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Date of oral examination: July 17, 2007



Zusammenfassung

Die vorliegende Arbeit befaßt sich vor dem Hintergrund der AdS/CFT-Korres-

pondenz mit Defekten beziehungsweise Rändern in der Quantenfeldtheorie.

Wir untersuchen die Wechselwirkungen von Fermionen mit auf diesen Defekten

lokalisierten Spins. Dazu wird eine Methode weiterentwickelt, die die kanonis-

che Quantisierungsvorschrift um Reflexions- und Transmissionsterme ergänzt

und für Bosonen in zwei Raum-Zeit-Dimensionen bereits Anwendung fand.

Wir erörtern die Möglichkeiten derartiger Reflexions-Transmissions-Algebren

in zwei, drei und vier Dimensionen. Wir vergleichen mit Modellen aus der

Festkörpertheorie und der Beschreibung des Kondo-Effektes mithilfe konformer

Feldtheorie.

Wir diskutieren ferner Ansätze der Erweiterung auf Gitterstrukturen.
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Abstract

The present work is addressed to defects and boundaries in quantum field

theory considering the application to AdS/CFT correspondence.

We examine interactions of fermions with spins localised on these boundaries.

Therefore, an algebra method is emphasised adding reflection and transmission

terms to the canonical quantisation prescription. This method has already

been applied to bosons in two space-time dimensions before. We show the

possibilities of such reflection-transmission algebras in two, three, and four

dimensions. We compare with models of solid state physics as well as with the

conformal field theory approach to the Kondo effect.

Furthermore, we discuss ansatzes of extensions to lattice structures.
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Dans la boucle de l’hirondelle un orage s’informe, un jardin se

construit.

(In der Schleife des Schwalbenflugs fügt sich Gewitter, gestalten

sich Gärten.)

René Char, A la santé du serpent
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Il reste une profondeur mesurable là où le sable subjugue la

destinée.

(Wo Schicksal von Sand unterjocht wird, bleibt eine lotbare Tiefe.)

René Char, A la santé du serpent

1
Introduction

The present thesis examines defects (and boundaries) in fermionic quantum

field theories (QFT) using a reflection-transmission algebra (RT) technique

and thus derives conserved quantities from boundary data.

For more than three decades, considerations of defects and especially bound-

aries in field theories have been playing an important role in solid state physics

and statistical mechanics. Recently, they have enjoyed increasing research

interest in particle physics as well. Notably, the description of the one-impurity

Kondo effect by conformal field theory in two dimensions given by Affleck

and Ludwig [1; 2] and the very lively research in AdS/CFT correspondence

including description of flavour by adding D branes on AdS side [3] raised the

importance of tools for dealing with boundaries and defects in field theories.

Main Ideas of AdS/CFT Correspondence

Considering unifying theories, at first glance it might appear surprising that

one of the most intensely investigated fields in recent years in theory of ele-
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16 CHAPTER 1. INTRODUCTION

mentary particles related to string theory is AdS/CFT correspondence. Orig-

inally this correspondence is a derivation from string theory mapping between

a supergravity theory in a d-dimensional anti de Sitter space (the maximum

symmetric solution of Einstein’s equation with negative curvature) and a con-

formal field theory in d− 1-dimensional Minkowski space. This is remarkable

since string theory itself was not primarily intended to map gravitation to QFT

and vice versa, but rather to merge both theories into a single one.

However, the attractivity of AdS/CFT theory consists precisely in consistency

with a higher-dimensional unifying theory and at the same time the vicinity

to “real”, i.e. falsifiable theories. Such theories are general relativity and QFT

which form today’s understanding of elementary particles (i.e. the standard

model). Certainly, to our knowledge, the universe has no negative curvature

and the standard model is not conformal in general, however, both theories are

well understood and are adaptable to more realistic scenarios as well. More-

over, IR and UV fixed points of ordinary QFT are conformal and thus directly

accessible to AdS/CFT.

Supergravity is expected to be the low energy limit of full superstring theory

where only gravitation remains relevant. In this way it is possible to derive

type IIB supergravity from type IIB string theory. Within this procedure,

an AdS geometry is generated by a stack of coincident D branes (manifolds

that establish a Dirichlet boundary condition on the strings ending on them).

Concretely, we are further interested in D3 brane stacks (a 1 + 3-dimensional

object) which induce an AdS5 geometry in supergravity theory.

The original idea of AdS/CFT correspondence [4–6] was to connect Green

functions with the boundary (radial coordinate ρ → ∞). This boundary is a

Minkowski space of co-dimension one; the related boundary two-point func-

tions contain fields of a conformal field theory (CFT). A CFT is a QFT that

is invariant not only under Poincaré transformations but also under conformal

transformations: inversion on the unit circle and scaling. Conformal transfor-

mations are locally isogonal. The emergence of a 1 + 3-dimensional CFT on

the boundary of an AdS5 space is a consequence of symmetry considerations.

Firstly, the gauge zero mode of the D3 brane stack generates a U(1) symmetry

of the zero modes in AdS5 which corresponds to the position symmetry of a

unitary field theory, a so-called Yang-Mills (YM) theory. Secondly, the isome-

try group of an AdS5×S5 space is SO(2, 4)×SO(6) (the additional five spatial
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directions compactified as S5 complete the ten-dimensional space-time wherein

superstring theory is formulated). A CFT with an R symmetry according to

N = 4 has the conformal symmetry group SO(2, 4)×SU(4) ' SO(2, 4)×SO(6).

Hence N = 4 SYM (super Yang-Mills theory) is considered the theory corre-

sponding to AdS5 × S5 supergravity via [6]〈
exp

[∫
dx4ϕ0O

]〉
CFT

= exp {Ssg[ϕ]}
∣∣
ϕ(∂AdS)=ϕ0

, (1.1)

where Ssg[ϕ] is the supergravity action and thus the right hand side is the

supergravity generating functional evaluated on the boundary with boundary

field ϕ0. The correspondence has been suggested also in full string theory, but

only the supergravity/SYM relation has been studied extensively yet.

Relation (1.1) is dual (the coupling constant is inverted under the transforma-

tion) and suggests a dictionary between field theory operators and supergravity

fields. Furthermore, the symmetry relation implies the possibility of correlating

asymptotical AdS supergravity with CFT. It turned out that these non-AdS

but asymptotical AdS geometries exhibit a singularity in the deep interior [7]

at least in the case of completely broken supersymmetry. A solution with finite

singularity horizon was given by [8].

Moreover, it is possible to add further D branes to these supergravity back-

grounds as shown in [3; 9–12]. These additional branes were considered as

probe branes, i.e., they do not deform the background and break some symme-

try by adding open string states which could also end on the additional brane.

Recently, some investigation in non-probe branes [13] has been published, how-

ever beyond the scope of basic probe brane properties we are interested in here.

The D brane intersections are very useful to describe flavour since the open

strings – which can end on the D brane stack as well as on the probe brane

– become massive and show a CFT dual in the fundamental representation.

Moreover, due to the duality property of AdS/CFT correspondence, a weak

coupling theory on the AdS side describes a strong coupling one on the CFT

side which then can be considered as QCD. In this way an indirect perturba-

tional approach to QCD has been presented and induced intense investigation

[9; 11; 14; 15].

Additionally (by adding lower-dimensional D brane probes on the AdS side),

CFT shows lower-dimensional defects, for example the D3/D5 theory turns out

to have a four-dimensional CFT dual with a three-dimensional defect. Such a
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defect is a δ-distribution-like hyperplane (in Minkowski space just a flat plane)

that can contribute additional interaction terms to the theory describing the

interaction of bulk fields with the defect. In fact, embedding a D5 probe

brane into an AdS5 × S5 space generated by a D3 brane stack exhibits an

AdS4 × S2 corresponding to a three-dimensional subspace on the CFT side

[16; 17], preserving SO(3, 2) conformal symmetry to all orders in perturbation

theory [18]. From the gravity perspective this field theory may be interpreted

as the AdS/CFT dual of a four-dimensional AdS4 subspace on which gravity

is potentially localised. This localisation would correspond to the existence of

a conserved three-dimensional energy-momentum tensor in dual field theory.

This remains an open question. Similarly, by considering a D3 brane probe on

AdS3 × S1, a gravity dual of a four-dimensional conformal field theory with a

two-dimensional interacting defect is obtained [11].

A further non-supersymmetric deformation of the AdS5 × S5 background has

been studied in [19; 20]. On the field theory side, the so-called Janus models

exhibit a CFT with defect, but different couplings on both sides of the defect.

Therefore, they show different “faces” to the defect depending on the side we

look at. Such Janus deformations can be examined for lower dimensions [21]

as well.

Application in Solid State Physics

Research on two-dimensional CFT led to applications in solid state physics as

well. Especially influential was the description of the single-impurity Kondo

effect – first stated in 1964 by Jun Kondo [22] – by an effective two-dimensional

CFT with boundary given by Affleck and Ludwig [1]. The Kondo effect de-

scribes the low-temperature behaviour of resistivity in solid states including

magnetic impurities. While an ideal solid state shows a decreasing resistivity

for decreasing temperature T going to zero for T = 0, the existence of impuri-

ties generates a finite resistivity at T = 0 (for electrical charged impurities) or

a resistivity minimum near T = 0 which rises to a finite value at T = 0. The

latter is called Kondo effect. Since that time, a lot of modelling work has been

undertaken in solid state physics, however failing to achieve an exact descrip-

tion of several impurities up to now. Recent works by Affleck and Ludwig [23]

opened new prospects by incorporating two-dimensional CFT with boundary.
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However, any field theoretic model considering the Kondo effect should be

related to standard descriptions in solid state physics. According to stan-

dard textbooks (for instance [24]), there are different Hamiltonian operators

for different band structures of solids. Essentially there are two such stan-

dard descriptions, the Heisenberg and the Hubbard model. The Heisenberg

operator is commonly used to describe lattice spin interactions or interactions

of fixed spins with conducting electrons, respectively, whereas the Hubbard

model operator is used for spin interactions between transmission electrons

(i.e. freely propagating, non-localised spins). Consequently, these applications

are disjunct.

Heisenberg operator In detail, the most general Heisenberg operator is

H = −
∑
i,j

Jij
[
α(Sx

iS
x
j + Sy

i S
y
j ) + β(Sz

iS
z
j )
]
.

Depending on the formulation of the problem, α, β are chosen differently,

Heisenberg model (α = β = 1) H = −
∑
i,j

Jij ~Si · ~Sj,

Ising model (α = 0, β = 1) H = −
∑
i,j

Jij S
z
i S

z
j ,

XY model (α = 1, β = 0) H = −
∑
i,j

Jij (Sx
i S

x
j + Sy

i S
y
j ).

For fixed spin defects interacting with conducting electrons (Kondo model),

there exists a reformulation according to Rudermann-Kittel-Kasuya-Yosida

(RKKY), transferring this “mixed form” of interaction to the Heisenberg form.

The coupling constant Jij is oscillating in correspondence with the distance be-

tween the localised defects. As a result, the Kondo effect is transformed into

an indirect interaction of localised spins via interacting electrons.

The second simplification is the approximation of next neighbours, keeping

Jij = const. and considering only interactions of nearest neighbours. The

simplifications then are as follows (i, j localised):
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RKKY model H = −
∑
i,j

JRKKY
ij

~Si · ~Sj,

NN approximation (Jij = J) H = −J
∑
i,j

~Si · ~Sj.

Kondo model The Kondo model [22; 25] (for a review see [26]) describes the

interaction of conduction electrons with fixed magnetic impurities; i.e. spins.

In particular, this interaction is responsible for the low temperature resistivity

behaviour that does not vanish (as would be the case for an ideal conductor)

but shows a minimum near T = 0. Hence, the original operator for the Kondo

model (with two localised spins, between which the indirect interaction is then

mediated) reads

Hsf = −
g  h
2N

2∑
i=1

∑
~k,~q

e− i~q~Ri

[
Sz

i (c
†
~q+~k,↑c~k,↑ − c†

~q+~k,↓c~k,↓)+ (1.2)

+ S+
i c

†
~q+~k,↓c~k,↑ + S−

i c
†
~q+~k,↑c~k,↓

]
.

Here, c†, c are creator and annihilator of the electrons with corresponding spin

and momentum. ~Ri denotes the spatial position of spin Si. In addition, the spin

operators have been decomposed into components with common eigenstates,

~Si · ~Sj = Sz
i S

z
j +

1

2

(
S+

i S
−
j + S−

i S
+
j

)
. (1.3)

Thus the transformation simplifies the Hamiltonian operator significantly, but

works only for more than one spin impurity. Moreover, in contrast to the

present work, the generic point of view in solid states physics is considering

the two-spin impurity case as a trap in which the electron freely propagates

[27; 28].

Hubbard operator The Hubbard operator cannot be transformed into a

Heisenberg form and is thus we are faced with a completely different problem,

H =
∑
ijσ

Tij a
†
iσajσ +

1

2

∑
ijkl
σσ ′

v(ij,kl)a†iσa
†
jσ ′akσ ′alσ

≈
∑
ijσ

Tij a
†
iσajσ +

1

2
U

∑
i,σ

ni,σni,−σ.

(1.4)
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Here, U actually is the matrix element v(ii, ii) describing intraatomic ex-

change. Thus, interatomic interactions are not affected by the low overlap.

In the present work, we concentrate on a Heisenberg-like model. Using reflection-

transmission formalism, we need fixed impurities. This is essential for descrip-

tion of the Kondo effect as well.

Dealing with Defects and Boundaries

For conformal field theories, pioneering work by John Cardy [29–32] raised

the question of conformal boundary interactions in the 1980s. Inspired by

conformal embeddings suggested by Altschuler et al. [33] breaking a part of

the symmetry by introducing a boundary, he derived some fundamental results

on fusion rules, a Verlinde formula for the boundary case, and a classification

of conformal families [30; 31]. He also suggested an operator expansion on the

boundary (BOE) influenced by the conformal bulk theory [32].

The proposed BOE was later developed in detail by Osborn and McAvity

[34; 35] who gave the operator expectation values in dependence on the distance

from the defect. In fact, they applied an elegant method of integrating the

modes of the Fourier decomposition over hyperplanes parallel to the defect

[36] and transforming the result back into position space. A generalisation to

dynamical degrees of freedom was given in [37].

Strongly related to the infinite number of generators of two-dimensional con-

formal symmetry, the mathematical approach [30], generalising fusion rules

and resulting correlation functions, was elaborated by Fuchs and Schweigert

[38; 39] applying category theory and theorems about Kac-Moody algebras

describing the defect [40–42]. Kac-Moody algebras (for review see [43]) have

also been used for the above mentioned description of the Kondo effect by two-

dimensional CFT with boundary. A Kac-Moody ansatz was implemented by

Affleck and Ludwig [23] to derive the energy shiftings caused by one-impurity

interactions. Moreover, they suggested a multi-channel ansatz [44] for the

two-impurity Kondo problem.

Related to such spin interactions, models with additional O(N) symmetry

raised interest [45–48]. In particular, the O(N) model is a generalised Ising

model (where the vector multiplets are in the fundamental representation of
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O(N)). This model shows a free UV-fixed point and a non-trivial fixed point

in the infrared. At the fixed points the theory is conformal invariant. The

avowed AdS dual is a gravity theory with infinite number of gauge fields of

even spin [49]. In both energy regimes, both theories are dual to each other.

Klebanov und Polyakov [49] argue that the Breitenlohner-Freedman bound is

modified in this case and does not exclude the conformal dimension ∆−,

∆± =
d

2
±
√
d2

4
+m2L2 (1.5)

(d – dimension, m – mass, L – AdS radius) which is rather associated to the

infrared (for a review see [50]).

Recently, this led to further investigations of deformed models in four dimen-

sions [51] as well as for lower dimensions [52; 53].

Defects and Boundaries in RT Algebra Formalism

Leaving aside conformal symmetry and turning attention to integrable systems

and considering possibilities of changing the canonical quantisation to more

general algebras, a method was invented and proven [54–56] that correctly

includes the boundary interaction terms right in the quantisation. Following

former work of A. and A. Zamolodchikov [57] and L. D. Faddeev [58], such

generalised FZ algebras (for a summary see [59]) were supplemented by δ dis-

tribution terms including the boundary position as well as boundary behaviour

amplitudes, interpreted as reflection and transmission [56]. For integrable sys-

tems [60] this resulted directly in Yang-Baxter equations for the defect case.

Furthermore, it was shown by Bajnok et al. [61] that such a quantisation

formalism (RT formalism) can describe both a defect and a boundary, because

the defect case can be interpreted as gluing together two boundary theories at

their respective boundaries. In this way, the somewhat unphysical defect type

(it has measure zero) can simply be interpreted as boundary condition limit

of some expanded defect. The effects in finite distance from the boundary

or defect should then give the same picture as that provided by Osborn and

McAvity [36].

Note that in the present thesis we are dealing only with theories that are free

far from the defect; i.e., only scattered states are considered. Bound states
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can be easily added into RT algebras and will give additional terms for energy

densities and conserved currents as well. However, doing so would have gone

beyond the scope of this work.

Giving a general algebra framework for fermionic theories with boundaries

and defects for arbitrary higher space-time dimensions, we derive a formal-

ism to determine RT amplitudes in dependence on coupling parameters in the

Lagrangean. We give two-point expectation values in terms of RT amplitudes

and calculate explicitly conserved quantities in two, three and four dimensions.

Furthermore, we extend this algebra approach to parallel defects of arbitrary

number by means of a matrix optics ansatz. We thus provide a basis for intro-

duction of further (for instance conformal) symmetry and discuss extensions

to lower-dimensional defects.

Taken together, in the present thesis a complete description of fermionic defect

theory in 2–4 space-time dimensions is given. In the second chapter the RT

algorithm will be introduced in detail. In chapter 3 we show how the con-

struction for fermions works and gives detailed results for energy densities and

currents. The conclusion will summarise main aspects and point out future

research. We add an appendix that states a technical completion of the longish

derivation of RT coefficients from boundary data in arbitrary dimensions.
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Les ténèbres que tu t’infuses sont régies par la luxure de ton

ascendant solaire.

(Die Finsternisse, die du dir einflößt, durchwaltet die Wollust des

Sonnenzeichens, dem du unterstehst.)

René Char, A la santé du serpent

2
Defects in Quantum Field Theory and

RT Formalism

The idea of reflection-transmission (RT) algebras is based on the perception

of defects as δ-distribution-like “walls”, where particle wave functions obey a

boundary condition. These boundary conditions should be consistent with all

quantum mechanical requirements usually dealt with in quantum field theory,

namely continuity of the absolute value of the wave function as well as inte-

grability. Consequently, ideas of geometrical optics can be relied on, where

transmission and reflection amplitudes for (light) waves have originally been

defined. To consider similar amplitudes for particle waves means in particu-

lar “stepping back” from a perturbation theory of energy states and related

scattering matrices to wave function scattering matrices that then become k-

dependent (where k is the momentum), but not necessarily k2-dependent, as

one usually expects from energy-dependent scattering.

Actually, conventional quantum mechanics deals with two complementary con-

cepts. On the one hand, according to the underlying Lie algebra, spin states

of many particles are combined into common eigenstates. For instance, two

25
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spin-half particles couple to one singulett and one triplett state via Clebsch-

Gordon; i.e. standard fusion rules. On the other hand, there is perturbation

theory starting from an exactly solved model, considering perturbations εH1

and ordering by ε, where ε < 1 is small enough to ensure the convergence of

the method.

In addition, scattering theory deals with the idea that the perturbation is

strongly localised. This implies that, far from the perturbation, the eigen-

states are not affected by εH1 and thus are asymptotically exact. Therefore,

localised perturbation is understood as some operator – the scattering matrix –

intermediating between different exact energy eigenstates |En〉 with eigenvalue

En. Of course, this scattering matrix Sij = λij |Ej〉 〈Ei | is of infinite rank.

We strengthen the scattering concept to δ-like defects that yield a boundary

condition at the defect. In other words, we consider every defect theory that

can be described by a boundary condition at a finite position x0. Furthermore,

we do not interpret the scattering process as a transition between eigenstates

of different energy, but as scattering of eigenstates of the entire theory in order

to fulfill the boundary condition. The advantage of such a theory becomes

clear immediately when this S matrix (scattering matrix) is written down

explicitly: it only mixes states of the same energy eigenvalue (that means it

becomes diagonal). Therefore, the theory is exact – right from the beginning

– and we do not have to take into account any perturbations.

Accordingly, the canonical algebra of creators and annihilators contains ad-

ditional (transmission and reflection) terms affecting the two-point functions

only in case that one of the particles interacts with the boundary. So we expect

these reflection and transmission coefficients (RT coefficients) to enter the al-

gebra as prefactors of δ distributions related to the defect. Such a very general

algebra was established by Mintchev, Ragoucy, and Sorba [56; 62]. They gave

a complete proof of the validity of the general formulation. Subsequently, two

of these authors calculated the details for the bosonic case [63] and considered

a ϕ4-interaction term in the Lagrangean as well [64].

Furthermore, in geometric optics complicated composite structures can easily

be calculated by multiplying matrices describing the single elements. Once

the defect behaviour is formulated in terms of reflection and transmission, one

might ask whether such defects act like ordinary reflecting and transmitting
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elements for light waves (i.e. lenses, mirrors etc.) and obey matrix optics rules

as well.

In this chapter we give an overview over these techniques and state their

bosonic results as examples. Furthermore, we show that the “light wave idea”

is even more sustainable than assumed in the above mentioned papers: a ma-

trix optics ansatz holds even for RT algebras.

2.1 Definition of an RT Algebra

According to the antecedent outline, the idea behind this chapter consists in

interpreting the boundary condition of the quantum mechanical wave functions

as δ defects that transmit part of the wave and reflect the rest. Consequently, in

the second quantisation approach, these reflection and transmission amplitudes

have to enter as operators in the creator-annihilator algebra. In a first step,

such an algebra (without reflection and transmission) can be written in a

general form known as Zamolodchikov-Fadeev algebra [57; 58; 65]:

aα1(χ1)aα2(χ2) = Sβ1β2
α2α1

(χ2,χ1)aβ2(χ2)aβ1(χ1), (2.1)

aα1(χ1)a
α2(χ2) = Sα1α2

β2β1
(χ2,χ1)a

β2(χ2)a
β1(χ1) (2.2)

aα1(χ1)a
α2(χ2) = S

α2β1

α1β2
(χ1,χ2)a

β2(χ2)aβ1(χ1) + 2π δα2
α1
δ(χ1 − χ2) (2.3)

Here we used a short form aα := a∗α for the creators related to the annihila-

tors by complex conjugation. The indices αi,βi label all degrees of freedom

of the wave function in the Fourier decomposition. Due to the general formu-

lation, the elements Sβ1β2
α2α1

(χ2,χ1) are some prefactor tensors that adjust the

different creator indices and the difference in χi that shall be deemed to be

the momentum. Of course, in canonical quantisation, the tensors Sβ1β2
α2α1

be-

come just Kronecker δ functions with a sign depending on fermionic or bosonic

requirements.

In order to describe defects, we add transmission and reflection elements

tα2
α1

, rα2
α1

. It is not obvious at this stage how this can be done beneficially.

However, we give a reasonable definition that will be justified in the follow-

ing sections. We claim that the most general form of a second quantisation

creator-annihilator algebra with elements {aα(χ), aα(χ), rβα(χ), tβα(χ)} reads
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[62]:

aα1(χ1)aα2
(χ2) − Sβ1β2

α2α1
(χ2,χ1)aβ2

(χ2)aβ1
(χ1) = 0, (2.4)

aα1(χ1)a
α2(χ2) − aβ2(χ2)a

β1(χ1) Sα1α2
β2β1

(χ2,χ1) = 0, (2.5)

aα1
(χ1)a

α2(χ2) − aβ2(χ2) S
α2β1

α1β2
(χ1,χ2)aβ1

(χ1) = (2.6)

= 2π δ(χ1 − χ2)
[
δα2

α1
1 + tα2

α1
(χ1)

]
+ 2π δ(χ1 + χ2) r

α2
α1

(χ2).

Obviously, the last equation (2.6) differs slightly from (2.3). The additional

elements tα2
α1

, rα2
α1

appear on the right hand side related to δ-distributions of

χ1±χ2 that we later on will interpret as outgoing momentum χ1 and incoming

one χ2 while tα2
α1

is related to χ1 = χ2 and rα2
α1

to χ1 = −χ2. Hence we can inter-

pret these as transmission and reflection operators, since transmission means

that the outcoming momentum is the same as the incoming, while reflection

is basically a momentum change of −2χ and χ the incoming momentum.

But the algebra is not yet complete. There are additional algebra relations

called defect exchange relations,

Sγ2γ1
α1α2

(χ1,χ2) r
δ1
γ1

(χ1) S
β1δ2

γ2δ1
(χ2, −χ1) r

β2

δ2
(χ2) = (2.7)

= rγ2
α2

(χ2) Sδ2δ1
α1γ2

(χ1, −χ2) r
γ1

δ1
(χ1) S

β1β2

δ2γ1
(−χ2, −χ1)

Sγ2γ1
α1α2

(χ1,χ2) t
δ1
γ1

(χ1) S
β1δ2

γ2δ1
(χ2,χ1) t

β2

δ2
(χ2) = (2.8)

= tγ2
α2

(χ2) Sδ2δ1
α1γ2

(χ1,χ2) t
γ1

δ1
(χ1) S

β1β2

δ2γ1
(χ2,χ1)

Sγ2γ1
α1α2

(χ1,χ2) t
δ1
γ1

(χ1) S
β1δ2

γ2δ1
(χ2,χ1) r

β2

δ2
(χ2) = (2.9)

= rγ2
α2

(χ2) Sδ2δ1
α1γ2

(χ1, −χ2) t
γ1

δ1
(χ1) S

β1β2

δ2γ1
(−χ2,χ1),

and mixed exchange relations,

aα1(χ1) r
β2
α2

(χ2) = Sγ1γ2
α2α1

(χ2,χ1) r
δ2
γ2

(χ2) S
β2δ1

γ1δ2
(χ1, −χ2)aδ1(χ1) (2.10)

rβ1
α1

(χ1)a
α2(χ2) = aδ2(χ2) S

γ2δ1

α1δ2
(χ1,χ2) r

γ1

δ1
(χ1) Sβ1α2

γ2γ1
(χ2, −χ1) (2.11)

aα1(χ1) t
β2
α2

(χ2) = Sγ1γ2
α2α1

(χ2,χ1) t
δ2
γ2

(χ2) S
β2δ1

γ1δ2
(χ1,χ2)aδ1(χ1) (2.12)

tβ1
α1

(χ1)a
α2(χ2) = aδ2(χ2) S

γ2δ1

α1δ2
(χ1,χ2) t

γ1

δ1
(χ1) Sβ1α2

γ2γ1
(χ2,χ1). (2.13)

Note that this algebra avoids an extra defect-related operatorD due to addition

of tα2
α1

and rα2
α1

. Such a defect operator, previously suggested by Delfino et al.

[54; 55], should describe the effect of the defect on the bulk states, but yields

an additional relation

aα1(χ)D = rα1
α2

(χ)aα2(χ)D+ tα1
α2

(χ)Daα2(χ), (2.14)

Daα1(χ) = rα1
α2

(χ)Daα2(χ) + tα1
α2

(χ)aα2(χ)D, (2.15)
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eleminated by the present formulation. Moreover, Bajnok et al. [61] showed

that this algebra can be used for describing boundary theories as well. They

just set tα2
α1
≡ 0 and |rα2

α1
| = 1. In this way, the algebra should be appli-

cable to all relevant defect problems including boundaries. Furthermore, as

already mentioned, it is not necessary to deal with general Sβ1β2
α2α1

as long as we

investigate fermions or bosons, where they are substituted by

Sβ1β2
α1α2

=

+δβ1β2
α1α2

⇔ bosonic theory,

−δβ1β2
α1α2

⇔ fermionic theory.
(2.16)

Both equations (2.4), (2.5) then induce vanishing (anti-)commutators. Addi-

tionally, tα2
α1

and rα2
α1

can be taken as transmission and reflection expectation

values; i.e. transmission and reflection amplitudes Tα2
α1

,Rα2
α1

. In order to com-

plete the algebra, we have to ensure that these amplitudes satisfy

Tβ
α1

(χ) Tα2
β (χ) + Rβ

α1
(−χ)Rα2

β (χ) = δα2
α1

, (2.17)

Tβ
α1

(χ)Rα2
β (−χ) + Rβ

α1
(−χ) Tα2

β (χ) = 0. (2.18)

These conditions now define the ultimate RT algebra, since they are in one-to-

one correspondence with the unitarity of the scattering matrix,

S†S = 1. (2.19)

Here the scattering matrix is defined as Sα2
α1

:= Tα2
α1

+ Rα2
α1

.

After all these simplifications, it is now sufficient to consider

[aα1(p1), aα2(p2)]± = 0, (2.20)

[aα1(p1), a
α2(p2)]± = 0, (2.21)

[aα1(p1), a
α2(p2)]± = (2π)d−1δ(p̂1 − p̂2)· (2.22)

·
{
δ(p1 − p2)

[
δα2

α1
+ Tα2

α1
(p1)

]
+ δ(p1 + p2)R

α2
α1

(p2)
}

.

The variables p̂ denote momenta parallel to the defects. In (2.20)–(2.22) they

are just (constant) parameters. d denotes the space-time dimension. The

mixed exchange relations are given by

at,j(p)T
s,i

t,j(p) + at,j(−p)R
s,i

t,j(−p) = as,i(p), (2.23)

at,j(p)T
t,j
s,i(p) + at,j(−p)R

t,j
s,i(−p) = as,i(p), (2.24)
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where we split the indices α = (t, j). j is indicating by “±” the side of the

defect x ≷ 0 the operator refers to. t labels different solutions of the equations

of motion; i.e. for example the solutions of different spin of the Dirac equation.

Moreover, considering T t,j
s,i(p) as “transmission” and Rt,j

s,i as “reflection”, we

claim a transmission to the same side of the defect T t,±
s,± ≡ 0 as well as reflection

to different sides Rt,±
s,∓ ≡ 0. This simplifies the exchange algebra (without

summing over i) to

at,−i(p)T
s,i

t (p) + at,i(−p)R
s,i

t (−p) = as,i(p), (2.25)

at,−i(p)T
t,−i
s (p) + at,i(−p)R

t,i
s (−p) = as,i(p), (2.26)

with abbreviations T t,±
s :≡ T t,±

s,± and Rt,±
s :≡ Rt,±

s,∓ (and similar for the barred

components).

2.2 RT Formalism in Bosonic Theory

We will now give a review of two-dimensional bosonic defect theory as derived

in [63] in order to get an idea of the power of the formalism. Moreover, we will

introduce our conventions that slightly differ from [63]. However, for purposes

of legibility and in accordance with intuition, we believe our notation beneficial.

2.2.1 Properties of the RT Algebra

Lagrangean We start with the Lagrangean for the bosonic case. We consider

a free d-dimensional theory interacting with a (d− 1)-dimensional defect:

L = T + V = ϕ† [�bulk + η δ(x)]ϕ. (2.27)

Here �bulk is the operator that describes the theory in the bulk – it should be a

free theory, not containing terms of higher order. There are more complicated

interaction terms ∂L than V = η δ(x), but to simplify matters we will only

handle this one here.

Boundary condition Due to integrability conditions for the operator ∂2
x,

we are able to give a general boundary condition [66; 67],(
ϕ(t, +0)

∂xϕ(t, +0)

)
=

(
a b

c d

)(
ϕ(t, −0)

∂xϕ(t, −0)

)
, (2.28)
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where ad − bc = 1 (the boundary matrix is an element of SO(2)). For the

simple case of a δ impurity with V = η δ(x) we can integrate the equation of

motion over the interval x ∈ [−ε, +ε] and the take limit ε→ 0:

(
ϕ(t, +0)

∂xϕ(t, +0)

)
=

(
1 0

η 1

)(
ϕ(t, −0)

∂xϕ(t, −0)

)
. (2.29)

Decomposition of the wave function Without impurity, a set of orthog-

onal wave functions is given by plane waves e± ikx. With impurity, these in-

coming waves (from ±∞) are split into reflected and transmitted parts. This

implies1

ψx,±(k) := θ(∓k)
{
θ(∓x)T±(k) eikx +θ(±x)

[
eikx +R±(k) e− ikx

]}
. (2.30)

Here we already assumed that these amplitudes R and T – labelled with näıve

intuition what reflection and transmission should be like – fit in the RT algebra

picture defined above. We will prove this later (see for bosons equation (2.50)

and for fermions (3.42)). Additionally, in contrast to [63] and the algebra

definition, we employ a shorter notation of T±(∓) and R±(±) respectively. The

lower index is only necessary for the general algebra formulation.

Scattering matrix Since we deal with quantum mechanical functions, they

obey |T |2 + |R|2 = 1. Due to their different parity, they have to be orthogonal,

i.e. 〈ϕ+|ϕ−〉 = 0:

T
+
(k) T+(k) + R

+
(k)R+(k) = 1, (2.31)

T
−
(k) T−(k) + R

−
(k)R−(k) = 1, (2.32)

R
+
(k) T−(k) + T

+
(k)R−(k) = 0. (2.33)

1Note that we believe it more suggestive to associate the reflection amplitude to the
incoming momentum, not the outgoing one, as in [56], for instance (see figure 1 therein).
Nevertheless, e.g. the amplitude R+ describes the reflected particles from −∞ that are
scattered back to −∞. We believe it delusive to denote R+ as R+(−k) because it will never
describe any particles from +∞. Moreover, we could write more definitely R+(−|k|) which
is a bit longish. Hence we define R as function of +k in the decomposed waves and any
inversions of k are matters of mathematics without physical meaning. Therefore, fitting
conventions, one has to read R±(k) in the present thesis as R±±(−k) in [56; 62; 63; 68].
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We define composed RT matrices,

R(k) :=

(
R+(k)

R−(k)

)
, T (k) :=

(
T−(k)

T+(k)

)
, (2.34)

and read equations (2.31)–(2.33) as

T (k)† T (k) + R(k)† R(k) = 1, (2.35)

R(k)† T (k) + T (k)† R(k) = 0, (2.36)

or the shorter one via the scattering matrix S,

S†S = 1, S := R + T , (2.37)

where S is defined as usual, transforming the incoming into the outgoing states,

|ψ〉out = S |ψ〉in = S

(
ψ+

ψ−

)
in

. (2.38)

ψ±in are simply the incoming wave functions from left (−) and right (+).

Derivation of the RT coefficients Let us consider ϕk,± the Fourier modes

of the wave function ϕ defined in (2.30). They have to respect the boundary

condition at x = 0 separately:

T− = a(1 + R−) + ikb(1 − R−), 1 + R+ = T+(a+ ikb), (2.39)

ikT− = c(1 + R−) + ikd(1 − R−), ik(1 − R+) = T+(c+ ikd). (2.40)

This implies

R−(k) =
k2b− ik(a− d) + c

k2b+ ik(a+ d) − c
, R+(k) =

k2b+ ik(a− d) + c

k2b− ik(a+ d) − c
, (2.41)

T−(k) =
2 i k

k2b+ ik(a+ d) − c
, T+(k) =

2 i k

k2b+ ik(a+ d) − c
. (2.42)

Therefore, relation (2.37) is satisfied automatically by the boundary condition.2

It has to be emphasised that this system of equations is unique even though the

2This is in one-to-one correspondence to [63], in case their definition (equation (2.13))

ψ+(k) = θ(−k)
{
θ(−x)T+(k) eikx +θ(+x)

[
eikx +R+(−k) e− ikx

]}
is read carefully for example as

ψ+(k) = θ(−k)
{
θ(−x)T+(−k) eikx +θ(+x)

[
eikx +R+(k) e− ikx

]}
as defined in [62], equation (2.3).
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three equations plus the two boundary conditions over-determine the reflection

and transmission coefficients (in contrast to the fermionic case). The condition

ad− bc = 1 entails that one of the five equations is satisfied automatically.

Resulting algebra In fact, equation (2.30) follows from the RT algebra

formulation given above following [62]. For the bosonic case we have the RT

algebra of generator a±(k) and annihilators a±(k) defined as

[aα1(p1), aα2(p2)] = 0, (2.43)

[aα1(p1), a
α2(p2)] = 0, (2.44)

[aα1
(p1), a

α2(p2)] = 2π δ(p1 − p2)
[
δα2

α1
+ δ−α1

α2
Tα2(p1)

]
+ (2.45)

+ 2π δ(p1 + p2) δ
α1
α2
Rα2(p2).

Additional mixed exchange relations are given by

aj(k)T
j
(k) + a−j(−k)R

−j
(−k) = a−j(k), (2.46)

aj(k)T
j(k) + a−j(−k)R

−j(−k) = a−j(k). (2.47)

With

ϕ(x) =
∑
j=±

θ(jx)Φj(x), (2.48)

Φj(x) : =

∫+∞
−∞

dk

2π
√

2ω(k)

[
aj(k) eiω(k)t−ikx +aj(k) e− iω(k)t+ikx

]
, (2.49)

and via (2.46) and (2.47), we derive

ϕ(x) =
∑
j=±

∫+∞
−∞

dk

2π
√

2ω(k)
· (2.50)

·
{
aj(k)θ(−jk){θ(−jx)T j(k) eikx +θ(jx) [eikx + Rj(k)e− ikx]} eiω(k)t +

+ aj(k)θ(−jk)
{
θ(−jx)T j(k) eikx +θ(jx)

[
eikx + Rj(k)e− ikx

]}
e− iω(k)t

}
.

This implies

ϕ(x) = ϕ+(x) +ϕ−(x), (2.51)

ϕ±(x) =

∫+∞
−∞

dk

2π
√

2ω(k)

[
a±(k)ψ

±
x (k) eiω(k)t +a±(k)ψ±x (k) e− iω(k)t

]
,

(2.52)

ψ±x (k) = θ(∓k)
{
θ(∓x)T±(k) eikx +θ(±x)

[
eikx + R±(k)e− ikx

]}
, (2.53)
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where the last equation is exactly (2.30). This indicates nothing else but

the identity of the coefficients R and T defined in the algebra (2.43)–(2.44) and

those we intuitively inserted into the wave function decomposition (2.30). This

is a direct implication of the additional algebra relations (2.46) and (2.47).

2.2.2 Properties of the Theory in Terms of Reflection

and Transmission

For non-vanishing chemical potential µ and temperature T (with number op-

erator N), the Hamiltonian reads

H = H− µN, (2.54)

where

H =
∑
j=±

∫+∞
−∞

dk

2π
ω(k)aj(k)aj(k), N =

∑
j=±

∫+∞
−∞

dk

2π
aj(k)aj(k), (2.55)

hence

H =
∑
j=±

∫+∞
−∞

dk

2π
[ω(k) − µ]aj(k)aj(k). (2.56)

This represents the standard many-particle description easily to be found in

statistical physics textbooks. According to their Fourier mode of momentum k,

the creators and annihilators have some eigenenergies ω(k) that are summed

over all occupied states. The chemical potential µ enters with the particle

number.

Normal ordering moves the creators to the left and the annihilators to the

right:

:aj(k1)a
l(k2) : = al(k2)aj(k1) = :al(k2)aj(k1) : . (2.57)

In this (grand canonical) ensemble, the expectation value is defined as

〈
F(aj,ak)

〉
=

tr e−βH F(aj,ak)

tr e−βH
. (2.58)

Using the identity

e−βH aα(p1) = e−β[ω(p1)−µ] aα(p1) e−βH, (2.59)
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we derive the non-vanishing Green functions,

〈
aj(p1)ak(p2)

〉
=

tr e−βH aj(p1)ak(p2)

tr e−βH

= e−β[ω(p1)−µ] traj(p1) e−βH ak(p2)

tr e−βH

= e−β[ω(p1)−µ] tr e−βH ak(p2)a
j(p1)

tr e−βH

= e−β[ω(p1)−µ]
{〈
aj(p1)ak(p2)

〉
+
[
ak(p2), a

j(p1)
]}

, (2.60)

⇒
〈
aj(p1)ak(p2)

〉
=

e−β[ω(p1)−µ]

1 − e−β[ω(p1)−µ]

[
ak(p2), a

j(p1)
]
, (2.61)

⇒
〈
ak(p2)a

j(p1)
〉

=
1

1 − e−β[ω(p1)−µ]

[
ak(p2), a

j(p1)
]
. (2.62)

The two-point expectation value simplifies in terms of R and T :

〈ϕ(x1, t1)ϕ(x2, t2)〉

=
〈 ∫∫+∞

−∞
θ(±x1)θ(±x2)dk1 dk2

8π2
√
ω(k1)ω(k2)

·

·
[
a±(k1) eiω(k1)t1−ik1x1 +a±(k1) e− iω(k1)t1+ik1x1

]
·

·
[
a±(k2) eiω(k2)t2−ik2x2 +a±(k2) e− iω(k2)t2+ik2x2

] 〉
=

∑
j,l=±

∫∫+∞
−∞

θ(jx1)θ(lx2)dk1 dk2

8π2
√
ω(k1)ω(k2)

·

·
[ 〈
aj(k1)al(k2)

〉
e− ik1x1+ik2x2 eiω(k1)t1−iω(k2)t2 +

+
〈
aj(k1)a

l(k2)
〉
eik1x1−ik2x2 e− iω(k1)t1+iω(k2)t2

]
=

∑
j=±

∫+∞
−∞

dk

4πω(k)

1

1 − e−β[ω(k)−µ]
· (2.63)

·

{
θ(jx1)θ(jx2)

[
eik(x1−x2) +Rj(k) e− ik(x1+x2)

]
·

·
[
e−β[ω(k)−µ] eiω(k)(t1−t2) + e− iω(k)(t1−t2)

]
+

+ θ(jx1)θ(−jx2)
[
e−β[ω(k)−µ] T j(k) eiω(k)(t1−t2)−ik(x1−x2) +

+ T−j(k) e− iω(k)(t1−t2)+ik(x1−x2)
]}

.
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We can manipulate this two-point function slightly in order to derive the energy

density and the conserved currents defined for the bosonic theory as〈
T 00(x)

〉
=

1

2

〈
:∂tϕ∂tϕ : (t, x) − :ϕ∂2

xϕ : (t, x) +m2 :ϕϕ : (t, x)
〉
, (2.64)

〈Jµ(x)〉 = − i 〈 :∂µϕ
∗ϕ : (t, x) − :ϕ∗∂µϕ : (t, x)〉 . (2.65)

The derivatives act only on the exponentials and give some extra factors, and

with µ = 0, 〈
T 00(x)

〉
= E0 + ED, (2.66)

where we decomposed into the part E0 without defect and the defect induced

density ED,

E0 : =

∫+∞
−∞

dk

2π

ω(k)

eβω(k) −1
=

π

6β2
, (2.67)

ED : =

∫+∞
−∞

dk

2π

ω(k)

eβω(k) −1
[θ(x)R+(k) + θ(−x)R−(k)] e−2 ikx (2.68)

=

∫+∞
0

dk

π(eβk −1)

2ηk2 sin(2k|x|) − η2k cos(2k|x|)

4k2 + η2
. (2.69)

The last equation (2.69) can be easily derived by carefully handling the terms

ω(k) ≈ |k| and inverting (k 7→ −k) half of the integral k ∈ (−∞, 0] to

k ∈ [0, +∞). Unfortunately, this integral is not solvable analytically and

the numerical behaviour is difficult to control. For this reason, we modify the

reflection terms according to

1

a± ib
=


∫∞

0
e−(a±ib)α dα ⇔ <(a) > 0,

−
∫∞

0
e (a±ib)α dα ⇔ <(a) < 0,

(2.70)

such that (for a = d = 1, b = 0, c = η),

R±(k) =
η

∓2 i k− η
=

−
∫∞

0
dαη e−(η±2 ik)α ⇔ η > 0,∫∞

0
dαη e(η±2 ik)α ⇔ η < 0.

(2.71)

The defect energy density ED can be integrated over k and α (for η > 0) and

thus becomes

ED =
η

2π

ηe2η|x|Γ(2η|x|) +
4π2e− 4π|x|

β
2F1

(
2, βη

2π
+ 1; βη

2π
+ 2; e− 4π|x|

β

)
β(βη+ 2π)

−
1

2|x|

 .

(2.72)
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(a) ED with η = +1 (b) ED with η = −1

Figure 2.1: Bosonic energy density 〈T 00(x)〉β in two space-time dimensions

for different parameters η plotted for varying distance from the defect x and

inverse temperature β.

For η < 0 we derive

ED =
η2

2π

[
e

4π|x|
β Γ

(
−
βη

2π

)
2F̃1

(
2, 1 −

βη

2π
; 2 −

βη

2π
; e

4π|x|
β

)
+

+ e2η|x|(Γ(2η|x|) − log(−η) + log(η) + iπ) −
1

2η|x|

] (2.73)

ED is shown in figure 2.1. We should add that ED,η<0 obviously contains a

divergent term log(η) − log(−η) and does not look well defined. But in fact

this is required because the ill-defined term cancels the terms of Γ(2η|x|) that

are not well-defined either and thereby gives the smooth plot shown in figure

2.1.

For completeness, we give the energy limit T = 0 ⇔ β → ∞ as well. The

Casimir energy,

EC =

∫+∞
−∞

dk

2π

ω(k)

eβω(k) −1
[θ(x)R+(k) + θ(−x)R−(k)] e−2 ikx, (2.74)

is the vacuum energy density that is subtracted ab initio by normal ordering.
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(a) J0(x) with η = 1 (b) J0(x) with η = −1 (c) J0(x) with η = 0

Figure 2.2: Bosonic charge density ρ(x) in two space-time dimensions for dif-

ferent defect masses η plotted for varying x and β. For numerical reasons, the

background without defect (shown in subfigure (c)) was not subtracted from

ρ(x). Thus ρ(x) diverges for high temperature (as β goes to zero). However,

the effect induced by the defect is visible. The sign of the defect mass η deter-

mines whether there is a local minimum or maximum at x = 0. Globally seen,

the defect decreases the value of the charge density ρ(x) around x = 0 nearly

to zero.

Hence the total energy density reads (for η > 0)

Etot = EC + E = EC + ED + E0 (2.75)

=
π

6β2
+

2πη e− 4π|x|
β

β(βη+ 2π)
2F1

(
2,
βη

2π
+ 1;

βη

2π
+ 2; e− 4π|x|

β

)
. (2.76)

Since this expression for the bosonic energy density is fully analytical, it is

very demonstrative. The models we will investigate in the following do not

show this property. Already the Noether currents defined in (2.65) have to be

examined numerically. We deal with them a similar way:

ρ(x) =
〈
J0(x)

〉
=

∫+∞
−∞

dk

π(eβ|k| −1)

{
1 + [θ(x)R+(k) + θ(−x)R−(k)] e−2 ikx

}
(2.77)

=

∫+∞
0

2dk

π(eβk −1)

2ηk sin(2k|x|) − η2 cos(2k|x|)

4k2 + η2
, (2.78)〈

J1(x)
〉

= 0. (2.79)

The charge density ρ(x) for the δ defect is plotted in figure 2.2.
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Note that, as stated before, bound states have not been considered. They

should be added for negative defect mass η < 0 and give an additional energy

density contribution.

2.3 Matrix Optics Construction for Bosonic

Defect Theories

The idea of matrix optics, as presented in standard undergraduate textbooks,

deals with incoming and outgoing directions of objects that propagate linearly

and are diffracted at strongly localised objects. This diffraction is a linear

map changing direction; i.e. a matrix multiplication. Due to the linearity of

the propagation between the localised deflecting objects, it can be described

by a matrix as well. The product of all such matrices of a complicated system

will mediate between the incoming and outgoing states.

In this way matrix optics can be applied to geometrical optics as well as to

particle accelerators, where batches of particles are diffracted by quadrupoles

or sextupoles, for instance. For the case of RT formalism we have a certain

boundary condition at each defect – which is simply a matrix – and we have

to answer the question whether it is possible to transform such a boundary

condition virtually by propagation from the real position of the defect to a

distant position. In other words, we have to derive the lacking propagation

matrix between two defects to complete the matrix optics description.

Single defect For a single defect described by Lagrangean (2.27), we have

already deduced the boundary condition(
ϕ(+0)

∂xϕ(+0)

)
=

(
1 0

η 1

)
·
(
ϕ(−0)

∂xϕ(−0)

)
. (2.80)

Hence, for a defect at x = 0 we obtain the transformation matrix
(

1 0
η 1

)
.3

However, a “propagation matrix” is still missing.

3This is analogous to a matrix
(

1 0
− 1

f 1

)
describing a lense of focal lenght f in geo-

metrical optics. Consequently, the general bosonic boundary defect,(
ϕ(+0)

∂xϕ(+0)

)
=

(
a b

c d

)
·
(
ϕ(−0)

∂xϕ(−0)

)
, (2.81)
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Two parallel defects For two parallel defects at the positions x1, x2, we

have to rewrite the Lagrangean:

L = ϕ† [�bulk + η1 δ(x− x1) + η2 δ(x− x2)]ϕ. (2.82)

Of course, boundary conditions at x1 and x2 can be derived the same way as

before, (
ϕ

∂xϕ

)∣∣∣
x=xi+0

=

(
1 0

ηi 1

)
·
(
ϕ

∂xϕ

)∣∣∣
x=xi−0

. (2.83)

A matrix P describing the propagation correctly has to fulfill the equivalent

relations (where, without loss of generality, x1 > x2)(
ϕ

∂xϕ

)∣∣∣
x1+0

=

(
1 0

η1 1

)
· P(x1, x2) ·

(
1 0

η2 1

)
·
(
ϕ

∂xϕ

)∣∣∣
x2−0

, (2.84)(
ϕ

∂xϕ

)∣∣∣
x1−0

= P(x1, x2) ·
(
ϕ

∂xϕ

)∣∣∣
x2+0

. (2.85)

Obviously
(

ϕ
∂xϕ

)∣∣∣
x1−0

and
(

ϕ
∂xϕ

)∣∣∣
x2+0

are both values between the defects and

therefore have the same Fourier modes (we label them “0” since for x < x2 we

indicate “−” and for x > x1 we use “+”),

ϕ0(x) =

∫+∞
−∞

dk

2π
√

2ω(k)

[
a0(k) eiω(k)t−ikx +a0(k) e− iω(k)t+ikx

]
. (2.86)

We expect the matrix P to be dependent on the distance of the defects x1 −x2

and k as well. Therefore, we evaluate (2.85) for the integrand of ϕ0(x) in

(2.86):

Ψ(k) :=
[
a0(k) eiω(k)t−ikx +a0(k) e− iω(k)t+ikx

]
. (2.87)

This implies

P11 − ikP12 = e− ik(x1−x2), (2.88)

P11 + ikP12 = eik(x1−x2), (2.89)

P21 − ikP22 = − ik e− ik(x1−x2), (2.90)

P21 + ikP22 = ik eik(x1−x2), (2.91)

can be already interpreted as a “complex lens construction”.
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and the propagation matrix for a particle with momentum k reads

P(k, x1 − x2) =

(
cos[k(x1 − x2)]

1
k

sin[k(x1 − x2)]

−k sin[k(x1 − x2)] cos[k(x1 − x2)]

)
. (2.92)

Due to detP = 1, the absolute value of the wave function is conserved. This

is a necessary requirement. Furthermore, P is equal to 1 for x1 = x2. This

is important because in this case P should disappear in the product (2.84).

It is straightforward to generalise this picture to n + 1 defects situated at

x1 > x2 > x3 > . . . > xn+1. The boundary condition yields(
ϕ

∂ϕ

)
x1+0

=

∫+∞
−∞

dk

2π
√

2ω(k)

(
a1 b1

c1 d1

)
P1(k, x1 − x2) · . . . · (2.93)

·

(
an bn

cn dn

)(
ϕ

∂ϕ

)∣∣
xn+1−0

. (2.94)

As we give transmission and reflection for distinct k, they will read

R±(k) =
k2B± ik(A−D) + C

k2B∓ ik(A+D) − C
, T±(k) =

2 i k

k2B+ ik(A+D) − C
, (2.95)

where(
A B

C D

)
:=

n∏
i=1

[(
ai bi

ci di

)
P(k, xi − xi+1)

]
·

(
an+1 bn+1

cn+1 dn+1

)
. (2.96)

Hence, energy tensors and Noether currents will also change according to

A,B,C,D that become k-dependent. However, we do not add any k depen-

dence to T and R, since they have already been momentum-dependent before.

As the intention of this chapter was to illustrate RT techniques, we do not add

any comments on higher-dimensional bosonic RT formalism. This extension

is easily derived for the bosonic theory [63] and will be further clarified by

considering the fermionic theory dealt with in the next chapter.
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Pouvoir marcher, sans tromper l’oiseau, du cœur de l’arbre à

l’extase du fruit.

(Gehen zu können vom Herzen des Baums bis zur Verzückung der

Frucht, ohne dabei den Vogel zu hintergehen.)

René Char, A la santé du serpent

3
Fermionic δ Defects in the RT Picture

In this chapter the RT formalism for fermionic theory in two, three and four

space-time dimensions will be developed. In principle, even considering higher

dimensions, the formalism would be straightforward. But aside from the in-

crease of technical difficulties, our major interest is to investigate theories that

can be applied to spin interaction problems in solid state physics as well as to

conformal field theories with boundaries and defects, as already pointed out

in the introduction.

Here, firstly a brief discussion of possible interaction terms in the Lagrangean

and the motivation of this choice will be given. Furthermore, we fix our con-

ventions for this chapter. Subsequently, we state the explicit calculations and

results of the RT formalism in different dimensions. In a further section will

be shown how the matrix optics ansatz for fermions works.

43
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H1 = λ~S ·ψ†(t,~x)~σ
2
ψ(t,~x) −→ H2 = λ~S ·ψ†(t,~x)~γ

2
ψ(t,~x)

↘ ↙

H3 = λ
∑

i

~Si ·ψ†(t,~x)
~γ

2
ψ(t,~x)

H4 =
∑
i,j

λij
~Si ·ψ†(t,~x)

~γj

2
ψ(t,~x)

H5 =

∫
dx0 λx0

~S(x0) ·ψ†(t,~x)
~γ

2
ψ(t,~x)

Figure 3.1: Different possibilities of coupling spins to fermionic states

3.1 Interaction Terms and Conventions

Within the last decades, interactions between fermions and fixed spins have

been a field of intense research at least in solid state physics, but also in

the framework of investigations in integrable models [54; 69; 70]. While the

interaction itself always couples the fixed spin to a scalar product of particle

wave function, the models for more than one fixed interacting spin vary.

As shown schematically in figure 3.1, the simplest starting point is a two-

dimensional single spin interaction with coupling constant λ. Herefrom, on the

one hand, it is possible to increase space-time dimensions. Then the number of

spin components increases as well while staying with a single spin and thus a

single coupling constant. On the other hand, more spin impurities can be taken

into account. Then there are different levels of considering coupling constants:

the simplest way is of course to state a general unique constant λ. But also

different coupling constants for every single spin are possible – which can be

the indirect Ising interaction of spins for example. Moreover, the defect could

be considered as a spin density, in case there are many defect spins that are

strongly localised – dense – in a certain area. All these models are conceivable

for special situations in solid state physics up to dimension four.

For a general RT formulation it is necessary to derive boundary conditions at

the position of the defect (or at least to formulate the problem in terms of a

δ-distribution-like impurity in order to derive such boundary conditions). The
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dimension
of the defect

number of spin components
1 2 3

d = 2 0
RT formalism Kondo model via CFT

one dim. Ising model

d = 3
0 two dim. Ising model

1 RT formalism

d = 4
0

Kondo model
three dim. Ising model

1

2 RT formalism

Figure 3.2: Different relations of space-time, defect, and spin dimensions de-

pending on the theory. We should emphasise that the dimensionality of the

spin is not as important as the defect dimension. The CFT approach to the

Kondo effect is valid even for less spin components as well as the RT formalism

will just change slightly for more spin components. Therefore, the theories in

the same rows are comparable whereas those in the same columns are not.

reflection and transmission amplitudes are then nothing else but a reformulated

boundary condition.

Up to now, for technical reasons, we only consider defects of co-dimension one

that lead directly to such boundary conditions by integrating out the δ(x)

distribution of the equations of motion, as will soon become clear. For higher

co-dimension, we had to modify the Fourier decomposition of the wave func-

tions and thus the interpretation of the reflection and transmission amplitudes.

How to do this consistently is still an open question as we discuss in chapter 4.

Therefore, depending on the dimension, the RT description will start at H1 in

figure 3.1 but then turn to a density description H5 (see figure 3.1) for higher

dimensions as figure 3.2 suggests.

Moreover, we restrict ourselves to interactions with coupling constant λij := λi

and involve it in the spin si,

Si := λisi. (3.1)

Therefore, Si ∈ R is considered to be a continuous variable.
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3.1.1 Lagrangean

Accordingly, we examine a Lagrangean of the form

L = Ψ (i6∂+ im)Ψ+ δ(x)
[
iηΨΨ+ ~SΨ~γΨ

]
, (3.2)

with 6∂ = γν∂ν and ~γ = (γ1,γ2, . . .) and mostly-plus metric.

The interaction term consists of a direct product with impurity mass η and

a spin product with fixed spin ~S = (S1, . . .). Contrary to the bosonic case,

integrability does not give a “general” boundary condition like for ∂2 operators

[66]. Beside that our starting point is a theory already including an interaction

term (whereas for the bosonic field the “pure” theory is done in [63] and

thereafter in [64] the ϕ4 term is treated). The term η δ(x)ΨΨ was suggested by

Delfino et al. [55], therein the RT algebra was derived in a slightly different way

than in [62] which will guide us here. However, it seems natural to include this

“impurity mass” term into the more general investigation of spin impurities.

Moreover, it will turn out as necessary component in the general RT picture as

we discuss in sections 3.2.6 and especially 3.4.5. On the other hand we should

be aware that mass terms could break a solely left-handed theory.

We use here a mostly-plus metric. This implies for the Dirac equation in

momentum space

(p2 −m2)Ψ = 0 ⇔ (6p− im)(6p+ im)Ψ = 0. (3.3)

For this reason the mass terms have imaginary prefactors in the Lagrangean

(3.2).

3.1.2 Boundary Condition

There are several possibilities to introduce the spin matrices in arbitrary di-

mensions. For our purposes, we do not need any special requirements like

Dirac or Majorana spinors at the moment. With the standard Pauli matrices

σ0 = 12, σ1 =

(
0 1

1 0

)
,

σ2 = i

(
0 −1

1 0

)
, σ3 =

(
1 0

0 −1

)
,

(3.4)
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we define according to [71],

γ2n−1 = ⊗n−1
k=1σ3 ⊗ σ1 ⊗o−n

l=1 12, ⇔ d = 2o, 2o+ 1 (3.5)

γ2n = ⊗n−1
k=1σ3 ⊗ σ2 ⊗o−n

l=1 12, ⇔ d = 2o, 2o+ 1 (3.6)

γd=2o+1 = ⊗o
k=1σ3, ⇔ d = 2o+ 1 (3.7)

where n 6 o and corresponding to the signature some matrices have additional

factors ± i. In our convention of mostly-plus metric, this implies γ0 = iσ1⊗o−1
l=1

12. We named the spin matrices γ in order to distinguish them from the

Pauli matrices. (Of course the convention of the γ matrices does not take

effect neither on the reflection and transmission coefficients nor on the current

behaviour in the further sections.)

We make a general statement about the wave function behaviour at the defect:

1. While for the non-defect case for physical reasons we would demand a

continuous function everywhere, we now allow the wave function Ψ to

jump at the origin x = 0, where the defect is located.

2. The physical condition, that holds in the defect case as well, is the con-

tinuity of the Lagrangean.

The second condition fixes the only possible multiplication constant for Ψ

which is simply the shift with a constant phase,

Ψ 7→ αΨ ⇒ α = eiθ, θ ∈ R. (3.8)

This is a canonical requirement. The first condition tells us that the limits

limx↑↓0Ψ exist but are not necessarily equal (x ↓ 0 is denoting the limit x→ 0

with x > 0, while x ↑ 0 means the same limit but x < 0).

A generalised version of the Lagrangean (3.2) is

L = Ψ (i6∂+ im)Ψ+ δ(x)ΨUΨ, (3.9)

where U is acting on Ψ. The correct integration of the equation of motion over

the interval x ∈ [−ε, +ε] in the limit ε→ 0 leads to

iγx (Ψ+ − Ψ−)
∣∣∣
x=0

= −
1

2
U (Ψ+ + Ψ−)

∣∣∣
x=0

(3.10)

Ψ+

∣∣∣
0

=

(
iγx +

1

2
U

)−1(
iγx −

1

2
U

)
Ψ−

∣∣∣
0

(3.11)

=: M− · Ψ−

∣∣∣
0
, (3.12)
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where γx labels the γ matrix belonging to the direction perpendicular to the

defect. For our special Lagrangean (3.2), the boundary matrix takes the form

M− =

[
iγx +

1

2
(iη1+ ~S~γ)

]−1 [
iγx −

1

2
(iη1+ ~S~γ)

]
. (3.13)

This allows us to derive the RT coefficients explicitly now.

3.1.3 Many-Particle Statistics

In order to give measurable values or conserved quantities we have to consider

quantum mechanical many particle statistics. The Gibbs formulation for finite

temperatures deals with

H = H− µN, (3.14)

where µ is the chemical potential, N the particle number operator, and H and

N expressed in terms of the algebra elements via

H =
∑

α

∫+∞
−∞

dk

2π
ω(k)aα(k)aα(k), (3.15)

N =
∑

α

∫+∞
−∞

dk

2π
aα(k)aα(k), (3.16)

and α = (s,±) labels the different Fourier modes of the wave function as in

chapter 2. Hence,

H =
∑

α

∫+∞
−∞

dk

2π
[ω(k) − µ]aα(k)aα(k). (3.17)

The partition function reads

Ξ = tr e−βH, with β =
1

kBT
. (3.18)

This implies for the expectation value

〈F(aα1 ,aα2)〉 =
tr e−βH F(aα1 ,aα2)

tr e−βH
, (3.19)

Using the identity (2.59),

e−βH aα(p1) = e−β[ω(p1)−µ] aα(p1) e−βH, (3.20)



3.2. δ DEFECTS IN TWO-DIMENSIONAL FERMIONIC THEORY 49

once more we derive similar to the bosonic case (2.61) and (2.62),

〈aα1(k1)aα2
(k2)〉 =

e−β[ω(k1)−µ]

1 + e−β[ω(k1)−µ]
{aα2

(k2), a
α1(k1)} , (3.21)

〈aα1(k1)a
α2(k2)〉 =

1

1 + e−β[ω(k1)−µ]
{aα1(k1), a

α2(k2)} . (3.22)

Moreover, we should keep in mind the standard normal ordering for fermions:〈
:aj(k1)a

l(k2) :
〉

= −
〈
al(k2)aj(k1)

〉
. (3.23)

The knowledge of the creator-annihilator Green functions in terms of reflection

and transmission will provide us with the possibility to calculate any other two-

point function, in particular the energy density and the conserved Noether

currents.

3.2 δ Defects in Two-Dimensional Fermionic

Theory

In this section we derive the properties of a two-dimensional theory with

fermionic δ defect via the RT formalism explicitly. However, we keep in mind

the generalisation to higher dimensions. Therefore, we sometimes state results

which could be simplified for purposes of two dimensions, but shorten in the

given form the calculations for higher dimensions.

3.2.1 Boundary Condition

Considering the Lagrangean (3.2) in two dimensions with γ matrices according

to (3.5)–(3.7),

γ0 = iσ1, γ1 = σ2, (3.24)

we derive an equation of motion for Ψ that we integrate over a small interval

[−ε, +ε] assuming the defect at position x = x0,∫+ε

−ε

dx

[
i6∂+ im1+ δ(x) iη1+ δ(x) i

(
0 S

−S 0

)]
Ψ(x) =

=

∫+ε

−ε

dx

(
im+ iη δ(x) −∂0 − ∂1 + iSδ(x)

−∂0 + ∂1 − iSδ(x) im+ iη δ(x)

)(
ϕ(x)

χ(x)

)
−→
ε→0

0.

(3.25)
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Of course, Ψ = (ϕ,χ) is the Weyl spinor notation and the spin S = S1. We

denote the limit from x < 0 with “−” and from x > 0 with “+”. Both

equations vanish independently. The integration over ∂0 . . . drops out because

of continuity along the line x = 0:

i

2
η (ϕ+ +ϕ−) +

i

2
S(χ+ + χ−) = χ+ − χ−, (3.26)

i

2
η (χ+ + χ−) −

i

2
S(ϕ+ +ϕ−) = ϕ− −ϕ+. (3.27)

For S = 0 this is in one-to-one correspondence to [55] (up to a sign change due

to convention (3.24)). Equations (3.26) and (3.27) imply(
ϕ−

χ−

)
=

1

(2 + iS)2 − η2

(
4 + S2 + η2 4 iη

−4 iη 4 + S2 + η2

)(
ϕ+

χ+

)
. (3.28)

This is the boundary condition in two dimensions.

3.2.2 Quantisation with RT Algebra

The generator algebra (2.4)–(2.6) as defined in [62] reads

{aα1(k1), aα2(k2)} = 2δα1
α2
δ(k1 − k2)aα1 , (3.29)

{aα1(k1), a
α2(k2)} = 2δα2

α1
δ(k1 − k2)a

α1 , (3.30)

{aα1(k1), a
α2(k2)} = 2π δ(k1 − k2)

[
δα2

α1
+ Tα2

α1
(k1)

]
+ 2π δ(k1 + k2)R

α2
α1

(k2).

(3.31)

Here αs = (s,±1) and s is the index of the spin solution which is suppressed

in the further calculations for two dimensions since there is only one solution

of the Dirac equation in momentum space. This means that

(6p− im)us(k) ≡ 0, (6p+ im) vs(k) ≡ 0 (3.32)

have unique solutions u(k) and v(k). In this way, with the abbreviations

T i := T
s,i
s,−i and Ri := R

s,i
s,i, (3.33)

equation (3.31) reads{
ai(k1), a

j(k2)
}

= 2π δ(k1 − k2)
[
δ

j
i + δ−i

j T
j(k1)

]
+ 2π δ(k1 + k2) δ

i
jR

j(k2).

(3.34)
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The additional exchange relations with reflection and transmission coefficient

functions (2.10)–(2.13) are then

aj(k)T
j
(k) + a−j(−k)R

−j
(−k) = a−j(k), (3.35)

aj(k)T
j(k) + a−j(−k)R

−j(−k) = a−j(k), (3.36)

or, rewritten similar to Delfino et al. [55],

(
a−(k)

a+(−k)

)
=

(
R

−
(−k) T

+
(k)

T
−
(−k) R

+
(k)

)
·
(
a−(−k)

a+(k)

)
, (3.37)

(
a−(k)

a+(−k)

)
=

(
R−(−k) T+(k)

T−(−k) R+(k)

)
·
(
a−(−k)

a+(k)

)
. (3.38)

We decompose Ψ(x) = Ψ+ + Ψ−,

Ψ± := θ(±x)
∫+∞
−∞

dk

2π
√

2ω(k)

[
u(k)a±(k) eiω(k)t−ikx +

+ v(k)a±(k) e− iω(k)t+ikx
]
.

(3.39)

Furthermore, we use equivalently p0 = ω(k) =
√
k2 + p2

i +m2, where pi are

the momenta parallel to the defect in higher dimensions.

In order to show the consistency of an interpretation as reflection and transmis-

sion amplitudes, we would like to rewrite Ψ(x) in terms of R and T in analogy

to the bosonic case in chapter 2. Therefore, we apply (3.37) and (3.38) and

rearrange terms. In particular, we use extensively the possibility of inverting

the integration variable k 7→ −k,

∫b

a

F(k)dk =

∫a

b

F(−k ′)dk ′. (3.40)

Hence,

Ψ(x) =
∑
j=±

θ(jx)

∫+∞
−∞

dk

2π
√

2ω(k)

[
u(k)a j(k) eiω(k)t−ikx +v(k)aj(k) e− iω(k)t+ikx

]
(3.41)
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= θ(−x)

{∫+∞
0

dk

2π
√

2ω(k)

[
u(k)a−(k) eiω(k)t−ikx +v(k)a−(k) e− iω(k)t+ikx

]
+

+

∫0

−∞
dk

2π
√

2ω(k)

[
u(k)

(
a−(−k)R

−
(−k) + a+(k)T

+
(k)
)

eiω(k)t−ikx +

+ v(k)
(
a−(−k)R−(−k) + a+(k)T+(k)

)
e− iω(k)t+ikx

]}

+ θ(+x)

{∫+∞
0

dk

2π
√

2ω(k)

[
u(k)

(
a−(k)T

−
(k) + a+(−k)R

+
(−k)

)
eiω(k)t−ikx +

+ v(k)
(
a−(k)T−(k) + a+(−k)R+(−k)

)
e− iω(k)t+ikx

]
+

+

∫0

−∞
dk

2π
√

2ω(k)
u(k)a+(k) eiω(k)t−ikx +v(k)a+(k) e− iω(k)t+ikx

}

=
∑
j=±

∫+∞
−∞

dk

2π
√

2ω(k)
· (3.42)

·

{
aj(k)θ(−jk)

{
θ(−jx)u(k) T

j
(k) e− ikx +

+ θ(jx)
[
u(k) e− ikx + u(−k)R

j
(k)eikx

]}
eiω(k)t +

+aj(k)θ(−jk)
{
θ(−jx) v(k) T j(k) eikx +

+ θ(jx)
[
v(k) eikx + v(−k)R j(k)e− ikx

]}
e− iω(k)t

}

= ψ+(x) +ψ−(x). (3.43)

Here we implied the definitions

ψ±(x) : =

∫+∞
−∞

dk√
8π2ω(k)

[
a±(k)ϕ±x,s(k) eiωt +a±(k)ϕ±x,s(k) e− iωt

]
, (3.44)

ϕ±x,s(k) : = θ(∓k)
{
θ(∓x) v(k) T±(k) eikx +

+ θ(±x)
[
v(k) eikx + v(−k)R±(k)e− ikx

]}
, (3.45)

ϕ±x,s(k) : = θ(∓k)
{
θ(∓x)u(k) T

±
(k) e− ikx +

+ θ(±x)
[
u(k) e− ikx + u(−k)R

±
(k)eikx

]}
. (3.46)

Obviously, the amplitudes T±(k),R±(k), abstractly introduced by equations

(3.37) and (3.38) (and originally by (2.20)–(2.22)), match via the canonical
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Fourier decomposition (3.39) exactly with the näıve formulation (3.45) of re-

flection and transmission coefficients. We thus justify the interpretation of

the exchange coefficients R, T as reflection and transmission amplitudes of

fermionic wave functions with spinors u(k) or v(k) similar to the bosonic case.

3.2.3 RT Coefficients

We now derive these coefficients explicitly. The equation of motion yields a

boundary condition of the form (3.12),

Ψ+

∣∣
0

= M− · Ψ−

∣∣
0
. (3.47)

Due to (3.39),

Ψ± = θ(±x)
∫+∞
−∞

dk

2π
√

2ω(k)

[
us(k)a

s±(k) eiω(k)t−ikx +

+ vs(k)a
s
±(k) e− iω(k)t+ikx

]
,

(3.48)

where as
±(k) := as±(k) is just a notation to implement Einstein’s sum conven-

tion, we have to examine the limit x→ 0 carefully and include the dependence

on the spin solution index s during the next steps in order to apply these to

higher dimensions as well. We find

Ψ±
∣∣
0

= lim
ε

>→0

∫+∞
−∞

dk

2π
√

2ω(k)

(
us(k)a

s±(k) eiω(k)t−ikε +

+ vs(k)a
s
±(k) e− iω(k)t+ikε

) (3.49)

=

∫+∞
0

dk√
8π2ω(k)

( [
us(k)a

s±(k) + us(−k)a
s±(−k)

]
eiω(k)t +

+
[
vs(k)a

s
±(k) + vs(−k)a

s
±(−k)

]
e− iω(k)t

)
. (3.50)

The boundary condition holds for every single mode e± iω(k)t on its own, since

k ∈ [0, ∞] and ω(k) is of order k2. Furthermore, there is no decomposition

of a± in terms of a± and vice versa. Hence, equation (3.47) splits into an

annihilator and a creator equation,

vs(k)a
s
+(k) + vs(−k)a

s
+(−k) = M− [vs(−k)a

s
−(−k) + vs(k)a

s
−(k)] ,

(3.51)

us(k)a
s+(k) + us(−k)a

s+(−k) = M− [us(−k)a
s−(−k) + us(k)a

s−(k)] .

(3.52)
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The reflection and transmission coefficients in two dimensions follow directly

from the algebra formulation (3.37), (3.38),

R−(−k) =
[M−v(−k)] ·A · v(−k)
v(−k) ·A · [M−v(k)]

, R+(k) =
[M−v(k)] ·A · v(k)
v(−k) ·A · [M−v(k)]

,

T−(−k) =
[M−v(−k)] ·A · [M−v(k)]

v(−k) ·A · [M−v(k)]
, T+(k) =

v(−k) ·A · v(k)
v(−k) ·A · [M−v(k)]

,
(3.53)

R
−

(−k) =
[M−u(−k)] ·A · u(−k)

u(−k) ·A · [M−u(k)]
, R

+
(k) =

[M−u(k)] ·A · u(k)

u(−k) ·A · [M−u(k)]
,

T
−

(−k) =
[M−u(−k)] ·A · [M−u(k)]

u(−k) ·A · [M−u(k)]
, T

+
(k) =

u(−k) ·A · u(k)

u(−k) ·A · [M−u(k)]
.
(3.54)

In order to shorten the expressions, we used the matrix A :=
( 0 −1

1 0

)
. This

is a technical tool which has no deeper meaning on its own. There is a more

general formulation in terms of decomposed eigenstates ofM−. It is applicable

in higher dimensions than three as well, and we derive it in appendix A.

The “mostly plus” convention (3.24), we use here, leads with (3.32) to1

u(τ) =
1√

eτ + e−τ

(
e− τ

2

e
τ
2

)
=

√
k+ p0

2p0

(p0−k
m

1

)
= u(k), (3.56)

v(τ) =
1√

eτ + e−τ

(
− e− τ

2

e
τ
2

)
= i

√
k+ p0

2p0

(
1

−p0−k
m

)
= v(k). (3.57)

As we motivate in appendix A, the phase of u(k) and v(k) does not affect the

coefficients R and T .

Concretely, we have with (3.53),

R±(k) = −
4 iη cosh(τ)

4 iη± (g+ 4) sinh(τ)
= ∓ 4 iηω(k)

4 imη± (g+ 4)k
, (3.58)

T±(k) =
(4 − g∓ 4 iS) sinh(τ)

(g+ 4) sinh(τ)± 4 iη
= −

(g− 4± 4 iS)k

(g+ 4)k± 4 imη
, (3.59)

1To facilitate the comparison with the work of Delfino et al. [55] where γ0 = σ2, γ1 =

− iσ1, up to an SU(2) transformation in terms of the rapidity τ (ω(k) := m cosh τ, k =:

m sinh τ), we have

u(τ) =
1√

eτ + e−τ

(
− i e

τ
2

e− τ
2

)
, v(τ) =

1√
eτ + e−τ

(
i e

τ
2

e− τ
2

)
, (3.55)

where [6p−m]u ≡ 0 and [6p+m] v ≡ 0.
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with k = m
2
(eτ − e−τ) as defined above, the abbreviation g = η2 + s2 and the

boundary matrix according to equation (3.28),

M− =
1

4 − g− 4 iS

(
g+ 4 −4 iη

4 iη g+ 4

)
. (3.60)

This allows us now to evaluate expectation values in Gibbs statistics.

3.2.4 Gibbs States and Expectation Values

According to the creator and annihilator expectation values (3.21) and (3.22),

the two-point integrals of the wave function Ψ(x) read〈
Ψ(x1, t1)Ψ(x2, t2)

〉
=

=
〈 ∫∫+∞

−∞
dk1 dk2

8π2
√
ω(k1)ω(k2)

·

·
[
as1±(k1)vs1(k1) eiω(k1)t1−ik1x1 +as1

± (k1)us1(k1) e− iω(k1)t1+ik1x1

]
·

·
[
as2±(k2)us2(k2) eiω(k2)t2−ik2x2 +as2

± (k2)vs2(k2) e− iω(k2)t2+ik2x2

] 〉
=

∑
j,l=±

∫∫+∞
−∞

dk1 dk2

8π2
√
ω(k1)ω(k2)

θ(jx1)θ(lx2)·

·
[ 〈
as1 j(k1)a

s2
l (k2)

〉
vs1(k1) · vs2(k2) e− ik1x1+ik2x2 eiω(k1)t1−iω(k2)t2 +

+
〈
as1

j (k1)a
s2 l(k2)

〉
us1(k1) · us2(k2) eik1x1−ik2x2 e− iω(k1)t1+iω(k2)t2

]
=

∑
j,l=±

∫∫+∞
−∞

dk1 dk2

8π2
√
ω(k1)ω(k2)

θ(jx1)θ(lx2)

1 + e−β[ω(k1)−µ]
· (3.61)

·

[
e−β[ω(k1)−µ]

{
as2

l (k2), as1 j(k1)
}
·

· vs1(k1) · vs2(k2) e− ik1x1+ik2x2 eiω(k1)t1−iω(k2)t2 +

+
{
as1

j (k1), as2 l(k2)
}
us1(k1) · us2(k2) eik1x1−ik2x2 e− iω(k1)t1+iω(k2)t2

]
.

We use the relation∑
j,l=±

θ(jx1)θ(lx2)
{
al(k2), aj(k1)

}
= (3.62)

= 2πδ(k2 − k1) [θ(x1)θ(x2) + θ(−x1)θ(−x2)] +

+ 2πδ(k2 − k1)
[
θ(x1)θ(−x2)T

+(k2) + θ(−x1)θ(x2)T
−(k2)

]
+

+ 2πδ(k2 + k1)
[
θ(x1)θ(x2)R

+(k1) + θ(−x1)θ(−x2)R
−(k1)

]
,
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and drop the indices s1, s2 for the two-dimensional case,〈
Ψ(x1, t1)Ψ(x2, t2)

〉
= (3.63)

=

∫+∞
−∞

dk

4πω(k)

1
1 + e−β[ω(k)−µ]

·

{
e−β[ω(k)−µ]

{[
θ(x1)θ(x2) + θ(−x1)θ(−x2)

]
v(k) · v(k) e− ik(x1−x2)+iω(k)(t1−t2)

+
[
θ(x1)θ(−x2)T

+(k) + θ(−x1)θ(x2)T
−(k)

]
v(k) · v(k) e− ik(x1−x2)+iω(k)(t1−t2)

+
[
θ(x1)θ(x2)R

+(k) + θ(−x1)θ(−x2)R
−(k)

]
v(k) · v(−k) e− ik(x1+x2)+iω(k)(t1−t2)

}
+
[
θ(x1)θ(x2) + θ(−x1)θ(−x2)

]
u(k) · u(k) eik(x1−x2)−iω(k)(t1−t2)

+
[
θ(x1)θ(−x2)T

−(k) + θ(−x1)θ(x2)T
+(k)

]
u(k) · u(k) eik(x1−x2)−iω(k)(t1−t2)

+
[
θ(x1)θ(x2)R

+(−k) + θ(−x1)θ(−x2)R
−(−k)

]
u(k) · u(−k) eik(x1+x2)−iω(k)(t1−t2)

}
.

Dealing with fermionic operators, the normal ordering will change the expec-

tation value according to (3.23),〈
:aj(k1)a

l(k2) :
〉

= −
〈
al(k2)aj(k1)

〉
. (3.64)

This implies for the two-point expectation values〈
:Ψ(x1, t1)Ψ(x2, t2) :

〉
= (3.65)

=
∑ ∫+∞

−∞
dk

4πω(k)

e−β[ω(k)−µ]

1 + e−β[ω(k)−µ]

·
{

[θ(x1)θ(x2) + θ(−x1)θ(−x2)] [v(k) · v(k) − u(k) · u(k)] e− ik(x1−x2)+iω(k)(t1−t2)

+ [θ(x1)θ(−x2)T
+(k) + θ(−x1)θ(x2)T

−(k)] v(k) · v(k) e− ik(x1−x2)+iω(k)(t1−t2)

− [θ(x1)θ(−x2)T
−(k) + θ(−x1)θ(x2)T

+(k)]u(k) · u(k) eik(x1−x2)−iω(k)(t1−t2)

+ [θ(x1)θ(x2)R
+(k) + θ(−x1)θ(−x2)R

−(k)] [v(k) · v(−k) − u(−k) · u(k)] ·

· e− ik(x1+x2)+iω(k)(t1−t2)
}

.

3.2.5 Conserved Quantities

Energy density According to the mostly plus signature convention the

stress tensor is given by

Tµν = −
i

2
:Ψγµ∂νΨ− ∂νΨγµΨ : . (3.66)
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We are interested in the energy density component T 00. The standard expres-

sion for the current operator (up to some coefficient) reads

Jµs (x) ∝ :Ψ(x)γµΨ(x) : . (3.67)

Since the γ matrices act only on v(k) and u(k), whereas the derivatives ∂0

only affect the mode eiω(k)t, we can directly read off the expectation values

of
〈
Ψ1O∂

0Ψ2

〉
from (3.65) via

v(k) · v(k) 7→ v(k)Ov(k) (and for u(k) as well), (3.68)

∂0 e± iω(k)t2 7→ ± iω(k) e± iω(k)t2 . (3.69)

Here, O is an arbitrary product of γ matrices.

This implies for the energy density〈
T 00(x)

〉
=

i

2

〈
:Ψ(x)γ0∂0Ψ(x) − ∂0Ψγ0Ψ :

〉 ∣∣∣
t1=t2

(3.70)

=

∫+∞
−∞

dk

4π

e−β[ω(k)−µ]

1 + e−β[ω(k)−µ]
·
{
v(k)γ0v(k) + u(k)γ0u(k)+ (3.71)

+ e−2 ikx [θ(x)R+(k) + θ(−x)R−(k)]
[
v(k)γ0v(−k) + u(−k)γ0u(k)

]}
= −

∫+∞
−∞

dk

2π

1

1 + eβ[ω(k)−µ]
· (3.72)

·
{

1 +
m

ω(k)
e−2 ikx [θ(x)R+(k) + θ(−x)R−(k)]

}
,

using the explicit forms (3.57) of u, v in the last step. The result looks sim-

ilar to the one of the bosonic theory (2.66)–(2.68). Due to Fermi and Bose

statistics, the sign of the denominator varies as well as the prefactor of the

reflection amplitudes, which is also affected by the Fourier decomposition. In

both theories the transmission coefficients do not enter explicitly, since we con-

sider a two-point function at a single point, while the transmission coefficients

mediate the interaction between two points at different sides of the defect.

Additionally, the reflection amplitudes occur always as sum,

e−2 ikx [θ(+x)R+(k) + θ(−x)R−(k)] ,

which reflects the (anti-)symmetric properties of this RT picture: a parity

transformation; i.e., sign change of x as well as of k should not change the

theory. In other words, calculating two-point functions at positions x1 = x2 =
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(a) ED(x) exact (b) ED(x)m≈0 where ω(k) ≈ |k|

Figure 3.3: Defect energy density ED,β(x) in two space-time dimensions with

chemical potential µ = 0, for mass parameter m = 0.1, defect mass η = 10,

spin S = 0, and finite inverse temperature β = 1 plotted as function of the

distance x: (a) numerical evaluation of the full density integral (3.74), (b)

numerical evaluation of integral (3.75) wherem ≈ 0. Note that only the defect

energy part is plotted here, since the Stefan-Boltzmann energy E0 (3.77) is not

affected by the approximation.

x will never correlate a wave function with its transmitted one, but with the

reflected one only.

Considering the reflection amplitudes (3.58) for the energy density, this yields

〈
T 00(x)

〉
=

∫+∞
−∞

dk

2π(1 + eβ[ω(k)−µ])

{
1 − (4 imη e−2 ikx)· (3.73)

·
[

θ(x)

4 imη+ (g+ 4)gk
+

θ(−x)

4 imη− (g+ 4)gk

]}
,

〈
T 00(±|x|)

〉
=

∫+∞
−∞

dk

2π

1

1 + eβ[ω(k)−µ]

{
1 −

4mη e∓2 ik|x|

4mη∓ i(g+ 4)k

}
. (3.74)

We implement the simplifications ω(k) ≈ |k|, µ ≈ 0, the abbreviation ξ = 4mη
g+4

and integration of the first term in the sum. Note that ω(k) ≈ |k| means

m ≈ 0 which seems antithetic to ξ 6= 0. Therefore, we have to be vigilant

with this approximation. We assume m small enough but non-zero. The

approximation is necessary for handling the numerics but does not spoil our

results significantly as figure 3.3 shows: the correct numerical consideration

of m leads to a “sharper” picture. The minima and maxima are slightly

more pronounced here than in the approximation with m ≈ 0. However, the
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(a) ED(x) with m = 1, η = 10, S = 1

(b) ED at x = 0.2 as
function of β

(c) ED at x = 1 as
function of β

(d) ED at β = 0.001 as
function of x

(e) ED at β = 0.8 as
function of x

Figure 3.4: Defect energy density ED,β(x) in two space-time dimensions for

parameters m = 1, η = 10, S = 1 plotted as function of the distance from

the defect x and the inverse temperature β. Subfigures (b)–(e) are slices of

figure (a): (b), (c) in β direction for fixed x and (d), (e) in x direction with

fixed β respectively. The latter are the functions one usually measures. They

are added in this figure to illustrate the landscape plot. The colouring only

illustrates the landscape behaviour of the energy density; any distinct physical

meaning of the colours themselves is not intended here. The landscape plot

shows that the UV limit turns the energy density into a nearly δ peak as β

runs to zero; i.e., the temperature increases.
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qualitative results do not change. We thus simplify the energy density to

〈
T 00(±|x|)

〉
=

ln 4

2πβ
−

∫+∞
−∞

dk

2π

1

1 + eβ|k|

ξ e∓2 ik|x|

ξ∓ ik
. (3.75)

Obviously, as in the bosonic case [63] we have the Stefan-Boltzmann energy

density E0 of the system without any defect, plus an additional effect given by

the defect energy density ED, hence〈
T 00(x)

〉
= E0 + ED, (3.76)

where

E0 =
ln 4

2πβ
, ED = −

∫+∞
−∞

dk

2π

1

1 + eβ|k|

ξ e∓2 ik|x|

ξ∓ ik
. (3.77)

Due to equation (2.70),∫∞
0

e−(a±ib)α dα =
1

a± ib
⇔ a > 0, (3.78)

−

∫∞
0

e (a±ib)α dα =
1

a± ib
⇔ a < 0. (3.79)

Thus, the complex denominators are replaced and the k integration is per-

formed,

ED,η≷0 = −

∫∞
0

dα
e−a|ξ||ξ|

4πβ

[
Γ ′
(
− i(α∓2|x|)

2β

)
Γ
(
− i(α∓2|x|)

2β

) +
Γ ′
(

i(α∓2|x|)
2β

)
Γ
(

i(α∓2|x|)
2β

) (3.80)

−
Γ ′
(

iα+β∓2 i |x|
2β

)
Γ
(

iα+β∓2 i |x|
2β

) −
Γ ′
(

− iα+β±2 i |x|
2β

)
Γ
(

−iα+β±2 i |x|
2β

) ].
We are not able to solve the integral of ED analytically, of course we can plot it

as function of x and β, as shown in figures 3.4–3.8. We illustrate its properties

and dependency on parameteres m, η, S in several plots: in figure 3.4 we give

a clear idea of the landscape plots that show the energy density for varying

inverse temperature β and distance from the defect x. Furthermore, this figure

exhibits the usual numerical inaccuracies especially as β goes to zero. In this

respect, the values of ED(x) for β ≈ 0 are not trustworthy anymore. However,

we give evidence to their finiteness in figure 3.8.
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(a) ED with mass para-
meters η = 1, m = 100

(b) ED with mass para-
meters η = 10, m = 100

(c) ED with mass para-
meters η = 100, m = 100

m
↑
|

(d) ED with mass para-
meters η = 1, m = 10

(e) ED with mass para-
meters η = 10, m = 10

(f) ED with mass para-
meters η = 100, m = 10

(g) ED with mass para-
meters η = 1, m = 1

(h) ED with mass para-
meters η = 10, m = 1

(i) ED with mass para-
meters η = 100, m = 1

−→
η

Figure 3.5: Defect energy density ED,β(x) in two space-time dimensions for dif-

ferent parameters η > 0 and m > 0 (with fixed spin S = 1) plotted as function

of the distance from the defect x and the inverse temperature β. Apparently,

the relation of the mass m and the defect mass η plays an important role, the

density minimum near β = 0, i.e. T →∞, has a maximum depth at m = η.
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(a) ED with S = 0 (b) ED with S = 10 (c) ED with S = 100
−→
S

Figure 3.6: Defect energy density ED,β(x) in two space-time dimensions for

different defect spin S > 0 (with fixed mass terms m = 1, η = 10) plotted as

function of the distance from the defect x and the inverse temperature β. Note

that R± depends on S2 only. Therefore, we can restrict ourselves to positive

defect spin. Furthermore, we should remember that S ∈ R; i.e. a real spin

multiplied by its coupling constant. In subfigure (c) the scale was enlarged in

order to show that increasing S sharpens the peak at x = 0, but weakens the

density minimum near (x,β) = (0, 0).

In addition, figure 3.5 investigates the dependency on m in relation to η.

Obviously, the ratio of m and η is important: for m ≈ η, the absolute amount

of the global minimum near (x,β) = (0, 0) is maximal, while as the ratio turns

away from one, the landscape flattens and the minimum might near vanish as

for instance for m = 1, η = 100 – figure 3.5 (i).

Similarily, as the spin increases, the depth of the energy-landscape plot de-

creases – shown in figure 3.6. It seems that the spin has no other effects here.

The local maximum at x = 0 – well identifiable for instance in figure 3.6 (c)

– is actually an effect of the sign of the defect mass η, since this maximum

vanishes for negative values given in figure 3.7. Moreover, these plots illustrate

that there is a global minimum of the energy density for η < 0 at (x,β) = (0, ε)

with ε > 0. This indicates a phase transition as we discuss later.

In comparison with the bosonic case we discussed in chapter 2, we notice

that the dependence on the sign of η interchanges: for bosons there is a local

maximum at x = 0 for η < 0, in contrast to the fermionic case:
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(a) ED with η = −1 (b) ED with η = −10 (c) ED with η = −100
←−
η

Figure 3.7: Defect energy density ED,β(x) in two space-time dimensions for

negative defect mass η < 0 (with fixed mass term m = 1 and spin S = 1)

plotted as function of the distance x and the inverse temperature β. We do

not give the variation of the mass m since it is similar to the case η > 0.

Moreover, for η < 0 there are also contributions of bound states we neglect

here for reasons of simplicity. However, the minimum energy density has moved

to non-zero β; i.e. finite temperature.

(a) 20 plot points per direc-
tion with β ∈ [10−5, 10]

(b) 40 plot points per direc-
tion with β ∈ [10−5, 10]

(c) 80 plot points per direc-
tion with β ∈ [10−7, 10]

Figure 3.8: Defect energy density ED,β(x) in two space-time dimensions with

fixed mass terms m = 1, η = 10 and spin S = 1 for different plot resolutions.

We believe it reasonable to regard the minima as finite since an increase of

numerical accuracy does not change the plot dramatically, even if the starting

point for β is moved towards zero – subfigure (c).
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local minimum local maximum

bosonic η > 0 η < 0

fermionic η < 0 η > 0

Furthermore, for bosons, the energy density seems to turn into a near δ dis-

tribution as β → 0, while the fermion energy density stays finite everywhere

– according to numerics.

Noether Currents For the Noether currents we derive

〈Jµ(x)〉 : =
〈
:Ψ(x)Aµ(γ)Ψ(x) :

〉 ∣∣∣
t1=t2

(3.81)

=

∫+∞
−∞

dk

4πω(k)

e−β[ω(k)−µ]

1 + e−β[ω(k)−µ]

{
v(k)Av(k) − u(k)Au(k)+

+ e−2 ikx [θ(x)R+(k) + θ(−x)R−(k)] [v(k)Av(−k) − u(−k)Au(k)]

}
= 0 ⇔ A = γ0,γ1, (3.82)

where we did not specify the polonomial A(γ) in γµ yet.

The vanishing of 〈J0(x)〉 does not mean that there is no valid decomposition

into non-zero parts that are conserved on their own. In particular, it should be

possible to examine left and right movers separately. Moreover, the solutions

with positive mass (i.e. the solutions with (6p−m)ψ = 0) should separate from

those with negative mass. Furthermore, it is not surprising that for example

electron and positron currents sum up to zero.

We analyse such a possibility for left movers with positive mass, since we

intend to compare our results with the single spin impurity formulation of

Affleck and Ludwig [1; 23]. The approach by these authors is slightly different

from ours because it deals with the rotational invariance of the single spin

impurity. This leaves only the radial coordinate r ∈ [0, ∞] and time t as

space-time parameters. The reflected (outgoing) wave can be mapped on the

negative radial axis. Therefore, the theory can be considered as effectively

two-dimensional containing only left movers (or right movers respectively).

We establish a similar left mover description in the RT picture.

Due to (3.58), the reflection terms vanish as soon as η goes to zero. In this way

there are no right moving terms that are induced by reflection of left movers;
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i.e., the left movers decouple completely, and we should therefore be able to

compare the RT formalism with the CFT approach of [1]. Moreover, we have

to restrict ourselves to solutions with positive mass only. For this reason we

replace all terms v(k) by zero.

The wave function Ψ decomposes via θ(±k) sign functions,

Ψ = ΨL + ΨR, (3.83)

ΨR : =
∑
j=±

θ(jx)

∫+∞
−∞

dk

2π
√

2ω(k)

[
θ(−k)u(k)a j(k) eiω(k)t−ikx + (3.84)

+ θ(k)v(k)aj(k) e− iω(k)t+ikx
]
,

ΨL : =
∑
j=±

θ(jx)

∫+∞
−∞

dk

2π
√

2ω(k)

[
θ(k)u(k)a j(k) eiω(k)t−ikx + (3.85)

+ θ(−k)v(k)aj(k) e− iω(k)t+ikx
]

=
∑
j=±

θ(jx)

∫+∞
−∞

dk

2π
√

2ω(k)
θ(k)u(k)a j(k) eiω(k)t−ikx

+
∑
j=±

θ(jx)

∫+∞
−∞

dk

2π
√

2ω(k)
θ(−k)v(k)aj(k) e− iω(k)t+ikx (3.86)

=: ΨL,e + ΨL,p. (3.87)

The results for the two point functions can easily be taken over from the full

theory by the transformation

〈
:Ψ(x1, t1)Ψ(x2, t2) :

〉 f7→
〈
:ΨL,e(x1, t1)ΨL,e(x2, t2) :

〉
, (3.88)

where f : u(k1)u(k2) 7→ θ(k1)θ(k2) u(k1)u(k2). (3.89)

The left mover currents follow directly via (3.68) as before,

u(k) · u(k) 7→ u(k)Ou(k) (3.90)

∂0 e± iω(k)t2 7→ ± iω(k) e± iω(k)t2 . (3.91)
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(a) J0L,e with m = 1,η = −1 (b) J0L,e with m,η = 1

(c) J0L,e with m = 1,η = 10 (d) J0L,e with m = 10,η = 1

Figure 3.9: Fermionic charge density ρ(x) ∝ J0L,e in two space-time dimensions

for different defect masses η plotted for varying x and β. The sign of the

defect mass η determines the local minimum or maximum at x = 0. The

“gap” in subfigure (d) results from the plot range β ∈ [0.001, 10] which – only

for numerical reasons – excludes in this graph values in a small vicinity of

(x,β) = (0, 0).
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(a) J0L,e with S = 0 (b) J0L,e with S = 1 (c) J0L,e with S = 10

Figure 3.10: Fermionic charge density ρ(x) ∝ J0L,e in two space-time dimensions

for different spin values S plotted for varying x and β with fixed m,η = 1. As

defect spin S increases the depression in the vicinity of x = 0 flattens out and

vanishes for large S which means large coupling in particular.

This implies the vanishing of “half” of the upper integrals

〈
T 00

L,e(x)
〉

=
i

2

〈
:ΨL,e(x)γ

0∂0ΨL,e(x) − ∂0ΨL,e(x)γ
0ΨL,e(x) :

〉 ∣∣∣
t1=t2

(3.92)

=

∫+∞
−∞

dk

8π

e−β[ω(k)−µ]

1 + e−β[ω(k)−µ]
·
{
θ(k)u(k)γ0u(k)+ (3.93)

+ e−2 ikx u(−k)γ0u(k)θ(−k) [θ(x)R+(k) + θ(−x)R−(k)]
}

,〈
J
µ
L,e(x)

〉
=
〈
:ΨL,e(x)A

µ(γ)ΨL,e(x) :
〉 ∣∣∣

t1=t2

(3.94)

= −

∫+∞
−∞

dk

8πω(k)

e−β[ω(k)−µ]

1 + e−β[ω(k)−µ]

{
θ(+k)u(k)A(γ)u(k)+ (3.95)

+ e−2 ikx u(−k)A(γ)u(k)θ(−k) [θ(x)R+(k) + θ(−x)R−(k)]

}

= −

∫+∞
0

dk

8πω(k)

e−β[ω(k)−µ]

1 + e−β[ω(k)−µ]

{
u(k)A(γ)u(k)+ (3.96)

+ e2 ikx u(k)A(γ)u(−k) [θ(x)R+(−k) + θ(−x)R−(−k)]

}
.

Note that θ(±k1)θ(±k2) became 1
2
θ(±k) due to the integration with respect

to k2, and because of the δ(k1±k2) distribution (up to the renaming k1 7→ k).
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With the definitions (3.57) we end up with

〈
T 00

L,e(x)
〉

=
1

4
E0 +

1

4
ED =

1

4

〈
T 00(x)

〉
, (3.97)〈

J0L(x)
〉

=

∫+∞
0

dk

8πp0

1

1 + eβ[p0−µ]
· (3.98)

·

{
1 +

m

p0

e2 ikx [θ(x)R+(−k) + θ(−x)R−(−k)]

}

=

∫+∞
0

dk

8πp0

1

1 + eβ[p0−µ]
· (3.99)

·

{
1 − 4mηe2 ikx

(
θ(−x)

4mη− i(g+ 4)k
+

θ(x)

i(g+ 4)k+ 4mη

)}
,〈

J1L(x)
〉
≡ 0 (3.100)

Equation (3.97) holds in higher dimensions as well. For this reason we will skip

the discussion of left-mover energies and concentrate on their currents exclu-

sively. Since we dropped any prefactor in the Noether current definition (3.81)

the charge density ρ(x) is just proportional to 〈J0L(x)〉 even if we sometimes

call both charge density for the sake of brevity.

Given the similarities of two-point expectation values for the bosonic and the

fermionic case, it is not very surprising that the currents – like the energy

densities – differ in a general prefactor according to Bose and Fermi function

and some prefactor of the reflection amplitudes according to the slightly dif-

ferent definitions of the Fourier modes; i.e. a±(k),a±(k). Comparing figures

2.2 and 3.9 the similarities are obvious as well. The sign of η generates a local

maximum or minimum at x = 0 respectively which stays non-zero as β runs

to zero.

However, as already stated for the energy density, a negative defect mass η <

0 generates a local maximum for bosonic theory, but a local minimum for

fermions and vice versa. Furthermore, the influence of the defect is much

weaker for fermions than bosons where the defect shrinks the charge density

nearly to zero at x = 0 regardless of the value of inverse temperature β.

Analogously to the Stefan-Boltzmann energy density E0 (3.77) the charge den-

sity diverges for β→ 0. This behaviour is not defect-induced.
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3.2.6 Comparing with the One-Impurity CFT Approach

Our ansatz coincides with the complete description of the single spin Kondo

effect in terms of CFT given by Affleck and Ludwig [1; 2]. As mentioned

above, the idea consists in reducing the effectively considered space-time by

the rotational symmetry of the problem. This leaves only the radial direction

r (with the spin at the origin) and the time as parameters. Furthermore, the

incoming particles from r → +∞ are reflected back to r → +∞ at the origin

and it is straightforward to map the outgoing states to the negative real axis

and thus produce a completely left moving theory.

In fact Bajnok et al. [61] use the same idea but invert the arguments to show

that the RT formalism can be applied to boundaries as well. Besides this

similarity in concepts, the approaches differ from each other (in particular the

conformal symmetry is not applied to the RT theory). However, the results

should be comparable and Affleck and Ludwig state a boundary condition

Ψ+ = Ψ− ⇔ IR fixed point, (3.101)

Ψ+ = −Ψ− ⇔ UV fixed point, (3.102)

which is in complete agreement with the boundary matrix (3.60) with param-

eter η = 0,

Ψ+ =
1

2 − iS

(
2 + iS 0

0 2 + iS

)
Ψ−

S=0
= +Ψ− ⇔ IR fixed point,

(3.103)

Ψ+ =
1

2 − iS

(
2 + iS 0

0 2 + iS

)
Ψ−

S→∞
= −Ψ− ⇔ UV fixed point.

(3.104)

Furthermore, we do not derive any energy shift here. However, since according

to [23], this boundary condition directly implicates this energy shift, we use in

our considerations this shift implicitly. We are only dealing with non-disturbed

eigenwave functions and do not question the energy eigenvalue with or without

defect.

Since we exclude bound states which are considered in the one-impurity CFT

ansatz, we here give only the defect energy density for free particles. As

the defect mass η is negative, the defect energy shows a minimum at finite
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temperature and vanishes for high temperatures, i.e. β→ 0. We interpret this

minimum as the phase transition point where the energy levels of the bound

states reach the edge of the potential pot induced by negative defect mass η.

For increasing temperature, these bound states turn into free ones. We leave

the exact phase transition behaviour for further studies.

3.3 RT Results in Three Dimensions

3.3.1 The Algebra

Let us now turn to the case of d = 3 with a d = 2 defect. As we still have

unique solutions u(k), v(k) the RT formalism in the three-dimensional case

looks similar to the two-dimensional one. It only has a further spin component

S2 and a momentum p2.

The Lagrangean (3.2) contains γmatrices according to conventions (3.5)–(3.7),

γ0 = i

(
0 1

1 0

)
= iσ1, (3.105)

γ1 = i

(
0 −1

1 0

)
= σ2, (3.106)

γ2 =

(
1 0

0 −1

)
= σ3. (3.107)

Of course the algebra (2.4)–(2.6) shows additional δ distributions for the ad-

ditional momenta p̂i parallel to the defect:

{aα1(k1, p̂1), aα2(k2, p̂2)} = 2δα1
α2
δ(k1 − k2)δ(p̂1 − p̂2)aα1 , (3.108)

{aα1(k1, p̂1), a
α2(k2, p̂2)} = 2δα2

α1
δ(k1 − k2)δ(p̂1 − p̂2)a

α1 , (3.109)

{aα1(k1, p̂1), a
α2(k2, p̂2)} = (2π)d−1δ (p̂1 − p̂2) · (3.110)

·
{
δ (k1 − k2)

[
δα2

α1
+ δ−α1

α2
Tα2(k1, p̂1)

]
+

+ δ(k1 + k2) δ
α1
α2
Rα2(k2, p̂2)

}
,

and αi = (si,±) – while we can still neglect si. Once again we have additional
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exchange relations (3.37) and (3.38),

(
a−(k, p̂)

a+(−k, p̂)

)
=

(
R

−
(−k, p̂) T

+
(k, p̂)

T
−
(−k, p̂) R

+
(k, p̂)

)
·
(
a−(−k, p̂)

a+(k, p̂)

)
, (3.111)

(
a−(k, p̂)

a+(−k, p̂)

)
=

(
R−(−k, p̂) T+(k, p̂)

T−(−k, p̂) R+(k, p̂)

)
·
(
a−(−k, p̂)

a+(k, p̂)

)
. (3.112)

3.3.2 Boundary Condition and RT Coefficients

The spin solutions are up to a phase

u(k, p̂) = −
1√

2p0(p0 − k)

(
p0 − k

m+ ip2

)
, (3.113)

v(k, p̂) = −
1√

2p0(p0 − k)

(
−p0 + k

m− ip2

)
, (3.114)

where p2
0 = m2 + k2 + p2

2 =: ω(k).

After integrating the equations of motion over the interval x ∈ [−ε, +ε] with

ε → 0 once more, the boundary matrix M− defined in (3.12) with g := η2 +

S2
1 + S2

2 reads,

M− = −
1

g+ 4 iS2 − 4

 g− 4η+ 4 4S1

4S1 g+ 4η+ 4

 . (3.115)

Due to equations (3.53) the RT coefficients follow immediately,

R±(k) = −
4
√
p0 + k ((S2 − iη)p2

2 +m(η+ iS2)p2 + (k− p0)(kS2 − iηp0))√
p0 − k(m− ip2)(∓(g+ 4)k+ 4 i(mη+ S2p2))

,

(3.116)

T±(k) =
k(∓g+ 4 iS1 ± 4)

(g+ 4)k∓ 4 i(mη+ S2p2)
. (3.117)
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(a) ED w. η = 0, m = 10 (b) ED w. η = 1, m = 10 (c) ED w. η = 10,m = 10

m
↑
|

(d) ED with η = 0, m = 1 (e) ED with η = 1, m = 1 (f) ED w. η = 10,m = 1

(g) ED with η = 0, m = 0 (h) ED with η = 1, m = 0 (i) ED w. η = 10, m = 0
−→
η

Figure 3.11: Defect energy density ED,β(x) in three space-time dimensions for

different parameters η > 0 and m > 0 (with fixed spin S1,S2 = 1) plotted as

function of the distance from the defect x and the inverse temperature β. For

increasing η the defect energy density smears out as most apparent in subfigure

(f). This does not take effect in case m = 0. Furthermore, in contrast to two

dimensions as m vanishes, we are still left with a non-vanishing defect density

ED(x) which is finite and non-zero even for η = 0.
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3.3.3 Energy Density

The stress tensor zero component is given by

〈
T 00(x)

〉
=

i

2

〈
:Ψ(x)γ0∂0Ψ(x) − ∂0Ψγ0Ψ :

〉 ∣∣∣
t1=t2

(3.118)

=
∑

j,l=±

∫∫+∞
−∞

dp1 dp2

25π4
√
ω(p1)ω(p2)

θ(jx1)θ(lx2)

1 + eβ[ω(p1)−µ]
[ω(p1) +ω(p2)]

·

[{
al(p2), a

j(p1)
}
v(p1)γ

0v(p2) e− ip1x1+ip2x2 eiω(p1)t1−iω(p2)t2 +

+
{
al(p2), aj(p1)

}
u(p1)γ

0u(p2) eip1x1−ip2x2 e− iω(p1)t1+iω(p2)t2

]
.

(3.119)

Using (3.62), setting x1 = x2, t1 = t2, integrating with respect to p2 and

considering p1 = (k,p) yields

〈
T 00(x)

〉
=

∫∫+∞
−∞

dkdp

4π2

e−β[ω(k,p)−µ]

1 + e−β[ω(k,p)−µ]
· (3.120)

·
{
v(k,p)γ0v(k,p) + u(k,p)γ0u(k,p)+

+ e−2 ikx [θ(x)R+(k,p) + θ(−x)R−(k,p)] ·

·
[
v(k,p)γ0v(−k,p) + u(−k,p)γ0u(k,p)

]}
=: E0 + ED. (3.121)

Taking µ = 0 and p0 ≈
√
k2 + p2

2 +m2 yields

E0 =
π

12β2
(3.122)

ED(x) = −

∫+∞
−∞

∫ 2π

0

drdϕ

π2

e−2 i rx cosϕr

1 + eβp0
·

· 2r cosϕ(ηr sinϕ−mS2) + 2 i
√
m2 + r2(mη+ rS2 sinϕ)√

m2 + r2(sgn(x)(g+ 4)r cosϕ+ 4 i(mη+ rS2 sinϕ))

(3.123)
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(a) ED(x) with S1 = 1,
S2 = 10

(b) ED(x) with S1 = 1,
S2 = 1

(c) ED(x) with S1 = 10,
S2 = 1

Figure 3.12: Defect energy density ED,β(x) in three space-time dimensions for

different parameters S1,S2 with m,η = 1 fixed. As S1 increases, the defect

density peak at (x,β) = (0, 0) smears out. Increasing S2 shows the same, but

less intense influence. For S1 ≈ S2 the peak at (x,β) = (0, 0) is highly distinct.

For mass m = 0 the defect energy density simplifies,

ED,m=0(x) = −

∫+∞
−∞

∫ 2π

0

drdϕ

π2

2 r e−2 i rx cosϕ

1 + eβp0
· η cosϕ+ iS2

sgn(x)(g+ 4) cotϕ+ 4 iS2

(3.124)

= −

∫ 2π

0

dϕ

2β2π4

(S2 − iη cosϕ)
(
ζ
(
2, ix cosϕ

β
+ 1

2

)
− ζ

(
2, ix cosϕ

β
+ 1
))

4S2 − sgn(x) i(g+ 4) cotϕ
.

(3.125)

The analytical integration with respect to ϕ fails, but the numerically inte-

grated plots of ED(x) for different values of S1,S2 are shown in figure 3.12.

Figure 3.11 illustrates the behaviour of the defect energy density ED(x) for

different values of defect mass η.

Contrary to the two-dimensional case, for negative defect mass η, there is no

energy density minimum at finite (inverse) temperature β in three dimensions.

The landscape plots for negative η are similar to those for positive η (beside

of turning the local maximum into a minumum). Thus we do not add them

here.

The three-dimensional plots of the energy density show the same shape as the

plots of the two-dimensional energy density ED. Its properties we discussed

in the previous section 3.2.5. The most important difference is that in three
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(a) J0D with η = −10 (b) J0D with η = 0 (c) J0D with η = 10

Figure 3.13: Fermionic charge density ρ(x) ∝ J0L,e in three space-time dimen-

sions for different defect masses η plotted for varying x and β (S1,S2 = 1

fixed). For η 6= 0 the plots are not symmetrical. This means that the defect

mass η breaks the chiral symmetry. The left and right moving theories mix.

Aside from the impossibility to define a spin projector in three dimensions, the

defect spins do not spoil this picture.

dimensions even for m = 0 and η = 0 the defect energy density does not

vanish. Whereas in two dimensions we had to consider the approximation

m ≈ 0 very carefully and found a vanishing energy density ED for η = 0, in

three dimensions we observe a non-zero defect density fo a pure spin defect.

3.3.4 Noether Currents

As above, the conserved currents read

〈Jµ(x)〉 =
〈
:Ψ(x)Aµ(γ)Ψ(x) :

〉 ∣∣∣
t1=t2

(3.126)

=

∫∫+∞
−∞

dkdp2

8πp0

1

1 + eβ[ω(k)−µ]

{
v(k)Av(k) − u(k)Au(k)+

+ e−2 ikx [θ(x)R+(k) + θ(−x)R−(k)] [v(k)Av(−k) − u(−k)Au(k)]

}
= 0 ⇔ A = γ0,γ1,γ2. (3.127)

We again analyse left movers with positive mass exclusively, comparing them

with those in two dimensions. We should keep in mind here that the mass

parameters m and η could break the symmetry of left and right movers.
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(a) ED(x) with S1 = 1,
S2 = 10

(b) ED(x) with S1 = 1,
S2 = 1

(c) ED(x) with S1 = 10,
S2 = 1

Figure 3.14: Fermionic charge density ρ(x) ∝ J0L,e in three space-time dimen-

sions for different spin values S1,S2 plotted for varying x and β (and m,η = 0

fixed). For S2 very large compared to S1 the plot becomes “flat”.

In complete analogy to the two-dimensional case (3.92)–(3.96) this part of the

full integral containing the spinors vs(k) vanishes,

〈
T 00

L,e(x)
〉

=
i

2

〈
:ΨL,e(x)γ

0∂0ΨL,e(x) − ∂0ΨL,e(x)γ
0ΨL,e(x) :

〉 ∣∣∣
t1=t2

(3.128)

=
1

4

〈
T 00(x)

〉
(3.129)〈

J
µ
L,e(x)

〉
=
〈
:ΨL,e(x)A

µ(γ)ΨL,e(x) :
〉 ∣∣∣

t1=t2

(3.130)

=

∫∫+∞
−∞

dkdp2

8πp0

1

1 + eβ[ω(k)−µ]

{
θ(+k)u(k)A(γ)u(k)+ (3.131)

+ e−2 ikx u(−k)A(γ)u(k)θ(−k) [θ(x)Rs+(k) + θ(−x)Rs−(k)]

}
= 0 ⇔ A(γ) = γ1,γ2. (3.132)

The last line is not obvious here, we rather have to examine the scalar products

u(±k)A(γ)u(k) carefully. It turns out that the polar integration with respect

to ϕ where tanϕ := k/p2 of the non-vanishing terms u(±k)A(γ)u(k) vanishes

for symmetry reasons. This is straightforward, thus we do not give any details.
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Only for A(γ) = γ0 we find a non-vanishing result (for µ = 0),

〈
J0L,e(x)

〉
=

∫+∞
0

∫π

0

drdϕ

8π
√
m2 + r2

r

1 + eβ
√

m2+r2
·

{
1 − 4e− i rx cosϕ· (3.133)

· r cosϕ(ηr sinϕ−mS2) + i
√
m2 + r2(mη+ r S2 sinϕ)√

m2 + r2((g+ 4)r cosϕ sgn(x) + 4 i(mη+ r S2 sinϕ))

}
=: J0 − JD (3.134)

In contrast to the two-dimensional case the component J0 without defect can

be integrated directly, i.e.

J0 =
ln 2

4β
(3.135)

JD =

∫+∞
0

∫π

0

drdϕ

8π
√
m2 + r2

r

1 + eβ
√

m2+r2
·

{
4e− i rx cosϕ· (3.136)

· r cosϕ(ηr sinϕ−mS2) + i
√
m2 + r2(mη+ r S2 sinϕ)√

m2 + r2((g+ 4)r cosϕ sgn(x) + 4 i(mη+ r S2 sinϕ))

}

JD,0 =

∫+∞
0

∫π

0

drdϕ

8π

1

1 + eβr
· 4e− i rx cosϕ(i S2 + η cosϕ)

(g+ 4) cotϕ sgn(x) + 4 iS2

(3.137)

= −

∫π

0

dϕ

4βπ

iS2 + η cosϕ

(g+ 4) sgn(x) cotϕ+ 4 iS2

· (3.138)

·
(
ψ(0)

(
β+ i x cosϕ

2β

)
−ψ(0)

(
i x cosϕ

2β
+ 1

))
.

In the two-dimensional case there is no momentum component perpendicular

to the defect, whereas in three dimensions, we have to take into account such

a component p2. Since we consider here a purely left-mover theory, we have to

be aware of a mass term breaking the invariance of the left-moving spinors. On

the other hand, a δ-potential mass term is a very specific case and a priori we

cannot expect such a symmetry breaking. In addition with the impossibility of

defining a γ5 matrix in odd dimensions an thus projecting out spin directions

by (1 ± γ5), a non-zero defect mass obviously spoils the decomposition into

purely left- and right-moving currents. Yet a detailed description is lacking.

Since equation (3.138) is very close to the symmetric energy density (3.125),

the symmetry breaking term including η is not obvious here.
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3.3.5 Comparison with Two Dimensions

Once again, we are interested in the strong and weak coupling limits S → ∞
and S→ 0. In three dimensions the spin has two components,

S = (S1,S2) = λ(s1, s2), (3.139)

where |si| = 1
2
, 1, 3

2
, . . . are quantised spins with a finite but non-zero value.

This implies

λs = S→ 0 ⇔ λ→ 0, with λsi = Si, (3.140)

S→∞ ⇔ λ→∞. (3.141)

Since Ψ+ = M−Ψ− we have with η = 0

Ψ+ =

(
λ2s2 + 4 4λs1

4λs1 λ2s2 + 4

)
Ψ−

4 − λ2s2 − 4 i λs2

λ=0
= +Ψ− ⇔ IR fixed point, (3.142)

Ψ+ =

(
λ2s2 + 4 4λs1

4λs1 λ2s2 + 4

)
Ψ−

4 − λ2s2 − 4 i λs2

λ→∞
= −Ψ− ⇔ UV fixed point.

(3.143)

We thus observe the same fixed point boundary conditions as in two dimen-

sions. We discuss further possibilities for the four dimensional case.

3.4 Fermionic δ Defects in Four and Higher

Dimensions

Since in more than three dimensions we have different solutions of the Dirac

equation indicated by s, the whole formalism shows now its full power, but

its full complexity as well. The RT terms in the algebra do not only carry an

additional s index, there also appear mixing amplitudes R
sj±
si , T

sj±
si between

the different solutions si and sj. Therefore, we give the general setup and the

four-dimensional terms as an example.
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3.4.1 The RT Algebra

The generator algebra in higher dimensions is given according to (2.20)–(2.22)

{aα1
(k1, p̂1), aα2

(k2, p̂2)} = 2δα1
α2
δ(k1 − k2)δ(p̂1 − p̂2)aα1

, (3.144)

{aα1(k1, p̂1), a
α2(k2, p̂2)} = 2δα2

α1
δ(k1 − k2)δ(p̂1 − p̂2)a

α1 , (3.145)

{aα1(k1, p1), a
α2(k2, p2)} = (2π)d−1δ (p1 − p2) · (3.146)

·
{
δ (k1 − k2)

[
δα2

α1
+ Tα2

α1
(k1, p̂1)

]
+ δ(k1 + k2)R

α2
α1

(k2, p̂2)
}

,

where d is the space-time dimension, ki the momenta perpendicular to the

defect, pi the full momenta, p̂ = (p2,p3, . . .) the momenta parallel to the

defect written in d − 2 vector components, and αi = (si,±) with si the spin

solution index as before, especially si = 1, 2 in four dimensions.

Once again we have the additional exchange relations (3.37) and (3.38) which

are modified for multiple spin solutions as well,

asl,j(k, p̂)T
si,−j

sl,j
(k, p̂) + asl,−j(−k, p̂)R

si,−j

sl,−j(−k, p̂) = asi,−j(k, p̂), (3.147)

asl,j(k, p̂)Tsl,j
si,−j(k, p̂) + asl,−j(−k, p̂)Rsl,−j

si,−j(−k, p̂) = asi,−j(k, p̂), (3.148)

or rewritten as matrix equation for si = 1, 2,
a1−(+k, p̂)

a1+(−k, p̂)

a2−(+k, p̂)

a2+(−k, p̂)

 =


R

1−
(−k, p̂) T

1+
(k, p̂) R

1−
2 (−k, p̂) T

1+
2 (k, p̂)

T
1−

(−k, p̂) R
1+

(k, p̂) T
1−
2 (−k, p̂) R

1+
2 (k, p̂)

R
2−
1 (−k, p̂) T

2+
1 (k, p̂) R

2−
(−k, p̂) T

2+
(k, p̂)

T
2−
1 (−k, p̂) R

2+
1 (k, p̂) T

2−
(−k, p̂) R

2+
(k, p̂)

 ·

a1−(−k, p̂)

a1+(+k, p̂)

a2−(−k, p̂)

a2+(+k, p̂)

 ,

(3.149)
a1−(+k, p̂)

a1+(−k, p̂)

a2−(+k, p̂)

a2+(−k, p̂)

 =


R1−(−k, p̂) T1+(k, p̂) R2−

1 (−k, p̂) T2+
1 (k, p̂)

T1−(−k, p̂) R1+(k, p̂) T2−
1 (−k, p̂) R2+

1 (k, p̂)

R1−
2 (−k, p̂) T1+

2 (k, p̂) R2−(−k, p̂) T2+(k, p̂)

T1−
2 (−k, p̂) R1+

2 (k, p̂) T2−(−k, p̂) R2+(k, p̂)

 ·

a1−(−k, p̂)

a1+(+k, p̂)

a2−(−k, p̂)

a2+(+k, p̂)

 .

(3.150)

Here some redundant lower indices have already been dropped. One can read

similar to the abbreviations R±, T± defined in (3.33)

Rsi,j := R
si,j
si,j

, Rsi,j
sl

:= R
si,j
sl,j

, (3.151)

Tsi,j := T
si,j
si,−j, Tsi,j

sl
:= T

si,j
sl,−j, (3.152)
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and for the barred components as well. Of course it becomes more difficult and

longish to show the interpretation of these RT terms similar to (3.43)–(3.46).

Nevertheless, they still are reflection and transmission amplitudes between the

different generator and annihilator functions.

3.4.2 Boundary Condition

According to (3.5)–(3.7), the γ matrices in four dimensions (with mostly plus

signature) are

γ0 = i

(
0 12

12 0

)
, γ1 = i

(
0 −12

12 0

)
,

γ2 =

(
σ1 0

0 −σ1

)
, γ3 =

(
σ2 0

0 −σ2

)
.

(3.153)

Obviously, this convention differs from standard notations like the Dirac one.

Nevertheless, it will not have any effect on the RT formalism.

After integrating the equation of motion over x ∈ [−ε, ε] as above, we derive

the boundary matrix M− in four dimensions,

M− = −
1

g+ 4 iS1 − 4


g+ 4 0 4 iη −4(S2 − iS3)

0 g+ 4 −4(S2 + iS3) 4 iη
−4 iη −4(S2 − iS3) g+ 4 0

−4(S2 + iS3) −4 iη 0 g+ 4

 .

(3.154)

which satisfies Ψ+ = M−Ψ−.

3.4.3 Spin Solutions in Four Dimensions and RT Coef-

ficients

The γ matrices given in (3.153) lead with [6p− i m]us ≡ 0 ≡ [6p+ i m] vs,

and the abbreviation N =
√

2p0 (p0 + k) (where p2
0 = m2 + k2 + p2

2 + p2
3) to

u1(p) =
1

N


m

− ip2 + p3

p0 + k

0

 , u2(p) =
1

N


− ip2 − p3

m

0

p0 + k

 , (3.155)
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and

v1(p) =
1

N


−m

− ip2 + p3

p0 + k

0

 , v2(p) =
1

N


− ip2 − p3

−m

0

p0 + k

 . (3.156)

With equations (3.51) and (3.52) and appendix A, we compute the RT ampli-

tudes,

NRa,i(k, p̂) = −
4 ((−1)ak(S3p2 − S2p3) + ip0X(p̂))√

p2
0 − k2 [i(g+ 4)k+ 4 iX(p̂)]

, (3.157)

N T i±
j (k, p̂) = −

k(g+ 4 iS1 − 4)

i(g+ 4)k+ 4 iX(p̂)
, (3.158)

NR1±
2 (k, p̂) =

4k (m (S2 + i(−1)aS3) − η (p2 + i(−1)ap3))√
p2

0 − k2 [i(g+ 4)k+ 4 iX(p̂)]
. (3.159)

Here, we used the abbreviations

g : = η2 + S2
1 + S2

2 + S2
3 = η2 + S2, (3.160)

N : = ((g+ 4)k+ 4 iX)

√
p2

0 − k2, (3.161)

X(p̂) : = mη+ S2p2 + S3p3. (3.162)

3.4.4 Gibbs States and Currents

Stress tensor and Noether currents are again defined in (3.66) and (3.67) re-

spectively. For even dimensions we may add a γP = ± i
∏d−1

l=0 γ
l so that the

axial current reads

Jµs (x)A = :Ψ(x)γPγµΨ(x) : . (3.163)

We can deal with the resulting integrals the same way as before, as long as one

does not have to take into account the additional sums over si, sj. Especially

the transformation of the expectation values for additional operators (3.68)

does not change:

vs(k) · vs(k) 7→ vs(k)Ovs(k) and for us(k) as well, (3.164)

∂0 e± iω(k)t2 7→ ± iω(k) e± iω(k)t2 . (3.165)
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The enhanced algebra (3.62) changes to∑
s,t=1,2

j,l=±

θ(jx1)θ(lx2)
{
at,l(k2), as,j(k1)

}
=

= (2π)d−1
∑

s

{
δ(k2 − k1) [θ(x1)θ(x2) + θ(−x1)θ(−x2)] +

+ δ(k2 − k1)
[
θ(x1)θ(−x2)T

s,+(k2) + θ(−x1)θ(x2)T
s,−(k2)

]
+

+ δ(k2 + k1)
[
θ(x1)θ(x2)R

s,+(k1) + θ(−x1)θ(−x2)R
s,−(k1)

]
+

+
∑
t6=s

{
δ(k2 − k1)

[
θ(x1)θ(−x2)T

s,+
t (k2) + θ(−x1)θ(x2)T

s,−
t (k2)

]
+

+ δ(k2 + k1)
[
θ(x1)θ(x2)R

s,+
t (k1) + θ(−x1)θ(−x2)R

s,−
t (k1)

]}}
.

(3.166)

Energy density The stress tensor zero component is given by

〈
T 00(x)

〉
=

i

2

〈
:Ψ(x)γ0∂0Ψ(x) − ∂0Ψγ0Ψ :

〉 ∣∣∣
t1=t2

(3.167)

=

2∑
s,t=1

∑
j,l=±

∫∫+∞
−∞

dp1 dp2 [ω(p1) +ω(p2)]

25π4
√
ω(p1)ω(p2)

θ(jx1)θ(lx2)

1 + eβ[ω(p1)−µ]
·

·
[{
at,l(p2), a

s,j(p1)
}
vs(p1)γ

0vt(p2) e− ip1x1+ip2x2 eiω(p1)t1−iω(p2)t2 +

+
{
at,l(p2), as,j(p1)

}
us(p1)γ

0ut(p2) eip1x1−ip2x2 e− iω(p1)t1+iω(p2)t2

]
.

Using (3.166), setting x1 = x2, t1 = t2 and integrating with respect to p2

yields

〈
T 00(x)

〉
=

∑
s

∫∫+∞
−∞

dkdp̂

4π2

e−β[ω(k,p̂)−µ]

1 + e−β[ω(k,p̂)−µ]
·
{

− 2 + e−2 ikx · (3.168)

·
{

[θ(x)Rs,+(k, p̂) + θ(−x)Rs,−(k, p̂)] ·[
vs(k, p̂)γ0vs(−k, p̂) + us(−k, p̂)γ0us(k, p̂)

]
+

+
∑
t6=s

[
θ(x)Rs,+

t (k, p̂) + θ(−x)Rs,−
t (k, p̂)

]
·[

vs(k, p̂)γ0vt(−k, p̂) + ut(−k, p̂)γ0us(k, p̂)
]}}

.

Applying the upper expressions for R, u, v (3.157)–(3.159), (3.155)–(3.156),

the sum over t 6= s vanishes because the scalars of u and v sum up to zero.
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(a) ED w. η = 0, m = 10 (b) ED w. η = 1, m = 10 (c) ED w. η = 10,m = 10

m
↑
|

(d) ED with η = 0, m = 1 (e) ED with η = 1, m = 1 (f) ED w. η = 10,m = 1

(g) ED with η = 0, m = 0 (h) ED with η = 1, m = 0 (i) ED w. η = 10, m = 0
−→
η

Figure 3.15: Defect energy density ED,β(x) in four space-time dimensions for

different parameters η > 0 and m > 0 (with fixed spin S1,S2,S3 = 1) plotted

as function of the distance from the defect x at the inverse temperature β =

10. In contrast to lower dimensions the numerical complexity increases so

dramatically that we give an idea of the profile ED,β(x) at β = 10. The

behaviour for increasing temperature – i.e. decreasing β – is similar to the

lower-dimensional cases and is illustrated in figures 3.5 and 3.11. In case mass

m is very large against the defect mass η, the density ED,β=10(x) vanishes

numerically and thus we do not add such graphs here.
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(a) ED(x) with S1 = 1,
S2,S3 = 0

(b) ED(x) with S2 = 1,
S1,S3 = 0

(c) ED(x) with S3 = 1,
S1,S2 = 0

(d) ED(x) with S1 = 10,
S2,S3 = 0

(e) ED(x) with S2 = 10,
S1,S3 = 0

(f) ED(x) with S3 = 10,
S1,S2 = 0

Figure 3.16: Defect energy density ED,β(x) in four space-time dimensions for

different parameters S1,S2,S3, where m,η = 1 and β = 10 fixed. Since the

spin should be a quantum object an exact adjustment into one direction will

not be possible. However, setting components to zero is instructive in order to

understand how changes influence the conserved quantities.

Obviously, the spin components S2 and S3 are equivalent whereas S1 – the

component perpendicular to the defect – plays a particular role.

(a) ED(x) with η = −1 (b) ED(x) with η = 0 (c) ED(x) with η = 1

Figure 3.17: Defect energy density ED,β(x) in four space-time dimensions for

different parameters η, wherem = 1, Si = 1, and β = 10 fixed. Once more, the

defect mass η is responsible for a local maximum (η < 0) or a local minumum

(η > 0) at the postition of the defect x = 0. This indicates some bound states

for η < 0, however, we mention once more that we did not consider any bound

states explicitly. These could be added to the energy density in case η < 0.
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Taking µ = 0, we end up with〈
T 00(x)

〉
=: E0 + ED, (3.169)

E0 =
4π

β3
ζ(3), (3.170)

ED(x) =

∫+∞
0

∫∫π

0

drdϕdθ

π

e− i rx cosϕ sinθr2 sin θ

1 + eβ
√

m2+r2
· (3.171)

· mη+ rS3 cos θ+ rS2 sinϕ sin θ

4rS3 cos θ− i sgn(x)(g+ 4)r cosϕ sin θ+ 4(mη+ rS2 sinϕ sin θ)
.

(3.172)

If mass m = 0, the defect energy expression simplifies,

ED,m=0(x) =

∫+∞
0

∫∫π

0

drdϕdθ

π(1 + eβr)

e− i rx cosϕ sinθr2(S3 cos θ+ S2 sinϕ sin θ)

4(S3 cot θ+ S2 sinϕ) − i(g+ 4) cosϕ sgn(x)

=

∫∫π

0

dϕdθ

4β3π

i(S3 cos θ+ S2 sinϕ sin θ)

(g+ 4) sgn(x) cosϕ+ 4 i(S3 cotθ+ S2 sinϕ)
·

·
(
ζ

(
3,

i x cosϕ sin θ

2β
+

1

2

)
− ζ

(
3,

i x cosϕ sin θ

2β
+ 1

))
(3.173)

The defect energy density ED is evaluated numerically2 in figures 3.15–3.17.

Its properties are very similar the defect density in two dimensions.

Noether currents As above, the conserved Noether currents vanish in gen-

eral,

〈Jµ(x)〉 =
〈
:Ψ(x)Aµ(γ)Ψ(x) :

〉 ∣∣∣
t1=t2

(3.175)

= 0 ⇔ Aµ = γ0,γ1,γ2,γ3. (3.176)

2Note that for numerical reasons, without explicit mention, some figures only show the
real part of the generally imaginary integral. Since we are dealing here with measurable
quantities, the imaginary parts of energy density as well as of the Noether currents should
vanish automatically. In fact, this is what happens. But the numerical results for the
imaginary parts by Mathematica fluctuate in some cases so strongly that we had to ensure
their vanishing by hand. Nevertheless, analytically and by plotting the imaginary parts of
the integrand F(ϕ) separately it is straightforward to check its antisymmetric behaviour
around ϕ0 = 0,π; i.e.

F(ϕ−ϕ0) = −F(−ϕ−ϕ0), (3.174)

hence the integral over ϕ ∈ [0, 2π] vanishes.
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(a) J0D w. η = 0, m = 10 (b) J0D w. η = 1, m = 10 (c) J0D w. η = 10,m = 10

m
↑
|

(d) J0D with η = 0, m = 1 (e) J0D with η = 1, m = 1 (f) J0D w. η = 10,m = 1

(g) J0D with η = 0, m = 0 (h) J0D with η = 1, m = 0 (i) J0D w. η = 10, m = 0
−→
η

Figure 3.18: Fermionic charge density ρ(x) ∝ J0L,e in four space-time dimen-

sions for different defect masses η plotted for varying x with β = 10 and

S1,S2,S3 = 1 fixed.

We again analyse left movers with positive mass exclusively for further com-

parison with those in two and three dimensions.

In analogy to the lower-dimensional cases, the parts containing u(k) vanishes,

〈
J
µ
L,e(x)

〉
=
〈
:ΨL,e(x)A

µ(γ)ΨL,e(x) :
〉 ∣∣∣

t1=t2

= −

∫∫+∞
−∞

dkdp̂

8πω(k)

e−β[ω(k)−µ]

1 + e−β[ω(k)−µ]

{
θ(+k)u(k)A(γ)u(k)+

+ e−2 ikx u(−k)A(γ)u(k)θ(−k) [θ(x)Rs+(k) + θ(−x)Rs−(k)]

}
.

(3.177)



3.4. FERMIONIC δ DEFECTS IN FOUR DIMENSIONS 87

(a) J0D w. S1 = 1,S2,S3 = 0 (b) J0D w. S2 = 1,S1,S3 = 0 (c) J0D w. S3 = 1,S1,S2 = 0

Figure 3.19: Fermionic charge density ρ(x) ∝ J0L,e in four space-time di-

mensions for different spin values S1,S2,S3 plotted for varying x and β (and

m,η = 1 fixed). The plots looks very similar, but as for the energy density

in figure 3.16, the component S1 perpendicular to the defect shows a slightly

different influence.

With the definition (3.155), we derive〈
T 00

L,e(x)
〉

=
1

4
E0 +

1

4
ED =

1

4

〈
T 00(x)

〉
, (3.178)

〈JµL(x)〉 = J0 − JD (3.179)

J0 =
π2

24β2
(3.180)

JD =

∫+∞
0

∫∫π

0

drdϕdθ

π
√
m2 + r2

e− i rx cosϕ sinθr2 sin θ

1 + eβ
√

m2+r2
·

· mη+ rS3 cos θ+ rS2 sinϕ sin θ)

(4rS3 cos θ− i(g+ 4)r cosϕ sgn(x) sin θ+ 4(mη+ rS2 sinϕ sin θ))
.

(3.181)

As the mass m vanishes, the current satisfies

JD,m=0 =

∫+∞
0

∫∫π

0

drdϕdθ

π(1 + eβr)

e− i rx cosϕ sinθr sin θ(S3 cotθ+ S2 sinϕ)

4(S3 cotθ+ S2 sinϕ) − i(g+ 4) cosϕ sgn(x)

(3.182)

=

∫∫π

0

dϕdθ

4β2π

S3 cos θ+ S2 sinϕ sin θ

4(S3 cotθ+ S2 sinϕ) − i(g+ 4) cosϕ sgn(x)
·

·
[
ψ(1)

(
i x cosϕ sin θ

2β
+

1

2

)
− ζ

(
2,

i x cosϕ sin θ

2β
+ 1

)]
.

(3.183)

The four-dimensional defect energy and charge density exhibit analogous prop-

erties as those in two dimensions. Especially the influence of the defect mass
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(a) J0D(x) with η = −1 (b) J0D(x) with η = 0 (c) J0D(x) with η = 1

Figure 3.20: Fermionic charge density ρ(x) ∝ J0L,e in four space-time dimen-

sions for different parameters η, where m = 1, Si = 1, and β = 10 fixed. Once

more, the defect mass η is responsible for a local maximum (η < 0) or a local

minumum (η > 0) at the position of the defect x = 0. This is in complete

similarity to the energy density (see figure 3.17) and indicates some bound

states for η < 0.

sign on the local extrema is similar. Of course, as already in three dimen-

sions, a complete vanishing of mass terms m and η does not force the defect

densities to vanish. Thus, we can formulate an exclusively spin dependent RT

theory in four dimensions. Furthermore, there is no symmetry breaking of the

left-moving theory in contrast to the three-dimensional case.

Comparing plots of defect energy densities ED with charge densities JD, the

similarities are striking. However, they differ in their temperature dependence.

For numerical reasons, we do not give the landscape plots here, but due to

integrals (3.173) and (3.183), the energy density ED diverges much faster than

JD as temperature increases, i.e. β→ 0 (see also figure 3.21).

Moreover, we should emphasise that the absolute value of the defect mass η

does not affect the conserved quantities strongly. Apparently, the “direction”

of the potential (the sign of η) denotes the fundamental quality.

3.4.5 Comparison with Two and Three Dimensions

In four dimension as well, we are interested in the strong and weak coupling

limits S→∞ and S→ 0. We here have to consider three spin components,

S = (S1,S2,S3) = λ(s1, s2, s3), (3.184)
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(a) ED(x) w. η = −1 (b) ED(x) w. η = 1 (c) J0D(x) w. η = −1 (d) J0D(x) w. η = 1

(e) Eβ(x) w. η = −1 (f) Eβ(x) w. η = 1 (g) J0β(x) w. η = −1 (h) J0β(x) w. η = 1

Figure 3.21: Energy and charge densities in four space-time dimensions for

different sign of the defect mass η and varying inverse temperature β, but

S1,S2,S3 = 1 fixed: (a),(b) the pure defect part ED,β(x); (c),(d) the pure defect

part ρD(x) ∝ J0(x); (e),(f) the full energy density E(x) = 〈T 00(x)〉 including the

defect contribution ED; (g),(h) the full charge density ρ(x) ∝ J0(x) including

the defect contribution J0D.

Note that according to our conventions, for deriving the full results, the defect

energy density is added to the non-defect energy density whereas the defect

charge density is subtracted from the non-defect charge density.

Obviously for the examined defect parameters S1,S2,S3 = 1 and η = ±1, the

defect parts ED and JD – diverging as β→ 0 – are too small to induce a local

density minimum for finite β in the full densities. It is still open whether for

a special parameter set, such a minimum occurs.
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where |si| = 1
2
, 1, 3

2
, . . . are quantised spins with a finite but non-zero value.

This implies

λs = S→ 0 ⇔ λ→ 0, with λsi = Si, (3.185)

S→∞ ⇔ λ→∞. (3.186)

Since Ψ+ = M−Ψ−, we have with η = 0 (according to the interest in purely

spin interactions related to [23]):

Ψ+ =
1

ξ+ iS1 − 2


−ξ 0 0 S2 − iS3

0 −ξ S2 + iS3 0

0 S2 − iS3 −ξ 0

S2 + iS3 0 0 −ξ

 Ψ−

︸ ︷︷ ︸
↙ λ→ 0 ↘ λ→∞

Ψ− − Ψ−

m m
IR fixed point UV fixed point

Here, we used ξ := 1
4
(S2 + 4) = λ2

4
s2 + 1.

Hence, we have the same boundary conditions in the UV and IR in all di-

mensions considered here. As already discussed for two dimensions we ex-

cluded bound states, whereas the one-impurity Kondo approach [23] deals

with them as well. Nevertheless, after reducing this ansatz to an effectively

two-dimensional theory, the energy shifts can be read off by comparing the

current algebras with and without spin impurity. We claimed in section 3.2.6

that we implicitly considered these energy shifts by the RT ansatz since we

supposed non-disturbed eigenstates of the defect system.

However, in view of the similarities of the conserved energy and charge densi-

ties in all dimensions, this suggests a generalisation of the one-impurity CFT

approach [23]: by comparing current algebras for the defect and non-defect case

it should be possible to derive energy shifts similar to the two-dimensional case

for arbitrary dimensions. We leave this for future research.
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3.5 Matrix Optics Construction for Fermionic

Defect Theories

We already gave a brief idea of matrix optics in section 2.3. With the de-

fect matrices we have a description of the linear deflection of some “optical

elements”. The unknown matrix in this picture is the propagation matrix

that transforms the particle wave at the position x1 into another position x2

accounting the free propagating in between.

We emphasise once more that this ansatz stressing the analogy to geometrical

optics is possible because the exact wave function propagates linearly and is

decomposable into modes perpendicular and parallel to the defect. For lower-

dimensional defects the latter is not necessarily true anymore. In these cases

the matrix optics ansatz cannot be applied.

Single defect For a single defect described by Lagrangean (3.9) we already

derived the boundary condition (3.12):

Ψ+

∣∣∣
0

=

(
iγx +

1

2
U

)−1(
iγx −

1

2
U

)
Ψ−

∣∣∣
0

(3.187)

=: M− · Ψ−

∣∣∣
0
. (3.188)

Like in the general bosonic case, for a single defect we have already a matrix

depending on all the defect parameters and with non-zero entries at every

position.

Two parallel defects For two parallel defects at positions x1, x2, we add a

second defect term in the Lagrangean,

L = Ψ (i6∂+ im)Ψ+ δ(x1)ΨU1Ψ+ δ(x2)ΨU2Ψ, (3.189)

where the different boundary conditions read (with x1 > x2 and the wave

function index “0” denotes the interval x ∈ [x2, x1] between the defects)

Ψ+

∣∣∣
x=x1

=

(
iγx +

1

2
U1

)−1(
iγx −

1

2
U1

)
Ψ−

∣∣∣
x=x1

(3.190)

=: M1− · Ψ0

∣∣∣
x=x1

, (3.191)
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Ψ0

∣∣∣
x=x2

=

(
iγx +

1

2
U2

)−1(
iγx −

1

2
U2

)
Ψ−

∣∣∣
x=x2

(3.192)

=: M2− · Ψ−

∣∣∣
x=x2

. (3.193)

Similar to the bosonic case, the matrix P that describes the propagation has

to fulfill the equivalent relations

Ψ+

∣∣∣
x=x1

= M1− · P(x1, x2) ·M2− · Ψ−

∣∣∣
x=x2

, (3.194)

Ψ0

∣∣∣
x=x1

= P(x1, x2) · Ψ0

∣∣∣
x=x2

. (3.195)

We evaluate (3.195) where the wave function Ψ0 is

Ψ0(x) =

∫+∞
−∞

dk

2π
√

2ω(k)
us(k)a

s,0(k) eiω(k)t−ikx +vs(k)as,0(k) e− iω(k)t+ikx,

(3.196)

and x ∈ [x2, x1] as stated above.

We allow the matrix P to be dependent not only on x1 − x2, but on k as well

and evaluate the integrand of Ψ0(x),

ϕ0(k) = us(k)a
s,0(k) eiω(k)t−ikx +vs(k)as,0(k) e− iω(k)t+ikx . (3.197)

Since creator and annihilator separate, we derive eigenvalue equations for

P(x1, x2),

P(x1, x2) · us(k) = e− ik(x1−x2) us(k), (3.198)

P(x1, x2) · vs(k) = e+ ik(x1−x2) vs(k). (3.199)

With the abbreviations Y(k) := sin[k(x1 − x2)] and Z(k) := cos[k(x1 − x2)] we

solve directly for two dimensions,

P(k, x1 − x2) =

(
Z(k) i(k−p0)

m
Y(k)

i(k+p0)
m

Y(k) Z(k)

)
, (3.200)

for three dimensions,

P(k, x1 − x2) =

(
Z(k) − p2

m
Y(k) i(k−p0)

m
Y(k)

− i(k+p0)
m

Y(k) Z(k) + p2

m
Y(k)

)
, (3.201)
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for four dimensions,

P(k, x1 − x2) =


Z(k) −p2−ip3

m
Y(k) i(k−p0)

m
Y(k) 0

−p2+ip3

m
Y(k) Z(k) 0 i(k−p0)

m
Y(k)

− i(k+p0)
m

Y(k) 0 Z(k) p2−ip3

m
Y(k)

0 − i(k+p0)
m

Y(k) p2+ip3

m
Y(k) Z(k)

 .

(3.202)

For the continuity of the wave function, it is necessary that

detP = 1, (3.203)

P = 1 ⇐ x1 = x2. (3.204)

Moreover, this ensures the “vanishing” of P(k, x1 − x2) in the product (3.195)

as soon as the defects merge (at x1 = x2) because in that case there is no

propagation between them anymore.

The generalisation for n+ 1 defects yields (where x1 > x2 > x3 > . . . > xn+1)

for the boundary condition

Ψ+

∣∣∣
x=x1

=

∫+∞
−∞

dk

2π
√

2ω(k)

[
n∏

i=1

Mi,−P(k, xi − xi+1)

]
Mi+1,−ϕ−(k)

∣∣
xn+1

.

(3.205)

Certainly, at this point we can not give the reflection and transmission am-

plitudes explicitly via a general formula for all dimensions. Nevertheless, it is

not difficult but straightforward to calculate the composite boundary matrix,

M̃− =

[
n∏

i=1

Mi,−P(k, xi − xi+1)

]
Mi+1,−

2D
=:

1

4 − g̃− 4 i S̃

(
g̃+ 4 4 i η̃

−4 i η̃ g̃+ 4

)
,

(3.206)

and compare the entries with those of the single defect boundary matrix and

thus identify the values S̃i, η̃ of the composite boundary matrix M̃ (and still

g̃ = η̃2 + S̃2). The reflection and transmission amplitudes are then simply the

single defect amplitudes where the single defect parameters Si,η were replaced

by S̃i and η̃, respectively.

Hence with the RT formalism we are able to give all the properties of a compos-

ite defect system by determining the “single defect” parameters of the compos-

ite system and subsequently treating it like a single defect, as we have already

described in detail.
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Une rose pour qu’il pleuve. Au terme d’innombrables années,

c’est ton souhait.

(Eine Rose, auf daß es regne. Nach zahllosen Jahren ist dieses

dein Wunsch.)

René Char, A la santé du serpent

4
Summary and Outlook

In physics, boundaries and defects emerge in many areas: as spatial boundary,

as defects in the lattice structure or as single impurities, they attract interest

in condensed matter physics. Recently they also appeared in field theories

describing the nature of elementary particles.

In particular, the magnetic impurities in solid states (i.e. the Kondo effect)

are of great interest. One of its descriptions builds a bridge between both

solid state physics and elementary particle theory by using two-dimensional

conformal field theory (CFT). Investigation and characterisation of CFT is a

most important topic in string theory and even more for the AdS/CFT corre-

spondence. On the one hand, two-dimensional CFT with boundaries is very

helpful in understanding the one-impurity Kondo effect. On the other hand,

it draws attention as dual theory of a supergravity in an AdS background.

Of course, conformal symmetry is not a necessary characteristic of most solid

state models. Accordingly, the RT algebra ansatz [62] gives a possible quantum

field theory description of defects without requiring conformal symmetry.

However, most of the mentioned research was done in two dimensions, for

95
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several reasons: four dimensional theories are usually so complicated that it is

difficult to calculate exact results, whereas in two dimensions many exact solu-

tions are known. Furthermore, two-dimensional CFT exhibit an infinite num-

ber of conserved quantities (contrary to a finite number in higher dimensions)

and thus nearly all physically relevant quantities can be given in dependence

on few parameters (conformal dimensions and central charge). In addition,

the two-dimensional world-sheet of a string is conformal.

For these reasons, very few of the previous models have been considered in

higher dimensions. In the AdS/CFT correspondence, higher-dimensional de-

fect theories have been introduced by adding an additional D5 brane [18].

Likewise, the RT ansatz [62; 63] has been developed for arbitrary dimensions.

In this work, we implemented fermionic degrees of freedom in the general

RT framework dealing with higher-dimensional non-conformal (and thus more

general) defect theories. In particular, we determined the algebra elements

in general – namely the reflection and transmission amplitudes – from ini-

tial parameters which are the model-dependent boundary parameters. For

all space-time dimensions up to four, we calculated the energy and charge

densities, which dependent only on generic expressions of reflection and trans-

mission amplitudes. We introduced a model Lagrangean which contained a

defect mass η as well as interactions with spin components Si. We studied the

influence on these conserved quantities – namely energy and charge densities –

for different values of our defect parameters η and Si. By doing so, we showed

that the sign of the defect mass η has specific importance and determines the

local behaviour around the defect: a negative η induces a local minimum of the

defect densities at the position of the defect x = 0 whereas positive values of η

generate a local maximum (which is exactly opposite to the behaviour in the

bosonic defect theory). We showed the similarity of the defect density plots

in all dimensions and observed a symmetry breaking for left-moving currents

in three dimensions. We gave evidence for phase transitions at finite temper-

ature at least in two dimensions and showed consistency with the well-known

two-dimensional model for the Kondo effect [23]. Moreover, we discussed an

option deriving energy shifts in four dimensions by CFT.

For simplicity, we restricted our analysis by not taking into account conformal

symmetry as well as bound states. Considering bound states – using the devel-

oped formalism – would be a next step towards the characterisation of Kondo
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lattices; implementing conformal theory will provide us with a prescription of

AdS-dual CFT with defects. Furthermore, we examined exclusively defects of

co-dimension one, i.e., d−1-dimensional defects in d-dimensional theories. We

motivated this choice by the canonical Fourier decomposition into plane waves

which move either perpendicular or parallel to the defect of co-dimension one.

For co-dimension two (and higher dimensions analogously), there are two di-

rections perpendicular to the defect. Therefore, the integration of the equation

of motion over a small interval around the position of the defect has to be mod-

ified. A natural way to do this was to consider spherical waves and derive a

boundary condition similar to that induced by defects with co-dimension one.

In such a framework the absolute value of the reflection amplitude has to be

one and thus will be fixed up to a phase. Nevertheless, a thus modified theory

should be consistent. Unfortunately, the matrix optics ansatz for more than

one impurity we discussed in sections 2.3 and 3.5 will not hold for such a con-

struction anymore. It is not obvious to us how this ansatz could be modified

and adapted to lower-dimensional defects, i.e. defects of higher co-dimension.

Another possibility was to interpret some d−2-dimensional defects in a d−1-

dimensional hyperplane as d−1-dimensional defect with varying wave function

values on that defect; in other words, considering an additional induced poten-

tial on that d− 1-dimensional defect. Yet a solution to this problem is not in

sight, but non-constant potentials on the defect would also be very interesting

for understanding correlations parallel to the defect. The currents
〈
J
µ
L,e(x)

〉
for µ = 1, 2, . . . which vanish if no potential is present (see sections 3.3.4 and

3.4.4) should exhibit a non-zero value for such an additional potential.

Examining the Kondo lattice and the CFT approach by [1], we expected a

higher-dimensional CFT with less symmetry – hence additional central charges

– to be in one-to-one correspondence to the additional parameters of the lattice.

Thus, by considering the symmetry breaking from the one-impurity Kondo

model to the lattice model, we hope to find a valid description of Kondo

lattices by higher-dimensional conformal field theories. The consideration of

ordinary field theories with defects is a first step into this direction. Based on

the results of this thesis, we believe it possible to apply conformal symmetry

to the presented RT formalism now. Doing so would restrict the non-CFT

approach but also shed light on the proposed relation between Kondo lattice

structure and CFT with defects in higher dimensions.
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The most interesting question then is whether the two pictures match: on the

one hand, the lower-dimensional defects interpreted as one higher-dimensional

defect with additional potential, on the other hand, the additional conformal

symmetry that is expected to map to the Kondo lattice.

Moreover, combining the RT approach with conformal symmetry leads to the

possibility of further decribing defect CFT within the AdS/CFT correspon-

dence. In particular, the calculation of the energy density at the defect is

expected to lead to deeper insight into the localisation of gravity on the probe

brane in the dual gravity theory.

Recently, another development within the framework of AdS/CFT – the so-

called Janus models [19; 20] – attracted attention in relation to RT algebras.

These Janus models are non-supersymmetric deformations of the AdS5 geom-

etry with AdS4 defect that exhibit on the field theory side a CFT with defect,

where both sides show different coupling constants. In fact, the coupling con-

stants respect
1

g2
=
θ(x)

g2
+

+
θ(−x)

g2
−

, (4.1)

where the action is

S =

∫
dx

1

g2
L ′(x). (4.2)

Moreover, the different coupling constants on different sides of the defect break

the continuity of the Lagrangean at x = 0 explicitly. Obviously, this fits very

well in the RT formalism on boundaries done by [61]. On the other hand, it

is in contradiction to our continuity claim (ii) on page 47. However, we can

reformulate the Lagrangean (3.9) by

L = Ψ (i6∂+ im)Ψ+ δ(x)Ψ [U+θ(x) +U−θ(−x)] Ψ, (4.3)

and thus

Ψ+

∣∣
0

=

(
iγx +

1

2
U+

)−1(
iγx −

1

2
U−

)
Ψ−

∣∣
0
. (4.4)

Accordingly, the boundary matrix M− will not necessarily be unitary. The

consequences – especially regarding the influence of conformal symmetry – are

now to be developed in detail.

A third model most interesting in relation to RT formulation including con-

formal symmetry is the D3-D3 brane intersection model on a C2/Zk orbifold
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in the infrared limit. The interaction can be described by M5 branes [11; 12].

This is analogous to NS5-NS5-D4 box models considered in [72] which denote

M5-M5-M5 intersections in M theory and are described by three-cycles (the

orbifold background in this case is C3/Γ). Such three-cycles are of interest

since they encode the holographic information of an N = 1 QFT, similarly to

Seiberg-Witten curves [73] for N = 2.

For all the future research outlined above, we hope to have provided a basis

by the present work.
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Les larmes méprisent leur confident.

(Verachtet wird von den Tränen, wer um sie mitweiß.)

René Char, A la santé du serpent
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Produis ce que la connaissance veut garder secret, la connaissance

aux cent passages.

(Was die Erkenntnis verborgen zu halten bestrebt ist, bring es

hervor. Sie, die Erkenntnis, die sich hundertfach Bahn bricht.)

René Char, A la santé du serpent

A
Explicit Determination of RT

Coefficients From Boundary Matrices

In this appendix, we provide a short and thus efficient way to deduce RT

amplitudes from boundary data; i.e. by the boundary matrix M− defined in

(3.12) as

M− =

(
iγx +

1

2
U

)−1(
iγx −

1

2
U

)
, (A.1)

where the general operator U mediates the defect interaction via (3.9),

L = Ψ (i6∂+ im)Ψ+ δ(x)ΨUΨ. (A.2)

To simplify matters, in our notation we drop the dependency on momenta p̂

parallel to the defect which stays unspoiled by our transformations.

The spin solutions us(p) ≡ us(k) and vs(p) ≡ vs(k) satisfy (3.32),

(6p− im)us(k) ≡ 0, (A.3)

(6p+ im) vs(k) ≡ 0, (A.4)
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and are unique except for a phase. Furthermore, from the boundary condition

(3.12),

Ψ+ = M−Ψ−, (A.5)

we derived decomposed boundary conditions (3.51), (3.52) for the Fourier

modes as±(k), as
±(k) := as,±(k) (the index shift is implemented in order to

sum according to Einstein’s rule) of the wave function Ψ(x),

vs(k)a
s
+(k) + vs(−k)a

s
+(−k) = M− [vs(−k)a

s
−(−k) + vs(k)a

s
−(k)] ,

(A.6)

us(k)a
s+(k) + us(−k)a

s+(−k) = M− [us(−k)a
s−(−k) + us(k)a

s−(k)] .

(A.7)

In addition, the exchange algebra conditions (2.25), (2.26) read

at,−i(p)T
s,i

t (p) + at,i(−p)R
s,i

t (−p) = as,i(p), (A.8)

at,−i(p)T
t,−i
s (p) + at,i(−p)R

t,i
s (−p) = as,i(p). (A.9)

We are exclusively interested in Rs,j(±k) and Ts,j(±k), hence the annihilator

relations (A.6) and (A.9). The barred components are just complex conjugated

components. Therefore, hereinafter equations (A.7) and (A.8) will be ignored.

Moreover, we know that all of the spinors vi(k), vi(−k) are linearly indepen-

dent from each other in general. Therefore, we can decompose the eigenstates

of the boundary matrix M− as

M−vs(k) = λt−
s (k) vt(−k) + λt+

s (k) vt(k), (A.10)

and accordingly,

M−vs(−k) = λt−
s (−k) vt(k) + λt+

s (−k) vt(−k), (A.11)

here using that the boundary matrix M− is not dependent on momentum k.

Equations (A.10), (A.11) are defining the linear coefficients λj±
i . As soon as

U and thus M− are defined explicitly, these coefficients λj±
i can be computed

directly.

Implementing equations (A.10) and (A.11), the boundary condition (A.6) reads

vs(k)a
s
+(k) + vs(−k)a

s
+(−k) =

[
λt−

s (−k) vt(k) + λt+
s (−k) vt(−k)

]
as

−(−k)+

+
[
λt−

s (k) vt(−k) + λt+
s (k) vt(k)

]
as

−(k)

(A.12)
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Since relation (A.9) defines reflection and transmission coefficients in terms of

generators and annihilators, we just have to transform equation (A.12) to read

off these RT coefficients purely in terms of linear coefficients λj±
i . This can be

carried out directly by Mathematica, for instance. In order to show that

the result is unique, some further steps have to be taken.

Since the phase of the spin modes vs(k), vs(−k) should not affect reflection

and transmission terms for reasons of consistency, we should not need their

explicit form. Moreover, with ṽs(k) := [vs(k)
∗]T , there holds the orthogonality

relation

ṽs(k) · vt(k) = δst. (A.13)

Multiplying in relation (A.12) ṽs(k) and ṽs(−k) from the left yields two inde-

pendent conditions for every single index s,

as
+(k) =

[
λs−

s (−k) + λt+
s (−k) ṽs(k) · vt(−k)

]
as

−(−k)+

+
[
λt−

s (k) ṽs(k) · vt(−k) + λs+
s (k)

]
as

−(k)

, (A.14)

as
+(−k) =

[
λt−

s (−k) ṽs(−k) · vt(k) + λs+
s (−k)

]
as

−(−k)+

+
[
λs−

s (k) + λt+
s (k) ṽs(−k) · vt(k)

]
as

−(k)

. (A.15)

It is straightforward to check that the scalars ṽs(k) ·vt(−k) are not dependent

on the phase of vs(k) anymore. Thus we are left with relations exclusively de-

pending on the coefficients λt±
s (k). We could extend this approach to arbitrary

space-time dimensions, but only state the explicit results for four dimensions

here. The lower-dimensional results just reproduce (3.58),(3.59) or (3.116),

(3.117), respectively.

Four dimensions The matrix expression according to (3.150),
a1−(+k)

a1+(−k)

a2−(+k)

a2+(−k)

 =


R1−(−k) T 1+(k) R2−

1 (−k) T 2+
1 (k)

T 1−(−k) R1+(k) T 2−
1 (−k) R2+

1 (k)

R1−
2 (−k) T 1+

2 (k) R2−(−k) T 2+(k)

T 1−
2 (−k) R1+

2 (k) T 2−(−k) R2+(k)


︸ ︷︷ ︸

=: M

·


a1−(−k)

a1+(+k)

a2−(−k)

a2+(+k)

 ,

(A.16)
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already gets out of hand. We transform (A.14) and (A.15) to read off the RT

coefficients which are very long in this form. But since

λ2+
1 = 0 = λ1+

2 , (A.17)

these expressions simplify. The result is then

M =
1

L


λ1−

1 (−k)λ2+
2 (k) −λ2+

2 (k) λ1−
2 (−k)λ2+

2 (k) 0

F1(k) −λ1−
1 (k)λ2+

2 (k) F3(k) −λ1−
2 (k)λ1+

1 (k)

λ2−
1 (−k)λ1+

1 (k) 0 λ2−
2 (−k)λ1+

1 (k) −λ1+
1 (k)

F2(k) −λ2−
1 (k)λ2+

2 (k) F4(k) −λ2−
2 (k)λ1+

1 (k)

 ,

(A.18)

with

L = −λ1+
1 (k)λ2+

2 (k), (A.19)

F1(k) = Lλ1+
1 (−k) + λ2−

1 (−k)λ1−
2 (k)λ1+

1 (k) + λ1−
1 (−k)λ1−

1 (k)λ2+
2 (k), (A.20)

F2(k) = λ2−
1 (−k)λ2−

2 (k)λ1+
1 (k) + λ1−

1 (−k)λ2−
1 (k)λ2+

2 (k), (A.21)

F3(k) = λ1−
2 (k)λ2−

2 (−k)λ1+
1 (k) + λ1−

1 (k)λ1−
2 (−k)λ2+

2 (k), (A.22)

F4(k) = λ2−
2 (−k)λ2−

2 (k)λ1+
1 (k) + λ2−

1 (k)λ1−
2 (−k) − Lλ2+

2 (−k). (A.23)

The non-vanishing linear coefficients λt±
s (k) read

λ1+
1 (k) = −

(g+ 4)k+ 4 iX(k)

k(g+ 4 iS1 − 4)
, (A.24)

λ2+
2 (k) = −

(g+ 4)k+ 4 iX(k)

k(g+ 4 iS1 − 4)
, (A.25)

λ1−
1 (k) =

4(iXp0 + kS3p2 − kS2p3)

k(g+ 4 iS1 − 4)
√
p2

0 − k2
, (A.26)

λ2−
2 (k) =

4(iXp0 − k(S3p2 − S2p3))

k(g+ 4 iS1 − 4)
√
p2

0 − k2
, (A.27)

λ1−
2 (k) =

4η(p2 + ip3) − 4m(S2 + iS3)

(g+ 4 iS1 − 4)
√
p2

0 − k2
, (A.28)

λ2−
1 (k) =

4η(p2 − ip3) − 4m(S2 − iS3)

(g+ 4 iS1 − 4)
√
p2

0 − k2
, (A.29)

where g = η2 +S2
1 +S2

2 +S2
3 and X(k) = mη+p2S2 +p3S3 as defined in (3.160),

(3.162). This gives us the RT amplitudes (3.157)–(3.159).

We would like to stress once more that this determination algorithm for RT

amplitudes can be easily implemented into our numerical calculations whereas

other approaches failed.



Remercie celui qui ne prend pas souci de ton remords. Tu es son
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