Dekker, New York 1994).  

 

One of the signaling pathways, implicated in vasculogenesis and angiogenesis is the 

wnt signaling pathway (Goodwin et al., 2002). The wnt antagonists Wnt, and FRP 

(Frizzled Related Protein) and the receptor Fz (Frizzled) are expressed by endothelial 

and vascular smooth muscle cells (Wright et al., 1999; Monkley et al., 1996; Ishikawa 

et al., 2001). Activation of wnt signaling is associated with angiogenesis and vascular 

remodeling processes, whereas an inhibition of the wnt pathway leads to vessel 

destabilisation. Many targets of the wnt pathway are known to play a role in 

angiogenesis (e.g. c-myc, cyclinD1, VEGF, MMP-7, cx43, fibronectin) (Van der 

Heyden et al., 1998; Ai et al., 2000; Wang et al., 2002). β-catenin, a key player in wnt 

signaling, is stabilized in neovascular endothelium and in neointimal smooth muscle 

cells in a time-dependent fashion, thereby inducing the expression of wnt-responsive 

genes (Blankesteijn et al., 2000; Wang et al., 2002). 

 

1.2. Angiogenic Factors 
 
1.2.1. Vascular Endothelial Growth Factor (VEGF) and its biological functions 
 

For angiogenesis to take place there has to be an angiogenic signal. So far, many 

different molecules have been shown to induce angiogenesis, like vascular 
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endothelial growth factor (VEGF), acidic fibroblast growth factor (FGF), basic FGF, 

hepatocyte growth factor (HGF), transforming growth factor (TGF) α and β, tumor 

necrosis factor α (TNF-α), interleukin (IL)-8, angiogenin and the angiopoietins 

(Folkmann et al., 1992; Yancopoulos et al., 2000; Ferrara et al., 1997).  

 

Hypoxia is the central stimulus for induction of angiogenesis, as it induces the 

transcription of HIF-1α (Hypoxia induced factor-1 alpha) and thereby the expression 

of VEGF (Semenza et al., 2002; Tsuzuki et al., 2000; Liu et al., 1995; Forsythe et al., 

1996; Shweiki et al., 1992). The latter is secreted as homodimer and provides 

structural similarity to platelet derived growth factor (PDGF) (Keck et al., 1989). It is 

responsible for the induction of vasculogenesis as well as of angiogenesis (Ferrara et 

al., 1989; Leung et al., 1989; Xiu et al., 1995). A disrupture of a single allele of VEGF 

causes abnormal blood vessel formation and embryonic lethality (Carmeliet et al., 

1996; Ferrara et al., 1996). In contrast to other growth factors, like the fibroblast 

growth factors, VEGF is an endothelial cell specific mitogen (Leung et al., 1989; 

Plouet et al., 1989). The VEGF factors comprise five members, named VEGF-A to 

VEGF-E, of which VEGF-A is the best characterized protein, being able to activate 

endothelial cells, whereas VEGF-C and VEGF-D regulate lymphatic angiogenesis 

(Karkkainen et al., 2002; Leung et al., 1989; Plouet et al., 1989; Nagy et al., 2002). 

To activate endothelial cells, VEGF-A has to bind to its specific receptors, which 

belong to the tyrosine kinase family (Neufeld et al., 1999; Terman et al., 1992). Two 

VEGF receptors exist, VEGFR-1 (flt-1) and VEGFR-2 (flk-1) (Shibuya et al., 1990; 

Terman et al., 1991; Gerber et al., 1997; Waltenberger et al., 1994; Maru et al., 1998; 

Fong et al., 1995). The importance of Flk-1 becomes clear, as mice deficient for this 

receptor show a failure of blood island development and vasculogenesis (Shalaby et 

al., 1995). The receptors are only able to activate signal transduction if they build 

homodimers upon binding of VEGF. Thereby, kinases of each receptor 

phosphorylate tyrosine residues of the interacting receptor. This is the initiation of the 

signaling cascade in the endothelial cells (Matsumoto et al., 2001). It follows a series 

of different phosphorylations, involving the protein kinase C, MAPK and ERK-1/2 

which leads to expression of MMP (matrix metalloproteinase), eNOS (endothelial 

specific NO-synthetase) and cyclin D1. Another pathway leads to activation of 

vinculin and by this to migration of endothelial cells. An important function of VEGF is 

the increase of the vessel permeability (Dvorak et al., 1995). Thereby, blood plasma 
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proteins can extravasade and interact with the endothelial and vascular smooth 

muscle cells. Moreover, VEGF is known to be the key mediator of survival of 

endothelial cells, preventing serum-starvation induced apoptosis via the 

phophatidylinositol (PI)-3 kinase -Akt pathway and inducing the expression of the 

anti-apoptotic proteins Bcl-2 and A1 in endothelial cells (Gerber et al., 1998; 

Benjamin et al., 1999; Yuan et al., 1996). 

 

1.2.2. The Fibroblast Growth Factors (FGFs) 

 

Another group of angiogenic factors includes the fibroblast growth factors (FGFs). 

They are a heparin-binding protein group of 23 members, with differentiation-

promoting, growth and antiapoptotic properties (Basilico et al., 1992). As FGFs show 

mitogenic activity on different cell types, they are, in contrast to VEGF, not 

endothelial cell specific since most cell types express FGF receptors. The most 

potent angiogenic stimuli in this group are FGF1 and FGF2. Uncontrolled expression 

of FGF2 is associated with neovascularization, tumor growth, and progression of 

atherosclerotic plaque development, as T-lymphocytes, infiltrating in the diseased 

tissues, release FGF2 (Peoples et al., 1995). Moreover for FGF2 an autocrine or 

paracrine role in T-lymphocytes has been proposed, as these cells express FGF2 

and provide in parallel heparin-binding FGF-like bioactivity (Peoples et al., 1995; 

Blotnick et al., 1994). 

 

1.2.3. The angiopoietins and their receptor Tie2 

 

The angiopoietin family consists of four members, of which angiopoietin1 (Ang1) and 

angiopoietin2 (Ang2) have a very important angiogenic function (Suri et al., 1996; 

Tian et al., 2002). About Ang3 and Ang4 not much is known. Both, Ang1 and Ang2, 

bind to the Tie2 receptor, a transmembrane tyrosine kinase receptor, which is 

expressed early in the embryo. Tie2 is endothelial cell specific and is only activated, 

when the angiopoietins bind to it as oligomers. Disruptions in the Tie2 receptor or its 

agonist ligand Ang1, are associated with severe vascular malformations, caused by a 

reduced or lack of vascular smooth muscle cell (VSMC) recruitment whereas an 

activating mutation in the tie2 gene results in venous malformations, characterized by 

abnormal SMCs on the vascular wall (Vikkula et al., 1996; Sato et al., 1995; Suri et 
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al., 1996). Therefore the Tie2 signaling pathway is considered to be critical for 

endothelial cell - smooth muscle cell communication.  

 

Ang1 and Ang2 have been reported to behave as competitive antagonists, as Ang1 

stabilizes the vessel integrity after binding to Tie2, whereas Ang2 leads to 

destabilization, preventing the binding of Ang1 to Tie2, and thereby inhibiting the 

Ang1 dependent signaling cascades (Maisonpierre et al., 1997). Moreover Ang2 

supports the disconnection of endothelial and vascular smooth muscle cells and the 

degradation of the extracellular matrix. By this, the migration of endothelial cells is 

initiated. Therefore, Ang1 and Ang2 show a different expression pattern, the latter 

primarily expressed in the growing vessels, whereas Ang1 is mainly expressed in 

matured vessels (Maisonpierre et al., 1997). 

 

1.2.4. The Hepatocyte Growth Factor (HGF) 

 

Another factor, providing angiogenic stimulatory properties is the mesenchymal-

derived hepatocyte growth factor (HGF). Being expressed in different cell types, 

among them endothelial and vascular smooth muscle cells, this factor is implied in 

different cellular responses, comprising cytoskeleton reorganization, growth, and 

motility (Wolf et al., 1991; Torok et al., 1996). It has been reported, that HGF induces 

SMC migration via binding to its known receptor c-met, activating an ERK1/2 

signaling cascade (Ma et al., 2003; Taher et al., 2002; Aoyagi et al., 1999). By 

Kobayashi et al., (2006) it has been demonstrated, that Ang1 induces HGF 

expression in endothelial cells (ECs), which leads to the recruitment of SMCs 

towards the ECs. This effect was shown to be abrogated by Ang2. This finding 

demonstrates a new regulatory mechanism of SMC recruitment, involving Ang1 and 

Ang2, as well as HGF. 

 

1.2.5. The Platelet Derived Growth Factor (PDGF) 

 

The group of Platelet Derived Growth Factors (PDGFs) is composed of A, B, C, and 

D chains, occurring in different constellations as homo- or hetero-dimers of two 

different chains. These dimers specifically interact with homo- or hetero-dimers of 

tyrosine kinase possessing receptors. Thereby, the PDGFs provide angiogenic 

effects, are implicated in embryogenesis, platelet activation and in pathophysiological 
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processes such as atherosclerosis, restenosis, fibrosis, and tumorigenesis (Heldin et 

al., 1999; Cao et al., 2002; Ding et al., 2000; Fang et al., 2004). PDGF-A, B, as well 

as PDGF-C have been found to be expressed in vascular SMCs of the intact arterial 

wall, providing mitogenic effects on the SMCs, significantly effecting their proliferation 

and migration (Dijkmans et al., 2002; Uutela et al., 2001; Heldin and Westermark, 

1999). Therefore, an inactivation of PDGF-B in transgenic mice results in vascular 

defects with loss of pericytes and VSMCs (Lindahl et al., 1997). Important regulators 

of the transcription, at sites of stress and mechanical injury, of PDGF-A and PDGF-B 

chain are Egr-1 (Early growth response factor-1) and Sp1 (Khachigian et al., 1996; 

Khachigian et al., 1997). 

 

1.2.6. The ephrin ligands and their receptors 

 

Another group of important factors involved in angiogenesis are members of the 

family of ephrin ligands and ephrin receptors. They are found in many different cell 

types and are not restricted to endothelium. Both the ephrin ligand and the ephrin 

receptor are membrane-bound. Depending on how the ephrin ligands are anchored 

in the plasma membrane, they are divided into type A and type B. The same is the 

case for the receptors, which are also devided into EphA and EphB. Corresponding 

ligand and receptor preferentially bind to each other. The most important functions of 

the ligands and the receptors of the Ephrin family during angiogenesis are the 

mediation of cell-adhesion to extracellular matrix, the cell migration and juxtacrine 

cell-cell contacts (Cheng et al., 2002a). Ephrins found in the vascular cells are ephrin 

A1, which plays a role in the tumor necrosis factor α induced inflammatory 

angiogenesis, and ephrin B1 that promotes endothelial capillary-like assembly and 

attachment in vivo (Pandey et al., 1995; Stein et al., 1998). Moreover, the ephrin 

receptors EphB3 and EphB4 and Ephrin B2 are expressed in the vascular cell 

context. The fact, that an abrogation of the EphA receptor results in a specific 

inhibition of VEGF-induced angiogenesis, underlines the importance of this protein 

family in this vascular context (Cheng et al., 2002b). Another indication for the 

implication in pathological angiogenesis is the detection of high expression levels of 

ephrin A1 and EphA2 in tumor angiogenesis (Ogawa et al., 2000). Similar effects 

have been reported for ephrin B2 and EphB4 (Martiny-Baron et al., 2001).  
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1.3. Vascular processes in embryonic development 
 
1.3.1. Vascular development along the mammalian body axis 
 

By de novo aggregation of angioblasts along the anterior/posterior body axis, the 

dorsal aorta and cardinal vein occur in response to VEGF, secreted by the 

endoderm. In response to sonic hedgehog (Shh), produced by the notochord, the 

somites produce VEGF and thereby support angiogenic processes, building the 

intersomitic vessels (Vokes et al., 2004). The notochord secrets moreover bone 

morphogenetic protein (BMP) inhibitors, noggin and chordin, and thereby determines 

the patterning of the axial vasculature (Reese et al., 2004; Nimmagadda et al., 2005). 

By this, an avascular region around the notochord is built. Later on, the secretion of 

VEGF from the neural tube results in the recruitment of somite-derived angioblasts. 

These cells form the perineural vascular plexus, which encases the neural tube at 

midgestation. Further on, sonic hedgehog signaling mediates the angiogenic 

sprouting within the neural tube. 

 

1.3.2. Vascular processes in the developing liver and prancreas  

 

The liver derives from the ventral foregut endoderm. At this early time point, it 

appears as a multilayered epithelium, surrounded by endothelial cells (ECs). The 

ECs invade into this presumptive liver bud and aggregate into sinusoids, while 

hepatoblasts begin to migrate from the endoderm into the underlying septum 

transversum. These liver sinusoidal endothelial cells (LSEC) respond to VEGF and 

are thereby able to secrete hepatic mitogens, hepatic growth factor (HGF) and 

interleukin-6 (IL6) (Le Couter et al, 2003). In consequence, hepatic growth is 

promoted and hepatocytes are protected from toxic insult. Thereby endothelial cells 

are essential for the development of the liver in the embryonic state and have the 

capacity, after stimulation, to provide trophic and nutritional support to a damaged 

adult liver (Matsumoto et al., 2001). 

 

In case of the developing pancreas, which forms in close association with the dorsal 

aorta and vitelline veins, endothelial cells also associate with pancreatic endocrine 

islet cells (e.g. insulin producing cells). These endocrinic cells can directly secrete 

hormones in the blood. On the other hand, ECs influence the differentiation of 
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pancreatic cells and support thereby the stabilization of a functional pancreas.  In this 

respect, the dorsal aorta has been implicated as being necessary for the insulin 

production in endoderm tissue (Lammert et al., 2003; Yoshitomi et al., 2004). 

 

1.3.3. Vascular processes in the developing kidney 

 

Podocytes are specialized cells that build the support structures of the functional 

glomerulus. They express high levels of VEGF and attract thereby endothelial cells 

and promote migration and maturation of the ECs. On the other hand, ECs promote 

the maturation of the podocytes and mesangial-cells and thereby the formation of a 

functional glomerulus. Throughout life, the functioning of the glomerulus is highly 

dependent on endothelial function controlled by precise VEGF levels (Eremina et al., 

2003; Mattot et al., 2002).  

 

1.3.4. Vascular processes in placental development 

 

For the interchange of oxygen, nutrients and growth factors between the maternal 

and fetal side, the establishment of a vascular system is necessary. From the 

maternal side, spiral arteries enter the placenta, where they underlie an invasion 

process of fetal trophoblasts. Moreover, fusion of the allantois to the chorion from the 

fetal side is necessary, and a branching invasion of the fetal capillaries into the 

chorionic trophoblast. To initiate these vascular processes, the placenta secrets in 

parallel with the standard angiogenic factors also some placenta specific ones, like 

placental lactogen-related hormones, proliferin, proliferin-related protein and 

placental-like growth factor (PlGF) which can exert angiogenic and anti-angiogenic 

actions on the placental vasculature (Antiero et al., 2003; Jackson et al., 1994). PlGF 

is a member of the VEGF family and is strongly expressed in the placenta where it 

enhances, by binding to Flt1, the VEGF signaling through Flk1 (Maglione et al., 1991; 

Park et al., 1994). 

 

1.4. Pathological Angiogenesis 

 

The vascular network has to be tightly regulated to keep the blood vessels intact. An 

imbalance of proliferation and differentiation of vascular cells, induced by pro- and 
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anti-angiogenic factors, results in vascular malformations and in vascular disease 

(pathological angiogenesis). So far, disorders in angiogenesis have been implicated 

in more than 70 diseases. Except of the cycling ovary and the placenta during 

pregnancy, angiogenesis normally does not occur in the adult organism, where most 

of the blood vessels remain quiescent. Nevertheless, endothelial cells and vascular 

smooth muscle cells retain their ability of fast phenotypic switching and rapid 

proliferation in response to environmental stimuli like hypoxia or growth factors 

(Carmeliet et al., 2003). During this process, angiogenesis is activated in repair 

processes. In case of a disruption of the balance of stimulatory and inhibitory 

signaling, thereby an angiogenic switch is caused, which mostly results in malignant, 

ocular, and inflammatory disorders. If the switch causes endothelial cell dysfunction, 

diseases like ischaemic heart disease or preeclampsia are the consequence (Soman 

et al., 2006; Semenza, 2003). Vessels are malformed or regressed and 

revascularization and regeneration is prevented. Moreover angiogenic processes 

play a decisive role in tumor progression and metastasis, supplying the growing 

tumor with new vessels, which transport O2 and nutrients to the malignant tissues 

(tumor angiogenesis) (Kerbel, 2000). Because of this fact, the vascular cells 

constitute an important target for pharmaceutical interventions in tumor growth. An 

example for such an intervention is the recently used anti-VEGF antibody for 

preventing pathological angiogenesis (GENETECH). An inhibition of VEGF-induced 

angiogenesis has been described to suppress tumor growth in vivo (Kim et al., 1993).  

 

The vascular disease with the highest mortality rate in the western world is 

atherosclerosis. The development of this disease is initiated by a disruption of the 

integrity of the intima, in most cases caused by high LDL (low density lipoprotein) 

concentrations in the blood, but also by a high blood pressure lasting for longer time 

periods, or a combination of both factors. A high LDL concentration is in some cases 

genetically predicted, but in most cases a consequence of high fat diet, smoking and 

lack of exercise. As a result of the disruption of the endothelium, it leads to an 

inflammatory reaction. Leukocytes, like macrophages and neutrophils adhere to the 

intima and extravasade in the subendothelial space. The leukocytes secrete 

cytokines, which stimulate the disruption of cell-cell contacts in the vascular cell 

layers. Furthermore, proliferation of the vascular smooth muscle cells is induced, e.g. 

by PDGF, causing a phenotypic switch (Heldin and Westermark, 1999). The media 
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gets thicker and starts to expand in the lumen of the vessel. Thereby, big plaques, 

mainly consisting of vascular smooth muscle cells and activated macrophages, arise 

and lead, in the worst case scenario, to a complete closure of the blood vessel 

causing severe ischemic injury to tissues downstream of the occluded vessel. During 

the progression of the atherosclerotic plaques, some areas calcify. It was shown that 

some vascular smooth muscle cells undergo transdifferentiation into chondrocytes 

under these pathological conditions (Bobryshev, 2005; Abedin et al., 2004). Thereby 

the vascular SMCs loose their myofilaments and acquire the ability to produce type II 

collagen. An important transcription factor, involved and strongly upregulated in this 

calcification process, is Sox9, which has been also implicated in chondrocyte 

development during embryogenesis (Wright et al., 1995; Lefebvre et al., 1998). So as 

one can see from the example of atherosclerosis, vascular smooth muscle cells have 

a high potential for being targeted for therapeutic intervention.   

 

1.5. Vascular cells 

 

Different cell types contribute to the composition of the vascular blood vessel wall. 

These are on the one hand the endothelial progenitor cells, which derive from the 

bone marrow and differentiate at the sites of the outgrowing vessels into mature 

endothelial cells, and on the other hand the vascular smooth muscle cells, which 

surround the endothelial cells, thereby stabilizing the blood vessel. The 

communication of both, the endothelial and the smooth muscle cells has to be tightly 

regulated to provide an intact vascular network. 

 

1.5.1. Endothelial progenitor cells 

 

The endothelial progenitor cells originate in many areas of the embryo, including the 

blood islands in the yolk sac and differentiate in the periphery of these islands. 

During vascularization of the embryo, embryonic endothelial progenitor cells, form 

primitive vascular tubes and start to differentiate into mature endothelial cells. In the 

adult, endothelial progenitor cells, deriving from the bone marrow, circulate in the 

blood and are recruited during neovascularization, which can take part in the case of 

tissue ischemia, vascular trauma, and tumor growth (Asahara et al., 1997; Folkman 

et al., 1995; Vajkoczy et al., 2003; Takahashi et al., 1999). Markers of the endothelial 
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progenitor cells are Tie2, c-Kit, Sca-1, CD34 and low Flk1 (Yamaguchi et al., 1993). 

As adult EPCs are difficult to isolate and maintain for further examinations, one might 

use mouse embryonic EPCs as a model system (Hatzopoulos et al., 1998). 

 

1.5.2. Mature endothelial cells 

 

After tube formation, the endothelial progenitor cells start differentiating into mature 

endothelial cells, marked by the expression of CD31 (Pecam-1), VEGFR-2 (Flk-1), 

VE-cadherin, Tie-1 and Tie2 (Sato et al., 1995). Pecam-1 is an adhesion molecule, 

which belongs to the immunoglobulin gene superfamily and is mainly expressed by 

endothelial cells (Newman et al., 1990; Simmons et al., 1990). VE (Vascular 

Endothelial)-Cadherin is an important endothelial specific cell-junction protein, whose 

targeted null-mutations result in abrogation of vascular structure formation (Vittet et 

al., 1997). After differentiation and tube formation, the mature endothelium stays in a 

quiescent state. Nevertheless, endothelial cells have the ability to quickly respond to 

environmental changes (angiogenic stimuli) by changing their phenotype from a 

quiescent cell to a proliferating and migrating one (Carmeliet et al., 2003). As already 

mentioned before, ECs communicate directly with adjacent cells or tissues, releasing 

different cytokines and growth factors, as for example PIGF during vascular 

processes in placental development. But not only the ECs signal, but also the 

surrounding tissue itself signals back to the ECs, resulting in a reciprocal signaling 

cascade. Thereby, the ECs in different tissues differ, concerning their morphological 

appearance, but also their expression pattern. The EC phenotype is divided in 

continuous, fenestrated or discontinuous (Majno et al., 1977). ECs, lining the 

microvessels are often fenestrated, as well as the ones in the liver, which are 

additionally often also discontinous. An example for a continuous endothelium is the 

endothelial layer of the capillaries in skeletal muscle, heart, lung and brain. Moreover, 

one can also find a functional heterogeneity of the ECs, playing a role in vasodilation, 

vasoconstriction, blood coagulation and anticoagulation, acute inflammation, wound 

healing, leukocyte homing and diapedesis. Other functions comprise fibrinolysis, 

taking part in acute inflammation, atherogenesis, antigen presentation and 

catabolism of lipoproteins (Gerritsen et al., 1987). Examples for different expression 

patterns between endothelial cells include the transcriptional differences between 

arteries and veins. It was found, that Ephrin B2 was expressed in arteries, whereas 
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Ephrin B4 was much higher expressed in veins than in arteries (Wang et al., 1998). 

Moreover, an artery specific expression of Notch and Gridlock genes has been 

shown in zebrafish embryos (Lawson et al., 2001; Zhong et al., 2000). 

 

1.5.3. Vascular Smooth Muscle Cells (VSMCs) 

 

The vascular smooth muscle cells are surrounding the endothelial cell layer in 

multiple sheets in case of the big vessels and are thereby functioning as regulators of 

vessel stability and blood pressure. During angiogenic processes, we find on the one 

hand the endothelial cell sprouting process, leading to a vascular tube formation, and 

on the other hand the recruitment of perivascular cells. These perivascular cells 

comprise the smooth muscle cells (SMCs), in case of large vessels, and the pericytes 

at sites of microvessels (vascular maturation). These processes need a tightly 

regulated communication between endothelial cells and perivascular cells. 

Disruptions in these interactions mostly result in severe vascular defects. The 

Angiopoietin/Tie2 signaling is known to play a key role in the vascular maturation 

process (Morisada et al., 2006). This was shown by generating mice with defects in 

Tie2 or its ligand angiopoietin 1. These mice die during embryogenesis because of a 

reduced or complete lack of recruitment of vascular SMCs (Sato et al., 1995; Suri et 

al., 1996). As already mentioned above, Ang1 is able to recruit SMCs and 

participates in vascular maturation having a stabilizing function, whereas binding of 

Ang2 to tie2 causes destabilization of the EC - SMC interaction and initiates new 

vessel sprouting.  

 

Factors, that are known to regulate migration of vascular smooth muscle cells, are 

platelet-derived growth factor (PDGF), basis fibroblast growth factor-2 (bFGF), and 

transforming growth factor (TGF) (Majack et al., 1990). PDGF-BB has been 

demonstrated to induce expression of bFGF in vascular smooth muscle cells via the 

ERK 1/2 cascade (Pinutcci and Mignatti, 2005). Moreover, hepatocyte growth factor 

(HGF) has been shown to induce migration of vascular SMCs, being induced by 

Ang1 (Kobayashi et al., 2006). Ang2 blocks Ang1 induced HGF production and 

thereby vascular SMC recruitment.  
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Factors, involved in the differentiation of SMCs are msx2 and necdin (Brunelli et al., 

2005). Moreover the serum response factor (SRF) plays a critical role in smooth 

myogenesis, as mice deficient for SRF show a strong reduction of differentiated 

SMCs. TGF-β1 has also been implicated in the differentiation of vascular SMCs, 

inducing the expression of a number of smooth muscle differentiation markers, like 

smooth muscle myosing heavy chain (SMMHC), smooth muscle alpha-actin and 

smoothelin (Hautmann et al., 1999; Chambers et al., 2003). The latter is a 

cytoskeletal protein whose distribution is restricted to smooth muscle cells (Van der 

Loop et al., 1996; Krämer et al., 2000). The expression of smoothelin differs from 

vessel to vessel (Johansson et al., 1999). Arteries, being smaller than 2mm, show a 

strong expression of smoothelin, whereas the expression decreases with increasing 

vessel size. Another factor, being important for SMC differentiation is myocardin, as 

mice deficient for this gene, show a strong reduction of SM cells (Du et al., 2003). 

 

Vascular smooth muscle cells are known to occur in two different states: on the one 

hand the proliferating (synthetic) cell and on the other hand the differentiated 

(contractile) one. They are able to change between these two phenotypes in 

response to changes in local environment (Owens et al., 1996; Owens et al., 2004). 

A factor known to participate in this phenotypic switching is Notch. It has been 

demonstrated that Notch decreases SMC differentiation marker expression in a CBF-

1/RBP-Jκ-dependent manner in human arterial SMCs (Morrow et al., 2005). Such 

regulations are important, e.g. after vascular injury, when the SMCs have to change 

their phenotype, from the differentiated and contractile state to the proliferating one, 

to support the growth and repair of the injured vessels (Bär et al., 2002). 

 

To sum up the most important features, vascular SMCs play a decisive role in the 

stability of a blood vessel and the tight regulation of blood pressure. Therefore 

arteries, which sustain high blood pressure, show multiple layers of SMCs, whereas 

veins, which have a lower blood pressure, have fewer layers of SMCs. During 

angiogenesis, the SMCs assume a proliferating state with high migratory abilities 

(synthetic state). Afterwards, the SMCs change their appearance under the influence 

of the environment and acquire the differentiated state, characterized by the 

expression of vascular SMC markers, like smoothelin, alpha smooth muscle actin 

(alpha-SMA), smooth muscle myosin heavy chain (SMMHC), Calponin, and 
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SM22alpha (Solway et al., 1995; Zhang et al., 2001; Van der Loop et al., 1996; Van 

der Loop et al., 1997). This is the case in adult vessels, when the SMCs primarily 

occur in the quiescent form (contractile function). The SMCs change this appearance 

in case of vascular injury or vascular diseases like atherosclerosis (Bär et al., 2002; 

Yutani et al., 1993; Ross et al., 1999; Schwartz et al., 1998). Moreover, this 

phenotypic switch is associated with the pathogenesis of restenosis following 

coronary angioplasty and/or stent implantation, pulmonary hypertension, and asthma 

(James et al., 1989; Newby et al., 1999) One factor regulating this phenotypic 

modulation from differentiated to proliferating cells is Notch (Morrow et al., 2005). 

 

Moreover, one can divide SMCs to tonic or phasic phenotypes. The vascular SMCs 

belong to the tonic cell type, which means that these cells have a slow rate of force 

activation and relaxation, lower maximum speeds of shortening and good force 

maintenance. The phasic SMCs are mainly found in the gastrointestinal tract and 

show a high rate of force activation and relaxation, high maximum speeds of 

shortening and poor force maintenance. 

 

Smooth muscle cell are known to arise from different precursor lineages during 

embryogenesis. Coronary smooth muscle cells for example are partly derived from 

proepicardial cells (Landerholm et al., 1999; Mikawa et al., 1996). In contrast to this, 

smooth muscle cells from the thoracic aorta and of the aortic arch are mainly derived 

from migrating neural crest cells (Itu et al., 1993; Topouzis et al., 1996; Bergwerff et 

al., 1998). In the case of the peripheral vasculature, smooth muscle cells are 

recruited from the surrounding mesenchyme by endothelial cells (Roberts et al., 

2000). Because of these different origins, it is not surprising, that multiple factors 

regulate the differentiation of the vascular SMC subtypes. One group of proteins, 

implicated in these differentiation processes is the Hox protein group. Hoxa10 for 

example has been shown to specifically activate the expression of telokin, which is 

exclusively expressed in SMCs of the uterus and the colon (El-Mounayri et al., 2005). 

Opposite to this, Hoxb8 represses the activity of many SMC specific genes (El-

Mounayri et al., 2005). 
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1.6. The Sox (Sry box) proteins 

 

As the transcriptional regulation of proliferation and differentiation of vascular cells 

plays a crucial role in the maintenance of the vascular network, transcription factors 

involved in these processes become more and more the focus of strategies against 

vascular disease. The Sox protein group comprises some proteins which are known 

to play a role in vasculogenesis and angiogenesis, and becomes therefore interesting 

for further examinations. The sox proteins build a group of transcription factors that 

have been implicated in many different developmental and proliferative processes in 

different tissues (Wegner et al., 1999; Pevny et al., 1997; Bowles et al., 2000). They 

are expressed during embryogenesis as well as in adulthood. The Sox proteins are 

highly conserved during evolution and expressed from Drosophila to man (Soullier et 

al., 1999). The main feature of this group is the DNA binding domain, the so-called 

High mobility group domain (HMG), which is highly conserved between the different 

members (Coriat et al., 1993; Denny et al., 1992). The HMG box is a 79 aminoacid 

domain, which binds to the minor groove of the DNA and bends it in a sequence-

specific manner (Grosschedl et al., 1994). The name of the Sox protein group derives 

from the HMG-box containing sex-determining gene sry (SOX = sry box), which is 

part of this protein family (Harley et al., 1994). This gene is located on the Y 

chromosome and is responsible for initiating testis development during mammalian 

embryogenesis (Sinclair et al., 1990; Gubbay et al., 1990). SRY shares around 50% 

homology within its HMG domain with the SOX proteins. Besides binding to the DNA, 

the HMG domain provides different features. 

 

These are the interactions with other transcription factors, like Importin, for the 

transport into the nucleus, and with adapter proteins, for the formation of multiprotein 

complexes. Depending on the homology in their HMG domain, the Soxes are divided 

into seven subgroups, in which the members of each subgroup share more than 80% 

homology. More than 30 members are known so far, building groups A-G (Bowles et 

al., 2000).  
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Figure 1.1 Protein-Interactions of the Sox proteins. The Sox proteins are able to bind to other 
transcription factors, importin (via the NLS sequence in the HMG domain), and adapter proteins for 
building multi-protein complexes.  
 

 

The Sox proteins have been implicated in many different developmental processes. 

Sox9, for example, is involved in sex-determination and chondrogenesis, whereas 

Sox1 is a crucial factor in lens development (Wright et al., 1995; Kent et al., 1996; 

Morais da Silva et al., 1996). Another example is Sox4, which is taking part in cardiac 

development and lymphocyte differentiation (Geijsen et al., 2001; van de Wetering et 

al., 1993). An important feature of the Sox protein group is the fact that they have to 

interact with another protein to transactivate the expression of their target genes and 

the fact that different Sox proteins can be expressed in the same cell type at the 

same time (Kuhlbrodt et al., 1998; Lefebvre et al., 1998). The partner a Sox protein 

interacts with is cell-type specific and the biological readout is dependent on the 

interaction partner (Wilson and Koopman, 2002). By this, the Sox factors can interact 

with different proteins, depending on the context, and thereby inhibit or activate the 

transcription of putative target genes (Kamachi et al., 2000). For this reason, Sox 

proteins are considered to be bifunctional. For example, Sox2 is known to interact 

with Oct3/4 in embryonic stem cells, but also cooperates with Pax6 in lens cells to 

enhance the expression of delta-crystallin (Kamachi et al., 2001; Botquin et al., 1998; 
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Nishimoto et al., 1999). Another example is Sox17, which binds to β-catenin in the 

context of the wnt-signaling and thereby inhibits the transcription of β-catenin target 

genes (Takash et al., 2001). On the other hand, Sox17 is responsible for the 

induction of early endodermal genes, like Foxa1, Foxa2 and GATA4 (Sinner et al., 

2004). Another characteristic ability of Sox family members is the fact that some of 

them are able to compensate for the function of each other acting in redundant 

fashion as in the case for Sox7 and Sox17 during early endodermal development 

(Kanai-Azuma et al., 2002).  

 

1.6.1. Sox protein subgroup F – Sox 7, Sox 17 and Sox 18  

 

As already mentioned before, some sox proteins are known to play a crucial role in 

vascular development, two of them are members of the subgroup F, which comprises 

Sox7, Sox18 and Sox17, the latter one known as endodermal factor. In cyclic AMP 

treated endothelial progenitor cells, all three factors are induced, leading to the 

assumption that all of them are decisive transcriptional proteins during vascular 

outgrowth (Antonis Hatzopoulos, 2002; data not published). The first member of 

subgroup F is Sox7, a transcription factor that has so far been shown to play a role in 

early endodermal development, but also in vasculogenesis during embryonic 

development (Takash et al., 2001). Xenopus Sox7 is supplied maternally (Fawcett 

and Klymkowsky, 2004). It is known, that Sox7 transactivates, in concert with Sox17, 

the expression of Laminin a1 in parietal endoderm (Niimi et al., 2004). Sox7 is co-

expressed with Sox17 in the extra-embryonic endoderm and a functional 

compensation of both factors in this context has been supposed (Kanai-Azuma et al., 

2002). Both, Sox7 and Sox17 induce the expression of the pan-endodermal marker 

endodermin and the expression of fibronectin (Shirai et al., 2004). Moreover, it has 

been demonstrated, that Sox7 is an immediate-early target of VegT in Xenopus 

(Zhang et al., 2004). VegT, a T-box transcription factor, initiates mesoendodermal 

differentiation (Xanthos et al., 2001; Zhang et al., 1998). As downstream target of 

VegT, Sox7 induces expression of the Nodal-related genes Xnr1, 2, 4, 5 and 6 

(Zhang et al., 2004). Moreover it is able to initiate the transcription of the 

homeodomain transcription factor Mixer, and the endodermal marker SOX17β in 

Xenopus (Zhang et al., 2004). Sox7 is, like Sox3 and Sox17, able to inhibit β-

catenin/TCF (T-cell factor) signaling via direct binding to β-catenin (Takash et al., 
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2001). It has been demonstrated, that Sox7 and GATA4 are competitive activators of 

Fgf-3 expression (Murakami et al., 2004). 

 

Sox17 was at first described as stage-specific transcription activator during mouse 

spermatogenesis (Y. Kanai et al., 1996). In Xenopous, two forms of Sox17 have 

been discovered, called Sox17α and Sox17β (Hudson et al., 1997). These two forms 

are known to play an inhibitory role in the wnt-signaling pathway by binding to β-

catenin/TCF and thereby blocking the DNA binding domain of the two factors (Zorn et 

al., 1999). Moreover, Sox17 has been implicated in the determination of endoderm in 

Xenopus, mouse and zebrafish (Hudson et al., 1997; Kanai-Azuma et al., 2002; 

Alexander et al., 1999). Mice deficient for Sox17 do not form gut endoderm (Kanai-

Azuma et al., 2002). It has been observed that Sox17 is crucial for the maintenance 

and differentiation of the definitive endoderm of the embryonic gut. The phenotype of 

Sox17 knock out mice includes apoptosis of the endoderm cells in the foregut. 

Moreover, the endoderm of the mid- and hindgut does not expand. So Sox17 is a 

decisive factor for the differentiation of ES-cells to the endodermal lineage. Of the 

three members of subgroup F, only Sox17 is expressed in the definitive gut 

endoderm. Sox18 is absent in the endoderm, whereas Sox7 is co-expressed with 

Sox17 in the extra-embryonic visceral endoderm (Kanai-Azuma et al., 2002). This 

and the fact that there are no severe defects in the visceral endoderm of Sox17-/- 

mice might be due to the fact that Sox7 is able to compensate Sox17 function in this 

specific context. In the endodermal development, different target genes of Sox17 

have been identified. It has been shown, that Sox17 binds to the promoter regions of 

Laminin a1 (Lama1) and Fibronectin during endodermal development (Niimi et al., 

2004; Shirai et al., 2004). Via its C-terminal transactivation domain, Sox17 stimulates 

expression of its target genes, which include Foxa1 and Foxa2 (Sinner et al., 2004). 

In humans, Sox17 shows a wide expression pattern, being detected in heart, lung, 

spleen, testis, ovary, placenta, gastrointestinal tract, fetal lung, and kidney. 

 

Sox18, the third member of subgroup F, is known to be a key player in vascular 

development, being involved in endothelial cell specification. It is transiently 

expressed in the embryonic vasculature, in the intersomitic vessels, but also in the 

adult organism when neovascularization takes place (Darby et al., 2001). 
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Figure 1.2 Structural comparison of murine subgroup F Sox proteins. The known functional 
areas are labeled in green and red. The percentages indicate the degree of similarity of the HMG 
domain of the three Sox proteins. The grey areas show significant similarities of murine Sox17 and 
Sox7 to murine Sox18. The dotted lines indicate the corresponding regions of the three soxes.  

 

During embryogenesis, Sox18 is first detected in the allantois and in the yolk sac 

blood islands at 7.5 dpc and persists at these sites until 8.5 dpc (days post coitum). 

Subsequently, Sox18 is expressed in the paired dorsal aortae and the developing 

cardiovascular system (Pennisi et al., 2000b). During embryogenesis and wound 

repair in adults, Sox18 shows a similar expression pattern as Flk-1 (fetal liver kinase-

1) and Collagen IV, two endothelial-specific genes known to be induced during 

pathological angiogenesis (Darby et al., 2001; Pennisi et al., 2000b). This, and the 

fact that Sox18 is absent in Flk1 knockout mice, underlines the importance of Sox18 

in earliest stages of vascular development and during neovascularization processes 

in adult organisms suggesting that it might be an early target of the VEGF/VEGFR 

axis. Sox18 is moreover detected in the developing hair follicles (Olsson et al., 2001). 

In adult tissues, Sox18 is detectable in lung, heart, and skeletal muscle tissues. Four 

naturally occurring Sox18 allelic mutations are known, called Ra, RaJ, Ragl and 

RaOP which cause severe defects in hair and skin development and cardiovascular 

defects (Pennisi et al., 2000b). In contrast, a mouse deficient for Sox18 is viable and 

shows only mild phenotypic changes suggesting that the allelic mutants might have a 

more severe, dominant negative effect (Pennisi et al., 2000a). The Sox18-/- mice 

also show a small reduction in frequency and pigmentation of coat hairs (Pennisi et 

al., 2000a). Moreover, VCAM1 has been shown to be a direct target of Sox18 

(Hosking et al., 2003). 
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1.7. Krüppel-like Factor 4 (KLF4) 

 

KLF4, also known as GKLF (gut-enriched KLF4), belongs to a family of zinc-finger 

transcription factors, called Krüppel-like factors (Bieker et al., 2001; Shields et al., 

1996; Dang et al., 2000). The human KLF family comprises 25 members, which 

include both Sp1-like and KLF-like factors. Some of these proteins are expressed 

ubiquitously, like Sp1 and KLF6, whereas others appear to be tissue-specific, like 

KLF5 in the intestine and KLF4 in the gut (Conkright et al., 1999; Ohnishi et al., 

2000). Recently, KLF4 has also been demonstrated to be expressed in vascular 

smooth muscle cells, repressing the expression of smooth muscle cell differentiation 

markers, like SMMHC (Smooth muscle myosin heavy chain). Therefore it is 

supposed to have an important regulatory role in vascular maturation processes.  

 

KLFs regulate critical aspects of cellular development, differentiation and activation. 

KLF1 (EKL erythroid Krüppel-like factor) for example is involved in red blood cell 

maturation (Nuez et al., 1995). Another member, KLF2 (LKLF; lung Krüppel-like 

factor), is important for maintaining the quiescent phenotype in single-positive T-cells 

(Kuo et al., 1997). 

 

KLF4 contains, like all Krüppel-like factors, three zinc-finger domains in its C-terminal 

region. Via their C terminus the KLFs bind to either a CACCC element or a GC-box 

(Shields et al., 1998). The N-Terminus is involved in transcriptional activation as well 

as protein-protein interactions with other transcription factors (Bieker et al., 1996; 

Bieker et al., 2001; Feinberg et al., 2004). Like the Sox proteins, KLFs can also act 

as activators or repressors of transcription, depending on the interaction partner and 

the cellular context (Dang et al., 2000; Dang et al., 2002; Ghaleb et al., 2005). KLF4 

regulates genes that are involved in differentiation, proliferation and apoptosis. Mice 

deficient in KLF4 show defects in skin differentiation and a reduced number of 

secretory goblet cells in the colon (Katz et al., 2002; Segre et al., 1999). Moreover, 

the KLF4 knock out mice show defects in gastric differentiation and have 

precancerous changes in the stomach (Katz et al., 2005; Wei et al., 2005). Because 

of the severe skin defects, these mice die within 15 hours after birth. Moreover, KLF4 

has been implicated in activation of macrophages at proinflammatory conditions 

(Feinberg et al., 2005). It is inducible by IFN-γ, LPS and TNF-α and decreased by 
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TGF-β1 in macrophages (Chen et al., 2000). After stimulation with IFN-γ or LPS, 

KLF4 initiates on one hand the activation of iNOS and on the other hand inhibits 

TGF-β1/Smad3 signaling by competitive binding to the transcription activator 

p300/CBP (Feinberg et al., 2005). Besides, KLF4 has also been shown to play a role 

in vascular development, being induced by PDGF-BB in vascular smooth muscle 

cells and thereby downregulating the expression of multiple SMC marker genes, for 

example smoothelin, smooth muscle (SM)-22α, and SM-actin (Dandre et al., 2004; 

Kawai-Kowase and Owens, 2006; Yoshida et al., 2006; Holycross et al., 1992). KLF4 

is weakly expressed in differentiated vascular smooth muscle cells in vivo, but is 

strongly upregulated after vascular injury and, as mentioned above, in response to 

the mitogen PDGF-BB. These observations led to the proposal that KLF4 might play 

a key role in the phenotypic switch of vascular SMCs form a quiescent, differentiated 

cell, to a proliferating and migrating cell, being capable of contributing to the repair of 

vascular injury.  

 

As its other name GKLF (gut krüppel like factor) implicates, KLF4 is known as an 

important epithelial transcription factor in the gut and skin where it regulates 

differentiation and cell proliferation (Segre et al., 1999; Katz et al., 2002). It can act as 

tumor suppressor, but also as an oncogene (Dang et al., 2003). KLF4 is able to bind 

β-catenin and thereby to inhibit the wnt signaling pathway and by this, uncontrolled 

cell proliferation (Zhang et al., 2006). This interaction has been shown to play a 

critical role in homeostasis of the normal intestine, as well as in tumorigenesis of 

colorectal cancers. Mutations of KLF4 lead to a loss of wnt signaling repression in the 

colon and, in consequence, to uncontrolled proliferating crypt cells, leading to colon 

cancer. Therefore KLF4 is, in this context, considered as a tumor suppressor gene 

(Shie et al., 2000; Zhao et al., 2004). The same mechanism of KLF4 action was 

observed in gastric cancers (Wei et al., 2005). In contrast, KLF4 seems to be an 

oncogene in the case of pancreatic and breast cancers, being upregulated under 

these conditions. This underlines the ability of KLF4 to function in a cell type specific 

manner (Foster et al., 2000; Pandya et al., 2004). 

 

As mice deficient for KLF4 have normal colonocytes and enteroendocrine cells, but a 

decreased number of goblet cells, KLF4 is thought to regulate the differentiation of 

this cell type (Katz et al., 2002). This observation, and the fact that KLF4 binds β-
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catenin, suggests that an inhibition of the wnt pathway contributes to goblet cell 

differentiation. Moreover, zebrafish KLF4 has been shown to be essential for anterior 

mesendoderm/pre-polster differentiation and hatching (Gardiner et al., 2005). 

 

1.8. Early Growth Response Factor 1 (EGR-1) 

 

As ubiquitously eypressed transcription factor, EGR-1 has also been implicated in 

vascular development, having a key regulatory role in vascular processes, promoting 

e.g. vascular smooth muscle cell proliferation. Therefore it has to be considered in 

examinations of regulatory processes in vascular cells.  

 

The zinc-finger transcription factor EGR-1 (Early Growth Response Factor 1) is 

expressed from the beginning of embryonic development and also ubiquitously in the 

adult organism, being present mainly in the brain, especially in the hippocampus, in 

the heart, the lung and to lower levels in the kidney, spleen and liver (McMahan et al., 

1995). Together with EGR2, EGR3, EGR4 and NGFI-B, EGR-1 builds the group of 

early growth response proteins (EGRs).  It binds to DNA by a COOH-terminal binding 

domain, comprising three zinc finger regions (C2H2-type), which regulate transcription 

via binding to the consensus sequence CGCCC(C/G/T)CGC (Cao et al., 1993; 

Christy et al., 1989). EGR-1 contains two activator domains, one repressor domain 

and a nuclear localization signal. It is known to be a nuclear factor that functions as 

transcriptional regulator of differentiation and proliferation, in response to extracellular 

stimuli, like. PDGF, Hypoxia, physical forces (Lau et al., 1987; Hjoberg et al., 2003). 

EGR-1 is an immediate early gene, whose activity is partly modulated by binding of 

the co-repressors Nab1 (NGFI-A-binding protein 1) and Nab2, which bind via their 

NCD1 domain (Nab conserved domain 1) to the R1 domain of EGR-1, thereby 

preventing the long-term activation effects of EGR-1 (Russo et al., 1995). Nab1 is 

constitutively expressed in most cells, whereas Nab2 is upregulated in the same 

conditions as EGR-1. This repressor is a direct target gene of EGR-1, establishing a 

negative feedback loop of EGR-1 activity (Kumbrink et al., 2005). Regarding vascular 

processes, EGR-1 is known to be upregulated after vascular injury, as this is the 

case in atherosclerotic lesions and in neointimal regions (McCaffrey et al., 2000; 

Santiago et al., 1999a). Moreover it has been implicated as a key mediator of 

inflammation associated with the first early steps of atherosclerosis, inducing the 
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expression of cytokines and growth factors. In this context, two EGR-1 target genes 

have been identified: TECK, a CC-Chemokine attracting lymphocytes and IP-30, 

playing an important role in IFN-induced inflammation (Fu et al., 2003; Vicari et al., 

1997; Luster et al., 1988). By contrast, CTGF and TRAIL are significantly repressed 

by EGR-1 in mature endothelial cells (Fu et al., 2003). CTGF and TRAIL are known 

to induce apoptosis of vascular smooth muscle cells (Hishikawa et al., 2000; 

Gochnico et al., 2000). Taken together, these data indicate that EGR-1 is part of the 

mechanisms that promote neointimal formation after vascular injury (Santiago et al., 

1999). Besides this, EGR-1 induces the expression of many other vascular genes, 

like PDGF-A and B, bFGF, TGF-β, TNFα, Apolipoprotein A1, macrophage colony-

stimulating factor (MCSF), tissue factor (TF), urokinase-type plasminogen activator 

(u-PA), Interleukin-2, Intracellular adhesion molecule-1 (ICAM-1), and Fetal liver 

tyrosine kinase (Flt-1) (Akuzawa et al., 2000; Guha et al., 2001; Yao et al., 1997; 

Siverman and Collins, 1999). As these target genes themselves also induce the 

expression of EGR-1, one can assume this to be an EGR-1 mediated autocrine loop 

mechanism within blood vessels. In mature endothelial cells (HUVECs), EGR-1 

upregulates ID2 (Inhibitor of Differentiation 2), PAX2, Nab2, and p300. The latter may 

function as a positive cofactor, in contrast to Nab2, which acts as a negative cofactor.  

 

Moreover, EGR-1 is expressed in monocytes and seems to play a role in the 

differentiation of macrophages (Nguyen et al., 1993). Like KLF4, EGR-1 can act as 

either a tumor suppressor or tumor promoter. In many human tumors like 

fibrosarcoma, glioblastoma and breast cancer, EGR-1 is described as tumor 

suppressor gene (Pignatelli et al., 2003). In case of prostate cancer, EGR-1 is known 

to play a tumor growth-promoting role (Baron et al., 2003). EGR-1 knock out mice are 

viable, but have reduced body size and are, as a consequence of hormonal 

deregulations, sterile (Lee et al., 1996). 

 

1.9. The FunGenES project  

 

Goal of the FunGenES (Functional Genomics of Engineered ES-cells) consortium is 

the identification and characterization of tissuespecific markers during 

embryogenesis. Therefore new cellular and molecular tools should be developed to 

characterize gene function and to enable the development of strategies for 

therapeutical interventions. A future vision is e.g. to be able to replace organ 
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transplantations, and to replace animal drug screenings with ES-cell derived 

methods. As our working group is interested in vascular cells, which mainly derive 

from the mesoderm, we are focused on this lineage and the genes that are involved 

into its differentiation. 

 

1.9.1. ES-cell differentiation mimics embryonic development 

 

In the early 1980s, mouse embryonic stem (ES) cell lines were established for the 

first time (Evans and Kaufman 1981; Martin et al., 1981). ES-cells derive from the 

inner cell mass of the blastocyst and have a pluripotent capacity, being able to 

differentiate in the three germ layers endoderm, ectoderm and mesoderm. An 

important feature of ES-cells is their ability for self-renewal, meaning prolonged 

symmetrical cell division in culture, resulting in identical pluripotent progeny. In vitro, 

one can maintain the pluripotency and self-renewal of the ES-cells by adding 

leukemia inhibitory factor (LIF) to the cell culture medium. LIF belongs to the 

Interleukin (IL)-6 family of cytokines. It binds to its receptor, the glycoprotein 130 

(gp130) and thereby activates the Jak kinases with recruitment of STAT3 (signal 

transducer and activator of transcription) and Shp-2 (Burdon et al., 2002).  

 

ES-cells show an almost unlimited proliferation capacity in cell culture and can retain 

their pluripotency. Mouse ES-cells are also characterized by a relatively short cell 

cycle time (12-15 h) with a short G1 phase. Moreover they possess enzyme activities 

for alkaline phosphatase (ALP) and telomerase. Markers for the undifferentiated state 

of ES-cells are for example the membrane-bound protein SSEA-1, and the Oct3/4 

POU domain containing transcription factor, which is essential for the initial 

development of pluripotency in the inner cell mass of the blastocyst (Niwa et al., 

2000; Pesce and Schöler, 2000). Nanog, a homeodomain protein also takes part in 

keeping the undifferentiated state of the ES-cells (Review: Chamers, I. 2004). In 

addition, Sox2 and FoxD3 are involved in these processes and BMP (bone 

morphogenetic protein) dependent induction of ID2 (inhibitor of differentiation) target 

genes is sufficient for keeping the ES-cells undifferentiated (Hanna et al., 2002). 

Moreover, the MEK/ERK signaling is involved in ES-cell renewal and differentiation, 

as inhibition of this pathway is necessary to maintain self-renewal. ERK and SHP-2 

seem to counteract the STAT3 mediated proliferative effects, and thereby promote 

differentiation (Niwa et al., 1998). A list of other markers for the undifferentiated state 
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of ES-cells comprise Rex-1, Genesis, GBX2, UTF1, Pem, and L17, which are 

upregulated in the inner cell mass of the blastocyst and downregulated when 

differentiation starts (Chapman et al., 1997).  

 

Between mouse ES-cells and human ES-cells (hES-cells), one can find some 

differences, e.g. human ES-cell form mainly cystic embryoid bodies (EBs), express 

proteoglycans like TRA-1-60, TRA-1-81 and GCTM-2 and different subtypes of 

stage-specific antigens like SSEA-3 and SSEA-4, which are not expressed by mouse 

ES-cells (Carpenter et al., 2003). Moreover, hES-cells show a longer population 

doubling time of around 30 to 35 hours (mES-cells: 12-15h). Another difference is the 

fact that hES-cells cannot be cultured in LIF to maintain the undifferentiated state, but 

have to be co-cultured with a feeder layer (Daheron et al., 2004). On the other hand, 

hES-cells and mES-cells also have some common features like the Oct3/4 

expression, high telomerase activity, and the maintained proliferative potential for 

prolonged periods in culture. Both cell types are able to retain their normal karyotype.  

 

1.9.2. Endoderm, Mesoderm and Ectoderm arise from the inner mass of the 

blastocyst  

 

The fertilized egg is totipotent, as it is able to generate an entire organism. This state 

of totipotency is retained by early progeny of the zygote up to the eight-cell stage of 

the morula. Further differentiation leads to the formation of the blastocyst, which 

consists of undifferentiated inner cells (also "inner cell mass" = ICM), surrounded by 

outer trophoblasts. The cells of the ICM are pluripotent, meaning the ability to 

differentiate into all cell types of the embryo. The three different germ layers, 

endoderm, ectoderm and mesoderm, and the primordial germ cells, the founder cells 

of male and female gametes, arise from this pluripotent inner cell mass. In adults, 

multipotent stem and progenitor cells still exist in tissues and organs, like 

haematopoetic progenitor cells in the bone marrow, hair stem cells in the hair 

follicles, and neuronal stem cells in the brain ventricles, etc. They have the function to 

replace lost or injured cells. 

  

The ectoderm gives rise to different cell types like neurons, glial cells and epithelial 

cells. One of the first markers of the neuroectoderm is Sox1 (Pevny et al., 1998). 
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Tissues arising from the mesodermal lineage are muscle (including vascular smooth 

muscle cells and cardiomyocytes), cartilage, bone, blood and connective tissue. 

Blood and endothelium in the yolk sac differentiate from a common precursor, the so-

called hemangioblast, at around day 6.5.  

 

As third germ layer, the endoderm gives rise to the gut, the pancreas, the thyroid, the 

thymus and the liver (Review Wells and Melton, 1999). In part, also vascular smooth 

muscle cells are generated by the endodermal lineage. The pancreas develops from 

dorsal and ventral regions of the foregut. The endodermal precursors arise from the 

anterior primitive streak. This corresponds to early and mid gastrula organizer (Wells 

and Melton, 1999; Kinder et al., 2001; Lawson et al., 1991). During mouse 

development, one can recognize two types of endoderm: the definitive endoderm and 

the visceral endoderm, which gives rise to extra-embryonic endoderm (Lu et al., 

2001). The definitive endoderm forms the lining of the gastrointestinal tract and 

contributes tissues to the visceral organs associated with the gut (e.g. liver and 

pancreas) (Tam et al., 2003; Wells et al., 1999). The visceral endoderm derives 

directly from the inner cell mass of the blastocyst, whereas the definitive endoderm 

derives from the mesendoderm, a subpopulation that is giving rise to mesoderm and 

endoderm. A marker for endoderm in general is Sox17, which can be used in 

combination with goosecoid (Gsc) for dividing visceral endoderm (Sox17+/Gsc-) and 

definitive endoderm (Sox17+/Gsc+) (Yasunaga et al., 2005). 
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1.10. Goal of the thesis 
 

The goal of this thesis was the characterization of the role of Sox transcription factors 

in vascular processes and vascular disease. The importance of this group in vascular 

biology was underlined by the knowledge of literature, which showed that Sox7 and 

Sox18 are implicated in angiogenesis during embryogenesis and in adults during 

vascular repair mechanisms. In contrast, the third member of the subgroup F, Sox17, 

has not been implicated in vascular processes so far, but it was known to be a 

decisive endodermal factor playing a crucial role of the maintenance and 

differentiation of the definitive endoderm of the embryonic gut. 

 

During this thesis work, I discovered that Sox17 is strongly expressed in vascular 

smooth muscle cells in different mouse tissues, like kidney, spleen, lung, heart, brain, 

testis, and liver. Because the role of Sox17 in the vascular smooth muscle cells was 

unknown and as vascular SMCs are important as potential targets for therapeutic 

interventions, I decided to focus my work on studying the role of Sox17 in the 

proliferation or differentiation of the vascular SMCs and on identification of possible 

interaction partners in this new cell context. Moreover, as member of the FunGenES 

consortium, a second goal was to find an answer to the question if the subgroup F 

sox proteins might be involved in mesodermal lineage formation. 
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2. Materials 
 

2.1. Plasmids 
 

pGL3-Basic Vector (Promega)  
pBK-CMV (Stratagene) 
pBluescriptII SK (+/-) (Stratagene) 

 

2.2. Cloning primers 

 

Primers used for cloning of mouse Sox7, Sox17 and Sox18 sequences in various 
expression constructs 
 

Primer/Gene direction 
                             
length Primersequence cloning sites, usage 

mSox7 5  34 tcccccgggCggccatggcctcgctgctgggcgc full length primer, SmaI  

mSox7 3  33 gctctagacctccagctctatgacacactgtag full length primer, XbaI  

mSox17 5  31 aactgcaggtctggagagccatgagcagccc full length primer, PstI  

mSox17 3  30 gctctagaccgtcaaatgtcggggtagttg full length primer, XbaI  

mSox18 5  35 cgggatcccGcccagctggaatgcagagatcgccg full length primer, BamHI  

mSox18 3  30 gctctagaggacagtgtctagcctgagatgc full length primer, XbaI  

 
 
Primers used for cloning of human SOX7, SOX17 and SOX18 sequences in various 
expression constructs 
 

hSOX7 5 31 cgggatccCgcgtgcggccatggcttcgctg full length primer, BamHI  

hSOX7 3 33 cccaagcttgggcctccagctctatgacacact full length primer, HindIII  

hSOX17 5 34 cgggatcccgcctggagcgccatgagcagcccgg full length primer, BamHI  

hSOX17 3 34 cgaattccggacctgtcacacgtcaggatagttg full length primer, EcoRI  

hSOX18 5 34 cgggatcccgcgcccagctggaatgcagagatcg full length primer, BamHI  

hSOX18 3 34 cggaattcccggcggcctagccggagatgcacgc full length primer, EcoRI  

 
 
 

2.3. Bacteria and Cell lines 
 
-Bacteria- 

DH5α : F-. lacI- recA1, endA1, ∆(lacZY A-argF), U169, F80dlacZ∆M15, supE44, thi-
1, gyrA96, relA1 (Hanahan et al., 1985) 
 
-Cell lines- 
CASMCs >   Coronary Artery Smooth Muscle Cells (Cambrex) 
HUVECs >   Human Umbilical Vein Endothelial Cells (Cambrex) 
eEPCs (T17b) >  embryonic Endothelial Precursor Cells (isolated from day 7.5 

mouse embryos) 
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CGR8 >  mouse embryonic stem cells isolated from 3.5 day-old 
blastocysts (ECACC - European Collection of Cell cultures) 

 

2.4. Cell culture media 

 

CASMCs:  SmGM-2 - Smooth Muscle Medium-2 plus supplements (FCS 
5%, Insulin, Gentamicin, FGF; Cambrex) 

HUVECs:  EGM - Endothelial Cell Medium plus supplements (FCS 5%, 
VEGF, FGF, hGF 

eEPCs Medium: DULBECCO´S MEM with 25 mM HEPES, 20% Foetal Bovine 
   Serum 

3.5 µl β-mercaptoethanol, 1% 200 mM L-glutamine, 1% 
Penicillin/ Streptomycin (10.000 units/ml Penicillin, 10 mg/ml 
Streptomycin)and 1% non-essential amino acids MEM. 

ES-cell Medium:  GMEM with 10% FCS, 250 µl 0,1 M β-mercaptoethanol, 5 ml L-
Glutamine, 50 µl Leukemia Inhibitory Factor (Sigma); 

 

2.5. Antibodies 

 

primary antibodies 

• anti-Sox17 polyclonal; goat (Santa-Cruz) native mixture  
Immunofluorescence: 1:50; Western-Blot 1:100; IP: 1 µg/ml 

• anti-Klf4 polyclonal; goat (Santa-Cruz) native mixture 
Immunofluorescence: 1:50; Western-Blot 1:100; IP: 1 µg/ml 

• anti-Egr-1 polyclonal; rabbit (Santa-Cruz) native mixture 
Immunofluorescence: 1:100; Western-Blot 1:200; IP: 1 µg/ml 

• anti-Pecam-1 mouse (BD Biosciences) 
Immunofluorescence: 1:10 

• anti-β-catenin polyclonal rabbit (Sigma-Aldrich) 
      Western-Blot: 1:100; IP:1 µg/ml 

• anti-Hämagglutinin monoclonal; rat; IgG1; IP: 1 µg/ml 
 
 
secondary antibodies 

• anti-goat Cy3-labeled (Dianova)  Immunofluorescence 1:200 

• anti-goat FITC-labeled (Dianova)  Immunofluorescence 1:200 

• anti-rabbit Cy3-labeled (Dianova)  Immunofluorescence 1:200 

• anti-rabbit FITC-labeled (Dianova)  Immunofluorescence 1:200 

• anti-mouse Cy3-labeled (Dianova)  Immunofluorescence 1:200 

• anti-mouse FITC-labeled (Dianova)  Immunofluorescence 1:200 
 

• anti-goat HRP-conjugated (Promega) Western-Blot 1:5000 

• anti-rabbit HRP-conjugated (Promega) Western-Blot 1:2500 
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2.6. Chemicals and Enzymes 

 

Company Chemicals/Enzymes 
Amersham Pharmacia ECL-western blotting detection reagents, 

A-Sepharose  
Chemicon PDGF-BB 
Gibco Invitrogen EDTA, Trypsin, OPTIMEM, L-Glutamin, 

Penicillin-Streptomycin, Non-essential 
amino acids (MEM), IMDM, DMEM, 
Foetal Calf Serum (FCS), ultraPure 
agarose 

Invitrogen Lipofectamine™ 2000, PlatinumPfx 
DNA Polymerase, MLV-Reverse 
Transcriptase 

Merck Eurolab GmbH  KCL, Na2HPO4,, KH2PO4, Gylcin, 
Ammonium peroxide sulfate (APS), 
Ethanol, Isopropanol, Methanol, Sodium 
acetate, Magnesium sulfate, Sodium 
dodecyl sulfate (SDS), Tween-20, Triton 
X-100, Sodium-Orthovanadate  

Metabion 1kB DNA Ladder, Taq-Polymerase, 
dNTPs, oligos 

New England Biolabs Restriction enzymes, VENT DNA 
Polymerase 

Pierce Biotechnology NE-PER kit 
Promega oligo(dT) 15 Primer, Taq-Polymerase, 

RNasinRibonuclease Inhibitor 
Qiagen Endo-free Maxi DNA preparation kit, 

PCR purification kit, RNeasy RNA 
isolation kit 

Roche FuGENE 6 Transfection reagent, Rapid 
Ligation Kit, RNase A, Canamycine, 
alkaline phosphatase 

Sigma-Aldrich Leukemia Inhibitory Factor (LIF), GMEM, 
BSA, LDL, 2-mercaptoethanol, ethidium-
bromide, DMSO, TEMED, 
Polyacrylamide, Pre-stained SDS 
Molecular Weight Marker, Dithiothreitol 
(DTT), Bromophenol blue, ampicillin 

Vector Laboratories, Burlingame VECTASHIELD Mounting Medium, MOM 
detection kit 

 

2.7. Working materials 

 

Company Materials 
Amersham Pharmacia Hybond-C-nitrocellulose membrane 
BectonDickinson six-well plates, 24 well plates 
Costar 5, 10 and 25 ml plastic pipettes  
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Eppendorf 50 ml plastic pipettes 
Falcon 15 and 50 ml tubes, bacteriological plates 
BioRad gel chambers for gel electrophoresis 
Kimberly-Clark Gloves, tissues 
Nunc 6 and 10 cm plates 
TipOne pipette tips 
SCI Science Services PapPen 
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3. Methods 
 

3.1. Cell culture 
 
3.1.1. Cell passaging  
 

All cell types used in this work were adherent cells, so we used trypsinization to 

expand cells in culture. Before splitting, the cell layer was washed once with 10 ml 

PBS (w/o Ca2+ and Mg2+). To detach the cells from the plates, they were incubated 

for 5 minutes with 1x Trypsin-EDTA. The enzymatic reaction was stopped by adding 

5 ml of culture medium. The cell suspension was centrifuged at 1200 rpm for 5 

minutes. Afterwards the supernatant was removed, and the cells were resuspended 

in fresh medium and plated on new gelatin-coated plates (0.1%). In case of the 

Coronary Artery Smooth Muscle Cells (CASMCs), no gelatin coating was necessary. 

 

3.1.2. Differentiation of CGR8 ES-cells 

 

The ES-cells have been differentiated by two different methods: by the "hanging 

drop" method or by generating cell suspensions in bacterial Petri dishes. In both 

cases, the protocol started with the trypsinisation of the cells for 5 min at 37°C. To 

stop the enzymatic reaction, 5 ml medium were added, and the cells were centrifuged 

at 1200 rpm for 5 min. The cell pellet was resuspended in differentiation medium, 

with a final concentration of 2,5x104/ml. In case of the "hanging drop" method, 20 µl- 

drops were generated at the inside surface of a 10 cm plate lid. Each drop contained 

around 500 cells. In this hanging state, the cells started accumulating at the bottom 

of the drop and started thereby differentiating, building embryoid bodies (EBs). After 

two days, the generated EBs were transferred in bacterial 10 cm plates, containing 

10 ml differentiation medium. In case of the cell suspension method, the 

resuspended undifferentiated cells were directly plated in a 10 cm bacteriological 

plate, containing 10 ml differentiation medium. The reason for using bacteriological 

plates is, that the cells do not adhere at this type of plastic, but stay in suspension 

and start, by accumulating with other cells, to build EBs. The advantage of the 

"hanging drop" method is the comparable size of the generated EBs, whereas the 

ones from the cell suspension often vary in their size. 
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Differentiation medium:  IMDM (500 ml), 20% FCS, 1% Non-essential amino acids (MEM), 1% 

L-glutamine, 500 µl 0,1 M β-Mercaptoethanol 

     

3.1.3. Transient Cell Transfection 

 

For transient expression of the genes of interest, expression plasmids were 

transfected with Lipofectamine 2000 (Invitrogen) in the used cell lines. In this 

protocol, the cells were pre-incubated in serum-free medium, like OPTIMEM for 30 

min to 1h. During this time, the DNA-Lipofectamine mix was prepared. For this, 16 µg 

expression plasmid and 32 µl Lipofectamine 2000 (in case of a 10 cm plate) were 

diluted separately in 1 ml OPTIMEM each. After 5 min of incubation, both solutions 

were added to each other and incubated together for 25 min at room temperature. 

Afterwards, the OPTIMEM of the pre-incubation step was removed from the cells and 

replaced by the DNA/Lipofectamine 2000 mixture. This complex was left for 4-6 

hours on the cells and was finally replaced by fresh medium. Lysates for various 

assays have been taken 24-48 hours afterwards. 

 

3.2. Molecular biology techniques 
 
3.2.1. Cloning strategy 
 

Expression plasmids of mouse and human Sox7, 17 and 18 sequences have been 

generated using the pBK-CMV, pBluescriptII SK (+/-) and pIRES2-eGFP vector 

systems from Stratagene. In case of cloning the mouse constructs, we used a 

modified pBluescriptII SK (+/-) vector (Stratagene), which carries an additional PGK 

promoter for expression in embryonic mouse cell lines. The cloned constructs were 

sequenced (Sequiserve, Vaterstetten) and used for transient transfection assays in 

different cell types. 

 

3.2.2. Ligation  

 

Ligations were done using the Rapid Ligation Kit (Roche) and following the 

instructions in the manual. The insert was used in a 10-fold excess in comparison to 

the vector amount. The incubation time was 10 min at room temperature. 
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3.2.3. Transformation of DNA in bacteria 

 

Half of the ligated DNA from the previous step was used for the transformation in 

chemically-induced competent DH5α cells. The prepared bacterial cells have been 

stored at -80°C. For the transformation, the cells were thawed on ice for 5 minutes. 

The DNA (1 µg) was added, and incubated with the bacteria for 20 minutes on ice. 

Afterwards, the sample was heat-shocked for 2 min at 42°C. 1 ml of LB-Medium was 

added, and the tube was incubated for 1 h at 37°C on an Eppendorf Thermomixer, 

shaking at 1000 rpm. Finally, the bacteria were pelleted by centrifugation (2 min, 

4000 rpm), and plated on LB plates, containing the appropriate antibiotic 

(ampicillin/canamycine). The plates were incubated inverted overnight at 37°C. 

 

3.2.4. Mini-preparation of Plasmid DNA 

 

Colonies were picked from the plates and incubated, shaking overnight at 37°C in 5 

ml LB-medium, containing the appropriate antibiotic. Next day, 1.5 ml of the 

suspension were transferred to a 2 ml Eppendorf tube and centrifuged for 5 min at 

14000 rpm. The pellet was resuspended in lysis buffer (buffer 1) and incubated for 5 

minutes. Afterwards, a second lysis buffer (buffer 2) was added and the samples 

were incubated for 5 more minutes. Last, buffer 3, a neutralizing buffer, was added to 

stop the lysis reaction. The whole mixture was centrifuged for 5 minutes at full speed, 

and the supernatant was transferred to a new tube. To extract the DNA, 1 volume of 

Isopropanol and 1/10 volume of Sodium acetate (3 M) was added, and the sample 

was centrifuged at 14000 rpm for 10 min. After an additional washing step using 80% 

Ethanol, the pellet was air dried and finally resuspended in 30 µl TE-buffer. 

 

Buffer 1:  50 mM Tris-HCl, 10 mM EDTA; pH 8.0 

Buffer 2:  200 mM Sodium hydroxide, 1% SDS (w/v) 

Buffer 3:  3.2 M KAc/HAc; pH 5.5 

 

3.2.5. Maxi-Preparation of Plasmid DNA from bacteria 

 

The Maxi-preparation of plasmid DNA was carried out using the Endotoxin-Free 

Maxi-Plasmid Kit from Qiagen, following the manifacturer’s instructions. 

 



Methods 

36 

3.2.6. RNA-Isolation 

 

The RNA isolation procedure was done by using the QIAGEN RNeasy® Kit. The cells 

were lysed in 300 – 500 µl RLT Lysis buffer. DNA digestion (with RNase-Free DNase 

Set, QIAGEN GmbH) was performed to avoid contamination with genomic DNA. RNA 

was eluted in 50 µl of RNase-free water and stored at –80°C. RNA concentrations 

were measured using an Eppendorf Spectrophotometer. 

 

3.2.7. Reverse Transcription (RT) PCR 

 

RT-PCR is a technique to first synthesize cDNA using RNA as template; the single-

stranded cDNA subsequently serves as template for amplification by PCR 

(Polymerase Chain Reaction) to monitor levels of gene expression. The steps were 

carried out in an Eppendorf Thermomixer in 1.5 ml tubes. First, 3 µg of RNA were 

added to autoclaved ddH2O to a final volume of 15 µl. Oligo-dT primer (3.75 µl) were 

added to the mixture, and the tubes were incubated at 65°C for 5 minutes to 

denature secondary RNA structures and allow the primers to bind to the polyA tails of 

the mRNA molecules. Afterwards, the tubes were immediately put on ice to avoid 

refolding of the RNA. Further on, 11.25 µl of RT-Mix were added to the samples.  

 

The Reverse Transcription (RT)-Mix contained: 
4.5 µl  NX buffer (2 M KCl, 1 M Tris-Cl pH 8.4, 1 M MgCl2 , 3% Tween20) 

1.5 µl  dNTPs (20 mM)  

3.0 µl  β-mercaptoethanol  

0.75 µl RNasin 

1.5 µl  Mo-MLV Reverse Transcriptase (200 U/µl)  

 

The entire mixture was incubated at 37°C for 55 minutes. To stop the enzymatic 

reaction, the tubes were heated at 95°C for 5 minutes. Finally, 270 µl autoclaved 

ddH20 were added to each sample to obtain a final volume of 300 µl cDNA with a 

concentration of ca.10 ng/µl. 
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3.2.8. The Polymerase Chain Reaction (PCR) 

 

The generated cDNA was tested for different markers by conventional and 

quantitative PCR. Amplification protocol was as follows: 

e.g. 95°C 5 min 

 95°C 1 min 

 65°C 1 - 1.30 min 

 72°C (per 1000 bp 1 min)  

 steps 2 - 4 were repeated for 24 - 35 times 

 72°C 10 min 

   4°C stored till analysis 

 

3.2.9. Agarose gel electrophoresis 

 

PCR amplified DNA products were separated in 1.0% agarose gels run in horizontal 

gel chambers in 1x TBE electrophoresis buffer. Therefore, each sample was diluted 

with a DNA-Loading dye (6x). The size of the DNA fragments was determined using 

a 1kb DNA ladder as marker. After electrophoresis, gels were stained in a 0.02% 

ethidium bromide solution for 10 minutes. Gels were photographed under UV light 

using a Polaroid camera. 

 

TBE (10x):  108 g Tris-HCl, 55 g Borate, 400 ml EDTA (20 mM) add 600 ml H2O; pH 8,3 

DNA Loading Dye: 40% Glycerin, 60% H2O, 0.001% Bromo-phenol-blue  

 

3.3. Immunofluorescence 
 

Immunofluorescence is a histological method to detect proteins in tissue sections, 

based on the binding of primary monoclonal or polyclonal antibodies to their 

respective antigens. Secondary antibodies, which are conjugated with a fluorescence 

dye like FITC (green) or Cy3 (red), recognize and bind to the primary antibodies 

leading to a complex that is detectable under a fluorescence microscope. 

 

Therefore, frozen sections (thickness of 10 µm) were fixed for 5 min at 4°C in a 1:1 

mixture of acetone and methanol. The sections were surrounded with a PapPen to 

provide a hydrophobic barrier around the sections and keep antibody solutions 
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directly on top of the section. After fixation, sections were washed five times with 1x 

PBS for 10 min each and subsequently blocked for 1 hour with blocking buffer (5% 

bovine serum albumin in 1x PBS) to prevent unspecific antibody binding. Primary 

antibodies, diluted in blocking buffer were added to the sections and incubated for 

one hour at room temperature or O/N at 4°C. After this step, the sections were 

washed five times with 1x PBS and subsequently incubated with the secondary 

antibody for 1 hour at room temperature in blocking buffer. The secondary antibody 

was used in a final concentration of 1:200, diluted in 1x PBS. Finally, the sections 

were washed again for five times with 1x PBS, air-dried for a short time and mounted 

with VECTASHIELD Mounting Medium. The sections were photographed using a 

Zeiss Axiovert 200M digital camera (Carl Zeiss Microscope, Göttingen, Germany). 

 

Blocking buffer:  1x PBS and 5% Bovine Serum Albumin 

 

3.4. Cell stimulation assays 
 

To stimulate the cells with Low density lipoprotein (LDL), Platelet-Derived Growth 

Factor-BB (PDGF-BB) or Transforming Growth Factor β 1 (TGF-β 1), the cells were 

kept in low-serum conditions changing medium 32 hours before growth factor 

treatment to 0,1 % FCS medium. Afterwards, the cells were stimulated with 50 ng/ml 

PDGF, 10 ng/ml TGF-β 1, or 100 µg/ml LDL. The substances were directly added to 

the 0.1% FCS medium. After mixing for even distribution, cells were incubated for the 

indicated time periods at 37°C. For each time point, untreated plates were used as a 

control. Afterwards, the lysates were taken and RNA was isolated, using the QIAGEN 

RNeasy® Kit. The RNA was transcribed in cDNA and the samples were tested via 

RT-PCR for different markers. 

 

3.5. Luciferase-Assays 
 

For the Luciferase - Promoter assays, 1 µg of promoter construct, cloned in the pGL3 

Basic Vector, which carries the luciferase gene without its own promoter, and 1µg of 

the expression plasmid (SOX17-CMV) or the empty vector (pBK-CMV) were co-

transfected in HeLa cells by Lipofectamine 2000. 24 hours later, the lysates were 

prepared using the RLB lysis buffer (5x) of the luciferase kit from Promega, which is 

diluted 1:5 with ddH2O directly before usage. The cells were incubated with this 
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buffer, shaking for 15 min at room temperature. Afterwards, the cells were scraped 

and transferred in Eppendorf tubes. The lysates were frozen for 30 min at 80°C and 

then centrifuged at 14000 rpm for 10 min. The supernatants were transferred in a 

new tube and afterwards stored at -20°C or directly measured, assaying the 

luciferase activity by using a Chemiluminescence Photometer. 

 

3.6. SDS-gel protein electrophoresis 

 

For detection of proteins after size separation, protein samples were loaded on a 

12.5% polyacrylamide gel. The gel consists of two parts, a "stacking" gel and a 

separation gel. The first one is shorter and contains the wells for loading the samples. 

The samples run vertically in a BioRad gel chamber at 120 Volt separated by their 

molecular size. To ensure separation according to molecular size, the proteins were 

denatured at 95°C for 10 min, before loading on the gel. To determine the size of the 

detected proteins, a pre-stained molecular protein ladder was used. The gels run for 

approximately 1 - 2 hours and were afterwards transferred on a nitrocellulose-

membrane via "wet-blotting" at 4°C for 1 h at 400 mA. The blots were then blocked 

with 1X PBS, containing 5 % non-fat milk powder, for 30 min. The primary antibody 

was diluted 1:100 in a PBS/milk mixture, and the blot was incubated in this 

suspension rolling over night at 4°C. Next day, the blot was washed five times with 

1X PBS and afterwards incubated for 3 h at room temperature with the secondary 

antibody. This one was diluted at a range from 1:2500 - 5000 in PBS/milk. The blot 

was washed five more times with 1X PBS, dried with tissue paper, and, lastly 

incubated with ECL solution for 1 min. Afterwards, the blots were exposed to X-ray 

films, which were subsequently developed. 

 

Transfer buffer (10x): 30 g Tris, 95 g Glycine; add ddH2O to 1l  

TBS buffer:   20 mM Tris/HCl, 150 mM NaCl, 1 mM EDTA; pH 7.5 

12.5% SDS-gel:  40.4 ml H2O, 16.5 ml Tris-HCl (pH 8,8). 825 µl 0,5M EDTA, 41.25 ml 

Acrylamide (30%) Bis-acrylamide (0.8%) solution; pro 10 ml SDS gel: 150 µl 

APS, 70 µl TEMED (=separation gel) 

Stacking gel:  7.6 ml H2O, 625 µl 2 M Tris-HCl (pH 8.8), 100 µl SDS, 1,5 ml APS, 40 µl 

   TEMED 

SDS-buffer (10x):  30 g Tris, 144 g Glycine, 100 ml SDS (10%) add ddH2O to 1 l; pH 8.9 
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3.7. Protein immunoprecipitation 
 

For immunoprecipitation of protein complexes, the cells were washed twice with 1 X 

PBS, scraped and lysed in 500 µl Lysis buffer. The lysates were incubated on ice for 

30 min and afterwards sonified for around 15 times at 50 ms time constant. The 

lysates were then centrifuged for 30 min at 14000 rpm. During these steps, the 

primary antibodies were set up in 100 µl 1 X PBS each, and incubated with 30 µl pre-

washed A-Sepharose beads, in case of goat and rabbit primary antibodies, and G-

Protein in case of mouse and rat primary antibodies. The incubation took place in a 

rotator at 4°C for 1 h. During this time, the A-Sepharose/G-Protein was coupled to 

the primary antibody. After this incubation step, the lysate was added to the primary 

antibody/Sepharose mix and incubated overnight at 4°C. At the next day, the 

protein/antibody/Sepharose complex was washed five times with Lysis buffer (w/o 

protease-inhibitors) at 4°C, and spun at 5000 rpm, 5 min after each wash. The 

supernatant was carefully removed. Further on, the pellet was resuspended in 50 µl 

1x Lämmli-buffer, containing 0.1 M DTT (Dithiotreitol), and incubated at 95°C for 10 

min for elution and denaturation of the protein complexes. Afterwards, the 

suspension was centrifuged for 10 min at 14000 rpm to pellet and remove the A-/G- 

Sepharose. Western-Blots were then performed with the protein eluates. As isotype 

control 3F10 > anti-HA-tag was used. 

 

Lysis buffer:   50 mM Tris-HCl, pH 8.0; 1% NP40, 150 mM Sodium chloride;  

    directly added before use: cocktail of Protease inhibitors   

                (Complete; Roche) 

 

3.8. Co-Immunoprecipitations 
 

To check for protein-protein interactions between different transcription factors, the 

immunoprecipitated proteins were loaded once again on a 12.5% SDS-gel and 

analysed by Western-Blot analysis. In this case, next to the precipitating antibody, we 

used antibodies against putative interaction partners. Also, an IgG control and 

moreover, a control for a non-binding partner protein, was used. 
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4. Results 
 
4.1. A new role for SOX17 as potential interaction partner of EGR-1 and 

KLF4 in human coronary artery smooth muscle cells 
 

Large blood vessels consist of three different layers: the intima, consisting of a single 

layer of endothelial cells, the media, mainly built up by multiple layers of smooth 

muscle cells, and, last, the adventitia, mostly consisting of connective tissue like fiber 

and collagenous material. Disruptions of the vessel wall are associated with severe 

vascular diseases, like atherosclerosis, a chronic inflammatory disease at the 

vascular wall (Ross et al., 1999; Libby et al., 2002). Moreover, vasculogenesis and 

angiogenesis, the vascular network forming processes, play a decisive role in the 

outgrowth of metastases, supporting the tumor tissue with oxygen and nutrients, 

transported by the blood. Thereby the transcriptional level of such vascular 

processes becomes interesting, especially for therapeutic interventions. Affymetrix 

data of cyclic AMP treated endothelial progenitor cells showed an increase of the 

members of the subgroup F of the Sox proteins (Antonis Hatzopoulos, 2002, data not 

published). These are Sox7, 17 and 18, whereby Sox7 and Sox18 have already been 

implicated in vasculogenesis during embryogenesis and angiogenesis in adult 

organisms (Pennisi et al., 2000b; Darby et al., 2001). Sox17 is so far mainly 

associated with endodermal development (Kanai-Azuma et al., 2002). Recently, 

Sox17 has been demonstrated to be expressed in endothelial cells, showing a 

redundant function with Sox18 during angiogenesis (Matsui et al., 2006). Thereby 

this protein group seems to be a promising target for further examinations in vascular 

cells. 

 

4.1.1. Expression of Sox7, Sox17 and Sox18 in different mouse and human 

tissues in vivo 

 

Sox proteins are widely expressed in embryogenesis as well as in adult tissues. 

Often many different Sox proteins are expressed at the same time in the same cell 

(Kuhlbrodt et al., 1998; Lefebvre et al., 1998). The biological read out depends on the 

interaction partner in the different cellular contexts (Kamachi et al., 2000). To get a 

better idea about the relative expression patterns of Sox7, Sox17 and Sox18, the 

distribution of these factors was examined on different mouse and human tissues. 



Results 

42 

Figure 4.1 shows the expression of Sox7, 17 and 18 in mouse tissues, like adipose, 

brain, colon, embryo, heart, kidney, liver, lung, muscle, spleen and testis (A). In (B) 

SOX7 and SOX18 were tested in the same tissues, but from human origin. 

Additionally bone marrow (lane 3) was tested. In (A) one can see that all three factors 

are expressed nearly in each tested mouse tissue, indicating a wide expression. In 

general, the expression of Sox17 is weaker, the strongest expression detectable in 

liver samples. This is consistent with Sox17 expression in endodermal cells, as the 

liver is one of the tissues deriving from the endoderm (Kanai-Azuma et al., 2002).  

               

 

Figure 4.1 Expression of Sox7, Sox17 and Sox18 in different mouse and human tissues. The 
expression pattern of Sox7, Sox17 and Sox18 in mice is shown by RT-PCR (A) checking different 
tissues (1 = adipose, 2 = brain, 3 = colon, 4 = embryo, 5 = heart, 6 = kidney, 7 = liver, 8 = lung, 9 = 
muscle, 10 = spleen, 11 = testis). Part (B) shows the expression of SOX18 and SOX7 in tissues of 
human origin (1 = adipose, 2 = aorta, 3 = bone marrow, 4 = brain, 5 = breast, 6 = colon, 7 = heart, 8 = 
kidney, 9 = liver, 10 = lung, 11 = spleen, 12 = testis), examined by RT-PCR. The human cDNA 
samples were purchased commercially (BioCat GmbH, Germany).  

 

Sox7 and Sox18 show a very similar expression pattern, which underscores the idea 

that both factors might have a compensatory function for each other, which has been 

suggested, as Sox18 deficient mice display only mild defects in skin and heart 

development, but no severe defects in the vasculature (Pennisi et al., 2000). 

Thereby, Sox7 seems to compensate the function of Sox18 in vascular cells. The 

highest expression is detectable in the heart and the lung. In the human tissues (B), 

SOX7 and SOX18 are mainly detectable in the brain and the lung, SOX18 is 
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additionally strongly expressed in breast (lane 5), liver and kidney (lane 7 and 8). 

Also the expression of SOX17 was examined which was so low under normal PCR 

conditions that it is not shown here. At least only a weak expression in the lung was 

detectable. 

 

4.1.2. Expression profile of Sox7, 17 and 18 in different vascular cells in vitro 

 

In a next step, we assayed the expression of the subgroup F Sox proteins (“vascular 

Soxes”), in cultured vascular cells. These were embryonic endothelial progenitor cells 

(T17b), isolated from 7.5 day-old mouse embryos, Human Umbilical Vein Endothelial 

Cells (HUVECs) as mature endothelial cells, and human Coronary Artery Smooth 

Muscle Cells (CASMCs). As the coronary artery is one of the most important arteries 

in the organism, and defects in its vascular cells are associated with severe diseases, 

this subpopulation of vascular SMCs was chosen for further examinations. 

 

               

 

 
Figure 4.2 Expression profiles of subgroup F Sox proteins in vascular cells in vitro. Embryonic 
endothelial progenitor cells (eEPCs), Human Umbilical Vein Endothelial Cells (HUVECs) and Vascular 
Smooth Muscle Cells from the coronary artery (CASMCs) were checked via RT-PCR for expression of 
Sox7, 17 and 18. Sox17 is expressed in vitro in all three cell types, but the only Subgroup F member 
expressed in vascular smooth muscle cells (indicated by arrow). 
 
 

The results showed that SOX17 is the only factor, of the three subgroup F sox 

proteins, which is expressed in vascular smooth muscle cells, whereas SOX7 and 

SOX18 are restricted to endothelial cells (figure 4.2). The expression of Sox17 in 
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smooth muscle cells has not been reported previously, so we decided to study its role 

in this cell type. 

 

4.1.3. Expression of Subgroup F Sox proteins in different mouse tissues in 

vivo 

 

To expand the in vitro results, indicating an expression of Sox7 and Sox18 in 

endothelial cells and an additional expression of Sox17 in vascular SMCs, 

immunofluorescence stainings on different normal mouse tissues have been 

performed. As we were interested in the expression in vascular cells, the three Sox 

proteins have been co-stained with an antibody directed against Pecam-1 (Platelet 

endothelial cell adhesion molecule), an endothelial cell specific marker (Simmons et 

al., 1990). Pecam-1 (CD31) is a receptor, expressed at the cell surface of mature 

endothelial cells. It belongs to the immunoglobulin superfamily and is able to induce 

the expression of other adhesion molecules on naive T-cells (Newman et al., 1990). 

Pecam-1 is mainly capable of mediating cell-matrix and cell-cell adhesion.  

 

Using a Pecam-1 specific antibody for double immunofluorescence stainings, we 

detected an endothelial cell specific expression of Sox7 and Sox18 in different 

mouse tissues, like spleen, kidney, brain, heart, lung, and testis. In figure 3 (A) - (C), 

one can see a heart section showing a big blood vessel stained positive for Sox7 (A) 

and Pecam-1 (B) in the endothelium. The overlay of both sections (C) shows the co-

expression of both factors. Moreover, Sox7 is detectable, via a biotinylated antibody 

in small vessels, invading in metastases of a lung tumor (E) and is moreover 

localized in the endothelium of the big vessels of the surrounding lung tissue (D). As 

angiogenesis takes place during tumor growth, the detection of Sox7 in this 

malignant tissue suggests an important role of Sox7 in these processes. The same 

observation was made for Sox18 (figure 4.3, (F)), which was also co-localized with 

Pecam-1 on a normal heart tissue section. Figure 4 (D) shows a middle size vessel, 

which is positively stained for Sox18, using a FITC-labeled secondary antibody. 

Pecam-1 co-localization is visualized via a Cy-3 labeled secondary antibody. 

Therefore, the vascular in vitro expression pattern of Sox7 and Sox18, showing a 

restricted expression to endothelial cells (4.1.2.), could be confirmed in vivo.  
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Figure 4.3 Expression of Subgroup F Sox proteins Sox7 and Sox18 in the endothelium in vivo. 

(A) A large blood vessel in the heart was stained positive for Sox7 in the endothelium, detected by a 
Cy3-coupled (red color) anti-goat secondary antibody. (B) The same blood vessel was stained with 
Pecam1, an endothelial cell specific marker, using a FITC-labeled (green) secondary antibody. C) The 
overlay of (A) and (B) is showing the co-expression of both proteins in the endothelium. The nuclei 
were stained with DAPI (blue). (D) A lung tumor section was stained with an anti-Sox7 specific 
biotinylated antibody. The arrows indicate two large vessels stained positive for Sox7 (see also the 
magnification in the insert). Figure (E) shows a higher magnification of a metastasis growing in the 
lung. The arrows indicate vessels, which invade in the tumor and were positively stained for Sox7. The 
tumor nodules were generated by injecting LM8 osteosarcoma cells through the tail vein (Wei et al., 
2004). (F) Sox18, stained with a FITC-labeled secondary antibody, is colocalized with Pecam1 (Cy3 
labeled) in the endothelium of a normal heart section (shown by arrows). 
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In comparison to the observations made for Sox7 and Sox18, the third member of 

this subgroup, Sox17, is not expressed in the endothelium, but in the vascular 

smooth muscle cells in vivo (figure 4.4).  

 

 
Figure 4.4 Subgroup F Sox protein Sox17 is expressed in vascular smooth muscle cells. Sox17 
is expressed in the vascular smooth muscle cells of large blood vessels, detected with a FITC-labeled 
secondary antibody (A). In comparison, (B) shows Pecam-1 staining of the endothelium of an adjacent 
aortic section. Figure 4 (C) shows a high magnification of a small section of the aortic vascular wall, 
stained with a FITC-labeled anti-goat antibody against Sox17 (white arrow) and a Cy3-labeled ant-rat 
antibody directed against Pecam-1 (red arrow). (D) and (E) show a co-staining of Sox17 and Pecam-1 
in a liver wildtype section, Sox17 detected with a Cy3 conjugated antibody and Pecam1 with a FITC 
labeled one (indicated by arrows). 
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This is visible in panels (A) and (B) of figure 4. Both sections show a cross section of 

a normal dorsal aorta. In (B), one can see an anti-Pecam-1 staining, using a FITC 

labeled secondary antibody, detecting Pecam-1 in the inner endothelial cell layer of 

the vessel. In contrast to this, Sox17 is detectable in the surrounding multiple layers, 

consisting of the aortic smooth muscle cells ((A) FITC stained). Figure 4.4 (C) shows 

the different expression of Sox17 (FITC, green) and Pecam-1 (Cy3, red) in a higher 

magnification in another aorta section. The location of Sox17 in vascular smooth 

muscle cells was moreover visible in different tissues, like spleen, kidney, brain, 

heart, testis, lung (data not shown), and in the liver (see figure 4 (D) and (E)). 

  

The fact that Sox17 is expressed in vascular smooth muscle cells is a new and 

interesting finding, as this cell type becomes the focus of strategies to manage 

vascular diseases, because of the fact that vascular SMCs are critical for keeping the 

stability of the blood vessels and regulate the blood pressure. Thereby the question, 

regarding the genetic pathways regulated by Sox17 in SMCs and the conditions in 

which Sox17 gets activated in this cell-context, arises. 

 

4.1.4. Response of Subgroup F Sox proteins to different stimuli in vascular 

cells 

 

To begin to understand the context in which Sox7 and Sox18 might play a role in 

endothelial cells, human umbilical vein endothelial cells (HUVECs) were stimulated 

with different substances. Additionally, also the response of Sox17 was examined, as 

it was detected in endothelial progenitor and mature endothelial cells in vitro (see 

Chapter 4.1.2). As stimulatory agents, we used Lipopolysaccharide (LPS), Tumor 

growth factor beta 1 (TGF-β1), and Tumor necrosis factor alpha (TNF-α). Moreover, 

the cells were subjected to hypoxic conditions. LPS, as part of the cell wall of Gram-

negative bacteria, simulates a cellular response to bacterial infection and causes 

activation of immune response intracellular pathways. In vivo, bacteria, which are 

absorbed by phagocytes, like macrophages or dendritic cells, activate via their LPS 

the absorbing cells to secrete cytokines, like IL (Interleukin)-1, IL-8, IL-6, IL-12 and 

TNF-α. Moreover, endothelial cells can be also directly activated by LPS via the Toll-

like receptor 4 (TLR-4), which is highly expressed on their cell surface (Hijiya et al., 

2002). TNF-α, which is also secreted by T-cells, activates the endothelial vessel wall 
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and increases its permeability. As consequence, endothelial cells are able to induce 

macrophages and other leukocytes, like neutrophils, to bind to the vessel wall and to 

invade in the surrounding inflamed tissues. Both signaling pathways, mediated by 

TLR4 and TNF-α induce NF-κB. Thereby, LPS and TNF-α cause very similar 

expression changes in endothelial cells (Magder et al., 2006). Factors, which are 

mainly induced, are chemokines, cell integrity mediating molecules, procoagulant 

factors, and adhesion molecules (Magder et al., 2006). TNF-α and LPS are thereby 

pro-inflammatory, whereas the third stimulus, TGF-β 1, is an anti-inflammatory factor. 

It has been shown, that a low level of TGF-β 1 expression is associated with the 

generation of an excessive inflammatory milieu, accelerating atherosclerosis 

(Grainger et al., 1995). This is accompanied by increased amounts of macrophages 

and T-cells, and a decrease of collagen content (Lutgens et al., 2002; Mallat et al., 

2001). Moreover, TGF-β 1 is on the one hand able to induce apoptosis of endothelial 

cells via activation of the mitogen-activated protein kinase (MAPK) (Hyman et al., 

2002), and on the other hand to initiate differentiation via the SMAD pathway.  

 

Additionally to the treatment of the cells with different reagents, the HUVECs were 

cultured in a hypoxic environment (5% CO2, 2% O2) to imitate the conditions in 

hypoxic areas in disease, like tissue areas after myocardial infarction, stroke areas 

and tumor tissues. It is known that a hypoxic environment is created inside growing 

tumors inducing angiogenesis (Thomlinson et al., 1955) by an array of angiogenic 

factors like VEGF (Folkman et al., 1971), which is activated via the HIF1 (hypoxia-

inducible factor 1)- α pathway (Liu et al., 1995; Forsythe et al., 1996; Shweiki et al., 

1992).  

 

Figure 4.5 shows a panel of differently stimulated mature endothelial cells. HUVECs 

were treated with LPS (100 ng/ml) and TGF-β1 (10 ng/ml) for 1 h, 2 h and 4 h (A). As 

one could see by RT-PCR, assaying the SOX7 mRNA expression, no changes were 

visible. SOX7 is not regulated by LPS, neither by TGF-β1, so it might not play a role 

in immunological or inflammatory reactions at the vessel wall. 
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Figure 4.5 Regulation of SOX7 by different stimuli in endothelial cells. (A) SOX7 expression was 
examined by RT-PCR after stimulation of mature endothelial cells (HUVECs) with LPS (100 ng/ml) 
and TGF-β1 (10 ng/ml). Before treatment, the cells were kept quiescent for 24 h with 0,1% FCS 
containing medium. LPS and TGF-β1 were directly added to the medium. As control, 1X PBS was 
added to the cells with the same volume (100 µl) as LPS and TGF-β1. The cells were harvested after 
the indicated time points. (B) Quiescent HUVECs were incubated in hypoxic conditions (2% O2, 
5%CO2), whereas the control was incubated at normal culture conditions (Normoxia = 21% O2, 5% 
CO2) for the indicated time points. The lysates were tested by RT-PCR for SOX7 expression (N = 
Normoxia, H = Hypoxia). 

 

In contrast to this, figure 4.5 (B), shows that SOX7 is induced as cells reach 

confluency under normal conditions, but this induction is suppressed under Hypoxia 

after 36 h and 48 h. It has been demonstrated, that SOX7 is able to inhibit the 

transcription of wnt target genes, like c-myc, cyclin D1, MMP-7, and VEGF, by 

binding to β-catenin/TCF (T-cell specific factor), which has been shown in vitro by 

luciferase-assays (Takash et al., 2001). In the vasculature, the canonical wnt-

signaling is mainly activated during proliferation of endothelial cells and inactive in the 

mature vasculature (Reviewed by Goodwin and D´Amore 2002). This means an 

accumulation of β-catenin in the cytoplasm, moving to the nucleus and initiating the 

transcription of wnt-responsive genes during proliferation, and a rare β-catenin 

expression in the normal, quiescent state of the adult vasculature (Blankesteijn et al., 

2000; Yano et al., 2000a; Yano et al., 2000b). This knowledge leads to the 

hypothesis that SOX7 plays a key role in keeping the cells quiescent in the healthy 
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condition, whereas if it is downregulated by hypoxia, the cells can start to proliferate 

and differentiate.  

 

In figure 4.6 one can see, that the same, as for SOX7, is the case for SOX17. This 

transcription factor is also downregulated after 24 h, 36 h and 48 h in response to 

Hypoxia.  

                           

Figure 4.6 SOX17 is downregulated in response to Hypoxia in mature endothelial cells. 
HUVECs, kept quiescent for 24 h, were cultured in hypoxic and normoxic conditions for 6 h, 24 h, 36 
h, and 48 h. RNA was isolated, cDNA was prepared and checked for SOX17 expression by RT-PCR 
(N = Normoxia, H = Hypoxia). 

 

For this observation one can take the same explanation like for SOX7, as it has also 

been shown, that Sox17 binds to β-catenin/TCF, thereby inhibiting the wnt-signaling 

pathway (Zorn et al., 1999). It seems that SOX7, as well as SOX17 might be 

important for keeping the non-proliferative state of mature endothelial cells and 

thereby conserving the intact vessel wall. Sox7 and Sox17 might have compensatory 

function for each other in this context. Some compensatory function of both factors 

has already been supposed, as both are co-expressed in the extra-embryonic 

endoderm (Kanai-Azuma et al., 2002; Taniguchi et al., 1999; Takash et al., 2001). 

Another indication is the fact, that both factors are known to cooperatively activate 

the mouse laminin alpha 1 enhancer in undifferentiated F9 cells (Niimi et al., 2004). 

On the other hand, we could detect Sox17 only in vitro in the endothelial cells, but not 

in vivo. Therefore, the response of Sox17 in hypoxic conditions might just give us a 

hint for its function in vascular smooth muscle cells, which will have to be examined 

in further experiments. 

 

As third member of the Subgroup F Sox protein family, SOX18 has been tested for its 

expression in response to TNF-α, LPS and TGF-β1. The cells were stimulated for 2 h 

and 4 h, in case of TNF-α and LPS, and for 1 h, 2 h and 4 h in the case of TGF-β1. It 
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appeared that SOX18 expression is strongly reduced after TNF-α and LPS 

treatment, whereas it is weakly induced by TGF-β1 (figure 4.7). 

 

            

 
Figure 4.7 Regulation of SOX18 by different stimuli in mature endothelial cells. (A) Quiescent 

HUVECs were treated with TNF-α (100 ng/ml) for 4 h and 24 h. Non-treated cells were used as 
control. (B) Cells were stimulated with 100 ng/ml LPS for the indicated time points (2 h and 4 h). The 
control cells were harvested at the same time points as the stimulated cells. (C) Quiescent HUVECs 
were treated with TGF-β1 (10 ng/ml) for 1 h, 2 h and 4 h. The samples of all three assays were tested 
for SOX18 expression by RT-PCR. As control for equal cDNA amounts, the samples were tested for 
aldolase expression. 

  

The fact that SOX18 responds to the cytokines in this manner, leads to the 

assumption, that SOX18 might be a regulator of some target genes, which are 

involved in early inflammatory processes in endothelial cells. But this seems to 

happen in a time-dependent manner, as Sox18 has been shown to be highly 

upregulated after 5 days and 21 days during angiogenesis in wounded tissues 

(Darby et al., 2001). Thereby, Sox18 might regulate both early target genes as well 

as late-target genes during inflammation, like VCAM-1, which has been 

demonstrated to be a target gene of Sox18 (Hosking et al., 2003). The fact that 

SOX18 is downregulated or repressed at such an early time point, but strongly 

expressed or induced at later time points, supposes a bifunctional behavior for 
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SOX18, which has already been demonstrated for many other sox proteins (Yuan et 

al., 1995; Nishimoto et al., 1999) 

 

4.1.5. SOX17 is upregulated in proliferative conditions in human coronary 

artery smooth muscle cells 

 

Since SOX17 is strongly expressed in vascular smooth muscle cells in vitro and in 

vivo, it was interesting to test if SOX17 plays a role in this cell type under proliferative 

conditions. Vascular smooth muscle cells are known to exist in two main states: on 

the one hand the proliferative, and on the other hand the differentiating one. In 

response to environmental changes the appearance of cells can change (Owens et 

al., 1996; Owens et al., 2004). The proliferation of vascular SMCs is a process, which 

follows tube formation from endothelial cells during angiogenesis, leading to the 

maturation of the newly formed blood vessels. Moreover, the proliferation of vascular 

SMCs is also associated with pathological angiogenesis. One main factor, implicated 

in these processes, in the physiological, as well as in the pathological condition, is 

PDGF-BB (Platelet Derived Growth Factor-BB), a growth factor, which stimulates 

proliferation of vascular smooth muscle cells and attracts them to migrate to the new 

outgrowing endothelial tube, being induced at sites of stress (Ross et al., 1993). 

Thereby, PDGF-BB is part of the angiogenic stimuli and by that a first choice to 

induce the proliferation of vascular SMCs.  

 

To examine the effect of PDGF-BB on Sox17 expression in SMCs, the cells were 

kept in serum-free conditions for 32 h and afterwards treated with 50 ng/ml PDGF-

BB. The control cells stayed untreated and were lysed at the same time points as the 

stimulated ones (2 h, 24 h, and 48 h). As shown in figure 8, SOX17 is downregulated 

in culture as time proceeds, but its expression is maintained after 48 hours of PDGF-

BB treatment in vascular SMCs.  

 

As a control for a successful induction, we chose EGR-1, which is known to be 

induced by PDGF-BB at very early time points (15 min – 1 h) after treatment 

(Kamimura et al., 2004; Mundschau et al., 1994). It appears that indeed EGR-1 is 

strongly upregulated at the early time points, indicating a successful stimulation 

(figure 4.8). This result suggests that SOX17 might be activated in vascular SMCs by 
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proliferative signals like. PDGF-BB, but that in contrast to EGR-1, SOX17 is not an 

early-induced gene.   

                  

   
 
Figure 4.8 SOX17 expression is maintained after PDGF-BB stimulation in human coronary 
artery smooth muscle cells. Coronary artery smooth muscle cells, kept quiescent for 32 hours with 
0.1% FCS containing medium, were treated with 10 ng/ml of PDGF-BB for the indicated time periods, 
and RNA samples were analysed by RT-PCR for SOX17 expression. The comparison of lane 5 and 6 
shows that SOX17 expression is maintained at high levels after 48 h PDGF-BB stimulation, whereas it 
is downregulated in control cells (c = control, untreated cells; + =  PDGF-BB stimulated). PCRs, using 
an EGR-1 specific primer, were done on shortly PDGF-BB induced samples to verify that PDGF-BB is 
functional (15 min, 30 min, 1 h, and 2 h). All samples were tested for aldolase to check for equal cDNA 
amounts. 

 

To confirm these results, we chose as another proliferation stimulus low density 

lipoprotein (LDL). By binding to the low density receptor related protein 5/6 (LRP5/6), 

LDL activates the wnt-signaling pathway and thereby the proliferation of vascular 

SMCs (Wang et al., 2004). This stimulation assay should also give us a hint for 

possible implications of SOX17 in pathological conditions, as a high level of LDL in 

the circulating blood leads to the initiation of inflammatory processes at the vessel 

wall, a process resulting in vascular defects and disease, like atherosclerosis 

(Steinberg et al., 1989; Witztum et al., 1993; Ross et al., 1999; Libby et al., 2002).  
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As one can see in figure 9, LDL leads to an induction of SOX17 after 6 h (lane 7) and 

24 h (lane 9) of treatment. Also under these experimental conditions, we used EGR-1 

as control for a successful induction. It is known, that LDL upregulates EGR-1 in 

monocytes via the MEK-ERK1/2 pathway (Harja et al., 2004). Consistent with these 

previous findings, EGR-1 is upregulated very early (30 min) after LDL treatment 

(figure 9). 

         

 

                          

  

Figure 4.9 Low density lipoprotein regulates SOX17 expression in coronary artery smooth 
muscle cells. Quiescent (for 32 h) coronary artery smooth muscle cells were treated with aggregated 
LDL (50 ng/ml) for 2 h, 4 h, 6 h and 24 h. RNA samples were prepared and checked by RT-PCR for 
SOX17 expression. To have comparable amounts of cDNA, the samples were tested for aldolase 
expression. The expression of SOX17 is reduced after 2 h and 4 h of treatment and increased after 6 
h and 24 h of LDL treatment. As control for a successful stimulation, SMCs, treated for 30 min with 
LDL (50 ng/ml) were checked for PAI-1 (Plasminogen Activation Inhibitor-1) and EGR-1.  

 

In summary, we found that both stimuli, PDGF-BB and LDL are able to maintain or 

increase SOX17 expression at later time points after treatment (48 h and 24 h). 

These preliminary results lead to the hypothesis, that SOX17 might be a late 

response gene, raising the possibility that it might be involved in vascular disease in 

response to high LDL levels and in angiogenesis in response to PDGF-BB during 

vessel maturation. After these first results, the question arose about the signaling 

cascade in which SOX17 might be involved on the transcriptional level. 
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4.1.6. EGR-1 induces SOX17 expression in human coronary artery smooth 

muscle cells 

 

To answer the question, in which signaling context SOX17 could participate in human 

vascular smooth muscle cells, we tested if EGR-1, a known transcriptional regulator 

of VSMC proliferation, mostly acting upstream of other transcription factors (Santiago 

et al., 1998), is also able to induce SOX17. Another indication to choose EGR-1 in 

this context is the observation in this work that EGR-1 is, like SOX17 upregulated in 

response to PDGF-BB and LDL but at earlier time points. This has also been 

demonstrated in literature (Kamimura et al., 2004). EGR-1 is for example known to 

induce the angiogenic factor CCN-1 and the expression of PPARgamma1 in vascular 

smooth muscle cells (Grote et al., 2004; Fu et al., 2002). Therefore, we postulated 

that EGR-1 might act upstream of a signaling cascade, in which SOX17 might also 

be involved in the proliferation of vascular SMCs. To test this model, EGR-1 was 

transiently overexpressed in human coronary artery smooth muscle cells and the 

expression level of SOX17 was examined (figure 4.10).  

                                      

 
Figure 4.10 EGR-1 induces the expression of SOX17 and Lama1, Lamb1, Lama2 and Lamγ1 in 
human coronary artery smooth muscle cells. EGR-1, cloned in the IRES-eGFP expression plasmid 
was transiently overexpressed for 24 h in coronary artery smooth muscle cells, using Lipofectamine™ 
2000-assisted transfection. After lysis, RNA was isolated via the Qiagen RNA isolation kit and a 
reverse transcription was done. The cDNA samples were checked by RT-PCR for SOX17, Lama1, 
Lamb1, Lama2 and Lamγ1 expression. SOX17 is strongly upregulated after EGR-1 overexpression. 
The same is true for Lama1, Lamb1 and Lamγ1, whereas Lama2 is only slightly upregulated.  As a 
control for comparablel cDNA amounts, the samples were tested for aldolase expression. Empty 
vector (IRES-eGFP) transfected cells were used as control (c = control; + = EGR-1 transfected). 
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Thereby it appeared that SOX17 is strongly upregulated after 24 h overexpression of 

EGR-1 (figure 4.10). This observation indicates that SOX17 is downstream of EGR-1 

in a genetic pathway that might control activation and/or proliferation of SMCs.   

 

Another indication for an interaction of SOX17 and EGR-1 to regulate common target 

genes in coronary artery SMCs is the fact that EGR-1 overexpression in vascular 

SMCs leads to a strong induction of different members of the laminin family, like 

Lama1, Lamb1, Lama2 and Lamγ1 (figure 4.10) of which Laminin α 1 (Lama1) is a 

known target gene of Sox17 (Niimi et al., 2004).  

 

 
4.1.7. TGF-β 1 reduces SOX17 expression in human coronary artery smooth 

muscle cells 48 hours after stimulation 

 

As it was shown above, SOX17 is inducible by growth stimuli, like PDGF-BB and 

LDL, in vascular SMCs (4.1.5.; Figure 4.8 and 4.9). In contrast, differentiation of 

vascular SMCs is characterized by the expression of smooth muscle marker genes 

like Smooth Muscle (SM)-22alpha, SM-actin, Smoothelin, and Calponin (Ross et al., 

1993; Aikawa et al., 1993; Shanahan et al., 1993). PDGF-BB inhibits differentiation 

(Owens et al., 2004), whereas Tumor growth factor-beta 1 (TGF-β 1) induces the 

differentiation of vascular smooth muscle cells, by upregulating smooth muscle 

contractile marker genes via a TGF-β control element (TCE) in the promoter region of 

these genes (Hautmann et al., 1997). Moreover, TGF-β 1 shows a concentration-

dependent influence on proliferation in vitro, and stimulates the expression of 

extracellular matrix proteins (Ross et al., 1993; Reddy et al., 1993; Saltis et al., 1992; 

Owens et al., 1988). It is secreted by vascular SMCs as well as by macrophages. An 

important transcriptional regulator of the differentiation process in vascular SMCs is 

Notch, promoting phenotypic changes via activation of CBF-1/RBP-Jκ-dependent 

pathways (Morrow et al., 2005). Therefore, TGF-β 1 is important for the maintenance 

of vessel stability and plays a crucial role in the prevention of the development of 

atherosclerosis antagonizing the function of PDGF-BB (Schönherr et al., 1993).  

 

Therefore, we examined if TGF-β 1 regulates SOX17 expression in an opposite 

manner to PDGF-BB. To this end, cultured human coronary artery SMCs were 

treated with 10 ng/ml TGF-β 1 for 30 min, 1 h, 24 h, and 48 h. The control cells were 
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left untreated. Using RT-PCR, SOX17 expression was examined (figure 4.11). The 

comparison between lanes 7 and 8 shows a strong downregulation of SOX17 after 

48 h TGF-β 1 treatment (lane 8) in comparison to the untreated cells (lane 7). 

Interestingly, the suppression takes place at late time points, when induction was 

seen by PDGF-BB. 

 

 

Figure 4.11 TGF-ββββ 1 reduces SOX17 expression in human coronary artery smooth muscle cells 
after 48 hours. In FCS-containing medium cultured human vascular smooth muscle cells were treated 

with 10 ng/ml of TGF-β 1 for 30 min, 1 h, 24 h and 48 h. Therefore TGF-β 1 was directly added to the 
medium-containing plate. RNA was isolated at the indicated time points and tested by RT-PCR for 
SOX17, and as control for aldolase expression. Comparing lanes 7 and 8, a strong reduction of 

SOX17 expression is visible after 48 h of induction (c = control; + = TGF-β 1 treatment). 

 

Taking into account the results from the PDGF-BB and LDL stimulation assays 

(4.1.5.), and the induction of SOX17 by EGR-1 (4.1.6.), we propose that SOX17 is 

involved in the proliferation of vascular SMCs and might be suppressed when they 

are induced to differentiate. As SOX17 is known to be a transcription factor that can 

act in a bifunctional manner, on one hand as activator and on the other hand as 

repressor of transcription, in conjunction with cell-type specific interaction partners, 

we further investigated the SOX17 and EGR-1 interaction. 

 

4.1.8. Sox17 and Egr-1 are co-expressed in murine vascular smooth muscle 

cells in wildtype conditions 

 

To expand the in vitro results, assuming a connection of EGR-1 and SOX17 in 

human vascular smooth muscle cells, the in vivo expression of both factors in normal 

aortic sections was examined. The assay was done by immunofluorescence 

stainings, using a Cy3-labeled secondary antibody in the case of Sox17 and a FITC-

labeled one for the detection of Egr-1 on normal mouse aorta sections. It appeared 
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that Sox17 and Egr-1 are strongly expressed and moreover co-expressed in the 

multiple aortic smooth muscle cell layers (figure 4.12).  

 

Figure 4.12 Sox17 and Egr-1 are co-expressed in vascular smooth muscle cells of normal 
aortas. The figure shows a part of a cross-section of a mouse coronary aorta. (A) Positive staining of 
the aortic smooth muscle cells for Sox17, detected via a Cy3-labeled secondary antibody. (B) shows 
an Egr-1 staining (FITC-labeled secondary antibody) on the same section. The overlap of both 
sections (C) demonstrates the co-expression of both factors (yellow areas). 

 

These results demonstrate that the two transcription factors are co-expressed in 

SMCs in vivo, further supporting an interaction between these two proteins. 

 

4.1.9. Sox17 is strongly expressed in atherosclerotic plaques of ApoE deficient 

mice 

 

The fact that SOX17 is upregulated in proliferative conditions in vascular SMCs 

implies a role of this transcription factor in pathological conditions. The proliferation of 

the SMCs is one of the first steps in vascular abnormalities, like atherosclerosis. 

Therefore, Sox17 expression was examined on a section of an atherosclerotic plaque 

of an ApoE deficient mouse. ApoE is an important mediator of cholesterol uptake in 

the cell and thus keeping the cholesterol concentration in the blood low. If ApoE 

deficient mice are fed with a cholesterol rich diet, in this case for 12 weeks, they start 

to form atherosclerotic plaques as a consequence of high LDL concentrations in the 

blood (Nakashima et al., 1994; Breslow et al., 1996). A disruption of the vessel wall 

(Intima) is followed by local inflammatory processes. As a consequence of high 

cholesterol concentrations in the circulating blood, the endothelial cells get activated 

and start expressing adhesion molecules like ICAM-1 or VCAM-1 at their cell surface. 



Results 

59 

Moreover, selectins, like the endothelial cell specific E-Selectin, are upregulated and 

enable, in conjunction with the adhesion molecules, the binding of leukocytes (mainly 

monocytes and neutrophils), to the endothelial cell surface. The leukocytes roll along 

the endothelium, bind tightly to the wall of the intima and extravasade in the 

subendothelial space, where the monocytes differentiate into macrophages. The 

extravasation is facilitated, as activated ECs show a loss or destabilization of cell-cell 

interactions. In the subendothelial space, activated macrophages start to express 

cytokines and growth factors like PDGF-BB, which activates the proliferation and 

migration of vascular SMCs. As a consequence of these molecular processes, the 

media gets thicker and expands into the lumen of the vessel and leads finally to the 

formation of an atherosclerotic plaque. Thereby the plaques consist mainly of 

vascular SMCs and macrophages as well as extracellular matrix proteins (Gown et 

al., 1986). 

  

As shown in figure 4.13, SOX17 is, additionally to its expression in the aortic smooth 

muscle cells, also strongly expressed in the vascular SMCs of the atherosclerotic 

plaque (indicated by arrows). To clarify the difference to the endothelium, anti-

Pecam-1 co-staining was done, marking the endothelial cells (FITC).  

 

Figure 4.13 Sox17 is strongly expressed in atherosclerotic plaques of ApoE deficient mice. An 
aortic atherosclerotic plaque of an ApoE deficient mouse was stained for Sox17 with a Cy3-labeled 
antibody (indicated by arrows) and a FITC-conjugated Pecam-1 antibody (green). The figure shows an 
overlay of both images. Additionally, the nuclei were stained with DAPI (blue).  



Results 

60 

This observation supports the hypothesis that SOX17 might be involved in the 

proliferation SMCs, as most of the vascular SMCs in a plaque of that early stage (12 

weeks) are still proliferating. 

 

4.1.10. Sox17 and Egr-1 show the same expression pattern in aortic smooth    

muscle cells in pathological conditions 

 

Following the observation that 

Sox17 is expressed in the 

SMCs of an atherosclerotic 

plaque, we examined if it is co-

expressed with Egr-1, which is 

also known to be expressed in 

atherosclerotic plaques 

(McCaffrey et al., 2000). 

Therefore both transcription 

factors were co-stained on a 

section of an atherosclerotic 

plaque of an ApoE deficient 

mouse, as it was done for 

Sox17 in the chapter before. 

For this, fluorescence-labeled 

antibodies were used, a FITC-

labeled one for Egr-1, and a 

Cy3-labeled one for Sox17. As 

shown in figure 4.14, Sox17 

and Egr-1 are co-expressed in 

the smooth muscle cells of the 

atherosclerotic plaque addi-

tionally to the ones of the 

arterial wall itself, as already 

seen before. 

Figure 4.14 Sox17 and Egr-1 show a similar expression pattern in aortic smooth muscle cells in 
pathological conditions. Sox17 (A) and Egr-1 (B) were examined by immuno-fluorescence on 
atherosclerotic plaque sections of an ApoE deficient mouse. For Sox17, a Cy3-conjugated secondary 
antibody against goat was used and for Egr-1 an anti-rabbit FITC-conjugated one. 
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This observation, in addition to the ones made in the stimulation with PDGF-BB and 

LDL assays, supports the notion that Sox17 might play a role in atherosclerosis as a 

target gene or an interaction partner of Egr-1 in vascular SMCs.  

 

4.1.11. Overexpression of EGR-1 in human coronary artery smooth 

muscle cells causes a strong induction of KLF4 

 

To find other proteins that might be part of this signaling cascade, involving EGR-1 

and SOX17, I further analyzed the RNA samples after overexpression of EGR-1, 

using RT-PCR for identifying possible target genes. Proteins, which are known to 

play a role in the proliferation of vascular smooth muscle cells, were tested as first 

candidates. One of these factors is KLF4 (Krüppel-like Factor 4), also known as 

GKLF (Gut-like KLF), a zinc-finger transcription factor that has been shown to be 

induced by PDGF-BB and thereby downregulating expression of differentiation 

marker genes in vascular smooth muscle cells (Liu et al., 2005). KLF4 is considered 

to be a key player in the phenotypic switch of vascular smooth muscle cells from the 

proliferating to the differentiating cell type and is thereby a predicted candidate for 

our signaling model (King et al., 2003). It is moreover known, that KLF4 also needs to 

bind to a partner protein to be transcriptionally active. As in the case of the Sox 

proteins, such interaction partner(s) are cell context dependent. Another parallel 

between KLF4 and SOX17 is their expression in the endoderm in the developing gut 

and the fact that both factors bind to β-catenin (Zhang et al., 2005; Shie et al., 2000; 

Shields et al., 1996; Stone et al., 2002). Moreover, both proteins are able to act as 

activators or repressors of transcriptional activation (Ghaleb et al., 2005). 

                                     

 
Figure 4.15 Overexpression of EGR-1 in human coronary artery smooth muscle cells causes a 
strong induction of KLF4. EGR-1 was transiently overexpressed in coronary artery smooth muscle 
cells via lipofection (Lipofectamine™2000) transfection of the EGR-1-IRES-eGFP expression vector. 
The transfected cells were incubated for 24 h. RNA samples were generated and tested by RT-PCR 
for expression of KLF4 (c = control; + = EGR-1 transfected). 
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Figure 4.15 shows that following transient overexpression of EGR-1 for 24 h in 

human coronary artery smooth muscle cells, KLF4 is strongly induced. By this, it 

seems that KLF4 is, like SOX17, a putative target of EGR-1. In conjunction with the 

previous results, one could conclude that PDGF-BB initiates EGR-1, which thereby 

induces SOX17 and KLF4 in vascular SMCs. This is suspected to happen during 

proliferation and might lead to a suppression of smooth muscle differentiation, as this 

is known to be the case for KLF4. Thereby it is reasonable to assume that the 

concerted action of EGR-1, SOX17 and KLF4 is required to maintain SMCs in the 

proliferative state. This will have to be confirmed by promoter analysis and in vivo via 

co-immunoprecipitations. 

 

4.1.12. The human KLF4 promoter contains a putative SOX17 binding site    

via which SOX17 induces KLF4 expression 

 

As we suspect SOX17, KLF4 and EGR-1 to act in concert in one signaling cascade, 

the question for the order in which the three factors get activated, comes up. As 

EGR-1 is known to be a transcriptional key player, mediating proliferation of vascular 

SMCs, and as the overexpression of EGR-1 induces the expression of SOX17 and 

KLF4, we suppose it to act at the top of the hypothesized cascade. This prediction 

leaves the possibility of an induction of SOX17 directly via EGR-1, or with KLF4 as 

intermediate, being activated via EGR-1. Moreover it might be that SOX17 as well as 

KLF4 get activated in parallel. To bring an order in this signaling pathway, we blasted 

the ENSEMBL sequence of the human KLF4 promoter against the putative binding 

sites of SOX17 (GACAAT) and EGR-1 (CGCCCCCGC/CGCCCGCGC/CTCCCCCG 

C). 

                       

Figure 4.16 The structure of the human KLF4 promoter. Shown is a part of the human KLF4 
coding sequence and 1200 bp upstream of ATG, comprising the promoter region. Blasting the human 
KLF4 sequence, three putative EGR-1 binding sites were identified at position -930, -916, and -660 bp 
(indicated by red boxes) and one putative SOX17 binding site, located 1200 bp upstream of the  
transcriptional initiation site (indicated by the green box). The gene comprises 4 Exons from which 
only 2 Exons are shown here (blue boxes). 
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Thereby it appeared that the promoter region of human KLF4 contains one putative 

SOX17 binding site at around 1200 basepairs upstream of the transcriptional 

initiation site (figure 4.16) and three putative EGR-1 binding sites, located 930, 916 

and 660 bases upstream. Sox17 and Sox7 are known to interact with the sequence 

AACAAT/GACAAT, as they have been shown to bind specifically to this sequence in 

the promoter region of mouse Laminin alpha 1 (Lama1) (Niimi et al., 2004). At least, 

the detection of the putative binding sites raises the possibility that SOX17 

transactivates the human KLF4 promoter. To test if this is at least the case, promoter 

analysis on the human KLF4 promoter were performed. Therefore three promoter 

constructs were cloned in a pGL3 luciferase expression plasmid.  
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Figure 4.17 The expression of human KLF4 is induced by SOX17 via a putative SOX17 binding 
site, located 1200 bp upstream of ATG. To perform luciferase activity assays, three KLF4 promoter 
constructs were cloned in the pGL3 luciferase vector (Promega). One Construct contained the intact 
putative SOX17 binding site and extended 1400 bp upstream of the ATG codon of human KLF4. The 
second construct had point mutations in the putative SOX17 binding site (GACAAT>GGTCCT), 
whereas the third construct was deleted for this site. The cloned constructs were transiently 
transfected by Lipofectamine™ 2000 in HeLa cells. After 24 h the lysates were made and assayed for 
luciferase activity using the luciferase kit of promega. The graphic shows the relative luciferase activity 
measured in a chemiluminometer. The first sample shows the unmutated construct, co-transfected 
with the CMV-vector. Sample 2 was also transfected with construct 1, but moreover co-transfected 
with SOX17-CMV. The third and fourth samples contain the mutated construct, first co-transfected with 
CMV (sample 3), and in sample 4 co-transfected with SOX17-CMV. The last sample contains the 
deleted construct, co-transfected with the CMV vector. The measurements were three times repeated. 
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One construct comprises the intact putative SOX17 binding site. In the second 

construct the putative site was mutated (GACAAT>GGTCCT) and in the third 

construct the binding site was deleted. In the latter construct, only the putative 

SOX17 binding site was excluded from the cloned construct. All three constructs 

were transiently transfected in HeLa cells and co-transfected, in case of the control, 

with an “empty” CMV vector, and with the human SOX17-CMV expression plasmid, 

to test if SOX17 transiently induces KLF4 expression, at least in case of the intact 

and the mutated construct. To exclude any different effects of the used promoter on 

the induction of the luciferase activity, the CMV vector was chosen as control, as the 

human SOX17 sequence was also cloned into this plasmid. Therefore the measured 

values should be comparable. 

 

Lane 1 and 2 show the transfection of the non-mutated construct, co-transfected with 

the empty CMV vector (lane 1) and with the SOX17 expression plasmid (lane 2), 

where it appears, that SOX17 is able to induce KLF4 expression. In comparison to 

the CMV-co-transfection, the induction is 30 % higher, as the activity of the 

transfected construct shows an activity of around 990, whereas the sample with the 

co-transfected SOX17-CMV plasmid has a mean value of 1300. This induction was 

abrogated, using the mutated and deleted constructs (figure 4.17 A, 2 and 3). In lane 

3 and 4, the construct with the mutated binding site (GACAAT>GGTCCT) is co-

transfected with the CMV-vector (lane 3) and with the SOX17-CMV expression 

plasmid (lane 4). Comparing sample 2 and 4 it appears that the luciferase activity is 

reduced from 1300 to 279. Moreover, if one compares sample 2 with sample 5, which 

shows the co-transfection of the promoter construct, deleted for the putative Sox17 

binding site, with the empty CMV vector, it appears that the activity of luciferase is 

reduced from 1300 to 132. It is obvious, that the measured values are relatively low. 

A possilbe explanation for this observation might be the fact, that all samples were 

co-transfected with a CMV-promoter containing construct. This might due to a 

reduction of the luciferase activity. Nevertheless, the results were repeatable and 

indicate that the human SOX17-CMV construct is able to induce human KLF4 

expression. A putative SOX17 binding site (GACAAT), located 1200 basepairs 

upstream of the start-codon, seems to be essential for this transactivation. 
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4.1.13. SOX17, EGR-1 and KLF4 are supposed to bind to each other in 

human coronary artery smooth muscle cells in vivo. 

 

All previous results we had so far led us to the hypothesis that all three factors might 

interact and therefore bind to each other in human vascular smooth muscle cells. To 

prove this, immuno- and co-immunoprecipitations were performed. Therefore 

cultured and proliferating coronary artery smooth muscle cells were used. The cells 

were scraped, washed twice with 1X PBS and afterwards resuspended in lysis buffer, 

containing 1% NP-40. After incubation on ice (20 min), the cells were sonicated and 

the resulting cell fragments were pelleted by centrifugation. The clear supernatant 

was incubated overnight at 4°C with the primary antibody and A-Sepharose. Next 

day, the lysates were washed five times with lysis buffer, the pellet was resuspended 

in loading dye (containing 0.1M DTT) and boiled at 95°C for 10 min. At least 

Western-Blots were done.  

 

All three proteins could be immunoprecipitated from the human CASMCs, as well as 

c-myc, which was chosen as control for a non-binding protein. As isotype control, 

3F10, an antibody, directed against a Hemaglutinin tag, was used. All samples were 

checked on one gel for SOX17 expression using a SOX17 specific primary antibody 

from SantaCruz. As one can see in figure 4.18, SOX17 protein is detectable in the 

SOX17, EGR-1 and KLF4 precipitated samples. In contrast to this the controls are 

negative for SOX17.   

 

                                 

Figure 4.18 SOX17 is detectable in EGR-1 and KLF4 precipitated samples of human coronary 
artery smooth muscle cells in vivo. The lysates of the immunoprecipitations of EGR-1, KLF4, 
SOX17, 3F10 and c-myc, as control for a non-SOX17-binding protein, were loaded on a 12.5 % SDS 
gel. The blot was analysed with a SOX17 specific primary antibody (goat, polyclonal; SantaCruz). 
Except of the two controls (IgG and c-myc), SOX17 is detectable in all three samples (lane 1 - 3). 
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For the precipitation of the proteins, the same concentration of antibody was used    

(1 µg/ml). Therefore it seems surprising that the amount of SOX17 detected in the 

EGR-1 precipitated sample is comparable to the amount of protein in the SOX17 

precipitated sample. As it is unreasonable that the whole pool of SOX17 protein in 

the cell is bound specifically to EGR-1, this observation might be due to different 

precipitation capacities of the antibodies. At least there might also be differences in 

the amount of whole protein for the reason of a loss of protein during the precipitation 

protocol. 

 

Nevertheless, the observations made in this co-immunoprecipitation lead us to the 

conclusion that all three transcription factors might specifically bind to each other in 

human CASMCs, building a stable protein complex. This complex could act as 

activator of proliferation associated genes and repress the expression of smooth 

muscle differentiation marker genes, as it was already shown for KLF4 (Dandre et al., 

2004; Kawai-Kowase and Owens, 2006; Yoshida et al., 2006; Holycross et al., 1992). 

Of course these results would still have to be confirmed in further analysis, using 

different controls, checking for all antibody subtypes, as the used antibodies for EGR-

1, KLF4 and SOX17 are polyclonal. Moreover, one could perform the co-

immunoprecipitations also the other way round, meaning a western-blot of EGR-1 on 

SOX17 and KLF4 precipitated lysates and a western-blot of KLF4 on SOX17 and 

EGR-1 precipitated samples. If these Western-Blots would show the same result, one 

could at least conclude that all three factors bind specifcally to each other in vascular 

SMCs, and as this complex is precipitated under proliferative conditions, indicate an 

involvement of the three interacting factors in promoting angiogenic processes, e.g. 

in pathological conditions, like atherosclerosis. 

 

4.2. The FunGenES project 
 

FunGenES (Functional Genomics in Engineered ES-cells) is a consortium whose 

goal is the identification and characterization of organospecific markers during 

embryonic development. Another objective is the development of new cellular and 

molecular tools to characterize gene function and to develop new ES-cell derived 

methods for high throughput screening of the toxicity of small molecules that are 

candidates for therapeutic interventions. The results could enable future therapeutic 

strategies for repair or regeneration of damaged or diseased organs, which might be 
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an alternative to organ transplantations. Moreover, the use of ES-cell derived screens 

could replace the use of animals in drug screening. 

 

As endothelial cells and vascular smooth muscle cells derive mainly from the 

mesoderm, our goal was the identification and characterization of transcription 

factors involved in the differentiation of this lineage.  

 

4.2.1. Differentiation of CGR8 ES-cells  

 

The cultured mouse embryonic stem (ES) cells originate from the inner cell mass of 

the blastocyst of a day 3.5 old embryo. These cells are pluripotent, being able to 

differentiate in all three germ layers, comprising endoderm, ectoderm and mesoderm. 

As we are interested in vascular cells, like endothelial cells and vascular smooth 

muscle cells, we concentrated on the mesodermal lineage and the factors which are 

specific for mesoderm development, like e.g. Flk-1 (Shalaby et al., 1995). The 

differentiation of ES-cells mimics the embryonic development and it was shown that 

the in vivo expression of different cell lineage markers follows a comparable pattern 

to the in vitro differentiation. Thereby the ES-cell differentiation assay is a good 

model to examine the factors that are responsible for the cell lineage specification.  

 

Figure 4.19 shows an overview of the differentiation protocol that was used in this 

study. The trypsinized cells were centrifuged and resuspended in differentiation 

medium, containing 20% FCS (Foetal Calf Serum), to a final concentration of 2.4 x 

104. Afterwards the cells were placed in a drop-wise manner on the inner side of the 

lid of the plate (A). One drop of 20 µl contained around 500 cells. The cells stay like 

this for two days, accumulating at the bottom of the drop and starting differentiation 

(B). Afterwards the resulting embryoid bodies (EBs) were spilled in 10 cm 

bacteriological plates, containing 10 ml differentiation medium (C). The differentiating 

EBs stayed in suspension and grew for two more days. For further assays, in which a 

calculated number of cells/EBs is necessary, the EBs were then plated on e.g. 24-

well plates (D). Here, the cells differentiated for 7 - 10 days and were analyzed 

afterwards, e.g. by immunofluorescence stainings or RT-PCR.    
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Figure 4.19 Differentiation of ES-cells (CGR8) using the hanging drop method. (A) 
Undifferentiated CGR8 embryonic stem cells (of a 3.5 day old embryo) were, up to a confluence of 70 
- 80%, cultured on gelatin-coated plates. The cells were trypsinized, washed with 1X PBS and 
resuspended in 20% FCS containing differentiation medium to a final concentration of 2.4 x 10

4
. The 

cells were placed in drops on the top of a 10 cm plate, each drop containing around 500 cells. Two 
days later the resulting embryoid bodies (B) were transferred in 10 cm bacteriological plates, 
containing 10 ml differentiation medium, where the EBs grow for around 5 - 7 days. The EBs were 
then plated in 24 well plates, growing for a few more days (3 - 6 days). The generated EBs 
differentiated in all three germ layers, mesoderm, endoderm and ectoderm.  

 

Figure 4.20 (A) shows undifferentiated ES-cells, growing on a gelatin-coated plate. 

For the differentiation, the cells have to reach a confluence of around 70 - 80%. 

Figure 4.20 (B) shows 4 day old EBs cultured in differentiation medium. (C) and (D) 

are immunofluorescence stainings of Pecam-1 (C) and smooth muscle actin (D). 
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Figure 4.20 Differentiation of ES-cells (CGR8) by the hanging drop method. (A) Undifferentiated 
CGR8 embryonic stem cells with a confluence of 60 - 70%, cultured on gelatin-coated plates. (B) 4 
day old EBs, generated by cell-suspensions, cultured in 10 cm bacteriological plates, containing 10 ml 
differentiation medium. At day 14 of embryonic development, the EBs, plated in 24 well plates, were 
stained by immunofluorescence with Pecam-1, detecting endothelial cells (C) and with smooth muscle 
actin, as cell-specific marker for vascular SMCs (D).  
 
 

In this differentiation protocol, no cell lineage specific supplements were used so all 

various cell types can grow. At least it could be proven that the generation of  

mesoderm-deriving cell-lineages, in this case meaning endothelial and vascular 

smooth mucle cells, using the “hanging-drop” method, is possible. Using specific 

growth factors for the cultivation of the differentiating ES-cells, like VEGF or FGF, 

one could further on determine the differentiation of the ES-cells into endothelial 

specific lineages. 
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4.2.2. Expression profile of different lineage specific markers 

 

To evaluate the in vitro expression pattern of the differentiating ES-cells, we tested 

for different lineage specific marker genes, like Flk-1 as an early endothelial marker, 

and VE-Cadherin, Ang2, and Tie2 as markers for mature endothelial cells (Sato et 

al., 1995). Moreover, Sox7, 17 and 18 were tested. Therefore every second day, 

lysates were taken and analysed via RT-PCR (figure 4.21).  

 

In case of the vascular cells, one can take as example Flk-1, which comes up at day 

4, which is not surprising as it is known to be an early mesodermal marker, in 

comparison to VE-Cadherin, which appears at day 6 as a marker for mature 

endothelial cells. Sox7 and Sox18 are co-expressed with VE-Cadherin, 

Angiopoietin2, and Tie2, which are all endothelial-cell specific markers. This 

underlines the endothelial cell specific expression of Sox7 and Sox18, and the 

knowledge that both factors functionally compensate each other. As VCAM-1 has 

been demonstrated to be a direct target of Sox18, it is not surprising that both factors 

come up in parallel at day 6. 

 

In contrast to Sox7 and Sox18, Sox17 as third member of subgroup F comes up 

earlier, in parallel with Flk-1 at day 4. This is not unexpected, as Sox17 is known to 

be an early endodermal marker, arising around that time point during embryonic 

development (Kanai-Azuma et al., 2002).  

 

As early mesodermal cells (Flk-1+) are not only differentiating in endothelial, but also 

in some subtypes of vascular smooth muscle cells, this parallel expression pattern of 

Sox17 and Flk-1 could also already give an implication for an involvement of Sox17 

in such differentiation processes, especially after the finding that this transcription 

factor is expressed in mature VSMCs in adult human, but also in adult mice (see the 

results of the first part of this thesis; 4.1.2; 4.1.9). 
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Figure 4.21 Expression pattern of CGR8 ES-cells during differentiation. The CGR8 cells were 
differentiated via the hanging drop method. Lysates were taken of the differentiating ES-cells each 
second day until day 14. Day 0 indicates the undifferentiated ES-cells. RNA was isolated and cDNA 
generated, which was then checked for different lineage markers via RT-PCR. Sox17 comes up at day 
4 in parallel with Flk-1, an early endothelial marker, indicated by the red box. In comparison to this, 
mature endothelial markers, to which also Sox7 and Sox18 belong, come up at day 6 of ES-cell 
differentiation (blue box).  
 

 

4.2.3. Klf4 binds to Sox17 in 4 day old embryoid bodies 

 

Sox17 and Klf4 are known to play a crucial role in endoderm development, but they 

have not been shown to interact with each other in this context (Kanai-Azuma et al., 

2002; Gardiner et al., 2005). Because of the observation that both factors seem to 

bind to each other in vascular smooth muscle cells, an interaction between the two 

factors might also take place during embryonic development. To test this idea, Sox17 
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and Klf4 were immunoprecipitated in parallel from 4 day old embryoid bodies (EBs). 

Assaying these samples for their counterparts, it appeared that Klf4 is detectable in 

the Sox17 immunoprecipitation (figure 4.22). By this it seems that both factors could 

bind to each other at day 4 of EB differentiation.  

                          

          

Figure 4.22 Klf4 is detectable in a Sox17 precipitated sample of 4 day old embryoid bodies in 

vivo. 3F10 (IgG/Isotype control), Sox17 and Klf4 were precipitated from 4 day old EBs and analyzed 
via Western-Blot, using an antibody raised against Klf4 (polyclonal, SantaCruz). Klf4 is detected at a 
size of 55kDa. 

 

Taking into account the results in the smooth muscle cells described above, where 

SOX17, KLF4 and EGR-1 seem to build a protein complex, this might be also the 

case during embryonic development, even for Sox17 and Klf4. One would still have 

to examine, if both factors are detectable in an Egr-1 precipitated sample, and the 

other way round, and test for more controls, like different isotype controls as the used 

antibodies for the three transcription factors are polyclonal. These preliminary 

observations lead to the assumption that this protein complex could be an important 

transcriptional regulator in different cell contexts and might be involved in the 

differentiaton of vascular SMCs, as we detect the same interaction pattern in this cell 

type.   

 

4.2.4. ββββ-catenin is supposed to enter a protein complex comprising Sox17 and 

Klf4 in differentiating mouse ES-cells 

 

It has been previously shown that Sox17 can bind to β-catenin during wnt-pathway 

signaling pathway and thereby inhibit the transcription of wnt-responsive genes (Zorn 

et al., 1999). On the other hand it has also been demonstrated that Sox17 binds to β-

catenin for cooperatively activating the transcription of endodermal target genes 
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(Sinner et al., 2004). Also for KLF4 it is known that it binds to β-catenin (Zhang et al., 

2006). For both factors the binding to β-catenin has so far been associated with 

endodermal development. With this knowledge it appeared to be interesting to test if 

the factors interact with each other, bind to β-catenin and initiate or inhibit thereby the 

transcription of downstream targets in the context of endodermal or mesodermal 

development.  

                                     

  

  
Figure 4.23 ββββ-catenin builds a complex with Sox17 at day 4 of embryonic body differentiation. 
The immunoprecipitated 3F10 (isotype control), Sox17, Klf4, Egr-1 and β-catenin fractions were 
loaded on a 12.5 % SDS-gel and analyzed via a Sox17 specific antibody (polyclonal, SantaCruz). 
 

As one can see in figure 4.23, Sox17 is detectable in high amounts in the β-catenin 

precipitated sample. The fact that the amount of Sox17 protein is much higher in this  

sample and the one showing the precipitated Klf4 fraction, might be due to the fact, 

that the antibodies have different precipitation capacities. It seems that the Sox17 

antibody has a relatively low capacity, which is consistent with the result from the 

immunoprecipitations done in CASMCs, whereas the Klf4 antibody has a good 

binding capacity, as well as the one of β-catenin. Moreover one could assume that 

Klf4 and β-catenin strongly and with high efficiency bind to Sox17 in differentiating 

ES-cells. At least, in the β-catenin immunoprecipitation, using a rabbit polyclonal 

antibody, it occurred that this antibody has a high efficiency, as huge amounts of 

protein were detectable in the β-catenin specific western-blot. Nevertheless, to 

exclude any artefacts, one would have to equalize the protein amounts of the 

different samples to make conclusions about the amount of precipitated protein.  At 

least, Sox17 seems to bind to β-catenin, and moreover also to Egr-1 in differentiating 

ES-cells. The co-immunoprecipitation of SOX17 and β-catenin was also tried for 

CASMCs, where the β-catenin precipitated sample was negative for SOX17. 

Therefore a complex, consisting of Sox17, Klf4, and Egr-1 might be involved in 
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signaling processes in different cell types, whereas β-catenin might cell-type 

specifically bind to this complex at day 4 of EB differentiation and the resulting 

complex could be involved in differentiation processes e.g. in direction of endodermal 

lineages. 

I
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5. Discussion 
 

5.1. A new role for SOX17 as potential interaction partner of EGR-1 and 
KLF4 in human coronary artery smooth muscle cells 

 

The vessel wall of arteries is composed of the intima, a single layer of endothelial 

cells, which is surrounded by multiple layers of vascular SMCs, building the media.   

A third layer forms the adventitia, in form of fiber and collagen extracellular matrix, 

embedding the blood vessels within the surrounding tissue. The main function of the 

vascular SMCs is to provide the artery with elastic properties for maintaining the 

vascular tone in response to environmental stimuli. An important feature of the 

vascular SMCs is their ability to occur in two different states, the proliferative and 

migrating state during vascular remodeling processes, and the differentiated one in 

the quiescent periods. 

 

Atherosclerosis is a chronic inflammatory disease causing plaque formation, in 

whose progression the proliferation of vascular SMCs plays a major role (Ross et al., 

1999; Hansson et al., 2005). As one of the fist steps in atherosclerosis, endothelial 

cells get activated, the endothelial-endothelial cell contacts get disrupted and 

monocytes infiltrate into the subendothelial space, where they differentiate into 

macrophages. By secretion of cytokines and growth factors, like Platelet Derived 

Growth Factor BB (PDGF-BB) from the endothelial cells and the macrophages, but 

also from the vascular SMCs themselves, the quiescent, differentiated vascular 

SMCs become activated to transform into migrating, proliferative SMCs (Schönherr et 

al., 1993). Therefore, vascular SMCs and the examination of the signaling cascades 

leading to their activation might be an alternative strategy to find molecular targets for 

therapeutic intervention in atherosclerosis. 

 

At the beginning of this thesis I discovered, that Sox17, belonging to subgroup F of 

the Sox proteins, is expressed in vascular SMCs in various normal tissues. 

Therefore, this factor and its possible implications or its interaction with other 

proteins, in vascular processes went into the focus of this work. 
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5.1.1. Expression pattern of the subgroup F Sox proteins in vitro and in vivo in 

different vascular cells 

 

To identify possible signaling pathways/conditions in which Sox7, 17 and 18 might be 

involved in mature endothelial cells (HUVECs), the cells were stimulated with LPS 

and TNF-α, as pro-inflammatory stimuli, and with TGF-β1, as an anti-inflammatory 

substance. Moreover the cells were cultured in hypoxic conditions, to mimic 

angiogenic processes, e. g. during tumor vascularization. The observation that Sox7 

and Sox17 are downregulated in response to hypoxia (4.1.4.), might be connected to 

the fact, that both factors are able to inhibit wnt-signaling by binding to β-catenin 

(Zorn et al., 1999). It is known, that β-catenin is upregulated in endothelial cells after 

myocardial infarction, being involved in neovascularization processes in the infarcted 

area, where it induces the expression of the vascular growth factor VEGF 

(Blankesteijn et al., 2000). This knowledge leads to the hypothesis, that both factors 

need to be downregulated in endothelial cells in pathological conditions in order for 

neovascularization mediated in part by β-catenin, to take place.  

 

The in vitro expression analysis showed moreover a response of Sox18 to LPS, TNF-

α and TGF-β1. After LPS and TNF-α treatment, Sox18 was downregulated after 4 

hours, whereas it was slightly upregulated after TGF-β1 stimulation. As LPS and 

TNF-α are pro-inflammatory substances, it might be that Sox18 represses in the 

normal state of the mature endothelial cell the expression of early inflammatory 

response genes. When this state gets disrupted, Sox18 might have to be 

downregulated to enable the transcription of such inflammation mediating genes. In 

contrast, TGF-β1 is an anti-inflammatory stimulus. The observation that Sox18 is 

slightly upregulated by TGF-β1 leads to the possibility, that Sox18 might be involved 

in anti-inflammatory processes, activating genes, which are implicated in theses 

processes, or repressing pro-inflammatory genes. It might be important for the 

conservation of the quiescent state of endothelial cells. As the time point (4 hours) of 

Sox18 response to TGF-β1, correlates with the ones from the previous assay, using 

TNF-α and LPS, the latter explanation seems to be more plausible. 

 

Examining the expression profile of Sox7, Sox17 and Sox18, it appeared that Sox7 

and Sox18 are exclusively expressed in endothelial cells in different mouse tissues 
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(brain, spleen, kidney, testis, heart, liver, and lung), in vitro and in vivo (see results 

chapter 4.1.3.). This is not surprising, as it has been shown that both factors are 

expressed in blood vessels during embryogenesis and in adult organisms during 

angiogenic processes, e.g. in vascular repair (Darby et al., 2001; Pennisi et al., 2000; 

Downes et al., 2001).  

 

In contrast to this, the observation that Sox17 is expressed in vascular smooth 

muscle cells, which build the media of the big blood vessels, is a new finding. So far, 

Sox17 has been demonstrated to be critical for the development of the definitive 

endoderm and to be expressed during mouse spermatogenesis (Kanai-Azuma et al., 

2002; Kanai et al., 1996). Moreover, an expression in endothelial cells has recently 

been shown (Matsui et al., 2006). 

 

The in vitro expression profile of Sox7, 17 and 18 in different vascular cells indicates 

that Sox17 is exclusively expressed in vascular smooth muscle cells, in comparison 

to Sox7 and Sox18, which are present in endothelial cells.  

 

5.1.2. SOX17 expression is increased in proliferative and decreased in 

differentiating conditions in human coronary artery smooth muscle cells  

 

In Chapter 4.1.5., it could be demonstrated, that Platelet Derived Growth Factor 

(PDGF-BB) and Low Density Lipoprotein (LDL) maintain/induce high SOX17 

expression in coronary artery smooth muscle cells, whereas in the untreated control 

cells, expression of SOX17 is downregulated as consequence of a low serum 

concentration in the culture medium (0.1%). Already this observation implies that 

SOX17 expression and its maintenance are dependent on proliferation-promoting 

extracellular stimuli, like in this case the FCS in the culture medium. PDGF-BB and 

LDL are substances, which are known to induce proliferation of vascular SMCs 

(VSMCs), and Sox17 seems to be involved in these processes (Libby et al., 1985; 

Scott-Burden et al., 1989). The proliferation and migration of the VSMCs plays an 

important role in the outgrowth of new blood vessels, during vasculogenesis and 

angiogenesis, but also in pathological conditions, as it is the case during the 

formation of atherosclerotic plaques. In this case, Sox17 might have an activating or 

repressing role for its target genes. Many Sox proteins, like Sox17, have been 

described as bifunctional proteins, acting as activators and/or repressors of 
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transcription of their target genes. Sox17 is known to induce the expression of 

Laminin alpha1, but represses the transcription of β-catenin responsive genes (Niimi 

et al., 2004; Zorn et al., 1999). The biological readout, mediated by most of the Sox 

proteins, depends on the cell context and the interaction partner/s (Kamachi et al., 

2000). This would also be the case for the induction of Sox17 by LDL after 24 hours. 

Via binding to LRP5/6, LDL is known to induce the wnt-signaling pathway, which 

causes the proliferation of vascular smooth muscle cells (Wang et al., 2004). In a 

time-dependent manner, an upregulation of Sox17 after 24 hours might cause an 

inhibition of the wnt-signaling pathway. On the other hand, it could also be the other 

way round, as Sox17 has also been described to interact with β-catenin to activate 

the transcription of endodermal genes, like Foxa1, Foxa2, and Gata4-6 (Clements et 

al., 1999; Weber et al., 2000; Sinner et al., 2004). Taking into account the following 

results, and the ones made in the PDGF-BB stimulation assay, it would be more 

reasonable to predict SOX17 in a growth promoting role in VSMCs in response to 

LDL. This could be supported by the notion, that LDL is known to induce, besides c-

fos and egr-1, the expression of platelet-derived growth factor and platelet-derived 

growth factor receptors in VSMCs (Ross, 1990; Sachinidis et al., 1993). As the LDL 

initiated signaling cascade comprises the activation of Mitogen-activated protein 

kinases (MAPK), like ERK, and as the same is the case for the PDGF-BB signaling 

cascade, one could suppose Sox17, downstream of Egr-1, which is also induced by 

LDL and PDGF-BB via ERK1/2, downstream of a MAP-kinase mediated pathway, 

with the consequence of transcription of proliferation-promoting genes (Metzler et al., 

1999; Deigner et al., 1996; Kusuhara et al., 1997; Sachinidis et al., 1997; Harja et al., 

2004). 

 

As TGF-β 1 is an antagonist of PDGF-BB, inducing the differentiation of vascular 

SMCs, we used this factor for stimulation assays on coronary artery smooth muscle 

cells (Hautman et al., 1997; Schönherr et al., 1993). Thereby, we expected a 

downregulation of SOX17 in response to TGF-β 1 treatment as opposing effect to 

maintenance/induction of SOX17 after PDGF-BB and LDL treatment. This is indeed 

the case after 48 hours. The fact that Sox17 is downregulated by TGF-β1 correlates 

with the induction of β-catenin by TGF-β 1 (Masszi et al., 2004). Sox17 is known to 

inhibit β-catenin mediated activation of transcription, binding to the β-catenin/TCF 

complex (Zorn et al., 1999). In contrast, TGF-β1 enhances the binding of β-catenin to 
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TCF (T-cell factor transcription factor) and a cross-talk between the TGF-β1 and wnt-

signaling pathway has been shown, resulting in the transcription of wnt-responsive 

genes (Masszi et al., 2004; Warner et al., 2005). Thereby, the observation that TGF-

β1 reduces the expression of Sox17 after 48 hours, leads to the assumption, that the 

wnt-signaling gets activated. This pathway is known, among others, to play a role in 

differentiation processes during embryogenesis, as well as in adult organisms 

(Huelsken, et al., 2000; Mukhopadhyay et al., 2001; Heisenberg et al., 2001; 

Kratochwil et al., 2002). Another possibility is of course, as Sox17 acts bifunctional, 

and responds to growth-promoting stimuli in VSMCs, that Sox17 transcription has to 

be repressed, to prevent the activation of transcription of proliferation-associated 

genes and to influence the phenotype of the VSMCs in direction of a differentiated 

and quiescent state. To get a more concrete idea about this, one could make a long-

lasting time course of TGF-β1 stimulation on VSMCs and afterwards examine the 

expression of known Sox17 target genes like laminin alpha1 and fibronectin e.g. after 

60 or 72 hours. 

 

5.1.3. EGR-1 induces SOX17 expression in human coronary artery smooth 

muscle cells 

 

The fact, that the overexpression of EGR-1 in coronary artery smooth muscle cells 

leads to a strong induction of SOX17 is not surprising, as EGR-1 is known to respond 

to PDGF-BB, and thereby mediating proliferation of vascular SMCs as a 

transcriptional regulator, mostly acting upstream of other transcription factors, but 

downstream of Src and ERK kinases (Kamimura et al., 2004). Sox17 also responds 

to PDGF-BB and therefore seems to be a promising candidate, acting downstream or 

in conjunction with EGR-1 in a signaling cascade, which leads to cell proliferation of 

vascular SMCs. Another fact, which underlines this hypothesis, is that both factors 

have similar target genes, like Laminin α1 (Lama1) and Fibronectin (Shirai et al., 

2004; Baron et al., 2005). Sox17 is known to induce the expression of Lama1 in F9 

cells (Niimi et al., 2004). Moreover, it appears, that an overexpression of EGR-1 in 

coronary artery smooth muscle cells leads to a strong induction of Lama1, Lama2, 

Lamb1, and Lamγ1 (4.1.6., figure 11). This observation reinforces the idea of an 

interaction between both factors, to regulate gene expression. As the laminins and 

fibronectin, both belong to an important group of extracellular matrix proteins, 
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initiating proliferation and mediating migration of VSMCs, this parallel already 

implicates the biological read out of a signaling cascade, comprising Egr-1 and 

Sox17 in VSMCs (Majesky et al., 1990; Hedin et al., 1988; Ruoslantiet et al., 1988). 

 

5.1.4. Sox17 and Egr-1 are co-expressed in murine vascular smooth muscle 

cells in normal and pathological conditions 

 

The in vitro data, implicating Sox17 and EGR-1 in growth conditions in coronary 

artery smooth muscle cells, were supported by the in vivo data, showing a co-

expression of both factors in vascular smooth muscle cells in normal conditions and 

in atherosclerotic lesions (4.1.8., 4.1.10). Egr-1 expression has already been 

demonstrated to be upregulated in neointima after vascular injury and in 

atherosclerotic lesions (McCaffrey et al., 2000; Santiago et al., 1999a). Therefore, a 

knockdown of Egr-1, using siRNA technology, causes a decrease of intimal 

hyperplasia in balloon-injured carotid through inhibiting smooth muscle cell 

proliferation and migration (Santiago et al., 1999b; Fahmy and Khachigian, 2002). 

Thereby, Egr-1 is presumed as a key regulator of signaling processes after vascular 

injury, initiating proliferation. By that, the observation that Egr-1 is strongly expressed 

in the vascular smooth muscle cells in the atherosclerotic plaque and moreover co-

expressed with Sox17, enforces the hypothesis that Sox17 is involved in the 

proliferation of vascular SMCs in normal and pathological conditions in cooperation 

with Egr-1.  

 

5.1.5. KLF4 expression is induced by overexpression of EGR-1 in human 

coronary artery smooth muscle and by SOX17 in promoter studies 

 

KLF4 was one of the first candidates to look for proteins involved in a signaling 

cascade that comprises EGR-1 and SOX17 in the proliferation of vascular SMCs. 

KLF4 and EGR-1 might also act as interaction partner/s for SOX17, which needs, like 

other Sox proteins, to bind to another protein to be transcriptionally active (Kuhlbrodt 

et al., 1998; Lefebvre et al., 1998). The reason for choosing KLF4 was that it is 

involved in the regulation of the phenotypic switch of vascular SMCs, downregulating 

SMC marker genes, like SM22α, SM-actin, SMMHC (Smooth Muscle Myosin Heavy 

Chain) and myocardin, and is thereby associated with proliferation of the vascular 
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SMCs (Liu et al., 2005). Measuring KLF4 expression after EGR-1 gain-of-function 

studies in SMCs, it appeared that KLF4 is strongly upregulated (4.1.11.). This result 

and, the fact that KLF4 is inducible by PDGF-BB (Liu et al., 2005) lead to the 

hypothesis that PDGF-BB induces EGR-1, which in turn induces KLF4. As we 

postulate the same for Sox17, the question arises if these factors regulate the 

expression of each other in a complex regulatory loop. The fact, that Sox17 and Klf4 

have already been implicated in such an autoregulatory loop, Sox17 and Gata4 

inducing each other, and Klf4, inducing its own gene expression, makes this notion 

reasonable (Sinner et al., 2006; Mahatan et al., 1999). 

 

To begin to address this hypothesis, the human KLF4 promoter was screened for 

putative SOX17 binding sites using previously characterized Sox17 binding 

sequences (GACAAT/AACAAT). SOX17 has been shown to activate the expression 

of Laminin α 1 via this binding site, which (GACAAT) has been detected at 1400 

basepairs upstream of the KLF4 start-codon (Niimi et al., 2004; Chapter 4.1.12.). 

Moreover, three EGR-1 binding sites were found. By promoter analysis, an induction 

of KLF4 by SOX17 has been shown (see results chapter 4.1.12.). An induction via 

the putative SOX17 binding site could be confirmed, as a mutation, as well as the 

deletion of this site abrogated the induction. EGR-1 could also induce KLF4 

expression via its binding sites in the 5´ flanking promoter region of the klf4 gene, 

which has been examined in our lab. The question if both factors act synergistically 

for the induction still has to be answered, for example, by co-expression of EGR-1 

and SOX17 in studies of the KLF4 promoter. Thereby, one would have to examine if 

the co-expression of the counterpart leads to a further increase of the measured 

relative luciferase activity.  

 

It might also be that KLF4 and SOX17 influence the transcription of each other, as 

SOX17 was found to have two putative KLF4 binding sites. An autoregulatory loop 

function has already been demonstrated for Sox17 during early embryonic 

development, where Sox17 and GATA4/6 induce each other (Sinner et al., 2006). 

The same is the case for Sox17 and Xnr4 and for Sox17 and Bix1/2/4 (Sinner et al., 

2006). As already mentioned before, also Klf4 is involved in an autoregulatory 

regulation, inducing its own gene expression (Mahatan et al., 1999). To examine if 

SOX17 and KLF4 also participate in such an autoregulatory loop, one would have to 
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perform promoter analysis on the SOX17 promoter, in the same way as it was done 

for KLF4 and, more importantly, one would have to perform in vivo assays, like 

chromatinimmunoprecipitation in vascular SMCs, to examine if both transcription 

factors bind to the promoter region of each other. So far, we can conclude, that 

Sox17 and Egr-1 are able to activate the transcription of the Klf4 gene. Some 

Chromatinimmunoprecipitations were already done on the promoter region of SOX17 

and KLF4 in human coronary artery smooth muscle cells (CASMCs). Thereby some 

complications came up, as up to 1x109 cells were needed for one assay, and the 

CASMCs are difficult to expand. At least its very time consuming, as the cells grow 

very slowly, and very expensive, as one has to expand a hight amount of cells over a 

long time period and as the cells and the medium are very expensive. Therefore one 

could take into consideration to perform this assay in another cell type, in which all 

three factors are highly expressed, like in endothelial progenitor cells (EPCs). At least 

one can not definitely say that this possibly found interaction in EPCs or another 

chosen cell type, will also take place in CASMCs in vivo, which was my intention to 

show. But anyway, it could enforce the results from the promoter studies, showing an 

induction of KLF4 by SOX17. Therefore one would also have to take into account 

that this assay was done in human cells and, more important, with human constructs 

and the human KLF4 promoter region. As the comparison of the mouse and human 

KLF4 promoter shows differences in the amount and location of putative SOX17 and 

EGR-1 binding sites, one should perhaps better consider to take a human cell line. 

As the HUVECs, which show a SOX17 expression in vitro, have as primary cell line 

the same growing properties like the CASMCs, one could test some fast-growing cell 

lines, like HeLa cells for SOX17, EGR-1 and KLF4 expression, to perform 

Chromatinimmunoprecipitations. 

 

5.1.6. SOX17, EGR-1 and KLF4 are supposed to build a protein complex in 

human coronary artery smooth muscle cells in vivo 

 

Supporting the hypothesis, that all three factors might bind to each other in CASMCs, 

and that this complex might initiate the transcription of different target genes, is the 

fact that already some common target genes have been described. One of them is 

Laminin α 1 (Lama1). As already mentioned before, it is known that Sox17 and Egr-1 

initiate its transcription (Niimi et al., 2004; Chapter 4.1.6.). Also, Klf4 has been 
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demonstrated to transactivate Lama1, Lama3A and Lamγ1 (Piccinni et al., 2004; 

Miller et al., 2001; Higani et al., 2002). Another common target gene, at least for 

Sox17 and Egr-1, is fibronectin (Baron et al., 2005; Shirai et al., 2004). The fact that 

both proteins, Lama1 and fibronectin, are involved in similar processes, meaning the 

formation of the extracellular matrix, can already give a hint for the type of target 

genes of the Sox17/Egr-1/Klf4 protein complex in coronary artery smooth muscle 

cells. As important extracellular matrix components, fibronectin and laminin get 

activated after vascular injury and are part of the proliferation-initiating signaling 

cascade, resulting in a phenotypic switch of the VSMCs from the contractile, 

quiescent to the synthetic state (Majesky et al., 1990; Hedin et al., 1988). Besides 

this, fibronectin has been described as a decisive mediator of the migration of 

VSMCs, mediating cell-cell adhesion, e.g. of leukocytes, which infiltrate the injured 

vascular tissue. Therefore fibronectin is considered to be a key mediator of 

neointimal thickening after vascular injury (Ruoslantiet et al., 1988). 

 

Moreover, the newly identified complex might act as activator or as repressor of 

transcription, as Sox17 and Klf4 have already been described to behave in a 

bifunctional manner (Niimi et al., 2004; Zorn et al., 1999). Depending on the 

interaction partner and/or the promoter context, Klf4 can serve as an activator or 

inhibitor of transcription (Dang et al., 2000; Rowland et al., 2005; Ghaleb et al., 

2005). It represses, like Sox17, β-catenin, and activates, also like Sox17, the Lama1 

promoter (Zorn et al., 1999; Zhang et al., 2006). This bifunctional behaviour has also 

been described for Egr-1, providing growth promoting activities on the one hand, and 

growth inhibiting properties on the other hand, depending on the cellular context (Eid 

et al., 1998; Huang et al., 1997). 

 

A common interaction partner for Klf4 and Sox17 has already been described. Sox17 

is known to bind to β-catenin, thereby blocking the transcription of wnt-responsive 

genes or to activate the transcription of endodermal genes, like Foxa1 and Foxa2, in 

cooperation with β-catenin (Zorn et al., 1999; Sinner et al., 2004). Also Klf4 has been 

shown to repress β-catenin mediated gene expression in the intestine (Zhang et al., 

2006).  
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Another similarity between all three factors is their response to PDGF-BB. All three 

factors get activated by PDGF-BB (Kamimura et al., 2004; Liu et al., 2005; Chapter 

4.1.5.). A hypothetical signaling cascade, in which the EGR-1/SOX17/KLF4 complex 

might be involved, could comprise ERK and Src family kinases upstream of the 

complex, as an inhibition of these kinases leads to a suppression of PDGF-BB 

induced EGR-1 expression in vascular SMCs (Kamimura et al., 2004).  

 

Another parallel between SOX17 and KLF4 is the fact, that both factors are 

downregulated by TGF-β1. This has been shown in this work in chapter 4.1.7. for 

SOX17, which is downregulated 48 hours after TGF-β1 treatment. It is known that 

Klf4 is inhibited by TGF-β1 in macrophages (Feinberg et al., 2005). Moreover, Klf4 

inhibits TGF-β1/Smad3 function by competing with Smad3 for the binding to the C-

Terminus of the co-activator p300 (Feinberg et al., 2005). Besides, Sox17 as well as 

Klf4 have been implicated in endoderm development in mice (Kanai-Azuma et al., 

2002; Shie et al., 2000). 

 

The complex might activate genes, responsible for initiating proliferation of SMCs, or 

repress SMC differentiation marker genes, as this function was shown for Klf4, in a 

PDGF-BB induced context (Dandre et al., 2004; Kawai-Kowase and Owens, 2006; 

Yoshida et al., 2006; Holycross et al., 1992). Another possibility is that the complex 

activates the transcription of VEGF, and promotes thereby angiogenesis as PDGF-

BB is known to induce VEGF expression via Erk-1/2 and AP-1 (Park et al., 2006).  

 

In summary, the results from the first part of my thesis indicate that: 

• Sox17 is expressed in vascular smooth muscle cells in vitro in human cells 

and in vivo in mouse cells. 

• SOX17 is inducible by EGR-1 in human coronary artery smooth muscle cells, 

as well as Lama1, Lama2, Lamb1, and Lamγ1.  

• Sox17 is co-expressed with Egr-1 in aortic SMCs in normal mouse tissues and 

in atherosclerotic plaques of ApoE deficient mice. 

• SOX17 expression is repressed 48 hours after TGF-β1 treatment in human 

coronary artery smooth muscle cells. 

• EGR-1 induces KLF4 expression in CASMCs. 
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• One putative SOX17 and three putative EGR-1 binding sites were detected in 

the 5´-flanking promoter region of the klf4 gene, via the first one KLF4 gets 

activated by SOX17. 

• PDGF-BB and LDL maintain/induce the expression of SOX17 in human 

coronary artery smooth muscle cells. 

• SOX17, KLF4, and EGR1 are supposed to bind to each other in human 

coronary artery smooth muscle cells in vivo. 

 

These facts lead me to the following hypothesis: 

EGR-1, as immediate early gene, gets activated by PDGF-BB, e.g. in response to 

vascular injury or during angiogenic processes. This induction is mediated by Erk1/2, 

which has already been shown in literature. As consequence, EGR-1 might induce 

the expression of SOX17 and KLF4. The three proteins build a complex that might on 

the one hand repress the transcription of smooth muscle marker genes, like SMMHC, 

and on the other hand activate the transcription of extracellular matrix proteins, like 

fibronectin and laminin alpha1. Thereby, the transcriptional complex promotes the 

phenotypic switch of the VSMCs from the contractile to the synthetic, proliferating 

and migrating cell. By this, the hypothetical complex might contribute to the 

proliferation process of the VSMCs during angiogenesis, meaning the sprouting of 

new blood vessels from preexisting ones, and during vascular disease, like 

atherosclerosis, contributing to neointimal thickening. The fact that Sox17 and Egr-1 

were shown to be co-expressed in the VSMCs in the atherosclerotic plaque of ApoE 

deficient mice supports this suspicion. The notion that TGF-β 1, an antagonist of 

PDGF-BB, downregulates Sox17, and as this has also been demonstrated to be the 

case for Klf4, enforces the idea of an involvement of the complex in such cellular 

processes, as TGF- β 1 is a known activator of VSMC differentiation. The fact that I 

found a protein–DNA interaction, in the case of the SOX17 protein and the KLF4 

promoter, and the protein-protein interaction between all three transcription factors in 

the co-immunoprecipitations, could at least be explained by an autoregulatory loop, 

in which the complex itself might initiate the transcription of its own components, as 

this has already been shown to be the case for all three factors in different cellular 

contexts. 
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5.2. The FunGenES project 
 

The goal of this European consortium is the identification and characterization of 

tissue-specific factors and the examination of their contribution to differentiation of the 

cell-specific lineages. Because of its easy handling and the prevention of 

examinations on animals, differentiating ES-cells were used for recapitulating 

embryonic development. In literature it has been shown that the expression of 

different lineage markers in vitro corresponds to the one in vivo (Matsuura et al., 

2005; Leahy et al., 1999; Choi et al., 2005). 

 

5.2.1. Expression profile of Sox7, Sox17 and Sox18 in differentiating ES-cells 

 

The examination of the expression of the three subgroup F Sox proteins during 

differentiation of the ES-cells reflects a different pattern for Sox7 and Sox18 on the 

one side and for Sox17 on the other side (4.2.2.). While the latter one is already 

expressed at day 4 of embryoid body (EB) differentiation, Sox7 and Sox18 appear at 

day 6, in parallel with VE-Cadherin, which is, like Tie-1, a marker for mature 

endothelial cells (Gory et al., 1999; Korhonen et al., 1995). This is not surprising, as 

both transcription factors are known to play a decisive role in vasculogenesis and 

angiogenesis during embryogenesis and in the adult organism (Pennisi et al., 2000). 

Sox18 is expressed in the yolk-sac blood islands, the developing endothelial cells 

and in the presumptive endocardial cells and has been demonstrated to be absent 

from endoderm (Pennisi et al., 2000), in contrast to Sox17, which is involved in 

endoderm development (Kanai-Azuma et al., 2002). Therefore, the co-expression of 

Sox18 with an endothelial marker (VE-Cadherin) is reasonable. The fact that Sox17 

comes up in parallel with the early mesodermal markers, in conjunction with the 

observation that SOX17 is expressed in vascular smooth muscle cells of adult mice, 

leads to the hypothesis that this factor might be implicated in the differentiation of the 

VSMCs. As vascular SMCs are known to derive from different origins, like from 

proepicardial cells in the case of coronary artery SMCs, or from the neural crest in 

case of the SMCs of the aortic arch and thoracic aorta, they can also differentiate 

from early mesodermal cells (Landerholm et al., 1999; Mikawa et al., 1996; Ito et al., 

1993; Topouzis et al., 1996; Bergwerff et al., 1998). One needs to consider that 

Sox17 is described as an early endodermal marker, being crucial for the 

differentiation of the endoderm, as mice deficient for Sox17 show as phenotype a 
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depletion of the definitive gut endoderm (Kanai-Azuma et al., 2002). This correlates 

with the finding that the Sox17 orthologues in Xenopus (Xsox17alpha, Xsox17beta) 

and the one of zebrafish (Zsox17) are specifically expressed in the endoderm during 

gastrulation and play a key role in endoderm formation (Hudson et al., 1997; 

Clements and Woodland, 2000; Alexander and Stainier, 1999). Sox17 expression is 

detectable in the definitive endoderm in the early headfold stage in the mouse 

embryo at day 8, but has moreover been shown to be expressed at day 5 to 7 (egg-

cylinder stage) in the mesendoderm (Matsuura et al., 2005; Leahy et al., 1999). 

Thereby, one has to take into account that the examinations of Matsuura et al. were 

done by immunohistochemistry, detecting the protein. In our assays, we detected the 

mRNA, which was transcribed in cDNA for the quantitative PCR analysis. This could 

explain the difference of the time point of detecting Sox17 in vivo and in vitro. Also if 

both situations have been shown to overlap, there might also be some differences 

concerning the time point of first expression of different markers (Matsuura et al., 

2005; Leahy et al., 1999; Choi et al., 2003).  

 

An argument, which could support the possibility that Sox17 is involved in the 

differentiation of vascular SMCs, is the fact, that Laminin α1 is a target gene of 

Sox17 (Niimi et al., 2004). Laminin α1, like TGF-β1, is known to induce smooth 

muscle cell differentiation during embryonic development. A possible way to find out 

if Sox17 influences the differentiation of vascular SMCs at least in part, would be to 

knock out Sox17 transiently via RNAi technology and to look for the expression of 

smooth muscle marker genes, like SMactin, smoothelin, myocardin, SM22-α. On the 

other hand one could also do gain-of-function analyses, trying to influence the 

differentiation in the direction of vascular SMCs. Another possibility would be the 

isolation of a smooth muscle cell specific lineage, e.g. by isolating SM-actin positive 

cells that come up during ES-cell differentiation. 

 

5.2.2. Klf4 is supposed to bind to Sox17 in embryoid bodies at day 4 of ES-cell 

differentiation 

 

The fact that Sox17 seems to bind to Klf4 in differentiating mouse ES cells at day 4 

supports the possibility of an involvement of Sox17 in the differentiation of vascular 

SMCs, as a possible direct interaction of both factors is also detected in vascular 
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smooth muscle cells. On the other hand, both proteins might be involved in 

endoderm differentiation processes in conjunction with each other, where they might 

act as activator of genes like laminin α1, and fibronectin, or as repressor of β-catenin-

mediated signaling and thereby influence the wnt-signaling pathway (Niimi et al., 

2004; Piccinni et al., 2004). In favor of this hypothesis, Sox17, as well as Klf4, have 

been detected in the developing endoderm, where they share one common target, 

the Laminin α1, and both of them are known to interact with β-catenin, repressing the 

expression of wnt-responsive genes (Zorn et al., 1999; Zhang et al., 2006). 

  

In this light, the three factors could also act in concert for directing the differentiation 

of vascular smooth muscle cells. This notion is strengthened by the fact that TGF-β1, 

another inducer of SMC differentiation, is regulated by Egr-1 (Liu et al., 1996). 

 

To answer the question in which cell type specification the protein complex might be 

involved one could select the ES-cells for different cell-specific cell surface markers. 

Therefore one could use antibody-coupled magnetic dynabeads directed against cell-

specific surface antigens, like SM-actin, as already mentioned before. By this 

method, purified cell lines could be generated and afterwards precipitated for the 

complex. 

 

5.2.3. Sox17 binds to ββββ-catenin and Egr-1 at day 4 of ES-cell differentiation 

 

The notion that Sox17 binds to β-catenin and Egr-1 at day 4 of ES cell differentiation 

could support the hypothesis that the resulting complex could inhibit in concert the 

wnt-signaling pathway and therefore direct the differentiation of a particular cell-

specific lineage. The fact that Sox17 and Klf4 have been shown to bind to β-catenin 

could implicate the protein complex in the development of endodermal lineages, as 

the binding to β-catenin was not observed in human coronary artery smooth muscle 

cells. To answer this open question, one would have to isolate endoderm-specific 

cells at day 4 of embryonic development and examine these ones for the presence 

and activity of a transcriptional complex comprising Sox17, Egr-1, Klf4 and β-catenin. 

Moreover, one would have to assay if Egr-1 also binds to β-catenin and if this 

interaction is absent in undifferentiated ES-cells, as Egr-1, Klf4, and β-catenin are 
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already expressed at this time point, whereas Sox17 is expressed up from day 4 in 

embryonic development in vitro. 

 

The fact that Sox17 binds to Klf4 and Egr-1 in CASMCs and in differentiating ES-cells 

leads to the conclusion that this complex might have an important regulatory role in 

different cell types, and even in different organisms, meaning a conserved 

mechanism, as the CASMCs are of human origin, wherase the ES-cells derive from 

mouse. 
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6. Summary 

 

The development of the vascular network comprises tightly regulated processes, 

involving vasculogenesis and angiogenesis. The cells, which are mainly participating 

in these processes, are endothelial cells and vascular smooth muscle cells, the latter 

ones especially being important for the stability of blood vessels. Uncontrolled 

proliferation of VSMCs contributes crucially to the development of vascular disease, 

e.g. in the case of atherosclerosis. Two main initiator factors of these processes are 

Low Densitiy Lipoprotein (LDL) and Platelet Derived Growth Factor-BB (PDGF-BB). 

For this reason, the VSMCs and the transcriptional regulation of their proliferation, in 

response to LDL and PDGF-BB, build an important target for therapeutical 

interventions.  

 

Sox17, a member of subgroup F of the Sox family proteins, was for the first time 

detected in vascular smooth muscle cells in different mouse tissues, like liver, brain, 

heart, lung, spleen and kidney in vivo and in human coronary artery smooth muscle 

cells in vitro. Moreover, a new possible protein complex, consisting of SOX17, KLF4 

and EGR-1, was found in human coronary artery smooth muscle cells, as well as in 4 

day old embryoid bodies. All members of this complex are induced by PDGF-BB, a 

growth factor which becomes activated in angiogenesis and pathological vascular 

conditions, stimulating the migration and proliferation of vascular SMCs. By this the 

complex might be involved in migration and proliferation of vascular SMCs, and 

moreover in pathological vascular conditions, like the progression of atherosclerosis. 

EGR-1 is known to be the key player in mediating the transcriptional responses to 

PDGF-BB and LDL and has already been implicated in progression of 

atherosclerosis. Because of the fact, that a complex, consisting of Sox17, Klf4 and 

Egr-1, was also observed to be formed in differentiating ES-cells (day 4), supports a 

broader role of this protein complex in the differentiation of cell-specific lineages 

during development, in particular vascular smooth muscle cells and endoderm 

lineages. The complex might have an inhibitory, as well as an activating role, as 

Sox17, Klf4, and Egr-1 are known to behave bifunctional. Besides, Sox17 seems to 

bind to β-catenin during EB formation. At least this could be an indication for an 

involvement of the complex in modulating the wnt-signaling pathway during 

embryonic development. 
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8. Abbreviations 

 

• ALP  Alkaline phosphatase 

• ANG  Angiopoietin 

• ApoE  Apolipoprotein A 

• APS  Ammonium peroxide sulfate 

• αSMA  alpha smooth muscle actin 

• BMP  Bone morphogenetic protein 

• Ca  Calcium 

• cAMP  cyclic adenosine monophosphate 

• CASMCs Coronary artery smooth muscle cells 

• ChIP  Chromatinimmunoprecipitation 

• Cx43  Connexin 43 

• dpc  days post coitum 

• DTT  Dithiothreitol 

• EB  Embryoid body 

• EC  Endothelial cells 

• eEPCs embryonic endothelial progenitor cells 

• EGR  Early growth response factor 

• eNOS  Endothelial specific NO-synthetase 

• Eph  Ephrin 

• ERK  extracellular signal-regulated kinase 

• ES-cells Embryonic stem cells 

• FCS  Foetal Calf Serum 

• FGF  Fibroblast growth factor 

• FITC  Fluoresceinisothiocyanat 

• FLK-1  Fetal liver kinase – 1 

• Flt-1  fms-like tyrosine kinase – 1 

• Fox  Forkhead box protein 

• FRP  Frizzled related protein 

• FunGenES Functional Genomics in Engineered ES-cells 

• Fz  Frizzled 

• GKLF  Gut-enriched KLF 

• Gsc  Goosecoid 

• HGF  Hepatocyte growth factor 

• HMG  High mobility group 

• HIF-1 α Hypoxia-inducible factor - 1alpha  

• Hox  Homeobox protein 

• HUVECs Human umbilical vein endothelial cells 

• ICM  Inner cell mass 

• ID  Inhibitor of differentiation 

• IFN  Interferone 

• IL  Interleukin 

• IP  Immunoprecipitation 

• KLF  Krüppel-like factor 

• LDL  Low density lipoprotein 

• LIF  Leukemia inhibitory factor 

• LPS  Lipopolysaccharids 



Abbreviations 

106 

• LRP  Lipoprotein related protein receptor 

• LSEC  Liver sinusoidal endothelial cells 

• MAPK  Mitogen-activated protein kinase 

• MEK  Mitogen activated kinase kinase 

• MEM  Non-essential amino acids 

• MMP  Matrix-metalloproteinase 

• Nab  NGFI-A-binding protein 

• NCDI  Nab conserved domain 1 

• NF-κB  Nuclear factor-kappaB 

• NLS  Nuclear localization signal 

• NP-40  Nonidet P-40 

• Oct3/4 Octamer-binding transcription factor ¾ 

• PAI  Plasminogen Activator Inhibitor 

• PBS  phosphate buffered saline 

• PCR  Polymerase chain reaction 

• PDGF  Platelet derived growth factor 

• Pecam-1 Platelet endothelial cell adhesion molecule-1 

• PlGF  Placental-like growth factor 

• Sca-1  Spinocerebellar ataxia-1 

• SDS  Sodium dodecyl sulfate 

• Shh  Sonic hedgehog 

• SMCs  Smooth muscle cells 

• SMMHC Smooth muscle myosin heavy chain 

• SOX  Sry-box; Capital letters = human origin 

• Sox  small letters = murine origin 

• SRF  Serum response factor 

• SSEA  Stage specific embryonic antigen 

• STAT  Signal transducer and activator of transcription 

• TCE  TGF-beta control element 

• TCF  T-cell factor 

• TGF-β1 Transforming growth factor - beta1 

• TF  Tissue Factor 

• Tie  Tyrosine kinase receptor 

• TLR  Toll-like receptor 

• TNF-α  Tumor necrosis factor – alpha 

• TRA-1  Tumor rejection antigen-1 

• U-PA  Urokinase-type plasminogen activator 

• VCAM-1 Vascular cell adhesion molecule – 1 

• VEGF  Vascular endothelial growth factor 

• VSMC s Vascular smooth muscle cells 
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