Geochemische Untersuchungen der tertiären Vulkanite der Hocheifel, der Heldburger Gangschar und der Fichtelgebirgszone

Dissertation

Zur Erlangung des Grades eines Doktors der Naturwissenschaften der Fakultät für Geowissenschaften der Ludwig-Maximilians-Universität München

vorgelegt von

Jale Tanyeri

München

2006

- 1. Berichterstatter: Priv.Doc. Thomas Kunzmann
- 2. Berichterstatter: Prof. Dr. Ludwig Masch

Datum der mündlichen Prüfung: 09.05.2007

Inhaltsverzeichnis

Z	usamm	enfassung	v
1	Ein	leitung	1
	1.1	Geologischer Überblick	1
	1.2	Zielsetzung	5
2	Star	nd des Wissens	6
	2.1	Zu den untersuchten Gebieten	6
	2.1.	1 Hocheifel	6
	2.1.	2 Heldburger Gangschar	
	2.1.	3 Fichtelgebirgszone	
	2.2	Basaltgenese	14
	2.2.	1 Modalanalyse	14
	2.2.	2 Geochemie der Basalte	15
	2.2.	3 Klassifikation	
3	Geo	chemische Analytik	
	3.1	Probenvorbereitung	
	3.2	Analysenmethoden	
	3.2.	1 Röntgenfluoreszenzanalyse (für vergleichende Untersuchungen)	
	3.2.	2 Flammenphotometrie	
	3.2.	3 Potentiometrische Titration zur Bestimmung des FeO-Gehaltes	
	3.2.	4 Infrarot-Gasanalyse	27
	3.2.	5 Induktiv gekoppelte Plasma-Spektrometrie (ICP)	
	3.2.	6 Elektronenstrahlmikrosonde (EMS)	
4	Erg	ebnisse	
	4.1	Petrographie und modale Einteilung	
	4.1.	1 Hocheifel	
	4.1.	2 Heldburger Gangschar	
	4.1.	3 Fichtelgebirge	
	4.2	Geochemische Untersuchungen	
	4.2.	1 Hauptelemente	
	4.2.	2 Spurenelemente und Elemente der Seltenen Erden	

	4.3	Klassifikation	43
	4.3.	1 Klassifikation nach den Hauptelementen (LE BAS)	43
	4.3.	2 Klassifikation nach den Spurenelementen (WINCHESTER & FLOYD)	46
	4.3.	3 Einteilung nach der CIPW-Norm	49
	4.3.	4 Einteilung nach dem Mg-Wert Mg#	49
	4.3.	5 Klassifikation nach HUCKENHOLZ & BÜCHEL	50
5	Bas	altvarietäten	59
	5.1	Hauptelemente	59
	5.2	Spurenelemente	65
	5.3	Elemente der Seltenen Erden	69
6	Disl	kussion	74
7	Lite	raturverzeichnis	92

<u>Anhang</u>

Anhang 0

Tabelle 1: Verzeichnis der verwendeten Symbole und Abkürzungen	
Tabelle 2: Verzeichnis der Vorkommen	105

Anhang 1

Tabelle 1a-c: Hauptelemente, Spurenelemente und CIPW-Norm der Proben	
aus der Hocheifel	110
Tabelle 2 a-c: Hauptelemente, Spurenelemente und CIPW-Norm der Proben	
aus der der Heldburger Tabelle 3 a-c: Hauptelemente, Spurenelemente und CIPW-Norm der Proben	130
aus der Fichtelgebirgszone	145

Anhang 2

Tabelle 1: Anregungs- und Messbedingungen der Röntgenfluoreszenzanalyse
Tabelle 2: Reproduzierbarkeit der mit RFA bestimmten Hauptelemente in Gew%160
Tabelle 3: Reproduzierbarkeit der mit RFA bestimmten Spurenelemente in ppm160
Tabelle 4a - 4c: Die Analysenergebnisse der vier Proben aus der Hocheifel161
Tabelle 5: Vergleich der Na- und K-Werte von fünf Heldburger Gangschar- und zwei Hocheifel-Proben, die mit RFA bzw. Flammenphotometrie bestimmt wurde164

Anhang 3

Tabelle 1a-c: Mittelwerte der chemischen Haupt- und Spurenkomponenten und CIPW-Norm der Hocheifel Proben.	165
Tabelle 2 a-c: Mittelwerte der chemischen Haupt- und Spurenkomponenten und CIPW-Norm der Heldburger Gangschar-Proben	171
Tabelle 3 a-c: Mittelwerte der chemischen Haupt- und Spurenkomponenten und CIPW-Norm der Fichtelgebirgszone –Proben	183

Anhang 4

Tabelle 1: Mit ICP analysierten Elemente der Seltenenerdenelemente aus der	
Heldburger Gangschar- und Hocheifel Proben	.186
Tabelle 2: Mittelwerte der nicht normierten SEE-Gehalte in ppm wurden mit Hilfe von ICP analysiert. Die La/Yb-Verhältnisse der einzelnen Gruppen sind auf	
C1 Chondrit normiert	.187

Anhang 5

Tabelle 1: Ergebnisse der Mikrosondeanalysen der Olivine aus der Hocheifel	
HF33 und HF311	188
Tabelle 2: Vergleich der tertiären Vulkanite aus der Hessischen Senke WEDEPOHL	
(1995) mit den Werten der primären Alkalibasalte aus der Hocheifel,	
Heldburger Gangschar und der Fichtelsgebirgszon	.189

Danksagung

An dieser Stelle möchte ich meinem verstorbenen Doktorvater Herrn Prof. Dr. G. Huckenholz (†), der die Anregungen zu dieser Arbeit gab, und mich nach familiär bedingter Unterbrechung ermunterte, an meiner Dissertation weiterzuarbeiten, recht herzlich danken.

Weiterhin möchte ich mich bei PD Dr. T. Kunzmann herzlich bedanken, der sich nach dem Tod von Herrn Prof. Dr. G. Huckenholz ohne Zögern bereit erklärte, die Betreuung der vorliegenden Arbeit weiter zu führen und wertvolle Beiträge zum Gelingen der Arbeit lieferte.

Mein besonderer Dank gilt Frau PD Dr. Soraya Heuss-Aßbichler. Ohne ihre langjährige, geduldige, stete, hilfsbereite Unterstützung in jeder Hinsicht, Betreuung, ihre lebhaften Diskussionen und Ihren mentalen Beistand wäre mir die Fertigstellung meiner Arbeit sicher nicht gelungen.

Besonderer Dank gilt auch Herrn Prof. Dr. Peter Horn für seine wertvollen Beiträge.

Bei meinen lieben Kolleginnen Dr. Claudia Speiser, Dipl. Min. Alexandra Huber und Dr. Gabi Magel bedanke ich mich sehr herzlich für Ihre Unterstützung und für die Stunden, die sie mit mir verbracht haben.

Prof. Dr.L. Masch danke ich für seine wertvollen Gespräche über die Interpretation von Dünnschliffen.

Herrn Dipl. Chem. Thomas Dorfner und Frau Wimmer möchte ich herzlich für die Unterstützung bei den chemischen Analysen danken.

Mein Dank gilt ebenso allen Angehörigen und Mitarbeitern der Sektion Mineralogie, Petrologie & Geochemie des Departments Geo- & Umweltwissenschaften, die mich unterstützten.

Der Konrad Adenauer Stiftung und dem Frauenförderprogramm möchte ich ebenfalls für die mir zur Verfügung gestellten Stipendien danken.

Meinem Mann Nevzat und meinen Kinder danke ich nicht nur für ihr Verständnis und ihre Unterstützung, sondern vor allem auch für ihre Geduld, die sie mir während der Bearbeitungszeit entgegenbrachten.

Zusammenfassung

Die Geochemie der tertiären Alkalibasalte im westdeutschen Vulkangebiet war Gegenstand dieser Untersuchung. In der vorliegenden Arbeit wurden insgesamt 291 Gesteinsproben der Hocheifel (HF), der Heldburger Gangschar (HGS) und der Fichtelgebirgszone (FGZ) chemisch und mineralogisch untersucht. Über die Haupt-, Neben-, Spurenelementgehalte und SEE der Gesteine und deren Elementverhältnisse, sowie über die vorliegenden Mineralparagenesen soll Aufschluß über die petrogenetische Entwicklung der Basalte erlangt werden.

Nach dem Mineralbestand sind die Vulkanite der drei Hauptuntersuchungsgebiete in zwei Hauptgruppen zu unterteilen: I) Foid-freie bis Foid-arme, Plagioklas-reiche Gesteine im Sinne von Olivinbasalt und Alkaliolivinbasalt und II) Feldspat- und Foid-führende Vulkanite im Sinne von Nephelinbasanit bis Olivinmelilithnephelinit. Zudem sind verschiedene Basaltderivate wie Benmoreit, Hawaiit, Mugearit und Trachyt vertreten.

Geochemisch zeigen die Vulkanite der drei Gebiete durchaus Unterschiede. Die Vulkanite aus der Hocheifel zeigen die größte Streubreite und sind reicher an SiO₂, Al₂O₃, Na₂O und K₂O. Die Proben aus der Fichtelgebirgszone und aus der Heldburger Gangschar hingegen variieren chemisch nur in einem engen Bereich. Diese Basalte sind im Vergleich zu denen der Hocheifel nicht nur reicher an MgO, CaO, TiO₂, FeO, MnO und P₂O₅, sondern zeigen tendenziell auch höhere Cr- Ni- und Zn-Gehalte.

Die geochemische Klassifikation der Vulkanite nach den verschiedenen Methoden bestätigt die allgemeine Annahme, dass es sich um kontinentale Alkalibasalte handelt. Hier zeigt sich jedoch die Schwäche dieser beiden Klassifikationen nach dem TAS-Diagramm (LE BAS et al., 1986) und nach WINCHESTER & FLOYD (1977), da sie eine nähere Unterscheidung zwischen den verschiedenen primären und fraktionierten Gesteinen nicht ableiten lassen. Die Anwendung der CIPW-Norm führt zu einer klaren Trennung der verschiedenen Basaltvarietäten. Die nach dem Modalbestand postulierten Basaltgruppen Alkaliolivinbasalt (AOB), Nephelinbasanit (NB), Olivinnephelinit (ON) und Olivinmelilithnephelinit (OMN) können so bestätigt werden. Die Betrachtung des MgO-FeO-Verhältnisses als Mg-Wert (Mg#) zeigt deutlich, dass die meisten Vulkanite primär bzw. mafisch sind. Darüber hinaus kommen verschiedene Basaltderivate wie Benmoreit (BEN), Hawaiit (HAW), Mugearit (MUG) und Trachyt (TRA) Das Einteilungsschema **HUCKENHOLZ** vor. von (in HUCKENHOLZ & BÜCHEL, 1988) berücksichtigt zum einen den Mg-Wert, zum anderen wird der nach CIPW-Norm berechnete SiO₂-Sättigungsgrad der Vulkanite als Differentiationsindex dargestellt. Mit der Kombination dieser beiden Verfahren können die oben genannten drei Gebiete deutlich unterschieden werden.

Die Hocheifel-Vulkanite zeigen die größte Variationsbreite: lediglich 22.14 % der Basalte sind als mafisch und 30.71 % als primär zu bezeichnen. Der Anteil der fraktionierten Alkalibasalte (28.57 %), bzw. deren Derivate (18.58 %), ist sehr hoch. Die Vulkanite der Fichtelgebirgszone hingegen zeigen nur eine begrenzte Variationsbreite. Mehr als 80 % der Proben sind als Nephelinbasanit, Olivinnephelinit und Olivinmelilithnephelinit zu bezeichnen. Eine Besonderheit stellen die Basalte der Heldburger Gangschar durch deren hohen Anteil an Karbonat- und Smectiteinschlüssen dar. Die Verrechnung der CO₂-Anteile mit CaO zu CaCO₃ der CIPW-Norm würde primär SiO₂-reiche Schmelze fordern. - nach Ohne Berücksichtigung des CO₂-Anteils hingegen erhöht sich der Anteil SiO₂-untersättigter Basaltvarietäten. Gefügebilder bestätigen, dass die hohen Karbonatanteile auf syn- bis postmagmatische Prozesse zurückzuführen sind.

Hohe Elementverhältnisse CaO/Al₂O₃, P₂O₅/Al₂O₃ und Ce/Yb zusammen mit einer geringen Streuung von Zr/Nb, Sr/Nb und Ba/Rb, für alle drei Gebiete, sind ein Beleg für eine relativ homogene Zusammensetzung der Magmen aus dem Oberen Mantel. Die für die Fichtelgebirgszone-Proben beobachtete deutlich positive Korrelation von Cr und Ni mit den Mg-Werten, zeigt, dass diese Vulkanite sehr rasch gefördert wurden. Die verschiedenen Derivate Hawaiit, Mugearit, Benmoreit und Trachyt, die insbesondere in den Vulkaniten der Hocheifel zahlreich auftreten, sind auf Kristallisationsdifferentiationsprozesse zurückzuführen. Das Vorkommen von Xenolithen in Phonolithen der Heldburger Gangschar zeigt, dass die Differentiation bereits in den Mantelmagmenkammern stattgefunden haben muss (KUNZMANN, 1996).

Aufgrund des Verlaufs der SEE sind die untersuchten Vulkanite als Riftvulkanite zu bezeichnen. Die Gehalte an LSEE und den inkompatiblen Elementen und das Fehlen der Minerale Phlogopit und Amphibol zeigen, dass die hier untersuchten Basalte im Gegensatz zu den Vulkaniten der Hessischen Senke metasomatisch nur geringfügig verändert wurden.

1 Einleitung

1.1 Geologischer Überblick

Die vorliegende Arbeit befasst sich mit den geochemischen und petrographischen Untersuchungen der tertiären alkalibasaltischen Vulkanite der Hocheifel, der Heldburger Gangschar und der Fichtelgebirgszone. Das Vulkansystem der Hocheifel und der Heldburger Gangschar ist an den NNE-SSW verlaufenden Oberrheingraben gebunden. Am Ende des nördlichen Teils des Oberrheingrabens verlaufen die Transversalstörungen NW-SE. An diesen Transversalstörungen sind im Tertiär die Vulkanfelder der Hocheifel, des Vogelsbergs und der Hessischen Senke entstanden. Das Vulkansystem der Fichtelgebirgszone ist an den Egergraben (KOPECKY, 1974) gebunden, der sich als tektonisches Element von Sachsen im NE, durch Nordböhmen bis zur Fichtelgebirgszone in Bayern im SW hinzieht und westlich der Fränkischen Linie endet.

Die Vulkanite der Hocheifel, der Heldburger Gangschar und der Fichtelgebirgszone gehören zum Vulkanbogen des Mitteleuropäischen Riftgürtels, der sich über das Zentralmassiv in Frankreich, den Hegau, das Uracher Vulkangebiet, die Heldburger Gangschar, die Fichtelgebirgszone, das Duppauer Gebirge und das Böhmische Mittelgebirge bis nach Polen hinein verfolgen lässt (WEDEPOHL, 1987, Abbildung 1-1). Dieser Vulkangürtel hat eine Länge von ca. 1700 km und eine Breite von max. 350 km.

Riftvulkanismus (Bruchtektonik) ist das Produkt eines Stressfeldes. In Mitteleuropa wurde am Ende des Mesozoikums das Stressfeld durch die Kollision der afrikanischen mit der eurasischen Kontinentalplatte im nordwestlichen und nördlichen Vorland des Alpenorogens erzeugt. Durch die Aufwölbung der Lithosphäre in Mitteleuropa und im nördlichen Mittelmeerraum wurde im Vorland der Orogenese eine Verdünnung der Lithosphäre bis zu einer Mächtigkeit von ca. 50 km verursacht (ILLIES et al., 1981) (Abbildung 1-2). Die in Folge dieser tektonischen Ereignisse ausgelösten Druckentlastungen führten zu Partialschmelzbildungen im peridotitisch zusammengesetzten Oberen Mantel. Je nach Aufschmelzungsgrad können verschiedene Alkalibasaltvarietäten wie Alkaliolivinbasalte, Nephelinbasanite, Olivinnephelinite und Olivinmelilithnephelinite gebildet werden.

Abbildung 1-1: Übersichtskarte der tertiären Vulkanfelder in Mitteleuropa (aus WEDEPOHL, 1987). Geotektonische Situation am West- und Nordrand der Alpen mit den Erosionsrelikten der tertiären und quartären Vulkane und den Hauptstörungszonen der Riffe im alpinen Hinterland, letztere nach ILLIES (1974). Zu den Vulkangebieten in der Umgebung des Vogelsberges sind die tertiären Förderzeiten in Ma (=10⁶ Jahre) nach LIPPOLT (1982,1983) angegeben worden. Die K/Ar-Alter für die Vulkanite der Hessischen Senke wurden von WEDEPOHL (1982) übernommen.

Abbildung 1-2: Die Mächtigkeit der Lithosphäre (in km) in Mitteleuropa (aus PANZA, 1985, in BLUNDELL et al., 1992).

Diese Schmelzen stiegen an den vorhandenen Bruchzonen zur Erdoberfläche auf. Hierbei sind die Peridotit-Xenolith führenden primären Alkalibasalte besonders wichtig. Diese Peridotit-Xenolithe geben uns unmittelbar Auskunft über die Hochtemperaturphasengleichgewichte im Oberen Mantel. Die Führung von Xenolithen aus dem Oberen Mantel zeigt, dass die Schmelze sehr schnell die Erdoberfläche erreicht hat und so kaum Zeit hatte, mit den Xenolithen und/oder mit der Umgebung zu reagieren. In Abhängigkeit der Aufstiegsrate der Schmelze können unterschiedliche Derivate gebildet werden. Beispiele hierfür sind Phonolithe und Trachyte, die durch Differentiation aus den primären Magmen entstanden sind.

Die Erdkruste entstand vor mehr als 4 Mrd. Jahren durch Differentiation aus dem primitiven Mantel, der eine pyrolytische Zusammensetzung hatte. Die inkompatiblen Elemente wie zum Beispiel K, Ba, La, Ce zeigen höhere Schmelzaffinität. Infolge dessen reichern sie sich zunehmend in der Erdkruste an. Kompatible Elemente wie zum Beispiel Mg, Cr, Ni, Co hingegen bleiben bevorzugt im Oberen Mantel zurück. Gehalte an den inkompatiblen Elementen lassen daher eine qualitative Abschätzung des Stoffumsatzes bei der Partialschmelzbildung im Oberen Mantel zu. Somit können Haupt- und Spurenelemente sowie die Elemente der Seltenen Erden Auskunft über die Herkunft der Magmen im Erdmantel geben. Hiermit können Fraktionierungsprozesse beschrieben werden.

1.2 Zielsetzung

Ziel der vorliegenden Arbeit ist, über die Haupt-, Neben- und Spurenelementgehalte, sowie die Seltenen Erden, Aufschluss über die Petrogenese der tertiären alkalibasaltischen Vulkanite der Hocheifel, der Heldburger Gangschar und der Fichtelgebirgszone zu erlangen. Es sollen Aussagen über Herkunft und Entwicklung dieser basaltischen Schmelzen im Oberen Mantel getroffen werden.

Am Department für Geologie und Umweltwissenschaften in München standen ca. 171 Basaltproben aus der Hocheifel, der Heldburger Gangschar und dem Fichtelgebirge zur Verfügung. Eine erste Präsentation der Daten zu diesen Gebieten erfolgte im Rahmen von Exkursionsführern (HUCKENHOLZ & BÜCHEL, 1988, HUCKENHOLZ & WERNER, 1990, und HUCKENHOLZ & KUNZMANN, 1993). Für die vorliegende Arbeit wurden die vorhandenen Basaltproben erneut analysiert, da die Analysemethoden inzwischen optimiert werden konnten und somit eine höhere Auflösung ermöglichten. Zusätzlich wurden zu den vorhandenen Proben 120 weitere Proben untersucht. Soweit der Modalbestand der Proben im Rahmen von Diplomarbeiten vorlag, wurden sie in dieser Arbeit übernommen.

Die Variation der geochemischen Daten (Haupt- und Spurenelemente, sowie Elemente der Seltenen Erden) der Vulkanite aus der Hocheifel, der Heldburger Gangschar und der Fichtelgebirgszone wurde erarbeitet. Verschiedene Klassifikationsmethoden wurden herangezogen, um die Vulkanite dieser drei verschiedenen Basaltvorkommen charakterisieren zu können. Die Ergebnisse wurden mit weiteren Basaltvorkommen in Deutschland (Niederhessische Senke) verglichen.

2 Stand des Wissens

2.1 Zu den untersuchten Gebieten

2.1.1 Hocheifel

Das Vulkanfeld der Hocheifel gehört nach geotektonischer Stellung und geologischem Alter zum Mitteleuropäischen Vulkangürtel (HUCKENHOLZ, 1988).

Die tertiären vulkanischen Gesteine sind in der Eifel vor allem in der Hocheifel konzentriert. Die ca. 400 tertiären Eruptionspunkte umfassen ein Gebiet von ca. 1800 km². Die Vulkanrelikte durchsetzen als tiefabgetragene Stöcke, Tuffschlote, Gänge und Maare den gefalteten devonischen Untergrund (Abbildung 2-1). Das N-S bis NNE-SSW ausgerichtete Vulkanfeld hat eine Längsachse von ca. 60 km, bei einer durchschnittlichen Breite von ca. 25 km im Süden und ca. 40 km im Norden. Über den Rhein hinaus geht das Vulkanfeld der Hocheifel nach NE in das tertiäre Vulkanfeld der nördlichen Mittelrhein-Region mit dem vulkanischen Siebengebirge und nach E in das tertiäre Vulkanfeld des Westerwaldes über. Quartäre Schlackenkegel und Maare treten im zentralen Teil der Hocheifel auf und zeigen die Verbindungen zwischen den quartären Vulkanfeldern der Ost- und Westeifel an. Im SW des Vulkanfeldes sind quartäre Maare und Schlackenkegel mit Lavaströmen neben den tertiären Vulkaniten verbreitet, alt- und jungquartäre Vulkanite finden sich im NE des Vulkanfeldes. Über die Basalte im Raum der Hocheifel wurden mehrere Arbeiten geschrieben. Über die Geologie der Eifel berichtete MEYER (1986). BÜCHEL et al. (1988) führten im Bereich des Kelberger Hochs gravimetrische Untersuchungen durch. Die Vulkanite der Hocheifel sind von BUSSMANN (1981) strukturgeologisch, photogeologisch und vulkanologisch analysiert worden. An den tertiären Vulkaniten der Hocheifel untersuchte SCHIEGEL (1986) die Sr-Isotopensystematik. CANTAREL & LIPPOLT (1977), SCHMINCKE & MERTES (1979), LIPPOLT & FUHRMANN (1980), LIPPOLT (1983), HORN et al. (1976.) und BUSSMANN & LORENZ (1983) und HORN, MÜLLER-SOHNIUS & HUCKENHOLZ (1985), MÜLLER-SOHNIUS (1992) untersuchten den Vulkanismus der südlichen Hocheifel und nahmen eine Altersbestimmung vor. Die Angabe der Zeitspanne der vulkanischen Aktivität basiert auf 85 Einzeldatierungen von 75 Vorkommen nach der K-Ar-Methode. Entsprechend diesen Untersuchungen ist der Vulkanismus in der Hocheifel dem Eozän / Oligozän zuzurechnen.

Abbildung 2-1: Geographisch-regionale Übersichtskarte des tertiären Vulkanfeldes der Hocheifel (aus HUCKENHOLZ & BÜCHEL, 1988)

Das Zusammenwirken von Vulkanismus und Tektonik ist in der Hocheifel über einen Zeitraum von 23 Ma nachweisbar.

Die ersten mineralogischen Untersuchungen tertiärer Eruptivgesteinsvorkommen der Hocheifel erfolgten durch KOCH (1933). Weitere Studien der tertiären Vulkanite der Hocheifel wurden von HUCKENHOLZ (1965a, 1965b, 1965c, 1966, 1973, 1983) durchgeführt. Der Schwerpunkt seiner Arbeiten lag in den petrogenetischen Untersuchungen der Klinopyroxene in den tertiären Vulkaniten der Hocheifel. Geochemische und petrographische Untersuchungen wurden ebenfalls von GRÜNHAGEN (1964), GEISMAR (1967) und CHAUDHURY (1970) im Rahmen ihrer Dissertationen und Diplomarbeiten an den tertiären Vulkaniten der Hocheifel durchgeführt. Pliozäne und quartäre Vulkanite sind von SCHMINCKE & MERTES (1979) analysiert worden.

2.1.2 Heldburger Gangschar

Die ersten geologischen Karten und geologischen Erläuterungen der Heldburg und ihrer Umgebung wurden von PROESCHOLDT (1895) und THÜRACH (1895) erstellt, überarbeitet von GÖMANN (1976) (Abbildung 2 - 2 und Abbildung 2 - 3).

Der Terminus Heldburger Gangschar wurde erstmals von CARLÉ (1955) eingeführt und beschränkt sich auf ein Gebiet im Norden Bayerns zwischen Thüringen und Franken. Nach CARLÉ (1955) besteht die Heldburger Gangschar aus zahlreichen Stielen bzw. NNE-SSW verlaufenden Gängen der tertiären Basalte auf Keuperschichten. Die Heldburger Gangschar beschränkt sich im Süden auf eine ca. 6 km breite Zone, die im zentralen Teil (um Hofheim, Unterfranken) bis zu 15 km breit ist. Im Norden dehnt sie sich zwischen Römhild und Rodach-Coburg auf über 20 km aus. Sie erstreckt sich über eine Fläche von 1500 km². Der Abstand der Basaltgänge beträgt durchschnittlich 0,25 - 2 km; die Gesamtbreite der Gangschar liegt bei 49 km.

Ihrer Form nach bilden die Vulkanite schmale Gänge von ca. 1 m Mächtigkeit (SCHRÖDER, 1965), die sich über nur wenige Meter bis zu hunderten von Metern im Gelände verfolgen lassen. Sie sind meist fiederförmig versetzt. Die seltenen breiteren Gänge im Deckgebirge sind meistens durch die Abtragung bis auf den Magmazufuhrkanal völlig zerstört. Die Schlote sind entweder mit Basalt, Brekzien oder Tuffen gefüllt.

Abbildung 2-2: Geologische Übersichtskarte von Süddeutschland mit der Heldburger Gangschar, dem Südwesten des Thüringer Waldes und dem Osten der Rhön. Die Quadrate bezeichnen die Topographischen Karten
1: 100 000 von West nach Ost und von Nord nach Süd mit den Blättern C 5526 Meiningen, und C 5530 Hildburghausen; C 5926 Schweinfurt, C 5930 Coburg und C 5934 Hof; C 6326 Kitzingen, C 6330 Bamberg und C 6334 Bayreuth. Karte aus HUCKENHOLZ & WERNER (1990).

Abbildung 2-3: Die Vulkanitvorkommen der Heldburger Gangschar zwischen Hofheim i. Ufr. und den Gleichbergen mit der Steinsburg in Thüringen (aus HUCKENHOLZ & SCHRÖDER, 1981). Die Quadrate bezeichnen die Topographischen Karten 1: 25 000 von West nach Ost und von Nord nach Süd mit den Blättern C 5529 Haina; C 5629 Römhild und C 5630 Rodach b. Coburg; C 5729 Alsleben und C 5730; C 5829 Hofheim i. Ufr. und C 5830Pfarrweisach.

Nach LIPPOLT (1982) stehen die Basaltförderungen der Heldburger Gangschar in zeitlichem Zusammenhang mit dem jungtertiären Rhönvulkanismus an der Grenze Obermiozän / Unterpliozän. Die Gesteine der Heldburger Gangschar weisen ein K-Ar- Alter von 42 bis 16 Ma auf (LIPPOLT in POHL & SOFFEL, 1977). Die Vulkanaktivität erstreckte sich also vom Eozän bis in das Miozän.

Die ersten mineralogischen Untersuchungen über die Basalte im unterfränkischen Raum wurden von GÜMBEL (1879) und SANDBERGER (1886) durchgeführt. Die erste Klassifikation der Vulkanite erfolgte durch OSTERMAYER (1903) nach der Modalanalyse: OSTERMAYER (1903) unterschied "feldspathaltige" und "feldspatfreie" Vulkanite. Feldspatbasalte haben die Mineralparagenese Plagioklas + Olivin + Ca-Klinopyroxen. Sie wurden als Alkaliolivinbasalte bezeichnet. Feldspatfrei sind zum einen Nephelinbasalte und zum anderen Limburgite (Glasbasalte). Diese Varietäten führen Olivin + Ca-Klinopyroxen + Nephelin sowie eine kristallisierte Glasmatrix. Zum anderen sind Melilithnephelinbasalte Sie nennen. bestehen aus Olivin + Cazu Klinopyroxen + Nephelin + Melilith neben der Glasmatrix. In allen Fällen ist Hauyn in der Glasmatrix vertreten. GOEMANN (1976) nannte die Mineralkombination von Plagioklas + Nephelin neben Olivin und Ca-Klinopyroxen Basanit.

Weitere petrographische und geochemische Untersuchungen wurden von WELZEL (1966), SCHRÖDER (1962, 1965, 1976) durchgeführt. Eine detaillierte chemische und mineralogische Beschreibung der tertiären Vulkanite der Heldburger Gangschar erfolgte durch AKINDURO (1978) (für Zeilberg), HUCKENHOLZ & SCHRÖDER (1981) und HUCKENHOLZ & WERNER (1990).

Die Phonolithe der Heldburg sind nach KUNZMANN (1996) durch eine Differentiation basaltischer Magmen im Oberen Mantel entstanden. Ein Vergleich der Phonolithen aus Nigeria, Australien und Neuseeland mit denen der Heldburger Gangschar wurde von IRVING & PRICE (1981) durchgeführt.

2.1.3 Fichtelgebirgszone

Das Fichtelgebirge bildet die südwestliche Fortsetzung des Erzgebirges. Eine erste geologische Beschreibung von Fichtelgebirge, Frankenwald und dem westlichen Vorland erfolgte durch GÜMBEL (1879). SÖLLNER (1965) nahm einen Teil der Topographie Waldershof (6038) und Mitterteich (1 : 25 000) geologisch auf. STETTNER (1964) befasste sich mit dem tertiären Vulkanismus in der Fichtelgebirgszone (Abbildung 2-4).

Die im Tertiär entstandenen Basaltvorkommen des Fichtelgebirges und im Vorland der fränkischen Linie entsprechen dem westlichen Ausläufer der böhmischen Vulkanzone, mit ihren Zentren im Duppauer Gebirge und im böhmischen Mittelgebirge. Das Vulkansystem ist an den Egergraben gebunden (KOPECKY, 1974). Da Basalte und andere vulkanische Festgesteine meist härter als ihre Nebengesteine sind, wurden sie durch Verwitterung herauspräpariert und sind im kristallinen Grundgebirge als Basaltdecken erhalten geblieben. Sie sind im Gelände in Form von Kuppen, Decken, Spalten und Schlotsausfüllungen zu sehen. Im sedimentären Vorland herrschen Kuppen vor. Die Spalten, in denen basaltische Magmen hochsteigen konnten, entsprechen den Linien Weiden-Kemnath und Eger-Kemnath: Die Linie Weiden-Kemnath stellt die süd-westliche Fortsetzung des Egertalgrabens dar; die Linie Eger-Kemnath entspricht einer Wiederbelebung der Fränkischen Linie.

In der Fichtelgebirgszone östlich der Fränkischen Linie sind ca. 100 Eruptionszentren bekannt. Ein größeres Eruptionsgebiet liegt zwischen Marktredwitz, Wisau und Mitterteich. Dort werden die kristallinen Gesteine des Paläozoikums und Präkambriums von tertiären Basaltvorkommen und Basalttuffen teils durchschlagen, teils überdeckt. Eine Gruppe von kleineren Basalten findet sich zwischen Selb und Hohenberg und im Raum von Erbendorf. Schlotruinen und Basaltkuppen treten in Neustadt (Rauher Kulm) und Waldeck (Schlossberg) auf. Als ein weiteres größeres Vorkommen weiter im Süden ist der Parkstein bei Weiden zu nennen.

Der Vulkanismus war in der Fichtelgebirgszone vorwiegend im tieferen Miozän aktiv: TODT & LIPPOLT (1975) führten an Vulkaniten aus fünf Eruptionszentren K-Ar-Altersbestimmungen durch. Sie bestimmten ein Gesamtalter von 21.3 bis 23.3 Ma.

 Abbildung 2-4: Übersichtskarte der alkalibasaltischen Vulkanitvorkommen in der Fichtelgebirgszone nach HUCKENHOLZ & SCHRÖDER (1985). K-Ar-Gesamtalter (21 - 29) in Millionen Jahren (TODT & LIPPOLT, 1975). Unterbrochene Balken-Linie A: Nordwest-Rand der Verbreitung von Oberkreide-Einschlüssen in Alkalibasalt-Vorkommen. Nach WURM (1961) erreichte die Basaltförderung im Fichtelgebirge und seinen Ausläufern im Bruchschollenland im Obermiozän ihren Höhepunkt und hielt bis ins Plio-Pleistozän an (SCHRÖDER, 1962). Geophysikalische und paläomagnetische Untersuchungen ergaben invers magnetisierte Vulkanite < 21 Ma, normal magnetisierte Vulkanite zwischen 21 bis 23 Ma und invers magnetisierte Vulkanite > 23 Ma POHL & SOFFEL (1977), SOFFEL & SUPALAK (1968), REFAI (1961)).

Die ersten geochemischen Untersuchungen des Fichtelgebirges wurden von DÖRR (1895) und MERKEL (1895) ausgeführt. Detaillierte Arbeiten über die Basalte der Oberpfalz und Einschlüsse erfolgten durch WALDECK (1905). RICHARZ (1920) deren und STRUNZ (1975) untersuchten die Minerale des Basaltes vom Steinbruch Großer Teichelberg. NOUSSINANOS (1973) untersuchte die Geochemie und Petrologie der Basaltvorkommen des Steinbruchs Rehberg, des Steinhügels bei Pechbrunn, des Grossen Teichelbergs, des Steinbruchs Triebendorf, des Steinbruchs Zinsterberg und des Rauhen Kulms. Die Oberpfälzer SCHÜTZ (1967), Ultramafititeinschlüsse der Basalte wurden von FRISCH (1970) und HUCKENHOLZ & NOUSSINANOS (1977) untersucht.

Weitere geochemische und petrographische Untersuchungen an den alkalibasaltischen Vorkommen der Oberpfalz wurden von ELLRICH (1977), GESSLER (1977), BENTENRIEDER (1977) und KARAMULAS (1977) im Rahmen ihrer Diplomarbeiten durchgeführt. Der tertiäre Vulkanismus im bayerischen Teil des Egergrabens wurde von HUCKENHOLZ & BÜCHEL (1988) untersucht.

2.2 Basaltgenese

2.2.1 Modalanalyse

Die Basalte können mit Hilfe des Mineralbestandes in verschiedene Basaltvarietäten unterteilt werden. Nach RONNER (1963) sind die Varietäten, Olivinbasalt, Alkaliolivinbasalt, Nephelinbasalt, Olivinnephelinit, Olivinmelilithnephelinit und in ihre Derivate, Hawaiit, Mugearit und Benmoreit, zu unterscheiden. Aufgrund des Mineralbestands werden die Basalte wie in der Tabelle 2 - 1 bezeichnet:

Basaltvariäten	Ol	Срх	Akf	Mt	Plag	Ne	Me	Bi	Amph	Qz
Olivinbasalt	+	+	+	+	+					
Alkaliolivinbasalt	+	+	+	+	+	+				
Nephelinbasanit	+	+	+	+	+	+				
Olivinnephelinit	+	+	+	+	-	+				
Olivinmelilithnephelinit	+	+	+	+	-	+	+			
Mugearit	+	+	+	+	+				<u>+</u>	
Hawaiit	+	+		+	+				<u>+</u>	
Benmoreit		+	+	+						
Trachyt			+	+				+		+
Phonolith		+	+	+		+		+	+	

Tabelle.2-1: Unterteilung der Basalte nach dem Mineralbestand

Hierbei sind die Mineralphasen Olivin (Ol), Klinopyroxene (cpx), Titanomagnetite (Mt) und Alkalifeldspat (Akf) magmatischen Plagioklas primär Ursprungs. ist bei den olivinbasaltischen und alkaliolivinbasaltischen Vulkaniten vertreten. In den nephelinbasanitischen Vulkaniten ist neben Plagioklas auch Nephelin vorhanden. In den olivinnephelinitischen Vulkaniten hingegen tritt nur Nephelin auf.

Hauptmantelminerale in Peridotit sind neben Olivin, Klinopyroxen, Spinell (Sp) auch Orthopyroxen (Opx), und / oder Granat (Gr) sowie Phlogopit (Ph). Orthopyroxen wird hierbei sehr selten beobachtet.

2.2.2 Geochemie der Basalte

Eine andere Einteilung basiert auf der geochemischen Zusammensetzung der Basalte. Die Verteilung der Haupt- und Spurenelemente und der Elemente der Seltenen Erden (SEE) zwischen Schmelze und Mantelmineralen gibt Aufschluss über geänderte Zusammensetzungen des Oberen Mantels und damit über die Genese der Basalte.

Die primitiven Mantelgesteine vor der Bildung der Erdkruste werden nach RINGWOOD (1975) als Pyrolit bezeichnet. Sie haben eine Zusammensetzung mit Mg/Si = 1.1 und Al/Si = 0.1.

Im Allgemeinen nimmt der Aufschmelzungsgrad (F) von Tholeit über Alkaliolivinbasalt, Nephelinbasanit, Olivinnephelinit zu melilithführendem Olivinnephelinit ab. Entsprechend dieser Reihenfolge nimmt die Bildungstiefe dieser basaltischen Schmelzen zu. SPERA (1980) zeigte, dass der Aufschmelzungsgrad nicht kleiner als 1 % sein kann, da sonst die Schmelze sich nicht mehr vom Mantelgestein gelöst haben kann. Mit Hilfe von Modellrechnungen kann gezeigt werden, ob Peridotite Ausgangsmaterial für die Basaltgenese sind. Nach WEDEPOHL (1985) beträgt der Aufschmelzungsgrad eines Iherzolithischen Peridotits für Tholeiite 12 %, Alkaliolivinbasalte 6 %, Nephelinbasanite 5 % und Olivinnephelinite 4 %.

Für die Bildung alkalibasaltischer Magmen ist Klinopyroxen maßgebend verantwortlich. Bei der Partialschmelzbildung wird Klinopyroxen zuerst aufgeschmolzen. Als Folge der fraktionierten Aufschmelzung ändert sich die Konzentration der Haupt- und Spurenelemente und der Elemente der Seltenen Erden in einer basaltischen Schmelze. Zugleich ändert sich die Zusammensetzung des Pyroxens kontinuierlich. Der Entwicklungspfad der Pyroxenzusammensetzung kann im CaSiO₃ - MgSiO₃ - FeSiO₃ Diagramm entlang des Diopsid-Hedenbergit-Liquidus verfolgt werden.

Das primäre Magma weist salitische bis augitische Klinopyroxene auf. Mit zunehmender Differentiation erfolgt im Pyroxen die Austauschreaktion $CaMg = Ca (Fe^{2+} + Mn^{2+})$. Dies bewirkt eine Zunahme des Fe^{2+} -Anteils gegenüber Mg im Magma. Durch Ca-Ersatz können auch zusätzlich weitere dreiwertige Kationen und Alkalien in die Pyroxen-Struktur aufgenommen werden. Mit fortschreitender Differentiation findet die Reaktion CaMg = Na Fe^{3+} statt. Bei der sauersten Differentiationsstufe liegen die Zusammensetzungen der Klinopyroxene bei Ägirinaugit bzw. Ägirin. Dies hat zugleich zur Folge, dass diese Klinopyroxene zunehmend reich an mittleren Elementen der Seltenen Erden werden. Orthopyroxen kommt selten vor, da er mit der alkalibasaltischen Schmelze unter Bildung von Olivin und Klinopyroxen reagiert. Orthopyroxen in einem Basalt ist ein Indikator für ein initiales Hochdruckstadium.

Basalte werden in <u>primäre</u>, <u>fraktionierte und mafische Basalte</u> unterteilt. Als Unterscheidungsmerkmal wird der Mg-Wert = $Mg^{2+}/(Mg^{2+} + Fe^{2+})$ herangezogen.

Basalte, die nahezu unverändert aus dem Oberen Mantel aufgestiegen sind, werden als primär bezeichnet. Wichtige Kriterien für primäre Basalte sind nach BOETTCHER & O'NEIL (1980) sowie nach FREY et al. (1978):

- 1. Führen von Ultramafitit-Xenolithen (Spinellperidotite),
- Ni-Gehalte zwischen 250 und 350 ppm (230 290 ppm nach SATO (1977); 250 300 ppm nach WEDEPOHL et al. (1994); Ni > 320 ppm nach FREY et al. (1978)),
- 3. Mg-Wert 0.69 0.73 (WEDEPOHL, 1963).

Ein Mg-Wert 0.69 - 0.73 besagt, dass bei der Schmelzbildung die Schmelze mit Olivin mit einem Forsterit-Anteil von 90 - 87 % im Gleichgewicht war. Alkalibasalte mit einem Mg-Wert > 0.73 hingegen, werden als <u>mafische Basalte</u> bezeichnet. Durch die Reaktion mit den mitgerissenen Mantelmaterialen (Peridotit-Xenolithe) verändert sich die primäre chemische Zusammensetzung der Alkalibasalte. Orthopyroxen wird von der Schmelze vollständig aufgezehrt. Als Zerfallsprodukte bleiben Olivin-, Klinopyroxen- und Spinellxenocryste erhalten. Der Anteil der kompatiblen Elemente Mg, Ca, Ni, Cr und Co in der Schmelze nimmt zu und damit auch der Mg-Wert.

Durch Änderung der Reaktionsbedingungen beim Aufsteigen der Schmelze können sich, entsprechend den P-T-Bedingungen und der chemischen Zusammensetzung der primären Schmelze, Mg-reiche Phasen bilden. Diese Minerale sinken gravitativ ab. Die Folge davon ist, dass diese Schmelze an den kompatiblen Elementen Mg, Ca, Ni, Cr und Co verarmt und mit den inkompatiblen Elementen SiO₂, Al₂O₃ und Alkalien angereichert wird. Mit zunehmender Fraktionierung verarmt die Schmelze immer mehr an Mg-reichen Phasen. Entsprechend dieser Abnahme nimmt auch der Mg-Wert ab. Diese Alkalibasalte mit Mg-Werten < 0.69 werden <u>fraktionierte Alkalibasalte</u> genannt.

Basalte mit einem Mg-Wert < 0.63 sind als <u>Derivate</u> zu bezeichnen.

Die Elemente der Seltenen Erden SEE La, Ce, Pr, Nd, Sm, Eu, Dy, Er, und Yb erlangten in den letzten Jahrzehnten eine große Bedeutung in der Geochemie der magmatischen Gesteine. Zu den Elementen der Seltenen Erden gehören die Elemente der Gruppe III a des Periodensystems mit den Ordnungszahlen 57 (La mit der Elektronenkonfiguration 4f⁰5d¹6s²) bis 71 (Lu mit der Elektronenkonfiguration 4f¹⁴5d¹6s²). Die Elemente der Seltenen Erden werden in die leichten Elemente der Seltenen Erden (LSEE) mit den Elementen La-Nd, die mittlere Elemente der Seltenen Erden (MSEE), mit den Elementen Sm-Dy, und die schweren Elemente der Seltenen Erden treten in der Natur dreiwertig auf, mit Ausnahme von Eu, das unter reduzierenden Bedingungen auch als Eu²⁺ stabil sein kann, und Ce, das unter oxidierenden Bedingungen auch als Ce⁴⁺ auftritt.

Verschiedene Faktoren wie Zusammensetzung der Schmelze, Temperatur, Druck, Sauerstoffpartialdruck oder Wassergehalt der Schmelze beeinflussen die Verteilungskoeffizienten der SEE zwischen Mineral und Schmelze (ROLLINSON, 1993). Entscheidend ist, dass manche Elemente auf Grund ihrer Ionenradien und ihrer Ladungen bevorzugt in das Kristallgitter eines Mantelhauptminerals (Olivin, Orthopyroxen und Spinell) eingebaut werden können. Sie werden als kompatible Elemente bezeichnet. Die Elemente, die in das Gitter der Mantelminerale nur beschränkt eingebaut werden können, werden inkompatible Elemente genannt. La³⁺ zum Beispiel weist in oktaedrischer Koordination einen effektiven Ionenradius von 1.1 Å und Lu³⁺ einen effektiven Ionenradius von 0.9 Å auf (SHANNON, 1976). Aufgrund ihres effektiven Ionenradius können die dreiwertigen Elemente der Seltenen Erden Ca²⁺ ersetzen. Eu²⁺ kann gegen Sr²⁺ ausgetauscht werden. Für die im oberen Erdmantel stabilen Hauptminerale (Ol, Opx, Cpx und Sp) sind die Leichten Seltenen Erden LSEE stark inkompatible Elemente. So ist es möglich aus der Verteilung der SEE-Muster, petrogenetische Prozesse aufzuklären, wie z.B. die Bestimmung von Herkunft der basaltischen Magmen oder Beschreibung der Fraktionierungsprozesse von Magmen. Aus dem SEE-Muster eines Basalts kann auf den Aufschmelzungsprozeß im Erdmantel bzw. die Entwicklung des Stammmagmas rückgeschlossen werden.

Nach der Erdkrustenbildung änderte sich die Zusammensetzung des Oberen Mantels. Alkalibasaltische Magmen entstehen durch Partialschmelze im Oberen Mantel. Die Verteilung der inkompatiblen Elemente lässt auf die Aufschmelzungsprozesse des Mantelgesteins rückschließen. Die Kristallchemie der auskristallisierenden Minerale kann somit zu einer ausgeprägten Fraktionierung zwischen den leichten und schweren SEE beitragen. Hierbei ist der Verteilungskoeffizient D₀, d.h. das Verhältnis der Konzentration der Elemente im Mantelmineral zu der Konzentration der Elemente in der Basaltschmelze (Mineral / Schmelze), von Bedeutung. Die Elemente Mn, Co, Ni, Cr, V, Sc und Cu haben große Verteilungskoeffizienten ($D_0 > 1$) und werden als kompatibel bezeichnet. Ihre relative Konzentration ändert sich mit dem Aufschmelzungsgrad nicht. Ce, P und K stellen eine Ausnahme dar, sie zeigen eine Anomalie bei der Aufschmelzung. Inkompatible Elemente hingegen besitzen niedrige Verteilungskoeffizienten ($D_0 < 1$). Zu diesen Elementen zählen u a. Large Ion Lithophile Elemente (LIL-Elemente= LSEE, K, Rb Li, Cs, Ba, Sr, P, Ti, U, Th e.t.c). Eine besondere Stellung haben die Elemente Sc, Mn, Zn: Sie haben Verteilungskoeffizienten Do in der Nähe von eins und kommen daher in sehr ähnlichen Gehalten in den verschiedenen Alkalibasalten und Peridotiten vor.

Die inkompatiblen LIL-Elemente lassen eine qualitative Abschätzung des Stoffumsatzes bei der Partialschmelzbildung im Oberen Mantel zu. Durch partielles Schmelzen reichern sie sich bevorzugt in der Schmelze an. Die Ansammlung höher schmelzender Phasen wie Olivin führt dazu, dass die refraktären Elemente Mg, Ni, Cr im Residuum angereichert werden. Experimentelle Untersuchungen zeigen, dass der Verteilungskoeffizient D₀ von der Zusammensetzung der Schmelze, von der Temperatur und von der Sauerstofffugazität abhängig ist (MYSEN, 1979, 1983). Die Druckabhängigkeit kann vernachlässigt werden. Bei Mobilisationsexperimenten wurde festgestellt, dass durch die fluide Phase inkompatible Elemente aus den Mantelmineralen mobilisiert werden können. Der Verteilungskoeffizient der LSEE für Mineral/Schmelze ist umso größer, je höher der H₂O-Gehalt in der Schmelze ist. Das hat zur Folge, dass sich die LSEE gegenüber den HSEE in der fluiden Phase anreichern (MYSEN 1979,1983).

Insgesamt betrachtet haben all diese Prozesse zur Folge, dass im Laufe der Entstehung der Kontinentalkruste der Anteil inkompatibler Elemente im Oberen Mantel abnimmt, während die kompatiblen Elemente sich anreichern. Die Erdkruste hingegen wird zunehmend an Elementen mit Schmelzaffinität reicher. Dies bedeutet, dass sich die Elemente der Seltenen Erden beim partiellen Aufschmelzen des Oberen Erdmantels in der Schmelze relativ zum Ausgangsgestein anreichern und zwar die leichten Elemente der Seltenen Erden erheblich stärker als die schweren Elemente der Seltenen Erden. Im residualen Mantel ist das Verhältnis von LSEE zu HSEE (chondritisch normiert) kleiner als 1. Für die Mantelminerale gilt hinsichtlich der wachsenden Kompatibilität der Elemente der Seltenen Erden die Reihenfolge:

Spinell < Olivin < Phlogopit < Klinopyroxen;

ordnet man die Minerale entsprechend ihrer Beiträge zum Gehalt der Proben, so kommt man zu folgender Reihe:

Phlogopit < Orthopyroxen < Olivin < Klinopyroxen.

2.2.3 Klassifikation

Die erste Klassifikation der Vulkanite wurde von <u>YODER und TILLEY</u> (1962) basierend auf der CIPW-Norm durchgeführt. Danach lassen sich alkalibasaltische Magmen durch das Auftreten von normativem Olivin und Nephelin sowie durch das Fehlen von Quarz und Hypersthen von Tholeiiten unterscheiden.

GREEN und RINGWOOD (1967) unterteilen die Magmen weiter mit zunehmender Untersättigung der Schmelze: Alkaliolivinbasalt hat einen normativen Nephelingehalt kleiner 5%, Basanit größer 5%. GREEN (1970) untergliedert die Basanite weiter: während Nephelinbasanit Plagioklase führen, fehlen diese in Olivinnephelinit. Bei Olivinmelilithnephelinit fehlt ebenfalls Plagioklas, er enthält dafür normativ Larnit (Tabelle 2-2. Die von MACDONALD & KATSURA (1962) durchgeführte geochemische Klassifikation der Basalte hinsichtlich $(Na_2O + K_2O)$ versus SiO_2 wurde von <u>LE BAS et al.</u> (1986) und SØRENSEN (1986) erweitert. Hiermit ist eine weitere Unterteilung der gesättigten Vulkanite möglich.

Basaltvarietät	Abkürzung	normativer Mineralbestand
Basalt	BA	ab + or + hy + qz
Olivinbasalt	OB	ol + hy
Alkaliolivinbasalt	AOB	$ab + or + ne \le 5\%$
Nephelinbasanit	NB	$ab \ge 2\% + or + ne \ge 5\%$
Olivinnephelinit	ON	$ab \le 2\% + or + ne \ge 5\%$
Olivinmelilithnephelinit	OMN	$ab \le 2\% + or + ne \ge 5\% + cs$

Tabelle 2-2: Einteilung der Vulkanite entsprechend zunehmender Untersättigung nach GREEN und RINGWOOD (1967) und GREEN (1970).

Die chemische Zusammensetzung der Vulkanite nach ihren Hauptelementen erlaubt es nicht, eine genauere Einteilung der Alkalibasalte hinsichtlich ihrer Kristallisationsfolge und damit ihrer Entstehung durchführen zu können. Aus diesem Grund werden die Vulkanite entsprechend ihrer Spurenelemente nach <u>WINCHESTER & FLOYD</u> (1977) mit Zr / TiO₂ * 0.001 versus Nb / Y eingeteilt.

Eine weitere Klassifikation der Vulkanite bietet die Einteilung nach dem Mg-Wert $Mg^{2+}/(Mg^{2+}+Fe^{2+})$, auch Fraktionierungsgrad genannt. Dieses Konzept wurde von <u>HUCKENHOLZ & BÜCHEL</u> (1988) für die tertiären Vulkanite der Hocheifel weiterentwickelt, indem neben dem Mg-Wert die CIPW-Norm der Basalte mitberücksichtigt wurde. In dem Diagramm von HUCKENHOLZ & BÜCHEL (1988) werden als Abszisse der Mg-Wert und als Ordinate die Verhältnisse der normativen Komponenten verwendet (Abbildung 2-5):

1. In der CIPW-Norm wird das Foid-Verhältnis ne' = (ne + lc) / (ne + lc + ab + or) als Maß der kritischen Untersättigung der Schmelze verwendet. Wenn Nephelin in der Norm fehlt, kann Kieselsäuresättigung durch die Hypersthen-Komponente hy' = hy / (hy + ol) bzw. bei einer Kieselsäureübersättigung durch die Quarz-Komponente qz' = qz / (qz + ab + or) ausgedrückt werden. Bei Alkalibasalten ergibt sich für Alkaliolivinbasalt die Variationsbreite von ne' = 0 – 0.18; für Nephelinbasanit ne' = 0.18 – 0.63 und für Olivinnephelinit ne' > 0.63. Die Nephelinbasanite werden nach ihren normativen Nephelingehalten weiter unterteilt der Anteil von Nephelin liegt bei alkaliolivinbasaltischem Nephelinbasanit 1 zwischen 7 % und 9 % und bei Nephelinbasanit 2 zwischen 11 % und 13 %.

- 2. Alkalibasalte (die Hauptgruppen Olivinnephelinit bis Basalt) werden weiter nach ihrem Mg-Wert in primäre, fraktionierte und mafische Basalte eingeteilt. Durch Kristallisationsdifferentiation der Alkaliolivinbasalte entstehen "fraktionierte Alkaliolivinbasalte". Sie haben einen Mg Wert 0.63 < Mg# < 0.69. Deren Derivate mit einem Mg-Wert Mg# < 0.63 sind: Hawaiite (0.46 < Mg# < 0.63), Mugearite (0.36 < Mg# < 0.46) und Benmoreite (0.36 < Mg# < 0.25). Durch Kristallisationsdifferentiation der Nephelinbasanite und Olivinnephelinite entstehen "fraktionierte Nephelinbasanite", "fraktionierte Olivinnephelinite" (Mg Wert 0.63 < Mg# < 0.69) sowie Nephelintephrite bei 0.46 < Mg# < 0.63. Diese Verhältnisse sind dem Einteilungsschema der Abbildung 2 5 zu entnehmen.
- 3. Bei der Durchführung der Klassifikation ist zu berücksichtigen, dass in der Regel bei Proben mit, sowohl niedrigen Gesamt-FeO-, als auch niedrigen MgO-Gehalten der Differentiationsindex (DI) zur Anwendung kommt. Der Differentiationsindex ist aus der Summe der normativen salischen Komponenten (ohne Anorthit (an)) (ne + or + ab), (or + ab) oder (or + ab + qz) zu errechnen. Trachyte haben einen Differentiationsindex DI > 73.

Melilith-führende, stark SiO₂ untersättigte Olivinmelilithnephelinite mit normativem Larnit sind in der Einteilung von HUCKENHOLZ & BÜCHEL (1988) nicht ausgewiesen. Aus diesem Grund wurde das Diagramm von NEUMAIER (1996) erweitert.

Die Basalte können Gasphasen führen. Dies kann beim Aufstieg der Schmelze die Oxidation von Fe²⁺ zu Fe³⁺ bewirken. Die Kenntnis der primären Fe²⁺ - Gehalte der Basalte ist daher für die Berechnung des Mg-Wertes von Bedeutung. Sie gibt damit Auskunft darüber, ob ein Gestein aus einem primären Mantelmagma oder einer differenzierten Schmelze entstanden ist. Nach WEDEPOHL (1985) bleiben die Mn^{2+}/Fe^{2+} und V^{3+}/Fe^{3+} bzw. Cr^{3+}/Fe^{3+} -Verhältnisse für alle Basaltvarietäten konstant und lassen so eine Korrektur des Fe²⁺/Fe³⁺Verhältnisses zu.

1.0					(23)	(24)	(25)		
cs/(cs+lc+ne)					OMN	OMN	OMN		
0.0					frak	prim	maf		
1.0				(1)	(2)	(3)	(4)		
(ne+lc)/(ne+lc+ab+or)				NE	ONfrak	ONprim	ONmaf		
0.63									
0.63				(5)	(6)	(7)	(8)		
(ne+lc)/(ne+lc+ab+or)				NTE2	NB2frak	NB2prim	NB2maf		
0.38									
0.38				(9)	(10)	(11)	(12)		
(ne+lc)/(ne+lc+ab+or)				NTE1	NB1 frak	NB1prim	NB1maf		
0.18									
0.18		(13B)	(13A)	(13)	(14)	(15)	(16)		
(ne+lc)/(ne+lc+ab+or)		BENaob	MUG	HAW	AOBfrak	AOBprim	AOBmaf		
0.0									
0.0		(17B)	(17A)	(17)	(18)	(19)	(20)		
hy/(hy+ol)		BENob	MUGob	HAWob	OBfrak	OBprim	OBmaf		
1.0									
	(21C)	(21B)	(21A)	(21)	(22)				
qz/(qz+ab+or+c)	TRA	BEN	BENmaf	BA	BA				
0.1									
0.1		(21D)	(21A)	(21)					
qz/(qz+ab+or+c)	(21C) TR 4	(21B) DEN		(21) DA					
0.2	111/1	DEIN	BENmaf	DA					
0.	0.0 0.25 0.36 0.46 0.63 0.69 0.73								
$Mg^{+2}/(Mg^{+2}+Fe^{+2}) \rightarrow$									

Abbildung 2-5: Einteilungsschema der drei Lokalitäten Hocheifel, Heldburger Gangschar und Fichtelgebirgszone auf der Basis von (ne+lc) / (ne+lc+ab+or), hy l hy+ol), qz / (qz+ab+or+c) versus Mg⁺² / (Mg⁺² + Fe⁺²) (Maßstab von Abszisse und Ordinate nicht metrisch).
NE= Nephelinit, ON= Olivinnephelinit, NB1 u. NB2= Nephelinbasanit 1 u. 2, NTE1 u. NTE2= Nephelintephrit 1 u. 2, BEN= Benmoreit, MUG= Mugearit,

HAW= Hawaiit, AOB= Alkaliolivinbasalt, OB= Olivinbasalt, TRA= Trachyt, BA= (Tholeiit-) Basalt,

frak= fraktioniert, maf= mafisch, prim= primär, aob= alkaliolivinbasaltisch, ob= olivin-basaltisch. (HUCKENHOLZ & BÜCHEL, 1988).

Das Diagramm ist oberhalb der Olivinnephelinite (ON, Felder 2-4) um Olivinmelilithnephelinite (OMN) erweitert (Felder 23-25, Fettdruck), die durch das cs $\tilde{/(cs+lc+ne)}$ -Verhältnis von G. NEUMAIER (1996) definiert sind. So sind für **SiO₂-übersättigte** Basalte mit normativem Quarz qz' = qz / (qz + ab + or + c) neun verschiedene Felder zu unterscheiden:

qz' = 0.20-0.10	Felder 21-22	Basalt	BA
qz' = 0.01-0.00	Feld 21A	Benmoreit _{maf}	B EN _{maf}
	Feld 21B	Benmoreit	BEN
	Feld 21C	Trachyt	TRA

Bei den **SiO₂-gesättigten** Vulkaniten ohne normativem Nephelin und Quarz liegen sechs Felder vor. Kriterium ist der normative Hypersthen-Anteil hy' = hy / (hy + ol):

Feld 17	olivinbasaltischer Hawaiit	$HAW_{ob}. \\$
Feld 17A	olivinbasaltischer Mugearit	$MUG_{ob}.$
Feld 17B	olivinbasaltischer Benmoreit	BEN _{ob} .
Felder 18-20	Olivinbasalt	OB
	Feld 17 Feld 17A Feld 17B Felder 18-20	Feld 17olivinbasaltischer HawaiitFeld 17Aolivinbasaltischer MugearitFeld 17Bolivinbasaltischer BenmoreitFelder 18-20Olivinbasalt

SiO₂-untersättigte Vulkanite mit normativem Nephelin werden nach dem Mg-Wert und ihrem ne' = (ne + lc) / (ne + lc + ab + or) Verhältnis in 18 Felder eingeteilt:

ne' = 0.00-0.18.	Feld 13	Hawaiit	HAW
	Feld 13A	Mugearit	MUG
	Feld 13B	alkaliolivinbasaltischer Benmoreit	BEN _{aob}
	Felder 14-16	Alkaliolivinbasalt	AOB
ne' = 0.18 - 0.38	Feld 9	Nephelintephrit 1	NTE 1
	Felder 10-12	Nephelinbasanit 1	NB1
ne' = 0.38-0.63	Feld 5	Nephelintephrit 2	NTE 2
	Felder 6-8	Nephelinbasanit 2	NB 2
ne' = 0.63 - 1.0	Feld 1	Nephelinit	NE
	Felder 3-4	Olivinnephelinit	ON

Stark SiO₂-untersättigte Gesteine sind Olivinmelilithnephelinite, die normativen Larnit enthalten. Aufgrund des cs' = cs / (cs + ne + lc) Verhältnisses und des Mg-Wertes können drei Felder zugeordnet werden.

	cs' = 0.00 - 1.00	Felder23-25	Olivinmelilithnephelinite	OMN
--	-------------------	-------------	---------------------------	-----

3 Geochemische Analytik

Die Klassifikation der Gesteine erfolgt nach ihrem Gefüge, sowie ihrer modalen und chemischen Zusammensetzung. Als Probenmaterial standen 171 aufbereitete Proben aus den Gebieten der Hocheifel, der Fichtelgebirgszone und der Heldburger Gangschar zur Verfügung. Zusätzlich wurden weitere 120 Gesteinsproben aufbereitet. Insgesamt wurden im Rahmen dieser Arbeit 291 Basaltproben analysiert und ihre Datensätze geochemisch ausgewertet.

3.1 Probenvorbereitung

Die im Department vorhandenen, bereits aufbereiteten Proben wurden durch neue ergänzt und erweitert. Das im Gelände möglichst frisch gesammelte Gesteinsmaterial wurde zunächst von der Verwitterungsrinde befreit. Die Stücke wurden dann mit dem Hammer auf eine Größe von 5 mm zerkleinert, erneut auf verwitterte Bruchstücke untersucht und mit dem Handmagneten von Abrieb befreit, um systematische Fehler bei den Analysenergebnissen zu vermeiden. die Bruchstücke der Proben Anschließend wurden ausgelesenen mit einer Scheibenschwingmühle auf eine Korngröße $< 10 \,\mu m$ gemahlen. Um eine Kontamination mit Fremdmaterial zu vermeiden (was bei den Ergebnissen der Spurenelemente zu größeren Fehlern führen kann), wurde sehr darauf geachtet, dass die Scheibenschwingmühle nach jeder Probenaufbereitung sorgfältig gereinigt wurde. Die pulverisierten Proben wurden mit verschiedenen Analysenmethoden untersucht.

Die Zuverlässigkeit der in dieser Arbeit angewandten Analysenmethoden wurde durch die Kalibrierung der Messgeräte mit einer ausreichenden Anzahl international verfügbarer Gesteinsstandards und den am Department für Geologie und Umweltwissenschaften gebräuchlichen Hausstandards überprüft. Ein Maß für die Reproduzierbarkeit der Messwerte stellt die absolute und relative Standardabweichung dar. Vor, während und nach jeder Messreihe wurden die Monitore gemessen, um gerätespezifische Schwankungen zu erkennen und beheben zu können.

3.2 Analysenmethoden

3.2.1 Röntgenfluoreszenzanalyse (für vergleichende Untersuchungen)

Diese routinemäßige Standardmethode wurde für die Bestimmung der Haupt-, Neben- und Spurenelemente angewendet. Für die Röntgenfluoreszenzanalyse (RFA) wurden aus den o. g. Pulvern Tabletten hergestellt. Im Department für Geologie und Umweltwissenschaften der Universität München gibt es zwei Verfahren Tabletten herzustellen, die eine homogene Verteilung der Elemente in der Probe sicherstellen, wie es aufgrund der begrenzten Eindringund Austrittsenergie der charakteristischen Strahlung erforderlich ist:

Die Analyse der Hauptelemente Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K, P wurde mittels Glastabletten durchgeführt. Zur Herstellung dieser Glastabletten wurden 0.8 g Probensubstanz mit 4.8 g Schmelzmittel (Li₂B₄O₇) (Verhältnis 1 : 6) gemischt und bei 1200⁰C in einem Platintiegel über einer Propangasflamme geschmolzen. Die Schmelze wurde in eine mitaufgeheizte Platinkokille gegossen, in welcher sie anschließend innerhalb weniger Minuten abgekühlt wurde. Dabei ist zu beachten, dass Schmelzdauer und -temperatur einen direkten Einfluss auf die Impulsraten der Matrixelemente haben. Dies gilt besonders für Elemente mit niedrigen Ordnungszahlen, wie Na, Mg, Al und Si.

Für die Spurenelemente V, Cr, Co, Ni, Zn, Rb, Sr, Y, Zr, Nb, Ba, La, Ce wurden aus 8 g Probensubstanz und 2 g Bindemittel (Hoechst – Wachs C) Pulverpresstabletten unter einem Pressdruck von 1200 kp/cm² hergestellt. Die Analysen der Haupt-, Neben- und Spurenelemente erfolgten an einem wellenlängendispersiven Röntgenspektrometer (Philips PW 1480) mit Rhodium-Röhre. Die Messbedingungen für die Röntgenfluoreszenzanalyse sind im Anhang 2, Tabelle 1 aufgeführt.

Die Kalibrierung der einzelnen Elemente erfolgte anhand von 57 internationalen Standards. Die Tabellen 2 und 3 im Anhang 2 zeigen die Reproduzierbarkeit, die durch Serienmessungen an 10 Aliquoten des Hausstandards (Nephelinbasanit vom Parkstein) ermittelt wurde. Elemente mit einer relativen Standardabweichung von >5 % wurden bei der Interpretation nicht berücksichtigt. Zur Bestimmung der absoluten Konzentration der Elemente aus den Impulsraten, erfolgten Matrixkorrekturen über Alpha@-Faktoren (theoretische Korrekturkoeffizienten) für alle Elemente. Die Messelektronik übernimmt die Berechnung der Endwerte. Je nach Vorgabe der in dem jeweiligen Messkanal eingestellten Parameter zeigt das Programm den Endwert in Gew. - % oder ppm an. Die Umwandlung der Messdaten in ein allgemein lesbares ASCII-Format zur computergestützten Weiterverarbeitung erfolgte mit dem Programm APREPRFA@ (SEIBERL, unpubl.).

Die Nachweisgrenzen des verwendeten Gerätes liegen für die Hauptelemente bei ca. 0.01 % und für die Spurenelemente bei ca. 10 ppm. Der relative Fehler beträgt bei den Hauptelementen etwa 1 % bzw. 5 % im Spurenelementbereich.

Bei vier ausgewählten Proben aus der Hocheifel (HF 603, HF 606, HF 516 und HF 575) wurden Röntgenfluoreszenzanalysen im Department für Geologie und Umweltwissenschaften der LMU , im Bayerischen Geologischen Landesamt München, sowie bei Ytong (Schrobenhausen, Bayern) durchgeführt, um die Reproduzierbarkeit der Analysewerte ermitteln zu können. Die Ergebnisse sind im Anhang 2, Tabelle 4a bis 4c aufgeführt. In der vorliegenden Arbeit wurden die Haupt- und Nebenelemente mittels Glastabletten ermittelt. Die Spurenelemente wurden mit Presstabletten bestimmt. Im Gegensatz hierzu erfolgten die Messungen im Bayerischen Geologischen Landesamt und Ytong nur mittels Glastabletten. Von Ytong liegen nur Analysen der Haupt- und Nebenelemente vor.

Die Vergleichsmessungen im Anhang 2, Tabellen 4a bis 4c zeigen, dass die ermittelten Analysendaten nur geringfügig variieren und im oben angegebenen Fehlerbereich liegen.

3.2.2 Flammenphotometrie

Die Alkalien und die schweren Erdalkalien, vor allem Na und K, werden in der Flamme leicht angeregt. Um festzustellen, ob die bei der Röntgenfluoreszenzanalyse bestimmten Na₂O- und K₂O -Werte dem wirklichen Gehalt entsprechen (bei der Herstellung der Glastabletten können Anteile von Na und K verdampfen), wurden Na₂O und K₂O Analysen aus 7 Proben, die zuvor schon mit der Röntgenfluoreszenzanalyse (RFA) analysiert worden waren, auch mit der Flammenphotometrie bestimmt. Die gewählten Proben wiesen Na₂O-Gehalte zwischen 4 Gew.-% und 10 Gew.-% auf.

Die für die Probenpräparation erforderlichen Flusssäureaufschlüsse wurden im Platintiegel durchgeführt: 0.5 g Gesteinspulver wurde mit 20 ml konz. Flusssäure und 3 ml konz. Schwefelsäure versetzt und über Nacht stehen gelassen. Die eingeweichte Probe wurde dann auf einer Heizplatte unter langsamer Erhöhung der Temperatur abgedampft. Nach dem Abrauchen der überschüssigen Flusssäure wurde der Platintiegel bis zum Rand mit destilliertem Wasser gefüllt und die Sulfate unter schwacher Erwärmung gelöst. Diese Lösung wurde in einen 250 ml Messkolben gegeben und mit destilliertem Wasser aufgefüllt. So entstand eine Stammlösung mit 2 mg Probensubstanz pro ml Lösung.

Die Analysenergebnisse der beiden Methoden sind im Anhang 2, Tabelle 5 aufgelistet. Der Vergleich der Na- und K- Gehalte nach der Röntgenfluoreszenzanalyse und Flammenphotometrie zeigt, dass Verluste an Na und K im Fehlerbereich liegen. Daher wurden Na und K im Folgenden mit der Röntgenfluoreszenzanalysen-Methode bestimmt.

3.2.3 Potentiometrische Titration zur Bestimmung des FeO-Gehaltes

Die Röntgenfluoreszenzanalyse liefert nur Gesamteisenwerte. Die Kenntnis der primären Fe²⁺- Gehalte der Basalte ist für die Entscheidung wichtig, ob ein Gestein aus einem primären Mantelmagma oder einer differenzierten Schmelze entstanden ist. Dies hat auch Bedeutung bei der Berechnung des Magnesiumwertes Mg#. Die Bestimmung des FeO - Gehaltes erfolgte aus Aufschlusslösungen am Titroprocessor 686 Metrohm durch eine oxidimetrische Titration mit Kaliumdichromatlösung. Der Aufschluss wurde in Abänderung der Methode von HEINRICH & HERRMANN (1990) in einem Teflonbecher unter Schutzgas ausgeführt.

3.2.4 Infrarot-Gasanalyse

Die H₂O- und CO₂-Bestimmung erfolgte mit dem CWA 5003 (Carbon-Water-Analyzer). Die Wirkungsweise besteht darin, dass ein mikroprozessor-gesteuertes Analysesystem den H₂O und CO₂ Gehalt in pulver- und granulatförmigen Feststoffen bestimmt. Die Probe wird auf einem Schiffchen in den mit Inertgas beströmten Analyseofen geschoben. Dabei werden bei ca. 950° C bis 1000° C die Gase CO₂ und H₂O ausgetrieben und mit einem thermostatisierten Infrarot-Gasanalysator gemessen.

Der Analysenofen besteht aus einer Widerstandsheizung, welche das im Ofen befestigte Quarzglasrohr auf einer Länge von 100 mm auf maximal 1000^{0} C erwärmt. Mit dem Trägergas werden die freigesetzten Gase in einem Katalysatorofen über ein konstant erhitztes Oxidationsmittel geleitet und zu CO₂ und H₂O oxidiert. Ein thermostatisierter Infrarot-Gasanalysator ermittelt aus der durchströmenden Gasmenge die Anteile der beiden Gase. Vor der Messung wurde das Gerät kalibriert, um die Korrekturfaktoren für CO₂ und H₂O zu bestimmen. Dafür wurde für H₂O Calciumsulfat-Dihydrat (H₂O = 20.93 Gew.-%) bei 450⁰ C verwendet. Für CO₂ fand gefällter Calcit (CO₂= 43.97 Gew.-%) bei 950⁰ C Anwendung. Von diesen Werten abweichende Ergebnisse werden in einem Kalibrierungsprogramm vom Gerät registriert und mit Faktoren auf die Sollwerte gebracht. Während der Messreihen wurde nach jeder zehnten Messung stets ein Gesteinsstandard gemessen, um die Richtigkeit der Ergebnisse sicherzustellen. Mit diesen, in einem separaten Kalbrierungsprogramm berechneten Werten, wurden die gemessenen Werte mit der Einwaage in einem Analyseprogramm verrechnet.

Der Messbereich für das Gerät liegt sowohl für CO_2 als auch für H_2O bei 0.0001 bis 100 Gew.-%. Die Auflösung ist mit 0.0001 % sehr gut. Die Richtigkeit beträgt 0.001 % bzw. relativ 0.5 %.

3.2.5 Induktiv gekoppelte Plasma-Spektrometrie (ICP)

Zusätzlich ist die Bestimmung der Elemente der Seltenen Erden erforderlich, um über Herkunft und Entwicklung basaltischer Schmelzen im Oberen Mantel Aussagen machen zu können.

Die Elemente der Seltenen Erden (La, Ce, Pr, Nd, Sm, Eu, Er, Yb) wurden mit einem Inductiv-Coupled-Plasma-Spektrometer (ICP-AES, ISA-Instruments S.A. J Y 38) am Department für Geologie und Umweltwissenschaften der Universität München bestimmt. Die Aufschlüsse für die Messungen der SEE wurden in Teflon-Druckbehältern hergestellt. Störende Fremdionen der Haupt- und Spurenelemente wurden in Ionenaustauschersäulen abgetrennt. Eine Beschreibung des Verfahrens findet sich in HEINRICH & HERRMANN (1990). Linienauswahl und Nachweisgrenzen sind in Tabelle 3-1 aufgeführt.

Element	La	Ce	Pr	Nd	Sm	Eu	Er	Yb
Linie nm	398.85	418.6	422.29	406.11	442.43	381.97	369.27	338.94
NWG ppm	0.00081	0.015	0.027	0.013	0.016	0.00085	0.0022	0.00018

Tabelle 3-1: Linienauswahl und Nachweisgrenzen (NWG) bei der Analyse der REE nach Angaben des Departments für Geo- und Umweltwissenschaften, Sektion Allgemeine und Angewandte Geologie, München.
3.2.6 Elektronenstrahlmikrosonde (EMS)

Die chemischen Analysen der Phasen wurden mit einer wellenlängendispersiven Elektronenstrahlmikrosonde (Cameca SX50) mit fünf Kristallspektrometern durchgeführt. Die Messungen erfolgten an polierten Dünnschliffen von Gesteinen bei einer Beschleunigungsspannung von 15 kV und bei einem Strahlenstrom von 20 nA. Die Zähldauer betrug 10 sec. Die gemessenen Impulsraten wurden mit dem PAP- Programm von POUCHOU & PICHOIR (1984) korrigiert. Die Matrixkorrektur nach diesem Programm erlaubt insbesondere für die leichten Elemente eine exaktere Bestimmung des Fluoreszenzund Absorptionsverhaltens in einer Matrix schwerer Elemente. Die Messbedingungen sind in der Tabelle 3-2 aufgeführt:

Spektrometer	1	2	3	4	5
Kristall	TAP	LIF	LIF	PET	TAP
Elemente	Si, Al	Fe, Ni	Mn, Cr	K, Ca, Ti	Mg, Na

Tabelle 3-2: Messbedingungen für die Analyse mit der Elektronenstrahlmikrosonde im Department für Geologie und Umweltwissenschaften, München; Kristall= Spektrometerkristall.

Vor jeder Messreihe wurde das Gerät an *synthetischen und natürlichen* Standards für jedes Element kalibriert. Um die Reproduzierbarkeit der Messergebnisse festzustellen, wurden die Driftfaktoren auch während und am Ende der Messreihe kontrolliert. Mit dem Programm "PREPNEW" (SEIBERL, unpubl.) wurden die Daten in PC-bearbeitbare ASCII-Daten umgewandelt und auf einem Personal Computer mit dem Programm "ANALYSIS" (KUNZMANN, unpubl.; KUNZMANN & NEUMEIER, 1993) bearbeitet. Nach den mineralchemischen Formeln wurde die Anzahl der Kationen und Sauerstoffatome pro Formeleinheit berechnet (Tabelle 3-3).

Mineral	Kationen	Sauerstoff
Olivin	3	4
Pyroxen	4	6
Feldspat/Nephelin	5	8
Spinell/Magnetit	3	4
Ilmenit	2	3
Apatit	12	26

Tabelle 3-3: Berechnung der Kationen pro Formeleinheit gemäß den mineralchemischen Formeln

4 Ergebnisse

4.1 Petrographie und modale Einteilung

Die Basalte weisen makroskopisch große Ähnlichkeiten untereinander auf. Es handelt sich um meist dunkelgraue dichte Gesteine, die beim Aufschlagen scharfkantig brechen. Mikroskopisch und im Modalbestand unterscheiden sie sich jedoch deutlich. Die mikroskopischen Untersuchungen und der Modalbestand der Basaltproben sind größtenteils in Diplom- und Doktorarbeiten von BENTENRIEDER (1977), ELLRICH (1977), GESSLER (1977), AKINDURO (1978) und KARAMOULAS (1977) durchgeführt und in den genannten Arbeiten eingehend dargestellt worden. Diese Daten wurden durch eigene Untersuchungen ergänzt. Die Einteilung, basierend auf dem Modalbestand gemäß GREEN und RINGWOOD (1967), wird im Folgenden vorgestellt (siehe Kap. 2.2.1, Tab.2-1).

Die Abkürzungen sind Anhang 0, Tabelle 1 zu entnehmen.

4.1.1 Hocheifel

Das Gefüge der Vulkanite ist porphyrisch, mit relativ scharfem Korngrößenwechsel zwischen Einsprenglingen und Grundmassephasen. Der Korngrößenwechsel ist bei den langsam erstarrten Vulkaniten Benmoreit und Trachyt unscharf. Die untersuchten Alkalibasalte wurden aufgrund der beobachteten Mineralphasen in folgende Gruppen eingeteilt: Olivinbasalt, Alkaliolivinbasalt, Nephelinbasanit, Olivinnephelinit, Benmoreite, Hawaiite, Mugearite und Trachyte.

Alle Alkalibasalte weisen als Einsprenglingsphasen Olivin + Ca-Klinopyroxen auf. In Olivinbasalt und Alkaliolivinbasalt kommen noch Plagioklas und Ca-Amphibol als Einsprengling dazu. In Nephelinbasaniten und Olivinnepheliniten sind sehr oft Rhönit und Hauyn als Einsprenglinge zu beobachten. Mit der Zunahme der Fraktionierung der Vulkanite in der Hocheifel nimmt der Anteil an femischen Einsprenglingsphasen ab und der an Plagioklas (bzw. Nephelin) zu. Der Nephelin der Grundmasse kristallisiert in Olivinnephelinit und Nephelinbasanit vor dem Alkalifeldspat, in Nephelinbasanit gleichzeitig mit Alkalifeldspat und in Alkaliolivinbasalt nach Alkalifeldspat. In Alkaliolivinbasalt treten Biotit, seltener Amphibol, Analcim und Zeolith auf.

Olivin kommt als Xenocryst (Zerfallsprodukt von Spinell-Peridotit) und Megacryst vor. Die Xenocrysten zeigen Subkorngefüge und Bruchkonturen. Die Megacryst- Olivineinsprenglinge

haben einen gerundeten Habitus, Korrosionserscheinungen und Zonarbau. Selten wurden Xenocrysten Cr-reicher Ca-Klinopyroxene und Spinell (opaker Saum) festgestellt.

Zeolithe treten bevorzugt als Blasen- und Mandelfüllungen auf. Nur in den Hocheifel-Vulkaniten finden sich auch in der Grundmasse Analcim und Zeolithe.

4.1.2 Heldburger Gangschar

Die gesammelten Proben sind meist auf lose Blöcke oder Lesesteine beschränkt, da es im Vulkanfeld der Heldburger Gangschar nur wenige Aufschlüsse gibt, die frisches Gesteinsmaterial aus dem Anstehenden liefern. Die Verwitterung macht sich in sekundärer Karbonatisierung der mafischen Bestandteile und in der Bildung von Tonmineralen (z.B. Smectite) bemerkbar. Primäre und sekundäre Hydratation und Karbonatisierung geben in diesen Proben den ehemaligen Alkalibasaltchemismus der Vulkanite in der chemischen Analyse nur unvollständig wieder. Die analysierten Handstücke enthielten in ihren Kernpartien noch relativ frisches Gesteinsmaterial. Man kann deshalb in den meisten Vulkaniten trotz der erlittenen Veränderungen den primären magmatischen Mineralbestand erkennen und phasenanalytisch erfassen.

Das Gefüge der Vulkanite ist porphyrisch. Der Korngrößenwechsel zwischen Einsprenglingen und Grundmassephasen ist relativ scharf. In langsam erstarrten Vulkaniten hingegen ist der Korngrößenwechsel unscharf. Die frischen Proben umfassen die gesamte Variationsbreite des alkalibasaltischen Chemismus (Alkaliolivinbasalt, Nephelinbasanit, Olivinnephelinit, Olivinmelilithnephelinit; als Derivat wird Phonolith gefunden). Die Mineralkombination des Phonoliths der Heldburg besteht aus Alkalifeldspat + Nephelin + Amphibol + Biotit. Neben den Phasen Olivin, Ca-Klinopyroxen, Alkalifeldspat, Plagioklas, Nephelin und Melilith sind folgende Phasen zu nennen, die zum Teil nur akzessorisch vorkommen: Hauyn, Apatit, Titanomagnetit, Analzim, Biotit sowie Erze. Blasen und Hohlräume sind mit Karbonat und Zeolith gefüllt. In einigen Handstücken werden Carbonataggregate mit wenigen mm-Durchmessern beobachtet.

4.1.3 Fichtelgebirge

Alkalibasalte der Fichtelgebirgszone sind holokristallin-porphyrisch. Hypokristallinporphyrische Gefüge sind selten zu sehen. Ebenso selten treten Olivineinsprenglinge allein auf. In allen Gesteinstypen wurden immer Magnetit und Apatit, selten auch Biotit beobachtet. Blasen und Hohlräume sind vorwiegend mit Karbonat und / oder Zeolith gefüllt. Der häufigste Einsprengling ist die Mineralkombination Olivin + Klinopyroxen. Entsprechend beobachteten der Mineralphasen werden die untersuchten Gesteine in folgende Gesteinstypen unterteilt: Alkaliolivinbasalt, Nephelinbasanit, Olivinnephelinit, Olivinmelilithnephelinit.

4.2 Geochemische Untersuchungen

Es zeigte sich, dass die quantitative Phasenbestimmung (Modalanalyse) der mikro- bis kryptokristallinen - manchmal auch glasigen - Vulkanite sehr schwierig ist. Um eine Aussage über die Genese der Vulkanite der drei verschiedenen Gebiete treffen zu können, wurden sie auf ihre chemische Zusammensetzung hin untersucht.

4.2.1 Hauptelemente

Zur Untersuchung der Genese der Gesteine wurden die Hauptelemente mit Hilfe der RFA analysiert (Abbildung 4-1 bis Abbildung 4-3), die Daten sind im Anhang 1, Tabellen 1a-3a aufgelistet. Der Fe²⁺-Anteil wurde durch Potentiometrische Titration bestimmt (siehe Kap. 3.2.3) und die RFA-Werte für Gesamteisen daraufhin korrigiert. Wasser- und CO₂-Gehalt wurde mittels Infrarot-Gasanalyse (siehe Kap. 3.2.4) bestimmt und bei den im Anhang 1, Tabellen 1a-3a aufgelisteten Analysen mitberücksichtigt. Im Folgenden wird die Verteilung der Hauptelemente in den einzelnen Lokalitäten beschrieben.

Die SiO₂-Gehalte der untersuchten Proben liegen meist zwischen 38 - 47 Gew.-%. Es fällt auf, dass die Proben der Hocheifel tendenziell höhere SiO₂-Gehalte haben (bis 64,2 Gew.-%), während der Anteil in den Proben der Heldburger Gangschar im Vergleich niedriger ist (bis 31,0 Gew.-%). Die Al₂O₃-Gehalte zeigen sich in den Proben mit unterschiedlichen Streubreiten, wobei die Heldburger Gangschar- Proben, verglichen mit den Hocheifel- und Fichtelgebirgszone-Proben, die geringste Variationsbreite zeigen. Sie liegt zwischen 9,3 und 13,2 Gew.-%. Die Proben der Hocheifel und der Heldburger Gangschar zeigen in den Al₂O₃-Gehalten eine große Streuung (8,7 – 20,1 Gew.-%). In den Proben der Hocheifel wurden dabei tendenziell höhere Werte gemessen.

In allen drei Lokalitäten liegen die TiO₂-Gehalte zwischen 1,9 und 3,3 Gew.-%. Nur wenige Proben der Heldburger Gangschar und der Hocheifel zeigen deutlich niedrigere Gehalte bis zu 0,31 Gew.-%. Für die MnO-Gehalte wurde ein Variationsbereich von 0,17 - 0,23 Gew.-% ermittelt, wobei die Proben der Heldburger Gangschar insgesamt eine Tendenz zu niedrigeren Gehalten (bis zu 0,11 Gew.-%) zeigen. Nur wenige Proben weichen im MnO-Gehalt von diesem Variationsbereich ab.

In den Hocheifel Proben wurden für FeO Gehalte bis zu 11,1 Gew.-% nachgewiesen, wobei der überwiegende Teil zwischen 6,6 und 9,6 Gew.-% variiert. Lediglich für die Proben der Heldburger Gangschar und Fichtelgebirgszone wurden Werte unterhalb dieses Bereichs gemessen. Die Fe₂O₃-Gehalte variieren überwiegend im Bereich zwischen 0,23 - 5,3 Gew.-%. Eine Probe der Heldburger Gangschar weist einen Fe₂O₃-Gehalt von 13,3 Gew.-% auf, wobei in dieser Probe kein FeO nachgewiesen wurde. Wenige Proben der Hocheifel zeigen ebenfalls leicht erhöhte Gehalte von bis zu 8,6 Gew.-%.

Die CaO-Gehalte liegen überwiegend in einem Bereich zwischen 8,0 und 16,5 Gew.-%. Wenige Proben der Heldburger Gangschar und der Hocheifel zeigen demgegenüber deutlich niedrigere Gehalte bis zu 1,2 Gew.-%. Für MgO konnte eine starke Streuung aufgezeigt werden. Es wurden Gehalte zwischen 0,42 und 17,9 Gew.-% ermittelt. Dabei konnte in den Proben der Fichtelgebirgszone eine vergleichsweise geringe Variation (9,8 – 17,9 Gew.-%) beobachtet werden. Die Na₂O-Gehalte variieren in allen drei Lokalitäten stark und liegen hauptsächlich zwischen 0,58 und 5,8 Gew.-%. Lediglich zwei Proben der Heldburger Gangschar weichen mit Gehalten von 9,6 und 8,6 Gew.-% deutlich von diesem Bereich ab. Die K₂O-Gehalte der Proben aus der Heldburger Gangschar und der Hocheifel liegen überwiegend in einem Bereich zwischen 0,29 und 2,8 Gew.-%. Nur wenige Proben zeigen höhere Konzentrationen: in der Hocheifel bis zu 4,6 Gew.-%, in der Heldburger Gangschar bis zu 8,7 Gew.-%. Im Vergleich dazu variieren die Gehalte der Proben der Fichtelgebirgszone nur in einem schmalen Bereich von 0,44 - 1,6 Gew.- %. Die P₂O₅-Gehalte variieren in den Untersuchten Proben zwischen 0,09 und 1,9 Gew.- %. Dabei liegen die Gehalte in den Proben der Hocheifel überwiegend niedriger, zwischen 0,2 – 0,81 Gew.-%.

Abbildung 4-1: Konzentrationen der Hauptelemente in Proben der drei Lokalitäten Hocheifel, Heldburger Gangschar und Fichtelgebirgszone.

Abbildung 4-2: Konzentrationen der Hauptelemente in Proben der drei Lokalitäten Hocheifel, Heldburger Gangschar und Fichtelgebirgszone.

Abbildung 4-3: Konzentrationen der Hauptelemente in Proben der drei Lokalitäten Hocheifel, Heldburger Gangschar und Fichtelgebirgszone.

4.2.2 Spurenelemente und Elemente der Seltenen Erden

Zur weiteren Untersuchung zur Genese der Gesteine der Hocheifel, der Heldburger Gangschar und des Fichtelgebirges wurden die Spurenelemente V, Cr, Co, Ni, Zn, Rb, Sr, Y, Zr, Nb, Ba, La, Ce mit Hilfe der RFA analysiert. Die Daten sind im Anhang 1, Tabellen 1b-3b aufgelistet. Die Ergebnisse werden im Folgenden in den Abbildungen 4-4 bis 4-7 dargestellt.

Die kompatiblen Spurenelemente V, Co, Ni und Cr streuen unterschiedlich stark. Für Ni und Cr variieren die Gehalte bis zu 800 ppm.

Schwerpunkte für die Cr-Werte liegen für die Gesteine der Heldburger Gangschar und der Hocheifel zwischen 175 ppm und 375 ppm, bei den Gesteinen des Fichtelgebirges hingegen etwas höher im Bereich von 225 ppm bis 475 ppm. m Gegensatz dazu wurde für V und Co eine begrenzte Variationsbreite beobachtet: die V-Gehalte liegen überwiegend zwischen 200 ppm und 300 ppm bei den Gesteinen der Hocheifel und der Heldburger Gangschar, bei den Gesteinen des Fichtelgebirges zwischen 200 ppm und 275 ppm die Co-Gehalte zwischen 35 ppm und 60 ppm. Für beide Elemente wurden nur wenige Werte unterhalb dieser Bereiche ermittelt.

Auch bei den inkompatiblen Spurenelementen Zn, Rb, Sr, Y, Zr, Nb, Ba, La und Ce kann in der Regel ein unterschiedliches Streuverhalten beobachtet werden: Die Zn-Gehalte variieren in allen Lokalitäten in einem engen Bereich von 60 ppm – 90 ppm. Die Proben der Hocheifel liegen dabei tendenziell im unteren Abschnitt dieses Bereichs, zwischen 60 ppm-80 ppm während die Proben der Heldburger Gangschar und des Fichtelgebirges im oberen Abschnitt dieses Bereichs zwischen 80 ppm – 90 ppm kumuliert sind. Für die Rb- und Zr-Gehalte ist ein ähnliches Streuverhalten bei den Hocheifel- und Fichtelgebirge proben zu erkennen. Die Rb-Gehalte variieren im Bereich von 30 ppm – 70 ppm, die Zr-Gehalte zwischen 140 ppm - 220 ppm. Nur wenige Proben zeigen Gehalte für beide Elemente oberhalb dieser Bereiche: Rb bis 230 ppm, Zr bis 540 ppm. Für Nb wurde in allen Lokalitäten ein geringer Streubereich von 50 ppm – 150 ppm nachgewiesen. Lediglich zwei Proben der Heldburger Gangschar zeigen demgegenüber einen deutlich erhöhten Gehalt von 340 ppm. Die Ce-Gehalte wurden in den drei Lokalitäten mit leicht unterschiedlichen Werten gemessen. Die Proben der Hocheifel variieren von 60 ppm bis zu 180 ppm, die Proben der Heldburger Gangschar bis zu 230 ppm und in den Proben des Fichtelgebirges zwischen 50 ppm -110 ppm.

Die Gehalte von Sr und La variieren in allen drei Lokalitäten stark und liegen für Sr hauptsächlich zwischen 300 ppm und 2000 ppm und für La zwischen 28 ppm und 120 ppm. Ein ähnliches Verhalten zeigt Y mit Gehalten zwischen 18 und 38 ppm, wobei nur wenige Proben unterhalb dieses Bereichs liegen. Die meisten Proben aus den drei Gebieten haben einen Y-Gehalt zwischen 22 ppm und 30 ppm. Die Gehalte von Ba liegen in allen drei Lokalitäten überwiegend zwischen 400 ppm und 1100 ppm. Wenige Proben der Heldburger Gangschar und Hocheifel weisen Gehalte bis zu 2600 ppm auf.

Die Gehalte der restlichen Seltenen Erdelemente wurden nur für die Lokalität der Heldburger Gangschar und für zwei Proben der Hocheifel bestimmt. Aus diesem Grund wird auf eine ausführliche Darstellung dieser Gehalte verzichtet. Die Werte sind der Tabelle 1, Anhang 4, zu entnehmen.

Abbildung 4-4: Spurenelementkonzentrate in den Proben der Heldburger Gangschar, Hocheifel und Fichtelgebirge.

Abbildung 4-5: Spurenelementkonzentrate in den Proben der Heldburger Gangschar, Hocheifel und Fichtelgebirge.

Abbildung 4-6: Spurenelementkonzentrate in den Proben der Heldburger Gangschar, Hocheifel und Fichtelgebirge.

Abbildung 4-7: Spurenelementkonzentrate in den Proben der Heldburger Gangschar, Hocheifel und Fichtelgebirge.

4.3 Klassifikation

Die Einteilung der Vulkanite der Hocheifel, der Heldburger Gangschar und des Fichtelgebirges kann nach verschiedenen Kriterien erfolgen. Die Korrektur des Fe^{2+}/Fe^{3+} -Verhältnisses nach WEDEPOHL (1985) wurde berücksichtigt.

4.3.1 Klassifikation nach den Hauptelementen (LE BAS)

Die Klassifikation nach den Hauptelementen ($[Na_2O + K_2O]$ versus SiO₂) erfolgt nach LE BAS et al. (1986) und SØRENSEN (1986). In Abbildung 4-8 – 4-10 sind die ermittelten Werte für die Hocheifel, Heldburger Gangschar und die Fichtelgebirgszone getrennt dargestellt. Daraus ist zu ersehen, dass das Verhältnis von $(Na_2O + K_2O) / SiO_2$ aller untersuchten Proben über dem kritischen Wert für Alkalibasalte liegt.

Für die Hocheifel betragen die SiO₂-Gehalte 38.7 - 64 Gew.-% und die (Na₂O + K₂O)-Gehalte 1.5 - 10 Gew.-%. Der Hauptanteil der Analysen (SiO₂: 40 - 47 Gew.-%, (Na₂O + K₂O): 3.0 - 6.0 Gew.-%) liegt in den Feldern Foidit, Tephrit, Basanit und Hawaiit (siehe Abbildung 4-8). Zusätzlich fallen einige Proben in die Felder Phonotephrit, Mugearit, Benmoreit und Trachyt.

Die SiO₂-Konzentrationen für die Heldburger Gangschar liegen zwischen 31.8 Gew.-% und 56.5 Gew.-%, die der (Na₂O + K₂O)-Gehalte zwischen 1.5 Gew.-% und 15 Gew.-%. Außer drei Proben, die die Felder Phonolith und Trachyt belegen, liegen die Gesteine der Heldburger Gangschar mit SiO₂- Konzentrationen von 35 - 44.5 Gew.-% sowie mit (Na₂O + K₂O)-Gehalten von 3.0 - 6.0 Gew.-% in den Feldern Foidit, Tephrit und Basalt (siehe Abbildung 4-9). Ausführliche Diskussion zur Behandlung der Komponente CO₂ siehe § 4.3.5.2.

Für die Gesteinsproben der Fichtelgebirgszone wurden SiO₂- Konzentrationen zwischen 37 Gew.-% und 47 Gew.-% gemessen, für (Na₂O + K₂O) Werte zwischen 1.9 Gew.-% und 5.5 Gew.-%. Die untersuchten Fichtelgebirgszone-Gesteine mit einer Zusammensetzung für SiO₂ von 41 – 45 Gew.- %, und (Na₂O + K₂O) von 3.5 - 5.0 Gew.-%, liegen hauptsächlich in den Feldern Tephrit und Basalt. Einige Gesteine belegen das Feld Foidit. Die Felder Picrobasalt und Basalt werden von einer Probe bzw. vier Proben belegt (siehe Abbildung 4-10).

Abbildung 4-8: Geochemische Klassifikation der untersuchten Vulkanite aus dem Hocheifel, nach Le Bas et al. (1986).

Abbildung 4-9: Geochemische Klassifikation der untersuchten Vulkanite aus der Heldburger Gangschar, nach Le Bas et al. (1986).

Abbildung 4-9: Geochemische Klassifikation der untersuchten Vulkanite aus der Fichtelgebirgszone nach Le Bas et al. (1986).

4.3.2 Klassifikation nach den Spurenelementen (WINCHESTER & FLOYD)

Die Klassifikation mittels der Spurenelemente nach WINCHESTER & FLOYD (1977) wird anhand der Verhältnisse von Nb/Y und Zr/TiO₂ * 0.001 dargestellt. Die Ergebnisse sind in den Abbildungen 4-11, 4-12 und 4-13 dargestellt, die Daten in der Tabelle 1b-3b, Anhang 1 aufgelistet.

Für die Proben der Hocheifel liegen die logarithmischen Nb/Y-Verhältnisse zwischen 1.9 und 4.5 und die logarithmischen Verhältnisse Zr/TiO₂*0.001 zwischen 0.005 und 0.06. Es ist eine Häufung in den Feldern Alkalibasalt, Basanit/Nephelinit zu beobachten (Abbildung 4-11). Zusätzlich sind die Felder von Trachyandesit und Trachyt belegt. ([Nb/Y] 2 - 3.5, [Zr/TiO₂*0.001] 0.005 - 0.02).

Für die Proben der Heldburger Gangschar liegen die logarithmischen Verhältnisse von Nb/Y zwischen 1.9 und 6.1, von Zr/TiO₂ * 0.001 zwischen 0.006 und 0.011. Die Gesteine der Heldburger Gangschar belegen damit nur die Felder Alkalibasalt und Basanit/Nephelinit, wobei eine Häufung im Feld Basanit/Nephelinit auftritt ([Nb/Y] 2.5 - 4.5, [Zr/TiO₂*0.001] 0.0060 - 0.012) (Abbildung 4-12).

Für die Gesteinsproben der Fichtelgebirgszone wurden die logarithmischen Verhältnisse von Nb/Y zwischen 2.0 und 5.0, von Zr/TiO₂*0.001 zwischen 0.0055 und 0.012 berechnet. Die untersuchten Fichtelgebirgszone-Gesteine liegen hauptsächlich in den Feldern Alkalibasalt und Basanit/Nephelinit ([Nb/Y] 2.0 - 4.0, [Zr/TiO₂*0.001] 0.0050 - 0.012) (Abbildung 4-13).

Damit kommen die Klassifikationen mittels der Hauptelemente von LE BAS et al. (1986), SØRENSEN (1986) und mittels der Spurenelementen von WINCHESTER & FLOYD (1977) zu vergleichbaren Ergebnissen. Beide Klassifikationen zeigen, dass die meisten Basaltproben nur wenige Felder belegen und damit nur eine geringe Variationsbreite für die Basalte besteht. Eine genauere Differenzierung der Proben kann mit dieser Methode nicht durchgeführt werden.

Eine erweiterte Möglichkeit bietet die Berücksichtigung der CIPW-Norm und des Mg-Wertes.

Abbildung 4-11: Geochemische Klassifikation der untersuchten Vulkanite aus der Hocheifel nach WINCHESTER & FLOYD (1977).

Abbildung 4-12: Geochemische Klassifikation der untersuchten Vulkanite aus der Heldburger Gangschar nach WINCHESTER & FLOYD (1977).

Abbildung 4-13: Geochemische Klassifikation der untersuchten Vulkanite aus dem Fichtelgebirge nach WINCHESTER & FLOYD (1977).

4.3.3 Einteilung nach der CIPW-Norm

Die Berechnung der CIPW-Norm für die analysierten Proben sind in Tabelle 1c-3c, Anhang 1 aufgelistet. Es zeigte sich, dass stets normativer Quarz und Hypersthen fehlen, sowie Nephelin neben Olivin auftritt. Alle Vulkanite der drei Gebiete sind daher nach YODER & TILLEY (1962) als Alkalibasalte zu bezeichnen. GREEN und RINGWOOD (1967) unterscheiden mit wachsender Untersättigung zwischen Alkalibasalt und Basanit. Alkalibasalt hat einen normativen Nephelingehalt kleiner 5%, Basanit einen normativen Nephelingehalt größer 5%. GREEN (1970) unterscheidet weiterhin Nephelinbasanit von Olivinnephelinit durch das Fehlen von Plagioklas im Olivinnephelinit und Olivinmelilithnephelinit durch das Fehlen von Plagioklas und das Auftreten von Larnit. Es kann daher eine weitere Differenzierung der Proben hinsichtlich ihres Sättigungsgrades durchgeführt werden.

Die Anwendung dieser Methode ergibt für alle drei Gebiete eine Unterteilung der Basalte in die fünf verschiedenen Varietäten Olivinbasalt, Alkaliolivinbasalt, Nephelinbasanit, Olivinnephelinit und Olivinmelilithnephelinit.

4.3.4 Einteilung nach dem Mg-Wert Mg#

Eine weitere Möglichkeit der Klassifikation ist die Darstellung der Oxidgehalte in Abhängigkeit des Mg-Wertes. Der Mg-Wert der Gesteine liefert Informationen darüber, ob die untersuchten Vulkanite primären Ursprungs sind (0.69 < Mg# < 0.73), oder ob der Chemismus des aufsteigenden Magmas durch Assimilation der mitgeführten Xenolithe verändert wurde (mafisch, Mg# > 0.73). Durch fraktionierte Kristallisation kann das untersuchte Gestein sich zu einem Derivat des primären Magmas entwickeln. Bei Mg-Werten 0.63 < Mg# < 0.69 kann von einem fraktionierten Magma ausgegangen werden, bei Mg# < 0.63 handelt es sich bei dem untersuchten Gestein um ein Derivat.

Die Proben der Hocheifel und Heldburger Gangschar zeigen eine große Variationsbreite mit einem Mg-Wert von 0.59 - 0.80 für die Hocheifel und einem Mg-Wert von 0.62 - 0.85 für die Heldburger Gangschar. Für die Basalte der Fichtelgebirgszone variieren die Mg-Werte innerhalb eines kleinen Bereichs von 0.65 bis 0.80. Demnach sind in allen drei Lokalitäten primäre, fraktionierte und mafische Gesteinstypen nachzuweisen.

4.3.5 Klassifikation nach HUCKENHOLZ & BÜCHEL

Wie oben dargestellt, bieten die beiden Einteilungen nach der CIPW-Norm und nach dem Mg-Wert neue Möglichkeiten, um die Basalte weiter zu differenzieren. Eine Kombination dieser zwei Betrachtungsweisen stellt die Klassifikation von HUCKENHOLZ & BÜCHEL (1988) einschließlich der Grenzen primär, fraktioniert und mafischer Basalte dar.

Die Nomenklatur und die stofflichen Grenzen hinsichtlich des SiO₂-Sättigungsgrades und Mg-Wertes wurde in Kap. 2.2.3 eingehend vorgestellt. Im Folgenden werden die Resultate für die einzelnen Gebiete getrennt betrachtet.

4.3.5.1 Vulkanite aus der Hocheifel

Die Zuordnung der Proben aus der Hocheifel nach der CIPW-Norm und dem Mg-Wert ist in Abbildung 4-14 dargestellt. Die Werte sind Anhang 1, Tabelle 1a-c zu entnehmen. Die 140 Vulkanite der Hocheifel sind nach der Klassifikation von HUCKENHOLZ & BÜCHEL (1988) wie folgt zu untergliedern: 13 Vulkanite sind aufgrund des normativen Larnits als Olivinmelilithnephelinite zu bezeichnen. 26 Proben sind Olivinnephelinite. Mit 64 Proben wird der Hauptanteil der Hocheifel-Proben durch Nephelinbasanit neben 9 Nephelintephrit-Proben gestellt. Alkaliolivinbasalt ist in 10 Proben vertreten; aufgrund ihres niedrigeren Mg-Wertes sind 10 Proben Hawaiite. Hypersthennormativ, hy'=hy/(hy+ol), ist lediglich <u>eine</u> Olivinbasalt-Probe. Quarz-normativ, qz'=qz/(qz+ab+or), sind 4 Proben, sie sind daher als "Basalt" zu bezeichnen. Eine weitere qz-normative Probe ist als Benmoreit zu bezeichnen.

Zusammenfassend zeigt sich, dass der Hauptanteil der untersuchten Hocheifel-Vulkanite zu 45.7% aus Nephelinbasanit und zu 27.9% aus Olivinnephelinit zusammen mit Olivinmelilithnephelinite gebildet wird. In geringerem Anteil sind mit je 7.1% die Varietäten Alkaliolivinbasalt und Hawaiite (siehe Tab. 4-1). Der Anteil von Olivinbasalt sowie der verschiedenen Basalt-Derivate beträgt 12.2%. Der prozentuale Anteil der untersuchten 140 Hocheifel-Vulkanite hinsichtlich des Mg-Wertes ist in Tabelle 4-1 zusammengefasst. Die untersuchten Vulkanite sind zu 22.1 % mafisch, zu 30.7 % primär und zu 28.6 % fraktioniert. Hierbei kann festgestellt werden, dass der Hauptanteil der Olivinmelilithnephelinite und Olivinnephelinit mafisch bzw. primär sind.

Bei Nephelinbasanit sowie Alkaliolivinbasalt sind neben primären Basalten deutlich höherere Anteile an fraktionierten Varietäten zu beobachten.

Abbildung 4-14: Einteilungsschema der untersuchten Hocheifelvulkanite nach HUCKENHOLZ & BÜCHEL (1988). ne/(ne+ab+or), qz/(qz+ab+or) und hy/(hy+ol) kombiniert und gegen der Mg-Wert eingetragen.

Basaltvarietät	mafisch	primär	fraktioniert	Anteil, %
OMN	n = 7	n= 4	n= 2	9.29
ON	n = 14	n = 8	n= 4	18.57
NB2	n = 7	n = 15	n = 15	26.43
NB1	n = 1	n = 10	n = 16	19.29
AOB	n = 2	n= 6	n= 3	7.86
% Anteil	22.14	30.71	28.57	81.44

Tabelle 4-1: Prozentuale Anteile der untersuchten 140 Hocheifelvulkanite nach der Einteilung von HUCKENHOLZ (1983). n = Anzahl der zu der Gruppe gehörende Basalte, % = prozentuale Anteile der untersuchten Basalte zur jeweiligen Varietät.

4.3.5.2 Vulkanite aus der Heldburger Gangschar

In den Vulkaniten aus der Heldburger Gangschar wurden syn- bis postmagmatische Karbonate und Smectite beobachtet (siehe Kap. 4.1.2). Bei der Durchführung der Einteilung dieser Vulkanite wurde daher die CIPW-Norm ohne Smectit berechnet. CO_2 wurde mit CaO zu CaCO₃ verrechnet (siehe Tabelle 2 a-e, Anhang 1). Durch den resultierenden Verbrauch von CaO verschiebt sich die normative Zusammensetzung hin zu höheren SiO₂-Gehalten. Die 67 Heldburger Gangschar -Vulkanite belegen aufgrund ihres Sättigungsgrades überwiegend die Felder von Nephelinit und Basanit. Die Einteilung der Heldburger Gangschar-Vulkanite ohne CO_2 in der CIPW-Norm ist aus Abbildung 4-15 zu ersehen: <u>22</u> Proben belegen die Felder von Olivinmelilithnephelinit. Diese Proben zeigen einen normativen Larnit (cs) > 5 %. Eine Probe ist als Nephelinit zu bezeichnen. <u>11</u> Vulkanite belegen die Felder von Olivinnephelinit. Mit zunehmendem SiO₂-Sättigungsgrad plotten <u>16</u> Vulkanite in den Feldern von Nephelinbasanit, <u>4</u> Proben sind als Nephelintephrit zu bezeichnen. Alkaliolivinbasalt stellen <u>8</u> Vulkanite dar. Hiervon liegen drei Proben im Feld des fraktionierten Alkaliolivinbasaltes, fünf im Feld des primären Alkaliolivinbasaltes. Nach dieser Einteilung werden die Felder, die normativen Quarz und Hypersten führen, nicht belegt.

Zusammengefasst fällt der Hauptanteil der Basalte in die Felder der Nephelinite, in geringerem Anteil (zu <u>11.9 %</u>) treten Alkaliolivinbasalte auf (Tabelle 4-2). Der Mg-Wert der Heldburger Gangschar-Vulkanite liegt im Bereich 0.5 - 0.8; der größte Teil liegt in den Feldern mit Mg-Wert > 0.69. Somit sind <u>32.8 %</u> der Heldburger Gangschar-Vulkanite als mafisch zu bezeichnen, <u>26.9 %</u> als primär, <u>26.9 %</u> als fraktioniert und <u>13.4 %</u> als Derivate.

Abbildung 4-15: Einteilungsschema der untersuchten Heldburger Gangschar Vulkanite nach HUCKENHOLZ & BÜCHEL (1988). (CIPW-Norm wurde ohne CO₂ berechnet).

Wie der Tabelle 4-2 zu entnehmen ist, stellen die Olivinmelilithnephelinite und der Olivinnephelinit in erster Linie primär bis mafische Vulkanite dar. Bei Nephelinbasanit und Alkaliolivinbasalt hingegen sind sie zunehmend als primär bis fraktioniert zu bezeichnen.

Basaltvarietät	Mafisch	primär	fraktioniert	Anteil, %
OMN	n = 16	n = 4	n = 2	32.84
ON	n = 5	n = 3	n = 3	16.42
NB2	n = 0	n = 2	n = 7	13.43
NB1	n = 1	n = 4	n = 3	11.94
AOB	n = 0	n = 5	n = 3	11.94
Anteil (%)	32.84	26.87	26.87	86.57

Tabelle 4-2: Prozentuale Anteile der untersuchten (67) Basalte der Heldburger Gangschar nach der Einteilung von HUCKENHOLZ (1983) (ohne CO₂). n = Anzahl der zu der Gruppe gehörende Basalte, % = prozentuale Anteile der untersuchten Basaltvarietäten

Die Berechnung der CIPW-Norm der Heldburger Gangschar-Vulkanite mit CO₂ führt zu einem höheren Anteil an normativ quarz- und hypersthenführenden Gesteinen (Tabelle 2c2 Anhang 1). Die Zuordnung der untersuchten Heldburger Gangschar-Gesteine ist Abbildung 4-16 und Tabelle 2c2 im Anhang 1 zu entnehmen. Nach dieser Einteilung entfallen von den untersuchten Vulkaniten <u>5</u> Proben auf Olivinmelilithnephelinit und <u>2</u> Proben auf Olivinnephelinit. Den Hauptanteil stellen mit <u>29</u> Proben Nephelinbasanite neben <u>4</u> Nephelintephrit-Proben dar. <u>11</u> Proben der Vulkanite plotten im Feld von Alkaliolivinbasalt und <u>2</u> im Feld von Hawaiit. Zusätzlich ergeben sich Hypersthen-normative Varietäten: <u>9</u> Olivinbasalte und <u>ein</u> olivinbasaltischer Hawaiit. Zwei weitere Proben sind Quarz-normative Basalte.

Abbildung 4-16: Einteilungsschema (nach der CIPW-Norm mit CO₂ berechnet) der untersuchten Heldburger Gangschar Vulkanite nach HUCKENHOLZ & BÜCHEL (1988).

Zusammenfassend handelt es sich bei den 67 untersuchten Basalten der Heldburger Gangschar mit 43.3 % hauptsächlich um Basanite, gefolgt von Alkaliolivinbasalten (16.4 %). Der Anteil der Olivinbasalte liegt bei 13.4 % und der Nephelinite bei 10.5 %. Die prozentuale Verteilung der Heldburger Gangschar-Gesteine ist Tabelle 4-3 zu entnehmen. Aufgrund des Mg-Wertes sind 32.8 % der Alkalibasalte als mafisch zu bezeichnen. Mit 0.69 <Mg#< 0.73 erscheinen 26.9 % der Alkalibasalte als primär. 23.9 % der Alkaliolivinbasalt sind als fraktioniert zu bezeichnen. Bei 16.4 % der Gesteine handelt es sich um Derivate. Wie Tabelle 4-3 zu entnehmen ist, sind die Olivinnephelinit ausschließlich mafisch. Nephelinbasanite zeigen neben primären Basalten sowohl mafische als auch fraktionierte Varietäten. Bei Alkaliolivinbasalt und Olivinbasalt liegt der Schwerpunkt wiederum bei primär bis mafisch.

Basaltvarietät	mafisch	primär	fraktioniert	Anteil, %
OMN	n = 5	n = 0	n = 0	7.4
ON	n = 2	n = 0	n = 0	2.9
NB2	n = 2	n = 4	n = 7	18,1
NB1	n = 4	n = 6	n = 6	23,5
АОВ	n = 3	n = 7	n = 1	16,2
ОВ	n = 6	n = 1	n = 2	13,2

Tabelle 4-3: Prozentuale Anteile der untersuchten (67) Basalte der Heldburger Gangschar nach der Einteilung von HUCKENHOLZ (1983) (mit CO₂). n= Anzahl der zu der Gruppe gehörenden Basalte, % = prozentuale Anteile der untersuchten Basalte

4.3.5.3 Vulkanite aus der Fichtelgebirgszone

Die 84 Vulkanite der **Fichtelgebirgszone** belegen beim Einteilungsschema nach CIPW-Norm und Mg-Wert nach HUCKENHOLZ & BÜCHEL (1988) folgende Felder (siehe Abbildung 4-17, Tabelle 3 Anhang 1): <u>11</u> Vulkanite belegen die Felder von Olivinmelilithnephelinit und <u>27</u> Proben die Felder von Olivinnephelinit. <u>44</u> Vulkanite plotten in den Feldern von Nephelinbasanit. Lediglich zwei Proben stellen Alkaliolivinbasalte dar. Keine der 84 untersuchten Proben führt normativen Quarz bzw. normativen Hypersthen.

Zusammenfassend handelt es sich in erster Linie mit 52.4 % um Nephelinbasanit, gefolgt von 32.2 % Olivinnephelinit. In geringerem Umfang sind Olivinmelilithnephelinit (13.1 %) und Alkaliolivinbasalte (2.4 %) vertreten.

Aufgrund des Mg-Wertes sind 56.0 % der untersuchten Proben mafisch, 36.9 % primär und 7.1 % fraktioniert. Derivate sind nicht vertreten. Die prozentuale Verteilung der untersuchten alkalibasaltischen Fichtelgebirgszone-Gesteine ist in Tabelle 4-4 dargestellt. Hier zeigt es sich, dass es sich hauptsächlich um primäre und mafische Basalte handelt.

Basaltvarietät	mafisch	primär	fraktioniert	Anteil, %
OMN	n = 3	n = 7	n = 1	13.10
ON	n = 14	n = 10	n = 3	32.14
NB2	n = 17	n = 11	n = 2	35.7
NB1	n = 12	n = 2		16.7
АОВ	n = 1	n = 1		2.38

Tabelle 4-4: Prozentuale Anteile der untersuchten (84) Basalte der Fichtelgebirgszone nach der Einteilung von HUCKENHOLZ (1983). n = Anzahl der zu der Gruppe gehörenden Basalte, % = prozentuale Anteile der untersuchten Basalte.

Abbildung 4-17: Einteilungsschema der untersuchten Fichtelgebirgszone- Vulkanite nach HUCKENHOLZ & BÜCHEL (1988).

5 Basaltvarietäten

Mit Hilfe der durchgeführten Klassifikation kann nun die Entwicklung der Basaltvarietäten in den Gebieten näher betrachtet werden. Die Klassifikation nach HUCKENHOLZ & BÜCHEL (1988) ist Basis für die folgende Betrachtung. Es wurde für jede Gruppe der Vulkanite der drei verschiedenen Vulkangebiete der Mittelwert hinsichtlich des Chemismus (siehe Tabelle 1a-b, 2a-b + 3a-b, Anhang 3) und der CIPW-Norm (siehe Tabelle 1c-3c, Anhang 3) bestimmt.

5.1 Hauptelemente

Mit Hilfe von Variationsdiagrammen der Elemente versus Mg-Wert kann auf Verarmungsbzw. Anreicherungsprozesse in den untersuchten Vulkaniten geschlossen werden. Durch den Auftrag gegen den Mg-Wert kann das "Problem der konstanten Summen" bei der Interpretation der Hauptelemente (COX et al., 1979; ROLLINSON, 1992; 1993) umgangen werden. Die Abhängigkeit der Hauptelemente SiO₂, Al₂O₃, TiO₂, FeO, MnO, MgO, CaO, Na₂O, K₂O und P₂O₅ vom Mg-Wert ist in den Abbildungen 5-1 bis 5-5 dargestellt (siehe Tabelle 1a - 3a, Anhang 1). Die Variationsdiagramme Hauptelementgehalte versus Mg-Wert zeigen einen systematischen Trend in den untersuchten Vulkaniten. Mit zunehmendem Mg-Wert kann eine Abnahme der Gehalte für SiO₂, Al₂O₃ und Na₂O beobachtet werden (negative Korrelation). Nicht ganz so deutlich zeigt sich der abnehmende Trend für K₂O und FeO. Im Gegensatz dazu kann mit zunehmendem Mg-Wert eine Zunahme der Oxidgehalte für TiO₂, CaO, MgO und P₂O₅ aufgezeigt werden (positive Korrelation). Lediglich für MnO ist keine Korrelation mit dem Mg-Wert zu erkennen.

Es ist zudem festzustellen, dass bei einer positiven Korrelation zwischen Mg-Wert und den Oxidgehalten, die Werte für Hocheifel tendenziell im unteren Bereich der Verteilung liegen. Liegt dagegen eine negative Korrelation (steigender Mg-Wert, sinkende Oxidgehalte) vor, ist ein entgegengesetztes Verhalten zu erkennen: die Oxidgehalte der Hocheifel zeigen höhere Werte und die Oxidgehalte der Heldburger Gangschar im Vergleich niedrigere Werte. Demzufolge liegen in diesem Fall die Proben der Hocheifel im oberen Bereich der Verteilung. Für die verschiedenen Basaltvarietäten - Olivinmelilithnephelinit bis Basalt - sind die Mittelwerte und Standardabweichungen der Oxide der Hauptelemente in den Tabellen 1a, 2a und 3a im Anhang 3 zusammengestellt.

Abbildung 5-1: Konzentration von SiO₂ und Al₂O₃ in Abhängigkeit vom Magnesiumwert aller drei Lokalitäten.

Abbildung 5-2: Konzentration von MnO und FeO in Abhängigkeit vom Magnesiumwert aller drei Lokalitäten.

Abbildung 5-3: Konzentration von TiO₂ und MgO in Abhängigkeit vom Magnesiumwert aller drei Lokalitäten.

Abbildung 5-4: Konzentration von CaO und Na₂O in Abhängigkeit vom Magnesiumwert aller drei Lokalitäten.

Abbildung 5-5: Konzentration von K₂O und P₂O₅ in Abhängigkeit vom Magnesiumwert aller drei Lokalitäten.
Basalt weist für SiO₂, Al₂O₃, Na₂O und K₂O die höchste Konzentration auf: für die Hocheifel zum Beispiel liegen folgende Werte vor: SiO₂= 62.90 %, Al₂O₃= 18.42 %, Na₂O= 5.58 % und K₂O= 4.33 %. Die niedrigsten Werte hat mafischer Olivinmelilithnephelinit: für die Hocheifel wurden folgende Durchschnittswerte ermittelt: SiO₂= 41.13 %, Al₂O₃= 11.59 %, Na₂O= 2.48 % und K₂O= 1.41 %. Foid-reiche mafische Olivinmelilithnephelinite zeigen die höchsten Magnesium-, Calcium- und Phosphat-Werte (für Hocheifel 15.05 % MgO, 14.06 % CaO und 1.41 % P₂O₅), die Basalte hingegen die niedrigsten Werte (für Hocheifel 0.95 % MgO, 3.02 % CaO und 0.27 % P₂O₅).

Unter der Berücksichtigung der **Einteilung nach der CIPW-Norm** können für alle drei Gebiete folgende Trends abgeleitet werden: Grundsätzlich nimmt **innerhalb einer Gruppe** mit einem bestimmten SiO₂-Sättigunggrad mit zunehmendem Mg-Wert der Anteil an SiO₂, Al₂O₃, Na₂O und K₂O ab, während der MgO-Gehalt zunimmt. Das CaO / Al₂O₃-Verhältnis nimmt ebenfalls entsprechend zu. Des weiteren zeigt sich, dass mit zunehmender Quarz-Sättigung von mafischem Olivinnephelinit bis zu Basalt CaO / Al₂O₃-Verhältnis (zum Beispiel für die Hocheifel ist das Verhältnis für mafische Olivinnephelinit bei 1.21 und für Basalt bei 0.17) abnimmt.

5.2 Spurenelemente

Für die Alkalibasalte der Hocheifel, der Heldburger Gangschar und des Fichtelgebirges wurden die Spurenelemente V, Cr, Co, Ni, Zn, Rb, Sr, Y, Zr, Nb, Ba, La, Ce bestimmt. Die Mittelwerte und Standardabweichungen der Spurenelementgehalte sowie die Anzahl der Proben sind in den Tabellen 1b bis 3b, Anhang 3 dargestellt.

Die kompatiblen Spurenelemente **V**, **Co**, **Ni und Cr** zeigen mit zunehmender MgO-Konzentration und damit steigendem <u>Mg-Wert</u> eine positive Korrelation. Für die Elemente SiO₂, Al₃O₂ und K₂O hingegen ist eine negative Korrelation festzustellen. Die Variation der Spurenelemente Cr und Ni in Abhängigkeit von Mg-Wert ist in Abbildung 5-6 für alle drei Vulkangebiete dargestellt. Hier zeigt sich, dass die Proben der Heldburger Gangschar tendenziell im oberen Bereich der Elementenverteilung, die der Hocheifel hingegen im unteren Bereich liegen, mit einer Ausnahme: Die Cr und Ni Gehalte sind im Nephelinit der Heldburger Gangschar deutlich höher als im fraktionierten Olivinnephelinit. Mit zunehmender <u>SiO₂-Sättigung</u> ist für die kompatiblen Spurenelemente eine kontinuierliche

Abbildung 5-6: Variation der Spurenelemente Cr und Ni in Abhängigkeit vom Magnesiumwert für alle drei Lokalitäten.

Abbildung 5-7: Variation des Zn-Gehaltes in Abhängigkeit vom Magnesiumwert für alle drei Lokalitäten.

Abnahme der Gehalte vom primären Olivinmelilithnephelinit (für die Hocheifel: Ni = 504 ppm, Co = 46 ppm, V = 302 ppm und Cr = 389 ppm) bis zum primären Alkaliolivinbasalt (für die Hocheifel: Ni = 198 ppm, Co = 36 ppm, V = 194 ppm und Cr = 185 ppm) bzw. Foidfreien Basalt festzustellen. Allein bei den Fichtelgebirgszone-Proben weichen die Elemente Cr und Ni von diesem Trend ab. Dies könnte auf die geringere Probenzahl zurückzuführen sein.

Bei den inkompatiblen Spurenelementen sind folgende Trends zu beobachten:

Die **Zn**-Gehalte liegen in den Proben der Heldburger Gangschar und der Fichtelgebirgszone zwischen 80 ppm und 120 ppm. Die Konzentrationen für die Proben der Hocheifel sind mit 60 ppm bis 80 ppm Zn deutlich geringer. Für alle drei Vulkangebiete ist mit zunehmendem Mg-Wert eine leichte Abnahme der Zn-Konzentration festzustellen (Abbildung 5-7).

Die High Field Strength Elemente (HFS-Elemente) Y, Nb und Zr zeigen das typische Verhalten inkompatibler Elemente. Mit <u>zunehmender SiO₂-Sättigung</u> nimmt der Gehalt dieser Elemente ab: Bei der Heldburger Gangschar zum Beispiel liegen die Werte in

Olivinmelilithnephelinit bei Y = 30 ppm, Zr = 230 ppm, Nb = 100 ppm, und bei primärem Alkaliolivinbasalt bei Y = 20 ppm, Zr = 150 ppm, Nb = 70ppm. <u>Innerhalb der Basaltgruppen</u> enthalten die mafischen meistens weniger Y, Nb und Zr als die primären bzw. fraktionierten Varietäten.

Ähnliche Korrelationen sind bei den Low Field Strength Elementen (LFS-Elemente) Sr, **Ba** und - in geringerem Maße **Rb** - zu beobachten: Mit zunehmender SiO₂-Sättigung zeigen die primären Vulkanitvarietäten unter Berücksichtigung der Standardabweichungen - eine Abnahme der Konzentrationen: Für Hocheifel zum Beispiel zeigen die Olivinmelilithnephelinit die höchsten Werte [Sr = 929 ppm].Sie nehmen über Nephelinbasanit [Sr = 885 ppm] und Basalt [Sr = 539 ppm] bis zu Benmoreit [Sr = 325 ppm] ab. Ba zeigt eine ähnliche Entwicklung. Bei Rb hingegen sind bei insgesamt geringen Konzentrationen die Trends nicht so stark ausgeprägt. Innerhalb einer Gruppe zeigen die Proben aus der Hocheifel, Heldburger Gangschar und Fichtelgebirgszone für Sr, Ba und Rb eine Zunahme der Konzentrationen von mafisch bis fraktioniert. Allein in der Hocheifel kann für Ba und Rb eine Ausnahme festgestellt werden: hier nimmt die Ba-Konzentration in Alkaliolivinbasalt vom mafischen Typ bis zum Derivat tendenziell ab. Die Konzentrationen der Elemente La und Ce sind gering. Ihre Entwicklung ist mit der von Ba vergleichbar.

In den Tabellen 1b-3b, Anhang 3 sind die Verhältnisse der inkompatiblen Elemente Zr/Nb, Sr/Nb, Y/Nb, Rb/K, Ba/Rb und Ti/Zr aufgelistet. Die Mittelwerte für <u>Zr/Nb</u> zeigen eine geringe Streuung (Abbildung 6-1-3) Für Hocheifel-Gesteine wurde ein Gesamtmittelwert von 3.0 ± 0.5 bestimmt. Bei der Heldburger Gangschar liegt der Wert niedriger bei 2.3 ± 0.4 und bei der Fichtelgebirgszone bei 2.8 ± 0.2 . <u>Sr/Nb</u> der primären Basalte ist in allen drei Gebieten sehr ähnlich. Es streut in der Hocheifel um den Gesamtmittelwert von 12.7 ± 0.5 ; in der Heldburger Gangschar liegt es bei 12.8 ± 1.5 und in der Fichtelgebirgszone bei 13.6 ± 3.4 . Die Mittelwerte von <u>Ba/Rb</u> zeigen ebenfalls nur eine geringe Streuung. Die Mittelwerte für <u>Y/Nb</u> liegen für die Basalte aus allen drei Gebieten zwischen 0.28 (Heldburger Gangschar) und 0.4 (Hocheifel) und sind damit kleiner als eins.

Das Verhältnis der inkompatiblen Elemente <u>Rb/K</u> nimmt mit Zunahme des SiO₂-Sättigungsgrads der primären Basalttypen ab (Tabelle 1b-3b Anhang 3). Der Auftrag von Rb/K gegen Rb ergibt in allen drei Gebieten eine positive Korrelation. Dieser Trend ist bei der Fichtelgebirgszone am stärksten ausgeprägt. Die geringe Steigung bei Proben der Heldburger Gangschar ist auf die ähnlichen Rb/K-Werte zurückzuführen (Abbildung 6-4, 6-5 und 6-6).

Die Mittelwerte für Ti/Zr sind in allen drei Gebieten kleiner eins. Das Ti/Zr-Verhältnis nimmt vom Olivinmelilithnephelinit bis Alkaliolivinbasalt zu. Der Auftrag von Ti/Zr versus 1/Zr zeigt in allen drei Gebieten eine positive Korrelation (Abbildung 6-7, 6-8 und 6-9).

5.3 Elemente der Seltenen Erden

Ergänzend wurden diese Elemente mit Hilfe von ICP analysiert. Es wurden 38 repräsentative Beispiele für Mantel-Xenolithe, Phonolithe, Alkaliolivinbasalte, Nephelinbasanite und Olivinmelilithnephelinite aus der Heldburger Gangschar und zwei Nephelinbasanite (HF2 und HF91) aus der Hocheifel ausgewählt und die Elemente der Seltenen Erden mit Hilfe von ICP analysiert. Die SEE-Gehalte dieser Vulkanite sind im Anhang 4 in Tabelle 1 aufgelistet. Mittelwerte, Standardabweichung und Anzahl der Proben sind in Tabelle, 2 Anhang 4 zusammengestellt.

Die C1 chondritisch normierten Elemente der SEE wurden gegen ihre Ordnungszahl aufgetragen (Abbildung 5-4 A bis G). Die Normierung erfolgte auf die entsprechenden Konzentrationen in C1- Chondriten (Daten von BOYNTON, 1984). Das SEE-Muster der Alkaliolivinbasalte von Heldburger Gangschar und Hocheifel zeigt einen ähnlichen Verlauf (Abbildung 5-4 A – C). Der Anteil von schweren Seltenen Erden HSEE zu leichten Seltenen Alkaliolivinbasalt, Erden LSEE nimmt beim primären Nephelinbasanit und Olivinmelilithnephelinit deutlich zu. In Abbildung 5-4 D wurden die Mittelwerte dieser primären Basaltvarietäten gegeneinander aufgetragen. Der Vergleich zeigt, dass zu den LSEE hin der Unterschied zwischen den Basaltvarietäten deutlicher wird: Hier nimmt der Anteil an SEE von Alkaliolivinbasalt über Nephelinbasanit zu Olivinmelilithnephelinit zu. Dieser Trend ist bei den fraktionierten Basalttypen deutlicher ausgeprägt (Abbildung 5-4 E - F). Innerhalb eines Basalttypes zeigt sich, dass mit zunehmendem Mg-Wert von mafischen bzw. primären Olivinmelilithnepheliniten zur fraktionierten Varietät der Anteil an LSEE zunimmt (Abbildung 5-4 G).

Abbildung 5-4 A: Auf C1 chondritisch normierte Elemente der Seltenen Erde von primären Alkaliolivinbasalten wurden gegen ihren Ordnungszahl aufgetragen

Abbildung 5-4B: Auf C1 chondritisch normierte Elemente der Seltenen Erden von primären Nephelinbasanit 1 wurden gegen ihre Ordnungszahl aufgetragen

Abbildung 5-4 C: Auf C1 chondritisch normierte Elemente der Seltenen Erden von primären Olivinmelilithnephelinite wurden gegen ihre Ordnungszahl aufgetragen

Abbildung 5-4E: Auf C1 chondritisch normierte Elemente der Seltenen Erden von fraktionierten Nephelinbasaniten 2 wurden gegen ihre Ordnungszahl aufgetragen.

Abbildung 5-4F: Vergleich auf C1 chondritisch normierter Elemente der Seltenen Erden aller fraktionierten Nephelinbasanite 1und 2, fraktionierten Olivinmelilithnephelinite und Phonolith.

Abbildung 5-4G: Vergleich der auf C1 chondritisch normierten Elemente der Seltenen Erden von mafischen (\bigcirc), primären (\triangle) und fraktionierten (+) Olivinmelilithnepheliniten

6 Diskussion

Alle Vulkanite der drei Hauptuntersuchungsgebiete können nach dem Mineralbestand in zwei Hauptgruppen eingeteilt werden:

- I) Foid-freie bis Foid-arme, Plagioklas-reiche Gesteine im Sinne von Olivinbasalt und Alkaliolivinbasalt
- II) Feldspat- und Foid-führende Vulkanite im Sinne von Nephelinbasanit bisOlivinmelilithnephelinit.

Zudem sind verschiedene Basaltderivate wie Benmoreit, Hawaiit, Mugareit und Trachyt vertreten. Allerdings führen viele der Basalte unterschiedliche Anteile von Xenolithen, die teilweise Reaktionssäume aufweisen. Die Größe dieser Xenolithe liegt zum Teil im Millimeter-Bereich (Xenocrysten), so dass eine Abgrenzung zwischen Grundmasse und Einsprenglingen nicht immer eindeutig möglich ist. Hierdurch wird die Durchführung einer mikroskopischen Modalanalyse extrem erschwert (siehe Kap. 4.1).

Der Vergleich der chemischen Analysen zeigt, dass die Vulkanite aus den drei Gebieten Hocheifel, Fichtelgebirgszone und Heldburger Gangschar hinsichtlich der Haupt- und Spurenelemente durchaus Unterschiede aufweisen (siehe Kap. 4.2.1 und Kap. 4.2.2). Die Vulkanite aus der Hocheifel zeigen dabei die größte Streubreite. Die Proben aus der Fichtelgebirgszone hingegen variieren chemisch nur in einem engen Bereich. In der Regel sind die Hocheifel-Proben reicher an SiO₂, Al₂O₃, Na₂O und K₂O. Ihre Konzentrationen nehmen über die Fichtelgebirgszone zur Heldburger Gangschar hin ab. Entsprechend haben die Hocheifel-Proben niedrigere CaO-, MgO-, TiO₂-, FeO-, MnO und P₂O₅-Konzentrationen als die Proben aus der Fichtelgebirgszone und der Heldburger Gangschar.

Bei den Spurenelementen liegen die Cr- Gehalte für die Hocheifel-Proben tendenziell höher als bei den Proben aus der Fichtelgebirgszone und der Heldburger Gangschar. Die Ni- und Zn-Gehalte sind für die Heldburger Gangschar tendenziell höher als bei den Proben aus der Hocheifel und der Fichtelgebirgszone.

Die Elementenverteilung in einem Gebiet kann Aufschluss über die Genese der jeweiligen Magmen geben. Die geochemischen Klassifikationsverfahren können zur Unterteilung der Vulkanite verwendet werden. Bei Anwendung der TAS-Diagramme mit der Klassifikation nach den Hauptelementen (Na₂O + K₂O) gegen SiO₂ nach LE BAS et al. (1986) belegen die Vulkanite der Fichtelgebirgszone und der Heldburger Gangschar bevorzugt die Felder Foidit, Tephrit / Basanit und Basalt. Die Gesteine Benmoreit, Hawaiit, Mugearit und Trachyt der Hocheifel belegen zusätzlich die Felder Hawaiit, Mugearit, Benmoreit, Phonotephrit, die Gesteine der Heldburger Gangschar die Felder Benmoreit und Phonolith (siehe Kap. 4.3.1). In der Klassifikation der Vulkanite nach WINCHESTER & FLOYD (1997) häufen sich die Werte der Heldburger Gangschar und Fichtelgebirgszone in den Feldern Alkalibasalt und Basanit / Nephelinit, bei der Hocheifel werden zusätzlich die Felder zusätzlich die Felder Zusätzlich die Trachyt belegt.

Damit kommen, wie zu erwarten war, beide Klassifikationen zu vergleichbaren Einteilungen (siehe Kap. 4.3.2). Bei beiden Klassifikationsmethoden kann für die Alkalibasalte der Fichtelgebirgszone und der Heldburger Gangschar nur eine geringe Variationsbreite festgestellt werden. Beide Klassifikationsmethoden zeigen hier deutliche Schwächen. Demnach würde es sich bei den Gesteinen beider Gebiete um solche ohne bzw. mit geringfügiger Differentiation handeln.

Die grundlegende Arbeit von YODER & TILLEY (1962) berücksichtigt den SiO₂-Sättigungsgrad der Basaltschmelzen. HUCKENHOLZ (1988) modifizierte das Verfahren nach der CIPW-Norm auf der Basis von ne`= (ne+lc) / (ne+ab+or+lc) (siehe Kap. 4.3.3 und Kap. 4.3.5). Die Anwendung dieses Verfahrens auf die Alkalibasalte der drei verschiedenen Gebiete führt zu einer weitergehenden Unterteilung von Olivinmelilithnephelinit, Olivinnephelinit, Nephelinbasanit (1 und 2) über Alkaliolivinbasalt bis zu Olivinbasalt und "Basalt". Mit zunehmender Quarz-Sättigung nimmt der SiO₂-, Al₂O₃- und Na₂O-Gehalt in den Basaltypen zu.

Die Änderung der chemischen Zusammensetzung zeigt sich auch im Phasenbestand: mit zunehmendem SiO₂-, Al₂O₃- und Na₂O- Gehalt nimmt der Anteil an Plagioklas in den Gesteinen zu, während der Anteil an Ca-Klinopyroxen abnimmt. Als weitere Hauptmineralphasen dieser Basalte sind Olivin neben Magnetit und anderen Opakphasen zu nennen. Die Zusammensetzung der primär MgO-reichen Olivine wird mit steigender SiO₂-Sättigung zunehmend FeO-reicher. Der Anteil der kompatiblen Spurenelemente Cr und Ni nimmt vom Olivinmelilithnephelinit zu Alkaliolivinbasalt ab. Dies entspricht dem zu erwartenden Trend, nach welchem mit zunehmendem SiO₂-Sättigungsgrad der Basalte die Gehalte an den kompatiblen Elementen V, Cr, Ni, Co abnehmen sollen. Wichtige Cr-Träger sind Klinopyroxen und Spinell, während Olivin Hauptträger für Ni ist. Der Anteil dieser

mafischen Minerale Olivin und Klinopyroxen ist im untersättigten Olivinmelilithnephelinit deutlich höher als im gesättigten bis übersättigten Alkaliolivinbasalt.

Olivinnephelinit und Nephelinbasanit unterscheiden sich vor allem durch die Oxide TiO₂, FeO, MgO und CaO, die im Olivinnephelinit angereichert sind. SiO₂, Al₂O₃ und Na₂O hingegen sind im Nephelinbasanit angereichert. Bei den Oxiden Fe₂O₃, MnO, K₂O und P₂O₅ zeigen diese Basaltvarietäten kaum Unterschiede. Bei Olivinmelilithnephelinit spiegelt sich die geringe SiO₂-Konzentration im normativen Nephelin- und Larnit-Gehalt im Phasenbestand. Der mikroskopische Nachweis ist jedoch erschwert, da Larnit (Ca₂SiO₄) in der Modalanalyse erst bei einem normativen Larnit-Anteil von mehr als 5 % zu erwarten ist. Plagioklas wird in diesen SiO₂-untersättigten Vulkaniten nicht beobachtet. Feldspatvertreter wie Nephelin und Sodalith-Mischkristalle hingegen sind verbreitet. Auffällig ist der niedrige Al₂O₃-Gehalt um ca. 10 Gew.-% und ein erhöhter Ca-Wert um 16 Gew.-%. Diese Basaltgruppen fallen durch relativ hohe P₂O₅-Konzentrationen im Bereich von 1 - 1.5 Gew.-% auf.

Eine feinere Unterteilung der Basalte kann durch die Einführung des Mg-Wertes $Mg\# = Mg^{2+} / (Mg^{2+} + Fe^{2+})$ erreicht werden. Die Variationsdiagramme der Hauptelementkonzentrationen gegen die Mg-Werte zeigen systematische Verarmungs- bzw. Anreicherungstrends (siehe Abbildungen 5-1 bis 5-5). Die untersuchten Vulkanite zeigen mit zunehmendem Mg-Wert eine negative Korrelation mit den Oxiden SiO₂, Al₂O₃, Na₂O und K₂O, und eine positive Korrelation mit den Oxiden CaO, TiO₂ und P₂O₅.

Ein Vergleich der chemischen Zusammensetzung der Gesteine aus den drei Gebieten zeigt weiter, dass die kompatiblen Spurenelemente Cr und Ni eine positive Korrelation und mit dem inkompatiblen Element Zn eine leichte negative Korrelation mit dem Mg-Wert zeigen (siehe Abbildung 5-6 und 5-7). Dieser Trend zeigt, dass mit der zunehmenden Differentiation der Gesteine von mafisch (bzw. primär) zu fraktioniert, der Anteil an Olivin und Klinopyroxen abnimmt, während der Feldspat-Anteil zunimmt. Hohe Mg-Werte > 0.73 werden durch die Kontamination der Schmelze mit mitgeführtem spinellperidotischem Material verursacht. Xenolithe mit der mittleren Zusammensetzung 73 Vol.- % Olivin, 18 Vol.- % Orthopyroxen, 7 Vol.-% Klinopyroxen und 1.3 Vol.-% Spinell wurden in alkalibasaltischen Vulkaniten der Hocheifel, der Heldburger Gangschar und insbesondere der Fichtelgebirgszone beobachtet.

Das Einteilungsschema für Alkalibasalte nach HUCKENHOLZ & BÜCHEL (1988) kombiniert die Anwendung der CIPW-Norm auf der Basis von ne`= (ne+lc) / (ne+ab+or+lc)

mit dem Mg-Wert (siehe Kap. 2.2.3 und Kap. 4.3.5). Diese Klassifikation der Alkalibasalte zeigt ein breites Spektrum von Basalttypen innerhalb der jeweiligen Untersuchungsgebiete und erlaubt eine differenzierte Unterteilung der Basalte. In Tabelle 6-1 ist die prozentuale Verteilung der Basaltvarietäten der drei untersuchten Areale Hocheifel, Heldburger Gangschar und Fichtelgebirgszone zusammengefasst. Der Schwerpunkt der vorkommenden Gesteine liegt bei Nephelinbasanit und Olivinnephelinit.

Feld	HF, %	HGS ohne CO ₂ , %	HGS mit CO ₂ , %	FGZ, %
OMN	9.3	33,8	7,4	13.1
ON	18.6	16,2	2,9	32.1
NB	45.7	25,0	21,6	52.4
AOB	7.9	11,8	16,2	2.4
BA	2.9		2,9	
HAW	7.1		2,9	
HAW, ob			1,5	
NTE 1 und 2	6.4	5,9	5,9	
BEN	0.7		1,5	
NE	0.7	2,9		
OB	0.7		13,2	

Tabelle 6-1: Verteilung der untersuchten Proben nach der Einteilung von HUCKENHOLZ & BÜCHEL (1988) und NEUMAIER (1996) (Abkürzungen siehe Anhang 0).

Die Hocheifel-Vulkanite zeigen im Vergleich aller untersuchten Vorkommen die größte Variationsbreite. Die verschiedenen Basaltgruppen von Foid-reichem Olivinmelilithnephelinit bis zu Foid-freiem Basalt sind auf eine zunehmende Separation von Olivin aus dem Magma während des Aufstieges zurückzuführen. Nach dem Mg-Wert sind lediglich 22 % der Basalte als mafisch (bzw. primär) zu bezeichnen. Der Anteil der fraktionierten Alkalibasalte, bzw. deren Derivate, ist mit 50 % sehr hoch (32.7 % fraktioniert und 17 % Derivate) (siehe Abbildung 4-14 bis 4-17). In diesen Proben ist der Anteil an Feldspat sehr hoch. Die Derivate Hawaiit, Mugearit, Benmoreit, Nephelin- bzw. Hauyntephrit und (Hauyn-) Nephelinit sind als zunehmenden Kristallisationsdifferentiation Schmelzen Produkte einer von mit alkaliolivinbasaltischer, basanitischer und nephelinitischer Zusammensetzung anzusehen. Diese Einteilung kann durch die beobachteten Mineralphasen bestätigt werden. Alle primären Alkalibasalte und deren Derivate führen als Einsprenglingsphasen Olivin und CaKlinopyroxen. Mit zunehmendem Fraktionierungsgrad nehmen auch der Anteil femischer Einsprenglinge ab und der von Plagioklas bzw. Nephelin zu. Benmoreit und Trachyt führen Sanidin und Biotit als Makro- bzw. Mikro-Einsprenglinge.

Bei den stark untersättigten Vulkaniten hingegen ist der Anteil mafischer Basalte deutlich erhöht. Entsprechend sind in den Olivinnepheliniten und Olivinmelilithnepheliniten die Einsprenglingsphasen Olivin + Ca-Klinopyroxen verbreitet. Die Olivin-Megacrysten zeigen häufig Korrosionsformen und fallen durch ihren gedrungenen Habitus und ihren Zonarbau auf. Diese Erscheinungsformen sind als Produkt hoher Druckbedingungen zu sehen; experimentelle Untersuchungen zeigen, dass unter hohem Druck Olivin-Megacrysten als Fraktionierungsprodukte zu erwarten sind (HUCKENHOLZ & BÜCHEL, 1988). Die Olivinperidotitische Eigenschaften wie Xenocrysten zeigen Subkorngefüge bzw. Deformationslamellen und Bruchkonturen. Chemische Analysen von HF 33 und HF311 ergaben FeO> 18 Gew.-%, MgO> 44 Gew.-%, Nickel-Gehalte von 1700 ppm und 1950 ppm (Tab.1, Anhang 5) und bestätigen so ihren Ursprung aus dem Oberen Mantel. Diese Olivine kommen immer zusammen mit Xenocrysten chromreicher Ca-Klinopyroxen vor. Die Olivine und Klinopyroxene der Grundmasse hingegen sind Cr- und Ni-arm. Spinell-Xenocrysten mit einem opaken Saum sind vereinzelt zu beobachten. Die chemische Zusammensetzung der Olivine und Klinopyroxene bestätigen die Annahme von HUCKENHOLZ & BÜCHEL (1988), dass die Olivin-Xenocrysten von Spinellperidotiten stammen, die während des Magmenaufstieges mitgerissen wurden.

Im Vergleich zur Hocheifel zeigen die Vulkanite der Fichtelgebirgszone nur eine begrenzte Variationsbreite. Die Klassifikation nach HUCKENHOLZ & BÜCHL (1988) ergaben mehr als 80 % Nephelinbasanit, Olivinnephelinit und Olivinmelilithnephelinit. Diese Unterteilung entspricht den Resultaten der Modalbestandsbestimmungen. Mehr als 90 % der relativ homogenen Basalte der Fichtelgebirgszone sind aufgrund der hohen Mg-Werte > 0.69 als primär bzw. mafisch zu bezeichnen. Die erhöhten Mg-Werte gehen auf Akkumulation mitgeführter Xenolithe aus dem Oberen Mantel zurück, bzw. auf Kontamination der Magmen durch diese. Lediglich 7 % der Proben können als fraktioniert bezeichnet werden, was auf eine Separation von Olivin und Klinopyroxen aus dem Magma während des Aufstieges zurückgeht. Die Verbreitung von Xenolithen und das Fehlen von Derivaten in den Vulkaniten der Fichtelgebirgszone bestätigt die Annahme, dass die primären alkalibasaltischen Schmelzen der Fichtelgebirgszone schnell aufgestiegen sind und beim Erstarren keine Zeit zum Fraktionieren hatten (HUCKENHOLZ & SCHRÖDER, 1985).

Eine Besonderheit stellen die Basalte der Heldburger Gangschar dar: Wie in Kap. 4.1 dargelegt, führen diese Vulkanite einen hohen Anteil an Karbonat- und Smectiteinschlüssen. Nach der CIPW-Norm ist der CO₂-Anteil mit CaO zu CaCO₃ zu verrechnen. Bei Berücksichtigung des CO₂-Anteils dominieren mit 45 % die Vulkanite Alkaliolivinbasalt und Nephelinbasanit (1 und 2). Der Anteil von Olivinnephelinit und Olivinmelilithnephelinit ist mit 10 % gering. Zusätzlich errechnen sich normativ Quarz- und Hypersthen-führende Basalte zu 19 % Anteil. Ohne Berücksichtigung des CO₂-Anteils hingegen wird CaO mit SiO₂ zu normativem Larnit verrechnet. In diesem Fall errechnet sich ein erhöhter Anteil SiO₂-untersättigter Basaltvarietäten. Der Anteil an Alkaliolivinbasalt und Nephelinbasanit (1 und 2) bleibt ähnlich hoch (37 %). Der Schwerpunkt der Analysen liegt mit 50 % im Bereich Olivinmelilithnephelinit (34 %) und Olivinnephelinit (16 %). Basaltvarietäten mit normativem Hypersthen und Nephelin fehlen völlig.

Durch die unterschiedlichen Berechnungsarten, also mit bzw. ohne Berücksichtigung des CO₂-Anteils, resultieren für die Vulkanite unterschiedliche Feldbelegungen (siehe Tab. 6-1). Bei gleichem Ausgangschemismus können so unterschiedliche Basaltgenesen abgeleitet werden. Die Berücksichtigung von CO₂ würde einer primären SiO₂-reichen Schmelze entsprechen. Die SiO₂-Gehalte dieser Gesteine liegen jedoch meist unter 40 Gew.-%. Für Alkaliolivinbasalte sind in der Regel Gehalte > 45 Gew.-% SiO₂ zu fordern. Die mikroskopisch beobachteten Gefügebilder der Karbonate in den bis zu 0.5 cm großen Blasen oder Mandeln bestätigen, dass die Bildung der Karbonat- und Smectiteinschlüsse auf syn- bis postmagmatische Prozesse zurückzuführen ist. In kleineren Gängen kann häufig eine Umwandlung von Olivin zu Mg-Fe-Karbonat neben Smectit festgestellt werden. Zum Teil sprossen Biotite in diesen Olivin-Karbonat-Smectit-Aggregaten. Diese sekundären Reaktionen zusammen mit Biotit-Neubildungen zeigen, dass eine Zufuhr von CO₂-reichen Lösungen im Subsolidus-Bereich stattgefunden haben muss. Nach HUCKENHOLZ & WERNER (1990) ursächlich auf eine ist CO_2 Entmischung karbonatreicher Schmelzen zurückzuführen.

Der Anteil fraktionierter Basalte und deren Derivate in der Heldburger Gangschar (ohne Berücksichtigung von CO₂) liegt bei etwa 40 %. Zwei dieser Proben (E-1 und E-1A) sind als Sonderentwicklungen zu betrachten.

Sie zeigen sehr hohe SiO₂-, Al₂O₃-, Na₂O- und K₂O-Konzentrationen und niedrige MgO-, CaO-, TiO₂-, FeO-, MnO und P₂O₅- Konzentrationen. Entsprechend ist der Anteil an Feldspat deutlich erhöht. Detaillierte Untersuchungen von Vulkaniten aus der gleichen Lokalität führten zum gleichen Ergebnis. Nach dem Einteilungsschema von HUCKENHOLZ & BÜCHEL (1988) fallen diese Proben in das Feld Nephelinbasanit 1. Nach der Klassifikation von LE BAS (1986) hingegen sind sie als Phonolithe zu bezeichnen (siehe Abb. 4-9). Nach KUNZMANN (1996) sind die Phonolithe als Fraktionierungsprodukte eines nephelinbasanitischen Magmas anzusehen, die unter den Bedingungen des Oberen Mantels bei ca. 1,5 GPa entstanden sind.

Unterschiedliche Basalttypen eines Gebietes gehen in der Regel auf chemische Fraktionierung bei der Schmelzbildung der Oberen Mantel-Gesteine zurück. Das beobachtete breite Spektrum verschiedener Basalttypen in den drei Gebieten kann also nicht allein durch Kristallisationsdifferentiationsprozesse verursacht sein. Inkompatible Elemente wie Ca, K, Rb, Sr, Ba La und Ce sind in erster Linie an Klinopyroxen gebunden. Das partielle Schmelzen von Klinopyroxen hat zur Folge, dass diese Elemente mit einem Verteilungskoeffizienten < 1 schneller in die Schmelze diffundieren können und sich in der Schmelze anreichern. Nach Olivinmelilithnephelinite, dieser Vorstellung sollten welche den niedrigsten Aufschmelzungsgrad haben, den höchsten Anteil an inkompatiblen Elementen zeigen. Die geochemischen Untersuchungen ergeben jedoch, dass dies bei den untersuchten Gesteinen nicht der Fall ist.

BULTITUDE und GREEN (1968) zeigten experimentell, dass bei hohem Druck und in Anwesenheit von H₂O aus Olivinnephelinit Melilith führende Olivinmelilithnephelinite gebildet werden können. Experimentelle Untersuchungen bei Drücken von 10 kbar bis 40 kbar und Temperaturen im Bereich von 1100 - 1600°C ergaben weiter, dass neben dem Druck die Zusammensetzung der fluiden Phase maßgeblich die Bildung von Olivinmelilithnepheliniten kontrolliert (BREY & GREEN 1975, 1976, 1977 und BREY 1978). Demnach können Magmen mit einer olivinmelilithnephelinitischen Zusammensetzung durch partielles Aufschmelzen von Granat-Lherzolith nur in Anwesenheit einer koexistierenden H2O-CO2-Gasphase erreicht werden. Die mit dem Aufstieg einer Schmelze verbundene Druckentlastung führt dazu, dass CO₂ als die Komponente mit einer relativ geringen Löslichkeit in der Schmelze zuerst entgast. Ein erhöhter CO2-Partialdruck im Oberen Mantel hat nach BREY (1976) zur Folge, dass der Beitrag von Klinopyroxen zur Schmelzbildung deutlich zurückgeht. Unter diesen Bedingungen wird die Beteiligung der Olivine an der Schmelzbildung verstärkt. Die deutlich höheren Mg- und Ni-Konzentrationen in Olivinmelilithnepheliniten im Vergleich zu Alkaliolivinbasalten bestätigen diese Ergebnisse. Das bedeutet aber auch, dass dabei -im Vergleich zu einer CO₂-armen Schmelzbildung- der residuale Obere Mantel etwas stärker an Granat und Pyroxen angereichert wird.

Die verschiedenen Derivate Hawaiit, Mugearit, Benmoreit und Trachyt, die in der Hocheifel zahlreich auftreten, aber auch in der Heldburger Gangschar zu beobachten sind, entstehen durch Kristallisationsdifferentiation. Das Vorkommen von Xenolithen in Phonolithen der Heldburger Gangschar zeigt, dass die Differentiation bereits in den Mantelmagmenkammern stattgefunden haben muss (KUNZMANN, 1996).

Insgesamt zeigt sich, dass sich bei den Hauptelementen die Variationsbereiche der benachbarten Basaltvarietäten überlappen. Dies wird von WEDEPOHL (1987) als Zeichen einer gemeinsamen Genese der Vulkanite gedeutet. Bei den Spurenelementen zum Beispiel sind die Zn-Konzentrationen für die Hocheifel geringer als für die Fichtelgebirgszone (siehe Kap. 5.2). Dies ist für die jeweiligen Magmen der verschiedenen Gebiete typisch. Es ist jedoch keine deutliche Korrelation zwischen Zn-Gehalten und Qz-Sättigung bzw. Mg-Werten zu beobachten. Das bedeutet, dass dieses Element von Kristallisationsdifferentiationsprozessen nicht beeinflusst wird. Für andere Spurenelemente hingegen können in der Heldburgergangschar, Fichtelgebiergszone und in der Hocheifel mit zunehmender Differentiation gemeinsame Trends beobachtet werden: der Anteil an Cr, Ni, V und Y nimmt ab. Dies entspricht den bisherigen Kenntnissen über die Differentiation basaltischer Schmelzen und den Beobachtungen anderer Autoren, wie z.B. von WEDEPOHL (1985) an Differentiationsserien von Alkalibasalt-Assoziationen. Für die Elemente V, Cr und Zn ist Spinell ein Trägermineral. Die höhere Konzentration dieser Elemente in Olivinmelilithnepheliniten im Vergleich zu Alkaliolivinbasalt ist ein Beleg für geringere Schmelzvolumina im Falle von Olivinmelilithnepheliniten.

Im Detail zeigt sich, dass innerhalb einer Basaltgruppe (bei gleichem Mg-Wert) in der Regel die Hocheifel-Vulkanite höhere Cr- und Ni-Gehalte haben als die Basalte aus der Heldburger Gangschar und der Fichtelgebirgszone. Die deutlich positive Korrelation von Cr und Ni mit den Mg-Werten, die für Fichtelgebirgszone-Proben zu beobachten ist, zeigt, dass diese Vulkanite wenig Zeit zur Differentiation hatten und daher sehr schnell zur Oberfläche gelangten. Es ist bemerkenswert, dass die fraktionierten Hocheifel-Proben hohe Ni-Konzentrationen zeigen. Diese Beobachtung widerspricht der Annahme, dass Ni-Konzentrationen > 200 ppm als Anzeichen für primäre Basaltzusammensetzungen zu sehen sind (SATO, 1977; WEDEPOHL et al. 1994). Als weiteres Kriterium für die Basaltgenese können Elementverhältnisse herangezogen werden. Eine geringe Streuung der Verhältnisse

deutet auf eine relativ homogene Zusammensetzung des Oberen Mantels hin. Hohe Werte für $CaO/Al_2O_3 \ge 1.00$, $P_2O_5/Al_2O_3 \ge 0.08$ und $Ce/Yb\ge 70$ sind für Olivinmelilithnephelinite typisch (siehe Tabelle 1a-3a, Anhang 1 und Anhang 1 Tabelle 2). Sie sind daher ein Beleg für Magmen aus großen Tiefen. Die Abnahme von CaO/Al_2O_3 mit zunehmendem SiO₂-Sättigungsgrad ist als Folge unterschiedlicher Aufschmelzungsgrade im Oberen Mantel zu sehen.

Die HFS-Elemente (high field strength elements) Y, Ti und Zr verhalten sich wie inkompatible Elemente und gehen bevorzugt in die Schmelze (RAGLAND, 1989). Sie sind Indikatoren für Änderungen der Zusammensetzung im Oberen Mantel (WOODHEAD et al., 1993).

Konstante Zr/Nb-, Sr/Nb- und Ba/Rb-Verhältnisse deuten auf eine relativ homogene Zusammensetzung des Ausgangsmaterials im Oberen Mantel hin. Sie sind typisch für genetisch verwandte Basalte (PEARCE & NORRY, 1979; FREY & RHODES, 1993). Unterschiede in den Verhältnissen hingegen zeigen Inhomogenitäten im Oberen Mantel an (ERLANK & KABLE, 1967). Das Verhältnis Zr-Nb ist nach PEARCE & NORRY (1979) unabhängig vom Aufschmelzungsgrad. Nach PEARCE & CANN (1979) sind Y-Nb-Verhältnisse kleiner als eins ein charakteristisches petrologisches Merkmal für Alkalibasalte.

Das Verhältnis der inkompatiblen Elemente Rb/K zu Gesamt Rb-Gehalt nimmt von primären Alkaliolivinbasalt über primären Nephelinbasanit und primären Olivinnephelinit bis primären Olivinmelilithnephelinit zu. Diese positive Korrelation ist bei Fichtelgebirgsbasalten besonders stark ausgeprägt. Nach HOFMANN & WHITE (1983) ist dies ein Hinweis auf eine einheitliche Magmenquelle der Basalte und unterschiedliche Aufschmelzungsgrade zurückzuführen. Hohe Ti/Zr-Werte bei niedrigen Zr-Konzentrationen sind nach WOODHEAD et al. (1993) ein Merkmal für einen hohen Aufschmelzungsgrad.

Im residualen Mantel ist das Verhältnis von LSEE zu HSEE (chondritisch normiert) kleiner als 1. Durch die partielle Aufschmelzung des Oberen Mantels werden die SEE in der Schmelze relativ zum Ausgangsgestein angereichert. Die auf C1 Chondrite normierten Elemente der Seltenen Erden zeigen für die Gebiete Heldburger Gangschar und für Hocheifel-Vulkanite ein ähnliches Verhalten und weisen deutlich erhöhte Konzentrationen auf (siehe Abbildung 5.4 A-D): die Abnahme der SEE-Konzentration von Olivinmelilithnephelinit über Nephelinbasanit bis zu Alkaliolivinbasalt und die Anreicherung der LSEE gegenüber den HSEE weist auf eine ausgeprägte Fraktionierung zwischen den leichten und schweren SEE hin und ist typisch für kontinentale Alkalibasalte. Dieses Phänomen kann mit einem zunehmenden Anteil an Partialschmelze erklärt werden.

Abbildung 6-1: Das Verhältnis der inkompatiblen Elemente Zr/Nb*100 versus Mg-Wert

Abbildung 6-2 Das Verhältnis der inkompatiblen Elemente Zr/Nb*100 versus Mg-Wert

Abbildung 6-3 Das Verhältnis der inkompatiblen Elemente Zr/Nb*100 versus Mg-Wert

Abbildung 6-4 Das Verhältnis der inkompatiblen Elemente Rb/K versus Rb

Abbildung 6-5 Das Verhältnis der inkompatiblen Elemente Rb/K versus Rb

Abbildung 6-6 Das Verhältnis der inkompatiblen Elemente Rb/K versus Rb

Abbildung 6-7: Das Verhältnis der inkompatiblen Elemente Ti/Zrx100 versus 1/Zr

Abbildung 6-8: Das Verhältnis der inkompatiblen Elemente Ti/Zrx100 versus 1/Zr

Abbildung 6-9: Das Verhältnis der inkompatiblen Elemente Ti/Zrx100 versus 1/Zr

Mafische Olivinmelilithnephelinite unterscheiden sich von den primären hinsichtlich der LSEE nur geringfügig und in den HSEE fast nicht. Diese Beobachtung zeigt, dass nur ein geringer Anteil der Xenolithe mit der Schmelze reagiert hat. Bei den fraktionierten Alkaliolivinbasalten hingegen ist eine starke Anreicherung der LSEE gegenüber den HSEE zu beobachten (Abb. 5-4E - F). Im Allgemeinen ist dies auf einen höheren Anteil von Feldspat zurückzuführen. Dies korrespondiert mit der Modalanalyse (siehe Tabelle 2-1).

Die auf Chondrite normierten Elemente der Seltenen Erden zeigen für die Gebiete Heldburger Gangschar und für Hocheifel-Vulkanite ein ähnliches Verhalten: die Abnahme der SEE-Konzentration von Olivinmelilithnephelinit über Nephelinbasanit bis zu Alkaliolivinbasalt und die Anreicherung der LSEE gegenüber den HSEE weist auf eine ausgeprägte Fraktionierung zwischen den leichten und schweren SEE hin. Die bei den untersuchten Basalten fehlende Europium-Anomalie ist auf die geringen bzw. fehlenden Feldspatanteile zurückzuführen. Eine Europium-Anomalie ist in der Regel an Feldspat geknüpft, wobei bei niedrigerem O₂-Partialdruck, Europium (Eu⁺²) das Calcium ersetzt. Die deutliche Anreicherung der LSEE um den Faktor 10 gegenüber den HSEE ist auf die unterschiedliche Inkompatibilität der SEE mit den mafischen Mineralen zurückzuführen. ROLLINSON (1993) stellte fest, dass die Verteilungskoeffizienten der inkompatiblen SEE der Minerale Olivin, Orthopyroxen, Klinopyroxen und Spinell sich um bis zu zwei Größenordnungen unterscheiden können.

In einem Spider-Diagramm (ROLLINSON 1993) wurden die Spektren der verschiedenen primären Alkalibasalte (Mittelwert) verwendet, und dem Ergebnis von Vogelsber Proben (WÖRNER & BOGAART, 2003) gegenüber gestellt (Abbildung 6-10). Zusätzlich wurden die Werte für OIB eingefügt: OIB sind Basalte, die durch Riftvulkanismus unter dem Ozean entstanden sind. Im Detail fällt die negative Anomalie für Kalium und Phosphor auf. Die Spektren zeigen eine gute Übereinstimmung mit den Werten von WÖRNER & BOGAART (2003).

Nach FREY et al. (1978) sind erhöhte Gehalte an LSEE und inkompatiblen Elementen als Folge eines geringen Aufschmelzungsgrades des Ausgangsperidotites zu sehen. In einem zweiten Spider-Diagramm wurden die Mittelwerte der auf primitiven Mantel normierten SEE (SUN & McDONALD, 1989) der verschiedenen Basaltvarietäten aus HGS und HF (2 Proben HF 2 und HF 91) gegen die Ordnungszahl aufgetragen (Abbildung 6-11). Zudem wurden in dem Spider-Diagramm die Spektren für MORB und OIB eingefügt.

88

Abbildung 6-10: Das Spektrum der primären Alkalibasalte (Mittelwerte) wurden den Ergebnissen von WÖRNER (2003) gegenüber gestellt. Zusätzlich wurden die Werte für MORB und OIB ergänzt.

Abbildung 6-11: Im Spider-Diagramme wurden die auf primitiven Mantel normierten SEE-Mittelwerten (SUN & McDONALD, 1989) mit den Spektren für MORB und OIB. Zusätzlich die Werte für die verschiedenen Basaltvarietäten aus HGS und HF (2 Proben: HF 2 und HF 91) eingefügt.

Die Basaltvarietäten der primären Alkaliolivinbasalte, Nephelinbasanite, Olivinnephelinite und Olivinmelilithnephelinite zeigen fast den gleichen Verlauf. Die Werte für HSEE korrespondieren mit denen von OIB und MORB. Mit zunehmender Inkompatibilität der Elemente (nach links im Diagramm) nimmt der Anteil der Elemente in OIB im Vergleich zu MORB deutlich zu. Der Verlauf der SEE der untersuchten tertiären Vulkanite entspricht dem der ozeanischen Insel-Basalte (OIB) und zeigt damit, dass die magmatischen Prozesse vergleichbar sind.

Im Detail zeigt sich, dass die jeweiligen Werte der untersuchten primären Vulkantypen im Vergleich zu OIB leicht erhöht sind. Sie nehmen von Alkaliolivinbasalt über Nephelinbasanit bis zu Olivinmelilithnephelinit zu. Kalium zeigt - mit Ausnahme für Alkaliolivinbasalt - eine negative Anomalie. Von Nephelinbasanit 1 über Nephelinbasanit 2 zum Olivinmelilithnephelinit nimmt der Anteil ab. Entsprechend ist für diese Proben eine geringe Rb-Abnahme zu verzeichnen. Dies korrespondiert mit dem abnehmenden Anteil von Feldspat in den Basaltvarietäten und ist als Folge der Feldspat-Fraktionierung zu sehen. Die Phosporanomalie ist im Vergleich zu OIB auf die Differentiation von Apatit zurückzuführen.

WEDEPOHL (1995) hat die tertiären Vulkanite der Hessischen Senke detailliert untersucht. Die Werte sind in Tab. 2 Anhang 5, aufgeführt. Es zeigt sich, dass die Elementverteilungen und deren Verhältnisse sehr gut mit denen der untersuchten Alkalibasalte übereinstimmen. Die LSEE (La bis Sm) der Proben aus der Hessischen Senke hingegen zeigen meist höhere Werte.

Erhöhte Gehalte an LSEE und den inkompatiblen Elementen werden nach HARTMANN & WEDEPOHL (1990) durch die Zufuhr von inkompatiblen Haupt- und Spurenelementen (Si, Al, K, Na, P, Rb, Sr, LSEE) verursacht und weisen deshalb auf eine metasomatische Überprägung der Mantelgesteine hin. Die Zufuhr von inkompatiblen Elementen durch die fluide Phase verursacht eine Veränderung des Mineralbestandes im Oberen Mantel. Hierdurch können sekundäre Mineralphasen wie Phlogopit bzw. Amphibol gebildet werden. FREY und GREEN (1974) fanden in metasomatisch überprägten Peridotitxenolithen Apatite mit 4200 ppm La und 480 ppm Sm. Durch eine vollständige Aufschmelzung der Apatite können die SEE-Verhältnisse in der Partialschmelze verändert werden. Als Merkmal für metasomatische Prägung des Oberen Mantels sind daher erhöhte (La / Yb)_{CN} Verhältnisse zu sehen (BOETCHER & O'NEIL, 1980; STOSCH, 1987). Das (La / Yb)_{CN} ist bei allen Basaltvarietäten größer als 10 (Tab. 2 Anhang 4). Nach HARTMANN & WEDEPOHL (1990) zeigt dies, dass die untersuchten Basalte metasomatisch überprägt wurden.

Für die Hessische Senke wurde ebenfalls hohe $(La / Yb)_{CN}$ festgestellt. Im Gegensatz zu den hier untersuchten Gebieten wurden in den Proben der Hessischen Senke zusätzlich die Minerale Phlogopit und Amphibol beobachtet, was eine weitergehende metasomatische Überprägung der Basalte belegt.

Die Ergebnisse dieser Arbeit belegen eine unterschiedliche Genese der tertiären Vulkanite der Hocheifel, der Heldburger Gangschar und der Fichtelgebirgszone im Vergleich zu den Vulkaniten der Hessischen Senke.

7 Literaturverzeichnis

- AKINDURO, JERRY (1978): Die Petrographie der Basalte vom Zeilberg und Bramberg (Heldburger Gangschar) mit besonderer Berücksichtigung ihrer ultramafititischen Einschlüsse.- Diplomarbeit LMU München.
- **BENTENRIEDER, CHRISTA (1977)**: Petrographie und Geochemie von Oberpfälzer Alkalibasalten und ultremafititische Xenolithe. -Diplomarbeit LMU München.
- **BLUNDELL, D.; FREEMAN, R. & MUELLER, S. (1992):** A continent revealed: the European geotraverse, Cambridge Univ. Press, Cambridge.
- **BOETTCHER, A. L. & O'NEIL, J. R. (1980):** Stable isotope, chemical and petrographic studies of high pressure amphiboles and micas: Evidence for metasomatism in mantle source region of alkalibasalts and kimberlites. -Amer. J. Sci., 280-A, 594-621.
- BOYD, F. R. & ENGLAND, J. L. (1960): Minerals of mantle. -Carnegie Inst. Wash. Yearb., 59, 47-52.
- **BOYD, F. R. & SCHAIRER, J. F. (1964):** The system MgSiO₃-CaMgSi₂O₆. -J. Petrol., 4, 175-197.
- **BOYNTON, W V (1984):** Geochemistry of the rare elements: meteorite studies. -in: HENDERSON, P. (ed): Rare earthelement geochemistry, 63-114, Elsevier, Amsterdam.
- **BREY, G. (1976):** CO₂ solubility and solubility mechanisms in silicate melts at high pressure. -Contr. Mineral. Petrol., 57, 215-221.
- **BREY, G. (1978):** Origin of olivine melilitites-chemical and experimental cnstraints. J. Volcanol. Geotherm. Res., 3, 61-88.
- **BREY, G. & GREEN, D. H. (1975):** The role of CO₂ in the genesis of olivine melilitite. Contr. Mineral. Petrol., 49, 93-103.
- **BREY, G. & GREEN, D. H. (1976):** Solubility of CO₂ in olivine melilitite at high pressure and role of CO₂ in the earth's upper mantle.-Contr. Mineral. Petrol., 55, 217-230.
- BREY, G. & GREEN, D. H. (1977): Systematic study of liquidus phasa realations in olivin melilithite + H₂O + CO₂ at high pressure and petrogenesis of an Olivin melilitite magma. -Contr. Mineral. Petrol., 61, 141-162.
- **BROWN, G N.; PINSET, R. H. & COISY, P. (1980):** The Petrology of Spinel-Periditite Xenoliths from the Massif Central, France. -Amer. J. Sci., 280A, 471-498.
- BÜCHEL, G.; CHRISTIENSEN, U.; JAKOBY, W. & WOLTERS, B. (1988): Gravimetrische Untersuchungen im Bereich des Kelberger Hoch (Hocheifel). Geowiss Mainzer. Mitt. 17: 377-387.
- **BULLTITUDE, R J.; GREEN, D H. (1968):** Experimental study at high pressures on the origin of olivine nephelinite and olivine melilite nephelinite magmas. Earth and Planetary Science Letters, vol.3, no.4, pp.325-337

- **BUSSMANN, E. (1981):** Vergleichende strukturgeologische, photogeologische und vulkanologische Untersuchungen Diplomarbeit. Univ. Mainz
- **BUSSMANN, E. & LORENZ, V. (1983):** Volcanism in the Southern Part of the Hocheifel. -In: FUCHS, K. (ed.), Springer Verlag Berlin-Heilderberg-New York- Tokyo, pp. 128-130.
- CANTAREL, P. & LIPPOLT, H. J. (1977): Alter und Abfolge des Vulkanismus Hocheifel. -N. Jb. Geol. Paläontol. Monatsh., 10, 600-612.
- CARLÉ, W. (1955): Bau und Entwicklung der Südwestdeutschen Großscholle. Geologisches Jahrbuch. Bh., 16, 1-272.
- **CHAUDHURY, S. (1970):** Petrographische und geochemische Untersuchungen an den Alkaliolivinbasalten und Basaniten der südlichen Hocheifel. -Dissertation Univ. Köln.
- COX K. G., BELL J. D. and PANKHURST R. J. (1979): The interpretation of igneous rocks. G. Allwen & Unwin, London.
- **DAVIS, B. T. C. & BOYD, F. R. (1966):** The join Mg₂Si₂O₆-CaMgSi₂O₆ at 30 kb pressure and is application to pyroxenes from kimberlites. -J. Geophys. Res., 71, 3567-3576.
- **DORN, P. (1930):** Der tertiäre Vulkanismus im oberfränkischen Deckgebirge. Sitzungsber. Phys.-med. Soz., Erlangen 1930.
- DÖRR, A (1895): Beitrag zur chemischen Kenntnis der Basalte des Fichtelgebierges. -Dissertation Univ. Erlangen.
- **ELLRICH J. (1977):** Petrographische und geochemische Untersuchungen an den Alkalibasalten der geologischen Blätter Marktredwitz, Waldersdorf und Selb im Fichtelgebierge. -Diplomarbeit LMU München.
- **ERLANK, A. J. & KABLE, E. J. D. (1967):** The Significance of Incompatible Elements in Mid-Atlantic Ridge Basalts from 45°N with Particular Raference to Zr/Nb. -Contr. Mineral. Petrol., 54, 281-291, Springer.
- **FLOYD, P. A. & WINCHESTER, J. A. (1978):** Identification and discrimination of altered and metamorphosed volcanic rocks using immobile elements. -Chemical Geology., 21, 291-306.
- **FRECHEN, J. (1948):** DieGenese der Olivinausscheidungen vom Dreiser Weiher (Eifel) und Finkenberg (Siebengebirge). -N. Jb. Miner. Abh., 79, 317-406.
- **FRECHEN, J.; HOPMANN, M. & KNEISCH, G. (1967):** Die vulkanische Eifel. -3. Auflage, 143 S, Bonn (Stollfuß).
- FREY, F. A. & GREEN, D. H. (1974): The mineralogy, geochemistry and origin of lherzolite inclusions in Victoran basanites. -Geochim. Cosmochim. Acta., 38, 1023-1059.
- **FREY, F. A; GREEN, D. H. & ROY, D. (1978):** Integrated Models on Basalt Petrogenesis: A Study of Quarz Tholeiites to Olivin Melilitites from South Eastern Australia utilizing Geochemical and Experimental Petrological Data. -J. Petrol., 19,3, 463-513.

- **FREY, F. A. & PRINZ, M. (1978):** Ulteamafic inclusions from San Carlos Arizona: Petrological and Geochemical Data Bearing on Their Petrogenesis. -Earth Planet. Sci. Lett., 38, 129-176, Elsevier, Amsterdam.
- **FREY, F. A. & RHODES, J. M. (1993):** Intershield geochemical differences among Hawaiian volcanoes: implication for source compositions, melting process and magma ascent path. -Phil. Trans. R. Soc. Lond. A., 342, 121-136.
- **FRISCH, T. (1970):** Die chemische Zusammensetzung der Olivine in Peridotitknollen aus der Oberpfalz. -Phil. Trans. R. Soc. Lond. A., 342, 121-136.
- GAST, P. W. (1968): Trace element fractionation and the originof tholeiitic and alkaline magma types. -Geochem. Cosmochim. Acta, 32, 1057-1086.
- **GEISMAR, G. (1967):** Stoffbestand,Optik und Struktur der Grundmasse- Mineralen in den Oligoandesiten und Trachyten der Hocheifel. -Diplomarbeit, Univ. Köln.
- **GESSLER, R. (1977):** Geochemische und petrogrphische Untersuchungen an Alkalibasalten im mesozoischen Vorland des Fichtelgebirges. -Diplomarbeit LMU München.
- GOEMANN, U. (1976): in SCHRÖDER, B., Geol. Karte von Bayern, 1:25 000 Erläuterungen zum Bl. Nr. 5829 Hofheim i. Ufr., 50-61; Bay. Geol. Landesamt, München 1976.
- **GRAMSE, M. (1971):** Der Chemismus basaltischer Gläser, Untersuchungen mit der Elektronenmikrosonde. -Fortschr. Mineral., 49, Bh.1, S.97.
- GREEN, H. D. (1964): Petrogenesis of the high-temperature peridotite intrusion in the Lizard area, Cornwall. -J. Petrol., 5, 134-188.
- GREEN, H. D. & RINGWOOD, A. E. (1967): The genesis of basaltic magma. -Contr. Mineral. Petrol., 15, 103 190.
- **GREEN, H. D. (1970):** A review of experimental evidence on the origin of basaltic and nephelinitic magmas. -Phys. Earth Planet. Interiors., 3, 221 235.
- **GRIFFEN, W. L. & MURTHY, V. R. (1969):** Distribution of K, Rb, Sr and Ba in minerals relevent to basalt genese. -Geochim. Cosmochim. Acta., 33, 1389-1414.
- **GRÜNHAGEN, H. (1964):** Petrographische und geochemische Untersuchungen an den tertiären Andesiten und Trachyten der Hocheifel. -Dissertation Univ. Köln.
- **GUMBEL, C. W. (1879):** Geognostische Beschreibung des des Fichtelgebirges mit dem Frankenwald und dem westlichen Vorland. -Goth, J. Perthes, 1879.
- **HARTMANN, G. (1986):** Chemische Zusammensetzung und Mineralbestand von Peridotitxenolithen mit unterschiedlicher metasomatischer Überprägung aus Basalten der Hessischen Senke. -Dissertation. Univ. Göttingen.
- HARTMANN, G. & WEDEPOHL, K. H (1990): Metasomatically altered peridotite xenoliths from the HessianDepression. -Geochim. Cosmochim. Acta., 54, 71-86.
- **HEINRICH H. & HERRMANN A. G. (1990):** Praktikum der analytischen geochemie. -Springer-Verlag, Berlin.

- HOERNLE, K.; ZHANG, Y. S.; GRAHAM, D. (1995): Seismic and geochemical evidence for large-scale mantle upwelling beneath the eastern Atlantic and western and centreal Europe, -Natura., Vol. 374, 34-39.
- HOFMANN, A. W. & WHITE, W. M. (1983): Ba, Rb and Cs in the Earth's Mantle. -Z. Naturforsch., 345, 246-249.
- **HERTLE, A. (1959):** Eine neue Basaltfundstelle bei Heiligenstadt. -Geol. Bl. NO-Bayern, 9, 207-208.
- HESS (1960): The Stillwater igneus coplex, Montana. -Geol. Soc. Amer. Memoir., 80.
- HORN, P et al (1976) : Kalium-Argon-Altersbestimmungen an tertiaeren Vulkaniten des Oberrheingraben-Gebiets; IV, Kalium-Argon-Alter von Mineralen und Einschluessen der Basalt-Vorkommen Katzenbuckel und Rossberg. -N. Jb. Miner. Abh., 127, 242-260.
- HORN, P.; & MÜLLER-SOHNIUS, D.: A differential disolution magmatic seperation approach to whole rock potassium-argon dating of basaltic rocks. -Geochim. J., 22, 115-128.
- HORN, P.; MÜLLER-SOHNIUS, D. & HUCKENHOLZ, H. G. (1985): K-Ar mineral ages of Hocheifel Volcanics. -Terra. Cog., 5, 279.
- **HUCKENHOLZ, H. G. (1965a):** Der petrogenetische Werdegang der Klinopyroxene in den tertiären Vulkaniten der Hocheifel I. Die Klinopyroxene der Alkaliolivinbasalt-Trachyt-Assoziation. -Beitr. Min. Petrol., 11, 138-195.
- HUCKENHOLZ, H. G. (1965b): Der petrogenetische Werdegang der Klinopyroxene der Basanitoide. -Beitr. Min. Petrol., 11, 415-448.
- HUCKENHOLZ, H. G. (1965c): Die Verteilung des Niobs in den Gesteinen und Mineralen der Alkalibasalt-Assoziation der Hocheifel. -Geochim. Cosmochim. Acta., 29, 807-820.
- HUCKENHOLZ, H. G. (1966): Der petrogenetische Werdegang der Klinopyroxene der Pikritbasalte (Ankaramite). -Contr. Mineral. Petrol., 12, 73-95.
- HUCKENHOLZ, H. G. (1973): The Origin of Fassaitic Augite in the Alkalibasalt Suite of the Hocheifel Area, West Germany. -Contr. Mineral. Petrol., 40, 315-326.
- HUCKENHOLZ, H. G. & NOUSSINANOS, T. (1977): Evaluation of temperature and pressure conditions in alkalibasalts and their peridotite xenoliths in NE Bavaria, Western Germany. -N. Jb. Miner. Abh., 129, 139-159.
- HUCKENHOLZ, H. G. & SCHRÖDER, B. (1981): Die Alkalibasaltassoziation der Heldburger Gangschar (Exkursion I am 25. April 1981). -Jb. Mitt. Oberrhein.geol. Ver., 63, 125-138.
- **HUCKENHOLZ, H. G. (1983):** Tertiary volcanism of the Hocheifel Area. -in: Plateau Uplif (ed. FUCHS, et al.) 121-128. Springer.
- HUCKENHOLZ, H. G. & GILBERT, M. C. (1984): Stabilität von Ca- Amphibol in Alkalibasalten der Hocheifel. -Fortschr. Mineral., 62, Bh.106.

- HUCKENHOLZ, H. G. & SCHRÖDER, B. (1985): Tertiärer Vulkanismus im bayerischen Teil der Eger Grabens und des mesozoischen Vorlandes. -Jb. Mitt. Oberrhein. geol. Ver., 67, 107-124, Stuttgart.
- HUCKENHOLZ, H. G. & BÜCHEL, G. (1988): Tertiärer Vulkanismus der Hocheifel. -Fortschr. Miner., 66, Bh. 2, 43-82.
- HUCKENHOLZ, H.G.& BÜCHEL, G. (1988): Das tertiäre Vulkanfeld der Hocheifel Forsch. Miner., 66 Beih. 2, 43-82
- HUCKENHOLZ, H. G. & KUNZMANN, T. (1988): Auftreten, Bildung und Stabilität von Rhönit in tertiären Alkalibasalten der Hocheifel-Fortschr. Mineral., 66 Bh.1, 71.
- HUCKENHOLZ, H. G. & WERNER, C.D. (1990): Die tertiärenVulkanite der Heldburger Gangschar (Bayerisches-thüringisches Grabfeld). -Europ. J. Mineral., Bh. 2, 1-42.
- HUCKENHOLZ, H. G. & KUNZMANN, T. (1993): Tertiärer Vulkanismus im bayerischen Teil des Egergrabens und des mesozoischen Vorlandes. -Europ. J. Minaral., Bh. 5, 1-34. Schweizerbar, Stuttgart Berichte der Deutschen Mineralogischen Gesellschaft, vol.1993, no.2, pp.1-34, 1993.
- HUTCHINSON, R.; CHAMBERS, A. L.; PAUL, D. K. & HARRIS, P. G.; et. al (1975): Chemical variation among French ultamafic xenolths-evidence for a heterogenous upper mantle. -Miner. Mag., 40, 153.170.
- **IIDA, C. (1961):** Trace elements in minerals and rocks of the Izu-Hakoneregion, Japan.Pt. 2 Plagioklase. -J. Earth Sci., 9, 1-13.
- IIDA, C.; KUNO, H. & YAMASAKI, K. (1961): Trace elements in minerals and rocks of the Izu-Hakone region, Japan. Pt. 1 Olivin. -J. Earth Sci., 9, 1-13.
- ILLIES, J. H. (1974): Intra-Plattentektonik in Mitteleuropa und der Rheingraben. Oberrhein. Geol. Abh., 23, 1-24.
- ILLIES, J. H.; BAUMANN, H. & HOFFERS, B. (1981): Stress pattern and strain release in the Alpine Foreland. –Tecnophysics., 71, 157-172, Elsevier.
- ILLIES, J. H.; BAUMANN, H. (1982): Crustal dynamics and morphodynamics of the Western European Ruft System. –Z. Geomorph. N. F. Suppl., 42, 135-165.
- **IRVING, A. J. & PRICE, R. C. (1981):** Geochemistry and evolution of lherzolite-bearing phonolitic lavas from Nigeria, Australia, East Germany, and New Zealand. -Geochim. Cosmochim. Acta., 45, 1309-1320.
- **KARAMOULAS, S. (1977):** Geochemische und petrographische Untersuchungen an Alkalibasalten der Oberpfalz und des Fichtelgebierges. -Diplomarbeit LMU München.
- KLEEMANN, J. D.; GREEN, D. H. & LOVERING, J. F. (1969): Uranium distribution in ultramaficinclusions from Victorian basalts. -Earth. Planet. Sci. Lett., 7, 449-458.
- **KOCH, L. (1933):** Zur Charakteristik der tertiären Eruptivgesteinsvorkommen der Hocheifel. -Centralbl. Mineral. Etc. Abt. A., 2, 59-73.
- **KOPECKY, L. (1974):** Detection of faults and determination of their order in regions of platform volcanism. -Sbornik geol. Véd, G., 26, 197-226.

- **KUNZMANN, T. (1996):** Phonolithe als Fraktionierungsprodukte alkalibasaltischer Magmen unter den Bedingungen des Oberen Mantels. -Berichte der Deutschen Mineralogischen Gesellschaft, vol.1996, no.1, pp.166, 1996.
- **KUNZMANN, T. (1999):** The evolution of phonolitic melts by fractional crystallization; an experimental study., -Habilitation Univ. München.
- **KUNZMANN, T. & HUCKENOLZ, H. G. (1995):** Upper mantlexenoliths of the Heldburg Phonollite (Bavaria/Thuringa, Germany), -Europ. J. Mineral., Bh 7, 143.
- KUNZMANN, T. & HUCKENOLZ, H. G. (1996): The solidus-liquidus phase relations of the Heldburg Phonolite up to 2.5 GPa., -Terra Abstracts., Vol.8, Suppl. 1, 37-38.
- KUNZMANN, T. & NEUMEIER, G. (1993): Analysis: Einbenutzerfreundliches Programm zur Bearbeitung von Mineral- und Gesteinsanalysen., -Europ. J. Mineral., Bh 5, 238.
- **KUSCHIRO (1960):** Si-Al relation in clinopyroxenes from igneous rocks., -Amer. J. Sci., 258, 155-203.
- LE BAS, M. J.; LE MAITRE, R. W.; STRECEISEN, A. & ZANETTIN, B. (1986): A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Slica Diagram., -J. Petrol., 27, 3, 745-750.
- LIPPOLT, H.J.; HORN, P.; TODT, W. (1976): Kalium-Argon-Altersbestimmungen an tertiaeren Vulkaniten des Oberrheingraben-Gebiets; IV, Kalium-Argon-Alter von Mineralen und Einschluessen der Basalt-Vorkommen Katzenbuckel und Rossberg. -N. Jb. Miner. Abh., vol.127, no.3, pp.242-260.
- LIPPOLT, H.J. in POHL & SOFFEL (1977): Alter und Abfolge des Vulkanismus der Hocheifel. -N. Jb. Geol. Paläontol. Monatsh., 10, 600-612.
- LIPPOLT, J. & FUHRMANN, U. (1980): Vulkanismus der Nordeifel; Datierung von Gang- und Schlotbasalten., -Aufschluß 31, 540-547.
- **LIPPOLT, J. (1982):** K/Ar age determinations and the correlation of Tertiary volcanic activity in Central Europe. -Geol. Jb., D 52, 113-135.
- **LIPPOLT, J. (1983):** Distribution of volcanic activity in space and time. -Plateau Uplift (ed. FUCHS, K. et al.), 112-120, Springer.
- MACDONALD, G. A. & KATSURA, T. (1962): Relationship of petrographic suites in Hawaii The crust of the Pacific Basin., -Geophys. Monograph., 187-195.
- MACDONALD, G. A. & KATSURA, T. (1964): Chemical composition of Hawaiian lavas. -J. Petrol., 5, 82 - 133.
- MATSUI, Y.; ONUMA, N.; NAGASAWA, H.; HIGUCHI, H.; BANNO, S. (1977): Crystal structure control in trace element partition between crystal and magma. -Bull. Soc. Mineral. Cristallogr., 100, 315-324.
- MENGEL, K.; SCHNEIDER, A. & WEDEPOHL, K. H. (1983): Natürliche Schmelzen in Gesteinen des Oberenmantels. -Fortschr. Miner., 61, Bh. 1, 149-151.
- **MERKEL, P.** (1895): Die Basalte des Großen und Kleinen Teichelberges und des Langholz.- -Dissertation Univ. Erlangen.

- MEYER, W. (1986): Geologie der Eifel. -E. Schweizerbart'sche Verlagsbuch-handlung (Nägele u. Obermiller) Stuttgart.
- MEYER, W. (1994): Geologie der Eifel.- E. Schweizerbart'sche Verlagsbuchhandlung (Nägele u. Obermiller) Stuttgart.
- MORIMOTO, N. (1988): Nomenclature of Pyroxene, -Miner. Mag., 52, 535-550.
- MÜLLER-SOHNIUS, D. & HUCKENHOLZ, H. G. (1992): Kalium-Argon-Datierungen an tertiaeren Vulkaniten der Hocheifel (BRD). -Ch. d. Erde., 29, 119-136.
- MÜLLER-SOHNIUS, D. (1992): Variation on a 36-Ma-old theme: length, intensity und rhythm of volcanism. A record from the Hocheifel (Germany). -J. Volcanol. Geotherm. Res., 55, 261-270.
- MÜLLER-SOHNIUS, D., HORN, P., HUCKENHOLZ, H. G. (1992): Kalium-Argon-Datierungen an tertiären Vulkaniten der Hocheifel. -Ch. d. Erde., 49, 119-136.
- MYSEN, B. O. (1979): Trace element partitioning between garnet peridotite minerals and water-rich vapor: experimental data from 5 to 3 kb. -Amer. Mineral., 64, 274-287.
- **MYSEN, B. O. (1983):** Rare element partitioning between $(H_2O + CO_2)$ vapor and upper mantle minerals; experimental data bearing on the conditions of formation of alkali basalt and kimberlite. -N. Jb. Miner. Abh., 146, 41-65.
- NAVROTSKY, A. (1978): Thermodynamucs of the elements parttioning. -Geochim. Cosmochim. Acta., 887-902.
- **NEUMEIER, G. (1996):** Geochemie und Petrologie alkalibasaltischer Vulkanite aus dem bayerischen Teil der Rhoen und benachbarter Bundeslaender (Hessen, Thueringen). Muenchner Geologische Hefte. Reihe A, Allgemeine Geologie, vol.20, S 116.
- NOLL, W. (1934): Geochemie des Strontiums., -Ch. d. Erde., 8, 507-600.
- NOUSSINANOS, T. (1973): Geochemie und Petrologie Oberpfälzer Olivinnephelinite, Nephelinbasanite und Ultramafiteinschlüsse., -Dissertation Univ. München.
- **OSTERMAYER, A. (1903):** Beiträge zur Kenntnisder Basalte des Hassgaus., -Inuagural-Dissertation an der Friedrich-Alexander-Universität Erlangen, 42 Seiten.
- **PANZA, G. F. (1985):** Lateral variations in the lithosphere in correspondence of the southern segment of the EGT. -Eur. Sci. Found., Amsterdam.
- **PEARCE, J. A. & CANN, J. R. (1973):** Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analyses. -Earth Planet. Sci. Lett.; 19, 290-300.
- **PEARCE, J. A. & NORRY, M. J. (1979):** Petrogenetic Implications of Ti, Zr, Y und Nb Variations in Volcanic Rocks. -Contrib. Miner. Petrol.; 69, 33-47.
- **POHL, J. & SOFFEL, H. (1977):** Palaeomagnetic and rock magnetic investigations of Tertiary volcanics in northern Bavaria. -J. Geophys., 42, 459-474.
- **PRINZ, M (1967):** Geochemistry of basaltic rocks; trace elements, Interscience Publishers, New York and London.
- **PRÖSCHOLDT, H. (1895):** Erläuterung zur geologischenSpetzialkartevon Preussen und den Thüringischen Staaten. -Blatt Heldburg, Berlin.

RAGLAND, P. C. (1989): Basic Analytical Petrology. -Oxford University Press. 369 S.

- **REFAI, E. M. (1960):** Magnetfeld und Magnetisierung der Basaltvorkommen im Raum Kemnath (Oberpfalz)., -Dissertation LMU München.
- RICHARZ, R. (1920): Die Basalte der Oberpfalz. -Ztschr. dtsch. Geol. Ges., 72, 1-100.
- **RINGWOOD, A. E. (1975):** Composition and petrology of the Earth's mantle. -McGraw-Hill Book Co., New York, N.Y.
- **ROLLINSON, H. (1994):** Using geochemical data: evaluation, presentation, interpretation., Longman Group UK Ltd 1993.
- RONNER, F. (1963): Systematische Klassifikation der Massengesteine.
- SACHTLEBEN (1980): Petrologie ultrabasischer Auswürflinge aus der Westeifel. Dissertation Univ. Köln.
- SANDBERGER, F. (1886): Untersuchungen über Erzgänge Jb. Miner. 2.Heft, 220-223.
- SANDBERGER, F. (1888): Bemerkungen über die Mineralien und Felsarten (Hypersthenit und Olivinfels) aus dem Phonolithder Heldburg bei Coburg. Jb. Miner. II., 247-250.
- **SATO, H. (1977):** Nicel content of basaltic magmas; identification of primary magmas and measure of the degree of olivine fractionation., -Lithos., 113-120.
- SCHIEGL, S. (1986): Sr- Isotophensystematik an der tertiären Vulkaniten der Hocheifel und ausgewählten Phasen, -Diplomarbeit LMU München.
- SCHMEER, D. (1972): in NTONIADIS, P., FYTROLAKIS, N., HEGENBERGER, W.
 & STRASSNER-MUNK, CH., -Geol. Karte von Bayern, 1:25 000, Erläuterungen zum Bl. Nr. 6032 Scheßlitz, Bay. Geol. Landesamt, München.
- SCHMINCKE, H. & MERTES, H. (1979): Pliocene and Quarternary Volcanic Phases in the Eifel Volcanic Fields., -Naturwissenschaften 66, 614-615.
- SCHNEIDER EGGLER (1984): NMR spectroscopy of Si-29, Na-23, and Al-27 in molten silicates to 1300 degrees C; technique and analysis., Eos, Transactions, American Geophysical Union, vol.65, no.45, pp.114.1
- SCHÖNEBERG, R. & NEUGEBAUER, J. (1987): Einführung in die Geologie Europas., 294 S. 5. Auflage, Rombach, Freiburg.
- SCHRÖDER, B. (1965): Tektonik und Vulkanismus im Oberpfälzer Bruchschollenland und fränkischen Grabenfeld. -Erlanger Geol. Abh., 60, 4-90.
- SCHRÖDER, B. (1962): Zur Altersstellung der Oberpfälzerwaldsbasalte. Geol. Blatt von NO- Bayern, 12, 1-15 Erlangen.
- SCHRÖDER, B. (1976): Erläuterungen zur geologischen Karte von Bayern. 1 : 25 000 Blattnummer 5829, Hofheim. 116 Seiten
- SCHÜTZ, D. (1967): Petrographisch-geochemische Untersuchungen an Olivinknollen verschiedener Vorkommen. N. Jb. Miner. Abh., 106, 158-190.

- SCHMIDT, GERHARD; WITT-ICKSCHEN, GUDRUN; PALME, HERBERT; SECK, HANS; SPETTEL, BERNHARD; KRATZ, KARL-LUDWIG (2003): Highly siderophile elements (PGE, Re and Au) in mantle xenoliths from the West Eifel volcanic field (Germany)., Chemical Geology., 196, 77–105.
- SEIBERL, APREPRFA@ unveröffentliches Programm zur Umwandlung der Meßdaten in ein allgemein lesbares ASCII-Format zur computergestützten Weiterverarbeitung. LMU München
- SCHÜTZ, D. (1962): Geologie des Malms und der Basalte auf Blatt Buttenheim (nördl. Frankenalb) -Diplomarbeit, Erlangen .
- SHANNON, R. D. (1976): Revised effective ionic radii and systematic studies of interatomic distance in halides and chalcogenides. -Acta crystallogr., A32, 751-767.
- SHAW, D. M. (1970): Trace element fractionation during anatexis., -Geochim. Cosmochim. Acta., 34, 331.
- SHAW, D. M. (1972): Development of the early continental crust. Part1. Use of trace element distribution coefficient models for the Proto-Archean crust, -Can. J. Earth Sci., 9, 1577.
- **SOFFEL, H. & SUPALAK, P. (1968):** Palaeomagnetische Messungen am Basalt des Parkstein bei Weiden (Bayern). -Z. Geophysik., 34, 3, 287-296.
- SÖLLNER, K. (1960): Der Olivinnephelinit vom Teichelberg bei Groschlattengrün (Fichtelgebierge). -N. Jb. Miner. Abh., 93, 324 388, Stuttgart.
- SÖLLNER, K. (1965): in: Erl. Geol. Karte von Bayern 1.25 000 Blatt Nummer 6038 Walderhof., 50-80.
- SØRENSEN, H. (1986): The alkaline rocks- a review. -Fortschr. Mineral., 64,1, 63-86.
- SPERA, F. J. (1980): Aspects of magma transport. -Physics of Magmatic Processes, Chapt. 7 (Hargraves, R. B., ed), Princeton University Press.
- **STETTNER, G. (1964):** Tertiärer Vulkanismus in der Fichtelgebirgszone und im Vorland der Fränkischen Linien. –Erl. Geol. Karte von Bayern 1.500 000, 223, Bayer. Geol. Landesamt.
- STOSCH, H G (1987): Constitution and evolution of subcontinental upper mantle and lower crust in areas of young volcanism; differences and similarities between the Eifel (F. R. Germany) and Tariat Depression (central Mongolia) as evidenced by peridotite and granulite xenoliths.Fortschr. Mineral., 65, Bh.1, 49-86.
- STRUNZ, H. (1975): Die Basalte der Oberpfalz und ihre Mineralien. -Der Aufschluß., 26 (Oberpfalz), 329-342.
- SUN S.S. & MCDONOUGH W.F. (1989): Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders A.D. and Norry M.J. (eds.), Magmatism in ocean basins. Geol. Soc. London. Spec. Pub. 42, pp. 313-345
- **TODT, W. & LIPPOLT, H. J. (1975):** K-Ar- Altersbestimmungen an Vulkaniten bekannter paläomagnetischer Feldrichtung. I. Oberpfalz und Oberfranken. -J. Geophys., 41, 43-61.
- **THÜRACH, H. (1895):** Erläuterungen zur geologischen Spezialkarte von Preussen und der Thüringischen staaten, Blatt Rieth., Berlin.
- WÄNKE, H.; DREIBUS, G. & JAGOUTZ, E. (1984): Mantel chemistry and accretion history of the Earth. -Archean Geochemistry, 1-24.
- WAGNER, L. R. & MITCHELL, R. L. (1951): The distribution of trace elements during strong fractionation of basic magma, a further study of the Skaergaard intrusion, East Greenland. -Ceoch.et Cosm.Acta., 1, 129-208.
- WALDECK, H. (1905): Beiträge zur Kenntnis der Basalte der Oberpfalz. -Dissertation Univ. Bamberg.
- WALTER, J & ALTHAUS, E. (1983): Fluid inclusions in ultramafic xenoliths of volcanites from Southern and Western Germany. -Fortschr. Mineral., 61, Bh.1, 217.
- WEDEPOHL, K. H. (1963) : Die Nickel und Chromgehalte von basaltischenGesteinen und deren Olivinführenden Einschlüssen. -N. Jb. Mineral. Mh., 1963, 237-242.
- WEDEPOHL, K. H. (1982): K-Ar-Altersbstimmungen an basaltischen der nördlichen Hessischen Senke und ihr Beitrag zur Diskussion der Magmengenese. -N. Jb. Mineral. Abh., 144, 172-196.
- WEDEPOHL, K. H. (1985): Origin of the Tertiary basaltic volcanism in the Northern Hessian Depression. -Contr. Mineral. Petrol., 89, 122 143.
- WEDEPOHL, K. H. (1987): Kontinentaler Intraplatten-Vulkanismus am Beispiel der Tertiären Basalte der Hessischen Senke. -Fortschr. Mineral., 65, 1, 19-47.
- WEDEPOHL, K. H. .; GOHN, E.; HARTMANN, G. (1994): Cenozoic alkali basaltic magmas of western Germany and their products of differentiation. -Contr. Mineral. Petrol., 115, 253-278.
- WEDEPOHL, K. H.; GAO, S. (1995): The negative Eu anomaly in Archean sedimentary rocks; implications for decomposition, age and importance of their granitic sources. Earth. Planet. Sci. Lett., 133, 81-94.
- WEDEPOHL, K. H.; HARTMANN, G. (1994): The composition of the primitive upper Earth's mantle.- CPRM - Special Publication, vol.1A, pp.486-495.
- WEDEPOHL, K. H.; BAUMANN, A. (1999): Central European Cenozoic plume volcanism with OIB characteristics and indications of a lower mantle source. -Contr. Mineral. Petrol., vol.136, no.3, 225-239.
- WELZEL, E. & SCHROEDER, B. (1966): Exkursionsführer im Keuper der Hassberge. -Geologische Blaetter für Nordost-Bayern und angrenzende Gebiete., vol. 16, no.2-3, 139-152.
- WHITE, R. W. (1966): Ultramafic inclusions in basaltic rocks from Hawaii. -Contr. Mineral. Petrol., 12, 245-314.

- WILKINSON, J. F. G. (1956): Clinopyroxenes of alkaliolivin-basaltmagma. -Amer. Mineral., 41, 724-743.
- WINCHESTER, J. A. & FLOYD, P. A. (1976): Geochemical Magma type discrimination; Application to altered and metamorphosed basic igneous Rocks. -Earth. Planet. Sci. Lett., 28, 459-469.
- WINCHESTER, J. A. & FLOYD, P. A. (1977): Geochemical discrimination of different magma series and their differentiation products using immobile elements. -Chemical Geology., 20, 325-343.
- WITT-EICKSCHEN, G.; SECK, H. A.; MEZGER, K.; EGGINS, S. M. & ALTHERR, R. (2003): Litospheric Mantle Evolution beneath the Eifel (Germany): Constraints from Sr-Nd-Pb Isotopes and Trace Element Abundances in Spinel Peridotite and Pyroxenite Xenoliths. -J. Petrol., 44, 6, 1077–1095.
- WITT-EICKSCHEN, G.; REYS, C. & SECK, H. A. (1989): Sekundäre Elementanreicherungen in Spinellperidotitxenolithen: Hinweise auf fluid- und magmaninduzierte Mantelmetasomatose unter Westeifel, -Europ. J. Minaral., Bh.1, 203.
- WITT-EICKSCHEN, G.; KAMINSKY, W.; KRAMM, U. & HARTE, B. (1998): The Nature of Young Vein Metasomatism in the Lithosphere of the West Eifel (Germany); Geochemical and Isotopic Constraints from Composite Mantle Xenoliths from the Meerfelder Maar. -J. Petrol., 39, 1, 155-185.
- WITT-EICKSCHEN, G. & KRAMM, U. (1997): Mantle Upwelling and Metasomatism beneath Central Europe: Geochemical and Isotopic Constraints from Mantle Xenoliths from the Rhön (Germany). -J. Petrol., 38, 4, 479-493.
- WOODHEAD, J.; EGGINS, S. & GABLE, J. et. al. (1993): High field srength and transition element systematics in island arc and back-arc basin basalts; evidence for multiple-phase melt extraction and a depleted mantle wedge. -Eath planet. Sci. Lett.; 114, 491-504.
- WÖRNER, G. & BOGAART, P J F (2003): Petrogenesis of basanitic to tholeiitic volcanic rocks from the Miocene Vogelsberg, central Germany. -J. Petrol., 44, 3, 569-602.
- WURM, A. (1961): Geologie von Bayern; Frankenwald, Muenchberger Gneismasse, Fichtelgebirge, noerdlicher Oberpfaelzer Wald, ed. 2
- **YAGI, K. & ONUMA, K. (1967):** The join CaMgSi₂O₆ CaTiAl₂O₆ and ist bearing on the titanaugites. -J. Fac. Sci. Hokkaido Univ. Serv., 13, 463-483.
- **YODER, H. S. J. & TILLEY, C. E. (1962):** Origin of basalt magmas; an experimental study of natural and synthetic rock system. -J. Petrol., 3, 342 532.
- YODER, H. S. (1979): The Evolution of Igneous Rocks –588 S.Prinjceton Univer

Tabelle 1: Verzeichnis der verwendeten Symbole und Abkürzungen	103
Tabelle 2: Verzeichnis der Vorkommen	105

Ab	Albit (NaAlSi ₃ O ₈)
ab	Albit (nach CIPW-Norm)
Ac	Acmit (NaFe ³⁺ Si ₂ O ₆)
An	Anorthit ($CaAl_2Si_2O_8$)
an	Anorthit (nach CIPW-Norm)
Akf	Alkalifeldspat (Na,K)AlSi ₃ O ₈
Alk-Bas	Alkalibasalt
AOB	Alkaliolivinbasalt
ap	Apatit (nach CIPW-Norm)
BA	Basalt
BE	Benmoreit
Bst	Basanit
ca.	zirka
CN	normiert auf C1-Chondrit
Срх	Klinopyroxen
cs	Larnit (nach CIPW-Norm)
D	Konzentration der Elemente im Mantelmineral / Konzentration der
	Elemente in der Schmelze
Di	Dioposid (CaMgSi ₂ O ₆)
di	Diopsid (nach CIPW-Norm)
DM	verarmter Mantel (depleted mantle)
EBM	equilibrium batch melting
EIR	die effektiven Ionenradien
EMS	Elektronenstrahlmikrosonde
En	Enstatit ($Mg_2Si_2O_6$)
FGZ	Fichtelgebirgszone
FOT	Foidit
Fs	Ferrosilit ($Fe^{2+}_{2}Si_{2}O_{6}$)
HAW	Hawaiit
Hd	Hedenbergit (CaFe ²⁺ Si ₂ O ₆)
HF	Hocheifel
HFSE	high field strength elements (Y, Ti, Zr, Hf, Nb, Th, U)
HGS	Heldburger Gangschar
HIMU	high U/Pb mantle component
HSEE	schwere Elemente der Seltenen Erden (Er-Yb)
hy	Hypersthen (nach CIPW-Norm)
il	Ilmenit (nach CIPW-Norm)
INAA	Instrumentelle Neutronen Aktivierungs Analyse
lc	Leucit (nach CIPW-Norm)
LFSE	low field strength elements (Sr, Rb, Ba)
LILE	large ion lithophile elements (LSEE, K, Li, Rb, Cs, Ba, Sr)
LSEE	leichte Elemente der Seltenen Erden (La-Nd)
LVA	low velocity anomaly
Ma	Million(en) Jahre
Mg#	Magnesiumwert ($Mg^{2+}/(Mg^{2+} + Fe^{2+})$)
MORB	mid ocean rigde basalt
Mt	Magnetit ($Fe^{2+}Fe^{3+}_{2}O_{4}$)
mt	Magnetit(nach CIPW-Norm)
	- · · · · · · · · · · · · · · · · · · ·

MU	Mugearit
NB	Nephelinbasanit
Ne	Nephelin (Na ₃ (K, Na)Al ₄ Si ₄ O ₁₆)
NE	Nephelinit
NTE	Nephelintephrit
Nph	Nephelinit
OB	Olivinbasalt
Ol	Olivin (Mg,Fe) ₂ SiO ₄
ol	Olivin (nach CIPW-Norm)
MON	Melilitholivinnephelinit
ON	Olivinnephelinit
or	Orthoklas (nach CIPW-Norm)
PB	Picrobasalt
РНО	Phonolith
PM	Primitiver Mantel
PTE	Phonotephrit
Qz	Quarz (SiO ₂)
qz	Quarz (nach CIPW-Norm)
RFA	Röntgenfluoreszenz Analyse
RFM	rayleigh fractional melting
SEE	Elemente der Seltenen Erden (La-Yb)
Spin	Spinell
Stbr.	Steinbruch
TE	Tephrit
TRA	Trachyt
TrachyAnd	Trachyandesit
UMX	Spinellperidotit-Xenolith

Die bearbeiteten Proben liegen auf folgenden topographischen Karten (1: 250000). Die topographischen Karten wurden mit u g Buchstaben ersetzt.

Haina	Ν
Römhild	Μ
Rodach	0
Alsleben	Q
Heldburg	Е
Stadtlauringen	J
Hofheim	S
Pfanweisach	R
Kulmbach	U
Selb	А
Schönberg	В
Markredwitz	С
Waldsassen	D
Ebnath	F
Waldershof	G
Mitterteich	Η
Kirchenlaibach	Ι
Kemnath	Κ
Erbendorf	L
	Haina Römhild Rodach Alsleben Heldburg Stadtlauringen Hofheim Pfanweisach Kulmbach Selb Schönberg Markredwitz Waldsassen Ebnath Waldershof Mitterteich Kirchenlaibach Kemnath Erbendorf

Heldburger Gangschar Probennummer Lokalitäten

5629 / 1A	:	Einfahrtsberg bei Eicha
" / 1B	:	" "
" / 2.2	:	Eicha
" / 2.3A	:	Kuhberg oberhalb judischen Friedhof. Südl.Gleicherwiesen
" / 2.3B	:	Kuhberg oberhalb judischen Friedhof. Südl.Gleicherwiesen
" / 2.3C	:	Kuhberg oberhalb judischen Friedhof. Südl.Gleicherwiesen
" / 2.3D	:	Kuhberg oberhalb judischen Friedhof. Südl.Gleicherwiesen
5630 / 2A	:	nördlichste Probe der NNE - SSW Streichende und sich vom Schleddach grabend bis zum Punkt 360.8
		unmittelbar Thüringen / Bayern Grenze.
" / 2B	:	Mittlere Stbr. ca Gangmitte
" / 2C	:	Gangende
" / 2D	:	Gangende auf Thüringer Seite
" / 6A	:	Lesesteine direkt an der alten Grenze
" / 6B	:	
" / 7	:	Am Grenzknick östl. Seidingstadt.Südl.Straufhain.
" / 8	:	NNE - SSw streichende Gang unmittelbarwestl.Straufhain.
		Grenze Thüringen / Bayern aber in Bayern.
" / 8A	:	Westl. Straufhain
" / 8C	:	Östl.Straße Seidingstadt Völkers
" / 8D	:	Westlich Staufhain ganz im Norden im Bayern Steineiche.

Probennum	nmer	Lokalitäten
5729 / 1A	:	Breccienschlot nördlich Bundorf
" / 5	:	Gang dirch den Bichhügel, östlich Alsleben.
" / 6	:	Mittlerer Teil des Ganges (Schlotbreccie) bei Oberressfeld (Lesesteine vom Acker).
" /7	:	Blockschutt des Gangabbaues.
" / 10	:	Breccienschlot bei Schwanhausen.
" / 12	:	Breccienschlot NE-Serfeld.
5829 / 21	:	Mittlerer Gang bei Schweinshaupten.
" / 22	:	südlichster Breccienschlot Schweinshaupten.
" / 30:		1.5 km östlich Grossmannsdorf am Fischteich nördlich Strasse Ibind-Grossmannsdorf
5830/ 6	:	aus W-Abbau (Stbr.Moraldsweisach) Schlotter am Brechwerk
5928 / 2	:	Gange bei Mechehried, Lesesteine
5830 / 1	:	Ostabbau (Stbr.Voccawind 1976) S-Bruch obere Sohle.
" / 2	:	Ostabbau (Stbr.Voccawind 1976)SO-Bruch untere Sohle.
" / 3	:	Ostwand Strasse Maroldsweisach.
" / 4	:	Schlot im Hang des Geroldschwindbachs.
"/5 :		Schlot zwischen Geroldschwindbach und Weisach.
" / 6	:	Aus W- Abbau (Stbr. Moraldsweisach) Schlotter

Heldburger Gangschar

Fichtelge Probennu	birge nmer	Lokalität
5838 / 1	:	Ruine Thierstein
" / 2	:	Stbr.östlich Bhf. Höchstädt bei Thierstein.
" / 3	:	Ruine Neuhaus
" / 4	:	Lärchenbühl NO Thierstein
5839 / 1	:	H 685.7
" / 1B	:	Stbr bei Längenau oberer Teil
" / 2	:	Steinberg
" / 3	:	Oppers Bühl (H 676.0), nördlich Längenau
" / 5	:	Wartberg (H 688), östlich Längenau
" / 6	:	Erlen-reut,
5938 / 1	:	Stbr.Fridau östlich Brand
" / 2	:	Schloßwald Höhe Vogelsberg
5939 / 1	:	Basalthügel (W)
" / 2	:	Steinschlag
"/3	:	Heiligenberg
"/4	:	Basalthügel (S)
" / 5	:	Elmberg, H 618
" / 6	:	Kalvarienberg
" / 7	:	Rehberg
" / 8	:	Ruheberg
" / 11	:	Preisberg
" / 13	:	Konnsberg
" / 14	:	Haseneck bei Grün
5939 / 15	:	Lehen - Bühl, mittlere Kuppe südlich Grün bei
		Konnersreuth. Lesesteine.
" / 16	:	Im Greut (Konnersreuth - Preisdorf) im Wald.
" / 18	:	Preisdorf, nördlich Ortsende, Blöcke an der Müllkippe
6037 / 1	:	Haselrangen NE Kuhlmain
" / 2	:	Aigner Kuppe
6038 / 1	:	Geißbühl
" / 2	:	Kleiner Teichelberg
"/3	:	Steinknock
" / 4	:	H 768.5 im Wald liegendes Basaltgesteine am Nordhang
		des Plossberges sudlich Waldwiesen.
·· / 5	:	Stbr. Plobberg
"/6 "/7	:	Roßkopt
" / 7	:	Geißberg
" / 8	:	Steinberg
" / 9	:	Harlachberg
" / 10	:	Tor Berg (H 561) nördlich Fuchsmühl

Fichtelgeb	oirge	
Probennum	mer	Lokalität
6038 / 12A	:	Pilgramreuth, westlicher Straße nur Lesessteine
" / 12B	:	H 625.4 bei Pilgramreuth
" / 12C	:	Unter der Straße, in beiden Straßengräben unfrische
		Lesesteine
" / 12D	:	Unter Straßenkreuzung, Lesesteine
" / 13	:	Nagelberg bei Stiglmühle H 652, NNO Poppenreuth
" / 14	:	H 782 südlich Poppenreuth und südlich Tändeln
" / 16	:	Südlich Wappenstein, Kuppe an Forststrasse
6038 / / 17	:	Westlich Rosskopf (H 695) NNO Stiglmühle
" / 18	:	H 715 westlich Herzogöd, überwachsene Kuppe
6039 / 1	:	Stbr.Triebendorf (E)
" / 2	:	Steinmühle
" / 3	:	Gommelberg
" / 5	:	Hirschentanz
" / 6	:	H 582, Streuleite
" / 7	:	H 632, Großbüchelberg
" / 8	:	H 605, Steinbühl westlich Grossbüchelberg.NO-SW
		Kippe mit grossen Blöcken.
" / 9	:	H 596 bei Rosenbühl, Salzecke,Blöcke vom Weg
" / 10	:	Glaser-Schlag östlich Ochsentränk in der Lohe
" / 11	:	Westlich Erlendick östlich Ochsentränk
" / 12	:	Pädeln flache NNO.Rippe
" / 13	:	Südlich Hirschentanz.
" / 89	:	Stbr.Triebendorf
6137 / 1	:	Leichenbühl Ost.
" / 1a	:	Leichenbühl West.
" / 2	:	Kuh - Hübel
" / 5	:	Anzen - Berg
" / 6	:	Galgenberg
" / 7	:	Schloßberg bei Walderer
" / 8	:	Kusch bei Köglitz
" / 9	:	Kuschberg
6137 / 10	:	Amersberg
" / 11	:	östl. Erdenweis
" / 87	:	Rauer - Kulm
6138 / 1	:	Naabberg
" / 2	:	Altes Schloss
" / 3AH	:	Geisstein östl. Thumsenreuth
" / 3NH	:	
" / 4A1	:	H 435 ostl. Zheinhamm
" / 4CH	:	11 II II
" / 4DH	:	11 II II

Fichtelgebirge Probennummer

Lokalität

6138 / 6	:	südöstl. Voitlenthan
" / 4	:	Zainhammer
" / 4a	:	Zainhammer
" / 5	:	Platte
" / 7	:	NW Stb. Hasen an der Straße Friedensfels Letten
" / 8	:	Pas-Bühl
" / 9	:	Münchentaklerfeld
" / 10	:	Leinberg
" / 8 " / 9 " / 10	:	Pas-Bühl Münchentaklerfeld Leinberg

Tabelle 1a	-c: Hauptelemente, Spurenelemente und CIPW-Norm der Proben aus der Hocheifel	
		110
Tabelle 2	a-c: Hauptelemente, Spurenelemente und CIPW-Norm der Proben aus der der Heldburger	130
Tabelle 3 a	a-c: Hauptelemente, Spurenelemente und CIPW-Norm der Proben	145
	aus der Trentergebingszone	17.

		SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5	H ₂ O	CO ₂	Summe	CaO/Al ₂ O ₃	P_2O_5/Al_2O_3	Ti	Κ
HF1	HAW	50,09	2,11	17,02	3,96	4,92	0,21	3,87	8,35	4,38	2,63	0,64	1,51	0,24	99,93	0,5	0,04	12673	21791
HF5	ONm	40,91	2,33	11,34	1,88	9,48	0,22	14,69	12,41	2,61	0,80	1,12	2,20	0,42	100,40	1,1	0,10	13974	6608
HF5A3	ONm	40,79	2,47	12,02	3,21	8,31	0,22	13,30	12,85	3,03	0,82	1,03	1,46	0,14	99,65	1,1	0,09	14790	6832
HF10	NE3	41,45	2,07	13,68	0,87	8,50	0,22	7,47	14,31	4,58	1,43	1,32	2,04	0,90	98,82	1,0	0,10	12392	11846
HF16A	HAW	46,63	2,44	15,18	2,53	7,83	0,18	7,14	10,83	3,48	1,25	0,45	1,95	0,42	100,30	0,7	0,03	14610	10335
HF17	NB2p	42,51	2,38	13,20	2,88	8,08	0,19	10,36	12,30	3,18	1,20	1,03	2,40	0,10	99,80	0,9	0,08	14238	9953
HF33	NB2p	42,95	2,08	12,58	2,87	8,54	0,21	12,02	11,59	2,84	0,88	0,74	2,74	0,56	100,59	0,9	0,06	12470	7272
HF43	NB1f	43,90	2,80	15,10	3,64	8,21	0,20	8,34	10,61	3,35	1,23	0,66	1,43	0,18	99,64	0,7	0,04	16810	10227
HF46A	NTE1	46,79	2,08	16,27	2,03	7,38	0,18	6,24	9,64	4,75	1,96	0,52	1,06	0,37	99,25	0,6	0,03	12470	16287
HF53	ONm	41,69	2,30	12,92	3,32	6,51	0,17	13,32	12,29	2,92	0,83	0,41	1,40	1,43	99,49	1,0	0,03	13759	6849
HF63	ONm	40,15	2,31	13,11	3,44	7,08	0,18	12,04	12,71	2,92	0,82	0,74	0,00	0,00	95,49	1,0	0,06	13842	6807
HF69	NB1f	46,33	2,20	15,22	4,37	5,68	0,18	7,17	10,72	3,83	1,51	0,63	2,15	1,16	101,15	0,7	0,04	13177	12502
HF91	ONp	40,82	2,79	13,87	4,24	7,69	0,20	11,41	12,56	2,96	1,26	0,59	1,67	0,20	100,24	0,9	0,04	16708	10476
HF100	NB1f	46,32	1,91	15,12	1,14	7,88	0,19	8,53	10,21	4,01	1,86	0,48	1,59	0,27	99,50	0,7	0,03	11450	15424
HF104	NTE2	43,37	2,67	15,35	2,69	8,54	0,21	7,46	12,08	3,34	1,17	0,62	2,62	0,17	100,27	0,8	0,04	15989	9704
HF109	ONp	42,39	2,45	14,48	4,14	5,87	0,18	11,54	11,80	3,62	1,23	0,47	2,46	0,52	101,15	0,8	0,03	14658	10227
HF124	ONp	41,13	2,35	13,40	2,32	7,73	0,20	11,83	12,56	3,71	0,79	0,93	2,80	0,17	99,92	0,9	0,07	14106	6550
HF125	ONp	41,77	2,66	14,18	2,57	8,26	0,19	11,47	12,25	3,16	0,86	0,51	2,03	0,16	100,06	0,9	0,04	15917	7156
HF138	NB2p	42,54	3,06	14,72	3,68	8,09	0,19	9,94	12,10	3,27	0,90	0,51	1,83	0,44	101,26	0,8	0,03	18339	7446
HF179	ONp	42,00	2,46	13,42	1,70	9,13	0,21	11,32	12,47	3,22	0,77	0,65	2,11	0,35	99,80	0,9	0,05	14736	6375
HF185	ONf	42,44	2,50	14,59	2,24	8,57	0,20	8,85	12,52	3,90	1,10	0,81	2,24	0,25	100,18	0,9	0,06	14958	9115
HF307	NTE2	39,59	2,37	14,92	6,08	4,94	0,25	5,16	12,84	3,55	1,58	1,86	4,31	1,30	98,73	0,9	0,12	14196	13099
HF311-2	NB2f	43,72	2,22	13,92	2,77	7,92	0,19	8,08	11,81	3,77	1,25	0,76	0,80	2,32	99,53	0,8	0,05	13291	10410
HF318A	NB2f	43,06	2,28	14,39	1,94	8,83	0,20	9,74	11,59	3,91	1,09	0,64	1,67	0,15	99,48	0,8	0,04	13681	9015
HF322A	NB2p	43,25	2,21	13,35	2,15	8,30	0,19	11,15	11,89	3,57	0,93	0,58	1,19	0,77	99,55	0,9	0,04	13273	7695
HF360A	OMNf	41,00	2,53	13,50	2,48	8,46	0,22	11,28	13,03	3,25	1,21	0,70	1,52	0,92	100,10	1,0	0,05	15167	10036
HF364q	OMNm	41,22	2,71	11,12	3,21	7,81	0,20	15,41	12,99	2,62	1,72	0,78	1,34	0,10	101,24	1,2	0,07	16222	14303
HF379	NB1f	44,56	2,63	13,18	3,10	8,76	0,20	10,02	11,83	2,54	1,25	0,63	0,72	0,30	99,70	0,9	0,05	15761	10393
HF381	AOBp	45,62	2,33	14,22	2,81	8,30	0,19	9,22	10,48	3,08	1,44	0,51	1,81	0,16	100,18	0,7	0,04	13968	11970

193 lang 1

		SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5	H ₂ O	CO ₂	Summe	CaO/Al ₂ O ₃	P_2O_5/Al_2O_3	Ti	K
HF382	ONm	41,51	2,36	12,70	2,39	8,48	0,20	13,77	11,72	2,88	0,60	0,60	3,17	0,26	100,63	0,9	0,05	14154	4972
HF383	HAW	49,82	1,73	18,31	3,16	5,39	0,20	3,33	7,14	5,72	2,44	0,70	1,22	0,36	99,51	0,4	0,04	10365	20247
HF400	NB2m	42,39	2,13	12,30	1,78	8,65	0,20	14,53	11,35	2,70	0,97	0,58	2,06	0,22	99,86	0,9	0,05	12757	8069
HF401	BEN	64,09	0,67	16,78	1,26	2,12	0,13	0,41	1,25	4,47	4,57	0,21	2,14	0,10	98,20	0,1	0,01	4005	37912
HF408	BA1	56,61	1,28	17,62	3,54	2,00	0,18	1,74	5,15	5,35	3,67	0,36	0,81	0,90	99,20	0,3	0,02	7650	30433
HF414	HAW	55,23	1,40	18,40	3,09	2,97	0,21	2,39	5,51	5,52	3,60	0,43	2,03	0,27	101,05	0,3	0,02	8405	29901
HF417	BAm	63,89	0,88	17,92	1,68	0,30	0,03	0,61	1,96	5,23	4,61	0,26	1,68	0,10	99,14	0,1	0,01	5246	38244
HF418	BAm	64,21	0,70	17,76	2,48	0,25	0,04	0,45	1,76	5,38	4,48	0,20	1,25	0,25	99,20	0,1	0,01	4202	37198
HF424	NB1f	48,81	1,99	17,21	4,38	4,18	0,20	4,58	8,65	5,04	2,62	0,43	1,67	0,41	100,17	0,5	0,02	11936	21733
HF425	NB2p	43,06	2,31	13,94	1,09	9,13	0,21	11,30	12,11	3,29	0,99	0,66	2,03	0,27	100,40	0,9	0,05	13872	8210
HF426	NTE2	45,63	2,29	15,88	1,25	8,29	0,20	7,60	11,20	3,86	1,86	0,51	1,86	0,27	100,68	0,7	0,03	13723	15440
HF427	NTE2	45,70	2,29	15,83	1,37	8,13	0,20	7,66	11,09	3,86	1,88	0,50	1,66	0,18	100,34	0,7	0,03	13747	15590
HF428	NB2m	41,84	2,48	13,12	2,60	9,09	0,21	12,02	12,09	3,49	0,94	0,80	1,66	0,27	100,61	0,9	0,06	14856	7828
HF429	NB1p	44,91	2,11	13,96	2,49	7,75	0,19	10,90	10,88	3,35	1,43	0,49	1,30	0,64	100,39	0,8	0,03	12625	11879
HF430	NB2p	43,93	2,11	14,55	1,11	8,35	0,19	10,36	11,78	3,79	1,45	0,54	2,22	0,12	100,50	0,8	0,04	12667	11995
HF431	NB2p	44,07	2,08	14,73	0,92	8,30	0,19	9,94	11,59	3,17	1,94	0,53	0,53	0,25	98,26	0,8	0,04	12482	16121
HF432	NB2f	44,40	2,19	15,17	0,65	8,44	0,19	9,87	10,95	4,35	1,40	0,59	0,59	0,30	99,08	0,7	0,04	13147	11580
HF433	NB2f	44,00	2,07	14,60	0,25	9,30	0,21	10,94	11,08	3,46	1,24	0,56	0,56	0,00	98,28	0,8	0,04	12410	10310
HF434	ONm	41,36	2,73	14,09	4,22	7,27	0,19	11,45	12,53	3,19	1,24	0,51	0,51	0,18	99,46	0,9	0,04	16372	10294
HF434a	NB2f	44,92	2,25	15,45	0,76	8,61	0,20	9,05	11,42	4,06	1,62	0,46	0,46	0,13	99,38	0,7	0,03	13471	13440
HF435	NB1p	45,02	2,22	14,11	2,32	8,04	0,19	10,66	11,07	3,25	1,24	0,51	0,51	1,62	100,76	0,8	0,04	13333	10327
HF436	NB1p	45,20	2,17	14,24	2,33	7,83	0,19	10,56	10,80	3,30	0,93	0,48	0,48	0,39	98,90	0,8	0,03	12979	7687
HF438	NB2f	43,18	2,15	14,85	0,65	8,35	0,19	8,68	10,91	3,85	1,68	0,44	0,44	0,24	95,62	0,7	0,03	12913	13913
HF439a	NB1f	45,99	2,19	14,17	2,45	7,83	0,19	9,32	11,55	3,76	1,29	0,64	0,64	0,26	100,28	0,8	0,05	13141	10742
HF439b	NB1f	45,31	2,18	14,10	2,45	7,58	0,18	9,06	11,51	3,58	1,37	0,63	1,22	1,17	100,34	0,8	0,04	13087	11356
HF441	AOBf	47,15	2,47	15,44	3,32	7,40	0,18	7,04	11,01	3,45	1,21	0,45	1,93	0,20	101,24	0,7	0,03	14808	10020
HF442	NB2m	44,00	2,18	13,22	2,18	8,26	0,19	12,85	11,29	3,06	1,35	0,48	1,25	0,16	100,48	0,9	0,04	13087	11207
HF445	NB2m	42,70	2,41	13,37	2,32	8,44	0,19	13,19	11,29	2,92	1,18	0,55	1,76	0,62	100,94	0,8	0,04	14472	9812
HF446	NB2m	42,54	2,28	12,92	1,81	8,52	0,20	13,38	11,29	3,12	0,79	0,62	3,11	0,28	100,85	0,9	0,05	13651	6525

		SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5	H ₂ O	CO ₂	Summe	CaO/Al ₂ O ₃	P_2O_5/Al_2O_3	Ti	Κ
HF447	ONm	41,81	2,38	13,78	2,90	7,27	0,19	11,31	12,65	3,43	1,31	0,75	2,25	0,22	100,26	0,9	0,05	14268	10900
HF448	NB2f	41,41	2,45	14,45	2,70	7,96	0,19	8,90	13,51	2,23	1,25	0,72	3,66	0,83	100,25	0,9	0,05	14670	10343
HF449	AOBp	50,20	1,63	16,40	3,33	4,45	0,20	6,12	7,97	4,59	2,71	0,30	3,27	0,59	101,76	0,5	0,02	9796	22505
HF453	NB1p	42,95	2,68	14,35	4,31	7,21	0,17	9,81	11,95	3,01	0,75	0,66	2,99	0,28	101,13	0,8	0,05	16085	6243
HF454	AOBf	48,08	1,95	14,77	1,75	7,61	0,18	8,92	9,17	3,62	1,50	0,44	1,85	0,11	99,95	0,6	0,03	11684	12419
HF456a	NB1p	42,86	2,29	14,45	3,08	7,63	0,18	9,98	11,34	2,86	1,33	0,63	2,49	0,10	99,20	0,8	0,04	13729	11008
HF456b	AOBp	50,25	1,65	16,54	3,28	4,56	0,20	6,39	8,16	4,39	2,75	0,30	2,54	0,10	101,11	0,5	0,02	9898	22837
HF458	OMNm	40,32	2,31	12,56	2,80	8,04	0,21	13,49	12,76	2,80	0,78	0,69	n.d.	n.d.	96,77	1,0	0,06	13866	6467
HF459	OMNm	38,66	2,94	10,20	3,24	7,19	0,19	15,78	14,87	2,11	2,13	0,68	2,07	0,30	100,35	1,5	0,07	17595	17690
HF460	OMNm	38,92	2,95	10,23	3,26	7,35	0,19	15,79	14,65	2,53	2,32	0,69	1,30	0,19	100,36	1,4	0,07	17673	19284
HF461	OMNm	40,25	2,68	9,29	3,67	6,62	0,17	17,42	13,89	1,16	0,57	0,52	4,30	0,10	100,62	1,5	0,06	16061	4699
HF462a	NTE1	45,73	2,63	16,39	2,67	7,92	0,19	6,31	10,25	3,93	1,56	0,62	1,72	0,15	100,07	0,6	0,04	15761	12975
HF463	NB2f	42,86	2,55	14,78	1,97	9,26	0,21	8,81	12,29	3,33	1,08	0,60	2,54	0,22	100,50	0,8	0,04	15281	8982
HF464	HAW	47,28	2,66	17,18	3,92	6,48	0,18	5,65	9,35	4,23	1,44	0,42	1,70	0,12	100,61	0,5	0,02	15965	11979
HF465	HAW	47,10	2,67	17,07	4,12	6,33	0,18	5,77	9,41	3,98	1,45	0,43	1,99	0,15	100,64	0,6	0,03	15989	12070
HF466	NB1p	45,52	2,17	14,60	2,04	8,08	0,19	9,88	11,05	3,09	1,36	0,47	1,77	0,13	100,35	0,8	0,03	13003	11290
HF467	NB2p	43,58	2,50	13,22	3,63	8,48	0,20	11,05	12,23	3,09	1,04	0,77	0,97	0,23	100,96	0,9	0,06	14964	8642
HF474	NB2f	43,32	2,19	14,07	0,85	8,61	0,20	10,10	12,81	2,50	1,50	0,50	3,40	0,69	100,72	0,9	0,04	13117	12410
HF480	NTE1	40,99	2,10	13,31	0,96	8,08	0,19	6,94	12,99	2,27	1,05	0,63	3,49	5,80	98,80	1,0	0,05	12572	8733
HF484	NB1f	45,31	2,39	14,83	2,65	8,17	0,20	8,83	10,83	3,79	1,32	0,50	0,98	0,45	100,24	0,7	0,03	14322	10916
HF487	ONf	41,31	2,49	14,06	1,17	9,39	0,22	10,00	13,03	3,14	0,86	0,75	2,80	0,64	99,86	0,9	0,05	14940	7098
HF488	ONf	41,56	2,50	14,07	1,69	8,91	0,21	10,36	12,82	3,03	1,10	0,71	2,70	0,13	99,79	0,9	0,05	14993	9115
HF495	NB2f	44,33	2,56	14,82	3,00	7,88	0,19	8,62	11,59	3,49	1,55	0,58	1,12	0,65	100,37	0,8	0,04	15329	12884
HF496	HAW	45,18	2,90	16,48	2,97	7,52	0,17	6,46	10,46	2,76	1,65	0,41	3,73	0,13	100,83	0,6	0,02	17391	13730
HF497	AOBm	44,68	2,02	12,94	1,16	7,91	0,18	9,68	10,88	2,64	1,16	0,35	1,21	5,77	100,59	0,8	0,03	12134	9588
HF498	NB2m	42,69	2,07	12,19	2,67	8,50	0,20	15,60	10,94	2,35	0,62	0,47	2,73	0,10	101,14	0,9	0,04	12386	5172
HF499	NTE2	44,42	2,41	15,58	0,54	9,33	0,22	8,36	11,14	3,71	1,70	0,56	1,69	0,25	99,93	0,7	0,04	14460	14137
HF500	ONm	41,18	2,54	13,45	2,68	7,87	0,18	12,66	12,44	2,49	0,78	0,52	3,80	0,30	100,90	0,9	0,04	15233	6483
HF501	NB2p	44,17	2,33	13,34	2,93	8,47	0,18	11,95	10,94	3,08	1,40	0,58	1,25	0,10	100,71	0,8	0,04	13938	11589

		SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5	H ₂ O	CO ₂	Summe	CaO/Al ₂ O ₃	P_2O_5/Al_2O_3	Ti	Κ
HF502	NB1p	45,12	2,10	13,34	2,61	8,25	0,20	11,35	11,21	3,05	1,07	0,56	1,66	0,12	100,63	0,8	0,04	12584	8857
HF503	NB1f	46,78	2,21	14,65	1,51	8,35	0,19	8,01	10,92	3,48	1,48	0,56	1,44	0,49	100,06	0,7	0,04	13249	12269
HF504	NB2p	43,43	2,19	13,37	2,80	8,33	0,20	10,43	12,18	2,93	1,19	0,79	2,67	0,10	100,62	0,9	0,06	13141	9845
HF505	NB1p	45,28	2,27	13,99	3,26	7,83	0,19	9,90	11,61	3,22	1,00	0,60	1,31	0,10	100,55	0,8	0,04	13615	8326
HF506	NB1f	46,13	2,13	13,42	1,03	8,78	0,20	9,25	11,52	3,38	1,04	0,69	1,07	1,73	100,36	0,9	0,05	12739	8667
HF507	NB1f	45,22	2,26	13,98	3,04	8,00	0,19	9,65	11,96	3,14	1,02	0,61	1,32	0,26	100,66	0,9	0,04	13543	8459
HF508	NB1p	44,85	2,25	13,71	3,11	8,00	0,19	10,18	12,25	3,05	0,99	0,65	1,29	0,10	100,61	0,9	0,05	13471	8210
HF509	AOBf	46,41	2,09	14,79	1,33	8,44	0,19	9,30	9,96	2,97	1,22	0,42	3,06	0,21	100,38	0,7	0,03	12512	10161
HF511a	ONf	41,41	2,58	13,87	2,45	9,26	0,21	9,78	13,10	3,88	0,95	1,06	1,87	0,17	100,59	0,9	0,08	15473	7861
HF511b	NB2f	40,00	2,54	13,49	1,38	10,26	0,24	10,02	12,98	2,08	0,95	1,05	4,21	1,12	100,32	1,0	0,08	15221	7870
HF512	ONp	42,75	2,35	13,53	1,50	8,87	0,20	11,08	12,73	3,17	1,64	0,68	1,80	0,13	100,43	0,9	0,05	14106	13606
HF513	OMNp	41,46	2,46	13,38	2,70	8,15	0,21	11,75	13,29	3,28	1,56	0,69	1,40	0,19	100,53	1,0	0,05	14766	12933
HF515	HAW	45,35	2,82	16,22	2,76	8,04	0,19	7,01	10,44	2,85	1,25	0,50	2,66	0,28	100,37	0,6	0,03	16930	10360
HF516	OMNm	41,22	2,50	13,23	2,79	8,19	0,21	11,94	13,37	3,17	1,54	0,70	1,24	0,12	100,20	1,0	0,05	14970	12751
HF517	NB1f	46,20	2,19	14,72	1,75	8,21	0,20	8,67	11,03	3,67	1,27	0,58	1,65	0,14	100,28	0,7	0,04	13135	10568
HF518	HAW	47,35	2,43	15,39	2,25	8,13	0,19	7,46	10,71	3,59	1,22	0,46	1,31	0,10	100,57	0,7	0,03	14544	10136
HF519	NB2f	43,36	2,76	15,02	2,90	8,70	0,20	8,22	11,08	3,86	1,54	0,84	2,16	0,10	100,74	0,7	0,06	16546	12759
HF519a	NTE2	43,08	2,79	15,09	2,91	8,87	0,20	8,10	11,46	3,78	1,80	0,91	1,56	0,03	100,59	0,8	0,06	16726	14942
HF520	OMNf	41,39	2,42	13,61	1,27	8,54	0,22	10,23	13,24	4,15	3,55	0,82	0,50	0,10	100,03	1,0	0,06	14520	29453
HF541	OMNm	38,83	2,93	9,75	2,52	6,89	0,18	15,79	14,52	0,59	1,16	0,82	5,23	0,25	99,44	1,5	0,08	17565	9646
HF570	NB2f	44,69	2,16	14,66	1,17	8,91	0,21	10,34	11,21	3,58	1,33	0,44	0,45	1,65	100,79	0,8	0,03	12961	11041
HF571	ONm	42,25	2,21	12,26	3,17	6,73	0,18	15,34	11,79	2,82	1,25	0,46	0,45	1,65	100,53	1,0	0,04	13219	10343
HF572	NB2p	43,69	2,16	13,60	1,28	8,39	0,19	11,11	12,45	3,33	0,68	0,56	3,03	0,40	100,88	0,9	0,04	12973	5637
HF573	ONm	42,10	2,32	13,07	2,36	8,17	0,19	14,00	11,86	3,02	0,78	0,54	1,99	0,56	100,94	0,9	0,04	13908	6475
HF574	NB1f	45,38	2,36	15,29	1,75	8,04	0,19	8,09	11,13	3,29	1,24	0,47	2,40	1,07	100,71	0,7	0,03	14148	10327
HF575	NB2f	41,70	2,12	13,88	0,59	8,30	0,19	9,40	11,50	3,17	1,66	0,46	1,66	5,18	99,81	0,8	0,03	12727	13772
HF576	BA2	40,52	2,85	14,69	5,54	4,61	0,19	5,45	14,20	1,36	0,80	0,49	6,66	2,66	100,02	1,0	0,03	17068	6658
HF577	AOBp	42,91	2,59	13,80	6,00	5,42	0,18	7,37	11,71	2,09	1,73	0,45	4,20	1,53	99,98	0,8	0,03	15545	14353
HF579	NB1m	40,66	2,25	13,46	0,92	8,63	0,21	8,83	12,60	2,44	0,98	0,54	3,71	4,02	99,23	0,9	0,04	13459	8094

		SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5	H ₂ O	CO ₂	Summe	CaO/Al ₂ O ₃	P_2O_5/Al_2O_3	Ti	K
HF580	NB1p	43,84	2,15	13,30	3,00	8,08	0,19	11,07	11,65	2,94	0,83	0,69	2,09	0,17	99,99	0,9	0,05	12877	6882
HF581	NB1f	46,23	2,11	15,35	1,34	7,83	0,19	8,14	11,07	3,96	1,26	0,36	2,18	0,11	100,12	0,7	0,02	12673	10443
HF583	NB2p	43,08	2,44	14,53	2,18	8,35	0,19	10,25	11,39	3,34	1,77	0,71	1,79	0,12	100,12	0,8	0,05	14598	14702
HF584	ONm	42,18	2,14	12,15	1,95	8,70	0,20	15,59	11,22	2,83	0,71	0,57	1,54	0,24	100,00	0,9	0,05	12811	5927
HF585	ONp	41,58	2,44	13,64	2,97	7,77	0,20	11,64	12,77	3,11	1,22	0,62	2,10	0,10	100,16	0,9	0,05	14622	10103
HF586	ONp	41,67	2,47	13,64	2,91	7,89	0,21	11,92	12,81	3,30	0,99	0,62	1,14	0,13	99,69	0,9	0,05	14802	8251
HF589	ONm	42,61	2,30	12,93	3,27	6,85	0,18	14,15	12,26	2,94	0,82	0,41	1,54	0,17	100,42	0,9	0,03	13789	6799
HF593a	OMNp	40,94	2,32	13,36	2,56	7,15	0,19	10,97	12,80	3,73	1,11	0,71	0,97	3,36	100,18	1,0	0,05	13932	9214
HF593b	OMNp	40,96	2,37	13,51	2,79	7,46	0,19	11,73	12,90	3,63	1,10	0,77	1,51	1,21	100,13	1,0	0,06	14178	9165
HF594	OMNp	40,49	2,36	13,43	2,89	7,23	0,19	11,52	12,66	3,85	1,20	0,74	0,89	2,63	100,06	0,9	0,06	14154	9920
HF601	OB	46,27	2,41	17,39	8,58	1,97	0,27	3,55	8,80	3,37	2,22	1,05	5,31	2,52	103,71	0,5	0,06	14442	18404
HF602	ONm	41,28	2,47	12,13	3,15	8,42	0,22	13,56	13,05	2,83	1,01	1,05	1,77	0,10	101,04	1,1	0,09	14808	8401
HF603	HAW	49,31	2,29	17,94	0,58	8,78	0,20	4,35	8,29	4,83	1,85	0,57	1,46	0,24	100,70	0,5	0,03	13747	15382
HF604	NB2f	43,33	2,51	14,60	2,54	9,04	0,22	9,48	12,56	3,21	1,08	0,65	2,08	0,12	101,43	0,9	0,04	15071	8965
HF606	AOBp	49,64	1,73	16,49	3,13	4,74	0,22	6,61	8,72	4,32	2,61	0,32	2,70	0,29	101,51	0,5	0,02	10365	21633
HF607	NB1f	43,99	2,65	14,82	1,74	8,65	0,20	9,42	12,36	2,10	1,02	0,54	4,22	0,26	101,97	0,8	0,04	15887	8484
HF608-1	ONm	41,36	2,77	14,07	4,41	7,35	0,19	11,48	12,57	3,04	1,24	0,51	1,35	0,10	100,42	0,9	0,04	16624	10252
HF608-2	NB2p	44,85	2,28	14,73	1,89	7,79	0,19	10,05	11,95	3,58	1,03	0,45	2,65	0,32	101,76	0,8	0,03	13645	8567
HF608-3	AOBp	48,57	1,79	16,44	3,95	3,99	0,21	5,86	8,71	3,22	2,68	0,33	n.d.	n.d.	95,75	0,5	0,02	10743	22256
HF608-4	AOBm	46,92	2,16	15,03	5,29	4,66	0,30	7,34	11,18	3,26	1,78	0,45	2,25	1,12	101,72	0,7	0,03	12937	14801
HF609	NB2m	42,13	2,72	14,13	3,28	8,17	0,19	11,80	12,56	2,93	1,09	0,50	1,94	0,14	101,56	0,9	0,04	16282	9007
HF611	NB1f	48,86	2,02	17,29	4,44	4,21	0,20	4,72	8,90	5,29	2,60	0,42	1,40	0,35	100,70	0,5	0,02	12110	21575
HF612	NB2p	45,15	2,16	14,09	2,23	8,21	0,20	10,72	11,86	3,49	0,96	0,60	1,55	0,10	101,30	0,8	0,04	12955	7969
HF613	NB2p	43,05	2,67	14,07	2,70	8,74	0,20	10,95	11,82	3,85	1,25	0,74	1,33	0,12	101,49	0,8	0,05	15989	10402

		V	Cr	Co	Ni	Zn	Rb	Sr	Y	Zr	Nb	Ba	La	Ce
HF1	HAW	219	30	37	19	76	96	929	33	264	82	635	65	185
HF5	ONm	285	519	57	387	92	34	1117	30	179	81	504	64	178
HF5A3	ONm	300	454	51	281	71	25	1031	30	176	79	452	55	184
HF10	NE3	289	101	36	116	87	41	1870	38	199	122	1079	113	271
HF16A	HAW	245	121	37	74	200	34	838	28	160	57	500	33	148
HF17	NB2p	232	332	41	730	69	28	1229	29	172	73	697	64	110
HF33	NB2p	229	281	52	229	99	26	966	26	143	63	506	47	152
HF43	NB1f	257	237	39	671	66	26	1019	28	166	64	383	49	153
HF46A	NTE1	206	115	33	74	71	54	748	22	217	64	471	44	155
HF53	ONm	n.d.	746	55	355	104	20	570	n.d.	265	50	670	36	68
HF63	ONm	274	243	48	194	79	33	1104	24	144	73	671	53	153
HF69	NB1f	222	84	37	74	93	40	1086	26	184	74	638	62	172
HF91	ONp	337	201	53	130	59	36	644	23	149	57	432	29	118
HF100	NB1f	206	329	42	140	71	57	894	25	209	78	588	50	163
HF104	NTE2	327	98	47	54	69	43	910	28	168	66	489	45	157
HF109	ONp	260	317	49	197	85	42	580	20	275	80	690	49	84
HF124	ONp	277	345	45	581	64	44	1125	29	177	93	720	60	177
HF125	ONp	317	397	49	725	63	50	681	22	172	59	407	34	131
HF138	NB2p	396	129	48	88	89	41	729	26	173	57	367	35	125
HF179	ONp	316	287	46	159	73	30	840	30	200	81	541	55	168
HF185	ONf	258	154	42	83	62	62	951	28	184	75	625	49	163
HF307	NTE2	267	73	37	61	63	36	1047	27	176	70	569	51	162
HF3112	NB2f	230	196	39	112	70	34	1021	28	150	67	562	48	172
HF318A	NB2f	231	187	43	151	70	25	1346	26	246	70	661	51	175
HF322A	NB2p	254	409	48	224	71	39	841	25	163	70	485	39	150
HF360A	OMNf	323	304	53	171	76	59	1057	33	195	87	764	64	189
HF364q	OMNm	295	574	57	391	73	55	774	28	213	87	708	53	89
HF379	NB1f	246	261	48	161	76	27	703	29	161	56	429	32	45
HF381	AOBp	227	199	47	149	80	42	803	27	213	75	622	40	134

Tabelle 1b: Spurenelemente der Hocheifel-Proben.

		TiO ₂	K ₂ O	Ti	K	Zr/Nb	Y/Nb	Sr/Nb	Ti/Zr/100	Rb/K*1000	Ba/Rb	Zr/TiO ₂ *0.001
HF1	HAW	2.11	2.63	12673	21791	3.22	0.4	9.68	0.48	4.41	6.61	0.125
HF5	ONm	2.33	0.80	13974	6608	2.21	0.4	32.85	0.78	5.15	14.82	0.077
HF5A3	ONm	2.47	0.82	14790	6832	2.23	0.4	41.24	0.84	3.66	18.08	0.071
HF10	NE3	2.07	1.43	12392	11846	1.63	0.3	45.61	0.62	3.46	26.32	0.096
HF16A	HAW	2.44	1.25	14610	10335	2.81	0.5	24.65	0.91	3.29	14.71	0.066
HF17	NB2p	2.38	1.20	14238	9953	2.36	0.4	43.89	0.83	2.81	24.89	0.072
HF33	NB2p	2.08	0.88	12470	7272	2.27	0.4	37.15	0.87	3.58	19.46	0.069
HF43	NB1f	2.80	1.23	16810	10227	2.59	0.4	39.19	1.01	2.54	14.73	0.059
HF46A	NTE1	2.08	1.96	12470	16287	3.39	0.3	13.85	0.57	3.32	8.72	0.104
HF53	ONm	2.30	0.83	13759	6849	5.30	n.d.	28.50	0.52	2.92	33.50	0.115
HF63	ONm	2.31	0.82	13842	6807	1.97	0.3	33.45	0.96	4.85	20.33	0.062
HF69	NB1f	2.20	1.51	13177	12502	2.49	0.4	27.15	0.72	3.20	15.95	0.084
HF91	ONp	2.79	1.26	16708	10476	2.61	0.4	17.89	1.12	3.44	12.00	0.053
HF100	NB1f	1.91	1.86	11450	15424	2.68	0.3	15.68	0.55	3.70	10.32	0.109
HF104	NTE2	2.67	1.17	15989	9704	2.55	0.4	21.16	0.95	4.43	11.37	0.063
HF109	ONp	2.45	1.23	14658	10227	3.44	0.3	13.81	0.53	4.11	16.43	0.112
HF124	ONp	2.35	0.79	14106	6550	1.90	0.3	25.57	0.80	6.72	16.36	0.075
HF125	ONp	2.66	0.86	15917	7156	2.92	0.4	13.62	0.93	6.99	8.14	0.065
HF138	NB2p	3.06	0.90	18339	7446	3.04	0.5	17.78	1.06	5.51	8.95	0.057
HF179	ONp	2.46	0.77	14736	6375	2.47	0.4	28.00	0.74	4.71	18.03	0.081
HF185	ONf	2.50	1.10	14958	9115	2.45	0.4	15.34	0.81	6.80	10.08	0.074
HF307	NTE2	2.37	1.58	14196	13099	2.51	0.4	29.08	0.81	2.75	15.81	0.074
HF3112	NB2f	2.22	1.25	13291	10410	2.24	0.4	30.03	0.89	3.27	16.53	0.068
HF318A	NB2f	2.28	1.09	13681	9015	3.51	0.4	53.84	0.56	2.77	26.44	0.108
HF322A	NB2p	2.21	0.93	13273	7695	2.33	0.4	21.56	0.81	5.07	12.44	0.074
HF360A	OMNf	2.53	1.21	15167	10036	2.24	0.4	17.92	0.78	5.88	12.95	0.077
HF364q	OMNm	2.71	1.72	16222	14303	2.45	0.3	14.07	0.76	3.85	12.87	0.079
HF379	NB1f	2.63	1.25	15761	10393	2.88	0.5	26.04	0.98	2.60	15.89	0.061
HF381	AOBp	2.33	1.44	13968	11970	2.84	0.4	19.12	0.66	3.51	14.81	0.091

		V	Cr	Со	Ni	Zn	Rb	Sr	Y	Zr	Nb	Ва	La	Ce
HF382	ONm	295	401	57	311	65	36	784	26	173	70	452	37	147
HF383	HAW	158	8	33	8	87	68	1016	32	267	98	822	76	114
HF400	NB2m	258	488	54	380	66	50	724	28	187	69	511	43	60
HF401	BEN	43	4	12	1	75	200	325	29	376	97	647	84	121
HF408	BA1	109	10	16	7	75	135	698	35	384	102	708	76	113
HF414	HAW	110	29	9	22	130	105	1139	26	465	110	908	106	161
HF417	BAm	47	2	10	6	34	187	517	38	292	102	621	117	139
HF418	BAm	52	5	6	5	69	209	403	27	356	102	508	85	218
HF424	NB1f	206	46	30	25	66	70	1100	28	239	95	947	67	94
HF425	NB2p	281	277	51	190	75	31	1015	30	194	79	601	49	77
HF426	NTE2	253	191	40	91	71	51	893	29	224	77	606	47	62
HF427	NTE2	258	207	41	96	72	50	858	29	219	77	590	48	69
HF428	NB2m	266	191	56	229	75	35	1107	32	168	85	642	61	96
HF429	NB1p	234	325	54	195	70	46	963	26	185	66	671	42	63
HF430	NB2p	265	246	46	159	66	55	901	28	222	77	646	51	72
HF431	NB2p	239	218	40	148	61	56	937	28	216	73	713	52	78
HF432	NB2f	257	264	42	151	68	52	742	28	216	91	714	39	66
HF433	NB2f	224	289	46	208	73	36	1256	29	177	86	785	55	90
HF434	ONm	327	213	51	130	58	29	648	25	158	57	482	29	42
HF434a	NB2f	260	268	41	123	63	43	921	28	217	73	764	52	76
HF435	NB1p	233	277	52	186	72	34	769	27	173	57	493	35	49
HF436	NB1p	226	243	50	198	73	20	765	25	181	60	625	41	53
HF438	NB2f	260	261	45	122	65	47	944	29	220	77	789	51	69
HF439a	NB1f	228	227	50	171	71	34	970	28	178	66	552	48	70
HF439b	NB1f	232	212	48	151	75	37	998	29	179	68	538	49	75
HF441	AOBf	239	117	44	70	73	31	902	30	180	55	448	34	43
HF442	NB2m	255	469	57	255	68	36	750	25	178	64	518	33	46
HF445	NB2m	284	372	57	280	67	35	705	28	187	69	491	36	64

		TiO ₂	K ₂ O	Ti	K	Zr/Nb	Y/Nb	Sr/Nb	Ti/Zr/100	Rb/K*1000	Ba/Rb	Zr/TiO2*0.001
HF382	ONm	2.36	0.60	14154	4972	2.47	0.4	21.78	0.82	7.24	12.56	0.073
HF383	HAW	1.73	2.44	10365	20247	2.72	0.3	14.94	0.39	3.36	12.09	0.154
HF400	NB2m	2.13	0.97	12757	8069	2.71	0.4	14.48	0.68	6.20	10.22	0.088
HF401	BEN	0.67	4.57	4005	37912	3.88	0.3	1.63	0.11	5.28	3.24	0.563
HF408	BA1	1.28	3.67	7650	30433	3.76	0.3	5.17	0.20	4.44	5.24	0.301
HF414	HAW	1.40	3.60	8405	29901	4.23	0.2	10.85	0.18	3.51	8.65	0.332
HF417	BAm	0.88	4.61	5246	38244	2.86	0.4	2.76	0.18	4.89	3.32	0.334
HF418	BAm	0.70	4.48	4202	37198	3.49	0.3	1.93	0.12	5.62	2.43	0.508
HF424	NB1f	1.99	2.62	11936	21733	2.52	0.3	15.71	0.50	3.22	13.53	0.120
HF425	NB2p	2.31	0.99	13872	8210	2.46	0.4	32.74	0.72	3.78	19.39	0.084
HF426	NTE2	2.29	1.86	13723	15440	2.91	0.4	17.51	0.61	3.30	11.88	0.098
HF427	NTE2	2.29	1.88	13747	15590	2.84	0.4	17.16	0.63	3.21	11.80	0.096
HF428	NB2m	2.48	0.94	14856	7828	1.98	0.4	31.63	0.88	4.47	18.34	0.068
HF429	NB1p	2.11	1.43	12625	11879	2.80	0.4	20.93	0.68	3.87	14.59	0.088
HF430	NB2p	2.11	1.45	12667	11995	2.88	0.4	16.38	0.57	4.59	11.75	0.105
HF431	NB2p	2.08	1.94	12482	16121	2.96	0.4	16.73	0.58	3.47	12.73	0.104
HF432	NB2f	2.19	1.40	13147	11580	2.37	0.3	14.27	0.61	4.49	13.73	0.098
HF433	NB2f	2.07	1.24	12410	10310	2.06	0.3	34.89	0.70	3.49	21.81	0.086
HF434	ONm	2.73	1.24	16372	10294	2.77	0.4	22.34	1.04	2.82	16.62	0.058
HF434a	NB2f	2.25	1.62	13471	13440	2.97	0.4	21.42	0.62	3.20	17.77	0.097
HF435	NB1p	2.22	1.24	13333	10327	3.04	0.5	22.62	0.77	3.29	14.50	0.078
HF436	NB1p	2.17	0.93	12979	7687	3.02	0.4	38.25	0.72	2.60	31.25	0.084
HF438	NB2f	2.15	1.68	12913	13913	2.86	0.4	20.09	0.59	3.38	16.79	0.102
HF439a	NB1f	2.19	1.29	13141	10742	2.70	0.4	28.53	0.74	3.17	16.24	0.081
HF439b	NB1f	2.18	1.37	13087	11356	2.63	0.4	26.97	0.73	3.26	14.54	0.082
HF441	AOBf	2.47	1.21	14808	10020	3.27	0.5	29.10	0.82	3.09	14.45	0.073
HF442	NB2m	2.18	1.35	13087	11207	2.78	0.4	20.83	0.74	3.21	14.39	0.082
HF445	NB2m	2.41	1.18	14472	9812	2.71	0.4	20.14	0.77	3.57	14.03	0.077

 Tabelle 1b:
 Spurenelemente der Hocheifel-Proben.

		V	Cr	Co	Ni	Zn	Rb	Sr	Y	Zr	Nb	Ва	La	Ce
HF446	NB2m	269	396	52	312	66	41	808	28	199	73	557	44	67
HF447	ONm	285	283	45	161	59	69	887	26	170	73	660	50	86
HF448	NB2f	283	83	36	74	59	32	1393	26	145	77	816	73	195
HF449	AOBp	213	166	42	138	66	34	1170	24	184	57	946	48	75
HF453	NB1p	305	248	46	350	64	19	910	25	150	55	595	44	66
HF454	AOBf	168	317	36	597	73	43	776	25	209	62	509	42	57
HF456a	NB1p	180	211	26	365	76	92	506	25	432	80	543	52	69
HF456b	AOBp	175	219	29	381	72	91	521	24	430	75	524	50	64
HF458	OMNm	255	367	53	219	67	28	652	30	195	74	517	52	90
HF459	OMNm	343	726	48	678	62	71	1402	23	162	103	1259	54	110
HF460	OMNm	346	775	47	773	61	74	1316	23	175	109	1392	50	95
HF461	OMNm	261	744	58	306	56	34	1092	18	173	68	883	45	72
HF462a	NTE1	243	28	36	36	70	34	1073	29	197	79	640	51	77
HF463	NB2f	250	184	45	125	70	37	1053	29	177	67	542	48	80
HF464	HAW	222	39	38	40	71	32	785	27	205	62	503	41	53
HF465	HAW	222	49	34	40	70	31	773	25	199	57	503	44	51
HF466	NB1p	218	247	42	164	71	40	774	26	193	60	481	38	50
HF467	NB2p	245	293	50	173	69	24	729	25	152	54	403	35	62
HF474	NB2f	244	301	39	133	57	39	827	25	184	65	677	41	62
HF480	NTE1	250	224	39	151	67	58	1282	29	152	63	2130	83	173
HF484	NB1f	223	200	45	135	77	32	877	26	181	66	535	39	62
HF487	ONf	288	217	45	124	71	37	949	30	192	81	591	46	159
HF488	ONf	285	232	44	123	65	51	860	29	202	77	636	45	69
HF495	NB2f	269	156	43	90	61	36	1111	23	152	65	626	54	156
HF496	HAW	250	46	35	41	61	41	1036	27	178	58	488	30	44
HF497	AOBm	250	366	48	159	62	40	538	24	176	44	471	28	37
HF498	NB2m	211	462	59	312	63	44	1015	22	155	52	472	29	49
HF499	NTE2	249	133	41	98	65	60	1028	27	192	76	1036	44	63
HF500	ONm	287	346	51	218	57	33	757	24	165	58	503	34	44

		TiO ₂	K ₂ O	Ti	Κ	Zr/Nb	Y/Nb	Sr/Nb	Ti/Zr/100	Rb/K*1000	Ba/Rb	Zr/TiO ₂ *0.001
HF446	NB2m	2.28	0.79	13651	6525	2.73	0.4	19.71	0.69	6.28	13.59	0.087
HF447	ONm	2.38	1.31	14268	10900	2.33	0.4	12.86	0.84	6.33	9.57	0.071
HF448	NB2f	2.45	1.25	14670	10343	1.88	0.3	43.53	1.01	3.09	25.50	0.059
HF449	AOBp	1.63	2.71	9796	22505	3.23	0.4	34.41	0.53	1.51	27.82	0.113
HF453	NB1p	2.68	0.75	16085	6243	2.73	0.5	47.89	1.07	3.04	31.32	0.056
HF454	AOBf	1.95	1.50	11684	12419	3.37	0.4	18.05	0.56	3.46	11.84	0.107
HF456a	NB1p	2.29	1.33	13729	11008	5.40	0.3	5.50	0.32	8.36	5.90	0.189
HF456b	AOBp	1.65	2.75	9898	22837	5.73	0.3	5.73	0.23	3.98	5.76	0.260
HF458	OMNm	2.31	0.78	13866	6467	2.64	0.4	23.29	0.71	4.33	18.46	0.084
HF459	OMNm	2.94	2.13	17595	17690	1.57	0.2	19.75	1.09	4.01	17.73	0.055
HF460	OMNm	2.95	2.32	17673	19284	1.61	0.2	17.78	1.01	3.84	18.81	0.059
HF461	OMNm	2.68	0.57	16061	4699	2.54	0.3	32.12	0.93	7.24	25.97	0.065
HF462a	NTE1	2.63	1.56	15761	12975	2.49	0.4	31.56	0.80	2.62	18.82	0.075
HF463	NB2f	2.55	1.08	15281	8982	2.64	0.4	28.46	0.86	4.12	14.65	0.069
HF464	HAW	2.66	1.44	15965	11979	3.31	0.4	24.53	0.78	2.67	15.72	0.077
HF465	HAW	2.67	1.45	15989	12070	3.49	0.4	24.94	0.80	2.57	16.23	0.075
HF466	NB1p	2.17	1.36	13003	11290	3.22	0.4	19.35	0.67	3.54	12.03	0.089
HF467	NB2p	2.50	1.04	14964	8642	2.81	0.5	30.38	0.98	2.78	16.79	0.061
HF474	NB2f	2.19	1.50	13117	12410	2.83	0.4	21.21	0.71	3.14	17.36	0.084
HF480	NTE1	2.10	1.05	12572	8733	2.41	0.5	22.10	0.83	6.64	36.72	0.072
HF484	NB1f	2.39	1.32	14322	10916	2.74	0.4	27.41	0.79	2.93	16.72	0.076
HF487	ONf	2.49	0.86	14940	7098	2.37	0.4	25.65	0.78	5.21	15.97	0.077
HF488	ONf	2.50	1.10	14993	9115	2.62	0.4	16.86	0.74	5.60	12.47	0.081
HF495	NB2f	2.56	1.55	15329	12884	2.34	0.4	30.86	1.01	2.79	17.39	0.059
HF496	HAW	2.90	1.65	17391	13730	3.07	0.5	25.27	0.98	2.99	11.90	0.061
HF497	AOBm	2.02	1.16	12134	9588	4.00	0.5	13.45	0.69	4.17	11.78	0.087
HF498	NB2m	2.07	0.62	12386	5172	2.98	0.4	23.07	0.80	8.51	10.73	0.075
HF499	NTE2	2.41	1.70	14460	14137	2.53	0.4	17.13	0.75	4.24	17.27	0.080
HF500	ONm	2.54	0.78	15233	6483	2.84	0.4	22.94	0.92	5.09	15.24	0.065

Tabelle 1b: Spurenelemente der Hocheifel-Proben.

		V	Cr	Co	Ni	Zn	Rb	Sr	Y	Zr	Nb	Ba	La	Ce
HF501	NB2p	222	286	63	208	68	37	689	22	153	48	425	28	41
HF502	NB1p	204	290	51	224	75	29	940	27	176	62	568	36	63
HF503	NB1f	205	170	40	110	63	44	893	28	195	69	589	44	73
HF504	NB2p	221	234	48	161	69	40	1101	28	156	65	562	47	84
HF505	NB1p	225	279	51	153	72	22	714	24	157	48	459	36	62
HF506	NB1f	228	302	44	149	74	44	811	29	189	66	547	40	69
HF507	NB1f	242	428	42	802	72	31	1298	29	147	57	546	42	65
HF508	NB1p	231	299	48	150	72	25	816	25	151	53	450	44	66
HF509	AOBf	197	284	39	724	72	35	1010	27	183	62	620	40	63
HF511a	ONf	273	256	41	652	65	30	1109	32	182	88	697	61	107
HF511b	NB2f	270	199	41	512	69	36	1199	33	173	89	1355	77	102
HF512	ONp	281	297	50	158	65	56	957	31	190	83	725	48	81
HF513	OMNp	290	426	43	672	68	45	847	30	199	84	642	48	76
HF515	HAW	245	157	36	463	65	32	809	29	189	55	508	31	37
HF516	OMNm	292	435	42	671	63	49	893	32	200	86	667	46	83
HF517	NB1f	212	341	38	691	73	30	972	30	206	72	604	55	77
HF518	HAW	216	110	41	73	64	31	731	27	183	53	451	33	47
HF519	NB2f	252	110	42	72	63	43	1034	30	187	71	609	47	75
HF519a	NTE2	264	94	43	68	64	43	1056	30	191	76	639	51	83
HF520	OMNf	353	154	38	116	65	93	1389	29	192	135	1013	83	236
HF541	OMNm	341	667	50	339	57	60	1116	20	182	94	767	46	180
HF570	NB2f	239	359	59	173	72	41	819	24	172	72	466	41	146
HF571	ONm	270	571	60	353	60	35	634	21	139	55	401	29	128
HF572	NB2p	255	371	48	186	61	48	1014	25	168	69	601	42	156
HF573	ONm	276	362	57	249	63	27	727	24	157	67	501	36	148
HF574	NB1f	237	157	40	108	68	37	893	26	162	58	682	41	139
HF575	NB2f	248	283	43	149	63	50	892	23	195	68	881	48	155
HF576	BA2	372	199	39	80	88	22	1214	24	210	51	772	40	137

		TiO ₂	K ₂ O	Ti	K	Zr/Nb	Y/Nb	Sr/Nb	Ti/Zr/100	Rb/K*1000	Ba/Rb	Zr/TiO2*0.001
HF501	NB2p	2,33	1,40	13938	11589	3,19	0,5	18,62	0,91	3,19	11,49	0,066
HF502	NB1p	2,10	1,07	12584	8857	2,84	0,4	32,41	0,71	3,27	19,59	0,084
HF503	NB1f	2,21	1,48	13249	12269	2,83	0,4	20,30	0,68	3,59	13,39	0,088
HF504	NB2p	2,19	1,19	13141	9845	2,40	0,4	27,53	0,84	4,06	14,05	0,071
HF505	NB1p	2,27	1,00	13615	8326	3,27	0,5	32,45	0,87	2,64	20,86	0,069
HF506	NB1f	2,13	1,04	12739	8667	2,86	0,4	18,43	0,67	5,08	12,43	0,089
HF507	NB1f	2,26	1,02	13543	8459	2,58	0,5	41,87	0,92	3,66	17,61	0,065
HF508	NB1p	2,25	0,99	13471	8210	2,85	0,5	32,64	0,89	3,05	18,00	0,067
HF509	AOBf	2,09	1,22	12512	10161	2,95	0,4	28,86	0,68	3,44	17,71	0,088
HF511a	ONf	2,58	0,95	15473	7861	2,07	0,4	36,97	0,85	3,82	23,23	0,071
HF511b	NB2f	2,54	0,95	15221	7870	1,94	0,4	33,31	0,88	4,57	37,64	0,068
HF512	ONp	2,35	1,64	14106	13606	2,29	0,4	17,09	0,74	4,12	12,95	0,081
HF513	OMNp	2,46	1,56	14766	12933	2,37	0,4	18,82	0,74	3,48	14,27	0,081
HF515	HAW	2,82	1,25	16930	10360	3,44	0,5	25,28	0,90	3,09	15,88	0,067
HF516	OMNm	2,50	1,54	14970	12751	2,33	0,4	18,22	0,75	3,84	13,61	0,080
HF517	NB1f	2,19	1,27	13135	10568	2,86	0,4	32,40	0,64	2,84	20,13	0,094
HF518	HAW	2,43	1,22	14544	10136	3,45	0,5	23,58	0,79	3,06	14,55	0,075
HF519	NB2f	2,76	1,54	16546	12759	2,63	0,4	24,05	0,88	3,37	14,16	0,068
HF519a	NTE2	2,79	1,80	16726	14942	2,51	0,4	24,56	0,88	2,88	14,86	0,068
HF520	OMNf	2,42	3,55	14520	29453	1,42	0,2	14,94	0,76	3,16	10,89	0,079
HF541	OMNm	2,93	1,16	17565	9646	1,94	0,2	18,60	0,97	6,22	12,78	0,062
HF570	NB2f	2,16	1,33	12961	11041	2,39	0,3	19,98	0,75	3,71	11,37	0,080
HF571	ONm	2,21	1,25	13219	10343	2,53	0,4	18,11	0,95	3,38	11,46	0,063
HF572	NB2p	2,16	0,68	12973	5637	2,43	0,4	21,13	0,77	8,52	12,52	0,078
HF573	ONm	2,32	0,78	13908	6475	2,34	0,4	26,93	0,89	4,17	18,56	0,068
HF574	NB1f	2,36	1,24	14148	10327	2,79	0,4	24,14	0,87	3,58	18,43	0,069
HF575	NB2f	2,12	1,66	12727	13772	2,87	0,3	17,84	0,65	3,63	17,62	0,092
HF576	BA2	2,85	0,80	17068	6658	4,12	0,5	55,18	0,81	3,30	35,09	0,074

 Tabelle 1b:
 Spurenelemente der Hocheifel-Proben.

		V	Cr	Co	Ni	Zn	Rb	Sr	Y	Zr	Nb	Ba	La	Ce
HF577	AOBp	291	202	47	140	75	39	977	20	189	46	510	33	131
HF579	NB1m	297	254	45	157	71	77	786	28	157	76	651	82	261
HF580	NB1p	216	264	48	191	71	27	884	23	149	59	498	41	145
HF581	NB1f	256	233	40	102	65	33	683	24	217	64	564	34	143
HF583	NB2p	252	172	44	155	68	51	846	25	177	74	541	42	159
HF584	ONm	248	525	60	426	64	45	687	22	168	64	432	34	126
HF585	ONp	306	268	48	154	63	49	809	29	178	79	561	46	161
HF586	ONp	316	296	52	171	68	30	741	26	178	77	512	41	157
HF589	ONm	297	539	59	288	59	44	576	19	138	51	354	28	121
HF593a	OMNp	279	272	47	174	61	72	916	27	161	74	619	47	164
HF593b	OMNp	290	321	50	177	61	51	949	28	167	79	590	49	174
HF594	OMNp	288	291	48	166	58	44	958	27	160	78	617	50	171
HF601	OB	222	10	36	5	141	54	958	32	277	93	905	70	102
HF602	ONm	294	419	57	302	74	33	1147	30	183	79	559	54	103
HF603	HAW	197	19	32	17	81	46	827	29	233	78	642	53	83
HF604	NB2f	267	181	50	136	77	31	1376	31	188	72	630	59	91
HF606	AOBp	195	171	36	76	80	87	517	24	418	78	428	52	65
HF607	NB1f	279	198	42	93	69	25	1177	28	147	66	2693	36	55
HF608-1	ONm	337	217	63	138	63	36	638	24	156	57	493	28	49
HF608-2	NB2p	271	305	47	130	65	18	723	25	181	59	801	42	68
HF608-3	AOBp	230	141	35	83	82	114	963	39	398	115	891	70	91
HF608-4	AOBm	262	244	46	134	65	47	1002	27	211	65	857	50	79
HF609	NB2m	329	236	52	147	60	27	660	25	156	55	482	29	40
HF611	NB1f	211	45	37	25	66	71	1110	28	235	96	956	66	92
HF612	NB2p	240	278	55	195	72	36	896	26	156	63	549	44	77
HF613	NB2p	268	162	55	145	71	41	1081	29	161	81	598	61	93

		TiO ₂	K ₂ O	Ti	Κ	Zr/Nb	Y/Nb	Sr/Nb	Ti/Zr/100	Rb/K*1000	Ba/Rb	Zr/TiO ₂ *0.001
HF577	AOBp	2,59	1,73	15545	14353	4,11	0,4	25,05	0,82	2,72	13,08	0,073
HF579	NB1m	2,25	0,98	13459	8094	2,07	0,4	10,21	0,86	9,51	8,45	0,070
HF580	NB1p	2,15	0,83	12877	6882	2,53	0,4	32,74	0,86	3,92	18,44	0,069
HF581	NB1f	2,11	1,26	12673	10443	3,39	0,4	20,70	0,58	3,16	17,09	0,103
HF583	NB2p	2,44	1,77	14598	14702	2,39	0,3	16,59	0,82	3,47	10,61	0,073
HF584	ONm	2,14	0,71	12811	5927	2,63	0,3	15,27	0,76	7,59	9,60	0,079
HF585	ONp	2,44	1,22	14622	10103	2,25	0,4	16,51	0,82	4,85	11,45	0,073
HF586	ONp	2,47	0,99	14802	8251	2,31	0,3	24,70	0,83	3,64	17,07	0,072
HF589	ONm	2,30	0,82	13789	6799	2,71	0,4	13,09	1,00	6,47	8,05	0,060
HF593a	OMNp	2,32	1,11	13932	9214	2,18	0,4	12,72	0,87	7,81	8,60	0,069
HF593b	OMNp	2,37	1,10	14178	9165	2,11	0,4	18,61	0,85	5,56	11,57	0,071
HF594	OMNp	2,36	1,20	14154	9920	2,05	0,3	21,77	0,88	4,44	14,02	0,068
HF601	OB	2,41	2,22	14442	18404	2,98	0,3	17,74	0,52	2,93	16,76	0,115
HF602	ONm	2,47	1,01	14808	8401	2,32	0,4	34,76	0,81	3,93	16,94	0,074
HF603	HAW	2,29	1,85	13747	15382	2,99	0,4	17,98	0,59	2,99	13,96	0,102
HF604	NB2f	2,51	1,08	15071	8965	2,61	0,4	44,39	0,80	3,46	20,32	0,075
HF606	AOBp	1,73	2,61	10365	21633	5,36	0,3	5,94	0,25	4,02	4,92	0,242
HF607	NB1f	2,65	1,02	15887	8484	2,23	0,4	47,08	1,08	2,95	107,72	0,055
HF608-1	ONm	2,77	1,24	16624	10252	2,74	0,4	17,72	1,07	3,51	13,69	0,056
HF608-2	NB2p	2,28	1,03	13645	8567	3,07	0,4	40,17	0,75	2,10	44,50	0,080
HF608-3	AOBp	1,79	2,68	10743	22256	3,46	0,3	8,45	0,27	5,12	7,82	0,222
HF608-4	AOBm	2,16	1,78	12937	14801	3,25	0,4	21,32	0,61	3,18	18,23	0,098
HF609	NB2m	2,72	1,09	16282	9007	2,84	0,5	24,44	1,04	3,00	17,85	0,057
HF611	NB1f	2,02	2,60	12110	21575	2,45	0,3	15,63	0,52	3,29	13,46	0,116
HF612	NB2p	2,16	0,96	12955	7969	2,48	0,4	24,89	0,83	4,52	15,25	0,072
HF613	NB2p	2,67	1,25	15989	10402	1,99	0,4	26,37	0,99	3,94	14,59	0,060

 Tabelle 1b:
 Spurenelemente der Hocheifel-Proben.

		qz	c	or	ab	an	lc	ne	cs	di	hy	ol	ap	mt	il	ne`	qz`	hy`	cs`	Mg #
HF1	HAW	0,00	0,00	15,79	31,15	19,42	0,00	3,54	0,00	14,72	0,00	3,87	1,55	5,85	4,09	0,07	0,000	0,000	0,00	0,58
HF5	ONm	0,00	0,00	3,17	0,00	17,33	1,29	12,16	0,00	30,59	0,00	25,44	2,71	2,78	4,53	0,81	0,000	0,000	0,00	0,73
HF5A3	ONm	0,00	0,00	2,89	0,00	17,13	1,62	14,12	0,00	32,70	0,00	19,53	2,49	4,74	4,78	0,84	0,000	0,000	0,00	0,74
HF10	NE3	0,00	0,00	0,00	0,00	13,22	6,84	21,40	1,80	37,13	0,00	11,07	3,24	0,55	4,05	1,00	0,000	0,000	0,06	0,58
HF16A	HAW	0,00	0,00	7,51	20,17	22,66	0,00	5,31	0,00	23,59	0,00	11,20	1,09	3,75	4,73	0,16	0,000	0,000	0,00	0,62
HF17	NB2p	0,00	0,00	7,28	5,59	18,82	0,00	11,83	0,00	29,65	0,00	15,42	2,50	4,29	4,64	0,48	0,000	0,000	0,00	0,70
HF33	NB2p	0,00	0,00	5,32	8,40	19,62	0,00	8,73	0,00	27,62	0,00	20,16	1,81	4,27	4,06	0,39	0,000	0,000	0,00	0,72
HF43	NB1f	0,00	0,00	7,42	14,80	23,07	0,00	7,54	0,00	21,08	0,00	13,67	1,59	5,39	5,43	0,25	0,000	0,000	0,00	0,64
HF46A	NTE1	0,00	0,00	11,85	15,69	17,81	0,00	13,63	0,00	22,48	0,00	10,75	1,26	2,47	4,04	0,33	0,000	0,000	0,00	0,59
HF53	ONm	0,00	0,00	5,05	0,26	20,41	0,00	13,72	0,00	31,82	0,00	19,61	1,00	3,65	4,51	0,72	0,000	0,000	0,00	0,78
HF63	ONm	0,00	0,00	4,35	0,00	21,21	0,57	13,97	0,00	31,56	0,00	16,63	1,84	5,21	4,59	0,77	0,000	0,000	0,00	0,75
HF69	NB1f	0,00	0,00	9,11	17,48	20,53	0,00	8,36	0,00	24,05	0,00	11,29	1,53	3,34	4,27	0,24	0,000	0,000	0,00	0,63
HF91	ONp	0,00	0,00	3,52	0,00	21,24	3,18	13,71	0,00	30,33	0,00	14,92	1,41	6,25	5,28	0,83	0,000	0,000	0,00	0,73
HF100	NB1f	0,00	0,00	11,24	12,06	18,34	0,00	12,14	0,00	24,54	0,00	15,08	1,17	1,69	3,71	0,34	0,000	0,000	0,00	0,66
HF104	NTE2	0,00	0,00	7,08	9,23	24,11	0,00	10,62	0,00	26,88	0,00	11,35	1,51	4,00	5,19	0,39	0,000	0,000	0,00	0,61
HF109	ONp	0,00	0,00	7,41	0,77	19,96	0,00	16,45	0,00	29,15	0,00	17,61	1,14	2,76	4,77	0,67	0,000	0,000	0,00	0,72
HF124	ONp	0,00	0,00	4,81	0,08	18,29	0,00	17,34	0,00	31,74	0,00	17,38	2,26	3,47	4,61	0,78	0,000	0,000	0,00	0,73
HF125	ONp	0,00	0,00	5,20	1,78	22,50	0,00	13,77	0,00	28,94	0,00	17,60	1,24	3,81	5,15	0,66	0,000	0,000	0,00	0,71
HF138	NB2p	0,00	0,00	5,35	6,95	23,13	0,00	11,29	0,00	27,16	0,00	13,03	1,21	5,94	5,86	0,48	0,000	0,000	0,00	0,69
HF179	ONp	0,00	0,00	4,66	2,13	20,55	0,00	13,87	0,00	31,13	0,00	18,69	1,57	2,54	4,79	0,67	0,000	0,000	0,00	0,69
HF185	ONf	0,00	0,00	6,64	3,00	19,59	0,00	16,58	0,00	31,15	0,00	12,90	1,96	3,33	4,85	0,63	0,000	0,000	0,00	0,65
HF307	NTE2	0,00	0,00	10,07	1,35	21,84	0,00	16,71	0,00	28,12	0,00	11,90	4,76	0,36	4,86	0,59	0,000	0,000	0,00	0,47
HF311-2	NB2f	0,00	0,00	7,69	9,38	18,14	0,00	12,70	0,00	30,33	0,00	11,88	1,86	3,59	4,37	0,43	0,000	0,000	0,00	0,64
HF318A	NB2f	0,00	0,00	6,57	5,12	19,03	0,00	15,47	0,00	28,72	0,00	16,18	1,54	2,88	4,44	0,57	0,000	0,000	0,00	0,66
HF322A	NB2p	0,00	0,00	5,61	5,88	18,19	0,00	13,47	0,00	30,70	0,00	16,64	1,41	3,76	4,31	0,54	0,000	0,000	0,00	0,71
HF360A	OMNf	0,00	0,00	0,00	0,00	19,21	5,74	15,18	1,66	29,85	0,00	19,82	1,70	1,86	4,92	1,00	0,000	0,000	0,07	0,68
HF364q	OMNm	0,00	0,00	0,00	0,00	13,59	8,00	11,96	3,06	28,56	0,00	23,13	1,84	4,66	5,15	1,00	0,000	0,000	0,13	0,78
HF379	NB1f	0,00	0,00	7,50	11,72	21,20	0,00	5,40	0,00	27,40	0,00	15,68	1,51	4,55	5,06	0,22	0,000	0,000	0,00	0,67
HF381	AOBp	0,00	0,00	8,66	17,30	21,20	0,00	4,87	0,00	22,58	0,00	13,89	1,23	5,75	4,50	0,16	0,000	0,000	0,00	0,69

 Tabelle 1c: CIPW-Norm der Hocheifel-Proben ohne CO2 berechnet.

		qz	c	or	ab	an	lc	ne	cs	di	hy	ol	ap	mt	il	ne`	qz`	hy`	cs`	Mg #
HF382	ONm	0,00	0,00	3,64	3,05	20,57	0,00	11,90	0,00	28,17	0,00	23,05	1,46	3,56	4,61	0,64	0,000	0,000	0,00	0,74
HF383	HAW	0,00	0,00	14,71	31,30	17,59	0,00	9,66	0,00	11,33	0,00	5,68	1,68	4,68	3,35	0,17	0,000	0,000	0,00	0,52
HF400	NB2m	0,00	0,00	5,89	2,38	19,08	0,00	11,34	0,00	27,75	0,00	25,36	1,42	2,64	4,14	0,58	0,000	0,000	0,00	0,75
HF401	BEN	17,74	2,83	28,12	39,46	5,04	0,00	0,00	0,00	0,00	3,14	0,00	0,52	1,91	1,32	0,00	-0,201	1,000	0,00	0,26
HF408	BA1	1,07	0,00	22,22	46,46	13,61	0,00	0,00	0,00	7,91	0,77	0,00	0,88	3,39	2,49	0,00	-0,015	1,000	0,00	0,61
HF414	HAW	0,00	0,00	21,56	42,48	14,99	0,00	2,64	0,00	7,81	0,00	2,37	1,02	4,54	2,70	0,04	0,000	0,000	0,00	0,59
HF417	BAm	11,79	1,42	27,96	44,48	8,28	0,00	0,00	0,00	0,00	1,56	0,00	0,63	0,00	0,70	0,00	-0,138	1,000	0,00	0,78
HF418	BAm	12,25	1,40	27,10	46,58	7,58	0,00	0,00	0,00	0,00	1,14	0,00	0,49	0,00	0,61	0,00	-0,140	1,000	0,00	0,76
HF424	NB1f	0,00	0,00	15,75	23,81	17,19	0,00	10,34	0,00	18,56	0,00	2,73	1,03	6,46	3,85	0,21	0,000	0,000	0,00	0,66
HF425	NB2p	0,00	0,00	5,96	3,15	20,83	0,00	13,56	0,00	29,08	0,00	19,72	1,58	1,62	4,48	0,60	0,000	0,000	0,00	0,69
HF426	NTE2	0,00	0,00	11,15	8,44	20,87	0,00	13,30	0,00	26,09	0,00	12,65	1,22	1,83	4,41	0,40	0,000	0,000	0,00	0,62
HF427	NTE2	0,00	0,00	11,26	8,93	20,71	0,00	13,04	0,00	25,82	0,00	12,58	1,20	2,02	4,42	0,39	0,000	0,000	0,00	0,63
HF428	NB2m	0,00	0,00	5,63	4,04	17,56	0,00	13,96	0,00	29,87	0,00	14,89	1,92	7,39	4,76	0,59	0,000	0,000	0,00	0,76
HF429	NB1p	0,00	0,00	8,59	9,57	19,27	0,00	10,27	0,00	25,89	0,00	17,49	1,17	3,66	4,06	0,36	0,000	0,000	0,00	0,71
HF430	NB2p	0,00	0,00	8,70	2,23	18,83	0,00	16,43	0,00	29,93	0,00	16,83	1,31	1,65	4,09	0,60	0,000	0,000	0,00	0,69
HF431	NB2p	0,00	0,00	11,76	2,39	20,89	0,00	13,45	0,00	27,81	0,00	16,34	1,28	1,94	4,05	0,49	0,000	0,000	0,00	0,68
HF432	NB2f	0,00	0,00	8,39	5,32	18,21	0,00	17,21	0,00	26,81	0,00	17,33	1,43	0,96	4,24	0,56	0,000	0,000	0,00	0,68
HF433	NB2f	0,00	0,00	7,51	5,37	21,19	0,00	13,25	0,00	25,36	0,00	21,58	1,36	0,37	4,02	0,51	0,000	0,000	0,00	0,68
HF434	ONm	0,00	0,00	4,39	0,00	20,78	2,38	14,72	0,00	30,77	0,00	14,26	1,22	6,19	5,25	0,80	0,000	0,000	0,00	0,74
HF434a	NB2f	0,00	0,00	9,68	4,48	19,53	0,00	16,25	0,00	28,18	0,00	15,30	1,11	1,12	4,32	0,53	0,000	0,000	0,00	0,65
HF435	NB1p	0,00	0,00	7,45	10,55	20,63	0,00	9,28	0,00	25,50	0,00	18,24	1,22	2,84	4,28	0,34	0,000	0,000	0,00	0,69
HF436	NB1p	0,00	0,00	5,58	14,91	21,82	0,00	7,29	0,00	23,74	0,00	17,86	1,17	3,45	4,19	0,26	0,000	0,000	0,00	0,71
HF438	NB2f	0,00	0,00	10,43	3,84	19,42	0,00	16,34	0,00	28,03	0,00	15,50	1,10	0,99	4,31	0,53	0,000	0,000	0,00	0,65
HF439a	NB1f	0,00	0,00	7,69	12,37	18,20	0,00	10,52	0,00	28,36	0,00	13,56	1,52	3,57	4,19	0,34	0,000	0,000	0,00	0,68
HF439b	NB1f	0,00	0,00	8,25	11,85	18,85	0,00	10,21	0,00	28,32	0,00	13,11	1,52	3,63	4,23	0,34	0,000	0,000	0,00	0,68
HF441	AOBf	0,00	0,00	7,20	21,52	23,34	0,00	4,27	0,00	23,19	0,00	9,86	1,07	4,85	4,73	0,13	0,000	0,000	0,00	0,63
HF442	NB2m	0,00	0,00	8,05	4,33	18,62	0,00	11,70	0,00	27,78	0,00	20,95	1,15	3,19	4,18	0,49	0,000	0,000	0,00	0,73
HF445	NB2m	0,00	0,00	7,08	2,94	20,25	0,00	11,91	0,00	26,31	0,00	22,10	1,32	3,41	4,65	0,54	0,000	0,000	0,00	0,74
HF446	NB2m	0,00	0,00	4,77	4,97	19,46	0,00	11,93	0,00	27,07	0,00	23,16	1,51	2,69	4,44	0,55	0,000	0,000	0,00	0,74

Anhang 1

 Tabelle 1c: CIPW-Norm der Hocheifel-Proben ohne CO2 berechnet.

		qz	c	or	ab	an	lc	ne	cs	di	hy	ol	ap	mt	il	ne`	qz`	hy`	cs`	Mg #
HF447	ONm	0,00	0,00	4,68	0,00	18,80	2,55	16,01	0,00	32,20	0,00	15,01	1,81	4,30	4,62	0,80	0,000	0,000	0,00	0,74
HF448	NB2f	0,00	0,00	7,68	1,81	27,00	0,00	9,56	0,00	30,60	0,00	12,54	1,78	4,09	4,85	0,50	0,000	0,000	0,00	0,67
HF449	AOBp	0,00	0,00	16,35	26,33	16,59	0,00	7,12	0,00	17,28	0,00	7,45	0,72	4,93	3,17	0,14	0,000	0,000	0,00	0,71
HF453	NB1p	0,00	0,00	4,54	11,92	23,96	0,00	7,61	0,00	25,60	0,00	13,20	1,60	6,39	5,21	0,32	0,000	0,000	0,00	0,71
HF454	AOBf	0,00	0,00	9,02	23,68	20,15	0,00	4,01	0,00	18,80	0,00	16,92	1,07	2,59	3,78	0,11	0,000	0,000	0,00	0,68
HF456a	NB1p	0,00	0,00	8,11	8,35	23,63	0,00	8,87	0,00	24,28	0,00	16,07	1,54	4,62	4,50	0,35	0,000	0,000	0,00	0,70
HF456b	AOBp	0,00	0,00	16,50	25,29	17,74	0,00	6,59	0,00	16,96	0,00	8,18	0,72	4,83	3,18	0,14	0,000	0,000	0,00	0,71
HF458	OMNm	0,00	0,00	0,00	0,00	20,09	3,73	13,21	0,47	31,21	0,00	20,80	1,69	4,20	4,54	1,00	0,000	0,000	0,03	0,75
HF459	OMNm	0,00	0,00	0,00	0,00	12,36	10,07	9,82	10,77	18,53	0,00	25,34	1,64	5,76	5,58	1,00	0,000	0,000	0,35	0,81
HF460	OMNm	0,00	0,00	0,00	0,00	9,83	10,88	11,68	11,72	16,73	0,00	26,71	1,66	5,07	5,66	1,00	0,000	0,000	0,34	0,80
HF461	OMNm	0,00	0,00	0,00	0,00	19,27	2,73	5,48	2,99	31,29	0,00	29,39	1,27	2,19	5.3ß	1,00	0,000	0,000	0,27	0,82
HF462a	NTE1	0,00	0,00	9,40	17,36	23,01	0,00	8,81	0,00	20,01	0,00	11,41	1,51	3,38	5,08	0,25	0,000	0,000	0,00	0,58
HF463	NB2f	0,00	0,00	6,54	5,47	22,70	0,00	12,63	0,00	28,80	0,00	13,91	1,45	3,56	4,95	0,51	0,000	0,000	0,00	0,64
HF464	HAW	0,00	0,00	8,63	25,77	24,01	0,00	5,60	0,00	16,13	0,00	8,02	1,00	5,75	5,12	0,14	0,000	0,000	0,00	0,61
HF465	HAW	0,00	0,00	8,72	26,08	24,89	0,00	4,31	0,00	15,70	0,00	8,10	1,03	6,06	5,14	0,11	0,000	0,000	0,00	0,62
HF466	NB1p	0,00	0,00	8,16	12,46	22,38	0,00	7,54	0,00	24,25	0,00	16,89	1,14	3,00	4,18	0,27	0,000	0,000	0,00	0,69
HF467	NB2p	0,00	0,00	6,16	7,70	19,24	0,00	9,93	0,00	29,17	0,00	15,38	1,82	5,85	4,75	0,42	0,000	0,000	0,00	0,71
HF474	NB2f	0,00	0,00	9,14	1,31	25,65	0,00	11,03	0,00	31,28	0,00	16,71	1,21	1,28	4,30	0,51	0,000	0,000	0,00	0,68
HF480	NTE1	0,00	0,00	6,92	10,26	25,76	0,00	5,90	0,00	33,12	0,00	6,59	1,65	5,25	4,43	0,26	0,000	0,000	0,00	0,67
HF484	NB1f	0,00	0,00	7,86	12,89	19,89	0,00	10,51	0,00	25,09	0,00	14,06	1,21	3,89	4,59	0,34	0,000	0,000	0,00	0,66
HF487	ONf	0,00	0,00	5,03	0,00	22,59	0,16	14,87	0,00	31,88	0,00	16,95	1,84	1,77	4,91	0,75	0,000	0,000	0,00	0,66
HF488	ONf	0,00	0,00	5,72	0,00	22,25	0,76	14,29	0,00	31,10	0,00	16,73	1,74	2,52	4,90	0,72	0,000	0,000	0,00	0,67
HF495	NB2f	0,00	0,00	9,30	8,51	20,62	0,00	11,47	0,00	27,15	0,00	12,18	1,40	4,41	4,92	0,39	0,000	0,000	0,00	0,66
HF496	HAW	0,00	0,00	10,08	18,47	28,58	0,00	3,03	0,00	17,86	0,00	10,87	1,00	4,44	5,68	0,10	0,000	0,000	0,00	0,60
HF497	AOBm	0,00	0,00	7,27	17,96	21,41	0,00	3,13	0,00	26,79	0,00	13,73	0,89	4,69	4,10	0,11	0,000	0,000	0,00	0,74
HF498	NB2m	0,00	0,00	3,74	6,53	21,27	0,00	7,38	0,00	24,57	0,00	27,44	1,14	3,94	3,99	0,42	0,000	0,000	0,00	0,77
HF499	NTE2	0,00	0,00	10,27	5,77	21,43	0,00	14,05	0,00	25,42	0,00	16,18	1,36	0,80	4,67	0,47	0,000	0,000	0,00	0,61
HF500	ONm	0,00	0,00	4,77	1,43	23,99	0,00	10,99	0,00	28,92	0,00	19,61	1,27	4,02	4,98	0,64	0,000	0,000	0,00	0,74
HF501	NB2p	0,00	0,00	8,30	7,61	18,66	0,00	10,00	0,00	25,70	0,00	19,62	1,39	4,27	4,44	0,39	0,000	0,000	0,00	0,72

 Tabelle 1c: CIPW-Norm der Hocheifel-Proben ohne CO2 berechnet.

		qz	c	or	ab	an	lc	ne	cs	di	hy	ol	ap	mt	il	ne`	qz`	hy`	cs`	Mg #
HF502	NB1p	0,00	0,00	6,38	12,15	19,87	0,00	7,49	0,00	26,21	0,00	18,72	1,34	3,82	4,03	0,29	0,000	0,000	0,00	0,71
HF503	NB1f	0,00	0,00	8,90	16,61	20,46	0,00	5,84	0,00	22,20	0,00	14,45	1,32	2,18	4,19	0,19	0,000	0,000	0,00	0,63
HF504	NB2p	0,00	0,00	7,16	7,14	20,30	0,00	9,82	0,00	29,05	0,00	16,23	1,92	4,14	4,25	0,41	0,000	0,000	0,00	0,69
HF505	NB1p	0,00	0,00	5,89	14,13	20,73	0,00	6,94	0,00	25,78	0,00	14,65	1,41	4,70	4,29	0,26	0,000	0,000	0,00	0,69
HF506	NB1f	0,00	0,00	6,32	15,51	18,93	0,00	7,36	0,00	28,41	0,00	16,11	1,62	1,49	4,02	0,25	0,000	0,000	0,00	0,65
HF507	NB1f	0,00	0,00	5,98	13,88	21,03	0,00	6,66	0,00	26,00	0,00	14,48	1,43	4,38	4,26	0,25	0,000	0,000	0,00	0,68
HF508	NB1p	0,00	0,00	5,81	11,33	20,75	0,00	7,67	0,00	28,01	0,00	14,72	1,54	4,48	4,24	0,31	0,000	0,000	0,00	0,69
HF509	AOBf	0,00	0,00	7,20	20,20	23,41	0,00	2,54	0,00	17,60	0,00	18,68	0,99	1,93	3,95	0,08	0,000	0,000	0,00	0,66
HF511a	ONf	0,00	0,00	4,63	0,00	17,95	0,82	17,98	0,00	33,04	0,00	14,45	2,51	3,60	4,87	0,80	0,000	0,000	0,00	0,65
HF511b	NB2f	0,00	0,00	5,89	1,64	26,03	0,00	9,06	0,00	27,89	0,00	18,90	2,63	2,83	5,07	0,55	0,000	0,000	0,00	0,65
HF512	ONp	0,00	0,00	3,00	0,00	18,24	5,35	14,62	0,00	33,30	0,00	17,07	1,61	2,16	4,45	0,87	0,000	0,000	0,00	0,69
HF513	OMNp	0,00	0,00	0,00	0,00	17,43	7,29	15,07	2,04	30,40	0,00	17,35	1,63	3,89	4,65	1,00	0,000	0,000	0,08	0,72
HF515	HAW	0,00	0,00	7,57	20,80	28,58	0,00	2,10	0,00	17,13	0,00	13,03	1,19	4,11	5,50	0,07	0,000	0,000	0,00	0,61
HF516	OMNm	0,00	0,00	0,00	0,00	17,48	7,12	14,40	1,43	30,88	0,00	14,39	1,65	6,35	4,75	1,00	0,000	0,000	0,06	0,78
HF517	NB1f	0,00	0,00	7,50	15,39	19,99	0,00	8,33	0,00	24,20	0,00	14,58	1,37	2,53	4,15	0,27	0,000	0,000	0,00	0,65
HF518	HAW	0,00	0,00	7,17	20,82	22,23	0,00	5,00	0,00	21,92	0,00	12,46	1,07	3,24	4,58	0,15	0,000	0,000	0,00	0,62
HF519	NB2f	0,00	0,00	9,22	8,63	19,52	0,00	13,20	0,00	24,74	0,00	12,59	2,02	4,74	5,32	0,43	0,000	0,000	0,00	0,64
HF519a	NTE2	0,00	0,00	10,57	4,82	18,93	0,00	14,45	0,00	25,44	0,00	12,53	2,13	4,20	5,26	0,48	0,000	0,000	0,00	0,62
HF520	OMNf	0,00	0,00	0,00	0,00	8,11	16,52	19,07	8,96	19,02	0,00	19,80	1,94	1,85	4,62	1,00	0,000	0,000	0,20	0,68
HF541	OMNm	0,00	0,00	0,00	0,00	21,86	5,72	2,84	3,31	30,25	0,00	23,95	2,06	3,88	5,92	1,00	0,000	0,000	0,28	0,80
HF570	NB2f	0,00	0,00	7,96	7,09	20,37	0,00	12,65	0,00	26,64	0,00	17,71	1,06	2,32	4,16	0,46	0,000	0,000	0,00	0,68
HF571	ONm	0,00	0,00	1,80	0,00	17,52	4,46	13,02	0,00	30,93	0,00	23,65	1,08	3,24	4,26	0,91	0,000	0,000	0,00	0,78
HF572	NB2p	0,00	0,00	4,12	6,83	20,71	0,00	11,94	0,00	31,24	0,00	17,14	1,33	2,40	4,10	0,52	0,000	0,000	0,00	0,71
HF573	ONm	0,00	0,00	4,68	1,36	20,19	0,00	13,26	0,00	28,74	0,00	22,50	1,26	3,40	4,39	0,69	0,000	0,000	0,00	0,75
HF574	NB1f	0,00	0,00	7,56	14,84	24,00	0,00	7,41	0,00	23,96	0,00	13,88	1,11	2,52	4,45	0,24	0,000	0,000	0,00	0,64
HF575	NB2f	0,00	0,00	10,54	0,15	20,24	0,00	15,46	0,00	30,63	0,00	16,50	1,17	0,92	4,34	0,59	0,000	0,000	0,00	0,67
HF576	BA2	0,10	0,00	5,21	12,61	34,82	0,00	0,00	0,00	30,51	0,78	0,00	1,27	8,64	5,95	0,00	0,006	1,000	0,00	0,68
HF577	AOBp	0,00	0,00	10,84	14,36	24,68	0,00	2,29	0,00	24,44	0,00	5,76	1,07	9,22	5,22	0,08	0,000	0,000	0,00	0,71
HF579	NB1m	0,00	0,00	6,27	7,95	25,03	0,00	7,77	0,00	30,94	0,00	9,72	1,27	6,37	4,28	0,35	0,000	0,000	0,00	0,75

Anhang 1

 Tabelle 1c: CIPW-Norm der Hocheifel-Proben ohne CO2 berechnet.

		qz	c	or	ab	an	lc	ne	cs	di	hy	ol	ap	mt	il	ne`	qz`	hy`	cs`	Mg #
HF580	NB1p	0,00	0,00	4,90	12,02	20,75	0,00	6,86	0,00	25,25	0,00	17,72	1,63	4,34	4,08	0,29	0,000	0,000	0,00	0,71
HF581	NB1f	0,00	0,00	7,42	13,96	20,49	0,00	10,45	0,00	25,33	0,00	13,09	0,85	1,93	4,01	0,33	0,000	0,000	0,00	0,65
HF583	NB2p	0,00	0,00	10,65	2,42	19,91	0,00	14,13	0,00	26,45	0,00	16,79	1,70	3,22	4,71	0,52	0,000	0,000	0,00	0,69
HF584	ONm	0,00	0,00	4,29	2,27	18,76	0,00	11,88	0,00	27,24	0,00	27,16	1,34	2,82	4,06	0,64	0,000	0,000	0,00	0,76
HF585	ONp	0,00	0,00	2,91	0,00	20,21	3,47	14,40	0,00	32,20	0,00	16,14	1,46	4,29	4,62	0,86	0,000	0,000	0,00	0,73
HF586	ONp	0,00	0,00	2,73	0,00	19,81	2,54	15,34	0,00	32,45	0,00	16,59	1,47	4,23	4,70	0,87	0,000	0,000	0,00	0,73
HF589	ONm	0,00	0,00	4,91	0,61	20,01	0,00	13,27	0,00	31,03	0,00	21,40	0,96	3,29	4,35	0,71	0,000	0,000	0,00	0,77
HF593a	OMNp	0,00	0,00	0,00	0,00	17,28	5,37	17,69	0,25	34,70	0,00	15,41	1,77	2,87	4,61	1,00	0,000	0,000	0,01	0,73
HF593b	OMNp	0,00	0,00	0,00	0,00	17,84	5,26	17,05	1,44	30,57	0,00	18,81	1,88	2,54	4,62	1,00	0,000	0,000	0,06	0,74
HF594	OMNp	0,00	0,00	0,00	0,00	16,56	5,74	18,13	1,94	29,87	0,00	18,47	1,82	2,67	4,62	1,00	0,000	0,000	0,08	0,74
HF601	OB	0,00	0,00	13,66	29,69	26,92	0,00	0,00	0,00	8,90	3,14	1,37	2,60	0,22	4,77	0,00	0,000	0,696	0,00	0,76
HF602	ONm	0,00	0,00	1,97	0,00	17,63	3,18	13,00	0,00	32,45	0,00	19,92	2,49	4,51	4,63	0,89	0,000	0,000	0,00	0,74
HF603	HAW	0,00	0,00	10,77	28,60	22,03	0,00	6,23	0,00	10,96	0,00	12,68	1,36	0,84	4,32	0,14	0,000	0,000	0,00	0,47
HF604	NB2f	0,00	0,00	6,43	5,08	22,49	0,00	11,99	0,00	29,03	0,00	14,83	1,56	3,71	4,81	0,51	0,000	0,000	0,00	0,65
HF606	AOBp	0,00	0,00	15,18	23,44	17,81	0,00	6,62	0,00	16,62	0,00	8,49	0,75	4,46	3,23	0,16	0,000	0,000	0,00	0,71
HF607	NB1f	0,00	0,00	6,19	11,00	28,76	0,00	3,86	0,00	24,59	0,00	16,23	1,28	2,48	5,16	0,18	0,000	0,000	0,00	0,66
HF608-1	ONm	0,00	0,00	5,17	0,00	21,39	1,73	13,99	0,00	30,33	0,00	14,35	1,21	6,36	5,24	0,75	0,000	0,000	0,00	0,74
HF608-2	NB2p	0,00	0,00	6,17	8,50	21,42	0,00	11,94	0,00	28,62	0,00	15,14	1,07	2,69	4,25	0,45	0,000	0,000	0,00	0,70
HF608-3	AOBp	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0,72
HF608-4	AOBm	0,00	0,00	10,33	23,93	20,85	0,00	1,59	0,00	18,49	0,00	7,25	1,06	7,52	4,02	0,13	0,000	0,000	0,00	0,74
HF609	NB2m	0,00	0,00	6,43	2,98	22,41	0,00	11,82	0,00	28,87	0,00	13,25	1,17	7,93	5,17	0,56	0,000	0,000	0,00	0,77
HF611	NB1f	0,00	0,00	15,47	16,14	16,12	0,00	15,43	0,00	21,20	0,00	10,02	1,00	0,48	3,83	0,33	0,000	0,000	0,00	0,50
HF612	NB2p	0,00	0,00	5,69	9,94	20,14	0,00	10,54	0,00	28,10	0,00	16,79	1,42	3,24	4,12	0,40	0,000	0,000	0,00	0,70
HF613	NB2p	0.00	0,00	7,40	2,45	17,48	0,00	16,22	0,00	29,16	0,00	16,56	1,74	3,86	5,06	0,62	0,000	0,000	0,00	0,69

 Tabelle 1c: CIPW-Norm der Hocheifel-Proben ohne CO2 berechnet.

		SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5	H ₂ O	CO ₂	Summe	CaO/Al ₂ O ₃	P_2O_5/Al_2O_3	Ti	Κ
E-1	PHO	54,54	0,31	20,08	1,48	0,50	0,11	1,25	1,57	8,63	4,42	0,14	4,67	0,44	98,14	0,08	0,01	1852	36650
E-1A	PHO	54,40	0,40	19,93	1,09	1,24	0,12	1,40	1,79	9,65	4,44	0,17	2,73	0,04	97,40	0,09	0,01	2398	36866
E-10	ONp	39,37	3,20	10,68	4,39	7,61	0,18	10,83	11,51	3,75	0,89	0,71	2,11	3,62	98,84	1,08	0,07	19154	7421
E-11	NB2p	41,18	3,35	11,36	4,73	7,65	0,18	11,18	11,66	3,57	0,97	0,67	2,35	0,52	99,36	1,03	0,06	20101	8011
E-12	ONm	40,21	3,33	11,03	3,86	7,81	0,17	12,46	11,26	3,89	0,84	0,63	1,50	2,46	99,45	1,02	0,06	19975	6956
E-13	MONm	35,86	2,92	10,39	4,56	7,08	0,18	11,23	15,03	3,03	0,28	1,05	4,40	2,53	98,54	1,45	0,10	17481	2333
E-21	AOBp	42,07	2,12	13,37	3,18	6,35	0,15	9,33	10,74	2,42	1,36	0,64	6,47	1,07	99,27	0,80	0,05	12715	11315
E-22	NB1f	41,68	1,99	13,89	1,80	5,92	0,14	6,47	11,47	2,24	2,17	0,59	5,51	5,34	99,22	0,83	0,04	11948	18014
E-111	NTE1	44,02	2,85	15,96	2,93	5,84	0,16	5,32	8,46	4,67	2,04	1,35	4,57	1,00	99,17	0,53	0,08	17080	16943
J-2	AOBf	43,26	2,03	11,78	2,65	7,00	0,14	6,84	11,10	2,90	1,08	0,47	2,19	8,34	99,78	0,94	0,04	12170	8957
M-2-1A	NE	38,93	2,27	12,63	3,25	6,90	0,16	6,13	16,49	1,58	0,63	0,62	5,75	4,57	99,91	1,31	0,05	13609	5230
M-2-1B	AOBp	42,41	2,18	12,21	4,58	6,22	0,14	8,08	12,84	1,69	1,32	0,60	5,00	2,48	99,76	1,05	0,05	13087	10991
M-2-2	NB1m	40,54	3,19	10,80	2,81	8,19	0,18	12,29	11,70	1,88	1,40	0,66	4,43	0,27	98,34	1,08	0,06	19124	11622
M-2-3A	AOBp	45,94	1,99	13,00	2,81	8,19	0,17	10,16	10,66	2,57	1,41	0,56	1,88	0,10	99,44	0,82	0,04	11900	11713
N-2-3B	AOBp	46,15	1,81	12,93	3,19	7,74	0,18	11,03	10,66	2,77	1,26	0,47	1,53	0,10	99,82	0,82	0,04	10851	10460
N-2-3C	AOBp	45,87	1,81	12,76	3,14	7,82	0,18	11,36	10,69	2,73	1,18	0,48	1,66	0,11	99,79	0,84	0,04	10851	9796
N-2-3D	NB2p	42,23	2,23	12,44	1,65	8,74	0,20	11,63	11,71	3,23	1,45	0,99	3,45	0,13	100,08	0,94	0,08	13369	12037
O-2A	MONf	38,88	2,68	12,01	3,33	7,63	0,18	8,22	14,26	3,37	1,14	0,90	3,69	4,40	100,69	1,19	0,08	16037	9463
O-2B	NE	39,13	2,94	13,45	2,70	7,51	0,18	6,39	15,13	2,75	0,84	1,02	5,91	2,40	100,35	1,12	0,08	17625	6973
O-2C	ONf	39,43	2,70	12,28	3,44	7,71	0,19	8,74	12,86	3,91	0,76	0,95	3,70	3,75	100,40	1,05	0,08	16163	6301
O-2D	ONf	39,21	2,36	13,26	2,63	7,63	0,18	7,50	13,19	3,70	0,94	1,05	5,80	2,81	100,26	1,00	0,08	14136	7770
O-2F	ONf	39,15	2,63	12,01	4,02	6,83	0,16	8,02	14,59	3,28	0,83	0,91	5,01	3,06	100,50	1,22	0,08	15767	6898
0-6	NB2f	43,66	2,45	13,95	3,12	7,91	0,19	8,94	10,01	4,11	1,85	1,00	2,69	0,11	99,99	0,72	0,07	14688	15357
O-6A	NB2f	43,40	2,49	13,81	3,06	7,88	0,19	8,98	10,34	4,09	1,95	1,00	2,93	0,12	100,25	0,75	0,07	14952	16154
O-6B	NB2f	43,58	2,50	13,80	2,68	8,26	0,19	9,24	10,08	4,49	2,25	1,00	1,82	0,24	100,13	0,73	0,07	15011	18636
O-7	NB1p	42,74	2,28	13,41	3,19	7,00	0,17	9,25	10,90	3,38	1,19	0,78	5,37	0,96	100,62	0,81	0,06	13663	9870
O-7Th	NB1p	42,52	2,34	13,47	2,81	7,99	0,18	9,52	10,59	3,36	1,31	0,80	5,23	0,63	100,72	0,79	0,06	13998	10841
O-8	NB2f	43,34	2,50	13,87	3,18	7,88	0,19	8,77	9,91	4,59	2,41	0,99	2,48	0,10	100,21	0,71	0,07	14993	19965
O-8A	NB2f	43,49	2,54	13,74	3,18	7,77	0,19	9,28	10,10	4,38	1,46	0,98	2,93	0,13	100,17	0,73	0,07	15197	12087

 Tabelle 2a: Hauptelemente der Heldburger Gangschar-Proben.

		SiO ₂	TiO ₂	Al_2O_3	Fe ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5	H ₂ O	CO_2	Summe	CaO/Al ₂ O ₃	P_2O_5/Al_2O_3	Ti	K
O-8C	ONm	35,77	3,25	9,58	3,83	8,58	0,20	14,65	12,33	1,25	0,42	1,09	7,61	1,15	99,71	1,29	0,11	19472	3462
O-8D	NE	38,54	2,33	12,91	1,33	7,82	0,19	5,62	15,41	3,95	1,22	0,91	5,03	4,96	100,22	1,19	0,07	13980	10086
O-10	NB2f	43,57	2,49	13,98	2,84	8,12	0,18	8,95	10,14	4,52	1,46	0,99	2,52	0,11	99,88	0,73	0,07	14928	12153
O-11	NB2f	44,42	2,36	13,82	3,13	7,58	0,18	9,31	9,95	4,64	1,26	0,89	2,87	0,16	100,56	0,72	0,06	14136	10426
Q-1	MONm	38,78	2,52	10,39	3,28	7,73	0,17	12,99	12,79	4,10	0,67	0,81	2,26	3,44	99,92	1,23	0,08	15093	5595
Q-5	AOBf	41,91	2,25	12,67	3,54	6,70	0,15	7,69	10,91	2,67	1,28	0,63	2,26	7,60	100,26	0,86	0,05	13471	10634
Q-6	OMNm	33,54	2,34	8,61	4,16	6,85	0,18	13,76	12,56	3,76	0,35	0,94	n.d	n.d	87,52	1,46	0,11	14028	2905
Q-7	MONm	34,81	2,56	9,48	2,76	8,00	0,18	12,73	13,26	3,55	0,89	0,88	2,01	7,84	98,94	1,40	0,09	15323	7405
Q-9B	MONm	33,72	2,59	9,48	3,83	6,83	0,16	12,84	13,81	3,41	0,57	0,83	2,19	7,91	98,16	1,46	0,09	15521	4690
Q-10	ONp	39,42	3,04	10,77	3,99	7,75	0,19	11,48	11,67	4,12	0,79	0,78	2,20	3,50	99,69	1,08	0,07	18195	6558
Q-12	ONp	39,91	3,25	11,01	3,76	8,39	0,19	11,76	12,05	3,28	0,59	0,81	4,30	0,28	99,57	1,09	0,07	19472	4889
Q-13	MONm	31,83	2,88	9,04	3,27	8,26	0,19	14,11	12,50	2,23	1,16	1,01	3,00	10,00	99,48	1,38	0,11	17260	9605
Q-18-2	NTE1	44,79	2,60	15,35	1,83	7,49	0,17	5,35	8,99	4,79	2,66	1,27	2,02	2,69	100,00	0,59	0,08	15596	22101
Q-20	MONm	35,39	2,70	9,62	3,29	7,48	0,17	14,04	12,78	3,49	1,04	0,91	2,76	7,20	100,86	1,33	0,09	16198	8600
Q-20A	MONm	36,77	2,72	9,22	4,48	6,96	0,18	14,21	12,49	2,08	0,83	0,84	3,44	6,79	101,00	1,35	0,09	16306	6923
Q-21	NB1f	39,56	3,45	10,93	2,96	9,17	0,21	10,72	12,37	2,07	0,75	0,94	5,75	0,36	99,23	1,13	0,09	20683	6193
Q-22	ONm	37,43	2,99	9,97	4,31	6,90	0,17	12,79	10,85	2,93	1,45	0,59	2,14	7,72	100,24	1,09	0,06	17937	12012
Q-23	MONm	36,53	3,01	9,60	4,30	6,86	0,17	12,71	10,97	2,63	1,43	0,56	1,59	9,72	100,08	1,14	0,06	18061	11887
Q-24	ONm	36,88	2,99	9,88	3,69	7,47	0,17	12,58	10,70	2,74	1,42	0,56	1,28	10,56	100,91	1,08	0,06	17931	11780
Q-25	MONp	37,06	2,77	10,12	3,47	7,91	0,18	11,83	13,59	2,86	0,60	0,88	4,53	4,64	100,44	1,34	0,09	16612	4989
Q-200	MONm	35,90	2,77	9,96	4,51	6,42	0,17	13,53	12,82	3,05	0,84	0,86	3,37	7,26	101,47	1,29	0,09	16612	7006
R-1	NB1p	43,66	2,47	12,31	3,19	7,75	0,19	10,83	10,63	3,12	1,20	0,92	2,67	0,46	99,39	0,86	0,07	14796	9978
R-2	NTE1	44,28	2,91	15,33	3,30	7,75	0,17	6,20	9,41	4,06	2,19	1,43	1,70	0,70	99,44	0,61	0,09	17451	18213
R-3	NTE1	43,74	2,93	15,22	3,07	7,16	0,17	5,73	9,67	4,96	2,30	1,66	3,22	0,35	100,17	0,64	0,11	17571	19093
R-5	NB1p	44,88	2,27	13,41	3,23	7,03	0,16	9,07	9,55	4,00	1,74	0,79	0,78	3,05	99,95	0,71	0,06	13603	14436

 Tabelle 2a: Hauptelemente der Heldburger Gangschar-Proben.

131

		SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5	H ₂ O	CO_2	Summe	CaO/Al ₂ O ₃	P ₂ O ₅ /Al ₂ O ₃	Ti	K
R-7	AOBf	43,91	2,20	13,29	2,33	7,61	0,18	7,23	10,16	2,64	1,65	0,65	3,27	4,21	99,32	0,76	0,05	13171	13705
S-7N	MONm	38,87	2,94	10,19	3,28	8,57	0,20	13,81	12,47	3,04	0,72	0,86	2,54	1,57	99,06	1,22	0,08	17619	5985
S-21	MONm	36,54	2,96	9,72	4,46	7,50	0,20	11,70	11,99	3,04	1,28	0,79	2,30	7,17	99,64	1,23	0,08	17739	10659
S-22	ONm	41,02	2,79	10,16	3,15	8,48	0,20	15,02	12,69	2,62	0,56	0,77	3,01	0,23	100,70	1,25	0,08	16732	4682
S-30	NB1f	43,50	2,46	12,23	2,13	8,83	0,20	9,64	10,75	3,37	1,02	0,92	2,86	2,24	100,13	0,88	0,07	14724	8451
S-50	MONp	35,84	2,47	8,97	2,36	8,87	0,20	12,76	13,09	3,15	1,14	0,90	2,51	7,06	99,33	1,46	0,10	14820	9463
U-1	MONp	34,68	2,87	9,10	2,19	9,18	0,23	13,26	12,38	2,29	0,74	1,32	6,25	4,56	99,05	1,36	0,15	17206	6143
U-2	MONp	35,27	2,67	9,52	4,31	7,50	0,18	11,05	14,95	2,51	1,31	0,97	4,23	4,77	99,23	1,57	0,10	15977	10883
U-3A	OMNm	39,35	2,92	10,03	3,91	7,93	0,20	14,64	14,21	2,98	1,31	0,87	1,42	0,16	99,93	1,42	0,09	17505	10875
U-3A2	OMNm	39,34	2,95	10,41	3,65	8,24	0,21	14,17	13,79	3,28	1,49	0,91	1,55	0,24	100,23	1,32	0,09	17685	12352
U-3A4	OMNm	39,37	2,86	9,79	3,65	8,24	0,20	14,75	13,21	3,28	1,39	0,84	1,48	0,35	99,42	1,35	0,09	17158	11564
U-3A5	OMNm	39,21	2,90	10,09	3,81	7,97	0,21	14,30	13,61	3,05	1,41	0,87	1,93	0,27	99,63	1,35	0,09	17386	11721
U-N4	MONf	36,17	2,70	9,31	2,82	8,82	0,20	9,97	16,26	3,32	1,44	0,98	2,20	5,57	99,76	1,75	0,11	16187	11946

 Tabelle 2a: Hauptelemente der Heldburger Gangschar-Proben.

	V	Cr	Со	Ni	Zn	Rb	Sr	Y	Zr	Nb	Ba	La	Ce
E-1	18	28	19	40	86	215	389	23	335	334	537	53	203
E-1A	21	38	5	30	92	231	390	22	358	337	549	56	197
E-10	272	278	54	251	86	17	968	25	247	78	724	42	161
E-11	171	19	18	38	52	73	1439	31	216	130	1266	81	232
E-12	302	332	57	279	87	11	797	22	232	75	484	44	145
E-13	300	285	49	192	79	14	2092	31	218	106	890	68	191
E-21	177	159	42	157	79	41	952	21	175	112	587	39	144
E-22	195	127	36	76	76	66	741	19	187	119	556	37	158
E-111	166	17	20	37	53	73	1390	31	218	131	1304	80	227
J-2	196	286	48	195	118	25	672	24	157	47	884	26	8
M-2-1A	239	264	52	287	94	14	1166	28	169	72	1916	45	50
M-2-1B	199	281	46	237	84	34	1061	24	162	68	809	40	143
M-2-2	298	312	58	266	92	33	794	24	267	72	552	43	54
M-2-3A	176	220	41	147	64	44	851	24	127	55	511	37	138
N-2-3B	172	290	49	207	76	34	867	24	136	49	497	34	16
N-2-3C	179	295	50	216	77	33	861	22	123	49	468	37	93
N-2-3D	207	332	47	231	79	53	1521	33	219	112	1058	85	120
O-2A	268	300	54	228	87	25	1100	30	228	95	1069	60	70
O-2B	294	241	37	163	95	17	2050	33	225	112	866	61	88
O-2C	255	286	51	248	85	38	1069	29	232	101	943	60	77
O-2D	214	180	41	146	87	23	1254	28	199	115	1930	64	86
O-2F	240	261	48	227	79	27	1176	26	215	93	1529	51	73

 Tabelle 2b:
 Spurenelemente der Heldburger Gangschar-Proben.

	TiO ₂	K ₂ O	Ti	K	Zr/Nb	Y/Nb	Sr/Nb	Ti/Zr	Rb/K	Ba/Rb	Zr/TiO ₂ *0.001
E-1	0,31	4,42	1852	36650	1,00	0,07	1,16	0,06	5,87	2,50	1,08
E-1A	0,40	4,44	2398	36866	1,06	0,07	1,16	0,07	6,27	2,38	0,90
E-10	3,20	0,89	19154	7421	3,17	0,32	12,41	0,78	2,29	42,59	0,08
E-11	3,35	0,97	20101	8011	1,66	0,24	11,07	0,93	9,11	17,34	0,06
E-12	3,33	0,84	19975	6956	3,09	0,29	10,63	0,86	1,58	44,00	0,07
E-13	2,92	0,28	17481	2333	2,06	0,29	19,74	0,80	6,00	63,57	0,07
E-21	2,12	1,36	12715	11315	1,56	0,19	8,50	0,73	3,62	14,32	0,08
E-22	1,99	2,17	11948	18014	1,57	0,16	6,23	0,64	3,66	8,42	0,09
E-111	2,85	2,04	17080	16943	1,66	0,24	10,61	0,78	4,31	17,86	0,08
J-2	2,03	1,08	12170	8957	3,34	0,51	14,30	0,78	2,79	35,36	0,08
M-2-1A	2,27	0,63	13609	5230	2,35	0,39	16,19	0,81	2,68	136,86	0,07
M-2-1B	2,18	1,32	13087	10991	2,38	0,35	15,60	0,81	3,09	23,79	0,07
M-2-2	3,19	1,40	19124	11622	3,71	0,33	11,03	0,72	2,84	16,73	0,08
M-2-3A	1,99	1,41	11900	11713	2,31	0,44	15,47	0,94	3,76	11,61	0,06
N-2-3B	1,81	1,26	10851	10460	2,78	0,49	17,69	0,80	3,25	14,62	0,08
N-2-3C	1,81	1,18	10851	9796	2,51	0,45	17,57	0,88	3,37	14,18	0,07
N-2-3D	2,23	1,45	13369	12037	1,96	0,29	13,58	0,61	4,40	19,96	0,10
O-2A	2,68	1,14	16037	9463	2,40	0,32	11,58	0,70	2,64	42,76	0,09
O-2B	2,94	0,84	17625	6973	2,01	0,29	18,30	0,78	2,44	50,94	0,08
O-2C	2,70	0,76	16163	6301	2,30	0,29	10,58	0,70	6,03	24,82	0,09
O-2D	2,36	0,94	14136	7770	1,73	0,24	10,90	0,71	2,96	83,91	0,08
O-2F	2,63	0,83	15767	6898	2,31	0,28	12,65	0,73	3,91	56,63	0,08
0-6	2,45	1,85	14688	15357	2,02	0,23	11,86	0,66	3,52	18,89	0,09

 Tabelle 2b:
 Spurenelemente der Heldburger Gangschar-Proben.
	V	Cr	Co	Ni	Zn	Rb	Sr	Y	Zr	Nb	Ba	La	Ce
O-6A	210	148	47	139	89	51	1362	29	236	116	1056	71	74
O-6B	205	154	53	145	93	70	1203	29	236	117	993	65	84
O-7	187	184	44	160	85	35	1070	24	224	99	830	50	45
O-7Th	187	178	41	146	82	40	1220	27	217	99	884	52	51
O-8	199	143	43	133	89	80	1230	30	237	116	1016	64	78
O-8A	201	161	40	147	88	53	1412	30	312	111	1052	64	80
O-8C	291	271	55	218	97	16	1292	33	297	113	1945	71	104
O-8D	212	130	37	114	96	37	1720	34	247	123	1531	103	156
O-10	195	148	39	139	84	48	1604	28	227	117	897	57	182
O-11	196	169	41	157	83	26	1076	27	216	103	764	55	168
Q-1	256	318	51	283	83	14	962	25	200	89	649	54	113
Q-5	204	192	39	139	90	34	793	24	161	61	573	33	67
Q-6	259	359	56	307	83	18	1267	24	202	88	768	55	65
Q-7	289	368	55	286	96	24	935	25	204	92	685	58	172
Q-9B	251	381	57	324	77	18	729	23	196	85	1247	46	171
Q-10	289	294	59	231	96	13	1016	29	241	92	718	58	125
Q-12	283	277	52	216	84	8	983	28	246	90	808	60	126
Q-13	311	356	58	346	94	38	1100	32	270	105	1009	74	153
Q-18-2	191	100	27	100	81	77	1426	32	246	140	1011	78	221
Q-20	276	328	56	297	82	32	1022	25	245	86	706	57	84
Q-20A	287	411	63	435	87	27	1048	27	246	79	677	55	74
Q-21	281	284	60	280	91	29	814	26	284	84	447	51	177
Q-22	293	358	55	237	87	37	731	22	228	67	654	39	43

 Tabelle 2b:
 Spurenelemente der Heldburger Gangschar-Proben.

	TiO ₂	K ₂ O	Ti	К	Zr/Nb	Y/Nb	Sr/Nb	Ti/Zr	Rb/K	Ba/Rb	Zr/TiO ₂ *0.001
0-6A	2,49	1,95	14952	16154	2,03	0,25	11,74	0,63	3,16	20,71	0,09
O-6B	2,50	2,25	15011	18636	2,02	0,25	10,28	0,64	3,76	14,19	0,09
O-7	2,28	1,19	13663	9870	2,26	0,24	10,81	0,61	3,55	23,71	0,10
O-7Th	2,34	1,31	13998	10841	2,19	0,27	12,32	0,65	3,69	22,10	0,09
O-8	2,50	2,41	14993	19965	2,04	0,26	10,60	0,63	4,01	12,70	0,09
O-8A	2,54	1,46	15197	12087	2,81	0,27	12,72	0,49	4,38	19,85	0,12
O-8C	3,25	0,42	19472	3462	2,63	0,29	11,43	0,66	4,62	121,56	0,09
O-8D	2,33	1,22	13980	10086	2,01	0,28	13,98	0,57	3,67	41,38	0,11
O-10	2,49	1,46	14928	12153	1,94	0,24	13,71	0,66	3,95	18,69	0,09
0-11	2,36	1,26	14136	10426	2,10	0,26	10,45	0,65	2,49	29,38	0,09
Q-1	2,52	0,67	15093	5595	2,25	0,28	10,81	0,75	2,50	46,36	0,08
Q-5	2,25	1,28	13471	10634	2,64	0,39	13,00	0,84	3,20	16,85	0,07
Q-6	2,34	0,35	14028	2905	2,30	0,27	14,40	0,69	6,20	42,67	0,09
Q-7	2,56	0,89	15323	7405	2,22	0,27	10,16	0,75	3,24	28,54	0,08
Q-9B	2,59	0,57	15521	4690	2,31	0,27	8,58	0,79	3,84	69,28	0,08
Q-10	3,04	0,79	18195	6558	2,62	0,32	11,04	0,75	1,98	55,23	0,08
Q-12	3,25	0,59	19472	4889	2,73	0,31	10,92	0,79	1,64	101,00	0,08
Q-13	2,88	1,16	17260	9605	2,57	0,30	10,48	0,64	3,96	26,55	0,09
Q-18-2	2,60	2,66	15596	22101	1,76	0,23	10,19	0,63	3,48	13,13	0,09
Q-20	2,70	1,04	16198	8600	2,85	0,29	11,88	0,66	3,72	22,06	0,09
Q-20A	2,72	0,83	16306	6923	3,11	0,34	13,27	0,66	3,90	25,07	0,09
Q-21	3,45	0,75	20683	6193	3,38	0,31	9,69	0,73	4,68	15,41	0,08
Q-22	2,99	1,45	17937	12012	3,40	0,33	10,91	0,79	3,08	17,68	0,08

 Tabelle 2b:
 Spurenelemente der Heldburger Gangschar-Proben.

	V	Cr	Co	Ni	Zn	Rb	Sr	Y	Zr	Nb	Ba	La	Ce
Q-23	292	380	55	248	83	35	662	22	232	61	539	30	30
Q-24	292	337	57	225	88	38	830	22	230	64	539	39	33
Q-25	299	356	55	320	83	23	1175	27	241	89	714	58	80
Q-200	292	344	55	268	81	24	1102	25	237	81	695	59	76
R-1	205	327	44	220	81	30	1142	27	205	90	755	59	168
R-2	220	94	30	91	91	68	1620	36	206	134	1139	82	152
R-3	254	64	31	79	81	59	1527	35	210	126	980	84	212
R-5	196	233	42	177	86	44	937	25	192	86	725	45	90
R-7	180	159	43	129	85	45	836	22	179	85	944	38	147
S-7N	307	445	58	310	93	18	1056	25	251	85	674	54	175
S-21	314	330	54	240	95	37	1070	28	268	89	705	61	124
S-22	302	564	59	378	81	18	972	28	216	87	737	57	121
S-30	204	318	46	266	105	28	1119	29	213	90	814	55	110
S-50	242	459	60	477	88	33	1091	28	211	88	740	73	212
U-1	282	312	50	220	94	24	1520	33	271	122	992	84	221
U-2	263	251	53	246	87	33	2003	26	189	91	784	57	191
U-3A	307	584	51	295	81	40	1353	29	226	100	740	66	185
U-3A2	316	522	49	270	86	45	1333	30	236	118	921	73	201
U-3A4	299	580	52	288	78	40	1045	27	220	97	811	66	202
U-3A5	315	560	53	291	99	41	1294	29	224	107	809	70	209
U-N4	276	471	49	275	74	40	1174	27	225	95	794	65	209

 Tabelle 2b:
 Spurenelemente der Heldburger Gangschar-Proben.

	TiO ₂	K ₂ O	Ti	K	Zr/Nb	Y/Nb	Sr/Nb	Ti/Zr	Rb/K	Ba/Rb	Zr/TiO ₂ *0.001
Q-23	3,01	1,43	18061	11887	3,80	0,36	10,85	0,78	2,94	15,40	0,08
Q-24	2,99	1,42	17931	11780	3,59	0,34	12,97	0,78	3,23	14,18	0,08
Q-25	2,77	0,60	16612	4989	2,71	0,30	13,20	0,69	4,61	31,04	0,09
Q-200	2,77	0,84	16612	7006	2,93	0,31	13,60	0,70	3,43	28,96	0,09
R-1	2,47	1,20	14796	9978	2,28	0,30	12,69	0,72	3,01	25,17	0,08
R-2	2,91	2,19	17451	18213	1,54	0,27	12,09	0,85	3,73	16,75	0,07
R-3	2,93	2,30	17571	19093	1,67	0,28	12,12	0,84	3,09	16,61	0,07
R-5	2,27	1,74	13603	14436	2,23	0,29	10,90	0,71	3,05	16,48	0,08
R-7	2,20	1,65	13171	13705	2,11	0,26	9,84	0,74	3,28	20,98	0,08
S-7N	2,94	0,72	17619	5985	2,95	0,29	12,42	0,70	3,01	37,44	0,09
S-21	2,96	1,28	17739	10659	3,01	0,31	12,02	0,66	3,47	19,05	0,09
S-22	2,79	0,56	16732	4682	2,48	0,32	11,17	0,77	3,84	40,94	0,08
S-30	2,46	1,02	14724	8451	2,37	0,32	12,43	0,69	3,31	29,07	0,09
S-50	2,47	1,14	14820	9463	2,40	0,32	12,40	0,70	3,49	22,42	0,09
U-1	2,87	0,74	17206	6143	2,22	0,27	12,46	0,63	3,91	41,33	0,09
U-2	2,67	1,31	15977	10883	2,08	0,29	22,01	0,85	3,03	23,76	0,07
U-3A	2,92	1,31	17505	10875	2,26	0,29	13,53	0,77	3,68	18,50	0,08
U-3A2	2,95	1,49	17685	12352	2,00	0,25	11,30	0,75	3,64	20,47	0,08
U-3A4	2,86	1,39	17158	11564	2,27	0,28	10,77	0,78	3,46	20,28	0,08
U-3A5	2,90	1,41	17386	11721	2,09	0,27	12,09	0,78	3,50	19,73	0,08
U-N4	2,70	1,44	16187	11946	2,37	0,28	12,36	0,72	3,35	19,85	0,08

 Tabelle 2b:
 Spurenelemente der Heldburger Gangschar-Proben.

		qz	or	ab	an	lc	ne	cs	di	hy	ol	ap	mt	il	ne`	qz`	hy`	cs	Mg#
E-1	РНО	0,00	26,31	35,58	0,00	0,00	23,76	0,00	3,22	0,00	1,19	0,33	0,99	0,59	0,28	0,00	0,00	0,00	0,82
E-1A	РНО	0,00	26,55	28,48	0,00	0,00	27,24	0,00	6,15	0,00	1,67	0,41	0,00	0,77	0,33	0,00	0,00	0,00	0,07
E-10	ONp	0,00	5,67	3,27	10,44	0,00	16,61	0,00	36,36	0,00	12,44	1,81	6,84	6,51	0,65	0,00	0,00	0,00	0,72
E-11	NB2p	0,00	5,91	5,66	12,58	0,00	13,86	0,00	33,91	0,00	12,75	1,64	7,11	6,60	0,55	0,00	0,00	0,00	0,72
E-12	ONm	n.d	n.d	n.d	n.d	n.d	n.d	n.d	n.d	n.d	n.d	n.d	n.d	n.d	0,70	n.d	n.d	n.d	0,74
E-13	MONm	0,00	0,00	0,00	15,74	1,42	14,50	5,25	32,40	0,00	14,13	2,70	7,19	6,02	1,00	0,00	0,00	0,25	0,74
E-21	AOBp	0,00	8,78	13,59	23,59	0,00	4,66	0,00	23,79	0,00	14,46	1,66	5,02	4,39	0,17	0,00	0,00	0,00	0,72
E-22	NB1f	0,00	14,51	8,12	24,34	0,00	7,14	0,00	28,72	0,00	8,33	1,58	2,94	4,28	0,24	0,00	0,00	0,00	0,66
E-111	NTE1	0,00	12,88	22,84	17,74	0,00	10,47	0,00	14,15	0,00	8,28	3,40	4,55	5,78	0,23	0,00	0,00	0,00	0,62
J-2	AOBf	0,00	6,96	19,62	17,47	0,00	4,70	0,00	32,87	0,00	8,42	1,21	4,29	4,27	0,15	0,00	0,00	0,00	0,64
M-2-1A	NE	0,00	1,40	0,00	28,45	2,18	8,05	0,00	46,99	0,00	1,07	1,47	4,71	4,31	0,88	0,00	0,00	0,00	0,61
M-2-1B	AOBp	0,00	8,47	12,80	23,69	0,00	1,39	0,00	32,56	0,00	7,76	1,54	7,19	4,49	0,06	0,00	0,00	0,00	0,70
M-2-2	NB1m	0,00	8,72	4,88	17,84	0,00	6,32	0,00	30,39	0,00	16,31	1,66	7,40	6,38	0,32	0,00	0,00	0,00	0,74
M-2-3A	AOBp	0,00	8,55	17,29	20,36	0,00	2,64	0,00	24,25	0,00	17,52	1,36	4,18	3,79	0,09	0,00	0,00	0,00	0,69
N-2-3B	AOBp	0,00	7,60	16,33	19,57	0,00	4,05	0,00	25,04	0,00	18,05	1,15	4,71	3,52	0,14	0,00	0,00	0,00	0,72
N-2-3C	AOBp	0,00	7,09	16,41	19,55	0,00	3,84	0,00	25,12	0,00	18,71	1,16	4,64	3,51	0,14	0,00	0,00	0,00	0,72
N-2-3D	NB2p	0,00	8,84	2,00	15,81	0,00	14,17	0,00	30,34	0,00	19,58	2,40	2,49	4,40	0,57	0,00	0,00	0,00	0,70
O-2A	MONf	0,00	0,00	0,00	15,53	5,69	16,50	0,66	41,67	0,00	5,67	2,30	6,22	5,48	1,00	0,00	0,00	0,03	0,66
O-2B	NE	0,00	4,49	0,00	24,09	0,74	13,28	0,00	40,46	0,00	3,82	2,62	4,25	6,06	0,76	0,00	0,00	0,00	0,60
O-2C	Onf	0,00	4,82	2,56	14,86	0,00	17,71	0,00	37,45	0,00	8,15	2,41	6,38	5,50	0,71	0,00	0,00	0,00	0,67
O-2D	ONf	0,00	6,02	1,46	18,38	0,00	17,60	0,00	36,45	0,00	7,14	2,70	5,18	4,88	0,70	0,00	0,00	0,00	0,64
O-2F	ONf	0,00	3,61	0,00	17,01	1,33	16,06	0,00	43,34	0,00	3,54	2,34	7,20	5,39	0,83	0,00	0,00	0,00	0,68
O-6	NB2f	0,00	11,16	10,59	14,79	0,00	13,49	0,00	23,73	0,00	14,31	2,45	4,64	4,86	0,38	0,00	0,00	0,00	0,67
O-6A	NB2f	0,00	11,67	8,42	14,50	0,00	14,41	0,00	25,58	0,00	13,75	2,40	4,50	4,81	0,42	0,00	0,00	0,00	0,67
O-6B	NB2f	0,00	13,52	4,72	11,23	0,00	18,26	0,00	26,58	0,00	14,41	2,42	3,88	4,85	0,50	0,00	0,00	0,00	0,67
O-7	NB1p	0,00	7,45	12,64	19,08	0,00	9,48	0,00	26,23	0,00	13,59	1,84	4,59	4,59	0,32	0,00	0,00	0,00	0,70
O-7Th	NB1p	0,00	8,02	11,77	19,15	0,00	9,88	0,00	25,03	0,00	15,19	1,97	4,32	4,61	0,33	0,00	0,00	0,00	0,70
O-8	NB2f	0,00	14,45	4,20	10,85	0,00	18,99	0,00	26,62	0,00	13,70	2,39	3,92	4,83	0,50	0,00	0,00	0,00	0,66
O-8A	NB2f	0,00	8,75	11,86	14,38	0,00	13,93	0,00	24,66	0,00	14,48	2,37	4,69	4,90	0,40	0,00	0,00	0,00	0,68

0,68

 Tabelle 2c1: CIPW-Norm der Heldburger Gangschar-Proben ohne CO2 berechnet.

		qz	or	ab	an	lc	ne	cs	di	hy	ol	ap	mt	il	ne`	qz`	hy`	cs	Mg#
O-8C	ONm	0,00	0,59	0,00	21,44	1,61	6,09	0,00	30,26	0,00	24,22	2,78	6,11	6,63	0,93	0,00	0,00	0,00	0,75
O-8D	NTE3	0,00	0,00	0,00	16,14	6,10	19,41	3,72	40,70	0,00	3,33	2,34	3,16	4,80	1,00	0,00	0,00	0,13	0,56
O-10	NB2f	0,00	9,01	10,94	13,92	0,00	15,28	0,00	24,93	0,00	14,28	2,45	4,28	4,93	0,43	0,00	0,00	0,00	0,66
O-11	NB2f	0,00	7,61	14,37	13,62	0,00	13,90	1,57	24,87	0,00	14,22	2,15	4,65	4,59	0,39	0,00	0,00	0,10	0,69
Q-1	MONm	0,00	0,00	0,00	9,17	3,46	18,89	1,57	36,92	0,00	15,31	2,12	6,53	5,04	1,00	0,00	0,00	0,07	0,75
Q-5	AOBf	0,00	8,37	15,80	20,86	0,00	4,92	0,00	27,57	0,00	10,45	1,64	5,67	4,72	0,17	0,00	0,00	0,00	0,67
Q-6	MONm	0,00	0,00	0,00	7,32	1,87	18,71	7,52	25,72	0,00	23,33	2,55	6,89	5,08	1,00	0,00	0,00	0,27	0,78
Q-7	MONm	0,00	0,00	0,00	8,74	4,62	17,56	8,29	24,98	0,00	21,25	2,33	6,12	5,42	1,00	0,00	0,00	0,27	0,74
Q-9B	MONm	0,00	0,00	0,00	10,77	2,96	16,95	9,35	23,87	0,00	19,98	2,22	7,72	5,56	1,00	0,00	0,00	0,32	0,77
Q-10	ONp	0,00	4,96	1,93	9,26	0,00	18,85	0,00	37,02	0,00	12,66	1,97	7,13	6,12	0,73	0,00	0,00	0,00	0,73
Q-12	ONp	0,00	3,66	4,09	14,38	0,00	13,52	0,00	34,25	0,00	15,86	2,01	5,74	6,49	0,64	0,00	0,00	0,00	0,71
Q-13	MONm	0,00	0,00	0,00	13,09	6,18	11,64	10,33	13,75	0,00	28,32	2,75	7,23	6,30	1,00	0,00	0,00	0,37	0,75
Q-18-2	NTE1	0,00	16,50	15,08	13,27	0,00	14,71	0,00	20,17	0,00	8,64	3,14	3,31	5,18	0,32	0,00	0,00	0,00	0,56
Q-20	MONm	0,00	0,00	0,00	8,82	5,26	16,95	7,39	23,86	0,00	22,47	2,36	6,75	5,62	1,00	0,00	0,00	0,25	0,77
Q-20A	MONm	0,00	0,00	0,00	14,91	4,25	10,27	1,16	34,29	0,00	19,85	2,18	7,15	5,68	1,00	0,00	0,00	0,07	0,78
Q-21	NB1f	0,00	4,73	7,11	19,70	0,00	6,30	0,00	31,62	0,00	15,89	2,39	5,26	7,03	0,35	0,00	0,00	0,00	0,68
Q-22	ONm	0,00	2,03	0,00	11,17	5,71	14,58	0,00	34,89	0,00	16,79	1,52	6,92	6,29	0,91	0,00	0,00	0,00	0,77
Q-23	MONm	0,00	0,00	0,00	11,82	7,37	13,26	0,14	35,44	0,00	16,95	1,48	7,03	6,44	1,00	0,00	0,00	0,01	0,77
Q-24	ONm	0,00	0,56	0,00	11,79	6,94	14,03	0,00	34,58	0,00	18,11	1,30	6,00	6,37	0,97	0,00	0,00	0,00	0,75
Q-25	MONp	0,00	0,00	0,00	14,93	3,00	13,71	1,70	37,37	0,00	13,92	2,23	6,99	5,77	1,00	0,00	0,00	0,09	0,73
Q-200	MONm	0,00	0,00	0,00	12,37	4,30	15,07	4,65	28,58	0,00	19,52	2,25	7,19	5,78	1,00	0,00	0,00	0,19	0,79
R-1	NB1p	0,00	7,38	14,36	16,74	0,00	7,01	0,00	22,37	0,00	17,23	2,27	4,81	4,87	0,24	0,00	0,00	0,00	0,71
R-2	NTE1	0,00	13,49	18,37	17,86	0,00	9,37	0,00	16,87	0,00	10,31	3,53	4,52	5,75	0,23	0,00	0,00	0,00	0,59
R-3	NTE1	0,00	13,56	15,39	12,53	0,00	14,29	0,00	17,97	0,00	8,39	3,92	4,44	5,56	0,33	0,00	0,00	0,00	0,59
R-5	NB1p	0,00	10,69	16,07	14,16	0,00	10,26	0,00	23,79	0,00	13,75	1,94	4,87	4,48	0,28	0,00	0,00	0,00	0,70
R-7	AOBf	0,00	10,62	19,19	21,38	0,00	2,67	0,00	23,37	0,00	12,88	1,66	3,68	4,54	0,08	0,00	0,00	0,00	0,63
S-7N	ONm	0,00	0,21	0,00	12,78	3,35	14,52	0,00	36,70	0,00	17,70	2,14	6,68	5,87	0,99	0,00	0,00	0,00	0,74
S-21	MONm	0,00	0,00	0,00	10,17	6,59	15,31	1,76	35,10	0,00	15,38	2,07	7,16	6,22	1,00	0,00	0,00	0,07	0,74
S-22	ONm	0,00	3,42	0,70	14,69	0,00	11,91	0,00	35,56	0,00	21,70	1,88	4,68	5,44	0,74	0,00	0,00	0,00	0,76

 Tabelle 2c1: CIPW-Norm der Heldburger Gangschar-Proben ohne CO2 berechnet.

			0.7	ah	07	la	20	05	di	hv	ol	0.7	mt	-11	n 0`	aa`	hu`	05	Ma#
		qz	01	ab	all	IC	ne	CS	ui	пу	01	ap	IIIt	11	ne	qz	пу	CS	Ivig#
S-30	NB1f	0,00	6,33	15,44	16,11	0,00	7,80	0,00	27,11	0,00	16,19	2,28	3,87	4,91	0,26	0,00	0,00	0,00	0,66
S-50	MONm	0,00	0,00	0,00	7,49	5,97	16,06	6,89	28,14	0,00	21,46	2,40	5,73	5,30	1,00	0,00	0,00	0,24	0,71
U-1	MONp	0,00	0,00	0,00	14,00	3,80	11,46	4,19	27,60	0,00	23,57	3,08	5,59	6,09	1,00	0,00	0,00	0,22	0,71
U-2	MONp	0,00	0,00	0,00	12,14	6,71	12,56	8,27	28,52	0,00	15,30	2,53	7,94	5,59	1,00	0,00	0,00	0,30	0,72
U-3A	MONp	0,00	0,00	0,00	10,45	6,16	13,72	6,23	27,99	0,00	21,89	2,08	5,76	5,63	1,00	0,00	0,00	0,24	0,77
U-3A2	MONm	0,00	0,00	0,00	9,10	7,10	15,40	5,58	28,06	0,00	21,32	2,22	5,45	5,72	1,00	0,00	0,00	0,20	0,75
U-3A4	MONm	0,00	0,00	0,00	8,34	6,67	15,34	5,95	27,32	0,00	22,56	2,06	5,98	5,62	1,00	0,00	0,00	0,21	0,78
U-3A5	MONm	0,00	0,00	0,00	9,81	6,78	14,41	5,42	28,59	0,00	21,55	2,13	5,62	5,65	1,00	0,00	0,00	0,20	0,76
U-N4	MONf	0,00	0,00	0,00	6,58	7,37	16,60	11,81	28,36	0,00	14,59	2,58	6,20	5,55	1,00	0,00	0,00	0,33	0,67

 Tabelle 2c1: CIPW-Norm der Heldburger Gangschar-Proben ohne CO2 berechnet.

		qz	с	or	ab	an	lc	ne	cs	di	hy	ol	ap	mt	il	ne´	qz`	hy`	`cs	Mg#
E-1	PHO	0,00	0,00	26,31	35,58	0,00	0,00	23,76	0,00	3,22	0,00	1,19	0,33	0,99	0,59	0,28	0,00	0,00	0,00	0,87
E-1A	PHO	0,00	0,00	26,55	28,48	0,00	0,00	27,24	0,00	6,15	0,00	1,67	0,41	0,00	0,77	0,33	0,00	0,00	0,00	0,67
E-10	NB1p	0,00	0,00	5,32	19,40	9,83	0,00	6,86	0,00	15,91	0,00	17,94	1,71	6,43	6,14	0,22	0,00	0,00	0,00	0,72
E-11	NB2p	0,00	0,00	5,74	7,84	12,22	0,00	12,19	0,00	30,30	0,00	13,26	1,59	6,91	6,41	0,47	0,00	0,00	0,00	0,72
E-12	NB1m	0,00	0,00	4,98	13,24	10,27	0,00	10,71	0,00	20,71	0,00	19,46	1,50	5,63	6,36	0,37	0,00	0,00	0,00	0,74
E-13	ONm	0,00	0,00	1,65	3,28	14,87	0,00	11,71	0,00	29,47	0,00	13,32	2,54	6,69	5,61	0,70	0,00	0,00	0,00	0,74
E-21	AOBp	0,00	0,00	8,11	17,38	21,80	0,00	1,70	0,00	16,57	0,00	15,20	1,53	4,64	4,06	0,06	0,00	0,00	0,00	0,72
E-22	OBf	0,00	0,80	12,92	19,00	19,49	0,00	0,00	0,00	0,00	21,01	1,15	1,40	2,63	3,81	0,00	0,00	0,95	0,00	0,66
E-111	HAW	0,00	0,00	12,16	26,06	16,75	0,00	7,45	0,00	8,27	0,00	9,55	3,21	4,29	5,45	0,16	0,00	0,00	0,00	0,62
J-2	BA	9,18	5,85	6,38	24,50	0,00	0,00	0,00	0,00	0,00	23,66	0,00	1,11	3,84	3,85	0,00	0,20	1,00	0,00	0,64
M-2-1A	HAWob	0,00	0,00	3,72	13,26	25,58	0,00	0,00	0,00	18,76	10,09	1,82	1,47	4,71	4,31	0,00	0,00	0,85	0,00	0,61
M-2-1B	OBp	0,00	0,00	7,84	14,22	21,92	0,00	0,00	0,00	17,65	13,93	1,47	1,42	6,65	4,15	0,00	0,00	0,90	0,00	0,70
M-2-2	NB1m	0,00	0,00	8,28	5,72	17,00	0,00	5,45	0,00	27,74	0,00	15,96	1,57	7,05	6,07	0,28	0,00	0,00	0,00	0,74
M-2-3A	AOBp	0,00	0,00	8,39	17,29	19,96	0,00	2,41	0,00	23,40	0,00	17,31	1,33	4,10	3,79	0,09	0,00	0,00	0,00	0,69
N-2-3B	AOBp	0,00	0,00	7,43	17,64	19,17	0,00	3,05	0,00	23,96	0,00	17,85	1,11	4,62	3,43	0,11	0,00	0,00	0,00	0,72
N-2-3C	AOBp	0,00	0,00	6,99	16,32	19,21	0,00	3,63	0,00	24,37	0,00	18,54	1,02	4,56	3,45	0,13	0,00	0,00	0,00	0,72
N-2-3D	NB2p	0,00	0,00	8,56	2,33	15,21	0,00	13,48	0,00	28,65	0,00	19,12	2,32	2,39	4,23	0,55	0,00	0,00	0,00	0,70
O-2A	NB1f	0,00	0,00	6,68	14,67	14,29	0,00	7,26	0,00	18,01	0,00	13,40	2,12	4,79	5,04	0,25	0,00	0,00	0,00	0,66
O-2B	NTE1	0,00	0,00	4,94	10,30	22,09	0,00	6,65	0,00	24,92	0,00	7,77	2,40	3,90	5,56	0,30	0,00	0,00	0,00	0,60
O-2C	NB1f	0,00	0,00	4,46	18,27	13,77	0,00	7,81	0,00	16,00	0,00	15,10	2,24	4,97	5,09	0,26	0,00	0,00	0,00	0,67
O-2D	NB1f	0,00	0,00	5,51	13,08	16,82	0,00	9,75	0,00	19,25	0,00	12,57	2,47	3,80	4,46	0,34	0,00	0,00	0,00	0,64
O-2F	NB1f	0,00	0,00	4,88	12,17	15,65	0,00	8,20	0,00	24,80	0,00	9,34	2,15	5,79	4,97	0,32	0,00	0,00	0,00	0,68

Tabelle 2c2: CIPW-Norm der Heldburger	er Gangschar-Proben mit CO ₂ berechnet
---------------------------------------	---

		qz	с	or	ab	an	lc	ne	cs	di	hy	ol	ap	mt	il	ne´	qz`	hy`	`cs	Mg#
O-6	NB2f	0,00	0,00	10,80	8,51	14,99	0,00	13,94	0,00	23,94	0,00	13,51	2,34	4,47	4,61	0,42	0,00	0,00	0,00	0,67
0-6A	NB2f	0,00	0,00	11,33	8,71	14,03	0,00	13,69	0,00	24,21	0,00	13,49	2,33	4,35	4,75	0,41	0,00	0,00	0,00	0,66
O-6B	NB2f	0,00	0,00	13,24	5,71	11,00	0,00	17,29	0,00	24,80	0,00	14,54	2,37	3,88	4,75	0,48	0,00	0,00	0,00	0,68
O-7	NB1p	0,00	0,00	6,98	16,09	17,88	0,00	6,59	0,00	19,80	0,00	14,37	1,84	4,59	4,30	0,22	0,00	0,00	0,00	0,70
O-7Th	NB1p	0,00	0,00	7,55	13,86	18,05	0,00	7,78	0,00	20,41	0,00	15,39	1,84	4,07	4,34	0,27	0,00	0,00	0,00	0,70
O-8	NB2f	0,00	0,00	14,09	4,55	10,57	0,00	18,25	0,00	25,42	0,00	13,53	2,33	3,82	4,71	0,49	0,00	0,00	0,00	0,66
O-8A	NB2f	0,00	0,00	8,53	11,96	13,90	0,00	13,26	0,00	23,31	0,00	14,23	2,29	4,55	4,77	0,39	0,00	0,00	0,00	0,68
O-8C	NB1m	0,00	0,00	2,42	4,13	19,51	0,00	3,36	0,00	22,01	0,00	23,97	2,54	5,57	6,06	0,34	0,00	0,00	0,00	0,75
O-8D	NTE1	0,00	0,00	7,06	12,89	14,53	0,00	10,51	0,00	20,09	0,00	10,05	2,12	1,88	4,31	0,35	0,00	0,00	0,00	0,56
O-10	NB2f	0,00	0,00	8,53	11,35	13,69	0,00	14,52	0,00	23,76	0,00	14,08	2,33	4,17	4,80	0,42	0,00	0,00	0,00	0,66
O-11	NB1f	0,00	0,00	7,38	14,66	13,21	0,00	13,09	0,00	23,30	0,00	14,08	2,08	4,51	4,45	0,37	0,00	0,00	0,00	0,69
Q-1	NB2m	0,00	0,00	4,12	9,88	8,62	0,00	12,55	0,00	21,79	0,00	20,64	2,01	4,74	4,77	0,47	0,00	0,00	0,00	0,75
Q-5	BA	6,53	6,18	7,55	22,45	1,95	0,00	0,00	0,00	0,00	25,01	0,00	1,48	5,12	4,25	0,00	0,15	1,00	0,00	0,67
Q-6	OMNm	0,00	0,00	0,00	0,00	7,32	1,87	18,71	7,52	25,72	0,00	23,33	2,55	6,89	5,08	1,00	0,00	0,00	0,27	0,78
Q-7	AOBm	0,00	0,00	5,31	20,18	7,88	0,00	4,93	0,00	2,13	0,00	27,99	2,10	4,03	4,89	0,16	0,00	0,00	0,00	0,74
Q-9B	AOBm	0,00	0,00	3,35	22,50	9,60	0,00	2,89	0,00	2,80	0,00	25,55	1,98	5,58	4,95	0,10	0,00	0,00	0,00	0,77
Q-10	NB1p	0,00	0,00	4,68	16,71	8,73	0,00	9,74	0,00	17,50	0,00	18,97	1,86	5,80	5,78	0,31	0,00	0,00	0,00	0,73
Q-12	NB2p	0,00	0,00	3,49	5,16	13,72	0,00	12,22	0,00	31,26	0,00	15,61	1,91	5,48	6,19	0,59	0,00	0,00	0,00	0,71
Q-13	OBm	0,00	4,17	6,85	18,72	0,00	0,00	0,00	0,00	0,00	11,29	20,48	2,39	4,75	5,48	0,00	0,00	0,36	0,00	0,75
Q-18-2	HAW	0,00	0,00	15,60	27,91	12,49	0,00	6,50	0,00	5,39	0,00	13,58	2,96	2,63	4,90	0,13	0,00	0,00	0,00	0,56
Q-20	NB1m	0,00	0,00	6,08	17,69	7,90	0,00	5,75	0,00	3,03	0,00	28,25	2,15	4,72	5,06	0,19	0,00	0,00	0,00	0,77
Q-20A	OBm	0,00	0,00	4,83	17,09	13,41	0,00	0,00	0,00	0,02	14,17	18,13	1,96	6,42	5,11	0,00	0,00	0,44	0,00	0,78

 Tabelle 2c2: CIPW-Norm der Heldburger Gangschar-Proben mit CO2 berechnet.

		qz	с	or	ab	an	lc	ne	cs	di	hy	ol	ap	mt	il	ne´	qz`	hy`	`cs	Mg#
Q-21	NB1f	0,00	0,00	4,44	7,77	18,50	0,00	5,32	0,00	27,93	0,00	16,29	2,24	4,32	6,60	0,30	0,00	0,00	0,00	0,68
Q-22	OBm	0,00	2,80	8,43	24,34	2,48	0,00	0,00	0,00	0,00	12,13	17,57	1,40	5,71	5,68	0,00	0,00	0,41	0,00	0,77
Q-23	OBm	0,00	3,84	8,34	21,76	0,00	0,00	0,00	0,00	0,00	23,70	5,95	1,30	6,23	5,70	0,00	0,00	0,80	0,00	0,77
Q-24	OBm	0,00	3,82	8,34	22,89	0,00	0,00	0,00	0,00	0,00	23,28	5,32	1,30	5,29	5,62	0,00	0,00	0,81	0,00	0,75
Q-25	NB1p	0,00	0,00	3,61	15,12	13,51	0,00	4,31	0,00	15,28	0,00	20,79	2,09	4,93	5,24	0,19	0,00	0,00	0,00	0,73
Q-200	AOBm	0,00	0,00	4,87	23,67	11,55	0,00	0,26	0,00	0,30	0,00	25,93	2,00	6,44	5,18	0,01	0,00	0,00	0,00	0,79
R-1	NB1p	0,00	0,00	7,14	15,96	16,19	0,00	5,70	0,00	22,25	0,00	17,48	2,20	4,66	4,71	0,20	0,00	0,00	0,00	0,71
R-2	NTE1	0,00	0,00	13,07	20,41	17,33	0,00	7,66	0,00	12,81	0,00	12,08	3,42	4,39	5,57	0,19	0,00	0,00	0,00	0,59
R-3	NTE1	0,00	0,00	13,56	15,39	12,53	0,00	14,29	0,00	17,97	0,00	8,39	3,92	4,44	5,56	0,33	0,00	0,00	0,00	0,59
R-5	AOBp	0,00	0,03	10,28	29,13	13,62	0,00	2,47	0,00	7,44	0,00	18,51	1,87	4,68	4,31	0,06	0,00	0,00	0,00	0,70
R-7	AOBp	0,00	0,00	9,82	22,31	19,70	0,00	0,00	0,00	0,00	23,92	2,16	1,54	3,40	4,20	0,00	0,00	0,92	0,00	0,63
S-7N	NB2m	0,00	0,00	4,30	3,80	12,27	0,00	11,88	0,00	27,47	0,00	21,59	2,05	4,80	5,63	0,59	0,00	0,00	0,00	0,74
S-21	OBm	0,00	0,07	7,61	25,63	9,01	0,00	0,00	0,00	0,00	0,93	23,96	1,87	6,48	5,63	0,00	0,00	0,04	0,00	0,74
S-22	ONm	0,00	0,00	3,31	1,70	14,21	0,00	10,98	0,00	33,27	0,00	21,39	1,82	4,53	5,26	0,69	0,00	0,00	0,00	0,76
S-30	AOBf	0,00	0,00	6,01	24,16	15,30	0,00	2,27	0,00	14,40	0,00	20,07	2,16	3,08	4,66	0,07	0,00	0,00	0,00	0,66
S-50	AOBp	0,00	0,00	6,86	18,14	6,79	0,00	4,71	0,00	5,16	0,00	28,47	2,18	3,50	4,79	0,16	0,00	0,00	0,00	0,71
U-1	AOBp	0,00	0,00	4,32	13,09	12,54	0,00	3,19	0,00	9,28	0,00	28,69	3,11	3,18	5,45	0,15	0,00	0,00	0,00	0,71
U-2	NB2p	0,00	0,00	7,78	5,52	11,03	0,00	8,45	0,00	21,32	0,00	16,64	2,31	6,28	5,10	0,39	0,00	0,00	0,00	0,72
U-3A	OMNm	0,00	0,00	0,00	0,00	10,24	6,07	13,54	5,66	27,94	0,00	21,39	2,06	5,67	5,55	1,00	0,00	0,00	0,22	0,77
U-3A2	OMNm	0,00	0,00	0,00	0,00	8,94	7,01	15,19	5,64	26,55	0,00	21,48	2,19	5,27	5,58	1,00	0,00	0,00	0,20	0,75
U-3A4	OMNm	0,00	0,00	0,00	0,00	8,22	6,56	15,12	4,75	27,89	0,00	21,70	2,03	5,77	5,53	1,00	0,00	0,00	0,18	0,78
U-3A5	OMNm	0,00	0,00	0,00	0,00	9,63	6,60	14,07	4,46	28,72	0,00	20,79	2,09	5,54	5,52	1,00	0,00	0,00	0,18	0,76
U-N4	NB2f	0,00	0,00	8,68	2,58	6,03	0,00	13,94	0,00	26,47	0,00	15,54	2,34	4,09	5,13	0,55	0,00	0,00	0,00	0,67

 Tabelle 2c2: CIPW-Norm der Heldburger Gangschar-Proben mit CO2 berechnet.

		SiO ₂	TiO ₂	Al_2O_3	Fe ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5	H_2O	CO_2	Summe	CaO/Al ₂ O ₃	P_2O_5/Al_2O_3	Ti	K
A-1	ONm	41,42	2,56	9,31	4,13	7,95	0,20	17,84	10,73	3,27	0,73	0,87	1,25	0,16	100,41	1,15	0,09	15353	6018
A-2	OMNm	39,44	2,97	10,31	4,17	8,73	0,23	14,52	12,50	3,20	0,86	1,03	2,32	0,14	100,41	1,21	0,10	17823	7123
A-3	NB2m	43,22	2,39	12,14	3,15	7,52	0,17	11,59	12,52	3,32	0,73	0,88	3,42	0,18	101,23	1,03	0,07	14346	6085
A-4	ONm	42,66	2,06	9,86	3,35	7,57	0,17	16,65	11,72	3,06	0,77	0,66	1,66	0,27	100,44	1,19	0,07	12326	6367
B-1	ONf	42,34	2,68	13,07	2,56	8,74	0,20	10,56	13,14	3,39	0,93	0,92	2,46	0,27	101,26	1,00	0,07	16067	7753
B-1B	NB2p	42,63	2,64	12,91	3,77	7,57	0,17	9,92	12,85	3,78	1,00	0,91	2,06	0,18	100,38	1,00	0,07	15803	8268
B-2	NB2p	42,80	2,64	13,11	3,11	8,22	0,19	10,41	12,56	3,46	1,08	0,84	2,46	0,20	101,06	0,96	0,06	15803	8949
B-3	ONm	39,89	2,70	9,52	3,99	8,27	0,21	17,02	11,70	2,18	0,59	0,90	3,53	0,13	100,62	1,23	0,09	16169	4873
B-5	NB2f	43,15	2,64	13,15	1,65	9,13	0,21	9,79	12,87	3,62	1,04	0,90	2,12	0,24	100,51	0,98	0,07	15845	8658
B-6	NB1m	44,63	2,00	10,47	3,31	7,17	0,17	15,92	10,19	3,01	0,99	0,66	2,47	0,22	101,22	0,97	0,06	11978	8227
C-1	NB1m	45,34	2,23	12,20	2,84	8,13	0,17	12,70	11,25	2,63	1,01	0,46	1,71	0,16	100,84	0,92	0,04	13393	8418
C-2	ONp	41,70	2,44	12,27	3,97	8,29	0,21	11,83	12,66	3,74	0,96	0,94	1,67	0,21	100,88	1,03	0,08	14616	7961
D-1	OMNf	37,67	2,84	10,89	4,33	8,85	0,23	10,92	16,07	2,67	0,91	1,44	3,24	0,24	100,30	1,48	0,13	17026	7554
D-2A	OMNp	38,00	2,67	10,99	4,32	8,50	0,22	12,01	15,64	3,03	1,10	1,41	2,53	0,21	100,63	1,42	0,13	16007	9131
D-3	OMNp	37,49	2,78	10,75	4,31	8,58	0,22	11,98	15,86	3,32	0,86	1,38	2,48	0,10	100,11	1,48	0,13	16666	7139
D-4	OMNf	37,68	2,81	10,94	4,49	8,69	0,23	11,88	15,98	3,20	1,04	1,40	1,90	0,40	100,64	1,46	0,13	16846	8633
D-5	ONm	40,92	2,26	10,18	4,23	7,81	0,20	16,38	11,73	3,50	0,67	0,92	2,33	0,14	101,27	1,15	0,09	13531	5529
D-11	ONm	41,90	2,35	11,53	4,06	7,85	0,20	12,75	12,65	3,68	1,00	0,94	1,57	0,21	100,69	1,10	0,08	14076	8276
D-13	OMNm	40,97	2,32	11,47	4,19	7,69	0,20	12,95	14,18	3,22	0,72	0,98	2,03	0,19	101,11	1,24	0,09	13902	5960
D-14	NB1m	43,83	1,96	10,45	2,92	7,66	0,17	17,12	10,00	2,73	0,76	0,64	1,68	0,16	100,08	0,96	0,06	11726	6309
D-15	AOBp	45,56	2,21	12,06	4,15	7,65	0,18	10,76	11,71	2,80	1,05	0,70	2,11	0,12	101,04	0,97	0,06	13249	8675
D-16	NB2p	43,80	2,22	12,15	3,33	7,67	0,17	10,32	13,33	2,62	1,36	0,68	2,88	0,19	100,71	1,10	0,06	13297	11290
D-18	ONm	41,99	2,38	11,71	4,27	7,85	0,20	12,59	12,84	3,69	0,99	0,95	1,31	0,20	100,96	1,10	0,08	14244	8185
F-1	NB2f	39,60	3,24	11,78	3,79	9,26	0,21	11,10	12,58	2,66	0,56	0,85	n.d.	n.d.	95,63	1,07	0,07	19394	4649
F-2	OMNp	40,02	3,25	11,96	4,46	8,76	0,21	11,52	12,09	3,94	1,58	0,85	1,47	0,43	100,53	1,01	0,07	19502	13083
F-4	NB2m	43,57	2,02	11,13	3,13	8,00	0,18	14,49	11,68	2,78	0,74	0,67	2,02	0,18	100,60	1,05	0,06	12104	6151
G-1	OMNm	39,89	3,05	11,00	4,65	8,46	0,22	12,99	13,17	3,06	1,01	0,85	2,52	0,12	100,99	1,20	0,08	18273	8418
G-2	ONm	39,81	2,86	11,09	4,24	8,46	0,22	13,31	12,56	3,27	0,82	1,00	2,45	0,11	100,21	1,13	0,09	17140	6840
G-3	OMNp	39,39	2,91	11,62	4,22	8,77	0,23	11,92	13,78	3,19	1,43	1,04	2,14	0,40	101,02	1,19	0,09	17433	11879

 Tabelle 3a:
 Hauptelemente der Fichtelgebirgszone-Proben.

		SiO ₂	TiO ₂	Al_2O_3	Fe ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5	H ₂ O	CO ₂	Summe	CaO/Al ₂ O ₃	P_2O_5/Al_2O_3	Ti	K
G-4	ONm	42,10	2,47	12,00	4,72	7,85	0,20	12,21	13,02	3,78	0,94	0,91	1,34	0,17	101,73	1,08	0,08	14832	7795
G-5	ONm	41,09	2,42	11,74	4,23	8,04	0,20	12,67	13,18	3,10	1,04	0,84	1,75	0,14	100,43	1,12	0,07	14478	8633
G-6	NB2m	42,36	2,13	10,43	3,28	8,35	0,19	16,19	10,83	2,85	0,74	0,69	1,95	0,15	100,13	1,04	0,07	12751	6118
G-7	NB2m	42,22	2,10	10,68	3,44	8,00	0,18	15,23	10,73	2,96	0,84	0,69	2,50	0,26	99,82	1,00	0,06	12566	6932
G-8	NB2m	41,61	2,28	11,33	5,12	6,63	0,16	10,20	10,96	3,55	0,99	0,71	2,08	0,14	95,75	0,97	0,06	13651	8202
G-9	ONm	40,80	2,64	10,74	4,39	7,95	0,19	14,71	11,31	3,39	0,63	0,73	2,15	0,17	99,81	1,05	0,07	15845	5255
G-10	NB2p	42,73	2,65	11,88	4,23	8,38	0,20	10,80	11,58	3,60	0,86	0,72	2,27	0,13	100,04	0,97	0,06	15905	7164
G-12A	NB1m	44,86	2,23	11,64	3,03	8,39	0,18	13,99	10,71	2,84	1,08	0,59	1,39	0,10	101,03	0,92	0,05	13381	8949
G-12B	NB1m	43,67	2,32	11,47	3,98	7,50	0,18	14,52	10,90	2,71	0,69	0,65	2,36	0,15	101,11	0,95	0,06	13920	5761
G-12C	AOBm	44,52	2,25	11,88	2,84	8,13	0,19	12,72	11,05	1,89	1,06	0,65	3,24	0,10	100,50	0,93	0,05	13501	8783
G-12D	NB1m	44,25	2,32	11,39	4,12	7,55	0,18	15,07	10,75	2,67	1,03	0,59	1,50	0,14	101,56	0,94	0,05	13902	8517
G-14	NB2m	42,31	2,37	11,49	3,04	8,70	0,20	13,89	11,61	2,51	1,42	0,74	1,95	0,10	100,33	1,01	0,06	14184	11821
G-16	NB1m	43,31	2,20	11,13	4,03	7,46	0,18	14,95	10,88	2,78	0,81	0,68	2,90	0,34	101,63	0,98	0,06	13159	6707
G-17	NB2m	42,62	2,36	11,11	3,31	8,57	0,20	14,21	11,82	3,05	0,71	0,73	2,09	0,14	100,91	1,06	0,07	14118	5861
G-18	ONp	40,59	3,02	11,44	4,81	8,12	0,21	11,76	12,83	3,89	0,96	0,97	2,29	0,20	101,08	1,12	0,08	18105	7969
H-3	NB2m	45,03	2,05	12,08	4,34	7,00	0,17	10,44	12,71	3,64	0,97	0,65	0,97	0,18	100,23	1,05	0,05	12290	8052
H-5A1	NB2m	41,75	2,59	11,45	4,13	8,17	0,19	14,71	11,10	3,30	0,84	0,76	1,45	0,16	100,60	0,97	0,07	15527	6973
H-5A2	ONm	40,60	2,45	10,95	4,20	8,02	0,20	14,96	11,24	3,57	0,87	0,84	1,17	0,16	99,23	1,03	0,08	14688	7222
H-6	ONm	40,46	2,94	11,06	4,60	8,52	0,21	13,83	11,49	3,08	0,82	0,75	1,86	0,17	99,79	1,04	0,07	17619	6824
H-8	ONp	42,42	2,45	12,07	4,07	7,52	0,17	10,72	13,26	3,65	1,01	0,75	1,85	0,18	100,10	1,10	0,06	14682	8343
H-9	OMNp	37,56	3,34	10,66	4,98	8,69	0,23	11,86	14,18	2,86	1,16	1,21	2,95	2,07	101,75	1,33	0,11	20011	9663
H-10	NB1m	44,78	2,09	11,01	3,04	8,03	0,17	14,19	10,23	2,72	0,95	0,66	0,26	0,19	98,31	0,93	0,06	12548	7845
H-11	ONp	42,12	2,40	11,52	3,95	8,44	0,19	11,23	12,57	3,94	1,08	0,95	1,23	0,11	99,73	1,09	0,08	14358	8965
H-12	NB1m	43,62	2,32	11,85	3,70	8,00	0,19	12,82	11,55	2,96	0,81	0,64	1,81	0,21	100,47	0,97	0,05	13896	6699
H-13	NB2m	41,71	2,28	11,25	3,40	8,52	0,20	13,60	11,71	2,83	0,85	0,85	3,06	0,19	100,43	1,04	0,08	13675	7040
H-89	NB2m	41,72	2,42	10,77	2,71	9,30	0,21	14,73	10,79	3,16	0,73	0,64	1,72	0,23	99,14	1,00	0,06	14478	6093
H-91	OMNp	38,89	3,03	11,35	5,01	8,40	0,22	12,21	13,43	3,47	1,20	0,89	1,60	0,10	99,81	1,18	0,08	18183	9970
I-3	NB2m	42,89	2,48	11,30	2,63	9,27	0,20	14,28	11,37	3,48	0,89	0,72	n.d.	n.d.	99,51	1,01	0,06	14892	7405
K-1	NB2p	43,17	2,77	11,71	3,46	8,57	0,20	10,93	12,21	3,71	1,25	0,83	1,37	0,16	100,34	1,04	0,07	16594	10335

Anhang 1

 Tabelle 3a:
 Hauptelemente der Fichtelgebirgszone-Proben.

		SiO ₂	TiO ₂	Al_2O_3	Fe ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5	H ₂ O	CO_2	Summe	CaO/Al ₂ O ₃	P_2O_5/Al_2O_3	Ti	K
K-1A	ONp	41,69	2,97	11,83	4,94	7,85	0,20	11,64	12,25	3,74	1,45	0,95	1,46	0,18	101,15	1,04	0,08	17781	12037
K-2	ONp	41,58	2,96	11,76	4,64	8,05	0,20	11,69	12,45	3,59	1,06	0,88	2,26	0,16	101,28	1,06	0,07	17721	8824
K-5	NB1m	45,34	2,11	10,65	2,26	8,26	0,19	14,46	10,91	2,19	1,45	0,65	2,10	0,15	100,72	1,02	0,06	12631	12053
K-6	NB2m	43,83	2,22	11,40	3,79	7,31	0,18	13,41	12,48	3,77	1,03	0,76	1,23	0,12	101,53	1,10	0,07	13291	8542
K-7	NB2m	43,50	1,94	10,29	3,36	7,08	0,17	15,12	11,89	2,52	0,87	0,65	2,25	0,12	99,76	1,16	0,06	11618	7222
K-8	NB2m	43,19	2,32	11,75	3,45	7,67	0,17	11,78	12,46	3,39	1,29	0,73	2,05	0,16	100,41	1,06	0,06	13920	10667
K-9	NB2p	39,70	2,69	11,05	4,01	9,17	0,22	12,02	13,79	1,80	0,43	1,03	n.d.	n.d.	95,91	1,25	0,09	16139	3570
K-10	NB1m	44,61	2,01	11,27	3,45	7,73	0,18	14,84	11,26	3,00	0,83	0,65	1,68	0,16	101,66	1,00	0,06	12020	6898
K-11	NB1m	44,31	2,08	11,57	3,71	7,67	0,18	13,74	11,51	2,86	1,01	0,66	1,85	0,19	101,37	0,99	0,06	12488	8418
K-87	ONm	42,08	2,37	11,61	4,53	7,85	0,20	12,98	11,83	3,74	1,11	0,88	1,75	0,15	101,09	1,02	0,08	14184	9223
L-1	NB1p	43,72	2,15	12,02	3,30	8,33	0,20	12,23	11,66	2,88	1,01	0,80	2,08	0,36	100,73	0,97	0,07	12901	8368
L-2	NB1p	43,83	2,19	12,27	2,77	8,42	0,20	12,04	11,58	2,89	1,03	0,77	1,72	0,34	100,05	0,94	0,06	13117	8575
L-3AH	NB2p	42,75	2,50	11,80	3,34	8,48	0,20	12,36	12,82	3,12	0,82	0,78	3,01	0,10	102,06	1,09	0,07	15005	6774
L-3NH	ONf	41,64	2,50	11,12	3,07	9,52	0,22	11,79	12,40	3,49	0,90	0,78	1,72	0,50	99,64	1,12	0,07	15011	7455
L-4	ONp	42,13	2,50	11,51	3,17	8,65	0,20	11,70	12,93	3,22	0,82	0,79	3,28	0,21	101,10	1,12	0,07	14988	6824
L-4A	ONp	41,91	2,48	11,55	2,74	9,04	0,21	11,69	12,90	3,32	0,84	0,79	2,71	0,19	100,35	1,12	0,07	14862	6965
L-4A1	ONp	41,88	2,49	11,47	2,44	9,30	0,21	11,73	12,90	3,36	0,84	0,79	2,67	0,18	100,26	1,12	0,07	14922	6973
L-4CH	ONp	42,80	2,52	11,69	3,10	8,87	0,20	11,71	12,85	3,87	1,02	0,81	1,53	0,11	101,08	1,10	0,07	15125	8442
L-4DH	NB2p	43,62	2,45	11,59	3,29	9,04	0,22	11,29	12,79	3,02	0,67	0,75	3,11	0,15	101,98	1,10	0,06	14700	5545
L-5	NB2p	41,22	2,77	11,05	3,34	9,35	0,22	12,87	12,34	2,66	0,67	0,81	3,50	0,24	101,03	1,12	0,07	16606	5537
L-6	ONm	41,14	2,27	10,39	4,03	7,31	0,18	15,11	13,72	2,29	0,63	0,74	2,90	0,12	100,83	1,32	0,07	13597	5246
L-7	NB2p	41,94	2,63	11,66	3,58	8,92	0,21	11,59	12,79	2,35	0,83	0,90	3,51	0,41	101,32	1,10	0,08	15791	6915
L-7NH	NB2p	41,91	2,57	11,46	3,02	8,91	0,21	12,77	12,59	2,61	0,95	0,78	3,82	0,10	101,71	1,10	0,07	15413	7911
L-8	NB2m	44,02	1,98	11,28	3,32	7,42	0,18	12,47	12,82	2,86	0,92	0,64	2,38	0,12	100,39	1,14	0,06	11894	7645
L-9	NB2m	42,27	2,17	10,71	6,55	5,23	0,31	13,93	12,84	3,09	0,89	0,78	1,94	0,16	100,86	1,20	0,07	13021	7372
L-10	ONf	41,85	2,73	11,30	1,22	11,13	0,26	11,80	12,66	3,44	1,18	0,85	1,99	0,16	100,57	1,12	0,08	16384	9796

 Tabelle 3a: Hauptelemente der Fichtelgebirgszone-Proben.

		V	Cr	Co	Ni	Zn	Rb	Sr	Y	Zr	Nb	Ba	La	Ce
A-1	ONm	206	629	66	534	82	38	772	25	467	116	486	38	66
A-2	OMNm	260	409	54	298	85	31	915	29	544	138	663	50	76
A-3	NB2m	233	253	47	195	74	44	906	24	154	76	699	53	91
A-4	ONm	n.d.	564	65	403	n.d.	28	800	n.d.	n.d.	64	603	42	104
B-1	ONf	281	204	47	136	86	30	1039	28	183	90	677	62	104
B-1B	NB2p	270	202	49	135	79	58	985	26	182	87	645	59	104
B-2	NB2p	265	199	47	135	82	46	962	25	187	84	633	49	86
B-3	ONm	218	531	59	440	78	33	862	25	436	112	619	39	66
B-5	NB2f	271	200	63	142	93	26	992	26	183	87	670	62	95
B-6	NB1m	177	495	60	377	71	89	736	21	172	62	533	33	49
C-1	NB1m	196	340	60	300	78	25	722	22	143	49	437	24	45
C-2	ONp	241	248	52	180	91	32	1083	29	201	83	684	50	88
D-1	OMNf	295	164	55	75	88	34	1627	36	264	101	848	77	99
D-2A	OMNp	299	247	52	88	89	36	1325	34	236	91	842	82	99
D-3	OMNp	300	249	51	90	86	25	1446	35	247	103	835	73	96
D-4	OMNf	217	369	58	320	90	34	716	19	217	55	524	35	n.d.
D-5	ONm	211	514	57	422	86	35	911	26	209	75	567	45	79
D-11	ONm	234	342	57	259	88	35	1013	30	206	80	630	45	87
D-13	OMNm	234	264	57	216	80	27	1074	30	184	78	621	47	87
D-14	NB1m	170	666	70	571	77	28	727	22	171	54	476	31	44
D-15	AOBp	189	322	66	294	78	29	1005	25	155	53	538	37	61
D-16	NB2p	198	178	49	185	82	51	1020	24	164	59	579	35	58
D-18	ONm	221	327	55	240	85	36	1008	28	204	78	735	45	85
F-1	NB2f	295	211	54	152	92	252	840	30	350	107	508	46	145
F-2	OMNp	297	185	53	157	97	50	920	29	347	111	680	47	78
F-4	NB2m	195	459	58	388	78	35	819	23	170	57	516	31	53
G-1	OMNm	275	380	53	160	88	69	918	29	335	111	627	44	75
G-2	ONm	267	302	57	226	89	37	1076	30	289	103	746	57	96
G-3	OMNp	278	218	54	172	97	44	1106	30	252	95	728	56	95

	TiO ₂	K ₂ O	Ti	K	Zr/Nb/100	Y/Nb	Sr/Nb	Ti/Zr/100	Rb/K*1000	Ba/Rb	Zr/TiO ₂ *0.001
A-1	2,56	0,73	15353	6018	0,04	0,22	6,66	0,33	6,31	12,79	0,18
A-2	2,97	0,86	17823	7123	0,04	0,21	6,63	0,33	4,35	21,39	0,18
A-3	2,39	0,73	14346	6085	0,02	0,32	11,92	0,93	7,23	15,89	0,06
A-4	2,06	0,77	12326	6367	n.d.	n.d.	12,50	n.d.	4,40	21,54	n.d.
B-1	2,68	0,93	16067	7753	0,02	0,31	11,54	0,88	3,87	22,57	0,07
B-1B	2,64	1,00	15803	8268	0,02	0,30	11,32	0,87	7,01	11,12	0,07
B-2	2,64	1,08	15803	8949	0,02	0,30	11,45	0,85	5,14	13,76	0,07
B-3	2,70	0,59	16169	4873	0,04	0,22	7,70	0,37	6,77	18,76	0,16
B-5	2,64	1,04	15845	8658	0,02	0,30	11,40	0,87	3,00	25,77	0,07
B-6	2,00	0,99	11978	8227	0,03	0,34	11,87	0,70	10,82	5,99	0,09
C-1	2,23	1,01	13393	8418	0,03	0,45	14,73	0,94	2,97	17,48	0,06
C-2	2,44	0,96	14616	7961	0,02	0,35	13,05	0,73	4,02	21,38	0,08
D-1	2,84	0,91	17026	7554	0,03	0,36	16,11	0,64	4,50	24,94	0,09
D-2A	2,67	1,10	16007	9131	0,03	0,37	14,56	0,68	3,94	23,39	0,09
D-3	2,78	0,86	16666	7139	0,02	0,34	14,04	0,67	3,50	33,40	0,09
D-4	2,81	1,04	16846	8633	0,04	0,35	13,02	0,78	3,94	15,41	0,08
D-5	2,26	0,67	13531	5529	0,03	0,35	12,15	0,65	6,33	16,20	0,09
D-11	2,35	1,00	14076	8276	0,03	0,38	12,66	0,68	4,23	18,00	0,09
D-13	2,32	0,72	13902	5960	0,02	0,38	13,77	0,76	4,53	23,00	0,08
D-14	1,96	0,76	11726	6309	0,03	0,41	13,46	0,69	4,44	17,00	0,09
D-15	2,21	1,05	13249	8675	0,03	0,47	18,96	0,85	3,34	18,55	0,07
D-16	2,22	1,36	13297	11290	0,03	0,41	17,29	0,81	4,52	11,35	0,07
D-18	2,38	0,99	14244	8185	0,03	0,36	12,92	0,70	4,40	20,42	0,09
F-1	3,24	0,56	19394	4649	0,03	0,28	7,85	0,55	54,21	2,02	0,11
F-2	3,25	1,58	19502	13083	0,03	0,26	8,29	0,56	3,82	13,60	0,11
F-4	2,02	0,74	12104	6151	0,03	0,40	14,37	0,71	5,69	14,74	0,08
G-1	3,05	1,01	18273	8418	0,03	0,26	8,27	0,55	8,20	9,09	0,11
G-2	2,86	0,82	17140	6840	0,03	0,29	10,45	0,59	5,41	20,16	0,10
G-3	2,91	1,43	17433	11879	0,03	0,32	11,64	0,69	3,70	16,55	0,09

Tabelle 3b: Spurenelemente Fichtel Gebirgszone Proben.

		V	Cr	Co	Ni	Zn	Rb	Sr	Y	Zr	Nb	Ba	La	Ce
G-4	ONm	236	263	54	213	87	34	960	28	205	79	596	47	78
G-5	ONm	244	277	60	221	86	26	957	27	195	75	610	48	80
G-6	NB2m	185	530	60	448	79	26	754	23	203	62	491	36	57
G-7	NB2m	n.d.	451	56	412	n.d.	30	784	n.d.	n.d.	64	514	35	108
G-8	NB2m	n.d.	349	53	292	n.d.	42	869	n.d.	n.d.	68	519	44	101
G-9	ONm	233	494	60	323	88	40	848	23	252	77	504	38	53
G-10	NB2p	232	377	57	259	78	106	792	26	240	71	614	35	58
G-12A	NB1m	193	415	58	338	77	28	741	22	163	54	539	26	46
G-12B	NB1m	201	409	58	362	80	81	767	23	172	59	560	28	48
G-12C	AOBm	329	292	55	223	101	33	894	29	302	90	485	54	172
G-12D	NB1m	205	338	57	285	78	29	919	23	153	62	864	35	148
G-14	NB2m	225	408	61	262	84	38	963	26	222	71	560	37	59
G-16	NB1m	185	426	62	390	87	23	841	22	191	56	491	30	45
G-17	NB2m	219	408	62	326	80	35	819	24	223	69	526	42	60
G-18	ONp	263	273	56	205	83	59	1029	30	303	99	662	47	77
H-3	NB2m	176	240	47	203	81	27	849	22	209	51	571	45	3
H-5A1	NB2m	259	445	70	338	89	30	0	27	250	68	455	73	10
H-5A2	ONm	222	432	62	315	82	29	845	27	246	71	456	40	28
H-6	ONm	n.d.	378	58	301	n.d.	49	940	n.d.	n.d.	96	393	35	94
H-8	ONp	218	241	59	250	84	62	996	23	201	72	712	40	58
H-9	OMNp	290	205	53	156	96	42	1325	31	425	132	809	60	104
H-10	NB1m	182	439	59	346	83	44	713	22	205	65	489	40	60
H-11	ONp	217	334	59	271	89	39	987	29	207	77	631	47	77
H-12	NB1m	215	385	58	223	76	54	771	24	189	57	503	29	52
H-13	NB2m	205	407	57	249	80	23	877	26	210	65	485	35	65
H-89	NB2m	208	406	52	308	69	28	747	23	215	69	480	30	134
H-91	OMNp	266	198	48	125	74	22	1022	26	232	89	532	47	167
I-3	NB2m	224	438	61	334	86	125	799	25	210	70	522	34	61
K-1	NB2p	245	214	54	163	92	77	862	27	330	104	570	47	71

 Tabelle 3b:
 Spurenelemente
 Fichtel
 Gebirgszone
 Proben.

	TiO ₂	K ₂ O	Ti	Κ	Zr/Nb/100	Y/Nb	Sr/Nb	Ti/Zr/100	Rb/K*1000	Ba/Rb	Zr/TiO2*0.001
G-4	2,47	0,94	14832	7795	0,03	0,35	12,15	0,72	4,36	17,53	0,08
G-5	2,42	1,04	14478	8633	0,03	0,36	12,76	0,74	3,01	23,46	0,08
G-6	2,13	0,74	12751	6118	0,03	0,37	12,16	0,63	4,25	18,88	0,10
G-7	2,10	0,84	12566	6932	n.d.	n.d.	12,25	n.d.	4,33	17,13	n.d.
G-8	2,28	0,99	13651	8202	n.d.	n.d.	12,78	n.d.	5,12	12,36	n.d.
G-9	2,64	0,63	15845	5255	0,03	0,30	11,01	0,63	7,61	12,60	0,10
G-10	2,65	0,86	15905	7164	0,03	0,37	11,15	0,66	14,80	5,79	0,09
G-12A	2,23	1,08	13381	8949	0,03	0,41	13,72	0,82	3,13	19,25	0,07
G-12B	2,32	0,69	13920	5761	0,03	0,39	13,00	0,81	14,06	6,91	0,07
G-12C	2,25	1,06	13501	8783	0,03	0,32	9,93	0,45	3,76	14,70	0,13
G-12D	2,32	1,03	13902	8517	0,02	0,37	14,82	0,91	3,40	29,79	0,07
G-14	2,37	1,42	14184	11821	0,03	0,37	13,56	0,64	3,21	14,74	0,09
G-16	2,20	0,81	13159	6707	0,03	0,39	15,02	0,69	3,43	21,35	0,09
G-17	2,36	0,71	14118	5861	0,03	0,35	11,87	0,63	5,97	15,03	0,09
G-18	3,02	0,96	18105	7969	0,03	0,30	10,39	0,60	7,40	11,22	0,10
H-3	2,05	0,97	12290	8052	0,04	0,43	16,65	0,59	3,35	21,15	0,10
H-5A1	2,59	0,84	15527	6973	0,04	0,40	0,00	0,62	4,30	15,17	0,10
H-5A2	2,45	0,87	14688	7222	0,03	0,38	11,90	0,60	4,02	15,72	0,10
H-6	2,94	0,82	17619	6824	n.d.	n.d.	9,79	n.d.	7,18	8,02	n.d.
H-8	2,45	1,01	14682	8343	0,03	0,32	13,83	0,73	7,43	11,48	0,08
H-9	3,34	1,16	20011	9663	0,03	0,23	10,04	0,47	4,35	19,26	0,13
H-10	2,09	0,95	12548	7845	0,03	0,34	10,97	0,61	5,61	11,11	0,10
H-11	2,40	1,08	14358	8965	0,03	0,38	12,82	0,69	4,35	16,18	0,09
H-12	2,32	0,81	13896	6699	0,03	0,42	13,53	0,74	8,06	9,31	0,08
H-13	2,28	0,85	13675	7040	0,03	0,40	13,49	0,65	3,27	21,09	0,09
H-89	2,42	0,73	14478	6093	0,03	0,33	10,83	0,67	4,60	17,14	0,09
H-91	3,03	1,20	18183	9970	0,03	0,29	11,48	0,78	2,21	24,18	0,08
I-3	2,48	0,89	14892	7405	0,03	0,36	11,41	0,71	16,88	4,18	0,08
K-1	2,77	1,25	16594	10335	0,03	0,26	8,29	0,50	7,45	7,40	0,12

Tabelle 3b: Spurenelemente Fichtel Gebirgszone Proben.

		V	Cr	Со	Ni	Zn	Rb	Sr	Y	Zr	Nb	Ba	La	Ce
K-1A	ONn	251	238	55	193	94	115	916	29	317	109	785	44	85
K 2	ONp	251	230	52	175	01	41	071	27	327	103	615	45	68
K-2	NR1m	101	419	52	220	79	25	7/2	27	219	70	504	20	52
K-5	NB2m	191	367	55	320	84	59	852	23	189	70	670		59
K-7	NB2m	187	523	60	444	81	213	841	24	169	66	797	35	47
K-8	NB2m	204	288	52	256	89	50	869	23	219	73	643	36	54
K-9	NB2p	272	197	49	142	93	70	945	29	241	90	810	54	87
K-10	NB1m	186	459	55	381	82	27	740	22	172	53	522	33	39
K-11	NB1m	197	402	51	321	119	33	836	24	171	58	547	37	50
K-87	ONm	221	315	55	277	92	30	925	27	204	82	629	53	92
L-1	NB1p	203	347	53	230	83	32	867	24	177	53	542	37	62
L-2	NB1p	213	356	55	237	86	33	851	24	176	56	469	39	69
L-3AH	NB2p	220	245	51	132	81	33	1002	27	228	89	801	51	78
L-3NH	ONf	0	316	55	196	n.d.	46	919	n.d.	n.d.	87	635	46	115

Tabelle 3b: Spurenelemente Fichtel Gebirgszone Proben.

	TiO ₂	K ₂ O	Ti	К	Zr/Nb/100	Y/Nb	Sr/Nb	Ti/Zr/100	Rb/K*1000	Ba/Rb	Zr/TiO ₂ *0.001
K-1A	2,97	1,45	17781	12037	0,03	0,27	8,40	0,56	9,55	6,83	0,11
K-2	2,96	1,06	17721	8824	0,03	0,26	9,43	0,54	4,65	15,00	0,11
K-5	2,11	1,45	12631	12053	0,03	0,33	10,61	0,58	2,90	16,97	0,10
K-6	2,22	1,03	13291	8542	0,03	0,33	11,83	0,70	6,91	11,36	0,09
K-7	1,94	0,87	11618	7222	0,03	0,36	12,74	0,69	29,49	3,74	0,09
K-8	2,32	1,29	13920	10667	0,03	0,32	11,90	0,64	4,69	12,86	0,09
K-9	2,69	0,43	16139	3570	0,03	0,32	10,50	0,67	19,61	11,57	0,09
K-10	2,01	0,83	12020	6898	0,03	0,42	13,96	0,70	3,91	19,33	0,09
K-11	2,08	1.01	12488	8418	0.03	0,41	14,41	0,73	3,92	16,58	0,08
K-87	2,37	1,11	14184	9223	0.02	0,33	11,28	0,70	3,25	20,97	0.09
L-1	2.15	1.01	12901	8368	0.03	0.45	16.36	0.73	3.82	16.94	0.08
L-2	2.19	1.03	13117	8575	0.03	0.43	15.20	0.75	3.85	14.21	0.08
L-3AH	2.50	0.82	15005	6774	0.03	0.30	11.26	0.66	4.87	24.27	0.09
L-3NH	2,50	0,90	15011	7455	n.d.	n.d.	10,56	n.d.	6,17	13,80	n.d.

Tabelle 3b: Spurenelemente Fichtel Gebirgszone Proben.

		V	Cr	C	NI:	7	Dh	C.,	v	7.	NIL	Da	La	C
		V	Cr	0	INI	Zn	KD	Sr	ľ	Zr	IND	Ба	La	Ce
L-4	ONp	208	248	48	136	83	71	876	25	231	83	871	41	73
L-4A	ONp	215	245	49	134	84	76	960	27	231	87	842	44	73
L-4A1	ONp	202	229	51	133	83	77	938	25	226	84	839	40	77
L-4CH	ONp	228	254	55	142	86	36	982	28	231	88	739	49	78
L-4DH	NB2p	206	230	56	154	82	87	972	26	211	78	902	46	74
L-5	NB2p	238	345	50	178	82	38	928	27	287	94	722	44	66
L-6	ONm	218	384	57	360	80	57	984	23	199	65	621	38	60
L-7	NB2p	230	270	51	153	88	52	942	28	244	90	963	49	78
L-7NH	NB2p	210	280	48	147	79	43	896	26	245	86	796	40	64
L-8	NB2m	191	341	49	342	76	58	842	23	170	64	709	38	60
L-9	NB2m	207	459	60	418	82	40	915	23	187	67	757	45	80
L-10	ONf	236	341	53	181	88	86	932	29	285	101	1000	46	75

Tabelle 3b: Spurenelemente Fichtel Gebirgszone Proben.

	TIO	W O	T .			XAN	G AN	T : / T /100	D1 /IZ#1000	D (D)	T T O * 0.001
	T10 ₂	K_2O	11	K	Zr/Nb/100	Y/Nb	Sr/Nb	Ti/Zr/100	Rb/K*1000	Ba/Rb	$Zr/11O_2*0.001$
L-4	2,50	0,82	14988	6824	0,03	0,30	10,55	0,65	10,40	12,27	0,09
L-4A	2,48	0,84	14862	6965	0,03	0,31	11,03	0,64	10,91	11,08	0,09
L-4A1	2,49	0,84	14922	6973	0,03	0,30	11,17	0,66	11,04	10,90	0,09
L-4CH	2,52	1,02	15125	8442	0,03	0,32	11,16	0,65	4,26	20,53	0,09
L-4DH	2,45	0,67	14700	5545	0,03	0,33	12,46	0,70	15,69	10,37	0,09
L-5	2,77	0,67	16606	5537	0,03	0,29	9,87	0,58	6,86	19,00	0,10
L-6	2,27	0,63	13597	5246	0,03	0,35	15,14	0,68	10,86	10,89	0,09
L-7	2,63	0,83	15791	6915	0,03	0,31	10,47	0,65	7,52	18,52	0,09
L-7NH	2,57	0,95	15413	7911	0,03	0,30	10,42	0,63	5,44	18,51	0,10
L-8	1,98	0,92	11894	7645	0,03	0,36	13,16	0,70	7,59	12,22	0,09
L-9	2,17	0,89	13021	7372	0,03	0,34	13,66	0,70	5,43	18,93	0,09
L-10	2,73	1,18	16384	9796	0,03	0,29	9,23	0,57	8,78	11,63	0,10

Tabelle 3b: Spurenelemente Fichtel Gebirgszone Proben.
--

		qz	c	or	ab	an	lc	ne	cs	di	hy	ol	ap	mt	il	ne`	hy`	cs`	Mg#
A-1	ONm	0,00	0,00	4,27	2,95	8,58	0,00	13,28	0,00	29,87	0,00	26,61	2,05	5,97	4,84	0,65	0,00	0,00	0,80
A-2	OMNm	0,00	0,00	0,00	0,00	11,23	3,96	14,56	0,60	32,55	0,00	20,37	2,42	6,02	5,62	1,00	0,00	0,03	0,75
A-3	NB2m	0,00	0,00	4,30	8,69	15,91	0,00	10,29	0,00	30,71	0,00	15,36	2,08	4,51	4,36	0,44	0,00	0,00	0,73
A-4	ONm	0,00	0,00	4,52	3,25	10,88	0,00	12,20	0,00	32,56	0,00	24,17	1,56	4,84	3,89	0,61	0,00	0,00	0,80
B-1	ONf	0,00	0,00	5,48	3,68	17,85	0,00	12,95	0,00	31,17	0,00	14,92	2,17	3,67	5,02	0,59	0,00	0,00	0,68
B-1B	NB2p	0,00	0,00	5,86	5,57	15,31	0,00	14,19	0,00	32,87	0,00	11,21	2,14	5,45	4,99	0,55	0,00	0,00	0,70
B-2	NB2p	0,00	0,00	6,37	5,16	16,75	0,00	12,97	0,00	30,51	0,00	13,97	1,99	4,46	4,95	0,53	0,00	0,00	0,69
B-3	ONm	0,00	0,00	3,45	1,66	14,42	0,00	8,99	0,00	29,01	0,00	25,74	2,11	5,75	5,09	0,64	0,00	0,00	0,79
B-5	NB2f	0,00	0,00	6,13	4,76	16,52	0,00	13,86	0,00	32,05	0,00	14,52	2,11	2,38	4,99	0,56	0,00	0,00	0,66
B-6	NB1m	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	45,74	27,84	5,18	0,00	0,00	4,39	1,00	0,84	1,00	0,80
C-1	NB1m	0,00	0,00	5,94	13,12	18,40	0,00	4,79	0,00	26,32	0,00	20,01	1,08	4,08	4,21	0,20	0,00	0,00	0,74
C-2	ONp	0,00	0,00	5,61	1,51	13,82	0,00	16,06	0,00	32,72	0,00	15,57	2,20	5,70	4,59	0,69	0,00	0,00	0,72
D-1	OMNf	0,00	0,00	0,00	0,00	15,02	4,22	12,16	5,41	28,87	0,00	15,50	3,39	6,26	5,38	1,00	0,00	0,25	0,68
D-2A	OMNp	0,00	0,00	0,00	0,00	13,12	5,05	13,73	6,49	25,92	0,00	18,10	3,32	6,22	5,03	1,00	0,00	0,26	0,72
D-3	OMNp	0,00	0,00	0,00	0,00	11,95	3,96	15,14	7,99	25,06	0,00	18,53	3,26	6,24	5,27	1,00	0,00	0,29	0,71
D-4	OMNf	0,00	0,00	0,00	0,00	12,49	4,80	14,51	8,26	24,30	0,00	18,54	3,31	6,49	5,31	1,00	0,00	0,30	0,67
D-5	ONm	0,00	0,00	3,88	0,05	10,11	0,00	15,65	0,00	32,08	0,00	23,07	2,16	6,12	4,23	0,80	0,00	0,00	0,79
D-11	ONm	0,00	0,00	5,85	1,18	12,00	0,00	16,02	0,00	34,14	0,00	16,30	2,22	5,84	4,43	0,70	0,00	0,00	0,74
D-13	OMNm	0,00	0,00	0,00	0,00	14,54	3,33	14,53	0,40	36,65	0,00	15,41	2,32	6,01	4,36	1,00	0,00	0,02	0,75
D-14	NB1m	0,00	0,00	4,49	10,92	14,09	0,00	6,51	0,00	24,06	0,00	28,46	1,51	4,23	3,71	0,30	0,00	0,00	0,80
D-15	AOBp	0,00	0,00	5,91	16,64	17,32	0,00	3,59	0,00	27,83	0,00	14,68	1,66	5,96	4,16	0,14	0,00	0,00	0,72
D-16	NB2p	0,00	0,00	7,98	5,54	17,29	0,00	8,87	0,00	34,20	0,00	12,25	1,60	4,79	4,18	0,40	0,00	0,00	0,71
D-18	ONm	0,00	0,00	5,77	1,05	12,43	0,00	16,10	0,00	34,39	0,00	15,70	2,23	6,13	4,47	0,70	0,00	0,00	0,74
F-1	NB2f	0,00	0,00	0,00	1,28	0,00	10,28	6,26	17,90	0,00	32,74	0,00	14,48	2,01	6,43	0,93	1,00	0,52	0,68
F-2	OMNp	0,00	0,00	1,28	0,00	10,28	6,26	17,90	0,00	32,74	0,00	14,48	2,01	6,43	6,14	0,95	0,00	0,00	0,70
F-4	NB2m	0,00	0,00	4,35	8,64	15,68	0,00	7,92	0,00	28,97	0,00	21,72	1,58	4,93	3,81	0,38	0,00	0,00	0,70
G-1	OMNm	0,00	0,00	0,00	0,00	13,31	4,68	13,73	0,49	34,44	0,00	16,19	2,02	6,70	5,66	1,00	0,00	0,03	0,73

 Tabelle 3c: CIPW-Norm der Proben aus der Fichtelgebirgszone.

		qz	c	or	ab	an	lc	ne	cs	di	hy	ol	ap	mt	il	ne`	hy`	cs`	Mg#
G-2	ONm	0,00	0,00	2,27	0,00	13,23	2,03	14,84	0,00	33,13	0,00	17,83	2,37	6,13	5,41	0,88	0,00	0,00	0,74
G-3	OMNp	0,00	0,00	0,00	0,00	13,27	6,62	14,16	2,40	29,75	0,00	16,82	2,46	6,05	5,47	1,00	0,00	0,10	0,71
G-4	ONm	0,00	0,00	5,59	4,40	13,00	0,00	14,81	0,00	31,42	0,00	15,83	2,17	6,81	4,66	0,60	0,00	0,00	0,73
G-5	ONm	0,00	0,00	2,49	0,00	15,08	2,85	14,04	0,00	34,76	0,00	16,06	1,98	6,10	4,57	0,87	0,00	0,00	0,74
G-6	NB2m	0,00	0,00	4,35	5,97	13,55	0,00	9,73	0,00	27,56	0,00	26,14	1,63	4,75	4,03	0,49	0,00	0,00	0,74
G-7	NB2m	0,00	0,00	4,94	7,55	13,39	0,00	9,52	0,00	26,82	0,00	23,60	1,63	5,53	3,99	0,43	0,00	0,00	0,78
G-8	NB2m	0,00	0,00	6,06	12,12	12,64	0,00	10,46	0,00	30,40	0,00	11,80	1,76	7,76	4,53	0,37	0,00	0,00	0,77
G-9	ONm	0,00	0,00	3,75	3,63	12,27	0,00	13,58	0,00	30,19	0,00	20,93	1,72	6,37	5,03	0,65	0,00	0,00	0,77
G-10	NB2p	0,00	0,00	5,10	9,46	13,80	0,00	11,29	0,00	30,44	0,00	14,50	1,71	6,13	5,04	0,44	0,00	0,00	0,77
G-12A	NB1m	0,00	0,00	6,32	11,23	15,74	0,00	6,72	0,00	25,86	0,00	22,61	1,37	4,33	4,20	0,28	0,00	0,00	0,70
G-12B	NB1m	0,00	0,00	4,08	12,31	16,96	0,00	5,53	0,00	24,83	0,00	22,02	1,54	5,71	4,35	0,25	0,00	0,00	0,75
G-12C	AOBm	0,00	0,00	6,23	14,82	20,79	0,00	0,57	0,00	23,19	0,00	21,33	1,52	3,85	4,26	0,03	0,00	0,00	0,78
G-12D	NB1m	0,00	0,00	5,91	10,64	15,86	0,00	6,26	0,00	25,25	0,00	22,65	1,40	5,94	4,33	0,27	0,00	0,00	0,74
G-14	NB2m	0,00	0,00	8,39	1,75	15,93	0,00	10,42	0,00	28,81	0,00	21,92	1,76	4,39	4,48	0,51	0,00	0,00	0,78
G-16	NB1m	0,00	0,00	4,78	10,82	15,21	0,00	6,67	0,00	24,82	0,00	22,68	1,61	5,71	4,12	0,30	0,84	0,00	0,74
G-17	NB2m	0,00	0,00	4,13	5,55	14,53	0,00	10,72	0,00	30,28	0,00	21,49	1,72	4,75	4,43	0,53	0,00	0,00	0,78
G-18	ONp	0,00	0,00	4,94	0,00	10,89	0,53	17,52	0,00	35,39	0,00	13,15	2,30	6,90	5,66	0,79	0,00	0,00	0,74
H-3	NB2m	0,00	0,00	5,69	10,78	13,83	0,00	10,72	0,00	34,81	0,00	11,13	1,53	6,28	3,87	0,39	0,00	0,00	0,72
H-5A1	NB2m	0,00	0,00	4,95	4,42	13,95	0,00	12,55	0,00	27,69	0,00	22,00	1,78	5,95	4,90	0,57	0,00	0,00	0,73
H-5A2	ONm	0,00	0,00	5,16	0,73	11,48	0,00	15,99	0,00	30,30	0,00	21,96	2,00	6,13	4,69	0,73	0,00	0,00	0,77
H-6	ONm	0,00	0,00	4,87	1,88	13,95	0,00	13,14	0,00	29,71	0,00	21,36	1,77	5,50	5,60	0,66	0,00	0,00	0,74
H-8	ONp	0,00	0,00	5,93	2,63	13,67	0,00	15,16	0,00	36,63	0,00	11,38	1,77	5,89	4,64	0,64	0,00	0,00	0,72
H-9	OMNp	0,00	0,00	0,00	0,00	12,83	3,39	13,09	3,43	29,36	0,00	15,90	2,87	7,22	6,34	1,00	0,00	0,17	0,71
H-10	NB1m	0,00	0,00	5,58	15,23	15,06	0,00	4,17	0,00	24,04	0,00	23,50	1,55	4,41	3,97	0,17	0,00	0,00	0,71
H-11	ONp	0,00	0,00	6,50	2,00	10,84	0,00	17,14	0,00	36,49	0,00	14,15	2,25	4,48	4,64	0,67	0,00	0,00	0,70
H-12	NB1m	0,00	0,00	4,74	10,57	16,68	0,00	7,70	0,00	27,74	0,00	19,08	1,51	5,34	4,38	0,33	0,00	0,00	0,70
H-13	NB2m	0,00	0,00	4,99	5,23	15,49	0,00	10,02	0,00	28,45	0,00	21,15	2,00	4,91	4,31	0,50	0,00	0,00	0,74
H-89	NB2m	0,00	0,00	4,37	5,19	13,26	0,00	11,70	0,00	28,04	0,00	25,07	1,54	3,96	4,63	0,55	0,00	0,00	0,74
H-91	OMNp	0,00	0,00	0,00	0,00	11,90	5,57	15,90	3,27	30,01	0,00	16,33	2,12	7,27	5,77	1,00	0,00	0,13	0,72
I-3	NB2m	0,00	0,00	5,30	3,28	12,70	0,00	14,18	0,00	31,39	0,00	22,83	1,71	3,82	4,74	0,62	0,00	0,00	0,72

Tabelle 3c: CIPW-Norm der Proben aus der Fichtelgebirgszone.

		qz	с	or	ab	an	lc	ne	cs	di	hy	ol	ap	mt	il	ne`	hy`	cs`	Mg#
K-1	NB2p	0,00	0,00	7,33	5,07	11,64	0,00	14,14	0,00	33,87	0,00	14,00	1,96	5,00	5,24	0,53	0,00	0,00	0,73
K-1A	ONp	0,00	0,00	8,45	0,67	11,18	0,00	16,52	0,00	33,28	0,00	13,25	2,25	7,08	5,59	0,64	0,00	0,00	0,73
K-2	ONp	0,00	0,00	6,50	1,85	12,58	0,00	15,17	0,00	33,14	0,00	14,42	2,08	6,11	5,54	0,64	0,00	0,00	0,72
K-5	NB1m	0,00	0,00	8,52	10,89	14,89	0,00	4,01	0,00	26,86	0,00	23,62	1,53	3,25	3,97	0,17	0,00	0,00	0,72
K-6	NB2m	0,00	0,00	6,08	2,96	11,04	0,00	15,28	0,00	35,14	0,00	17,16	1,80	4,80	4,21	0,63	0,00	0,00	0,76
K-7	NB2m	0,00	0,00	5,15	7,26	14,21	0,00	7,67	0,00	31,63	0,00	21,48	1,54	4,88	3,69	0,38	0,00	0,00	0,77
K-8	NB2m	0,00	0,00	7,56	3,56	13,08	0,00	13,47	0,00	34,04	0,00	14,77	1,72	4,96	4,39	0,55	0,00	0,00	0,79
K-9	NB2p	0,00	0,00	2,65	2,81	21,73	0,00	7,04	0,00	34,08	0,00	17,80	2,54	6,06	5,33	0,56	0,00	0,00	0,73
K-10	NB1m	0,00	0,00	4,90	10,07	14,62	0,00	7,98	0,00	27,83	0,00	22,30	1,54	4,91	3,82	0,35	0,00	0,00	0,70
K-11	NB1m	0,00	0,00	5,97	9,47	15,38	0,00	7,91	0,00	28,16	0,00	20,10	1,56	5,30	3,89	0,34	0,00	0,00	0,77
K-87	ONm	0,00	0,00	6,44	1,35	11,60	0,00	16,15	0,00	31,83	0,00	19,12	2,08	4,89	4,46	0,67	0,00	0,00	0,75
L-1	NB1p	0,00	0,00	5,91	10,70	16,82	0,00	7,26	0,00	26,51	0,00	19,24	1,88	4,75	4,06	0,30	0,00	0,00	0,75
L-2	NB1p	0,00	0,00	6,10	10,76	17,53	0,00	7,32	0,00	26,15	0,00	19,65	1,83	4,01	4,15	0,30	0,00	0,00	0,72
L-3AH	NB2p	0,00	0,00	4,84	3,94	15,57	0,00	11,68	0,00	32,78	0,00	16,74	1,85	4,74	4,65	0,57	0,00	0,00	0,72
L-3NH	ONf	0,00	0,00	5,32	5,97	12,04	0,00	12,78	0,00	32,81	0,00	14,16	1,84	7,52	4,76	0,53	0,00	0,00	0,69
L-4	ONp	0,00	0,00	4,80	3,58	14,47	0,00	12,54	0,00	34,06	0,00	15,72	1,85	4,54	4,70	0,60	0,00	0,00	0,69
L-4A	ONp	0,00	0,00	4,94	2,17	14,19	0,00	13,87	0,00	34,70	0,00	16,45	1,87	3,94	4,69	0,66	0,00	0,00	0,70
L-4A1	ONp	0,00	0,00	4,95	1,47	13,77	0,00	14,47	0,00	35,19	0,00	16,94	1,86	3,53	4,71	0,69	0,00	0,00	0,69
L-4CH	ONp	0,00	0,00	5,97	1,13	11,54	0,00	16,75	0,00	36,47	0,00	15,20	1,92	4,45	4,73	0,70	0,00	0,00	0,70
L-4DH	NB2p	0,00	0,00	3,96	8,74	15,85	0,00	8,71	0,00	32,51	0,00	15,83	1,78	4,68	4,56	0,41	0,00	0,00	0,70
L-5	NB2p	0,00	0,00	3,95	4,31	15,99	0,00	9,73	0,00	30,65	0,00	19,45	1,91	4,79	5,20	0,54	0,00	0,00	0,69
L-6	ONm	0,00	0,00	1,68	0,00	16,11	1,58	10,35	0,00	36,24	0,00	19,03	1,74	5,80	4,27	0,88	0,00	0,00	0,79
L-7	NB2p	0,00	0,00	4,90	7,64	18,44	0,00	6,55	0,00	28,55	0,00	17,33	2,13	5,11	4,91	0,34	0,00	0,00	0,79
L-7NH	NB2p	0,00	0,00	5,61	2,54	16,29	0,00	10,46	0,00	31,47	0,00	18,67	1,85	4,27	4,80	0,56	0,00	0,00	0,70
L-8	NB2m	0,00	0,00	5,42	7,04	15,24	0,00	9,16	0,00	34,42	0,00	16,04	1,51	4,79	3,75	0,42	0,00	0,00	0,72
L-9	NB2m	0,00	0,00	0,00	0,00	12,77	4,11	14,07	0,16	35,72	0,00	24,45	1,85	0,43	4,12	1,00	0,00	0,01	0,75
L-10	ONf	0,00	0,00	1,86	0,00	11,96	3,97	15,55	0,00	35,62	0,00	19,74	2,00	1,76	5,16	0,91	0,00	0,00	0,65

 Tabelle 3c: CIPW-Norm der Proben aus der Fichtelgebirgszone.

Tabelle 1: Anregungs- und Messbedingungen der Röntgenfluoreszenzanalyse	159
Tabelle 2: Reproduzierbarkeit der mit RFA bestimmten Hauptelemente in Gew%	160
Tabelle 3: Reproduzierbarkeit der mit RFA bestimmten Spurenelemente in ppm	160
Tabelle 4a-4c: Die Analysenergebnisse der vier Proben aus der Hocheife	1 161
Tabelle 5: Vergleich der Na- und K-Werte von fünf Heldburger Gangschar- und zwei Hocheifel-Proben, die mit RFA bzw. Flammenphotometrie bestimmt wurden	164

<u>Element</u>	Linie	<u>U</u>	Ī	Kol	<u>Xtal</u>	Det	<u>Zeit</u>
Na	Κα	40	75	f	LiF200	FL	40
Mg	Κα	40	75	f	PX1	FL	60
Al	Κα	40	75	с	PE	FL	50
Si	Κα	40	75	c	PE	FC	50
Р	Κα	40	75	c	Ge	FC	60
S	Κα	40	70	f	Ge	FL	30
Cl	Κα	40	70	f	Ge	FL	30
Κ	Κα	40	75	f	LiF200	FC	40
Ca	Κα	40	75	f	LiF200	FC	40
Ti	Κα	40	75	f	LiF200	FC	100
V	Κα	40	75	f	LiF200	FC	100
Cr	Κα	40	75	f	LiF200	FC	100
Mn	Κα	40	75	f	LiF200	FC	90
Fe	Κα	40	75	f	LiF200	FC	50
Co	Κα	50	55	f	LiF220	FL	60
Ni	Κα	50	65	f	LiF200	FS	100
Zn	Κα	60	50	f	LiF200	FS	100
Rb	Κα	100	30	с	LiF200	SC	100
Sr	Κα	100	30	с	LiF200	SC	100
Y	Κα	100	30	с	LiF200	SC	100
Zr	Κα	100	30	с	LiF200	SC	100
Nb	Κα	100	30	с	LiF200	SC	100
Ba	Κα	40	75	f	LiF200	FC	100
Pb	Lβ	80	35	f	LiF220	SC	60
U	Lα	80	35	f	LiF220	SC	100
Th	Lα	80	35	f	LiF220	SC	10

Tabelle 1: Anregungs- und Messbedingungen der Röntgenfluoreszenzanalyse

Linie: Messlinie, U: Spannung der Röntgenröhre in kV, I: Stromstärke der Röhre in mA, Kol: Kollimator (f=fine, c=coarse), Xtal: Monochromatorkristall, Det: Detektor (FL: Flowcounter, FC: Durchflußzähler, SC: Szintillationszähler, FS = FL + SC), Zeit: Messdauer in Sekunden..

Oxid	n=10	abs. Stdabw.	rel. Stdabw.
SiO ₂	39.17	0.06	0.2
TiO ₂	3.04	0.00	0.01
Al ₂ O ₃	11.53	0.02	0.06
Fe ₂ O _{3ges}	14.31	0.03	0.08
MnO	0.22	0	0.00
MgO	11.94	0.01	0.02
CaO	13.16	0.01	0.04
Na ₂ O	3.79	0.01	0.03
K ₂ O	1.31	0.00	0.01
P_2O_5	0.86	0.00	0.01

Tabelle 2: Reproduzierbarkeit der mit RFA bestimmten Hauptelemente in Gew.-%.

(Hausstandard: Olivinnephelinit Großer Teichelberg aus der Fichtelgebirgszone).

Element	n=10	abs. Stdabw.	rel. Stdabw.
V	303	0.93	2.95
Cr	285	1.08	3.41
Со	55	1.00	2.00
Ni	320	3.80	12.05
Zn	94	0.75	2.4
Rb	25	0.42	1.34
Sr	849	2.19	6.93
Y	7	0.18	0.57
Zr	223	1.33	4.19
Nb	103	0.89	2.82
Ва	880	2.68	8.47
La	57	2.69	8.51

Tabelle 3: Reproduzierbarkeit der mit RFA bestimmten Spurenelemente in ppm

(Hausstandard: Olivinnephelinit Großer Teichelberg aus der Fichtelgebirgszone).

Hauptelemente	Diese Arbeit	Geol.Landesamt	Ytong
	Gew %	Gew %	Gew %
SiO ₂	48.68	48.73	48.39
TiO ₂	2.29	2.23	2.18
Al ₂ O ₃	17.94	17.72	17.66
Fe ₂ O ₃	10.34	10.14	10.02
Mno	0.20	0.20	0.18
MgO	4.35	4.18	4.14
CaO	8.29	7.91	7.82
Na ₂ O	4.83	4.88	4.80
K ₂ O	1.85	1.84	1.85
P ₂ O ₅	0.57	0.57	0.56
Summe	99.34	98.40	97.60
Spurenelemenete	Diese Arbeit	Geol.Landesamt	Ytong
	ppm	ppm	ppm
V	197	190	n.b
Cr	19	17	n.b
Со	32	39	n.b
Ni	17	24	n.b
Zn	81	109	n.b
Rb	46	50	n.b
Sr	827	871	n.b
Y	29	27	n.b
Zr	233	275	n.b
Nb	78	84	n.b
Ba	642	691	n.b
La	53	76	n.b
Ce	83	120	n.b

Tabelle 4a: Die Analysenergebnisse einer Probe aus der Hocheifel (HF 603), dieinverschiedenenEinrichtungenmitderRöntgenfluoreszenzanalyse (RFA) analysiert wurden. A) diese Arbeit: amDepartment für Geo- und Umweltwissenschaften, LMU München; B) amBayerischen Geologischen Landesamt, München, und C) von der FirmaYtong

Hauptelemente	Diese Arbeit	Geol.Landesamt	Ytong
	Gew %	Gew %	Gew %
SiO ₂	48.90	49.34	49.00
TiO ₂	1.73	1.67	1.63
Al ₂ O ₃	16.49	16.37	16.28
Fe ₂ O ₃	8.40	8.20	8.12
MnO	0.22	0.22	0.20
MgO	6.61	6.33	6.33
CaO	8.72	8.19	8.30
Na ₂ O	4.32	4.43	4.32
K ₂ O	2.61	2.60	2.61
P ₂ O ₅	0.32	0.30	0.30
Summe	98.32	97.35	97.09
Spurenelemenete	Diese Arbeit	Geol.Landesamt	Ytong
	ppm	ppm	ppm
V	195	203	n.b.
Cr	171	214	n.b.
Со	36	48	n.b.
Ni	76	82	n.b.
Zn	80	92	n.b.
Rb	87	90	n.b.
Sr	517	528	n.b.
Y	24	24	n.b.
Zr	418	445	n.b.
Nb	78	83	n.b.
Ba	428	442	n.b.
La	52	73	n.b.
Ce	65	88	n.b.

Tabelle 4b: Die Analysenergebnisse einer Probe aus der Hocheifel (HF 606), die in verschiedenen Einrichtungen mit der Röntgenfluoreszenzanalyse (RFA) analysiert wurden. A) diese Arbeit: am Department für Geo- und Umweltwissenschaften, LMU München; B) am Bayerischen Geologischen Landesamt, München, und C) von der Firma Ytong

Hauptelemente	Diese Arbeit	Geol.Landesamt	Diese Arbeit	Geol.Landesamt
	Gew %	Gew %	Gew %	Gew %
	HF516	HF516	HF575	HF575
SiO ₂	41.70	42.18	41.22	41.28
TiO ₂	2.02	2.09	2.50	2.44
Al ₂ O ₃	13.88	13.88	13.23	13.14
Fe ₂ O ₃	9.80	9.66	11.88	11.80
MnO	0.19	0.20	0.21	0.22
MgO	9.40	9.38	11.94	11.83
CaO	11.50	11.16	13.37	12.97
Na ₂ O	3.17	3.37	3.17	3.34
K ₂ O	1.66	1.67	1.54	1.54
P ₂ O ₅	0.46	0.48	0.70	0.71
Summe	93.78	94.07	99.76	99.27
Spurenelemente	Diese Arbeit	Geol.Landesamt	Diese Arbeit	Geol.Landesamt
	ppm	ppm	ppm	ppm
V	248	245	292	303
Cr	283	359	435	493
Со	43	46	42	52
Ni	149	153	671	629
Zn	63	79	63	85
Rb	50	45	49	43
Sr	892	902	893	858
Y	23	24	32	30
Zr	195	232	200	242
Nb	68	71	86	85
Ba	881	913	667	652
La	48	70	46	73
Ce	155	121	83	123

Tabelle 4c: DieAnalysenergebnissezweierProbenausderHocheifel (HF 516 und 575), die in verschiedenen Einrichtungen mit der
Röntgenfluoreszenzanalyse (RFA) analysiert wurden. A) diese Arbeit: am
Department für Geo- und Umweltwissenschaften, LMU München; B) am
Bayerischen Geologischen Landesamt, München.

Probennumm	er, Element	Röntgenfluoreszenzanalyse (Gew%)	Flammenphotometrie (Gew%)
F 1	Na	8.63	8.5
E-1	K	4.15	4.39
D 1-	Na	9.65	9.72
E-1a	K	4.44	4.44
D 111	Na	4.67	4.66
E-111	K	2.04	2.29
0.10	Na	4.1	4.11
Q-10	K	0.79	0.76
0.1-	Na	1.68	1.36
Q-1a	K	8.6	6.6
HE 409	Na	5.35	5.55
HF 408	K	3.66	3.91
HE 541	Na	0.58	0.57
пř 341	К	1.16	1.15

Tabelle 5: Vergleich der Na- und K-Werte von fünf Heldburger Gangschar-
Hocheifel-Proben, die mit RFA bzw. Flammenphotometrie bestimmt wurden.und zwei

Tabelle 1a-c:	Mittelwerte der chemischen Hauptkomponenten, chemischen Spurenkomponenten und CIPW-Norm der Hocheifel-Proben	165
Tabelle 2 a-c	: Mittelwerte der chemischen Hauptkomponenten, chemischen Spurenkomponenten und CIPW-Norm der Heldburger Gangschar-Proben	171
Tabelle 3 a-c:	Mittelwerte der chemischen Hauptkomponenten, chemischen Spurenkomponenten und CIPW-Norm der Fichtelgebirgszone -Proben	181

	AOD		AOP		AODE		TT A 337		ND1m	ND1n		ND1f		NTE1		NID 2m		ND2m		NDOF		NTEO	
-	AUDI	1	АОБр		AUDI		пат		INDIII	мыр		NDII		NILI		ND2III		ND2p		ND21		NIE2	
	n=2	±	n= 6	±	n=3 :	±	n= 10	±	$n=1 \pm$	n= 10	±	n=16	±	n= 3	±	n=7	±	n=15	±	n=15	±	n=6	±
SiO ₂	47.1	1.6	49.20	2.9	48.13	0.8	49.15	2.9	44.41	45.31	1.0	46.1	1.7	47.93	1.6	43.27	0.7	44.24	0.8	44.48	1.3	44.80	2.3
TiO ₂	2.18	0.1	2.01	0.4	2.21	0.3	2.4	0.5	2.46	2.28	0.2	2.3	0.2	2.28	0.3	2.36	0.2	2.37	0.3	2.33	0.2	2.53	0.2
Al ₂ O ₃	14.56	1.5	16.13	1.3	15.29	0.4	17.23	1.1	14.71	14.24	0.4	14.83	1.0	16.93	0.6	13.44	0.7	14.09	0.7	14.54	0.5	15.84	0.4
Fe ₂ O ₃	3.36	3.0	3.85	1.2	2.17	1.1	2.98	1.0	1.01	2.90	0.7	2.36	1.1	3.10	1.3	2.42	0.5	2.33	0.9	1.61	1.0	2.53	2.0
FeO	6.55	2.3	2.3 5.24 1.6 7.96 0.6		6.76	1.8	9.43	8.00	0.3	7.87	1.2	6.61	2.0	8.65	0.3	8.5	0.3	8.69	0.6	8.23	1.6		
MnO	0.25	0.1	0.21	0.0	0.18	0.0	0.19	0.0	0.23	0.19	0.0	1.2	0.0	0.19	0.0	0.20	0.0	0.19	0.0	0.21	0.0	0.22	0.0
MgO	8.87	1.7	7.13	1.2	8.58	1.2	5.44	1.8	9.65	10.61	0.6	8.48	1.3	5.86	0.9	13.55	1.3	10.94	0.7	9.62	0.8	7.58	1.1
CaO	11.49	0.2	9.57	1.5	10.25	0.9	9.22	1.7	13.77	11.57	0.5	11.32	1.0	9.75	0.7	11.72	0.6	12.07	0.3	12.16	0.8	11.94	0.7
Na ₂ O	3.07	0.4	3.73	1.0	3.41	0.3	4.21	1.0	2.67	3.16	0.2	3.49	0.7	4.74	0.7	2.99	0.4	3.37	0.3	3.39	0.7	3.77	0.2
K ₂ O	1.53	0.4	2.39	0.6	1.34	0.2	1.91	0.8	1.07	1.11	0.2	1.38	0.4	2.07	0.5	1.01	0.2	1.17	0.3	1.39	0.2	1.7	0.3
P_2O_5	0.42	0.1	0.39	0.1	0.45	0.0	0.51	0.1	0.59	0.58	0.1	0.57	0.1	0.53	0.1	0.58	0.1	0.66	0.1	0.62	0.2	0.85	0.5
Summe	100.00)	100.00		100.00		100.00		100.00	100.00		100.00		100.00		100.00)	100.00		100.00)	100.00	
Mg ²⁺ / (Mg ²⁺ +Fe ²⁺)	0.74		0.71		0.66		0.58		0.75	0.7		0.66		0.56		0.74		0.7		0.66	5 0.5		
CaO/Al ₂ O ₃	0.79		0.59		0.67		0.54		0.94	0.81		0.76		0.58		0.85		0.86		0.81		0.75	
P_2O_5/Al_2O_3	0.03		0.02		0.02		0.03		0.04	0.04		0.04		0.03		0.04		0.05		0.04		0.05	
Ti	13069		12050		13249		13428		14748	13669		13789		13669 14148			14208		13968		15167		
К	12701		19840		11124		15855	15855 8882		9214		11456		17184 8384		9713		11539		14112			

Tabelle 1a: Mittelwerte der chemischen Hauptkomponenten mit Standardabweichungen von den Hocheifel-Proben. Die CIPW-Norm istH2O- und CO2-frei gerechnet und auf 100% normiert.

	ONm		ONp		ONf		OMNm		OMNp		OMNf		NE3	BAm		BA1	BA2	OBm	BEN	
	n= 14	±	n= 8	±	n=4	±	n=7	±	n=4	±	n=2 :	±	n=1 ±	n=2	±	n=1 ±	n=1 ±	n=1 ±	n=1 ±	
SiO ₂	42.35	0.6	42.59	0.6	42.78	0.5	40.84	1.0	42.17	0.4	41.78	0.3	42.96	65.82	0.22	59.47	44.67	48.26	66.78	
TiO ₂	2.44	0.2	2.55	0.2	2.59	0.0	2.79	0.2	2.45	0.1	2.52	0.1	2.13	0.8	0.12	1.34	3.14	2.51	0.7	
Al ₂ O ₃	13.13	0.8	14.02	0.3	14.52	0.3	11.18	1.5	13.82	0.1	13.74	0.1	14.17	18.21	0.11	18.51	16.20	18.14	17.49	
Fe ₂ O ₃	3.08	0.7	2.56	0.9	1.94	0.6	2.82	0.6	2.10	0.4	1.28	0.0	0.38	2.12	0.57	3.72	6.11	8.95	1.31	
FeO	7.91	0.9	8.30	0.6	9.27	0.4	7.63	0.6	8.37	0.3	9.18	0.7	9.96	0.28	0.04	2.10	5.08	2.05	2.21	
MnO	0.19	0.0	0.20	0.0	0.22	0.0	0.19	0.0	0.21	0.0	0.22	0.0	0.23	0.03	0.01	0.19	0.21	0.28	0.14	
MgO	13.49	1.4	11.74	0.3	10.01	0.6	15.47	1.8	11.83	0.4	10.91	0.7	7.74	0.54	0.12	1.83	6.01	3.70	0.43	
CaO	12.57	0.5	12.73	0.4	13.21	0.3	14.21	0.8	13.29	0.3	13.32	0.1	14.83	1.9	0.15	5.41	15.66	9.18	1.3	
Na ₂ O	3.04	0.2	3.34	0.3	3.58	0.5	2.19	0.9	3.73	0.2	3.75	0.6	4.75	5.41	0.10	5.62	1.50	3.51	4.66	
K ₂ O	0.93	0.2	1.11	0.3	1.03	0.1	1.5	0.7	1.28	0.2	2.41	1.7	1.48	4.63	0.10	1.43	0.88	2.32	4.76	
P_2O_5	0.69	0.2	0.64	0.1	0.85	0.2	0.72	0.1	0.75	0.0	0.77	0.1	1.37	0.23	0.04	0.38	0.54	1.10	0.22	
Summe	100.00)	100.00)	100.00)	100.00		100.00)	100.00		100.00	100.0)	100.00	100.00	100.00	100.00	
Mg ²⁺ /(Mg ²⁺ +Fe ²⁺)	0.75		0.72		0.66		0.78		0.72		0.68		0.58	0.77		0.61	0.68	0.76	0.26	
CaO/Al ₂ O ₃	0.96		0.91		0.91		1.27		0.96		0.97		1.05	0.10		0.29	0.97	0.51	0.07	
P_2O_5/Al_2O_3	0.05		0.05		0.06		0.06		0.05		0.06		0.10	0.01		0.02	0.03	0.06	0.01	
Ti	14628		15287		15527		16726		14688		15107		12769	4796		8033	18824	15047	4197	
K	7720		9214	9214		85503		124520		10626			12286	38435		11871	7305	19259	39514	

Tabelle 1a: Mittelwerte der chemischen Hauptkomponenten mit Standardabweichungen von den Hocheifel-Proben. Die CIPW-Norm ist H2O-
und CO2-frei gerechnet und auf 100% normiert.

	AOBm		AOBp		AOBf		HAW		NB1m	NB1p		NB1f		NTE1		NB2m		NB2p		NB2f		NTE2		
	n=2	±	n= 6	±	n=3	±	n= 10	±	n=1 ±	n= 10	±	n=16	±	n= 3	±	n=7	±	n=15	±	n=15	±	n=6	±	
V	256	8	222	40	201	36	208	44	297	227	32	231	21	220	20	267	35	258	42	252	17	270	29	
Cr	305	86	183	29	239	107	61	50	254	268	33	230	95	63	46	373	117	266	76	221	76	133	55	
Со	47	2	39	7	39	4	33	9	45	47	8	42	5	35	2	55	3	49	6	44	5	42	3	
Ni	147	18	161	112	464	347	37	24	157	218	77	234	246	45	26	274	74	208	149	155	105	78	19	
Zn	64	2	76	6	73	1	91	43	71	72	3	72	7	69	3	66	5	72	10	67	6	67	4	
Rb	44	5	68	33	36	6	52	22	77	35	21	38	12	53	19	38	7	38	11	39	7	47	8	
Sr	770	328	825	264	896	117	888	134	786	804	134	947	167	977	199	824	170	913	159	1062	212	965	88	
Y	26	2	26	7	27	3	28	2.5	28	25	1	28	2	26	4	27	3	26	2	27	3	28	1	
Zr	194	25	305	121	191	16	234	88	157	195	85	185	25	216	19	176	17	172	23	187	29	195	23	
Nb	55	15	74	24	59	4	71	20	76	60	9	68	10	80	16	67	11	67	10	74	9	74	5	
Ba	664	273	654	215	526	87	596	156	651	538	75	707	544	689	246	525	59	566	120	725	208	655	193	
La	39	16	49	12	39	4	51	25	82	41	5	485	10	54	11	39	11	45	10	52	11	48	3	
Ce	58	30	93	32	54	10	92	55	261	69	28	94	44	108	41	60	19	100	39	114	47	99	47	
Ti	13069		12050		13249)	14388		14748	13669		13379		13669		14148	3	14208		13968		15167	1	
К	12701		19840		11124	Ļ	15855		8882	9214		11456	7	17184		8384		9713		11539		14112		
Zr/Nb	3.5		4.1		3.8		3.3		2.1	3.3		2.7		2.7		2.6		2.6		2.5		2.6		
Sr/Nb	14.0		11.1		17.9		12.5		10.3	13.4		14.4		12.2		12.3		13.6		14.4		13.0		
Ba/Rb	15.1		9.6		14.6		11.5		8.5	15.4		20.8		13.0		13.8		14.9		18.6		13.8		
Ti/Zr	0.67		0.40		0.69		0.65		0.94	0.70		0.74		0.63		0.80		0.83		0.75		0.78		
Rb/K	3.46		3.43		3.24	3.24			8.67	3.80	3.80		0.34		3.08		4.53		3.91		3.38		3.33	

Tabelle 1b: Mittelwerte der chemischen Spurenkomponenten mit Standardabweichungen von den Hocheifel-Proben.Die CIPW-Norm ist H2O- und CO2-frei gerechnet und auf 100% normiert.

	ONm		ONp		ONf		OMNm		OMNp		OMNf		NE3	NE3		BAm			BA2		OBm		BEN	
	n= 14	±	n= 8	±	n=4	±	n=7	±	n=4	±	n=2	±	n=1	±	n=2	±	n=1	±	n=1	±	n=1	±	n=1	±
V	292	23	301	26	276	14	305	39	287	5	338	21	289		50	2	98		91		222		43	
Cr	417	154	301	57	215	44	613	160	328	69	229	106	101		3.5	2	109		372		10		4	
Со	55	5	49	3	43	2	51	6	47	3	46	11	36		8	3	10		199		36		12	
Ni	271	93	284	231	246	272	482	219	297	250	144	39	116		6	1	16		39		5		1	
Zn	69	14	68	8	66	4	63	6	62	4	71	8	87		52	25	7		80		141		75	
Rb	36	12	42	10	45	14	53	17	53	13	76	24	41		198	16	75		88		54		200	
Sr	808	210	797	178	967	104	1035	276	918	50	1223	235	1870		460	81	135		22		958		325	
Y	25	3	26	4	30	2	25	5	28	1	31	3	38		33	8	35		24		32		29	
Zr	169	31	190	37	190	10	186	18	172	18	194	2	199		324	45	384		210		277		376	
Nb	65	11	76	12	80	6	89	15	79	4	111	34	122		102	0	102		51		93		97	
Ba	510	99	574	126	637	44	885	325	617	21	889	176	1079		565	80	708		772		905		647	
La	41	12	45	10	50	7	49	4	49	1	74	13	113		101	23	76		40		70		84	
Ce	113	48	135	38	125	45	103	36	146	47	213	33	271		178	56	113		137		102		121	
Ti	14628		15287		15527		16726		14688		15107		12769		4796		8333		18824		15047		4197	
K	7720		9214		12452		12452		10626		20006		12286		38435		11870		73051		19259		39514	ŀ
Zr/Nb	2.6		2.5		2.4		2.1		2.2		1.7		1.6		3.2		3.8		4.1		3.0		3.9	
Sr/Nb	12.4		10.5		12.1		11.6		11.6		11.0		15.3		4.5		1.3		0.4		10.3		3.4	
Ba/Rb	14.2		13.7		14.2		16.7		11.6		11.7		26.3		2.9		9.4		8.8		16.8		3.2	
Ti/Zr	0.87		0.80		0.82		0.90		0.85		0.78		0.64		0.15		0.22		0.90		0.54		0.11	
Rb/K	4.70		4.56		3.62		4.26		4.99		3.80		3.34		5.15		6.32		1.20		2.80		5.06	

Tabelle 1b: Mittelwerte der chemischen Spurenkomponenten mit Standardabweichungen von den Hocheifel-Proben. Die CIPW-Norm ist H2O-
und CO2-frei gerechnet und auf 100% normiert.
	AOBm		AOBp		AOBf		HAW		NB1m	NB1p		NB1f		NTE1		NB2m		NB2p		NB2f		NTE2	
	n=2	±	n= 6	±	n=3	±	n= 10	±	n=1 ±	n= 10	±	n=16	±	n=3	±	n=7	±	n=15	±	n=15	±	n=6	±
az	0.00		0.00		0.00		0.00		0.00	0.00		0.00		0.00		0.00		0.00		0.00		0.00	
c	0.00		0.00		0.00		0.00		0.00	0.00		0.00		0.00		0.00		0.00		0.00		0.00	
or	9	24	13.15	34	79	0.1	11.3	47	63	6.57	14	8.26	24	12.27	31	5.94	15	7.05	2.1	8 11	16	10.12	16
	10.0	1.1	22.25	5.4	01.7	1.0	26.45	7.7	0.5	11.0	1.4	14.10	2.7	16.4	0.0	4.01	1.5	7.05	2.1	4.70	2.0	10.12	2.0
ab	18.8	1.1	22.35	5.4	21.7	1.9	26.45	1.2	8.0	11.68	1.9	14.19	3.3	16.4	0.9	4.01	1.4	5.81	2.6	4.79	2.9	6.4	3.0
an	21.5	0.1	20.07	3.0	22.57	2.1	22.55	4.4	25.0	21.48	1.5	21.13	3.0	18.97	3.6	19.83	1.6	19.87	1.4	20.67	2.5	21.52	1.7
lc	0.00		0.00		0.00		0.00		0.00	0.00		0.00		0.00		0.00		0.00		0.05	0.2	0.00	
ne	3.8	1.0	5.87	2.0	3.83	0.6	4.88	2.3	7.8	8.1	1.0	8.37	2.3	12.6	3.4	11.43	2.0	12.21	2.3	13.83	2.5	13.75	2.0
cs	0.00		0.00		0.00		0.00		0.00	0.00		0.00		0.00		0.00		0.00		0.00		0.00	
di	25.85	1.3	18.92	5.1	20.43	2.4	15.89	4.7	30.9	25.75	1.5	25.77	3.3	21.23	1.3	27.49	1.7	28.31	2.0	28.61	2.3	26.38	1.0
hy	0.00		0.00		0.00		0.00		0.00	0.00		0.00		0.00		0.00		0.00		0.00		0.00	
ol	9.7	5.7	9.4	3.2	15.23	4.7	8.81	3.8	9.1	16.58	1.8	13.02	3.6	10.73	0.7	21.04	5.2	16.77	1.9	15.27	2.6	12.92	1.7
on	1	0.1	0.08	0.3	1.07	0.1	1 21	0.3	1.4	1 38	0.2	1 38	0.2	1.27	0.3	1 37	0.3	1.57	0.4	1.52	0.4	2.05	1.4
ap	1	0.1	0.98	0.5	1.07	0.1	1.21	0.5	1.4	1.56	0.2	1.50	0.2	1.27	0.5	1.57	0.5	1.57	0.4	1.52	0.4	2.05	1.4
mt	6.25	2.2	5.02	2.7	3.17	1.5	4.35	1.5	6.9	4.16	1.0	3.49	1.5	2.13	1.5	4.44	2.2	3.56	1.3	2.57	1.5	2.05	1.7
il	4.15	0.1	3.95	0.8	4.13	0.5	4.54	0.9	4.6	4.34	0.3	4.41	0.5	4.33	0.7	4.49	0.4	4.51	0.5	4.55	0.4	4.83	0.4

Tabelle 1c: Mittelwerte der CIPW-Norm von den Hocheifel-Proben. Die CIPW-Norm ist H₂O- und CO₂-frei gerechnet und auf 100% normiert.

	ONm		ONp		ONf		OMN	n	OMN)	OMNf		NE3		BAm		BA1		BA2		OBm		BEN	
	n= 14	±	n= 8	±	n=4	±	n=7	±	n=4	±	n=2	±	n=1	±	n=2	±	n=1	±	n=1	±	n=1	±	n=1	±
qz	0.00		0.00		0.00		0.00		0.00		0.00		0.00		12.0	0.4	1.1		0.1		0.0		17.7	
с	0.00		0.00		0.00		0.00		0.00		0.00		0.00		1.4	0.0	0.0		0.0		0.0		2.8	
or	4	1.1	4.27	1.6	5.47	0.9	0.00		0.00		0.00		0.00		27.55	0.6	22.2		5.2		13.7		28.1	
ab	0.65	1.0	0.6	0.9	0.82	1.5	0.00		0.00		0.00		0.00		46.05	0.8	46.5		12.6		29.7		39.5	
an	19.69	2.0	20.1	1.4	20.63	2.2	16.39	4.5	17.3	0.5	13.65	7.8	13.20		7.95	0.5	13.6		34.8		26.9		5.0	
lc	1.28	1.5	1.83	2.1	0.45	0.4	6.9	3.1	5.92	0.9	11.1	7.6	6.80		0.00		0.00		0.00		0.00		0.00	
ne	13.29	1.3	14.94	1.3	15.95	1.7	9.93	4.3	17	1.3	17.15	2.8	21.40		0.00		0.00		0.00		0.00		0.00	
cs	0.00		0.00		0.00		4.79	4.5	1.4	0.8	5.35	5.2	1.80		0.00		0.00		0.00		0.00		0.00	
di	31.17	3.0	31.15	1.6	31.8	0.9	27.04	6.6	31.4	2.2	24.45	7.7	37.10		0.00		7.9		30.5		8.9		0.00	
hy	0.00		0.00		0.00		0.00		0.00		0.00		0.00		1.35	0.1	0.8		0.8		3.1		3.1	
ol	20.16	4.0	17	1.1	15.25	2.0	23.33	4.9	17.52	1.5	19.8	0.0	11.10		0.00		0.00		0.00		1.4		0.0	
ар	1.59	0.6	1.52	0.4	2.02	0.4	1.7	0.2	1.8	0.1	1.8	0.1	3.20		0.55	0.1	0.9		1.3		2.6		0.5	
mt	4.19	1.1	3.73	1.3	2.8	0.8	4.61	1.4	3.05	0.7	1.9	0.0	0.60		0.00		3.4		8.6		0.2		1.9	
il	4.66	0.3	4.85	0.3	4.93	0.0	5.3	0.5	4.65	0.1	4.75	0.2	4.10		0.65	0.1	2.5		6.0		4.8		1.3	

Tabelle 1c: Mittelwerte der CIPW-Norm von den Hocheifel-Proben. Die CIPW-Norm ist H₂O- und CO₂-frei gerechnet und auf 100% normiert.

	АОВр	AOBf	NB1m	NB1p	NB1f	NTE1	NB2p	NB2f	ONm	ONp	ONf
	n=5 ±	n=3 ±	n=1 ±	n=4 ±	n=3 ±	n=4 ±	n=2 ±	n=7 ±	n=5 ±	n=3 ±	n=3 ±
SiO ₂	46.84 2.13	47.75 1.02	42.6	45.67 1.04	49.98 0.36	46.63 0.86	43.12 0.74	44.97 0.36	40.33 0.32	42.08 0.25	42.66 0.15
TiO ₂	2.06 0.17	2.38 0.11	3.35	2.44 0.09	2.53 0.06	2.93 0.15	2.90 0.79	2.53 0.06	2.97 0.23	3.36 0.12	2.76 0.18
Al ₂ O ₃	13.36 0.42	13.81 0.76	11.35	13.82 0.56	14.29 0.16	16.08 0.34	12.38 0.77	14.26 0.16	10.73 0.94	11.51 0.13	13.51 0.31
Fe ₂ O ₃	3.51 0.69	3.14 0.63	5.11	3.26 0.20	2.99 0.21	2.82 0.59	3.32 2.18	3.01 0.21	3.98 0.81	4.30 0.34	3.63 0.70
FeO	7.55 0.91	7.84 0.46	7.99	7.62 0.35	8.08 0.26	7.33 0.84	8.53 0.77	8.09 0.26	8.13 0.63	8.42 0.39	7.98 0.48
MnO	0.17 0.02	0.18 0.02	0.19	0.18 0.01	0.19 0.00	0.18 0.00	0.19 0.02	0.19 0.00	0.19 0.02	0.20 0.01	0.21 0.01
MgO	10.39 1.33	8.00 0.43	12.92	10.15 0.79	9.27 0.18	5.88 0.42	11.86 0.32	9.27 0.18	14.04 2.14	12.07 0.41	8.74 0.62
CaO	11.66 0.96	11.83 0.50	12.29	10.94 0.60	10.37 0.19	9.49 0.53	12.05 0.04	10.39 0.19	14.20 1.14	12.49 0.23	14.63 0.92
Na ₂ O	2.54 0.44	3.02 0.14	1.99	3.64 0.38	4.48 0.25	4.80 0.39	3.54 0.24	4.48 0.25	3.42 0.54	3.95 0.43	3.92 0.32
K ₂ O	1.36 0.09	1.48 0.29	1.52	1.42 0.26	1.82 0.43	2.39 0.26	1.26 0.34	1.82 0.43	1.07 0.39	0.80 0.16	0.91 0.09
P_2O_5	0.56 0.09	0.65 0.10	0.69	0.86 0.07	0.99 0.04	1.47 0.17	0.85 0.22	0.99 0.04	0.94 0.11	0.82 0.04	1.05 0.07
Summe	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
$Mg^{2+}/(Mg^{2+}+Fe^{2+})$	0.71	0.65	0.74	0.7	0.67	0.59	0.71	0.67	0.76	0.72	0.66
CaO/Al ₂ O ₃	0.87	0.85	1.08	0.79	0.73	0.59	0.97	0.73	1.32	1.09	1.08
P_2O_5/Al_2O_3	0.04	0.05	0.06	0.06	0.07	0.09	0.07	0.07	0.09	0.07	0.08
Ti	12350	14268	20083	14628	15167	17565	17386	15167	17805	20143	16546
К	11290	12286	12618	11788	15108	19840	10460	15108	8882	6641	7554

 Tabelle 2a1: Mittelwerte der chemischen Hauptkomponenten mit Standardabweichungen von den Heldburger Gangschar-Proben.

 Die CIPW-Norm ist H2O- und CO2-frei gerechnet.

	NE		OMNm		OMNp		OMNf		РНО	
	n=3	±	n=16	±	n=4	±	n=2	±	n=2	±
SiO ₂	42.94	0.14	39.91	2.19	39.86	0.97	40.57	1.92	57.35	0.10
TiO ₂	2.88	0.47	2.98	0.22	2.97	0.14	2.91	0.02	3.38	0.06
Al ₂ O ₃	14.35	0.58	10.78	0.90	10.42	0.52	11.52	1.91	21.06	0.10
Fe ₂ O ₃	3.29	0.39	3.98	0.79	3.42	0.98	3.3	0.36	1.35	0.27
FeO	7.94	0.43	8.17	0.66	9.43	1.05	8.86	0.84	0.92	0.52
MnO	0.19	0.01	0.18	0.02	0.22	0.02	0.21	0.01	0.13	0.00
MgO	6.89	0.18	14.11	2.14	13.55	0.98	9.84	1.24	1.40	0.10
CaO	17.40	0.96	14.26	1.29	14.94	1.09	16.49	1.41	1.77	0.15
Na ₂ O	2.40	0.83	3.43	0.52	3.00	0.14	3.65	0.02	10.81	0.93
K ₂ O	0.82	0.15	1.06	0.39	1.05	0.34	1.42	0.23	4.66	0.02
P_2O_5	0.90	0.28	0.94	0.10	1.14	0.20	1.03	0.06	0.17	0.02
Summe	100,00		100,00		100,00		100,00		100,00	
$Mg^{2+}/(Mg^{2+}+Fe^{2+})$	0,61		0,76		0,72		0,66		0,74	
CaO/Al ₂ O ₃	1,2		1,32		1,43		1,43		0,08	
P ₂ O ₅ /Al ₂ O ₃	0,06		0,09		0,11		0,12		0,01	
Ti	17266		17865		17805		17445		20263	
K	6807		8799		8716		11788		38684	

Tabelle 2a1: Mittelwerte der chemischen Hauptkomponenten mit Standardabweichungen von den
Heldburger Gangschar-Proben. Die CIPW-Norm ist H2O- und CO2-frei gerechnet.

	AOBr	n	AOBp)	AOBf	H	AW		NB1m	ı	NB1p		NB1f		NTE1		NB2m	I	NB2p		NB2f		ONm	
	n= 3	±	n= 7	±	n= 1	± n=	- 2	±	n= 4	±	n= 6	±	n= 6	±	n= 4	±	n= 2	±	n= 4	±	n= 7	±	n= 2	±
SiO ₂	35.22	0.19	42.24	5.03	43.45	44	.68	0.54	38.01	2.86	40.90	2.43	40.07	2.12	41.44	3.00	39.02	0.09	39.82	3.07	42.	2.81	38.56	3.39
TiO ₂	2.64	0.08	2.2	0.39	2.45	2.7	73	0.18	3.11	0.29	2.68	0.43	2.68	0.40	2.77	0.32	2.74	0.30	2.89	0.52	2.	0.08	2.87	0.11
Al ₂ O ₃	9.66	0.14	11.92	2.01	12.20	15	.69	0.43	10.26	0.79	11.82	1.62	12.38	1.02	14.24	1.20	10.35	0.13	11.13	1.21	13.24	1.75	10.35	0.31
Fe ₂ O ₃	3.70	0.85	2.88	0.42	2.12	2.3	38	0.78	3.97	0.66	3.50	0.65	3.25	0.47	2.53	0.83	3.30	0.00	3.63	1.37	2.89	0.19	3.87	1.04
FeO	7.10	0.87	7.98	1.14	8.82	6.6	57	1.17	8.87	0.52	7.55	0.34	7.76	0.77	7.56	0.30	8.19	0.60	8.10	0.59	8.09	0.38	7.80	0.94
MnO	0.17	0.01	0.18	0.03	0.20	0.1	17	0.01	0.18	0.01	0.18	0.01	0.18	0.02	0.18	0.01	0.18	0.03	0.19	0.01	0.19	0.01	0.19	0.01
MgO	13.06	0.26	10.99	1.60	9.63	5.3	34	0.02	13.37	1.16	10.65	1.15	8.75	1.14	5.99	0.36	13.47	0.59	11.45	0.34	9.17	0.38	13.16	2.60
CaO	13.33	0.70	11.10	1.19	10.74	8.7	73	0.36	12.03	0.63	11.51	1.15	12.87	1.66	12.41	3.33	12.69	0.22	12.64	1.58	11.05	2.29	13.91	1.76
Na ₂ O	3.31	0.35	2.85	0.59	3.36	4.7	73	0.08	2.63	1.26	3.43	0.50	3.49	0.85	3.91	0.91	3.59	0.75	3.16	0.45	4.20	0.43	2.84	0.31
K ₂ O	0.76	0.17	1.48	0.29	1.02	2.3	35	0.44	0.92	0.41	1.00	0.28	0.94	0.21	1.63	0.72	0.71	0.01	1.08	0.38	1.82	0.39	0.42	0.20
P_2O_5	0.85	0.02	0.65	0.10	0.91	1.3	31	0.05	0.92	0.21	0.81	0.06	0.9	0.06	1.26	0.35	0.85	0.01	0.86	0.15	0.99	0.01	0.92	0.21
H ₂ O	2.52	0.70	3.02	2.34	2.86	3.3	30	1.81	4.08	2.66	3.67	1.60	4.47	1.22	3.97	1.90	2.41	0.20	3.60	0.91	2.49	0.39	3.72	1.01
CO ₂	7.69	0.47	2.31	2.76	2.24	1.8	34	1.2	2.76	2.75	2.29	1.76	2.42	1.77	2.11	2.10	2.51	1.31	1.44	2.24	0.91	2.05	1.40	1.65
Summe	100.00)	100.00)	100.00	10	0.00		100.00)	100.00)	100.00)	100.00)	100.00)	100.00)	100.00)	100.00)
$Mg^{2+}/(Mg^{2+}+Fe^{2+})$	0.77		0.71		0.66	0.5	59		0.75		0.72		0.67		0.59		0.75		0.72		0.67		0.75	
CaO/Al ₂ O ₃	1.38		0.93		0.88	0.5	56		1.17		1.00		1.04		0.87		1.23		1.14		0.83		1.34	
P_2O_5/Al_2O_3	0.09		0.05		0.07	0.0)8		0.09		0.07		0.08		0.09		0.08		0.08		0.07		0.09	
Ti	15827		18189		14688	16	366		18644		16067		16067		16606		14388		17326		11990		16187	
К	6309		12286		8467	19	508		7637		8301		7803		13531		5894		8965		15108		3487	

 Tabelle 2a2: Mittelwerte der chemischen Hauptkomponenten mit Standardabweichungen von den Heldburger Gangschar-Proben. Die CIPW-Norm ist mit CO2 gerechnet.

	OMNm	l	OBm	ОВр	OBf		HAWob		BA	РНО	
	n= 5	±	n=6 =	n=1	n= 2	±	n=1 ±	n= 2	±	n= 2	±
SiO ₂	39.31	0.07	35.91	42.50	41.58	3.52	38.97	42.55	0.95	55.08	0.10
TiO ₂	2.92	0.02	2.92	2.19	2.24	0.05	2.27	2.13	0.15	0.35	0.06
Al ₂ O ₃	10.12	0.19	9.55	12.24	13.01	0.46	12.64	12.2	0.63	20.22	0.11
Fe ₂ O ₃	3.84	0.15	4.01	4.60	2.80	0.65	3.25	3.08	0.63	1.29	0.27
FeO	7.97	0.21	7.32	6.24	7.06	0.50	6.91	6.84	0.21	0.88	0.52
MnO	0.21	0.01	0.18	0.14	0.17	0.01	0.16	0.15	0.01	0.12	0.00
MgO	14.53	0.39	13.02	8.10	6.71	0.78	6.14	7.25	0.00	1.33	0.10
CaO	13.76	0.32	11.59	12.87	13.37	4.48	16.50	10.99	0.00	1.70	0.15
Na ₂ O	3.18	0.19	2.59	1.69	2.12	0.75	1.58	2.78	0.00	10.39	0.93
K ₂ O	1,42	0.09	1.25	1.32	1.14	0.72	0.63	1.18	0.14	4.48	0.02
P ₂ O ₅	0.89	0.03	0.72	0.60	0.63	0.02	0.62	0.55	0.11	0.16	0.02
H ₂ O	1.59	0.23	2.28	5.02	4.53	1.75	5.76	2.23	0.07	3.74	1.37
CO ₂	0.26	0.08	8.66	2.48	4.41	0.25	4.57	8.07	0.66	0.24	0.28
Summe	100.00		100.00	100.00	100.00		100.00	100		100	
Mg ²⁺ /(Mg ²⁺ +Fe ²⁺)	0.76		0.76	0.74			0.61	0.65			
CaO/Al ₂ O ₃	1.36		1.21	0.08	1.03		1.31	0.9		0.08	
P_2O_5/Al_2O_3	0.09		0.08	0.01	0.05		0.05	0.05		0.01	
Ti	17505		17505	13129	113429		13621	12769		2998	
K	11788		10410	10977	9463		5235	9796		36190	

Tabelle 2a2: Mittelwerte der chemischen Hauptkomponenten mit Standardabweichungen von den
Heldburger Gangschar-Proben. Die CIPW-Norm ist mit CO2 gerechnet.

	AOB	р	AOB	f	NB1m		NB1p	1	NB1f		NTE	l	NE	32p	NB2f		O	Nm	0	Np	0	Nf	l	NE
	n=5	±	n= 3	±	n=1	±	n= 4	±	n=3	±	n=4	±	n=2	±	n=7	±	n= 5	±	n= 3	±	n=3	±	n=2	ŧ
V	181	11	193	12	298		194	9	227	47	208	38	189	25	199	7	296	6	281	9	236	21	267	39
Cr	249	59	212	66	312		231	69	243	102	69	38	176	221	153	9	372	112	283	10	242	55	253	16
Со	46	4	43	5	58		43	2	47	12	27	5	33	21	44	5	57	2	55	4	47	5	45	11
Ni	193	39	154	36	266		176	2	207	114	77	28	135	136	144	8	267	66	233	18	207	54	225	88
Zn	76	7	98	18	92		84	2	91	15	77	16	66	19	87	4	88	6	89	6	84	4	95	1
Rb	37	5	35	10	33		37	6	41	22	69	8	63	14	55	17	24	13	13	5	29	8	16	2
Sr	918	89	767	85	794		1092	120	891	201	1491	104	1480	58	1315	169	924	224	989	25	1166	93	1608	625
Y	23	1	23	1	24		26	2	25	5	34	2	32	1	28	2	25	5	27	2	28	2	31	4
Zr	145	23	166	12	267		210	14	228	50	220	18	218	2	241	32	241	32	245	3	215	17	197	40
Nb	67	27	64	19	72		94	7	98	19	133	6	121	13	113	5	81	20	87	8	103	11	92	28
Ba	574	138	800	199	552		799	72	606	188	1109	147	1162	147	971	106	872	608	750	50	1467	496	139	742
La	37	2	32	6	43		52	6	48	9	81	3	83	3	62	5	50	14	53	10	58	7	53	11
Ce	107	55	74	70	54		89	57	148	35	203	35	176	79	122	55	89	49	137	21	79	7	69	27
Ti	12350)	14268	8	20083		14628	5	15167	7	17565	5	17386	5	15167	1	17805	5	20143	3	16546	5	17266	5
K	11290)	12280	5	12618		11788	5	15108	3	19840)	10460)	15108	3	8882		6641		7554		6807	
Zr/Nb	2.2		2.6		3.7		2.2		2.3		1.7		1.8		2.1		3.0		2.8		2.1		2.1	
Sr/Nb	13.7		12.0		11.0		11.6		9.1		11.2		12.2		11.6		11.4		11.4		11.3		17.5	
Ba/Rb	15.5		22.9		16.7		21.6		14.8		16.1		18.4		17.7		36.3		57.7		50.6		86.9	
Ti/Zr	0.85		0.86		0.75		0.70		0.67		0.80		0.80		0.63		0.74		0.82		0.77		0.88	
Rb/K	3.3		2.8		2.6		3.1		2.7		3.5		6.0		3.6		2.7		2.0		3.8		2.4	

Tabelle 2b1: Mittelwerte der chemischen Spurenkomponenten mit Standardabweichungen von den
Heldburger Gangschar-Proben. Die CIPW-Norm ist H2O- und CO2-frei gerechnet.

	OMNn	n	OMNp)	OMNf		NE		РНО	
	n=16	±	n=4	±	n=2	±	n=1	±	n=2	±
v	292	21	272	25	272	6	212		305	39
Cr	409	99	345	88	386	121	130		613	160
Со	55	4	55	4	52	4	37		51	6
Ni	293	52	316	116	252	33	114		482	219
Zn	86	7	88	5	81	9	96		63	6
Rb	29	11	28	6	33	11	37		53	17
Sr	1129	321	1447	414	1137	52	1720		1035	276
Y	27	3	29	3	29	2	34		25	5
Zr	230	23	228	36	227	2	247		186	18
Nb	92	14	98	16	95	0	123		89	15
Ba	783	169	808	126	932	194	1531		885	323
La	59	11	68	13	63	4	103		49	4
Ce	139	58	176	65	140	98	156		103	36
Ti	17865.0	00	17805		17445				20263	
К	8799.00)	8716		11788				38684	
Zr/Nb	2.5		2.3		2.4		2.0		2.1	
Sr/Nb	12.3		14.8		12.0		14.0		11.6	
Ba/Rb	27.0		28.9		28.2		41.4		16.7	
Ti/Zr	0.78		0.78		0.77				1.09	
Rb/K	3.3		3.2		2.8				1.4	

Tabelle2b1: Mittelwerte der chemischen Spurenkomponenten mitStandardabweichungen von den Heldburger Gangschar-
Proben. Die CIPW-Norm ist H2O- u. CO2-frei gerechnet.

	AOBn	n	AOB)	AOBf		HAW		NB1n	1	NB1p		NB1f		NTE1		NB2m		NF	82p	NI	B2f	ON	١m
	n= 3	±	n= 7	±	n= 1	±	n= 2	±	n= 4	±	n=6 :	±	n= 6	±	n= 4	±	n= 2	±	n= 4	±	n= 7	±	n= 2	±
v	277	23	203	42	204		179	18	292	11	240	52	242	32	245	37	282	36	231	51	211	30	301	1
Cr	364	19	281	95	318		59	59	311	28	220	74	247	57	132	77	382	90	220	138	196	122	425	197
Со	56	1	48	7	46		24	5	57	1	50	7	49	7	34	4	55	5	43	17	45	5	54	7
Ni	293	29	229	113	266		69	45	265	34	221	63	214	52	112	37	297	19	183	97	161	51	285	132
Zn	85	10	81	10	105		67	20	90	7	86	5	85	4	91	7	88	7	76	16	86	6	80	1
Rb	22	3	36	7	28		75	3	23	11	26	11	28	5	45	23	16	3	42	28	57	14	16	3
Sr	922	187	1011	239	1119		1408	25	976	236	1099	97	1082	149	1729	228	1009	66	1487	418	1329	149	1532	792
Y	24	1	25	4	29		32	1	26	5	27	2	28	2	35	1	25	0	30	3	28	2	30	2
Zr	212	22	176	54	213		232	20	260	28	229	16	229	29	222	19	226	36	218	23	242	31	217	1
Nb	86	6	80	30	90		136	6	87	19	91	8	99	11	124	9	87	3	106	19	112	8	97	13
Ba	876	322	645	187	814		1158	207	922	688	771	70	1114	536	1129	290	662	18	979	228	975	96	814	108
La	54	7	50	20	55		79	1	54	13	53	7	57	5	83	17	54	0	71	14	64	4	63	8
Ce	140	55	131	72	110		224	4	97	38	105	54	109	50	152	50	144	44	167	54	128	62	156	49
Zr/Nb	0.24		2.20		2.37		1.71		2.99		2.52		2.31		1.79		2.60		2.06		2.16		2.24	
Sr/Nb	10.72		12.64		12.43		10.35		11.22		12.08		10.93		13.94		11.60		14.03		11.87		15.79	
Ba/Rb	39.82		17.92		29.07		15.44		40.09		29.65		39.79		25.09		41.38		23.31		17.11		50.88	
Ti/Zr	0.75		0.75		0.69		0.70		0.72		0.71		0.71		0.75		0.72		0.79		0.63		0.79	
Rb/K	3.46		3.44		0.33		3.84		3.00		3.28		3.57		3.31		2.76		4.69		3.75		4.56	

 Tabelle 2b2: Mittelwerte der chemischen Spurenkomponenten mit Standardabweichungen von den Proben aus der Heldburger Gangschar. Der CIPW-Wert wurde mit CO2 berechnet.

	OMNm	OBm	ОВр	OBf	HAWob	BA	РНО
	$n=5 \pm$	n=6 ±	n=1 ±	n=2 ±	n=1 ±	n=2 ±	n=2 ±
V	309 8	298 11	199	210 42	239	200 6	20 2
Cr	562 28	362 30	281	212 74	264	239 66	33 7
Со	51 2	57 3	46	48 6	52	44 6	12 10
Ni	286 11	89 84	237	208 112	287	167 40	35 7
Zn	86 9	89 5	84	90 6	94	104 20	89 4
Rb	42 2	35 4	34	30 22	14	30 6	223 11
Sr	1256 143	907 190	1061	1001 233	1166	733 86	390 1
Y	29 1	26 4	24	25 4	28	24 0	23 1
Zr	227 7	246 19	162	174 7	169	156 3	347 16
Nb	106 9	78 17	68	79 9	72	54 10	336 2
Ba	820 75	687 173	809	1430 687	1916	729 220	543 8
La	9 3	50 17	40	42 5	45	30 5	55 2
Ce	199 10	76 52	143	99 69	50	38 42	200 4
Zr/Nb	2.14	3.15	2.38	2.20	2.35	2.94	1.03
Sr/Nb	11.85	11.63	15.60	12.67	16.19	13.57	1.16
Ba/Rb	19.52	19.63	23.79	47.67	136.86	24.30	2.43
Ti/Zr	0.74	0.71	0.81	0.72	0.81	0.82	0.06
Rb/K	4.25	3.34	3.09	1.89	2.68	3.06	6.07

 Tabelle 2b2: Mittelwerte der chemischen Spurenkomponenten mit Standardabweichngen von den Proben aus der Heldburger Gangschar. Der CIPW-Wert wurde mit CO₂ berechnet.

	AOBp)	AOBf		NB1m	NB1p		NB1f		NTE1		NB2p		NB2f	ONm	Onp	ONf
	n= 5	±	n=3	±	n=1 ±	n= 4	±	n=3	±	n= 4	±	n=2	±	n=7 ±	n=5 ±	n=3 ±	n=3 ±
qz	0.00		0.00		0.00	0.00		0.00		0.00		0.00		0.00	0.00	0.00	0.00
or	8.62	0.72	8.7 3	1.76	8.69	6.02	1.56	8.40	5.24	14.18	1.53	6.40	2.10	10.85 2.58	3.35 2.21	4.76 1.01	5.38 2.09
ab	23.68	2.15	18.33	2.23	4.73	15.60	1.90	9.92	4.45	17.85	3.59	5.24	2.72	8.97 3.72	0.00	2.79 1.54	0.24 0.86
an	14.31	2.13	20.05	1.89	17.84	13.90	2.37	19.95	4.12	15.39	2.71	13.07	2.25	13.42 1.72	13.96 4.43	11.37 2.68	16.75 1.78
lc	0.00		0.00		0.00	0.00		0.00		0.00		0.00		0.00	2.03 3.62	0.00	0.0
ne	1.90	1.26	3.86	1.13	6.4	6.78	1.45	7.29	0.75	12.35	2.82	11.59	0.31	15.63 2.10	13.16 4.21	16.50 2.90	17.74 1.20
cs	0.00		0.00		0.00	0.00		0.00		0.00		0.00		0.00	0.00	0.00	0.0
di	7.51	3.62	27.78	4.57	30.53	17.92	1.02	29.21	2.30	17.91	2.99	27.88	2.48	25.51 0.79	34.09 2.14	35.95 1.53	39.35 3.75
hy	0.00		0.00		0.00	0.00		0.00		0.00		0.00		0.00	0.00	0.00	0.00
ol	21.92	4.50	10.59	2.24	16.27	18.51	1.69	14.10	4.90	9.15	1.38	16.16	4.84	14.06 0.35	19.42 3.42	14.04 1.71	7.35 2.54
ар	1.82	0.26	1.52	0.23	1.64	2.03	0.27	2.09	0.44	3.52	0.40	2.03	0.54	2.36 0.10	1.85 0.54	1.93 0.10	2.49 0.19
mt	4.52	1.18	4.55	1.02	7.4	4.88	0.27	3.61	0.88	4.10	0.89	5.26	3.27	4.37 0.32	5.78 0.65	6.24 0.55	5.27 1.07
il	4.48	0.47	4.53	0.20	6.37	5.11	0.16	5.42	1.44	5.60	0.31	5.48	1.56	4.82 0.12	6.27 0.49	6.38 0.22	5.26 0.33

Tabelle 2c-1: Mittelwerte der CIPW-Norm der Proben aus der Heldburger Gangschar. Die CIPW-Norm ist H₂O- und CO₂-frei gerechnet.

	NE	OMNm	OMNp	OMNf	РНО
	n=3 ±	n=16 ±	n=4 ±	n=2 ±	n=2 ±
qz	0.00	0.00	0.00	0.00	0.00
or	3.08 2.01	0.00	0.00	0.00	26.43
ab	0.00	0.00	0.00	0.00	32.03
an	26.27 3.14	11.16 2.72	12.14 3.29	11.05 6.36	0.00
lc	1.34 0.89	5.00 1.87	4.90 1.71	6.54 1.19	0.00
ne	10.70 3.77	15.39 2.50	13.48 1.96	16.57 0.08	25.5
cs	0.0	5.22 3.19	5.80 3.05	7.09 8.30	0.00
di	43.62 4.55	29.01 6.72	28.67 4.53	33.11 10.44	4.69
hy	0.00	0.00	0.00	0.00	0.00
ol	2.50 1.92	20.14 5.56	21.18 5.21	12.61 7.44	1.43
ap	2.14 0.70	2.24 0.29	2.68 0.55	2.42 0.17	0.37
mt	4.74 0.71	5.80 1.32	4.95 1.54	4.82 0.55	0.5
il	5.44 0.89	5.67 0.44	5.69 0.33	5.52 0.045	0.68

 Tabelle 2c-1: Mittelwerte der CIPW-Norm der Proben aus der Heldburgergangschar. Die CIPW-Norm ist H2O- und CO2-frei gerechnet.

	AOBm		AOBp		AOBf		HAW		NB1m		NB1p		NB1f		NTE1		NB2m		NB2p		NB2f	
	n= 3	±	n= 7	±	n=1	±	n=2	±	n= 4	±	n= 6	±	n=6	±	n= 4	±	n=2	±	n=4	±	n=7	±
qz	0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00	
с	0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00	
or	4.51	1.03	7.48	1.81	6.01		13.89	2.43	5.44	2.44	5.88	1.58	5.56	1.22	9.65	4.32	4.21	0.13	6.40	2.27	10.74	2.32
ab	22.12	1.78	18.43	5.01	24.16		26.99	1.31	10.2	6.38	16.19	1.85	13.45	3.47	14.73	4.31	6.86	4.30	5.21	2.26	7.63	3.49
an	9.68	1.84	16.15	5.35	15.3		14.6	3.01	13.67	5.48	14.04	4.04	15.37	2.02	16.62	4.14	10.43	2.58	13.05	1.81	12.03	3.11
lc	0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00	
ne	2.69	2.34	3.03	0.97	2.27		6.97	0.67	6.31	3.11	6.83	1.85	8.58	0.64	9.78	3.42	12.22	0.47	11.59	217	14.99	1.96
cs	0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00	
di	1.75	1.29	15.73	8.41	14.4		6.84	2.04	18.37	10.68	18.51	2.74	21.54	4.54	18.97	5.02	24.61	4.02	27.89	4.51	24.56	1.09
hy	0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00	
ol	26.49	1.31	20.66	5.53	20.07		11.56	2.85	21.91	5.35	17.50	2.34	13.45	2.40	9.56	1.93	21.11	0.67	16.15	2.43	14.13	0.75
ap	2.03	0.06	1.74	0.73	2.16		3.09	0.18	1.94	0.49	1.92	0.18	2.22	0.14	2.96	0.85	2.03	0.03	2.03	0.35	2.33	0.03
mt	5.35	1.22	4.18	0.61	3.08		3.46	1.17	5.74	0.97	5.08	0.87	4.70	0.67	3.65	1.21	4.77	0.04	5.26	2.00	4.19	0.28
il	5.01	0.15	4.18	0.74	4.66		5.18	0.39	5.89	0.57	5.09	0.77	5.10	0.70	5.25	0.63	5.2	0.61	5.48	1.01	4.79	0.16

Tabelle 2c-2: Mittelwerte der CIPW-Norm der Proben aus der Heldburger Gangschar. Die CIPW-Norm ist mit CO₂ gerechnet.

	ONm		OMNm		OBm		OBp		OBf		HAWob		BA		РНО	
	n= 2	±	n= 5	±	n= 6	±	n= 1	±	n= 2	±	n= 1	±	n= 2	±	n=2	±
qz	0.00		0.00		0.00		0.00						8.06		0.00	
c	0.00		0.00		3.97	1.93							6.96			
or	2.49	1.17	0.00		7.40	1.40	7.84		11.37		3.72		23.47		26.43	
ab	2.49	1.12	0.00		21.74	3.28	14.22		20.66		13.26		0.00		32.03	
an	14.54	0.47	8.31	1.71	0.00		21.92		19.59		25.58		0.00		0.00	
lc	0.00		5.68	3.08	0.00		0.00		0.00		0.00		0.00		0.00	
ne	11.34	0.52	15.27	2.12	0.00		0.00		0.00		0.00		0.00		25.5	
cs	0.00		3.50	2.77	0.00		0.00		0.00		0.00		0.00		0.00	
di	31.39	2.69	29.68	1.22	0.00		17.65		0.00		18.76		0.00		4.69	
hy	0.00		0.00		18.88	8.50	13.93		22.47		10.09		24.69		0.00	
ol	17.36	5.71	19.72	2.95	13.00	7.77	1.47		1.65		1.82				1.43	
ар	2.18	0.51	2.21	0.22	1.71	0.44	1.42		1.47		1.47		1.30		0.37	
mt	5.60	1.53	5.56	1.00	5.81	0.69	6.65		3.02		4.71		4.48		0.5	
il	5.43	0.24	5.37	0.24	5.54	0.22	4.15		4.01		4.31		4.05		0.68	

Tabelle 2c-2: Mittelwerte der CIPW-Norm der Proben aus der Heldburger Gangschar. Die CIPW-Norm ist mit CO₂ gerechnet.

	AOBm	АОВр	NB1m		NB1p		NB2m		NB2p)	NB2f		0	Nm	0	Np	0	Nf	OM	Nm	ON	1Np	ON	٨Nf
	n=1 ±	n=1 ±	n=12 ±		n=2	±	n=17	±	n=11	±	n=2	±	n=14	±	n= 10	±	n=3	±	n=3	±	n=6	±	n=2	±
SiO ₂	45.81	46.09	44.89 0.6	7	44.6	0.08	43.74	1.29	43.60	1.17	42.71	2.51	41.93	0.86	41.16	0.59	42.73	0.36	40.73	0.79	39.39	1.04	38.96	0.01
TiO ₂	2.31	2.25	2.22 0.1	3	2.21	0.03	2.28	0.19	2.64	0.16	3.03	0.42	2.50	0.24	3.06	0.25	2.69	0.12	2.83	0.40	3.06	0.26	2.87	0.03
Al ₂ O ₃	12.24	12.30	11.37 0.5	4	12.37	0.18	11.4	0.59	12.0	0.66	12.85	0.96	11.03	0.87	11.60	0.28	12.05	1.08	11.11	0.58	11.46	0.51	11.12	0.03
Fe ₂ O ₃	2.93	4.20	3.40 0.5	7	3.1	0.37	3.70	0.94	3.5	0.37	2.78	1.51	4.25	0.33	4.88	0.88	2.33	0.96	4.42	0.27	4.65	0.35	4.49	0.11
FeO	8.34	7.74	7.87 0.3	7	8.54	0.06	7.97	1.01	8.74	0.58	9.48	0.09	8.04	0.32	8.23	0.56	9.98	1.22	8.43	0.54	8.80	1.15	8.94	0.11
MnO	0.20	0.18	0.18 0.0	1	0.21	0.00	0.19	0.03	0.2	0.02	0.22	0.00	0.20	0.01	0.21	0.01	0.23	0.03	0.22	0.01	0.22	0.01	0.23	0.00
MgO	13.10	10.88	14.67 1.2	2	12.37	0.14	13.78	1.75	11.60	1.02	10.81	0.92	15.09	1.88	11.93	0.34	11.59	0.72	13.71	0.89	12.18	0.23	11.62	0.67
CaO	11.38	11.94	10.96 0.5	1	11.85	0.06	11.94	0.71	12.90	0.57	13.16	0.21	12.25	0.87	13.01	0.28	12.98	0.37	13.49	0.85	14.46	1.42	16.32	0.07
Na ₂ O	1.95	2.83	2.8 0.2	2	2.94	0.00	3.23	0.36	3.03	0.63	3.29	0.68	3.29	0.50	3.95	0.25	3.51	0.05	3.22	0.08	3.37	0.38	3.00	0.38
K ₂ O	1.10	1.06	1.00 0.2	0	1.04	0.02	0.90	0.19	0.94	0.27	0.80	0.34	0.66	0.17	0.98	0.18	1.03	0.15	0.88	0.15	1.25	0.25	1.00	0.09
P_2O_5	0.66	0.71	0.63 0.0	6	0.80	0.02	0.81	0.09	0.80	0.10	0.87	0.03	0.76	0.10	0.99	0.08	0.88	0.07	0.97	0.09	1.15	0.24	1.45	0.03
Summe	100.00	100.00	100.00		100.00		100.00		100.0	0	100.00)	100.00)	100.00)	100.00)	100.00)	100.00)	100.0	0
Mg ²⁺ / (Mg ²⁺ +Fe ²⁺)	0.74	0.71	0.77		0.72		0.75		0.70		0.67		0.76		0.71		0.68		0.74		0.71		0.67	
CaO/Al ₂ O ₃	0.93	0.97	0.96		0.96		1.04		1.07		1.02		1.11		1.12		1.08		1.21		1.27		1.47	
P_2O_5/Al_2O_3	0.05	0.06	0.06		0.06		0.07		0.07		0.07		0.07		0.09		0.07		0.09		0.10		0.13	
Ti	13848	13489	13309		13249		13669		15827	1	18165		14988		18345		16127		16966		18345		17206	;
K	9131	8799	8301		8633		7471		7803		6641		5479		8135		8550		7305		10377		8301	

 Tabelle 3a: Mittelwerte der chemischen Hauptkomponenten mit Standardabweichungen von den Fichtelgebirgszone-Proben.

 Die CIPW-Norm ist CO₂-frei gerechnet und auf 100% normiert.

	AOBm	AOBp	NB1m		NB1p		NB2m	ı	NB2p		NB2f		0	Nm	ON	٧p	0	Nf	OMN	m	ON	ЛNр	ON	INf
	n=1 ±	n=1 ±	n=12	±	n=2	±	n=17	±	n=11	±	n=2	±	n=14	±	n=10	±	n=3	±	n=3	±	n=6	±	n=2	±
V	329	189	192	12	208	7	208	22	235	26	283	17	227	17	230	21	259	32	256	21	288	14	256	55
Cr	292	322	433	86	352	6	398	84	249	64	206	8	410	117	254	31	287	73	351	77	217	26	267	145
Со	55	66	58	5	54	1	56	6	51	3	59	6	59	4	54	4	52	4	55	2	52	2	57	2
Ni	223	294	351	84	234	5	327	78	162	37	147	7	324	97	182	49	171	31	225	69	131	36	198	173
Zn	101	78	82	12	85	2	81	5	83	5	93	0.7	85	4	87	4	87	1.4	84	4	90	9	89	1
Rb	33	29	41	22	33	1	53	47	60	23	139	159	36	8	61	25	54	29	42	23	37	11	34	0
Sr	894	1005	771	62	859	11	794	212	937	66	916	107	923	87	974	58	963	66	969	91	1191	205	1172	644
Y	29	25	23	1	24	0	24	1	26	1	28	3	27	2	27	2	29	1	29	1	31	3	28	12
Zr	302	155	177	21	177	1	200	26	233	45	267	118	259	94	248	49	234	72	354	181	290	79	241	33
Nb	90	53	58	6	55	2	67	6	85	12	97	14	84	17	89	12	93	7	109	30	104	16	78	33
Ba	485	538	546	108	506	52	583	107	730	133	589	115	585	98	738	92	771	200	637	23	738	119	686	229
La	54	37	32	5	38	1	41	10	46	8	54	11	44	6	45	4	51	9	47	3	61	14	56	30
Ce	172	61	57	29	66	5	65	32	75	14	120	35	76	20	75	8	98	21	79	7	107	31	99	0
Ti	13501	13249	12920		13009		13430		15550		17620		14863		15716		15820		16666		17967		16936	
K	8783	8675	7900		8472		7540		7478		6654		6878		8330		8335		7167		10144		8094	
Zr/Nb	3.36	2.92	3.04	0	3.24		3.03		2.75		2.69		3.02		2.78		2.43		3.11		2.77		3.28	
Sr/Nb	9.93	18.96	13.34		15.78		12.79		11.32		10		11.360	0.00	11.18		10.44		9.56		11.67		14.57	
Ba/Rb	14.7	18.60	15.9		15		15.5		13.8	6	14		16.90.	00	13.7		16		17.83		21.73		20.18	
Ti/Zr	0.45	0.85	0.74		1		0.68		0.69		0.71		0.62		0.65		0.73		0.55		0.64		0.71	
Rb/K	3.8	3.30	5.6	4	6.8		4.6		8.00		29		5		7.4		5.11		4.39		3.59		4.22	

Tabelle 3b: Mittelwerte der chemischen Spurenkomponenten mit Standardabweichungen der Fichtelgebirgszone-Proben. Die Mittelwerte sind
H2O- und CO2-frei gerechnet und auf 100% normiert.

	AOBm	AOBp	NB1m		NB1p		NB2m		NB2p		NB2f		ONm		ONp		ONf		OMNn	1	OMNp)	OMNf	
	n=1 ±	n=1 ±	n=12	±	n=2	±	n=17	±	n=11	±	n=2	±	n=14	±	n=10	±	n=3	±	n=3	±	n=6	±	n=2	±
qz	0.00	0.00	0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00	
c	0.00	0.00	0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00	
or	6.43	6.25	5.69	1.19	6.14	0.12	5.44	1.17	5.44	1.60	4.89	1.99	4.96	1.94	6.02	1.37	6.04	2.98	0.00		0.21	0.52	0.00	
ab	14.87	16.07	10.89	1.61	9.36	0.09	6.21	4.18	5.03	2.12	3.73	0.09	0.61	1.14	1.11	0.88	0.11	1.14	0.00		0.00		0.00	
an	21.46	17.51	15.78	1.59	17.57	0.47	14.43	1.61	16.76	2.58	18.17	1.79	12.74	2.12	12.99	1.56	14.24	3.27	13.33	1.74	12.23	1.12	13.75	1.79
lc	0.00	0.00	0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		4.06	0.71	5.00	1.27	4.51	0.41
ne	0.81	4.23	6.83	1.41	8.32	0.01	11.06	2.48	11.12	2.66	12.77	2.87	14.73	2.30	16.19	1.37	15.90	0.74	14.66	0.37	15.00	1.74	13.34	1.66
cs	0.00	0.00	0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.87	0.22	4.00	2.88	6.84	2.02
di	24.46	29.24	27.43	1.45	28.74	0.38	31.77	2.74	33.68	1.45	33.03	1.45	33.67	2.59	36.29	1.61	35.85	1.84	35.0 9	1.84	29.00	285	26.59	3.23
hy	0.00	0.00	0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00	
ol	21.77	14.73	22.81	2.50	19.28	0.23	19.54	4.65	15.77	2.82	15.44	1.42	20.05	4.05	14.63	1.82	17.31	2.58	17.83	2.65	16.69	1.49	17.02	2.15
ap	1.57	1.67	1.47	0.09	1.90	0.04	1.72	0.21	1.98	0.25	2.14	0.03	2.05	0.24	2.07	0.19	2.05	0.17	2.29	0.23	2.67	0.56	3.35	0.06
mt	4.24	6.09	4.94	0.82	4.48	9.54	5.36	1.42	5.18	0.58	4.07	2.34	6.19	0.47	5.57	1.27	3.37	1.43	6.39	0.40	7.00	0.54	6.38	0.16
il	4.40	4.25	4.14	0.25	4.20	0.06	4.33	0.36	5.03	0.32	5.76	0.93	4.77	0.49	5.06	0.47	5.11	0.20	5.36	0.79	6.00	0.51	5.34	0.05

 Tabelle 3c: Mittelwerte der CIPW-Norm von den Proben aus der Fichtelgebirgszone. Mittelwerte sind H2O- und CO2-frei gerechnet und auf 100% normiert.

Tabelle 1: Mit ICP analysierten Elemente der Seltenenerdenelemente aus der Heldburger Gangschar- und Hocheifel-Proben	186
Tabelle 2: Mittelwerte der nicht normierten SEE-Gehalte in ppm wurden mit Hilfe von ICP analysiert. Die La/Yb-Verhältnisse der einzelnen Gruppen sind auf C1 Chondrit normiert	187

		1	1		1	1					
Probe		La	Ce	Pr	Nd	Sm	Eu	Dy	Er	Yb	Ba
ZEI25U	UMX	2.0	6.0	1.6	2.2	0.1	0.1	0.2	0.2	0.1	42
ZEI22U	UMX	0.1	n.d.	1.8	0.5	0.2	0.1	0.3	0.1	0.1	629
ZEI11A	UMX	0.1	n.d.	0.5	0.2	0.3	n.d.	0.0	0.2	n.d.	27
ZEI14U	UMX	0.7	0.5	0.3	n.d.	0.2	0.0	0.2	0.1	0.1	12
ZEI29U	UMX	0.3	0.8	n.d.	1.5	0.1	0.1	0.2	0.2	0.2	40
ZIN7	UMX	n.d.	57.0	n.d.	62.0	6.0	nd.	n.d.	n.d.	n.d.	64
ZIN3UM	UMX	n.d.	0.1	n.d.	0.4	0.0	0.0	0.1	0.0	n.d.	45
ZIN9	UMX	n.d.	59.0	n.d.	53.0	7.0	n.d.	n.d.	0.0	n.d.	50
ZIN3-1	UMX	n.d.	54.0	n.d.	57.0	6.0	n.d.	n.d.	0.0	n.d.	55
ZIN2UM	UMX	n.d.	55.0	1.2	53.0	7.0	n.d.	n.d.	n.d.	n.d.	65
ZIN6UM	UMX	n.d.	53.0	1.9	63.0	6.0	0.1	0.2	0.2	0.1	53
R-2UMX	UMX	2.6	20.0	1.2	4.0	0.8	0.2	0.8	0.3	0.5	149
R-1	NB1P	56.0	104.0	15.0	46.0	8.0	2.5	4.8	2.9	1.4	685
R-3	NTE1	84.0	212.0	n.d.	23.0	15.0	n.d.	n.d.	n.d.	n.d.	980
R-5	NB1p	81.0	137.0	13.4	50.0	10.0	3.4	5.9	2.4	2.2	871
R-7	AOBf	38.0	147.0	n.d.	15.0	12.0	n.d.	n.d.	n.d.	n.d.	944
Q-7	MONm	78.0	143.0	19.0	58.0	11.0	3.0	6.0	2.0	1.0	873
U-1	MONp	125.0	251.0	28.0	99.0	18.0	4.0	7.0	3.0	2.0	1408
U-2	MONp	74.0	149.0	18.0	61.0	12.0	3.0	5.0	2.0	2.0	795
U-3A	MONm	100.0	177.0	21.0	73.0	13.0	4.0	6.0	2.0	2.0	926
U-3A2	MONm	159.0	276.0	29.0	104.0	19.0	5.0	7.0	3.0	2.0	1568
U-3A4	MONm	66.0	202.0	n.d.	26.0	15.0	n.d.	n.d.	n.d.	n.d.	811
U-3A5	MONm	70.0	209.0	n.d.	22.0	15.0	n.d.	n.d.	n.d.	n.d.	809
U-N4	MONf	116.0	211.0	24.0	87.0	16.0	4.0	6.0	3.0	2.0	900
S-7N	MONm	66.0	134.0	16.0	56.0	10.0	3.0	5.0	2.0	2.0	685
S-50	MONp	113.0	203.0	22.0	76.0	16.0	4.0	7.0	3.0	2.0	908
M-2-3A	AOBp	53.0	101.0	10.0	36.0	8.0	3.0	4.0	2.0	2.0	568
M-2-1B	AOBp	59.0	111.0	14.0	44.0	8.0	3.0	5.0	3.0	2.0	866
O-10	NB2f	120.0	195.0	18.0	68.0	13.0	3.0	5.0	2.0	2.0	1513
0-11	NB2f	65.0	118.0	14.0	45.0	8.0	3.0	5.0	2.0	2.0	966
E-21	AOBp	39.0	144.0	n.d.	16.0	12.0	n.d.	n.d.	n.d.	n.d.	587
E-22	NB1f	49.0	88.0	10.0	36.0	7.0	2.0	4.0	2.0	2.0	707
E-1A	РНО	46.0	74.0	9.0	29.0	6.0	2.0	4.0	2.0	2.0	341
HF2	ONp	54.0	105.0	12.0	40.0	8.0	2.0	4.0	2.0	2.0	540
HF91	ONp	45.0	96.0	9.0	32.0	8.0	3.0	4.0	2.0	2.0	713

Tabelle 1: Die mit ICP analysierten Elemente der Seltenenerdenelemente aus der Heldburger

 Gangschar- und Hocheifel-Proben.

	Pho		AOB	р	NB1p)	NB1f	•	NTE	1	NB2f		OMNm	l	OMNp		OMNf	
	n =1	±	n =3	±	n =2	±	n =1	±	n =1	±	n =2	±	n =4	±	n =3	±	n =1	±
La	45.9		58.8	5.6	68.5	18.2	49.1		84.0		92.4	39.0	103.8	27.0	103.8	27.0	116.00	
Ce	74.1		111.3	10.5	120.3	23.6	88.0		212.0		156.4	54.3	201.0	51.1	201.0	51.1	211.10	
Pr	8.9		12.8	2.0	14.0	0.8	10.4		0.0		16.4	3.4	22.5	5.1	22.5	5.1	24.00	
Nd	28.9		42.2	5.6	48.0	2.5	35.7		23.0		56.6	15.6	79.0	19.1	79.0	19.1	87.30	
Sm	5.5		8.4	0.8	9.0	0.8	6.8		15.0		10.6	3.1	14.9	3.0	14.9	3.0	15.60	
Eu	1.5		2.6	0.2	2.9	0.6	2.1		0.0		3.0	0.1	3.9	0.7	3.9	0.7	4.30	
Dy	4.1		4.8	0.6	5.3	0.8	4.3		0.0		4.7	0.3	6.1	0.1	6.1	0.1	6.40	
Er	2.0		2.2	0.4	2.7	0.3	2.0		0.0		2.2	0.2	2.5	0.7	2.5	0.3	2.50	
Yb	2.0		1.7	0.3	1.8	0.6	1.6		0.0		1.8	0.2	1.8	0.3	1.8	0.3	1.90	
Ce/Yb	37.0		65.3		66.8		55.0		0.0		86.9		111.67		111.67		111.11	
(La/Yb) _{CN}	15.2		22.7		25.70		55.0		0.0		51.33		45.2		38.1		40.20	

Tabelle 2: Mittelwerte der nicht normierten SEE-Gehalte in ppm wurden mit Hilfe von ICP analysiert. Die La/Yb-Verhältnisse der einzelnen Gruppen sind auf C1 Chondrit normiert.

Tabelle 1: Ergebnisse der Mikrosondeanalysen der Olivine aus der Hocheifel HF33 und HF311	188
Tabelle 2: Vergleich der tertiären Vulkanite aus der Hessischen Senke WEDEPOHL (1995) mit den Werten der primären Alkalibasalte aus der Hocheifel, Heldburger Gangschar und der Fichtelsgebirgszone	189

	HF33.1	HF33.2	HF311.1	HF311.2	HF311.3	HF311.4	HF311.5
SiO ₂	38.88	38.63	38.36	39.82	40.53	40.02	39.94
TiO ₂	0.00	0.02	0.00	0.00	0.09	0.09	0.07
Al ₂ O ₃	0.05	0.02	0.03	0.05	0.05	0.03	0.03
Cr ₂ O ₃	0.06	0.07	0.02	0.05	0.09	0.06	0.04
FeO	19.33	20.23	15.50	14.99	14.64	14.76	14.74
MnO	0.43	0.35	0.23	0.22	0.16	0.24	0.23
NiO	0.19	0.24	0.25	0.30	0.24	0.23	0.32
MgO	42.34	41.22	44.76	46.16	46.34	46.43	46.51
CaO	0.29	0.30	0.31	0.34	0.33	0.36	0.26
Na ₂ O	0.01	0.03	0.00	0.04	0.01	0.02	0.01
K ₂ O	0.01	0.00	0.02	0.00	0.01	0.00	0.00
Summe	101.61	101.12	99.47	101.96	102.48	102.23	102.15
Si ⁺⁴	0.978	0.982	0.968	0.977	0.990	0.979	0.977
Ti ⁺⁴	0.000	0.000	0.000	0.000	0.002	0.002	0.001
Al ⁺³	0.002	0.001	0.001	0.001	0.001	0.001	0.001
Cr ⁺³	0.001	0.001	0.000	0.001	0.002	0.001	0.001
Fe ⁺²	0.366	0.395	0.263	0.263	0.284	0.264	0.260
Mn ⁺²	0.099	0.008	0.005	0.005	0.003	0.005	0.005
Ni ⁺²	0.006	0.007	0.007	0.008	0.007	0.007	0.009
Mg^{+2}	1.588	1.562	1.683	1.689	1.687	1.693	1.697
Ca ⁺²	0.008	0.008	0.008	0.009	0.009	0.009	0.007
Na ⁺¹	0.001	0.001	0.000	0.002	0.001	0.001	0.001
\mathbf{K}^{+1}	0.000	0.000	0.001	0.000	0.000	0.000	0.000

Tabelle 1: Ergebnisse der Mikrosondeanalysen der Olivine aus der Hocheifel HF33 und HF311.

			HF					HGS			
	AOBp	NB1p	NB2p	ONp	OMNp	AOBp	NB1p	NB2	2p (ONp	OMNp
	n=6	n=10	n=15	n=8	n=4	n=5	n=4	n=	=2	n=3	n=4
SiO2	49,20	45,31	44,24	42,59	42,17	46,84	45,67	43,1	2 42	2,08	39,86
TiO2	2,01	2,28	2,37	2,55	2,45	2,06	2,44	2,9	00	3,36	2,97
Al2O3	16,13	14,24	14,09	14,02	13,82	13,36	13,82	12,3	38 1	1,51	10,42
Fe2O3	3,85	2,90	2,33	2,56	2,10	3,51	3,26	3,3	32 4	4,30	3,42
FeO	5,24	8,00	8,50	8,30	8,37	7,55	7,62	8,5	53	8,42	9,43
MnO	0,21	0,19	0,19	0,20	0,21	0,17	0,18	0,1	.9	0,20	0,22
MgO	7,13	10,61	10,94	11,75	11,83	10,39	10,15	11,8	36 12	2,07	13,55
CaO:	9,57	11,57	12,07	12,73	13,29	11,66	10,94	12,0	05 12	2,49	14,94
Na2O	3,73	3,16	3,37	3,34	3,73	2,54	3,64	3,5	54	3,95	3,00
K2O	2,39	1,11	1,17	1,12	1,28	1,36	1,42	1,2	26	0,80	1,05
P2O5	0,39	0,58	0,68	0,64	0,75	0,56	0,86	0,8	85 (0,82	1,14
Summe	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100	,0 10	0,00	100,0
			FGZ					NHD		1	
	AOBp	NB1p	NB2p	ONp	OMNp	QTH	AOB	NB1	NB2	IO	N OMN
	n=1	n=2	n=11	n=10	n=6	n=10	n=32	n=13	n=11	n=	9 n=8
SiO2	46,09	44,60	43,60	41,16	39,39	56,14	49,65	46,49	43,83	41,7	1 39,35
TiO2	2,25	2,21	2,64	3,06	3,06	2,03	2,27	2,28	2,74	2,8	4 2,55
Al2O3	12,30	12,37	12,05	11,60	11,46	14,86	13,67	12,83	12,21	11,8	5 10,18
Fe2O3	4.20	3.10	3.50	4.88	4.65	2.16	3.17	3.10	4.16	4.2	1 4.49

Tabelle 2: Vergleich der Hauptelemente der tertiären Vulkanite aus der Hessischen Senke
(NHD) [WEDEPOHL, 1995] mit den Werten der primären Alkalibasalte aus der
Hocheifel (HF), Heldburger Gangschar (HGS) und der Fichtelgebirgszone (FGZ).
QTH = Quarztholeiit

8,80

0,22

12,18

14,46

3,37

1,25

1,15

100,0

7,80

0,14

5,34

7,<u>03</u>

3,72

0,59

0,19

100,0

7,43

0,18

8,90

8,92

3,43

1,80

0,58

100,0

7,71

0,18

11,27

10,48

2,96

1,95

0,75

100,0

7,10

0,18

11,87

11,63

3,51

1,86

0,91

100,0

7,05

0,20

12,68

13,04

3,47

1,77

1,18

100,0

6,71

0,20

16,95

13,76

2,81

1,67

1,34

100,0

FeO

MnO

MgO

CaO:

Na2O

K2O

P2O5

Summe

7,74

0,18

10,88

11,94

2,83

1,06

0,71

100,0

8,54

0,21

12,37

11,85

2,94

1,04

0,80

100,0

8,74

0,20

11,60

12,90

3,03

0,94

0,80

100,0

8,23

0,21

11,93

13,01

3,95

0,98

0,99

100,0

AOBp NB1p NB2p ONp OMNp AOBp NB1p NB2p	ONp	OMNp
n=6 n=10 n=15 n=8 n=4 n=5 n=4 n=2	n=3	n=4
V 222 227 258 309 302 181 194 189	281	272
Cr 183 268 266 272 389 249 231 176	283	345
Co 39 47 49 51 46 46 43 33	55	55
Ni 161 218 208 234 504 193 176 135	233	316
Zn 76 72 72 66 70 76 84 66	89	88
Rb 68 35 38 39 51 37 37 63	13	28
Sr 825 804 913 805 929 918 1092 1480	989	1447
Y 26 25 26 27 31 23 26 32	27	29
Zr 305 195 172 174 197 145 210 218	245	228
Nb 74 60 67 72 85 67 94 121	87	98
Ba 654 538 566 538 693 574 799 1162	750	808
La 49 41 45 43 53 37 52 83	53	68
Ce 93 69 100 119 118 107 89 176	137	176
FGZ NHD		
AOBp NB1p NB2p ONp OMNp QTH AOB NB1	NB2 (ON OMN
n=1 n=2 n=11 n=10 n=6 n=10 n=32 n=13 r	n=11 n	=9 n=8
V 189 208 235 230 287 127 176 187	222 2	20 214
Cr 322 351 249 253 236 212 354 395	397 3	560
Co 66 54 51 54 50 41 46 49	52	49 53
Ni 294 234 162 182 268 87 208 301	334 3	329 354
Zn 78 85 84 87 92 130 112 110	117 1	.00 112
Rb 29 33 60 61 37 18 51 55	65	57 47
Sr 1005 859 937 974 1259 387 818 1020 1 M 27 27 27 22 22 22 22 22 22 22 22 22 22 22 23	1210 14	50 1640
<u>Y 25 24 27 27 32 23 22 23</u> Z ₂ 155 177 222 248 275 122 199 219	27	28 27
Li 155 1/1 255 248 2/5 152 188 218 Nb 52 55 85 90 106 nd	253 2 nd m	$\frac{3}{20}$
NU JJ JJ SJ SJ SJ SJ NU II.d. II.d.	040 9	1.u. 11.u. 200 052
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>940</u> 0 82 1	12 115
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	151 2	12 113

Tabelle 2: Vergleich der Spurenelemente der tertiären Vulkanite aus der Hessischen Senke (NHD) [WEDEPOHL, 1995] mit den Werten der primären Alkalibasalte aus der Hocheifel (HF), Heldburger Gangschar (HGS) und der Fichtelgebirgszone (FGZ). QTH = Quarztholeiit

	HF				HGS					
	AOBp	NB1p	NB2p	ONp	OMNp	AOBp	NB1p	NB2p	ONp	OMNp
	n=6	n=10	n=15	n=8	n=4	n=5	n=4	n=2	n=3	n=4
Mg#	0,71	0,70	0,70	0,73	0,73	0,71	0,70	0,71	0,72	0,72
CaO/Al2O3	0,59	0,81	0,86	0,91	0,96	0,87	0,79	0,97	1,09	1,43
P_2O_5/Al_2O_3	0,02	0,04	0,05	0,05	0,05	0,04	0,06	0,07	0,07	0,11
Ti	12050	13669	14208	15287	14688	12350	14628	17386	20143	17805
Κ	19840	9214	9713	9214	10626	11290	11787	10460	6641	8716
Zr/Nb	4,12	3,25	2,57	2,42	2,32	2,16	2,23	1,80	2,82	2,33
Y/Nb	0,35	0,42	0,39	0,38	0,36	0,34	0,28	0,26	0,31	0,30
Sr/Nb	11,15	13,40	13,63	11,18	10,93	13,70	11,62	12,23	11,37	14,77
Ba/Rb	9,62	15,37	14,89	13,79	13,59	15,51	21,59	18,44	57,69	28,86
Ti/Zr/100	0,40	0,70	0,83	0,88	0,75	0,85	0,70	0,80	0,82	0,78
Rb/K	0,34	0,38	0,39	0,42	0,48	0,33	0,31	0,60	0,20	0,32
Zr/TiO2	152	86	73	68	80	70	86	75	73	77

	FGZ				NHD						
	AOBp	NB1p	NB2p	ONp	OMNp	QTH	AOB	NB1	NB2	ON	OMN
	n=1	n=2	n=11	n=10	n=6	n=10	n=32	n=13	n=11	n=9	n=8
Mg#	0,71	0,72	0,70	0.71	0,71	0.55	0,68	0,72	0,73	0,75	0,8
CaO/Al2O3	0,97	0,96	1,07	1,12	1,26	0,47	0,65	0,82	0,95	1,10	1,35
P_2O_5/Al_2O_3	0,06	0,06	0,07	0,09	0,10	0,01	0,04	0,06	0,07	0,10	0,13
Ti	13489	13249	15827	18345	18345	12170	13609	13667	16426	17026	15287
Κ	8799	8633	7803	8135	10377	4898	14942	16166	15440	14693	13863
Zr/Nb	2,92	3,22	2,74	2,79	2,59	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Y/Nb	0,47	0,44	0,32	0,30	0,30	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Sr/Nb	19,00	15,60	11,00	10,90	11,90	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Ba/Rb	18,55	15,33	12,18	12,10	19,95	10,78	13,25	14,18	14,46	15,61	20,28
Ti/Zr/100	0,87	0,75	0,68	0,74	0,67	0,92	0,72	0,63	0,65	0,59	0,45
Rb/K	0,33	0,38	0,77	0,75	0,36	0,37	0,34	0,34	0,42	0,39	0,34
Zr/TiO2	69	80	88	81	90	65	83	96	92	101	134

Tabelle 2: Vergleich der Hauptelemente der tertiären Vulkanite aus der Hessischen Senke (NHD) [WEDEPOHL, 1995] mit den Werten der primären Alkalibasalte aus der Hocheifel (HF), Heldburger Gangschar (HGS) und der Fichtelgebirgszone (FGZ). QTH = Quarztholeiit

Jale Tanyeri, geb. Vural

Lebenslauf

PERSÖNLICHE ANGABEN

Geburtsdatum:	17.03.1954
Geburtsort:	Istanbul / Türkei
Staatsangehörigkeit:	deutsch
Familienstand:	verh., drei Kinder (1983, 1987, 1989)

SCHULBILDUNG

1960-1968	Volksschule und Mittelschule
1968-1971	Gymnasium in Istanbul, Abschluss: Abitur
1972-1973	Deutschkurs an der Universität München

HOCHSCHULAUSBILDUNG

1973-1974	Studienkolleg an der Universität München
1974-1980	Studium der Mineralogie an der LM-Universität München
1980	Diplom
1982-1984	Promotionsstudium an der Universität München
ab 1993	Wiederaufnahme des Promotionsstudiums

BERUFLICHER WERDEGANG

1994-1995	Fraueninitiative Milbertshofen als Sozialpädagogin
1995-1998	Dozentin an der Volkshochschule für Deutsch als Zweitsprache
Seit 1997	Sozialpädagogische Mitarbeiterin im Frauenprojekt der "Initiativgruppe-Interkulturelle Begegnung und Bildung e.V." Planung, Organisation, Durchführung und Verantwortung für Deutschkurse für Migrantinnen (BaMF)
Seit 1999	Freiberufliche Dozentin für Deutsch als Zweitsprache: Vertretung der Kursleiterinnen in der "Initiativgruppe – Interkulturelle Begegnung und Bildung e.V." für Sprachverbandkurse
1999-2003	Teamteacherin von "Schule mal Anders"-Kursen, Mitautorin der Handreichung Schule mal anders- Mütter lernen Deutsch an der Schule ihrer Kinder (Klettverlag, 2002)
Seit 2005	Planung, Organisation Durchführung und Verantwortung von Integrationskursen (auch Alphabetisierungskurse) mit Kinderbetreuung über Bundesamt für Migranten und Flüchtlinge
Seit 2005	Vertretung der Kursleiterinnen der Integrationskurse für BaMF